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Zusammenfassung

Die Dynamik von Inertialpartikeln in Strömungen ist von großem Interesse in vielen
Gebieten, von Atmosphärenphysik bis hin zu chemischer Verfahrenstechnik oder marinen
Systemen. In dieser Arbeit wird numerisch die Dynamik von Inertialpartikeln untersucht,
die durch Kollisionen aggregieren und unter bestimmten Bedingungen wieder fragmen-
tieren. Unser Ziel ist vor allem ein besseres Verständnis natürlicher Phänomene wie zum
Beispiel die Bildung von Tropfen in Wolken und mariner Aggregate.

Das in dieser Arbeit vorgestellte partikelbasierte Aggregations- und Fragmen-
tierungsmodell bildet eine Brücke zwischen Molekulardynamik-Simulationen und den oft
verwendeten Ratengleichungen. Molekulardynamik-Simulationen können zwar sehr de-
tailliert sein, erfordern aber im allgemeinen einen hohen Rechenaufwand während Raten-
gleichungen für große Systeme anwendbar sind, aber viele Approximationen benötigen.

Unser Schwerpunkt ist die Untersuchung des Langzeitverhaltens von
Größenverteilungen von Partikeln. Als erstes beschreiben wir ein Modell für die
Aggregation und Fragmentierung von kugelförmigen Tropfen in einer turbulenten
Strömung. Während frühere Arbeiten meistens die Rolle von Aggregationswahrschein-
lichkeiten betonen, zeigen unsere Resultate, dass Fragmentierung der wichtigste Prozess
für das Langzeitverhalten ist.

Ferner analysieren wir Systeme mit komplexerer Aggregatsruktur, wo die Struktur mit
einer fraktalen Dimension approximiert werden kann. Dies ist zum Beispiel der Fall für
marine Aggregate. Wir zeigen, dass die Verteilung der Fragmente nach dem Zerbrechen
entscheidend für die Form der Größenverteilung der Aggregate ist. Allerdings ändern sich
sowohl die mittlere Größe als auch die Zeit zum Erreichen des Langzeitzustandes mit den
Systemparametern, wie zum Beispiel der Aggregatstärke oder dem Turbulenzlevel in der
Strömung. Der wichtigste Parameter ist in diesem Fall die fraktale Dimension.

Schließlich zeigen wir wie sich unser Ansatz in die etablierten Modelle aus der Literatur
einordnet. Die geeignete Konstruktion von Aggregations- und Fragmentationsraten führt
zu einer korrespondierenden Ratengleichung, was wiederum Ausdrücke für die mittlere
Aggregatgröße liefert. Desweiteren benutzen wir ein Diskrete-Elemente Modell um die
Fragmentierung eines Aggregates in einer Scherströmung zu untersuchen. Wir finden ein
Potenzgesetz zwischen kritischer Scherung und Aggregategröße, wobei der Exponent von
der fraktalen Dimension abhängt. Ein vergleichbarer Zusammenhang bildet die Basis
unseres partikelbasierten Aggregations- und Fragmentierungsmodells.
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Abstract

The dynamics of inertial particles in fluid flows is a subject of great interest in many
disciplines, from atmospheric science to chemical engineering or marine systems. In this
thesis we study numerically the dynamics of inertial particles aggregating upon collision
and fragmenting under certain conditions. Our motivation lies primarily in understanding
natural phenomena such as the formation of cloud droplets and marine aggregates.

The individual, inertial-particle based approach to aggregation and fragmentation
presented in this thesis bridges the gap between molecular dynamics simulations of
aggregation-fragmentation systems and the usual rate equation based approaches. Molec-
ular dynamics simulations can be very detailed but are computationally too expensive in
most cases while rate equation approaches can be applied to large systems but rely on
many approximations.

Our main focus is the study of the size distributions of particles which evolve in the
long-term limit. First, we describe a model for the aggregation-fragmentation dynamics
of spherical droplets in a turbulent flow. While most previous studies emphasize the role
of aggregation probabilities, our results show that in situations where a steady state is of
interest, fragmentation will be the most relevant process.

In addition, we show how to model processes where aggregates with a more complex
structure appear. We discuss the problem of aggregation and fragmentation in systems
where the aggregate structure can be approximated in terms of a fractal dimension. This
is for example the case for marine aggregates. The distribution of the fragments after
breaking is found to be the main influence on the resulting shape of the steady state size
distribution. However, the mean aggregate size as well as the time to reach the steady
state depend on the system parameters, such as aggregate strength or turbulence level in
the flow. The most important parameter in this case is the fractal dimension.

Finally, we integrate our approach with the established models from the literature.
By constructing the corresponding collision and fragmentation rates we show how our
inertial particle based approach can be connected to a rate-equation based model, leading
to expressions for the steady state aggregate size. Additionally, we use a discrete element
model to simulate the fragmentation of an individual aggregate in a shear flow. We find
a power-law relationship for the critical shear as a function of aggregate size where the
exponent depends on the fractal dimension, similar to the critical shear equation forming
the basis of our individual, inertial-particle based model.
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1. Introduction

“Well,” said Pooh, “we keep looking for Home and not finding it,

so I thought that if we looked for this Pit, we’d be sure not to

find it, which would be a Good Thing, because then we might

find something that we weren’t looking for, which might be just

what we were looking for, really.”

(A.A. Milne, “Tigger is unbounced”)

For almost 200 years there has been a great interest in studying the dynamics of particles
in fluid flows. The earliest works e.g. by Poisson, dating back at least as far as the
first half of the nineteenth century, appeared even before the development of what are
now called the Navier-Stokes equations, the basic equations of fluid dynamics. However,
this does not mean that everything has been said on this topic. On the contrary, for
example for the last 10 years the database of Web of Science (http://isiknowledge.com)
lists around 15, 000 publications on the topic. The reason for this continued interest in
the field is that systems where particles are moving within a fluid are ubiquitous both in
nature and in technical applications. Examples include systems from biology, chemistry,
physics, oceanography, geo- and astrophysics and engineering, see Tab. 1.1.

While much progress has been made in the last 200 years in understanding these
systems, there are still many fundamental questions that have not yet been answered.
Open questions exist on all levels of the problem, ranging from the interaction of a single,
isolated particle with the surrounding fluid to the description of many-particle systems
of arbitrary complexity.

From a theoretical point of view two major directions have emerged. On the one hand
the study of point-like ’tracer’ particles that directly follow the motion of the surrounding
fluid and on the other hand finite-size ’inertial’ particles whose motion can deviate from
that of the surrounding fluid.

The study of tracer particles, which is nothing but fluid dynamics in a Lagrangian
framework, has given many new insights into the behavior of fluid flows. For laminar
flows, even in cases where the dynamics of the Eulerian field is extremely simple, the
motion of individual tracers or fluid elements can be very complex. It was pointed out
by Aref (1984) for non-stationary two-dimensional flows that the advection of tracer
particles typically leads to chaotic motion, a phenomenon now called chaotic advection.
The motion of the tracer particles can be viewed as a non-integrable Hamiltonian system,
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1. Introduction

where it is known that a chaotic saddle appears. The stretching and folding of the tracer
trajectory along the manifolds of this chaotic saddle leads to a greatly enhanced mixing
and stirring in such systems (Chaiken et al., 1986; Aref and Balachandar, 1986; Ottino,
1989).

For large Reynolds number flows, combining methods from statistical physics with the
study of the dynamics of tracer particles has led to a new perception of fluid turbulence
(Toschi and Bodenschatz, 2009). In particular, using this particle-based viewpoint some
progress has been made in understanding one of the major challenges of turbulence the-
ory, the phenomena of intermittency and anomalous scaling in turbulent flows. Statistical
invariants have been identified in the evolution of groups of particles, where a symmetry
breaking leads to the observed non-universal scaling laws (Celani and Vergassola, 2001;
Falkovich et al., 2001). In addition, models have been developed for the statistical ge-
ometry of turbulence and the Lagrangian evolution of material lines, vorticity and strain
(Pumir et al., 2000; Guala et al., 2005; Lüthi et al., 2005). Additionally, much effort has
gone into establishing the connection between the Lagrangian and Eulerian statistics of
a turbulent flow, i.e. between the velocity and acceleration statistics along a tracer tra-
jectory and those of the surrounding fluid. Numerically, acceleration statistics have been
measured for example by Biferale et al. (2004); Biferale and Toschi (2005) and a compari-
son between experimental results and models is found in Mordant et al. (2004). Recently,
the study of Lagrangian structure functions, i.e. temporal correlations of the velocity
has given new insights into intermittency and universality in turbulence (Arneodo et al.,
2008; Biferale et al., 2008).

Type of Particle-Fluid System Application
solid particles in a gas aerosols, snow, hail, protoplanetary discs, clean

rooms, solid rockets
liquid droplets in a gas water droplets in air, rain, liquid sprays, plasma

sprays
solid particles in a liquid plankton, bacteria, marine aggregates and sedi-

ment, colloids, powders, solidification, liquid fil-
ters

gas bubbles in a liquid bubble columns, molten lava, boilers, naval ves-
sels

Table 1.1.: Examples for some of the most common types of systems where particles sus-
pended in a liquid appear.

Inertial particles in fluid flows have lately been subject of increasing interest in several
disciplines from dynamical systems (Benczik et al., 2006; Vilela and Motter, 2007; Zah-
now and Feudel, 2008) to atmospheric science (Shaw, 2003; Jaczewski and Malinowski,
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2005; Falkovich and Pumir, 2007) and turbulence (Wilkinson and Mehlig, 2005; Bec et al.,
2005; Calzavarini et al., 2008). In particular tools from dynamical systems theory, such
as the concepts of attractors, dimensions and Lyapunov exponents have been found to
be very useful in tackling these problems. The dynamics of these particles is dissipative,
which leads to a behavior that is very different from tracer particles. The acceleration
of the inertial particles leads to a detachment from the fluid trajectories and to a pref-
erential accumulation in certain regions in space, i.e. on attractors. This ’unmixing’
phenomenon, where an initially uniformly distributed ensemble of particles approaches
a spatially inhomogeneous distribution (Maxey, 1987; Wilkinson et al., 2007) has signif-
icant consequences for many problems, for example leading to locally enhanced collision
rates. In addition, the detachment of the particle trajectories from the fluid trajectories
can lead to the appearance of so-called ’caustics’ (Falkovich et al., 2002; Wilkinson and
Mehlig, 2005) where the particle attractor in phase space is folded and particles with
very different velocities occupy the same region of space. While such phenomena appear
naturally in the Lagrangian, particle-based viewpoint it has so far proven impossible to
formulate a corresponding Eulerian theory, precisely because in this case the particle
velocities no longer meet the definition of a velocity ’field’.

In addition, much effort both from theoretical and experimental side has gone into
determining the connection between the statistics of the particle motion, along the tra-
jectory of an inertial particle and the underlying turbulent velocity field of the fluid.
Numerically, acceleration statistics have for example been obtained by Bec et al. (2006a);
Cencini et al. (2006) or Ayyalasomayajula et al. (2008) and a comparison with experimen-
tal data can be found in Ayyalasomayajula et al. (2006). Generally, the results depend
significantly on the particle size, or more precisely on the particle Stokes number (see
Chapter 2.2.3 of this work for a definition) and on the particles density ratio with respect
to the surrounding fluid, i.e. whether particles are heavier or lighter than the surrounding
fluid.

In most of these works a dilute regime is assumed, where particle collisions can be
neglected. Some authors keep track of particle collisions numerically without considering
the outcome of a collision, for example to calculate collision rates (Wang et al., 2000; Bec
et al., 2005). However, in many interesting applications, for example the growth of cloud
droplets (Pruppacher and Klett, 1997) interactions of inertial particles due to collisions
can be very important. It is well known that as a result of collisions between particles,
aggregates can be formed that consist of a large number of smallest (primary) particles.
In the literature one finds both the terms ’aggregates’ and ’coagulates’ or ’aggregation’
and ’coagulation’ but the difference between the two is not always clear. In this work we
reserve aggregates for solid particles that stick to form a cluster of connected, but still
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1. Introduction

individual particles1 whereas fluid particles, e.g. water droplets coagulate, meaning they
merge upon collision to form one new larger particle. For simplicity, when describing
something that applies to both solid and liquid particles we use the term aggregate.

In many areas of science the formation of such aggregates and their fragmentation due
to forces from the surrounding fluid plays a very important role, e.g. in sedimentation of
particles in oceans and lakes (Winterwerp, 1998), chemical engineering systems such as
solid-liquid separation (Spicer and Pratsinis, 1996a; Bäbler et al., 2008), aggregation of
marine aggregates (Thomas et al., 1999) and flocculation of cells (Han et al., 2003).

Previously, this has mainly been studied using a rate equation based approach, in
the framework of which one treats the problem of particle motion as a field equation.
The Smoluchowski equation (Smoluchowski, 1917) is then used to model aggregation and
fragmentation of these particle concentration fields, instead of individual particles. Such
an approach exhibits a number of problems. For example, as already mentioned above
the particle velocity may take on several values even at the same location of inertial
particles when the dynamical attractor of the particles folds in the full velocity-position
phase space. Thus, a field approach for inertial particles cannot be well founded and relies
on many assumptions and parameterizations. In addition, determining correct collision
and fragmentation rates for such a model approach usually involves many approximation
steps and often a certain amount of guesswork. Much effort has gone into deriving
collision rates for inertial particles (Bec et al., 2005; Ayala et al., 2008b,a) but so far only
approximative solutions exist. Both the preferential concentration of inertial particles
and the appearance of caustics lead to significant changes in the collision rates that
have not been fully understood. Similarly, determining the fragmentation rates requires
knowledge of the microscopic properties of the aggregates, such as the bond structure
and its response to applied shear forces. However, in many cases this information is not
available and one has to resort to approximations or even if the information is available
no sufficiently simple equation for the rate can be found.

Due to the increasing availability of computational resources there has been much
progress in developing models capable of directly simulating the dynamics as well as the
aggregation and fragmentation behavior of inertial particles in a fluid. Some examples
include applications of the lattice Boltzmann method for inertial particles (Ten Cate
et al., 2004; Feng et al., 2007) and semi-resolved (Lomholt and Maxey, 2003) and resolved
surface methods for multiphase flows using molecular dynamics models for each particle,
e.g. with a finite element algorithm in an arbitrary Lagrange Eulerian framework (see e.g.
Maury, 1999). Such approaches offer a promising alternative for the future as they can be

1Sometimes, in particular in a biological context, the term ’floc’ or ’flocculation’ is also used for this.
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very detailed and do not rely on many assumptions or approximations. However, because
of the greatly increased numerical effort they are so far restricted to a few hundred or
thousand particles (Higashitani et al., 2001; Zeidan et al., 2007). Currently, they are
therefore not a feasible alternative to the established rate equation approaches, but can
still serve as a basis of establishing more detailed models for example for the fragmentation
of an individual aggregate.

In Zahnow et al. (2008, 2009) we therefore proposed and discussed a model for aggrega-
tion and fragmentation based on inertial particle dynamics, using a point-force approxi-
mation for the equation of motion of the particles (Maxey and Riley, 1983) to help bridge
the gap between the full hydrodynamic simulations and the usual rate equation based
approaches. The idea of this model was to treat each aggregate as an individual, inertial
particle advected in the surrounding fluid flow but neglecting the internal structure of
the aggregate. Instead, only the number of primary particle per aggregate and some
measure of the overall aggregate size is kept. The complexity and numerical effort of this
approach lies between that of the detailed hydrodynamical models and the much simpler
rate equation approach. With this approach we were able to simulate aggregation and
fragmentation processes in systems consisting of 105 − 107 primary particles on a stan-
dard desktop PC. Such an approach has the advantage that the dynamics of the inertial
particles are taken directly into account and therefore no approximations for example for
the collision rates are required. Instead, particle collisions are calculated directly within
the model leading to a much more detailed description. For fragmentation, results from
detailed hydrodynamical simulations of aggregate fragmentation can directly be included
as a property of the individual aggregates and therefore the fragmentation process is
linked directly to the physical properties of the aggregates.

In our earlier work (Zahnow et al., 2008, 2009) we applied our model approach to the
aggregation and fragmentation of spherical droplets in chaotic advection. This is not
included in the main part of this thesis because here we focus on a slightly different
question, namely turbulent flows. However, in the following we briefly summarize the
main results for the sake of completeness. The full text of these works can be found in
Appendix C.

We showed that such an individual, inertial particle based approach is able to capture
the basic properties of aggregation and fragmentation processes. We found that the com-
bination of aggregation and fragmentation leads to the development of a dynamic steady
state, where aggregation and fragmentation balance each other. In this steady state there
exists a distribution of aggregates of various sizes, each moving according to the same
equations of motion but with different parameters depending on their size. The shape
of this distribution was found to be different for different fragmentation mechanisms but
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1. Introduction

did not depend strongly on the underlying flow field as long as sufficient mixing occurred.
Additionally, when varying system parameters such as the total number of particles in
the system or the binding strength of the aggregate the distribution was shifted but not
changed qualitatively. In particular, rescaling the distributions for different parameters
by dividing with the mean aggregate size we found that all distributions collapse onto a
single ’master’ curve. Similar universal size distributions have been found as solutions of
the Smoluchowski equation (Spicer and Pratsinis, 1996a).

Even though to a certain extent methods from dynamical systems theory can usefully
be applied, the entire problem is much more complex than that of any usual dynamical
system. While particles of a single size move on specific attractors, aggregation and
fragmentation lead to repeated transitions from one attractor to another one, depending
on the aggregate size. The skeleton of the new dynamics is therefore a superposition of
the different attractors, with transient motion in between. The structure of the individual
attractors and their superposition in turn influence the aggregation probabilities due to
different local concentrations of particles. Fragmentation is also affected by the particle
dynamics, because shear forces can be locally different in the flow. Therefore, break-up
may depend on whether an attractor for a certain particle size lies in a region with high
shear or not.

In the present thesis we now discuss the application of this individual, inertial particle
based model to turbulent flows. Due to the universal nature of turbulent flows, at least
away from any boundaries this is a much more general setting than systems with chaotic
advection. We show how the resulting steady state size distribution depends on the
particle and flow properties. For many problems, such as the prediction of rain formation
in wet clouds for weather forecasts, it is of significant interest to understand how the
growth of the cloud droplets depends on properties such as the initial concentration of
smallest droplets or the turbulence level in the cloud.

In addition, we extend the model that was initially designed for spherical particles
to include processes where aggregates with a more complex structure appear. While
the assumption of spherical particles was a reasonable approximation for fluid particles,
such as water droplets in clouds, the aggregation of solid particles is generally more
complex. We discuss the problem of aggregation and fragmentation in systems where
the aggregate structure can be approximated as being fractal-like. By this we mean that
when averaged over an ensemble of particles there exists a power-law relationship between
the characteristic length and the mass of such aggregates. The exponent of the power-law
is called the fractal dimension. Such an relationship is for example found for cohesive
sediment (Kranenburg, 1994) or marine aggregates (Logan, 1999), but also in many other
systems. In the context of a rate equation based approach, a complex particle structure
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has been incorporated in the past in terms of a density modification for the particles,
e.g. by Kranenburg (1994) or Maggi et al. (2007). However, so far there are almost no
attempts to treat this problem for inertial particles in a flow. We therefore discuss how
such a complex structure can be approximated within the framework of our individual
particle-based approach. We examine the steady state size distribution of the aggregates,
as well as the time to reach the steady state and the dependence on particle and flow
properties, such as the fractal dimension. For many problems the distribution of the
aggregates and in particular their mean size is of great interest. An example are marine
aggregates where the size of the aggregates affects their settling velocities and therefore
the transport of organic carbon from the ocean surface to the bottom layers.

Since rate-equation based models are still the most common tool for the modeling
of aggregation and fragmentation processes, partly because they can easily be applied
to very large systems, we discuss how to translate between our approach and a rate-
equation based model. We show how by constructing the corresponding collision and
fragmentation rates our individual, inertial particle based approach can be connected
to the rate-equation approach. Additionally, we examine some aspects of such a rate-
equation approach, such as the (analytical) calculation of a steady state solution for the
average aggregate size and emphasize the close connection between such solutions and
the details of the fragmentation process.

Finally, we examine the fragmentation process in more detail, using a discrete element
model to simulate the fragmentation of an individual aggregate in a shear flow. Because
the steady state aggregate size distribution depends strongly on the fragmentation mech-
anism it is important to obtain a deeper understanding of this process. For many systems
details of this are still unknown. Detailed numerical models can help bridge the gap be-
tween the understanding of the microscopic properties of the individual, primary particle
in the aggregate and the macroscopic properties of the whole aggregate. This is needed
for the correct formulation of less detailed models that can be applied to larger systems,
such as our individual-particle based approach or rate-equation based approaches.

The thesis is structured as follows. In Chapter 2 we give a general introduction into the
theoretical description and modeling of suspension of particles in fluid flows. The focus
here is on different approximations for the description of the particle phase, starting with
simple Eulerian and Lagrangian tracer models up to complex models for inertial particles.
The focus of this section is on the discussion of the details of the point-force approximation
for the motion of individual, inertial particles that forms the basis of the following work.
In particular, the description of the different components of the surface force is discussed
with an eye on their relevance for the overall particle motion. Additionally, some results
from the literature for the dynamics of particles in a fluid flow are reviewed and discussed,
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1. Introduction

such as preferential concentration and unmixing and the appearance of caustics in the
particle dynamics. Finally, we focus on the calculation of collision rates between inertial
particles in a turbulent fluid flow. In particular, we numerically examine the question
which terms of the equations of motion for the particles could possibly be neglected
without leading to significant changes in the frequency of collisions between particles.

In Chapter 3 we present the application of our individual, inertial particle based model
to the problem of coagulation and fragmentation of spherical droplets in a synthetic
turbulent flow. Such synthetic turbulent flows are a fast and simple way to create a
flow which captures certain characteristics of real turbulence. In our case we recreate
the dissipative range of a turbulent flow with the correct energy spectrum. We discuss
fragmentation due to two different mechanisms. On the one hand we introduce a size-
limited fragmentation mechanism which is inspired by the hydrodynamical instability
and subsequent breaking of water drops in air settling due to gravity. On the other hand
we discuss shear fragmentation, where a droplet is broken up due to hydrodynamic shear
forces in the fluid. Both mechanisms lead to a steady state size distribution but the shape
of the distribution is very different for the two cases. In addition, whereas for size-limiting
fragmentation the mean coagulate size in the steady state only depends on the maximum
stable coagulate size, for shear fragmentation the mean coagulate size changes depending
on the particle and flow properties. Numerically, we find scaling relationships for the
mean coagulate size in the steady state as a function of the system parameters, where the
scaling exponent seems to depend on the details of the shear fragmentation model. We
discuss a simplified analytical calculation that shows how in principle this dependence
may arise.

Chapter 4 discusses the extention of our individual, inertial particle-based approach for
aggregation and fragmentation to systems of particles with a fractal-like structure in a
synthetic turbulent flow. We show how to incorporate this fractal-like structure into our
model description in terms of a fractal dimension for the aggregates. A characterization
with a fractal dimension leads to a modification of the radii and effective densities of the
aggregates compared to a solid sphere of the same mass. Nevertheless, we still treat them
as effectively spherical for the particle motion, allowing us to apply the same point-force
approximation for the equations of motion (Maxey and Riley, 1983) but with modified
parameters. Within this framework we discuss different splitting mechanisms for shear
fragmentation of the aggregates by comparing different distributions of the fragments
created after breaking. We compare large-scale fragmentation, where fragments of sim-
ilar size are created, erosion, where fragments of very different size appear and uniform
fragmentation as a simplified combination of the two others, where all fragment sizes
appear with the same probability. This distribution of the fragments is found to be the
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main influence on the resulting shape of the steady state size distribution. However, the
mean aggregate size as well as the time to reach the steady state depend on the system
parameters, such as aggregate strength, number of particles and turbulence level in the
flow. For this, the most important parameter is the fractal dimension as a measure of
the aggregate structure, which significantly affects both the aggregation and the frag-
mentation process. With increasing fractal dimension both the relaxation time towards
the steady state and the mean aggregate size in the steady state increase.

In Chapter 5 we present a rate-equation based approach for fractal-like aggregates.
The main idea here is to illustrate how to connect our individual, inertial particle based
approach with the usual rate-equation formulation for aggregation and fragmentation.
This is for example necessary if one wants to compare results from these different ap-
proaches. While many expressions for the collision rate exist in the literature, finding an
expression for the fragmentation rate that corresponds to the individual particle based
approach is somewhat more involved. The key here is how to translate the concept of
the critical shear, which is the individual aggregate property used to locally determine
fragmentation events within the particle-based approach into a corresponding global frag-
mentation rate for the whole ensemble of aggregates. In this context we argue that the
usual assumption of a Gaussian distribution of the shear forces which is used in many of
the fragmentation rates found in the literature may lead to a significant under-estimation
of the fragmentation rate. While the analytical calculations carried out in this Chapter
rely on many approximations, for example simplified expressions for the fragmentation
rates they serve to illustrate in principle how a steady state solution can be calculated.
We show how in this case the steady state depends on the properties of the particles and
the surrounding flow field as well as under which conditions the steady state solution is
stable, i.e. whether the system will in fact converge to this solution. It turns out that
the stability only depends on the fractal dimension and the shape of the critical shear
condition. Other properties such as aggregate strength or turbulence level do not play a
role. While in more realistic cases no analytic calculation will be possible and one will
have to resort to numerical methods to obtain a solution, we believe that the principle
remains the same and similar results would be found.

In Chapter 6 we show how to use a detailed, discrete-element simulation of an indi-
vidual aggregate fragmenting in a laminar shear flow to obtain information about the
connection between the microscopic particle properties such as the bond structure within
the aggregate and the critical shear that is needed for the inertial particle-based model.
Aggregates are build using a diffusion-limited aggregation process and then a model for
the central and non-central interaction between the primary particles is described. The
particles are subjected to a shear flow and the shear force is varied until the aggregate
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breaks. On the one hand we determine how the critical shear required for fragmenta-
tion changes with the aggregate size. On the other hand we show that for supercritical
shear, i.e. shear forces above the critical point the size of the fragments is on average
independent of the original aggregate size and instead only depends on the level of the
shear.

Finally, Chapter 7 contains conclusions and an outlook on possible further research
directions.
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2. Dynamics of Particles in Flows

This chapter gives a general introduction into the modeling of suspensions of particles in
fluid flows and provides a brief review of the relevant literature, focusing on the concepts
relevant for this thesis. Additionally, some numerical calculations of collision rates of
inertial particles in synthetic turbulence are presented.

2.1. Multiphase Flows - Suspensions of Particles

In the following chapters basic methods and results for multiphase flows are summarized,
following partly the work of Loth (2010). While the selection of topics is certainly sub-
jective and many important aspects are only mentioned very briefly or may be missing
completely it should provide a brief introduction to the dynamics of particle suspensions
in flows.

The term multiphase flows generally refers to the fluid dynamics of systems which
contain multiple phases, but here, as in many applications means the more specific case
of suspensions of individual particles in a fluid. Such a particle-laden flow consists of a
fluid phase and a so-called dispersed phase, the collection of all the particles in the flow.
If all the particles of the dispersed phase are identical, the system is called a monodisperse
suspension, whereas systems with particles with different properties, for example different
densities, are called polydisperse suspensions.

The most common examples of multiphase flows are solid particles in a liquid or gas,
liquid particles in a gas and gas bubbles in a liquid. However, also mixtures of two
immiscible liquids are often considered in a similar framework, if one of the liquids occurs
in the form of isolated drops. In this context immiscible means that there is no molecular
mixing at the interface between the particle and the surrounding fluid so that the particle
mass does not change over time.

Generally, the full equations of motion describing such a particle-laden flow are too
complicated or computationally expensive to solve fully and depending on the problem
different approximations, such as mixed-fluid multiphase flow or point-force inertia par-
ticles are used. Such approximations and some results for the dynamics of these systems
are discussed in the following chapters.

Typically, the particles are assumed to be much smaller than the overall domain and
dispersed within the surrounding fluid, which means that the particles are not heavily
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2. Dynamics of Particles in Flows

concentrated. In this case the particle motion is mainly determined by the interaction of
the particles with the fluid as opposed to particle-particle interactions, for example in form
of collisions. The level of the coupling between the dispersed and the fluid phase depends
on the concentration of the particles, the different cases are discussed in more detail in the
following parts. In particular, one distinguishes between one-way particle-flow coupling,
two-way particle-flow coupling and particle-particle interactions. For one-way particle-
flow coupling one assumes that particle concentrations are so low that their feedback
on the surrounding flow can be neglected. In this case the equations of motion for the
fluid phase can be solved independently from the equations of motion for the particles.
For two-way particle-flow coupling the feedback of the particles on the surrounding flow
is taken into account, for example by modifying the local density and viscosity. The
equations for the different phases are now coupled. Particle-particle interactions include
both interactions between particles through the fluid and direct interactions in the form
of collisions. This is typically important for (locally) large particle concentrations.

2.1.1. Basic concepts

In this work the properties of the different flow phases are distinguished by subscripts.
Properties of the fluid phase will be denoted by the subscript “f”, for example the
dynamic viscosity of the fluid will be µf . The properties of the particles, i.e. of the
dispersed phase will be denoted by the subscript “p”, for example the mass of a particle
will be mp.

The Dispersed Phase

To quantify the particle size, the diameter dp of the particle is used. For spherical particles
this is an unequivocal measure of the particle size, whereas for particles with non-spherical
shapes the situation is more complicated. In many realistic cases it is not clear whether
a single length scale is enough to characterize different particle sizes. However, in most
cases it is assumed that non-spherical particles can be described by an equivalent particle
diameter, which is the diameter of a spherical particle that would give the same behavior
in a system of interests. One of the most common forms of an equivalent particle diameter
is the volumetric diameter, which is the diameter of a spherical particle with the same
volume, but other forms of an equivalent particle diameter are also often found (see table
2.1). For example, for the description of fractal-like aggregates in part 4, the combination
of a characteristic length scale and a fractal dimension will be used to characterize particle
sizes.
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2.1. Multiphase Flows - Suspensions of Particles

Equivalent Particle Diameter Description
Volumetric Diameter Diameter of a sphere with the same volume
Circular Diameter Diameter of a circle with the same area (typi-

cally used in 2-d projections)
Aerodynamic Diameter Diameter of a sphere of unit density with the

same terminal settling velocity
Mobility Diameter Diameter of a sphere with the same (electrical)

mobility, i.e. the same ratio of particle velocity
to applied force

Scattering Diameter Diameter of a spherical (often a polystyrene la-
tex) particle with the same light-scattering sig-
nal

Table 2.1.: Different types of equivalent particle diameter that are commonly used to char-
acterize the size of non-spherical particles.

Together with the particle volume Vp, the particle mass mp defines the particle density

ρp = mp/Vp . (2.1)

If the particle is either a liquid or a gas, its dynamic viscosity µp and surface tension σp

can also be important, as these determine the behavior of the fluid inside the particle
and the shape of the particle in response to stresses in the surrounding fluid.

The position of a particle at time t will be denoted by the position X(t) ∈ R3 of
the center of gravity of the particle. The Lagrangian translational velocity and angular
velocity of a particle will be written as V (t) ∈ R3 and Ω(t) ∈ R3, respectively with a
corresponding moment of inertia Ip.

The Fluid Phase

In the case where the particle diameter is much smaller than the mean free path of the
fluid molecules, the molecules colliding with the particle usually only interact with other
molecules of the fluid far from the particle surface. Then the Knudsen number Kn, which
is the ratio between the mean free path of the molecules in the surrounding fluid and the
particle diameter dp is À 1, see e.g. Friedlander (2000). This means that most of the
molecules hitting the particle come from the main body of the fluid and are not affected
by the presence of the particle. The interaction between fluid and particle can then be
determined from molecular collision theory. This is the so-called free molecular range.
An example for this is the motion of micrometer-sized particles, for example small dust
particles in a highly rarefied gas, where the mean free path can be of the order of 1 cm,
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2. Dynamics of Particles in Flows

resulting in Kn ≈ 103.

In the case where the particle diameter is much larger than the mean free path of the
molecules in the fluid, i.e. Kn ¿ 1 the molecules that collide with a particle are strongly
influenced by those molecules just leaving the surface of the particle. In this case the fluid
behaves as a continuum, with a no-slip boundary condition at the particle surface (for
solid particles). In this so-called continuum range the motion of the surrounding fluid is
then determined by the Navier-Stokes equations (Landau and Lifschitz, 1991).

The transition between the continuum range and the free molecular range takes place
continuously with increasing Knudsen number, but the transition theory still poses many
problems. Here, we focus on the case where the surrounding fluid can be treated as a
continuum, i.e. where the Knudsen number Kn ¿ 1. In this case the fluid phase is
also called the continuous phase. All of the relevant applications in this work fall in
this category, for example the motion of sediment particles in the ocean or raindrops
in air. For raindrops in air, the mean free path at normal temperature and pressure is
approximately 0.065 µm and the size of the smallest water droplets is of the order of 10
µm, leading to Kn < 10−2 which is well within the continuum range.

For the velocity field of the surrounding fluid it is often convenient to distinguish
between the undisturbed flow u(x, t) ∈ R3 without the presence of the particles and the
real flow v(x, t) ∈ R3 which includes the effect of the presence of the dispersed phase.
Both flows are assumed to be incompressible and isothermal with constant density ρf ,
dynamic viscosity µf and a characteristic length scale Ľf and velocity scale Ǔf , which
can for example be the Kolmogorov scales in a turbulent flow. The characteristic length
scale and velocity scale together define a characteristic time scale Ťf = Ľf/Ǔf of the
flow. The size of the system, which can be for example the distance between the walls
in a plane couette flow or the size of a periodic box, if periodic boundary conditions are
assumed is denoted by L. It is generally assumed that L À dp, i.e. particles are much
smaller than the largest length scale in the system.

Density and Viscosity Ratios

To characterize particles much heavier or lighter than the surrounding fluid a dimension-
less density parameter β is introduced as

β =
3ρf

ρf + 2ρp
. (2.2)

The reason for this particular definition will become apparent in Sec. 2.3.2, where it turns
out that this is the form in which the density ratio appears in the equations of motion for
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the particles. Particles much heavier than the fluid are characterized by β̌ → 0, which
typically includes droplets and solid particles in a gas. Such particles tend to fall in the
direction of gravity.

Very buoyant particles, i.e. those much lighter than the surrounding fluid are charac-
terized by β → 3. The most important example of this are bubbles in a liquid, which
tend to rise upwards in a flow.

Particles with β = 1 are neutrally buoyant and neither rise nor sink in a flow. This
can for example be the case for solid particles in a liquid.

If the particles are either gas or liquid, the ratio of particle and fluid viscosity

µ̌ =
µp

µf
(2.3)

is another important quantity, that for example influences the shear fragmentation of
liquid drops (Sec. 3.2.3). Liquid drops in a gas correspond to µ̌ À 1, whereas gas
bubbles in a liquid are in the range µ̌ ¿ 1. A viscosity ratio of order unity is often the
case for liquid drops suspended in an immiscible liquid.

Full Set of Equations

Next, we write down a full set of equations for a system of particles dispersed in a
fluid. Since in most cases this set of equations is extremely difficult and computationally
expensive to solve, in the following the aim will then be to find suitable approximations
or models for this full set of equations.

The flow field v is described by the Navier-Stokes equations

ρf

(
∂v

∂t
+ (v · ∇)v

)
= ρfg −∇p + νf∇2v , (2.4)

where g is the gravity vector and the continuity equation for an incompressible flow with
constant density

∇ · v = 0 , (2.5)

combined with suitable boundary conditions at the system boundaries. In addition to the
boundary conditions at the system boundaries there exist additional boundary conditions
for the flow field v at the surface of the particles. For the case of solid particles this is
typically a no-slip boundary condition, for spherical particles this would read as

v(x, t) = V (t) + Ω(t)× [x(t)−X(t)] , for ||x(t)−X(t)| | = rp. (2.6)
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For uncontaminated viscous particles, i.e. drops and bubbles the boundary condition is
instead often given by a no-stress condition at the surface of the particles. Generally,
the evaluation of the boundary condition for viscous particles may require one to solve
an additional Navier-Stokes equation for the fluid inside of the particle since the external
forces may induce flows inside of the particle.

Due to the forces acting on them the particles move around in the fluid, implying
moving boundaries for the equations for the fluid phase. The translational equations of
motion for the dispersed phase are given by Newton’s second law, where the forces acting
on the particle are generally the sum of body (or volume) forces Fbody, surface forces
Fsurf and collision forces Fcoll

dX

dt
= V (t) (2.7)

mp
dV

dt
= Fbody + Fsurf + Fcoll . (2.8)

The body forces are typically fairly straightforward and can for example include gravita-
tional or electromagnetic forces. In this work only gravity is considered as a body force,
it is therefore Fbody = mpg, where g is the gravity vector. The collision forces can usually
be regarded as instantaneous and discontinuous and can for example be obtained from
elastic or inelastic collision models (e.g. Pöschel and Schwager, 2005). The surface force
is given by the integral of the fluid stress tensor

σij = −ρfδij + νf

(
∂vi

∂xj
+

∂vj

∂xi

)
(2.9)

over the surface S of the particle

Fsurf =
∮

S
σndS , (2.10)

where n is the unit vector perpendicular to the particle surface.

The rotational equations of motion for a particle are given by a torque balance, where
the torques acting on a particle are generally the sum of body torques for example due
to inhomogeneous density inside of the particle, surface torques from the fluid and inter-
particle torques, generated during collisions

Ip
dΩ
dt

= Mbody+Msurf + Mcoll . (2.11)

For non-spherical particles one also needs to track the change of the angles defining
the orientation of the particles. However, since in this work all particles are treated as
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spherical and therefore particle orientation does not play a role, only the equation for
the angular velocity is given here. The only exception in the discrete-element model for
fragmentation in Ch. 6, where non-central contact forces between particles are discussed.
In this case one needs to keep track of particle orientation, or more precisely of the
movement of the initial contact point between particles. We refer to the description in
Ch. 6 how this can be done.

The collision torques can again be obtained from appropriate elastic or inelastic collision
models, e.g. Luding (2008) while the fluid torque is obtained as the integral of the torque
generated by the fluid forces over the surface of the particle

Msurf =
∮

S
(x−X(t))× (σn)dS . (2.12)

Together with the boundary conditions, both at the system boundaries and at the
particle surface, equations (2.4), (2.5), (2.8) and (2.11) are a full set of equations for a
suspension of dispersed particles in a continuous fluid.

2.1.2. Approximations to Describe Particle-Laden Flows

Since particle-laden flows appear in many different contexts and applications a number of
approaches have been developed to describe such systems, approximating the full system
with varying degrees of detail and complexity. A first, rough distinction is between the
case of a dispersed system and a dense system. In the case of a dispersed system the
dynamics of the particles is mainly determined by the fluiddynamical forces acting on the
particles. For a dense system, particle concentrations become large enough so that the
particle motion is dominated by collisions and contact between particles. If the particle
concentration is large enough, the surrounding continuous phase can be neglected and a
description as a granular flow becomes appropriate (Pöschel and Schwager, 2005). Here,
we focus solely on dispersed systems. In this case the difference between the approaches
lies mainly in the treatment of the dispersed phase. As long as the Knudsen number
is large enough the fluid phase is commonly described in a standard fluid dynamics
formulation in an Eulerian frame, i.e. as a velocity field v(x, t).

There are a number of different categories to characterize the approaches to dispersed
particle-laden flows. The most important is whether the particle velocity can differ no-
ticeably from the velocity of the surrounding fluid. This is the difference between tracers,
particles that follow exactly the dynamics of the fluid and inertial particles whose ve-
locity can be significantly different from that of the surrounding fluid. Sometimes this
difference is also referred to as mixed-fluid versus separated-fluid (Loth, 2010), indicating
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that in the first case particles and surrounding fluid are treated as one fluid, with a sin-
gle partial differential equation describing the dynamics whereas in the second case each
phase has different transport equations. There also exists a hybrid method, the so-called
weak-inertia or weakly-separated-fluid approach, where velocity differences between the
phases are assumed to be small.

The second major category is whether the dispersed phase is treated in a Lagrangian
or an Eulerian frame of reference. In the Eulerian frame of reference one deals with a field
equation, i.e. a velocity field for the dispersed phase, similar to the continuous phase. In
the Lagrangian frame of reference one tracks the velocity V (t) along individual particle
trajectories X(t), i.e. following a discrete particle.

For each of these different categories in the dispersed flow regime, one can distinguish
a number of different coupling cases, that depend mainly on the concentration of the
dispersed phase:

• One-way particle-flow coupling, where the particle motion is coupled to that of the
fluid, but the fluid is not affected by the presence of the particles.

• Two-way particle-flow coupling, where the presence of the particles additionally
affect the dynamics of the surrounding fluid.

• Particle-particle interactions, where the motion of different particles in the flow is
coupled, either through interactions through the fluid or through direct particle-
particle contact.

For one-way flow coupling, i.e. when the feedback of the particles on the surrounding
flow is neglected the equations of motions for the particles are expressed in terms of the
undisturbed flow field u(x, t) at the position of the particles. The real flow field v(x, t)
is not explicitly calculated, but may appear in the derivation of the forces acting on the
particle, for example in the derivation of the Maxey-Riley equations in Sec. 2.3.2.

For small particle concentrations, one-way particle-flow coupling is usually a good
approximation whereas for larger particle concentrations the feedback of the particles on
the fluid becomes important. Particle-particle interactions can appear both for one-way
and two-way particle-flow coupling, though generally they also become more important
for increasing particle concentration.

Different approximations are described in more detail in the following Sections. We
start with the description of a mixed-fluid multiphase flow approximation, both in an
Eulerian and a Lagrangian framework with one- and two-way particle-flow coupling in
Sec. 2.2. In addition we describe some basic results for the dynamics of such systems,
in particular for the Lagrangian mixed-fluid approach. Then we discuss basic models for
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separated and weakly-separated flows in Sec. 2.2.3, where the particle velocity is allowed
to differ noticeably from the velocity of the surrounding fluid. Since such inertial particles
are the focus of the remainder of this work, we discuss in detail some theoretical results
for the dynamics and interactions of suspensions of inertial particles.

2.2. Mixed-Fluid Multiphase Flows: Tracer Particles

The term mixed-fluid multiphase flows refers to the description of the dynamics of tracers,
where the particle motion follows completely the dynamics of the surrounding flow. In Sec.
2.2.1 an Eulerian approach to one-way coupled mixed-fluid multiphase flows is discussed
briefly. The second part consists of a Lagrangian approach to one-way coupled mixed-
fluid multiphase flows in Sec. 2.2.2. The model approach and some classical results are
discussed. This is concluded by a short discussion in Sec. 2.2.3 of how these mixed-fluid
multiphase flow approaches can be extended to two-way particle-flow coupling.

2.2.1. One-Way Coupled Eulerian Mixed-Fluid

In an Eulerian description of mixed-fluids it is assumed that the dispersed phase can also
be described as a continuum, i.e. instead of individual particles one deals with a scalar
concentration field C(x, t). This is the so-called particle-phase continuum assumption
(Drew and Passman, 1999). Since in reality particles are discrete, a number of criteria
need to be met for this continuum assumption to be reasonable.

Defining a Concentration Field

Typically, the concentration field C(x, t) is either a number density, a volume fraction
or a mass density. A number density is the number of particles per volume, a volume
fraction is the volume taken up by the particle per unit volume, whereas a mass density is
the mass of particles per volume. All three are usually obtained by cell-averaging, i.e. by
calculating the number, volume or mass of particles in a discrete cell of a certain volume
Vc. If N

(j)
p is the number of particles whose center lies within a certain computational

cell j, V
(i)
p is the volume of the i-th particle and m

(i)
p is the mass of the i-th particles,

then the cell-averaged densities are given by

CN (x(j), t) =
N

(j)
p

Vc
(number density) (2.13)

CV (x(j), t) =
1
Vc

N
(j)
p∑

i=1

V (i)
p = CN 〈Vp〉 (volume fraction) (2.14)
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CM (x(j), t) =
1
Vc

N
(j)
p∑

i=1

m(i)
p = ρpCV (mass density). (2.15)

(2.16)

Here x(j) is the position of the center of the j-th computational cell and 〈Vp〉 is the

average volume of a particle in the computational cell, i.e. 〈Vp〉 := 1

N
(j)
p

∑N
(j)
p

i=1 V
(i)
p .

For the particle-phase continuum assumption to be justified, the cell volume Vc and
the number of particles per cell Np need to meet certain criteria. First, the cell volume
needs to be large enough so that at least one particle fits completely within one cell, i.e.
Vp < Vc. Otherwise the problem is not well-posed. Second, the number of particles within
a cell volume needs to be large enough, i.e. Np À 1, so that the particle density will vary
smoothly between cells and not depend strongly on the exact position of the cell. This
means that the mean interparticle distance L̄pp is small compared to the length scale
Lc of a cell. This is similar to the criterion of the Knudsen number for the continuity
assumption in the surrounding fluid in Sec. 2.1.1. The simplest way to satisfy this is to
take the cell volume as large as possible. However, typically one also wants to resolve
spatial gradients in the concentration field which requires that the length scale of a cell
is smaller than the length scale of the changes in the concentration field, i.e. Lc ¿ C

∇C .
Together, this means that in order to represent the dispersed phase as a continuum, one
needs to be able to choose a cell that is neither too small nor too large, in particular the
criterion L̄pp ¿ Lc ¿ C

∇C needs to be satisfied.

Transport Equations

The equation of motion for the concentration field C(x, t) can be derived from a con-
servation principle. The assumption of a one-way coupled mixed-fluid means that the
dispersed phase flow follows exactly the flow of the continuum phase. The flow of the
continuum phase is in this case an undisturbed flow, i.e. the fluid flow without the pres-
ence of the particle phase. The equations of motion for the undisturbed flow u are the
Navier-Stokes equations

ρf (
∂u

∂t
+ (u · ∇)u) = ρfg −∇p + νf∇2u , (2.17)

where g is the gravity vector and the continuity equation for an incompressible flow with
constant density

∇ · u = 0 , (2.18)
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together with boundary conditions at the system boundaries. We emphasize at this point
that the only difference between the undisturbed flow field u and the full flow field v is
that v is constrained by additional boundary conditions at the particle surface.

If the dispersed phase follows exactly the flow of the surrounding fluid this means that
the advective flux jA of the dispersed phase is given by jA = u(x, t)·C(x, t). The equation
of motion for C follows then directly from the continuity equation for the dispersed phase

∂C

∂t
(x, t) = −∇ · jC(x, t) + SC(x, t) , (2.19)

which states that the local change in concentration is given by the gradient of the total
flux jC(x, t) and a possible volumetric source SC(x, t). Typically, for the total flux jC

one takes the sum of the advective flux jA and a diffusive flux jD = −ΓMD(x, t)·∇C(x, t)
(Fick’s law), with a molecular diffusion coefficient ΓMD(x, t) that can in principle depend
both on space and time. However, in many cases the molecular diffusion coefficient is
assumed to be a constant. A space and time depended diffusion coefficient appears
often when describing systems where the flow of the surrounding fluid is turbulent. The
simplest approach to include the effect of turbulent fluctuations in the velocity field leads
to an additional space- and time dependent diffusion term in the equations of motion
(Pope, 2008). The molecular diffusion coefficient is then replaced by an effective diffusion
coefficient Γeff(x, t) = ΓMD + ΓTD(x, t).

