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Abstract 3

Atom interferometry has a wide range of applications, for example in the fields of
gravimetry, gradiometry and inertial sensing. It can also be used to measure fun-
damental constants and atomic properties or to test general relativity. All these
measurements benefit from a long free fall time of the atoms within the experiment,
which is difficult to realize in earthbound setups. The experiment described in this
work can create Bose-Einstein condensates of almost 105 rubidium atoms at a rep-
etition rate exceeding 1 Hz and is compact, robust and mobile. This combination
facilitates an operation in a drop tower and allows for extended free fall times of
the atomic ensemble within the experiment. A free evolution time of 2.7 s is demon-
strated, which equals the current record [1]. The experiment provides a flux of up
to 2.5 ⋅ 105 condensed atoms per second. This is the highest flux achieved by a
mobile source and is competitive with the best overall. It is designed to ultimately
enable dual species light-pulse atom interferometry capable of testing, for example,
the universality of free fall.

Any precision measurement using atom interferometry requires an excellent level
of control over the source. This is discussed and demonstrated in this work. Critical
parameters in this context are the magnetic field environment, the control over the
position and the velocity of the atomic ensemble as well as its velocity spread and
also vibrations of the experiment. All these points are systematically and thoroughly
investigated. The magnetic field can be controlled to a mG precision. Its gradient is
measured by time of flight imaging and the implications for precision measurements
are discussed. In this context, an adiabatic rapid passage is required. It is ana-
lyzed in depth and realized experimentally. The individual contributions that are
responsible for a center of mass motion of the atomic ensemble are characterized.
A reduction of this velocity of an untrapped atomic ensemble to a few micrometer
per second is achieved. The limitations for a further reduction are discussed in this
thesis.

A crucial requirement for precision atom interferometry in general and ultralong
free evolution times in particular is the realization of an ultrasmall velocity spread.
This spread can be reduced by magnetic lensing. So far, a kinetic temperature as
low as 1 nK has been observed by this scheme [2]. Typical lens configurations are
anisotropic such that they are capable of collimating the ensemble in one or two
spatial dimensions only. This constraint can be relaxed by multiple magnetic lens-
ing in analogy to optics, but such a matter-wave telescope is more difficult to adjust
compared to a single lens. A different strategy is demonstrated in this work. A
quadrupole mode collective excitation of the Bose-Einstein condensate within the
release trap is used to collimate the third spatial dimension. This direction is almost
unaffected by the single magnetic lens, which is chosen to be axially symmetric to
collimate the condensate in the other two dimensions. The origin of collective exci-
tations is explained. Their time dependence is simulated numerically and confirmed
experimentally. This thorough understanding allows for a tuning of the collective
excitation and to match it to the particular lens configuration. A velocity spread
of 140 µm/s equivalent to a kinetic temperature of 70 pK is realized, which is the
coldest ever observed. Finally, a road map towards realizing fK kinetic temperatures
is derived and discussed.
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Zusammenfassung 5

Atominterferometrie findet in vielen Bereichen Anwendung, z.B. in der Gravime-
trie, der Gradiometrie oder in der Messung von Rotationen. Mit ihr können auch
Naturkonstanten sowie atomare Eigenschaften gemessen oder die allgemeine Rela-
tivitätstheorie getestet werden. All diese Messungen profitieren von einer langen
Freifallzeit der Atome innerhalb des Experiments, welche in erdgebundenen Auf-
bauten nur schwer zu realisieren ist. Das in dieser Arbeit beschriebene Experiment
kann Bose-Einstein Kondensate mit annähernd 105 Rubidium Atomen bei einer Rep-
etitionsrate von über 1 Hz erzeugen und ist dabei kompakt, robust und mobil. Diese
Kombination ermöglicht es, das Experiment in einem Fallturm zu betreiben. Damit
wird eine verlängerte Freifallzeit des atomaren Ensembles innerhalb des Experiments
möglich. Eine freie Expansionszeit von 2.7 s wird gezeigt, was den aktuellen Rekord
einstellt [1]. Das Experiment liefert einen Fluss von 2.5 ⋅ 105 kondensierten Atomen
pro Sekunde. Das ist der höchste jemals von einer mobilen Quelle erzeugte Fluss und
er konkurriert mit den besten Quellen überhaupt. Das Experiment wurde darauf
ausgelegt, in Zukunft zwei-Spezies Lichtpuls-Atominterferometrie zu ermöglichen
um z.B. die Universalität des freien Falls zu überprüfen.

Die Grundvoraussetzung für jede Präzisionsmessung mittels Atominterferometrie
ist ein hervorragendes Maß an Kontrolle über die Quelle. Das wird in dieser Ar-
beit diskutiert und demonstriert. Kritische Faktoren sind diesbezüglich die magne-
tische Feldumgebung, die Kontrolle über Position und Geschwindigkeit der Atome
sowie ihre Geschwindigkeitsstreuung und auch Vibrationen des Experiments. Diese
Punkte werden systematisch und gründlich analysiert. Das Magnetfeld kann mit
einer Präzision von einem mG kontrolliert werden. Dessen Gradient wird über eine
Zeitreihe gemessen. Die Auswirkungen auf Präzisionsmessungen werden diskutiert.
In diesem Zusammenhang ist eine adiabatische schnelle Passage erforderlich. Sie
wird im Detail analysiert und experimentell realisiert. Die einzelnen Beiträge, die
zu einer Schwerpunktsbewegung des atomaren Ensembles führen, werden charakter-
isiert. Diese Geschwindigkeit des ungefangenen Ensembles kann auf wenige Mikro-
meter pro Sekunde reduziert werden. Die Einschränkungen bezüglich einer weiteren
Verringerung werden in dieser Arbeit diskutiert.

Ein kritischer Parameter für Präzisionsatominterferometrie im Allgemeinen und
die Realisierung von sehr langen freien Expansionszeiten im Besonderen ist eine
extrem schmale Geschwindigkeitsverteilung. Die Geschwindigkeitsstreuung kann
durch eine magnetische Linse reduziert werden. Hiermit konnte bislang eine kine-
tische Temperatur von 1 nK beobachtet werden [2]. Typische Linsenkonfigurationen
sind anisotrop und ermöglichen somit nur eine Kollimation in bis zu zwei Raum-
dimensionen. Diese Einschränkung kann, analog zur Optik, mit mehreren mag-
netischen Linsen gelockert werden. Es ist jedoch viel schwieriger, ein solches Ma-
teriewellenteleskop zu justieren als nur eine einfache Linse. Eine alternative Strate-
gie wird in dieser Arbeit gezeigt. Mit einer kollektiven Quadrupolanregung des
Bose-Einstein Kondensats innerhalb der Falle kann eine Kollimation in der drit-
ten Raumdimension erzielt werden. Diese Richtung wird von einer einzelnen mag-
netischen Linse kaum beeinflusst, sodass die Linse axialsymmetrisch gewählt wird
um eine Kollimation in den anderen zwei Dimensionen zu erzielen. Der Ursprung
von kollektiven Anregungen wird erklärt. Ihre Zeitabhängigkeit wird numerisch
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simuliert und experimentell bestätigt. Dieses tiefgreifende Verständnis erlaubt es,
die kollektive Anregung auf die spezielle Linsenkonfiguration anzupassen. Es wer-
den Geschwindigkeitsstreuungen von 140 µm/s realisiert. Das entspricht einer kine-
tischen Temperatur von nur 70 pK und stellt den aktuellen Rekord dar. Zum Schluss
wird eine Strategie zur erzeugung von kinetischen Temperaturen im fK Bereich ent-
wickelt und diskutiert.
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Chapter 1

Introduction

Matter-wave interferometry is a wide field comprising interferometry with electrons,
ions, neutrons, atoms and molecules [3–5]. Atom interferometry provides valuable
contributions to the measurement of fundamental constants, such as the fine struc-
ture constant α [6, 7] and the gravitational constant G [8–11], or the measurement
of atomic properties such as the electric polarizability [12, 13]. Furthermore, atom
interferometers can be used to test general relativity. There exist proposals to de-
tect gravitational waves [14–16] and first tests of Einstein’s equivalence principle
(EEP) have been performed [17–23]. Typically, these experiments test the univer-
sality of free fall (UFF), which is one of the three pillars of the EEP. The remaining
two are the local Lorentz invariance and the local position invariance. Tests with
quantum objects are invaluable because they probe the boundary between quan-
tum mechanics and general relativity. So far, all non-gravitational interactions have
been unified in a quantum field theory, but their unification with gravity remains
an unresolved issue. A test of the superposition principle on macroscopic scales
is an active field of research in this respect. Interference effects have been proven
for large molecules [24] and for matter waves containing 105 atoms [25]. In the
latter example the wave packets have been separated by more than half a meter
and for more than one second. These scales can be considered macroscopic. Beyond
these fundamental tests, atom interferometers can be used for practical applications,
too, such as gravimeters [26–34], gradiometers [8, 35, 36] and gyroscopes [37–43].
Miniaturized and portable versions can have promising future applications in geo-
physics, metrology and inertial navigation [36, 44–46]. Recently, a great interest in
a commercialization of such devices emerged. The European Union, for example,
has launched a billion euro flagship program to boost the development of quantum
technology in general and quantum sensors in particular [47, 48]. First cold atom
based devices are commercially available already [49–51].

1.1 Principle of light-pulse atom interferometry

In a Bragg pulse atom interferometer, different momentum states are coupled by
counterpropagating laser beams with frequencies ω1 and ω2. Integer multiples of
h̵keff can be transferred, where keff = k1 + k2 is the effective wave number of the two
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Figure 1.1: (a) shows the energies and momenta involved in a forth order Bragg diffrac-
tion process using counterpropagating laser beams with frequencies ω1 and ω2, respectively.
Bragg diffraction preserves the internal atomic state (lower solid line). A Mach-Zehnder
n-th order Bragg pulse atom interferometer is depicted in (b). The pulses at a time of
0, T and 2T couple the momentum states ∣0⟩ and ∣n h̵keff⟩. The interaction time with
the light defines the phase of the Rabi oscillation between these states. A phase of π/2
realizes a beamsplitter pulse and a phase of π corresponds to a mirror pulse inverting the
momentum states.

laser beams. Their relative frequency defines the Bragg order, that is, the particular
momentum states involved in this Rabi oscillation. Figure 1.1(a) exemplarily depicts
the energy levels involved in a forth order Bragg diffraction process. An allowed op-
tical transition must exist between two internal states (parabolas). The intermediate
momentum states are out of resonance because of the quadratic dispersion relation.
Bragg diffraction preserves the internal state of the atoms. In contrast, a coupling
of different internal states is called Raman diffraction. Depending on the interaction
time with the light, these pulses can create a coherent superposition of the coupled
momentum states (π/2-pulse) or invert them (π-pulse). Different interferometer ge-
ometries can be formed depending on the pulse sequence. For example, a π/2-π-π/2
sequence forms a Mach-Zehnder interferometer, which is shown in Fig. 1.1(b). The
time in between these pulses is the pulse separation time T . After the interferom-
eter, the output ports separate in space due to their different momentum. Their
relative population constitutes the measurement signal of the atom interferometer.
This signal oscillates with the relative phase that the two wave packets accumulate
along their paths. The dominant contribution is the local laser phase imprinted on
the atoms, which makes such an atom interferometer susceptible to laser wave front
distortions and curvatures. A uniform acceleration would be expected to affect both
paths equally, but the Doppler shift gives rise to a nonzero phase difference. The
resulting sensitivity to accelerations is proportional to the Bragg order and scales
quadratically with T [52]. An ultrasmall velocity spread of the atomic ensemble,
defined as its root mean square velocity, is required for several reasons. First of
all, it is the prerequisite for the realization of a long free expansion time because of
the decreasing atomic density. Non-planar laser wave fronts can entail even tighter
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constraints. In addition, a narrow momentum width of the atomic ensemble along
the interferometry axis allows for an efficient transfer of many photon momenta [53].
Hence, the ultrasmall velocity spread can enhance the sensitivity of an atom inter-
ferometer and is essential for high precision measurements.

Such an atom interferometer requires a source of ultracold atoms. This source
should provide a high flux for a good repetition rate and therefore reduced statisti-
cal errors. The experiment described in this work is such a source. It is compact,
but performs on par with lab-sized experiments and sets the benchmark for trans-
portable ones. The necessary reduction of the velocity spread involves cooling the
atoms below the critical temperature for the creation of a Bose-Einstein condensate
(BEC). The condensed phase is not required for itself, but its properties facilitate
the subsequent realization of an ultrasmall velocity spread as discussed in this work.

The QUANTUS collaboration (QUANTengase Unter Schwerelosigkeit) aims at
space-based precision measurements with matter waves in order to benefit from the
extended free fall times. Most prominent among these measurements is a test of the
UFF. Its violation is parametrized by the Eötvös ratio

ηA,B = 2
gA − gB

gA + gB

, (1.1)

where gA,B is the gravitational acceleration of the respective test body. These test
bodies can be two different atomic species, both of which realize their own interfer-
ometer at the same time and the same initial position. Classical tests by lunar laser
ranging [54] and torsion balances [55] have an accuracy of approximately 10−13 in
ηA,B. They found no violation. Tests with quantum objects can have an increased
sensitivity to UFF violations and provide better constraints at the same level of pre-
cision [56]. The best precision with an atom interferometer is on the 10−9 level using
different energy eigenstates of 87Rb [57]. Even though no violation has been found,
better tests are required for tighter constraints on theories beyond the standard
model [58, 59].

In contrast to classical test masses, atoms are equal, irrespective of the particular
experiment, research group and location. This makes them a good candidate for
tests of fundamental physics. Still, atom interferometry is sensitive to a long list
of systematic effects in addition to the wave front issue mentioned above. Schubert
et al. [60] have analyzed them in detail for a test of the UFF and the gravitational
redshift on a satellite using a simultaneous 85Rb - 87Rb interferometer. This satellite
mission is called STE-QUEST (Space-Time Explorer and QUantum Equivalence
principle Space Test) and was proposed within the Cosmic Vision program of the
European Space Agency [61]. In late 2013, the mission was not selected because of
a limited budget and due to an insufficient technology readiness level (TRL) [62].
The control over the atomic ensembles is critical in this respect. If their initial
positions for the interferometer differ along its sensitive axis, which is aligned in the
direction of gravity, the earth’s gravity gradient will result in a different acceleration
of the two atomic species. This difference is a systematic error, because it is a bias
on ηA,B. The same holds true for a different initial velocity in this direction. The
remaining directions are less critical, but not irrelevant. For example, a velocity in
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a direction orthogonal to the interferometer axis can lead to a Coriolis acceleration
in the sensitive direction, because the satellite has a nonzero rotation rate. Aside
from that, magnetic field gradients need to be considered. Their effect can be
minimized by preparing the atoms in a non-magnetic state. Still, the quadratic
Zeeman shift is responsible for a bias acceleration. Vibrations of the experimental
setup can be problematic, too, because the beam pairs in Fig. 1.1(b) are generated
by retroreflecting one beam at a mirror. A vibrating mirror shifts the laser wave
fronts and has a direct impact on the interferometer phase. STE-QUEST aimed
at a target accuracy of 2 ⋅ 10−15 with 2T = 10 s. This requires a velocity spread
below 82 µm/s and a magnetic field gradient smaller than 83 µG/m at a residual
magnetic field of 1 mG. The spatial overlap of the two atomic clouds needs to be
better than 1.1 nm and their relative velocities must be smaller than 0.31 nm/s [60].
These constraints are very ambitious. They give an impression on the high level
of control over the atomic ensemble required for ultimate precision measurements.
This example shows that a source for atom interferometry must fulfill more than
only a high flux of cold atoms. The magnetic field environment is critical and the
center of mass motion of the atomic ensemble must be reproducible and tunable.
For a satellite mission, the source must also be compact and energy efficient.

1.2 Comparison of reduced gravity environments

Since the atoms are subject to the gravitational acceleration, there are two differ-
ent approaches for realizing a long time of flight (TOF), which is the prerequisite
for a long interaction time within the interferometer. The first one is to build the
experiment very large and let the atoms fall freely within the experiment’s vacuum
chamber. This approach is realized by the 10 m towers in Stanford, USA [63],
Hanover, Germany [56] and Wuhan, China [64]. All of them use an atomic foun-
tain to double the free fall time to approximately 2.7 s. The advantages are a high
repetition rate and good accessibility for adjustments as well as upgrades. A severe
disadvantage is its limited scalability to very long TOFs, because the vacuum cham-
ber and the magnetic shield around have to grow quadratically with the desired
TOF. For this reason, the QUANTUS collaboration follows a different approach. It
is to let the whole experiment fall along with the freely falling atoms. In this case
the experiment needs to be operated on a suitable platform. These platforms are
often referred to as microgravity1 platforms.

There exist several platforms suitable for providing reduced gravity environments
for scientific payloads. The most commonly used ones are the Airbus ZERO-G, the
International Space Station (ISS), the drop tower in Bremen and sounding rockets.
Also a dedicated satellite is possible. These platforms differ a lot in the vibrational
environment, available time of reduced gravity and in the operational requirements.
The vibrational environment is characterized by the power spectral density (PSD)
of the vibrations. It is the figure of merit for rating the microgravity quality and is
compared in Fig. 1.2 for the different platforms.

1This can be a misnomer, as will be shown below.
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Figure 1.2: Comparison of the PSD of the vibrations on different platforms offering a
reduced gravity environment: Novespace A310 ZERO-G (dotted blue line) [23], VSB-30
sounding rocket (dashed orange line) [65], International Space Station (dash-dotted black
line) [66] and the drop tower in Bremen [catapult, averaged over 8 s] (green dots) [67]. The
DC component (green plus sign) was inferred from air drag measurements. The shaded
area indicates the requirements for STE-QUEST as a reference [60]. A gravitational
acceleration of g = 9.81 ms−2 was assumed.

The Novespace A310 ZERO-G is the former German government aircraft (’Chan-
cellor Airbus’) and successor of the A300 ZERO-G. It provides easy access to reduced
gravity for comparably large payloads (200 m3) by parabolic flights. The microgra-
vity quality is rather poor, as characterized by the dotted blue line in Fig. 1.2. It
has been measured by Barrett et al. [23] during the ICE (Interférometrie atomique
à sources Cohérentes pour l’Espace) campaigns. One parabola lasts for 20 s and
typically 30 repetitions can be conducted in each campaign.

Sounding rockets, for example a VSB-30, provide an interesting platform. The
available time of reduced gravity is on the order of 6 minutes. Unfortunately, the
only available vibration spectrum is very limited in the frequency domain and had
to be derived from [65]. It was measured on the TEXUS-44 mission. The PSD is
shown as the dashed orange line in Fig. 1.2. The scientific payload can be altered
in between two launches, provided the experiment survives the flight. Still, a re-
qualification for the next flight might be necessary. For this reason, the accessibility
is rather moderate.

The ISS’s vibrational environment is nonuniform and depends on the current
activities on the ISS [68]. Unfortunately, NASA is very reserved concerning the
publication of vibration spectra. Therefore the ’microgravity requirements’ for the
ISS published by NASA serve as a reference [66]. They are shown as the dash-dotted
black line. NASA claims that these conditions should be satisfied for at least 50% of
the payload for 180 days/year (compensation of atmospheric drag). The accessibility
to a scientific payload on the ISS is very limited. Maintenance has to be performed
by astronauts and replacement parts are not readily available.

The last vibration spectrum shown as the green dots in Fig. 1.2 is from the drop
tower at the Center of Applied Space Technology and Microgravity (ZARM) in
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Bremen [67]. An evacuated, 110 m high steel tube is installed within this tower.
Capsules carrying the scientific payload can be dropped from the top of the tower
or catapulted up from the bottom. The corresponding free fall times are 4.72 s
and approximately 9 s. The PSD was calculated from the last 7.9 s of a catapult
flight on June 15th, 2007. During the first second of this 8.9 s long flight, strong
vibrations were allowed to damp out. Their frequencies depend on the resonances
defined by the mass distribution of the scientific payload. The residual peaks around
100 Hz are such resonances. Their oscillation amplitude decreases with time. The
DC component of the PSD refers to a time constant of 2 ⋅ 9 s. The measurement
could not properly resolve this component. Hence, this value (green plus sign) had
to be derived from the air drag analysis discussed in Section 5.2 assuming a residual
pressure of 20 Pa within the drop tower. When the capsule is dropped instead of
catapulted, the PSD can be different. The accessibility to experiments operated on
this platform is very good. Small upgrades can even be made in between two drops
on the same day.

A representative vibration spectrum of a satellite cannot be shown. However, the
PSD can be expected to be better than the one of the ISS. Despite this, the scientific
payload is practically inaccessible. Smaller malfunctions can immediately entail a
failure of the entire mission. For this reason, extensive studies on other platforms are
inevitable prior to embarking a complex experiment on a satellite. The acceptable
PSD for STE-QUEST is shown by the shaded area in Fig. 1.2. This can serve as a
reference on how large a PSD can be tolerated. The drop tower and the ISS fulfill
this criterion.

Sometimes the PSD is distilled into a single number quantifying the strength
of vibrations, even though spectral information is lost. This number is called the
overall grms value. It is given by

grms (overall) =
√

∫
fco

0
[PSD(f)]2

df, (1.2)

where fco is a cutoff frequency. Table 1.1 lists the overall grms values for two dif-
ferent cutoff frequencies and gives an overview over the relevant figures of merit.
Vibrational data cannot be stated for all entries, as mentioned above. The available
consecutive time of reduced gravity depends on the mass of the experiment for the
catapult mode of the drop tower as well as for sounding rockets. This is simply
because heavier payloads cannot be equally accelerated by the catapult or rocket,
respectively.

The vibration levels of the A310 ZERO-G are too high for most quantum sensors
aiming at high precision. However, the remaining four platforms in Table 1.1 indicate
a reasonable path of development of such experiments, which is aimed at by the
QUANTUS collaboration to develop the required technologies and methods. Despite
its rather short consecutive time of microgravity, the drop tower in Bremen offers
an excellent accessibility to the experiment. Lessons learned can be quickly and
easily implemented into the experiment. For this reason, the first BEC and the
first atom interferometer in microgravity have been realized by the QUANTUS-1
experiment (Q-1) on this platform [2, 69]. The successor QUANTUS-2 (Q-2), which
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ZERO-G Drop Tower VSB-30 ISS Satellite

Consecutive time
20 s 9.3 s 6 min 30 d >> 30 d

of reduced gravity
grms(fco = 16 Hz) (µg) 22 816 6 350 411 -
grms(fco = 200 Hz) (µg) 23 950 162 - 3 807 -
Availability (per year) 4 h 1.3 h 0.7 h 180 d 365 d
Accessibility + ++ ⊖ − −−

Table 1.1: Comparison of different platforms offering a reduced gravity environment:
Novespace A310 ZERO-G (assuming 80 hours in 20 years) [23, 75], drop tower in Bremen
(assuming two catapult flights per working day)2, VSB-30 sounding rocket (assuming 7
campaigns/year) [65], International Space Station [66] and a satellite. The cutoff frequency
fco refers to Eq. (1.2).

is described in this work, provides a significantly increased flux and is designed as a
dual species atom interferometer for 87Rb and any of the natural potassium isotopes.
Q-2 can exploit the full potential of the drop tower by using the catapult mode. The
subsequent steps towards a UFF test in space are three sounding rocket missions
called MAIUS (MAteriewellen Interferometrie Unter Schwerelosigkeit). The first of
them was launched on January 23rd, 2017 and created the first BEC in space. The
MAIUS missions aim at performing atom interferometry with condensed atoms in
space taking advantage of the extended time of free fall [70–72]. These missions
draw heavily on the results of Q-2 and push the TRL level further. The next step
is to use the ISS, which is targeted by the Cold Atom Lab (CAL) [73]. Later on,
a cold atom experiment called BEC-CAL should be operated on the ISS, too. This
project is a joint cooperation of NASA and DLR. BEC-CAL is supposed to be able
to test more than only the UFF. There exist further proposals for satellite missions,
but none of them is funded yet [46, 74].

1.3 Constraints and procedures in the drop tower

Any experiment that should be operated in free fall within the drop tower in Bre-
men needs to fit into a capsule as shown in Fig. 1.3. The tower is evacuated to a
pressure of 10 - 20 Pa, but the capsules are sealed to maintain an air pressure of one
atmosphere. This is required, among others, for cooling of electronics. The capsules
come in different lengths. Fig. 1.3 shows the Q-2 experiment in a small drop cap-
sule, which is approximately 2 m long and 0.8 m in diameter. The longer capsules
can accommodate larger experiments, for example Q-1, but only the small ones can
be converted into catapult capsules. For this reason, a small capsule is chosen for
Q-2 despite the increased effort of miniaturization. The conversion of such a small
capsule into a catapult capsule comprises an exchange of the nose cone and the top
cover only and is thus a minor change.

2Alternatively, three drops are possible per working day.
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Figure 1.3: Drop capsule with the Q-2 experiment hanging inside the drop tower in
Bremen next to the deceleration container, which is situated on the left side of the picture.

The accelerating force of the catapult is transmitted by a piston the capsule rests
on. After the free fall, the capsule is decelerated by polystyrene pellets within the
deceleration container on the left in Fig. 1.3. Depending on the operational mode –
catapult or drop – this container swings into position after the accelerated capsule
has passed by or simply rests beneath the drop tube.

The available free fall time is quite constant in drop mode. Small variations
are on the order of 20 ms and are due to a different level of polystyrene pellets
in the deceleration container. In catapult mode, the time primarily depends on
the capsule’s mass and the accelerating force of the catapult. The latter cannot
be increased a lot, ultimately limited by the deceleration phase of the catapult’s
piston [67]. In consequence, only capsules with a maximum mass of 400 kg can take
advantage of the full 9.3 s of microgravity. Q-2 weighs 463.5 kg and can reach 9.0 s.

Figure 1.4 shows the forces acting on the Q-2 capsule during the acceleration phase
of 280 ms (a) and the slightly shorter deceleration phase (b). The peak deceleration
reaches 35 g and is even higher for lighter capsules. Negative accelerations of −2 g
occur because of transient elastic deformations during the launch. Experiments
have to be built robust enough to endure these forces. The impact velocity of
42.9 m/s is smaller than the initial velocity of 45.4 m/s because of the height of
the deceleration container. The number of experiments per day is currently limited
by the evacuation and venting of the tower lasting 1.5 and 0.5 hours, respectively.
During the evacuation phase the capsule is connected to water cooling with a cooling
power of 2.3 kW at 20 °C and three DC power supplies via an umbilical providing
28 V ⋅ [10 + 10 + 100]A = 3360 W [76]. In flight, the capsule is supplied by batteries,
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Figure 1.4: (a) Capsule acceleration during a catapult launch in the drop tower in
Bremen. (b) Deceleration of the same capsule when diving into the deceleration container
filled with polystyrene pellets. Both plots belong to the same data set measured by an
inertial measurement unit on board the QUANTUS-2 capsule. The microgravity time
was 9.0 s and the capsule mass amounted to 463.5 kg. It was accelerated upwards to
v0 = 45.4 ms−1 and finally hit the container with 42.9 ms−1 downwards.

which were buffered by the DC power lines before. The standard battery platform
provided by the drop tower has got an available energy of 24 V ⋅ 25 Ah = 600 Wh for
the scientific payload and is buffered by one of the 10 A power lines. WiFi connection
to the capsule is given at (almost) all times.
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Outline

The next chapter starts with a description of the experimental setup. Afterwards,
the strategy for a fast generation of large BECs is explained. The concluding part
of that chapter discusses an example experimental sequence and compares the per-
formance of the Q-2 experiment with the state of the art. Chapter 3 characterizes
the magnetic field environment as seen by the atoms and shows how it can be ma-
nipulated. Chapter 4 is devoted to the adiabatic rapid passage, which is used to
prepare the BEC in the non-magnetic substate. The center of mass motion and
methods to control it are the subject of Chapter 5. A detailed analysis of the asso-
ciated systematic effects is presented, which is essential for understanding the bias
accelerations in an atom interferometer. Chapter 6 investigates the magnetic lens,
which is a method to reduce the velocity spread. Collective excitations of the BEC
play an important role in this context. They are discussed in depth. Different ex-
perimental realizations of a magnetic lens are shown. Finally, the thesis concludes
with a discussion and an outlook.



Chapter 2

The QUANTUS-2 experiment

The first section introduces the experimental setup and its most important features.
Section 2.2, in turn, deals with the fast generation of Bose-Einstein condensates,
starting with the properties of a thermal ensemble in a magnetic trap. This treat-
ment is based on [77] and [78]. The final section presents the structure of a typical
experimental sequence in the drop tower and discusses the differences when oper-
ating the experiment in the lab rather than in microgravity. The Q-2 performance
benchmark figures are presented in this context, too.

Q-2 was drafted by Waldemar Herr [79], who also built the vacuum chamber and
the atom chip together with Jan Rudolph [80]. The subsequent work was a joint
team effort by them, Christoph Grzeschik [81], Alexander Grote [82] and the author,
who joined the team after the assembly of the vacuum chamber, but before the first
atoms were trapped within the experiment. Contributions by the author alone are
the power concept with the battery platform and the supervision of the drop tower
qualification process of the experiment. Operation, maintenance and upgrades of the
experiment have been performed by the team consisting of J. Rudolph, C. Grzeschik,
A. Grote, Christian Deppner (later on) and the author with additional support by
W. Herr. Temporarily, Dennis Becker and Manuel Popp contributed, too.

2.1 Experimental setup

The buildup of the Q-2 experiment took several years. Even after the successful first
drop on July 18th, 2014 the setup was steadily evolving. These changes have been
performed for different reasons, for example to improve the reliability of the experi-
ment in the drop tower or to gain more information from the drops. Hence, there is
nothing like the Q-2 experiment. Nevertheless, upgrades have not been performed
within a consecutive series of drops in order to keep the data sets consistent. The
setup presented in this work is the status by the end of 2016. The differing previous
state of the experiment is highlighted whenever it is important for comprehension or
if it can affect the interpretation of experimental data. An image of Q-2 is shown in
Fig. 2.1. The overall capsule mass was 463.5 kg for the single catapult campaign and
453 kg for all drop campaigns. The upgrades are typically a replacement of other
components and hardly change the mass.
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Laser system

(NI-PXI)

Power distribution
unit

Vacuum pumps

Current drivers
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Fiber splitters
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Capsule control
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Figure 2.1: The QUANTUS-2 experiment with laser system, National Instruments (NI)-
PXI, power distribution unit, electronics stack, mumetal magnetic shield with vacuum
chamber inside, optical fiber splitters, capsule control system, inertial measurement unit,
vacuum pumps, current drivers, camera control and acquisition hardware, batteries for
current drivers, chip fuse, monitoring of status parameters (battery voltages etc.) and a
battery platform. Items in parentheses are installed on the respective platform, but are
not visible in the image.
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[78]

Figure 2.2: Vacuum system of the QUANTUS-2 experiment comprising a chamber for
a 2D+-MOT and a science chamber. A set of four coils in racetrack configuration is at-
tached to the 2D+-MOT chamber. Three Helmholtz coils are wrapped around the science
chamber. One detection system is shown (fiber-based collimator for detection laser beam,
imaging system and CCD). The detection light passes a three-layer atom chip setup (sci-
ence chip, base chip and mesoscopic structures), which is shown in the right part of the
image. Further fiber-based collimators are attached to the vacuum chamber and provide
collimated light for magneto-optical trapping and atom interferometry.

Vacuum system

The Q-2 vacuum system comprises different sections. A rubidium oven is heated to
55°C providing a 2D-MOT chamber (magneto-optical trap) with a sufficient back-
ground pressure of 87Rb for 2D+-MOT operation. A science chamber is connected
to the 2D-MOT chamber via a differential pumping stage. Both these chambers are
made from titanium and illustrated in Fig. 2.2 as a CAD drawing. Figure 2.3 shows
a real image of them. Within the science chamber, 87Rb atoms can be trapped
either magneto-optically by a 3D-chip-MOT or purely magnetically. The atoms can
be detected by two independent detection systems as depicted in Fig. 2.3. The
three coil pairs around the science chamber are mounted in Helmholtz configura-
tion. This chamber is connected to a section with three different vacuum pumps [ion
getter pump (VinciTech, modified, 5 kV), titanium sublimation pump (VgScienta,
SBST110), chemical getter pump (SAES, NEG CapaciTorr C 200 BLD)] and a vac-
uum sensor (Pfeiffer, IKR270). The typical pressure in this section is 3 ⋅ 10−11 mbar
and about three orders of magnitude higher in the oven section due to differential
pumping. The ion getter pump and the vacuum sensor require large magnetic fields
for operation. For this reason, the pump section is separated from the science cham-
ber as far as possible (≈ 0.6 m). This pump section is partly visible in Fig. 2.1, but
not shown in Figs. 2.2 and 2.3.
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Figure 2.3: The image shows the QUANTUS-2 vacuum system. The light paths for two
independent detection systems are highlighted. The Detection 1 system is also shown in
the CAD drawing in Fig. 2.2. The light for the Detection 2 system is reflected by the
atom chip, which is covered by the corresponding fiber-based collimator.

Trapping of neutral atoms

There are different ways of trapping neutral atoms, for example magneto-optical
traps [83], static magnetic traps [84], time-averaged orbiting potential traps [85] and
optical dipole traps [86–88]. The Q-2 experiment features magneto-optical trapping
for a high flux of precooled atoms followed by high frequency Ioffe-Pritchard (IP)
type traps for fast evaporative cooling to quantum degeneracy. This combination
facilitates the high repetition rate.

The force on an atom with magnetic dipole moment µ in a magnetic field B is
given by

F = ∇ (µ ⋅B) . (2.1)

Depending on µ this force is directed either in the direction of increasing or de-
creasing magnetic field. Accordingly, the atoms can be either high-field-seekers or
low-field-seekers. It can be shown that no local field maximum can exist in a region
free of charges and currents [89]. Still, a local field minimum can exist and form a
trap for low-field-seekers. In the Q-2 experiment, 87Rb 52S1/2 atoms with F = 2 are
used. The two Zeeman substates mF = 2 and mF = 1 are low-field-seekers and hence
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magnetically trappable. The mF = −1 state of the F = 1 manifold is trappable, too,
but the trapping potential is stronger for the F = 2,mF = 2 substate. A level scheme
is shown in Fig. 2.4.

The strength of a trapping potential is characterized by its trap frequency ω. The
ideal trap would be isotropic in all three spatial dimensions and harmonic. In fact,
real magnetic traps are usually neither of that. The anisotropy is accounted for
by introducing three trap frequencies ωx, ωy and ωz for the corresponding spatial
dimensions and the anharmonicities are described by the coefficients L3 and L4.
The potential is then given by

V (r) = V0 +mRb {ω
2
x(x − x0)2

2
+
ω2
y(y − y0)2

2

+ ω2
z[

(z − z0)2

2
+ (z − z0)3

3L3

+ (z − z0)4

4L4

]} .
(2.2)

The trap center is at (x0, y0, z0) with the trap bottom V0. The trap is assumed to be
anharmonic in the z direction only. This is a good approximation for the IP traps
realized in the Q-2 experiment. It is important that the trap bottom is larger than
zero. Otherwise Majorana spin flips would occur leading to a significantly reduced
lifetime of the atomic ensemble in the trap [90, 91].

The Atom Chip

The key feature of the Q-2 experiment is a so called atom chip. It comprises three
layers of conducting structures mounted within the science chamber as indicated by
the right part of Fig. 2.2. A variety of magnetic potentials can be generated by the
superposition of their magnetic field with a homogeneous magnetic offset field. The
latter is created by three Helmholtz coils for the respective spatial dimensions (x, y
and z coil).

The three chip layers are mounted on top of a copper block which servers as a heat
sink. It is shown in Fig. 2.5. The bottom layer of the atom chip consists of Kapton
isolated copper wires with a conductor diameter of 0.6 mm. They are recessed into
the copper mount and referred to as mesoscopic structures. The first one is H-
shaped and hence called Meso-H. It can be used to form an IP trap and serves as
an example structure to explain the basic concepts of such traps. For a thorough
quantitative treatment of magnetic microtraps the reader is referred to [93]. Alas,
even such an analysis is insufficient for Q-2, because the supply conductors are not
taken into account. Instead, a Biot-Savart simulation is used which accounts for the
closest parts of these additional wires, too. This simulation for the full Q-2 atom
chip is called the Q-2 chip model and is explained below.

When a current flows through the central wire of the Meso-H in the opposite x
direction, a circular magnetic field is created according to the right hand rule. On
the z axis, this field is pointing in the y direction and decreases with increasing
distance from the wire. When superimposed with a homogeneous magnetic field in
the opposite y direction, the resulting magnetic field is zero at a certain distance
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Figure 2.4: Hyperfine structure of the 87Rb D2 transition with Landé factor gF and
total angular momentum quantum number F . The energy levels are not to scale. The
transition used for detection is shown as the red arrow. Transitions used for magneto-
optical trapping are the cooling transition (blue arrow), which is detuned by ∆ ≈ 20 MHz,
and the repumping transition (green arrow). Numerical values from [92].
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Figure 2.5: Copper chip mount with an edge length of 35 mm. Kapton isolated copper
wires are recessed into the bulk material and form an ’H’. The typical current through
these wires is 8 A. (Photo source: Waldemar Herr)

depending on the ratio of currents in the Meso-H and the y coil. This is already a
two dimensional trap. The trap axis passes through this point of zero field and is
parallel to the central wire. Axial confinement is realized by the two parallel wires
of the Meso-H resulting in a three dimensional IP trap. Since the y coil is the only
indispensable coil it gets an extra name. It is called bias coil and its field is called
bias field, accordingly.

The trap can be manipulated in different ways. An increasing bias field at a
constant Meso-H current moves the trap center closer to the Meso-H and vice versa.
On the other hand, a magnetic offset field in the z direction rotates the trap center
around the x axis. Finally, an offset field in the x direction affects the trap bottom.
Unfortunately, such traps do not behave well when rescaling all currents by the
same factor. In fact, the trap rotates and moves. These effects are quantitatively
described by the chip model.

The equipotential surfaces of harmonic traps are ellipsoids. Deviations from this
shape can arise from anharmonicities. The trap frequencies predicted by the chip
model refer to the eigenvectors of these ellipsoids. In general, they do not coincide
with the symmetry axes of the atom chip, but are rotated about the normal to the
chip.

In addition to the Meso-H, six U-shaped wires belong to the bottom chip layer,
as shown by the left image in Fig. 2.6. In combination with an offset field in the
opposite y direction, it creates a magnetic quadrupole field as required for a MOT.

The BC is a 35 × 35 mm aluminum nitride substrate placed directly on top of
the copper mount, as shown by the right image in Fig. 2.6. The electroplated gold
structures are 8 µm high and can support up to 6 A. They are used to form various
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Figure 2.6: (left) Copper chip mount with the mesoscopic chip structures made from
Kapton isolated copper wires: Meso-H (see Fig. 2.5) and six wires forming the Meso-U. The
typical current through a single Meso-U wire is 7.7 A. (right) Base chip (BC) on top of the
mesoscopic structures that are recessed into the chip mount. The BC structures are made
from gold and can support up to 6 A (in vacuum). They harness various geometries, for
example inner and outer Z-like structures (BCiZ, BCoZ). Two U-shaped radio frequency
antennas are close to the central wire (BC-I), but not electrically connected to it. (Photo
source: Waldemar Herr)

conductor geometries, for example Z-like. Two of them are shown in the image, that
are an inner and an outer Z (BCiZ, BCoZ). Because of the larger trap volume the
BCoZ is used for all measurements shown in this work and referred to as BC-Z. H-like
structures are possible, too. They are called BCiH and BCoH, accordingly. Unlike
the Meso-H, they cannot be fed by a single current driver, because the individual
’wires’ are electrically connected. Their width is 0.5 mm at a separation1 of 2.0 mm
in the central region of the BC. In addition to them, there are two (upper and lower)
U-shaped radio frequency (rf) antennas close to the central conductor (BC-I). They
are required for rf evaporation, for example, and are electrically isolated from the
remaining structures.

The third chip layer is the 25× 25 mm science chip (SC) placed on top of the BC.
It is shown in Fig. 2.7. The conducting structures are similar to the BC, but smaller.
They are separated2 by 0.5 mm and have a width of 50 µm. These wires can support
a current of 2 A. In analogy to the BC, they are called SCoZ, SCiZ, etc. Again, only
the SCoZ is used and referred to as SC-Z. Whenever a BC or SC current is given,
it is the current through these outer Z-structures. Since optical access for the MOT
is limited due to the chip itself, the surface of the SC is coated [OIB Jena] to reach
a reflectivity of 97.7% at 45° for a wavelength of 780 nm [80]. The point on this
coating and in front of the center of the horizontal SC wire (SC-I) defines the origin

1The wire centers are (2.0 + 0.5) mm apart.
2The wire centers are (500 + 50) µm apart.
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Figure 2.7: Full three layer atom chip setup in the Q-2 experiment. The top layer
(science chip) is fully and the intermediate layer (base chip) partially visible. The bottom
layer (mesoscopic structures) is completely covered. The titanium to the right is part of
the vacuum chamber and wrapped by the z coil (copper wires on the right edge). Gravity
points downwards.

of the Q-2 coordinate system. Like in Figs. 2.5 and 2.6, the x axis points towards
the left and the y axis points downwards in the direction of gravity. The y axis is
parallel to the capsule’s symmetry axis, but not coinciding. The z axis points away
from the chip as required for a right-handed coordinate system.

Detection of rubidium atoms

The rubidium atoms can be detected by two independent absorption imaging sys-
tems. In both of them, a collimated laser beam with an intensity of I ≈ 1 mW and
a 1/e2 beam diameter of 7 mm passes the atoms. Their shadow is cast onto a CCD
camera with 1344 × 1024 px [Hamamatsu, C8484-15C]. The pixel size is 6.45 µm. A
magnification of 1.8 is achieved by a telescope with two AR-coated achromatic lenses
(f1 = 50 mm [Edmund optics, NT49-957] and f2 = 90 mm [Linos, G322389525]) re-
sulting in a measured resolution of 5.5 µm [79]. The detection telescope is mounted
such that the atoms are in the focal point of the first lens (f1) and the camera is in
the focal point of the second one. The telescope is bent with a mirror [HR-coated,
Linos, G340784000] in between both lenses for geometrical reasons.

The laser beam for the first detection system (Detection 1) propagates along the
SC from its bottom left to the top right corner (45° w.r.t. the x and y axis). The
beam center is approximately 3 mm away from the chip surface. For comparison, the
center of the IP trap is approximately 1 mm in front of the center of the SC. When
atoms are released from this trap, they fall downwards and leave the detection zone
after a TOF of 22 ms.

The laser beam for the second detection system (Detection 2) propagates in the
y = −0.35(2)mm plane and is reflected by the coating on the SC. The angle of
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incidence is 37.5°. As a matter of fact, the view in Fig. 2.7 is oriented approximately
into this reflected laser beam. There are two images of the cloud on the CCD. One
of them is a ’direct image’ with the laser beam passing the atoms after reflection
on the chip surface. For the second ’reflected image’, the laser beam is reflected
on the chip surface after passing the atoms. This mirror image is the left cloud in
the Detection 2 CCD images presented in this work. It is possible to extract 3D
information out of these 2D images provided that both clouds are on the CCD and
sufficiently separated. Since the y axis is not projected at an angle of 45°, like in
Detection 1, the atoms fall out of the detection zone even more rapidly (after 14 ms
TOF). A smaller magnification would increase the available TOF, but deteriorate
the resolution.

The laser light for detection can be resonant to the F = 2 → F ′ = 3 transition,
as shown in Fig. 2.4 by the red arrow, or detuned from this transition. Its natural
linewidth is Γ = 2π ⋅ 6 MHz [92]. Hence, a detuning δ can be of this order. The
scattering of light out of the detection laser beam can be derived from the optical
Bloch equations [92]. It is described by the scattering cross section

σ(δ, I) = σ0

1 + 4(δ/Γ)2 + I/Isat

, (2.3)

where I is the light intensity, Isat the saturation intensity of the transition and

σ0 =
h̵ωΓ

2Isat

(2.4)

the on-resonance scattering cross section with the photon frequency ω. The accom-
panying decrease in intensity is described by Beer’s law:

dI

dz′
= −n(x′, y′, z′)σ(δ, I)I, (2.5)

with the atomic density distribution n(x′, y′, z′) and a coordinate system aligned
such that the laser beam propagates along the z′ direction. The beam profile is
implicitly accounted for by I(x′, y′). Equation (2.5) is a separable differential equa-
tion:

1 + 4(δ/Γ)2 + I/Isat

σ0I
dI = −n(x′, y′, z′)dz′.

It can be readily integrated:

1 + 4(δ/Γ)2

σ0

ln(I) + I

σ0Isat

+ c1 = −ñ(x′, y′) + c2, (2.6)

with constants of integration c1 and c2. The two-dimensional atomic density distri-
bution

ñ(x′, y′) = ∫ n(x′, y′, z′)dz′ (2.7)

is the quantity of interest. It can be measured by acquiring three CCD images: An
’atom image’ (Iatoms) of the laser beam including the shadow cast by the atoms,
a ’beam image’ (Ibeam) of the laser beam alone and a ’dark image’ (Idark) without
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Figure 2.8: CCD images of the laser beam for Detection 1: Yellow regions exhibit a
higher intensity than blue ones. The center of the Gaussian beam profile is marked by a
white plus sign in (b). Atoms cast a shadow onto the 1344 × 1024 px large CCD chip as
highlighted by the white circle in the atom image (a). The shadow is not present in the
beam image (b).

atoms and laser beam to correct for dark counts of the CCD camera. For illustration,
an atom image and the corresponding beam image (using Detection 1) are shown
in Figs. 2.8(a) and (b), respectively. The atom chip is just to the left of the images
and thus not visible. Its diffraction pattern due to the science chip edge, however,
is visible (vertical stripes). The remaining airy-like patterns originate from dirt
particles in the optical path. They are stable and can be used for a post correction
of the camera movement arising from the impact of the capsule into the deceleration
container. This movement is on the order of a few micrometers. The beam image is
acquired 180 ms after the atom image. This time is required for a camera readout
in between two images and is sufficient for the atoms to leave the detection zone.
Dark images are acquired on a regular basis, for example once per drop, but not for
each set of images individually. Within the exposure time of 40 µs a rubidium atom
can scatter several hundred photons.

Equation (2.6) can be rewritten in terms of the dark count corrected intensities
of the atom and beam image, respectively:

1 + 4(δ/Γ)2

σ0

ln(Iatoms − Idark) +
Iatoms − Idark

σ0Isat

+ c1 = −ñ(x′, y′) + c2, (2.8a)

1 + 4(δ/Γ)2

σ0

ln(Ibeam − Idark) +
Ibeam − Idark

σ0Isat

+ c1 = c2, (2.8b)

where the atomic density vanishes for the beam image. Subtracting (a) from (b)
yields

ñ(x′, y′) = 1 + 4(δ/Γ)2

σ0

ln(Ibeam − Idark

Iatoms − Idark

) + Ibeam − Iatoms

σ0Isat

. (2.9)

Applying Eq. (2.9) to each pixel of the atom and beam image in Figs. 2.8(a) and
(b), respectively, yields the 2D density image in Fig. 2.9. A software package for this
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Figure 2.9: Atomic density image resulting from processing the atom and beam image in
Fig. 2.8 using Eq. (2.9). The atomic ensemble (yellow region) was detected in microgravity
100 ms after releasing a Bose-Einstein condensate from its trap. The x′raw and y′raw axes
show the camera coordinate system of the first detection system (Detection 1) and the red
’×’ marks the origin of the Q-2 coordinate system.

image processing was kindly provided by the Q-1 team. The raw camera coordinates
x′raw and y′raw are affected by small camera shifts from drop to drop due to the
accelerations in the tower. Hence, the coordinates need to be referenced to the
atom chip. An overview over the transformations between the different coordinate
systems is given below.

