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Zusammenfassung

Die Dynamik von Populationen werden häufig mit Hilfe von stark verein-

fachenden mathematischen Modellen untersucht. Die Details in der mathema-

tischen Formulierung der Prozesse können dabei entscheidenden Einfluss auf

die Modelleigenschaften haben. Allerdings gestaltet sich eine exakte Herlei-

tung dieser Funktionen aus experimentellen Daten in der Regel schwierig. In

der verallgemeinerten Modellierung hingegen, kann auf eine solch detaillierte

Beschreibung verzichtet werden. Die Eigenschaften dieser Modelle sind daher

generisch und treffen auf eine ganze Klasse von Modellen zu.

In dieser Arbeit werden zwei neue Spezialgebiete der Populationsdyna-

mik mit Hilfe eines verallgemeinerten Modellierungsansatzes untersucht: stoi-

chiometrische und öko-epidemiologische Populationsmodelle. Die stoichiome-

trischen Populationsmodelle berücksichtigen, dass Primärproduzenten in der

Regel einen schwankenden Nährstoffgehalt aufweisen, Konsumenten jedoch ei-

ne fein abgestimmte Zusammensetzung von Nährstoffen benötigen. In öko-

epidemiologischen Modellen wir hingegen der Einfluss von Krankheiten auf

die Interaktion von Populationen untersucht. Im Speziellen werden wir uns

mit Krankheiten in Räuberpopulationen und den Einfluss auf die Räuber-

Beute-Dynamik befassen.

Bifurkationen spielen in den verwendeten Analyseverfahren eine entschei-

dende Rolle. Zunächst wird eine innovative Methode vorgestellt, mit der Bifur-

kationen in verallgemeinerten Modellen gefunden und dreidimensional darge-

stellt werden können. Die somit gewonnenen Bifurkationsdiagramme der ver-

allgemeinerten Modelle werden anschließend teilweise mit den Bifurkationsdia-

grammen spezifischer Modelle kombiniert und verglichen.

Es zeigt sich, dass stoichiometrische Einflüsse aufgrund einer resultierenden

variablen Ausbeute zu völlig neuen Dynamiken in Populationsmodellen füh-

ren. Des Weiteren finden wir einen paradoxer Weise stabilisierenden Effekt von

Konkurrenz unter Primärproduzenten. Das bedeutet, dass eine Verringerung

der intraspezifischen Konkurrenz tendenziell das System destabilisiert. Diese

Ergebnisse und ihre Voraussage werden anhand spezifischer Modelle verdeut-

licht.

Die Untersuchung des verallgemeinerten ökologisch-epidemischen Modells
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Zusammenfassung

zeigt, dass Krankheiten in Räuber-Populationen quasiperiodische und chaoti-

sche Dynamiken hervorrufen können. Mit Hilfe eines dreidimensionalen Bifur-

kationsdiagramms weisen wir diese komplexen Dynamiken in einem speziellen

Modell nach. Diese Modell ermöglicht zudem, die Größe dieser Parameterbe-

reiche und die Wege in Chaos exemplarische zu analysieren.
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Summary

Population dynamics are often investigated under the usage of simple math-

ematical models. The model properties of these models can be very sensitive to

the mathematical formulation of the considered processes. A detailed deriva-

tion of these functional forms from field or lab experiments is in general diffi-

cult. However, in generalized modeling a further specification of the processes

under consideration is avoided. Consequently, the analysis of these models

allows to gain very generic system properties.

In the presented thesis a generalized modeling approach is used to analyze

two new branches of theoretical population dynamics. On the one hand we

investigate a generalized stoichiometric model that encounters the fact that

producers have a rather variable nutrient content while consumers need a bal-

anced diet of specific nutrients. On the other hand we analyze a generalized

eco-epidemic model to show how a disease in a predator population can in-

fluence the predator-prey interactions. This research is based on bifurcation

theory.

Generalized and specific modeling approaches require different computation

techniques to locate bifurcations in parameter space. An innovative technique

to locate bifurcations in generalized models is introduced, that allows for an

efficient computation of three dimensional bifurcation diagrams. The resulting

bifurcation diagrams are partly combined with bifurcation diagrams of specific

modeling approaches to demonstrate the interplay of generalized and specific

modelling.

The analysis of the generalized stoichiometric model shows that, in conjunc-

tion to a variable efficiency of the biomass conversion, new dynamics appear.

Moreover the analysis reveals a generic paradoxical effect of competition. It

indicates that a change of the system which decreases the intra specific com-

petition of producers tends to destabilize the system. Specific example models

are used to illustrate these findings and their predictive capabilities.

Investigating the generalized eco-epidemic model it shows that diseases in

predator populations can in general cause quasiperiodic and chaotic dynamics.

Subsequently the generalized analysis is used to locate these dynamics in a

specific example model. This specific model allows to identify the size of the
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Summary

parameter regions with complex dynamics and to investigate exemplary routes

to chaos.
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Chapter 1

Introduction

Without a doubt, our environment is a highly complex system. Interestingly,

in the past century many important insights have been gained from quite

simple mathematical models. Although these abstract models neglect biolog-

ical details and focus rather on the most fundamental processes the observed

dynamics can be very complicated (May and Oster, 1976). The typically qual-

itative results of simple models may help to understand the consequences of

the incorporated processes. In this way simple generic models are useful to

investigate the basic mechanisms behind ecological interactions.

One of the most dominant aspects of ecology is the dynamics of populations

and the interactions between them. In the past century an abundant number

of simple models has been proposed and analyzed to explore these dynamics.

The majority of the proposed models are specific in the sense that the mech-

anisms under consideration are represented by fully parameterized functions.

In principle, these models allow a detailed analysis of the system dynamics.

However, the properties of such specific models are often very sensitive to the

exact mathematical formulation of the processes. A detailed derivation from

field or lab experiments is in general difficult while a derivation from theoretical

reasoning can hardly capture the complex nature behind these processes. This

problem appears not only in ecology but in many fields of science where com-

plex systems are under consideration. The formulation of generalized models

avoids instead to parameterize each processes under consideration. Recently,

the analysis of generalized models has been improved by a framework that

1



1. Introduction

allows for extensive insights on the local stability properties of the system.

Moreover, it can be used to gain information about the presence of global dy-

namics (Gross and Feudel, 2006). As we will see, this approach has opened new

vistas to old debates within the community of applied and theoretical ecology.

Before we discuss actual topics of ecology and the pros and cons of the dif-

ferent modeling approaches, let us briefly rehash the historical development of

modern theoretical population dynamics and some basics of dynamical system

theory.

In 1798 Thomas Malthus proposed an exponential growth of populations

in his Essay on the Principle of Population. But Malthus was concerned about

the impact of limited resources. Basically, he reasoned that resources remain

constant or only increase linearly. Thus, the growth must cease when the de-

mand for resources exceeds the supply. It was Verhulst (1838) who formulated

these principles in terms of the logistic growth where the per capita growth

rate is given by a constant term minus a term that is proportional to the

existing population. The latter term expresses the intra-specific competition

for resources. This formulation leads for small populations to an initial expo-

nential growth which saturates with increasing abundance of the population.

Interestingly, this drastic simplification of nature describes the growth of many

single-species populations very well (i.e. Gause (1934); Perni et al. (2005)).

The first model which describes predator-prey interactions between differ-

ent populations was proposed by Lotka (1925) (and independently soon after-

wards by Volterra (1928)). Following the chemical principle of mass action, he

proposed that the predation and the growth of the predator depend bi-linear

on the abundances of the prey and predators. Further, he assumed constant

rates for the growth of prey and mortality of the predator. The simple model

was originally used to explain an increased amount of predator fishes in the

Adriatic sea during the first world war. Solutions of this model are neutrally

stable limit cycles. If the linear growth term is substituted by a logistic growth

the system evolves into a stable focus. Although the logistic growth is often

used in predator-prey systems, its validity to capture the effect of limited re-

sources on a multiple species system is rather questionable (e.g. Kooi et al.

(1998)).

A next major milestone was the introduction of predator functional re-
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sponse describing the predation rate as a nonlinear function of the abundance

of prey. It was argued by Solomon (1949) and Holling (1959) that the preda-

tion rate should not be linear since predators can only handle a limited amount

of prey per unit of time. Many variations of the Lotka-Volterra model have

been analyzed for several different functional responses (e.g. Rosenzweig and

MacArthur (1963); Truscott and Brindley (1994); Wolkowicz et al. (2003)).

Often, these models show transitions from stationary to oscillatory behavior

when the amount of resources, i.e. the related parameter is increased. These

oscillations can lead temporarily to very low prey populations. Thus, stochas-

tic extinction of the prey population becomes likely to occur (Cunningham and

Nisbet, 1983; Pascual and Caswell, 1997). In that sense, these models predict

a devastating effect of enrichment, the extinction of both populations. This

counterintuitive effect of increasing resources is called Rosenzweig’s Paradox of

enrichment (Rosenzweig, 1971). In contrast to the commonness of this effect

in theoretical models, only some experiments show the paradox of enrichment

but others do not (e.g. Morin and Lawler (1995)).

In theoretical ecology several model modification have been proposed that

do not show this paradoxical effect. Arditi and Ginsburg (1989) showed that

the paradox of enrichment is absent when the functional response depends on

the ration between prey and predator abundances. However, ratio-dependent

models show other unrealistic effects instead. Predators still interfere at low

predator densities and rarity even allows them to capture high amounts of prey

even when prey density is extremely low (Hanski 1991, Abrams 1994). Using a

generalized model, Gross et al. (2004) have shown the usage of quantitatively

similar alternatives to common functional responses can even lead to stabilizing

effects of enrichment.

Apart from stationary or periodic behavior chaotic dynamics can be found

in many population models, even in the simplest models like the logistic map

(May and Oster, 1976). While population cycles can be observed in many wild

populations, most prominently the snowhare-lynx populations in Canada and

lemmings population in north Europe (e.g. Elton (1924)) but also reoccurring

pests of forest insects (e.g. Berryman (1996)), chaotic dynamics are rarely

evidenced in nature (Hastings et al., 1993). Similar to the paradox of enrich-

ment the debate whether chaotic dynamics are likely to appear is often hold
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1. Introduction

on modeling details. For instance, Ruxton and Rohani (1998) observed that

for some models the chaotic dynamics disappear when the models are slightly

changed. Using the generalized modeling approach Gross et al. (2005) showed

that food chains with more than 3 trophic levels are in general chaotic.

The examples of the paradox of enrichment and the chaotic dynamics

demonstrate that generalized models can reveal generic system properties con-

cerning stability effects and complex dynamics. These results are derived from

a bifurcation analysis of generalized models. But also in the analysis of specific

models bifurcation theory plays a central role (Bazykin, 1998).

Bifurcations are qualitative transitions of the long term dynamics of the

system, like the transition from stationary to oscillatory behavior. In the field

of ecology several bifurcations have shown to be important. For instance, the

existence boundaries of populations are often tangent or transcritical bifurca-

tions (e.g. Kooĳman et al. (2004)). Further, a Hopf bifurcation (Hopf, 1942)

is involved in the paradox of enrichment and can be observed experiments on

living populations (Fussmann et al., 2000) and homoclinic bifurcation are as-

sumed to play an important role in the dynamics of insect pests (Gragnani

et al., 1998) and plankton blooms (Scheffer et al., 1997). Because these bi-

furcations also play a central role in in the presented work, we provide in

the following a short description and some illustrating figures. More detailed

information can be found in (Guckenheimer and Holmes, 2002; Kuznetsov,

2004).

First we consider Bifurcations of steady states as shown in Fig. 1. In

a tangent bifurcation two steady states merge together and disappear, as it

is illustrated in Fig. 1(a) in case of a stable and an unstable steady state.

This bifurcation scenario is also called saddle-node bifurcation. Beyond the

bifurcation point pcr the system approaches another attractor. This means that

the original state of the system is in general hardly re-obtained once the critical

parameter value has passed. Due to certain conditions a degenerated form

of the saddle-node bifurcation is often encountered in predator-prey models.

Figure 1(b) shows a transcritical bifurcation where two steady states exchange

stability. This bifurcation is often related to a deterministic extinction of a

species when an equilibrium state exchanges stability with a solution where

one or more populations are zero.

4



(a) An unstable steady state (sad-
dle) and a stable steady state (node)
merge and disappear in a saddle-node
bifurcation at pcr

(b) An unstable equlibrium and a sta-
ble steady state exchange stability in
a transcritical bifurcation at pcr

Figure 1: Examples of steady state bifurcations.

Bifurcations of steady states and limit cycles are shown in Fig. 2 and

Fig. 3. Figure 3 shows two types of Hopf bifurcations. While a stable steady

state becomes unstable, either a stable limit cycle emerges (super-critical Hopf

bifurcation, Fig. 2(a)) or an unstable limit cycle disappears (sub-critical Hopf

bifurcation, Fig. 2(b)).

(a) A stable steady state becomes un-
stable and a stable limit cycle emerges
in a super-critical Hopf bifurcation at
pcr.

(b) A stable steady state becomes un-
stable and an unstable limit cycle dis-
appears in a sub-critical Hopf bifurca-
tion at pcr..

Figure 2: Hopf bifurcations.

Another possibility for limit cycles to (dis)appear are homoclinic bifurca-

tions as shown in Fig. 3. In a homoclinic saddle bifurcation a limit cycle turns
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1. Introduction

into a homoclinic connection as shown in Fig. 3(a). On a homoclinic connec-

tion the system evolves forward and backward in time towards the same steady

state. Consequently, such a homoclinic loop takes an infinite amount of time,

i.e. has an infinite period. The cycle disappears beyond the bifurcation. It is

also possible that a stable and an unstable steady state with a heteroclinic con-

nection merge in a homoclinic saddle-node bifurcation as shown in Fig.3(b).

Thereby the heteroclinic connection becomes a homoclinic connetion in the

bifurcation point which turns into a limit cycle beyond the critical parameter

value. Homoclinic bifurcations play also an important role in the emergence

of chaotic dynamics (Kuznetsov, 2004).

(a) A limit cycle disappears after it
intersects with an unstable steady
state (saddle) in a homoclinic bifur-
cation at pcr.

(b) An unstable steady state and a
stable steady state with a hetero-
clinic connection merge in a homo-
clinic saddle-node bifurcation at pcr
and a limit cycle appears.

Figure 3: Homoclinic bifurcations.

For the analysis of specific models the computation of these bifurcations

can be done numerically using continuation methods as in powerful software

packages like AUTO (Doedel et al., 1997; Doedel and Oldeman, 2009), CON-

TENT (Kuznetsov and Levitin, 1996) and MATCONT (Dhooge et al., 2003).

These programs allow to follow the stationary or periodic solutions by varying

one parameter in order to find the bifurcation points. Once a bifurcation point

is detected, it is possible to follow the bifurcation point while another param-

eter is varied. In this way bifurcation curves are obtained which can lead to

even more complicated bifurcation situations.
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The application of these techniques to generalized models is not possible

since the generalized formulations allows not even a computation of a steady

state. Therefore, in the field of generalized modeling classical methods are

of advantage and allow for the computation of tangent and Hopf bifurcations

(Gross and Feudel, 2004). Thereby, the problem that the steady state is in

general unknown is overcome by a renormalization procedure. In principle, the

analytical bifurcation condition can be used to derive three-dimensional bifur-

cation diagrams. Basically, a three-dimensional representation is of advantage

for two reasons. First, such a visualization reveals much more information

about the influence of a parameter on the stability. For instance, increasing

the distance to destabilizing bifurcations could be interpreted as stabilization.

However, a parameter variation that increases the distance to a bifurcation

surface with respect to one parameter could decrease the distance to the bi-

furcation surface with respect to another parameter. Such a weak stabilization

can not be recognized from a one-dimensional bifurcation diagram (Van Voorn

et al., 2008). Second, a three-dimensional visualization helps to quickly locate

more complicated bifurcation situations at the intersections of the computed

bifurcation surfaces. These bifurcations can indicate the presence of additional

bifurcations, like homoclinic bifurcations and chaotic dynamics (Kuznetsov,

2004). Most importantly, an advantage of the localization of bifurcations in

generalized models is, that the analysis is independent of biological or math-

ematical details. Consequently, the results hold for whole classes of specific

models.

In order to capitalize on these advantages a method for the computation

of the bifurcation surfaces from implicit test functions is needed. Especially

for the localization of the more complicated bifurcation situations, a faithful

representation of the bifurcation surfaces is crucial. Therefore, a central point

of the presented thesis is the implementation of a technique that cope with

these demands.

The properties of generalized models depend on the model structure, i.e.

the variables and the considered gain and loss processes of these variables and

on which variables the processes depend on. In (Gross, 2004a) predator-prey

models have been analyzed in a very general form. In the following we will

introduce two modern branches of ecology, stoichiometric ecology and ecologi-
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1. Introduction

cal epidemiology that change the functional dependency and the structure of

predator prey systems respectively. The former considers the chemical com-

position of the populations and the flow of nutrients between the populations

(Sterner and Elser, 2002; Moe et al., 2005). These aspects change the depen-

dencies of the processes that are restricted by stoichiometric constraints. The

latter considers the effects of diseases spreading among the interacting popu-

lations. This can be modeled by changing the structure of food chain models

Venturino (1995, 2002a). Both model types have not yet been analyzed in a

generalized form.

Although Lotka (1925) devoted much attention to stoichiometric aspects of

the energy transformation, the topic received not much attention in the com-

munity of theoretical ecologists. However, in the past two decades there was a

renewed interest on this topic and an increasing number of experimental and

theoretical studies in ecological stoichiometry Moe et al. (2005). It shows that

stoichiometric constraints can greatly affect population dynamics (e.g.Huxel

(1999); Loladze and Kuang (2000); Sterner and Elser (2002); Kooĳman et al.

(2004)).

Primarily, two processes are effected by stoichiometric constraints. First,

the growth of the first trophic level, the primary production is limited by the

availability of nutrients like carbon, phosphorus or nitrogen. However, as soon

as the primary producer is in a predator-prey relation, the predator gets the

essential nutrients from the consumed prey and the nutrients become partly

stored in the higher trophic level. Therefore the primary production depends

in general also on the predator population.

Second, the conversion efficiency depends on the nutrient content of the

prey. Most food chain models assume that the conversion efficiency is con-

stant. This is reasonable as long as the predator and prey populations have

a fixed stoichiometric composition. However, it has been shown that primary

producers often have a rather variable nutrient content (Sterner and Elser,

2002). Consequently, such a variable food quality must lead to a variable con-

version efficiency.

The effects of stoichiometric constraints depend again on the specific mod-

eling approaches. Loladze and Kuang (2000) for instance considered carbon

and phosphorus as limiting nutrients with a variable ratio within the producer.
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For an intermediate total phosphorus concentration they observed the paradox

of enrichment but the oscillations disappear after a homoclinic bifurcation and

the system approaches another equilibrium. At low phosphorus concentration

the paradox of enrichment completely disappears. Instead, they observe a

destabilizing effect due to increasing phosphorus they call the paradox of nu-

trient enrichment. Kooĳman et al. (2004) investigate a model with a variable

carbon concentration in the prey that results from reserves. In this model also

a homoclinic bifurcation is found but in contrast to the model by Loladze and

Kuang (2000) both populations go extinct beyond the bifurcation. In conclu-

sion, stoichiometric constraints show a great influence on the dynamics but a

unifying modeling approach has not been found yet. Therefore, the presented

thesis aims to identify generic model properties by the analysis of a generalized

stoichiometric model. The results of this analysis are compared to previous

results of specific stoichiometric models in order to find common effects and

to understand the differences from a generalized point of view.

Ecological epidemiology focuses on the interplay of disease and popula-

tion dynamics. Theoretical epidemic models have been developed parallel to

predator-prey models and have many similarities. Like the Lotka-Volterra

model in population dynamics Kermack and Mckendrick (1927) proposed a

model for disease that is based on the principles of mass-action. It separates

a population into susceptibles, infected and removed or recovered individuals

(SIR). The incidence function that describes the infection rate was assumed

to be be proportional to the abundance of susceptibles and infected while the

infected recovered or died with a constant per capita rate. Similar to the

functional response in population dynamics several functional forms of the in-

cidence function have been proposed in the history of theoretical epidemiology

(McCallum et al., 2001). A spreading diseases can affect ecological dynamics

in many ways. Anderson et al. (1986) proposed two modified Lotka-Volterra

models, one with infected prey and one with infected predators. They as-

sumed that the infection may increase mortality, decrease reproductivity, in-

fected prey becomes more vulnerable to predation and infected predators may

be less effective in predation. It shows that infections tend to destabilize the

predator-prey community. Up to now there are numerous theoretical studies of

eco-epidemic models with infected prey. On one hand many field studies have
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1. Introduction

shown that predators take a disproportionate large number of prey infected by

parasites (Hethcote et al., 2004). On the other hand there are also examples

where the predator can recognize an infection and avoid the infected prey (Roy

and Chattopadhyay, 2005). Most eco-epidemic models predict that diseases

tend to destabilize the predator-prey system (Anderson et al., 1986; Dobson,

1988; Hadeler and Freedman, 1989; Xiao and Bosch, 2003) but also stabilizing

effects have been observed (Hilker and Schmitz, 2008). Compared to models

with infected prey the influence of infected predators is rarely investigated.

