

Struktur und Eigenschaften übergangsmetallhaltiger Oxo-Arsenate(III) der Selten-Erd-Elemente

Der Fakultät für Mathematik und Naturwissenschaften der

Carl von Ossietzky Universität Oldenburg

zur Erlangung des Grades und Titels eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

angenommene

Dissertation

von

Svetlana Schander

Geboren am 8. Oktober 1979 in Temirtau

Die vorliegende Arbeit wurde in der Zeit von September 2006 bis November 2009 am Institut für Reine und Angewandte Chemie der *Carl von Ossietzky Universität Oldenburg* unter Anleitung von *Herrn Prof. Dr. Mathias S. Wickleder* angefertigt.

Erstgutachter: Prof. Dr. M. S. Wickleder

Zweitgutachter: Prof. Dr. R. Beckhaus

Tag der Disputation: 04.12.2009

Meiner geliebten Familie

Abstract

Diese Arbeit befasst sich mit der Synthese und Charakterisierung neuer Verbindungen der Selten-Erd-Elemente. Im Vordergrund steht die Entwicklung neuer Synthesestrategien zum Aufbau von Verbindungen, in denen Selten-Erd-Elemente und Übergangsmetalle mit Oxo-Arsenat(III)-Anionen zu komplexen Netzwerken verknüpft werden. Diese Liganden sind in besonderem Maße zum Aufbau solcher Aggregate geeignet, weil sie sich durch eine große Zahl unterschiedlicher Koordinations- und Verknüpfungsmodi auszeichnen und so vielfältige Variationen im Aufbau der Festkörper und damit in der Anordnung von Selten-Erd- und Übergangsmetallionen zueinander ermöglichen, was im Hinblick auf die Untersuchungen von Wechselwirkungen von großer Bedeutung ist.

Durch festkörperchemische Umsetzung von den Oxiden der Selten-Erd-Elemente mit Übergangsmetall-Oxiden bzw. -Chloriden und Arsen(III)oxid wurden die Verbindungen $SE_5(AsO_3)_4Cl_3$ (SE = La, Pr, Nd), $SE_3(AsO_3)(As_2O_5)Cl_2$ (SE = Sm, Eu, Gd), $SE_2Zn(AsO_3)(As_2O_5)Cl$ (SE = Dy Ho, Er, Yb) und $SE_2Fe(AsO_3)(As_2O_3)Cl$ (SE = Sm, Gd) erhalten. Erste Untersuchungen zu den thermischen und spektroskopischen Eigenschaften dieser Verbindungen so wie die pulverdiffraktometrischen Untersuchungen werden vorgestellt.

Die chloridhaltigen Verbindungen des Typs SE₅(AsO₃)₄Cl₃ kristallisieren in zwei eng verwandten Kristallstrukturen, die am Beispiel von $Nd_5(AsO_3)_4Cl_3$ (Raumgruppe P2/c) und $SE_5(AsO_3)_4Cl_3$ (SE = La, Pr) (Raumgruppe C2/c) bestimmt wurden. Der Formeltyp SE₃(AsO₃)(As₂O₅)Cl₂ konnte mit den Selten-Erd-Elementen Samarium, Europium und Gadolinium realisiert werden. In diesen Verbindungen treten neben den ψ -tetraedrischen [AsO₃]³⁻-Pyramiden die Oxoarsenat(III)-Anionen [As₂O₅]⁴⁻ auf. Das Oxoarsenat(III)-Anion $[As_2O_5]^{4-}$ wird aus zwei ψ - $[AsO_3]^{3-}$ -Tetraedern durch Eckenverknüpfung über ein Sauerstoffatom gebildet. Im Falle der Zusammensetzung SE₂Zn(AsO₃)(As₂O₅)Cl konnten Verbindungen mit SE = Tb, Dy Ho, Er, Yb und Lu erhalten werden. Die Struktur der isotypen Verbindungen hat einen schichtartigen Aufbau und ist jener von SE₃(AsO₃)(As₂O₅)Cl₂ sehr ähnlich. Mit den Verbindungen $SE_2Fe(AsO_3)(As_2O_3)Cl$ (SE = Sm, Gd) konnten eisenhaltigen Oxo-Arsenate(III) der Selten-Erd-Metalle dargestellt werden. Die Strukturen der isotypen Verbindungen sind jenen von SE₂Zn(AsO₃)(As₂O₅)Cl eng verwandt, zeigen aber im Gegensatz zu letzteren bisher nicht vollständig geklärte kristallographisches Fehlordnungsprobleme.

Summary

This work deals with the synthesis and characterisation of new rare earth element compounds. The main aim is the development of preparative routes for the syntheses of compounds in which the rare earth elements and transition metals are connected to form complex networks via oxo-arsenate(III) anions. These ligands are especially suitable to assemble such aggregates because of their numerous different coordination and connection modes. This allows a wide variety of the solid state structures and the constitution of the rare earth and transition metal ions to each other, which is of great importance for the investigations of the interactions in the structures.

The compounds $SE_5(AsO_3)_4Cl_3$ (SE = La, Pr, Nd), $SE_3(AsO_3)(As_2O_5)Cl_2$ (SE = Sm Eu Gd), $SE_2Zn(AsO_3)(As_2O_5)Cl$ (SE = Dy, Ho, Er, Yb) and $SE_2Fe(AsO_3)Cl$ (SE = Sm, Gd) were obtained via the solid state reaction of rare earth oxides with transition metal oxides or chlorides and arsenic(III)oxide. First results of the investigations of the thermal and spectroscopic properties of these compounds as well as powder diffractometric characterisations are presented.

For the family $SE_5(AsO_3)_4Cl_3$ two strongly related types of structures have been found. One is respresented by $Nd_5(AsO_3)_4Cl_3$ (space group P2/c), the other by $SE_5(AsO_3)_4Cl_3$ (SE = La, Pr) (space group C2/c). $SE_3(AsO_3)(As_2O_5)Cl_2$ type compounds could be realized with the rare earth elements samarium, europium and gadolinium. These compounds contain the oxoarsenate(III) anion $[As_2O_5]^{4-}$ in addition to the ψ -tetrahedral $[AsO_3]^{4-}$ pyramids. The oxoarsenate(III) anion is formed by a corner connection of two ψ -tetrahedra via one oxygen atom. The zinc containing compounds $SE_2Zn(AsO_3)(As_2O_5)Cl$ could be obtained for SE = Tb, Dy, Ho, Er, Yb and Lu. They are isotypic and show a very close relationship to the compounds $SE_3(AsO_3)(As_2O_5)Cl_2$, that have also a layers type crystal structure. Similarly, the iron containing oxo-arsenates(III) of the rare earth elements with the composition $SE_2Fe(AsO_3)(As_2O_3)Cl$ (SE = Sm, Gd) have a layered structure. However, contrastingly to the former mentioned compounds, the iron containing phases suffer from severe crystallographic problems which can be attributes to yet not solved disorder phenomena.

I.	Einleitung	1
II.	Allgemeiner Teil	4
	1. Apparative Methoden	4
	1.1. Die Argon-Handschuhbox (Glove Box)	4
	1.2. Reaktionsbehälter	4
	2. Analyse und Kristallstrukturaufklärung	5
	2.1. Röntgenbeugung	5
	2.2. Das Pulverdiffraktometer	7
	2.3. Das Imaging-Plate-Einkristalldiffraktometer	8
	2.3.1. Einkristallstrukturbestimmung	9
	2.4. Grundsätzliches zur Fehlordnung	11
	2.4.1. Ionische Fehler	12
	2.4.2. Elektronische Defekte	12
	2.4.3. Lagefehlordnung und Orientierungsfehlordnung	13
	2.5. Thermische Analyse	14
	2.6. Infrarot-Spektroskopie	15
	2.7. EDX-Analyse (Energiedispersive Röntgenspektroskopie)	16
	3. Verwendete Chemikalien, Programme und Geräte	18
	3.1. Chemikalien	18
	3.2. Programme	19
	3.3. Geräte	20
III.	Spezieller Teil	21
	1. Chlorid-Oxo-Arsenate(III) der Selten-Erd-Elemente	21
	1.1. $SE_5(AsO_3)_4Cl_3$ (SE = La, Pr, Nd)	21
	1.1.1. Synthese	21
	1.1.2. Kristallstruktur	23
	1.1.3. Thermoanalytische Untersuchungen an	
	$SE_5(AsO_3)_4Cl_3$ (SE = La, Pr, Nd)	30
	1.1.4. Pulverdiffraktometrische Untersuchung von $La_5(AsO_3)_4Cl_3$	31
	2. Chlorid-Oxo-Arsenate(III) der Selten-Erd-Elemente	33
	2.1. $SE_3(AsO_3)(As_2O_5)Cl_2$ (SE = Sm, Eu, Gd)	33

2.1.1. Synthese	33
2.1.2. Kristallstruktur	34
2.1.3. Thermoanalytische Untersuchungen an	
$SE_3(AsO_3)(As_2O_5)Cl_2$ (SE = Eu; Gd)	39
2.1.4. Pulverdiffraktometrische Untersuchung von	
$Gd_3(AsO_3)(As_2O_5)Cl_2$	41
3. Zinkhaltige Chlorid-Oxo-Arsenate(III) der Selten-Erd-Elemente	42
3.1. $SE_2Zn(AsO_3)(As_2O_5)Cl$ (SE = Tb, Dy Ho, Er, Yb, Lu)	42
3.1.1. Synthese	42
3.1.2. Kristallstruktur	44
3.1.3. Thermoanalytische Untersuchungen an	
$SE_2Zn(AsO_3)(As_2O_5)Cl$ (SE = Dy, Ho)	50
3.1.4. Pulverdiffraktometrische Untersuchung von	
Ho ₂ Zn(AsO ₃)(As ₂ O ₅)Cl	53
4. Schwingungsspektroskopische Untersuchungen an La5(AsO3)4Cl3,	
Gd ₃ (AsO ₃)(As ₂ O ₅)Cl ₂ und Dy ₂ Zn(AsO ₃)(As ₂ O ₅)Cl	54
5. Eisenhaltige Chlorid-Oxo-Arsenate(III) der Selten-Erd-Elemente	57
5.1. $SE_2Fe(AsO_3)(As_2O_5)Cl$ (SE = Sm, Gd)	57
5.1.1. Synthese	57
5.1.2. Kristallstruktur	59
5.2. $Eu_6Fe_5(As_4O_9)_2(As_3O_7)_2(AsO_3)_2$	65
5.2.1. Synthese	65

5.2.2. Thermoanalytische Untersuchungen an			
Ει	$1_6Fe_5(As_4O_9)_2(As_3O_7)_2(AsO_3)_2$	68	
6. Vergleichende Übersicht der Verknü	pfungsmodi		
der Oxo-Arsenat(III)-Einheiter	ı der Selten-Erd-Elemente	72	
IV. Zusammenfassung		81	
V. Ausblick		93	
VI. Literatur		94	
VII. Anhang		99	
VIII. Danksagung		131	

I. Einleitung

I. Einleitung

Ab Mitte des 18. Jahrhunderts beschäftigte sich die chemische Forschung mit den Seltenen Erden: Im Jahr 1751 entdeckte A. F. Cronstedt, ein schwedischer Mineraloge, in einem schwedischen Steinbruch einen ungewöhnlich schweren Stein, aus dem M. H. Klaproth und J. J. Berzelius 1803 unabhängig voneinander eine unbekannte Erde/Oxid isolierten. Sie wurde nach dem gerade entdeckten Asteroiden Ceres ceria Ceriterde genannt.

1794 entdeckte J. Gadolin in einem 1787 von Arrhenius in Ytterby gefundenen Schwermineral eine neue Erde, die nach dem Fundort Yttererde nannte.

Da die neuen Erden vorerst nicht weiter unterteilt werden konnten, wurden sie lange für einheitliche Stoffe gehalten. Erst 1839 konnte C. G. Mosander zeigen, dass es sich bei der Ceriterde (La-Eu) um ein Stoffgemisch handelte. Er zerlegte es in Lanthan, Cer und Didym. Auch die Yttererde konnte von ihm weiter zerlegt werden, und zwar in Erbin-, Terbin- und Yttererde (Y, Gd-Lu). Durch immer weiter fortschreitende Technik und Analysemethoden konnten bis 1905 die Oxide von Scandium, Yttrium, Lanthan und allen Lanthanoiden bis auf Promethium aus Cerit- und Yttererde isoliert werden. Bis 1913 bestand allerdings ein weiteres Problem: Im damaligen Periodensystem war nur für eines der neuen Elemente Platz. 1913 veröffentlichte Mosley seine Arbeit über die Ordnungszahlen und im neuen Periodensystem war nun Platz für 14 weitere Elemente [1].

Die Seltenen Erden tragen ihren Namen völlig zu Unrecht: Das häufigste Selten-Erd-Element Cer (Ce) (10⁻²-10⁻³ Gew.-% in der Erdrinde) ist 10000-mal häufiger als Gold, und selbst das zweitseltenste Europium (Eu) ist so häufig wie Iod (10⁻⁵-10⁻⁶ Gew.-% in der Erdrinde). Die Elemente sind in ihren Eigenschaften sehr ähnlich. Ein Grund hierfür ist in der Elektronenkonfiguration zu suchen. Mit steigender Ordnungszahl wird kontinuierlich das 4f-Orbital aufgefüllt. Da die äußeren Orbitale den größten Einfluss auf die chemische Reaktivität haben, das 4f-Orbital aber relativ zur Größe der Atome eher in der Mitte ist, hat die Zunahme an Elektronen nur einen geringen Einfluss auf die Eigenschaften. Die Größe sinkt vielmehr durch die Zunahme an Protonen und Neutronen mit zunehmender Ordnungszahl ab. Diese als Lanthanidenkontraktion bezeichnete Eigenschaft hat seine Ursache in der immer stärker werdenden Kernladung, die die Elektronenwolke stärker anzieht, es kommt daher zur Kontraktion [2].

Charakteristisch für die Seltenen Erden ist die Oxidationszahl +III, in der alle Elemente bevorzugt auftreten. Die Bildung der M^{3+} -Ionen erfolgt durch Abgabe der beiden

6s-Elektronen und eines 4f- bzw. des 5d-Elektrons. Einige Elemente können aber auch in anderen Wertigkeiten auftreten, was auf die zusätzliche Stabilität des leeren, halbgefüllten oder vollen 4f-Orbitals zurückzuführen ist. Betroffen davon sind:

$$Eu^{2+}(4f^7)$$
 $Yb^{2+}(4f^{14})$ $Ce^{4+}(4f^0)$ $Tb^{4+}(4f^7)$

Die Verwendung der Seltenen Erden erstreckt sich mittlerweile über ein breites Spektrum: In der Keramik- und Glasindustrie, in der Metallurgie und beim Cracken von Erdöl. Ein Zusatz von geringen Mengen an Lanthanoiden zu Stählen, die zu Blechen und Röhren verarbeitet werden, verbessert Festigkeit und Verarbeitbarkeit. Außerdem wird die Korrosionsbeständigkeit erhöht. Da einige Lanthanoide schon in metallischer Form magnetisch sind, werden seit den 1970er Jahren ihre Verbindungen und Legierungen auf geeignete Werkstoffe untersucht. So findet heute eine Terbium-Eisen-Cobaltlegierung Verwendung als Speichermedium in den Minidisks. Einige Selten-Erdelemente, wie z.B. Europium haben sehr hohen Neutroneneinfangquerschnitte. Deshalb werden sie häufig als Bestandteil von Steuerstäben in Kernreaktoren eingesetzt. Legierungen der Zusammensetzung (La, Ce)Ni₅ sowie fein verteiltes Erbium können große Menge an H₂ aufnehmen und auf diese Weise auf bedeutend kleinerem Raum mehr Wasserstoff speichern als eine Druckgasflasche. Weiterhin finden die Lanthanoide u. a. Verwendung für die Herstellung von Leuchtfarbstoffen für Fernsehbildröhren und Monitore (z.B. Y₂O₂S + 6 % Eu für die Rotkomponente). Einige Ln-Mischoxide dienen als Katalysatoren beim Cracken von Erdöl [3-6].

Der Name Arsen leitet sich ab von dem arabischen Wort "ak-zernikh", eingeführt von Dioskorides 50 nach Christus. Die Isolierung elementaren Arsens (ca. 1250) wird bisweilen Albertus Magnus (1193-1280) zugeschrieben. Gegenüber elektropositiven Partnern trägt Arsen hauptsächlich die Oxidationsstufe -III, gegenüber elektronegativen Partnern die Oxidationsstufe +III und +V. Dies ermöglicht vor allem Sauerstoff unter Bildung der komplexen Anionen wie Oxoarsenat(III) oder (V) [2, 7]. Auf die Oxoarsenate(V) soll hier nicht weiter eingegangen werden, da in den letzten Jahren die Oxoarsenate(V) der Selten-Erd-Elemente, z.B. M(AsO₄) (M = Sc, La, Ce, Sm, Tb, Dy, Ho, Yb, Lu) kristallchemisch ausgiebig charakterisiert wurden [8-13]. Das Ziel dieser Arbeit war die Synthese von neuen Selten-Erd-Elementen(III)-Oxoarsenaten(III). Die Attraktivität des Oxoarsenat(III)-Anions $[AsO_3]^{3-}$ ist auf das Vorhandensein eines freien Elektronenpaares ("lone pair") zurückzuführen. Das freie Elektronenpaar fungiert gewissermaßen als "unsichtbarer Ligand", dessen Raumbedarf prägend für die jeweiligen Kristallstrukturen ist ("stereochemisch aktives

I. Einleitung

Elektronenpaar"). Dieser sogenannte "lone pair effect" ist ebenfalls in der Literatur diskutiert worden [14, 15].

Über die Darstellung und die Kristallstrukturen sowohl von Alkalimetall-Oxoarsenaten(III) (z.B. AAsO₂ (A - Na, K, Rb) [16, 17] und Cs₃As₅O₉ [16]) als auch von Erdalkalimetall-Oxoarsenaten(III) (z.B. Ba₂As₆O₁₁ [18]) wurde erst kürzlich berichtet. Von Verbindungen des dreiwertigen Arsens mit den Selten-Erd-Metallen ist für Oxoarsenate(III) nur die Zusammensetzung M₂As₄O₉ (M₄[As₂O₅]₂[As₄O₈]; M = Nd, Sm [19, 20]) bekannt. Beim Einsatz von chloridischen Flussmitteln wurden nur Cl⁻-haltige Verbindungen wie z.B. M₅Cl₃[AsO₃]₄ (M = Ce [21] und Nd [22]) sowie Gd₃OCl[AsO₃]₂ [23] erhalten. Es wurden kürzlich nur zwei übergangsmetallhaltigen Oxoarsenate(III) der Selten-Erd-Elemente wie z.B. Eu₃Zn(AsO₃)₂(As₃O₇) [24] und Eu₆Fe₅(As₄O₉)₂(As₃O₇)₂(AsO₃)₂ [24] vorgestellt.

Ziel der vorliegenden Arbeit war es, weitere Derivate von Selten-Erd-Arseniten(III) darzustellen und zu charakterisieren. Schwerpunkt war dabei die kationische Derivatisierung, vorzugsweise mit Übergangsmetallionen. Die vorliegende Arbeit gliedert sich in drei Hauptbereiche. Der erste allgemeine Teil gibt eine Einführung in die verwendeten Arbeitsund Analysemethoden. Der zweite Bereich beschreibt die Synthese und die Charakterisierung der untersuchten Verbindungen. Im dritten Teil werden die Ergebnisse zusammengefasst und ein Ausblick gegeben. Aus Gründen der Übersichtlichkeit werden die kristallographischen Daten der Strukturlösung in tabellarischer Form im Anhang aufgelistet.

II. Allgemeiner Teil

1. Apparative Methoden

1.1. Die Argon-Handschuhbox (Glove Box)

Aufgrund der Unbeständigkeit der Metalle gegenüber Sauerstoff und der Hydrolyse- und Oxidationsempfindlichkeit vieler der in dieser Arbeit verwendeten und synthetisierten Substanzen, wurde der Großteil der präparativen Arbeiten unter Stickstoff-Atmosphäre in einer Handschuhbox durchgeführt. Bei der Handschuhbox (Abb. 1) handelt es sich um ein gasdichtes Metallgehäuse mit einer Frontscheibe aus Plexiglas. In dieser Frontscheibe befinden sich zwei oder mehr armlange Gummihandschuhe. Zur Begutachtung der Syntheseprodukte ist in die Plexiglasscheibe der Handschuhbox ein Mikroskop integriert.

Abb. 1: Stickstoff-Handschuhbox "Unilab" der Firma M. BRAUN.

Um Materialien in die Box zu bringen bzw. diese herauszuholen, steht eine Vakuumschleuse zur Verfügung, wie in Abbildung 1 (rechts) zu erkennen ist. Beim Transport von Chemikalien oder Werkzeugen in der Handschuhbox ist für eine hinreichend lange Evakuierung der Schleuse zu sorgen.

1.2. Reaktionsbehälter [25]

Bei der Auswahl eines geeigneten Reaktionsbehälters ist zunächst zu berücksichtigen, ob in einem offenen oder geschlossenen System mit oder ohne Schutzgas gearbeitet werden soll. Reaktionen bei hohen Temperaturen von 500-900 °C stellen hohe Anforderungen an das Reaktormaterial. Eine Möglichkeit ist die Verwendung von Metallampullen bzw. Edelmetallkapseln, was allerdings mit einem hohen Kostenaufwand verbunden ist. Als kostengünstigere Alternative bieten sich deswegen Quarzglasampullen an, allerdings verhält sich Quarzglas nicht immer inert und kann mit vielen Metallen Oxide, Silicide oder Silicate bilden. Bis zu einem gewissen Grad lässt sich dies einschränken, in dem die Ampulleninnenwände infolge einer Pyrolyse von Aceton unter Sauerstoffmangel mit einer dünnen, graphitähnlichen Schutzschicht überzogen werden (Abb. 2).

Abb. 2: (a) Abschmelzapparatur (links) (b) Quarzglasampulle mit Quickfit (rechts).

2. Analyse und Kristallstrukturaufklärung

2.1 Röntgenbeugung [26]

Eine der wichtigsten Techniken zur Bestimmung von Kristallstrukturen ist die Röntgenbeugung. In ihrer einfachsten Form dient diese Technik zur Ermittlung von Gittertypen und Abständen von Kristallebenen und damit Abständen zwischen den einzelnen Ionen und Atomen. Man kann sich die Beugung der Röntgen-Strahlung als Reflexion an den Gitterebenen des Kristalls vorstellen (Abb. 3). Röntgen-Wellen treffen mit dem Winkel θ auf Gitterebenen, die den Abstand *d* zueinander besitzen. Die Bragg-Gleichung ist die zugrunde liegende mathematische Beziehung:

Ein parallel einfallendes Strahlenbündel (blau) wird an den Netzebenen einer Gitterstruktur reflektiert. Der untere Röntgenstrahl legt hierbei eine längere Wegstrecke zurück. Diese Phasendifferenz (violett) wird als Gangunterschied (δ) bezeichnet. Jeder Feststoff erzeugt somit eine charakteristische Serie von Reflexen, die vom Aufbau seiner Kristallstruktur abhängig ist.

Durch eine einfache Konstruktion hat Ewald eine graphische Darstellung der Braggschen Bedingung im reziproken Raum gegeben. Die Braggsche Gleichung wird in folgender Form geschrieben:

$$\sin \theta = \frac{\lambda/2}{d_{hkl}} = \frac{1/d_{hkl}}{2/\lambda} \quad (2)$$

Zeichnet man in einen Kreis mit dem Durchmesser $2/\lambda$ ein rechtwinkliges Dreieck mit der Hypotenuse durch den Mittelpunkt und eine Kathete mit der Länge $1/d_{hkl}$, so ist der gegenüberliegende Winkel θ . Durch die Einführung des reziproken Gitters mit: $1/d_{hkl} = \sigma_{hkl}$ erhält man die Braggsche Bedingung in folgender Form:

$$\sin\theta = \frac{\lambda}{2}\,\sigma_{_{hkl}}\,_{_{(3)}}$$

Wird angenommen, dass die Strecke A-O die Richtung des einfallenden Röntgenstrahles ist (Abb. 4), so bildet die Strecke A-P mit dem einfallenden Strahl den Braggschen Winkel θ .

Befindet sich ein Kristall im Mittelpunkt des Kreises bei K, so bildet die reflektierende Netzebene mit dem einfallenden Röntgenstrahl ebenfalls den Winkel θ . Die Strecke *O-P*, deren Länge σ_{hkl} entspricht, steht senkrecht auf der reflektierenden Netzebene, und die Strecke *K-P* entspricht somit dem an der Kristallfläche gebeugten Röntgenstrahl. Zur Interpretation von Röntgenaufnahmen geht man von einem Kreis zu einer Kugel, der Ewaldkugel, über.

Abb. 4: Die Ewaldsche Konstruktion.