The combination of a magnetic offset field co-aligned to the propagation direction
of the σ+-polarized detection beam realizes a cycling transition. Atoms in F = 2,
mF = 2 are excited to F ′ = 3,mF ′ = 3 and cannot decay back into any other state but
the initial one. Atoms that are initially in any other Zeeman substate of the ground
state F = 2 manifold are rapidly transferred into the mF = 2 substate after a few
transitions. This is possible as long as the magnetic offset field is not too strong such
that the frequency shift by the Zeeman effect is on the order of the natural linewidth.
The saturation intensity for this cycling transition is Isat = 1.67 mW/cm2 [92]. It can
be approximately a factor of two higher if the polarization is not clean. To account
for this effect, the effective saturation intensity

Ieff
sat = α∗Isat (2.10)

can be introduced according to [94]. The alpha factor is unity for perfectly circu-
larly polarized light and larger otherwise. The scattering cross section transforms
accordingly:

σeff
0 = σ0

α∗
. (2.11)

By accounting for this effect, Eq. (2.9) reads:

ñ(x′, y′) = α∗1 + 4(δ/Γ)2

σ0

ln(Ibeam − Idark

Iatoms − Idark

) + Ibeam − Iatoms

σ0Isat

. (2.12)

The atom number
N = ∫ ñ(x′, y′)dx′dy′ (2.13)
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Figure 2.10: (a) Beam image from Detection 2 imaged by a similar detection system as
for Detection 1 (see Fig. 2.8). The detection beam center is marked by a white plus. The
science chip conductors are faintly visible and highlighted by dotted white lines. Their
center defines the origin of the Q-2 coordinate system (red ’×’). (b) Processed density
image [Eq. (2.9)] exhibiting two images of the same atomic cloud. For the left cloud, the
detection laser beam passes the atoms and is then reflected at the chip surface (reflected
image). The remaining light passes the atoms again and a second shadow is cast creating
the direct image. The Detection 2 coordinates are labeled x

′′
raw and y

′′
raw with indices L

and R. The density image (b) was detected in microgravity 80 ms after releasing a Bose-
Einstein condensate from its trap.

can be significantly overestimated by choosing too high a value for α∗. By applying
the methods described in [94], this factor was measured to be unity in Q-2:

α∗Q-2 = 1. (2.14)

Typically, the detection light is on-resonance with the cycling transition. Whenever
an atomic cloud is too dense, the light can be detuned to reduce the scattering cross
section and hence the optical depth. However, the cloud then behaves as a gradient
index lens. For this reason, a detuning is problematic for small clouds, for example
BECs after short TOFs.

The images acquired by Detection 2 look different from the ones by Detection 1.
Figure 2.10(a) shows such a beam image. Since this beam was reflected by the science
chip, its wires are faintly visible. They are highlighted by dotted white lines. Their
center is marked by a red ’x’ and defines the origin of the Q-2 coordinate system in
this plane. These chip wires provide a ruler for a correction of camera shifts and are
used for a correction of the raw camera coordinates x

′′
raw and y

′′
raw (in comparison

to x
′
raw and y

′
raw for Detection 1, where the airy-like patterns are used). Cracks in

the high reflective coating of the chip surface are visible, too. Occasionally, they
cannot be fully eliminated by the formalism described above. Despite this, valuable
3D information is still available, but at a slightly higher uncertainty in the fitted
position. The two images required for this, reflected and direct, can be seen in
Fig. 2.10(b). The magnetic field orientation required for the cycling transition is
different for Detection 1 and each of the two Detection 2 images. For this reason,
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the field can be correctly aligned for only one of the three absorption images at the
same time. It is optimized for Detection 1, which is exclusively used to evaluate
atom numbers. Detection 2 is used to provide 3D information about the cloud’s
position and size.

Coordinate systems

The raw camera coordinates are of limited use because of the camera shifts. The
beam image has to be compared to a reference beam image, which was used to
calibrate the chip model. The necessary corrections are small rotations (≈ 1°) and
translations (micrometers) of the density image. For definiteness, they are subsumed
by camShiftx′ , camShiftx′′ , etc. In addition, the corrected coordinate system is
also shifted by a few mm such that its origin coincides with the origin of the Q-2
coordinate system. The corrected coordinates are x′, y′, x′′ and y′′. Their relation
to the raw and to the Q-2 coordinate system (x, y and z) is given by Eqs. (2.15)
to (2.17):

x′ = z = x′raw − camShiftx′ , (2.15a)

y′ = (y − x) /
√

2 = y′raw − camShifty′ − 1.55 mm, (2.15b)

x′′ = x′′raw − camShiftx′′ − 2.53 mm, (2.16a)

y′′ = y = y′′raw − camShifty′′ − 2.28 mm, (2.16b)

x = (x′′L + x′′R) /2 = (x′′L,raw + x′′R,raw) /2 − camShiftx′′ − 2.53 mm, (2.17a)

y = (y′′L + y′′R) /2 = (y′′L,raw + y′′R,raw) /2 − camShifty′′ − 2.28 mm, (2.17b)

z =
x′′R − x′′L

2 ⋅ sin(37.5°)
=
x′′R,raw − x′′L,raw

2 ⋅ sin(37.5°)
− 72µm, (2.17c)

where Eq. (2.17c) is independent of camera translations and the dependence on
rotations can be neglected, because its effect is extremely small (0.2 µm). The offset
of 72µm is due to the optical coating of the chip defining the z = 0 plane for the
Detection 2 frame. Equation (2.16) is applicable for both clouds.

In many cases, the data from the first detection system is sufficient. Occasionally,
even 3D information can be inferred, for example trap frequencies by means of beat
notes on the position data. For a long time, this was the only available detection
system. The first drop with the second detection system installed was Drop 119 in
August 2015.

The chip model

Magnetic traps can be characterized by a few key properties. The most important
ones are their frequencies, anharmonicities and the trap center. Another one is the
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Figure 2.11: Example measurement of the trap frequencies of an IP trap generated by
the currents IBC = 6 A, ISC = 2 A, Iy = −1.2 A and Ix = Iz = 0. The positions x′ (a) and
y′ (b) after 11 ms TOF are plotted vs. the hold time within the trap. The centers of
oscillation (x′0 and y′0) were subtracted from the data. The solid lines are fits giving the
trap frequencies ωx, ωy and ωz.

trap bottom, which is proportional to the absolute value of the magnetic field at
the trap center. Not all trap configurations can be characterized by ground-based
measurements. Shallow traps more than 1 mm away from the chip are deformed too
much by the gravitational potential. If it is not compensated, for example optically
or magnetically, such traps are accessible in microgravity only. As a matter of fact,
these shallow traps are the interesting ones for magnetic lensing. In addition, atom
interferometry benefits from the larger separation from the chip, too.

The chip model is a Biot-Savart simulation of all relevant conductors written by
Waldemar Herr [79]. It is an invaluable tool predicting the trap properties, especially
of the shallow traps that are inaccessible by ground-based measurements. Charac-
terizing them experimentally would consume too much of the valuable microgravity
time. This chip model was calibrated by ground-based measurements. Details on
the model itself and the calibration process can be found here [79]. An example
measurement of trap frequencies is shown in Fig. 2.11. A Bose-Einstein condensate
is prepared in the trap of interest (see figure caption). Dipole oscillations are then
excited by temporarily displacing the trap. The resulting in situ oscillations are very
small (≈ 6 µm) and hardly detectable. However, the detectable amplitude increases
linearly with time after releasing the atoms from the trap. All trap frequencies can
then be retrieved from sinusoidal fits to the position data. This procedure is re-
peated for a variety of trap configurations and is complemented by measurements of
the in situ position and the trap bottom. The workhorse trap in Q-2 is generated
by IBC = 6 A, ISC = 2 A, Ix = 0.5 A and Iz = 0 at different bias currents. The corre-
sponding trap centers and frequencies are shown in Figs. 2.12 and 2.13, respectively.
More negative bias currents correspond to steeper traps closer to the chip and vice
versa. Gravity also affects the trap properties. Its effect on the trap center can be
seen in Fig. 2.12(a) by comparing the solid lines (with gravity) to the dash-dotted
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Figure 2.12: Simulated trap centers using the Q-2 chip model for IBC = 6 A, ISC = 2 A,
Ix = 0.5 A and Iz = 0. In microgravity (dash-dotted lines), the trap center is on the z axis
[x0 = y0 = 0, dash-dotted black line in (a)], but departs for less negative bias currents,
as shown by the solid lines in (a). The bias current Iy = −0.6 A is the smallest one used
for traps ’with gravity’ (lab environment) and is referred to as ’Release position A’ at
z = 812µm. The trap center’s z coordinate differs hardly with or without gravity for
larger bias currents. Release position B at z = 1476µm is possible in a microgravity
environment only. At Iy = −1.5 A the final phase of evaporative cooling for the creation of
a Bose-Einstein condensate is performed.

Bias current (A)

-2.1 -1.5 -1 -0.6 -0.37

T
ra

p
 f
re

q
u
e
n
c
y
 (

H
z
)

0

10

20

30
(a)

 f
x

Bias current (A)

-2.1 -1.5 -1 -0.6 -0.37

T
ra

p
 f
re

q
u
e
n
c
y
 (

H
z
)

10
1

10
2

10
3 1102 Hz

  459 Hz

  60  Hz

  23  Hz

(b)

 f
y

 f
z

Figure 2.13: Simulated trap frequencies (f = ω/2π) in microgravity using the Q-2 chip
model. The frequency in the x direction (a) is always smaller than in the y or z direction
[solid green and dashed blue line in (b)]. The latter two are very similar to each other.
Their geometric mean is given for the particular bias currents shown in Fig. 2.12.
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lines (without gravity). The distance from the chip (z0) hardly differs, but beyond
Iy ≈ −0.5 A traps are possible in microgravity only. Close to this limit, the trap cen-
ter moves away from the z axis. Release position A – approximately 0.8 mm away
from the chip – was used for the first drop campaigns, because it could be tested
in the lab. For the later campaigns, release position B at 1.5 mm was used, because
the chip model predicts a promising trap for magnetic lensing at this position (see
Chapter 6). In both cases, the BEC has to be transferred from its point of creation,
that is the final trap for evaporative cooling, to the release position. This transfer
is explained in Section 5.3. The release traps corresponding to release positions A
and B are referred to as release traps A and B, respectively.

It can be seen in Fig. 2.13 that the trap is anisotropic. The weak trap axis is
always pointing approximately in the x direction. The two fast frequencies fy and
fz are similar or even equal at some specific locations. This holds for other trap
configurations as well. High frequency traps are required for a fast creation of BECs,
as discussed in Section 2.2. Two traps are successively used for this. The initial one
with Iy = −2.1 A is 102 µm away from the chip and the final one with Iy = −1.5 A is
at z = 209 µm.

The chip wires are one source of the magnetic field required for the traps. It
decreases with the distance from the chip (1/r dependence). The resulting local
curvature is responsible for the trap anharmonicity, which is an inevitable property
of chip traps. It can, however, be mitigated by choosing traps further away from
the chip.

Laser system

The Q-2 laser system provides laser light for cooling, optical pumping, Bragg diffrac-
tion and detection of rubidium and (later on) potassium atoms. The lasers were
designed and manufactured by the FBH in Berlin and have a footprint of 25 ×
50 mm. A power amplifier (PA) is seeded by a DFB diode as master oscillator
(MO). This combination provides 1 W of output power at a wavelength of 780 nm
and a linewidth of approximately 1 MHz. More details on these MOPA modules
can be found here [95–99]. The laser system has been planned and constructed by
the HU-Berlin. So far, only the rubidium part of the laser system was integrated
into the Q-2 capsule. Three MOPAs are frequency stabilized by offset locks to a
master laser, which is in turn stabilized to the F = 3 → F ′ = 3/4 crossover of the
85Rb D2 transition by frequency modulation spectroscopy. Fast switching (1 µs) and
frequency shifting are achieved by acousto-optical modulators (AOMs). Residual
light can be completely blocked by mechanical shutters.

The laser system is subdivided into different modules for improved mechanical
stability. They are interconnected by polarization maintaining single mode optical
fibers. The system is catapult tested: All lasers remain frequency stabilized even
during the acceleration and deceleration phases. The light is guided to the vacuum
chamber by optical fibers, too. MOT light is split up by fiber splitters. More details
on the laser system are described here [81].
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Figure 2.14: Customized electronics stack with laser current drivers, temperature con-
trollers, locking electronics, DDS cards for driving AOMs, shutter controllers, communica-
tion and power interfaces. All cards have been developed by Thijs Wendrich in Hanover.

Electronics

A substantial amount of electronics is required for the operation of a cold atoms
experiment like Q-2. All of it can be bought off the shelf. Nevertheless, these
commercially available components are too large to meet the geometrical constraints
for the small catapult capsule. For this reason, most of the electronics has been
designed from scratch by a project partner (Institute of Quantum Optics, Hanover)
and kept as small as possible.

The laser system is controlled by a stack of different cards, each with a size of 10 ×
10 cm. This stack is referred to as T-Stack3 and is shown in Fig. 2.14. The lasers are
temperature stabilized using thermoelectric coolers (TECs) to 1 mK precision. Laser
currents are provided by two types of current driver cards (200 mA for the MOs and
almost 2 A for the PAs4). Direct feedback channels from the frequency controller
card to the MOs control the laser frequencies. Other cards provide AC-signals for
driving the AOMs (80 or 100 MHz), control the mechanical shutters or supply the
cooling fans for the electronics itself. Communication is performed at a 50 MHz
clock rate using eight address and eight data bits on the T-Bus with a LabView
Real Time system on a NI-PXI with a field programmable gate array (FPGA).

Beat signals from the offset lock photodiodes have frequencies of a few GHz. Each
of them is amplified by a chain of three Mini-Circuits amplifiers [ZX60-14012L+]
and divided by prescalers [Hittite HMC862LP3E] to get below the upper limit of
1.1 GHz for the frequency controller card.

All coil (2D+-MOT, x, y and z) and chip currents (Meso-H, Meso-U, BC-Z and
SC-Z) are provided by dedicated bipolar current drivers: six commercial drivers

3The design is by Thijs Wendrich, hence the name T-Stack.
4Actually, a PA has a separately controllable ridge waveguide (200 mA) and a tapered amplifier

(1.7 A).
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[HighFinesse (HF) model BSCP 10] and two miniaturized replicas of them (by
Manuel Popp [100], 2D coils and Meso-H). It is possible to damage the atom chip
and the coils by currents that are too high or requested for too long. To rule out this
point of failure, all currents are monitored by additional electronics (chip fuse) and
blocked, when preset timeouts (10 s) or current limits are exceeded. In addition, it
is possible to separate the structures on demand to suppress small offset currents
from the current drivers.

Photodiodes are installed within all fiber-based collimators (see also Fig. 2.3). In
combination with transimpedance amplifiers, they allow for a continuous monitoring
of the laser power within the vacuum chamber.

The experiment needs a start trigger for the experimental sequence when it is
operated in the drop tower. This is realized by an accelerometer [Analog Devices
ADXL 103, ±2 g] in combination with a Schmitt trigger. Its low-to-high (high-to-
low) level is 0.25 g (0.5 g). This ’micro-g’ trigger has a bandwidth of 2.5 kHz. A
small constant delay of 6 ms is caused by the previous elastic deformation of the
platforms due to gravitation. Hence, a timing jitter of the experimental sequence in
the drop tower can be neglected.

Experiment control

All drop and catapult capsules are equipped with a NI-PXI based capsule control
system (CCS), which is in turn controlled by an electronic ground support equip-
ment. Both are connected via Ethernet. In the drop tower, signals are transmitted
by a WiFi connection. The CCS is located on the second platform (from the bot-
tom, see Fig. 2.1). This pair of computers is used to initiate a drop or a catapult
flight and for monitoring of battery voltages and capsule temperatures. The ac-
tual experiment is controlled by a NI-PXI-7854R FPGA with LabView Real Time.
This computer is located within the capsule. A personal computer outside serves as
graphical interface. Experimental sequences are uploaded from here to the FPGA
and can then run autonomously. All data, especially the absorption images, are
saved on the PXI within the capsule. They are transferred by an ftp protocol to the
control PC.

The FPGA is equipped with several analog and digital I/Os. The analog ones
have 16 bit resolution within ±10 V range. This results in a 0.3 mV discretization of
control signals, which is equivalent to a current discretization of 0.3 mA (1 A/V).

Figure 2.15 shows the first part of an experimental sequence as seen on the control
PC. The sequence is subdivided into blocks of a certain duration. A typical drop
sequence consists of approximately 100 blocks. Within them, boolean parameters
(triggers) cannot be changed. Analog values, for example currents through the chips
or coils, can be either kept constant or changed in time according to an arbitrary,
programmable function (ramp). The simplest example is a linear ramp. However,
the course of the actual current never equals that of the requested current because
of the finite and load dependent step response time of the current drivers. This will
be discussed in Sections 3.2 and 3.3.
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Figure 2.15: Control interface with the first part of an experimental sequence, which
is uploaded to and executed by an FPGA. The columns constitute the smallest logical
chunks within a sequence.

Magnetic shielding

The vacuum chamber, except for the pump section, is surrounded by a two-layer
magnetic shield. It is made from mumetal5 [101], a NiFe alloy, which has a high
magnetic permeability. The actual value of the relative permeability µr decreases
by the production process of the shield and by any subsequent bad mechanical
treatment. Published values range from a few thousand to 250,000 [102]. The shield
consists of two cylinders with a wall thickness of 2 mm. The outer one is 42 cm high
at a radius of 26.5 cm. The inner cylinder is close to the outer one with 3.4 cm radial
and 2 cm vertical separation. It has been designed by Thorben Könemann [103] and
manufactured by Sekels GmbH. Each cylinder consists of four radial segments and
two circular end caps for a good accessibility to the vacuum section within. The
shield can be seen in Fig. 2.1 and at the left side in Fig. 2.3. The design has to be
a trade off between mass and size budget and the achievable shielding factor

S = Bext

Bint

, (2.18)

defined as the ratio of the external and internal magnetic field. Indeed, the design
is primarily dictated by geometrical constraints. A larger spacing in between both
cylinders, for example, would result in an increased shielding factor [104]. Finite
element method (FEM) simulations assuming µr = 30,000 predict an axial shielding
factor of 5,875 (y axis) and radial factors of 12,987 (x axis) and 11,944 (z axis) [103].

The shielding factor for the weak axis (y) was measured by exploiting the position
dependence of the IP trap on the bias current [see Fig. 2.12(b)]. An additional ’bias

5Registered trademark by Vakuumschmelze GmbH, Hanau, Germany
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coil’ with a radius of 36 cm is wrapped around the capsule in Helmholtz configu-
ration. Its partially shielded magnetic field is superimposed with the original bias
field and shifts the trap. The magnetic field of the y coil can be measured by rf
spectroscopy (see Section 4.3). A calculation of this field is not sufficient, because a
magnetic shield is expected to enhance all coil fields within [72]. Relating the mea-
sured trap shift with the expected one for the outer Helmholtz coil (no magnetic
material inside, except the shield to be measured) yields an axial shielding factor of

Saxial = 118. (2.19)

This is significantly smaller than the predicted factor of 5,875. Actually, such a
discrepancy is not unusual for these FEM simulations and they allow for a rela-
tive comparison of different shield designs only [105]. The primary reason is the
uncertainty in the magnetic permeability of the mumetal. Nevertheless, a passive
suppression of external magnetic fields by more than two orders of magnitude is still
valuable. The primary sources of magnetic fields and field gradients that need to be
suppressed are the ion getter pump within the capsule and weld seams of the drop
tower’s vacuum tube. The latter field is comparable to that of the earth (≈ 0.5 G),
but its orientation and magnitude depends on the position within the drop tube. A
measurement of the resulting field fluctuations can be found here [103].

A residual magnetization of the magnetic shield needs to be reduced by a de-
magnetization procedure. This can be achieved by decaying alternating magnetic
fields [102]. Initially, they flip the magnetic domains back and forth, but finally
leave them at a random orientation. It is important, that no external field is im-
printed on the shield during this procedure. For this reason, only the inner shield is
demagnetized by ribbon cables around with the outer shield in place. The magnetic
skin depth is

δ = 1√
fdemagπµ0µrσ

, (2.20)

where µ0 is the permeability of free space and σ = 1/(0.55 ⋅10−6 Ωm) is the electrical
conductivity [102]. A frequency of fdemag = 50 Hz is used for the alternating currents.
The skin depth should be comparable to or larger than the magnetic shield thick-
ness for the alternating magnetic fields to penetrate the entire material. Since the
magnetic permeability is not exactly known, only a rough estimate of the magnetic
skin depth is possible. It is equal to the shield’s thickness of 2 mm for µr ≈ 1000.
Hence, smaller frequencies for demagnetization could be beneficial. Demagnetiza-
tion is performed after each assembly of the magnetic shield. Differing magnetic
offset fields or gradients were not observed.

Power management

The most sophisticated consumer within the Q-2 experiment is the T-Stack. It
requires an abundance of electrical supply lines. Almost all other consumers can
be supplied by them, too. The specified T-Stack voltages are integer multiples of
a reference range: 3.0...4.2 V. These multiples are +1S, ±2S, ±4S and ±6S, where
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+3.45 V ±6.9 V ±13.8 V ±21.7 V 28 V

CCS 2.4
IGP 0.4
PXI 4.2
Current drivers 1.3
Miscellaneous 0.8 0.4
Laser system standby 0.5 0.7 1.0
T-Stack standby 1.6 1.1 0.0 0.6 0.1 0.5 1.0
Lasers + TECs 5.5 0.1 1.5 0.9
Potassium (expected) 1.6 7.1 0.1 2.8 0.1 2.4 1.0

Total 3.2 14.2 1.0 6.9 0.2 9.8 2.0 2.4

Power 458 W 67 W

Table 2.1: Overview of the Q-2 power demands. The currents (in A) drawn from the
various supply lines by the different components [CCS, ion getter pump (IGP), etc.] are
listed. The overall power demand is given in the bottom row. The table is subdivided into
the capsule’s operational demand (CCS, 67 W) and experiment demand (Q-2, 458 W).

the ’S’ denotes the serial connection. This specification is clearly guided by the
idea that it can be fulfilled by an appropriate set of serially connected lithium ion
batteries. All of these supply lines have a common ground defined by the vacuum
chamber. The currents drawn from this supply grid by the T-Stack and other
consumers are listed in Table 2.1. It is referenced to specific voltages in favor of the
±nS notation, because some currents are voltage dependent. These consumers, for
example the PXI, have internal DC/DC converters and consume a constant power.
Others, for example laser current drivers and TECs on the T-Stack, renounce such
internal converters in favor of a reduced noise. They have equal input and output
currents, which are practically independent of the supply voltage, as long as it is
above the minimum voltage required to drive the current through the load. Any
excess voltage is converted into heat within the output stage of the respective current
driver or TEC. The T-Stack offers the option to pick any of the bipolar supplies to
match the demand. Typically, ±2S are used for laser current drivers and ±4S for
TECs.

Most drop tower experiments use the 600 Wh battery provided by the standard
drop tower battery platform. Voltages other than 24 V can be generated by appro-
priate DC/DC converters. Q-2 could be operated for 75 min (600 Wh ⋅ 0.95/458 W)
on this battery, assuming that it is new and the conversion efficiency is 95%. This
duration is marginal, since the time span from disconnecting the umbilical within the
tower until a reconnection within the lab is about 60 min for a drop and 70 min for
a catapult flight. Furthermore, the noise by DC/DC converters should be avoided
as far as possible. For these reasons, a designated battery platform is designed for
the Q-2 experiment.

Lithium ion batteries have a higher energy density and specific energy because
of their high cell voltage compared to lead or nickel batteries, for example. This
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Figure 2.16: Single cell voltages of two lithium iron phosphate (LiFePO4) batteries
connected in series during a discharge at 2.5 A (solid orange and blue lines). The solid gray
line shows the expected average single cell voltage when discharging with 20 A (internal
resistance is 4 mΩ). The upper dashed black line shows the per cell voltage for buffering
LiFePO4 batteries. The lower dashed line is the minimum requirement for the T-Stack
(see Fig. 2.14).

alleviates the voltage and mass constraints for the rest of the capsule. Lithium
ion batteries have, however, some safety issues [106] and need to be guarded by
additional electronics, especially for over-voltage protection. Lithium ion batteries
with lithium iron phosphate (LiFePO4) as a cathode material are the safest on the
market [107–111]. Therefore, they are used for the Q-2 battery platform. The
bare (foil) cells can have an energy density of 240 Wh/l and a specific energy of
130 Wh/kg [112]. The chemical reaction within the cell is [113]:

LiFePO4 + 6C
chargeÐÐÐÐ⇀↽ÐÐÐÐ

discharge
LiC6 + FePO4.

The single cell voltages of two serially connected (2S) LiFePO4 batteries during
a full discharge at a current of 2.5 A is shown in Fig. 2.16. Their nominal capacity
is 10 Ah, but they are not new and were abused by high peak currents prior to this
test. At 3.4 V, the batteries are practically full. Further charging would result in a
rapid increase of the cell voltage and a reduced battery lifetime. The specified end-
of-charge voltage is 3.6 V and the over-voltage protection would completely cut off
the charging current if any cell exceeded 3.9 V. In the lab, all batteries are buffered
by laboratory power supplies at a voltage of 3.45 V per cell.

After the complementary initial sharp decrease in cell voltage when discharging
the battery, the discharge curve is rather flat most of the time. Towards the end,
the voltage drops significantly. Below 3 V, the cell is almost empty already. Besides
this dependence on the state of charge (SOC), the terminal voltage is a function of
the current, too, because of the finite internal resistance [114]. The cells in Fig. 2.16
have an equal internal resistance of 4 mΩ. The simplest of all battery models, where
the voltage drop is proportional to the internal resistance and the drawn current,
predicts corresponding voltage drops of 10 mV for the 2.5 A discharge and 80 mV
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for a 20 A discharge with respect to open circuit conditions. The expected 20 A
discharge curve is shown as the solid gray line. Since no required current is this
high, as can be seen in Table 2.1, this battery type fulfills the minimum voltage
requirement of the T-Stack (lower dashed black line in Fig. 2.16). There exist
several elaborated battery models aiming at calculating the SOC from the terminal
voltage [115]. This is rather complicated if the battery is charged or discharged
at a variable current. Furthermore, it requires single cell monitoring for a reliable
estimate, because serially connected batteries are limited by their weakest cell. This
is, however, not implemented in Q-2 yet.

High charge and discharge currents reduce the lifetime of such batteries. Since
larger batteries can tolerate a correspondingly larger current, it is sometimes ref-
erenced to the battery’s capacitance. The 20 A discharge of the 10 Ah battery is
equivalent to a so called C-rate of 2. Common notations are 2 C-rate or simply 2 C.
All batteries within the Q-2 battery platform are rated to at least 10 C.

If the individual subcells have an equal SOC, they are said to be balanced. Un-
like lead batteries, lithium ion batteries cannot balance themselves. Differing SOCs
reduce the capacity of the entire battery and further decrease the lifetime, because
single cells encounter very high or very low cell voltages more often. This is counter-
acted by connecting balancers to each cell. Whenever a single cell voltage exceeds
a preset value, they draw a current from the cell and discharge it below this thresh-
old. This load current is proportional to the excess voltage within a narrow range
of 150 mV above the threshold. The battery management systems (BMS’s) used to
prevent over- and under-voltages have built in balancers with a balance threshold
of 3.6 V and a maximum balance current of 100 mA or below. These modules don’t
require cooling and can be sealed within a battery pack. This kind of balancers is
used for batteries up to 20 Ah. Larger ones are equipped with external, more power-
ful balancers [Linano PCM-H01S21-L]. They can sink up to 2.1 A at an (adjustable)
balance threshold of 3.5 V. This value is ideal for a buffered operation at 3.45 V per
cell, because it leaves a symmetric tolerance range of 50 mV for voltage variations
due to load changes (the SOC starts to drop below 3.4 V). Furthermore it guarantees
high balance currents when exceeding the end-of-charge voltage.

The battery capacities are selected such that the experiment can be operated for
three hours and stay idle for at least four hours (lasers off). The battery capacities,
BMS’s including their current rating and balancer currents are listed in Table 2.2.
The supply of the CCS by a separate battery is a requirement imposed by the drop
tower operators. In principle, the CCS can be supplied by the +6S battery, too.
Some of the blue 40 Ah batteries [CALB SL-FSE] with their balancer modules are
visible in Fig. 2.1 on the bottom platform.

Currently, without the potassium laser system, Q-2 is operational on batteries
for more than four hours. To keep additional reserves, three batteries (+4S, +6S
and the +8S CCS battery) are buffered in the drop tower. In this constellation,
three drops per day are possible with only 30 min of charging time in between. This
pause is required to prepare the polystyrene pellets within the deceleration container
rather than for re-charging. The total energy in all batteries on the battery platform
is 2500 Wh.



2.1 Experimental setup 43

nominal
voltage

(V)

capacity
(Ah)

BMS
balancer
current

(A)

current
rating
(A)

+1S 3.2 20 - - N/A
+2S 6.4 40 PCM-L02S20-265 2.1 20
−2S −6.4 10 PCB-F2S2 ≲ 0.1 10
+4S 12.8 40 JPB-S70AB100 2.1 20
−4S −12.8 10 PCB-L04S12-4 ≲ 0.1 10
+6S 19.2 40 JPB-S70AB100 2.1 20
−6S −19.2 10 PCB-FH5-9S4 ≲ 0.1 10
+8S 25.6 20 PCM-L04S12-406 0.1 12

Table 2.2: Overview of Q-2 battery platform with nominal battery voltages (3.2 V per
cell), capacities, BMS’s, maximum balancer currents and the maximum charge and dis-
charge currents (rating of BMS).

The coil and chip current drivers require an additional supply for the actual
load current. The requirement in Table 2.1 refers to the logic supply only. These
additional batteries avoid grounding problems and reduce the noise of the current
drivers. All connecting cables should be short to keep the inductance of the wires
as low as possible [116]. In addition, the batteries would have to be separate from
each other if galvanically connected loads, such as two structures on the same atom
chip layer, were connected to the current drivers. Even though this is not the case
in the current status of the experiment, separate, but interconnected battery packs
are installed on the platform right below the current drivers (see Fig. 2.1). They
are in ±2S configuration for the Meso-U, BC-Z, SC-Z and the z coil and in ±4S
configuration for all remaining coils (2D, x and y) and the Meso-H.

All electrical power is finally converted into heat. Besides the electrical power
given in Table 2.1, the HF current drivers draw a standby current of 0.2 A each. The
equivalent power is 18.5 W. The additional power due to the actual load currents in
a sequence is negligible in the drop tower, because the number of sequences is small
(< 50). The resulting total power is 544 W. For a single drop, the experiment is
encapsulated for approximately three hours. Assuming the capsule to be adiabatic
with a heat capacity of 1 kJ/kg K and a mass of 453 kg would result in a temperature
increase of 13 K. In fact, the heat is not distributed equally and parts of the capsule
would heat up more. For this reason, water cooling is installed cooling the platforms
and the laser system. The latter is the critical component. A rise in temperature
would deteriorate the coupling efficiency of optical fibers. The coolant (primarily
water at 20°C) flows through copper cooling elements that are mounted close to
heat sources, where possible. The air within the capsule is indirectly cooled by
the capsule structure. With this water cooling, the laser system typically heats up
by 1 K only (lab-to-drop). The effect on the fiber coupling efficiency is on the few
percent level and can be tolerated.
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2.2 Fast BEC preparation

After polarization gradient cooling of the atoms released from a 3D-MOT, they
are recaptured in a magnetic trap. Typical initial temperatures are on the order
of 100 µK after the recapture. Since the thermal energy equivalent kBT exceeds
the excitation quanta of the harmonic traps (ω ∼ 2π ⋅ 103 Hz) by several orders of
magnitude, the discrete energy levels can be described by a density of states:

g(ε) = ε2

2h̵3ω̄3
, (2.21)

where
ω̄ = 3

√
ωxωyωz (2.22)

is the geometric mean of the three trapping frequencies. The energy levels are
populated according to the Bose distribution function

f(ε) = 1

e(ε−µ)/kBT − 1
, (2.23)

where µ is the chemical potential. The density profile of the atomic cloud is

n(r⃗) = N

(2π)3/2σxσyσz
e
− x2

2σ2x
−
y2

2σ2y
− z2

2σ2z , (2.24)

with the total number of atoms N and the Gaussian widths (i = x, y, z)

σi =
√

kBT

mω2
i

. (2.25)

When released from the trap, this anisotropic cloud expands isotropically with the
thermal velocity

σv =
√

2kBT

m
(2.26)

according to

σi,TOF(t) =
√
σ2
i + σ2

vt
2. (2.27)

The energy distribution of atoms in the (3D) harmonic potential is given by

n(ε) = g(ε)f(ε). (2.28)

It is plotted in Fig. 2.17. The temperature of the atomic ensemble can be reduced by
removing atoms that hold more than the average share of energy. The ensemble re-
thermalizes after approximately five elastic collisions per atom [117]. This scheme is
called evaporative cooling and can be realized by artificially limiting the trap depth
to ηkBT , where η is the truncation parameter. In Q-2, forced evaporation is used.
Atoms with an energy exceeding ηkBT are coupled to untrapped Zeeman states by
rf radiation and repelled from the trapping region. This reduction in temperature
inevitably reduces the number of atoms, too.
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Figure 2.17: Distribution of atoms versus energy in a three dimensional harmonic trap
according to Eq. (2.28). The high energy tail (shaded gray) is removed by limiting the
trap depth to ηkBT using rf radiation.

When the temperature is low enough for the thermal de Broglie wavelength

λT =
√

2πh̵2

mkBT
(2.29)

to be comparable with the inter-particle separation, a macroscopic occupancy of
the trap’s ground state occurs. This ensemble of atoms is called BEC or simply
condensed cloud in contrast to the thermal cloud at higher temperatures. The
figure of merit for the transition to a BEC is the phase space density

D = n0λ
3
T , (2.30)

where n0 is the peak density of the atomic cloud. The phase space density needs
to exceed ζ(3) ≈ 1.202 in a 3D harmonic potential. The critical temperature Tc
for Bose-Einstein condensation depends on the trap frequencies and the number of
atoms:

kBTc = h̵ω̄ ( N

ζ(3)
)

1/3

≈ 0.94h̵ω̄N1/3. (2.31)

When the temperature is reduced further, the fraction of atoms in the condensed
phase increases according to

N0 = N [1 − ( T
Tc

)
3

] , (2.32)

where N0 is the number of atoms in the BEC. The critical index depends on the
type of trap and its dimensionality. In practice, N0 is maximized rather than N0/N .
The efficiency of evaporation

γ = −d ln(D)
d ln(N)

(2.33)

relates the gain in phase space density to the number of atoms lost during the
evaporation. This efficiency clearly depends on the truncation parameter: At higher
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values fewer atoms are evaporated at a correspondingly higher energy. However,
this slows down the cooling rate and increases the time required to reach quantum
degeneracy. In fact, the resulting BEC can even be smaller if the lifetime within the
trap is too short. Collisions with atoms from the background gas remove rubidium
atoms from the trap at a rate Γbg.

The re-thermalization rate is proportional to the elastic scattering rate

Γel = n0σscatv̄, (2.34)

where σscat is the (s-wave) scattering cross section and

v̄ = 4

√
kBT

πm
(2.35)

is the average relative velocity between two atoms. Hence, the elastic scattering rate
can be increased by increasing the density. This can be achieved by employing high
frequency traps [see Eqs. (2.24) and (2.25)]. The desired trap frequency is attained
by an adiabatic compression of the trap. When the trap is transformed according
to ω̄ → b ω̄, temperature, density and elastic scattering rate transform according to:

T → b1/2 T, (2.36a)

n→ b3/4 n, (2.36b)

Γel → bΓel. (2.36c)

The phase space density remains unchanged during an adiabatic compression or
decompression, as can be seen by comparing (a) and (b) to Eqs. (2.29) and (2.30).
Even though the elastic collision rate can be increased significantly by adiabatic
compression, the density should not grow as large such that simultaneous collisions
of three rubidium atoms set in. These collisions can change the spin and lead to
atom loss at a rate Γ3-body = Ln2, where L is a rate constant. The total loss rate
then is

Γloss = Γbg + Γ3-body. (2.37)

For this reason, two different traps with ω̄ = 2π ⋅ 298 Hz (initial) and ω̄ = 2π ⋅ 173 Hz
(final) are used. The optimum trade-off for the truncation parameter found in Q-2
is η ≳ 7 with γ ≈ 3 for both traps. More details on the efficiency of evaporation can
be found here [78].

The condensed phase can be described by a mean field theory. The corresponding
Schrödinger equation is called Gross-Pitaevskii equation:

ih̵
∂

∂t
Φ(r⃗, t) = [− h̵

2

2m
∆ + V (r⃗) + 4πh̵2a

m
∣Φ(r⃗, t)∣2]Φ(r⃗, t), (2.38)

where V (r⃗) is the magnetic trapping potential and 4πh̵2a/m is the interaction
strength with the s-wave scattering length a. Within the trap, the kinetic term
is much smaller than the potential and the mean field term. Hence, it can be ne-
glected, which is known as the Thomas-Fermi (TF) approximation. The density
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distribution n(r⃗) of the condensed phase is an inverted parabola6, which is bound
by zero, with a TF radius of

Ri = aosc
ω̄

ωi
(15Na

aosc

)
1/5

(2.39)

for the three spatial dimensions. The oscillator strength

aosc =
√

h̵

mω̄
(2.40)

is defined for convenience. The parabolic shape of the condensate is a direct conse-
quence of the dominant mean field term. A single atom in the trap’s ground state
would see no mean field and its wave function would be Gaussian. In contrast to a
thermal cloud [see Eq. (2.25)], the TF radius in one direction also depends on the
other trapping frequencies by means of ω̄. This can be understood by considering
the increased mean field as a consequence of a higher trapping frequency in any
direction. As a matter of fact, this mean field is the driving term responsible for
the fast expansion of a BEC when released from its trap. This expansion exceeds
the one expected from Heisenberg’s uncertainty principle by far and is described in
detail in Chapter 6 in the context of magnetic lensing and collective modes. Two
closely related terms that quantify the expansion of an atomic ensemble need to be
distinguished at this point. The velocity spread is the root mean square velocity of
the three dimensional velocity distribution, which is centered around zero for each
direction. The expansion rate, on the other hand, is used if the focus is set on the
size or its increase in a particular dimension.

2.3 Experimental sequence and performance

An experimental sequence consists of many tiny sub-steps, for example the command
to open a mechanical shutter and waiting for this to happen (see also Fig. 2.15). Most
of them are not relevant for comprehension. The steps that are relevant are listed in
Table 2.3 with the additional non-relevant ones included implicitly. The sequence is
an example making use of the full 4.72 s of microgravity that are available in drop
mode. Some steps are optional or can be modified, depending on the measurement
goal.

Every sequence has to start with loading the 3D-MOT by the 2D+-MOT (step 1)
at a rate of almost 109 atoms/s. The resulting typical atom numbers are N ≳ 108

after 150 ms and could be increased further by extending the MOT loading phase.
However, this also leads to an increased size of the MOT and as a result to a
reduced transfer efficiency to the first magnetic trap. As a matter of fact, there
would be almost no further increase in the number of condensed atoms. For the
same reason, the MOT is also compressed (cMOT) by changing the magnetic field

6This es exactly true for harmonic traps only, but a reasonable approximation for the traps in
Q-2.
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Stepnumber Duration (ms) Stepname

1 168.0 MOT loading
2 63.3 compressed MOT
3 5.3 polarization gradient cooling
4 1.7 optical pumping
5 25.2 first magnetic trap
6 111.0 adiabatic compression to initial evaporation trap
7 446.0 initial evaporation phase
8 88.7 adiabatic decompression to final evaporation trap
9 500.0 final evaporation phase

10 169.4 adiabatic decompression to release trap

11 80.0 release & pre-TOF
12 2.6 magnetic lens
13 20.0 delay (eddy currents)
14 14.6 adiabatic rapid passage
15 6.0 Stern-Gerlach separation of states
16 2659.4 maximum additional TOF
17 360.1 detection & camera readout

4721.3 total time

Table 2.3: Overview of the individual steps within an experimental sequence with 2.7 s
TOF, which is defined as the time between the magnetic lens (step 12) and detection
(last step). The durations of additional actions required for the listed steps are included
if appropriate, for example the generation of a homogeneous magnetic field for optical
pumping (step 4).

gradient and the detuning of the cooling laser (step 2). Afterwards, the atoms are
precooled to approximately 20 µK by polarization gradient cooling. In this stage,
all Zeeman substates of the F = 2 manifold are populated. Optical pumping into
the mF = 2 Zeeman substate using the σ+-polarized detection light increases the
number of atoms in the first magnetic trap by a factor of three compared to no
optical pumping. The atom number in this trap is N ≈ 4 ⋅ 107.

The first magnetic trap is adiabatically compressed in step 6 to increase the elastic
collision rate for a fast evaporation. The evaporation phase (steps 7-9) is also shown
in Fig. 2.18. The frequency of the so called rf knife is reduced in six linear ramps from
23.4 MHz to 1.572 MHz. The last two ramps are conducted at a reduced rf amplitude
(70% and 2% of the initial value, respectively). After step 9, approximately 3 ⋅ 105

condensed atoms are within the final evaporation trap. The total duration up to
this point is 1.4 s.

In order to reduce the velocity spread by a magnetic lens in step 12, the positions
of atoms and lens have to match. For this reason, the trap is moved to the desired
position and is thereby decompressed, too (step 10). The pre-TOF is the time in
between the release of the atoms from the trap and the lens. It is the analog to the
distance from an optical lens and should be equal to the focal time of the magnetic



2.3 Experimental sequence and performance 49

a
d
ia

b
a
ti
c
 d

e
c
o
m

p
re

s
s
io

n

23.4

1.572

Time (s)

0 0.2 0.4 0.6 0.8 1

R
a
d
io

 f
re

q
u
e
n
c
y
 (

M
H

z
)

0

5

10

15

20

25

Figure 2.18: The radio frequency for evaporative cooling is ramped down from 23.4 MHz
to 1.572 MHz in six linear ramps. In between, the magnetic trap is adiabatically decom-
pressed (shaded gray).

lens to reach a collimated, that is non-expanding, ensemble in an idealized view.
If a sequence includes a magnetic lens, the TOF is defined as the time in between
the lens and detection. It is 2.7 s in the example sequence (steps 13-16). On the
contrary, if no magnetic lens is applied, the TOF is defined as the time in between
release and detection. A brief delay of 20 ms (step 13) is inserted directly after the
lens to rule out transient forces by decaying eddy currents in combination with a
homogenous magnetic field when switching the coils back on.

At the beginning of the TOF in step 14, the atoms can be transferred to the to
first order non-magnetic mF = 0 state by an adiabatic rapid passage. The remaining
states which are populated because of a non-unity transfer efficiency can be removed
by a simple Stern-Gerlach (SG) type experiment: A current of 1 A through the BC-Z
is maintained for 3 ms to generate a magnetic gradient field of 590 G/m at release
position A or 310 G/m at position B (step 15). The proximity to the chip wires
facilitates these large magnetic field gradients. The resulting relative acceleration of
the five Zeeman substates of the F = 2 hyperfine manifold is 1.9 m/s2 and 1.0 m/s2,
respectively. The subsequent free evolution time in step 16 can last up to almost
2.7 s. Finally, the atomic ensemble is detected by absorption imaging. Its duration
is ultimately limited by the readout of the atom and beam images (2×180 ms) rather
than the imaging itself (2 × 40µs).

The example sequence in Table 2.3 is illustrated in the bottom of Fig. 2.19. Two
full sequences, even though at a reduced TOF, can be accommodated in a single
drop, too. This is shown in the top of the figure with the TOF exemplarily chosen
to be 200 and 400 ms. In a catapult flight, up to four sequences can be conducted.
Alternatively, a single sequence with 7 s TOF is conceivable. It should be noted
at this point that there is no difference in the nomenclature between drops and
catapult flights in order to keep a successive numbering (Drop 1, 2, ...). The vast
majority are actual drops and only Drops 22-30 are catapult flights. The individual
absorption images within a drop or catapult flight are labeled with lowercase letters.
For example, the second image acquired in Drop 208 is referred to as D208b.
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Figure 2.19: Comparison of the experimental sequence in Table 2.3 (bottom time line)
to two similar successive sequences with a reduced TOF (top time line). Both require the
full 4.72 s of microgravity time that is available in drop mode. The first time-slot (orange,
MOT+cMOT) comprises MOT-loading, compressed MOT, polarization gradient cooling
and optical pumping (steps 1-4 in Table 2.3). The subsequent green slot (compression)
comprises steps 5 and 6. The following ones are the initial phase of evaporative cooling
(blue, step 7), adiabatic decompression (green, step 8), the final phase of evaporative
cooling to a BEC (blue, step 9), adiabatic decompression to the release trap (green, step
10), release, pre-TOF and magnetic lens (light gray, steps 11 and 12), adiabatic rapid
passage, Stern-Gerlach separation of states and a free evolution time (dark gray, steps
13-16) and finally the detection of the atoms (red, step 17). A short idle time (82 ms) in
between two sequences is required for technical reasons.

The presented sequences are designed specifically for the drop tower. Since the
duration of lab-based sequences is not limited, the time for MOT loading and evap-
orative cooling could be longer to increase the number of atoms in the BEC. On the
other hand, this is not required and reduces the repetition rate. Hence, the sequence
up to the BEC in step 9 is not altered in ground-based operation, except for the
final radio frequency for measurements with a thermal ensemble.

Two different release traps are used for step 10 [A and B, see Fig. 2.12(b)]. Since
release trap B is unable to support the atoms against gravity, only release trap A is
suitable for the lab environment. As mentioned earlier, the time in between release
and detection is limited due to the gravitational acceleration. The cloud’s expansion
is not a problem at these timescales. Hence, the application of a magnetic lens is not
required in the lab. It would be quite difficult anyway, because the atoms are falling
during the application of the lens. For both reasons, a meaningful ground-based
characterization of a magnetic lens is not possible.

The experimental sequence can be optimized under different constraints. An
optimization for speed yields a BEC with 4 ⋅104 atoms after 0.85 s (all times without
detection). The number of condensed atoms at a 1 Hz rate is 1⋅105 and the maximum
overall number is 4 ⋅ 105 after 1.6 s. These Q-2 performance benchmarks have been
published already [78]. They are shown in Fig. 2.20 by the blue circles [ 1○ − 3○]
in comparison to other experiments capable of creating 87Rb-BECs. The symbols
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Figure 2.20: Comparison of different machines capable of creating 87Rb-BECs. The three
consecutively numbered blue circles show the Q-2 performance for different configurations:
optimized for speed 1○, for atom number at 1 Hz rate 2○ and for the highest number
of atoms (in the BEC) 3○. The symbols indicate the trap type: chip traps (circles),
dipole traps (squares) and magnetic (non-chip) traps (diamonds). The open symbols
highlight transportable setups, all of which are using chip traps. The colored circles
(green and red) are different configurations of the same experiment. The maximum flux
of condensed atoms achievable with Q-2 is 2.5 ⋅ 105 atoms/s, which is shown as the blue
line for comparison.

indicate the type of trap used for evaporative cooling: Chip traps (circles) [69, 118–
121], dipole traps (squares) [122–124] and magnetic (non-chip) traps (diamonds) [63,
125] are possible. The two fastest BEC machines (Q-2 and [118]) use chip traps and
are portable (open symbols). The two colored sets (green and red) indicate different
configurations of the same experiment as given in the respective publication.

Q-2 can produce a flux of 2.5 ⋅ 105 condensed atoms per second. This flux is
highlighted as the blue line in Fig. 2.20 and is comparable with the best lab-based
machines [63, 124–126]. In comparison to Q-1 [69], the repetition rate could be
increased by more than a factor of ten and the flux by more than two orders of
magnitude.

Some of the steps in Table 2.3 are discussed in the remaining chapters. For
example, the adiabatic rapid passage is the subject of Chapter 4. The influence of the
release mechanism of the atomic ensemble onto its center of mass motion is explained
in Chapter 5. The magnetic lens is finally discussed in Chapter 6. A detailed
understanding of the magnetic fields and their control within the Q-2 experiment
is required for these chapters. Hence, Chapter 3 is devoted to the magnetic field
control within Q-2.
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Chapter 3

Magnetic field control

Precision measurements using cold atoms require an excellent control over the mag-
netic field. A detailed knowledge of the field, its gradient and curvature and also
their time dependence are essential for all remaining chapters. The microgravity
campaigns with the Q-2 experiment require an extensive use of numerical simula-
tions. Their accuracy depends, among others, on the accuracy at which the magnetic
field environment is known. This chapter begins with the characterization of the
homogeneous magnetic field by the set of Helmholtz coils (x, y and z) and the off-
set field at zero current. The switching dynamics of the coil and chip currents is
shown in the second section. Afterwards, the customization of the course of the
actual current through these structures is demonstrated. This chapter concludes
with measurements of the magnetic field gradient and transient forces by changing
currents through the coils.

