
Fakultät II – Informatik, Wirtschafts- und Rechtswissenschaften

Department für Informatik

Model-driven Performance
Measurement and Assessment with

Relational Traces

Dissertation zur Erlangung des Grades eines

Doktors der Ingenieurwissenschaften

Dipl.-Ing. Marko Bošković

Referees:
Prof. Dr. Wilhelm Hasselbring

Prof. Dr. Claus Möbus
Datum der Disputation: December 10th, 2009

Contents

1. Introduction 12

I. Foundations 21

2. Model Driven Engineering 23
2.1. Essentials of Model Driven Engineering . 23
2.2. Engineering a Modeling Language . 25
2.3. Model Driven Architecture . 26

3. Software Performance Engineering 29
3.1. Software Performance . 29
3.2. Software Performance Evaluation . 30
3.3. Software Performance Measurement and Assessment 30
3.4. Concerns in Performance Measurement and Assessment 32

4. Libkin’s Algebra 34

II. MoDePeMART: Model Driven Performance Measurement and
Assessment with Relational Traces 37

5. Performance Assessment with MoDePeMART 39

6. Basic Assumptions 42
6.1. Vertical and Horizontal Dimension of Software Modeling and Execution . . . 42

6.1.1. Vertical Dimension . 43
6.1.2. Horizontal Dimension . 47

6.2. Model Kinds and System at Runtime . 50
6.2.1. Descriptive and Prescriptive Models 50
6.2.2. Token and Type Models . 52
6.2.3. The Runtime System and Model in Model Driven Measurement and

Assessment with Relational Traces 53

7. A Linguistic Metamodel for Performance Measurement and Assessment 56
7.1. The Metrics Part of the Metamodel . 56
7.2. The Assessment Part of the Linguistic Metamodel 60
7.3. The Event and Context Part of the Linguistic Metamodel 65
7.4. The Static Semantics of the Metamodel . 76

2

Contents

8. The Metamodel Formal Semantics 78
8.1. The Relational Database Management System Prerequisites and Initialization 78

8.1.1. Prerequisites . 78
8.1.2. Initialization . 79

8.2. The Event and Context Metamodel Part Formal Semantics 81
8.2.1. The Reactive Context Metamodel Formal Semantics 82
8.2.2. The Transformational Context Formal Semantics 85

8.3. Assessment and Metrics Metamodel Part Formal Semantics 103

III. Evaluation 109

9. PEMA: A UML Profile for PErformance Measurement and Assessment 111
9.1. UML Metamodel Subset . 111

9.1.1. Class Diagrams UML Metamodel Subset 112
9.1.2. State Machines UML metamodel subset 113

9.2. PeMA UML Profile . 114

10.Transformation to Client Server Applications with Java RMI 116
10.1. Transformation to Client Server Applications with Java RMI 116
10.2. Validation . 118

10.2.1. Implementation . 118
10.2.2. Data Collection and Storage Routine Duration 122

11.Comparative Analysis to Related Work 124

IV. Conclusions and Outlook 129

12.Conclusions 131
12.1. Validity in Real Systems Use . 132

13.Future Work 134

Bibliography 137

A. Appendix A: Electronic Items Management Application 144

B. Appendix B: The Linguistic Metamodel for Measurement and Assessment 147

C. Appendix C: Ordinal Functions 148

D. Appendix D: Temporal Data Types and Relations 149

E. Appendix E: The Transformation to Client Server Applications with Java RMI 150
E.1. Transformation Notation . 150
E.2. Transformation to Performance Measurement Code 151

3

Contents

E.3. Transformation to Server Code . 153
E.3.1. Server Interface Code . 154
E.3.2. Application Logic Code . 158

E.4. Transformation to Client Code . 167

4

List of Figures

1.1. Software development process in Model Driven Engineering 15

1.2. Software development process with performance measurement and assessment
in Model Driven Engineering . 16

2.1. MOF-based metamodeling architecture and relying standards [Djuric et al.,
2005] . 27

5.1. Model Driven Performance Measurement and Assessment With Relational
Traces Process. The figure demonstrates the order of activities and artifacts
produced . 40

6.1. UML Class diagram of electronic items management system case study . . . 44

6.2. Sequence diagram of class VideoItemFacade getVideoItem method 45

6.3. Sequence diagram of class AudioItemFacade getAudioItem method 46

6.4. Part of the UserInterface class UML State Machine 48

6.5. Item Facade class UML State Machine for managing data compression . . . 50

6.6. A map as an example of a token model [Kühne, 2005] 52

6.7. Java classes and UML Class Diagrams as type models of a running pro-
gram [Kühne, 2005] . 53

6.8. Relations between UML software prescriptive model, formal performance pre-
diction model, and Java application at runtime 54

7.1. Metrics part of the linguistic metamodel . 57

7.2. Analysis part of the linguistic metamodel . 61

7.3. Interval sets of the linguistic metamodel . 64

7.4. Transformational context part of the linguistic metamodel 66

7.5. The reactive context part of the metamodel 73

8.1. An abstract syntax tree of the event and context specification for obtaining a
music video in Figure 6.2 . 82

8.2. The result of the oneCondEvTr mapping of the scenario event with instru-
mented element getItem. The resulting relation contains marked rows of the
left relation which are executions of getItem while the compression was on. 85

8.3. Example of the result of scRelation for the Figure 8.1 example. 87

8.4. Example of the result of the sAf mapping. The illustrated selection is for
the instance of Contain in Figure 8.1. In all selected tuples is STS1>STS3. 91

8.5. Example of the result of the eBe mapping. The illustrated selection is for
the Contain instance in Figure 8.1. In the selected tuples is ETS1 > ETS3. 92

5

List of Figures

8.6. The result of the scTrace for the negative sub scenario of Figure 8.1. The
result is used in the function prSel for the Precede instance. The result-
ing relation contains all tuples except for those in which STS1<STS2 and
ETS1>ETS2. 94

8.7. The abstract syntax tree of a getAudioItem operation part specification. . 95
8.8. Example of the outcome of the function scTrace for the Figure 8.7 scenario 96
8.9. An extended Figure 8.7 example. The opening of a database connection pre-

cedes each alternative . 96
8.10. Second extended Figure 8.7 example. The opening of a database connection

precedes each alternatives and the closing follows 97
8.11. Example of the Group metaclass usage. In the figure can be seen a grouping

of alternative sub scenarios of Figure 8.7 for further assessment. 102
8.12. Example of the Group metaclass usage. In the figure can be seen a grouping

of alternative sub scenarios of Figure 8.7 for further assessment. 102
8.13. The illustration of the duration statistical analysis. The statistical value is

computed for each calendar time interval . 105
8.14. The illustration of the histogram computation. The histogram computed for

each calendar time interval. It computed by dividing numbers of events of a
calendar time interval belonging to histogram intervals with the number of
events of that time interval . 106

9.1. UML Class Diagrams UML metamodel subset 112
9.2. UML State Machines UML metamodel subset 113
9.3. Stereotypes of the PeMA Profile . 114

10.1. Generated code for electronic item management case study 117
10.2. Class diagram implemented in MagicDraw 15.1 118
10.3. PEMA Profile context and event metamodel implementation in MagicDraw

15.1 . 119
10.4. Transformation for server interface generation in openArchitectureware 4.2 . 120
10.5. An example of the metrics computation specification. In the figure is specified

computation of mean response time when the getItem operation is invoked
from the getVideoItem method and the compression is turned on 121

13.1. A ConditionedNode (a) and its metamodel(b) 135

A.1. The complete UML Class Diagram of the case study. Complete signatures of
the ItemFacade, AudioItemFacade, VideoItemFacade operations are
given in Section 6.1 . 144

A.2. The complete UML State Diagram of UserInterface 145
A.3. The UML State Diagram of ItemFacade 146

6

List of Tables

10.1. The mean of the median for various concurrent invocations. The table shows
the tendency of the performance data measurement and storage routine du-
ration increase . 123

11.1. Comparative analysis with related work ((+) facilitated, (-) not facilitated,
(o) partially facilitated) . 127

7

List of Tables

8

Abstract

Model Driven Engineering is an emerging approach in software development which argues
using models as primary software artifacts. The models can vary from prescriptive ones
specified in Domain Specific Modeling Languages (DSMLs), for the domain specific software
development (e.g. Graphical User Interfaces DSML), to descriptive models for analysis, such
as queuing networks and Petri-nets. The main benefit of such approach is that it reduces
the time and effort spent in implementation by transforming the domain specific prescriptive
models to the code. Furthermore, performance characteristics of the implementation can be
predicted during the design phase with usage of transformation of domain specific constructs
to formal mathematical models.

For software performance, as an important software Quality of Service attribute, several
approaches for prediction exist in MDE. However, MDE still lacks a systematic approach for
performance measurement and metrics assessment. This thesis presents MoDePeMART,
an approach for Model Driven Performance Measurement and Assessment with Relational
Traces. The approach suggests declarative specification of performance metrics in a domain-
specific language and the usage of relational databases for storage and metric computation.
The approach is evaluated with the implementation of a UML Profile for UML Class and
State diagrams and transformations from the profile to a commercial relational database
management system.

Zusammenfassung

Model Driven Engineering (MDE) ist eine neue Vorgehensweise in der Software-Entwicklung,
die Modelle als primäre Software-Artefakte verwendet. Die Modelle variieren zwischen
präskriptiven Modellen, die spezifiziert werden durch domainspezifische Modellierungssprachen
(DSML) und für domainspezifische Software Entwicklung (z.B. DSML für graphische Be-
nutzeroberflächen) verwendet werden, und deskriptiven Modellen für die Analyse von z.B.
Warteschlangen und Petrinetzen. Der größte Vorteil einer solchen Vorgehensweise ist, dass
sie die Zeit und den Aufwand bei der Implementierung durch Transformation der domain-
spezifischen Modelle in den Quellcode reduziert. Darüber hinaus können Leistungsmerkmale
der Implementierung während der Entwicklung durch die Nutzung von Transformation do-
mainspezifischer Konstrukte in formale mathematische Modelle vorhergesagt werden.

Für die Vorhersage der Leistungsfähigkeit von Software, ein wichtiges Qualitätskriterium
von Software, gibt es im MDE verschiedene Ansätze. Allerdings fehlt im MDE bisher ein
systematischer Ansatz zur Performanzmessung und Bewertung von Kennzahlen. Diese Ar-
beit präsentiert MoDePeMART, ein Ansatz über Model Driven Performance Measurement
und Assessment mit relationalen Traces. Der Ansatz schlägt die deklarative Spezifikation der
Performanzkennzahlen in einer domainspezifischen Sprache und die Nutzung von relationalen
Datenbanken für die Speicherung und metrische Berechnung vor. Der Ansatz wird mit der
Umsetzung eines UML-Profils für UML-Klassen- und Zustandsdiagramme und Transforma-
tionen aus dem Profil zu einem kommerziellen relationalen Datenbank-Management-System
evaluiert.

List of Tables

10

Acknowledgments

A PhD thesis is a work in which credits takes only the author. However, conducting a
research and writing such work is impossible without support of a large group of people.

First of all, I am indebted to my research supervisors Prof. Dr. Wilhelm Hasselbring
and Prof. Dr. Claus M’̈obus for their guidance, encouragement, useful discussions and
valuable suggestions throughout this investigation. I am thankful to Prof. Dr. Möbus
for initiating my research. I express my gratitude to Prof. Dr. Hasselbring for his friendly
and permanent advice, meticulous guidance, pertinent encouragement, useful discussions and
valuable suggestions when my research went into the direction of Software Engineering. I am
also thankful to for providing a creative and friendly atmosphere in the Software Engineering
Department at the University of Oldenburg.

I own my gratitude Prof. Hasselbring also for organizing the TrustSoft Research Training
Group, and accepting me as a scholarship holder of that school. TrustSoft Research Training
Group enabled the financial support for carrying my research out. Student and supervisor
members have given me many useful pieces of advice, interesting and valuable discussions
and suggestions. I also express my gratitude to Manuela Wüstefeld and Ira Wempe for being
more than secretaries in the department and giving me friendly pieces of advice and help.

I acknowledge all students at the TrustSoft Research Training Group for constant support,
patience, useful suggestions, interesting and motivating discussions, and over all for simply
being my honest friends during my life in Oldenburg. Their friendship has meant and still
means a lot to me.

My acknowledgments also extend to friends in Oldenburg which were neither members of
Software Engineering Department nor TrustSoft Research Training Group. I am particularly
grateful to “ex-Yugos and all that like them” group of friends gathered around Department
of Slavistics, “Flying Burex” soccer team and “Sputnik Radio” radio show with DJ Geistar-
beiters.

At the end, I express my honest gratitude to my parents, family members, and all my
professors and friends in Belgrade, for understanding, patience, motivation, constant and
extensive support and for believing in my success.

Vielen Dank für Alles!
Thank you for everything!
Puno hvala na svemu!
Marko

11

1. Chapter
Introduction

Software systems are increasingly becoming an important part of current technical systems,
from the smallest devices in everyday life, e.g. digital watches and television sets, through
business information systems, e.g. government and banking Internet applications, to systems
with large complexity like embedded systems in nuclear power plants. Consequently, the
world is becoming gradually dependent on the technological systems controlled by software.
In such an expansion of dependency, software failures can have unpleasant, costly, harmful
or even disastrous consequences.

The growth of dependency on software systems, and consequences of their failures, forces
government, academia and industry to raise the question of software intensive system trust-
worthiness [Hasselbring and Reussner, 2006]. With the aim to use software intensive systems
as dependable systems, means for quantification, verification and contractual trust of those
systems have to be invented.

A trustworthy software system has to satisfy not only expected functional but also non-
functional requirements, often called quality requirements [Hasselbring and Reussner, 2006].
With the aim to be useful for the intended purpose, software has to provide required services.
The required services are known as functional requirements, because they define function-
ality which is the objective of the system. Non-functional requirements are constraints
on system’s functionality offered by the system like security, privacy, reliability, timeliness
etc [Sommerville, 2007]. They are characteristics of functionality design and implementa-
tion. Different implementations of the same functionality can have different non-functional
properties.

Significance of meeting non-functional requirements in trustworthy software intensive sys-
tems development, requires addressing them in the early design phases, in parallel to func-
tional requirements. Not meeting functional requirements means having a system which does
not provide the requested service. Nevertheless, not meeting the non-functional requirements
can also lead to designing and implementing an unusable software system. For example, if a
response time of a web server is too high, in the order of one hour, it would not be usable at
all, regardless that it performs functionality. Often, in the process of software development,
functional requirements are considered as the primary target, and the problem of meeting
non-functional requirements is addressed in the later phases of a software design. This “fix
it at the end” approach is not satisfying. Generally, reasons for not meeting non-functional
requirements, like for example performance, lie in neglecting them at the early development
phases. Problems of not meeting non-functional requirements cannot be later solved with
tuning [Smith and Williams, 2001].

Some of the non-functional properties of a service, of particular interest to users, are often
specified with the Quality of Service (QoS), and in this thesis, it is considered that QoS
consists of three attributes [Hasselbring and Reussner, 2006]:

12

• Availability—probability of readiness for correct service,

• Reliability—probability of correct service for a given duration of time,

• Performance—degree to which objectives for timeliness are met [Smith and Williams,
2001]. It describes timing behavior of a software system and it is measured with metrics
like throughput and response time.

Model Driven Engineering (MDE) [Kent, 2002] is an approach which tries to handle both,
functional and non-functional requirements in all stages of software intensive system devel-
opment. It is an approach for software engineering which suggests building families of related
languages and processes for software development. Languages can be either for prescriptive
or for descriptive models [Seidewitz, 2003]. Prescriptive models specify desired systems and
their behavior, like for example modeling languages from which code implementation is au-
tomatically generated [Kelly and Tolvanen, 2008]. Descriptive models abstract the system
for the purpose of deducting new statements about the potential behavior. For example in
queuing networks [Gross and Harris, 1985] model software system entities are represented
as a set of related servers with waiting queues of requests, with the purpose of performance
analysis and prediction. The MDE software systems engineering approach combines usage
of these two model kinds to address both, functional and non-functional requirements at all
stages of software development [Selic, 2003]. Strong reliance on the set theory [Favre, 2004],
graph and graph transformation theory [Mens et al., 2006], promotes MDE as a promising
attempt for making software development a mathematically founded engineering discipline.
Furthermore, Domain Specific Modeling Languages [Kelly and Tolvanen, 2008], languages
for solving recurring problems of a particular domain, which are the central idea of MDE
moves software development from implementation toward the domain the software intensive
system is intended for. Examples of domains are insurance systems and call processing [Kelly
and Tolvanen, 2008].

With the purpose to provide legally trusted services, their QoS is commonly being con-
tractually specified with Service Level Agreements (SLA) [Bouman et al., 1999] between the
service provider and service consumer. The QoS are dependent on the service consumer. For
different consumers, and different domains required values of QoS attributes can vary. What
is considered as acceptable in one domain can be unacceptable in another one. For example,
performance in embedded systems, like air bag in cars, is certainly more restrictive then
performance of large bank applications. While in air bag, response time of the system which
blows air always has to be between predefined lower and higher thresholds, in large bank
applications response times can be below some threshold as long as the number of responses
which are below is large enough. Furthermore, an SLA defines proper service usage in which
the agreement holds.

Contractual agreement on provided service quality requires verification of the quality ob-
served. During the design of a software system, estimation of non-functional properties is
often done. Nevertheless, at the end, when the software system is finally implemented and
deployed, performance predictions have to be empirically proven and reached quality level
validated.

Empirical verification requires measurement and assessment of quality properties of inter-
est. With measurement, standing for collection of data about execution, and assessment,

13

1. Introduction

meaning computation of metrics and reasoning about fulfillment of non-functional require-
ments, non-functional properties are made observable, quantifiable and comparable. With
the aim of performing measurements, additional pieces of code, called software probes, need
to be added. The process of software probes insertion is called instrumentation. Probes,
during execution at run-time, collect the data about the system execution. This data is later
stored and analyzed, and finally the decisions on the fulfillment of non-functional require-
ments are made.

Instrumentation can be very hard and error prone. Implementation of functional require-
ments already makes software systems complex. With the addition of probes, programs
become even more complex and require significant effort for splitting code for functional-
ity implementation and probes. Furthermore, with growth of complexity and size of the
functionality implementation code and number of measurement points and granularity of
data collected, the probability of faults in the code for data collection also raises. Moreover,
instrumenting software systems at the points of interest alone not only reduces the proba-
bility of error, but reduces the amount of collected data for later analysis to the needed, and
perturbation of the system due to measurements. Finally, after the assessment, faults in the
system can occur as a result of incomplete probes removal.

Not only instrumentation, but the data storage, with the purpose of metrics computation
for analysis, and analysis itself require significant effort. Execution data storage raises prob-
lems of the appropriate granularity of collected data. Appropriate granularity stands for the
minimal amount of data needed for uniquely describing an event at one hand and sufficing
the appropriate amount of data for analysis on another. Furthermore, it raises the problem
of structuring data for later analysis. For the reason of analyzing the stored data, they have
to be stored in a way that enables a reconstruction of execution and what is more important,
computation on metrics of interest.

Designing the code for instrumentation, execution data storage, and data analysis have to
be done in synergy. Data granularity and the number of measurement points are strongly
related to both instrumentation code and storage data structures, as well as the code for
analysis. Not designing them together can lead to inappropriate insertion of measurement
points and amount of collected data. Furthermore, it can lead to impossibility or failures of
analysis.

The central topic of this thesis is integration of performance measurement and assess-
ment in the Model Driven Engineering approach. It complements to model-based software
estimation [Balsamo et al., 2004], where software design models are transformed into simu-
lation and analytical prediction models. While estimation of software performance is very
important for guiding the design in such a way that the early design decision are made by
paying attention to non-functional requirements, in the final phase, the predictions have to
be empirically verified and the satisfaction of non-functional requirements validated.

The main contributions of this thesis are a process, definitions of a metamodel of soft-
ware performance measurement and assessment, transformations from the metamodel to
Libkin’s algebra [Libkin, 2003] as an abstraction of Relational Database Management Sys-
tems (RDBMS) [Atzeni et al., 1999]. Furthermore, the contributions are elements of eval-
uation, and those are implementations of the metamodel in the Model Driven Architecture
(MDA) [Miller and Mukerji, 2003] approach for MDE. The approach is integrated in MDA
in the form of a UML Profile [Object Management Group, 2007], and implementation of
coupled transformations from this profile to commercial RDBMS and execution platforms.

14

Platform
code

Design

Deployment

Testing

Transformation
(and Compilation)

A

B

SB

SA

…
public a()
…

Figure 1.1.: Software development process in Model Driven Engineering

The explanation of integration in MDA is given in more detail is in the following.

The software development process in MDE is presented in Figure 1.1. Unlike the current
practice, where the focus of software development is code, in Model Driven Engineering,
the focus are models. Through families of languages, development is model-oriented, from
the requirements to the final design. The requirements are collected at the top level, and
software is designed through a process of refinement. At the final phase of development, the
final model is designed. The final model is later transformed into the execution platform
code and then compiled in executable code. Finally, the code is deployed and the application
tested.

So far, in order for performance to be empirically evaluated, the developer would have to
either add additional code, or use some tools for platform instrumentation. Nevertheless,
this is not appropriate, because the constructs at the model level can be significantly differ-
ent from constructs used in a particular execution platform. For example, a platform like
Java [Eckel, 2002] does not support constructs like states, and if the code is produced from
statecharts [Samek, 2002], it has to be implemented with a pattern of constructs allowed

15

1. Introduction

Platform code
with probes

Design

Deployment

Testing

Transformation
(and Compilation)

A

B

SB

SA

SQL Assessment
and Initialization Code

Data collection
(measurement)

:Duration

MRT : SimpleAssessment

Instrumentation

Assessment

…
<<InstrumentedElement>> public a()
…

<<InstrumentedElement>>

MDE MoDePeMART

Figure 1.2.: Software development process with performance measurement and assessment
in Model Driven Engineering

by the Java the platform. The case becomes even more complicated with Domain Specific
Modeling Languages. In those cases, the developer or performance analyst, in order to appro-
priately collect the data about the timing behavior of a model driven developed application,
has have to have the knowledge of both: the target platform and transformation. Further-
more, if there are multiple alternatives for code generation [Steimann and Kühne, 2005] the
instrumentation and the performance assessment becomes even more complicated and can
cause faults. For example, in the case of statecharts there are at least three alternatives, each
having its own benefits and drawbacks in different non-functional properties [Samek, 2002].
In such a case the developer would have to know all alternatives, and the places where each
of them is applied.

The Model Driven Performance M easurement and Assessment with Relational T races
(MoDePeMART) is the proposed process of software verification, presented in Figure 1.2. It
extends the process of Model Driven Engineering with an activity in which a software devel-
oper or a performance analyst specifies in a declarative way the desired metrics and process

16

of interest and leaves to a transformation the joint production of code for instrumentation,
data storage and computation of metrics. Furthermore, it extends the family of languages
with a language for declarative performance metrics specification.

This approach integrates in MDE at the stage where the final design model is produced. In
all phases of software development, as discussed before, predictions for software performance
are made. The more the design model is refined, the more accurate the predictions are.
Finally, predictions have to be empirically verified. This is left to be done, after the complete
software system is implemented, and deployed. In MDE the complete implementation is done
at the design phase where the final model, the model from which the code is produced, is
developed. The Model Driven Performance Measurement and Assessment with Relational
Traces defines this stage as a point in which performance measurement and assessment should
be specified. After the specification, the code with probes for the target platform is generated
from the model. It is later compiled, if needed, and deployed. In parallel, relational queries for
performance assessment are also generated and deployed. The measurements are performed
during execution of test cases intended for the application. After the data collection, during
performance assessment, the assessment queries are simply executed and the developer or
the performance analyst has only to see their values and reason for the fulfillment of defined
requirements.

The MoDePeMART suggests a design language extension for instrumentation and attach-
ment to the metamodel, an abstract syntax of the language for assessment specification.
The extended modeling elements are instrumented elements and serve as an input to the
declarative specification of metrics and execution context of interest in the language defined
by the metamodel. The examples of metrics are mean, median, and standard deviation of
response time.

Execution context is the set of past, current, and future events related to the event ob-
served. The metamodel is defined with the assumption of a language supporting development
of software intensive systems with combined reactive and transformational parts [Wieringa,
2003]. The transformational part is a part of the system that simply takes the input and
transforms it into the output. Their output is always the same for the same input. Example
of these kind of systems are mathematical libraries. Mathematical libraries take some value
and transform it into another value according to the function they perform like for instance
computing sinus of a value. Reactive systems are the systems which are in the constant
interaction with their environment. Response to stimulus from the environment in this case
does not depend only on the stimulus, but also on the previous environment stimuli which
define the current state of the system. For this reason, the definition of execution context is
the definition of a sequence of calls and state of the system in which an event of interest is
observed.

In order for the performance to be evaluated, the developer, or performance analyst, has
just to annotate the events of interest, with elements of extension and specify in which
metrics and execution context he is interested. The code generation for measurement and
assessment is automatically generated by transformation, and the rest of the measurement
and assessment process follows as previously described.

The transformation specifies the code generation from the metamodel to the Structured
Query Language (SQL) [Atzeni et al., 1999]. Furthermore, it gives formal semantics to
the metamodel with Libkin’s algebra. Libkin’s algebra was invented to prove inability of
expressing recursive queries in relational algebra. Moreover, it is an algebra with the open

17

1. Introduction

set of aggregate functions. In this thesis the second characteristic is of main interest because
with the specification of a transformation to Libkin’s algebra, we relate statistical analysis
provided with the metamodel, to the set of requested aggregate functions which the RDBMS
has to support.

The evaluation of the approach is given as a proof of concept in the context of MDA. The
MDA is an approach for MDE recommended by the Object Management Group (OMG), a
non-for-profit consortium of members from industry and academia.

The MDA suggests a family of three modeling languages for [Miller and Mukerji, 2003]:

• Computation Independent Model (CIM), where the vocabulary familiar to the domain
practicioners is used,

• Platform Independent Model (PIM), which is a design model independent of different
platforms of similar type, and

• Platform Specific Model (PSM), which combines PIM with the characteristics of a
particular platform. Often the PSM is not needed and code for a particular platform
is automatically generated from PIM [Hubert, 2002], [Raistrick et al., 2004].

The MDA also suggests a high reliance on open standards [Booch et al., 2004]. In Com-
puter Aided Software Engineering (CASE), predecessor of MDE and MDA, a large problem
was interoperability of tools. A particular language or method was strongly related to a par-
ticular tool. Furthermore, a model designed in one tool could hardly be used with another
tool, even if they were using the same notation. The MDA overcomes this problem with
reliance on standards. Some of the important OMG standards are the Unified Modeling
Language (UML) [Object Management Group, 2007] and the XML Metadata Interchange
(XMI) [Object Management Group, 2005b], a standard for persistence and exchange of UML
models.

Although the MDA does not specify the obligation of usage of the UML, it is de facto
used as a basis for modeling. With the UML Profile, a mechanism for extending the original
UML metamodel for a particular domain, it can be used as a basis for all three modeling
languages.

In the evaluation of this thesis a part of UML as the software modeling language is used.
The part of UML is concentrated on class and state diagrams as a basis for an executable
PIM [Raistrick et al., 2004]. Furthermore, the metamodel for performance measurement
and assessment is implemented with the means of the UML Profile. We provide the imple-
mentation of the UML Profile for PErformance M easurement and Assessment (PEMA) in
the MagicDraw [Neuendorf, 2006] tool for UML modeling. Moreover, implementation of the
transformation from the design model and performance assessment model to target platform
code, including probes, and RDBMS queries for assessment is also provided. The approach
is evaluated for one threaded desktop application with transformation to plain Java, and for
multi-threaded Servers to Java with RMI [Grosso, 2001]. Assessment queries are generated
for MySQL [Tahaghoghi and Williams, 2006] an open source RDBMS. The transformations
are implemented using openArchitectureware [Markus Völter, 2006], a set of languages and
an environment model transformation.

This thesis is structured as follows. Part I is dedicated to foundations of approach. In
this part in Chapter 2 the basics of Model Driven Engineering are clarified. Section 2.1 gives

18

the general ideas and benefits of the MDE software engineering approach. The central topic
in MDE is engineering and using a language, and Section 2.2 explains what is needed to be
specified when creating a language. Finally, Section 2.3 describes principles and technologies
of Model Driven Architecture (MDA), one of the mostly used approaches for MDE.

After introducing elements of MDE, Chapter 3 explains software performance engineer-
ing. First, this chapter defines in Section 3.1 the software performance and performance
metrics. Section 3.2 gives an overview of the approaches for software performance evalua-
tion. Furthermore, Section 3.3 describes in more detail measurement and assessment, one
of the approaches for software performance evaluation. Finally, Section 3.4 explains impor-
tant issues in software performance measurement and assessment, which are later used for
comparative analysis to related work.

One of the major shortcoming of many languages in the past is that they did not have
a formal semantics. With the formal semantics the language constructs have the precise
meaning and reduce abuses of the language. The formal semantics is usually given with
mappings to some formal mathematical domain. To the language shown in this thesis formal
semantics is given with mapping to Libkin’s algebra. Chapter 4 defines this algebra.

Part II is dedicated to the main contributions of the thesis. Chapter 5, gives a detailed
description of the MoDePeMART measurement and assessment process. Then, Chapter 6
explains the basic assumptions of the approach. This chapter explains in Section 6.1 trans-
formational and reactive software intensive systems in more detail. Furthermore, it explains
characteristics of these systems’ modeling languages. Finally, it gives the basic assumptions
on the relation between a model and the executing system in Section 6.2.

Chapter 7 provides detailed description of a metamodel for performance measurement
and assessment. The metamodel consists of three parts. The first part of the metamodel
represents performance metrics which can be specified for computation. This metamodel
part is described in Section 7.1. Section 7.2 describes kinds of assessment which can be
carried out with this metamodel. After the description of assessments supported by the
metamodel, Section 7.3 explains the metamodel part used for specification of subjects of
assessments, i.e., events in particular contexts. Finally, Section 7.4 of this chapter describes
rules needed to be satisfied for having a well-formed model.

Chapter 8 defines formal semantics of this metamodel. It is given with a mapping to
the Libkin’s algebra. The specification of formal semantics goes in the opposite way to
introducing the concepts of the metamodel. First, in Section 8.1 are defined prerequisites of
the used RDBMS and its initialization. Then, in Section 8.2 are given formal semantics to the
metamodel part for specifying events and their contexts. This formal semantics is followed
by formal semantics of the metrics and the assessment metamodel parts in Section 8.3.

Evaluation of the approach is provided in Part III of this thesis. Chapter 9 documents
the implementation of the approach as a UML Profile. In Section 9.1, a subset of the UML
metamodel used in the evaluation is explained. Next, Section 9.2 provides the description of
the PEMA profile, an implementation of the metamodel defined in Chapter 7. Finally, Chap-
ter 10 gives and validates the transformation to the target platform. The target platform
is Java with RMI for multi-threaded Client Server architectures and the transformation is
described in Section 10.1. Section 10.2 validates the implemented tool and case study used.
The final chapter of this part, Chapter 11 gives a comparative analysis of the MoDePe-
MART with other approaches for measurement and assessment.

The final part, Part IV, in Chapter 12 summarizes results of the thesis and explains how

19

1. Introduction

valid this approach is for use in real systems. Finally, Chapter 13 indicates some promising
directions for the future work.

20

Part I.

Foundations

21

1. Introduction

22

2. Chapter
Model Driven Engineering

Model Driven Engineering (MDE) is a new paradigm for software engineering. It has evolved
from Computer Aided Software Engineering (CASE). CASE is a software engineering ap-
proach in which sets of tools and methods are scientifically applied for software production.
CASE uses software tools for the production of software in the same way as software tools
are used for computer aided design in civil engineering and architecture. However, the MDE
goes one step further. While in CASE software implementation is produced independent of
the software model developed in a CASE tool, in MDE from these models full application
code is generated. This chapter explains MDE in more detail and it is structured as follows.
Section 2.1 explains the essentials of MDE. Models in MDE are specified in modeling lan-
guages, and engineering languages are described in Section 2.2. Finally, one of the major
approaches in MDE is Model Driven Architecture and it is elaborated in Section 2.3.

2.1. Essentials of Model Driven Engineering

The central idea of Model Driven Engineering is that software engineering should use models
for the complete specification of systems. The benefits of usage of models as primary artifacts
has already been seen in other engineering disciplines, like civil and electrical engineering.
Some of benefits of using models in software engineering are the following [Selic, 2006b]:

• Better understandability of software products to domain experts.
One of the major problems of software engineering is specification of software require-
ments gathered from the domain experts, and their later implementation. The problem
lies in the fact that the terminology and concepts used by the domain experts are not
familiar to software engineers. Furthermore, the terminology and concepts used by
software engineers are also not known to the domain experts. This gap in the com-
munication is cause of many failed projects, because often the requirements are not
implemented in the way they should. In MDE, this is solved bu usaging Domain
Specific Modeling Languages (DSMLs). A DSML contains the terminology of the do-
main of interest, for example insurance. A domain expert uses DSML to specify his
requirements. After the specification, the code and/or data for the domain expert
requirements computation is automatically generated.

• Impedance of formal mathematical methods exploitation
Formal mathematical methods are well applied in verification of software system prop-
erties. Some of the properties which can formally be verified are correctness, perfor-
mance, reliability, safety, security, and several more. MDE suggests usage of formal
methods in engineering DSMLs. The formal methods are integrated in such a way that

23

2. Model Driven Engineering

they are hidden from the expert of the domain of DSML. For example, let us have a
software for an insurance company. And let that software be specified in a DSML for
the insurance companies. Now, let us suppose that there is a need for performance
prediction of a software specified in the insurance DSML. The insurance domain expert
will not be aware of the formality used for the performance prediction. Such formality
can be for example a queuing networks.

• Avoidance of state explosion problems
In the usage of formal methods, all possible states of the software are often analyzed.
This can cause the state explosion. With abstraction in DSML, state explosion prob-
lems can be avoided.

• Shorter time-to-market of the trustworthy software
All previous benefits reduce the time to market. Furthermore, they improve the soft-
ware development process so that both functional and non-functional runtime software
system properties are predicted.

Model Driven Engineering exploits the fact that the specialization is a characteristic of
our time. Domains of interest and activities continuously brunch into more specialized sub
domains. In MDE such a process takes place in modeling languages also. Modeling languages
constantly move from general purpose to domain specific.

Specialization from general purpose to domain specific languages are based on two already
used and time-proven principles in compiler theory. Those principles are [Selic, 2006b]:

1. Abstraction
Abstraction is used in the definition of DSMLs. With abstraction the domain of interest
is conceptualized and specified in a language. The conceptualization of the domain
should enable specification of solutions to problems in that domain.

2. Automation
Automation is generation of a software product with usage of transformations from
DSMLs to some implementation technology. Automation exploits the rare property of
software that it allows direct evolution of models into complete implementations with-
out discontinuities in the expertise, materials, tools, or methods. Transformations are
written by a transformation writer. A transformation writer is an expert in the imple-
mentation technology who knows well the concepts of the domain of DSMLs [Steimann
and Kühne, 2005].

Moving from general purpose languages to DSMLs causes also the multidimensional soft-
ware development. In multidimensional software development each concern of interest is a
separate dimension and it is modeled as a separate modeling language [Kent, 2002]. Examples
of modeling dimensions are requirements, design modeling dimensions, but also concurrency,
security, logging. The modeling languages of different dimensions either intersect, which is
that they model a separate concern of one model, as for example control flow and security, or
are connected with transformations from one to another, as for example from requirements
to design model.

24

2.2. Engineering a Modeling Language

In this thesis it is assumed that the performance measurement and assessment is one of the
dimensions in the software development process, and for that reason needs to be supported
with a domain specific language.

The main artifact of MDE are, as already stated, models specified in some modeling
language. The next section describes engineering a modeling language.

2.2. Engineering a Modeling Language

A definition of a modeling language consists of [Kühne, 2006]:

1. Abstract syntax
Abstract syntax of a language defines the concepts of the language. It is indepen-
dent of machine- and implementation-oriented structures and encodings. In this thesis
the abstract syntax of the language for performance measurement and assessment is
specified in Chapter 7.

2. Concrete syntax
Concrete syntax of a language specifies rendering of concepts from the abstract syntax.
It defines how the modeling constructs defined in the abstract syntax are visually
represented. It is the actual implementation of the abstract syntax in the modeling
tool. A modeler uses the concrete syntax to specify a model. Concrete syntax in this
thesis is given in the form of a UML Profile, and it is described in Section 9.

3. Static semantics
Static semantic defines well-formedness constraints. It defines structural constraints
which cannot be adequately captured by a syntax description. Examples of well-
formedness constraints are need for declarations of variables before their usage. Static
semantics specify constraints which cannot be given in the abstract and concrete syntax
specifications. The static semantics of the language for measurement and assessment
is specified in Section 7.4.

4. Semantics of the language
Semantics of a language is defined by the specification of mappings of concepts from the
abstract syntax to a well-known target model. Semantics can be given to a language
in several ways. It can be given with the description in a natural language. For ex-
ample, executable semantics in UML is given by natural language. However, there are
formal approaches for specifying semantics. In formal specification of semantics, ab-
stract syntax is mapped with means of mathematical function to some already defined
mathematical domain. Examples of mathematical domains are Petri-Nets, Queuing
Networks, and algebras. In this thesis the semantics is given twofold. First, semantics
to the domain of performance engineering is given with natural language in Chapter 7.
Second, the semantic of the language with respect to computation is given with formal
mappings to Libkin’s Algebra and it is specified in Chapter 8.

Abstract and concrete syntax are also known as linguistic metamodels [Atkinson and
Kühne, 2003]. Beside the linguistic metamodels, which deal with the representation of the

25

2. Model Driven Engineering

domain concepts, exist ontological metamodels. Ontological metamodels conceptualize and
structure the domain of interest. This thesis does not provide the ontological metamodel
of the domain of performance engineering. It only specifies the linguistic metamodel of the
language for performance measurement and assessment.

The concrete syntax of the language for performance measurement and assessment is
given with the purpose of integration in the Model Driven Architecture, one of the major
approaches for MDE. Model Driven Architecture is explained in the next section.

2.3. Model Driven Architecture

The Model Driven Architecture (MDA) [Miller and Mukerji, 2003] is one approach for MDE
initiated by the Object Management Group (OMG). OMG is a consortium of software ven-
dors and users from industry, academia and government. It is a conceptual framework which
defines three viewpoints on a software model: Computation Independent Model (CIM),
Platform Independent Model (PIM), and Platform Specific Model (PSM).

A CIM focuses on software requirements and does not care about the system structure. It
should be written by domain experts and not by computer specialists. Therefore, the CIM
is usually written in some Domain Specific Language.

A PIM specifies the implementation of required functionality without details of implemen-
tation in some particular technology. The current initiative for the platform independent
modeling language is Unified Modeling Language [Object Management Group, 2007].

The full specification of the system is given by a PSM. A PSM is written in terms of
some exact technology like .NET, Java, or CORBA. This kind of model comprises PIM with
characteristics of the implementation platform. Source code is also considered as a PSM.

From the language engineering perspective, OMG’s MDA is based on a four layer linguistic
metamodeling architecture and suggests several adopted standards. The standards on which
MDA relies on are the Unified Modeling Language (UML) [Object Management Group,
2007], XML Metadata Interchange [Object Management Group, 2005b], and Meta Object
Facility (MOF) [MOF, 2004]. A profile is also a standard mechanism for specialization of
UML for the purpose of some specific modeling [Miller and Mukerji, 2003]. The standards
and the architecture are presented at Figure 2.1.

On the top of the architecture is the Meta Object Facility (MOF). MOF is an abstract
language for specifying metamodels. It is also called metametamodel. One or several meta-
models can be used to define a modeling language, like the UML. Furthermore, MOF spec-
ified metamodels also can be used to extend existing metamodels, and modeling languages.
Metamodels are placed on the M2 level.

Modeling languages defined on the M2 layer are used to model real world things which
are on the M0 layer. Models of real world are placed on the M1 layer. As an example UML
can be used. The UML concept of a Class is defined on the M2 layer with a MOF language
which is on the M3 layer. The concept of a Class on the M2 layer is used to model some
real world entity, like a Person, which is on the M0 layer, and represent it with an element
of type Class named Person in a model on the M1 layer.

Generally, there are three ways to define a modeling language: definition of a new modeling
language from scratch, extension of an exiting language with domain specific concepts, and
specialization of the concepts of an existing language [Selic, 2006a].

26

2.3. Model Driven Architecture

Figure 2.1.: MOF-based metamodeling architecture and relying standards [Djuric et al.,
2005]

The definition of a new modeling language consists of the definition of domain-specific
modeling constructs from scratch. Benefit of this kind of definition of a domain-specific
language is that it has the potential for enabling full expressive power of the new language.
Shortcomings are that it requires language design skills, and that there is no language support
infrastructure. In the terms of MDA, this is a definition of a new MOF-based metamodel. For
the new metamodel, one can define a domain-specific language with full expressive power for
modeling the domain. However, missing of support infrastructure means that new specialized
tools have to be implemented for using the domain-specific language.

Extension of an existing language means addition of new domain specific concepts into
an existing language. It is also called “heavyweight” extension. The benefit of this kind of
approach is that it requires less language design skills than the previous approach. Never-
theless, the infrastructure of the base modeling language is not sufficient for the extended
version and often cannot be used. In MDA terms this would be the addition of new classes
and associations to existing MOF-based metamodel. An example is addition of Petri-net
behavioral formalism to UML 2. For this formalism UML 1.x tools cannot be used.

The refinement of an exiting language is a specialization of elements of an already existing
modeling language for modeling of some particular domain. It is also known as “lightweight”
extension. With this kind of approach a modeling language specializes for modeling a subset
of the domain for which the basic modeling language is used. The benefits of this approach
is that an infrastructure of the basic modeling language can be completely reused and it
requires less language design skills. General shortcoming is that the expressiveness of the
new modeling language is constrained by the basic language. In the case of UML profiles,
stereotypes, constraints and model libraries can be used for specialization. An example, is
UML Profile for CORBA [UML, 2002].

A MDA-linguistic metamodeling architecture facilitates all three kinds of domain-specific
language engineering approaches. The only constraint is that the metamodel of the new
domain-specific modeling language is defined in MOF. Metamodels and models can be ex-

27

2. Model Driven Engineering

changed between different tools with the OMG-adopted a XML based format XMI (XML
Metamodel Interchange). XMI enables the interoperability between tools for software mod-
eling. However, at present, the most commonly used language for software modeling is UML.
UML with its extension mechanism, a profile, enables “lightweight” extensions.

A profile is a special kind of package containing stereotypes and model libraries that,
in conjunction with the UML metamodel, define a group of domain-specific concepts and
relationships [Selic, 2006b]. Examples of domain-specific profiles are the UML profile for
Schedulability, Performance, and Time specification (SPT) [Object Management Group,
2005a] and the UML profile for Modeling and Analysis of Real Time Embedded Systems
(MARTE) [Object Management Group, 2008].

In this thesis, a UML profile is developed as the concrete syntax of the performance
measurement and assessment language. This UML profile is described in Chapter 9.

28

3. Chapter
Software Performance Engineering

The term of software performance is overloaded. There are several definitions of performance
in software engineering. This chapter in Section 3.1 gives the definition of performance,
and performance metrics used in this thesis. Section 3.2 explains alternatives in software
performance evaluation. Measurement and assessment as one of the performance evaluation
alternatives is explained in Section 3.2 in more detail. Finally, Section 3.4 explains the
important concerns in software performance measurement and assessment.

3.1. Software Performance

In this thesis, performance is considered as the degree to which a software system or com-
ponent meets its objectives for timeliness [Smith and Williams, 2001]. It is a characteristic
of a system or a component which can be. in principle, measured with a timer for calender
time. Performance is measured with response time and a throughput.

Response time is the time required to respond to a request. The definition of request can
vary. It can be an invocation of a method, a transaction or an end-to-end time of a user
request.

Response time of a system depends on several factors. One factor are characteristics of
the executing platform. The executing platform is underlying hardware and software used
for application execution. For example, different hardware characteristics, such as amount
of operating memory, size of the processor cash, type of processor and so on, influence the
response time of the system. Furthermore, decision on the operating system which is going
to be used also impacts the response time of the intended application logic. Besides the
executing platform, response time also depends on system usage. For example, if there is
a significantly high number of concurrent requests, the response time of the system will
be probably higher then for a single request. Finally, the response time depends on the
characteristics of the external services the system uses. For example, if the response time of
an used external service is high, the response the system will also be higher, and vice versa.

Due to the randomness of the influences, response time can not be computed in some
deterministic way. It is rather computed and described in some statistical way. A statistical
description is formed from the noticed statistical regularities in response time values. Some
of the statistical descriptions used for response time description are mean, max, and min.
Furthermore, from statistical observations a probabilistic model of response time can be
created. A probabilistic model consists of a list of all possible outcomes and their respective
probabilities [Trivedi, 2002]. Such a probabilistic model is used for predictions of response
times. Some of the probabilistic descriptions used in response time specification are the
density distribution function and the cumulative distribution function. Furthermore, also

29

3. Software Performance Engineering

are used functions which summarize values in one number. Such functions are skewness,
standard deviation, various moments and percentiles, mean, median, mode, and so on.

