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Abstract

Despite several decades of research, automatic speech recognition (ASR) lacks the

performance achieved by human listeners. One of the major challenges in ASR is to

cope with the immense variability of spoken language, which can be categorized into

extrinsic sources (e.g., additive noise) and intrinsic factors (such as speaking rate, style,

effort, dialect, and accent). What can we learn from the biological blueprint, and which

cues important in human speech recognition (HSR) should be considered to improve

ASR performance? The scope of this thesis is to answer these questions by comparing

the HSR and ASR performance and - based on these results - to suggest an alternative

way of feature extraction to improve ASR. The comparison is based on the Oldenburg

Logatome Corpus, which is a database that contains simple nonsense words consisting

of phoneme triplets and which covers the intrinsic variations mentioned above.

The man-machine-gap in terms of the signal-to-noise ratio (SNR) was estimated

to be 15 dB, i.e., the masking level in ASR has to be lowered by 15 dB to achieve

the same performance as human listeners. The contributions to this gap could be

attributed to the individual processing steps of the ASR system: The information loss

caused by the feature extraction resulted in an SNR-equivalent information loss of

10 dB, while suboptimal classification accounted for the remaining 5 dB of the overall

gap. Moreover, the analysis of intrinsic variations showed that human listeners are

superior to ASR systems in exploiting temporal cues. These findings motivated the

use of spectro-temporal Gabor features in ASR, which were found to exhibit increased

robustness against a wide range of noise types. In the presence of intrinisic variations

of speech, Gabor features increase the overall performance regarding several factors

(such as speaking effort and style), which suggests to incorporate both spectro-temporal

and temporal cues in future ASR systems.
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Kurzfassung

Trotz jahrzehntelanger Forschung erreicht automatische Spracherkennung (engl. auto-

matic speech recognition, ASR) bei weitem nicht die Leistung, die vom Menschen erzielt

wird. Eine der größten Herausforderungen in ASR ist die Berücksichtigung der im-

mensen Variabilität gesprochener Sprache, die durch extrinsische Quellen (wie etwa addi-

tive Störgeräusche) und intrinsche Faktoren (z.B. Änderungen in Sprachgeschwindigkeit,

-stil, -aufwand, Dialekt und Akzent) hervorgerufen wird. Was können wir vom audi-

torischen System lernen, und welche Merkmale, die bei menschlicher Spracherkennung

(engl. human speech recognition, HSR) eine Rolle spielen, sollten zur Verbesserung von

ASR berücksichtigt werden? In dieser Dissertation werden diese Fragen untersucht,

indem zunächst die Leistung von HSR und ASR verglichen wird und – auf Grundlage

der Ergebnisse – eine alternative Vorverarbeitung verwendet wird, um ASR-Systeme

zu verbessern. Der Vergleich basiert auf dem Oldenburg Logatomkorpus, einer Sprach-

datenbank, die aus einfachen, bedeutungslosen Zusammensetzungen von Phonemen

besteht. Die Datenbank enthält die oben erwähnten intrinsischen Variabilitäten, und

ist zur Durchführung von HSR- und ASR-Experimenten geeignet.

Zwischen der Spracherkennungsleistung bei Mensch und Maschine besteht eine Lücke

von 15 dB, wenn diese über das Signal-zu-Rausch-Verhältnisses (SNR) ausgedrückt

wird; das heißt, der Maskiererpegel muss für ASR um 15 dB gesenkt werden, damit die

gleiche Leistung wie bei HSR erzielt wird. Die Beiträge zu dieser Differenz konnten auf

die einzelnen Verarbeitungsschritte in ASR-Systemen zurückgeführt werden: Während

der Informationsverlust, der durch die Extraktion von Standardmerkmalen zustande

kommt, etwa 10 dB betrug, lag der Beitrag durch maschinelle Klassifikation bei etwa

5 dB. Weiterhin zeigt die Analyse intrinsischer Variabilität, dass das menschliche audi-

torische System temporale Merkmale weit besser nutzen kann als ASR-Systeme. Dieses
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Ergebnis motiverte den Einsatz spektro-temporaler Gabor-Merkmale für maschinelle

Erkenner, die sich gegenüber einer Vielzahl von Störgeräuschen als wesentlich ro-

buster als Standardmerkmale herausstellten. Schließlich zeigten Gabormerkmale bei

verändertem Sprachaufwand und variirender Sprechweise eine bessere Leistung als Stan-

dardmerkmale, was die Nützlichkeit spektro-temporaler und temporaler Information

für ASR verdeutlicht.
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1
General introduction

Spoken language is the most important form of human communication. Despite

several decades of research, the recognition of speech by machines lacks the superior

performance achieved by humans (Lippmann, 1997; Sroka and Braida, 2005; Meyer

et al., 2007; Cooke and Scharenborg, 2008). One of the reasons for the outstanding

performance of human listeners is the robustness against the variability in speech, i.e.,

the invariance of the recognition of speech containing such variations. The variability

can be categorized in extrinsic factors (such as additive or channel noise) and intrinsic

factors, which are associated with speech itself and do not arise from external factors.

Among these factors are the speaker’s gender, age, physiology, the speaking rate and

style, dialect, accent, co-articulation, and vocal effort. Most of these factors were

found to severely degrade the performance of automatic speech recognition (ASR), i.e.,

the conversion of spoken utterances into text (Benzeguiba et al., 2007). For example,

changes in speaking rate increase the error rates of ASR, which indicates that intrinsic

factors have to be considered in auditory modeling in order to close the gap that

is observed between human speech recognition (HSR) and ASR (Siegler and Stern,
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1. General introduction

1995). This thesis is motivated by these observations, and covers two main aspects: 1.)

How does the presence of intrinsic variations (speaking rate, style, effort, dialect and

accent) compared to normally spoken utterances influence HSR and ASR, and what

are the specific differences between these two? 2.) Can biologically-inspired features

which account for cues that are employed by human listeners and which are based

on the comparison of HSR and ASR help to decrease the man-machine-gap in speech

recognition?

1.1 Difficulties in automatic speech recognition

The advances in ASR during the last decade have allowed for the use of this technology

in several fields, including dictation systems, dialogue systems in telecommunication

for small or medium vocabularies, and support for people with disabilities. Despite

this progress, ASR technology is not widely used in our everyday life, although it offers

numerous advantages compared to traditional keyboard input, such as a high data rate

that can be achieved even by untrained speakers and its use in hands-free applications.

Another example is the use of ASR in hand-held devices that might be used to support

hearing-impaired listeners in one-to-many communications (Woodcock, 1997).

The recognition of speech is a task that is easily performed by human listeners

in everyday situations. In this context, it may seem surprising that technological

advances have not yet resulted in a system that automatically performs this task with

the same reliability. However, the production and recognition of speech are highly

complex processes that involve high-order active processing using implicit knowledge

of spoken language. The difficulties encountered in today’s speech recognition systems

may therefore appear more comprehensible, especially when considering that ”spoken

language is the most sophisticated behavior of the most complex organism in the

2



1.1. Difficulties in automatic speech recognition

known universe“ (Roger K. Moore). Due to the co-evolution of speech production and

reception organs, it can be assumed that both production and perception are very well

tuned processes, thus resulting in internal representations in the auditory system that

optimally characterize the speech sound and its underlying message.

The issues that need to be considered in ASR can be roughly divided into four

categories (Schukat-Talamazzini, 1995), as illustrated in Fig. 1.1: The continuity of

speech arises from the fact that speech in general lacks visible boundaries or markers

which would allow for an easy segmentation of the speech units that need to be

identified. The complexity of a speech recognition task depends, among other factors,

on the speaking style (e.g., conversational vs. formal speech), which influences the

number of pattern alternatives that have to be considered for classification. Other

parameters that contribute to the complexity are the size of vocabulary and the number

of speakers (speaker-specific recognition vs. speaker-independent ASR), which result

in increased computational costs (due to the larger number of comparisons of spoken

and stored speech patterns) and require larger amounts of training data and storage

capacity for the auditory models. The mapping of sub-word sequences to words or

sentences is not a trivial problem due to the ambiguity of language, even when sub-word

units such as phonemes are perfectly classified. For example, the ambiguity between

the questions “How to wreck a nice beach?” and “How to recognize speech?” that

consist of very similar sequences of phonemes needs to be resolved based on high-level

knowledge. In human hearing, this knowledge is not limited to efficient language

models, but also includes information about the a-priori probabilities of properties

of the signal to be recognized and sources of noise in a specific acoustical scene (i.e.,

the “world-knowledge”). Finally, the immense variability that is present in spoken

language aggravates the correct classification of speech. This variability results in the
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1. General introduction

fact that not even the same speaker can reproduce an utterance exactly, and ranges

from speaker-specific, intrinsic factors (e.g., physiological parameters, dialect, age,

health condition,) over intrinsic parameters that are subject to continuous changes

(speaking rate, speaking effort, emotion) to extrinsic sources of variability, such as

competing talkers or reverberation.

I	  have	  a	  very	  bad	  feeling	  about	  this.	  

iveaverybadfeelingabouthis	  	  

Original	  printed	  version	  of	  the	  message	  

Missing	  word	  boundaries	  and	  punctua;on	  

Addi;ve	  and	  channel	  noise,	  phoneme	  reduc;on	  

Inter-‐individual	  differences	  

Superposi;on	  with	  two	  other	  messages	  

FIG. 1.1 Illustration the problems that arise in ASR (by comparing ASR and the problem
of optical character recognition), adapted from (Schukat-Talamazzini, 1995). While the
original (printed) version of the sentence is easily readable, the hand-written last sentence
with simulated two-talker babble can hardly be deciphered.
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1.2. Comparing speech recognition of men and machines

1.2 Comparing speech recognition of men and machines

The observation of the excellent performance of the human listeners compared to

automatic recognizers has inspired many works that aim at the goal of improving

ASR by copying the relevant signal processing capabilities of the auditory system.

A classic study that reviewed HSR and ASR performance on comparable tasks was

presented by Lippmann (1997). Lippmann reported that error rates in ASR - when

performing complex tasks, such as the recognition of conversational speech - were an

order of magnitude higher than those of human listeners. Research that relates to these

observations was conducted to improve the feature extraction stage in ASR systems,

often by relying on observations from physiological findings of the auditory system

and/or by using the output of auditory HSR models (Kleinschmidt, 2002; Kleinschmidt

and Gelbart, 2002; Cooke, 2005; Chiu and Stern, 2008; Domont et al., 2008; Chiu

et al., 2009). Recently, the topic of man-machine-comparison was covered in research

analyzing a large variety of tasks such as the recognition of phonemes in non-stationary

noise (Cooke and Scharenborg, 2008), in high- and lowpass-filtered signals (Sroka and

Braida, 2005), the differences in language modeling (Shen et al., 2008), as well as

studies that take the complete speech processing chain into account by application of

ASR-techniques to build an end-to-end model of human word recognition (Scharenborg,

2005).

In (Scharenborg, 2007), the research fields of HSR and ASR were compared, and

closer interaction between these was promoted. A stronger collaboration between these

research areas does not only hold potential for the improvement of ASR: A second

beneficial effect of man-machine-comparison is that it may be employed in modeling

human speech perception (see Fig. 1.2). While the features of conventional recognition
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1. General introduction

systems are based on the spectral envelope of short-time spectral representations that

account for properties of hearing only to a limited extent (Hunt, 1999), it can be

assumed that error patterns of men and machines are more consistent when similar

signal extraction techniques are applied (e.g., by extraction of ASR features based

on auditory models). While this thesis is concerned with an improvement of ASR

based on knowledge derived from HSR, the results from a man-machine-comparison

may serve as basis for the development of new approaches in the design of perception

models based on ASR technology.

Human	  speech	  percep-on	  

Automa-c	  speech	  recogni-on	  

Modelling	  speech	  percep-on	  
	  Understanding	  HSR	  

Learning	  from	  principles	  in	  the	  	  
human	  auditory	  system	  

	  Improving	  ASR	  

FIG. 1.2 A stronger interchange between the research fields of HSR and ASR could on the
one hand result in improvements of ASR (by transferring principles from the human auditory
system to automatic recognizers). On the other hand, HSR may profit from ASR research,
since the use of features inspired by the human auditory system is likely to result in more
human-like errors. This aspect may therefore contribute to improved models of human speech
perception and an evaluation of these.

1.3 Top-down vs. bottom-up processing

The robustness of human speech perception and consequently the excellent performance

in speech recognition presumably arises from two basic steps involved in the construction

of auditory objects (Bregman, 1994): First, a neuronal internal representation is
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1.4. Structure of this work

generated based on stimulus-driven processing that involves no higher-order cortical

processing (“bottom-up processing”). Secondly, a hypothesis-driven process relying

on the world-knowledge and factors such as selective attentiveness retroact on the

internal representations (“top-down processing”). This scheme can be compared to the

technical approaches applied in ASR, where features are extracted from speech signals

(“bottom-up”) and are subsequently compared to stored (or learned) representations

during the classification process (“top-down”). The human-machine-gap may therefore

be divided into a top-down and a bottom-up component by presenting to human

listeners utterances, which are informationally equivalent to ASR features. When

the complete ASR feature information is made accessible to listeners, the resulting

degradation (compared to the original signals) quantifies the gap caused by imperfect

speech features. On the other hand, the differences between HSR with resynthesized

features and ASR are a measure for the gap in top-down-processing (due to imperfect

world-knowledge-based classification). One of the questions covered in this thesis is

what the contributions of low-level feature extraction and high-level classification are

to the overall differences between human and automatic speech recognition.

1.4 Structure of this work

This work is structured as follows: Chapter 2 analyzes the effect of speech-intrinsic

variations on human speech recognition. The measurements with human listeners

were performed with the Oldenburg Logatome Corpus, which is a speech database

containing short non-sense utterances that were recorded with several systematically

varied intrinsic variations, i.e., different speaking rates, speaking effort (loudly vs. softly

spoken speech) and speaking style (utterances spoken normally and as a question).

Furthermore, the influence of speaker-specific variabilities is covered by using dialectal

7



1. General introduction

and accented speech as speech stimuli. The design considerations and recording

conditions, as well as a detailed description of the audio material contained in the

database is presented. Additionally, a simple model based on the spectral distance

between long-term phoneme spectra and the masking noise is proposed to explain for

the observed differences in recognition and error rates in human speech recognition.

The results obtained in tests with human listeners comprise the basis for the man-

machine-comparison, which is introduced in Chapter 3. The experiments are designed

to enable a fair comparison by using the logatome database both for HSR and ASR.

Standard ASR features are resynthesized to audible speech tokens, which are presented

to human listeners. By using stimuli that contain the same information that is

accessible to ASR, the human-machine-gap is separated into a top-down and a bottom-

up component, as discussed above. The effect of intrinsic variations is analyzed for

both HSR conditions and for ASR.

Chapter 4 presents ASR experiments based on a front-end that extracts spectro-

temporal information from the speech signal (Kleinschmidt, 2002), which is motivated

by the results of the man-machine-comparison and physiological findings from the

primary auditory cortex. The feature extraction is performed with optimized Gabor

filters (Meyer and Kollmeier, 2008) and compared to cepstral coefficients. Similarly to

the experiments in Chapters 2 and 3, the Oldenburg Logatome database is used for

the tests, which enables a detailed analysis of the effect of speech-intrinsic variations.
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2
Human phoneme recognition as a

function of speech-intrinsic

variabilities1

Abstract

The influence of speech-intrinisic variations (speaking rate, effort, style and dialect or

accent) on human speech perception was investigated. In listening experiments with 16

listeners, confusions of consonant-vowel-consonant (CVC) and vowel-consonant-vowel

(VCV) sounds in speech-weighted noise were analyzed. Experiments were based on the

OLLO logatome speech database, which was designed for a man-machine comparison.

It contains utterances spoken by 50 speakers from five dialect/accent regions and

covers several intrinsic variations. By comparing results depending on intrinsic and
1This chapter has been re-submitted in its present form to the Journal of the Acoustical Society of

America on 21st July, 2009 (Meyer et al., 2009b). Parts of this work have been published in the
proceedings of the Workshop on Speech-Intrinsic Variation after a full peer-review (Meyer et al.,
2006).
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2. HSR in the presence of intrinsic variabilities

extrinsic variations (i.e., different levels of masking noise), the degradation induced

by variabilities can be expressed in terms of the SNR. The spectral level distance

between the respective speech segment and the long-term spectrum of the masking

noise was found to be a good predictor for recognition rates, while phoneme confusions

were influenced by the distance to spectrally close phonemes. An analysis based

on transmitted information of articulatory features showed that voicing and manner

of articulation are comparatively robust cues in the presence of intrinsic variations,

whereas the coding of place is more degraded. The database and detailed results have

been made available for comparisons between human speech recognition (HSR) and

automatic speech recognizers (ASR).

PACS numbers: 43.71.Es (Vowel and consonant perception; perception of words,

sentences, and fluent speech) , 43.71.Gv (Measures of speech perception (intelligibility

and quality)), 43.72.Ne (Automatic speech recognition systems)

10



2.1. Introduction

2.1 Introduction

Normal human listeners exhibit an excellent performance in speech recognition despite

the immense variations present in spoken language. This holds even if different speakers

have to be understood, i.e., human listeners can compensate for a variety of speaking

rates, different regional accents and different vocal effort of the received speech.

The robustness to these underlying speech intrinsic variabilities is a major achieve-

ment of human speech recognition (HSR) that is not well understood yet. Many sources

of variation in spoken language have been observed and well documented in several

studies, such as, for example the gender and age of the talker (male versus female

speaker versus children speech (Hazan and Markham, 2004)), the effect of certain

speaking styles (such as, e. g., speaking clearly to achieve a higher intelligibility (Krause

and Braida, 2003)), and the influence of dialect and accent on speech intelligibility (Li,

2003). Other factors that may influence speaking rate and effort are, e.g., emotion,

stress, fatigue, and health condition. These sources of variation are not independent,

an example being the influence of speaking rate on pronunciation that arises from

deletions, insertions, and coarticulation (Fosler-Lussier and Morgan, 1999). Despite

the large number of studies dealing with variations in speech, it is still unclear how

the auditory system manages to produce percepts that are largely invariant to such

changes in speech.

While the robustness of automatic speech recognition (ASR) against extrinsic vari-

abilities (such as channel transmission properties and additive or convolutive noise)

has been studied in detail in the past (Hermansky and Morgan, 1997; Stern et al.,

1996; Tchorz and Kollmeier, 1999; Cooke et al., 2001), it is far less understood in

which way ASR also suffers from a lack of robustness towards “intrinsic” variations of

11



2. HSR in the presence of intrinsic variabilities

speech (that is, speaker, gender, speech rate, vocal effort, regional accents, speaking

style and non stationarity). Various methods that increase the robustness of ASR

towards some variations of speech have successfully been used for several years (an

example being techniques that compensate for the shift of formant frequencies caused

by variations of vocal-tract length). Recently, however, much of the research is de-

voted to broader classes of variabilities, with the aim of understanding the influence

of speech-intrinsic variations on automatic speech recognition, and to build feature

extraction or classfication methods invariant to these variations (Mori et al., 2007).

Similarly, several researchers focused on the comparison of the recognition performance

of human listeners and ASR (Lippmann, 1997; Sroka and Braida, 2005; Ten Bosch and

Kirchhoff, 2007; Cooke and Scharenborg, 2008). On a phoneme recognition task, Meyer

et al. (2007) found similar overall results for HSR and ASR when the signal-to-noise

ratio was 15 dB higher for the automatic recognizer. This value depends on the type of

experiment to be compared across men and machines. Such comparisons highlight the

deficiencies of current automatic recognizers in the presence of extrinsic and intrinsic

variations of spoken language.

Since understanding the principles of human speech recognition (HSR) may help

to improve performance of ASR (Allen, 1994), it is therefore desirable to study the

influence of speech variabilities on human speech recognition as a baseline for making

ASR more robust against these variabilities. For example, it was shown that error

rates increase when speaking rates deviate from normal (i.e., average) speaking rate.

Siegler and Stern (1995) reported an increase of ASR error rates by a factor of three,

when the rate of speech deviated more than two standard deviations from the average

rate. The effect of conversational speech was investigated by Weintraub et al. (1996)
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who found that error rates doubled when conversational speech is compared to a read,

clearly uttered version of the same speech material.

However, it is often difficult to compare findings from different HSR and ASR studies

due to the existing variability across speech and speakers in the available speech

databases and the lack of appropriate speech corpora that are suitable both for human

speech recognition and ASR experiments while providing the possibility to study the

effect of intrinsic variations of speech: Some of the available speech databases are

suitable for both human speech recognition and ASR experiments, while others provide

the possibility to study the effect of intrinsic variations of speech either on HSR or on

ASR.

In this study, we therefore perform HSR experiments to assess the impact of several

intrinsic variabilities of spoken language that are contained in the same speech database

suitable both for HSR and ASR experiments. This database consists of a CVC and

VCV logatome corpus (the so-called “Oldenburg Logatome Corpus” (OLLO), where

‘logatome’ refers to a word that has no semantic meaning, but is correctly composed

with respect to phonetic and phonotactic rules). By using simple nonsense phoneme

combinations, the focus is laid on a basic recognition task that does not rely on high-

level lexical knowledge. Such recognition can primarily be considered as a bottom-up

sensory one-out-of-N discrimination task in HSR that requires no prior knowledge

of the language structure and a low cognitive load imposed on the subjects when

performing the task. In ASR the recognition task requires templates or word models

primarily on the acoustical feature layer without a suprasegmental or language model

to be fitted to the speech data. Hence, the OLLO database can be used as a reference

for HSR research as well as for comparing ASR experiments using the same speech

elements. Moreover, the influence of speech variabilities on both types of experiments
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2. HSR in the presence of intrinsic variabilities

can easily be studied. The principles underlying the database construction and its

recording will be discussed.

The primary aim of the current paper is to establish the baseline for HSR experiments

with the OLLO corpus that can be utilized in future work for comparison with ASR. To

do so, the influence of speaking style (i. e., fast, slow, soft, loud) as well as of speaker-

specific factors (gender and dialect region) on human speech recognition is studied

with a total number of 16 listeners and 120 hrs of listening experiments. Speakers

originating from various dialect regions in Germany, as well as from the French-spaking

part of Belgium, have been recorded to study the effect of dialect and accent. Since all

phonemes in the database occur both in German and English language, the utterances

may also be of useful for listening tests with English subjects. The results presented

in this study were obtained with German listeners. Even though some differences

in average recognition rates from the mentioned variabilities are expected (especially

when the experiment is performed in noise which is necessary to avoid any ceiling

effect), it is unclear if these differences are due to the deterioration of specific speech

features or due to a general, unsystematic decrease in intelligibility. For this reason, a

speech transmission analysis (Miller and Nicely, 1955; Wang and Bilger, 1973) should

be performed that studies the transmission of acoustic speech features (such as, e.

g. average spectrum of the phonemes to be recognized or articulatory features) as

a function of underlying speech variabilities. In order to cancel out the individual

influence of each individual listener, such an analysis only makes sense if an appropriate

amount of data is available that can be averaged across subjects. Hence, the number

of subjects was selected to be sufficiently high to derive valid conclusions for these

aspects of HSR.

This paper is structured as follows: In Section 2.2, a detailed description of the
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2.2. Description of the database

Oldenburg Logatome speech database is presented. The measurement setup, parame-

ters for the listening tests and outcome measures for data analysis are described in

Section 2.3. Overall results and effects of variabilities on information transmission

are presented in Section 2.4. Sections 2.5 and 2.6 contain the discussion of results, a

summary and the conclusions.

2.2 Description of the database

2.2.1 Choice of phonemes and speech stimuli

The corpus used for this study should contain speech with labeled, speech-intrinsic

variabilities. The experiments aim at the simple task of phoneme recognition without

the possibility to exploit context knowledge. An analyis of coarticulation effects and

easy determination of phoneme recognition rates are further desirable properties. Short

combinations of phonemes satisfy all of these pre-requisites. We chose combinations of

vowel-consonant-vowel (VCV) and consonant-vowel-consonant (CVC) with identical

outer phonemes for the database. The standard recognition task for those non-sense

utterances or logatomes is to identify the middle phoneme, which limits the number of

response alternatives and allows for an easy realization of HSR tests. Since the OLLO

corpus should be suitable for a comparison of speech recognition by human listeners

and automatic speech recognizers, the choice of phonemes was based on HSR and ASR

recognition experiments. Phonemes that are critical in either human or automatic

recognition of speech were selected, so that significant differences in recognition rates

may already be obtained with smaller test sets.
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2. HSR in the presence of intrinsic variabilities

Critical phonemes in human speech recognition

The results of monosyllabic and bisyllabic rhyme tests with normal-hearing listeners

were analyzed to determine the phonemes which are most often confused by human

listeners in English or German (Dubno and Levitt, 1981; Gelfand et al., 1985; Mueller,

1992; Kliem, 1993). The results suggest that ten consonant phonemes /b/, /d/, /f/,

/g/, /k/, /l/, /p/, /r/, /s/, /v/) and seven vowel phonemes (/ae/, /E/, /i/, /I/, /u/,

/U/, /u/, /y/) should be taken into account.

Critical phonemes in ASR

In order to determine the critical phonemes in ASR, phoneme confusions from a recog-

nition experiment were analyzed: Spectro-temporal ASR features (Kleinschmidt and

Gelbart, 2002) served as input to a non-linear neural network (multi-layer perceptron,

MLP) that was trained and tested using a phoneme-labeled speech database (TIMIT).

Results were analyzed on a frame-by-frame basis and phonemes were sorted by their rel-

ative error rate. Eight phonemes ()/d/, /v/, /f/, /g/, /z/, /m/, /n/, /S/) were selected

for the corpus because they appear in both German and English language, produced

high error rates in the experiment and are often present in phoneme confusions.

