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Abstract

In this dissertation, methods for an efficient coding of natural sounds are proposed that

are based on the concept of “sparse coding” which has been identified as one major

mechanism involved in the neurosensory information processing. In the first chapter it

is demonstrated that in the MPEG-2/4 AAC audio coding scheme the modified discrete

cosine transform (MDCT) can be replaced with a shift-invariant sparse signal model

realized by a matching pursuit algorithm. Thereby an improved perceived audio quality

was possible, especially at low bitrates. The second chapter addresses the non-trivial

problem to select the optimal degree of overcompleteness of a sparse signal model. By

using a frame theoretic approach, it is shown that the number M ≥ 100 of gammatone

filters (2.4 filters per ERB) leads to a near-perfect reconstruction of the signal space of

natural sounds. In the last two chapters it is demonstrated how a set of significance

trees can be used to achieve an effective encoding of sparse coefficients. Using a

data-dependent set of significance trees, the proposed coding scheme outperforms the

state-of-the-art audio coding scheme MPEG-2/4 AAC for bitrates less than 32 kbps

while additionally offering the property of fine-grain bitrate scalability.
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Zusammenfassung

In dieser Doktorarbeit werden verschiedene Methoden für eine effiziente Kodierung

natürlicher Töne vorgeschlagen, die auf dem Konzept der “spärlichen Kodierung”

basieren, welches als ein Hauptmechanismus in der neurosensorischen Informationsver-

arbeitung identifiziert wurde. In dem ersten Kapitel wird gezeigt, dass in dem Audio-

kodierungsverfahren MPEG-2/4 AAC die modifizierte diskrete Kosinustransformation

(MDCT) durch ein verschiebungsinvariantes spärliches Signalmodel, implementiert

durch einen Matching Pursuit Algorithmus, ersetzt werden kann. Dadurch konnte

eine verbesserte Audioqualität insbesondere bei niedrigen Bitraten erreicht werden.

Das zweiten Kapitel behandelt das nichttriviale Problem der Auswahl der optimalen

Übervollständigkeit eines spärlichen Signalmodels. Unter Verwendung der Frame-

Theorie wird gezeigt, dass die Anzahl an M ≥ 100 Gammatonfiltern (2.4 Filter

pro ERB) eine fast perfekte Rekonstruktion des Signalraums der natürlichen Töne

ermöglicht. In den letzten zwei Kapiteln wird gezeigt wie Signifikanzbäumen genutzt

werden können um eine effektive Kodierung spärlicher Koeffizienten zu erreichen. Unter

Verwendung einer datenabhängigen Menge von Signifikanzbäumen übertrifft dieses

Kodierungskonzept den hochmodernen Audiokodierer MPEG-2/4 für Bitraten unter-

halb von 32 kbps während es zusätzlich eine feinabgestimmte Bitratenskalierbarkeit

ermöglicht.
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1 Introduction

This dissertation is concerned with an efficient coding of the signal class of natural

sounds such as speech or environmental sounds. The working hypothesis is that

neurosensory systems are performing a highly optimized signal analysis [8, 7, 75], in

particular that the auditory system is realizing a signal model that is specialized in

analyzing natural sounds.

Signal models are important in the context of analysis, estimation, compression and

synthesis of signals. The earliest theoretical signal analysis model, proposed by Fourier

[40], analyzes the frequency content of a signal using the expansion of functions into a

weighted sum of sinusoids. Gabor [42] extended this signal model by using shifted and

modulated time-frequency atoms which analyze the signal in the frequency as well as

in the time dimension. The wavelet signal model, a further improvement presented by

Morlet et al. [97], uses time-frequency atoms that are scaled dependent on their center

frequency. This yields an analysis of the time-frequency plane with a non-uniform

tiling. However, the time-frequency atoms used in these signal models normally do not

assume an underlying signal structure. As the performance of subsequent processing

algorithms depends strongly on how well the fundamental features of a signal are

captured, it is favorable to use time-frequency atoms that are specialized to the applied

signal class. A data-dependent basis for the signal class of natural sounds can be

derived using the independent component analysis (ICA). Thereby derived basis vectors
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1 Introduction

typically consist of well localized time-frequency atoms [1, 76]. Similar to auditory

filters realized by a cochlea [94], the bandwidth of these derived time-frequency atoms

increased gradually with the center frequency. This is in contrast to the dyadic increase

common for wavelets. It allows however that the temporal asymmetric auditory filters

do realize an approximately tight frame within the frequency range of natural sounds

(Chapter 3). It is to note that most of the ICA-derived time-frequency atoms did not

show the asymmetry in the time domain known to be present in cochlear filter shapes

measured experimentally in the auditory nerve [15].

In recent years, studies that applied experimental, computational and theoretical

methods [100] could show that one major mechanism involved in the neurosensory

information processing is “sparse coding”. The sensory information is processed by

a large population of neurons of which, especially in the upper parts of the sensory

pathways, only a relatively small number of neurons are simultaneously active. In a

mathematical context, the sparseness of a vector or matrix is measured by the L0 norm,

which counts the number of non-zero elements. Hence, optimizing the sparseness of a

signal model is achieved by reducing the number of non-zero coefficients representing the

signal. This concept of a sparse signal model has gained interest in the signal processing

community during the last years [89, 28, 17, 45, 48, 54, 32, 3], as it shows improved

performance in signal compression, analysis and denoising tasks [98, 16, 49, 31]. Most

sparse signal models assume an additive signal model of the form

x[n] =
K∑
i=1

αidi[n] (1.1)

with the signal x ∈ RN×1, the coefficients α = [α1α2 . . . αK ] ∈ CK and the dictionary

atoms D = [d1d2 . . .dM ] ∈ CN×M . By postulating the condition M > N and
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introducing shift invariance by constructing D using template atoms and adding all

their possible shifts to the dictionary, the encoding of a signal is not unique anymore.

This overcompleteness in the time and in the frequency domain allows a sparse signal

representation algorithm to search for the sparsest encoding in the infinite number

of solutions. Another way to increase the sparseness of a signal model is to increase

the correlation of the expansion functions D with the signal x. Similar to the data-

dependent ICA basis, a data-dependent dictionary D can be learnt that minimizes

the L0 norm of the coefficients α for a given training set. It has been shown that

for natural sounds gammatone time-frequency atoms realize a nearly optimal sparse

shift-invariant signal model [117]. In this context it is to note that an overcomplete

signal analysis can also be found in the peripheral auditory system. In the frequency

domain, an overcomplete signal analysis is realized by the large amount of inner hair

cells, for example 3500 inner hair cells in the human cochlea [124]. In the time domain,

the activation of spikes in the auditory nerve due to the occurrence of signal energy at

a specific frequency and thus a specific place along the basilar membrane [47] is solely

threshold triggered and not externally clocked like in block-based signal models. The

cochlea performs thereby a shift-invariant and also in the time domain overcomplete

signal analysis. This motivates the investigation of a shift-invariant sparse signal model

throughout this dissertation and especially the usage of gammatone atoms as expansion

functions, as they are also an established model for the signal analysis performed by

the human cochlea [104, 105, 15, 22, 23, 103, 19].

The first part (Chapter 2) of this dissertation investigates the feasiblity to replace

the block-based signal analysis of a modern audio coding scheme (MPEG-2/4 AAC)

with a shift-invariant sparse signal model. In general, the first stage of perceptual audio

coding schemes performs a time-frequency analysis of the audio signal. In parallel,
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1 Introduction

a psychoacoustic model is computing a signal-to-mask ratio from the audio signal,

predicting the maximum amount of distortion at each point in the time-frequency

plane that is still inaudible. In the next stage, the signal coefficients are quantized,

exploiting these perceptual irrelevancies until they meet the desired bitrate after lossless

compression [102]. The novelty of this dissertation is to replace the lapped modified

discrete cosine transform (MDCT) in the MPEG-2/4 AAC coding scheme with an

overcomplete time-invariant sparse signal model that is optimized for natural sounds,

while keeping the psychoacoustic model and the quantization algorithm (rate/distortion

loop) unchanged. To realize the time-invariant sparse signal model, the time-frequency

algorithm matching pursuit [89] was chosen because of its low complexity. Deriving

the sparsest representation of a signal has been proven to be NP-hard [28, ch. 2]

and is therefore, in general, computationally intractable. It has been shown that the

complexity of the matching pursuit algorithm can be reduced for dictionaries that

exhibit a special structure [44, 48, 72], i.e. are well localized in time and in frequency.

Gammatone functions exhibit such a special structure and a fast matching pursuit

algorithm for gammatone functions is presented in Chapter 2 of this thesis.

Matching pursuit is a greedy iterative search algorithm that at the i-th iteration

selects the atom having the largest inner product, hence correlation, with the residual

ri:

αmi
= argmax

dmi∈D
|〈ri,dmi

〉|2 (1.2)

with mi being the dictionary index of the selected atom at the i-th iteration. The

residual ri is defined as the difference between the already encoded signal part and

the original signal. The new residual is then computed by removing the selected atom

4



from the residual:

ri+1 = ri − αmi
dmi

(1.3)

This is repeated until the signal residuum is small enough or a maximal number of

iterations has been reached. An increased correlation of the dictionary atoms dmi

with the signal results in a faster decline of the residual ri+1. Thus, less iterations (i.e.

non-zero coefficients) are needed to encode the signal, which results in an increased

sparseness of the signal model. Therefore in this chapter also optimal gammatone

parameters achieving the sparsest signal model for English speech are derived.

Matching pursuit is guaranteed to decrease the power of the residual on each iteration

only if the atoms of the dictionary span the signal space [89]. However, the non-trivial

problem to select the optimal number of gammatone atoms in an overcomplete signal

model has not been addressed in any study so far and has been investigated in the

second part of this thesis (Chapter 3) using a frame theoretic approach. To achieve an

efficient encoding of natural sounds, i.e. to reduce bitcoding and computational costs,

it is important to know the smallest number of gammatone atoms needed to achieve a

near-perfect reconstruction for the signal class of natural sounds. To further reduce

encoding and subband processing costs, it is often favorable to remove the redundancy

in an overcomplete signal model by downsampling its subband coefficients. Therefore,

another topic addressed in the second part of this dissertation is the concept of multi-

rate coding. A bifrequency analysis of the overcomplete gammatone signal model

is performed and it is shown how decimation factors can be derived that introduce

minimal aliasing distortions.

Even when using the minimal necessary overcompleteness, a shift-invariant sparse

signal model still results in a large quantity of subband coefficients for every filter, which
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1 Introduction

impedes an efficient coding of sounds in terms of memory usage. In the third part of this

thesis (Chapter 4 and 5), two compression schemes for sparse data based on bitplane

coding and significance trees are proposed. By describing significant coefficients of a

bitplane via their position and value information instead of transmitting all values one

by one, a high compression performance can be achieved especially for sparse data sets.

Encouraged by the success in image compression and the fact that quantized MDCT

coefficients are sparse, significance tree related coding techniques have been proposed

for audio compression as well [34, 107, 106, 108, 85, 86]. In all of these approaches, the

tree structures have been fixed independent of the signal class to be encoded and are

based on the assumption that low-frequency components contain more energy than

high-frequency components. This assumption, however, does not hold for all frames

of real-world audio signals. Thus, fixed trees can only be suboptimal. In Chapter 4,

an adaptive tree-based significance mapping technique, the combined significance-tree

quantization (CSTQ) [127, 120] is presented. It uses a fixed set of significance trees from

which the optimal tree for each frame is selected. An extension of the CSTQ algorithm

is developed in Chapter 5 which uses data-dependent significance trees. A scalable

compression scheme is proposed that selects for every frame the optimal tree from a

dynamically optimized set of data-dependent significance trees. This so-called dynamic

significance tree quantization (DSTQ) is based on the concept of data-dependency

observed in neurosensory systems [6].
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2 Sparse gammatone signal model optimized
for English speech does not match the
human auditory filters1

2.1 Abstract

Evidence that neurosensory systems use sparse signal representations as well as improved

performance of signal processing algorithms using sparse signal models raised interest

in sparse signal coding in the last years. For natural audio signals like speech and

environmental sounds, gammatone atoms have been derived as expansion functions

that generate a nearly optimal sparse signal model (Smith, E., Lewicki, M., 2006.

Efficient auditory coding. Nature 439, 978-982). Furthermore gammatone functions

are established models for the human auditory filters. Thus far, a practical application

of a sparse gammatone signal model has been prevented by the fact that deriving

the sparsest representation is, in general, computationally intractable. In this paper

we applied an accelerated version of the matching pursuit algorithm for gammatone

dictionaries allowing real-time and large data set applications. We show that a sparse

signal model in general has advantages in audio coding and that a sparse gammatone

signal model encodes speech more efficiently in terms of sparseness than a sparse

modified discrete cosine transform (MDCT) signal model. We also show that the

optimal gammatone parameters derived for English speech do not match the human

1This chapter has been published in the present form in Brain Research, vol. 1220, pp. 224-233
(2008).
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2 Sparse gammatone signal model

auditory filters, suggesting for signal processing applications to derive the parameters

individually for each applied signal class instead of using psychometrically derived

parameters. For brain research it means that care should be taken with directly

transferring findings of optimality for technical to biological systems.

2.2 Introduction

There is evidence [99, 7, 100] that neurosensory systems encode stimuli by activating

only a small number of neurons out of a large population at the same time. This concept

of a ‘sparse’ signal representation has gained interest in the signal processing community

in the last years [89, 28, 17, 45, 48, 54, 32, 3] as it shows improved performance in

signal compression, analysis and denoising tasks [98, 16, 49, 31]. A sparse signal model

indicates the fundamental features of the signal as it necessarily involves expansion

functions that are highly correlated with the signal. For natural audio signals like speech

and environmental sounds, gammatone atoms have been derived as expansion functions

that generate a nearly optimal sparse signal model [76, 117]. Gammatone functions are

also known as filters modeling the human cochlea [104, 105] and gammatone filterbanks

are applied successfully in simulating the human auditory processing [22, 23, 103, 18].

Deriving the sparsest representation of a signal has been proven to be NP-hard [28, ch.

2] and is therefore, in general, computationally intractable. In this paper we apply an

accelerated sparse signal model for gammatone functions which is a specialisation of

Matching Pursuit [89]. This time-frequency algorithm computes a sparse signal model

from a given dictionary of atoms. At every iteration the dictionary atom that best

matches the signal is chosen and removed from the signal. This is repeated until the

signal residuum is small enough or a maximal number of iterations has been reached. It
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2.3 Results

has been shown [44, 48, 72] that the complexity of such an algorithm can be reduced for

dictionaries that exhibit a special structure and we apply these results to gammatone

dictionaries resulting in a computational complexity of O(N logN) per iteration.

The achieved acceleration makes it possible to apply this physiologically motivated

signal model in real-time applications like speech coding and analyse its performance

in state-of-the-art audio compression schemes like MPEG-4 AAC [63].

The possibility to evaluate the sparse gammatone signal model on a large data set

enables the statistical analysis of the selected gammatone parameters for a given sound

corpus. According to Barlow’s efficient-coding hypothesis [8], the human auditory

filters have been optimized under a strong evolutionary pressure to optimally encode

the relevant acoustic stimuli. We analyze the TIMIT speech corpus [43] and compare

the derived gammatone parameters with the known parameters from psychoacoustic

experiments.

2.3 Results

2.3.1 Audio coding

In audio coding schemes such as MPEG-2/4 AAC, the modified discrete cosine transform

(MDCT) is used to convert overlapping blocks of the time signal into a frequency-

domain representation. With a time shift of N samples, this transform maps 2N real

numbers onto N real coefficients by using modulated versions of a symmetric window

like shown in Figure 2.1a. In the older MPEG-1-layer-3 (MP3) standard, a bank of

bandpass filters is used in combination with the MDCT. The symmetry property of

the used window results from the Princen-Bradley condition the MDCT has to satisfy
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2 Sparse gammatone signal model

in order to yield a perfect reconstruction transform [90]. In the MPEG-4 AAC coder a

sine-shaped and a Kaiser-Bessel derived (KBD) window [101] can be chosen. In both

MP3 and AAC the window length can be switched between a short and a long window,

which allows the encoder to find the best compromise between a high coding gain in

stationary sections (long window) and reduced pre-echoes when the signal contains

strong transient components (short window).
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Figure 2.1: (a) Phoneme labeled example from Suzanne Vega’s “Tom’s Diner” where
she sings “coffee”. The segments of the overlapping MDCT blocks and
the used KBD windows are shown in red. (b) Plot of the 1191 MDCT
filterbank coefficients that are not quantized to zero at 16 kbps (c) Plot of
the 1018 MDCT matching pursuit coefficients used at 16 kbps

As argued by [115], transforms using a block-wise analysis are very sensitive to

small time shifts of the incoming signal and do not encode well transients and periodic

components that are located in the middle of the overlap region of two adjacent blocks

or window positions.

12



2.3 Results

In this context, it should be noted that the signal conversion into the frequency

domain done by the human cochlea is not rigid in time. The occurrence of signal

energy at a specific frequency, due to the frequency-to-place mapping along the basilar

membrane, results in a deflection of the corresponding inner hair cells, thereby triggering

spikes sent over the corresponding auditory nerves to the brainstem. This activation is

solely threshold triggered and not externally clocked like in a DCT or MDCT filterbank.

This property of the human auditory system motivates the application of a shift-

invariant signal model like matching pursuit [89] allowing arbitrary time positions. It

assumes an additive signal model of the form

x[n] =
K∑
i=1

αidi[n] (2.1)

with the signal x ∈ RN×1, the dictionary coefficients αi ∈ C and the dictionary

atoms D = [d1d2 . . .dM ] ∈ CN×M . The shift-invariance is achieved by constructing

D using templates like gammatone atoms and adding all their possible shifts to the

dictionary. Matching Pursuit is a greedy algorithm that first chooses the atom that

best approximates the signal. The contribution of this atom is then subtracted from

the signal and the process is iterated on the residual. So the task at the i-th iteration

is to minimize the residual

ri+1[n] = ri[n]− αidki [n] (2.2)

with dki [n] ∈ D, ki being the dictionary index of the atom chosen at the i-th iteration

and αi being the weight describing the contribution of the atom to the signal.