Throughput is a number of requests a system can process in some specified time interval.
The throughput is expressed by the number of requests completed in a time unit, e.g. number
of jobs per second [Smith and Williams, 2001].

3.2. Software Performance Evaluation

Generally, software performance can be evaluated with analytical modeling, simulation, or
via measurements and assessment [Lilja, 2000]:

• Analytical modeling is a technique where a system is mathematically described. Results
of an analytical model tend to be much less accurate then real system measurements.
However, it is a way to get some quick initial insight into the behavior of the system,
or part of it [Lilja, 2000].

• A simulator is a program which enables imitation of a program execution. In the
simulation, only important parts of an execution are imitated. It is less expensive
than building a real system and than measuring and performing the assessment. It is
generally very flexible. However, simulation is not as accurate as real systems.

• Measurements and assessment provide the most accurate results, as no abstractions
are made. Measurement is the process of data collection during software execution.
Assessment is the process of metrics computation and reasoning about the system
execution according to the computed metrics. The major shortcoming of this approach
is that measurements and assessment can be performed only when the software is
already developed. This might be too late to remove performance problems.

All three previously mentioned ways of performance evaluation have their benefits and
shortcomings. Restricting to only one mean of evaluation can lead to project failure, because
the shortcomings of the chosen method might be critical. In general, these three methods
complement each other. For this reason, the best method is to apply all three of them.

3.3. Software Performance Measurement and Assessment

In software engineering, instrumentation is the process of adding software probes in the
program [Smith and Williams, 2001]. Software probes are additional pieces of code for
collecting data about the software execution. Software probes can be added automatically
using a variety of techniques and tools, or it can be manually inserted. Automatic adding
software probes can significantly reduce a developer’s or a system analyst’s effort to gather
data. However, it is better to insert probes manually because of the ability to make decisions
about which measurements to perform.

Software probes can be implemented for different techniques of data collection. Generally,
there are two techniques for collecting data, sampling and event tracing [Lilja, 2000]:

30

3.3. Software Performance Measurement and Assessment

• Sampling is a technique where parts of a program are sampled during its execution
in some time interval. It is a general statistical technique in which a representative
sample of the data about the program during execution is taken. An advantage of this
kind of approach is that the impact on performance of the program implied by the
measurement does not depend on the execution of the program. It depends only on an
interval and a duration of data collection. However, since it is a statistical technique,
a general shortcoming is that data collected, when the same experiment is performed
twice, will hardly be the same. Moreover, another shortcoming is the possibility that
infrequent events can easily be missed. An example of this kind of approach is sampling
the program stack to follow the execution of a program.

• An alternative to sampling is a technique called event tracing. It is a process of
generating traces of events in the software. A program trace is a dynamic list of events
generated by the program as it executes [Lilja, 2000]. A trace contains the time ordered
events and can be used to characterize the overall program behavior. Problems which
can be encountered with event tracing are system perturbations due the measurement
and the amount of resources traces use. Each probe that is added into the program
causes execution overhead. In case of very frequent events, the processing overhead
can be significant. Another problem is the size of an event trace. Usually, a trace can
be very large if we trace each instruction execution. This problem can also occur when
very frequent events are instrumented. Large traces occupy resources like memory and,
therefore, impact the overall performance of the program.

Because of the nature of a software artifact, there is a variety of ways to instrument soft-
ware. Software can be instrumented by using already implemented tools, or instruments.
According to the nature of tools, there are hardware, software, firmware, and hybrid in-
struments [Smith and Williams, 2001]. Software instruments are typically the programs for
collecting the data about an execution. Hardware tools are external devices independent
of the computer systems which are attached to computer systems by high resistance wires,
called hardware probes. Likewise, firmware can be instrumented for monitoring. Neverthe-
less, there are instruments which combine hardware, software and firmware instrumentation.
These kind of instruments are called hybrid instruments.

An alternative to the usage of tools for instrumentation is to do it manually. This kind of
approach puts more effort on the developer. However, manual instrumentation is better at
least for the following reasons:

• Precision—to measure exactly events which are of interest.

• Data granularity—to gather exactly data that is needed.

• Control—to add the possibility of turning on and off desired measurements.

• Deployment of tools—Installation of tools for measurement can be error prone.

• Usage of tools—Developers need to be educated for the usage of tools.

With a manual instrumentation of the system, a significant problem is source code com-
plexity which is increasing with code for instrumentation. Understanding the basic function-
ality of the program becomes harder, because probes and the code of basic functionality are
mixed. Furthermore, instrumentation increases the developer’s effort.

31

3. Software Performance Engineering

Model Driven Measurement and Assessment takes the advantage of benefits of the manual
software instrumentation. Furthermore, in order to collect the complete data about response
times, used technique for the data collection is the event tracing.

3.4. Concerns in Performance Measurement and
Assessment

For the reason of many influences on software system performance, measurement and as-
sessment must be carried out with great attention. This section discusses the concerns in
performance verification with measurement and assessment.

Appropriate response time statistical analysis is one of the major concerns for measure-
ment and assessment. Performance, as considered in this thesis, puts time of system reaction
to an event as the primary interest. Furthermore, as specified in the definition, the degree of
meeting objectives is of interest. Generally, according to what the degree is, two kinds of sys-
tems can be recognized:hard real-time systems and soft real-time systems. In hard real-time
systems each time a request occurs the deadlines must be met. Otherwise, it is considered as
a failure. In soft real-time systems not all requests but just large enough number of requests
must meet objectives. The degree is usually indicated with statistical analysis of requests
which summarizes all occurrences in one number. For this reason, performance requirements
are defined in the terms of statistical values, for example min and max for hard, and mean,
mode, median, standard deviation or density distribution of execution durations of
software entities for soft real-time systems.

Parallel analysis of throughput and response times is also one of major concerns. The
number of requests which occupy the same resources can be of significant importance for
response time of systems. In peak hours of system usage the response time can be significantly
higher, than in non peak-hours of usage. In peak usage hours it is very important for systems
to keep their ability to process the requests and meet the required deadlines.

One more important concern are workload characteristics. Workload characteristics ob-
servations are important for validation of correspondence of prediction assumptions with
real usage. Predictions of software intensive system performance are always be done with
some assumptions on system usage. When performing performance measurement and as-
sessment, reasons for large variations between predicted and computed metrics might be in
the difference between the workload used in testing and the specified usage in predictions.
Correspondence of workload specification can be identified with observation of the number
of workload’s requests, arrival rate and pattern.

Characteristics paths are also of significant interest in measurement and assessment. Path
characteristics are used in performance predictions. Similarly to workload characteristics,
reasons for large variations between the predicted and computed metrics can be differences
path characteristics used in predictions and occurred during testing. Path characteristics are
probabilities of alternative executions and numbers of iterations in loops.

Isolation of some particular business tasks and measurement and assessments of their
response times is one of the major concerns in performance measurement and assessment.
Not all business tasks are of the same importance in systems, and the requirements for the
most important ones have to be met in any conditions. In performance estimation this issue

32

3.4. Concerns in Performance Measurement and Assessment

is called schedulability [Smith and Williams, 2001]. Assessment of response times of these
business tasks is critical in providing a usable software intensive system.

Identification of execution contexts for critical business tasks is as important as identi-
fication of critical tasks themselves. Business tasks are identified not only by invocation
sequence which implements them, but by the execution context in which the their invoca-
tion took place. For example, in the transformational systems the response time dependency
on their invocation context is well studied by Rohr et al. [Rohr et al., 2008], Ammons et
al. [Ammons et al., 1997], and Hamouladj and Lethbridge [Hamou-Lhadj and Lethbridge,
2004].

Performance analysis of software intensive systems have to be done for representative time
periods. Response time metrics are statistical analysis of their values of some time periods.
If a statistical analysis, like for example mean, is done for a whole day time period, the value
might not be representative for the peak period. Furthermore, not only a representative time
period, but also assessment over time is important. Arlit et al. [Arlitt et al., 2001] show that
daily and weekly patterns of usage can be distinguished, and that assessment over the time
is critical for usability of the system.

Instrumentation transparency is also of great importance in measurement. Instrumenta-
tion code increases complexity of software intensive systems, because in the code for imple-
mentation of business logic and additional code for data collection is interwoven. In this
way, understanding application logic becomes hard. Furthermore, the possibility of errors
in removal of measurement code is also present. For this reason, techniques which enable
separation of concerns of business logic and instrumentation are needed.

Keeping the consistency between the structuring of collected data and defined data struc-
tures for analysis is also of importance. Herewith are avoided failures in assessment due to
difference of data structures used for storage and in analysis. For the analysis, data have to
be stored in a way that enables a reconstruction of execution and, what is more important,
computation on metrics of interest. When the format is established, each software probe has
to collect and store data consistently with the defined form.

Reduction of measurement points is also one of the major concerns. It reduces mea-
surement induced system overhead. Software probes for data collection bring additional
computation into the original business logic and therefore has impact on performance. In-
strumented software, software with inserted probes, occupies more memory, and collection
routines additionally use system resources, like I/O. For these reasons, the impact of mea-
surements always occurs and it should be kept as reduced as possible. The overhead can be
reduced with reducing points of measurement, and implicitly the number of collected data,
and size of collected data.

Overhead due to measurements cannot be avoided. Data collection routines inevitably
increase response times. The additional time used for measurement routines either directly
or by inference is characterized by a capture ratio. Capture ratio is the percentage of in-
strumented system response time spent in measurements, and it is one of the concerns when
reasoning about validity of measurements results.

The previously described concerns in performance measurement and assessment have been
used for the comparative analysis to related work in Chapter 11 of this thesis.

33

4. Chapter
Libkin’s Algebra

Libkin’s algebra [Libkin, 2003] is a relational algebra with an open set of aggregate functions.
Currently, this algebra is an accurate formal specification of SQL languages implemented in
various relational database management systems.

The major benefit of Libkin’s algebra is that it defines the set of supported aggregate
functions as an open set. Aggregate functions are functions computed on a set of values
contained in one column of a relation. Furthermore, Libkin’s algebra has the possibility of
computing algebraic functions between values in different columns in relations. Algebraic
functions are functions like addition, subtraction, multiplication, and division. Previous
relational algebras did not have these characteristics.

The first relational algebra introduced by Codd [1970] did not have the aggregate functions
at all. Furthermore, this algebra did not support the grouping operator. Finally, it did not
contain the possibility of performing algebraic functions of values in different columns.

Klug’s algebra [Klug, 1982] is another well-known relational algebra. It integrated a set
of the basic five set of aggregate functions, defined in the SQL standard. However, this set
cannot be extended. Furthermore, the possibility of computing algebraic functions was also
not facilitated.

Libkin’s algebra distinguishes two types of columns in relations: numerical and non-
numerical. Numerical column type is denoted as n. The domain of numerical column is
signed as Num and can be any numerical domain, for example N, Z, Q, or R. The non-
numerical type is denoted as b and the domain of such columns is signed as Dom. Such a
domain is for example String.

A type of a relation is a string over the alphabet b, n. A relation R of type tR = a1...am, has
m columns. The number of columns is the length of the type and it is denoted as |tR|. The
type of the i -th column of the relation is denoted by tR.i. For example, a relation Execution-
Trace(ElementName, StartTS, EndTS) has the type tExecutionTrace = bnn. The length
of |tExecutionTrace|=3, and the type of, for example StartTS, is denoted as tExecutionTrace.2=n.

A database schema SC is a collection of relation names and their types; it is written Ri : ti
if ti is the type of Ri.

Libkin’s algebra, ALGaggr(Ω,Θ) is parametrized with two sets. Set Ω is a set of functions
and relations on Num. Examples of such functions and relations are +, -, *, <, >, and =.
The Θ is a set of aggregate functions. Examples of such functions are mean, mode, sum,
standard deviation and so on. Expressions in this algebra are given in three groups: standard
relational algebra, arithmetic, and aggregation/grouping.

Standard relational algebra expressions are:

• Schema Relation
If R:t is in SC, then R is an expression of type t,

34

• Permutation
If e is an expression of type t and θ is a permutation of {1,...,|t|}, then the permutation
ρθ(e) is an expression of type θ(t). The semantics of this operation is that each tuple
(a1, ..., a|t|) is replaced by (aθ(1), ..., aθ(|t|)),

• Boolean Operators
If e1, e2 are expressions of type t, then so are e1∪e2, e1∩e2, and e1−e2. These operators
correspond to operators of standard relational algebra.

• Cartesian Product
For e1 : t1, e1 : t1, e1 × e2 is an expression of type t1 · t2, · is a concatenation of two
strings. Cartesian product semantics corresponds to Cartesian product of standard
relational algebra,

• Projection
If e is of type t, then πi1,...,ik(e) is an expression of type t’ where t’ is the string
composed of t.ijs, in their order. The semantics of projection is equal to the one
defined in standard relational algebra,

• Selection
If e is an expression of type t, i, j ≤ |t| and t.i = t.j, then σi=j(e) is an expression of
type t. The meaning of the the condition i = j in the selection predicate is that the
resulting relation contains only those tuples (a1, ..., a|t|) from the expression e, in which
ai = aj holds.

The arithmetic expressions of the Libkin’s algebra are:

• Numerical selection
If P ⊆ Numk → Num is a k -nary predicate from Ω, and i1, ..., ik are such that t.ij = n,
for j = 1..k, then σ[P]i1,..,ik(e) is an expression of type t, for any expression e of type t.
The semantics of this expression is that the resulting relation will contain only those
tuples (a1, ..., a|t|) from the expression e, in which P (ai1 , ..., aik) holds,

• Function application
If f : Numk is a k -nary numerical predicate from Ω, i1, ..., ik are such that t.ij =
n, for j = 1..k, and e is an expression of type t, then Apply[f]i1,...,ik(e) is an ex-
pression of type t·n. This expression replaces each a1, ..., am of expression e with
(a1, ..., am, f(ai1 , ..., aik)).

• Constants If c is a constant, then Apply[c]ε is an expression of type n. ε refers to
c taking no argument, as a constant can be seen as a function of arity 0. It actually
produces the relation c.

Finally, the grouping and aggregation expressions are:

• Aggregation
Let F be an aggregate from Θ. For any expression of type t and i such that t.i=n,
Aggr[i : F](e) is an expression of type t·n. The semantics of this operator is that it
replaces each tuple (a1, ..., a|t|) with (a1, ..., a|t|, f) were f is a value of F computed
from ith attributes of all tuples in the expression e.

35

4. Libkin’s Algebra

• Grouping
Let us assume that e : t is an expression over SC ∪ S : s. And let e’ be an expression
of type u · s over SC, where |u|=l. Then Groupl[λS.e](e

′) is an expression of type u · t.
The semantics of this operator is that it first groups tuples according to the first l
attributes of the relation e′’s tuples. Then it applies e to the relations produced with
this grouping and denoted as S. For example, let e′ be a relation of (a1, ..., a4) tuples.
And let Sum ∈ Θ. Then the result of the expression Group2[λS.Aggr[2 : Sum](e′)
returns a relation of type |t|+1 and (a1, ..., a5) tuples. The attribute a5 of a tuple a is
the value of the Sum aggregate computed from a4 attributes of all tuples having the
same values of the first two attributes as the tuple a.

The Libkin’s algebra is used for the formal semantics definition of the language. Further-
more, the formal semantics is used as the design model of transformations from the domain
specific language for performance measurement and assessment to the relational database
management system.

36

Part II.

MoDePeMART: Model Driven
Performance Measurement and

Assessment with Relational Traces

37

4. Libkin’s Algebra

38

5. Chapter
Performance Assessment with
MoDePeMART

The Model Driven Measurement and Assessment with Relational Traces, initially proposed
by Bošković and Hasselbring [Bošković and Hasselbring, 2009], is an approach which inte-
grates the process of measurement and assessment in MDE. This chapter discusses how is
performance measurement and assessment carried out in the MoDePeMART.

Model Driven Engineering, as discussed in Chapter 2, suggests multidimensional model-
ing [Tarr et al., 1999] with a language for each dimension. Each dimension is related to a
concern of interest in development of that software product. Concerns of interest are actually
domains of interest, like security, functionality software should provide, privacy, redundancy
and so on, for the particular software intensive system. Languages for each dimension en-
able modeling of that particular domain. Domain models combined according to predefined
intersections and mappings, form the software intensive system model.

For each project the dimensions have to be stated at the beginning of the project. It
is unlikely that the same set of modeling languages and dimensions would be of interest
for each project. Some of the dimensions can be standard across projects, like authorship
and version, and some can be optionally integrated like concurrency and distribution [Kent,
2002].

Because of the significance of software intensive system performance, in this thesis it
is considered that performance measurement and assessment is a standard process across
projects. Evidence of performance as an important non-functional property is that it is one
of QoS attributes, as discussed in Chapter 1. Furthermore, OMG defines the UML Profile
for Schedulability, Performance and Time (SPT) [Object Management Group, 2005a] and
his successor the UML Profile for Modeling and Analysis of Real-Time Embedded Systems
(MARTE) [Object Management Group, 2008]. These standards are mostly dedicated to
standardization of model annotation for performance prediction. Later, from annotated
models, prediction models according to some analytical theory like Queuing networks, Petri
nets, or Markov chains are created [Object Management Group, 2005a] [Object Management
Group, 2008]. This thesis complements work on performance prediction and integrates the
final step of verification of performance in MDE.

Having previously mentioned, in MDE, performance measurement and assessment can be
seen as a separate dimension. Consequently, it has to be supported with the appropriate
language and mapped to the system functionality definition modeling language(s).

The domain-specific language for performance measurement and assessment has to sup-
port domain-specific constructs for specification of performance measurements which enable
assessment. Accordingly, a language for performance measurement and assessment requires

39

5. Performance Assessment with MoDePeMART

the ability of unique identification of the event of interest, execution context in which this
event is of interest, and specification of the metric of interest.

The Model Driven Measurement and Assessment suggests declarative specification of the
execution context and an event of interest in this context. Furthermore, it suggests usage
of relational databases for data storage and metrics computation. Finally, it uses coupled
generation of code for data collection and for data analysis. The detailed process is presented
in Figure 5.1.

Platform code
with probes

1. Design

4. Deployment

6. Testing

3. Transformation
(and Compilation)

A

B

SB

SA

SQL DML
Assessment Queries

6. Data collection
(measurements)

:Duration

MRT : SimpleAssessment

2. Instrumentation

7. Assessment

…
<<InstrumentedElement>> public a()
…

<<InstrumentedElement>>

SQL DDL Tables
Definition and DML
Initialization Code

5. Initialization

MDE MoDePeMART

Figure 5.1.: Model Driven Performance Measurement and Assessment With Relational
Traces Process. The figure demonstrates the order of activities and artifacts
produced

This approach is integrated into the process of Model Driven Engineering at the point
where the final design model is developed. The final design model is, in this thesis, the
model from which the code is generated. The final design model is developed via collecting
requirements and creating requirements models. Later, through refinement, more and more
concrete models are created until the final design model is reached. The design process can
be either iterative and incremental, such as Rational Unified Process (RUP) [Kruchten, 2003]

40

or waterfall process, as it is the case of Convergent Architecture [Hubert, 2002].
After establishing a final design model, a process of instrumentation proceeds. Instrumen-

tation, in this approach means: annotating events of interest in the model, specification of
relevant event’s execution contexts, and specification of metrics of interest. The execution
context consists of the state of the system during the occurrence of the event of interest and
the sequence of invocations which the event is part of. More on the execution context, and
metrics specification is described in Section 6.1 and Chapter 7.

In the process of transformation code is generated from the previously defined annotated
model, context and metrics specification. The code consists of four parts: software function-
ality platform code with probes, code for database tables specification, code for database
initialization, and code for desired metrics computation. Probes added to the platform func-
tionality code consist of code for data collection and storage in database. Code for database
tables for data storage are specified with SQL Data Definition Language (SQL DDL). For the
database tables initialization and computation of desired metrics SQL Data Manipulation
Language (SQL DML) code is generated.

The transformation is followed by compilation of platform code only. In order to be able
to deploy the code, the platform code has to be compiled into a platform-specific executable
code. The SQL code does not need to be compiled as the code is already executable in the
target relational database management system.

Finally, deployment takes place. In this phase the executable application code and the as-
sessment and initialization code are deployed to the target computer and relational database
management system, respectively.

The measurement and assessment takes place at the testing phase of software development.
It starts with the initialization of the database for data storage. Initialization consists of
execution of SQL DDL code for tables needed for data storage, and SQL DML code for
initial entries of tables required for metrics computation. More on the initialization is given
in the Chapter 8.

The next step is execution of test cases and measurements. In this step software execution
data is collected and stored in the previously initialized database.

Performance assessment is performed after the measurements. Metrics required for verifi-
cation of predicted values are automatically computed. For automatic computation, previ-
ously generated SQL DML Queries are used. At this stage, a software developer or perfor-
mance analyst needs only to execute them and check if the computed values conform to the
predicted values and to requirements.

The approach presented in this thesis is not intended for performance debugging. It is the
approach only for assessment of requirements and predictions fulfillment. In the case that
computed metrics do not agree with the predicted values and requirements, performance
analyst can try to seek for reasons of not fulfilling performance goals and disagreement with
predictions with tools for complete system observations such as profiling tools.

41

6. Chapter
Basic Assumptions

MoDePeMART is an approach for performance measurement and assessment of specific
kind of systems, modeled with specific languages. This chapter explains characteristics of
languages and systems for which this approach is intended. Furthermore, it describes the
nature of models used for development and performance evaluation of software systems. Ac-
cordingly, the chapter consists of two sections. Section 6.1 explains the main characteristics
of systems for which the approach is intended, and their modeling languages. Section 6.2
discusses model kinds in order to precisely specify relations between prediction, software
development, and models for measurement and assessment. Furthermore, this section gives
the formal relation between models and runtime systems.

6.1. Vertical and Horizontal Dimension of Software
Modeling and Execution

Modeling languages in Model Driven Engineering raise the abstraction in software engi-
neering, and shift the focus of software development from the implementation domain to
the problem domain. According to the nature of the problems in the domain for which
the software system is developed, DS(M)Ls of that domain support appropriate problem
decomposition.

Generally, two kinds of software systems exist: transformational and reactive [Wieringa,
2003]. Transformational systems are systems which take some input value and transform
them to some output value. An example of a transformational system is a library of mathe-
matical functions. Function sin which computes sinus of a number, for instance, takes the
input value and transforms it into output value. Contrary, reactive software systems are
systems which constantly interact with environment in such way that they receive stimuli
and, according to stimuli and current state, produce some action in the environment, and/or
change the current state. Accordingly, reactions of a reactive system are not always the same
for the same stimuli. An example of reactive systems is a graphical user interface (GUI).
Depending on the current state of GUI, which is for example current screen, stimulus like,
for example clicking on a button, can lead to changing the look of the screen. However, in
the case of different current screen, clicking on the button can lead to changing to a different
screen.

Correspondingly, two general paradigms for problem decomposition exist, transforma-
tional, also known as algorithmic, and reactive [Wieringa, 2003]. Transformational problem
decomposition, divides problem into smaller, also transformational, subproblems. Later,
subproblems are solved and composed into the final solution. This is a typical problem

42

6.1. Vertical and Horizontal Dimension of Software Modeling and Execution

decomposition in procedural programming. Some DSLs for transformational systems are
developed by Stevenson and Fleck [1997] and Klarlund and Schwartzbach [1999], for image
understanding algorithms and algorithms with sets of strings and trees, respectively. On the
other hand, languages for reactive systems enable problem decomposition in such a way, that
the system is separated into different entities which communicate to solve the problem. Fur-
thermore, these languages support stimulus-response decomposition mechanism [Wieringa,
2003]. An example of DSL for reactive system behavior are BDL developed by Bertrand
and Augeraud [1999] and Interaction Object Graphs invented by Carr [1997], for describing
problems of concurrent behavior in object oriented languages and graphical user interfaces,
respectively.

However, there are also classes of systems, like information systems, which have both,
transformational and reactive behavior [Wieringa, 2003] and therefore, languages for such
a class of systems have to support both transformational and reactive problem decomposi-
tion [Wieringa, 2003]. These systems, with twofold behavior, have vertical and horizontal di-
mensions, which correspond to transformational and reactive behavior, respectively [Katara
et al., 2004][Kurki-Suonio, 2005]. Each dimension is modeled with a modeling formalism
appropriate for that behavior kind.

This section provides the introduction to transformational and reactive philosophy of prob-
lem decomposition and vertical and horizontal dimensions of software systems. Furthermore,
examples of formalisms for each dimension will be described on the example of the case study.
The same case study will be used throughout the thesis.

6.1.1. Vertical Dimension

Vertical dimension of software development represents part of models used for transforma-
tional parts of software-intensive systems. Transformational philosophy of software develop-
ment is the algorithmic philosophy of programming, introduced by Dijkstra [Dijkstra, 1976].
Algorithmic philosophy of programming defines a software-intensive system as a system that
when started in an “initial state” will end up in a “final state.” Happenings which take
place upon activation of the mechanisms are specified as algorithms. Example is given in
Figure 6.1 where the structural view of the model of application used throughout the thesis
as the example case study is described.

The example application is an electronic items management application. It is an applica-
tion for storing and organizing personal electronic items, such as music videos, music tracks,
albums and audio books. The complete functionality of this application and its implemen-
tation is explained in this and in the next subsection through its vertical and horizontal
dimensions. In this subsection the focus is only on the vertical dimension. The basic ele-
ments of vertical dimension are in the structural view of the model.

The structural view of the the application model consists of four entities UserInterface,
AudioItemFacade, VideoItemFacade, and ItemFacade. These entities which group
and implement functionality of user interface, audio items subsystem, video items subsystem,
and electronic items subsystem, respectively.

ItemFacade is the class which implements a simple interface for obtaining database elec-
tronics items of any type. For this purpose the getItem method is implemented. Methods
on and off will be explained in the next subsection, since they represent a part of the
horizontal dimension.

43

6. Basic Assumptions

For Non-commercial Use Only For Non-

y For Non-commercial Use Only

+activate()
+musicTracksoMenu()
+deactivate()
+downloadAudioItem()
+downloadVideoItem()
+exit()
+listTracksByAlbumMenu()
+listTracksByArtistMenu()
+listTracksByTitleMenu()
+listMoviesByTitleMenu()
+listMoviesByDirectorMenu()
+listMoviesByActorMenu()
+ListMoviesByGenreMenu()
+trackListByAlbum()
+trackListByArtist()
+trackListByTitle()
+videoListByTitle()
+videoListByActor()
+videoListByGenre()
+videoListByDirector()
+videoMovieMenu()
+compressionMenu()
+main()
+stringToLong()
+musicTracksMenu()
+audioBooksMenu()
+listAudioBooksByTitleMenu()
+listAudioBooksByWriterMenu()
+bookListByTitle()
+bookListByWritter()
+audioMenu()
+videoMenu()
+musicVideoMenu()
+musicVideoListByArtist()
+musicVideoListByDirector()
+listMusicVideosByArtistMenu()
+listMusicVideosByDirectorMenu()

...

<<Client>>
UserInterface

-itemList : Record [0..*]
-status : String

AudioItemFacade
+getAudioItem(trackid : long [1..*], location : String, type : String) : String
+getTrackByAlbum(album : String) : Record [0..*]
+getTrackByArtist(artist : String) : Record [0..*]
+getTrackByTitle(title : String) : Record [0..*]

VideoItemFacade
+getVideoItem(videoid : long [2], location : String, type : String) : String
+getVideoByActor(actor : String) : Record [0..*]
+getVideoByDirector(director : String) : Record [0..*]
+getVideoByGenre(genre : String) : Record [0..*]
+getVideoByTitle(title : String) : Record [0..*]
+()

ItemFacade
+getItem(itemid : long, location : String) : String
+on() : void
+off() : void

-videoItemFacade
1

-audioItemFacade

1

-itemFacade
1

-itemFacade 1

Figure 6.1.: UML Class diagram of electronic items management system case study

AudioItemFacade implements and clusters methods for audio items business logic.
Methods getTrackByAlbum , getTrackByArtist, getTrackByTitle, implement func-
tionality for getting lists of audio tracks from appropriate album, artist, or with appropriate
title, respectively. The method getAudioItem is the method which implements obtaining
audio items from the database.

Similarly to the class AudioItemFacade , class VideoItemFacade implements and
clusters video items’ business logic. Methods getVideoByActor, getVideoByDirector,
getVideoByGenre, getVideoByTitle implement obtaining lists of video items with ap-
propriate actor, director, genre, or title, respectively. The method getVideoItem, also
similarly to getAudioItem of the class AudioItemFacade, implements the obtaining ap-
propriate video item from the database.

For definitions of transformational systems Dijkstra defines primitive and composite mech-
anisms. Primitive mechanisms are mathematical operations and atomic actions which change
the state of a system with assignment of values to variables. Composite mechanisms, are
actually concatenation of various number of composite and primitive mechanisms. It is an
example of the Composite design pattern [Gamma et al., 1995].

Transformational problem decomposition defines two kinds of general relations between
the algorithm subsequences, sequential composition, and invocation. In sequential compo-
sition the start of one sequence follows the end of its predecessor. In invocation, start of
one sequence is nested, and is part of its predecessors sequence [Katara et al., 2004]. An
example of decomposition relations is given in Figure 6.2 where a UML Sequence Diagram

44

6.1. Vertical and Horizontal Dimension of Software Modeling and Execution

of the getVideoItem method of VideoItemFacade is shown. UML Message Sequence
Charts are a commonly used mechanism for modeling the transformational dimension of an
application [Katara et al., 2004].

n-commercial Use Only

[type="movie"]

opt

videoItemFacade : VideoItemFacade itemFacade : ItemFacade

getItem(-, -)2:

getItem(-, -)3:

getVideoItem(-, -, -)1:

Figure 6.2.: Sequence diagram of class VideoItemFacade getVideoItem method

In the method getVideoItem two item types can be requested. One video item type is
movie, and the second one is music video. Accordingly, control flow has two alternatives.
The first alternative is the case when required video item is a movie. In this case, from the
database, two files are obtained. One is these two files is the movie trailer, a small video file
shows a résumé of the movie. The second file is the movie itself. In the case that the type
of the video item is a music video, the trailer is not needed and there is only one invocation
of getItem method, for the music video itself. This is, in the control flow represented with
Option (opt) block. Option block is a block in which either a scenario inside the block is
executed, or nothing happens. In the case that the requested video item is a movie, the
first getItem invocation will be executed before the invocation of the same method for
obtaining the movie. When the requested video item is a music video, the first invocation is
not executed, and only the music video is obtained from the database.

If it is taken into the consideration only the request for a music video, invocation relations
between getVideoItem and getItem methods can be recognized. In the case, when the
video type required is a movie, sequential composition of two invocations of getItem can
be seen.

The Option block in the previous example is a special kind of command, called guarded
command. A guarded command consists of two parts, a boolean expression called guard,
and a simple or composite statement. A boolean expression has to be satisfied in order to
execute simple or composite statements. Nevertheless, there is often the a set of guarded
commands where each statement is executed in some particular case. In order to provide a
programmer with the mechanism to specify a set of guarded commands where each command
is executed in a particular case, Dijkstra defines the command called guarded command
set. This element can be seen in our example case study. In Figure 6.3, the sequence diagram
of getAudioItem method of AudioItemFacade is shown.

Audio items can be classified in two categories, audio music tracks and audio books. For
these two audio item types, three kinds of requests can be given: request for obtaining a

45

6. Basic Assumptions

For Non-commercial Use Only

Use Only For Non-commercial Use

GetAudioItemSequence GetAudioItemSequencenteraction []

[else]

[type=album]

loop

alt

[else]

alt

audioItemFacade : AudioItemFacade itemFacade : ItemFacade

getItem(-, -)

getItem(-, -)

getItem(-, -)

getItem(-, -)

getAudioItem(-, -, -)

[type="album" || type="track"]

[i=0; i<trackid.length; i++]

Figure 6.3.: Sequence diagram of class AudioItemFacade getAudioItem method

music album, single music track, or an audio book. Accordingly, the body of the method
consists of two nested alternatives. The fist alternative is examining if the audio item type
is album or item. If it is one of them, the control flow enters the upper choice of the first
alternative, and that is second alternative. In this alternative if item type is a music album,
the control flow enters the upper choice of second alternative. In this choice is the loop
where all audio items are collected from the database. Loop is the last element defined by
Dijkstra, for specifying an algorithmic program structure. It is a guarded command which
activates when its guard is true, but after its termination, the examination of guard starts
over again and, if it is still true, execution of the command takes place again. These steps
repeat until the guard becomes false.

Alternative to obtaining an audio album is obtaining only one track. Extracting track
from the database is performed with only one invocation of the getItem method of the
ItemFacade class. Finally, if the electronic item type is neither music album nor track,
the control flow of the method is executing the lower case of the first alternative and that
is obtaining an audio book from the database. An audio book comes always with a written
copy of the book in electronic form, e.g., in Portable Document Format (pdf). For that
reason, in this case in the control flow two getItem invocations are performed, for getting
both, audio book and an electronic written version.

One of the major characteristics of the vertical dimension of software modeling is used for
specifying terminating processes. Terminating processes are processes which, after activation,
end after a finite number of actions.

Traditional design methods and programming languages, and therefore current technolo-
gies and tools, mostly support the vertical dimension. This dimension supports interaction

46

6.1. Vertical and Horizontal Dimension of Software Modeling and Execution

with the environment for transforming input into output through terminating sequences of
states. Terminating sequences, in current programming languages, are defined with single,
composite, and guarded commands, guarded command sets, and loops, which are com-
posed either in invocations or sequentially. Opposite to transformational, reactive behavior
consists of non-terminating state sequences. In reactive behavior a system interacts with the
environment and, depending on the information it receives from the environment, changes
its own state. Reactive behavior of a system is modeled with horizontal dimension of the
model.

6.1.2. Horizontal Dimension

Vertical dimension and algorithms, as explained in the previous subsection, yield outputs
completely determined by their inputs. They are metaphorically dumb and blind, and do
not consider interaction with environment at all [Wegner, 1997].

Technological shift from mainframes to workstations and networks, embedded systems
and graphical user interfaces induces a development paradigm shift from algorithmic to in-
teraction based [Wegner, 1997]. Algorithms, because of their environment ignorance, cannot
handle tasks which require interaction with surroundings. In order to enhance algorithms
with interaction, and give “smartness” to algorithms, systems with algorithmic behaviors
often have subsystems with interactive behavior. Interactive, also called reactive, behavior
constitutes the horizontal dimension of architecture [Kurki-Suonio, 2005].

For modeling reactive systems, special formalisms which enable stimulus/response be-
havior modeling are used [Wieringa, 2003]. Examples of formalisms which enable stim-
ulus/response modeling behavior are statecharts [Harel, 1987], and their object oriented
version [Harel and Gery, 1996]. The object oriented version is in the core of UML, and it is
called state machines.

A reactive part in the example application used in this thesis is the user interface. It is
modeled with the UserInterface class in Figure 6.1. A part of a state machine of this class
is given in Figure 6.4.

User interface is generally a reactive part in the most of applications which interact with a
user. They can be, for instance, Graphical User Interfaces (GUI) or command line interface.
Looking in broader sense, not only a human, but a set of sensors for observations of envi-
ronment conditions are also interfaces. Examples are thermal or light sensors in embedded
systems. These systems have in common that they do not always react on the same stimuli
in the same manner. They react depending on both, current state and received stimuli.

The user interface in this case study is a set of menus for browsing and downloading elec-
tronic items. For the brevity of this section, not the complete reactive model of application
is explained. Here is depicted only the part of reactive model which are of importance for
for understanding horizontal dimension and problems related to performance measurement
and assessment in systems with the horizontal and the vertical dimension. More detail on
the application can be found in Appendix A where the complete model of the application is
given.

The first state after the activation, marked through the transition from the initial pseudo
state, is the MainMenu state. This transition is done on the signal activate from the
environment. The signal activate from the environment is given when the application is
started.

47

6. Basic Assumptions

For Non-commercial Use Only For Non-comme

For Non-commercial Use Only
CompressionMenu

MusicTracksMenu

VideoMenu

AudioMenu

AudioBooks
Menu

MainMenu

activate() : void

deactivate() : void

exit() : void

exit() : void

exit() : void

audioBooksMenu() : void

videoMenu() : void

audioMenu() : void

musicTracksMenu() : void

exit() : void

compressionMenu() : void

exit() : void

Figure 6.4.: Part of the UserInterface class UML State Machine

MainMenu state is the top menu of the application. This menu offers possibilities of go-
ing into sub menus for browsing video files, audio files, or managing compression. The menus
for browsing video files, audio files, and managing compression are the VideoMenu, the
AudioMenu, and the CompressionMenu states, respectively. From the state Main-
Menu, transition to the VideoMenu, the AudioMenu, and the CompressionMenu, is
done by invoking the videoMenu, the audioMenu, and the compressionMenu methods
of the UserInterface class, respectively. For the reasons of brevity, possible transitions
from the CompressionMenu and the VideoMenu are not considered, except those back
to the MainMenu state. Only transitions from the AudioMenu are studied in detail.

AudioMenu is the top menu for browsing through audio items of the example application.
As already explained in the previous subsection, two audio electronic items and three use
cases of the application exist. Audio item types are audio tracks and audio books. The use
cases of this method are obtaining audio tracks only, obtaining complete albums, and, finally,
obtaining audio books. For this reason, in the application exist two sub menus in which user
can go from the AudioMenu state:AudioBooksMenu and MusicTracksMenu. Au-
dioBooksMenu encapsulates options for browsing audio books, and MusicTracksMenu
encapsulates options for browsing audio tracks and albums. For the same reason as in the
previous cases, further transitions from AudioBooksMenu and MusicTracksMenu are
not analyzed here.

In the following major differences between transformational and reactive systems, and
therefore, models for horizontal and vertical dimensions of software will be outlined.

It has already been mentioned that the horizontal dimension is used for non-terminating
processes modeling. Non-terminating processes do not terminate in a finite number of steps
defined with the input value. They can terminate only on requests from the environment,
if there exist such a response to a stimulus. Without activating the special transition for
termination they remain continuously active.

48

6.1. Vertical and Horizontal Dimension of Software Modeling and Execution

In the case study, exit from the application is invocation of the method deactivate of
the UserInterface class when it is in the MainMenu state. The number of transitions
between other possible states can be infinite. Consequently, the application generally can
always be active and, for example, available for access over the Internet.

Another difference, already pointed out earlier in this subsection, is that a reaction on
a stimuli from the environment of the reactive systems, depends on the stimuli and the
current state. In the previously defined example there are several exiting transitions which
are triggered with the invocation of the method exit of the class UserInterface. If the
UserInterface is in the AudioMenu state, after the execution of the exit method, the
instance of UserInterface will end up in the MainMenu state. If the UserInterface
class is in the MainMenu state, an invocation of the exit method will produce not a
single reaction, because there is no outgoing transition from the MainMenu state which is
triggered with this method. Accordingly, it can be also noticed that each state defines both,
the subset of possible inputs to which the system in current state reacts, and appropriate
responses to the given input.

Finally, it should be clarified what is considered as a state in systems with horizontal and
vertical dimension.Usually, a set of system’s variables is considered as a state of the system.
These understanding of state is essence of Dijkstra’s algorithmic philosophy of programming.
Pure understanding that values of variables is a system state often can lead to state explosion
in analysis, and, therefore, this kind of interpretation is usually impractical. In systems with
horizontal and vertical dimension of an architecture there is a distinction between variables
and states. In these systems variables are considered as a quantitative aspect of behavior,
and states as a qualitative aspect [Selic et al., 1994]. Qualitative aspect means that state is
part of systems’ control flow specification. Quantitative aspect of behavior does not impact
the steps that execute in the system behavior but can impact number of steps in control
flow execution, e.g., in loops. Implicitly, the change of variables does not imply change of
the system state. States can have an impact on some particular constraints and conditions
in functionality, and variables are products or operands of computation.

The previously explained difference can be seen in the example. Variables status and
itemList of this class contain the list references to electronic items chosen according to
some criteria, and the status contains the status of performed transaction with the database.
A state of an UserInterface object does not depend on values of these variables. These
variables depend only on the criteria given for the listing items, and the status of transaction.
The control flow stays the same no matter what are values of the variables.

The final part of the horizontal dimension of the case study is the state machine of the
ItemFacade class. The state machine is shown in Figure 6.5.

The state machine in Figure 6.5 manages compression in a data transfer. The compression
option is added with the purpose of response time improvement. Depending on the size of
the file, compression can differently impact response time. In the case of large files, and a bad
connection with the database, turning on the data compression can reduce response time. In
this case, compressing data at server side, transferring compressed data, and decompressing
them at the client side, can last shorter comparing to transferring them uncompressed.
Nevertheless, the compression can influence the response time in the opposite way also.
Depending on the size of files and the capacity of the communication between the database
and the instance of ItemFacade, compression and decompression routines and the transfer
can take a larger amount of time than the transfer of an uncompressed file. The decision on

49

6. Basic Assumptions

On

Off

on() : voidoff() : void

Figure 6.5.: Item Facade class UML State Machine for managing data compression

turning the compression on and off is left to the user. With respect to the state machine of
the ItemFacade, the compression is turned on when the object of the ItemFacade class
is in the state On. Correspondingly, the object is in the Off state when the compression is
turned off. The default state of an instance of the ItemFacade class is Off state.

The horizontal dimension of software models is a consequence of software intensive systems
usage evolution, from large computation-oriented mainframe servers, to embedded systems
and interaction oriented software intensive systems. Current support in implementation tech-
nologies for horizontal dimension is low. Nevertheless, as the importance of this dimension
is recognized, the emerging techniques like design patterns [Gamma et al., 1995], and design
approaches, like Aspect-Oriented Programming [Kiczales and Hilsdale, 2001] are starting to
integrate the horizontal dimension modeling in up-to-date technologies [Kurki-Suonio, 2005].

6.2. Model Kinds and System at Runtime

In Chapter 2 the foundations of metamodeling and relations between metamodel and model
of a system are described. Although it is very important to understand language engineering,
it is also important for a language to have a clearly defined relation between the real system
which is modeled, called system under study, and models. In this Section, model types
according to intent of use and according to mapping of modeling constructs and elements
of the system under study are explained. Finally, the formal definition of relation of models
and runtime systems are given in the last subsection.

6.2.1. Descriptive and Prescriptive Models

Generally, according to the intent of use and mapping of modeling constructs and elements
of the system under study, two kinds of models are recognized, descriptive and prescrip-
tive [Seidewitz, 2003].

Descriptive models are usually models used in traditional scientific disciplines, such as
physics and chemistry. The main purpose of this kind of models is to isolate the aspect

50

6.2. Model Kinds and System at Runtime

of interest, and to abstract for some particular use. These models are commonly used for
judging some property of a system without measuring it. This model kind is, for example,
a drawing of a conductor with its resistance (R) and potential difference between the ends
of it (U) in physics. This model is correct if statements stated in the model correspond
to observations of the system under study [Seidewitz, 2003]. In this example potential
difference can be measured with voltmeter. If the voltmeter that shows the value of the
potential difference equals the value written in the model, then the model is correct with
respect to potential difference.

Reasoning in descriptive models is a way to deduct new statements about the system under
study and it is done with theories [Seidewitz, 2003]. For example in this model, in order to
deduct a value of electric current (I) a theory that the electric current equals quotient of
potential difference and resistance can be used. Furthermore, new statements deducted from
the old ones have to be consistent with old statements, and two statements are consistent if
they can both be true for system under study [Seidewitz, 2003]. In this example, one would
measure the electric current, resistance, and potential difference of the system under study.
If they both are true, then they are consistent.

In software engineering this kind of models can be queuing networks for software perfor-
mance [Lilja, 2000]. With queuing networks software intensive system can be described, and
for instance, according to arrival rate, service and waiting time, compute utilization and
response time. The formula for computation of utilization and response time is in this case
a theory. Descriptive models can also be UML and architectural models, when they describe
some already existing software for documentation.

Alternatively to descriptive models, prescriptive models exist. Prescriptive models
are traditionally used in engineering disciplines. These models are used for specification of
systems that still do not exist in reality. In this case, potential systems are now systems
under study. Examples of these models are electrical schemes in electronics, blueprints in
civil and mechanical engineering.

Prescriptive models are used for specifying systems for particular needs, and for proving
that these needs will be achieved before the system is built. In these models, theories
also intensively used. They are used in oder to specify systems with characteristics that
fulfill requirements. For example, the theory which relates electric current, resistance and
potential difference of a conductor is used in electric schemes in order to specify values of
scheme elements so that output value of electric current or potential difference meet ones
requirements.

In software engineering UML models can also be prescriptive. Gathering requirements, and
specification of software intensive system, with use case, class, sequence and other diagrams
is a process of prescriptive models development. These models can be annotated with some
particular values, like for example, values specified in SPT and MARTE profiles and then
with usage of, for example, queuing theory, performance metrics can be computed, and
predicted for the system that is still not developed.

