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Zusammenfassung 

 
 
 
Auf der Grundlage der Auffassung, dass jede kognitive Leistung und alle bewussten wie unbewussten 
psychischen Prozesse des Menschen auf raumzeitlich organisierter elektrischer Hirnaktivität beruhen, 
versucht diese Arbeit, grundlegende Prinzipien in der Organisation multineuronaler Aktivitätsmuster 
aufzudecken und zu kognitiven Vorgängen und Funktionen in eine theoretische Beziehung zu setzen. 
Gegenstand der Betrachtungen ist die raumzeitliche Koordination neuronaler Aktionspotentiale, genauer 
die Voraussetzungen und Mechanismen für die Entstehung sich wiederholender Erregungsmuster sowie 
ihre raumzeitliche Ausprägung als potentielle Bestandteile eines neuronalen Codes zur Darstellung und 
Verarbeitung von Information. 

Kapitel I gibt einen kurzen Abriss über klassische Konzepte neuronaler Codierung und diskutiert 
Argumente für oder gegen verschiedene Theorien zur neuronalen Repräsentation kognitiver Inhalte. 
Anhand umfangreicher experimenteller Befunde und einer Reihe theoretischer Überlegungen wird 
dargelegt, dass einzelne kognitive Inhalte (wie die Wahrnehmung eines Objekts, die Planung einer 
Bewegung oder ein einzelner Gedanke) kaum durch die Aktivität einer einzelnen Zelle darstellbar sind, 
sondern durch die koordinierte Aktivität einer Gruppe von Zellen repräsentiert werden, dass die von 
einem Aktionspotential übermittelte Information von seinem genauen Timing im Verhältnis zu anderen 
Signalen abhängt, und dass synchrone neuronale Oszillationen in Abhängigkeit kognitiver Prozesse das 
Auftreten und die Weiterleitung neuronaler Signale im Netzwerk beeinflussen und so konstitutiv zur 
Gestaltung multineuronaler Erregungsmuster beitragen. 

Ausgehend von diesen Erkenntnissen ergeben sich im Hinblick auf die gezielte Koordination räumlich 
verteilter Aktionspotentiale Fragen zu den relevanten Zeitskalen und den zugrundeliegenden neuronalen 
Mechanismen. So wird seit langem darüber diskutiert, in welchen Zeitfenstern und mit welcher zeitlichen 
Präzision neuronale Signale aufeinander abgestimmt sind, und welche Rolle neuronalen Oszillationen bei 
der selektiven Synchronisation von Gruppen von Zellen zukommt. Die vorliegende Arbeit bietet zu 
diesen Fragen einen experimentellen Zugang, indem sie die Dynamik multineuronaler Erregungsmuster 
in Hirnschnitten untersucht, in denen das Auftreten synchroner Netzwerk-Oszillationen ausgeschlossen 
werden kann, ohne die Erregbarkeit von Zellen oder die Funktion von Transmitter-Rezeptoren beeinflus-
sen zu müssen. Zu diesem Zweck ist ein spezieller Messplatz entwickelt worden, der es ermöglicht, unter 
pharmakologischer Kontrolle die elektrische Aktivität lokaler Zellpopulationen innerhalb des Hirnschnitts 
mit Hilfe einer Elektroden-Matrix parallel abzuleiten. Ziel war es, die beobachteten Aktivitätsmuster auf 
verschiedenen Zeitskalen zu analysieren und so zu einer umfassenden Beschreibung der raumzeitlichen 
Organisation lokaler Erregungsmuster zu gelangen. 

Um beurteilen zu können, ob die erfassten Muster zufällig aufgetreten sind oder statistisch signifikante 
Strukturen aufweisen, ist eine neue Methode für das Auffinden signifikanter, sich wiederholender Muster 
in parallelen Zeitreihen entwickelt worden, die keinerlei Annahmen über die statistischen Eigenschaften 
der untersuchten Daten macht und sowohl umschriebene raumzeitliche Muster als auch die zeitliche 
Abfolge dieser Muster analysiert. Kapitel II stellt diese Methode vor, evaluiert mittels simulierter Daten 
ihr Leistungsvermögen und vergleicht sie mit ähnlichen Methoden, deren Limitierungen sie größtenteils 
aufhebt: So bedient sie sich eines flexiblen und effizienten Suchalgorithmus, der sich wiederholende 
Muster findet, ohne eine spezielle Struktur der Muster vorauszusetzen, und umgeht das Problem der 
kombinatorischen Explosion in der Mustersuche durch eine zeitaufgelöste, heuristische Analyse der 
Korrelationen zwischen den jeweils an einem Muster beteiligten Zellen. Die von zufälligen Mustern 
ausgehende Nullhypothese wird durch einen neuen Typ von Surrogat-Daten dargestellt, der sich wie 
bisher beschriebene Typen auch aus den originalen Daten ableitet und selektiv deren Struktur unterhalb 
einer bestimmten Zeitskala randomisiert, dessen Teststärke sich jedoch als vorteilhaft erwiesen hat. Die 
Zuhilfenahme von Monte-Carlo-Simulationen und der Verzicht auf ein analytisches Modell der Null-
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hypothese vermeidet den Fluch der Dimensionalität, der parametrischen Methoden zur statistischen 
Validierung hochdimensionaler Muster unweigerlich anhaftet. Signifikante Muster werden kontinuierlich 
registriert und ermöglichen so eine Korrelation mit experimentellen Faktoren mit einer nur durch die 
Samplingrate der Signale begrenzten Zeitauflösung. 

Kapitel III berichtet von der Durchführung paralleler Messungen multineuronaler Erregungsmuster in 
Hirnschnitten ohne rhythmische Netzwerk-Aktivität und zeigt die Ergebnisse der Analyse der Muster 
nach der in Kapitel II beschriebenen Methode. Der Fokus dieser Arbeit lag dabei auf der Großhirnrinde 
(Neocortex) als dem Teil des Gehirns, dem die meisten höheren kognitiven Funktionen zugeschrieben 
werden. Als Modell diente der visuelle Cortex der Ratte, dessen anatomische Architektur in weiten Teilen 
derjenigen anderer corticaler Areale auch in anderen Säugetierhirnen einschließlich dem des Menschen 
entspricht, was eine Übertragbarkeit der Ergebnisse nahelegt. Diese zeichnen ein differenziertes Bild 
neocorticaler Dynamik: Obwohl multineuronale Feuermuster in Zeitfenstern von bis zu 50 ms registriert 
wurden, wiesen signifikante Muster typischerweise eine Dauer von weniger als 5 ms auf. Bemerkenswert 
hieran ist, dass die Dauer der Muster nicht mit der Entfernung der beteiligten Zellen korrelierte, was 
bedeutet, dass sich auch weit auseinander liegende, unverbundene Zellen, die keinen gemeinsamen Input 
erhalten, ohne rhythmische Netzwerk-Aktivität gezielt synchronisieren können. Die relative zeitliche 
Präzision der an den Mustern beteiligten Signale betrug dabei im Median ~ 0.58 ms. Außerdem bildeten 
aufeinanderfolgende Gruppen synchron aktiver Zellen sich überzufällig oft wiederholende Sequenzen, die 
mehrere Sekunden lang sein konnten und sich durch eine zeitliche Präzision im Timing der Gruppen von 
durchschnittlich ~ 25.13 ms auszeichneten. Diese Sequenzen stimmen also nicht mit dem Konzept von 
"synfire chains" überein, das von einem wesentlich präziseren Timing ausgeht, sondern eher mit dem von 
Hebb'schen "phase sequences". Sowohl synchrone Feuermuster als auch längere Sequenzen koordinierter 
Aktivität reflektierten bekannte synaptische Schaltkreise und zeigten eine ausgeprägte Abhängigkeit vom 
neuromodulatorischen Zustand des Hirnschnitts. 

In Kapitel IV wird versucht, anhand dieser Befunde die in Kapitel I erörterten Konzepte neuronaler 
Informationsverarbeitung und Codierung zu verfeinern und die sich daraus ergebenden Konsequenzen in 
einen allgemeinen neurokognitiven Kontext einzubetten. Um die beobachtete Synchronisation räumlich 
verteilter Zellen zu erklären, wird folgende Hypothese formuliert: Neurone, die durch eine wiederholte 
Abfolge von synaptischen Eingangssignalen überschwellig erregt werden, können durch Anpassung der 
Effizienz der beteiligten Synapsen lernen, auf die ersten Signale in der Abfolge zu antworten. Solche 
Zellen, für die die ersten Signale einer wiederholten Serie von Eingängen auf den gleichen Zeitpunkt 
fallen, würden dann in der Folge synchron aktiv sein, sobald sie die entsprechenden Eingangssignale 
empfangen. Die Hypothese trifft mehrere Vorhersagen: Erstens wäre es unerheblich, in welchen 
Schaltkreisen sich die Zellen befinden und woher ihre Eingangssignale kommen, solange diese Signale 
zusammen auftreten, zweitens sollten sich wiederholende raumzeitliche Erregungsmuster mit der Zeit 
komprimiert werden, bis alle oder ein Teil der Signale synchronisiert sind, und drittens sollte diese 
Kompression mit einer Verringerung der Anzahl der beteiligten Signale einhergehen. Am Ende stünde 
eine selektive Gruppe von Zellen, die auf ein bekanntes Ereignis innerhalb weniger Millisekunden mit 
dem synchronen Feuern von Aktionspotentialen antworten würden. Ein somit erlerntes Antwortmuster 
wäre zusätzlich modulierbar durch synchrone Netzwerk-Oszillationen, die für die synaptische Integration 
verteilter Signale einen flexiblen, raumzeitlichen Kontext bilden. Es wird erläutert, dass Oszillationen im 
Membranpotential einer Zelle nur in bestimmten Fällen dazu geeignet sind, das Timing ausgehender 
Aktionspotentiale zu beeinflussen, und in allen anderen Fällen schlicht darüber entscheiden, ob zu einem 
gegebenen Zeitpunkt die Zelle überschwellig depolarisiert werden kann oder nicht. 

Schließlich wird über die potentiellen kognitiven Funktionen synchron aktiver Zellgruppen sowie 
längerer sich wiederholender Sequenzen koordinierter multineuronaler Aktivität spekuliert. Das von 
Chalmers formulierte und aus der Not des "hard problem of consciousness" heraus geborene "principle of 
structural coherence" wird adoptiert und führt zu der Vermutung, dass die kurzzeitige Synchronisation 
einer selektiven Gruppe von Zellen einem sinnstiftenden Übergang von einem kognitiven Zustand in 
einen anderen entspricht, wobei sich zuvor getrennte Aspekte einer sinnvoll erscheinenden Information zu 
einem einheitlichen Erleben zusammenfinden, so wie bei der Wahrnehmung eines Objekts, dem Treffen 
einer Entscheidung oder dem Bewußtwerden eines Gedankens. In Verbindung mit längeren Sequenzen 
neuronaler Aktivität wird das Problem der sinnvollen Verknüpfung zweier aufeinanderfolgender 
Zustände oder Gedanken bei gleichzeitiger Flexibilität des Gedankenganges diskutiert. Das klassische 
Modell Hebb'scher "phase sequences" trägt dieser Problematik Rechnung und wird durch die hier 
gefundene Dynamik neocorticaler Aktivitätsmuster gestützt. 
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Summary 

 
 
 
Based on the assumption that all mental activity and all conscious and unconscious cognitive processes 
rely on spatially and temporally organized electrical brain activity, this work tries to uncover fundamental 
principles in the organization of multineuronal activity patterns and to relate them to cognitive processes 
and functions in a theoretical way. Subject of investigation is the spatiotemporal coordination of neuronal 
action potentials, or more specifically, the preconditions and mechanisms for the emergence of repeating 
discharge patterns and their spatiotemporal appearance as potential constituents of a neuronal code for the 
representation and processing of information. 

Chapter I provides a brief account of classical concepts of neuronal coding and discusses arguments in 
favor or against different theories about the neural representation of cognitive contents. Referring to a 
large number of experimental findings and several theoretical considerations, it is argued that individual 
cognitive contents (like the perception of an object, the planning of a coordinated movement sequence or 
a single idea) can hardly be represented by the activity of a single cell, but require the coordinated activity 
of a group of cells, that the information that is conveyed by a single action potential depends on its 
precise timing relative to other signals, and that synchronous neuronal oscillations control the propagation 
of neuronal signals in the network in accord with cognitive processes and thus contribute in a constitutive 
way to the formation of multineuronal discharge patterns. 

Building on these insights, several questions arise with respect to a directed coordination of distributed 
discharges regarding relevant timescales and the underlying neuronal mechanisms. In particular, it has 
been asked in which time windows and with which temporal precision neuronal signals could possibly be 
coordinated, and which role neuronal oscillations precisely play in the selective synchronization of groups 
of cells. The work at hand provides an experimental approach to these questions by investigating the 
dynamics of multineuronal discharge patterns in brain slices, in which synchronous network oscillations 
can be ruled out without the need to interfere with the excitability of cells or the functioning of transmitter 
receptors. For this purpose, a special recording setup has been designed to record the electrical activity of 
local cell populations inside the brain slice in a parallel fashion by means of a multielectrode array while 
having full pharmacological control. It was intended to analyze the observed activity patterns on various 
timescales to achieve a comprehensive description of the spatiotemporal organization of locally confined 
multineuronal discharge patterns. 

To assess if the recorded patterns occurred by chance or if they show any significant structure, a new 
method for the detection of statistically significant repeating patterns in parallel time series has been 
developed that makes no assumptions about the statistical properties of the data and examines both 
circumscribed spatiotemporal patterns and sequences of these patterns. Chapter II introduces this method, 
evaluates its performance by making use of simulated data and compares it to similar approaches, whose 
limitations are largely resolved: It employs a flexible and efficient search algorithm that finds repeating 
patterns without implying any particular structure of the patterns, and circumvents the problem of the 
combinatorial explosion in the pattern search through a time-resolved heuristic analysis of the correlations 
between the cells that participate in a given pattern. Assuming random patterns, the null hypothesis is 
represented by a new type of surrogate data that, like other types, derives directly from the original data 
and randomizes its temporal structure below a certain timescale, but which has superior test power. The 
use of Monte-Carlo simulations instead of an analytical model of the null hypothesis avoids the curse of 
dimensionality inherent in any parametric method for the statistical validation of high-dimensional 
patterns. Significant patterns are registered in a continuous fashion and thus allow for a correlation with 
experimental factors and conditions with a temporal resolution that is limited only by the sampling rate of 
the investigated signals. 
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Chapter III reports on parallel recordings of multineuronal discharge patterns in brain slices exhibiting no 
rhythmic network activity and shows the results of the analysis of the patterns using the method described 
in Chapter II. Since most higher cognitive functions are attributed to the neocortex, it is the chosen 
structure of interest. Its anatomical architecture is largely preserved across brain areas and mammalian 
species, so that one can hope to gain some general insights into cortical neuronal information processing 
and coding by investigating a specific area in a certain animal. Here, the visual cortex of the rat served as 
a model system. The results portray a differentiated picture of neocortical dynamics: Although multi-
neuronal firing patterns had been registered in time windows of up to 50 ms, significant patterns typically 
had durations of less than 5 ms. Importantly, the durations of the patterns were not correlated with the 
spatial distance between the participating cells, which means that even widely distributed neurons that are 
unlikely to be directly connected or to receive common input and are not synchronized by network 
oscillations may align their firing on the timescale of milliseconds. The median temporal precision of the 
signals that were contributing to the patterns was ~ 0.58 ms. In addition, groups of cells activated in direct 
succession were organized to a significant degree into repeating sequences that could have durations of 
several seconds. The median temporal precision of the relative timing of the successively active groups 
was ~ 25.13 ms. Thus, these sequences do not conform to the concept of "synfire chains", but rather 
resemble Hebbian "phase sequences". Synchronous firing patterns and longer sequences of coordinated 
activity reflected the synaptic circuitry and strongly depended on the neuromodulatory state of the cortical 
slice. 

Based on these findings, Chapter IV tries to refine the concepts of neuronal information processing and 
coding that have been discussed in Chapter I and to incorporate the resultant consequences into a general 
neurocognitive framework. To explain the observed synchronization of spatially distributed cells, the 
following hypothesis is proposed: Neurons that are excited by a repeated sequence of synaptic inputs may 
learn to selectively respond to the very first signals of the sequence by adaptations of the efficiency of the 
involved synapses. Those cells that receive the first signals of a repeated sequence of synaptic inputs at 
the same point in time would then be active together. The hypothesis makes several predictions: First, the 
position of the cells in the network as well as the source of their input signals would be irrelevant as long 
as the signals arrive at the same point in time; second, repeating spatiotemporal discharge patterns should 
get more and more compressed until all or some part of the signals are synchronized; and third, this 
compression should be accompanied by a sparsening of the involved signals. In this way, selective groups 
of cells could emerge that would respond to some known event with synchronous action potential firing. 
Such a learned response pattern could further be modulated by synchronous network oscillations that 
provide a flexible, spatiotemporal context for the synaptic integration of distributed signals. It is argued 
that oscillations of a cell's membrane potential may influence the timing of action potentials only under 
certain conditions; if these conditions are not met, membrane potential oscillations act more like a logic 
gate determining whether a cell can be depolarized above threshold at a given point in time or not. 

Finally, some speculations about potential cognitive functions of synchronously active cell groups and 
long repeating sequences of coordinated multineuronal activity are presented. The "principle of structural 
coherence", suggested by Chalmers as a resort from the "hard problem of consciousness", is adopted and 
leads to the conjecture that the transient synchronization of a selective group of cells corresponds to a 
meaningful transition from one cognitive state to another, while previously separate aspects of some 
seemingly meaningful information combine to give way to a holistic experience, like perceiving an 
object, reaching a decision, or becoming aware of some thought or idea. The problem of how to maintain 
meaning in the succession of states or thoughts while preserving flexibility of the mind is discussed in 
connection with the sequential coordination of neuronal activity. The classical model of Hebbian "phase 
sequences" accommodates this problem and is corroborated by the found dynamics of neocortical activity 
patterns. 
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Prologue 

 
 
“Imagine suddenly entering a dreamlike plane where 

the usual laws of information derived from perception 

seem not applicable. Your eyes are the quickest to 

adapt and yield the first impression: Sweat drips on 

four screaming cellos as their players, a quartet of 

concentrated young men, headbang in digital unison. 

As your senses are ripped open to absorb this primal 

and somewhat scary atmosphere, you hear the harsh 

sound of bows striking tortured strings. After penetrat-

ing your skull the decibel storm of raucous riffs and 

blistering glissandos starts rearranging the synapses in 

your brain. […]” 
 
E. Toppinen (2000). Cult, Mercury Records. 

 
 
The grand challenge 
 
The human mind in all its facets, varying from sense to 
sensibility, subconscious processes to conscious aware-
nesses and subjective experience to collective cogni-
tion through social interactions, is truly one of the most 
complicated and complex things we may try to under-
stand. Step into the above scene: 

You are watching four men playing music on their 
cellos. While your senses are attuning to the scenery, 
various details of different modality enter your mind 
and are cognitively bound to a holistic percept full of 
emotional content. In our present understanding, this 
percept is by no means a simple blueprint of reality, 
rather reflecting an idea of it emanating from the inter-
play of the incoming information with the observer’s 
internal state. All sensory input is interpreted in the 
light of preexisting conceptions and its meaning is 
attributed accordingly. As a consequence, we cannot 
perceive what we cannot imagine. We can, however, 
call into consciousness anything we may think of pure-
ly by imagination, be it memories of past events or 
sheer fantasy – as is directly demonstrated here. Fol-
lowing a few informative sentences, the reader is left 
with a vivid impression of the whole scene. The words 
used in the description are functioning as abstract sym-
bols that are associated with certain prelearned mean-
ings. From this perspective, language and the inner 
structure of cognitive conceptions are intimately relat-
ed. 

Besides perception, action is another aspect of hu-
man cognition that is illustrated in this sequence. The 
four cello players are engaged in a concerted exercise 
that is highly temporally structured. In order to suc-
ceed, they need to continuously align their playing with 

a multitude of acoustic signals on different timescales 
and act in a precisely timed manner. Moreover, the task 
requires full attention. If they lose concentration, they 
will fail. 

Of course, these examples do by far not cover the 
whole variety of psychological phenomena, but they 
are well suited to exemplify some of the most funda-
mental questions in the cognitive sciences: How do 
sensory stimuli that are distributed in space and time 
and across modalities converge towards coherent per-
ceptions? How do we create mental images from ab-
stract symbols or pure imagination? How are our cog-
nitive conceptions shaped by learning? How do we 
coordinate our actions in time? How do attention and 
expectancy control our conscious awarenesses? And 
finally, how does consciousness come about, and how 
do we reach perceptual and other decisions? The work 
at hand does not address any of these issues directly, 
but focuses on the underlying neural function. A con-
cise rationale for this approach has been given by Hebb 
a long time ago (Hebb 1949, pp. XIII–XIV): “Modern 
psychology takes completely for granted that behavior 
and neural function are perfectly correlated, that one is 
completely caused by the other. There is no separate 
soul or lifeforce to stick a finger into the brain now and 
then and make neural cells do what they would not 
otherwise. […] One cannot logically be a determinist 
in physics and chemistry and biology, and a mystic in 
psychology. […] If one is to be consistent, there is no 
room here for a mysterious agent that is defined as not 
physical and yet has physical effects […] “Mind” can 
only be regarded, for scientific purposes, as the activity 
of the brain, and this should be mystery enough for 
anyone“. 

Two things need to be clarified in this context. First, 
the notion of a deterministic brain perfectly agrees with 
the observation that precisely predicting neural activity 
is hardly possible, for the same reason as chaos is not 
based on random processes. While the Heisenberg 
uncertainty principle applies to particles, uncertainty in 
an antideterministic sense may not apply to the organi-
zational levels that constitute brain function23,36 (this 
statement will later be refined). Second, back in 1949, 
psychology was still largely dominated by behavior-
ism, which is supposedly why Hebb was using the term 
“behavior” in contrast to cognition in a broader sense. 
Strictly following a stimulus-response paradigm, the 
behavioristic approach confined itself to the study of 
observable and quantifiable aspects of behavior and 
deliberately ignored subjective mental phenomena 
because of a suspicious “smell of animism” associated 
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with them. Striving to avoid assumptions about any 
kind of interaction between mind and behavior, it lies 
at the very heart of behaviorism to mistrust the many 
degrees of freedom that internal variables would inevi-
tably add to the stimulus-response regime. Hebb, how-
ever, explicitly wanted to include “central processes” 
in his neuropsychological theory and to overcome the 
need for assuming a mysterious interdependence be-
tween an immaterial mind and neural signal transmis-
sion by directly relating volition, motivation, emotion 
and the like to neural activity55. The grand challenge 
that Hebb was facing and that we are still concerned 
with today would hence be to develop a comprehensive 
cognitive theory that is physiologically intelligible, or 
equivalently, to arrive at an interpretation of neural 
activity that consistently explains various aspects of 
cognition. This thesis intends to advance this undertak-
ing by trying to elucidate organizational principles of 
neuronal activity in the brain and to integrate them into 
a suitable neurocognitive framework that is open to all 
sorts of cognitive processes, without concentrating on a 
single one. 

Admittedly, “understanding the brain entails know-
ing about thousands of brain structures, billions of 
constituent neurons, exquisitely complex patterns of 
connectivity, and sophisticated computations mediated 
by synaptic inputs and spike trains that in turn rely on 
intricate molecular signaling cascades”, as Van Essen 
framed it507. How can one begin to conceptualize an 
information processing system of this complexity? The 
general idea of brain functioning as we see it today 
supposes that discrete cognitive contents correspond to 
circumscribed spatiotemporal activity patterns in the 
brain, nested into each other on several spatial and 
temporal scales. These transient activity patterns are 
embedded in the functional architecture of the neural 
network and are shaped by external and internal factors 
alike. Because neurons are plastic and change the 
properties of their cellular components in response to 
activity124, synaptic strengths and neural connections 
are continually being modified, revealing a conceptual 
interchangeability of structure and function. Just as we 
cannot step into the same river twice, the dynamic 
process of the brain’s functional organization is unidi-
rectional and constantly maps new information onto 
the existing structure. The resulting neuronal connec-
tivity resembles a distributed meshwork that is charac-
terized by massive feedback and interactivity. 

Inasmuch as the brain’s architecture is inherently 
flexible, reflexive and adaptable, it is capable to self-
organize and gives rise to highly nonlinear dynamics 
that cannot be understood from individual cells alone 
456. Their operations are collaborative and creative and 
readily lead to the emergence of unforeseeable new 
patterns of activity. By rearranging subpatterns and 
their elements on any spatiotemporal scale, a virtually 
infinite number of items and relations can be repre-
sented454,455. If we now ask for the specific configura-
tion of these representations and the rules that govern 
their emergence and transformation, we have begun to 
search for the neuronal code. 
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Chapter I 

 
 

Principles of neural coding: classical concepts and current    

debates 
 
 

Theories of neural coding 
 
Following Christen82, a code is generally defined by a 
relation between two sets of symbols and consists of 
the so-called code input set, the codeword set and the 
code relation. The code input set is the whole of all 
symbols that are accepted as an input to the code rela-
tion function, which expresses the rules that are used to 
convert any input symbol to its corresponding image. 
The collectivity of all possible symbols that may be 
generated by the code relation function constitute the 
codeword set. Applied to the brain, we therefore need 
to define both the attributes of neural activity that are 
supposed to carry distinct elements of information (the 
symbols) and the neuronal mechanisms mediating their 
formation and conversion (the code relation) to achieve 
a full description of a neuronal code. 
 
Basic units of neural information processing 

 
In principle, any such definition may involve any  
spatial or temporal scale, depending on the kind of 
information that is to be processed. Since the general 
acceptance of the neuron doctrine in the 1930s, howev-
er, the assumption that the neuron is the basic unit of 
information processing was rarely challenged (for an 
overview of the historical roots of information theoret-
ic concepts and their implementation into the theory of 
brain functioning see Christen 2006). Neuronal compu-
tation is based on the integration of synaptic inputs308 
to produce sub- or suprathreshold electrical potentials 
that are transmitted actively or passively to the neu-
ron’s postsynaptic targets. In doing so, neuronal cells 
not simply convey information from one synaptic stage 
to the next, they rather interpret the input signals by 
synaptic filtering and nonlinear summation, adding a 
new value to the incoming information. This process of 
selecting, integrating, modulating and broadcasting 
electrical signals is mediated synergistically by dynam-
ic pre- and postsynaptic structures1, fluctuating intrin-
sic membrane properties224,225,312,423,502, and cellular 
compartmentalization81,205,206,293,298,472,483. Although all 
these elements can be independently regulated through 
neuronal plasticity1,298,312,493 and might therefore be 
seen as separate computational entities, it is only their 

combined action that produces the output signal of the 
cell. If the neuron is equipped with a sufficient number 
of voltage gated ion channels and if the summation of 
postsynaptic currents depolarizes the cell membrane 
above spike threshold, this output signal takes the form 
of an action potential, representing the digital result of 
an analog computation. While basic arithmetic func-
tions and nonlinear transformations like normalization 
and gain control can be applied to analog signals di-
rectly and economically444, the all-or-none action po-
tential is more resistant to noise from stochastic ion 
channels277,399 and can be transmitted over longer dis-
tances at high speed. Unsurprisingly, neuronal com-
munication is mediated extensively by action potentials 
(although also analog signals can travel along axons 
and modulate transmitter release at the presynaptic 
terminal13,439 or directly enter another cell through 
electrical synapses85). Thus, individual nerve cells are 
regarded as the brain’s basic computational units, and 
the essential step in neuronal computation is the con-
stantly updated “decision” of a single cell to fire an 
action potential or to not fire264 (exceptions exist e.g. in 
the retina where photoreceptors, horizontal cells and 
bipolar cells, and to a lesser extent also amacrine cells, 
transmit information via graded potentials). 
 