This signal coding paradigm also achieves a sparse signal representation as the
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2 Sparse gammatone signal model

increased time resolution results in an overcomplete representation of the signal space

and the encoding of a signal is thereby not unique anymore. This overcompleteness

allows the matching pursuit algorithm to search for the sparsest encoding in the infinite

number of solutions. In contrast, the MDCT atoms form a basis for the signal space

where only one unique representation for a signal exists.

In an initial audio coding experiment, we compared the performance of the matching

pursuit approach with the traditional filterbank design using the masking model, scale-

factor bands and adaptive quantization of the MPEG-4 AAC audio coding reference

implementation. We selected the castanets.wav audio signal from the EBU-SQAM

audio database [36] due to its transient properties, the TIMIT speech corpus repre-

senting the sound class of English speech and the often evaluated music test signal in

audio coding, Suzanne Vega’s “Tom’s Diner” (svega.wav). We compared the coding

quality of the MDCT filterbank (FB-MDCT) with the matching pursuit signal models

using a MDCT (MP-MDCT) and a gammatone dictionary (MP-GAMMA). The results

were evaluated using the objective difference grade (ODG) scale [66] computed with an

objective prediction method of the perceived audio quality called PEMO-Q [55] (for

details see ‘Experimental Procedure’). In Figure 2.2 the number of used coefficients

per second, the signal-to-noise ratio (SNR) and the ODG of the encoded signals at

different bitrates are shown. The matching pursuit algorithm encodes a signal until

a given threshold is reached, which was set in this experiment to a fixed SNR for all

bitrates (see Table 2.2). The MDCT filterbank in contrast always results in a perfect

encoding if no further quantization is applied. In a next step, the matching pursuit

respectively filterbank coefficients are encoded with a given bitrate using the masking

model, scalefactor bands and adaptive quantization of the MPEG-4 AAC audio coding

standard. Thereby the number of used coefficients per second is decreased whenever
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Figure 2.2: The upper row shows the average number of used coefficients per second,
the middle row the average signal-to-noise ratio and the lower row the
objective difference grade of the encoded signal at different bitrates

a coefficient is quantized to zero. This process can be understood by looking at the

coefficients per second and SNR results shown in Figure 2.2 for the Suzanne Vega song.

For the highest bitrate, all coefficients of the matching pursuit signal models can be

encoded in the given bit budget due to the initial sparse encoding. This results in a

signal representation achieving the preset SNR. At reduced bitrates, quantization is

needed to achieve the selected bitrate, first reducing the accuracy of the coefficients and

later also reducing the number of used coefficients by quantizing small coefficient values

to zero. The non-sparse coefficients of the filterbank signal model in contrast need to be

quantized for all bitrates. For the castanets test signal, only the MP-GAMMA signal

model results in a sparse representation where all coefficients fit into the bit budget at

higher bitrates and achieve the preset SNR. The symmetric MDCT atoms cause for

15



2 Sparse gammatone signal model

the very transient castanets signal pre-echo artifacts which reduces the SNR. For the

TIMIT corpus lower bitrates common for speech coding applications have been chosen,

always resulting in a quantisation of the coefficients and an SNR below the preset

value. The sparsest encoding of the signal is always achieved by the MP-GAMMA

based audio encodings, followed by the MP-MDCT audio encoding and the MDCT

filterbank based approach.

For the castanets.wav signal the MP-GAMMA audio coder achieves the highest

SNR except for the lowest bitrate. This is also reflected in the audio quality. The MP-

MDCT signal model encodes in general less signal energy than the FB-MDCT signal

model resulting in a lower SNR. This does not directly show in the predicted audio

quality, as for low bitrates the MP-MDCT dictionary achieves a better audio quality

despite the lower SNR compared with the filterbank based audio coder. Analyzing

the audio coding at the lowest bitrates shows that for the gammatone dictionary 86%

of the available bit budget is used to encode the position of the coefficients using the

standard entropy encoder paradigm, resulting in a much stronger quantization of the

coefficient amplitudes compared to the filterbank approach.

For the svega.wav signal the SNR of the matching pursuit audio encoding is higher

than the filterbank approach for high and moderate bandwidths and slightly lower for

low bitrates. The perceived quality of the encoded audio signal is in contrast for high

bitrates much better for the FB-MDCT audio coder and for moderate and low bitrates

the ODG is almost identical between the three variations of the audio coder. The

Suzanne Vega song also includes a significant amount of ‘silent’ frames having very low

signal energy which are not encoded by the matching pursuit signal model due to the

sparseness constraint. Analyzing the framewise ODG of the encoded signals shows that

the difference in the ODG values between the matching pursuit and filterbank signal
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model is due to these frames, which can also be seen in Figure 2.3 showing the SNR and

ODG for the example in Figure 2.1. Here the FB-MDCT dictionary achieves the lowest
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Figure 2.3: The average SNR and ODG for the example in Figure 2.1

perceived audio quality while achieving the highest SNR for low and moderate bitrates.

This example shows that while the SNR is a valid measure for general signal coding

problems, it is not as significant in audio coding applications as it does not account for

psychoacoustic masking effects and does not measure the perceptual distortion. This

can be understood by looking at the example in Figure 2.1. The background noise at

the end of the example is not encoded in the MP-MDCT signal model reducing the

overall SNR of the encoding. The last phoneme /i/ in contrast is represented using the

matching pursuit based audio encoder also in the higher frequency bands above 15kHz

where the filterbank approach is not encoding any signal energy for this low bitrate,

resulting in a perceptual degeneration of the audio signal. A sparse encoding of a

signal results naturally in coefficients with higher coefficient values, which are then not

quantized to zero compared to a filterbank approach. So the matching pursuit audio

encoder is not only more accurate in time but also generally encodes more high-frequent

features than the filterbank approach for a given bitrate.

For the TIMIT speech corpus the SNR of the MP-GAMMA signal model is slightly

lower than for the MP-MDCT for high bitrates and drawing near the SNR of the

17



2 Sparse gammatone signal model

filterbank implementation for the lower bitrates. The FB-MDCT signal model always

achieves the worst SNR. The best perceptual signal quality is always achieved by the

MDCT matching pursuit signal model, followed by the MP-GAMMA signal model and

the filterbank approach.

The poor performance of the gammatone based audio coder is an unexpected result

as gammatone windows have been shown to be optimized to encode speech signals

[76, 117]. Despite the fact that the gammatone signal model was always using the

lowest number of coefficients to encode a signal to a given SNR, the robustness against

quantization errors introduced by the MPEG4 audio encoding scheme showed to be

lower compared to the MDCT atoms.

To analyze if using the human parameter values of the gammatone window are optimal

for speech we compared the achieved sparseness on variations of the gammatone window

using the fast gammatone matching pursuit signal model. The encoding was stopped

when an SNR of 20 dB was reached. We did a rigid scan on the parameter space of the

gammatone function using the filter orders ν = 2, 4, 6, . . . , 38, 40, 42 and the damping

factors λ = 10, 20, 30, . . . , 980, 990, 1000, resulting in 2100 different encodings of the

TIMIT database. For the matching pursuit gammatone signal model the minimal
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Figure 2.4: (a) average number of coefficients needed per second for a SNR of 20dB for
the TIMIT speech corpus (b) minimal number of coeffs/s for a given filter
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number of coefficients needed to encode an SNR of 20 dB for English speech is, as

shown in Figure 2.4, at the filter order n = 22 and damping λ = 460, resulting in

640.1 coeffs/s. We retested the audio coder with these optimized values. As shown in
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Figure 2.5: The left column shows the SNR, the right the ODG for the TIMIT sound
corpus using the different encoding schemes at different bitrates

Figure 2.5, the optimized gammatone dictionary achieves now an SNR for the audio

encoded TIMIT speech corpus which is almost identical to the MP-MDCT audio

codec. This is not reflected in the perceived audio quality, where the MP-GAMMA

albeit its sparser encoding is showing a higher impact of quantisation errors on the

perceived audio quality than the MDCT dictionary. Informal listening tests showed

that the gammatone dictionary suffered from stronger musical tones artifacts compared

to the MDCT dictionary. It should be kept in mind that this is an initial audio

coding experiment. For example there is a trade-off between the number of initial

coefficients generated by the matching pursuit signal model and the consequently

needed quantization of these coefficients to achieve the given bitrate. This has not been

explored here, the stopping condition of the iterative matching pursuit algorithm was

preset to a fixed SNR. More psychoacoustically motivated stopping rules could result

in a better audio encoding quality. Additionally the lossless compression stage has
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2 Sparse gammatone signal model

been implemented using the standard entropy encoder paradigm to be able to directly

compare the different signal models within the MPEG4-AAC audio coding scheme.

We have shown that using a significance-tree coder [120] brings advantages for sparse

data and shows good performance for audio coding. Furthermore the quantization

algorithm can be optimized for a matching pursuit signal model [46, 41].

To further investigate why the gammatone matching pursuit signal model results in

a sparser encoding of the TIMIT database than the MDCT matching pursuit signal

model for a given SNR, we adapted the gamma-window parameters slowly from an

asymmetric to an approximately symmetric window while keeping the maximum of

the window fixed (see Table 2.1). We analyzed its performance on the TIMIT speech

database encoding up to an SNR of 20dB. The number of coefficients per second

signal model n λ skewness coeffs/s

MP-MDCT 0.0 693.2
MP-GAMMA 2 31.25 -1.74 799.0

4 93.9 -0.71 727.5
6 156.25 -0.09 682.0
8 218.9 0.17 663.5
10 281 0.35 653.0
12 344 0.49 648.9
14 406 0.61 651.2
16 469 0.74 651.5
18 531 0.82 655.5

Table 2.1: Coefficients per second needed to achieve an SNR of 20dB for gammatone
windows with different skewness and the TIMIT sound corpus

decreased from the approximate symmetric gammatone window with a skewness of

−0.09 to a minimum at a skewness of 0.49. This is consistent with the earlier derived

optimal gammatone parameters n = 22, λ = 460 which result into a skewness of 0.45.

This indicates that a positive skew resulting in an asymmetry is one of the important
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2.3 Results

properties of the gammatone dictionary that leads to an increased sparseness for speech

compared to the symmetric Kaiser-Bessel derived window.

2.3.2 Physiological signal model

We conducted a further experiment using a very large dictionary of gammatone atoms

with center frequencies ranging from 15.625 Hz to 8000 Hz, increased in 15.625 Hz steps,

and damping parameters λ = 2πbERB(fc) ranging from 100 to 5950, increased in steps

of 50, resulting in a dictionary size of 966,656,000 atoms per second. Figure 2.6a shows
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Figure 2.6: (a) Frequency distribution of selected atoms (b) Encoded signal energy per
bandwidth and frequency of selected atoms to encode 20dB SNR of the
TIMIT speech corpus using λ ∈ {100, 150, · · · , 5900, 5950}

the center-frequency distribution of the selected atoms, which follows the 1/f law

normally found for natural signals [9]. The selected gammatone bandwidth parameter

b was mostly chosen as 0.19 which differs from the human value of 1.019 [58]. The

selected bandwidths for every frequency band are shown in Figure 2.6b, where the size

of the datapoint and its color represents the amount of signal energy that is encoded
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2 Sparse gammatone signal model

using this parameters. Atoms encoding less than one percent but more than one tenth

of a percent of the TIMIT sound corpus are plotted in gray. The bandwidth parameter

used to encode the most energy in the according frequency band is marked by a red

square. The matching pursuit algorithm selected mainly atoms with bandwidths below

100Hz. Also the maximal bandwidth was frequently chosen. It can be noted that the

bandwidths encoding the most energy of the signal per frequency band mainly stay

below the human bandwidths [128]. This highly overcomplete dictionary encodes the

TIMIT database with an average of 543 coeffs/s.

We further tested if an encoding of the English speech database into a sparse

representation limited to 21 different bandwidths for all frequencies with the human

values

λ = 193, 262, 331, ..., 3477, 4169, 4998

[128] would result in any physiologically known parameter values. Figure 2.7a shows
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Figure 2.7: (a) Frequency distribution of selected atoms (b) Encoded signal energy per
bandwidth and frequency of selected atoms to encode 20dB SNR of the
TIMIT speech corpus using human λ ∈ {193, 262, · · · , 4169, 4998}

again a frequency distribution following the 1/f law and most of the signal energy was
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now encoded using b = 0.342. Figure 2.7b shows a similar distribution of the selected

atoms like in Figure 2.6b. Again, mainly atoms with small bandwidth are preferred.

And the most selected bandwidth per frequency is again widening at higher frequencies

but staying below the human bandwidth. This fixed bandwidth dictionary encodes the

TIMIT database with an average of 607 coeffs/s.

The selection of mainly long dictionary atoms having a small filter bandwidth

compared to the human auditory filters is coherent with the signal structure of the

TIMIT speech corpus. We computed an average phoneme length of 72.8ms for the

TIMIT database and the filter lengths mainly selected by the matching pursuit algorithm

are the two longest atoms with 116ms and 77.3ms, as they result in the highest

correlation with the signal. The occasional selection of short atoms having a long filter

bandwidth can be attributed to short signal parts like consonants and to artifacts

generated by the matching pursuit algorithm due to its iterative signal decomposition.

2.4 Discussion

The hypothesis driving the present study is an application of Barlow’s efficient coding

hypothesis [8] for audio signal coding. The main efficiency measure in biological systems

is the number of spikes needed to transmit a representation of the perceived signal

[75]. This corresponds in a computer signal model with the number of coefficients used

to encode a signal or in other words, how sparse a signal encoding is. One way of

increasing the sparseness of an encoding is to increase the correlation of the analyzing

filter respectively dictionary atoms with the signal class. We could verify previous

results [76, 117] showing that gammatone atoms have an increased correlation with

the English speech, achieving a higher sparseness compared to MDCT atoms. One
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2 Sparse gammatone signal model

of the main properties leading to the increased sparseness is the asymmetric time

envelope of a gammatone atom as shown in Table 2.1. This can be understood by the

fact that most natural sounds are asymmetric in time, exhibiting a short transient

followed by an exponential damped oscillation. This also yields benefits regarding the

matching pursuit. The algorithm picks the most energetic atom and for a dictionary

with symmetric atoms, it will choose an atom that has also support before the actual

start of the attack of the sound. Subtracting this atom from the signal will result in

a pre-echo artifacts, creating an artificial signal component just before the transient.

The asymmetry of the gammatone window prevents such pre-echo artifact.

Furthermore, the envelope asymmetry indicates that the sparseness constraint is

more important for the neurosensory system than a signal analysis achieving a perfect

time-frequency resolution. A dictionary atom can not be arbitrarily concentrated in

both time and frequency. [42] has shown that, given Heisenberg’s uncertainty principle,

a symmetric modulated Gaussian window achieves optimal joint time-frequency reso-

lution. For the visual system, such two-dimensional Gabor atoms have been derived

as expansion function that generate a nearly sparse signal model and have also been

verified in the visual cortex [99]. Compared to a Gabor atom, a gammatone atom has

an enlarged analysing window area in the time-frequency plane of a factor of
√

2n−1
2n−3 ,

n being the filter order of the gammatone [118]. The gammatone dictionary showing

the highest correlation with the TIMIT database and thereby achieving the sparsest

encoding has a higher filter order and thus a better joint time-frequency resolution

than a signal model using the human physiological parameters. Gammatone functions

with non-human parameters for the TIMIT speech corpus have also been derived by

[116], optimizing a randomly initialised dictionary using a gradient search algorithm.

In this study we applied a full search over the parameter space of the gammatone
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function, showing that only one local minimum exists for the TIMIT speech corpus.

The non-human parameters can be explained by the fact, that sparseness is not the

only constraint that shaped the auditory system. Consequently, a pure matching

pursuit model is not a valid correspondence to the human auditory filter, explaining

why the parameters achieving the sparsest encoding for the TIMIT sound corpus do

not resemble the human physiological data.

Another important effect is the physiological size constraints. Sparseness is achieved

by an overcomplete signal model, whose atoms have overlapping analysis windows in

the time-frequency domain. To increase the sparseness of a given signal model, the

overlap of theses areas needs to be increased. It has been shown that the increase in

length of the auditory epithelia during phylogeny is greater than the increase in the

upper frequency, especially in birds and mammals [91], but a momentous increase in

frequency resolution is impeded by the size constraint of the hair cell and the cochlear

length itself. Consequently, the sparse encoding of an auditory stimulus at the stage of

the cochlear is achieved mainly by the high time resolution of its shift-invariant signal

model. Analogous to the visual system, where the edge detector filters predicted by a

sparseness constraint can be found in the primary visual cortex [99], it can be assumed

that in the auditory system the sparse coding paradigm will also have an increased

influence in the later stages of the auditory pathway compared to the early stages.

Except for [117], all audio coding applications using a gammatone signal model

[4, 37, 121] applied human parameters and a block-based filterbank model. In general,

it has been shown that audio coding applications using a sparse signal model like

matching pursuit can have advantages compared to critical sampling signal models

like filterbanks or wavelet analysis [49, 27, 72, 117]. Using the union of a MDCT and

modified discrete sine transform (MDST) as a signal model, Davies et al. have shown
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that a two-fold oversampling in the frequency domain results for a transient guitar

solo test signal in higher SNRs compared to a MDCT signal model [27]. Smith et al.

showed for English speech alike an increased SNR compared to a wavelet or Fourier

transform using a signal model that is highly overcomplete in time [117]. Replacing

the normal quantization with a psychoacoustic masking model, scalefactor bands and

adaptive quantization, we measured also an increased SNR and perceived audio quality

compared to the block-based signal models for the transient castanets signal and the

English speech corpus. The sparseness constraint effects the distribution of the signal

energy to few coefficients with high coefficient amplitudes and many coefficients with

near zero or zero amplitude. This leads to a distribution of the quantization errors

which are mostly either below the absolute hearing threshold or at high sound pressure

levels, which is advantageous due to the human logarithmic scale of sound intensity.