Nevertheless diseases spreading in a predator populations can have a major

influence on population dynamics. An accidentally human-introduced disease

has dramatically reduced the number of wolfs on the Isle Royal, USA from 1980

to 1982 and has led to an increased moose population (Wilmers et al., 2006).

In biological control programs diseases are introduced for example to reduce

non-native cat populations on islands but most often with no or minor success

(Mills and Getz, 1996). In conclusion, the poor success of control programs

and contradicting results of modeling shows that the interplay of disease and

population dynamics are not yet well understood.

A main point of the presented thesis is to understand how diseases in

predator populations can effect the dynamics of the predator-prey interactions

from a general perspective. While some specific models show that diseases in

the predator population can lead to oscillations (Anderson et al., 1986; Xiao

and Bosch, 2003; Haque and Venturino, 2007), we focus on the generation of

more complex dynamics. The generalized analysis is used to propose a specific

model that allows for a more detailed analysis of the emergence of such complex

dynamics.

In summary, the presented thesis introduces an innovative technique for

the computation of bifurcation surfaces. This technique is applied in combi-

nation with the approach of generalized modeling to identify generic effects of

stoichiometric constraints and diseases on predator-prey interactions. A main

focus of the thesis is, however, the comparison of specific and generalized mod-

els. Thereby new methods are invented to combine specific and generalized

bifurcation diagrams. It shows that both modeling approaches can take benefit

from each other.

In Chapter 2 a technique for the computation of bifurcation surfaces is
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introduced. The basic method was first used in Stiefs (2005) and has been

further developed and improved. Using an adaptive triangulation method

this technique allows to visualize the test functions of bifurcations in three-

dimensional diagrams. To be specific, the algorithm computes a closed mesh

of triangles with vertices on the bifurcation surface. To allow for a detailed

representation of the bifurcation surface by the mesh the size of the triangles

is adapted to the local surface curvature. In order to visualize the three-

dimensional structure of the surfaces level lines on these on the mesh are

plotted instead of the mesh structure. This technique is a fast and efficient

method for the computation of bifurcation surfaces and the localization of

complicated bifurcation situations. The capabilities of these method are then

demonstrated in Chapter 3 and 4.

A generalized stoichiometric producer grazer model is analyzed in Chap-

ter 3. We focus the analysis of on the effects of a variable food quality and

of primary productions that depend additionally on the predator abundances.

Thereby, we find a generic paradoxical effect of intra-specific competition. The

findings are demonstrated on several specific models which encounter different

mechanisms behind the stoichiometric constraints. For instance, this compari-

son shows that the paradox of competition incorporates Rosenzweig’s paradox

of enrichment and the paradox of nutrient enrichment as well. Moreover we

demonstrate how bifurcation scenarios of specific models obtained by contin-

uation methods can be mapped into bifurcation diagrams obtained by the

triangulation technique of Chapter 2. The combined bifurcation diagrams il-

lustrate the relations of specific and generalized model parameters.

In Chapter 4 a generalized eco-epidemic predator-prey model with a disease

spreading upon the predator population is analyzed. Thereby we concentrate

our analysis on the generalized functional response and the generalized in-

cidence function as the most debated processes. We use the approach from

Chapter 2 to locate complicated bifurcation situations that give information

about complex dynamics. We show that diseases in predator populations can

generate chaotic dynamics in predator-prey populations. This implication is

demonstrated for a specific example model. The generalized analysis is used

to find a parameter regions of complex dynamics. It is shown that the chaotic

parameter regions can be widespread and the specific model allows for an

11



1. Introduction

exemplary investigation of the routes into chaos with numerical techniques.

Finally, we discuss the results in a comprehensive way in Chapter 5 and

give an outlook for further investigations.

12



Chapter 2

Computation and Visualization

of Bifurcation Surfaces∗

2.1 Abstract

The localization of critical parameter sets called bifurcations is often a central

task of the analysis of a nonlinear dynamical system. Bifurcations of codimen-

sion 1 that can be directly observed in nature and experiments form surfaces in

three dimensional parameter spaces. In this chapter we propose an algorithm

that combines adaptive triangulation with the theory of complex systems to

compute and visualize such bifurcation surfaces in a very efficient way. The vi-

sualization can enhance the qualitative understanding of a system. Moreover,

it can help to quickly locate more complex bifurcation situations correspond-

ing to bifurcations of higher codimension at the intersections of bifurcation

surfaces. Together with the approach of generalized models the proposed al-

gorithm enables us to gain extensive insights in the local and global dynamics

not only in one special system but in whole classes of systems.

∗This Chapter is a modified version of a published manuscript (Stiefs et al., 2008). Some
notations are changed in order to be consistent with the other chapters. The example section
is not included, since chapter 3 and 4 provide examples for an application of the method.
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2. Computation and Visualization of Bifurcation Surfaces

2.2 Introduction

The long-term behavior of dynamical systems plays a crucial role in many areas

of science. If the parameters of the system are varied, sudden qualitative tran-

sitions can be observed as critical points in parameter space are crossed. These

points are called bifurcation points. The nature and location of bifurcations

is of interest in many systems corresponding to applications from different

fields of science. For instance the formation of Rayleigh-Bénard convection

cells in hydrodynamics (Swinney and Busse, 1981), the onset of Belousov-

Zhabotinsky oscillations in chemistry (Zaikin and Zhabotinsky, 1970; Agladze

and Krinsky, 1982) or the breakdown of the thermohaline ocean circulation in

climate dynamics (Titz et al., 2002; Dĳkstra, 2005) appear as bifurcations in

models. The investigation of bifurcations in applied research focuses mostly

on codimension-1 bifurcations, which can be directly observed in experiments

(Guckenheimer and Holmes, 1983). In order to find bifurcations of higher codi-

mension, in general at least two parameters have to be set to the correct value.

Therefore, bifurcations of higher codimension are rarely seen in experiments.

Moreover the computation of higher codimension bifurcations cause numerical

difficulties in many models. Hence, an extensive search for higher codimension

bifurcations is not carried out in most applied studies.

From an applied point of view the investigation of codimension-2 bifurca-

tions is interesting, since these bifurcations can reveal the presence of global

codimension-1 bifurcations–such as the homoclinic bifurcations–which are oth-

erwise difficult to detect. The recent advances in the investigation of bifur-

cations of higher codimension are a source of many such insights (Kuznetsov,

2004). While this source of knowledge is often neglected in applied studies,

the investigation of bifurcations of higher codimension suffers from a lack of

examples from applications (Guckenheimer and Holmes, 1983). In this way

a gap between applied and fundamental research emerges, that prevents an

efficient cross-fertilization.

A new approach that can help to bridge this gap between mathematical in-

vestigations and real world systems is the investigation of generalized models.

Generalized models describe the local dynamics close to steady states without

restricting the model to a specific form, i.e. without specifying the mathemat-
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2.2 Introduction

ical functions describing the dynamics of the system (Gross et al., 2004; Gross

and Feudel, 2006). The computation of local bifurcations of steady-states in

a class of generalized models is often much simpler than in a specific conven-

tional model. A bifurcation that is found in a single generalized model can be

found in every generic model of the same class. In this way the investigation

of generalized models can provide examples of bifurcations of higher codimen-

sion in whole classes of models. From an applied point of view, it provides an

easy way to utilize the existing knowledge on the implications of bifurcations

of higher codimension on the dynamics.

For generalized models, the application of computer algebra assisted classi-

cal methods (Guckenheimer et al., 1997; Gross and Feudel, 2004) for comput-

ing bifurcations is advantageous. These methods are based on testfunctions for

specific eigenvalue constellations corresponding to specific types of bifurcations

(Seydel, 1991).

Classical methods yield implicit functions describing the manifolds in pa-

rameter space on which the bifurcation points are located. For codimension-1

bifurcations these manifolds are hypersurfaces. In order to utilize these advan-

tages, an efficient tool for the visualization of implicitly described bifurcation

hypersurfaces is needed. A properly adapted algorithm for curvature depen-

dent triangulation of implicit functions can provide such a tool.

Generalized modeling, computer algebra assisted bifurcation analysis and

adaptive triangulation are certainly interesting on their own. However, here

we show that in combination they form a powerful approach to compute and

visualize bifurcation surfaces in parameter space. This visualization yields

also the relationship between the different bifurcations and identifies higher

codimension bifurcations as intersections of surfaces. This way the proposed

algorithm can help to bridge the present gap between applied and fundamental

research in the area of bifurcation theory.

First, in Sec. 2.3 we briefly review how generalized models are constructed

and how implicit test functions can be derived from bifurcation theory. In Sec.

2.4 we explain how these implicit functions can be combined with an algorithm

of triangulation in order to visualize the bifurcations in parameter space. In

chapter 3 and 4 we show how the proposed method efficiently reveals certain

bifurcations of higher codimension and thereby provides qualitative insights in
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2. Computation and Visualization of Bifurcation Surfaces

the local and global dynamics of large classes of systems.

2.3 Generalized Models and Computation of

Bifurcations

The state of many real world systems can be described by a low dimensional

set of state variables X1, . . . , XN , the dynamics of which are given by a set of

ordinary differential equations

Ẋi = Fi(X1, . . . , XN , p1, . . . , pM), i = 1 . . . N (2.1)

where Fi(X1, . . . , XN , p1, . . . , pM) are in general nonlinear functions. For a

large number of systems it is a priori clear which quantities are the state vari-

ables. Moreover, it is generally known by which processes the state variables

interact. However, the exact functional forms by which these processes can be

described in the model are often unknown. In practice, the functions in the

model are often chosen as a compromise between empirical data, theoretical

reasoning and the need to keep the equations simple. It is therefore often un-

clear if the dynamics that is observed in a model is a genuine feature of the

system or an artifact introduced by assumptions made in the modeling process

(e.g. (Ruxton and Rohani, 1998)).

One way to analyze models without an explicit functional form is provided

by the method of generalized models (Gross and Feudel, 2006). Since it will

play an essential role in Chapter 3 and 4, let us briefly review the central idea

of this approach.

Let us consider the example of a system in which every dynamical variable

is subject to a gain term Gi(X1, . . . , XN) and a loss term Li(X1, . . . , XN). So

that our general model is

Fi = Gi(X1, . . . , XN)− Li(X1, . . . , XN) (2.2)

Note that the parameters (p1, . . . , pM) do not appear explicitly, since the ex-

plicit functional form of the interactions Gi and Li is not specified.

Since our goal is to study the stability of a nontrivial steady state, we
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2.3 Generalized Models and Computation of Bifurcations

assume that at least one steady state X∗ = X1
∗, . . . , XN

∗ exists, which is

true for many systems. Due to the fact that a computation of X∗ is impos-

sible with the chosen degree of generality we apply a normalization proce-

dure with the aim to remove the unknown steady state from the equations.

For the sake of simplicity we assume that all entries of the steady state are

positive. We define normalized state variables xi = Xi/Xi
∗, the normalized

gain terms gi(x) = Gi(X1
∗x1, . . . , XN

∗xN)/Gi(X
∗) as well as the normalized

loss terms li(x) = Li(X1
∗x1, . . . , XN

∗xN )/Li(X
∗). Note, that by definition

xi
∗ = gi(x

∗) = li(x
∗) = 1. Substituting these terms, our model can be written

as

ẋi = (Gi(X
∗)/Xi

∗)gi(x)− (Li(X
∗)/Xi

∗)li(x). (2.3)

Considering the steady state this yields

(Gi(X
∗)/Xi

∗) = (Li(X
∗)/Xi

∗). (2.4)

We can therefore write our normalized model as

ẋi = αi(gi(x)− li(x)) (2.5)

where αi := Gi(X
∗)/Xi

∗ = Li(X
∗)/Xi

∗ are scale parameters which denote

the timescales - the characteristic exchange rate for each variable.

The normalization enables us to compute the Jacobian in the steady state.

We can write the Jacobian of the system as

Ji,j = αi(γi,j − δi,j). (2.6)

where we have defined

γi,j :=
∂gi(x1, . . . , xN)

∂xj

∣

∣

∣

∣

∣

x=x∗

(2.7)

and

δi,j :=
∂li(x1, . . . , xN)

∂xj

∣

∣

∣

∣

∣

x=x∗

(2.8)

While the interpretation of γi,j and δi,j describe the required information

on the mathematical form of the gain and loss terms, we will see in Chapter 3
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2. Computation and Visualization of Bifurcation Surfaces

and 4 that the parameters generally have a well defined meaning in the context

of the application.

2.3.1 Testfunctions for bifurcations of steady states

Our aim is to study the stability properties of the steady state. Thus, only

two bifurcation situations are of interest: (i) the loss of stability due to a

bifurcation of tangent type where a real eigenvalue crosses the imaginary axis

or (ii) a bifurcation of Hopf type where a pair of complex conjugate eigenvalues

crosses the imaginary axis.

If a tangent bifurcation type occurs, at least one eigenvalue of the Jacobian

J becomes zero. Therefore, the determinant of J is a test function for this

bifurcation situation.

Hopf bifurcations are characterized by the existence of a purely imaginary

complex conjugate pair of eigenvalues. We use the method of resultants to

obtain a testfunction (Guckenheimer et al., 1997). Since at least one symmetric

pair of eigenvalues has to exist

λa = −λb. (2.9)

The eigenvalues λ1, . . . , λN of the Jacobian J are the roots of the Jacobian’s

characteristic polynomial

P (λ) = |J− λI| =
N
∑

n=0

cnλ
n = 0. (2.10)

Using condition (2.9) Eq. (2.10) can be divided (after some transformations)

into two polynomials of half order

N/2
∑

n=0

c2nχ
n = 0, (2.11)

N/2
∑

n=0

c2n+1χ
n = 0 (2.12)

where χ = λa
2 is the Hopf number and N/2 has to be rounded up or down to

an integer as required.
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In general two polynomials have a common root if the resultant vanishes

(Gelfand et al., 1994). The resultant R of Eq.(2.11) and Eq.(2.12) can be

written as a Hurwitz determinant of size (N −1)× (N −1). If we assume that

N is odd we have

RN :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

c1 c0 0 . . . 0

c3 c2 c1 . . . 0
...

...
...

. . .
...

cN cN−1 cN−2 . . . c0

0 0 cN . . . c2

0 0 0 . . . c2
...

...
...

. . .
...

0 0 0 . . . cN−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (2.13)

With the condition RN = 0 we have found a sufficient test function for sym-

metric eigenvalues. The Hopf number χ gives us the information whether the

eigenvalues are real (χ > 0), purely imaginary (χ < 0), zero (χ = 0) or a

more complex situation (χ undefined). In the case χ = 0 we have a double

zero eigenvalue which corresponds to a codimension-2 Takens-Bogdanov bi-

furcation (TB). In a Takens-Bogdanov bifurcation a Hopf bifurcation meets a

tangent bifurcation. While the Hopf bifurcation vanishes in the TB bifurca-

tion, a branch of homoclinic bifurcations emerges. For more details see (Gross

and Feudel, 2004).

2.4 Visualization

The testfunctions, described above, yield an implicit description of the co-

dimension-1 bifurcation hypersurfaces. Since it is in general not feasible to

solve these functions explicitly we have to search for other means for the pur-

pose of visualization. In the following we focus on the visualization in a three

dimensional parameter space, in which the bifurcation hypersurfaces appear

as surfaces. We propose an algorithm, that constructs the bifurcation surfaces

from a set of bifurcation points, which have been computed numerically.

In order to efficiently obtain a faithful representation of the bifurcation
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2. Computation and Visualization of Bifurcation Surfaces

surface, the density of these points has to be higher in regions of higher curva-

ture. Moreover, the algorithm has to be able to distinguish between different

- possibly intersecting - bifurcation surfaces.

2.4.1 Adaptive Triangulation

A triangulation is the approximation of a surface by a set of triangles. We

apply a simplification of a method introduced by Karkanis and Stewart (2001)

and extend it using the insights of the previous section. The algorithm consists

of two main parts. The first is the growing phase, in which a mesh of triangles

is computed that covers a large part of the surface. The second is the filling

phase, in which the remaining holes in this partial coverage are filled.

2.4.2 The seed triangle

Denoting the three parameters as x, y and z, we start by finding one root

p1 = (x1, y1, z1) of the testfunction, by a Newton-Raphson method (e.g. Kelley

(2003)). Suppose p1 is a vertex of the seed triangle, then we search for two

other points as two additional vertices that define a triangle of appropriate size

and shape. We find another two roots p2 initial and p3 initial close to p1. p2 initial

and p3 initial are within a radius of dinitial around p1 wherein the surface can be

sufficiently approximated by a plane. We find the next vertex p2 using a point

in the direction of p2 initial with the distance dinitial to p1 as initial conditions

for the Newton-Raphson method. The initial condition for the third vertex p3

is a point in the plane that is spanned by p1, p2 initial and p3 initial, orthogonal

to the line between p1 and p2, with a distance of dinitial to p1 as well. We

get an almost isosceles seed triangle that approximates the bifurcation surface

close to p1 sufficiently to our demands.

2.4.3 Growing phase

Starting from the seed triangle adjoining triangles can be added successively.

The size of the adjoining triangles has to be chosen according to certain, possi-

bly conflicting requirements. On the one hand the algorithm has to adapt the

size of the triangles to the local surface curvature in order to obtain a higher
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2.4 Visualization

resolution in regions of higher complexity and vice versa. On the other hand

it has to maintain a minimal and a maximal resolution. At first we adapt the

size of the triangle to the curvature of the surface.

We construct an interim triangle by mirroring p1 at the straight line through

p2 and p3 and to find a point p4 initial on the surface as shown in Fig.1. Thus

p4 initial defines together with p2 and p3 the interim triangle. The angle φ be-

tween the normals of the new triangle and the parent is used to approximate

the local radius of curvature. Following Karkanis and Stewart (2001) we define

the radius of curvature as

R =
d

2sin
(

φ
2

) (2.14)

where d the distance of the centers of both triangles (cf. Fig. 1). We choose a

desired ratio ρ = R/d to compute a curvature adapted distance dadapt = R/ρ.

Finally we use again the Newton-Raphson method to find a bifurcation point

p4 at the distance dadapt from the straight line through p2 and p3 in the

direction of p4 initial. The bifurcation points p2,p3 and p4 then are the vertices

of the adapted triangle. As mentioned above the adjacent triangles have to

satisfy additional requirements. In order to maintain a minimal resolution we

define a maximum dmax. To restrict the number of computed bifurcation points

we also define a minimum dmin. If dadapt is larger than dmax or smaller than

dmin we set it to dmax or dmin respectively to find p4. To check the quality of

the adapted triangle we also define a maximum angel φmax. We decrease the

distance d, if the angle between the normals of the triangles is greater than

φmax .

Proceeding as described above the algorithm adds to every triangle up to

two adjacent triangles. In order to prevent overlapping triangles, we reject a

triangle if its center is closer to the center of an opposite triangle than one

and a half times the largest edge of both. To allow for self intersections of

bifurcation surfaces, we allow an intersection of triangles if the angle between

the normals of the triangles is bigger than 2φmax. Another possibility which

has to be taken into account is that our system may possess more than one

bifurcation surface. To prevent transitions φmax has to be small enough. For

instance, if two surfaces intersect at an angle φ̂, we have to choose φmax much

smaller than φ̂. Concerning Hopf bifurcations the Hopf number χ offers a
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Figure 1: Seed triangle with one adjacent triangle.
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tool to distinguish between different surfaces, even if the angle of intersection

is very small. Along one Hopf bifurcation surface χ varies smoothly. On a

different Hopf bifurcation surface the Hopf number is in general different since

another pair of purely imaginary eigenvalues is involved. We can therefore

check the continuity of χ between the new bifurcation point and the parent to

make sure that the new point belongs to the same surface.

Since the bifurcation surfaces are in general not closed, we have to restrict

the parameter space according to a volume of interest V . We choose minimal

and maximal values for each variable to define a cuboid which includes V .

Triangles with vertices outside of the cuboid are rejected.

Apart from this restriction it is possible, that we find borders of the bifurca-

tion surface within our cuboid. One example is a Hopf bifurcation surface that

ends in a Takens-Bogdanov bifurcation as described in Sec. 2.3. If we cross the

Takens-Bogdanov bifurcation, the new point still can be settled down on the

surface described by the test function. But in this case the Hopf number χ is

positive and the symmetry condition is satisfied by a pair of purely real eigen-

values that is not related to a bifurcation situation. To place the new point

directly onto the border of the Hopf bifurcation surface we compute the root

of the χ-function using the coordinates of the new point as initial conditions.