However, for simple molecular diffusion with constant diffusion coefficient the equation
for the concentration field C reduces to

∂C

∂t
(x, t) = −∇ (u(x, t) · C(x, t)) +∇ (ΓMD(x, t) · ∇C(x, t)) + SC(x, t) . (2.20)

If the flow u of the surrounding fluid is assumed to be incompressible, i.e. ∇u = 0 and
the source term SC for the dispersed phase is neglected, the equation of motion becomes

∂C

∂t
(x, t) = −u(x, t) · ∇C(x, t) +∇ (ΓMD(x, t) · ∇C(x, t)) (2.21)

=︸︷︷︸
ΓMD(x,t)=const.

−u(x, t) · ∇C(x, t) + ΓMD · ∇2C(x, t). (2.22)

This advection-diffusion equation is probably the most widely used transport equation
for the dispersed phase in a multiphase flow. Together with the equations (2.17) and
(2.18) for the undisturbed fluid flow u this defines the full set of equations for a one-way
coupled Eulerian mixed-fluid multiphase flow.
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2.2.2. One-Way Coupled Lagrangian Mixed-Fluid

In the case of a Langrangian approach to describe the dynamics of the dispersed phase
in the mixed-fluid regime, the position X(t) of individual particles is tracked over time.
Instead of an advection-diffusion equation for the particle velocity field, the motion of each
individual particle is described in terms of an ordinary differential equation, or if diffusion
is included in terms of a stochastic differential equation. While a Lagrangian approach
offers some advantages, particularly collisions and interactions between particles can be
readily included the main drawback is that for larger systems the numerical requirements
can become quite large. Since one needs to solve an equation for each individual particle,
instead of a single equation for the whole particle field, generally only smaller systems
can be studied. On the other hand, the Lagrangian view on fluid dynamics has revealed
a number of phenomena that were not apparent in the Eulerian description of fluids,
both in laminar flows where the Lagrangian particle dynamics can become chaotic and
in turbulent flows.

In the Lagrangian approach for the one-way coupled mixed fluid it is assumed for
each individual particle that the particle velocity is given by the undisturbed velocity of
the surrounding fluid at the position of the particle, possibly plus an additional diffusive
term. This means that the particles are treated as fluid elements, i.e. there is no difference
between the motion of an infinitesimal portion of the continuous phase and of a particle.

In the case where the diffusivity ΓC of the dispersed phase is independent of the particle
position, the Lagrangian equation of motion can be written as

dX(t) = u(X(t), t)dt +
√

2ΓCdW , (2.23)

where dW is a three dimensional Wiener increment. This is the Langevin equation
corresponding to the advection diffusion equation (2.21). Together with the equations
(2.17) and (2.18) for the undisturbed fluid flow u this defines the full set of equations for
a one-way coupled Lagrangian mixed-fluid multiphase flow.

It is important to note that this straightforward random walk model for the particle
diffusion is no longer correct when the diffusivity depends on space, for example when one
wants to model the influence of turbulence similar to the gradient-diffusion approximation
discussed in the previous section. It was pointed out by Visser (1997) that the correct
Lagrangian equations of motion, corresponding to an advection-diffusion equation with
space-dependent diffusivity Γeff(x, t) also contains a contribution from the gradient of the
diffusivity. The correct equation of motion is then given by

dX(t) = (u(X(t), t) +∇Γeff(X(t), t)) dt +
√

2Γeff(X ′(t), t)dW , (2.24)
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where the diffusivity is evaluated at X ′(t) = X(t) + 1
2∇Γeff(X(t), t)dt. If this correction

is not included, there is an artificial diffusion of particles to regions of low diffusivity,
even when the initial particle distribution is uniform.

Next, we discuss some basic features of the dynamics of a suspension of particles in
laminar and turbulent flows in such an Lagrangian one-way coupled mixed-fluid approx-
imation.

Lagrangian Chaos

One of the most interesting results about Lagrangian mixed-fluid dynamics, is that even
if the velocity field of the continuous phase is very simple, the motion of individual fluid
elements or particles can be very complicated. If a small region of the fluid is tagged, e.g.
with dye or a small group of particles is released in a section of an appropriate flow one
can observe a stretching and folding of material lines. These evolving features in the flow
are typically a combination of so-called “tendrils” and “whorls” (Aref, 1984), generated
by different underlying structures in the flow. This deformation of fluid elements or small
particle groups is often called hydrodynamical “stirring”. This hydrodynamical stirring
plays an important role for mixing processes. Here, mixing refers to the diffusive exchange
of material between two fluids. This greatly depends in the contact surface between the
two fluids. In many natural problems and applications this is achieved by making the
surrounding fluid flow turbulent. However, when due to some restriction the flow can not
easily be made turbulent, e.g. when very large spatial scales are involved or one wants
to mix very fragile particles, stirring by Lagrangian chaos can also be used to enhance
mixing by creating a greatly increased surface for diffusion.

This effect was pointed out theoretically in the work of Aref (1984), first in the case of
an inviscid flow and shortly afterwards in the Stokes flow regime by Aref and Balachandar
(1986) and was termed chaotic advection or Lagrangian chaos. The first experimental re-
alization was obtained by Chaiken et al. (1986). For details on Lagrangian chaos the book
by Ottino (1989) is recommended, in the following a short summary of the underlying
mechanism is provided.

Lagrangian Chaos can be understood in terms of the theory of Hamiltonian systems.
The phase space is identical to the spatial position of the particles. To simplify the
explanation, only two dimensional systems are considered. A two dimensional, incom-
pressible flow can always be given in terms of a stream function (Durst, 2006), which
is a Hamiltonian for the system. If the flow is steady, the system possesses one degree
of freedom and is integrable. In this case all bounded solutions are regular, and can be
mapped to an invariant torus (Arnold-Liouville theorem). If the Hamiltonian system is
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disturbed, for example by introducing a time-dependence to the system it may no longer
be integrable. In this case some of the Arnold-Liouville tori are destroyed, whereas oth-
ers remain stable for sufficiently small disturbances. This is the result of the celebrated
Kolmogorov-Arnold-Moser-theorem (KAM) and the remaining stable tori are therefore
termed KAM-tori.

In place of the destroyed tori a sequence of elliptic and hyperbolic fixed points is created
(Poincaré-Birkhoff theorem). Elliptic points once again lead to KAM-tori that can either
remain stable or be destroyed, leading to more elliptic and hyperbolic points and so on,
continuing to infinity.

The hyperbolic fixed points created in the destruction of tori are the ones responsible
for the Lagrangian chaos. In their neighborhood, the stable and unstable manifolds
can form homoclinic or heteroclinic points, i.e. stable and unstable manifolds of one or
different hyperbolic points cross orthogonally. Since one homoclinic or heteroclinic point
implies infinitely many others this results in a complicated folding of the manifolds. The
chaotic saddle formed by this “homoclinic/heteroclinic tangle” leads to the exponential
separation of initially close fluid elements or particles.

The phenomenon of chaotic advection plays an important role in many problems where
stirring and mixing in non-turbulent flows occurs in a fluid, ranging from microfluids and
material processing to stirring of fluids on geophysical or planetary scales, for example in
the ocean or the earth mantle (see e.g. Zimmerman, 1986; Behringer et al., 1991). Chaotic
advection in a fluid has also been found to play a role in many problems where active
processes of the particles play a role, for example for plankton blooms in vortices behind
islands (Sandulescu et al., 2007), chemical reactions (Károlyi et al., 1999; Tél et al., 2004)
or coexistence of biological competitors (Károlyi et al., 2000). For an overview of active
processes in Lagrangian chaos see for example the review by Tél et al. (2005).

Lagrangian Particles in Turbulence

Another field, where the Lagrangian study of fluid flows plays an important role is the
field of fluid turbulence. This view on fluid turbulence, originally suggested by L.F.
Richardson and G.I. Taylor in the 1920s and greatly developed by R.H. Kraichnan has led
to considerable process in recent years. In particular for the phenomena of intermittence
and anomalous scaling laws in turbulent flows, the applications of methods from non-
equilibrium statistical mechanics has led to a new quantitative understanding. Two of
the major problems in this context are the question of the extend of the universality of the
inertial range and the question of how to obtain velocity statistics in a non-equilibrium
system. Some of the observed anomalous scaling behavior and the connected breaking
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of the scale-invariance symmetry has been traced to the existence of statistical integrals
of motion. These can be very different from the conserved quantities in equilibrium
statistics and are found in the evolution of groups of particles and the geometry of the
particle configuration.

An overview of the more advanced problems related to the statistical description of tur-
bulence, such as multi-particle statistics and anomalous scaling is beyond the scope of this
work. As a starting point for this the article by Falkovich et al. (2001) is recommended.
In the following, only the basic results for the motion of an individual Lagrangian parti-
cles in turbulence are summarized, following the description in Pope (1994) and Falkovich
et al. (2001).

For a single Lagrangian particle, moving according to the stochastic differential equa-
tion (2.23) in a turbulent flow the behavior can be understood in terms of the mean square
displacement

〈
(∆X(t))2

〉
E

=
〈
(X(t)−X(0))2

〉
E
, where 〈·〉E denotes an ensemble av-

erage. Assuming the flow is statistically stationary and neglecting molecular diffusion
(ΓMD = 0), the equation for the mean square displacement is

d

dt

〈
(∆X(t))2

〉
E

=
〈(

d

dt
X(t)

)
· 2 (X(t)−X(0))

〉
E

= 2
∫ t

0
ds 〈V (0) · V (s)〉E . (2.25)

This quantity depends strongly on the length of temporal correlations of the Lagrangian
velocity. Defining the Lagrangian correlation time of the flow as

τL :=

∫∞
0 ds 〈V (0) · V (s)〉E

〈V 2〉E
, (2.26)

two different limit cases for the mean square displacement can be distinguished.
For times much shorter than the correlation time, i.e. t ¿ τL it is 〈V (0) · V (t)〉E ≈〈

V 2
〉
E

and therefore

〈
(∆X(t))2

〉
E
≈ 2

〈
V 2
〉
E

t2 = 2
〈
u2
〉
E

t2 . (2.27)

This means that on short time scales the particle motion is ballistic.
Assuming a finite correlation time τL of the flow, which is typically the case in turbulent

flows one finds for large times, i.e. t À τL that
∫ t
0 ds 〈V (0) · V (s)〉E ≈ τL

〈
V 2
〉
E
. This

leads to 〈
(∆X(t))2

〉
E
≈ 2

〈
V 2
〉
E

τLt = 2
〈
u2
〉
E

τLt . (2.28)

Therefore, on time scales much longer than the correlation time of the flow the particle
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motion is diffusive.

In general, for time scales much longer than τL the individual displacements ∆X

are approximately independent, and the overall displacement becomes a sum of many
independent, random variables, which is the regime of the central limit theorem. The
displacement therefore is a Brownian motion in 3 dimensions,

〈∆Xi(t)∆Xj(t)〉E ≈ 2D
(eff)
ij t (2.29)

with an effective diffusivity tensor D
(eff)
ij given by

D
(eff)
ij =

1
2

∫ ∞

0
ds 〈Vi(0)Vj(s) + Vi(s)Vj(0)〉E . (2.30)

The challenge of turbulent diffusion is then to find the effective diffusivity, for a given
velocity field u(X, t).

2.2.3. Two-Way Particle-Flow Coupling for Mixed-Fluids

While the results in the previous section mainly refer to the case of one-way particle-
flow coupling, where the feedback of the dispersed phase on the continuous phase can be
neglected, the approach can easily be extended to account for feedback of the particles
on the fluid. In the case of mixed-fluids, where the dispersed phase is assumed to follow
closely the continuous phase the two-way particle-flow coupling is generally achieved by
replacing the fluid properties of the continuous phase with effective properties (Clift et al.,
2005).

The two major effects of two-way particle flow coupling are an influence of the particles
on the surrounding fluid by locally modifying the density and viscosity. The local change
in density can greatly influence the mean flow field. In addition, the presence of particles
can lead to an effective viscosity in regions of the flow with high particle concentrations
that is significantly different from the viscosity of the undisturbed fluid. In addition to
the mean flow this change in effective viscosity can influence turbulent fluctuations by
changing production and dissipation of turbulent kinetic energy. Both of these effects
become important, if there are regions of high particle concentrations in the flow.

The effective density ρm(x(j), t) at the position x(j) of a computational cell can most
easily be given in terms of the volume fraction CV (x(j), t) and is simply the mass of both
the dispersed and continuous phase per unit volume

ρm := ρpCV + ρf (1− CV ) . (2.31)
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For particles much heavier than the surrounding fluid and small volume fractions, the
effective density increases approximately linearly with the mass concentration

ρm ≈ ρf + CM , for ρp À ρf and CV ¿ 1 . (2.32)

The effective viscosity µm(x(j), t) at the position x(j) of a computational cell can be
understood physically as the ratio of stress to rate-of-strain in the particle-fluid mixture.
The effective viscosity for a suspension of solid particles was first calculated by Einstein
(1906) in the creeping flow limit and negligible particle-particle interaction. His result
was obtained by considering an individual particle in a straining field, with a no-slip
condition at the particle surface and assuming that the effect can be summed linearly for
more particles. To first order in Cv he obtained

µm = (1 + 2.5CV )µf , (2.33)

which has been confirmed in experiments to be reasonable for spheres up to volume
fractions of about 0.1. Non-spherical particles may have a greater increase in effective
viscosity.

A similar analysis for viscous spheres, e.g. liquid drops was performed by Batchelor
(1970) where he assumed a stress balance boundary condition at the particle surface. To
first order in CV he found that

µm =
(

1 +
2.5µp + µf

µp + µf
CV

)
µf . (2.34)

In the limit of infinite particle viscosity this again reduces to the result for solid particles,
Eq. (2.33) whereas in the limit of negligible particle viscosity one obtains

µm = (1 + CV )µf , (2.35)

i.e. the effective viscosity increases linearly with the volume fraction. This is for example
the case of gas bubbles suspended in a liquid.

The full set of equations for the two-way coupled mixed-fluid approximation is therefore
given by the mixed-fluid equation for the dispersed phase, either the advection-diffusion
equation(2.21) in the Eulerian case or the Langevin equation (2.23) in the Lagrangian
case, combined with the Navier-Stokes and continuity equations (2.17) and (2.18) for the
undisturbed flow field u from Sec. 2.2.1 where ρf and µf have been replaced by ρm and
µm, respectively to approximate the real flow field v.

In addition to the modification of density and viscosity, there can be further modifica-
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tions of the continuous phase properties due to the presence of a dispersed phase, such as
changes in the compressibility affecting for example the speed of sound in the suspension,
but the discussion of these is beyond the scope of this work.

2.3. Separated-Fluid Multiphase Flows: Inertial Particles

In this section the equations of motion for a separated-fluid multiphase flow, i.e. a
suspension of inertial particles are described. Particles are called inertial if the particle
velocity can deviate from that of the surrounding fluid. This is usually a much better
approximation of the dynamics of suspended particles in a flow than the simple mixed-
fluid approach described in the previous section, but comes at a greater (computational)
cost. Once again, one can try to formulate the equations of motion either in an Eulerian
or a Lagrangian frame of reference.

In order to formulate a transport equation in an Eulerian frame of reference for a
particle concentration C(x, t), as was done with the advection-diffusion equation (2.21)
for tracers, a particle velocity field vp(x, t) is required. For tracers this was simply the
velocity field of the surrounding fluid. Assuming the existence of such a velocity field, the
equations of motion in an Eulerian frame of reference can be obtained and include both
a continuity and momentum equation. The momentum equation for the dispersed phase
can be derived similar to the Navier-Stokes equation (see e.g. Durst, 2006) and contains
the surface forces acting on the particles, e.g. drag forces. The same forces then appear
as a sink term in the governing equations for the continuous phase, leading to a simple
formulation for two-way particle-flow coupling. In general, such an Eulerian approach
has the advantage of allowing consistent numerics for both the dispersed and continuous
phase and is generally much faster than a Lagrangian approach for large numbers of
particles.

However, in the case of inertial particles there are fundamental problems associated
with an Eulerian frame of reference. Due to the presence of so-called caustics (Falkovich
et al., 2001; Wilkinson and Mehlig, 2005) in the dynamics of inertial particles the existence
of a velocity field vp(x, t) is not guaranteed for all points and times. Instead, particles with
very different velocities can come arbitrarily close, preventing the definition of a unique
particle velocity at a given point and time. Such “multivalued velocity fields”1 are the
reason why Eulerian formulations can not fully capture particle inertia. Nonetheless, due
to their superior efficiency for large particle concentrations they are widely in use.

In the following only a Lagrangian description of inertial particle is used, because
1This formulation, although sometimes used in the literature, is somewhat misleading, since the definition

of a field implies unique values at any given point.
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inertial effects that do not appear in an Eulerian description such as caustics can
greatly influence collision rates of particle. This is an important aspect for the coag-
ulation/aggregation processes studied in Ch. 3 and 4 and should be included there. This
problem does not appear in the weak-inertia approximation (see Sec. 2.3.2), where both
Eulerian and Lagrangian formulations can be used.

2.3.1. Approaches to Calculate the Surface Force and Torque on a

Particle

The main question in deriving an approximation for the full set of equations from Sec.
2.1.1, describing the motion of a system of particles in a continuous fluid is how to
approximate the surface force and torque on the particles. To calculate the surface force
Fsurf and torque Msurf on a particle a number of different approaches are used, that
reproduce equations (2.10) and (2.12) with varying degree of accuracy. Some results are
based on theoretical arguments, while others are empirical formulations, either based on
experiments or resolved surface simulations.

First, we discuss one-way particle-flow coupling approximations, where the feedback of
the particles on the surrounding flow is neglected. For this, we use the so called point-
force approximation, where an expression for the surface force and torque is derived in
terms of the undisturbed flow field u at the position X(t) of a particle. This eliminates
the need to calculate the detailed flow around the particle, but is only appropriate if the
particle diameter dp is smaller than the smallest characteristic length scale in the flow,
i.e. dp ¿ L̃f so that local flow variations are small. If the surrounding flow is spatially
discretized, the flow properties are mapped from the nearest flow node to the particle
position with an appropriate interpolation scheme.

More detailed approximation methods than the point-force approximation, which usu-
ally also include two-way particle-flow coupling are for example distributed-force and
-torque approximations and semi-resolved and resolved surface methods.

Distributed-force and -torque approximations are usually applied where particles are
of similar length scale than the resolution of the flow. In this case the variations of the
flow over the diameter of the particle needs to be included. This can be done by spatially
averaging the surrounding flow properties within a region surrounding the particle center.
For recent results consistent with known theoretical formulations see Loth and Dorgan
(2009).

For particles larger than the resolution of the flow semi-resolved and resolved surface
methods can be used to calculate the forces and torques acting on the particle. One of
the most common semi-resolved surface methods is the force-coupling method by Maxey
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and Patel (2001) and Lomholt and Maxey (2003). In the force-coupling method a partial
differential equation for the surrounding fluid is solved that contains an interface force
for each individual particle, resulting in an surrounding flow field that locally represents
the particle surface velocity V close to the particle.

Resolved surface methods, such as arbitrary Lagrangian-Eulerian (ALE) methods (e.g.
Maury and Glowinski, 1997) and Lagrangian Multiplier (LM) methods (e.g. Glowinski
et al., 1999) can be used when the resolved length scale of the surrounding flow is much
smaller than the particle diameter. These methods can give very detailed results for
surface forces and torques acting on the particle, but are computationally very expensive.

In this work, only the point-force approximation is discussed, since distributed-force,
semi-resolved and resolved surface methods usually require a greatly increased numerical
effort which is not reasonable for the large ensembles of particles studied in the following
parts. However, we show how the one-way particle-flow coupling point-force approach can
be expanded to include two-way particle-flow coupling. For point-force approximations
with one-way particle-flow coupling the equations for the fluid phase are always the
Navier-Stokes and continuity equations for the undisturbed flow field u from Sec. 2.2.1.
For two-way particle-flow coupling and particle-particle coupling, as discussed in Sec.
2.3.4 and 2.3.4, the equations for the continuous phase are modified to include effects
from the presence of the dispersed phase, such as modified density and viscosity as well
as a momentum transfer between fluid and dispersed phase.

In the point-force approximation used in this work the integrated surface force Fsurf and
torque Msurf are usually separated into a sum of several independent components. The
forces generally include the undisturbed fluid stresses FS acting on the particle, quasi-
steady drag FD, the added-mass force FA, the Basset-Boussinesq history force FH , lift
forces FL and possibly Brownian forces FB. Similar decompositions exist for the torques,
but in most cases only the torque from the quasi-steady drag MD is considered. The
point-force approximation has a number of limitations. In addition to the requirement
that the particle diameter need to be smaller than the smallest characteristic length scale
of the flow, the assumption of a linear decomposition of the surface force and torque into
separate and independent forces is not guaranteed except in a few theoretically understood
cases. Furthermore, the expressions for the different components of the surface force and
torque are not theoretically known except in very few limit cases. Therefore, in many
applications, particularly in higher Reynolds number flows and for non-spherical particles,
empirical results and results from resolved-surface methods are used.
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2.3.2. Theoretical Results: Maxey-Riley and Auton-Hunt-Prud’homme

Over the last 180 years a number of analytical expressions for the different surface forces
in the equations of motion of suspended particles have been found. The first work ap-
peared even before the development of the Navier-Stokes equations, when Poisson (1831)
studied a sinusoidal potential flow around a solid sphere and discovered what is now
called the added-mass term. The interest of the early researcher was mainly the mo-
tion of a pendulum in air, which was related to the construction of clocks, often for the
determination of geographical longitude (see e.g. the review by Michaelides (1997)).

Twenty years later, Stokes (1851) developed a theory for the unsteady sinusoidal motion
of a solid sphere in a viscous fluid, in the so-called “creeping-flow” limit. This is the limit
of zero particle Reynolds number Rep := ∆V dp/νf , with ∆V the characteristic relative
velocity between particles and surrounding fluid flow, where the nonlinear term of the
Navier-Stokes equations can be neglected. This limit case of the Navier-Stokes equation,
without the inertia term is now commonly called the Stokes equation.

Based on the work of Stokes, Basset (1888), Boussinesq (1903) and later Oseen (1927)
further developed the expressions for the unsteady motion of a solid sphere in a viscous
fluid. Again, under creeping-flow conditions they developed and refined the expressions
for steady-state drag, added mass and what is now called the Basset-Boussinesq history
force. Further improvement came from Oseens student Faxén (1922) who included con-
tributions to the surface forces due to a nonuniform fluid velocity, that today are called
Faxén corrections.

Despite the number of works on this topic, full theoretical solutions for the equations of
motion have so far only been found in the case of either the creeping flow conditions, where
Rep → 0 or inviscid flows, where µf = 0. The two most important and widely used the-
oretical results are the Maxey-Riley equations (1983) and the Auton-Hunt-Prud’homme
equations (1988). The Maxey-Riley equations describe the non-rotating motion of a solid
sphere in unsteady, incompressible flows at small, but finite relative particle velocity. The
Auton-Hunt-Prud’homme equations describe the relative motion of a sphere in an invis-
cid, rotational fluid. In both cases Brownian motion is neglected. In many applications
and theoretical studies one of these equations is used, either in their original form or as
a baseline equation to which additional effects or corrections to the different terms are
added.

Maxey-Riley Equations

Equations for particle motion based on the creeping flow assumption are still among
the most widely used representations of actual particle motion in a fluid. The most
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important recent contribution is the work of Maxey and Riley (1983) who published a
very detailed derivation of the relevant equations of motion. In particular, they clarified
some theoretical parts that were not fully apparent in the literature. They studied the
motion of a rigid spherical particle in an non-uniform unsteady flow, without rotational
motion. They assumed finite, but small particle velocity relative to the surrounding fluid,
therefore neglecting nonlinear advection terms. Additionally, the spatial gradients in the
flow were assumed to be small, so that these could be considered as small perturbations.

Formally, these restrictions can be written as

Rep ¿ 1 (2.36)

(d2
p/νf )(∇Ǔ) ¿ 1 (2.37)

dp/Ľf ¿ 1 , (2.38)

where νf is the kinematic viscosity of the flow, Ľf is a characteristic length scale for
the variations in the flow and ∇Ǔ is a characteristic scale for the corresponding velocity
gradients. With the restrictions (2.36) - (2.38) the Maxey-Riley equations can be derived
from the equations of motion for the fluid (see Eq. (2.4)), assuming a no-slip condition
at the particle surface (see Eq. (2.6)), non-rotating particles and assuming that the
feedback from the particles on the surrounding fluid is only local. Their result includes
gravitational and surface forces and reads as

mp
dV

dt
= (mp −mf )g + mf

Du

Dt
|X(t)

−1
2
mf

d

dt
(V − u(X(t), t)− 1

40
d2

p∇2u(X(t), t))

−3πdpνf (V (t)− u(X(t), t)− 1
24

d2
p∇2u(X(t), t)) (2.39)

−3
2
πd2

pµf

∫ t

0
ds

1√
πνf (t− s)

d

ds
[V (s)− u(X(s), s)

− 1
24

d2
p∇2u(X(s), s)] .

Here
Du

Dt
=

∂u

∂t
+ (u · ∇)u (2.40)

is the substantial (Lagrangian) derivative along the trajectory of a fluid element, while

du

dt
=

∂u

∂t
+ (V · ∇)u (2.41)

is the derivative along the trajectory of the particle.
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The first line in the Maxey-Riley equations of motion is the stress force FS from the
undisturbed fluid at the position of the particle, which together with the gravitational
force also contains buoyancy forces. The second line is the added mass force FA, the
third line is the quasi-steady drag force FD and the final lines are the Basset-Boussinesq
history force FH . The terms with d2

p∇2u are the Faxen corrections for a nonuniform flow.

These equations were derived for particles initially starting at rest relative to the fluid,
or more precisely with no initial drag, i.e. the Faxén-corrected relative velocity ∆Ṽ (t) =
V (t)−u(X(t), t)− 1

24d2
p∇2u(X(t), t) is assumed to be zero at t = 0. A modification for

non-zero initial relative velocity ∆Ṽ (t)(0) was introduced by Maxey (1993), leading to
an additional term +∆Ṽ (t)(0)/

√
t of the history force.

For many problems it is advantageous to rewrite the Maxey-Riley equations of motion
in a slightly more compact form as

dV

dt
= G +

2
3
β̌

(
Du

Dt
+

1
2

du

dt
+

1
40

d2
p∇2u

)
− 1

τp

(
V − u− 1

24
d2

p∇2u

)
(2.42)

−
√

3β̌

πτp

∫ t

0
ds

1√
t− s

d

ds
[V − u− 1

24
d2

p∇2u] ,

with the parameters

G :=
mp −mf

mp + 1
2mf

g (2.43)

τp :=
mp + 1

2mf

3πdpµf
(2.44)

β̌ :=
3
2

mf

mp + 1
2mf

. (2.45)

The vector G represents the influence of gravity, including buoyancy effects. τp is the
particle response time, it represents the time scale on which the particle respons to changes
in the surrounding flow. Particles with small values of τp generally respond quickly to
changes in the flow, whereas particles with large τp move almost independent from the
flow. The product W := τpG is the terminal settling velocity of a particle in still fluid.
The parameter β̌, already introduced in Sec. 2.1.1, is the mass or density ratio between
the dispersed phase and the continuous phase. The limit β̌ → 0 is the case of particles
much heavier than the surrounding fluid and the case of β̌ → 3 is the limit of particles
much lighter than the surrounding fluid. Neutrally buoyant particles have β̌ = 1.
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2. Dynamics of Particles in Flows

Auton-Hunt-Prud’homme Equations

The Auton-Hunt-Prud’homme equations (1988) are a general expression for the force
acting on a spherical particle moving relative to an inviscid, unsteady non-uniform rota-
tional velocity field. In this derivation it is assumed that the local change in velocity over
the radius of the particle is small compared to the relative velocity between the particle
and the surrounding fluid. Additionally, it is assumed that the temporal changes of the
relative velocity are small. These conditions can be written as

dp∇Ǔ ¿ ∆V̌ (2.46)

∂∆V̌

∂t
¿ ∆V̌

dp
, (2.47)

where ∆V̌ is a characteristic time scale for the relative velocity between particle and fluid
and ∂∆V̌

∂t is a characteristic scale for the temporal changes of the relative velocity.

With the restrictions (2.46) - (2.47) the Auton-Hunt-Prud’homme equations can be
derived from the equations of motion for the fluid (2.4), with a slip condition at the
particle-fluid interface. Including gravitational and surface forces the equations of motion
are given by

mp
dV

dt
= (mp −mf )g + mf

Du

Dt
|X(t)

−1
2
mf (

dV

dt
(t)− Du

Dt
(X(t), t))

+
1
2
mf [ωf × (u(x, t)− V (t))] , (2.48)

where ωf = ∇× u is the vorticity of the flow.

The terms in the Auton-Hunt-Prud’homme equations of motion are the stress FS from
the undisturbed fluid acting on the particle at position X(t), the added-mass force FA

and a lift force FL which is a combination of rotational forces and a contribution due
to an inertial force, related to the added mass effect. The form above is specific for a
spherical particle. The assumption of an inviscid flow leads to vanishing total drag force
on the particle, i.e. both quasi-steady drag FD and history force FH are zero.

In the following, the different components of the surface force in the Maxey-Riley equa-
tions and the Auton-Hunt-Prud’homme equations are compared and possible extensions
discussed.
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2.3. Separated-Fluid Multiphase Flows: Inertial Particles

Fluid Stress Force

The fluid stress force represents the force required to accelerate the fluid at the particle
position, without the presence of a particle. It is a force from the undisturbed fluid and
comparing the results from Auton-Hunt-Prud’homme with the Maxey-Riley equations
reveals that the force from the undisturbed flow is the same in both equations

FS = mf
Du

Dt
|X(t) −mfg .

In fact, for any incompressible flow, as long as the point force approximation is valid,
the fluid stress force is given by the undisturbed continuous phase acceleration and the
hydrostatic force. It requires no assumption whether the surrounding fluid is viscous and
is generally the same for particles of any shape, whether solid or viscous. The importance
of the fluid stress force was highlighted in the book of Batchelor (1967).

Drag Force

The drag force is generally considered to be the most important surface force acting on
a particle. The derivation for the Stokes drag on a spherical, solid particle can be found
in virtually every textbook on fluid dynamics (e.g. Durst, 2006). The linear quasi-steady
drag force is typically proportional to the velocity difference between a particle and the
surrounding fluid. The quasi-steady drag force in the Maxey-Riley equations is the Stokes
drag, but corrected for non-uniform flows by being proportional to a Faxén-corrected
relative velocity

FD = −3πdpνf (V (t)− u(X(t), t)− 1
24

d2
p∇2u(X(t), t)) . (2.49)

Due to the assumption of an inviscid surrounding fluid, there is no drag force in the
Auton-Hunt-Prud’homme equation.

There exists a number of empirical and theoretical corrections to the Stokes drag for
a wide variety of particle and flow situations. Typically, this is written in terms of a
corrective factor fD to the Stokes drag

fD :=
FD

F
(Stokes)
D

. (2.50)

Corrections to the Stokes drag include for example terms for finite particle Reynolds num-
ber such as the Oseen corrections (Oseen, 1910), corrections for non-spherical particles,
viscous particles or particle deformations.
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Here only the correction to the Stokes drag for viscous particles is shown, since in
Ch. 3 of this thesis we deal with the coagulation and breakup of liquid droplets. At the
surface of a viscous sphere there can be a finite tangential velocity which reduces the
viscous drag. In the creeping flow limit the correction for the Stokes drag is given by the
Hadamard-Rybczynski expression (see e.g. the book by Clift et al., 2005)

fD =
2µf + 3µp

3µf + 3µp
. (2.51)

Some interesting limit cases include bubbles in a liquid, i.e. µp ¿ µf where fD ≈ 2/3,
drops in a liquid, i.e. µf ≈ µp where fD ≈ 5/6 and drops in a gas. i.e. µp À µf , where
fD ≈ 1. It should be noted that this result is only valid for clean fluids and particles,
that means where no contaminants at the particle surface are present. In general, this is
nearly impossible to obtain for small viscous particles in any experimental setup. With
the presence of surface contaminants, the correction is typically fD ≈ 1 and the drag
force is once again given by the Stokes drag.

Added Mass Force

The added mass force represents the additional force required because an inertial particle
brings a certain amount of fluid into motion too. It represents a portion of the fluid
that is accelerated along with the particle. It is formally included in the surface forces,
because it is associated with the fluid stress acting on the particle. An added mass effect
is generally found for all conditions where the fluid is disturbed by the presence of a
particle and requires some rigidity of the particle surface. It generally occurs for particles
of all shapes and sizes. The expression for the added mass term given by Maxey and
Riley is

FA = −1
2
mF

d

dt
(V − u(X(t), t)− 1

40
d2

p∇2u(X(t), t)) (2.52)

while the added mass term of Auton-Hunt-Prud’homme is

FA = −1
2
mf (

dV

dt
(t)− Du

Dt
(X(t), t)). (2.53)

Excluding the Faxén corrections the added mass term is slightly different in the two cases,
i.e. the two limits of creeping flow and inviscid fluid are not consistent. Maxey (1993)
noted that the difference between the two formulations is negligible in the creeping flow
limit if fluid flow gradients are small. Nonetheless, studies at small Reynolds numbers,
e.g. by Coimbra and Kobayashi (2002) obtained the added mass force in the Auton-Hunt-
Prud’homme formulation. It has therefore become customary to modify the Maxey-Riley
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equations for spherical particles in most applications by replacing the added mass term
with that of Eq. (2.53).

Similar to the drag force there exist many empirical corrections to the added mass
terms, in particular for non-spherical particles. For a discussion of corrections to the
added mass coefficients for different shapes the reader is referred to the book of Clift
et al. (2005).

Basset-Boussinesq History Force

The Basset-Boussinesq history force represents the effects of the diffusion of vorticity
around the particle. It is related to the temporal development of disturbances in the
flow field around the particle surface, due to the boundary condition. It does not appear
in the Auton-Hunt-Prud’homme formulation, as it depends on the fluid viscosity. The
history force acts in the direction of the relative velocity and from a physical point of
view represents an unsteady contribution to the drag force. The equation for the history
force in the creeping flow limit was first derived by Basset (1888) and Boussinesq (1903).
In the formulation of the Maxey-Riley equations it becomes

FH = −3
2
πd2

pµf

∫ t

0
dτ

1√
πνf (t− τ)

d

dτ
[V (t)− u(X(t), t)− 1

24
d2

p∇2u(X(t), t)] . (2.54)

This unsteady component of the drag is therefore a function of the particle acceleration
along the entire particle trajectory. In many applications the history force is neglected,
due to the computational problems associated with it. But in many cases it is not clear
whether this is justified. An excellent discussion of this problem is found in Michaelides
(1997).

Corrections to the history force for finite Reynolds number (Mei and Adrian, 1992),
viscous particles (Mei et al., 1994) or non-spherical particles (Lawrence and Mei, 1995)
have been proposed, but a general understanding is still missing.

Lift Force and Lift-Based History Force

In the Auton-Hunt-Prud’homme equations an additional surface force, the lift force ap-
pears that is absent from the Maxey-Riley equations. While lift forces do not appear
in the creeping flow regime of the Maxey-Riley equations, in many applications at finite
particle Reynolds number the lift force can be of a similar magnitude as the drag force
and can therefore play a very important role (see e.g. Mazzitelli et al., 2003).

Generally, lift forces are created by vorticity in the surrounding fluid or rotation of the
particle. For the quasi-steady lift force a number of different types are distinguished. The
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vorticity induced lift force appearing in Eq. (2.48) is the so-called Auton lift

FL =
1
2
mf [ωf × (u(x, t)− V (t))] .

Other general types of vorticity induced lift are the Saffman lift, which is generated by
the motion of a particle in a linear shear (Saffman, 1965) and the Herron lift which is the
lift in a vortex with solid-body rotation (Herron et al., 1975). Lift generated by particle
rotation is usually called Robins-Magnus lift (Rubinow and Keller, 1961).

In addition to the quasi-steady lift force, there is an unsteady component to the lift
force, similar to the history force for the drag. This lift-based history force has been de-
rived for the Saffman lift conditions for solid spherical particles by Coimbra and Kobayashi
(2002) and can become important when the frequency of the fluid vorticity is significantly
large compared to the frequency of momentum diffusion in the fluid. However, almost
no expression for the lift-based history force exist for finite Reynolds numbers or non-
spherical particles.

Weak-Inertia Approximation

Of particular interest in many applications is the so-called weak inertia approximation
for the motion of finite-size particles, where the particle response time τp becomes small.
It was first introduced by Maxey (1987) as a limit-case of the Maxey-Riley equations.
He showed that in the limit τp ¿ τf , where τf is the smallest relevant time scale of
the surrounding fluid the velocity of a particle can be given as a Taylor series in τp. In
particular the history force and the Faxen corrections disappear in this limit and the
equations of motion for a particle (2.42) reduce to

dX

dt
= u + τp

(
G + (β̌ − 1)

Du

Dt

)
+O(τ2

p ) . (2.55)

Practically, this means that up to first order in τp the particles move like tracers but in a
modified velocity field u′ = u + τp

(
G + (β̌ − 1)Du

Dt

)
. This modified velocity field u′ may

be compressible, i.e. ∇u′ 6= 0 even if ∇u = 0, leading for example to the clustering of
particles in certain regions of the flow. However, problems associated with the description
of inertial particles, such as caustics do not appear in this approximation. Therefore, both
Eulerian and Lagrangian descriptions of the particle dynamics similar to those discussed
in Ch. 2.2 for mixed-fluid conditions can be applied in the case of weak particle inertia.
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2.3.3. One-Way Particle-Flow Coupling: Dissipative Particle Dynamics

In this section, the physics of one-way particle-flow coupled multiphase flows are con-
sidered and relevant results from the literature discussed. In this regime the particle
concentration is assumed to be low enough, so that the fluid motion is not significantly
affected by the presence of the particles. This is the case when both number and mass
concentration of the particles are small, i.e. the mass and volume of particles in a certain
volume is much less than the mass and volume of the surrounding fluid. This regime
is particularly accessible for numerical modeling, since the equations of motion for the
continuous phase can be solved independent of the equations of motion for the dispersed
phase. This significantly reduces the complexity of the problem and is the reason why
most numerical and theoretical studies are performed in this regime.

In the following, two recent results are discussed that capture many important aspects
of the physics of suspensions of inertial particles. It is emphasized that these results were
found in the one-way particle-flow coupling regime, where all interactions between the
particles are neglected and only the influence of the surrounding flow on the particles
is included. Other coupling regimes may lead to modified or even completely different
particle dynamics.

Preferential Concentration

The effect of clustering, or preferential concentration of inertial particles was first men-
tioned in a work by Maxey (1987) who numerically studied the gravitational settling of
aerosol particles in a simple cellular flow. He noted that particle trajectories tend to
cluster in regions of low vorticity or high strain. He studied this effect in terms of the
weak-inertia approximation for the particle equations of motion, introduced in Sec. 2.3.2.
He noticed that the “synthetic“ velocity field of the particles has negative divergence in
regions of high vorticity or low strain and concluded that particles might be ejected from
vortices in something like a “centrifugal mechanism“. Numerical simulations, for example
by Squires and Eaton (1991) and Wang and Maxey (1993) and experimental work, for
example by Eaton and Fessler (1994) confirmed the clustering effect in turbulent flows. It
is a rather remarkable observation, that turbulent flows which were generally believed to
be very efficient at mixing can also lead to the opposite effect for suspensions of inertial
particles. For an initially uniform distribution of particles, i.e. a well mixed state the
occurrence of clustering means that particles and fluid can become ”unmixed“ over time,
at least to a certain degree.

From the centrifugal mechanism suggested by Maxey it was predicted that clustering
should be less apparent when the particles are overdamped or the velocity field fluctuates
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too fast for the particle density to follow. This is commonly characterized in terms of the
Stokes number St := τp/τf which is the ratio between the particle response time τp and
the correlation time τf of the surrounding fluid:

• St ¿ 1 particles follow the surrounding fluid closely (overdamped limit)

• St = O(1) particle motion is strongly affected by surrounding flow

• St À 1 only weak effect of the surrounding flow on the particle motion .

The strongest clustering effect is expected for St = O(1). This was indeed confirmed in
experiments in a turbulent channelflow (Fessler et al., 1994) and numerical simulations
(Duncan et al., 2005; Bec et al., 2006b).

A different approach to describe preferential concentrations, using methods from dy-
namical systems was used by Bec (2003, 2005). This follows an approach of Sommerer
and Ott (1993) who studied the spatial structures of tracer particles in a random flow
in terms of their fractal dimension. It can be easily seen from the equations of motion
for inertial particles that due to the Stokes drag the phase space volume is contracting
over time. This means that the dynamical system defined by the particle equations of
motion is dissipative. Calculating the divergence of the right hand side of the equations
of motion (2.42) leads to

V (t) = V (0) · e− d
St
·t (2.56)

for a volume V in d-dimensional phase space. This means that generally the particles will
collect on an attractor in phase space. In most realistic cases the particle dynamics is
chaotic and the attractor will have a fractal structure. This structure can be characterized
by its Lyapunov dimension dL (Kaplan and Yorke, 1979).

The Lyapunov dimension is given by the Lyapunov exponents of a dynamical system,
which is a measure of the exponential separation of neighboring trajectories. Chaotic
dynamics is characterized by (at least) one positive Lyapunov exponent, whereas fixed
points, periodic orbits and quasiperiodic behavior can be characterized by negative and/or
zero Lyapunov exponents.

For two particles starting at an Euclidian distance d(0) and having a distance d(t) at
time t, the largest Lyapunov exponent λ1 is given by

λ1 = lim
t→∞

d(0)→0

ln
(

d(t)
d(0)

)
. (2.57)

In general, for a d-dimensional dynamical system there are d Lyapunov exponents λi, i =
1...d, measuring the exponential separation in d orthogonal directions, whereas λ1 is the
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exponent belonging to the direction of strongest separation.
Formally, the Lyapunov exponents of a differentiable dynamical system are defined

as the logarithm of the limiting singular values of the Jacobian . The proof of their
existence and uniqueness (almost) everywhere2 is contained in the multiplicative ergodic
theorem of Oseledec. Further details about Lyapunov exponents and the ergodic theory of
dynamical systems in general can be found in the review by Eckmannn and Ruelle (1985).
An algorithm for the computation of all Lyapunov exponents is given by Benettin et al.
(1980).

Whereas a single Lyapunov exponent measures the exponential growth of distances,
sums of the Lyapunov exponents measure the growth of surfaces and volumes in phase
space. The idea of the Lyapunov dimension is that a phase space volume that has the
same dimension as an attractor in a dynamical system will neither grow nor shrink over
time. Therefore the dimension of the attractor should correspond to the number of
exponents where the sum of the Lyapunov exponents crosses from positive to negative.
Following the notation in Wilkinson et al. (2007) this reads as

dL = k −∆, with ∆ =
λ1 + . . . + λk

λk
, (2.58)

where k satisfies λ1 + . . . λk−1 ≥ 0 and λ1 + . . . λk < 0. The fraction ∆ is called the
dimension deficit. Fractal attractors in phase space are characterized by non-integer
dimensions dL, i.e. by ∆ 6= 0.

For inertial particles the phase space is typically 6 dimensional and even though a
fractal dynamical attractor might exist in the phase space a projection onto the config-
uration space only leads to a fractal structure when dL < 3. Otherwise, the attractor
in the configuration space becomes area filling and no clustering appears. In terms of
the Lyapunov exponents this means that the sum of the first three Lyapunov exponents
should be negative for clustering to occur. However, if the sum is close to zero the cluster-
ing effect might be small since local stretching and folding of the clusters happens faster
than the accumulation of particles.

Detailed numerical simulations by Bec (2003, 2005) showed how the fractal dimension
of the spatial pattern in a suspension of inertial particles in a smooth random flow varies
as a function of the Stokes number and particle-fluid density ratio β, revealing a maximum
of the clustering for a Stokes number of order unity.

A local analysis of the dynamics, in terms of a linearization of the equations of motion
for the inertial particles revealed that the stability of the eigendirections of the particle
dynamics depends on the local structure of the surrounding flow. The eigenvalues of

2almost everywhere with respect to an ergodic, invariant probability measure on the attractor
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the strain matrix ∂ui/∂xj of the flow distinguish the different cases. Bec found that
in elliptic regions, where the strain matrix has two complex-conjugate eigenvalues for
particles heavier than the surrounding fluid there is at least one unstable eigendirection,
whereas for particles lighter than the surrounding fluid all eigendirections can be stable if
the Stokes number is small enough. This means that particles heavier than the fluid tend
to be ejected from regions of higher vorticity and therefore collect in the strain regions of
the flow, whereas particles lighter than the fluid can cluster in the high vorticity regions
of the flow.

However, Bec also pointed out that even though his local analysis seems to confirm
the mechanism suggested by Maxey, in turbulent flows the persistence of such structures
in generally not long enough to explain the observed clustering effect. Additionally, Bec
numerically found clustering in flows delta-correlated in time, that are devoid of any
structure. Instead, the appearance of clustering in configuration space is solely related to
the dissipative character of the global particle dynamics, i.e. the existence of a chaotic,
fractal attractor in phase space with a dimension lower than the spatial dimension of the
system.

While the numerical calculations by Bec further quantified clustering effects, a detailed
explanation was still missing. The most recent important contribution to this topic came
from Wilkinson et al. (2007). They were able to explain this clustering effect, by studying
the fluctuations of the particle density as a multiplicative random process of successive
compression and expansion of volume elements. They showed how the mean particle
density is related to the Lyapunov exponents of the system, recording the full history
of the flow instead of instantaneous correlations with vortices. Additionally, they were
able to calculate the first three Lyapunov exponents for inertial particle dynamics, which
are the ones relevant for clustering. Their calculations revealed that in addition to the
Stokes number, there is another dimensionless quantity in the system which they termed
the Kubo number Ku, which is given by Ku = Ǔf τf

ξf
, where ξf is the correlation length in

the fluid. The Kubo number can be considered as a measure of the flow ”strength“ and
is of order one in fully developed turbulence and may be small in most other systems.
Wilkinson et al. showed that instead of the Stokes number the relevant dimensionless
quantity is the product Ku

√
St and that clustering appears when this dimensionless

quantity is of order one. For fully developed turbulence, where Ku = O(1) this is indeed
the case for a Stokes numbers of order one, but when Ku ¿ 1 clustering can also appear
in the case of St À 1.
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Formation of Caustics

In addition to preferential concentration there exists another physical effect in the dy-
namics of inertial particles which is very different from the behavior of tracers. This
is the appearance of so-called caustics in the distribution of the particles. The name is
derived from the analogy to optical caustics, but there are some differences in the two
phenomena. In the context of particle dynamics in flows, the occurrence of caustics was
first mentioned in a work by Falkovich et al. (2002), who studied the initiation of rain in
a turbulent cloud. They pointed out that an increased collision rate, due to what they
called a ”sling effect“ can lead to much faster growth of cloud droplets than could be
explained with previous theories. However, their theory was fairly complicated and not
very precise in its conclusions. The importance of this effect was then pointed out more
clearly in a work by Wilkinson and Mehlig (2005) and a theory for the increasing of the
collision rates was presented in Wilkinson et al. (2006).