- A: Eintritt des Röntgenstrahls
- K: Kristall
- O: Ursprung des reziproken Gitters
- P: reziproker Gitterpunkt

2.2. Das Pulverdiffraktometer [26-28]

Das Pulverdiffraktometer dient der Messung von Reflexintensitäten in Abhängigkeit von Beugungswinkeln (Abb. 5). Dabei gibt es eine Reihe verschiedener Möglichkeiten der apparativen Anordnung um Pulveraufnahmen anzufertigen. Diese unterscheiden sich sowohl in der Präparatanordnung als auch in der Detektion der Reflexe. In der vorliegenden Arbeit kam das Debye-Scherrer-Verfahren zum Einsatz. Dazu wird die zu untersuchende Pulverprobe gründlich verrieben in ein Markröhrchen gefüllt oder auf einen Flächenträger aufgebracht, in der Mitte eines Drehtisches befestigt und vom Röntgenstrahl durchleuchtet. Durch Rotation der Probe werden eventuelle Textureffekte ausgeglichen. Lage und Intensität der Reflexe werden mit einem ortsempfindlichen Detektor registriert. Das Verfahren ist etwas genauer als die Filmverfahren, da hier keine Fehler beim Vermessen des Filmes auftreten können, die Ungenauigkeiten in der Intensitäts- und Winkelbestimmung zur Folge haben.

Abb. 5: Das im Rahmen dieser Arbeit verwendete Pulverdiffraktometer STADI P der Fa. Stoe & Cie.

Die Pulverdiffraktometrie wurde in der vorliegenden Arbeit vor allem zur Bestimmung von Gitterkonstanten und der Prüfung auf Phasenreinheit der erhaltenen Produkte eingesetzt. Dabei wurde das gemessene Pulverdiffraktogramm mit simulierten Pulverdiffraktogramm aus Datenbanken oder aus eigenen Einkristalldaten verglichen.

2.3. Das Imaging-Plate-Einkristalldiffraktometer [26-28]

Aus den synthetisierten Kristallen wird unter einem Polarisationsmikroskop ein passender Einkristall in perfluoriertem Inertöl ausgewählt und in einem Tropfen auf einen Glasfaden gesetzt. Dieser wird auf dem Goniometerkopf befestigt. Mit Hilfe einer Videokamera wird der Kristall in den Mittelpunkt des Strahlengangs justiert.

Zur Messung der Daten wurde ein "Imaging Plate Diffraction System" (IPDS) verwendet (Abb. 6). Für die Bildaufnahme wird dabei eine runde Bildplatte mit einem Durchmesser von 180 bis 350 mm benutzt, welche mit einer Folie belegt ist, die mit Eu²⁺ dotiertes BaBrF enthält. Trifft nun während der 0,5 bis 10 min Belichtungszeit das gebeugte Röntgenlicht auf diese Folie, so wird das Eu²⁺ zu Eu³⁺ oxidiert und die Information in Farbzentren, die durch freie Elektronen auf Zwischengitterplätzen entstehen, gespeichert. Das fertige latente Beugungsbild wird mit einem roten Laser ausgelesen, wobei eine Rekombination der

II. Allgemeiner Teil

Elektronen mit Eu³⁺ zu Eu²⁺ stattfindet. Die freiwerdende Energie wird in Form von blaugrünem Licht abgegeben, welches mit einer Photozelle mit Photomultiplier detektiert und die Signale auf einem Computer gespeichert werden. Um die Bildplatte vollständig zu regenerieren, wird sie nach dem Auslesevorgang mit weißem Halogenlicht bestrahlt um alle Farbzentren auszulöschen. Der gesamte Auslese- und Löschvorgang dauert etwa 2 bis 5 min.

Abb. 6: Imaging-Plate-Diffraktometer IPDS I der Fa. Stoe & Cie.

2.3.1. Einkristallstrukturbestimmung [26-28]

Man kann sich jede Kristallstruktur aus einem oder mehreren Bravais-Gittern aufgebaut denken, die ineinander gestellt sind. Die Röntgenstrahlen werden an jedem Teilgitter unter demselben Winkel gebeugt, da die einzelnen Netzebenenabstände für alle Teilgitter gleich sind. Allerdings tritt bei der Überlagerung der Wellen eine Phasenverschiebung auf, weil die Teilgitter um bestimmte Beträge zueinander versetzt sind. Jede Teilwelle kann dabei durch die Atomformfaktoren und die Phasenverschiebung charakterisiert werden. Den Gesamtwert für die resultierende Streuwelle bezeichnet man als Strukturfaktor F_{hkl} :

$$F_{hkl} = \sum_{N} f_{N} e^{i\phi_{N}}$$
⁽⁴⁾

Aus den Röntgenmessungen erhält man nicht F_{hkl} , sondern nur den Betrag der Amplitude der resultierenden Welle, die Phase φ_{hkl} bleibt unbestimmt:

$$F_{hkl} = \left| F_{hkl} \right| e^{i\varphi_{hkl}}$$

Die gemessenen Reflexintensitäten sind dem Quadrat der Strukturfaktoren proportional, das heißt, es ist zwar der Betrag des Strukturfaktors bekannt, seine Phaseninformation ist jedoch verloren (Gl. 6).

$$I_0(hkl) \cong \left| F_{hkl} \right|^2 {}_{(6)}$$

Dieses wird als Phasenproblem bezeichnet. Es stellt die zentrale Größe bei der Kristallstrukturanalyse dar und kann nach verschiedenen Methoden gelöst werden. Bei der Ermittlung der Kristallstruktur kommt es darauf an, an jedem Punkt X, Y, Z der Elementarzelle die Elektrodendichte p zu berechnen. Die grundlegende Gleichung ist:

$$p_{x,y,z} = \frac{1}{V} \sum_{hkl} F_{hkl} \cdot e^{-i2\pi (hX + kY + lZ)}$$

$$p_{x,y,z} = \frac{1}{V} \sum_{hkl} F_{hkl} \cdot \{ \cos[2\pi (hX + kY + lZ)] + i\sin[2\pi (hX + kY + lZ)] \}$$
(7)

Die Patterson-Synthese dient zur Ermittlung des Teilgitters der Schweratome. Zur Berechnung werden direkt die gemessenen F_0^2 -Werte der Patterson-Funktion verwendet. Das Prinzip der Strukturlösung besteht darin, dass zunächst versucht wird, einige Atomlagen zu finden. Ausgehend von diesem noch sehr unvollkommenen Modell, lassen sich mit der Gleichung (7) Strukturfaktoren F_c berechnen, die die Phaseninformation enthalten. Die so berechneten Phasen werden auf die gemessenen Strukturfaktoren F_o übertragen. Berechnet wird dann die Differenz:

$$\Delta = \sum F_0 - \sum F_c \quad (8)$$

Dieses als Differenz-Fouriersynthese bezeichnete Verfahren liefert eine weitere Elektronendichtekarte.

Um beurteilen zu können, wie gut ein Strukturmodell mit der "Wirklichkeit" übereinstimmt, werden so genannte Zuverlässigkeitsfaktoren oder *R*-Werte berechnet. Der "konventionelle

R-Wert" gibt, mit 100 multipliziert, die mittlere prozentuale Abweichung zwischen beobachteten und berechneten Strukturamplituden an.

$$R = \frac{\sum_{hkl} \Delta}{\sum_{hkl} |F_o|} = \frac{\sum_{hkl} ||F_o| - |F_c||}{\sum_{hkl} |F_o|}$$
(9)

*F*₀: beobachteter Strukturfaktor

 F_C : berechneter Strukturfaktor

Eine weitere Optimierung des Strukturmodells kann durch Absorptionskorrektur, Einführung von anisotropen Temperaturfaktoren und Zuhilfenahme einer Wichtungsfunktion vorgenommen werden.

2.4. Grundsätzliches zur Fehlordnung [26, 29, 30]

Unter einer Fehlordnung versteht man jede Abweichung von einer streng periodischen Anordnung der Gitterbausteine im Kristall. Hierbei unterscheidet man zwischen atomaren Fehlordnungen und makroskopischen Defekten. Von atomarer Fehlordnung spricht man, wenn die Störbereiche von atomarer Größenordnung sind. Hierunter fallen unbesetzte Plätze im Kristallgitter, Atome auf Zwischengitterplätzen und die Farbzentren der Ionenkristalle. Aber auch Fremdatome im Kristall sind natürlich als Gitterstörungen zu betrachten. Bei den makroskopischen Defekten interessieren von allem die sog. Versetzungen. Das sind Gitterstörungen, die korreliert längs einer Linie auftreten und die man deshalb auch als eindimensionale Fehlordnungen bezeichnet. Im Gegensatz dazu kennzeichnet man eine atomare Fehlstelle häufig als eine nulldimensionale Fehlordnung oder als eine Fehlstelle nullter Ordnung. Unter zweidimensionalen Fehlordnungen fallen schließlich alle Grenzflächen eines Kristalls. Es kann sich hierbei im Korngrenzen zwischen den verschiedenen orientierten Kristallen (Körnern) eines Kristalls und um Phasengrenzen, aber auch ganz allgemein um die freien Oberflächen des Kristalls handeln.

Fehlordnungen können verschiedene Eigenschaften eines Festkörpers wesentlich beeinflussen. Zu diesen Eigenschaften gehört z.B. die mechanische Verformbarkeit eines

Kristalls. Häufig wird auch die Farbe eines Kristalls durch Kristallfehler festgelegt. Ganz entscheidend bestimmen Fehlordnungen die elektrische Leitfähigkeit von Halbleitern und Isolatoren.

2.4.1. Ionische Fehler

 M^{2+} X^{2-} M^{2+} a) Leerstellen: Ein Ion, z.B. das Kation, fehlt an einem regulären
Platz (Schottky-Defekt). Ein Ion wird von seinem Gitterplatz im
Innern des Kristalls auf einen Gitterplatz auf seiner Oberfläche
überführt.

b) Zwischengitterteilchen: Ein Ion, z.B. ein Kation, befindet sich auf einem irregulären Platz, d.h. zwischen regulären Gitterplätzen, wobei es sich natürlich auch um ein Fremdatom handeln kann (Frenkel-Defekt).

$$\begin{bmatrix} M^{2+} & X^{2-} & M^{2+} \\ X^{2-} & M^{2+} & X^{2-} \\ M^{2+} & X^{2-} & M^{2+} \end{bmatrix}$$

2.4.2. Elektronische Defekte

a) Leitungselektron oder Überschusselektron: Gegenüber normalen Oxidationszuständen bzw. Bindigkeiten existiert ein überschüssiges Elektron. Ist dieses Leitungselektron bevorzugt einem Ionentyp, z.B. M^{2+} , zuzuordnen, kann man auch M^+ dafür schreiben.

b) <u>Loch oder Defektelektron</u>: Gegenüber normalen Oxidationszuständen bzw. Bindigkeiten existiert ein Elektronenunterschuss ("Elektronenleerstelle in Elektronenwolke"). Ist dieses Loch bevorzugt einem Ion zuzuordnen (z.B. X^{2-}), so kann man auch X^{-} dafür schreiben.

Die verschiedenen Fehlordnungstypen können natürlich nur in solcherlei Kombinationen vorkommen, dass auch lokale Kristallbereiche im Kristallvolumen insgesamt elektrisch neutral sind: $\sum_{j} z_{j}c_{j} = 0$ (10)

 z_j und c_j bezeichnen die Ladungszahl bzw. die Konzentration des j-ten Defektes.

2.4.3. Lagefehlordnung und Orientierungsfehlordnung [26]

Als Lagefehlordnung bezeichnet man, wenn ein Atom, eine Atomgruppe oder ein ganzes Molekül statistisch zwei oder mehr verschiedene kristallographische Lagen einnimmt. Nimmt ein Molekül — meist bei unveränderter Schwerpunktslage — statistisch verschiedene Orientierungen ein, die man durch eine Rotation oder Spiegelung erreichen kann, spricht man von Orientierungsfehlordnung. Häufig beobachtet man solche Phänomene bei Strukturen, die annähernd kugelförmige Baugruppen enthalten, wie z.B. NH_4^+ -Kationen, CIO_4^- -Anionen. Oft findet man solche Moleküle auf speziellen Lagen mit höherer Symmetrie als ihrer Punktgruppe entspricht, z.B. ein tetraedrisches Molekül auf einem Symmetriezentrum, so dass die alternative Orientierung durch eine Symmetrieoperation erzeugt wird. In solchen Fällen muss man jedoch sorgfältig prüfen, ob die Fehlordnung nicht nur durch die Wahl einer zu hochsymmetrischen Raumgruppe vorgetäuscht wurde.

<u>Splitatom – Modelle.</u>

Sind in den beiden alternativen Orientierungen bzw. Lagen die Atome genügend voneinander separiert, mehr als etwa 80 pm, so findet man in Differenz–Fouriersynthesen meist getrennte Maxima und kann die Fehlordnung durch ein *Splitatom–Modell* beschreiben. Darin werden für jedes fehlgeordnete Atom zwei Lagen verfeinert sowie deren sich zu 1 addierende

Überlappung Besetzungsfaktoren. Kommen sich beide so nahe, dass eine der Elektronendichten resultiert, so lassen sich die Lagen und vor allem die Auslenkungsfaktoren schlecht gleichzeitig verfeinern. Hier empfiehlt es sich, zuerst einen geschätzten gemeinsamen Auslenkungsfaktor festzuhalten und nur die Lagen zu verfeinern. Bei Erfolg hält man anschließend die Lagen fest und verfeinert einen gemeinsamen Auslenkungsfaktor und wiederholt die Prozedur, bis keine wesentliche Änderung mehr eintritt. Umgekehrt entdeckt man das Auftreten einer solchen Fehlordnung meist auch nur daran, dass man in Differenz-Fouriersynthesen nur ein Maximum in der Mittellage beobachtet und bei der Verfeinerung mit anisotropem Auslenkungsfaktor sehr große "zigarrenförmige" Auslenkungsellipsoide findet. Immer, wenn eine Hauptachse des Ellipsoids grösser als 0,2-0,3 Å² wird, sollte man überlegen, ob man die Lage nicht in zwei Positionen "splittet". Es ist meist eine zeitraubende viel Fingerspitzengefühl erfordernde Arbeit das optimale Modell für solche fehlgeordneten Gruppen zu verfeinern. Einerseits ist die Verwendung anisotroper Auslenkungsfaktoren wichtig, da zumindest die peripheren Atome tatsächlich meist auch stark anisotrope Schwingungen vollführen. Andererseits sind die Auslenkungsfaktorkomponenten am ehesten durch starke Korrelationen betroffen und daher schlecht zu verfeinern. Kennt man die Form der Gruppe gut, so kann man vielleicht durch Anwendung von geometrischen Einschränkungen ('restraints') oder Benutzung starrer Gruppen ('constraints') die Verfeinerung erleichtern.

2.5. Thermische Analyse [26, 32-34]

Bei der thermischen Analyse werden spezifische physikalische und chemische Materialeigenschaften als Funktion der Temperatur gemessen. Dieses sind die Enthalpie, die Wärmekapazität, die Masse und der thermische Ausdehnungskoeffizient. Die thermische Analyse kann in zwei Bereiche unterteilt werden. Die Thermogravimetrie (TG), die automatisch die Änderung der Masse der Probe als Funktion der Temperatur oder der Zeit aufzeichnet. Des Weiteren die Differenzthermoanalyse (DTA), die die Temperaturdifferenz ΔT zwischen einer Probe und einem inerten Referenzmaterial als Funktion der Temperatur untersucht. Eine mit der DTA verwandte Technik ist die Differential-Scanning-Calorimetry (DSC), womit Enthalpieänderungen in Abhängigkeit von der Temperatur quantitativ bestimmt werden können.

In dieser Arbeit wurde die Simultane Thermische Analyse (STA) verwendet. Die STA ist eine Kombination aus Differenzthermoanalyse und Thermogravimetrie. Sie erlaubt die gleichzeitige Messung von Temperatureffekten und Messänderungen und gibt Hinweise auf die Art der in der Probe auftretenden Reaktion. Neben der standardmäßigen DTA gibt es Messgeräte, die ohne Referenztiegel auskommen. Hier wird als DTA-Signal die Temperaturdifferenz zwischen der Probentemperatur (Ist-Temperatur) und der Ofentemperatur (Soll-Temperatur) gemessen. Dies wird auch als SDTA bezeichnet (Abb. 7).

Abb. 7: SDTA/TG-Apparatur.

Die thermische Analyse ist ein wichtiges Hilfsmittel zur Untersuchung von thermischen Zersetzungen und zur Charakterisierung der entstehenden Zwischenprodukte.

2.6. Infrarot-Spektroskopie [35-37]

Die große Bedeutung der IR-Spektroskopie beruht auf dem hohen Informationsgehalt eines Spektrums und auf der Vielfalt der Möglichkeiten für Probenmessung und Substanzpräparation. Die Lage und Intensität der Absorptionsbanden einer Substanz sind außerordentlich stoffspezifisch. Das entscheidende Kriterium für die IR-Aktivität einer Schwingung ist, dass sich das Dipolmoment während der Schwingung ändert.

$$\left(\frac{\partial\mu}{\partial\Delta r}\right) \neq 0 \quad (11)$$

mit: μ : reduzierte Masse

 Δr : Veränderung des Gleichgewichtsabstands

Je größer diese Änderung ist, desto intensiver erscheint die Bande dieser Molekülschwingung im Spektrum.

Die Anzahl der möglichen Schwingungsformen von mehratomigen Molekülen lässt sich in einfacher Weise ableiten: Jedes einzelne Atom kann Bewegungen in drei Richtungen des Raumes ausführen, zu deren Beschreibung 3 N Raumkoordinaten erforderlich sind, wenn N die Anzahl der Atome ist. Die Zahl der Schwingungsfreiheitsgrade beträgt: Z = 3N - 6.

Den linearen Molekülen kommen indes nur zwei Rotationsfreiheitsgrade zu, da die Rotation um die Molekülachse mit keiner Bewegung der Atome oder des Massenschwerpunktes verbunden ist. Dieser Molekültyp verfügt daher über einen Schwingungsfreiheitsgrad mehr, nämlich um: Z = 3N-5.

Die auf diese Weise zu berechnende Anzahl von Schwingungen eines Moleküls nennt man Normalschwingungen. Jeder Normalschwingung ist eine bestimmte Schwingungsfrequenz zuzuordnen. Das IR-Spektrum lässt sich in ähnlicher Weise wie der Fingerabdruck beim Menschen als hochcharakteristische Eigenschaft zur Identifizierung benutzen.

2.7. EDX-Analyse (Energiedispersive Röntgenspektroskopie) [38-40]

Die energiedispersive Röntgenanalyse EDX erlaubt die schnelle Elementbestimmung aus einem Impulsspektrum. Die Röntgenimpulse aller Elemente, die innerhalb der Anregungshochspannung liegen, werden gleichzeitig, also parallel, in einem Vielkanal-Zählrohr erfasst. Der Strahlstrom kann mit 10^{-11} bis 10^{-9} Å relativ niedrig gewählt werden. Die Impulsraten werden auf 2000-3000 Impulse pro Sekunde (cps = counts per second) eingestellt.

Das Impulsspektrum liefert zunächst nur Linien bestimmter Energien, deren Höhe die Zahl der gesammelten Impulse über die Messzeit ausdrückt. Die Linien setzen auf dem Untergrund auf, der aus dem "Rauschen" der Bremsstrahlung entsteht. Sie werden nach Energieniveaus benannt, auf die angeregte Elektronen bei Abgabe des Röntgenquants zurückfallen. K-Linien sind also Linien, die durch Zurückfallen von Elektronen aus L- oder höheren Niveaus auf das K-Niveau entstehen. Ka sind Linien, die durch Zurückfallen von L-Elektronen erzeugt werden. K β -Linien entstehen durch Zurückfallen von M-Elektronen usw. Sinngemäß gilt das auch für L- und M-Linien, die ihre Energie aus jeweils höheren Energieniveaus beziehen. Die Linien der einzelnen diskreten Niveaus sind noch weiter in a₁, a₂, b₁, b₂, b₃ usw. unterteilt. K-Niveaus, die die am stärksten gebundenen Elektronen enthalten, erzeugen die energiereichsten Linien, gefolgt von L- und M-Linien. Je schwerer ein Atom ist und je mehr Elektronen es besitzt, desto höher fällt die Energie von Linien mit gleichem Buchstaben aus (Abb. 8).

Abb. 8: Beziehung zwischen Elektronenschalen (Energieniveaus) und den Spektrallinien des EDX-Spektrums.

3. Verwendete Chemikalien, Programme und Geräte

3.1. Chemikalien

Tab. 1: Zusammenstellung der eingesetzten Chemikalien

Bezeichnung	Formel	Reinheit	Herkunft
Selen(IV)oxid	SeO ₂	>98%	Merck, ABCR
Arsen(III)oxid	As_2O_3	99,0%	Sigma
Lanthanoxid	La_2O_3	99,9%	Chempur
Praseodymoxid	Pr_6O_{11}	99,9%	Chempur
Neodymoxid	Nd_2O_3	99,9%	Chempur
Samariumoxid	Sm ₂ O ₃	99,9%	Chempur
Europiumoxid	Eu_2O_3	99,9%	Chempur
Gadoliniumoxid	Gd_2O_3	99,9%	Chempur
Terbiumoxid	Tb_4O_7	99,9%	Chempur
Dysprosiumoxid	Dy ₂ O ₃	99,9%	Chempur
Holmiumoxid	Ho ₂ O ₃	99,9%	Chempur
Erbiumoxid	Er_2O_3	99,9%	Chempur
Ytterbiumoxid	Yb ₂ O ₃	99,9%	Chempur
Lutetiumoxid	Lu_2O_3	99,9%	Chempur
Zinkchlorid	ZnCl ₂	98%	Roth
Eisen(II)oxid	FeO	99%	Merck
Eisen(II)chlorid	FeCl ₂	99%	Merck

3.2. Programme

Tab. 2: Verwendete Computer-Programme

Programm	Funktion	Hersteller
X-RED 1.22 [41]	Programm zur Aufbereitung von Einkristall-Diffraktometer-Daten	Stoe & Cie., Darmstadt, 2001
X-SHAPE 1.06 [42]	Programm zur Optimierung der Gestalt von Einkristallen	Stoe & Cie., Darmstadt, 1999
X-STEP32 [43]	Arbeitsoberfläche zur Verwendung des SHELX-97 Programmpakets	Stoe & Cie., Darmstadt, 2000
SHELX-97 [44]	Lösung und Verfeinerung von Strukturen	G. M. Sheldrick, Göttingen, 1997
STOE WinXPOW 2.20 [45]	Programm zur Bearbeitung von Röntgenpulverdaten	Stoe & Cie., Darmstadt, 2001
PLATON [46]	Überprüfung der Symmetrie	A. L. Spek, Universität Utrecht, Niederlande, 2005
DIAMOND 3.1e [47]	Visuelles Informationssystem für Kristallstrukturen	Crystal Impact GbR, Bonn, 2005
Match! 1.9 [48]	Programm zum Vergleich von Röntgenpulverdaten	Crystal Impact GbR, Erlangen, 2008
ENDEAVOUR 1.7b [49]	Strukturaufklärung aus Pulverdaten	Crystal Impact GbR,
OriginPro 8.0 [50]	Graphisches Auswerteprogramm	Microcal, Northhampton, 2008
POVRAY 3.1 [51]	Programm zur Visualisierung von Kristallstrukturen	C. Cason, 1999
METTLER TOLEDO STAR ^e Software 8.1 [52]	Programmpaket zur Steuerung von DTA/TGA-Geräten und zur Auswertung und graphischen Darstellung von Daten aus der thermischen Analyse	Mettler-Toledo GmbH, Schwerzenbach, 2004
iTools 4.11 [53]	Softwarepaket zur Konfiguration und Überwachung aller Eurotherm Regler	Eurotherm, Limburg an der Lahn, 2008
Genesis Spectrum Version 5.21 [54]	Programmpaket zur Bearbeitung von EDX-Daten	EDAX, Niederlanden, 2007
Quanta 200 3D [55]	Programmpaket zur Steuerung von EDAX-Geräten	EDAX, Niederlanden, 2007

3.3. Geräte

Tab. 3: Verwendete Geräte

Gerät	Modell	Hersteller
Stickstoff-Handschuh-Box	Unilab	Braun, Garching, Deutschland
TGA/SDTA	TGA/SDTA ^e	Mettler-Toledo GmbH, Schwerzenbach, Schweiz
Image-Plate Diffraktometer	IPDS I	Stoe & Cie., Darmstadt, Deutschland
	BRUKER "APEX X8"	Bruker, Deutschland
Ofen		Selbstbau
Temperatur-Regler	2416	Eurotherm, Deutschland
Polarisationsmikroskop	KL 1500	Schott, Deutschland
IR-Spektrometer	Vector 22	Brucker, Karlsruhe, Deutschland
	Tensor 27	Bruker, Karlsruhe, Deutschland
Pulverdiffraktometer	STADI P	Stoe & Cie., Darmstadt, Deutschland
EDX system	Oxford INCA system	EDAX, Niederlanden
REM	Hitachi S-3200N	EDAX, Niederlanden

III. Spezieller Teil

1. Chlorid-Oxo-Arsenate(III) der Selten-Erd-Elemente

1.1. SE₅(AsO₃)₄Cl₃ (SE = La, Pr, Nd)

1.1.1. Synthese

Das Interesse an Verbindungen der Selten-Erd-Elemente erstreckt sich heute auch auf die Salze mit Oxoanionen. Zum einen zählen hierzu Verbindungen mit Oxo-Selenat(IV)-Ionen [56], zum anderen sind auch Oxo-Arsenate(III) der Gegenstand der Untersuchungen. Es die Oxo-Arsenate(III) der Selten-Erd-Elemente konnten ersten strukturchemisch charakterisiert werden. Das Chlorid-Oxoarsenat(III) Nd₅(AsO₃)₄Cl₃ wurde bereits dargestellt und strukturell aufgeklärt [22]. Kurz darauf wurde mit Ce₅(AsO₃)₄Cl₃ das zweite Mitglied dieser Familie beschrieben [21]. In Erweiterung dieser Substanzklasse haben wir die isotypen Verbindungen La₅(AsO₃)₄Cl₃ und Pr₅(AsO₃)₄Cl₃ mit einer neuen Syntheseroute dargestellt. Die Chlorid-Oxo-Arsenate(III) $SE_5(AsO_3)_4Cl_3$ (SE = La, Pr, Nd) wurden festkörperchemisch durch Umsetzung von SE₂O₃ bzw. Pr₆O₁₁ (Chempur, 99,9%) (SE = La, Nd), As₂O₃ (Sigma, 99.0%) und ZnCl₂ (Roth. 98%) erhalten, wobei ein Überschuss des Übergangsmetalldichlorids die Bildung von Einkristallen erleichtert. Die Einwaage der Edukte erfolgte in einer Handschuhbox. Die Oxide wurden fein miteinander verrieben und dann in eine Quarzglasampulle gefüllt, unter Vakuum abgeschmolzen, in einen regelbaren Ofen überführt und einem definiertem Temperaturprogramm unterzogen (Tab. 1.1). Die Reaktion führte zu blass violetten Einkristallen für die Neodym-, farblosen bis hell-gelben Einkristallen für die Lanthan- und hell-grünen Einkristallen für die Praseodym-Verbindung. Die Einkristalle sind unempfindlich gegenüber Luftfeuchtigkeit (Abb. 1.1).