Independent and coordinated coding and the level of 

abstraction 

 
On these grounds, various neural coding theories have 
been developed. One issue concerns the independence 
of single cells and can be expressed by asking if all 
information is available by simply pooling together the 
activity of a number of basically independent neurons, 
“as in an election”, or if the relevant signals are assem-
bled by a directed coordination of neuronal activity, 
“as in a symphony”92. Independent coding implies that 
all of the information that can be obtained from one 
neuron can be obtained from that one neuron alone, 
without reference to the activities of others. In contrast, 
the hypothesis of coordinated coding assumes that 
information processing involves some concerted action 
among neurons that may only be decoded by relating 
the activity of single cells to the activity of their peers. 
Another issue concerns the level of abstraction in  
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representing irreducible cognitive contents: Single 
neuron coding refers to the concept of complex feature 
detectors in sensory areas that emerge as a result of 
converging pathways32, and likewise to the concept of 
specialized command neurons in motor areas that were 
thought to provide the temporal pattern of impulses 
needed for a coordinated activation of muscle fibers to 
form a behavior270. Alternatively, population coding 
refers to a distributed representation of information385. 
 
Coding by “cell assemblies” 

 
Delage was probably the first who anticipated en-
sembles of coactive neurons to be the physiological 
equivalent of what he called “a single idea”209. Driven 
by direct interactions, the members of the ensemble 
would leave on the physical connections among them a 
trace, a “relic”, that would facilitate their future coop-
eration. Some thirty years later, and with no reference 
to the work of Delage which apparently had been for-
gotten by that time, Hebb elaborately formulated what 
became known as the “cell assembly hypothesis”207. 
He conjectured that through “some growth process or 
metabolic change”, repeated coactivation of a group of 
neurons causes the formation of a “cell assembly” – an 
anatomically dispersed set of neurons among which 
excitatory connections have been potentiated. As a 
consequence, repeating activation patterns in a way 
translate into assembly formation, and are henceforth 
represented by the activity of the assembly. Given that 
repeating excitation patterns most likely carry some 
meaning, each cell assembly is proposed to be a corre-
late of some discrete, cognitively meaningful item of 
information. Hebb’s concept has been reviewed many 
times and refined ever since49,155,169,198,409,457. In particu-
lar, the strict connectivity-based definition has been 
relaxed in favor of a purely temporal one155,169,457: From 
a downstream point of view, there is no need for the 
neurons in the assembly to be directly connected – all 
that matters is their synchronous activity within a criti-
cal time window. Common to most cell assembly mod-
els is the assumption of an interdependent coordination 
of cells. An exception is the work by Shaw and col-
leagues who proposed that the relevant information be 
distributed across “approximately 30” independently 
active neurons432. 
 
The progression of multineuronal activity patterns in time 

 
The firing of a cell assembly may be initiated either by 
external events through the sensory periphery or by 
internal processes that are represented by the activities 
of other assemblies. Hebb supposed that as the excita-
tion of an assembly fades, it triggers the subsequent 
activation of a new assembly, resulting in a chain of 
interconnected assemblies termed “phase sequence”207. 
The progression of assemblies in the phase sequence 
represents successive steps in a serial computation and 
is the hypothesized substrate of internal cognitive pro-
cesses; however, the fundamental currency of infor-
mation processing is the firing of a single assembly, 
not the sequence198. Some decades later, Abeles pre-

sented a similar but much more stringent concept: He 
proposed that groups of synchronously active neurons, 
each emitting a single spike, follow each other in a 
precisely timed manner, forming a well-defined struc-
ture called “synfire chain” in which synchronous activ-
ity in the sending node induces synchronous activity in 
the receiving node through connections with identical 
delays3. The synfire chain concept was taken up and 
extended by Bienenstock who referred to diffuse asyn-
chronous firing resulting from differing transmission 
delays as a “synfire braid”47, an idea that was worked 
out further by Izhikevich. He coined the term “poly-
chronization” to indicate temporally dispersed but 
precisely coordinated firing232. In terms of a dynamical 
system, the progression of neuronal activation patterns 
reflects the system’s movement in an extremely high-
dimensional state space454-456. The evolving trajectory 
is thought to transiently visit metastable states without 
ever being trapped in a fixed point or limit cycle 
11,21,104,392,393. The information that is processed would 
thus be represented in a self-organized manner by a 
sequence of transient states that depends on the sys-
tem’s history, rather than by eventually reached attrac-
tors or steady states110. The concept of “neuronal ava-
lanches” utilizes the notion of self-organized criticality 
to explain the fractal appearance of propagating syn-
chronous activity40,382. 
 
Time as a coding dimension 

 
A spirited debate concerns the temporal resolution at 
which information is represented by individual action 
potentials. The rate coding hypothesis holds that in-
formation is mainly conveyed via the instantaneous 
firing rate429,430 – the mere number of spikes in some 
time window – whereas the temporal coding hypothe-
sis assumes that the precise placement of the spikes in 
time is also significant128,129,175,283,449,459,488. On the single 
cell level, slowly modulated or constant firing rates, 
but also the duration of a burst of impulses, the number 
of spikes within a burst, the rhythm of firing, irregular 
temporal patterns or simply single spikes may be used 
for information transmission and selective communica-
tion between neurons110,233. On the population level, 
profiles of instantaneous firing rates, the activation 
order of cells within some time window162,509, or tem-
porally precise multineuronal spike patterns8,29,232,447,504 
could function as coding entities. 
 
The role of neural oscillations 

 
Synchronously discharging neurons often produce 
oscillatory rhythms of various frequencies, generated 
by networks of diverse sizes65,68,267. Theoretically, syn-
chronous oscillations might simply be an unavoidable  
byproduct of neuronal network dynamics without any 
particular computational role. Alternatively, they could 
directly contribute to the representation of information, 
for example by providing the timing for an internal 
clock231 or as a reference signal relative to which spike 
times become meaningful, or they could actively regu-
late the flow of information in neural circuits by inter-
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fering with the action potential generation and tempo-
rally link neurons into assemblies68,142,425. Encoding by 
phase and synchrony has highly attractive computa-
tional properties217,218,348. It has been proposed that 
phase encoding might effect the temporal segmentation 
of several working memory items238,291, and that waves 
of activity might serve to tag sensory input at different 
spatial locations with a unique phase120. The addition 
of phase information may be used as a means to seg-
ment and categorize parallel inputs. In a similar way, 
top-down processes could shape spiking activity by 
coordinating subthreshold membrane potential fluctua-
tions to establish selective functional relationships 
between neurons during states of anticipation114. The 
idea that the formation of dynamic links mediated by 
synchrony over multiple frequency bands subserves 
neuronal communication25,51,448,511 was dubbed “com-
munication through coherence” by Fries140. Rhythmic 
excitability fluctuations are thought to confine neural 
signal transmission such that only coherently oscillat-
ing neuronal groups can interact effectively, in the 
sense that their excitability peaks need to coincide to 
facilitate the propagation of spikes. The resulting effec-
tive communication structure may flexibly be rear-
ranged through shifts in attention or other cognitive 
processes that come along with alterations in the oscil-
lation patterns, which in turn would alter the selective 
linking of distributed representations427. 

Coherent oscillations could provide a mechanism to 
solve the so-called “binding problem”497: If we assume 
that some irreducible percept or thought or motor plan 
is represented by a group of neurons on a dynamical 
basis, what is the signature that transiently binds their 
activity into a unified whole? Milner proposed that 
cells selectively segregate their firing in time to signal 
their functional relationships341, and von der Malsburg 
formulated the “correlation theory of brain function” 
based on the same rationale522-524. Singer and co-
workers adopted these concepts117,180,458 and advanced 
the “binding by synchrony” hypothesis that suggests 
that functional relations between neurons are encoded 
by synchronous firing in the millisecond range, 
brought about by the phase-locking of distributed oscil-
lations116,445,447,452. The idea behind is that elementary 
relations are represented by the firing of individual 
neurons mediated through appropriate convergence of 
input connections, and that more complex relations are 
represented by the activity of cell assemblies generated 
by dynamic associations of cells111,404,457. 
 
Key questions 

 
These concepts lead us back to the initial question if 
irreducible cognitive contents are represented mainly 
by single neurons or by neuronal populations. If a 
number of neurons is involved, do they coordinate their 
firing, or are they independent? If they act in concert, 
how is their activity organized? Does the timing of 
spikes reflect a rate code or a temporal code? What is 
the temporal precision of neuronal firing? Finally, do 
neural oscillations contribute to the representation and 
transformation of information, and if so, how? 

 
 

Arguments and evidence 
 
Single neuron coding vs. population coding 

 
Throughout the brain, neighboring neurons often share 
similar information because they share similar inputs. 
In principle, the resulting redundancy is a useful mech-
anism to protect against the loss of information. How-
ever, given the high metabolic demands of neuronal 
operations, such redundancy comes at some cost. 
Moreover, diverging excitatory pathways may recruit 
large populations of neurons, so that a single message 
may engage a considerable part of the network. These 
problems could be mitigated by sparse coding through 
fast convergence of signals to neuronal detectors of 
highly specific complex contents213. In fact do some 
neurons in the human medial temporal lobe selectively 
respond to visually presented persons or objects irre-
spective of their size or position in the visual field or 
the viewing angle, and in some cases even to letter 
strings with their names390. Although it is unclear if 
these cells are driven exclusively by the tested stimuli 
and if other cells respond to the same stimuli as well, 
these findings exemplify a remarkable invariant and 
abstract representation of visual contents. It has to be 
questioned, however, if a scheme that relies on single 
neuron coding qualifies as a universal method for rep-
resenting information in the brain, due to a number of 
conceptual shortcomings447. First of all, such a scheme 
implies that a selective neuron is available a priori for 
every possible percept or mental object, which is sim-
ply impractical63. Furthermore, it becomes increasingly 
difficult to encode compositionality and syntactic rela-
tions and to establish semantic associations the more 
the information gets concentrated. Finally, highly ab-
stract representations entail the “bottleneck problem”: 
After convergence, how could the encoded information 
be decomposed by downstream neurons? Following 
these arguments, it is obvious that the nervous system 
needs to maintain some form of population coding. 
 
Signatures of coordinated coding 

 
Through the distribution of information over many 
neurons, each receiving a redundant but unique combi-
nation of inputs, the resolution in representing that 
information is enhanced. It can be expected that the 
brain evolved to optimally balance metabolic demands 
and computational capacity and flexibility. In visual 
cortical areas, adjacent neurons have been found to 
carry an average of between 40 % and virtually no 
redundant information105,163,164,518,551, depending on the 
stimulus. How independent are the messages of single 
neurons in other brain areas? From simultaneous re-
sponses of retinal ganglion cells, stimuli can be recon-
structed with high accuracy, even if correlations be-
tween cells are left unconsidered127,356. Nevertheless do 
retinal ganglion cells synchronize their firing beyond 
what can be expected from shared visual input333,334, 
and significantly more information can be extracted 
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from their activity if correlations are taken into ac-
count380. The same is true in other parts of the brain 
87,112,199,204,255, demonstrating that neurons are involved in 
directed interactions that could provide additional 
information. From this perspective, the signaling of 
single cells might be imperfect or even completely 
meaningless unless related to the activity of others. 

Further support for a correlational code is given by 
the widespread observation that multineuronal spiking 
activity is actively coordinated: Aside from the retina, 
synchronized firing in excess of what would be pre-
dicted from the discharge rates has been recorded from 
the reticular formation289 and accompanies responses to 
fixation onset in primary visual cortex310 and prepara-
tory processes in primary motor cortex179,400,401. Pro-
longed patterns of coordinated firing have been found 
in forebrain areas related to cardiac and respiratory 
control152 and correlate with auditory487,515,516 and olfac-
tory56,139,278 processing, up state onset301, and behavior 
4,389,487,505,516. In the hippocampus, sequences of place 
cell activity are replayed forward or in reverse order 
during brief pauses in waking behavior90,101,135,251 and 
during sleep299,347,349,366, possibly reflecting processes 
of memory consolidation and retrieval. Overall, these 
coordinated firing patterns were precise to within three 
to thirty milliseconds while spanning up to a few hun-
dred milliseconds and have been taken as an indication 
of functional cell assemblies. 

Although simulations have shown that synchronized 
action potentials can reliably propagate within a corti-
cal-like network102, neocortical spike recordings have 
never been thoroughly investigated with respect to 
higher order temporal structures like synfire chains or 
phase sequences. Abeles and colleagues tried to infer 
synfire chain activity from structured firing in the 
frontal cortex of monkeys, with limited success. They 
concluded that the patterns were generated by “rever-
berations in a synfire mode” within self-exciting cell 
assemblies4,389. Ribeiro and co-workers demonstrated 
the dependence of cell assembly activation sequences 
recorded simultaneously from the hippocampus and 
primary visual and somatosensory cortical areas of rats 
on the behavioral state of the animal15. The most direct 
evidence for functional sequences of discrete firing 
patterns found so far is the characteristic succession of 
transiently synchronized neuron ensembles during an 
odor response in the antennal lobe of the locust531. 
 
Timescales and accuracy of neuronal signaling 

 
Energy supply critically limits signaling in the brain250. 
For cerebral cortex, the volume of signal traffic that 
can be supported by the brain’s metabolic rate was 
calculated to be about five action potentials per neuron 
and second in rat and less than one per neuron and 
second in human277,282. Considering the speed of neural 
computations, the permissible signaling rate is remark-
ably low, and this metabolic limit must affect the way 
in which information is processed. Recordings from 
sensory cortices suggest that the nervous system has 
countered this natural constraint by distributing signals 
sparsely in time and space100,220,236,258,529,534. The con-

clusion that at most a few discharges per neuron are 
available to convey a message is confirmed by the 
finding that sensory information is transmitted quickly 
along feed-forward connections491, requiring only ten 
to fifteen milliseconds per processing stage496. There-
fore, it was argued that information can only be repre-
sented by short, fast responses forming a sparse popu-
lation code. In fact, reliable decoding of stimulus fea-
tures is possible based on the relative timing of the first 
spikes elicited in individual neurons in the retina178,510, 
the olfactory system246, the somatosensory system243,378, 
and even in cell cultures431. But how reliable is the 
initiation of action potentials in single neurons, and 
what is their temporal precision? Membrane potential 
fluctuations induced by stochastic ion channel gating 
and probabilistic release of synaptic vesicles are poten-
tial sources of random variations in spike generation 
and timing123,399. So, the probability that an arriving 
presynaptic nerve impulse fails to evoke a postsynaptic 
response is remarkably high, between 0.5 and 0.914,277. 
However, because of the great number of synapses, 
failures do not necessarily lose information. Variability 
introduced by nondeterministic processes acting on the 
level of single molecules may average out on the cellu-
lar level23 and may even sharpen the signal due to sto-
chastic resonance328,329. The amplitude and exact timing 
of somatic potentials in response to a particular input 
would be expected to approach a Gaussian distribution, 
giving rise to precisely timed action potentials in most 
cases while occasionally failing to cause a spike in 
time. This is indeed what could be observed by repeat-
edly injecting irregular depolarizing currents into corti-
cal neurons in vitro309, and simulations suggest that the 
same is true for the axonal propagation of action poten-
tials, leading to small, mostly submillisecond varia-
tions in spike timing over distances of millimeters122. 
High reliability of spiking has also been demonstrated 
in the visual210,249 and in the auditory system99 in vivo. 

The temporal precision of neuronal communication 
crucially depends on a number of basic cellular proper-
ties. Spike-timing-dependent plasticity rules for modi-
fications in synaptic strength indicate that postsynaptic 
potentials are effectively integrated within only twenty 
to thirty milliseconds72,89. Such short integration times 
mainly result from rapidly deactivating AMPA recep-
tors that can have deactivation time constants of less 
than a millisecond165,212,308 and indirectly control the 
kinetics of NMDA receptor currents by only allowing 
for a correspondingly short release of the magnesium 
block216,367. In addition, disynaptic feedforward inhibi-
tion may confine the effective integration time window 
in the soma to a few milliseconds386. Backpropagating 
action potentials coinciding at the synapse with excita-
tory postsynaptic potentials may trigger dendritic cal-
cium spikes and in this way cause highly nonlinear 
responses276,293,418,478,479. Another nonlinear element is 
the spike threshold which is inversely related to the rise 
time of the action potential, endowing neurons with an 
enhanced sensitivity to synchronous inputs27,197. With 
increasing input rates, both the amplitude and duration 
of somatic potentials in response to synaptic input is 
reduced, resulting in a shortening of the temporal inte-
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gration window and requiring a yet higher precision of 
presynaptic signals to drive the neuron to fire28,281. 
Finally, many synapses operate most reliably at certain 
frequencies of presynaptic firing and display depres-
sion or facilitation of postsynaptic responses159,398,489,538. 
Such synapses effectively detect changes in the firing 
rate, but report frequency of maintained activity poorly 
2,26,490,500. Besides effects of repetitive signaling on the 
release probability of vesicles at the presynapse, the 
kinetics of transmitter binding and channel gating of 
postsynaptic NMDA receptors produces currents with 
distinct waveforms depending on pulse frequency384, 
leading to the long known fact that the postsynaptic 
response is sensitive to the exact timing of successive 
input signals424. One important consequence of this 
sensitivity is that modifications in synaptic strength 
depend not only on the relative spike timing between 
the neurons, but also on the spiking pattern within each 
neuron, with the timing of the first spike in each burst 
being dominant in determining the ensuing synaptic 
modifications146. Taken together, these properties make 
neurons susceptible for transient signals and precise 
spike timing codes and the transmission of a continu-
ous rate signal difficult266. 

Nevertheless managed Shadlen and Newsome to de-
vise a model in which the membrane potential under-
goes a random walk to the spike threshold so that any 
temporal structure in the input is lost430. Based on the 
model, they concluded that the summation of postsyn-
aptic potentials in cortical neurons is too imprecise to 
support precise spike timing codes, thus leaving as the 
only coding dimension the firing rates of neurons. A 
reliable estimate of the instantaneous firing rate would 
then require the simultaneous readout of a population 
of neurons162, implying ergodicity and independence of 
cells. Assuming uncorrelated inputs, the model predicts 
a Gaussian distribution of membrane potential with 
only small membrane potential fluctuations. In vivo 
recordings, however, revealed highly non-Gaussian 
membrane potential dynamics displaying quiescent 
periods interrupted by large, brief excursions consistent 
with coordinated presynaptic firing100,295. As has been 
shown both theoretically and experimentally, organiza-
tion of presynaptic input into synchronous volleys is 
also necessary to explain the irregular output firing of 
neurons465,475. These findings are in conflict with basic 
assumptions of the model and seriously question its 
validity. To make things even worse, correlations be-
tween cells would compromise the ensemble represen-
tation of firing rate especially at high frequencies, 
imposing severe constraints on the temporal accuracy 
of neural computations325. Again, neuronal dynamics 
and theoretical considerations are at odds with a firing 
rate code, but there is ample evidence for millisecond-
precise spike timing depending on sensory input, be-
havior, or internal state in a variety of different brain 
areas like the frontal cortex505, motor cortex203,400,436,437, 
somatosensory cortex134,372, auditory cortex91,119, visual 
cortex30,181,265,492, thalamus87,95,503, retina44,183,234, and the 
hippocampus199,402. We are thus led to a view of neural 
activity as being basically and essentially characterized 
by sparse, temporally precise, coordinated firing. 

 
The functional relevance of network rhythms and their 

role in coordinating multineuronal activity 

 
Given that the brain, like every system which has op-
posing forces such as excitation and inhibition, almost 
inevitably will generate oscillations65,527, it is hard to 
believe that it did not evolve to make use of them. But 
how do neural oscillations relate to the processing of 
information? The idea that oscillations could serve as 
an internal clock has been dismissed in favor of a mod-
el using high-dimensional network states for encoding 
time61,252,324. The difficulty in assigning functional 
relevance to synchronous oscillations lies in the correl-
ative nature of most of the investigations done so far. 
There are some exceptions, though. In a series of ex-
periments, Laurent and colleagues used picrotoxin (a 
GABA antagonist) to disrupt synchronous oscillations 
in the olfactory systems of insects307 and so were able 
to demonstrate that the selective desynchronization of 
projection neurons in the antennal lobe degrades the 
selectivity of downstream neurons306 and impairs the 
animal’s ability to discriminate molecularly similar 
odorants477. In mammals, however, the situation is less 
clear. Mice lacking the GABAA receptor β3 subunit 
produce enhanced oscillations in the olfactory bulb and 
after training are better than normal in discriminating 
closely related odorants, but worse in discriminating 
odorant mixtures364. In the rat olfactory bulb, oscillato-
ry power appears to be actively modulated depending 
on the molecular similarity of odorants that the rat has 
to distinguish, suggesting a role of enhanced network 
oscillations in stimulus disambiguation45. On the other 
hand, newborn rats who have very few GABAergic 
granule cells do not produce synchronous oscillations 
and yet are as good in making odor discriminations as 
older ones who have developed interneurons and do 
produce oscillatory activity in response to a stimulus133. 
The two most convincing studies that tried to establish 
a causal link between synchronous oscillations and 
behavioral performance in vertebrates again relied on 
pharmacological interference with normal neuronal 
functioning: In the frog retina, a subclass of oscillating 
ganglion cells responding to expanding dark objects 
gets out of sync when exposed to bicuculline (GABAA 
antagonist), leading to the failure of an escape behavior 
as it is normally induced by such stimuli230. In the rat 
hippocampus, cannabinoids cause a decrease in oscilla-
tory power in various frequency bands without affect-
ing average firing rates, which in turn impairs memory 
formation402. These examples show that neural network 
function is often associated with neuronal oscillations, 
but in most cases it is unclear how exactly they con-
tribute to the processing of information. Nevertheless, 
on a mechanistic level, they play a consequential role 
in coordinating multineuronal activity. 

Network oscillations are carried by rhythmic inhibi-
tory input originating from synchronized interneuronal 
spiking33,67,138,202,446,466,537. It has been shown both ex-
perimentally96,275,331,417,521 and in simulations218 that the 
ensuing subthreshold membrane potential fluctuations 
interact with excitatory inputs such that the timing of 
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action potentials becomes a function of the oscillation 
phase and is made less variable. As a result, discharges 
are temporally coordinated and related to the network 
rhythm. Examples in which the phase of firing carries 
significant information have been reported from pre-
frontal441, auditory257 and visual cortex344 and include 
the “phase precession” in hippocampal place cells 
200,226,365,426,461 and entorhinal grid cells193. In cortical 
area V4 of monkeys, the frequency-dependent strength 
of the phase-locking of spikes is modulated by atten-
tion143,185. Moreover, the interaction of neuronal groups 
has been found to depend on the phase relation be-
tween rhythmic activities within the groups541, consis-
tent with the idea that firing phases and times of in-
creased susceptibility to input need to match the inter-
group transmission delays to facilitate the propagation 
of spikes. Similarly, the strength of the interareal phase 
synchronization of neuronal activity in monkey V4 and 
prefrontal cortex was shown to correlate with visual 
short-term memory performance286, suggesting that this 
synchronization subserves intercortical communication 
and contributes to the maintenance of visual short-term 
memories. Thus, neural oscillations dynamically shape 
suprathreshold activity and flexibly arrange signaling 
pathways in concert with cognitive processes69,527. 

 
 
A new approach 
 
Although much has been said and done since the days 
of Hebb and the introduction of the cell assembly con-
cept, it appears that we still lack a complete, compre-
hensive understanding of the dynamic organization of 
multineuronal activity. The temporal precision of firing 
and the timescales on which neuronal activity is coor-
dinated are a matter of ongoing debate24,92,198,492. With-
out a clear characterization of the spatiotemporal struc-
ture of concerted neuronal firing on short timescales – 
that is, the definition of a differentiated signature of 
neural assemblies – also no superordinate structure 
possibly representing cognitive processes on longer 
timescales can be found. 

What is hence needed is an approach to assess and 
precisely characterize higher order correlations among 
multiple neurons on a moment-by-moment basis. Due 
to the absence of suitable analysis methods24,54, investi-
gations have been restricted to pairwise correlations or 
to some special case of functional organization or did 
not include at all a test for the statistical significance of 
the observed activity patterns. The second chapter is 
therefore devoted to the development of a method for 
the detection of multineuronal discharge sequences in 
parallel recordings that provides a precise description 
of their spatiotemporal organization and allows for a 
continuous correlation of the activity patterns with the 
ongoing information processing. It is intended to an-
swer the question if nerve cells fire independently or 
depending on each other, if repeating spatiotemporal 
patterns show significant structure, what the relevant 
timescales are, and if short firing patterns are arranged 
in coherent sequences. 

For understanding the neural code, as important as 
the signature of neural assemblies – the potential in-
formation-carrying symbols – are the mechanisms that 
mediate their formation and conversion. It has been 
argued that network oscillations tend to synchronize 
action potentials in coherently oscillating cells and so 
create a signature of functional relatedness447,452. They 
naturally arise from the interplay of recurrent excitato-
ry and inhibitory connections and the resonant proper-
ties of individual neurons74,182,225,292. Synchronization 
of signals is supported locally by the coupling of cells 
via gap junctions42. Remote populations may engage in 
zero phase lag oscillations despite long conduction 
delays if coupled reciprocally to a relay population of 
cells79,514,519, and it has been suggested that thalamic 
nuclei may play an according role in mediating syn-
chrony among distant brain regions244,435,514. Another 
mechanism by which neuronal activity is organized is 
the shaping of the functional network through synaptic 
plasticity. Theoretical studies have demonstrated that 
neurons equipped with spike-timing-dependent plastic-
ity72 may tune to repeating spatiotemporal input pat-
terns by potentiating synaptic weights on afferents that 
consistently fire early, thereby steadily decreasing 
postsynaptic response latency with respect to the onset 
of the pattern, until it reaches a minimal value192,321,322. 
Given appropriate input firing patterns and plasticity 
mechanisms, multineuronal spike sequences should 
therefore progressively be compressed in time and 
eventually become synchronized482, if the participating 
neurons respond to coherent input. How can the influ-
ences of these different mechanisms on the generation 
of precisely timed discharge sequences be disentangled 
and quantified? 

As Buzsáki accurately pointed out, “the acid test for 
providing a definite proof for the essential role of brain 
rhythms in computation and brain function would be to 
selectively eliminate them and examine what is left 
after the complete lack of oscillatory timing”65. How-
ever, oscillations are an emergent network property 
and do not have “receptors” that can be targeted by 
drugs or other means; only individual neurons do. It is 
therefore impossible to selectively eliminate a rhythm 
without fundamentally interfering with the elementary 
properties of the parts that gave rise to it. Modifying 
the function of certain receptors for neurotransmitters 
is likely to radically change the flow of electrical sig-
nals in the network and to also affect all other activity 
patterns65. This criticism applies to the aforementioned 
experiments that used picrotoxin and GABAA receptor 
β3 subunit knock-out mice to disrupt or alter network 
oscillations, and it also applies to more direct manipu-
lations of the activity of subpopulations of neurons by 
optogenetic methods466,552. An alternative way to study 
the organization of neural activity in the absence of 
neural rhythms could be to record from brain slices: By 
disconnecting some part of the network from the rest of 
the brain, chances are high that the remaining network 
is too small to generate synchronous oscillations480,543. 
On the downside, neurons encounter a lack of neuro-
modulators, but these can in principle be applied exter-
nally; the important difference of an in vitro approach 
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platinum wire serves as a reference, and a constant supply of carbogen to 
the surface of the chamber minimizes the diffusion of oxygen from the 
artificial cerebrospinal fluid into the ambient air. (b) Photograph of the 
recording chamber. (c) Close-up of the recording microelectrode array. A 
plexiglass cylinder connects the array to a micromanipulator.  