The main idea is that inertial particles,

Figure 2.1.: Sketch for the formation of a
caustic showing the velocity of particles over
their position along a line (adapted from
Wilkinson et al. (2006)). At an initial time
t0 (blue line) the velocity is still a func-
tion of the position, but at a later time
t > t0 (red line) fast particles have over-
taken slower ones. The manifold is folded in
phase space and the velocity takes on mul-
tiple values at a single position between the
two folds.

in particular when the particle response
time τp is large, can detach from the tra-
jectories of the fluid elements. Particles
with a larger velocity can then overtake
slower particle, so that at a given, arbi-
trarily small region in space there are par-
ticles with (possibly very) different veloc-
ities. The particle velocity has become
multivalued and can no longer be treated
as a velocity field. This effect can be most
easily understood in terms of a one dimen-
sional example (Figure 2.1), that has been
taken from Wilkinson et al. (2006). At a
starting time t = t0 the particle velocity is
initially single valued, but particles move
towards each other. Faster ones overtake
slower particles and then pass the ones
moving the other way at at time t > t0.
The particle velocity is now multivalued.

The region of multivalued particle velocity is bounded by two fold caustics. It is obvi-
ous from the example that these caustics always appear in pairs. For three dimensional
systems the occurrence of a caustic corresponds to a folding of the attractor of the par-
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ticle dynamics in phase space. Again, the regions of multivalued particle velocities are
bounded by a network of fold caustic lines. Along these lines, the particle density it-
self can diverge, analogous to the divergence of light intensity at optical caustics. But
more important is that particles with very different velocities come arbitrarily close along
these caustics, which leads to a greatly increased collision rate, something that has no
counterpart in optical caustics.

Wilkinson and Mehlig (2005) discussed the long-term evolution of the caustics in 2-
dimensional flows and showed that different cases can be distinguished in terms of the
two largest Lyapunov exponents. Depending on the properties of the surrounding flow,
these can have different combinations of positive and/or negative values, leading to three
distinct long-term states in two dimensions.

If both largest Lyapunov exponents are negative, particle paths will coalesce and the
distribution of the particles will collapse onto points (Wilkinson and Mehlig, 2003). If
the sum of the first two Lyapunov exponents is positive, the density fluctuations resulting
from the caustic weakens for increasing time, leading to a random scattering of the parti-
cles. If the largest Lyapunov exponent is positive, but the sum of the first two exponents
is negative, the concentration of the particles on the caustics increases in time leading
to very sharp caustic lines. This process is limited by the stretching and folding of the
caustic lines themselves. Therefore, for long times the particles aligned along the caus-
tics again appear randomly scattered in space. This means that even though the caustics
persist in phase space, their effect on the spatial distribution of the particles weakens over
time. However, this happens much slower than when the sum of the first two Lyapunov
exponents is positive.

The appearance of caustics is the reason why for inertial particles there can be no
equivalent Eulerian description of the particle dynamics. The fundamental assumption of
the Eulerian approach, the existence of a well-defined particle velocity field is not met as
soon as caustics appear in the particle dynamics. In this case either an approximation has
to be made where caustics are neglected or a Lagrangian approach becomes necessary.

2.3.4. Two-Way Particle-Flow Coupling and Particle-Particle

Interactions

The interaction between the dispersed phase and the continuous phase leads to modi-
fications of the motion of the particles and the surrounding fluid. There are a number
of aspects to this coupling between the phases that are often approximated separately.
First, we discuss a two-way particle flow-coupling approximation for inertial particles that
tries to account for the feedback of the particles on the fluid phase. Second, we discuss a
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further effect of the coupling between the phases that can be interpreted as an interaction
between individual particles, mediated through the fluid. Finally, we discuss collisions
between particles.

Two-Way Particle-Flow Coupling

The case of two-way particle-flow coupling for finite-size particles is very similar to the
mixed-fluid case. The feedback of the dispersed phase on the continuous phase again
leads to a modification of the continuous phase properties, such as density and viscosity
as discussed in Sec. 2.2.3. However, for inertial particles there is an additional momentum
coupling effect. Since for inertial particles the fluid exerts a force on the particles, the
same force, with opposite sign is acting on the fluid at the particle position. Usually,
this is done in terms of a multipole expansion of the forces. For a single particle smaller
than the Kolmogorov scale, the small scale interactions that decay with 1/r3, where r is
the distance from the particle position, are quickly dissipated by viscosity and the only
effective term is the so-called Stokeslet that decays as 1/r. This term in the multipole
expansion results from a delta-forcing approximation.

Following the approach presented in Mazzitelli et al. (2003), the form of this delta-
forcing can easily be found by considering the momentum equation for a fluid velocity
field v in a volume V with a bounding surface S, where V contains a particle of volume
Vp and surface Sp. Here v is the full velocity field with the presence of the particles. The
volume occupied by the fluid is Vf = V − Vp and the momentum of the fluid is given by∫

Vf

ρf
Dv

Dt
dV =

∫
Vf

ρfgdV −
∮

Sp

σndS +
∮

S
σndS , (2.59)

where n is a normal vector on the surface. The first term on the right hand side is the
body force, the second term is the force at the particle surface (see also Sec. 2.1.1) and
the last term on the right hand side is surface force at the outer boundary. Rewriting
this, by using V = Vf + Vp and the equations of motion for a particle (see Sec. 2.1.1)

mp
dV

dt
=
∮

Sp

σndS + mpg (2.60)

one obtains ∫
V

ρf
Dv

Dt
dV =

∫
V

(∇ · σ + ρfg) dV

−mp
dV

dt
+ (mp −mf )g + mf

Dv

Dt
. (2.61)
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The integral on the right hand side is the force in the undisturbed fluid, i.e. without the
presence of the particles. The other terms therefore represent the momentum transfer
between the particle and the fluid integrated over the volume V , the so-called interface
force Fint. In this context a particle acts as a sink for fluid momentum.

By comparing with Sec. 2.1.1 and 2.3.2 one can see that the integrated interface force
is simply the surface force plus the body force acting on the particle minus the fluid stress
force from the undisturbed fluid at the position of the particle, i.e.

Fint = −(Fsurf + Fbody − FS) . (2.62)

Equation (2.61) indicates that the feedback of the particles on the fluid can be understood
in terms of a delta forcing. Replacing Fint in the integral momentum equation by

Fint =
∫

V
fint(x, t)dV , (2.63)

one obtains an expression for the local force generated by one particle

fint(x, t) :=
(
−mp

dV

dt
+ (mp −mf )g + mf

Dv

Dt
(x, t)

)
δ(x−X(t)) , (2.64)

where the term mp
dV
dt represents the components of the surface force discussed in Sec.

2.3.2, such as drag, added-mass, history and lift forces.

Using Eq. (2.64) as an additional force term in the Navier-Stokes equation (2.4) for
u and summing up this contribution over all particles, the feedback of the particles
on the momentum of the continuous phase can be included. In combination with a
concentration-dependent modification of the viscosity and density, as already discussed
for the mixed-fluid approach in Sec. 2.2.3 this leads to a modification of the undisturbed
flow field u, approximating the real flow field v.

It is remarked that the equations of motion for the dispersed phase discussed in Sec.
2.3.2, such as the Maxey-Riley equation contain the undisturbed velocity field u. By
including the feedback of the particles on the flow and using this perturbed velocity field
in the equations of motion for the particles an error is incurred. For a grid-spacing ∆x

for the continuous phase, the error is of the order dp/∆x and therefore requires dp ¿ ∆x.
This error decreases with increasing number of particles, because the relative influence of
each particle on a grid-point for the continuous phase becomes smaller.
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Fluiddynamic Interactions

In addition to the modifications of the fluid density and viscosity and the added momen-
tum term discussed above, the interaction between the dispersed phase and the fluid phase
leads to a coupling between individual particles that is mediated through the surround-
ing fluid. This effect is not captured in the two-way particle-flow coupling approximation
presented above and therefore needs to be addressed separately. In general, this prob-
lem of particles interacting through continuum-level forces poses many theoretical and
computational difficulties. Many of these difficulties are related to the fact that the dis-
turbance in the surrounding fluid created by the presence of a particle decays as 1/r,
where r is the distance from the particle position. This long-range interaction results in
nonconvergent interaction sums in systems with many particles. In this case the equa-
tions of motion between all particles in a suspension become coupled. Several procedures
have been developed to approximate this friction matrix that couples the equations of
motion, or alternatively its inverse, the so-called mobility matrix. For details on this, see
for example the review by Brady and Bossis (1988) or for more recent results the article
by Knudsen et al. (2008).

However, even with advanced methods the number of particles whose hydrodynamic
interactions can be simulated directly is severely limited, usually to a few hundred which
is not enough in most problems of interest. Therefore, it is often useful to model the
particle-particle fluiddynamic interactions in an ensemble approximation by considering
modifications to the surface forces due to a finite volume fraction of the dispersed phase.

Most of the work in this direction has been in trying to identify the effect of a finite-
volume fraction CV of the particles on the quasi-steady drag force for the dispersed
phase. While some theoretical results in the limit of very small volume fractions and
zero particle Reynolds number have been derived, e.g. by Richardson and Zaki (1954),
generally empirical relationships are used. The expressions for the drag force at finite
volume fraction are usually given in form of a correction factor fC , that relates the drag
force at a given volume fraction FD(CV ) to the undisturbed drag force FD of a single
particle, i.e.

fC :=
FD(CV )

FD
. (2.65)

For a given particle Reynolds number, the most commonly used formulation for the drag
correction, which has been found to be consistent for small and medium volume fractions,
even at larger particle Reynolds numbers is (see e.g. Maude and Whitmore, 1958)

fC = (1− CV )1−b0 , (2.66)
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with an empirical coefficient b0 ≈ 4.5. Similar empirical expressions for the drag correc-
tion, including the dependence on the particle Reynolds number can be found for example
in DiFelice (1994).

The influence of the volume fraction on the other surface forces acting on a particle
is even less understood than for the drag force. For the added-mass force (Zhang and
Prosperetti, 1994), the history force (Ten Cate and Sundaresan, 2006) and the lift force
(Prosperetti, 2007) it was found that a reasonable first-order approximation is to take
the force proportional to the effective volume of the surrounding fluid, i.e. proportional
to (1−CV ). The fluid stress force FS , with proper averaging within a computational cell,
is generally found to be independent of the volume fraction of the dispersed phase.

The general first-order approximation for the surface force acting on a particle in a
dilute suspension of spheres, as a function of the volume fraction of the dispersed phase
can therefore be written as

Fsurf(CV ) ≈ FS + fCFD + (1− CV )(FA + FH + FL) . (2.67)

Collision Forces

In addition to fluiddynamic interactions, particles in suspension can also interact directly,
in form of collisions. Generally, to determine whether particle dynamics are influenced
significantly by collisions one can consider the ratio of particle response time τp to the
time scale of collisions τcoll, which is the inverse frequency of collisions. This ratio defines
a Stokes number

Stcoll = τp/τcoll . (2.68)

Particle-Particle collisions can be neglected if Stcoll ¿ 1, whereas in dense flows, where
particle dynamics are dominated by collisions one finds Stcoll À 1. The inclusion of
particle collisions can leads to new effects in the dynamics of the dispersed phase, such
as the appearance of intermittent ”bursts“ pointed out by Medrano et al. (2008).

When particles with centers of gravity at X1 and X2 collide, they change their momenta
in the direction of the contact vector d = X1−X2

||X1−X2|| in such a way that the total momentum
is conserved.
Let P1− and P2− be the momentum of the particles before the collision and P1+ and P2+

the momentum of the particles after the collision. Then momentum conservation means
that

P1− + P2− = P1+ + P2+ , (2.69)
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or
P1+ = P1− + ad and P2+ = P2− − ad , (2.70)

with some constant a.

In the case of an elastic collision in addition to the total momentum of the particles
the total kinetic energy of the particles is also conserved. The constant a in Eq. (2.70)
then needs to be chosen in such a way to account for this conservation of total kinetic
energy.
Conservation of total kinetic energy means that

P 2
1−

m1
+

P2−
2

m2
=

P1+
2

m1
+

P2+
2

m2
, (2.71)

where m1 and m2 are the masses of the two particles. This can be rewritten using Eq.
(2.69):

1
m1

(
P 2

1− − P 2
1+

)
= 1

m2

(
P 2

2+ − P 2
2−
)

⇔ 1
m1

(P1− − P1+) (P1− + P1+) = 1
m2

(P2+ − P2−) (P2+ + P2−)
(2.69)⇔ 1

m1
(P1− + P1+) = 1

m2
(P2+ + P2−)

⇔
(

P1−
m1

− P2−
m2

)
= −

(
P1+

m1
− P2+

m2

)
. (2.72)

Multiplying Eq. (2.72) by d and replacing P1+ and P2+ with the expressions in Eq.
(2.70) leads to

a =
2 (m1P2−d−m2P1−d)

m1 + m2
. (2.73)

With this, the velocity of the particles after the collision can be calculated.

In the case of an inelastic collision the total kinetic energy of the particles is not
conserved during the collision, instead a part of the kinetic energy is dissipated during
the deformation of the particles. The most convenient way to implement this is by using a
coefficient of restitution ε, which is defined as the negative ratio of the velocity difference
in the direction of contact after the collision and before the collision, i.e.

d

(
P1+

m1
− P2+

m2

)
= −εd

(
P1−
m1

− P2−
m2

)
. (2.74)

The value of ε can vary between 0 and 1, where ε = 0 is the totally inelastic case, where
all kinetic energy in the direction of contact is dissipated upon collision and ε = 1 is
the totally elastic case described above, where the total kinetic energy is conserved. In
the same way as for the elastic case the value of a can be derived using Eqs. (2.74) and
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(2.70). This leads to

a =
(ε + 1) (m1P2−d−m2P1−d)

m1 + m2
, (2.75)

for the case of an inelastic collision.

Collision Rates

In addition to quantifying the influence of collisions on the particle dynamics, there is
a great interest in many fields to determine the collision frequencies or collisions rates
between particles in a given system. This is in particular true where active processes of
the particles take place upon collision. These processes often involve either a chemical or
biological reaction (e.g. Nishikawa et al., 2001) when particles come together or particles
can physically stick together upon collision, either by merging (coagulation) or by forming
larger clusters composed of individual smaller particles (aggregation). Coagulation typ-
ically happens for viscous particles, e.g. drops or bubbles whereas aggregation happens
for solid particles.

Often, due to limitations in computational resources one does not want to simulate
the particle dynamics directly to determine for example the time evolution of the size
distribution of the particles. Instead, the evolution of the particle size distribution for
the whole system is written as a system of rate equations for the change in the number
of particles of a given size. This approach was first introduced by Smoluchowski (1917)
and has since then been extensively used in many fields of science, for example colloid
science, biological systems and aerosol dynamics.

While computationally usually much more efficient than simulating each individual
particle, the problem in this approach lies in the construction of appropriate kernels for
the rate equations, such as collision kernels (collision rates) Q(r1, r2). The collision kernel
can be understood as the average rate at which two particle of radius r1 and r2 reach a
distance equal to r1 + r2. The collision kernel Q(r1, r2) between two particles of radius
r1 and r2 is usually defined as

Nc(r1, r2) = Q(r1, r2)N1N2 , (2.76)

where Nc is the number of collisions per time and N1 and N2 are the numbers of particles
in the domain. A generalized collision relationship was developed by Sundaram and
Collins (1997), who showed that the collision kernel can be written as

Q(r1, r2) =
1
2
4π(r1 + r2)2g(r1 + r2)

∫ 0

−∞
−wrP (wr|r1 + r2)dwr . (2.77)
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Here wr is the radial velocity difference between particles, i.e. the difference between the
particle velocities projected on their separation vector X1−X2. P (wr|r) is the conditional
probability density function of the radial velocity difference, conditioned on the distance
r and g(r) is the radial distribution function. The radial distribution function is the
number of particles with a distance between r and r + dr from a center particle divided
by the number of particles expected if the particle distribution were uniform3.

A number of different contributions to the collision kernel have been identified theo-
retically in the past, such as collisions due to Brownian motion or laminar shear rate in
the flow (see e.g. Friedlander, 2000, Ch. 7). For mixed-fluid conditions, i.e. the case of
vanishing particle Stokes number, the classical result for the collision kernel due to turbu-
lent shear is given by Saffman and Turner (1956) in terms of the dissipation of turbulent
kinetic energy ε and the fluids kinematic viscosity νf

QST(r1, r2) =
(

8π

15

)1/2( ε

νf

)1/2

(r1 + r2)3 . (2.78)

Except for the prefactor this result is identical to the collision kernel in laminar shear.

Other major contributions to the collision kernel generally come from finite-size ef-
fects. While collision kernels due to different settling velocities W of particles without
hydrodynamic interaction are easily obtained and can be written as

Q∆W (r1, r2) = π(r1 + r2)2 |W1 −W2| , (2.79)

the effect of particle inertia on the collision rates is still not well understood. A notable
exception is the limit of large particle inertia where particles move ballistically leading to
the result for the collision kernel of Abrahamson (1975)

QAb(r1, r2) = 5
(
V̄ 2

1 + V̄ 2
2

)1/2 (r1 + r2)2 , (2.80)

where V̄1 and V̄2 are the root-mean-square velocities of the two particles.

One of the main questions in recent years has been to bridge the gap between the limit
cases of zero and infinite inertia, the Saffman-Turner and the Abrahamson cases. This
is the regime where particle inertia effects, such as preferential concentration discussed
in Sec. 2.3.3 and the appearance of caustics (see Sec. 2.3.3) lead to strong deviations
of the particle dynamics from the mixed-fluid case. The effect of preferential concentra-
tion appears in the radial distribution function, whereas the appearance of caustics and

3The definition of the radial distribution function as a function of only the separation r between particles
assumes a statistically homogeneous and isotropic volume.
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detachment of particles from the fluid trajectories affects the distribution of the relative
velocity.

In recent years, Lagrangian simulations of particle collisions in turbulent flows have
been found to be a very useful tool to determine collision kernels for particles with inertia.
For example the work of Ayala et al. (2008a,b) provides a detailed description of the
numerical calculation of collision rates of inertial particles in a DNS simulation of a
turbulent flow. Typically, simulations are performed in the case of one-way particle-flow
coupling, using the so-called ’ghost collision’ approach. The idea is to let particles pass
through each other after they approach a distance equal to the sum of their radii. The
collision event has no physical consequence, but is simply counted to estimate the rate
of collisions. In cases where the mean free time between collisions is large, compared to
the convergence time to a steady state the ghost collision approach alone is expected to
give good approximations of the collision rates. It is therefore of particular relevance in
the case of very dilute suspensions (e.g Zhou et al., 1998; Wang et al., 1998).

Extensions of this approach are discussed for example in Reade and Collins (2000) who
pointed out that the influence of elastic particle collisions on the collision rate can be
approximated in terms of an additive correction to the radial distribution function for
the ghost collision approximation.

In the work of Wilkinson et al. (2006) the importance of caustics for the collision rates
of finite size particles was pointed out. They developed a model for the collision rate
between particles of the same size that bridges the gap between the Saffman-Turner and
Abrahamson formulation. They showed that the collision rate varies approximately as a
function of the rate of caustic formation J , where

J = J0 exp(−S/I) (2.81)

with some constant J0. Here, I is proportional to Ku2St and S is the action of a trajectory
and a function of the Kubo number Ku (see Sec. 2.3.3 for the definition of the Kubo
number). For the collision kernel they found that a good assumption over a wide range
of Stokes and Kubo numbers is given by

Q = QST + exp(−S/I)QAb , (2.82)

where QST is the Saffman-Turner collision kernel and QAb the Abrahamson collision
kernel.

A detailed phenomenological model for the collision kernel of polydisperse suspensions,
i.e. for particles with different radii r1 and r2 was given by Bec et al. (2005). They found

58



2.3. Separated-Fluid Multiphase Flows: Inertial Particles

that there are three different regimes of the particle Stokes numbers, where different
functional form of the collision kernel appear.

Assuming that the dimensionless equations of motion for the particles are given by

dV

dt
=

1
St

(u− V ) , (2.83)

i.e. only Stokes drag is considered one can write an equation for the time evolution of
the separation ∆X = X1 −X2 between two particles

d∆X

dt
= V1 − V2

d(V1 − V2)
dt

=
1

〈St〉 (1− θ2/4)
(∆u− (V1 − V2))

− θ

〈St〉 (1− θ2/4)
(〈u〉E − 〈(V1 − V2)〉E) . (2.84)

Here, 〈St〉 = 1
2(St1 + St2) is the mean Stokes number of the particles, θ = St1−St2

〈St〉
is the relative Stokes number difference, ∆u = u(X1) − u(X2) the difference in the
fluid velocities and 〈u〉E and 〈V 〉E are ensemble averaged fluid and particle velocities,
respectively.

For small relative Stokes number differences, i.e. |θ| ¿ 1 the result for the collision
rates depends on the characteristic length scale l∗ := Lf |θ|. For particle separations
smaller than l∗ the differences in particle motion are dominated by the Stokes number
difference, i.e. the second term in Eq. (2.84). For larger separation scales, the differences
are dominated by the differences in fluid motion, i.e. the first term in Eq. (2.84). For
relative Stokes number differences of order one, particles see each other as an ensemble
of uniformly distributed particles with independent velocities.

While much progress has been made in recent years in understanding the collision
kernels for inertial particles, in particular in the regime of intermediate Stokes numbers,
a full understanding is still missing.

One interesting question, in particular with regard to the next parts of this work,
is whether collision rates of inertial particles can be approximated well from studying
particles with an equation of motion that only contains quasi-steady drag forces. This
would mean that the transient forces in the equations of motion, such as added mass
and history forces can be neglected when the details of individual particle trajectories are
not of interest. To this end, in this work the collision rates for particles with different
approximations for the equations of motion were computed numerically in a synthetic,
three-dimensional, homogeneous, isotropic turbulent flow field (see Appendix A) and the
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influence of the quasi-steady drag force, added mass force and history force compared. All
collision rates have been computed using the ghost collision approach, i.e. any interaction
between the particles has been neglected.

Figure 2.2.: Influence of drag, added mass and history term in the equations of motion (2.42)
for heavy droplets, with τp = 2000r2 s/mm2 and β = 5 × 10−4 in a synthetic turbulent
flow (see Appendix A) with ε = 1, Tf = 1, Lf = 1. (a) Collision rates Q(r1, r2) between
particles with different sizes and (b) ratio qH between the collision rate for the full equations
of motion, i.e. with drag, added mass and history forces QD+A+H versus equations of motion
with only drag forces QD.

For particles much heavier than the surrounding fluid, such as small water droplets
moving in air, the computed collision rates for equations of motion with only quasi-
steady drag forces can be seen in Fig. 2.2(a). The result is identical to that of Bec et al.
(2005). Figure 2.2(b) shows the enhancement factor qH for the collision rates if the full
Maxey-Riley equations of motion (2.42) are used. The enhancement factor is defined
as the ratio between the collision rate in the case of the full equations of motion with
quasi-steady drag, added mass and history force QD+A+H and the collision rates in the
case of the equations of motion with only quasi-steady drag forces QD, i.e.

qH := QD+A+H/QD . (2.85)

It can be readily seen that the collision rates are typically larger when the full equations
of motion are considered. The enhancement factor increases with increasing particle size
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and can become as large as 4− 5 in the range of particle sizes studied here.

This can be seen in more detail by looking at cross-sections of the collision rates. To
this end r2 is fixed at 0.02 mm and the collision kernel for varying r1 is shown (Fig.
2.3(a)). Three different equations of motion are compared. First, when only quasi-steady
drag forces are included (blue squares), second with quasi-steady drag and added mass
term (red triangle) and third the full equations of motion with quasi-steady drag, added
mass and history integral (green circle).

Figure 2.3.: Influence of drag, added mass and history term in the equations of motion (2.42)
for heavy droplets, with τp = 2000r2 s/mm2 and β = 5 × 10−4 for particles with different
sizes, r2 fixed at 0.02 mm in a synthetic turbulent flow (see Appendix A) with ε = 1, τf = 1,
lf = 1 (a) Collision rates Q(r1, r2) and (b) ratio qH between the collision rate for the full
equations of motion with drag, added mass and history force QD+A+H versus equations of
motion with only drag forces QD. The linear fit in (b) is done over the right tail of the curve,
for r1 > 0.035 mm. All values are averages, obtained from ten realizations of the carrier flow.
Grey shaded area denotes plus/minus one standard deviation.

While the inclusion of the added mass force does not seem to lead to any observable
changes in the collision rates compared to the case of only quasi-steady drag forces,
when the history force is included the collision rate increases much faster with increasing
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particles size. The enhancement factor qH is shown in Fig. 2.3(b)). There is a great
increase in the collision rates between particles of the same size, and for r1 > r2 the
enhancement factor increases almost linearly with r1.

Looking at the equations of motion (2.42) it is possible to get an idea why the history
term seems to be so much more important that the added mass term in this case and why
its importance increases with increasing particle size. For particles much heavier than
the surrounding fluid the mass ratio parameter β is small, β = 5×10−4 in the case shown
here. While the added mass force is proportional to β, the history force is proportional
to β1/2. Therefore, for small values of β one can expect a larger contribution from the
history force to the total force acting on the particle.

Additionally, the quasi-steady drag force is proportional to 1/τp and therefore propor-
tional to d−2

p , whereas the history force is proportional to
√

1/τp and therefore propor-
tional to d−1

p . Absolutely, both quasi-steady drag force and history force decrease with
increasing particle size, but the ratio between history force and quasi-steady drag force
will increase approximately proportional to dp. This means that the contribution of the
history force to the overall force acting on the particle should increase approximately
linearly with dp.

In many cases the collision rates between particles of the same size is also of special
interest. Figure 2.4(a) shows the computed collision rates in this case for equations of
motion with only quasi-steady drag and for the full equations of motion. For particles of
the same size the increase in the collision rates due to the presence of the history integral
seems to be even larger than for particles of different sizes. For all sizes, except the very
smallest, the enhancement factors qh between 2 − 4 can be found (Fig. 2.4(b)). Again,
the enhancement seems to increase with increasing particle size, but in this case there
appears to be a slow saturation towards larger particle sizes.

Together, our results indicate that in many of the previous works where only the Stokes
drag has been used in the equations of motion the collision rates between heavy inertial
particles are underestimated.

The situation is different when particles of similar density than the surrounding fluid
are considered. This is for example the case for marine aggregates in the ocean. There,
the particle response time τp is usually very small but the mass ratio β is of order one.
In this case one might be tempted to forget about inertia effects altogether and treat the
particles as tracers.

In this case the collision rate would be given by the classical result of Saffman and
Turner, see Eq. (2.78). However, for realistic values of the particle response time τp =
2r2 s/mm2 and the mass ratio β = 0.5 our results (Fig. 2.5) still show a significant
difference between the collision rates for tracers (black triangles) and inertial particles,
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at least for particles ≥ 50µm. Again, the difference between the various equations of
motion increases with increasing particle size. In all cases the collision rate increases
approximately proportional to (r1 + r2)3, but with different prefactors.

Figure 2.4.: Influence of drag, added mass and history term in the equations of motion (2.42)
for heavy droplets, with τp = 2000r2 s/mm2 and β = 5× 10−4 for particles of the same size
in a synthetic turbulent flow (see Appendix A) with ε = 1, Tf = 1, Lf = 1 (a) Collision
rates Q(r1, r2) and (b) ratio qH between the collision rate for the full equations of motion
with drag, added mass and history force QD+A+H versus equations of motion with only drag
forces QD. All values are averages, obtained from ten realizations of the carrier flow. Grey
shaded area denotes plus/minus one standard deviation.

In this case, where β is of order one, the added mass force contributes significantly to
the total force acting on the particle. It can be seen that the collision rates for particles
subjected to both quasi-steady drag and added mass force (red triangles) is reduced
compared to particles with only drag forces (blues squares). This may be due to that fact
that particle motion is slowed down by the presence of the added mass term. However, if
the history force is also included (green circles), the collision rates again become larger.
As was already found for heavy particles, the presence of the history force seems to lead
to increased collisions between particles. In this case, the increase of the collision rates
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due to the history force almost balances the decrease of the collision rates due to the
presence of the added mass force.

Figure 2.5.: Collision rates: comparing the influence of drag, added mass and history term in
the equations of motion (2.42) for small particles with similar density than the surrounding
fluid, with τp = 2r2 s/mm2 and β = 0.5 in a synthetic turbulent flow (see Appendix A) with
ε = 1, Tf = 1, Lf = 1. All values are averages, obtained from ten realizations of the carrier
flow. Grey shaded area denotes plus/minus one standard deviation.

In general, our results show that in addition to modifying individual particle trajectories
changes in the particle equations of motion can lead to significant changes in the ensemble
behavior and in particular the collision rates. It is therefore very likely that neglecting
certain parts of the equations of motion when calculating the collision rates between
particles leads to significant over- or underestimating of the collision rates. In addition to
the presence of the transient forces such as added mass and history force, contributions
to the equations of motion due to two-way particle-flow coupling and particle-particle
coupling can likely also lead to very different collision rates.

2.4. Conclusions

In this chapter we discussed basic approaches to model particle-laden flows. We analyzed
a number of different approximations of the full set of equations for a suspension of par-
ticles in a fluid flow and presented some results from the literature for the dynamics of
such particle suspensions. The aim of this chapter was to provide a solid background on
the most important facts when trying to model particle dynamics in a flow. In the rest of
this work we will apply this knowledge to the problem of aggregation and fragmentation
of particles. We will be using an inertial particle based approach, i.e. a separated-fluid
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approximation where the particle motion can deviate significantly from that of the sur-
rounding fluid. In many applications, e.g. for the collision-coalescence process of droplets
in warm clouds particles are sufficiently large so that inertial effects become important.
The results in the last section showed that due to effects such as preferential concentra-
tion and caustics, collision rates for inertial particles deviate strongly from those of tracer
particles. It is a key feature of our new approach discussed in this thesis that these effects
are included directly within the model, with no need for further approximations.

To obtain reasonable statistics for the size distributions of aggregates we will need
to study systems containing at least 104 − 106 particles. Therefore, using very detailed
models to calculate the surface forces on the particles, such as semi-resolved or resolved
surface force models is computationally not possible. Instead, we will be working with
the point-force approximation discussed in detail in this chapter. We restrict ourselves
to the simplest possible description of the problem and only include the most important
component of the surface force, namely the quasi-steady drag force in our description.
The reason for this simplification is that the main goal of this thesis is to present a new
approach for the modeling of aggregation-fragmentation systems and not a detailed anal-
ysis of a specific case. We discuss general results for aggregation-fragmentation systems
that can be found within the framework of such a model and show for certain examples
how the approach can be applied. We do not try to model any specific systems with
all possible details or attempt a full comparison with experimental data. Therefore, the
simplest possible description that captures the essential features of such aggregation-
fragmentation systems is suitable for the goal we have in mind here. For the same reason
we will only analyze aggregation and fragmentation in the case of one-way particle-flow
coupling, where the dynamics of the particles can be calculated independently from that
of the surrounding fluid.

Nonetheless, the inertial-particle based model we present in the following chapters
readily allows the inclusion of further terms in the equations of motion, such as added mass
or history terms as well as two-way particle flow coupling and fluiddynamic interactions
if they are deemed necessary for the modeling of a specific problem.
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Spherical Droplets

This chapter contains, with some minor changes, our work on individual-particle based
modeling of coagulation and breakup of liquid droplets in a synthetic turbulent flow which
has been published as Zahnow and Feudel, Nonlinear Processes in Geophysics, 16, 677–
690, 2009.

3.1. Introduction

In this chapter we present results from an inertial particle based model for coagulation
and fragmentation of heavy drops suspended in a synthetic turbulent flow. The main new
idea of this approach is to follow the motion of each individual coagulate in a Lagrangian
framework. We have initially proposed and discussed such a model for particles in chaotic
advection in Zahnow et al. (2008) and Zahnow et al. (2009) to help bridge the gap between
full hydrodynamic simulations and rate-equation based approaches for coagulation and
fragmentation.

The simulation of multiphase flows using full hydrodynamical models for each particle,
e.g. with a finite element approximation in an arbitrary Lagrange Eulerian framework
(see e.g. Maury, 1999) can be very detailed but is usually restricted to an extremely
small number of particles (Higashitani et al., 2001; Zeidan et al., 2007). On the other
hand, a rate-equation based approach, in the framework of which one treats the problem
of particle motion as a field equation and then uses the Smoluchowski equation (Smolu-
chowski, 1917) to model coagulation and fragmentation exhibits a number of different
problems. For example, the particle velocity may take on several values even at the same
location of inertial particles when the dynamical attractor of the particles folds in the full
velocity-position phase space (Bec et al., 2005). Due to the presence of such ’caustics’
(Falkovich et al., 2002; Bec, 2003; Wilkinson and Mehlig, 2005), a velocity field cannot
be well founded and the rate-equation based description relies on many assumptions and
parameterizations.

Here, we follow the model approach presented in Zahnow et al. (2008, 2009) which
represents a new ’intermediate-level’ take on the problem. Instead of modeling each
individual primary particle and the complete structure of a coagulate explicitly, primary
particles are ’combined’ upon collision, neglecting or parameterizing in some way the full
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structure of the coagulate. These coagulates are instead represented as simple, spherical
particles moving in the flow. However, by still treating the coagulates as individuals,
instead of a concentration or particle field a description that is much more detailed
than the usual rate-equation based approaches can be obtained. In particular, relating
coagulation and breakup directly to the properties of the individual coagulates involves
one less approximation step than deriving the corresponding rate equations. Additionally,
particle inertia can easily be included in such an individual-based approach, using for
example the equations of motion discussed previously in Sec. 2.3 of this thesis.

Here, we focus on the impact of particle properties and flow properties on the steady
state size distribution of the drops that develops from the balance between coagulation
and fragmentation in a synthetic turbulent flow. We study two different fragmentation
mechanisms. First, particles break up if their size exceeds a certain maximum allowed
size. This is motivated by the hydrodynamical instability of liquid drops, for example rain
drops settling due to gravity (Villermaux, 2007). Second, particles fragment if the shear
forces due to the fluid flow are too strong (see e.g. Thomas et al., 1999). In contrast to our
previous approach we use here a lognormal distribution for the number of fragments, and
compare this with other common approaches, such as binary or ternary fragmentation.

Section 3.3 presents our results obtained from this model. We see that the distribution
of particles as well as the mean average size in the steady state depends on the type of
fragmentation mechanism taking place. First, when fragmentation occurs solely due to
the particles exceeding a maximum stable size, the distribution is fairly uniform over all
the appearing coagulate sizes. Second, for fragmentation occurring under sufficiently large
shear, the distributions typically decay exponentially beyond a certain coagulate size. In
the case of shear fragmentation the mean average size of the coagulates depends strongly
on the particle properties and the flow properties, such as the coagulate strength or the
volume fraction of the particles. We show numerically that as a good approximation the
influence of each parameter on the steady state can be treated separately and determine
a decomposition of the average coagulate size in the steady state with respect to the
particle and flow properties. We find that the average coagulate size changes as a power
law function of the particle and flow parameters, where the exponents of the power law
are determined by the exponent in the stability condition for the shear fragmentation.

The fluctuations over time in the coagulate size distribution increase for larger mean
average coagulate sizes. This is found to be a nonlinear effect resulting from the shear
fragmentation process. A similar decomposition and power law relationship with respect
to the particle and flow properties as for the average coagulate size can be found here.

For fragmentation due to particles exceeding a maximum allowed size the dependence
on the particle properties is much weaker, instead the steady state depends mainly on
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the maximum stable coagulate size. However, the time to reach the steady state can
vary greatly for different particle and flow properties. For example, flows with weak
dissipation of turbulent energy allow for very large coagulates because there is almost no
shear fragmentation, but since collisions also occur mainly due to shear the growth of
coagulates is extremely slow.

In Sec. 3.4.3 we show how in principle a scaling relationship for the average size of
coagulates in the steady state can be derived, if size distributions, collision rates and
fragmentation rates are known. Using approximate expressions for these quantities we
again find a power-law relationship for the average coagulate size as a function of the
particle and flow properties. Our calculations illustrate the dependency of the exponents
of the power-law on the stability condition for the shear fragmentation.

Section 3.5 gives a brief summary and states some conclusions.

3.2. Numerical Model

In this section we present the mathematical model that will be the framework of our
study. It contains a detailed description of the dynamics of particles with inertia in a
dilute suspension and a model for coagulation and breakup of spherical droplets.

3.2.1. Equations of Motion

We study suspensions of spherical inertial particles of radius rp, transported in an incom-
pressible flow with dynamic viscosity µf . We assume that the suspension is very dilute,
i.e. particle-particle hydrodynamic interactions and two-way particle-flow coupling can
be neglected. Additionally, we focus on a carrier flow with moderate Reynolds number
and study only spatial scales below the Kolmogorov scale η where the flow is sufficiently
smooth. We therefore rescale space, time and velocity by the Kolmogorov length η, time
η2/νf and velocity νf/η, where νf is the kinematic viscosity of the fluid.

Assuming that the Reynolds number based on the particle size as well as the difference
between the particle velocity V (t) and the flow velocity u(X, t) is small and the particle
density ρp is much higher than the density ρf of the surrounding fluid, the motion can
be approximately described by the Stokes equation. This is a simplified form of the
translational equation of motion (2.42) of a spherical particle that includes only quasi-
steady (Stokes) drag. In dimensionless form it reads as

V̇ =
1

Stη
(u(X, t)− V ) , (3.1)
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where X(t) is the d dimensional position of the particle and Stη = (2r2
pρpνf )/(9η2µp) is

the dimensionless Stokes number. The effect of gravity has been neglected.

3.2.2. Coagulation

Next, we describe the model for coagulation that is used in this study.

The smallest particles considered will be called primary particles. These can combine
upon collision to form larger particles, called coagulates. All coagulates are assumed
to consist of an integer number α of these primary particles, i.e. the primary particles
can never be broken up. A coagulate consisting of α primary particles has a radius
rα = α1/3r1, where r1 is the radius of the primary particles. The coagulates Stokes
number depends on the radius, and therefore on α, with Stη,α = α2/3Stη,1. Here Stη,1 is
the Stokes number for the primary particles. After the coagulation of two particles the
velocity of the new particle follows from momentum conservation and the position is the
center of gravity of the two old particles. To ensure that no collisions are missed, we use
an efficient event-driven algorithm for particle laden flows (cf. Sigurgeirsson et al. (2001)
for details). Since hydrodynamic interactions between coagulates, that may affect the
collision rates, are not included in such a model we approximate this by implementing a
collision efficiency χc, which is the probability to coagulate upon collision. If particles do
not coagulate upon collision they collide elastically.

3.2.3. Breakup

For the breakup of droplets two different cases will be discussed. It is known that liquid
droplets can break up either due to a hydrodynamical instability when moving with a
certain critical velocity relative to the surrounding fluid, for example when settling under
gravity or the droplets can be broken up due to shear in the surrounding fluid. For both
cases the relevant results from the literature are discussed briefly in the following and
then for each case a simplified model suitable for the purpose of this work is developed.

Breakup due to Gravitational Settling

The breakup of liquid droplets settling under gravity has received considerable attention
in the past, in particular in the context of atmospheric science where the distribution
of raindrops falling out of a cloud is of interest, see e.g. Pruppacher and Klett (1997).
In particular the measurements by Marshall and Palmer (1948) indicated that there
seems to be a fairly general mechanism at work and that the distribution of drops is
solely related to the rate of rainfall. Recently, the work of Villermaux (2007) showed
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in very detailed experiments the breakup of liquid drops when falling under gravity. In
particular, Villermaux and Bossa (2009) demonstrated that the Marshall-Palmer result
follows directly from the fragment size distribution of an individual breaking drop. The
mechanism they found is related to a topological change in the droplet size. It requires
that the pressure acting on a droplet falling with a velocity ∆V relative to the surrounding
fluid overcomes the capillary pressure that is trying to preserve the droplet shape. The
surrounding pressure is given by ρf (∆V )2, while the capillary pressure is given by σp/dp,
where σp is the surface tension of the droplet and dp the initial, spherical diameter of the
droplet. The ratio of these pressures gives the Weber number

We =
ρf (∆V )2dp

σp
(3.2)

which should therefore exceed some critical value for the droplet to break up. In partic-
ular, a droplet falling under gravity in a low viscosity liquid such as air will initially be
flattened into a disc. The disc will deform into a bag-shape, with a thicker rim which is
followed by a break-up of the bag. Finally, if the Weber number for the particle is large
enough, a hydrodynamical instability in the rim will lead to the complete breakup of the
drop. In some cases the formation of a bag-shape does not appear, instead the flattened
disc will immediately deform into a ligament, which then breaks due to a hydrodynamical
instability if the critical Weber number is exceeded.

For a droplet falling under the influence of gravity the terminal settling velocity in
turbulent conditions is given by Vs ≈

√
ρp

ρf
gdp. Assuming that the droplet needs to

exceed a critical Weber number Wec this leads to a critical droplet diameter

dp,c =

√
Wec

σ p
gρp (3.3)

which needs to be exceeded before a droplet will break up. For raindrops falling in air
Villermaux and Bossa (2009) found that the critical Weber number is approximately 6
in all situations. From these results it is concluded that breakup of particles due to
gravitational settling can be modeled in a very simplified way by imposing a fixed critical
size for the droplets, beyond which they will break. While this might not capture small
fluctuations in the critical size due to changes in the relative velocity of the drops the
essence of the problem can be captured in this way. In the context of this work, the
following model for breakup due to gravitational settling (size-limiting fragmentation) is
therefore used:

Size-limiting breakup: If a particle becomes larger than some maximum number of
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primary particles αmax, it is broken up into k smaller fragments. For the ith fragment,
where 1 ≤ i < k we set the new number of primary particles αi to a random number
drawn from a normal distribution centered around (αold −

∑i−1
j=1 αj)/(k − i + 1) and

with a standard deviation one, rounded to the nearest integer greater or equal to one.
The last fragment contains the remaining primary particles. This means that typically
fragments will be of very similar sizes. The number of fragments is set to k = 2 + ξ,
where ξ is a random number from a lognormal distribution with standard deviation
one, rounded towards the nearest integer. Such a distribution of fragments is a very
common assumption for the fragmentation of drops, but later we will also comment on
the implications of different choices for the number of fragments.

Breakup due to Fluid Shear

Breakup of liquid droplets due to shear forces in a fluid is an important mechanism in
many natural problems and engineering applications such as production of emulsions or
polymer blends. The mechanisms leading to breakup and the resulting fragment size
distributions have been studied intensively for many years. Typically, expressions for the
critical shear required to break up a droplet are measured experimentally (see e.g. the
review by Tucker III and Moldenaers (2002)) or calculated theoretically (Taylor, 1934;
Delichatsios, 1975) in Stokes flow conditions. A recent study combining both experimental
results and adaptive-mesh simulations has been performed by Cristini et al. (2003). They
found that breakup of a droplet of initial radius rp due to fluid shear can be characterized
in terms of a critical capillary number Ca. The capillary number is the ratio of the
characteristic time scale τσ of the relaxation of the droplet surface due to the surface
tension σp and the time scale τS of the fluid shear Sf . Taking

τσ = µf
rp

σp
(3.4)

τS = 1/Sf , (3.5)

where µf is the viscosity of the fluid, the capillary number is

Ca =
µfrpSf

σp
. (3.6)

Cristini et al. (2003) found that a droplet breaks if the capillary number is smaller than
some critical capillary number Cac. This critical capillary number is a function of the
viscosity ratio µ̃ between droplet and surrounding fluid. They showed that the critical
capillary number diverges for µ̃ → 0 and µ̃ → µ̃∗ ≈ 3. This means that breakup due
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to fluid shear only occurs if droplet and surrounding fluid have similar viscosities. For
the distribution of the fragments after breakup both their experimental and numerical
results showed that the droplet is initially stretched and then the middle section is pinched
off creating two major ’daughter’ droplets of similar size at each end. The remaining
percentage of the original droplet is distributed among a series of approximately 3 different
classes of smaller satellite droplets in the middle.

Following these results, a simplified model for breakup due to fluid shear has been
developed for this work.

Shear breakup takes place when the hydrodynamic force acting on the particle ex-
ceeds the forces holding the coagulate together by a certain factor. The hydrody-
namic force in this case is proportional to the shear force Sf := (2SijSij)

(1/2), where
Sij = 1

2

(
∂ui
∂Xj

+ ∂uj

∂Xi

)
is the rate-of-strain tensor in the flow. Solving Eq. (3.6) for the

shear force leads to an equation for the critical shear as a function of the droplet radius
rα

Sf,c(rα) =
γr1

rα
= γα−1/3 , (3.7)

where γ := Cac
σp

µf ·r1
is a constant, the coagulate strength parameter that depends on the

physical properties of the particle and the surrounding fluid. If the shear force, calculated
across the radius of the drop exceeds the threshold value given by Eq. (3.7), the particle
is broken up in the same way as for size-limiting fragmentation. .

The centers of the fragments are placed at a distance equal to the sum of their radii,
perpendicular to the direction of the velocity and keeping the original center of gravity.
The magnitude of the velocity remains the same to ensure momentum conservation.

3.3. Simulation Results

In this chapter the results from the simulation of the model for coagulation and breakup
of spherical droplets described in the previous section are discussed. First, the specific
flow and the model parameterization used to obtain the results is described and then the
approach to a steady state as well as the characterization of the coagulate size distribution
in the steady state are discussed. Finally, the influences of the droplet and flow properties
on the steady state are illustrated.

3.3.1. Fluid Flow

To be able to perform long-term simulations at reasonable computational costs we con-
sider synthetic turbulence in the form of a incompressible, space-periodic, isotropic and
homogeneous Gaussian random flow (Bec, 2005). Such flows are constructed to reproduce
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certain features of turbulent flows, but can not capture all aspects of real turbulence, such
as non-Gaussian tails of the velocity fluctuations and the energy cascade between scales.
For further details on the construction of synthetic turbulent flows see Appendix A of
this work.