Model Driven Engineering uses the fact that both software and models are similar arti-
facts, namely bits and bytes in memory. This property allow direct evolution of models in to
complete implementation without discontinuities in the expertise, materials, tools, or meth-
ods Selic [2003]. In electrical and civil engineering models are different artifacts compared
to the artifacts produced. Furthermore, in order to build the artifact which is specified,
persons, materials, tools and methods used, are different from ones involved in modeling.

51

6. Basic Assumptions

The central question of both descriptive and prescriptive models, is the interpretation of
the model. The interpretation of a model is actual mapping of the model’s elements to
the elements of a system under study. This mapping is important in order to be able to
determine the truth of the statements in the model from the system under study [Seidewitz,
2003]. The next subsection gives an overview of model types with respect to interpretation.

6.2.2. Token and Type Models

Beside the distinction with respect to purpose, the crucial question for usage of models is
their relation to the system under study. According to their relations to system under study
two kinds of models can be distinguished, token and type models [Kühne, 2005].

Token Models

Token models are most often the models people have in their minds. Blueprints of houses and
motors in mechanical engineering, schemes in electrical engineering, and geographic maps
are typical representatives of token models. The main characteristic of this kind of models
is their one-to-one mapping to entities of the system under study. Typical example of this
kind of models is a map, depicted in Figure 6.6

Frankfurt

A9

Darmstadt Munich

Fürth

A5

A3

A3 MunichDarmstadt

representedBy representedBy

representedBy

Figure 6.6.: A map as an example of a token model [Kühne, 2005]

The purpose of token models is to isolate singular aspects of interest of the system under
study. For example, the model in the middle, which can be a part of the road map, isolates
the path of highways from Darmstadt to Munich. The model captures cities at the path
and motorways that connect them. If capturing a map in a larger scale is of interest, or
capturing less information, it is possible to have a model of the middle model, and in the
figure this is the model at the right side. Finally, if the figure at the left side is considered, it
is a geographic map, which is, also, a model of system which exists in reality, in this example
Germany. Here should be noticed that a model at the left side is not a metamodel of the
model in the middle, although it is a model of it. Furthermore, it should be noticed that a
model at the right side is also a model of the geographical map, and the system under study.
Accordingly, all three models in the figure are at the M1 layer in the metamodeling stack.

Token models are often called “instance models” and “snapshot models”. They are called,
“instance models”because they model instances and not types and“snapshot models”because
they can capture a configuration of a system at some time point [Kühne, 2005]. In UML,
Object diagram is used for modeling instance models.

52

6.2. Model Kinds and System at Runtime

In software engineering token models are not extensively used. They are used as basis
for simulations and for capturing some important system configurations. Nevertheless, for
performance estimation token models are essential. Servers in queuing networks are instance
models of the system. Furthermore, SPT and MARTE standards explicitly state that their
models are instance models.

Type Models

Type models use the power of human ability to classify objects according to their properties
which are of our interest, and use these classifications for drawing conclusions [Kühne, 2005].
This kind of models captures general characteristics of a set of objects, and group objects
according to them, contrary to instance models which do not group objects, but rather just
isolate an aspect of interest.

Type models are mostly used in software engineering, and a typical representative of type
models of a program is source code of an application, Figure 6.7

Java Runtime

Java Program

City.java Street.java

Munich Darm-
stadt

typeModelFor

UML Class Diagram

typeModelFor

instanceModelFor
City Street

2 *

Figure 6.7.: Java classes and UML Class Diagrams as type models of a running pro-
gram [Kühne, 2005]

Java program code for implementation of the road map presented in the previous subsec-
tion is the type model of the running application of road map in a computer. The mapping
from the model to the system under study, the running application in this case, is not one
to one as in token models, but rather one to many, because a concept in the Java program
code, the class City.java, maps to all of city objects of the running program. Java class only
specifies the characteristic of a city object, which is, to how many streets it can be related.
In MDE, when UML is used as a modeling language, a class diagram is also a type model
of the running program. It should be noticed the relation between the Java code and class
diagram of the application. Class diagram is a token model of the Java code, because the
mapping is one-to-one. This characteristic will be shown as important for the measurement
and assessment approach of this thesis.

6.2.3. The Runtime System and Model in Model Driven Measurement
and Assessment with Relational Traces

A formal connection of the system under study and the model is of significant importance
for ensuring the design intent and accuracy of models. Many modeling techniques had

53

6. Basic Assumptions

limited success because it was not always clear how the concepts used in models mapped to
the underlying implementation [Selic, 2003]. In the Model Driven Performance Measurement
and Assessment with Relational Traces we assume the following relations of models, depicted
in Figure 6.8

Java Runtime

Java Program

City.java Street.java

Munich Darm-
stadt

typeModelFor

UML Class Diagram

typeModelFor

instanceModelFor
City Street

2 *

UML Software ModelFormal Prediction Model

Runtime

typeModelFor

instanceModelFor
Java Program

UserInterface.java ItemFacade.java
instanceModelFor

typeModelFor

instanceModelFor

Figure 6.8.: Relations between UML software prescriptive model, formal performance pre-
diction model, and Java application at runtime

The formal prediction model is the instance model of the UML prescriptive model. As
discussed before, a UML prescriptive model is a type model of an executing system. As
discussed in Section 2.2, semantics of a UML model is given with the mapping to some
already defined domain. In the MoDePeMART, the semantics to the UML model is given
with a mapping to code. As explained before, this relation is an instance model for
relation. Following the rule of transitivity, the relation of formal performance prediction
model to code is that the prediction model is an instance model for code constructs.

At the end, formal definition of the execution of running application needs to be done.
In this approach we assume that a model of software systems models a control flow which
can be replicated for the purpose of serving multiple users concurrently. The way that the
concurrency is achieved is not of importance. It can be achieved with threads, processes
or sessions. The execution of the system needs to be formally defined in order to precisely
specify the language for measurement and assessment and to avoid it’s misuse.

For the formal definition of the relation between the prescriptive model and the system
execution, the discrete time model is adopted. In the discrete time model, the occurrence
time of an event is marked by timestamps and it is isomorphic to natural numbers [Clifford
and Tansel, 1985]. The time line is, in this model, divided into ordered closed time intervals,
called chronons. A chronon is a smallest duration of time that we can represent, and it is an
interval between two respective timestamps. The size of the chronon, or the amount of time
it represents is called the chronon granularity.

Here should be noticed that when an event is marked with a timestamp, it means that
that event happened during the chronon which starts at that particular timestamp. There
could be two events that happened at different time, but if both of them happened during
one chronon, they will be marked with the same time stamp [Dyreson and Snodgrass, 1993].

The execution of a software system can formally be defined as follows.

54

6.2. Model Kinds and System at Runtime

Let the M be a set of all elements of the software system functionality prescriptive model
(left hand side model in Figure 5.1). Let Th be a set of non-communicating processes/thread-
s/sessions for concurrent execution, i.e., processes/threads/sessions that do not exchange
messages between themselves. And let T the set of all timestamps. Finally, let the Ti be
Ti = T × T . Then an execution of the software system E is:

E ⊂M × Th× Ti

In common language an execution of a system is a set of executions of software parts
modeled with modeling elements in M. These software parts execute in some threads/pro-
cesses/sessions from Th in some time interval Ti. The first in the pair that is an element of
the Ti denotes the start timestamp of that event. The second one, the end timestamp.

In this execution formulation the Cartesian product of model and set of threads/process-
es/session identifiers is used to represent possibility of concurrent execution of the same
service. However, we consider that these services do not exchange information between
themselves. An example of this kind of execution model is implemented in Session Beans of
JEE systems.

With respect to time characterization of modeling elements, here it is considered that
all modeling elements can be classified in two general types, elements which occur only at
one time point in reality and, theoretically, do not have a duration, and elements which do.
This characterization of elements is already widely used in temporal databases [Snodgrass,
2000]. In the formal model, for modeling executions of modeling elements with no duration,
elements of Ti with equal values in pairs are used. The execution of a modeling element in
a thread/process/session with no duration is represented with pairs whose first and second
element differ.

55

7. Chapter
A Linguistic Metamodel for
Performance Measurement and
Assessment

The central contribution of this thesis is a performance measurement and assessment model-
ing language linguistic metamodel. This linguistic metamodel, MMpema, defines a modeling
language for declarative specification of execution context and metrics of interest. Later,
that context and metrics are transformed into a code for measurement and metrics com-
putation. This chapter describes the abstract syntax of the language in the form of sets.
UML Class Diagrams are, in this chapter, used for visualization of the linguistic metamodel.
Later, these UML Class diagrams are used as elements of the concrete syntax. The concrete
syntax is implemented in the form of a UML Profile, and is described in Section 9.

Conceptually, the linguistic metamodel can be divided into the three parts: metrics, as-
sessment, and context specification part. Formally, this is specified as:

MMpema = MMmetrics ∪MMassessment ∪MMcontext

The metrics part of the linguistic metamodel defines metrics which are computed for later
assessment. The assessment part of the linguistic metamodel is described in Section 7.2.
This part enables specification of time intervals for which specified metrics are computed.
Furthermore, it is used for specification of various statistical analysis of computed values.
Finally, the context part of the linguistic metamodel, the part which facilitates specification
of an event and its execution context, is described in Section 7.3. Besides explanation of
the metamodel, this chapter describes its static semantic. The static semantic is defined in
Section 7.4. The complete metamodel can also be found in Appendix B.

7.1. The Metrics Part of the Metamodel

Metrics for performance assessment defined in this linguistic metamodel correspond to per-
formance definition of this thesis, and UML SPT and MARTE standard metrics. The metrics
metamodel part is presented in Figure 7.1.

Formally, this metamodel part is defined as:

MMmetrics = {Metric, OccurrenceRate, OcurrencePercentage,
Analysis, StatisticalAnalysis, Statistic,Distribution,DistributionKind,
IntervalSet,

56

7.1. The Metrics Part of the Metamodel

Non-commercial Use Only

meandeviation
avdeviation
stdeviation

median
mean
mode

max
min

<<enumeration>>
Statistics

StatisticalAnalysis

-statisticalFunction : Statistics

OcurrencePercentage

Distribution

+kind : DistributionKind

<<enumeration>>
DistributionKind

cumulative
density

OcurrenceRate

IntervalSet

Duration

Analysis

Metric

1

1

ASA

MD

AD

DtoA+durationAnalysis 1*

MOR

DtoIS

+intervalSet1

*

MOP

Figure 7.1.: Metrics part of the linguistic metamodel

DtoA,DtoIS,

MOR,MOP,MD,

AD,ASA}
Metrics are, in the language defined with this lingusitic metamodel, specified as instances

of metaclasses specialized from the Metric metaclass. Metaclass Metric is specialized into
three metaclasses OcurranceRate, OccurrencePercentage, and Duration.

The metaclass OccurrencePercentage is used for the specification of computation of
execution percentage of each event in a set of predefined events. Event, in this thesis, is
considered as execution of a modeling element in a particular execution context. Execution
of a modeling element is actually an execution of a part of the application modeled with that
modeling element.

In performance prediction probability of an event occurrence in a control flow is also
considered when computing metrics estimates. For this reason, in definitions of execution
sequences, SPT and MARTE UML profiles allow the annotation of each alternative in branch-
ing with the probability of execution. OccurrencePercentage is used for assessment of
probability of execution of alternative sequences.

Performance, as defined in this thesis, is measured with throughput and response time. To
throughput and response time correspond OcurranceRate and Duration metaclasses of
this linguistic metamodel. Names of throughput and response time in the definition and SPT
and MARTE standards originate from performance evaluation of transformational software
systems. In reactive systems, a state does not have a response time. Instead, a system
spends some time in a state and, therefore, it is more appropriate to call this characteristic
a duration. For the similar reason it is better to rename throughput into occurrence rate.
A state can not be a job, it can rather occur during execution. From the transformational
perspective, this means that a duration of a service is a response time, and the occurrence
rate of service execution is the throughput.

OcurranceRate is the metaclass which enables specification of computation of the num-

57

7. A Linguistic Metamodel for Performance Measurement and Assessment

ber of events in a time unit. It is computed by dividing the number of occurrences in a
time interval by the length of that interval. Specification of an interval length for which
occurrence rate is measured is enabled with metaclasses from the assessment part of the
metamodel, described in the next section.

Specification of measurement and computation of duration of the execution of a particular
event is specified with the metaclass Duration. The duration of execution of a part of
program modeled by some modeling element is seldom a constant value. For this reason,
duration is presented with some statistical function. The statistical function of interest can
vary. In hard real time systems, of interest are minimum and maximum values, because all
occurrences have to be above or below some predefined thresholds. Such real time system
is the airbag system. If it an airbag is opened to early or too late it will not succeed in
saving the person in the car. In soft real time systems, only a large enough number of
occurrences have to satisfy required thresholds. In oder to show the level of satisfaction of
thresholds, values like mean, median, standard deviation, average, mean deviation and so on,
of duration are used. Furthermore, durations of events are often predicted and specified with
density and cumulative distribution functions. For this reason, the ability for computation
of summarizing statistics and density and cumulative distribution functions are needed. In
order to provide previously stated requirements, in the metrics metamodel part, statistical
analysis of a set of event durations is specified with the attribute durationAnalysis, whose
type is Analysis. Analysis metaclass is later specialized into the StatisticalAnalysis
and Distribution metaclasses.

StatisticalAnalysis is class for specification of a summarizing statistical function of
interest. Set of statistical functions which can be specified are given in the enumeration
Statistics. This set of functions can be easily extended, and statistical functions which are
not in this set added.

Distribution metaclass facilitates ability of measuring and computing distribution func-
tions. Distribution function is defined in the attribute kind. This attribute is of Distri-
butionKind enumeration type and can be either cumulative or density. These enu-
merations are used for specification of computation of histogram and cumulative histogram,
respectively. For this reason attribute intervalSet, of type IntervalSet always contains a
set of intervals, which are cells of the resulting histogram. More on IntervalSet is given in
Section 7.2.

In the following the definition of this linguistic metamodel in set theory is given. This is
done in order to precisely define the relations between classes of this linguistic metamodel,
and to define its abstract syntax.

Let Metric, OcurrenceRate, OcurrencePercentage and Duration be sets of met-
ric, occurrence rate, occurrence percentage and duration specifications, respectively. Then
specializations of the Metric metaclass to the OcurrenceRate, OcurrencePercentage
and Duration classes are defined as:

MOR = {(m, or) : (m ∈Metric) ∧ (or ∈ OccurrenceRate)∧
6 ∃(m1, or1) ∈MOR
(((m = m1) ∧ (or 6= or1)) ∨ ((m 6= m1) ∧ (or = or1)))∧
6 ∃op ∈ OccurrencePercentage, d ∈ Duration(((m, op) ∈MOP)∨
((m, d) ∈MD))},

58

7.1. The Metrics Part of the Metamodel

MOP = {(m, op) : (m ∈Metric) ∧ (op ∈ OccurrencePercentage)∧
6 ∃(m1, op1) ∈MOP
(((m = m1) ∧ (op 6= op1)) ∨ ((m 6= m1) ∧ (op = op1)))∧
6 ∃or ∈ OccurrenceRate, d ∈ Duration(((m, or) ∈MOR)∨
((m, d) ∈MD))},

MD = {(m, d) : (m ∈Metric) ∧ (d ∈ Duration)∧
6 ∃(m1, d1) ∈MD
(((m = m1) ∧ (d 6= d1)) ∨ ((m 6= m1) ∧ (d = d1)))∧
6 ∃or ∈ OccurrenceRate, op ∈ OccurrencePercentage
(((m, or) ∈MOR) ∨ ((m, op) ∈MOP))},

Metric = {m : ∃or ∈ OccurrenceRate, op ∈ OcurrencePercentage, d ∈ Duration
(((m, or) ∈MOR)) ∨ ((m, op) ∈MOP) ∨ ((m, d) ∈MD)}.

OccurrenceRate = {or : ∃(m1, or1) ∈MOR(or = or1)}

OccurrencePercentage = {op : ∃(m1, op1) ∈MOP (op = op1)}

Duration = {d : ∃(m1, d1) ∈MD(d = d1)}

The previous set of definitions shows the pattern for specifying a specialization relation
throughout this thesis! Instances of a metaclass which is a specialization of some other
metaclasses are related to instances of the general metaclass. This relation is injective,
which means that each instance of a specialized metaclass can be in relation with only one
instance of the general metaclass. Furthermore, an instance of the general metaclass can be
in specialization relation with only one instance of specialized metaclasses. With this set
of definitions it is achieved that an instance of specialized metaclass and an instance of the
generalized metaclass form one separate unit, and can be treated as one separate object.
This is actually the actual case in object oriented languages.

Association between Duration and Statistic is defined as relation DtoA:

DtoA = {(d, a) : (d ∈ Duration) ∧ (a ∈ Analysis)∧
6 ∃d1 ∈ Duration, a1 ∈ Analysis
((d = d1) ∧ (a 6= a1) ∧ (((d1, a1) ∈ DtoA)))∧
∀d2 ∈ Duration∃a2 ∈ Analysis((d2, a2) ∈ DtoA)}

The constraint given in the definition is for defining multiplicity of the association.
The Analysis metaclass specializes in two subclasses, Distribution and Statistical-

Analysis, and the specializations are defined similarly to the Metric metaclass:

AD = {(a, di) : (a ∈ Analysis) ∧ (di ∈ Distribution)∧
6 ∃(a1, di1) ∈ AD(((a = a1) ∧ (di 6= di1)) ∨ ((a 6= a1) ∧ (di = di1)))∧
6 ∃sa ∈ StatisticalAnalysis((a, sa) ∈ ASA)},

ASA = {(a, sa) : (a ∈ Analysis) ∧ (sa ∈ StatisticalAnalysis)∧

59

7. A Linguistic Metamodel for Performance Measurement and Assessment

6 ∃(a1, sa1) ∈ ASA
(((a = a1) ∧ (sa 6= sa1)) ∨ ((a 6= a1) ∧ (sa = sa1)))∧
6 ∃d ∈ Distribution((a, d) ∈ AD)},

Analysis = {a : ∃di ∈ Distribution, sa ∈ StatisticalAnalysis
(((a, di) ∈ AD) ∨ ((a, sa) ∈ ASA))}

Distribution = {di : ∃(a1, di1) ∈ AD(di = di1)}

The StatisticalAnalysis metaclas is defined as:

StatisticalAnalysis = {sa : sa = (statisticalFunction)∧
(statisticalFunction ∈ Statistics)∧
∃(a1, sa1) ∈ ASA(sa = sa1)}.

The enumeration Statistics is defined as:

Statistics = {min,max,median, ..., stdeviation, avdeviation,meandeviation}, and can
be extended for an open set of statistical functions.

The metaclass Distribution is used for specifying distribution measurements and com-
putation, and it is defined in the following.

Let DistributionKind be a set defined to specify what kind of distribution is desired to
be computed defined as:

DistributionKind = {density, cumulative}.

Then the Distribution metaclass is defined as:

Distribution = {distribution : distribution = (kind) ∧ kind ∈ DistributionKind}.

Finally, the IntervalSet is used for the definition of distribution histogram bars. The
association between Distribution and IntervalSet is defined as the relation DtoIS :

DtoIS = {(di, is) : (di ∈ Distribution) ∧ (is ∈ IntervalSet)∧
6 ∃di1 ∈ Distribution, is1 ∈ IntervalSet((di = di1) ∧ (is 6= is1)∧
(((di1, is1) ∈ DtoIS)))∧
∀di2 ∈ Distribution∃is2 ∈ IntervalSet((di2, a2) ∈ DtoIS)}.

7.2. The Assessment Part of the Linguistic Metamodel

The assessment part of the linguistic metamodel enables specification of metrics compu-
tation and time intervals for which these metrics are computed. Furthermore, it enables

60

7.2. The Assessment Part of the Linguistic Metamodel

specification of metrics computed for particular time intervals. This is formaly specified as

MMassessment = MMcomputation ∪MMintervalset

. The assessment linguistic metamodel part is presented in Figure 7.2

CompositeAssessmentSimpleAssessment

TimeIntervalSet

Assessment

Analysis

Metric

Group

CAtoAs
+previousLevelAssessment
1

*

CAtoA+metricAnalysis
1

*

SAtoG

+assessmentGroup1

AsCAAsSASAtoM+metric
1

*

AstoTIS

+timeIntervalSet1

*

*

Figure 7.2.: Analysis part of the linguistic metamodel

Formally, MMcomputation is defined as:
MMcomputation = {Assessment, SimpleAssessment, CompositeAssessment,

Metric, Analysis,Group, T imeIntervalSet,
AstoTIS, SAtoM, SAtoG,CAtoA,CAtoAs
AsSA,AsCA,}

Metaclasses Metric and Analysis are defined in the previous section. The central meta-
class of this linguistic metamodel for measurement and assessment is the Assessment meta-
class. This metaclass is the root of each measurement and metric computation specification.
It specializes in two metaclasses SimpleAssessment and CompositeAssessment. For-
mally, this is defined as:

AsSA = {(as, sas) : (as ∈ Assessment) ∧ (sa ∈ SimpleAssessment)∧
6 ∃(as1, sas1) ∈ AsSA
(((as = as1) ∧ (sas 6= sas1)) ∨ ((as 6= as1) ∧ (sas = sas1)))∧
6 ∃ca ∈ CompositeAssessment((as, ca) ∈ AsCA)},

AsCA = {(as, ca) : (as ∈ Assessment) ∧ (ca ∈ CompositeAssessment)∧
6 ∃(as1, cas1) ∈ AsCA
(((as = as1) ∧ (cas 6= cas1)) ∨ ((as 6= as1) ∧ (cas = cas1)))∧
6 ∃sa ∈ SimpleAssessment((as, sa) ∈ AsSA)},

Assessment = {as : ∃sa ∈ SimpleAssessment, ca ∈ CompositeAssessment
(((as, sa) ∈ ASsA) ∨ ((as, sa) ∈ AsCA))}.

61

7. A Linguistic Metamodel for Performance Measurement and Assessment

SimpleAssessment = {sas : ∃(as1, sas1) ∈ AsSA(sas = sas1)}

CompositeAssessment = {cas : ∃(as1, cas1)(cas = cas1)}

SimpleAssessment is the metaclass for specification of basic metric computations. Basic
metric computations are computations of occurrence percentage, statistical value of duration,
and occurrence rate for specified event sets in specified time intervals. An example of basic
measurements and metric computation are measurements and computation of occurrence
rate of each minute of a day.

Specification of metrics, time intervals, and event sets, is facilitated with attributes met-
ric, timeIntervalSet and assessmentGroup of types Metric, TimeIntervalSet, and
Group, respectively. Metric metaclass is explained in previous section, TimeIntervalSet
metaclass enable specification of set of time intervals for which the desired metric is com-
puted. Group metaclass groups events for which the desired metric is computed. For
example, with an instance of the Group metaclass, a set of events for which occurrence
percentages are computed can be specified. Or in the case of computation of a throughput
of a component, with an instance of Group metaclass all methods of that component would
be grouped.

The association between SimpleAssessment and Metric is formally specified as rela-
tion SAtoM :

SAtoM = {(sa,m) : (sa ∈ SimpleAssessment) ∧ (m ∈Metric)
6 ∃sa1 ∈ SimpleAssessment,m1 ∈Metric
((sa = sa1) ∧ (m 6= m1) ∧ (((sa1,m1) ∈ SAtoM)))∧
∀sa2 ∈ SimpleAssessment∃m2 ∈Metric((sa2,m2) ∈ SAtoM)}

Formal specification of the association between SimpleAssessment and Group is the
relation SAtoG. The relation SAtoG is formally defined as:

SAtoG = {(sa, g) : (sa ∈ SimpleAssessment) ∧ (m ∈ Group)
6 ∃sa1 ∈ SimpleAssessment, g1 ∈ Group
((sa = sa1) ∧ (g 6= g1) ∧ (((sa1, g1) ∈ SAtoG)))∧
∀sa2 ∈ SimpleAssessment∃g2 ∈ Group((sa2, g2) ∈ SAtoG)}

Finally, in the same way is specified the association between Assessment and TimeIn-
tervalSet, entitled AtoTIS :

AtoTIS = {(as, tis) : (as ∈ Assessment) ∧ (tis ∈ TimeIntervalSet)
6 ∃as1 ∈ Assessment, tis1 ∈ TimeIntervalSet
((as = as1) ∧ (tis 6= tis1) ∧ (((as1, tis1) ∈ AtoTIS)))∧
∀as2 ∈ Assessment∃tis2 ∈ TimeIntervalSet((as2, tis2) ∈ AtoTIS)}

In previously mentioned example, the computation of occurrence rate in each minute of
a day, value of metric attribute of the SimpleAssessment metaclass instance would be
an instance of the OccurrenceRate metaclass. Moreover, the timeIntervalSet attribute

62

7.2. The Assessment Part of the Linguistic Metamodel

would contain an instance of TimeIntervalSet metaclass. This TimeIntervalSet meta-
class would contain a definition of a set of 1440 (24× 60) one minute intervals. The TimeIn-
tervalSet metaclass is explained later in this section. In the attribute assessmentGroup
would be specified a set of events for which throughput is computed. The specification of
event sets is explained in Section 7.3.

CompositeAssessment metaclass enables higher level of performance measurement and
assessment. It uses a basic or a composite assessment, and computes statistical functions of
metric values in those assessments. The values to be analyzed are specified by the previ-
ousLevelAssessment attribute, and the desired statistical analysis by the metricAnal-
ysis attribute. For example, the density distribution of throughput is one composite assess-
ment. In this case, a value of the previousLevelAssessment attribute could be previously
mentioned simple assessment throughput for each minute of the day. The specified metric
in the metricAnalysis attribute would then be the density distribution.

Finally, the composite assessment is also performed for a time interval, or interval set. For
example, if it is of interest to measure and compute throughput density distribution of each
hour of a day for one day. Time interval set is specified in the attribute timeIntervalSet,
which is inherited from the Assessment metaclass. In this case the value of the timeIn-
tervalSet attribute would be an instance of TimeIntervalSet containing the definition
of 24 one hour intervals. If an observation of the throughput density distribution for whole
day period is of interest, this instance would contain only one interval of 24 hours. Formal
specification of this metamodel part is in the following.

Relation CAtoAs is the abstract syntax definintion of the association between Comp-
siteAssessment and Assessment :

CAtoAs = {(ca, as) : (ca ∈ CompositeAssessment) ∧ (as ∈ Assessment)∧
6 ∃ca1 ∈ CompositeAssessment, as1 ∈ Assessment
((ca = ca1) ∧ (as 6= as1) ∧ ((ca1, as1) ∈ CAtoAs))∧
∀ca2 ∈ CompositeAssessment∃as2 ∈ Assessment((ca2, as2) ∈ CAtoAS)}

The association between CompositeAssessment and Analysis is formally defined as
relation CAtoA:

CAtoA = {(ca, a) : (ca ∈ CompositeAssessment) ∧ (a ∈ Analysis)∧
6 ∃ca1,∈ CompositeAssessment, a1 ∈ Analysis
(ca = ca1) ∧ (a 6= a1) ∧ ((ca1, a1) ∈ CAtoA)∧
∀ca2 ∈ CompositeAssessment∃a2 ∈ Analysis((ca2, a2) ∈ CAtoA)}

Attribute metricStatistic of the metaclass CompositeAssessment is of type Anal-
ysis. This metaclass is described in previous section. The Analysis metaclass specializes
in Distribution and StatisticalAnalysis metaclasses as shown in Figure 7.1. For Dis-
tribution metaclass, the attribute intervalSet is presented in Figure 7.3.

This part of the abstract syntax is represented as:

MMintervalset = {IntervalSet, T imeIntervalSet, RealNumbersIntervalSet,
T Interval, RealNumbersInterval, T imeInstant, double

63

7. A Linguistic Metamodel for Performance Measurement and Assessment

y

RealNumbersIntervalSet

-interval : RealNumbersInterval [1..*]

TInterval

-startTimeInstant : TimeInstant
-endTimeInstant : TimeInstant

-h : int
-min : int
-sec : int
-msec : int
-usec : int
-nsec : int
-d : int
-w : int
-y : int

TimeInstant

TimeIntervalSet

-interval : TInterval [1..*]

RealNumbersInterval

-lowerBound : double
-upperBound : double

IntervalSet

ISRNISISTIS

Figure 7.3.: Interval sets of the linguistic metamodel

ISTIS, ISRNIS}

The datatype double is the standard datatype for real numbers, and it is not defined as
a metaclass class in the Figure.

In this linguistic metamodel two kinds of sets of intervals for specification of measurements
and metrics computation are distinguished, sets of time intervals, and sets of real numbers
intervals. These sets are depicted with TimeIntervalSet and RealNumbersIntervalSet
metaclasses, respectively. TimeIntervalSet class facilitates specification of sets of time
intervals with a collection of TInterval instances in the interval attribute. A time interval
is defined with two boundary time instants. Boundary time instant are in metaclass TInterval
defined as startTimeInstant and endTimeInstant attributes of type TimeInstant.
The granularity of discrete time model can vary and variations result in changes of attributes
of TimeInstant class.

Similarly to the TimeIntervalSet metaclass, RealNumbersIntervalSet has a collec-
tion of RealNumbersIntervals in the attribute interval. Each RealNumbersInterval
is bounded with upperBound and lowerBound of type double.

Let ISTIS and ISRNIS be relations of specialization defined at the end of this section.
Formally, the metaclasses and their relations of this metamodel part are defined in the fol-
lowing.

TInterval = {tInterval : tInterval = (startT imeInstant, endT imeInstant)∧
(startT imeInstant ∈ TimeInstant)∧
(endT imeInstant ∈ TimeInstant)}

TimeIntervalSet = {tis : (tis = (interval)) ∧ (interval ⊆ TInterval)∧
(card(interval) ≥ 1)∧
∃(is1, tis1) ∈ ISTIS(tis = tis1)}

RealNumbersInterval = {(lowerBound, upperBound) :
(lowerBound ∈ double)∧ (upperBound ∈ double)}

64

7.3. The Event and Context Part of the Linguistic Metamodel

RealNumbersIntervalSet = {rnis : (rnis = (interval))∧
(interval ⊆ RealNumbersInterval) ∧ (card(interval) ≥ 1)
∃(is1, rnis1) ∈ ISRNIS(rnis = rnis1)}

The set TimeInstance is not defined due to possible changes of the granularity from
project to project and system to system. For example, in information systems, the granularity
of TimeInstance must not go below the size of a milisecond, while in real-time systems
the granularity of nanoseconds might be of interest. Formal specification would be only a
definition of elements of set TimeInstance as tuples with a component for each attribute.
The set double is a representation of the R set.

Finally, the specializations from the IntervalSet metaclass to the TimeIntervalSet
and RealNumbersIntervalSet metaclasses are defined like follows.

ISTIS = {(is, tis) : (is ∈ IntervalSet) ∧ (tis ∈ TimeIntervalSet)∧
6 ∃(is1, tis1) ∈ ISTIS
(((is = is1) ∧ (tis 6= tis1)) ∨ ((is 6= is1) ∧ (tis = tis1)))∧
6 ∃rnis ∈ RealNumbersIntervalSet((is, rnis) ∈ ISRNIS)},

ISRNIS = {(is, rnis) : (is ∈ IntervalSet) ∧ (tis ∈ TimeIntervalSet)∧
6 ∃(is1, rnis1) ∈ ISRNIS
(((is = is1) ∧ (rnis 6= rnis1)) ∨ ((is 6= is1) ∧ (rnis = rnis1)))∧
6 ∃tis ∈ TimeIntervalSet((is, tis) ∈ ISTIS)},

IntervalSet = {is : ∃tis ∈ TimeIntervalSet, rnsi ∈ RealNumbersIntervalSet
(((is, tis) ∈ ISTIS) ∨ ((is, rnis) ∈ RNIS))}.

7.3. The Event and Context Part of the Linguistic
Metamodel

The event and context part of this linguistic metamodel enables specification of events for
which metrics are measured and computed. In specification of an event, the definition of its
execution context is of crucial importance. As previously defined, an event in an application
is defined with a modeling element execution and its execution context. Execution context is
sequence of events before and after the event of interest, also called scenario, and state of the
system when the event of interest occurs. Formally, this part of the metmodel is specified as

MMcontext = MMtcontext ∪MMrcontext

In the transformational systems the response time dependency on their invocation context
is well studied by Rohr et al. [2008], Ammons et al. [1997], and Hamou-Lhadj and Leth-
bridge [2004]. An example of the need for the definition of performance measurement and
assessment of an event in a particular scenario can be found in the electronic items manage-
ment application. In Figure 6.2 at the page 45 is presented a workflow of the application

65

7. A Linguistic Metamodel for Performance Measurement and Assessment

in the case of obtaining video files. When a user obtains a movie, getItem method of an
instance of ItemFacade is invoked twice, once for the trailer and once for the movie. If the
mean response time of that method is measured and computed independent of the invoca-
tion context, it would be done for both invocations together. Because the size of the trailer
is significantly smaller than the size of the movie, the value of mean response time can be
misleading. If the performance problem is in obtaining movie files, it would be hard to notice
due to significantly smaller value of the mean response time. The linguistic metamodel has
to facilitate the isolation of the invocation of getItem for obtaining a video file. In order to
perform this, the contexts of getItem method invocation, in which it is assessed, must be
specified.

Specification of assessment event of interest can be done using the following part of the
linguistic metamodel, presented in Figure 7.4

For Non-commercial Use Only

InstrumentedElement

StateCondition

MeasuredEvent

ScenarioEvent

SubScenario

Alternatives

Scenario

NegativePrecedeContain

Group

Root

MEtoSE

+measuredScenarioEvent
1

*

NtoSS

+absent 1

*SSN+scenarioEventCondition
0..1 *

StoSE

+scenarioEvent
*

*

CtoSS

+contained1

SSSE

RSE
CtoSE

+contains1

PdtoSS+preceded1

1

PstoSS
+precedes

1

1
SSP

AtoR
+alternative

1..*

*

RC

SEtoIE

+instrumentedElement
1

*

StoR

+scenarioRoot1

SSA

MEtoS

+eventScenario1

*

SSC

GtoME +groupEvent*

*

0..1

Figure 7.4.: Transformational context part of the linguistic metamodel

This metamodel part is formally defined as:

MMtcontext = {Group,MeasuredEvent, Scenario, Root,

InstrumentedElement, StateCondition,

SubScenario, ScenarioEvent, Alternatives, Contain, Precede,Negative, int

GtoME,MEtoSE,MEtoS, StoR, StoSE,AtoR,CtoSE,CtoSS,

PdtoSE, PstoSE,NtoSE, SEtoIE, SEtoSC,

RC,RSE, SSSE, SSA, SSC, SSP, SSN}

The int in the formal specification of the metamodel is the standard datatype for integers,
and it is not presented in the Figure 7.4 because its existence is assumed.

66

7.3. The Event and Context Part of the Linguistic Metamodel

The metaclass Group enables specification of set of events forming one measurement and
assessment entity. Use cases for which SLA are defined can be designed in several scenarios
and states. For example, if of interest for measurement and assessment is a throughput of a
component. Then, all methods of that component have to be grouped and for this group the
throughput computed. Or as another example, let us consider again the electronic item man-
agement application, explained in Chapter 6.1. Let us, more assume, that the service in SLA
is defined for obtaining a music file. The obtaining of music file can be either an album track,
explained as one of alternatives in Figure 6.3 at the page 46, or a music video, specified as one
of options in Figure 6.2 at the page 45. The Group metaclass enables grouping these two
use cases and computation of desired metrics for them. Formally it is defined in the following.

The relation GtoME is a formal model of the association between Group and Mea-
suredEvent,

GtoME = {(g,me) : (g ∈ Group) ∧ (me ∈MeasuredEvent)}

MeasuredEvent metaclass enables specification of execution context of an event and the
event of interest for assessment. It contains two attributes eventScenario of type Sce-
nario for specification of context of event of interest and measuredScenarioEvent of
type ScenarioEvent for specification of the event of interest within previously specified
context. Formally, this is defined as follows.

The association between MeasuredEvent and Scenario is formally defined as the rela-
tion MEtoS :

MEtoS = {(me, s) : (me ∈MeasuredEvent) ∧ (s ∈ Scenario)∧
6 ∃me1,∈MeasuredEvent, s1 ∈ Scenario
(me = me1) ∧ (s 6= s1) ∧ ((me1, s1) ∈MEtoS)∧
∀me2 ∈MeasuredEvent∃s2 ∈ Scenario((me2, s2) ∈MEtoS)}

And the association between MeasuredEvent and ScenarioEvent is formally defined
as the relation MEtoSE.

MEtoSE = {(me, se) : (me ∈MeasuredEvent) ∧ (se ∈ ScenarioEvent)∧
6 ∃me1,∈MeasuredEvent, se1 ∈ ScenarioEvent
(me = me1) ∧ (se 6= se1) ∧ ((me1, se1) ∈MEtoSE)∧
∀me2 ∈MeasuredEvent∃se2 ∈ ScenarioEvent((me2, se2) ∈MEtoSE)}

The Scenario metaclass enables specification of the context in which desired event oc-
curs. This metaclass corresponds to the MARTE UML Profile BehaviorScenario class.
A context or a scenario is specified with a set of modeling elements whose executions form
the scenario and relations between these events. The set of events is specified in the at-
tribute scenarioEvent of type ScenarioEvent. Their relations definition start with the
attribute scenarioRoot of type Root. The ScenarioEvent and the Root metaclasses are
explained later in this section. Formal definition of the associations defining the attributes

67

7. A Linguistic Metamodel for Performance Measurement and Assessment

of the Scenario metaclass is in the following.

The association between Scenario and Root is defined as relation StoR

StoR = {(s, r) : (s ∈ Scenario) ∧ (s ∈ Root)∧
6 ∃s1,∈ Scenario, r1 ∈ Root
(((s = s1) ∧ (r 6= r1)) ∨ ((s 6= s1) ∧ (r = r1))) ∧ ((s1, r1) ∈ StoR)∧
∀s2 ∈ Scenario∃r2 ∈ Root((s2, r2) ∈ StoR)}

And the association between Scenario and ScenarioEvent is defined as the relation
StoSE

StoSE = {(s, se) : (s ∈ Scenario) ∧ (se ∈ ScenarioEvent)∧
6 ∃s1 ∈ Scenario, se1 ∈ ScenarioEvent
(s = s1) ∧ (se 6= se1) ∧ ((s1, se1) ∈ StoSE)∧
∀s2 ∈ Scenario∃se2 ∈ ScenarioEvent((s2, se2) ∈ StoSE)}

A scenario always starts with an invocation of a modeling element. For this reason, the
Root metaclass is specialized into two metaclasses: (1) ScenarioEvent, which models sce-
nario that consists of only one invocation, and (2)Contain, for specification of scenarios
with more than one invocation. Formally:

RSE = {(r, se) : (r ∈ Root) ∧ (se ∈ ScenarioEvent)∧
6 ∃(r1, se1) ∈ RSE
(((r = r1) ∧ (se 6= se1)) ∨ ((r 6= r1) ∧ (se = se1)))∧
6 ∃c ∈ Contain((r, c) ∈ RC)},

RC = {(r, c) : (r ∈ Root) ∧ (c ∈ Contain)∧
6 ∃(r1, c1) ∈ RC
(((r = r1) ∧ (c 6= c1)) ∨ ((r 6= r1) ∧ (c = c1)))∧
6 ∃se ∈ ScenarioEvent((r, se) ∈ RSE)},

Root = {r : ∃se ∈ ScenarioEvent, c ∈ Contain
(((r, se) ∈ RSE) ∨ ((r, c) ∈ RC))}

Metaclasses Contain and ScenarioEvent are formally defined later in this section.
The Contain metaclass defines invocation composition of model elements, explained in

Section 6.1. Invocation composition is the composition where the execution of one event
starts after the beginning and ends before the end of the execution of the invoking event.
For this reason, the Contains metaclass has two attributes contains and contained. The
attribute contains is the event which invokes and contained is the invoked event. The
event which invokes has to be a modeling element execution, specified with an Scenari-
oElement instance, and the invoked event can be an instance of any metaclass specialized
from the SubScenario metaclass.

The SubScenario metaclass enables specification and composition of basic scenario units.
Scenario composition units are elements for transformational system specification defined

68

7.3. The Event and Context Part of the Linguistic Metamodel

in Section 6.1. These units are command execution, guarded command, guarded
command set, and loop. They are composed with invocation and sequential composition
relations. In order to enable specification of relations and basic scenario units, SubScenario
metaclass is specialized to five metaclasses Contain, Precede, Alternatives, Negative
and ScenarioEvent.

Composite and simple commands measurements are specified with instances of the
metaclass ScenarioEvent.

For specification of the invocation relation, as already mentioned, the metaclass Con-
tain is used. The sequential composition between scenario elements is modeled using
instances of the Precede metaclass. The Precede metaclass has two attributes, precedes
and preceded, both of type SubScenario. The attribute precedes specifies an instance of
SubScenario which begins and ends before the start of the program part modeled with an
instance of SubScenario defined in preceded attribute.

Guarded command sets are specified with instances of the metaclass Alternatives.
Each guarded actions in a guarded command set is modeled as an alternative sub scenarios.
Alternative sub scenarios are defined in the alternative attribute. The attribute alterna-
tive is of type Root because each alternative block in a sub scenario is a scenario itself and
starts with a root.

Alternative execution sequences in guarded actions are specified with usage of an instance
of the Negative metaclass. An example can be found in the case study, in Figure 6.2 at the
page 45. Let us assume that response time of getItem method is of interest. To measure
this execution, it has to be assured not only that getItem executes in the getVideoItem
method execution, but also that option block did not execute. For this reason, scenario would
be specified like getVideoItem method which contains a precede relation between negation
of option block and getItem method, and the measured event would be the getItem invoca-
tion. In this way, getItem items which are contained in the option block would be removed
from computing. Negation is necessary, because in the case when a scenario would be defined
like getVideoItem which contains getItem, and getItem marked as the measured event,
getItem executions in the option block would be also integrated in computation, because its
execution starts after and ends before the getVideoItem execution. The formal semantics
of the language explains this in detail.

Loops are specified with an instance of the Contain metaclass. The relation between
a loop and a sub scenario inside the loop is invocation, because loop starts and executions
of elements inside are started and ended before the loop ends. Finally, ScenarioEvent is
used for specification of invocation.

Formally, these metaclasses and their interrelations are defined as:

SSSE = {(ss, se) : (ss ∈ SubScenario) ∧ (se ∈ ScenarioEvent)∧
6 ∃(ss1, se1) ∈ SSSE
(((ss = ss1) ∧ (se 6= se1)) ∨ ((ss 6= ss1) ∧ (se = se1)))∧
6 ∃a ∈ Alternatives((ss, a) ∈ SSA)∧
6 ∃c ∈ Contain((ss, c) ∈ SSC)∧
6 ∃p ∈ Precede((ss, p) ∈ SSP)∧
6 ∃n ∈ Negation((ss, n) ∈ SSN)}

SSA = {(ss, a) : (ss ∈ SubScenario) ∧ (a ∈ Alternatives)∧

69

7. A Linguistic Metamodel for Performance Measurement and Assessment

6 ∃(ss1, a1) ∈ SSA
(((ss = ss1) ∧ (a 6= a1)) ∨ ((ss 6= ss1) ∧ (a = a1)))∧
6 ∃se ∈ ScenarioEvent((ss, se) ∈ SSSE)∧
6 ∃c ∈ Contain((ss, c) ∈ SSC)∧
6 ∃p ∈ Precede((ss, p) ∈ SSP)∧
6 ∃n ∈ Negation((ss, n) ∈ SSN)}

SSC = {(ss, c) : (ss ∈ SubScenario) ∧ (a ∈ Contain)∧
6 ∃(ss1, c1) ∈ SSC
(((ss = ss1) ∧ (c 6= c1)) ∨ ((ss 6= ss1) ∧ (c = c1)))∧
6 ∃se ∈ ScenarioEvent((ss, se) ∈ SSSE)∧
6 ∃a ∈ Alternatives((ss, a) ∈ SSA)∧
6 ∃p ∈ Precede((ss, p) ∈ SSP)∧
6 ∃n ∈ Negation((ss, n) ∈ SSN)}

SSP = {(ss, p) : (ss ∈ SubScenario) ∧ (p ∈ Precede)∧
6 ∃(ss1, p1) ∈ SSP
(((ss = ss1) ∧ (p 6= p1)) ∨ ((ss 6= ss1) ∧ (p = p1)))∧
6 ∃se ∈ ScenarioEvent((ss, se) ∈ SSSE)∧
6 ∃a ∈ Alternatives((ss, a) ∈ SSA)∧
6 ∃c ∈ Contain((ss, c) ∈ SSC)∧
6 ∃n ∈ Negation((ss, n) ∈ SSN)}

SSN = {(ss, n) : (ss ∈ SubScenario) ∧ (n ∈ Negation)∧
6 ∃(ss1, n1) ∈ SSN
(((ss = ss1) ∧ (n 6= n1)) ∨ ((ss 6= ss1) ∧ (n = n1)))∧
6 ∃se ∈ ScenarioEvent((ss, se) ∈ SSSE)∧
6 ∃a ∈ Alternatives((ss, a) ∈ SSA)∧
6 ∃c ∈ Contain((ss, c) ∈ SSC)∧
6 ∃p ∈ Precede((ss, p) ∈ SSP)}

SubScenario = {ss :
∃se ∈ ScenarioEvent, a ∈ Alternatives, c ∈ Contain, p ∈ Precede, n ∈ Negation

(((ss, se) ∈ SSSE) ∨ ((ss, a) ∈ SSA) ∨ ((ss, c) ∈ SSC)∨
((ss, p) ∈ SSP) ∨ ((ss, n) ∈ SSN))}

ScenarioEvent = {se : (se = (id)) ∧ (id ∈ int)∧
∃(r1, se1) ∈ RSE(se = se1)∧
∃(ss2, se2) ∈ SSSE(se = se2)}

Instances of the ScenarioEvent metaclass have to be related to instances of the both
metaclasses it specializes. Furthermore, the id attribute of this metaclass is identifier for the
instances of the ScenarioEvent metaclasses. Herewith can be modeled several instances
related to the same instrumented element and state context. This is needed for facilitating
the well-formedeness rule 7.