The author contributed significantly to the techniques, measurements and conclu-
sions presented in this chapter. Christian Deppner assisted the measurements on the
coil calibration presented in the first section. The work described in Section 3.2 was
conducted by Jan Rudolph together with the author. The measurements in micro-
gravity were a joint team effort by Jan Rudolph, Christoph Grzeschik, Alexander
Grote, Christian Deppner and the author with additional support by Waldemar
Herr. The evaluation of the data presented here and the technique described in
Section 3.3 were performed by the author.

3.1 Homogeneous magnetic fields

The magnetic field can be measured by probing the transition frequency between
the Zeeman substates in the F = 2 ground state manifold. This rf spectroscopy
is explained in depth in Section 4.3. The accuracy is approximately 1 mG. Each
Helmholtz coil has a fixed conversion factor of current to magnetic field determined
by its geometry in combination with the magnetic shield. This conversion factor is
independent of the polarity. Still, the current drivers might be gauged unequally
imitating unequal conversion factors. This is checked by measuring the magnetic
field for a set of positive and negative currents. An example measurement is shown
in Fig. 3.1(a) for the z coil revealing a conversion factor of 6.959(1) G/A for positive
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Figure 3.1: (a) The data points show the magnetic field measured by rf spectroscopy at
different currents through the z coil. The current to magnetic field conversion factors for
positive and negative currents are determined by linear regression (solid line) and given in
the figure. (b) shows a magnified view of (a) which is augmented by the same measurement
with inverted current driver outputs to discern the offset current (+0.4(1) mA) and the
offset field (-3.8 mA ≡ +27(1) mG).

currents and 6.964(1) G/A for negative ones by linear regression. As a matter of
fact, the conversion factors are slightly different. The uncertainty is on the level of
the discretization of the analog outputs controlling the current drivers (20 V/216 ≈
0.3 mV ≡ 0.3 mA). No error bars are shown because they are much smaller than
the data points themselves. The time between switching the coil current on and
the rf spectroscopy is 6.3 ms, which is longer than the settling time of the coils (see
next section). In addition, this delay time can also affect the measurement in the
presence of strong magnetic field gradients. However, this effect can be neglected
here as will be shown below.

The closer look in Fig. 3.1(b) further reveals that both linear fits do not intersect in
the origin. A positive minimum in the magnetic field can be caused by residual offset
fields in the orthogonal directions (other than z in this case). Since rf spectroscopy
is sensitive to the absolute value of B, physically reasonable intersections are bound
by zero. Nevertheless, a higher sensitivity to such offset fields can be expected with
the probe field co-aligned. This is because the resulting magnetic field is the vector
sum of the strong probe field and a small offset field. Co-aligned, the signature
of such an offset field is the intersection at a nonzero current. Nonetheless, this is
indistinguishable from an offset current of the current driver using the measurement
in Fig. 3.1(a) only. For this reason, the same measurement is repeated with an
inverted output of the current driver [dashed orange line in Fig. 3.1(b)]. The abscissa
refers to the actual current through the coil rather than the current driver output.
The blue line is the same as in (a) with its minimum at -4.2 mA. If the current drivers
had zero offset current, this minimum would be caused by the offset field only and
remain unchanged when inverting outputs. Nonzero offset currents, however, shift
the intersection by twice their value. The fitted offset current is +0.4 mA, which is
again on the level of the discretization of the analog outputs. The offset field in the
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radius (mm) Imax (A)
’-’ conversion
factor (G/A)

’+’ conversion
factor (G/A)

Boffset (mG)

x coil 80 5 1.926(1) 1.922(1) 1(1)
y coil 65 2 14.307(2) −3(2)
z coil 49 2 6.964(1) 6.959(1) 27(1)

Table 3.1: The table lists the coil radii, the maximum currents without saturation ef-
fects, the current-to-field conversion factors for positive and negative currents and the
static magnetic offset fields (Boffset). The latter three were determined in calibration
measurements as exemplarily shown in Fig. 3.1 for the z coil.

z direction is 27(1) mG. In fact, this is the only direction with a significant offset
field. The remaining coils (x and y) are characterized by similar measurements.
Their results are summarized in Table 3.1. The y direction cannot be probed at
the same level of precision because the field is almost parallel to the alternating B
vector of the rf field.

3.2 Switching dynamics

The current drivers need a finite time to establish a steady current through a load.
Inductive loads such as coils have a longer settling time than ohmic ones (chips).
Each coil in combination with the internal capacitance Ci of its HF current driver
constitutes a damped RLC-oscillator. Its resonance frequency is given by:

f = 1

2π

¿
ÁÁÀ( 1

LcoilCi

)
2

− ( Rcoil

2Lcoil

)
2

, (3.1)

where Rcoil is the coil’s ohmic resistance and Lcoil the inductance [127]. The current
drivers are pure PI-controllers. For this reason they are rather slow and require many
periods of the oscillation to stabilize a current. This can be sped up by introducing
a bypass for the current which changes the impedance of the load. A single resistor
would allow for steady current through the bypass. The correspondingly lower
current in the coil can be re-calibrated. It is, however, temperature dependent
because the load can heat up and the current ratio changes. This steady current can
be blocked by a capacitor. A circuit diagram is shown in Fig. 3.2. The dashed line
represents the current driver. All parameters are given in Table 3.2. Both bypass
parameters, Cb and Rb, were optimized experimentally to minimize the settling
time. For the y coil, one of the two parallel 4.7 µF internal capacitors had to be
removed for optimum performance. Numerical simulations of the full circuit show
that the bypass reduces the frequency of the oscillation at a significantly increased
damping rate. The resulting damping rates exceed the corresponding frequencies by
approximately a factor of three.

The resulting switching dynamics of the coils is shown in Fig. 3.3(a). It is the
course of the current when changing the control from 1 A to 0 A. The chip currents
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Figure 3.2: The equivalent circuit diagram of a current driver (dashed line) with its
internal capacitance Ci and a coil as an external load is shown. The coil is subdivided into
its inductance Lcoil and ohmic resistance Rcoil. A current bypass comprising a capacitor
Cb and a resistor Rb is connected in parallel to the coil.

Lcoil

(mH)
Rcoil

(Ω)
Ci

(µF)
f0

(kHz)
Cb

(µF)
Rb

(Ω)
f

(kHz)
δdamp

(kHz)

x coil 0.177 0.664 9.4 3.9 30 5.7 3.2 9.4
y coil 4.676 2.862 4.7 1.1 20 22.0 0.6 1.9
z coil 0.438 0.922 9.4 2.5 50 2.5 0.9 3.2

Table 3.2: Electrical parameters of the circuit in Fig. 3.2 for the three coils. The ohmic
resistance Rcoil includes the conducting wires to and from the coil. The oscillating fre-
quency of the pure RLC-oscillator (without the bypass) is f0. With the bypass it reduces
to f and the oscillation is damped at a rate δdamp. The latter two are determined by
numerical simulations and f0 is calculated using Eq. (3.1).

can be changed more rapidly as depicted in (b). An impedance matching is not
necessary here. Among the coils, the x coil is the fastest one by virtue of its smallest
inductance. Without any limitations on the supply voltage, these so called response
functions look the same, independent of the requested change in current. Such
systems are called linear. Yet, small differences exist, especially when requesting
larger currents. This is due to the finite supply voltage. The maximum currents up
to which such nonlinearities are negligible are given in Table 3.1 as Imax.

3.3 Customizing current ramps

Within an experimental sequence the coil and chip currents should follow a prede-
termined course. In some steps, for example MOT loading (see Table 2.3), a 1 ms
delay of the current can be neglected. In others, for example the magnetic lens, it
is crucial. Such a lens is used as an example in this analysis, but the formalism
itself is more general. The lens is a rescaled version of release trap A (see Fig. 2.12),
which is switched on and off within 6 ms with an approximately Gaussian shape.
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Figure 3.3: Step response of the current to the control step 1 → 0 (at t = 0) for the x, y
and z coil (a) and the BC-Z and SC-Z (b).

It cannot be exactly Gaussian, because the current needs to start at zero or the
previous value, which is encoded by zero in arbitrary units. This desired current is
shown as the solid gray line in Fig. 3.4. The goal is to determine precisely the shape
of control signals for the current drivers (control ramp), such that the y coil and
both chips (BC-Z and SC-Z) respond in their way to produce the desired currents.

In signal processing, the system response to a unit step function is called step
function response or simply step response (SR). For practical reasons this is redefined
as the step from one to zero in this work (see Fig. 3.3). For the calculation it is
useful to introduce the impulse response (IR):

IR = d

dt
SR, (3.2)

which is simply the time derivative of the SR. The system response is then:

response = −control ∗ IR, (3.3)

where the ∗ denotes a convolution. The minus sign is a consequence of the redef-
inition of the SR. To solve this equation for the control, the Fourier transform is
taken:

F {response} = −F {control} ⋅F {IR} (3.4)

and the identity that the Fourier transform of a convolution of two functions is
equal to the product of the Fourier transforms of the individual functions is invoked.
Rearranging and taking the inverse Fourier transform yields:

control = −F−1 {F {response}
F {IR}

} . (3.5)

The response should be equal to the desired curve and can be replaced by it in
the equation. The resulting control signal is shown as the dash-dotted black line in
Fig. 3.4(a) for the y coil and omitted in (b) because it would be hardly distinguish-
able from the desired curve. The measured system response to the respective control
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Figure 3.4: The figures show the application of Eq. (3.5) to the y coil (a) and the BC
(b) with a quasi-Gaussian shape as a desired response (solid gray line). The calculated
control for the y coil is shown as the dash-dotted black line in (a). It is omitted in (b),
because it is hardly distinguishable from the desired current itself. The actual response
to the respective control is shown as the dashed blue line. It is deviating very little from
the desired current, as shown by the error signals (dotted orange lines).

is shown as the dashed blue line. It resembles the desired curve almost perfectly for
the BC and SC (not shown). The y coil response deviates by less than 2% (dotted
red line) because of small nonlinearities in the system. A higher precision can be
achieved by applying Eq. (3.5) to the inverse error signal as the desired response
and adding the resulting control as a correction to the initial one.

Equations (3.2) to (3.5) implicitly assume a continuous basis and functions defined
on the interval (−∞,+∞). Neither is the case in practical applications. In these
cases, the Fourier transform becomes discrete and the impulse response must vanish
outside of some finite interval.

All control ramps are bound to the domain [0,1] in the experiment control. With
this limitation the minimum total ramp time for the y coil to be able to follow
such a Gaussian ramp is 3.6 ms. Supply voltage limitations can set in even earlier
depending on the desired maximum current.

3.4 Magnetic gradient fields

The job of a Helmholtz coil is to generate a homogeneous magnetic offset field. Even
though the atoms are in the center of all Helmholtz coils to a 1 mm precision, which
is on the scale of typical position differences within the experimental sequence, there
are static magnetic field gradients. Furthermore, also transient accelerations (kicks)
arise when a coil current is changed. Both, gradients and kicks, are proportional
to the respective coil current, but the proportionality factors are different for the
three coils. The first part of this section characterizes these effects in ground-based
measurements. In the second part, these results are compared to data taken in
microgravity.
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Figure 3.5: Both figures show differential time of flight data (filled circles) to measure
the effect of switching a coil current from zero to a specific value, for example Iz = 1.5 A
in the z coil (a). This current is kept constant for the interaction time. The x coil data
points in (b) are plotted with the same color code as in (a). The lines are quadratic fits
to the corresponding data points, all of which were acquired with rubidium atoms in the
mF = 2 substate.

3.4.1 Ground-based measurements

The ground-based measurement of small kicks or accelerations is difficult, because
the sensitivity to these effects scales linearly and quadratically with the available
TOF, respectively. In any case, these measurements set upper bounds on such ef-
fects. A small increase in sensitivity is achieved by an upward acceleration of the
release trap prior to the release. This extends the available TOF to approximately
34 ms with Detection 2, which is required for 3D information. The effects are mea-
sured by comparing the position difference of two sets of time of flight data, one of
them with the probe field switched on. Two example measurements for the x and
z coil are presented in Fig. 3.5. A current of 1.5 A was chosen for the z coil in (a)
and Ix = 5 A was selected in (b). Both of them result in B ≈ 10 G. Each data point
is the average over ten of these differential measurements. The static accelerations
and kicks from switching are determined by quadratic fits to the respective data
sets. The largest of all effects is the kick of the z coil in the negative z direction,
that is towards the chip. In contrast to this, the effect by the x coil is so weak such
that it vanishes within a statistical scatter in the atomic position. The y coil has an
intermediate effect (not shown). This correlates with the coil radius (see Table 3.1).

All effects are summarized in Table 3.3. The values are normalized to a field
strength of 1 G to make them comparable. Most accelerations are smaller than
their 1σ uncertainty, which is given in parentheses. The only exceptions are the
y direction for y coil currents and the z direction for the x coil. The situation is
different for the kicks, where three values are statistically significant. One of them,
the z kick of the z coil, can be seen in Fig. 3.5(a). The statistical variations can
be reduced by averaging, provided that the system is sufficiently stable. To gain a
factor 100, for example, 10 ⋅ 1002 = 105 averages would be required. This would take
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acceleration (mm/s2/G) kick (µm/s/G)
ax ay az v0,x v0,y v0,z

x coil 1(1) 0(2) −4(3) −2(8) 6(23) 17(34)
y coil 0(1) −2(1) −1(1) 3(3) 39(8) −84(10)
z coil 1(1) 2(2) 1(3) 14(9) 37(20) −633(28)

Table 3.3: The fitted accelerations due to a static magnetic field gradient of the three
coils are given for the different spatial dimensions. The kick by switching the coil on is
listed in the right half of the table. Both are normalized to a homogeneous magnetic field
of 1 G corresponding to different coil currents (see Table 3.1). The values refer to rubidium
atoms in the mF = 2 substate.

two years for a single coil and produce 20 TB of data, which is clearly not an option.

The coil calibration measurement (see Table 3.1) is valid for a single point within
the vacuum chamber only, at which the rf interaction took place. The data in
Table 3.3 can be used to estimate the valid range up to which this calibration can
be expected to provide a reliable estimate of the magnetic field. The accelerations az
(ay) by the x coil (y coil) serve as examples. The expected magnetic field gradients
can be estimated as follows [see Eq. (4.30) in Section 4.2]:

∂B

∂z
∣
Ix=1 A

= − m

µBgFmF

az = −155.61
G/m

m/s2 ⋅ (−4) mm

G s2 ⋅ 1.922
G

A
⋅ 1 A ≈ 1

mG

mm
,

∂B

∂y
∣
Iy=1 A

= − m

µBgFmF

ay = −155.61
G/m

m/s2 ⋅ (−2) mm

G s2 ⋅ 14.307
G

A
⋅ 1 A ≈ 4

mG

mm
.

Since typical position differences are smaller than 1 mm, this effect is of the same
order as the measurement uncertainty of the coil calibration in Table 3.1 and can
be neglected for all measurements in this work.

The x coil imprints the smallest kick per Gauss on the atoms. For this reason,
it is used to provide a small quantization field during long TOFs and a large one
for the adiabatic rapid passage. A delay time of 5 ms between release and coil
switching was implemented for the measurements in this section. Other ground-
based measurements have shown, that the coil kicks can increase with decreasing
delay time. A possible explanation are eddy currents in the copper chip mount, but
this could not be proved so far. This is the reason for the delay of 20 ms prior to
the adiabatic rapid passage (see Table 2.3).

3.4.2 Measurements in microgravity

Measurements in microgravity are different from ground-based ones because of a pos-
sible static background magnetic field gradient superimposed to the one generated
by the coils. In the lab, the acceleration due to this static gradient is superimposed
with the much stronger gravitational acceleration and is indistinguishable from it.
Both these accelerations do not affect the differential ground-based measurement,
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Figure 3.6: The data points (full circles) show the position of a magnetically lensed
BEC versus the time of flight after the lens in the Detection 1 coordinate system. The
atoms are in the mF = 2 substate at a quantization field of approximately 1 G generated
by 0.5 A in the x coil. The acceleration due to the magnetic field gradient is determined
by a quadratic fit (solid lines). The given errors are fit uncertainties.

because they are common effects. In microgravity, the acceleration due to the com-
bined background and coil gradient can be fitted with time of flight data of atoms
in, for example, the mF = 2 substate.

Figure 3.6 shows such a data set (filled circles) imaged by Detection 1 for a
quantization field ofB ≈ 1 G generated by 0.5 A in the x coil. The combined gradients
(background + coil) determined by a quadratic fit (solid line) are:

∂B

∂x′
∣
Ix=0.5 A

= +0.19(3) G

m
,

∂B

∂y′
∣
Ix=0.5 A

= −0.60(3) G

m
.

(3.6)

The images from Detection 2 cannot provide full 3D information, because the left
cloud is not within the detection zone for the entire TOF. The y coordinate, however,
can be extracted from the right cloud only to a sufficient precision. This data set
is shown in Fig. 3.7 with a fitted gradient of 0.15(1) G/m. With this additional
information, the three spatial components of the gradient are:

∂B

∂x
∣
Ix=0.5 A

= 1.00(2) G

m
,

∂B

∂y
∣
Ix=0.5 A

= 0.15(1) G

m
,

∂B

∂z
∣
Ix=0.5 A

= 0.19(3) G

m
.

(3.7)

In order to discern background and coil contributions to this gradient, additional
microgravity data are required with a different current in the x coil. The current
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Figure 3.7: The data points were taken simultaneously with the ones in Fig. 3.6, but
with Detection 2. The plotted position is the y coordinate determined from the direct
image [right cloud, see also Fig. 2.10(b)]. The quadratic fit (solid line) yields a gradient
of 0.15(1) G/m in this direction.

must be nonzero in order to avoid a random mixing of the five Zeeman substates.
Figure 3.8 shows such a data set with Ix = 0.1 A and resulting gradients of:

∂B

∂x′
∣
Ix=0.1 A

= −0.21(3) G

m
,

∂B

∂y′
∣
Ix=0.1 A

= −0.68(2) G

m
.

(3.8)

Information from the second detection system is not available for this data set.
For this reason, a comparison is limited to the x′ − y′ coordinate system. If the
measured gradients were exclusively from the background, for example by a residual
magnetization of the magnetic shield or sources of magnetic dipole fields within,
the measured gradients would be unaffected by the different coil current. On the
contrary, if the coil’s gradient were the sole cause, the measured gradients would be
suppressed by a factor of five according to the current ratio. Neither of this is the case
and both sources of magnetic field gradients need to be taken into consideration.
In fact, a small x current can even reduce the background gradient in these two
directions. At Ix = 0.3 A, the gradient in the z direction would vanish, since the coil
contribution amounts to approximately one Gauss per meter and ampere. In the
language of Table 3.3 this is equivalent to

az =
0.19 G

m
−(−0.21) G

m

0.4 A⋅1.922 G
A

− m
µBgFmF

= −3.3(3) mm

s2 G
,

which is in good agreement to the less accurate ground-based measurement of the
accelerations due to the x coil gradient.

In addition to the time of flight data presented above, further information can be
extracted from microgravity data if atoms in more than one Zeeman substate are
present. For example, a large fraction in the mF = 0 substate and smaller fractions in
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Figure 3.8: The data set is similar to the one in Fig. 3.6, but acquired at a quantization
field of 0.2 G. The fitted magnetic field gradients are −0.21(3)G/m in the x′ direction and
−0.68(2)G/m in the y′ direction.

mF = ±1 can be prepared by an adiabatic rapid passage (see Chapter 4). These atoms
separate in space after a sufficiently long TOF, because the force due to the magnetic
field gradient is proportional to the magnetic quantum number. Aside from that,
a large magnetic field is required for the passage. This field is realized by Ix = 5 A
and thus involves the two switching processes Ix = 0.5 A → 5 A and Ix = 5 A → 0.5 A
if the quantization field during the TOF is generated by Ix = 0.5 A. Both of these
processes can produce a kick, even though the ground-based measurement could not
resolve it. A kick by the switch-on would act on all atoms in the same way because
they are still in the mF = 2 substate. The switch-off kick, on the contrary, would be
state-selective. In the absence of such a kick, the different Zeeman states separate
according to the magnetic field gradient. The angle γ connecting the centers of mass
would then depend on the ratio of the gradients:

γ = tan−1
⎛
⎝
−
∂B
∂x′
∂B
∂y′

⎞
⎠
= 17(2)○. (3.9)

A nonzero coil kick can result in a deviating angle, especially for short TOFs. Fur-
thermore, the separation of the subclouds can differ from the expectation.

Example images by Detection 1 are shown in Fig. 3.9(a) for 0.5 s TOF and in
Fig. 3.9(b) for 1 s TOF. The 0.5 s in (a) are already enough to separate the states
by 432 µm. In (b), they are separated even further (1.68 mm). For both images,
the quantization field was generated by Ix = 0.5 A. The expected angle according to
Eq. (3.9) is visualized as the dotted white line in both images. In (a), the actual angle
is 29° and deviates significantly from this expectation. The equivalent state-selective
kick can be calculated from the data by Newtonian kinematics. With respect to the
mF = 1 atoms it is:
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Figure 3.9: Detection 1 absorption images with the largest fraction of the magnetically
lensed atoms in the mF = 0 substate and smaller fractions in mF = ±1 after a TOF of 0.5 s
(a) and 1 s (b). A magnetic field gradient and different initial velocities separate the states
by 432 µm in (a) and 1.68 mm in (b). The expected angle [see Eq. (3.9)] according to the
measured gradient (see Fig. 3.6) is 17° and shown by the dotted white line. The actual
angle is 29° in (a) and 19° in (b). The position of the mF = 0 atoms expected from time
of flight imaging is marked as the gray ′×′ assuming that a ramp-up of the x coil within
1.5 ms makes no kick. The 1σ confidence bound is depicted as the dashed gray ellipse. If
the slow ramp-up produced twice the kick in Eq. (3.10) (mF = 2 instead of mF = 1), the
expected position is marked as the ′+′.

∆v′x =
−d ⋅ tan(γ)

2t
√

1 + tan2(γ)
− 1

2
ax′t ≈ −79(19) µm

s
,

∆v′y =
d

2t
√

1 + tan2(γ)
− 1

2
ay′t ≈ −59(20) µm

s
,

(3.10)

where d = 432(20)µm is the distance between the mF = ±1 substates in Fig. 3.9(a),
t = 500 ms − 27 ms = 473 ms is the remaining TOF after switching the x coil from
Ix = 5 A → 0.5 A and the accelerations ax′ and ay′ are half the fitted values from
Fig. 3.6 (mF = +1 instead of mF = +2). The effect on the mF = −1 atoms is just the
opposite.

These kicks correspond to −9µm/s/G in the x′ direction and −7µm/s/G in the y′

direction for a comparison with Table 3.3. They lie well within the bounds set up by
the ground-based measurement. It must be noted at this point that all these values
extracted from Fig. 3.9(a) are based on this single data point. Even though this
single shot image has the advantage that common systematics on the center of mass
motion drop out, for example the residual air drag in the tower, more data points are
required for a reliable estimate. So far, there exists only one similar measurement
which is shown in Fig. 3.9(b). Unfortunately, it is very dilute due to the long TOF.
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Figure 3.10: Expected coarse of the mF = 1 to −1 spacing (a) and the angle γ of the
line connecting the centers of mass of the different Zeeman states (b) is shown with the
coil kick estimated from Drop 122a [Fig. 3.9(a), see also Eq. (3.10)]. The corresponding
values (dashed blue lines) are highlighted and are met by construction. The values corre-
sponding to Drop 126a [Fig. 3.9(b)] are shown as the dashed orange lines. The expected
angle without any kicks is 17(2)○ and shown by the dash-dotted line in (b). The corre-
sponding expected spacing in (a) is illustrated with its 1σ confidence interval defined by
the uncertainty in the gradient (shaded gray).

In addition, the experimental sequence was slightly different such that the switch-off
kick is not comparable. The difference was a ramp-down of Ix within 1.5 ms rather
than simply switching the current with the step response. It is interesting to see
that the measured angle hardly differs from the zero-kick estimate.

The expected course of the spacing d and the angle γ using the estimated kicks
from above are shown in Fig. 3.10 (solid blue lines). The measured spacing for 500 ms
(dashed blue line) coincides with this expected one by construction. The separation
for 1 s TOF (dashed orange line) deviates by approximately 200 µm, which is on
the order of the uncertainty in the measured value. In the absence of kicks, the
spacing would follow the dash-dotted line with the shaded gray area indicating the
confidence bound by the gradient measurement. It can be seen that the blue line is
almost within this confidence interval, such that the spacing alone is no good probe
for the measurement of coil kicks. The angle in (b) tends towards the dash-dotted
black line at 17°, which is the expected value in the absence of kicks. At 500 ms, the
angle difference is 12° corresponding to 6σ, which is significant.

A potential mitigation strategy to reduce this not sufficiently characterized kick is
to linearly ramp the x coil current, for example within 1.5 ms, rather than switching
it with the step response. This was actually performed for the switch-on process in
Figs. 3.9(a) and (b). If this strategy was sufficient, the position of the mF = 0 atoms
should coincide with the position expected from time of flight imaging of the mF = 2
atoms (Fig. 3.6). Assuming that the center of mass velocity of the mF = 0 atoms
remains constant after the adiabatic rapid passage, the expected position is shown
as the gray ′×′ in Figs. 3.9(a) and (b). The 1σ uncertainty from the corresponding
fits is shown as the dashed gray ellipse around the expected position. The mF = 0
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atoms lie well within this range. If this slow switching had produced the same
kicks (without considering sign changes, but including the factor 2 for the different
Zeeman substate), the expected position would have been the one marked by the
gray ′+′. The positions corresponding to the two assumptions are separated by 95 µm
corresponding to 4σ. Hence, the slow ramp-up of the x coil might indeed reduce the
kick imprinted on the atoms.

Conclusions

In this chapter, all bias coils were characterized in ground-based calibration mea-
surements to a mG precision. In this context, a static magnetic background field
of 27 mG was found in the z direction. The dynamics of the magnetic field after
requesting a different current depends on the characteristic step response of the
respective coil or chip in combination with the current driver. These response func-
tions were measured and a method for making the actual current response match a
desired shape was demonstrated. Still the time scales are limited by the character-
istic switching time, which is approximately 0.1 ms for the chips and up to 2 ms for
the coils.

A static magnetic field gradient was measured in microgravity by tracking the
accelerated motion of atoms in the mF = 2 substate. This gradient includes contri-
butions from a static background and the x coil and thus depends on Ix. Within the
Detection 1 camera frame (x′,y′), the gradient is (0.19,−0.6)G/m for Ix = 0.5 A and
(−0.21,−0.68)G/m for Ix = 0.1 A. The Detection 2 system had been installed within
the magnetic shield just before both data sets were acquired. These results prove
the existence of a static background magnetic field gradient, because the values are
not proportional to Ix. The source of this gradient could not be identified. The gra-
dient due to the coils was measured in a ground-based measurement, too, but the
sensitivity was insufficient to gain significantly more information because of the lim-
ited TOF. Still, these measurements provide an upper bound on the magnetic field
gradients by the coils. The largest acceleration per Gauss was az = −4(3)mm/s2/G
for the x coil, which corresponds to a gradient per Gauss of 0.6(5) G/m/G. This is
compatible with the result az = −3.3(3)mm/s2/G obtained in microgravity.

Besides the static gradient, all coils are responsible for a transient gradient when
the coil current is changed. The resulting velocity change experienced by the atomic
ensemble can amount to several mm/s as proven in a ground-based measurement.
The largest contribution stems from the z coil. For example, switching it to 1 A
results in a velocity change of 4.4 mm/s in the z direction. The transient behavior
could be demonstrated in microgravity, too. Here, the ratio of the x′ to y′ gradient
defines the angle at which different Zeeman states separate. A deviation from the
expected angle was observed, which can be explained by a transient gradient due to
the coil switching process. It was demonstrated for the x coil that this effect might
be mitigated by a slow ramp-up. However, this strategy is not necessarily applicable
to all coils and must be studied further.



Chapter 4

Adiabatic rapid passage

A population reversal in a two-level system by a chirped electromagnetic pulse is
called adiabatic rapid passage (ARP). The first experimental realization was carried
out in nuclear magnetic resonance (NMR) [128, 129]. Later on, ARP was successfully
applied in other fields as well [130–139]. It is not restricted to a specific range of
the electromagnetic spectrum because the required frequency solely depends on the
energy difference of the intended transition. For instance, there are realizations
using rf [130–133], microwave [132–134] and optical [135–139] pulses. In the scope
of cold atoms, ARP can be used to transfer an atomic ensemble into any particular
Zeeman state.

Camparo and Frueholz [140] have thoroughly treated ARP for a two-level system
in the dressed state formalism. Their results are recalled in the first section and
extended where necessary. These results serve as a reference for the application
to 87Rb. Furthermore, an in-depth understanding of ARP in a two-level system is
helpful when considering more complex systems.

In the second section, relevant properties of the 87Rb F = 2 hyperfine manifold
are discussed. The previous results are transferred to the dressed rubidium atom.
Section 4.3 deals with experimental parameters and procedures. Different realiza-
tions of ARPs are shown in Section 4.4. Predictions of the model as well as various
limitations are discussed.

All measurements and their analysis presented in this chapter were performed by
the author, except for the two images in Fig. 4.23. They were measured by Christian
Deppner and Merle Cornelius with support by the author.

4.1 Adiabatic rapid passage in a two-level system

In this section, the adiabatic rapid passage is explained for a simple two-level system
coupled to a single quantized field mode at frequency ωrf. Without loss of generality,
it is assumed to be in the rf regime, which is the case for all measurements presented
in this work. This so called Jaynes-Cummings model [141] has been covered in
many textbooks and is not derived here [142–144]. However, the key properties are
recalled, because they apply to more complex systems as well.
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Figure 4.1: Comparison of the dressed-state energy levels (dashed blue lines) to those
of an unperturbed system (solid black lines) as a function of the detuning ∆r. In the
unperturbed system, the diabatic states cross at zero detuning. The coupled system
exhibits an avoided crossing with a separation E+ −E− = Ωr.

The two levels involved are the excited state ∣e⟩ and ground state ∣g⟩ which are
separated in energy by h̵ωeg. These orthonormal eigenstates of the unperturbed sys-
tem are called diabatic states. The Jaynes-Cummings Hamiltonian for the dressed
system is

HJC = h̵
2
( ∆r Ωr

Ωr −∆r
) , (4.1)

with the Rabi frequency Ωr and the detuning ∆r = ωrf − ωeg. This choice in favor of
ωeg−ωrf has one advantage: An increase in ωrf increases ∆r, which is more intuitive.
With this definition, the diabatic basis for Eq. (4.1) is1:

∣e⟩ = ( 1
0

) , ∣g⟩ = ( 0
1

) . (4.2)

The eigenvectors of Eq. (4.1) are given by

∣φ±⟩ =
1√

Ω2
r + (2E± −∆r)2

( Ωr

2E± −∆r
) . (4.3)

They are called dressed states (also adiabatic states) and are stationary under HJC

with eigenvalues

E± = ±
1

2

√
Ω2

r +∆2
r . (4.4)

These eigenvalues are shown in Fig. 4.1 for Ωr = 2π ⋅ 250 kHz (dashed blue line) in
comparison to the unperturbed values (solid black lines).

The energy difference at resonance (∆r = 0) is

∆E(∆r = 0) = E+ −E− = Ωr. (4.5)

1Both these definitions are arbitrary. Inverting either of them would produce a change of sign
in the diagonal elements of HJC.
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Here, the dressed states are equal superpositions of the diabatic states

∣ψ±(t)⟩ =
1√
2
[ ∣g⟩ ± ∣e⟩ ].

In the limit of a large positive or negative detuning, they are essentially equal to
the unperturbed states:

lim
∆r→−∞

∣ψ+(t)⟩ = ∣e⟩ , lim
∆r→+∞

∣ψ+(t)⟩ = ∣g⟩ ,

lim
∆r→−∞

∣ψ−(t)⟩ = ∣g⟩ , lim
∆r→+∞

∣ψ−(t)⟩ = − ∣e⟩ .
(4.6)

The time evolution of a diabatic state under the action of HJC is a Rabi oscillation
between the two diabatic states [145]. At ∆r = 0, its frequency is the resonant Rabi
frequency Ωr while the coefficients of the superposition ∣ψ(t)⟩ = cg ∣g⟩+ce ∣e⟩ oscillate
at half the Rabi frequency, equivalent to the off-diagonal elements in HJC. The
probability to find the system in, for example, state ∣g⟩ is

pg = ∣ ⟨g∣ψ(t)⟩ ∣2 = ∣cg∣2 = ∣sin (1
2Ωrt)∣

2 = 1

2
[1 − cos(Ωrt)] , (4.7)

which oscillates with Ωr. In the off-resonant case, this frequency increases to

Ω′
r =

√
Ω2

r +∆2
r , (4.8)

while the amplitude A decreases from unity to

A = (Ωr

Ω′
r

)
2

. (4.9)

Hence, a full reversal of the atomic state is not possible by Rabi-oscillations in the
off-resonant case.

ARP for ∣e⟩→ ∣g⟩

In the following, ARP is discussed for the passage from initial state Ψi = ∣e⟩ to final
state Ψf = ∣g⟩. At an infinitely large negative detuning, the initial state is identical
to the upper dressed state [Ψ+, see Eq. (4.6)]. When the detuning is increased
slowly enough (adiabatically), the system remains in ∣ψ+⟩. At an infinitely large
positive detuning, this upper dressed state is identical to the ground state, which
is the desired final state Ψf. However, this simplified recipe neglects adiabatic and
decoherence losses. To characterize adiabatic losses, the sweep rate α is introduced
as

α = d

dt
∆r. (4.10)

Landau and Zener independently derived an expression for the probability of adia-
batic losses [146]:

PLZ = exp(−πΩ2
r

2∣α∣
) , (4.11)
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also known as the Landau-Zener formula. The probability for an adiabatic passage
through the crossing region is

Pad = 1 − exp(−πΩ2
r

2∣α∣
) . (4.12)

This gives rise to the so called adiabaticity criterion, which is rather qualitative:

∣α∣ ≪ Ω2
r . (4.13)

In any real experiment, ∆r cannot be swept from or to infinity, but has to take
finite initial (∆r,i) and final (∆r,f) values. When the perturbation is switched on,
the initial state is projected onto the new basis of dressed states. This gives rise to
further losses, because the projection of the excited state onto φ−(∆r,i) is nonzero.
The complementary probability for the desired dressed state φ+ is

Pi = 1 − ∣ ⟨φ−(∆r,i)∣e⟩ ∣2 = ∣ ⟨φ+(∆r,i)∣e⟩ ∣2. (4.14)

Since Pi is the overlap integral of the adiabatic with the diabatic state it is simply
called initial overlap of states. In an analogous manner, the final overlap can be
defined as

Pf = ∣ ⟨g∣φ+(∆r,f)⟩ ∣2. (4.15)

Decoherence is quantified by the longitudinal (T1) and transverse (T2) relaxation
time as originally defined by F. Bloch [147]:

Ṡx = 1
T2
Sx,

Ṡy = 1
T2
Sy,

Ṡz = 1
T1
Sz,

(4.16)

where Sx,y,z are the expectation values of the spin components (in the rotating
frame). T1 is also called energy relaxation time, since it depends on magnetic field
fluctuations at the Larmor frequency. It is related to spontaneous emission [148].
T2 is also known as total relaxation time, dephasing time or coherence time and can
be defined as

1

T2

= 1

2T1

+ 1

T ′
2

, (4.17)

where T ′
2 is the pure dephasing time resulting from, for instance, dephasing collisions

[140]. In the presence of decoherence, Rabi oscillations are damped at the Rabi decay
rate. The corresponding Rabi decay time can be different from the intrinsic T2 in
the presence of imperfections in the measuring apparatus, for example, gradients in
the magnetic field or the rf amplitude.
T1 can be measured by inversion recovery [149]. However, it is sufficient to consider

T2 only, because the Zeeman states are stable in the presence of a static magnetic
field.

Spin-echos, as first discovered in NMR by E. L. Hahn [150], can be used to measure
T2. The scheme is called Carr-Purcell sequence [151]: First, a π/2-pulse (X) brings
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an ensemble of spins into the y direction of the Bloch sphere. After a time τ/2n, a
sequence of n π-pulses (X2) is applied, separated by τ/n. These pulses rotate the
spins by 180° around the x direction of the Bloch sphere. Finally, a π/2-pulse is
applied, when the spin should be measured in the z direction. The overall time of
this sequence is τ and the simplest implementation with n = 1 is

X
τ

2
X2 τ

2
X . (4.18)

After the first pulse, all spins can dephase along the x-y plane for the time τ/2n.
The time evolution of some of the fluctuations which are slow compared to τ/n can
be reversed by X2. The spins rephase after another τ/2n producing the spin-echo.
Its amplitude decays as

Aecho(t) = A0 exp(− t

T2

) . (4.19)

Although, if n is chosen too small or if the pulses X and X2 are not perfect, the
echo amplitude will decay faster. Furthermore, there are systematics which are un-
compensated for by this Carr-Purcell sequence, for instance, expansion in or motion
through a magnetic field gradient by the ensemble of spins. The value for T2 that
is determined by this method can therefore be interpreted as a lower limit to the
intrinsic T2.

To minimize the effect of decoherence in ARP, the rapidity criterion can be defined
as [152]

∣α∣ ≫ Ωr

T2

. (4.20)

The probability Π to remain in the same dressed state after the passage can be
derived in a formal treatment [140]. Drawing on these results, an approximate
solution can be stated:

Π ≃ exp(− 3πΩr

8∣α∣T2

) . (4.21)

Combining Eqs. (4.12), (4.14), (4.15) and (4.21) yields an expression for the ARP
efficiency:

η = PiPadPf Π . (4.22)

Rabi cycling is a faster alternative to such a passage by a chirped rf pulse is. It
is achieved by a single π-pulse in the case of a two-level system or by a chain of
π-pulses at the correct frequencies in systems with more than two levels. However,
this scheme is less robust. Any change in Ωr induces a phase error in the π-pulse.
In addition, magnetic field changes cause a corresponding shift of the resonance fre-
quency. This entails a nonzero detuning, which in turn changes frequency [Eq. (4.8)]
and amplitude [Eq. (4.9)] of the Rabi oscillation. This is why ARP is generally fa-
vored over Rabi cycling. Still, there are occasions in which the extra time matters
and Ωr as well as ∆r are stable enough. In these cases, Rabi cycling is the better
choice.
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4.2 Properties of the 87Rb F = 2 hyperfine

manifold

All Zeeman levels of the 87Rb 52S1/2 manifold are described by the Breit-Rabi formula
for arbitrary magnetic field strengths [153]:

E(F = I ± 1

2
,mF ,Bz̃) = −

∆Ehfs

2(2I + 1)
+ gIµBmFBz̃ ±

∆Ehfs

2
(1 + 4mFx

2I + 1
+ x2)

1
2

, (4.23)

where I = 3/2 is the nuclear angular momentum, mF the magnetic quantum number,
gI the nuclear g-factor, µB the Bohr magneton, Bz̃ the strength of the quantization
field with z̃ defined as its direction and ∆Ehfs the ground-state hyperfine splitting.
The plus sign applies to the (upper) F = 2 manifold in the anomalous Zeeman regime
while the minus sign refers to F = 1. x is defined as

x = (gJ − gI)µBBz̃

∆Ehfs

, (4.24)

where gJ is the fine structure Landé g-factor of the state 52S1/2.
The energy levels according to Eq. (4.23) are shown in Fig. 4.2(a). For weak

magnetic fields, F is a good quantum number. In the regime of strong magnetic
fields, I and J no longer couple to F . This is called the hyperfine Paschen-Back
effect.

Inserting the nuclear angular momentum I = 3
2 into Eq. (4.23) and choosing the

+ sign for F = 2 yields

E(F = I + 1

2
,mF ,Bz̃) = −

∆Ehfs

8
+ gIµBmFBz̃ +

∆Ehfs

2
(1 +mFx + x2)

1
2 .

This equation can be approximated to second order in Bz̃ by a Taylor series expan-
sion of the square root at x = 0:

E(F = I + 1

2
,mF ,Bz̃) ≈ −

∆Ehfs

8
+ gIµBmFBz̃ +

∆Ehfs

2
{1 + mF

2
x

+ 1

2
[1 − (mF

2
)

2

]x2}

= 3

8
∆Ehfs + gIµBmFBz̃ +

∆Ehfs

4
{mFx + [1 − (mF

2
)

2

]x2}

= gIµBmFBz̃ +
∆Ehfs

4
[mFx +QmFx

2] ,

where the point of zero energy has was shifted to get rid of the constant term and
the abbreviation

QmF = 1 − (mF

2
)

2

(4.25)

was introduced. Inserting Eq. (4.24) yields
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Figure 4.2: (a) Zeeman structure of the two 87Rb 52S1/2 hyperfine levels. For weak mag-
netic fields (anomalous Zeeman regime), the sublevels can be described by the magnetic
quantum number mF ranging from mF = 2 (green, top) to mF = −2 (red) for F = 2 and
from mF = −1 (top) to mF = 1 (bottom) for F = 1. In the regime of strong magnetic fields,
the states are described by the quantum numbers mJ and mI (hyperfine Paschen-Back
effect). The upmost four states (green to orange) have mJ = +1
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The lower four have mJ = −1
2 and mI in reverse order. (b) The transition frequency

for neighboring states deviates from the linear dependence on B (hf
L
), which is called

quadratic Zeeman effect with the quadratic Zeeman shift ω
Q

. It is plotted for F = 2.

E(F = I + 1

2
,mF ,Bz̃) ≈ gIµBmFBz̃ +

∆Ehfs

4
{mF

(gJ − gI)µBBz̃

∆Ehfs

+QmF [(gJ − gI)µBBz̃

∆Ehfs

]
2

}

= gIµBmFBz̃ +
1

4
mF (gJ − gI)µBBz̃ +

1

4
QmF

(gJ − gI)2µ2
B

∆Ehfs

B2
z̃

= (1

4
gJ +

3

4
gI)µBmFBz̃ +

1

4
QmF

(gJ − gI)2µ2
B

∆Ehfs

B2
z̃

≈ gFµBmFBz̃ +QmF

µ2
BB

2
z̃

∆Ehfs

,

where the sum of g-factors in the first term is exactly the definition of gF for a
52S1/2 state. The approximation gJ − gI ≈ 2 was made for the second term. It can
be simplified even further by introducing the linear Zeeman shift

ω
L
= 1

h̵
gFµBBz̃ (4.26)

and the quadratic Zeeman shift

ω
Q
= 1

h̵

µ2
BB

2
z̃

∆Ehfs

(4.27)

to
E ≈ h̵ (ω

L
mF +QmFωQ

) . (4.28)
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This quadratic dependence is shown in Fig. 4.2(b), where the domain was reduced
compared to Fig. 4.2(a). In the linear regime, the transition frequencies between
neighboring Zeeman states are described by Eq. (4.26) with 2πf

L
= ω

L
. The devia-

tion of this linear dependence is called the quadratic Zeeman effect. The neighboring
transitions are separated by ω

Q
/4π in the frequency domain. This separation is not

just a small undesired perturbation, but the essential effect for an adiabatic rapid
passage in rubidium.

The quadratic approximation can be applied to a limited range of magnetic fields
only. At higher fields, the predicted transition frequencies differ from the actual
values too much. In the range plotted in Fig. 4.2(b), the relative error is 2% or
below. A field strength of 100 G can be considered critical since the deviations are
on the 6% level already. At this level, an extension of the Taylor series expansion
to the third order is recommended. This is possible with the same methods as used
below, but not required here. The error by the approximation gJ−gI ≈ 2 is negligible,
since it is on the order of 0.3%.

To avoid confusion, some more words are spent on the quadratic Zeeman effect.
Some authors [154, 155] define the quadratic Zeeman shift as the shift of the 0-0
hyperfine (clock) transition, which is just a special case. Hence, the term clock
shift is better suited for this. However, there also exists a second type of quadratic
Zeeman effect. It is a diamagnetic effect [156, 157] and of no relevance in this work.

The strong linear Zeeman shift facilitates an efficient SG separation of states by
the mF dependent force

Fi = −
∂E

∂ri
= −gFµBmF

∂B

∂ri
, (4.29)

in the spatial direction ri with i = {x, y, z}. Rearranging this equation allows for the
determination of the gradient of the magnetic field’s absolute value:

∂B

∂ri
= − mRb

gFµBmF

ai, (4.30)

where ai is the acceleration in the i direction and mRb is the mass of a rubidium
atom. The fraction amounts to 155.61 G/m

m/s2
for mF = 2, which is the relation used in

Section 3.4.
Equation (4.28) describes the energy of a state ∣mF ⟩ in a uniform magnetic field.

It can be written as an operator after replacing the mF by F̂z̃. Since ∣mF ⟩ is an
eigenvector of F̂z̃, the same holds true for Q̂mF ∣mF ⟩ = QmF ∣mF ⟩ by definition [see
Eq. (4.25)]:

Ĥ0 = h̵ (ω
L
F̂z̃ + ωQ

Q̂z̃) . (4.31)

The dressed manifold

A coupling of the Zeeman states is realized by applying a resonant or near-resonant
rf field, as described in the previous section. The oscillating magnetic field must be
perpendicular to the static field Bz̃ in order to have non-vanishing matrix elements.
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The common convention is to define the x direction (here x̃) as the direction of the
B-field vector. Adhering to this, the interaction Hamiltonian is

Ĥrf(t) = gFµBBrf cos(ωrft)F̂x̃, (4.32)

with the oscillating field amplitude Brf at frequency ωrf. The operator F̂x̃ can be
expressed in terms of creation and annihilation operators F̂±:

F̂x̃ =
1

2
(F̂+ + F̂−) , (4.33)

with2

F̂± ∣mF ⟩ = (F̂x̃ ± iF̂ỹ) ∣mF ⟩ =
√
F (F + 1) −mF (mF ± 1) ∣mF ± 1⟩ . (4.34)

To find the matrix elements of the time-independent Schrödinger picture Hamilto-
nian in a proper basis, the Schrödinger equation has to be solved for the overall
time-dependent Hamiltonian:

ih̵
∂

∂t
∣Ψ(t)⟩ = [Ĥ0 + Ĥrf(t)] ∣Ψ(t)⟩ . (4.35)

The solution is a bit lengthy but straightforward. It can be found in Appendix D.1.
Choosing the basis

∣2⟩ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟
⎠

, . . . ∣−2⟩ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0
0
0
0
1

⎞
⎟⎟⎟⎟⎟⎟
⎠

, (4.36)

the corresponding matrix representation of Ĥ is

Ĥ = h̵

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−2∆r
1
2Ωr 0 0 0

1
2Ωr

3
4ωQ

−∆r

√
3
8Ωr 0 0

0
√

3
8Ωr ω

Q

√
3
8Ωr 0

0 0
√

3
8Ωr

3
4ωQ

+∆r
1
2Ωr

0 0 0 1
2Ωr 2∆r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (4.37)

with
∆r = ωrf − ωL

(4.38)

and

Ωr =
1

h̵
gFµBBrf. (4.39)

2Since this is just a choice of coordinates, it cannot have any physical significance. In fact, all
conclusions are the same when choosing, for example, the ỹ direction. The only difference is a
phase factor in the off-diagonal matrix elements. These phase factors for the corresponding matrix
elements are complex conjugates to each other. This is of course necessary since the Hamiltonian
must be Hermitian. Choosing the x̃ direction is convenient since all coupling matrix elements are
real.
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Figure 4.3: Eigenvalues of Ĥ [see Eq. (4.37)] for B = 10 G. The solid line represents
the largest eigenvalue (E5), the dashed line E4, etc. The colors indicate the dominating
diabatic state in the decomposition of the corresponding dressed state. (a) Ωr = 2π ⋅2.5 kHz
(Ωr/B2 = 0.025 kHz/G2); The arrow shows a frequency sweep for ARP in the (upper)
dressed state ∣ϕ5⟩. (b) Ωr = 2π ⋅ 10 kHz (Ωr/B2 = 0.1 kHz/G2)

Inspection of Eq. (4.37) immediately reveals some properties of the dressed system.
By equating neighboring diagonal elements, the avoided crossings are at ∆r = ±3

4ωQ

and ±1
4ωQ

. The Rabi frequency of the ‘outer‘ transitions (i.e., mF = +2 ↔ +1 and
mF = −2↔ −1) is Ω±2,±1 = 2 ⋅ 1

2Ωr = Ωr [see Eq. (4.7)], but it is higher for the ‘inner‘

ones (Ω±1,0 = 2 ⋅
√

3/8 Ωr =
√

3/2 Ωr). Figure 4.3 shows the solution of the eigenvalue
problem

Ĥ ∣ϕn⟩ = En ∣ϕn⟩ (4.40)

for B = 10 G, where {ϕn} is the dressed state basis. For definiteness, E5 is defined
to be the largest eigenvalue (solid line). The remaining ones follow in decreasing
order (dashed line for E4 etc.). Figure 4.3(a) is calculated for Ωr = 2π ⋅ 2.5 kHz and
(b) for Ωr = 2π ⋅ 10 kHz. The colors indicate which diabatic state dominates the
corresponding dressed state decomposition.