The flow is written as a Fourier series

Figure 3.1.: Snapshot of the position of
50000 particles with Stη = 1 transported
in a synthetic turbulent flow with dissipa-
tion ε = 1, correlation length Lf = 1 and
correlation time Tf = 1. Due to dissipation
the particles collect on a random attractor.

u(X, t) =
∑

k∈Zd\{0}

û(k, t)ei 2π
L

k·x , (3.8)

where û(k, t) ∈ Cd are the Fourier com-
ponents, with the property û(−k, t) =
û∗(k, t) because u(X, t) is real-valued.
The star denotes complex conjugation. By
taking for û(k, t) the projection of a differ-
ent vector v̂(k, t) ∈ Cd onto the plane per-
pendicular to the wave vector k, incom-
pressibility is ensured. The vector v̂(k, t)
is assumed to be an Ornstein-Uhlenbeck
process. It is a solution of the complex-
valued stochastic differential equation

dv̂ = −ξ(k)v̂dt + σ(k)dW , (3.9)

with ξ(k), σ(k) ∈ R, where dW is a d dimensional complex Wiener increment. The
parameters ξ(k), σ(k) need to be chosen in such a way that the flow u(x, t) reproduces
some features of a real turbulent flow, in this case the energy spectrum in the dissipative
range of a turbulent flow. Here we use the exponential spectrum suggested by Kraichnan

E(k) = C · (2πkLf/L̂)3 exp(−β[2πkLf/L̂]) , (3.10)

with β = 5.2 (see e.g. Martinez et al., 1997) and a suitably chosen normalization constant
C. The constant Lf is the length scale of coherent structures in the flow and L̂ is the
spatial period of the flow. We choose ξ(k) = 1/Tf and σ(k) =

√
cE(k). The constant Tf

is then the correlation time of the flow. The normalization constant is chosen in such a
way that 2νk2E(k) sums to a desired value of the dissipation of turbulent kinetic energy
ε. The flow is then characterized by the correlation time Tf , the correlation length Lf

and the dissipation ε.

73



3. Modeling Coagulation and Breakup of Spherical Droplets

If a fluid velocity field with few Fourier modes is chosen, no interpolation of the velocity
at particle position is required, since it can be calculated from direct summation of the
Fourier series. This allows for a resolution of the fine structures of the particle distribution
in space.

To reduce the computational effort only the case where the fluid flow depends only on
two coordinates is treated here, i.e. a three dimensional flow where the velocity in the
third direction is negligible compared to the other two directions is studied. Such a flow
can then be represented as two dimensional. Comparisons were made with the full three
dimensional case and no significant difference was found, except for a slowing down of the
whole process due to a decreased number of collisions. A total of 8 spatial Fourier modes
in two dimensions is taken into account, this is the lowest number for which isotropy is
guaranteed. The period of the flow is L̂ = 2π. The correlation length of the flow is set to
Lf = 1, the correlation time to Tf = 1 and the dissipation of turbulent kinetic energy to
ε = 1. This choice of parameters results in large coherent structures in the flow (compare
Fig. 3.1) and a fast convergence to a steady state, due to sufficient collisions.

3.3.2. Model parameters and mean sizes

The primary particles have a radius r1/Lf = 5× 10−4 and the Stokes parameter Sη,1 =
0.05. For a ’typical’ flow situation of liquid water droplet in a moderatley turbulent cloud
this corresponds to primary particles in the range of 10−5m radius. We choose N1 = 105

primary particles as initial condition. This implies a 2-d volume fraction of particles of
approximately 0.08.

The primary particles are uniformly distributed in the flow, with velocity V (0) =
u(X(0), 0). Due to the limited number of primary particles, only a certain range of
system parameters is available. In particular the ’standard’ values for the maximum stable
coagulate size and the coagulate strength parameters are chosen such that in the steady
state most primary particles have formed larger coagulates, but the number of coagulates
is still large enough to allow reasonable statistics. For size-limiting fragmentation the
standard value is set at αmax = 80 and for shear fragmentation the standard coagulate
strength is γ = 3.5. The standard value for the collision efficiency is χc = 1. Unless
mentioned otherwise, these are the parameters used to obtain the following results.

To characterize the steady state for the average number of primary particles per coag-
ulate in the case of size-limiting fragmentation one could simply use the value for t →∞.
This is not very precise, because the steady state is not static as the mean of the coag-
ulate size distribution fluctuate randomly over time. However, because the velocity field
is stationary, the mean number of primary particles in a coagulate 〈α(t)〉 will converge
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Figure 3.2.: Average coagulate size as a function of time for (a) size-limiting breakup with
αmax = 80 and (b) shear breakup with γ = 3.5. The black line indicates the value of the
asymptotic average coagulate size α∞.

towards a constant value α∞ = lim
t→∞

1
∆T

t+∆T∫
t

ds 〈α(s)〉 when averaged over a time interval

∆T to remove random fluctuations. This quantity is used to characterize average coagu-
late sizes in steady state. Additionally, the standard deviation σ∞ of the size distribution
is computed as a measure of the width of the distribution. To remove random fluctua-
tions σ∞ is also calculated as an average over a time interval ∆T , in the same way as α∞.
Here, ∆T = 100 is chosen for the averaging time, which was found to be a sufficiently
long time interval to remove the fluctuations in the steady state.

3.3.3. Approach to a Steady State

Looking at the time evolution of the average coagulate size 〈α(t)〉 it is found that the
system generally converges to an asymptotic steady state. Figure 3.2 shows the average
coagulate size as a function of time for the case of size-limiting breakup (Fig. 3.2(a)) and
for shear breakup (Fig. 3.2(b)

Initially, coagulation leads to a fast increase in the average coagulate size, independent
of the breakup mechanism. As coagulates become larger, breaking sets in and a balance
between coagulation and breakup is reached. The asymptotic average coagulate size α∞
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depends on the breakup mechanism and the particle and flow properties such as coagulate
strength γ. This development of a steady state is a typical behavior in coagulation-
fragmentation systems. It has been observed both in experimental studies (Oles, 1992)
and theoretical studies (Spicer and Pratsinis, 1996b).

Generally, fluctuations in the average coagulate size are larger in the steady state
than during the transient. Additionally, the strength of the fluctuations in the steady
state depends on the breakup mechanism. For size-limiting breakup, where the critical
size of aggregates is fixed, fluctuations are small. For shear breakup, where the critical
size depends on the flow the fluctuations in the average coagulate size are much larger,
following fluctuations in the surrounding fluid.

3.3.4. Droplet Size Distributions in the Steady State

First, the size distribution in the case of size-limiting breakup for the same parameter
values as in the previous part are discussed. In this case the size distribution is fairly

Figure 3.3.: Size distributions of the number of primary particles in coagulates, normalized
by the total number of coagulates: (a) size-limiting fragmentation for two different values
of the maximum stable coagulate size αmax and (b) shear fragmentation, for two different
values of the coagulate strength.

broad, covering almost the complete range between the smallest size and the maximum
allowed size distribution (dashed line in Fig. 3.3(a)). Comparison with other simulations
for different fragmentation mechanisms shows that the shape of the size distribution
depends greatly both on the number and on the size distribution of the fragments that
are created during fragmentation. Here, the results are compared with the case of binary,
ternary and quarternary fragmentation, i.e. the creation of two, three or four fragments
instead of the lognormal distribution of the number of fragments described in the previous
section (see Fig. 3.4). In particular, the width of the distribution is greatly influenced
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by this change in the number of fragments. Binary fragmentation leads to a single,
sharp peak. Ternary fragmentation leads to two broader peaks in the distribution and
for quarternary fragmentation three peaks can be seen. These peaks merge into a broad
plateau if the number of fragments is not deterministic but instead can vary as is the case
for the lognormal fragmentation mechanism.

In the case of shear fragmentation the

Figure 3.4.: Size distributions of the number
of primary particles in coagulates, normal-
ized by the total number of coagulates for
size-limiting fragmentation for a critical size
of αmax = 60 for different distributions of
the number of fragments, two (binary, solid
line), three (ternary, dash-dotted line) and
four (quarternary, dashed line).

situation is slightly different. The distri-
bution is fairly broad, but with a long ex-
ponential tail towards larger size classes
(Fig. 3.3(b)). The figure clearly shows the
increase in the width of the distribution
with increasing coagulate strength, that
was also indicated by the standard devi-
ation (compare Fig. 3.5). However, here
it becomes obvious that the statistics de-
grades rapidly with increasing γ, as the
number of coagulates available in the sys-
tem is decreasing and hence the exponen-
tial tail becomes less visible. Especially
in the tails of the distributions fluctua-
tions become very large, as only a few co-
agulates of these sizes exist at all. For
shear fragmentation different numbers of
fragments, for example binary, ternary or
quarternary fragmentation do not influence the shape of the size distribution, only the
mean of the size distribution is shifted towards lower values for an increasing number of
fragments.

The exponential tail of the size distribution is a feature that has also been observed
for coagulation and fragmentation of marine aggregates in tidal flats (e.g. Lunau et al.,
2006). A numerical comparison of different fragmentation mechanisms showed that this
exponential tail is a typical feature, when the coagulates are assumed to break into
fragments of very similar sizes. However, different distributions of the fragments, for
example an erosion-like process where some very small and some larger fragments are
created lead to different size distributions of the coagulates.

It is noted that the shape of the size distributions remains constant when the particle
and flow properties, e.g. the coagulate binding strength γ or the collision efficiency χc

are varied. The size distributions will collapse onto each other for different parameter
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values when rescaled with the mean coagulate size. This self-similarity property of the
size distribution is a typical feature of coagulation and fragmentation processes and is
discussed for example in Spicer and Pratsinis (1996a).

It is also noted that in the parameter ranges studied here, the tails of the size distri-
butions consist of coagulates with Stokes numbers of order 1 (α ∼ 100), which is of the
order of the correlation time of the flow. This strongly affects the clustering properties
of these particles (see e.g. Cencini et al., 2006; Bec et al., 2007)]. However, since in our
case there are typically only a very few particles in this range of Stokes numbers, this is
not expected to significantly influence the properties of the steady state size distributions
which we focus on.

3.3.5. Influence of Droplet and Flow Properties

In the following it is examined how the limiting values α∞ and σ∞ depend on the proper-
ties of the particles and the properties of the flow for the different fragmentation mecha-
nisms. The large parameter space makes it difficult to interprete results from the model.
We therefore consider the sensitivity of the results to each of the parameters separately.
We restrict ourselves to the four most relevant parameters, namely the maximum sta-
ble coagulate size αmax (for size-limiting breakup), the coagulate strength γ (for shear
breakup), the collision efficiency χc, the volume fraction of the particles, characterized by
the total number N1 of primary particles and the dissipation of turbulent kinetic energy
ε in the flow.

Coagulate strength

First, the dependence of the average number of primary particles per coagulate α∞ on the
maximum stable coagulate size αmax and the coagulate strength γ is examined. These
two parameters determine the binding strength of aggregates for the different breakup
cases.

Figure 3.5(a) shows the results for the case of size-limiting fragmentation. α∞ and σ∞

both increase with the maximum stable coagulate size αmax. Here, we find that α∞ ∝
αmax and σ∞ ∝ αmax. The proportionality constant is determined by the distribution
of fragments during breaking, a fit gives a proportionality constant of approximately 0.5
for α∞ and 0.25 for σ∞. The proportionality constant depends on the details of the
fragmentation mechanism. For example, the case of binary fragmentation, i.e. splitting
into two fragments shows the same scaling but proportionality constants of approximately
0.66 and 0.2, respectively.
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Figure 3.5.: Variation of the binding strength of coagulates. (a) For the case of size-limiting
fragmentation the average number of primary particles per coagulate (triangles) and width
of the size distribution in the steady state (squares) as a function of the maximum stable
coagulate size αmax. The fits are 0.5αmax for the average (solid line) and 0.25αmax for
the standard deviation (dashed line). (b) For the case of shear fragmentation the average
number of primary particles per coagulate (triangles) and width of the size distribution in
the steady state (squares) as a function of the coagulate strength γ. The fits are 2.2γ2.6 for
the average (solid line) and 2.0γ2.6 for the standard deviation (dashed line). The grey shaded
area represents error bars obtained from an ensemble of 10 different simulation runs.

Figure 3.5(b) shows the results for the case of shear fragmentation. A first qualitative
estimate of the shape of this αcrit(γ) curve can be derived from a scaling argument, which
was already mentioned in Zahnow et al. (2008). Solving Eq. 3.7 for a given value of the
shear in the fluid we obtain a critical coagulate size for this shear. This critical coagulate
size is proportional to γ3. We therefore expect that α∞ scales the same way. This is
indeed close to the result of the numerical simulations, where we determine a relationship
α∞(γ) ∝ γ2.6±0.1 (dashed line in Fig. 3.5(b)). A more detailed theoretical argument for
this scaling will be given in Sec. 3.4.

However, since the shear in the flow fluctuates over space and time there is no single
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critical size for coagulates. We therefore expect that the width of the size distribution
will depend, among other factors, on the fluctuations of the shear in the flow. From Eq.
3.7 it follows that larger coagulates are more sensitive to fluctuations in the shear. This
can be seen by considering how a change of the shear from S̃ to S̃ +∆S changes the value
of αcrit. We obtain

∆αcrit = γ3
(
(S̃ + ∆S)−3 − (S̃)−3

)
, (3.11)

i.e. the fluctuations in the value of αcrit are expected to increase proportionally to γ3. We
therefore expect that the width of the size distribution will also increase proportional to
γ3. This is again similar to the result of the simulations, where we find σ∞(γ) ∝ γ2.6±0.1

(dotted line in Fig. 3.5(b)).

Collision efficiency

Second, we examine the influence of the collision efficiency χc on the average number of
primary particles per coagulate.

Figure 3.6.: Average number of primary particles per coagulate (triangles) and width of the
size distribution (squares) in the steady state as a function of the collision efficiency χc, i.e.
the probability to coagulate upon collision in the case of (a) size-limiting fragmentation and
(b) shear fragmentation. The fits are 54.62χ0.31

c for the average (solid line) and 44.7χ0.31
c for

the standard deviation (dashed line). The grey shaded area represents error bars obtained
from an ensemble of 10 different simulation runs..
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For size-limiting fragmentation the simulations indicate (Fig. 3.6(b)) that in this case
there is almost no dependence of the average number of primary particles per coagulate
in steady state on the collision efficiency. Both α∞ and the width of the size distribution
σ∞ remain almost constant with varying χc. However, it should be noted that while the
collision efficiency does not seem to have a large impact on the steady state, the transient
behavior is greatly influenced by the collision efficiency. In particular, the time to reach
the steady state increases greatly with decreasing χc, for both size-limiting and shear
fragmentation.

For shear fragmentation an increase in collision efficiency increases both the average
number of primary particles per coagulate α∞ and the width of the size distribution
σ∞ (Fig. 3.6(b)). The numerical results suggest a dependency of the form α∞, σ∞ ∝
χ0.31±0.03

c .

This increase of the average and width of the size distribution with increasing collision
efficiency can be understood in terms of the balance between coagulation and fragmen-
tation. In the steady state the size distribution, and therefore all its moments, including
the average and the width of the size distribution are determined by the balance between
coagulation and fragmentation. Increased coagulation due to increased collision efficiency
requires a corresponding increase in the fragmentation, which in turn requires larger co-
agulates. Unfortunately, deriving an equation for these moments of the size distribution
from this balance condition requires the apriori knowledge of the shape of the size dis-
tribution and equations for the collision and fragmentation rates. It is therefore not a
trivial task. In Sec. 3.4 we show how such a calculation can be carried out if size dis-
tributions, as well as collision rates and fragmentation rates are known. This calculation
will formalize the above argument and show more clearly how the scaling of the steady
state with the particle and flow properties can be understood.

The reason why such a scaling does not happen in the case of size-limiting fragmentation
is that this specific fragmentation rule serves as a ’brick wall’ for the size distribution.
For all coagulates below the critical size the fragmentation probability is zero, for all
coagulates above it it is one. Therefore, a balance between coagulation and fragmentation
is only possible for one specific size, independent of how coagulation is increased or
decreased.

Volume fraction

The third important parameter of the system is the volume fraction of particles in the
flow. This is defined as the ratio of particle volume to fluid volume. The volume fraction
is a function of both the total number of primary particles in the flow N1 and of the
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radius r1 of the primary particles. Since the impact of varying r1 is very similar to that
for varying N1 we only focus on the variation of the total number of primary particles
(Fig. 3.7).

For size-limiting fragmentation we again find almost no dependence of the steady state
on the initial number of primary particles (see Fig. 3.7(a)), only the time to reach the
steady state decreases with increasing number of primary particles. For shear fragmen-
tation our results show that the average number of primary particle per coagulate in the
steady state as well as the width of the coagulate size distribution increase with N1 (see
Fig. 3.7(b)). The numerical results suggest a relationship of the form α∞, σ∞ ∝ N0.3±0.03

1 .
This dependence on the number N1 of primary particles in the system can be understood
in the same way as for the collision efficiency χc, since both parameters increase the
coagulation probability in the system. We will also illustrate this in the calculations in
Sec. 3.4.

Figure 3.7.: Average number of primary particles per coagulate (triangles) and width of the
size distribution (squares) in the steady state as a function of the total number of primary
particles N1 in the flow in the case of (a) size-limiting fragmentation and (b) shear fragmen-
tation. The fits are 1.3N0.3

1 for the average (solid line) and 1.1N0.3
1 for the standard deviation

(dashed line). The grey shaded area represents error bars obtained from an ensemble of 10
different simulation runs.
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Dissipation of turbulent kinetic energy

Finally, we examine the impact of the flow on the simulation results. The mixing prop-
erties of the flow can be easily varied by adjusting the dissipation of turbulent kinetic
energy ε in the flow. A higher ε results in higher shear in the flow and therefore influences
both the coagulation and the shear fragmentation. Coagulation increases with increasing
ε, since the collision rate due to shear increases but shear fragmentation also increases
with ε.

Figure 3.8.: Average number of primary particles per coagulate (triangles) and width of the
size distribution (squares) in the steady state as a function of the dissipation of turbulent
kinetic energy ε in the flow in the case of (a) size-limiting fragmentation and (b) shear
fragmentation. The fits are 52.92ε−1.2 for the average (solid line) and 29.04ε−1.2 for the
standard deviation (dashed line). The grey shaded area represents error bars obtained from
an ensemble of 10 different simulation runs.

For size-limiting fragmentation, again we find almost no dependence of α∞ and σ∞ on
the parameter (Fig. 3.8(a)). The steady state seems to be independent of the changes in
the flow. For both fragmentation rules the transient behavior is strongly influenced by
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the value of ε. For small ε collision rates in the flow are very low and the system takes
a very long time to reach the steady state. For example, for shear fragmentation with
ε = 0.1, the system is still in a transient behavior for t = 500, while for ε = 1 the system
reaches its steady state at approximately t = 25. In the case of shear fragmentation, the
average number of primary particles per coagulate in the steady state is proportional to
ε−1.2±0.1, and the width of the size distribution also decreases approximately proportional
to ε−1.2±0.1 (Fig. 3.8(b)). This means that fragmentation increases faster with ε than
coagulation.

Figure 3.9.: Scaling exponents λi for the different parameters (γ, χc, N1, ε) as a function
of the inverse exponent for the critical shear 1/ξ (Eq. (3.7)). The scaling exponents are
linear functions of 1/ξ. (a) Scaling exponents λ1 for the coagulate strength γ and λ4 for
the dissipation of turbulent kinetic energy in the flow ε. The fits are λ1 = 0.273 + 0.763 · 1

ξ

and λ4 = 0.091 − 0.429 · 1
ξ . (b) Scaling exponents λ2 for the collision efficiency χc and

λ3 for the number of primary particles N1. The fits are λ2 = 0.126 + 0.061 · 1
ξ and λ3 =

0.117 + 0.063 · 1
ξ . The grey shaded area represents error bars obtained from an ensemble of

10 different simulation runs.
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Discussion

In summary, we find that for size-limiting fragmentation the average number of primary
particles per coagulate in the steady state and the width of the coagulate size distribution
are mainly determined by the maximum stable coagulate size αmax. For the fragmentation
mechanism used here we find α∞ ≈ 0.5αmax and σ∞ ≈ 0.25αmax.

For shear fragmentation the average number of primary particles per coagulate in the
steady state and the width of the coagulate size distribution vary greatly with all system
parameters. We obtain a relationship of the form

α∞, σ∞ ∝ γλ1χλ2
c Nλ3

1 ελ4 , (3.12)

where the scaling exponents λi are given by λ1 = 2.6±0.1, λ2 = 0.31±0.03, λ3 = 0.3±0.03,
λ4 = −1.2± 0.1.

Further simulations confirmed that the scaling relationship for each parameter can
indeed be approximately determined independently of the value of the other parameters.
This means that Eq. (3.12) is expected to be valid for this model for all reasonable values
of the system parameters, i.e. parameter values that lead to 1 ¿ α∞ ¿ N1. We note
that both for increasing N1 and χ the average coagulate size scales with an exponent
of 0.3 ± 0.03. This indicates that it is equivalent to vary the number of particles or the
collision efficiency since both influence the average coagulate size in the same way.

When looking at the exponents λi for each parameter, one can ask the question whether
these are related to the specific form of the stability condition Eq. (3.7) and in particular
to the exponent appearing in this equation, as the simplified argument for the dependency
of α∞ on γ in Sec. 3.3.5 suggests.

To examine this connection between the scaling exponents λi and the exponent of
the fragmentation condition in Eq. (3.7), simulations with different exponents in Eq.
(3.7) were performed. For example, changing the exponent for the critical shear to −1/2
instead of −1/3 leads to a corresponding change in the exponents λi for the parameters.
In this case we obtain λ1 = 1.8±0.1, λ2 = 0.24±0.02, λ3 = 0.23±0.02, λ4 = −0.77±0.05.
Corresponding results were found for several other exponents for the critical shear, see Fig.
3.9. This clearly illustrates how the dependence of the steady state on the particle and flow
properties is influenced by the fragmentation mechanism. We find that a fragmentation
rule of Sf,c = γα−ξ leads to a relationship of the form of Eq. (3.12), where the scaling
exponents are linear functions of 1

ξ .

We also mention that in addition to the steady state discussed here the transient
behavior of the system is greatly influenced by the particle and flow properties. One of
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the relevant quantities for this transient is the time it takes for the system to reach the
steady state, which is for example very important in the formation of rain in clouds. This
time decreases strongly with an increase of the coagulation rate, for example due to an
increase of shear or collision efficiency. An increase in fragmentation, for example due to
increased fluid shear or coagulate strength, also decreases the time to reach the steady
state (see also Ch. 4 of this work).

3.4. Rate Equation Approach for Coagulation and

Fragmentation

In this section we try to give some theoretical insight into the scaling of the average
coagulate size in the steady state. We emphasize that it is not possible to find a closed
equation for this average size of coagulates in the steady state, mainly because expressions
for the collision rates and fragmentation rates are not known.

The question of the collision rates of inertial particles is a topic of ongoing research,
and while some advances have been made (see e.g. Bec et al., 2005), even for the fairly
simple flow situation used in this paper no equations exist that could be applied. For
the fragmentation rates, the situation is slightly different. While the fragmentation rate
corresponding to the fragmentation model used here is known in principle, the integral
involved can not be solved in closed form.

In the following, we will make some approximations about the collision rates and frag-
mentation rates and try to derive an equation for the average coagulate size in the steady
state. While this approach makes it clear how a scaling of the average size with particle
and flow properties comes about, the result from the particle based model can not be
fully recovered. This derivation also illustrates many of the difficulties associated with a
rate-equation based approach for coagulation and fragmentation, which do not appear in
the particle based approach described in this work.

3.4.1. Equations for the Moments of the Droplet Size Distribution

To estimate the scaling behavior of the average number of primary particles in the steady
state we start by assuming a continuous probability distribution p(α, t) = C(α,t)

C(t) of the
coagulates1. Here, C(α, t)dα is the number concentration of coagulates, i.e coagulates
per volume consisting of a number of primary particles in the range [α, α + dα] at time t

and C(t) =
∫∞
0 dαC(α, t) is the total number concentration of coagulates at time t.

1In our model the distribution is in fact discrete, but the resulting sums can not be evaluated analytically.
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The average of α with respect to p is then defined as

〈α〉 :=

∞∫
0

dα αp(α, t) =

∞∫
0

dα α
C(α, t)
C(t)

. (3.13)

From this definition, we can derive the equation for the evolution of 〈α〉 by taking the
derivative with respect to t. We obtain

d

dt
〈α〉 =

∞∫
0

dα α
d
dtC(α, t)

C(t)

−
d
dtC(t)
C(t)

∞∫
0

dα α
C(α, t)
C(t)

. (3.14)

Defining the relative rate of change µ(α, t) as

µ(α, t) :=
d
dtC(α, t)
C(α, t)

, (3.15)

Eq. (3.14) reduces to
d

dt
〈α〉 = 〈µα〉 − 〈α〉 〈µ〉 . (3.16)

Using this equation the average number of primary particles can in principle be calculated
for all times, if the relative growth rate µ(α, t) is known. However, this quantity is
exceedingly difficult to determine and to date no complete derivation of µ(α, t) even for
very simple cases has been found and only some approximations are known. We will see
in the next part that one of the reasons for this difficulty is that µ(α, t) depends on many
properties of the whole system, such as the full probability distribution p(α, t).

We emphasize that this is one of the key advantages of our individual particle based
approach, as it only requires knowledge of the properties of the individual particles and
not of the whole system. In addition, our approach can be used for the numerical cal-
culation of the relative growth rate and other global quantities if the individual particle
properties are known.

3.4.2. Relative Growth Rates

The equation for the relative growth rate for coagulation µcoag(α, t) was developed by
Smoluchowski (1917). For each value of α there is an increase in C(α, t) due to smaller
particles coagulating so that their combined size is α and a decrease in C(α, t) due to
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particles of size α coagulating with any other particles. Formally, this can be written as

µcoag(α, t) =
1

C(α, t)
·
[

1
2

α∫
0

dα′
(
χ(α′, α− α′)C(α′, t) · C(α− α′, t)Qcoag(α′, α− α′, t)

)

−
∞∫
0

dα′
(
χ(α′, α)C(α′, t)C(α, t)Qcoag(α′, α)

)]
, (3.17)

where χ(α′, α) is a collision efficiency, i.e. the probability to coagulate upon collision and
Qcoag(α′, α, t) is the collision kernel, i.e. the collision rate between particles of size α and
α′ at time t. Similarly, a growth rate due to fragmentation µfrag(α, t) can be developed,
where C(α, t) increases due to larger particles breaking up so that the fragments are of
size α and C(α, t) decreases due to particles of size α breaking up. This leads to

µfrag(α, t) =
1

C(α, t)
·
[ ∞∫

α

dα′
(
ϑ(α′, α)C(α, t)Qfrag(α′, t)

)
− C(α, t)Qfrag(α, t)

]
, (3.18)

where ϑ(α′, α) is the probability that a coagulate of size α′ leads to a fragment of size α

when it breaks. ϑ contains therefore the information about the number and size distribu-
tions of fragments, e.g. binary or ternary fragmentation. Qfrag(α, t) is the fragmentation
kernel, i.e. the fragmentation rate for a particle consisting of α primary particles.

Both the coagulation and fragmentation kernels will in general not only depend on
α and α′ but also on system parameters, for example the coagulate strength or the
turbulence level in the flow. The total relative growth rate is then given by µ(α, t) =
µcoag(α, t) + µfrag(α, t).

In recent years much effort has gone into finding approximations for the collision ker-
nels. But in particular when particle inertia plays a role, effects such as preferential
concentration and the occurrence of caustics lead to drastic modifications of the collision
kernels that are still not fully understood (Bec et al., 2005).

The fragmentation kernel poses a very different problem. On the one hand it seems
to be easier because it only involves individual coagulates. On the other hand it can
be extremely complicated because the microscopic properties of the coagulates play a
very important role and generally both the fragmentation kernel and the distribution of
fragments are not well understood.
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3.4.3. Estimating a Scaling Relationship

It is clear from the previous section that estimating the relative growth rate and with
that the average coagulate size requires some information about collision and fragmenta-
tion kernels. We mention again that particularly for estimating these quantities and for
comparing them with theoretical predictions of these quantities our individual particle
based modeling approach is most useful.

The size distribution of the coagulates in the steady state (see Fig. 3.3) can be well
approximated by an exponential. Therefore we take CN (α, t) = CN (t)

〈α〉 e−α/〈α〉.

As a first approximation for the coagulation, we assume that differences in radius
between particles are small. Then the problem of the collision rates reduces to that of
two particles with the same Stokes number, which is given by the mean Stokes number
of the two particles. Since there is no interaction between particles through the fluid the
collision kernel in our model is then approximated by (Bec et al., 2005),

Qcoag(α, α′) = ĉε1/2(rα + rα′)θ(〈Stη〉) , (3.19)

where ĉ is a proportionality constant (see e.g. Saffman and Turner, 1956), ε is the average
dissipation of turbulent kinetic energy in the flow and the exponent θ is a function of the
mean Stokes number 〈Stη〉 of the two particles. rα is the radius of a particle consisting
of α primary particles, here this is given by rα ∝ α1/3. No analytical expression is known
for θ(〈Stη〉), only two limit cases. For no inertia the exponent is 3 and for 〈Stη〉 → ∞
the exponent approaches 2. Numerical results e.g. by Bec et al. (2005) suggest that θ

decreases monotonically for increasing 〈Stη〉, but no explicit equations are given.

To illustrate in principle the calculation of the average size we concentrate on the
limit case of no inertia, where θ(〈Stη〉) = 3. This is the so-called rectilinear shear kernel
(Thomas et al., 1999). In addition, we use a constant collision efficiency, i.e. χ(α′, α) ≡ χc.

Using these approximations, the relative growth rate due to coagulation in Eq. (3.17)
can be calculated. We obtain

µcoag(α, t) = ĉ1
χcε

1/2CN (t)
〈α〉

[
9 + 4π

√
3

18
α2 − 〈α〉2

− 2Γ(
2
3
) 〈α〉5/3 α1/3 − 2π

√
3

3Γ(2
3)
〈α〉4/5 α2/3 − 〈α〉α

]
. (3.20)

For fragmentation, the first approximation for the probability ϑ(α′, α) is that ϑ(α′, α) =
2δ(α′ − 2α), where δ(x) is the Dirac delta function. This is the case of binary fragmen-
tation, where both fragments are of the same size.
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In our model all coagulates of the same size have the same critical shear Sf,c(α, γ). Here
we studied the case Sf,c = γα−ξ, where ξ > 0 and in particular the case of ξ = 1/3, see
Eq. (3.7). If the fluid shear Sf = (2SijSij)1/2, where Sij is the rate-of-strain tensor in the
flow, at the position of the coagulates exceeds this critical shear Sf,c they fragment. The
probability for fragmentation of a given size is then only determined by the probability
distribution of the shear p(Sf , t), the influence of individual particle properties for the
fragmentation kernel (see e.g. Ruiz and Izquierdo (1997)) is not considered. Again
neglecting inertia effects and assuming a homogeneous distribution of the particles in the
flow, the fragmentation kernel, i.e. the fragmentation rate is given by

Qfrag(α, t) =

∞∫
Sf,c(α,γ)

dSf p(Sf , t)/τ(Sf , t)

Sf,c(α,γ)∫
0

dSf p(Sf , t)

, (3.21)

where τ(Sf , t) is the characteristic time of the shear Sf , see e.g. Bäbler et al. (2008). In
our case, Qfrag(α, t) can not be determined analytically. Generally, p(Sf , t) is a function
of four (or nine, in three dimensions) random variables Sij . Even in the simple case of
independent normally distributed random variables which we have here, p(Sf , t) can not
be explicitly calculated.

For larger α Bäbler et al. (2008) argued that the fragmentation kernel is approximately
given by a power law function. They estimated that the fragmentation kernel can be
approximated by Qfrag(α, t) ≈ d̂ε 1

Sf,c
, with some constant d̂. Similar power-law approxi-

mations for the fragmentation kernel have been found in other cases, see e.g. Ruiz and
Izquierdo (1997). We will therefore continue our calculation using this expression.

We emphasize that the relationship between Qfrag and its arguments α and γ depends
on the specific form of the stability condition for fragmentation, i.e. the specific model
for Sf,c. It is through this dependence that the exponent of ξ of the stability condition
Eq. (3.7) appears in the final result. For Sf,c = γα−ξ we obtain

µfrag(α, t) = d̂εγ−1

[
2e
− α
〈α〉 (2α)ξ − αξ

]
. (3.22)

These approximations for the relative growth rate can then be used in Eq. (3.16). To
find the scaling behavior in the steady state we set d

dt 〈α〉 = 0, which leads to

χcε
1/2CN,1 〈α〉 ∝ εγ−1 〈α〉ξ+1 , (3.23)
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where C1 = CN (t) · 〈α〉 is the number concentration of primary particles in the system2.
The terms on the left side are the contribution from the coagulation Eq. (3.20) and the
terms on the right hand side follow from the fragmentation Eq. (3.22). Solving Eq. (3.23)
for 〈α〉 leads to

〈α〉 ∝ γ1/ξχ1/ξ
c C

1/ξ
N,1ε

− 1
2ξ . (3.24)

We find an equation for the scaling of the average coagulate size in the steady state as
a function of the particle and flow properties. While the scaling for γ and ε is similar to
what was found in our numerical simulations using the individual particle based model
(see Eq. (3.12) and Fig. 3.9), the scaling with χc and C1, where C1 corresponds to N1 in
the individual particle model, is not entirely correct. This can therefore not be explained
fully with the approximations made here. However we do find that the scaling exponents
depend on 1/ξ, as was found in the numerical simulations.

However, the calculation in this section illustrates that the average coagulate size can
indeed be expected to scale with the particle and flow parameters and also makes it
clear how the dependency of the scaling exponents on the exponent ξ of the stability
condition Eq. (3.7) appears. Additionally, this calculation illustrates the special role of
ε that affects both the coagulation and the fragmentation in the system. It is rather
remarkable that even though the analytical calculation of the scaling is only possible in a
very simplified case, a similar, simple scaling of the average coagulate size can be found
numerically for the full individual particle based model.

3.5. Discussion

In the present study we described results from a coupled model for advection, coagulation
and fragmentation of individual inertial coagulates. The model represents an approach to
bridge the gap between the rate-equation based theory that is commonly used to describe
larger coagulation and fragmentation systems and a full simulation of a multiphase flow.
Full hydrodynamic simulations of coagulation and fragmentation are computationally
limited to systems with very few particles and are therefore not appropriate to describe
large-scale processes such as initiation of rain in a cloud. Rate-equation based models on
the other hand are capable of describing coagulation and fragmentation on such scales,
but rely on many approximations and parameterizations.

Our individual particle based approach was used to gain insights into the principle
behavior of coagulates under different fragmentation mechanisms and to study the de-
pendence of the steady state of the coagulates on particle and flow properties. We used

2This follows from the assumption of an exponential size distribution.
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synthetic turbulence in the form of a smooth random flow to approximate the motion
of particles in a turbulent flow, focusing on processes which take place below the Kol-
mogorov scale. Even though not all features of turbulent flows are captured, the results
are expected to remain qualitatively similar in more realistic flows. In realistic turbulent
flows clustering and collisions between particles may depend on non-Gaussian statistics
and intermittency in the velocity field, as well as the Reynolds number and could also be
affected by clustering at an inertial range, where the velocity field is not smooth. However,
as long as the system is well mixed, we do not expect a strong qualitative change. The
same is true for the extension to three dimensional flows, where coagulation slows down,
due to less frequent collisions, thereby mostly affecting the time scale of the approach to
a steady state.

The applicability of the model used here to more realistic problems is limited due to
the computational restriction of the number of primary particles. However, it is well
suited for small systems and principal studies of underlying mechanisms. A great advan-
tage is that an individual particle approach can easily incorporate experimental results
and results from full hydrodynamic simulations to calculate average quantities such as
collision or fragmentation rates which can then be incorporated into larger rate-equation
based models. In particular, the fragmentation models described here only represent very
simplified approximations of the real processes, for example the size-limiting fragmenta-
tion approach captures only the appearance of two or three large daughter droplets and
not the full host of small satelite droplets that is created during breakup. However, this
can easily be expanded within our framework with more detailed expressions if that is
required for a specific problem. The fragmentation model presented here therefore serves
as the simplest possible approximation to illustrate what is possible with such an individ-
ual particle based approach. Already, with these simplest approximations we can capture
many essential features of coagulation and fragmentation processes.

We numerically studied the steady state that results from a balance between coag-
ulation and fragmentation. Mainly, we examined average quantities that characterize
the steady state, such as the average number of primary particles per coagulate. We
compared two different fragmentation mechanisms, size-limiting fragmentation which is
motivated by the hydrodynamical instability of large drops settling under gravity and
shear fragmentation, where particles break due to hydrodynamic shear forces. For both
size-limiting and shear fragmentation the transient behavior of the system is strongly
influenced by the particle and flow properties. In particular, enhanced collision rates, for
example due to increased shear or increased collision efficiency greatly decrease the time
it takes to reach the steady state.

For size-limiting fragmentation this steady state shows few fluctuations and almost no
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dependence on the particle or flow parameters. The main parameter that determines the
coagulate size distribution in this case is the maximum stable coagulate size. The size
distribution in this case is very broad, and covers almost all the available coagulate sizes.
Different size distributions can appear if the number of fragments is chosen differently,
for example if fragmentation is binary. The shape of the size distribution is then related
to the number of fragments that are created during fragmentation.

The size distributions for shear fragmentation have a single peak with an exponential
tail. This is a typical feature of a fragmentation mechanism where coagulates break into
similar sized fragments (compare Ch. 4 of this work). For shear fragmentation strong
fluctuations in the average number of primary particles per coagulate due to statistical
fluctuations of the carrier flow appear. In this case, both the average number of primary
particles per coagulate and the standard deviation of the coagulate size distribution in the
steady state change strongly with the particle and flow properties. Simulations showed
that the variation of each parameter within a reasonable range is approximately inde-
pendent of the values of the other parameters. For variations of the coagulate strength γ

the scaling relationships for both the average and the standard deviation can be inferred
from the fragmentation mechanism. Scaling relationships for variations of the volume
fraction, the collision efficiency and the dissipation of turbulent energy in the fluid were
derived from the simulation results. For each of these parameters we find a power-law
dependence, where the exponents appear to be closely connected to the shape of the
stability condition for fragmentation. We illustrated this by showing how an equation for
the average coagulate size in the steady state can be derived. From this we calculated
scaling relationships for the average coagulate size in the steady state using severe ap-
proximations. This calculation also clarified how our individual particle based approach
can be connected with the rate-equation based theory that is commonly used to describe
larger coagulation and fragmentation systems. However, this approach requires expres-
sions for the collision and fragmentation rates as well as some knowledge of the coagulate
size distribution. By contrast, our individual particle based model only requires knowl-
edge if the individual particle properties, which turns out to be a great advantage of our
approach. It can therefore be a very useful tool, both for obtaining estimates of global
quantities such as collision and fragmentation rates and as a comparison for results from
rate-equation based models.

Our results emphasize the great importance of the fragmentation mechanism for the
final size distribution of coagulates in the steady state. As a consequence it is very
desirable to design experiments to investigate the fragmentation of particles in different
applications.

In general, the dependence of the average quantities as well as the size distributions
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on the particle and flow properties can change quantitatively for different fragmentation
mechanisms, in particular for different number and size distributions of fragments created
during fragmentation. However, the qualitative picture that has emerged can be expected
to remain the same.
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4. Lagrangian Modeling of Fractal-Like

Aggregates

This chapter contains, with some minor changes, our work on individual-particle based
modeling of aggregation and fragmentation of solid particles with a fractal-like structure
in a synthetic turbulent flow which has been submitted for publication to Physica D as
J.C. Zahnow, J. Maerz and U. Feudel, “Particle-based modelling of aggregation and frag-
mentation processes: Fractal-like aggregates“ (2010) .

4.1. Introduction

In most systems where the particle phase consists of solid particles, as opposed to bub-
bles or droplets, aggregation and fragmentation of the particles leads to clusters with a
complex structure. This is for example the case for marine aggregates (Thomas et al.,
1999), cohesive sediment (Kranenburg, 1994), colloid suspensions (Spicer and Pratsinis,
1996a) or solid-liquid separation systems (Bäbler et al., 2008). This complex structure
of particles can have a great influence on particle dynamics as well as aggregation and
fragmentation processes. Both the actual motion of aggregates and the probabilities for
aggregation and fragmentation are influenced by the structure of the particles.

In the context of a rate-equation based approach, a complex particle structure has
been incorporated in the past in terms of a density modification for the particles, e.g. by
Kranenburg (1994) or Maggi et al. (2007). However, so far there are very few attempts
to treat this problem for inertial particles in a flow.

Therefore, in this Chapter the individual particle based model for aggregation and
fragmentation presented in Part 3 of this work, where each aggregate is modeled as
an individual finite-size particle whose motion is tracked in a Lagrangian framework.
Here, the consideration of spherical particles that was used in the previous Chapter is
expanded to model more realistic aggregates. While this was a reasonable approximation
for coagulating droplets, the aggregation of solid particles is generally more complex.
We focus specifically on the problem of aggregation and fragmentation in systems where
the aggregates can be described as having a fractal-like structure, as is for example the
case for marine aggregates (see e.g. Logan, 1999). By this we mean that on average
there exists a power-law relationship between the characteristic length and the mass of
such aggregates. The exponent of the power-law is called the fractal dimension. We
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show in this Chapter how such a complex structure can be approximated within the
framework of our individual particle-based approach. Such a characterization in terms
of a fractal dimension leads to a modification of the radii and effective densities of the
aggregates compared to a solid sphere of the same mass. Nevertheless, we still treat them
as effectively spherical for the particle motion, allowing us to apply the Maxey-Riley
equations of motion (Maxey and Riley, 1983) with modified parameters.

In this work we choose a parameterization of our model for the case of a suspension of
marine aggregates in the ocean. In this way we can study our modeling approach for a
specific case, but we emphasize that our model is a general one that can in principle be
used for a wide range of applications where aggregation and fragmentation of solid parti-
cles plays a role. The concept of a fractal-like structure has been found to be a reasonable
first approximation in many different applications, ranging from colloidal systems to the
flocculation of cells Logan (1999).

Using this Lagrangian framework the long-term behavior of particle size distributions
that develop from a balance between aggregation and fragmentation is studied. In par-
ticular, the influence of fragmentation and aggregate structure on these size distributions
is examined. Since the fractal dimension of marine aggregates can vary greatly in natural
systems (Maggi et al., 2007), its effect on the steady state particle size distributions in
this model is examined. It is found that while the shape of the size distributions does not
depend strongly on the fractal dimension, the average particle size and relaxation time
towards the steady state depend strongly on this parameter.

We show that the combination of aggregation and fragmentation of fractal-like aggre-
gates, superimposed on inertial advection dynamics, leads to a convergence to a steady
state in the particle size distribution. This steady state is unique for a given set of
parameters. Mainly, we compare three different types of splitting, uniform fragmenta-
tion, erosion and large-scale fragmentation. These splitting modes differ in the size of
the fragments that are created during break-up. While erosion leads to one large and
one relatively small fragment, large-scale fragmentation leads to two fragments of similar
size. We find that the transient dynamics as well as the size distribution in the steady
state depend strongly on the splitting mode. The steady state size distribution found for
large-scale fragmentation conforms best to observation reported in the literature for the
break-up of marine aggregates in tidal areas (Lunau et al., 2006), indicating that this
may be the primary mode of fragmentation in these cases.

Section 4.2 describes the complete model for advection, aggregation and fragmentation
that is used in this work. The equations of motion for heavy spherical particles (Stokes
equation) are used, but with modified parameters to take a fractal-like structure into
account. Rules governing the aggregation and fragmentation are introduced. Finally, the
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model is applied to a simple 3-d synthetic turbulent flow field.

Section 4.3 then presents a complete analysis of the influence of all major system
parameters on the resulting steady state size distributions, the average aggregate size in
steady state and the relaxation time towards the steady state. Namely, these parameters
are aggregate strength, fractal dimension of the aggregates and total particle mass in the
system.

Section 4.4 contains a discussion of the limitations of the model and the conclusions.

4.2. Modeling Approach

In this section we will present the modeling approach used in this study, that describes the
motion, aggregation and fragmentation of finite-size particles. Firstly, the equations of
motion used for the advection of spherical particles heavier than the surrounding fluid are
presented. Secondly, a model to account for the fractal-like structure of real aggregates is
described. Thirdly, a full model to include aggregation and fragmentation in this context
is introduced. Finally, a simple 3-d synthetic turbulent flow field is chosen, that will be
used to study the aggregation and fragmentation model in detail.

4.2.1. Lagrangian Modeling for Fractal-Like Aggregates

For simplicity, we consider all primary (smallest, unbreakable) particles to be spherical
and denser than the ambient fluid. We emphasize that the equations of motion presented
here for spherical particles will in the following also be used to describe the motion
of aggregates which usually can not be assumed to be spherical (Kranenburg, 1994).
However, to account for properties related to the fractal-like structure of aggregates
some modifications to the equations of motion (in form of modified parameters) will
be introduced in the next section. While this represents only a very simplified model
and the surface forces acting on particles with a complex structure are an extremely
complex problem where to date no satisfying expressions exists, we believe that this is a
reasonable starting point. On the one hand, if one wants to employ the model discussed
here to a specific case where better expressions are known, this can easily be adapted
without changing the general idea of our approach. On the other hand, it has been found
in many cases (see for example Zahnow et al. (2008, 2009)) that changes in the motion
of the individual particles usually do not lead to significant changes in the dynamics of
the particle ensemble and in particular in the collision rates which are relevant for the
overall size distribution in an aggregation-fragmentation system.

Finite-size particles usually do not follow exactly the motion of the surrounding fluid,
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instead inertia effects lead to deviations of the particle motion from that of the fluid. For
small Reynolds numbers the equations of motion for spherical particles of finite size are
the Maxey-Riley equations (Maxey and Riley, 1983). This implies that locally the flow
around the particle is laminar, even though the overall fluid flow can still be turbulent.
While inertia effects can be fairly small for the primary particles in the case of marine
aggregates (see Sec. 4.2.4), the influence of particle inertia increases with aggregate size
and can become quite important for larger marine aggregates.

In reality every particle produces perturbations in the flow that decay inversely pro-
portional to the distance from the particle (Happel and Brenner, 1983). In this work we
keep the particle concentration CV low enough to be in a diluted regime. For particles of
radius rp and density ρp moving coherently within the dissipative scale Ľp of a flow the
feedback from the particle motion on the flow can be neglected if CV rpĽ

2
p ¿ 1 (Balkovsky

et al., 2001). Particle-particle interactions mediated by flow perturbations are neglected,
see the discussion in Sec. 4.4.1.