Final set of phonemes

The final number of phonemes to be considered was limited by the required time to

record all necessary items with a single speaker. Since the standard recognition task for

the OLLO database is to identify the middle phoneme, not all possible combinations

of consonant and vowel phonemes were taken into account. The final phoneme set for

VCVs consists of five vowel phonemes and 14 consonant phonemes (cf. Table 2.1. The

set for CVCs contains one of ten vowels and one of eight consonants. A combination of
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Number of speakers 50 (25 male, 25 female)
Number of different VCVs 70 (five outer vowels (/a/, /E/, /I/, /O/, /U/)

combined with 14 central consonants (/b/,
/d/, /f/, /g/, /k/, /l/, /m/, /n/, /p/, /s/,

/S/, /t/, /v/, /ţ/))
Number of different VCVs 80 (eight outer consonants (/b/, /d/, /f/,

/g/, /k/, /p/, /s/, /t/) combined with 10
central vowels (/a/, /E/, /I/, /O/, /U/, /a:/,

/e/, /i/, /o/, /u/))
Number of different logatomes 150

Number of speaking styles 5 + reference condition ’normal’ (fast, slow,
loud, soft, question)

Number of dialects/accents 4 + reference condition ’no dialect’ (East
Frisian, Bavarian, East Phalian, French)

Utterances per speaker 2,700 (150 logatomes x 3 repetitions x 6
speaking styles)

Total number of logatomes 133,403
Utterances labeled as containing

unwanted sounds
1,820

Number of utterances per
dialect/accent

∼2,700

Number of utterances per
variability

∼27,000

Number of utterances per
central consonant

∼4,450

Number of utterances per
central vowel

∼7,100

TABLE 2.1 Properties of the OLLO speech database.

these phonemes results in a total of 150 different logatomes (70 VCVs, 80 CVCs). The

vowels are genuinely different with respect to height, backness and roundedness (i.e.

their constituent features in the cardinal vowel system (MacArthur, 1992)), with the

exception of /a/ and /a:/, which differ only by a suprasegmental indicating different

phoneme durations.
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2. HSR in the presence of intrinsic variabilities

2.2.2 Variabilities and speakers

The choice of variabilities was based on ASR experiments with annotated test corpora

that compared the performance of automatic recognizers with these variabilities present

or not. The variabilities under consideration included speaker’s gender, age and dialect,

speaking style/effort (which also relates to pitch), rate of speech, and breathing noise.

The largest impact on performance was observed for the variabilities speaking rate (fast

vs. slow), speaking style (affirmation vs. question), speaking effort (loud vs. soft), and

dialect/accent. The latter was integrated in the database by including logatomes of

dialect speakers from different regions of Germany and from the French-speaking part

of Belgium. Ten speakers originating from the northern part of Germany (Oldenburg

near Bremen and Hanover) were recorded. The spoken language in this region is usually

considered as standard German (Kohler, 1995). We will refer to this category as ‘no

dialect’ (ND). Subjects with dialect originated from the Northern part of Germany

(East Frisian dialect, EF), from East Phalia (EP) near Magdeburg, and from Bavarian

places near Munich (BV). The French-speaking participants were recorded in Mons

(Belgium). Five female and five male speakers from each region were recorded, resulting

in a total of 50 speakers. The age of subjects varied between 18 and 65 years. Each

logatome was recorded in ‘neutral/clear’ speaking style as a reference. In addition,

one of the five selected variabilities (i.e., fast and slow speaking rate, loud and soft

speaking style, and condition ‘question’ which refers to rising pitch) was alterered for

each of the subsequent recordings. To provide a broad test and training basis for ASR

experiments and to enable an analysis of intra-individual differences, each logatome was

recorded three times which resulted in 150 × (5+1) × 3 = 2,700 logatomes per speaker.

Additionally, for German speakers 72 German words which are part of the monosyllabic

rhyme test (Kollmeier and Wallenberg, 1989) and 20 German sentences part of the
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Goettingen sentence test (Kollmeier et al., 1997) were included. Participants from

Belgium recorded 20 French sentences. This speech material is phonetically balanced

and can be used for ASR speaker adaptation.

2.2.3 Recording setup

Technical equipment

All utterances were recorded in sound-insulated audiometry rooms (reverberation

time: approx. 0.25 s) with a studio-quality condenser microphone (AKG C1000 S)

placed approx. 30 cm from the speaker. Recordings were carried out using a RME

QuadMic microphone pre-amplifier and an RME Hammerfall AD converter connected

to a standard notebook. The software for the presentation of logatome transcriptions

and for recording was based on Matlab (The MathWorks) and SoundMex (HoerTech

GmbH). The original sampling frequency was 44.1 kHz at 32 bit resolution, which was

reduced to 16 kHz and 16 bit during post processing.

Recording conditions

Since the database was intended to contain speech from phonetically näıve subjects, a

transcription of the desired logatome and variability was created by a phonetician and

presented to speakers on a computer screen (an example being ‘Please speak ascha

loudly’, where ‘ascha’ is intepreted as /aSa/ by German subjects). An adjustement

of transcriptions was carried out for recordings of French speakers as well. Special

attention was paid to the transcription and pronunciation of the near-closed phonemes

/I/ and /U/ which are absent from French. Typographic accents and duration markers

were used for the transcription. However, control samples showed that a considerable

part of vowels embedded in CVCs is nevertheless categorized as closed phonemes /i/
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and /u/ by linguists and the majority of German listeners. This is due to the fact that

non-native speakers replace unfamiliar phonemes in the target language, which is absent

in their native laguage phoneme inventory, with the sound considered as the closest

in their native language phoneme inventory (Flege et al., 2003). This replacement is

likely to increase errors for speakers with accent.

Randomized sequences of 150 logatomes with the same variability were recorded.

After each run, a different variability was randomly chosen for the next sequence.

Speakers were supervised during the recordings and periodically reminded to speak

in the desired manner. All VCV stimuli were produced with front stress. During

training sessions, speakers could familiarize themselves with the recording software

which included proceeding to the next item by pressing a key on a keyboard and the

option for re-recording of utterances that were contaminated with unwanted sounds or

were not judged by the subject or the supervisor to be uttered in the appropriate way.

Speakers were advised to speak in a natural manner; the realization of variabilities was

checked and corrected if necessary. Some of the logatomes that contain a short vowel

embedded in plosives (e.g. /p a p/) cannot be spoken slowly. Speakers were asked to

articulate the logatome with normal speaking rate when the desired variability would

conflict with the pronunciation. Participants were encouraged to take regular breaks

to avoid mis-pronunciation due to inattentiveness. The average duration of the whole

recording procedure was 3.5 hours per speaker.

2.2.4 Postprocessing of recorded material

A quality check of the recordings was carried out using a semi-automatic software

written in Matlab which relied on a simple energy criterion to detect incomplete

utterances or recordings with an audible keystroke. Unwanted sounds coinciding
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with the silence before or after the utterance were manually removed from the signal.

1,597 signals that were incomplete or had background noise in the speech signal were

removed from the database. Another 1,820 utterances were labeled as containing a

quiet, unwanted sound, which is audible in silence, but not in the presence of noise.

The silence at the beginning and at the end of each recording was limited to 500 ms.

Signals were then normalized to 99 % amplitude and stored with 16 bit resolution.

They were low-pass filtered with 8 kHz cutoff frequency and sampled down to 16 kHz.

Effects caused by these sounds are assumed to be negligible for these measurements,

as subsets of OLLO database were chosen for listening tests, and unsuitable utterances

were removed from those sets.

2.2.5 Phonetic labeling

The OLLO corpus was phonetically time-labeled, i.e., temporal positions of phoneme

boundaries have been determined for each utterance, making it suitable for tasks

such as training of phoneme recognizers. Labeling was performed with the ’Munich

Automatic Segmentation System’ (MAUS) software package provided by the Bavarian

Archive for Speech Signals (BAS). The MAUS labeling procedure is similar to forced

alignment approaches based on hidden Markov models (HMMs). However, in contrast

to standard forced alignment, it has the ability to take into account pronunciation

variations typical to a given language by computing a statistically weighted graph of all

likely pronunciation variants. For details, the reader is referred to (Kipp et al., 1996).

All 150 logatomes were transcribed in the SAM phonetic alphabet (SAMPA) and the

transcription was used as input for the time-labeling procedure. The MAUS labeling

tool was applied to the data in ’full mode’, i.e., taking into account pronunciation

variations of the German language, and in addition the same software was applied
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in ’align-only’ mode where HMM forced alignment is performed, but pronunciation

variants are not considered.

In about 4.7 % of the logatomes, the MAUS method’s result deviated from the forced

alignment result. Most of these differences (75 %) can be accounted for by negligible

shifts in phoneme boundary positions. The remaining quarter of the utterances with

deviating boundaries had a pronunciation variant identified by MAUS. Most of such

variations corresponded to shifts from short vowel forms (e.g., [a]) to the longer form

(e.g., [a:]), which are plausible variations of the orthographic transcript presented to

the subjects. The relative rarity of such variations indicates that in the vast majority

of utterances the chosen orthographic transcript was pronounced in the way intended

by the experimenters.

2.2.6 Availability of speech material and test results

The OLLO database, including a detailed description, wordlists, labeling files, technical

specifications and calibration data (normalization coefficients and dB (SPL) values)

is freely available for research in HSR and ASR. The uncompressed corpus is approx.

6.4 GB in size and contains a total of approximately 140,000 files corresponding to 60

hours of speech. It can be downloaded from http://medi.uni-oldenburg.de/ollo.

2.3 Methods

2.3.1 Test sets and presented stimuli

Utterances from the OLLO databases were selected to analyze the effects of speaking

style and effort, dialect and accent, and SNR. These selections are referred to as sets,

and their properties have been summarized in Table 2.2. Set V aims at differences
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Set V Set D Set S
Subject of test

set
Speaking effort,
rate and style

Dialect and accent Signal-to-noise
ratio

Speakers S01M, S02F, S06M,
S08F

S01M, S02F, S17M,
S19F, S23F, S30M,
S32M, S40F, S41F,

S42M

S01M

Dialect / accent No dialect No dialect, East
Frisian, Bavarian,

East Phalian,
French

No dialect

SNR (dB) -6.2 -6.2 -20, -15, -10, -5, 0
Variability Normal, fast, slow,

soft, loud, question
Normal Normal

Number of
utterances

3,600 1,500 750

Number of
listeners

6 6 10

Number of
presentations

21,600 7,500 7,500

TABLE 2.2 Subsets of the OLLO database used for human listening tests. The sets are used
to analyze the influence of variabilities such as speaking rate and effort (Set V), dialect or
accent (Set D) and SNR (Set S). Each set contains at least 150 different logatomes with 24
central phonemes which are subject of listening experiments. The supplements ‘F’ and ‘M’ in
row ‘speakers’ correspond to female and male talkers, respectively. For sets with more than
one speaker, the gender is equally distributed.

caused by speaking rate, effort, and style. It contains data from four speakers (two

male, two female) without regional dialect (ND = no dialect) with six variabilities.

Set D contains utterances from two speakers (one male, one female) from each of

the five dialect/accent regions with normal speaking style. From the 50 speakers in

the database, those speakers were chosen as being representative for the corpus that

produced recognition rates for a standard automatic speech recognition task which

were closest to the average recognition rate: Standard ASR features (i.e., mel-frequency
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cepstral coefficients with delta and acceleration features) were used as input for a hidden

Markov model (HMM). The HMM was trained with utterances from 49 speakers and

was subsequently tested with logatomes from the remaining speaker. This procedure

was performed for all speakers in the corpus, and the results were used to compile

subsets that yield similar overall performance as the complete set of speakers.

When presented without masking noise, human phoneme recognition scores were

found to be very close to 100 %. In a phoneme recognition task with clean speech

signals, the lowest recognition rate was found to be 95 % in the presence of variabilities

(Meyer et al., 2006). This high performance prevents a valid analysis of phoneme

confusions, because differences at very high error rates often are outside the range of

reliably observable differences (ceiling effect). Hence, speech-shaped noise is used to

increase the difficulty of the listening task (cf. Section 2.3.3). A fixed SNR of -6.2 dB

for Sets V and D was chosen based on pilot measurements with the goal of producing

recognition rates of 70 to 80 % in average.

For Set S, the utterances of one speaker (no dialect) and normal speaking style were

used to analyze the dependency of recognition performance and noise. Speech-weighted

noise at signal-to-noise ratios ranging from -20 dB to 0 dB was added to the logatomes.

A summary of the test subsets V, D and S is listed in Table 2.2.

2.3.2 Measurement setup and listeners

Sixteen German, normal-hearing listeners (10M, 6F) without regional dialect (cf.

Section 2.2.6) participated in the HSR tests. From those sixteen subjects, six listeners

(three male, three female) participated in the measurements with Set V. Of those six,

five listeners (three male, two female) also participated in the measurements of Set D.

Ten other subjects (7 male, 3 female) were chosen for Set S. The listeners were between
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18 and 38 years old. Their hearing threshold for pure tones in standard audiometry did

not exceed +20 dB at more than one data point and +10 dB at more than two data

points in the pure tone audiogram. Randomized sequences of logatomes were presented

in a soundproof booth and via audiological headphones (Sennheiser HDA200) after an

online free-field equalization was performed. Feedback or the possibility to replay the

logatome was not given during the test procedure. After a training phase, subjects

were presented a sequence of logatomes at a level of 70 dB SPL. For each presentation,

a logatome had to be selected from a randomized list of CVCs or VCVs with the same

outer phoneme and different middle phonemes. A computer mouse was used as input

device. In order to avoid errors due to inattentiveness, listeners were encouraged to

take regular breaks. The total measurement time for each listener varied between

six and nine hours, including pauses and instructions for listeners. It was distributed

across different days (including a daily training session prior to data recording) in order

not to exceed three hours of measurement for each day and each subject.

2.3.3 Noise and SNR calculation

A stationary noise signal with speech-like frequency characteristics was chosen as masker

for the logatomes (Dreschler et al. (2001); http://www.icra.nu). It was introduced

by the International Collegium of Rehabilitative Audiology (ICRA) and implemented

by adding artificial speech signals that represented a single speaker speaking with

normal effort. The spectral and temporal properties were controlled and had a close

resemblance to real-life communication without clear modulation, equivalent to a

situation with loud cocktail party noise.

The original ICRA1 noise was downsampled from 44.1 kHz to 16 kHz using the

Matlab resample function. The average DFT power spectrum of the resampled noise
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signal is shown in Fig. 2.1. It exhibits a constant power between 100 and 500 Hz, and

a constant roll-off of 9.1 dB/oct between 500 Hz and 19 kHz.
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Figure 1: Average DFT power spectrum of stationary masking noise signal (thick black
line) and long-term spectra of OLLO utterances. Individual long-term spectra for central
consonant and vowel phonemes are shown in the left and right panel, respectively. Mel-
scaling with labels in Hz has been chosen for the frequency axis.
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Figure 2: Phoneme recognition results (% correct) with standard errors, depending on
speech-intrinsic variabilities such as speaking rate and style (set V, left panel) and dialect
(set D, middle panel), and on additive masking noise (right panel). Results for sets V and D
were obtained in listening experiments at -6.2 dB SNR in speech-shaped noise. Variabilities
are sorted by average recognition accuracies which are broken down into consonant and
vowel scores.

FIG. 2.1 Average DFT power spectrum of stationary masking noise signal (thick black line)
and long-term spectra of OLLO utterances. Individual long-term spectra for central consonant
and vowel phonemes are shown in the left and right panel, respectively. Mel-scaling with
labels in Hz has been chosen for the frequency axis.

Fig. 2.1 shows the long-term spectra of logatomes with different central phonemes.

The long-term spectra were obtained by calculating the rms (root mean square) average

of the 1024-point FFTs of each utterance. The mean spectra were normalized to have

the same rms level before plotting. By using this calculation scheme, the spectral

properties of both vowels and consonants are represented in the long-term spectrum.

However, since for each central vowel the type and number of outer consonants is the

same (and vice versa), the effects of outer phonemes are expected to average out.

For such short utterances as logatomes, the adjustment and interpretation of the

SNR is not a trivial issue because the short-term level derived from each logatome

varies considerably across logatomes even if exactly the same recording conditions are

used (i.e., technical conditions, speaker, speech rate, speech effort,. . .). Obviously, the
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reliability of the short-term level as an estimate of the “true” speech level decreases

with decreasing duration of the speech segment. One option for a more valid speech

level measure as an input to the SNR measure would therefore be to use the average

power of all speech samples in the database, since the long-term SNR has been shown

by the Articulation Index and the Speech Intelligibility Index to be a reliable measure

for average speech intelligibility. By using such a long-term speech level, changes in the

recording conditions (e.g., variations of the distance between speaker and microphone)

can be reliably detected and compensated for. On the other hand, the short-term rms

level of a single utterance is an easily computable local measure that does not rely

on the (statistical) properties of the remaining speech corpus and captures best the

properties of the individual speech item. Hence, the short-term SNR is very popular

in speech research and has been used, e.g., in other studies that make use of CV

utterances in noise (as, e.g., Phatak and Allen (2007)). However, due to the large

statistical uncertainty with short speech segments, the intelligibility obtained from

short VCV and CVC combinations varies considerably across speech items in a way not

predictable from the variability of the short-term SNR and only partially predictable

from the long-term SNR (Kollmeier, 1990) which compensates for slow variations of the

recording conditions. Since these variations were already controlled and compensated

for during the recording of the OLLO speech corpus and for the sake of simplicity and

compatibility with recent studies, we used the short-term SNR derived from each single

utterance throughout this study.

For measurements with Sets D and S, the SNR was calculated by relating the

root-mean-square value of the speech segments of each audio signal and the rms value

of a masking noise of equal length. A simple voice detection algorithm based on an

energy criterion was used to extract connected speech segments. Random control
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samples were chosen to control proper functioning of that algorithm. For utterances

from Set V, a different SNR calculation scheme was applied: In this case, the rms levels

of the whole utterance (including silence) and a noise segment of equal length were

used to adjust the SNR. Since the length of silence before and after each logatome is

500 ms and because the variation of temporal spread of identical logatomes is relatively

small, this corresponds to a fixed offset which was found to be 3.8 dB compared to the

SNR calculation scheme mentioned above. For clarity, the SNR values for Set V are

converted to the first mentioned method.

2.3.4 Data analysis

Confusions matrices

A detailed analysis of the outcome of listening experiments is presented in terms of

confusion matrices (CMs). CMs characterize how often a presented phoneme was

correctly classified or confused with a response alternative. The rows correspond

to presented phonemes and the columns correspond to recognized items. CMs are

normalized and rounded, so that each row adds up to approx. 100 %.

Articulatory features

The acoustic cues important for consonant identification are analyzed by decomposing

consonants into their articulatory features. This method of data analysis is based on

works by Miller and Nicely (1955) who proposed five linguistic or articulatory features

to group speech stimuli, i.e., voicing, nasality, affriction, duration, place of articulation.

The features of nasality and affriction may be combined into one feature ‘manner of

articulation’ with three possible feature values (stop, nasal or fricative) which refers to

the mode of articulatory production. For this study, we present an exemplary analysis
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Consonant p t k b d g s f v n m
Voicing 0 0 0 1 1 1 0 0 1 1 1
Manner 0 0 0 0 0 0 1 1 1 2 2
Place 0 1 2 0 1 2 1 0 0 1 0

TABLE 2.3 Articulatory features for the 11 consonants used for the data analysis. Voicing is
a binary feature (feature values 1 = voiced, 0 = unvoiced), while the other features have three
possibly features values (Manner: 0 = stop, 1 = fricative, 2 = nasal; place: 0 = anterior, 1
= medial, 2 = posterior).

including the features voicing, manner, and place of articulation, with values as shown

in Table 2.3. The analysis is based on consonants. The phonemes /l/, /S/ and /ts/

were excluded because they would have required the introduction of new feature values

for which only few representatives exist.

Values in the articulatory CM do not solely depend on the information transmission

associated with a particular feature and stimulus condition but also on the entropy

of the respective feature. This feature entropy may change even if no information

has been transmitted for example if any response bias occurs or if the distribution

of the chance performance is changed by any other means. To correct for this effect,

the amount of transmitted information was computed by measuring the relationship

between a specific stimulus x and the response categories y without the influence of

any possible response bias. The information transmission (or mutual information) is

computed using the expression

T (x, y) = −
∑
i,j

pij log pipj

pij

�� ��2.1

with the input variable x and the output variable y, each having the possible values i =

1, 2, . . ., k and j = 1, 2, . . ., m, respectively, with the corresponding probabilities pi, pj ,

and the joint probability pij . The indices i and j refer to the index of the corresponding
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2. HSR in the presence of intrinsic variabilities

feature as listed in Table 2.3, or to the consonant index, respectively. The probabilities

pi and pj are the a-priori and a-posteriori probabilities for the stimuli, while pij is

a matrix element of the confusion matrix, either of the consonant confusions or the

derived matrices for articulatory features. This method can be used to obtain the

information transmission for each phonetic feature (voicing, manner, and place) by

determining T(x,y) from the confusion matrices for the phonetic features. Since the

logarithm is taken to the base 2, T(x,y) is a measure of how many bits are required

to specify the input. To compare transmitted information from distinct features, we

report the relative information transmission Tr(x, y) = T (x, y)/H(x) with the source

entropy H(x) = ∑
i pi log(pi) throughout this study (Miller and Nicely, 1955).

Spectral distance

Differences in recognition rate may be caused by spectral, temporal or spectro-temporal

cues that are associated with the according phoneme. We analyze the spectral effects

based on a simple measure of level distance D(Xi,N) between phoneme and masking

spectrum:

D(Xi, N) = 1
M

M∑
f,Xi(f)>N(f)+10 dB

(Xi(f)−N(f))2 �� ��2.2

where Xi(f) is the long-term frequency spectrum of the ith central phoneme, N(f) is

the masking frequency spectrum and M is the number of samples of Xi. To account

for the higher critical bandwidth towards higher frequencies in the human auditory

system, the long-term spectra are grouped in 45 mel-frequency bins and converted

to a dB-scale before calculating the difference between signal and noise. Therefore,

level and frequency perception of the human auditory system is approximated, so that

the spectral level distance can be seen as a very coarse model for the psycho-physical
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distance of sounds. The calculation of spectra is described in Section 2.3.3. The

level of the masking spectrum is raised by 10 dB before the parts of the signal above

noise level are used to calculate D(Xi,N). This procedure is similar to the calculation

of the articulation index (French and Steinberg, 1947) where the dynamic range of

speech sounds (i.e., approx. 30 dB) is adjusted to the mean noise level so that the

information-carrying peak energy portions of speech are adjusted to the average noise

level.

A second parameter that is likely to influence recognition is the spectral dissimilarity

to other phonemes. Analogous to Equation 2.2, we define the distance between the

long-term spectra Xi and Xj of the ith and jth phoneme as

D(Xi, Xj) = 1
M

M∑
f

(Xi(f)−Xj(f))2.
�� ��2.3

By relating those differences to recognition results or error rates, the effect of such

dissimilarities can be quantified.

2.4 Results

2.4.1 Overall recognition scores

Overall recognition accuracies are reported for test Sets V, D and S in Fig. 2.2. Scores

are broken down into consonant/vowel recognition and the varied parameter. For Sets

V and D, the overall recognition rate is about 74 %, with large differences between

consonants and vowels, the latter producing far better accuracies at this masking level

of -6.2 dB.
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Figure 1: Average DFT power spectrum of stationary masking noise signal (thick black
line) and long-term spectra of OLLO utterances. Individual long-term spectra for central
consonant and vowel phonemes are shown in the left and right panel, respectively. Mel-
scaling with labels in Hz has been chosen for the frequency axis.
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Figure 2: Phoneme recognition results (% correct) with standard errors, depending on
speech-intrinsic variabilities such as speaking rate and style (set V, left panel) and dialect
(set D, middle panel), and on additive masking noise (right panel). Results for sets V and D
were obtained in listening experiments at -6.2 dB SNR in speech-shaped noise. Variabilities
are sorted by average recognition accuracies which are broken down into consonant and
vowel scores.

FIG. 2.2 Phoneme recognition results (% correct) with standard errors, depending on speech-
intrinsic variabilities such as speaking rate and style (Set V, left panel) and dialect (Set D,
middle panel), and on additive masking noise (right panel). Results for Sets V and D were
obtained in listening experiments at -6.2 dB SNR in speech-shaped noise. Variabilities are
sorted by average recognition accuracies which are broken down into consonant and vowel
scores.

Recognition scores depending on speech-intrinsic variabilities obtained with Set V

are shown in the left panel of Fig. 2.2. Best overall results are obtained for high

speaking effort (condition ‘loud’, 79.3 %) and the reference condition (78.6 %). The

variabilities ‘slow’ and ‘question’ result in medium accuracies (rel. increase of WER:

10.1 and 14.5 %), while the increase of WER is considerably higher for the variabilities

‘fast’ and ‘slow’ (33.8 % and 77.3 %, respectively).

For measurements with varied dialect (Fig. 2.2, middle panel), the reference condition

(‘no dialect’) produces the highest intelligibility (81.5 %), as expected for this group of

listeners that came from a region without any strong accent. It is interesting to note

that East Frisian dialect (EF) results in higher vowel accuracy than speech without

dialect. An analysis of the CM for vowels from EF speakers showed that listeners

learned to recognize the distinct pronunciation of mid and open vowels. French accent

results in lowest intelligibility (59.7 %), both for consonant and vowel recognition.

Even if problematic phonemes that are absent from French are excluded from the

analysis, the scores are still below the performance of other conditions. SNR-dependent
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2.4. Results

recognition performance is shown in the right panel of Fig. 2.2. Vowel accuracies are

consistently higher than those of consonants, with the exception of the lowest SNR

(-20 dB) which is presumably a result of ceiling effects.

2.4.2 Effects of additive noise and intrinsic variabilities

Since all measurements are based on the same speech corpus, effects of variability

changes obtained with Sets V and D can be expressed in terms of differences of the

signal-to-noise ratio that were measured with Set S. This is shown in Fig. 2.3 where

the accuracies for Sets V and D are projected on the SNR dependent recognition scores.

The projection of variability-dependent scores shows that an average performance
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FIG. 2.3 Average recognition rates depending on speaking variability (left panel), SNR (middle
panel) and dialect or accent (right panel). The dashed horizontal lines show the difference
between logatomes in the ‘normal’ condition and the average performance of the remaining
variabilities. Dotted lines denote differences between the ‘no dialect’ condition and the
remaining dialects. By projecting these differences on the middle panel, changes in speaking
variability may be expressed in terms of SNR.

corresponds to an SNR of 12.2 dB. The accuracy for the normal speaking style is higher
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2. HSR in the presence of intrinsic variabilities

and corresponds to an SNR of 10.8 dB, resulting in a SNR difference of 1.4 dB. In case

of varied dialect or accent, the SNR shift amounts to 2.7 dB. If accuracies obtained

with French speech are excluded from this comparison (due to phonetic dissimilarities

in German/English vs. French), the gap reduces to 1.5 dB SNR.