Ωr is directly proportional to the externally applied rf amplitude. Unfortunately,
this is not exactly true for the Rabi frequencies of the respective transitions. In fact,
they are disturbed by the neighboring crossings for large values of Ωr/B2, violating
the previous offhand interpretation of Eq. (4.37). However, symmetry requires Ω2,1 =
Ω−2,−1 and Ω1,0 = Ω−1,0 (order of subscripts has no meaning). At Ωr/B2 = 0.1 kHz/G2,
the individual crossings are almost indistinguishable [Fig. 4.3(b)]. Even crossings
with ∆mF ≠ ±1 become avoided in this regime. Even for smaller Ωr/B2, each
crossing is affected by its neighbor in position (detuning) and energy separation
(Rabi frequency), as shown in Fig. 4.4.

Although both effects are rather small, they cannot be neglected in general. The
numerical algorithm to be discussed in Section 4.4 intrinsically accounts for these
effects. Furthermore, the shift is relevant when characterizing the experiment, for
instance Ωr, since the detuning should be much smaller than Ωr [see Eq. (4.8)].
To give an example, ∆error of the mF = 2 ↔ 1 crossing in Figs. 4.3(a) and (b) is
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Figure 4.4: Systematic shifts of the crossings mF = 2↔ 1 (solid lines) and mF = 1↔ 0
(dashed lines) – c.f. Fig. 4.3(a) – in detuning (a) and energy separation (b). Negative
values of ∆error in (a) signify a shift of the crossings to more negative values of ∆r. By
symmetry, these results apply to the crossings mF = −2↔ −1 and mF = −1↔ 0, too, but
with a change of sign in (a).

−2π ⋅0.2 kHz and −2π ⋅1.4 kHz, respectively. The impact of a reduced Rabi frequency
[Fig. 4.4(b)] can be anticipated by inspecting Eq. (4.12). A power series of these
systematic shifts is given in Appendix D.2. It is valid for Ωr/B2 ≲ 0.175 kHz/G2,
where the respective minimum of E5 − E4 corresponding to crossing mF = 1 ↔ 0
disappears. Despite the more rapid relative decrease of Ω1,0, it is always larger than
Ω2,1.

The contributions of the diabatic states to ∣ϕ5⟩ in Figs. 4.3(a) and (b) are shown
in Figs. 4.5(a) and (b), respectively. The effect of increasing Ωr is to broaden the
avoided crossing region. This increased overlap reduces the probability to find an
atom in the dominating diabatic state. In contrast, an increased magnetic field
[Figs. 4.5(c) and (d)] moves the crossings further apart. This increases the maximum
probabilities of the ‘inner‘ diabatic states (mF ≠ ±2). In the following, the state
mF = 0 is selected as final state Pf for its significantly lower sensitivity to magnetic
field gradients. In analogy to Eqs. (4.14) and (4.15), the initial and final overlap are

Pi(∆r,i,B,Ωr) = ∣ ⟨ϕ5∣2⟩ ∣2 (4.41)

and

Pf(∆r,f = 0,B,Ωr) = ∣ ⟨0∣ϕ5⟩ ∣2. (4.42)

Dressed states with the same value of Ωr/B2, but different Ωr (and B), are similar
to each other. They can be mapped into each other by rescaling the abscissa by the
ratio of the corresponding Rabi frequencies, which is equal to the square of the ratio
of the corresponding magnetic fields. An example of this are Figs. 4.5(a) and (d)
with a rescaling factor of four. Both share Ωr/B2 = 0.025 kHz/G2 and the same Pf.
The comparison with Figs. 4.5(b) and (c) suggests that Pf strictly decreases with
Ωr/B2. This is indeed the case, as shown in Fig. 4.6.
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From the final overlap point of view, Ωr/B2 should be as small as possible. The
initial overlap can be adjusted by choosing a sufficiently large (negative) initial
detuning ∆r,i for any value of B and Ωr. On the other hand, a large magnetic field
entails a long sweep time or high sweep rate of the rf chirp due to the larger initial
detuning. This deteriorates either Π or Pad. In addition, there are experimental
constraints on the available parameter range. The ones relevant to the Q-2 apparatus
are discussed in the following section. The ARP is then optimized under these
constraints in Section 4.4. However, the results are presented in a way that allows
for a direct transfer to other experiments using cold 87Rb atoms. It is not limited
to BECs either.

4.3 Relevant experimental parameters and

techniques

The magnetic field and the Rabi frequency could be identified as the most critical
parameters for ARP. Their time dependence must be known, too, because the pas-
sage takes a finite time. Furthermore, the spatial gradient is important, because
the atoms can be moving during the ARP. This section introduces the correspond-
ing measurement techniques and investigates these questions. Another important
parameter is the transverse relaxation time. A protocol for measuring this time is
demonstrated.

Measurement of magnetic fields by rf spectroscopy

The magnetic field as seen by the atoms cannot be measured by external sensors,
because access is blocked by the vacuum chamber. Furthermore, some magnetic
sensors introduce a field as well. However, the field can be measured using the
atoms themselves by rf spectroscopy with a sufficient precision and time resolution
(see also Section 3.1). This works for freely falling atoms or atoms being trapped
in optical potentials, but obviously not for magnetic ones. Since Q-2 features no
optical dipole trap, atoms have to be released from the magnetic trap. After this
release, the atoms are accelerated due to earth’s gravitational field and leave the
detection area after approximately 22 ms TOF. This time is sufficient for switching
coils, a brief manipulation of the atoms, optionally a SG experiment to separate
the magnetic substates in space and to detect them. Initially, the atoms are in the
mF = 2 substate. When applying an rf field resonant to the mF = 2 ↔ 1 transition
for trf = π/Ω2,1, the state mF = 2 is completely depleted (π-pulse). Off resonance,
Rabi oscillations occur at reduced amplitude and increased frequency. The magnetic
field can then be determined by scanning the frequency, identifying the minimum
of the relative population in mF = 2, accounting for the frequency shift shown in
Fig. 4.4(a) and invoking Eqs. (4.26) to (4.28). The relative populations ni depend on
B, Ωr, ∆r and trf. An example is shown in Fig. 4.7 probing the magnetic field of the
x coil at a current Ix = 5 A (x ≡ z̃ in this case) and trf = 0.1 ms. The rf amplitude was
chosen such that the π-pulse condition is almost (≈ 0.9π) met. A phase exceeding
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Figure 4.7: rf spectroscopy at B = 9.61 G (Ix = 5 A, 7.5 ms after switching on the coil)
for trf = 0.1 ms at Ωr ≈ 2π ⋅ 4.5 kHz. (a) Relative populations n2 (green), n1 (blue) and n0

(black) of the magnetic substates mF = 2,1 and 0 after the interaction with the rf field.
n−1 and n−2 can be neglected here. Solid thick lines are numerical solutions of the time
dependent Schrödinger equation for the complete five-level system with Ωr = 2π ⋅ 4.5 kHz.
Thin lines are simulations with Ωr = 2π ⋅ 4 kHz (dashed) and Ωr = 2π ⋅ 5 kHz (solid). (b)
Renormalized relative population difference for mF = 2 and 1 only.

π makes the identification of the resonance frequency unnecessarily complicated,
because it is no longer at the minimum of n2. On the contrary, smaller values
exhibit a reduced contrast. Figure 4.7(a) shows data points measured with thermal
atoms for the substates mF = 2,1 and 0. The population of the remaining two states
is below 0.5 % and not shown. The solid thick lines show numerical solutions of the
time dependent Schrödinger equation using the Hamiltonian from Eq. (4.37) and
Ωr = 2π ⋅ 4.5 kHz. The solid (dashed) thin lines show the effect of a Rabi frequency
that is higher (lower) by 2π ⋅ 0.5 kHz. A nice visualization of the Rabi oscillations
in this five level system is made available under this http://bit.ly/2x0LRbI alias
link.

In practice, it is sufficient to consider the substates mF = 2 and 1 only. A renor-
malized relative population difference can be defined as n2/(n1 + n2) and is shown
in Fig. 4.7(b). Its minimum coincides with the minimum of n2 in Fig. 4.7(a) at
6.7017 MHz. The numerically simulated data had to be shifted by 6.7023 MHz to
transform the ∆r-basis (detunings around zero) into the rf basis, that is, the actual
radio frequency [see Eq. (4.38)]. The difference of approximately 0.6 kHz is the ∆error

in Fig. 4.4(a) (Ωr/B2 ≈ 0.049 kHz/G2).

Measurement of the Rabi frequency

The radio frequency is generated by a NI 5421 arbitrary waveform generator (AWG).
Its output amplitude depends on the load and is specified to 12 Vp-p into a 50 Ω load.
The actual current through the rf antenna is also affected by its complex impedance
that is in turn dependent on the cables, connectors, vacuum feedthrough and finally
the antenna itself. Furthermore, the amplitude of the oscillating rf field is highly

http://bit.ly/2x0LRbI
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Figure 4.8: Rabi oscillations at B = 9.61 G (Ix = 5 A) resonant to the (a) mF = 2 ↔ 1
transition with Ω2,1 = 2π ⋅ 5140(5)Hz and (b) to the mF = 1 ↔ 0 transition with Ω1,0 =
2π ⋅6171(19)Hz. For (b), a π-pulse was applied to prepare the atoms in mF = 1. The data
points in (a) were averaged ten times. In contrast, no averaging was applied in (b).

position dependent. At least it is proportional to the AWG’s output amplitude
which can be controlled by the product of two control parameters: a global gain
(range: [0,5]) and a relative rf amplitude (range: [0,1]). The available amplitude
is never a real limitation in Q-2. The card is operated at 70 % of its maximum
output amplitude at the beginning of the evaporative cooling and below afterwards.
For ARP and all remaining measurements presented in this chapter, significantly
lower values are sufficient. For instance, the data points in Fig. 4.7 were taken at
a relative amplitude of 0.09 and the same global gain, which cannot be changed
within a measurement sequence. Since these parameters are highly device- and even
sequence-specific, the Rabi frequency is used as a figure of merit.

In principle, rf spectroscopy can be used to measure Ωr as well. However, it is
inferior to a simple tracking of Rabi oscillations in precision and measurement effort.
An example measurement using Rabi oscillations resonant to the mF = 2↔ 1 transi-
tion at Ω2,1 = 2π ⋅5140(5)Hz is shown in Fig. 4.8(a). Accounting for the systematics
in Fig. 4.4(b) yields Ωr = 2π ⋅ 5273(5)Hz. Alternatively, the mF = 1 ↔ 0 transition
can be used to measure Ω1,0, yielding Ωr = 2π ⋅ 5279(16)Hz [Fig. 4.8(b)]. Both mea-
surements were performed with the same rf amplitude (0.1 relative amplitude) and
their results are consistent. For (b), a π-pulse was necessary to prepare the atoms
in the mF = 1 substate. For this reason, the more direct measurement shown in (a)
is generally used to determine Ωr.

In general, the frequency accuracy of a sinusoidal fit can be improved by length-
ening the time interval of the measurement. However, this will not be the case if the
Rabi or resonance frequency changes with time of flight. As will be shown later, this
is actually the case. The alternative is averaging, provided that the system is stable
enough. For illustration, the data points in Fig. 4.8(a) were averaged ten times while
no averaging was performed in (b). Rabi decay, as can also be anticipated in (a),
will be discussed in more detail in due course.
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Magnetic field stability

The magnetic field is not stable during the available TOF of 22 ms for several reasons.
First of all, the coil’s step response to a certain current request [see Fig. 3.3(a)] is
an obvious and dominant contribution. This is superimposed with a magnetic field
gradient the atoms are falling through. Furthermore, the field can change due to a
heating of the experiment (e.g., reference resistors in current drivers) during a long
series of measurements. An example of the field dynamics after switching the x coil
to 5 A is shown in Fig. 4.9. Each data point is acquired by rf spectroscopy similar
to Fig. 4.7(b) at a time resolution of 0.1 ms. Data points were measured ‘from left
to right‘ with three averages revealing a systematic drift saturating during the first
run (Series 1). Within the first 6 ms after switching on the coil, the variations are
even stronger.

A discrimination between switching dynamics and TOF contributions to the res-
onance drift is possible by delaying the switching of the coil. Still, this information
is of no practical interest unless it leads to a plainer time dynamics. Such a com-
pensation is a highly nontrivial affair and would work for one specific configuration
and measurement only. Hence it is reasonable to have a look at the actual require-
ments. For ARP it is sufficient, if at all necessary, to account for the different start
and stop frequency as long as the variations are small compared to the sweep rate
α. Although a thorough quantitative discussion is reserved for the following sec-
tion, a brief estimate shall be given here. According to Fig. 4.3(a) the minimum
frequency sweep has to be larger than 20 kHz for all Ωr at this particular magnetic
field. Hence, the requirement 201 Hz/ms ≪ 20 kHz/6 ms is clearly fulfilled in the lin-
ear regime (8 ms < t < 14 ms). However, the situation is different at the beginning,
when the resonance frequency changes more quickly. For a characterization of the
system, for example the decoherence time, Rabi decay time or Rabi frequencies, it
is important to maintain ∆r = constant for as long as possible.

In the time interval 7 ms < t < 14 ms the magnetic field is stable up to ±1 mG.
This is equivalent to a relative stability of the magnetic field and thus the resonance
frequency on the low 10−4 -level, but its variations are on the same order of magnitude
as Ωr. Hence, the detuning has to be kept constant by sweeping the radio frequency
along with the resonance frequency. With this strategy, the stability of the magnetic
field is sufficient.

Ωr versus time of flight

During the free fall of an atomic ensemble, its distance to the rf antenna changes.
For this reason, the amplitude of the rf field and accordingly Ωr change, too. Its time
dependence can be measured by tracking resonant Rabi oscillations for a long enough
time (mF = 2↔ 1). For this purpose, the results from the previous measurement can
be exploited by switching the x coil in the same way. The rf is linearly swept along
with the resonance as shown by the black line in Fig. 4.9. Warm-up is realized by
performing 30 averages and neglecting the first ten, disregarding a similar number
(≈ 2400) of data points as in Series 1. Figure 4.10 shows the results using BECs.
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Figure 4.9: Resonance frequency of the mF = 2↔ 1 transition as a function of the time
after switching the x coil to 5 A. Three measurement series were performed, each starting
at 6 ms. Between 8 and 14 ms the resonance frequency changes linearly with time at a
rate of 201(4) Hz/ms.

The most prominent feature is the decreasing amplitude. This Rabi decay is
rather linear than exponential. The latter would be expected if pure T2 dephasing
was the cause. This can be understood by inspecting Eq. (4.19) and interpreting
the Rabi oscillation as a consecutive chain of π-pulses in a spin-echo measurement.
A possible cause of the observed decay is a spatial gradient in the rf amplitude.
The atoms’ free fall would map this into a time dependent Rabi frequency Ωr(t).
The spatial gradient and its relation to Rabi decay will be discussed in more detail
below.

Knowing Ωr(t) is of particular importance for many of the following measure-
ments. It can be extracted by fitting the data to a sinusoid of, in this case, linearly
increasing frequency and decreasing amplitude. Quadratic terms were not necessary,
even though they might be expected due to the accelerated motion of the atomic
ensemble. The outcome of this fit is

Ω2,1(t) = 2π ⋅ [4465(4)Hz + 82(1)Hz/ms ⋅ (t − 8 ms)] , (4.43)

where the errors are the fit uncertainty and t is the time after switching the x coil
to 5 A. This time t is equivalent to the TOF, because the coil was switched on
immediately after release of the atoms from the trap.

The ratio Ω2,1(t)/Ωr(t) is not constant, because it depends on Ωr [see Fig. 4.4(b)].
However, these corrections can be neglected here and the ratio is assumed to be 0.98
for all t, resulting in

Ωr(t) = 2π ⋅ [4556(5)Hz + 83(1)Hz/ms ⋅ (t − 8 ms)] . (4.44)

Although extensive care was taken to assure that the resonance condition is fulfilled
during the entire scan, the center of the Rabi oscillation is found at 0.427(3) and
not 0.5. A mismatch of 1.85 kHz would be necessary to explain this in terms of a
detuning. If this were the case, Ωr would be overestimated by 8 %. Such a detuning
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Figure 4.10: Rabi oscillations (mF = 2 ↔ 1) with the rf set to the linearly increasing
resonance frequency as shown by the solid black line in Fig. 4.9. The solid blue line in this
figure shows a fit with a linearly increasing frequency and linearly decreasing amplitude
to measure the time dependence of the Rabi frequency.

is in considerable disagreement with other measurements (e.g., Fig. 4.8) and can
be ruled out by Fig. 4.9. A possible explanation for the observed shift might be
magnetic field fluctuations in a frequency range close to the Rabi frequency, which
would be hardly resolvable by the methods shown before.

Measurement of T2 using spin-echos

This part is devoted to giving an estimate of the transverse coherence time T2 using
the spin-echo method described in the previous section. The limiting factor is the
accuracy and stability of the rf pulses for spin-manipulation (π and π/2). For this
reason, n = 1 is chosen as the simplest possible case. Obviously, not all fluctuations
are removed by this scheme. Hence, the resulting estimate on T2 has to be interpreted
as a lower limit.

Again, advantage is taken of the linear part between 8 and 14 ms found in Fig. 4.9,
since all pulses have to be on-resonance. Six τ -values {1,2,3,4,5,6}ms are used for
the measurement with the π-pulse being applied at τ/2. At the end, a π/2-pulse is
required to transform back into the measurement basis. Unlike in NMR, the echo
does not ‘automatically‘ appear. Since these pulses limit the accuracy, the final
pulse is replaced by a short Rabi scan. Its contrast is a more robust measure for
the echo amplitude. The results over fifteen averages after a warm-up are shown in
Fig. 4.11 by the blue data points. For direct comparison, a reference measurement is
performed omitting the π-pulse (orange data points). The solid lines are sinusoidal
fits of the respective data sets.

The effect of the refocusing pulse is clearly visible for τ = {1,2,3}ms, even though
the contrast has hardly decayed during the first millisecond. It is interesting to
inspect the last two subplots: The contrast increases again. This is a clear evidence
for n being chosen too small. Furthermore, Carr and Purcell [151] have shown
that in the case of convection through a magnetic field gradient within liquid NMR
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Figure 4.11: Comparison of the renormalized relative population difference (n1/(n1+n2))
after a spin-echo measurement with n = 1 (blue points) to the same measurement without
the π-pulse at τ/2 (orange points). The contrast of the final Rabi oscillation, as fitted by
the respective solid lines, is taken as the echo amplitude for Fig. 4.12. The six subplots
show the data for τ = {1,2, ...,6}ms.

samples, odd-numbered echos are partially suppressed. Drawing the parallel to the
free fall through such a gradient, these results are applicable to Q-2 as well, despite
the acceleration. Hence, using n = 2 might be worth trying.

By definition, the maximum possible contrast is unity. In practice, it can be
defined as the contrast of a plain Rabi oscillation as shown in Fig. 4.8(a). It is 0.83(2)
in that case. This value is taken as the echo amplitude at t = 0. Figure 4.12 shows
this reference echo amplitude (black point) together with the fit results of Fig. 4.11
using the same color-code. The finite length of the rf interaction is accounted for
by an offset of 0.13 ms between the data points and the corresponding values of τ .
The black point is common to both data sets. It is considered in the exponential fits
using the model defined by Eq. (4.19). The solid orange line as well as the dashed
blue line include all data points of the respective set. A better estimate of T2 is
found when neglecting the last three data points (solid blue line) of the blue set.
This can be justified with the previously mentioned problems using n = 1 and the
fact that the result has to be interpreted as a lower limit anyway. Hence, the result
of this measurement is

T2 ≥ 5 ms.
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Figure 4.12: Spin-echo amplitudes from Fig. 4.11 defined as the fitted contrast of the
respective final Rabi oscillation (blue points). The orange points represent the reference
measurement without the π-pulse at τ/2. The black point at t = 0 is a reference contrast
of 0.83 common to both data sets. The difference between abscissa- and τ values (0.13 ms)
accounts for the finite pulse lengths. Solid lines are exponential fits [see Eq. (4.19)] of the
single black and all orange data points (orange line) or all blue data points (dashed blue
line). For the solid blue line, the last three (blue) data points were neglected.

Measurement of rf gradients

The Rabi decay in Fig. 4.10 was previously explained with a gradient of the rf
amplitude, but no proof or further explanation was given so far. This is rectified
using thermal atoms now. They are more sensitive to spatial gradients due to
the larger size of the atomic ensemble. The atoms are coupled to an rf field at
6.702 MHz for 10 ms ≤ t ≤ 10.5 ms after release. The same quantization field is
used as before (Ix = 5 A, c.f. Fig. 4.9). State separation is accomplished by a
subsequent SG experiment. The final rf cut of evaporative cooling is chosen such
that the substates are still separable in the remaining TOF but as large as possible
(1.69 MHz instead of 1.572 MHz for an almost pure BEC). This measurement is
performed for 1001 equally spaced values of the relative rf amplitude between 0 and
1. Since the frequency error nonlinearly depends on this amplitude, it cannot be
compensated for during the measurement. Its relative effect is small for large rf
amplitudes and tolerated for small ones.

In the case of a spatially homogeneous amplitude, all atoms undergo collective
Rabi oscillations at the same frequency, amplitude and phase. In the presence
of spatial gradients, different points in the cloud have a different Rabi frequency.
This leads to a dephasing across the atomic ensemble as illustrated by Fig. 4.13.
Initially, at Ω2,1 = 0, all atoms are in the substate mF = 2 (top leftmost subimage).
The density profile is purely Gaussian, as shown in the integrated column density
plot below the absorption image. The dashed black line is an imaginary dividing
rule between the two substates. An integration of the normalized density profile
over the part right of the line yields n2/(n1 + n2). During the first two Rabi cycles,
corresponding to Ω2,1 ≤ 2π ⋅ 4 kHz, a reduced contrast is observed because of the
large detuning (≋ 1 kHz) relative to Ω2,1. At larger Rabi frequencies, for example,
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Figure 4.13: Absorption images of the mF = 2 and 1 substates of a thermal cloud after
coupling to an rf field for 0.5 ms. The images were measured with different rf amplitudes.
The Rabi phase Ω2,1t at the cloud center (same for both substates) is shown. The dashed
black lines show an imaginary dividing rule between the substates. The smaller plots show
the integrated column density of the respective absorption images. These density profiles
are renormalized by n1 + n2.

at Ω2,1t = 10π (second subplot in top row), the central part of both clouds has
undergone five complete Rabi cycles. However, the two subclouds in mF = 1 reveal
a slightly different phase at off-center positions. The stripe moves from the bottom
left of the cloud to the top right when increasing the Rabi frequency. Hence, the top
right part lags in phase while the bottom left is ahead. In the image right below,
the phase has evolved by another π. The dominant fraction should be in mF = 1
now, but the density profiles already show the significantly reduced contrast of the
renormalized relative population difference.

When the phase difference across the cloud exceeds 2π, more than one stripe is
visible. The separation between two adjacent minima within the mF = 2 cloud is a
measure for the spatial gradient of the Rabi frequency. The spatial frequency within
the mF = 1 cloud is higher, which is evident in the third column of Fig. 4.13. This
is because of the three more substates (mF = 0,−1,−2) being off-resonantly coupled.
In fact, all substates are populated at high Rabi phases (not shown). It should be
stated very clearly at this point, that the observed structure is no interference.

The observed stripes are actually three dimensional slices. It is in no way obvious
that they are visible at all. The detection axis has to be parallel to the slices.
Orthogonally detected, the structure would be invisible. Still, this orientation is
not a coincidence, because the detection axis is parallel to the chip surface. Since
the rf source is part of the atom chip, the rf amplitude is expected to decline with
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Figure 4.14: The data points show the stripe spacing as a function of the Rabi phase
within the mF = 2 cloud as exemplarily illustrated in the rightmost four subfigures of
Fig. 4.13. The values are rescaled to account for the expansion between rf interaction
and detection. (solid line) Fitted stripe spacing corresponding to a relative rf gradient of
∇B0 = 0.92‰/µm. (dashed lines) Confidence bounds (1σ) of fit.

increasing distance from the chip, that is located at the left of the absorption images.

The stripes are inclined by approximately 18° (±2°) towards the left. During the
rf interaction the atoms are at y ≈ 240 µm and z = 807 µm in capsule coordinates.
The falling distance during the 0.5 ms of rf interaction is ∆y ≈ 50 µm. Hence, the
atoms are approximately on the same height as the horizontal part of the lower rf-U
(inverted ‘U‘). Having said that, the inclination of the stripes indicates that the
effective rf source is below. The reason could be the remaining conductors of the
rf-U, for instance, the vertical parts. Actually, the vacuum chamber itself and the
magnetic shielding around might have an effect on the near-field structure of the rf
amplitude as well (λ ≈ 45 m at 6.7 MHz). The rightmost four images in Fig. 4.13
also exhibit a small curvature. The radius is approximately 2 mm and in reasonable
agreement with the distance to the BC-layer of the atom chip.

The stripe pattern is imprinted onto the cloud during the rf interaction. The
average Gaussian width is σrf = 53 µm at this time. Until detection, the cloud has
expanded further to σdet = 94 µm. To extract the rf gradient from the stripe spacing,
it has to be multiplied by the size ratio σrf/σdet. This rescaled stripe spacing is
shown in Fig. 4.14. The single data points represent fits of a sinusoidally modulated
Gaussian to the density profile of the rotated absorption images (such that the
stripes are vertically aligned).

Since the total phase at cloud center is known, the rf gradient can be fitted to the
data points. It is ∇B0 = 0.92(1)‰/µm and shown by the solid line. The dashed
lines show the 1σ confidence bounds of the fit.

The practical use of the gradient’s precise value is rather limited, because it is
valid for only one specific position within the vacuum chamber. Nevertheless, the
gain is twofold. First of all, it provides at least a rough estimate of the Rabi fre-
quency at positions inaccessible in ground-based measurements. This is a valuable
information in microgravity campaigns. Second, it can be used to explain the Rabi
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Figure 4.15: Simulation of the Rabi decay in Fig. 4.10 assuming a relative rf gradient of
∇B0 = 0.92‰/µm as the sole cause.

decay measured in precisely this region of space, for example, the one in Fig. 4.10.
The BEC had been released from an ωy ≈ ωz ≈ 2π ⋅60 Hz trap (strong axes). The re-
sulting expansion can be linearly approximated for this purpose. The Thomas-Fermi
radius increases from 16.7 µm to 29.2 µm within the 6 ms of scan time. Stripes, like
the ones in Fig. 4.13, are not visible in the absorption images of a BEC because they
cannot be resolved by the detection system. When taking into account this time de-
pendent cloud size in combination with Ω2,1(t) and ∇B0, the expected renormalized
relative population difference can be calculated as a cloud average. The result is
shown in Fig. 4.15. Its envelope is indeed strikingly similar to the data in Fig. 4.10,
except for the reduced initial contrast. Hence, the primary cause of this decay is not
decoherence. However, this does not exclude smaller contributions of correspond-
ingly larger values of T2. It should be mentioned in this context, that the expected
exponential (resonant) Rabi decay constant is 2T2. This can be understood because
transverse decoherence is only effective in the x − y plane of the Bloch sphere.

4.4 Adiabatic rapid passage in 87Rb

An adiabatic rapid passage can be realized between any two Zeeman states of a
hyperfine manifold, but the mF = 2 → 0 transfer, which was visualized by the
black arrow in Fig. 4.3(a), is of special interest as explained above. A big difference
compared to ARP in a two-level system is the passage through two avoided crossings.
The accompanying adiabatic losses are well understood by means of the dressed state
Hamiltonian and the Landau-Zener formula. These losses are confirmed by reverse
rf sweeps in the first subsection. These measurements also give rise to an alternative
scheme for ARP compared to the conventional one mentioned above. Afterwards, a
model function for the ARP efficiency is defined which summarizes all loss channels.
Temporarily, the decoherence rate 1/T2 will be assumed to vanish, which effectively
eliminates the rapidity criterion. The implications for the ARP efficiency in Q-2
are discussed. These predictions are compared to experimental results from ground-
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Figure 4.16: Reprint of Fig. 4.3 to illustrate reverse ARP. In (a) reverse ARP is per-
formed by two successive sweeps first from mF = 2 → 1 1○ and then from mF = 1 → 0 2○.
At higher Rabi frequencies, for example at Ωr = 10 kHz in (b), compared to Ωr = 2.5 kHz
in (a), a direct sweep from mF = 2 → 0 is possible. Losses can occur at each crossing and
are exemplarily highlighted for the mF = 2↔ −1 crossing in (b).

based measurements and are applied to measurements in microgravity. The effect of
a finite T2 is discussed and quantified. Finally, a mitigation strategy for transverse
decoherence is presented.

Landau-Zener losses and reverse ARP

The dressed energy eigenstates in Fig. 4.3 also allow for reverse rf sweeps, that
is, from positive to negative detunings, as illustrated in Fig. 4.16(a). This reverse
passage starts in Ψi = ∣2⟩ and transiently ends in Ψi = ∣1⟩. Afterwards, it has to be
repeated with Ψi = ∣1⟩ to finally end up in Ψi = ∣0⟩. Its advantage is the better final
overlap Pf, which is indeed the dominant limitation for the conventional ARP. In a
reverse ARP, Pf can be increased simply by sweeping further.

The losses due to the passage through an avoided crossing region are quantified by
the Landau-Zener formula [see Eq. (4.11)]. It was stated for a two-level system where
the Rabi frequency is identical to the separation of the dressed energy eigenstates
(the factor h̵ is omitted here). In the five-level system, Ωr has to be substituted in
Eq. (4.11) by the corresponding minimum energy differences Ωi,j at the crossings
mF = i↔ j. Ωi,j are the observable Rabi flopping frequencies while Ωr is the value
in the Hamiltonian. At low rf amplitudes, the only nonzero values of Ωi,j are those
with ∆mF = 1. However, this limitation breaks down for higher rf amplitudes. It is
shown in Fig. 4.16(b) with clearly visible Ω2,0, Ω1,−1 and Ω0,−2. Thus, an adiabatic
passage is possible at each of the ten crossings of the manifold. In this regime, a
direct reverse passage from mF = 2 → 0 is feasible, as illustrated by the thick gray
arrow in Fig. 4.16(b).

The Landau-Zener losses occurring at the crossings relevant for reverse ARP when
sweeping with α = −2π ⋅25 kHz/ms at B = 9.61 G are shown in Fig. 4.17. The rf sweep
started at ∆r = 2π ⋅50 kHz, in other words, sufficiently far away from the mF = 2↔ −2
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Figure 4.17: Landau-Zener losses at the crossings of the mF = 2 substate (in diabatic
notation) with mF = 1 (blue), mF = 0 (black) and mF = −1 (orange) when sweeping the
detuning from ∆r,i = +2π ⋅ 50 kHz to ∆r,f = −2π ⋅ 75 kHz within 5 ms (α = 2π ⋅ 25 kHz/ms).
The solid lines are numerical calculations using the previously measured Ωr(t). Purple
‘+‘-signs show the fraction in mF = 0 after the passage (η, right axis). The dashed purple
line shows the expected η according to the calculated Landau-Zener losses.

crossing, and subsequently passed the crossings with all other substates. It finally
ended at ∆r = −2π ⋅ 75 kHz approximately 2π ⋅ 55 kHz to the left of the mF = 2↔ 1
crossing.

Initially, all atoms are in Ψi = ∣2⟩ = ∣ϕ1⟩. After passing the first crossing (2↔ −2),
they are almost completely lost into ∣ϕ2⟩ (dash-dotted line) for Ωr ≤ 2π ⋅10 kHz. The
tiny fraction remaining in ∣ϕ1⟩ (lower dotted line) will end up in mF = −2 after the
sweep. The atoms in ∣ϕ2⟩ are then available to probe the next crossing (2 ↔ −1)
and so forth.

The solid lines in Fig. 4.17 are no fits, but calculated from the Landau-Zener
formula. The corresponding Rabi frequencies Ωi,j were obtained by diagonalizing
the Hamiltonian and determining the respective local minimum energy differences
at the previously measured Ωr(t). For crossings with ∆mF ≠ 1, the value of α has
to be adapted accordingly, because the time derivative of the energy difference is
the figure of merit [146]. It is equal to the rf sweep rate for ∆mF = 1 only.

For the first part of the reverse ARP outlined before [ 1○ in Fig. 4.16(a)], it is
required to have almost full losses at all crossings except at mF = 2↔ 1, where the
losses should be close to zero. As shown in Fig. 4.17, there is no Ωr satisfying this
condition. In fact, the relation of the Ωi,j is such that a reverse ARP can be done
directly at Ωr = 2π ⋅ 8 kHz, although with a moderate efficiency of approximately
80% only. The purple plus signs show the measured fraction in mF = 0 after the
passage. The dashed purple line is the expected reverse ARP efficiency according
to the calculated Landau-Zener losses.

In a conventional ARP, the passage has to be adiabatic with respect to the
mF = 2 ↔ 1 crossing. The adiabaticity criterion is then automatically fulfilled
for the mF = 1 ↔ 0 crossing, because Ω1,0 > Ω2,1. The rapidity criterion is exclu-
sively determined by decoherence, which is neglected momentarily. In contrast, the
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relations are more complex in reverse ARP. The passage has to be adiabatic with
respect to the mF = 2 ↔ 0 crossing, but also rapid with respect to mF = 2 ↔ −1.
This interplay is unsatisfactorily fulfilled in the example shown. Moreover, it is
qualitatively unchanged in a wide range of magnetic fields and sweep rates. The
advantage of reverse ARP is its immunity against magnetic field changes, because
the sweep range can be extended to account for such fluctuations or uncertainties.

The ARP model and its numerical solutions

Equation (4.22) can be applied to 87Rb now. Pad splits up into two factors for
the individual crossings. The respective Rabi frequencies Ω2,1 and Ω1,0 shown in
Fig. 4.4(b) have to be used in Eq. (4.12). They are a function of Ωr/B2 alone.
The final overlap Pf [see Eq. (4.42)] was shown in Fig. 4.6 to depend solely on
Ωr/B2, too. Unfortunately, the initial overlap does not scale like this and the matrix
element in Eq. (4.41) has to be calculated numerically. Assuming Π = 1, the total
ARP efficiency is:

η(∆r,i,B,Ωr, α) = ∣ ⟨ϕ5∣2⟩ ∣2 [1 − exp(−
πΩ2,1

2

2∣α∣
)] [1 − exp(−

πΩ1,0
2

2∣α∣
)]Pf(Ωr/B2) ,

(4.45)
with ϕ5(∆r,i,Ωr,B) and Ωi,j(Ωr/B2). The sweep rate α [see Eq. (4.10)] simplifies to

α = ∆r,i/τ, (4.46)

because ∆r,f = 0. τ is the total sweep time of the ARP. Hence, the problem is four-
dimensional. The function in this form has no maximum. For each set of values
there exists another set with larger B and τ and a higher efficiency. To find useful
solutions, the parameter space is restricted to fixed values of B and τ . The now
existing maximum of η is then found by a numerical gradient ascent method. The
code can be downloaded under the link printed in Appendix D.3. There exist no
local maxima besides the global one.

If decoherence is to be accounted for in the model, the right hand side of Eq. (4.45)
has to be multiplied by Π [see Eq. (4.21)] after applying it to the current problem
with two crossings involved:

Π(B,Ωr, α) = exp(−
3πΩ2,1

8∣α∣T2

) ⋅ exp(−
3πΩ1,0

8∣α∣T2

) . (4.47)

This does not change the dimensionality of the problem, because T2 is no parameter.
Still, the peak efficiency is reached at a finite τ for a given B.

Figure 4.18(a) shows the maximum possible ARP efficiency for magnetic fields
ranging from 5 G to 30 G and a set of four different ARP times. Every point in this
plot has its own ∆r,i and Ωr found by the gradient ascent method to maximize η.
They are shown in Figs. 4.18(c) and (d). The initial detuning is dominated by the
quadratic Zeeman shift of the mF = 2↔ 1 crossing. Deviations from this parabolic
shape are of the order of the Rabi frequency and not visible in the plot. It is obvious
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Figure 4.18: (a) Numerical simulations of the maximum possible ARP efficiency η as a
function of the magnetic field for ARP times τ = 12 ms (green), 9 ms (blue), 6 ms (black)
and 3 ms (orange). Two parameter sets are highlighted by dashed black lines. They
are τ = 9 ms at B = 9.61 G (Ix = 5 A) and τ = 12 ms at B = 13.45 G (Ix = 7 A). Their
corresponding efficiency is 96.3% and 98.3%, respectively. (b) Dependence of 1−η on τ for
fixed B. Initial detuning ∆r,i (c) and Rabi frequency Ωr (d) corresponding to the optimum
efficiency values in (a).

that the efficiency can be increased using longer τ in the absence of decoherence. The
necessary Rabi frequency for comparable or even reduced adiabatic losses is lower,
which improves Pf. Figure 4.18(b) shows examples for B = 9.61 G and B = 13.45 G,
corresponding to Ix = 5 A and Ix = 7 A, respectively. The dependence on B is not
that obvious. On the one hand a larger magnetic field increases the separation
between the two central crossings (upper dressed state). On the other hand, the
sweep range has to be extended. This in turn requires higher Rabi frequencies that
counteract the acquired increase of Pf in return. It turns out that the net effect of
a larger field is still positive. Hence, as far as the ARP efficiency is concerned and
decoherence is neglected, B and τ should be as large as possible.

For ARP in Q-2, Ix = 5 A is chosen (B = 9.61 G). This is the maximum current
which can be generated reproducibly on batteries. Both remaining coils imprint a
large momentum on the atomic ensemble when the current is switched (see Fig. 3.5
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Figure 4.19: Contour lines of ARP efficiency η as a function of detuning ∆r,i and Rabi
frequency Ωr. The plotted values are numerical solutions of Eq. (4.45) for B = 9.61 G and
τ = 9 ms. The maximum efficiency is 96.25% for ∆r,i = −2π⋅29.24 kHz and Ωr = 2π⋅1.315 kHz
(dashed line).

and Table 3.3). This alone makes them second choice. The y coil alone would not
be usable anyway, because it is aligned in parallel to the oscillating magnetic field
vector dressing the states. (A combination of x and y coil is possible though.) The
time τ is chosen to be 9 ms. For these values, the efficiency in the vicinity of the
maximum (96.3%) is shown in Fig. 4.19. It can be seen that the drop in η is more
severe for too small Ωr than it is for a too large one.

Experimental realization of ARP

The same set of parameters (B, τ,∆r,i,Ωr) as in Fig. 4.19 is used for an experimental
realization of ARP. The transient states during ARP as well as the initial and final
state are illustrated in Fig. 4.20. This surface plot visualizes the optical and hence
atomic density. The magnetic substates were separated by a SG experiment, as
before. The transient states are produced by adjusting the final detuning after
the τ = 9 ms frequency sweep. Since absorption imaging is destructive, the five rows
were measured with different, newly created samples. All subimages are individually
normalized. By a proper choice of the final detuning, any substate can be selected.
Superpositions between neighboring states are possible, too. However, the parameter
set is chosen such that it optimizes the transfer efficiency to mF = 0. The bottom
row of Fig. 4.20 exhibits approximately 91% in this state. The substates mF =
−1,1 and 2 are only faintly populated. The mF = −2 state is not populated at all
during this measurement. The actual efficiency of 91% is slightly worse than the
theoretically predicted value of 96%. Clearly, Ωr is the parameter that is easiest to
miss. Nevertheless, also a mutual shift of initial and final detuning can occur, for
example, by a heating up of the experiment as shown in Fig. 4.9. In this case, an
imbalance towards one of the neighboring substates were visible. This is not the
case in Fig. 4.20.

The impact of a mismatched Rabi frequency is worth further attention because of
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Figure 4.20: Normalized absorption images after a 9 ms ARP at B = 9.61 G. Without rf
interaction, all atoms remain in mF = 2 (top right cloud). The three middle rows show
the intermediate states produced by adjusting the final detuning. The bottom row shows
the final state after the ARP with η ≈ 91%. To reduce detection noise, a Gaussian filter
(σ = 1 px) was applied to the absorption images.

its position-dependence (see Fig. 4.14). For this purpose, η is measured for different
rf amplitudes. It is compared to the expected values in Fig. 4.21(a) (solid blue
line). The efficiency peaks at Ωr = 2π ⋅ 1.3 kHz (dashed black line), as predicted.
Yet still, the measured η is systematically below the model’s prediction for all Ωr

in the vicinity of the optimum. Hence, a mere mismatch of Ωr is not responsible
for the reduced efficiency. The ARP model [see Eq. (4.45)] assumes a constant
Ωr, which is only an idealized assumption [see Eq. (4.44)]. The solid blue line
already takes into account this time variation by adapting the Rabi frequency for
each factor. For instance, Pf is calculated using the Rabi frequency at the end of
the ARP. The resulting deviation is 0.5% only and not shown in Fig. 4.21(a). The
drift of the resonance frequency (see Fig. 4.9) effectively reduces the sweep rate by
2π ⋅ 0.2 kHz/ms (6%), because the crossings are passed at 8.5 ms (first) and 12.5 ms
(second). The effect on η is a 0.2% increase and can be neglected.

It is worth discussing the different contributions to the loss (1 − η) on this mea-
surement, as shown in Fig. 4.21(b). The solid line corresponds to the solid line in
Fig. 4.21(a) while the straight dotted lines indicate the loss at constant Rabi fre-
quency. It is no surprise that the Landau-Zener losses are dominated by the first
crossing (mF = 2 ↔ 1) because of its smaller Rabi frequency. The initial overlap is
negligible, provided that ∆r,i is correctly met. At peak efficiency, the total loss is
dominated by Pf (dashed orange line). This is also true for Rabi frequencies above
the optimum value. These findings can be directly transferred to the bottom row
of Fig. 4.20. The small fraction in mF = 2 originates from the Landau-Zener loss at
the first crossing. In contrast, the fractions in mF = ±1 are due to Pf.

Hence, clear signatures of a mismatched Rabi frequency can be stated: For Ωr too
low, a significant fraction remains in mF = 2 while mF = ±1 are not populated at all.
Too high values of Ωr manifest themselves in the opposite effect. However, this is
only true as long as no mutual shift of ∆r,i and ∆r,f occurs. If the rf sweep starts too
close to the first crossing, a large fraction will be projected into ∣ϕ4⟩ instead of ∣ϕ5⟩.
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Figure 4.21: (a) Experimental realization of ARP with ∆r,i = −2π ⋅ 29.2 kHz. The
measured ARP efficiency η (blue circles) is compared to the theoretically expected values
[Eq. (4.45)] for different Rabi frequencies Ωr (solid blue line peaking at 95.8%). The
dashed lines take into account finite values of T2 (top to bottom: 19 ms, 10 ms and 5 ms).
(b) Contributions to the total loss (1-η) when accounting for the time dependence of Ωr

(solid black line) and assuming 1/T2 = 0. The dash-dotted lines are the Landau-Zener
contributions to the total loss. The dashed lines show the share of the initial (Pi) and
final (Pf) overlap in 1 − η. The dotted lines highlight the peak efficiency at constant (and
optimum) Ωr. The deviation is approximately 0.5 percentage points. All other curves in
(a) and (b) take into account the actual course of Ωr [see Eq. (4.44)].

After the ARP this fraction will end up in mF = 2 for correct or too low Ωr. Since
the rf sweep would end at ∆r,f > 0, too, the decomposition of ∣ϕ5⟩ contains larger
contributions from mF = −1 than from mF = +1. In contrast, if the sweep starts
too far away from the crossing, the decomposition of ∣ϕ5⟩ will be shifted towards
mF = +1 after the ARP. The initial overlap is practically perfect in this case, that
is, no increased fraction in mF = 2 is observed (besides the Landau-Zener loss).
Combinations of both mismatches can be ambiguous. There exist further possible
causes for the efficiency being worse than expected. First of all, measured values
always scatter about their mean, whatever the cause. If the value to be measured
is subject to an upper bound, such as η, scatter will in fact reduce the mean value.
The two key parameters that can be subject to scatter and would affect η are B and
Ωr. Both are expected to vary from shot to shot. Even a small relative change in the
magnetic field on the 10−4 level results in a detuning error on the order of 2π ⋅1 kHz.
The rf amplitude by itself can be expected to be very reproducible. Aside from that,
a position scatter of the atomic ensemble in the presence of rf gradients results in
a scatter of Ωr. The expected variations are on the order of 0.5% and negligible in
this case, because even a change of 10% in Ωr would not change the efficiency by
this much (see Fig. 4.21). Furthermore, the observability of Rabi oscillations over
1 ms at approximately constant amplitude (Fig. 4.8) sets tight limits on possible
variations of B and Ωr. In fact, a Gaussian distribution of ∆r with σ = 2π ⋅1 kHz can
be considered as an upper limit to these variations, provided that Ωr is constant.
Yet, the detrimental effect of this variation on η is below 1%.
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Figure 4.22: ARP efficiency η vs. transverse coherence time T2 when using the optimum
set of parameters in absence of decoherence for τ = 9 ms and B = 9.61 G (solid black line).
The dashed line indicates the limiting efficiency for T2 →∞. The dotted and dash-dotted
lines highlight T2 = 5 ms and 19 ms, respectively. The solid blue line is the peak efficiency
when using the set of parameters optimized for the respective value of T2.

Of course, there may also be mundane technical reasons. For example, the number
of discrete steps (100) used for the synthesis of the linear frequency ramp. It was
checked and no correlation with the ARP efficiency was found.

So far, all conceivable technical, systematic and statistical causes for the reduced
efficiency could be ruled out – except for a finite transverse coherence time. In the
spin-echo measurement it could be shown to be at least 5 ms. The measurement of
rf gradients suggested that it is even longer, but no reliable estimate was possible.
For this reason, the effect of different values of T2 is shown and compared to the
data. Two specific values are of particular interest. The first one is T2 = 5 ms as the
lower limit. Also the smallest value consistent with the 91% efficiency observed in
Figs. 4.20 and 4.21(a) is considered. It is T2 = 19 ms. Their effect is shown by the
blue dash-dotted lines in Fig. 4.21(a) besides an intermediate value of T2 = 10 ms.
The latter shows a reasonable agreement with the data. A characteristic feature is
the steeper decrease towards higher Ωr compared to the model without decoherence.

The effect of a finite T2 on η at the optimum set of parameters in absence of deco-
herence is shown in Fig. 4.22 by the solid black line. The dashed line indicates the
limiting case of 1/T2 = 0. The dotted and dash-dotted lines highlight the previously
mentioned values of T2 = 5 ms and 19 ms, respectively.

In principle, the ARP efficiency can be optimized for a given transverse coherence
time. The resulting optimum Rabi frequency is higher and the rf sweep needs to start
further detuned from the first crossing. Also the optimum sweep time τ becomes
finite. As a matter of fact, the ARP time has to be shorter than this value anyway
(in Q-2). The result of such an optimization, that is, including Eq. (4.47), is shown
by the solid blue line. A direct comparison reveals that there is only little to gain
for coherence times longer than 10 ms. However, all of these results apply to the
scenario of an approximately constant rf amplitude. The possible gain of utilizing
an actively controlled Rabi frequency is discussed at the end of this section.
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ARP in microgravity

After the thorough characterization of ARP on ground it should be utilized in mi-
crogravity now. This might seem trivial because the presence of a gravitational
force itself has no influence on ARP. On the other hand, the atomic ensemble is (in-
tentionally) further away from the chip in microgravity. These positions cannot be
probed directly in ground-based measurements, because the traps are too shallow.
Probing them in flight would be a waste of valuable microgravity time. Hence, the
difficulty is to derive an estimate for Ωr and B.

The magnetic field gradient was measured to be −0.21 G/m in the z direction [see
Fig. 3.8(b)]. Since the ground-based vs. microgravity position difference for release
trap B is less than 1 mm, the expected change in resonance frequency is −0.1 kHz
only. This can be neglected, because the nearest crossings are at ∆r ≈ ±7 kHz.