Additionally fewer coefficients are quantized to zero compared to a filterbank approach,

which preserves more of the original signal structure in the quantization process. The

synthesis of the atomic signal decomposition introduces also artificial patterns like

musical tones, generating a disturbing tonal percept due to equidistant structures on

the frequency scale. These artifacts need to be addressed using a postprocessing step

in the audio coding design.

2.5 Conclusion

A matching pursuit gammatone signal model for the English speech using the TIMIT

database has been analyzed, showing that, compared to MDCT dictionaries, gammatone

dictionaries achieve a sparser encoding for the TIMIT database, indicating that the

gammatone atoms are expansion functions that are higher correlated with the English
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speech class. We also showed that a shift-invariant matching pursuit signal model

has advantages in audio-coding applications and that a gammatone matching pursuit

signal model results in better perceived audio quality for very transient signals due to

their asymmetric filter shape. A full search over the gammatone filter parameter space

showed that the human auditory system can not be directly compared to a matching

pursuit signal model and that the optimal parameters are not identical to the human

physiological values. We showed that the asymmetric filtershape of the cochlear filter

can be predicted assuming a sparseness constraint on the signal coding.

2.6 Experimental Procedure

2.6.1 Gammatone signal model

The gammatone signal model describing the human auditory filter response is defined

as [105]

gt(t) = atn−1e−λte2πifct = atn−1e−2πbERB(fc)te2πifct (2.3)

with the amplitude a, the filter order n and λ = 2πbERB(fc) being the damping

factor where b defines the proportion to the equivalent rectangular bandwidth (ERB)

of the auditory filter which is defined for moderate sound pressure levels [96] as

ERB(fc) = 24.7 + 0.108 ∗ fc for a center frequency fc. For humans the parameters

n = 4 and b = 1.019 have been derived using notched-noise masking data [58].
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2.6.2 Fast Matching Pursuit for gammatone signal model

Every real-valued atom dω,φ with the frequency ω and the phase φ can be associated

with a complex atom dω and its conjugate dω. It is

dω,φ =
Kω,φ

2

(
eiφdω + e−iφdω

)
(2.4)

with Kω,φ being a normalization factor. The set of atoms dω,φ where only the phase

varies lies in the subspace that is spanned by dω and dω. So the orthogonal projection

PVωri of the residuum ri onto this subspace Vω := span{dω, dω} results in a vector

lying in the direction of the real atom dω,φ having the optimal phase. This variation is

called Molecular Matching Pursuit [48] as selecting the best real atom dω,φ is equivalent

to finding the best di-atomic molecule Vω with

sup
ω,φ
|〈ri, dω,φ〉|2 = sup

ω
sup
φ
|〈ri, dω,φ〉|2 = sup

ω
||PVωri||2 (2.5)

Using the biorthogonal basis d⊗ω , d
⊗
ω of Vω with

d⊗ω =
1

1− |〈dω, dω〉|2
{dω − 〈dω, dω〉dω} (2.6)

the orthogonal projection on a di-atomic molecule is computed by

PVωri = 〈ri, dω〉d⊗ω + 〈ri, dω〉d⊗ω (2.7)

and it follows

||PVωri||2 =
2Re

{
|〈ri, dω〉|2 − 〈dω, dω〉〈ri, dω〉2

}
1− |〈dω, dω〉|2

(2.8)
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The orthogonal projection of the real-valued signal on the space spanned by a

complex gammatone atom and its conjugate transpose can be computed completely

in the frequency domain using the fast Fourier transformation (FFT), resulting in

complexity of O(N logN) instead of O(N2) per matching pursuit iteration with N

being the length of the analysed signal part. The results in this paper have been

computed using the free available Matching Pursuit Toolkit [50] which conducts an

initial analysis of the signal and only recomputes in the next iteration the changed

signal part, resulting in an overall complexity of O(L logL) +K · (2N − 1)O(N logN)

with L being the signal length, K the number of iterations and N the atom length.

It is

〈ri, dω〉 =
N−1∑
t=0

ri[t]t
n−1e−λte−2πi

ωt
N dt = FFTω(ri[t]t

n−1e−λt)

and

〈dω, dω〉 =
N−1∑
t=0

(
tn−1e−λt

)2
e2πi

2ωt
N dt = FFT −2ω(

(
tn−1e−λt

)2
).

In the audio-coding experiment we omitted the phase information of the gammatone

signal model for a valid comparison with the MDCT filterbank signal model. For only

real-valued atoms we have 〈dω, dω〉 = 1 simplifying the projection to

〈ri, dω〉dω = ±αdω

Our gammatone atom implementation will be available on the official MPTK web

page.
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2.6.3 Audio coding

We used the perceptual model, scalefactor bands and adaptive quantization algorithms

from the MPEG4 AAC reference implementation [63, 102]. The final noiseless coding

stage has been adapted for the sparse overcomplete matching pursuit signal models by

adding a run-length encoding step before the entropy encoder similar to the encoding

step in the JPEG standard.

We used the following signals and settings:

audiosignal resolution samplingrate length SNR threshold
castanets.wav 16 Bit 48.0 kHz 7s 939ms 30 dB

svega.wav 16 Bit 44.1 kHz 20s 675ms 35 dB
TIMIT 16 Bit 16 kHz 5h 35min 30 dB

Table 2.2: Audio coding settings

For the Suzanne Vega music sample svega.wav an increased SNR threshold of 35dB

was necessary to achieve a sufficient coding quality due to its more complex signal

structure.

We predicted the perceived audio quality of the encoded audio signals relative to the

uncoded signal using a model of auditory perception (PEMO-Q) [55]. The estimated

perceived audio quality is mapped to a single quality indicator, the Objective Difference

Grade (ODG) [66]. This is a continuous scale from 0 for “imperceptible impairment”, −1

for “perceptible but not annoying impairment”, −2 for “slightly annoying impairment”,

−3 for “annoying impairment” to −4 for “very annoying impairment”.

We tested the common bitrates 128, 112, 96, 80, 64, 32, 16 kbps for music and 32, 28,

24, 20, 16, 12, 8, 4 kbps for speech. The matching pursuit signal models were restrained

to real-valued atoms to allow a valid comparison to the real-valued MDCT filterbank of

the AAC reference implementation. The initial MP-GAMMA signal model used a filter
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order of 4 and a damping factor of 1000 corresponding to the human filter bandwidth

at 1.2 kHz. The skewness of an atom waveform was computed by y = E(x−µ)3
σ3 .
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3 Analysis and Design of Gammatone Signal
Models1

3.1 Abstract

An established model for the signal analysis performed by the human cochlea is the

overcomplete gammatone filterbank. The high correlation of this signal model with

human speech and environmental sounds (Smith, E. and Lewicki, M. (2006). “Efficient

auditory coding”, Nature 439, 978-982), combined with the increased time-frequency

resolution of sparse overcomplete signal models, makes the overcomplete gammatone

signal model favorable for signal processing applications on natural sounds. In this

paper a signal-theoretic analysis of overcomplete gammatone signal models using the

theory of frames and performing bifrequency analyses is given. For the number of

gammatone filters M ≥ 100 (2.4 filters per ERB), a near-perfect reconstruction can be

achieved for the signal space of natural sounds. For signal processing applications like

multi-rate coding, a signal-to-alias ratio can be used to derive decimation factors with

minimal aliasing distortions.

3.2 Introduction

The earliest theoretical signal analysis model, proposed by Fourier [40], analyzes the

frequency content of a signal using the expansion of functions into a weighted sum

1This chapter has been published in the present form in JASA, vol. 126, no. 5, pp. 2379-2389 (2009).
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3 Analysis and Design of Overcomplete Gammatone Signal Models

of sinusoids. Gabor [42] extended this signal model using shifted and modulated

time-frequency atoms which analyze the signal in the frequency as well as in the time

dimension. With the wavelet signal model, a further improvement was presented by

Morlet et al. [97] using time-frequency atoms that are scaled dependent on their center

frequency. This yields an analysis of the time-frequency plane with a non-uniform

tiling. The time-frequency atoms used in these signal models normally do not assume

an underlying signal structure. As the performance of subsequent processing algorithms

depends strongly on how well the fundamental features of a signal are captured, it is

favorable to use time-frequency atoms that are specialized to the applied signal class.

In this paper we are concerned with the signal class of natural sounds such as speech or

environmental sounds, which have been found to be highly correlated with gammatone

time-frequency atoms [76, 117]. The signal-dependent properties of gammatone atoms

are their non-uniform frequency tiling of the time-frequency plane and their asymmetric

envelope [119]. A gammatone filterbank is furthermore an established model for the

human auditory filters [104, 105, 22, 23, 103, 19]. Several analysis-synthesis systems

have been proposed using gammatone filters in the analysis and time-reversed filters

in the synthesis stage [73, 74, 81, 37], including low-delay [53] and level-dependent

asymmetric compensation[57] concepts.

Overcompleteness in signal models has advantages in signal coding applications. It

enables sparse signal models like matching pursuit [89] to search for the sparsest signal

representation from the resulting infinite number of possible encodings. Overcomplete-

ness further introduces a robustness towards noise [21, 11]. Generally, the choice of the

number of time-frequency atoms in a signal model, hence the choice of overcompleteness,

is nontrivial. In this paper we are therefore also concerned with the trade-off between

the achieved performance in the subsequent processing algorithms and the introduced
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computational load. To derive the minimal number of time-frequency atoms needed

to realize an overcomplete gammatone signal model that can adequately analyze the

signal space, we use the theory of frames [33, 26, 24, 25] which is a generalization of

signal representations based on transforms and filterbanks. A second parameter that

can control the overcompleteness of the gammatone signal model is the number of

removed analysis filter coefficients. Such a decimation of the filter coefficients introduces

aliasing distortions that should not only be kept to a minimum, but should also be

steered to cancel out in the synthesis stage of the filterbank. Therefore we performed

a bifrequency analysis [20] in addition to a frame-theoretic analysis of overcomplete

decimated gammatone signal models. We show how a signal-to-alias ratio can be used

to derive optimal sets of decimation factors with minimal aliasing distortions at a given

total decimation factor.

The paper is organized as follows: In the next section we introduce the analyzed

overcomplete gammatone signal models. In Section 3.4 we present a frame-theoretic

analysis of a non-decimated and a decimated overcomplete gammatone signal model

by performing an eigenanalysis of the frame operator [12]. We further show how

these results can be used to select the optimal number of atoms for an overcomplete

gammatone signal model. In Section 3.5 we show how optimal decimation factors with

minimized distortion artifacts can be derived using the bifrequency system analysis

[20]. We then analyze these theoretically derived optimal parameters in Section 3.6 in

several audio coding examples.
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Notation

Matrices and vectors are printed in boldface. || · || means the Euclidian norm of a vector.

〈·, ·〉 is the inner product of a vector space. Z is the set of all integers, R is the set of all

real, and C is the set of all complex numbers. [a, b] := {x|a ≤ x ≤ b} represents the set

of all numbers between and including a and b. The superscript ∗ denotes the complex

conjugate of a complex number and the superscript H the conjugate transposition of

a complex m-by-n matrix. The asterisk ∗ denotes convolution. The argument of the

maximum of a function f(x) is denoted as argmax
x

f(x).

3.3 Overcomplete Gammatone Signal Model

3.3.1 Gammatone Function

In 1960, Flanagan used a gammatone function as a model of the basilar membrane

displacement in the human ear [39]. Johannesma further showed in 1972 that a

gammatone filter can be used to approximate responses recorded from the cochlear

nucleus in the cat [70]. In 1975, de Boer used a gammatone function to model

impulse responses from auditory nerve fiber recordings in the cat, which have been

estimated using a linear reverse-correlation technique [29]. The term “Gamma-tone”

was introduced 1980 by Aertsen and Johannesma [2]. Patterson et al. stated 1988 that

the gammatone filter also delineates psychoacoustically determined auditory filters in

humans [105]. A gammatone filter is defined as

γ[n] = anν−1e−λne2πifcn (3.1)
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3.3 Overcomplete Gammatone Signal Model

with the amplitude a and the filter order ν. The damping factor λ is defined as

λ = 2πbERB(fc) with the center frequency fc. The parameter b controls the bandwidth

of the filter proportional to the equivalent rectangular bandwidth (ERB) of a human

auditory filter. For humans, the parameters ν = 4 and b = 1.019 have been derived using

notched-noise masking data [58]. For moderate sound pressure levels, Moore et al.[96]

estimated the size of an ERB in the human auditory system as ERB(fc) = 24.7+0.108fc.

The center frequencies of the gammatone filters are equally spaced on the ERB frequency

scale [95]. The scale is defined as the number of ERBs below each frequency with

ERBS(fc) = 21.4 log10(0.00437fc + 1). This non-uniform distribution of the center

frequencies (see Figure 3.1) correlates with the 1/f distribution of frequency energy

found in natural signals [9]. It is one of the signal-dependent features of a gammatone

signal model. The frequency-dependent bandwidth resulting in narrower filters at low

frequencies and broader filters at high frequencies is also an important feature of the

gammatone time-frequency atoms. In Section 3.4 we will show that this enables the

signal model to form a snug frame. The third signal-dependent feature of gammatone

time-frequency atoms is the asymmetric envelope of the gammatone function [119],

which can also be found in natural sounds, exhibiting a short transient followed by an

exponentially damped oscillation.

3.3.2 Overcomplete Gammatone Signal Model

To analyze overcomplete gammatone signal models we first have to define a correspond-

ing discrete signal processing system (Figure 3.2). The signal x[n] is analyzed with a

filterbank where hm[n],m ∈ [0,M − 1] denotes the impulse responses of M gammatone

filters. This splits the full-band signal x[n] into M frequency bands (subbands). In
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Figure 3.1: (color online) In the upper row the waveforms of two gammatone filters are
plotted. The lower row shows the magnitude frequency response of M = 50
gammatone filters that are equally distributed along the ERB scale from
20 Hz - 20 kHz.

many signal processing applications these subbands are subsampled by decimation

factors Nm to remove redundancy from the internal representation and thereby reducing

the overcompleteness of the signal model. For the maximally decimated case with

1
N0

+ · · ·+ 1
NM−1

= 1, a critical sampling is realized, meaning that the amount of data

+

Figure 3.2: Discrete signal processing system used to analyze the overcomplete gam-
matone signal models.
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3.3 Overcomplete Gammatone Signal Model

(samples per second) in the transformed domain and for the original signal are the

same. For
∑M−1

m=0
1
Nm

> 1 the signal model is overcomplete and there are more subband

coefficients ym[n] per time unit than input samples x[n]. All subband coefficients ym[n]

are then routed into a subband processing block. In this block, further operations could

be performed, like, for example, a quantization of the subband coefficients controlled

by a psychoacoustic model or a sparse signal model algorithm like matching pursuit

(see Appendix 3.9.1). After the subband processing, the signal x̃[n] is reconstructed

from the M processed subband signals ỹm[n] by upsampling with Nm, followed by the

synthesis filterbank with the filters having impulse responses gm[n],m ∈ [0,M − 1].

The analysis presented in this paper is applicable for two different variations of the

gammatone signal model. The first variation uses gammatone analysis filters hm = γ[n]

and reversed gammatone synthesis filters gm = γ[−n]. This is the most commonly used

design, for example in audio coding applications [73, 74, 37]. The second variation

uses reversed gammatone analysis filters hm = γ[−n] and gammatone synthesis filters

gm = γ[n]. This system can be used to perform a fast matching pursuit analysis with

a gammatone dictionary (see Appendix 3.9.1). By choosing the synthesis filters as the

time-reverse of the analysis filters the overall filterbank response has a linear phase in

both designs.

A gammatone signal model is normally designed to cover only a limited frequency

range [22, 23, 103, 19, 73, 74, 4, 37]. Consequently, the analyses in this paper have

been conducted using such bandlimited gammatone signal models. We distributed the

center frequencies of the gammatone filters equally spaced on the ERB scale within the

interval fc ∈ [20, 20000] Hz, which represents the approximated human hearing range

[59].
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3 Analysis and Design of Overcomplete Gammatone Signal Models

3.4 Frame-Theoretic Analysis of an Overcomplete

Gammatone Signal Model

In this section, we will perform a frame-theoretic analysis of the overcomplete gamma-

tone signal model. We will introduce the theory of frames and use it to evaluate the

properties of the corresponding frame of a non-decimated and a decimated gammatone

signal model. All calculations have been performed with a sampling rate of 96 kHz,

and the length of the impulse responses hm[n] and gm[n] was 8192 samples or 85.3ms,

respectively.

3.4.1 The Theory of Frames

The theory of frames provides a mathematical framework to analyze overcomplete

signal models [26, 24, 25]. A frame of a vector space V is a set of vectors {em} which

satisfy the following frame condition[25]

A||v||2 ≤
∑
m

|〈v, em〉|2 ≤ B||v||2 ∀v ∈ V (3.2)

with the frame bounds A > 0 and B < ∞. Frames can be seen as a generalization

of bases, as the set {em} is allowed to be linearly dependent and (3.2) implies that

the set {em} must span the vector space V. Otherwise it would follow A = 0 from

〈v, em〉 = 0 for v ∈ V \ span{em}.

The frame condition can also be written as A||v||2 ≤ 〈Sv,v〉 ≤ B||v||2 with S being

the frame operator defined as

Sv =
∑
m

〈v, em〉em. (3.3)
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3.4 Frame-Theoretic Analysis of an Overcomplete Gammatone Signal Model

The frame bound A is the essential infimum and the frame bound B is the essential

supremum of the eigenvalues of S [25]. A frame is called tight if B/A = 1 and snug if

B/A ≈ 1. The advantage of a tight frame is that perfect reconstruction can be done

by the frame itself:

v =
1

A

∑
m

〈v, em〉em ∀v ∈ V (3.4)

The frame bounds for the in this study analyzed discrete signal processing system

as shown in Figure 3.2 are given by the following inequality:

A||x||2 ≤
M−1∑
m=0

∞∑
k=−∞

|〈x,hm,k〉|2 ≤ B||x||2 ∀x ∈ `2(Z) (3.5)

with m ∈ [0,M − 1], k ∈ Z and the vectors hm,k containing the filter coefficients

hm(kM − n) and x ∈ `2(Z) being the vector that contains the input samples x[n].