Since the recognition setup implied a closed test where the outer phonemes of choice

alternatives are the same for each presentation, no confusions occur between VCVs

and CVCs. Therefore, separate CMs are shown for consonant and vowel confusions

(Table 2.4 and Table 2.5, respectively). Results show that the spread in accuracy is

p t k b d g s f v n m S ţ l
p 52.6 2.8 18.2 6.3 1.0 4.3 6.8 6.4 0.6 0.7 0.4
t 0.4 91.4 2.2 4.6 0.1 0.1 1.0 0.1
k 5.8 1.9 67.2 1.4 1.1 16.3 0.1 2.2 1.7 0.8 1.4
b 8.1 0.6 7.1 36.1 4.9 12.2 2.5 19.9 2.2 3.5 0.1 2.9
d 0.7 3.9 1.0 2.9 58.9 12.9 0.1 0.4 2.6 6.8 0.8 8.9
g 1.5 0.7 6.1 6.0 3.8 62.4 1.3 10.1 2.5 1.0 4.7
s 0.3 97.5 0.4 0.8 1.0
f 3.2 0.4 0.6 12.2 77.2 5.3 0.6 0.4 0.1
v 2.6 1.0 2.2 10.8 3.1 6.0 1.0 7.1 55.3 1.3 4.2 0.3 5.3
n 0.1 0.7 0.4 1.8 7.1 1.7 0.3 3.2 50.6 10.8 23.3
m 1.0 0.1 0.6 6.0 2.8 3.5 1.1 8.6 13.2 48.1 15.1
S 0.1 0.6 0.1 0.1 0.3 0.1 98.5 0.1
ţ 0.1 10.0 3.6 0.1 86.1
l 0.1 0.7 0.7 0.8 6.9 3.8 0.8 3.3 12.1 4.7 0.4 65.6

Sum 76.3 114.7 106.2 72.7 94.2 123.2 114.8 100.2 116.5 90.2 73.8 100.4 89.0 127.8

TABLE 2.4 Confusion matrix for consonant phonemes obtained with Set V, pooled over all
variabilities, listeners and speakers in this test set. The average recognition rate is 67.7%.
Rows are normalized, with 100% corresponding to 720 presentations.

larger for consonants (with scores ranging from 36 to 99 %) while vowel recognition

is more robust in general (72 to 90 %). Highest consonant scores were obtained for

the phoneme group (/t/, /s/, /S/, /ţ/, /f/) which is in accordance with observations

from Phatak and Allen (2007) who found similar results for the high-scoring consonant
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2.4. Results

a a: E e I i O o U u
a 79.7 19.0 0.1 0.9 0.3 0.1
a: 15.5 83.6 0.2 0.2 0.6
E 0.3 77.6 12.0 8.2 0.4 0.2 0.4 0.9
e 1.6 72.0 15.1 9.7 0.7 0.4 0.5
I 2.4 8.4 86.2 1.3 0.5 0.9 0.3
i 2.3 6.1 90.4 0.3 1.0
O 1.9 1.2 84.4 7.4 4.3 0.9
o 0.1 0.5 0.7 0.2 0.8 71.6 10.7 15.5
U 0.3 1.3 0.1 2.0 11.7 77.9 6.7
u 0.1 0.1 0.1 0.1 1.0 2.4 7.6 6.9 81.6

Sum 97.5 103.9 82.2 95.3 118.6 104.5 88.3 99.7 102.3 108.1

TABLE 2.5 CM for vowel phonemes, obtained with Set V. The average recognition rate is
80.5 %. For a detailed description, see Table 2.4.

phonemes /t/, /s/, /z/, /S/ and /Z/. In Table 2.1, the highest error rates are observed

for /a/ and /a:/ which was expected due to their phonetic similarity, as discussed in

Section 2.2, and their spectral similarity which can be seen from Fig. 2.1.

2.4.3 Influence of spectral differences

The dissimilarities between long-term spectra of high-scoring fricatives and the masking

noise (Fig. 2.1) suggest that spectral properties of phonemes might be a good predictor

for the observed differences of recognition rates. The distance between phoneme and

masking spectrum D(Xi,N) was calculated according to Equation 2.1 and compared

to recognition rates, as shown in Fig. 2.4 (left panel). In order to analyze the effect

of dissimilarities between pairs of phoneme spectra, the spectral inter-phoneme level

distance D(Xi,Xj) is compared to error rates from CMs. Since D(Xi,Xj) is a symmetric

measure (i.e. D(Xi, Xj) = D(Xj, Xi)), confusion matrices C were symmetrized by

Csym = 1
2(C + CT ). The dependency of D(Xi,Xj) of the corresponding error rate is

shown in Fig. 2.4 (right panel).
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FIG. 2.4 Left panel: Relation between the phoneme-noise distance and recognition rates for
consonants and vowels. Next to each data point, the SAMPA transcript of the according
phoneme is denoted. The right panel shows the dependency of phoneme-phoneme distance and
error rates obtained from symmetrized confusion matrices. For each phoneme, several data
points are shown which correspond to confusions with ‘spectral neighbours’, i.e., phonemes
that were spectrally closest (marker ◦), 2nd and 3rd closest (markers 2 and ♦, respectively)
to the presented phoneme.

A multi-dimensional analysis of variance (ANOVA) was applied to model the recog-

nition scores and error rates as a function of the parameters D(Xi,N), D(Xi,Xj), and

the phoneme type (consonant or vowel phoneme). The latter was included because

large differences between the long-term spectra of vowels were observed (cf. Fig. 2.1),

while consonant spectra exhibit only small differences over a large frequency range. It

was investigated if this results in systematic differences between the phoneme types.

Any significant correlation between recognition rates (and/or error rates, respectively)

and physical parameter provides evidence for the underlying perception mechanism

without necessarily establishing a causality relation.

The analysis for error rates was limited to confusions to phonemes that were spectrally

closest to the presented phoneme. This was done for two reasons: First, confusions
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among phonemes with a high spectral distance did rarely occur, resulting in a flooring

effect which suggested to consider only the phonemes which are spectrally closest to

the presented phoneme. Second, by selecting the error rates of the nearest ‘spectral

neighbor’, the dimensionality of observations matched the number of parameters which

is required for the ANOVA. In the following, the distance associated with the spectrally

closest phoneme with index C1 will be referred to as D(Xi,XC1) (and D(Xi,XC2),

D(Xi,XC3) for the second and third closest phoneme, respectively). In all cases, 24

observations (corresponding to the 24 phoneme classes in OLLO) were used as input

to the ANOVA.

The recognition rate C(i,i) (i.e., the observed variable) was found to be significantly

related to the distance to noise D(Xi,N) (p < 0.05), whereas the phoneme-phoneme

distance D(Xi,XC1) and phoneme type had no significant effect. On the other hand, the

observed error rates for the spectrally closest phoneme C1 were affected by the distance

D(XC1,N), the phoneme type (both at the 5 % level of significance) and D(Xi,XC1)

(p < 0.01). Similarly, the confusions with the 2nd closest phoneme were influenced

by D(Xi,N), D(Xi,XC2), and phoneme type (all at the 1 % level of significance). An

interaction was found for the two distance measures D(Xi,N) and D(Xi,Xj) (p < 0.05)

which is plausible since a speech-shaped noise was used as masker, and the average

phoneme exhibits a spectrum similar to this masker. However, these effects were not

consistently observed for ‘more distant phonemes’ (i.e., phonemes that were more

separated than the second nearest neighbor). This is presumably due to the fact that

phonemes are not confused when a certain threshold of dissimilarity is exceeded (which

results in a flooring effect as mentioned above). When using all error rates as observed

quantity, the phoneme-phoneme distance (p < 0.01) and phoneme class (p < 0.05)

were found to have a significant effect.
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In Fig. 2.4, the relation between recognition and error rates, respectively and the

spectral distances are given as a scatter plot together with a correlation coefficient.

Since the results of the ANOVA suggested that the distinction between consonant and

vowel phonemes does not significantly affect recognition rates, we report the correlation

for all phonemes (r = 0.74, p < 0.01). Phoneme confusions were however shown to be

influenced by the phoneme type. The dependency of error rates and the distance to

phonemes which are spectrally close was found to be stronger for vowels (r = -0.75,

p < 0.01) than for consonants (r = -0.57, p < 0.01). When including both phoneme

types in the analysis, this dependency is somewhat degraded, but still significant (r =

-0.31, p < 0.05).

The very simple measure of spectral phoneme-masker and inter-phoneme differences

fails to explain for all the observed recognition and error rates of human listeners. An

improved prediction requires models that are based on human principles of auditory

processing, e.g., the extraction of spectro-temporal features that exhibit a higher

signal-to-noise ratio in an appropriate “glimpse” of the time-frequency distribution

(Kleinschmidt and Gelbart, 2002; Barker and Cooke, 2007).

2.4.4 Articulatory features and information transmission

The overall results (Fig. 2.2) showed that speech-intrinsic variabilities induce strong

differences in performance for the chosen signal-to-noise ratio. The transmitted in-

formation of articulatory features is analyzed in order to pinpoint those cues that

are most strongly affected in the presence of variabilities. The information channels

under consideration were voicing, manner, and place of articulation. These features are

well-defined for consonant phonemes, for which the analysis is performed by deriving

confusion matrices for articulatory features from the consonant CMs for each variability.
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These matrices were used to calculate Tr scores, as described in Section 2.3.4. Relative

information transmission scores Tr depending on speaking effort, rate and dialect are

shown in Fig. 2.5.
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FIG. 2.5 Relative information transmission Tr depending on speaking variability such as
speaking rate and effort (left panel) and dialect and accent (right panel) for selected articulatory
features. The error bars denote the standard error across listeners.

An analysis of variance was performed using the Tr-scores obtained with Set V for

each of the articulatory features and by using the explanatory parameters ‘speaker’,

‘listener’ and ‘speaking style, rate or effort’. This resulted in 4 (no. of speakers) × 6

(no. of listeners) × 6 (no. of variabilities) observations for each of the AFs. The choice

of speaker had a strong effect on the transmitted information (p < 0.01 for all AFs).

Effects of subject and speaking variability on the relative transmitted information were

found for manner and place of articulation (p < 0.01) but not for the voicing feature (p

= 0.11). Furthermore, we observed strong interactions between speaker and variability,

but no interactions between listeners and speakers, or listeners and intrinsic variability.
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Soft speaking style produced the lowest overall transmission scores, which complies

with the consonant results reported in Fig. 2.2. A major difference compared to the

reference condition are high error rates for /p/ and /b/ and confusions between the

nasals /n/ and /m/. The latter seems to be the major reason for the low scores of the

place feature in soft speaking style (0.29). In contrast to this, place is well recognized

for loud speaking style (0.65), with a higher Tr score than normal speaking style

(0.50). An analysis of CMs for the place feature showed that this is mainly caused by

reduced confusions between anterior and medial placed constrictions of the vocal tract,

reflecting overarticulation of loudly spoken utterances.

Slow speaking rate exhibits above average scores for all features. The manner of

articulation is particularly well recognized in this case, with a relative increase of 13 %

of transmitted information, compared to the reference condition. Voicing shows only

small variations of Tr scores, which range from 49 to 59 %, and was not found to be

significantly influenced by speaking style and rate. This AF therefore appears as being

relatively robust towards the discussed variations.

A second ANOVA was carried out, with the transmitted information for each AF

derived from measurements with Set D as observed variable. The choice of speaker,

listener and the dialect were included as explanatory parameters. This resulted

in 10 (speaker) × 5 (listener) observations. Since chosing a certain speaker also

specifies the dialect/accent, the number of dialects does not increase the number of

observations. Dialect and accent and the choice of speaker had a significant influence

on the articulatory features (p < 0.01), whereas the choice of listener had not. Relative

information transmission depending on dialect and accent is shown in Fig. 2.5 (right

panel). Not surprisingly, the highest values for all features are obtained for standard

German. Compared to this, transmitted information for all features is approx. halved
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for French-accented speech, while the scores for German dialects are in between those

conditions. Speech with dialect/accent exhibits the highest relative degradation of

information associated with place of articulation. This specific degradation of the place

feature is consistent with the notion that the dialects employed differ primarily with

respect to the place of articulation. The articulation of voicing and manner, on the

other hand, seem to be more constrained by language-specific rules, which results in

less variation in transmitted information.

The feature ‘manner’ is relatively well transmitted for East Frisian dialect, due to

reduced confusions between plosives and fricatives. For example, the error rates for

the confusion between /v/ and /b/ is almost halved. In case of East Phalian dialect,

the voicing feature has relatively high values, as confusions between voiced-unvoiced

pairs such as /b/,/p/ are reduced.

2.5 Discussion

In this study we presented results from speech intelligibility tests with the OLLO

logatome speech database that covers several speech-intrinsic variabilities. From the

wide range of variations of spoken language, we chose those that were found to severely

degrade performance of automatic recognizers. A speech-shaped masking noise was

used to avoid ceiling effects in phoneme recognition. Soft and fast speaking style

were identified as the most problematic for human listeners, as relative error rates

increased by approx. 70 and 30 %, respectively, compared to the reference condition.

The other variabilities (reduced rate of speech, increased speaking effort and rising

pitch) influenced global recognition scores to a lesser extent (i.e., between 3 % and

11 %), but resulted in shifts of microscopic phoneme confusions.
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2. HSR in the presence of intrinsic variabilities

The presented experiments are limited to a selection of variabilities that were either

documented or systematically varied during the recordings of the database. Future

experiments may also take other sources of variation into account, such as the effects

of age, coarticulation and gender, which has been shown to be a major factor for

variations of spoken language (Hazan and Markham, 2004).

2.5.1 Comparison with past work

A comparison with important studies on consonant recognition is presented in Fig. 2.6.

It includes data from Phatak and Allen (2007) [PA07], Grant and Walden (1996) [GW96]
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FIG. 2.6 Comparison of average consonant recognition scores with results from Sroka and
Braida (2005) [SB05], Phatak and Allen (2007) [PA07], Grant and Walden (1996) [GW96],
and Miller and Nicely (1955) [MN55]. Filled symbols denote results obtained with the OLLO
database. Recognition scores for Sets V and D for ‘normal’ speaking style and ‘no dialect’
condition include a single SNR and appear as single data points.
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and Sroka and Braida (2005) [SB05], all of which measured consonant recognition

scores in speech-shaped noise. Results from Miller and Nicely (1955) [MN55] who used

white noise as masker are also shown. The results obtained in five studies (including

the current paper) form three groups with respect to average consonant identification

scores: Scores from GW96 and from Sets V, D and S show good resemblance; the

performance obtained in these experiments is between PA07 (for which the performance

is 20 % higher in average) and SB05 and MN55 (for which it is 20 % lower). The highest

spread in average recognition performance for sounds masked with speech-shaped noise

is observed between PA07 and SB05 with an absolute difference of 39 %. Since the

slope of the performance-intensity curves for all data given in Figure 2.6 is almost

identical for 50 % consonant intelligibility (∼4.5 %/ dB), the observed difference can

be expressed in terms of the SNR: Using a linear interpolation for the mid-region of the

performance-intensity curves shown in Fig. 2.6, the SNR shift was determined which

resulted in the smallest rms error between the shifted data from the literature and the

scores obtained in this study (Set S). While this shift was very small for the GW96

data (0.5 dB), the differences for the other studies are more noticeable (PA07: -6.5 dB;

SB05: +5 dB; MN55: +6 dB).

There are numerous reasons for the observed variations across studies: Since the

spectral differences between phoneme and masker is of primary importance for the

phoneme recognition rate (cf. Section 2.4.3), a major part of the observed variations

can be predicted using a simple approach based on the spectral level difference to

compensate for the effect of spectral masker and phoneme properties on recognition

scores and error rates. The results are in line with findings from PA07 where a modified

version of the articulation index (AI) with frequency-dependent weighting coefficients

was used, which resulted in a close match of data from MN55, PA07, and GW97.
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2. HSR in the presence of intrinsic variabilities

However, the close resemblance of scores between MN55 and SB05 (where masking

noises with different characteristics were employed) or the large SNR-shift between

PA07 and SB05 (both of which used a speech-shaped masking noise) suggests that

average spectral differences are not sufficient as the only important factor in phoneme

recognition. Hence, other experimental parameters have to be considered that differ

across the studies under consideration: The number of consonant phonemes lies between

12 (SB05) and 18 (GW96). This number influences both chance performance as well

as any phoneme confusions that depend on the similarity of phonemes, which affects

overall error rates. Furthermore, coarticulation effects presumably affect the results,

as the number of vowels paired with the consonant lies between one (MN55) and five

(this work). The difference in SNR calculation might also contribute to the observed

shift, as mentioned in Section 2.3.3.

Recognition scores depending on speaking rate and style are consistent with other

studies. Krause and Braida (2002) presented experiments with conversational and clear

speech (i.e., speech with higher intelligibility than conversational speech) with different

speaking rates and styles. In our study, we confirm the finding that loudly spoken

utterances result in highest intelligibility (after compensating for different absolute

speech levels), followed by slow, fast and soft speaking style (in that order). The

absolute differences of recognition scores reported by Krause and Braida (2002) are

larger than found in this study, i.e. the difference between loud and soft speaking style

amounts to 27 percentage-points in Krause and Braida (2002) and to 16 percentage-

points in this study. For this comparison we refer to results obtained with conversational

speech in Krause and Braida (2002), rather than clear speech that was produced by

trained speakers, since speakers recorded for the OLLO database were encouraged to

speak in normal or natural way. However, this larger difference in speech intelligibility
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score across studies can be explained by the presumably steeper performance-intensity

curve for Krause and Braida (2002) where listeners had to identify key words from

sentences, in comparison to the flat curve for phonemes employed here (∼4.5 %/ dB, see

above). Another factor that significantly influences intelligibility is the inter-individual

difference of talkers. Krause and Braida (2003) have shown that two talkers who

were trained to produce clear speech at normal speaking rates employed very different

strategies for performing this task. For example, large differences of acoustic properties

such as voice-onset time and the duration and extent of formant transitions were

observed for the talkers. This result underlines the difficulties that arise when results

obtained with different speakers are compared, especially when variabilities of speech

are considered in connection with unnatural articulation modes (such as, speaking

“loud” or “clear”) where stronger changes due to additional variations (e.g., speaking

rate or style) are expected than in normal speech. In this work, we tried to control for

these differences by recording several variabilities from the same set of speakers.

2.5.2 Comparison between HSR and ASR

In other studies the OLLO corpus has been successfully applied to the problem of

ASR (Wesker et al., 2005; Meyer et al., 2007), as an evaluation tool for speech models

(Jürgens et al., 2007) and to study speaker discrimination of patients (Mühler et al.,

2009). By making the speech corpus available for research in HSR and ASR, we hope

to promote research dealing with the impact of speech-intrinsic variabilities on both

human and automatic recognition. The HSR scores presented in this study may serve

as baseline for experiments that aim at narrowing the gap between ASR and HSR,

which is still one of the most important challenges in speech research. The speech
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2. HSR in the presence of intrinsic variabilities

database, measurement results and detailed results from the analysis can be obtained

at http://medi.uni-oldenburg.de/ollo for research purposes.

An open question is if the results that were obtained with VCV and CVC utterances

are scalable to continuously and conversational speech. Variations in conversational

speech are considerable larger then recordings under controlled situations, as speaking

rate and effort are subject to frequent changes. However, experiments comparable with

our approach would require a database with labeled phonemes and variabilities, which

does not yet exist to our knowledge. For the creation of suitable databases, problems

such as the ambiguous labeling of phonemes are further aggravated in the presence of

strong variations in spoken language, as, e.g., (Shriberg et al., 1984) have shown for

transcription of children speech.

By relating recognition scores obtained for different variabilities and various SNRs,

effects of changed speaking style were expressed in terms of SNR changes. Naturally,

these results are valid for medium speech intelligibility only, as for very high SNRs

a degradation of 2 dB will have a minor impact on performance, while stronger

degradations are obtained when speaking style or dialect are varied (Meyer et al.,

2006).

In future research, the impact of intrinsic variations on automatic speech recognition

will be assessed and compared to the results obtained with human listening experiments.

Such a comparison has been performed earlier (Lippmann, 1997; Sroka and Braida,

2005; Ten Bosch and Kirchhoff, 2007; Cooke and Scharenborg, 2008) with the aim of

quantifying the gap between HSR and ASR, and the ultimate goal of bridging this

gap (i.e., improving ASR) by employing principles that are at work in the human

auditory system. While in other studies the focus was laid on extrinsic factors that

severely degrade ASR (such as, e.g., the influence of cut-off frequencies of high- and
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lowpass filtered maskers or the non-stationarity of masking noises) we hope to highlight

weaknesses of current ASR systems when speech with intrinsic variations represented

in the OLLO speech corpus is to be recognized. The results may then be used to

improve the robustness of ASR systems against such variations.

2.6 Summary & conclusions

The most important conclusions from this work can be summarized as follows:

1. The Oldenburg Logatome speech corpus (OLLO) was introduced, and results

from human listening tests were reported in terms of error rates and transmission

rates of characteristic speech features. The database consists of simple VCV and

CVC utterances and covers several speech-intrinsic variabilities. It is available

for research purposes with human and automatic speech recognition.

2. Speech-intrinsic variabilities such as speaking rate and style, intonation, and

dialect affect the recognition performance of human listeners. High speaking effort

produces increased intelligibility and a better transmission of place-of-articulation

information compared to normally spoken logatomes, while fast speaking rate or

soft speaking style yields severely degraded recognition scores (even if the effect

of speech level was compensated for). Speech with dialect or accent produces a

relative increase of error rates of up to 200 % which is consistently reflected in

degradation for the articulatory features voicing, manner and place of articulation.

3. The analysis of consonant scores based on articulatory features (AFs) showed

that the place of articulation is the least robust AF for the variabilities analyzed

in this study. On the other hand, the recognition of voiced vs. unvoiced sounds

was less affected by changes in speaking style, effort and rate.
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2. HSR in the presence of intrinsic variabilities

4. The systematic variation of several variabilities enables a comparison of speech-

intrinsic and extrinsic factors: For human listeners, the presence of varied speaking

rate, effort or dialect results in a degradation of performance which is equivalent

to a 1.5-dB-decrease in SNR for a stationary, speech-shaped masking noise

(assuming medium speech intelligibility).

5. The phoneme recognition rate was found to correlate with a simple measure of

spectral distance to the masking noise (r = 0.75), i.e., the spectral characteristics

of the masker play an important role in phoneme recognition, which is in line

with earlier studies. We also observed that error rates are significantly related

to the properties of those alternative phonemes which are spectrally close. This

effect was found to be stronger for vowels (r = -0.75) than for consonants (r =

–0.57).

6. While consonant recognition scores reported here coincide well with data from

Grant and Walden (1996), differences of up to 12 dB were found across studies in

terms of the SNR corresponding to 50 % intelligibility (Miller and Nicely, 1955;

Sroka and Braida, 2005; Phatak and Allen, 2007). Our findings of correlations

between recognition rates and phoneme-noise distance can account for parts

of these differences (and hence confirm findings of Phatak and Allen (2007)).

However, more factors (such as, e.g., the number of response alternatives, the

number of phonemes and coarticulation effects in the presented speech items,

and the selection and speaking style of the speaker) obviously contribute to the

differences across studies. The Oldenburg Logatome Corpus employed here avoids

some of these (unwanted) variability effects by using a fixed word format and

providing a number of different speaking styles with the same respective talker.
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3
Effect of speech-intrinsic variations on

human and automatic speech

phoneme recognition1

Abstract

A comparison between automatic speech recognition (ASR) and human speech recogni-

tion (HSR) is performed as prerequisite for identifying sources of errors and improving

feature extraction in ASR. Experiments are carried out with a logatome database that

consists of nonsense syllables. Special focus is laid on the effect of speech-intrinsic

variabilities, such as speaking rate and effort, altered pitch, and the presence of dialect

and accent. To analyze the information loss caused by feature extraction, ASR fea-

tures are resynthesized to audible utterances and presented to human listeners. The

overall human-machine-gap in terms of the signal-to-noise ratio was found to be 15
1This chapter has been submitted in its present form for publication to the Journal of the Acoustical

Society of America on October 29th, 2009 (Meyer et al., 2009a). Parts of this work have been
published in the Interspeech conference proceedings after a full peer-review (Meyer et al., 2007).

51



3. Speech-intrinsic variations in human and automatic speech recognition

dB. A bottom-up contribution of 10 dB to this gap (associated with imperfect feature

extraction) was estimated by comparing results with original and resynthesized speech,

while 5 dB of the gap were attributed to the classifier (i.e., the top-down component).

Intrinsic variabilities severely degrade recognition performance by up to 120 %. An

analysis of utterances with different speaking rates showed that phoneme duration is

an important cue for discrimination of vowels in HSR, but not in ASR at low SNRs.

These results highlight the limitations of ASR as well as the potential of appropriate

spectro-temporal features and more appropriate classification algorithms.

3.1 Introduction

Automatic speech recognizers have continuously been improved during the last decades,

but no system exists yet that shows the same performance as human listeners. While

humans have little difficulties in dealing with recognition in acoustically challenging

situations, automatic speech recognition (ASR) lacks the same robustness that is

achieved by the auditory system. This observation has inspired several studies that

compare the performance of human speech recognition (HSR) and ASR, with the

ultimate goal of learning from the biological blueprint to improve automatic recognizers.

The gap between HSR and ASR was shown to widen in noise, or when the complexity

of the recognition task increases (Lippmann, 1997). For very complex tasks (such as

the transcription of spontaneous speech) the error rates of ASR were reported to be an

order of magnitude higher than those of HSR. In more recent studies that compare HSR

and ASR, various of aspects of the robustness against extrinsic sources of variation

have been covered: The effect of high lexical processing has been studied, and human

listeners were found to make better use of lexical, syntactic and semantic information

during speech understanding (Shen et al., 2008). Other studies analyzed the effect of
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low-lexical processing, by comparing HSR and ASR phoneme recognition: Sroka and

Braida (2005) investigated the effect of additive noise and high- and lowpass filtered

speech. Adding noise resulted in considerable differences between HSR and ASR (with

an SNR shift of approx. 10 dB), while high- und lowpass-filtering reduced (and for

some conditions even eliminated) the gap. The effect of stationary and time-varying

masking noises on phoneme recognition is studied in the framework of the Consonant

Challenge, which was proposed in (Cooke and Scharenborg, 2008) and which provides

both HSR scores and baseline ASR results. The ASR baseline error rates were found to

be 85 % higher for clean speech compared to HSR on the consonant recognition task.