 
 
compared to the elimination of oscillatory activity in 
vivo is that receptor function and neuronal excitability 
can be left untouched and unaffected. Following these 
arguments, the third chapter centers on the dynamics of 
neural activity in non-oscillating brain slices. Since 
most higher cognitive functions are attributed to the 
neocortex, it is the chosen structure of interest. Its 
anatomical architecture is largely preserved across brain 
areas and mammalian species508, so that one can hope 
to gain some general insights into cortical neuronal 
information processing and coding by investigating a 
specific area in a certain animal. For no particular 
reason except its good accessibility and the extensive 
knowledge that we have of its circuitry, this study 
examines the organization of neuronal activity in the 
primary visual cortex of the rat. 

The aim to observe coordinated discharges at sub-
millisecond time resolution makes it obligatory to 
simultaneously record from multiple single neurons 
with multiple electrodes64,339,450. Until now, multi-site 
recordings of single-unit spike activity in acute brain 
slices have been reported on only a few occasions and 
did not follow any standardized approach. Problems 
arise in particular when using flat electrodes because 
spikes can be recorded only from the surface of the 
slice where most cells are damaged as a result of the 
slicing procedure, and because spike recording requires 
auxiliary techniques to assure proper contact of the 
tissue with the electrodes109. To resolve these prob-
lems, a novel experimental setup has been designed 
and employed in this study (Fig. I-1a, b) that enables 
the recording of spikes from cells in the middle of the 
slice using a matrix of 1.5 millimeters long, sharpened 
electrodes (Fig. I-1c). The setup allows the observation 

of a large, random set of neurons of which a subset 
might participate in a given neuronal assembly170. 
Subsequent analysis, then, allows interference of as-
sembly properties. The basic idea is not to search for 
any predefined spatiotemporal structure in distributed 
discharges, but to systematically test for a coordination 
of spike timing on several timescales and to character-
ize the organization of local cortical spiking activity in 
a comprehensive way. The question that is raised is the 
following: Does the local cortical circuitry give rise to 
stereotypical activation patterns, and if so, what does 
their spatiotemporal organization imply with respect to 
cortical information processing and coding? 
 

Carbogen

supply

Gold contacts

a

b c

Fig. I-1 Experimental setup (a) 

Sketch of the recording chamber. A 
custom-made plexiglass chamber is 
glued to a glass wafer that holds an 
integrated multielectrode array with 
59 flat electrodes (30 µm diameter) 
used for electrical stimulation. Gold 
contacts connect the electrodes to a 
stimulus generator. The wafer rests 
on a heating element that precisely 
controls the temperature of the 
chamber. Optical stimulation and 
control can be exerted from below 
via an inverted microscope. Con-
tinuous perfusion with artificial 
cerebrospinal fluid is provided by a 
peristaltic pump through the inlet 
(I) and outlet (O) tubes. A second 
heating element accurately controls 
the temperature of the fluid. The 
recording electrode array consists 
of 63 sharpened silicon electrodes 
(spaced at 400 µm) and is inserted 
into the tissue from the top. In this 
way, the brain slice is held in place,  
and tight contact with the stimulus 
electrodes is established. A circular 
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*The terms “spike” and “event” are used here interchangeably, emphasizing either their biological or statistical meaning, respectively. 23

 
 
 
 
 
 
 

Chapter II 

 
 

Detecting multineuronal temporal patterns in parallel spike 

trains 
 
 

Introduction 
 
One of the most fundamental issues in neuroscience is 
the nature of the neural representation of information. 
While it is widely appreciated that informational con-
tents are carried by the activities of a large number of 
neurons, there is dissent about the independence of 
cells and the relevant timescales of their firing92. Do 
neurons jointly encode information by forming func-
tional cell assemblies155,169,207,409,522? Does precise spike 
timing significantly contribute to neuronal communica-
tion129,175,449,488? As a consequence, are neuronal assem-
blies distinguished by a covariation of firing rates198 or 
by a time-locked sequence of polychronous232 or syn-
chronous457 spiking events? Finally, are the activities 
of neuronal assemblies, whatever their particular struc-
ture may be, arranged sequentially and coherently in 
time to form superordinate patterns3,47,207? 

Although studying these questions is a statistical and 
computational challenge54,254,374, a variety of methods 
have successfully been applied to reveal clusters of 
functionally related cells without characterizing their 
temporal structure43,168,171,259,297, to define groups of cells 
firing in synchrony172,187-189,253,379,381,413,421,495,  to detect spa-
tiotemporal firing patterns5,151,280,353,415,420,462,463,485,486,546, 
and to find signatures of synfire chain activity173,422. 
Barring some difficulties in finding appropriate repre-
sentations of the associated null hypotheses167,186,190, 
these different methods and their applications are able 
to analyze relevant properties of multineuronal activity, 
but an all-embracing approach is missing. 

To achieve a comprehensive and conceptually unre-
stricted description of multineuronal spiking, I present 
a new method for analyzing consistent relations be-
tween discharges of simultaneously recorded neurons 
on arbitrary timescales that are referred to as spatio-
temporal firing patterns and pattern sequences. Adopt-
ing a maximally naïve view on multineuronal su-
prathreshold activity, repeating spatiotemporal firing 
patterns are registered with user-defined precision by 
sliding a temporal window of interest along the parallel 
spike trains. In addition, series of patterns are scanned 
for repeating sequences. The significance of repeating 
firing patterns is estimated individually and globally by 
comparing the numbers of their occurrences with the 

numbers that would be expected if the cells’ firing 
were independent on the given timescales. For that 
purpose, a new type of surrogate data is introduced that 
allows for variability and sparseness of spiking events 
and is superior to common resampling methods in 
terms of statistical test performance. Another difficulty 
when searching for recurring spatiotemporal patterns in 
massively parallel recordings arises from the mutual 
masking of actually unrelated patterns that are arranged 
in the same window. To avoid the combinatorial explo-
sion that results from testing every single possible 
subpattern, an algorithm is proposed that separates 
coincident events based on the preferences with which 
a neuron joins its various peers in coincident firing*. 
 
 

Methods 
 
The following subsections first describe the algorithms 
for the detection of spatiotemporal firing patterns and 
pattern sequences, including the proposed procedure of 
separating subpatterns. Then, a Monte Carlo-based 
approach to determine the statistical significance of the 
found patterns and sequences is presented, together 
with some common and a new resampling technique 
and the corresponding hypothesis tests. Finally, I brief-
ly comment on the technical implementation of the 
method. 
 
Detection of spatiotemporal firing patterns 
 
What constitutes a multineuronal spike pattern? As 
long as we do not explicitly know the relevant time-
scales of the data under investigation, we should not 
restrict the analysis to any special scale. The method 
presented here is therefore designed to provide full 
flexibility with regard to the temporal organization of 
the data: In a straightforward approach, I focus on the 
activation sequence of cells as the essential signature 
of a pattern431,509 and define patterns by registering the 
first spikes of all units within a certain time window W 
with a certain precision τ (Fig. II-1). Both timescales – 
the maximal length of the pattern and the spike timing 
precision – can be arbitrarily chosen and jointly deter-
mine which aspects of the data are investigated. By 
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applying several parameter combinations successively, 
the data can be scanned for a range of very diverse 
spatiotemporal patterns. 

Given any W and any τ (with τ being an integer frac-
tion of W), patterns are captured by systematically 
sliding the onset of the time window W from spike to 
spike along the parallel traces. They are represented by 
a vector indicating the constituent units ranked by 
appearance (spikes co-occurring at the same sampling 
point are ranked by their unit number), optionally fol-
lowed by the corresponding timing information. Thus, 
two modes for representing a pattern can be used: a 
time-resolved mode (Fig. II-1a) and a representation 
that is simply given by the temporal order of the partic-
ipating units (Fig. II-1c, d). In the time-resolved ver-
sion, the scale of the registered spike timing is set by 
dividing the window into equal bins of length τ, using 
their respective indices to specify each spike’s position 
in time (Fig. II-1a). Since the central purpose of the 
analysis is to detect coordinated firing activity among a 
population of cells, spike patterns comprising only one 
unit are skipped (Fig. II-1b). 

It is important to note that patterns do not necessarily 
cover the whole space allowed by a given combination 
of parameters, especially if restrictions are minimized 
by analyzing the data using wide limits (long W and τ = 
W). A subsequent analysis of the found patterns may 
then reveal some characteristic spatiotemporal struc-
ture covering only a part of the search space, making it 
a particularly strong finding if some structure is found 
that has not been explicitly searched for. Once the data 
are known to contain repeating patterns on a specific 
temporal scale, the search space can be adapted to 
yield a better statistical accuracy. 
 
Peer validation and pattern separation 
 
Because every timestamp marks the start of a new 
window, allowing each event to participate in multiple 
patterns on multiple positions, the search is exhaustive 
in the temporal domain. In order to thoroughly scan the 
data in the spatial domain, one would need to break 
down every pattern into all possible subpatterns and to 
independently assess their individual significance. 
With an increasing number of units and events, howev-
er, this would result in a combinatorial explosion re-
quiring prohibitively large amounts of computer 
memory (as an example, 20 events can be combined in 
more than a million ways, forming exactly 220 subsets 
minus the empty set and the 20 singleton sets). On the 
other hand, unraveling simultaneously occurring but 
independent subpatterns is essential to reveal any re-
petitive structure in larger data sets. As a practical 
solution, I therefore propose to determine the probabil-
ity with which a neuron joins its various peers in coin-
cident firing and to split the events that coincide in any 
given time window W accordingly. To do so, the em-
pirical count of coincidences of any two units during 
some period t of length T (with T à W) is compared 
against a threshold given by the expected count of 
coincidences and a global support value to classify 
them as being functionally coupled or uncoupled, thus 

providing every unit with a set of “validated peers”. 
Because the functional coupling may vary over time10, 
it is necessary to choose T appropriately (e.g., one 
minute) and to currently adjust the correlation values 
by dividing the data into successive intervals of corre-
sponding length. Formally, raw correlations are ex-
pressed as Cij

(t) which is the number of coincidences of 
units i and j as revealed by the pattern search in time 
interval t. The chance level of spurious coincidences is 
roughly estimated as 
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(t) being the expected number of coincidences of 
units i and j in time interval t, and ni

(t) and nj
(t) being 

the numbers of events of units i and j in time interval t 
(see Appendix 1 for a derivation and necessary condi-
tions). In case of low rates the resulting values may be 
too low to function as a threshold. To assure that more 
than one coincidence per unit pair is required to label 
peers as valid, an additional minimum support value 
may be applied. Hence, peers are validated according 
to 
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with Vij

(t) characterizing units i and j as being function-
ally coupled or uncoupled during time interval t and A 
being an arbitrary global threshold referred to as abso-
lute peer criterion that simply denotes the number of 
coincidences in any time interval t required to validate 
the functional coupling of any pair of units, irrespec-
tive of the event rates. The resulting sets of validated 
peers indicate which units preferentially take part in 
concerted firing patterns. To separate coincident events 
accordingly, all peers that are invalid with respect to a 
chosen unit are removed from a pattern. The procedure 
is repeated for every unit that participates in the parent 
pattern, potentially producing several distinct subpat-
terns. Finally, non-repeating patterns are dropped. 
After all repeating patterns thus detected have been 
registered, they are subjected to a search for some 
superordinate patterning. 
 
Detection of sequences of patterns 
 
It has repeatedly been hypothesized that neuronal spik-
ing activity be organized into superordinate patterns 
comprising coherent sequences of circumscribed spati-
otemporal firing patterns that signify functional cell 
assemblies3,47,207. As was pointed out by Schrader and 
colleagues422, detecting those sequences means collat-
ing the previously identified patterns appropriately and 
variously and searching for new emerging structures – 
a task that has not been tried yet. Here we present such 
a method for the detection of repeating pattern se-
quences that is completely independent of the particu-
lar temporal organization of the constituent patterns 
and makes no a priori assumptions about the spatio-
temporal structure of the resulting sequences. 
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Fig. II-1 Detection of spatiotemporal firing patterns. Illustrated 
are six simultaneously recorded spike trains and four separately 
detected patterns (a-d) as examples. An arbitrary time window W 
(highlighted in gray) is used in each case to define the spatiotemporal 
activity pattern. The units that coincide in the given time window are 
further split into subgroups according to previously validated peers: 
Based on the number of coincident events of any two units during 
some period t of length T (raw correlation matrix C(t)) and a thresh-
old, units are classified as being functionally coupled or uncoupled 
(thresholded correlation matrix V(t), see text for details). In this 
example, units 2, 3 and 4 are correlated, as are units 5 and 6, and unit 
1 is not correlated with any other unit. (a) A 60 ms window contain-
ing six spikes falling into different 15 ms bins given by τ. The result-
ing pattern is represented by a vector indicating the constituent units 
ranked by appearance ([3124...]), followed by the corresponding bin 
numbers of their first spikes ([...1144], see arrows). After compari-
son with the sets of validated peers, unit 1 is excluded from the 
pattern. (b) Since a pattern consists of at least two spikes and only 
the first spike of each unit inside the window is considered (see 
arrow), patterns comprising only one unit are skipped (W = 60 ms). 
(c) and (d) If no binning is applied, the vector representing the 
pattern indicates only the temporal order of the participating units (W 
= 35 ms). (c) After comparison with the sets of validated peers, the 
pattern is left unmodified. (d) After comparison with the sets of 
validated peers, the pattern is split into two subpatterns and unit 1 is 
excluded. 

 
In a first step, the vector representation of every re-

peating pattern is replaced by a hash value indicating 
the pattern’s identity, which helps a lot to alleviate 
computer memory consumption. Because the signifi-
cance of a single pattern is statistically distinct from 
the significance of a sequence of patterns, all repeating 
patterns are included. Along with the pattern ID, the 
timestamps of the first and last event are recorded so 
that sequences can be clearly identified and represented 

by a vector of successive IDs. However, since patterns 
are captured with a sliding window and potentially are 
subdivided as a result of the peer validation procedure, 
they may overlap in time. To register series of tempo-
rally non-overlapping, directly consecutive patterns it 
is therefore necessary to look for the very next initia-

tion of a pattern after the last event of the preceding 
pattern (Fig. II-2a). The resulting sequences may com-
prise an arbitrary number of patterns and include all 
corresponding subsequences (Fig. II-2b). As the pro-
cess is repeatedly started at every pattern, the detection 
of sequences is exhaustive up to the analyzed length. In 
a last step, shorter sequences that are always part of the 

same longer sequence as well as non-repeating se-
quences are discarded. Importantly, this method does 
not imply any constraints concerning the exact timing 
of consecutive patterns (provided that they are tempo-
rally separated) or the overall duration of the whole 
sequence – solely the succession of pattern IDs identi-
fies a sequence. 
 
Statistical significance estimation 
 
Statistical hypothesis 

 
Following the detection of recurring firing patterns and 
pattern sequences, one may characterize their spatio-
temporal properties and relate them to the experimental 
conditions. However, their mere recurrence does not 
imply that they occur more often than expected by 
chance, and both patterns and sequences have to be 
considered irrelevant unless an appropriate statistical 
test demonstrates that they recur significantly often. To 
do so, a non-parametric approach is proposed that can 
be expressed in the following way: The null hypothesis 
(H0) states that the registered patterns and sequences 
appear by chance, or in other words, that patterns occur 
independently and coordination of events is random on 
the timescales that were used to identify a pattern. If 
this is the case, then varying the timing of events on 
that scale or rearranging the order of patterns should 
not affect any statistic extracted from the parallel event 
trains or the pattern series. To test the probability that 
this null hypothesis holds, the distribution of pattern 
and sequence counts is calculated from surrogate data 
with randomized event timing and randomized pattern 
sequences, respectively, using a Monte Carlo method. 
If the value obtained from the original data exceeds the 
surrogate count with empirical probability x (and falls 
below that count less often), then the probability that 
the data are consistent with the null hypothesis is 1 – x. 
The alternative hypothesis (HA) states the opposite and 
assumes that patterns show some systematic interde-
pendence and events some degree of coordination on 
the corresponding timescales. 
 
Generation of surrogate data 

 
The problem of developing a non-parametric method is 
to produce surrogate data that differ from the original 
data in exactly one property, namely the one that is 
addressed by the alternative hypothesis. In the past,
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Fig. II-2 Detection of sequences of patterns (sketch). (a) Vertical bars indicate first and last spikes of previously identified repeating spatiotem-
poral firing patterns, horizontal bars indicate their duration. A unique ID is assigned to every pattern, and sequences comprising an arbitrary 
number of temporally nonoverlapping, directly consecutive patterns (highlighted in gray) are registered by looking for the very next initiation of a 
pattern after the last spike of the preceding pattern (see arrows). The process is repeatedly started at every pattern with all subsequences being 
listed. (b) Vector representations of the pattern sequences shown in (a) when starting at the first pattern. 

 
several procedures have been proposed to create suitable 
surrogate data for testing the significance of coordinat-
ed spike events by repeatedly modifying the original 
spike trains (for a review see Grün 2009). One possi-
bility is to dither the time of every individual event 
randomly and independently on a certain scale, thereby 
destroying the temporal structure contained across as 
well as within event trains up to that scale203 (Fig. II-
3a). Although it is not necessary to change the interval 
structure if the intention is to disarrange coordinated 
events, the approach is intuitively appealing. It has, 
however, some complications, as was revealed by 
Gerstein167. If the event times are dithered uniformly 
within some symmetric window (e.g. ± 20 ms), short 
intervals are added to the interval distribution and its 
peak is lowered. In terms of gamma distributions, such 
a surrogate is a move to lower order and hence produc-
es an inappropriately low number of patterns (the order 
parameter is connected to regularity – the higher the 
order the more repeating patterns are expected). Ger-
stein proposed to use a non-uniform dithering instead 
that is based on the square roots of the adjacent inter-
vals, which he found to produce interval distributions 
remarkably similar to the original. To circumvent these 
problems, Pipa and colleagues offered an even simpler 
method: If all spike times within one train are dithered 
by the same amount, the spike trains are effectively 
shifted against each other, and coordinated firing is 
eliminated up to the corresponding timescale while the 
full auto-structure is kept intact381 (Fig. II-3b). A third 
possibility is to randomly shuffle the inter-spike inter-
vals, which means destroying the temporal structure 
while exactly preserving the original interval distribu-
tion. However, if all intervals are included in the shuf-
fling, the rate profile might be changed to an unac-
ceptable degree. As a solution, a variant of this method 
is introduced that only shuffles short intervals in be-
tween longer intervals that exceed the dither window 
(compare Hirata et al. 2008).214Since in this way all 
events adjacent to longer intervals keep their position, 

the spike trains are additionally shifted against each 
other (Fig. II-3c). Through the combination of shuffled 
inter-spike intervals and misaligned spike trains, the 
resulting surrogates become even more dissimilar from 
the original data, which might make it more likely for 
individual patterns to be recognized as being signifi-
cant. 

Of great importance is the timescale that is chosen to 
dither single events or to shift event trains or to disso-
ciate between short and long inter-event intervals: The 
resulting average displacement of an event should 
closely correspond to the timing precision that is used 
to define patterns to yield the best compromise be-
tween an extensive disarrangement of potentially coor-
dinated events and the preservation of rate modulations 
on slower timescales (for a brief discussion on this 
topic see Pipa et al. 2008; see also Pazienti et al. 
2008).373Three different methods of dithering single 
events as well as the described methods of shifting 
event trains with and without additional shuffling of 
inter-event intervals were applied to simulated data and 
real recordings and will be evaluated in the results 
section (see Appendix 2 for a formal description). 
None of them is however able to assess the signifi-
cance of pattern sequences. As mentioned before, these 
are statistically distinct from single spatiotemporal 
patterns and have to be tested independently. Since 
sequences are defined solely by a succession of pattern 
IDs irrespective of their temporal structure, we may 
generate appropriate surrogate data simply by random-
izing the order of IDs in circumscribed stretches of 
data (for convenience, the same intervals as for the 
calculation of the functional coupling of units are 
used), in this way eliminating any potential dependen-
cies between consecutive patterns while approximately 
preserving each pattern’s rate profile. Once the surro-
gate data are constructed, we can compare the original 
pattern and sequence counts to those that would be 
expected given independent events. 

1
2
3
4
5
1
6
7
8
1
9

10

P
a

tt
e

rn
 I

D

Time

a b

[ 1 3 1 7 8 10 ]

[ 1 3 1 7 8 ]

[ 1 3 1 7 ]

[ 1 3 1 ]

[ 1 3 ]

(1)

(3)

(1)

(7)
(8)

(10)



Chapter II – Methods 

———————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————— 

 27

 

 
Fig. II-3 Three different ways of creating surrogate data for testing the significance of coordinated events in parallel time series. Top 
traces depict original event trains, subjacent traces depict surrogate trains that have been derived from the original data (thin vertical bars: onset). 
(a) The time of every individual event is dithered randomly and independently on a certain scale, thereby destroying the temporal structure 
contained across as well as within event trains up to that scale. (b) Whole event trains are shifted randomly against each other, in that way elimi-
nating coordination of events up to the corresponding timescale while preserving the full auto-structure. (c) Same as in (b), but with additional 
random shuffling of consecutive inter-event intervals that are equal to or shorter than the maximal allowed shift (highlighted in light and dark 
gray). 

 
Statistical test 
 
If the null hypothesis was true, the numbers of repeat-
ing patterns and sequences extracted from the original 
data should be approximately the same in the surrogate 
data. To test the probability that the hypothesis holds, 
first the occurrences no of every repeating individual 
pattern and pattern sequence in the original data are 
counted and compared to the frequency of occurrence 
ns of the same pattern or sequence in the surrogate 
data. Testing every pattern and sequence individually 
is necessary to rule out that its appearance is merely 
due to the frequencies of its components, the signifi-
cance of the data as a whole notwithstanding. 

Under the null, no < ns and no > ns are equally likely. 
Given the distribution of surrogate counts, the statisti-
cal significance of any pattern or sequence could thus 
be estimated by testing the relative frequency of no > ns 
against the expected value of 0.5 with an appropriate 
binomial test. For example, an exact binomial test 
gives a probability of at most ~ 6.3 × 10-23 for 95 sur-
rogate counts out of 100 being lower than the original 
count by chance. A Bonferroni correction for multiple 
comparisons would in that case allow for ~ 7 × 1020 (!) 
parallel comparisons while maintaining a significance 
level of ~ 4.4% (likewise, the correction would allow 
for ~ 2 × 103 parallel comparisons at a significance 
level of ~ 4% if 19 surrogate counts from a total of 20 
were required to be lower than the original count). It 
follows that large numbers of individual tests may be 
performed in parallel at reasonable significance levels 
if a sufficient number of surrogate data sets are taken 
into account. As an alternative to the binomial test, a 
simple heuristic is therefore employed that inherently 
allows for multiple comparisons and considerably 
reduces the computational complexity: If at least 95% 
of the counts from the surrogate data fall below the 
original count, then H0 is rejected at a designated sig-
nificance level of 5% or less, and one can conclude that 
the original count is unusually high. The minimal nec-
essary number of surrogate data sets is accordingly 
given by the number of parallel tests and the desired 
significance level (see examples). After evaluation of 
their individual statistical significance, insignificant 
patterns and sequences are discarded. 

In a second step, the coordination of events is as-
sessed on a global level. To do so, every pattern and 
sequence that appears more than once in any surrogate 
data set is individually tested for significance in the 
very same way as those occurring in the original data, 
capitalizing on the assumption that the generation of 
the surrogate data did not affect the statistic under 
investigation and that all data sets, including the origi-
nal one, are essentially indistinguishable with regard to 
the patterning of events. As a result, every data set is 
characterized by a certain number X of patterns or 
sequences that recur unexpectedly often, given their 
frequencies in the rest of the data sets. Their combined 
occurrences 

∑
=

=
dX

i

idd nN
1

                               (3) 

 

(with ni being the number of occurrences of the ith 
pattern or sequence that is statistically significant on 
the individual level and d being the index of the re-
spective data set) are then subjected to a second level 
analysis to evaluate the overall significance of a coor-
dination of firing events in the original data. The null 
hypothesis is rejected on the global level if at least 
95% of the numbers N from the surrogate data fall 
below the number from the original data. 

Of course, only data that pass the second level test 
can be considered to contain coordinated firing pat-
terns, namely those patterns and sequences that have 
been found to be significant on the individual level. It 
has to be pointed out, though, that the original data 
might well be statistically distinguishable from the 
surrogate data despite lacking significant numbers of 
repeating patterns or sequences, because other statistics 
may be extracted as well and might prove to be differ-
ent. One example is the rate of joint-spike events cal-
culated per unit time and complexity (Fig. II-4). Here, 
however, the intention is to assess the significance of 
individual activity patterns based on a global evalua-
tion of the whole data set. 
 
Technical implementation 
 
The whole analysis including the detection and statisti-
cal evaluation of spatiotemporal firing patterns and

a b c



Chapter II – Methods 

———————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————— 

 28

 
Fig. II-4 Relative frequencies of joint-spike events depending on time and complexity. A sliding window was moved from spike to spike to 
collect groups of coincident spikes (joint-spike events) in parallel recordings of neuronal activity from rat visual cortex in vitro. Their frequency 
of occurrence is compared against the corresponding values from 100 surrogate data sets that have been obtained by randomly shifting the origi-
nal spike trains by an average amount of 5-7 ms. Relative frequencies are expressed on a logarithmic grayscale depending on the number of units 
per group (complexity) in data segments of one minute duration. The respective numbers of joint-spike events have been validated by an exact 
binomial test (50% gray indicates no significant difference between the original data and the surrogate data at a significance level of 0.05). (a) 
Data 1 recorded simultaneously from 101 units in 95 minutes. (b) Data 2 recorded simultaneously from 102 units in 95 minutes. 

 
pattern sequences was programmed in MATHEMATICA 

(Wolfram Research, Champaign, Illinois) as a single 
computational process. Adjustable parameters are the 
duration T of the intervals that form the basis for calcu-
lating the correlation matrix and for generating surro-
gate data, the size W of the temporal window that is 
used for the pattern detection, the precision τ of the 
registered spike timing, the criterion A for the peer 
validation, the width w of the dither window, the num-
ber of surrogate data sets, the desired significance 
level, and the maximal sequence length. All repeating 
patterns and sequences are saved in text files along 
with the statistical results for further analysis. 
 