In general, the smaller the ratio B/A is, the better the numerical properties of the

signal model will be. If B/A is close to one, then the assumption of energy preservation

may be used without much error when relating the energy of the subband signals ym[n]

to the energy of the input signal x[n] and the output signal x̃[n]. This is important in

audio coding applications, as it guarantees that small quantization errors introduced

in the subband signals will result in only small reconstruction errors. It enables a bit

allocation optimized for minimum error in the subbands to be near-optimal for the

final output signal.

The speed of convergence for algorithms like matching pursuit also depends on the

frame bounds as shown in Section 3.6. In this context it is to note that the frame

realized by a matching pursuit decomposition with a dictionary of atoms ek is identical

to a frame realized by a filterbank with the matched filters e∗k[−n] as shown in Appendix
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3 Analysis and Design of Overcomplete Gammatone Signal Models

3.9.1.

The frame operator S can be represented in the polyphase domain by the M ×

M matrix S(z) = Ẽ(z)E(z), where E(z) is the analysis polyphase matrix of the

filterbank[122] and the eigenvalues of the frame operator S equal the eigenvalues

λn(θ) of the matrix S(eiθ) = EH(eiθ)E(eiθ). Bolcskei et al.[12] could show that the

frame bounds A and B are the essential infimum and supremum, respectively, of

the eigenvalues λn(θ). Thus, the computation of the frame bounds of overcomplete

gammatone signal models using their polyphase matrix representations is possible.

Note that in the non-decimated case, the frame bounds and respective eigenvalues are

related to the ripple in the overall frequency response of the filterbank.

The eigenanalysis of a signal model is only applicable for a limited frequency interval

if the corresponding filterbank is non-decimated. For Nm > 1, the mapping of the

eigenvalues of the frame operator to the analyzed frequency interval is lost. Thereby

the essential infimum and supremum can only be calculated for the entire frequency

range, from zero to half the sampling frequency. This results to a lower frame bound of

A = 0 for bandlimited signal models, like the here analyzed overcomplete gammatone

signal model, where filters do not cover frequencies below 20 Hz and above 20 kHz. To

circumvent this problem, we added two additional filters for the frequency intervals not

covered by the gammatone filterbank, i.e. a lowpass for the [0, 20] Hz frequency interval

and a highpass filter for [20, 48] kHz. Thereby we could compute A for a decimated

gammatone signal model within the limited frequency range. B was computed without

additional filters.
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Figure 3.3: (color online) The frame-bound ratios B/A of non-decimated gammatone
signal models with the number of filters M ∈ [2, 256] analyzed over the
frequency intervals 20 Hz - 20 kHz and 60 Hz - [17, 20] kHz. For the
frequency interval of 60 Hz to 17 kHz, the frame-bound ratio converges
towards a tight frame for higher filter numbers.

3.4.2 Analysis of a Non-Decimated Overcomplete Gammatone

Signal Model

An overcomplete signal model results in a large quantity of subband coefficients for

every filter. To reduce bitcoding and computational costs, it is of interest to know the

smallest number M of subbands needed to achieve good frame-bound ratios. As the

frame bounds of γ[n] are identical with the frame bounds of γ[−n], we only need to

analyze the frame of the gammatone prototype γ[n] itself. The frame bounds A and

B of the non-decimated overcomplete gammatone signal model can be computed as

described in the previous subsection, and the respective frame-bound ratios B/A are

shown in Figure 3.3. The parameters of the analyzed gammatone signal models were

b = 1.019, ν = 4 with M ∈ [2, 256] center frequencies between 20 Hz and 20 kHz.

Figure 3.3 shows that the gammatone signal model does not realize a frame for the

frequency interval of its center frequencies. The frame-bound ratio is mainly determined

by small eigenvalues of the frame operator S found at the first and last gammatone

filters (see also Figure 3.11). The ERB scale distributes the center frequencies of the
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M Frequency interval B A B/A frame

50 [20 Hz, 20 kHz] 1.294 1.046 B/A = 1.238 not snug
50 [40 Hz, 17 kHz] 1.294 1.167 B/A = 1.109 snug
100 [20 Hz, 20 kHz] 2.462 1.697 B/A = 1.451 not snug
100 [60 Hz, 17 kHz] 2.462 2.455 B/A = 1.003 ≈ tight

Table 3.1: Frame-bound ratios B/A analyzed for different bandlimited signals and
number of gammatone filters M .

gammatone atoms in such a way that the overlapping filters result in almost constant

eigenvalues. As for the first and the last filters this overlap is not fully realized, the

essential infimum of the eigenvalues result in a low lower frame bound A. If we perform

the analysis over a reduced frequency interval (see Figure 3.3 and Table 3.1), the

frame-bound ratio improves and the gammatone signal is able to achieve a snug frame

from M = 50 subbands on. This marginal reduction of the frequency interval is

non-critical as it still embeds the class of natural sounds with speech for example

ranging approximately from 80 Hz to 10 kHz.

For M = 50 the frame bounds are A = 1.167 and B = 1.294, which results in a

frame-bound ratio of B/A = 1.109. This means that, depending on the actual signal,

the energy of the input or output signal of the filterbank may be different from the

subband energy by a factor between 1.167 and 1.294. For higher filter numbers the

frame-bound ratio converges towards a tight frame and for M = 100 a frame-bound

ratio of B/A = 1.003 is achieved.

For applications that allow a deviation from the human gammatone parameters, we

also analyzed the influence of the bandwidth parameters b ∈ [0.5, 1.5] and the filter

orders ν ∈ [4, 20] on the frame-bound ratio for the frequency interval from 60 Hz to

17 kHz (see Figure 3.4). For M = 50 gammatone atoms, the best frame-bound ratio

B/A = 1.020 is achieved for a filter order ν = 11 and the bandwidth factor b = 0.85.
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Figure 3.4: (color online) Best possible frame-bound ratios for a fixed bandwidth
factor b and filter number M (upper plot) or filter order ν and filter
number M (lower plot). The gammatone signal model parameters were
b ∈ [0.5, 1.5], ν ∈ [4, 20],M ∈ [40, 150], analyzed over the frequency interval
from 60 Hz to 17 kHz.

For M = 100 the filter order ν = 12 and the bandwidth factor b = 0.5 result in the

lowest frame-bound ratio of B/A = 1.003. The contour plot in Figure 3.4 shows that

these best frame-bound ratios are located in relatively shallow minima. More generally,

we can conclude that for a filter number of M = 50, snug frames can be achieved with

b > 0.7 and all examined filter orders. For M = 100 a tight frame is possible with

b ≤ 1, ν < 13. Additionally it can be seen that for a small number of filters (M < 50)

larger bandwidths achieve better frame-bound ratios. Even more interestingly, for a

higher number of filters, large filter bandwidths introduce a decline in the frame-bound

ratio which is explained in detail in Section 3.7 and Figure 3.11.
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3.4.3 Analysis of a Decimated Overcomplete Gammatone Signal

Model

To further reduce encoding and subband processing costs, it is often favorable to

remove the redundancy in an overcomplete signal model by downsampling its subband

coefficients by factors Nm > 1. The decimation of the filterbank coefficients can result

in distortions, which will worsen the frame bound ratio of the decimated signal model.

Thus, a frame-theoretic analysis can be used to analyze the introduced distortions for

different decimation factors Nm. We derived frame bounds for a decimated overcomplete

gammatone signal model for the frequency interval from 60 Hz to 17 kHz by introducing

additional filters to allow the derivation of A as described in subsection 3.4.1. The

resulting frame-bound ratios B/A are shown in Figure 3.5. It can be seen that no snug

frame can be achieved for M ≤ 75 filters with an equal decimation of the subband

coefficients. For higher filter numbers, a snug frame can be realized up to an equal

decimation of the subband coefficients of Nm = 4, Nm = 5 and Nm = 6 for the filter

numbers M = 100, M ∈ [125, 150] and M ∈ [175, 255], respectively.

To derive optimal decimation factors for an overcomplete gammatone signal model,

a full search over all possible Nm by computing the corresponding frame bound ratios

would be necessary, which is computational intractable. It is further to note that

distortions that fall into a frequency range where the signal has only little energy,

will have a minor effect compared to distortions in frequency bands, where most of

the signals energy is present. This can not be exploited by an optimization based on

framebound ratios due to the lost mapping of the eigenvalues of the frame operator to

the analyzed frequency interval. Therefore we introduce and use in the next section an

alternative technique to derive optimal decimation factors.
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Figure 3.5: (color online) The frame-bound ratios B/A of decimated gammatone signal
models with the number of filters M ∈ {25, 50, · · · , 200, 225} and decima-
tion factors Nm ∈ [1, 8] analyzed over the frequency interval of 60 Hz to 17
kHz.

3.5 Bifrequency Analysis of a Decimated

Overcomplete Gammatone Signal Model

To allow the optimization of decimation factors dependent on the applied signal, we

will introduce in this section the bifrequency analysis[126] and define a signal-to-alias

ratio (SAR). The bifrequency analysis has the additional advantage that it offers a

complete frequency description of the distortions introduced by a decimation of the

subband coefficients. This leads to a better insight of the design limitations, i.e. to

Condition I and II as given below. This allows to reduce the computational costs of an

optimization of the decimation factors. All results in this section were derived with

a sampling rate of 44.1 kHz, which is a common sampling rate in signal processing

applications like audio coding. The length of the analyzed impulse responses hm[n]

and gm[n] has been set to 4096 samples or 92.9ms, respectively.
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Figure 3.6: (color online) (a) Bifrequency map for a gammatone signal model with the
number of filters M = 50 and the decimation factor of Nm = 30 in every
subband. The axes show the normalized frequency domains associated with
the input and output signal. The center line represents the time-invariant
part (T1) that maps the input to the output signal and is independent of
any decimation. All other lines are due to aliasing terms (Tn>1) introduced
by a decimation of the subband coefficients. The zoom-in (b) shows that
in this example in-band aliasing occurs in the last three filters, in which
aliasing components fall into the passband of these filters. The filter’s
passbands are indicated by a grid of thin white lines.

3.5.1 Bifrequency Analysis

An alternative theoretical analysis of the decimated gammatone signal models is

possible by the fact that a decimated filterbank can also be understood as a linear

time-varying (LTV) system

y[ny] =
∞∑

nx=−∞

k[ny, nx]x[nx] (3.6)

with a periodic system response k[ny, nx] = k[ny + `N, nx + `N ], ` ∈ Z, where x[nx] is

the input and y[ny] is the output sequence. k[ny, nx] denotes the response of the system

at the discrete time ny to a unit sample applied at discrete time nx. For periodic LTV

systems, a bifrequency analysis [126] gives a complete description of the system as well
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as of its aliasing components. The discrete bifrequency system function[20] is defined

as:

K[eiωy , eiωx ] :=
1

2π

∞∑
ny=−∞

∞∑
nx=−∞

k[ny, nx]e
iωxnxe−iωyny (3.7)

relating the input signal spectrum X[eiωx ] to the output signal spectrum Y[eiωy ] with

Y[eiωy ] =

∫ π

−π
K[eiωy , eiωx ]X[eiωx ]dωx. (3.8)

In the analyzed gammatone signal models, the only periodically time-varying parts are

the decimators and interpolators. Therefore, the overall bifrequency map is composed

of non-zero unity-slope parallel lines with a constant factor, on whose input and output

spectra the effects of the analysis and the synthesis filters, respectively, are projected

[83]. The center line represents the time-invariant part of the system, all other lines

represent the parts of the system which cause aliasing (see also Figure 3.6). As an

objective measure of the aliasing distortions in a signal model we used a signal-to-alias

ratio (SAR), defined analogous to the commonly used signal-to-noise ratio. For a given

input signal spectrum X[eiωx ] the SAR is defined as

SAR(X[eiωx ]) = −10 log10

 T 2
1∑

n∈{Nm}
T 2
n

 (3.9)

with

Tn =

π∫
−π

π∫
−π

δ(nωx − ωy)K[eiωy , eiωx ]X[eiωx ]dωxdωy (3.10)

and δ(·) being the Dirac pulse. The time-invariant part of the system corresponds to

T1, and the aliasing components of the LTV system are represented by the Tn.
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To avoid in-band aliasing distortions, Nm must be chosen in such a way that all

integer multiples of the decimated Nyquist frequency lie outside the m-th passband

of a subband (see Figure 3.6(b)). For an aliasing-free signal model this results in the

following necessary condition to prevent in-band aliasing:

Condition I: With ωLm and ωHm being the starting and stopping cutoff frequencies of

the m-th gammatone filter (0 ≤ ωLm ≤ ωHm ≤ π) it needs to hold:

(kπ/Nm) 6∈ [ωLm, ω
H
m ]∀k ∈ N. (3.11)

This dependency on the bandwidth of the corresponding gammatone filter limits the

possible decimation factors to the set which fulfills Nm < π/(ωHm − ωLm). In contrast

to an ideal bandpass filter, which has a discontinuity in magnitude at the cutoff

frequencies, real filters like the gammatone filter exhibit a magnitude response that

changes gradually from the passband to the stopbands. A commonly chosen decrease

in magnitude to define the cutoff frequency is an attenuation of 3 dB.

Inter-band aliasing can be reduced if the decimation factors are chosen in such a way

that an aliasing term of a filter in one subband can be canceled by another aliasing

term of a filter in another subband. Such a set of integer decimation factors Nm in

which each aliasing term occurs at least twice is called a compatible set [52, 30, 122]

and needs to fullfil:

Condition II: Let L := lcm
(
{Nm}M−1m=0

)
be the least common multiplier (lcm) of the

set of decimation factors {Nm}M−1m=0 . If the set is an apposition of repeated distinct

integers {N1,N1, · · · ,N1, · · · ,NK−1, · · · ,NK−1} with Nj ∈ {Nm}M−1m=0 and nj denoting
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the number of Nj in this set, then it needs to hold:

min

{
lcm( L

Ni
, L
Nj

)

L
Nj

}M−1

i=0
i6=j

− 1 < nj (3.12)

3.5.2 Analysis of a Decimated Overcomplete Gammatone Signal

Model

We will use the results from the previous subsection to show how optimal decimation

factors Nm for a given decimated overcomplete gammatone signal model and a given

signal spectrum X[eiωx ] can be derived. Let N := (N0, N1, · · · , NM−1) ∈ [1,M − 1]M

be the M -dimensional vector space of all possible decimation factors for a gammatone

signal model. We can reduce the size of N by allowing only decimation factors that

fulfill Condition I and II. The cutoff frequency was set at 3dB stopband attentuation.

The size of the set of possible decimation factors can be further reduced using the

constraint N0 ≥ N1 ≥ · · · ≥ NM−1, which is derived from Condition I and the fact

that the gammatone signal model has monotone increasing bandwidths. To select

decimation factors that form a compatible set, the decimation factors can be required

to be powers of two.

To derive for a given degree of overcompleteness O =
∑M−1

m=0
1
Nm

a set of deci-

mation factors with minimal aliasing distortions, the SAR can be used as a qual-

ity measure. To exemplify this, we analyzed an overcomplete gammatone signal

model with M = 50 filters, center frequencies ranging from 20 Hz to 20 kHz and

Nm ∈ {1, 2, 4, 8, 16, 32, 64, 128, 256, 512}. We further evaluated if varying the band-

width of the gammatone filters has an influence on the aliasing distortions. Analyzing

Figure 3.6, it can be seen that the major aliasing distortions occur in the high-frequency
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3 Analysis and Design of Overcomplete Gammatone Signal Models

bands due to the non-uniform frequency resolution of the gammatone signal model. For

applications like speech or audio coding, where only a small amount of signal energy

falls in the high-frequency bands, these distortions will have a minor effect compared

to the distortions in the low-frequency band, where most of the signal energy is present.

Therefore it is favorable to optimize the decimation factors according to the SAR

computed for the specific spectrum of the applied signal class. In this example we used

the spectrum of the audio test signal “Tom’s Diner” by Suzanne Vega (svega.wav).

Table 3.2 shows the SAR achieved by optimal decimation factors (stated in Appendix

B), selected from a set of decimation factors that is constructed as described above

and that results in the degrees of overcompleteness O = 1, 2, · · · , 8 respectively. They

are compared with commonly chosen decimation factors that are inverse-proportional

to the bandwidth of the gammatone filters while fulfilling Condition I. The optimized

decimation factors achieve an SAR improvement of 4.7 dB on average compared to the

commonly chosen decimation factors that are inverse-proportional to the bandwidth

of the gammatone filters while fulfilling Condition I. This can be seen as a significant

improvement, recalling that an SAR improvement of 6 dB means a reduction of the

distortion energy due to aliasing components by a factor of 2. As the overcomplete
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Figure 3.7: (color online) The SAR achieved by optimized decimation factors for a
given degree of overcompleteness O and different bandwidth factors b of
M = 50 gammatone filters.
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SAR (dB) O=1 O=2 O=3 O=4 O=5 O=6 O=7 O=8

optimized Nm 9.5 14.2 15.6 17.5 18.2 18.5 18.9 19.2
prop. bandwidth 6.2 8.1 10.6 11.3 13.4 14.5 14.6 15.7

Table 3.2: The SAR for svega.wav and a gammatone signal model with M = 50 filters
achieved with optimized decimation factors compared to commonly chosen
decimation factors that are inverse-proportional to the bandwidth of the
filters while fulfilling Condition I.

gammatone signal model realizes for M = 50 only a snug frame, we additionally

investigated if the SAR can be improved using different filter bandwidths. It showed

that for M = 50 a deviation from the human bandwidth parameter b = 1.019 can

reduce inter-band aliasing distortions from 1dB up to 15.2 dB for O=1 and O=8,

respectively (see Figure 3.7). As an increase of the filter bandwidth leads to an increase

of the energy in the aliasing components, this reduction of aliasing distortions can be

addressed to an optimized cancellation of aliasing terms. So depending on the number

of applied gammatone filters, the bandwidth factor b should also be included into the

optimization process.