Then we use the resulting point again to find the root of our test function. Re-

peating this procedure we find iteratively our new point directly on the border

of the Hopf bifurcation surface. In this way we can not only prevent a jump

from one Hopf bifurcation surface to another one by checking the sign of χ,

but we also approximate the border of the Hopf bifurcation surface.

Following the procedure described above we can successively add triangles

to our mesh until no further triangle is possible. After the growing phase the

complete surface, in the prescribed region of parameter space, is covered by a

mesh of triangles as seen in the upper diagram in Fig. 2.

2.4.4 Focus

Sometimes the bifurcation surfaces are quite smooth but in some regions they

possess a more complicated structure. If the radius of curvature changes too

rapidly the algorithm fails to adapt the size of the triangles and the structure
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is poorly approximated in this region. In these regions it is useful to increase

the minimal resolution in order to obtain a more accurate approximation of

the bifurcation surface. We realize this by so-called focus points. In a certain

radius r̂ around these focus points we reduce the maximal size of the triangles.

The new maximal triangle size d̂max is then given as

d̂max =







(

c+ (1−c)r
r̂

)

dmax r < r̂

dmax r ≥ r̂
, (2.15)

where r is the distance to the closest focus point and c is a constant between 0

and 1. By definition d̂max decreases linearly with r from dmax to a lower value

cdmax, where c is a constant between 0 and 1. In Fig. 2 we see a triangulation

of an example surface after the growing phase. The upper diagram shows

that two centers of a higher resolution exit. The lower diagram shows that

the surface looks like a landscape with a hill and a plane. One center of high

resolution is on top of the hill and the other one in the plane. This example

shows both resolution control mechanisms, the size adaption due to the radius

of curvature (left) and due to a focus point (right).

While in Fig. 2 the focus point is not advantageous, this additional resolu-

tion control is essential for the computation of rather complicated bifurcation

situations.

2.4.5 Filling phase

While the growing phase covers a large fraction of the surface with connected

traces of triangles, space between the traces remain. While we fill this gap,

we have to take care that we do not fill space that lies outside the bifurcation

surface, e.g. beyond a Takens-Bogdanov bifurcation. In the following we start

by describing the filling phase for surfaces without boundaries and then go on

to explain how boundaries are handled.

The first task we have to perform in the filling phase is to identify the gap.

We can acquire the gap between the traces by starting at a vertex p1 and

following the vertices at the boundary clockwise. In this way we construct a

sequence of all N vertices.

Once we have defined a gap we start to separate the gap into subgaps.
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Figure 2: Example surface after the growing phase computed with one
focus point. The size of the triangles adapts to the local curvature and
the proximity to the focus point.
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To each point of the gap we associate the normal nk of an adjacent triangle

and the closest neighbor. Similar to Karkanis and Stewart (2001) we define

all points as neighbors of pk which are located between the two half planes

which are spanned by the normal nk and the two vectors from pk to pk−1 and

pk+1 shown in Fig. 2.3(a). The closest neighbor of pk is the neighbor with

the smallest Euclidean distance. If we find two points, which are the closest

neighbors to each other they form a so-called bridge. We divide the gap at

the first bridge we find into two subgaps by connecting the two vertices. If a

subgap consists of only three vertices, we add it as a triangle to the mesh we

obtained from the growing phase. We proceed with the subgaps as described

above until no bridges are left. Afterwards we divide the remaining subgaps

at the point with the smallest distance to its closest neighbor. In the end of

this procedure the hole gap is completely filled up with triangles.

2.4.6 Borders in the filling phase

If the bifurcation surfaces are not closed but possess some boundaries due to

margins of the parameter region under consideration, or due to a codimension-

2 bifurcation e.g. a Takens Bogdanov bifurcation then we have gaps which are

not supposed to be filled up. In order to prevent bridges connecting these

borders, we use similar criteria for the bridges and all connections we make to

divide the gaps, as used in the growing phase.

First, the connections the algorithm produces by the division of gaps should

not be much larger than dmax to preserve a minimal resolution. In order to

prevent long connections at the margins of the parameter region we look for

closest neighbors in a radius of 3dmax. In order to prevent triangles with edges

longer than 2dmax, we choose the maximal connection length as 1.8dmax. If

a connection is longer, we compute an additional point on the surface close

to the middle of the bridge and take this additional point into account. This

criterion may also prevent the filling of an area where the bifurcation condition

is not satisfied. This is particularly true in case of a Hopf bifurcation if the

Hopf number χ is positive at this point. As described above the algorithm

would automatically try to find a bifurcation point at the border of the Hopf

bifurcation surface. If the computation of the new bifurcation point fails the
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(a) The space of possible neighbors
of pk is within the two half planes
spanned by the normal nk associated
to pk and the two vectors from pk to
pk−1 and pk+1.

(b) The difference between the angles
φi and φj to 90 degrees has to be less
than φmax

(c) The angle φn between the normals
of the connected points has to be less
than φmax

(d) If an additional point in the mid-
dle of the bridge is necessary the angle
φkink has to be less then φmax

Figure 3: A connection in the filling phase is called bridge and has to
satisfy different conditions.
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division is denied.

Second, the angles between the resulting triangles and the triangles of the

mesh should not be larger than φmax. This criterion keeps the triangulation

smooth and may prevent the covering of a more complex region of the surface.

Let φi and φj denote the angles between the connection and the normals ni

and nj associated to the connected vertices as shown in Fig.2.3(b). Further,

we denote φn as the angle between the two normals ni and nj (see Fig.2.3(c)).

If the difference from φi and φj to 90 degrees is larger than φmax or φn is larger

than φmax, we compute an additional point between as well. As illustrated in

Fig.2.3(d) a new point in the connection will in general cause a kink. If the

angle of the kink in the connection is bigger than φmax, the division is denied.

If we can not compute the new point, because probably the bifurcation does

not exist close to it, the division is also rejected.

Having obtained an adaptive triangulation of the bifurcation surface, we

have to consider how to display the set of triangles.

2.4.7 Level lines

One the one hand visualization of the edges of the triangles can lead to visual

fallacies. Small triangles seem to be far away while large triangles may look

very close. Focus points sometimes exacerbate this effect. On the other hand

not displaying only the triangle surface without edges would deprive the viewer

of clues on the three dimensional shape of the surface. We introduce level lines

as a cosmetic tool. Like the level lines in a map we project certain values from

the axes onto the surface.

Finally we demonstrate the ability of our algorithm by the computation

of a Whitney umbrella type bifurcation surface which may appear as a higher

codimension bifurcation for Hopf bifurcations (cf. Chapter 4, Sec. 4.4.2). In

this case the bifurcation surface is twisted in itself (cf. Fig. 4). Even close to

the end of the intersection line, where the crossing angle becomes small, no

transitions occur. While in most regions the degree of curvature is quite small,

a sharp edge appears close to the end of the line where the Hopf bifurcation

intersects itself. Since the radius of curvature decreases rapidly at this edge

from a quite high value to a very small one, the adaptive resolution control
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would fail to adapt the size of the triangles in this region. However, using

focus points close to the end of the crossing line we can prevent bigger gaps in

this region.

After the filling phase is completed (Fig. 4(b)) we cut off the outer triangles

in order to obtain even margins at the boundary of the region in parameter

space. Instead of the triangles we display now the level lines on the surface

for both horizontal axes in Fig. 4(c). As mentioned above not only the bifur-

cation surfaces but also the intersection lines are of interest since they form

bifurcations of higher codimension. In order to highlight these bifurcations we

finally mark the intersection line and its endpoint as shown in Fig. 4(d).

2.5 Discussion

In this chapter we have proposed and applied a combination of generalized

modeling, bifurcation theory and adaptive triangulation techniques. This ap-

proach has enabled us to compute and visualize the local codimension-1 bifur-

cation hypersurfaces of steady states. In order to obtain a faithful represen-

tation of the surface at a low computational cost the algorithm automatically

adapts the size of the computed triangle elements to the local complexity of

the surface. Due to the application of generalized modeling, the resulting bi-

furcation diagrams do not describe a single model, but a class of models that

share a similar structure.

The proposed approach enables the researcher to rapidly compute three pa-

rameter bifurcation diagrams for a given class of models. By considering sev-

eral of these diagrams with different parameter axes an intuitive understanding

of the local dynamics in a given class of systems can be gained. In particu-

lar, the approach bridges the gap between applied and fundamental research

as discussed in the Introduction. In the visualization of local bifurcations as

surfaces in a three dimensional parameter space, certain local bifurcations of

higher codimension can be easily spotted. In our experience the proposed

approach reveals bifurcations of codimension two and three in almost every

model studied. It thereby provides plentiful examples for mathematical anal-

ysis. In return insights gained from the investigation of higher-codimension

bifurcations can directly feed back in the investigation of the system. In par-
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2. Computation and Visualization of Bifurcation Surfaces

(a) The trace of triangles follows the
evolution of the surface.

(b) Whitney umbrella surface after
the filling phase.

(c) Whitney umbrella surface after
the filling phase with level lines (no
highlighting of the triangle edges).

(d) Marking of intersection line and
its endpoint

Figure 4: Construction of a Whitney umbrella shaped surface. While
the upper subplots (a) and (b) show the two phases of the triangulation
algorithm, the lower subplots (c) and (d) illustrate the preparation of the
resulting diagram.
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ticular the implications of local bifurcations of higher codimension, discussed

above, is intriguing in this context. Provided that the dynamical implications

of a bifurcation are known from normal form theory, the appearance of such

a bifurcation in the three parameter diagram, pinpoints a parameter region

of interesting dynamics. This region can then be investigated in conventional

models or experiments. In this way the investigation of models is facilitated

by reducing the need for more costly parameter search in conventional models.

In the present thesis we have only used the proposed approach in conjunc-

tions with testfunctions for two basic local bifurcations: the Hopf bifurcation

and the tangent bifurcation. However, in principle, the approach can be ex-

tended to include testfunctions for codimension-2 bifurcations. This would

allow the algorithm to adaptively decrease the size of triangles close to these

bifurcations and continue the bifurcation lines directly once they are reached.

Furthermore, being hyperlines, the codimension-2 bifurcation points form sur-

faces in a four dimensional parameter space. Once again these surfaces can be

triangulated with the described algorithms. The four dimensional space could

be visualized in a movie, where time represents the forth parameter or by col-

lapsing and color coding one of the parameter dimensions. Both approaches

would allow for the visual identification of bifurcations of codimension three

and higher.

At present the proposed approach has two limitations. First, the extraction

of information is solely based on the Jacobian. Higher orders, which determine

the normal form coefficients, are at present not taken into account. However,

parameters that capture this information could be defined in analogy to the

exponent parameters, which we have used to capture the required information

on the nonlinearity of the equations of motion.

The second limitation is that the approach outlined here is presently only

applicable to systems of small or intermediate dimension (N < 10) as the

analytical computation of the testfunctions becomes cumbersome for larger

systems. This problem can be avoided by combining the triangulation tech-

niques proposed here with the numerical investigation of generalized models

demonstrated in (Steuer et al., 2006a).
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Chapter 3

Stoichiometric producer-grazer

systems∗

3.1 Abstract

We analyze how stoichiometric constraints affect the dynamics of producer-

grazer systems. The approach of generalized modeling is used to identify

generic stability properties and global dynamics. We find a Takens-Bogdanov

bifurcation that leads to the disappearance of the paradox of enrichment in

certain parameter regions. Further, the Takens-Bogdanov bifurcation indi-

cates the presence of homoclinic bifurcations. These findings are compared to

different specific modeling approaches.

3.2 Introduction

Traditionally most ecological models quantify energy and biomass flow solely

in terms of carbon. Stoichiometric constraints arising in part from different

nutrient ratios in the populations are only captured indirectly. However, in

recent years it has been shown that already minor extensions can make carbon-

based models stoichiometrically explicit and thus significantly enhance the

∗This Chapter has been submitted in a condensed version to The American Naturalist.
Especially, the discussion of the generalized parameters in Sec.3.3 and the final discussion
Sec. 3.6 are much more detailed than in this Chapter.

33



3. Stoichiometric producer-grazer systems

qualitative understanding of laboratory experiments and field observations.

Presently, the effects of stoichiometric constraints are thus receiving more and

more attention (Sterner and Elser, 2002).

In particular the conversion efficiency from the first to the second trophic

level as well as the rate of primary production have been found to be strongly

affected by stoichiometric constraints (Andersen et al., 2004). Most primary

producers are flexible in their use of nutrients and are thus characterized by

highly variable nutrient content. By contrast grazers growing by consumption

of the primary producers have a relatively fixed internal stoichiometry. Thus

conversion efficiency of producer into grazer biomass can depend strongly on

the nutrient content of the producer.

The producer’s nutrient content depends on the many complex processes

governing nutrient flows (DeAngelis, 1992), but is particularly dependent on

grazing. Although grazing can enhance the recycling of nutrients in the sys-

tem (Sterner, 1986), it also sustains accumulation of biomass on higher trophic

levels which can lead to a storage of nutrients in the biomass of grazers and

predators. In systems in which the recycling of nutrients is essential, storage

of nutrients can lead to a depletion of nutrients available for primary produc-

ers and consequently decreases both the primary production and the grazers

conversion efficiency.

Nutrient storage and variable conversion efficiency introduce a complex

feedback mechanism as the rate of primary production and the growth of graz-

ers become dependent on the biomasses of all populations in the system. Even

in simple food chain models it has been shown that stoichiometric constraints

arising from variable nutrient content lead to complex dynamics (Huxel, 1999;

Loladze and Kuang, 2000; Sterner and Elser, 2002; Kooĳman et al., 2004).

A point of particular concern is that different, but seemingly similar, models

can exhibit very different dynamics, depending on the functional forms that

are used to describe the conversion efficiency. Since the metabolism of even

a single cell is highly complex, every specific function formulated to describe

stoichiometric constraints on the level of the population necessarily involves

strong assumptions. It is therefore an important practical challenge to iden-

tify the decisive feature of the functional forms that have a strong impact on

the dynamics and therefore have to be captured in the formulation of credible
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3.3 A generalized food chain model with variable efficiency

models.

In this Chapter we use the approach of generalized modeling (Gross et al.,

2005; Gross and Feudel, 2006) to analyze the effects of stoichiometric con-

straints. In a generalized model the rates of processes do not need to be

restricted to specific functional forms which enables us to investigate the dy-

namics of a large class of models comprising of several well studied examples.

This allows us to compare the results of the generalized model to three spe-

cific models: the model of Kooĳman et al. (2004) based on the Dynamic En-

ergy Budget (DEB) theory (Kooĳman, 2000), a model by Loladze and Kuang

(2000) which uses Liebigs minimum law, and a related model with smooth

functions based on the concept of synthesizing units (SU) (O’Neill et al., 1989;

Kooĳman, 2000). The generalized model provides an unifying framework that

explains differences and commonalities between the different specific models,

while the specific models allow for numerical investigation which reveal ad-

ditional insights beyond what can be extracted from the generalized model.

Our analysis reveals that a variable conversion efficiency has a strong im-

pact on population dynamics, leading to global bifurcations (Kuznetsov, 2004)

and parameter regions where the paradox of enrichment (Rosenzweig, 1971)

is avoided. However, the generalized analysis reveals a paradox of competi-

tion that is related to the paradox of enrichment but appears to be a generic

property of the model class. By comparison, the functional dependence of the

primary production on populations other than the primary producer appears

to be of minor importance.

3.3 A generalized food chain model with vari-

able efficiency

Our aim is to understand the effects of stoichiometric constraints on the pri-

mary production S and biomass conversion efficiency E. Therefore we consider

one of the most fundamental classes of population models containing a primary

producer X and a grazer Y as variables. For the sake of simplicity we assume

that X and Y express the biomass densities in terms of carbon concentrations

as it is the case for the specific models we analyze in Section 3.5.
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3. Stoichiometric producer-grazer systems

As motivated in the introduction we assume that the the primary produc-

tion S(X, Y ) and biomass conversion efficiency E(X, Y ) may depend on both

variables, i.e. the primary producer and the grazer. The grazing is represented

by the generalized per capita functional response F (X). Finally we assume a

linear mortality of the grazer with a constant rate D. Thus the model reads

Ẋ = S(X, Y )− F (X)Y ,

Ẏ = E(X, Y )F (X)Y −DY .
(3.1)

Usually the first step in the analysis is a local stability analysis of steady

states. However, in contrast to specific models where the functional forms

of the processes, namely S(X, Y ), F (X) and E(X, Y ), are given explicitly,

we can not compute the steady states of generalized models. Nevertheless, a

normalization procedure described in (Gross and Feudel, 2006; Gross et al.,

2004) enables a local stability analysis of generalized models in terms of bifur-

cation theory. This normalization is based on the assumption that at least one

positive but not necessarily stable steady state (X∗, Y ∗) exists. Additionally,

this normalization technique leads to generalized parameters that can be inter-

preted by biological reasoning. In the following we demonstrate this method

with a minimum of technical details (cf. Gross and Feudel (2006) for further

details) in order to focus on the biological results.

Firstly, we define the normalized variables x = X/X∗ and y = Y/Y ∗ as

well as the normalized processes s(x, y) = S(X∗x, Y ∗y)/S(X∗, Y ∗), e(x, y) =

E(X∗x, Y ∗y)/E(X∗, Y ∗) and f(x) = F (X∗x)/F (X∗). The normalized model

reads then
ẋ = s(x, y)− f(x)y ,

ẏ = r(e(x, y)f(x)y − y) ,
(3.2)

with r := D
S(X∗,Y ∗)/X∗

. The advantage of this normalization is that we know

not only the steady state x∗ = y∗ = 1 but also the generalized processes in the

steady state s(x∗, y∗) = f(x∗) = e(x∗, y∗) = 1.

The interpretation of the new parameter r is straightforward. From the

model Eq.(3.2) we see that the parameter r is directly connected to the timescale

of the grazer population y. Due to the normalization the parameter r describes

the relative scale of the lifetime between the producer and the grazer in the
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3.3 A generalized food chain model with variable efficiency

steady state (X∗, Y ∗). If r = 1 both variables have the same timescale in the

steady state. We assume that the timescale of the grazer is slower than the

timescale of the producer (Hendriks, 1999), i.e. 0 ≤ r ≤ 1.

So far, we normalized the generalized model in order to avoid the unknown

steady state (X∗, Y ∗) and obtained the timescale parameter r. The next step

is the stability analysis of the steady state under consideration in terms of

bifurcation theory. The stability of the steady state is given by the eigenvalues

of the Jacobian J in the steady state. A steady state is stable if the real

parts of all eigenvalues are negative. Thus, only two bifurcation situations

where the steady states becomes unstable are of interest: tangent bifurcations

(where one real eigenvalue crosses the imaginary axis) or Hopf bifurcations

(where a pair of complex conjugate eigenvalues crosses the imaginary axis).

Note, since we focus on the eigenvalues only we do not distinguish between

generic or degenerate types of these bifurcations in the generalized analysis.

The Jacobian of the normalized model in the steady state reads

J|x=x∗,y=y∗ =

∣

∣

∣

∣

∣

∣

σx − γ σy − 1

r(ηx + γ) rηy

∣

∣

∣

∣

∣

∣

(3.3)

where we define
γ := df(x)

dx

∣

∣

∣

x=x∗,y=y∗
,

σx := ds(x,y)
dx

∣

∣

∣

x=x∗,y=y∗
,

σy := ds(x,y)
dy

∣

∣

∣

x=x∗,y=y∗
,

ηx := de(x,y)
dx

∣

∣

∣

x=x∗,y=y∗
,

ηy := de(x,y)
dy

∣

∣

∣

x=x∗,y=y∗
,

(3.4)

as the generalized parameters with x∗ = y∗ = 1. These parameters encode the

required information about the mathematical form of the processes. Theoreti-

cally, we are now able to compute the bifurcation conditions mentioned above

based on the Jacobian (Eq. (3.3)). These bifurcation manifolds are hypersur-

faces in parameter space that separate stable from unstable parameter regions.

In principle, we could start to compute the bifurcation diagrams using the the

technique introduced in Chapter 2. However, in order to benefit from these

bifurcation diagrams, we first need bifurcation parameter that we understand

from a biological perspective.
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3. Stoichiometric producer-grazer systems

3.3.1 Ecological and stoichiometric restrictions

At this point we defined the model structure and obtained the timescale pa-

rameter and generalized parameters as potential bifurcation parameters. The

interpretation of the generalized parameters in the light of stoichiometry re-

quires a fundamental knowledge of the processes. For the bifurcation analysis

it is further convenient to substitute some of the parameters. In the following

we discuss the main ecological and stoichiometric restrictions on the processes

and their mathematical consequences before we choose a set of bifurcation

parameters having a biological interpretation.