Tab. 1.1: Einwaage und Temperaturprogramm für die Synthese von $SE_5(AsO_3)_4Cl_3$ (SE = La, Pr, Nd).

Chemikalien	Einwaage [g]	molares Verhältnis
La_2O_3	0,10	1
As_2O_3	0,24	4
ZnCl ₂	0,33	8

Tabelle 1.1: Fortsetzung			
Pr_6O_{11}	0,10	1	
As_2O_3	0,08	4	
$ZnCl_2$	0,10	8	
Nd_2O_3	0,10	1	
As_2O_3	0,30	5	
$ZnCl_2$	0,28	7	
Temperaturprogramm:	11 h \rightarrow 25 °C/h \rightarrow 300 °C		
$24 \text{ h} \rightarrow \text{bei } 300 ^{\circ}\text{C}$			
$50 \text{ h} \rightarrow 10 ^{\circ}\text{C/h} \rightarrow 800 ^{\circ}\text{C}$			
	$30 \text{ h} \rightarrow \text{bei } 800 ^{\circ}\text{C}$		
$50 \text{ h} \rightarrow 4 ^{\circ}\text{C/h} \rightarrow$		$\rightarrow 600 \ ^{\circ}\text{C}$	
$20 \text{ h} \rightarrow 10 ^{\circ}\text{C/h} \rightarrow 400 ^{\circ}\text{C}$		$n \rightarrow 400 \ ^{\circ}C$	
	12,5 h \rightarrow 30 °C/h \rightarrow 25 °C		

Abb. 1.1: Einkristalle von (a) La₅(AsO₃)₄Cl₃ (links) und (b) Pr₅(AsO₃)₄Cl₃ (rechts).

Die plättchenförmigen Kristalle der SE₅(AsO₃)₄Cl₃ (SE = La, Pr, Nd) zeigen in Abhängigkeit von der Dicke der Plättchen optimale Transparenz und soweit eine schwache Färbung zu erkennen ist, entspricht sie der jeweils für das dreiwertige Lanthanoid-Kation zu erwartenden Farbe. So tritt beispielweise bei $Pr_5(AsO_3)_4Cl_3$ eine schwache Grünfärbung der Kristalle in Erscheinung (Abb. 1.1 (rechts)).

1.1.2. Kristallstruktur

Die Verbindungen SE₅(AsO₃)₄Cl₃ (SE = La, Pr) kristallisieren monoklin mit der Raumgruppe C2/c (Nr. 15) (Abb. 1.2, Tab. 1.2) mit vier Formeleinheiten in der Elementarzelle. Nd₅(AsO₃)₄Cl₃ kristallisiert monoklin mit der Raumgruppe P2/c (Nr. 13) (Abb. 1.3, Tab. 1.2) mit zwei Formeleinheiten in der Elementarzelle. Die SE³⁺-Ionen (SE = La, Pr, Nd) werden von den [AsO₃]³⁻- Gruppen zu Schichten verknüpft, die abwechselnd mit Cl⁻ Schichten gestapelt sind. In diesen Verbindungen liegen drei kristallographisch unterscheidbare SE³⁺-Ionen vor. Kristallchemisch können zwei Typen unterschieden werden: SE(1), das nur von Sauerstoffatomen koordiniert wird und SE(2), das sowohl von Sauerstoffatomen als auch Chloratomen koordiniert wird. Das SE(1)³⁺-Ion besetzt in der Kristallstruktur der La- und Pr-Verbindung die spezielle *Wyckoff*-Lage 4*e* und in der Kristallstruktur von Nd₅(AsO₃)₄Cl₃ (SE = La, Pr) die allgemeine Lage 8*f* und in der Kristallstruktur von Nd₅(AsO₃)₄Cl₃ die Lage 4*g* (Tab. 1.1).

Abb. 1.2: Projection der Kristallstrukturen von $SE_5(AsO_3)_4Cl_3$ (SE = La, Pr).

Abb. 1.3: Projektion der Kristallstruktur von Nd₅(AsO₃)₄Cl₃.

Wie aufgrund der Lanthanoiden-Kontraktion zu erwarten ist, nehmen die Gitterparameter von La₅(AsO₃)₄Cl₃ nach Nd₅(AsO₃)₄Cl₃ kontinuierlich ab. So werden im Falle der Lanthan-Verbindung die Gitterkonstanten a = 1803,1(2) pm, b = 548,18(3) pm und c = 1722,1(2) pm erhalten, während diese bei der Praseodym-Verbindung mit a = 1026,0(1) pm, b = 543,35(3) pm und c = 1684,9(1) pm betragen. Die Gitterparameter sowie die weiteren Ergebnisse der Strukturlösungen und –verfeinerungen sind den Tabellen 1.2 und I.1.1-I.1.3 zu entnehmen. Ein ähnliches Verhalten wurde bereits von *Lipp* bei den Verbindungen mit dem Formeltyp SECl(SeO₃) festgestellt [57].

$\underline{SE_5(AsO_3)_4Cl_3}(SE = La, Pr)$

In der Kristallstruktur von SE₅(AsO₃)₄Cl₃ (SE = La, Pr) liegen drei kristallographisch unterscheidbare SE³⁺-Kationen vor. Das SE(1)³⁺-Ion besetzt die spezielle *Wyckoff*-Lage 4*e* und ist von acht Sauerstoffatomen umgeben, die zu vier einzähnig und zwei chelatisierend angreifenden ψ -tetraedrischen [AsO₃]³⁻-Pyramiden gehören (Abb. 1.4). Das SE(2)³⁺-Ion liegt auf der allgemeine *Wyckoff*-Lage 8*f* und wird von acht Sauerstoffatomen in Form eines verzerrten Würfels koordiniert. Die acht Sauerstoffatome gehören zu zwei einzähnig und drei zweizähnig angreifenden ψ -tetraedrischen [AsO₃]³⁻-Pyramiden (Abb. 1.4). Das SE(3)³⁺-Ion besetzt ebenfalls die allgemeine *Wyckoff*-Lage 8*f*, und ist quadratisch-antiprismatisch von je vier Sauerstoffatomen und vier Chloridionen umgeben, die vier Sauerstoffatome gehören zu vier einzähnig angreifenden [AsO₃]³⁻-Pyramiden (Abb. 1.4).

Abb. 1.4: Koordination um die SE³⁺-Ionen in der Kristallstruktur von SE₅(AsO₃)₄Cl₃ (SE = La, Pr).

Es gibt zwei kristallographisch unterscheidbare ψ -tetraedrische $[AsO_3]^{3-}$ -Gruppen in der Struktur von SE₅(AsO₃)₄Cl₃ (SE = La, Pr), beide werden von sechs SE³⁺-Ionen koordiniert, dabei ist das Verknüpfungsmuster bei allen Arsenitgruppen gleich (Abb. 1.5). Die isolierten, ψ -tetraedrischen $[AsO_3]^{3-}$ -Anionen haben stereochemisch aktive, *nicht*-bindendende Elektronenpaare (*lone pair*), wie man es auch von $[SeO_3]^{2-}$ -Anionen kennt. Die Abstände sind in Tabelle I.1.2 dargestellt.

Abb. 1.5: Koordination und Umgebung der $[AsO_3]^{3-}$ -Anionen in der Kristallstruktur von $SE_5(AsO_3)_4Cl_3$ (SE = La, Pr, Nd).

$Nd_5(AsO_3)_4Cl_3$

Die Koordinationssphäre um das $Nd(1)^{3+}$ -Ion besteht aus acht Sauerstoffatomen, die zu vier einzähnig und zwei chelatisierend angreifenden, isolierten $[AsO_3]^{3-}$ -Pyramiden gehören. Das $[Nd(1)O_8]$ -Polyeder ist in Form eines verzerrten doppelt überkappten trigonalen Prismas angeordnet (Abb. 1.6). Das $Nd(2)^{3+}$ -Ion ist ebenfalls unregelmäßig von acht Sauerstoffatomen umgeben und hat die Form eines verzerrten Würfels. Die Sauerstoffatome gehören zu drei zweizähnig und zwei einzähnig angreifenden Oxo-Arsenat(III)-Gruppen (Abb. 1.6). Das $Nd(3)^{3+}$ -Ion ist quadratisch-antiprismatisch von je vier Sauerstoffatomen, die zu vier einzähnig angreifenden $[AsO_3]^{3-}$ -Pyramiden gehören, und vier Chloridionen umgeben (Abb. 1.6).

Abb. 1.6: Koordinationssphäre um die Nd³⁺-Ionen in der Kristallstruktur von Nd₅(AsO₃)₄Cl₃.

In der Kristallstruktur SE₅(AsO₃)₄Cl₃ (SE = La, Pr, Nd) bilden sich entlang der (010)-Ebene Doppelschichten aus SE³⁺-Ionen und den dreifach verknüpfenden $[AsO_3]^{3-}$ -Ionen. Die $[AsO_3]^{3-}$ -Einheiten verknüpfen die SE(1)³⁺- und die SE(2)³⁺-Kationen zu Doppelschichten gemäß $_{\infty}^{2}$ [SE₅(AsO₃)₄]³⁺. Das zweifach überkappte trigonale Prisma des [SE(1)O₈]-Polyeders ist über gemeinsame O-O-Kanten mit dem verzerrten Würfel des [SE(2)O₈]-Polyeders zu Schichten verknüpft, die ihrerseits auch untereinander über eine O-O-Kante verbunden sind.

Die SE(3)-Ionen sind untereinander über eine gemeinsame Cl-Cl-Kante zu Zick-Zack-Ketten verknüpft (Abb. 1.7). Die $[SE(3)Cl_4O_4]^{9}$ -Gruppen koordinieren ihrerseits über ihre Sauerstoff-Vierecksfläche an $_{\infty}^{2}[SE_5(AsO_3)_4]^{3+}$ und bilden Doppelschichten, die nur über Chlorid-Ionen zusammen gehalten werden. In der Kristallstruktur von SE₅(AsO₃)₄Cl₃ (SE = La, Pr, Nd) liegen zwei kristallographisch unterscheidbare Chlorid-Ionen vor.

Cl31 nimmt in der Kristallstruktur von SE₅(AsO₃)₄Cl₃ (SE = La, Pr) die allgemeine *Wyckoff*-Lage 8*f* und in der Kristallstruktur von Nd₅(AsO₃)₄Cl₃ die Lage 4*g* ein. Cl32 nimmt in der Kristallstruktur von SE₅(AsO₃)₄Cl₃ (SE = La, Pr) die spezielle *Wyckoff*-Lage 4*d* und in der Kristallstruktur von Nd₅(AsO₃)₄Cl₃ die Lage 2*e* ein. Der Winkel zwischen SE3-Cl32-SE3 beträgt in der Kristallstruktur SE₅(AsO₃)₄Cl₃ (SE = La, Pr) 180° und in der Kristallstruktur Nd₅(AsO₃)₄Cl₃ 179,8(1)°. Die Abstände sind in Tabelle I.1.2 dargestellt.

Abb. 1.7: Die $[SE(3)Cl_4O_4]^{9}$ -Polyeder in der Kristallstruktur von (**a**) $SE_5(AsO_3)_4Cl_3$ (SE = La, Pr) (links) und (**b**) (Nd₅(AsO₃)₄Cl₃) (rechts).
Verbindungen	La ₅ (AsO ₃) ₄ Cl ₃	Pr ₅ (AsO ₃) ₄ Cl ₃	Nd ₅ (AsO ₃) ₄ Cl ₃	
Raumgruppe	C2/c (Nr. 15)	<i>P</i> 2/c (Nr. 13)	
Kristallsystem		monoklin		
Gitterkonstanten				
a (pm)	1803,1(2)	1784,8(2)	1026,0(1)	
<i>b</i> (pm)	548,18(3)	543,85(3)	543,35(3)	
<i>c</i> (pm)	1722,1(2)	1688,6(2)	1684,9(1)	
eta (°)	107,39(1)	107,42(1)	123,96(1)	
Zellvolumen (cm ³ /mol)	1624,3(2)	1563,9(2)	779,0(1)	
Zahl der Formeleinheiten		4	2	
Diffraktometer		Stoe IPDS I		
Strahlung	Mo-Ka (Gr	aphitmonochromator,	λ=71,07 pm)	
Temperatur (K)		153		
Meßbereich	$3,3^{\circ} < 2\theta < 52,1^{\circ}$	$3,3^{\circ} < 2\theta < 52,1^{\circ}$	$3,3^\circ < 2\theta < 52,1^\circ$	
Drehwinkel; φ-Inkrement	$0^{\circ} < \phi < 240,5^{\circ};$	$0^{\circ} < \phi < 270, 4^{\circ};$	$0^{\circ} < \phi < 251, 2^{\circ};$	
Indexbereich	$-22 \leq h \leq \ 22$	$-22 \leq h \leq \ 22$	$-12 \le h \le 12$	
	$-6 \le k \le 6$	$-6 \le k \le 6$	$-6 \le k \le 6$	
	$-21 \le l \le 20$	$-20 \le l \le 20$	$-20 \le l \le 20$	
Anzahl der Bilder	185	288	288	
Belichtungszeit (min)	5	3,50	5	
Detektorabstand (mm)	70	70	70	
Absorptionskorrektur	numerisch nac	ch Kristallgestaltoptim	nierung [41, 42]	
μ (cm ⁻¹)	215,0	242,48	255,5	
Gemessene Reflexe	7383	7981	7163	
Symmetrieunabhängige	1517	1455	1450	
davon mit $I_0 > 2\sigma(I_0)$	1198	1135	1120	
R_{int} ; R_{σ}	0,0382; 0,0318	0,0479; 0,0339	0,0485; 0,0376	
Strukturbestimmung	SHELXS-97 und SHELXL-97 [43, 44]			
Streufaktoren	nach	n Intern. Tables, Vol. C	C [76]	
Goodness of fit	1,293	0,976	0,908	
R1; wR2 ($I_o > 2\sigma(I)$)	0,0205; 0,0314	0,0330; 0,0805	0,0209; 0,0428	
R1; wR2 (alle Daten)	0,0298; 0,0319	0,0429; 0,0833	0,0341; 0,0447	
Max. / Min. Restelektronendichte [Å ⁻³]	1,234 / -1,244	3,202 / -1,560	1,050 / -1,142	

Tab. 1.2: Kristallographische Daten von $SE_5(AsO_3)_4Cl_3$ (SE = La, Pr, Nd) und ihre Bestimmung.

1.1.3. Thermoanalytische Untersuchungen an SE₅(AsO₃)₄Cl₃ (SE = La, Pr, Nd)

Für die thermische Analyse wurden jeweils zwischen 15 und 30 mg der Verbindungen $SE_5(AsO_3)_4Cl_3$ (SE = La, Pr, Nd) in einen Korundtiegel eingewogen. Der Tiegel wurde in die SDTA/TG-Apparatur eingesetzt und im Stickstoffstrom mit einer Heizrate von 10 K/min auf eine Temperatur von 1100 °C gebracht. Die thermische Zersetzung ist in dem experimentell Temperaturbereich zugänglichen noch nicht beendet. Die Variation der Seltenerdkomponenten zeigt keinen Einfluss auf die thermische Stabilität. Eine ähnlich hohe Stabilität wurde bisher vor allem für Seltenerdarsenate festgestellt. Die thermische Zersetzung von z. B. LuAsO₄ beginnt oberhalb von 1300°C, die endotherm verlaufenden Zersetzung der Seltenerdarsenate liefert die jeweiligen Seltenerdoxide und die flüchtigen Komponenten As₂O₃ bzw. As₄O₆ sowie Sauerstoff [58].

Abb. 1.8: DTA- und TG-Kurve von thermischen Abbau von La₅(AsO₃)₄Cl₃.

Damit erweisen sich die Oxo-Arsenate(III) als thermisch deutlich belastbarer, als die Oxo-Selenate(IV). So beobachtet man beispielweise für $CuLa_2(SeO_3)_4$ eine Abspaltung von Selendioxid unter Bildung von $CuLa_2O_4$ (52% Massenverlust) [24].

1.1.4. Pulverdiffraktometrische Untersuchung von La5(AsO3)4Cl3

Aus der Umsetzung von La₂O₃ (Chempur, 99,9%), As₂O₃ (Sigma, 99,0%) und ZnCl₂ (Roth, 98%) (Molares Verhältnis 1:4:8) wurden für die pulverröntgenographische Untersuchungen gezielt Einkristalle manuell selektiert und fein verrieben. Das beobachtete Pulverdiagramm stimmt mit dem aus Einkristalldaten simulierten Diffraktogramm gut überein, jedoch ist eine Differenz zwischen den beobachteten und zu erwartenden Intensitäten zu erkennen, die wohl auf Textureffekte zurückzuführen ist (Abb. 1.9).

Abb. 1.9: Pulverdiffraktogramm von La₅(AsO₃)₄Cl₃ (schwarz = beobachtet, blau = simuliert).

In Tabelle 1.3 sind die Ergebnisse der Indizierung des Pulverdiffraktogramms auf der Basis der Einkristalldaten aufgeführt. Mit Hilfe einer least-square Verfeinerung mit 25 Reflexen wurden folgende Gitterkonstanten und Winkel erhalten: a = 1813,0(2) pm, b = 549,54(9) pm, c = 1723,5(4) pm und $\beta = 107,45(5)^{\circ}$.

n $2\theta_{(obs.)}$ h k l $2\theta_{(calc.)}$ $\Delta 2\theta_{(obscalc.)}$ Intensi	tät d _(obs.) d _(calc.)
1 10.216 2 0 0 10.220 -0.0039 16.2	8.6515 8.6482
2 12.427 -2 0 2 12.423 0.0033 6.8	7.1172 7.1191
3 24.081 3 1 1 24.062 0.0190 4.9	3.6926 3.6955
4 24.526 1 1 3 24.534 -0.0082 30.1	3.6267 3.6255
5 24.773 -3 1 3 24.767 0.0059 30.8	3.5911 3.5919
6 29.626 -6 0 2 29.579 0.0469 4.6	3.0129 3.0176
-5 1 1 29.581 0.0454	3.0174
-5 1 2 29.657 -0.0305	3.0099
7 30.344 3 1 3 30.349 -0.0044 59.2	2.9432 2.9428
8 30.774 -5 1 3 30.732 0.0428 50.7	2.9031 2.9070
-1 1 5 30.740 0.0348	2.9063
9 31.104 -2 0 6 31.116 -0.0119 50.9	2.8730 2.8720
10 32.560 0 2 0 32.561 -0.0008 100.0	2.7478 2.7477
11 38.859 -5 1 6 38.869 -0.0099 7.7	2.3157 2.3151
12 44.057 0 0 8 44.026 0.0319 7.4	2.0537 2.0552
4 0 6 44.076 -0.0191	2.0529
13 44.999 not indexed 5.5	2.0129
14 45.661 -2 2 6 45.658 0.0028 65.0	1.9853 1.9854
15 51.801 -5 1 9 51.788 0.0132 7.0	1.7635 1.7639
16 53.540 -3 3 3 53.583 -0.0430 9.3	1.7102 1.7089
17 54.626 -8 2 5 54.598 0.0283 12.7	1.6788 1.6796
1 1 9 54.647 -0.0215	1.6781
-4 2 8 54.656 -0.0305	1.6779
18 55.419 not indexed 5.9	1.6566
19 55.832 1 3 4 55.798 0.0347 6.5	1.6453 1.6462
0 2 8 55.816 0.0160	1.6457
4 2 6 55.859 -0.0268	1.6446
-3 1 10 55.869 -0.0370	1.6443
0 0 10 55.876 -0.0437	1.6441
20 56.742 3 3 3 56.729 0.0124 13.8	1.6211 1.6214
21 63.110 -1 1 11 63.060 0.0500 4.7	1.4720 1.4730
7 3 0 63.130 -0.0204	1.4715
6 2 6 63.137 -0.0275	1.4714
-7 3 4 63.140 -0.0304	1.4713
22 64.885 -4 0 12 64.881 0.0039 4.4	1.4359 1.4360
23 68.244 0 4 0 68.206 0.0379 13.3	1.3732 1.3739
24 74.604 2 4 4 74.625 -0.0209 5.8	1.2711 1.2708
25 76 885 12 1 0 76 845 0 0405 6 8	
23 70.003 -15 1 9 70.043 0.0403 0.0	1.2390 1.2395

Tab. 1.3: Indizierung des Pulverdiagramms von La₅(AsO₃)₄Cl₃.

2. Chlorid-Oxo-Arsenate(III) der Selten-Erd-Elemente

2.1. $SE_3(AsO_3)(As_2O_5)Cl_2$ (SE = Sm, Eu, Gd)

2.1.1. Synthese

Zur Darstellung von SE₃(AsO₃)(As₂O₅)Cl₂ (SE = Sm, Eu, Gd) wurden SE₂O₃ (Chempur, 99,9%) (SE =Sm, Eu, Gd), As₂O₃ (Sigma, 99,0%) und ZnCl₂ (Roth, 98%) zur Reaktion gebracht. Hierzu wurden die Komponenten in einer Handschuhbox in Quarzglasampullen gefüllt, unter Vakuum verschlossen und anschließend in einen Röhrenofen überführt, und einem definiertem Temperaturprogramm unterzogen (Tab. 2.1). Die Bildung von Einkristallen wird durch einen Überschuss an ZnCl₂ erheblich erleichtert. Die Einkristalle sind farblos bis hell-gelb und unempfindlich gegenüber Luftfeuchtigkeit.

Tab. 2.1: Einwaage und Temperaturprogramm für die Darstellung von $SE_3(AsO_3)(As_2O_5)Cl_2$ (SE = Sm, Eu, Gd).

Chemikalien	Einwaage [g]	molares Verhältnis	
Sm_2O_3	0,10	1	
As_2O_3	0,23	4	
ZnCl ₂	0,32	8	
Eu_2O_3	0,10	1	
As_2O_3	0,22	4	
ZnCl ₂	0,31	8	
Gd_2O_3	0,10	1	
As_2O_3	0,30	4	
$ZnCl_2$	0,22	8	
Temperaturprogramm:	$11 \text{ h} \rightarrow 25 \text{ °C/}$	$h \rightarrow 300 \ ^{\circ}C$	
	$24 \text{ h} \rightarrow \text{be}$	i 300 °C	
	$50 \text{ h} \rightarrow 10 \text{ °C/}$	$h \rightarrow 800 \ ^{\circ}C$	
	$30 \text{ h} \rightarrow \text{be}$	i 800 °C	
	$50 \text{ h} \rightarrow 4 \text{ °C/l}$	$n \rightarrow 600 \ ^{\circ}C$	
	$20 \text{ h} \rightarrow 10 ^{\circ}\text{C/h} \rightarrow 400 ^{\circ}\text{C}$		
	12,5 h \rightarrow 30 °C	$C/h \rightarrow 25 \ ^{\circ}C$	

2.1.2 Kristallstruktur

 $SE_3(AsO_3)(As_2O_5)Cl_2$ (SE = Sm, Eu, Gd) kristallisiert triklin mit der Raumgruppe *P*1 (Nr. 2) (Tab. 2.2) mit zwei Formeleinheiten in der Elementarzelle. Die SE³⁺-Ionen (SE = Sm, Eu, Gd) werden von den $[AsO_3]^3$ -Gruppen und den $[As_2O_5]^4$ -Gruppen zu Schichten verknüpft, die abwechselnd mit Cl⁻-Schichten gestapelt sind (Abb. 2.1).

Abb. 2.1: Projektion der Kristallstruktur von $SE_3(AsO_3)(As_2O_5)Cl_2$ (SE = Sm, Eu, Gd) auf (100).

Die $[AsO_3]^{3-}$ und $[As_2O_5]^{4-}$ -Einheiten verknüpfen alternierend die $SE(2)^{3+}$ und die $SE(3)^{3+}$ -Kationen zu Schichten gemäß $^2_{\infty}[SE(2)(AsO_3)_{1/6}(As_2O_5)_{4/8}SE(3)(AsO_3)_{3/6}(As_2O_5)_{2/8}]^+$. Die Abstände zwischen $SE(2)^{3+}$ und $SE(3)^{3+}$ liegen bei 371 pm, während die Abstände $SE(2)^{3+}$ -SE $(2)^{3+}$ zwischen 386 und 422 pm liegen (Abb. 2.2). Ähnliche Abstände kann man z.B. in Nd₅(AsO₃)₄Cl₃ beobachten. Hier liegen die Abstände zwischen Nd(1) und Nd(2) bei 399 pm und die Abstände Nd(2)-Nd(2) zwischen 382 und 401 pm.