3.6 Applications

In this section we report on the signal reconstruction performance of overcomplete

gammatone signal models using the example of audio coding and compare the findings

with the theoretical results from the previous sections. We applied a coding scheme

whose block diagram is shown in Figure 3.2.

In the first experiment, we investigated the signal reconstruction and subband

algorithm performance of a non-decimated overcomplete gammatone signal model

(Nm = 1) as analyzed in Section 3.4. We tested two signal model variations. In the first
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Figure 3.8: (color online) Signal reconstruction experiment using non-decimated over-
complete gammatone signal models for the svega.wav test signal. The
upper plot shows the results for a signal model without subband processing
(GTFB) and the lower plot shows the achieved SNR for a sparse gammatone
signal model based on the matching pursuit algorithm (MP).

variation (GTFB), we evaluated the standard overcomplete gammatone signal model

with hm = γ[n], gm = γ[−n] and without subband processing. In the second variation, a

sparse overcomplete gammatone signal model was realized with hm = γ[−n], gm = γ[n],

and a matching pursuit (MP) algorithm [89] was performed in the subband processing

block. The stopping condition was set to 2000 atoms per second and it was implemented

as described in Appendix 3.9.1. The test signal for this initial audio coding experiment

was the commonly used “Tom’s Diner” by Suzanne Vega (svega.wav). In accordance

with the theoretically derived results (Figure 3.3), the signal reconstruction error

decreased for both schemes with an increasing number of filters and saturated for

higher filter numbers (Figure 3.8). For the overcomplete gammatone signal model

(GTFB), near-perfect reconstruction was achieved for M ≥ 100. For the sparse

overcomplete gammatone signal model (MP) the SNR rose to 22.5 dB at M ≈ 70

and continued to slightly improve further for higher filter numbers until it stayed

constant at 23.5dB for M ≥ 500 gammatone filters. This shows that the convergence

speed of the matching pursuit algorithm facilitated also from small frame-bound ratio

improvements close to B/A = 1, as the overcomplete gammatone signal model did not
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contribute further to the signal reconstruction for M ≥ 100.

We further evaluated a basic perceptual audio coding scheme by scaling the subband

coefficients ym[n] according to a psychoacoustic model before performing a fixed

quantization[35]. The psychoacoustic model was realized by the MPEG-2 AAC/MPEG-

4 Audio standard reference implementation [63], and a linear 7 Bit quantizer was used.

The coding and decoding of the scaled and quantized coefficients was assumed to be

lossless and therefore omitted. Finally an according dequantization and rescaling was

performed before the audio signal was reconstructed using the synthesis filterbank.

We measured the perceived audio quality of the resulting audio signals relative to the

original test signal using a model of auditory perception (PEMO-Q) [55]. The estimated

perceived audio quality was mapped to a single quality indicator, the Objective

Difference Grade (ODG) [66]. This is a continuous scale from 0 for “imperceptible

impairment”, −1 for “perceptible but not annoying impairment”, −2 for “slightly

annoying impairment”, −3 for “annoying impairment” to −4 for “very annoying

impairment”. As explained in Section 3.4, subband processing algorithms like perceptual

audio coding rely on the assumption of energy preservation in the signal model. Their

performance therefore depends on the achieved frame bound ratio of the used signal

model. As shown in Figure 3.9, the GTFB signal model without quantization achieved

transparent audio coding from M > 55 gammatone filters on. Linearly quantizing

the subband coefficients to a 7 Bit encoding, the ODG converged around M > 45 to

approximately −2.5. Scaling the important subband coefficients before quantization

according to a psychoacoustic model (PAM) showed an improvement in the perceived

audio quality until M ≈ 60 where an ODG of approximately −1.2 is achieved. With

the results from Section 3.4 it can be concluded that for audio coding applications

at least a snug frame should be realized by the gammatone signal model. Clearly, to
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Figure 3.9: (color online) Perceptual reconstruction quality for svega.wav encoded
without quantization, with a linear quantization and a linear quantization
including a psychoacoustic model (PAM).
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Figure 3.10: (color online) Signal reconstruction experiment using decimated overcom-
plete gammatone signal models being optimized to maximize the SAR
of the test signal (svega.wav) as described in Section 3.5.2 compared to
commonly chosen decimation factors that are inverse-proportional to the
bandwidth of the filters while fulfilling Condition I.

further improve the quality up to an ODG of zero, finer quantization is needed.

In the second experiment, we investigated the signal reconstruction performance of

decimated overcomplete signal models with M = 50 filters and without any subband

processing. As a reference signal model we selected commonly chosen decimation factors

that are inverse-proportional to the bandwidth of the gammatone filters, while fulfilling

Condition I. We compared their achieved signal reconstruction performance with

optimized decimation factors for a gammatone signal model having a fixed bandwidth

factor b = 1.019 and for a gammatone signal model where also the bandwidth of the

filters was optimized as described in Subsection 3.5.2. The audio test file was svega.wav
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and the results are plotted in Figure 3.10. It can be seen that the decimation factors

optimized to maximize the SAR of the audio signal as described in Section 3.5.2 result

in a better SNR than the Nm that are increased proportional to the filter bandwidth

and fulfill Condition I. It further shows for the snug frame realized with M = 50

gammatone filters, a deviation from the human bandwidth parameter b = 1.019, if

allowed in the context of the application, can reduce the aliasing distortions and

improve the signal reconstruction performance.

3.7 Discussion

Applications that use an overcomplete gammatone signal model can be divided into

two groups. The first group is concerned with modeling the auditory system. In

these studies, the number of auditory filters is inferred from a reasonable filter spacing

determined by the estimated bandwidths of the auditory filters. A common value used

is one filter per ERB [22, 23, 55], which results in 39 filters for the human cochlea,

whose basal end corresponds to 38.9 on the ERB scale [93]. The second group of

applications is concerned with signal processing tasks like, for example, audio coding

and speech recognition. Hereby, not an accurate replication of the auditory system

is strictly needed, but a maximal performance of the algorithm is desired. Therefore,

the number of gammatone filters should be chosen optimizing the performance of

the subsequent processing algorithms and the introduced computational load. Most

signal processing applications using an overcomplete gammatone signal model so far

have used psychoacoustically derived filter numbers, which do not result in a frame

(see Table 3.3). As show in Section 3.6, subband processing algorithms like matching
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pursuit or a perceptual quantizer show an improved performance for improved frame

bounds.
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interval of filter frame bound

Paper center frequencies M given rational per ERB B/A analysis interval frame

(Ambikairajah et al., 2001)[4] 50 Hz - 7.0 kHz 21 “ripple within 1.5 dB” — 1.481 100Hz-7kHz not snug

(Brucke et al.,1999)[14] 73 Hz - 6.7 kHz 30 1 filter per ERB 1.0 1.322 70Hz-6.2kHz not snug

(Feldbauer et al., 2005)[37] 100 Hz - 3.6 kHz 50 frame-bound ratio 2.2 1.003 150Hz-3.0kHz ≈ tight

(Hohmann, 2002)[53] 70 Hz - 6.7 kHz 30 1 filter per ERB 1.0 1.332 65Hz-6.3kHz not snug

(Kubin et al., 1999)[74] 100 Hz - 3.6 kHz 20 “physiologically-motivated” 0.9 1.364 190Hz-3.1kHz not snug

(Lin et al., 2001)[81] < 4 kHz 25 not stated 0.9 1.572 35Hz-4.0kHz not snug

(Ma et al., 2007)[87] 50 Hz - 8.0 kHz 64 “computational costs” 2.0 1.003 100Hz-6.2kHz ≈ tight

this study 20 Hz - 20.0 kHz 50 frame-bound ratio 1.2 1.109 60Hz-17kHz snug

100 frame-bound ratio 2.4 1.003 60Hz-17kHz ≈ tight

Table 3.3: Examples for gammatone signal model parameters found in the literature. The frame bound analysis was
performed on a limited frequency interval to exclude distortion effects from the first and last filters.
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3 Analysis and Design of Overcomplete Gammatone Signal Models

Note that it is not self-evident that an overcomplete gammatone signal model

can achieve a snug frame and converge to a tight frame. The parameters of the

gammatone function have been derived from psychoacoustic experiments and are not

specifically designed to realize a frame in the mathematical sense. Further analysis of

the eigenvalues showed that at higher filter numbers (M > 60), the frame-bound ratio

is determined mainly by the fact that the frequency spacing of the ERB scale does

not fully match the filter overlap to the filter bandwidths. This introduces a positive

shift of the largest eigenvalues towards higher frequencies (see Figure 3.11). Therefore
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Figure 3.11: (color online) The eigenvalues λn(θ) of an overcomplete gammatone signal
model with M = 88 filters being equally spaced on the ERB scale compared
to an optimized frequency scale with frequency shifts applied to the ERB
scale as shown in the lower row.

we evaluated if marginal alterations of the filter’s center frequency can improve the

gammatone signal model. Using the frame-bound ratio as a cost function, a standard

optimization algorithm like the Matlab function fmincon can be used to derive the

frequency shifts necessary to remove the monotonic shift. The derived frequency

shifts reduced the center frequencies slightly at middle frequencies, compensating this

with a frequency increase at the lower and higher frequencies, see also the example
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shown in Figure 3.11. For this example with M = 88 the frame-bound ratio could

be improved from 1.006 to 1.001 by applying only, relative to the center frequency,

marginal frequency shifts. It is to note that these results are only of theoretical interest,

as the gammatone signal already forms an almost tight frame at higher filter numbers

M , and the derived optimization does not improve the numerical properties of the

signal model at a noticeable level. So for the overcomplete gammatone signal model,

the ERB scale itself is already close to the frequency tiling of the time-frequency plane

that achieves the best frame-bound ratio.

For a decimated overcomplete gammatone signal model, the derived frame bounds

can not be used to optimize the decimation factors in dependency of the signal spectrum

as explained in Section 3.5. Another possibility to evaluate such bandlimited signal

models is the computation of the signal-to-alias ratio, allowing the optimization of the

tradeoff between linear amplitude distortions and the amount of aliasing. We could

show that the common approach to use decimation factors that are proportional to

the bandwidth of the filters is suboptimal. The SAR can easily be computed using

a 2D-FFT and we therefore recommend for signal processing applications using a

decimated overcomplete gammatone signal model to utilize decimation factors Nm

being optimized for the applied signal class.

It is to note that very long finite-impulse responses and high sampling rates have been

used in this study to derive frame bounds that are valid approximations for the analog

gammatone filters. Applications using other digital realizations of the gammatone

filterbank like infinite-impulse response filters might result in slightly different frame

bounds [123].

A linear gammatone signal model is a valid approximation of the human auditory

filters for moderate sound pressure levels. It has been shown that the filter shape of
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the auditory filter changes with stimulus level [110], which led to the development of

dynamic, non-linear auditory filter models [84, 56]. The analysis methods applied in

this study can not directly be applied to such dynamic filters and are therefore not

within the scope of this manuscript.

3.8 Conclusions

Using the theory of frames we could derive that from 2.4 filters per ERB on, a

non-decimated overcomplete gammatone signal model achieves near-perfect signal

reconstruction and that from M = 55 (1.3 Filters per ERB) filters on, a perceptual

transparent audio coding is possible. We further showed that by computing a signal-

to-alias ratio, the decimation factors in multi-rate signal processing schemes can be

optimized, balancing the amplitude and aliasing distortions. We showed for an audio

test signal that hereby significant improvements can be achieved.

3.9 Appendix

3.9.1 Matching Pursuit with Matched Filters

Matching Pursuit [89] assumes an additive signal model of the form

x =
K∑
i=1

siai (3.13)

with the signal vector x ∈ RN×1, the coefficients s = (s1, s2, . . . , sK) ∈ CK , and the

atoms A = (a1, a2, . . . , aM) ∈ CN×M having unit-norm. For an overcomplete signal

model, the matching pursuit algorithm searches for the sparsest encoding in the infinite
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number of possible encodings. As mentioned in the introduction, this sparse signal

model resembles the signal analysis performed by the human cochlea.

The algorithm performs a greedy iterative search by selecting at the i-th iteration

the atom having the largest inner product with the residual ri:

smi
= argmax

ami∈A
|〈ri, ami

〉|2 (3.14)

with mi being the dictionary index of the selected atom at the i-th iteration. The new

residual is then computed with

ri+1 = ri − smi
ami

(3.15)

If we rewrite the inner products in (3.14) as

sm = 〈ri, am〉

=
N∑
n=1

ri[n] · am[n]

=
N∑
n=1

ri[n] · ãm[N − n+ 1] with ãm[n] = a∗m[−n]

= ri[n] ∗ ãm[n]

it can be seen that the inner products can also be computed using the time reversed

atom ãm, which is also called a matched filter. So we can efficiently compute all inner

products using a time-reversed gammatone filterbank. In practical applications of

matching pursuit the support L of the atoms is often much smaller than the length

N of the signal. Therefore most implementations [88, 38, 50] divide the signal into
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overlapping blocks of length L and stepwidth S. With this iterative procedure, only

the correlations of the 2L/S − 1 signal blocks which have been altered in the previous

iteration need to be recomputed. Using the matched-filter approach we can compute

the new correlations of the 2L/S − 1 signal blocks in one step by convolving the 2L

samples of the whole block once with the matched filterbank. So for a signal of length

N and a dictionary size M , we can perform the matching pursuit iteration in O(MN).

If matching pursuit is performed with a pure gammatone dictionary, we can accelerate

the matching pursuit algorithm further by precomputing the representations of the

gammatone atoms in the filterbank domain and performing the update of the inner

products by a simple subtraction in the filterbank domain. For a dictionary of size

M , instead of 6M · 2L multiplication and 10M · 2L additions[51], the update of the

correlations can be done with M2L subtractions.

3.9.2 Optimal Decimation Factors

The in Section 3.5.2 derived optimal decimation factors for svega.wav, b = 1.019 and

M = 50 are:

O = 1 N1−10 = 128, N11−33 = 64, N34−49 = 32, N50 = 16

O = 2 N1−8 = 64, N9−36 = 32, N37−48 = 16, N49−50 = 8

O = 3 N1−24 = 32, N25−40 = 16, N41−50 = 8

O = 4 N1−10 = 32, N11−31 = 16, N32−50 = 8

O = 5 N1−2 = 32, N3−31 = 16, N32−44 = 8, N45−50 = 4

O = 6 N1−20 = 16, N21−44 = 8, N45−49 = 4, N50 = 2

O = 7 N1−14 = 16, N15−39 = 8, N40−49 = 4, N50 = 2
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O = 8 N1−10 = 16, N11−39 = 8, N40−46 = 4, N47−50 = 2
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4 An Adaptive Tree-Based Progressive Audio
Compression Scheme1

4.1 Abstract

A fine-grain scalable and efficient audio compression scheme based on adaptive

significance-trees is presented. Common approaches for 2-D image compression like

EZW (embedded wavelet zero tree) and SPIHT (set partitioning in hierarchical trees)

use a fixed significance-tree that captures well the inter- and intraband correlations of

wavelet coefficients. For 1-D audio signals, such rigid coefficient correlations are not

present. We address this problem by dynamically selecting an optimal significance-tree

for the actual audio frame from a given set of possible trees. Experimental results are

given, showing that this coding scheme outperforms single-type tree coding schemes and

performs comparable to the MPEG AAC coder while additionally achieving fine-grain

scalability.

4.2 Introduction

Recent advances in wireless audio streaming ([10],[5]) and the increase of heterogeneous

networks like the Internet introduced problems such as bitrate fluctuation, different

1This chapter in the present form has been published in Proceedings of the IEEE WASPAA05, New
Paltz, USA, pp. 219-222 (2005).
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target channel capacities or storage costs for multi-bitrate files. Storing the data in an

embedded manner can address this issue in a generic manner.

Bitplane coding and significance-trees have been successfully applied to image coding

([113],[111]). Such coding schemes successfully capture the structure of the wavelet-

based image representation, making very efficient sorting passes and a low number

of sorting bits possible. Such natural rigid correlations cannot be found in audio

signal representations like the MDCT transform, necessitating the derivation of optimal

significance-trees in a data dependent manner.

How to generate these significance-trees capturing the variant spectral distribution

of audio data and the principle of our progressive compression scheme, called combined

significance-tree quantization (CSTQ) using these significance-trees, are discussed in

Section 4.3. In Section 4.4, we present experimental results on audio compression

including subjective listening tests.

4.3 Basic Concepts

4.3.1 Significance-Trees

Significance-tree coding algorithms like EZW [113] or SPIHT [111] exploit the fact

that it can be beneficial to describe significant coefficients of a bitplane via their

position and value information instead of transmitting all values one by one. These

spatial orientation trees can be mathematically represented using parent-children

coefficient coordinate relationships. Fig. 4.1a shows the case of image compression,

were the offspring O(i, j) of the wavelet parent coefficients at position (i, j), except

for the highest and lowest pyramid level, have been defined as O(i, j) = {(2i, 2j),
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(2i, 2j+ 1), (2i+ 1, 2j), (2i+ 1, 2j+ 1)}. Due to the fact that the 2-dimensional wavelet

transformation has a typical coefficient inter- and intra-band correlation [82], this rigid

tree structure can capture the correlation with a reasonable computational complexity,

giving an efficient compression scheme.

*
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LH1

LH2 HH2

HL2LL2

coefficient

index i

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

(a) (b)

Figure 4.1: Parent-offspring dependencies in SPIHT with different styles. (a) 2-D tree.
(b) 1-D tree following the offspring rule O(i) = iN + {0, N − 1}.