70

7.3. The Event and Context Part of the Linguistic Metamodel

Alternatives = {a : ∃(ss1, a1) ∈ SSA(a = a1)}

Contain = {c : ∃(ss1, c1) ∈ SSC(c = c1)∧
∃(r2, c2) ∈ RC(c = c2)}

The Contain metaclass specializes Root and SubScenario metaclasses. For this reason it
has previously defined rules on its elements.

Precede = {p : ∃(ss1, p1) ∈ SSP (p = p1)}

Negation = {n : ∃(ss1, n1) ∈ SSP (n = n1)}

The association between the metaclass Contain and ScenarioEvent which defines con-
tains attribute of Contain class is defined with the relation CtoSE :

CtoSE = {(c, se) : (c ∈ Contains) ∧ (se ∈ ScenarioEvent)∧
6 ∃c1 ∈ Contains, se1 ∈ ScenarioEvent
((c = c1) ∧ (se 6= se1) ∧ ((c1, se1) ∈ CtoSE))∧
∀c2 ∈ Contains∃se2 ∈ ScenarioEvent((c2, se2) ∈ CtoSE)}

The relation CtoSS formally defines the association between metaclasses Contain and
SubScenario. This relation specifies the attribute contained :

CtoSS = {(c, ss) : (c ∈ Contain) ∧ (ss ∈ SubScenario)∧
6 ∃c1 ∈ Contain, ss1 ∈ SubScenario
((c = c1) ∧ (ss 6= ss1) ∧ ((c1, ss1) ∈ CtoSS))∧
∀c2 ∈ Contains∃ss2 ∈ SubScenario((c2, ss2) ∈ CtoSS)}

Associations which define attributes precedes and preceded of the metaclass Precede
are defined with relations PstoSS and PdtoSS, respectively:

PstoSS = {(p, ss) : (c ∈ Precede) ∧ (ss ∈ SubScenario)∧
6 ∃p1 ∈ Precede, ss1 ∈ SubScenario
((p = p1) ∧ (ss 6= ss1) ∧ ((p1, ss1) ∈ PstoSS))∧
∀p2 ∈ Precede∃ss2 ∈ SubScenario((p2, ss2) ∈ PstoSS)}

PdtoSS = {(p, ss) : (p ∈ Precede) ∧ (ss ∈ SubScenario)∧
6 ∃p1 ∈ Precede, ss1 ∈ SubScenario
((p = p1) ∧ (ss 6= ss1) ∧ ((p1, ss1) ∈ PdtoSS))∧
∀p2 ∈ Precede∃ss2 ∈ SubScenario((p2, ss2) ∈ PdtoSS)}

The formal definition of the association which defines the attribute alternative of the
metaclass Alternatives is given with the relation AtoR:

AtoR = {(al, r) : (al ∈ Alternatives) ∧ (r ∈ Root)∧
6 ∃al1 ∈ Alternatives, r1 ∈ SubScenario

71

7. A Linguistic Metamodel for Performance Measurement and Assessment

((al 6= al1) ∧ (r = r1) ∧ ((al1, r1) ∈ AtoR))∧
∀al2 ∈ Alternatives∃r2 ∈ Root((al2, r2) ∈ AtoR)}

Finally, the association which defines the attribute absent of the Negative metaclass is
formally specified with the NtoSS relation:
NtoSS = {(n, ss) : (n ∈ Negative) ∧ (ss ∈ SubScenario)∧

6 ∃n1 ∈ Negative, ss1 ∈ SubScenario
((n = n1) ∧ (ss 6= ss1) ∧ ((n1, ss1) ∈ NtoSS))∧
∀n2 ∈ Negative∃ss2 ∈ SubScenario((n2, ss2) ∈ NtoSS)}

Associations between ScenarioEvent and InstrumentedElement and StateCondi-
tion metaclasses are defined later in this section.

In systems with interwoven transformational and reactive part, not only invocation se-
quence, but also the state of the system defines the context of an event. For example, in the
case study, the UML State Diagram in Figure 6.5 specifies possible states of an ItemFacade
class instance. An ItemFacade instance can be either in the state where compression is
turned on or turned off. If an obtaining movie is again observed, it can be noticed that
turning on compression can differently influence response times of obtaining a trailer and
obtaining a movie. If the trailer’s size is small, then the compression and decompression
routines and the transmission of compressed data might take more time than a transmis-
sion of non-compressed data. Therefore, the response time can be increased. In the case
of obtaining a movie, the response time can be lower, because the compression routine and
transmission of compressed data is certainly lower than transmission of non-compressed data.
Here the importance of the distinction between states and variables, argued in Section 6.1
at the page 42, in performance measurement and assessment becomes evident. States rep-
resent qualitative functional aspects of a system [Selic et al., 1994], and the dependency of
the performance metrics on them is analyzed with observation of metrics in certain context
in which those states take part. On the other hand, variables represent quantitative func-
tional aspects of system [Selic et al., 1994], and performance metrics dependency of method
invocations from variables is being approximated with statistical functions.

For these reasons, for each invocation the state of the system should be specified. The
part of the linguistic metamodel that enables state specification with invocation is presented
in the Figure 7.5.

This part of the metamodel is formally defined as:
MMrcontext = {ScenarioEvent, InstrumentedElement, StateCondition,

Binary,AND,OR,NOT,ConditionElement, ConditionRelation,
SEtoIE, SEtoSC,CEtoIE,BtoSlo, BtoSro,NtoSC,
SCB, SCN, SCCE,BA,BC}

The metaclass ScenarioEvent enables specification of a modeling element execution in
some state of a system. Like previously stated, an event of a scenario is defined by a scenario
in which it executes, executing modeling element, and the state of the system in which that
modeling element executes. While specification of a scenario is facilitated in the metamodel
part in Figure 7.4, the metamodel part in Figure 7.5 enables the specification the state and
the modeling element of an event. A modeling element, is defined in attribute instrument-
edElement of type InstrumentedElement. The state of the system, is specified in the

72

7.3. The Event and Context Part of the Linguistic Metamodel

Only For Non-comm
ConditionElement

+instrumentedElementName : String
+conditionRelation : ConditionRelation

InstrumentedElement

<<enumeration>>
ConditionRelation

overlapped

contains

overlaps
during

StateCondition
ScenarioEvent

Binary

AND

NOT

OR

SEtoSC
+scenarioEventCondition

0..1 *
BtoSClo +leftOperand 1

*

SCB
BtoSCro

+rightOperand 1

*

CEtoIE

+instrumentedElement1

*

SEtoIE

+instrumentedElement
1

*

SCN NtoSC

+operand 1

*

SCCE

BA BO

Figure 7.5.: The reactive context part of the metamodel

attribute scenarioEventCondition. Formally this is defined in the following.
The association which defines instrumentedElement attribute of ScenarioEvent is

formally specified as the relation SEtoIE

SEtoIE = {(se, ie) : (se ∈ ScenarioEvent) ∧ (ie ∈ InstrumentedElement)∧
6 ∃se1 ∈ ScenarioEvent, ie1 ∈ InstrumentedElement
((se = se1) ∧ (ie 6= ie1) ∧ ((se1, ie1) ∈ SEtoIE))∧
∀se2 ∈ ScenarioEvent∃ie2 ∈ InstrumentedElement
((se2, ie2) ∈ SEtoIE)}

The relation SEtoSC formally specifies the association between ScenarioEvent and
StateCondition. This relation defines the scenarioElementCondition attribute of the
class ScenarioEvent :

SEtoSC = {(se, sc) : (se ∈ ScenarioEvent) ∧ (sc ∈ StateCondition)∧
6 ∃se1 ∈ ScenarioEvent, sc1 ∈ StateCondition
(((se = se1) ∧ (sc 6= sc1) ∧ ((se1, sc1) ∈ SEtoSC)))}

Specification of the current state of the system is specified as a boolean algebra of active
states. The boolean algebra consists of StateCondition metaclass and classes specialized
from it Binary, AND, OR, NOT, and the ConditionElement. Metaclasses AND,
OR, and NOT, represent Boolean operations with the same name.

The metaclass ConditionElement is the metaclass which facilitates specifications of
variable in this boolean algebra, and it is used for specification of the state and its relation
to the potential event of scenario. This is specified in two attributes instrumentedElement
of type InstrumentedElement and conditionRelation of type ConditionRelation.

ConditionRelation is the enumeration which contains possible relations between occur-
rence of a system state and occurrence of the execution of a modeling element specifying

73

7. A Linguistic Metamodel for Performance Measurement and Assessment

event. The relations in the enumeration are based on relations between intervals explained
in Appendix D. Having in mind the constraint/assumption of one thread for each scenario
execution, defined in Section 6.2, the relations before and after are relations contained
in scenario specification and therefore they are not needed in state context specification.
Starts, started-by, finishes, finished-by and equals are not part of relations because
of the assumption that granularity of timing mechanism is large enough so that each execu-
tion of the part of application modeled with a modeling element starts and ends in different
chronon. Meets and met-by, are specific cases of before and after, and for that reason
they are not included in the final set of possible relations. Formally, this part of the model
is defined as following:

SCB = {(sc, b) : (sc ∈ StateCondition) ∧ (b ∈ Binary)∧
6 ∃(sc1, b1) ∈ SCB
(((sc = sc1) ∧ (b 6= b1)) ∨ ((sc 6= sc1) ∧ (b = b1)))∧
6 ∃n ∈ NOT, ce ∈ ConditionElement
(((se, n) ∈ SCN) ∧ ((se, ce) ∈ SCCE))},

SCN = {(sc, n) : (sc ∈ StateCondition) ∧ (n ∈ NOT)∧
6 ∃(sc1, n1) ∈ SCN
(((sc = sc1) ∧ (n 6= n1)) ∨ ((sc 6= sc1) ∧ (n = n1)))∧
6 ∃b ∈ Binary, ce ∈ ConditionElement
(((se, b) ∈ SCB) ∧ ((se, ce) ∈ SCCE))},

SCCE = {(sc, ce) : (sc ∈ StateCondition) ∧ (ce ∈ ConditionElement)∧
6 ∃(sc1, ce1) ∈ SCCE
(((sc = sc1) ∧ (ce 6= ce1)) ∨ ((sc 6= sc1) ∧ (ce = ce1)))∧
6 ∃n ∈ NOT, b ∈ Binary(((se, n) ∈ SCN) ∧ ((se, b) ∈ SCB))},

StateCondition = {sc : ∀sc∃b ∈ Binary, n ∈ Not, ce ∈ ConditionElement
(((sc, b) ∈ SCB)∨((sc, n) ∈ NOT)∨((sc, ce) ∈ ConditionEvent))}

NOT = {not : ∃(sc1, not1) ∈ SCN(not = not1))}

Metaclasses Binary and Condition element are specified later in this section.

BO = {(b, o) : (b ∈ Binary) ∧ (o ∈ OR)∧
6 ∃(b1, o1) ∈ BO
(((b = b1) ∧ (o 6= o1)) ∨ ((b 6= b1) ∧ (o = o1)))∧
6 ∃a ∈ AND((b, a) ∈ BA)},

BA = {(b, a) : (b ∈ Binary) ∧ (a ∈ AND)∧
6 ∃(b1, a1) ∈ BA
(((b = b1) ∧ (a 6= a1)) ∨ ((b 6= b1) ∧ (a = a1)))∧
6 ∃o ∈ OR((b, o) ∈ BO)},

Binary = {b : ∀b∃a ∈ AND, o ∈ OR(((b, a) ∈ BA) ∨ ((b, or) ∈ OR))∧

74

7.3. The Event and Context Part of the Linguistic Metamodel

6 ∃(cs1, b1) ∈ SCB
(((sc = sc1) ∧ (b 6= b1)) ∨ ((sc 6= sc1) ∧ (b = b1)))}

(((b, a) ∈ BA) ∨ ((b, o) ∈ BO))}

AND = {and : ∃(b1, and1 ∈ BA(and = and1)}

OR = {or : ∃(b1, or1 ∈ BA(or = or1)}

The formal specification of the associations between Binary and StateCondition meta-
classes which define attributes leftOperand and rightOperand of the Binary metaclass
are BtoSClo and BtoSCro relations, respectively:

BtoSClo = {(b, sc) : (∈ Binary) ∧ (sc ∈ StateCondition)∧
6 ∃b1 ∈ Binary, sc1 ∈ StateCondition
(((b = b1) ∧ (sc 6= sc1) ∧ ((b1, sc1) ∈ BtoSClo))∧
∀b2 ∈ Binary∃sc2 ∈ StateCondition((b2, sc2) ∈ BtoSClo)}

BtoSCro = {(b, sc) : (b ∈ Binary) ∧ (sc ∈ StateCondition)∧
6 ∃b1 ∈ Binary, sc1 ∈ StateCondition
(((b = b1) ∧ (sc 6= sc1) ∧ ((b1, sc1) ∈ BtoSCro))∧
∀b2 ∈ Binary∃sc2 ∈ StateCondition((b2, sc2) ∈ BtoSCro)}

The final operation of this boolean algebra is negation. It is defined with the metaclass
NOT. The association which defines operand of this metaclass is specified with the relation
NtoSC :
NtoSC = {(n, sc) : (n ∈ NOT) ∧ (sc ∈ StateCondition)∧

6 ∃n1 ∈ NOT, sc1 ∈ StateCondition
(((n = n1) ∧ (sc 6= sc1) ∧ ((n1, sc1) ∈ NtoSC))∧
∀n2 ∈ NOT∃sc2 ∈ StateCondition((n2, sc2) ∈ NtoSC)}

The association between ConditionElement and InstrumentedElement metaclasses
which defines instrumentedElement attribute of the metaclass ConditionElement is
formally specified with relation CEtoIE :

CEtoIE = {(ce, ie) : (ce ∈ ConditionElement) ∧ (ie ∈ InstrumentedElement)∧
6 ∃ce1 ∈ ConditionElement, ie1 ∈ InstrumentedElement
(((ce = ce1) ∧ (ie 6= ie1) ∧ ((ce1, ie1) ∈ CEtoIE))∧
∀ce2 ∈ ConditionElement∃ie2 ∈ InstrumentedElement
((ce2, ie2) ∈ CEtoIE)}

The ConditionRelation enumeration is defined as:

ConditionRelation = {overlaps, overlapped, contains, during}

Finally, the ConditionElement metaclass is defined as:

75

7. A Linguistic Metamodel for Performance Measurement and Assessment

ConditionElement = {ce : (ce = (cr)) ∧ (cr ∈ ConditionRelation)∧
6 ∃(sc1, ce1) ∈ SCCE
(((sc = sc1) ∧ (ce 6= ce1)) ∨ ((sc 6= sc1) ∧ (ce = ce1)))}

7.4. The Static Semantics of the Metamodel

Engineering a language, as explained in Section 2.2, besides the definition of abstract and
concrete syntax must contain the rules for well-formed language constructs. The abstract
and the major elements of the concrete syntax have been specified in previous sections. This
section contains the well-formedness rules. These well-formedness rules either cannot be
adequately captured by a the abstract syntax, because there is no relation between elements
of the metamodel and the granularity of timing mechanism, or their specification would be
very complicated. For this reason, the well-formedness rules are defined in common language.

1. The intervals in the interval set must be consecutive
Intervals in the interval set are used either for the grouping of events according to
calender time of their occurrence, or grouping them for the distribution analysis. Both
of these groupings require consecutive intervals

”
i.e., set of intervals in which the end

of one interval and the start of the next one are in two successive chronons.

2. The value of the intervalSet attribute of an instance of class Distribution
in the duration distribution analysis must be of type TimeIntervalSet
Duration analysis is an analysis of time intervals, and time intervals can only be clas-
sified for the distribution analysis with some time interval values.

3. The value of the intervalSet attribute in an instance of the Distribution
metaclass in the composite assessment must be of type RealNumbersIn-
tervalSet when the computed metric is OcurrenceRate or OccurrencePer-
centage
Values of occurrence rate and occurrence percentage are real numbers, and any statis-
tical analysis of them is also a real number. This implies that, for structuring values of
occurrence rate and occurrence percentage for an distribution histogram computation
must be based on the values of intervals of real numbers.

4. The value of the intervalSet in the composite assessment must be of type
TimeIntervalSet when the computed metric is duration
This rule is opposite to the previous well-formedness rule. A value of a duration and
its statistical analysis are time intervals. Therefore, for the distribution histogram
computation these values are grouped in time intervals they belong.

5. A distribution assessment cannot be further statistically analyzed
The previousLevelAssessment attribute of an instance of CompositeAssess-
ment cannot be a distribution assessment. In the distribution assessment the outcome
of the computation is a set of distribution diagrams for each time interval specified in
the timeInterval attribute of the Assessment metaclass. These set of values can
not be further statistically analyzed.

76

7.4. The Static Semantics of the Metamodel

6. An event of interest in the specification of a measured event has to be a
part of the scenario
The metaclass MeasuredEvent is used for specification of a measured event within
some certain scenario. The scenario is specified with an instance of the Scenario
metaclass and, therefore, the measured event has to be part of that scenario.

7. Each sub scenario of a scenario must not share instances of ScenarioEvent
with another sub scenario, although there is a need for a scenario event
having same instrumented element and the reactive context
This well-formedenes rule is essential for valid computation of metrics. The need for

this rule is explained in the Chapter 8.

8. The root attribute of an instance of the Scenario metaclass must contain
an event or a contain relation of that scenario
The root attribute specifies the beginning of the transformational context of an event.
The transformational context can start in two ways. In the case when the transforma-
tional context is some scenario with more than one executing scenario events, then the
scenario starts with an instance of the Contain metaclass. In the opposite case, when
the scenario is only one method invocation, the root attribute contains that event.

9. The absent attribute of the Negative metaclass can only be an instance of
the ScenarioEvent and Contain metaclasses.
A negative sub scenario can only be a part of the optional block. An optional block is a
composite block and can be treated either as a scenario event or a contain interrelation
between the optional block and inside specified application logic.

77

8. Chapter
The Metamodel Formal Semantics

The metamodel defined in the previous chapter enables specification of measurements and
metrics computation for particular events. It is in natural language and set theory explained
what each metaclass is for. Many of current languages are defined in such a way. For this
reason, many of them are misused [Selic, 2003]. This section gives the formal semantics of
the metamodel for measurement and assessment. Formal semantics are given with mappings
of modeling elements to Libkin’s algebra. Libkin’s algebra is a relational algebra with
an open set of aggregate functions. Furthermore, this formal semantics is used as the
transformation design. The implementation of mappings is done according to the formal
semantics. This chapter is structured as follows. Section 8.1 explains prerequisites of the al-
gebra/RDBMS required for this mapping and initialization of the RDBMS. Next, Section 8.2
gives the formal semantics of the context part of the metamodel. The final section of this
chapter, Section 8.3 gives formal semantics to assessment and metrics part of the metamodel.

8.1. The Relational Database Management System
Prerequisites and Initialization

In order to be used for the metrics computation, as described in Chapter 5, the RDBMS has
to satisfy some prerequisites and has to be initialized. Those prerequisites are specified in
Subsection 8.1.1. The initialization is specified in Subsection 8.1.2.

8.1.1. Prerequisites

The MoDePeMART approach for performance measurement and assessment, as explained
in Chapter 5, suggests the usage of RDBMS. In order to be used, the RDBMS has to satisfy
two prerequisites.

The first prerequisite the RDBMS has to satisfy is that each statistical function specified
in the enumeration Statistics of the metamodel has to have a corresponding aggregate
function in the database management system. This set of statistical functions can vary from
project to project. Therefore, for some specific project, some specific statistical functions
can be added to this set. In the case that there is no corresponding aggregate function in the
RDBMS, this prerequisite orders an implementation of that function. Most of the current
relational database management systems support adding new aggregate functions.

The second prerequisite of the used RDBMS is that it must contain a counting aggregate
function, independently of the functions in the Statistics set. This function is needed
for density and cumulative histogram computations. This assumption is realistic because
COUNT is one of the standard SQL functions [Atzeni et al., 1999].

78

8.1. The Relational Database Management System Prerequisites and Initialization

Formally, the RDBMS is modeled with Libkin’s algebra, explained in Chapter 4. The first
prerequisite is defined as the existence of an injective function between the Statistics set
and the set of aggregate functions in Libkin’s algebra, Θ. The second prerequisite is trivial.
Formally, this is defined as:

∃agg : Statistics→ Θ,∀s1, s2 ∈ Statistics((s1 6= s2)⇔ (agg(s1) 6= agg(s2))) and
∃c ∈ Θ, where c is aggregate function which corresponds to standard COUNT aggregate

function.

The preconditions of algebra correspond to the requirements of the used database man-
agement system. The initialization is not the requirement of the RDBMS, but actually
requirements of the database used for performance data storage and metrics computation.
It consists of creation and filling the database tables needed for metrics computation, as
explained in Chapter 5.

8.1.2. Initialization

A RDBMS satisfying prerequisites described in the previous section has to be initialized in
order to facilitate storage and metrics computation. The initialization yields a place for stor-
age of measured data. The relation for data storage corresponds to the formal specification
of execution in Section 6.2, at the page 55. This initialization is formally specified in the
following.

Let mToDom : M → Dom be a function which maps elements of a model to the the
elements of the Dom set of Libkin’s algebra. Let threadToDom : Th→ Dom be a function
which maps the set of threads/processes/sessions to the Dom set. Let Ran(mToDom)
and Ran(threadToDom) be ranges of functions mToDom and threadToDom, respec-
tively. The relation in which the execution data of a software system is stored is defined as:

∃executionTrace ∈ SC(executionTrace : bbnn)∧
(executionTrace ⊆ Ran(mToDom)×Ran(threadToDom)×Num×Num)).

Each software system operation takes place in a time interval. This information is also
needed for metrics computation. It is particularly needed when computing performance met-
rics for the time interval of whole operation. For example, let us assume that the throughput
of a component for the whole experiment time is of interest. This metric is, then, measured
and computed for the whole experiment time interval. The computation takes the complete
number of invocations and divides them by the duration of the experiment time interval.
Furthermore, this information can be used to remove events from the training period of
software execution. The training period is the period of software system initialization. In-
vocations of the training period are not considered in metrics computation and assessment.
For this reasons, the SC in Libkin’s Algebra has to have defined a relation containing only
start and end experiment time. Accordingly, used database has to have a table with only one
record. This record consists of only the start and the end time of the experiment. Formally:

∃experimentT ime((experimentT ime ∈ SC) ∧ (experimentT ime : nn))

79

8. The Metamodel Formal Semantics

Finally, as mentioned in Section 7.2, interval sets are used for grouping data for some
particular computation. In the database this is implemented by having a table for each
interval set. These tables contain records with values corresponding to values in interval sets.
Later, these tables are used for structuring information for computation and assessment.

This initialization is formally specified as an existence of mapping of the metamodel
MMpema set IntervalSet to the SC database schema of the Libkin’s algebra. This mapping
maps instances of metaclasses specialized from the metaclass IntervalSet to the correspond-
ing tables in the SC database schema. Formal definition is in the following.

Let timeInstantToNum be a function which maps TimeInstant set of the metamodel
MMpema to the Num set of the Libkin’s algebra, timeInstantToNum : TimeInstant →
Num. And let dToNum be a function which maps the domain double of the metamodel
MMpema to the domain Num of Libkin’s algebra, dToNum : double → Num. Then, this
initialization is defined as:

∀tis ∈ TimeIntervalSet∃ttis ∈ SC((ttis : nn) ∧ (tis = (tinterval))∧
(tinterval ⊆ TInterval) ∧ ∀tin ∈ tinterval∃(tsti, teti) ∈ ttis((tin = (sti, eti))∧
(sti, eti ∈ TimeInstant)
∧(tsti = timeInstantToNum(sti)) ∧ (teti = timeInstantToNum(eti))))

The previous part of the definition specifies the characteristics of tables in SC which cor-
respond to time interval sets of the metamodel. The definition of characteristics of tables
corresponding to real numbers interval sets is similar and follows.

∀ris ∈ RealNumbersIntervalSet∃tris ∈ SC((tris : nn) ∧ (ris = (rinterval))∧
(rinterval ⊆ RealNumbersInterval)∧∀rin ∈ rinterval∃(tlb, tub) ∈ tris((rin = (lb, ub))∧
(rb, lb ∈ double) ∧ (tlb = dToNum(ub)) ∧ (tub = dToNum(eti))))

The mapping rToNum of the metamodel double domain to the Num domain of Libkin’s
algebra is a mapping between different representations of the set R, since Num represents
the domain of real numbers in Libkin’s algebra. Usage of Num domain for representation
of time is possible because the discrete time model is isomorphic with the set of natural
numbers N, and the set of natural numbers is subset of R. Furthermore, isomorphism
is a transitive relation, and therefore, each subset of R which is isomorphic with set N, is
isomorphic with set TimeInstant. That implies that TimeInstant can be mapped to the
subset of R with finer granularity then N, as long as this subset is isomorphic to N.

The final part of this initialization definition is the specification of the the isRel mapping
function, explained previously in the text:

∃iSRel : IntervalSet→ SC((is ∈ IntervalSet)∧
((((is, tis) ∈ ISTIS)∧(ttis = iSRel(is)))∨(((is, ris) ∈ ISRNIS)∧(tris = iSRel(is)))))

80

8.2. The Event and Context Metamodel Part Formal Semantics

8.2. The Event and Context Metamodel Part Formal
Semantics

The complete formal semantics of the metamodel presented in Chapter 7 defines a set of
transformations to Libkin’s algebra queries. These queries yield from the previously defined
database schema SC, relation having the desired performance assessment. This process
has two steps. The first step is the selection of events specified in the event and context
metamodel part. These events are, after the selection, subject of the metrics computation.
The metrics computation is performed according to the assessment and metrics specification
and it is specified in the next section.

Subject of this section is a set of mappings defining queries whose outcomes are relations
representing executions of scenarios in specified contexts and isolating measured events out
of them. The type of this relation is bnn and contains the event of interest and times of its
start and end. This relation is the outcome of the function grTr explained at the end of
Subsection 8.2.2. Such relation is a union of relations having executions of specified measured
events. The sets of mappings for selecting measured events are specified in Subsections 8.2.1
and 8.2.2.

Figure 8.1 presents an example of abstract syntax tree used for the explanation of these
mappings. It contains one use case of the sequence diagram in Figure 6.2, at the page 45.
The use case it contains is obtaining a music video from the database when the compression
is on.

The specification of obtaining a music video file is a group containing only one measured
event. The scenario of the measured event is a sequence which occurs with an invocation of
the getVideoItem operation of the VideoItemFacade class. This sequence contains only
one invocation of the getItem method. It is an invocation for obtaining a music video. In
order to distinct this use case from the use case when a video file and a trailer are obtained, it
must be specified that there is no execution of the body of the optional block which precedes
the getItem execution.

The abstract syntax tree presented in Figure 8.1 is for visualization. It is based on UML
Diagrams used in Chapter 7 for the visualization of the metamodel. In order to understand
the formal definition of mappings, it is needed to understand how the actual abstract syntax
tree looks like. The actual abstract syntax tree is in correspondence with the metamodel
formal specification in the form of sets. According to the formal specification, what is in
Figure 8.1 presented as instances of ScenarioEvent, Contain, Precede, Negative and
ConditionEvent metaclasses actually consist of several related set elements. An instances
of ScenarioEvent contains elements of the ScenarioEvent, Root, and SubScenario
sets forming doubles in the SSSE and RSE metamodel relations. These related elements
are results of inheritances from superclasses. The basic principle of defining inheritance is
specified in Section 7.1,p. 58. Accordingly, an instance of Contain metaclass contain ele-
ments of Contain, Root, and SubScenario sets related with the RC and SSR metamodel
relations. Furthermore, instances of associations like StoR, CtoSS for example, relate ele-
ments of Scenario and Root, and Contain and SubScenario, respectively, because they
are defined as relations between these two metaclasses. Instances of Precede, and Negative
have elements of Precede and Negative sets, and additionally elements of only SubSce-
nario. The instance of ConditionEvent consists of elements of the ConditionEvent

81

8. The Metamodel Formal Semantics

For Non-commercial Use Only

 : InstrumentedElement
name = "obtainingTrailerBasicBlock"

 : ConditionElement
conditionRelation = during

 : InstrumentedElement
name = "getVideoItem"

 : InstrumentedElement
name = "getItem"

 : InstrumentedElement
name = "On"

 : MeasuredEvent

 : ScenarioEvent

 : Scenario

 : Group

 : Negative

 : ScenarioEvent

 : ScenarioEvent : Precede

 : Contain
se2 : StoSE

 : MEtoSE

se3 : StoSE

se1 : StoSE

 : CtoSS

 : MEtoS

 : CEtoIE

 : SEtoIE

 : StoR

 : NtoSS

 : PstoSS

 : SEtoIE
 : PdtoSS

 : SCtoSE

 : SEtoIE

 : CtoSE

 : GtoME

Figure 8.1.: An abstract syntax tree of the event and context specification for obtaining a
music video in Figure 6.2

and StateCondition set.

8.2.1. The Reactive Context Metamodel Formal Semantics

The mappings of the reactive context metamodel to Libkin’s algebra yield for each specified
scenario event a relation containing executions of its instrumented element which satisfies the
state condition. In the example in Figure 8.1 these relations are made for all three scenario
events. They are made by the evTrace mapping from the executionTrace, specified
in subsection 8.1.2. The evTrace function takes as argument se ∈ ScenarioEvent and
produces the desired relation in the following way.

evTrace(se) =



vEvent(ie),

if ∃(sev1, ie) ∈ SEtoIE 6 ∃(sev2, sc) ∈ SEtoSC((sev1 = se)∧
(sev2 = se))

cEvTr(se, sc),

if ∃(sev1, ie) ∈ SEtoIE, (sev2, sc) ∈ SEtoSC((sev1 = se) ∧ (sev2 = se))

The function recognizes two cases. The upper case is the case when there is no reactive

82

8.2. The Event and Context Metamodel Part Formal Semantics

context specified. Here in the resulting relation are all executions of the instrumented element
in the specified experiment time window. Such scenario events in the Figure 8.1 example are
scenario events with getVideoItem and obtainingTrailerBasicBlock as instrumented
elements. For them the computation is achieved with the function vEvTr which takes as
argument ie ∈ InstrumentedElement and is defined as follows.

vEvent(ie) = π1,2,3,4(σ[>]3,5(σ[<]3,6(σ1=mToDom(ie)(executionTrace)×experimentT ime))).

The vEvent function first makes a Cartesian product of the relation in which are exe-
cutions of a specified modeling element, and the experimentTime relation. After, only
those executions of instrumented element are selected which execute in the time experiment
time interval. This is accomplished with two selection operations. The first selection selects
only those modeling element occurrences which start after the beginning. The second selects
those ending before the end of the experiment time. Finally, with the projection, values of
experiment time interval are removed from the relation.

The bottom case of the function evTrace is when a reactive context for the scenario event
is specified. The reactive context is specified with the Boolean algebra depicted in Figure 7.5,
p. 73. In Figure 8.1 example, this is the case of scenario event with the getItem instrumented
element. The function cEvTr yields relations of scenario events with reactive context. The
cEvTr mapping takes as arguments se ∈ ScenarioEvent and sc ∈ ScenarioCondition, and
it is specified as:

cEvTr(se, sc) =



cEvTr(se, lo) ∩ cEvTr(se, ro),
if ∃b ∈ Binary, a ∈ AND, lo, ro ∈ ScenarioCondition(((sc, b) ∈ SCB)

∧((b, a) ∈ AND) ∧ ((b, lo) ∈ BtoSClo) ∧ ((b, ro) ∈ BtoSCro))

cEvTr(se, lo) ∪ cEvTr(se, ro),
if ∃b ∈ Binary, a ∈ AND, lo, ro ∈ ScenarioCondition(((sc, b) ∈ SCB)

∧((b, a) ∈ AND) ∧ ((b, lo) ∈ BtoSClo) ∧ ((b, ro) ∈ BtoSCro))

π1,2,3,4(σ[=]2,5(vEvent(ie)× cEvTr(se, nsc)))
−cEvTr(se, nsc)

if ∃n ∈ NOT, nsc ∈ ScenarioCondition, ie ∈ InstrumentedElement
(((sc, n) ∈ SCN) ∧ ((n, nsc) ∈ NtoSC) ∧ ((se, ie) ∈ SEtoIE))

oneCondEvTr(se, ce, ie),

if ∃ce ∈ ConditionElement(((sc, ce) ∈ SCCE) ∧ ((ce, ie) ∈ CEtoIE))

The simplest case of this function is the bottom case. This is the case when the boolean
expression consists of only one condition element. An example of this case in Figure 8.1 is
the scenario event with the getItem instrumented element. Here, the function cEvTr only
uses the function oneCondEvTr, specified in the following. Let se ∈ ScenarioEvent,ce ∈

83

8. The Metamodel Formal Semantics

ConditionElement, and ie ∈ InstrumentedElement. The oneCondEvTr function is then:

oneCondEvTr(se, ce, ie) =



π1,2,3,4(σ[<]3,7(σ[>]4,8(σ[=]2,6(vEvent(iese)× vEvent(ie))))),
if ce = (cr) ∧ (cr = contains) ∧ ((sese, iese) ∈ SEtoIE)∧
(sese = se)

π1,2,3,4(σ[>]3,7(σ[<]4,8(σ[=]2,6(vEvent(iese)× vEvent(ie))))),
if ce = (cr) ∧ (cr = during) ∧ ((sese, iese) ∈ SEtoIE)∧
(sese = se)

π1,2,3,4(σ[<]3,7(σ[<]4,8(σ[=]2,6(vEvent(iese)× vEvent(ie))))),
if ce = (cr) ∧ (cr = overlaps) ∧ ((sese, iese) ∈ SEtoIE)∧
(sese = se)

π1,2,3,4(σ[>]3,7(σ[>]4,8(σ[=]2,6(vEvent(iese)× vEvent(ie))))),
if ce = (cr) ∧ (cr = overlapped) ∧ ((sese, iese) ∈ SEtoIE)∧
(sese = se)

The function oneCondEvTr produces the relation having only those executions of the
specified event which are in the defined ConditionRelation relation with the specified
state. For the case of scenario event with getItem as instrumented element this function
is depicted in Figure 8.2. It does this in the similar way as the function vEvent. First
is performed a Cartesian product of denoted state experiment time and specified modeling
element execution relations. Subsequently, a selection is performed to isolate only executions
in which the state and the modeling element execute in the same thread of control. This is in
correspondence with the assumptions of the execution of the system, defined in Section 6.1,
p. 55. Thereafter, depending on the specified interrelation between these two modeling
elements, appropriate comparison of their execution time intervals are made and appropriate
selection carried out. At the end is performed a projection on the modeling element, thread
and modeling element execution time interval.

The other three cases of the function cEvTr are the cases when the reactive context
is specified with more than one condition element. Such specifications are more complex
Figure 7.5 Boolean algebra specifications. Here is for each condition element computed a
relation with the function oneCondEvTr, and the Figure 7.5 Boolean algebra expressions
are simply mapped to the corresponding Libkin’s algebra boolean expressions. Boolean
operations OR and AND of that algebra map to the set operations ∪, and ∩, respectively.
Accordingly, the function is defined with recursive invocations and corresponding boolean
operation of results. Negation, NOT expression mapping is defined in two steps. First is
computed the set of all element executions satisfying the negated state. Then is calculated
the complement of this set in the set of all executions of that modeling element. The final
relation contains all executions not satisfying the specified condition.

84

8.2. The Event and Context Metamodel Part Formal Semantics

5 812 2235 508 34116On

…………

…………

1 191 3311 112 80213On

…………

1 275 8201 080 22534On

5 328 1425 30133228On

1 165 5561 020 11311On

ETSSTSTIDIE

…………

1 181 4321 180 33413getItem

1 151 9811 151 11213getItem

5 223 9985 223 34217getItem

4 993 0124 992 12321getItem

4 855 2234 845 11557getItem

…..…..…..….

1 144 0011 143 22533getItem

1 143 9451 143 44134getItem

1 164 2211 163 43554getItem

…………

5 812 0015 811 54335getItem

5 581 8155 581 01216getItem

ETSSTSTIDIE

Figure 8.2.: The result of the oneCondEvTr mapping of the scenario event with instru-
mented element getItem. The resulting relation contains marked rows of the
left relation which are executions of getItem while the compression was on.

8.2.2. The Transformational Context Formal Semantics

The previously explained reactive context mappings produce relations containing scenario
events satisfying the specified reactive context. These relations are used by transformational
context mappings in order to produce relations representing specified scenarios, and selecting
the measured events out of them.

The function whose outcome is the relation containing executions of the measured event
is the function msEvTrace. The outcome of this function is a relation containing three
columns, instrumented element identifier, start time of the execution and end time of the
execution. The executions of that instrumented element are in the specified transformational
and reactive context. This function is defined in the following.

Let me ∈ MeasuredEvent. And let scOrdNum be an ordinal function mapping a
particular scenario and a particular scenario event to the set N, scOrdNum : Scenario ×
ScenarioEvent→ N, defined in the Appendix C. Let scTrace be a function which computes
a relation containing executions of the specified scenario. The result of scTrace is a subset
of the relation illustrated in Figure 8.3, at the page 87. The function scTrace is defined

85

8. The Metamodel Formal Semantics

later in this section. Then msEvTrace function is:

msEvTrace(me) =



π1,3,4(evTrace(se))

if ∃se ∈ ScenarioEvent, scme ∈ Scenario, scEv ⊆ StoSE

∀(sc, se) ∈ scEv(((me, scme) ∈MEtoS) ∧ (sc = scme)∧
((me, seme) ∈MEtoSE) ∧ (card(scEv) = 1))

π3∗scOrdNum(me,sc)−2,3∗scOrdNum(me,sc)−1,3∗scOrdNum(me,sc)(scTrace(sc, r))

if ∃se ∈ ScenarioEvent, scme ∈ Scenario, scEv ⊆ StoSE

∃r ∈ Root∀(sc, se) ∈ scEv(((me, scme) ∈MEtoS)∧
((me, seme) ∈MEtoSE) ∧ (sc = scme))

The function msEvTrace recognizes two cases. The upper case is when the measured
event is the event of a scenario consisting of a single event. In this case, the resulting relation
contains event identifier, and its start and end times taken from the result of the evTrace
function, defined in the previous subsection.

The second case is the case when the measured event is a part of some defined scenario.
In this case the result is obtained by execution of a projection on columns of the scTrace
resulting relation. The scTrace takes as arguments a scenario and its root. The result-
ing relation consists of tuples representing a certain occurrence of the specified scenario in
software execution. In that relation, each scenario event is represented with three columns.
These three columns contain instrumented element identification, and its start and end time
of execution. The projection is performed on tuples representing the measured event of that
scenario. The scTrace function and mappings it uses for producing the resulting relation
are given in the rest of this subsection.

The starting mapping for producing scTrace resulting relation is the function scRela-
tion. Formally, this mapping is defined as follows.

Let sc ∈ Scenario. Let, n be the number of the ScenarioEvent metaclass instances
related in the StoSE relation to sc. And let ordNumSEv be a function which maps a
scenario and an ordinal number of a scenario event to that scenario event, odrNumSEv :
Scenario× N→ ScenarioEvent, defined in Appendix C. Then:

scRelation(sc) = π1,3,4,5,7,8,...,n∗4−3,n∗4−1,n∗4(
σ[=]2,6(σ[=]6,10(...(σ[=]n∗4−2,n∗4+1(evTrace(ordNumSEv(sc, 1))×
evTrace(ordNumSEv(sc, 2))× ...× evTrace(ordNumSEv(sc, n))))))).

The resulting relation of scRelation is created with a Cartesian product of results of
evTrace for each ScenarioEvent of the specified scenario. From this Cartesian product
are selected only those executions of scenario events’ instrumented element executing in the
same thread/process/session. Because the thread/process/session identifier is the same in the
tuple, columns denotating them are removed from the resulting relation with a projection.
Finally, in the resulting relation is each tuple a potential scenario sequence, where each
scenario event is specified with instrumented element identifier, start, and end time stamp of
its execution. The resulting relation of the scRelation function for the Figure 8.1 example
is given in Figure 8.3.

86

8.2. The Event and Context Metamodel Part Formal Semantics

………………………

5 581 8155 581 012getItem1 180 1231 179 112obtainingTrailerBasicBlock5 582 0135 580 882getVideoItem

1 181 4321 180 334getItem1 151 1031 149 812obtainingTrailerBasicBlock1 144 1411 143 200getVideoItem

………………………

1 143 9451 143 441getItem1 229 8031 229 109obtainingTrailerBasicBlock5 582 0135 580 882getVideoItem

1 151 9811 151 112getItem1 151 1031 149 812obtainingTrailerBasicBlock1 144 1411 143 200getVideoItem

1 143 9451 143 441getItem1 151 1031 149 812obtainingTrailerBasicBlock1 144 1411 143 200getVideoItem

………………………

ETS3STS3IE3ETS2STS2IE2ETS1STS1IE1

Figure 8.3.: Example of the result of scRelation for the Figure 8.1 example.

The result of the function scRelation is used for defining relation which represent ex-
ecutions of the specified scenario. Selection leaving in final relations only those tuples of
the scRelation result in which executions of scenario events satisfy correlations defined in
scenario is specified in the function scTrace. This function uses several sub functions and
in the following are defined these sub functions.

One of the functions used for resolving the transformational context is fEv. This function
defines the first starting event in one sub scenario ss ∈ SubScenario. It is defined as:

fEv(ss) =



ssse,

if ∃c ∈ Contain, se ∈ ScenarioEvent, ssse ∈ SubScenario
(((ss, c) ∈ SSC) ∧ ((c, se) ∈ CtoSE) ∧ ((ssse, se) ∈ SSSE))

fEv(ssps),

if ∃p ∈ Precede, ssps ∈ SubScenario 6 ∃n ∈ Negative
(((ss, p) ∈ SSP) ∧ ((p, ssps) ∈ PstoSS) ∧ ((ssps, n) ∈ SSN))

fEv(sspd),

if ∃p ∈ Precede, ssps, sspd ∈ SubScenario, n ∈ Negative(((ss, p) ∈ SSP)∧
((p, ssps) ∈ PstoSS) ∧ ((ssps, n) ∈ SSN) ∧ ((p, sspd) ∈ PdtoSS))

ss,

if ∃se ∈ ScenarioEvent), a ∈ Alternatives(((sc, se) ∈ SSSE)∨
((sc, a) ∈ SSA))

The fEv function is a recursive function which recognizes, four different cases:

1. ss is a Contain sub scenario. In this case the result is the event which contains the
execution of contained scenario. In the example in Figure 8.1 the scenario event having
getVideoItem as instrumented element is the first event of the whole scenario.

87

8. The Metamodel Formal Semantics

2. ss is a Preceede subscenario and the preceding sub scenario is not an instance of
Negation. Here, the first event is the first event of the preceding scenario.

3. ss is a Preceede sub scenario and the preceding sub scenario is a Negation sub
scenario. In this situation, the preceding sub scenario does not exist. Therefore, the
result is the first event of the preceded sub scenario. Such case can be seen in Figure 8.1.
Here the first event is the scenario event having getItem as the instrumented element.

4. ss is either a ScenarioEvent or Alternatives subscenario. Now, the ss value is
the result. This information is later used in scTrace function for complex selections
which an alternating sub scenario requires.