Assuming that the difference between the particle velocity V(t) and the fluid velocity
u = u(X(t), t) at the position X(t) = (X1(t), X2(t), X3(t)) of the particle is sufficiently
small, the drag force is proportional to this difference. This is called Stokes drag. With
these restrictions the dimensionless form of the governing equation for the path X(t) of
such a particle under the influence of drag and gravity can then be approximated from
the Maxey-Riley equations as:

V̇ =
1
St

(u−V −Wn) , (4.1)

where n is the unit vector pointing upwards in the vertical direction (which is the X2-axis
in this study).
The particle Stokes number St, i.e. the ratio between particle response time and flow
time scale is defined as

St = (ρp2r2
p)/(9µf Ťf ) (4.2)

and the dimensionless settling velocity in a medium at rest W is defined as

W = 2r2
p(ρp − ρf )Ťfg/(9µf Ľf ) . (4.3)

Here, ρf and µf are the fluids’ density and dynamic viscosity and Ľf and Ťf are charac-
teristic length and time scales of the flow.
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Fractal-Like Aggregates

When looking at real aggregates they are typically not solid spherical particles but instead
can have a complex structure as they consist of a number of primary particles. In this
model the primary particles are assumed to be solid spherical particles, following the
equations of motion as described in the last subsection. All aggregates are assumed to
consist of an integer number of such spherical primary particles. The description of the
motion of an aggregate with a complex structure is still an unsolved problem. Therefore
we only consider the influence of the structure of the aggregates on their size and effective
density. Here, we assume that aggregates have a fractal-like structure, meaning that
there exists a power-law relationship between the characteristic length and the mass of
such aggregates. The structure of the aggregates can then be characterized by a fractal
dimension fd < 3 (Mandelbrot, 1983). Their size can still be defined approximately by
a radius, that can be considered as the characteristic length scale of the aggregate. This
radius rα of an aggregate that consists of α primary particles and has a given fractal
dimension fd is derived in the following. We emphasize that the number of primary
particles α in an aggregate is here also used as an index to describe a quantity, e.g. the
radius or the volume, that corresponds to an aggregate consisting of α primary particles.
The solid volume, i.e. the volume of an aggregate that is filled with particulate matter
follows from the definition of the fractal dimension fd (see e.g. Logan, 1999) as

Vα,solid = cfd
rfd
α , (4.4)

where cfd
is a proportionality constant that can depend on fd. As mass conservation

must be fulfilled we get

Vα,solid = αV1 = α
4
3
πr3

1 , (4.5)

where r1 and V1 are the radius and volume of a primary particle, respectively. The
proportionality constant cfd

can be derived from Eqs. (4.4) and (4.5) by setting α = 1 1

cfd
=

4
3
πr3−fd

1 . (4.6)

In combination with Eqs. (4.4) and (4.5) this leads to

rα = α1/fdr1 (4.7)

1Actually, one would have to relate the radius of a fractal-like aggregate to the fractal generator, i.e.
the smallest structure with the same fractal properties instead of to the (spherical) primary particles.
This would introduce additional shape factors and constants that are not present in the current form,
but not change the qualitative results. For details on this, see e.g. Logan (1999)
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for the radius of an aggregate. It is evident that due to the fractal-like structure the
radius rα is greater than for a completely solid particle of the same mass.
A part of a fractal-like aggregate, i.e. of the total volume encased by an aggregate

Vα,total =
4
3
πr3

α , (4.8)

is not filled with matter but with the surrounding fluid. The aggregate density therefore
decreases with an increasing number α of primary particles in the aggregate. From mass
conservation it follows

ραVα,total = ρ1Vα,solid + ρf (Vα,total − Vα,solid) (4.9)

Solving Eq. (4.9) for ρα and substituting Vα,total and Vα,solid leads to

ρα = ρf + (ρ1 − ρf )α1−3/fd . (4.10)

Going back to the equations of motion we now see that as far as the particle dynamics
are concerned, a first approximation for the fractal-like aggregates is to treat them as
spheres with an increased radius rα compared to solid spheres of the same mass, but a
reduced density ρα, because of the fluid encased in their spherical volume.
This leads to a modification of the particle Stokes number St and dimensionless settling
velocity W for fractal-like aggregates in the equations of motion (4.1), when compared
to a solid sphere:

Stα = (ρα2r2
α)/(9µf Ťf ) (4.11)

Wα = 2r2
α(ρα − ρf )Ťfg/(9µf Ľf ) . (4.12)

For fractal-like aggregates these parameters replace St and W in Eq. (4.1), leading to
a motion with different parameters for aggregates with different numbers α of primary
particles.

Aggregation Model

The physical, chemical or biological process that leads to aggregation of particles can vary
from case to case and is not examined in detail here, as this is beyond the scope of this
study. Instead, a general model is used. The only assumption is that during a collision
particles can somehow stick together and form an aggregate. No detailed mechanism of
sticking is considered.
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Whenever the distance between two particle centers becomes smaller than the sum
of their radii, these two particles aggregate immediately, creating a new particle that
replaces the two old particles. For two particles of radius aαi and aαj the new number of
primary particles after aggregation is obviously αnew = αi + αj , leading to a new radius
aαnew , which can be derived from Eq. (4.7). The position of the new particle is the center
of gravity of the old particles. The velocity of the new particle follows from momentum
conservation.

4.2.2. Fragmentation Model

The physical process leading to fragmentation can vary as well. While there are detailed
models for the fragmentation of e.g. water droplets (Villermaux, 2007), the mechanism
of fragmentation of marine aggregates is not well understood. Even experiments give no
clear indication how fragmentation of such aggregates occurs in detail. Therefore only a
few theoretical approaches exist for this process (Pandya and Spielman, 1982; Hill and
Ng, 1996). In this work a model for fragmentation is used that is only based on some
very general properties of the aggregates involved.
In the following the fragmentation is described in two parts, that need to be clearly
distinguished. Firstly, a splitting condition, that determines if a fragmentation event
takes place and secondly, a splitting rule, that determines how fragmentation takes place,
are defined.

Splitting Condition

The splitting condition describes if fragmentation of an aggregate takes place. Generally,
only particles that are composed of more than one primary particle can fragment. The
break-up of an aggregate occurs when the hydrodynamical forces Fhyd acting on the
aggregate exceed the forces Fagg holding the particles in the aggregate together. The
criterion for breakup can therefore be expressed as

Fhyd/Fagg > const. (4.13)

For aggregates with a fractal-like structure, consisting of a number of solid spheres, the
hydrodynamical forces in the dissipative range where viscous forces dominate is propor-
tional to the shear force integrated over the surface of the aggregate (Kobayashi et al.,
1999). For a fracture at a distance ζ · rα, ζ ∈ [0, 1[ from the equator of the aggregate this
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results in
Fhyd ∝ Sf (1− ζ)r2

α , (4.14)

where Sf is the shear rate in the flow.
For a porous aggregate Ruiz and Izquierdo (1997) give the force Fagg holding an aggre-
gate together as proportional to the area of constituent matter in a cross-section of the
aggregate. Ruiz and Izquierdo then related Vα,solid to the porosity of an aggregate. Here,
we instead rewrite this relationship in terms of the fractal dimension fd. For fractures

across the equator of an aggregate the area is proportional to V
2/3
α,solid ∝ r2

1

(
rα
r1

)2fd/3
. For

a fracture at a distance ζ ·rα, ζ ∈ [0, 1] the area of constituent matter in the cross-section
is reduced. It equals the area of a cross-section across the equator of an aggregate with
decreased radius (1− ζ2)1/2rα. In general we get

Fagg ∝ (1− ζ2)fd/3r2
α (rα/r1)

2fd/3−2 . (4.15)

The splitting condition (4.13) then becomes

Sf · (1− ζ)
(1− ζ2)fd/3

·
(

rα

r1

)2−2fd/3

> γ, (4.16)

where the proportionality constant γ is determined by the force holding the primary
particles in an aggregate together. It is therefore a measure of the aggregate strength.
Solving for the shear rate S and using Eq. (4.7) leads to an expression for the critical
shear Sf,c required to break up an aggregate

Sf,c = γ
(1− ζ2)fd/3

(1− ζ)
(rα/r1)

−2+2fd/3

= γ
(1− ζ2)fd/3

(1− ζ)
α2/3−2/fd . (4.17)

It can be seen that for a fractal dimension fd < 3 the critical shear force required to break
up an aggregate decreases with the aggregate size, i.e. larger aggregates are less stable
than smaller ones. Additionally, the critical shear required for fragmentation is smallest
for fractures across the equator of an aggregate (ζ = 0) and increases with increasing
distance from the equator.

Within our model, the local shear force Sf can be calculated at any point in space and
time as

Sf =

2
∑
i,j

SijSij

(1/2)

, (4.18)
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where Sij = 1
2

(
∂ui
∂Xj

+ ∂uj

∂Xi

)
is the rate-of-strain tensor in the flow.

Splitting Rules

The splitting rules describe how an aggregate will split, when the splitting condition is
met. During fragmentation only particles whose mass is an integer multiple of the mass
of a primary particle are created. This means that, even though they have become part
of some larger aggregates, primary particles can never be broken up. Only the connection
among each other can break. Different size distributions of the fragments are possible.

When a splitting condition is met,

Figure 4.1.: Sketch of different splitting
mechanisms: a) large-scale fragmentation
where an aggregate is pulled apart along the
equator, b) erosion where small parts are
split off from the aggregate surface.

an aggregate consisting of αold primary
particles is split into 2 fragments with
the number αk of primary particles of
each fragment being a random fraction of
the original number αold. Typically, one
distinguishes between two mechanisms for
fragmentation (Jarvis et al., 2005). For
each mechanism fragmentation occurs
on average at a different distance from
the equator of the aggregate, leading to
different distributions of the fragments
αk. This can be expressed in different
values for ζ, the fraction of the distance
from the equator of the aggregate where
fragmentation is assumed to take place
(see Sec. 4.2.2). Large-scale fragmenta-
tion happens when an aggregate is ’pulled
apart’ somewhere close to the equator,
leading to fragments of similar size. This
is characterized by ζ = 0. Erosion happens when shear forces act closer to the edge of
an aggregate (Vassileva et al., 2007), implying that 0 < ζ < 1. In this case only few
primary particles are split off from the aggregate (see Fig. 4.1).

Here we will compare three different fragmentation modes, with different distributions
for the number of primary particles in the fragments. First a large-scale splitting rule,
second an erosion splitting rule, and third a uniform splitting rule. In most realistic cases
one expects different fragmentation modes to appear together, even though with slightly
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different probabilities. However, here we apply these fragmentation modes separately to
determine their individual influence on the aggregate size distribution.

1. For both large-scale fragmentation and erosion we assume that there is a preferred
distance ζrα, ζ ∈ [0, 1[ from the center of the original aggregate where fragmentation
occurs. The two mechanisms are then characterized by different values of ζ. A
fracture at a distance ζrα leads to a fragment containing a fraction Vfr/Vα,total

of the original volume, where Vfr = πr3
α(2

3 − ζ + ζ3

3 ). Since ζ is assumed to be
only the average distance of a fracture from the equator of the aggregate, for each
fragmentation event we choose the number of primary particles in the fragment
randomly from a Gaussian distribution, centered around αold · Vfr/Vα,total. This
allows for a certain variation of the fragment size, meaning that

α1 =
(

4
3

(
2
3
− ζ +

ζ3

3

)
+ ξ

)
αold , (4.19)

where ξ is a random number from a normal distribution with mean 0 and standard
deviation σfrag and the right-hand side of Eq. (4.19) is rounded towards the nearest
integer. We note that our results do not depend strongly on the choice of σfrag, here
we choose σfrag = 0.2 which results in a typical variation of one primary particle
between fragments coming from identical aggregates. As an additional restriction
it is required that 1 ≤ α1 < αold, otherwise a new random number ξ is chosen.

For large-scale fragmentation, aggregates are assumed to break along the equa-
tor into two fragments of similar size, which corresponds to ζ = 0. For erosion,
fragmentation is assumed to occur at a distance from the center, leading to one
aggregate being much smaller than the other. This corresponds to 0 < ζ < 1.
Here, we choose ζ = 0.6 for erosion, which leads to smaller fragments containing on
average 10 percent of the mass of the original aggregate. Similar results for erosion
were found for other values of ζ. However, if ζ becomes too large particles will no
longer fragment because the critical shear required to break off a fragment increases
greatly as ζ → 1.

2. In the uniform splitting rule the number of primary particles for the first fragment
is chosen from a uniform distribution in the interval I = [1, αold[. The uniform split-
ting rule is a simplified model for the full case where both large-scale fragmentation
and erosion of an aggregate can happen. However, all sizes of fragments occur here
with the same probability.
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For all three cases the remaining aggregate consists of α2 = αold − α1 primary particles.
Whenever a particle is split according to one of the splitting rules, all parts keep the
velocity of the original particle. That way momentum is conserved. The first fragment
remains at the position X = (X1, X2, X3) of the original particle. The center of the
other fragment is placed along a line segment in a random direction, so that for the two
fragments the distance equals the sum of the radii.

For each fragment, the splitting condition is checked again and if it is met, the whole
process is repeated until no fragment fulfills the fragmentation condition. This leads to
a splitting cascade and aggregates can break up into more than two fragments, if the
aggregate is large enough or shear forces are strong enough. This is consistent with
experimental observations of marine aggregates that larger particles tend to break into
more fragments (Alldredge et al., 1990). In that way ternary, quarternary and other
splitting types besides binary splitting naturally appear in this model.

Here, large-scale fragmentation and erosion are treated as two separate processes to
study the influence of fragmentation at certain distances ζ on the aggregate size distri-
butions in the steady state. In reality, aggregates will break with certain probabilities at
certain distances ζ from the center but there will be no two separate processes. There-
fore, depending on the probability distribution for fragmentation at a certain distance
one can expect different combinations of the steady state size distributions found in this
work. The uniform fragmentation rule represents one such possible combination, where
fragmentation at all distances ζ appears with the same probability.

4.2.3. Fluid Flow

As a fluid velocity field we consider synthetic turbulence in the form of a space-periodic,
isotropic and homogeneous Gaussian random flow (Bec, 2005), since it allows us to per-
form long-term simulations at reasonable computational costs. We use a smooth, incom-
pressible flow since we focus on effects typically taking place on scales smaller than the
Kolmogorov scale of a turbulent flow.

The flow is written as a Fourier series

u(X, t) =
∑

k∈Zd\{0}

û(k, t)ei 2π
L

k·x , (4.20)

where û(k, t) ∈ Cd are the Fourier components, with the property û(−k, t) = û∗(k, t)
because u(X, t) is real-valued. The star denotes complex conjugation. By taking for
û(k, t) the projection of a different vector v̂(k, t) ∈ Cd onto the plane perpendicular to
the wave vector k, incompressibility is ensured. The vector v̂(k, t) is assumed to be an
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Ornstein-Uhlenbeck process. It is a solution of the complex-valued stochastic differential
equation

dv̂ = −ξ(k)v̂dt + σ(k)dW , (4.21)

with ξ(k), σ(k) ∈ R, where dW is a d dimensional complex Wiener increment. The
parameters ξ(k), σ(k) need to be chosen in such a way that the flow u(x, t) reproduces
some features of a real turbulent flow, in this case we choose the energy spectrum in the
dissipative range of a turbulent flow. Here we use the exponential spectrum suggested by
Kraichnan

E(k) = C · (2πkĽf/L̂)3 exp(−β[2πkĽf/L̂]) , (4.22)

with β = 5.2 (Martinez et al., 1997) and a suitably chosen normalization constant C.
The constant Ľf is the length scale of coherent structures in the flow and L̂ is the spatial

period of the flow. We choose ξ(k) = 1/Ťf and σ(k) =
√

E(k)/Ťf . The constant Ťf

is then the correlation time of the flow. The normalization constant is chosen so that a
desired value of the mean shear rate 〈S〉 is obtained. The flow is then characterized by
the correlation time Ťf , the correlation length Ľf and the mean shear rate 〈S〉.

If a fluid velocity field with few Fourier modes is chosen, no interpolation of the velocity
at particle position is required, since it can be calculated from direct summation of the
Fourier series. This allows for a resolution of the fine structures of the particle distribution
in space.

4.2.4. Implementation

Next, we will describe some specifics of the numerical implementation and the system
parameters used in this work.

For the simulations in this work we choose particle properties similar to those of marine
aggregates in coastal waters. The primary particles considered in this model have a
radius r1 = 4µm, density ρ1 = 2.5 × 103kg/m3 and mass m1 = ρ1

4
3πr3

1. The relevant
characteristic length scales for marine aggregates in coastal areas of the ocean are typically
the Kolmogorov scales. Shear rates in coastal areas can be of order 1s−1, leading to
Kolmogorov length and time scales of Ľf = 1mm and Ťf = 1s, respectively (Kranenburg,
1994). Using these scales to make the equations of motion of the particles dimensionless
leads to a Stokes parameter of St1 = 10−5 and a dimensionless settling velocity of W1 =
0.1 for the primary particles.

The aggregate strength parameter γ is fixed at γ = 8, unless otherwise mentioned.

The number of aggregates N(t) changes over time due to aggregation and fragmentation
leading to a distribution of aggregates of different radii in the flow. However, the total
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mass M =
∑N(t)

i=1 αim1 remains constant during one simulation. As initial condition
we take N1 = 105 primary particles and no larger particles. Furthermore particles are
uniformly distributed over one periodic cell of size L̂3 of the configuration space, with
velocities matching that of the fluid. This choice fixes the total mass of the system to be
M = 105m1. For the flow we choose a periodic cube with L̂ = 4Ľf , so that we obtain a
volume fraction of about 0.4× 10−3.

The fractal dimension fd of marine aggregates varies between approximately 1.5 for
very open, fragile aggregates like marine snow in the open ocean and approximately
2.5 for stronger, compact aggregates. The average is typically around 1.9 − 2.0 (see
e.g. Winterwerp, 1998), therefore in the following we choose fd = 2.0 unless otherwise
mentioned.

As a first approximation the aggregation and fragmentation processes are assumed to
have no effect other than to change the size of the particles and the effective density, and
therefore do not directly influence the motion of the particles. Hence all three aspects,
motion, aggregation and fragmentation that define the whole system can be modeled sep-
arately. Aggregation is checked constantly during the integration, whereas fragmentation
is applied after every time step of the system.

1. All particles move in the flow for one time step dt using the equations of motion
described in Sec. 4.2.1. We emphasize at this point that each aggregate size is
characterized by different values of Stα and Wα, so that the motion of aggregates
of different size is governed by the same equations but with different parameters.

The length of the time step dt needs to be chosen small enough so that the simulation
result becomes independent of this values, here we found dt = 0.01s to be sufficiently
small.

Because of the spatial periodicity of the flow, all particle dynamics will be folded
back onto one L̂3 cell in the flow, using periodic boundary conditions. Usually par-
ticles do not stay in one cell of the flow, i.e. they are not suspended in the flow.
Instead particles will generally fall downwards through the flow, if they are heavier
than the fluid (Maxey and Corrsin, 1986). This means that folding the dynamics of
the particles back onto a single cell is only a convenient way to visualize an infinitely
extended system and does not completely mirror what one would see in a compara-
ble experiment. However, if particles are initially distributed homogeneously over
the whole configuration space, the total particle mass in each periodic cell remains
the same over time. Therefore even if aggregation and fragmentation are included,
it is sufficient to restrict our studies to one unit cell with periodic boundaries.
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2. Particles aggregate upon collision, i.e. if their distance becomes equal to the sum
of their radii. To ensure that no collisions are missed, we use an efficient event-
driven algorithm for particle laden flows (cf. Sigurgeirsson et al. (2001) for details).
Computationally, the aggregation process is the most costly component of the sim-
ulation. In particular, the naive approach to check which particles are colliding
involves looping over all pairs of particles and therefore scales as O(N2), where N

is the number of particles. Therefore, here a linked-list algorithm (Hockney and
Eastwood, 1981), sometimes also called link-cell algorithm is used to compute the
distance between particles. The configuration space is divided into grid cells of size
ε, where each grid cell stores information on which particles it contains. The loop-
ing over particle pairs to calculate their distance is then done only over particles
in a given grid cell and the neighboring cells. If the grid cell size ε is small enough
(but larger than the largest appearing particle size) the link-cell algorithm scales as
O(N) and is thus much faster than the naive approach.

3. After each time step dt particles can fragment if the shear at their position exceeds
a critical value. If that is the case, new fragments are created according to the rules
described in Sec. 4.2.2.

We note that at first glance it looks like aggregation and fragmentation are treated
very different, in particular aggregation seems to be independent of the aggregate
strength γ in this model. However, this is not the case. Initially all particles that come
into contact aggregate, i.e. here the aggregation probability upon collision is equal to
one. But when looking at aggregation and fragmentation together over one time step
dt it is in fact smaller than one because some aggregates that just formed during this
time step will break up again. These are the aggregates where the aggregate strength
γ is not strong enough to hold the aggregate together. This means after one time step
only some of the particles that came into contact will actually have aggregated and this
number will depend on the aggregate strength γ. This means that both aggregation and
fragmentation probabilities depend on the same aggregate property, which one would
expect in reality.

4.3. Simulation Results

In the following section we will present simulation results using the model described
above, to determine the influence of the different splitting rules on the resulting particle
size distributions. As the parameters used in the model system can vary greatly in natural
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systems, we examine the sensitivity of the system with regard to the following param-
eters: aggregate strength γ, fractal dimension fd and total number of primary particle N .

4.3.1. Measured Quantities

From previous works it is known that the balance of aggregation and fragmentation
typically leads to a steady state of the particle size distribution (Zahnow and Feudel,
2009). This follows from the fact that normally aggregation dominates for small sizes,
whereas fragmentation is the dominant process for large sizes. In addition to studying
this size distribution of the particles in the steady state, we introduce different measures
to characterize first the approach to the steady state and then the steady state itself.
To follow the convergence of the system towards a steady state, we use two different
quantities. The first quantity that we measure during the simulations is the average
number of primary particles per aggregate, defined as

〈α(t)〉 =
∑
α

αNα(t)/N(t) . (4.23)

In the context of our model 2 〈α(t)〉 corresponds to the ’mean equivalent circular diame-
ter’ that is often used as a measure in experiments with marine aggregates (Lunau et al.,
2006). We will use this quantity as a first estimate whether the particle size distribution
has converged to a steady state and to follow the evolution of the particle size distribution
towards the steady state.
A second quantity of the aggregation and fragmentation process that may be experimen-
tally measured is the time it takes to reach the steady state. Especially in technical
applications this can be an important quantity, where processes need to be timed appro-
priately to allow for a smooth work flow. Here we introduce a measure for this relaxation
time in our model and show how different system parameters influence this time to reach
the steady state.
We define the relaxation time τ∞ as

τ∞ =
∫ ∞

0
dt
(∣∣∣1− 〈α(t)〉/α∞

∣∣∣) . (4.24)

〈α(t)〉 is a running (time)-average of the average number of primary particles in an ag-
gregate. It is used to remove fluctuations due to the periodic changes in the flow. This
definition of the relaxation time is analogous to the definition of the correlation time for
stochastic processes as the integral over the autocorrelation function. For example, for
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an exponential relaxation process ∝ e−t/tR Eq. (4.24) leads to the expected result of
τ∞ = tR. However, Eq. (4.24) stays an appropriate measure for more irregular relaxation
processes.
As a simple measure to characterize the steady state of the particle size distribution we
use the average number of primary particles in an aggregate in the steady state that is
defined as

α∞ = lim
t→∞

〈α(t)〉 . (4.25)

4.3.2. Approach to a Steady State

First, we use the average number of primary particles per aggregate to follow the conver-
gence of the systems towards a steady state for all three splitting rules (Fig. 4.3).

Our initial condition is always a uniform

Figure 4.2.: The histogram shows the per-
centage of fragmentation events for the
number of fragments created in that event,
for the same simulation run as shown in
Fig. 4.3. Large-scale fragmentation leads
typically to the smallest number of frag-
ments, while erosion typically generates
most fragments.

distribution of primary particles.

Initially, aggregation leads to a fast in-
crease in the average number of primary
particles per aggregate similar for all split-
ting rules. Then fragmentation sets in
and a balance between aggregation and
fragmentation is reached, with a differ-
ent steady state average particle size for
the different splitting rules. α∞ fluctu-
ates over time, due to the statistical fluc-
tuations in the flow. Large-scale splitting
leads to the highest average number of pri-
mary particles per aggregate, erosion to
the lowest and uniform fragmentation is
in between. This can be intuitively un-
derstood, since for erosion typically more

fragments are created than for large-scale fragmentation (see Fig. 4.2). When a particle
gets eroded, one of the fragments is usually close to the same size as the original aggre-
gate. This leads to a high probability that this fragment will break again and therefore
in many cases fragmentation will not be binary, but many fragments will be created. For
large-scale fragmentation, aggregates will typically break only once, since both fragments
are much smaller than the original aggregate.

In general, it is less likely in the case of large-scale fragmentation that a large number
of fragments is created. This leads in the mean to a larger average aggregate size than
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Figure 4.3.: Average number of primary particles as a function of time for aggregate strength
γ = 9 and aggregate fractal dimension fd = 2.0 for (a) large-scale fragmentation (b) erosion
and (c) uniform fragmentation.

for erosion.

The different splitting rules lead to very different distributions (cf. Fig. 4.6). Large-
scale fragmentation creates a distribution with a single peak at intermediate radii and no
particles of the smallest sizes. The right hand side of the aggregate size distribution for
large-scale fragmentation follows approximately an exponential decay.

The size distribution found for large-scale fragmentation corresponds well to those
observed for marine aggregates (Lunau et al., 2006) where exponential size distributions
have also been reported. This may indicate that large-scale fragmentation is indeed the
primary mode of break-up for many marine aggregates, as proposed in some works (see
e.g. Thomas et al., 1999) and that erosion plays a very small role there.

By contrast, the size distribution for erosion has two different regimes, with a sharp
maximum at the smallest aggregate size and a slower decaying tail at larger aggregate
sizes.

Uniform splitting, where both larger and smaller fragments are created leads to a
plateau in the size distribution at smaller aggregate sizes and an exponential decay to-
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wards larger aggregate sizes.

Many of the system parameters that appear in our model can vary much in natural sys-
tems, in particular the aggregate strength, the number of primary particles involved and
the fractal dimension of aggregates. In the following we therefore examine the sensitivity
of our results to these parameters.

4.3.3. Influence of Aggregate Strength

To determine the influence of the forces holding the aggregates together on the result-
ing steady state size distribution, α∞ is computed for different values of the aggregate
strength γ. α∞ increases with γ for all fragmentation rules. The increase is fastest for
large-scale fragmentation and slowest for erosion. (see Fig. 4.4(a)). The relaxation time

Figure 4.4.: Influence of aggregate strength γ. (a) Average number of primary particles per
aggregate in steady state α∞ and (b) relaxation time τ∞ for the approach to the steady state
for different values of the aggregate strength γ. Error bars are obtained from an ensemble of
5 different realizations of the carrier flow.

τ∞ as a function of γ is shown in Fig. 4.4(b). For all three fragmentation rules, the
relaxation time is independent of the value of γ.

The relaxation time is defined relative to the average number of primary particles in
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steady state α∞ and therefore the actual value of α∞ does not influence the relaxation
time.

When looking at the particle size distribution in steady state (Fig. 4.6(a)-(c)), the
difference between the three fragmentation rules is again clearly visible. However, this
difference does not seem to depend on the value of the aggregate strength γ, as the
distributions for each fragmentation rule remain qualitatively the same for different γ,
but getting wider with increasing aggregate strength.

4.3.4. Influence of the Volume Fraction

Figure 4.5.: Influence of the total number of primary particles N1. (a) Average number
of primary particles per aggregate in steady state α∞ and (b) relaxation time τ∞ for the
approach to the steady state for different values of the totalnumber of primary particles N1.
Error bars are obtained from an ensemble of 5 different realizations of the carrier flow.

To determine the influence of the volume fraction, i.e. the total number of primary
particles N1 in the system, on the resulting size distribution, α∞ is computed for dif-
ferent values of N1. α∞ increases with increasing number of primary particles, due to
the increased number of collisions. Again, the average number of primary particles per
aggregate in the steady state α∞ is largest for large-scale fragmentation and smallest for
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Figure 4.6.: Histogram of the particle size distribution. Number of particles versus the nor-
malized radius r/r1 for (a) different values of γ for large-scale splitting (b) different values
of γ for erosion splitting, (c) different values of γ for uniform splitting, (d) different values of
the total number of primary particles N1 for large-scale splitting, (e) different values of N1

for erosion splitting and (f) different values of N1 for uniform splitting.
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erosion. The increase in α∞ with N1 is almost linear for all three fragmentation rules.

The relaxation time (see Fig. 4.5(b)) decreases for increasing N1 for all three frag-
mentation rules. This again shows that the relaxation time does not depend strongly
on the absolute value of α∞. Instead, this indicates that the relaxation time is mainly
determined by the collision rate between the particles. While a change in fragmentation
rate, for example due to increased γ dues not affect the relaxation time, an increased
collision rate, due to an increased number of primary particles in the system seems to
decrease the relaxation time significantly.

Again, the size distributions (Fig. 4.6(d)-(f)) remain clearly different for the different
fragmentation rules, independent of the total number of primary particles N1 in the
system.

4.3.5. Influence of the Fractal Dimension

The last important system parameter that typically varies a lot in natural systems is the
fractal dimension fd of the aggregates (Winterwerp, 1998). To determine the influence of
the fractal dimension of the aggregates, α∞ is computed for different values of fd.

For all three fragmentation rules we find a drastic increase in the average number of
primary particles per aggregate in the steady state (see Fig. 4.7(a)) with increasing fd.

In the case of varying the fractal dimension this increase in α∞ is much more drastic
than for the other parameters studied in the previous sections. α∞ increases by approxi-
mately a factor of 100 between fd = 1.5 and fd = 2.3. Initially, one might assume that the
increase of the average number of primary particles per aggregate in the steady state is
only due to the aggregates becoming more compact as the fractal dimension is increased
and does not really reflect a change in the aggregate size. However, plotting the average
radius of the aggregates in the steady state as a function of fd (inset in Fig. 4.7(a)) shows
that there is also a significant increase in the aggregate size with increasing fd.

This increase when varying the fractal dimension can be understood by looking at the
stability condition for the aggregates (cf. Eq. (4.17)). The stability curve defined by Eq.
(4.17) becomes almost horizontal for larger aggregate sizes. The larger fd the greater
becomes the range of aggregate sizes where increasing the size has almost no effect on the
stability (with the limit of fd = 3 where stability is independent of the size). Increasing
the aggregate strength γ also leads to larger aggregates being stable at a given value of
shear force. However, the increase in the range of stable aggregate sizes is much lower.

We note that the relaxation time increases weakly with fd for all splitting rules (see
Fig. 4.7(b)). Increasing the fractal dimension leads to more compact aggregates, i.e. less
overall volume occupied by aggregates and therefore smaller collision probabilities. This
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in turn increases the relaxation time. This effect appears strongest for erosion, where the
relaxation time becomes very short for small values of fd whereas for large-scale fragmen-
tation and uniform fragmentation there seems to be a saturation of the relaxation time
for values of fd < 2.
Once again, the shapes of the particle size distributions retain their characteristic differ-
ences for the different fragmentation rules. Aside from the increasing fluctuations in the
distributions for increasing fd, due to the decreasing number of aggregates in the system,
the qualitative shape of the distribution remains characteristic for the fragmentation rule,
independent of the value of fd.

Figure 4.7.: Influence of the fractal dimension fd of the aggregates. (a) Average number of
primary particles per aggregate in steady state α∞, the inset shows the relative average size
of aggregates in the steady state r∞/r1 = α

1/fd
∞ of the aggregates as a function of fd and

(b) relaxation time τ∞ for the approach to the steady state for different values of the fractal
dimension fd of the aggregates. Error bars are obtained from an ensemble of 5 different
realizations of the carrier flow.

The range of fd that is observed in natural systems reaches even further than fd = 2.3,
up to approximately 2.6. However, this is not shown here, because due to the drastic
increase in the average number of primary particles per aggregate only very few aggregates
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would remain for such high values of fd (if the other parameters remain fixed). Hence,
no meaningful statistics or size distributions could be obtained.

This is a computational limitation of the current model, due to the finite number of
primary particles that can be studied. While it occurs for every parameter, e.g. increasing
the aggregate strength γ too far has the same effect, it is most pronounced for the fractal
dimension. Small increases of the fractal dimension lead to proportionally much larger
increases in the mean aggregate size, therefore reducing the total number of aggregates
in the system very quickly.

4.4. Discussion

To conclude this work, in the final section we provide a brief discussion of the limitations
of the particle-based aggregation and fragmentation model proposed here and finish with
a brief summary of our results.

4.4.1. Limitations of the Model

In this work we showed the application of our particle-based model to the problem of
aggregation and fragmentation of marine aggregates. We emphasize that the particle-
based model introduced here is a very general model that can be applied to a wide range
of other problems, for example in chemical engineering and has the potential to be a useful
addition to the usual modeling approaches for aggregation and fragmentation. However,
there are a number of limitations that should be pointed out. Some of these are due to
physical aspects of the problem that are not yet fully understood and can therefore not
be captured, others are mainly due to computational limitations.

The main physical aspect of the problem that is still not fully understood are the
details of the fragmentation mechanism. In particular for marine aggregates, but also
for many other systems where aggregates with a fractal-like structure appear, there still
exists no satisfying microscopic theory for the fragmentation process. The fragmentation
model used in this work can therefore only be considered as a very simplified view on the
problem and most likely does not capture many aspects of the real situation. However,
it serves as a useful basis to consider the qualitative impact of different fragmentation
mechanisms on the overall size distribution of the aggregates.

Additionally, the equations of motion for fractal-like aggregates can be expected to be
very different from the simple equations used here. The inclusion of the increased radius
and effective density which was done in this work represents a very simple modification
of the relevant forces, such as the drag forces acting on the particle and is unlikely to
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capture the full complexity of the problem. However, it is a useful approximation to
consider the impact of a complex structure on the steady state size distribution.

Furthermore, the description of marine

Figure 4.8.: Histogram of the particle size
distribution. Number of particles versus the
radius a for different values of the fractal
dimension fd of the aggregates for (a) large-
scale splitting (b) erosion splitting and (c)
uniform splitting.

aggregates as having a fractal-like struc-
ture is only a first approximation. Mea-
surements have shown that when averaged
over many different individual aggregates
there exists a power-law relationship be-
tween the aggregate size and mass. This
is certainly not true for each individual
aggregate, but has been found to be a
reasonable model in many cases (Kranen-
burg, 1994). In addition, the concept of a
fractal dimension is usually only valid over
a certain size range of aggregates. Aggre-
gates that consist of only one or two pri-
mary particles generally do not have the
same structure as a larger aggregate. In
the context of this work it is possible to
consider as primary particles the smallest
fraction of an aggregate that still has the
same power-law relationship as the large
aggregates, i.e. as the fractal generator of
the aggregate (see also the related foot-
note in Sec. 4.2.1).

In addition, there are a number of as-
pects that are theoretically understood
quite well, but can not be included in such
a model due to computational limitations.
First among these is the two- and three-
way coupling between the particles and
the surrounding fluid. Two-way coupling,

i.e the feedback of the particles on the fluid can in principle be included but requires
solving the equations of motion for the fluid together with the equations for the parti-
cles and therefore leads to a drastic increase in computational effort. In addition, as the
particle radius r is assumed to be small, the feedback from the particle motion on the
flow is usually not significant (Michaelides, 1997) and can therefore be neglected. The
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inclusion of three-way particle-flow coupling, i.e. the interaction of particles through the
fluid is usually a bigger challenge. In particular at low Reynolds numbers this interaction
affects the particle motion even at low particle concentrations (Brady and Bossis, 1988).
While there exist a number of interaction models, that are able to compute this three-way
coupling (see e.g. (Knudsen et al., 2008)) they are typically limited to systems with only
a few particles because of the computational costs involved. While the modification of
individual particle trajectories can be significant, the main effect for the collective aggre-
gation and fragmentation dynamics of an ensemble of particle is typically a reduction of
the collision rates. This can be approximated in a simple way by introducing a collision
efficiency, i.e. a probability for aggregation upon collision. However, the introduction
of such a collision efficiency does not qualitatively affect the results shown here. Ad-
ditionally, the fluiddynamic interaction of permeable particles such as particles with a
fractal-like structure discussed here are not understood very well. It is likely that flows
through an aggregate can lead to very different interactions between fractal-like particles
compared to solid spherical particles (see e.g (Stolzenbach and Elimelech, 1994; Li and
Logan, 2001)), in particular such permeability effects may actually decrease the influence
of hydrodynamic interactions between the aggregates compared to the case of completely
solid particles (Bäbler et al., 2006).

A further limitation for the applicability of the model is the number of primary par-
ticles that can be computationally considered. The present computational capacities do
not allow to apply this approach to large systems, e.g. models that are used to study
aggregation, fragmentation and aggregate transport on spatial scales up to several hun-
dred kilometers. For large systems a rate-equation approach is therefore much better
suited. However, for many small systems and also for the principle study of the processes
involved, this is not a severe limitation.

Furthermore, as the model was tested with a simple 3-d synthetic turbulent flow,
it is an open question how representative the results are to draw general conclusions
about the evolving steady state size distribution. In particular intermittency effects and
clustering of particles on the inertial scale of a real turbulent flow may significantly affect
aggregation and fragmentation probabilities. In order to achieve more general statements
it will therefore be necessary to study the model and the resulting size distribution for
various, more realistic flows, for example using DNS simulations of real turbulent flows.
Nevertheless, the influence of different system parameters and fragmentation mechanisms
has been tested and gives a detailed insight for this specific flow.

119



4. Lagrangian Modeling of Fractal-Like Aggregates

4.4.2. Summary

In the present study we described in detail a coupled model for advection, aggregation
and fragmentation of individual inertial particles with a fractal-like structure. We showed
how typical properties of aggregation and fragmentation processes can be incorporated.
In particular, we introduced an approximate way, using modified aggregate sizes and
effective densities, to account for the fractal-like structure that is common for aggregates
in many natural systems. The model represents an alternative approach to the rate-
equation based theory that is usually used to describe aggregation and fragmentation
processes and was used to gain insights into principle behavior of fractal-like aggregates
under different fragmentation mechanisms. The model was parameterized for the case of
a suspension of marine aggregates in the ocean, but can in principle be used in a wide
range of applications such as cohesive sediment dynamics, the flocculation of biological
cells or solid-liquid separation systems in chemical engineering (Kranenburg, 1994; Han
et al., 2003; Bäbler et al., 2008).

We observed the development of a balance between aggregation and fragmentation,
leading to a steady state. It was found that with increasing aggregate strength the
mean aggregate size in steady state increases, whereas the relaxation time stays constant.
With increasing fractal dimension the relaxation time towards steady state and the mean
aggregate size in steady state increase. By contrast, an increase in particle volume fraction
decreases the relaxation time due to higher collision probabilities and increases the steady
state mean size. In general, increased aggregation rates or decreased fragmentation rates
lead to an increased mean aggregate size in steady state. The relaxation time decreases
for increasing aggregation rates, but does not change with decreasing fragmentation rates.

In the context of our model different types of fragment size distributions can easily be
tested and compared with each other. We compared numerical results for three commonly
used distributions of fragment sizes, large-scale fragmentation where fragments typically
have similar sizes, erosion, where one fragment is typically very small and uniform frag-
mentation, where all fragment sizes appear with the same probability. Large-scale frag-
mentation and erosion were treated as two separate processes to study the influence of
fragmentation at a distance ζ from the center of the aggregate on the size distributions in
the steady state. In reality, aggregates will break with certain probabilities at a distance
ζ from the center but there will not be two separate processes. Therefore, depending
on the probability distribution for fragmentation at a certain distance, one can expect
different combinations of the steady state size distributions found in this work.

One such combination, where fragmentation at all distances ζ appears with the same
probability was given by the uniform fragmentation rule. Uniform fragmentation leads
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to a distribution with a broad plateau for small aggregate sizes and an exponential tail
towards larger aggregate sizes. A distribution with two different regimes evolves for
erosion-like fragmentation. Large-scale fragmentation leads to an exponential tail of the
particle size distribution. Similar shapes of the size distribution of the aggregates for large-
scale fragmentation have also been found in a number of theoretical and experimental
studies (Spicer and Pratsinis, 1996a; Mietta et al., 2008), indicating that our model is
able to reproduce the major features of such aggregation-fragmentation processes. Such
an exponential tail has also been measured in field studies of marine aggregates (Lunau
et al., 2006). This may indicate that large-scale fragmentation could be the primary mode
of break-up for such aggregates, as has previously been discussed by e.g. Thomas et al.
(Thomas et al., 1999).

In all cases the steady state particle size distribution follows a specific shape for each
fragmentation rule. This indicates that the fragmentation process is most relevant for
the shape of the distribution. The ratio of aggregation and fragmentation probabilities,
mainly influenced by the aggregate strength, total particle volume fraction and fractal
dimension, determines the mean aggregate size in steady state and the relaxation time.
Out of these three parameters the fractal dimension has the strongest effect since it
influences both aggregation and fragmentation probabilities.

The influence of large-scale fragmentation versus erosion for marine aggregates has
recently been studied numerically and compared to experimental results in a work by
Verney et al. (Verney et al., 2010). They used a rate-equation based Smoluchowski equa-
tion approach and obtained results comparable to those of our model. Thus, as both
model approaches lead to similar results the insight into fragmentation and fragment dis-
tributions provided by the perspective of our model can provide a useful addition to the
understanding of aggregation and fragmentation processes. Additionally, in the particle-
based model presented here particle inertia can be fully considered, while the correct
incorporation of particle inertia into a rate-equation based theory is still an unsolved
problem. Hence, future model studies using this approach can lead to a better under-
standing of particle inertia effects in aggregation and fragmentation processes. Therefore,
the model suggested here has the capability to be a powerful tool to investigate the va-
lidity of different approximative strategies in the formulation of a rate-equation based
theory.
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This chapter illustrates how to bridge the gap between the new, individual-particle based
approach to aggregation and fragmentation that was introduced in this work and the usual
rate-equation based approach typically found in the literature. The contents of this chapter
have not yet been published elsewhere, but are written in the form of a publication in
preparation.

5.1. Introduction

In this chapter the rate-equation based description of aggregation and fragmentation
processes for fractal-like aggregates is discussed. While the Lagrangian approach using
individual, inertial particles discussed in the last chapter offers many advantages, rate-
equations are much more suitable for large systems, where the computational effort of
a particle-based approach is prohibitive. In this context the individual-particle based
approach can be used as a guideline for comparison and a powerful tool to determine the
validity of different approximations in the rate-equation approach. However, to be able
to do this one needs to be able to compare these two approaches. The individual-particle
based approach directly calculates collisions and fragmentation events locally, for each
particle whereas in the rate-equation approach these are applied globally as a probability
per time for a whole population of particles. While much effort has gone into determining
suitable collision rates, in particular for inertial particles (see e.g. Ch. 2.3.4 of this work)
the understanding of fragmentation rates is still much less complete. In this chapter we
will therefore attempt to emphasize the fundamental connection between fragmentation
rates and the underlying properties of the individual aggregates, namely the critical shear
required to break an aggregates.

In the following a formulation for the aggregation and fragmentation of solid particles
that form fractal-like clusters is discussed for an infinite, homogeneous system. There have
been a number of efforts to incorporate such a fractal-like structure in a rate-equation
approach, for example by Kranenburg (1994) or Maggi et al. (2007). Similar to most
previous works inertial effects on the collision rates of the particles are ignored because
even though some advances have been made (see e.g. Bec et al., 2005), even for fairly
simple flow situations no equations exist that could be applied. For the fragmentation
rate, the situation is slightly different. Since it is a single aggregate property inertial
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effects probably do not play a significant role. Still, the connection between the frag-
mentation rate in a turbulent flow and the properties of the individual aggregates is not
very clear in most cases. While many approximations exist, they are usually based on
the assumption of a Gaussian distribution of the shear forces responsible for breakup (see
e.g. Bäbler et al., 2008). Here it is argued that even if the distribution of the individual
velocity increments is Gaussian, as is for example the case in the synthetic turbulent flow
used in the numerical model in the previous chapter, the full shear distribution is very
different from a Gaussian. In particular, the probability to find a shear close to zero is
very small. From this, an expression for the fragmentation rate is derived that leads to a
great increase in the fragmentation rate compared to most models found in the literature.

Usually, once expressions for the collision and fragmentation rate are obtained the
corresponding rate equation for aggregation and fragmentation is then solved numerically,
for example with a size-class based model (Spicer and Pratsinis, 1996a) or a distribution
based model (Maerz and Wirtz, 2009). In this way, spatial inhomogeneities can also
be taken into account, by solving the model for different regions that are coupled via
advective transport.

Here, an analytical solution of the aggregation - fragmentation rate equation is dis-
cussed. This is mainly for illustrational purposes, in principle a numerical model based
on this description offers much more flexibility and offers a much more detailed descrip-
tion. However, we believe it is still instructive to see how far an analytical approach
can be carried. For the special case of an exponential size distribution, which has for
example been observed for the size distribution of marine aggregates in coastal areas,
an explicit solution for the time evolution of the average aggregate mass can be found.
We emphasize that in order to obtain correct expressions for the fragmentation rates it is
necessary to take a reasonable approximation for the shear distribution. The solutions for
the classical fragmentation rate obtained from a Gaussian distribution of the shear and
for a Gamma distribution of the shear, as an approximation for the full shear distribution
are compared. While the Gaussian distribution is commonly used in the literature for
simplicity reasons, we argue that it is a poor approximation and for example leads to a
very strong underestimation of fragmentation rates.

We find analytically that in most cases a non-trivial steady state solution exists. How-
ever, this solution is only stable under certain conditions. More precisely, the non-trivial
steady state solution is only stable if aggregation dominates for small aggregate masses,
whereas fragmentation must dominate for large aggregate masses. From this, a condition
for the critical shear required to break up an aggregate can be derived. While this result
is certainly limited to the special case for which the analytical solution is obtained, we
believe similar results will hold even for the most general cases where only numerical
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5. Rate Equations for Fractal-Like Aggregates

solutions are possible.

The chapter is structured as follows. In Sec. 5.2 the description of a fractal-like ag-
gregate and the general shape of the equation for the critical shear for fragmentation is
discussed. In Sec. 5.3 the basic equation for the moments of the aggregate size distri-
bution is derived. Section 5.4 discusses the equation for the relative growth rate and in
Sec. 5.5 the collision and fragmentation kernels required for solving the equation for the
relative growth rate are presented. In addition to the classical power-law expression for
fragmentation this includes a new expression for the fragmentation rate derived from a
model for the full distribution of the shear forces in a turbulent fluid. Finally, using the
expression for the relative growth rate the equation for the moments of the size distri-
bution can be solved, leading to an analytical solution for the average aggregate mass in
the steady state and its dependence on particle and flow properties in Sec. 5.6. Section
5.7 contains a short summary and discussion of the results.

5.2. Fractal Aggregates and Critical Shear

When looking at real aggregates they are typically not spherical particles but instead
can have a fractal-like structure as they consist of a number of primary particles. The
structure of the aggregates can be characterized by a fractal dimension fd < 3 Mandelbrot
(1983). Their size can still be defined approximately by a radius, that can be considered as
the characteristic length scale of the aggregate. This radius rα of an aggregate consisting
of α primary particles with a given fractal dimension fd is derived in the following.