For 1-dimensional audio signals, the problem of selecting the optimal tree structures

remains unsolved despite considerable efforts. Most existing algorithms use a single

type of tree as shown in Fig. 4.1b with the fixed parent-children relationship O(i) =

iN + {0, 1, · · · , N − 1} for different positive integers N . For the MDCT transform,

N = 4 was adopted in [34, 107, 106, 108] and the wavelet packet transform was

encoded using N = 2 in [85, 86]. This type of tree will be referenced in the following

as SPIHT-style significance trees.

4.3.2 Bitplane coding using Significance-Trees

The set of M transform coefficients to be encoded for an audio frame is denoted by

the vector X = (X1, X2, . . . , XM), and the according coordinates set is denoted by

M = (1, 2, · · · ,M). The algorithm starts with the most significant bitplane nmax,
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which can be easily computed with nmax = blog2(max
i∈M
{| Xi |})c. A coefficient Xi can

then be expressed as

Xi = s

nmax∑
k=nmin

bi,k2
k

with bi,k ∈ {0, 1} and s ∈ {±1} being the sign. If Xi is an integer value, then nmin = 0.

To encode real-valued coefficients, nmin can be negative.

During the bitplane-coding process, all bitplanes n ≤ nmax are processed iteratively

(i.e., the bits bi,n, i = 1, 2, . . . ,M are transmitted) in so-called sorting and refinement

passes [111]. In a sorting pass, all coefficients that become significant with respect to

the actual bitplane n are found by employing tests on the coefficient absolute values,

and these test results are written to the output bitstream. For coefficients that are

found to be significant, also a sign bit is transmitted. During the refinement passes,

the lower bitplanes of already identified significant coefficients are transmitted.

The sequence of the coefficient sorting is defined by the significance-tree so that all

elements in the coefficient set X are uniquely mapped into nodes in the trees. Each

significance tree T is composed of several nodes that link coefficient coordinates i

(position information) of scalars Xi in a hierarchical manner. A tree T is said to be

significant with respect to bitplane n if any scalar inside the tree is significant, that is,

if the magnitude of at least one coefficient in the set is larger than 2n. The pseudocode

of the sorting pass is as follows:

TreeSignificance (current tree T , current threshold 2n)

• If T is insignificant with respect to 2n, emit ‘0’ and return;

• If T is significant with respect to 2n, emit ‘1’;
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• If root node N(T ) is significant with respect to 2n, emit ‘1’, otherwise emit ‘0’;

• Call TreeSignificance() for each subtree with root node as offspring of N(T ) with

threshold 2n;

• Return;

4.3.3 Proposed Adaptive Significance-Tree Selection

The SPIHT-style significance trees proposed for audio coding so far are rather arbitrary.

They are simply derived by projecting the known 2-D trees into the vector notation

of 1-D structures. To establish better tree structures and to capture the dynamically

variant spectral behavior of audio signals, we predefine a set of significance-trees and

dynamically select the locally optimal ones for each audio frame.

For tree construction, in general, it is important to recall that trees should be built

in such a way that the coefficients that are most likely to be large in magnitude are

located close to the roots of the trees, whereas the small coefficients should be located

at the outer leaves. The larger the (sub)-trees that contain small coefficients are, the

more efficient the coding will be. In contrast to [127] we used non-complete significance

trees by placing remaining nodes at the last treelevel.

In this paper we design the set of µ possible significance-trees by constructing these

trees out of m subtrees with different roots and different sorting orders. The coding cost

to encode the tree selection information is log2(µ) bits per frame. We considered m = 8

with equally sized subtrees and m = 10 with logarithmically sized subtrees. See Fig. 4.2

for an illustration of the trees. Each subtree was selected from four different types of

trees (ascending, descending, concave oder convex) yielding µ = 65.536 possible trees

71



4 An Adaptive Tree-Based Progressive Audio Compression Scheme

(tree selection needs 16bit per frame) for the equally sized and µ = 1.048.576 (bit cost

of 20bit per frame) for the logarithmically sized subtrees.
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x1 x17 x33 x49

x2 x3 x4 x18 x19 x20 x34 x35 x36 x50 x51 x52

x5 x6 x7 x8
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x41 x42 x43 x44 x45 x46 x47 x48
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x57 x58 x59 x60 x61 x62 x63 x64x9
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x63x62x61x60x59x58x57x56x55x54x53x52x51x50x49x48

x47x46x45x44x43x42x41x40

x39x38x37x36
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x35x34x33x19x18x17x11x10x9x7x6x5x3

x32x16x8x4x2x1

(a) (b)

Figure 4.2: Examples of possible significance-trees with treeorder N = 2 and frame-
length M = 64 (a) m = 4 (equally sized trees). (b) m = 6 (log-sized
trees).

For a given audio frame to be encoded, we select the tree that allows us to encode

the largest number of high-magnitude coefficients within the first ν tree levels. In the

experiments, ν was set to 3.

4.3.4 CSTQ Algorithm

Let us assume that a set of optimal local significance trees for transmitting a coeffi-

cient set X has been found, for example, through testing the efficiencies of various

possible trees as mentioned above. The compression scheme then operates as follows:

Iteratively, all bitplanes n = nmax, nmax− 1, nmax− 2, . . . , nmin are processed in sorting

and refinement passes. In a sorting pass, all coefficients that become for the first time

significant (i.e., their magnitude exceeds the current threshold 2n) are logged to a list

of significant coefficients (LSC) and their signs are encoded. This means, at any point

in the encoding process, the LSC contains the coordinates of all coefficients that have
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been found to exceed the current test threshold of 2n. When all significant coefficients

with respect to the current threshold 2n have been identified and their coordinates

have been moved to the LSC, the refinement pass stores the bitplane information for

the significant coefficients by processing the LSC, except for the coefficients that were

included in the last sorting pass. The overall algorithm is as follows.

CSTQ Algorithm:

1. Tree Generation: select one of the µ possible significance-trees, containing m

local subtrees;

2. Initialization: output n = blog2(max
i∈M
{| Xi |})c; output selected significance-tree;

sequentially do: set LSC (list of significant coefficients) as an empty list.

3. Sorting Pass: sequentially call TreeSignificance, move all significant coefficients

into the according LSC, output their signs.

4. Refinement Pass: sequentially, for each coefficient in according LSCs, except

those included in the last sorting pass, output the nth most significant bit of Xi.

5. Quantization-Step Update: decrement n by 1 and go to Step 3.

The process is repeated until the desired bit budget is achieved, or, in case of lossless

compression, all bits in all coefficients have been encoded.
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4.4 Experimental Results

4.4.1 Comparison of significant tree models

In this section, we compare the performance of adaptively selected and fixed significance

trees. The number of possible trees for our algorithm was set to µ = 65.536 (equally

sized) and µ = 1.048.576 (logarithmically sized), respectively, as described in Section

4.3.3.

The audio signal was selected as the cha2.wav file [62] (mono, 16 bits, 48 kHz) and

the bitrate was set to R = 96 kbps. A MDCT filterbank was used to remove the

signal redundancy and the framesize was set to M = 1024. The frame bit budget

Rf was computed as Rf = bR ·M/Fsc where Fs is the sampling rate in Hz, yielding

Rf = 2048 bits per frame for 96 kbps. The treeorder of the significance trees has been

set to N = 4. As a quality measure, the frame-wise signal-to-noise ratio (SNR) was

used, which was computed as the ratio of a frame’s energy, divided by the energy of the

reconstruction error in the frame. The two scenarios gave the results listed in Table

4.1.

scenario SPIHT CSTQ CSTQ
linear spaced log-spaced

segSNR 32.99 34.27 34.56

Table 4.1: Average frame-wise SNRs in dB for the cha2.wav signal coded at 96 kbps,
using different algorithms.

From Table 4.1 it can be seen that an adaptive significance-tree selection benefits

from the variant spectral distribution of audio data and that a logarithmic spacing,

similar to the one that can be found in the human auditory system, is a good strategy

to exploit the structure of audio signals.
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4.4.2 Combination with the MPEG AAC Standard

In this experiment, we use the state-of-the-art MPEG AAC compression scheme and

combine it with our CSTQ algorithm in order to achieve progressive coding. For this,

we keep the AAC scheme unchanged up to the point where Huffman coding is employed,

then apply the CSTQ algorithm to realize the compression of the quantizer indices. In

all experiments, the reference software of [60] was used.

The compression of quantizer indices can either be lossless or lossy, depending on

the number of bits transmitted. On the decoder side, the received quantizer indices

(either exact values or approximations, depending on the bitrate) are injected into the

standard AAC decoder. All other side information is transmitted as produced by the

AAC coder.

Table 4.2 shows the average segmental SNRs for the algorithms at different bitrates,

using signals from the sound quality access material (SQAM) [36] and from the 1990

MPEG evaluation [62]. Note that the results for the AAC coder were produced by

encoding the signal individually for each bitrate. For CSTQ, the encoding was done

once at 64 kbps, and then lower rates were realized by truncating the frame-wise

embedded bitstream produced by the CSTQ algorithm. As the results in Table 4.2

show, the SNR for CSTQ is slightly lower at the highest bitrate, but it is better for all

lower bitrates. A similar behavior could be found for other audio material as well. This

could be explained by to the fact that at 64 kbps, not all frames could be compressed

by the CSTQ scheme in a lossless manner within the given bit budget. At lower rates,

however, CSTQ has the advantage that it can exactly meet the target bitrate without

the need of including any padding bits, which are quite common in the AAC bitstream

produced by the reference software.
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audio Time Bitrate AAC AAC AAC AAC
file (min) (kbps) BSAC CSTQ CSTQ

linearly log.
spaced spaced
N = 2 N = 2

16 10.46 1.26 7.65 8.02
24 12.90 8.25 9.57 10.32

Tracy 0:37 32 14.19 12.08 13.63 13.87
Chapman 40 15.04 14.04 14.89 14.96

[62] 48 15.59 14.94 15.43 15.49
56 16.09 15.51 16.01 16.03
64 16.47 15.54 16.43 16.44
16 7.65 5.59 9.74 9.98

female 24 10.48 10.03 12.51 13.30
English 0:21 32 12.54 12.66 15.50 15.74
speech 40 13.70 15.53 18.07 18.12

[36] 48 15.28 16.97 19.36 19.41
56 16.75 17.05 19.89 19.91
64 19.98 17.07 19.98 19.98
16 7.42 6.03 8.51 8.95
24 9.59 9.48 10.67 11.03

quartet 0:28 32 11.32 11.43 13.37 13.51
[36] 40 12.73 13.89 15.23 15.30

48 14.29 14.77 16.32 16.36
56 15.82 14.95 16.84 16.86
64 17.05 14.95 17.03 17.03

Table 4.2: Average segmental SNRs in dB for different signals, bitrates and algorithms

4.4.3 Subjective Listening Tests

In order to see whether the objective results based on the segmental SNR translate

into similar subjective quality impressions, we carried out listening tests with twenty

test persons for the scenario with eight equally sized subtrees per frame. In these tests,

the CSTQ-scheme was compared with the MPEG2-AAC standard and the MPEG-4-

AAC-BSAC standard, which is currently the only standardized fine-grain progressive
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Figure 4.3: Subjective difference grades for different codecs at bitrates between 16 and
64 kbps for one mono channel.

audio compression scheme. Also for MPEG-4-AAC-BSAC, the reference software

from [60] was used. The measurement procedure was set up according to the ITU

recommendation BS.1116-1 [65]. The quality ratings between one (very annoying) and

five (indistinguishable from the original) were translated into the subjective difference

grade, which is the difference between the rating for the encoded test item and the

hidden reference and ranges from zero (equal quality) down to -4 (the lowest grade).

The results for three different test signals are depicted in Fig. 4.3. As one can see, the

performance of CSTQ is almost equal to the AAC performance, and it is significantly

better than the BSAC one.

4.5 Conclusions

The fine-grain scalable audio signal compression problem has been addressed in this

study. While in almost all existing algorithms, a single type of significance-tree has

been adopted for sorting significant coefficients and transmitting position information,
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we have proposed a novel adaptive significance-tree technique. Such a tree is generated

dynamically to suit variant spectral behavior from frame to frame. It could be shown

that a logarithmic tree size scaling captures better the harmonic structure of an audio

signal. Based on the dynamic tree selection, a compression scheme called CSTQ has

been proposed, which provides both high compression quality and fine-grain bitrate

scalability. Experimental results clearly demonstrate the following properties: the

method outperforms the existing SPIHT-like algorithms and yields competitive quality

as the nonscalable AAC audio compression scheme, yet with fine scalability of one-bit

granularity per frame.
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5 A Dynamic Fine-Grain Scalable
Compression Scheme with Application to
Progressive Audio Coding1

5.1 Abstract

This paper studies the fine-grain scalable compression problem with emphasis on

1-D signals such as audio signals. Like in the successful 2-D still image compression

techniques EZW (embedded zerotree wavelet coder) and SPIHT (set partitioning in

hierarchical trees), the desired fine-granular scalability and high coding efficiency are

benefited from a tree-based significance mapping technique. A significance tree serves

to quickly locate and efficiently encode the important coefficients in the transform

domain. The aim of this paper is to find such suitable significance trees for compressing

dynamically variant 1-D signals. The proposed solution is a novel dynamic significance

tree (DST) where, unlike in existing solutions with a single type of tree, a significance

tree is chosen dynamically out of a set of trees by taking into account the actual

coefficients distribution. We show how a set of possible DSTs can be derived that is

optimized for a given (training) dataset. The method outperforms the existing scheme

for lossy audio compression based on a single-type tree (SPIHT) and the scalable

audio coding schemes MPEG-4 BSAC and MPEG-4 SLS. For bitrates less than 32

kbps it results in an improved perceived audio quality compared to the fixed-bitrate

1This chapter is in print in the present form in the IEEE Transaction on Audio, Speech, and Language
Processing (2010).
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MPEG-2/4 AAC audio coding scheme while providing progressive transmission and

finer scalability.

5.2 Introduction

The main attractive feature of a scalable compression algorithm is the possibility

of progressive transmission. Scalability enables the receiver to decode the received

signal at different fidelity levels, depending on the actual needs and available device

capabilities, and it also allows one to adapt the data rate to the actual channel capacity.

Certainly, such a feature is extremely desirable in packet-based networks, and it has

been exploited to handle problems such as data-rate fluctuation, channel congestion or

limited storage space.

For audio compression, the majority of classic encoders optimize on a single (although

arbitrary) target compression ratio, striving to deliver the best quality given the

bitstream length, or to deliver the shortest bitstream length given a constraint on

quality. An example is the well-known MPEG2/MPEG4 advanced audio coder (MPEG-

2/4 AAC) [13], which is a state-of-the-art audio compression tool that provides excellent

quality at bitrates of 64 kbps (kbit per second) per channel and also yields excellent

performance, relative to the alternatives, at bitrates reaching as low as 16 kbps. Clearly,

no scalability is offered from those conventional coders.

To cater for the scalability desire, a few scalable encoders that are organized in

layers have been proposed and standardized. Namely, ITU-T G.727 [69] (5-, 4-, 3-

and 2-bit/sample) for telephone bandwidth or ITU-T G.722 [68] (48/56/64 kbps) for

wideband speech. More recently, MPEG-4 CELP [63] (2 kbps in the narrowband

version and 4 kbps in wideband) and MPEG-4 BSAC [63] (with up to 1 kbps fine
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bitrate graduation) have been introduced. BSAC stands for bit slice arithmetic coding.

In the MPEG-4 BSAC coder, a core layer produces the lowest bitrate and provides

the minimum information to obtain a basic quality for the decoded signal, and several

enhancement layers contain additional information that allows the decoder to improve

the quality. The scalability is obtained by transmitting the core layer bitstream,

combined with one or more enhancement layers. Clearly, the obtained granularity

relies on the pre-defined bitrates allocated to the layers and the number of layers sent

to the decoder. Typically, for achieving scalable bitrates between 16 and 64 kbps, up

to 48 enhancement layers are used. The newest scalable audio coding scheme addition

to the MPEG-4 standard is MPEG-4 SLS [64] which provides backward compatibility

to MPEG-2/4 AAC while achieving a granularity of up to 0.4 kbps. SLS stands

for scalable to lossless audio coding and the MPEG-4 SLS coder achieves scalability

by using, similar to the MPEG-4 BSAC coding standard, a layered concept. The

bitstream consists of an AAC core layer defining the lowest possible bitrate and a

lossless enhanced (LLE) layer that produced the fine grain scalable to lossless portion of

the lossless SLS bitstream. The LLE layer encodes the residual signal using a bitplane

coding approach whose quantizer noise reproduces the perceptually optimized spectral

shape of the AAC core layer’s quantizer noise [125]. The MPEG-4 SLS standard also

defines a computational less complex non-core mode for applications that require only

lossless quality.

In all existing standardized scalable encoders, the scalability is obtained at the

price of degradation in terms of performance when compared to fixed-rate schemes,

and, in general, the finer the granularity is, the higher the loss is [71]. A few other,

non-standard coders with fine bitrate scalability have been proposed as well. These are,

for example, coders based on the SPIHT principle [34, 107, 106, 108, 85, 86], which
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will be discussed in more detail below, the embedded wideband speech coder in [109],

which is based on layered multimode transform predictive coding, the layered coder

in [71], which orders and transmits parameters in terms of their significance, and the

embedded audio coder in [78], which forms embedded streams for time segments of

about 0.74 seconds duration. For the MPEG-4 SLS scheme, a prioritized bitplane

coding has been proposed [79], that similar to the approach presented in this work,

divides the frequency spectrum of the LLE layer into several regions and assigns these

regions with coding priorities according to their respective energy levels.