Besides the fEv function there is also a need for a function resulting in an last ending
event, entitled lEv. Let ss ∈ SubScenario. This function is defined as:

lEv(ss) =



ssse,

if ∃c ∈ Contain, se ∈ ScenarioEvent, ssse ∈ ScenarioEvent
(((ss, c) ∈ SSC) ∧ ((c, se) ∈ CtoSE) ∧ ((ssse, se) ∈ SSSE))

lEv(sspd),

if ∃p ∈ Precede, sspd ∈ SubScenario 6 ∃n ∈ Negative
(((ss, p) ∈ SSP) ∧ ((p, sspd) ∈ PdtoSS) ∧ ((sspd, n) ∈ SSN))

lEv(ssps),

if ∃p ∈ Precede, ssps, sspd ∈ SubScenario, n ∈ Negative(((ss, p) ∈ SSP)∧
((p, ssps) ∈ PdtoSS) ∧ ((sdps, n) ∈ SSN) ∧ ((p, ssps) ∈ PstoSS))

ss,

if ∃se ∈ ScenarioEvent), a ∈ Alternatives(((sc, se) ∈ SSSE)∨
((sc, a) ∈ SSA))

Similarly to the fEv, function lEv recognizes four cases:

1. ss is a Contain sub scenario. Here, the last ending event of scenario is also the
event which contains the sub scenario. In the Figure 8.1 the last ending event for the
Contain metaclass instance is the getVideoItem operation.

2. ss is a Precede sub scenario and preceded sub scenario is not a Negation. Now, the
result is the last event of the preceded sub scenario.

3. ss is a Precede sub scenario and preceded sub scenario is a Negation sub scenario.
In this case, the result is the last event of the preceding sub scenario, because there is no
preceded sub scenario. In the Figure 8.1 the outcome of this function, when visiting the
instance of Precede is the sub scenario having getItem as the instrumented element.

88

8.2. The Event and Context Metamodel Part Formal Semantics

4. ss is a ScenarioEvent sub scenario or Alternatives sub scenario. Similarly and for
the same reasons as in fEv function, here is ss value also the result.

For the definition of scTrace let sc ∈ Scenario, and ss ∈ SubScenario. Let altSubSc :
Alternatives × N → ScenarioEvent and already mentioned scOrdNum be functions de-
fined in Appendix C. And let contSel, and prSel be later defined functions selecting tuples
from the function scRelation resulting relation which satisfy contain and precede interre-
lations for sub scenarios, respectively. Then:

scTrace(sc, ss) =



contSel(sc, secs, sscd)

if ∃c ∈ Contain, secs ∈ ScenarioEvent, sssc ∈ SubScenario
(((ss, c) ∈ SSC) ∧ ((c, secs) ∈ ScenarioEvent) ∧ ((c, sscs) ∈ CtoSS))

prSel(sc, ss)

if ∃p ∈ Precede((ss, p) ∈ SSP)

scTrace(sc, altSubSc(a, 1)) ∩ ... ∩ scTrace(sc, altSubSc(a, n))

if ∃a ∈ Alternatives, alt ⊆ AtoR∀(aalt, r) ∈ alt
(((ss, a) ∈ SSA) ∧ (aalt = a) ∧ (n = card(alt)))

π1,2,..,n(σ[=]3∗scOrdNum(sc,cNeg(ss))−1,3∗n+1

(σ[=]3∗scOrdNum(sc,cNeg(ss))−1,n+2(scRelation(sc)× (evTrace(cNeg(ss))−
π3∗scOrdNum(sc,cNeg(ss))−2,3∗scOrdNum(sc,cNeg(ss))−1,3∗scOrdNum(cNeg(ss))

(contSel(sc, cse, ssab))))))

if ∃n ∈ Negative, ssab ∈ SubScenario, c ∈ Contain, se ∈ ScenarioEvent
(((ss, n) ∈ SSN) ∧ ((n, ssab) ∈ NtoSS) ∧ ((cNeg(ss), c) ∈ SSC)∧
((c, cse) ∈ CtoSE))

scRelation(sc)

if ∃se ∈ ScenarioEvent((ss, se) ∈ SSSE)

From the definition of this function can be seen that it is a recursive function used for
traversing the abstract syntax three. Nodes in syntax tree are sub scenarios. When invoked
for a certain node, the function scTrace also returns a subset of the scRelation resulting
relation. In such a case the scTrace relation returns a relation in which values in columns
corresponding to scenario events of that sub scenario satisfy correlations defined by that sub
scenario.

The final result of the scTrace for a certain scenario is the intersection of scTrace for all
sub scenarios. This means that in the result are tuples in which values of components corre-
sponding to scenario events satisfy all specified interrelations. The selections are explained
in the following.

89

8. The Metamodel Formal Semantics

When the visited node of model syntax tree is an instance of Contains metaclass, the
result of scTrace function is the result of function contSel. Function contSel maps the
sub scenario containing event, and the contained sub scenario to appropriate tuples in scRe-
lation of the modeled scenario. This funcion is specified in the following.

Let sc ∈ Scenario, cts ∈ ScenarioEvent, and ctd ∈ SubScenario. And let sAf and
eBe be functions which take a scenario, an event and a sub scenario of that scenario as
arguments, and select tuples from the scenario’s scRelation outcome, in which the sub
scenario starts after and ends before the specified event, respectively. And let scOrdNum
be a function taking a scenario and one of its scenario events and maps them to that numbers
ordinal number in the scenario, scOrdNum : Scenario × ScenarioEvent → N, defined in
Appendix C. Then contSel function is defined as:

contSel(sc, cs, cd) =



((sA(sc, cs, cd)) ∩ (eBe(sc, cs, cd)))

if ∃secd ∈ ScenarioEvent((cd, secd) ∈ SSSE)

scTrace(sc, cd)

if ∃ncd ∈ Negation((cd, ncd) ∈ SSN)

((sAf(sc, cs, cd)) ∩ (eBe(sc, cs, cd))) ∩ scTrace(sc, cd)

∃ccd ∈ Contain, pcd ∈ Precede, 6 ∃afe ∈ Alternatives
(((cd, ccd) ∈ SSC) ∨ (((cd, pcd) ∈ SSP)∧
(fEv(cd) = lEv(cd) = afe)))

((sAf(sc, cs, altSubSc(af , 1)) ∩ eBe(sc, cs, altSubSc(af , 1))) ∪ ..
.. ∪ (sAf(sc, cs, altSubSc(af , n))) ∩ eBe(sc, cs, altSubSc(af , n)))

∩scTrace(sc, cd)

if ∃af ∈ Alternatives, alt ⊆ AtoR∀(a, ass) ∈ alt
(((fE(cd), af) ∈ SSA) ∧ (a = acd) ∧ (fE(cd) = lE(cd))

∧(n = card(alt)))

Function contSel recognizes four cases. The first case is when the contained sub scenario
is only one event, and that is an execution of a modeling element in a defined state. Here,
the resulting relation is intersection of two relations. In one relation the execution of this
modeling elements stats after the event which contains sub scenario. In the other the exe-
cution of the modeling element ends before the event which contains the sub scenario. The
second case is the case when the contained sub scenario is the negation. In this case, the
result of this function is the invocation of scTrace for that negation, because there is no
other interrelation to be satisfied.

The third case of this function is, when the sub scenario is either a contain or a precede
interrelation whose first event is not an alternative. Then, a further selection is needed
besides selecting relations in which sub scenario starts after and ends before the execution
of the sub scenario containing event. The selection is done with continuing selection with

90

8.2. The Event and Context Metamodel Part Formal Semantics

traversing the model syntax tree. This case can be found in Figure 8.1 example, and it is
used for depicting the transformation.

Previously described functionssAf and eBe are defined in the following.
Let sc ∈ Scenario, cts ∈ ScenarioEvent, and ctd ∈ SubScenario. And let plpfSel be

a function which takes two sub scenarios and selects only those relations in which one sub
scenario precedes another one. And let fEvAltP be a function which takes as arguments
an alteration and a sub scenario and returns the first sub sub scenario of that sub scenario
it precedes. The plpfSel and fEvAltP functions are described later in the section.Then,
the sAf function is defined as:

sAf(sc, cs, cd) =



σ[<]3∗scOrdNum(sc,cs)−1,3∗scOrdNum(sc,secd)−1(scRelation(sc))

if ∃secd ∈ ScenarioEvent((fEv(cd), secd) ∈ SSSE)

((sAf(sc, cs, altSubSc(ac, 1)) ∩ (plpfSel(sc, altSubSc(ac, 1)), ssap)) ∪ ..
∪((sAf(sc, cs, altSubSc(ac, n)) ∩ (plpfSel(sc, altSubSc(ac, n)), ssap))))

if ∃ac ∈ Alternatives, alt ⊆ AtoR∀(a, ass) ∈ alt
(((fEv(cd), acd) ∈ SSA) ∧ (a = ac) ∧ (n = card(alt))

∧(ssap = fAltEvP (ac, cd)))

The function sAf recognizes two cases. In the following, the attention is payed only to
the upper case, while the explanation of the bottom case is later in this section.

The upper case of the function sAf first finds the columns in relation corresponding to
the first event of the contained sub scenario. Then, selected are only those having the start
time is larger than the start time of the containing event. This is illustrated with an example
in Figure 8.4.

………………………

5 581 8155 581 012getItem1 180 1231 179 112obtainingTrailerBasicBlock5 582 0135 580 882getVideoItem

1 181 4321 180 334getItem1 151 1031 149 812obtainingTrailerBasicBlock1 144 1411 143 200getVideoItem

………………………

1 143 9451 143 441getItem1 229 8031 229 109obtainingTrailerBasicBlock5 582 0135 580 882getVideoItem

1 151 9811 151 112getItem1 151 1031 149 812obtainingTrailerBasicBlock1 144 1411 143 200getVideoItem

1 143 9451 143 441getItem1 151 1031 149 812obtainingTrailerBasicBlock1 144 1411 143 200getVideoItem

………………………

ETS3STS3IE3ETS2STS2IE2ETS1STS1IE1

Figure 8.4.: Example of the result of the sAf mapping. The illustrated selection is for the
instance of Contain in Figure 8.1. In all selected tuples is STS1>STS3.

The containing event in the Contain metaclass instance is the scenario event with
getVideoItem as the instrumented element. According to the sAf function definition,
the resulting tuples of this function have to have smaller start time of the executions of
getVideoItem operation then the first event of the contained sub scenario. The first event
is obtained with the function fEv, and that is the getItem operation execution. Finally, the

91

8. The Metamodel Formal Semantics

resulting relation selects only those tuples in which getVideoItem execution starts before
the getItem execution.

The previously mentioned function eBe, takes a scenario, its containing event and the
contained sub scenario as arguments and selects tuples in which the last event of contained
sub scenario ends before the end of the containing event. It is similar to the sAf function.
Let sc ∈ Scenario, cts ∈ ScenarioEvent, and ctd ∈ SubScenario. And let plpfSel be a
function which takes two sub scenarios and selects tuples in which one sub scenario precedes
another one. And let lEvAltP be a function which takes as arguments an alteration and
a sub scenario and returns the first preceding sub sub scenario of that sub scenario. The
plpfSel and lEvAltP functions are defined later in this section. Then, eBe is:

eBe(sc, cs, cd) =



σ[>]3∗scOrdNum(sc,cs),3∗scOrdNum(sc,secd)(scRelation(sc))

if ∃secd ∈ ScenarioEvent((lEv(cd), secd) ∈ SSSE)

((eBe(sc, altSubSc(ac, 1), cs)) ∩ (plpfSel(sc, ssap, altSubSc(ac, 1)))) ∪ ..
∪((eBe(sc, altSubSc(ac, n), cs) ∩ (plpfSel(sc, ssap, altSubSc(ac, n))))))

if ∃ac ∈ Alternatives, alt ⊆ AtoR∀(a, ass) ∈ alt
(((lEv(cd), acd) ∈ SSA) ∧ (a = ac) ∧ (n = card(alt))

∧(ssap = lAltEvP (ac, cd)))

Here is also only the upper case discussed, while the bottom is discussed later in this
section. The upper case is illustrated in Figure 8.5.

………………………

5 581 8155 581 012getItem1 180 1231 179 112obtainingTrailerBasicBlock5 582 0135 580 882getVideoItem

1 181 4321 180 334getItem1 151 1031 149 812obtainingTrailerBasicBlock1 144 1411 143 200getVideoItem

………………………

1 143 9451 143 441getItem1 229 8031 229 109obtainingTrailerBasicBlock5 582 0135 580 882getVideoItem

1 151 9811 151 112getItem1 151 1031 149 812obtainingTrailerBasicBlock1 144 1411 143 200getVideoItem

1 143 9451 143 441getItem1 151 1031 149 812obtainingTrailerBasicBlock1 144 1411 143 200getVideoItem

………………………

ETS3STS3IE3ETS2STS2IE2ETS1STS1IE1

Figure 8.5.: Example of the result of the eBe mapping. The illustrated selection is for the
Contain instance in Figure 8.1. In the selected tuples is ETS1 > ETS3.

The upper case of the function eBe first finds the columns in the relation corresponding
to the last event of the contained sub scenario. Then, only those are selected in which end
time is smaller than the end time of the containing event.

Having previous definitions in mind, the intersection of results of sAf and eBe when
visiting the instance of Contain metaclass in Figure 8.1 gives the relation satisfying both
conditions. Such intersection result for the examples in Figure 8.4 and Figure 8.5 are rows
marked in both figures. In order to have a relation which satisfies both, the previously
mentioned contain interrelation, and the interrelations specified in the contained sub scenario,

92

8.2. The Event and Context Metamodel Part Formal Semantics

the result is further intersected with the result of scTrace for the contained sub scenario. In
this case the scTrace invokes the prSel mapping with the scenario, preceded, and preceding
sub scenario as the arguments.

The definition of prSel is given in the following. Let plpfSel be a function selecting
tuples in which the last event of the preceding sub scenario ends before the first event of
preceded, defined later in this section. For the brevity in the definition, in each case is sc ∈
Scenario, p ∈ Precede, ss, ssps, sspd ∈ SubScenario, seps, sepd ∈ ScenarioEvent, n, nps, npd ∈
Negative.

prSel(sc, ss) =



(plpfSel(sc, ssps, sspd))

if ∃p, ssps, sspd, seps, sepd(((ss, p) ∈ SSP) ∧ ((p, ssps) ∈ PstoSS)∧
((p, sspd) ∈ PdtoSS) ∧ ((ssps, seps) ∈ SSSE) ∧ ((sspd, sepd) ∈ SSSE))

(plpfSel(sc, ssps, sspd)) ∩ scTrace(sc, ssps)
if ∃p, ssps, sspd, sepd 6 ∃seps, n(((ss, p) ∈ SSP) ∧ ((p, ssps) ∈ PstoSS)∧
((p, sspd) ∈ PdtoSS) ∧ ((ssps, seps) ∈ SSSE)∧
((sspd, sepd) ∈ SSSE) ∧ ((ssps, n) ∈ SSN))

(plpfSel(sc, ssps, sspd)) ∩ scTrace(sc, sspd)
if ∃p, ssps, sspd, seps 6 ∃sepd(((ss, p) ∈ SSP) ∧ ((p, ssps) ∈ PstoSS)∧
((p, sspd) ∈ PdtoSS) ∧ ((ssps, seps) ∈ SSSE)∧
((sspd, sepd) ∈ SSSE) ∧ ((sspd, n) ∈ SSN))

(plpfSel(sc, ps, pd)) ∩ scTrace(sc, ps) ∩ scTrace(sc, pd)

if ∃p, ssps, sspd 6 ∃sepd, seps, nps, npd(((ss, p) ∈ SSP)∧
((p, ssps) ∈ PstoSS) ∧ ((p, sspd) ∈ PdtoSS) ∧ ((ssps, seps) ∈ SSSE)∧
((sspd, sepd) ∈ SSSE) ∧ ((ssps, nps) ∈ SSN) ∧ ((ssps, npd) ∈ SSN))

scTrace(sc, ps) ∩ scTrace(sc, pd)

if ∃p, ssps, sspd, nps, npd(((ss, p) ∈ SSP) ∧ ((p, ssps) ∈ PstoSS)∧
((p, sspd) ∈ PdtoSS) ∧ (((ssps, nps) ∈ SSN) ∨ ((sspd, npd) ∈ SSN)))

Function prSel takes a scenario and a precede sub scenario of that scenario as arguments.
The outcome of this function is the subset of scRelation result for that scenario in which
preceded sub scenario executed after the preceding sub scenario. Depending on the kinds of
sub scenarios it continues the traversal of sub scenarios. In the following is of interest the
bottom case, because this is a case from the previous example. The remaining cases of this
function are described later in this section.

The fifth case from the top of the function prSel is the case when one of the sub sub
scenarios is an instance of Negation metaclass. Here exist no interrelations between the

93

8. The Metamodel Formal Semantics

preceded and the preceding sub sub scenario because one of them or even both do not execute.
Therefore, the function only intersects relations satisfying the sub scenarios interrelations.
For the Figure 8.1 example this function it produces the intersection of scTrace results for
a Negation sub scenario and a ScenarioEvent sub scenario.

The invocation of the scTrace for an instance of a ScenarioEvent is the bottom case
of the scTrace. This case produces neutral result because there is no specified scenario
event interrelation. Since the main operation in composing relation satisfying interrelations
between events of different sub scenarios is intersection, the produced result is the result of
scRelation for that scenario. The result of scRelation is neutral, because its intersection
with some of its subset is that subset.

The resulting relation of the scTrace in the case of a Negative sub scenario contains those
tuples in which the getVideoItem execution does not contain the negative sub scenario.
For the Figure 8.1 example is this case illustrated in Figure 8.6.

………………………

………………………

5 581 8155 581 012getItem1 180 1231 179 112obtainingTrailerBasicBlock5 582 0135 580 882getVideoItem

1 181 4321 180 334getItem1 151 1031 149 812obtainingTrailerBasicBlock1 144 1411 143 200getVideoItem

………………………

1 143 9451 143 441getItem1 229 8031 229 109obtainingTrailerBasicBlock5 582 0135 580 882getVideoItem

1 151 9811 151 112getItem1 151 1031 149 812obtainingTrailerBasicBlock1 144 1411 143 200getVideoItem

1 143 9451 143 441getItem1 151 1031 149 812obtainingTrailerBasicBlock1 144 1411 143 200getVideoItem

1 143 9451 143 441getItem1 143 3281 143 212obtainingTrailerBasicBlock1 144 1411 143 200getVideoItem

ETS3STS3IE3ETS2STS2IE2ETS1STS1IE1

Figure 8.6.: The result of the scTrace for the negative sub scenario of Figure 8.1. The result
is used in the function prSel for the Precede instance. The resulting relation
contains all tuples except for those in which STS1<STS2 and ETS1>ETS2.

This process is performed in three steps. First are identified tuples of the scRelation
resulting relation whose values in columns corresponding to the closest negation containing
element satisfy the contain interrelation with the values in columns of the negated sub
scenario. The closest negation containing event is the root of the smallest abstract syntax
sub tree starting with an instance of the Contain metaclass and having the negated sub
scenario in it. In our example this is the Contain instance having getVideoItem as the
containing event. In order to specify the negation containing event the mapping uses function
cNeg specified in the following. Let ssneg ∈ SubScenario. Then:

cNeg(ssneg) =



cNeg(ssp)

if ∃ssp ∈ SubScenario, p ∈ Precede(((ssp, p) ∈ SSP)∧
(((p, ssneg) ∈ PdtoSS) ∨ ((p, ssneg) ∈ PstoSS))

ssc

if ∃ssc ∈ SubScenario, c ∈ Contain(((ssc, c) ∈ SSC)∧
((c, ssneg) ∈ CtoSS))

94

8.2. The Event and Context Metamodel Part Formal Semantics

This function is a recursive function. In the upper case, the negative sub scenario is either
a preceding or a preceded sub scenario of an instance of the Precede metaclass. In this case
the function is recursively invoked for this Precede instance. In the case that the negated
sub scenario is a contained sub scenario of an instance of the Contain metaclass, the result
of the function is this instance of the Contain metaclass.

Then, these values are taken out from from the evTrace of that root. Finally, the outcome
is used for selecting only those tuples of the scRelation which do not satisfy contains
relation with the negated sub scenario.

Finally, the remaining case of the function contSel is explained on the second example,
depicted in Figure 6.3. Let it be assumed that there is an interest of analyzing probabilities of
execution of different alternatives. Then scenario would be specified as depicted in Figure 8.7.

ial Use Only For Non-commercial Use

 : InstrumentedElement
name = "obtainingAlbumOrTrack"

 : InstrumentedElement
name = "obtainingAudioBook"

 : InstrumentedElement
name = "getAudioItem"

getAudioItem :
Scenario

 : ScenarioEvent

 : ScenarioEvent : ScenarioEvent

 : Alternatives

 : Contain

se2 : StoSE

se3 : StoSE

 : StoSE

se1 : StoSE

 : CtoSS

a2 : AtoR

a1 : AtoR

 : CtoSE

 : SEtoIE

 : StoR

 : SEtoIE

Figure 8.7.: The abstract syntax tree of a getAudioItem operation part specification.

The instance of Contain metaclass has an instance of ScenarioEvent pointing with
the instrumentedEvent attribute to getAudioItem method. In the contained attribute
is an instance of Alternatives with two instances of ScenarioEvent metaclass. The
instances of ScenarioEvent metaclass have in instrumentedElement attribute blocks
of the design model first alternative, the alternative for obtaining music albums and tracks.
The second instance points with the instrumentedElement attribute to the alternative
for obtaining audio book.

Accordingly, the scRelation function for this scenario has nine columns. Each scenario
event is represented with three columns in the relation. The first three columns contain
information about getAudioItem method executions, while the second and the third triple
are dedicated to the blocks of the alternatives. For this reason, the outcome of the scTrace
function for this scenario has the same number of columns. An example of obtained relation
from the scTrace function for this scenario is depicted in Figure 8.8.

In the resulting relation each tuple represents an execution of one of alternatives. For each
tuple in relation is valid that (STS1<STS2 AND ETS1>ETS2) OR (STS1<STS3 AND

95

8. The Metamodel Formal Semantics

3 788 8213 758 771obtainingAudioBook2 788 8212 758 771obtainingAlbumOrTrack3 788 8303 785 750getAudioItem

3 788 8213 758 771obtainingAudioBook2 245 1022 243 210obtainingAlbumOrTrack3 788 8303 785 750getAudioItem

………………………

………………………

………………………

3 245 1203 243 210obtainingAudioBook2 245 1022 243 210obtainingAlbumOrTrack3 245 1203 243 200getAudioItem

3 788 8213 758 771obtainingAudioBook2 788 8212 758 771obtainingAlbumOrTrack2 788 8302 785 750getAudioItem

………………………

3 245 1203 243 210obtainingAudioBook2 788 8212 758 771obtainingAlbumOrTrack3 245 1203 243 200getAudioItem

3 245 1203 243 210obtainingAudioBook2 788 8212 758 771obtainingAlbumOrTrack2 788 8302 785 750getAudioItem

3 788 8213 758 771obtainingAudioBook2 245 1022 243 210obtainingAlbumOrTrack2 245 1202 243 200getAudioItem

3 245 1203 243 210obtainingAudioBook2 245 1022 243 210obtainingAlbumOrTrack2 245 1202 243 200getAudioItem

ETS3STS3IE3ETS2STS2IE2ETS1STS1IE1

Figure 8.8.: Example of the outcome of the function scTrace for the Figure 8.7 scenario

ETS1>ETS3). One execution scenario can be repeated in several relations, because of dif-
ferent values of fields that correspond to columns of other alternative. However, all columns
of one alternative satisfy specified interrelations. This is achieved with the case scTrace for
alternatives. This case intersects relations satisfying interrelations of one scenario. The in-
tersection produces relations satisfying all sub scenarios. For example, in Figure 8.8, columns
STS2 and ETS2 correspond to one, and columns STS3 and ETS3 to the second alternative.
This repetition of columns does not have the effect on the result because when selecting the
measured event in the function msEvTrace by performing projection on its columns in the
relation, the repeating values are removed.

In the following, two examples are presented in order to be used for the explanation of
the remaining cases of the function prSel. Let us assume that there is an additional event
before the alternative from the previous case. That event is opening the connection with the
database, openDBConn. The abstract syntax for this example is shown in Figure 8.9.

For Non-commercial Use Only

 : InstrumentedElement
name = "obtainingAlbumOrTrack"

 : InstrumentedElement
name = "obtainingAudioBook"

 : InstrumentedElement
name = "openDBConn"

 : InstrumentedElement
name = "getAudioItem" : ScenarioEvent

 : ScenarioEvent

 : ScenarioEvent

 : ScenarioEvent
 : Alternatives

p11 : Precede

 : Contain : CtoSS

 : PstoSS : CtoSE

alt1 : AtoR alt2 : AtoR

 : PdtoSS

 : SEtoIE : SEtoIE

 : SEtoIE : SEtoIE

Figure 8.9.: An extended Figure 8.7 example. The opening of a database connection precedes
each alternative

96

8.2. The Event and Context Metamodel Part Formal Semantics

The main difference of Figure 8.9 comparing to Figure 8.7 is that the getAudioItem
contains a Precede instance between having openDBConn as the preceding and the al-
ternatives as the preceded sub scenario.

The second example adds one more event to the scenario. That is the closeDBConn
event which closes the connection with the database. An abstract syntax for this example is
given in Figure 8.10.

For Non-commercial Use Only : InstrumentedElement
name = "obtainingAlbumOrTrack"

 : InstrumentedElement
name = "obtainingAudioBook"

 : InstrumentedElement
name = "getAudioItem"

 : InstrumentedElement
name = "closeDBConn"

 : InstrumentedElement
name = "openDBConn"

 : ScenarioEvent

 : ScenarioEvent

 : ScenarioEvent

 : ScenarioEvent

 : Alternatives

 : ScenarioEvent p22 : Precede

p21 : Precede
 : Contain : CtoSS

 : CtoSE

 : PdtoSS

 : PdtoSS

alt2 : AtoRalt1 : AtoR

 : PstoSS

 : PstoSS

 : SEtoIE : SEtoIE

 : SEtoIE : SEtoIE

 : SEtoIE

Figure 8.10.: Second extended Figure 8.7 example. The opening of a database connection
precedes each alternatives and the closing follows

The major difference comparing to the Figure 8.9 is that the opening of the database
connection precedes another instance of the Precede metaclass. It precedes the precede
interrelation between the alternatives and the closing the connection with the database.

The remaining cases of the sAf, eBe, and prSel mappings use functions lEvAltP and
fEvAltP. These functions are explained in the following.

The function lEvAltP takes as arguments an alternative sub scenario and a sub scenario
and returns the first sub sub scenario of the sub scenario it precedes. For example, in Fig-
ure 8.9 for the instance of alternative and the p11 instance of Precede the function returns
the opening database scenario event. This function is formally defined in the following.

Let ssalt, sspd ∈ SubScenario. Then:

lEvAltP (ssalt, ssps) =



fEv(sspsps)

if ∃p ∈ Precede, sspsps, ssa ∈ SubScenario(((ssps, p) ∈ SSP)∧
((p, ssa) ∈ PdtoSS) ∧ (fEv(ssa) = lEv(ssa) = ssalt)∧
((p, sspsps) ∈ PstoSS))

lEvAltP (ssalt, sspsps)

if ∃p ∈ Precede, sspsps ∈ SubScenario(((ssps, p) ∈ SSP)∧
((p, ssalt) /∈ PdtoSS)) ∧ ((p, ssps) ∈ PstoSS))

97

8. The Metamodel Formal Semantics

The function fEvAltP is opposite to the function lEvAltP. It returns for a sub scenario
and an alternative the first sub sub scenario that precedes that alternative. For example,
in Figure 8.10, for the instance of Alternatives and p21 or p22 it returns the closing
database event. This function is defined as follows.

Let ssalt, sspd ∈ SubScenario. Then:

fEvAltP (ssalt, sspd) =



lEv(sspdpd)

if ∃p ∈ Precede, sspdpd, ssa ∈ SubScenario(((sspd, p) ∈ SSP)∧
((p, ssa) ∈ PstoSS) ∧ (fEv(ssa) = lEv(ssa) = ssalt)∧
((p, sspdpd) ∈ PdtoSS))

fEvAltP (ssalt, sspdpd)

if ∃p ∈ Precede, sspdpd ∈ SubScenario(((sspd, p) ∈ SSP)∧
((p, ssalt) ∈ PstoSS) ∧ ((p, sspdpd) ∈ PdtoSS))

A traversal of Figure 8.9 example starts with the scTrace mapping for the top instance of
the Contain metaclass. The scTrace then enters the third from the top case of the contSel
mapping. The third case uses the result of sAf for the getAudioItem and openDBConn
events, eBe for the getAudioItem and the instance of Alternatives. For the purpose of il-
lustration let us assume that the scenario relation contains STS1 and ETS1, STS2 and ETS2,
STS3 and ETS3, and STS4 and ETS4, corresponding to getAudioItem, openDBConn,
obtainingAlbumOrTrack, obtainingAudioBook, respectively. The function sAf for
the getAudioItem and openDBConn returns tuples satisfying STS1<STS2. This rela-
tion is intersected with the result of eBe for getAudioItem and the instance of Alterna-
tives. This is the bottom case of the eBe function which for this case returns relation satisfy-
ing ((ETS1<ETS3) AND (ETS2<ETS3)) OR (((ETS1<ETS4) AND (ETS2<ETS4))). The
intersected result is the relation (STS1<STS2) AND (((ETS2<STS3)AND(ETS3<ETS1))
OR (((ETS2<STS4) AND (ETS1<ETS4)))). It means that getAudioItem contains union
of relations having openDBConn which precedes obtainingAlbumOrTrack or obtain-
ingAudioBook. It is actually the relation containing executions of the scenario. Never-
theless, the function continues the traversal by invoking the prSel function for the p11
instance.

The prSel function for the Figure 8.9 p11 instance, is the third case of this func-
tion. It uses the function plpfSel. The plpfSel function is defined in the following.
In order to avoid repetitions, it is assumed that seps, sepd ∈ ScenarioEvent, aps, apd ∈
Alternatives, alt, altps, altpd ⊆ AtoR in the following definition. And let sc ∈ Scenario,

98

8.2. The Event and Context Metamodel Part Formal Semantics

ps, pd ∈ SubScenario.

plpfSel(sc, ps, pd) =



σ[<]3∗ordNumSEv(sc,seps),3∗ordNumSEv(scenario,sepd)(scRelation(sc))

if ∃seps, sepd(((lEv(ps), seps) ∈ SSSE)∧
((fEv(pd), sepd) ∈ SSSE))

plpfSelSEA(sc, ps, pd)

if ∃apd, alt 6 ∃aps∀(a, ass) ∈ alt(((ps, aps) ∈ SSA)∧
((pd, apd) ∈ SSA) ∧ (a = fEv(pd)) ∧ (n = card(alt)))

plpfSelASE(sc, ps, pd)

if ∃aps, alt∀(a, ass) ∈ alt(((ps, aps) ∈ SSA)∧
((pd, apd) ∈ SSA) ∧ (a = lEv(ps))

The function recognizes three different cases. The top case is when the last event of the
preceding sub scenario and the first event of the preceded sub scenarios are scenario events.
Here, the result is a subset of the scRelation having values in column corresponding to the
end of the last event of the first sub scenario smaller than values in the column corresponding
to the start of the first event of the second.

The second case is when the last event of the preceding scenario is a scenario event and
the first event of the preceded scenario is an instance of Alternatives. This is the case
is entered when visiting the Figure 8.9 p11 instance with scTrace. Here, the scTrace
mapping uses the second case from the top of the prSel mapping with openDBConn and
the Alternatives. The prSel mapping uses plpfSelSEA function.

The plpfSelSEA function is defined in the following. Let sc ∈ Scenario, ps, pd ∈
SubScenario, apd ∈ Alternatives, and alt ⊆ AtoR. Then:

plpfSelSEA(sc, ps, pd) =



((plpfSel(sc, ps, altSubSc(apd, 1))) ∪ ...∪
(plfpSel(sc, ps, altSubSc(apd, n))))

if ∃apd, alt∀(a, ass) ∈ alt((fEv(pd) = lEv(pd))∧
(apd = fEv(pd)) ∧ (a = apd) ∧ (n = card(alt)))

((plpfSel(sc, ps, altSubSc(apd, 1))∩
(plpfSel(sc, altSubSc(apd, 1), ssaltpd))) ∪ ...∪
(plfpSel(sc, ps, altSubSc(apd, n))∩
plpfSel(sc, altSubSc(apd, n), ssaltpd)))

if ∃ssaltpd ∈ SubScenario, apd, alt∀(a, ass) ∈ alt
((fEv(pd) 6= lEv(pd)) ∧ (apd = fEv(pd)) ∧ (a = apd)

(n = card(alt)) ∧ (ssaltpd = fEvAltP (apd, pd)))

99

8. The Metamodel Formal Semantics

For the p11 instance the function uses the upper case, where ps is the openDBConn
event and pd is the instance of Alternatives. With respect to the scenario relation this
function produces a condition that ((ETS2<STS3) OR (ETS2<STS4)). This condition is
actually already inside the previous condition of this example and has no impact on the final
result. Furthermore, the remaining node visits produce neutral results and, therefore, are
not described.

The examples for the remaining cases of defined functions are given with the traversal
of the Figure 8.10 example. For the purpose of the example let us assume that to the
getVideoItem, openDBConn, obtainingAlbumOrTrack, obtainingAudioBook, and
closeDBConn events of the Figure 8.10 example correspond STS1 and ETS1, STS2 and
ETS2, STS3 and ETS3, STS4 and ETS4, and STS5 and ETS5 scenario trace columns,
respectively.

The traversal again starts with scTrace mapping for the top instance of the Contain
metaclass. It uses, similarly to the previous example, the third case of the contSel mapping.
The third case intersects result of sAf for the getAudioItem and openDBConn, eBe
for the getAudioItem and closeDBConn, and scTrace for the p21 instance. Functions
sAf and eBe produce relations satisfying STS1<STS2 and ETS1>ETS5, respectively.

When visiting p21, the scTrace function uses the fourth case of the prSel mapping.
The prSel mapping uses the bottom case of the plpfSelSEA function with openDB-
Conn and the instance of Alternatives. Here, each alternative has to additionally satisfy
the precede relation with the closeDBConn. The result of this mapping is the func-
tion satisfying the condition ((ETS2<STS3) AND (ETS3<STS5)) OR ((ETS2<STS4) AND
(ETS4<STS5)). When incorporating the previous conditions, the tuples in the resulting rela-
tion satisfy the following condition (STS1<STS2) AND (ETS1>ETS5) AND ((ETS2<STS3)
AND (ETS3<STS5)) OR ((ETS2<STS4) AND (ETS4<STS5)). This is, actually, the con-
dition which describes the specified scenario. However, because this is the fourth case of the
prSel mapping, this resulting relation is intersected results of scTrace for the openDB-
Conn scenario event and the p22 instance. The scTrace result for the openDBConn is
the neutral result, and the scTrace result for the p22 instance enters the bottom case of
the function plpfSel.

The bottom case of the function plpfSel is the case when the first event of the preceding
sub scenario is an alternative. For computing this case is used function plpfSelASE. The
function plpfSelASE is defined in the following.

Let sc ∈ Scenario, ps, pd ∈ SubScenario, aps ∈ Alternatives, and alt ⊆ AtoR. Then:

100

8.2. The Event and Context Metamodel Part Formal Semantics

plpfSelASE(sc, ps, pd) =



(plpfSel(sc, altSubSc(aps, 1), pd)) ∪ ...∪
(plpfSel(sc, altSubSc(aps, n), pd))

if ∃aps, alt∀(a, ass) ∈ alt((fEv(ps) = lEv(ps))

∧(aps = fEv(ps)) ∧ (a = aps) ∧ (n = card(alt)))

((plpfSel(sc, altSubSc(aps, 1), pd))∩
(plpfSel(sc, ssaltps, altSubSc(aps, 1)))) ∪ ...∪
((plpfSel(sc, altSubSc(aps, n), pd))∩
(plpfSel(sc, ssaltps, altSubSc(aps, n))))

if ∃ssaltps ∈ SubScenario, aps, alt∀(a, ass) ∈ alt
((fEv(ps) 6= lEv(ps)) ∧ (aps = fEv(ps)) ∧ (a = aps)

∧(n = card(alt)) ∧ (ssaltps = lEvAltP (aps, ps)))

The function plpfSelASE similarly to plpfSelSEA recognizes two cases. The upper case
is the case when alternatives must not satisfy some other precede relation. And the bottom
when they do. In visiting p22 each alternative must satisfy the condition that it is followed
by the closeDBConn event. It produces the condition (ETS3<STS5) OR (ETS4<STS5).
This result is already contained in the previous result and, therefore, does not have an impact
on it. The the results of traversals the remaining nodes are neutral results.

It should be noticed that this case is used also when both first event of the preceding and
last case of the preceded sub scenario are alternatives. The recursive logic of this function
does not change if the last event of the preceded sub scenario is not a scenario event but a
At the end, grouping events into one relation later used in statistical analysis is illustrated
with the example in Figure 8.11.

The example in Figure 8.11 represents a specification of a group containing two alternative
blocks of the scenario in Figure 8.7 as elements of that group. This specification is used later
for the illustration of metrics and assessment metamodel parts.

The function grTr is defined as follows.

Let g ∈ Group. And let (g,me1), (g,me2), ..., (g,men) ∈ GtoME be all pairs of GtoME
having g as the value of the first entry. Then the function grTr is defined as:

grTr(group) = msEvTrace(me1) ∪msEvTrace(me2) ∪ ... ∪msEvTrace(men)

This function groups all specified measured event into one relation by performing union
of group measured events relations. For example, if the group is defined as in Figure 8.11,
where the specified scenario is the scenario represented in Figure 8.8, the resulting relation
is given in Figure 8.12.

The resulting relation contains executions of both measured events summarized in one
table. The resulting group relation for Figure 8.1 contains only executions of the getItem
operation.

101

8. The Metamodel Formal Semantics

or Non-commercial Use Only

al Use Only For Non-commercial Use O

 : InstrumentedElement
name = "obtainingAlbumOrTrack"

 : InstrumentedElement
name = "obtainingAudioBook"

 : InstrumentedElement
name = "getAudioItem"

getAudioItem :
Scenario

 : MeasuredEvent : MeasuredEvent

 : ScenarioEvent

 : ScenarioEvent

 : Group

 : ScenarioEvent

 : Alternatives

 : Contain

 : MEtoSE

 : MEtoSE

se2 : StoSE

se3 : StoSE

 : StoSE

se1 : StoSE

 : CtoSS

a2 : AtoR

a1 : AtoR

 : CtoSE

 : GtoME

 : SEtoIE

 : StoR

 : GtoME

 : MEtoS

 : SEtoIE

 : MEtoS

Figure 8.11.: Example of the Group metaclass usage. In the figure can be seen a grouping
of alternative sub scenarios of Figure 8.7 for further assessment.

At the end, it should be noticed the need for the well-formedeness rule 7 at the page 77.
If there would be sharing of instances representing scenario events in a scenario, the com-
putation of metrics might not be correct. The incorrectness may arise when it comes to a
situation in which the values in the columns corresponding to the shared event have to satisfy
< or > relation with themselves as the result of specified interrelations in the scenario.

2 245 1022 243 210obtainingAlbumOrTrack

2 788 8212 758 771obtainingAlbumOrTrack

……….

3 788 8213 758 771obtainingAudioBook

3 245 1203 243 210obtainingAudioBook

………

ETSSTSIE

Figure 8.12.: Example of the Group metaclass usage. In the figure can be seen a grouping
of alternative sub scenarios of Figure 8.7 for further assessment.

102

8.3. Assessment and Metrics Metamodel Part Formal Semantics

8.3. Assessment and Metrics Metamodel Part Formal
Semantics

Assessment and metrics specification subsequently use the relation obtained with grTr func-
tion. The group events and their duration intervals are further used for the computation of
specified metrics. As defined in the metamodel, there exist two assessments, a simple and a
composite one. Mapping of an assessment to the appropriate query is defined by function
assessment, formally specified in the following. Let as ∈ Assessment. Then,

assessment(as) =



sAssesment(as)

if ∃sas ∈ SimpleAssessment((as, sas) ∈ AsSA)

cAssessment(as)

else

The assessment function simply recognizes if the assessment is simple or composite and,
accordingly, the image if this function is the result of sAssessment and cAssessment,
respectively.

The sAssessment function computes desired metrics for a simple assessment. This
mapping is defined in the following.

Let sas ∈ SimpleAssessment. In order to avoid repetitions let ass ∈ Assessment,m ∈
Metric, is ∈ IntervalSet, tis ∈ TimeIntervalSet, gr ∈ Group. Then:

sAssessment(sas) =



π1,2,8(Apply[/]6,7(Apply[−]2,1(Aggr1[5 : c](σ[≥]2,4(σ[<]1,3(

iSRel(is)× grTr(gr)))))))
if ∃ass,m, is, tis, gr∃or ∈ OccurrenceRate(((ass, sas) ∈ AsSA)

∧((ass, tis) ∈ AstoTIS) ∧ ((is, tis) ∈ ISTIS)∧
((sas,m) ∈ SAtoM) ∧ ((sas, g) ∈ SAtoG) ∧ ((m, or) ∈MOR))

π1,2,3,8(Apply[/]6,7(Aggr1[5 : c]((Aggr3[5 : c](σ[≥]2,4(σ[<]1,3(

iSRel(is)× grTr(gr))))))))
π1,2,8(Apply[/]6,7(Apply[−]2,1(Aggr1[5 : c](σ[≥]2,4(σ[<]1,3(

iSRel(is)× grTr(gr)))))))
if ∃ass,m, is, tis, gr∃op ∈ OccurrencePercentage
(((ass, sas) ∈ AsSA) ∧ ((ass, tis) ∈ AstoTIS)∧
((is, tis) ∈ ISTIS) ∧ ((sas,m) ∈ SAtoM) ∧ ((sas, g) ∈ SAtoG)

∧((m, op) ∈MOP))

durAssessment(sas)

if ∃m∃d ∈ Duration(((sas,m) ∈ SAtoM) ∧ ((m, d) ∈ Duration))

103

8. The Metamodel Formal Semantics

Function sAssessment defines different mappings according to the metric specified for
computation. In the case that the specified metric is occurrence rate, the function classifies
events according to time intervals in which they occur. Time intervals are specified in the
timeIntervalSet attribute of the SimpleAssessment instance. When they are classified,
then they are counted for each interval and divided by the duration of the interval. Finally,
the resulting relation is obtained by performing projection on the columns representing
interval start times, interval end times, and values of occurrence rates.

In the case that the specified metric is occurrence percentage, the group events are again
classified according to time intervals in which they occur. Then the total number of events
in a particular interval, and number of particular modeling element executions in the same
interval are computed. Thereafter, count of modeling element execution is divided by total
number, and the desired percentage is calculated. Finally, the performed projection isolates
interval start and end time instants, modeling element, and percentage of execution. For
example, if the percentage of different alternatives specified in Figure 8.7, at the page 95, is
of interest the computation would be performed in the following way. First, the number of
records in the relation 8.8. Then, the numbers of occurrences of obtainingAlbumOrTrack
and obtainingAudioBook would be computed. Rations of these numbers with the total
numbers of occurrences are percentages of occurrences. The final relation consists of the
following four columns: interval start time, interval end time, the instrumented element
identifier, and the value of percentage.

When the specified metric to be computed is some statistical analysis of duration, the
result of sAssessment function is result of durAssesssment function, as specified in the
following.

Let sas ∈ SimpleAssessment. Similarly to the previous case, for the reason of brevity and
avoidance of repetitions,ass ∈ Assessment,m ∈ Metric, d ∈ Duration, a ∈ Analysis, is ∈
IntervalSet, tis ∈ TimeIntervalSet, gr ∈ Group in both cases.

durAsssessment(sas) =



π1,2,7(Aggr2[6 : agg(sf)](Apply[−]5,4(σ[≥]2,4(σ[<]1,3(

iSRel(tis)× grTr(gr))))))
if ∃ass,m, d, a, is, tis, gr∃sa ∈ StatisticalAnalysis
(((ass, sas) ∈ AsSA) ∧ ((ass, tis) ∈ AstoTIS)∧
((is, tis) ∈ ISTIS) ∧ ((sas,m) ∈ SAtoM)∧
((sas, g) ∈ SAtoG) ∧ ((m, d) ∈MD) ∧ ((d, a) ∈ DA)∧
((a, sa) ∈ ASA) ∧ (sa = (sf)) ∧ (sf ∈ Statistics))

durDisA(sas)

if ∃m, d, a∃da ∈ DistributionAnalysis((sas,m) ∈ SAtoM)

∧((m, d) ∈MD) ∧ ((d, a) ∈ DA) ∧ ((a, da) ∈ AD))

The duration assessment is done with some statistical analysis of all occurrences in time
interval. Occurrence durations are assessed either with some statistical function which de-
scribes all durations in one number, or in distribution histograms. Therefore, durAssssess-
ment recognizes two cases.