The derivation of a new relative rf amplitude producing the same Rabi frequency
at the microgravity position is more complex. One possibility is to turn the capsule
around by approximately 90° and then try to let the new atomic trajectory pass
by the microgravity position. The atoms would then fall to the right instead of
downwards in the absorption images. This alone would be quite arduous, but still
possible with Q-2. In addition, the entire experimental sequence would have to be
re-optimized for the new direction of gravity. Using thermal atoms with a corre-
spondingly less critical experimental sequence is not an option. A separation of the
Zeeman states would then no longer be possible in the reduced magnetic field gradi-
ent further away from the atom chip. Invoking the measurement on rf gradients is
an alternative. By linear extrapolation the Rabi frequency is expected to decrease
to approximately 45% compared to the ground-based measurement. However, this
value might well be too small, because the rf amplitude cannot change linearly all
over the chamber. It is most likely no 1/r dependence either, because the rf antenna
is not a single straight wire. Nevertheless, an underestimation of the actual Rabi
frequency at the microgravity position is less critical than an overestimation (see
Fig. 4.21).

A realization of ARP in microgravity is shown in Fig. 4.23 for two different TOFs
after the application of a magnetic lens. A SG experiment accelerates the Zeeman
states to a relative velocity of 1.81(2) mm/s in the horizontal (x′) direction. The SG
field is effective in this direction only. The inclination of the imaginary intercon-
necting line is caused by an acceleration of the magnetic substates in the remaining
static magnetic field gradient. For this reason, the inclination is larger after 460 ms
compared to 350 ms.

The optimum relative rf amplitude in the ground-based measurement is 0.0255
and is extrapolated to 0.0255/0.45 = 0.0567 for use in microgravity. In both cases,
the Rabi frequency should be Ωr = 2π ⋅ 1315 Hz. Its gradient across a cloud with
RTF ≈ 130 µm would result in deviations of Ωr on the order of ±12% assuming the
previously measured value of 0.92 ‰/µm. The actual deviations can be expected to
be smaller because of the reduced gradient further away from the chip. Yet, even
±12% were tolerable. The two examples in Fig. 4.23 show the best (a) and the
worst (b) efficiency of the measurement series (different TOFs after the same lens)
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Figure 4.23: Both images show the Zeeman states after an adiabatic rapid passage in
microgravity (mF = −2 not populated). The states separate with 1.81(2) mm/s (SG). The
indicated TOF starts after the application of a magnetic lens and includes 38.3 ms for
ARP and a SG experiment. The ARP efficiency is 85% (a) and 72% (b).

to illustrate the shot-to-shot variations. Without a SG experiment, it would take
about 500 ms for the magnetic substates to separate in the static magnetic gradient
field.

Optimization of ARP under a variable rf amplitude

All previous calculations assumed a constant Rabi frequency. In this final part, the
expected efficiency gain when allowing Ωr to change linearly with time is discussed.
With this degree of freedom, a mitigation strategy for transverse decoherence in
ARP can be proposed.

It was shown in Fig. 4.21(b) that Pf is the limiting factor for ARP in the absence
of decoherence. This loss channel can be eliminated by adiabatically undressing
the states after the ARP. Ideally, all atoms in ∣ϕ5⟩ will finally end up in ∣mF = 0⟩.
Of course, a linear ramp-down of the rf amplitude is not necessarily adiabatic, let
alone optimal. Nevertheless, any continuous function can be approximated by lin-
ear parts to arbitrary precision if required. Figure 4.24 shows solutions of the time
dependent Schrödinger equation for a linear rampdown from Ωr = 2π ⋅10 kHz to zero
at B = 9.61 G and ∆r = 0 with the initial state ∣ϕ5⟩. This Rabi frequency is al-
ready rather high compared to B (Ωr/B2 ≈ 0.1 kHz/G2). The corresponding energy
eigenstates were shown in Fig. 4.3(b). There exist four distinct avoided crossings
of ∣ϕ5⟩ up to Ωr/B2 ≈ 0.175 kHz/G2. Actually, the ARP model [see Eq. (4.45)] can-
not be expected to make correct predictions in this regime. Even 0.1 kHz/G2 seem
to be quite ambitious, because the individual crossings are hardly distinguishable.
However, the solutions in Fig. 4.24 were calculated with the full Hamiltonian [see
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Figure 4.24: Contributions of diabatic states mF = 0 (black lines, top) and mF = ±1 (blue
lines, bottom) to ∣ϕ5⟩ during a linear rampdown of the Rabi frequency from Ωr = 2π ⋅10 kHz
to zero within 1 ms (solid lines), 0.2 ms (dashed lines) and 0.1 ms (dash-dotted lines). The
data are numerical solutions of the time dependent Schrödinger equation at B = 9.61 G.

Eq. (4.37)]. They are no approximations. In this rather extreme scenario, Pf would
be 65.6% and can be increased to 99.9% by a linear rampdown of the rf ampli-
tude within 1 ms, as shown by the solid black line. The solid blue line shows the
corresponding contributions of the neighboring diabatic states to ∣ϕ5⟩. The com-
bined contributions of mF = ±2 add up to 0.8% (initially) and are not shown. For
a significantly shorter ramp time, for instance, 0.1 ms (dash-dotted lines) or 0.2 ms
(dashed lines), the rampdown is apparently not adiabatic. This would entail a re-
duced final fraction in mF = 0. At a lower initial Rabi frequency, the rampdown can
only be more efficient. For this reason, a linear rampdown within 1 ms is a robust
protocol that can be used for smaller Ωr, too. A division into partial ramps is not
required. This additional time is wisely invested, even if the remaining ARP time
needs to be reduced accordingly. Nevertheless, Q-2 defies an experimental verifica-
tion. The measured efficiency hardly improves. However, this is in good agreement
with the hypothesis, that the dominant loss channel is decoherence rather than the
final overlap of states.

Since Pi has almost no effect [Fig. 4.21(b)] and Pf can be eliminated by a ramp-
down of the rf amplitude, a self-evident mitigation strategy for decoherence in ARP
is to minimize the remaining losses at the two crossings. For example, the combined
passage efficiency at the first crossing reads

[1 − exp(−
πΩ2,1

2

2∣α∣
)] ⋅ exp(−

3πΩ2,1

8∣α∣T2

) .

It depends on two free parameters only, none of which is the ARP time τ . The
magnetic field indirectly contributes by setting an upper limit to Ωr – and hence
Ω2,1 – as well as influencing the latter by the systematic shift shown in Fig. 4.4(b).
Ideally, the fraction in the first exponential should be as large as possible and vice
versa for the second one. A large sweep rate can be chosen to compensate for a
short T2. The correspondingly larger Landau-Zener loss can easily be circumvented
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Figure 4.25: (a) Passage efficiency when considering the overall decoherence (Π) and
adiabatic (Pad) losses at both crossings (mF = 2↔ 1 and mF = 1↔ 0) for three different
Rabi frequencies Ωr and for the transverse coherence times T2 = 50 ms (thick lines) as well
as T2 = 10 ms (thin lines). The vertical dashed line highlights the optimum sweep rate
α = 2π ⋅ 140.6 kHz/ms at Ωr = 2π ⋅ 10 kHz and T2 = 10 ms. (b) Passage losses vs. Rabi
frequency at this optimum α for different values of T2.

by an appropriate increase in Rabi frequency. This does not completely compromise
the reduction of the second fraction due to the quadratic dependence on Ω2,1 in the
first term. Unfortunately, there is no analytic solution to this equation. It is clear
that this expression can be arbitrarily close to unity, as long as sweep rate and Rabi
frequency can be increased further. In fact, Ωr is the crucial point. At B = 9.61 G,
the upper limit is Ωr ≈ 2π ⋅ 10 kHz (0.1 kHz/G2). In Q-2, the magnetic field for ARP
should not be increased further, as discussed before, even though the maximum Rabi
frequency quadratically depends on B.

Under these constraints, the overall passage efficiency for both crossings is shown
in Fig. 4.25(a) as a function of the sweep rate for three different Rabi frequencies
(plotted in blue, red and green). The efficiency corresponding to each of them is plot-
ted once for T2 = 50 ms (thick lines) and for T2 = 10 ms (thin lines). The efficiencies
for T2 = 10 ms are always worse and their optimum is found at an increased sweep
rate, as expected. The overall optimum efficiency is reached at the maximum Rabi
frequency that may be used and a specific sweep rate. This in turn depends on T2,
which is not known to a satisfactory precision. However, it will not be shorter than
10 ms [see Fig. 4.21(a)]. With this set of parameters (B = 9.61 G, Ωr = 2π ⋅ 10 kHz,
T2 = 10 ms) and with α = 2π ⋅ 140.6 kHz/ms, an efficiency of 98% is possible. If the
transverse coherence time were longer, the efficiency would be better.

It was stated before that these results are independent of τ . This will be true
only if τ is long enough for the sweep to start sufficiently far detuned (∆r,i = −∣α∣τ)
for the condition Pi ≈ 1 to be satisfied. Luckily, this condition is easily fulfilled. For
instance, with τ = 1.43 ms the sweep starts at ∆r,i = −2π ⋅ 200.6 kHz with Pi = 99.9%.

It is worth analyzing the dependence of this peak efficiency on Ωr, because it
is not exactly known in microgravity. Figure 4.25(b) shows the passage losses as a



102 4. Adiabatic rapid passage

function of Ωr for various T2. All curves are calculated with the same optimum sweep
rate derived above. Like in conventional ARP at constant Ωr, this passage is more
sensitive to Ωr being too low rather than too high. In fact, even the optimum value
is at a slightly higher Rabi frequency compared to the one assumed to optimize α in
Fig. 4.25(a). The reason is that Ωr could not be optimized, but had to be fixed at
the rather arbitrary upper bound. Still, no sharp decrease of the efficiency will occur
if this upper limit is exceeded. The model will simply start to fail making correct
quantitative predictions. Therefore, it is indeed reasonable to choose Ωr slightly too
large rather than too small.
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Conclusions

In this chapter, different schemes for ARP were discussed in great detail. The best
efficiencies are possible when the Rabi frequency can be actively controlled, for
example, by linearly decreasing the rf amplitude in the end. With this technique, a
mitigation strategy for decoherence in ARP was proposed. The expected efficiency
is 98% with T2 = 10 ms. For a constant Rabi frequency, the conventional ARP
was analyzed in great detail and supported by experimental data. In this case,
the efficiency benefits from a longer sweep time while a larger magnetic field is
advantageous in both cases. It was also shown that ARP is more sensitive to a Rabi
frequency that is too low rather than too high. Reverse ARP was briefly discussed
as an alternative to the conventional one. It is less susceptible to smaller magnetic
fields and larger field fluctuations than the conventional one. However, the tolerance
on mismatched Rabi frequencies is lower. Even the maximum possible efficiency
is smaller within the given experimental limitations. For this reason, conventional
ARP is favored over reverse ARP in Q-2. Nevertheless, reverse ARP is an alternative
for experiments featuring lower and especially less stable magnetic fields, where a
reliable final detuning is an issue.

The advantage of a highly efficient ARP in Q-2 is twofold. Clearly, more atoms in
the desired mF = 0 substate as the input state for an atom interferometer are bene-
ficial. Furthermore, if the remaining magnetic substates were no longer detectable,
there would be no need to separate them after the ARP. This would allow for an
analysis of a magnetic lens even for short TOFs. Of course, the magnetic gradient
could be increased to speed up the separation of states, too. Yet, this would also af-
fect the mF = 0 state because of the quadratic Zeeman shift. In the example shown
in Fig. 4.23, the SG experiment accelerates the mF = 0 atoms by approximately
2.4 µm/s within 3 ms.

Other experiments suffering from much higher magnetic gradient fields might have
to apply the ARP several times. For example, to transfer the atoms into the mF = 0
state right after release and only transiently transfer back into mF = 2 to apply the
magnetic lens. This protocol benefits from an ARP efficiency close to unity to a
great extent.

In principle, the detuning can be changed either by chirping the rf pulse or by
changing the magnetic field. For the latter, the switching dynamics of the coils
can be exploited or the current through the coils is changed as a function of time.
Hence it may be called ‘coil ARP‘, too, even though it is in no way different to the
conventional one. The disadvantage, however, is the significantly reduced flexibility
due to the rather slow step response of the coil current. With this scheme, efficiencies
of up to 80% could be demonstrated (not shown), similar to reverse ARP.

Much effort was spent on modeling, characterizing and optimizing the conven-
tional ARP. Owing to this, efficiencies of up to 91% could be demonstrated on
ground and up to 85% in microgravity. The mitigation strategy for decoherence in
ARP could not be tested so far.
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Chapter 5

Center of mass motion

According to Newton’s first law, every object retains its state of motion in an inertial
reference frame, unless a force is acting upon the object. In the scope of this chapter,
the object is the BEC and all forces are taken to act on its center of mass (COM).
The analysis is performed within the drop capsule’s reference frame, which is not
inertial. Three data sets were acquired in microgravity. They are presented in the
first section and are the basis for a detailed discussion of systematic effects on the
center of mass motion (COMM) in Section 5.2. These effects can lead to real or
fictitious forces on the atoms within the capsule’s reference frame. The microgravity
environment is essential for this analysis, because all these forces are small compared
to gravity, but they can be measured on long time scales. This chapter concludes
with strategies for reducing the COMM as required for precision sensors.

All data points presented in this chapter were measured in microgravity by Chris-
toph Grzeschik, Alexander Grote, Christian Deppner and the author with additional
support by Waldemar Herr. Jan Rudolph and Merle Cornelius were part of the team,
too, but not for the entire measurement time. Decisions regarding the experimental
sequence were made by the team. The data analysis, numerical simulations and the
analysis of systematic effects were conducted by the author.

5.1 Measured center of mass motion

The COMM is measured by time of flight imaging. This involves creating at least
two atomic ensembles in the same way and detecting them after different TOFs.
This method is prone to a velocity scatter of the atoms. For this reason, two
alternatives are studied, both involving the detection of the same atomic ensemble
for several times at a significantly reduced intensity in the detection laser beam.
The advantage is the same initial state for all images. The first alternative aims at
a direct measurement of the COMM by choosing the time intervals in between the
images such that the displacement due to this COMM exceeds the increasing cloud
diameter. In this way, separate clouds will be visible on the same density image if the
camera is not read out in between. However, the detection process heats the atoms
resulting in an increased expansion rate. Hence, this method cannot work for small
COM velocities. Still, the readout time for the camera can be reduced by binning
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or a sub-image readout to circumvent this problem. Nevertheless, the heating limits
the available time span for this scheme to approximately 100 ms. Furthermore, the
choice of an appropriate magnetic quantization field is problematic, because it may
not be changed within the TOF due to the coil kicks, which would falsify the COMM
measurement. Therefore, the field can be maintained either in the configuration
for detection or in any desired configuration, for example with Ix = 0.1 A. Both
these options have significant disadvantages, because the method would be either
limited to a certain high-field and high-gradient configuration or no information on
the number of atoms could be extracted, if the condition for the cycling transition
is not met. In summary, this alternative is impractical for detecting small COM
velocities and leads to systematic rather than statistical errors.

The second alternative aims at an indirect measurement of the in situ dipole os-
cillations. This is only a single aspect leading to COMM, but needs to be treated
separately anyway. If the atoms are imaged many times over exactly one or many
cycles of the oscillation, the density distribution in the absorption image will resem-
ble the classical probability distribution of a harmonic oscillator with maxima at the
turning points. This method works well for in situ oscillation amplitudes exceeding
50 µm, which is far above the target accuracy of approximately one micrometer.
However, this alternative can still be used to suppress large dipole oscillations, as
will be explained below. In summary, both alternatives have the incentive of requir-
ing fewer drops, but they are not precise enough for measuring the center of mass
velocities presented in this work.

Three independent data sets on the COMM of magnetically lensed atoms are pre-
sented in Fig. 5.1. A different lens was used for each of these sets (A, B and C). Set A
was lensed with the ’SC-BC Gaussian lens’ taken as an example in Section 3.3. The
remaining two sets were lensed by a pure BC ’box lens’, where the BC current was
simply switched on for 2.64 ms, while the bias coil was kept constant at Iy ≈ −75 mA.
The difference between Set B and C is the value of the BC current, which is 1.8 A
for Set B and 1.828 A for C. This primarily results in a different position of the lens
trap and thus a different COM velocity. The details of these lenses are not relevant
in this section. They are discussed in Chapter 6 on magnetic lensing.

After the respective lens, the atoms were transferred to the mF = 0 substate. The
COMM is expected to be uniform in the absence of forces. For definiteness, the
COM is taken as the first moment of the integrated density profile of an absorption
density image1. The resulting uncertainty in the position is much smaller than the
data points. The motion is approximately uniform for the x′ direction (left column
in Fig. 5.1), but accelerated in the positive y′ direction (right column). It is a
downward acceleration of the atoms with respect to the capsule due to a residual air
drag in the drop tower, as will be shown in the next section. The initial velocities
are on the order of a few hundred µm/s. The dominant contributions originate from
the particular experimental sequence as will be explained in the remainder of this
section.

1A glance to Appendices A and B gives an impression of these absorption images. In these
appendices, they are compared to the results of a numerical simulation, which is explained in the
next chapter.
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Figure 5.1: The figures show the measured x′ (left column) and y′ (right column) COM
coordinates of three data sets (A, B and C) of magnetically lensed atoms after different
TOFs. The solid blue line is a quadratic fit to the respective data sets. The fitted residual
accelerations are given in each subfigure.
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The BEC can be assumed to be at rest in the final evaporation trap. In between
this point and the end of the ARP, from where on the atoms are almost insensitive to
magnetic gradient fields, every step within the experimental sequence (see Table 2.3)
has a significant effect on the center of mass motion. The first one is the transfer of
the BEC to its release position. As an example, the transfer to release position A as
used for Set A is discussed in more detail. In principle, this transfer can be performed
slow enough such that no dipole oscillations are excited. Still, the finite drop tower
height limits the time that can be invested into this adiabatic decompression. The
course of the y coil control responsible for the trap motion is parametrized by a
sigmoid function:

control(t̃) = 1 −
1

1+e−s/2 −
1

1+es(1/2−t̃)
1

1+e−s/2 −
1

1+es/2
, (5.1)

where t̃ is a normalized time on the domain [0,1] and s ∈ [0,∞) is a parameter
defining the shape of the control ramp. It starts at zero for t̃ = 0 and terminates
at unity for t̃ = 1. The two extreme cases s = 0 and s → ∞ correspond to a linear
ramp and a unit step function with the step at t̃ = 0.5, respectively. For Set A,
the trap is moved within a duration of 250 ms to position A using s = 10, which is
rather smooth in the beginning and at the end. This time is much longer than the
coil’s settling time. Hence, the step response can be neglected in this case. The
ramp duration was chosen such that no dipole oscillations are detectable in ground-
based measurements, that is, with TOFs ≤ 22 ms. Yet, small in situ oscillations are
easily detectable after a longer TOF. The maximum kinetic energy mRbv2

max/2 the
atoms can acquire due to dipole oscillations equals the maximum potential energy
in the trap. Using Eq. (2.2) and limiting the analysis to the z direction of a purely
harmonic trap:

1

2
mRbω

2
z∆z

2 = 1

2
mRbv

2
max,

where ∆z is the amplitude of the in situ oscillation, yields

vmax = ωz∆z. (5.2)

Figure 5.2 shows microgravity data detected after 100 ms TOF. The hold time
within the release trap was varied in order to measure residual dipole oscillations.
The COM positions are shown in (a) and (c) for the two detection coordinates x′ and
y′, respectively. In (a), an after-TOF oscillation amplitude of 51(6) µm at a frequency
of 60.4(3) Hz is detected. It agrees well with the predicted value of 2π ⋅ 59.8 Hz by
the chip model. According to Eq. (5.2), the measured amplitude corresponds to an
in situ amplitude of 1.3 µm, which is neglected in the fit. The hold time needs to be
chosen such that the resulting COMM is minimal. This corresponds to the turning
point of the in situ oscillation and to the center of the after-TOF oscillation. A
mismatch can lead to a COMM of up 0.5 mm/s. In the y′ direction, no oscillation
can be seen. The data set shows more than just the residual oscillation amplitude.
Since absorption imaging is destructive, as explained above, every data point was
acquired using a newly created BEC. Many drops were required because only two
such data points can be taken in a single drop. Nevertheless, an oscillation can be



5.1 Measured center of mass motion 109

Hold time (ms)

0 50 100 150

x
' (

µ
m

)

800

850

900

950

1000

ω = 2π·60.4(3) Hz

(a)

Hold time (ms)

0 50 100 150

v
x
' (

m
m

/s
)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

σ
v
 = 188 µm/s

(b)

Hold time (ms)

0 50 100 150

y
' (

µ
m

)

0

10

20

30

40

50

60
(c)

Hold time (ms)

0 50 100 150

v
y
' (

m
m

/s
)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

σ
v
 = 65  µm/s

(d)

Figure 5.2: The filled circles in (a) and (c) are the center of mass positions (x′ and y′)
measured in microgravity after 100 ms TOF for various hold times in the release trap.
The blue (orange) points were measured in drop (catapult) mode. The solid black line
in (a) is a sinusoidal fit of the x′ coordinate of both data sets. The fitted frequency is
ω = 2π ⋅ 60.4(3)Hz. The scatter in the velocity after the release is shown in (b) and (d)
for the two respective directions. The combined standard deviation is 188 µm/s in the x′

direction and 65 µm/s in the y′ direction.

detected in the x′ direction. This means that it is phase coherent from drop to drop.
If this were not the case, the dipole oscillation would manifest itself in an increased
scatter of the atomic position after TOF and the control over the COMM would be
much more complicated.

The scatter in position after such a long TOF is dominated by the scatter in
the COM velocity after release. This velocity scatter is calculated from the data
in Figs. 5.2(a) and (c) and is shown in (b) and (d), respectively. For (b), the
fitted dipole oscillation was subtracted from the data. The standard deviation of
the velocities is a measure for this velocity scatter. It is σv = 188µm/s in the x′

direction and σv = 65µm/s in the y′ direction. This scatter can be reduced by
magnetic lensing, as will be shown below.

The orange data points in Fig. 5.2 were taken during different catapult flights
in contrast to the blue ones (drop mode). Unfortunately, the data yield per flight
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in catapult mode is worse than in drop mode, because of dust particles within the
vacuum chamber2. They are visible to the naked eye and fly through the chamber
during a catapult flight due to elastic deformations in the acceleration phase. This
spoils many images. The scatter in the y′ direction is significantly larger for the first
out of four data points during a catapult flight (not shown). These data points are
neglected, too. The remaining data points, however, are comparable in phase and
oscillation amplitude to those in drop mode. Aside from that, the scatter seems to
be reduced in catapult mode, even though the data set is too small for a definitive
statement.

After the transfer of the atoms to the release position and holding them for a
certain time, as explained above, the atoms are released from the trap. The typical
timescale for this release is on the order of 1 ms, limited by the step response of the
bias coil. If both, this coil and the chips in use (BC and SC), were simply switched
off with the step response function, the chip currents would decrease much faster
than the coil current. In turn, the trap center would move rapidly towards the chip
leading to a transient acceleration of the atomic ensemble. This effect is investigated
further in Section 5.3 together with a mitigation strategy.

In the free expansion phase prior to the magnetic lens (pre-TOF), the atoms are in
the mF = 2 substate and hence susceptible to magnetic field gradients, as discussed
in Section 3.4. The lens itself can accelerate the atoms, too: First of all by the on
and off switching processes and also if the atoms are displaced from the center of
the lens.

Finally, the atoms are transferred to the mF = 0 substate by the ARP. The high
magnetic field, which is advantageous for an efficient ARP, can change the COMM
by the coil switching process, as discussed in Section 3.4. All these effects must be
either reduced or compensated when aiming at a reduction of the center of mass
motion.

5.2 Systematic effects on the center of mass

motion

The total force on the atoms within the capsule’s reference frame is the vector sum
of Coriolis and centrifugal force, the force by the residual air drag, magnetic and
electric dipole force and a detection pseudo force arising when imaging dilute and
highly asymmetric clouds:

F⃗total = F⃗centrifugal + F⃗Coriolis + F⃗magnetic + F⃗electric + F⃗pseudo + F⃗air drag. (5.3)

Theses forces are discussed in the following. It should be mentioned that the air
drag is acting on the drop capsule rather than the atoms. F⃗air drag, on the other
hand, is defined as the resulting fictitious force on the atoms within this non-inertial
frame.

2The cleaning of the vacuum chamber requires breaking the vacuum. This is a very lengthy
procedure due to the required baking out phase afterwards. This was postponed in order to collect
data in microgravity that are valuable for the MAIUS-1 mission.
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5.2.1 Centrifugal and Coriolis force

The freely falling capsule can rotate about its center of mass, which does not coincide
with the origin of the Q-2 coordinate system SQ-2. Its position vector with respect
to the capsule’s center of mass system SC is

R⃗ =
⎛
⎜
⎝

−47(2)
138(10)

54(2)

⎞
⎟
⎠

mm. (5.4)

Hence, the capsule’s center of mass is approximately 14 cm above the chip center
and axially separated by 7 cm. The position of the COM of the atomic ensemble
with respect to SQ-2 is given by r⃗. If the capsule is rotating with angular frequency
ω⃗, this will give rise to the centrifugal force [158]

F⃗centrifugal = −mRb ω⃗ × [ω⃗ × (R⃗ + r⃗)] = −mRb ω⃗ × (ω⃗ × R⃗) −mRb ω⃗ × (ω⃗ × r⃗) . (5.5)

This is equivalent to the acceleration

a⃗centrifugal =
d2r⃗

dt2 = −ω⃗ × (ω⃗ × R⃗) − ω⃗ × (ω⃗ × r⃗) , (5.6)

which is given instead of the force for a more compact notation. The centrifugal
acceleration depends on the capsule’s rotation rate and the atomic position with
respect to the capsule’s center of mass, but not on the atomic velocity. On the other
hand, the Coriolis acceleration [158]

a⃗Coriolis = −2ω⃗ × dr⃗

dt
(5.7)

depends on the atomic velocity and on ω⃗, but not on the atomic position.
The capsule’s rotation rate can be measured with an inertial measurement unit

(IMU). The three components of ω⃗ are shown in Fig. 5.3(a) for all drops with the
IMU embarked on Q-2. The nine catapult flights (Drops 22 to 30) are highlighted
by the shaded gray area in the figure. The rotation rates are significantly higher in
catapult mode. The largest of all components is about the capsule’s symmetry axis
(green circles). A rotation about this axis is inevitable due to the manufacturing
process of the piston accelerating the capsule and is partially desired in order to
stabilize the capsule against tilting [67]. The measured tilt rate is shown by the
gray circles and integrates up to approximately 5° over an entire catapult flight.

The axial rotation rate is practically zero in drop mode. Aside from that, it
is noticeable that the tilt rate is much lower in the second half of the data set.
Modifications of the experimental setup are unlikely to be the cause, since even a
removal of 3 kg of balance weights in the stringers in between the first two sets of
drops (34-54 and 63-86) did not have any detectable effect on the rotation rates. As
a matter of fact, drop campaigns often involve many drops within one or a few weeks.
In effect, the weather can be similar within a campaign and significantly different
in another one. Indeed, a correlation with the ambient temperature can be seen, as
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Figure 5.3: The circles in (a) show the measured rotation rates about the capsule’s
x (red), y (green) and z axis (blue) and the combined tilt rate (gray) of the capsule’s
symmetry axis. Drop numbers 22-30 represent catapult flights and are highlighted by the
shaded gray area. The correlation of the tilt rate with the ambient temperature (official
Bremen airport temperature) is shown in (b).

shown in Fig. 5.3(b). The ambient temperature was taken as the officially reported
Bremen airport temperature at the time of the respective drop [159]. Of course,
such a correlation is no evidence for causality3. However, it is at least conceivable,
since the temperature could have an effect on the release mechanism of the capsule.
It provides a hint on how the rotation rates might be reduced in case they are too
high for some experiment.

The scattering of the rotation rates is to some extent due to the wind leading to
an oscillation of the drop tower. In fact, the outer tower and the inner steel tube
form two oscillators coupled at the bottom with relative amplitudes on the order of
30 cm (at the top of the tower) on stormy days. A capsule hanging at the top forms
a pendulum driven by the tower oscillation. The resulting capsule oscillations can
be measured by the IMU. An example on such a stormy day is shown in Fig. 5.4(a).
The peak rotation rates are about 0.1°/s at a frequency of 0.34 Hz, as shown by
the power spectral density in (b). As a consequence, the capsule’s rotation rate can
change by this amount depending on the release time. This leads to a scatter in
the tilt rate because the release time is chosen independently from the phase of this
oscillation.

The effect of the centrifugal acceleration on the COM of the atoms is shown in
Fig. 5.5. The average rotation rates of all catapult flights [see Fig. 5.3(a)] are used
for (a) and the respective average rates of the first two drop mode subsets for (b).
The centrifugal displacement is shown for all three spatial directions and for the
projection onto the Detection 1 camera frame (x′ and y′). The largest accelerations
(∼ 3 µg) can be expected within this frame leading to displacements that would be
easily detectable with the free evolution times explored so far. In drop mode, the
displacements are significantly smaller. Indeed, the displacement in the y′ direction

3Just like the spurious relationship between the storks and the number of births in a country.
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Figure 5.4: (a) The rotation rates of a drop capsule hanging in the top of the drop tower
on a stormy day are plotted with respect to the Q-2 coordinate system. The dominant
frequency of the oscillation is 0.34 Hz, as can be seen by the power spectral density (b) of
the data in (a).

after 2 s TOF is smaller than 2 µm. This is undetectable with the measurements
in Fig. 5.1. Hence, the centrifugal force can be neglected in drop mode, but not in
catapult mode (unless the TOF is small).

The calculation of the Coriolis displacement requires the knowledge of the atomic
COM velocity. As an example, the COM velocity v⃗ = (−0.28,0.04,−0.37)mm/s is
used. It is realistic, as will be shown below. With the same values for ω⃗ as in Fig. 5.5,
the resulting Coriolis displacement is plotted in Fig. 5.6(a) for catapult operation
and in (b) for the drop mode. Again, the resulting accelerations are extremely small
in drop mode and can be neglected. The Coriolis accelerations in catapult mode are
smaller than the centrifugal accelerations, but cannot be neglected at long TOFs
either. Both accelerations can add up or counteract each other, depending on the
direction of the atomic motion.

The range of atomic COM positions varies by less than 2 mm. This is small
compared to R. Hence, the centrifugal force can be assumed to be independent of
the experimental sequence. The centrifugal acceleration is then

a⃗centrifugal,catapult =
⎛
⎜
⎝

−2.38
2.45
2.99

⎞
⎟
⎠

µg (5.8)

in catapult mode and

a⃗centrifugal,drop ≲
⎛
⎜
⎝

−0.03
0.09
0.03

⎞
⎟
⎠

µg (5.9)

in drop mode, where the ≲ sign is stated because the (larger) average ω⃗ of the first
set of drops was used. The corresponding absolute values are:

acentrifugal,catapult = 4.5µg,

acentrifugal,drop ≲ 0.1µg,
(5.10)
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Figure 5.5: The displacement of the atomic COM position due to the centrifugal force
is shown for the catapult mode (a) and the drop mode (b) for the different spatial di-
rections and their projection onto the Detection 1 coordinate system. The corresponding
accelerations within this frame are given in the figures.
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Figure 5.6: The displacement of the atomic COM position due to the Coriolis force
assuming an atomic velocity of v⃗ = (−0.28,0.04,−0.37)mm/s (as measured in Fig. 5.13)
is shown for the catapult mode (a) and the drop mode (b) for the different spatial di-
rections and their projection onto the Detection 1 coordinate system. The corresponding
accelerations within this frame are given in the figures.
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for future reference. Such an estimate is not possible for the Coriolis acceleration
because of the dependence on the atomic velocity. However, an upper bound can be
given by assuming v⃗ ⊥ ω⃗ and v = 1 mm/s, which is higher than all velocities observed
in Fig. 5.1:

aCoriolis,catapult < 3.7µg,

aCoriolis,drop < 0.5µg.
(5.11)

The maximum of all TOFs explored in catapult mode is 100 ms with Coriolis and
centrifugal displacements well below 1 µm. The accelerations in drop mode are
small enough such that they can be neglected, too. In fact, they are below the fit
uncertainties in Fig. 5.1.

5.2.2 Magnetic dipole force

It was shown in Section 4.2 that the energy of the mF = 0 substate depends quadrat-
ically on the magnetic field (quadratic Zeeman shift). For convenience, this depen-
dency is reprinted here [see Eqs. (4.27) and (4.28)]:

E(F = I + 1

2
,mF = 0,B) ≈

µ2
BB

2

∆Ehfs

.

The resulting force is

F⃗magnetic = −∇E = −
3

∑
i=1

∂E

∂B

∂B

∂ri
êi ≈ −2

µ2
BB

∆Ehfs

3

∑
i=1

∂B

∂ri
êi, (5.12)

where the ri are the coordinates x, y and z with the corresponding unit vectors
êi. In other words, the magnetic force is proportional to B and its gradient. Both
of them were measured in Section 3.4 using the mF = 2 substate. The calculated
acceleration of the mF = 0 substate in the y′ direction for the data sets in Fig. 5.1
is shown in Fig. 5.7. This particular direction is chosen for its largest component
of the magnetic field gradient within the Detection 1 frame. Furthermore, it is of
special interest for the air drag discussion below. The gradient in the x direction
can be as large as 1 G/m [see Eq. (3.7)] leading to an acceleration of 0.3 µg. Data
Set A was taken with a quantization field of B ≈ 1 G using Ix = 0.5 A. The resulting
effect on the atomic trajectory is shown by the solid blue line. For Data Sets B and
C, Ix = 0.1 A was used resulting in a much smaller acceleration (dashed black line).
The effects are small, but known to a relative uncertainty of less than 3% for all
data sets. Hence, all data points in Fig. 5.1 can be corrected for this effect, which
is performed at the end of this section.

5.2.3 Electric dipole force

Characterizing the magnetic forces acting on the mF = 0 atoms was easy. The
magnetic environment could be measured using the mF = 2 state allowing for a
direct calculation of the actual forces. This situation is fundamentally different for
electric dipole forces, since all available (stable) states of rubidium have the same
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Figure 5.7: The solid blue line shows the accelerated motion of mF = 0 atoms along the
y′ direction caused by the magnetic field gradient in Eq. (3.6) and the quantization field
B ≈ 1 G generated by Ix = 0.5 A. The dashed black line depicts the trajectory for Ix = 0.1 A
and the corresponding gradients in Eq. (3.8).

electrostatic polarizability α0. As a matter of fact, the alkali atoms even have the
highest polarizability of all atomic species by virtue of their single valence electron.
The potential energy of an atom placed in an electric field E is reduced according
to

HE = −1

2
α0E

2, (5.13)

because the induced electric dipole moment is aligned in parallel to the electric
field [92]. Within the magnetic shield, no large accumulation of charges is expected.
Still, there are actively controlled components, for example the camera head, pho-
todiodes, coils and chips. This active control involves different electric potentials
within these components. If they have a nonzero capacitance, spatially separated
charges will accumulate. This leads to an electric field, which is approximated as a
pure dipole field.

The largest capacities can be found in the capacitors of electric circuits. In a sim-
plified view, they consist of many parallel plate capacitors at a very small separation
that are folded many times. The remaining electric dipole field is practically zero.
Still, even two parallel wire elements of length l have a capacitance given by

C = πε0
l

ln ( d
2Rwire

)
, (5.14)

where Rwire is the wire radius and d their separation [160]. Assuming d >> l, the
two wire elements can be treated as point charges. Their electric dipole moment is

p⃗ = Qd⃗, (5.15)

with charge Q = CU , where U is the potential difference between the two wire
elements. The resulting electric field is [161]

E⃗(r⃗) = 1

4πε0
[3(p⃗ ⋅ r̂) ⋅ r̂ − p⃗

r3
] , (5.16)
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where r⃗ = r ⋅ r̂ is the position vector relative to the dipole center. Squaring this
equation yields

E2(r⃗) = (4πε0r
3)−2 [9 (p⃗ ⋅ r̂)2

r̂2 − 6 (p⃗ ⋅ r̂)2 + p2] ,

= (4πε0r
3)−2 [3 (p⃗ ⋅ r̂)2 + p2] . (5.17)

The electric field is strongest for p⃗ ∥ r̂:

E2(r) ≤ (4πε0r
3)−2 [4p2] = p2

4π2ε20r
6
. (5.18)

Inserting this into Eq. (5.13) and taking the negative gradient yields an upper limit
for the electric force on the atoms:

∣F⃗electric∣ ≤
3α0p2

4π2ε20r
7
, (5.19)

which is directed towards the dipole. To give an estimate on the order of magnitude
of the effect, a simple example is calculated. The electric dipole moment of two
parallel wire elements of length l = 1 cm, wire radius Rwire = 0.25 mm and potential
difference U = 12 V is shown in Fig. 5.8(a) as a function of the wire separation. The
electric dipole moment ranges from 10−14 to 10−13 Cm. Such a wire geometry is not
particularly unlikely. See, for example, the black and the red wire in the bottom
right of Fig. 2.3, even though these particular wires are connected to a photodiode
in photovoltaic mode such that U ≈ 0.

The electric dipole force on rubidium atoms for three different electric dipole
moments is shown in Fig. 5.8(b). In all cases, the acceleration is much smaller
than 1 µg, which was about the fit uncertainty of the acceleration by time of flight
imaging in Fig. 5.1. In fact, the electric dipole moment may even be two orders of
magnitude larger still without being able to detect the effect of such dipole forces at
the current level of precision. Actually, no configuration within the Q-2 shield could
be identified that could be responsible for p = 10−15 Cm or even above (not even
close). Hence, electric dipole forces can be neglected for all measurements within
this work.

It must be noted, that the assumption d >> l is not strictly fulfilled in the left part
of Fig. 5.8(a). In addition, (b) is invalid for points in between the wires or close to
them, because a point-like dipole is assumed for Eq. (5.17).

It is interesting to compare the estimates with the target accuracy of typical pro-
posed EEP test missions, for example STE-QUEST. Relative accelerations between
different atoms should be measured on the 2 ⋅ 10−15 level in ηA,B [62]. This level is
shown as the dashed black line in Fig. 5.8(b). The force, but not the acceleration,
is equal for different isotopes of the same atomic species, such that the relative ac-
celeration is largely suppressed. For the case of potassium and rubidium, on the
other hand, it is only slightly suppressed because of their similar polarizabilities
(α0,K = 43.4 cm3 vs. α0,Rb = 47.3 cm3) [162], but different mass numbers. However,
it is not hard to build the experiment such that electric dipole forces can be ruled
out completely as a source of systematic errors.
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Figure 5.8: (a) Electric dipole moment of two wires of radius 0.25 mm and length 1 cm as
a function of their separation. A potential difference of 12 V between the wires is assumed.
(b) shows the acceleration of 87Rb atoms due to the electric dipole field by various dipoles.
The dashed black line shows the STE-QUEST target accuracy as a reference [62].

5.2.4 Detection pseudo force

There is another source of systematic errors arising when imaging dilute and highly
asymmetric clouds. The asymmetry is caused by magnetic lensing with anharmonic
magnetic traps. This 1D effect is calculated for the two lens types (SC-BC and
pure BC). The small difference between Set B and C can be neglected here. The
magnetic potential in the z direction is plotted in Fig. 5.9 for both lenses (blue
line). Equal scales are chosen for comparison. The Gaussian ramp used for the
SC-BC-lens is irrelevant for this discussion. It can be assumed that both lenses
are simply switched on and off again. The parabolic approximation to the atomic
density distribution for 105 atoms after the respective pre-TOF of 33 ms (SC-BC-
lens) and 80 ms (BC-lens) is depicted as the black line. The relative atomic velocity
is approximately proportional to the distance from the COM of the cloud, which is
assumed to coincide with the lens trap center z0. A harmonic lens of the correct
duration would stop the expansion without any further effects leading to a collimated
ensemble. However, the lenses are not harmonic and the anharmonicities defined by
Eq. (2.2) are

L3,SC-BC = −1/2.87 mm,

L4,SC-BC = 1/3.28 mm2 (5.20)

and
L3,BC = −1/1.18 mm,

L4,BC = 1/0.31 mm2.
(5.21)

The L3-asymmetry in the magnetic potential is strongest and profoundly visible for
the SC-BC-lens. This steeper increase towards the left, that is towards the chip,
leads to an overcompensation of the relative atomic velocity. The opposite is the
case for points to the right of the trap center. Atoms at the very left of the cloud
fly through it and can separate from the COM again during the subsequent TOF.
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Figure 5.9: The magnetic lens potential (blue line) with its center at z = z0 is shown for
the SC-BC-lens (a) and the pure BC-lens (b). The 1D atomic density distribution for 105

atoms after the respective pre-TOF is shown as the black line. The frequencies of the lens
traps are given in the figures.

The resulting density profiles after 2 s TOF are exemplarily shown in Fig. 5.10(a).
The tail away from the chip is more pronounced for the SC-BC-lens, as expected. If
all atoms were detectable, the L3-anharmonicity would merely result in a changed
COM velocity:

∆vL3,SC-BC = 188
µm

s
,

∆vL3,BC = 67
µm

s
.

(5.22)

However, the detection noise is superimposed with the atomic density signal and
shrouds the atoms in the far end of the tail. Actually, these atoms have the strongest
effect on the COM position due to their largest separation from it. If, for example,
the detection threshold were at a density of 10/µm, atoms in the shaded gray area
in Fig. 5.10(a) would remain undetected. The threshold was roughly estimated from
measured absorption images. In (b), the resulting effect on a measured COM (solid
lines) is shown in comparison to the true COM (dashed lines). The deviation can
be described by an increasing pseudo acceleration, which is significantly stronger
for the SC-BC-lens. The values given in the figure depend on the chosen threshold
value. Whether or not this pseudo acceleration is an issue can be seen by inspection
of the x′ coordinate of the COM, because this is the direction in which the tail is
predominantly oriented. Hence, the largest effect can be expected in Fig. 5.1(a).
Indeed, the fitted acceleration is rather negative, in contrast to sets B and C, but
the uncertainty is larger than the value.

If the cloud and lens center do not coincide, the tail can be oriented at an angle
to the z axis allowing for a pseudo acceleration in the y′ direction. This was the
case in Set A with a component of apseudo directed in the negative y′ direction
opposing the measured acceleration. Hence, this effect cannot be responsible for an
over-estimation of the air drag, which is the last systematic effect in this discussion.
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Figure 5.10: (a) shows the atomic density distributions from Fig. 5.9 after 2 s TOF. The
shaded gray area at the very bottom depicts the roughly estimated detection threshold.
The center of mass motion due to the L3 anharmonicity is plotted in (b) as the dashed
lines. The undetected atoms within the tail in (a) lead to a pseudo acceleration towards
the chip, which is depicted by the solid lines. The pseudo acceleration is increasing with
TOF and given in (b).

5.2.5 Residual air drag

The drop tower is evacuated to a pressure of 10-20 Pa. Still, this residual air impedes
the free fall of the drop capsule such that it lags the free fall of the atomic ensemble
within. The resulting differential velocity can be derived from [163] and is below
1 mm/s. Compared to the impact velocity of 46.3 m/s it can be treated as a small
perturbation. The fictitious force on the atoms (Fair drag) within this accelerated
frame is of equal magnitude, but opposite direction compared to the drag force on
the capsule:

F capsule
air drag = −Fair drag = −

1

2
cdAρv

2
c , (5.23)

where cd is the drag coefficient, ρ the density of the remaining air, A ≈ π ⋅ (0.4 m)2 ≈
0.5 m2 is the circular cross section of the drop capsule and vc its velocity. Higher
order contributions resulting in a small reduction of F capsule

air drag due to the reduced
velocity by the drag itself are neglected, such that

vc = gt (5.24)

is assumed for all calculations. The drag coefficient depends on the Reynolds num-
ber and therefore on vc [164]. Selig et al. have measured the residual acceleration in
the drop tower with the SuperSTAR accelerometer [165] used for the GRACE mis-
sion [166] in order to test accelerometers for the MICROSCOPE mission [167]. They
have shown that the residual acceleration has components that are both, quadratic
and linear in the velocity. The latter one is known as Stokes friction, which is
responsible for the velocity dependence of the drag coefficient:

cd(vc) ≈ c1 +
c2

vc
, (5.25)
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with constants c1 and c2. The corresponding acceleration of the atoms can then be
written as

aair drag = aSt + aTt
2, (5.26)

where aSt is the acceleration due to Stokes friction and

aT = 1

2m
c1Aρg

2 (5.27)

parametrizes the acceleration due to turbulent drag (form drag). The following
values can be fitted to the MICROSCOPE data [168]:

c1 = 0.406(82) (5.28)

and

aS = 1.2(1) ⋅ 10−5 m/s2

s
, (5.29)

where the latter is rescaled to the mass of the Q-2 capsule (453 kg) and referenced
to a temperature of 273 K. The temperature dependence is

aS(T ) = aS(273 K)
√

T

273 K
. (5.30)

The following discussion assumes the drop mode for illustration. An adaptation to
the catapult case is straightforward. In free fall, the air drag acceleration [Eq. (5.26)]
of the capsule is upwards. While the atoms are trapped, they are co-accelerated with
the capsule. After release at t = t1 they accumulate the relative downward velocity

∆vatoms(t, t1) = ∫
t

t1
(aSt

′ + aTt
′2)dt′

= aS

2
(t2 − t21) +

aT

3
(t3 − t31) , (5.31)

valid for t1 < t < 4.72 s. The resulting position difference at t = t2 is

∆yatoms(t1, t2) = ∫
t2

t1
∆vatoms(t, t1)dt

= aS

2
(t

3

3
− t21t) +

aT

3
(t

4

4
− t31t)∣

t2

t1

= aS

6
(t32 − 3t21t2 + 2t31) +

aT

12
(t42 − 4t31t2 + 3t41) . (5.32)

The MICROSCOPE data sets have been acquired during ten catapult flights. The
measured acceleration traces suffer from the onset of noise and/or oscillations in
many cases. In addition, the sensor was operated beyond the specified measurement
range [165] and no information on the sensor calibration is available. Still, it is the
only direct measurement of the residual air drag in the drop tower and was performed
with a similar – but not equal – capsule as for Q-2. A compensation of exactly the
effect calculated by Eqs. (5.27) to (5.30) and (5.32) leads to an underestimation of



122 5. Center of mass motion

± 20°C

(a)

Capsule falling time (s)

0 1 2 3 4 5

A
c
c
e
le

ra
ti
o
n
 (

µ
g
)

0

5

10

15

20

25

30

Total                 (20 Pa)

Stokes              (15°C)

Turbulent drag (20 Pa)

Turbulent drag (10 Pa)

B
E

C
 p

re
p
a
ra

ti
o
n

C
a
m

e
ra

 r
e
a
d
o
u
t

9 µg

21 µg

(b)

Capsule falling time (s)

0 1 2 3 4 5

∆
 y

 (
µ
m

)

0

20

40

60

80

100

Total

Stokes

Turbulent drag

Figure 5.11: (a) shows the Stokes (dashed blue line) and the turbulent drag (thick dash-
dotted green line) contributions to the total air drag (solid black line) at a tower pressure
of 20 Pa. The turbulent drag at 10 Pa is shown by the thin dash-dotted green line. The
shaded blue area visualizes the temperature dependence of the Stokes drag. (b) shows the
different contributions to the atomic displacement ∆y during 1 s TOF for two different
start times. The respective average total accelerations are 9 µg and 20 µg. The available
TOF range is limited by the BEC preparation, the camera readout and the available total
time in free fall.

aair drag measured by time of flight imaging (Fig. 5.1). The effect by the magnetic
field gradient was corrected before this analysis. The residual accelerations differ
from zero by approximately two standard deviations. It was shown above that other
systematics affecting the atomic COMM are below the 1 µg-level. They cannot be
responsible for the discrepancy. Systematic differences are the typical tower pressure,
which was approximately 5 Pa lower for the MICROSCOPE flights than for Q-2
and the slightly different capsule. It cannot be ruled out that these systematics
may account for the observed discrepancy. Further uncertainties are the actual
pressure distribution within the tower and possibly convection, which would be
time dependent. The issue with the sensor range might falsify the MICROSCOPE
data, too, even though no saturation effects are visible. The detection pseudo force
would contribute to an acceleration primarily in the x′ direction, as discussed above.