While the robustness of ASR systems against extrinsic variability (e.g., additive or

convolutive noise) has been studied extensively and has therefore been understood

quite well, the robustness against intrinsic variations of speech is far less understood

(i.e., the natural variability that is produced by the talker, such as, for example,

speaker physiology, accent and dialect, speaking rate, speaking style (e.g. formal vs.

spontaneous style), and emotional state). Even though human listeners are remarkably

robust in their recognition performance against these intrinsic variations, this does not

apply to ASR: The variations were found to degrade the performance of automatic

recognizers, even when the acoustic conditions are optimal (Benzeguiba et al., 2007).

For example, the overall recognition performance was decreased when the speaking

rate is changed; this affected HSR to a lesser extent than ASR (Krause and Braida,

1995; Stern et al., 1996).

The standard approach to ASR is to extract short-time Fourier transform of quasi-

stationary speech signals, and use the spectral envelope of these segments as input

for the classifier. To assess the relative contribution of non-ideal speech features (that

limit the bottom-up-processing in ASR) and non-ideal pattern recognizers (that limit
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3. Speech-intrinsic variations in human and automatic speech recognition

the training- and reference-based top-down processing in ASR), these features may

be resynthesized, i.e., the features can be converted to audible signals, which can be

presented to human listeners (who serve as ‘optimal classifier’ in this case). Listening

experiments based on resynthesized speech have been conducted earlier: Leonard

(1984) performed tests with clean digits that were resynthesized from linear prediction

coefficients. The recognition accuracy based on the majority of three listeners was

99.9 %, indicating that signals resynthesized from the spectral envelope of short-time

fragments of speech are sufficient in acoustically optimal conditions. Peters et al.

(1999) carried out a comparison of HSR and ASR performance with unaltered and

resynthesized speech. Feature vectors calculated from noisy digits were converted to

audible signals based on an analytical processing scheme. When comparing HSR and

ASR with informational equivalent features, the digit error rate of ASR was found

to be 13.1 %, while the scores for the original and resynthesized features was 2.9 %

and 10.7 %, respectively. However, the effect of a specific masking level as well as

speech-intrinsic variability is not investigated in these studies.

A more detailed analysis of the man-machine-gap with respect to robustness against

intrinsic speech variability appears to be worthwhile in order to characterize and copy

to ASR the assumed invariance operation the human listeners seem to perform with the

variants of speech utterances belonging to the same speech symbol. Hence, a detailed

man-machine-comparison with special focus on such variations is performed here.

The variabilities under consideration were speaking rate, speaking effort (i.e., loudly

and softly spoken speech), speaking style (utterances with rising pitch), and dialect

and accent. The influence of feature extraction is taken into account by presenting

resynthesized speech to human listeners. The resynthesis is based on mel-frequency

cepstral coefficients (Davis and Mermelstein, 1980) which are the most common features
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in ASR. The original signals were also presented in listening tests to evaluate the

HSR-ASR-gap independently of the feature extraction stage, and to quantify the

bottom-up and top-down processing in ASR, as shown in Fig. 3.1.

Spracherkennungsleistung bei Mensch und Maschine 

human 
listeners 

ASR System 
(HMM) 

CVC / VCV u8erances 
(set V and set D from OLLO database) 

NOISE 
‐6.2 dB 

NOISE 
(‐6.2 dB ‐ +3.2 dB) 

NOISE 
+3.8 dB 

MFCC 
features 

decoding 

MFCC 
features 

FIG. 3.1 Overview of different experimental conditions. Original and resynthesized signals
were presented to human listeners; the results were compared to the performance of automatic
recognizers.
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For similar experimental conditions, the same speech database with nonsense syllables

was employed for ASR and HSR tests. Using the same database has the advantage of

suppressing unwanted variability that is, e.g., caused by inter-individual differences

across speakers. This might be especially important when investigating changes in

speaking rate, as different talkers often employ different strategies to produce speech

in the desired way (Krause and Braida, 2003). Alternatively, the phoneme recognition

may be analyzed with a task that is based on continuous, meaningful speech, which

adds the element of imperfect language modelling in ASR (Shen et al., 2008). The

focus of this study is however laid on the low-level acoustic-phonetic modeling by

using nonsense utterances, which prevents human listeners from exploiting context

knowledge.

3.2 Methods

3.2.1 Speech database

The corpus used for this study is the Oldenburg Logatome Corpus (OLLO) (Wesker

et al., 2005). It consists of nonsense utterances (logatomes), which are composed

according to phonetic and phonotactic rules. The logatomes are combinations of

consonant-vowel-consonant (CVC) and vowel-consonant-vowel (VCV) with identical

outer phonemes. The database is used to analyze the performance of human listeners in

phoneme recognition where the task is to identify the middle phoneme, which limits the

number of response alternatives and allows for an easy realization of HSR tests. Since

OLLO contains speech material collected from 50 speakers with several repetitions for

each logatome, it is also suitable to train and evaluate automatic speech recognizers.

The phonemes contained in the database are critical in either human or automatic
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Number of speakers 50 (25 male, 25 female)
Number of different VCVs 70 (five outer vowels (/a/, /E/, /I/, /O/, /U/)

combined with 14 central consonants (/b/,
/d/, /f/, /g/, /k/, /l/, /m/, /n/, /p/, /s/,

/S/, /t/, /v/, /ţ/))
Number of different VCVs 80 (eight outer consonants (/b/, /d/, /f/,

/g/, /k/, /p/, /s/, /t/) combined with 10
central vowels (/a/, /E/, /I/, /O/, /U/, /a:/,

/e/, /i/, /o/, /u/))
Number of different logatomes 150

Number of speaking styles 5 + reference condition ’normal’ (fast, slow,
loud, soft, question)

Number of dialects/accents 4 + reference condition ’no dialect’ (East
Frisian, Bavarian, East Phalian, French)

Utterances per speaker 2,700 (150 logatomes x 3 repetitions x 6
speaking styles)

Total number of logatomes 133,403
Utterances labeled as containing

unwanted sounds
1,820

Number of utterances per
dialect/accent

∼2,700

Number of utterances per
variability

∼27,000

Number of utterances per
central consonant

∼4,450

Number of utterances per
central vowel

∼7,100

TABLE 3.1 Properties of the OLLO speech database.

recognition of speech, so that significant differences in recognition rates may already

be obtained with smaller test sets. The phonemes contained in the database as well as

other important properties are listed in Table 3.1.

Note that not all possible combinations of VCVs and CVCs have been recorded in

order to limit the recording time. Since the recognition task is to identify the middle
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phoneme of logatomes, all consonant phonemes were recorded for VCVs, and all vowels

were used for the CVCs.

Variabilities and speakers

The choice of variabilities was based on ASR experiments with annotated test corpora

that compared the performance of automatic recognizers with these variabilities present

or not. The variabilities under consideration included speaker’s gender, age and dialect,

speaking style/effort (which also relates to pitch), rate of speech, and breathing noise.

The largest impact on performance was observed for the variabilities speaking rate (fast

vs. slow), speaking style (affirmation vs. question), speaking effort (loud vs. soft), and

dialect/accent. The latter was integrated in the database by including logatomes of

dialect speakers from different regions of Germany and from the French-speaking part

of Belgium. Ten speakers originating from the northern part of Germany (Oldenburg

near Bremen and Hannover) were recorded. The spoken language in this region is

usually considered as standard German (Kohler, 1995). We will refer to this category as

‘no dialect’ (ND). Subjects with dialect originated from the Northern part of Germany

(East Frisian dialect, EF), from East Phalia (EP) near Magdeburg, and from Bavarian

places near Munich (BV). The French-speaking participants were recorded in Mons

(Belgium). Five female and five male speakers from each region were recorded, resulting

in a total of 50 speakers. The age of subjects varied between 18 and 65 years. Each

logatome was recorded in ‘neutral/clear’ speaking style as a reference. In addition,

one of the five selected variabilities (i.e., fast and slow speaking rate, loud and soft

speaking style, and condition ‘question’ which refers to rising pitch) was altered for

each of the subsequent recordings. To provide a broad test and training basis for ASR

experiments and to enable an analysis of intra-individual differences, each logatome was
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recorded three times which resulted in 150 × (5+1) × 3 = 2,700 logatomes per speaker.

Additionally, for German speakers 72 German words which are part of the monosyllabic

rhyme test (Kollmeier and Wallenberg, 1989) and 20 German sentences part of the

Goettingen sentence test (Kollmeier et al., 1997) were included. Participants from

Belgium recorded 20 French sentences. This speech material is phonetically balanced

and can be used for ASR speaker adaptation.

Recording conditions and postprocessing

Speakers were asked to read the transcription of a logatome and speak it in one of

the six variabilities. They were supervised during the recordings and periodically

reminded to speak in the desired manner. All VCV stimuli were produced with front

stress. During postprocessing, the silence before and after each logatome was limited

to 500 ms. Signals were then normalized to 99 % amplitude and stored with 16 bit

resolution. They were low-pass filtered with 8 kHz cutoff frequency and sampled down

to 16 kHz. Details of the recording conditions are documented in (Meyer et al., 2009b).

The OLLO corpus was phonetically time-labeled, i.e., temporal positions of phoneme

boundaries have been determined for each utterance, making it suitable for tasks such

as training of phoneme recognizers using an enhanced version of forced alignment

performed with a hidden Markov model. All 150 logatomes were transcribed in the

SAM phonetic alphabet (SAMPA) and the transcription was used as input for the

time-labeling procedure.

Availability of speech material and test results

The OLLO database, including a detailed description, wordlists, labeling files, technical

specifications and calibration data (normalization coefficients and dB (SPL) values)
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is freely available for research in HSR and ASR. The uncompressed corpus is approx.

6.4 GB in size and contains a total of approximately 140,000 files corresponding to 60

hours of speech. It can be downloaded from http://medi.uni-oldenburg.de/ollo.

3.2.2 Preparation of speech stimuli

Speech intelligibility tests with human listeners included two conditions, i.e. the

presentation of noisy (but otherwise unaltered) signals and listening tests with speech

tokens that were resynthesized from ASR features, i.e., feature vectors used internally

by the speech recognizer are decoded to acoustic speech signals.

Unaltered speech signals from the OLLO database are used to measure the overall

gap between human and automatic recognizers in the presence of intrinsic variabilities

and additive noise. Speech-shaped noise is added to the signals to prevent ceiling

effects (cf. Section 3.2.4). A second experimental condition covers the aspect of

resynthesized speech. The resynthesis of speech is based on the most common features

in ASR, i.e., mel-frequency cepstral coefficients (MFCCs). Since the calculation of

MFCCs results in a loss of information, these signals sound unnatural (like synthesized

speech). For example, the speaker’s identity or even gender are usually not recognizable.

Nevertheless, resynthesized speech items remain intelligible in the absence of noise

(Demuynck et al., 2004). To allow for a valid comparison, the presented recognition

scores were obtained with noisy speech. By adding noise, redundant information

in the speech signal is masked, so that intelligibility is potentially decreased. The

reduction of redundancy might be particularly critical in the presence of speech-intrinsic

variabilities.
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Calculation of cepstral coefficients

MFCCs are a compact representation of speech signals and have been successfully

applied to the problem of ASR (Davis and Mermelstein, 1980). This compact represen-

tation has been optimized to retain the information necessary for automatic speech

recognition, while information about speech quality and the invidual speaker is mostly

discarded. Specifically, the phase information and fine structure of the spectrum are

disregarded. However, this may be detrimental in noisy conditions, because some of

the information exploited by humans for speech perception in noise is removed. For

example, using the phase information in ASR has been found to be beneficial (Schlueter

and Ney, 2001).

In order to calculate MFCC features from speech, signals with 16 kHz sampling

frequency are windowed with 30 ms Hanning windows and a frame shift of 10 ms. Each

frame undergoes the same processing steps: Calculation of the amplitude spectrum,

reduction of the frequency resolution using a mel-scaled filterbank and calculating the

logarithm and the inverse discrete cosine transformation (IDCT) of its output. Twelve

of the lower coefficients plus an additional energy feature are selected for the ASR

experiments and HSR tests with resynthesized speech.

This results in (mostly decorrelated) cepstral coefficients, where lower coefficients

characterize the coarse structure of the spectrum, while higher coefficients code the

fine structure caused by the excitation of the vocal tract. In standard ASR systems as

employed in this work, the latter are usually disregarded. In the presented experiments,

a frame shift of 12.5 ms with half-overlapping windows was chosen. Input signals had

a sampling frequency of 16 kHz; the application of the Mel-filterbank and the IDCT

results in twelve cepstral coefficients. These feature vectors were used for the ASR

tests as well as the basis for resynthesized speech presented to human listeners.
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Resynthesis of cepstral coefficients

In order to reconstruct an acoustic speech signal from MFCC features, the spectral

envelope has to be reconstructed from the feature data. This is done using a linear

neural network that inverts the discrete cosine transformation. In this study, training

material from the OLLO training subset has been used to determine the optimal

weights of the neural net. In a second step, the spectral fine structure and phase

information has to be estimated. Since the listeners’ knowledge should be limited

to the information contained in the features, additional information such as voicing

or fundamental frequency should not be added during the decoding process, i.e., an

artificial excitation signal has to be used. This signal may be either a pulse train (which

corresponds to voiced excitation of the vocal tract), a noise signal (as for voiceless

excitation) or a superposition of these. The artificial excitation signal is defined by

the fundamental frequency and the amount of voicing. For high-quality resynthesis,

these parameters need to be extracted from the speech signal. In this study however,

it would give human listeners an unfair advantage against the ASR system and is

therefore not used.

The excitation signal p(t) is combined with the smoothed magnitude spectrogram

|E(kT, ω)| by calculating the dot product of |E(kT, ω)| and the magnitude spectrogram

of p(t) (i.e., |P(kT, ω)|, where k is the frame index, T is the frame shift and ω is

the frequency tab). This leads to the target magnitude spectrogram |Y(kT, ω)| of

the resynthesized signal. In order to construct the phase information, an algorithm

proposed in (Griffin and Lim, 1984) is used. This algorithm iteratively decreases the

squared error between |Y(kT, ω)| and the magnitude spectrogram |Xi(kt, ω)| of the

resynthesized signal. At each iteration i, the next estimate of the time signal xi+1(t) is

constructed from the target magnitude spectrum |Y(kT, ω)| combined with the phase
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spectrum of the previous estimate of the time signal xi(t). The algorithm usually

converges in less than 100 iterations, even if white noise is used as initial time signal

x1(t) (Griffin and Lim, 1984; Demuynck et al., 2004).

Since the properties of the excitation signal is crucial parameter for the overall

quality of resynthesis, preliminary tests were performed which showed that - in the

presence of speech-shaped noise - intelligibility is higher when a pulse train is used as

excitation signal (instead of noise or a mixed noise-pulse signal), which is therefore

used for all presented HSR tests with resynthesized speech. A fundamental frequency

of 130 Hz was chosen for all presentations. Due to the fixed fundamental frequency,

resynthesized speech sounds artificial and tinny, but remains understandable in the

absence of noise. This algorithm was kindly supplied by the Katholieke Universiteit

Leuven.

HSR scores are usually very close to 100 % for the clean condition, both for the

unaltered signals and the signals derived from cepstral coefficients. In (Meyer et al.,

2006), the lowest recognition rate observed for non-dialect speech was 99.1 % for a

similar task. This clearly demonstrates the excellence of the human auditory system,

but does not allow for a valid analysis of phoneme confusions, because differences at

very low or high error rates often are outside the range of reliably observable differences.

Hence, a continuous masking noise with a frequency characteristic of normal speech

(Dreschler et al., 2001) is used to increase the difficulty of the listening task. In case of

resynthesized speech, noise is added before MFCCs are calculated from the original

signals.

Pilot measurements with one test subject showed that a ceiling effect is always

observed when the same SNR is used for resynthesized and original signals, i.e. the

recognition rates are either too low for the first or too high for the second condition to
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obtain valid and comparable results in reasonable measurement time. Based on these

first measurements, the SNR for each condition was chosen to produce approximately

the same recognition rates. Resynthesized and original signals were presented at an

SNR of 3.8 dB and -6.2 dB, respectively.

The training of the neural net used for decoding was also carried out with noisy

MFCC features. For the HSR experiments, resynthesized and unaltered signals are

subject of measurements. At the same time, the SNR had to be varied, which aggravates

a direct comparison because two parameters were changed at the same time. The

change of SNR was necessary in order to ensure significant results, as recognition rates

are close to chance performance for resynthesized signals at -6.2 dB SNR and > 90 %

for original signals at an SNR of 3.8 dB. Preliminary experiments showed that HSR

scores for the two test conditions are similar if the SNR is -6.2 dB for the unprocessed

signals and 3.8 dB for the resynthesized signals, respectively.

3.2.3 HSR and ASR test and training sets

Two sets of logatomes, which are subsets of the OLLO corpus, were defined to analyze

the effects of speech-intrinsic variabilities. From the 50 speakers in the database, those

speakers were chosen as being representative for the corpus that produced recognition

rates for a standard ASR task which were closest to the average recognition rate:

MFCC features with delta and accelaration coefficients were used as input for a HMM,

with the same configuration as described in Section 3.2.4. The HMM was trained with

utterances from 49 speakers and was subsequently tested with logatomes from the

remaining speaker. This procedure was performed for all speakers in the corpus, and

the results were used to compile subsets that yield similar overall performance as the

complete set of talkers.
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Set V Set D
Speakers S01M, S02F, S06M, S08F S01M, S02F, S17M, S19F,

S23F, S30M, S32M, S40F,
S41F, S42M

Dialect / accent No dialect No dialect, East Frisian,
Bavarian, East Phalian,

French
Speaking styles Normal, fast, slow, soft,

loud, question
Normal

HSR
Stimuli Orig. signals (-6.2 dB

SNR), Resynth. signals
(3.8 dB SNR)

Orig. signals (-6.2 dB
SNR), Resynth. signals

(3.8 dB SNR)
No. of utterances per

listener
3,600 1,500

No. of listeners 6 5
No. of presentations 2 × 21,600 2 × 7,500

ASR
No. of test utterances 10,749 4,481

No. of training utterances 16,159 17,797
TABLE 3.2 Subsets of the OLLO database used HSR and ASR experiments. The sets are used
to analyze the influence of variabilities such as speaking rate and effort (Set V) or dialect
(Set D). The supplements ‘M’ and ‘F’ denote the gender of the respective talker.

Set V aims at differences caused by speaking rate, effort, and style. It contains data

from four speakers without regional dialect (ND = no dialect) with six variabilities. Set

D contains utterances from two speakers from each dialect/accent region with normal

speaking style. The properties of these sets are listed in Table 3.2.

For measurements with Set D, the SNR was calculated by relating the root-mean-

square (rms) value of the speech segments of each audio signal and the rms value of a

masking noise of equal length. A simple voice detection algorithm based on an energy

criterion was used to extract connected speech segments. Random control samples

were chosen to control proper functioning of that algorithm. For utterances from
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Set V, a different SNR calculation scheme was applied: In this case, the rms levels

of the whole utterance (including silence) and a noise segment of equal length were

used to adjust the SNR. Since the length of silence before and after each logatome is

500 ms and because the variation of temporal spread of identical logatomes is relatively

small, this corresponds to a fixed offset which was found to be 3.8 dB compared to the

SNR calculation scheme mentioned above. For clarity, the SNR values for Set V are

converted to the first mentioned method.

The ASR test sets contained the same utterances which were also used in HSR

experiments. The two additional repetitions recorded for OLLO which are not contained

in the HSR test set were also included. This violates the rule of having exactly equal

conditions for HSR and ASR, but increases the amount of test data by a factor of

three at the same time. Since speakers were recorded in one session, the differences

between utterances are expected to be negligible. Moreover, from the three recordings

of each logatome in each variability an arbitrary file has been chosen for HSR test,

which prevents a systematic error when using three recordings instead of one. The

extension of the test data is an important argument regarding statistics: Five human

listeners participated in HSR experiments, while only one ASR recognition engine was

used which reduces the test data compared to HSR. When it comes to comparing

differences between phoneme recognition scores, the increased number of utterances

outweighs the differences of the test sets because of reasons of statistical relevance.

ASR training was carried out with utterances from speakers not included in the test

set, resulting in speaker-independent recognizers. For tests with Set V, speech files from

six speakers without dialect (but with varying speaking effort and rate) where used for

training. For Set D, speech files from 40 speakers with all dialects were chosen for the

training process. The phonemes, gender and the systematically varied parameters were
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equally distributed in the training and test set. ASR recognition scores were obtained

for different SNRs, using the same masking noise as for the HSR measurements, as

described above. The same SNR was used for training and test, resulting in a matched

training-test-condition.

3.2.4 Experimental setup

Tests with human listeners

Six normal-hearing listeners (three male, three female) without noticeable regional

dialect participated in the listening tests for Set V; five of these subjects (two male,

three female) also participated in tests with Set D. The listeners’ hearing loss did not

exceed 15 dB at more than one frequency and +10 dB at more than two frequencies in

the pure tone audiogram. Signals were presented in a soundproof booth via audiological

headphones (Sennheiser HDA200). An online freefield equalization and randomization

of logatomes was performed by the measurement software MessOL. Feedback or the

possibility to replay the logatome was not given during the test procedure. In order to

avoid errors due to inattentiveness, listeners were encouraged to take regular breaks.

After a training phase, subjects were presented a sequence of logatomes at a level of

70 dB SPL, i.e., the effect of speech level which is expected to influence recognition of,

e.g., softly and loudly spoken utterances, was compensated for. For each presentation,

the logatome had to be selected from a list of CVCs or VCVs with the same outer

phoneme and different middle phonemes. A touch screen and a computer mouse

were used as input devices. In order to avoid speaker adaptation, all resynthesized

signals were presented before the subjects listened to the unprocessed speech files.

The HSR measurements include 3,600 (Set V) and 1,500 (Set D) presentations per

listener and test condition (i.e. the presentation of original and resynthesized signals).
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The cumulative measurement time was approximately 130 hours, including pauses

and instructions for listeners. It was distributed across different days (including a

daily training session prior to data recording) in order not to exceed three hours of

measurement for each day and each subject.

Automatic speech recognition test setup

ASR experiments were carried out with a Hidden Markov Model (HMM) with three

states and eight Gaussian mixtures per HMM state. The system was set up to resemble

the closed test which was used for human intelligibility tests, i.e. confusions could

only occur for the middle phonemes. This was achieved by grouping utterances with

the same outer phonemes, and subsequently using each group to train and test the

back-end.

The same MFCC features have been used for the ASR test as for the resynthesized

signals in HSR experiments. Additional delta and acceleration features were added

to the 13 cepstral coefficients, yielding a 39-dimensional feature vector per time step.

Without these features, ASR performance would drop dramatically, because the HMM

is not capable of modeling all dynamic aspects of speech as well as humans can. Delta

features are calculated directly from cepstral features, i.e. no further information is

extracted from the speech signal, so that the principle of supplying ASR and HSR

with the same amount of information is not violated.

3.2.5 Outcome measures

Articulatory features and transmitted information

The phoneme confusions are analyzed based on the transmitted information of ar-

ticulatory features (AFs) as proposed in (Miller and Nicely, 1955). The AFs under
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Articulatory
feature

Feature values Corresponding phonemes

Place Bilabial /p/, /b/, /m/
Alveolar /f/, /v/
Labiodental /t/, /d/, /n/, /s/, /ts/, /l/
Palato-Alveolar /S/
Velar /k/, /g/

Manner Plosive /p/, /t/, /k/, /b/, /d/, /g/
Nasal /n/, /m/
Fricative /s/, /f/, /v/, /S/, /ţ/
Lat. Approx. /l/

Voicing Voiced /b/, /d/, /g/, /v/, /n/, /m/, /l/
Unvoiced /p/, /t/, /k/, /s/, /f/, /S/, /ţ/

Backness Back /O/, /U/, /o/, /u/
Front /a/, /E/, /I/, /a:/, /e/, /i/

Height Closed /I/, /U/, /i/, /u/
Close-mid /e/, /o/
Open-mid /E/, /O/
Open /a/, /a:/

TABLE 3.3 Articulatory features, their feature values, and the phonemes that correspond
to a specific feature value (based on the International Phonetic Alphabet proposed by the
International Phonetic Association)

consideration and their respective feature values are presented in Table 3.3. For each

AF, a confusion matrix is derived from the phoneme confusion matrix by grouping

the matrix elements that correspond to the recognition or misclassification of a cer-

tain feature value (e.g., all elements that correspond to presentation of an unvoiced

sound, when a voiced sound was classified). The transmitted information (or mutual

information) is a measure of how well each of these features was recognized.

It is given by T (x, y) = −∑
i,j
pij log pipj

pij
, with pi and pj denoting the a-priori and

a-posteriori probabilities for the stimuli, and pij denoting a matrix element of the confu-

sion matrix. The relative transmitted information is given by Tr(x, y) = T (x, y)/H(x)

with the source entropy H(x) = ∑
i pi log(pi). The transmission scores derived directly
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from the confusion matrices for consonants and vowels serve as measure for consonant

and vowel recognition.

Phoneme duration

In order to analyze the dependency of phoneme duration and recognition for the

presented experiments, the distribution of the duration of each middle phoneme

was determined. The duration was derived from phoneme boundaries that were

automatically estimated using a modified forced alignment algorithm, i.e., a trained

automatic recognizer was used to find the optimal alignment between the (given)

phoneme string and the utterance (cf. Section 3.2.1). In contrast to standard forced

alignment, the algorithm employed can account for pronunciation variants (Kipp et al.,

1996), which is an important feature for logatomes spoken by speakers with dialect or

accent. For each of the ten bins in the duration histogram, the recognition rate for the

items was calculated and compared to the according duration. To obtain statistically

valid results, only bins with more than 50 items were considered for the analysis. Since

the ASR test set contained only halve the number of items (with two additional test

items compared to the HSR set, but only one ASR systems instead of six listeners)

this threshold was set to 25 for ASR.