Abb. 2.2: Verknüpfung der SE(2)³⁺- und SE(3)³⁺-Kationen zu Schichten gemäß ${}^{2}{}_{\infty}$ [SE(2)(AsO₃)_{1/6}(As₂O₅)_{4/8}SE(3)(AsO₃)_{3/6}(As₂O₅)_{2/8}]⁺.

Die SE(1)-Ionen sind untereinander über eine gemeinsame Cl-Cl-Kante zu *Zick Zack*-Ketten verknüpft (Abb. 2.3). Die ${}^{2}_{\infty}$ [SE(1)Cl_{1/1}Cl_{3/3}(AsO₃)_{2/6}(As₂O₅)_{2/8}]⁻-Baugruppe bilden mit den ${}^{2}_{\infty}$ [SE(2)(AsO₃)_{1/6}(As₂O₅)_{4/8}SE(3)(AsO₃)_{3/6}(As₂O₅)_{2/8}]⁺-Schichten Doppelschichten, die über Chlorid-Ionen zusammen gehalten werden. Die Abstände zwischen SE(1)³⁺-SE(1)³⁺ liegen bei 482 pm. Die bereits bekannten Selten-Erd-Metall(III)-Oxoselenate(IV) weisen für die SE³⁺-Kationen ganz ähnliche Abstandswerte auf [56, 79-83].

Abb. 2.3: Verknüpfung der SE(1)³⁺-Kationen zu Ketten gemäß ${}^{2}_{\infty}$ [SE(1)Cl_{1/1}Cl_{3/3}(AsO₃)_{2/6}(As₂O₅)_{2/8}]⁻.

Im Vergleich zu den Oxo-Selenat(IV)-chloriden der Selten-Erd-Metalle, in denen die Verknüpfung der unterschiedlichen Schichten nur über $[SeO_3]^{2-}$ -Anionen erfolgt, werden in $SE_3(AsO_3)(As_2O_5)Cl_2$ (SE = Sm, Eu, Gd) die Doppelschichten nur über Chlorid-Ionen zusammengehalten. Der kürzeste Abstand As-As zwischen den Schichten beträgt 482 pm.

In den Verbindungen liegen drei kristallographisch unterscheidbare SE^{3+} -Ionen (SE = Sm, Eu, Gd) vor. Das $SE(1)^{3+}$ -Ion wird quadratisch-antiprismatisch von je vier Sauerstoffatomen, die zu zwei einzähnig $[AsO_3]^{3-}$ und angreifenden zwei einzähnig angreifenden [As₂O₅]⁴⁻-Gruppen gehören, sowie von vier Chloridionen koordiniert (Abb. 2.4). Das $SE(2)^{3+}$ -Ion wird von acht Sauerstoffatomen umgeben, die zu einem einzähnig angreifenden $[AsO_3]^3$ -Ion. zwei einzähnig angreifenden [As₂O₅]⁴⁻-Ionen, einem zweizähnig angreifenden [As₂O₅]⁴-Ion und einer dreizähnig angreifenden

Abb. 2.4: Koordinationssphäre um das $SE(1)^{3+}$ -Ion in der Kristallstruktur von $SE_3(AsO_3)(As_2O_5)Cl_2$ (SE = Sm, Eu, Gd).

 $[As_2O_5]^{4-}$ -Gruppe gehören (Abb. 2.5). Das SE(3)³⁺-Ion ist unregelmäßig von acht Sauerstoffatomen umgeben, die Sauerstoffatome gehören sowohl zu einer einzähnig und zu zwei zweizähnig angreifenden $[AsO_3]^{3-}$ -Gruppen als auch zu einer einzähnig und einer zweizähnig angreifenden $[As_2O_5]^{4-}$ -Gruppe (Abb. 2.5).

Abb. 2.5: Koordination der SE(2)³⁺- und SE(3)³⁺-Ionen in der Kristallstruktur von SE₃(AsO₃)(As₂O₅)Cl₂ (SE = Sm, Eu, Gd).

Das Oxoarsenat(III)-Anion $[As_2O_5]^{4-}$ wird aus zwei ψ - $[AsO_3]^{3-}$ -Tetraedern, und zwar $[(As1)O_3]^{3-}$ mit Abständen (As(1)-O) von 176 bis 197 pm und $[As(2)O_3]^{3-}$ mit Abständen As(2)-O von 176 bis 187 pm, durch Eckenverknüpfung über das Sauerstoffatom O112 gebildet (Abb. 2.6). Die Abstände in der As1-O112-As2-Brücke (d(As-O112) = 183 und 197 pm) sind deutlich länger als die Abstände des Arsenatoms zu den terminalen Sauerstoffatomen (d(As-O) = 176 bis 183 pm). Die Winkel innerhalb der beiden

eckenverknüpften [AsO₃]³⁻-Pyramiden zeigen Werte von 90 bis 105°. Die bereits bekannten Selten-Erd-Metall(III)-Oxoarsenate(III) weisen ganz ähnliche Winkel auf [77, 78].

Abb. 2.6: (a) Umgebung des Oxoarsenat(III)-Anions $[As_2O_5]^{4-}$ (links) und (b) des ψ - $[AsO_3]^{3-}$ -Tetraeders (rechts) in der Kristallstruktur von SE₃(AsO₃)(As₂O₅)Cl₂ (SE = Sm, Eu, Gd).

Verbindungen	$Sm_3(AsO_3)(As_2O_5)Cl_2$	$Eu_3(AsO_3)(As_2O_5)Cl_2$	$Gd_3(AsO_3)(As_2O_5)Cl_2$		
Raumgruppe	5(- 5) (- 2 - 5) - 2	<i>P</i> 1 (Nr. 2)			
Kristallsystem		triklin			
Gitterkonstanten					
a (pm)	543,41(6)	541,45(7)	539,89(1)		
b (pm)	837,3(1)	837,5(1)	838,20(2)		
c (pm)	1113,5(2)	1107,6(1)	1103,10(2)		
α (°)	90,08(2)	90,06(2)	90,056(1)		
β (°)	94,53(1)	94,63(2)	94,601(1)		
γ (°)	90,49(1)	90,45(2)	90,388(1)		
Zellvolumen (cm ³ /mol)	505,0(1)	500,6(1)	497,57(2)		
Zahl der Formeleinheiten		2			
Diffraktometer	Stoe	IPDS I	BRUKER "APEX X8"		
Strahlung	Μο-Κα (Graphitmonochromator, λ	=71,07 pm)		
Temperatur (K)	1	53			
Meßbereich	$3,3^{\circ} < 2\theta < 52,1^{\circ}$	$3,3^{\circ} < 2\theta < 52,1^{\circ}$	2,43° < 20 < 80,21°		
Drehwinkel; φ- Inkrement	$0^{\circ} < \phi < 310, 0^{\circ}; 2, 0^{\circ}$	$0^{\circ} < \phi < 310, 0^{\circ}; 2, 0^{\circ}$			
Indexbereich	-6 < h < 6	-6 < h < 6	-9 < h < 7		
	$-10 \le k \le 10$	$-10 \le k \le 10$	$-15 \le k \le 15$		
	-13 ≤1 ≤ 13	-13 ≤1 ≤ 13	$-19 \le 1 \le 19$		
Anzahl der Bilder	155	155			
Belichtungszeit	7	Λ			
(min)	1	4			
Detektorabstand (mm)	70	70			
Datenkorrekturen	Polarisations- u. Lorentzfaktoren				
Absorptionskorrektur	numerisch i	nach Kristallgestaltoptimie	erung [41, 42]		
μ (cm ⁻¹)	275,14	289,58	302,17		
Gemessene Reflexe	6337	6290	25432		
Symmetrieunabhängi ge Reflexe	1883	1872	6176		
davon mit $I_0 > 2\sigma(I_0)$	1464	1514	5205		
$R_{int}; R_{\sigma}$	0,0522; 0,0556	0,0495; 0,0463	0,0383; 0,0342		
Strukturbestimmung	SHEI	LXS-97 und SHELXL-97	[43, 44]		
Streufaktoren	na	ch Intern. Tables, Vol. C	[76]		
Goodness of fit	0,918	0,904	1,128		
R1; wR2 ($I_o > 2\sigma(I)$)	0,0310; 0,0782	0,0231; 0,0466	0,0188; 0,0426		
R1; wR2 (alle Daten)	0,0443; 0,0810	0,0332; 0,0482	0,0269; 0,0717		
Max. / Min.					
Restelektronendichte [Å ⁻³]	2,132 / -1,807	1,349 / -1,380	2,990 / -2,170		

Tab. 2.2: Kristallographische Daten von $SE_3(AsO_3)(As_2O_5)Cl_2$ (SE = Sm, Eu; Gd) und ihre Bestimmung.

2.1.3. Thermoanalytische Untersuchungen an SE₃(AsO₃)(As₂O₅)Cl₂ (SE = Eu; Gd)

Für die thermische Analyse wurden jeweils zwischen 15 und 30 mg der Verbindungen $SE_3(AsO_3)(As_2O_5)Cl_2$ (SE = Eu; Gd) in einen Korundtiegel eingewogen. Der Tiegel wurde in die SDTA/TG-Apparatur eingesetzt und im Stickstoffstrom mit einer Heizrate von 10 K/min auf eine Temperatur von ca. 1100 °C gebracht. Der thermische Abbau von Gd₃(AsO₃)(As₂O₅)Cl₂ erfolgt in mehreren Stufen und zeigt einen Gesamtmassenverlust von 19,9 % (Abb. 2.7). Zur Aufklärung wurde ein Pulverdiffraktogramm des Rückstands aufgenommen (Abb. 2.8).

Abb. 2.7: DTA- und TG-Kurve vom thermischen Abbau von Gd₃(AsO₃)(As₂O₅)Cl₂.

Es liegt ein reflexarmes Spektrum vor, in dem eine Zuordnung für alle Reflexe möglich ist (Abb. 2.8). Im Pulverdiffraktogramm in Abb. 2.8 (a) werden die beobachteten Reflexe mit jenen für Gd_2O_3 und in Abb. 2.8 (b) jenen für $Sm(AsO_4)$ verglichen. Es lässt sich eine sehr gute Übereinstimmung finden. Es wurde hier zum Vergleich das $Sm(AsO_4)$ herangezogen, da es isotyp zu $Gd(AsO_4)$ ist und hierfür zufriedenstellende Einkristalldaten vorliegen. Daraus lässt sich ableiten, dass nach der thermischen Zersetzung ein Gemisch aus Gd_2O_3 und $Gd(AsO_4)$ in einer unbekannten Zusammensetzung vorliegt.

Abb. 2.8: Pulverdiffraktogramm des Zersetzungsrückstandes von $Gd_3(AsO_3)(As_2O_5)Cl_2$ und Vergleich mit den simulierten Daten von (**a**) Gd_2O_3 (links) (**b**) $Sm(AsO_4)$ (rechts).

Aus der Umsetzung von Eu₂O₃ (Chempur, 99,9%), As₂O₃ (Sigma, 99,0%) und ZnCl₂ (Roth, 98%) (Molares Verhältnis 1:4:8) wurden für die pulverröntgenographische Untersuchungen gezielt Einkristalle manuell selektiert und fein verrieben. Das beobachtete Pulverdiagramm stimmt mit dem aus Einkristalldaten simulierten Diffraktogramm gut überein (Abb. 2.9).

Abb. 2.9: Pulverdiffraktogramm von $Eu_3(AsO_3)(As_2O_5)Cl_2$ (schwarz = beobachtet, blau = simuliert).

3. Zinkhaltige Chlorid-Oxo-Arsenate(III) der Selten-Erd-Elemente

3.1. SE₂Zn(AsO₃)(As₂O₅)Cl (SE = Tb, Dy, Ho, Er, Yb, Lu)

3.1.1. Synthese

Die Kristallstruktur der neuen zinkhaltigen Verbindungen des Typs SE₂Zn(AsO₃)(As₂O₅)Cl (SE = Dy, Ho, Er, Yb) (Abb. 3.2) zeigt einen zu den Chlorid-Arseniten $SE_3(AsO_3)(As_2O_5)Cl_2$ (RE = Sm, Eu, Gd) sehr ähnlichen Aufbau. Die Verbindungen $SE_2Zn(AsO_3)(As_2O_5)Cl$ (SE = Tb, Dy, Ho, Er, Yb, Lu) wurden bei der Umsetzung von SE_2O_3 bzw. Tb₄O₇ (Chempur, 99,9%), As₂O₃ (Sigma, 99,0%) und ZnCl₂ (Roth, 98%) erhalten. Die Oxide werden fein miteinander verrieben und dann in eine Quarzglasampulle gefüllt, unter Vakuum abgeschmolzen, in einen regelbaren Ofen überführt und einem definiertem Temperaturprogramm unterzogen (Tab. 3.1). Die Bildung von Einkristallen wird erheblich erleichtert, wenn ein Überschuss von ZnCl₂ eingesetzt wird. Die Einkristalle sind farblos bis hell-gelb und empfindlich gegenüber Luftfeuchtigkeit (Abb. 3.1). Die Kristalle von Tb₂Zn(AsO₃)(As₂O₅)Cl und Lu₂Zn(AsO₃)(As₂O₅)Cl jedoch für waren eine Röntgenstrukturanalyse nicht geeignet.

Tab. 3.1: Einwaage und Temperaturprogramm für die Darstellung von $SE_2Zn(AsO_3)(As_2O_5)Cl$ (SE = Tb, Dy, Ho, Er, Yb, Lu).

Chemikalien	Einwaage [g]	molares Verhältnis
Tb_4O_7	0,10	1
As_2O_3	0,11	4
$ZnCl_2$	0,15	8
Dy_2O_3	0,10	1
As_2O_3	0,21	4
$ZnCl_2$	0,29	8
Ho_2O_3	0,10	1
As_2O_3	0,21	4
$ZnCl_2$	0,29	8

Tabelle 3.1: Fortsetzung.			
Chemikalien	Einwaage [g]	molares Verhältnis	
Er_2O_3	0,10	1	
As_2O_3	0,21	4	
ZnCl ₂	0,29	8	
Yb ₂ O ₃	0,10	1	
As_2O_3	0,20	4	
$ZnCl_2$	0,28	8	
Lu_2O_3	0,10	1	
As_2O_3	0,20	4	
$ZnCl_2$	0,27	8	
Temperaturprogramm:	$11 \text{ h} \rightarrow 25 \text{ °C}$ $24 \text{ h} \rightarrow be$	$d/h \rightarrow 300 \ ^{\circ}C$ ei 300 $^{\circ}C$	
	$50 \text{ h} \rightarrow 10 \text{ °C}$	$h \rightarrow 800 \ ^{\circ}\text{C}$	
	$30 \text{ h} \rightarrow \text{be}$	ei 800 °C	
	$50 \text{ h} \rightarrow 4 \text{ °C/}$	$h \rightarrow 600 \ ^{\circ}C$	
	$20 \text{ h} \rightarrow 10 ^{\circ}\text{C/h} \rightarrow 400 ^{\circ}\text{C}$		
	12,5 h \rightarrow 30 °	$C/h \rightarrow 25 \ ^{\circ}C$	

Abb. 3.1: Lichtmikroskopische Bilder der Einkristalle von (**a**) $Dy_2Zn(AsO_3)(As_2O_5)Cl$ (links) und (**b**) $Ho_2Zn(AsO_3)(As_2O_5)Cl$ (rechts).

3.1.2. Kristallstruktur

$\underline{SE_2Zn(AsO_3)(As_2O_5)Cl} (SE = Ho, Er, Yb)$

Die Verbindungen $SE_2Zn(AsO_3)(As_2O_5)Cl$ (SE = Ho, Er, Yb) kristallisieren triklin in der Raumgruppe *P*1 (Nr. 2) mit zwei Formeleinheiten pro Elementarzelle (Tab. 3.2). Die Gitterparameter variieren wie erwartet mit den Ionenradien der Selten-Erd-Metall(III)-Kationen. Die Terbium- und die Lutetium-Verbindung wurden synthetisiert, jedoch steht eine strukturelle Charakterisierung dieser Verbindungen noch aus, weil die Kristalle für eine Röntgenstrukturanalyse nicht geeignet waren.

Abb. 3.2: Projektion der Kristallstruktur von $SE_2Zn(AsO_3)(As_2O_5)Cl$ (SE = Dy, Ho, Er, Yb) auf (100).

Die Verknüpfung der SE³⁺-Kationen erfolgt über die [AsO₃]³⁻- und [As₂O₅]⁴⁻-Anionen in einer Weise. dass sich anionische Schichten gemäß 2 [SE(1)(AsO₃)_{3/6}(As₂O₅)_{2/7}SE(2)(AsO₃)_{1/6}(As₂O₅)_{4/7}ZnCl_{1/1}(AsO₃)_{2/6}(As₂O₅)_{1/7}] bilden (Abb. 3.3). Diese anionischen Schichten verlaufen entlang der a-Achse und werden durch schwache Wechselwirkungen zusammengehalten. Die kürzesten SE³⁺-SE³⁺-Abstände innerhalb der anionischen Schichten liegen bei 374 pm. Die Abstände zwischen SE³⁺-SE³⁺ von einer Schicht zur anderen beträgt 869 pm und die Abstand zwischen Cl⁻-Zn²⁺ von einer Schicht zu anderem liegt bei 611 pm. Der Abstand zwischen As³⁺-As³⁺ beträgt 487 pm von einer Schicht zur anderem.

Abb. 3.3: Verknüpfung der SE³⁺-Kationen gemäß ${}^{2}_{\infty}$ [SE(1)(AsO₃)_{3/6}(As₂O₅)_{2/7}SE(2)(AsO₃)_{1/6}(As₂O₅)_{4/7}ZnCl_{1/1}(AsO₃)_{2/6}(As₂O₅)_{1/7}].

In den Verbindungen liegen zwei kristallographisch unterscheidbare SE^{3+} -Ionen (SE = Dy, Ho, Er, Yb) vor, welche die allgemeine *Wyckoff*-Lage 2*i* besetzen. Das $SE(1)^{3+}$ -Ion wird von je acht Sauerstoffatomen, die zu einer einzähnig und zwei chelatisierend angreifenden $[AsO_3]^{3-}$ sowie einer einzähnig und einer zweizähnig angreifenden $[As_2O_5]^{4-}$ -Gruppe gehören (Abb. 3.4). Die SE(1)-O-Abstände liegen in einem literaturbekannten Bereich zwischen 232 und 256 pm. Das $SE(2)^{3+}$ -Ion ist unregelmäßig von acht Sauerstoffatomen umgeben, die Sauerstoffatome gehören zu einer einzähnig angreifenden $[AsO_3]^{3-}$, zwei einzähnig angreifenden $[As_2O_5]^{4-}$, einer zweizähnig angreifenden $[As_2O_5]^{4-}$ und einer dreizähnig angreifenden $[As_2O_5]^{4-}$. Und einer dreizähnig angreifenden $[As_2O_5]^{4-}$.

Abb. 3.4: Koordination der SE(1)³⁺- und SE(2)³⁺-Ionen in der Kristallstruktur von SE₂Zn(AsO₃)(As₂O₅)Cl (SE = Dy, Ho, Er, Yb).

Das Zn^{2+} -Ion ist tetraedrisch von drei Sauerstoffatomen und einem Chloratom koordiniert (Abb. 3.5). Die Sauerstoffatome gehören zu zwei einzähnig angreifenden $[AsO_3]^{3-}$ und einer einzähnig angreifenden $[As_2O_5]^{4-}$ -Gruppe.

Abb. 3.5: Koordination des Zn^{2+} -Ions in der Kristallstruktur von (**a**) $SE_2Zn(AsO_3)(As_2O_3)Cl$ (SE = Ho, Er, Yb).

In SE₂Zn(AsO₃)(As₂O₅)Cl (SE = Dy, Ho, Er, Yb) befinden sich zwei Typen von Oxo-Arsenat(III)-Anionen, das Oxoarsenat(III)-Anion $[As_2O_5]^{4-}$ und das ψ -[AsO₃]³⁻-Tetraeder (Abb. 3.6). Die kürzesten As-O-Abstände finden sich erwartungsgemäß zu den terminalen Sauerstoffatomen (d_{As-Ot} = 174 – 177 pm), die As-O-Abstände innerhalb der As-O-As-Brücken sind mit Werten zwischen 182 – 196 pm deutlich länger. Die Bindungswinkel am Arsenatom betragen 89,3 bis 99,0° zwischen den terminalen und zwischen den beiden verbrückenden Liganden 90,0 bis 104,5°. Die Sauerstoffatome des $[As_2O_5]^{4-}$ Anions sind von zwei oder drei SE³⁺-Kationen koordiniert mit Abständen von 233 bis 262 pm, wobei das verbrückende Sauerstoffatom (O133) von zwei SE³⁺-Kationen mit etwas längeren Abständen (285 und 287 pm) koordiniert ist.

Abb. 3.6: (a) Das Oxoarsenat(III)-Anion $[As_2O_5]^{4-}$ (links) und (b) der ψ - $[AsO_3]^{3-}$ -Tetraeder (rechts) in der Kristallstruktur von SE₂Zn(AsO₃)(As₂O₃)Cl (SE = Dy, Ho, Er, Yb).

$Dy_2Zn(AsO_3)(As_2O_5)Cl$

Die Verbindung Dy₂Zn(AsO₃)(As₂O₅)Cl kristallisiert triklin in der Raumgruppe *P*1 (Nr. 2) mit zwei Formeleinheiten pro Elementarzelle und ist zu den zuvor beschriebenen Strukturen isotyp (Tab. 3.2), allerdings unterscheidet sie sich bei den Gitterparametern in der Winkelaufstellung. Dadurch entsteht die in Abbildung 3.7 dargestellte Veränderung der Koordination des Zn²⁺-Ions. Das Zn²⁺-Ion ist tetraedrisch von drei Sauerstoffatomen und einem Chloratom koordiniert, die Sauerstoffatome gehören zu einer einzähnig angreifenden [AsO₃]³⁻- und zwei einzähnig angreifenden [As₂O₅]⁴⁻-Gruppen. Dies ist der einzige Unterschied, der mittels der verfügbaren Charakterisierungsmethoden festgestellt werden konnte.

Abb. 3.7: Koordination des Zn²⁺-Ions in der Kristallstruktur von Dy₂Zn(AsO₃)(As₂O₅)Cl.

III. Spezieller Teil

Tab. 3.2: Kristallographische Daten von $SE_2Zn(AsO_3)(As_2O_5)Cl$ (SE = Dy, Ho, Er, Yb) und ihre Bestimmung.