The time of flight data from Fig. 5.1 do not allow to discern Stokes and turbulent
drag. Therefore, the MICROSCOPE results are used, but rescaled by a factor of
2.1(8), which minimizes the residual accelerations in the y′ direction. The result-
ing contributions to aair drag are depicted in Fig. 5.11(a) with linearly increasing aS

(dashed blue line) and quadratically increasing aT (dash-dotted green lines). The
Stokes friction is independent of pressure, but depends on the temperature accord-
ing to Eq. (5.30). The effect is very small, as illustrated by the shaded blue area
equivalent to temperature variations of ±20°C. The turbulent drag, on the contrary,
is proportional to the pressure, but independent of temperature. It is depicted by
the dash-dotted green lines for tower pressures of 10 Pa and 20 Pa, respectively. The
total air drag at 20 Pa is shown by the solid black line. In Fig. 5.11(b) the atomic
displacement during 1 s time of flight is shown for the earliest possible case (left) and
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the latest possible case (right). The left one is representative for a typical sequence
with a TOF exceeding 600 ms. Even though the trajectory is not parabolic [see
Eq. (5.32)], an average acceleration can be stated. It is of interest because this is
precisely what fits to time of flight data would deliver. These average accelerations
are much larger than those by the other systematics.

5.2.6 Corrected center of mass motion

It could be shown that most of the forces in Eq. (5.3) can be neglected, except for
the air drag. F⃗magnetic is not neglected either, because it is well known for all data
points, even though its contribution is smaller than a few micrometer. The data
points from Fig. 5.1 are corrected for these two effects and shown in Fig. 5.12 as
the full circles. The sole air drag effect, including the factor of 2.1, is visualized in
Fig. 5.12(b), (d) and (f) by the comparison of the open circles to the filled ones.
Two different model functions are fitted to the corrected data sets, a linear (dashed
black line) and a quadratic one (solid blue line). The residual accelerations and the
corresponding fit uncertainties are given in the figures. No acceleration differs from
zero by more than one standard deviation. Again, all data points are weighted with
1/

√
TOF. The results of the linear fits are given in Table 5.1 along with the residual

accelerations from the quadratic fits. The accuracy at which the COM velocity can
be determined is limited by the velocity scatter. The corresponding fit uncertainties
of Set A can be compared with the velocity scatter in Fig. 5.2, because both data
sets originate from the same release trap (release position A). The lens suppresses
the velocity scatter by a factor of ten in this case.

All three data sets are limited to the Detection 1 coordinate system, in which the
y′ coordinate is a superposition of x and y [see Eq. (2.15)]. In order to determine the
components of the COMM in these two directions, Data Set B is augmented by data
acquired with Detection 2. This set is shown in Fig. 5.13. Again, the open circles
are the raw data without air drag correction, which is effective in the y direction
only. The fitted components of the COM velocity were used to estimate the Coriolis
force above. The z component is -0.37(2) mm/s and can be directly compared to
vx′ = −0.41(2)mm/s from Table 5.1. The values are similar, but not equal. This is
not surprising, because the two data sets were measured in different drops. Even
though the experimental sequence is equal, the atomic positions still scatter. The
COMM in the y′ direction can be reconstructed from the x and y fits in Fig. 5.13(a):

vy′ =
0.04(4)mm/s − (−0.28(1)mm/s)√

2
= 0.23(3)mm/s,

which is slightly smaller than the 0.29(1) mm/s found with Set B in Fig. 5.12(d).
Nevertheless, it can be seen from Fig. 5.13(a) that the largest component of the y′

COMM is in the negative x direction, which is the one with the largest magnetic
field gradient (see Section 3.4). This relation is discussed in Section 5.3. Still, the
largest of all Cartesian velocity components in Set B is vz and the total center of
mass speed is vCOM = 0.47(2)mm/s.
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Figure 5.12: The figures show the corrected x′ (left column) and y′ (right column) COM
coordinates of three data sets (A, B and C) of magnetically lensed atoms after different
TOFs (see also Fig. 5.1). The open circles highlight the air drag correction, applicable
to the y′ direction only. The data in (a) and the open circles in (b) differ from the data
points in Fig. 5.1 only due to the effect of F⃗magnetic, which is hardly visible. The dashed
black (solid blue) line is a linear (quadratic) fit to the respective data sets. The fitted
residual accelerations are given in each subfigure.
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Figure 5.13: Center of mass positions measured with Detection 2 and the same exper-
imental sequence that led to Data Set B in Table 5.1. The lines are linear fits to the
respective data points. Open circles show the y coordinate without air drag correction.

lens type x′0 (µm) y′0 (µm) vx′ (µm/s) vy′ (µm/s) ax′ (µg) ay′ (µg)

Set A SC-BC 844(13) −3(5) 664(18) −252(7) −4(6) 1(2)
Set B BC 1505(16) 4(8) −414(20) 286(10) 1(8) −4(4)
Set C BC 1465(4) 3(7) −6(9) 300(14) 6(8) 7(14)

Table 5.1: Overview of the fit results of Fig. 5.12 for the three data sets (A, B and C).
The initial positions (at zero TOF) x′0 and y′0 as well as the initial velocities vx′ and vy′

come from the linear fit (dashed black lines in Fig. 5.12). The residual accelerations ax′

and ay′ are obtained from the quadratic fit.

5.2.7 Summary

Various forces within the Q-2 experiment leading to an acceleration of 87Rb atoms
in the mF = 0 substate of the the F = 2 hyperfine manifold were discussed. The cor-
responding accelerations are summarized in Table 5.2. The Coriolis and centrifugal
force refer to the drop mode and the air drag force to the maximum acceleration
prior to the latest possible detection time (≈ 4.4 s) at a tower pressure of 20 Pa. The
detection pseudo force is a rough estimate for the BC-lens. The most significant
acceleration is due to the residual air drag.

5.3 Reduction of the center of mass motion

There are a lot of contributions to the center of mass motion as described above.
Some of them are negligible. Others need to be taken into account, but cannot
be controlled well enough. For example the air drag and magnetic field gradients.
The latter can be changed slightly by a different quantization field, but this makes
no real difference. It would be better to identify the source and eliminate this
gradient. However, this involves measuring the magnetic field within a partially
opened magnetic shield, which is not comparable to a closed shield. A complete
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Centrifugal force a < 0.1µg
Coriolis force a < 0.5µg
Magnetic dipole force a ≤ 0.3µg
Electric dipole force a ≪ 0.1µg
Air drag force ay ≤ 30µg
Detection pseudo force az < 0.5µg

Table 5.2: Overview of accelerations of mF = 0 atoms due to various forces in drop mode
at a tower pressure of 20 Pa. The last entry refers to atoms after the BC-lens.

removal of the shield would require to disassemble the vacuum chamber. In fact,
it is even conceivable that the magnetic shield itself is the source of the observed
gradient. On the contrary, there are many options to control the COMM by properly
adjusting the experimental sequence. They are discussed within this concluding part
of the chapter.

5.3.1 Center of mass motion by dipole oscillations

The dipole oscillations within the release trap depend exclusively on the decompres-
sion phase of the final evaporation trap to either of the two release traps (A or B).
The control options are the time within which the bias current is reduced and the
shape of the control ramp. The primary direction of the dipole oscillation is along
the z axis, because this is the direction in which the trap is moved. Actually, a
small residual dipole oscillations can be useful, because the COMM can be tuned
by changing the hold time within the trap prior to the release. However, it is more
difficult to suppress rather than excite dipole oscillations. For this reason a complete
suppression of the dipole oscillation is aimed at.

Three different strategies are presented. The first one is to gently ramp the bias
current within 250 ms from −1.5 A to −0.6 A (release position A) using an s = 10
sigmoid [Eq. (5.1)]. This strategy is used for the SC-BC lens. The pure BC lens is
further away from the chip (position B). This requires either a much longer sigmoid
ramp or a different strategy. One possibility is to ramp out fast (75 ms), which
leads to large oscillation amplitudes, and to rapidly move the trap center to the
atom’s COM when they are at the turning point of the oscillation. This strategy is
reminiscent of quickly moving a load suspended by a rope on a crane. Hence it is
referred to as ’crane trick’. The third strategy is to design the control ramp for the
bias coil such that the atoms are at rest after the ramp. This is called shortcut to
adiabaticity (STA).

Numerical simulations of the atomic COM trajectory are conducted as follows:
Spatial gradients of the magnetic potential at the current position are calculated us-
ing the chip model. The new position is then determined by Verlet’s algorithm [169]
in its velocity form [170]. The atomic velocity is deduced by simple differentiation.
The COM oscillations after a TOF can be directly calculated from this velocity.
A contribution of the oscillating in situ position is negligible for all measurements
presented in this context.
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Figure 5.14: (a) Simulated trap center z0 when decompressing the final evaporation trap
within 250 ms to release trap A using an s = 10 sigmoid control ramp [see Eq. (5.1)] for the
y coil (dash-dotted black line). The end of this ramp is highlighted by a vertical dashed
black line. Subsequently, the trap center is held constant for another 250 ms to illustrate
in situ oscillations as shown by the velocity vz (solid blue line). (b) The expected position
after 100 ms TOF due to this oscillation is shown by the solid thick blue line as a function
of the hold time, which starts after the ramp in (a). The results from Fig. 5.2(a) are shown
for comparison (gray points and solid thin black line). The release time used for magnetic
lensing is 28.52 ms and highlighted by the dotted black line.

Strategy 1: slow sigmoid ramp

The simulation results for the 250 ms sigmoid ramp are presented in Fig. 5.14. The
dash-dotted black line in (a) is the z coordinate of the trap center (z0), starting
at 209 µm. After the ramp it is held constant at 812 µm in order to simulate the
resulting in situ dipole oscillations. The COM velocity in the z direction (vz) is
plotted as the solid blue line (right axis). It peaks at about 6 mm/s. For comparison,
the average velocity required for transport is (812−209)/250µm/ms ≈ 2.4 mm/s. At
the end of the ramp, highlighted as the vertical dashed line, vz is nonzero. This
leads to the dipole oscillation. The abscissa of the velocity plot is indicated as the
solid light blue line. The rapid oscillation in the beginning is no numerical artifact.
It has, however, practically no influence on the final state. Oscillations in the other
directions are smaller by more than two orders of magnitude and are neglected.

The resulting dipole oscillation after 100 ms TOF is shown in Fig. 5.14(b) as
the solid blue line. It is compared to the fit to the measured data in Fig. 5.2(a)
[solid black line], which has a slightly larger amplitude [51(6) µm vs. 39 µm]. The
simulated trap frequency (2π ⋅ 59.83 Hz) is 1% smaller than the one fitted to the
data [2π ⋅ 60.4(3)Hz]. The predicted initial phase of the oscillation is in excellent
agreement with the measured one. The center of the after-TOF oscillation, however,
cannot be predicted in this context. It is shifted by 102 µm to the fitted value of
914 µm for comparison.

The turning points of the in situ oscillation correspond to the center of the after-
TOF oscillation and vice versa. The measured after-TOF amplitude corresponds to
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Figure 5.15: (a) Simulated trap center z0 (dash-dotted black line) and velocity vz (solid
blue line) during trap decompression (75 ms), crane trick delay tct (11 ms), crane trick
(1 ms) and subsequent hold time. (b) shows the simulated after-TOF oscillation about
release position B as a function of the hold time after the crane trick.

peak in situ velocities of ±51µm/100 ms ≈ ±0.5 mm/s. This is the range in which
the COM velocity in the z direction can be tuned by varying the hold time prior
to release from trap A. Larger amplitudes are not necessarily helpful because of the
increased sensitivity to an uncertainty in the phase of the oscillation. For the SC-BC
lens a hold time of 28.52 ms is used, as depicted by the dotted line in Fig. 5.14(b).

Strategy 2: ’crane trick’

Moving the atoms to release position B requires a longer decompression time or a
higher average velocity. For the crane trick the trap is moved within 75 ms to a posi-
tion even beyond release position B, as shown by the dash-dotted line in Fig. 5.15(a).
This very fast method leads to a peak velocity of approximately 50 mm/s and a large
dipole oscillation. It is large enough to be resolvable by the in situ multi detection
scheme described above. This measurement can also be performed after the trap had
been moved by suddenly switching the SC current from 2 A to some smaller value4.
The choice of the SC for switching is arbitrary. Alternatively, the BC current (6 A)
could be reduced. The y coil is not used because it is much slower. The resulting
shift of the trap affects the oscillation amplitude. Its change depends on the time
of the SC switching (tct in ms) and the final current (Ict in A) after this crane trick.
The chip model allows for educated guesses and a model function for the expected
oscillation amplitude can be derived [171]:

Aosc = offset +
√

102403 ⋅ (I0
ct − Ict)2 + 44094.8 ⋅ sin [0.0667964 ⋅ (t0ct − tct)2], (5.33)

where the offset accounts for the finite resolution of the imaging system. The mea-
surement is repeated for different values of Ict and tct. By least squares, the exper-
imentally optimized values for the crane trick are I0

ct = 1.68(2)A after a hold time

4Larger values are not possible, because the SC is limited to 2 A.
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Figure 5.16: (a) Shows the measured x′ positions after the crane trick and 100 ms TOF
(blue circles) as a function of the hold time [see Fig. 5.15(b)]. A sinusoidal fit at a frequency
of ωz = 2π ⋅ 24.44(4)Hz is shown as the solid black line. (b) Shows the corresponding y′

positions of the same data points. The fitted curve is a beat note of the frequencies
ωx = 2π ⋅ 8.6(2)Hz and ωy = 2π ⋅ 27.2(7)Hz.

of t0ct = 11.0(2)ms. These values were used for the simulation in Fig. 5.15. The
estimated standard error of Aosc is σA ≈ 10µm for the uncertainties σI = 20 mA and
σt = 0.2 ms. This value for σA maps to an uncertainty of 0.15 mm for the after-TOF
amplitude, which is approximately the simulated amplitude shown in Fig. 5.15(b).

The measured after-TOF oscillation for the optimized crane trick parameters is
shown in Fig. 5.16. Indeed, the measured x′ amplitude is of the same order, too. The
accuracy of the crane trick is limited by the measurement of the in situ oscillation
amplitude. Still, a second crane trick based on the knowledge of the residual oscil-
lation can reduce it further. Nevertheless, this would be more complicated because
the residual oscillation is three dimensional, as can be inferred from the y′ oscilla-
tion in Fig. 5.16(b). In this direction a superposition of the x and y oscillation can
be seen. The fitted after-TOF amplitudes are Ax = 39(2) µm and Ay = 6(1) µm.
Hence, the x component dominates. The chip model predicts trap frequencies of
ω = 2π ⋅ (8.3,26.5,23.8)Hz in this trap. The measured ones (see Fig. 5.16) are
approximately 3% higher.

Strategy 3: STA

The last strategy for minimizing the residual dipole oscillations within the release
trap is to design a ramp shape for the bias coil with the following constraints:

1. trap center and atomic COM coincide at the beginning and at the end of the
ramp,

2. the atomic COMM is zero at the beginning and at the end of the ramp,

3. the ramp shape is smooth compared to the y coil’s step response function.



130 5. Center of mass motion

Time (s)

0 100 200 300 400

z
0
 (

m
m

)

0

0.4

0.8

1.2

1.6

v
z
 (

m
m

/s
)

0

5

15

20

(a)

Hold time (ms)

0 50 100 150 200

z
 (

m
m

)

1.44

1.45

1.46

1.47

1.48

TOF = 100 ms

(b)

Figure 5.17: (a) shows the simulated trap center z0 (dash-dotted black line) and the
velocity vz (solid blue line) when decompressing to release trap B with a 150 ms y coil ramp
designed to minimize residual oscillations. The corresponding oscillation after 100 ms TOF
is depicted in (b). The hold time starts at the end of the ramp, which is indicated by the
vertical dashed black line in (a).

The last constraint in combination with the matching centers at the beginning is a
necessary condition for the existence of a control function for the bias coil which can
produce such a ramp for the bias current. This STA approach takes into account the
rapidly decreasing trap frequency during the ramp, too. The ramp was calculated
for a duration of 150 ms by Robin Corgier (Institute of Quantum Optics, Hanover).
Much faster shortcuts would be possible, but this duration is chosen in view of strong
collective excitations after the 75 ms ramp for the previous strategy. The course of
the trap center and that of vz are plotted in Fig. 5.17(a). In the beginning the
atoms are rapidly accelerated up to a velocity exceeding 20 mm/s. Afterwards, for
the major fraction of the ramp time, the atoms are continuously decelerated to zero.
Actually, there should be no residual oscillation by construction. The simulated
after-TOF amplitude of approximately 10 µm [Fig. 5.17(b)] arises from the fact
that an analytical model function had to be fitted to the chip model for the STA
calculations resulting in small deviations. In fact, the measured x′ oscillation is yet
larger, as can be seen in Fig. 5.18(a). The oscillation in the y′ direction (b) is much
smaller than for x′. It is not possible to fit a beat note to these data points. All fitted
frequencies agree reasonably well with ωB = 2π ⋅ (9.1,27.9,24.6)Hz as predicted by
the chip model. The after-TOF x′-amplitude is 74(10) µm corresponding to a tuning
range of ±0.7 mm/s. A hold time of 18.46 ms (vertical dotted line) is chosen for the
BC lens as explained below.

Summary

In principle, all three strategies can be applied for moving the atoms to the desired
release position. Despite its smallest residual oscillation, the sigmoid ramp is only
useful for spatially short transfers. The crane trick protocol is the quickest one, but
it heavily excites collective modes of the trapped condensate, as will be explained in
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Figure 5.18: (blue circles) Measured x′ (a) and y′ (b) positions with 100 ms TOF are
shown as a function of the hold time after the trap decompression in Fig. 5.17(a). Sinu-
soidal fits to the data are plotted as the solid black lines and yield ωz = 2π ⋅25.7(3)Hz and
ωy = 2π ⋅ 28(1)Hz, respectively. The hold time chosen for magnetic lensing is 18.46 ms. It
is depicted as the dotted black line.

the next chapter. Furthermore, the residual y′ oscillation is difficult to handle. The
STA ramp excites collective modes, too, but not equally strong. Therefore it is used
for the transfer to release position B. In fact, this particular excitation can even be
useful for the magnetic lens. The crane trick is not used at all for magnetic lensing
primarily because of these too strong collective modes. All measured residual x′

oscillations could be reduced further by a small crane trick. However, neither this
nor the deliberate excitation of a dipole oscillation is required for COMM tuning.

5.3.2 Center of mass motion by trap switch-off

The chip currents can be changed more rapidly than the coil currents, as discussed
in Section 3.2. For illustration, the first part of the step response function for
the chips and the bias coil (see also Fig. 3.3) are replotted in Fig. 5.19(a). This
mismatch causes the trap to move towards the chip with the trapped atoms co-
accelerated. This acceleration depends on the trap frequency and is stronger for the
high frequency traps at larger bias currents closer to the chip. This kick imprinted on
the atoms is simulated with the help of the chip model. The standard configuration
with IBC = 6 A and ISC = 2 A is used for two different x coil currents (0.1 A and
0.5 A). The predicted kick is plotted as a function of the bias current in Fig. 5.19(b),
confirming the qualitative argument above. It can be seen that the x current hardly
affects this kick. The difference with vs. without gravity is even smaller (not shown).
The plotted curves were simulated for microgravity conditions.

It is interesting to analyze three particular points. If the atoms were released
from the final evaporation trap by simply switching off all currents, the predicted
kick at, for example, Ix = 0.5 A would be -7.43 mm/s. At the standard lab TOF
of 22 ms, this corresponds to a displacement of 163 µm towards the chip. Since the
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Figure 5.19: (a) shows a direct comparison of the step response functions of the BC (solid
blue line), the SC (dash-dotted orange line) and the y coil (dashed black line) from Fig. 3.3
for the first 150 µs after switching the control to zero. The simulated kick imprinted on
the atoms due to the mismatched switching in (a) is shown in (b) as a function of the
initial bias current for IBC = 6 A, ISC = 2 A and two different x coil currents [0.1 A (solid
blue) and 0.5 A (dashed orange)], which are kept constant. The kicks for the two release
positions are −0.32 mm/s and −0.91 mm/s. They are highlighted by the respective dotted
lines.

corresponding release position is at z = 209 µm, the atoms can be expected to be very
close to the chip. Indeed, this is observed. The predicted kick at release position B
with Iy = −0.37 A is only -0.32 mm/s, which is well within the tuning range of the
corresponding dipole oscillation [Fig. 5.18(a)]. Hence, this simple release protocol
can be expected to suffice for the BC lens. The situation is different for the SC-BC
lens. The predicted kick at release position A with Iy = −0.6 A is -0.91 mm/s and
exceeds the corresponding tuning range of 0.5 mm/s (sigmoid ramp). A different
switch-off protocol is favored over the excitation of such a strong dipole oscillation.

Two alternatives to the simple trap switch-off are depicted in Fig. 5.20. A trap
motion can be suppressed by simultaneously ramping down all magnetic fields con-
tributing to the trap. Since the bias coil is slowest, all other currents are matched
to it. The simplest way is depicted in (a). The control of the bias coil (thin light
blue line) is switched to zero and the remaining currents (dashed orange line) are
matched to the y coil response (solid blue line) until Iy = 0 for the first time. The
same procedure needs to be applied to the x coil, too (not shown). However, the
required kink at zero current cannot be realized very well. The other alternative is
shown in Fig. 5.20(b). The y coil control is switched to a finite value such that the
overshoot is tangent to the abscissa. All other currents can be easily matched to
such a smooth function and are kept at zero afterwards. The rampdown of the bias
coil control reduces the subsequent oscillation of the y current. The ramp shapes
for the chips and the x coil are calculated for a ramp time of 0.98 ms. If this time
is changed without recalculating the ramp shape, the currents will no longer be
matched. This can be used to tune the COMM after release. A longer ramp time
leads to a reduced share of bias current and hence to a trap moving away from
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Figure 5.20: Comparison of two strategies for matching the chip currents to that of
the y coil: (a) The y coil control (thin solid blue line) is switched to zero and the chip
control (not shown) is chosen such that its response (dashed orange line) matches the y
coil current (solid blue line) until it reaches zero for the first time. (b) The y coil control
is switched to a finite value resulting in an overshoot tangent to the abscissa. The chip
currents are matched accordingly.

the chip. In fact, a ramp time of 1.12 ms has to be used in order to minimize the
COMM. A possible cause is a delayed magnetic field decay due to eddy currents.
However, this effect could not be quantified so far.

5.3.3 Miscellaneous contributions to center of mass motion

The major control knobs for the COMM in the z direction are the hold time prior
to release and the release itself. After release, the atoms are primarily accelerated
by the magnetic field gradient and by changing coil currents. The air drag is small
compared to these forces, which amount to several hundred µg (see Figs. 3.6 and 3.8).
This magnetic field gradient could be mitigated by temporarily transferring the
atoms from mF = 2 into the mF = 0 substate. Apart from that, a compensation
by using the mF = −2 substate is conceivable, too. The atoms would have to be
transferred to the mF = −2 substate after 1/4 of the pre-TOF and transferred back
to mF = 2 after 3/4. This cancels out the velocity as well as the position change
due to the gradient. However, these schemes typically require coil switching for an
efficient ARP, which also affects the atomic velocity. Still, an efficient state reversal
is possible at smaller B-fields compared to the mF = 0 transfer. Hence, this is an
interesting prospect for the future.

The effect of B′ during the pre-TOF can be calculated. As an example, the largest

component of ∇B is used [ ∂B∂x ∣Ix=0.5 A
= 1.00(2) G

m , see Section 3.4)]. The effect after

80 ms pre-TOF, which is used for the BC lens, is a velocity change of -0.5 mm/s
and a displacement of -21 µm, both in the x direction. It should be mentioned that
this combination was never used. This quantization field is used for the SC-BC
lens campaigns with a pre-TOF of 33 ms. Unfortunately, no 3D information on
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the gradient for Ix = 0.1 A is available and the gradients are not equal, because
the 2D components are different. On the other hand, the y′ components differ by
approximately 10% only. The observed velocity in the y′ direction after the BC lens
[Figs. 5.1(d) and (f)] is approximately 0.3 mm/s. The kick calculated above would
have a component of −(−0.5 mm/s)/

√
2 ≈ 0.35 mm/s in this direction. The fitted

initial y′-velocity after release is only 0.18(4) mm/s [Fig. 3.8(b)]. Hence, a part of
the observed COMM in the y′ direction after the BC-lens could indeed be caused
by the magnetic field gradient. However, this is only a hint rather than a proof,
because the gradient is not fully known for this configuration.

A mismatch of magnetic lens center and atomic COM also leads to a kick. To a
small degree, the lens position can be used to tune the COMM. Larger deviations
can affect the collimation and should be avoided. The z coordinate of the COM is
adjusted by the methods described above. The resulting positions are compared with
the Detection 2 system in order to gain 3D information. The corresponding measured
absorption images are shown in Fig. 5.21 for the SC-BC-lens and in Fig. 5.22 for the
BC-lens. The left images (a) show the atomic cloud after the respective pre-TOF.
The right ones (b) show an in situ image of atoms trapped in the respective lens
trap. The dotted lines depict the grid of SC conductors as the coordinate reference.
Figures 5.21 and 5.22 are plotted with the same scale. The two subclouds (left and
right, see also Fig. 2.10) are further apart for the BC-lens, as expected from the
larger distance from the chip. All positions are summarized in Table 5.3 with the
corresponding fit uncertainties. The positions for a repeated measurement of the
one in Fig. 5.21(a) is also given (D121b). The Q-2 coordinates are calculated from
the Detection 2 coordinates by invoking Eq. (2.17). The results are given in the
bottom three rows of the table. All deviations are on the order of 10 µm. Dipole
oscillations within the lens trap can falsify the in situ measurement. The transfer to
the SC-BC lens trap was performed very smoothly such that oscillation amplitudes
are assumed to be small. Still, this was not checked.

Chronologically, the SC-BC-lens campaign was completed before the second de-
tection system became available. For this reason, the positions could only be checked
but not improved based on the new information. On the other hand, the BC-lens
could profit from it. Besides the COMM control, an optimally matched position
simplifies the quantitative description of the lens, which is the subject of the next
chapter. A mismatch ∆xi in the i direction leads to the velocity change

∆vi = ω2
i ∆xiτ lens, (5.34)

where τ lens is the lens duration (τBC-lens = 2.64 ms) and ωi is the respective trap-
ping frequency of the lens trap [ω

BC-lens
= 2π ⋅ (3.0,10.8,10.8)Hz]. The result-

ing velocity change per micrometer position mismatch is ∆vx = 1µm/s/µm and
∆vy,z = 12µm/s/µm. In the y direction, the positions differ by 9 µm. Hence, this
lens kick amounts to 12 µm/s/µm ⋅9 µm = 108 µm/s in the y direction and cannot be
responsible for the observed velocity of 0.3 mm/s in the y′ direction, which was dis-
cussed above (x gradient). This position mismatch can be corrected by a different z
current. According to the chip model, the lens trap moves by ∆y0 = +14.7µm/mAz.
Therefore, the required correction is ∆Iz = 0.61 mA. This needs to be compared to
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Figure 5.21: The position of the atoms at the time of the SC-BC magnetic lens [(a),
33 ms pre-TOF, release position A] is compared to the position of this lens by an in situ
measurement of atoms in the lens trap (b). Both images are taken with Detection 2.
The coordinate system is referenced to the grid defined by the SC conductors, which are
depicted as the dotted gray lines.
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Figure 5.22: The position of the atoms at the time of the BC magnetic lens [(a), 80 ms
pre-TOF, release position B] is compared to the position of this lens by an in situ mea-
surement of atoms in the lens trap (b). Both images are taken with Detection 2. The
coordinate system is referenced to the grid defined by the SC conductors, which are de-
picted as the dotted gray lines.
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(in µm)
SC-BC lens

pre-TOF
Drop 120b

SC-BC lens
pre-TOF

Drop 121b

SC-BC lens
in situ

Drop 131b

BC lens
pre-TOF

Drop 185a

BC lens
in situ

Drop 185b

x′′L −558(1) −562.0(8) −601.4(3) −977.5(9) −942.6(3)
x′′R 542.2(3) 549.9(3) 593(1) 938.6(2) 935.9(9)
y′′L 45.3(6) 43.8(6) 26.3(2) 32.1(4) 21.1(3)
y′′R 30.0(3) 28.1(3) 10.7(2) 13.8(3) 6.6(1)
x −8.0(5) −6.0(4) −4.3(5) −19.5(5) −3.3(5)
y 37.7(3) 36.0(3) 18.5(1) 22.9(3) 13.9(2)
z 831.9(9) 841.3(7) 908.8(8) 1501.8(8) 1470.8(7)

Table 5.3: Coordinates within the Detection 2 coordinate system of the left and right
cloud in Figs. 5.21 and 5.22. D121b is a repeated measurement of D120b [Fig. 5.21(a)].
All errors are fit uncertainties. The Q-2 coordinates (x,y and z) are calculated using
Eqs. (2.17a) to (2.17c).

the precision of the analog outputs. One bit is equivalent to 0.305 mA. The cor-
rection corresponds to almost 2 bits. It is just below the threshold, such that no
unwanted bit change occurs. Based on this, the z current compensating the offset
field [see Fig. 3.1(b)] is increased for the BC-lens campaigns. Unfortunately, this
correction was based on the false assumption, that the in situ image [Fig. 5.22(b)]
was taken at the center of the y oscillation. The in situ oscillation within the lens
trap is shown in Fig. 5.23. Since only four data points are available, the simulated
trap frequencies (chip model) are used for fitting. The center of the oscillation is
plotted as the dashed black line. The expected position for the hold time of 24 ms,
which was used for the in situ measurement in Fig. 5.22(b), is depicted as the dotted
black line. The oscillation in (b) is due to a y oscillation. An x oscillation would
occur at a frequency of 3 Hz and is not covered by the range of hold times. Such
an oscillation would effectively result in an offset in the y′ fit. As a matter of fact,
the shift of [-8 µm - (-15 µm)] = 7 µm in the y′ direction corresponds to a shift of
7 ⋅

√
2 µm ≈ 10 µm in the y direction. This is almost equal to the deviation found in

Table 5.3 for the y coordinate. The x′ oscillation in (a) reveals that the z coordinate
of the BC-lens-trap is underestimated by 9 µm in Table 5.3.

The COMM in the z direction after the BC-lens can be suppressed by shifting
the lens trap. This is the difference between Set B and C in Fig. 5.1. The shift
is realized by using IBC = 1.828 A (Set C) instead of IBC = 1.8 A (Set B) for the
lens. This value was optimized experimentally and corresponds to a trap shift of
29 µm according to the chip model. Hence, the remaining mismatch in z needs to be
overcompensated. The reason is the additional kick by switching the lens trap on and
off again. Invoking Eq. (5.34), the predicted velocity change due to the trap shift is
∆vz = 0.35 mm/s, which agrees reasonably well with the velocity vx′ = −0.41(2)mm/s
in Fig. 5.1(c). The small difference is caused by the L3 anharmonicity of the trap
and the fact that the chip model tends to underestimate small trapping frequencies
by a few percent (see Appendix C.2).
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Figure 5.23: In situ position measurements of a BEC in the BC-lens-trap for different
hold times in the trap. The data for the x′ direction (a) and the y′ direction (b) are
fitted (solid blue line) assuming an oscillation at the corresponding frequency predicted
by the chip model (fz and fy). The respective center of the oscillation is shown as the
dashed black line. The hold time (24 ms) used for Fig. 5.22(b) with the related position
is highlighted by the dotted black line.

After shifting the lens trap by 29 µm for Set C, there is a position difference
of approximately ∆z = 8µm, which compensates all other contributions to vz, for
example, the kick due to switching the lens on and off. According to Eq. (5.34), this
compensation amounts to

∆vz,BC ≈ 0.1 mm/s. (5.35)

It is illuminating to analyze the interplay of effects within the Detection 1 frame
(Fig. 5.24). The release position was determined by an in situ measurement and
is depicted as the black plus sign. The data set from Fig. 5.18 (100 ms TOF) is
corrected for the oscillation and shown as the blue circles. The air drag effect is
small for this TOF, as can be seen by comparing the open circles (uncorrected) to
the full circles (corrected). The corrected center of the oscillation is highlighted as
the dash-dotted blue lines for the x′ and the y′ oscillation, respectively. Without any
velocity scatter, all blue points would overlap in this center. The position expected
from the fits in Fig. 5.18 for 80 ms TOF (instead of 100 ms) and a hold time of
thold = 18.46 ms is shown as the orange diamond. Still, the magnetic field gradient
(see Fig. 3.8) is effective for this reduced time only. This shifts the expected position
to the orange ’×’. The corresponding 1σ uncertainty in this position according to
the fits is plotted as the dashed orange ellipse around this point. The position of
the BC-lens according to Fig. 5.23 and including the y shift of 9 µm is shown as
the green ellipse. The radii correspond to the 1σ confidence bounds by the fits in
Fig. 5.23. The position after the actual pre-TOF and hold time is measured three
times (orange circles). The orange ellipse illustrates the scatter about the mean
value. The measured position is further away from the chip than expected. This
was already found by the measurement with the Detection 2 system. The shifted
trap for Set C (IBC = 1.828 A) is located to the right of the orange ellipse and thus
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Figure 5.24: Comparison of the relevant positions for the BC magnetic lens within the
frame of Detection 1. For all data points, the atoms were released from release position B
(black plus sign). The blue circles show the data points of Fig. 5.18, but corrected for the
actual dipole oscillation (center of oscillation at 100 ms TOF). Again, the open circles are
raw data without air drag correction. The orange diamond depicts the position expected
from the fit in Fig. 5.18 for a (pre-)TOF of 80 ms and a hold time thold = 18.46 ms. The
reduced interaction time with the magnetic field gradient (see Fig. 3.8) shifts the expected
position to the orange ’x’ with the 1σ confidence bound shown as the dashed orange line.
The measured position (for thold = 18.46 ms and 80 ms pre-TOF) is shown by the orange
data points with the orange ellipse depicting the 1σ confidence bound. The measured in
situ position of the BC lens with the 1σ confidence bound from the fit in Fig. 5.23 is shown
as the left green ellipse. The shifted lens for Set C is located 29 µm further away from the
chip.

further away from the chip than the BEC. A pre-compensation by a velocity of
0.41 mm/s in the z direction after release cannot reduce vz in Set B, because the
lens would compensate this additional velocity.

The number of data points that can be taken in microgravity is very limited. The
velocity scatter complicates this even further because it limits the faith which can
be put into a single data point. Still, it is comforting that the magnetic lens can
be expected to reduce this velocity scatter for the same reason it can collimate an
atomic ensemble. There exist six data sets which can be used for a comparison in
Table 5.4. The first one is the set in Fig. 5.2 on the dipole oscillation after the
sigmoid ramp. This set can be directly compared to the (lensed) Set A in Fig. 5.1.
The scatter is one order of magnitude smaller. The scatter without lensing with
the atoms released from position B can be obtained from the data sets in Fig. 5.16
for the release after the crane trick and from Fig. 5.18 for the trap decompression
by the STA ramp. The values are comparable, but significantly smaller than for
the first set. The reason for this can be the smaller trap frequencies at position B.
However, the release mechanism is different, too. The two BC lens sets (Set B and
C in Fig. 5.1) have a significantly reduced velocity scatter in the x′ direction. The
scatter in the y′ direction is reduced only slightly, but it was low to start with. Both
lens types feature a comparable post-lens scatter.
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release position lens type σvx′ (µm/s) σvy′ (µm/s)

A
no lens (sigmoid) 188 65

SC-BC (Set A) 18 7

B

no lens (crane trick) 106 15

no lens (STA) 100 23

BC (Set B) 20 10

BC (Set C) 9 14

Table 5.4: The velocity scatter in the x′ (σvx′ ) and the y′ direction (σvy′ ) is summarized
for the data sets in Fig. 5.2 (no lens) and for the three different sets in Fig. 5.12 after a
magnetic lens. The corresponding release position (A or B, see Fig. 2.12) is given.

Conclusions

The systematics affecting the center of mass motion in the Q-2 experiment were
analyzed in detail. The dominant effect is caused by the residual air drag in the drop
tower. It was shown how the center of mass motion can be controlled. The minimum
residual speed was 0.3 mm/s in Set C with a minimum 1D component of 6(9)µm/s.
For ultimate precision sensors, such as STE-QUEST, this is not yet sufficient. For
example, the required relative velocity (K vs. Rb) is 0.3 nm/s [60]. Even though this
is not a requirement on the common COM velocity, it can be anticipated that there
is still a gap of a few orders of magnitude. A further reduction of the COMM in Q-2
requires many more data points in microgravity, but is straightforward: The atoms
need to be released with a velocity opposite to the one caused by switching the lens
on and off again. This is along the z direction and easily tunable by the hold time
prior to the release or by the switch-off mechanism. The release position is a distance
vz ⋅ pre-TOF away from the lens center. The magnetic field gradient needs to be
compensated by the state reversal scheme during the pre-TOF. The velocity change
when changing the coil currents needs to be characterized further and reduced as
far as possible, for example by a slow ramp-up of the current. As before, the atoms
need to be transferred into the mF = 0 substate quickly after the lens to prevent
any further acceleration due to the gradient. With this simple recipe, the COM
velocity can be reduced to the level of the velocity scatter, which is on the order of
10 µm/s. For a further reduction, this scatter must be understood and minimized.
One possible source is the temperature of the experiment, especially of the atom
chip and the copper mount. An increased temperature leads to an expansion of the
material which affects the position of the BEC. Hence, equal temperatures might
reduce the scatter. Furthermore, it will be interesting to study the differential scatter
of two species, which might be suppressed.
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Chapter 6

Magnetic lensing

This final chapter deals with manipulating the dynamics of a BEC. The first section
describes the free expansion after release and introduces a formalism, which is ap-
plied throughout the chapter. The second part introduces the concept of magnetic
lensing and discusses different strategies under the given experimental constraints.
Section 6.3 deals with the rich in situ dynamics and its effect on the free expan-
sion of a BEC. These collective modes are studied thoroughly because they have far
reaching consequences for magnetic lensing. The concluding section shows several
experimental realizations of magnetic lensing.

All data presented in this chapter were taken in microgravity. The author contri-
buted equally in a team with Jan Rudolph, Alexander Grote, Christoph Grzeschik
and Christian Deppner. Additional support was provided by Waldemar Herr. Ref-
erences for the theoretical framework are indicated in the main text. The evaluation
and interpretation of the experimental data as well as the numerical simulations
were performed by the author.

6.1 Free expansion

The dynamics of an atomic cloud is governed by Eq. (2.38). In the TF approxi-
mation, the stationary ground state is an inverted parabola in 3D with TF radii
given by Eq. (2.39). In the single particle limit, the mean field term is negligible
and the stationary solution is Gaussian. For the typical particle numbers and trap
frequencies in Q-2, the TF approximation is a good approximation. Nevertheless,
some dynamics of the atomic cloud can be calculated analytically if a Gaussian trial
wave function is used. The Gaussian widths are determined by solving a set of
differential equations that have been derived from the Gross-Pitaevskii equation by
a variational principle [172]. Within this framework it is also possible to include
an additional term, which is proportional to the square of the atomic density. This
treatment is based on [172, 173] and facilitates to quantify the error by the TF
approximation, because the kinetic energy term is not neglected. The Hamiltonian
becomes:

H = − h̵
2

2m
∆ + V (r⃗) + g2n(r⃗) + g3n(r⃗)2, (6.1)
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where g2 = 5h̵ ⋅ 10−11 cm3/s and g3 = 4h̵ ⋅ 10−26 cm6/s for 87Rb [174]. The magnetic
potential is assumed to be harmonic1 and is conveniently reformulated as:

V (r⃗) = 1

2
mω̄2 (λ̃2

xx
2 + λ̃2

yy
2 + λ̃2

zz
2) , (6.2)

where ωi = ω̄λ̃i and λ̃xλ̃yλ̃z = 1. The λ̃i’s are dimensionless trap frequencies (i =
x, y, z). Time and Gaussian (e−1/2) widths wi of the wave function are rescaled
according to:

t̃ = ω̄t, wi = aoscui. (6.3)

These widths are related to those of the atomic density distribution by

σi = wi/
√

2. (6.4)

The tilde notation is omitted for the ui’s in favor of a better readability. A variational
approach yields the following (dimensionless) set of differential equations:

üx + λ̃2
xux =

1

u3
x

+ P
u2
xuyuz

+ K
u3
xu

2
yu

2
z

,
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(6.5)

with

P =
√

2/πNa/aosc (6.6)

and

K = g3
4N2

9
√

3π3ω̄h̵a6
osc

. (6.7)

The first term on the right hand side of Eq. (6.5) corresponds to the kinetic energy
term in the Hamiltonian. The P- and K-terms originate from the g2 and g3 interac-
tions, respectively. The equilibrium widths can be obtained by numerically solving
Eq. (6.5) with the üi’s set to zero.

This variational approach allows for a study of the rich dynamics of a trapped
condensate as well as the free expansion after release with λ̃i = 0. However, all widths
refer to Gaussian wave functions. In the TF regime, atomic density distributions
are parabolic rather than Gaussian. For this reason, the variational approach is
compared to the scaling approach, where the TF radii Ri(t) are referenced to the
initial equilibrium widths Ri(0) by a set of scaling parameters λi [175]:

Ri(t) = λi(t)Ri(0). (6.8)

1This is only an approximation, but reasonable and necessary for a description of the in situ
dynamics within this framework.
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The physical interpretation is that the density profiles keep their parabolic shape,
but at rescaled widths. The scaling parameters satisfy the non-dimensionless set of
differential equations:

λ̈i + ω2
i (t)λi =

ω2
i (0)

λiλ1λ2λ3

, (6.9)

which is similar to Eq. (6.5), except for the neglected kinetic energy term and the not
included K-term. Here, λi (ωi) plays the role of ui (λ̃i) in the variational approach.

Both approaches describe the temporal evolution of the same physical quantity,
that is, the width of a Bose-Einstein condensate in three dimensions. Hence, if only
the P-term on the right hand side of Eq. (6.5) were considered, both approaches
should concur, except for the different measure of width. In order to make them
comparable, the equilibrium Gaussian widths [77]

wi = ( 2

π
)

1/10

aosc
ω̄

ωi
(Na
aosc

)
1/5

(6.10)

are related to the equilibrium TF radii [Eq. (2.39)]:

Ri

wi
=

aosc
ω̄
ωi

(15Na
aosc

)1/5

( 2
π
)1/10

aosc
ω̄
ωi

( Na
aosc

)1/5
= 151/5

( 2
π
)1/10

≈ 1.798. (6.11)

This ratio is independent of the trap frequencies and applies to all spatial directions.
It is applicable during the free expansion, too, because of the scaling law in Eq. (6.8).
Both approaches are compared on the basis of the free expansion of 105 atoms
released from trap A. The widths expected from the variational approach with g3 = 0
are converted using Eq. (6.11) and shown in Fig. 6.1(a). The initial confinement
is stronger in the y and z directions than in the x direction, as expected from the
trap frequencies ωA = 2π ⋅ (17.5,61.1,59.8)Hz of this trap [see also Eq. (2.39) and
Fig. 2.13]. A stronger confinement leads to an increased expansion rate. During
this expansion the atomic cloud changes its shape from elongated (cigar-like) to
pancake-like. The shape is characterized by the aspect ratio, which is defined as the
ratio of the axial to radial TF radii. This change in aspect ratio is a characteristic
feature of BECs. The radii shown in Fig. 6.1(a) are not directly detectable due
to the geometry of the imaging systems, except for the z direction (x′) and the y
direction (y′′). For this reason, the projection of the atomic cloud, which is a three
dimensional ellipsoid, onto the Detection 1 camera frame is exemplarily calculated
and shown in Fig. 6.1(b) as the solid lines. The corresponding curves as predicted by
the scaling approach are shown as the dashed lines in (b). The tiny difference is due
to the kinetic term, which is intrinsically neglected in the scaling approach. If this
term is also neglected in the variational approach, both curves overlap (g3 was set to
zero for comparison already). The effect of a nonzero value of g3 is small and would
partially counteract the kinetic term. Experimental data for various TOFs (integer
multiples of 25 ms) after the release from trap A were taken during a single catapult
flight. A nice visualization of these expanding condensates has been selected as the
cover image of the 63rd volume (2015) of Progress of Physics and can be found
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Figure 6.1: (a) TF radii of a BEC with N = 105 atoms released from an ω = 2π ⋅
(17.5,61.1,59.8)Hz trap as predicted by the variational approach [Eq. (6.5)] with K = 0
and converted using Eq. (6.11). (b) The solid lines show these predicted TF radii of
the expanding BEC as seen by the Detection 1 imaging system. The predictions by the
scaling approach are plotted as dashed lines. The circles show experimental data, rescaled
to N = 105. The error bars refer to the uncertainty in the measured number of atoms.

here [176]. The TF radii in the respective directions are shown by the circles in
Fig. 6.1(b). The measured radii depend on the number of atoms by an N1/5 law
[see Eq. (2.39)], which is preserved during the free expansion. Hence, a meaningful
comparison is possible for the same number of atoms only. In fact, all data points
are rescaled to N = 105 with the error bars indicating the uncertainty arising from
the fitted number of atoms. In the trap, thermal and condensate fraction have a
significant spatial overlap. For this reason, N is taken as the total number of atoms,
as determined by two-dimensional bimodal fits (Gaussian + inverted parabola).

Both approaches, variational and scaling, can describe the free expansion of a
BEC. They agree if the same approximations are made. In the following, only the
TF radii are given as a measure of width. Despite this, the variational approach is
used for numerical calculations of the dynamics, because it accounts for all terms
in the Hamiltonian [Eq. (6.1)]. The widths are converted using Eq. (6.11). The g3

contributions corresponds to three-body interactions. Scattering events involving
more than three rubidium atoms and also atom loss are neglected.

The data points in Fig. 6.1(b) agree reasonably well with the theory. Nevertheless,
all x′ radii are slightly larger than the expected values. A simple explanation would
be a differing actual trap frequency compared to the one simulated using the chip
model, but this is ruled out by the measurement in Fig. 5.2(a), which was performed
using the same release trap. The deviation cannot be explained by a differing number
of atoms, either, because this would affect all directions. Having said that, the data
set in Fig. 5.2 can be used for more statistics at 100 ms TOF. In addition, the
N1/5 scaling law can be checked by leaving the exponent as a fit parameter [Nx,
Fig. 6.2(a)]. The fits for both directions yield x = 0.21(1) in good agreement with
1/5. Furthermore, this plot illustrates the scatter in the number of atoms (σN = 46k
at <N> = 84k).
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Figure 6.2: (a) The data points show the TF radii of the data set in Fig. 5.2 versus the
number of atoms for the Detection 1 frame. The solid lines are fitted model functions of
the form a1N

a2 confirming the N1/5 scaling law. (b) shows the data set from (a), but
corrected for the scatter in the number of atoms by a rescaling to N = 105. The mean
values (solid lines) are compared to the values expected from the chip model (dashed
lines). The dash-dotted line is the expected y′ radius if the trap axes coincide with the
Q-2 coordinate system (no rotation).

Figure 6.2(b) shows the data points from (a), but rescaled to 105 atoms. Neither
direction shows any signature of an oscillation. The histograms (not shown) are
approximately Gaussian. This shows that collective excitations of the BEC, which
are discussed in the next section, play no role for the SC-BC-lens with the preceding
250 ms sigmoid ramp to release position A.

The solid lines in (b) show the mean (rescaled) TF radii along with the expected
values from the variational approach (dashed lines). The latter rely on the chip
model. Only one out of three trap frequencies was measured (and confirmed) in
microgravity (see Fig. 5.2). The other two, especially the weak one, might differ.
In addition, the eigenvectors of the trap are rotated about the z axis. Typically,
this rotation is on the order of 10° or below. Whenever radii, expansion rates etc.
are given, they are referenced to the trap’s eigensystem, but labelled according to
the similar Q-2 coordinate system for clarity. According to the chip model, release
trap A is rotated by 11.8°. This effect is considered in the figures above. Within
the Detection 1 frame, it affects the y′ direction only. Without this rotation, the
expected y′ TF radius (177 µm) is shown as the dash-dotted orange line in (b).
The measured average value is 184(2) µm. Accordingly, the 100 ms value for y′ in
Fig. 6.1(b) seems to be no outlier and the observed discrepancy can be explained
by an incorrectly predicted rotation of the trap. However, no direct measurement
of this rotation angle is possible with Q-2. In fact, also different frequencies in the
x and y directions under the constraint of an unchanged geometric mean value is
conceivable. The measured x′ radius [223(2) µm] agrees with the predicted value
(225 µm) and does not confirm the tendency observed in Fig. 6.1(b). Figure 6.2(b)
shows the limits of the chip model. Nevertheless, it remains an invaluable tool, even
for quantitative predictions.
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6.2 Concept of magnetic lensing

It could be seen from Fig. 6.1 that the TF radii increase at a rate of approximately
2 mm/s. Such an ensemble containing 105 atoms is not detectable for much longer
than 0.1 s TOF primarily due to the decreasing atomic density. Furthermore, the
expansion rate is responsible for systematic errors in an atom interferometer, for
example due to non-planar laser wave fronts. A significant reduction of the expansion
rate is a key motivation of this work. Clearly, it seems possible to engineer slower
expansion rates by using shallower traps in microgravity. Still, the time required for
an adiabatic transfer to such a trap increases dramatically for ultrashallow traps.
Hence, this is not an option for the drop tower. Even space-borne experiments would
suffer from the reduced data rate.