Results 
 
The following subsections give an account of the sta-
tistical and computational properties of the method by 

applying it to simulated data and multielectrode record-
ings from slices of rat visual cortex. The main findings 
are that dithering event times with the “square root 
dither” method is likely to change the interval distribu-
tion in a way that produces inappropriate surrogate 
data, that the new resampling method proposed here 
yields a slightly lower rate of false positives and is 
significantly more sensitive than the methods it has 
been compared to, that the detection of patterns is 
considerably facilitated by the flexible search algorithm 
and the controlled separation of concurrent events, and 
that the associated computational load can easily be 
handled by a conventional personal computer. See 
appendices 3 and 4 for details regarding the generation 
of simulated data and the recording of spiking activity, 
respectively. 
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Fig. II-5 Effect of dithering event times on the interval distribution. (a, b and c) Simulated event trains were generated by gamma processes 
of order 4, and event times were dithered individually and independently using three different methods (number of surrogates: 100). The resulting 
average probability density functions (PDF) of the inter-event intervals (IEI) are shown in comparison with the original data and with theoretical 
interval distributions of gamma processes of orders 3, 4 and 5. (a) Event times were dithered randomly and uniformly within a symmetric win-
dow of maximally ± 20 ms, but assuring a “refractory period” of 1 ms between events. The average absolute displacement of an event resulted in 
4.1 ms. (b) Same as in (a), but allowing for an asymmetric window. The average absolute displacement of an event resulted in 6.1 ms. (c) Event 
times were dithered according to the “square root dither” method (Gerstein 2004) again using a maximal window of ± 20 ms and assuring a 
“refractory period” of 1 ms between events. The average absolute displacement of an event resulted in 3.9 ms. (d) Same as in (c), but dithering 
was applied to real spike trains recorded simultaneously from 67 units. The resulting average distribution of inter-spike intervals (ISI) is shown in 
comparison with the original data (bin size = 1 ms). The average absolute displacement of an event resulted in 6.1 ms. 

 
Effect of dithering event times on the interval  
distribution 
 
To elucidate potential complications when creating 
surrogate data by dithering event times independently, 
the impact of three different dithering procedures on 
the interval distribution was investigated (Fig. II-5). In 
the first instance, simulated event trains were generated 
by gamma processes of order 4 with a mean event rate 
of ~ 40 Hz, and a number of surrogates were construct-
ed using each method, always assuring a “refractory 
period” of 1 ms between events as an upper bound for 
their displacement (see Appendix 2). If event times are 
relocated randomly and uniformly within a symmetric 
window, short intervals are added to the probability 
distribution and its peak is lowered, in this way pro-
ducing surrogates with an inappropriately low number 
of repeating patterns (Fig. II-5a). If we allow for an 
asymmetric window, the effect gets attenuated and the 
resulting average probability density function exhibits 
more regular intervals, but still does not conform to the 
original data (Fig. II-5b). As previously shown by 
Gerstein167, randomizing the event timing within a 
window given by the square roots of the adjacent inter-
vals and squaring the resulting offset while keeping its 
sign accurately preserves the original interval distribu-
tion (Fig. II-5c). Ensuring a “refractory period” be-
tween events alone does not suffice, at any rate, to get 
appropriate surrogate data. 

Since neuronal firing statistics typically defy analyti-
cal formulation, we also examined the impact of dither-
ing event times independently on a distribution of real 
inter-spike intervals to check if it can be as accurately 
preserved as simulated interval distributions (Fig. II-
5d). Surrogate data were again constructed using the 
“square root dither” method167 while assuring a “re-
fractory period” of 1 ms between spikes. In contrast to 
simulated interval distributions, the examined distribu-
tion of real inter-spike intervals exhibits local minima 
and maxima and is conspicuously smoothed as a result 
of the dithering (the small peaks around 100 ms and 
200 ms are due to indirect electrical stimulation). It is 
unclear if and how this affects the number of repetitive 
patterns in the surrogate data, but one might suspect 
that locally decreasing the regularity of the intervals 
again produces inappropriately low pattern counts. 
 
Error levels in pattern detection and validation 
 
To assess the probability of false positives when pat-
terning of events is actually at chance level, sets of 30 
parallel simulated time series generated by inhomoge-
neous gamma processes were analyzed. Spatiotemporal 
patterns and sequences were detected and tested both 
during independent modulations and covariations of 
event rates using three different techniques for creating 
surrogate data (dithering single event times with the 
“square root dither” method and shifting event trains
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Fig. II-6 Error levels in pattern detection and validation. Sets of 30 parallel simulated time series were generated by gamma processes featur-
ing independent rate modulations (data type 1), rate covariations (data type 2) and precisely repeating spatiotemporal patterns and pattern se-
quences (data types 3, 4 and 5) (see Appendix 3 for further description). Error levels were estimated for each parameter combination based on 
100 independently simulated data sets. (a) Rate of false positives (mean ± SEM) when analyzing spatiotemporal patterns using 30 different 
pattern definitions given by ten different time windows W (5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 ms) and three different relative timing preci-
sions (10 bins, 5 bins and rank order). (b) Rate of false positives (mean ± SEM) when analyzing pattern sequences using the same pattern defini-
tions as in (a) three times each. (c) Detection rates of spatiotemporal patterns (mean ± SEM) calculated as the difference of significant pattern 
counts from data with and without additional patterns, normalized with respect to the number of inserted patterns, and averaged across 100 data 
sets using three different pattern definitions (5 ms window, timing precisions of 10 bins, 5 bins and rank order). (d) Test power for an excess of 
spatiotemporal patterns using a window W of 5 ms and timing precisions τ of 0.5 ms, 1 ms and 5 ms (rank order) as indicated (excess averaged 
across 100 data sets). (e) Test power for an excess of pattern sequences using the same parameters as in (d) (excess displayed as the standardized 
mean difference and averaged across 300 data sets). 

 
with and without additional interval shuffling, see 
Appendix 2) and 30 different pattern definitions corre-
sponding to the combinations of ten different time 
windows W (5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 
ms) and three different relative timing precisions (10 
bins, 5 bins and rank order) (cf. Fig. 1). The generation 
of the surrogate data was balanced such that the aver-
age displacement of an event always resulted in 6-8 
ms; also the remaining parameters were kept constant 
(significance level p ≤ 0.05, number of surrogate data 
sets: 20, absolute peer criterion: 2, maximal sequence 
length: 10). The rate of false positives is expressed as 
the mean percentage of 100 simulated data sets that 
passed the second level test. It turned out to be consid-
erably below 5% in all cases (Fig. II-6a, b), demon-
strating that the presented method constitutes a con-
servative statistical test for the evaluation of spatio-

temporal patterns and pattern sequences even when the 
instantaneous event rates closely covary. Interestingly, 
creating surrogate data by combined interval shuffling 
and event train shifting seems to produce a little less 
false positive estimates than shifting event trains alone 
or the “square root dither” technique (Fig. II-6a). 

To assess the test power of the method under various 
conditions, sets of 30 parallel simulated time series 
were analyzed that were generated by homogeneous 
gamma processes including different numbers of in-
serted recurring spatiotemporal patterns and pattern 
sequences (see Appendix 3 and Fig. 9 for details). The 
same three procedures for creating surrogate data as 
before together with three different pattern definitions 
(5 ms window, timing precisions of 10 bins, 5 bins and 
rank order) were used to uncover the hidden structure 
in the parallel event trains. Again, the generation of the 
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surrogate data was balanced such that the average 
displacement of an event resulted in 6-8 ms. The re-
maining analysis parameters were retained as well 
(significance level p ≤ 0.05, number of surrogate data 
sets: 20, maximal sequence length: 10) except for the 
absolute peer criterion which was matched to the fre-
quencies of the inserted patterns (A = 5 when patterns 
appeared every second, A = 1 when patterns appeared 
every five seconds). 

First of all the number of significant spatiotemporal 
patterns from data containing precisely repeating pat-
terns was compared to the number from data that had 
been simulated using the same parameters but featuring 
rate covariations instead of predefined patterns at cor-
responding positions (Fig. II-6c). As expected, the data 
containing precise patterns exhibit an excess of signifi-
cant patterns on the investigated timescales. Remarka-
bly, this holds both for original and for surrogate data, 
indicating that randomly varying the event timing by 
an average amount that only slightly exceeds the time-
scale on which events are coordinated still preserves 
some patterning of events on that same scale (compare 
Pazienti et al. 2008). Nevertheless, the surrogate data 
contain smaller numbers of significant patterns than the 
original data, particularly if patterns are not masked by 
collateral events. The relative rate of significant pat-
terns decreases with a decreasing absolute number of 
inserted patterns and increases drastically if all unrelat-
ed events are removed from the patterns, emphasizing 
the importance of separating concurrent but independ-
ent events. Furthermore, the detection rate is always 
higher when shifting complete event trains to produce 
surrogate data as compared to dithering single events 
with the “square root dither” method (p < 0.02, exact 
binomial test), and it is yet higher when additional 
interval shuffling is applied in cases where patterns are 
masked by concurrent events (p < 0.03, exact binomial 
test), especially if pattern rates are low. A controlled 
combination of shifting whole event trains and shuf-
fling inter-event intervals thus seems to be advanta-
geous over previous resampling methods, particularly 
under statistically more demanding conditions. (Note 
that the displayed detection rates do not directly reflect 
the fraction of inserted patterns that have been found to 
be significant. In fact, every pattern that repeats with-
out collateral events will be detected.) 

The test power is expressed as the percentage of 100 
simulated data sets that passed the second level test 
(Fig. II-6d, e). For spatiotemporal patterns, it reaches 
80% at an excess of patterns in the original data of 
about 20% as compared to the surrogate data and 
strongly depends on the pattern rate, the separation of 
patterns from unrelated events, and the adaptation of 
the registered timing precision to the actual precision 
of the patterns (Fig. II-6d). The same is true for pattern 
sequences which require an excess of approximately 1-
2 standard deviations to be reliably detected (Fig. II-
6e). The choice of the method for creating surrogate 
data does not seem to substantially influence the test 
power, except for the “square root dither” technique of 
dithering event times independently which is superior 
if pattern rates are high and inferior if pattern rates are 

low. Considering the fact that on average no more than 
11.8% (SD 1.2) and 2.6% (SD 0.3) of the events were 
coordinated in data featuring high and low pattern 
rates, respectively, it appears that the presented method 
has impressive power to detect precisely repeating 
patterns. Nonetheless, it relies heavily on the correct 
isolation of spatiotemporal patterns and the matching 
of the timescales on which events are coordinated and 
registered, most notably when sequences of patterns 
are concerned. From this perspective, having the possi-
bility to accurately specify the event timing in spatio-
temporal patterns with arbitrary precision, as provided 
by the method presented here, is essential. 
 
Selectivity in pattern detection and validation 
 
To evaluate the performance of the method when ana-
lyzing real data and varying the way of detecting or the 
way of validating patterns, the dependence of the num-
ber N of significant patterns and sequences on the peer 
criterion A, the method for creating surrogate data, and 
the number of surrogates was investigated from paral-
lel recordings of neuronal spiking activity (Fig. II-7). 
The data were scanned for repeating patterns and se-
quences using ten different time windows W (5, 10, 15, 
20, 25, 30, 35, 40, 45 and 50 ms) and three different 
relative timing precisions (10 bins, 5 bins and rank 
order) for representing patterns, a significance level of 
p ≤ 0.05, a maximal sequence length of 10, and an 
interval T of 1 minute as the basis for calculating the 
correlation matrix and for generating surrogate data. 
The generation of the surrogate data was balanced such 
that the average displacement of a spike always result-
ed in 5-9 ms. 

Applying a global peer criterion in addition to the 
threshold given by equation (1) and varying it between 
1 (no further splitting) and 8 (at least eight coincident 
spikes within one minute required to label peers as 
valid) has a dramatic effect on the numbers of signifi-
cant patterns and sequences (Fig. II-7a), clearly indi-
cating that the proposed method of extracting subpat-
terns from larger spatiotemporal patterns can improve 
pattern detection. Given the data and the chosen time 
interval T, the largest number of significant spatio-
temporal firing patterns could be detected using a peer 
criterion of 2, suggesting that the expected numbers of 
coincident spikes per unit pair have in some cases been 
calculated to be smaller. Further incrementing the 
criterion essentially removes more and more units from 
the patterns and increasingly impairs their information 
content, so that their numbers of occurrences approxi-
mate chance level. Sequences of patterns, however, 
apparently become increasingly significant if the 
threshold for labeling peers as valid is raised, and the 
distance between original and surrogate counts is con-
currently growing. 

Creating surrogate data by randomly shifting the 
spike trains against each other yields marginally less 
significant spatiotemporal firing patterns if additional 
interval shuffling is applied, but the difference is prac-
tically negligible (Fig. II-7b). In contrast, dithering 
single spike times with the “square root dither” method 
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Fig. II-7 Dependence of the number N of significant patterns and pattern sequences on analytical parameters. Multineuronal spiking 
activity was scanned for spatiotemporal patterns using 30 different definitions given by ten different time windows W (5, 10, 15, 20, 25, 30, 35, 
40, 45 and 50 ms) and three different relative timing precisions (10 bins, 5 bins and rank order). The numbers of significant patterns and sequenc-
es were normalized to be comparable across data sets (mean ± SEM across 10 data sets and 30 pattern definitions). Stars denote a significant 
difference between original and surrogate data (� p < 0.004, �� p < 0.00007, exact binomial test). (a) Counts depending on the absolute peer 
criterion A applied in addition to the threshold given by equation (1) (number of surrogates: 20, surrogate data generated by combined spike train 
shifting and interval shuffling). (b) Counts depending on the surrogate data type (1: shifting spike trains, 2: dithering individual spike times with 
the “square root dither” method, 3: shifting spike trains and shuffling intervals, number of surrogates: 100, absolute peer criterion: 2). Original 
counts are displayed in dark gray, surrogate counts in light gray. (c) Counts depending on the number of surrogates (absolute peer criterion: 2, 
surrogate data generated by combined spike train shifting and interval shuffling). 
 
while assuring a refractory period of 1 ms between 
spikes significantly increases the average number of 
significant patterns in original data and decreases the 
average number in surrogate data compared to the 
other techniques (p < 8 × 10-28, exact binomial test), 
possibly due to smoothing of the inter-spike interval 
distribution which likely introduces a bias towards less 
repeating patterns. Since sequences of patterns are 
evaluated independently of the significance of individ-
ual patterns, the numbers of significant sequences are 
unaffected by the type of surrogate data used to vali-
date spatiotemporal patterns. Increasing the number of 
surrogates markedly reduces the average significant 
pattern counts obtained both from original data and 
from surrogate data by about the same amount (Fig. II-
7c), reflecting the fact that the significance estimation 
becomes increasingly conservative. 

Comparing the counts from original data and from 
surrogate data shows that randomly displacing spikes 
by only a few milliseconds leads to a significant drop 
of repeating spatiotemporal firing patterns within a 
wide range of parameters (Fig. II-7), demonstrating a 
remarkably precise coordination of multineuronal 
suprathreshold activity in the local cortical circuitry. 
Moreover, directly consecutive firing patterns are or-
ganized to a significant degree into repetitive sequenc-
es, revealing some superordinate temporal structure 
beyond the cell assembly concept. Importantly, repeat-

ing firing patterns and repeating sequences of patterns 
occur both spontaneously and in response to electrical 
stimulation, suggesting that they are an inherent feature 
of intracortical signaling. 
 
Computational demands 
 
To illustrate the computational requirements of the 
method, the memory consumption and the processing 
time for a complete analysis of two example recordings 
of multineuronal spiking activity was measured de-
pending on the number of surrogate data sets and the 
window size W used for pattern detection (Fig. II-8). 
The data were scanned for spatiotemporal firing pat-
terns and pattern sequences using the temporal order of 
spikes to define patterns and a maximal sequence 
length of 10. Surrogate data were constructed by com-
bined spike train shifting and interval shuffling. The 
computation was carried out as a single process on a 
32-bit machine with a "Pentium 4" CPU running at 2.4 
GHz using MATHEMATICA version 5.2. 

As projected, the processing time grows linearily 
with the number of surrogates and strongly depends on 
the average pattern complexity that results from the 
applied window size and the spike rate (Fig. II-8a). The 
same approximately holds for the memory consump-
tion (measured using the MATHEMATICA command 
“MaxMemoryUsed”), but here the slope accompanying
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Fig. II-8 Computational demands of the analysis. Parallel record-
ings of multineuronal spiking activity were scanned for significant 
spatiotemporal firing patterns and pattern sequences using the tem-
poral order of spikes to define patterns. Data 1 comprises ~ 194000 
spikes recorded simultaneously from 66 units in 96 minutes, data 2 
comprises ~ 93000 spikes recorded simultaneously from 73 units in 
96 minutes. (a) Dependence of the processing time on the number of 
surrogates and the window size used for pattern detection. (b) De-
pendence of the memory consumption on the number of surrogates 
and the window size used for pattern detection. 

 
an increase in the number of surrogate data sets is less 
pronounced (Fig. II-8b). The absolute values show that 
the computational load can be handled with ease by a 
single personal computer, even in the case of large data 
sets. 

 
Discussion 
 
The quest for the neuronal code has led to extensive 
controversies about the relevant timescales and particu-
lar organization of neuronal firing and is commonly 
considered an unresolved issue25,92,128,129,175,429,449. To 
achieve a complete understanding of neuronal infor-
mation processing, we need to precisely characterize 
the dynamic dependencies between cells and the tem-
poral relationships between their discharges beyond 
pairwise correlations24,54,198. 

For this purpose, I presented a straightforward and 
computationally efficient method for detecting tempo-
rally coordinated firing events in parallel spike trains. 
The method is generally applicable and implies no 
assumptions about the statistical properties of the data 
or the spatiotemporal structures contained therein. 
Focussing on the activation sequence of cells, activity 
patterns are captured on arbitrary timescales and may 
or may not show signatures of functional cell assem-
blies, synchrony, synfire chains or synfire braids. By 
utilizing carefully modified versions of the original 
spike trains to assess the significance of any detected 

activity pattern, the method allows for variability and 
sparseness of spiking events as well as the analysis of 
very short data segments. The temporal offset of events 
in the surrogate data selectively separates the time-
scales on which coordination of spikes is disturbed and 
preserved, respectively, and provides a means to direct-
ly address the temporal coding and rate coding hypoth-
eses. In effect, the method acts as a filter revealing 
repetitive spatiotemporal patterns and pattern sequenc-
es amongst distributed discharges, yielding a compre-
hensive description of the neuronal activity on the 
selected timescales. Through a subsequent analysis of 
significant patterns, coordinated firing may be charac-
terized in relation to neuronal state changes and infor-
mation processing with single-spike resolution. First 
results obtained in the analysis of simultaneous record-
ings from rat visual cortex demonstrate a millisecond-
precise coordination of neuronal spiking and reveal 
some superordinate patterning beyond the cell assem-
bly concept. 

Conceptually, the method is not restricted to the 
analysis of multiple spike trains. In principle, any par-
allel time series can be investigated just by adapting 
the temporal scales. For example, stimulus times or 
behavioral events may readily be included. Another 
possible application area is the analysis of so-called 
multi-voxel patterns in functional magnetic resonance 
imaging data358. In the following, the method is con-
trasted with existing approaches, and a number of 
related issues is discussed in more detail. 
 
Comparison with other methods 

 
Common approaches in the analysis of correlational 
structures in parallel spike trains differ with respect to 
the particular property in question. While this paper 
deals with the detection of spatiotemporal firing pat-
terns, other methods investigate the functional coupling 
between neurons on longer timescales43,259,296 or con-
centrate specifically on synchronous firing187-189,253,381. 
It is important to further distinguish the method pre-
sented here from methods trying to identify genuine 
higher order correlations between neurons191,317,419,433,474. 
Whereas the latter aim at discovering multineuronal 
interactions, the focus of the present work is more 
directed towards dynamically changing activity pat-
terns arising from these interactions. 

To date, only a few publications have specifically 
addressed the issue of detecting and evaluating spatio-
temporal firing patterns. In a pioneer work, Abeles and 
Gerstein developed a method to capture precisely re-
peating spike patterns and estimate the significance of 
classes of patterns including up to six spikes using a 
parametric approximation5. Although partly relying on 
the same statistical assumptions, Tetko and Villa sub-
sequently resolved the limit on the complexity of the 
patterns485 and succeeded in assigning significance to 
patterns that had been grouped by matching single 
occurrences with a predefined template486. A different 
approach was pursued by Frostig and colleagues who 
collected significant patterns of increasing complexity 
in a cascaded fashion using Fisher’s exact test151. In the
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original formulation, higher order patterns are only de-
tected if all subpatterns formed by at least three spikes 
are themselves statistically significant (including all 
possible configurations would lead to an unmanageable 
combinatorial explosion). Along similar lines, Sastry 
and Unnikrishnan proposed to identify frequent tem-
poral patterns by incrementally assembling larger pat-
terns from smaller ones that have been found to be 
significant under some stationarity assumptions415. 

Instead of looking for temporally precise repetitions 
of multineuronal firing patterns, Lee and Wilson em-
phasized the significance of the activation order of 
neurons and presented an elegant way to quantify and 
statistically rate the degree of matching between a 
found firing sequence and a preselected reference pat-
tern280 (see also Smith et al. 2006, 2010). Yet another 
avenue to uncovering hidden structure in multineuronal 
spiking is to identify the predominant activity pattern. 
Yamada et al. took an information theoretic approach 
to reconstruct the directed functional connectivity 
among a number of neurons, including exact delays546. 
Nikolić and co-workers exploited pairwise measure-
ments of characteristic temporal relations to detect 
more complex firing sequences, expressed as precise 
inter-spike intervals420 or relative temporal order of 
spikes353. Analyses of this kind are suited to detect 
differences in the preferred firing sequences between 
different experimental conditions, but they fail to re-
produce the full dynamics of neuronal interactions 
within short time intervals. So, none of these methods 
is designed to systematically search for all repeating 
spatiotemporal patterns on any given timescale and 
evaluate them both individually and globally without 
making any statistical assumptions, quite contrary to 
the method presented here. 

The work by Gerstein and colleagues has hitherto 
been the only attempt to provide a way for directly 
detecting superordinate activity patterns forming syn-
fire chains173,422. The authors utilized specially devised 
recurrence plots to indicate pairs of temporal bins con-
taining approximately repeating firing patterns across 
the whole population of recorded neurons. Synfire 
chains can readily be identified if the repeating patterns 
are not masked by too many concurrent spikes from 
cells that do not participate in the same link, if the 
applied bin width matches the temporal organization of 
the chain, and if the interlink propagation delays are 
stable (as postulated for synfire chains). In contrast, I 
propose to register spatiotemporal firing patterns with a 
sliding window in the first instance and to subsequent-
ly search for recurring sequences of temporally non-
overlapping patterns irrespective of their particular 
spatiotemporal structure, trying to make as few as-
sumptions about the organization of multineuronal 
activity as possible. 
 
Pending problems in pattern detection 

 
Any way of defining the identity of a pattern, be it by 
using some template for the pattern search or by speci-
fying the pattern as it is captured, inevitably poses the

problem of where to draw the line between similar 
patterns. For example, it is completely unclear how to 
divide a continuum of patterns if the classification 
scheme permits missing or extra spikes. The same 
principle applies to registering the spike timing: The 
assignment of exclusive time bins, even the usage of 
“smooth” templates imposes perfectly arbitrary bound-
aries on the temporal patterns to be detected. For these 
reasons, it is most straightforward to require patterns to 
contain no extra or missing spikes to be unambiguous-
ly identified, and it appears that the only way to avoid 
temporal aliasing effects is to specify spike times sole-
ly by their temporal order. 

Another problem, as mentioned earlier, is the mutual 
masking of concurrent but independent patterns. To 
reliably unravel simultaneously occurring but unrelated 
patterns, one would have to systematically list all pos-
sible subpatterns and to subsequently distill the signifi-
cant ones. If more than a few units are involved, the 
resulting combinatorial explosion may however render 
the computation impractical. Therefore, I propose to 
group simultaneously active cells according to their 
joint firing probabilities, which essentially produces a 
subset of all possible subpatterns. In doing so, some 
significant patterns might however be missed, and the 
overall significance of the data might be underestimat-
ed, resulting in reduced test power (Fig. II-6). The 
functional coupling between cells can easily be as-
sessed by comparing the number of synchronous spikes 
to the chance level of coincident firing as estimated by 
equation (1), assuming serial independence and sta-
tionarity of firing events. As an alternative, one could 
employ conventional cross-correlation techniques, 
among which information theoretic approaches seem to 
be most sensitive547. Both methods fail to give mean-
ingful results if events are scarce, which is why an 
additional global threshold with respect to the joint 
firing probabilities was implemented to identify each 
neuron’s peers. Besides, other methods to quantify the 
correlation between two spike trains exist which may 
as well be applied, like for example fitting pairwise 
maximum entropy models to the data408 or determining 
the degree of synchrony between spike trains (for a 
comparison of different innovative measures see Kreuz 
et al. 2007).269The particular advantage of the method of 
estimating the time-dependent functional coupling 
between cells proposed here is its technical simplicity 
and ease of computation. Despite its heuristic charac-
ter, it has clearly demonstrated its potential to improve 
pattern detection (Fig. II-7a). Nevertheless, the thor-
ough evaluation of all possible combinations of events 
that coincide in the given time window is to be pre-
ferred whenever it is technically feasible. 
 
Statistical issues 

 
Since the complexity of multineuronal spiking activity 
typically prevents analytical approaches, resampling 
methods have to be applied to test a certain null hy-
pothesis186,473. Here, three different surrogate data types 
for testing the significance of coordinated events in



Chapter II – Discussion 

———————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————— 

 35

parallel time series were compared (Fig. II-3). Dithering 
event times randomly and independently almost inevi-
tably changes the interval distribution and introduces a 
bias towards inappropriately low levels of coordination 
if uniform dithering is used, regardless of whether the 
dither window is always centered on the event or not 
(Fig. II-5a, b). The only known technique that random-
izes event times independently and at the same time 
does not significantly change the interval distribution 
of a gamma process is the “square root dither” method 
proposed by Gerstein167 (Fig. II-5c). However, this 
technique conspicuously flattens the more modulated 
distribution of real inter-spike intervals (Fig. II-5d), 
rendering them less regular. As a consequence, the 
surrogate data can again be expected to contain an 
inappropriately low number of coordinated events, 
which in turn would result in an increased number of 
spuriously detected patterns in the original data (Fig. 
II-7b). 

If the intention is to disarrange coordinated events, I 
therefore suggest to randomly shift whole event trains 
against each other, preferably in combination with 
random shuffling of short inter-event intervals (Fig. II-
3b, c). While preserving the complete auto-structure is 
the only way to perfectly account for effects of e.g. 
spike bursts or oscillatory processes on the apparent 
coordination of events, shuffling selected intervals in 
addition to shifting event trains increases the distance 
between original data and surrogate data and markedly 
facilitates the detection of patterns (Fig. II-6c). At the 
same time, the surrogates also become more dissimilar 
from each other, which leads to an increased number of 
statistically significant patterns in every surrogate data 
set and makes the second level test slightly more con-
servative with respect to the original data (Fig. II-6a, 
d). Recently, Harrison and Geman presented the idea to 
randomly and independently shift segments of spike 
trains so that inter-spike intervals are changed only in 
between them201. How such a procedure affects the 
validation of patterns and the corresponding error lev-
els remains to be investigated. 