104

8.3. Assessment and Metrics Metamodel Part Formal Semantics

10 800 000

10 800 000

7 200 000

7 200 000

7 200 000

STSTIS

14 400 000

14 400 000

10 800 000

10 800 000

10 800 000

STSTIS

…

1 164 821

1 151 981

…

9 144 301

8 143 945

…

1 141 981

…

ETS

……

……

……

…

getItem

getItem

getItem

getItem

getItem

IE

…

1 3861 163 435

86911 151 112

1 0769 143 225

5048 143 441

6691 141 312

STS

Aggr2[6:agg(sta)](Apply[-]5,4(σ[<]2,8(σ[≥]3,8(iSRel(tis) × grTr(gr)))))

………

………

984.314 400 00010 800 000

1 20010 800 0007 200 000

agg(sta)ETSTISSTSTIS

Resulting relation

Figure 8.13.: The illustration of the duration statistical analysis. The statistical value is
computed for each calendar time interval

In one case the assessment is performed according to a statistical function which describes
all occurrences of an interval in one number. Here, durations of all events of a group which
occurred in the same time interval are banded, their durations computed, and then statis-
tically analyzed with the predefined function. Finally, projection is performed to leave in
only the start and end time instant of the interval and the value of the function specified in
resulting relation. The computation is illustrated in Figure 8.13.

The second case is when duration of modeling elements are assessed with some distribution
function. Then, the result of the function durAssessment is result of function durDistA.
Function durDistA is defined in the following.

Let sas ∈ SimpleAssessment. Here is also assumed that ass ∈ Assessment, m ∈
Metric, d ∈ Duration, a ∈ Analysis, di ∈ Distribution, is, isd ∈ IntervalSet, tis ∈
TimeIntervalSet, gr ∈ Group for the reason of brevity and avoidance of repetitions.

durDisA(sas) =



π1,2,3,4,10(Apply[/]9,10(Aggr2[5 : c](Aggr4[5 : c](σ[<]2,8(σ[≥]3,8(iSRel(isd)

×Apply[−]5,4(σ[≥]2,4(σ[<]1,3(iSRel(is)× grTr(gr))))))))))
if ∃ass, tis, is, isd,m, d, a, di(((ass, sas) ∈ AsSA)∧
((ass, tis) ∈ AstoTIS) ∧ ((is, tis) ∈ ISTIS) ∈ (sas, gr) ∈ SAtoG)∧
((sas,m) ∈ SAtoM) ∧ ((m, d) ∈MD) ∧ ((d, a) ∈ DtoA)∧
(((a, di) ∈ AD)∧ = (kind)) ∧ (kind ∈ DistributionKind)∧
(kind = density) ∧ ((di, is) ∈ DtoIS))

π1,2,3,4,10(Apply[/]9,10(Aggr2[5 : c](Aggr4[5 : c](σ[≥]2,8(iSRel(isd)

×Apply[−]5,4(σ[≥]2,4(σ[<]1,3(iSRel(is)× grTr(gr)))))))))
if ∃ass, tis, is, isd,m, d, a, di(((ass, sas) ∈ AsSA)∧
((ass, tis) ∈ AstoTIS) ∧ ((is, tis) ∈ ISTIS) ∈ (sas, gr) ∈ SAtoG)∧
((sas,m) ∈ SAtoM) ∧ ((m, d) ∈MD) ∧ ((d, a) ∈ DtoA)∧
(((a, di) ∈ AD) ∧ (di = (kind)) ∧ (kind ∈ DistributionKind)∧
(kind = cumulative) ∧ ((di, is) ∈ DtoIS))

105

8. The Metamodel Formal Semantics

Function durDistA recognizes two cases: assessment with histogram, and with cumula-
tive histogram. In the case where density distribution is specified as the assessment metric,
histogram is computed for each time interval. Events are clustered according to the time
interval in which they occur. Subsequently, the duration of each event is computed and
count of events in the time interval. Afterwords, events are grouped according to their du-
ration. All events which is in the same intervals of the is attribute of the Distribution
metaclass are clustered, and their count computed. Then, count of events of each interval
cluster is divided by the count of events in the time interval for which histogram is com-
puted. Finally, the projection leaves only columns of start and end of time interval for which
is histogram computed, start and end values of each interval in histogram, and values of bars
in the histogram. The procedure is the same for the cumulative histogram, only events in
the histogram are clustered in the way, that all events whose duration is smaller than the
end value of the interval, belong to that interval in the cumulative histogram. The density
distribution histogram computation is illustrated in Figure 8.14.

……

1 500

1 000

…

ETSDD

1 000

500

...

STSDD

10 800 000

10 800 000

7 200 000

7 200 000

7 200 000

STSTIS

14 400 000

14 400 000

10 800 000

10 800 000

10 800 000

STSTIS

…

1 164 821

1 151 981

…

9 144 301

8 143 945

…

1 141 981

…

ETS

……

……

……

…

getItem

getItem

getItem

getItem

getItem

IE

…

1 3861 163 435

86911 151 112

1 0769 143 225

5048 143 441

6691 141 312

STS

……………

0.4814 400 00010 800 0001 5001 000

……………

0.1914 400 00010 800 0001 000500

……………

0.4410 800 0007 200 0001 5001 000

0.2210 800 0007 200 0001 000500

ValueETSTISSTSTISETSDDSTSDD

iSRel(dis)×iSRel(tis)

Apply[-]5,4(σ[<]2,8(σ[≥]3,8(iSRel(tis) × grTr(gr))))

Figure 8.14.: The illustration of the histogram computation. The histogram computed for
each calendar time interval. It computed by dividing numbers of events of
a calendar time interval belonging to histogram intervals with the number of
events of that time interval

Besides simple assessment, also composite assessment can be specified. Composite assess-
ment enables further statistical analysis of simple assessment results. An example of such
an analysis is the computation of mean throughput. In this case, throughput is computed
for some representative time intervals. After the computation for time intervals, values of
throughput for that time intervals are taken and the mean computed. From this example,
it can be noticed that a composite assessment takes results of some already computed met-
rics and then statistically analyzes them. The computed metrics which are input for the
composite analysis are defined in the attribute previousLevelAssessement. Composite

106

8.3. Assessment and Metrics Metamodel Part Formal Semantics

assessment computation is formally defined in the following.

Let cas ∈ CompositeAssessment. Similarly to previous cases, in order to avoid repetitions
in all cases is ass, pla ∈ Assessment, a ∈ Analysis, is ∈ IntervalSet, tis ∈ TimeIntervalSet.

cAssessment(cas) =



π1,2,7(Aggr3[5 : agg(sta)](σ[≥]2,4(

σ[<]1,3(iSRel(tis)× assessment(pla)))))

if (∃ass, pla, a, is, tis∃sa ∈ StatisticalAnalysis
∧(((ass, cas) ∈ AsCA) ∧ ((ass, tis) ∈ AstoTIS)∧
∧((is, tis) ∈ ISTIS) ∧ ((cas, pla) ∈ CAtoAS)∧
((cas, a) ∈ CAtoA) ∧ ((a, sa) ∈ ASA) ∧ (sa = sta))

cAssDistA(cas)

if ∃a∃di ∈ Distribution(((cas, a) ∈ CAtoA) ∧ ((a, di) ∈ AD))

Function cAssessment separates two cases, similarly to duration simple assessment.
In the case when the composite assessment is specified in such a way that the attribute
metricAnalysis is an instance of StatisticalFunction, for each interval defined in the
timeIntervalSet attribute of the defined statistical function from Statistics is computed
in the following way. Previous level assessment, which contains start and end of time interval
for which they are computed, and the value of computed metric, are grouped according to
the intervals of composite analysis to which they belong. Afterwords, for each time interval
of composite assessment, statistical function specified in the attribute statisticalFunction
are computed on these grouped values.

Alternative to statistical analysis where set of values are represented with a single number is
the analysis of previous level assessment values with distribution functions. Such an example
is the density distribution of throughput. The computation is performed in the following way.
As in the previous case, values of previous level assessment metrics are grouped according to
the interval of composite assessment to which they belong. Later, for these groups, according
to kind of distribution function, density or cumulative, and width of histogram or cumulative
histogram, bars and the histogram bar values are computed. The computation is similar to
the computation of distribution histograms in simple assessment of durations. Formally, this
function is defined in as follows.

Let cas ∈ CompositeAssessment. Again, to avoid repetitions and to shorten the defini-
tion, it is assumed that ass, pla ∈ Assessment, a ∈ Analysis, di ∈ Distribution, is, isd ∈
IntervalSet, tis ∈ TimeIntervalSet.

107

8. The Metamodel Formal Semantics

cAssDistA(cas) =



π1,2,3,4,10(Apply[/]8,9(Aggr2[5 : c](Aggr4[5 : c](σ[<]2,7(

σ[≥]2,7(iSRel(isd)× σ[≥]2,4(σ[<]1,3(iSRel(is)× ass(pla)))))))))

if ∃ass, pla, a, di, is, isd, tis((ass, cas) ∈ AsCA)∧
((ass, tis) ∈ AstoTIS) ∧ ((is, tis) ∈ ISTIS)∧
((cas, pla) ∈ CAtoAs) ∧ ((cas, a) ∈ CAtoA) ∧ ((a, di) ∈ AD)∧
(di = (kind)) ∧ (kind ∈ DistributionKind) ∧ (kind = density)∧
((di, isd) ∈ DtoIS))

π1,2,3,4,10(Apply[/]8,9(Aggr2[5 : c](Aggr4[5 : c](σ[≥]2,7(

iSRel(isd)× σ[≥]2,4(σ[<]1,3(iSRel(is)× assessment(pla))))))))

if ∃ass, pla, a, di, is, isd, tis((ass, cas) ∈ AsCA)∧
((ass, tis) ∈ AstoTIS) ∧ ((is, tis) ∈ ISTIS)∧
((cas, pla) ∈ CAtoAs) ∧ ((cas, a) ∈ CAtoA) ∧ ((a, di) ∈ AD)∧
(di = (kind)) ∧ (kind ∈ DistributionKind)∧
(kind = cumulative) ∧ ((di, isd) ∈ DtoIS))

108

Part III.

Evaluation

109

8. The Metamodel Formal Semantics

110

9. Chapter
PEMA: A UML Profile for
PErformance Measurement and
Assessment

Model Driven Architecture, the mostly used MDE approach as described in Chapter 2, in
praxis uses UML as de facto standard for software intensive systems engineering. With
means of UML Profile, UML can be adapted to some domain-specific usage. The size of the
UML metamodel, starting with version 2.0, grew very large and became very complex. Such
a big metamodel is often unneeded for particular uses of UML. Therefore, it is suggested
that for a particular purpose, only the needed subset is used [France et al., 2006]. In this
chapter, the part of UML which enables modeling of the reactive and the transformational
part is specified in Section 9.1. Section 9.2 contains specification of the PEMA UML profile
as an implementation the metamodel presented in the previous chapter.

9.1. UML Metamodel Subset

MoDePeMART is a general approach for integration of performance measurement and as-
sessment in an MDE software development process. In the measurement and assessment, as
explained in Chapter 5, two models are used: a software design model, and a measurement
and metric computation specification model. In MDA the UML is used for both models. For
evaluation of the approach application to MDA, UML Class Diagrams, UML State Diagrams,
and UML Sequence Diagrams are used for software functionality modeling.

UML Class Diagrams and UML State Diagrams are used as prescriptive models from which
code is generated. Generation of code from State and Class diagrams is already widely used,
e.g. by Hubert [Hubert, 2002] and Harel and Gery [Harel and Gery, 1996].

For bodies of methods in UML Class and State diagrams in some approaches an action
languages are used, e.g. by Raistrick et al. Raistrick et al. [2004]. UML, starting with version
2.0, includes action semantics in its metamodel. Action semantics is an abstract syntax of
action languages. However, there is no specified concrete syntax of an action language.
For this reason, most of currently available tools for UML modeling do not contain an
action language. Such a tool is the tool used for evaluation in this thesis. Consequently, in
evaluation as an action language, standard Java syntax is used.

UML Sequence Diagrams are not used for code generation. Nevertheless, they can be used
as prescriptive models for software performance prediction, as suggested by Cortellessa and
Mirandola [Cortellessa and Mirandola, 2000]. In the next two subsection subsets of UML
Class and UML State Diagrams used for evaluation are explained.

111

9. PEMA: A UML Profile for PErformance Measurement and Assessment

9.1.1. Class Diagrams UML Metamodel Subset

Class diagrams are used for modeling software intensive systems structure. UML Class
Diagram metamodel subset used for evaluation is specified in Figure 9.1.

For Non-commercial Use Only

Class
(from Communications)

BehavioredClassifier

BehavioralFeature

OpaqueBehavior

Class
(from Kernel)

Association

Behavior

Operation

Property

+method
1

+specification0..1

+ownedOperation

*

+class0..1 +ownedAttribute

*+class

0..1

+association0..1

+memberEnd2

Figure 9.1.: UML Class Diagrams UML metamodel subset

The metaclass used for the definition of a class in the model is Class metaclas from the
Communications package. Class metaclass from Kernel package is generalization of
concepts used for various definitions in the UML metmodel. Metaclass Class from Com-
munications package inherits BehavioredClassifier metaclass. BehavioredClassifier
is the metaclass which owns a behavior additional to one specified in operations. This en-
ables the specification a state machine as a reactive class behavior. The metamodel part for
specification of reactive behavior is explained in the next subsection.

The Class from Communications package has attributes ownedAttribute and owne-
dOperation inherited from metaclass Class from Kernel package. Attributes ownedAt-
tribute and ownedOperation are of types Property and Operation, respectively. These
attributes at M2 layer, enable specification of attributes and operations at M1 layer, respec-
tively.

Metaclass Association enables specification of associations in class diagrams. In order
to enable usage of standard Java instead of action language, attribute method of the class
Operation is of type OpaqueBehavior. Metaclass OpaqueBehavior enables usage of
programming language expression in UML diagrams.

Additionally, metaclasses Operation and Property have an additional attribute type,
not presented in the diagram. In the case of Property metaclass, it is used for definition of
the M1 class attribute. For Operation metaclass, it is used for specification of operation re-
turn value data type. Furthermore, UML metamodel parts for defining operation arguments
are also not depicted in the figure. These are not shown for the reason of their complexity.

Finally, the stereotype Client is also defined. This stereotype is introduced because of
usage of a client server application architecture for evaluation. This stereotype is used for de-

112

9.1. UML Metamodel Subset

notation of classes which are part of client applications. Furthermore a stereotype DataType
is also defined. The DataType stereotype is introduced in order to make a difference be-
tween the composite data types and the application logic implementation classes. Classes
without both stereotypes are considered parts of server application logic. This information
is used for code generation, as it is explained in Appendix E.

UML metamodel parts for definition of attribute types, operation arguments and return
value of attributes are, for the reason of brevity, here not presented.

9.1.2. State Machines UML metamodel subset

As explained in Section 6.1 the object oriented version of Harel’s statecharts are in the core
of the UML. In UML they are called UML State Machines. In order to enable reactive
modeling, for evaluation, a part of metamodel defining UML State Machines is used. The
part used for evaluation is presented in Figure 9.2.

For Non-commercial Use Only

Class
(from Communications)

BehavioredClassifier

+initial : PseudostateKind

Pseudostate

<<enumeration>>
PseudostateKind

initial

State

OpaqueBehavior

Transition

StateMachine

FinalState

Behavior

Vertex

Operation CallEvent

Trigger

Region

Event

-exit
0..1

0..1

-entry
0..1

0..1

+outgoing
*

+source
1

+incoming
*

+target
1

+ownedBehavior
1

+owner
0..1

-subvertex *

-container
0..1

-transition*

-container
0..1

+operation
1

*

+trigger 1

0..1

+event
10..1

+region1..*

+stateMachine 0..1

Figure 9.2.: UML State Machines UML metamodel subset

Each class with the reactive behavior has defined a state machine in the attribute owned-
Behavior. The state machine which defines the reactive behavior is an instance of the
StateMachine metaclass.

Each state machine consists of states and transitions. States are instances of metaclasses
State, FinalState and PseudoState. Instances of FinalState metaclass are used for
modeling of terminating state of the state machine. Initial state is modeled with the Pseu-
doState metaclass instances and the value initial of the attribute kind. There should be
noticed that there are several more possible values of the attribute kind, which are either,
because of the assumptions, not able to be used, or not needed to show the feasibility of the
approach.

The instances of metaclass State are used for modeling regular states in the model. Each
state in the model has entry and exit behavior, defined in entry and exit attributes of type

113

9. PEMA: A UML Profile for PErformance Measurement and Assessment

Behavior. These behaviors are defined as OpaqueBehaviors, which is standard Java
code.

All metaclasses for states modeling are generalized as the Vertex abstract metaclass.
Vertex metaclass defines two attributes outgoing and incoming. Attribute outgoing of
a state is used for specification of transitions whose end result is leaving that state. On the
contrary, the attribute incoming of a state is used for specification of transitions whose end
result is entering that state. Both of these attributes are of type Transition.

Each transition has a trigger, source and target state, defined with attributes trigger,
source and target, respectively. Attribute trigger is of type Trigger. Because of the
synchronous communication assumed in Section 6.1, the only event which can activate the
trigger is an operation invocation. Therefore, the attribute event of this metaclass can have
only a value of an instance of a CallEvent . The operation which activates the trigger is
defined as operation attribute of the CallEvent metaclass.

9.2. PeMA UML Profile

Profiling mechanism in UML enables customization of UML for the particular needs. As
described in Section 2.3, elements of a UML Profile are stereotypes, stereotype attributes
and model libraries.

The PeMA, UML Profile for Performance M easurement and Assessment is specified
with class diagrams, already explained in Chapter 7. These classes are defined as a model
library in the profile. This profile should not be understood as the final product. It is an
initial step which is the subject of the further improvement. More about this can be found
in Section 12.

In this profile, several differences exist to the classes used in the metamodel specification,
and they are depicted in Figure 9.3.

For Non-commercial Use O

<<stereotype>>
InstrumentedElement

[Operation, State]

ScenarioEvent

-instrumentedElementName : String

ConditionElement

+instrumentedElementName : String
+conditionRelation : ConditionRelation

+instrumentedElement
1

*

+instrumentedElement
1

*

Figure 9.3.: Stereotypes of the PeMA Profile

According the UML metamodel part used for evaluation, defined in the previous section,
elements which can be instrumented are states and method invocations. For this reason the
stereotype InstrumentedElement in the PeMA UML Profile is defined to extend meta-
classes Class and State. Instrumented states and operations are annotated in the model
with the stereotype InstrumentedElement. Each modeling element stereotyped with an

114

9.2. PeMA UML Profile

InstrumentedElement stereotype elements slightly differs code generation. Code gen-
eration for instrumented elements adds probes for data collection to the generated code.
Furthermore, the information which is stored in the database when execution of that mod-
eling element occurs, is specified in such a way that it describes a modeling and not the
construct of the target platform. This is explained in Appendix E.

As previously stated, action semantics in UML, although defined in the metamodel, does
not have a concrete syntax. As the state of the art is such that there is no action lan-
guage concrete syntax, and that behavior specification in method bodies is mostly done by
manually coding them in some programming language, PeMA Profile enables performance
measurement and assessment for such an approach.

In order to enable context and performance metrics computation for elements which are
specified with code in method bodies, the metaclasses ConditionElement and Scenari-
oEvent are extended with the additional attribute instrumentedElementName of type
String. Such element is intended for elements instrumented at the code level. At the
code level, probes have to be added manually. Probes consists of predefined information
for database storage, routines for time information collection and some label of the instru-
mented piece of application. This label user defines alone and it is also added as the value
of instrumentedElementName attribute, either in an instance of ScenarioEvent or in
an instance of ConditionElement.

115

10. Chapter
Transformation to Client Server
Applications with Java RMI

With the UML subset and the set of stereotypes defined in the previous chapter client
server applications with reactive and transformational behavior can be specified. In order
to have implementations of applications modeled with that UML subset, models have to
be transformed to execution platforms for client server applications development. Such
execution platform is Java with RMI. In this chapter, Section 10.1 depicts transformations
from the UML subset and the set of stereotypes to Java with RMI platform. Furthermore,
the proof of concept of this transformation is described and validated in Section 10.2.

10.1. Transformation to Client Server Applications with
Java RMI

Combined automatic transformations to code for application logic, measurement, and metrics
computation is a powerful way to ensure correct data collection and measurements.

The generated code in MoDePeMART consists of four parts: software functionality
code with probes, code for database tables specification, code for database initialization and
code for metrics computation. The design of the last three code parts is given as the formal
semantics. The design of code for software functionality generation is depicted in this section.

The software functionality code consists of three parts: data collection code, server code
and client code. Accordingly, transformation of instrumented client server application model
to the target platform is divided to three sub transformations: for performance measure-
ment code generation, for server code generation, and for client code generation. These
transformations are defined in Appendix E.

In order to depict the transformation, Figure 10.1 presents Java code generated from the
electronic items management application.

Client code consists of a Java class for each client and Java classes which implement clients’
data types. Furthermore, client code contains a server access point to the server. This access
point is ClientSideServerImplementation.java class. It is used for sending request and
receiving results from the server. It is a Mediator [Gamma et al., 1995] between the client
application logic classes and the server.

Server code application logic is defined with AudioItemFacade.java, VideoItemFa-
cade.java, and ItemFacade.java. They are generated from UML Model application logic
design classes. Furthermore, for horizontal application logic dimension are generated Item-
FacadeSTateMachine.java, On.java, and Off.java. Horizontal server application logic

116

10.1. Transformation to Client Server Applications with Java RMI

Server code

Measurement and metrics
computation code

Client code
AudioItemFacade.java

UserInterface.java
ClientSide

ServerInterface
Implementation.java

VideoItemFacade.java

ServerSession.java

EitemServer
Interface.java

ItemFacade.java

VideoItemFacade.java

AudioItemFacade.java

EItemServer
Implementation.java

VideoItem
FacadePool.java

AudioItem
Facade.java

ItemFacade
Pool.java

Performace
DataStoragel.java

ItemFacade
StateMachine.java

On.java Off.java

SQL Assessment queries,
Database Initialization,
and assessment code

Figure 10.1.: Generated code for electronic item management case study

dimension is ItemFacade ’s reactive behavior. It is implemented with the application of
State design pattern Gamma et al. [1995]. Classes which provide server services are EIt-
emServerInterface.java and EItemServerImplementation.java classes. They are
implemented as Facades Gamma et al. [1995] of the server.

The server works in the following way. A client makes a request for the connection to
the server. The EItemServerImplementation allocates a set of application logic classes
instances and keeps them for that client. Furthermore, it returns to the server an session
identifier. The client sends this request along with the required parameters when making a
request to a server’s service. Finally, an object of this class also acts as a dispatcher, or as
a Mediator [Gamma et al., 1995] between clients and server instances allocated for serving
those clients. The server receives a request from a client, and transfers the request exactly
to the objects serving that client. Finally, when the client does not need the communication
with the server, it sends the disconnecting signal. A server, after having received this signal,
returns the allocated objects to the pool and makes them available for serving new clients.

Performance measurement and metrics computation code consists of probes for measure-
ments, interface to the performance database storage, and code for metrics computation.
Probes are inserted in application logic implementation classes. Class Performance-
DataStorage.java implements the interface to the performance database. For metrics
computation, the generated is SQL code.

117

10. Transformation to Client Server Applications with Java RMI

10.2. Validation

The validation of the approach is given with the implementation as a proof of concept and a
valuation of the tool. The proof of concept is described in Subsection 10.2.1 and evaluated
in Subsection 10.2.2

10.2.1. Implementation

The proof of concept of this approach is implemented with MagicDraw 15.1 Community
Edition for UML modeling and profile, openArchitectureware 4.2 for transformation, and
MySQL 5.2 as the database management system for data storage and metrics computation.

MagicDraw is the UML modeling tool produced by No Magic, Inc. It is one of widely
used tool for modeling with UML. The tool is used for software functionality modeling. The
case study class model developed in the tool can be seen in Figure 10.2.

Figure 10.2.: Class diagram implemented in MagicDraw 15.1

The same UML modeling tool is used for the specification of measurement and metrics
computation model. This is enabled by the specification of the PEMA Profile as the part
of the project. A UML Profile is implemented in tools as a package with the stereotype
�Profile�. This package can be exported an imported for different projects. Therefore, it
must be developed only once, and simply imported when needed for performance measure-
ment and assessment.

118

10.2. Validation

The implementation of the profiling mechanism in MagicDraw version 15.1 is not com-
pletely according to the UML Superstructure specification. Namely, in stereotyped elements
the association is not navigable from both sides. A stereotype can be reached when traversing
an instrumented element. However, there is no navigability from the opposite side. It is not
possible to reach to modeling element from the instance of the stereotype applied to it. For
this reason, attribute instrumentedElementName is used in evaluation for specification
of relation to instrumented element. The MagicDraw PEMA Profile context specification
part implementation is presented in Figure 10.3.

Figure 10.3.: PEMA Profile context and event metamodel implementation in MagicDraw
15.1

Transformations from model to code are implemented in the openArchitectureware
environment and language suite for transformation implementations. It is implemented as
an Eclipse plug in.

The language suite of openArchitectureware consists of four languages: Xtext for
textual domain specific language definition, Xpand for template based transformation def-
inition, Xtend for definition of function libraries used in transformations, and Check for
constraints definition.

For the implementation here are used only Xpand and Xtend parts. Transformations
defined in Chapter 8 and in Appendix E are implemented with Xpand language. Most
of the embedded functions in templates defined in Appendix E, for example uName, are
implemented with Xtend language. Furthermore, functions like fEv, lEv, cNeg, and so on,
used in generating assessment code in Chapter 8 are also implemented in Xtend. However,
there are some functions like for example toFirstLower which are so common, that they

119

10. Transformation to Client Server Applications with Java RMI

are provided as libraries. These functions are ready to be used in Xpand templates and are
not implemented. The implementation of transformation for server interface code generation
is presented in Figure 10.4.

Figure 10.4.: Transformation for server interface generation in openArchitectureware 4.2

For database storage and metrics computation, MySQL database management system is
used. It is an open source database management system with the possibility of extending the
set of aggregate functions. In the following, an example of generated performance assessment
code is given. The specification of the computation of the getItem method mean response
time when the compression is in the state On and getItem is invoked fromgetVideoItem
method is given in Figure 10.5

For the metrics computation specified in Figure 10.5 is generated the following SQL query.

SELECT IntervalSet.PeriodStart AS PeriodStart,

IntervalSet.PeriodEnd AS PeriodEnd, AVG(GT.ETS-GT.STS) AS Value

FROM IntervalSet AS IntervalSet,

(SELECT DISTINCT ET.ElementName, ET.STS, ET.ETS

FROM ExecutionTrace ET,

(SELECT SE.Session, SE.STS, SE.ETS

FROM (SELECT *

FROM ExecutionTrace

WHERE ElementName=’getItem’) AS SE,

(SELECT Session, STS, ETS

FROM ExecutionTrace

120

10.2. Validation

Figure 10.5.: An example of the metrics computation specification. In the figure is specified
computation of mean response time when the getItem operation is invoked
from the getVideoItem method and the compression is turned on

WHERE ElementName=’On’) AS CE

WHERE SE.Session=CE.Session AND

(SE.STS > CE.STS) AND (SE.ETS < CE.ETS)) AS Element1,

(SELECT Session, STS, ETS

FROM ExecutionTrace

WHERE ElementName=’getAudioItem’) AS Element2

WHERE ET.Session=Element1.Session AND

ET.Session=Element2.Session AND

ET.STS=Element1.STS AND

((Element2.STS<Element1.STS) AND

(Element2.ETS>=Element1.ETS))) AS GT

WHERE IntervalSet.PeriodStart<=GT.STS AND IntervalSet.PeriodEnd>GT.STS

GROUP BY IntervalSet.PeriodEnd

121

10. Transformation to Client Server Applications with Java RMI

10.2.2. Data Collection and Storage Routine Duration

One of the major concerns of instrumentation is the overhead due to performed measure-
ments. It is often characterized as the percentage of instrumented service response time
spent for the measurements. The percentage of instrumented service response time depends
on two factors: response time of non-instrumented service and the duration of the data col-
lection and storage routine. The response time of the service depends on the design and
implementation of the service and it is not the characteristic of measurement routine. For
this reason, in this section shows the duration of the measurement routine.

Experiment configuration

For the experiment the following configuration of three nodes connected through 100Mbit
switched local area network is used:

• The server node executed the server part of the electronic item management application
on the Java 2 Standard Edition version 1.5. For the performance data storage interface
is used JDBC MySQL Connector/J driver version 5.1.5. The application was running
on the Intel Pentium 4 3.00 GHZ hyperthreaded processor (two virtual cores), 1GB of
physical memory, and GNU/Linux 2.6.17.13.

• The client node runs concurrent client parts of the electronic item management appli-
cation and MySQL 5.2 relational database management system. The concurrent client
parts act as a workload generator, and MySQL is used for performance data stor-
age and metrics computation. They both were running on Intel Pentium M 1.7GHz,
1.0GB of working memory, and Windows XP SP3. The client part of the electronic
items management application used Java 2 Standard Edition version 1.5.

Results

The experiment was performed with the intention of showing the duration of the measure-
ment routine for the range of 1-100 concurrent requests. It shows the routine duration in
a middle size Internet application. The number of the concurrent requests was increased
because the hypothesis of the experiment is that for the reason of the concurrent resource
usage the duration of the data collection and storage routine increases with the increase of
the number of concurrent requests.

For each number of concurrent requests, the experiment was repeated 10 times. Each
repetition contained the complete restart of the server, in order to approximate the impact
of the distribution of server software over working memory pages. For each experiment the
training period was 2min. The training period is the period of operation of the system during
which the initialization of used components take place. This period is not taken into account
when computing metrics.

The intention of the experiment was to show the central tendency of the duration of the
routine. This should serve as orientation to the performance analyst of how long approxi-
mately the routine lasts. For this reason, the mean of the duration routine was computed.
Then, median for all 10 repetitions is computed in order to approximate the value of the
data collection and storage routine. The obtained results are the following:

122

10.2. Validation

Concurrent requests 1 10 20 30 60 100

mean(median) 192ms 204 ms 229ms 260ms 289ms 327ms

Table 10.1.: The mean of the median for various concurrent invocations. The table shows
the tendency of the performance data measurement and storage routine duration
increase

The results showed that the hypothesis on the increase of data collection and storage
routine duration was correct..Capture ratio, i.e., the percentage of total response time spent
in measurement routines, depends on both, the business logic and the measurement placed
measurement points, and, therefore, varies from system to system. It is possible, previously
knowing the total response time of the system and the number of concurrent invocations, to
use values from the Table 10.1 to compute the capture ratio of the system. In order to obtain
the right values of the capture ratio, the resulting values from Table 10.1 for the appropriate
number of concurrent invocations, should be multiplied by the number of the measurement
points in the measured service and divided by the obtained value of response time of that
service.

123

11. Comparative Analysis to Related
Work

Integration of performance measurement and assessment in software development process
has been a topic for long time in software engineering. This chapter gives the overview of
the contribution of the MoDePeMART by comparing it to already existing approaches.
In the following, first the related work is explained. Later, a comparative analysis of the
related work with the MoDePeMART according to the concerns specified in Section 3.4
is given.

Tools for Model-driven Instrumentation for Monitoring. The first time the idea
on integrating software models and instrumentation is introduced by Klar et al. [Klar et al.,
1991]. The authors have developed a set of tools for a model-driven instrumentation. In their
work are defined several sets of program models. These models are: functional program
model, functional implementation model, monitoring model, and performance model. A
program is not considered as a model in this approach.

In a functional program model the functional interdependence of activities is explicitly
modeled. These activities are modeled without any implementation details. A functional
program model focuses on a functional properties of an algorithm and defines the functional
behavior of a program. This model is a prerequisite for a functional implementation model.
A functional implementation model is a detailed model concerned with the implementation
of the functional program model. Both of previously described models are some formalisms
for concurrency description such as Petri-nets. The program code is now implemented in
The Object C programming language according to the functional implementation model.

The two kinds of models left are dedicated to performance validation. A monitoring model
is a subset of the functional implementation model. It defines functional interdependence of
the implemented program on the desired level of abstraction. The monitoring model is closely
related to the implemented program. The relation of a monitoring model and an implemented
program is based on names. Each name which can be found in the monitoring model is
the representation of an element in the implemented program. Furthermore, it defines the
measurement points in the program. Names of functional entities in the monitoring model
define which constructs in the program have to be instrumented. Finally, the performance
model is created from the monitoring model and collected execution data. It is the monitoring
model enriched with the realistic time attributes. A performance model is used for validation
and is a prerequisite for predicting the performance. In this model, realistic time attributes
are assigned according to measurements performed.

Tools for model driven instrumentation for monitoring provide ability of statistical time
analysis, Furthermore, transparent instrumentation is also provided. Moreover, consistency
of data types used in metrics computation and in data collection are facilitated with a
separate language for their description. Finally, reduction of measurement points enabled
with definition of the level of abstraction chosen for measurements. However there are several

124

shortcomings of this tool set. It provides the ability of only partial path characteristics
analysis. It only supports analysis of whether the activities occur concurrently or sequentially.
There is no support for specification of execution in branching and loops. For the same reason
the isolation of a critical business task is only partially covered. There is no possibility
of identifying from which branching alternative an invocation is made. Furthermore, the
approach deals only with response times analysis. Throughput analysis of the system is
not covered. Moreover, workload characterization is also not covered. Additinally, reactive
execution context is not considered at all. Finally, the definition of measurement periods are
not supported.

Program Monitoring and Measuring System (PMMS) is introduced by Liao and
Cohen [Liao and Cohen, 1992]. It is a declarative language for specification of instrumen-
tation and metrics computation. In PMMS metrics of interest are specified in a first order
logic like language. According to the specification, instrumentation is automatically inserted,
data collected during testing and metrics computed.

The declarative language developed in PMMS enables statistical analysis of program re-
sponse times. Furthermore, it enables transparent instrumentation. Additionally, consis-
tency of collected data types and data types used in metrics computation is provided with
predefined data structures used in data collection. Finally, the measurement points min-
imization is provided by automatic addition of measurements in the program only at the
places specified in metrics definition. However, there are several limitations. This language
supports only response time analysis. Throughput analysis is not supported. Furthermore,
there is no support for the definition of a period of measurement. Workload characterization
can be only given with the number of requests of particular functions. Path characterization
also has limitations. It is given only with the execution relations between method calls. For
this reason, the isolation of critical business process task is also limited. Therefore, difference
between invocations of a same method in two different alternatives cannot be recognized.
Finally, specification of business tasks execution context is limited only on transformational
execution.

Metrics Description Language (MDL) developed by Hollingsworth et al. [Hollingsworth
et al., 1997] introduced as part of a set of tools for runtime parallel program instrumenta-
tion. Instrumentation consists of specification of measurement places, and specification of
measurement routines. In MDL instrumentation can be placed at the procedure level. A
specification of measurement places defines where measurement routines take place. Mea-
surement routines can take place at an entry, an exit, and a procedure call. The body of
measurement routines consists of simple control and data operations. It is not possible to
define loops in the measurement routines body. Furthermore, timers and counters can be
instantiated and used in computations.

In MDL, both, throughput and response times can be analyzed. Furthermore, similarly to
PMMS, with separate language and automatic instrumentation are facilitated instrumenta-
tion transparency, consistency of data types used in measurement and metrics computations,
and measurement points reduction. However, as in the PMMS, the granularity of specifica-
tion is on procedure call. Therefore, it has the same drawbacks in isolation of business tasks
and path characteristics observations as PMMS. Furthermore, period of metrics computa-
tion is also the period of the complete experiment. Workload can be characterized with the
number of requests and requests rate, but not with the pattern. Specification of business
task execution context is limited to transformational execution context.

125

11. Comparative Analysis to Related Work

Application Response Measurement (ARM) [The Open Group, 1998] is an attempt
for standardization of measurements in business applications. The idea behind the standard
is to provide one technology neutral set of data types for measurements. These technology
neutral data types can be implemented in different languages. Currently available imple-
mentations are for C/C++ and Java. The data types this standard defines are used in the
application to perform measurements. The most important data type is the data type for
representation of a transaction. In this transaction information about its duration is kept.
ARM also defines the data types for additional description of transaction. Those data
types are for counters, gauges, numeric identifiers, and strings. A counter is monotonically
increasing non-negative value. A gauge value can go up and down. Numerical identifiers and
strings are used for identification in transactions.

ARM standard provides a set of technology neutral-data types for measurements. There-
fore, it solves the problem of consistency of data types used in measurements and in metrics
computation. Furthermore, with the data type for definition of transaction it enables isola-
tion of business tasks of interest. However, transactions are transformational systems, and
therefore, this standard does not facilitate a specification of a business task reactive context.
Additionally, it does not provide the support for statistical response time analysis. More-
over, parallel analysis of throughput and response times are also not facilitated. Workload,
and path characteristics can not be assessed. Definition of validity period of metrics, in-
strumentation transparency and measurement points reduction were not intentions of this
standard.

Aspect Oriented Programming (AOP) introduced by Kiczales et al. [Kiczales et al.,
1997] is a programming approach which can be used for transparent software instrumentation.
Transparent means that source code of the software functionality is not mixed with probes.
Aspect oriented programming upgrades object oriented programming in such a way, that the
crosscutting concerns, such as logging and security, are specified separately from the main
functionality. Defined crosscutting concerns are than integrated in the main functionality
with definition of join points. Examples of the application of AOP for instrumentation are
introduced by Marenholz et al. [Mahrenholz et al., 2002] and Debusman and Geihs [Debus-
mann and Geihs, 2003]. Debusmann and Geihs [Debusmann and Geihs, 2003] combine AOP
with the ARM standard. Marenholz et al. [Mahrenholz et al., 2002] use AspectC++ in
operating system debugging, profiling/measurement, and runtime surveillance/monitoring.
The similar ideas applied in programming are tried to be used in modeling. Such approach
is called Aspect Oriented Modeling (AOM). AOM in the context of UML is introduced
by Zhang et al. Zhang et al. [2007].

The main idea of AOP is transparent insertion of crosscutting concerns in software main
functionality. Therefore, instrumentation transparency is one of the concerns this approach
solves. Minimization of measurement points is achieved with adding probes only at the
points of interest. However, critical business process isolation is limited because there is no
possibility of context specification. Debusmann and Geihs [Debusmann and Geihs, 2003] have
shown that ARM can be used with AOP to additionally provide transformational context
specification and consistency between data types in measurements and metrics computation.

Interceptors have the same shortcomings as AOP. Additionally, concerns of isolation of
critical business tasks and specification of business task execution context are not facilitated
because of possibility of addition only in stubs and skeletons.

Transparent software layer. Performance of the system is can also observed be addi-

126

tion of a transparent software layer to the application. Such approach is used by Diaconescu
et al. [Diaconescu et al., 2004] and Yeung et al. [Yeung et al., 2004]. Diaconescu et al. [Di-
aconescu et al., 2004] introduce an approach where, at the deployment time, a transparent
proxy layer for the data collection of the execution data is automatically generated. Yeung
et al. [Yeung et al., 2004] developed a virtual JVM called Verneer which is a Java program
running on the top of the original JVM. The virtual JVM is a software layer which intercepts
class loading, and fragments methods according to a fragmentation policy. Each method can
be fragmented at the point of a method call, a method entry, basic blocks, and return. After
the code has been fragmented, probes are added to these fragments.

Transparent software layer, as its name indicates, only makes instrumentation transparent,
while all other concerns are not handled. Diaconescu et al. [Diaconescu et al., 2004] use
Java Management Extensions (JMX) to provide additionally consistency of data types in
measurements and performance analysis. Finally, they implement in software layer statistical
analysis and throughput comparison. A limitation of the approach introduced by Diaconescu
et al. [Diaconescu et al., 2004] are that their monitoring is at the level of component method
invocations. Therefore, critical business tasks can only partially be specified. Furthermore,
path characteristics are also limited to probability of executions but there is no support for the
numbers of loops. Workload characterization, specification of metrics validity period is not
supported. Finally, the complete application is instrumented and there is no measurement
points reduction.

The comparative analysis of related work is summarized in Table 11.1.

-+--+/-o-------The Open Group [1998]

++(o)+(o)++++/-++/-++MoDePeMART
-++---o--++Diaconescu et al. [2004]

--+-----------Young et al. [2004]

+++-+/-o-------Debusman and Geihs [2003]

+-+-+/-o-------Marenholz et al. [2002]

+++-+/-oo/-++/-++Hollingsworth et al. [1997]

+++-+/-oo/-+/---+Liao and Cohen [1992]

+++-+/-o------+Klar et al. [1991]

M
easurem

ent
points reduction

M
easurem

ent and
m

etric com
putation

data types
consistency

Instrum
entation

transparency

M
etrics validity

period specification

S
pecification of

execution context

Isolation of critical
business tasks

P
ath characteristics

(probability in
branching, loop iteration

num
bers)

W
orkload

characteristics
(num

ber of requests,
request rate, pattern)

Throughput
R

esponse tim
e

statistical analysis
Measurement and

Assessment Concern

Approach

Table 11.1.: Comparative analysis with related work ((+) facilitated, (-) not facilitated, (o)
partially facilitated)

MoDePeMART approach manages all of the previous mentioned concerns except for
the loop iterations analysis. This is not addressed because of the specified purpose of this
approach and the adopted understanding of qualitative and quantitative functional aspects
Selic et al. [Selic et al., 1994]. MoDePeMART is used for measurement and assessment of
performance of a service. A service is being defined with qualitative aspects of a functionality

127

11. Comparative Analysis to Related Work

of a system. Qualitative aspects are specifications of control flow and state of the system.
The number of iterations in a loop are considered as a quantitative aspect of the system.
Furthermore, some authors consider data characteristics as important. Data characteristics
are type, number, and size of data. Here, they are also considered as quantitative functional
aspects.

MoDePeMART only partially facilitates assessment of workload characteristic. Number
and arrival rate are supported with the throughput and count aggregate functions. However,
analysis of arrivals is not covered. Although the metamodel facilitates concerns of instru-
mentation transparency and keeping data types consistency in measurements, storage, and
metrics computation, PEMA Profile in its current implementation does not support them
completely. Because of the unavailability of action semantics concrete syntax in current UML
modeling tools instrumentation transparency and keeping consistency between datatypes is
not supported. By being able to specify both transformational and reactive context execu-
tion, the isolation of critical business task is fully supported. Furthermore, the metamodel
enables computation of metrics for some day intervals, and herewith different validity peri-
ods of metrics can be observed. Minimization of measurement points is facilitated by relying
on manual instrumentation, where the user would instrument only the events that he is
interested in.

128

Part IV.

Conclusions and Outlook

129

11. Comparative Analysis to Related Work

130

12. Chapter
Conclusions

This thesis proposes the MoDePeMART : Model Driven Performance M easurement
and Assessment with Relational T races. The approach integrates measurement and assess-
ment in the process of Model Driven Engineering. The main idea of the approach is to assess
performance with modeling and not with the platform implementation constructs. Further-
more, the approach suggests declarative specification of performance metric of interest. The
metrics are specified in a Domain Specific Modeling Language for performance measurements
and assessment. Finally, it recommends usage of relational databases for data storage and
performance metrics computation.

The main contribution of the thesis is a metamodel for performance measurement and
assessment. The metamodel defines a Domain Specific Modeling Language for performance
metrics specification. The metamodel is formally defined using the set theory and Libkin’s
algebra. Set theory is used for the definition of abstract syntax. Semantics is given with
mappings to the Libkin’s algebra. Herewith, the transformation is precisely defined.

The approach is evaluated by a proof of concept and comparative analysis with the related
work. The proof of concept is implemented as a PeMA UML Profile, a UML profile for
Performance Measurement and Assessment. PeMA profile is implemented for UML Class
and State Diagrams. For the definition of functionality in Class and State Diagrams plain
Java is used due to undefined action semantic’s concrete syntax.

Transformation is evaluated by the implementation in openArchitectureware, a tool
and a language suite for Model Driven Software Development. Transformation generates
from a UML States and Class diagrams client server applications in Java with RMI. Fur-
thermore, the transformation generates initialization and performance metrics computation
SQL code for MySQL open source database management system.

Through the comparative analysis with the previous approaches for measurement and
assessment, the major improvement of this approach is that the execution context can be
completely specified. Execution context is the state of the system in which a certain event
occurs, as well as the sequence of invocations which the event is part of. This improvement
is achieved with facilitating instrumentation of all elements of transformational and reactive
execution. For the reason of complete execution context specification, the benefit of this
approach is that critical business tasks can also be completely isolated. Critical business tasks
are business tasks of great importance. Meeting of performance goals of critical business tasks
always has to be validated. Finally, the approach supports assessment of software systems
performance metrics defined in MARTE profile.

The major shortcoming of the metamodel defined in this thesis is that it does not sup-
port characterization of parameters in method invocations. Data characterization can be
important for verifying the appropriate usage of system. The approach does not enable mea-
surement of workload patterns. Furthermore, it does not enable measurement of number of

131

12. Conclusions

iteration loops in system paths. However, this shortcoming is in correspondence with the
assumptions of the approach. The approach assumes that the elements of the control flaw
specification are qualitative functional characteristics of the software execution and that they
are used for the defining services. The values of data are quantitative functional values of
software execution and their impact is being statistically characterized.