First, it is reasonable to assume that the primary production S(X, Y ) grows

proportional to the number of primary producersX if competition is low. How-

ever, as stated in the introduction each realistic system has limited resources.

A storage of nutrients in biomass of X and Y could lead to a lack of available

nutrients. Such a lack of a limiting nutrient would lead to low or even zero

primary production.

Since a single grazer can only consume a limited amount of producers

the consumption rate, i.e. the functional response F (X) saturates for high

producer densities. We assume that the functional response F (X) growths

monotonously with the density of primary producers X. This means that

there are no inhibition effects due to high primary producer densities.

In our model class food quality effects does not affect directly the con-

sumption rate but the conversion efficiency E(X, Y ) of the consumed biomass.

Low food quality in terms of a lack of at least one essential nutrient tends

to decrease the biomass production of the grazer and therefore E(X, Y ). But

the food quality, the nutrient content of the primary producer is coupled to

the availability of nutrients. For the same reasons as mentioned above, the

biomass of X and Y tends to decrease the amount of available nutrients and

therefore the nutrient content of X. Consequently, we assume that E(X, Y )

decreases monotonously with X and Y .

3.3.2 Mathematical consequences

For low values ofX and Y resources are abundant and the competition pressure

on X is low. Thus S(X, Y ) is approximately a linear function in X and
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3.3 A generalized food chain model with variable efficiency

independent of Y as described above. The relations

σx = ds(x,y)
dx

∣

∣

∣

x=x∗,y=y∗
= X∗

S(X∗,Y ∗)
dS(X,Y )

dX

∣

∣

∣

X=X∗,Y=Y ∗
,

σy = ds(x,y)
dy

∣

∣

∣

x=x∗,y=y∗
= Y ∗

S(X∗,Y ∗)
dS(X,Y )

dY

∣

∣

∣

X=X∗,Y=Y ∗
,

(3.5)

show that a linear approach, say S(X, Y ) = S(X) = βX where β is a constant

factor, leads to σx = (X∗/βX∗)β = 1 and σy = 0. Since this situation is a

limit case, we relate low competition to σx close to 1 and σy close to zero. By

contrast, if available resources are scarce S(X, Y ) grows slower than linear in

or even decreases with X and decreases monotonously with Y . Consequently,

the parameters σx and σy are lower than 1 and 0, respectively. They go to

−∞ when a limiting nutrient becomes unavailable for primary production

(S(X∗, Y ∗) → 0). Note that this is a limit case since S(X∗, Y ∗) is always

larger than 0 for any positive steady state (X∗, Y ∗). Due to our assumptions

above we identify 1 ≥ σx > −∞ and 0 ≥ σy > −∞ as biologically reasonable

ranges. In order to have a parameter within a limited range [0, 1) we define

the parameters cx := (1− σx)/(2− σx) and cy := −σy/(1− σy) and substitute

σx = 2− 1/(1− cx) and σy = 1− 1/(1− cy).

Since realistic functional responses F (X) saturate for high producer densi-

ties, high values of X∗ →∞ lead to γ → 0. If producer is scarce the value of

γ is higher. Typical values are γ = 1 and γ = 2 that are related to linear or

quadratic consumption rates, respectively. As stated above we assumed that

the conversion efficiency E(X, Y ) decreases monotonously, i.e. ηx ≤ 0, ηy ≤ 0.

Further we assumed that E(X, Y ) tend to become small for high values of X

and Y . If E(X∗, Y ∗)→ 0 (while X∗ and Y ∗ approach values larger than zero)

then ηx → −∞ and ηy → −∞ as we see from Eq.(3.6).

ηx = de(x,y)
dx

∣

∣

∣

x=x∗,y=y∗
= X∗

E(X∗,Y ∗)
dE(X,Y )

dX

∣

∣

∣

X=X∗,Y=Y ∗

ηy = de(x,y)
dy

∣

∣

∣

x=x∗,y=y∗
= Y ∗

E(X∗,Y ∗)
dE(X,Y )

dY

∣

∣

∣

X=X∗,Y=Y ∗

(3.6)

Briefly we assume −∞ < ηx ≤ 0 and −∞ < ηx ≤ 0. Again we define new

parameters nx := 1/(1− ηx) and ny := 1/(1− ηy) that are defined within the

range (0, 1] respectively to substitute the unbounded parameters ηx = 1−1/nx

and ηy = 1− 1/ny.
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Name Range Remarks
r relative timescale (0,1) → 1 no timescale separation,

→ 0 infinite timescale separation
cx, cy intra and inter [0,1) 0 no competition (S(X, Y ) linear in X

specific competition and independent of Y ),
→ 1 only competition(S(X∗, Y ∗)→ 0)

γ sensitivity to prey > 0 close to zero for saturated F (X),
1 for F (X) linear in X
2 for F (X) quadratic in X

nx, ny food quality (0,1] 1 for good food quality
→ 0 (constant E(X, Y )), for low food
quality (E(X∗, Y ∗)→ 0)

Table 1: Bifurcation parameters of the generalized model.

3.3.3 Bifurcation Parameters

In summary our bifurcation parameters are r, cx, cy, γ, nx and ny. Apart

from γ all parameters are per definition limited in between 0 and 1. We

identified the parameter r as the relative timescale between the producer X

and the grazer Y . Following (Gross et al., 2005) we denote the parameter γ

as the (grazer) sensitivity to prey (producer). When the producer is abundant

the grazer is not very sensitive to the amount of producers since predation is

already quite saturated. In this case γ is close to zero as mentioned above.

We denote the parameters cx and cy as the intra-specific and inter-specific

competition parameters, respectively. They are close to 0 if competition is low

and close to 1 if limiting resources are scarce and competition leads to low

primary production S(X∗, Y ∗).

In a similar way we interpret nx and ny as food quality parameters. As long

as food quality is good in the sense that only food quantity limits growth these

parameters are close to 1. In the case of low food quality these parameters are

lower and approach 0 if the concentration of a limiting nutrient of the grazer

approaches zero in the primary producer population. Table 1 gives an overview

of all bifurcation parameters of the generalized model.
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3.4 Generalized analysis

3.4 Generalized analysis

Now, after obtaining a reasonable parameter range for all parameters that ap-

pear in the Jacobian we can analyze which theoretically realistic parameter

sets solve the bifurcation conditions mentioned above (Re(λ1,2) = 0). Our

particular emphasis lies on the impact of the functional form of the efficiency

E(X, Y ). Hence, we first analyze the qualitative behavior with constant effi-

ciency before we assume that E depends on the density of primary producers

and grazers.

3.4.1 Constant efficiency

First, we consider the rather conventional case of a constant efficiency, i.e.

nx = ny = 1. Figure 1 shows the resulting bifurcation diagram.

We find a tangent bifurcation line (T ) and a Hopf bifurcation curve (H).

The steady state of the normalization is stable in the top left region of the

diagram. If one of the bifurcation lines is crossed due to a parameter variation

the steady state becomes unstable.

First of all, it is remarkable that both bifurcations are independent of r

and cy. This means that timescale separation and the functional dependency

of S(X, Y ) on Y (i.e. how X competes with Y ) has no influence on the stability

of the positive steady state.

The Hopf bifurcation curve exceeds the valid parameter range of 0 < cx <

1 for γ ≥ 1. For this reason, a Hopf bifurcation cannot be found in this

model class if f(x) and therefore F (X) are linear functions (γ = 1). One

famous example is the Lotka-Volterra model with a logistic growth (Hofbauer

and Sigmund, 1998). However, a Hopf bifurcation can appear in general if

the function F (X) saturates and γ becomes lower than 1, e.g. models with

Holling type II or type III functional response (Rosenzweig and MacArthur,

1963). In these models a decrease of the intra-specific competition parameter cx

leads to a Hopf bifurcation and destabilizes the steady state. In ecology this

Hopf bifurcation is usually related to a destabilization of the whole system,

because in many models the oscillations beyond the Hopf bifurcation lead

to low population densities and hence, increase the chance of a stochastic

extinction of both populations. This counterintuitive effect of the intra-specific
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3. Stoichiometric producer-grazer systems

Figure 1: Bifurcation diagram of the generalized model with constant
efficiency, i.e. nx = ny = 1. The steady state is stable in the top left region.
A Hopf bifurcation line (H) and a tangent bifurcation line (T ) are shown.
The bifurcations are independent of the relative timescale r and the inter-
specific competition parameter cy. Note that the tangent bifurcation is at
γ = 0 and is not present in models with monotone increasing functional
response F (X).
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competition on the stability of the system is closely related to the paradox of

enrichment (Rosenzweig, 1971).

The Hopf bifurcation ends at a tangent bifurcation line at γ = 0 in a

codimension-2 Takens-Bogdanov bifurcation. Since we consider F (X) as a

monotonous function, i.e. γ > 0, the tangent and the Takens-Bogdanov bifur-

cation at γ = 0 can not be observed (as long as the conversion efficiency is a

constant).

3.4.2 Variable efficiency

Let us now analyze the influence of a variable efficiency E(X, Y ) when the

primary production S(X, Y ) is independent of Y leading to cy = 0. Clearly,

the food quality parameters nx and ny are not independent of each other.

Since very low values of E(X∗, Y ∗) may lead to low values of nx and ny it

is rather unrealistic to choose for instance nx close to 0 and ny close to one

at the same time. However, the exact relation between nx and ny depends

on the specific model. To see how the stoichiometry changes qualitatively

the bifurcation diagram compared to results from constant efficiency models

(shown in Fig. 1) we assume first that nx = ny. We will see in Sec. 3.5 that

such a linear approach compares to one of our specific models as well.

Figure 2 shows the bifurcation diagram for a moderate timescale separation

r = 0.3. Note, that the two-dimensional bifurcation diagram shown in Fig. 1

which we obtained for a constant efficiency (ideal food quality) can be seen as

a cross section of this three-dimensional bifurcation diagram shown in Fig. 2

at nx = ny = 1.

We observe that the Hopf bifurcation surface can only be found in the

region of relatively high food quality values. In the Appendix we show that

generally no Hopf bifurcations can occur for nx ≤ 0.5. In that sense low food

quality leads in general to the disappearance of the paradox of enrichment.

However, this does not mean that low food quality necessarily stabilizes the

system. From Fig. 2 we see that rather the opposite seems to be the case.

A decreasing food quality can lead to a crossing of the tangent bifurcation

surface and hence, into the unstable parameter volume. Beyond the tangent

bifurcation the system leaves the steady state X∗, Y ∗ and approaches another
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Figure 2: Bifurcation diagram of a generalized producer-grazer model. A
surface of Hopf bifurcations (bright) and a surface of tangent bifurcations
(dark) are shown. The bifurcation parameters are the sensitivity to prey
γ, the food quality parameters nx = ny and the intra-specific competition
parameter cx. The fixed parameters are r = 0.3 (moderate timescale
separation) and cy = 0 (S(X,Y ) = S(X)). The steady state (X∗, Y ∗)
is only stable in the top front volume. Note that the cross section at
nx = ny = 1 represents the bifurcation diagram in Fig. 1.
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attractor.

Furthermore, we note that the Takens-Bogdanov bifurcation can occur as

soon as the food quality parameters nx = ny are lower than one. At this bifur-

cation the Jacobian has a double zero eigenvalue. In addition to the tangent

bifurcation and the Hopf bifurcation a homoclinic bifurcation emerges from the

Takens-Bogdanov bifurcation line (Kuznetsov, 2004). The homoclinic bifurca-

tion is in general difficult to detect and can be related to sudden population

bursts and to the vanishing of population cycles. Consequently, we can state

that a variable food quality and therefore a variable conversion efficiency leads

to new bifurcations and therefore enriches the system dynamics.

In the last section we have shown that the inter-specific competition pa-

rameter cy has no influence on the stability of the steady state if the efficiency

is constant. For variable efficiency models the inter-specific competition pa-

rameter cy leads to a shift of the tangent bifurcation surface and therefore to a

shift of the end of the Hopf bifurcation surface. However, for low to intermedi-

ate values of cy ≤ 0.5 the bifurcation diagram looks almost identical to Fig. 2

where we assumed cy = 0 (S(X, Y ) = S(X)). Figure 3 shows two bifurcation

diagrams at cy = 0.6 (left) and at cy = 0.95 (right). We see that the effects

become more pronounced for relative high values of cy → 1. However, we

observe that the inter-specific competition parameter cy does not change the

results discussed above qualitatively. Nevertheless, it leads to a shift of the

bifurcation surfaces and hence can influence the stability of the system.
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Figure 3: Bifurcation diagram of a generalized producer-grazer model. A
surface of Hopf bifurcations (bright) and a surface of tangent bifurcations
(dark) are shown. The fixed parameters are r = 0.3 and cy = 0.6 (left
diagram) and cy = 0.95 (right diagram). The steady state (X∗, Y ∗) is
only stable in the top front volume.

To see whether these findings persist if we decrease nx and ny indepen-

dently, we compute a bifurcation diagram for low competition (cx = 0.01 and

cy = 0) and take nx and ny as bifurcation parameters. As shown in Fig. 4, for

both parameters nx and ny a decrease leads to an upwards shift of the tangent

bifurcation surface (dark). The parameter nx causes additionally an upwards

shift of the Hopf bifurcation surface (bright). However, the conclusions we

derived from Fig. 2 do not depend on the specific coupling of nx and ny as

long as one or both of these parameters decrease.
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Figure 4: Bifurcation diagram of a generalized producer-grazer model. A
surface of Hopf bifurcations (bright) and a surface of tangent bifurcations
(dark) are shown. The fixed parameters are r = 0.3, cx = 0.01 and cy = 0.
The steady state (X∗, Y ∗) is only stable in the top front volume.
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In summary, the analysis of the generalized model showed that for a con-

stant efficiency a decreasing intra-specific competition (i.e. competition pa-

rameter cx) tends to destabilize the system due to a Hopf bifurcation. The

timescale r as well as the inter-specific competition parameter cy and therefore

the functional dependency of S(X, Y ) on Y have no effect.

Although in variable efficiency models the inter-specific competition pa-

rameter cy has an influence on the bifurcation surfaces for nx < 1, ny < 1 the

effects are qualitatively low. We can clearly ascribe the presence of tangent

and Takens-Bogdanov bifurcations to a variability of the conversion efficiency

for the model class under consideration. Further homoclinic bifurcations are

in general present for variable conversion efficiency emerging from the Takens-

Bogdanov bifurcations. In other words, although both processes, the primary

production S(X, Y ) and the conversion efficiency E(X, Y ) are obviously con-

strained due to stoichiometry, the latter appears to be much more important

for the system dynamics. Even low effects of a variable food quality may cause

population bursts and the disappearance of population cycles, as stated above.

The Hopf bifurcation ends for decreasing food quality (i.e. at a certain value

of nx and ny) in a Takens-Bogdanov bifurcation. The paradox of enrichment

is therefore absent for low food quality parameters. However, a decreasing

intra-specific competition (i.e. the competition parameter cx) still tends to

destabilize the steady state under consideration due to a tangent bifurcation.

3.5 Specific stoichiometric modeling approaches

The generalized analysis is of most advantage if the functional forms of the

processes are unknown. As we have seen above it allows to gain insights on

stability properties and global dynamics from very fundamental assumptions

about the considered processes. A major drawback of the generalized analysis

is that we have no information about the response of the steady state values

(X∗, Y ∗) on parameter variations.

In specific models usually rather simple functional forms are used that

incorporate the basic knowledge about the underlying processes. This specific

model description allows for a numerical as well as an analytical analysis. A

drawback of specific models is that it is difficult to distinguish generic system
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properties from artifacts or degenerations due to the simplifications made in

order to formulate the specific model. In the following we present a fruitful

combination of generalized and specific bifurcation analysis in order to relate

generalized and specific model properties.

Please note that in the following model descriptions small and capital let-

ters no longer relate to normalized or non-normalized variables and processes.

We will instead use the notations of the variables from the formulations of the

original models. The bifurcation diagrams of the specific models are obtained

by numerical continuation using the software AUTO Doedel et al. (1997);

Doedel and Oldeman (2009).

3.5.1 DEB model and simplified DEB model

A first central result of the generalized analysis is that the functional depen-

dency of the primary production on the grazer population expressed by cy has

no or a qualitatively rather low influence on the bifurcation manifolds. The ap-

pearance of new local and global bifurcations is clearly related to the variable

efficiency in the model class under consideration.

The following specific example is a DEB model which has been introduced

by (Kooĳman et al., 2004, 2007). It considers the dynamics of a producer

P and a consumer C. In this model the primary production depends not

only on the density of primary producers but also on the grazer density. It

was formulated as a variable efficiency model as well as a simplified constant

efficiency model. In the following we compare the dynamics of the two models

to our generalized analysis.

We follow the model formulation in (Kooĳman et al., 2007) without main-

tenance costs. In the DEB model the producer consists of two compartments.

Assimilated nutrients are added first to a reserve or storage compartment. In

a second step reserves are used for growth. Since the producers take up nu-

trients from the environment fast and efficiently, we assume that all nutrients

are either in the structure or reserves of the producers P (t) or in the structure

of the consumers C(t).

Here the producer’s reserve density mN is obtained from the conservation
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3. Stoichiometric producer-grazer systems

of nutrient in the system

mN(t) = N/P − nNC C/P − nNP (3.7)

for a total constant amount of nutrient N . The chemical indices nNP and

nNC stand for producers’ and consumers’ nutrient content per carbon and are

constant as well. This means that P (t) ∈ (0, N/nNP ) and C(t) ∈ [0, N/nNC).

Following (Muller et al., 2001), the time evolution of the amounts of pro-

ducers P and consumers C is given by

d

dt
P = rPP − jPC with rP =

kNmN
yNP +mN

and jP =
jPmP

K + P
(3.8)

d

dt
C = (rC − hC)C with rC =

(

r−1
CP + r−1

CN − (rCP + rCN)−1
)

−1
(3.9)

rCP = yCP jP and

rCN = yCN mN jP

where the specific growth rate of the producers rP follows from Droop-kinetics

and the specific feeding rate jP is the Holling type II functional response. The

specific growth rate rC of the consumers results from the standard SU rules for

the parallel processing of complementary compounds, here producer’s reserve

and structure (O’Neill et al., 1989; Kooĳman, 2000). The flux rCP represents

the contribution of the producer’s structure to consumer’s growth, and rCN

that of producer’s reserve, while both compounds are required in the fixed

stoichiometric ratio yCP/yCN .

For the simplified constant efficiency version of model Eqs. (3.8, 3.9) we

assume that the consumer takes the structural part of the producer only. Then

the growth rate of the consumer follows a simple Holling type II functional

response, that is rC = rCP .

d

dt
P = rPP − jPAC with rP =

kNmN
yNP +mN

and jPA =
jPAmP

K + P
(3.10)

d

dt
C = (rCP − h)C with rCP = yCP jPA (3.11)

In order to compare the dynamics of both model formulations Eqs. (3.8,3.9)
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Name Value Units
N Total nutrient in the system 0-8.0 mol l−3

nNC Chemical index of nutrient in C 0.25 mol mol−1

nNP Chemical index of nutrient in P 0.15 mol mol−1

kN Reserve turnover rate 0.25 h−1

yNP Yield of N on P 0.15 mol mol−1

jPm Maximum specific assimilation rate 0.4 mol mol−1 h−1

K Half saturation constant 10 mM
yCP Yield of C on P 0.5 mol mol−1

yCN Yield of C on N 0.8 mol mol−1

jPAm Maximum specific assimilation rate 0.15 mol mol−1 h−1

Table 2: Parameter table of the model by (Kooĳman et al., 2007)

and Eqs. (3.10, 3.11) for different amounts of available nutrients N , we compute

two bifurcation diagrams Fig. 5 and Fig. 6.

Figure 5 shows the bifurcation diagram of the simplified DEB model (3.10,

3.11) for a variation of the total nutrient N . We see that a positive steady state

emerges from a transcritical bifurcation TC and becomes unstable in a Hopf

bifurcation H where a stable limit cycle emerges. This bifurcation scenario is

typical for many constant efficiency models (Van Voorn et al., 2008) although

the primary production here is modeled in a different way. Note that the

parameter N is not equivalent to the carrying capacityK of the frequently used

logistic growth. However, from the generalized point of view it is not surprising

that we obtain a similar bifurcation diagram since all constant efficiency models

in the model class under consideration share the same rather simple bifurcation

diagram shown in Fig. 1.

Due to the results from the generalized analysis we expect a much more

complicated bifurcation scenario for the variable efficiency DEB model Eqs. (3.8, 3.9).