3.3 Results

3.3.1 Overall performance

Overall HSR and ASR phoneme recognition scores obtained with Sets V and D are

presented in Table 3.4. ASR experiments were carried out at various SNRs, while the

tests with human listeners were limited to a specific masking level. When conditions
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with the same SNR are compared, strong differences between HSR with the original

signals and ASR are observed. At -6.2 dB SNR, the relative error of ASR is increased

by 168 % compared to HSR. The largest differences occur for logatomes spoken with

rising pitch (‘question’) and East Frisian dialect, with absolute differences of over 45 %.

The smallest differences were found for speech with a French accent and high speaking

rate (with absolute differences of 33.4 % and 36.8 %, respectively).

A similar average HSR performance with Set V is obtained for the original and resyn-

thesized signals (74.5 % and 72.4 % recognition rate, respectively). The information

loss induced by the feature calculation and resynthesis can therefore be approximated

and amounts to 10 dB (i.e., the SNR difference for original and resynthesized signals).

A similar overall ASR performance is obtained at 8.8 dB. The overall gap for this

phoneme recognition task to HSR performance is roughly 15 dB, and the gap between

HSR performance with resynthesized signals and ASR is 5 dB. Results obtained with

Set D are consistent with these observations since the average HSR recognition scores

differ by only 0.2 % absolute. At an SNR of 6.8 dB, the ASR performance lies between

these scores, indicating that the overall gap in terms of SNR amounts to 13 dB. As

before, the gap between this ASR score and the scores from the HSR resynthesis

experiments (3 dB) is much smaller than the gap that is related to the front-end.

Intrinsic variations consistently degrade HSR performance compared to the reference

condition, with only a few exceptions to this rule (‘slow’ speaking style and East Frisian

dialect for resynthesized signals, ‘loud’ speaking style for original signals, and high

speaking rate for ASR scores at the highest masker level).

The relative increase of errors in the presence of intrinsic variabilities for both HSR

conditions and selected ASR experiments is displayed in Fig. 3.2. Scores are presented

for ASR experiments for which the same SNR as for the HSR measurements was used
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Resynth. (3.8 dB) 72.4 76.3 68.0 77.7 68.8 68.5 75.3
Original (-6.2 dB) 74.5 78.6 72.3 77.2 79.3 63.3 76.3

ASR
clean 80.4 85.3 78.8 82.3 76.6 79.1 80.5

18.8 dB 77.5 83.5 76.1 81.3 73.1 75.9 75.3
13.8 dB 76.0 82.3 72.9 80.7 71.3 73.1 75.6
8.8 dB 72.8 80.4 67.9 78.4 67.0 69.5 73.8
6.8 dB 69.7 76.3 64.5 75.8 65.2 65.8 70.6
3.8 dB 64.5 71.5 60.0 69.5 60.3 59.2 66.2
-1.2 dB 54.0 60.3 50.5 58.4 54.4 47.0 53.6
-6.2 dB 31.8 35.2 35.5 32.2 36.2 21.0 30.5
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HSR

Resynth. (3.8 dB) 73.8 77.5 79.2 75.1 71.3 65.7
Original (-6.2 dB) 74.0 81.5 80.9 77.6 70.2 59.7

ASR
clean 82.1 88.4 84.5 79.1 84.1 74.2

13.8 dB 79.3 87.0 82.5 75.4 78.5 73.2
6.8 dB 73.6 81.5 76.9 71.5 72.4 65.9
3.8 dB 68.5 75.4 72.4 66.8 68.0 59.8
-6.2 dB 34.0 42.6 34.0 36.2 30.8 26.3

TABLE 3.4 HSR and ASR phoneme recognition scores in %, depending on speech intrinsic
variabilities and the SNR. Scores for varied speaking effort, rate and style were obtained
with Set V; the results for dialects and accents are based on measurements with Set D (cf.
Table 3.2).
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(-6.2 and 3.8 dB) and for normally spoken logatomes that resulted in comparable ASR

performance (SNR +8.8dB). For HSR, the respective error rate for normal utterances

has been used as reference for the relative increase. The ASR reference is the error

rate for normally spoken utterances at a SNR of 8.8 dB.
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FIG. 3.2 Relative increase of phoneme error rates for HSR and ASR. The increase is related
to the error rate obtained with normally spoken utterances for HSR. All ASR scores are
related to normally spoken utterances with a training/test SNR of +8.8 dB (which produced
similar performance compared to HSR).
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A comparison of resynthesized and original signals shows that large differences

occur for loud and soft speaking style while all other conditions appear to be similarly

influenced. The results for the ASR conditions with medium scores (SNR of 3.8 and

8.8 dB) are consistent, i.e., the highest degradations are observed for the conditions

‘fast’, ‘loud, and ‘soft’. At high masking levels, ASR produces 200 % higher error rates

than the ASR reference condition. The conditions ‘soft’ and ‘question’ yield a further

degradation, while the other conditions do not. In the presence of dialect and accent,

the errors of both HSR conditions increase (in the order East Frisian, Bavarian, East

Phalian, and French). When listening to the original, dialected speech, the human error

rates are up to 120 % higher compared to the reference condition. For ASR, similar

results were obtained, with the exception that Bavarian results in slightly increased

errors compared to East Phalian.

An analysis of variance was performed to test the significance of several parameters

that may influence the recognition scores obtained with original signals and Set V:

Table 3.5 shows the percentage of variance explained by the variables ‘intrinsic variation’

(speaking rate, effort, and style), and choice of speaker and listener (the latter only for

HSR experiments). The results show that the variabilities from Set V have a significant

impact on the overall recognition performance in HSR and ASR. There are however

shifts in the importance between the parameters ‘variability’ and ‘speaker’, which are

discussed in the next section.

3.3.2 Information transmission

The confusion matrices for consonants, vowels and several articulatory features were

used to calculate the relative transmitted information Tr associated with these features,

as described in Section 3.2.5. Fig. 3.3 presents the scores in dependency of speaking
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Intrinsic variation Speaker Listener
HSR

Original (SNR -6.2 dB) 28.4** 33.1** 7**
Resynth (SNR 3.8 dB) 9.2** 67.7** 7.7**

ASR
-6.2 dB 50.8** 24.7* -
-1.2 dB 35.4* 40.9** -
3.8 dB 28.8* 46.9** -
8.8 dB 32.9** 48.8** -
13.8 dB 27.3* 50.3** -

TABLE 3.5 Results of an ANOVA of recognition scores: The values denote the proportion of
variance explained by the intrinsic variation, speaker’s and listener’s identity. The asterisks
specify the level of significance (* < 5 %, ** < 1 %).

style, rate and effort, and dialect and accent for both HSR and selected ASR conditions.

The analysis based on AFs shows that conditions with similar average performance

(both HSR conditions and ASR at +8.8dB SNR) exhibit considerable variations, both

among different AFs and intrinsic variations. Scores obtained with resynthesized

signals are in most cases higher than scores for original logatomes for consonant and

consonant-associated features (left and center panels in Fig. 3.3). For vowel associated

features (right panels), the opposite result is found. High speaking effort (‘loud’) yields

above-average performance for original signals, which can mainly be attributed to the

voicing and place feature. This is however not observed for resynthesized features, for

which only medium transmission scores are obtained.
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FIG. 3.3 Information transmission scores for consonants and consonant-associated features
(left and middle panels) and for vowels and the articulatory feature ‘height’ (right panels),
depending of speech-intrinsic variations which are contained in Set V (upper plots) and Set D
(lower plots; ND = ‘no dialect’, EF = ‘East Frisian’, BV = ‘Bavarian’, EP = ‘East Phalian’,
FR = ‘French)). The categorical variabilities are depicted as connected line graphs for reasons
of readability.
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The overall low performance for original signals and low speaking effort (‘soft’) is

reflected in the Tr-scores for all articulatory features, with the exception of voicing. For

ASR, a strong dependence of the variability is observed for voicing: While normally and

slowly spoken logatomes result in relatively high values for this feature, it is strongly

degraded for the categories ‘fast’ and ‘loud’ (with degradations of 36 % and 53 %

compared to the reference condition ‘normal’).

3.3.3 Phoneme duration

The distributions of phoneme duration for utterances with high and low speaking rate,

as well as for normally spoken utterances are shown in Fig. 3.4. The durations were

derived from the output of the forced alignment procedure, as described in Section 3.2.5.

The categories ‘loud’ and ‘soft’ did not significantly change phoneme duration compared

to the reference condition and are therefore not shown in the plot. As expected, fast

and slow speaking style differ in phoneme duration from normal speaking style. This is

reflected both in the average durations and the 5 % / 95 % quantiles for variabilities fast

(with 103 ms duration in average and 40/200 ms for the quantiles), slow (avg.: 255 ms,

quantiles: 70/550 ms) and normal (avg.: 146 ms, quantiles: 45/316 ms). However, the

distributions of durations for different speaking styles exhibit a considerable overlap.

An analysis of variance was carried out for the phoneme duration with the explanatory

parameters speaker, phoneme index and speaking style. All of these parameters were

found to significantly contribute to the observed variance (p < 0.01). The speaking

style had the largest impact on the variance of duration, followed by phoneme index

and the choice of speaker. When considering a single speaker and a single phoneme,

the effect of changes in speaking rate is much more noticeable, as the distributions
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almost show no overlap in many cases. An example is shown in the right panel of

Fig. 3.4.
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FIG. 3.4 Distribution of phoneme duration for fast, slow and normal speaking style, averaged
over all speakers and phonemes (left panel) and for a single speaker and the phoneme /i/

(right panel). The phoneme duration was derived from the forced alignment labels and analyzed
with a histogram with 50 bins (left panel) or 10 bins (right panel).

Changes in speaking rate were found to affect both HSR and ASR recognition

(Table 3.4), especially when the rate was increased. The dependency of duration and

recognition rate was analyzed on phoneme level for HSR and ASR scores (Fig. 3.5). Both

HSR conditions are shown, as well as the ASR scores for which an identical masking

level as in HSR was used (-6.2 dB) and which showed similar overall performance (SNR

of 8.8 dB).

When human listeners had to recognize noisy, original signals, the recognition rate of

the vowel group D1 = /a/, /e/, /i/, /o/, /u/ (open symbols in Fig. 3.5) decreased with

increasing duration of that phoneme. On the other hand, the recognition of the vowels

(D2 = /a:/, /E/, /I/, /O/, /U/) is improved for increased duration. This general trend

can also be found for the resynthesized signals (lower left panel in Fig. 3.5), however,
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FIG. 3.5 Relation between phoneme duration and recognition rate for vowel phonemes (two
HSR and two ASR conditions). For the phoneme labels in the plot, the SAMPA notation has
been used. The inlays show the logarithmic confusion matrix of vowels with durations of 140
to 200 ms. The order of phonemes in each CM is V1 = (/a/, /a:/), V2 = (/E/, /e/, /I/,
/i/), V3 = (/O/, /o/, /U/, /u/); the confusion groups are separated by black lines.

for some examples (/E/, /I/) this result was not observed. The HSR recognition

curves for D1 and D2 intersect at a duration of approximately 170 ms which therefore

can be considered as an estimate of the category boundary between short and long

vowels for our human listeners. We analyzed the confusions of phonemes in HSR with

similar duration (ranging from 140 to 200 ms) and found that the following confusions

produced the highest error rates (where the first and second phoneme correspond to the
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presented and chosen item, respectively): (/a/, /a:/), (/E/, /e/), (/e/, /I/), (/I/, /e/),

(/i/, /I/), (/O/, /o/), (/o/, /U/), (/U/, /o/), (/u/, /U/). Hence, the phonemes can be

pooled in three groups that contain often confused vowels, i.e., V1 = (/a/, /a:/), V2

= (/E/, /e/, /I/, /i/), and V3 = (/O/, /o/, /U/, /u/). The same groups were found for

HSR with resynthesized signals, with the exception of (/O/, /a:/) which corresponds

to an inter-group confusion with a high error rate. The corresponding vowel confusion

matrices (CMs) are shown as inlays in Fig. 3.5. The same confusion patterns were

identified for CMs that included vowels for normal speaking style when all durations

were included in the analysis, i.e., the grouping into confusion groups appears not to

be affected by the rate of speech.

For ASR at high SNRs, comparable overall trends were found, i.e., phonemes in

V1 and V2 were similarly affected by the duration, and errors were mainly restricted

to the same confusion groups (with the exception of (/a:/, /O/) which produced high

errors for all SNRs in ASR). However, at high masking levels, the dependency between

recognition and duration is not as pronounced as in HSR, since a reduced duration

does not consistently result in an increased recognition of vowels in D1. For example,

the scores for /O/ and /U/ decrease with duration while in the case of other phonemes

(/o/ and /e/) a consistent trend is not observed at all. While the highest error rates

still correspond to within-group confusions, many confusions occur between (V1, V3)

(with an error rate of 33 % compared to 1 % in HSR at the same masking level) and

(V2, V3) (with 31 % compared to 0.1 % in HSR). These errors were highly asymmetric,

as the confusions (V3, V1) and (V2, V3) exhibited error rates of only 5 %.

In case of consonants (which are not shown in the figure), a strong dependency be-

tween duration and recognition was not observed. The fricatives yielded improvements

with increasing duration (for ASR more than for HSR, which might result from ceiling

80



3.4. Discussion

effects), while the other consonants showed no consistent trend. The performance

increase for fricatives might be due to their relative stationarity in the fricative portion

of the consonant, which enables human listeners to perform a temporal integration

over a longer time windows, thereby increasing the SNR.

3.4 Discussion

3.4.1 Human vs. machine performance

A direct comparison of human and automatic speech recognition performance shows

that average phonemes scores in HSR are superior to the results obtained with standard

ASR system. In case of original signals at -6.2dB SNR (Set V), the averaged HSR and

ASR accuracies are 74.5 % and 31.8 %, respectively, which corresponds to an increase

of word error rate (WER) of 167 %. In order to achieve the same performance, the SNR

has to increase by approx. 15 dB for ASR. For dialect measurements, similar results

were obtained (HSR: 74.0 %, ASR: 34.0 %, relative increase of WER: 154 %). The gap

narrows if the information for human listeners is limited to the information content of

MFCCs: The increase of WER between HSR with synthetic stimuli and ASR (both at

3.8 dB SNR) amounts to 29 % (or 5 dB in terms of the SNR, respectively). Again, the

results for dialect measurements are consistent with an increase of 20 %.

These results can be compared to HSR and ASR results from other studies: Lippmann

(1997) reported an increase of WER by a factor of five for the automatic recognition of

alphabet letters (based on classification with a neural net). Cooke and Scharenborg

(2008) used a VCV database to measure ASR performance based on MFCC features

with an HMM classifier and found a relative increase of 85 % compared to HSR.

In both cases, these results were obtained with clean speech (in contrast to noisy
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3. Speech-intrinsic variations in human and automatic speech recognition

speech employed in this study), which may explain for the differences to the presented

experiments. Sroka and Braida (2005) [SB05] analyzed consonant confusions of human

and automatic recognizers in speech-weighted noise with VCV utterances. Their results

can be compared to SNR-dependent HSR results obtained with the OLLO database

(Meyer et al., 2009b) [M09] and to the ASR scores from this study (Fig. 3.6). The

presented human accuracies from [M09] are based on one speaker from the OLLO

database and normally spoken utterances. For comparison, the ASR results for

consonant recognition and normal speaking style (based on experiments with Set V)

are plotted.
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FIG. 3.6 Comparison of HSR and ASR scores from (Sroka and Braida, 2005) [SB05], (Meyer
et al., 2009b) [M09], and this study.

Although the recognition curves exhibit a similar steepness, the results show consid-

erable variations across the experiments: The differences in accuracy are up to 18 %

and 13 % absolute for HSR and ASR, respectively. These differences may result from

the fact that different speech corpora have been used for the studies, which adds the
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element of across-speaker variability and differing phoneme inventory. However, the

gap between human and machine performance is almost identical for both experiments,

and amounts to approximately 12 dB for consonant recognition and normally spoken

utterances (SB05: 12.0 dB, M09 and this study: 11.8 dB). This gap was determined

by linear interpolation of the recognition curves and calculating the SNR shift that

yields the smallest rms error between the HSR and ASR curves. This result is similar

to the overall SNR-shift observed in this study: When vowel phonemes are included

and scores are averaged over the complete test set, the gap in terms of the SNR is

15 dB (Set V) and 13 dB (Set D).

3.4.2 Effect of resynthesis

The SNRs for HSR tests with original and resynthesized signals were chosen with the

aim of producing similar overall performance. The choice of SNRs was based on the

presentation of only few test lists to one human listener and proved to be reasonable

for other test subjects as well, as the averaged accuracies show a good resemblance:

The score differences between resynthesized and original signals for Set V and Set

D were 2.1 % and 0.2 %, respectively (cf. Table 3.4). Therefore, the macroscopic

information loss caused by MFCCs can be expressed in terms of the signal-to-noise

ratio, i.e. the SNR of resynthesized signals has to be 10 dB higher in order to obtain

similar recognition performance. Based on this observation, the gap caused by feature

calculation (which can be compared to the bottom-up processing in the human auditory

system) and by classification (equivalent to the hypotheses-driven top-down processing)

can be estimated: With an overall gap of 15 dB and a contribution of 10 dB due to

feature calculation and resynthesis, the imperfect back-end in ASR accounts for 5 dB of

the SNR shift between human and automatic recognition. This comparatively smaller

83



3. Speech-intrinsic variations in human and automatic speech recognition

contribution of the imperfect back-end is consistent with the findings by Jürgens and

Brand (2009) who used an auditory model as front-end to ASR and compared the

case of perfect a-priori knowledge of the word template to be recognized with the case

where only the class of the word template to be recognized was known. While in the

first case a near-to-perfect prediction of human recognition scores was possible, in the

latter case a gap of approx. 13 dB was observed.

Preliminary measurements have shown that the information contained in MFCCs is

sufficient to recognize speech in the absence of noise, since the intelligibility in HSR is

not degraded when using resynthesized signals instead of the original ones. This is in

line with earlier studies (Leonard, 1984), where a 99.9 % recognition rate was achieved

with digits that were resynthesized from features coding the spectral envelope (i.e.,

linear prediction coefficients). However, the presented measurements in noise clearly

show that during the calculation of MFCCs a significant amount of useful information

is removed, confirming results from (Peters et al., 1999). The advantage of a judicious

choice of SNR in the current study is that this information loss can be quantified in

terms of recognition rates and in terms of the SNR.

Apart from the information loss due to feature calculation, other factors might

contribute to the degraded speech intelligibility of resynthesized speech: The algorithm

that was employed might not optimally reconstruct the time signals, i.e., not all

information from the ASR features is perfectly made audible for the listeners. We tried

to cover this problem as good as possible by performing pilot experiments with various

excitation signals; however, there might still be room for improvement by optimizing,

e.g., the pulse form of the excitation signals. Training effects might also play a role

in HSR since a fixed fundamental frequency was used for the excitation signal; this

resulted in utterances that sounded artificial and unfamiliar to the listeners. Training
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sessions were performed before each measurement to limit the influence of such training

effects.

Original signals exhibit lower consonant transmission scores, which is due to the

fact that they were obtained at a lower SNR (-6.2 dB) than the resynthesized signals

(+3.8 dB). Vowel phonemes have a higher spectral energy and are therefore less affected

by the influence of the additive masker. However, the process of feature calculation

and resynthesis appears to influence human vowel recognition stronger than consonant

recognition, since vowel-associated features show degraded transmitted information,

in spite of the higher SNR (Fig. 3.3). Although MFCCs have been found to encode

the spectral shape of vowels well, the reduced frequency resolution may result in

inferior differentiation between proximate formants compared to human listeners. The

performance drop may also be caused by discarding the phase information which is in

accordance with other works where ASR was improved by exploiting phase information

(Schlueter and Ney, 2001) or HSR accuracy was reduced by limiting the audible

information to the power spectrum (Peters et al., 1999).

3.4.3 Effect of intrinsic variations

Changes in speaking style, rate and effort were found to degrade HSR (with an avg.

degradation of 23 %) and ASR (47 % degradation in average at an SNR of 8.8 dB).

Instead of considering the effect of variability on the percentage of correct responses,

the robustness of HSR and ASR against extrinsic and intrinsic variations may also be

expressed in term of the equivalent change in SNR: In HSR, the presence of varied

speaking rate, effort or dialect resulted in a degradation of performance which is

equivalent to a 1.5-dB-decrease in SNR for a stationary, speech-shaped masking noise

(assuming medium speech intelligibility where flooring or ceiling effects are avoided,
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(Meyer et al., 2009b)). These HSR results were obtained with the same test sets (Sets

V and D, respectively) that have been employed in the current study. Hence, they

can be compared directly to the machine results presented in Table 3.4: In ASR, the

effect of intrinsic variations (Set V) has the same effect as an increase of 5 dB of the

masking level. This was estimated based on two observations: The ASR accuracy

increases almost linearly with approx. 2 % per dB for SNRs from -5 to 15 dB. Second,

the average accuracy for normal speech is approximately 10 % higher than speech with

changed speaking rate, effort and style.

The results in Table 3.5 show that intrinsic variabilities considerably contribute to

the variance of recognition scores in HSR and ASR. The speaker’s identity is a second

important parameter. It explains at least one third of the variance observed in HSR

with original signals and in ASR. Intrinsic variations also have a significant effect on

resynthesized speech. In this condition, however, the speaker’s identity seems to have a

more dominant effect than speaking rate, effort and style. This might result from the

elimination of speaker-specific, non-redundant cues (e.g., fine phonetic detail) that are

removed during feature calculation and resynthesis. The remaining cues may not be

sufficient for human listeners to adjust to speaker-specific changes. In case of ASR, the

factor ‘variability’ is more important than in HSR with resynthesized speech, which

is consistent with the overall higher sensitivity of ASR against such variations (as

described above).

Speech-intrinsic variations also affected the transmitted information associated with

several articulatory features (AFs): Compared to human performance, the voicing

feature in ASR is degraded by 32 % (averaged over the SNRs shown in Fig. 3.3) when

utterances are spoken normally, while manner and place are degraded by 18 and 25 %,

respectively. This confirms findings of Sroka and Braida (2005), who observed that
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the voicing feature was suboptimal recognized by an MFCC-based ASR system when

testing phoneme recognition in speech-shaped noise. Cooke and Scharenborg (2008)

reported the largest deviations between HSR and ASR for the place feature, while for

voicing and manner only small differences were measured. However, these scores were

obtained with clean utterances, and can therefore not directly compared to our results.

If resynthesized logatomes contained the same information as the original signals,

the scores for resynthesized should be improved compared to the reference condition,

since the masking level for resynthesized signals was 10 dB higher than for original

utterances (Note that this is a necessary requirement for informationally equivalent

signals, not a sufficient requirement). Higher scores for original signals are observed for

most of the consonant-associated scores, but the differences are especially small for the

voicing feature for the categories ‘question’, ‘slow’, and ‘soft’ and even vanish for the

conditions ‘loud’ and ‘fast’ (Fig. 3.3). Hence, relevant information employed by human

listerners to distinguish voiced and unvoiced consonants is discarded during feature

calculation. The information loss also severely degrades the machine performance. This

suggests to incorporate at least some aspects of spectral fine structure associated with

the recognition of voicing in order to overcome these deficiencies by changing the way in

which spectral information is converted into speech cues. The use of such fine-grained

cues seems especially important when the speech contains changes in speaking effort

and rate. One way to perform such information extraction is the use of Gabor filters

(Kleinschmidt, 2003a), for which data-driven algorithms exist that can be employed

to estimate suitable filter parameters, and which could be designed to explicetely

differentiate between voiced and unvoiced phonemes. This approach is supported by

findings from HSR indicating that certain aspects of fine-structure play an important

role in word identification and lexical segmentation (Davis et al., 2002). Increased
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speaking effort (‘loud’) gave the best consonant recognition for original signals in HSR

and is on par with the resynthesized signals (in spite of the differing SNRs), which show

no increase for this variability. In ASR, loudly spoken utterances result in the lowest

consonant recognition. Similar to the observations for the voicing feature, it seems

that human listeners rely on cues contained in speech spoken with increased effort that

are lost during feature calculation, which at least partially contributes to the overall

low ASR performance for high speaking effort. It is an open question which cues ar

the most relevant for this observed large difference between HSR and ASR. Obviously,

several AFs are affected (cf. Fig. 3.3), but the perceptual cues associated with these

features (especially for the AFs ‘place’ and ‘manner’) are not easily accessible. Although

the recordings of the OLLO database have been carried out in a quiet environment,

the properties of loudly spoken utterances may be similar to the parameters that are

changed in Lombard-speech, i.e., speech that has been recorded in noisy surroundings,

which results in a slight decrease of consonant duration, changes in spectral properties

of fricatives, and maximum burst energy of plosives (Junqua, 1993).

The dependency of vowel duration and recognition rate was presented in Fig. 3.5. In

case of HSR and for ASR at high SNRs, two groups of vowel phonemes emerge, for

which longer phoneme duration either results in higher recognition performance (D1

= /a/, /e/, /i/, /o/, /u/) or decreased performance (D2 = /a:/, /E/, /I/, /O/, /U/).

When spoken at normal speaking rate, vowels from D1 have a longer duration than

the phonemes from D2 (Hillenbrand et al., 1995), which was shown to be an important

cue for confusion groups in other studies (Phatak and Allen, 2007).

The errors were mainly restricted to confusions within three groups of vowels, (V1 =

(/a/, /a:/), V2 = (/E/, /e/, /I/, /i/), V3 = (/O/, /o/, /U/, /u/)), with the exception of

the confusion (/O/, /a/). The separation between the groups D1 and D2 was obscured
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for ASR when the same masking level as in HSR (-6.2 dB SNR) was used; this was

attributed to the asymmetric confusions (V1,V2) and (V1,V3). The separation between

D1 and D2 observed in HSR suggests that human listeners rely on these temporal

cues for vowel recognition in situations in which target phonemes with otherwise

similar properties (e.g., formant frequencies) need to be distinguished. Overall vowel

recognition with resynthesized signals and in ASR at high SNRs was found to be lower

than for original signals; nevertheless, temporal cues also seem to play a major role

for differentiation between vowels, while ASR seems not to be able to exploit these

cues from noisy features. This results suggest that human listeners employ different

strategies to process the information from ASR features compared to a hidden Markov

model, e.g. by temporal integration of the signal, or by recognizing the patches of the

internal representation belong to the acoustic object that should be recognized. It is

unclear if this temporal integration performed by the human auditory system should

be considered as a bottom-up detection advantage (due to, e.g., the availability of

specialized feature detectors sensitive to signals with a certain duration) or a top-down

advantage (due to the availability of “learned” patterns with a certain duration that

can serve as a hypothesis for the utterance to be recognized).