In order to evaluate impact of measurements on the overall behavior a series of experi-
ments has been performed. The series of experiments consisted of repeating measurements
of performance data storage procedure response time. The experiment was performed for
various number of concurrent invocations. The experiment showed that the duration of
measurement and data storage routine increases with the number of requests and should be
considered in final performance metrics computations.

12.1. Validity in Real Systems Use

In order to use MoDePeMART in real systems use, the systems to which the approach is
applied have to satisfy some assumptions. These assumptions/limitations are explained in
the following.

Measurement and assessment is possible only in systems with concurrency without inter-
communication. In the execution model it is assumed that there are no concurrent executions
which interfere. Moreover, the invoker of a scenario is not aware of concurrent execution.
Such approaches are implemented in JEE Session Beans and in operating systems with one
threaded processes Tanenbaum [2007].

In software systems, the synchronous communication is assumed. At the present time
MoDePeMART supports only performance measurement and assessment for the systems
which communicate synchronously. Synchronous communication is the one where the caller
of an operation is blocked and waits until the callee returns a result before it continues its
own execution [Object Management Group, 2007].

There is no support for specification of measurement and metrics computation of loop-
backs. A loopback is when in a scenario execution control flow reenters a method whose
body is already executing. The simplest form of a loopback is recursion.

Granularity of timing mechanism is large enough that execution of each instrumented
element occurs in a different chronon. A chronon is the smallest unit of time supported
by the discrete time model. Each storage timing mechanism stored the data at different
granularity. The granularity is defined with the smallest time units supported by the timing
mechanism, such as milliseconds or nanoseconds. The assumption of this approach is that
each instrumented element execution with the same sequence identifier executes in different
chronon. In this way, the requirement that the fields of execution trace form the unique key
of the execution trace table.

The job flow [Smith and Williams, 2001] is assumed in the composite assessment of
throughput. The job flow balance assumption is the assumption that a system is fast enough
to handle all arrivals, and thus the competition rate or throughput equals the arrival rate.
The validity of a job flow balance can be proved with a simple assessment, where the number
of requests and the service mean response time would be observed.

Finally, the approach can be used only for verifying response time and throughput of
services. Because the relational algebra is not Turing complete, isolating numbers of loops

132

12.1. Validity in Real Systems Use

for each iteration is not possible. Furthermore, the verification of the pattern of workload
arrival is not possible. In order to analyze the pattern of arrival, some data mining techniques
can be helpful. Finally, verifying the equivalence between assumptions on data is out of scope
of this thesis.

133

13. Chapter
Future Work

MoDePeMART introduces an idea of raising the abstraction level of measurement and
assessment in two ways. First, measurement and assessment is specified in the terms of
modeling and not in the terms of platform constructs. Second, it suggests a Domain Specific
Modeling Language for metrics specification and computation. In order to go further in
making performance measurement and assessment a completely engineering approach there
are several promising directions for future work.

One could think of further improvement of the metamodel for measurement and assess-
ment. With the comparative analysis discussed in Chapter 11 it is noticed metamodel
presented in this thesis is lacking could be extended with the ability of data analysis. Fur-
thermore, it is also reported that there is inability of analysis of numbers of iterations in
loops. Finally, a possible improvement would be the recognition of workload arrival patterns.
With previously mentioned improvements, a performance analyst or a developer who mea-
sures and assesses performance of the system could completely verify: that the workload in
experiment corresponds to the workload used in predictions, that under a certain workload
predictions with respect to path executions, including numbers of loop iterations and data
characteristics are valid. Currently, this is not supported. As mentioned in Section 12.1 at
the present moment, it is assumed that the predictions with respect to data characteristics
of the workload and numbers of iterations in loops are valid.

Further improvement of the metamodel is the extension which would enable asynchronous
communication measurement and assessment. In the metamodel, asynchronous communi-
cation specification would further expand the relations between scenario events. Currently,
only invocation and sequential composition of methods are supported. In invocation compo-
sition, along with the method invocation, also the control flow is transfered to the invoked
method, and invoking method waits for the invoked method to finish, in order to continue
with the execution. Sequential composition is the execution of two methods one after an-
other whiting a body of the same method. Scenario events in asynchronous communication
are not composed with invocation and sequential relation. In asynchronous communication,
one method sends a message to another method, but continues its execution and is not aware
when the method that received the message stops. This relation is not invocation relation,
and for this reason the relations that define scenarios must be extended. Moreover, besides
the information about the correlation of method executions, it would be needed to store also
information about the communications between threads. Accordingly, storage of execution
data has to be redefined for facilitating measurement and assessment in systems with con-
current executions intercommunication. Additionally, if the systems that are communicated
are distributed, metrics like latency of communication would also need to be supported.

Finally, the metamodel could be extended for measurement and assessment of resources
utilization. Currently, the metamodel enables only the verification of timeliness. Instrumen-

134

tation of resources utilization could enable this language usable for performance debugging.

It could also be thought of specifying the instrumentation and assessment at the require-
ments specification level. An interesting idea would be to explore the possibility of specifying
instrumentation and assessment at the requirements model level, and then using traceabil-
ity links to specify propagate instrumentation and metrics computation all way to the final
design model.

The PeMA UML profile and the transformation could also be improved. Current PeMA
profile is developed only for the evaluation purposes and is not convenient for usage in
specification of a measurement context. Furthermore, in for the development of the profile
are used profile definition recommendations of Selic [Selic, 2006a]. These recommendations
suggest to first define pure domain model and the profile elements second. Having the
concepts in the thesis already developed in an OMG technology, this profile can be iteratively
and incrementally improved to be useful for the main purpose. The main challenge here is
to find the constructs in UML witch most closely match to the constructs in the metamodel.
Usage of activity and sequence diagrams for specification of execution scenario of interest
could be explored. These diagrams are usually used for control flow description/prescription.
This qualifies them as a good basis for execution context specification. Furthermore, the
instrumentation and performance measurement of models in other UML diagrams could be
explored. Here, at least two problems arise. The first one is that in the UML there is
no standard way for defining run-time semantics. The run-time semantics is typically an
informal language description. In this sense the most appropriate application is to activity
diagrams. Activity diagrams are one more established approach for the specification of
transformational (algorithmic) behavior. Design of a UML profile for these diagrams would
further prove the application for instrumentation transparency and data consistency. These
two issues are currently only partially facilitated in the PeMA UML profile, as discussed
in Chapter 11. However, in the adoption to the other UML diagrams the second problem
arises. This problem is the definition of instrumented elements in the design language. In
UML State and Class diagrams this mapping was one on one, states and operations are
instrumented elements of the metamodel. However, in the UML Activity Diagrams this is
not a case. For example, the ConditionedNode modeling element, presented in Figure 13.1

test

body
Clause

ConditionedNode

ActivityNode

+clause1..*

1

+body *

0..1

+test*

0..1

a) b)

Figure 13.1.: A ConditionedNode (a) and its metamodel(b)

135

13. Future Work

The body of a ConditionedNode needs to have a possibility of instrumentation. How-
ever, this is not possible with the simple stereotyping. The body is a metaatribute in the
metamodel, and cannot be stereotyped at the M1 level. Therefore, some additional stereo-
types and techniques for specification of the instrumented element need to be developed.

Mathematically supported automatic measurements point placements is one interesting
direction of research. Currently, automatic instrumentation techniques instrument the com-
plete application. This can result in a high instrumentation overload, and in invalid con-
clusions about the system performance. Improving automatic instrumentation based on the
probabilities of execution specified in prediction would be a major improvement of the in-
strumentation process. Reduction of collected data with the automatic instrumentation
would minimize requirements for database storage capacity. Furthermore, overhead induced
with performance data collection routines would also be reduced.

Predictions of measurement overhead is also an interesting research direction. Mea-
surements always influence the executing system. In electrical engineering, for example, the
potential difference is measured with a voltmeter. In such measurements exist a notion of
voltmeter’s resistance. According to values of resistors in the electric circuits, and the value
of voltmeter’s resistance, one could decide whether the voltmeter is appropriate for mea-
surements. Such a theory is still not explored in software performance engineering. The
question which could this theory answer is whether a particular granularity of timing mech-
anism, the response time of performance data obtaining procedures, and the response time
of procedures for storing them are appropriate for verification of software systems with some
characteristics of response times and workload.

Finally, with given formal semantics of transformation in the Libkin’s algebra one could
consider query optimizations for performance metrics computation. Furthermore,
one could consider the predictions on resources requirements, such as time and storage space,
according to characteristics of experiments, such as workload characteristics and number of
measurement points.

Since the MDE approach for software development evolved from Computer Aided Software
Engineering (CASE) approach, it is mostly concentrated on predictions of some properties of
a system. Measurements and assessment of software languages, models, and systems charac-
teristics are areas which are currently becoming the great attention in research community.

136

Bibliography

UML Profile for CORBA Specification, version 1.0, OMG document formal/02-04-01. web:
http://www.omg.org/cgi-bin/apps/doc?formal/02-04-01.pdf, April 2002. Accessed May
2009.

MOF 2.0, OMG document ptc/04-10-15. web: http://www.omg.org/cgi-
bin/apps/doc?ptc/04-10-14.pdf, October 2004. Cited August 2006.

James F. Allen. Maintaining Knowledge About Temporal Intervals. Communications of
ACM, 26(11):832–843, 1983. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/182.
358434.

Glenn Ammons, Thomas Ball, and James R. Larus. Exploiting hardware performance
counters with flow and context sensitive profiling. In PLDI ’97: Proceedings of the
ACM SIGPLAN 1997 conference on Programming language design and implementa-
tion, pages 85–96, New York, NY, USA, 1997. ACM. ISBN 0-89791-907-6. doi:
http://doi.acm.org/10.1145/258915.258924.

Martin Arlitt, Diwakar Krishnamurthy, and Jerry Rolia. Characterizing the scalability of a
large web-based shopping system. ACM Transactions on Internet Technology, 1(1):44–69,
2001. ISSN 1533-5399. doi: http://doi.acm.org/10.1145/383034.383036.

Colin Atkinson and Thomas Kühne. Model-Driven Development: A Metamodeling Founda-
tion. Software, IEEE, 20(5):36–41, Sept.-Oct. 2003. ISSN 0740-7459. doi: 10.1109/MS.
2003.1231149.

Paolo Atzeni, Stefano Ceri, Stefano Paraboschi, and Riccardo Torlone. Database Systems -
Concepts, Languages and Architectures. McGraw-Hill Book Company, 1999. ISBN 0-07-
709500-6.

Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and Marta Simeoni. Model-
Based Performance Prediction in Software Development: A Survey. IEEE Transac-
tions on Software Engineering, 30(5):295–310, 2004. ISSN 0098-5589. doi: http://doi.
ieeecomputersociety.org/10.1109/TSE.2004.9.

Frédéric Bertrand and Michel Augeraud. Bdl: A specialized language for per-object reactive
control. IEEE Transactions on Software Engineering, 25(3):347–362, 1999. ISSN 0098-
5589. doi: http://doi.ieeecomputersociety.org/10.1109/32.798324.

Grady Booch, Alan Brown, Sridhar Iyengar, James Rumbaugh, and Bran Selic. An MDA
Manifesto. In The MDA Journal: MDA Straight from the Masters, November 2004.

137

Bibliography

Jacques Bouman, Jos Trienekens, and Mark Van der Zwan. Specification of Service Level
Agreements, Clarifying Concepts on the Basis of Practical Research. In STEP ’99: Pro-
ceedings of the Software Technology and Engineering Practice, page 169, Washington, DC,
USA, 1999. IEEE Computer Society. ISBN 0-7695-0328-4.

Marko Bošković and Wilhelm Hasselbring. Model driven performance measurement and
assessment with modepemart. In MODELS ’09: Proceedings of the 12th International
Conference on Model Driven Engineering Languages and Systems, pages 62–76, Berlin,
Heidelberg, 2009. Springer-Verlag. ISBN 978-3-642-04424-3. doi: http://dx.doi.org/10.
1007/978-3-642-04425-0 6.

David A. Carr. Interaction Object Graphs: An Executable Graphical Notation for Specifying
User Interfaces. In Philippe Palanque and Fabio Paternò, editors, Formal Methods in
Human-Computer Interaction, pages 141–155. Springer, 1997.

James Clifford and Abdullah Uz Tansel. On An Algebra for Historical Relational Databases:
Two Views. In SIGMOD ’85: Proceedings of the 1985 ACM SIGMOD International
Conference on Management of Data, pages 247–265, New York, NY, USA, 1985. ACM.
ISBN 0-89791-160-1. doi: http://doi.acm.org/10.1145/318898.318922.

Edgar F. Codd. A Relational Model of Data for Large Shared Data Banks. Communications
of ACM, 13(6):377–387, 1970. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/362384.
362685.

Vittorio Cortellessa and Raffaela Mirandola. Deriving a Queueing Network based Perfor-
mance Model from uml Diagrams. In WOSP ’00: Proceedings of the 2nd international
workshop on Software and performance, pages 58–70, New York, NY, USA, 2000. ACM.
ISBN 1-58113-195-X. doi: http://doi.acm.org/10.1145/350391.350406.

Markus Debusmann and Kurt Geihs. Efficient and Transparent Instrumentation of Applica-
tion Components using an Aspect-oriented Approach. In 14th IFIP/IEEE Workshop on
Distributed Systems: Operations and Management (DSOM 2003), volume 2867 of Lecture
Notes in Computer Science (LNCS), pages 209–220, Heidelberg, Germany, October 2003.
Springer.

Ada Diaconescu, Adrian Mos, and John Murphey. Automatic Performance Management
in Component Based Systems. In Proceedings of the First International Conference on
Autonomic Computing ICAC’04, pages 214–221. IEEE Computer Society, 2004.

Edsger Wybe Dijkstra. A Discipline of Programming. Prentice Hall PTR, Englewood Cliffs,
NJ, USA, 1976. ISBN 013215871X.

Dragan Djuric, Dragan Gasevic, and Vladan Devedzic. Ontology Modeling and MDA. Jour-
nal of Object Technology, 4(1):109–128, 2005. doi: http://www.jot.fm/issues/issue 2005
01/article3.

Curtis E. Dyreson and Richard Thomas Snodgrass. Timestamp semantics and representa-
tion. Inf. Syst., 18(3):143–166, 1993. ISSN 0306-4379. doi: http://dx.doi.org/10.1016/
0306-4379(93)90034-X.

138

Bibliography

Bruce Eckel. Thinking in Java. Prentice Hall Professional Technical Reference, 2002. ISBN
0131002872.

Jean-Marie Favre. Towards the basic theory to model model driven engineering.
In WiSME2004: the 3rd Workshop in Software Model Engineering, 2004. web:
http://www.metamodel.com/wisme-2004/present/22.pdf, Accessed May 2009.

Robert B. France, Sudipto Ghosh, Trung Dinh-Trong, and Arnor Solberg. Model-driven
development using uml 2.0: Promises and pitfalls. Computer, 39(2):59–66, 2006. ISSN
0018-9162. doi: http://doi.ieeecomputersociety.org/10.1109/MC.2006.65.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1995. ISBN 0-201-63361-2.

Donald Gross and Carl M. Harris. Fundamentals of Queuing Theory (2nd ed.). John Wiley
& Sons, Inc., New York, NY, USA, 1985. ISBN 0-471-89067-7.

William Grosso. Java RMI. O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2001. ISBN
1565924525.

Abdelwahab Hamou-Lhadj and Timothy C. Lethbridge. A survey of trace exploration tools
and techniques. In CASCON ’04: Proceedings of the 2004 conference of the Centre for
Advanced Studies on Collaborative research, pages 42–55. IBM Press, 2004.

David Harel. Statecharts: A visual formalism for complex systems. Sci. Comput. Pro-
gram., 8(3):231–274, 1987. ISSN 0167-6423. doi: http://dx.doi.org/10.1016/0167-6423(87)
90035-9.

David Harel and Eran Gery. Executable Object Modeling with Statecharts. In ICSE ’96:
Proceedings of the 18th international conference on Software engineering, pages 246–257,
Washington, DC, USA, 1996. IEEE Computer Society. ISBN 0-8186-7246-3.

Wilhelm Hasselbring and Ralf Reussner. Toward Trustworthy Software Systems. Computer,
39(4):91–92, 2006. ISSN 0018-9162. doi: http://dx.doi.org/10.1109/MC.2006.142.

Jeffrey K. Hollingsworth, Oscar Niam, Barton P. Miller, Zhichen Xu, Marcelo J. R.
Goncalves, and Ling Zheng. MDL: A Language and a Compiler for Dynamic Program
Instrumentation. In PACT ’97: Proceedings of the 1997 International Conference on Par-
allel Architectures and Compiler Techniques, pages 201–213, Washington, DC, USA, 1997.
IEEE Computer Society. ISBN 0-8186-8090-3.

Richard Hubert. Convergent Architecture: Building Model-Driven J2EE Systems with
UML R©. John Willey and Sons Inc., New York, NY, USA, 2002. ISBN 0-201-72229-1.

Mika Katara, Reino Kurki-Suonio, and Tommi Mikkonen. On the Horizontal Dimension of
Software Architecture in Formal Specifications of Reactive Systems. In FOAL’04 Work-
shop on Foundations of Aspect-Oriented Languages, pages 37–43, Lancaster, UK, March
2004.

139

Bibliography

Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling: Enabling Full Code
Generation. John Wiley and Sons Inc., Hoboken, New Jersey, USA, 2008. ISBN 978-0-
470-03666-2.

Stuart Kent. Model Driven Engineering. In IFM ’02: Proceedings of the Third International
Conference on Integrated Formal Methods, pages 286–298, London, UK, 2002. Springer-
Verlag. ISBN 3-540-43703-7.

Gregor Kiczales and Erik Hilsdale. Aspect-oriented Programming. In ESEC/FSE-9: Pro-
ceedings of the 8th European software engineering conference held jointly with 9th ACM
SIGSOFT international symposium on Foundations of software engineering, page 313,
New York, NY, USA, 2001. ACM. ISBN 1-58113-390-1. doi: http://doi.acm.org/10.1145/
503209.503260.

Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina Lopes, Jean-
Marc Loingtier, and John Irwin. Aspect-Oriented Programming. In Mehmet Akşit and
Satoshi Matsuoka, editors, Proceedings European Conference on Object-Oriented Program-
ming, volume 1241, pages 220–242. Springer-Verlag, Berlin, Heidelberg, and New York,
1997.

Michael Kircher and Prashant Jain. Pattern-Oriented Software Architecture: Patterns for
Resource Management. John Wiley & Sons, 2004. ISBN 0470845252.

Rainer Klar, Andreas Quick, and Franz Soetz. Tools for a Model—driven Instrumentation
for Monitoring. In Proceedings of the 5th International Conference on Modelling Tech-
niques and Tools for Computer Performance Evaluation, pages 165–180. Elsevier Science
Publisher B.V., February 1991.

Nils Klarlund and Michael I. Schwartzbach. A domain-specific language for regular sets of
strings and trees. IEEE Transactions on Software Engineering, 25(3):378–386, 1999. ISSN
0098-5589. doi: http://doi.ieeecomputersociety.org/10.1109/32.798326.

Anthony Klug. Equivalence of Relational Algebra and Relational Calculus Query Languages
Having Aggregate Functions. Journal of ACM, 29(3):699–717, 1982. ISSN 0004-5411. doi:
http://doi.acm.org/10.1145/322326.322332.

Philippe Kruchten. The Rational Unified Process: An Introduction. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2003. ISBN 0321197704.

Thomas Kühne. What is a model? In Jean Bézivin and Reiko Heckel, editors, Language
Engineering for Model-Driven Software Development, volume 04101 of Dagstuhl Seminar
Proceedings. Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI),
Schloss Dagstuhl, Germany, 2005.

Thomas Kühne. Linguistic Classification: Two Dimensions of Modeling, INFWEST Seminar
on Model Driven Software Engineering. Pirkkala, Tampere, Finland, August 2006, 2006.

Reino Kurki-Suonio. A Practical Theory of Reactive Systems: Incremental Modeling of
Dynamic Behaviors (Texts in Theoretical Computer Science. An EATCS Series). Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2005. ISBN 3540233423.

140

Bibliography

Yingsha Liao and Donald Cohen. A Specificational Approach to High Level Program Moni-
toring and Measuring. IEEE Transactions on Software Engineering, 18(11):969–978, 1992.
ISSN 0098-5589. doi: http://dx.doi.org/10.1109/32.177366.

Leonid Libkin. Expressive Power of SQL. Theoretical Computer Science, 296(3):379–404,
2003. ISSN 0304-3975. doi: http://dx.doi.org/10.1016/S0304-3975(02)00736-3.

David J. Lilja. Measuring computer performance: a practitioner’s guide. Cambridge Uni-
versity Press, New York, NY, USA, 2000. ISBN 0-521-64105-5.

Torsten Lodderstedt. Model Driven Security from UML Models to Access Control Ar-
chitectures. PhD thesis, Fakultät für Angewandte Wissenschaften der Albert-Ludvigs-
Universität Freiburg, 2003.

Daniel Mahrenholz, Olaf Spinczyk, and Wolfgang Schroeder-Preikschat. Program Instru-
mentation for Debugging and Monitoring with AspectC++. In ISORC ’02: Proceedings
of the Fifth IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing, pages 249–256, Washington, DC, USA, 2002. IEEE Computer Society. ISBN
0-7695-1558-4. doi: http://doi.ieeecomputersociety.org/10.1109/ISORC.2002.1003713.

Markus Völter. openArchitectureWare, a Flexible Open Source Platform for Model-
Driven Software Development. In Eclipse Technology Exchange Workshop. web:
http://www.voelter.de/data/workshops/EtxMarkusVoelter.pdf, July 2006. Accessed May
2009.

Tom Mens, Pieter Van Gorp, Dániel Varró, and Gabor Karsai. Applying a model trans-
formation taxonomy to graph transformation technology. Electronic Notes in Theoretical
Computer Science, 152:143–159, 2006.

Joaquin Miller and Jishnu Mukerji. MDA Guide (Version 1.0) OMG document formal/03-
06-01. web: http://www.omg.org/docs/omg/03-06-01.pdf, May 2003. Accessed May 2009.

David Neuendorf. Review of MagicDraw R© 11.5 Professional Edition. Journal of Object
Technology, 5(7), 2006.

Object Management Group. UML R©Profile for Schedulability, Performance, and Time
Specification, OMG document formal/05-01-02. web: http://www.omg.org/cgi-
bin/apps/doc?formal/05-01-02.pdf, January 2005a. Accessed May 2009.

Object Management Group. MOF 2.0/XMI Mapping Specification, v2.1, OMG docu-
ment formal/05-09-01. web: http://www.omg.org/cgi-bin/apps/doc?formal/05-09-01.pdf,
September 2005b. Accessed May 2009.

Object Management Group. UML 2.1.1. Specification: Superstructure, OMG document
formal/2007-02-05. web: http://www.omg.org/cgi-bin/doc?formal/2007-02-05, February
2007. URL http://www.omg.org/cgi-bin/doc?formal/2007-02-05. Accessed May
2009.

141

http://www.omg.org/cgi-bin/doc?formal/2007-02-05

Bibliography

Object Management Group. A UML R©Profile for MARTE: Modeling and Analyzing
Real-Time and Embedded systems, Beta 2, OMG Adopted Specification, OMG docu-
ment ptc/2008-06-09. web: http://www.omgmarte.org/Documents/Specifications/08-06-
09.pdf, June 2008. Accessed May 2009.

Chris Raistrick, Paul Francis, and John Wright. Model Driven Architecture with Executable
UML R©). Cambridge University Press, New York, NY, USA, 2004. ISBN 0521537711.

Matthias Rohr, André van Hoorn, Simon Giesecke, Jasminka Matevska, and Wilhelm Has-
selbring. Trace-Context-Sensitive Performance Models from Monitoring Data of Software-
intensive Systems. In Carl Lebsack, editor, Proceedings of the Workshop on Tools, Infras-
tructures, and Methodologies for the Evaluation of Research Systems (TIMERS ’08) at
IEEE International Symposium on Performance Analysis of Systems and Software 2008
(ISPASS ’08), pages 37–44, April 2008.

Miro Samek. Practical statecharts in C/C++: Quantum programming for embedded systems.
CMP Publications, Inc., Manhasset, NY, USA, 2002. ISBN 1-57820-110-1.

Ed Seidewitz. What Models Mean. IEEE Software, 20(5):26–32, 2003. ISSN 0740-7459. doi:
http://dx.doi.org/10.1109/MS.2003.1231147.

Bran Selic. The pragmatics of model-driven development. IEEE Software, 20(5):19–25, 2003.
ISSN 0740-7459. doi: http://dx.doi.org/10.1109/MS.2003.1231146.

Bran Selic. Domain-Specific Languages and UML Profiles, INFWEST Seminar on Model
Driven Software Engineering. Pirkkala, Tampere, Finland, August 2006, 2006a.

Bran Selic. A Short Course on MDA Specifications, INFWEST Seminar on Model Driven
Software Engineering. Pirkkala, Tampere, Finland, August 2006, 2006b.

Bran Selic, Garth Gullekson, and Paul T. Ward. Real-time Object-oriented Modeling. John
Wiley & Sons, Inc., New York, NY, USA, 1994. ISBN 0-471-59917-4.

Connie U. Smith and LLoyd G. Williams. Performance Solutions: A Practical Guide to
Creating Responsive, Scalable Software. Addison-Wesley, Massachusetts, Boston, USA,
2001. ISBN 0-201-72229-1.

Richard Thomas Snodgrass. Developing time-oriented database applications in SQL. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2000. ISBN 1-55860-436-7.

Ian Sommerville. Software Engineering (8th Edition). Pearson Addison Wesley, 2007. ISBN
03213137983.

Friedrich Steimann and Thomas Kühne. Coding for the Code. Queue, 3(10):44–51, 2005.
ISSN 1542-7730. doi: http://doi.acm.org/10.1145/1113322.1113336.

Daniel E. Stevenson and Margaret M. Fleck. Programming Language Support for Digitized
Images or, the Monsters in the Closet. In DSL’97: Proceedings of the Conference on
Domain-Specific Languages on Conference on Domain-Specific Languages (DSL), 1997,
pages 21–21, Berkeley, CA, USA, 1997. USENIX Association.

142

Bibliography

Seyed M. M. Tahaghoghi and Hugh Williams. Learning MySQL. O’Reilly Media, Inc., 2006.
ISBN 0596008643.

Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall Press, Upper Saddle
River, NJ, USA, 2007. ISBN 9780136006633.

Peri Tarr, Harold Ossher, William Harrison, and Jr. Stanley M. Sutton. N degrees of sep-
aration: multi-dimensional separation of concerns. In ICSE ’99: Proceedings of the 21st
international conference on Software engineering, pages 107–119, New York, NY, USA,
1999. ACM. ISBN 1-58113-074-0. doi: http://doi.acm.org/10.1145/302405.302457.

The Open Group. Application Response Measurement (ARM). web:
http://www.opengroup.org/tech/management/arm, 1998. Technical Standard, Ver-
sion 2, Issue 4.1, Accessed May 2009.

Kishor S. Trivedi. Probability and Statistics with Reliability, Queuing and Computer Science
Applications. John Wiley and Sons Ltd., Chichester, UK, 2002. ISBN 0-471-33341-7.

Peter Wegner. Why Interaction is More Powerful than Algorithms. Commun. ACM, 40(5):
80–91, 1997. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/253769.253801.

Roel J. Wieringa. Design Methods for Reactive Systems: Yourdon, Statemate, and the UML.
Morgan Kaufmann Publishers, San Fransisco, CA, USA, 2003.

Kwok Yeung, Paul H. J. Kelly, and Sarah Bennett. Dynamic Instrumentation for Java Using
a Virtual JVM. In Performance Analysis and Grid Computing, pages 175–187, Norwell,
MA, USA, 2004. Kluwer Academic Publishers. ISBN 1-4020-7693-2.

Jing Zhang, Thomas Cottenier, Aswin van den Berg, and Jeff Gray. Aspect Composition
in the Motorola Aspect-Oriented Modeling Weaver. Journal of Object Technology, 6(7),
2007.

143

A. The Case Study

Fo
r N

on
-c

om
m

er
ci

al
 U

se
 O

nl
y

+a
ct

iv
at

e(
) :

 v
oi

d
+m

us
ic

Tr
ac

ks
oM

en
u(

) :
 v

oi
d

+d
ea

ct
iv

at
e(

) :
 v

oi
d

+d
ow

nl
oa

dA
ud

io
Ite

m
(t

ra
ck

id
 :

lo
ng

, l
oc

at
io

n
: S

tr
in

g
) :

 v
oi

d
+d

ow
nl

oa
dV

id
eo

Ite
m

(v
i :

 lo
ng

)
: v

oi
d

+e
xi

t()
 :

vo
id

+l
is

tA
lb

um
B

yN
am

eM
en

u(
) :

 v
oi

d
+l

is
tT

ra
ck

sB
yA

rt
is

tM
en

u(
) :

 v
oi

d
+l

is
tT

ra
ck

sB
yT

itl
eM

en
u(

) :
 v

oi
d

+l
is

tM
ov

ie
sB

yT
itl

eM
en

u(
) :

 v
oi

d
+l

is
tM

ov
ie

sB
yD

ire
ct

or
M

en
u(

) :
 v

oi
d

+l
is

tM
ov

ie
sB

yA
ct

or
M

en
u(

) :
 v

oi
d

+L
is

tM
ov

ie
sB

yG
en

re
M

en
u(

) :
 v

oi
d

+t
ra

ck
Li

st
B

yA
lb

um
(a

lb
um

 :
St

rin
g

) :
 v

oi
d

+t
ra

ck
Li

st
B

yA
rt

is
t(

ar
tis

t :
 S

tr
in

g
) :

 v
oi

d
+t

ra
ck

Li
st

B
yT

itl
e(

 ti
tle

 :
St

rin
g

) :
 v

oi
d

+v
id

eo
Li

st
B

yT
itl

e(
 ti

tle
 :

St
rin

g
) :

 v
oi

d
+v

id
eo

Li
st

B
yA

ct
or

(a
ct

or
 :

St
rin

g
) :

 v
oi

d
+v

id
eo

Li
st

B
yG

en
re

(g
en

re
 :

St
rin

g
) :

 v
oi

d
+v

id
eo

Li
st

B
yD

ire
ct

or
(d

ire
ct

or
 :

St
rin

g
) :

 v
oi

d
+v

id
eo

M
ov

ie
M

en
u(

) :
 v

oi
d

+c
om

pr
es

si
on

M
en

u(
) :

 v
oi

d
+m

ai
n(

 a
rg

s
: S

tr
in

g
[0

..*
])

 :
vo

id
+s

tr
in

gT
oL

on
g(

 s
Lo

ng
 :

St
rin

g
) :

 lo
ng

+m
us

ic
Tr

ac
ks

M
en

u(
) :

 v
oi

d
+a

ud
io

B
oo

ks
M

en
u(

) :
 v

oi
d

+l
is

tA
ud

io
B

oo
ks

B
yT

itl
eM

en
u(

) :
 v

oi
d

+l
is

tA
ud

io
B

oo
ks

B
yW

rit
er

M
en

u(
) :

 v
oi

d
+b

oo
kL

is
tB

yT
itl

e(
) :

 v
oi

d
+b

oo
kL

is
tB

yW
rit

te
r(

) :
 v

oi
d

+a
ud

io
M

en
u(

) :
 v

oi
d

+v
id

eo
M

en
u(

) :
 v

oi
d

+m
us

ic
Vi

de
oM

en
u(

) :
 v

oi
d

+m
us

ic
Vi

de
oL

is
tB

yA
rt

is
t()

 :
vo

id
+m

us
ic

Vi
de

oL
is

tB
yD

ire
ct

or
()

: v
oi

d
+l

is
tM

us
ic

Vi
de

os
B

yA
rt

is
tM

en
u(

) :
 v

oi
d

+l
is

tM
us

ic
Vi

de
os

B
yD

ire
ct

or
M

en
u(

) :
 v

oi
d

+s
et

G
IS

ta
te

(s
ta

te
 :

in
t)

 :
vo

id
+a

ud
io

A
lb

um
sM

en
u(

)
+a

ud
io

Tr
ac

ks
M

en
u(

)
...

<<
C

lie
nt

>>
U

se
rIn

te
rf

ac
e

-it
em

Li
st

 :
R

ec
or

d
[0

..*
]

-s
ta

tu
s

: S
tri

ng

Vi
de

oI
te

m
Fa

ca
de

<<
In

st
ru

m
en

te
dE

le
m

en
t>

>+
ge

tV
id

eo
Ite

m
()

+g
et

Vi
de

oB
yA

ct
or

()
+g

et
Vi

de
oB

yD
ire

ct
or

()
+g

et
Vi

de
oB

yG
en

re
()

+g
et

Vi
de

oB
yT

itl
e(

)

<<
In

st
ru

m
en

te
dE

le
m

en
t>

>+
ge

tA
ud

io
Ite

m
()

+g
et

Tr
ac

kB
yA

lb
um

()
+g

et
Tr

ac
kB

yA
rt

is
t()

+g
et

Tr
ac

kB
yT

itl
e(

)

A
ud

io
Ite

m
Fa

ca
de

Ite
m

Fa
ca

de
<<

In
st

ru
m

en
te

dE
le

m
en

t>
>+

ge
tIt

em
()

+o
n(

)
+o

ff(
)

<<
da

ta
Ty

pe
>>

R
ec

or
d

-v
id

eo
Ite

m
Fa

ca
de

1

-a
ud

io
Ite

m
Fa

ca
de 1

-it
em

Fa
ca

de
1

-it
em

Fa
ca

de
1

Figure A.1.: The complete UML Class Diagram of the case study. Complete signatures of the
ItemFacade, AudioItemFacade, VideoItemFacade operations are given
in Section 6.1

144

Fo
r N

on
-c

om
m

er
ci

al
 U

se
 O

nl
y

Li
st

M
ov

ie
sB

yD
ire

ct
or

M
en

u

Li
st

Tr
ac

ks
B

yA
rt

is
tM

en
u

Li
st

A
ud

io
B

oo
kB

yW
rit

te
rM

en
u

Li
st

Tr
ac

ks
B

yT
itl

eM
en

u

Li
st

M
ov

ie
sB

yA
ct

or
M

en
u

Li
st

M
us

ic
Vi

de
os

B
yA

rt
is

t
Li

st
M

us
ic

Vi
de

os
B

yD
ire

ct
or

Li
st

M
ov

ie
sB

yT
itl

eM
en

u

M
us

ic
Vi

de
oM

en
u

M
us

ic
Tr

ac
ks

M
en

u

Li
st

A
lb

um
B

yN
am

e
Li

st
A

ud
io

B
oo

kB
yT

itl
e

C
om

pr
es

si
on

M
en

u

Vi
de

oM
ov

ie
M

en
u

A
ud

io
B

oo
ks

M
en

u

A
ud

io
A

lb
um

sM
en

u
A

ud
io

Tr
ac

ks
M

en
u

Vi
de

oM
en

u

D
ow

ln
oa

dR
ep

or
t

A
ud

io
Li

st
M

en
u

A
ud

io
M

en
u

Vi
de

oL
is

tM
en

u

M
ai

nM
en

u

bo
ok

Li
st

B
yT

itl
e(

) :
 v

oi
d

m
us

ic
V

id
eo

Li
st

B
yA

rti
st

()
 :

vo
id

bo
ok

Li
st

B
yW

rit
te

r(
) :

 v
oi

d

m
us

ic
V

id
eo

Li
st

B
yD

ire
ct

or
()

 :
vo

id

ex
it(

) :
 v

oi
d

vi
de

oL
is

tB
yA

ct
or

(a
ct

or
 :

S
tri

ng
)

: v
oi

d

tra
ck

Li
st

B
yA

lb
um

(a
lb

um
 :

S
tri

ng
)

: v
oi

d

vi
de

oL
is

tB
yD

ire
ct

or
(d

ire
ct

or
 :

S
tri

ng
)

: v
oi

d

tra
ck

Li
st

B
yA

rti
st

(a
rti

st
 :

S
tri

ng
)

: v
oi

d

ex
it(

) :
 v

oi
d

ex
it(

) :
 v

oi
d

ex
it(

) :
 v

oi
d

lis
tM

ov
ie

sB
yT

itl
eM

en
u(

) :
 v

oi
d

do
w

nl
oa

dA
ud

io
Ite

m
(t

ra
ck

id
 :

lo
ng

, l
oc

at
io

n
: S

tri
ng

)
: v

oi
d

ac
tiv

at
e(

) :
 v

oi
d

de
ac

tiv
at

e(
) :

 v
oi

d

m
us

ic
Tr

ac
ks

M
en

u(
) :

 v
oi

d

ex
it(

) :
 v

oi
d

se
tG

IS
ta

te
(s

ta
te

 :
in

t)
 :

vo
id

ex
it(

) :
 v

oi
d

ex
it(

) :
 v

oi
d

do
w

nl
oa

dV
id

eo
Ite

m
(v

i :
 lo

ng
)

: v
oi

d

au
di

oB
oo

ks
M

en
u(

) :
 v

oi
d

lis
tA

ud
io

B
oo

ks
B

yT
itl

eM
en

u(
) :

 v
oi

d

ex
it(

) :
 v

oi
d

ex
it(

) :
 v

oi
d

lis
tA

ud
io

B
oo

ks
B

yW
rit

er
M

en
u(

) :
 v

oi
d

ex
it(

) :
 v

oi
d

vi
de

oM
ov

ie
M

en
u(

) :
 v

oi
d

co
m

pr
es

si
on

M
en

u(
) :

 v
oi

d

ex
it(

) :
 v

oi
d

lis
tT

ra
ck

sB
yT

itl
eM

en
u(

) :
 v

oi
d

ex
it(

) :
 v

oi
d

vi
de

oL
is

tB
yT

itl
e(

 ti
tle

 :
S

tri
ng

)
: v

oi
d

m
us

ic
V

id
eo

M
en

u(
) :

 v
oi

d

ex
it(

) :
 v

oi
d

lis
tM

ov
ie

sB
yD

ire
ct

or
M

en
u(

) :
 v

oi
d

ex
it(

) :
 v

oi
d

lis
tM

ov
ie

sB
yA

ct
or

M
en

u(
) :

 v
oi

d

lis
tM

us
ic

V
id

eo
sB

yA
rti

st
M

en
u(

) :
 v

oi
d

au
di

oM
en

u(
) :

 v
oi

d

ex
it(

) :
 v

oi
dex

it(
) :

 v
oi

d

lis
tM

us
ic

V
id

eo
sB

yD
ire

ct
or

M
en

u(
) :

 v
oi

d

ex
it(

) :
 v

oi
d

ex
it(

) :
 v

oi
d

ex
it(

) :
 v

oi
d

au
di

oA
lb

um
sM

en
u(

)

vi
de

oM
en

u(
) :

 v
oi

d

lis
tT

ra
ck

sB
yA

rti
st

M
en

u(
) :

 v
oi

d

ex
it(

) :
 v

oi
d

au
di

oT
ra

ck
sM

en
u(

)

ex
it(

) :
 v

oi
d

tra
ck

Li
st

B
yT

itl
e(

 ti
tle

 :
S

tri
ng

)
: v

oi
d

ex
it(

) :
 v

oi
d

lis
tA

lb
um

B
yN

am
eM

en
u(

) :
 v

oi
d

Figure A.2.: The complete UML State Diagram of UserInterface

145

A. Appendix A: Electronic Items Management Application

n-commercial Use Only

Off

<<InstrumentedElement>>
On

on() : void
off() : void

Figure A.3.: The UML State Diagram of ItemFacade

146

B. A Linguistic Metamodel for
Measurement And Assessment

Fo
r N

on
-c

om
m

er
ci

al
 U

se
 O

nl
y

R
ea

lN
um

be
rs

In
te

rv
al

Se
t

-in
te

rv
al

 :
R

ea
lN

um
be

rs
In

te
rv

al
 [1

..*
]

C
on

di
tio

nE
le

m
en

t

+c
on

di
tio

nR
el

at
io

n
: C

on
di

tio
nR

el
at

io
n

C
om

po
si

te
A

ss
es

sm
en

t

m
ea

nd
ev

ia
tio

n
av

de
vi

at
io

n
st

de
vi

at
io

n

m
ed

ia
n

m
ea

n
m

od
e

m
ax

m
in

<<
en

um
er

at
io

n>
>

St
at

is
tic

s

TI
nt

er
va

l

-s
ta

rtT
im

eI
ns

ta
nt

 :
Ti

m
eI

ns
ta

nt
-e

nd
Ti

m
eI

ns
ta

nt
 :

Ti
m

eI
ns

ta
nt

St
at

is
tic

al
A

na
ly

si
s

-s
ta

tis
tic

al
Fu

nc
tio

n
: S

ta
tis

tic
s

-h
 :

in
t

-m
in

 :
in

t
-s

ec
 :

in
t

-m
se

c
: i

nt
-u

se
c

: i
nt

-n
se

c
: i

nt
-d

 :
in

t
-w

 :
in

t
-y

 :
in

t

Ti
m

eI
ns

ta
nt

Sc
en

ar
io

Ev
en

t

Ti
m

eI
nt

er
va

lS
et

-in
te

rv
al

 :
TI

nt
er

va
l [

1.
.*

]

<<
en

um
er

at
io

n>
>

C
on

di
tio

nR
el

at
io

n

ov
er

la
pp

ed
ov

er
la

ps

co
nt

ai
ns

du
rin

g

In
st

ru
m

en
te

dE
le

m
en

t

O
cu

rr
en

ce
Pe

rc
en

ta
ge

Si
m

pl
eA

ss
es

sm
en

t

R
ea

lN
um

be
rs

In
te

rv
al

-lo
w

er
B

ou
nd

 :
do

ub
le

-u
pp

er
B

ou
nd

 :
do

ub
le

St
at

eC
on

di
tio

n

M
ea

su
re

dE
ve

nt

D
is

tr
ib

ut
io

n

+k
in

d
: D

is
tri

bu
tio

nK
in

d

Su
bS

ce
na

rio

<<
en

um
er

at
io

n>
>

D
is

tr
ib

ut
io

nK
in

d

cu
m

ul
at

iv
e

de
ns

ity

O
cu

rr
en

ce
R

at
e

A
lte

rn
at

iv
es

A
ss

es
sm

en
t

In
te

rv
al

Se
t

Sc
en

ar
io

B
in

ar
y

Pr
ec

ed
e

A
N

D

C
on

ta
in

N
eg

at
iv

e

D
ur

at
io

n
A

na
ly

si
s

O
R

N
O

T

M
et

ric

R
oo

t

G
ro

up

A
st

oT
IS

+t
im

eI
nt

er
va

lS
et

1

*

S
E

to
IE

+i
ns

tru
m

en
te

dE
le

m
en

t
1

*

S
C

to
S

E

+s
ce

na
rio

E
ve

nt
C

on
di

tio
n

0.
.1

*

M
E

to
S

E

+m
ea

su
re

dS
ce

na
rio

E
ve

nt1

*

N
to

S
S

+a
bs

en
t

1

*

C
E

to
IE

+i
ns

tru
m

en
te

dE
le

m
en

t
1

*

S
S

S
E

S
to

S
E

+s
ce

na
rio

E
ve

nt
*

*

S
S

N

S
A

to
M

+m
et

ric
1

*

C
to

S
S

+c
on

ta
in

ed
1

C
A

to
A

+m
et

ric
A

na
ly

si
s

1

*

S
C

C
E

IS
TI

S

R
S

E

A
D

C
to

S
E

+c
on

ta
in

s
1

A
to

R

+a
lte

rn
at

iv
e

1.
.*

* M
E

to
S

+e
ve

nt
S

ce
na

rio
1

*

A
sS

A

M
O

R

C
A

to
A

s
+p

re
vi

ou
sL

ev
el

A
ss

es
sm

en
t

1

*

R
C

B
to

S
C

lo

+l
ef

tO
pe

ra
nd

1

*

P
dt

oS
S

+p
re

ce
de

d
1

1

M
D

A
S

A

+o
pe

ra
nd

1

*

P
st

oS
S

+p
re

ce
de

s
1

1

D
to

A
+d

ur
at

io
nA

na
ly

si
s

1
*

S
S

P

B
to

S
C

ro

+r
ig

ht
O

pe
ra

nd
1

A
sC

A

S
S

A

S
C

N
S

C
B

S
A

to
G

+a
ss

es
sm

en
tG

ro
up

1

S
to

R

+s
ce

na
rio

R
oo

t
1

D
to

IS
+i

nt
er

va
lS

et
1

*

IS
R

N
IS

B
O

S
S

C

B
A

G
to

M
E

+g
ro

up
E

ve
nt

* *

M
O

P

147

C. Ordinal Functions

1. The formal definition of the altSubSc function.
The function altSubSc can be any function which uniquely maps an alternative sub sce-

nario and a natural number smaller than the number of alternative sub scenarios in that
alternative, to one of its alternative sub scenarios.
Formally, let a ∈ Alternatives. And let alt ∈ AtoR such that ∀(aalt, ralt) ∈ alt(a = aalt).
And let nalt = cardalt and n < nalt. Then altSubSc is an injective function defined as:

altSubSc(a, n) = {ss : (ss ∈ SubScenario)∧∃r ∈ Root, se ∈ ScenarioEvent, c ∈ Contain
6 ∃n1 ∈ N((n 6= n1)∧(n1 < nalt)∧(ss = altSubSc(a, n1))∧(((r, c) ∈ RC)
∧((ss, c) ∈ SSC)) ∨ (((r, se) ∈ RSE) ∧ ((ss, se) ∈ SSSE)))}

2. The formal definitions of the ordNumSEv and scOrdNum functions.
Functions ordNumSEv and scOrdNum are always defined in pair. Similarly to the

function altSubSc, the ordNumSEv can be any function which uniquely maps a scenario
and a natural number smaller than the number of scenario events in that scenario, to one of
its scenario event.
Formally, let sc ∈ Scenario. And let sev ∈ StoSE such that ∀(scsev, sesev) ∈ sev(sc = scsev).
And let nsev = cardsev and n < nsev. Then, the function ordNumSEv can be any function.

ordNumSEv(sc, n) = {se : (se ∈ ScenarioEvent)∧ 6 ∃n1 ∈ N
((n 6= n1)∧(n1 < nsev)∧(se = scOrdNum(sc, n1))∧((sc, se) ∈ StoSE))

Now, the function scOrdNum is defined as follows. Let sc ∈ Scenario and se ∈
ScenarioEvent. Then:

scOrdNum(sc, se) = {n : (n ∈ N) ∧ se = ordNumSEv(sc, n)}.