Figure 6 shows the bifurcation diagram for the DEB model with variable ef-

ficiency. The positive stable equilibrium emerges from a tangent bifurcation

instead of a transcritical one. Biologically, this tangent bifurcation can be in-

terpreted as an Allee-effect: The initial population size of the grazer has to be

large enough (above the unstable solution emerging from the tangent bifurca-

tion) in order to persist. By increasing the amount of Nutrient N the stable
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Figure 5: Bifurcation diagram of the simplified DEB model. The stable
positive steady states emerges from a transcritical bifurcation TC and
becomes unstable in a Hopf bifurcation H. From the Hopf bifurcation
emerges a stable limit cycle.
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Figure 6: Bifurcation diagram of the DEB model with variable efficiency.
A stable (solid line) and an unstable (dashed line) solution emerge from
a tangent bifurcation T . The stable solution becomes unstable in a Hopf
bifurcation H and a stable limit cycle emerges. The limit cycle disappears
in a homoclinic bifurcation when increasing N .

equilibrium becomes unstable in a Hopf bifurcation H and as in the simplified

model a stable limit cycle emerges. In contrast to our previous observations for

the simplified constant efficiency model Eqs. (3.10, 3.11) the stable limit cycle

vanishes for even higher values of N in a homoclinic bifurcation. After this

global bifurcation the zero equilibrium is the global attractor for the system.

Although the bifurcation types that can be found are in line with the gen-

eralized analysis it is not a priori clear where these bifurcations occur. In order

to see how the specific bifurcation diagrams compare to the generalized analy-

sis, we transfer the curves in Fig. 5 and Fig. 6 into the generalized parameter

space. For each point in Fig. 5 and Fig. 6 we compute the related generalized

parameter set.

While we used the ad hoc approach nx = ny in our previous analysis we can

now obtain the relation directly from the transferred bifurcation curves. Figure

7 shows the resulting bifurcation diagram. Note that the derived relation

between nx and ny is specific for the DEB model and for the parameter used
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Figure 7: Bifurcation diagram of the generalized producer-grazer model
from top (left) and side (right) view. A surface of Hopf bifurcations (trans-
parent grey) and a surface of tangent bifurcations (dark grey) are shown.
Additionally, the steady state solutions from Fig. 5 (at nx = 1.0) and
from Fig. 6 (0 ≤ nx ≤ 1) are shown. In contrast to Fig. 2, the relation
ny = ny(nx) is derived to fit the computation shown in Fig. 6. The fixed
parameters are r = 0.02 and σy = −2.37 (i.e. cy ≈ 0.77)

in Fig. 6. However, the qualitative results we derived in Sec. 3.4.2 from Fig. 2

assuming nx = ny hold for Fig. 7 as well.

In addition to the bifurcation surfaces we see two curves partly solid and

partly dashed. The right hand side curve at nx = 1 relates to the positive

steady state of the simplified DEB model shown in Fig. 5. The TC is located

at cx = 1 in the generalized diagram. At this point the positive steady state

intersects with the zero equilibrium (Y ∗ → 0) where the grazing as well as

the primary production become zero. From Sec. 3.5 we already know that

S(X, Y ) → 0 is related to cx → 1. The Hopf bifurcation point H where the

stable positive steady state (solid line) becomes unstable (dashed line) fits to

the Hopf surface of the generalized analysis.

The other curve is transferred from the bifurcation diagram of the DEB

model with variable efficiency shown in Fig. 6. It intersects the tangent bi-

furcation surface at T . This is exactly the point T from Fig. 6 in generalized

coordinates. The dashed part of the curve is the unstable steady state while

the solid part is the stable steady state that coalesce in the tangent bifurca-
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tion T . The stable steady state becomes unstable when it intersects the Hopf

bifurcation surface at H . Note that at the tangent bifurcation T both parts

of the curve evolve into two different directions in the generalized parameter

space. The reason is that both parts of the curve are related to two different

steady states. Consequently, both curves are normalized to different steady

states.

From the generalized analysis we expect the presence of a homoclinic bifur-

cation due to the Takens-Bogdanov bifurcation. At the homoclinic bifurcation

the limit cycle that emerges from the Hopf bifurcation intersects the unstable

steady state from the tangent bifurcation and disappears. Biologically speak-

ing, close to the homoclinic bifurcation the population typically remains for a

long time close to the unstable equilibrium before it rapidly breaks out and

comes back to the equilibrium. After the bifurcation the population approaches

another attractor. In this example both populations die out.

From Fig. 7 we see that this scenario is impossible for the simplified con-

stant efficiency DEB model. The tangent bifurcation as well as the Takens-

Bogdanov bifurcation are out of the feasible range γ > 0.

In summary, the generalized framework allows for a comparison of the

DEB model and the simplified DEB model. The combined diagram in Fig. 7

visualizes that the simplification to a constant efficiency model leads to a

reduced bifurcation scenario. Or in other words, that an extension to a variable

efficiency model leads to much richer dynamics.

3.5.2 Non-smooth model by Loladze and Kuang 2000

Another central result of the generalized analysis is the disappearance of Hopf

bifurcations and as a consequence, the disappearance of the paradox of enrich-

ment for low food quality parameters nx or ny.

A specific stoichiometric model where the disappearance of the paradox

of enrichment has been observed was proposed and analyzed in (Loladze and

Kuang, 2000). In contrast to our first example two different essential nutrients

are considered here namely carbon and phosphorus. Further, no storage of

nutrients is modeled explicitly. The density of phosphorus η(t) in the producers

population x is variable but not less than a minimal density q. The density of
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phosphorus θ in the grazer population y is assumed to be constant.

The primary production follows a logistic growth with carrying capacity K

if carbon is limiting. However, if phosphorus is limiting the carrying capacity

is given by the upper limit for the producer density which is the total available

phosphorus (P−θy) divided by the minimal phosphorus density in the primary

producer q. Hence, the classical carrying capacity is replaced by the minimum

function min(K, (P − θy)/q).

The producer is consumed by the grazer with rate cf(x) carbon and at

the same time phosphorus with a rate η(t)cf(x). If the growth of the grazer

is carbon limited the conversion efficiency is assumed to be constant ê. As

soon as the phosphorus density of the producer η(t) is below the phosphorus

density of the grazer the growth of the grazer is phosphorus limited. The

conversion efficiency is decreased by the ratio η(t)/θ. Consequently, we define

the conversion efficiency as min(ê, êη/θ).

The model equations read

dx

dt
= bx

(

1−
1

min(K/x, η/q)

)

− cf(x)y (3.12)

dy

dt
= êmin

(

1,
η

θ

)

cf(x)y − dy (3.13)

where

f(x) =
x

a + x
(3.14)

and the variable

η(t) =
P − θy(t)

x(t)
(3.15)

where the constant P is the total amount of phosphorus in the closed system.

Observe that the grazer egests nutrient that is not used for growth. The

egested products are mineralized and sequestered by the producer instanta-

neously. As a result, no external carbon and phosphorus pools are assumed.

Since η is variable also the conversion efficiency êmin(1, η/θ) is variable if
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Name Value Units
P Total phosphorus 0.025 mg P l−1

ê Maximal production efficiency 0.8
in carbon terms

b Maximal growth rate of the producer 1.2 day−1

d Grazer loss rate (includes respiration) 0.25-0.27 day−1

θ Grazer constant P/C 0.03 (mg P)(mg C)−1

q Producer minimal P/C 0.0038 (mg P)(mg C)−1

c Maximum ingestion rate of the grazer 0.81 day−1

a Half-saturation of grazer ingestion response 0.25 mg C l−1

K Producer carrying capacity limited by light 0.25-2.0 mg C l−1

Table 3: Parameter table of the model by Loladze and Kuang (2000).

phosphorus is limiting. In this case, as in our last example we expect from the

generalized analysis that tangent bifurcations as well as homoclinic bifurcations

can be found. Figure 8 shows a one parameter bifurcation diagram of this

model for a variable carrying capacity K. The positive stable steady state

starts from a transcritical bifurcation TC1 and becomes unstable at a Hopf

bifurcation. This bifurcation scenario is similar to constant efficiency models

as we have seen for the simplified DEB model. However, for higher values of K

we see additionally another stable and another unstable solution emerging from

a tangent bifurcation T . The limit cycle emerging from the Hopf bifurcation

vanishes in a saddle-node homoclinic bifurcation at T . At this point T another

unstable and a stable solution emerge on the limit cycle and turn the limit cycle

into a homoclinic loop.

As mentioned above, another central result of the generalized model is in

line with the results from the model analysis in (Loladze and Kuang, 2000):

The disappearance of the paradox of enrichment for low food quality (low

total phosphorus concentrations, see Eq.(3.15))). From the generalized mod-

eling point of view, the disappearance of the paradox of enrichment is related

to a switch of the generalized parameter nx. By comparing Eq. (3.1) and

Eq.(3.13) we see that the efficiency is given as êcmin
(

1, η
θ

)

. This means that

the efficiency switches from a constant function to a function that is inverse

proportional to x if phosphorus becomes limiting. In the generalized param-
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Figure 8: One-parameter bifurcation diagram with the carrying capacity
K on the abscissa, and the grazer biomass on the ordinate. A stable posi-
tive solution that emerges from a transcritical bifurcation TC1 (solid line)
becomes unstable (dashed line) at the Hopf bifurcation H. A stable limit
cycle that emerges at the Hopf bifurcation vanishes for increasing K in a
saddle-node homoclinic bifurcation where another stable and an unstable
solution emerge from the tangent bifurcation T . The stable solution of
the tangent bifurcation exchanges stability with the zero equilibrium in
another transcritical bifurcation TC2.
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eter space this is related to a switch of nx from 1 to 0.5. As we have shown

the value nx = 0.5 is exactly the limit where the Hopf bifurcation disappears.

In that sense we understand the disappearance of the paradox of enrichment

in the model by Loladze and Kuang (2000) as a generic property of all models

that allow for low values of the food quality parameter (nx ≤ 0.5).

In order to visualize the switch we show in Fig. 9 a two-parameter bifurca-

tion diagram of the model by Loladze and Kuang (2000) similar to Fig. 5 in

(Loladze and Kuang, 2000). Figure 9 shows the switch explicitly as a curve A

and additionally a homoclinic bifurcation G. We note that the Hopf bifurca-

tion as well as the homoclinic and the tangent bifurcation end at the switch.

At first sight, it seems confusing that Hopf and tangent bifurcation appear at

the same side of the switch. The reason for this is that the tangent bifurcation

line and the Hopf bifurcation line are related to different steady states as we

show in Fig. 8. This difference in the steady state leads to different generalized

parameters due to the normalization. For the steady state of the Hopf bifur-

cation the switch A is from nx = 1 to nx = 0.5. By contrast, for the steady

states at the tangent bifurcation the switch A is from nx = 0.5 to nx = 1.

In the generalized model we observe that a decrease of competition always

tends to destabilize the steady state. At low food quality where no Hopf bi-

furcations can be found this destabilization is caused by a tangent bifurcation.

We see from Fig. 9 that, in the model by Loladze and Kuang (2000) the same

bifurcation scenario can be found when phosphorus is limiting: an increasing

total phosphorus concentration can lead to a destabilization due to the tan-

gent bifurcation T . Loladze and Kuang (2000) denoted this paradoxical effect

as the paradox of nutrient enrichment. From the generalized point of view

both the paradox of enrichment and the paradox of nutrient enrichment are

combined by the paradox of competition.

In contrast to Fig. 5 in (Loladze and Kuang, 2000), Fig. 9 shows not only

the switch but also the location of the homoclinic bifurcation. From the gener-

alized analysis we know that a homoclinic bifurcation is present because of the

Takens-Bogdanov bifurcation line we found. However, the Takens-Bogdanov

bifurcation can not be found in this specific model because the switch of nx

from 1 to 0.5 avoids the parameter region where the Takens-Bogdanov bifur-

cation is present. Therefore, it is an open question whether the additional
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Figure 9: Bifurcation diagram in a two-parameter plane spanned by to-
tal phosphorus content P and carrying capacity K for the non-smooth
model by Loladze and Kuang (2000), with d = 0.32. The (saddle) ho-
moclinic bifurcation curve G merges with the tangent bifurcation curve T
in a saddle-node homoclinic bifurcation. A is the curve where the grazer
minimum function ((P −θy)/x)/θ = 1, i.e. a stoichiometric switch occurs.
The Hopf bifurcation curve H and the tangent bifurcation curve T both
terminate at the curve A. The curves TC1 and TC2 define the transcrit-
ical boundary. Before TC1 and beyond or rather below TC2 the grazer
becomes extinct.
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homoclinic connection of the saddle emerges from the Takens-Bogdanov bifur-

cation found in the generalized analysis. A path following of the homoclinic

connection stops at the switch A in the model as shown in Fig. 9. In order

to find the Takens-Bogdanov bifurcation as the organizing center of the Hopf

and the homoclinic bifurcation we formulate a smooth analogon to this model

to avoid the switch which introduces a discontinuity.

3.5.3 Smooth analogon model

To overcome discontinuities in derivatives which cause problems for a bifur-

cation analysis we now set up a new model which is a smooth approximation

of the model Eqs. (3.12, 3.13) analyzed in (Loladze and Kuang, 2000). The

closed system consists of the producer, the grazer and the environment. Just

as in (Loladze and Kuang, 2000) we assume that there is no phosphorus in the

environment, but there is an external carbon pool for the two biota. The pool

represents the resources for the producers modeled in (Loladze and Kuang,

2000) by introducing the carrying capacity K.

Let x denote the biomass density of the producer and y the biomass density

of the grazer, both represented in mg C per volume of the environment. Then

the model reads

dx

dt
= bx

jm

1 + KPC
(C−x)BC

+ KPC
(P−θy−qx)BP

− KPC
(C−x)BC+(P−θy−qx)BP

− cf(x)y (3.16)

dy

dt
= ê

1.2

1 + θ
η
− 1/(1 + η

θ
)
cf(x)y − dy (3.17)

where the constant C is the total amount of carbon in t, P is the total amount

of phosphorus and

jm := 1 +
KPC
CBC

+
KPC
PBP

−
KPC

CBC + PBP
(3.18)

so that b is the maximum initial producer growth rate (i.e. for x → 0,y →

0). The parameter θ is again the phosphorus density in the grazer and η(t)

the phosphorus density in the producer. The parameters BC and BP are
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the assimilation preferences of the producer for C and P respectively. The

parameter KPC is a saturation constant.

The producer consists of two components, its structure and a phosphorus

pool. The structure has a fixed stoichiometry, that means the phosphorus

density P/C ratio denoted by q is fixed. The total phosphorus density in the

producer is denoted by η: hence, the phosphorus of the pool is η − q.

To model the assimilation of the producer (Eq.(3.16), the SU-formulation

(O’Neill et al., 1989; Kooĳman, 2000) is used where both nutrients are as-

sumed to be essential. Note that this rate determines the growth rate of the

producer measured as carbon content while the phosphorus is already fixed

by the conservation law applied to the closed system and the assumption that

all phosphorus is in the biota. As a result the phosphorus density in the pool

η − q and consequently the total phosphorus density η are time-dependent.

Furthermore, in this formulation the growth depends on carbon influx from

the environment proportional to C −x and internal phosphorus from the pool

P − θy − qx. In the mass-balance model formulation the densities of the

two nutrients available for growth are C − x − y and P − θy − qx. Note

that now not C − x − y but C − x is used for the carbon in order to obtain

the same approximation as in the model of Loladze and Kuang (2000). This

reflects the fact that the model formulation with the logistic growth for the

producer in absence of the grazer does not obey mass-conservation (Kooi et al.,

1998). However, in Sec. 3.5.4 we also analyze a model formulation with mass-

conservation to investigate its impact on the dynamics.

The consumed amount of carbon and phosphorus by the grazer are both

proportional to cf(x) while η, is time-dependent. In this process there is no

distinction between the origin of the phosphorus: either from the structure

of the producer or from its phosphorus pool. In (3.17) the SU-formulation

for the two momentary fluxes is used. However, in this formalism both fluxes

need to be independent. Application of this formalism is justified by assuming

that after ingestion both nutrients from the assimilation (catabolic) process

become available for growth as unrelated chemical substances whereby the

two nutrients are both essential. The factor 1.2 is used to get a better match

between the smooth model (Eqs. (3.16, 3.17)) and its non-smooth counterpart

(Eqs. (3.12, 3.13)). Indeed, we obtain a very similar bifurcation diagram when
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Name Value Units
KPC Saturation constant 1
BC Producer assimilation preferences for C 0.002 l (mg C)−1

BP Producer assimilation preferences for P 2 l (mg P)−1

Table 4: Parameter table of the smooth analogon to the model by Loladze
and Kuang (2000) (b, C, P , θ, η, c and ê same as in Tab.3).

increasing the total carbon concentration C that compares to the carrying

capacity K in the model by Loladze and Kuang (2000).

Figure 10 shows a bifurcation diagram of the smooth SU model formulation.

The variation of the total carbon C leads to a qualitatively as well as quan-

titatively similar bifurcation diagram compared to Fig. 8 where we increased

the capacity K from the logistic growth formulation. Again the appearance

of the tangent and the homoclinic bifurcation are in line with the results from

the generalized analysis. As mentioned above, we expect from the generalized

analysis a Takens-Bogdanov bifurcation to be the organizing center of the Hopf

and the homoclinic bifurcation. However, the tangent and the Hopf bifurcation

can not meet in a Takens-Bogdanov bifurcation since both belong to different

steady states. We need to find a tangent bifurcation of the steady state of

the Hopf bifurcation. Indeed, by decreasing d slightly from 0.25 to 0.27 we

observe that the steady state which becomes unstable in the Hopf bifurcation

undergoes a tangent bifurcation T2 and turns into a stable steady state in the

tangent bifurcation T1. The resulting bifurcation diagram is shown in Fig. 11.

In contrast to the non-smooth model by Loladze and Kuang (2000), the

smooth model formulation enables us to map the specific bifurcation diagram

into the generalized parameter space as we did for the DEB model in Fig. 7.

However, in contrast to the DEB model a linear approach for the relation

between nx and ny is sufficient to get a match between the bifurcation points

of the specific model and the bifurcation surfaces of the generalized bifurcation

diagram. Figure 12 shows the combined bifurcation diagram.

Again the transcritical bifurcations are located at the cross section at cx =

1. At this plane the first positive steady state starts at TC1. A further increase

of C leads to a decreasing intra-specific competition parameter cx. At first
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Figure 10: One-parameter bifurcation diagram with total carbon con-
centration C on the abscissa, and the grazer biomass on the ordinate. A
stable positive solution that emerges from a transcritical bifurcation TC1

(solid line) becomes unstable (dashed line) at the Hopf bifurcation H. A
stable limit cycle that emerges at the Hopf bifurcation vanishes for in-
creasing K in a saddle-node homoclinic bifurcation where another stable
and an unstable solution emerge from a tangent bifurcation T . The sta-
ble solution of the tangent bifurcation exchanges stability with the zero
equilibrium in another transcritical bifurcation TC2.

the Hopf bifurcation surface is crossed at H before the unstable steady state

connects to the other steady state at the tangent bifurcation point T2.

The tangent bifurcation point T1 is located at the same bifurcation surface.

For the stable solution of the tangent bifurcation T1 the relation of cx and C

is counterintuitive: An increase of C is related to a decrease of cx. The stable

solution exchanges stability in the other transcritical TC2 at the plane cx = 1.

Again, it is important to note that each point on the curve in Fig. 12 is related

to different steady state values and consequently to a different normalization.

As discussed above, based on the results of the generalized analysis we ex-

pect that the Hopf bifurcation H and the tangent bifurcation point T2 intersect

in a Takens-Bogdanov bifurcation. This Takens-Bogdanov line is expected to
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Figure 11: One-parameter bifurcation diagram with total carbon concen-
tration C on the abscissa, and the grazer biomass on the ordinate. A stable
positive solution that emerges from a transcritical bifurcation TC1 (solid
line) becomes unstable (dashed line) at the Hopf bifurcation H. A stable
limit cycle that emerges at the Hopf bifurcation vanishes for increasing
K in a saddle homoclinic bifurcation. The saddle emerges together with
another stable solution from a tangent bifurcation T1. The stable solution
of the tangent bifurcation exchanges stability with the zero equilibrium
in another transcritical bifurcation TC2. In contrast to Fig. 10 where we
used the same parameter set except d = 0.25 instead of d = 0.27, the two
unstable solutions merge and disappear in another tangent bifurcation T2.

be the origin of the homoclinic bifurcation. A two parameter continuation of

the bifurcations presented in Figure 13 shows exactly this bifurcation scenario

for the smooth SU model. The Hopf bifurcation line ends for a decreasing

total phosphorus content P in a Takens-Bogdanov bifurcation which is also

the starting point of the homoclinic bifurcation which causes the breakdown

of the limit cycle shown in Fig. 10 and Fig. 11. It shows further that the

additional tangent bifurcation T2 in Fig. 11 emerges together with T1 from a

cusp bifurcation N . At d = 0.25 we are above the T2 curve and therefore, the

second tangent bifurcation is absent in Fig. 10.