Verbindungen	$Dy_2Zn(AsO_3)(As_2O_5)Cl$	Ho ₂ Zn(AsO ₃)(As ₂ O ₅)Cl	$Er_2Zn(AsO_3)(As_2O_5)Cl$	Yb ₂ Zn(AsO ₃)(As ₂ O ₅)Cl		
Raumgruppe	·- · · · · · · · · · · · · · · · · · ·	<i>P</i> 1 (Nr. 2)				
Kristallsystem		trikl	in			
Gitterkonstanten						
<i>a</i> (pm)	548,24(2)	540,67(6)	539,98(9)	536,40(7)		
b (pm)	883,53(3)	898,9(1)	899,2(2)	896,7(2)		
<i>c</i> (pm)	1082,80(4)	1085,2(2)	1082,0(2)	1074,0(2)		
α (°)	75,242(2)	107,65(2)	107,43(2)	107,07(2)		
eta (°)	88,010(2)	92,71(2)	92,77(2)	93,17(2)		
γ (°)	88,971(2)	92,12(2)	91,95(2)	91,33(2)		
Zellvolumen (cm³/mol)	506,86(3)	501,3(1)	500,0(2)	492,7(2)		
Zahl der		2				
Formeleinheiten		-				
Diffraktometer	BRUKER "APEX X8"		Stoe IPDS I			
Strahlung		Mo-Kα (Graphitmonoch	romator, λ =71,07 pm)			
Temperatur (K)		15.	3			
Meßbereich	$3,44^{\circ} < 2\theta < 80,54^{\circ}$	$3,3^{\circ} < 2\theta < 52,1^{\circ}$	$3,3^{\circ} < 2\theta < 52,1^{\circ}$	$3,8^{\circ} < 2\theta < 56,3^{\circ}$		
Drehwinkel; φ- Inkrement		$0^{\circ} < \phi < 310, 0^{\circ}; 2, 0^{\circ}$	$0^{\circ} < \phi < 310, 0^{\circ}; 2, 0^{\circ}$	$0^{\circ} < \phi < 300, 0^{\circ}; 2, 0^{\circ}$		
Indexbereich	$-8 \le h \le 9$	$-6 \le h \le 6$	$-6 \le h \le 6$	$-6 \le h \le 6$		
	$-16 \le k \le 15$	$-11 \le k \le 10$	$-11 \le k \le 11$	$-11 \le k \le 11$		
	$-19 \le l \le 19$	$-13 \le l \le 13$	$-13 \le l \le 13$	$-14 \le l \le 14$		
Anzahl der Bilder		155	155	150		
Belichtungszeit (min)		3,50	10,0	9,0		

III. Spezieller Teil

Tabelle 3.2: Fortsetzung				
Verbindungen	Dy ₂ Zn(AsO ₃)(As ₂ O ₅)Cl	Ho ₂ Zn(AsO ₃)(As ₂ O ₅)Cl	Er ₂ Zn(AsO ₃)(As ₂ O ₅)Cl	Yb ₂ Zn(AsO ₃)(As ₂ O ₅)Cl
Detektorabstand (mm)		70,0	70,0	60,0
Datenkorrekturen		Polarisations- u. 1	Lorentzfaktoren	
Absorptionskorrektur		numerisch nach Kristallge	staltoptimierung [41, 42]	
μ (cm ⁻¹)	269,34	281,10	291,45	315,27
Gemessene Reflexe	23843	6264	6206	7163
Symmetrieunabhängige Reflexe	6320	1875	1863	2218
davon mit $I_0 > 2\sigma(I_0)$	5727	1514	1189	1413
$R_{int}; R_{\sigma}$	0,0303; 0,0285	0,0814; 0,0401	0,1025; 0,0935	0,0910; 0,0931
Strukturbestimmung		SHELXS-97 und SH	IELXL-97 [43, 44]	
Streufaktoren		nach Intern. Tabl	les, Vol. C [76]	
Goodness of fit	1,175	1,002	0,962	0,876
R1; wR2 ($I_o > 2\sigma(I)$)	0,0283; 0,0712	0,0498; 0,1387	0,0445; 0,1145	0,0466; 0,1080
R1; wR2 (alle Daten)	0,0334; 0,0830	0,0630; 0,1475	0,0782; 0,1333	0,0781; 0,1174
Max. / Min. Restelektronendichte [Å ⁻³]	5,423 / -2,550	3,180 / -2,600	2,667 / -2,610	4,179 / -3,368

3.1.3. Thermoanalytische Untersuchungen an SE₂Zn(AsO₃)(As₂O₅)Cl (SE = Dy, Ho)

Für die thermische Analyse wurden jeweils zwischen 15 und 30 mg der Verbindungen $SE_2Zn(AsO_3)(As_2O_5)Cl$ (SE = Dy, Ho) in einen Korundtiegel eingewogen. Der Tiegel wurde in die SDTA/TG-Apparatur eingesetzt und im Stickstoffstrom mit einer Heizrate von 10 K/min auf eine Temperatur von 1100 °C gebracht. Der thermische Abbau von Dy₂Zn(AsO₃)(As₂O₅)Cl erfolgt in zwei Stufen (Abb. 3.8), wobei die letzte Stufe bis ca. 1100 °C nicht vollständig abgeschlossen ist. Die erste Stufe beginnt bei 25 °C und endet bei 280 °C, sie zeigt einen Massenverlust von 0,70 %, dies liegt in der Fehlertoleranz der Messung und kann deswegen vernachlässigt werden. Die zweite Stufe fängt bei 280 °C an und ist bis ca. 1050 °C nicht vollständig abgeschlossen. Diese Stufe lässt sich als Abspaltung von ZnCl₂ interpretieren, mit einem Massenverlust von 15,21 %. Zur Aufklärung wurde Pulverdiffraktogramm der Rückstand aufgenommen (Abb. 3.9).

Abb. 3.8: DTA- und TG-Kurve von thermischen Abbau von Dy₂Zn(AsO₃)(As₂O₅)Cl.

Es liegt ein reflexarmes Spektrum vor (Abb. 3.9), dessen Indizierung möglich ist, unter der Annahme, dass sich bei der Zersetzung Dy_2O_3 und $Dy(AsO_4)$ bilden (Abb. 3.9 a/b).

Abb. 3.9: Pulverdiffraktogramm des Zersetzungsrückstandes von $Dy_2Zn(AsO_3)(As_2O_5)Cl$ und Vergleich mit den simulierten Daten von (**a**) $Dy(AsO_4)$ (links) (**b**) Dy_2O_3 (rechts).

Der thermische Abbau von Ho₂Zn(AsO₃)(As₂O₅)Cl finden in drei Stufen statt (Abb. 3.10), wobei die letzte Stufe bis ca. 1100 °C nicht vollständig abgeschlossen ist. Die erste Stufe beginnt bei 25 °C und endet bei 260 °C, sie zeigt einen Massenverlust von 1,40 %, dies kann eine Verunreinigung der Probe sein und deswegen vernachlässigt werden. Die zweite Stufe fängt bei 260 °C an und endet bei 580 °C, mit einem Massenverlust von 3,32 %. Die dritte Stufe beginnt bei 580 °C und ist bis ca. 1100 °C nicht vollständig abgeschlossen. Diese Stufe lässt sich als Abspaltung von ZnCl₂ interpretieren, mit einem Massenverlust von 22,81 %. Zur Aufklärung wurde ein Pulverdiffraktogramm des Rückstands aufgenommen (Abb. 3.11).

Abb. 3.10: DTA- und TG-Kurve von thermischen Abbau von Ho₂Zn(AsO₃)(As₂O₅)Cl.

Es liegt ein reflexarmes Diagramm vor, in dem eine Zuordnung für alle Banden nicht möglich ist (Abb. 3.11). Sehr gut zu sehen ist jedoch, dass das Beugungsdiagramm von Ho₂Zn(AsO₃)(As₂O₅)Cl jenem von Dy₂Zn(AsO₃)(As₂O₅)Cl ähnelt. Die aus Einkristalldaten simulierten Peaks für Ho(AsO₄) (Abb. 3.11(a)) und Ho₂O₃ (Abb. 3.11(b)) finden sich in Anzahl und Intensität in dem beobachteten Spektrum des Zersetzungsrückstandes von Ho₂Zn(AsO₃)(As₂O₅)Cl wieder.

Abb. 3.11: Pulverdiffraktogramm des Zersetzungsrückstandes von $Ho_2Zn(AsO_3)(As_2O_5)Cl$ und Vergleich mit den simulierten Daten von (**a**) $Ho(AsO_4)$ (links) (**b**) Ho_2O_3 (rechts).

Aus den Pulverdiffraktogrammen (Abb. 3.11) lässt sich ableiten, dass nach der thermischen Analyse ein Gemisch aus Ho_2O_3 und $Ho(AsO_4)$ in einer unbekannten Zusammensetzung vorliegt. Die aus Einkristalldaten simulierten Peaks finden sich in Anzahl und Intensität in dem beobachteten Spektrum wieder.

3.1.4. Pulverdiffraktometrische Untersuchung von Ho2Zn(AsO3)(As2O5)Cl

Aus der Umsetzung von La₂O₃ (Chempur, 99,9%), As₂O₃ (Sigma, 99,0%) und ZnCl₂ (Roth, 98%) (Molares Verhältnis 1:4:8) wurden für die pulverröntgenographische Untersuchungen gezielt Einkristalle manuell selektiert und fein verrieben. Das beobachtete Pulverdiffraktogramm stimmt mit dem aus Einkristalldaten simulierten Diffraktogramm überein, jedoch ist eine große Diskrepanz zwischen den beobachteten und zu erwartenden Intensitäten zu erkennen (Abb. 3.12).

Abb. 3.12: Pulverdiffraktogramm von $Ho_2Zn(AsO_3)(As_2O_5)Cl$ (schwarz = beobachtet, blau = simuliert).

4. Schwingungsspektroskopische Untersuchungen an La₅(AsO₃)₄Cl₃, Gd₃(AsO₃)(As₂O₅)Cl₂ und Dy₂Zn(AsO₃)(As₂O₅)Cl

Um festzustellen, ob sich die Anwesenheit von $[As_2O_5]^{4-}$ -Ionen neben $[AsO_3]^{3-}$ -Gruppen schwingungsspektroskopisch verifizieren lässt, wurden die IR-Spektren von La₅(AsO₃)₄Cl₃, Gd₃(AsO₃)(As₂O₅)Cl₂ und Dy₂Zn(AsO₃)(As₂O₅)Cl in KBr-Preßlingen aufgenommen. Im Idealfall, d.h. unter Annahme von C_{3v}-Symmetrie, wären für das $[AsO_3]^{3-}$ -Anions vier

Normalschwingungen zu erwarten, die sich auf die Rassen A1 (2x) und E (2x) verteilen und alle sowohl Raman- als auch IR-aktiv wären (Abb. 4.1) [64-68].

Abb. 4.1: Schwingungen des pyramidenförmigen [AsO₃]³⁻-Anions.

In allen untersuchten Verbindungen nehmen die $[AsO_3]^3$ -Gruppen allgemeine Lagen ein, d.h. es liegt C_1 -Symmetrie vor und das Anion weist 3N-6 = sechs Normalschwingungen auf (N = Zahl der Atome). Auch die $[As_2O_5]^{4-}$ -Gruppen liegen in den Kristallstrukturen von $Dy_2Zn(AsO_3)(As_2O_5)Cl$ $Gd_3(AsO_3)(As_2O_5)Cl_2$ und auf allgemeinen Punktlagen. Dementsprechend sind für dieses Anion zusätzlich 15 Normalschwingungen zu erwarten. Die As-O-Streck- und Biegeschwingungen werden bei beiden Anionen bei sehr ähnlichen Energien liegen und nur schwer zu unterscheiden sein. Eine Ausnahme könnte allerdings für diejenigen Schwingungen auftreten, in die das Brückensauerstoffatomatom des [As₂O₅]⁴⁻-Ions involviert ist, zumal hier die Abstände As-O im Vergleich zu den terminalen Sauerstoffatomen deutlich länger sind und eine typische Biegeschwingung innerhalb der O-As-O-Brücke auftreten sollte.

In Abbildung 4.2 werden die IR-Spektren der drei Verbindungen miteinander verglichen. Es zeigt sich die erwartet große Zahl an beobachteten Banden, die in den drei Spektren unterschiedlich gut aufgelöst sind. Eine Unterscheidung der Schwingungen der beiden unterschiedlichen Anionen ist nicht ohne Weiteres möglich. Ebenso ist keine charakteristische Biegeschwingung der O-As-O-Brücke zu erkennen, die ausschließlich in den Spektren von Gd₃(AsO₃)(As₂O₅)Cl₂ und Dy₂Zn(AsO₃)(As₂O₅)Cl auftreten dürfte. Eine Identifizierung

unterschiedlicher Poly-Oxo-Arsenate(III) mit Hilfe schwingungsspektroskopischer Methoden scheidet damit zumindest für die hier vorgestellten komplexen Verbindungen aus. Alle beobachteten Banden sind in Tabelle 4.1 zusammengestellt. Eine Zuordnung wurde nur hinsichtlich der Unterscheidung der Schwingungsformen vorgenommen, nicht jedoch hinsichtlich der unterschiedlichen Anionen.

Abb. 4.2: MIR-Spektren von $La_5(AsO_3)_4Cl_3$, $Gd_3(AsO_3)(As_2O_5)Cl_2$ und $Dy_2Zn(AsO_3)(As_2O_5)Cl$.

Wellenzahl [cm ⁻¹]	Intensität	Wellenzahl [cm ⁻¹]	Intensität	Wellenzahl [cm ⁻¹]	Intensität	Zuordnung	Lage im freien
							Ion
La ₅ (AsO ₃	$_{3})_{4}Cl_{3}$	Gd ₃ (AsO ₃)(A	$s_2O_5)Cl_2$	Dy ₂ Zn(AsO ₃)	(As ₂ O ₅)Cl		
410	schwach	347	mittel	316	schwach		412 [62]
447	mittel	366	Schulter	354	schwach	$\delta_{s}(AsO_{3}^{3})$	441 [62]
493	Schulter	426	sehr schwach	337	Schulter		
526	mittel	514	stark	462	mittel		
586	Schulter	638	stark	578	mittel	$v_{as}(AsO_3^{3-})$	
615	mittel	808	stark	622	mittel		
700	schwach			671	mittel		
721	Schulter			680	Schulter		
796	mittel	805	stark	802	stark	$v_{as}(AsO_3^{3-})$	987 [62]
985	schwach						
1620	sehr stark	1612	sehr stark	1621	sehr stark	H ₂ O (aus KBr)	1640-1615
							[36, 74]

 $\textbf{Tab. 4.1: IR-B} and en und ihre Zuordnung für La_5(AsO_3)_4Cl_3, Gd_3(AsO_3)(As_2O_5)Cl_2 und Dy_2Zn(AsO_3)(As_2O_5)Cl_2 und Dy_2Zn(AsO_3)(AsO_3$

5. Eisenhaltige Chlorid-Oxo-Arsenate(III) der Selten-Erd-Elemente

5.1. $SE_2Fe(AsO_3)(As_2O_5)Cl$ (SE = Sm, Gd)

5.1.1. Synthese

Bei dem Versuch andere Ionen, z.B. Co^{2+} , Mn^{2+} oder Fe^{2+} , anstelle eines Zn^{2+} -Ions in Chlorid-Oxo-Arsenate(III) der Selten-Erd-Elemente einzubauen, wurden Einkristalle von $SE_2Fe(AsO_3)(As_2O_3)Cl$ (SE = Sm, Gd) erhalten. Die eisenhaltigen Oxo-Arsenate(III)-chloride der Selten-Erd-Metalle, $SE_2Fe(AsO_3)(As_2O_3)Cl$ (SE = Sm, Gd), wurden festkörperchemisch dargestellt. Zur Darstellung wurden die entsprechenden Selten-Erd-Metall-Sesquioxide (M₂O₃), Arsen(III)-oxid (As₂O₃), Eisen(II)-oxid (FeO) und Eisen(II)-chlorid (FeCl₂) im molaren Verhältnis von 1:4:7:4 in evakuierten graphitierten Quarzglasampullen zur Reaktion gebracht. Über einen Zeitraum von üblicherweise fünf bis sieben Tagen hat sich als Reaktionstemperatur zu diesem Zweck 800-850 °C gut bewährt (Tab. 5.1). Die Reaktion führt zu braun-gelben Einkristallen für die Samarium- und blassgelben Einkristallen für die Gadolinium-Verbindung. Die Bildung von Einkristallen wird erheblich erleichtert, wenn ein Überschuss von FeCl₂ eingesetzt wird.

Tab.	5.1:	Einwaage	und	Temperaturprogramm	für	die	Darstellung	von
SE ₂ Fe((AsO ₃)(As ₂ O ₅)Cl (SE	2 =Sm, 9	Gd).				

Chemikalien	Einwaage [g]	molares Verhältnis
Sm_2O_3	0,10	1
As_2O_3	0,23	4
FeO	0,14	7
FeCl ₂	0,15	4
Gd_2O_3	0,10	1
As_2O_3	0,22	4
FeO	0,14	7
FeCl ₂	0,14	4

Tabelle 5.1: Fortsetzung	
Temperaturprogramm:	$11 \text{ h} \rightarrow 25 \text{ °C/h} \rightarrow 300 \text{ °C}$
	24 h \rightarrow bei 300 °C
	55 h \rightarrow 10 °C/h \rightarrow 850 °C
	$30 \text{ h} \rightarrow \text{bei } 850 ^{\circ}\text{C}$
	$50 \text{ h} \rightarrow 4 ^{\circ}\text{C/h} \rightarrow 600 ^{\circ}\text{C}$
	$20 \text{ h} \rightarrow 10 \text{ °C/h} \rightarrow 400 \text{ °C}$
	12,5 h \rightarrow 30 °C/h \rightarrow 25 °C

5.1.2. Kristallstruktur

 $SE_2Fe(AsO_3)(As_2O_5)Cl$ (SE = Sm, Gd) kristallisieren isotyp im triklinen Kristallsystem in der Raumgruppe *P*1 (Nr. 2) mit zwei Formeleinheiten in der Elementarzelle (Tab. 5.2.). Trotz der zweifelsfreien Indizierung und den guten Gütefaktoren der Strukturverfeinerung weisen die Verbindungen erhebliche kristallographische Probleme auf. Im Folgenden werden zunächst die zweifelsfreien Charakteristika der Kristallstrukturen beschrieben, um dann im Detail auf die kristallographischen Probleme einzugehen. Die Beschreibung der Kristallstrukturen erfolgt am Beispiel der Samariumverbindung.

In der Kristallstruktur von $\text{Sm}_2\text{Fe}(\text{AsO}_3)(\text{As}_2\text{O}_5)\text{Cl}$ liegen zwei kristallographisch unterscheidbare Sm^{3+} -Kationen vor, die die allgemeine *Wyckoff*-Lage 2*i* besetzen. Das $\text{Sm}(1)^{3+}$ -Ion wird von je acht Sauerstoffatomen, die zu einer einzähnig und zwei chelatisierend angreifenden $[\text{AsO}_3]^{3-}$ sowie einer einzähnig und einer zweizähnig angreifenden $[\text{As}_2\text{O}_5]^{4-}$ -Gruppen gehören, koordiniert (Abb. 5.1). Die Sm(1)-O-Abstände liegen in einem literaturbekannten Bereich zwischen 230 und 260 pm. Das Sm(2)³⁺-Ion ist von acht Sauerstoffatomen umgeben, die Sauerstoffatome gehören zu einer einzähnig angreifenden $[\text{AsO}_3]^{3-}$, zwei einzähnig angreifenden $[\text{As}_2\text{O}_5]^{4-}$, einer zweizähnig angreifenden $[\text{As}_2\text{O}_5]^{4-}$ und einer dreizähnig angreifenden $[\text{As}_2\text{O}_5]^{4-}$ -Gruppe (Abb. 5.1).

Abb. 5.1 Koordinationspolyeder um die beiden kristallographisch unterscheidbaren Sm³⁺-Ionen in der Kristallstruktur von Sm₂Fe(AsO₃)(As₂O₅)Cl.

Die Verknüpfung der Sm³⁺-Ionen über die beiden unterschiedlichen Anionen führt zu Schichten der Zusammensetzung ${}^{2}_{\infty}$ [Sm(1)(AsO₃)_{3/7}(As₂O₅)_{2/9}Sm(2)(AsO₃)_{1/7}(As₂O₅)_{4/9}]. Die Oxoanionen lassen sich auf drei kristallographisch unterschiedliche Arsenatome zurückführen, die die allgemeine *Wyckoff*-Lage 2*i* besetzen (Abb. 5.2). Innerhalb des monomeren ψ -[AsO₃]³⁻-Tetraeders werden Abstände As-O zwischen 175 und 184 pm

beobachtet. In dem dimeren Anion $[As_2O_5]^{4-}$ liegen zwei eckenverknüpfte ψ - $[AsO_3]^{3-}$ -Tetraeder vor. Innerhalb des Ions variieren die Abstände As-O von 174 bis 193 pm, wobei die längsten Abstände wie zu erwarten zu dem Brückensauerstoffatom O233 beobachtet werden.

Abb. 5.2: Das ψ -[AsO₃]³⁻-Tetraeder (links) und das Oxoarsenat(III)-Anion [As₂O₅]⁴⁻ (rechts) in der Kristallstruktur von Sm₂Fe(AsO₃)(As₂O₅)Cl.

Nach einem Model von *Galy et al.* lässt sich der Raumbedart für die freien Elektronenpaare an den Arsenatomen abschätzen [73]. Dabei kann der Abstand As-E (E = freies Elektronenpaar am Arsenatom) vom Arsenatom zum Zentrum des "lone-pairs" mit folgender Gleichung berechnet werden:

$$As - E = \left(\frac{d}{\sqrt{3}}\right) \left[\left(2\sqrt{2}\right) \sin\left(\frac{\alpha}{2}\right) - \sqrt{3 - 4\sin^2\left(\frac{\alpha}{2}\right)} \right]$$

d = durchschnittlicher As-O-Abstand

α = durchschnittlicher O-As-O-Winkel

Für die beschriebene Verbindung ergibt sich somit für das ψ -[As(1)O₃]³⁻-Tetraeder ein Abstand As-E-Abstand von 120 pm. In der [As₂O₅]⁴⁻-Gruppe beträgt der Abstand 123 pm. In der Kristallstruktur wird der Platzbedarf der freien Elektronenpaare durch die beobachteten Hohlräume in der Struktur deutlicher (Abb. 5.3). Die nichtbindenden freien Elektronenpaare am Arsenatom sind in Richtung der *b*-Achse ausgerichtet.

In Analogie zu den beschriebenen zinkhaltigen Verbindungen befinden sich auch in Sm₂Fe(AsO₃)(As₂O₅)Cl die Übergangsmetallionen in den von den Anionen aufgebauten

Schichten und sind dabei von Sauerstoffatomen koordiniert, aber auch von Chloridionen, die ihrerseits ebenfalls zu Schichten angeordnet sind und die Sm³⁺-haltigen Schichten voneinander separieren.

Abb. 5.3: Projektion der Kristallstruktur von Sm₂Fe(AsO₃)(As₂O₅)Cl.

Die kristallographischen Unzulänglichkeiten der Strukturbestimmung sind in den Abbildungen 5.1-5.3 bereits deutlich zu erkennen. Es sind dies im Einzelnen:

1. Die As-Lage innerhalb des Dianions $[As_2O_5]^{4-}$ ist im Verhältnis 0,9521:0,04925 (As(3):As(4)) gesplittet. Eine solche Fehlordnung innerhalb eines komplexen Oxoanions ist ungewöhnlich, wurde aber auch schon in einigen Oxo-Selenaten(IV) der Selten-Erd-Elemente beobachtet. Dieselbe Fehlordnung wird auch in der Gd-Verbindung, hier mit einem Aufspaltungsverhältnis von 0,9466:0,05826, beobachtet.

2. Die Atome innerhalb der Schicht, die aus Chloridionen aufgebaut werden, sind ebenfalls fehlgeordnet. Es werden drei unterschiedliche Lagen gefunden, deren Besetzungsparameter im Verhältnis von 0,5:0,3:0,2 (Cl(1):Cl(2):Cl(3)) verfeinert werden können. In der Gd-Verbindung beträgt das Verhältnis 0,33:0,33:0,33.

3. Eng verbunden mit der Fehlordnung der Chloridlagen ist die Fehlordnung jener Eisenatome, die sich innerhalb der von den Anionen gebildeten Schichten befinden (Abb. 5.4). Die entsprechende Fe-Lage ist im Verhältnis 0,65:0,35 (Fe(1):Fe(2)) aufgeteilt. Auf diese Weise resultieren für die Fe(1)²⁺- bzw. Fe(2)²⁺-Ionen eine unregelmäßige Koordination von vier Sauerstoff- und zwei Chloratomen (Abb. 5.4). Die Sauerstoffatome gehören zu zwei einzähnig angreifenden [AsO₃]³⁻ und zwei einzähnig angreifenden [As₂O₅]⁴⁻-Gruppen. Die Abstände Fe²⁺-O²⁻ liegen zwischen 201 und 230 pm, jene für Fe²⁺-Cl⁻ zwischen 195 und 269 pm (Tab. IV.1.2), d.h. es treten unrealistisch kurze Kontakte zu den Chloridionen auf. Die gleiche Beobachtung wird auch für die Gd-Verbindung gemacht.

Abb. 5.4: Koordination und Fehlordnung des $Fe(1)^{2+}$ bzw. $Fe(2)^{2+}$ -Ions und der Chloridionen in der Kristallstruktur von $Sm_2Fe(AsO_3)(As_2O_5)Cl$.

4. Es konnte eine erhebliche Restelektronendichte gefunden werden, die genau in den von den freien Elektronenpaaren der Arsenatome und den Chloridionen aufgespannten Hohlräumen liegt. Die Abstände des Elektronendichtemaximums und den Chloridionen (ca. 233 pm) legt die Präsenz eines weiteren Fe-Atoms an dieser Stelle nahe. Ein Eisenatom lässt sich mit einem Besetzungsfaktor von 0,10 (Sm₂Fe(AsO₃)(As₂O₅)Cl) bzw. 0,16 (Gd₂Fe(AsO₃)(As₂O₅)Cl) verfeinern. Gegen das Vorhandensein eines Eisenions an dieser Stelle spricht allerdings, dass dieses Ion außer von den beiden Chloridionen nur von freien Elektronenpaaren umgeben wäre (Abb. 5.5). Eine solche Koordination ist bisher für Metallionen unbekannt. Darüber hinaus würde dieses Metallion weitere positive Ladungen in die Verbindung einbringen, die kompensiert werden müsste, z.B. durch eine merkliche Unterbesetzung andere Kationenlagen.

Abb. 5.5: Koordination des $Fe(3)^{3+}$ -Ions in der Kristallstruktur von Sm₂Fe(AsO₃)(As₂O₅)Cl.

Es liegt daher die Vermutung nahe, dass die beobachteten kristallographischen Unzulänglichkeiten nicht auf reale Fehlordnungsprobleme zurückzuführen sind, sondern eine einer bisher nicht erkannten Verzwillingung geschuldet sind. Hierfür spricht auch, dass das Phänomen in beiden untersuchten Verbindungen auftritt. Weitere Untersuchungen müssen in dieser Hinsicht erfolgen.

davon mit $I_0 > 2\sigma(I_0)$

Strukturbestimmung

R1; wR2 ($I_0 > 2\sigma(I)$)

R1; wR2 (alle Daten)

Restelektronendichte [Å⁻³]

Streufaktoren

Max. / Min.