The relationship between mass and characteristic length r of an aggregate follows from
the definition of the fractal dimension fd (see e.g. Logan (1999)) as

α = cfd
rfd , (5.1)

where cfd
is a proportionality constant that can depend on fd. As mass conservation

must be fulfilled we get

m = αm1 = αρ1
4
3
πr3

1 , (5.2)

where r1, m1 and ρ1 are the radius, mass and density of a primary particle, respectively.
The proportionality constant cfd

can be derived from Eqs. (5.1) and (5.2) by setting
m = m1

cfd
= ρ1

4
3
πr3−fd

1 . (5.3)
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In combination with Eqs. (5.1) and (5.2) this leads to

rα = α1/fdr1 (5.4)

for the radius of an aggregate. It is evident that due to the fractal-like structure the
radius rα is greater than for a completely solid particle of the same mass.

The break-up of an aggregate occurs when the hydrodynamical forces Fhyd acting on
the aggregate exceed the forces Fagg holding the particles in the aggregate together. The
criterion for breakup can therefore be expressed as

Fhyd/Fagg > const. (5.5)

For aggregates with a fractal-like structure, consisting of a number of solid primary par-
ticle Generally, the critical shear required to break up an aggregate takes the form

Sf,c = γα−θ(fd) , (5.6)

where θ(fd) is a function with positive values for fractal dimensions fd < 3. It can be
seen that the critical shear force required to break up an aggregate decreases with the
aggregate size, i.e. larger aggregates are less stable than smaller ones. Specific models
for θ(fd) can be derived in a number of ways and depend among other things on details
of the aggregate structure (Sonntag and Russel, 1987b; Potanin, 1993; Kobayashi et al.,
1999; Higashitani et al., 2001; Harada et al., 2006).

5.3. Moments of the Size Distribution

In systems where particles can both aggregate to form larger clusters and fragment again,
there will typically be a distribution of aggregates of various sizes. It has been found
in the past (see e.g. Spicer and Pratsinis, 1996a) that in many cases aggregation rates
will dominate for small sizes, whereas fragmentation becomes the dominant process for
large sizes. In this case the combination of these two processes leads to a (dynamic)
steady state, where the overall size distribution remains approximately constant in time
as long as external parameters such as shear rate in the flow remain unchanged. However,
individual aggregates still grow and fragment, resulting in a constant flux of particles
between various sizes. Generally, the existence of such a steady state will depend on the
functional form of the aggregation and fragmentation kernels. Various forms have been
compared for example by Vigil and Ziff (1989). Here we will analyze for one specific
example the occurrence of a steady state by looking at the time evolution of the moments
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5. Rate Equations for Fractal-Like Aggregates

of the size distribution. Together, these determine the shape of the size distribution and
therefore their change over time shows whether the system converges to a steady state
solution.

For the description of this we start by assuming a continuous probability distribution1

p(α, t) = CN (α,t)
CN (t) of the aggregates. In the following CN (α, t)dα is called the number

concentration of the aggregates and is the number of aggregates per volume consisting of
a number of primary particles in the range [α, α+dα] at time t. CN (t) :=

∫∞
0 dαCN (α, t)

is the total number of aggregates per volume at time t.

Typically, aggregation and fragmentation processes are described in terms of integral
quantities of the size distribution of the aggregates, such as the average mass of aggre-
gates 〈α〉. Here, we are interested in obtaining an equation for the moments of the size
distribution which can then be used to characterize the steady state. The average of α

with respect to p is defined as

〈α〉 :=

∞∫
0

dα αp(α, t) =

∞∫
0

dα α
CN (α, t)
CN (t)

. (5.7)

Using this definition an equation for the evolution of the moments 〈αn〉 , n ∈ N>0 of
the size distribution can be derived. Taking the derivative with respect to t one obtains

d

dt
〈αn〉 =

∞∫
0

dα αn
d
dtCN (α, t)

CN (t)

−
d
dtCN (t)
CN (t)

∞∫
0

dα αn CN (α, t)
CN (t)

. (5.8)

The relative rate of change µ(α, t) of the number of particles per volume of a certain size
can be defined as

µ(α, t) :=
d
dtCN (α, t)
CN (α, t)

. (5.9)

1In the previous sections α was always a discrete variable, but here we assume α to be continuous, which
implies that the system contains primary particles within a continuous range of masses, instead of
only one type of primary particles. The reason for this is mainly that for a discrete variable in the
following all integrals turn into sums which can not be analytically evaluated. However, we believe
that for large enough systems the results will qualitatively remain the same. Normally, one would
write this more general problem, where primary particles of different mass can occur in terms of the
aggregate mass m, instead of the number of primary particles per aggregate α. However, we keep
using α in this section for consistency reasons with the rest of this work. But one should keep in mind
this slight difference, that α is now assumed to be continuous.
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Equation (5.8) can then be rewritten as

d

dt
〈αn〉 = 〈µαn〉 − 〈αn〉 〈µ〉 . (5.10)

With this equation the moments of the size distribution of the aggregates can in principle
be calculated for all times, if the relative growth rate µ(α, t) is known. However, this
quantity is exceedingly difficult to determine and to date no complete derivation of µ(α, t)
even for very simple cases has been found and only some approximations are known. In
the following, we will derive a solution for µ(α, t), using approximate expressions for
collision and fragmentation rates as well as for the shape of the probability distribution
p(α, t).

5.4. Relative Growth Rate

The equation for the relative growth rate for aggregation µagg(α, t) was first written down
by Smoluchowski (1917). For a given value of α the number density of particles per volume
CN (α, t) increases when smaller particles aggregate in such a way that their combined
size is α and decreases when particles consisting of α primary particles aggregate with
any other particles. Formally, this can be written as

µagg(α, t) =
1

CN (α, t)
·
[

1
2

α∫
0

dα′
(
χ(α′, α− α′)CN (α′, t) · CN (α− α′, t)Qcoll(α′, α− α′, t)

)

−
∞∫
0

dα′
(
χ(α′, α)CN (α′, t)CN (α, t)Qcoll(α′, α)

)]
. (5.11)

Here, χ(α′, α) is called the collision efficiency, i.e. the probability to coagulate upon
collision and Qcoll(α′, α, t) is the collision kernel, i.e. the collision rate between particles
of size α and α′ at time t. In the same way a relative growth rate due to fragmentation
µfrag(α, t) can be developed. The number of particles per volume CN (α, t) increases due
to larger particles breaking up so that the fragments are of size α and decreases due to
particles of size α breaking up. This results in

µfrag(α, t) =
1

CN (α, t)
·
[ ∞∫

α

dα′
(
ϑ(α′, α)CN (α, t)Qfrag(α′, t)

)
− CN (α, t)Qfrag(α, t)

]
,

(5.12)
where ϑ(α′, α) is the probability that an aggregate of mass α′ leads to a fragment of
size α when it breaks. ϑ contains therefore the information about the number and size
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distributions of fragments, for example binary or ternary fragmentation. Qfrag(α, t) is
the fragmentation kernel, i.e. the fragmentation rate for a particle of mass α. The total
relative growth rate is then given by µ(α, t) = µagg(α, t) + µfrag(α, t).

5.5. Collision and Fragmentation Kernels

The evaluation of the relative growth rate requires the aggregation and fragmentation
kernel for a given system. Both the aggregation and fragmentation kernels will in general
not only depend on α and α′ but also on system parameters, for example the aggregate
strength or the turbulence level in the flow.

In recent years much effort has gone into finding approximations for the aggregation
kernels. Generally, the formulation of the aggregation rate is different for each system.
Here, we are interested in particles aggregating in a turbulent flow, where aggregation
happens due to collisions of particles. These collisions occur due to a number of physical
mechanisms which are treated separately in theoretical considerations. They include
collisions due to Brownian motion, differential settling, fluid shear and inertia effects.
The collision kernels for Brownian motion, differential settling and fluid shear can be
described fairly well theoretically whereas when particle inertia plays a role, effects such
as preferential concentration and the occurrence of caustics in the particle dynamics lead
to drastic modifications of the collision kernels that are still not fully understood (Bec
et al., 2005). Therefore, we focus on the aggregation dynamics of tracer particles, i.e.
particles that follow closely the dynamics of the surrounding fluid where inertia effects and
settling can be neglected. In addition, collisions due to Brownian motion are neglected
in the following, since this is usually only relevant for particles < 1µm in diameter.

The collision kernel for non-interacting particles without inertia in turbulent shear was
developed by Saffman and Turner (1956) and reads as

Qcoll(α, α′) = ĉ

(
ε

νf

)1/2

(rα + rα′)3 , (5.13)

where ε is the average dissipation of turbulent kinetic energy in the flow, νf is the fluids
kinematic viscosity and rα is the radius of a particle of size α. Here the radius is given
by rα ∝ α1/fd . For solid particles the constant is given by Saffman and Turner as
ĉ =

√
8π/15. This is the so-called rectilinear shear kernel (Thomas et al., 1999). In

addition, we use a constant collision efficiency, i.e. χ(α′, α) ≡ χc.

The fragmentation kernel poses a very different problem. On the one hand determining
an expression seems easier because it only involves individual aggregates. On the other
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hand it can be extremely complicated because the microscopic properties of the aggre-
gates play a very important role and generally both the fragmentation kernel and the
distribution of fragments are not well understood.

For fragmentation, the first approximation for the probability ϑ(α′, α) is that ϑ(α′, α) =
2δ(α′ − 2α), where δ(x) is the Dirac delta function. This is the case of binary fragmen-
tation, where both fragments are of the same size. In many aggregation systems, such as
cohesive sediment dynamics, solid-liquid separation systems or marine aggregates this is
a common assumption.

In our approach we assume that all aggregates of the same size have the same critical
shear Sf,c(α). Here we study the case Sf,c ∝ α−θ(fd), where θ(fd) > 0, see Eq. (5.6). If
the fluid shear Sf at the position of an aggregate exceeds this critical shear Sf,c aggregates
fragment. The probability for fragmentation of a given size is then only determined by the
probability distribution of the shear p(Sf ), the influence of individual particle properties
for the fragmentation kernel (see e.g. Ruiz and Izquierdo (1997)) is not considered.
Assuming a homogeneous distribution of the particles in the flow, the fragmentation
kernel is given by

Qfrag(α) =

∞∫
Sf,c(α)

dSf p(Sf )/τ(Sf )

Sf,c(α)∫
0

dSf p(Sf )

, (5.14)

where τ(Sf ) is the time scale on which the shear Sf persits around an aggregate, see e.g.
Bäbler et al. (2008).

In this case the problem of evaluating Qfrag(α) lies in finding expressions for the
probability distribution of the shear flow p(Sf ). The characteristic time of the shear Sf

is taken to be proportional to the local Kolmogorov time scale and is given by τ(Sf ) =
(d̂Sf )−1, with a constant d̂. For the simple case of a Gaussian distribution of the shear,
i.e.

p(Sf ) =
1√

2πσ2
e−

S2
f

2σ2 (5.15)

with σ2 = ε
15νf

(see e.g. Saffman and Turner (1956)) the integral (5.14) can be solved
analytically, yielding

Qfrag(α) = 2d̂

√
2
π

σ
e−

S2
f,c(α)

2σ2

erf
(

Sf,c(α)√
2σ

) . (5.16)

For small aggregates the critical shear Sf,c becomes large and the argument of the error
function becomes much larger than one, meaning that the error function approaches one.
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In the limit of small aggregates the fragmentation kernel therefore becomes

Qfrag(α) = 2d̂

√
2
π

σe−
S2

f,c(α)

2σ2 , (5.17)

which is the form of the fragmentation kernel proposed by Flesch et al. (1999). In the
other limit of large aggregates the critical shear Sf,c becomes small and Eq. (5.16) can
be approximated by

Qfrag(α) ≈ d̂
4√
π

σ2Sf,c(α)−1 = d̂
4

15
√

π

ε

νf
Sf,c(α)−1 . (5.18)

This is the familiar power-law formulation for the fragmentation rate employed by many
authors, such as Pandya and Spielman (1982); Spicer and Pratsinis (1996a); Winterwerp
(1998).

However, the assumption of a Gaussian

Figure 5.1.: Estimating the distribution of
the shear forces in a flow with Gaussian ve-
locity increments. The shear distribution
is sampled numerically (green curve) from
Gaussian distributions with standard devi-
ation σ =

(
ε

15νf

)1/2

= 8 (blue curve) and a

Gamma function is fitted to this (red curve).

distribution of the shear that this result is
based on is generally not valid. While the
probability distribution of velocity incre-
ments can have an approximately Gaus-
sian distribution, at least on the largest
scales in a turbulent flow Kailasnath et al.
(1992); Sreenivasan (1999), the shear itself
is a function of all the different velocity in-
crements. In general, the shear force Sf in
a flow is given by

Sf =

2
∑
i,j

SijSij

(1/2)

, (5.19)

where Sij = 1
2

(
∂ui
∂Xj

+ ∂uj

∂Xi

)
is the rate-of-

strain tensor in the flow. While the distri-
bution of the velocity increments can in-
deed be Gaussian, which is for example

also the case for the synthetic turbulent flow used throughout this work, the distribution
of Sf will be very different.

However, no exact analytical expression can be given for the distribution of the shear.
Therefore, here the distribution of Sf is sampled numerically by assuming a Gaussian
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probability distribution of the velocity increments and then a suitable function is fitted
to approximate the shear distribution (see Fig. 5.1). In principle, one could numerically
calculate fragmentation rates directly from the real distribution. This can also be done
for the case of a real turbulent flow where the velocity increments are not Gaussian. If the
velocity field is known with sufficient detail, e.g. from measurements or DNS simulations
one can numerically calculate an expression for the fragmentation rate for this field using
the procedure explained below. However, since we are interested in an analytical solution
here we need to derive an approximate expression for the shear distribution.

For the case of Gaussian velocity increments it was found that a Gamma function
gives a reasonable fit to the overall shear distribution. To determine the dependence of
prefactor of the Gamma distribution on the flow parameters, the fit was repeated for
different values of ε/νf . We emphasize that there is indeed a strong difference between
the assumption of a Gaussian distribution of the shear and the full shear distribution.
In particular, the Gaussian distribution leads to the maximum of the shear distribution
being at Sf = 0, whereas in the real shear distribution the probability to find a shear
around Sf = 0 is very small. It can therefore be expected that a Gaussian distribution
for the shear significantly underestimates the fragmentation probability. Assuming that

p(Sf ) =

(
3
√

ε̃
)5

Γ(5)
S4

fe−3
√

ε̃Sf , (5.20)

where ε̃ := ε/νf , the equation for the fragmentation kernel (5.14) can be solved, leading
to

Qfrag =
d̂

3
40ε̃4 + 120ε̃7/2Sf,c + 180ε̃3S2

f,c + 180ε̃5/2S3
f,c + 135ε̃2S4

f,c + 81ε̃3/2S5
f,c

8e
3√
3
Sf,c ε̃7/2 − 8ε̃7/2 − 24ε̃3Sf,c − 36ε̃5/2S2

f,c − 36ε̃2S3
f,c − 27ε̃3/2S4

f,c

. (5.21)

In the limit of large aggregates the critical shear Sf,c becomes small and to leading order
the fragmentation rate can be approximated as

Qfrag(α) = d̂
40

48.6

(
ε

νf

)3

Sf,c(α)−5 . (5.22)

It is noted that this fragmentation rate does indeed increase much faster with increasing
aggregate size as the expression calculated from the assumption of a Gaussian distribution
of shear (5.18). This is due to the much higher probability to find larger shear values
when using the full shear distribution (5.20).

We emphasize that the relationship between Qfrag and its argument α depends on the
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specific form of the stability condition for fragmentation, i.e. the specific model for Sf,c.
It is through this dependence that the properties of the individual aggregates appear in
the final result.

5.6. Steady State Solutions

In addition to the collision and fragmentation kernels, solving Eq. (5.11) for the relative
growth rate requires some information about the shape of the number concentration of the
aggregates. Here, we assume that an exponential distribution is an approximate steady
state solution for the total relative growth rate µ(α, t). Such exponential distributions
have been observed for example for the number distribution of marine aggregates in
coastal areas (Lunau et al., 2006) and is also found in many numerical studies, see for
example the results in the previous chapter of this work. We take CN (α, t) = CN (t)

〈α〉 e−α/〈α〉.
With this assumption of an exponential distribution which is characterized by the single
parameter 〈α〉 the system of equations for the all the moments (5.10) reduces to a one-
dimensional dynamical system, i.e. a single equation for 〈α〉. A solution of this dynamical
system is in this case equivalent to a solution for the full distribution.

With the collision and fragmentation kernels discussed above and the assumption about
the shape of the distribution CN the equation for the mean size of the aggregates can now
be solved. Separating the contributions of aggregation and fragmentation the equation
for the mean number of primary particles of the aggregates reads as

d

dt
〈α〉 = f(〈α〉)agg + f(〈α〉)frag , (5.23)

where

f(〈α〉)agg := 〈αµagg〉 − 〈α〉 〈µagg〉 (5.24)

f(〈α〉)frag := 〈αµfrag〉 − 〈α〉 〈µfrag〉 . (5.25)

The contribution from shear aggregation, using the kernel (5.13) is given by

f(〈α〉)agg = c(fd)CN,1χcε
1
2 〈α〉

3
fd , (5.26)

where CN,1 is the initial number density of primary particles and

c(fd) =
1
4
Γ
(
fd
−1
) ĉ

f2
dπ3/2

[
2
√

3πfd27fd−1Γ
(

3 + fd

3fd

)
Γ
(

2fd + 3
3fd

)
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+3π4
1+fd

fd Γ
(

fd + 2
2fd

)
Γ
(
f−1

d

)]
. (5.27)

Using the complete expressions for the fragmentation rate, both with the assumption of
a Gaussian distribution of the shear and with the Gamma distribution as approximation
for the full shear distribution (Eqs. (5.16) and (5.21)) the equation for the relative growth
rate can no longer be solved analytically. However, using the power-law approximations
(5.18) and (5.22) for the fragmentation kernels for larger aggregates the mean growth rate
and the contribution to the steady state can be calculated. In the case of the Gaussian
distribution of the shear the contribution from fragmentation is given by

f(〈α〉)frag,gauss = −d1(fd)
ε

νf
γ−1 〈α〉θ(fd)+1 , (5.28)

where

d1(fd) =
d̂

2
· 4
15
√

π
Γ (θ(fd) + 2) . (5.29)

In the case of a Gamma distribution of the shear the contribution from fragmentation
is given by

f(〈α〉)frag,gamma = −d2(fd)
(

ε

νf

)3

γ−5 〈α〉5θ(fd)+1 , (5.30)

where

d2(fd) =
d̂

2
· 40
48.6

Γ (5 · θ(fd) + 2) . (5.31)

A steady state solution corresponds to a fixed point 〈α〉∗ of the dynamical system
defined by Eq. 5.23. The equation for the fixed point is d

dt 〈α〉 = 0, corresponding to
values of 〈α〉 where f(〈α〉)agg = −f(〈α〉)frag. The ’standard’ approach to determine the
(linear) stability of a fixed point in a dynamical system by considering a Taylor series
expansion around the fixed point and then looking at the Eigenvalues of the Jacobian
(see e.g. Argyris et al. (1994)) does not work here. All derivatives at the fixed point
are either zero or infinity, meaning the dynamical system considered here can not be
expanded in a Taylor series around zero. However, the stability of a fixed point 〈α〉∗
can easily be determined by examining d

dt 〈α〉 for small deviations from the fixed point.
If d

dt 〈α〉 > 0 in some neighborhood around the fixed point, the fixed point is unstable
whereas if d

dt 〈α〉 < 0 in some neighborhood around the fixed point, the fixed point is
stable.

It can be seen that without fragmentation the only steady state solution for the mean
mass is 〈α〉∗ = 0. It is readily seen that for any small deviation from the fixed point,
d
dt 〈α〉 > 0. The fixed point is therefore unstable and the mean mass grows to infinity.
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The shear collision kernel is a so-called ’gelling kernel’, in the absence of fragmentation
it leads to a transition, where the system looses its mass to an infinite sized particle
(Vigil and Ziff, 1989). Without aggregation, for both f(〈α〉)frag,gauss and f(〈α〉)frag,gamma

the only steady state solution is also 〈α〉∗ = 0. For any deviation from this fixed point,
d
dt 〈α〉 < 0 and the fixed point is therefore stable. Both fragmentation kernels are so-called
’shattering kernels’, where the system looses its mass to a system of zero-sized particles
(Vigil and Ziff, 1989).

The combination of aggregation and fragmentation typically leads to two fixed points.

1. The ’trivial’ solution 〈α〉∗ = 0

2. a) For the Gaussian fragmentation kernel

〈α〉∗ =
(

c(fd)
d1(fd)

· γχcε
− 1

2 νfCN,1

)“
fd

(θ(fd)+1)fd−3

”
(5.32)

is a positive steady state solution for the mean number of primary particles if
(θ(fd) + 1)fd 6= 3. Otherwise, aggregation and fragmentation grow with the
same power and a non-zero steady state solution only exists if the absolute
values of the prefactors in Eqs. (5.26) and (5.28) are identical. In this case
every value of 〈α〉 represents a steady state solution.

b) For the Gamma distribution fragmentation kernel

〈α〉∗ =
(

c(fd)
d2(fd)

· γ5χcε
− 5

2 ν3
fCN,1

)“
fd

(5·θ(fd)+1)fd−3

”
(5.33)

is a positive steady state solution for the mean number of primary particles if
(5 · θ(fd)+ 1)fd 6= 3. Otherwise, aggregation and fragmentation grow with the
same power and a non-zero steady state solution only exists if the prefactors
in Eqs. (5.26) and (5.28) have the same absolute values. Then every value of
〈α〉 represents a steady state solution.

We emphasize once more that these steady state solutions for the mean number of pri-
mary particles per aggregate were derived under the assumption that an exponential
distribution of CN is a steady state solution for the total relative growth rate µ(α, t). If
that is the case these solutions for the mean determine the full size distribution in the
steady state.

To determine the stability of the fixed points, i.e. to see whether the system will
converge to one of these solutions one can again look at the sign of d

dt 〈α〉 in some neigh-
borhood around the fixed points. Since the system is one dimensional, if there are two
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fixed points it is sufficient to determine the stability of one of these, since the other one
will be of the opposite type. Looking at the solution 〈α〉∗ = 0 the stability can readily be
determined and from this we conclude the stability of the second, non-zero fixed point.

1. For the Gaussian fragmentation kernel the second, non-zero fixed point (5.32) is
stable if

(θ(fd) + 1)fd − 3 > 0

↔ θ(fd) >
3
fd
− 1 . (5.34)

In this case the system approaches a non-zero steady state solution over time. This
means that the fixed point 〈α〉∗ = 0 is unstable.

2. For the Gamma distribution fragmentation kernel the second, non-zero fixed point
(5.33) is stable if

(5 · θ(fd) + 1)fd − 3 > 0

↔ θ(fd) >
1
5

(
3
fd
− 1
)

. (5.35)

In this case the system approaches a non-zero steady state solution over time.
Again, this implies that the the fixed point 〈α〉∗ = 0 is unstable.

If the non-zero fixed point is stable, aggregation dominates for small average aggregate
sizes and fragmentation dominates for large average aggregate sizes. If the non-zero
fixed point is not stable, the aggregation rate increases faster for large average aggregate
sizes than the fragmentation rate, whereas fragmentation dominates for small average
aggregate sizes. Depending on the initial condition, the average number of primary
particles per aggregate will then either grow to infinity or approach zero over time.

As already pointed out before, the assumption of a Gaussian distribution for the shear
leads to an under-estimation of the fragmentation probability and when comparing Eq.
(5.34) with (5.35) we can see now that this in turn decreases the stability regime for the
non-zero fixed point. Therefore, taking such an over-simplified approximation for the
shear distribution may lead in some cases to the conclusion that there is no stable steady
state while in fact there is.

It is a rather remarkable result that the stability of the fixed point does not depend on
any of the particle or flow properties besides the fractal dimension. While the fixed point
itself shifts if for example the level of turbulence in the flow is changed or the aggregate
strength changes, the stability of the fixed point is independent of that. This emphasizes
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the need for a more detailed understanding of the underlying fragmentation mechanism
for different applications, as this is what leads to a specific formulation of θ(fd).

While the solution presented here contains many approximations, among them ne-
glecting particle inertia for aggregation, taking only the limit of large aggregates for
determining the fragmentation rates and assuming an exponential size distribution, the
whole approach could in principle also be carried out numerically with much fewer sim-
plifications for a specific application. However, we believe that in principle similar results
would be found.

5.7. Discussion

In this chapter we have presented a rate-equation based description of aggregation and
fragmentation processes for aggregates with a complex, i.e. fractal-like structure. We
started out with an equation for the time evolution of the moments of the number distri-
bution of the aggregates. Its solution required expressions for the relative growth rates
due to aggregation and fragmentation. These in turn depend mainly on the collision and
fragmentation rates. While collision rates, at least for tracers, are fairly well established
there is still an ongoing debate about the formulation of suitable fragmentation rates.

We showed how to formulate this rate-equation approach in such a way as to link it to
the description of fractal-like aggregates that we used in the previous Chapters for our
individual-particle based model. The main question is here how to link the notion of a
critical shear required to break up an aggregate to an equation for a fragmentation rate.

We showed how in principle such an expression for the fragmentation rate of aggregates
in a turbulent flow can be derived, at least under certain conditions, that explicitly
incorporates the concept of a critical shear required for fragmentation. The calculation
of this fragmentation rate required us to make an assumption about the distribution of
the shear forces in the fluid flow. In most previous work a simple Gaussian distribution
was assumed for the shear forces, while here we argued that the full distribution of the
shear is likely to have a very different shape. Even if each velocity increment has a
Gaussian probability distribution, the acting shear force will be a combination of these
increments, leading to a very different result. We approximated such a shear distribution
with a Gamma distribution and showed how these two assumptions, a Gaussian shear
distribution and a Gamma shear distribution lead to very different expressions for the
fragmentation rate.

Using approximations of these two different fragmentation kernels for the limit of large
aggregates we were able to solve the equation for the time evolution of the moments of
the number distribution of the aggregates for the simple case of negligible inertia and
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an exponential shape of the number distribution. While in particular the assumption of
negligible inertia represents a severe restriction and more realistic collision kernels should
be used in practice, we see this as an instructive example how such a calculation can be
carried out. For more realistic situations, for example when one wants to use collision
kernels obtained from inertial-particle based models as was for example done in Ch. 2.3.4
of this work or in Ayala et al. (2008b,a) the corresponding equations can only be solved
numerically. Still, the principle remains unchanged and therefore we restrict ourselves to
the simplest case where an analytical solution is still possible.

In particular, with these analytical expressions one can directly calculate the long-
term behavior of such an aggregation-fragmentation system. We showed that in most
cases, where both aggregation and fragmentation occurs there exists a non-zero steady
state solution for the moments of the number distribution. However, the stability of this
solution can be linked to the expression for the critical shear and it is found that as stable
steady state solution only exists if certain conditions for the critical shear are met. In
particular, it is required that aggregation dominates for small aggregate sizes, whereas
fragmentation must dominate for large aggregate sizes.

Comparing these results with the previous chapter we find that under the simple as-
sumption of a Gaussian distribution of the shear, the analytical calculations predict that
our simple model for the critical shear (5.6) does not lead to a stable steady state. How-
ever, the numerical simulations using the individual particle-based approach from the
last chapter clearly showed the development of a stable steady state from the balance of
aggregation and fragmentation. This is due to the non-Gaussian distribution of the shear
in the numerical model. Using the Gamma function approximation to incorporate this,
the analytical approach also predicts the existence of a stable steady state for the critical
shear model (5.6).

Our analysis illustrates how to connect the individual particle-based approach to the
established rate-equation formulation for aggregation and fragmentation. The particle
properties, in particular the critical shear required for fragmentation need to be translated
into a fragmentation rate in the correct way. Linking the fragmentation rate directly to
a physically easily understandable property of the aggregate such as the critical shear
provides a deeper insight into the construction of appropriate fragmentation rates.

Finally, we emphasize that deriving expressions for the fragmentation rate based on a
simple Gaussian shear distribution can lead to significant deviations in the fragmentation
rate. Our assumption of a non-Gaussian shear distribution is much more realistic and
leads to significant corrections in the fragmentation rates and we therefore believe that
expressions similar to the one derived here can provide a useful addition to the established
fragmentation rates from the literature.
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In this chapter a detailed computational model for the fragmentation of an individual ag-
gregate is discussed. The aim is to make a connection between the microscopic, physical
properties of the individual components of an aggregate and macroscopic aggregate prop-
erties such as the critical shear stress required for fragmentation. The contents of this
chapter have not yet been published elsewhere, but are written in the form of a publication
in preparation.

6.1. Introduction

The direct simulation of the deformation and fragmentation of individual aggregates has
received an increasing interest in recent years (Sonntag and Russel, 1987c; Potanin, 1993;
Higashitani et al., 2001; Harada et al., 2006; Becker et al., 2009). While larger sys-
tems with many aggregates are still not computationally feasible, ever-increasing com-
putational capabilities have made very detailed modeling of the interaction of individual
particles and the resulting behavior of a single aggregate possible. The most common
approach is that of soft particle molecular dynamics, often also called discrete element
modeling (DEM). Such an approach provides very detailed insight into the dynamics of
one individual aggregate by simulating each individual ’element’, in this case each pri-
mary particle of an aggregate and the interaction with its neighbors and the surrounding
fluid.

One of the first relevant studies in this direction was the work of (Potanin, 1993) who
examined simple two-dimensional colloidal aggregates in a shear flow and characterized
the elastic modulus and yield strength of such aggregates. Detailed simulations of the
breakup of three dimensional aggregates both in shear and elongational flows were per-
formed by Higashitani et al. (2001) who found a power-law relationship between the
number of fragments created during breaking and the shear/strain intensity. Recently,
Eggersdorfer et al. (2010) studied the restructuring and fragmentation of soft aggregates
in fluid shear and found lognormally-shaped fragment size distributions as well as gener-
alized scaling laws for the average number of primary particles per fragment.

In this chapter we follow up on these works and discuss a similar model for the many-
particle simulation of the fragmentation of an individual aggregate in a shear flow. The
main goal is to bridge the gap between the microscopic (contact) properties of the indi-
vidual elements (primary particles) and the macroscopic (fragmentation) behavior of the
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whole aggregate. This would allow one to understand the combined behavior of the whole
aggregate as a function of a few parameters, namely the aggregate size, some measure
of its structure, such as a fractal dimension and the contact properties of the individual
primary particles. Such a description naturally leads to fragmentation models for whole
aggregates, which are a main ingredient of the particle-based aggregation-fragmentation
models discussed in the previous chapters of this thesis.

There we assumed based on very simple arguments that there is a critical fluid shear
stress required to fragment an aggregate. Our arguments led to a power-law relationship
between this critical shear stress and the number of primary particles in the aggregate
where the exponent of the power law depends on the fractal dimension of the aggregate.
Furthermore, we introduced models for the distribution of the fragments after breaking,
such as large-scale fragmentation or erosion (see Ch. 4). The discrete-element model
introduced in this chapter can now serve as a basis to validate and further improve these
fragmentation models.

In the following a simplified model by Luding (2008) for the forces acting on the
primary particles is introduced. It is a simplified approach in that sense that it provides
a compromise between a realistic and an easy to use model. Many of the contact details
are over-simplified, but only so far as they do not seem to be relevant for the macroscopic
properties of the aggregate. It can be seen as a first step to understand the connection
between microscopic and macroscopic properties, but still leaves room for improvement
in the future.

There are two different types of interactions between the primary particles in an ag-
gregate that are typically treated separately. On the one hand there are normal forces,
i.e. they act between the centers of two primary particles. Usually, these forces are mod-
eled with the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. This theory
describes the combined effect of attractive van der Waals and repulsive double-layer (elec-
trostatic) forces, (see e.g. Israelachvili, 1985). This is considered to be a reasonable model
for non-touching particles aggregating in the so-called secondary energy minimum, result-
ing from the balance of electrostatic repulsion and van der Waals attraction. For particles
aggregating in the primary energy minimum, i.e. when the surfaces are touching, the de-
formation of the surfaces leads to an elasto-plastic repulsion, dissipation of energy and to
adhesion effects.

In addition to the normal forces, for particles whose surfaces are touching tangential
(frictional) forces play an important role. It was shown experimentally by Pantina and
Furst (2005) that aggregates from colloidal particles can have tangential forces that are
capable of supporting a bending moment. The classical model for static friction was
introduced by Cundall and Strack (1979) and has been extended by Luding to include
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rolling and torsion resistance. In a similar framework, Becker et al. (2009) showed that
without tangential forces, restructuring of aggregates is predicted incorrectly.

Aggregates without tangential interactions are usually called ’soft’ as they can be de-
formed easily whereas systems with tangential interactions are called ’rigid’. While such
aggregates are solids in the spirit of the Cauchy-Born theory (see e.g. Born and Huang,
1954) as an expansion around a (rigid) reference state, they do not have the periodic
’crystal’ structure usually associated with solids and are therefore often referred to as
’amorphous’. An excellent discussion of the structure and rigidity of such amorphous
solids from a slightly different viewpoint, emphasizing the role of stresses in the bond
structure, can be found in the review by Alexander (1998).

In this chapter, we focus on the deformation and fragmentation of rigid aggregates, i.e.
particles aggregating in the primary energy minimum, where tangential forces play an
essential role. This is the most common situations and most real aggregates, such as the
marine aggregates discussed in Ch. 4 fall into this category. Aggregates are generated via
a diffusion-limited/reaction-limited aggregation (DLA/RLA) algorithm and then placed
in a simple linear shear flow. The fragmentation behavior is studied, as a function of
both the strength of the shear stress and the aggregate properties, such as number of
primary particles or fractal dimension of the aggregate. It is found that, depending on
the aggregate properties, a critical shear stress exists beyond which the aggregate breaks.
The line of critical shear stress is estimated in parameter space from a series of simulations.
Close to the critical shear stress aggregates typically break into two fragments (binary
fragmentation). For shear stresses significantly larger than the critical shear stress the
size of the fragment is found to be independent of the initial size of the aggregates. The
size of the fragments depends only on the level of shear stress.

6.2. Discrete Element Modeling of Fractal-Like Aggregates

To be able to perform computer simulations of the deformation and fragmentation of an
aggregate it is first necessary to generate an initial aggregate with a certain structure.
In many natural systems and industrial applications it is found that aggregates possess
a fractal-like structure. For fractal objects the exact shape and structure can not be
described in a simple manner, but the general shape can be expected to change predictably
as the viewing scale changes. This self-similarity over different scales is an essential
property of fractal objects and has been found in many objects in nature, from snowflakes
to coastlines (Mandelbrot, 1983). In general, for a fractal object the number of particles
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N within a circle of radius a scales as

N = cafd , (6.1)

where c is a proportionality constant. For aggregates of finite-size this can obviously only
be true for a limited range of a-values, at most ranging from the size of the primary
particles r1 to the size of the whole aggregate ragg.

In most natural systems an individual aggregate will not exhibit this fractal scaling,
instead one can measure the properties of an ensemble of aggregates of various sizes. One
then relates the cross-sectional area Asolid or the solid volume Vsolid to a measure of the
characteristic length l of the aggregate. Here, l can be a number of different things, such
as the longest diameter, the mean diameter or the equivalent diameter (see Ch. 2.1.1).
In many cases this relationship between area or volume and characteristic length will on
average exhibit a fractal scaling

Asolid ∝ lD2 (6.2)

Vsolid ∝ lD3 , (6.3)

where D2 and D3 are the two- and three dimensional fractal dimension, respectively.
This value can be obtained from the slope of a log-log plot when the respective aggregate
property (area or volume) is plotted over the characteristic length.

The book by Logan (1999) provides a table with approximate values of this fractal
dimension for a number of examples, from inorganic colloids formed by Brownian motion
(D3 ≈ 1.8 − 2.1), yeast flocs in rotating tubes (D3 ≈ 2.66) to marine snow composed of
diatoms in the ocean (D3 ≈ 1.52).

6.2.1. Generating Initial Aggregates

To generate such aggregates numerically, a number of different algorithms have been
proposed, that lead to aggregates with different structures. In general, particles will be
released at certain sites in space and then move in a specific manner until they come into
contact. The different models refer to different assumptions about the motions of the
particles and the collision process. In some cases the assumptions may approximate the
real process of aggregate formation, whereas in other cases they are strongly idealized.
Here, three different cases are discussed 1) diffusion-limited aggregation, 2) ballistic ag-
gregation and 3) reaction-limited aggregation and for each case there are two different
subcases, particle-cluster and cluster-cluster aggregation.

1. Diffusion-Limited Aggregation
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Figure 6.1.: A diffusion-limited particle-cluster aggregate consisting of 1000 primary particles
(r1 = 4µm).

Diffusion-limited aggregation is probably the most widely used model for the gener-
ation of aggregates with a fractal structure. It has been introduced first by Witten
and Sander (1981, 1983) who studied a numerical model for aggregation processes
on a lattice. A particle is placed at the center of the lattice, then a second particle
is added to a random site far away from the center. This particle moves randomly
along the lattice until it reaches a site next to the center particle. Then it becomes
part of the aggregate. Another particle is now introduced and the process continues.
If a particle touches the boundaries of the system it is removed and a new particle
introduced at a random site. This approach has since then been extended to off-
lattice simulations, where each new particle performs a Brownian motion until it
connects with the aggregate. The structure of such diffusion-limited aggregates has
been extensively studied, see e.g. Meakin and Vicsek (1985); Vicsek et al. (1990).
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Figure 6.2.: Determining the fractal scaling of aggregates. 1000 DLA aggregates in the range
of 101 − 105 primary particles (r1 = 4µm) were created. The log-log plot shows the number
of particles in the aggregate as a function of the radius of the aggregate. The slope of the
linear fit (red) gives the fractal dimension fd = 2.5± 0.002.

Aggregates created in this manner exhibit a fractal scaling, in two dimensions the
fractal dimension is fd ≈ 1.71 and in three dimensions fd ≈ 2.5, see Fig. 6.2. They
show a clear center and fairly symmetric branches going off to the sides.

This procedure to create diffusion-limited aggregates is a particle-cluster aggrega-
tion processes. By contrast, diffusion-limited aggregates can also be created via
cluster-cluster aggregation. For cluster-cluster aggregation, a number of smaller
aggregates are created as described above, but these clusters also move around in a
Brownian motion and collide to form still larger aggregates. Cluster-cluster aggre-
gation generally leads to more open structures than particle-cluster aggregation, for
diffusion-limited cluster-cluster aggregation in three dimension the fractal dimen-
sion is fd ≈ 1.80. Their overall structure is more chain-like and does not have the
clear center of the particle-cluster aggregates.

2. Ballistic aggregation
If the mean free path of particles is long compared to their size, their motion can
be approximated as ballistic instead of the Brownian motion used for the diffusion-
limited aggregation. For ballistic aggregation, the primary particles can penetrate
deeply into the fixed aggregate, leading to very compact structures with fd ≈ 3 in
three dimensions. Ballistic cluster-cluster aggregation again works the same way,
where now also the smaller aggregate clusters move ballistically. Again, the collision
of smaller clusters leads to more open structures than for particle-cluster aggrega-
tion, in this case ballistic cluster-cluster aggregates leads to a fractal structure with
fd ≈ 1.95 in three dimensions.
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3. Reaction-limited aggregation
The term reaction-limited aggregation generally refers to an extension of the
diffusion-limited aggregation process. For diffusion-limited aggregation every col-
lision leads to an attachment. However, in many cases there is a repulsive force
between particles, for example from electrostatic double-layer forces which can hin-
der adhesion upon collision. This is then modeled by requiring a certain number of
collisions before a particle sticks. In general, this leads to more compact aggregates
than the simple diffusion-limited aggregation process. The asymptotic value of the
fractal dimension depends on the required number of collisions but is close to 3 for
particle-cluster aggregation and close to 2 for cluster-cluster aggregation.

In this work aggregates created via diffusion-limited particle-cluster aggregation and
reaction-limited particle-cluster aggregation are studied (Fig. 6.1). The reason for this
choice is that efficient implementations of these aggregation algorithms are freely available
on the internet. Here the program by Stock (2006), an arbitrary-dimensional, off-lattice
diffusion-limited aggregation simulator is used to create aggregates with different numbers
of primary particles.

6.2.2. Particle-Particle Interactions

In this section the interaction forces between primary particles in an aggregate are de-
scribed, these include both normal forces such as van der Waals attraction, elasto-plastic
deformation, repulsion and adhesion as well as tangential friction forces.

First, we discuss normal intecation forces, i.e. those acting in the direction of the
contact vector nij := (Xi −Xj)/ ||Xi −Xj | | between two particles i and j. The forces
are typically expressed in terms of the overlap δij := (ri + rj)− ||Xi −Xj | | between two
particles.

The model for the normal forces acting between particles consist of three regimes. At
large distances, there are no interactions between particles as long-range interactions such
as particle-particle interactions through the fluid are neglected. When particles approach
each other to a distance δ, with δmin < δ < 0, van der Waals forces lead to an attractive
interaction between the particles. For simplicity, more complex force models, such as
retardation of van der Waals forces in a liquid and double-layer forces are neglected.
Instead, van der Waals forces are modeled by the simplified Hamaker model (Hamaker,
1937)

F vdW
ij = −A

reff

12δ2
ij

, (6.4)

where reff = rirj/(ri + rj) and A is the Hamaker constant. Strictly speaking, A is not a
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constant but can depend on a number of factors, such as the distance δij between parti-
cles. However, the variations in A are small, typically the values range between 10−20J

and 10−19J . Rigorous expressions can be obtained from the Lifschitz theory involving
quantum field theory calculations, but here a simple approximation as a constant is used.
The Hamaker equation has a singularity at δij = 0, however this is not a problem in
practice as real surfaces are never perfectly smooth and therefore only approach to a
minimum distance. Therefore, the force is shifted by a value δmin so that the maximum
van der Waals force F

vdW (max)
ij = −A reff

12δ2
min

is reached for δij ≥ 0. Typically, δmin should
be in the range of the molecules involved.

If particles come into contact, their elasto-plastic deformation, repulsion and adhesion
is modeled with a piecewise linear hysteretic spring model (Luding, 2008). The model
includes an increasing stiffness of the particles with increasing deformation. Dissipation
takes place due to the hysteretic nature of the contact force. However, small ampli-
tude deformations may not be damped enough and therefore, a small viscous, velocity
depended dissipative force is added to the contact force.

The total force in normal direction, as a function of the overlap δij is given by the sum
of the van der Waals force, hysteretic contact force and viscous dissipation.

In reality, a nonlinear hysteresic model is more likely close to the reality than the
piecewise linear model used here, but since experimental information is missing, it is
believed that such a model represents a reasonable compromise between capturing the
essential details and simplicity.

In addition to the normal forces, tangential (friction) forces play an important role
in determining the stability and stiffness of aggregates. In addition to forces, tangential
interactions can lead to torques that produce a rotation of the primary particles. Within
the model of Luding (2008) that is used here the tangential interactions are implemented
as three different components, (1) sticking and sliding friction, (2) rolling resistance and
(3) torsion resistance, corresponding to different rotational degrees of freedom. The
tangential interaction model for each component follows the original approach of Cundall
and Strack (1979), where at contact virtual springs are attached, measuring the sliding,
rolling and torsion of the contact point.

6.2.3. Fluid Forces

In addition to the contact forces, each primary particle is subject to hydrodynamic forces
and torques from the surrounding fluid. Here, only quasi-steady drag forces and torques
following Stokes law are used, which is a reasonable approximation for very small Reynolds
numbers. The quasi-steady drag force from the point-force approximation, using the
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undisturbed flow field at the position of the particle, is given by (see e.g. Sec. 2.3.2 of
this work)

FD = −6πηfri(Vi − u) , (6.5)

where u is the velocity of the undisturbed surrounding fluid at the position of the particle.
The torque on a particle associated with the quasi-steady drag force in the point force
approximation is given by (see e.g. Landau and Lifschitz, 1991, p. 83-84)

MD = −8πηfr3
i (ωi −Ω) , (6.6)

where Ω = 1
2∇× u is the vorticity of the fluid.

This is the so-called free draining approach, where the interaction of particles through
the fluid is neglected. In particular the drag force and torque on particles which are
shielded from the flow due to the presence of neighboring particles are overestimated in
the free-draining approach. Eggersdorfer et al. (2010) compared their numerical results
of aggregate fragmentation in the free-draining approach with the studies of Higashitani
et al. (2001) and Harada et al. (2006) and found some differences but similar scaling
laws. A recent discussion of the limitations of the free-draining approach in the context
of aggregate deformation can be found in the paper of Becker et al. (2009).

A simple alternative to the free-draining approach that does not lead to a significant
increase in computational cost is the approach presented in Sec. 2.3.4 of this work. In a
suspension of spheres, the effect of a finite volume fraction CV (see 2.2.1 for a definition)
of particles can be estimated in terms of a correction to the drag force and torque on
a single particle. This correction factor fC relates the drag force and torque at a given
volume fraction FD(CV ) and MD(CV ) to the undisturbed drag force and torque FD and
MD of a single particle, i.e.

fC :=
FD(CV )

FD
=

MD(CV )
MD

. (6.7)

For a given particle Reynolds number, the most commonly used formulation for the drag
correction is given by

fC = (1− CV )1−b0 , (6.8)

with an empirical coefficient b0 ≈ 4.5 (see e.g Ch. 2.3.4 of this work).

6.2.4. Implementation

Finally, we discuss the specifics of the numerical implementation used in the following.
For many systems of interest, such as marine aggregates, the detailed contact proper-
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ties between particles are not known. Most systems where some range for the contact
properties is available in the literature are systems from engineering applications, such as
suspensions of polystere latex particles in water, which is one of the most studied parti-
cle aggregation systems (Eggersdorfer et al., 2010). For example, for the case of marine
aggregates discussed in Ch. 4 only data for the primary particle radius (approximately
1µm to 10µm) and densities (approximately 1ρf to 3ρf ) can be found in the literature,
but no information on contact properties (Logan, 1999).

Here, we choose primary particles of 4µm radius suspended in water, where the particles
have twice the density of water. For the contact parameters we take values suggested in
Luding (2008) for cohesive powders of micrometer size. The complete list of parameters
can be found in Appendix B. However, we emphasize that tests with different ranges of
parameter values showed no significant changes to the qualitative behavior of the system.
We therefore believe that our results will also be applicable to other systems, as long as
the same microscopic mechanisms are at work.