In summary, compared to the non-smooth model by Loladze and Kuang
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Figure 12: Bifurcation diagram of a generalized producer-grazer model.
A surface of Hopf bifurcations (bright) and a surfaces of tangent bifurca-
tions (dark) are shown. The fixed parameters are r = 0.28 and cy = 0.
The steady state (X∗, Y ∗) is only stable in the top front volume.

(2000) the SU formulation leads qualitatively to similar results. A main differ-

ence is that the disappearance of the paradox of enrichment is not related to a

sudden switch of underlying processes but to a Takens-Bogdanov bifurcation

that determines the end of Hopf bifurcations.

3.5.4 Smooth mass balance

In order to adapt the SU model to the model by Loladze and Kuang (2000), we

have assumed that the total free carbon is given by C−x. As mentioned above

this is necessary to match their assumption of a logistic growth when carbon

or light is limiting. This approach is rather problematic as soon as more than

one species is involved (Kooi et al., 1998). But how does the results change

if we assume mass-conservation and therefore C − x − y as the free carbon

concentration? From the generalized analysis, we expect that the dependency

of the primary production on the grazer population does not change the results

qualitatively. Figure 14 shows the two parameter bifurcation diagram for the

SU model taking into account the mass conservation.

We see that the transcritical bifurcation line TC is not affected since the
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Figure 13: Bifurcation diagram in parameter space spanned by carbon
content C and phosphorus P , of the smooth analogon to the model by
Loladze and Kuang (2000), with d = 0.25. There exists a homoclinic bi-
furcation curve (solid curve) G that originates from the Takens-Bogdanov
point TB, which is also the origin for the Hopf bifurcation curve H. As in
Fig. 9 the (saddle) homoclinic bifurcation merges with the tangent bifurca-
tion T1 to a saddle-node homoclinic bifurcation. The tangent bifurcation
lines T1 and T2 emerge from a cusp bifurcation N . In this 2 parame-
ter bifurcation diagram the two transcritical bifurcations TC1 and TC2

(cf. Fig. 10,11) are shown as one curve with a decline part TC1 and an
increasing part TC2.
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Figure 14: Bifurcation diagram in parameter space spanned by carbon
content C and phosphorus P , of the smooth analogon to the model by
Loladze and Kuang (2000), with d = 0.25. There exists a homoclinic bi-
furcation curve (solid curve) G that originates from the Takens-Bogdanov
point TB, which is also the origin for the Hopf bifurcation curve H. The
(saddle) homoclinic bifurcation merge with the tangent bifurcation T1 to
a saddle-node homoclinic bifurcation. In this 2 parameter bifurcation di-
agram the two transcritical bifurcations TC1 and TC2 (cf. Fig. 10,11) are
shown as one curve with a decline part TC1 and an increasing part TC2.
Compared to the model without mass conservation the whole bifurcation
scenario is shifted to higher values of C and slightly to lower values of P
except the transcritical curve TC1, TC2.
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grazer population is absent at the transcritical. Except for the transcritical

bifurcation line the mass conservation leads to a shift of the whole bifurcation

scenario to higher values of C and lower values of P . Quantitatively the

changes are remarkable: The stable region between the transcritical TC2 and

the tangent bifurcation T is much more narrow while the stable region between

the transcritical TC1 and the Hopf bifurcation H is now larger than in Fig. 13.

However, the shift does not change the qualitative results are as expected the

same as above.

3.6 Discussion

Stoichiometric ecology has brought the concept of food quality into theoretical

ecology. The variability of food quality for grazers in terms of a variable nutri-

ent content of primary producers leads consequently to a variable conversion

efficiency between these trophic levels. It has been shown before that a variable

conversion efficiency leads to new bifurcations and richer dynamics even in the

most fundamental food chain models. While early variable food quality mod-

els were rather based on ad hoc approaches for the variable efficiency function

(van de Koppel et al., 1996; Huxel, 1999) recent models are more explicit in

stoichiometry and the resulting constraints on growth processes (e.g. Loladze

and Kuang (2000); Muller et al. (2001); Hall (2004); Kooĳman et al. (2007); Sui

et al. (2007); Wang et al. (2008)). These constraints affect not only the con-

version efficiency but also the primary production. Since higher trophic levels

utilize nutrients for their growth processes they reduce the amount of nutrients

available for the producer. This indirect intra-specific competition leads to a

dependency of the primary production on higher trophic levels. However, any

specific approach to include these constraints on the primary production and

conversion efficiency in ecological models is as ecological modeling itself a sim-

plification of nature. Consequently, it remains always the question if properties

of specific models are system inherent or artifacts of the simplifications.

By using the generalized approach, a normalization technique allows for an

analysis without a further specification of the processes in terms of its mathe-

matical form. Consequently, the generalized modeling helps to identify generic

properties of model classes that share the same structure. However, a drawback
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3. Stoichiometric producer-grazer systems

of the generalized analysis is that due to the normalization all informations

about the steady state values and total rates are lost. Because all positive

steady states share the same generalized bifurcation diagram, multi-stability

i.e. the coexistence of different stable states for a given set of parameters,

can not be detected by the generalized analysis. Also simulations and as a

consequence certain numerical methods can not be applied. Therefore it can

be of advantage to combine the generalized analysis with specific modeling

approaches.

In (Van Voorn et al., 2008) we analyzed stabilizing mechanisms observed

in specific models by using the formalism of the generalized models. The

comparison of both approaches has led to a better understanding of these

mechanisms. In the presented thesis we go the opposite way. We find insights

of the generalized model and use them to understand, predict and compare

the properties of different specific models.

The generalized analysis reveals that for constant conversion efficiency

models neither the relative timescale r nor the inter-specific competition cy

influence the stability of steady states. Further, we find a counterintuitive

effect of intra-specific competition for the whole producer-grazer model class:

Increasing intra-specific competition (in terms of the parameter cx) leads to a

destabilization of the system due to a Hopf bifurcation. This effect is closely

related to the paradox of enrichment (see Sec. 3.5.1). However, it shows that

the introduction of a variable conversion efficiency greatly affects not only

these local stability properties but also the global system dynamics.

For variable efficiency we find tangent bifurcations and a line of codimension-

2 Takens-Bogdanov bifurcations in addition to the Hopf bifurcation. The bi-

furcations are not independent of the relative timescale r and the inter-specific

competition cy anymore. On the the one hand, the Takens-Bogdanov bifurca-

tion line provides evidence of global bifurcations in variable efficiency models.

On the other hand, the Takens-Bogdanov bifurcation line determines the end

of the Hopf bifurcation surface. We show that for low food quality (nx ≤ 0.5)

no Hopf bifurcations can be found. In that sense, variable food quality leads to

the disappearance of the paradox of enrichment. Since these observations are

not related to the magnitude of the variation of the conversion efficiency, the

subclass of constant conversion efficiency models appears, from the generalized
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analysis point of view, as a degenerated model class.

Our examples of a specific stoichiometric models show, as expected, that

in addition to Hopf bifurcations tangent and homoclinic bifurcations can be

found. Based on the generalized analysis we can ascribe these additional bifur-

cations to the variability of the conversion efficiency in the model. Although

it is possible to transfer qualitative results from the generalized analysis to

specific models it is rather problematic to map bifurcation diagrams obtained

from the different modeling approaches onto each other. One problem is that

each change of system parameters can change the steady state itself. Since the

parameters of generalized models are usually linked to steady state values, the

change of a single parameter of a specific model may change all parameters of

the generalized model at the same time and vice versa. The second problem is

that the analytical dependency of the steady state on the system parameters

is in general not known explicitly.

Here we present the possibility to overcome these problems. The path fol-

lowing methods used for the bifurcation analysis of the specific models compute

the steady state values simultaneously. From the generalized analysis we iden-

tify four generalized parameters as the most important ones. Since we can only

visualize 3 dimensions we fit one parameter as a function of another related

parameter (ny = ny(nx)). We use this fit to compute the three-dimensional

bifurcation diagram of the generalized model. Since we know how the steady

state values change depending on the parameters from the numerical bifurca-

tion analysis of the specific model we can compute the associated bifurcation

parameters of the generalized model as well. This technique enables us to plot

the bifurcation curves of the specific model into the generalized bifurcation

diagram.

The combined bifurcation diagrams allow for a direct comparison of dif-

ferent models. For instance, we present in our analysis a bifurcation diagram

(Fig. 7) were the bifurcation scenario of a variable efficiency DEB-model pro-

posed by Kooĳman et al. (2007) and a simplified DEB-model are shown in

one generalized diagram. Thereby, we see that the bifurcation points of the

specific models coincide with the bifurcation surfaces of the generalized analy-

sis. Moreover it shows that the curve of the simplified model is located in the

front plane of the diagram. This subspace where the bifurcation scenario is

71



3. Stoichiometric producer-grazer systems

much simpler as the rest of the generalized diagram is dedicated to the class of

constant efficiency models. With this in mind, it is not surprising that all the

additional bifurcations and global dynamics related to the variable efficiency

disappear from the DEB model in Sec. 3.5.1 if the model is simplified to a

constant efficiency model. In that sense the simplification of the DEB-model

represents the generic effect of a transition into the class of constant efficiency

models visualized in the combined diagram.

The generalized analysis as well as numerical bifurcation analysis require

continuously differentiable models. Therefore, another difficulty arise from

models with non-smooth processes. A frequently assumed non-smooth ap-

proach in stoichiometric models is Liebig’s minimum law as used in the model

by Loladze and Kuang (2000). Although such a sudden switch is problematic

from the analytical point of view, the model by Loladze and Kuang (2000)

shares some important properties to the generalized model: the appearance of

tangent and homoclinic bifurcations as well as the disappearance of the Hopf

bifurcation and the paradox of enrichment for low food quality. However, from

the generalized analysis we expect a Takens-Bogdanov bifurcation acting as an

organizing center, the origin of the homoclinic bifurcation and the end of the

Hopf bifurcation.

Using the synthesizing units approach we propose a smooth analogon to

the model by Loladze and Kuang (2000) that complies with the predictions

from the generalized analysis. In order to adapt the SU model to the model

by Loladze and Kuang (2000) we had to neglect the inter-specific competition

for carbon between producer and grazer in the primary production. However,

as we expect from the generalized analysis the inter-specific competition for

carbon leads only to a shift of the bifurcation scenario and does not change

the qualitative results of our analysis. Nevertheless, such shifts can be quanti-

tatively of importance in applied modeling. Technically, a smooth description

is of advantage since it does not create problems for analytical and numerical

bifurcation analysis. Biologically, the disappearance of the paradox of enrich-

ment due to a Takens-Bogdanov bifurcation appears less artificial as a sudden

non-smooth switch of underlying processes.

Although the projections of the numerical bifurcation curves of the smooth

analogon model fit the bifurcations obtained from the generalized model very
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well, it becomes clear that the translation is not trivial. The relation between

specific parameters and the generalized parameters depends on the steady

state under consideration and can be even counterintuitive as we have shown

in Sec. 3.5.1 and Sec. 3.5.3. Especially, the relation between resources and the

intra-specific competition cx is crucial for the question whether the paradox of

enrichment can be observed in a model or not. Gross et al. (2004) analyzed

the impact of different forms of predator-prey interaction on the paradox of

enrichment. In our analysis we found a destabilization due to decreasing intra-

specific competition. The paradox of enrichment is instead generally related

to increasing resources. The relation between resources and competition de-

pends on the response of the steady state values. If for instance X∗ and Y ∗

grow proportional to the resources the enrichment has probably no effect on

competition and the paradox of enrichment can not be observed (Arditi and

Ginsburg, 1989). As we have shown in Fig. 7 and Fig. 12 an increase of

resources (i.e. the total nutrient N or the total carbon C respectively) can in-

crease or even decrease the intra-specific competition parameter cx, depending

on the steady state under consideration. Whether the paradox of enrichment

can be observed in a model or not depends therefore on the model specific

response of the steady state under consideration.

Using the approach of generalized models we have shown that the para-

dox of enrichment can in general not be found for low food quality values

(nx ≤ 0.5). Therefore, the variability of food quality is another mechanism to

invalidate the paradox of enrichment. However, the paradox of intra-specific

competition is still present since a decreasing of the competition parameter

still tends to destabilize due to a tangent bifurcation. In that sense, each

parameter variation that decreases the competition parameter cx potentially

destabilizes the system. Consequently, the paradox of competition observed in

the generalized model analysis is a generic paradox of the whole model class.

Appendix

The paradox of enrichment is related to a destabilization of the system due to

a Hopf bifurcation. Here we show that no Hopf bifurcations can be found if the

food quality parameter is low, nx ≤ 0.5. This condition is related to ηx ≤ −1.
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From Sec. 3.3 we know that the Hopf bifurcation condition as well as the

tangent bifurcation condition depend on the eigenvalues of the Jacobian. To

be specific the Hopf bifurcation requires center symmetric eigenvalues which

are given if trace(J) = 0 and therefore

γH = −rηy + σx. (3.19)

The tangent bifurcation requires a zero eigenvalue which is given if det(J) = 0

and therefore

γT = −
ηxσy − ηx − ηyσx
σy − 1 + ηy

. (3.20)

From our analysis in Sec. 3.4 we know that the Hopf bifurcation ends at the

tangent bifurcation in a Takens-Bogdanov bifurcation. Consequently we can

find no Hopf bifurcation below the tangent bifurcation and γH ≥ γT is an

additional condition for the Hopf bifurcation. Let us assume that ηx ≤ −1.

Since σx ≤ 1 we see that

(σx + ηx) < 0. (3.21)

We multiply by the negative expression (σy − 1) and obtain

(σy − 1)(σx + ηx) > 0. (3.22)

On the left hand side we add the three negative terms rηyσy − rηy + rη2
y and

obtain

rηyσy − rηy + rη2
y + σy(σx + ηx)− (σx + ηx) > 0. (3.23)

Finally we divide by the negative term σy − 1 + ηy and get

rηyσy − rηy + rη2
y + σyσx + σyηx − σx − ηx

σy − 1 + ηy
< 0. (3.24)

Using Eq.(3.19) and Eq.(3.20) this is equivalent to

γH − γT < 0 (3.25)

which contradicts the condition of Hopf bifurcations Eq.(3.19). Consequently,

no Hopf bifurcations can be found if nx ≤ 0.5.
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Chapter 4

Evidence of chaos in

eco-epidemic models∗

4.1 Abstract

We study an eco-epidemic model with two trophic levels in which the dynamics

is determined by predator-prey interactions as well as the vulnerability of the

predator to a disease. Using the concept of generalized models we show that for

certain classes of eco-epidemic models quasiperiodic and chaotic dynamics is

generic and likely to occur. This result is based on the existence of bifurcations

of higher codimension such as double Hopf bifurcations. We illustrate the

emergence of chaotic behavior with one example system.

4.2 Introduction

Mathematical models are essential tools in order to understand the mecha-

nisms responsible for persistence or extinction of species in natural systems.

∗This Chapter is a slightly modified version of the manuscript (Stiefs et al., 2009). The
manuscript has been accepted for publication in the journal Mathematical Bioscience and
Engineering. Some notations have changed in order to be consistent with the Chapter 2 and
3. Further, Fig. 1 and Fig. 2 are not colored in the accepted manuscript. The Appendix
contains an additional Section that shows the relation of two parameters from Chapter 3
and 4.
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In ecological models persistence is in general desired. By contrast, investiga-

tions in epidemic models usually aim at finding mechanisms that lead to the

extinction of the parasites or infections (e.g. Liu et al. (2008)). However, it

is known that diseases can not only greatly affect their host populations, but

also other species their host populations interact with (e.g. Anderson et al.

(1986)).

In recent decades theoretical ecologists as well as epidemiologists became

increasingly interested in so-called eco-epidemiology. Eco-epidemic models de-

scribe ecosystems of interacting populations among which a disease spreads

Arino et al. (2004); Beltrami and Carroll (1994); Chattopadhyay and Arino

(1999); Hadeler and Freedman (1989); Hethcote et al. (2004); Saenz and Het-

hcote (2006); Venturino (1994, 2001, 2002b). It has been shown that invading

diseases tend to destabilize the predator-prey communities Anderson et al.

(1986); Dobson (1988); Hadeler and Freedman (1989); Xiao and Bosch (2003).

However, Hilker and Schmitz Hilker and Schmitz (2008) show that predator

infection can also have a stabilizing effect.

Most of the existing models in eco-epidemiology consider a disease in the

prey population Arino et al. (2004); Chattopadhyay and Arino (1999); Ven-

turino (1995). There are only a few models where the predator population is

infected Venturino (2002a). Some of the latter can exhibit sustained oscilla-

tions which are absent from the uninfected ecological model under considera-

tion Anderson et al. (1986); Xiao and Bosch (2003).

In ecology as well as in epidemiology oscillations are associated with desta-

bilization. The reason is that extinction of the population due to natural

fluctuations becomes very likely when the oscillation drives the population to

low abundances d’Onofrio and Manfredi (2007); Rosenzweig (1971); Van Voorn

et al. (2008). Such extinction events are less critical if a species is spatially

separated in several subpopulations. The subpopulations allow for a repopula-

tion by migration after the extinction of one subpopulation. However, in such

a case synchronous dynamics between the subpopulations due to the coupling

by migration can have a devastating effect: it increases the possibility of global

extinction of the whole species Heino et al. (1997); Holt and McPeek (1996)

when all subpopulations have a minimum at the same time. In epidemiology

such a synchronization of the dynamics can again be desired and induced by
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pulse vaccinations Grenfell et al. (1995) in order to cause the extinction of the

disease.

In some models where the prey is infected also chaotic long-term dynamics

have been observed Chatterjee et al. (2007). In contrast to oscillations, the

effect of chaos on the stability in ecological models is a question of debate for

a long time Gross et al. (2005); Hastings et al. (1993); Ruxton and Rohani

(1998). A popular view has been that chaos has a destabilizing effect because

of the associated boom and burst dynamics Berryman and Millstein (1989).

However, for a population that consists of subpopulations as described above

it has been shown that chaotic dynamics can be of advantage in order to stabi-

lize the whole population. Although chaotic dynamics increase the number of

local extinctions of subpopulations it reduces the degree of synchrony between

different patches. Consequently it reduces the probability of a global extinc-

tion Allen et al. (1993); Ruxton (1994). Thereby it seems essential that the

subpopulations are chaotic in isolation Earn et al. (1998). With the coupling

the subpopulations can show simpler dynamics but the subpopulations tend to

be out of phase. In this sense it can be of advantage for the total population if

the subpopulations exhibit chaotic dynamics or are close to chaotic parameter

regions. This observation may explain why some ecological systems appear to

be at the edge of chaos Turchin and Ellner (2000). Further, diffusion-induced

complex dynamics as been found in continuous spatial predator-prey systems

Baurmann et al. (2007); Pascual (1993); Upadhyay et al. (2008). But also

isolated populations can exhibit persistent chaotic dynamics. Benincà et al.

Benincà et al. (2008) observed chaotic dynamics of a food web in laboratory

mesocosm that last for more than 6 years. From an evolutionary point of

view ecological models should evolve into chaotic parameter regions if chaotic

dynamics are of advantage for the population persistence.

To study stabilizing or destabilizing effects bifurcation theory is often ap-

plied to find the parameter regions where the steady state for the ecological

or epidemiological model is stable with respect to perturbations. These anal-

yses are based on specific models describing the relevant processes in form of

ordinary differential equations (ODEs). Recently another approach has been

developed which is based on generalized models where the exact mathematical

form of the processes entering the right hand side of the ODEs is not specified
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Gross and Feudel (2006). In spite of the fact that the mathematical functions

are not known in detail, it is possible to analyze the stability properties of the

steady state and draw conclusions about possible destabilization mechanisms

of the steady state when a system parameter is varied Gross and Feudel (2004),

as well as the emergence of chaotic dynamics Gross et al. (2005).

In this Chapter we use the concept of generalized model to study the im-

pact of a disease of the predator on the dynamics of a predator-prey system.

To this end we couple a generalized ecological model with an epidemic one

and study the stability properties of the steady state. The advantage of the

method is that our results are not restricted to a particular model but apply

to certain classes of models since we use parameters encoding the shape of

predator-prey functional responses and incidence functions as bifurcation pa-

rameters. We find that the coupling of both models introducing a disease in

the predator population leads to complex dynamics such as quasiperiodic and

chaotic motion. This complex dynamics are solely based on the interplay of

demographic and epidemic modeling since the demographic and the epidemic

model alone are not capable to exhibit chaotic motion. As a result we show

that chaos is generic and prevalent for certain classes of eco-epidemic models.

The Chapter is organized as follows: In Sec. 4.3 we discuss the demo-

graphic as well as the epidemic model and introduce the eco-epidemic model.