Goodness of fit

 $R_{int}; R_{\sigma}$

Bestimmung.		
Verbindungen	Sm ₂ Fe(AsO ₃ (As ₂ O ₅)Cl	Gd ₂ Fe(AsO ₃ (As ₂ O ₅)Cl
Raumgruppe	<i>P</i> 1 (Nr. 2)	
Kristallsystem	triklin	
Gitterkonstanten		
<i>a</i> (pm)	553,01(5)	548,26(2)
<i>b</i> (pm)	940,9(1)	936,00(4)
<i>c</i> (pm)	1103,0(1)	1093,47(4)
α (°)	73,42(1)	73,210(2)
β (°)	88,21(1)	88,163(2)
γ (°)	73,12(1)	73,057(2)
Zellvolumen (cm ³ /mol)	525,5(1)	513,07(3)
Zahl der Formeleinheiten	2	
Diffraktometer	Stoe IPDS I	BRUKER "APEX X8"
Strahlung	Mo-K α (Graphitmonochromator, $\lambda = 71,07$ pm)	
Temperatur (K)	153	
Meßbereich	$3,8^{\circ} < 2\theta < 56,3^{\circ}$	$1,95^{\circ} < 2\theta < 72,68^{\circ}$
Drehwinkel; φ-Inkrement	$0^{\circ} < \phi < 310, 0^{\circ}; 2, 0^{\circ}$	
Indexbereich	$-7 \le h \le 7$	$-8 \le h \le 9$
	$-12 \le k \le 12$	$-15 \le k \le 15$
	$-14 \le l \le 14$	$-18 \le 1 \le 10$
Anzahl der Bilder	160	
Belichtungszeit (min)	3,50	
Detektorabstand (mm)	60	
Datenkorrekturen	Polarisations- u. Lorentzfaktoren	
Absorptionskorrektur	numerisch nach Kristallgestaltoptimierung [41, 42]	
μ (cm ⁻¹)	220,31	240,47
Gemessene Reflexe	8270	16253
Symmetrieunabhängige	2389	4932

2027

0,0466; 0,0392

1,084

0,035; 0,0876

0,0435; 0,0898

2,174 / -2,003

SHELXS-97 und SHELXL-97 [43, 44]

nach Intern. Tables, Vol. C [76]

Tab. 5.2: Kristallographische Daten von $SE_2Fe(AsO_3)(As_2O_5)Cl$ (SE = Sm, Gd) und ihre

4055

0,0385; 0,0457

1,173

0,0432; 0,1112

0,0591; 0,1291

7,995 / -3,751

- 64 -
5.2. Eu₆Fe₅(As₄O₉)₂(As₃O₇)₂(AsO₃)₂

5.2.1. Synthese

Die Verbindung Eu₆Fe₅(As₄O₉)₂(As₃O₇)₂(As₀O₃)₂ wurde bereits von *Ben Hamida* synthetisiert [24] (Abb. 5.12; Tab. 5.4, Tab. V.1.1-V.1.3). Allerdings konnten nur wenige Einkristalle erhalten werden, so dass bisher nur die Struktur der Verbindung, aber keine Eigenschaften, untersucht werden konnten. In dieser Arbeit wurde Eu₆Fe₅(As₄O₉)₂(As₃O₇)₂(AsO₃)₂ phasenrein dargestellt und physikalisch untersucht. Dazu wurde die festkörperchemische Präparationsmethode optimiert. Zur Darstellung wurden Europiumoxid (Eu₂O₃), Arsen(III)oxid (As₂O₃) und Eisen(II)-chlorid (FeCl₂) im molaren Verhältnis von 1:4:7 in evakuierten graphitierten Quarzglasampullen zur Reaktion gebracht. Über einen Zeitraum von üblicherweise fünf bis sieben Tagen hat sich als Reaktionstemperatur zu diesem Zweck 800-850 °C gut bewährt (Tab. 5.3). Die Reaktion führt zu gelben, großen Einkristallen. Die Bildung von Einkristallen wird erleichtert, wenn ein Überschuss von FeCl₂ eingesetzt wird.

Tab.5.3: Einwaage und Temperaturprogramm für die Darstellung von $Eu_6Fe_5(As_4O_9)_2(As_3O_7)_2(AsO_3)_2.$

Chemikalien	Einwaage [g]	molares Verhältnis			
Eu_2O_3	0,10	1			
As_2O_3	0,22	4			
FeCl ₂	0,31	8			
Temperaturprogramm:	$11 \text{ h} \rightarrow 25 \text{ °C}$	$C/h \rightarrow 300 \ ^{\circ}C$			
	24 h \rightarrow bei 300 °C				
	$50 \text{ h} \rightarrow 10 ^{\circ}\text{C}$	$C/h \rightarrow 800 \ ^{\circ}C$			
	$30 h \rightarrow b$	ei 800 °C			
	$50 \text{ h} \rightarrow 4 ^{\circ}\text{C}$	$/h \rightarrow 600 \ ^{\circ}C$			
	$20 \text{ h} \rightarrow 10 \text{ °C}$	$C/h \rightarrow 400 \ ^{\circ}C$			
	12,5 h \rightarrow 30 °	$^{\circ}C/h \rightarrow 25 \ ^{\circ}C$			

Abb. 5.12: Projektion der Kristallstruktur von Eu₆Fe₅(As₄O₉)₂(As₃O₇)₂(AsO₃)₂ auf (010).

$Eu_6Fe_5(As_4O_9)_2($	$As_3O_7)_2(AsO_3)_2$
Kristallsystem	triklin
Raumgruppe	<i>P</i> 1 (Nr. 2)
Gitterkonstanten	
<i>a</i> (pm)	987,26(6)
<i>b</i> (pm)	998,66(7)
<i>c</i> (pm)	1119,59(8)
α(°)	99,486(8)
β (°)	102,101(8)
$\gamma(^{\circ})$	105,888(8)
Zahl der Formeleinheiten	2

Tab. 5.4: Eu₆Fe₅(As₄O₉)₂(As₃O₇)₂(AsO₃)₂: Kristallographische Daten.

Eu₆Fe₅(As₄O₉)₂(As₃O₇)₂(AsO₃)₂ kristallisiert triklin mit der Raumgruppe *P*1 (Nr. 2) mit zwei Formeleinheiten in der Elementerzelle (Tab. 5.4). In der Verbindung liegen drei Oxo-Arsenat(III)-Anionen-Typen vor. Das erste Oxoarsenat(III)-Anion ist ein monomeres, literaturbekanntes ψ -[AsO₃]³⁻-Anion, das ein- bzw. zweizähnig an das Eu³⁺- und einzähnig an das Fe(1)³⁺-Kation koordiniert (Abb. 5.13).

Abb. 5.13: Koordinationsumgebung der ψ -[AsO₃]³⁻-Anions in der Kristallstruktur von Eu₆Fe₅(As₄O₉)₂(As₃O₇)₂(AsO₃)₂.

Das zweite Oxoarsenat(III)-Anion ist eine *tri-catena*-Arsenat(III)-Gruppe $[As_3O_7]^{5-}$, die aus drei ψ - $[AsO_3]^{3-}$ -Tetraedern durch Eckenverknüpfung über das Sauerstoffatom O536 und O627 gebildet wird (Abb. 5.14). Das Oxoarsenat (III)- Anion ($[As_3O_7]^{5-}$ -Anion) ist je zweimal chelatisierend an die Eu³⁺- und an die Fe²⁺-Kationen und einzähnig an vier Eu³⁺-Ionen und einem Fe²⁺-Ion koordiniert.

Abb. 5.14: Koordinationsumgebung der $[As_3O_7]^{5-}$ -Anions in der Kristallstruktur von Eu₆Fe₅(As₄O₉)₂(As₃O₇)₂(AsO₃)₂.

Das dritte Oxoarsenat(III)-Anion ist eine *tetra-catena*-Arsenat(III)-Gruppe der Zusammensetzung $[As_4O_9]^{6-}$ und setzt sich aus vier primären $[AsO_3]^{3-}$ -Anionen zusammen, die durch Eckenverknüpfungen über die Sauerstoffatome O132, O223 und O423 zustande kommt (Abb. 5.15). Die $[As_4O_9]^{6-}$ -Gruppe koordiniert dreizähnig an zwei Fe²⁺-Ionen, ist chelatisierend an je zwei Eu²⁺-Ionen und ein Fe²⁺-Kation koordiniert und greift einzähnig fünf Eu³⁺-Ionen und ein Fe²⁺-Ion an.

Abb. 5.15: Koordinationsumgebung der $[As_4O_9]^{6-}$ -Anions in der Kristallstruktur von Eu₆Fe₅(As₄O₉)₂(As₃O₇)₂(AsO₃)₂.

5.2.2. Thermoanalytische Untersuchungen an Eu₆Fe₅(As₄O₉)₂(As₃O₇)₂(AsO₃)₂

Der thermische Abbau von Eu₆Fe₅(As₄O₉)₂(As₃O₇)₂(AsO₃)₂ wurde bei einer Heizrate von 5 °C/min bis zu einer Temperatur von 1050 C untersucht und zeigt mehrere Stufen. Es sind drei einzelne Schritte deutlich zu erkennen (Abb. 5.16). Der erste Schritt beginnt bei 450 °C und endet bei 680 °C und ist mit einem Massenverlust von 15,25 % verbunden. Eine zweite Stufe tritt zwischen 680 und 920 °C (ca. 10,63 % Massenverlust) auf. Der dritte Abbauschnitt setzt bei 920 °C ein und ist bis zur Endtemperatur der Messung noch nicht beendet. Zur Aufklärung der Abbaureaktion wurde ein Pulverdiffraktogramm des Rückstands aufgenommen (Abb. 5.17).

Abb. 5.16: DTA- und TG-Kurve vom thermischen Abbau von $Eu_6Fe_5(As_4O_9)_2(As_3O_7)_2(AsO_3)_2$.

Es liegt ein reflexreiches Spektrum vor, in dem eine Zuordnung für alle Banden nicht möglich ist. Vergleicht man die beobachteten Reflexe mit einen aus Einkristalldaten für $Sm_2(As_2O_5)_2(As_4O_8)$ und FeFe₃(As₅O₁₃) simulierten Referenz, so lässt sich eine Übereinstimmung bei vielen 2 Θ -Werten finden. Zu welchen Produkten die restlichen im Pulverdiffraktogramm enthaltenen Peaks gehören, kann nicht geklärt werden, auch weil für eisenhaltige Verbindungen bisher keine Daten bekannt sind.

Abb.5.17:PulverdiffraktogrammdesZersetzungsrückstandesvon $Eu_6Fe_5(As_4O_9)_2(As_3O_7)_2(AsO_3)_2$ undVergleichmitdensimuliertenDatenvon(a) $Sm_4(As_2O_5)_2(As_4O_8)$ (links)(b)FeFe_3(As_5O_{13})(rechts).

Schwingungsspektroskopische Untersuchungen an Eu₆Fe₅(As₄O₉)₂(As₃O₇)₂(AsO₃)₂

Das MIR-Spektrum von $Eu_6Fe_5(As_4O_9)_2(As_3O_7)_2(AsO_3)_2$, aufgenommen in einem KBr-Pressling, zeigt mehrere Schwingungen (Abb. 5.18). Das Spektrum zeigt sowohl Banden der $[AsO_3]^{3-}$ -Gruppe als auch der $[As_3O_7]^{5-}$ und der $[As_4O_9]^{6-}$ -Gruppe. Mit Hilfe von Literaturdaten wurde eine Zuordnung der Banden vorgenommen (Tab. 5.5) [62, 70, 71].

Abb. 5.15: MIR-Spektrum von $Eu_6Fe_5(As_4O_9)_2(As_3O_7)_2(AsO_3)_2$.

Die Zuordnung der Banden ist sehr schwierig, weil bei der Kombination von zwei Symmetrieelementen automatisch die Anwesenheit eines weiteren Symmetrieelementes resultieren kann und weil sehr wenige Untersuchungen an Verbindungen durchgeführt wurden, die $[AsO_3]^{3-}$, $[As_3O_7]^{5-}$ bzw. $[As_4O_9]^{6-}$ -Ionen enthalten.

Wellenzahl [cm ⁻¹]	Intensität	Zuordnung	Lage im freien Ion
339	schwach		
387	schwach	$\delta_{s}(AsO_{3}^{3})$	412 [62]
464	mittel		441 [62]
			480 [87]
603	stark	$v_{as}(AsO_3^{3-})$	
798	schwach		
1105	breit, schwach	$v_{s}(AsO_{3}^{3})$	987 [62]

Tab. 5.5: IR-Banden und ihre Zuordnung für Eu₆Fe₅(As₄O₉)₂(As₃O₇)₂(AsO₃)₂.

Tabelle 5.5: Fortsetzung					
Wellenzahl [cm ⁻¹]	Intensität	Zuordnung	Lage im freien Ion		
1384	schwach	$\delta(H_2O)$, aus KBr			
1608	stark	$\delta(H_2O)$, aus KBr	1640-1615 [36, 74]		

6. Vergleichende Übersicht der Verknüpfungsmodi der Oxo-Arsenat(III)-Einheiten in den untersuchten Verbindungen

Oxo-Arsenate(III) ("Arsenite") zeichnen sich durch eine reichhaltige Strukturchemie aus. Sie großen sich einerseits auf der Vielfalt von Koordinationsgründet und Verknüpfungsmöglichkeiten der [AsO₃]³⁻-Gruppen, andererseits auf dem Vorhandensein eines freien Elektronenpaars am Arsenatom dieses Anions. Das freie Elektronenpaar fungiert gewissermaßen als "unsichtbarer Ligand", dessen Raumbedarf prägend für die jeweiligen Kristallstrukturen ist ("stereochemisch aktives Elektronenpaar"). Im Folgenden werden die Verknüpfungen der Oxo-Arsenat(III)-Baugruppen, so wie sie in den Verbindungen dieser Arbeit vorgefunden wurden, zusammengestellt (Tab. 6.1). In Tabelle 6.2. erfolgt eine Zuordnung der beobachteten AsO₃³⁻-Ionen zu Gruppen, wie sie von Serezhkina vorgeschlagen wurde, um zwischen einzähniger und chelatisierender Koordination zu differenzieren. Tabelle 6.3. listet schließlich alle beobachteten Abstände und Winkel in dem beobachteten Anion auf und bietet damit Vergleichsdaten für künftige Arbeiten.

Tab. 6.1: Vergleichende Übersicht der Verknüpfungsmodi der [AsO₃]³⁻-Gruppen in den chloridhaltigen und übergangmetallhaltigen Selten-Erd-Arsenaten(III).

Tabelle 6.1: Fortsetzung	
Verbindung	Verknüpfungsmodi der [AsO ₃] ³⁻ -Gruppen
$SE_2Zn(AsO_3)(As_2O_5)Cl$ (SE = Dy, Ho, Er, Yb)	As(3) As(1) As(1) As(1)
$SE_2Fe(AsO_3)(As_2O_5)Cl$ (SE = Sm, Gd)	$Fe^{2+} As(1) 0 Fe^{2+} As(2) 0 Fe^{2+} As(2) 0 Fe^{2+} As(3) 0 Fe^{2+} Fe^{2+} As(4) Fe^{2+} Fe^{2+$

Tabelle	6.1:	Fortsetzung
---------	------	-------------

Verbindung	Verknüpfungsmodi der [AsO ₃] ³⁻ -Gruppen
Eu ₆ Fe ₅ (As ₄ O ₉) ₂ (As ₃ O ₇) ₂ (AsO ₃) ₂	$ \begin{array}{c} $
	$Fe^{2+} \bigcirc O \bigcirc O \bigcirc Eu^{3+} \bigcirc Fe^{2+} \bigcirc O \bigcirc O \bigcirc O \bigcirc Eu^{3+} \bigcirc O \bigcirc $
	Eu^{3+} $As(2)$ Fe^{2+} $As(4)$ Eu^{3+} Eu^{3+} $As(3)$ Eu^{3+}
	O As(5) Eu ³⁺
	Fe²⁺ O As(7) Fe²⁺

Verbindung	Verknüpfungsmodi der [AsO ₃] ³⁻ -Gruppen
Eu ₆ Fe ₅ (As ₄ O ₉) ₂ (As ₃ O ₇) ₂ (AsO ₃) ₂	$ \begin{array}{c} $
	Eu ³⁺ O As(8)

Tab. 6.2: Zuordnung der $[AsO_3]^3$ -Einheiten in den chloridhaltigen undübergangmetallhaltigen Selten-Erd-Arsenaten(III) nach dem vorgeschlagenen Konzept vonSerezhkina et al [14, 86].

Gruppe	Verknüpfungsmodi der [AsO ₃] ³⁻ -Gruppen	Verbindung
T ⁴²	As1 O SE ³⁺	$SE_5(AsO_3)_4Cl_3$ (SE = La, Pr, Nd)
T ⁵	Fe²⁺ O As(7) Fe²⁺	Eu ₆ Fe ₅ (As ₄ O ₉) ₂ (As ₃ O ₇) ₂ (AsO ₃) ₂
T ³²	Eu ³⁺ O As(8)	$SE_2Fe(AsO_3)(As_2O_5)Cl$ (SE = Sm, Gd)
T ²²	O As(3) SE ³⁺	$SE_2Zn(AsO_3)(As_2O_5)Cl$ (SE = Dy, Ho, Er, Yb)

Tabelle 6.2:	Fortsetzung	
Gruppe	Verknüpfungsmodi der [AsO ₃] ³⁻ -Gruppen	Verbindung
T ³¹	Fe ²⁺ As(6) O Eu ³⁺	$SE_2Fe(AsO_3)(As_2O_5)Cl$ (SE = Sm, Gd)
T^4	Fe ²⁺ As(3) Eu ³⁺	$SE_2Fe(AsO_3)(As_2O_5)Cl$ (SE = Sm, Gd)

Verbindung	As-O	As-O´	As-O''	O-As-O'	O-As-O''	O'-As-O''
La ₅ (AsO ₃) ₄ Cl ₃	176,6(4)	180,4(5)	182,8(5)	96,3(2)	90,8(2)	93,8(2)
	174,4(4)	179,9(5)	177,1(5)	94,0(2)	103,4(3)	94,8(2)
Pr ₅ (AsO ₃) ₄ Cl ₃	183,0(6)	179,0(6)	176,4(7)	92,8(3)	89,4(3)	97,1(4)
-	180,6(7)	176,5(7)	173,2(7)	93,4(3)	92,0(3)	104,4(4)
Nd ₅ (AsO ₃) ₄ Cl ₃	184,8(5)	180,7(5)	176,3(5)	93,2(2)	88,8(2)	97,4(2)
	181,3(5)	173,6(5)	176,9(5)	92,6(2)	94,0(2)	104,0(3)
Sm ₃ (AsO ₃)(As ₂ O ₅)Cl ₂	196,5(8)	176,4(9)	176,3(8)	90,1(0)	90,2(4)	97,2(4)
	176,7(9)	183,0(8)	187,4(8)	90,9(4)	104,5(4)	90,0(4)
	182,4(8)	177,1(9)	174,9(9)	94,7(4)	89,3(4)	99,0(4)
Eu ₃ (AsO ₃)(As ₂ O ₅)Cl ₂	186,3(5)	177,4(5)	182,8(5)	104,4(2)	90,1(2)	90,4(2)
	175,2(5)	174,9(6)	196,6(5)	89,6(2)	98,6(3)	90,0(2)
	182,5(5)	178,4(5)	174,1(6)	94,4(2)	89,1(3)	99,8(2)
$Gd_3(AsO_3)(As_2O_5)Cl_2$	186,2(3)	177,2(3)	183,0(3)	104,3(1)	89,8(1)	90,4(1)
	174,6(3)	174,1(3)	197,1(3)	98,6(1)	89,7(1)	89,8(1)
	178,1(3)	174,0(3)	182,4(3)	99,8(1)	94,7(1)	88,9(1)
Dy ₂ Zn(AsO ₃)(As ₂ O ₅)Cl	174,5(3)	174,0(2)	194,9(2)	101,0(1)	89,5(1)	89,0(1)
	175,5(3)	175,1(3)	183,7(2)	100,1(1)	89,7(1)	92,3(1)
	176,0(2)	181,1(3)	182,7(2)	93,7(1)	100,3(1)	92,0(1)
Ho ₂ Zn(AsO ₃)(As ₂ O ₅)Cl	173(1)	185(1)	185(1)	93,1(6)	99,9(6)	90,6(5)
	172(1)	179(1)	185(1)	89,6(6)	100,0(6)	92,8(6)
	174(1)	173(1)	194(1)	100,8(6)	89,9(5)	88,5(5)
Er ₂ Zn(AsO ₃)(As ₂ O ₅)Cl	174(1)	184(2)	183(2)	91,4(7)	100,2(7)	89,5(7)
	175(2)	183(2)	181(1)	88,2(7)	99,2(7)	92,3(7)
	173(1)	177(1)	197(1)	101,3(6)	88,7(6)	87,8(6)
Yb ₂ Zn(AsO ₃)(As ₂ O ₅)Cl	171(1)	183(1)	183(1)	93,1(6)	100,9(5)	89,8(5)
	174(1)	184(1)	179(1)	89,0(6)	100,1(6)	92,1(6)
	176(1)	175(1)	195(1)	99,9(5)	88,9(5)	88,8(5)
Sm ₂ Fe(AsO ₃)(As ₂ O ₃)Cl	176,0(7)	178,8(7)	185,0(7)	99,6(3)	90,7(3)	92,9(3)
	173,6(7)	181,4(6)	186,0(6)	92,9(3)	99,0(3)	93,2(3)
	175,6(7)	174,1(6)	193,5(6)	101,8(3)	91,4(3)	92,2(3)

Tabelle 6.3: Fortsetzung						
Verbindung	As-O	As-O´	As-O''	O-As-O´	O-As-O''	O'-As-O''
Gd ₂ Fe(AsO ₃)(As ₂ O ₃)Cl	184,7(6)	177,9(7)	174,5(7)	92,4(3)	90,4(3)	99,6(4)
	172,6(6)	174,3(6)	192,6(6)	102,7(3)	91,2(3)	91,8(3)
	173,7(7)	182,4(6)	185,2(7)	92,8(3)	100,1(3)	92,7(3)
$Eu_6Fe_5(As_4O_9)_2$	174 1(7)	174 3(8)	192 1(8)	104 2(4)	88 8(3)	89 4(4)
$(As_{3}O_{7})_{2}(AsO_{3})_{2}$	1, 1,1(7)	1,1,5(0)	1,2,1(0)	101,2(1)	00,0(3)	0,1(1)
	173,9(8)	185,6(8)	180,1(7)	101,9(3)	97,4(4)	97,3(3)
	175,1(6)	182,8(6)	178,9(6)	102,6(3)	94,2(4)	96,3(3)
	172,9(6)	177,6(8)	173,0(8)	103,2(3)	91,6(3)	90,4(4)
	173,6(7)	176,3(7)	191,6(9)	103,5(3)	88,9(3)	91,6(4)
	171,3(8)	185,4(8)	186,5(8)	100,2(4)	99,7(4)	85,0(3)
	172(1)	177,3(9)	182,7(7)	95,4(6)	94,6(5)	95,0(4)
	184,4(7)	176,0(8)	175,7(8)	102,4(4)	92,2(4)	92,1(4)

IV. Zusammenfassung

Ziel der vorliegenden Arbeit war die Erweiterung der Verbindungsklasse der Oxo-Arsenate(III) der Selten-Erd-Elemente und die Untersuchung ihrer physikalischen Eigenschaften. Die erhaltenen Verbindungen sind in Abb. IV.1 einschließlich ihrer Synthesen schematisch zusammengefasst. Die Derivatisierung mit Übergangsmetallen gelang mit den Verbindungen $SE_2Zn(AsO_3)(As_2O_5)Cl$ (SE = Tb, Dy, Ho, Er, Yb, Lu) (Kapitel 3) und $SE_2Fe(AsO_3)(As_2O_3)Cl$ (SE = Sm, Gd) (Kapitel 5). Ihre Synthese erfolgte in evakuierten graphitierten Quarzglasampullen, ausgehend von As_2O_3 , SE_2O_3 (SE = Sm, Gd, Tb, Dy, Ho, Er, Yb, Lu) und dem jeweiligen Übergangsmetalldichlorid im Überschuss.

Oxo-Arsenat(III)-Chloride vom Typ SE₅(AsO₃)₄Cl₃ (Kapitel 1)

Die Verbindungen SE₅(AsO₃)₄Cl₃ (SE = La, Pr) kristallisieren monoklin mit der Raumgruppe C2/c (Nr. 15) mit vier Formeleinheiten in der Elementarzelle und Nd₅(AsO₃)₄Cl₃ kristallisiert monoklin mit der Raumgruppe P2/c (Nr. 13) mit zwei Formeleinheiten in der Elementarzelle. Wie aufgrund der Lanthanoid-Kontraktion zu erwarten ist, nehmen die Gitterparameter von La₅(AsO₃)₄Cl₃ nach Nd₅(AsO₃)₄Cl₃ kontinuierlich ab (Tab. IV.1).

Verbindungen		La ₅ (AsO ₃) ₄ Cl ₃	$Pr_5(AsO_3)_4Cl_3$	$Nd_5(AsO_3)_4Cl_3$
Raumgruppe		<i>C</i> 2/ <i>c</i> (Nr. 15)		<i>P</i> 2/ <i>c</i> (Nr. 13)
Kristallsystem			monoklin	
Gitterkonstanten				
	<i>a</i> (pm)	1803,1(2)	1784,8(2)	1026,0(1)
	<i>b</i> (pm)	548,18(3)	543,85(3)	543,35(3)
	<i>c</i> (pm)	1722,1(2)	1688,6(2)	1684,9(1)
	β (°)	107,39(1)	107,42(1)	123,96(1)
Zahl der			4	2
Formeleinheiten				

Tab. IV.1: Kristallographische Daten.