One approach to study the bottom-up hypothesis underlying the man-machine gap

in this case could be an incorporation of temporal or spectro-temporal information on

feature level. Techniques that explicitly cover temporal aspects have been reported to

lower error rates in many acoustical scenarios (Hermansky and Sharma, 1999). Gabor

filters have been used to extract spectro-temporal information from spectrograms and

were found to be very robust again noise since they can be considered matched filters

for specific speech features which increases the local SNR (Kleinschmidt, 2002). It
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remains to be seen if these techniques can help to decrease the degradations in the

presence of altered speaking rate.

Tr-scores of resynthesized and original signals were consistent for the dialects under

consideration, i.e., both conditions are similarly affected for the majority of the AFs.

This suggests that variations caused by the dialects under investigation are equally well

encoded by standard ASR features. Overall vowel recognition shows less variation than

the recognition of consonants, both for HSR and ASR. For French accent, the height

feature is especially well recognized, which is due to reduced number of confusions with

closed-mid and open-mid vowels when a closed vowel was presented. The low overall

score confirms results from (Garcia Lecumberri et al., 2008), where strong degradations

of phoneme accuracy were observed when the first language of talker and listener

differed. In this specific case, the degradation is mainly caused by a low recognition of

the articulatory features ‘place’ and ‘manner’.

An open question is if the results that were obtained with VCV and CVC utterances

are scalable to continuously and conversational speech. Variations in conversational

speech are considerable larger then recordings under controlled situations, as speaking

rate and effort are subject to frequent changes. However, experiments comparable with

our approach would require a database with labeled phonemes and variabilities, which

does not yet exist to our knowledge. For the creation of suitable databases, problems

such as the ambiguous labeling of phonemes are further aggravated in the presence of

strong variations in spoken language, as, e.g., Shriberg et al. (1984) have shown for

transcription of children speech.
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3.5 Conclusions

• Even for the relatively simple task of phoneme classification, the difference

between HSR and ASR remains considerably large: The relative increase of errors

is larger than 150 % (assuming medium speech intelligibility). If the information

contained in standard ASR features is made audible and presented to human

listeners, the gap narrows, but error rates are still 20 % higher for ASR.

• The information loss caused by the calculation and resynthesis of mel-frequency

cepstral coefficients can be expressed in terms of the signal-to-noise ratio: Similar

recognition results in HSR are obtained when the SNR is 10 dB higher for

resynthesized signals instead of unaltered speech files. The overall ASR-HSR gap

was found to be approximately 15 dB. It can be decomposed into a bottom-up

component (due to imperfect representation of speech by the acoustic features,

which amounts to approx. 10 dB in SNR) and a top-down component (caused

by imperfect classification techniques, which is about 5 dB in SNR).

• Speech-intrinsic variations were shown to significantly affect both human and

machine performance and increased word error rates by up to 120 %. The analysis

based on articulatory features showed that for utterances with increased speaking

effort and high speaking rate, the differentiation between voiced and unvoiced

sounds was especially problematic in ASR. A way to cope with this deficiency

may be to modify the scheme of purely spectral features (e.g., by introducing

feature components that cover some aspects of spectral fine structure).

• The recognition rates of vowels heavily depend on the speech rate and the duration

of these phonemes. Both in HSR and ASR, two groups of vowels were identified
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that yielded either an improved or a deteriorated recognition with increased

duration. The highest error rates were mainly restricted to specific sets of vowels

(V1 = (/a/, /a:/), V2 = (/E/, /e/, /I/, /i/), V3 = (/O/, /o/, /U/, /u/)). While

the errors in HSR were consistent over a wide range of signal-to-noise ratios, the

ASR confusion patterns were less consistent even at relatively low masking levels.

This inability of the ASR system to utilize duration cues in a similar way as in

HSR suggests that temporal and spectro-temporal aspects of speech should be

incorporated in ASR systems in a more appropriate way, which might be better

suited to capture vowel transients.
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4
Robustness of spectro-temporal

features against intrinsic and extrinsic

variations in automatic speech

recognition1

Introduction

The large gap in performance between human speech recognition (HSR) and advanced

automatic speech recognition (ASR) is most drastically encountered in adverse acoustic

conditions and prohibits ASR technology from being widely used. Consistently, humans

outperform machines by at least an order of magnitude (Lippmann, 1997). In recent

studies, the gap between human and automatic recognizers was found to be somewhat
1This chapter has been submitted in its present form for publication in the Speech Communication

Journal on June 30th, 2009. (Meyer and Kollmeier, 2009a). Parts of this work have been published
in the Interspeech conference proceedings after a full peer-review (Meyer and Kollmeier, 2008,
2009b).
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smaller, but error rates are still more than 150 % higher for ASR than for HSR for a

simple phoneme recognition task (Meyer et al., 2007). Human listeners outperform

ASR systems not only in acoustically challenging situations (e.g., in the presence of

noise or competing talkers), but also when previously unknown clean speech is to be

recognized. Intrinsic factors such as gender, speaking rate and style, dialect, accent,

and vocal effort contribute to the vast variability the human auditory system can cope

with much better than current speech recognizers. Hence, finding auditory models

that adequately model speech perception has to include the difficult task of modeling

human robustness against these intrinsic variations. Our attempt to narrow the gap

between human and automatic speech recognition is thus motivated by the idea of

transferring auditory processing principles from the human auditory system to ASR.

While many cognitive aspects of speech perception still lie in the dark, there is

much progress in the research on signal processing in the more peripheral parts of the

auditory system. Findings from a number of physiological experiments in different

mammal species showed that a large percentage of neurons in the primary auditory

cortex (A1) respond differently to upward- versus downward-moving ripples in the

spectrogram of the input. Individual neurons are sensitive to specific spectro-temporal

modulation frequencies in the incoming sound signal (Depireux et al., 2001).

The neurophysiological data fit well with psychoacoustic experiments on early

auditory features: In (Kaernbach, 2000), a psychophysical reverse correlation technique

was applied to masking experiments with semi-periodic white noise. The resulting basic

auditory feature patterns are distributed in time and frequency and in some cases consist

of several unconnected parts, very much resembling the spectro-temporal receptive

field (STRF) of cortical neurons, i.e., the model representation of the excitatory and

inhibitory neurons in the auditory cortex.
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The STRFs often clearly exceed one critical band in frequency, have multiple peaks

and also show tuning to temporal modulation (cf. the example in Fig. 4.1). Still,
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FIG. 4.1 Spectro-temporal receptive field of a neuron in the primary auditory cortex of the
Mongolian gerbil (adapted from Happel et al. (2008)). Dark and light areas denote excitatory
and inhibitory regions, respectively.

the STRF patterns are mainly localized in time and frequency, generally spanning at

most 250ms and one or two octaves, respectively. In the visual cortex, comparable

neural tuning to spatially complex and time-varying patterns is measured with (moving)

orientated grating stimuli. The results match very well two-dimensional Gabor functions

(De-Valois and De-Valois, 1980). Gabor functions have also been used to approximate

auditory STRFs as a sum of time-frequency separable Gabor functions (Qiu et al.,

2003). Response patterns derived from STRFs were shown to correlate with articulatory

features of phonemes (such as voicing or place or articulation) and result in confusion

matrices similar to confusions from human listeners when used as features for ASR

(Mesgarani et al., 2007).
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4. Robustness of spectro-temporal ASR features

The physiological findings have inspired a number of ASR studies that make explicit

use of spectro-temporal features instead of relying on the common extraction of purely

spectral features and adding delta and double delta derivatives: Kleinschmidt et al.

used Gabor functions as a simple model for STRFs to compute features for automatic

speech recognizers (Kleinschmidt, 2002; Kleinschmidt and Gelbart, 2002; Kleinschmidt,

2003b). The parameters for the Gabor filters (such as spectral and temporal extent and

modulation frequencies) were optimized in a stochastic process with physiologically

motivated constraints. Features obtained from these filters improved digit recognition

scores compared to an MFCC baseline by 56 % on average. This approach of spectro-

temporal processing by using localized sinusoids matches the neurobiological data

and also incorporates other features as special cases: purely spectral Gabor functions

perform an analysis similar to Mel-frequency cepstral coefficients (MFCCs) - modulo

the windowing function - and purely temporal ones can resemble TRAPS or the RASTA

impulse response and its derivatives (Hermansky, 1998) in terms of temporal extent

and filter shape.

In a related study, a large number of Gabor features was used to cover a wider range

of modulation frequencies, which were subsequently processed with multiple non-linear

neural networks to merge the spectro-temporal features streams (Zhao and Morgan,

2008). Heckmann et al. (2008) proposed hierarchical spectro-temporal features based

on Gabor filtering for ASR. Similar to the work by Kleinschmidt et al., they used a

statistical process to select filter parameters that yield optimal recognition performance.

Gabor filters were applied to the output of a Gammatone filterbank, which resulted in

localized spectro-temporal features. These features were then combined to cover a wide

range of frequencies and temporal ranges. Spectro-temporal processing based on a 2D

discrete cosine transform (DCT) was analyzed by Ezzat et al. (2007). The 2D-DCT
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was applied to patches of the short-time Fourier transform. By using only lower

coefficients as basis for ASR features, relevant information including spectro-temporal

patterns were extracted from speech. Despite the different approaches in these studies,

spectro-temporal features were found to improve the baseline recognizers in stream

combination experiments by approximately 20-30 %.

Even though the features described so far have the potential of reducing the human-

machine gap in ASR discussed above for extrinsic variations (i.e., speech-in-noise), it

is unclear if they show the same potential for intrinsic variations. Both properties

would be a necessary prerequisite for including spectro-temporal features in advanced

auditory models for human speech perception as well as ASR systems in order to close

the human-machine performance gap. This study is based on the work by Kleinschmidt

et al., and focuses on the robustness against the variability in spoken language. It

was investigated if the explicit use of spectro-temporal information helps to increase

overall robustness against extrinsic and intrinsic factors. Additionally, we report on

complementary information of MFCCs and spectro-temporal features, and on the

theoretical and practical improvements resulting from a combination of feature types.

4.1 Feature types

4.1.1 Spectro-temporal Gabor features

Gabor features are calculated by processing a spectro-temporal representation of the

input signal with a number of 2-D modulation filters. The filtering is performed by

correlation over time of each input frequency channel with the corresponding part of the

Gabor function (centered on the current frame and desired frequency channel) and a

subsequent summation over frequency. This yields one output value per frame per filter
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4. Robustness of spectro-temporal ASR features

and is equivalent to a 2-D correlation of the input representation with the complete

filter function and a subsequent selection of the desired frequency channel of the output.

In this study, log mel-spectrograms serve as input features for the feature extraction.

This was chosen for its widespread use in ASR and because the logarithmic compression

and mel-frequency scale may be considered a very simple model of peripheral auditory

processing. Even though features from a more sophisticated auditory model could have

been used for spectral decomposition and temporal envelope compression (such as, e.g.,

the perception model used by Tchorz and Kollmeier (1999)) the usage of the standard

preprocessing stage allows for a better separation of the observed effects between

(temporal and spectral) preprocessing and the spectro-temporal feature extraction

which is of primary interest here.

The two-dimensional complex Gabor function G(n,k) is defined as the product of

a truncated Gaussian envelope g(n,k) and the complex sinusoidal function s(n,k).

Alternatively, the filter can be designed as the product of a Hanning envelope h(n,k)

and s(n,k), which was shown to result in improved filter characteristics and improved

ASR scores (Meyer and Kollmeier, 2008). In this study we therefore use modified

Gabor filters with a Hanning envelope. Examples of the real part of a 2-D filter and

for a 1-D filter are shown in Fig. 4.2.

The envelope width is defined by the window lengths Wn and Wk, while the periodicity

is defined by the radian frequencies ωn and ωk with n and k denoting the time and

frequency index, respectively. The two independent parameters ωn and ωk allow the

Gabor function to be tuned to particular directions of spectro-temporal modulation,

including diagonal modulations. Further parameters are the centers of mass of the

envelope in time and frequency n0 and k0. In this notation, the Hanning envelope
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FIG. 4.2 Illustration of 1- and 2-dimensional filter prototypes for spectro-temporal filters. In
the left panel, the real part of complex 2D impulse responses is depicted. The right panel
shows real and imaginary parts as well as envelope of a 1D-filters, corresponding to a cross
section of a two dimensional filter.

h(n,k) is defined as

h(n, k) = 0.5 + 0.5 · cos
(

2π(n− n0)
Wn + 1

)
· cos

(
2π(k − k0)
Wk + 1

)
.

and the complex sinusoid s(n,k) as

s(n, k) = exp [iωn(n− n0) + iωk(k − k0)] .

The envelope width is chosen depending on the modulation frequency ωx, (with

x = k or x = n) respective the corresponding period Tx, either with a fixed ratio υx =

Tx / 2Wx = 1 to obtain a 2D wavelet prototype or by allowing a certain range υx =

1...3 with individual values for Tx being optimized in the automatic feature selection

process. For time dependent features, n0 is set to the current frame, leaving k0, ωk and

ωn as free parameters. From the complex results of the filter operation, real-valued
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4. Robustness of spectro-temporal ASR features

features are obtained by using the real, imaginary or absolute part only. In this case,

the overall DC bias was removed from the template. The magnitude of the complex

output can also be used. Special cases are purely temporal filters (ωk= 0 ) and purely

spectral filters (ωn = 0 ). In these cases, Wx replaces ωx = 0 as a free parameter,

denoting the extent of the filter, perpendicular to its direction of modulation.

Feature set optimization

In order to apply Gabor filters to the problem of speech recognition, parameter

sets from a large number of possible combinations need to be determined2. Feature

set optimization is carried out by a modified version of a Feature-finding Neural

Network (FFNN). It consists of a linear single-layer perceptron in conjunction with an

optimization rule for the feature set (Gramss and Strube, 1990). The linear classifier

guarantees fast training, which is necessary because in this wrapper method for feature

selection the importance of each feature is evaluated by the increase of rms classification

error after its removal from the set. This ’substitution rule’ method (Gramss, 1991)

requires iterative re-training of the classifier and replacing the least relevant feature

in the set with a randomly drawn new one. When the filter set is optimized with a

database containing isolated words without phoneme labels, a temporal integration

of features is carried out by simple summation of the feature vectors over the whole

utterance. This results in one feature vector per utterance as required for the linear net.

2This issue may be solved implicitly by automatic learning in neural networks with a spectrogram
input and long time windows of e.g. 1s. However, this is computationally expensive and prone
to overfitting, as it requires large amounts of training data, which are also often unavailable. By
putting further constraints on the spectro-temporal patterns, the number of free parameters can
be decreased by several orders of magnitude. This is the case when a specific analytical function,
such as the Gabor function, is explicitly demanded. This approach narrows the search to a certain
sub-set and thereby some important features might be ignored. However, neurophysiological and
psychoacoustical knowledge can be exploited for the choice of the prototype, as is done here.
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4.1. Feature types

The FFNN approach has been successfully applied to digit recognition in combination

with Gabor features in the past (Kleinschmidt, 2002; Kleinschmidt and Gelbart, 2002).

The Gabor filter set used in this study was obtained by using the FFNN with

the ZIFKOM German digit data, which contains single digit utterances spoken by

100 female and 100 male speakers. It was equally split into a training and test set

with noises added as proposed in the AURORA 2 framework. Temporal and spectral

modulation frequencies for the filters were randomly chosen in an interval from 2 to

50 Hz and 0.06 to 0.05 cycles/octave, respectively. Boundary conditions for the spectral

extent of the filter guaranteed that even at low modulation frequencies the filters did

not exceed 23 frequency channels or 101 time frames (corresponding to 1s filter length).

The filter set contained 80 filter functions; the 15 filters which resulted in being most

relevant for the classification of the speech data are shown in Fig. 4.3.

Non-linear transformation

The original 80-dimensional filter output was processed by a Tandem system (Her-

mansky et al., 2000) as shown in Fig. 4.4: In a first step, the feature vectors were

online normalized and combined with delta and double-delta derivatives before using

them as input to a non-linear neural net (or multi-layer perceptron (MLP)). The MLP

was provided by the QuickNet software package (http://www.icsi.berkeley.edu) and

had 80N, 1000 and 56 neurons in input, hidden and output layer, respectively. It

was trained on the TIMIT phone-labeled database with artificially added noise. The

resulting posteriors were decorrelated using a principal component analysis (PCA)

which yields 56-dimensional, decorrelated feature vectors. These vectors are used as

input features to a Hidden Markov model (see Section 4.2.2).
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FIG. 4.3 Gabor filter functions obtained with the Feature Finding Neural Network. The figure
shows the 15 most relevant filters from a set with a total of 80 filters. About 60 % of the filters
had a spectro-temporal structure, while 30 % were purely spectral or temporal, respectively.

4.1.2 MFCC features

Mel-frequency cepstral coefficients (MFCCs) have been chosen as baseline for this

series of experiments. For the computation of MFCCs (Davis and Mermelstein, 1980),

a pre-emphasis is applied to the signal before calculating the smoothed short-time

Fourier transform (STFT). Each frame is then processed by a mel-filterbank (which

approximates the response of the human ear), compressed with the logarithm and

transformed to cepstral parameters using an inverse discrete cosine transformation. By
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FIG. 4.4 Gabor features are calculated by correlation of each filter with a mel-spectrogram
and subsequent selection of the center frequency fc associated with each filter. This results
in 80-dimensional vectors, which are processed with a non-linear neural net, a principal
component analysis and a hidden Markov model. Gabor functions on the left are examples of
purely temporal, spectral and spectro-temporal filters. The cross-correlation in this example
was obtained with a spectro-temporal filter that emphasizes the diagonal transient.

selecting the lower cepstral coefficients, only the coarse spectral structure is retained.

This processing results in mostly decorrelated features.

For the presented experiments, MFCC features were calculated using the rastamat

Matlab toolbox (Ellis, 2003) with parameters that resemble feature extraction from

the HTK software (Young et al., 1995), i.e. the filter bank used 20 frequency channels;

the 13-dimensional features were concatenated with delta and acceleration coefficients.

Signals with 16 kHz bandwidth were used as input to the front-ends.

4.2 Methods

4.2.1 Speech databases, training and test sets

The robustness of ASR features against extrinsic variations, i.e., additive noise or

channel distortions is often assessed by the performance loss produced by mismatches

between training and test noise types or SNRs. Similarly, the robustness against

intrinsic variations may be evaluated by training the recognizer on normally spoken
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4. Robustness of spectro-temporal ASR features

utterances and testing it on utterances that cover a wider range of variabilities. In this

work, two databases are used for ASR experiments to cover both aspects of variability.

AURORA 2 database

The AURORA 2 framework was used to assess the impact of additive noise sources.

The database contains strings of connected digits from the TIDigits database (Leonard,

1984) to which various noise types were added at SNRs ranging from -5 dB to 20 dB

in 5 dB-steps. The framework provides two training modes: ‘Multi-condition’ refers

to training the recognizer with clean and noisy signals, where four noise types are

used (suburban train, crowd of people (babble), car and exhibition hall). For ‘clean

condition’ training, only utterances without additional noise have been employed.

The test set covers eight noise types at SNRs from -5 dB to 20 dB, as well as clean

speech. Four of these noises are the same as for multi-condition training, while the

remaining noises (restaurant, street, airport and train station) are not used during

training. Therefore, the effect of matched vs. mismatched test and training can be

investigated. The test set also includes speech signals filtered with a telephone bandpass

characteristic before applying the noises suburban train and street, taking channel

transmission effects into account.

In order to evaluate the robustness of a system, results for the clean trained HMM

are of special interest, as the HMM models do not contain any specific information

about possible distortions in this case. Therefore, the scores obtained with this training

mode are a good measure for the invariance of features against the noise types in the

test set.
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No. of different VCVs 70 (five outer vowels (/a/, /E/, /I/, /O/, /U/) combined
with 14 central consonants (/b/, /d/, /f/, /g/, /k/, /l/,

/m/, /n/, /p/, /s/, /S/, /t/, /v/, /ţ/))
No. of different VCVs 80 (eight outer consonants (/b/, /d/, /f/, /g/, /k/, /p/,

/s/, /t/) combined with 10 central vowels (/a/, /E/, /I/,
/O/, /U/, /a:/, /e/, /i/, /o/, /u/))

No. of different logatomes 150
No. of speaking styles 5 (fast, slow, lould, soft, question) + ref. condition

’normal’
No. of speakers in

training set
6 (3 male, 3 female, no dialect)

No. of speakers in test set 4 (2 male, 2 female, no dialect, speaker ids {1, 2, 6, 8})
TABLE 4.1 Properties of the Oldenburg Logatome database and the training and test sets
used for the ASR experiments.

Oldenburg Logatome Corpus

The Oldenburg Logatome Corpus (OLLO) is a database that was recorded for speech

intelligibility tests with human listeners and for experiments with automatic classifiers

(Wesker et al., 2005). It consists of non-sense utterances or logatomes, i.e. words

without semantic meaning which comply with phonetic and phonotactic rules. The

logatomes are composed of triplets of vowels (V) and consonants (C), with the outer

phonemes being identical. 50 speakers recorded 70 VCVs and 80 CVCs with different

speaking styles, efforts and speaking rates, thus enabling an analysis of the effect of

such intrinsic variations of speech. During the recordings, participants were asked to

speak each logatome either normally or in one of five variations. The properties of the

database are listed in Table 4.1. For details on the OLLO corpus, the reader is referred

to (Wesker et al., 2005).

For the ASR experiments in this study, subsets of the OLLO database were selected

for training and test of the recognizer (Table 4.1). The variabilities fast and slow
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speaking rate, high and low speaking effort (conditions ‘loud’ and ‘soft’), and condition

‘question’ which refers to utterances with rising pitch were equally distributed in

this selection. Additionally, normally spoken utterances were included as reference

condition. The ASR task was to recognize one of 14 middle consonants or one of 10

central vowels. The use of a phoneme recognition task allows for an analysis of the

recognition of phonemic-articulatory features, such as voicing or the place and manner

of articulation to gain some insight into which properties of speech sounds result in

correct and false classification.

Utterances of the OLLO database from three male and three female German talkers

without dialect served as training data, logatomes from the four remaining speakers

without dialect were used for the test. The chosen segmentation of the corpus results

in a speaker- and gender-independent ASR system. While the training set contained

only normally spoken logatomes, the test set additionally contained utterances with

the aforementioned variations (conditions ‘fast’, ‘slow’, ‘loud’, ‘soft’, ‘question’).

The training and test was carried out with noisy signals for which a speech-shaped

stationary noise (Dreschler et al., 1999) was added to the utterances at SNRs ranging

from -10 to 10 dB in 5 dB-steps. Since the focus of this experiment was on intrinsic

variations, the same SNR was chosen for training and test. The SNR was calculated

by relating the root-mean-square (rms) value of the speech segments of each audio

signal and the rms value of the masking noise of equal length. A simple voice detection

algorithm based on an energy criterion was used to extract connected speech segments.

Additionally, the classifier was trained and tested with clean speech.
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4.2.2 Automatic recognizers

HTK baseline recognition system

Gabor and MFCC features were used to train and test recognition systems based

on Hidden Markov models (HMM), implemented in the HMM toolkit (Young et al.,

1995). For experiments with the AURORA 2 database, the classifier was configured

according to (Hirsch and Pearce, 2000), i.e. the HMM used 16 states per word and

three Gaussian mixtures per state, which are connected by a left-right-model that

not allows for skipping states. For experiments with the Oldenburg Logatome corpus,

the task was defined as recognition of the central phoneme in the CVCs and VCVs,

mimicking earlier experiments with human listeners based on the OLLO corpus (Meyer

and Wesker, 2006). Logatomes with the same outer phoneme were used to train and

test single HMMs (based on HTK) which were subsequently used to classify the central

phoneme in CVCs and VCVs, i.e., confusion occured only for central phonemes. Note

that in this test setup, confusions between the consonant and the vowel group cannot

occur. The HTK was configured with three states per phoneme and eight mixtures per

state.

Philips Continuous ASR system

Additionally, the performance of Gabor features vs. MFCCs was tested using a more

advanced recognition system, i.e. the Philips Continuous ASR system (Lieb and Fischer,

2002). This classifier was chosen for two reasons: First, it was investigated if Gabor

features can increase performance in a recognition system that incorporates denoising

techniques as well as methods to improve auditory modeling such as discriminative

training for HMMs. Second, the Philips ASR system provides methods to combine
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feature streams that were used for an analysis regarding feature complementarity of

purely spectral and spectro-temporal features, as described in Section 4.3.4.

The feature extraction stage is based on MFCCs (12 cepstral coefficients with delta

features which yields 24-dim. feature vectors) and an HMM classifier, and combines

feature extraction techniques such as non-linear spectral subtraction, noise-masking or

linear discriminant analysis (LDA) and classification based on discriminative training.

Gabor and MFCC features were used as input to the recognizer both individually and

with a combination of feature streams. As for the experiments based on HTK, the

training and test sets as proposed in the Aurora 2 framework were used.

4.2.3 Articulatory features and transmitted information

The acoustic cues important for consonant identification are analyzed by decomposing

consonants into their articulatory features (AFs). This method of data analysis was

proposed by Miller and Nicely (1955) who used five linguistic or articulatory features to

group speech stimuli, i.e., voicing, nasality, affrication, duration, place of articulation.

The features of nasality and affrication may be combined into one feature ‘manner of

articulation’ with three possible feature values (stop, nasal or fricative) which refers to

the mode of articulatory production. The confusion analysis presented in this study is

based on AFs with values as shown in Table 4.2.

These features originate from the set defined by (Jacobsen et al., 1952); their

values are based on the International Phonetic Alphabet (Handbook, 1999). The

features ‘voicing’, ‘place of articulation’ and ‘manner of articulation’ are associated

with consonant phonemes, while ‘backness’ and ‘height’ were calculated from vowel

confusions.