Furthermore, we normalize the model and discuss the possible emergence of

bifurcations for the steady state. In Sec. 4.4 we analyze the stability properties

of the steady state for the predator-prey model with and without the disease

in the predator population and compare the results. As a conclusion we ob-

tain classes of systems in which we expect to find quasiperiodic and chaotic

behavior. Since these findings are based on mathematical theorems we can

only state the existence of parameter regions where the dynamics is chaotic.

To find out the size of these parameter regions and the hence, their relevance

for the dynamics of the eco-epidemic model we investigate a specific model

in Sec. 4.5 to show explicitly the emergence of chaotic dynamics. Finally we

summarize the results in Sec. 4.6.
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4.3 The generalized eco-epidemic model

Before we begin our analysis we will briefly outline the construction of one of

the simplest predator-prey models and of one of the most elementary epidemic

models, which together form the building blocks for the more general eco-

epidemic model we would like to consider.

The basic demographic model in general accounts for two interacting species.

The nature of interactions can be of competing, predator-prey or symbiotic na-

ture. A typical formulation for a predator-prey model is given by

Ẋ = SX −MXX
2 −G(X)Y,

Ẏ = EG(X)Y −MY Y ,
(4.1)

where S is the specific growth rate of the prey X. Apart from predation the

growth of the prey is limited by intra-specific competition assumed to increase

quadratically in X with the coefficient MX thereby giving a logistic evolution

for the prey dynamics. The predation is expressed by the so-called per capita

functional response G(X). The efficiency of biomass conversion is given by the

yield constant E. MY is the mortality rate of the predator population.

This simple model structure has been analyzed for a variety of different

functional responses G(X) describing the prey-dependent predation rate (e.g.

Holling (1959)). However, in our case the function G(X) is not specified in or-

der to keep the model more general. In Sec. 4.4 we will discuss some properties

of this underlying ecological model.

Classical epidemic models partition the population into several epidemio-

logical classes, for a thorough review see Hethcote (2000). The population,

in our case the predator population Y , is usually split into susceptibles YS,

infected YI , and recovered YR. The latter may be thought of as being immu-

nized, at least for a period of time, after which they return into the class of

susceptibles. Following this population division, in absence of vital dynamics,

i.e. demographic terms to account for births and natural deaths, a simple SIRS
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4. Evidence of chaos in eco-epidemic models

model would be written as

ẎS = −λ(YS, YI) + δYR

ẎI = λ(YS, YI)− γYI

ẎR = γYI − δYR

(4.2)

assuming linear transition rate γ from the infected to the recovered class. The

recovered become susceptible again with a fixed rate δ.

In general, pathogen transmission is expressed by interactions among indi-

viduals. The latter are modeled by the incidence function λ(YS, YI), for which

the most common approaches are the mass action λ(YS, YI) = bYSYI and

the so-called standard incidence function or frequency-dependent transmission

λ(YS, YI) = bYSYI/(YS+YI). In both cases susceptibles YS and infected YI are

assumed to be well-mixed and hence, to interact randomly. However, it is not

clear if the assumption of random interactions and an equal distribution of in-

fected and uninfected is appropriate to describe pathogen transmission in wild

populations. Both, small-scale experiments as well as observed disease dynam-

ics, give evidence that simple mass action is not an adequate model in many

situations McCallum et al. (2001). The simplest argument for an asymmetry

of the incidence function is that due to a patchiness in the disease on aver-

age each infected individual is more likely to have an infected neighbor. The

more biological details are taken into account, the more complex the incidence

function may be. For instance, Capasso and Serio Capasso and Serio (1978)

introduced a saturated incidence function. Such a saturation can be caused by

crowding effects at high infection levels or by protection measures the suscep-

tible individuals take. Liu et. al. Liu et al. (1986) proposed a more general

incidence function of the form λ(YS, YI) = kYSY
p
I /(1 +mY pI ). Additionally a

variety of other incidence functions have been investigated by various authors

(e.g. Table 1). A universal approach has not been found yet. However, using

the generalized approach we avoid to specify the incidence function but study

more generic properties of the model class under consideration.

To analyze the effect of a disease in the predator population Y on the

dynamics of interaction with the prey X we combine the demographic model
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4.3 The generalized eco-epidemic model

Functional form Comments Citations
∼ SI mass action Anderson and May (1979)

May and Anderson (1979)
∼ SI
S+I

standard incidence May and Anderson (1987)

∼ SI(1− CI) Yorke and London (1973)
∼ IS

1+AI
Capasso and Serio (1978)

∼ SpIq power relationship Liu et al. (1986)
∼ Sln(1 +BI/k) Barlow (2000)
∼ Sp I

q

B+Iq
p > 0, q > 0 Liu et al. (1986)

∼ S I
A+I2

non-monotone incidence Xiao and Ruan (2007)

∼ S I
A+S+I

asymptotic incidence Diekmann and Kretzschmar (1991)

Roberts (1996)

Table 1: Different proposed functional forms for the incidence function

Eqs. (4.1) with the SIRS epidemic model Eqs. (4.2) as follows

Ẋ = SX −G(X)(YS + YR + αYI)−MXX
2,

ẎS = EG(X)(YS + YR + αβYI)−MY YS + δYR − λ(YS, YI),

ẎI = λ(YS, YI)− (MY + µ)YI − γYI ,

ẎR = γYI − δYR −MY YR.

(4.3)

Here we assume neither vertical transmission, nor vertical immunity, i.e. that

the infected predators as well as the recovered predators reproduce only sus-

ceptibles. Furthermore, we suppose that the disease can, in principle, influence

the demographic parameters. The disease may induce a disease related mor-

tality rate µ and reduce the predation and reproduction rates of the infected

YI expressed by the factors α and β respectively.

All parameters and terms denoted by Greek letters are related to the

disease. Note, that in the absence of weakening effects of the disease (i.e.

α = β = 1 and µ = 0) the combined model Eq.(4.3) reproduces the population

dynamics of the uninfected model Eqs.(4.1) , with Y = YS + YI + YR. This

means that the disease could have in principle no influence on the ecological

dynamics.

To analyze the dynamics of model (4.3) one would start by computing the

steady state and its stability with respect to perturbations. But a local stability

analysis cannot be performed since an analytical computation of the steady
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4. Evidence of chaos in eco-epidemic models

states is impossible because G(X) and λ(YS, YI) are not specified but assumed

to be general functions. However, this difficulty can be overcome using the

normalization procedure for the generalized models described in Gross and

Feudel (2006). To use this approach we assume that a positive steady state

(X∗, Y ∗S , Y
∗

I , Y
∗

R) exists.

We now define normalized variables x := X/X∗, ys := YS/YS
∗, yi := YI/YI

∗

and yr := YR/YR
∗. Further, we define a normalized functional response g(x) :=

G(X∗x)/G(X∗) and l(ys, yi) := λ(YS
∗ys, YI

∗yi)/λ(YS
∗, YI

∗) as a normalized

incidence function. Note, that in the space of normalized state variables the

steady state is by definition (x∗, ys
∗, yi

∗, yr
∗) = (X∗/X∗, ...) = (1, 1, 1, 1). In

the same manner, we obtain l(ys
∗, yi

∗)=g(x∗)=1. Following the normalization

procedure we can rewrite Eqs. (4.3) as

ẋ = ax (x− m̃xg(x)(f̃α(bys + b̃yr) + fαyi)−mxx
2),

ẏs = as (esg(x)(f̃β(bys + b̃yr) + fβyi)−myys + ẽsyr − m̃yl(ys, yi)),

ẏi = ai (l(ys, yi)− yi).

ẏr = ar (yi − yr).
(4.4)

The details of the normalization and the definitions of the newly introduced

scale parameters ai, b, b̃, fα, f̃α, fβ, f̃β, es, ẽs, mx, m̃x, my and m̃y are given in the

Appendix. As an advantage of this approach these parameters are easy to

interpret in the biological context. The scale parameters ax, as, ai and ar for

instance encode the inverse timescales of the normalized state variables. They

measure the relation between the lifetimes of the different species. All other

scale parameters are between 0 and 1 and describe weight factors of certain

processes of the model at the steady state.

The losses due to intra-specific competition relative to the total losses

within the prey are represented by the parameter mx. To be specific, if mx is

close to 1 the losses of prey due to intra-specific competition preponderate. In

the Appendix, we show that the inter-specific competion parameter cx defined

in Chapter 3 is equal to the weight faktor mx for the considered models. The

parameter m̃x = 1 −mx expresses losses caused by predation. fα and f̃α are

the fractions of prey consumed by infected predators and healthy predators

respectively. In the same way b is the fraction of healthy predators that are
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4.3 The generalized eco-epidemic model

susceptible and b̃ = 1− b the fraction of healthy predators that are recovered.

Further, the parameter es represents the weight factor of the natural growth

terms of susceptibles due to consumption of X. At the steady state the frac-

tion of gains due to recovered predators that become susceptible again is given

by ẽs = 1 − es. The natural mortality for the predator relative to the total

losses is expressed by my.

In the normalized model the steady state under consideration is known

(x∗, y∗) = (1, 1). The stability of this steady state depends on the eigenvalues

of the Jacobian. The steady state is stable if all eigenvalues have a negative real

part. Consequently only two bifurcations can separate stable from unstable

parameter regions: the tangent type bifurcation where a real eigenvalue crosses

the imaginary axis and a Hopf bifurcation where a pair of complex conjugate

eigenvalues crosses the imaginary axis.

Because all normalized state variables and the normalized processes (l(ys, yi),

g(x)) are equal to one at the steady state, the Jacobian of the normalized

model contains in addition to the scale parameters only the derivatives of the

normalized processes in the steady state. We define

gx := ∂g(x)
∂x

∣

∣

∣

∣

x∗
,

ls := ∂l(ys,yi)
∂ys

∣

∣

∣

∣

ys∗,yi∗
,

li := ∂l(ys,yi)
∂yi

∣

∣

∣

∣

ys∗,yi∗

(4.5)

as the generalized parameters. These parameters can be interpreted as non-

linearity measures of the corresponding functions with respect to the variable

of the derivative. If the function G(X) is linear in X the derivative of the nor-

malized function gx is equal to one. It is zero for a constant function and two

for a quadratic function. To be consistent with previous publications we let gx

be the predator sensitivity to prey Gross et al. (2004, 2005); Gross and Feudel

(2006). In the same sense we denote by ls and li the incidence sensitivity to

susceptibles and to infected respectively.

In summary the Jacobian consists of 10 scaling parameters and 3 general-

ized parameters. How to obtain the test functions for the above mentioned bi-

furcations from the Jacobian is described in detail in Gross and Feudel (2004).
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4. Evidence of chaos in eco-epidemic models

These test functions enable us to draw three-dimensional bifurcation diagrams

as described in detail in Stiefs et al. (2008).

Since we are essentially interested in the influence of different mathemati-

cal expressions for the functional response and for the incidence function, we

focus our bifurcation analysis on the generalized parameters gx, ls and li. We

chose the other scale parameters according to biological reasoning. It is known

that in many cases the timescale for the lifetime of species belonging to differ-

ent trophic levels slows down with each higher trophic levels Hendriks (1999).

Hence, we could assume that the inverse timescale of the susceptible predators

is less than half the timescale of the prey, i.e. as = 0.4ax. By renormalizing

the timescale we can say that ax = 1 and as = 0.4. It is further reasonable

to expect that the timescale of the infected predators is slightly larger than

the timescale of the susceptible predators since we suppose that their overall

lifetime is shorter. Let us assume ai = 0.5. Clearly, this intuitive way is much

more appropriate than guessing some abstract parameters. If we would ana-

lyze a specific real system at the steady state we could, in principle, also gain

an appropriate value for each scale parameter by measuring the corresponding

rates. Approximating all other scale parameters, we end up with three param-

eters which we consider as the most interesting bifurcation parameters. These

are the sensitivity of the predator with respect to prey gx and the sensitivity

of the incidence function with respect to susceptibles ls and infected li. The

computation of three-dimensional bifurcation diagrams allows us to discuss the

stability properties of the eco-epidemic model depending on the mathematical

form of the functional response G(X) and the incidence function λ(YS, YI).

4.4 Stability of the steady state: from local to

global bifurcations

4.4.1 Absence of diseases

Before we analyze the effect of an infection on the predator-prey interactions,

we take a look at the generalized predator-prey model in the absence of infected

individuals. It is known that the predator-prey system Eq.(4.1) can exhibit
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Figure 1: Bifurcation diagram of a generalized predator-prey model. A
surface of Hopf bifurcations (red) and two surfaces of tangent type bifur-
cations (transparent blue) are shown. The bifurcation parameters are the
prey sensitivity gx, the timescale of the predator ay and the competition
mx (intra-specific competition of the prey).

self-sustained oscillations if the functional response G(X) is nonlinear in X for

instance a Holling type II function Holling (1959). A typical example would be

the Rosenzweig-MacArthur model Rosenzweig and MacArthur (1963). These

oscillations appear due to a supercritical Hopf bifurcation. Figure 1 shows

the bifurcation diagram of the generalized predator-prey model given by Eq.

(4.1). As mentioned above ax is set to be one so that ay corresponds to the

relative inverse timescale. We see two tangent type bifurcation surfaces (blue)

and one Hopf bifurcation surface (red). The steady state is stable in the top

volume of the diagram. If one of the bifurcation surfaces is crossed due to a

parameter variation the steady state becomes unstable. The only biologically

sound parameter range for the scale parameters ay and mx lies between [0,1]

since both parameters express some kind of weight factor measured in relation
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4. Evidence of chaos in eco-epidemic models

to other scale factors.

Firstly note, that such a destabilization never occurs for a variation of ay.

The timescale has therefore no influence on the stability of the steady state in

this model class.

Secondly, the Hopf bifurcation surface exceeds the biologically relevant pa-

rameter range for gx ≥ 1. For this reason, Hopf bifurcations cannot be found

in this model class if g(x) and therefore G(X) are linear functions (gx = 1).

This situation corresponds to the Lotka-Volterra model coupled with logistic

growth. However, from a biological perspective, models should allow lower

values of the sensitivity to prey, i.e. gx < 1. Due to a limited consumption of

prey the functional response G(X) should saturate at high amounts of prey.

Since saturation is related to low values of gx, Hopf bifurcations should likely

occur in biological realistic models.

Even, lower values of the sensitivity to prey, i.e. gx ≤ 0, are rather unlikely

and occur only in systems with non monotonic functional responses. Biolog-

ically this region where the predation decreases with increasing prey can be

related to inhibition effects or group defense techniques of the prey Andrews

(1968); Freedman and Wolkowicz (1986). At gx = 0 we find that the Hopf

bifurcation ends at the lower tangent type bifurcation surface at gx = 0 in a

codimension-2 Takens-Bogdanov line. On this line the Jacobian has a double

zero eigenvalue. In addition to the tangent type bifurcation and the Hopf bifur-

cation a homoclinic bifurcation emerges from the Takens-Bogdanov bifurcation

line. This bifurcation is in general difficult to detect and can ecologically be

related to sudden population bursts. In the model class under consideration a

Takens-Bogdanov bifurcation can only be observed in systems with non mono-

tonic functional response G(X). This property is necessary to enable negative

values of gx and therefore it is also necessary to cross the Takens-Bogdanov

bifurcation at gx = 0.

Another way to achieve a destabilization of the steady state due to a Hopf

bifurcation is to decrease the competition parameter mx. This effect is rather

counterintuitive since decreasing the competition means ecologically to im-

prove the food conditions for the predators. Such behavior of the model can

be strongly related to the paradox of enrichment Rosenzweig (1971).
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4.4 From local to global bifurcations

4.4.2 Disease in the predator population

We now investigate the impact of a disease in this two trophic food chain as

described by Eq. (4.3). In contrast to the normalized predator-prey model the

normalized eco-epidemic model has not 3 but 13 parameters that may all more

or less influence the stability of the steady state. Thoroughly analyzing and

discussing these parameter variations is beyond the scope of this work. Instead

we focus only on bifurcations that give evidence for more complex dynamics.

Such complex behavior like quasiperiodic or chaotic dynamics occur usually in

the neighborhood of global bifurcations or bifurcations of higher codimension,

which can be found for a lot of different parameter sets in the model class

under consideration. It is important to note that though the whole bifurcation

analysis presented is based on local stability properties of the steady state, we

are able to detect easily higher codimension bifurcations since they correspond

to intersections of different bifurcation surfaces like the Takens-Bogdanov line

discussed in the previous subsection.

For our analysis we chose gx, ls and li as the most important bifurcation

parameters. For most of the common incidence functions (cf. Table 1) li ≤ 1

due to saturation effects with respect to the number of infected. The sensitivity

to prey gx is for the same reason also confined to this range gx ≤ 1.

For the the scaling parameters we assume now that 90 percent of the losses

of prey are caused by predation, which means a relative competition mx =

0.1. We assume further that 95 percent of the predation is caused by healthy

predators, i.e. susceptibles plus recovered, (f̃α = 1− fα = 0.95) and that half

of the healthy predators are susceptible (b = 0.5). The gain of susceptible

predators results for 95 percent from biomass conversion (es = 0.95) and only

5 percent from the recovering (ẽs = 1 − es = 0.05). The natural mortality of

the healthy predators is assumed to be relatively low compared to losses due

to infection (my = 0.1).

Using the parameter settings mentioned above we compute the stability

of the steady state as shown in Fig. 2. We find as in the model without

disease a surface of tangent type bifurcations (transparent blue) and a surface

of Hopf bifurcations (red). But now the Hopf bifurcation surface possesses a

rather complicated shape. This shape corresponds to a Whitney umbrella, a
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4. Evidence of chaos in eco-epidemic models

bifurcation situation which is rarely found in applications. Other examples

of a Whitney umbrella are presented in Gross (2004b); Stiefs et al. (2008).

In this bifurcation scenario the Hopf bifurcation surface is twisted around a

codimension-3 1:1 resonant double-Hopf point characterized by two identical

pairs of complex conjugate eigenvalues. As Fig. 2 shows, a line of codimension-

2 double-Hopf bifurcations emerges from this point. At this line where the

Hopf bifurcation surface intersects itself two pairs of purely imaginary complex

conjugate eigenvalues can be found.

Additionally we observe two intersection lines of the Hopf bifurcation sur-

face with the tangent type bifurcation surface. One is again a Takens-Bogdanov

bifurcation and the other one is a Gavrilov-Guckenheimer bifurcation line that

emerges from a so-called triple point bifurcation on the Takens-Bogdanov bi-

furcation line Kuznetsov (2004). On this Gavrilov-Guckenheimer line the Ja-

cobian has a zero eigenvalue in addition to a pair of purely imaginary complex

conjugate eigenvalues. In contrast to the Takens-Bogdanov bifurcation the

Hopf bifurcation surface does not end on the Gavrilov-Guckenheimer bifurca-

tion. The existence of the Gavrilov-Guckenheimer bifurcation indicates that

quasiperiodic and chaotic dynamics are likely to occur in the neighborhood of

this bifurcation. The double-Hopf bifurcation line instead is a clear evidence for

the existence of chaotic parameter regions Kuznetsov (2004). Therefore we can

conclude that the consideration of the vulnerability of the predator population

to a disease can lead in general to complex dynamics in eco-epidemiological

systems.

Unfortunately we have no information about the size of the chaotic pa-

rameter region since our analysis is based on mathematical theorems. In the

following section we investigate a specific model that allows to translate the

generalized parameters to specific system parameters and vice versa. This

specific example allows not only to explicitly compute the chaotic parameter

regions but also gives insights into the route to chaos.
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Figure 2: Bifurcation diagram of the generalized eco-epidemic model. A
surface of Hopf bifurcations (red) and a surface of tangent type bifurca-
tions (transparent blue) are shown. The intersection lines are a Takens-
Bogdanov bifurcation line (TB), a Gavrilov-Guckenheimer bifurcation line
(GG) and a double-Hopf bifurcation line (DH). The double-Hopf bifurca-
tion line ends in a 1:1 resonant double-Hopf bifurcation point (1:1 DH)
and the Gavrilov-Guckenheimer bifurcation line ends in a triple point bi-
furcation at the Takens-Bogdanov line. The bifurcation parameters are
the generalized parameters gx, ls and li which are strongly related to the
functional form of the underlying processes, namely the per capita func-
tional response g(x) and the incidence function l(ys, yi) respectively. The
fixed parameters are scale parameters ax = 1, as = 0.4, ai = 0.9, ar =
0.25, fα = 0.05, b = 0.5, es = 0.98, mx = 0.1 and my = 0.1.
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4.5 Chaos in a specific eco-epidemiological sys-

tem

To demonstrate the theoretical implications of the existence of a Whitney

umbrella bifurcation situation in a specific model, we need to choose specific

mathematical functions for the generalized processes. This means that we

construct an example of a specific model that compares to the generalized

parameter set of the bifurcation diagram shown in Fig. 2.