Die Kristallstruktur der Oxo-Arsenat(III)-chloride $SE_5(AsO_3)_4Cl_3$ (SE = La, Pr, Nd) ist schichtartig aufgebaut, wobei Schichten der Zusammensetzung $^2_{\infty}[SE_5(AsO_3)_4]^{3+}$ in Richtung [100] alternierend mit Schichten der Zusammensetzung $[SE(3)Cl_4O_4]^{9-}$ abwechselnd gestapelt sind (Abb. IV.2).

Abb. IV.2: Projektion der Kristallstrukturen von $SE_5(AsO_3)_4Cl_3$ (SE = La, Pr) (links) und Nd₅(AsO₃)₄Cl₃ (rechts) auf (010).

Die Untersuchungen des thermischen Abbaus dieser Verbindungen führten zu ähnlichen Ergebnissen. Für alle Verbindungen der Substanzklasse $SE_5(AsO_3)_4Cl_3$ (SE = La, Pr, Nd) wurde eine hohe thermische Stabilität in dem experimentell zugänglichen Temperaturbereich festgestellt. Die Erkenntnisse, die aus schwingungsspektroskopischen Untersuchungen gewonnen wurden, stimmen mit den bereits in der Literatur erwähnten Daten überein.

Oxo-Arsenate(III)-chloride vom Typ $SE_3(AsO_3)(As_2O_5)Cl_2$ (SE = Sm, Eu, Gd) (Kapitel 2)

In einer festkörperchemischen Reaktion wurden die binären Oxide SE₂O₃ (SE = Sm, Eu, Gd) und As₂O₃ mit ZnCl₂ zur Reaktion gebracht, wobei sich die Verbindung SE₃(AsO₃)(As₂O₅)Cl₂ (SE = Sm, Eu, Gd) in einkristalliner Form bildeten. Auch hier liegen Schichten in der Kristallstruktur vor (Tab. IV.2). Dabei verknüpfen die [AsO₃]³⁻- und [As₂O₅]⁴⁻-Einheiten alternierend die SE(2)³⁺- und die SE(3)³⁺-Kationen zu Schichten gemäß ${}^{2}_{\infty}$ [SE(2)(AsO₃)_{1/6}(As₂O₅)_{4/8}SE(3)(AsO₃)_{3/6}(As₂O₅)_{2/8}]⁺ (Abb. IV.3).

Tab. IV.2: Kristallographische Daten.

Verbindungen	Sm ₃ (AsO ₃)(As ₂ O ₅)Cl ₂	$Eu_3(AsO_3)(As_2O_5)Cl_2$	Gd ₃ (AsO ₃)(As ₂ O ₅)Cl ₂			
Raumgruppe		<i>P</i> 1 (Nr. 2)				
Kristallsystem		triklin				
Gitterkonstanten						
a (pn	n) 543,41(6)	541,45(7)	539,89(1)			
<i>b</i> (pn	n) 837,3(1)	837,5(1)	838,20(2)			
c (pn	n) 1113,5(2)	1107,6(1)	1103,10(2)			
α (°)	90,08(2)	90,06(2)	90,056(1)			
eta (°)	94,53(1)	94,63(2)	94,601(1)			
γ (°)	90,49(1)	90,45(2)	90,388(1)			
Zahl der		2				
Formeleinheiten						

Abb. IV.3: Verknüpfung der SE(2)³⁺- und SE(3)³⁺-Kationen zu Schichten gemäß ${}^{2}_{\infty}$ [SE(2)(AsO₃)_{1/6}(As₂O₅)_{4/8} SE(3)(AsO₃)_{3/6}(As₂O₅)_{2/8}]⁺. Die SE(1)-Ionen sind untereinander über eine gemeinsame Cl-Cl-Kante zu Zick-Zack-Ketten verknüpft (Abb. IV.4). Die ${}^{2}_{\infty}$ [SE(1)Cl_{1/1}Cl_{3/3}(AsO₃)_{2/6}(As₂O₅)_{2/8}]⁻-Einheiten sind mit den ${}^{2}_{\infty}$ [SE(2)(AsO₃)_{1/6}(As₂O₅)_{4/8}SE(3)(AsO₃)_{3/6}(As₂O₅)_{2/8}]⁺-Schichten zu Doppelschichten verbunden, die über Chlorid-Ionen zusammen gehalten werden.

Abb. IV.4: Verknüpfung der $SE(1)^{3+}$ -Kationen zu Ketten der Zusammensetzung ${}^{2}_{\infty}[SE(1)Cl_{1/1}Cl_{3/3}(AsO_{3})_{2/6}(As_{2}O_{5})_{2/8}]^{-}$.

Die Kristallstruktur weist damit erhebliche Ähnlichkeit zu jener von SE₅(AsO₃)₄Cl₃ (SE = La, Pr, Nd) auf. In beiden Strukturen sind Schichten über eine gemeinsame Cl-Cl-Kante verknüpft (Abb. IV. 5). Die Verbindungen SE₃(AsO₃)(As₂O₅)Cl₂ (SE = Sm, Eu, Gd) enthalten neben [AsO₃]³⁻-Ionen das Oxoarsenat(III)-Anion [As₂O₅]⁴⁻, das aus zwei ψ -[AsO₃]³⁻-Tetraedern durch Eckenverknüpfung über das Sauerstoffatom gebildet wird. Mit Hilfe des Oxoarsenat(III)-Anions [As₂O₅]⁴⁻ sind größere Freiräume entstanden, in denen zwei Chloridionen platziert sind.

Abb. IV.5: Vergleich der Kristallstrukturen von $SE_5(AsO_3)_4Cl_3$ (SE = La, Pr) (links) und $SE_3(AsO_3)(As_2O_5)Cl_2$ (SE = Sm, Eu, Gd) (rechts).

Oxo-Arsenate(III)-chloride vom Typ SE₂Zn(AsO₃)(As₂O₅)Cl (SE = Tb, Dy, Ho, Er, Yb, Lu) (Kapitel 3)

Werden SE_2O_3 (SE = Tb, Dy, Ho, Er, Yb, Lu), As_2O_3 und $ZnCl_2$ (molares Verhältnis 1: 4: 8) festkörperchemisch zur Reaktion gebracht, bilden sich zinkhaltige Oxo-Arsenate(III) der Selten-Erd-Metalle der Zusammensetzung $SE_2Zn(AsO_3)(As_2O_3)Cl$ (SE = Tb, Dy, Ho, Er, Yb, Lu) (Tab. IV.3). Die Kristallstruktur ist wiederum schichtartig aufgebaut. Die Verknüpfung der SE^{3+} -Kationen erfolgt über die $[AsO_3]^{3-}$ und $[As_2O_5]^{4-}$ -Anionen in einer Weise, dass sich anionische Schichten gemäß

 $^{2}{}_{\infty}$ [SE(1)(AsO₃)_{3/6}(As₂O₅)_{2/7}SE(2)(AsO₃)_{1/6}(As₂O₅)_{4/7}ZnCl_{1/1}(AsO₃)_{2/6}(As₂O₅)_{1/7}] bilden (Abb. IV. 6).

Abb. IV.6: Verknüpfung der SE³⁺-Kationen gemäß $^{2}{}_{\infty}$ [SE(1)(AsO₃)_{3/6}(As₂O₅)_{2/7}SE(2)(AsO₃)_{1/6}(As₂O₅)_{4/7}ZnCl_{1/1}(AsO₃)_{2/6}(As₂O₅)_{1/7}].

Tab. IV.3: Kristallographische Daten.

Verbindungen	$Dy_2Zn(AsO_3)(As_2O_3)Cl$	$Ho_2Zn(AsO_3)(As_2O_3)Cl$	$Er_2Zn(AsO_3)(As_2O_3)Cl$	$Yb_2Zn(AsO_3)(As_2O_3)Cl$
Raumgruppe		V) Id	Vr. 2)	
Kristallsystem		trik	klin	
Gitterkonstanten				
a (pm)	548,24(2)	540,67(6)	539,98(9)	536,40(7)
(mq) b	883,53(3)	898,9(1)	899,2(2)	896,7(2)
<i>c</i> (bm)	1082, 80(4)	1085,2(2)	1082,0(2)	1074,0(2)
α (°)	75,242(2)	107,65(2)	107,43(2)	107,07(2)
(°) β	88,010(2)	92,71(2)	92,77(2)	93,17(2)
γ (°)	88,971(2)	92,12(2)	91,95(2)	91,33(2)
Zahl der			2	
Formeleinheiten				

Wenn man die Kristallstruktur von SE₂Zn(AsO₃)(As₂O₃)Cl (SE = Tb, Dy, Ho, Er, Yb, Lu) mit SE₅(AsO₃)₄Cl₃ (SE = La, Pr) vergleicht, fällt sofort auf, dass bei SE₂Zn(AsO₃)(As₂O₃)Cl (SE = Tb, Dy, Ho, Er, Yb, Lu) die mittlere Schicht aus Selten-Erd-Metall(III)-Kation und Chloridionen durch ein Zinkmetallkation ersetzt wird, wobei das Zn²⁺-Ion von nur einem Cl⁻-Ion koordiniert ist (Abb. IV.7). Die Zn²⁺-Ionen sind miteinander mit Hilfe von ψ -[AsO₃]³⁻-Tetraedern bzw. Oxo-Arsenat(III)-Anionen [As₂O₅]⁴⁻ zu Ketten verbunden sind.

Abb. IV.7: Vergleich der Kristallstrukturen von $SE_5(AsO_3)_4Cl_3$ (SE = La, Pr) (links) und $SE_2Zn(AsO_3)(As_2O_3)Cl$ (SE = Dy, Ho, Er, Yb) (rechts).

Beim Vergleich mit der Struktur von Eu₃Zn(AsO₃)₂(As₃O₇) [24], wo das Zn²⁺-Kation tetraedrisch von vier Sauerstoffatomen koordiniert ist, fällt sofort eine gewisse Ähnlichkeit auf. In der Eu₃Zn(AsO₃)₂(As₃O₇)-Struktur scheint es, dass ein Zn²⁺-Kation die Position eines As³⁺-Kations in einer zweiten $[As_3O_7]^{5-}$ Einheit übernimmt und so die Bildung von isolierten $[AsO_3]^{3-}$ -Einheiten ermöglicht. In der SE₂Zn(AsO₃)(As₂O₃)Cl (SE = Dy, Ho, Er, Yb)-Struktur wurde ebenfalls beobachtet, dass ein Zn²⁺-Kation die Position eines As³⁺-Kations in einer zweiten $[As_2O_5]^{4-}$ Einheit übernimmt und so die Bildung von isolierten ermöglicht (Abb. IV.8; Abb. IV.9).

Abb. IV.8: Vergleich der Koordination des Zn^{2+} -Ions in der Kristallstruktur von Eu₃Zn(AsO₃)₂(As₃O₇) (links) und SE₂Zn(AsO₃)(As₂O₃)Cl (SE = Dy, Ho, Er, Yb) (rechts).

Abb. IV.9: Vergleich der Kristallstrukturen von $Eu_3Zn(AsO_3)_2(As_3O_7)$ (links) und $SE_2Zn(AsO_3)(As_2O_3)Cl$ (SE = Dy, Ho, Er, Yb) (rechts).

Die thermoanalytischen Untersuchungen an $Ho_2Zn(AsO_3)(As_2O_5)Cl$ zeigen einen komplexen mehrstufigen Abbau, wobei die letzte Stufe bis ca. 1100 °C nicht vollständig abgeschlossen ist. Als Abbauprodukt resultiert ein Gemenge von $Ho(AsO_4)$ und Ho_2O_3 , wie durch pulverdiffraktometrische Untersuchungen nachgewiesen werden konnte.

Das MIR-Spektrum des KBr-Presslings von $Dy_2Zn(AsO_3)(As_2O_5)Cl$ zeigt sowohl Banden von der $[AsO_3]^{3}$ -Gruppe als auch der $[As_2O_5]^{4}$ -Gruppe. Die Bandenlagen und eine Zuordnung sind in Tabelle IV.4 aufgeführt [62, 70, 71].

Wellenzahl [cm ⁻¹]	Intensität	Zuordnung	Lage im freien Ion
316	schwach		412 [62]
354	schwach	$\delta_{s}(AsO_{3}^{3})$	441 [62]
337	Schulter		
462	mittel		
578	mittel	$v_{as}(AsO_3^{3-})$	
622	mittel		
671	mittel		
680	Schulter		
802	stark	$v_{s}(AsO_{3}^{3})$	
1357	Schulter		
1388	mittel		
1621	mittel	H ₂ O (aus KBr)	

Tab. IV.4: IR-Banden und ihre Zuordnung für Dy₂Zn(AsO₃)(As₂O₅)Cl.

Eisenhaltige Chlorid-Oxo-Arsenate(III) SE₂Fe(AsO₃)(As₂O₅)Cl (SE = Sm, Gd)

Bei dem Versuch andere Ionen, z.B. Co^{2+} , Mn^{2+} oder Fe^{2+} , anstelle eines Zn^{2+} -Ions in Chlorid-Oxo-Arsenate(III) der Selten-Erd-Elemente einzubauen, wurden Einkristalle von $SE_2Fe(AsO_3)(As_2O_3)Cl$ (SE = Sm, Gd) erhalten (Abb. IV.10). Zur Darstellung wurden die entsprechenden Selten-Erd-Metall-Sesquioxide (M_2O_3), Arsen(III)-oxid (As_2O_3), Eisen(II)-oxid (FeO) und Eisen(II)-chlorid (FeCl₂) im molaren Verhältnis von 1:4:7:4 in evakuierten graphitierten Quarzglasampullen zur Reaktion gebracht. In diesen Strukturen tritt ein kristallographisches Problem auf, das eine Fehlordnung von mehreren Atomen in der Struktur verursacht.

Abb. IV.10: Perspektivische Darstellung der Kristallstrukturen von Sm₂Fe(AsO₃)(As₂O₅)Cl (links) und Gd₂Fe(AsO₃)(As₂O₅)Cl (rechts).

Die Struktur von Sm₂Fe(AsO₃)(As₂O₅)Cl bzw. Gd₂Fe(AsO₃)(As₂O₅)Cl besteht aus drei Schichten mit einer Stapelfolge entlang der *b*-Achse: ABCB, ABCB. Schicht A besteht aus Sm³⁺-Ionen, die unregelmäßig von Sauerstoffatomen koordiniert sind. Schicht B wird von zwei Typen von Oxo-Arsenat(III)-Anionen, dem Oxodiarsenat(III)-Anion [As₂O₅]⁴⁻ und dem ψ -[AsO₃]³⁻-Tetraeder, sowie einer [FeO₄]⁴⁻-Gruppe aufgebaut. In dieser Schicht tritt eine Fehlordnung der [FeO₄]⁴⁻- und der [As₂O₅]⁴⁻Gruppen auf. Die Fe-Lage ist im Verhältnis 0,65:0,35 (Fe(1):Fe(2)) aufgeteilt. Auf diese Weise resultieren für die Fe(1)²⁺- bzw. Fe(2)²⁺-Ionen eine unregelmäßige Koordination von vier Sauerstoff- und zwei Chloratomen. Die Sauerstoffatome gehören zu zwei einzähnig angreifenden [AsO₃]³⁻ und zwei einzähnig angreifenden [As₂O₅]⁴⁻-Gruppen. Die Abstände Fe²⁺-O²⁻ liegen zwischen 201 und 230 pm, jene für Fe²⁺-Cl⁻ zwischen 195 und 269 pm, d.h. es treten unrealistisch kurze Kontakte zu den Chloridionen auf. Die gleiche Beobachtung wird auch für die Gd-Verbindung gemacht.

$\bullet Eu_{6}Fe_{5}(As_{4}O_{9})_{2}(As_{3}O_{7})_{2}(AsO_{3})_{2}$

Die Eu₆Fe₅(As₄O₉)₂(As₃O₇)₂(AsO₃)₂ Verbindung wurde bereit von *M. Ben Hamida* synthetisiert [24]. In Erweiterung dieser Arbeit wurde die Eu₆Fe₅(As₄O₉)₂(As₃O₇)₂(AsO₃)₂ Verbindung phasenrein dargestellt und physikalisch untersucht. Dazu wurde die festkörperchemische Präparationsmethode optimiert. Der thermische Abbau von Eu₆Fe₅(As₄O₉)₂(As₃O₇)₂(AsO₃)₂ wurde mit einer Heizrate von 5 °C/min bis zu einer Temperatur von 1050 °C aufgenommen und ist in mehrere Stufen unterteilt. Es sind drei einzelne Schritte deutlich zu erkennen. Der erste Schritt beginnt bei 450 °C und endet bei 680 °C und ist mit einem Massenverlust von 15,25 % verbunden. Eine zweite Stufe tritt zwischen 680 und 920 °C (ca. 10,63 % Massenverlust) auf. Der dritte Abbauschnitt setzt bei

920 °C ein und ist bis zur Endtemperatur der Messung noch nicht beendet. Zur Aufklärung der Abbaureaktion wurde ein Pulverdiffraktogramm des Rückstands aufgenommen.

Beim Vergleich mit der Struktur von Sm₂Fe(AsO₃)(As₂O₅)Cl bzw. Gd₂Fe(AsO₃)(As₂O₅)Cl, fällt sofort auf, dass die Strukturen sehr unterschiedliche Bauweisen haben (Abb. IV.11).

Abb. IV.11: Vergleich der Kristallstrukturen von $Eu_6Fe_5(As_4O_9)_2(As_3O_7)_2(AsO_3)_2$ (links) und $SE_2Fe(AsO_3)(As_2O_5)Cl$ (SE = Sm, Gd) (rechts).

In der Verbindung Eu₆Fe₅(As₄O₉)₂(As₃O₇)₂(AsO₃)₂ liegen drei Oxo-Arsenat(III)-Anionen-Typen vor, der ψ -[AsO₃]³⁻-Tetraeder, die [As₃O₇]⁵⁻-Gruppe, die aus drei ψ -[AsO₃]³⁻-Tetraedern durch Eckenverknüpfung über das Sauerstoffatomen gebildet wird und das [As₄O₉]⁶⁻-Anion, das aus vier ψ -[AsO₃]³⁻-Tetraedern durch Eckenverknüpfung über ein Sauerstoffatom gebildet wird. In der Sm₂Fe(AsO₃)(As₂O₅)Cl bzw. Gd₂Fe(AsO₃)(As₂O₅)Cl Verbindung liegen dagegen zwei Oxo-Arsenat(III)-Anionen-Typen vor, der einfache ψ -[AsO₃]³⁻-Tetraeder und die [As₂O₅]⁴⁻-Gruppe. Die stereochemische Aktivität der freien Elektronenpaare kommt in beiden Verbindungen zur Geltung, es werden leere Kanäle ausgebildet. In der Kristallstruktur von Sm₂Fe(AsO₃)(As₂O₅)Cl bzw. Gd₂Fe(AsO₃)(As₂O₅)Cl sind in diesen Kanälen Fe²⁺-Kationen koordiniert (Abb. IV.12).

In den untersuchten Systemen treten verschiedene Verbindungen auf und man kann davon ausgehen, dass noch nicht alle Phasen identifiziert und charakterisiert worden sind. Dieses könnte ein Ziel von zukünftigen Arbeiten sein. Zusätzlich muss eine detaillierte Untersuchung der physikalischen Eigenschaften der erhaltenen Verbindungen stattfinden. Insbesondere die spektroskopischen und magnetischen Eigenschaften der Oxo-Arsenate(III), die sowohl Übergangsmetall- als auch SE³⁺-Ionen enthalten, sind dabei von vorrangigen Interesse.

V. Ausblick

Ziel der vorliegenden Arbeit war es, weitere Derivate von Selten-Erd-Oxo-Arsenaten(III) darzustellen und zu charakterisieren. Nur wenig ist über die Strukturen von Oxoanionen des dreiwertigen Arsens bekannt. Lediglich vier Alkaliarsenate(III), nämlich NaAsO₂ [91], KHAs₂O₄ x ¹/₂ H₂O [92], K₃HAs₂O₅ x 6 H₂O [93] sowie Ba₂As₆O₁₁ [94] wurden röntgenstrukturanalytisch charakterisiert. Die beiden ersten Verbindungen sind Polymetaarsenite. Die große Reihe derivatisierter Selten-Erd(III)-Oxo-Arsenate(III), wie etwa $SE_5(AsO_3)_4Cl_3$ (SE = La, Ce, Pr, Nd) $[21, 22], Eu_3Zn(AsO_3)_2(As_3O_7)$ [24], $SE_4(As_2O_5)_2(As_4O_8)$ (SE = Nd, Sm) [20] und $Eu_6Fe_5(As_4O_9)_2(As_3O_7)_2(AsO_3)_2$ [24] sind insbesondere als potentielle Lumineszenz-Materialien von Interesse. Dabei liegt unser besonderes Augenmerk auf der möglichen positiven Beeinflussung zwischen den f-f- oder f-d-Übergängen der Selten-Erd(III)-Kationen und den s-p-Übergängen der durch ein nichtbindendes Elektronenpaar (lone pair) geprägten diskreten [AsO₃]³⁻-Anionen. Mit den zwei neuen Verbindungsklassen $SE_2Zn(AsO_3)(As_2O_3)Cl$ (SE = Dy, Ho, Er, Yb) und $SE_2Fe(AsO_3)(As_2O_5)Cl$ (SE = Sm, Gd) konnten weiter übergangmetallhaltige Oxo-Arsenate(III) der Selten-Erd-Elemente dargestellt und charakterisiert werden. Ihre Synthese erfolgte festkörperchemisch in evakuierten graphitierten Quarzglasampullen, ausgehend von As_2O_3 , SE_2O_3 (SE = Sm, Gd, Tb, Dy, Ho, Er, Yb, Lu) und dem jeweiligen Übergangsmetalldichlorid im Überschuss.

Bei den Verbindungsklasse $SE_2Fe(AsO_3)(As_2O_5)Cl$ (SE = Sm, Gd) sollte das kristallographische Problem, das eine Fehlordnung von mehreren Atomen in der Struktur verursacht, weiter untersucht werden. In Hinblick auf Mößbauer-Untersuchungen sollten größere Mengen an phasenreinen Verbindungen bzw. große Einkristalle synthetisiert werden. Hierzu sollten auch optische spektroskopische Untersuchungen vorgenommen werden.

VI. Literatur

- N. N Greenwood, A. Earnshaw: *Chemie der Elemente*, 1. Aufl., VCH Verlagsgesellschaft mGH Weinheim, **1988**.
- [2] A. F. Holleman, E. Wiberg: *Lehrbuch der Anorganischen Chemie*, 101. Aufl., Walter de Gruyter, Berlin, New York, **1995**.
- [3] H. R. Christen, G. Meyer: Allgemeine und Anorganische Chemie, Band I, 1. Aufl., 1995.
- [4] B. R. Lipin, G. A. McKay: *Reviews in mineralogy*, Volume 21, Mineralogical Society of America, **1989**.
- [5] P. Möller: *Lanthanides, tantalum and niobium*, Springer, Heidelberg, **1989**.
- [6] K. B. Krauskopf, D. K. Bird: *Inroduction to geochemistry*, 3. Edition, New York, McGraw-Hill, **1995**.
- [7] Römpp-Chemielexikon (Elementdaten), 10. Auflage, **1996**, S. 260.
- [8] Dong-Hee Kang, Th. Schleid: Z. Anorg. Allg. Chem., 2005, 631, 1799.
- [9] A. Brahimi, M. M. Ftini, H. Amor: Acta Crystallogr., 2002, E58, i98.
- [10] W. Schäfer, G. Will: J. Phys., **1971**, C 4, 3224.
- [11] W. Schäfer, G. Will, G. Müller-Vogt: Acta Crystallogr., **1979**, B 35, 588.
- [12] G. Lohmueller, G. Schmidt, B. Deppisch, V. Gramlich, C. Scheringer: Acta Crystallogr., 1973, B 29, 141.
- [13] M. Schmidt, U. Müller, R. C. Gil, E. Milke, M. Binnewies: Z. Anorg. Allg. Chem., 2005, 631, 1154.
- [14] M. Koskenlinna: *Dissertation*, Helsinki University of Technology, Finland, **1996**.
- [15] J. Galy, G. Meunier, S. Andersson, A. Aström: J. Solid State Chem., 1975, 13, 142.
- [16] F. Emmerling, C. Röhr: Z. Naturforsch., 2003, 58 b, 620.
- [17] J. W. Menary: Acta Crystallogr., **1958**, 11, 742.
- [18] W. S. Sheldrick, H.-J. Häusler: Z. Anorg. Allg. Chem., 1986, 538, 45.
- [19] D.-H. Kang, Th. Schleid: Z. Anorg. Allg. Chem., 2006, 632, 91.
- [20] M. Ben Hamida, C. Warns, M. S. Wickleder: Z. Naturforsch., 2005, 60 b, 1219.
- [21] D.-H. Kang, Th. Schleid: Z. Kristallogr., 2007, Suppl. 25, 98.