Several factors inherent in the presented method 
should be highlighted that tend to result in conservative 
estimates of the significance of patterns: First, patterns 
of a higher complexity may be split into multiple pat-
terns with lower complexity as a consequence of the 
surrogate data generation (reflected in Fig. II-4) which 
may produce misleadingly high numbers of repeating 
patterns in the surrogate data. Second, the surrogate 
data sets are more dissimilar from each other than from 
the original data, because the original data constitutes 
their common source. This consequently implies an 
increased potential to contain unique, statistically sig-
nificant patterns, introducing a bias towards higher 
pattern counts in the surrogate data. The finding that 
under certain circumstances the original data contain 
significantly less repeating patterns than the respective 
surrogate data (Fig. II-6d) is arguably attributable to 
these first two factors. A third potential source of con-
servative estimates is the statistical test itself: Directly 
calculating the percentage of counts from the surrogate

data that fall below the original count is the most sim-
ple test one might think of. When applying this test, 
one might confidently do so without explicitly correct-
ing for multiple comparisons. The same does not hold 
if more refined tests are used, like for example the 
binomial test, which is perfectly applicable and may 
serve as an alternative but would clearly require a 
correction. The t-test, like the Wilcoxon signed rank 
test, is unsuited because of its sensitivity to skewed, 
discontinous distributions476 and especially inapplica-
ble if many zero counts generate a floor effect, as is to 
be expected when looking for complex patterns. 

Because the statistical significance of individual pat-
terns and sequences is assessed based on the overall 
number of their occurrences in the whole data set, they 
may be significant despite being rare; all that matters 
for them to be detected as being non-random is that 
they occur significantly more often in the original data 
than in the surrogate data, irrespective of other criteria 
like their particular time of occurrence or their com-
plexity. This distinguishes our method from others in 
which the statistical evaluation is based on trials or 
relies on an exact calculation of the probability of 
occurrence under the null hypothesis. In the presented 
Monte Carlo approach, the chance level of pattern and 
sequence occurrences is derived directly from the orig-
inal data, thus avoiding the “curse of dimensionality” 
inherent in many other approaches that relate the origi-
nal data to some exact model and require larger data 
volumes for assessing the significance of complex 
patterns. Besides, effects of firing rate on the statistical 
performance of the method are minimized by disre-
garding all but the first spike of every unit inside the 
respective time window and can further be counteract-
ed by adapting the parameters for the pattern search. In 
conclusion, there are no specific requirements regard-
ing the minimum amount of investigated data, although 
the probability of a rare pattern to recur and thus to be 
detected clearly increases with increasing recording 
time. 
 
Possible technical improvements 

 
Although the analysis has been programmed as a single 
computational process, it can easily be adapted to par-
allel computing environments by insertion of only a 
few extra commands that distribute the separate Monte 
Carlo steps over the available cores. In the very near 
future, the use of multi-core systems and the integra-
tion of general-purpose GPUs will enable the evalua-
tion of data comprising hundreds of thousands of 
events in at most a few minutes. At the same time, the 
availability of 64 gigabytes of working memory or 
more in a single workstation should make it possible to 
systematically analyze all spatial subpatterns and hence 
to directly detect genuine higher order correlations 
between units also in large data sets. After all, the 
problem of detecting significant spatiotemporal pat-
terns in massively parallel time series is not a concep-
tual one, but one of computational resources. 
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Fig. II-9 Spike raster plots exemplifying simulated data segments including inserted spatiotemporal patterns and pattern sequences. 30 
parallel spike trains were generated by gamma processes with rate parameter β = 49 and random shape parameter α = 0.7-7. Patterns consisted of 
5 spikes with millisecond intervals and followed each other with an onset delay of 50 ms, giving rise to a synfire chain-like structure made up of 
6 distinct patterns with exactly 1 spike per unit (periods of pattern occurrences highlighted in gray). (a) Some events co-occur by chance with the 
inserted patterns, complicating their detection (data types 3 and 4). (b) Events concurrent to but not participating in the inserted patterns have 
been removed to ensure the correct identification of the patterns (data type 5). 

 
Appendix 1: Derivation of the rate-based chance 
level of spurious coincidences 
 
Let ni

(T) be the (known) number of events of unit i in 
time interval T, then the number ki

(W) of events of unit i 
in time window W (with W < T) can be approximated 
as 
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k =                              (4) 

 

assuming serial independence and stationarity of 
events. Under the condition that T/W ≥ ni

(T), the proba-
bility P of coinciding events of M different units la-
beled 1...M in time window W is 
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Since T/W is the number of time windows W in time 
interval T, multiplying equation (5) with this number 
gives the expected number of coincidences of M dif-
ferent units in time interval T: 
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Insertion of equation (4) and conversion yields 
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In the case of M = 2, equation (7) becomes 
 

(T)
j

(T)
i

(T)
ij n n

T

W
P =                            (8) 

 
with Pij

(T) being the expected number of coincidences 
of units i and j in time interval T, and ni

(T) and nj
(T) 

being the numbers of events of units i and j in time 
interval T. 

Appendix 2: Surrogate data generating procedures 
 
Formally, the methods for generating surrogate data 
are expressed as follows. Definitions include ti being 
the ith timestamp of an event train t1...n with n events 
labeled 1...n, the preceding inter-event interval δp = ti – 
ti-1, the subsequent inter-event interval δs = ti+1 – ti, the 
maximal width w of the dither window, and a random 
number r ∈ �. 

Single event times were dithered randomly and inde-
pendently according to 
 

r tt i

S

i +=
)( .                              (9) 

 
The random number r is bounded above by υs and 
below by –υp such that –υp ≤ r ≤ υs. The bounds were 
defined depending both on the adjacent inter-event 
intervals and on w. When the resulting dither window 
was required to be centered on the event (“symmetric 
dither”), the bounds were specified corresponding to 
 

υp = υs = min(δp – 1 ms, δs – 1 ms, w) / 2.    (10) 
 
In cases where the window center was allowed to devi-
ate from the time of the event (“asymmetric dither”), 
the bounds were calculated independently from each 
other: 
 

υp = min(δp – 1 ms, w) / 2,                (11) 

υs = min(δs – 1 ms, w) / 2.                (12) 
 
In both cases, the probability for an event to occur is 
distributed uniformly over the dither window. By con-
trast, the “square root dither” method (Gerstein 2004) 
relocates event times randomly within a window that is 
composed of the square roots of υp and υs as given by 
equations (11) and (12): 
 

2 / ) ms, 1 min( wpp −= δυ ,                (13) 

2 / ) ms, 1 min( wss −= δυ .                (14) 
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The offset r results from drawing a random number q 
∈ {–υp; υs} and squaring its absolute value while keep-
ing its sign, such that r = q × | q | with |...| denoting the 
absolute value. 

Event trains were shifted randomly and independent-
ly according to 
 

r tt n

S

n += ...1
)(

...1                          (15) 
 
with –w/2 ≤ r ≤ w/2. When additional interval shuffling 
was applied, consecutive inter-event intervals δ ≤ w/2 
were randomly rearranged. 
 
Appendix 3: Data simulation 
 
Sets of 30 parallel simulated spike trains were generat-
ed on biologically plausible timescales by gamma 
processes featuring independent rate modulations (data 
type 1), rate covariations (data type 2) and precisely 
repeating spatiotemporal patterns and pattern sequenc-
es (data types 3, 4 and 5). By default, the rate parame-
ter was fixed (β = 49), while the shape parameter (or-
der) varied randomly between 0.7 (bursty) and 7 (regu-
lar) for any given spike train, resulting in mean firing 
rates of ~ 3-30 Hz. In rate modulated data (data type 
1), the rate parameter was changed to a random value 
between 24 and 74 for five consecutive inter-event 
intervals chosen randomly from every twenty-five 
inter-event intervals, resulting in transient firing rates 
of ~ 2-60 Hz. Rate covariations (data type 2) were 
realized by jointly randomizing the rate parameter 
between 24 and 74 for one second every five seconds. 
Exactly repeating spatiotemporal spike patterns, ar-
ranged in a synfire chain-like structure (Fig. II-9), were 
inserted into the data every second (data type 3) or 
every five seconds (data types 4 and 5), leading to an 
average fraction of coordinated events of 11.8% (SD 
1.2) and 2.6% (SD 0.3), respectively. Importantly, a 
distinction is made between data containing spikes 
concurrent to but not participating in the inserted pat-
terns (data types 3 and 4, Fig. II-9a) and data with 
these events removed (data type 5, Fig. II-9b). The 
spike trains were truncated at 50 seconds and divided 
into 5 second intervals as the basis for calculating the 
correlation matrix and for generating surrogate data. 
 
Appendix 4: Data acquisition 
 
Coronal slices (400 µm) were prepared from visual 
cortices of juvenile (P17–22) Wistar rats. Recordings 
were performed at 37° C in a submersion chamber 
continuously perfused with oxygenated artificial cere-
brospinal fluid containing (in mM) 110 NaCl, 3.75 
KCl, 1.25 NaH2PO4, 25 NaHCO3, 1 CaCl2, 1 MgCl2, 
and 17.5 glucose. In certain periods, carbachol (20 or 
50 µM), bicuculline (30 µM), CGP-35348 (10 µM) 
and KCl (10 mM) were added. In addition, intermittent 
electrical stimulation was applied to layer IV or layer 
V cells using a 59-electrode array (Multichannel Sys-
tems, Reutlingen, Germany) with flat electrodes spaced 
at 200 µm, integrated in the bottom of the chamber. 
One to three electrode pairs were selected for weak 

bipolar stimulation (rectangular pulse, ± 100 or ± 200 
µA, 200 µs) of the neuronal tissue at frequencies rang-
ing from 0.5 to 40 Hz using a programmable stimulator 
(STG 1008, Multichannel Systems). 

Spontaneous and evoked activity was recorded with 
a silicon-based multielectrode array (Bionic Technolo-
gies, Salt Lake City, Utah) consisting of 1.5 mm long, 
sharpened electrodes arranged in a regularly spaced 
(tip distance 400 µm) matrix. The recording electrode 
tips (2 µm diameter, 0.1–0.8 MΩ impedance at 1 kHz) 
were placed in the middle of the slice and covered an 
area of 3.2 mm horizontally and 1.2 mm vertically, 
including all six cortical layers. Single-unit spiking 
activity was extracted from 32 sampled channels by 
offline sorting. The analysis encompasses data ob-
tained from 10 animals comprising between ~ 40000 
and ~ 270000 spikes recorded simultaneously from 56 
to 125 units in 40 to 120 minutes. 
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Chapter III 

 
 
 

Organization of cell assemblies in the neocortex 
 
 
 
Introduction 
 
Information processing in the cerebral cortex involves 
the coordination of distributed neuronal activity on a 
fine temporal scale91,204,236,405,436,505. The intrinsic spati-
otemporal organization of these coordinated activity 
patterns as well as the neural mechanisms responsible 
for their coordination are subjects of intense investiga-
tion47,92,155,198,389,457. Specifically, the temporal coordi-
nation of distributed responses may be assisted by 
network oscillations that tend to adjust the timing of 
action potentials and potentially link neurons into syn-
chronous assemblies68,116,142,218,275,521. However, disen-
tangling the role of network rhythms and of the func-
tional network architecture is complicated by the fact 
that oscillations are an emergent network property and 
cannot be selectively suppressed without affecting the 
excitability of subpopulations of cells, which would 
fundamentally alter the functional organization of the 
whole system65. 

One option to study the temporal coordination of dis-
tributed neuronal activity in the absence of neural 
rhythms but without affecting neuronal excitability is 
to record from brain slices. Whereas in vivo neural 
networks may display rich oscillatory dynamics, in 
vitro preparations generally lack network oscillations 
unless being activated by appropriate pharmacological 
or electrical stimulation. Until now, approaches to 
record multineuron activity from cortical slices with 
single cell resolution relied on calcium imaging at a 
temporal resolution of typically 0.1 to 1 seconds 
86,227,305. In the only study monitoring the activity of 
multiple single cells on a millisecond timescale, Mao 
and colleagues recorded calcium signals corresponding 
to single action potentials from up to fourteen neigh-
boring neurons in layer 5 of the primary visual cortex 
of the mouse and found significant correlations at both 
short (3-11 ms) and long (up to several seconds) de-
lays311. Direct simultaneous recordings of the electrical 
activity of multiple single cells in cortical slices have 
not yet been systematically explored. 

The work presented here fills this gap by using mul-
tiple electrodes to simultaneously record the electrical 
activity of multiple spatially distributed neurons in 
slices of the visual cortex of the rat. For this purpose, a 
novel experimental setup has been designed to record 

spikes from cells at any depth in the slice using a ma-
trix of sharpened silicon electrodes. Spontaneous and 
electrically evoked activity was recorded in parallel 
from all six cortical layers of both areas 17 and 18a 
under different pharmacological conditions. 

To give a comprehensive description of the observed 
spiking activity, a recent method for the detection and 
evaluation of multineuronal temporal patterns in paral-
lel spike trains is employed that uncovers coordinated 
activity on arbitrary timescales and investigates if short 
firing patterns are arranged in coherent sequences (see 
Chapter II). The precision and spatiotemporal pattern-
ing of concerted neuronal firing is characterized by 
systematically searching for significant coactivations 
on timescales ranging from 0.5 to 50 milliseconds. It is 
shown that even in the absence of oscillatory timing 
and external stimulation, cortical spiking activity tends 
to be precisely synchronized with the composition of 
the synchronous assemblies depending on the functional 
state of the network. Moreover, assemblies activated in 
direct succession are organized to a significant degree 
into repeating sequences, revealing some superordinate 
temporal structure beyond the level of individual cell 
assemblies. These findings provide new insights into 
the intrinsic dynamics of the cortical circuitry and 
might have profound implications for cortical coding in 
general. 
 
 

Methods 
 
Slice preparation 
 
Juvenile Wistar rats aged 17 to 22 days were quickly 
decapitated under isoflurane anesthesia and their brains 
carefully removed and placed in ice-cold low-calcium 
artificial cerebrospinal fluid (ACSF) containing (in 
mM) 100 NaCl, 2.5 KCl, 1.25 NaH2PO4, 25 NaHCO3, 
0.5 CaCl2, 6.5 MgCl2, and 25 glucose, saturated with 
carbogen (5% CO2, 95% O2). Coronal slices (400 µm) 
of the visual cortex were cut on an HR2 vibratome 
(Sigmann Elektronik, Heidelberg, Germany) and incu-
bated at 37° C for 30 to 60 minutes before being trans-
ferred to the recording stage. Recordings were per-
formed at 37° C in a submersion chamber where slices 
were continuously superfused at 5 ml/min with ACSF 
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of slightly different composition (in mM): 110 NaCl, 
3.75 KCl, 1.25 NaH2PO4, 25 NaHCO3, 1 CaCl2, 1 
MgCl2, and 17.5 glucose, also saturated with carbogen 
(5% CO2, 95% O2). Osmolarity was confirmed to be 
290 mosmol l–1 and pH to be 7.4 in both solutions. 
 
Stimulation 
 
The first experimental condition was characterized by 
the absence of neuromodulators in the solution. To 
induce a distinct functional state of the network, the 
cholinergic agonist carbachol (CCH) was added to the 
ACSF (20 or 50 µM) in certain periods. The resulting 
activation of muscarinic receptors is known to change 
the dynamics in cortical circuits by attenuating excita-
tory as well as inhibitory synaptic transmission while 
increasing the excitability of some neurons and hy-
perpolarizing others260,261,345,544. To examine the role of 
inhibition in coordinating distributed discharges, a 
(presumably) complete blockade of GABAA and 
GABAB receptors was established by concurrent appli-
cation of bicuculline (BIC, 30 µM) and CGP-35348 
(CGP, 10 µM) during the final period of some record-
ings (n = 8). At the same time, the concentration of 
KCl was elevated to 10 mM to facilitate depolarization 
of cells. All drugs were obtained from Sigma-Aldrich 
(Taufkirchen, Germany). 

To increase activity levels, electrical stimulation was 
applied intermittently during all three pharmacological 
conditions to layer IV (8 recordings) or layer V cells (2 
recordings) using a 59-electrode array with flat, round 
electrodes spaced at 200 µm (Multichannel Systems, 
Reutlingen, Germany), integrated in the bottom of the 
chamber. One to three electrode pairs were selected for 
single-site or sequential multi-site bipolar stimulation 
of the neuronal tissue. Rectangular biphasic current 
pulses (± 100 or ± 200 µA, 200 µs) were delivered at 
frequencies ranging from 0.5 to 40 Hz using a pro-
grammable stimulator (STG 1008, Multichannel Sys-
tems). Since activity was recorded from cells located 
approximately in the middle of the slice, they were 
unlikely to be directly activated by the current359, but 
likely received mono- and polysynaptic input from 
cells located more towards the surface in response to a 
stimulus (see the Supplement for additional arguments 
on this issue). Electrode positions were registered with 
a C2400-77 CCD camera (Hamamatsu, Hamamatsu 
City, Japan), mounted on an inverted Axiovert 35 mi-
croscope (Zeiss, Oberkochen, Germany). 
 
Recording 
 
Spontaneous and evoked activity was recorded with a 
silicon-based multielectrode array (Bionic Technolo-
gies, Salt Lake City, Utah) consisting of 1.5 mm long, 
sharpened electrodes arranged in a regularly spaced 
(tip distance 400 µm) matrix357. The recording elec-
trode tips (2 µm diameter, 0.1–0.8 MΩ impedance at 1 
kHz) were gently lowered down into the tissue and 
positioned at a depth of ~ 200 µm, covering a region of 
3.2 mm horizontally and 1.2 mm vertically, including 
all six cortical layers of areas 17 and 18a376. 

Spiking activity of several neurons and the local field 
potential (LFP) were simultaneously obtained from 32 
channels by amplifying (10000 ×) and band-pass filter-
ing (spikes 0.5–3 kHz or 0.5–5 kHz, LFP 0.1–100 Hz) 
the recorded signals using custom-made preamplifiers 
and two MCP Plus amplifiers (Alpha Omega Engineer-
ing, Nazareth, Israel). The signals were digitized by 
two acquisition boards (E series, National Instruments, 
Austin, Texas) at resolutions of 12 bit / 32 kHz (spikes) 
and 16 bit / 1 kHz (LFP) and stored using a custom-
made acquisition software (“SPASS”) written in Lab-
VIEW (National Instruments). Spikes were detected by 
amplitude thresholding and registered as single wave-
forms (2 ms duration) and corresponding timestamps 
(peak sample). The threshold was set interactively after 
online visualization of the waveforms (typically 1–2 
standard deviations above noise level). After recording, 
electrode positions were reproduced by chemically 
fixing the slices for 30 minutes in ACSF containing 4% 
paraformaldehyde and subsequent photomicroscopy. 

Offline spike sorting was performed using a dynamic 
template matching method implemented in a custom 
software package (“Smart Spike Sorter”). Initially, up 
to twelve different clusters were automatically defined 
by an artificial neural network based on the adaptive 
resonance theory75. Various cluster properties like auto-
correlations of spike times and recording stabilities of 
spike waveforms were monitored and considered in 
conjunction with the shape of the waveforms to guide 
decisions about which clusters to merge or delete. Only 
clusters visibly separated in 3D principal component 
space were assigned to single units. Accuracy of spike 
assignment was validated by objective measurements 
of cluster separation provided by the J3 and Pseudo-F 
statistics536. Based on these criteria, only well-isolated 
putative single units were considered for further analy-
sis. 
 
Analyses 
 
All analyses were carried out using the MATHEMATICA 

system (Wolfram Research, Champaign, Illinois). 
 
Local field potentials 

 
The acquired local field potentials are a measure of 
combined electrical activity within a volume of neural 
tissue that approximately includes sources at distances 
of up to 250 µm from the electrode256. As such, the 
LFP signals display local network rhythms and oscilla-
tions, if present. To check whether the firing of single 
units is embedded in some oscillatory population pat-
tern, spike-centered segments comprising 256 samples 
were extracted from the LFP traces (Fig. III-1a), multi-
plied with a Kaiser window, and decomposed into their 
spectral components using the discrete Fourier trans-
form, 
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Fig. III-1 Local field potentials during spontaneous activity in the absence of neuromodulators, with carbachol (CCH) added to the ACSF, and 
with bicuculline (BIC) and CGP-35348 (CGP) added to the ACSF. (a) Example traces of local field potentials. Spike-centered windows compris-
ing 256 samples were defined to select segments for analysis as exemplified by the shaded regions (vertical lines indicate spikes). (b) Average 
spike-triggered power spectral densities of local field potentials (mean ± MD across 25940, 121670 and 43878 segments, respectively). Insets 
show power law scaling with scaling exponent α. 

 
with k = 0,…, N – 1, N being the number of samples, 
x1…N being the corresponding voltage values, and ω1…N 
being a Kaiser window with shape parameter β = 8. 
Accordingly, the complex modulus of kx~  denotes the 
power of the signal per frequency bin k. Power spectral 
densities were computed for every segment surround-
ing a spike recorded at the respective electrode that 
participates in statistically significant sequences of 
spatiotemporal firing patterns. 
 
Spiking activity 

 
The parallel spike trains obtained through spike sorting 
were scanned for repeating spatiotemporal firing pat-
terns and sequences of patterns as described in detail 
elsewhere (see Chapter II). Briefly, patterns were de-
tected by capturing the first spikes of all units within a 
sliding time window W (with W = 5, 10, 15, 20, 25, 30, 
35, 40, 45 or 50 ms) and specifying each spike’s posi-
tion in time either by its rank (τ = W) or by the index of 
the respective sub-window that the spike falls into (τ = 
W / 5 or W / 10). If applicable, patterns were split into 
subpatterns based on the joint firing probabilities of the 
constituent units in time intervals of T = 60 s, requiring 
at least A = 2 coincidences per interval to classify them 
as being functionally coupled or uncoupled. Sequences 
of temporally non-overlapping, directly consecutive 
patterns were registered up to a length of 10. 

To estimate the significance of the detected patterns 
and sequences, their individual numbers of occurrences 
were used as a test statistic and compared to the counts 
that were to be expected under the null hypothesis of 
independent firing. For this purpose, 100 surrogate data 
sets were constructed by randomly and independently 
shifting the spike trains relative to each other within a 
time window of ± 10 ms and randomly rearranging 
consecutive intra-train inter-spike intervals that are 
shorter than or equal to 10 ms, which resulted in an 

average displacement of spike events of 5-9 ms. In 
doing so, the timing of spikes was randomized up to 
this timescale while rate modulations on slower time-
scales as well as the interval distributions were left 
unchanged. Thus, no assumptions about the statistical 
properties of the data were implied. Likewise, pattern 
sequences were resampled 100 times by randomizing 
the order of patterns within intervals of T = 60 s, in this 
way eliminating any potential dependencies between 
consecutive patterns while approximately preserving 
each pattern’s rate profile. The null hypothesis was 
rejected if the original count exceeded the counts from 
the resampled data in at least 95% of the cases. After 
evaluation of their individual statistical significance, 
insignificant patterns and sequences were discarded. 

In a second step, coordination of spikes was assessed 
on a global level. To do so, all repeating patterns and 
sequences from resampled data were tested for signifi-
cance as well, capitalizing on the assumption that the 
generation of the surrogate data did not affect the sta-
tistic under investigation and that all data sets, includ-
ing the original one, are essentially indistinguishable 
regarding the patterning of events. As a result, every 
data set could be characterized by a certain number X 
of patterns or sequences that recurred unexpectedly 
often, given their frequencies in the remaining data 
sets. Finally, their combined occurrences 
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(with ni being the number of occurrences of the ith 
pattern or sequence that is statistically significant on 
the individual level and d being the index of the re-
spective data set) were subjected to a second level 
analysis to evaluate the overall significance of a coor-
dination of firing events in the original data. 
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Fig. III-2 Indications of a precise coordination of spike events. (a) Excess of the number of coincident spikes in the original data as compared 
to the surrogate data, expressed as the standardized mean difference (Glass's ∆, mean ± SEM across 10 data sets). (b) In the course of detecting 
spatiotemporal firing patterns, groups of coincident spikes were collected with a sliding window. Their frequency of occurrence, depending on 
complexity and window size, is shown on a logarithmic grayscale as the ratio of the original count compared to the average number obtained 
from the surrogate data (mean across 10 data sets). (c) and (d) Normalized numbers N of significant spatiotemporal firing patterns and pattern 
sequences (mean + SEM across 10 data sets). Patterns were defined by the temporal order of the participating units within a given time window 
W (τ = W). Stars denote a significant difference between original and surrogate data (� p < 0.0005, �� p < 0.0000002, exact binomial test). The 
lower row shows examples of distributions of surrogate counts along with the corresponding original count (indicated by the arrow). 

 
If Noriginal exceeded at least 95% of the counts from 

the resampled data, all patterns and sequences that 
were significant on the individual level were regarded 
as genuine signatures of concerted neuronal firing and 
were subsequently analyzed with respect to their spa-
tial and temporal organization and their dependence on 
electrical stimulation and the neuromodulatory state. In 
particular, patterns and sequences were classified as 
belonging to one of four groups according to their 
spatial structure, namely “clustered” (arranged at a 
single recording site), “columns” (oriented perpendicu-
lar to the pia), “layers” (oriented parallel to the pia) or 
“dispersed” (no orientation). Chance distributions of 
group memberships and of the spatial extent of patterns 
and sequences, measured as the distance between the 
two most remote units, were calculated by randomly 
reassigning recording sites or recombining patterns 
(preserving the number of spikes per electrode and the 
number of patterns per sequence), repeated ten times. 
To quantify the temporal precision of firing, a template 
was computed for every pattern that had been defined 

by the temporal order of spike events (using τ = W) 
representing their average timing with respect to the 
onset of the pattern. The precision of individual spikes 
was determined as the absolute deviation from their 
respective average timing. The chance level was esti-
mated by randomly relocating spike times within the 
time window W that was used for capturing the pattern 
and recalculating the precision of events, repeated ten 
times. The accuracy of pattern onsets in sequences of 
patterns was analyzed analogously. To investigate 
whether patterns and pattern sequences reflect distinct 
functional states, they were related to the experimental 
conditions and said to be selective if their specificity 
for a particular condition exceeded 50%, i.e., if more 
than 50% of the occurrences of a single pattern or 
sequence correlated with a particular pharmacological 
setting and at the same time with the presence or ab-
sence of electrical stimulation. The expected specificity 
was assessed by repeatedly (10 ×) distributing patterns 
and sequences randomly over the conditions while 
maintaining their total number per condition. 
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Tab. III-1 Data sets containing a significant number N of firing patterns or pattern sequences depending on pattern parameters W and τ. 

 
Results 
 
The analysis encompasses data obtained from 10 slices 
/ animals comprising between ~ 40 000 and ~ 270 000 
spikes per set that were simultaneously recorded from 
56 to 125 units (Σ = 851) over time intervals of 40 to 
120 minutes. The average spontaneous firing rate per 
neuron was typically below 1 Hz and increased from ~ 
0.14 Hz (SD ~ 0.17) to ~ 0.31 Hz (SD ~ 0.28) in the 
presence of carbachol. Interestingly, application of the 
GABAA/B receptor antagonists bicuculline and CGP-
35348 initially raised activity levels as expected, but 
did not lead to a sustained increase in average firing 
rate (~ 0.28 Hz, SD ~ 0.26) above that obtained with 
carbachol. Electrical stimulation evoked a brief, transi-
ent response with latencies of ~ 4 ms that was followed 
by an increase in average population activity by about 
0.2 spikes/ms (with 100 µA stimuli) or 0.4 spikes/ms 
(with 200 µA stimuli) in the interval of 5-15 ms post 
stimulus and returned to baseline 20-40 ms after the 
stimulus (Fig. III-9). Thus, the recorded responses 
were typically elicited by neuronal signals transmitted 
via mono- and polysynaptic pathways and reflect a 
short, single wave of activity traveling through the 
network (see Supplement – Correlation of spike events 
with electrical stimuli). Analysis of individual and 
average power spectra of local field potentials showed 
no signs of rhythmic population activity in any of the 
examined conditions (Fig. III-1). The activity under 
study is thus characterized by sparse spiking in a non-
oscillatory regime. 
 