Since the generalized parameters represent the derivatives of the generalized

processes we need to choose functions according to the parameter range of the

higher codimension bifurcations. As stated above in ecology and epidemiology

a large pool of proposed functional responses G(X) and incidence functions

λ(YS, YI) exists. Since the double-Hopf bifurcation line appears for gx lower

than 1, which means a increase of g(x) slower than linear in x, a functional

response with saturation is necessary to obtain the double-Hopf bifurcation

line.

Instead of defining a specific model and normalizing it we construct an

already normalized specific model for the sake of simplicity. We choose a

Holling type III function g(x) = ax2/(1 + bx2) as the functional response. Due

to the normalization we need g(1) = 1. Therefore we define a := (1 + b).

The relation between b and gx is then gx = 2/(1 + b). In a similar way we

allow values of ls and li lower than 1 as well. We use the asymptotic incidence

function l(ys, yi) = cysyi/(1 + dys + eyi) Diekmann and Kretzschmar (1991);

Roberts (1996). In order to satisfy l(1, 1) = 1 we define c := (1 + d + e). We

find the relations ls = 1 + e/(1 + d+ e) and li = 1 + d/(1 + d+ e).

Now we have a specific model that allows a translation of the parameter

set of the generalized model into the parameters of the specific model. This

enables us to analyze the dynamics of the system. As discussed in the pre-

vious section the double-Hopf bifurcation indicates the emergence of chaotic

parameter regions. In order to find these parameter regions we compute the

Lyapunov exponents of the specific system for a grid of points in the general-

ized parameter space close to the double-Hopf bifurcation.

The result is shown in Fig. 3. The two solid lines are Hopf bifurcation

lines that intersect in a double-Hopf bifurcation. Within the white area the
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steady state (1,1) is stable. In the light grey area the system exhibits periodic

long-term dynamics.

In addition to the two Hopf bifurcation lines we find numerically other

bifurcation lines (two dashed, one dotted) using pathfollowing methods imple-

mented in MATCONT Dhooge et al. (2003). The dashed lines are Neimark-

Sacker bifurcations where a limit cycle becomes unstable and a stable quasiperi-

odic motion on a torus emerges. This behavior can be found in the dark grey

parameter regions. In the black regions the largest Lyapunov exponent is pos-

itive and hence, the dynamics is chaotic. The dotted line is a period doubling

bifurcation. For small values of ls we find first the transition to quasiperiodic

motion on a torus with a subsequent transition to chaos. For larger values

of ls the periodic solution undergoes first a period doubling before the torus

or Neimark-Sacker bifurcation occurs. While the transition to chaos involves

always a transition from quasiperiodicity, the chaotic attractor looks different

for small and large values of ls since the Neimark-Sacker bifurcation and the

period doubling swap places. Both routes to chaos are illustrated in Fig. 4.

The population dynamical system alone (Eq.(4.1)) as well as the epidemio-

logical system alone (Eq.(4.2)) do not exhibit complex dynamics. Only if both

are coupled to form an eco-epidemiological system with an infected predator,

the dynamics can be quasiperiodic or chaotic. Our generalized analysis shows

that chaos is generic in this class of models.

4.6 Discussion

We have studied a generalized eco-epidemic model which couples the behavior

of a predator-prey system to the dynamics of a disease which can infect the

predator. The advantage of investigating generalized models lies in the fact

that the exact mathematical form of the interaction processes like predator-

prey or infection interactions does not have to be specified. This allows for

rather general conclusions about the stability of the positive steady state which

will be reached in the long-term limit. Moreover, this generalized approach can

give insight into the global dynamics of the system though only a local stability

analysis is performed. Due to the usage of generalized models our results apply

to certain classes of models.
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Figure 3: Dynamics of a specific model close to the double-Hopf bifur-
cation. The steady state is stable in the white area between the two Hopf
bifurcation lines (solid lines). Beyond the Hopf bifurcation lines (1.) the
system exhibits stable periodic dynamics (bright grey). Both Hopf bifur-
cation lines intersect in a codimension-2 double-Hopf bifurcation. This
double-Hopf bifurcation is the starting point of a Neimark-Sacker bifurca-
tion line (dashed). At the Neimark-Sacker bifurcation line a stable Torus
emerges (2.) and the system exhibits quasiperiodic dynamics (dark grey).
The dotted line is a period doubling bifurcation line. Beyond this line
where the system oscillates on a period 2 orbit (3.) we find another
Neimark-Sacker bifurcation (dotted-dashed line). In the black region we
find chaotic dynamics (4.,5.).
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Figure 4: Simulations in 5 different dynamical regimes of Fig. 3. We see a
limit cycle at gx = 0.614, ls = 0.48 (1.), a torus at gx = 0.6025, ls = 0.456
(2.), a limit cycle with doubled period at gx = 0.613, ls = 0.5 (3.) and two
chaotic attractors at gx = 0.6, ls = 0.47 (4.) and gx = 0.608, ls = 0.51
(5.).

The eco-epidemic model is based on two often used generalized models

which exhibit only stationary points or periodic behavior when studied sepa-

rately. Examples for specific versions of the predator-prey system (Eq. (4.1))

are the Rosenzweig-MacArthur system and related versions possessing differ-

ent nonlinear functional responses Beddington (1975); DeAngelis et al. (1975);

Rosenzweig and MacArthur (1963); Truscott and Brindley (1994). The epi-

demic model used as a basis is the well-known SIRS (susceptibles-infected-

recovered-susceptibles) models (Eq. (4.2)). Specific versions of this model use

different nonlinear incidence functions Anderson et al. (1986); Capasso and

Serio (1978); Liu et al. (1986); May and Anderson (1987).

We have shown that the coupling of an ecological and an epidemiolog-

ical model can lead to classes of systems exhibiting complex dynamics like

quasiperiodic and chaotic behavior. Our result is based on the detection of

higher codimension bifurcations like double-Hopf bifurcations, triple points

and Gavrilov-Guckenheimer bifurcations. In the neighborhood of such bifur-

cations there exist parameter regions where quasiperiodic and chaotic behavior
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can be found. This mathematical finding based on bifurcation theory is illus-

trated with a specific model where the interaction functions are specified in

order to be able to use numerical methods like path-following of bifurcations

and the computation of Lyapunov exponents. As a result we can demonstrate

that the chaotic parameter regions are not small and therefore not negligible,

but rather large and hence, important for the dynamics of the system.

Finally we note that we were not able to find complex dynamics in the eco-

epidemic model using a SIS instead of a SIRS model. Therefore it seems to be

essential that we introduce the class of recovered predators for the occurrence

of complex dynamics.

To our knowledge this is the first example where chaotic behavior has been

found in an eco-epidemic model system with a disease in the predator popu-

lation. Based on the generalized approach we can state that the emergence of

chaos is generic for certain classes of eco-epidemic models and thus likely to

be found.
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Appendix

Normalization of the eco-epidemic model

By substitution of the normalized state variables x := X/X∗, ys := YS/YS
∗,

yi := YI/YI
∗ and processes g(x) := G(X∗x)/G(X∗), l(ys, yi) := λ(YS

∗ys, YI
∗yi)/λ(YS

∗, YI
∗)
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into Eq.(4.3) we obtain

ẋ = 1
X∗

(SX∗x−G(X∗)g(x)(YS
∗ys + YR

∗yr + αYI
∗yi)−MXX

∗2x2),

ẏs = 1
YS
∗ (EG(X∗)g(x)(YS

∗ys + YR
∗yr + αβYI

∗yi)−MY YS
∗ys

+δYR
∗yr − λ(YS

∗, YI
∗)l(ys, yi)),

ẏi = 1
YI
∗ (λ(YS

∗, YI
∗)l(ys, yi)− (MY + µ)YI

∗yi − γYI
∗yi),

ẏr = 1
YR
∗ (γYI

∗yi − (MY + δ)YR
∗yr)

(4.6)

Observing this ODE in the steady state yield the conditions

ax := S = MXX
∗ + G(X∗)(YS

∗+YR
∗+αYI

∗)
X∗

,

as := MY + λ(YS
∗,YI

∗)
YS
∗ = 1

YS
∗ (EG(X∗)(YS

∗ + YR
∗) + δYR

∗),

ai := MY + µ+ γ = λ(YS
∗,YI

∗)
YI
∗ ,

ar := MY + δ = γYI
∗

YR
∗ .

(4.7)

By defining the scale parameters as

fα := αYI
∗

YS
∗+YR

∗+αYI
∗ , f̃α := YS

∗+YR
∗

YS
∗+YR

∗+αYI
∗ = 1− fα,

b := YS
∗

YS
∗+YR

∗ , b̃ := YR
∗

YS
∗+YR

∗ = 1− b,

mx := MXX
∗

ax
, m̃x := G(X∗)(YS

∗+YR
∗+αβYI

∗)
axX∗

= 1−mx,

es := EG(X∗)(YS
∗+YR

∗)
asYS

∗ , ẽsδ := δYR
∗

asYS
∗ = 1− es,

my := MY X
∗

as
, m̃y := λ(YS

∗,YI
∗)

asYS
∗ = 1−my,

(4.8)

we can rewrite Eq.(4.6) in the normalized form Eq.(4.4).

The intra-specific competion parameter

Compared to the model formulation Eq. 3.1 in Chapter 3 the primary pro-

duction in this Chapter is given by the logisitc growth Ŝ(X, Y ) = Ŝ(X) =

SX −MXX
2. Note, that S denotes the specific growth rate of the prey. Per

definition in Sec. 3.3.2 we have σx := ds(x,y)
dx

∣

∣

∣

x=x∗,y=y∗
and cx := (1−σx)/(2−σx).

A differentiation of s(x, y) = Ŝ(X∗x)/Ŝ(X∗) with respect to x yields σx = 1−

MXX
∗/(S −MXX

∗). From the first Equation in Eqs. (4.7) and the definition

of mx in Eqs. 4.8 we get mx =MXX
∗/S and therefore σx = 1−mx/(1−mx).

Substituting the latter expression in the definition of cx yiels cx = mx. In
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4. Evidence of chaos in eco-epidemic models

conclusion, for the logisic growth the intra-specific competition parameter of

Chapter 3 is indeed equivalent to the scale parameter mx.
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Chapter 5

Discussion & Outlook

In the presented thesis, an innovative technique for the computation and vi-

sualization of bifurcation surfaces is introduced. This technique is applied on

two rarely investigated types of predator-prey models. One model focuses on

stoichiometric constraints on the primary production and the conversion effi-

ciency. These constraints cause dependencies that are not considered in clas-

sical predator-prey models. The other model describes how a disease spreads

upon a predator population and how these dynamics influence the population

interactions. The predator population is thereby structured in susceptible, in-

fected and recovered predators. To find generic effects we use the approach of

generalized modelling. The findings are then related to specific model exam-

ples.

Although probably all natural interacting populations are influenced by

limitation of nutrients and diseases, the related dependencies and the dis-

tinction between infected and uninfected are rarely considered in theoretical

predator-prey models. The generalized analysis shows that these aspects of

ecology qualitatively change predator-prey dynamics. In the following we bri-

ethly discuss the main results and give suggestions of further investications.

5.1 Discussion

We begin with the investagtion of the generalized stoichiometric predator-prey

model in Chapter 3. First, it turns out that for the classical assumption of
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constant efficiency the stability of equilibria depends only on two generalized

parameters, the intra-specific competition and the predator sensitivity to prey.

The technique for the computation of bifurcation surfaces introduced in Chap-

ter 2 is used to show how this two-dimensional bifurcation diagram evolves

when the conversion efficiency becomes variable. The additional dimension is

spanned by the food quality parameter that is related to the variability of the

conversion efficiency.

The analysis shows that a variable conversion efficiency has major effects on

the stability and dynamics of the system. In addition to the Hopf bifurcation, a

surface of tangent bifurcations and a line of codimension-2 Takens-Bogdanov

bifurcation appear. One the one hand, the latter indicates that homoclinic

bifurcations are also generic in stoichiometric models. On the other hand, the

Takens-Bogdanov bifurcation marks the end of the Hopf bifurcation surface.

Therefore, it leads to the disappearance of the paradox of enrichment for low

food quality.

The computation of three-dimensional bifurcation diagrams allows for a

fast overview to get a qualitative understanding of the (de)stabilizing prop-

erties of the six system parameters. By contrast to the strong influence of

the variable efficiency, it shows that stoichiometric constraints on the primary

production have qualitatively rather low effects. They cause only shift of the

observed bifurcation scenario. In this way we identify the variable efficiency as

a key process that remarkably changes the dynamics of classical predator-prey

systems.

These general properties are used to understand and predict the differences

of specific stoichiometric models. First, we considered in Sec. 3.5 a variable and

a simplified constant conversion efficiency model by Kooĳman et al. (2004).

The observation that a homoclinic and a tangent bifurcation appear in the vari-

able efficiency model but not in the constant effiency model is in agreement

with the results from the generalized analysis. Also a stoichiometric model

proposed by Loladze and Kuang (2000) with unsmooth processes considering

two limiting nutrients shows the appearance of tangent and homoclinic bifur-

cations. Further, the generalized analysis coincides with the disappearance of

the paradox of enrichment in the model by Loladze and Kuang (2000). From

the generalized point of view this corresponds to the fact that the unsmooth
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conversion process in this model allows only two discrete values for a param-

eter of the generalized model. For one parameter value a Hopf bifurcation

exist and for the other no Hopf bifurcation can occure. In order to provide an

example that allows to analyze the transition between both extreme parame-

ter values we construct a smooth analogon model. This model shows that a

Takens-Bogdanov bifurcation is responsible for the disappearance of the Hopf

bifurcation, as predicted by the generalized analysis. Further, the results of the

generalized analysis correctly predict a shift of the bifurcation scenario when

additionally mass conservation is assumed in Sec. 3.5.4. These examples show

that the generalized modeling can be used in combination to specific models

with identify properties that are generic for the model class.

The comparison to specific examples is done qualitatively but also quanti-

tatively. We show that it is possible to translate specific bifurcation diagrams

into generalized parameters and combine these projections with a generalized

bifurcation diagram. This is done by fitting the specific coupling of certain

generalized parameters. These combined bifurcation diagrams show in an ex-

emplified way how specific and generalized parameters are connected. Further,

it illustrates how multiple intersecting steady states that require different nor-

malizations share one generalized diagram.

We show a counterintuitive stabilizing effect of intra-specific competition

appearing likewise in constant and variable efficiency models. Instead of the

related paradox of enrichment, this effect does not depend on the specific

functional response under consideration. Further, a comparison to the ob-

served paradox of nutrient enrichment in (Loladze and Kuang, 2000) shows

that both, the paradox of enrichment and the paradox of nutrient enrichment,

are combined in the paradox of competition observed in the generalized model.

This illustrates the generic nature of the observed paradox of competition.

In the generalized eco-epidemic model in Chapter 4 where we consider a

disease in the predator population, the visualization technique is used to locate

bifurcations of higher codimension that give information about the appearance

of complex dynamics. By the localization of a double-Hopf bifurcation in the

generalized eco-epidemic model in Sec. 4.4.2, we show that chaotic parameter

regions generally exist when the predator is infected by a disease.

This generalized analysis is used in Sec. 4.5 to construct a specific eco-
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epidemic model which is investigated to study the dynamics close to the double-

Hopf bifurcation. Thereby, we find additional period-doubling and Neimark-

Sacker bifurcations. We identify two routes into chaos, both involve a transi-

tion from quasiperiodicity. Most importantly, we demonstrate that the chaotic

parameter regions are extended. In this way our analysis shows that, in the

class of eco-epidemic models under consideration, chaos is generic and likely

to occur. In other words, we show that diseases in predator populations can

generally lead to chaotic dynamics.

More generally, the analysis in Chapter 4 shows that the localization of

organizing centers by three-dimensional bifurcation diagrams reveals the re-

gions of most interesting dynamics. Moreover, it provides plenty of examples

for these situations since the generalized model represents a whole classes of

models. From a technical perspective, the faithful representation of the Takens-

Bogdanov bifurcation, the intersection with the Gavrilov-Guckenheimer bifur-

cation and most importantly, the complicated Whitney-umbrella structure of

the Hopf bifurcation in Sec.4.5 (Fig.2) represents a masterpiece of the adaptive

triangulation algorithm presented in this thesis.

In principle, the formulations of the models could be much more gen-

eral than in Chapter 3 and Chapter 4. The most general formulation of a

predator-prey system is Ẋi = Fi(X1, X2), i = 1, 2. Obviously, this formula-

tion hardly allows any conclusions about the involved processes. Instead, the

models proposed in this thesis adopt some processes from conventional model-

ing approaches like the logistic growth in the eco-epidemic model or the linear

death terms in the predator populations. This clearly reduces the degree of

generality of the model but likewise focuses the analysis on the considered pro-

cesses. Another advantage of this semi general formulation is that the results

are, as it shows in the presented thesis, directly transferable to specific model

examples.

In summary, the presented thesis shows how specific and generalized mod-

eling can fruitfully enhance each other in order to identify, classify and evaluate

generic mechanisms and system properties.
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5.2 Outlook

The presented thesis has contributed to our understanding of stoichiometric

influences on predator-prey interactions and how diseases in predator popula-

tions can influence predator-prey dynamics. On one hand, the models under

consideration can be further generalized in order to see how these effects act

jointly with other model modifications like nonlinear death terms. On the

other hand, one could further specify and modify the eco-epidemic model to

account for a specific problem. For example, one could adapt the model to

analyse the dynamics of a specific disease of cats and the interaction with the

rabbit population on an island (cf. Introduction). Also the method for the

computation of bifurcations in generalized models could be extended in several

ways. As an outlook, three possible extensions are discussed more in detail.

First, the computation of the bifurcation surfaces can potentially be ex-

tended in order to compute hypersurfaces. The proposed method for the com-

putation of bifurcation surfaces provides a fast and efficient computation of

three-dimensional bifurcation diagrams. The resolution of computed bifurca-

tion points is locally adapted to the complexity of the surface. Once such

a representation of the bifurcation surfaces is found, it is possible to trace

these points while varying a fourth parameter. If necessary, additional bi-

furcation points can be computed in order to maintain or adapt the local

resolution. In this way, one would obtain four-dimensional hypersurfaces that

can be visualized in a three-dimensional diagram where the fourth parameter

can be changed interactively. This technique would allow to investigate the

evolution of the bifurcation landscape. Moreover, it is possible to iterate this

step for additional parameters. In this way, one can explore step by step the

whole bifurcation manifold. This information could be used to evaluate the

(de)stabilizing effect of a parameter variation in terms of how the variation

changes distance to the bifurcation surfaces in the direction of all parameters

under consideration.

Second, the generalized stoichiometric predator prey model in Chapter 3

can be used as a building block in a generalized stoichiometric food web. We

have shown that the variable food quality greatly affects the dynamics of simple

predator prey models. In larger population models, the variable food quality

101



5. Discussion & Outlook

applies mainly to the autotrophs at the bottom of the food chains or webs.

However, as we have discussed in Sec. 3.2, the resulting variable efficiency

function depends in general on all other populations. Therefore, a specific

modeling approach would become very complicated with the number of con-

sidered species. A generalized modeling approach could instead be used to

overcome this difficulty. In generalized food webs, the large number of pa-

rameters makes a stability analysis in terms of three-dimensional bifurcation

diagrams inappropriate. Instead, a simple numerical correlation between pa-

rameter values and the stability of the steady state can reveal how the param-

eter influence the stability of the steady state statistically as it has been done

in (Steuer et al., 2006b, 2007). In this way, the influence of a variable food

quality on the stability of complex food webs could be studied from a very

general perspective.

Third, the specific model in Chapter 4, Sec. 4.5, could be used to study

stabilizing effects of diseases in conjunction with chaotic dynamics. In Sec.

4.2 we discussed that chaotic dynamics can prevent synchronization effects in

patchy populations and therefore reduce the possibility of global extinction

events. An interesting theoretical investigation beyond the scope of this work

is to model population patches using the example model in Sec. 4.5 and

adding a weak coupling due to migration between the patches. Theoretically

it should be possible to observe predator-prey oscillations when the disease has

no influence on the vital dynamics (α = β = 1, µ = 0) since the predator prey

interactions are not affected by the disease. An adequate coupling should cause

synchronization between the patches. Such an experiment is less artificial than

it might sound. For example, the snowhare-lynx cycles from different regions in

Canada show synchronization over millions of square kilometers (Blasius and

Tönjes, 2007). An onset of chaotic dynamics in the model due to an increase

of the influence of the vital dynamics could perturb the synchronization (Allen

et al., 1993; Ruxton, 1994; Earn et al., 1998). In this way, a disease that

reduces the vitality of the predator population could prevent both the prey

and the predator population from global extinction.

To this end, whenever a system is too complex for an comprehensive de-

scription like our environment, simple specific and generalized models help to

understand the system properties from an elementary perspective. As the pre-
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sented thesis shows, both modeling approaches can fruitfully act in concert.
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