108



4.2. Methods

Articulatory
feature

Feature values Corresponding phonemes

Place Bilabial /p/, /b/, /m/
Alveolar /f/, /v/
Labiodental /t/, /d/, /n/, /s/, /ts/, /l/
Palato-Alveolar /S/
Velar /k/, /g/

Manner Plosive /p/, /t/, /k/, /b/, /d/, /g/
Nasal /n/, /m/
Fricative /s/, /f/, /v/, /S/, /ţ/
Lat. Approx. /l/

Voicing Voiced /b/, /d/, /g/, /v/, /n/, /m/, /l/
Unvoiced /p/, /t/, /k/, /s/, /f/, /S/, /ţ/

Backness Back /O/, /U/, /o/, /u/
Front /a/, /E/, /I/, /a:/, /e/, /i/

Height Closed /I/, /U/, /i/, /u/
Close-mid /e/, /o/
Open-mid /E/, /O/
Open /a/, /a:/

TABLE 4.2 Articulatory features, their feature values, and the phonemes that correspond
to a specific feature value (based on the International Phonetic Alphabet proposed by the
International Phonetic Association)

Values in the articulatory CM do not solely depend on the information transmission

associated with a particular feature and stimulus condition but also on the entropy of

feature values which, e.g., is reflected by the respective chance performance and/or

response bias. To correct for this effect, the amount of transmitted information was

computed by measuring the relationship between the probability distribution pi of a

specific stimulus x and the response frequency (or probability) distribution pj, of the

respective response category y. The information transmission (or mutual information)

T(x,y) is computed using the expression

T (x, y) = −
∑
i,j

pij log pipj

pij
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with the input variable x and the output variable y, each having the possible values i

= 1, 2, . . ., k and j = 1, 2, . . ., m, respectively, with the corresponding probabilities

pi, pj, and the joint probability pij. The indices i and j refer to the index in the

phoneme confusion matrix associated with the 24 central phonemes of the OLLO

database. The complete confusion matrix is used to compute the global information

transmission by the consonants or vowels in the OLLO recognition task. Moreover, the

phoneme confusion matrix is transformed into the feature confusion matrix for each of

the respective features listed in Table 4.2 that has a much lower dimensionality. The

indices i and j refer to the index in the feature confusion matrix with the elements pij .

The probabilities pi and pj are the a-priori and a-posteriori probabilities for the stimuli.

Hence, determining T(x,y) from the confusion matrices for each of the phonetic features

can be used to assess the information transmission for each AF. Since the logarithm is

taken to the base 2, T(x,y) is a measure of how many bits are given by the output to

specify the information in the input. To make the transmitted information independent

from the already existent information in the input, we report the relative information

transmission Tr = T (x, y)/H(x) with the source entropy H(x) = ∑
i pi log(pi) (Miller

and Nicely, 1955).

4.3 Results

This section is structured as follows: First, the results for the experiments aiming at

robustness against extrinsic variations are reported. The effect of intrinsic variations

and the analysis with articulatory features is presented in Sections 4.3.2 and 4.3.3,

respectively; the detailed results of these experiments are reported in Tables 4.4 and 4.5.

Complementary information of spectral and spectro-temporal features is discussed in

Section 4.3.4.
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4.3.1 Effect of extrinsic variations

On the AURORA 2 task with various additive noise conditions, Gabor features

improved the baseline for all noise types as shown in Table 4.3. Additionally, we show
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Multi cond.
MFCC 89.1 88.4 86.8 88.0 86.6 87.8 88.3 86.2 83.5 85.7 87.0
Gabor 89.9 89.1 88.9 89.3 87.2 88.7 89.6 87.8 88.1 87.3 88.6

Rel. Red. WER 7.3 5.9 16.5 11.4 4.8 8.0 10.8 11.1 28.1 11.1 11.5
MFCC 88.1 87.2 84.6
Gabor 89.3 88.3 87.7

Rel. Red. WER 10.5 8.6 20.2
Clean cond.

MFCC 66.7 47.8 58.1 62.4 50.1 60.7 49.6 53.1 65.3 66.7 58.1
Gabor 86.1 79.1 84.7 83.9 75.4 83.4 80.4 82.5 85.5 82.7 82.4

Rel. Red. WER 58.3 60.0 63.6 57.2 50.7 57.7 61.1 62.7 58.3 48.1 57.8
MFCC 58.7 53.4 66.0
Gabor 83.5 80.4 84.1

Rel. Red. WER 59.8 58.1 53.2
TABLE 4.3 Recognition scores and relative reduction of word errors for the AURORA 2 digit
recognition task. The training was carried out either with clean speech, or with a speech mixed
with various noise types (‘multi’). Tests were always performed using using a mixture of
noisy and clean signals.

the reduction in WER, which are commonly reported for AURORA 2. On average,

errors with Gabor features were reduced by 11.5 % relative for multi-condition training.

When the recognizer is trained with clean utterances and tested with a variety of noise

types the difference between the feature types becomes more noticeable with a relative

reduction of 57.8 % in WER.
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Gabors consistently outperform MFCCs for noise types which are used in multi-

condition training (first four noise types in Table 4.3), as well as for noises not being

used for the training (noises 5-8), and noisy signals which have been filtered with

realistic frequency characteristics (‘Subway M’ and ‘Street M’). The average benefit is

consistent over these conditions, i.e., Gabor features have a similar sensitivity against

mismatches of the employed training noises as MFCCs.

4.3.2 Effect of intrinsic variations

ASR phoneme recognition rates depending on speech intrinsic variations are shown

in Tables 4.4 and 4.5 for MFCC and Gabor features. Gabor features that were

used as direct input to the HMM (i.e., the non-linear transformation with the neural

net as described in Section 4.1.1 was omitted) produced scores between MFCC and

non-linearly transformed Gabor features and are not shown in the table.

The overall performance with matched training and test conditions is similar for

cepstral and Gabor features: When averaging over all SNRs and variabilities, the

phoneme accuracy is 51.0 % (MFCCs) and 53.3. % (Gabors). Intrinsic variations

degrade ASR performance compared to the reference condition for both feature types.

The performance drop averaged over all SNRs (including SNRs -10 dB and 10 dB) is

13.7 and 15.1 % absolute for MFCCs and Gabor features, respectively. The relative

increase in terms of word error rate is 26.2 % and 30.4 %. Rather large differences

between the ASR feature types are observed for the conditions ‘loud’ and ‘question’:

When clean utterances are used for training and test, MFCCs produce 35 % more

errors than spectro-temporal features. In average, Gabor features were found to be less

sensitive to changes in speaking effort (‘loud’ and ‘soft’) and style (‘question’) than

MFCCs (cf. average values in Tables 4.4 and 4.5). On the other hand, spectro-temporal
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features are more affected by variations of speaking rate (‘fast’ and ‘slow’). These

differences are analyzed based on confusions of articulatory features (Section 4.3).
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Fast speaking rate, avg. rec. rate (all SNRs): MFCC: 50.5, Gabor 50.5
MFCC -5 37.6 20.9 8.4 16.7 8.7 36.0 39.7 31.9
Gabor -5 41.4 9.2 1.6 9.5 1.4 49.9 56.9 43.3
MFCC 0 53.2 33.4 29.1 27.6 23.4 54.8 69.5 44.3
Gabor 0 52.1 18.7 10.8 17.6 10.4 61.1 76.3 52.7
MFCC 5 62.7 47.4 35.6 42.4 39.7 59.8 78.6 50.9
Gabor 5 58.2 23.9 16.5 19.2 16.1 63.5 81.3 53.3
MFCC Clean 68.3 59.8 49.4 57.2 55.5 63.1 86.8 55.5
Gabor Clean 65.6 48.0 34.1 40.3 45.0 56.9 82.8 46.4
Slow speaking rate, avg. rec. rate (all SNRs): MFCC: 56.6, Gabor 52.9
MFCC -5 37.7 25.0 20.5 18.6 15.6 31.8 30.5 27.9
Gabor -5 44.8 10.4 3.8 10.2 2.7 47.6 42.0 46.5
MFCC 0 61.7 45.2 47.4 36.2 34.3 62.5 72.6 56.8
Gabor 0 56.1 26.0 20.4 22.0 20.5 69.2 66.4 60.8
MFCC 5 72.1 63.0 66.6 52.8 60.7 69.3 85.5 62.8
Gabor 5 62.2 31.9 28.7 25.5 28.8 72.1 78.0 63.0
MFCC Clean 75.2 70.7 74.4 62.6 67.6 68.5 93.1 63.6
Gabor Clean 69.6 69.0 72.4 55.9 66.9 60.4 78.3 48.2

Loud speaking style, avg. rec. rate (all SNRs): MFCC: 44.8, Gabor 49.1
MFCC -5 37.6 15.6 6.5 10.7 5.5 38.7 42.9 31.8
Gabor -5 40.1 7.6 4.5 5.3 3.4 49.0 43.8 39.7
MFCC 0 50.0 26.8 14.8 19.9 13.4 53.8 58.8 44.3
Gabor 0 50.3 18.8 19.3 13.1 12.3 60.8 62.7 47.2
MFCC 5 54.3 32.4 20.3 28.4 19.0 55.4 61.4 44.0
Gabor 5 55.2 28.2 35.1 21.1 20.3 64.4 63.3 51.9
MFCC Clean 55.9 43.5 36.9 35.8 34.4 55.0 71.2 45.4
Gabor Clean 67.3 62.5 67.6 48.4 60.7 62.1 74.6 48.1

TABLE 4.4 ASR recognition rates for high and low speaking rate and increased speaking effort,
obtained with MFCC and Gabor features. A speech-shaped masking noise was used in training
and test. Additionally, the relative transmitted information for each experimental condition is
presented. Average values were obtained by averaging over SNR conditions, including SNRs
of -10 and 10dB, which are not shown in the table.
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Soft speaking style, avg. rec. rate (all SNRs): MFCC: 46.0, Gabor 50.0
MFCC -5 27.0 20.0 14.0 13.0 10.8 14.5 13.4 10.6
Gabor -5 37.5 11.7 7.9 9.4 4.9 29.7 24.5 27.0
MFCC 0 47.2 36.4 38.2 23.9 29.6 39.1 48.1 31.4
Gabor 0 51.1 24.3 26.3 18.7 18.2 53.5 58.3 40.2
MFCC 5 59.1 49.1 51.5 39.8 44.6 51.9 68.5 44.1
Gabor 5 61.8 35.9 43.1 25.8 34.7 59.7 68.1 42.8
MFCC Clean 67.0 65.5 61.5 62.3 57.5 60.0 86.1 51.1
Gabor Clean 66.4 67.8 64.9 60.6 64.6 56.0 77.9 41.2

Condition ’Question’, avg. rec. rate (all SNRs): MFCC: 45.7, Gabor 50.3
MFCC -5 33.6 22.9 16.7 17.9 13.2 27.3 30.4 24.7
Gabor -5 37.5 9.0 3.1 9.2 2.3 46.8 45.5 43.0
MFCC 0 53.1 32.5 33.5 24.5 24.2 52.5 67.2 43.4
Gabor 0 50.4 22.8 24.0 15.8 20.9 60.9 65.1 52.5
MFCC 5 56.2 41.8 36.6 32.2 41.6 53.6 73.7 44.5
Gabor 5 58.2 28.8 38.4 19.6 24.2 67.8 76.9 58.7
MFCC Clean 59.2 50.1 50.2 44.8 39.5 56.8 80.3 48.8
Gabor Clean 70.6 73.1 68.1 68.7 74.2 59.3 80.8 46.2

Normal speaking style, avg. rec. rate (all SNRs): MFCC: 62.4, Gabor 65.6
MFCC -5 46.4 27.1 17.0 23.3 17.0 41.4 43.6 38.2
Gabor -5 56.2 16.7 15.3 14.7 7.4 60.1 66.0 53.8
MFCC 0 70.2 50.2 50.5 43.0 40.8 68.7 79.9 61.4
Gabor 0 69.3 41.6 47.3 35.0 36.3 72.9 80.5 64.7
MFCC 5 76.2 62.8 62.0 53.2 58.0 73.9 84.7 66.6
Gabor 5 75.9 52.5 64.6 45.5 47.1 75.5 80.0 66.4
MFCC Clean 78.0 70.7 71.9 64.4 63.3 70.9 94.1 66.4
Gabor Clean 78.6 81.8 82.9 76.4 83.2 70.3 85.8 59.5

TABLE 4.5 ASR recognition rates for low speaking effort, logatomes spoken with rising pitch,
and the reference condition. See the caption of Table 4.4 for details.
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4. Robustness of spectro-temporal ASR features

The performance degradation caused by intrinsic variations can be compared to the

degradation caused by additive noise. Fig. 4.5 shows the relative increase of phoneme

recognition error for both feature types. The relative increase in each panel is related to
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FIG. 4.5 Relative increase of word error rate resulting from higher masking level and speech
intrinsic variations for two ASR feature types, depending on the SNR used for training and
test. The horizontal dashed line denotes the average increase of error EV induced by intrinsic
variability for clean utterances. The vertical line highlights the SNR at which the error of
normally spoken utterances reaches EV .

normally spoken utterances without noise. When the recognizer is trained and tested

with clean speech, changes of speaking style and effort result in an average increase

of 55.5 % and 50.0 % for MFCC and Gabor features, respectively. The same overall

degradation is caused by noise being added at approximately 0 dB for both features

types.

Although the average reduction in accuracy is similar for both feature types, the

variance of differences caused by intrinsic variations are larger for MFCCs than for
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Gabor features: For example, changes in speaking rate have a relatively small effect

on MFCCs with a relative increase in error of 13 % for condition ‘slow’. On the other

hand, loud speaking style results in an increase of errors by a factor of two. With

degradations between 37 % (‘question’) and 61 % (‘fast’), the fluctuations observed for

Gabor features are much smaller.

4.3.3 Articulatory features and information transmission

The relative transmitted information for articulatory features for normal speaking style

is shown in Fig. 4.6 for two training and test conditions. The results for consonants and

vowels were derived directly from the corresponding phoneme confusion matrix. For

clean speech, the recognition rates of consonants (and AFs associated with consonants)

are 20.0 % higher in average with spectro-temporal features than for MFCCs. Overall

vowel recognition is almost identical, but the AFs ‘backness’ and ‘height’ show higher

scores for MFCCs. The opposite is true at low SNRs, where vowels seem to be better

represented by Gabor features, and AFs corresponding to consonants are relatively

high for MFCCs.

The transmitted information depending on intrinsic variations is presented in Fig. 4.7

for consonants and vowels, as well as for the articulatory features height and place

of confusion. The scores shown in the figure depend on two parameters, i.e., the

SNR used for training and test, and intrinsic variation. For Gabor features, the

degradation of performance for changed speaking rate (cf. average values in Table 4.4)

is reflected in the recognition of consonants and the AF ‘place of articulation’, while

vowel recognition is not as strong influenced by fast and slow speaking style. In case of

cepstral coefficients, the degraded performance for slow speaking rate is mainly caused
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FIG. 4.6 Relative transmitted information Tr for MFCC and spectro-temporal features for
various articulatory features for two training and test conditions (clean and -5 dB SNR) for
normal speaking style. The vertical line separates features associated with consonants (left)
and vowels (right).

by vowel-associated confusions, whereas for loud speaking style the performance loss

can be contributed to the degradation of consonant features.

Fig. 4.5 showed that at 0 dB the performance for clearly spoken utterances is

approximately the same as for speech with varying speaking rate and style. In order

to analyze if this is true on a more ‘microscopic’ level (i.e. if the same applies

for confusions of AFs of phonemes), we compared the articulatory features of both

conditions (condition ‘normal’ at 0 dB vs. the average over all variabilities (excluding
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FIG. 4.7 Transmitted information for MFCC and Gabor features, articulatory features and
speech-intrinsic variabilities for two noise conditions.

‘normal’) for clean speech). The results (Fig. 4.8) show that the recognizer is affected

differently in the presence of extrinsic and intrinsic variations: Adding additive noise

results in degraded scores for consonants and consonant-associated features, whereas

intrinsic variations affected vowel recognition.

4.3.4 Complementarity of spectral and spectro-temporal features

While the limitation to purely spectral information is a theoretical disadvantage of

MFCCs, it is often difficult to achieve improvements for tuned ASR systems with

completely new features. We therefore investigated if both feature types carry comple-

mentary information and if a combination of Gabor and MFCC features is a promising

approach. For these experiments, we chose results obtained with the Philips continuous

recognizer (Lieb and Fischer, 2002) with an improved feature extraction stage (cf.
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FIG. 4.8 Comparison of conditions at which the same overall performance was found due to
additive noise (‘0 dB’) and intrinsic variations (‘clean, avg. over variabilities’).

Section 4.2.2). The recognition task was the same as for the HTK recognizer, i.e., digit

classification within the AURORA 2 framework.

The intersection of misclassified digit tokens E from both systems was chosen as

a measure for complementary information: Ierr = EGabor ∩ EMF CC . The smaller Ierr

is, the smaller is the error rate of an (imaginary) perfect classifier that can use the

MFCC or the Gabor feature information, and thus only produces an error if a digit

was misclassified by both single-stream systems. A low error rate of such a perfect or

’oracle’ system represents a high complementarity of feature streams. Insertions and

deletions are included in Ierr if an insertion or deletion occurs at the same position

of the transcribed string of digits. The word accuracies of both feature types and the

oracle system are shown in Table 4.6. Performance obtained with Gabors was between
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Word accuracy
Multi Clean Average

a) MFCCs 83.7 54.9 69.3
b) Denoised MFCCs 91.4 89.8 90.6
c) Gabor 89.7 81.2 85.4
d) Oracle 96.3 95.3 95.8
e) Gabor + Denoised MFCCs (b + c) 93.4 90.7 92.0

TABLE 4.6 Word accuracies obtained with original and denoised MFCCs and Gabor features.
Oracle results show the theoretical improvements that a perfect classifier with knowledge about
which feature stream would perform best could achieve. The best real-world performance is
obtained with a stream combination of MFCC and Gabor features processed by an MLP.

scores for denoised and original MFCC features. When denoised MFCCs are used as

baseline, the perfect knowledge scenario decreases the error rates about 55 % relative.

These results motivated a combination of feature streams: Denoised MFCCs were

concatenated with Gabor features and used to train and test the Philips recognizer,

as described in Section 4.2.2. Before concatenation, Gabor features were reduced to

24 dimensions by selecting the first 24 components of the PCA-transformed feature

vector (cf. Table 4.6). Adding MFCCs resulted in 48-dimensional vectors, which

were transformed to 24-dimensional vectors using a linear discriminant analysis. Since

all feature vectors that were compared had 24 components, the number of model

parameters of the classifier was kept constant.

The result of the stream combination experiment is shown in Table 4.6 (row e):

The word accuracy was improved for clean and multi-condition training when using

concatenated Gabor features and denoised MFCCs. The scores correspond to relative

reductions of 16 % in average and 23 % for multi-condition training compared to

denoised MFCCs. Compared to MFCCs without denoising, the average reduction in

WER is over 70 %.
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4.4 Discussion

4.4.1 Robustness of Gabor features against extrinsic variations

The comparison of spectro-temporal and MFCC features showed that Gabor features

provide increased robustness against a wide range of noise sources. Improvements

over the AURORA 2 baseline were found when the recognizer was trained on noisy

utterances. The average reduction in relative word error was 35 % for the HTK

recognizer and 47 % for the Philips Continuous ASR system compared to MFCC

features.

The increased performance might be a result of the FFNN algorithm: Since the

optimization of filter parameters is carried out on speech material, the (optimized)

Gabor filters can be considered as matched filters for distinctive speech features. These

filters appear as relatively robust against additive noise. In contrast to this, the spectral

content of speech is well encoded by MFCC features which deliver good performance for

tests with clean speech. However, this representation seems to be severely degraded in

the presence of noise. It might be the spectro-temporal cues (which might be redundant

for clean speech, but become more important at low SNRs) which cause the good

robustness against extrinsic variations found in these experiments. Interestingly, the

best performance with Gabor features were obtained with filter sets on German digit

data, although one of the recognition tasks was the classification of English utterances.

This indicates that Gabor filter sets might be suitable for a larger group of recognition

tasks without the need to optimize a new filter set for each test condition.

In several physiological studies (Depireux et al., 2001; Qiu et al., 2003) it was reported

that a large proportion of spectro-temporal receptive fields in the auditory cortex are

separable, i.e., the STRFs can be expressed as the product of a spectral and a temporal
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function and do therefore not contain any ‘true’ spectro-temporal patterns. However,

in our experiments with separable Gabor functions, we have so far not been able to

improve the results compared to the non-separable Gabor functions which have been

used in this study. This indicates that at least parts of the speech information that

the (optimized) Gabor features from our set are matched to cannot be represented

by a simple combination of spectral and temporal properties. Instead, a time-varying

spectral content (resembling, for example, a transition in fundamental frequency or

formant frequency) is specifically captured by some of the Gabor features employed

here.

4.4.2 Effect of intrinsic variations

Intrinsic variations (speaking rate, style and effort) had a strong impact on ASR per-

formance, with an overall degradation of approximately 50 % for phoneme recognition

in clean speech (Fig. 4.5). Our analysis showed that Gabor features differ from MFCC

features regarding sensitivity against intrinsic parameters: MFCC features were less

sensitive against changes in speaking rate, while the overall recognition of speaking

effort and style was improved with Gabor features. Thus, the usage of spectro-temporal

features is not only beneficial for overall performance, but also results in different

sensitivity against intrinsic variations, which could be utilized to increase robustness

by combining properties of cepstral and Gabor features.

The reason for the higher error rates for fast spoken utterances might be that the

optimization of the filter set was carried out on words that were spoken at normal

speaking rate. Higher spectro-temporal modulation frequencies, which could be better

suited to detect, e.g., formant transitions of speech at high speaking rate, may therefore

not be included in the filter set. For purely spectral features, the adaptation to
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different rates of speech is performed in the back-end stage, whereas some of the timing

information is included in the spectro-temporal features which are “frozen” in a certain

word production speed used during learning. An adaptation of Gabor filters to other

speaking rates could be performed by including utterances with fast and slow speaking

rate (e.g., from the OLLO database) during filter selection.

The increase in WER due to intrinsic variations was compared to the increase due

to additive noise (Fig. 4.5). The overall effect of the analyzed speaking style, effort

and rate was approximately the same as for a stationary masker added at 0 dB SNR

to clean signals. This result was obtained in a phoneme recognition task with matched

ASR training and test. It remains to be seen if this result holds for other tasks as well

(e.g., recognition of words or conversational speech) that require other speech databases

with labels of such variations of speech. The analysis based on transmitted information

showed that the type of error patterns differs for the described conditions: additive

noise affected the consonant-associated features, presumably because consonants have

less energy than vowels and are therefore masked by the stationary noise. This was

not the case for intrinsic variations, for which the transmitted information of vowels

and vowel features was affected more strongly. This may be caused by the stronger

variations in the articulation of vowels due to an altered speaking style (such as, e.g.,

fast, slow, question, . . .) as opposed to the consonants that are roughly articulated in

the same way.

4.4.3 Interaction between ASR features and articulatory features

The analysis based on transmitted information of clean speech showed that consonants

and the AFs ‘voicing’, ‘place’ and ‘manner’ are better recognized with Gabor features,
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while MFCCs had advantages for vowels and the vowel-AFs ‘backness’ and ‘height’.

For low SNRs, the opposite result was found (Fig. 4.6).

It seems that at high SNRs, the coding of spectral envelope performed by MFCCs is

better suited and spectro-temporal cues are not required for vowel recognition, and

that purely spectral coding of speech is sufficient in this case. As the SNR decreases,

the robustness against additive noise becomes more salient. Gabor features encode

the temporal modulation and local movement of speech energy typical for formant

transients for vowels, which may result in a locally increased SNR and therefore

enhanced performance. On the other hand, the good performance of MFCCs for

consonants at low SNRs might be due to the presence of characteristic energy clusters

that are separated in the frequency domain (e.g., high-frequency elements due to

frication in combination with a low-frequency stop or formant maximum characteristic

for manner and place of articulation) which can be favorably detected based on the

spectral envelope. The fact that Gabors produced better consonant scores in clean

speech might be due to the better representation of spectral fine structure and phoneme

transitions, which are not included in cepstral coefficients, but used in Gabor features,

and which were suggested to be included for ASR systems earlier (Dimitriadis et al.,

2005; Scharenborg, 2007).

4.4.4 Complementarity of MFCC and Gabor features

The Gabor filter set was not designed with a combination with MFCCs in mind, but

still resulted in an increase of performance when feature streams were concatenated

(Table 4.6). Relative WERs were reduced both in a theoretical approach (55 %) as

well as in a real-world scenario (16 %), which demonstrated the potential of this class

of physiologically motivated features. However, this is not even halfway to the WER
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reduction observed for the oracle system, which motivates more advanced feature

combination techniques, such as linear discriminant analysis or the combination of

multiple neural nets. These findings are in line with results from related studies that

analyze spectro-temporal features: When combining high-dimensional Gabor features

with MFCCs in a multi-stream environment, an improvement in WER of 30 % was

found (Zhu et al., 2005). Similarly, a combination of RASTA-PLP (Hermansky and

Morgan, 1994) and spectro-temporal features was reported to lower ASR error rates

by roughly 20 % (Heckmann et al., 2008).

Furthermore, the result suggests to include MFCCs in the feature selection process:

The Gabor filter set with best performance exhibits 30 % purely spectral and temporal

filters, respectively, while 40 % of the automatically defined filters are spectro-temporal.

An inclusion of spectral features in the parameter definition process would presumably

result in a shift away from spectro-temporal and purely temporal filters, thus increasing

complementary information. Other candidates for features to be included during filter

optimization are TRAPS features which account for the temporal dynamics of spoken

language (Hermansky and Sharma, 1999).

Although the experiments based on the Oldenburg Logatome Corpus aimed at the

effect of intrinsic variations, the robustness of the analyzed features types against

extrinsic factors for that database are interesting with respect to complementarity:

The data shows that consonant properties are well-recognized by Gabor features for

clean speech (matched training and test), whereas MFCCs perform better for vowel

AFs (and vice-versa for noisy speech). This result helps to understand why Gabor

features are beneficial in a stream-combination experiment: Since the task defined

in the AURORA 2 framework is to recognize digits in a wide range of SNRs and in

clean speech, the different properties of feature types of spectral and spectro-temporal
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features help to increase overall robustness. We therefore argue that Gabor features and

MFCCs carry complementary information on different levels, which could be exploited

in feature-stream experiments.