Evidence for precise coordination of neuronal 
discharges 
 
To test whether the recorded cells fire in a coordinated 
fashion, the spatiotemporal patterning of firing events 
was compared to surrogate data that had been derived 
from the original data by randomly displacing spike 
times by an average amount of 5-9 ms. The surrogate 
data represent the null hypothesis that spikes are inde-
pendent and coordination of spikes is random on time-
scales below ~ 5 ms. If this was the case, then varying 
the timing of events on that scale should not affect any 
statistic extracted from the parallel spike trains. 

However, as it turned out, it does. To get a glimpse 
of the temporal structure inherent in the multineuronal 
firing activity, the overall number of spikes that coin-
cide with any other spike within a given time window 
was computed as a rough measure of the temporal 
clustering of events. The result shows that the original 
data contain evidently more spikes that are coincident 
to within a few milliseconds than the surrogate data, 
giving a first indication that randomizing spike times 
on the timescale of milliseconds considerably disrupts 
the temporal coordination of spike events (Fig. III-2a). 

In a next step, the particular composition of the 
groups of coincident spike events was analyzed first in 
terms of the mere number of the participating units and 
second with regard to the specific spatiotemporal firing 
pattern. To do so, activity patterns were registered by 
capturing coincident events with a sliding window and 
recording the position of each spike in time with some 
preset precision (if not stated otherwise, results were 
obtained using thirty different pattern definitions given 
by ten different time windows W (5, 10, 15, 20, 25, 30, 
35, 40, 45 and 50 ms) and three different relative tim-
ing precisions τ (W / 10, W / 5 and W )). Considering all 
the patterns thus collected, it appears that the surrogate 
data do not reflect the original distribution of pattern 
sizes but show a lack of more complex patterns within 
time windows shorter than 20 ms (Fig. III-2b), which 
closely agrees with the previous finding. Moreover, not 
only global pattern properties like the complexity of 
joint-spike events, but also the frequency of precisely 
repeating patterns is affected by disturbing the fine 
temporal structure in the original data. Searching for 
firing patterns that recur more often than expected by 
chance yielded numbers of statistically significant 
patterns that exceed those obtained from the surrogate 
data in most cases (see Tab. III-1 and Fig. III-2c for 
cases where τ = W), providing direct evidence for a 
precise coordination of neuronal discharges that is 
susceptible to millisecond variations in spike timing. 

Finally, the firing activity was scanned for repeating 
sequences of circumscribed spike patterns to examine 
its organization on longer timescales. Using the same 
range of pattern definitions as before, they were almost 
always found in excess of chance levels estimated from 
randomly shuffled data (Fig. III-2d), revealing a higher

Spatiotemporal firing patterns 

τ     
W

 5 ms 10 ms 15 ms 20 ms 25 ms 30 ms 35 ms 40 ms 45 ms 50 ms 

W 8 7 6 7 5 5 5 4 3 3 

W / 5 9 8 8 8 7 7 7 7 6 6 

W / 10 8 9 8 9 9 7 7 8 7 6 

Pattern sequences 

τ     
W

 5 ms 10 ms 15 ms 20 ms 25 ms 30 ms 35 ms 40 ms 45 ms 50 ms 

W 8 9 9 9 8 8 8 7 9 8 

W / 5 8 8 9 8 8 8 9 7 8 8 

W / 10 8 8 8 6 6 6 8 6 6 8 
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Fig. III-3 Properties of significant spatiotemporal firing patterns and pattern sequences. (a) and (b) Distributions of repeats and of the 
periods of occurrence. Insets show normalized distributions averaged across 10 data sets having approximate power law scaling with scaling 
exponent α (gray lines indicate fitted functions). (c) Distributions of complexity in terms of units and patterns, respectively (gray lines indicate 
chance distributions estimated from resampled data). 

 
temporal structure inherent in the succession of transi-
ent activity patterns. The numbers of data sets (out of 
10) containing a significant number of repeating firing 
patterns and pattern sequences are summarized in Tab. 
III-1 as a function of pattern parameters W and τ. 

The distributions of the number of repeats of indi-
vidual statistically significant patterns and sequences 
can be approximated by a power law and show mostly 
low counts while also including cases of more than one 
hundred repeats (Fig. III-3a). The same is true for the 
durations over which single patterns or sequences 
occur, ranging from fractions of a second to more than 
one hour (Fig. III-3b). This indicates that although 
most patterns and sequences reoccur only few times 
and only during short intervals, there is no typical scale 
associated with the number of repeats and the period of 
occurrence. Also, linear regression analysis revealed 
no correlation between repeats and the observed “life-
time” of patterns and sequences (R2 ≈ 0.07 and 0.01, 
respectively), demonstrating that firing patterns may 
recur after long periods of ongoing activity without 
requiring frequent replay. 

Significant sequences of patterns were found at all 
lengths tested, but show a marked decrease in overall 
frequency with increasing complexity. Similarly, the 
number of significant patterns rapidly drops with in-
creasing number of participating units (Fig. III-3c). 
Comparing the distributions of pattern complexities 
between real and resampled data, it appears that – 
given the number of simultaneously recorded units – 
patterns including up to seven units are more frequent, 
whereas larger patterns occur less often than expected. 
The underrepresentation of significant patterns contain-
ing more than seven units suggests that the size of 
functional cell assemblies in the cortical network is 
actively limited. 

The patterns and sequences identified as significant 
all violate the null hypothesis of independent firing and 
therefore have to be regarded as genuine signatures of 
temporally coordinated activity. In the following these 
patterns and sequences are analyzed with respect to 
their spatial and temporal organization and their de-
pendence on electrical stimulation as well as the neu-
romodulatory state of the slice. 
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Fig. III-4 Spatial organization of significant spatiotemporal firing patterns and pattern sequences. (a) Examples of significant spatiotem-
poral firing patterns projected onto micrographs of the brain slice representing four different spatial classes. Circles indicate electrode positions 
with approximate recording horizons, arrows indicate the order of firing, and numbers indicate mean delays in ms (roman numbers on the right 
denote cortical layers). The slice has been stained with methylene blue to visualize the cortical layering. Scale bar is 400 µm. (b) Fractions cov-
ered by the four classes exemplified in (a) (values in brackets: expected fractions estimated from randomized data) (� p < 0.0004, exact binomial 
test). (c) Distributions of spatial extent (gray lines indicate chance distributions estimated from randomized data). 

 
Spatial organization of multineuronal spiking   
activity 
 
Coordinated firing patterns and sequences of patterns 
could be classified according to their spatial structure 
as being confined to a single recording site, being dis-
persed both in the vertical and in the horizontal plane, 
or being strictly aligned perpendicular or parallel to the 
pia (Fig. III-4a; note that ordered firing does not imply 
that a signal is transmitted directly between the cells). 
To investigate whether the topography of statistically 
significant patterns and sequences reflects the cortical 
connectivity or is random, they were compared to 
patterns with randomly reassigned recording sites and 
sequences with randomly recombined patterns (Fig. 
III-4b). While the fractions covered by the four classes 
differed significantly between the original and random-
ized data (� p < 0.0004, exact binomial test), the spa-
tial configuration of pattern sequences could virtually 
be reproduced by random combinations of the patterns. 

Individual firing patterns were confined to vertical 
columns of cells or to a particular cortical layer much 
more often than would be expected from a random 
arrangement of the constituent units, being in line with 
and possibly reflecting axonal projection patterns60. In 
addition, patterns and sequences primarily extended 
over shorter distances than calculated from randomized 
data (Fig. III-4c). Single spatiotemporal patterns were 
typically confined to directly neighboring recording 
sites, but could also stretch across the whole array. In 
contrast, the spatial extent of sequences of patterns 
shows a distinct bimodal distribution with the two 
peaks matching the arrangement of functional synaptic 
connections between areas 17 and 18a362. 
 
Temporal organization of multineuronal spiking 
activity 
 
The maximal duration of spatiotemporal firing patterns 
was limited by the length W of the analysis window;
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Fig. III-5 Durations of significant spatiotemporal firing patterns and pattern sequences. (a) Distributions of pattern durations depending on 
different time windows (gray lines indicate expected distributions estimated from resampled data). (b) Normalized distributions of pattern dura-
tions in epochs with and without electrical stimulation. (c) Distribution of the durations of sequences of patterns. Inset shows normalized distribu-
tion averaged across 10 data sets having approximate power law scaling with scaling exponent α (gray line indicates fitted function). 

 
sequences of patterns, however, were not restricted in 
time. If neuronal discharges were coordinated on arbi-
trary timescales, one would expect the distribution of 
pattern durations to be flat over the entire window that 
was used to capture the patterns. On the contrary, the 
temporal extent of significant patterns was typically 
confined to less than 5 ms, being evenly distributed 
only on longer timescales (Fig. III-5a). Taking a closer 
look at the distribution of pattern durations at single 
sample resolution revealed a prominent peak between 1 
and 2 ms (Fig. III-5b). Comparing the pattern durations 
to those obtained from the resampled data shows that 
disrupting the coordination of spike events within time 
windows of ± 10 ms produces patterns that lack any 
typical temporal scale. Coordinated spiking activity in 
local cortical circuits thus tends to be synchronized 
within a few milliseconds even in the absence of input 
from other areas and of oscillatory timing! Importantly, 
synchrony does not rely on common drive by some 
external stimulus, but is maintained also during sparse 
spontaneous activity (Fig. III-5b). 

The integration of these groups of synchronously ac-
tive neurons into coherent activation sequences gives 
rise to a coordination of neuronal firing on longer time-
scales. In the given sample, the distribution of the 
durations of significant sequences ranged from a few 

milliseconds to several seconds and peaked at ~ 40 ms 
(Fig. III-5c). For durations exceeding ~ 50 ms it can be 
approximated by a power law, suggesting that beyond 
a particular duration coherent pattern sequences no 
longer follow a particular scaling rule. The same does 
not hold, however, if the ongoing activity is modulated 
by electrical stimulation: Varying sets of cells respond-
ing to successive stimuli at short latencies gave rise to 
repeating sequences of multineuronal firing patterns 
that were time-locked to the stimulus (reflected in Fig. 
III-5c, lower part; peaks around 100 ms and 200 ms 
correspond to stimulus frequencies). 

How does the temporal extent of short firing patterns 
and prolonged pattern sequences relate to their spatial 
extent? Interestingly, they are not related at all: The 
duration of both patterns and sequences neither corre-
lates with the distance between the two most remote 
units nor with their complexity (R2 < 0.08 in all cases, 
linear regression), meaning that even widely distribut-
ed neurons that are unlikely to be directly connected or 
to receive common input and are not synchronized by 
network oscillations may align their firing on the time-
scale of milliseconds. It follows that coordinated firing 
does not imply any direct communication between the 
involved cells but may in fact arise from concerted 
parallel processes. 
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In addition to the time span over which neuronal dis-

charges are coordinated, the temporal precision of 
coordination is likely relevant for cortical processing. 
To assess this precision, spike times were evaluated 
relative to a template representing the average timing 
of spikes with respect to the onset of the pattern (only 
significant patterns that had been defined using τ = W 
were considered). The accuracy of pattern onsets in 
significant sequences of patterns was analyzed in the 
same way. It turned out that the distribution of the 
absolute spike time jitter follows a power law, suggest-
ing that – under the given conditions – the temporal 
precision of coordinated firing is not constrained to any 
typical scale. Interestingly, the median jitter was ~ 0.58 
ms. By defining spike timing precision with respect to 
the concurrent spiking activity, this result reveals an 
accuracy of concerted neuronal signaling that exceeds 
the duration of a single spike! Moreover, disrupting the 
original spike timing by randomly relocating events 
within the time window W used to capture the patterns 
yields a completely different distribution of timing 
jitter containing much less events with sub-millisecond 
precision (Fig. III-6a), suggesting that the original 
distribution arises from non-randomly placed spikes. 

The temporal precision of pattern onsets differed from 
the precision of spikes within a pattern. While many 
pattern onsets were precise within a few milliseconds, 
the distribution of onset jitters includes deviations from 

the average timing of several hundred milliseconds and 
shows a median absolute value of ~ 25.13 ms. Re-
markably, patterns triggered by electrical stimulation 
seemed to sometimes skip stimuli and still form repeat-
ing sequences, demonstrating that previous activity 
patterns may promote the emergence of certain subse-
quent activity patterns without dictating their precise 
occurrence in time (Fig. III-6a, right part; local maxi-
ma around multiples of 100 ms reflect timing of elec-
trical stimuli). Thus, the observed succession of multi-
neuronal firing patterns cannot be accounted for by the 
concept of synfire chains, in which the propagation 
delays between nodes are supposed to have a temporal 
jitter of less than a millisecond3. In fact, the precision 
of pattern onsets depends linearly on the latency from 
the start of the respective sequence with the median 
jitter increasing from ~ 12 ms after 50 ms to ~ 300 ms 
after 700 ms. The linear relationship is violated only at 
latencies below ~ 50 ms, which could be an edge effect 
linked to activity rates, and when cells respond to suc-
cessive electrical stimuli (Fig. III-6b, right part; local 
minima indicate stimulus intervals). Similarly, the 
spike timing precision in repeating firing patterns de-
pends approximately linearly on the latency from pat-
tern onset, with the median jitter increasing from ~ 
0.15 ms within the first millisecond to ~ 21 ms after 
nearly 50 ms. This measured precision deviates from 
the precision expected from random spike times within 
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Fig. III-7 State dependence of spatiotemporal firing patterns and 

pattern sequences. Illustrated are spike times and times of occur-
rences of significant firing patterns and pattern sequences along with 
the corresponding population rates from one example data set. Units, 
patterns and sequences are sorted by appearance. Experimental 
conditions included electrical stimulation (  ) and application of 
carbachol (CCH), bicuculline (BIC) and CGP-35348 (CGP) as 
indicated. Patterns were captured using W = 30 ms and τ = 3 ms. 

 
windows W only in about the first three milliseconds 
after pattern onset (Fig. III-6b, left part), supporting the 
notion that precise synchronization of neuronal dis-
charges is a significant feature of cortical activity (cf. 

Fig. III-5a, b), and that exact spike timing is rather 
irrelevant on longer timescales compared to spike 
order. At the same time, the average temporal jitter did 
not accumulate over successive spikes within a pattern 
or consecutive patterns within a sequence, which fits 
with the finding that the duration and the complexity of 
firing patterns are not related (Fig. III-6c; note that the 
first element never displays any timing jitter by defini-
tion). 

 
State dependence of recurring multineuronal 
spike patterns 
 
If precisely repeating spatiotemporal spike patterns as 
well as repetitive sequences of these patterns reflect the 
functional architecture of the neuronal network, they 
are expected to change when the functional state of the 
network is altered by application of neuromodulatory 
transmitters. An important modulatory transmitter in 
the cortex is acetylcholine, which is involved in the 
control of arousal and attention211 and known to radi-
cally shift intracortical signaling pathways260,544. To 
investigate the dependence of significant firing patterns 
and pattern sequences on cholinergic modulation, they 
were related to the application of the cholinergic ago-
nist carbachol. It turned out that individual patterns and 
sequences had a high tendency to selectively occur 
either in the absence or in the presence of carbachol 
(Fig. III-7, shaded periods). 

To examine the role of inhibition in the structuring of 
firing patterns, GABAergic transmission was blocked 
during the final period of 8 experiments by application 
of bicuculline and CGP-35348. The effect was that 
most but not all of the patterns and sequences that had 
occurred before disappeared. In return, a number of 
new spatiotemporal patterns and pattern sequences 
came up (Fig. III-7). Relative spike timing was still 
precise down to the sub-millisecond scale (median 
jitter ~ 0.67 ms), but unlike patterns that also occurred 
during intact inhibition, those firing patterns that were 
restricted to the disinhibited condition exhibited a loss 
in synchrony of coordinated spikes. It thus seems that 
the excitatory cortical network is capable to produce 
and maintain very precise multineuronal activity pat-
terns during disrupted or diminished GABAergic sig-
naling. These patterns, however, reflect a functional 
network architecture that differs fundamentally from 
the natural situation, so they carry no biological mean-
ing; interestingly, this lack of meaning goes along with 
the lack of a typical timescale over which discharges 
are coordinated. 

Specific spatiotemporal spike patterns and sequences 
of patterns could also be induced by focal electrical 
stimulation of the neuronal tissue (Fig. III-7; note the 
divergence of spike and pattern rates during prolonged 
stimulation). Considering the neuromodulatory state as 
well as the presence or absence of electrical stimuli, ~ 
73% of all significant patterns and ~ 72% of all signifi-
cant pattern sequences selectively occurred under a 
certain experimental condition (chance levels: ~ 51% 
and ~ 44%, p < 0.002 in both cases, exact binomial 
test), showing an average specificity of ~ 90% and ~ 
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spontaneous activity in three consecutive epochs depending on bath application of carbachol (CCH). (b) Networks depending on focal electrical 
stimulation (white dots indicate positions of stimulus electrodes). (c), (d) and (e) Properties of functional neuronal networks derived from signifi-
cant firing patterns during different experimental conditions including electrical stimulation (   ) and application of carbachol (CCH), bicuculline 
(BIC) and CGP-35348 (CGP) as indicated. (c) Grand degree distributions (zero degrees bin truncated). (d) Clustering coefficients (mean ± SEM 
across data sets). (e) Average path lengths (mean ± SEM across data sets). 

 
95%, respectively (chance levels: ~ 82% and ~ 91%,   
p < 0.002 in both cases, exact binomial test). Although 
plasticity mechanisms acting on functional neuronal 
connections continually reshape multineuronal activity 
(Figs. III-7, III-3b), ~ 35% of all selective firing patterns 
and ~ 24% of all selective pattern sequences recurred 
after experimental interference and may hence be re-
garded as the “fingerprints” of a particular condition. 

In addition to the sensitivity of individual activity 
patterns to the state of the network, the influence of 

electrical stimulation and of the pharmacological setting 
on the topology of functional neuronal networks was 
investigated. To do so, edges were drawn between 
electrodes or units that took part in the same firing 
pattern during a given experimental epoch or condition 
(only significant patterns were considered). Like the 
activity patterns themselves, the resulting functional 
connectivity maps depended systematically on the 
action of carbachol or GABA and focal stimulation of 
the neuronal tissue (Fig. III-8a, b). Interestingly, they 
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Fig. III-8 State dependence of functional network 

topologies. (a) and (b) Weighted graphs of example 
functional networks as derived from significant firing 
patterns, projected onto micrographs of the recorded 
brain slice. Nodes correspond to electrode positions, 
and weights denoting the frequency of joint events, 
normalized to the number of spikes in each experimen-
tal epoch, are indicated by the thickness of nodes and 
edges. Scale bar is 400 µm. (a) Networks derived from 
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exhibit a small-world architecture: First, the degree 
distributions reveal many sparsely connected neurons 
and a long tail of increasingly interconnected units, 
suggesting the existence of “hubs” in the network. In 
contrast, randomly rewired networks having the same 
number of nodes and edges yield much less skewed 
degree distributions as they are typical for random 
networks (Fig. III-8c; bimodal random distributions 
obtained under suppressed inhibition result from the 
merging of data sets). Furthermore, the clustering coef-
ficients530 range roughly from 0.43 to 0.82, clearly 
deviating from the values that would be expected by 
chance (0 to 0.3) (Fig. III-8d). Finally, the average path 
lengths fluctuate closely around 1.9, a number notably 
below those derived from randomized data (Fig. III-8e). 
However, neither a massive change in cholinergic or 
GABAergic modulation nor interference of the ongo-
ing activity with electrical stimulation had any substan-
tial effect on these network parameters, although spike 
rates and firing patterns changed considerably follow-
ing drug application or washout and in response to 
electrical stimuli (Fig. III-7). 

These findings demonstrate a remarkable stability of 
functional neuronal network properties with respect to 
diverse modes of synaptic integration, providing exten-
sive freedom to visit a multitude of functional states 
while seamlessly maintaining a small-world architec-
ture. As a consequence, the ability to rapidly process 
and integrate information both locally and globally – a 
highly desirable property for neuronal computations – 
arises naturally and appears to be an inherent feature of 
cortical connectivity that is independent of cholinergic 
and even GABAergic modulation. 
 
 

Discussion 
 
Cortical information processing invariably involves the 
activation of networks of distributed neurons. At pre-
sent, it is unclear how information is integrated and 
how coherent representational states are established in 
cortical networks. To study the spatiotemporal struc-
ture of distributed discharges in local cortical circuits 
and to disentangle the role of network rhythms and of 
the functional network architecture in shaping it, mul-
tineural activity was recorded from visual cortices in 
vitro and analyzed with respect to the occurrence of 
temporally coordinated spike events on timescales 
ranging from 0.5 to 50 ms. It was found that population 
patterns occurring spontaneously and in response to 
focal electrical stimulation displayed a statistically 
significant structure which is characterized by syn-
chronous firing within a few milliseconds, while net-
work rhythms were absent. The formation of these 
synchronous cell assemblies is likely related to the 
history of network activation and learning and may 
constrain or bias the recruitment of local cortical cir-
cuits during perception and active behavior. What is 
more, assemblies activated in direct succession were 
organized to a significant degree into repeating se-
quences, revealing a superordinate temporal structure 
beyond the cell assembly level. These sequences, how-

ever, do not conform to the concept of synfire chains3 
because of imprecise delays between the successive 
groups. Instead, they may be described as Hebbian 
phase sequences207 composed of loosely coupled cell 
assemblies198 that are distinguished by synchronous 
firing within typically up to five milliseconds. 

Previous work in vivo has suggested that cortical 
neurons can coordinate their firing with millisecond 
precision in relation to behavior4,389,436,516. In these 
studies, only few cells were recorded simultaneously, 
and a comprehensive description of the patterning of 
multineuronal activity could not be provided. Precise 
spatiotemporal spike patterns also appear in cortical 
cell cultures406, suggesting that they are a universal 
emergent feature of self-organizing neuronal networks. 
Calcium imaging of small local cell populations in 
brain slices further revealed that the firing of neighbor-
ing cortical neurons may be significantly synchronized 
within a few milliseconds during spontaneous, non-
oscillatory activity311. The present work confirms and 
extends these results to larger neuronal populations that 
are distributed across cortical areas and layers. Given 
the fact that the spatial arrangement of synchronous 
firing patterns found here agrees with axonal projection 
patterns60, it seems likely that distributed coactive cells 
reflect functional cortical subnetworks76,553. 
 
Progression of transient activation patterns 

 
The organization of successive spatiotemporal firing 
patterns into coherent recurring sequences suggests an 
additional superordinate, “modular” temporal structure 
in cortical spiking activity that resembles similar dy-
namics on coarser timescales227. The basic neural 
mechanisms that provide neuronal networks with the 
potential to produce such long sequential activity pat-
terns are yet unknown. A promising candidate for such 
a mechanism is the classical spike-timing-dependent 
plasticity rule72 that has been demonstrated to produce 
long, diverse activity sequences in simulation experi-
ments even without sequential training inputs130,263. In 
addition, long-range cytoplasmic signaling within the 
presynaptic neuron may lead to a retrograde propaga-
tion of synaptic potentiation along excitatory pathways 
484 and thus to the formation of chains of strong and 
effective synaptic connections. The only experimental 
finding of circumscribed cortical cell assemblies firing 
in functional sequences has been reported by Ribeiro 
and colleagues15. They analyzed synchronously active 
groups of cells recorded simultaneously from the hip-
pocampus and primary visual and somatosensory corti-
cal areas of rats and demonstrated the dependence of 
cell assembly activation sequences on experimental 
periods and the behavioral state of the animal. The 
present results go beyond these findings by showing 
that individual sequences repeat significantly often and 
strongly depend on the neuromodulatory state of the 
cortical network. The observed scale-free distribution 
of sequence durations might be a natural consequence 
of competitive spike-timing-dependent synaptic plas-
ticity72,467 and resulting network connectivities, as 
simulations suggest130. 
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Previous work has focused on the detection of syn-
fire chain activity by searching for precise repetitions 
of firing patterns with durations of several hundred 
milliseconds and reported on “reverberations in a syn-
fire mode” based on these patterns4,389. While the pre-
sent analysis considers spike patterns up to a length of 
50 ms, it cannot be ruled out that precisely coordinated 
spike events do occur on longer timescales. However, 
the detected decrease in temporal precision with in-
creasing latency from the reference spike and impre-
cise delays between successively active neuronal 
groups suggest a different mode of network dynamics 
in which signals reverberating through recurrent con-
nections would provide the network with a “fading 
memory” of past activity355. The succession of neuronal 
activation patterns could be described as a heteroclinic 
sequence11,392 linking transient metastable network 
states across time and cortical areas in a highly flexible 
way58. Here, transients are defined by synchronous 
neuronal groups and represent “saddle points” along 
the heteroclinic channel. Accordingly, the course of 
activity would be neither chaotic nor evolve into any 
fixed point or limit cycle, thus combining flexibility 
and reliability. 
 
Mechanisms of synchronization and consequences on 

cortical function 
 
Although it is unclear if the synchronous firing of a set 
of cells actually codes for any relevant content, syn-
chronization of discharges is thought to jointly increase 
the saliency of the synchronized responses526 and to 
thereby serve a number of different functions such as 
the binding of distributed cells into a transient func-
tional unit447,457, the selection of signals by attention144 
and the mediation of spike-timing-dependent plasticity 
72. Accordingly, disturbance of synchrony has been 
identified as one of the correlates of brain disorders501. 
Neuronal synchrony is commonly assumed to arise 
from correlated sensory signals, common input, or 
from synchronous network oscillations504. Neither of 
these causes applies in the present case: First, there are 
no sensory signals in brain slices. Second, the majority 
of synchronously active cells were located too far apart 
from each other to be directly connected or to receive 
common input208,319,323, suggesting that their activity 
was coordinated through concerted distributed process-
es. Third, local field potentials showed no sign of net-
work oscillations, but were rather consistent with white 
noise and the passive filtering properties of brain tissue 
37-39 (under the same experimental conditions, intracel-
lular recordings have also shown a lack of subthreshold 
membrane potential oscillations535). This raises the 
question which other mechanisms could mediate the 
synchronous firing of distributed cells in local cortical 
circuits. 

Theoretical studies have demonstrated that neurons 
endowed with spike-timing-dependent plasticity may 
“learn” to selectively fire at the onset of a repeating 
spatiotemporal input pattern by potentiating synaptic 
weights on afferents that consistently fire early192,321,322. 
As a consequence, distributed neurons repeatedly re-

ceiving coherent input would decrease the latency of 
their firing in a concerted fashion and could finally 
become synchronized when responding to this input482. 
Since synaptic modifications in rat visual cortex are 
sensitive to the relative timing of pre- and post-
synaptic activity146,335, the observed synchronization of 
neuronal responses might indeed be caused by a coor-
dinated adjustment of response latencies and thus re-
flect the reactivation of specific cortical circuits shaped 
through experience. Being restricted to local and short-
range connections within and between neighboring 
cortical areas, the synchrony generating circuitry could 
have been triggered either spontaneously or through 
focal electric stimulation targeted at layer IV or V (Fig. 
5b). This would have major consequences for the re-
spective roles of the functional neuronal network and 
ongoing activity patterns in coordinating multineuronal 
firing: While the presented data suggest that synchro-
nous firing of distributed cells is inherently generated 
by the functional cortical network structure, network 
rhythms and other activity patterns would control the 
propagation of signals through the circuitry and effec-
tively select cells and synchronous groups of cells to 
become activated. Cortical computation, then, unfolds 
in the interplay between neuronal activity and func-
tional neuronal connectivity141. 
 