Three dimensional aggregates with different numbers of primary particles are created
using an arbitrary-dimensional, off-lattice diffusion-limited particle-cluster aggregation
simulator (Stock, 2006). With the standard settings for particle-cluster aggregation the
algorithm creates aggregates with a fractal dimension of fd = 2.5. Since we are also
interested in the dependence of the simulation results on the fractal dimension, we also
create aggregates with a different fractal dimension. Since diffusion-limited particle-
cluster aggregation always leads to the same fractal dimension the algorithm is modified
so that not every collision between particles leads to an attachment. By tuning this
number of collisions before attachment such reaction-limited particle-cluster aggregates
can achieve any fractal dimension between fd = 2.5 and fd = 3.

The particles are suspended in a simple linear shear flow in x1-direction where the
fluidvelocity changes linearly in x2-direction and does not depend on the other two coor-
dinates, i.e.

u(x) = Sf ·

 x2

0
0

 . (6.9)

The aggregate center of mass is placed in the center of the coordinate system, where the
flow velocity is zero. The shear stress acting in the flow is G = µfSf , where Sf is the fluid
shear (see for example Ch. 3.2.3 for a definition) and µf is the fluids dynamic viscosity.

To determine the number and size of individual fragment after fragmentation we use a
cluster algorithm to identify groups of connected particles (see e.g. Stauffer and Aharony,
1995). Primary particles are assumed to belong to the same cluster if the overlap δij :=
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(ri + rj)− ||Xi −Xj | | is greater than zero.

A final, important criterion for the stability of the contact algorithm is the time scale
of the molecular dynamics time step ∆tMD. In particular the time step needs to be
chosen small enough to resolve the contact duration between two particles. Since the
particle contacts are implemented as springs they have a typical time scale given by the
eigenfrequencies of their oscillation. These frequencies depend on the spring stiffness
parameters. For a given parameter set the time step therefore need to be chosen small
enough to be below the characteristic time scales of the particle contacts, given by the
eigenfrequencies of the contact springs. Both the normal and the tangential and rotational
directions have to be considered here. For the parameter values used here, a time step of
∆tMD = 10−5µs was found to be sufficient to ensure the stability of the system.

6.3. Simulation Results

In this section we show the simulation results for the fragmentation of an individual,
diffusion-limited aggregate in a linear shear flow. It is examined how the fragmentation
behavior of an aggregate changes with changing magnitude of the applied shear stress
and with changing fractal dimension of the aggregate.

6.3.1. Critical Behavior

We start out with a diffusion-limited particle-cluster aggregate with a fractal dimension
of fd in a linear shear flow. When examining the dynamics of an aggregate for different
values of the applied shear stress one finds two distinct regimes, separated by a critical
shear stress value. For small values of the fluid shear stress below this critical point the
aggregate rotates around its center of mass but remains intact. For larger values of the
fluid shear stress, above the critical point the aggregate is first deformed and stretched and
then the connections between certain particles are broken until the aggregate fragments
into separate pieces. The fragments are then advected in opposite directions in the flow,
see Fig. 6.3. This can easily be seen when plotting the number of fragments after a
certain time in the flow (here 1000µs) as a function of the applied fluid shear stress.
Figure 6.4 shows this for the case of an aggregate consisting of 250 primary particles with
the parameter values from Tab. B.1 in Appendix B, but the same qualitative behavior
can be found for any other choice of aggregate.

For small values of the shear stress there is only one fragment, the initial aggregate,
whereas beyond a certain point the number of fragments increases with the applied fluid
shear stress. There is a critical point, i.e. a certain critical shear stress beyond which
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the aggregate breaks. This critical shear stress is what has been used in the aggregation-
fragmentation modeling in the previous sections as the relevant fragmentation property of
an aggregate. It provides the connection between the microscopic properties of individual
aggregates and the individual particle based model discussed in Ch. 4 of this work, as well
as a rate-equation based approach as for example discussed in Ch. 5. Determining the
dependence of this critical shear stress on the aggregate size and microscopic properties
of the aggregates, such as the fractal dimension is the main goal of this chapter.

The problem with determining the exact value of the critical shear stress for a given
aggregate is that close to the critical shear stress level it is very difficult to determine
whether an aggregate will fragment. The time until breaking diverges as one approaches
the critical point and the critical point is therefore not directly accessible in a numerical
simulation. We therefore fix a maximum time of tmax = 1000µs and if for a given shear
stress the aggregate has not broken by this time we will assume that it does not fragment
at this shear stress level. One should therefore keep in mind that the critical shear stress
determined with this method only represents an upper boundary for the real critical shear
stress and other choices of tmax will lead to slightly different scaling relationships.

In addition, for each realization of a diffusion-limited aggregate the structure of the
aggregate will be different and therefore the critical point will be found at a slightly
different shear stress for each individual aggregate even if all parameters are identical.
For each parameter set we therefore use 10 different realizations of the initial aggregates
and calculate all results as averages over these realizations of the aggregates.

Figure 6.5 (blue markers) shows the computed critical shear stress as a function of the
aggregate size for diffusion-limited aggregates with four different initial sizes, each as an
average over ten realizations of the initial aggregates. The critical shear stress decreases
with the aggregate size, i.e. large aggregates are less stable than smaller ones. The critical
shear stress Gc changes approximately linearly as a function of the number of primary
particles per aggregate α on a log-log plot. This suggests a power-law relationship of the
form Gc ∝ α−θ with some exponent θ for the critical shear, similarly to what has been
used in Ch. 4 and 5 of this work. For fd = 2.5 and the system parameters detailed in Tab.
B.1 in Appendix B we find that the exponent θ ≈ 1.08± 0.03. To see the dependence of
the critical shear on the fractal dimension the same set of computations is repeated for
the case of reaction-limited initial aggregates with a fractal dimension of fd = 2.6 (green
markers in Fig. 6.5). Again, the critical shear changes as a power law function of the
number of primary particles in the initial aggregate. However, for this increased fractal
dimension the critical shear decreases much slower with α than for the case of fd = 2.5.
The value of θ can be obtained from a fit as θ ≈ 0.63± 0.04.

It is interesting to compare these results for θ(fd) with the simple model that was used
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6.3. Simulation Results

Figure 6.4.: Number of fragments created during the breaking of an aggregate consisting of
250 primary particles with r1 = 4µm for different values of the applied fluid shear stress. The
arrow indicates the critical point at a shear stress of Gc ≈ 3.5 beyond which the aggregate
fragments.

in Ch. 4 of this work for the critical shear. There it was argued that the break-up of an
aggregate occurs when the hydrodynamical forces Fhyd acting on the aggregate exceed
the forces Fagg holding the particles in the aggregate together. The criterion for breakup
can therefore be expressed as

Fhyd/Fagg > const. (6.10)

Assuming that the hydrodynamical force is proportional to the shear force integrated
over the surface of the aggregate and the force Fagg holding an aggregate together is
proportional to the area of constituent matter in a cross-section of the aggregate we
found that the splitting condition becomes

Gc ∝ α−(2/fd−2/3) . (6.11)

This model therefore predicts that θ(fd) = 2
fd
− 2

3 . This would lead to θ(fd = 2.5) ≈
0.13 and θ(fd = 2.6) ≈ 0.1, respectively. This implies a much weaker dependence of
the critical shear on the aggregate structure than what was actually observed in the
simulations performed in this section. Such a model under-estimates the fragmentation
rate, compared to what our microscopic simulations suggest.

A simple alternative model, that leads to a faster decrease of the critical shear with
the aggregate size and therefore to an increased fragmentation rate, could be to assume
that the force Fagg holding the aggregate together is proportional to the fraction of
constituent matter in a cross section of the aggregate, instead of the absolute area. The
area of constituent matter is proportional to Aα,solid ∝ α

2
3 . Dividing this by the total

area in a cross section, Aα,total ∝ α2/fd and again equating Fagg and Fhyd ∝ α2/fd leads

151



6. Discrete Element Modeling of Fragmentation

Figure 6.5.: Critical shear required for the fragmentation of a DLA aggregate as a function
of the number of primary particles in the aggregate for two different values of the fractal
dimension. The linear fit suggests a power-law relationship with an exponent θ(fd = 2.5) ≈
1.08± 0.03 and θ(fd = 2.6) ≈ 0.63± 0.04

to
Gc ∝ α−(4/fd−2/3) . (6.12)

Such an approach predicts θ(fd) = 4
fd
− 2

3 which implies a much faster decrease of
the critical shear stress with the aggregate size. This would lead to θ(fd = 2.5) ≈ 0.93
and θ(fd = 2.6) ≈ 0.87, respectively. While still not exactly the result found in the
simulations this is much closer to the results than what was predicted by the model from
Ch. 4.

A number of other models for the critical shear stress have been proposed in the
literature. For example Potanin (1993) and Baldyga and Bourne (1995) suggested in a
similar analysis that the critical shear stress should be proportional

Gc ∝ α
− 1

2q , where q =
fd

2n(3− fd)
(6.13)

and n is a measure of the average number of bonds of each individual particle. Sonntag
and Russel (1987a) found for this that in flocculated networks n ≈ 2.5− 4.4. With this,
the model predicts that θ(fd = 2.5) ∈ [0.5, 0.88] and θ(fd = 2.6) ∈ [0.38, 0.68], which is
slightly lower than what was found in the simulations here. However, it was pointed out
by Potanin (1993) that the analysis is only valid for completely rigid particles, whereas
particle deformation should lead to larger values of θ. While within our model aggregates
possess tangent interactions and are therefore able to support a bending moment, this
tangential interaction is weak and aggregates are getting deformed, as can be seen directly
from Fig. 6.3. This may be one reason for the fairly high values of θ found in our study.
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6.3. Simulation Results

6.3.2. Supercritical Behavior

In addition to the critical shear stress one can also look at the supercritical behavior
of the aggregates, i.e. what happens for shear stresses above the critical point. Close
to the critical point the aggregates always fragment into two fragments of similar size,
corresponding to the large-scale fragmentation model discussed in Ch. 4 of this work.
However, for increasing shear stress Fig. 6.4 already indicated that the number of frag-

Figure 6.6.: Average number of primary particles per fragment 〈α(t)〉 during the breakup of
an individual diffusion-limited particle-cluster aggregate as a function of time. Each linecolor
indicates a different level of the applied fluid shear stress, whereas each linestyle corresponds
to a different initial number of primary particles of the aggregate.

ments increases. Figure 6.6 shows the change in the average number of primary particles
per fragment as a function of time for different initial aggregate sizes and different levels
of the applied fluid shear stress.

The average number of primary particles per fragment decreases over time as more and
more fragments are created. The results in Fig. 6.6 are for an individual aggregate and
not taken as an average over an ensemble of initial aggregates and are therefore quite
noisy. Nonetheless, it is clear that after some time the number of particles per fragment
approaches a minimum value. In this example that happens around t = 100µs. Here, the
fragmentation process stops and the remaining fragments are once again stable and will
not break up any further in the currently applied fluid shear stress.

What is interesting about this result is that the average number of primary particles
per fragment does not seem to depend significantly on the initial size of the aggregate
but only on the level of the applied fluid shear stress. For supercritical shear stress
aggregates undergo a breaking cascade where each fragment is repeatedly broken up into
two or rarely three new fragments, until the fragments are small enough so that that the
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6. Discrete Element Modeling of Fragmentation

applied shear stress is below their critical shear stress. The size of these fragments is
therefore approximately independent of the original aggregate size but depends on the
applied shear stress because they break until a stable fragment size is reached.

6.4. Discussion

In this chapter we discussed the application of a discrete-element model to the fragmen-
tation of an individual aggregate in a laminar shear flow. The key feature of such a
model is how to implement the contact properties between individual, primary particles.
Here, we used a spring-dashpot model to simulate both central forces, such as adhesion
and elasto-plastic repulsion and tangent forces, such as friction and torsion resistance.
While such an aggregate possesses a certain rigidity, the model still allows for aggregate
deformation and restructuring, as is usually the case for most applications. However,
there are some limitations to the approach.

First, it should be noted that the model approach used here only represents a simple,
piecewise-linear approximation of a full hysteretic contact model. In reality, the full
contact laws will most likely be much more complex, including real hysteresis, non-linear
behavior and other effects. For active systems, such as the formation of marine aggregates
in the ocean where biological processes on the aggregates play an important role, the
contact properties may also vary strongly over time, both on short scales for example
over a tidal cycle and on long scales, such as between seasons. Nonetheless, while we do
not capture fully every aspect of the particle contacts the model represents a compromise
between numerical effort and detail and is still able to capture qualitatively the main
macroscopic aggregate properties that result from the microscopic contact details.

Second, finding appropriate values for the system parameters is rather difficult since not
all the quantities required correspond directly to real physical properties. Here we used a
parameterization for cohesive powders with particles in the micrometer range. Nonethe-
less, we do not believe that this is a big restriction for the generality of our results, since
tests with different parameter ranges showed a qualitatively similar behavior. Therefore,
we conclude that as long as the principal mechanism remains unchanged, systems with
different values for the contact parameters will still exhibit a similar behavior.

Third, while diffusion-limited aggregates represent a simple approach to construct ag-
gregates with a fractal-like structure for computer simulations, it should be kept in mind
that in many cases this is only a very rough approximation. The structure of aggregates
can be much more complex, consisting of very irregular primary particles and may vary
strongly between individuals and also over time. Using such a simple model to construct
the aggregates can therefore only be viewed as a first step, or as an approximation for
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cases where no further details about the aggregate structure are available. In principle,
for each specific problem one would have to construct aggregates with an appropriate
structure.

Fourth, in addition to a simple linear shear there may other structures in a real tur-
bulent flow that can be more efficient at breaking up aggregates. For example, for ex-
tensional flows, Higashitani et al. (2001) found that the critical strain decreases much
faster with the aggregate size, implying that aggregates may be much more sensitive to
fragmentation in such a flow type than in a simple linear shear.

Finally, the interaction between particles and fluid is only captured as a lowest order
approximation, where two-way particle-flow coupling and particle-particle interactions
through the fluid are neglected. It was shown by Becker et al. (2009) that this so-called
free draining approximation leads to an over-estimation of the drag force and therefore
under-estimating the critical shear stress. In particular the particles in the center of the
aggregate are in reality shielded by the surrounding particles and therefore do not feel the
full fluid shear stress. While this is certainly a big limitation of the model results presented
here, we believe that neglecting these effects is still a reasonable first approximation. At
the very least it can serve to illustrate in principle how such a model could be used to
go from the microscopic aggregate properties to a macroscopic expression that is needed
for the individual, inertial particle based model discussed in Ch. 4 and the rate-equation
based approach of Ch. 5. However, it is likely that including such coupling effects, either
by direct numerical simulation or by appropriate approximate coupling schemes, such as
those discussed in Sec. 2.3.4 of this work will lead to some modification of our results.

Despite these limitations, using the model approach discussed here we were able to show
how to connect the microscopic properties of the contacts between individual particles into
a macroscopic quantity of the whole aggregate, namely the critical shear stress required
for fragmentation. Individual aggregates of different size were placed in a linear shear flow
and their breaking behavior was studied. First, we confirmed that there are indeed two
different regimes in the particle behavior as a function of the fluid shear stress, separated
by a critical shear stress value as has been assumed in the simplified fragmentation models
in the previous chapters. For ’small’ values of the shear stress, i.e. smaller than a certain
critical value aggregates remain intact and simply rotate in a shear flow whereas for large
shear stress values aggregates are broken up into smaller fragments. We showed how the
critical shear stress changes as a function of the number of primary particles in the initial
aggregate. The function for the critical shear stress is a power-law, where the exponent
depends on the fractal dimension of the aggregate. For more compact aggregates, i.e.
with a higher fractal dimension the critical shear stress decreases slower with the number
of primary particles per aggregate.
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6. Discrete Element Modeling of Fragmentation

Such a power-law expression was also used in the aggregation-fragmentation models in
the previous chapters. We found that while there are small changes in the value of the
critical shear stress between individual aggregates of the same size the deviations are not
very large. This implies that at least for the case of DLA/RLA aggregates studied here
the characterization of the aggregate structure via the fractal dimension is a reasonable
approximation to determine the fragmentation behavior of different aggregates.

We compared the results for the slope of the power-law function for the critical shear
stress with different theoretical predictions. While it seems clear that the simple assump-
tion of the aggregate strength being proportional to the area of constituent matter in a
cross-section of the aggregate underestimates the aggregate stability, our results are not
sufficient to differentiate between the other discussed possibilities. Here, future studies
with more simulations and a detailed analysis of the fragmentation process are required
for a more conclusive answer.

With regard to the number and size distributions of the fragments, at least for the
current contact model between the primary particles, our results suggest that close to
the critical shear stress level aggregates tend to break into two fragments of similar size.
This corresponds to the large-scale fragmentation mechanism discussed in Ch. 4 of this
work, supporting the assumptions made there. If the shear stress greatly exceeds the
critical shear stress, the discrete-element simulations of this chapter suggest a cascade
mechanism similar to what was used in the individual, particle based models in Chs. 3
and 4 of this work. Initially, two fragments are created, however if these are too large to
be stable at the given shear stress level they fragment again. This is repeated until all
fragments are below the critical size defined by the current level of shear stress.

In addition to what was already found here further studies with a discrete element
model such as the one presented here may help to greatly enhance our understanding
of the details of the fragmentation mechanism for an individual aggregate. This can
then be used to generate macroscopic expressions of the aggregate properties, such as the
critical shear stress that are based on the microscopic interactions within the individual
aggregate. A deeper understanding of this connection is essential in the formulation of
better models for full aggregation-fragmentation systems and as already shown in the
previous sections is a crucial feature for the determination of the overall aggregate size
distribution in such systems.
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In this thesis we discussed aggregation and fragmentation processes of particles in a
fluid flow. We introduced a model approach based on the motion of individual, inertial
particles as an addition to the usual rate-equation models that are widely used. While
less detailed than the full hydrodynamical simulation of individual aggregates, which is
still computationally not feasible for larger systems, our approach is able to provide a
new perspective on aggregation and fragmentation processes. It has the potential to be a
powerful tool, in particular in the investigation of different approximation strategies for
the usual rate-equation models.

We presented two applications of our model, for two very different scenarios. On the
one hand we studied the dynamics of spherical, viscous droplets in a turbulent flow. For
this, we discussed two different fragmentation mechanisms, fragmentation due to shear
and fragmentation due to particles exceeding a maximum size. In many natural systems,
for example for raindrops in a cloud, fragmentation due to a maximum limiting size
is the main mechanism for fragmentation. Shear fragmentation is more relevant when
both particle and fluid viscosity are similar, for example when creating emulsions. Using
our model we were able to reproduce steady state size distributions, resulting from the
balance of aggregation and fragmentation, as well as the dependence of the steady state
on the particle and flow properties. In this context, the main advantage of our approach
lies in its ability to directly include particle inertia into the model description.

On the other hand we studied the application of our model to systems of solid particles,
where aggregation leads to clusters with a complex, often fractal-like structure. We
discussed how to approximate such a fractal-like structure within the framework of our
model, by using a description based on an increased radius and modified density. Again,
we examined steady state solutions and how these changed as a function of particle
and flow properties. In this case, the fractal dimension of the aggregates was found
to be the most significant system parameter. Additionally, while for spherical, viscous
droplets the fragmentation behavior is well understood and suitable models exist, for solid
aggregates with a fractal-like structure this is not the case. A number of different, possible
fragmentation mechanisms are discussed in the literature and it seems different systems
may possess very different mechanisms. Here our model approach has the advantage that
different fragmentation models can directly be incorporated in terms of easy to interpret
macroscopic properties of an individual aggregate, such as the critical shear required for
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the breakup of an individual aggregate. This makes it particularly easy to compare the
effect of different fragmentation mechanisms, for example large-scale fragmentation into
fragments of similar size with erosion-like processes where fragments of very different size
are created. Our results show that this distribution of the fragments during breaking is
indeed the most important parameter for the shape of the steady state aggregate size
distribution. Comparing the size distributions obtained with our model with measured
size distributions for different systems may give some indication what mechanism is active
in that system. For example, large-scale fragmentation always leads to an exponential size
distribution such as those measured for marine aggregates in coastal waters, indicating
that this might be the primary fragmentation mechanism for such aggregates.

Both of these examples illustrate the important role of fragmentation for aggregation
processes of particles in fluid flows, something that has been neglected in many works for a
long time and has only recently started to come into focus. For all systems studied here,
in particular the steady state size distribution depends strongly on the fragmentation
behavior, while aggregation seems to be more relevant for the transients, for example
affecting the time to reach the steady state.

While these two applications illustrated the wide usefulness of our model approach
in very different systems and showed how our approach is able to predict steady state
size distributions as well as the dependence of the steady state on the particle and flow
properties another question immediately comes to mind. That is, how does our model
fit in with the established rate-equation approach as well as the full hydrodynamical
simulations of individual aggregates? By examining the connection between our model
and these approaches we showed how our model is able to bridge the gap between the
existing models. While using rate-equation based approaches one is able to simulate
very large systems in a reasonable amount of time such an approach relies on many
approximation and parameterizations. Our model is able to provide such approximations,
for example by directly simulating collision and fragmentation for inertial particles, which
can then be translated into suitable collision and fragmentation rates for a rate-equation
based model. Additionally, our model approach can serve as a basis of comparison to
check the accuracy of different approximation strategies within a rate-equation model.
In this work we presented a rate-equation based model for fractal-like aggregates and
examined how to calculate fragmentation rates that correspond to our particle-based
model. We showed how one can in principle calculate steady state solutions. These
calculations once again revealed the great importance of fragmentation for the steady
state of the aggregation-fragmentation system.

On the other end, while full hydrodynamical simulations of aggregates are able to
provide very detailed information about the behavior of individual aggregates, they are
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limited to very small systems. Using such a discrete-element model for the fragmentation
of an individual aggregate we showed how to take the detailed microscopic information
obtained there and translate this into a macroscopic single-aggregate property, the crit-
ical shear, that can directly be incorporated in our model. This can then in turn be
used to generate approximations for rate-equation based approaches, linking the detailed
microscopic simulation of individual aggregate properties to models than can be used for
large-scale simulations.

In summary, in this thesis we were able to introduce a new approach for the descrip-
tion of aggregation and fragmentation processes, pointed out the connection to existing
approaches and laid a solid foundation for work to come. While many questions were
answered during the course of this work and in particular the important role of frag-
mentation became very apparent from our results some open questions remained. To
conclude, we will therefore point out some of these open questions and discuss possible
directions for further work, based on what we have shown here.

In the first part of this thesis we discussed collision rates between inertial particles.
This is an important aspect for the formulation of rate-equation based models. While
much progress has been made in this area, there are still many aspects that are not fully
understood. Most approaches to calculate collision rates work with the so-called ghost
collision approach, where collisions between particles are computed but they do not have
a physical consequence. This assumption only works well for very dilute suspensions,
where the ensemble dynamics is not strongly affected by collisions. However, for example
Medrano et al. (2008) pointed out the existence of bursts in the particle dynamics if
collisions are taken into account. Such interactions may lead to strong modifications of
the collision rates. Sundaram and Collins (1997) argued that it may be possible to capture
such effects as additive corrections to the collision rate obtained using a ghost-collision
approach.

In addition, what has so far been neglected in many cases is the enhancement of the
collision rates due to the settling of the particles under gravity. For example, for raindrop
formation it is believed that the extremely fast growth of droplets in clouds may be due to
a few larger particles collection many smaller ones in a very short amount of time as they
fall downwards through the cloud. Preliminary calculations suggested that such strong
enhancements can indeed be found when including a sinking velocity in the equations of
motion for the particles. However, particularly in this context the role of coupling between
the particles and the fluid as well as between particles through the fluid may become very
important. While a number of studies exist for spherical particles, the situation is much
less clear for particles with a complex structure, where intra-particle flows may lead to
strong modifications of the surrounding flow field. For a first discussion on this we refer
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to the work of Stolzenbach and Elimelech (1994).
For the dynamics of spherical, viscous particles this work mainly focused on the steady

state behavior, when a balance between aggregation and fragmentation was obtained.
However, in many situations the transient behavior can be very relevant. For example, for
weather forecasts, the time it takes to initiate rainfall from a cloud is still a great unknown.
Here in particular including particle sinking may lead to much better predictions. As
already stated above, it is believed that the fast growth of a second peak in the particle
size distribution that has been observed (see e.g. Shaw, 2003) may be due to a few larger
droplets collecting a host of small ones as they sink through a cloud. In addition, it may
be an interesting question whether the simple, synthetic turbulent flow field that was
used here to approximate the dissipative range of a real turbulent flow is really able to
sufficiently capture all important effects. Real turbulent flows may exhibit intermittency,
as well as clustering effects on scales larger than the Kolmogorov scale. The particle
Stokes number may change along the trajectory of a particle, leading to fluctuations in
the equations of motion for the particles. All this can in principle be incorporated within
the framework of our model, but judging the impact of such effects requires further study.

For the modeling of aggregates with a fractal-like structure one of the most interesting
questions would be how to describe polydisperse suspensions of particles, i.e. suspensions
where different types of particles appear. The easiest case would be having particles of
different density in the system. For each aggregate one would not only have to keep track
of the number of primary particles in that aggregate, but also of the ratio between the
different types of particles. This immediately leads to a modification for the equation for
the aggregate density, which instead of the density of the primary particles now contains
the weighted average of the densities of all the different types of primary particles. This
could be a first approximation for describing aggregates from different sources, e.g. marine
aggregates consisting of inorganic matter such as clay or silt and organic matter such as
phytoplankton cells. More complex approaches could include particles with different
radii or different binding strengths. In addition, in many cases restructuring effects of
the aggregates may be very interesting. For example Maggi et al. (2007) discussed the
effect of a variable fractal dimension in the framework of a rate-equation based model.
In many systems the fractal dimension may change as a function of time, either due to
repeated aggregating and fragmenting of the aggregates or due to other effects, such as
changing biological activity, for example from bacteria on the aggregates which may affect
the aggregate strength as well.

Within the rate-equation based approach discussed here one of the main questions that
remained was how to approximate fragmentation rates for real turbulent flows. The as-
sumption of Gaussian distribution of the velocity increments is usually only a very poor
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model, except for the largest scales of a turbulent flow. Generally, the tails of the distribu-
tion of the velocity increments tend to become longer as the scale decreases. For example,
Sreenivasan (1999) suggested a description based on stretched exponentials. The incor-
poration of such a model for the fluid flow may lead to more realistic expressions for the
fragmentation rate than those that are currently widely in use. In addition, the approach
discussed here raised the question whether a more general solution than the specific case
of an exponential aggregate size distribution can be obtained. In particular, the question
of what is really required for a distribution to be a solution of the Smoluchowski equation
and whether this would lead to similar steady state solutions as those suggested here has
not been answered in this work. For this, it may prove fruitful to compare the analytical
results discussed in this thesis with numerical solutions of the Smoluchowski equation
and see whether for example a similar dependence on the fragmentation mechanism can
be found.

In our opinion discrete-element approaches for fragmentation, such as the one discussed
here may prove to be the most useful direction for a better understanding of fragmenta-
tion processes in the future. With the ever-increasing computational resources available,
a large number of possibilities exist. Some questions that immediately come to mind are
examining the dependence of the critical shear on the strength of individual, microscopic
bonds, as well as comparing the influence of normal and tangent interactions. For ex-
ample, changing the strength of the tangential bonds, i.e. making the aggregate more or
less rigid one should be able to see the transition between the two theoretical limit cases
of completely rigid and completely floppy aggregates, which have both been discussed
separately in the literature so far (see e.g. Potanin, 1993). The inclusion of particle-
fluid coupling, as well as modifications for example of the drag forces due to shielding
from neighboring particles may lead to drastic changes in the critical shear required for
fragmentation (see e.g. Becker et al., 2009). Additionally, in many realistic systems not
all particles are identical, i.e. one may have to deal with polydisperse aggregates with
primary particles of varying density and size and there may be a distribution of bonds
of different strength between different particles in a single aggregate, which may greatly
modify the breaking behavior. Also, using such a discrete-element model one may be
able to answer in detail some of the questions already raised above, such as the effect of
aggregate restructuring and changing fractal dimensions over time. For a given type of
particles, does the influence of shear or repeated aggregation and fragmentation lead to
some kind of a ’limit’ structure that the aggregate approaches?

Finally, one of the most interesting questions with respect to applications is how to
include biological and chemical processes on the aggregates in this context. So far the
model contains only physical interactions, such as the van der Waalsinteraction between
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particles. Biological and chemical processes, e.g. the presence of bacteria or polymer
coatings on the aggregates may greatly influence the connections between the primary
particles. In the framework of such a discrete-element aggregate model one is able to
directly model the colonization of an aggregate with bacteria in a flow, as well as the
dynamics of bacteria on such an aggregate that can have a significant influence on the
aggregate composition, its structure, sinking and fragmentation behavior.
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A. Incompressible, Synthetic Turbulence using a

Spectral Approach

In this chapter we discuss how to construct a ’random flow’ that models certain char-
acteristics of a real turbulent flow. Such flows are called ’synthetic’ turbulence. While
they do not capture all features of a real turbulent flow, they can serve as simple models
for a certain flow characteristic and can be simulated with much less computational ef-
fort than real turbulent flows. Here, we discuss a specific model for synthetic turbulence
that models features of the dissipative range of a turbulent flow by imposing an energy
spectrum.

The idea behind the spectral approach to synthetic turbulence is to write a flow
u(x, t) = {un(x, t)}n=1...d as a Fourier spectral representation. The Fourier components
are then described by a stochastic process with statistics suitable to reproduce certain
features of turbulent flows, e.g. the energy spectrum or the structure functions.

If one is interested in systems with periodic boundary conditions, the Fourier spectrum
is discrete and a flow u(x, t) can be written as a Fourier series

un(x, t) =
∑

k∈Zd\{0}

ûn(k, t)ei 2π
L

km·xm , (A.1)

where L is the size of the periodic domain and û(k, t) ∈ Cd are the Fourier components,
with the property ûn(−k, t) = û∗n(k, t) because un(x, t) is real-valued. The star denotes
complex conjugation.

In the Fourier spectral representation the condition of incompressibility of the flow
field ∂

∂xn
un (x, t) = 0 reads as 2πi

L kn · ûn(k, t) = 0, i.e. each Fourier component needs to
be perpedicular to the corresponding wave vector k. In two dimensions the easiest way
to do this is to introduce a stream function and its Fourier components. An approach
to synthetic turbulence using this can be found in the work of Sigurgeirsson and Stuart
(2002). Here, a different idea is shown, that can also be applied to higher dimensional
flows.

By taking for û(k, t) the projection of a different stochastic process v̂(k, t) ∈ Cd onto
the plane perpendicular to the wave vector k, i.e.

ûn(k, t) = v̂n(k, t)− (v̂m(k, t) · km)
|k|2 kn (A.2)
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incompressibility can be ensured for any d-dimensional flow field. The stochastic process
v̂n(k, t) is assumed to be an Ornstein-Uhlenbeck process. It is a solution of the complex-
valued stochastic differential equation

dv̂n = −α(k)v̂ndt + σ(k)dWn , (A.3)

with α(k), σ(k) ∈ R, where dWn is an complex Wiener increment. The stationary dis-
tribution corresponding to this stochastic differential equation is a Gaussian distribution
with mean 〈v̂n〉 = 0 and variance

〈v̂∗nv̂n〉 =
σ(k)2

α(k)
, (A.4)

without summing over n. The parameters α(k), σ(k) need to be chosen so that the flow
u(x, t) reproduces some features of a real turbulent flow.

For the situations studied in this work it is often sufficient to consider only very few
Fourier modes. In that case it may be computationally appropriate to calculate the flow
field directly at the position of the particles by evaluating the Fourier sum (A.1). In that
case the flow is not calculated on a grid, as is usually the case and no interpolation is
required. This allows for the resolution of very fine structures in the particle dynamics.
To this end a kmax is set, and the Fourier sum is only taken to this value. The lowest
value where isotropy can be ensured is kmax = 1, which results in 8 Fourier modes in two
dimensions and 26 modes in three dimensions. In computer simulations it is convenient
to use expressions involving real and imaginary parts of the Fourier modes ûn(−k, t).
Using the property ûn(−k, t) = û∗n(k, t) of the Fourier modes allows the elimination of
some Fourier modes and the rewriting of the Fourier series. Using this, only non-negative
values of the first component k1 of the wave vector k need to be considered. For the case
of k1 = 0 only non-negative values of the second component k2 of the wave vector need
to be considered, and so on. For example in three dimensions the Fourier sum then reads
as

un(x, t) =
kmax∑
k1=1

kmax∑
k2=−kmax

kmax∑
k3=−kmax

[
Re{ûn(k, t)} cos(

2π

L
(k1x1 + k2x2 +3 x3))

+ Im{ûn(k, t)} sin(
2π

L
(k1x1 + k2x2 + k3x3))

]
+

kmax∑
k2=1

kmax∑
k3=−kmax

[
Re{ûn(k, t)} cos(

2π

L
(k2x2 + k3x3))
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+ Im{ûn(k, t)} sin(
2π

L
(k2x2 + k3x3))

]
k1=0

+
kmax∑
k3=1

[
Re{ûn(k, t)} cos(

2π

L
(k3x3))

+ Im{ûn(k, t)} sin(
2π

L
(k3x3))

]
k1,k2=0

. (A.5)

A.1. Reproducing an Energy Spectrum

One possible feature of real turbulent flows that can be reproduced using synthetic tur-
bulence is the correct energy spectrum E.

The velocity spectrum tensor is defined as the Fourier transform of the two-point
correlation of the velocity field, i.e.

φmn(k, t) := 〈û∗m(k, t)ûn(k, t)〉 . (A.6)

The energy contained in each Fourier mode is 1
2 the trace of the velocity spectrum tensor.

The energy spectrum is obtained as the total energy per Fourier mode, without any
directional information, i.e. by summing over the energy of all Fourier modes with wave
numbers of the same magnitude |k| = k

E(k) =
∑

k∈Zd\{0}
|k|=k

1
2
φnn(k, t) . (A.7)

Kolmogorov’s hypothesis of local isotropy states that in turbulent flows for sufficiently
high Reynolds numbers for any length scales l smaller than some maximum length scale
lEI the turbulent motion is isotropic. This is the so-called universal equilibrium range,
which is below the energy-containing range of the largest eddies of the flow that are
affected by the boundary conditions of the flow. It consists of all wave-vectors k with k >

l−1
EI . Kolmogorov’s first similarity hypothesis then states that in this universal equilibrium
range the velocity statistics are uniquely determined by the kinematic viscosity ν of the
fluid and the mean dissipation rate of turbulent kinetic energy ε (see e.g. Pope, 2008).
This universal relationship can be written as

E(k) = ε2/3k−5/3Ψ(kη) , (A.8)
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where η is the Kolmogorov length scale, which is the length scale of the smallest, dissipa-
tive eddies in the flow. The part of the universal equilibrium range with l > η is generally
referred to as the inertial subrange, while the part with l < η is called the dissipation
subrange. The function Ψ(kη) is the compensated Kolmogorov spectrum function. In the
inertial subrange, where the second similarity hypothesis states that E(k) is independent
of ν, kη tends to zero and Ψ becomes constant. This leads to the famous Kolmogorov
−5/3 spectrum in the inertial subrange.

Figure A.1.: Energy spectra E(k) in homogeneous turbulence, (a) model spectrum as pro-
posed by Pope (2008), Eq. (A.9) and (b) dissipation range with comparison to other model
spectra: ’Pope Exponential’ (Eq. (A.11)), ’Kraichnan Spectrum’ (Eq. (A.12)) and ’Kraich-
nan Square’ spectrum which is the Kraichnan spectrum from Eq. (A.12), but with the
argument of the exponential squared.

Different models for Ψ(kη) have been proposed to model the different regimes of tur-
bulent flows. A model spectrum that confirms well to experimental data for all ranges of
k can be found in Pope (2008). It reads as

E(k) = Cε2/3k−5/3fL(k)Ψ(kη) , (A.9)

where fL and fη are non-dimensional functions that model the behavior of E(k) for large
scales > L and dissipative scales < η respectively and tend to unity for k in the inertial
subrange. The definition of fL is

fL(k) =

(
2πk

[(2πk)2 + cL]1/2

)5/3+2

, (A.10)

where cL is a positive constant, for high Reynolds numbers cL ≈ 6.78. The definition of
fη is

Ψ(kη) = exp{−β([(2πkη/L)4 + c4
η]

1/4 − cη)} , (A.11)

where cη is a positive constant that is for high Reynolds numbers cη ≈ 0.40. For the
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constant β of the exponential decay several experiments suggest a value of β = 5.2 (see
e.g. Pope, 2008, pg. 233). The qualitative shape of the energy spectrum function (A.9) at
high Reynolds numbers can be seen in Fig. A.1(a). It shows both a quadratic increase in
the energy containing range and the Kolmogorov −5/3 spectrum in the inertial subrange.

However, for this work generally only the dissipative scales of the flow are relevant since
the properties of particles much smaller than the Kolmogorov scale are investigated. It
is therefore sufficient to consider the spectral energy function restricted to this subrange.
Here, an exponential decay of E(k) is expected. Instead of taking e.g. the full model
spectrum (A.9) by Pope, simplifications can be considered. One possibility is to take for
the spectrum in the dissipative subrange the shape function Ψ(kη), with an appropriate
normalization constant, i.e. E(k) = CΨ(kη). For cη = 0 this can be simplified further to
the exponential spectrum suggested by Kraichnan (Martinez et al., 1997)

E(k) = C(2πkη/L)3exp(−β[2πkη/L]) . (A.12)

In some of the literature, e.g. Sigurgeirsson and Stuart (2002), a different version of the
Kraichnan spectrum appears, that contains the square of 2πkη/L instead. These three
spectra are compared, with appropriate normalizations, to the full model spectrum in
Fig. A.1(b). It can be seen that both the exponential spectrum by Pope (A.11) and
the simpler Kraichnan spectrum (A.12) lead to very similar approximations. Therefore,
in this work the Kraichnan spectrum with β = 5.2 is used, as it seems to be a simple
approximation that is still very close to experimental data. However, different versions
of E(k) are of course possible.

The normalization of the energy spectrum E(k) can be done in one of two possible
ways. Either, the normalization constant is chosen so that E(k) sums to a desired value
of the total energy E or the constant is chosen so that 2ν(2πk/L)2E(k) sums to a desired
value of the dissipation of turbulent kinetic energy ε. Here, the second version is preferred
since ε is the quantity most often set in experiments. The constant C is then given by

C = ε

[∑
k

2ν(2πk/L)2(2πkη/L)3exp(−β[2πkη/L])

]−1

. (A.13)

The question that needs to be answered now is how E(k) is related to the parameters
α(k) and σ(k) of the stochastic differential equation for 〈v̂n〉. To see this the relationship
between the variances 〈û∗n(k, t)ûn(k, t)〉 and 〈v̂∗n(k, t)v̂n(k, t)〉 needs to be determined.
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From Eq. (A.2) it follows that

〈û∗nûn〉 =
〈(

v̂∗n −
(v̂∗m · km)
|k|2 kn

)(
v̂n − (v̂m · km)

|k|2 kn

)〉
= 〈v̂∗nv̂n〉 − 1

|k|2 〈(v̂
∗
n · kn)(v̂∗m · km)〉 . (A.14)

By using

〈v̂∗mv̂n〉 = δmn 〈v̂∗nv̂n〉
(A.4)
= δmn

σ(k)2

α(k)
, (A.15)

where the first line1 follows from v̂n and v̂m being independent random variables with
mean zero for m 6= n, one obtains

〈û∗n(k, t)ûn(k, t)〉 = (d− 1)
σ(k)2

α(k)
. (A.16)

This result can also easily be understood intuitively. The distribution of v̂(k, t) is a
d-dimensional complex-valued Gaussian distribution. By projecting this on a (d − 1)-
dimensional subspace perpendicular to any vector k, one obtains a (d − 1)-dimensional
complex-valued Gaussian distribution, which has a variance as given by Eq. (A.16).

To assure statistical isotropy of the flow, it is assumed that α(k) and σ(k) only depend
on |k|. From Eq. (A.7) it then follows that

σ(k)2

α(k)
=

2
(d− 1)

E(k)
#(k)

, (A.17)

where
#(k) =

∑
k∈Zd\{0}
|k|=k

1 (A.18)

denotes the number of k that have the same modulus k.

There are many possible ways to satisfy this condition. One convenient way is to set
α(k) = c and σ(k) =

√
cλ(k). The constant c is then the correlation time of the flow

and λ(k) equals the right hand side of Eq. (A.17). With the definition of E(k) from Eq.
(A.12) the system can now be solved. This is usually done numerically. In this work an
explicit order 1.0 strong scheme (Heun) is used, see e.g. Kloeden and Platen (1999).

1there is no summation over n on the right hand side of the first line
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A.2. Calculating Mean, Variance and Spatial Correlations

of the Flow

The mean, variance and spatial correlations of a flow constructed in the manner described
in the previous subsection can be calculated from the properties of the individual Fourier
modes. For simplicity, only the result for d = 2 is shown, but the same calculations can
be done for other values of d. For the case of d = 2 the components of the flow u(x, t)
are given by

un(x, t) =
kmax∑
k1=1

kmax∑
k2=−kmax

[
Re{ûn(k, t)} cos(

2π

L
(k1x1 + k2x2))

+ Im{ûn(k, t)} sin(
2π

L
(k1x1 + k2x2 + k3x3))

]
+

kmax∑
k2=1

[
Re{ûn(k, t)} cos(

2π

L
(k2x2))

+ Im{ûn(k, t)} sin(
2π

L
(k2x2))

]
k1=0

. (A.19)

The ensemble mean 〈un(x, t)〉 of Eq. (A.19) is zero, because the mean of Re{ûn(k, t)}
and Im{ûn(k, t)} is zero for all k.

The variance
〈
un(x, t)2

〉
can also be calculated from Eq. (A.19). Using the indepen-

dence of the real and imaginary part of 〈un(x, t)〉, both for the same and different k, the
variance reduces to

〈
un(x, t)2

〉
=

kmax∑
k1=1

kmax∑
k2=−kmax

[〈
Re{ûn(k, t)2}〉 cos2(

2π

L
(k1x1 + k2x2))

+
〈
Im{ûn(k, t)}2

〉
sin2(

2π

L
(k1x1 + k2x2 + k3x3))

]
+

kmax∑
k2=1

[〈
Re{ûn(k, t)}2

〉
cos2(

2π

L
(k2x2))

+
〈
Im{ûn(k, t)}2

〉
sin2(

2π

L
(k2x2))

]
k1=0

. (A.20)

The problem therefore reduces to finding the variance of the real and imaginary part of
the Fourier modes ûn(k, t). From Eq. (A.16) and (A.17) it follows that

〈Re{ûn(k, t)}Re{ûn(k, t)}〉 =
E(k)
#(k)

, (A.21)
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and the same also for the variance of the imaginary part. It should be noted that this
is the result for the sum of the variances of all components and the variance of the n-th
component Re{ûn(k, t)} is not necessarily given by 1

d 〈Re{ûn(k, t)}Re{ûn(k, t)}〉! Due
to the projection perpendicular to k, for some values of k some components may be
zero while others contain the full variance. However, for the calculation of Eq. (A.20)
this does not matter since the sum goes over all values of k. We can therefore use〈
Re{ûn(k, t)}2

〉
=
〈
Im{ûn(k, t)}2

〉
= 1

d · E(k)
#(k) in the sum in Eq. (A.20). This results in

〈
un(x, t)2

〉
=

kmax∑
k1=1

kmax∑
k2=−kmax

[
1
d
· E(k)
#(k)

]
+

kmax∑
k2=1

[
1
d
· E(k)
#(k)

]
k1=0

. (A.22)

This expression can then be evaluated for a given parameter set. For example, for kmax =
1, L = 2π, η = 1, c = 1 which are the parameters typically used in this work, the variance
of each velocity component is approximately

〈
un(x, t)2

〉 ≈ 0.1ε.

The calculation of spatial correlations 〈un(x, t)un(x + δem, t)〉 (no summation over
n) is somewhat more involved. In particular, due to the projection of the Fourier
modes perpendicular to k, the spatial correlations for each component depend on
the direction of the unit vector em. In d = 2 it is 〈u1(x, t)u1(x + δe1, t)〉 6=
〈u2(x, t)u2(x + δe1, t)〉 and 〈u1(x, t)u1(x + δe2, t)〉 6= 〈u2(x, t)u2(x + δe2, t)〉, where e1

is the unit vector in x1 direction. It should be noted that this does not violate isotropy,
because 〈u1(x, t)u1(x + δe1, t)〉 = 〈u2(x, t)u2(x + δe2, t)〉 and 〈u1(x, t)u1(x + δe2, t)〉 =
〈u2(x, t)u2(x + δe1, t)〉.

To calculate the spatial correlation 〈un(x, t)un(x + δem, t)〉 the product of two sums
of the form of the right-hand side of Eq. (A.19) needs to be calculated. For simplicity,
we only show the case of kmax = 1, where the right hand side of Eq. (A.19) has only
four summands. Using that the variance of the real and imaginary part of ûn(x, t) is
the same, one obtains for the n-th component for the spatial correlation in e1 direction
(neglecting the dependence on t)

〈un(x)un(x + δe1)〉 =
〈
Re{ûn([0, 1])}2

〉
+

〈
Re{ûn([1,−1])}2

〉
cos(

2π

L
(−x1 + x2)) cos(

2π

L
(−x1 − δ + x2))

+
〈
Re{ûn([1,−1])}2

〉
sin(

2π

L
(−x1 + x2)) sin(

2π

L
(−x1 − δ + x2))

+
〈
Re{ûn([1, 0])}2

〉
cos(

2π

L
x1) cos(

2π

L
(x1 + δ))

+
〈
Re{ûn([1, 0])}2

〉
sin(

2π

L
x1) sin(

2π

L
(x1 + δ)) (A.23)
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+
〈
Re{ûn([1, 1])}2

〉
cos(

2π

L
(x1 + x2)) cos(

2π

L
(x1 + δ + x2))

+
〈
Re{ûn([1, 1])}2

〉
sin(

2π

L
(x1 + x2)) sin(

2π

L
(x1 + δ + x2)) .

This can be expanded in a Taylor series for small δ, resulting in

〈un(x)un(x + δe1)〉 =
〈
un(x)2

〉− δ2

2

(
2π

L

)2
[ 〈

Re{ûn([1,−1])}2
〉

+
〈
Re{ûn([1, 0])}2

〉
+
〈
Re{ûn([1, 1])}2

〉 ]
+O(δ4) . (A.24)

In a similar manner the spatial correlation in the e2 direction can be obtained, resulting
in

〈un(x)un(x + δe2)〉 =
〈
un(x)2

〉− δ2

2

(
2π

L

)2 [ 〈
Re{ûn([1,−1])}2

〉
+

〈
Re{ûn([0, 1])}2

〉
+
〈
Re{ûn([1, 1])}2

〉 ]
+O(δ4) . (A.25)

The reason for the dependence of the spatial correlations of the different velocity com-
ponents on the direction of em now becomes apparent. Because of the projection per-
pendicular to k,

〈
Re{û1([1, 0])}2

〉
= 0, whereas

〈
Re{û2([1, 0])}2

〉
= E(k)

#(k) and similar〈
Re{û1([0, 1])}2

〉
= E(k)

#(k) , whereas
〈
Re{û2([0, 1])}2

〉
= 0. This means that spatial corre-

lations in the direction perpendicular to the direction of the velocity decay faster. With〈
Re{ûn([1,−1])}2

〉
=
〈
Re{ûn([1, 1])}2

〉
= 1

d · E(k)
#(k) the spatial correlations can now be

evaluated. For example, for L = 2π, η = 1, c = 1 one obtains

〈un(x)un(x + δem)〉 =

{
ε
(
0.1− 0.05 · δ2

)
+O(δ4), n 6= m

ε
(
0.1− 0.0125 · δ2

)
+O(δ4), n = m .