4.5 Conclusions

The most important findings from this study can be summarized as follows:

• Spectro-temporal Gabor features were found to be more robust than an MFCC-

based classifier against a wide variety of extrinsic sources of variability: Small

improvements were achieved when the classifier was trained and tested with a

mixture of clean and noisy signals. When the training was performed with clean

utterances, the reduction in word error rate was over 50 %. These results are in

line with other studies that analyze spectro-temporal filters for ASR, and confirm

that spectro-temporal information can help to increase robustness against noise.

• The presence of intrinsic variations such as speaking rate, style and effort severely

degrades the performance of ASR. In acoustically optimal conditions, the average

increase of errors was over 50 % for a phoneme recognition task. Purely spectral

and spectro-temporal features were affected differently by these variabilities:

While MFCCs were less susceptible to changes in speaking rate, the usage

of spectro-temporal input for ASR resulted in performance above baseline for

high and low speaking effort, as well as for utterances with rising pitch. This

finding suggests a combination of spectral and spectro-temporal features in future

experiments.

• The degradation due to intrinsic variations had a similar effect on overall phoneme

recognition as a stationary, speech-shaped noise at approximately 0 dB SNR.
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4. Robustness of spectro-temporal ASR features

This result was found both for cepstral and spectro-temporal features. However,

the confusions of single phonemes and articulatory features clearly differed, thus

demonstrating that intrinsic and extrinsic variations result in different microscopic

confusions.

• The errors that occur with spectro-temporal features are genuinely different from

MFCC features. An analysis regarding complementarity showed that a) different

errors occur with each feature type on a digit recognition task and b) these

features seem to carry complementary information which might be beneficial to

consonant and vowel recognition both in clean and noisy speech. This motivated

a combination of feature streams, which improved scores compared to a recognizer

using denoised MFCCs as feature input
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5
Summary and general conclusions

This thesis presents an analysis of differences between human and automatic speech

recognition, and analyzes an ASR front-end based on the extraction of localized,

spectro-temporal patches from the speech signal with the aim of narrowing the gap

between HSR and ASR (i.e., human and automatic speech recognition). In phoneme

recognition experiments based on the Oldenburg Logatome Corpus, error rates of

automatic recognizers were found to be more than 150 % higher than those of human

listeners. This demonstrates the advances that have been achieved in the last decade

of speech research (e.g., Lippmann (1997) reported an increase of errors by a factor of

five for a similar task that does not utilize higher-lexical knowledge), but also shows

the need for improved techniques to tackle the recognition problem.

5.1 Top-down vs. bottom-up processing

The overall gap between human and automatic recognition in terms of the signal-to-

noise ratio was found to be 15 dB, i.e., the masking level for ASR has to be reduced

by 15 dB to achieve the same performance as human listeners. By using resynthesized
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speech tokens in HSR (which were informationally equivalent to ASR features) this

gap was divided in a bottom-up component of 10 dB (motivating the improvements of

feature extraction presented in Chapter 4) and in a top-down component of 5 dB (cf.

Fig. 5.1).

Human	  listeners	   ASR	  System	  

Non-‐sense	  u4erances	  

NOISE	  
-‐6.2	  dB	  

NOISE	  
+8.8	  dB	  

NOISE	  
+3.8	  dB	  

Signals	  	  
informaConally	  	  
equivalent	  to	  	  
ASR	  features	  

ASR	  
features	  

Unaltered	  
signals	  

Bo4om-‐up	  gap	  	  
(imperfect	  features)	  

10dB	  SNR	  

Top-‐down	  gap	  	  
(missing	  world-‐knowledge)	  

5dB	  SNR	  

FIG. 5.1 Separation of the man-machine-gap in the effects of bottom-up processing and the
top-down component. For the depicted HSR conditions and ASR at this specific masking level,
the same overall accuracy was obtained, i.e., the phoneme recognition rate was approximately
75 %. For this phoneme recognition task, the overall gap in terms of the signal-to-noise ratio
was approx. 15 dB, for which feature extraction and classification contributed approx. 10 dB
and 5 dB, respectively.

Recently, individual properties of top-down mechanisms have been incorporated into

ASR systems (such as, e.g., algorithms for learning physiologically motivated features

for optimal speech recognition, which relates to (long-term) learning of relevant speech

cues (Chiu et al., 2009)). However, the majority of mechanisms playing a role in
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top-down processing are not yet implemented in automatic recognizers. For example,

human listeners use selective attentiveness to extract auditory cues cues that are likely

associated with the desired acoustic target (Bregman, 1994). This is often based on

specific knowledge about the target, which is not considered in the standard approach

to ASR. The results presented in this thesis demonstrate that the classification bears

room for improvement, which may serve as motivation to incorporate further aspects of

top-down processing in ASR. Additionally, the quantitative comparison of the results

obtained in HSR with resynthesized signals and ASR scores makes it possible to analyze

specific weaknesses in common HMM-based classifiers.

5.2 Intrinsic variations of speech

The intrinsic variations that were parametrically changed in the Oldenburg Logatome

Corpus (OLLO) were shown to affect both human and automatic recognition. In

average, the influence of changes in speaking rate, effort and style had a similar effect

on HSR as an increase of 1.5 dB of the masking level when a speech-shaped, stationary

noise signal is used. In comparison, the disruptive influence on automatic recognizers

was stronger: intrinsic variations resulted in the same overall degradation as an increase

of the masking level by 5 dB. Furthermore, experiments presented in Chapter 4 showed

that the average sensitivity of ASR towards intrinsic variations is comparable to the

effect of a stationary masker at 0 dB (assuming matched training and test conditions).

Confusions on the level of phonemes and articulatory features were however quite

different for both types of variability, which indicates that different techniques will be

required in ASR to cope with extrinsic and intrinsic sources of variation.

Large variations were observed between different studies that analyze phoneme

confusions of men and/or machines. This shows that a direct comparison of absolute
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scores between experiments is often not feasible: Apart from factors such as the

number and type of phonemes, the calculation scheme of the SNR (short-time SNR vs.

long-term SNR), and differences between masking signals, the factor of across-speaker

variability strongly contributes to the differences between studies, as talkers often

employ different strategies when being asked to change their speaking style (Krause and

Braida, 2003). In this context, the use of speech data recorded from the same speakers

appears to be an important prerequisite in order to minimize unwanted variance of

the recognition scores. The overall low robustness of ASR towards intrinsic factors

was exemplary shown based on confusions of vowels with high and low speaking rate.

While the errors in HSR were consistent over a wide range of signal-to-noise ratios,

the ASR confusion patterns were less consistent even at relatively low masking levels.

This inability of the ASR system to utilize duration cues in a similar way as employed

in HSR suggests that temporal and spectro-temporal aspects of speech should be

incorporated in ASR systems in a more appropriate way, which may for example be

better suited to capture vowel transients.

5.3 Spectro-temporal features

The observations regarding insufficient processing of temporal cues in conventional

ASR systems motivated the design and evaluation of a system based on spectro-

temporal Gabor features. First, the robustness of optimized Gabor features (Meyer and

Kollmeier, 2008) against a wide variety of (extrinsic) noise sources was demonstrated.

The error rates compared to an MFCC baseline were more than halved when the

recognizer was trained with clean speech, but tested with noisy utterances. Even

when denoised MFCCs were chosen as baseline, Gabor features helped to increase

the noise robustness in a stream combination experiment. An analysis of errors that
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occurred with MFCCs and spectro-temporal features showed that this was due to

complementarity of these feature types. Experiments with the Oldenburg Logatome

Corpus showed that this complementarity also extends to intrinsic variations: Spectro-

temporal features performed well when the pitch was altered or the speaking effort

was high. On the other hand, classic MFCC features yielded good performance when

the speaking rate was changed. Finally, the analysis of confusions on phoneme level

demonstrated that the feature types exhibit complementary properties regarding vowel

and consonant recognition at high and low SNRs.

5.4 Future work

1. Improvement of ASR: One of the findings from the man-machine-comparison

(Chapter 3) was the suboptimal recognition of specific articulatory features. This

motivates further, well-defined changes to ASR features with the aim of improving

robustness against intrinsic factors: For example, the degradations observed for

increased and fast speaking style resulted from insufficient discrimination between

voiced and unvoiced sounds. This shows that the sole use of the spectral envelope

for the description of speech is not sufficient for an optimal recognition. Studies

that investigated the fine structure of speech (i.e., the subtle and fine-grained,

acoustic phonetic details of speech) strongly indicate that human listeners profit

from such cues (Davis et al., 2002). The incorporation of such fine-phonetic

features of the fine-structure is problematic in ASR, because it greatly increases

the demand for training resources and computational cost. Therefore, a trade-off

between adding additional information of speech and the compactness of features

is required. Due to their flexible properties and the wide range of parameters,
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Gabor features are possibly suitable to include some aspects of fine structure

from the signal without overly increasing the feature dimensionality.

The use of spectro-temporal modulation filters presented in Chapter 4 was

motivated by results both from the man-machine-comparison and physiological

findings, which suggest that neuronal detectors for spectro-temporal modulations

exist in the auditory system. From this line of research, two approaches that aim

at an improvement of robustness of ASR follow directly: a) A combination of

Gabor and MFCC features in ASR setups using multiple streams could exploit the

observed complementarity and possible increase the performance in the presence

of intrinsic variations. The comparatively simple combination of feature streams

(i.e., the concatenation and subsequent decorrelation of feature vectors) could be

replaced by state-of-the-art techniques used to select feature components based

on non-linear neural networks, which merge the input of several input streams

(as proposed in (Zhao and Morgan, 2008)) or feature selection algorithms such as

sequential floating forward search (SFFS), which efficiently searches through very

large parameter spaces (Pudil et al., 1994). b) Current approaches in feature

selection (e.g., SFFS) could be employed not only for feature combination, but

also to find suitable Gabor filter parameters. This could be combined with

experiments that aim at increasing the overall robustness of Gabor features

towards specific intrinsic variations (e.g., by incorporating speech material from

the OLLO database for feature selection, in order to capture a larger number

of modulation frequencies that allow for improved detection of transients in

utterances with high and low speaking rates). In order to approximate the

physiological ideal, a larger number than the currently used 80 filter prototypes
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could be employed, which has been shown to result in above-baseline results in

other studies (Zhao et al., 2009).

An open question is why Gabor features alone are not suited to improve baseline

results for some recognition architectures: Since the spectro-temporal filters can

be tuned to capture purely spectral components (and thus potentially provide the

same information that is supplied by cepstral features), an appropriate choice of

filter parameters should result in scores similar to the baseline. Moreover, adding

beneficial spectro-temporal and temporal feature components should result in a

further increase of performance, thereby rendering cepstral features redundant. It

might be due to the interaction of feature extraction and back-end which results

in the fact that MFCCs are often required in stream experiments to improve the

results: In the last 30 years a lot of work has been invested in the improvement

of MFCC-HMM-classifiers, which is a highly optimized combination. When

one of these components is replaced, it can therefore be difficult to achieve an

improvement over this classic architecture, which resides in a ‘local optimum’

for a wide range of recognition problems. A second explanation might be the

differences of recognition architectures, which are employed for the estimation

of filter parameters (i.e., a linear neural net) and for the actual recognition

task (i.e., a HMM or Tandem system). Due to the differences between these

classifiers, the filter set obtained with the Feature Finding Neural Network might

not be optimal for an HMM system, which could be solved by using the same

classifier for optimization and recognition (at the price of higher computational

requirements).

2. Modeling speech perception with ASR: Chapter 2 introduced a simple scheme

for modeling phoneme confusions in HSR. In this approach, the difference of
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spectral properties of acoustic stimuli was employed to predict recognition and

error rates. Despite the fact that other cues that are used by the human listeners

were disregarded (e.g., the grouping of co-modulated signals across frequency

channels (Festen, 1993), or the high temporal acuity of the auditory system that

exceeds the temporal resolution of typically 10 ms in ASR (Turner et al., 1995)),

this method was still suitable to explain for a large proportion of the variance

of scores. This suggests following this approach by using the tools developed

(i.e., the ASR framework combined with the Oldenburg Logatome Corpus) to

build a model of human speech perception. Other studies that are in line with

this research suggest that this might be a fruitful approach: Based on a model

of human perception (Dau et al., 1996) and using a simple speech recognizer

with a dynamic time warping algorithm, Jürgens and Brand (2009) showed that

microscopic phoneme confusions can be well-modeled with a high precision, and

that the speech reception threshold can be predicted with an accuracy of 1-2

dB. Barker and Cooke (2007) obtained good model predictions of microscopic

phoneme confusions based on methods traditionally used in ASR (i.e., hidden

Markov models), combined with features mimicking the human ability to extract

speech information from so called landmarks, i.e., regions above the noise floor

that appear as patches in a time-frequency representation.

Although the focus of this thesis is not explicitly put on modeling human speech

perception, the experiments presented in Chapters 2 and 3 establish the basis

for the design of perception models: Stemming from data collected from normal-

hearing subjects, an estimation of model parameters can be performed with

the goal of predicting microscopic speech intelligibility. In this context, the use

of the OLLO database offers several advantages: Due to the large number of
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speakers and utterances per speaker, it is well suited to perform the training of

ASR classifiers that allow for a general representation of inter-speaker variability.

Since the recognition task it to identify phonemes, the analysis of confusions

can easily be performed based on articulatory features to gain insight into the

nature of error patterns rather than analyzing the differences of specific classes

of stimuli. Finally, the influence of intrinsic variations can be modeled, in order

to analyze the basic properties of speech that exhibits increased speaking rate

or effort or varying pitch. In future studies, the simple model based on spectral

distance could be modified or replaced based on the approaches described above

(i.e. models that better account for properties of the auditory preprocessing).

The model could then be evaluated in the framework developed in this thesis,

which consists of the recognition system that is trained and tested with the

Oldenburg Logatome database in order to predict phoneme confusions and the

influence of intrinsic variations in spoken language.

The speech database used in this thesis as well as the speech data collected in

tests with human listeners have been made freely available for research purposes,

with the hope of fostering studies that exploit the mutual flow of information be-

tween HSR and ASR, as schematically depicted in Fig. 1.2. The presented findings

and provided tools may therefore serve to either improve automatic recognizers and

to approach the goal of human-like recognition, or to build models of human speech

perception, thereby contributing to our understanding of how our auditory system works.
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Dau, T., Püschel, D., and Kohlrausch, A. (1996), “A quantitative model of the ”effective”

signal processing in the auditory system: I. Model structure,” The Journal of the

Acoustical Society of America, 99, 3615–3622. 136

Davis, M., Marslen-Wilson, W., and Gaskell, M. (2002), “Leading up the lexical

garden path: Segmentation and ambiguity in spoken word recognition,” Journal of

experimental psychology, human perception and performance, 28, 218–241. 87, 133

Davis, S. and Mermelstein, P. (1980), “Comparison of parametric representations for

monosyllabic word recognition in continuously spoken sentences,” IEEE Transactions

on Acoustics, Speech, and Signal Processing, 28, 357–366. 54, 61, 102

De-Valois, R. and De-Valois, K. (1980), “Spatial Vison,” Annual Review of Psychology,

31, 309–341. 95

Demuynck, K., Garcia, O., and Van Compernolle, D. (2004), “Synthesizing speech

from speech recognition parameters,” in Proc. Interspeech, pp. 945–948. 60, 63

Depireux, D., Simon, J., Klein, D., and Shamma, S. (2001), “Spectro-temporal response

field characterization with dynamic ripples in ferret primary auditory cortex,” Journal

of Neurophysiology, 85, 1220–1234. 94, 122

Dimitriadis, D., Maragos, P., and Potamianos, A. (2005), “Robust AM-FM features

for speech recognition,” IEEE Signal Processing Letters, 12, 621–624. 125

Domont, X., Heckmann, M., Joublin, F., and Goerick, C. (2008), “Hierarchical spectro-

temporal features for robust speech recognition,” in Proc. Interspeech, pp. 4417–4420.

5

140



Bibliography

Dreschler, W. A., H, V., Ludvigson, C., and Westermann, S. (1999), “Artificial noise

signals with speechlike spectral and temporal properties for hearing instrument

assessment,” The Journal of the Acoustical Society of America, 105, 1296. 106

Dreschler, W. A., H, V., Ludvigson, C., and Westermann, S. (2001), “ICRA Noises:

Artificial noise signals with speech-like spectral and temporal properties for hearing

instrument assessment,” Audiology, 40, 148–157. 25, 63

Dubno, J. and Levitt, H. (1981), “Predicting consonant confusions from acoustic

analysis,” The Journal of the Acoustical Society of America, 69, 249–261. 16

Ellis, D. (2003), Rasta PLP in Matlab, URL, http://www. ee. columbia.

edu/dpwe/resources/matlab/rastamat. 103

Ezzat, T., Bouvrie, J., and Poggio, T. (2007), “Spectro-temporal analysis of speech

using 2-D Gabor filters,” in Proc. Interspeech. 96

Festen, J. M. (1993), “Contributions of comodulation masking release and temporal

resolution to the speech-reception threshold masked by an interfering voice,” The

Journal of the Acoustical Society of America, 94, 1295–1300. 136

Flege, J. E., Schirru, C., and MacKay, I. R. A. (2003), “Interaction between the native

and second language phonetic subsystems,” Speech Communication, 40, 467–491. 20

Fosler-Lussier, E. and Morgan, N. (1999), “Effects of speaking rate and word frequency

on conversational pronunciations,” Speech Communication, 29, 137–158. 11

French, N. and Steinberg, J. (1947), “Factors governing the intelligibility of speech

sounds,” The Journal of the Acoustical Society of America, 19, 90–119. 31

141



Bibliography

Garcia Lecumberri, M. L., Cooke, M., Cutugno, F., Giurgiu, M., Meyer, B., Scharenborg,

O., van Dommelen, W., and Volin, A. (2008), “The non-native consonant challenge

for European languages,” in Proc. Interspeech. 90

Gelfand, S., Piper, N., and Silman, S. (1985), “Consonant recognition in quiet as a

function of aging among normal hearing subjects,” The Journal of the Acoustical

Society of America, 78, 1198–1206. 16

Gramss, T. (1991), “Fast algorithms to find invariant features for a word recognizing

neural net,” in Proc. of IEEE 2nd International Conference on Artificial Neural

Networks, pp. 180–184. 100

Gramss, T. and Strube (1990), “Recognition of isolated words based on psychoacoustics

and neurobiology,” Speech Communication, 9, 35–40. 100

Grant, K. W. and Walden, B. E. (1996), “Evaluating the articulation index for auditory-

visual consonant recognition,” The Journal of the Acoustical Society of America,

100, 2415–2424. 42

Griffin, D. and Lim, J. (1984), “Signal estimation from modified short-time Fourier

transform,” IEEE Trans. on ASSP, 32, 236–243. 62, 63

Handbook, I. (1999), “Handbook of the International Phonetic Association: a guide to

the use of the International Phonetic Alphabet,” . 108

Happel, M., Müller, S., Anemüller, J., and Ohl, F. (2008), “Predictability of STRFs in

auditory cortex neurons depends on stimulus class,” in Proc. Interspeech, p. 670. 95

Hazan, V. and Markham, D. (2004), “Acoustic-phonetic correlates of talker intelligibility

for adults and children,” The Journal of the Acoustical Society of America, 116, 3108–

3118. 11, 42

142



Bibliography

Heckmann, M., Domont, X., Joublin, F., and Goerick, C. (2008), “A closer look on

hierarchical spectro-temporal features (HIST),” in Proc. Interspeech, pp. 4417–4420.

96, 126

Hermansky, H. (1998), “Should recognizers have ears?” Speech Communication, 25,

3–24. 96

Hermansky, H. and Morgan, N. (1994), “RASTA processing of speech,” IEEE

Transactions on Speech and Audio Processing, 2, 578–589. 126

Hermansky, H. and Morgan, N. H. (1997), “Noise resistant auditory model for param-

eterization of speech,” The Journal of the Acoustical Society of America, 101 (5),

2426. 11

Hermansky, H. and Sharma, S. (1999), “Temporal patterns (TRAPS) in ASR of noisy

speech,” in Proc. ICASSP, pp. 289–292. 89, 126

Hermansky, H., Ellis, D., and Sharma, S. (2000), “Tandem connectionist feature

extraction for conventional HMM systems,” in Proc. ICASSP, pp. 1635–1638. 101

Hillenbrand, J., Getty, L., Clark, M., and Wheeler, K. (1995), “Acoustic characteristics

of American English vowels,” Journal of the Acoustical Society of America, 97,

3099–3111. 88

Hirsch, H. and Pearce, D. (2000), “The AURORA experimental framework for the

performance evaluations of speech recognition systems under noisy conditions,” in

Proc. ISCA ITRW ASR, pp. 2697–2702. 107

Hunt, M. (1999), “Spectral signal processing for ASR,” Proc. ASRU 99. 6

Jacobsen, R., Fant, G., and Halle, M. (1952), “Preliminaries to speech analysis,” . 108

143



Bibliography

Junqua, J.-C. (1993), “The Lombard reflex and its role on human listeners and

automatic speech recognizers,” The Journal of the Acoustical Society of America,

93, 510–524. 88

Jürgens, T. and Brand, T. (2009), “Microscopic prediction of speech recognition for

listeners with normal hearing in noise using an auditory model,” The Journal of the

Acoustical Society of America, 125. 84, 136

Jürgens, T., Brand, T., and Kollmeier, B. (2007), “Modelling the human-machine gap

in speech reception: microscopic speech intelligibility prediction for normal-hearing

subjects with an auditory model,” in Proc. Interspeech. 45

Kaernbach, C. (2000), “Early auditory feature coding,” in Proc. of Contributions to

psychological acoustics: Results of the 8th Oldenburg Symposium on Psychological

Acoustics, pp. 295–307. 94

Kipp, A., Wesenick, M., and Schiel, F. (1996), “Automatic detection and segmentation

of pronunciation variants in German speech corpora,” in Proc. ICSLP, pp. 106–109.

21, 70

Kleinschmidt, M. (2002), “Methods for capturing spectro-temporal modulations in

automatic speech recognition,” Acustica united with acta acustica, 88, 416–422. 5,

8, 89, 96, 101

Kleinschmidt, M. (2003a), “Localized spectro-temporal features for automatic speech

recognition,” in Proc. Eurospeech. 87

Kleinschmidt, M. (2003b), “Robust speech recognition based on spectro-temporal

processing,” Ph.D. thesis. 96

144



Bibliography

Kleinschmidt, M. and Gelbart, D. (2002), “Improving word accuracy with Gabor

feature extraction,” in Proc. ICSLP. 5, 16, 38, 96, 101

Kliem, K. (1993), “Entwicklung und Evaluation eines Zweisilber-Reimtestverfahrens

in deutscher Sprache zur Bestimmung der Sprachverständlichkeit in der klinischen
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die angegebenen Hilfsmittel verwendet habe. Die Dissertation hat weder in Teilen
noch in ihrer Gesamtheit einer anderen wissenschaftlichen Hochschule zur Begutach-
tung in einem Promotionsverfahren vorgelegen. Teile der Dissertation wurden bereits
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seine Unterstützung (insbesondere in der heißen Endphase) eine Entlastung um viele
Kilonewton bewirkt. Dafür vielen Dank!
Ich danke Tim Jürgens, der für den Mensch-Maschine-Vergleich die SNR-abhängigen
Ergebnisse beigesteuert hat, und ein gemeinsamer Kämpfer an der OLLO-Front ist.
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übernehmen.

Dankeschön!!




	Titel: Human and automatic speech recognition inthe presence of speech-intrinsic variations
	Abstract
	Kurzfassung
	Contents
	1 General introduction
	1.1 Difficulties in automatic speech recognition
	1.2 Comparing speech recognition of men and machines
	1.3 Top-down vs. bottom-up processing
	1.4 Structure of this work

	2 HSR in the presence of intrinsic variabilities
	2.1 Introduction
	2.2 Description of the database
	2.2.1 Choice of phonemes and speech stimuli
	2.2.2 Variabilities and speakers
	2.2.3 Recording setup
	2.2.4 Postprocessing of recorded material
	2.2.5 Phonetic labeling
	2.2.6 Availability of speech material and test results

	2.3 Methods
	2.3.1 Test sets and presented stimuli
	2.3.2 Measurement setup and listeners
	2.3.3 Noise and SNR calculation
	2.3.4 Data analysis

	2.4 Results
	2.4.1 Overall recognition scores
	2.4.2 Effects of additive noise and intrinsic variabilities
	2.4.3 Influence of spectral differences
	2.4.4 Articulatory features and information transmission

	2.5 Discussion
	2.5.1 Comparison with past work
	2.5.2 Comparison between HSR and ASR

	2.6 Summary & conclusions
	2.7 Acknowledgements

	3 Speech-intrinsic variations in human and automatic speech recognition
	3.1 Introduction
	3.2 Methods
	3.2.1 Speech database
	3.2.2 Preparation of speech stimuli
	3.2.3 HSR and ASR test and training sets
	3.2.4 Experimental setup
	3.2.5 Outcome measures

	3.3 Results
	3.3.1 Overall performance 
	3.3.2 Information transmission
	3.3.3 Phoneme duration

	3.4 Discussion
	3.4.1 Human vs. machine performance
	3.4.2 Effect of resynthesis
	3.4.3 Effect of intrinsic variations

	3.5 Conclusions
	3.6 Acknowledgments

	4 Robustness of spectro-temporal ASR features
	4.1 Feature types 
	4.1.1 Spectro-temporal Gabor features
	4.1.2 MFCC features

	4.2 Methods
	4.2.1 Speech databases, training and test sets 
	4.2.2 Automatic recognizers
	4.2.3 Articulatory features and transmitted information

	4.3 Results
	4.3.1 Effect of extrinsic variations
	4.3.2 Effect of intrinsic variations
	4.3.3 Articulatory features and information transmission
	4.3.4 Complementarity of spectral and spectro-temporal features 

	4.4 Discussion
	4.4.1 Robustness of Gabor features against extrinsic variations
	4.4.2 Effect of intrinsic variations
	4.4.3 Interaction between ASR features and articulatory features 
	4.4.4 Complementarity of MFCC and Gabor features

	4.5 Conclusions
	4.6 Acknowledgements

	5 Summary and general conclusions
	5.1 Top-down vs. bottom-up processing
	5.2 Intrinsic variations of speech
	5.3 Spectro-temporal features
	5.4 Future work

	Bibliography
	Lebenslauf
	Erkärung
	Danksagung