In Q-2, expansion rates are reduced by the application of a magnetic lens, which
is essentially a magnetic trap, too. The pre-TOF in between release and magnetic
lens needs to be large enough such that the mean field energy is almost completely
converted into kinetic energy. Ideally, there is a linear mapping between position
and velocity. The 1D phase space representation of an atomic ensemble directly
before the lens is depicted in Fig. 6.3(a). The application of a 1D potential with
trap frequency ωlens in the x direction results in the acceleration

alens = −ω2
lensx.

Hence, the transient lens potential results in a position dependent velocity change
∆vlens, which is opposing the expansion velocity:

∆vlens = −ω2
lensxτlens,

where τlens is the lens duration. This is indicated by the white arrows in Fig. 6.3(a).
It is equivalent to a rotation of the phase space distribution. If

τlens =
1

ω2
lenstp

, (6.12)

where tp is the pre-TOF, the resulting phase space distribution is oriented along
the position axis and the atomic ensemble is said to be collimated [Fig. 6.3(b)].
Its momentum distribution has a minimum width. The phase space distribution
before the lens narrows down with increasing tp and approaches a line. Hence, the
minimum residual expansion rate that can be realized by the lens depends on tp.

The equations above are valid for a perfectly harmonic lens potential only. Any
deviation results in a deformed phase space distribution after the lens and increases
the minimum velocity spread achievable with the respective lens. The effect of an
L3 anharmonicity on the velocity distribution was discussed in Section 5.2 in the
context of the detection pseudo force.

It is worth mentioning that τlens is independent of the release trap. Still, shallower
traps require a longer pre-TOF to establish the linear mapping. Hence, the lens time
is indirectly affected by the release trap. In practice, τlens needs to be long com-
pared to the characteristic switching time of the bias coil. This is a true limitation.
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Figure 6.3: A 1D phase space distribution of an expanding BEC is shown before (a)
and after (b) a magnetic lens. The action of the lens is a rotation of this distribution as
indicated by the white arrows.

Equation (6.12) suggests to reduce ωlens because of the quadratic dependence. On
the other hand, shallow lens traps are strongly affected by residual fields and field
gradients and the chip model is not calibrated in this regime. A direct measurement
of the trap center and frequencies would require a sampling over a few periods of the
in situ oscillation which can readily exceed the available microgravity time. Hence,
the release trap frequency should be as high as possible for a short pre-TOF. For
this reason, the release traps are not scaled down prior to the release.

Even though the above discussion is purely 1D, it can be directly transferred to a
3D lens. The only problem is that Eq. (6.12) cannot be satisfied for all dimensions
when using an anisotropic lens potential. In a first step, the two radial directions
with similar trap frequencies can be lensed. The axial direction is hardly affected by
such a lens, but the large radial expansion rates are minimized. A further reduction
is conceivable by the application of two lenses in analogy to a telescope in optics.
A numerical simulation of such a matter-wave telescope is shown in Fig. 6.4. For
simplicity, an axially symmetric release trap is assumed. The repeated application
of the BC-lens during the shaded gray areas in (a) leads to a good collimation of
the ensemble. As a consequence of the residual mean field energy, the TF radii
increase at a rate of approximately 43µm/s on long time scales (b). This expansion
is isotropic by construction. The effect of neglecting the K-term in Eq. (6.5) is
an increased expansion rate in the radial directions and a reduced one in the axial
direction, as visualized by the thin lines in (b). The origin of the deviation is the
differing equilibrium size within the release trap rather than the focus in the radial
directions. A similar absolute deviation can be observed during the free evolution
over the full 10 s, but the relative difference becomes important in this ultralow
expansion regime only. In reality, the radial directions have differing release trap
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Figure 6.4: (a) shows a numerical simulation of the axial (solid blue line) and radial
(dashed orange line) TF radii during a matter-wave telescope assuming an axially sym-
metric release trap with ω = 2π ⋅(9,26,26)Hz, which is similar to release trap B. The actual
BC-lens trap is used for magnetic lensing twice as indicated by the shaded gray areas. (b)
shows the long term evolution of the TF radii, which increase at a rate of 43µm/s because
of the residual interaction energy. The thin lines represent the same simulations, but with
neglected K-term.

frequencies, which lead to differing radial expansion rates. Furthermore, the cloud
would be deformed due to the anharmonicities in the z direction, which cannot be
neglected at this cloud size. Such a matter-wave telescope is not realized in this
work. First of all, it would be more difficult to adjust. Aside from that, the high
density in the focus gave rise to a significant loss of atoms.

The notion of temperature

Sometimes, magnetic lensing is referred to as ’delta-kick-cooling’ in the literature [2,
56, 177]. This name suggests that the action of the lens happens instantaneously
rather than over a period of a few milliseconds. In contrast to a free expansion time
on the second scale this seems justified. Yet, the ’cooling’ term within the name
is misleading, because a magnetic lens is not actually cooling the atomic ensemble.
The temperature is well defined for a thermal ensemble within the trap, where it
affects the in situ width and the velocity spread [see Eqs. (2.24) to (2.27)]. Below
Tc, the temperature is also a measure for the condensate fraction [see Eq. (2.32)].
As a matter of fact, the free expansion of the condensate fraction is governed almost
entirely by the mean field energy. The temperature within the trap and prior to the
release is no measure for the free expansion of a BEC. At some time after release,
the expansion rates saturate, but the velocity distribution is not equal to that of a
thermalized ensemble at any temperature. Hence, the temperature is not defined for
expanding BECs. Despite this, it has become an intuitive and established measure
for the expansion rate of a BEC [1, 2, 178]. To indicate the problems with this
notion, these temperatures are called kinetic temperatures (Tkin). The lowest real
temperature of an atomic ensemble reported so far is 350 pK [179].
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For thermal atoms, the Maxwell-Boltzmann distribution of velocities in 3D is
given by [180]:

f(v) =
√

2

π

v2

ṽ3
exp(− v

2

2ṽ2
) , (6.13)

where

ṽ =
√

kBT

m
. (6.14)

According to the equipartition theorem, the temperature is related to the root mean
square velocity vrms by:

T = mv
2
rms

3kB
(6.15)

with

vrms =
√

3ṽ =
√

3kBT

m
(6.16)

for the distribution in Eq. (6.13). The key step in the definition of Tkin is the
application of Eq. (6.15) to expanding BECs, because vrms is still a well defined
quantity. This equation implicitly assumes that the BEC exhibits no COMM.

The velocity distribution of an expanding BEC is changing because of the inter-
actions during the initial free expansion phase. After a long TOF the distribution
saturates and is referred to as the limiting velocity distribution. For lensed atoms,
this saturation occurs at a much longer TOF compared an unlensed ensemble. In
this work, 20 s TOF are used to numerically calculate the limiting distribution.
This is sufficient as can be anticipated from the expansion curve in Fig. 6.4(b). The
blue line in Fig. 6.5(a) shows the limiting velocity distribution of a BEC with 105

atoms released from trap A. This distribution has a root mean square velocity of
1.25 mm/s. For comparison, a thermal distribution sharing the same vrms is plotted
as the dash-dotted orange line, which differs significantly. The thermal ensemble
has a well defined temperature of T = 5.45 nK. The BEC is said to have the same
kinetic temperature. The simulated ensemble in Fig. 6.4(b) has vrms = 28µm/s
corresponding to Tkin = 3 pK.

In addition to the ailing definition of Tkin, a comparison of the expansion rates of
different atomic species’ is not directly possible by comparing temperatures because
of the mass dependence in Eq. (6.15). For these reasons, vrms is a better measure for
the expansion rate than Tkin. Nevertheless, this is only a matter of notation. The
requirement for precision measurements is to keep the atomic ensemble reasonably
small on long time scales without the application of trapping forces. In this work,
3D kinetic temperatures are given for a comparison with the state of the art. Many
authors extend the temperature definition to the particular dimensions, in which
they have succeeded to reduce the velocity spread [1, 44, 181–185]. However, no
justification for the negligence of existing degrees of freedom is given.

The pre-TOF is a crucial parameter for magnetic lensing. If it is chosen too large,
the atomic ensemble samples highly anharmonic regimes of the lens potential. If the
pre-TOF is too short, on the other hand, there is still a residual mean field energy
resulting in a re-emerging expansion of the atomic cloud. This expansion is equal
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Figure 6.5: (a) compares the limiting velocity distribution of a BEC containing 105

atoms released from trap A (solid blue line) to a thermal distribution at a temperature
of 5.45 nK (dash-dotted orange line). Both distributions share the same root mean square
velocity vrms = 1.25 mm/s. (b) shows the dependence of the minimum kinetic temperature,
which can be achieved by applying a perfect 3D magnetic lens to the velocity distribution
in (a), as a function of the pre-TOF. The value for the SC-BC-lens (30 ms) is highlighted
by the dashed line with a limiting kinetic temperature of 20 pK.

to the one expected for atoms that are released from a hypothetical shallower trap
with equilibrium TF radii equal to the pre-TOF values of the lensed BEC. Hence,
the residual mean field energy Eint at the time of the lens is equal to the one in
this hypothetical trap with a pre-TOF dependent ω̄. The corresponding mean field
energy per particle is given by [77]:

Eint

N
= 1

7
h̵ω̄ (15Na

aosc

)
2/5

, (6.17)

with the resulting rms velocity:

vrms =
√

2Eint

Nm
=
√

2h̵ω̄

7m
(15Na

aosc

)
1/5

. (6.18)

The equivalent kinetic temperature is plotted as a function of the pre-TOF in
Fig. 6.5(b). This is a lower limit for perfectly lensed atoms (in 3D) released from
trap A. This curve also depends on the number of atoms: Smaller BECs have a
reduced kinetic energy per particle2. For a pre-TOF of 30 ms, as used for the SC-
BC-lens, the limit is 20 pK. Yet, this plot does not include the detrimental effects
by anharmonicities. They would result in a minimum at a finite pre-TOF.

2Still, BECs containing more atoms are beneficial, because the atomic density scales as N/v3rms ∼
N2/5.
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6.3 Collective modes

Equation (6.5) was used to explain the free expansion of a BEC in Section 6.1.
With nonzero λ̃i the equations describe the in situ dynamics, which is a collective
excitation of all atoms in the BEC. Several kinds of these so called collective modes
exist [77]. The low-frequency modes are illustrated in Fig. 6.6 for a cylindrically
symmetric trap. The quadrupole mode (QM) is an in-phase oscillation of the radial
TF radii in combination with an out-of-phase oscillation of the axial TF radius. In
the radial quadrupole (RQ) mode, only the radial directions oscillate out-of-phase to
each other while leaving the axial TF radius unaffected. Accordingly, the breathing
mode (BM) is an in-phase oscillation of all three radii. In contrast, the scissors
mode (SM) is an oscillating orientation of the BEC at a constant shape. In this
spirit, it is fundamentally different from the other modes and cannot be described
by Eq. (6.5). All these modes have been observed experimentally [186–193].

The mode frequencies primarily depend on the the trap frequencies. However,
also the number of atoms and the oscillation amplitude affect the mode frequencies.
Analytic results exist for simplified systems, for example using a cylindrically sym-
metric trap and invoking the TF approximation. The influence of these systematics
on the mode frequencies is analyzed numerically and presented in this section. For
definiteness, a cylindrically symmetric potential is given by:

Vcyl(r⃗) =
1

2
mω2

r (λ2x2 + y2 + z2) , (6.19)

where ωr is the radial trap frequency and

λ = ωx
ωr
, (6.20)

with axial trap frequency ωx. The mode frequencies in this trap can be approximated
by [194]:

wQM,BM = ωr [2 +
3

2
λ2 ∓ 1

2

√
16 − 16λ2 + 9λ4]

1/2

(6.21)

and

wRQ =
√

2ωr. (6.22)

The systematics are studied on the basis of release trap B with trap frequencies
ωB = 2π ⋅ (9.1,27.9,24.6)Hz. For comparability, the time dependent TF radii can be
rescaled by their respective equilibrium values Req, where the spatial index is omit-
ted. This procedure is borrowed from the scaling approach, even though the time
evolution is calculated using the variational approach. Without any collective exci-
tations, all rescaled radii would be unity for all times. Figure 6.7(a) to Figure 6.9(a)
show the rescaled TF radii for the QM, the RQ mode and the BM. The amplitude
of the oscillations is arbitrarily chosen such that the maximum of all rescaled radii is
1.15. The largest relative oscillation amplitude occurs in the x direction for the QM
and in the z (y) direction for the RQ mode (BM). The asymmetry for the latter two
is a consequence of the violation of the cylindrical symmetry. The smaller initial
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QM RQ BM SM

Figure 6.6: Four different collective excitations of a BEC in a cylindrically symmetric
trap are illustrated. The QM is characterized by an in-phase oscillation of the TF radii
in the radial direction in combination with an out-of-phase axial oscillation. The latter
direction remains constant in the case of the RQ mode, where the radial directions are
out of phase. For the BM, all three directions are in phase. The SM is a rotary motion
oscillating about an equilibrium orientation. The size remains approximately constant.

amplitudes in the remaining directions are carefully chosen such that the amplitude
spectrum exhibits no frequency components other than the actual mode frequency
and its higher harmonics. The amplitude spectra for 20 s of the oscillation are shown
in the respective (b) figures. The dotted lines indicate fQM = ωQM/2π and its higher
harmonics. The dashed lines mark fRQ (left) and fBM (right). It can be seen that
the actual QM frequency is in good agreement with fQM while the other two mode
frequencies are higher than the approximate values.

The dependence of the mode frequency on the number of atoms is shown in the
(c) figures. The solid thick black line was calculated for the actual trap including
all the systematics mentioned above. The oscillation amplitude is chosen like in (a).
To illustrate the bare N dependence, the same simulation is repeated for a small
amplitude oscillation in a cylindrically symmetric trap, which is similar to release
trap B in the sense that they share the same ωx and using ωr =

√
ωyωz. In the

following, this trap is referred to as the cylindrically symmetric trap equivalent to
release trap B. The K term is neglected for this simulation, but the kinetic term is
still included. The resulting mode frequency is shown as the solid thin red line. It
approaches the corresponding approximate frequency for large N . If the kinetic term
were neglected, too, the simulated frequency would equal the approximate one for
all N . Typical atom numbers are on the order of 105 in Q-2. If a BEC contained 104

atoms or even fewer, the data point would be neglected for any kind of measurement
presented in this work. Hence, the maximum frequency shift due to variations in N
is on the order of 2 Hz for the RQ mode and even smaller for the QM and the BM.

The amplitude dependence of the mode frequencies is shown in the (d) figures
assuming N = 105 atoms in release trap B. A quantitative comparison of this de-
pendence for the three modes is difficult, because every mode has three different
amplitudes. In addition, their ratio is amplitude dependent, too. For definiteness,
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Figure 6.7: (a) shows a quadrupole mode oscillation of the TF radii within release
trap B assuming N = 105. All radii are rescaled by their respective equilibrium values Req.
The corresponding amplitude spectra are plotted in (b). The expected mode frequency
fQM [see Eq. (6.21)] and the higher harmonics are depicted by the dotted lines. The
frequencies of the other two modes are indicated by the dashed black lines [see Eqs. (6.21)
and (6.22)]. (c) shows the dependence of the mode frequency on the number of atoms
for the oscillation in (a) [solid thick black line, release trap B] in comparison to a small
amplitude QM oscillation in the equivalent cylindrically symmetric trap (solid thin red
line). The K-term was neglected for the latter curve to show the asymptotic behavior for
large N . The amplitude dependence of the real trap QM frequency is shown in (d) for
N = 105. The amplitude is taken as the amplitude of the rescaled Rx oscillation, which is
almost 0.15 in (a).
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Figure 6.8: (a) shows a RQ mode oscillation of the TF radii within release trap B
assuming N = 105. All radii are rescaled by their respective equilibrium values Req. The
corresponding amplitude spectra are plotted in (b). The expected mode frequency fRQ

[see Eq. (6.22)] is depicted as the left dashed thin black line. The right one indicates fBM

and the dotted lines depict fQM and its higher harmonics [see Eq. (6.21)]. (c) shows the
dependence of the mode frequency on the number of atoms for the oscillation in (a) [solid
thick black line, release trap B] in comparison to a small amplitude RQ mode oscillation in
the equivalent cylindrically symmetric trap (solid thin red line). The K-term was neglected
for the latter curve to show the asymptotic behavior. The amplitude dependence of the
real trap RQ mode frequency is shown in (d) for N = 105. The amplitude is taken as the
amplitude of the rescaled Rz oscillation, which is almost 0.15 in (a).
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Figure 6.9: (a) shows a BM oscillation of the TF radii within release trap B assuming
N = 105. All radii are rescaled by their respective equilibrium values Req. The corre-
sponding amplitude spectra are plotted in (b). The expected mode frequency fBM [see
Eq. (6.21)] is depicted as the right dashed thin black line. The left one indicates fRQ and
the dotted lines depict fQM and its higher harmonics [see Eqs. (6.21) and (6.22)]. (c) shows
the dependence of the mode frequency on the number of atoms for the oscillation in (a)
[solid thick black line, release trap B] in comparison to a small amplitude BM oscillation
in the equivalent cylindrically symmetric trap (solid thin red line). The K-term was ne-
glected for the latter curve to show the asymptotic behavior. The amplitude dependence
of the real trap BM frequency is shown in (d) for N = 105. The amplitude is taken as the
amplitude of the rescaled Ry oscillation, which is almost 0.15 in (a).
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the amplitude is defined as the largest of all three amplitudes. The observed fre-
quency shifts are below 1 Hz for all modes and relative amplitudes below 0.3. For
comparison, the amplitude in the respective (a) figures is almost 0.15 by construc-
tion.

In order to quantify the effect of a not perfectly cylindrically symmetric trap, the
departure of the radial frequencies from their geometric mean ωr is parametrized by
the asymmetry parameter ε:

ωy = ωr ⋅ (1 + ε),
ωz = ωr /(1 + ε).

(6.23)

The resulting mode frequencies within the TF approximation and for small oscilla-
tion amplitudes are shown as a function of the asymmetry parameter in Fig. 6.10(a).
The trap corresponding to ε = 0 is the equivalent cylindrically symmetric trap for
release trap B. Figure 6.10(b) shows the frequency difference with respect to ε = 0.
It can be seen, that the QM is hardly affected by the asymmetry, but the other two
mode frequencies are shifted in opposite directions. The asymmetry parameter for
release trap B is εB = 0.0645 and highlighted by the vertical dotted line. Interchang-
ing the roles of ωy and ωz in Eq. (6.23) has no effect, because neither direction is
preferred.

The scissors mode

In contrast to the modes presented in Figs. 6.7 to 6.9, the SM cannot be analyzed
in a similar fashion. The SM oscillation shown in Fig. 6.6 stays within the plane.
Hence, the orientation of the BEC can be characterized by a single angle θ which is
governed by a harmonic oscillator differential equation [195]:

θ̈ + 2ω2
SMθ = 0, (6.24)

where
ωSM =

√
ω2
x + ω2

y. (6.25)

The plane of the oscillation is assumed to be the x-y plane, because the trap orienta-
tion is rotated about the z axis during the decompression phase from the evaporation
trap to any release trap further away from the chip. A scissors mode in the x-z plane
is possible, too, but it lacks a source of excitation in Q-2. In release trap B, the SM
frequency is ωSM = 2π ⋅29.3 Hz for the x-y plane. This frequency is independent from
the number of atoms and the oscillation amplitude, but the scope of Eq. (6.24) is
bound by a condition on the maximum amplitude:

θ ≪ 1, (6.26)

beyond which the SM turns into a QM [195]. Indeed, numerical simulations confirm
a strong coupling. As a matter of fact, these simulations cannot address Eqs. (6.5)
and (6.24) separately, because a rotating BEC has a finite angular momentum, which
needs to be conserved. This leads to an increasing angular velocity θ̇ for decreasing
TF radii and vice versa. The strong coupling to the QM can be understood by
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Figure 6.10: (a) The collective mode frequencies within the TF approximation are shown
as a function of the asymmetry parameter ε [see Eq. (6.23)] for a set of magnetic traps
similar to release trap B. The traps are similar in the sense that they share the same
ωx and ωy ⋅ ωz, but at a variable asymmetry. The dashed lines are the asymptotes for a
cylindrically symmetric trap. The deviation from these reference values are shown in (b).
The dotted line indicates the actual asymmetry εB = 0.0645 of release trap B.

recalling that the TF radius is largest in the x direction. This radius experiences
the largest oscillation amplitude during a QM oscillation.

The moment of inertia ΘBEC of a BEC is different from Θrigid of the equivalent
rigid body. S. Stringari [196] has found that both are related by the trap frequencies:

ΘBEC = (
ωy − ωx
ωy + ωx

)
2

Θrigid. (6.27)

The rigid value considering a TF density distribution is calculated in a lengthy but
straightforward calculation to be

Θrigid =
1

7
mN (R2

x +R2
y) . (6.28)

For comparison, the pre-factor for a homogeneous density distribution would be 1/5.

6.3.1 Excitation of collective modes

An excitation of these collective modes is possible by changing the trap configuration
faster than the BEC can adiabatically adapt to the new trap. The coils’ step response
limits the characteristic rate for trap changes to approximately 1 kHz, which is much
higher than the mode frequencies in release trap B. Hence, all these modes can be
excited in Q-2.

The rampout from the final evaporation trap to either of the release positions
is such a changing trap configuration. The resulting dynamics are simulated us-
ing Eqs. (6.5) and (6.24) for the 250 ms sigmoid ramp to release trap A (see also
Fig. 5.14) and for the 150 ms ramp to release trap B (see also Fig. 5.17). The local
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Figure 6.11: The course of the trap frequencies during the 250 ms sigmoid ramp to
release trap A is shown in (a). The axial trap frequency changes from 24.4 Hz to 17.5 Hz
while the radial frequencies decrease by up to 4 Hz/ms. (b) shows the corresponding TF
radii during this ramp and for a subsequent hold time of 150 ms after the end of the ramp,
which is highlighted by the dashed thin black line. A BEC containing N = 105 atoms is
assumed. The rotation angle θ of the condensate’s principal axes about the z axis is shown
as the dash-dotted black line (right ordinate).

trap frequencies and the orientation during the rampout are obtained from the chip
model. The results for the sigmoid ramp are presented in Fig. 6.11. The radial trap
frequencies experience the largest decrease at a maximum rate of 4 Hz/ms, while the
axial trap frequency decreases from 24.4 Hz to 17.5 Hz only. This change is adiabatic
as can be seen by the absence of oscillations in the TF radii and in the orientation of
the condensate [dash-dotted black line in (b)]. It is interesting that the axial radius
decreases, even though the axial trap frequency decreases, too. This is due to the
significant drop in ω̄ [see Eq. (2.39)]. A tiny QM oscillation is visible in Rx during
the hold time after the end of the ramp, which is depicted as the vertical dashed
black line. The amplitude would be larger for a reduced ramp time. This simulation
agrees qualitatively with the data set shown in Fig. 6.2, which does not exhibit any
signature of a shape oscillation.

The situation is different for the faster rampout to position B, as shown in
Fig. 6.12. The trap frequencies need to decrease faster, because the final trap is
shallower and the ramp time is reduced. In addition, the ramp shape is optimized
for minimal dipole oscillations, which entails the rapid changes during the first third
of the ramp. In order to gain more information on the magnetic field gradients
within the chamber, a different magnetic quantization field was used for the BC-
lens data sets, as discussed in Section 3.4. The required change of the x coil current
from 0.5 A to 0.1 A was conducted directly before the rampout. This leads to an
increase of the radial trap frequencies by approximately 100 Hz, as shown by the
inset in (a).

This combination leads to the maximum rate of 29 Hz/ms at which the radial
frequencies decrease, which is almost one order of magnitude larger compared to
the sigmoid ramp. The effect is an excitation of all collective modes discussed
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Figure 6.12: The course of the trap frequencies during the 150 ms ramp to release
trap B is depicted in (a). The inset shows an increase of the radial trap frequencies by
approximately 100 Hz right before the ramp due to the adjustment of the x coil current
from 0.5 A to 0.1 A as used for the quantization field during the free expansion phase.
In the course of the ramp, the radial frequencies decrease by up to 29 Hz/ms. (b) shows
the corresponding TF radii during this ramp and for a subsequent hold time of 250 ms
after the end of the ramp, which is highlighted by the dashed thin black line. A BEC
containing N = 105 atoms is assumed. The rotation angle θ of the condensate’s principal
axes about the z axis is shown as the dash-dotted black line (right ordinate). (c) shows the
amplitude spectrum of the normalized TF radii during the hold time. The normalization is
comparable to Figs. 6.7 to 6.9. The peaks are attributed to the principal modes (QM, RQ,
BM) and their harmonics. All remaining peaks can be attributed to sum and difference
frequencies. The TF radii after 100 ms TOF are plotted in (d) assuming the oscillations
in (b). The dotted line indicates the release time used for the BC-lens.
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above. The dominant mode is the QM with the large amplitude oscillation of Rx,
as shown in (b). The first point of excitation is directly at the beginning due to the
changing x current within the first millisecond. This leads to the initial increase of
Rx. The interval with rapidly decreasing radial frequencies excites the QM almost
exclusively as proven by another simulation (not shown). The strong coupling of
the SM to the QM leads to the deformed sine oscillation of the cloud’s orientation.
In order to identify the modes contributing to the disordered course of Ry and
Rz, the amplitude spectrum is calculated and presented in (c). It is normalized
and arranged like in Figs. 6.7 to 6.9 for comparison. As expected from (b), the
dominant mode is indeed the QM. The BM is excited much stronger than the RQ
mode. The spectrum exhibits many more peaks, all of which can be attributed to
linear combinations of the mode frequencies. The corresponding sum and difference
frequencies are indicated in the figure for the larger peaks.

All collective modes are in situ oscillations and cannot continue after the release.
Despite this, there is a strong effect on the free expansion, caused by the time varying
nonzero initial expansion rate in combination with the oscillating initial TF radii.
The latter result in a time dependent interaction energy which is converted into
kinetic energy during the initial free expansion phase. The effect of the particular
excitation is shown in (d) for 100 ms TOF. Again, the largest amplitude occurs in
the axial direction. The hold time used for the BC-lens is marked by the vertical
dotted line. The axial radius is minimal at this time. The effect on the lens is
discussed in the next subsection.

The TF radii themselves are not the first choice for the detection of these modes.
This is due to the required rescaling to a reference particle number in combination
with the uncertainties in the measurement of N . A better choice is the aspect ratio,
because the scaling law drops out. Experimental data were sampled after 100 ms
TOF using both detection systems. They are shown by the circles in Fig. 6.13(a) for
the Detection 1 view and in (b) for Detection 2. The solid thin blue lines show the
expectation according to the simulation in Fig. 6.12(d). The curves overestimate
the signal, because no damping of the collective modes was included so far. This
damping can be mediated, for example, by trap anharmonicities [192] and by thermal
atoms [195], which are always present at T > 0. Within the simulation, the system
of differential equation has to be extended by a term

− 2u̇i
τdamp ω̄

,

where τdamp is the damping time, which can be found by improving the overlap
with the data in Fig. 6.13(a). A reasonable agreement is found for τdamp = 300 ms as
shown by the solid thick blue line. In order to show the effect of a varying number of
atoms, the simulation is repeated for N = 3 ⋅104 (dotted blue line) and for N = 3 ⋅105

(dash-dotted blue line). The differences are small. Their origin is the dependence
of the mode frequencies on N .

The analysis of the Detection 2 data is more complex, because there are two
images of the same cloud. This is encoded in the color using blue for the left cloud
and orange for the right one. In any case, the expected aspect ratios are almost
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Figure 6.13: The simulated aspect ratio of a BEC after 100 ms TOF is shown as a
function of the hold time in release trap B for the Detection 1 (a) and 2 (b) frame. The
solid thin blue lines show the undamped case while all other lines are simulated with a
characteristic damping time of 300 ms. All solid lines assume N = 105. The dotted (dash-
dotted) lines are simulated for N = 3 ⋅ 104 (N = 3 ⋅ 105). The circles show data points
measured in microgravity. The reflected and direct image for Detection 2 are expected
to exhibit almost the same aspect ratio, as shown by the dashed orange line in (b) for
N = 105. The measured aspect ratio is shown for the left (blue circles) and right cloud
(orange circles) in the Detection 2 density images.

equal for both clouds. This is exemplarily shown by the dashed orange line in (b)
for the damped case with N = 105.

The data set proves the excitation of collective modes prior to the BC-lens. How-
ever, there are not enough points for a reliable estimate of the damping time. Indeed,
not a single point was reproduced so far. The simulations are in reasonable agree-
ment with the data. The residual deviations could arise from uncertainties in the
chip model.

As a matter of fact, it is possible to fit a single sinusoid to the data in (a) with
a frequency of 19.5 Hz. The expected QM frequency is fQM ≈ 14.5 Hz only. This
difference is significant and cannot be explained in terms of systematic effects arising
from the number of atoms or the amplitude of the oscillation. Another systematic
effect is an increase of fQM due to a SM oscillation, during which the axial direction
samples a part of the higher radial trap frequency fy. Nevertheless, this effect is far
too small be responsible for such a shift. For example, an oscillation amplitude of 10°
for the SM would increase fQM by 0.3 Hz only. The remaining uncertainty is the chip
model. The axial trap frequency was not measured for this particular trap. However,
a relative difference of +36% would be required for a QM frequency of 19.5 Hz. This
appears unlikely in the view of relative differences of 4% or below, which have
been observed so far (see Figs. 5.2, 5.16 and 5.18), even though all frequencies
measured in microgravity are systematically higher than the ones predicted by the
chip model. This discrepancy can be reviewed in the overview of trap frequencies in
Appendix C.2.
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Figure 6.14: (a) shows a pure QM oscillation of 105 atoms in release trap B. The
equilibrium TF radius in the x direction is Rx = 25.5µm and depicted as the horizontal
dotted blue line. This QM affects the velocity vTF, at which the TF radii increase. The
limiting velocities after 80 ms pre-TOF, BC-lens (2.64 ms) and 20 s TOF are plotted in
(b) as a function of the hold time. The smallest expansion rate in the axial direction is
vTF,x = 151µm/s and can be observed after 8.6 ms of the oscillation assuming the initial
phase shown in (a). The curves are periodic with the QM frequency.

6.3.2 Quadrupole mode excitations for magnetic lensing

A quadrupole mode excitation can be used to systematically improve a magnetic
lens. The key idea is that the TF radius in the axial direction (Rx), which is hardly
affected by the lens, should be as large as possible at the time of release. Ideally, this
direction would be neither expanding due to the interaction energy nor is it lensed.
The TF radius would remain approximately constant. For the further discussion, it
is helpful to introduce a TF velocity as:

vTF = d

dt
RTF. (6.29)

This velocity increases during the free expansion due to the conversion of interaction
energy into kinetic energy. For large BECs, vTF saturates and the atomic cloud
expands further with this limiting TF velocity.

As an example case, a pure QM is assumed in release trap B, as shown in
Fig. 6.14(a). The axial radius (solid blue line) varies by almost ±10µm with re-
spect to the equilibrium value of Rx = 25.5µm (horizontal dotted line). The phase
of the QM oscillation can be adjusted with the hold time in the release trap. As
an example, the resulting phase dependent performance of the BC-lens with 80 ms
pre-TOF is analyzed. The limiting TF velocity in the three directions is shown in
(b). It can be seen, that the optimum hold time is not at the peak of the axial QM
oscillation (0 ms), but at a finite hold time (8.6 ms). This time depends on the QM
amplitude. For larger amplitudes, the ideal case of an unaffected axial direction is
fulfilled better. In this example case, however, a small negative initial TF velocity
is beneficial, because it counteracts the emerging expansion of Rx while the radial
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Figure 6.15: The expansion curves before, during and after the BC-lens are shown for
two different initial states prior to the release from trap B. The initial state in (a) is the
one depicted in Fig. 6.14(a) with a hold time of 8.6 ms. The inset is a magnified view of
the initial expansion phase including the lens, which is indicated as the shaded area. (b)
shows the equivalent curves for an even larger QM amplitude with initial Rx = 82.6 µm
and an optimum hold time of 0.2 ms.

directions are still compact. Nevertheless, the minimum axial expansion rate of
vTF ≈ 0.2 mm/s still exceeds the radial ones. Obviously, it is also possible to deterio-
rate the lens performance by an unfortunate hold time. The expansion curves using
the optimum hold time are plotted in Fig. 6.15(a). The inset shows a magnified
view of the pre-TOF phase and the lens (shaded gray). The pre-compensation of
the emerging axial expansion rate by means of a negative initial vTF is clearly visible.
Still, the axial direction dominates the expansion on long time scales. The limiting
TF velocity is (151,58,49) µm/s resulting in vrms = 64µm/s, which is equivalent to
Tkin = 14 pK.

The effect of an even larger QM amplitude is visualized in Fig. 6.15(b). The
expansion curves show the TF radii of an almost perfectly collimated ensemble.
The residual expansion rates are vTF = (51,55,44)µm/s and originate from the
residual interaction energy at the pre-TOF size. The inset shows the huge initial
axial radius Rx = 86.6µm (blue line), which remains approximately constant on this
time scale. Neglecting the trap anharmonicity, this ensemble would be detectable
for approximately 10 s TOF and exhibit vrms = 33µm/s equivalent to Tkin = 4 pK.

It is conceivable that collective modes can be utilized even further. One limitation
of magnetic lensing is the constrained set of magnetic traps, that can be realized
experimentally. The key motivation for the choice of the BC-lens is the axial sym-
metry at this and only this position. Traps further away from the chip are even less
anharmonic, but no longer share the same radial trapping frequency. This problem
could be relaxed by superimposing the QM with a RQ mode. Thinking further, it
might even be possible to skirt the tail problem by using no lens at all, but rather
engineer the quantum state in a way that it exhibits large initial TF radii and van-
ishing initial TF velocities. However, this would be highly nontrivial for several
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reasons. For example, the particle number would have to be stabilized to avoid
fluctuations of the mode phase. Furthermore, the scope of the system of differential
equations [Eq. (6.5)] might be exceeded due to very high transient densities and the
anharmonicities.

6.4 Experimental realization of magnetic lensing

Several coherent data sets after different lens types were measured in microgravity.
The absorption images are shown in Appendices A and B. A lot of information can
be extracted from these images. This was demonstrated in the previous chapters.
For example, the magnetic field gradient was extracted from quadratic fits to the
COM positions of data sets with atoms in the mF = 2 substate (see Section 3.4).
Data sets with atoms in the mF = 0 substate were used for the air drag correction
and the analysis of other systematics on the COMM (see Section 5.2). The ARP
efficiency in microgravity could be measured, too (see Section 4.4). After the ARP,
all atomic substates need to be separated in space by a SG kick, because the residual
magnetic field gradient is too weak such that different substates partially overlap
for almost 0.5 s. This overlap would falsify the lens evaluation and thus make these
images useless.

The size information in these images is the subject of this chapter. The presenta-
tion of the data is subdivided into the two principal lens types, SC-BC-lens and pure
BC-lens. The first one involves the 250 ms sigmoid ramp for the transport of the
atomic ensemble to release position A. No collective mode is excited here, unlike for
the BC-lens, for which the transport to release position B is realized by the 150 ms
STA ramp. This transfer excites a QM that is advantageous for magnetic lensing,
provided that the phase is chosen correctly. Two slightly different realizations of the
BC-lens are presented. The differences are explained further in the corresponding
subsection.

6.4.1 SC-BC-lens

The SC-BC-lens trap is very similar to release trap A, from which the atoms for
this lens are released. It is derived from release trap A by scaling down all currents
with the same factor. This lens scaling is not held constant during the lens, but
is ramped up and down within 6 ms resembling a Gaussian. The maximum lens
scaling is 0.244 and occurs after 3 ms at the center time of the lens. The control
functions for the SC, BC and the y coil are calculated such that the currents follow
the desired ramp, which was used as an example case in Section 3.3 (see Fig. 3.4).
The x coil must not be rescaled accordingly, because a finite quantization field must
be present at all times to avoid spin flips. The resulting lens trap frequencies are
shown in Fig. 6.16(a) for the range of scalings used for SC-BC-lens. It can be seen,
that the trap frequencies depend nonlinearly on the lens scaling. Below 0.065, the
resulting potential no longer forms a trap in three dimensions. In addition, the trap
rotates about the z axis and translates in all three directions, as shown in (b). One
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Figure 6.16: The behavior of the trap frequencies as predicted by the chip model when
reducing the currents for release trap A to a certain factor (lens scaling) is shown in (a).
A lens scaling of 0.244 corresponds to the maximum trap strength used during the SC-
BC-lens. Below 0.065, the chip model predicts no traps. In between, the trap center shifts
as a function of the scaling as shown in (b). The trap’s principal axes rotate about the z
axis, as depicted by the dash-dotted blue line (right axis).

reason for this is the constant x current. The effect is mitigated already by starting
the y coil ramp at 5 mA rather than zero. This list of effects makes it practically
impossible to evaluate the expansion after the lens by means of Eq. (6.5). For this
reason, 3D numerical simulations are performed and compared to the data, as will
be discussed below.

Measured data set

A subset of the acquired absorption images is shown in Fig. 6.17. The two pre-TOF
images show the input state for the lens as detected by the respective cameras. The
Detection 2 images show the right cloud only. The left one (mirror image) looks
similar, but is much fainter. The reason for this is the different polarization of the
detection light. The magnetic field direction is optimized for the cycling transition
of the Detection 1 system using σ+-polarized light. The Detection 2 laser beam
is σ−-polarized, which is converted into σ+ after the reflection at the chip surface.
This reflected light is responsible for the right cloud in the image. The σ−-polarized
direct light responsible for the mirror image is detuned from resonance due to the
magnetic quantization field. This field is reduced for all BC-lens data sets such that
both clouds are clearly visible.

The most prominent feature in the Detection 1 image series is the comet like tail
due to the L3 anharmonicity, which was discussed above. The optical analog to this
effect is comatic aberration. This tail is not pointing exactly into the x′ direction,
which would be expected. This deviation can be understood by a mismatch in the
y position of the atoms with respect to the lens center at maximum lens scaling.

Within Fig. 6.17, the atoms are in the mF = 0 substate in the images for 102 ms
TOF and for all images with 500 ms TOF or more. The other atoms are in mF = 2.
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Figure 6.17: The image series shows the measured shape of the atomic cloud directly
before the application of the SC-BC-lens (pre-TOF, leftmost column) and for various
TOFs after this lens as detected by the two imaging systems Detection 1 (upper row) and
Detection 2 (lower row). The respective camera coordinate systems are exemplarily given
in the pre-TOF images. The lower row shows only the right cloud (direct image). The
mirror image is similar, but much fainter because of an unfavorably high magnetic offset
field used for the cycling transition (see Section 2.1).

In both 102 ms TOF images, three clouds are visible. The two fainter ones are atoms
in the mF = +1 substate (right) and in the mF = −1 substate (left). The Gaussian
background is visible in the Detection 1 images for short TOFs. It is much larger
and fainter compared to the condensate fraction and exhibits a sharp and almost
vertical edge to the left. This edge is a consequence of the L3 anharmonicity, too.

It is worth mentioning that the extent in the y′ direction is much smaller than
expected from the 45° projection of the practically unlensed x direction. This is a
consequence of the translating and rotating lens trap due to the Gaussian ramp. The
cloud’s extent along the weak principal trap axis is still large, but a shear is imprinted
onto the cloud resulting in a rotation of approximately 45° in the Detection 2 frame.
The elongated atomic cloud is then almost co-aligned with the Detection 1 laser
beam that is propagating from the bottom right to the top left within the Detection 2
frame. This results in the reduced size seen by the Detection 1 camera.

3D ray tracing simulation

The exact shape of the measured density distribution after the lens can by under-
stood with the help of a 3D numerical ray tracing simulation. For this simulation,
N = 84 ⋅103 atoms are assumed, which is the average atom number for release trap A
(see also Fig. 6.2). The input state, as seen in the pre-TOF images in Fig. 6.17,
is well known: Each atom exhibits a TF distributed position. The TF radii and
velocities 80 ms after release are calculated using the variational approach. The set
of k = {1, ...,N} atomic velocities vki is related to the atomic positions rki by:

vki = vTF,i

rki
RTF,i

, (6.30)

where i = {x, y, z}. These velocities are changed by the time dependent lens poten-
tial. This already includes the translation and rotation of the lens trap, because the
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effect of the local potential gradient is evaluated for each of the N atoms at the re-
spective position. The problem of describing the lens action for scalings smaller than
0.065 is also solved by this method. The free expansion during the TOF, that is af-
ter the lens, is determined by the post-lens position and velocity distribution. This
ray tracing simulation neglects any residual mean field interactions of the atoms,
which is justified, because the weak axis grows rapidly such that the densities are
small. The interactions during the pre-TOF were intrinsically accounted for in the
calculation of the input state by the variational approach.

The results of this simulation are shown in Appendix A as the first column of
images for both detection systems. The corresponding TOF is given in every image.
The measured density distributions are plotted next to the simulated ones. The
measured images show the drop number in the top left corner and the informa-
tion about the Zeeman state in the top right corner. The simulation agrees with
the measured data. The shape, size and orientation of the simulated density dis-
tributions match the measured ones for both detection systems. However, it must
be assumed that the lens potential is in fact stronger than predicted by the chip
model. This is implemented as a global factor resulting in trap frequencies that are
7% higher. It is conceivable, that the chip model is inaccurate for shallow traps,
because the model was not calibrated in this regime, but for stronger traps within
ground-based measurements. Furthermore, magnetic offset fields and field gradients
have a stronger effect on shallower traps. In fact, the assumption of a stronger
trap is supported by the overview in Appendix C.2. Having said that, the stronger
potential is equivalent to the application of the non-enhanced one at a later or for
a longer time. This could actually happen if the magnetic field was delayed with
respect to the coil current. Indeed, similar observations were made for the release
protocol of this release trap, where the chip currents had to be ramped down a factor
1.14 more slowly than expected to reduce the COMM [see Fig. 5.20(b)]. However,
the same enhancement factor has to be assumed for the simulation of the BC-lens
below, where the coil current is not changed during the lens. Hence, the assumption
of an enhanced potential compared the chip model’s prediction is justified.

One free parameter in the simulation is the position of the atoms with respect to
the lens. Both positions were measured (see Table 5.3) and the y offset of +18µm
leads to a correct prediction of the tail direction. In contrast, a z offset of -30 µm was
used in the simulations instead of the measured average offset of -72 µm. Further
away from the chip, the local trap frequency ωz is smaller as a consequence of the L3

anharmonicity. This effectively introduces a reduced chip model correction factor
in this direction. As another consequence of this anharmonicity, the simulation
predicts an extremely sharp left edge of the atomic cloud, which is not observed to
this extent in the measured images for two reasons. First of all, a high local density
tends to disperse due to atomic interactions. Second, the detection system cannot
resolve such sharp features. These effects are not distinguishable in the images.
They are accounted for in the simulation by a normally distributed position noise
with a standard deviation of 10µm.

The numerical simulation does not discriminate between different Zeeman states.
In fact, a background magnetic field curvature would change the size of an mF = 2
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ensemble after some TOF. Such a curvature could not be ruled out by any measure-
ment so far. However, a comparison of the measured images for different Zeeman
states does not suggest the existence of such a curvature. Examples are the Detec-
tion 1 images for 0.3 s and all images for 1 s TOF. In fact, the statistical fluctuations
from shot to shot are much larger, as can be seen in the Detection 1 images for 1 s
TOF. These fluctuations can arise from a scatter in the position or in the number
of atoms, for example.

Results

The application of the SC-BC-lens significantly reduces the expansion rate of the
atomic ensemble and allows for its detection after a long TOF. Without the lens,
the ensemble would exceed the image boundaries in Fig. 6.17 for the 250 ms images
already. The longest free evolution time of a BEC observed in Q-2 is 2.7 s, which is
equal to the current record [1]. The density images are also shown in Appendix A,
but they are very dilute. Spatial filtering is required to see the atomic cloud at all.
Still, the spatial density profiles of the absorption images show the characteristic
shape expected from the previous images.

The measured density distributions were described by a 3D ray tracing simula-
tion. The good agreement for the different TOFs allows for the conclusion that
the simulated velocity distribution must be comparable to that of the real atomic
ensemble. This is extremely useful, because the root mean square velocity can be
obtained directly from this simulation. It is vrms = 330µm/s, which is equivalent to
Tkin = 378+60

−30 pK. These values increase with N. For the standard reference number
of N = 105 the result is vrms = 342µm/s (Tkin = 408 pK). These results are well above
the limit of 20 pK for an ideal harmonic 3D lens after this pre-TOF (Fig. 6.5). This
discrepancy is primarily caused by the anharmonicity and the fact that the lens is
collimating in two dimensions only. The given uncertainty in Tkin is estimated from
the sensitivity of the simulated value to parameter changes.

6.4.2 BC-lens

The previous SC-BC-lens did not involve any collective excitation and was thus
effectively a 2D lens. The transport of the atomic ensemble to release position B, as
required for the BC-lens, does involve a collective behavior. It is primarily a QM,
as discussed above. The excitation mechanism is well understood now, but was not
known at the time the data sets were acquired. It was really a lucky coincidence that
the hold time, which was determined by the phase of the in situ dipole oscillation,
was also optimizing the phase of the QM. This is in no way clear because they
propagate at different frequencies.

The SC-BC-lens was selected and optimized under the constraint of a release po-
sition that is accessible in a ground-based measurement, too. The strategy for the
BC-lens was the opposite. The chip model predicts an axially symmetric trap with
ω

BC-lens
= 2π ⋅ (3.0,10.8,10.8)Hz at z = 1449µm with IBC = 1.8 A and Iy = −75.4 mA.

The remaining sequence is adjusted accordingly, as described in the previous chapter.
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The lens trap is switched on and off rather than ramped to avoid trap translations
and rotations. A pre-TOF of 80 ms is chosen as a trade off between residual inter-
actions and the sampling of anharmonicities. According to Eq. (6.12), the required
lens time is τlens = 2.64 ms, which is not much longer than the characteristic switch-
ing time of the bias coil. For this reason, the coil current is switched on before the
lens and only the BC current is used for the fast switching of the potential. The
homogeneous magnetic field alone is not affecting the atoms.

Measured data sets

Three data sets were measured with the BC-lens. For the first one, the atoms
remained in the mF = 2 substate. This data set was also used to determine the
magnetic field gradient in Section 3.4 with Ix = 0.1 A for the quantization field
(Fig. 3.8). The second one was Set B in the COMM measurements (Fig. 5.1) with
atoms in the mF = 0 substate. This is the only data set with images from the
Detection 2 system. A third data set was measured with a slightly different lens
configuration using IBC = 1.828 A and corresponds to Set C in (Fig. 5.1). This change
successfully eliminated the COMM in the x′ direction. The different BC current is
responsible for slightly different trap frequencies and a shifted trap center, which is
29 µm further away from the chip. Hence, the data sets can be grouped by the BC
current that is used for the lens. The differences regarding the lens performance are
small. Still, they are considered in the analysis below. To keep track of the key
parameters, they are summarized here:

I) IBC = 1.8 A , mF = 2

II) IBC = 1.8 A , mF = 0, Set B

III) IBC = 1.828 A, mF = 0, Set C

Data Set B gives the best overview of the lens performance because of the infor-
mation from both cameras. The measured images are shown in Fig. 6.18, which is
arranged like Fig. 6.17. The only differences are the additional information from the
left cloud in the Detection 2 images and the different scale. The absorption images
exhibit some characteristic differences compared to the SC-BC-lens image series.
First of all, the tail in the Detection 1 images is pointing in the x′ direction, indi-
cating a good overlap of atoms and lens in the y direction. Another evident feature
is the anchor like shape for long TOFs. Furthermore it can be seen that the lens
is not perfectly collimating the atomic ensemble. There is a focus around 400 ms.
Again, the principal axes of the clouds in the Detection 2 images are rotated, but
not as much as for the SC-BC-lens. The comet like tail is visible in these images,
too. It points towards the left for the left cloud and towards the right for the right
one, as expected. This is clearly visible after 200 ms TOF. After 1 s, the anchor like
shape destroys this correlation.
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Figure 6.18: The image series shows the measured shape of the atomic cloud directly
before the application of the BC-lens (pre-TOF, leftmost column) and for various TOFs
after this lens as detected by the two imaging systems Detection 1 (upper row) and De-
tection 2 (lower two rows). The respective camera coordinate systems are exemplarily
given in the pre-TOF images, which are common to all BC-lens data sets. The remaining
images belong to Data Set B.