Precision of spike timing coordination 

 
If spike synchrony serves any function in information 
processing, spike timing needs to be coordinated with 
appropriate precision. The observed precise synchroni-
zation of discharges fits with previous findings show-
ing that spike generation in cortical neurons as well as 
signal transmission in local cortical circuits can be 
highly reliable and temporally precise309,350 and adds to 
the evidence that neuronal communication may rely on 
millisecond-precise signaling despite stochastic gating 
of ion channels and probabilistic release of synaptic 
vesicles123. The result that the accuracy of coordinated 
spikes decreases as the interval increases has been 
reported previously and may be explained by synaptic 
variability on the (sub-)millisecond range343,350 and by 
network effects on longer timescales57. A crucial factor 
determining the temporal precision of neuronal signal 
transmission is the effective time window over which 
postsynaptic potentials are integrated403. Short integra-
tion times may arise from rapidly deactivating AMPA 
receptors that can have deactivation time constants of 
less than a millisecond212,308 and indirectly control the 
kinetics of NMDA receptor currents by only allowing 
for a correspondingly short release of the magnesium 
block216,367. The resultant spike timing may achieve a 
resolution shorter than the rise time of the excitatory 
potential if synaptic inputs arrive synchronously174. In 
addition, disynaptic feedforward inhibition can confine 
the effective integration time window in the soma to a 
few milliseconds386. Taken together, these results show 
that the possibility of a code based on precise spike 
timing is at least not precluded by the biophysical 
substrate. The presented data demonstrate that spikes 
can be coordinated with sub-millisecond precision19 
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Fig. III-9 Latencies of stimulus responses. Following focal electrical stimulation, the probability of the occurrence of spikes within the range of 
the recording electrodes transiently increased depending on stimulus intensity (100 or 200 µA) and on muscarinic activation (ACSF alone or with 
carbachol, CCH) as shown. The arrow indicates the stimulus at time zero. The analysis is based on 25768 and 8788 stimuli (with and without 
carbachol) at 200 µA and on 38160 and 17040 stimuli (with and without carbachol) at 100 µA. 

 
even in purely excitatory networks lacking effective 
GABAergic signaling. In this case, activity levels may 
be regulated by self-inhibition of pyramidal cells314 and 
by synaptic depression512. 

Interestingly, the obtained distribution of spike time 
jitter can be approximated by a power law, which has 
been regarded as a signature of self-organized criticali-
ty31. It is tempting to suppose that under the given 
conditions cortical networks self-organize into a criti-
cal state in which the noise affecting the timing of 
action potentials is tuned to a critical point. Whether 
this explanation holds, by what mechanisms such a 
point might be reached, and whether spike time jitter in 
vivo also follows a power law, remains to be investi-
gated. 
 
Functional implications of the network topology 
 
Albeit conceptually distinct, the functional connections 
between the recorded cells and anatomical connections 
between neurons in the rat visual cortex appear to have 
several features in common: For both types, connected 
neurons tend to cluster together, and connections are 
concentrated in strength and number among a subset of 
cells468. The same small-world architecture has also 
been detected from functional connections in cat visual 
cortex in vivo554. As simulations have shown, small-
world connectivity may automatically emerge from the 
reorganization of synaptic connections through spike-
timing-dependent plasticity if the balance between ex-
citation and inhibition is adjusted to a critical level434, 
which might explain the intriguing robustness of the 
small-world property during changes in the functional 
circuitry through neuromodulation. This property, in 
turn, is known to support synchronous activity and fast 
signal propagation184,271,530 and enhances the tolerance 
of the network against the failure of single cells12. 
Thus, the arrangement of functional neuronal connec-
tions in local cortical circuits not only defines func-
tional states of the network, but also seems optimized 
for robust and efficient information processing. 
 
 
 

Supplement – Correlation of spike events with 
electrical stimuli 
 
Extracellular electrical stimulation of the cortical gray 
matter, as applied in this study, is known to effectively 
excite axonal segments in some volume surrounding 
the site of stimulation360,361. The extent of this volume 
depends on the strength of the stimulus. In rat visual 
cortex, the spread of the current has been shown to 
have a maximal radius of ~ 200 µm and ~ 300 µm, 
respectively, at currents of 100 µA and 200 µA, with 
about half of the number of axons being activated at 
half the maximal radius359. Considering the given dis-
tances between the recording electrodes and the stimu-
lating electrodes, we thus could not expect many of the 
recorded cells to be directly activated by the stimulus. 
Nonetheless, electrical stimulation of fibers en passage 
may trigger action potentials that travel in both ortho-
dromic and antidromic direction and could be recorded 
with some delay as far as millimeters away215. It is thus 
necessary to differentiate between signals that could 
have been evoked by the stimulus and those that could 
not. Given the latencies of the spike responses (Fig. III-
9), the respective distances of the recording electrode 
tips to the stimulation sites, and the axonal conduction 
velocities in rat visual cortex of ~ 150-550 µm/ms346, 
the average fraction of spikes per data set that could be 
explained by direct activation through electrical stimuli 
was calculated to be ~ 1.3 % (SD ~ 1.0). However, if 
an axon is excited directly by the stimulus current, the 
resulting spike responses should have a temporal jitter 
in the submillisecond range. Crosscorrelations of single 
unit spike events with electrical stimuli revealed no 
such precise responses, but showed temporal jitter of ~ 
8-20 ms. We can thus be sure that the recorded spiking 
activity was exclusively generated by genuine neuronal 
signals, with the recorded cells being separated by at 
least one synaptic stage from the cells that were direct-
ly activated by electrical stimulation. 

Another line of arguments suggests that the observed 
spike signals represent real neuronal network activity 
rather than trivial stimulus responses. To begin with, 
activation of muscarinic receptors through carbachol is 
expected to allow a stronger response to afferent input 
due to a reduction in spike-frequency accommodation 
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Fig. III-10 Correlation of unit activity with the firing of peers and with electrical stimuli. The number of spikes following electrical stimuli 
(100 µA) or discharges of other units (peers) within given time windows W is compared against the expected number given independence and 
stationarity of events (mean ± SEM across 358 units). (a) Relative correlation of events, expressed as the ratio of the actual number of succeeding 
spikes compared to the expected number. (b) Absolute correlation of events, expressed as the number of preceding events that appear to be 
related to the occurrence of each spike. (See text for a formal description.) 
 
and inhibitory feedback, but also to reduce recurrent 
excitatory signaling in rat visual cortex261,345. Depend-
ing on the involvement of excitatory synaptic transmis-
sion in the generation of the recorded spike responses, 
we should therefore observe a decrease of the response 
probability when carbachol is applied. This is indeed 
what was found throughout the recordings (Fig. III-9), 
indicating that the functional properties of the synaptic 
connections in the network contribute to the shaping of 
the recorded spike activity. To quantify the dependence 
of recorded spike events on electrical stimulation and 
on the ongoing network activity, the number of spikes 
following electrical stimuli or discharges of other cells 
(referred to here as peers) within given time windows 
was compared against the expected number assuming 
independence and stationarity of events. The rationale 
behind is that a deviation of the temporal coherence of 
events from chance level would be suggestive of some 
functional relationship between the preceding and the 
succeeding event. For each recorded unit, a so-called 
"relative" correlation index was computed according to 
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with             being the ratio of the real and the expected 
number of spikes of unit j following any spike of any 
other unit (or any electrical stimulus) with maximal 
latency W, averaged across M one-minute time periods, 
Cij

(W,t) being the number of spikes of unit j following 
discharges of unit i (or electrical stimuli) with maximal 
latency W in time period t, Pij

(W,t) being the respective 
expected number, and N being the number of peers (or 
N = 1 in case of a correlation with electrical stimuli). 
The chance level of the temporal coherence of events, 
assuming independence and stationarity, was estimated 
according to 
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with Pij

(W,T) being the expected number of spike events 
of unit j following events of unit i (or electrical stimuli) 

with maximal latency W in time interval T, ni
(T) being 

the number of events of unit i (or electrical stimuli) in 
time interval T, and nj

(T) being the number of events of 
unit j in time interval T (see Chapter II, Appendix 1 for 
a derivation). The necessary condition for the equation 
to hold is that T/W ≥ ni

(T) , T/W ≥ nj
(T), i.e., the number 

of the respective events in time interval T should not be 
larger than 1200 if T is set to one minute and W is set 
to 50 ms. In the data presented here, this condition was 
always met. The index is a measure of the degree to 
which a neuron's firing is coupled to the activity of its 
peers or to the electrical stimulus. It turned out that 
spike events strongly depend on the ongoing network 
activity especially on short timescales (Fig. III-10a), 
corroborating previous results (Fig. III-2a, b, c). In time 
windows of 5 ms and in the absence of any externally 
applied neuromodulators, spike events were preceded 
by discharges of other cells about 15 times as often as 
was expected given their rates. With increasing time 
windows W, the relative correlation of spike events 
decreases, but remains considerably above chance level 
(which corresponds to Corr

(W) = 1) even at W = 50 ms. 
In addition, spike events are also clearly correlated 
with electrical stimuli, but here the relative correlation 
is strongest in time windows of 15-20 ms (cf. Fig. III-
9) and only reaches a maximal mean index of ~ 4 (Fig. 
III-10a). Most importantly, the average correlation of 
spikes with preceding stimuli is much lower than with 
spikes of other units in time windows of 5-15 ms, sug-
gesting that within these windows the ongoing network 
activity exerted a much stronger influence on the firing 
of cells than did electrical stimulation. 

While the relative correlation index compares the real 
and the expected number of spikes following electrical 
stimuli or other events in given time windows, it does 
not reveal anything about their actual incidence. To 
specify the actual amount of spike events that are likely 
to be related to preceding stimuli or discharges of other 
neurons, an additional "absolute" correlation index was 
computed according to 
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with Coraj

(W) denoting the number of preceding spikes 
(or electrical stimuli) in time windows W that appear to 
be related to each spike of unit j, averaged across M 
one-minute time periods, nj

(t) being the overall number 
of spikes of unit j in time period t, and Cij

(W,t), Pij
(W,t) 

and N corresponding to the previous notation. Interest-
ingly, the absolute correlation of spike events turned 
out to be almost independent of the timescale: Given 
the recorded units, every spike was preceded by about 
one spike of another cell that was most likely related to 
its appearance, regardless of the time window (Fig. III-
10b). In contrast, only about every fourth spike was 
preceded by an electrical stimulus that was probably 
related to its occurrence in time windows of 20 ms or 
more, whereas in time windows of 5 ms, this can only 
be presumed for about 2 out of 100 spikes (cf. Fig. III-
9). These results substantiate the idea that the recorded 
spiking activity is governed to a greater extent by the 
activity of the neuronal network than by the applied 
electrical stimulation also in absolute terms. 
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Chapter IV 
 
 

Towards a unifying neurocognitive theory of brain function 
 
 
Stephen Colbert: “How does the brain work? Five 

words or less!” 

Steven Pinker: “Brain cells fire in patterns.” 
 
The Colbert Report February 7, 2007. 

 
 
Theories of neural coding revisited: new 
light through old windows 

 
Taken on its own, a single action potential represents a 
single bit of information. If all brain cells were active 
independently, neural coding could be fully described 
by defining the mechanisms of spike generation and 
characterizing the firing patterns of single cells, and no 
extra information would be contained in multineuronal 
activity patterns. Yet, as this work and many others 
before have shown, neurons dynamically coordinate 
their firing. Neural coding thus involves the formation 
of multineuronal firing patterns that may function as 
information carrying “symbols”. To detect signatures 
of such potential symbols in local cortical networks, I 
recorded multineuronal activity from slices of rat visu-
al cortex and systematically searched for coordinated 
spike events in time windows of up to 50 ms. Activity 
patterns revealed a significant spatiotemporal structure 
characterized by synchronous firing within typically up 
to 5 ms, a timescale that has been found to be optimal 
for reliable signal transmission158. Hence, neural cod-
ing in the cortex might involve the selective synchroni-
zation of cells. Synchronization of neuronal discharges 
on the millisecond scale has long been recognized as a 
prevalent and functionally important attribute of neural 
activity100,283,445,475,501,504. What is unique about the data 
presented here is the fact that the observed synchrony 
cannot be explained by common input or synchronous 
network oscillations. The present findings thus call for 
an alternative mechanism causing synchronous firing 
of cells that is intrinsic to the local cortical circuitry. 
 
The “synchrony through synaptic plasticity” hypothesis 

 
As proposed in Chapter III, the activity of distributed 
cells may be coordinated through synaptic modifica-
tions induced by correlated spiking of pre- and postsy-
naptic neurons. In various neural circuits and a variety 
of species ranging from insects to humans the strength-

ening and weakening of synapses has been shown to 
depend on the relative timing of pre- and postsynaptic 
spiking in narrow time windows46,89 that in turn depend 
on dendritic location147,149,284,460 and the amplitude and 
decay time constant of the postsynaptic potential154. 
This so-called spike-timing-dependent plasticity72 has 
profound functional implications. Under conditions in 
which synaptic potentiation occurs if incoming signals 
slightly precede postsynaptic depolarization, inputs 
that consistently fire the postsynaptic neuron with short 
latency develop strong synapses, while synapses of less 
effective inputs are weakened316,467. As a consequence, 
response latencies of potentiated synapses become 
shortened48,332, causing a backward shift of the critical 
time window and bringing earlier inputs into effect. In 
this way, neurons could become responsive to ever 
earlier signals of a recurring input pattern192,321, so long 
as the temporal delay between succeeding input spikes 
does not exceed the critical time window for synaptic 
plasticity. Multiple neurons being consistently driven 
by (parts of) the same repeating spike pattern could 
thus actively synchronize their firing by learning to 
selectively respond to this pattern at corresponding 
temporal positions482. This possibly gets to the core of 
what assembles cell assemblies and presents a simple 
and effective mechanism for coordinating multineu-
ronal activity in the brain. By excluding other sources 
of synchronous firing, the recordings described in the 
preceding chapters provide strong indirect support for 
this “synchrony through synaptic plasticity” hypothesis 
in local cortical networks. 

The hypothesis makes several predictions. First, neu-
rons that coordinate their firing in response to a recur-
ring activity pattern do not need to be physically con-
nected, and also do not need to receive the same input 
signals. All that matters for the mechanism to work is 
that they are driven by a coherent pattern of activity, 
i.e., that their inputs are correlated. The ensuing spike 
time coordination may therefore extend over any dis-
tance, providing a simple solution for the problem of 
how information can be integrated on different spatial 
scales in the brain. In the visual and somatosensory 
system, for example, information about sensory stimuli 
is known to be concurrently represented and processed 
in several cortical areas326,351, and neuronal firing has 
been found to be significantly coordinated across these 
areas in both sequential498 and synchronous395 activity. 
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Such widespread spatial integration of information can 
be achieved through coordinated adjustments of synap-
tic strengths in response to correlated inputs, although 
the tendency of distributed cells to engage in coherent 
activity patterns is likely to decrease with increasing 
distance368. 

A second prediction is that, given the right plasticity 
mechanisms, recurring multineuronal spike sequences 
should progressively be compressed in time if the in-
volved neurons respond to coherent input. Evidence for 
a temporal compression of repeating activity patterns 
has indeed been found both in vitro227 and in vivo121 
and is thought to reflect functional modifications with-
in the neural circuitry. Assuming that the neurons that 
participate in the spike sequence receive a succession 
of correlated input signals, the whole process would 
stop when the cells learned to respond to the very onset 
of their respective input pattern. If these input patterns 
have the same temporal origin (which might be related 
to a sensory stimulus, a motor command or some other 
cognitive event), the cells would henceforth respond in 
unison. In this way, any recurring spatiotemporal activ-
ity pattern could eventually be translated into the syn-
chronous spiking of a certain set of cells. 

This, in turn, would result in a significant sharpening 
of neuronal representations and an increasingly concise 
layout of information, which is another prediction of 
the hypothesis: Repetitive activation patterns would be 
transformed to short-latency volleys of synchronous 
spikes482, whereas new spatiotemporal arrangements of 
signals would provoke temporally dispersed responses. 
Further, the synchronization would most likely involve 
a sparsening of related spike events, optimizing energy 
efficiency282 while enhancing the memory capacity of 
the network337. The shaping of the functional circuitry 
through synaptic plasticity might thus contribute to the 
establishment of a sparse coding scheme277,290,369 as it 
appears to be implemented in several sensory cortical 
areas220,236,383,518,534. Sparse activation of small neuronal 
populations and even of single cells in neocortex has 
also been shown to evoke distinct movements50 and 
actually drive behavior219,222, demonstrating a possible 
functional role of sparse cortical activity that might be 
explained by the ability of single discharges to initiate 
both widespread excitation and inhibition248,285,343,539. 
 
Coordinating neuronal activity: mechanisms and  

functions 

 
It has been argued that this sensitivity of the cortical 
network to single action potentials would cause rela-
tively large random membrane potential fluctuations 
and so entail a reduction of the signal-to-noise ratio in 
neuronal communication294, implicitly assuming that 
spike generation is inherently noisy. Reversing the 
argument, however, one might as well conclude that 
this very sensitivity requires signal propagation to be 
accurately controlled, and one might suspect that the 
brain has evolved to make optimal use of its limited 
resources and has developed adaptive mechanisms to 
prevent the processing of signals that carry no meaning 
or, even worse, affect information processing. Cortical 

computation would then imply sparse representations 
and a very selective routing of signals. To integrate and 
segregate distributed information efficiently, neurons 
would have to coordinate their firing and engage in 
coherent activity patterns while maximizing the reper-
toire of functional states469,494, which amounts to oper-
ating in a critical regime40 between total independence 
and perfect functional unity. Not surprisingly, the brain 
is endowed with a variety of features and components 
controlling neuronal cooperation and the activity flow. 

The diversity of neuronal cell types and the intrinsic 
heterogeneity of their biophysical properties has been 
found to increase the system’s coding capacity through 
a decorrelation of the firing of cells370. Likewise, the 
dynamics in neuronal populations become more com-
plex through the divergent and convergent actions of 
various transmitters and neuromodulators106,313. Anoth-
er factor that has an impact on the functional repertoire 
of the network is the mere number of its neurons and 
the degree of their connectedness. These and other 
cellular and network properties also play a role in regu-
lating the activity flow in the brain. First and foremost, 
the propagation of signals is confined by the functional 
anatomy of the network, that is, synaptic connections 
and their effective strengths470. Given the dense mesh-
work of axonal and dendritic processes, neural signals 
are often presumed to potentially take any direction at 
any time; however, they do not. Rather, synapses may 
temporarily be silenced525, and the overall distribution 
of synaptic strengths in local cortical circuits comprises 
relatively few strong connections embedded in a “sea” 
of weaker ones468,549, constraining the range of possible 
signaling pathways302 and again maximizing the net-
work’s capacity to produce and retain stable activity 
patterns80. Besides the effective synaptic connectivity, 
a neuron’s functional state is relevant to the routing of 
signals. In particular, neuronal responsiveness is con-
trolled through the rate and balance of excitatory and 
inhibitory inputs195. Synaptic bombardment can cause 
continuing depolarizations and an increased variance 
of the membrane potential and thereby raise a neuron’s 
sensitivity especially to inputs of small amplitude327,438, 
while the concomitant drop in input resistance leads to 
substantial dendritic attenuation of electrical signals, 
with distal synapses only having minimal effects at the 
soma97,126. This high conductance state98 is thought to 
be generated through local recurrent excitation414 and 
has been linked to the encoding of sensory information 
in primary visual cortex18. In addition to these input-
driven fluctuations between a hyperpolarized “down” 
state and a depolarized “up” state, the intrinsic ability 
of neurons to respond selectively to inputs at preferred 
frequencies225 affects their integrative properties: Both 
synaptic mechanisms489 and ionic conductances292 may 
create a resonance effect224,423,502 that influences spike 
timing and information transmission between cells125. 
Finally, the propagation of signals directly depends on 
the ongoing activity pattern, with neuronal oscillations 
playing a prominent role in defining temporal windows 
for effective excitation73,140-142. The interplay of concur-
rent excitatory and inhibitory inputs229, in conjunction 
with ephaptic transmission of electrical potentials17,533, 
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dynamically determines the possible impact of incom-
ing signals28,78,394. Acting together, all these structural 
and functional elements gate the information flow in 
the brain7,150,237,412,446,520 and produce both the network 
and the activity patterns that then give rise to cognitive 
functions. The work presented in the preceding chapter 
emphasizes the importance of the functional synaptic 
connectivity for the dynamic coordination of multineu-
ronal firing287,302. In the following, I will further discuss 
the role of synchronous oscillatory activity therein. 

As already mentioned, network oscillations naturally 
arise from the interplay of recurrent excitatory and 
inhibitory connections and the resonant properties of 
individual neurons74,182,225,292. Since they are a built-in 
feature of virtually every neural system, it can be sup-
posed that controlling them is one of the brain’s most 
basic functions65. Poised on the brink of instability21, 
cortical networks generate synchronous discharges at 
various frequencies involving variable numbers of cells 
and thereby distinguish varying functional states for 
the processing of information68. By rapidly balancing 
excitation with inhibition, the oscillation frequency can 
be instantaneously modulated22. In participating cells, 
rhythmic synaptic inputs and oscillations of the local 
electrical field restrict effective excitation to the depo-
larizing phase of the oscillation cycle, thus adding a 
dynamic, temporal gate for the transmission of signals 
to the spatial gates given by the functional connections 
in the network141. Depending on the interactions of 
concurrent rhythms70,272,407, spiking activity may hence 
be orchestrated on multiple spatiotemporal scales in 
parallel by modulations of the phase and amplitude of 
distributed oscillations71,239,268,506, possibly even across 
subjects when they engage in coordinated actions288. 

Taking a closer look at how oscillatory network ac-
tivity interferes with a single cell’s firing, the question 
arises to what extent the timing of an action potential 
can be controlled by oscillatory input. It is known that 
through the interplay between the magnitude of den-
dritic excitation and rhythmic inhibition of the somatic 
region, the more excited cells tend to fire earlier in the 
oscillation cycle200,517,521, such that the phase of firing 
corresponds to the excitatory drive of the neuron331. On 
these grounds, it has been proposed that the interaction 
of subthreshold membrane potential oscillations with 
incoming excitatory signals could serve as a fundamen-
tal computational mechanism for the implementation 
of a temporal coding scheme in which information is 
encoded by the precise timing of a spike relative to the 
phase of the ongoing oscillation142,217,348. Yet, although 
the particular phase in which a neuron fires can contain 
significant information257,344,441, such a coding scheme 
would necessarily be limited to the timescale on which 
rhythmic membrane potential fluctuations can advance 
or delay the spike timing in a systematic way without 
completely suppressing spike generation. In vitro re-
cordings have shown that this timescale dynamically 
depends on the average absolute membrane potential, 
the time constant of the membrane, the strength of the 
input signal, and the frequency and amplitude of the 
membrane potential fluctuations331,521. According to 
these studies, only neurons receiving tonic excitatory 

drive, combined with slow oscillatory input having a 
relatively long period compared to the membrane time 
constant, may produce output signals whose timing is 
smoothly scaled across the whole depolarizing phase. 
If, however, there is only transient excitatory input or 
the period of the rhythmic modulation approaches the 
time constant of the membrane, neural oscillations act 
essentially as a logic gate relaying incoming excitatory 
signals only within accordingly narrow time windows. 
In so doing, network oscillations provide context to 
afferent signals by selectively routing information in 
the brain in a dynamic and state-dependent way59,84,391.   
Playing a complementary role to neuronal connectivity, 
rhythmic modulations of the membrane potential may 
also synchronize multineuronal firing when paired with 
prolonged excitatory input; in this case, spike timing is 
largely determined and actively controlled by the phase 
of the modulation and the overall activation level of the 
cell275,315,521. In addition, oscillations of the membrane 
potential may improve action potential precision by 
imposing defined temporal windows for the effective 
integration of excitatory inputs218,383,417. Thus, rhythmic 
excitability fluctuations are able to dynamically control 
the routing and the timing of neuronal signals235, and it 
might not be a coincidence that the phase of ongoing 
network oscillations in the human brain has been found 
to correlate with the perception of sensory stimuli62,303. 
Whether the interference of oscillatory activity with 
afferent inputs and the resulting spike timing constitute 
a temporal code or a binary code then depends on the 
timescale of their effective interaction. 
 
Neuronal cooperation and the timescale of cell      

assembly activation 

 
The above arguments on the coordination of neuronal 
activity through synaptic plasticity and the dynamic 
gating of signals suggest that the emergence of syn-
chronous cell assemblies and their selective activation 
may be central to cortical information processing. The 
following considerations are concerned with the likely 
organization of these assemblies in time and space. 

The first issue relates to the temporal precision with 
which neurons could be expected to coordinate their 
firing. In the past, spike timing was assessed relative to 
the timing of external stimuli or other spikes emitted 
by the same cell, a praxis that stems from the classic 
approach to explain brain function by characterizing 
the response properties of single cells and simply ig-
nores coordination of spike events across populations 
of cells. These studies led to the notion that neuronal 
spiking was generally unreliable and imprecise, which 
in turn led to the – still widely accepted – conclusion 
that information cannot be represented by the precise 
timing of spikes. Yet, this view might just be a mis-
conception of the temporal organization of neuronal 
firing that follows from not taking into account spike 
timing across cells, which would require the parallel 
recording of multiple single cells and appropriate 
measures of their spike time coordination320. We know 
from combined voltage sensitive dye imaging and 
intracellular recordings that the firing of a cortical 
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neuron strongly depends on the present activity pattern 
in the surrounding area499 and that the large variability 
of responses to sensory stimulation arises from a quite 
deterministic interaction of afferent signals with the 
ongoing activity20. Sensory evoked neural activity thus 
represents the modulation of ongoing circuit dynamics 
by sensory afferents, rather than directly reflecting the 
structure of the input signal132. This means that it might 
be more instructive to relate a neuron’s firing to the 
activity of its peers than to some external event112,371. 
The analysis of multineuronal spiking activity present-
ed in the preceding chapter provides just that: By de-
fining spike timing precision with respect to the sur-
rounding network activity, neuronal discharges were 
shown to be coordinated with a median accuracy of 
less than a millisecond. This result is categorically 
different from the results obtained in single neuron 
studies and suggests a possible role of precise spike 
timing in cortical information processing. Furthermore, 
coordinated discharges typically tended to be synchro-
nized to within one or two milliseconds, involving 
varying sets of distributed neurons. The idea that these 
neurons form parts of functional cell assemblies whose 
activation represents cognitively meaningful units of 
information and that these assemblies are distinguished 
by synchronous firing within typically two millisec-
onds fits with the finding that animals can exploit dif-
ferences in the timing of cortical signals that are as 
short as three milliseconds to guide decisions221,548. 
Taken together, these observations suggest that neural 
assemblies may evolve and take effect on a timescale 
of a few milliseconds. 