Several of the previously mentioned scalable coders use bitplane coding (also called

bit-slice coding), where the coefficients are transmitted layer by layer, starting with

the layer of most significant bits. In the first encoding round, this provides coarse

representations of the largest coefficients (largest in magnitude), and subsequent layers

provide more accurate representations of the coefficients. For a larger set of coefficients

to be encoded, in order to achieve efficient bitplane coding, it is advantageous to

describe the bitplanes via position and value information, instead of transmitting value

information alone in a straightforward manner. This is in particular interesting for

sparse data where most of the coefficients are zero. One successful solution of this is

the tree-based significance mapping technique [113, 111]. In these methods, for a set

of coefficients to be encoded, by assuming a known coefficient significance/magnitude

distribution in the form of trees, the coefficient position information is mapped into

node-location information in the tree domain. Moreover, different significance-tree

structures result in different compression efficiencies. Details will be given in Section

5.3.

For 2-D coefficient-set compression, applying tree-based techniques has produced

impressive advances in wavelet-based image compression. Its development could be
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traced back to the work of Lewis and Knowles [77], who used tree structures to exploit

the statistical properties found in the pyramidal decomposition of natural images. The

technique was further developed by Shapiro [113], who proposed an efficient method

to combine the two techniques, bitplane coding and tree-based significant-coefficient

selection (sorting), and applied them to the wavelet transform coefficients. This com-

bination, called embedded zerotree wavelet (EZW) algorithm, was later refined by

Said and Pearlman [111]. The according new algorithm, called set partitioning in

hierarchical trees (SPIHT), is one of the state-of-the-art progressive image compression

algorithms. It has been realized that the reason for the success of the SPIHT fine

bitstream scalability, state-of-the-art compression performance, and reasonable compu-

tational complexity, is mainly attributed to the effective description of the significance

map of wavelet coefficients. This has been confirmed from both empirical observations

and theoretical analysis: in the experiment illustrated in [82], the SPIHT algorithm

successfully captures not only the inter-band correlation but also the intra-band corre-

lation. Theoretical support can be found in [114] and [80], where the statistical models

between the magnitudes of wavelet coefficients in different scales and orientations were

proved to be existent.

Inspired by the success in image compression, SPIHT-related coding techniques

have been proposed for audio compression as well [34, 107, 106, 108, 85, 86]. In all of

these approaches, the tree structures have been fixed independent of the signals to

be encoded and are based on the assumption that low-frequency components contain

more energy than high-frequency ones. This assumption, however, does not hold for

all frames of real-world audio signals, so that fixed trees can only be suboptimal.

To address this problem, in an earlier work, the authors of this paper proposed an

adaptive tree-based significance mapping technique that used a fixed set of significance
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trees from which the optimal tree for each frame was selected [127, 120]. In the

present paper, we present a novel, scalable compression scheme with a dynamic set

of data-dependent significance trees, called dynamic significance tree quantization

(DSTQ). As the compression performance of a tree depends on how well it matches

the signal structure, the set of significance trees should be optimized for the applied

signal class. We propose to derive such a set of data-dependent significance trees

directly from the coefficient’s distribution. An initial set of significance trees can be

either learned for a general signal class (e.g., speech), or they can be optimized for the

specific signal to be encoded. A dynamic adaptation of the set of trees is possible online

without sending further side information if the encoder and decoder stage use the same

learning algorithm. The proposed DSTQ algorithm can provide bitrate scalability

at a granularity of one bit per frame, and has better performance than the existing

SPIHT-related algorithms.

Another concept of scalable audio coding is the optimization at the encoding stage

for a wide range of bitrates and types of input signals for an a priori known bitrate. For

this problem, hybrid sound coding schemes have been proposed [112], using in parallel

sinusoidal, transform or CELP coding modules and optimizing the respective bitrates

or time segmentation using for example operational rate-distortion optimization. These

scalable audio coders result in a bitstream with a fixed bitrate and are therefore

different from the scalable audio coders like MPEG-4 BSAC, MPEG-4 SLS or our

proposed coding schemes, where the bitrate can be changed after the encoding process,

scaling only the bitstream itself.

This paper is organized as follows. To facilitate the later description of our algo-

rithm, a brief overview of existing SPIHT-style algorithms (both in image and audio

compression) is presented in the next section. Then, Section 5.4 describes our proposed
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dynamic significance tree method and develops the scalable compression scheme DSTQ.

We present a data-driven approach to generate a set of optimal significance trees.

To illustrate the compression performance, we compare in Section 5.5 the achieved

signal reconstruction performance with the SPIHT scheme for lossy audio compression

based on a single-type tree and our previously proposed scheme using a fixed set of

significance trees (CSTQ). We further evaluate the achieved perceptual quality for

compression of quantizer indices compared with the fixed-bitrate MPEG-2/4 AAC and

scalable MPEG-4 BSAC and MPEG-4 SLS audio coding schemes. Conclusions are

given in Section 5.6.

Notation

Matrices and vectors are printed in boldface, sets are printed in script alphabet and

trees in fraktur alphabet. ⊕ denotes the addition of sets and N+ is the set of all

positive integers excluding zero. bxc denotes the greatest positive integer less than or

equal to a given positive real number x. [a, b] := {x ∈ N+|a ≤ x ≤ b} represents

the set of all positive integers between and including a and b.

5.3 Tree-based Significance Mapping in SPIHT

5.3.1 The SPIHT Algorithm in Image Compression

In this section, we give a brief summary of some characteristics of the SPIHT algorithm,

introduced by Said and Pearlman in [111] for 2-D wavelet-based image compression.

Assume an original image is wavelet transformed to a 2-D coefficient array X. Each

element X(i,j) of X is called transform coefficient at coordinate (i, j) and represented
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in its binary form. Note that for efficient information transmission, the most significant

value information should be transmitted first. To achieve this, the idea is to encode the

coefficient value information in decreasing bitplane order. In particular, the sign and

value of a coefficient are encoded only when the coefficient has become significant, that

is when its most significant nonzero bit is located at the current or one of the previous

bitplanes. This idea leads to another issue, which is the question of how to efficiently

encode the coordinates of significant coefficients. A good solution is provided by the

tree-based significance mapping technique.

A tree is a set of linked nodes that realizes a hierarchical data structure. Each node

has at most one parent node and a set of zero or more children nodes. A node with zero

child nodes is also called a leaf node and the root node is defined as the topmost node

that has no parent node. The order of the tree defines the number of children of a node.

A significance tree is generated by ordering all coefficients in the form of trees with the

assumption that the coefficients closer to the roots of the trees will usually be more

significant (i.e., larger in magnitude) than those at the leaves. In SPIHT coding of

the wavelet coefficients of an image, such a tree is recursively generated by the parent-

offspring relationshipO(i, j) = {(2i, 2j), (2i, 2j+1), (2i+1, 2j), (2i+1, 2j+1)},

where (i, j) is the coordinate of a parent and O(i, j) the set of coordinates of its

offspring (also called direct descendants of the parent at node (i, j)). Each of the

members of the set O(i, j) then has its own offspring, which are called indirect

descendants with regard to the parent node (i, j). For the description of the algorithm,

all the indirect descendants of the parent with coordinates (i, j) are gathered in the

set L(i, j). Finally, a complete descendants set D(i, j) is defined as the sum of the

direct and indirect descendants D(i, j) = O(i, j)⊕ L(i, j).

The above mentioned relationship between parents and their offspring provides a
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natural link between wavelet coefficients in different frequency bands that belong to

the same spatial location in an image. It holds for all coefficients, except the ones in

the highest and lowest frequency bands, because the coefficients in the highest bands

do not have any offspring, and in the lowest band, only three out of four coefficients

have offspring. Fig. 5.1(a) gives an illustration.

Based on the significance tree, which is also called spatial orientation tree, the entire

SPIHT algorithm performs iterative sorting and refinement passes to progressively

encode the coefficient array X. From the top bitplane nmax ∈ N+, naturally decided

by 2nmax > max
(i,j)

(|X(i,j)|/2), each sorting pass is used to perform three actions: The

first is to find all coefficients that are significant with respect to the current bitplane

(these are coefficients that are larger in magnitude than the current threshold 2n with

n = nmax, nmax − 1, ...). The second action is to transmit the significance-testing

results and signs of those coefficients that have become significant against the current

threshold. The final action is to update the initial spatial orientation trees by removing

all significant coefficients and storing them separately. Here, the significance tests are

performed on the basis of sets. If a set has become significant (at least one coefficient

inside the set whose most significant bit locates at the current bitplane), a partitioning

rule is used to partition the set into new subsets, then significance tests are performed

on the new, smaller sets. This process continues until the significance test has been

done for all significant sets, and the coordinates of all significant coefficients for the

current bitplane have been identified. A succeeding refinement pass is used to transmit

the current bitplane values for coefficients that are known to be significant from the

previous bitplanes. The whole sorting and refinement-pass sequence is repeated until

the desired bitrate is achieved or, in the case of lossless compression of finite-alphabet

data, until all bitplanes have been transmitted.
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Figure 5.1: Parent-offspring dependencies in SPIHT. (a) 2-D tree for a seven-band
wavelet transform. The larger squares represent the frequency bands
(LL2,HL2, LH2,HH2,HL1, LH1,HH1) of the transformed image,
and the smaller ones represent the individual coefficients within the bands.
The arrows show the links between parents and their offspring. (b) 1-D
tree following the offspring rule O(i) = iN + [0, N − 1] with N = 4.

5.3.2 SPIHT-style Algorithm in Audio Compression

The idea of applying SPIHT-type significance trees to audio compression has been

independently proposed in [107] and [34]. Both focused on compressing MDCT

(modified discrete cosine transform) transformed audio signals and applied a parent-

offspring relationship for the coefficient coordinates of the formO(i) = iN+[0, N−1]

where i ∈ N+ is the parent coordinate and N ∈ N+ is the number of offspring. This

tree choice is somehow related to the fact that most instruments produce harmonics

of a fundamental frequency, so that correlations might exist between the coefficients

and their harmonics. Because this type of significance tree was inspired by the SPIHT

algorithm, we will refer to it as the SPIHT-style significance tree in the following.

Fig. 5.1(b) illustrates the SPIHT trees for N = 4. In addition to SPIHT-related

compression, additional perceptual significance tests were introduced in [108]. In this

method, coefficients that were significant with respect to their magnitudes were only

transmitted if they were also significant with respect to a masking threshold.
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5.4 Description of the Dynamic Scalable Compression

Scheme DSTQ

In this section, we consider the problem of constructing optimal significance trees for

a 1-D transform vector and how to use them for compression. First we will explain

the proposed DSTQ algorithm. Then we will present an approach to generate a

data-dependent set of optimal significance trees.

5.4.1 DSTQ Algorithm

Let the vector X = (X1, X2, · · · , XM),M ∈ N+ be the 1-D coefficient vector to

be encoded, with the corresponding set of coefficient coordinatesM = [1,M ]. Here

the data in the coefficient vector X is not specified. It can, for example, be real-valued

signal samples, transform coefficients or integer-valued quantizer indices in a frame of

audio. Similar to the SPIHT algorithm, our DSTQ algorithm encodes the coefficients

subsequently bitplane for bitplane, commonly starting from their most significant and

continuing to their least significant bitplane. The most significant bitplane nMSB is

determined by 2nMSB > max
i∈M

(|Xi|/2). DSTQ also distinguishes between a sorting

pass (to select significant coefficients by tree-based significance mapping and output

‘position’ bits) and a refinement pass (to output ‘value’ bits).

Now let us assume that the coefficient-position information M is mapped to a

significance tree T. Then the so-called sorting pass performs the following significance-
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tree tests for the current processed bitplane n:

S(n) =


1 if max

i∈M
(|Xi|) ≥ 2n

0 otherwise
(5.1)

The significance-tree test S(n) can be performed2 calling the following pseudocode

TreeSignificance(T, 2n):

Algorithm 1 TreeSignificance(tree T, threshold τ )

1: if T is not a leaf node then
2: if T is insignificant with respect to τ then
3: emit ‘0’ and return
4: else
5: emit ‘1’
6: end if
7: end if
8: Tr ⇐ root node of T
9: if Tr is significant with respect to τ then

10: emit ‘1’ and sign bit
11: else
12: emit ‘0’
13: end if
14: TC

k ⇐ k-th child subtree of Tr

15: for all TC
k do

16: Call TreeSignificance(TC
k ,τ )

17: end for

See also Figure 5.2 for a flow-chart representation of Algorithm 1. The important

feature of this kind of coefficients-position mapping technique can be seen in the

pseudocode of Algorithm 1 in the lines 2 and 3. We can save bit costs whenever we

encode an insignificant tree (i.e., a tree with S(n) = 0) with only one bit ‘0’ instead

of coding all the insignificant coefficients of the tree one-by-one. Even though there is

2The partitioning rule is slightly simplified compared to the 2-D one in SPIHT [111]
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additional cost for transmitting the significance-tree test result for significant trees,

due to the savings that occur when a tree is insignificant the method is, in general,

more efficient than the straightforward one-by-one coding.

The proposed DSTQ algorithm compresses the coefficient set X in the order of

threshold-by-threshold. At each bitplane, in the sorting pass, the procedure TreeSig-

nificance is applied based on the dynamically selected local significance tree T. The

coefficient positions that become significant in the current bitplane are determined

and moved into a respective list of significant coefficients (LSC). In the refinement

pass, also sequentially, we output the current bitplane values of those coefficients that

became significant in the previous bitplanes. Then we move to the next lower bitplane,

and the sequence of sorting and refinement passes is repeated. In this way, the DSTQ

algorithm achieves encodings with finer and finer quantization steps by progressively

transmitting the binary representation of the coefficients and yields a bit-wise scalable

Figure 5.2: Flow-chart representation of Algorithm 1.
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compression technique. The entire DSTQ algorithm is described as Algorithm 2 (See

Figure 5.3 for a flow-chart representation).

Algorithm 2 DSTQ(coefficients X, coordinatesM)

1: Dynamic Tree Generation:
2: select optimal tree T from set of possible significance trees
3: Initialization:
4: output n = blog2(max

i∈M
{| Xi |})c;

5: output index of selected T
6: set LSC as an empty list.
7: while n ≥ 0 and bit budget is not fully utilized do
8: Sorting Pass:
9: call TreeSignificance∗(T,2n)

10: store all newly significant coefficients into the LSC
11: Refinement Pass:
12: for all coefficient in LSCs except those included in the last sorting pass do
13: output the nth bit
14: end for
15: n = n− 1
16: end while

The previous definition of TreeSignificance described a simplified version for com-

prehensibleness. In the DSTQ algorithm a modified version TreeSignificance∗ is used

that only emits test results for nodes that have not become significant in a previous

bitplane. These coefficients are encoded in the refinement pass and their removal from

the set of tested coefficient results in larger insignificant trees. The process is repeated

until the desired rate (bit budget for compressing the coefficient set) is achieved, or, in

case of lossless compression, all bits in all coefficients have been encoded. Like with

the technique used in [111], to obtain the desired decoder’s algorithm that duplicates

the encoder’s execution path, we simply have to replace the words ‘output’ by ‘input’

in the pseudo code.
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The amount of side information required to transmit which significance tree has been

selected is relatively low compared with the number of saved bits due the optimized

significance tree. This will be confirmed by experimental results in Section 5.5, where

we compare the performance of single fixed trees with the one of dynamically selected

trees.

5.4.2 Data-driven Generation of Significance Trees

As stated before, in wavelet-based still image coding, due to the properties of natural

images, the significance information can be well captured within a single type of signif-

icance tree. For audio, however, where the frequency content can change dramatically

over time, there exists no single tree that captures the significance information of all

Figure 5.3: Flow-chart representation of Algorithm 2.

93



5 A Dynamic Fine-Grain Scalable Compression Scheme

frames equally well. We therefore propose to dynamically select the best significance

tree for each frame from a given set of possible trees. To efficiently construct such a

set of significance trees, we suggest to directly use the information available from the

coefficients distribution. We will first recapitulate some theoretical results on optimal

significance trees for a given coefficients distribution.

For a significance tree T the root node is denoted as Tr and the k-th child subtree

of Tr is represented by TC
k . The probability of significance of a tree with respect to

the bitplane n is denoted as P (T, n). The probability of significance of the root node

at a given bitplane is written as p(Tr, n). Then the average significance mapping cost

of a tree T for a bitplane n is given by

C(T, n) := 1 + P (T, n)

(
1 +

∑
k

C(TC
k, n)

)
(5.2)

with

P (T, n) = 1− (1− p(Tr, n))
∏
k

(
1− P (TC

k, n)
)
. (5.3)

From (5.2) it follows that the encoding cost for a significance tree depends recursively

on the probability of significance (5.3) of its child subtrees and the number of these

recursive steps executed. This leads to the important conclusion that the optimal

sequence of coefficient positions is in descending order of their magnitude, resulting in

the largest possible insignificant subtrees for each bitplane.

We will illustrate this using the toy example given in Table 5.1. The sorting tree

for this example, shown in Fig. 5.4, is mapping the coefficient positions depth-first

in the order M = {X2, X4, X1, X5, X6, X3}. An optimal tree would transmit

for a bitplane all significant coefficients first, followed by the remaining insignificant

coefficients. For the example, its sorting tree maps in the 3rd bitplane the significant
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Coefficient Bitplane
Position Value 3rd 2nd 1th
X1 2 0 1 0
X2 4 1 0 0
X3 0 0 0 0
X4 3 0 1 1
X5 1 0 0 1
X6 0 0 0 0

Table 5.1: Binary representation of the 1-D example signal.

coefficient X2 first and TreeSignificance will emit {11s} to the bitstream with s

being the sign bit. The remaining coefficients of the bitplane are fully described by

the test results for the subtrees with the root nodes X4 and X6. The bitstream

encoding the MSB of the example is therefore {11s00}. As for every bitplane its

significant coefficient positions are moved to a list of significant coefficients (LSC) they

are excluded from the sorting pass in the following bitplanes. Thereby all significant

coefficients in the next bitplane will be of lower magnitude than the coefficients that

became significant in the current bitplane. The sorting tree will map these coefficient

first, in the example X2 is skipped in the next sorting pass and the subtree with the

root node X4 is tested first, adding {11s} to the bitstream. Then the leaves mapping

X1 and X5 are encoded and the insignificant coefficients X6 and X3 are encoded

with a single 0 bit. In the refinement pass the next bit representing X2 is transmitted,

resulting in the overall bitstream {11s0011s1s000}. In the last bitplane, the sorting

pass emits the test result for the subtree with the root node X6. With the final

refinement pass the bitstream of the example is {11s0011s1s00000101}.