148

D. Temporal Data Types and Relations

Generally, there exist two kinds of happenings with respect to how long they last: events and
intervals[Allen, 1983]. Events are happenings which, practically, do not have duration. They
occur at one instant of time and end at that same moment. Opposite to events, intervals
are happenings which start, last some time, and end. Events can be seen as intervals with
infinitely small durations.

As the time model is usually adopted the discrete time model. According to this time
model, the time is divided into small intervals of time called chronons. Chronon is the
smallest duration an interval can last in the discrete time model. In the following definitions
a and b are considered as intervals at as and bs and ending at ae and be respectively.

1. a before b, the relation which satisfies the condition ae < bs,

2. a after b, the relation which satisfies the condition as > be,

3. a during b, the relation which satisfies the condition as > bs ∧ ae < be,

4. a contains b, the relation which satisfies the condition as < bs ∧ ae > be,

5. a overlaps b, the relation which satisfies the condition as < bs ∧ ae < be,

6. a overlapped-by b, the relation which satisfies the condition as > bs ∧ ae > be,

7. a meets b, the relation which satisfies the condition that the interval b starts in the
chronon after the end of the interval b, or mathematically ae + 1 = bs,

8. a meet-by b, the relation which satisfies the condition as = be + 1,

9. a starts b, the relation which satisfies the condition as = bs ∧ ae < be,

10. a started-by b, the relation which satisfies the condition as = bs ∧ ae > be,

11. a finishes b, the relation which satisfies the condition as > bs ∧ ae = be,

12. a finished-by b, the relation which satisfies the condition as < bs ∧ ae = be,

13. a equals b, the relation which satisfies the condition as = bs ∧ ae = be.

149

E. The Transformation to Client Server
Applications with Java RMI

Transformation of an instrumented client-server application model to the target platform is
divided into three sub transformations: for performance measurement code generation, for
server code generation, and for client code generation. These transformation are defined in
Sections E.2, E.3, and E.4, respectively. They are defined with the notation described in
Section E.1.

E.1. Transformation Notation

Notation used for transformation definition is based on the notation specified by Lodderst-
edt [2003]. This notation defines a transformation as a set of transformation rules. Each
rule takes UML model elements and produces a text output for them. The structure of a
transformation rule is

< parameter declaration >7→<rule name>< output >

.
The rule name is specified in the index of the arrow. A transformation rule parameters

are declared at the left side. They can be a model or a collection of modeling elements. The
declaration of parameters defines both parameter types and parameter names. An example
of parameter definition is Class(c). In this case the parameter name is c and it is of type
Class. When several parameters are defined, they are separated with commas. Parameter
declaration also serves as a precondition that must be satisfied in order to apply the rule.

On the right side or in the next line of the arrow is the text output. The text consists of
static text and embedded instructions. These instructions are surrounded with [[]] symbols.
Embedded instructions may execute a function or apply a transformation rule. In both cases
the output has to be text. Generated text is embedded in the surrounding static text at the
place where the instruction is situated.

An example of the syntax for function call is [[name(c)]]. This function writes the name
of the class c at the point in the text where the function call resides. Parameters of the
embedded function definition are either parameters or variables of enclosing transformation
rule.

An embedded rule application first define a set of elements and then executes specified
transformation rule for each of defined elements. The syntax of the transformation rule is as
follows

[∀ < variable >∈< set >] apply < listofrules >

. An example of such a rule application is

[[∀oA ∈ ownedAttribute(c) apply 7→type (oa)]].

150

E.2. Transformation to Performance Measurement Code

This rule applies 7→type rule for each element of the ownedAttribute function resulting
set.

Following the previously defined transformation language, the transformation for code
generation is defined as

Model(m) 7→javarmiclientserver

[[apply 7→performanceDataStorage(m)]]
[[apply 7→javaRMIServerCode(m)]]
[[apply 7→javaRMIClientCode(m)]].

These transformations are explained in the following three sections.

E.2. Transformation to Performance Measurement Code

Performance measurement code consists of probes and globally visible unique methods for
performance data storage. Probes are inserted in the application logic implementation code.
For that reason, probes are generated with transformation to application code. Application
code generation is described in the next section. This section describes the design of the
transformation to data storage code. Generation of code for data storage is defined with the
following transformation:

Model(m) 7→PerformanceDataStorage

public class PerformanceDataStorage{
...

private Statement statement;

...

private static PerformanceDataStorage instance=null;

[[∀ie ∈ ownedElements(m) apply 7→STS(ie)]]

protected PerformanceDataStorage(){
...

}

public static PerformanceDataStorage instance(){
...

}

[[∀ie ∈ ownedElements(m) apply 7→setSTS(ie)]]

[[∀ie ∈ ownedElements(m) apply 7→storeData(ie)]]

public void incrementSize(int session){
...

151

E. Appendix E: The Transformation to Client Server Applications with Java RMI

}

public void finalize(){
...

}
}.

Global visibility and singularity requirement of performance data storage code is realized
with the implementation of Singleton [Gamma et al., 1995] pattern. The Singleton is in
this class realized with private static attribute instance, static method with the same name
(instance) and public visibility, and the constructor with visibility protected. The unique
instance of this class is kept in the instance attribute. The instance can be reached only
with instance method invocation. This method is a service of the class and can be globally
accessed. Further instantiation of the class is restricted with the private constructor. Beside
constraining instantiation with its protected visibility, constructor also makes a connection
with the database for performance data storage. The connection to the database is ended
when finalize method is invoked. Because of brevity, code of these methods is not shown.

For each instrumented element execution have to be stored the start and the end time
stamp of its execution. To achieve that, for each instrumented element a unique attribute
and two unique methods are defined.

The unique attribute of an instrumented element is used for temporarily storing the start
time stamp of its execution. The start time stamp is stored just before the instrumented ele-
ment’s execution. It is stored by invocation of the unique setter method. The attribute and
the setter method are generated with 7→STS and 7→setSTS templates, respectively. Function
uName(e), used in these mappings, computes a unique string for the element e.
InstrumentedElement(ie) 7→STS

private long [[uName(ie)]]STS[];

InstrumentedElement(ie) 7→setSTS

public void [[uName(ie)]]SetSTS(int session, long sts){
try{

[[uName(ie)]]STS[session]= sts;
}
catch (Exception ex){

ex.printStackTrace();
}

}

Templates 7→STS and 7→setSTS are invoked for each element of the model. Each element
of the model is the result of the function ownedElement(m), where m is the model.
However, when executing the transformation rules, the code is generated only for those in
set InstrumentedElement. Elements in InstrumentedElement set are elements with
�InstrumentedElement� stereotype.

The server application allows running multiple sessions concurrently. Accordingly, instru-
mented modeling element execution can occur in several concurrent sessions. For this reason

152

E.3. Transformation to Server Code

the attribute for storing start time stamp is a vector with one element for each application
session identifier. Consequently, session identification is the function parameter along with
the value of the time stamp. With session identification the setter method recognizes for
that session reserved element in the vector.

The second unique method defined for an instrumented element is the method invoked
when the end of the instrumented element occurs. This method is defined with 7→storeData

template.

InstrumentedElement(ie) 7→storeData

public void [[uName(ie)]]StoreData(int session, long ets){
try{

statement.executeUpdate(“INSERT INTO ExecutionTrace (Element, Session,
STS, ETS) VALUES (“’[[uName(ie)]]’ ” +“, ”+session+“, ”+([[uName(ie)]]STS[session])+“, ”
+(ets)+“)”);

}
catch (Exception ex){

ex.printStackTrace();
}

}

Parameters of performance data storage methods are session identification and end time
stamp. These methods store in the database, an instrumented element identifier, a session
identifier, a start time stamp and an end time stamp. The storage in the database is per-
formed with the invocation of statement attribute executeUpdate. Attribute statement
is of type JDBC (Java Database Connectivity) Statement. JDBC Statement instances used
for execution of SQL in a database. The SQL command which is executed is defined as a
String parameter of executeUpdate method.

Method incrementSize extends the length of vectors for instrumented elements’ start
time stamp execution. This method is implementation of Lazy Acquisition pattern [Kircher
and Jain, 2004]. Lazy Acquisition pattern, in order to optimize resource use, defers re-
source acquisitions to the last possible time in use. In this case it is the number of elements
in the vectors for temporary start time stamps holding. Number of elements in these vectors
corresponds to the number of sessions which concurrently serve users’ requests. When the
number of sessions increases also the number of elements in vectors is increased.

E.3. Transformation to Server Code

Server code consists of interface code, application logic code, and datatypes code. Therefore,
the transformation to server code is defined with
Model(m) 7→javaRMIServerCode

[[apply 7→javaRMIServerInterfaceCode(m)]]
[[apply 7→javaRMIApplicationLogicCode(m)]]
[[apply 7→javaRMIServerDataTypesCode(m)]].

153

E. Appendix E: The Transformation to Client Server Applications with Java RMI

E.3.1. Server Interface Code

According to Java RMI specification a server has to be implemented with a publicly available
interface which contains services this server provides. Furthermore, this interface has to be
implemented in a class which extends specific library classes. Finally, to enable multi-session
execution specified in Section 6.2 the server session class has to be defined. Consequently,
the server code transformation is specified in the following way
Model(m) 7→javaRMIServerInterfaceCode

[[apply 7→serverInterface(m)]]
[[apply 7→serverImplementation(m)]]
[[apply 7→serverSessionImplementation(m)]].

The server interface, is generated with the following transformation:

Model(m) 7→serverInterface

import java.rmi.*;

public interface [[name(m)]]ServerInterface extends java.rmi.Remote{

public synchronized int connect() throws java.rmi.RemoteException;

public synchronized void disconnect(int session) throws java.rmi.RemoteException;

[[∀client ∈ ownedElements(m) apply 7→sSIntMethodNames (client)]]

}.

The server interface extends java.rmi.Remote interface, according to Java RMI speci-
fication. This interface also contains connecting and disconnecting operation declarations.
Operation for connecting, connect, is used when a client registers for using services of the
server. It returns the identifier of the session dedicated to carrying out requests of that client.
Client sends this identifier with each request he makes. Contrary, to connect, operation
disconnect, releases the session dedicated to that client. It is invoked when the client does
not intend to use services of the server any more.

Beside methods for connecting and disconnecting, server interface contains operations of
application logic used by a client class. These operations are generated with 7→sSIntMethodNames

mapping.

Client(cli) 7→sSIntMethodNames

[[∀oP ∈ ownedAttribute(cli)(type(oP) /∈ DataType) apply 7→sSIntPropertyTypeMethodNames

(oP)]]

Property(p) 7→sSIntPropertyTypeMethodNames

[[∀oO ∈ ownedOperation(type(p)) apply 7→sSIntOperation (oO)]]

154

E.3. Transformation to Server Code

Operation(o) 7→sSIntOperation

[[toString(visibility)]] syncrhonized [[t = type(o) apply 7→type (t)]] [[uName(o)]]
(int clientSession, [[∀oP ∈ ownedParameter(o) apply 7→param (oP)]]) throws
java.rmi.RemoteException;

Mapping 7→sSIntMethodName is invoked in 7→serverInterface transformation. It is executed for
each client in the model. Operations defined in the interface are operations of classes which
do not have �DataType� stereotype, and there is at least one client’s attribute of their
type. They are generated with the execution of 7→sSIntPropertyTypeMethodNames mapping for
each attribute of the client. All attributes of the client are contained in the set which is the
result of ownedAttribute function. The name of function ownedAttribute is according
to a convention used in the design of transformations to code. The convention specifies the
rule according to which when a function has a name of an attribute of a metaclass (M2
layer), the result of this function is the value of this attribute in the model (M1 layer). In
this example, function ownedAttribute is a M2 layer attribute. At M1 layer value of this
attribute is a set of attributes specified in an M1 class. Therefore, the result of this function
is the set of attributes defined in the parameter class.

In the transformation 7→sSIntPropertyTypeMethodNames for each operation of the type of an
attribute, template 7→sSIntOperation is executed, and the declaration for that function is gen-
erated. In our example, server interface operations correspond to operations of AudioItem-
Facade and VideoItemFacade. Each operation in the interface has the same visibility
and return value data type as the corresponding UML class operation. Visibility and return
value are generated with converting visibility to string and writing the name of the operation
type with embedded function toString and mapping 7→type, respectively. Furthermore, the
function in the interface is entitled with the result of uName function of corresponding
operation. Additionally, it has the set corresponding operation parameters extended with
the session identification. Session identification is of type int and it is used for identifying
client. Java operation parameters corresponding to UML operation parameters are generated
with function 7→param. This function generates the data type and name of Java operation
parameter for each UML class parameter. Finally, each operation in the interface throw
java.rmi.RemoteException, according to Java RMI specification.

Server code consists of RMI server interface implementation code and application logic
implementation code. RMI server interface implementation class is defined with the next
transformation:

Model(m) 7→serverImplementation

import java.rmi.*;
import java.rmi.registry.*;
import java.rmi.server.*;
import java.net.*;

public class [[name(m)]]ServerImplementation extends UnicastRemoteObject implements

155

E. Appendix E: The Transformation to Client Server Applications with Java RMI

[[name(m)]]ServerInterface{

private java.util.Vector serverSessionPool=null;

...

public [[name(m)]]ServerImplementation() throws java.rmi.RemoteException{
...

}

public int connect() throws java.rmi.RemoteException{
...

}

public void disconnect(int session) throws java.rmi.RemoteException{
...

}

public static void main(String[] args){
System.setSecurityManager(new RMISecurityManager());

try {
LocateRegistry.createRegistry(...);

Naming.rebind(...);

}
catch (Exception ex){

ex.printStackTrace();

}
}

[[∀client ∈ ownedElement(m) apply 7→sImplOperations(client)]]

}
Client(cli) 7→sImplOperations

[[∀oP ∈ ownedAttribute(cli)(type(oP) /∈ DataType) apply 7→sImplPropertyTypeOperations

(oP)]]

Property(p) 7→sImplPropertyTypeOperations

[[∀oO ∈ ownedOperation(type(p)) apply 7→sImplOperationDef (oO)]]

Operation(o) 7→sImplOperationDef

[[toString(visibility)]] [[t = type(o) apply 7→type(t)]] [[uName(o)]](int clientSession, [[∀oP ∈
ownedParameter(o) apply 7→param(oP)]]) throws java.rmi.RemoteException{

ServerSession ss=

156

E.3. Transformation to Server Code

(ServerSession)serverSessionPool.elementAt(clientSession);

[[return(o)]] ss.[[uName(o)]]([[∀p ∈ parameter(o) apply 7→paramName(p)]]);
}.

This class implements the previously defined RMI interface and, according to Java RMI
specification has to extend java.rmi.server.UnicastRemoteObject class. In this class
all operations of the server interface have their implementations. Additionally, public static
function main is defined. Function main starts the server, and registers it to Java RMI
registry. Java RMI registry, makes the interface accessible to clients.

At runtime all clients share the same object of the server interface implementation class.
Concurrent requests are handled through separate threads of Java RMI platform. Threads
are not visible to the programmer. Nevertheless, in the case that this server object has
attributes, they are shared by all clients. This is not kind of execution which is assumed in
Section 6.2.

In order to provide multiple concurrent client serving without data sharing, which is the
platform execution model specified in Section 6.2, the server implementation acts during
runtime like a pool of ServerSession class instances. The set of server session instances
is contained in serverSessionPool attribute. When a client connects to the server, one
ServerSession class instance from the pool is acquired to serve to requests of that client.
Contrary, when it disconnects, the serving instance which is returned to the pool. For pro-
cessing clients’ requests, the server instance only has to recognize to which ServerSession
instance it should forward the invocation. Accordingly, each server interface method, except
for connect, disconnect and main, have their corresponding method in the ServerSes-
sion class. The ServerSession instance to which the invocation is forwarded is specified
with the Session identification contained in each client request. The code for forwarding invo-
cations is generated with 7→sImplOperationDef mapping. In 7→sImplOperationDef transformation
7→paramName writes only names of argument parameter. Class ServerSession is defined
with the following transformation:

Model(m) 7→serverSessionImplementation

public class ServerSession{

[[∀client ∈ ownedElement(m) apply 7→sSesAttribute(client)]]

[[∀client ∈ ownedElement(m) apply 7→sSesOperation(client)]]

public ServerSession(int i)
...

}
}

Client(cli) 7→sSesAttribute

[[∀oA ∈ ownedAttribute(cli) apply 7→sSesAttributeDef (oA)]]

157

E. Appendix E: The Transformation to Client Server Applications with Java RMI

Property(p) 7→sSesAttributeDef

[[toString(visibility(o))]] [[t = type(p) apply 7→type(t)]] [[uName(p)]];

Client(cli) 7→sSesOperation

[[∀oA ∈ ownedAttribute(cli) apply 7→sSesPOperationDef (oA)]]

Property(p) 7→sSesPOperationDef

[[∀oA ∈ ownedOperation(class(p)) apply 7→sSesOperationDef (p, oA)]]

Property(p), Operation(o) 7→sSesOperationDef

[[toString(visibility(o))]] [[t = type(o) apply 7→type(t)]] [[uName(o)]](int clientSession, [[∀oP ∈
ownedParameter(o) apply 7→param(oP)]]) throws java.rmi.RemoteException{

[[return(o)]] [[uName(p)]].[[name(o)]]([[∀p ∈ parameter(o) apply 7→paramName(p)]]);
}.

ServerSession class has a corresponding operation for each operation of the server in-
terface except for connect, disconnect, and main. Operations of ServerSession class
are generated with invocation of 7→sSesOperation transformation function for each client. Ser-
verSession class operations only forward invocation to appropriate operation of a suitable
application logic implementation class instance.

Attributes of ServerSession are application logic implementation classes instances. Class
ServerSession contains, a corresponding attribute for each client attribute whose type is
a non stereotype containing class. In our example, ServerSession class has corresponding
attributes to audioItemFacade and videoItemFacade UserInterface class attributes.
ServerSession attributes are generated with 7→sSesAttribute transformation invocation for
each client.

Having the server object executing like a pool of sessions is not enough for providing
the assumed execution model. Each server session has to have a set of application logic
implementation class instances, dedicated to one client. This requirement is provided with
specific transformations to application logic code.

E.3.2. Application Logic Code

To provide the execution model specified in Section 6.2 application logic design UML class,
which is a UML class without stereotypes, is transformed to code of two Java classes: a class
which implements the application logic defined in the UML class, and a Java class which
serves as a pool of instances. Accordingly

Model(m) 7→javaRMIApplicationLogicCode

[[∀oE ∈ ownedElements(m)(oE /∈ Client(m) ∧ oE /∈ DataType(m)) apply 7→classPool(oE)]]
[[∀oE ∈ ownedElements(m)(oE /∈ Client(m) ∧ oE /∈ DataType(m)) apply 7→class(oE)]]

The class which serves as a pool of instances is defined with the following transformation:

158

E.3. Transformation to Server Code

Class(c) 7→classPool

public class [[name(c)]]Pool{

private java.util.Vector [[toFirstLower(name(c))]];

private static [[name(c)]]Pool instance=null;

protected [[name(c)]]Pool(){

[[toFirstLower(name(c))]]=new java.util.Vector(10, 1);

for(int i=0; i<10; i++){
[[toFirstLower(name(c))]].add(new [[name(c)]]());

}
}

public static [[name]]Pool instance(){
...

}

public synchronized int indexOf(Object o){
return [[toFirstLower(name(c))]].indexOf(o);

}

public synchronized void incrementSize(int session){
...

}

public synchronized [[name(c)]] getAt(int at){
return ([[name]])([[toFirstLower(name(c))]].get(at));

}

public synchronized void initializeAt(int at){
...

}

public synchronized void initializeAll(){
...

}

public synchronized void resetAt(int at){
...

}

159

E. Appendix E: The Transformation to Client Server Applications with Java RMI

public synchronized void resetAll(){
...

}
}

The set of pool application logic class instances is contained in the vector named with
embedded function toFirstLower(name(c)). The function only changes the first symbol
of the application logic class name from capital to small. This vector is initialized in the
constructor. In the code presented here the vector is initialized with 10 application logic
implementation class instances.

Similarly to data storage class, for each pool class design patterns Singleton and Lazy
Acquisition are used. Singleton design pattern is implemented with private static in-
stance attribute, public static instance method, and the protected constructor.

Lazy Acquisition pattern is implemented with incrementSize method. The number of
instances in the pool at runtime is the same as the number of allocated sessions. Instances are
kept in the attribute with the same name as the application logic implementation class. When
the number of sessions increases, immediately, new instances in the pool are allocated. New
allocation is done with the incrementSize method invocation. Method incrementSize
is invoked with the number of sessions in the system as session parameter. When the
value of session parameter in the incrementSize method invocation is smaller then the
number of sessions in the pool, there is no additional allocation. In the case when the value
of session parameter is larger than the number of currently available instances in the pool,
the system allocates new application logic implementation class instances. In the constructor
code presented above the initial number of allocated objects in the pool is 10.

Operations indexOf and getAt are used for retrieving index informations and objects
from the pool. Operation indexOf returns the index of an object in the pool. Operation
getAt returns a reference to the object which with appropriate index in the pool. As it
can be later seen index is used in the session identification. Finally, methods initializeAt,
initializeAll, resetAt, and resetAll are used for acquisition and releasing objects for
serving user requests.

Application logic implementation classes are generated with two transformations. One
transformation generates Java class implementing transformational behavior of UML classes.
This transformation is followed by the transformation which generates state machines of the
application logic classes with reactive behavior. Transformation for generation of vertical
and horizontal class dimension code are 7→class and 7→stateMachine mappings, respectively. In
these functions the result of triggerOp function is the set of transition triggering operations
for the parameter state machine.

Class(c) 7→class

public class [[name(c)]]{

[[∀a ∈ ownedAttribute(c) apply 7→attr(a)]]

[[∀b ∈ ownedBehavior(c) apply 7→behaviored(c, b)]]

160

E.3. Transformation to Server Code

public void initialize(){

[[∀b ∈ ownedBehavior(c) apply 7→smInitialize(c, b)]]

[[∀oA ∈ ownedAttribute(c)(type(oA) ∈ Class) apply 7→classAtributes(c, oA)]]

}

[[∀oO ∈ ownedOperation(c)(oO /∈ InstrumentedElement∧
oO /∈ triggerOp(ownedBehavior(c))) apply 7→operation(oO)]]

[[∀oO ∈ ownedOperation(c)(oO ∈ InstrumentedElement)
apply 7→instrumentedOperation(oO)]]

[[∀oO ∈ ownedOperation(c)(oO /∈ InstrumentedElement

∧oO ∈ triggerOp(ownedBehavior(c))) apply 7→triggerOperation(oO)]]

[[∀sm ∈ ownedBehavior(c) apply 7→entryAndExitStateActions(sm)]]

}

[[∀sm ∈ ownedBehavior(c) apply 7→stateMachine(sm)]]

Vertical dimension is implemented in such a way that for each UML application logic
design class one application logic implementation Java class is generated. Each generated
Java class attribute has a corresponding UML class attribute. Attributes are generated with
7→attr template. For the brevity, this mapping is here not described.

Java class code which corresponds to an operation of a UML class depends on whether
this operation is instrumented or not. Mappings for code generating of instrumented and
not instrumented UML model methods are defined with 7→operation and 7→instrumentedOperation

mappings, respectively.

Operation(o) 7→operation

[[toString(visibility)]] [[t = type(o) apply 7→type(t)]] [[name(o)]](
[[∀oP ∈ ownedParameter(o) apply 7→param(oP)]]

[[toString(method(o))]]
}

Operation(o) 7→instrumentedOperation

[[toString(visibility)]] [[t = type(o) apply 7→type(t)]] [[name(o)]]Impl(
[[∀oP ∈ ownedParameter(o) apply 7→param(oP)]]

161

E. Appendix E: The Transformation to Client Server Applications with Java RMI

[[toString(method(o))]]
}

[[toString(visibility)]] [[t = type(o) apply 7→type(t)]] [[name(o)]]Impl(
[[∀oP ∈ ownedParameter(o)apply 7→param(oP)]]){

[[t = type(o) apply 7→returnV alueDeclaration(t)]]

PerformanceDataStorage.instance().[[uName(o)]]SetSTS(
[[name(class(o))]]Pool.instance().indexOf(this), System.currentTimeMillis());

[[hasType(o)]][[name(o)]]

PerformanceDataStorageFacade.instance().[[uName(o)]]StoreData(
[[name(class(o))]]Pool.instance().indexOf(this),System.currentTimeMillis());

[[t = type(o) apply 7→returnV alueReturn(t)]]

}

For a non triggering and non instrumented UML operation, the corresponding Java code
consists of one function with the equivalent header as the UML operation. Furthermore,
the body of the Java function contains copied code of the UML Class function body. As
explained in the previous chapter, Java is used instead of a action language.

Instrumented UML operations are implemented with two Java operations. One is the
application logic implementation function with suffix -Impl, and the wrapper function in
which the measurement takes place. The application logic implementation operation is
generated in the same way as non instrumented operation. The wrapper function has the
same header and the parameter list as the UML class. In this function, before the invocation
of the function with suffix -Impl, the session id and the start time stamp of this method
is sent to PerformanceDataStorage class instance. After the invocation of the function
with -Impl suffix, the method execution time is stored in performance data database.

When function has a return value, with transformation 7→returnV alueDeclaration a declaration
of a variable named returnValue is generated. Data type of generated returnValue vari-
able is the type the operation return value. Furthermore, in this case, after the storing of
start time stamp, the return value of the operation in which the application logic is imple-
mented is given to returnValue variable. Finally, after storing the time interval in which
the application logic took place, the return value of the wrapper function is the value of re-
turnValue variable. For example, in the case study, these two functions for instrumented
getItem method look like:

public class ItemFacade{

public String getItem(long itemid, String location){

162

E.3. Transformation to Server Code

PerformanceDataStorageFacade.instance().[[uName(getItem)]]SetSTS(
ItemFacadePool.instance().indexOf(this), System.currentTimeMillis());

String returnValue = null;

returnValue = getItemImpl(itemid, location);
PerformanceDataStorage.instance().[[uName(getItem)]]StoreData(

ItemFacadePool.instance().indexOf(this), System.currentTimeMillis());
return returnValue;

}
String getItemImpl(long itemid, String location){

//The UML model getItem method Java code
...

}
}

In the instrumented getItem code for the reasons of comprehension [[uName(getItem)]] is
left. When the instrumented method does not have a return value, returnValue variable
declaration, assigning return value of the method with suffix -Impl to returnValue, and
return of returnValue are not generated.

When the application logic implementation class has defined reactive behavior, trans-
formation templates 7→behaviored, 7→entryAndExitStateFunctions, and 7→entryAndExitStateActions are
executed. These transformations are defined as follows:

Class(c), StateMachine(sm) 7→behaviored

private [[name(c)]] [[toFirstLower(name(c))]]StateMachine=null;

public void setState([[name(sm)]] state){
[[toFirstLower(name(c))]]StateMachine=state;

}

StateMachine(sm) 7→entryAndExitStateActions

[[∀r ∈ region(sm) apply 7→entryAndExit(r)]]

Region(r) 7→entryAndExit

[[∀sv ∈ subvertex(r)(sv ∈ State ∪ InstrumentedElement ∧ sv /∈ FinalState)
apply 7→entryAndEnd(sv)]]

State(s) 7→entryAndEnd

void [[name(s)]]Entry(){
toString(entry(s));

}

void [[name(s)]]Exit(){

163

E. Appendix E: The Transformation to Client Server Applications with Java RMI

toString(exit(s));

}

Operation(o) 7→triggerOperation

[[toString(visibility)]] [[t = type(o) apply 7→type(t)]] [[name(o)]]

([[∀oP ∈ ownedParameter(o) apply 7→param(oP)]]){

[[toFirstLower(name(class(o)))]]StateMachine.[[name(o)]]([[name(class(o))]]Pool
.instance().indexOf(this), [[∀oP ∈ ownedParameter(o) apply 7→paramName(oP)]]);

}

[[toString(visibility)]] [[t = type(o) apply 7→type(t)]] [[name(o)]]Impl(

[[∀oP ∈ ownedParameter(o) apply 7→param(oP)]]){

toString(method(o));

}

Mapping 7→behaviored defines the state machine attribute. More precisely, this attribute
contains the current state of the object. The state of the instance is set by invocation of
method setState with the new state as the argument. Method setState is also generated
with 7→behaviored template.

Transformation 7→entryAndEndStateFunctions generate operations in the Java class which con-
form to entry and exit state actions. These operations are invoked when entering and
exiting corresponding state, respectively. State transitions are explained later in this sec-
tion.

Finally, trigger operations of the application logic implementing class are implemented with
two functions. Similarly to instrumented operation, implementation of the UML triggering
operation application logic is in the Java class with suffix -Impl. The Java operation with
the same name as the UML operation just forwards the trigger invocations with the tread
identification to the state object in the state machine attribute. The mechanism of state
machine implementation is depicted later in this section.

State machine code is generated according to State and Singleton design patterns [Gamma
et al., 1995]. According to State pattern, a state machine is implemented as a variable for
storing current state, one state generalization class, and a set of classes having one class for
each state. The variable for storing current state is generated with 7→behaviored, as previously
explained. The state generalization class is generated with transformation 7→stateMachine.

StateMachine(sm) 7→stateMachine

public class [[name(owner(sm))]]StateMachine{

private static [[name(owner(sm))]]StateMachine instance=null;

164

E.3. Transformation to Server Code

[[∀r ∈ region(sm) apply 7→trRegion]]

}
[[∀r ∈ region(sm) apply 7→vertRegion (r)]]

The state generalization class is used as the data type of the application logic implemen-
tation class state machine variable. Furthermore, operations of this class are empty versions
of all transition triggering operations in the state machine. Empty versions of all transi-
tion triggering operations are generated with 7→trRegion transformation, and their need is
explained later.

Region(r) 7→trRegion

[[∀t ∈ transition(r) apply 7→trOperation]]

[[Transition(t) 7→trOperation]]

public [[t=type(operation(event(trigger(t)))) apply 7→type(t)]] [[name(operation(
event(trigger(t))))]](int session, [[∀oP ∈ ownedParameter(operation(event(trigger(t)))) ap-
ply 7→param(oP)]]){

[[t = type(operation(event(trigger(t)))) apply 7→retNull(t)]]

}

Mapping 7→retNull is here not defined for the reason of its simplicity. It generates return
null; code when the trigger operation has a return value.

States of a UML State Machine in the model are implemented as classes. State classes ex-
tend extend the state machine class which corresponds to their UML State Machine. These
classes are generated with the following mapping:

Region(r) 7→vertRegion

[[∀sv ∈ subvertex(r)(sv /∈ FinalState ∧ sv /∈ PseudoState) apply 7→state(sv)]]

State(s) 7→state

public class [[name(s)]] extends [[name(stateMachine(container(s)))]]{

public static [[name(s)]] instance=null;

protected [[name(s)]]{}

public static [[name(s)]] instance(){
...

}

165

E. Appendix E: The Transformation to Client Server Applications with Java RMI

[[∀og ∈ outgoing(s) apply 7→outgoingTrans(og)]]
}

Transition(t) 7→outgoingTrans

public [[t = type(operation(event(trigger(t)))) apply 7→type(t)]]
[[name(operation(event(trigger(t))))]](

int session, [[∀oP ∈ ownedParameter(o) apply 7→param(oP)]]){

[[name(owner(stateMachine(container(t))))]]Pool.instance().
getAt(session).[[name(source(t))]]Exit();

[[returnValueDeclaration(operation(event(trigger(t))))]]

[[hasType(operation(event(trigger(t))))]]
[[name(owner(stateMachine(container(t))))]]Pool
.instance().getAt(session).[[name(operation(event(trigger)))]]
Impl([[∀p ∈ parameter(operation(event(trigger)))) apply 7→paramName(p)]]);

[[so = source(t) apply 7→instSource(so)]]

[[ta = target(t) apply 7→instTarget(ta)]]

[[name(owner(stateMachine(container(t))))]]Pool.instance()
.getAt(session).setState([[name(target(t))]].instance());

[[name(owner(stateMachine(container(t))))]]Pool.instance()
.getAt(session).[[name(target(t))]]Entry();

[[retValueReturn(type(operation(event(trigger(t)))))]]
}

InstrumentedElement(ie) 7→instSource

PerformanceDataStorage.instance()
.[[uName(ie)]]StoreData(session, System.currentTimeMillis());

InstrumentedElement(ie) 7→instTarget

PerformanceDataStorage.instance()
.[[uName(ie)]]SetSTS(session, System.currentTimeMillis());

Classes which represent states are singleton classes. All instances of the application logic
class share same state machine objects. This is often the case with State pattern, because
a state defines actions which are executed at entry and exit of that state. Moreover, it

166

E.4. Transformation to Client Code

defines a subset of triggering operations which cause the state transitions. Subset is defined
with extending the state machine class and overlapping only outgoing transitions’ triggering
operations. Overlapping operations are generated with 7→outgoingTrans transformation. The
state machine execution is described in the rest of this section.

Each triggering operation invoked at the application logic implementation class is for-
warded to the appropriate operation of the current state object contained in the state ma-
chine attribute. A state definition class extends the states generalization class and, therefore,
has all triggering operations defined. Outgoing transitions’ triggering operations of the cur-
rent state are overlapped and execute transitions to their target states. In this way, an object
changes its state only if the operation which triggers the outgoing transition of the current
state is invoked. Else, an empty function from the states generalization class is executed,
and there is no effect.

A transition from one state to another consists of four steps. The first step is execution
of the exit action of the current state. This is done with the invocation of the appropriate
operation of application logic implementation class. Exit action operations are generated
with previously defined 7→entryAndExitStateActions transformation. The execution of triggering
operation code is performed by invoking the application logic class operation with the name
of the triggering operation and suffix -Impl. Next, the execution of triggering operation
follows. The execution of triggering operation code is followed by setting the target state
as the current state. Setting the new state is performed by invoking application logic class
operation setState with the target state object as the argument. Finally, the entry action
of the transition’s target state is executed.

For the relation between the transition trigger operation and source and target state of
the transition Moore automaton semantics is adopted [Samek, 2002]. According to this
automaton, the triggering operation execution belongs to the state which is being left. In
the case of instrumented state entry the entry time stamp is saved in the attribute in Per-
formanceDataStorage instance. Similarly, when leaving the instrumented state, after the
execution of the exit action of that state and the triggering operation, the execution interval
of this state is saved in the performance storage database. Similarly to the instrumented
method, in the case of a triggering method with a return value, a variable returnValue
is declared. This variable gets the value of the triggering operation execution. After the
transition to the target state is executed, this value is returned.

For the reasons of transformation triviality and brevity 7→javaRMIServerDataTypesCode is not
described here.

E.4. Transformation to Client Code

Client code defines presentation of data in client server application. It consists of code gener-
ated from UML classes stereotyped with �Client� and classes associated with them, code
for communication with server, and datatypes code. Correspondingly

Model(m) 7→javaRMIClientCode

[[apply 7→client(m)]]
[[apply 7→ClientSideServerInterfaceImplementation(m)]]
[[apply 7→javaRMIServerDataTypesCode(m)]].

167

E. Appendix E: The Transformation to Client Server Applications with Java RMI

Here should be noticed that datatypes are generated also at the client side for the reasons
of availability in a remote environment. The transformation for client code generation is
defined in the following:

Client(c) 7→client

public class [[name(c)]]{

[[∀a ∈ ownedAttribute(c) apply 7→attr(a)]]
[[∀b ∈ ownedBehavior(c) apply 7→behaviored(c, b)]]
public [[name(c)]](){

...
}

[[∀oO ∈ ownedOperation apply 7→operation(oO)]]
[[∀sm ∈ ownedBehavior(c) apply 7→entryAndExitStateActions(sm)]]

}

Client(c) 7→clientSide

[[∀oA ∈ ownedAttribute(c)(type(oA) ∈ Class ∧ type(oA) /∈ DataType ∧ type(oA) /∈ Client
apply 7→clientSideServers]]

Java code which implements classes with �Client� stereotype is similar to server ap-
plication logic implementation classes. It consists of a Java class and state machine imple-
mentation classes. For each attribute of the UML client class there is an attribute in the
appropriate Java class, and for each UML client class operation, there is an appropriate Java
class operation. Furthermore, client can also have reactive behavior defined. Code genera-
tion for clients’ state machines is equivalent to servers’ state machines, and the definition is
here not repeated.

Classes which are data types of client attributes and do not have stereotype�DataType�
are generated with the following transformation:

Property(p) 7→clientSideServers

public class [[name(type(p))]]{

protected [[name(type(p))]](){}

[[∀oO ∈ ownedOperation(type(p)) apply 7→clientSideServerOperations(oO)]]

}

Operation(o), Client(cli) 7→clientSideServerOperations

[[toString(visibility(o))]] [[type(o)]] [[name(o)]]([[∀op ∈ ownedParameter(o) apply 7→param(op)]]){

168

E.4. Transformation to Client Code

[[hasType(type(o))]] [[name(cli)]]ClientSideServerInterfaceImplementation.instance().

[[uName(o)]]([[∀p ∈ ownedParameter(o) apply 7→paramName]]);

}

Clients’ attributes datatype classes without stereotypes have only operations in their def-
inition. Because their control flow implementation is in the server code, at the client side
they only forward the invocation to the corresponding operation of the server communication
class. The mapping 7→ClientSideServerInterfaceImplementation generates the class for communica-
tion with the server.

Class(c) 7→ClientSideServerInterfaceImplementation

import java.rmi.*;
import java.rmi.registry.*;
import java.net.*;

public class [[name(c)]]ClientSideServerInterfaceImplementation{

private int session=-1;

private static [[name(c)]]ClientSideServerInterfaceImplementation instance=null;

private [[name(model(c))]]ServerInterface server;

protected [[name(c)]]ClientSideServerInterfaceImplementation(){

System.setSecurityManager(new RMISecurityManager());

try{

server=(...);

session=server.connect();

}

catch (Exception ex){
ex.printStackTrace();

}

}

public static [[name(c)]]ClientSideServerInterfaceImplementation instance(){
...

169

E. Appendix E: The Transformation to Client Server Applications with Java RMI

}
[[∀oA ∈ ownedAttribute(c)(oA ∈ Class ∧ oA /∈ DataType ∧ oA /∈ Client)

7→operationImplementations(oA)]]
}

Property(p) 7→operationImplementations

[[∀oO ∈ ownedOperation(type(p)) apply 7→opImplementation(oO)]]

Operation(o) 7→opImplementation

[[toString(visibility(o))]] [[type(o)]] [[uName(o)]](
[[∀p ∈ ownedParameter apply 7→param(p)]]){

[[returnValueDeclaration(o)]]

try{
[[retValue(o)]] [[name(model(o))ServerInterface.]][[uName(o)]](

[[session, ∀p ∈ ownedParameter(p) apply 7→ paramName(p)]]);

}

catch (Exception ex){
ex.printStackTrace();

}

[[returnValueReturn(o)]]

}

Class for communication with the server is a singleton class which, when instantiated,
makes a connection with the server. With making the connection, it receives the identification
of the session for serving its requests. Operations defined in this class conform to operations
of the server interface except for connection and disconnection. Operations of this class only
add the session identification to parameters received from client and forward the invocation
to the server. In this way, they mediate between the client and the server.

At the end, there should be noticed that data type definitions have to be available
both at the client and server. Therefore, for both sides code from classes with stereo-
type �DataType� also generated. However, for the reasons of brevity and triviality of the
transformation, this code is here not depicted.

170

Curriculum Vitae

Personal Information

Name: Marko Bošković
Address: 6675 Dow Avenue, Suite 109, V5H 3E1, Burnaby, BC, Canada
Place of Birth: 19300 Negotin, Serbia
Date of Birth: August 18th, 1980

Studies

04/2005-03/2009 PhD student, University of Oldenburg, Germany
04/2005-03/2008 Scholarship Holder, DFG Research Training Group “Trustsoft”
9/2004 Diploma Engineer of Computer Technology and Informatics
10/1999-9/2004 Student of Computing Technology and Informatics, Military Academy, Bel-
grade, Serbia

Work Experience

11/2009-12/2009 Research Assistant, Athabasca University, Alberta, Canada
07/2009-10/2009 Researcher, Athabasca University, Alberta, Canada
04/2008-09/2008 Scientific Help, University of Oldenburg, Germany
10/2004-03/2005 Database and Network Administrator, Sector for Human Resources, Gov-
ernment of Serbia and Montenegro

School

09/1995-08/1999 Military Grammar School, Belgrade, Serbia
07/1987-07/1995 Primary School ”Branko Radičević, Negotin, Serbia

171

Erklärung

Hiermit erkläre ich, dass ich die vorliegende Dissertation selbstständig verfasst habe und
nur die angegebenen Hilfsmittel verwendet habe. Teile der Dissertation wurden bereits
veröffentlicht bzw. sind zur Verentlichung eingereicht, wie an den entsprechenden Stellen
angegeben. Die Dissertation hat weder in Teilen noch in ihrer Gesamtheit einer anderen
wissenschaftlichen Hochschule zur Begutachtung in einem Promotionsverfahren vorgelegen.

Burnaby, im März 2010 Marko Bošković

172

	Title: Model-driven performance: measurement and assessment with relational traces
	Contents
	List of Figures
	List of Tables
	Abstract
	Zusammenfassung
	Acknowledgments
	Introduction
	1. Chapter Introduction
	Foundations
	Model Driven Engineering
	Essentials of Model Driven Engineering
	Engineering a Modeling Language
	Model Driven Architecture

	Software Performance Engineering
	Software Performance
	Software Performance Evaluation
	Software Performance Measurement and Assessment
	Concerns in Performance Measurement and Assessment

	Libkin's Algebra

	MoDePeMART: Model Driven Performance Measurement and Assessment with Relational Traces
	Performance Assessment with MoDePeMART
	Basic Assumptions
	Vertical and Horizontal Dimension of Software Modeling and Execution
	Vertical Dimension
	Horizontal Dimension

	Model Kinds and System at Runtime
	Descriptive and Prescriptive Models
	Token and Type Models
	The Runtime System and Model in Model Driven Measurement and Assessment with Relational Traces

	A Linguistic Metamodel for Performance Measurement and Assessment
	The Metrics Part of the Metamodel
	The Assessment Part of the Linguistic Metamodel
	The Event and Context Part of the Linguistic Metamodel
	The Static Semantics of the Metamodel

	The Metamodel Formal Semantics
	The Relational Database Management System Prerequisites and Initialization
	Prerequisites
	Initialization

	The Event and Context Metamodel Part Formal Semantics
	The Reactive Context Metamodel Formal Semantics
	The Transformational Context Formal Semantics

	Assessment and Metrics Metamodel Part Formal Semantics

	Evaluation
	PEMA: A UML Profile for PErformance Measurement and Assessment
	UML Metamodel Subset
	Class Diagrams UML Metamodel Subset
	State Machines UML metamodel subset

	PeMA UML Profile

	Transformation to Client Server Applications with Java RMI
	Transformation to Client Server Applications with Java RMI
	Validation
	Implementation
	Data Collection and Storage Routine Duration

	Comparative Analysis to Related Work

	Conclusions and Outlook
	Conclusions
	Validity in Real Systems Use

	Future Work
	Bibliography
	Appendix A: Electronic Items Management Application
	Appendix B: The Linguistic Metamodel for Measurement and Assessment
	Appendix C: Ordinal Functions
	Appendix D: Temporal Data Types and Relations
	Appendix E: The Transformation to Client Server Applications with Java RMI
	Transformation Notation
	Transformation to Performance Measurement Code
	Transformation to Server Code
	Server Interface Code
	Application Logic Code

	Transformation to Client Code

	Erklärung
	Curriculum Vitae