Analysis using the variational approach

The variational approach was used to describe the in situ dynamics of the condensate
during the transfer to release position B. The shape during the free expansion was
then calculated by a subsequent time evolution of Eq. (6.5) with the λ̃i = 0. It
is possible to extend this analysis to the lens by choosing the λ̃i according to the
respective BC-lens frequencies for the duration of the lens. This strategy was applied
for the numerical simulation of the matter-wave telescope in Fig. 6.4, too. An
analysis of the SC-BC-lens using this approach was not possible because the lens
trap frequencies were not defined at all times. In contrast, the BC-lens frequencies
are constant during the lens. The contributions from the short switching processes
are neglected. Hence, it is possible to partially evaluate the BC-lens performance
using this approach. The density profiles in the y′ direction are still more or less TF
distributed, but the x′ direction cannot be analyzed in the same way because of the
tail. The TF radius is fitted for the Detection 2 images within a coordinate system
co-rotated with the eigensystem of the measured atomic cloud. The resulting values
are falsified by the tail, too, but not as much as for the Detection 1 images.

IBC = 1.8A
The simulated time dependence of the TF radii for both data sets using IBC = 1.8 A
is plotted in Fig. 6.19(a). These curves assume N = 105. The lens ends at TOF = 0
and the pre-TOF is the interval with negative TOF values. The in situ dynamics
prior to the release was shown in Fig. 6.12(b) and is not reprinted here. The behavior
of Rx, which leads to a collimation in this direction, is visible, too (see also Figs. 6.14
and 6.15). A focus in the y direction is predicted after approximately 750 ms. The
projection of the TF radii in (a) onto the Detection 1 system is shown in (b). Here,
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Figure 6.19: (a) shows the simulated time evolution of the TF radii before (TOF< 0)
and after (TOF> 0) the BC-lens with IBC = 1.8A assuming the initial state predicted in
Fig. 6.12(d) and a characteristic damping time of 300 ms. (b) depicts the projection of the
curves from (a) onto the Detection 1 frame (x′ and y′) in comparison to experimental data
using the same color code. The atoms are in the mF = 2 substate. In the x′ direction, the
TF radius is not defined after the lens because of the comet-like tail. All curves and data
are rescaled to N = 105. The error bars are calculated assuming 30% relative uncertainty
in the fitted number of atoms. The data point for 100 ms is plotted in a lighter blue,
because the measured atomic cloud exhibits an artifact (see D187a in Appendix B.1.1).

the focus occurs earlier at 400 ms due to the geometry of the imaging system. This
focus is no desired feature, but a consequence of a lens action that is underestimated
by 7% like for the SC-BC-lens. The circles show the measured data points. The
ones at TOF = 0 are the pre-TOF data and common to all three BC-lens data sets.
The remaining data points were sampled after the lens and belong to the data set
in the mF = 2 substate. All data points are rescaled to N = 105 for comparison.
This step is only an approximation when collective modes are involved, because the
mode frequencies depend on N . Still, this effect is small, as shown in the previous
section. Having said that, all these data points are slightly above the predicted
curve. Even the measured pre-TOF size, for which Ry′ is still well defined, exceeds
the prediction. One possible explanation is that the actual collective excitation
differs from the simulated one, for example due to uncertainties in the chip model.
However, an underestimation of the respective measured number of atoms for each
data point would result in an overestimation of the measured size, too, because of
the rescaling. Twice as many atoms would be required to explain the discrepancy for
the pre-TOF images, which is a rather large difference. The error bars indicate the
effect of a 30% relative uncertainty in N . Despite this, the model correctly predicts
the course of R′

y. Some absorption images, for example the Detection 1 image for
200 ms in Fig. 6.18, exhibit artifacts that are not yet understood. These data points
are plotted in a lighter blue because the artifacts can affect the measured size as
well as the number of atoms.

Data Set B in mF = 0 is the second set with IBC = 1.8 A and shares the same
expected curves. The measured TF radii within the Detection 1 frame are shown
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Figure 6.20: (a) shows the same curves like in Fig. 6.19(b), but with experimental data
points using atoms prepared in the mF = 0 substate after the lens with IBC = 1.8A
(Data Set B, see Fig. 6.18). The three data points at -3 ms are the pre-TOF images with
atoms still in the mF = 2 substate. Again, data points in light blue exhibit artifacts. The
corresponding projection onto the Detection 2 frame is depicted in (b). The circles show
the TF radii of the direct image (right cloud) and the squares correspond the mirror image
(left cloud). All curves and the data points in (a) are rescaled to N = 105. The error bars
are calculated assuming 30% relative uncertainty in the fitted number of atoms. In (b),
error bars are omitted, because there is no information on the number of atoms.

in Fig. 6.20(a). Again, all data points are slightly above the predicted curve for the
Detection 1 view, but there is no systematic difference compared to the previous data
set in mF = 2. This would have been a hint to an existing background magnetic field
curvature. In (b), the circles represent the right cloud in the Detection 2 absorption
images and the fitted radii for the left clouds are given by the squares. These radii
are not rescaled, because no information on the number of atoms exists for these
data points. The projected TF radii can be different for the direct and mirror image,
respectively. This would be the case if the eigensystem of the trap were rotated about
the y axis. The effect would be, for example, a rotation of the anisotropic atomic
cloud into the reflected detection laser beam for the direct image and correspondingly
out of the direct beam for the reflected image. As a consequence, the two shadows
cast onto the CCD by the anisotropic cloud would differ. However, such a rotation
is negligible according to the chip model such that the expected curves overlap for
both images. The principal course of the data points follows these curves, even
though the pre-TOF radii are still systematically larger. Actually, the data points
do exhibit a small systematic difference when comparing the radii of the direct and
mirror image. Still, this is no evidence for a rotation about the y axis because of
the dissimilar polarization and magnetic field orientation relative to the laser beam
for the two clouds.

IBC = 1.828A
The expected coarse of the TF radii after the shifted BC-lens with IBC = 1.828 A
for Data Set C is slightly different and depicted by the thick lines in Fig. 6.21(a).
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Figure 6.21: The thick lines in (a) show the simulated time evolution of the TF radii
before (TOF< 0) and after (TOF> 0) the shifted BC-lens with IBC = 1.828A assuming
the initial state predicted in Fig. 6.12(d) and a characteristic damping time of 300 ms. The
thin lines depict the expected expansion without any collective excitation. (b) depicts the
projection of the curves from (a) onto the Detection 1 frame (x′ and y′) in comparison to
experimental data using the same color code. The atoms are in the mF = 0 substate and
belong to Data Set C, except for the three pre-TOF data points common to all BC-lens
data sets. Again, data points in light blue exhibit artifacts. The error bars are calculated
assuming 30% relative uncertainty in the fitted number of atoms.

The largest difference compared to Fig. 6.19(a) can be seen in the z direction. The
thin lines visualize the action of the lens if no collective mode of the BEC is excited.
The radial directions are hardly affected by the mode, but the expansion rate in the
x direction is significantly higher without the QM. However, its amplitude is still
insufficient for a perfect collimation in this direction. These thin lines are plotted in
the Detection 1 view (b), too. This is another strong confirmation of the simulated
collective excitation, because the data points (blue circles) are well described by the
corresponding predicted curve (thick blue line).

3D ray tracing simulation

Like for the SC-BC-lens, a 3D ray tracing simulation can help to understand the
dynamics after the lens. The details of this simulation were described above such
that only the differences are mentioned here. The biggest difference is the input
state for the lens because of the collective excitation. As a consequence, Rx is not
expanding quickly. This is exactly the goal that should be reached, but it leads to
a larger residual density and accordingly to stronger interactions during the TOF.
Hence, they may no longer be neglected. However, a full 3D simulation of the
Gross-Pitaevskii equation with a reasonable spatial resolution requires a massive
amount of computational power. For this reason, the interactions are considered in
an approximate manner by calculating the root mean square size and using this value
to determine the effect of the interactions by the variational approach. This strategy
reproduces the expansion of a TF distributed cloud, but can be an approximation
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only for distorted clouds as measured with Q-2.

Apart from that, no offset needs to be assumed in the x and y directions, but
a z offset of 31 µm is required for the IBC = 1.8 A data sets. The adapted BC
current shifts the lens by 29 µm away from the chip and towards the atoms leaving
a negligible position difference. The measured pre-TOF orientation of the atomic
ensemble deviates from the predicted one. A rotation of the atomic cloud by -5°
about the z axis has to be assumed to meet the measured input state for the lens. All
these effects also affect the dynamics after the lens as expected from the variational
approach. They were accounted for in Figs. 6.19 to 6.21.

An analogous comparison of this ray tracing simulation to the experimental data
is given in Appendix B for the three BC-lens data sets. The tail points in the x′

direction, which confirms the good overlap of atoms and lens in the y direction. The
anchor like shape can be reproduced by the simulation. This is particularly promoted
by the small rotation and the enhanced potential. Furthermore, the anchor is more
pronounced for a larger number of atoms. The overall shape of the measured clouds
in the Detection 1 view can be reproduced very well, but the size tends to be
underestimated. This effect was observed in the previous analysis based on the
variational approach, too. One big problem is the varying number of atoms in
the measured ensembles. The 3D simulation assumes N = 105, but the measured
values can be different. In principle, it is possible to leave the atom number as a
parameter that is to be optimized for every data point. However, this also involves
a re-calculation of the collective excitation. This step takes more than an hour and
is too slow to be part of a fit routine. The simulated Detection 2 view agrees with
the measured data except for the lagging orientation.

Results

The BC-lens realized with Q-2 shows the fruitful interplay of a QM collective ex-
citation with an axially symmetric magnetic lens to achieve a collimation in three
spatial dimensions. This was understood with the help of numerical simulations.
Table 6.1 summarizes the results of all BC-lens simulations that were presented in
this chapter. The three components of the TF velocity, the root mean square ve-
locity and the kinetic temperature are listed for N = 105. The results in the upper
part of the table are based on the variational approach. The velocity spread that
was calculated using the 3D ray tracing simulation is shown in the lower part of the
table for the three BC-lens data sets. This simulation can be seen as a fit to the
experimental data.

The first row in the upper part of the table quantifies the free expansion out of
release trap B if neither a lens is applied nor a collective mode is excited. This
ensemble would grow in size with a few mm/s, which is equivalent to a kinetic
temperature of approximately 2 nK. This can be considered hot in the scope of
this work. The largest reduction of the velocity spread is possible with the BC-
lens alone (second row), even without any collective excitation. Still, the lens itself
hardly affects vTF,x, as discussed. Only the QM can lead to a significant reduction
of this velocity, even though at the cost of a small increase in the radial directions.
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vTF,x (µm
s
) vTF,y (µm

s
) vTF,z (µm

s
) vrms (µm

s
) Tkin (pK)

No lens/mode 625 1451 1343 784 2139
No mode 566 29 24 214 160

Sim. mode 175 61 48 72 18
Fig. 6.15(a) 160 58 49 64 14
Fig. 6.15(b) 51 55 44 33 4

Set in mF = 2 - - - 117 48
Set B - - - 117 48
Set C - - - 126 55

Table 6.1: Comparison of the three components of the TF velocity, the root mean square
velocity and the kinetic temperature assuming N = 105 for different numerical simulations.
The upper part is based on the variational approach. The first row lists the values for the
free expansion without any lens or collective excitation as a reference. The remaining rows
of the upper part quantify the dependence of the post-BC-lens expansion on the collective
excitation. The simulated mode (sim. mode) is the expected one in Q-2. The lower part
lists the results of a 3D simulation of the measured data sets. These simulations assume
the simulated mode as the input state for the respective lens.

The net effect is a significantly reduced velocity spread. This was analyzed for three
different collective excitations. The first one is the simulated mode (third row) that
is excited during the transfer of the atoms to their release position. This actually
excited mode is not a pure QM, in contrast to the bottom two rows of the upper part
in the table. They would quantify the expansion if a pure QM of a similar amplitude
(a) or an optimized amplitude (b) had been excited. This shows the great potential
of the QM plus lens combination. The 4 pK are no fundamental limit but rather a
consequence of the chosen combination of release trap and pre-TOF.

The 3D simulation of the three BC-lens data sets yields significantly larger values
compared to the variational approach including the simulated collective mode. This
is a consequence of the anharmonic potential resulting in the anchor like shape after a
long TOF. The first two rows are equal, because the lens is unchanged. Set C, on the
other hand, exhibits a slightly larger velocity spread. The uncertainty in the values
for Tkin is on the order of 10 pK estimated like for the SC-BC-lens. The measured
ensemble, however, is systematically larger than the simulated one. This can result
in a systematic underestimation of the velocity spread by the 3D simulation. There
can be different reasons for the mismatch. First of all, the chip model is used for the
3D simulation and for the simulation of the collective excitation, where the coarse of
the trap frequencies is required. Hence, any uncertainty in this model directly affects
all lens simulations. Aside from that, the simulation of the collective excitation
assumes a harmonic potential and a certain damping time of the excitation. It
is conceivable that the anharmonicity does have a small effect on the mode. In
addition, there may be different damping times for the different modes such that
the actual mode slightly differs from the simulated one. These effects would change
the input state for the lens and thus the subsequent expansion. Further uncertainties
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are the approximate treatment of the interactions, the neglected switching process
of the BC current and the number of atoms. Still, there is no good alternative to
the 3D simulation for the determination of the velocity spread. The reason is that
some classical atomic trajectories converge after the lens. This destroys the linear
mapping of position and velocity for intermediate TOFs. After a long TOF, that is
more than 2 s, the linear mapping re-establishes such that the rms size of the atomic
ensemble is indeed a measure for the rms velocity. However, the limited detection
efficiency would systematically reduce this size in that TOF regime, such that this
is not an option. In order to derive an estimate on how much the 3D simulation
underestimates the velocity spread, the post-lens density and velocity distribution is
adjusted in a separate simulation to match the rms size of simulated and measured
density profiles for all TOFs. This is meaningful for Set B only, because the density
profiles can be checked for both detection views. The changes are kept small enough
to preserve the overall shape of the simulated clouds. Based on this approach, the
estimate for the kinetic temperature is Tkin = 70+20

−10 pK equivalent to vrms ≈ 140µm/s.
These BC-lens data sets are the first experimental realization of a collimation in

three spatial dimensions. This is a huge step towards precision measurements in
space. The velocity spread of 140 µm/s almost satisfies the extremely ambitious
STE-QUEST requirements, even though neither the mode amplitude nor the lens
duration are fully optimized yet.
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Summary and discussion

The Q-2 experiment can provide a flux of 2.5 ⋅105 condensed atoms per second. This
benchmark figure is competitive with the best lab-sized setups and is unprecedented
among mobile devices. The compact and robust design of Q-2 allows for its operation
in the drop tower and paves the way for various applications as well as tests of
fundamental physics. The high flux and repetition rates exceeding 1 Hz could be
achieved by the combination of the double MOT setup in combination with the atom
chip, which facilitates high frequency traps for fast evaporative cooling to quantum
degeneracy.

Precision sensors using light-pulse atom interferometry benefit from this high flux
because of the rapid suppression of statistical errors. This may even be the decisive
factor whether or not a scientific goal can be reached within the operating time of,
for example, a satellite or even the experiment itself. Still, systematic errors are the
major limitation. For example, the measurement of the acceleration in a gravimeter
is directly falsified by spurious non-gravitational accelerations. The magnetic field
gradient can have an overwhelming contribution if the atoms are in any of the
magnetic substates. For this reason, an efficient transfer to the mF = 0 substate is
inevitable.

This transfer was realized by an adiabatic rapid passage with 91% efficiency.
The detrimental effect of transverse decoherence on this efficiency was explained.
A protocol for measuring the dephasing time using spin-echos was demonstrated
and a mitigation strategy for this loss mechanism was proposed. There are two
main reasons that justify the quest for a passage efficiency close to unity. First
of all, the flux of cold atoms is deteriorated by an inefficient transfer, especially if
multiple passages are performed. Aside from that, atoms in the unwanted Zeeman
states need to be separated in space by a transient magnetic field gradient. This
takes a finite time and makes it practically impossible to evaluate the post-lens
density distribution for short TOFs. In addition, the transient gradient can lead to
additional systematics on the ultimate precision level. The detailed description of
the adiabatic rapid passage that was given in this work can be transferred to other
atomic species, for example potassium. This will involve a different Hamiltonian
and thus different numbers, but the methods and qualitative conclusions remain the
same.
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Systematic errors

The residual acceleration in the mF = 0 substate is proportional to the magnetic
field and its gradient. This is the reason why the STE-QUEST requirements de-
mand B = 1 mG besides a gradient of less than 83 µG/m. The magnetic field could
indeed be measured with a 1 mG precision in Q-2 by using rf spectroscopy, limited
by the stability of the system. The gradient was found to be approximately 1 G/m,
even though extensive care was taken to select non-magnetic materials within the
magnetic shield. Still, the source of this gradient is either the shield itself or a
component within, because the shielding factor is high enough to suppress even the
fields from the strong magnets of, for example, the ion getter pump that is located
outside the shield. A gradient that is too strong cannot be healed by an arbitrarily
small offset field because it would change over the spatial extent of the atomic en-
semble. Hence, this gradient must be either reduced or well characterized such that
the related systematic errors can be accounted for in the error budget. A suppres-
sion of the gradient at least in the sensitive interferometer axis at the cost of the
remaining directions is conceivable by means of active compensation. In any case,
the magnetic field gradient must be well characterized, either to include it in an error
correction or to prove that the gradient is below a certain level. The components
of the magnetic field gradient were measured to a precision of almost 10 mG/m in
Q-2 within 1 s time of flight. The limitation is the atomic ensemble leaving the
detection zone because of the accelerated motion in the mF = 2 substate. The time
interval can be extended, for example, by adapting the magnification of the imaging
system, using the mF = 1 substate or by an initial velocity of the atoms opposing
the acceleration. This would reduce the uncertainty in the gradient significantly.
For space missions with an available TOF exceeding 10 s, a characterization of the
magnetic field gradient to a few 10 µG/m seems feasible.

Several further systematics that can lead to spurious non-gravitational accelera-
tions within mF = 0 were characterized. The largest of them was the residual air
drag, which is not a specific problem of the drop tower, but an issue for all micro-
gravity platforms. Fortunately, this contribution is a common effect in a differential
measurement. This alleviation also applies to the centrifugal and the Coriolis force,
provided that the differences in the center of mass position and velocity between the
two atomic species are small. This is only one reason why a good level of control over
the center of mass motion is so important. The atomic motion through distorted
laser wave fronts or in a gravity gradient is responsible for further systematic errors.

It was demonstrated in this work how the COMM can be predicted and system-
atically reduced. The largest contributions to the atomic velocity are the dipole
oscillation within the release trap and the release. It was explained how this os-
cillation amplitude can be minimized. The residual oscillation was used to tune
the initial velocity after release by choosing an appropriate hold time in the trap.
This can become problematic if a different hold time is required by the quadrupole
mode oscillation for magnetic lensing. This was not the case in Q-2, but the initial
velocity after release can just as well be controlled by the release mechanism. For
example, a hard switch-off leads to a motion towards the atom chip and can be
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compensated by a Stern-Gerlach kick. Alternatively, the release can be conducted
in a more controlled manner by ramping down the currents for the trap. The ability
to calculate a control function for the current drivers based on the respective step
response function is important in this respect. In between release and adiabatic
rapid passage, the predominant effects on the atomic velocity are the static mag-
netic field gradient, the transient gradient when switching a coil and a kick by the
lens if it is displaced with respect to the atomic center of mass. These contributions
were investigated and minimized as far as possible.

Owing to this thorough treatment, a residual velocity of 6(9) µm/s was realized
in one spatial direction. The scheme for a reduction of the COMM in the remaining
directions to the same level was discussed and can be realized with Q-2. A further
suppression of this residual motion to a nm/s level is currently limited by slightly
different initial velocities from one shot to another. This velocity scatter applies to
rubidium. The differential velocity of two atomic species can be much lower than
their common motion.

Velocity spread

The key for atom interferometry with a pulse separation time of several seconds
is the realization of ultralow expansion rates of the atomic ensemble. There is a
broad agreement that the necessary velocity spread, which is below 0.1 mm/s, is
not feasible by an adiabatic decompression of the trap if a high flux of atoms shall
be maintained. For comparison, the lowest reported thermodynamic temperature
for rubidium atoms is 350 pK and took several minutes [179]. Still, the velocity
spread is larger than 0.3 mm/s. Lensing the atoms is more efficient. The best
collimation in 2D is equivalent to a kinetic temperature of 50 pK [1]. This could be
realized by a multiple lensing scheme using a combination of a collective excitation
and an optical dipole lens with a total time exceeding 1 s. These authors used the
concept of collective excitations in a different and less controlled way such that no
efficient collimation in the third dimension was possible. The equivalent 3D kinetic
temperature is in the nK regime.

Different experimental realizations of magnetic lensing were demonstrated in this
work. The 3D kinetic temperatures are as low as 378 pK for the SC-BC-lens and
70 pK for the BC-lens, both for a single lens. The latter corresponds to an unprece-
dented velocity spread of 140 µm/s. It is difficult to extract these numbers from
the measured absorption images because of the highly asymmetric clouds. In this
work, a 3D numerical ray tracing simulation was conducted to describe the post-
lens expansion. This simulation exhibits several advantages compared to an analysis
based on fitted TF radii. First of all, the velocity spread can be directly extracted.
Aside from that, the 3D analysis allows for a deeper understanding of the effects.
For example, the strong shear after the SC-BC-lens that led to a compact density
distribution within one camera frame could be quantitatively understood. Another
advantage is the fact that a numerical simulation is not losing any atoms. This is
fundamentally different for the measured density images, because atoms in the high
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energy tail can no longer be detected after some time. The effect is an underesti-
mated expansion rate. This was not properly accounted for in [80] which claims a
kinetic temperature of 50 pK based on the same BC-lens data set.

The performance of a magnetic lens suffers from its anisotropy, which is common to
most neutral atoms traps. It was demonstrated how a quadrupole mode excitation
within the release trap can solve this problem. The mode is excited during the
transport of the BEC from the high frequency trap used for evaporative cooling to
the shallower release trap further away from the atom chip. This could be understood
by a numerical simulation using the variational approach and confirmed by the
measured aspect ratio after release as well as the measured expansion after the
magnetic lens. The only free parameters in this simulation are the number of atoms
and the damping time of the excitation. The phase is predicted correctly. It could
be proven that a varying atom number, which is the experimental reality, only has a
small effect on the mode. The measured expansion rates are close to the optimum for
the used combination of release trap, pre-TOF and lens. Apart from the quadrupole
mode, other types of collective modes exist. They were characterized on the basis
of the actual release trap. It was no coincidence that exactly the quadrupole mode
was the dominant one after the transfer of the BEC, because this mode exhibits the
smallest frequency and is thus the easiest to excite.

Outlook

The minimization of the COMM is conceptually simple: All contributions to the
atomic velocity either have to vanish or sum up to zero. There are at least two
contributions that cannot vanish, that are the kick towards the chip by switching
the lens potential on and off and the kick during the action of the lens due to the
anharmonicity. The latter is directed away from the chip, but is much smaller than
the first effect. This means that this sum has to be either compensated by a small
offset of the lens center with respect to the atoms or the velocity just before the
lens must be adjusted to cancel the overall lens kick. The pre-compensation is to be
preferred, because a shifted anharmonic lens affects the collimation, too. Another
big effect on the COMM is the switching process of the coils. This effect needs to
be studied further because it is limiting the control over the atomic ensemble. The
coil switching cannot be avoided during the free expansion because it is required
for the lens and the adiabatic rapid passage. The additional kick is particularly
bothersome since it is not limited to the z direction, which is easily controlled by
means of the trap switch-off or a Stern-Gerlach kick. Aside from this coil kick, there
is only one more effect of a similar significance and with components in the x and y
directions. It is the acceleration due to the magnetic field gradient in between release
and ARP. A compensation scheme for this effect was proposed in this work: The
ensemble has to be transferred from mF = 2 to mF = −2 after a quarter of the time
and back after three quarters. Indeed, this double passage can be realized using the
standard quantization field and does not require equally strong magnetic field like
the transfer to mF = 0. Hence, it does not involve any additional kicks. Actually,
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another tuning option arises by shifting the time of transfer. The sensitive direction
is that of the magnetic field gradient, which is primarily the x direction. In addition,
this direction can be changed by a different quantization field during the TOF. The
remaining COMM will be small enough such that it can be fully suppressed in three
dimensions by a small adjustment of the lens center with negligible effects on the
collimation.

It was shown in this work that the dominant contribution to the measured atomic
motion after the lens is the residual air drag in the drop tower. Unfortunately, this
effect could be characterized least accurately and thus deserves further attention. A
reasonable improvement would be the implementation of a commercial accelerometer
that is capable of measuring the capsule accelerations to a 1 µg accuracy every
0.1 s. Such sensors are not easy to find and very expensive. Still, the drop tower
operators did offer to provide a suitable accelerometer such that this problem can
be investigated further [197].

A reduction of the velocity scatter would allow for an even more enhanced control
over the COMM. This must be achieved when aiming at ultimate precision measure-
ments. The observed scatter was based on data sets involving several drops. Hence,
it is basically a drop-to-drop scatter with a different temperature of the atom chip,
the vacuum chamber and possibly of the reference resistors in the current drivers.
Space missions exhibit a thermalized experiment in continuous operation. Hence,
the observed velocity scatter can be a drop tower specific problem which is not
limiting a space mission. Still, this particular issue was not addressed so far. For
this reason, there can be a great potential for further improvements within Q-2, for
example by a temperature stabilization or by warm-up measurements.

Q-2 is the first experiment that demonstrated the great potential of collective
excitations for magnetic lensing. The foundations are laid in this work. Still, it is
possible to gain further insight by extensive ground-based measurements. For this
purpose, the free expansion time needs to be prolonged significantly beyond the
standard TOF of 22 ms. This can be realized by a rotation of the entire capsule by
45° such that the atoms are falling along the Detection 1 laser beam. This involves
adjusting the experimental sequence and the detection system, but is straightfor-
ward. In this way, a ground-based TOF exceeding 100 ms is possible, which assures
a good signal to noise ratio in the detection of the collective excitations. This allows
for an extended study of the damping time of the various modes and its depen-
dence on the trap anharmonicity as well as the thermal fraction within the trap.
Furthermore, protocols for a resonant excitation of certain modes can be tested.

The demonstrated post-lens velocity spread of the atomic ensemble is unprece-
dented. Nevertheless, a small improvement is still possible, because the lens is
slightly too strong resulting in a focus after 750 ms. In addition, the amplitude of
the quadrupole mode was insufficient for a perfect collimation in the weak trap di-
rection. An optimized amplitude can reduce the velocity spread by approximately
10 µm/s. The amplitude can be controlled in two different ways. The first one is to
distribute the required change in the x coil current over the transfer time to the re-
lease position. This will lead to a smaller, but cleaner quadrupole mode oscillation.
The amplitude can then be increased by a resonant excitation prior to this transfer.
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A further reduction of the velocity spread is limited by the anharmonicity of the
experimentally viable magnetic potentials, which is responsible for the comet like
tail. If the trap was harmonic, a velocity spread of 33 µm/s equivalent to a kinetic
temperature of only 4 pK would be possible with a matched quadrupole mode. An
increased pre-TOF would then allow for fK kinetic temperatures.

This anharmonicity is a drawback of chip traps. It can be mitigated by using lens
traps even further away from the chip, which are less anharmonic. Without any
modification of the experimental setup the distance to the chip can be doubled. In
addition, only a small part of the atom chip – that is the outer Z structures – is
actually used. A utilization of more structures might allow for more harmonic lens
traps, but this requires either more current drivers or a distribution matrix for them,
because the chip structures are electrically interconnected within the BC and SC.
Yet, this can only mitigate rather than fully solve the tail problem. More advanced
protocols can be developed to compensate for the velocity profile imprinted on the
atoms by the lens potential, for example multiple lensing schemes involving other
Zeeman states. Small modifications of the experimental setup are an alternative,
too. For example, if the magnetic lens is replaced by an optical one, which exhibits
no L3 anharmonicity. An interesting minor change is the implementation of an
auxiliary chip opposite to the atom chip. This can be a single wire in parallel to the
SC-I to reduce the anharmonicity. In addition, it might be possible to engineer a
quantum state, for example a strong breathing mode excitation superimposed with
the quadrupole mode, such that the magnetic lens with its anharmonicity is no
longer necessary. With these strategies, fK kinetic temperatures actually come in
reach. It is important to note that the current limitation is the drop tower rather
than the Q-2 experiment. If it were operated on the ISS, for example, it would
be straightforward to characterize much shallower lens traps. They would, in turn,
allow for shallower release traps, too, because the minimum lens time is limited by
the switching characteristics of the base chip. The corresponding smaller expansion
rate entails a longer pre-TOF to reach the same size, but also requires a smaller
velocity change by the lens. This reduces the tail, too, and can be realized with the
methods described in this work.

The next upgrade of the Q-2 experiment will be the potassium laser system and a
potassium oven. This will allow for dual species atom interferometry. The concept
of collective excitations can be transferred to potassium. A simultaneous quadrupole
mode excitation of both species is expected to be unproblematic. The only disparity
is the different mode frequency, such that it might be required to introduce a certain
hold time in order to optimize the phase for both species.

The STE-QUEST proposal is frequently used as a reference because it aims high.
Even if these requirements are not met completely, precision measurements are still
possible. For example, Q-2 can test the UFF after the potassium upgrade. In
catapult mode, an interferometer time of 2T = 7 s is possible. The systematics
that become important on these time scales were discussed in this work. Besides
this interesting perspective, Q-2 lays the foundations for the remaining two MAIUS
missions and other space missions such as CAL and BEC-CAL on the ISS. The
ability to predict and even to engineer a particular collective excitation of the BEC
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only based on a ground-based characterization is invaluable for all these missions,
especially for MAIUS with its very limited microgravity time. An impact on a
multitude of other experiments testing fundamental effects is conceivable, too. For
example, the quantum reflection of BECs differs from the single particle theory
in the low velocity regime [198]. Furthermore, ultracold atoms can be used to
investigate Anderson localization of matter waves [199]. Aside from that, atom
interferometry is sensitive to general relativistic effects. On the ultimate precision
level, this facilitates a measurement of these effects, for example the Lense-Thirring
effect [200] or gravitational waves, which have been observed recently [201]. The
technologies and methods described in this work also find applications beyond tests
of fundamental physics. For example, the collaborative research center geo-Q is
assembling a cold atom based gravimeter for field applications, which is based on
the same technology as Q-2.
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Appendix A

SC-BC-lens

A.1 Detection 1 view



186 SC-BC-lens: Detection 1 view



SC-BC-lens: Detection 1 view 187



188 SC-BC-lens: Detection 2 view (right cloud)

A.2 Detection 2 view (right cloud)



SC-BC-lens: Detection 2 view (right cloud) 189



Appendix B

BC-lens

B.1 Data set in mF = 2

B.1.1 Detection 1 view



BC-lens (mF = 2): Detection 1 view 191



192 BC-lens (Set B): Detection 1 view

B.2 Data set in mF = 0 (Set B)

B.2.1 Detection 1 view



BC-lens (Set B): Detection 1 view 193



194 BC-lens (Set B): Detection 2 view (left cloud)

B.2.2 Detection 2 view (left cloud)



BC-lens (Set B): Detection 2 view (left cloud) 195



196 BC-lens (Set B): Detection 2 view (right cloud)

B.2.3 Detection 2 view (right cloud)



BC-lens (Set B): Detection 2 view (right cloud) 197



198 BC-lens (Set C): Detection 1 view

B.3 Data set in mF = 0 (Set C)

B.3.1 Detection 1 view



BC-lens (Set C): Detection 1 view 199



Appendix C

Characteristic data

C.1 Rubidium data

Atomic number Z 37
Total nucleons Z +N 87
Atomic mass m 1.443 160 648(72) ⋅ 10−25 kg [92]

Nuclear angular momentum I 3/2
Nuclear g-factor gI −0.000 995 141 4(10) [202]
Fine structure

gJ 2.002 331 13(20) [203]
Landé-factor of 52S1/2

Hyperfine Landé-factor
gF 0.499 836 43(5)

of 52S1/2, F = 2
Ground state hyperfine splitting ∆Ehfs h ⋅ 6 834 682 610.9043 Hz [155]

Linear Zeeman shift
ωL 2π ⋅ 0.69958 MHz/G

(52S1/2, F = 2)

Ground state polarizability α0 h ⋅ 0.0794(16)Hz/(V/cm)2

[92]
Natural linewidth (D2 line) Γ 2π ⋅ 6.0666(18)MHz

Recoil velocity (D2 line) vr 5.8845 mm/s
Saturation intensity (σ+)

Isat 1.669 33(35)mW/cm2

∣F = 2,mF = ±2⟩→ ∣F ′ = 3,mF ′ = ±3⟩
Scattering length a 100a0 [204]

Table C.1: 87Rb Physical Properties
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C.2 Trap frequencies

Trap f⃗chip model = ω⃗/2π (Hz) f⃗measured (Hz) relative error

Evap. cooling (initial)

fx = 21.88 - -

fy = 1099.90 - -

fz = 1104.73 - -

Evap. cooling (final)

fx = 24.43 - -

fy = 456.54 - -

fz = 462.34 - -

Release trap A

fx = 17.48 - -

fy = 61.10 - -

fz = 59.83 fz = 60.4(3) 1.0(5) %

Release trap B

fx = 9.10 - -

fy = 27.87 fy = 28(1) 0(4) %

fz = 24.59 fz = 25.7(3) 5(1) %

Crane tricked trap

fx = 8.33 fx = 8.6(2) 3(2) %

fy = 26.54 fy = 27.2(7) 2(3) %

fz = 23.77 fz = 24.44(4) 3(2) %

BC-lens (1.8 A)

fx = 2.95 - -

fy = 10.83 - -

fz = 10.83 - -

BC-lens (1.828 A)

fx = 2.96 - -

fy = 10.68 - -

fz = 10.66 - -

Table C.2: This table gives an overview of the trap frequencies for the different traps used
in this work. The frequencies simulated by the chip model are compared to experimental
data, where possible. All values refer to microgravity.
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Appendix to ARP

D.1 Derivation of the dressed-state Hamiltonian

In this appendix, the matrix elements of the Schrödinger picture Hamiltonian are
derived. This is done by standard means of quantum mechanics. Similar solutions
can be found elsewhere [205]. For convenience, Eqs. (4.31), (4.32) and (4.35) are
reprinted here

ih̵
∂

∂t
∣Ψ(t)⟩ = [Ĥ0 + Ĥrf(t)] ∣Ψ(t)⟩ ,

Ĥ0 = h̵ (ω
L
F̂z̃ + ωQ

Q̂z̃) ,

Ĥrf(t) = gFµBBrf cos(ωrft)F̂x̃.

For the solution of the Schrödinger equation, the following ansatz is used

∣Ψ(t)⟩ =∑
mF

cmF e
−imFωrft ∣mF ⟩ . (D.1)

First of all, the three terms are solved separately

ih̵
∂

∂t
∣Ψ(t)⟩ = ih̵∑

mF

∂cmF
∂t

e−imFωrft ∣mF ⟩ + h̵ωrf∑
mF

mF cmF e
−imFωrft ∣mF ⟩ ,

Ĥ0 ∣Ψ(t)⟩ = h̵ (ω
L
F̂z̃ + ωQ

Q̂z̃) ∑
mF

cmF e
−imFωrft ∣mF ⟩

= h̵ω
L ∑
mF

cmF e
−imFωrftF̂z̃ ∣mF ⟩ + h̵ωQ ∑

mF

cmF e
−imFωrftQ̂z̃ ∣mF ⟩

= h̵ω
L ∑
mF

cmF e
−imFωrftmF ∣mF ⟩ + h̵ωQ ∑

mF

cmF e
−imFωrftQmF ∣mF ⟩ ,

Ĥrf(t) ∣Ψ(t)⟩ = gFµBBrf cos(ωrft)F̂x̃ ∑
mF

cmF e
−imFωrft ∣mF ⟩

= gFµBBrf
1
2 (eiωrft + e−iωrft) ∑

mF

cmF e
−imFωrft 1

2
(F̂+ + F̂−) ∣mF ⟩ .
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Multiplication of all three equations from the left with ⟨m′
F ∣ yields

⟨m′
F ∣ih̵

∂
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∂t e−imFωrft ⟨m′

F ∣mF ⟩ + h̵ωrf ∑
mF

mF cmF e
−imFωrft ⟨m′

F ∣mF ⟩

= ih̵
∂cm′

F

∂t e−im
′
Fωrftδm′

FmF
+ h̵ωrfm′

F cm′
F
e−im

′
Fωrftδm′

FmF
,

⟨m′
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4
gFµBBrf (eiωrft + e−iωrft)∑

mF

cmF e
−imFωrft ⟨m′

F ∣F̂+ + F̂−∣mF ⟩

= 1
4gFµBBrf (eiωrft + e−iωrft)∑

±

cm′
F∓1e−i(m

′
F∓1)ωrft ⟨m′

F ∣F̂±∣m′
F ∓ 1⟩

= 1
4gFµBBrf (eiωrft + e−iωrft)

⋅∑
±

cm′
F∓1e−i(m

′
F∓1)ωrft

√
F (F + 1) − (m′

F ∓ 1)((m′
F ∓ 1) ± 1) δm′

FmF ∓1

= 1
4gFµBBrf (eiωrft + e−iωrft) ⋅∑

±

cm′
F∓1e−i(m

′
F∓1)ωrft

√
6 − (m′

F ∓ 1)m′
F δm′

FmF ∓1,

with the Kronecker delta δm′
FmF

. Putting all three partial equations together

[⟨m′
F ∣ih̵

∂
∂tΨ(t)⟩ = ⟨m′

F ∣Ĥ0 + Ĥrf(t)∣Ψ(t)⟩]

ih̵
∂cm′

F

∂t e−im
′
Fωrft δm′

FmF
= h̵(ω

L
− ωrf)m′

F cm′
F
e−im

′
Fωrft δm′

FmF

+h̵ω
Q
cm′

F
e−im

′
FωrftQm′

F
δm′

FmF
+ 1

4gFµBBrf (eiωrft + e−iωrft)

⋅∑
±

cm′
F∓1e−i(m

′
F∓1)ωrft

√
6 − (m′

F ∓ 1)m′
F δm′

FmF ∓1 ,

multiplying with eim
′
Fωrft and substituting the identities ∆r = ωrf − ωL

and h̵Ωr =
gFµBBrf results in

ih̵
∂cm′

F

∂t δm′
FmF

= −h̵∆rm′
F cm′

F
δm′

FmF
+ h̵ω

Q
cm′

F
Qm′

F
δm′

FmF

+ 1
4 h̵Ωr (eiωrft + e−iωrft) ⋅∑

±

cm′
F∓1e±iωrft

√
6 − (m′

F ∓ 1)m′
F δm′

FmF ∓1

= h̵ (ω
Q
Qm′

F
−∆rm′

F ) cm′
F
δm′

FmF

+ 1
4 h̵Ωr ⋅∑

±

cm′
F∓1 (1 + e±2iωrft)

√
6 − (m′

F ∓ 1)m′
F δm′

FmF ∓1

≈ h̵ (ω
Q
Qm′

F
−∆rm′

F ) cm′
F
δm′

FmF

+ 1
4 h̵Ωr ⋅∑

±

cm′
F∓1

√
6 − (m′

F ∓ 1)m′
F δm′

FmF ∓1,
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where the terms with e±2iωrft have been neglected (rotating wave approximation).

The time dependence is eliminated by the Ansatz cm′
F
= c̃m′

F
e
−iEm′

F
t/h̵

Em′
F
c̃m′

F
δm′

FmF
= h̵ (ω

Q
Qm′

F
−∆rm′

F ) c̃m′
F
δm′

FmF

+ 1
4 h̵Ωr ⋅∑

±

c̃m′
F∓1

√
6 − (m′

F ∓ 1)m′
F δm′

FmF ∓1.

Applying the relation QmF = 1 − (mF2 )2 the possible values of QmF are Q±2 = 0,
Q±1 = 3

4 and Q0 = 1. Hence the nonzero matrix elements are

⟨±2∣Ĥ ∣ ± 2⟩ = h̵ (ω
Q
Q2 ∓ 2∆r) = ∓2h̵∆r,

⟨±1∣Ĥ ∣ ± 1⟩ = h̵ (ω
Q
Q1 ∓ 1∆r) = h̵(3

4ωQ
∓∆r),

⟨0∣Ĥ ∣0⟩ = h̵ (ω
Q
Q0 + 0∆r) = h̵ω

Q
,

⟨2∣Ĥ ∣1⟩ = h̵Ωr

4

√
6 − (2 − 1)(2) = h̵Ωr

4

√
6 − 2 = 1

2 h̵Ωr,

⟨1∣Ĥ ∣2⟩ = h̵Ωr

4

√
6 − (1 + 1)(1) = h̵Ωr

4

√
6 − 2 = 1

2 h̵Ωr,

⟨1∣Ĥ ∣0⟩ = h̵Ωr

4

√
6 − (1 − 1)(1) = h̵Ωr

4

√
6 =

√
3
8 h̵Ωr,

⟨0∣Ĥ ∣1⟩ = h̵Ωr

4

√
6 − (0 + 1)(0) = h̵Ωr

4

√
6 =

√
3
8 h̵Ωr,

⟨0∣Ĥ ∣ − 1⟩ = h̵Ωr

4

√
6 − (0 − 1)(0) = h̵Ωr

4

√
6 =

√
3
8 h̵Ωr,

⟨−1∣Ĥ ∣0⟩ = h̵Ωr

4

√
6 − (−1 + 1)(−1) = h̵Ωr

4

√
6 =

√
3
8 h̵Ωr,

⟨−1∣Ĥ ∣ − 2⟩ = h̵Ωr

4

√
6 − (−1 − 1)(−1) = h̵Ωr

4

√
6 − 2 = 1

2 h̵Ωr,

⟨−2∣Ĥ ∣ − 1⟩ = h̵Ωr

4

√
6 − (−2 + 1)(−2) = h̵Ωr

4

√
6 − 2 = 1

2 h̵Ωr.

The respective second lines could also be derived directly from the Hermitian con-

jugate of the previous (transposed) one, for example, ⟨1∣Ĥ ∣2⟩ = ⟨2∣Ĥ ∣1⟩
†
= 1

2 h̵Ω∗
r =

1
2 h̵Ωr. (Rabi frequency is real in the chosen coordinate system.) Choosing the basis

∣2⟩ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟
⎠

, . . . ∣−2⟩ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0
0
0
0
1

⎞
⎟⎟⎟⎟⎟⎟
⎠

, (D.2)



4.1 Derivation of the dressed-state Hamiltonian 205

the corresponding matrix representation of Ĥ is

H = h̵

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−2∆r
1
2Ωr 0 0 0

1
2Ωr

3
4ωQ

−∆r

√
3
8Ωr 0 0

0
√

3
8Ωr ω

Q

√
3
8Ωr 0

0 0
√

3
8Ωr

3
4ωQ

+∆r
1
2Ωr

0 0 0 1
2Ωr 2∆r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (D.3)
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D.2 Power series of systematic shifts

The deviation of the resonance frequencies from the unperturbed values (at Ωr = 0)
can be approximated by

∆error(x) = 2π ⋅ 1000 ⋅ (a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7 + a8x
8) ⋅B2.

Also, the Rabi frequency of the two crossings mF = 2 ↔ 1 and mF = 1 ↔ 0 can be
described by a similar power series

Ωi,j(x) = 2π ⋅ 1000 ⋅ (b1x + b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6 + b7x

7 + b8x
8) .

The corresponding coefficients are printed in the table below.

∆2,1 +3/4ωQ ∆1,0 +1/4ωQ Ω2,1 Ω1,0

a1 −0.007 273 3 0.000 690 2 b1 1
√

3/2
a2 −2.2022 −1.0519 b2 0.062 879 −0.027 461
a3 −7.9043 9.5271 b3 −12.9951 −16.295
a4 367.7681 −38.7487 b4 89.5151 −73.137
a5 −3028.5316 0 b5 −338.0677 1534.4766
a6 12 041.2347 0 b6 753.2573 −6900.2602
a7 −23 980.4269 0 b7 −922.799 10 480.542
a8 19 242.2217 0 b8 477.0381 0

Table D.1: Coefficients of powers series expansions. The coefficient’s dimensions are
[an] = (G2/kHz)n−1 and [bn] = G2n/kHzn−1 with [x] = kHz/G2 and [B] = G2. The valid
range is 0 ≤ x ≤ 0.175 kHz/G2.

The same coefficients are also valid for the crossingsmF = −2↔ −1 andmF = −1↔ 0,
but with a change of sign for ∆error.

D.3 ARP code

The solutions obtained from Eq. (4.45) are equivalent to numerical solutions of
the time dependent Schrödinger equation. However, the latter require considerably
more computation time. Furthermore, this time scales with τ , whereas the time so
solve Eq. (4.45) is independent of τ . The data shown in Fig. 4.19 were computed
on a 3000 × 5000 grid on twelve parallel cores on a computing cluster within 30
hours, equivalent to 7.3 ms/point. In principle, it could be done on a state of the
art personal computer, too. In contrast, solving the time dependent Schrödinger
equation takes 2.5 s/point using Runge Kutta (4th order) and a step size of 10 ns
(for τ = 9 ms). The same job would have taken two weeks with that scheme on the
computing cluster. The software package is provided under the following link:
https://www.dropbox.com/s/i8oemj7q3uv8dcw/simulations.7z?dl=0

https://www.dropbox.com/s/i8oemj7q3uv8dcw/simulations.7z?dl=0
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Glossary

atom chip Three layers of conducting structures for magnetic trapping of rubidium
atoms. The chip comprises mesoscopic wires, the BC and the SC.

crane trick Protocol for the suppression of a residual dipole oscillation in the mag-
netic trap, reminiscent of quickly moving a load suspended by a rope on a
crane.

pre-TOF Time between release and beginning of the magnetic lens.

release position A/B The release positions corresponding to release traps A and
B, that are 812 µm and 1476 µm away from the atom chip, respectively.

release trap A/B These are the two specific release traps used for all measure-
ments presented in this work. The two traps differ in their trap frequencies
and in the trap position. The respective positions are called release position
A/B.

T-Bus Communication bus for the T-Stack.

T-Stack Electronics stack for the laser system.

TOF Time between end of magnetic lens and detection. If no lens is applied, the
TOF is the time between release and detection.

velocity spread A measure for the spreading of an atomic ensemble defined as the
root mean square velocity of the velocity distribution, which exhibits a zero
mean velocity.



Acronyms

1D one dimensional.

2D two dimensional.

3D three dimensional.

AOM acousto-optical modulator.

ARP adiabatic rapid passage.

AWG arbitrary waveform generator.

BC base chip.

BEC Bose-Einstein condensate.

BEC-CAL BEC Cold Atom Lab.

BM breathing mode.

BMS battery management system.

CAL Cold Atom Lab.

CCS capsule control system.

cMOT compressed magneto-optical trap.

COM center of mass.

COMM center of mass motion.

EEP Einstein’s equivalence principle.

FEM finite element method.

FPGA field programmable gate array.

HF HighFinesse.



230 Acronyms

ICE Interférometrie atomique à sources Cohérentes pour l’Espace.

IMU inertial measurement unit.

IP Ioffe-Pritchard.

IR impulse response.

ISS International Space Station.

MAIUS MAteriewellen Interferometrie Unter Schwerelosigkeit.

MO master oscillator.

MOPA master oscillator power amplifier.

MOT magneto-optical trap.

NI National Instruments.

NMR nuclear magnetic resonance.

PA power amplifier.

PSD power spectral density.

Q-1 QUANTUS-1 experiment.

Q-2 QUANTUS-2 experiment (this work).

QM quadrupole mode.

QUANTUS QUANTengase Unter Schwerelosigkeit.

rf radio frequency.

RQ radial quadrupole.

SC science chip.

SG Stern-Gerlach.

SM scissors mode.

SOC state of charge.

SR step response.

STA shortcut to adiabaticity.

STE-QUEST Space-Time Explorer and QUantum Equivalence principle Space
Test.
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TEC thermoelectric cooler.

TF Thomas-Fermi.

TOF time of flight.

TRL technology readiness level.

UFF universality of free fall.

ZARM Center of Applied Space Technology and Microgravity.
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