It can be concluded that an optimal significance tree for a given 1-D coefficient

vector can be derived by computing its sorting tree. In audio coding applications the
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x2

x4 x6

x1 x5 x3

Figure 5.4: Significance tree of the 1-D example which is its sorting tree.

signal is commonly divided into frames of fixed length. To derive a set of optimal

significance trees for such frames, we define a training dataset, and the sorting trees

for every frame of the training dataset are computed. If the DSTQ coding scheme is

applied for an entire signal class, for example for human speech in a telecommunication

scenario, the training dataset would be a speech database. If the signal to be encoded

is known a priori, like it is the case for storing digital audio, the signal itself can be

used as the training dataset. We propose the following simple algorithm to learn a set

of significance trees that is optimized for the training dataset. First we encode the F

frames of the training dataset with all available F sorting trees derived from these

frames. The performance of every tree is measured using the lengths of the resulting

bitstreams needed to achieve lossless encoding. These derived metric values are stored

into a F × F matrix M. It is to note that the DSTQ algorithm has a low complexity

– a simple C prototype implementation on a standard workstation was able to test

10000 trees per second for a frame length of 1024 samples. We then use the following

algorithm to reduce the number of significance trees to K trees:

Note that instead of the length of the bitstream achieving lossless compression a

perceptual metric could be used. And the computational complexity could be reduced
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Algorithm 3 Derive set of K optimal significance trees

1: find in M for every frame the tree achieving the best performance and store their
ID in T ∈ NF

2: while (number of unique trees in T) > K do
3: get for every tree in T its next best tree for the according frame from M and

store its ID in T
′ ∈ NF

4: replace in T the tree whose next best tree in T
′

is already used in T and which
results in the smallest performance degeneration for its frame.

5: if no such tree is found in T
′

search for the second next best / third next best /
... tree.

6: end while

by limiting the iterations of the DSTQ scheme to the first n bitplanes or to a given

bitrate. If both the encoder and the decoder know the F previously decoded frames

to a certain minimal reconstruction level, it is possible to use this information to

derive new optimal significance trees after each audio frame which can replace trees

in the set that have seldom been selected for the past frames. Another alternative to

dynamically update the set of significance trees is to use a side-information channel

that continuously transmits updates to the set of significance trees.

5.5 Experimental Results

We applied our proposed DSTQ scheme to the compression of audio signals, and in

this section, we compare our method with the existing algorithms SPIHT [107, 34] and

CSTQ [127] for lossy audio compression. In addition, we combined our method with the

state-of-the-art MPEG-2/4 AAC compression scheme by replacing the Huffman coding

stage for quantizer-index compression by the SPIHT, CSTQ and DSTQ algorithms.

Performance comparisons for this AAC-related scheme are made with the standardized

MPEG-2/4 AAC scheme with low-complexity profile (fixed bitrate) and the scalable
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MPEG-4 BSAC and MPEG-4 SLS schemes.

5.5.1 Comparison With Schemes Using a priori Fixed Trees

In this experiment, we compared the compression performance of our proposed DSTQ

algorithm with the single-tree SPIHT algorithm and the CSTQ coding scheme which

uses a set of a priori fixed trees [127]. The CSTQ algorithm separates an audio frame

into eight segments and selects for each segment a tree that assumes a descending,

ascending, convex or concave coefficient-magnitude behavior. This results in a set of

65536 possible trees for every frame. The a capella song “Tom’s Diner” by Suzanne

Vega was transformed with the MDCT filterbank with M = 1024 frequency bands

and then encoded with the SPIHT, CSTQ and DSTQ algorithms, respectively. All

coding schemes were performed with significance trees having a tree order of four.

For the DSTQ algorithm, a full search over all trees was performed for every audio

frame, selecting the tree that results in the shortest bitstream for a lossless encoding.

Sets of optimal significance trees consisting of 32, 64, 128, 256, and 512 trees have

been derived as described in Algorithm 3. To allow for a direct comparison of the

significance trees, the same tree-selection algorithm was used for CSTQ in contrast to

[127], where a less complex tree selection algorithm was applied. The test bitrates were

varied between 16 and 96 kbps. The according frame bit budget Rf was computed

as Rf = bR ·M/Fsc where R is the required bitrate in bits per second, and Fs is

the sampling rate in Hz. As a quality measure for the compression performance, the
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segmental signal-to-noise ratio (segSNR) was used, which was computed as follows:

segSNR =
1

N

N−1∑
j=0

10 log10

M∑
i=1

(
X

(j)
i

)2
M∑
i=1

(
X

(j)
i − X̂

(j)
i

)2 (5.4)

where X
(j)
i , i ∈ [1,M ] are the transform coefficients in frame j and X̂

(j)
i are the

corresponding reconstructed coefficients. N is the number of frames. A psychoacoustic

analysis was not carried out for this experiment, because all schemes applied the same

MDCT and significance tests (i.e., the same thresholds), so that, in this special case,

the segmental SNR indeed allows for a comparison between the different significance

tree related compression techniques.

The results presented in Table 5.2 show that algorithms using a set of possible

significance trees achieve a better segmental SNR than single-tree algorithms like

SPIHT. The number of saved bits due to the selection of significance-trees being

optimal for the current frame is larger than the amount of side information needed

to transmit which significance-tree has been selected. It further shows that using a

data-driven approach to construct a set of trees being optimal for a specific class of

signals (DSTQ), a higher compression performance can be achieved with a smaller

set of possible significance trees compared to a model-driven approach (CSTQ). For

bitrates equal to or less than 32 kbps a set of 256 optimized significance trees achieved

a similar performance as the set of 65536 model-driven trees (CSTQ). For higher

bitrates, a set of 512 learned significance trees showed a superior signal reconstruction

performance than CSTQ. For digital audio storage applications, the derived optimal

set can be placed at the beginning of the media and only the ID of the selected tree

needs to be transmitted for every audio frame. Using a simple run-length encoding
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Algorithm tree ID bitrate
coding cost 16kbps 32kbps 48kbps 64kbps 80kbps 96kbps

SPIHT (1 tree) 0 bit 15.121 19.268 22.817 26.073 29.081 31.945
CSTQ (65536 trees) 16 bit 16.116 20.641 24.352 27.710 30.846 33.873
DSTQ (512 trees) 9 bit 17.865 22.577 26.329 29.638 32.627 35.348
DSTQ (256 trees) 8 bit 16.536 20.607 23.939 26.963 29.787 32.419
DSTQ (128 trees) 7 bit 15.786 19.602 22.771 25.680 28.427 31.018
DSTQ (64 trees) 6 bit 15.345 19.025 22.132 24.990 27.698 30.266
DSTQ (32 trees) 5 bit 15.073 18.687 21.759 24.602 27.295 29.865

Table 5.2: Segmental SNRs in dB for the svega test signal encoded at bitrates between
16-96 kbps using different algorithms.

we needed at most 5000 bits to encode a significance tree for a frame length of 1024

samples. This would result in a maximal cost of 2.44 MB for 512 trees which is below

0.5% of the capacity of a standard audio CD. And for applications like speech coding it

is not necessary to transmit the learned set of significance trees, as an a priori learned

set of significance trees can be stored in the decoding device. Also a constant update

of the significance tree set can be performed as proposed in Subsection 5.4.2.

5.5.2 Comparison with MPEG-2/4 AAC, MPEG-4 BSAC and

MPEG-4 SLS

In this section, we compare the perceptual quality of our proposed DSTQ scheme with

the single-tree SPIHT algorithm, the CSTQ coding scheme, the standardized MPEG-

2/4 AAC fixed-bitrate encoder and the MPEG-4 BSAC and MPEG-4 SLS scalable

encoders, respectively. Within the MPEG-2/4 AAC compression scheme, a flexible

Huffman codebook selection (from 11 pre-designed Huffman codebooks) is adopted to

losslessly compress the quantizer indices. The MPEG-4 BSAC coder uses an alternative

noiseless coding method (bit slice arithmetic coding instead of Huffman coding), with
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the rest of the processing (filterbank, psychoacoustic model, etc.) being identical to

MPEG-2/4 AAC. The MPEG-4 BSAC coder is designed to support scalability with

nearly transparent sound quality at 64 kbps and graceful degradation at lower bitrates

and performs best in the range of 40 kbps to 64 kbps. The MPEG-4 SLS coder realizes

a two-layer structure with a Huffman encoded AAC core and a lossless enhancement

bitstream which is encoded using context-based bitplane arithmetic coding and a

special entropy encoding mode for low-energy frames. MPEG-4 SLS is designed to

achieve lossless coding at a bitrate of approximately 350 kbps/channel and nearly

transparent sound quality at approximately 64kbps as a result of the AAC core layer.

In our experiments, MPEG-2/4 AAC and MPEG-4 BSAC compression procedures

were implemented based on the MPEG-2/4 reference software (2001 Edition) with

available source codes on [60]. The MPEG-4 SLS coding scheme was implemented

using the available source code on [61]. Due to the poor performance of the reference

software we further included a state-of-the-art MPEG-2/4 AAC implementation (Nero

AAC codec 1.3.3.0, http://www.nero.com) in our test setup.

For a fair comparison, we adopted the basic MPEG-2/4 AAC encoding process

before noiseless coding for our DSTQ coder as well. That is, we kept the MPEG-2/4

AAC scheme unchanged up to the point where Huffman coding is employed, but

instead of using Huffman codebooks, our proposed DSTQ algorithm was employed for

quantizer-index compression. In detail, the MDCT coefficients that have been quantized

according to the psychoacoustic model are not Huffman encoded but compressed with

the DSTQ coding scheme. The resulting bitstream consists of the MPEG-2/4 sideband

information, e.g. the chosen scalefactors and the DSTQ coefficients that take up the

same space in the new bitstream as the Huffman coefficients did in the original MPEG-

2/4 AAC bitstream. This combined scheme will be referred to as the AAC-DSTQ
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scheme in the following. The CSTQ and SPIHT coding schemes have been realized in

the same manner and will be referred to as AAC-CSTQ and AAC-SPIHT. To be able

to compare the audio-coding performance of MPEG-4 SLS at low bit rates we chose

for the AAC core layer a bitrate of 16 kbps. This allowed also a direct comparison

with MPEG-4 BASC whose base layer is encoded at 16 kbps. It is to note that for

MPEG-4 SLS higher AAC core layer bitrates have not been investigated in this work

as the main focus is on coding scenarios with a scalability form low up to high bitrates

which leads to the necessity of a low-bitrate AAC core in the MPEG-4 SLS scheme.

We evaluated the audio coding schemes using a set of five test files with different

characteristics. From the SQAM test material [36] we selected a male German speaker

(track #53), a recording of a harpsichord as an example for a strong harmonic sound

structure (track #40), and a castanets recording (track #27) consisting of sharp attacks.

We further selected the pop song “Mountains O’Things” by Tracy Chapman and the a

capella song “Tom’s Diner” by Suzanne Vega.
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Figure 5.5: MPEG-2/4 reference software: Objective difference grades for the set of
audio test files encoded with MPEG-4 SLS, MPEG-4 BSAC, MPEG-2/4
AAC and AAC-SPIHT, AAC-CSTQ and AAC-DSTQ using quantizer
indices derived at 64kbps.
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In the first experiment we used the MPEG-2/4 reference software. We applied

AAC-DSTQ, AAC-CSTQ and AAC-SPIHT to encode the quantizer indices derived by

the reference software at 64 kbps, matching the maximum bitrate of MPEG-4 BSAC,

and then truncated the bitstream to the different target bitrates. In the MPEG-4 SLS

coding scheme the AAC core bitrate was set to 16 kbps to allow for a minimal bitrate

of 16 kbps. We measured the perceived audio quality of the decoded audio signals

relative to the original test signal using a model of auditory perception (PEMO-Q)

[55]. The estimated perceived audio quality was mapped to a single quality indicator,

the Objective Difference Grade (ODG) [66]. This is a continuous scale from 0 for

“imperceptible impairment”, −1 for “perceptible but not annoying impairment”, −2

for “slightly annoying impairment”, −3 for “annoying impairment” to −4 for “very

annoying impairment”. For the AAC-DSTQ, AAC-CSTQ and AAC-SPIHT coders, the

bitstreams in each frame consisted of the side information produced by the MPEG-2/4

AAC encoder when the total bit rate was selected to be 64 kbps, the tree-selection

bits if applicable, and the embedded bitstream truncated to meet the target bitrates.

It is to note that the encoding for AAC-DSTQ, AAC-CSTQ and AAC-SPIHT was

performed thereby only once for the highest bitrate and that the decoding at the lower

bitrates was performed by simply truncating this bitstream to the desired bitrate. For

the MPEG-2/4 AAC coder the complete encoding and decoding process was repeated

for all lower bitrates. The tree order for all significance-tree based coding schemes was

set to four. All signals were encoded as mono signals and temporal noise shaping was

not used.

From the resulting objective difference grades for the set of audio test files shown in Fig.

5.5 we can see that MPEG-2/4 AAC, MPEG-4 BSAC, AAC-CSTQ and AAC-DSTQ

achieved a similar perceived audio quality from 64 to 48 kbps with MPEG-4 BSAC

103



5 A Dynamic Fine-Grain Scalable Compression Scheme

showing a marginally lower perceived audio quality at 48 kbps. For AAC-SPIHT lower

ODGs were derived from 64 to 48 kbps that showed a parallel trend to the ODGs of

AAC-CSTQ and AAC-DSTQ. MPEG-4 SLS resulted in the lowest ODGs from 64 to

32 kbps. MPEG-2/4 AAC resulted in the second lowest perceived audio quality for 32

kbps, followed by MPEG-4 BSAC, AAC-SPIHT, AAC-CSTQ and AAC-DSTQ. For

16 kbps MPEG-4 BSAC resulted in the lowest ODG and a similar perceived audio

quality was derived for MPEG-4 SLS and MPEG-2/4 AAC. AAC-DSTQ showed for

all bitrates the best perceived audio quality. Interestingly the MPEG-2/4 AAC coder

of the reference implementation achieved low ODGs for bitrates below 48 kbps despite
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Figure 5.6: MPEG-2/4 AAC Nero implementation: Results of MUSHRA listening
tests for the set of audio test files encoded with MPEG-2/4 AAC Nero,
AAC-DSTQ and AAC-CSTQ using quantizer indices derived at 64kbps
and the hidden reference and anchors. Error bars denote 95% confidence
intervals for mean.
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the fact that it was allowed to optimize the quantizer indices for every target bitrate

separately in contrast to the other coding schemes. It showed that the rate loop of the

MPEG-2/4 AAC reference implementation did not optimally utilize the available bit

budget at lower bitrates.

Therefore we conducted a second experiment using the state-of-the-art Nero AAC

encoder. We newly encoded the set of audio test files using MPEG-2/4 AAC Nero and

analogous to the previous experiment these quantizer indices derived for 64 kbps were

encoded using CSTQ and DSTQ. We further used a reduced number of audio coding

schemes (MPEG-2/4 AAC, CSTQ-AAC and DSTQ-AAC) to allow the evaluation

of the perceived audio quality with the resource-demanding subjective listening test

method MUSHRA (multi stimuli with hidden reference and anchor points) [67]. The

tests were performed using AKG K240 headphones, Creative Sound Blaster Audigy

sound cards and the ABC/Hidden Reference Audio Comparison Tool [92]. The 12

listeners performed a training session of approximately 15 min and had the opportunity

to adjust the playback level only within this training period. Test instructions explained

the user interface of the software and how to give the scores on the quality scale from

1 (bad) to 100 (excellent). The chosen anchor points were low-pass-filtered originals

with cutoff frequencies of 3.5 kHz and 7 kHz.

From the resulting MUSHRA scores for the set of audio test files shown in Fig. 5.6 we

can see that for 64 kbps MPEG-2/4 AAC Nero achieved a transparent audio coding

quality, followed by AAC-DSTQ, AAC-CSTQ and the reference implementation of

MPEG-2/4 AAC. The same ranking order was derived for 48 kbps. For 32 kbps

MPEG-2/4 AAC Nero and AAC-DSTQ achieved a similar MUSHRA score and for 24

kbps AAC-DSTQ achieved the best perceptual audio quality, followed by MPEG-2/4

AAC Nero and AAC-CSTQ and the reference implementation of MPEG-2/4 AAC
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achieved the lowest MUSHRA scores.

Overall, the perceptual quality for AAC-DSTQ, especially at low bitrates, was better

than for the competing scalable coding schemes and for bitrates below 32 kbps a higher

perceptual coding quality than the non-scalable MPEG-2/4 AAC coding scheme was

achieved. This indicates that the signal-dependent significance trees of the DSTQ

scheme can reconstruct the important coefficients earlier than audio coding schemes

assuming more general coefficient distributions.

5.6 Conclusions

The fine-grain scalable 1-D signal compression problem has been addressed in this

study. While in almost all existing SPIHT-related algorithms a single-type significance

tree has been adopted for sorting significant coefficients and transmitting position

information, we have proposed a novel dynamic significance tree technique, which

learns optimal tree structures for 1-D signal compression. Based on the selection of an

optimal tree from a learned set of significance trees, a compression scheme called DSTQ

has been developed providing high compression quality and bitrate scalability. Further,

we applied our proposed scheme to audio signal compression. Here, the advantages of

our proposed scheme are clearly demonstrated: the method outperforms the existing

SPIHT-like algorithm and yields competitive results for compressing quantizer indices

in the MPEG-2/4 AAC audio compression scheme, yet with fine-grain scalability.
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Auch möchte ich mich für die logistische Hilfe und Unterstützung bei Susanne Garre,
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