The second issue concerns the role of single neurons 
in information representation. How independent is the 
message a single cortical neuron conveys by sending 
an action potential down its axon from the signaling of 
others? If it was perfectly related to the firing of any 
other cell, their signaling would be totally redundant, 
reducing both the network’s coding capacity and effi-
ciency. If, on the other hand, it was fully independent, 
then this would imply that it had a fixed meaning that 
is unmodifiable by collateral signals, like in a labeled 
line code. However, several arguments suggest that the 
information carried by the spiking of a particular neu-
ron may not be invariant but be dependent on the func-
tional state of the network as a whole. 

First of all, neural connections and synaptic strengths 
are plastic and subject to continuing modifications342, 
resulting in an ever-changing functional structure of 
the neuronal network9,10,366. Together with other factors 
that control the integration of synaptic inputs on short 
timescales like ongoing network oscillations and dy-
namic excitability changes83, this leads to a substantial 
variability in the receptive fields of neurons148,481,532,542 
and thus in the information that could be conveyed by 
a particular cell. Moreover, neurons in sensory cortical 
areas may adapt their receptive fields to the properties 
of the current sensory input136,550 and were shown to be 
sensitive also to the larger stimulus pattern161,194, varia-
tions of central states336,528, stimuli presented simulta-
neously in other modalities103,273,513, shifts in spatial and 
feature selective attention145,540, and reward values53,440. 

The responsiveness of single neurons thus depends on 
the concurrent sensory or cognitive context177. Again, 
this means that neurons dynamically coordinate their 
firing and represent information by their joint activity. 
As pointed out in the previous section, the synergistic 
encoding of information by ensembles of neurons, as 
opposed to single-cell coding, would be favorable also 
from a theoretical point of view: The variable binding 
of distributed cells into functionally coherent groups 
would maximize the repertoire of functional states and 
in this way dramatically improve the coding capacity 
of the network. Furthermore, dynamic changes in neu-
ronal firing correlations observed during sensory pro-
cessing or working memory operations156,368,410,505 seem 
to confirm that individual cells flexibly take part in 
multineuronal representations. Given the large number 
of diverging and converging connections in the brain, 
correlated activity indeed appears to be the rule rather 
than an exception, as it is commonly caused by shared 
input274,464. Yet at the same time, neighboring neurons 
in sensory cortical areas may actively decorrelate their 
firing105,164,396,397,464 in a stimulus-dependent way163,518,551. 
Cortical neurons thus dynamically change the partners 
with which they share coherent information, implying 
that the information that is transmitted by a single cell 
may vary as a function of the activity of its peers and 
cannot possibly be decoded without taking into account 
the concurrent population pattern. 

The dynamic interdependence of neuronal responses 
and the ensuing formation of multineuronal representa-
tions bring us back to the binding problem404,458,497,523: 
If a neuron’s firing, taken on its own, does not unam-
biguously indicate some specific feature or state of the 
inner or outer world, what are the mechanisms that are 
responsible for the emergence of defined, meaningful 
firing patterns across multiple cells, and what is the 
resulting spatiotemporal structure of these patterns457? 
In the preceding parts of this thesis, I tried to argue that 
synchronous firing within a few milliseconds is what 
defines the members of a functional cell assembly, and 
that their collective activation is what probably defines 
irreducible units of information. A possible mechanism 
that could mediate the selective formation of synchro-
nous cell assemblies as carriers of coherent information 
is given by the “synchrony through synaptic plasticity” 
hypothesis which consistently explains the signaling of 
functional relations between neurons by synchronous 
spikes and the computation of these signals428: When-
ever multiple cells repeatedly receive correlated input, 
the associated changes of synaptic efficacies may even-
tually create a set of cells that synchronously respond 
to a specific activity pattern and thus share a common, 
complex receptive field which cannot be reduced to the 
receptive fields of single neurons52,242. Other sources of 
synchronous spiking and their possible role in neural 
coding will be discussed in the following section. 
 
 

Neural correlates of cognitive processes 
 
If the “synchrony through synaptic plasticity” hypothe-
sis is correct, groups of synchronously active cells will
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spontaneously emerge in response to repeating excita-
tion patterns in the brain and consequently indicate a 
“known” event, suggesting that these synchronous cell 
assemblies may function as symbols of a neuronal code 
that serve as a correlate of some discrete cognitive 
content. In what follows, I will speculate about possi-
ble roles of these multineuronal signals in cognitive 
processes. 
 
Plasticity, degeneracy and the hard problem 

 
When relating neural activity to cognitive functions 
and phenomena, two things need to be considered. The 
first concern applies to any physical account of con-
scious experiences and has been addressed as “the hard 
problem of consciousness” by Chalmers77. Although it 
is evident that experience arises from a physical basis, 
we have no satisfactory explanation of why and how it 
so arises. We may well specify the mechanisms that 
are responsible for the performance of certain neural or 
cognitive functions, but why brain activity gives rise to 
subjective experiences or “qualia” is entirely unclear. 
In principle, any neuronal process could be instantiated 
in the absence of experience, or as Chalmers77 put it: 
“Experience may arise from the physical, but it is not 
entailed by the physical”. It follows that no account of 
the physical brain processes will tell us why and how 
they lead to the emergence of qualia. Even if we suc-
ceed in mechanistically explaining the ability of the 
brain to discriminate, to categorize and to appropriately 
react to environmental stimuli, to shift attention and to 
deliberately control behavior, to learn and to adapt, and 
to selectively combine, memorize and recall pieces of 
information, we are still limited to a phenomenological 
correlation of observed brain dynamics and subjective 
conscious experiences166. (Nevertheless, we may hope 
to identify some psychophysical principles connecting 
the properties of neuronal processes to the properties of 
related experiences, as I will exemplify below.) 

A second problem concerning the relation of neural 
activity and cognitive functions is caused by the ten-
dency of the brain to display degeneracy108, that is, the 
ability of structurally different elements to perform the 
same function or yield the same output. Degeneracy 
can be found on virtually any organizational level in 
the brain and is an inherent feature of intra- and inter-
cellular signaling, synaptic plasticity, motor commands 
and body movements, and also inter-subject communi-
cation (there might be large or sometimes even infinite 
numbers of ways to transmit the same message, a situa-
tion most obvious in language). For instance, different 
combinations of ionic conductances affecting the inte-
gration of dendritic input signals may lead to the gen-
eration of identical output signals of a cell6. On the 
network level, different configurations of connection 
strengths and cellular properties may produce the same 
population activity patterns388, and different ensembles 
of neurons may be dynamically configured to initiate 
the same behavior338. Accordingly, we do not lose the 
perception of a seen object just because its image is 
slid across the retina – we may continuously perceive it 
as the same object although changing populations of 

neurons receive and carry the associated information 
(eye movements actually serve to maintain a stable 
visual perception318). Further evidence supports the 
idea that there is no simple one-to-one relationship 
between particular activity patterns in the brain and 
certain cognitive processes: In visual cortex, neuronal 
responses to repeated presentations of the same stimu-
lus are highly variable and are strongly determined by 
the ongoing activity20,132. In addition, synaptic connec-
tions continuingly undergo extensive remodeling124,342, 
providing the brain with an adaptive yet inherently 
unstable functional structure. This implies that neural 
codes may change with time through learning, and that 
the same activity pattern may be interpreted differently 
(or evoke a different behavior) later in the day110. 
 
Synchrony and the principle of structural coherence 

 
Despite these difficulties in establishing well-defined 
relationships between mind and brain activity, neuronal 
signaling in the brain is highly organized and far from 
being random, as are cognitive processes, and some 
relationship – i.e., some code relating a given activity 
pattern to a particular cognitive function – must exist 
between the two. In this thesis, I took a naive approach 
towards characterizing the spatiotemporal organization 
of cortical spiking activity and found a prevalence of 
precisely synchronous spike events among distributed 
discharges in the visual cortex of the rat. Although a 
variety of differences exist between different cortical 
areas in general and between rat and human cortices in 
particular regarding cell types, cell morphology and 
cellular connectivity93,113, we can expect the same syn-
chronization of neuronal signaling to occur also in the 
human brain and in other neural systems. According to 
the “synchrony through synaptic plasticity” hypothesis, 
any two neurons equipped with Hebbian spike-timing-
dependent plasticity receiving correlated input may end 
up responding to this input in synchrony, as explained 
above, through a mechanism that is largely unaffected 
by variations in neuronal circuitry508. 

Given the synchronous activity of a selective set of 
cells, what could be its cognitive correlate? Chalmers 
argued that information, when being processed by the 
brain, has two basic aspects, a physical aspect and a 
phenomenal aspect, and that its physical representation 
should have a structure that corresponds directly to the 
differences between phenomenal states77. If the argu-
ment holds, this principle of structural coherence might 
provide a fundamental link between the characteristics 
of cognitive processes on one hand and the organiza-
tion of neuronal activity on the other. Applied to neu-
ronal synchrony, it means that the directed coactivation 
of a group of distributed cells could be expected to be 
paralleled by a meaningful convergence of information 
on the cognitive level, such as reaching a decision or 
creating a coherent perception based on distributed 
signals117,180,447,458. It has also been suggested that the 
same mechanisms that mediate the synchronization of 
distributed discharges are responsible for giving rise to 
conscious experiences118,451,453. Becoming aware of a 
percept or an idea necessarily involves a transition of 
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one functional state to a different state, as has been 
noted by Dennett94: “It seems obvious that there has to 
be a time before which we are not conscious of some 
item and after which we are conscious of it. In some 
sense, then, we become conscious of various features 
of our experience, so there must be some kind of tran-
sition, if not arrival at a place or crossing of a bounda-
ry, then a change of functional state of one sort or 
another.” Although it is difficult to demonstrate that 
conscious perception requires neuronal synchrony, it 
should be clear that the transient synchronization of a 
non-random assembly of cells is precisely that sort of 
neuronal activity that indicates non-random changes in 
functional states on timescales fast enough to comply 
with all kinds of cognitive processes, and thus satisfies 
the principle of structural coherence also with respect 
to the processes underlying conscious experiences. 

Any functional interpretation of neuronal synchrony 
has to include and obviously depends on the specific 
mechanism that is responsible for the synchronization 
of neuronal activity. One reason for synchronous firing 
could be concurrent activation through sensory stimuli. 
In the mammalian visual system, retinal ganglion cells 
may fire synchronous action potentials simply because 
they are driven by a common stimulus. In the lateral 
geniculate nucleus, corticothalamic efferents come into 
play, and synchrony of afferent signals becomes a little 
less trivial442,443. After reaching cortical areas, sensory 
signals are modulated by the ongoing cortical activity 
and follow a multitude of diverging and converging 
pathways within both local and widespread cortical 
circuits. In other words, the more central the signals, 
the more their timing depends on the functional archi-
tecture of the network, and the less trivial is the inter-
pretation of neuronal synchrony relating to the sensory 
stream287. 

In neocortex, neural connections have several inbuilt 
features that directly support the synchronization of 
neuronal signals. The most significant feature is the 
coupling of inhibitory interneurons by gap junctions, 
forming large, continuous, cell type-specific syncytia 
16,157,176. Although the amplitude of electrotonic signals 
quickly falls off with distance, this electrical coupling 
facilitates the widespread synchronization of rhythmic 
inhibitory activity, which in turn constrains the firing 
of entire populations of pyramidal cells to narrow time 
windows41,42,67,160,537. As will be explained below, this 
mechanism is important for the instantaneous coordi-
nation of multineuronal spiking (and hence cognitive 
processes) on very short timescales. Another feature of 
many thalamocortical and corticocortical connections 
is the compensation for differing lengths of a cell's 
axonal branches by adjusting the degree of myelination 
and the diameter of the fibers such that all postsynaptic 
targets receive the signal at the same time228,262,411. This 
makes sense if one assumes that synchrony is a tag for 
"belonging together" or "being one". Finally, the corti-
cal network might also be endowed with synchronizing 
mechanisms other than common input or synchronous 
network oscillations. The "synchrony through synaptic 
plasticity" hypothesis explains how synchronous cell 
assemblies could emerge through correlated changes in 

synaptic efficacies in response to repeating excitation 
patterns. The gradual build-up of synchronous groups 
of cells through learning would be vital for creating 
"sense out of fact"242 and might help to distinguish 
between familiar and unfamiliar experiences482. Im-
portantly, though, those synchronous groups would be 
different from a classical Hebbian cell assembly in that 
the participating cells do not need to be directly con-
nected169,207, but are fully characterized by the transient 
(and non-random) synchrony of their discharges137,198. 
From all the cells that happen to be activated by the 
same repeating excitation pattern, certain subsets could 
be selected as synchronous groups through coordinated 
changes in synaptic strengths and latencies107 based on 
the relative onset of a cell's input signals associated 
with that excitation pattern. Their joint activity would 
then signify the onset of that exact neural (or cognitive) 
event with shortest possible latency. As suggested by 
the arrangement of synchronous cell ensembles in the 
visual cortex of the rat (see Chapter III), neurons being 
recruited into synchronous groups most likely derive 
from already existing functional subnetworks553 within 
which synaptic connections are relatively frequent and 
strong. The related reshaping of the cortical network is 
thought to underlie the consolidation of newly acquired 
"knowledge" and goes along with the fact that neuronal 
populations in sensory areas exhibit similar activation 
patterns both spontaneously and in response to sensory 
input240,300,302,305, suggesting that sensory responses are 
drawn from a limited "vocabulary" of possible activity 
patterns given by the intracortical functional synaptic 
connectivity. These findings again support the idea that 
the functional layout of cortical synaptic connections 
plays a major role in coordinating and synchronizing 
cortical activity287. 

There is, however, a problem: Adaptive changes of 
synaptic connections occur on a much longer timescale 
than most cognitive processes and are unable to repre-
sent changes in sensory information in real time. This 
inability to instantly reconfigure the functional network 
in response to afferent signals has been referred to as 
the "learning-time barrier"523 and calls for an additional 
mechanism that can coordinate multineuronal activity 
on the timescales on which cognitive processes take 
place, i.e., within milliseconds. It is obvious that such a 
fast mechanism can only be realized through dynamic 
activity patterns emerging from and interacting with 
the functional neural circuitry. Although any complex 
activation pattern could in principle serve to selectively 
excite a certain set of cells while inhibiting others, the 
most prominent and ubiquitous population pattern that 
is known to flexibly and coherently modulate the ex-
citability of distributed cells on a millisecond timescale 
is synchronous network oscillations. As explained in 
previous sections, network oscillations naturally arise 
from the resonant properties of individual neurons and 
from the interplay of recurrent excitatory and inhibito-
ry connections. The propensity to produce synchronous 
oscillations is higher when recurrent feedback is strong 
527, which adds to the reason why cortical gamma-band 
oscillations tightly correlate with hemodynamic signals 
indicating an increase in energy consumption352. This 
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means that network oscillations are not inherently an 
energetically "cheap" way to achieve neuronal syn-
chrony, as has been suggested65. In fact, the "cheapest" 
way to synchronize the activity of neuronal ensembles 
would be to arrange functional synaptic connections 
such that some selected sets of cells will be synchro-
nously activated by a certain preceding (and possibly 
sparse) activity pattern, as proposed by the "synchrony 
through synaptic plasticity" hypothesis. Nevertheless 
do cortical networks readily engage in oscillatory ac-
tivity, thus serving the need for a fast and dynamic 
coordination of multineuronal firing. On a mechanistic 
level, the principal function of synchronous oscillations 
comes down to a temporal modulation of the effective 
neuronal connectivity through rhythmic fluctuations of 
the excitability of cells. Synchronized rhythmic activity 
and functional synaptic connections thus combine in a 
complementary way to allow for a spatially and tempo-
rally selective transmission of signals and hence for a 
selective activation of neuronal ensembles at any point 
in time.  

On a more cognitive level, synchronous oscillations 
effectively reduce the system's degrees of freedom and 
restrict the space of possible activity patterns, so as to 
concentrate on some signals and the information they 
carry while disregarding others. Indeed do neurons in 
macaque area V4 that are activated by an attended 
stimulus engage in enhanced gamma-band synchroni-
zation compared with neurons activated by a distracter, 
pointing to a functional role of synchronous network 
oscillations in attentional stimulus selection143,144. For 
network rhythms to synchronize the activity of neuron 
groups, though, it is unimportant if they exhibit a stable 
phase and frequency – all that matters for an effective 
coordination of multineuronal signals is the limitation 
of neuronal discharges to narrow time windows by 
alternating volleys of synchronous excitation and inhi-
bition22,229,354. Could such rhythmic network activity in 
principle be sufficient for a selective synchronization 
of neuronal discharges, irrespective of the functional 
synaptic connectivity? It clearly can not, first because 
synchronous oscillatory activity is coherent across cell 
populations115,241 and thus lacks the spatial selectivity 
needed for efficient neural coding, and second because 
meaningful neuronal synchrony can only arise through 
experience and learning, which involves adjustments of 
synaptic efficacies and connections. It is thus evident 
that while dynamic activation patterns are needed to 
flexibly arrange synchronous cell assemblies on short 
timescales, functional adaptations of selected synaptic 
connections are required to allow for a selective syn-
chronization of cells in the first place. According to the 
"synchrony through synaptic plasticity" hypothesis, the 
directed assembly of cells into synchronous groups 
could be based on the detection of repeating activity 
patterns and hence on recognizing recurrence as a 
fundamental property of behaviorally relevant events. 

The emergence of selective neuronal synchrony as a 
potential carrier of information bears the question of 
how this synchrony is interpreted in subsequent pro-
cessing stages. It has been argued that parallel synaptic 
inputs arriving synchronously at a postsynaptic neuron 

summate more effectively and for this reason transmit 
their signals more reliably than temporally dispersed 
inputs266,526. Although pyramidal neurons are indeed 
more sensitive to coincident inputs especially at high 
activity levels27,28,387, it should be clear that any syn-
chronous discharge pattern in the brain will fan out in 
both time and space through a multitude of converging 
and diverging connections, meaning that its impact on 
downstream cell populations is not determined by the 
synchronicity of the signals per se. The question thus 
becomes what distinguishes meaningful synchronous 
discharge patterns from accidental neuronal synchrony, 
and the only possible answer is their usefulness in 
interpreting sensory information and generating appro-
priate behavior66 by informing downstream populations 
of neurons about their current functional coherence in 
an "understandable" and meaningful way. The ability 
to do so can be expected to depend on prior adaptations 
of the functional network to enable the immediate 
recognition and classification of the associated infor-
mation. 

As mentioned before, a typical property of functional 
brain networks is the dense local clustering of synaptic 
connections and the linking of distant cell populations 
through direct long-range projections247,468 (see Chap-
ter III). A consequence of this so-called small-world 
architecture34,471,530 is a small number of intermediary 
synaptic connections in the transmission route between 
any pair of neurons and hence an almost immediate 
global integration of information. Assuming at most 
six synaptic processing steps for transmitting a signal 
from any neuron to any other neuron and a maximal 
average delay of 30 ms between pre- and postsynaptic 
firing496, it appears that it takes no more than 180 ms to 
potentially involve the entire brain. Interestingly, this is 
a typical timescale for shifts in attention, saccadic eye 
movements, and reaction times to sensory stimuli496, so 
we are led to infer that every minute of our experience 
is based on a brain-wide evaluation of neural activity. 
This is exactly where the classical concept of sender 
and receiver, as applied to neural coding, is bound to 
fail – if the whole network is involved in distilling the 
meaning of a given activity pattern, a "message" and 
its subsequent interpretation would be separated in 
time, but would not rely on any dedicated communica-
tion channel. At any one moment, the brain as a whole 
would integrate all the available information and tend 
to some coherent state that consistently combines all 
the different aspects of its current condition on various 
spatiotemporal scales. Information processing in the 
brain could thus be conceived as a continuous trans-
formation of transient activity patterns on all of these 
scales196, while sending and receiving elements cannot 
be distinguished. 
 
Emergence of the phase sequence and the "problem of 

the direction of thought” 

 
The ongoing transformation of spatiotemporal activity 
patterns and its role in neuronal coding is specifically 
addressed by the concept of reservoir computing, also 
known as echo-state or liquid computing304. The basic 
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idea of this computational framework is the mapping 
of dynamical input states onto a high-dimensional state 
space of the neuronal network, referred to as reservoir, 
followed by a classification of the distributed activity 
patterns through a trained readout that makes the com-
putation meaningful and problem-oriented. The read-
out can in principle be realized by single neurons that 
sample the activity from multiple upstream cells in the 
network and adjust the strength of their incoming syn-
aptic connections so that they are selectively activated 
by a particular state of the reservoir. Alternatively, the 
readout stage could comprise cell assemblies that are 
selectively activated by specific states of the network 
and in turn directly control effectors without entailing 
the famous "bottleneck problem". The virtue of a high-
dimensional state space in information representation 
is the fact that stimulus-evoked patterns occupy much 
lower-dimensional subspaces, i.e., involve only small 
fractions of the neurons in the network, and can thus 
easily be discriminated based on their spatiotemporal 
signatures456. The important bit is that stable internal 
states are not required for giving a stable output, since 
transient internal states can be transformed by readout 
neurons into defined output signals377 due to the high 
dimensionality and inherent degeneracy of the dynam-
ical system304. The response of the reservoir to external 
perturbations strongly depends on the current function-
al state of the network58, which in turn depends on its 
past activity. Distributed signals reverberating through 
recurrent connections in sufficiently large and hetero-
geneous neural circuits provide the reservoir with a 
fading memory of recent inputs that allows it to inte-
grate input sequences over both time and space355. The 
linear decline of relative spike timing precision with 
increasing spike delays reported in Chapter III could be 
an indication of such a fading memory affecting the 
generation of precisely timed discharge sequences in 
neocortical circuits. 

While cortical networks feature an extremely high-
dimensional state space and naturally give rise to res-
ervoir dynamics, repeated stimuli would induce plastic 
changes of their functional synaptic connectivity such 
that the resulting response patterns become more and 
more stable, and different responses to different stimuli 
become more and more segregated279. By transitioning 
"from vague to crisp"375, response patterns may evolve 
into attractor-like network states35,86,416, thus improving 
their discriminability and instantiating learning on the 
network level377,482. As a consequence, cortical activity 
is not chaotic, but is governed by contextual priors that 
are embedded in the functional network architecture 
and that bias multineuronal firing towards "expected" 
or "anticipated" pre-learned response patterns263. This 
inherent bias, in turn, is influenced by attention and the 
spatial and temporal context of incoming stimuli131,340 
and is instrumental in associating preceding network 
states (or "ideas") with succeeding states in a coherent 
and meaningful way. 

The conception of a serial dependence of successive, 
relatively short-lived network states refers to a crucial 
point in any comprehensive neurocognitive theory: 
Since many cognitive functions and phenomena are of 

sequential nature (think of the production and reception 
of speech and music, episodic memory, or any serial 
motor task), how could the organization of neuronal 
network activity be conceptualized to account for co-
herent sequences of cognitive events? In dynamical 
systems terms, favored activation patterns that emerged 
through learning represent saddle points in an attractor 
landscape that are preferentially visited by the system 
while it is moving around in state space21,104. The or-
dered succession of visited saddle points or neuronal 
activation patterns, then, would give rise to a hetero-
clinic sequence linking transient metastable network 
states across time and space11,393 in some meaningful 
way. Importantly, classical attractor states like fixed 
points and limit cycles are biologically implausible 
because they constrain the system's dynamics to low-
dimensional subspaces and are therefore unlikely to be 
realized in biological circuits392. The information that 
is processed would thus be organized into a sequence 
of transient states that depends on the system’s history, 
rather than by eventually reached attractors or steady 
states110,245. 

This modern view of sequences of brain activity pat-
terns as dynamically evolving trajectories in state space 
330 agrees well with the Hebbian conception of "phase 
sequences" that are proposed to arise from the sequen-
tial activation of cell assemblies, where each assembly 
represents a semi-stable state and is active only transi-
ently198,207. Hebb conjectured that the firing of a single 
cell assembly corresponds to a single idea as a basic 
cognitive entity, and that the successive activation of 
different cell assemblies represents the neural basis of 
the thought process. An essential property of the phase 
sequence concept is the relatively loose coupling and 
flexible timing of successional cell assemblies, which 
distinguishes it from the concepts of synfire chains and 
synfire braids which assume temporally precise firing 
over relatively long stretches of time3,47,232. However, 
from a theoretical point of view, such strictly defined 
long firing sequences would reduce the flexibility and 
effective dimensionality of the system in an unsuitable 
and unnecessary way102 and are thus unlikely to occur 
in real neuronal networks. On the other hand, the rather 
flexible organization of phase sequences poses another 
problem that Hebb was well aware of and that has been 
addressed as the "problem of the direction of thought" 
by Humphrey early on. In his 1939 article223, he noted 
that "there is the problem of why one member of the 
train [of thoughts] succeeds another, why a particular 
idea or image occurs, more or less relevantly to the 
point at issue, instead of the million and one irrelevan-
cies that might occur". This problem, of course, gets to 
the core of human cognition, because it is asking for a 
mechanism that would explain the organization of the 
human thought process. Although we are far from any 
complete explanation of why and how one thought or 
idea gives rise to another, one might well speculate that 
there exist some basic neural mechanisms that provide 
neuronal networks with the potential to produce long 
sequential activity patterns and to direct their trajectory 
in state space to some degree. A promising candidate 
for such a mechanism is the classical spike-timing-
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dependent plasticity rule, according to which synapses 
are strengthened if they reliably take part in driving the 
postsynaptic cell with short latency88. In addition, long-
range cytoplasmic signaling within the presynaptic 
neuron may lead to a retrograde propagation of synap-
tic potentiation along excitatory pathways484. The con-
sequent formation of chains of relatively strong and 
effective synaptic connections has been demonstrated 
to produce long, diverse activity sequences in simula-
tion experiments130,263 and probably constitutes the 
main neural mechanism of temporal order learning in 
neuronal networks153. By directing the propagation of 
signals within the network, chains of strong synaptic 
connections might also be responsible for the cue-
triggered recall of learned temporal sequences: After 
conditioning through repeated sequential stimulation of 
distributed groups of neurons, neuronal networks have 
been shown to reproduce the complete sequential re-
sponse pattern upon being exposed to only the initial 
part of the stimulus sequence263,363,545. 

If synaptic plasticity indeed underlies the emergence 
of Hebbian phase sequences, the resulting functional 
network structure should allow for a flexible propaga-
tion of signals along potentiated pathways through the 
network, so that the succession of visited states or 
multineuronal activity patterns is probabilistic, rather 
than fixed. Experimental evidence for non-random yet 
variable activity sequences in cortical networks is very 
scarce, though. The only finding of circumscribed cell 
assemblies firing in functional sequences has been 
reported by Ribeiro and colleagues15. They analyzed 
synchronously active groups of cells recorded simulta-
neously from the hippocampus and primary visual and 
somatosensory cortical areas of rats and demonstrated 
the dependence of cell assembly activation sequences 
on experimental periods and the behavioral state of the 
animal. The results presented in Chapter III go beyond 
these findings by showing that individual sequences 
repeat significantly often and strongly depend on the 
neuromodulatory state of the cortical network. In view 
of theoretical considerations about cortical dynamics 
and beginning evidence from multielectrode recordings 
we apparently have to assume that sequential activity 
patterns in neocortex are controlled by the functional 
state of the network and are organized into repeating 
sequences that correlate with behavior, thus fully con-
forming to the concept of Hebbian phase sequences. 
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