(A.26)

Variance of the velocity gradients

With the results from the previous section the variance of the velocity gradients ∂un
∂xm

can
be calculated. Again, for simplicity only the case of d = 2 is shown and only the specific
result for kmax = 1, L = 2π, η = 1, c = 1 is calculated.

In this work the velocity gradients are typically estimated as the difference quotient
over the distance δ = 2r, where r is the radius of a particle. Therefore,〈(

∂un

∂xm

)2
〉

≈
〈(

un(x + δem, t)− un(x, t)
δ

)2
〉
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=
2
δ

[〈
(un(x, t)2

〉
− 〈(un(x, t) un (x + δem, t)〉

]
(A.27)

Using the result for the spatial correlation in Eq. (A.26), one obtains〈(
∂un

∂xm

)2
〉
≈
{

0.1ε, n 6= m

0.025ε, n = m
(A.28)
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B. Parametrization of the Discrete Element

Aggregate Model

The Table B.1 below lists the parameters used in our implementation of the discrete
element aggregate model in Chapter 6. The fourth column contains the parameter values
in SI units. The third column contains these values in rescaled units, where time, length
and mass are µs, mm and mg, respectively. The second column is the parameter as it is
used in the numerical implementation.

Table B.1.: Microscopic parameters used for the discrete-element aggregate model. See Luding
(2008) for a detailed description of the meaning of each parameter.

Parameter Value Rescaled Units SI Units

time 1 1µs 10−6s

space 1 1mm 10−3m

mass 1 1mg 10−6kg

radius 0.004 0.004mm 4 · 10−6m

density (particle) 2 2mg/mm3 2000kg/m3

density (fluid) 1 1mg/mm3 1000kg/m3

viscosity (fluid) 10−6 10−6mg/(mm · µs) 10−3kg/(m · s)
normal forces

Hamaker constant 10−20 10−20(mg ·mm2)/µs2 10−20kgm2/s2

δmin 4 · 10−7 4 · 10−7mm 4 · 10−10m

δmax 1.1 · (r1 + r2)

reloading stiffness k 5 5mg/µs2 5 · 106kg/s2

loading stiffness 0.5 · k
adhesion 0.5 · k
plastic range 0.05

visc. Dissipation γ 5 · 10−5 5 · 10−5mg/µs 5 · 10−5kg/s

tangent forces

sliding stiffness 0.2 · k
rolling stiffness 0.1 · k

Continued on next page
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Table B.1 – continued from previous page

Parameter Value Rescaled Units SI Units

torsion stiffness 0.1 · k
static friction (sliding) 1

dyn. friction ratio 1

rolling friction 0.1

torison friction 0.1

sliding visc. dissipation 0.2 · γ
rolling visc. dissipation 0.05 · γ
torsion visc. dissipation 0.05 · γ

176



C. Additional Results on Inertial Particles in

Chaotic Advection

The following pages contain our work on aggregation/coagulation of inertial particles in
chaotic advection. These works are not included in the main part of this thesis because
there we focused on a slightly different question, namely (synthetic) turbulent flows.
However, we include the full publications on this topic for the sake of completeness. The
following publications are included in this Appendix:

• Zahnow, J. C., Vilela, R. D., Feudel, U., and Tél, T. (2008). “Aggregation and
fragmentation dynamics of inertial particles in chaotic flows.” Physical Review E,
77(5):055301.
This work is under copyright of The American Physical Society (2008), included
with permission.

• Zahnow, J. C., Vilela, R. D., Feudel, U., and Tél, T. (2009). “Coagulation and
fragmentation dynamics of inertial particles.” Physical Review E, 80(2):026311.
This work is under copyright of The American Physical Society (2009), included
with permission.

In these works we applied the individual, inertial-particle based model approach for
aggregation and fragmentation, discussed in Chapter 3 and 4 of this thesis, to the problem
of spherical particles in chaotic advection and show how our model is able to capture the
basic properties of aggregation and fragmentation processes.
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Inertial particles advected in chaotic flows often accumulate in strange attractors. While moving in these
fractal sets they usually approach each other and collide. Here we consider inertial particles aggregating upon
collision. The new particles formed in this process are larger and follow the equation of motion with a new
parameter. These particles can in turn fragment when they reach a certain size or shear forces become suffi-
ciently large. The resulting system consists of a large set of coexisting dynamical systems with a varying
number of particles. We find that the combination of aggregation and fragmentation leads to an asymptotic
steady state. The asymptotic particle size distribution depends on the mechanism of fragmentation. The size
distributions resulting from this model are consistent with those found in raindrop statistics and in stirring tank
experiments.

DOI: 10.1103/PhysRevE.77.055301 PACS number�s�: 47.52.�j, 05.45.�a, 47.53.�n

There is an increasing recent interest in the advection of
inertial particles in fluid flows �1�. This comes in part from
the fact that the dynamics of these particles are dissipative,
which leads in most flows to a preferential accumulation on
chaotic, fractal attractors. Previous studies concentrated
mainly on noninteracting particles, in spite of the fact that
accumulation leads unavoidably to strong mutual interac-
tions of different kinds.

Here we consider the interaction of these particles in the
form of aggregation and fragmentation. When two particles
come sufficiently close, they aggregate to a larger one, ob-
serving mass and momentum conservation. If the size ex-
ceeds a certain threshold value, which depends on a property,
the stickiness � of the particles, or other conditions are ful-
filled, they break up into smaller pieces. This is the basic
mechanism underlying such processes in nature like raindrop
formation in clouds �2� or the sedimentation of marine ag-
gregates �3� in the ocean. We demonstrate that for the study
of such processes a particle based approach may be a useful
addition to the usual population-balance equation approach
�4�. The latter is based on the assumption of well-mixed
particles while our approach takes the incomplete mixing of
inertial particles in fluids explicitly into account.

Although concepts of dynamical systems theory can use-
fully be applied, we show that the entire dynamics is much
more complex than that of any usual dynamical system. The
dynamics of particles of any size are governed by the same
type of equations of motion, but with different parameters
since new particles will have new radii. Even if one consid-
ers a finite number n of possible sizes �size classes�, there are
n equations of motion with different size-dependent param-
eters. We thus have a union of n dynamical systems and,
moreover, the number of particles in each size class is chang-
ing in time. It is useful to interpret the attractors of the dif-
ferent size classes �of the noninteracting problem� as the
skeleton of the full dynamics. Aggregation and fragmenta-
tion generates transitions from one attractor to another one. It
is this permanent wandering among different attractors
which characterizes the new dynamics.

We show that the combination of aggregation and frag-

mentation, superimposed on chaotic inertial advection dy-
namics, leads to a convergence to an asymptotic steady state,
and this steady state is unique for the cases studied here. We
find that the dynamics and the steady state depend on the
fragmentation rule. For fragmentation due to shear we
present a simple scaling relationship for the asymptotic av-
erage size of the particles. Furthermore, the shape of the
asymptotic size distribution can be represented in a scaled
form independent of the stickiness �.

For simplicity we consider spherical aerosoles, i.e., par-
ticles much denser than the ambient fluid, and assume that
the difference between their velocity ṙ and the fluid velocity
u=u(r�t� , t) at the same position is sufficiently small so that
the drag force is proportional to this difference �Stokes drag�.
The dimensionless form of the governing equation for the
path r�t� of such aerosols subjected to drag and gravity, reads
as �5�:

r̈ = A�u − ṙ − Wn� , �1�

where n is a unit vector pointing upwards in the vertical
direction. Throughout this paper we consider the vertical di-
rection along the axis y. The inertia parameter A �larger val-
ues for smaller particle size� can be written in terms of the
densities �p and � f of the aerosol and of the fluid, respec-
tively, the radius a of the aerosols, the fluids kinematic vis-
cosity �, and the characteristic length L and velocity U of the
flow. It is A=R /St, where R=� f /�p�1 is the density ratio
and St= �2a2U� / �9�L� is the so-called Stokes number of the
aerosol �8�. W=2a2�pg / �9�� fU� is the dimensionless settling
velocity in a medium at rest.

Every particle produces perturbations in the flow that de-
cay inversely proportional to the distance from the particle
�6�. Here we assume a dilute regime, where the local con-
centration of particles is low enough, so that particle-particle
interaction can be neglected �7�.

During aggregation and fragmentation the radius of par-
ticles changes and so do the parameters A and W. The small-
est �primary� particles considered in this model have dimen-
sionless radius a1=5 /301/3�10−5, mass m1=�p4 /3�a1

3,
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inertia parameter A1=7, and settling velocity W1=0.4 /A1.
All larger particles are assumed to consist of an integer num-
ber of these primary particles. Thirty different size classes
are considered. A particle that consists of 	 �	=1, . . . ,30 is
called size class index� primary particles has a radius a	
=	1/3a1, an inertia parameter A	= �a1 /a	�2A1=	−2/3A1 and a
settling velocity W	=	2/3W1. The largest particle therefore
has a radius a30=5�10−5.

Aggregation takes place upon collision, i.e., if two par-
ticles, say of radius ai and aj, come closer than a threshold.
Mass conservation requires the radius of the new particle to
be anew

3 =ai
3+aj

3. For the size class index this implies a linear
rule: 	new=	i+	 j, which determines the new inertia param-
eter via A	new

=	new
−2/3A1. The velocity of the new particle fol-

lows from momentum conservation.
Fragmentation. We apply one of the following rules: �i�

Size-limiting fragmentation: If a particle becomes larger than
the maximum radius a30, it is broken up into two smaller
fragments whose radii are chosen randomly, with a uniform
distribution between a1 and half the original radius. If any
fragment is larger than a30 this process is repeated, until no
fragment exceeds a30. �ii� Shear fragmentation takes place if
the velocity gradient is too large. More specifically, the ve-
locity gradient is evaluated across each particle both in the
horizontal and in the vertical direction. If the maximum in
any direction exceeds a threshold value, the particle is bro-
ken up into two smaller parts in the same way as for size-
limiting fragmentation. While size-limiting fragmentation is
dominant for raindrops �2�, shear fragmentation determines
the breakup of marine aggregates �9�.

Since for marine aggregates the threshold gradient be-
comes smaller for larger particles �9�, we write

„grad�u�…th = �a1/a = �	−1/3. �2�

Coefficient � represents the “stickiness” of the particles.
Whatever rule is taken, the result is the reversed process of
aggregation: two new particles are formed from an old one
with the size class indices: 	i,new+	 j,new=	old. The centers of
the new particles are placed along a line segment in a ran-
dom direction so that their distance equals the sum of their
radii. Momentum is conserved. For simplicity we assume
that the new particles have the same velocity as the old one.
Shear fragmentation is applied together with size-limiting
fragmentation to keep the maximum number of occurring
size classes at 30.

At the instant of both the aggregation and the fragmenta-
tion process there is a sudden change in the dynamics: the
number of particles jumps in three among the 30 available
dynamical systems defined by the size classes.

For convenience, we treat the case where the fluid flow is
two dimensional, therefore the phase space of the advection
dynamics is four dimensional. We use the convection model
of �10� with dimensionless velocity field

u�x,y,t� = �1 + k sin�
t��� sin�2�x�cos�2�y�
− cos�2�x�sin�2�y�

� , �3�

where k=2.72 is the amplitude and 
=� is the frequency of
the periodic forcing. The fluid flow itself is laminar, but the

dynamics of the inertial particles can be chaotic. Because of
the spatial periodicity of the flow and the resulting spatial
periodicity of the attractors the total particle mass M in each
1�1 unit cell remains the same over time. The dynamics can
therefore be restricted to one cell. The characteristic size
and velocity of the flow are therefore L=1, U=1,
respectively.

In the numerical realization of the problem the particles
are advected without any interaction over a time interval �t
=T /20 at the end of which first aggregation and then frag-
mentation take place, instantly. This is repeated after every
time step �t. To carry out the aggregation process, the
distance between particles is calculated and all particles
within a distance less than the sum of their radii
aggregate.

As an initial condition we take 105 particles in the small-
est size class and no particles in other size classes. Further-
more, particles are uniformly distributed over the entire con-
figuration space with velocities matching that of the fluid.
This choice fixes the total mass of the system to be M
=105m1.

Before presenting the results obtained for the full dynam-
ics, it is instructive to see the attractors of the noninteracting
problem. Figure 1 presents the attractors for the smallest, an
intermediate, and the largest size classes. The extension of
the attractor seems to grow almost monotonically with the
size class index, except for a few intermediate size classes
�	=9, . . . ,14�, where the attractor size decreases or the at-
tractor becomes periodic.

In order to understand the full dynamics, we include first
the simplest fragmentation process, the size-limiting frag-
mentation. Figure 2�a� shows the time dependence of the
number N	�t� of particles in a few size classes. The particles
leave the initial size class very quickly. After 20 time units
nearly all other size classes are considerably occupied. In
fact, the population in size class 16 reaches a maximum here,
but decreases again later on. It is the occupation of the larg-
est size classes which continuously increases and then satu-
rates. The total number N�t� of particles �bold line� rapidly
decreases first, but saturates later on. The spatial distribution
of particles �Figs. 2�b� and 2�c�� shows that they move ini-
tially among the more localized attractors characteristic of
small size class indices. Later, the distribution becomes more

FIG. 1. Poincaré section of the attractors of Eq. �1� projected
onto the plane of the flow for inertia parameters �a� A=7 �size class
1�, �b� A=2.778 �size class 16�, and �c� A=2.253 �size class 30�.
The positive Lyapunov exponents are �a� �1=0.108, �b� �1=0.061,
and �c� �1=0.119, �2=0.014. The settling velocity is W=0.4 /A.
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extended in configuration space when size classes with ex-
tended attractors become well occupied, although the total
number of particles is much less than in the initial phase.
While the full dynamics is dominated by transients in be-
tween attractors, the shape of the backbone attractors is
clearly recognizable in the plots.

To follow the convergence towards an asymptotic state,
we found it useful to consider the average size class index
�	�t��=	i=1

30 	iN	i
�t� /N�t�. Figure 3�a� shows the time depen-

dence of this index for both types of fragmentation. It illus-
trates the convergence to an asymptotic steady state for both
fragmentation rules. Initially, aggregation leads to a fast in-
crease in the average particle size class for both fragmenta-
tion rules. Then fragmentation sets in and a balance between
aggregation and fragmentation is reached, with a different
asymptotic average particle size 	=limt→�	�t�� for the

two rules. For size-limiting fragmentation the value of 	 is
almost constant over time, while for shear fragmentation 	

oscillates with the period T of the flow. This is caused by the
periodic change in the fluid flow and the corresponding
change in the shear forces.

For size-limiting fragmentation, 	 is, in a broad range,
independent of M. For shear fragmentation with M �3
�105m1, 	�M� increases approximately linearly with M,
while for higher values a saturation of 	�M� sets in, which
is due to size-limiting fragmentation.

By considering other initial conditions than those men-
tioned above, while keeping the total mass M fixed, the
asymptotic state is found for both rules to be independent of
the chosen initial condition, but for shear fragmentation the
asymptotic state does depend on the value of the stickiness
�.

To illustrate this dependence of the steady state on the
stickiness �, Fig. 3�b� shows how 	 changes with the sticki-
ness parameter at a fixed M. A drastic increase of 	��� can
be observed in the interval 4���10. It is clear that 	

increases with �, because particles become more resistant to
shear. A quantitative estimate of the shape of this 	���
curve can be derived by assuming that the threshold velocity
gradient is approximately constant for the size class index
	. From Eq. �2� it then follows that 	 depends linearly on
�3. This simple dependence is expected to hold for relatively
small values of � and 	, where shear fragmentation domi-
nates. It can be seen that for higher values of �, when size-
limiting fragmentation becomes important the 	��� curve
deviates from this estimate and converges towards a limiting
value 	

�lim� �Fig. 3�b��.
In addition to the average quantities it is natural to inves-

tigate the occupation of the different size classes in the
steady state. Figure 4�a� shows the steady-state histograms vs
the dimensionless radius. For size-limiting fragmentation the
distribution shows one broad peak around smaller size
classes and a second, smaller peak at large size classes with
a sharp drop-off towards zero beyond the maximum size.
This behavior, with two maxima and a sudden drop after the
second peak, is similar to that of observed cloud drop spectra

FIG. 2. Particle numbers vs time, and space distributions for
size-limiting fragmentation. �a� Total number N�t� of particles
�bold—left axis� and the number of particles N	�t� in size class 	
�gray� for 	=1 �left axis�, 	=16 �right axis�, and 	=30 �right axis�.
Distribution of all particles in configuration space at time �b� t=5,
and �c� t=100.
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�2�. For shear fragmentation the steady-state distribution also
shows two peaks, but much closer together, with a long tail
in the particle distribution towards larger sizes that goes
smoothly towards zero. For ��5 this distribution is not fully
developed and only shows one peak. In the intermediate �
range, where the distribution is fully developed, but size-
limiting fragmentation is not important, a scaling form
N	 / max�N	� = f�a / �a� � is found ��a� represents the average
radius�, independently of �. All distributions in this range
collapse then onto a single master curve as shown in Fig.
4�b�. This behavior, along with the long tail in the distribu-
tion towards the right-hand side, is typically observed
in shear-fragmentation experiments in stirring tanks
�11�.

We note that our findings are robust with respect to the
number of new particles formed by fragmentation. For in-
stance, in Fig. 4�a� we see that the distributions of particles
for ternary fragmentation are similar to the ones for binary
splitting and only show a slight shift towards smaller size
classes. The same result is found in population balance equa-
tion models, e.g., �11�.

Finally, we mention that in spite of the different steady
states, the size distribution in the initial phase is similar in
the different cases. After short times, we find a roughly ex-
ponential decay. In this early phase, fragmentation is yet in-
active, and the process is dominated by aggregation. This

decay in the short time distribution can be found for all ini-
tial conditions.

In conclusion, we illustrated that an individual modeling
of particles is able to reflect typical properties of aggregation
and fragmentation processes. We found the development of a
balance between aggregation and fragmentation, and a
steady state. The steady-state particle size distributions found
here correspond to those observed in raindrops �size-limiting
fragmentation� and stirring tank experiments �shear fragmen-
tation�. For shear fragmentation the size distributions are
found to follow a scaled form. In addition, the approach
shown here can reflect spatial inhomogeneity and take actual
particle dynamics into account, and could possibly allow for
a much more detailed description of particle interaction. It is
thus more adequate than the usual stochastic, mean-field-like
approach which relies on the assumption that the particles
are well mixed �2�. The presence of chaotic attractors can
ensure a partial mixing only, and hence the assumption is not
valid. An interesting open problem is to extend our study to
three-dimensional �3D� flows.
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Inertial particles suspended in many natural and industrial flows undergo coagulation upon collisions and
fragmentation if their size becomes too large or if they experience large shear. Here we study this coagulation-
fragmentation process in time-periodic incompressible flows. We find that this process approaches an
asymptotic dynamical steady state where the average number of particles of each size is roughly constant. We
compare the steady-state size distributions corresponding to two fragmentation mechanisms and for different
flows and find that the steady state is mostly independent of the coagulation process. While collision rates
determine the transient behavior, fragmentation determines the steady state. For example, for fragmentation
due to shear, flows that have very different local particle concentrations can result in similar particle size
distributions if the temporal or spatial variation in shear forces is similar.
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I. INTRODUCTION

The dynamics of inertial particles in fluid flows plays an
important role in many natural and industrial contexts and
has received an increasing interest in recent years. Questions
where inertial particles play an important role are ubiquitous
in biology, chemistry, oceanography, astrophysics, and geo-
physics. Recent works from dynamical systems �1–8� to at-
mospheric science �9–11� and turbulence �12–14� have added
greatly to the understanding of these phenomena. Almost all
these works have been devoted to the dynamics of noninter-
acting inertial particles. A major reason for this is that this
problem is already very rich, displaying features yet to be
understood in their full complexity, as inhomogeneous spa-
tial distributions �15,16� and multivalued velocity fields
�12,17,18�. Interestingly, these very same features yield an
increased rate of collisions �13�, the consequences of which
are in most cases not explicitly taken into account. Typically
one assumes a dilute regime and fully neglects the collisions.
In some other works, one keeps track of the collisions nu-
merically without actually addressing the outcome of such
events �ghost collisions� �13,19�. To our knowledge, only
very recent works have addressed effects of collisions on the
dynamics of inertial particles �20–22�. In Ref. �21�, we have
reported our first results on the dynamics of inertial particles
coagulating �23� upon collisions and fragmenting under cer-
tain conditions. In Ref. �22�, the authors considered elastic
collisions in a monodisperse system and pointed out the ex-
istence of bursts in the spread of the particles out of the
attractors of the purely advective dynamics. In Ref. �20� the
authors treated coagulation and shear fragmentation of dust
particles in an astrophysical context. There small dust par-
ticles can grow into larger fractal clusters due to turbulent
collisions.

In this paper we extend the work of Ref. �21� to different
flows and to a broadened parameter set. Our motivation lies
primarily on natural phenomena such as the collisional
growth of cloud droplets �24�, sediments in lakes and rivers,

and marine snow in the ocean �25�. Here we focus on the
description of spherical droplets, i.e., we do not take into
account any fractal structures that often appear in sediments
or marine snow.

Our main result is that coagulation and fragmentation
dominate the behavior of different time spans of the process
and fragmentation rather than coagulation is the dominating
process for the steady-state size distribution. For different
flows, the collision rates between inertial particles can be
very different, leading to great changes in the coagulation of
particles. While this might be an important effect for tran-
sient processes, such as the initiation of rain in clouds, it will
turn out that for the steady state fragmentation plays a much
greater role. In fact, the steady-state size distributions are
mainly determined by the fragmentation process. The spe-
cific flow structure is only relevant for the steady-state size
distribution when it directly affects the fragmentation pro-
cess. This can for example be the case for fragmentation due
to shear when the spatial and temporal variations in the shear
are very different for the two flows.

We consider fragmentation to be of two possible origins.
First, particles break up if their size exceeds a certain maxi-
mum allowed size. This is motivated by the hydrodynamical
instability of large water drops �e.g., cloud drops� settling
due to gravity �26�. Second, particles fragment if the shear
forces due to the fluid flow are sufficiently large. This
mechanism has been reported to be the dominant one in the
case of marine aggregates �27�.

At a first glance, one might be tempted to pursue a field-
theoretical approach, in the framework of which one treats
the problem of particle motion as a multiphase flow and then
applies the Smoluchowski equation �28� to model coagula-
tion and fragmentation for the particle distribution. However,
the inertial particle dynamics is dissipative and contracts to
an attractor in a 2d-dimensional phase space, where d is the
spatial dimension of the flow. This attractor can be folded in
phase space, meaning that the particle velocity may take on
several values even at the same location. Due to the presence
of such “caustics” �12,18,29�, a field-theoretical approach
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cannot be well founded. Therefore a study based on an indi-
vidual tracking of the particles, as the one presented here,
becomes necessary.

Here we consider the fluid flow to be spatially smooth and
to have a single macroscopic time scale. We are motivated by
flows having coherent �e.g., convective� structures on length
scales much larger than the ones at which turbulence plays a
major role. The effect of turbulence can then be taken into
account as a stochastic perturbation described by an eddy
diffusivity �30� at small scales. For simplicity, we neglect
this small scale noise in the present work and focus only on
the large scale motion of the fluid.

We study the dynamics of the system formed by the trans-
ported inertial particles undergoing coagulation and fragmen-
tation in three different fluid flows, as described in Sec. II.
We find that the system tends to approach a steady state
where several size classes coexist �Sec. III�. The average
number of particles in each size class is roughly constant
with a mild periodic time dependence—with a period iden-
tical to the one of the advecting fluid flow. The distribution
of particles as well as the mean average size in the steady
state depends on the type of fragmentation mechanism taking
place. First, when fragmentation occurs solely due to par-
ticles exceeding a maximum allowed size, the distribution is
in general quite broad. Second, for fragmentation occurring
also under sufficiently large shear, the distributions typically
decay exponentially beyond a certain size class. The distri-
butions depend on the fluid flow for both types of fragmen-
tation. However, for shear fragmentation the differences are
very small as long as the variation in the fluid shear over
time is qualitatively similar.

In the case of shear fragmentation, we derive a scaling
relation for the average size class in the steady state as a
function of the coagulate strength parameter �. Finally, we
show that our results are robust with respect to the total mass
of particles, the number of allowed size classes and the initial
particle size distribution. Also, in the case of shear fragmen-
tation the size distribution in the steady state has a scaled
functional form which does not depend on the coagulate
strength �.

II. COAGULATION AND FRAGMENTATION MODEL

A. Dynamics of inertial particles

First, we present the equations of motion for the motion
of finite-size particles that will be used here. For simplicity
we consider heavy spherical aerosols, i.e., particles much
denser than the ambient fluid and assume that the difference
between their velocity ẋ and the fluid velocity u=u(x�t� , t) at
the same position is sufficiently small so that the drag force
is proportional to this difference �Stokes drag�. The dimen-
sionless form of the governing equation for the path
x�t�= (x1�t� ,x2�t�) of the center of mass for such heavy
aerosols subjected to drag and gravity reads in this case as
�31–33�

ẍ =
1

�
�u„x�t�,t… − ẋ − Wn� , �1�

where n is a unit vector pointing upwards in the vertical
direction. Throughout this paper we consider the vertical di-

rection along the axis x2. Under the assumption that the den-
sity ratio � f /�p�1, the particle response time � can be writ-
ten in terms of the density �p of the particle, the radius r of
the aerosols, the fluids dynamic viscosity �, and the charac-
teristic length L and characteristic velocity U of the flow as
�= �2r2�pU� / �9�L�. We note that the response time � is noth-
ing but the Stokes number, which can be written in our case
as �=�p /T, where �p is the particle’s dimensional Stokesian
relaxation time and T is the characteristic time of the flow.
The dimensionless settling velocity in a medium at rest is
given by W= �2r2�pg� / �9�U�. Note that W /� is independent
of the particle radius r.

Every particle produces perturbations in the flow that de-
cay at least inversely proportional to the distance from the
particle �34,35�. Here we assume a dilute regime, where the
local concentration of particles is low enough, so that
particle-particle interaction can be neglected �36� unless par-
ticles come into direct contact.

The assumption that the particle radii a are small also
means that the feedback from the particle motion on the flow
will be small as well �33� and is therefore neglected in the
following.

B. Coagulation

Second, we present a model for the coagulation of finite-
size particles.

The smallest particles considered will be called primary
particles. These primary particles can combine to form larger
particles, called coagulates. Coagulation takes place upon
collision. All particles are assumed to consist of an integer
number of these primary particles, i.e., the primary particles
can never be broken up. The number � of primary particles
in a coagulate is called the size class index. We consider n
different size classes, i.e., coagulates can consist of a maxi-
mum of n primary particles. A coagulate of size class � has
a radius r�=�1/3r1, where r1 is the radius of the primary
particles. The response time is ��= �r� /r1�2�1=�2/3�1 and the
settling velocity in still fluid is W�=�2/3W1. Here �1 and W1
are the response time and the settling velocity for the pri-
mary particles, respectively. The largest coagulates therefore
have a radius rn=n1/3r1. We note that particles of different
sizes have different parameters �� and W� and therefore fol-
low the flow with different parameters in the equation of
motion �Eq. �1��.

We define a collision of two particles if the centers of the
particles, say, of radius ri and rj, come closer than a distance
d=ri+rj. In that case the particles coagulate and form a
larger particle. Mass conservation requires the radius of the
new particle to be rnew

3 =ri
3+rj

3. For the size class index this
implies a linear rule, �new=�i+� j, which determines the new
response time and settling velocity via ��new

=�new
2/3 �1 and

W�new
=�new

2/3 W1, respectively.
The velocity of the new particle follows from momentum

conservation. The position of the new coagulate is the center
of gravity of the two old particles.

C. Fragmentation

Third, we present a model for the fragmentation of par-
ticles. Primary particles cannot be broken up. In the follow-
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ing, we will compare two different fragmentation rules.
�i� Size-limiting fragmentation. If a particle becomes

larger than the maximum radius an, it is broken up into two
smaller fragments �binary fragmentation� whose radii are
chosen randomly, from a uniform distribution between a1
and half the original radius. If any fragment is larger than an
this process is repeated, until no fragment exceeds an.

�ii� Shear fragmentation takes place when the hydrody-
namical force Fhyd acting on the particle exceeds the forces
Fcoag holding the coagulate together by a certain factor. The
criterion for breakup can therefore be expressed as

Fhyd/Fcoag 	 �̃ , �2�

where �̃ is a constant.
The hydrodynamical force in this case is proportional to

the local velocity gradients in the flow. It is expected that
larger particles are more likely to break up, therefore, the
critical force required for fragmentation should decrease with
the coagulate size. For liquid spherical particles �drops� in
the size range where viscous forces dominate, Taylor �37�
and later Delichatsios �38� derived an expression for the
critical velocity difference 
u across the drop required for
breakup. Under the condition that the characteristic time of
drop deformations is small compared to the time where this
velocity gradient occurs, we rewrite this condition with a
single parameter as


u

a�

= �� r1

r�
� = ��−1/3, �3�

where � is a constant, the coagulate strength parameter �the
same quantity is called stickiness in �21��. The radius has
been normalized with the radius of a primary particle. If the
maximum velocity difference across the radius of the drop
exceeds the threshold value given by Eq. �3�, the particle is
broken up into two smaller fragments �binary fragmentation�
in the same way as for size-limiting fragmentation.

At the instant of both coagulation and fragmentation there
is a sudden change in the dynamics: the number of particles
changes in 2 or 3 among the n available dynamical systems
defined by the size classes.

D. Fluid flows

For convenience, we treat the case where the fluid flow
depends only on two coordinates, i.e., we study a three-
dimensional flow where the velocity in the third direction is
negligible compared to the other two velocities. This can
then be represented by a two-dimensional flow. Therefore,
the phase space of the particles dynamics is four dimen-
sional. We choose three simple paradigmatic flow situations
with different characteristics to indicate the generality of our
results.

All flow domains are spatially periodic, with a character-
istic length L. More specifically, the flows are �a� a convec-
tion cell flow with moving vortex centers �in the following
referred to as the moving convection flow�, �b� a convection
cell flow with fixed vortices �referred to as the fixed convec-
tion flow�, and �c� a sinusoidal shear flow.

The two convection cell flows �a� and �b� consist of a
regular pattern of vortices, or roll cells. Flow �b� was first
introduced by Chandrasekhar �39� as a solution to the
Rayleigh-Bénard problem and since then it has been used in
the context of different theoretical studies �1,40–42�. The
moving convection flow �a� is a slightly modified version,
with moving vortex centers, to yield a more realistic chaotic
regime for the particle motion. Convection flows are chosen
because they contain vortices �convection cells� and
uprising/sinking regions, which are characteristic features of
realistic flows often found in nature. The flows are defined
by the velocity field as the following:

�a� Moving convection flow

u�x1,x2,t� = �1 + k1 sin��1t��� sin�2�x̂1�cos�2�x̂2�
− cos�2�x̂1�sin�2�x̂2�

� ,

�4�

where x̂1=x1+k2 sin��2t� and x̂2=x2+k2 cos��2t�. The pa-
rameters k1=2.72 and �1=� are the amplitude and the fre-
quency of the periodic forcing of the flow, respectively.
k2=1 / �2�� and �2=� /4 determine the amplitude and the
frequency of the periodic motion of the centers of the vorti-
ces in the flow. The period of the flow is T=2 and the char-
acteristic length and characteristic velocity are L=1 and
U=1.

�b� Fixed convection flow with the same equation for the
flow as in �a�, but with k2=0.

The sinusoidal shear flow �c� consists of alternating hori-
zontal and vertical velocity components, where each velocity
component consists of two plateaus in time. It was intro-
duced in Refs. �43,44� and has been used many times in
chaotic advection studies. Here we consider a time-
continuous version �see �45�� defined by

�a� sinusoidal shear flow

u�x1,x2,t� = 0.5��1 + tanh� sin�2�t���sin�2�x2�
�1 − tanh� sin�2�t���sin�2�x1�

� , �5�

where the parameter  describes how rapidly the transition
between two values, a zero and a nonzero velocity, takes
place for each velocity component. The typically used value
=20 /� corresponds to a very rapid transition.

The period of the flow is T=1 and the characteristic
length and characteristic velocity are L=1 and U=1.

The fluid flows are laminar and time periodic, but the
dynamics of the inertial particles moving in these flows can
be chaotic.

To emphasize the difference between the flows, Fig. 1
shows the maximum of the velocity gradient vs time for the
convection flows �there is no difference between the moving
and the fixed convection flows� and the sinusoidal shear flow.
The difference in magnitude and also in the temporal evolu-
tion between these two flows is clearly visible, indicating a
possibly very different behavior with respect to shear frag-
mentation.

E. Numerical implementation

After presenting the model, we describe some details
about the implementation. In the bulk of the paper we con-
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sider n=30 size classes. The primary particles considered
here have dimensionless radius r1=5 /301/3�10−5, response
time �1=1 /55, and settling velocity W1=3.2�1. As initial
condition we take N�t=0�=105 particles of the smallest size
and no larger particles. Furthermore, particles are uniformly
distributed over the 1�1 unit cell of the configuration space.
The initial particle velocity matches that of the fluid at their
position in all cases.

The simulation is based on the following ingredients:
�a� All particles move in the flow over some time step dt

according to Eq. �1�. This integration time step dt needs to be
chosen small enough to allow for the detection of every col-
lision. After each time step dt there is an interaction between
particles in the form of coagulation if they are too close to
each other. Our experience shows that a choice dt=T /20 is
sufficiently small for the conditions considered here.

Because of the spatial periodicity of the flow, the particle
dynamics is folded back onto the 1�1 unit cell, using peri-
odic boundary conditions �see, e.g., �40,42��.

�b� Particles coagulate if their distance is smaller than the
sum of their radii. Computationally, the coagulation process
is the most costly component of the simulation. Here a link-
cell algorithm �46� is used to compute the distance between
particles, which scales as O�N� and is thus much faster than
simply summing over all particles.

�c� Coagulates can fragment either due to size-limiting
fragmentation or due to shear fragmentation.

�1� Size-limiting fragmentation. If the coagulate size �
exceeds the predefined maximum size, which is in the fol-
lowing fixed at n=30 unless mentioned otherwise, the coagu-
late is broken up.

�2� Shear fragmentation. If the shear at the position of the
coagulate exceeds a critical value, determined by Eq. �3� the
coagulate breaks up. Due to the symmetry of the flows cho-
sen here, the maximum velocity difference is always in the
direction of one of the coordinate axes, therefore only these
values have to be calculated. Shear fragmentation is always
applied together with size-limiting fragmentation to keep the
maximum number of occurring size classes fixed at n.

Whatever rule is applied, the result is the reversed process
of coagulation: two new particles are formed from an old one
with the size class indices: �i,new+� j,new=�old. As indicated
earlier, �i,new can take on any value between �1 and �n/2 with
equal probability. The centers of the new particles are placed
along a line segment in a random direction so that the dis-
tance d between the particle centers equals the sum of their
radii, i.e., d=ri+rj, and the center of mass remains un-

changed. Momentum is conserved. For simplicity we assume
that the new particles have the same velocity as the old one.

III. SIMULATION RESULTS

In this section we show simulation results using the model
described above and compare the influence of the different
flows and the effect of size-limiting fragmentation and shear
fragmentation.

Before presenting any results for the complete model, it is
worth showing the attractors for the noninteracting problem
in the different flows. Figure 2 shows the stroboscopic sec-
tion �taken with the period T of the flow� of the attractors for
flows �a�–�c� for one specific size class projected onto the
plane of the coordinates. The figure illustrates the difference
in the geometric properties of the particles dynamics in the
different flows.

For the moving convection flow and the sinusoidal shear
flow the degree of clustering of the particles in the attractors,
quantified by their fractal dimension, decreases monotoni-
cally with the size class. The parameter region is chosen in
such a way that the attractors are either area filling or fractal
with dimension smaller than 2, which we consider to be
closer to a realistic situation than, for example, fixed-point
attractors. For the fixed convection flow, the particles tend to
cluster on a quasiperiodic attractor. This leads to a much
larger collision rate than in the other two cases.

In all flows we find convergence to an asymptotic steady
state. Initially, coagulation leads to a fast increase in the av-
erage particle size class, independent of the fragmentation
rules. Then fragmentation sets in and a balance between co-
agulation and fragmentation is reached, with an asymptotic
average coagulate size

�� = lim
t→�

1

T
	

t

t+T

ds
��s�� �6�

that depends on the fragmentation rule and the different
flows. The average 
��s�� is taken over the coagulate sizes at
time s and Eq. �6� corresponds to time averaging 
��s�� over
one time period of the flow to remove the periodicity. For the
transient behavior of the coagulation-fragmentation process
the geometric properties, in particular the degree of cluster-
ing of the particles, are very important since they affect the
time scales of the transients. This is not the case for the
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steady state. This becomes very clear when looking at the
size distributions of coagulates in steady state for the differ-
ent flows and fragmentation mechanisms �Fig. 3�. One might
expect that the steady state for flow �b� is very different from
the other two cases, due to the large difference in particle
clustering. Our results show however that the steady state of
the particle dynamics for flows �a� and �b� are almost iden-
tical, while flow �c� produces different results. For example
for both flows �a� and �b�, the size distribution has a long tail
toward larger size classes that decays exponentially for shear
fragmentation. Similar exponential tails for the particle size
distribution have been found in observations of aggregates in
the ocean �see, e.g., �47��.

By contrast, for the sinusoidal shear flow the size distri-
bution has two peaks and then drops off sharply toward zero
beyond the second peak. In this case the size distribution for
shear fragmentation is almost identical to that of size-
limiting fragmentation, but for a lower value of �max. This is
due to the fact that in the sinusoidal shear flow for the chosen
parameters the shear a particle experiences is almost constant
over time and space, except for a small “dip” every half
period. This very narrow distribution of the shear is very
similar to having a single maximum stable size, as is the case

for size-limiting fragmentation. In this case a value of
�=17 for shear fragmentation corresponds to a value of
�max=20.

We have also checked the size distributions in subregions
of the flows. We found, that as long as the number of par-
ticles in the subregions allowed sufficiently good statistics,
the normalized size distributions coincided with the global
distributions. This means that there is no significant spatial
dependence of the size distribution.

While the specific shape of the size distributions found
may not be very general, both because of the limitation to
only thirty size classes and the very simplified flows, our
approach illustrates clearly that the geometric properties of
the particle motion related to preferential concentration are
not the most relevant ones for the steady-state distributions.
Instead, the most important effect for the steady state of the
particles seems to be the fragmentation process.

Size-limiting fragmentation is the same in all flows, as it
does not depend on properties of the flow. In this case the
differences in the size distributions are small for the different
flows. This indicates that the size distributions are mainly
determined by the fragmentation process because the flow
specific differences, e.g., differences in coagulation rates, do
not affect the shape of the size distribution. However, when
fragmentation depends on shear, the different flows produce
very different size distributions. This difference is mainly
due to the different properties of the shear forces in the flow
�Fig. 1�, which lead to differences in fragmentation. To see
that it does not depend, e.g., on the detailed characteristics of
the particle motion or on the different collision rates, we can
adjust the flow parameters. Decreasing the value of the pa-
rameter  for the sinusoidal shear flow to a much smaller
one, e.g., =� /20, greatly increases the variation in the
shear forces over space and time. We obtain two sinusoidal
peaks per period for the shear forces, similar to what happens
in the convection flow �cf. Fig. 1�, except that for the sinu-
soidal shear flow both peaks have the same height. For an
appropriate choice of �, so that the average size classes
match, it can be seen that the shape of the particle size dis-
tributions for both flows have become almost identical �Fig.
4� and show the characteristic exponential tail. Again, this
indicates that the shape of the size distribution is mostly
affected by fragmentation and any flow specific differences
in the distribution result mainly from differences in the shear
distribution in the flow, which in turn change the fragmenta-
tion rates.

This strong dependence of the steady state on the frag-
mentation process can also clearly be seen by how ��
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changes with the coagulate strength � �see Fig. 5�. We note
that the shear forces in the convection flows and the sinu-
soidal shear flow have a different magnitude, as seen in Fig.
1. Therefore three different values of the coagulate strength
parameter � need to be chosen to yield a size distribution that
is not only determined by size-limiting fragmentation. For
the convection flows the coagulate strength � needs to be
approximately a factor of 3 larger than for the sinusoidal
shear flow.

It is clear that �� increases with � because particles be-
come more resistant to shear. The exact functional relation-
ship is however not trivial. A first qualitative estimate of the
shape of this ����� curve can be derived by assuming that
over one period of the flow the particles experience an “av-
erage shear”

Ḡ =
1

T
	

0

T

dt	
D

dxp�x,t�G�x,t� , �7�

where G�x , t� is the modulus of the local velocity gradient,
p�x , t� is the distribution of particles, and D is the unit square
domain. From Eq. �3� we then get for the average critical
size at this velocity gradient

�̄crit = Ḡ−3�3. �8�

Particles that exceed this size will therefore typically break
up during one period of the flow. Since particles break into
two parts due to shear, the average size would then be

����̄crit /2. The average shear Ḡ is, however, somewhat
complicated to estimate. It would have to be calculated as a
mean over the positions of all particles in the flow at a given
time. Additionally, how much larger than the critical size
particles get before they break up depends on the coagulation
probabilities, and therefore also on the local concentrations
of particles. The exact dependency of ����� is therefore not
easily calculated. What can be seen from Eq. �8� is however
that the average size is expected to scale with � as

�� � �3. �9�

This dependence is expected to hold for all values of � and
��, where shear fragmentation dominates. A fit with Eq. �9�
for the different flows is shown in Fig. 5 and for lower values
of � the fits agree very well with the simulation results. It can
be seen that for higher values of �, when size-limiting frag-
mentation becomes important, the ����� curves deviate from
this estimate and converge toward the limiting value ��

�lim�

�see Fig. 5�. This result demonstrates how the steady state
depends very strongly on the fragmentation process. How-
ever, the different proportionality constants for Eq. �9� still
depend on the flow and can also depend on the spatial dis-
tribution of the particles since different regions of the flow
might exhibit different shear.

Finally, we mention some further results from our model.
First, for all flows the steady state in the case of shear frag-
mentation is not static, instead due to the periodic time de-
pendence of the flows the steady state also varies periodi-
cally over time. This is very clear for example for the fixed
convection flows when looking at the average size class in-
dex 
��t��=�i=1

30 �iN�i
�t� /N�t�, where N�i

denotes the number
of particles in size class �i �Fig. 6�.

Such a time dependence of the average particle size, and
therefore of the whole particle size distribution, can have
important physical consequences. For example the settling of
coagulates in the ocean, which is an important part of the
biological carbon pump in the ocean, is greatly affected by
the size distribution of the coagulates. In coastal areas, where
the fluid may be periodically forced by the tides, such a time
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dependence of the distribution can greatly affect the settling
rates and therefore the deposition of coagulates �47�.

Second, since the range of possible parameter values for
our model is very large, we also mention the robustness of
our findings with respect to the following different param-
eters:

�i� For each flow there is a certain range of the coagulate
strength parameters � where the size distribution for shear
fragmentation is “fully developed.” By this we mean that � is
large enough so that a sufficiently large fraction of particles
has left the smallest size class, but � is small enough so that
break up due to size-limiting fragmentation does not play a
significant role. In this intermediate � range, where the par-
ticle size distribution is fully developed, a scaling form

N�

max�N��
= f� r


r�
� �10�

is found to hold �Fig. 7�, where 
r� represents the average
radius. Note that the form of the size distribution is indepen-
dent of �. All distributions in this parameter range collapse
then onto a single master curve.

While this scaling form is independent of the parameters
of the coagulation and of the coagulate strength, the differ-
ence between the different flows remains. More specifically,
the scaling form f changes when shear forces in the flow or
the fragmentation mechanism, for example the distribution
of fragments, is varied.

�ii� When investigating cases with different total mass M,
we find that for size-limiting fragmentation �� is largely
independent of M. For shear fragmentation with
M �3�106m1, ���M� increases approximately linearly with
M, while for higher values a saturation of ���M� sets in,
which is due to the fact that size-limiting fragmentation
dominates in this case.

�iii� By considering other initial particle size distributions
than that mentioned above, for example any single size class
with �	1 or a uniform distribution of sizes, and keeping the
total mass M fixed, the asymptotic state is found to be inde-
pendent of the chosen initial distribution for each flow and
for both fragmentation rules.

�iv� We also investigated the role of the number of size
classes and found that in the chosen range of � values the
size distributions for shear fragmentation are not influenced
by the number of size classes.

�v� The effect of the number of new particles formed by
fragmentation has been considered. For instance, the distri-
butions of particles for ternary fragmentation are similar to
the ones for binary splitting and only show a slight shift
toward smaller size classes �48�.

IV. SUMMARY

We discussed the formation of a steady-state size distri-
bution in a coagulation-fragmentation process of inertial par-
ticles transported by different flows. Our most important
finding is that fragmentation rather than coagulation is the
dominating process for the steady-state size distribution. For
size-limiting fragmentation we found almost no differences
in the shape of the steady-state size distribution for various
flows. Even in flows with great differences in coagulation
rates, e.g., due to differences in local particle concentrations,
particle size distributions remained very similar. For the case
of shear fragmentation differences in the shape of the size
distribution for the different flows appeared. It was found
that these were due to differences in the spatial and temporal
variation in the shear, which in turn affected the fragmenta-
tion.

We have shown that an individual particle based modeling
approach is able to reflect typical properties of coagulation
and fragmentation processes of inertial particles. The appear-
ance of a steady state is demonstrated. We outlined some of
the differences in the convergence to the steady state and the
particle size distribution that can result from different types
of fragmentation and flow. Altogether, our results suggest
that coagulation dominates different time spans of the pro-
cess than fragmentation. While coagulation is most important
for the transients in the beginning, the steady-state size dis-
tribution is mainly determined by fragmentation. As a con-
sequence the spatial distribution of particles plays only a
transient role. The underlying flow is important for the
steady state in the case of shear fragmentation, as the spatial
and temporal variation in the shear can greatly influence the
fragmentation rates.

The generalization to a fully three-dimensional system is
straightforward. The relaxation toward the steady state would
slow down, due to the decreased probability of collisions.
However, our conclusions regarding the dependence of the
steady-state size distribution on the fragmentation remain
valid.
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