- [22] M. Ben Hamida, M. S. Wickleder: Z. Anorg. Allg. Chem., 2006, 632, 2195.
- [23] D.-H. Kang, Th. Komm, Th. Schleid: Z. Kristallogr., 2005, Suppl. 22, 157.
- [24] M. Ben Hamida: *Dissertation*, Carl von Ossietzky Universität, Oldenburg, 2007.
- [25] E. Riedel: *Moderne Anorganische Chemie*, 2. Aufl., Walter de Gruyter, Berlin, New York, 2003.
- [26] W. Massa: *Kristallstrukturbestimmung*, 3. Aufl. Teubner, Stuttgart, Leipzig, Wiesbaden, 2002.
- [27] H. Krischner: *Einführung in die Röntgenfeinstrukturanalyse*, 3. Aufl. Vieweg, Braunschweig, Wiesbaden, **1987**.
- [28] U. Schilde, St. Sawusch: Kristallstrukturanalyse mittels Röntgenbeugung, in PdN-Chemie, 1/48, 2-12, Aulis Verlag Deubner, Köln, 1999.
- [29] K. Kopitzki, P. Herzog, *Einführung in die Festkörperphysik*, Vieweg&Teubner; Auflage: 6., überarbeitete Auflage, **2007**.
- [30] http://129.69.100.201/~dilger/praktikum/pdf/v04_ff.pdf
- [31] H. Endres, *Chemische Aspekte der Festkörperphysik*, Springer-Verlag Berlin, Heidelberg, New York, Tokio, **1984**.
- [32] W. F. Hemminger und H. K. Cammenga: Methoden der Thermischen Analyse, Springer Verlag, Berlin, 1989.
- [33] J. L. McNaughton and C.T. Mortimer: *Differential Scanning Calorimetry*, Reprinted from IRS; Physical Chemistry Series 2, Volume 10, Butterworths, London, 1975, 1-44.
- [34] C. T. Mortimer: Differential Scanning Calorimetry, pp. 47-60 in M. A. V. Ribeiro da Silva (Ed.): Thermochemistry and Its Applications to Chemical and Biochemical Systems, NATO ASI Series, 1982.
- [35] H. Günzler, H.-U. Gremlich: *IR-Spektroskopie*, 4. Aufl. VCH, Weinheim, 2003.
- [36] M. Hesse, H. Meier, B. Zeeh: *Spektroskopische Methoden in der organischen Chemie*,
 7., überarbeite Aufl., Thieme, 2005.
- [37] W. Schmidt: *Optische Spektroskopie*, Weinheim, New York, **2000**.
- [38] A. R. West: Grundlagen der Festkörperchemie, 1. Aufl. VCH, Weinheim, New York, Cambridge, Basel, 1992.

- 96 -

- [39] http://www.reclot.de/kapitel/21edx.htm
- [40] E. Reyer, H. A. Fouad: *Rasterelektronenmikroskop-Aufnahmen unterschiedlicher Putzsysteme von Wärmedämm-Verbundsystemen*, Fraunhofer IRB Verlag, **1998**.
- [41] Stoe & Cie: X-RED 1.22- Programm zur Datenreduktion einschlieβlich Absorptionskorrektur, Darmstadt, 2001.
- [42] Stoe & Cie: X-SHAPE 1.06 Programm zur Optimierung der Gestalt von Einkristallen, Darmstadt, **1999**.
- [43] G. M. Sheldrick: SHELXS-97 Program for the Refinment of Crystal Structures, Göttingen, 1997.
- [44] G. M. Sheldrick: SHELXS-97 Program for the Solution of Crystal Structures, Göttingen, 1997.
- [45] Fa. Stoe & Cie: VISUAL X-POW 2.20 Programm zur Bearbeitung von Röntgenpulverdaten, Darmstadt, 2001.
- [46] A. L. Spek, Acta Crystallogr. A, 1990, A46, C34; A. L. Spek: Platon A multipurpose Crystallographic Tool, Utrecht University, Utrecht, Niederlande, 2005.
- [47] Crystal Impact GbR: Diamond 3.1e Visuelles Informationssystem für Kristallstrukturen, Bonn, 2005.
- [48] Crystal Impact GbR: *Match! 1.9 Programm zum Vergleich von Röntgenpulverdaten*, Erlangen, 2008.
- [49] Crystal Impact GbR: ENDEAVOUR 1.7b Strukturaufklärung aus Pulverdaten, Bonn, 2008.
- [50] Microcal: OriginPro 8.0 Graphisches Auswertungsprogramm, Northhampton, 2008.
- [51] C. Cason: POVRAY 3.1 Programm zur Visualisierung von Kristallstrukturen, 1999.
- [52] Mettler-Toledo GmbH: *METTLER TOLEDO STAR^e Software 8.1 Programmpaket* zur Steuerung von DTA/TGA-Geräten und zur Auswertung und graphischen Darstellung von Daten aus der thermischen Analyse, Schwerzenbach, **2004**.
- [53] Eurotherm: *iTools 4.11 Softwarepaket zur Konfiguration und Überwachung aller Eurotherm Regler*, Limburg an der Lahn, **2008**.
- [54] EDAX: Genesis Spectrum Version 5.21 Programmpaket zur Bearbeitung von EDX-Daten, Niederlanden, 2007.

- [55] EDAX: Quanta 200 3D Programmpaket zur Steuerung von EDAX-Geräten, Niederlanden, 2007.
- [56] M. S. Wickleder: *Handbook on the Physics and Chemistry of Rare Earth*, Vol. 35, p. 45, Elsevier Science Publishers, New York, 2005.
- [57] C. Lipp: *Dissertation*, Universität, Stuttgart, 2008.
- [58] M. Schmidt, U. Müller, R. C. Gil, E. Milke, M. Binnewies: Z. Anorg. Allg. Chem., 2005, 631, 1154-1162.
- [59] J. Weidlein, U. Müller, K. Dehnicke: *Schwingungsspektroskopie*, 2., überarbeitete Aufl., Georg Thieme Verlag, Stuttgart, New York, **1988**.
- [60] I. L. Botto, E. J. Baran, P. J. Aymonino, J. C. Pedregosa, G. F. Puelles: *Monatshefte für Chemie*, **1975**, *106*, 1559-1566.
- [61] H. Ehrhardt, M. Jansen: Z. Anorg. Allg. Chem., 1983, 504, 128-134.
- [62] K. Seppelt, D. Lentz, H.-H. Eysel: Z. Anorg. Allg. Chem., 1978, 439, 5-12.
- [63] L. Bencivenni, K. A. Gingerich: J. of Molecular Structure, 1983, 99, 23-29.
- [64] L. G. Detusheva, L. I. Kuznetsova, L. S. Dovlitova, V. A. Likholobov: *Russian Chemical Bulletin, International Edition*, Vol. 52, No. 2, **2003**, pp. 370-374.
- [65] A. E. Lavat, M. Trezza, I. L. Botto, D. I. Roncaglia, E. J. Baran: Spectroscopy Letters, 1988, 21(4), 355-366.
- [66] A. Armbruster: J. Phys. Chem. Solids, 1976, Vol. 37, pp. 321-327.
- [67] V. P. Verma: *Thermochim. Acta*, **1999**, *327*, 63-102.
- [68] V. P. Verma: *Thermochim. Acta*, **1985**, *89*, 363-382.
- [69] K. Nakamoto: Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3. Aufl., John Wiley and Sons, New York, 1978, 239.
- [70] A. B. Gopinath, S. Devanaryanan, A. Castro: Spektrochim. Acta, 1998, A54, 785-791.
- [71] K. I. Petrov, Yu. M. Golovin, M. B. Varfolomeev, E. M. Remennik: Russian J. of Inorganic Chemistry, 1973, 18(2), 201-202.
- [72] R. Herbst-Irmer: Zwillinge, Universität Göttingen.
- [73] J. Galy, G. Meunier: J. of Solid State Chemistry, 1975, 13, 142-159.
- [74] H. G. O. Becker: *Organikum*, Wiley-VCH, New York, 2001.
- [75] K. Y. Leung, C. Calvo: *Canadian Journal of Chemistry*, **1973**, *51*, 2082-2088.

- [76] A. J. C. Wilson (Ed.): International Tables of X-Ray Crystallography, Vol. C, Kluver Academic Press, Dordrecht, Holland, 1992.
- [77] Mark A. Cooper, Frank C. Hawthorne: *The Canadian Mineralogist*, Vol. 34, **1996**, 79-89.
- [78] S. Ghose, P. Boving, W. A. LaChapelle, C. Wan: *American Mineralogist*, Vol. 62, 1977, 1129-1134.
- [79] D. G. Shabalin, P.S. Berdonosov, V. A. Dolgikh, H. Oppermann, P. Schmidt, B. A. Popovnikin: *Izv. Akad. Nauk*, 2003, 93., *Russ. Chem. Bull.*, 2003, 52, 98., H. Oppermann, H. Dao Quoc, M. Zhang-Preße, P. Schmidt: *Z. Anorg. Allg. Chem.*, 2002, 628, 891., P. Schmidt, H. Dao Quoc, H. Oppermann, M. Ruck, P. S. Berdonosov, V. A. Dolgikh, B. A. Popovkin: *Z. Anorg. Allg. Chem.*, 2004, 630, 669.
- [80] P. S. Berdonosov, D. O. Charkin, A. M. Kusainova, C. H. Hervoches, V. A. Dolgikh,
 P. Lightfoot: *Solid State Sci.*, 2000, *5*, 553.
- [81] M. S. Wickleder: Z. Naturforsch., 2002b, 57b, 1414.
- [82] M. S. Wickleder: Acta Crystallogr., 2003, E59, 131.
- [83] M. S. Wickleder: Acta Crystallogr., 2003, E59, i31.
- [84] I. Krügermann: *Dissertation*, Universität zu Köln, 2002.
- [85] G. G. Gospodinov, M. G. Stancheva: Monatsh. Chem., 2001, 132, 1031.
- [86] L. B. Serezhkina, R. K. Rastvetaeva, V. N. Serezhkin: Sov. J. Coord. Chem., 1990, 16, 702.
- [87] P. G. Embrey, M. H. Hey, R. J. Davis: *The Mineralogical Record*, London SW7SBD, England, **1977**, 8, 91-94.
- [88] S. Schander: *Diplomarbeit*, Carl von Ossietzky Universität, Oldenburg, 2006.
- [89] H. A. Höppe, S. J. Sedlmaier: Inorg. Chem., 2007, 46, 3467-3474.
- [90] H. A. Höppe, K. Kazmierczak: 7 ICfE 2009 Cologne, 2009, P07-03-182.
- [91] J. W. Menary: Acta Crystallogr., **1968**, 11, 742.
- [92] J. Fuchs, H. Guevara: Z. Naturforsch., 1980, 35b, 1344.
- [93] W. S. Sheldrick, H. –J. Häusler: Z. Naturforsch., 1985, 40b, 1622.
- [94] W. S. Sheldrick, H. –J. Häusler: Z. Anorg. Allg. Chem., 1986, 538, 45-52.

VII. Anhang

Atom	Lage	x/a	y/b	z/b	$U_{eq}.10^{-1}/\ pm^{2}$ a)
La ₅ (AsO ₃) ₄ Cl ₃					
Lal	4 <i>e</i>	1/2	0,2114(1)	3/4	3,41(2)
La2	8 <i>f</i>	0,50293(2)	0,7394(1)	0,91709(1)	3,51(9)
La3	8 <i>f</i>	0,32737(2)	0,24585(9)	0,86299(1)	3,75(9)
Cl31	8 <i>f</i>	0,2531(1)	0,2468(3)	0,1703(1)	12,7(4)
C132	4 <i>c</i>	1/4	1/4	0	7,2(3)
As1	8 <i>f</i>	0,24565(7)	0,7455(3)	0,82932(6)	4(1)
011	8 <i>f</i>	0,62773(3)	0,2583(2)	0,97896(3)	8(1)
012	8 <i>f</i>	0,5439(2)	0,2997(8)	0,8950(2)	5(1)
013	8 <i>f</i>	0,5894(4)	0,012(9)	0,0250(3)	7(1)
As2	8 <i>f</i>	0,5950(4)	0,4945(9)	0,0361(3)	3,9(1)
O21	8 <i>f</i>	0,63480(3)	0,7573(2)	0,77124(3)	8(1)
O22	8 <i>f</i>	0,5683(3)	0,8266(8)	0,8236(2)	6(1)
O23	8 <i>f</i>	0,5970(4)	0,9827(9)	0,6936(3)	8(1)
Pr ₅ (AsO ₃) ₄ Cl ₃					
Pr1	4 <i>e</i>	1/2	0,2191(2)	1/4	7,9(2)
Pr2	8 <i>f</i>	0,50158(3)	0,740(1)	0,41647(2)	3,6(2)
Pr3	8 <i>f</i>	0,32901(3)	0,24613(9)	0,36307(3)	4,7(2)
Cl31	8 <i>f</i>	0,2531(1)	0,2468(3)	0,1703(1)	7,3(5)
C132	4 <i>c</i>	1/4	1/4	1/2	10,5(7)
As1	8 <i>f</i>	0,37105(5)	0,7423(2)	0,52152(5)	5,4(2)
011	8 <i>f</i>	0,4066(4)	0,506(1)	0,4647(4)	7(2)
012	8 <i>f</i>	0,4109(4)	0,987(1)	0,4756(4)	7(2)
013	8 <i>f</i>	0,4544(5)	0,6936(2)	0,6079(4)	23(2)
As2	8 <i>f</i>	0,63585(6)	0,7569(2)	0,27375(5)	4,9(2)
O21	8 <i>f</i>	0,5962(5)	0,986(1)	0,1948(4)	9(2)
O22	8 <i>f</i>	0,5912(5)	0,511(1)	0,2086(4)	11(2)
O23	8 <i>f</i>	0,5691(5)	0,833(2)	0,3261(4)	23(2)

Tab. I.1.1: Atomlagen und äquivalente isotrope Auslenkungsparameter für $SE_5(AsO_3)_4Cl_3$ (SE = La, Pr, Nd).

Tabelle I.1.1: Fortsetzung						
Lage	x/a	y/b	z/b	$U_{eq}.10^{-1}/ \text{ pm}^2$ a)		
2 <i>f</i>	1/4	0,2869(1)	3/4	3(1)		
4 <i>g</i>	0,08173(3)	0,7625(1)	0,58493(2)	3(1)		
4 <i>g</i>	0,30800(3)	0,25519(7)	0,46621(2)	4,9(1)		
4g	0,4231(1)	0,7538(5)	0,4175(1)	7,3(3)		
2 <i>e</i>	1/4	0,2540(6)	1/4	10,9(4)		
4g	0,89201(5)	0,2380(1)	0,65062(4)	4,8(1)		
4g	0,8685(5)	0,0006(9)	0,5562(4)	7(1)		
4g	0,889(5)	0,4882(8)	0,5651(4)	5(1)		
4g	0,0617(4)	0,1798(9)	0,6536(4)	10(1)		
4g	0,40994(6)	0,7375(1)	0,63823(4)	4,5(1)		
4g	0,2885(5)	0,5123(8)	0,5966(4)	6(1)		
4g	0,3962(4)	0,6569(9)	0,7576(3)	8(1)		
4 <i>g</i>	0,3022(5)	0,9908(8)	0,6209(4)	7(1)		
	Lage 2f 4g 4g <td>Lage$x/a$$2f$$1/4$$4g$$0,08173(3)$$4g$$0,30800(3)$$4g$$0,4231(1)$$2e$$1/4$$4g$$0,89201(5)$$4g$$0,8685(5)$$4g$$0,8685(5)$$4g$$0,0617(4)$$4g$$0,2885(5)$$4g$$0,3962(4)$$4g$$0,3022(5)$</td> <td>Lage$x/a$$y/b$$2f$$1/4$$0,2869(1)$$4g$$0,08173(3)$$0,7625(1)$$4g$$0,30800(3)$$0,25519(7)$$4g$$0,4231(1)$$0,7538(5)$$2e$$1/4$$0,2540(6)$$4g$$0,89201(5)$$0,2380(1)$$4g$$0,8685(5)$$0,0006(9)$$4g$$0,8685(5)$$0,0006(9)$$4g$$0,0617(4)$$0,1798(9)$$4g$$0,2885(5)$$0,5123(8)$$4g$$0,3962(4)$$0,6569(9)$$4g$$0,3022(5)$$0,9908(8)$</td> <td>Lage$x/a$$y/b$$z/b$$2f$$1/4$$0,2869(1)$$3/4$$4g$$0,08173(3)$$0,7625(1)$$0,58493(2)$$4g$$0,30800(3)$$0,25519(7)$$0,46621(2)$$4g$$0,4231(1)$$0,7538(5)$$0,4175(1)$$2e$$1/4$$0,2540(6)$$1/4$$4g$$0,89201(5)$$0,2380(1)$$0,65062(4)$$4g$$0,8685(5)$$0,0006(9)$$0,5562(4)$$4g$$0,8685(5)$$0,0006(9)$$0,5562(4)$$4g$$0,0617(4)$$0,1798(9)$$0,6536(4)$$4g$$0,0617(4)$$0,7375(1)$$0,63823(4)$$4g$$0,2885(5)$$0,5123(8)$$0,5966(4)$$4g$$0,3962(4)$$0,6569(9)$$0,7576(3)$$4g$$0,3022(5)$$0,9908(8)$$0,6209(4)$</td>	Lage x/a $2f$ $1/4$ $4g$ $0,08173(3)$ $4g$ $0,30800(3)$ $4g$ $0,4231(1)$ $2e$ $1/4$ $4g$ $0,89201(5)$ $4g$ $0,8685(5)$ $4g$ $0,8685(5)$ $4g$ $0,0617(4)$ $4g$ $0,2885(5)$ $4g$ $0,3962(4)$ $4g$ $0,3022(5)$	Lage x/a y/b $2f$ $1/4$ $0,2869(1)$ $4g$ $0,08173(3)$ $0,7625(1)$ $4g$ $0,30800(3)$ $0,25519(7)$ $4g$ $0,4231(1)$ $0,7538(5)$ $2e$ $1/4$ $0,2540(6)$ $4g$ $0,89201(5)$ $0,2380(1)$ $4g$ $0,8685(5)$ $0,0006(9)$ $4g$ $0,8685(5)$ $0,0006(9)$ $4g$ $0,0617(4)$ $0,1798(9)$ $4g$ $0,2885(5)$ $0,5123(8)$ $4g$ $0,3962(4)$ $0,6569(9)$ $4g$ $0,3022(5)$ $0,9908(8)$	Lage x/a y/b z/b $2f$ $1/4$ $0,2869(1)$ $3/4$ $4g$ $0,08173(3)$ $0,7625(1)$ $0,58493(2)$ $4g$ $0,30800(3)$ $0,25519(7)$ $0,46621(2)$ $4g$ $0,4231(1)$ $0,7538(5)$ $0,4175(1)$ $2e$ $1/4$ $0,2540(6)$ $1/4$ $4g$ $0,89201(5)$ $0,2380(1)$ $0,65062(4)$ $4g$ $0,8685(5)$ $0,0006(9)$ $0,5562(4)$ $4g$ $0,8685(5)$ $0,0006(9)$ $0,5562(4)$ $4g$ $0,0617(4)$ $0,1798(9)$ $0,6536(4)$ $4g$ $0,0617(4)$ $0,7375(1)$ $0,63823(4)$ $4g$ $0,2885(5)$ $0,5123(8)$ $0,5966(4)$ $4g$ $0,3962(4)$ $0,6569(9)$ $0,7576(3)$ $4g$ $0,3022(5)$ $0,9908(8)$ $0,6209(4)$		

^{a)} $U_{eq} = 1/3 [U_{22} + 1/\sin^2\beta(U_{11} + U_{33} + 2U_{13}\cos\beta)]$

Tab. I.1.2: Ausgewählte internukleare Abstände [pm] und Winkel [°] in $SE_5(AsO_3)_4Cl_3$ (SE = La, Pr, Nd).

La ₅ (AsO ₃) ₄ Cl ₃	3				
La1	011	243,2(4)	La3	O13	235,6(6)
	011	243,2(4)		O22	238,3(6)
	O23	255,3(6)		O12	249,8(5)
	O23	255,3(6)		O23	261,4(6)
	O22	256,8(6)		Cl31	307,92(4)
	O22	256,8(6)		C132	308,2(2)
	O21	257,7(4)		C132	308,5(2)
	O21	257,7(4)		C132	317,7(1)
La2	O21	231,1(4)	As1	O11	176,6(4)
	013	250,2(6)		O12	180,4(5)
	O12	252,7(5)		013	182,8(5)
Tabelle I.1.2	: Fortsetzung				
--	----------------	----------	--------------	---------------------------------	---------------------------------------
La ₅ (AsO ₃) ₄ C	l ₃				
La2	O22	257,0(5)			
	011	258,2(5)	A	s2 O21	174,4(4)
	O12	257,3(6)		O22	179,9(5)
	013	259,2(5)		O23	177,1(5)
	O23	265,3(5)			
		96.3(2)		021 As2 023	103 4(3)
011-A	As1-012	90,3(2)		$O_{21}^{-As2}O_{23}^{-O_{23}}$	0.00000000000000000000000000000000000
012	As1-013	90,8(2)		$O_{21}^{-As2}O_{22}^{-O_{22}}$	94,0(2)
012-7	151-015	93,8(2)		025-A82-022	94,8(2)
$Pr_5(AsO_3)_4C_2$	l ₃				
Pr1	013	234,0(6)	Pr3	O11	233,0(7)
	013	234,0(6)		O21	235,0(7)
	O22	251,6(7)		O12	246,6(7)
	O22	251,6(7)		O22	256,7(7)
	O21	252,7(7)		Cl23	304,75(5)
	O21	252,7(7)		Cl13	305,7(2)
	O23	257,6(8)		Cl13	306,4(2)
	O23	257,6(8)		Cl13	312,9(2)
Dr 2	022	226 6(7)	A a 1	012	176 4(7)
PI2	025	220,0(7)	ASI	013	170,4(7)
	012	244,8(0)		012	179,0(6)
	012	250,2(7)		OII	185,0(0)
	012	252,4(0)	٨	022	172 2(7)
	021	252,9(7)	AS2	023	175,2(7)
	012	255,0(7)		022	1/0,5(/)
	013	255,9(8)		021	180,6(7)
	022	238,3(7)			
O13-A	As1-012	97,1(4)		O23-As2-O22	104,4(4)
O13-A	As1-O11	89,4(3)		O23-As2-O21	92,0(3)
O12-A	As1-O11	92,8(3)		O22-As2-O21	93,4(3)

Tabel	Tabelle I.1.2: Fortsetzung							
Nd ₅ (A	sO ₃) ₄ Cl ₃							
Nd1	O13	235,7(4)	Nd3	011	228,4(5)			
	O13	235,7(4)		O21	231,1(5)			
	O23	249,5(6)		O12	246,7(5)			
	O23	249,5(6)		O23	259,6(5)			
	O22	250,2(5)		Cl32	304,12(5)			
	O22	250,2(5)		Cl31	304,3(3)			
	O21	251,7(5)		Cl31	305,7(3)			
	O21	251,7(5)		Cl31	311,2(1)			
Nd2	O22	226,9(5)	As1	O13	176,3(5)			
	O11	243,1(6)		O12	180,7(5)			
	O12	247,3(5)		011	184,8(5)			
	O13	247,2(5)						
	O21	251,1(5)	As2	O22	173,6(5)			
	O12	252,9(5)		O23	176,9(5)			
	O11	254,7(5)		O21	181,3(5)			
	O23	259,7(5)						
	O13-As1-O12	97,4(2)	O22-A	As2-O23	104,0(3)			
	O13-As1-O11	88,8(2)	O22-A	As2-O21	92,6(2)			
	O12-As1-O11	93,2(2)	O23-A	As2-O21	94,0(2)			

Tab. I.1.3: Koeffizienten der anisotropen Verschiebungsparameter $[10^{-1}/ \text{ pm}^2]$ fürSE₅(AsO₃)₄Cl₃ (SE = La, Pr, Nd).

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂			
$La_5(AsO_3)_4Cl_3$									
La1	3,9(2)	3,4(4)	2,5(2)	0	0,5(1)	0			
La2	3,8(2)	3,6(2)	2,8(1)	0,1(1)	0,53(9)	0,1(2)			
La3	4,1(2)	3,3(2)	3,2(1)	-0,3(2)	0,1(1)	0,1(2)			
Cl31	15(1)	11(1)	16,4(8)	1(1)	9,8(7)	1(2)			
C132	7,1(6)	6,3(8)	7,0(5)	0(1)	0(4)	-1(1)			
As1	4,5(3)	3,8(3)	3,4(2)	0,1(3)	0,9(2)	0(4)			

Tabelle I.1.3: Fortsetzung							
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂	
La ₅ (AsO ₃	$)_4Cl_3$						
011	8(2)	8(3)	5(2)	0(2)	-2(1)	1(2)	
012	3(3)	3(3)	7(2)	1(2)	0(2)	1(2)	
013	13(4)	2(3)	7(2)	1(2)	5(2)	4(2)	
As2	4,0(2)	3,7(3)	3,5(2)	-0,1(3)	0,6(2)	-0,2(4)	
O21	8(2)	9(3)	7(2)	1(1)	3(2)	7(2)	
O22	2(3)	8(3)	5(2)	1(2)	-1(2)	-1(2)	
O23	11(3)	5(3)	6(2)	-2(2)	1(2)	3(2)	
Pr ₅ (AsO ₃)) ₄ Cl ₃						
Pr1	4,1(4)	18,9(5)	0,9(3)	0	0,9(3)	0	
Pr2	3,9(3)	5,7(3)	1,3(2)	0,3(1)	0,9(2)	0(2)	
Pr3	6,0(3)	4,8(3)	2,9(2)	-0,7(2)	0,6(2)	0,2(2)	
Cl31	9(1)	6(1)	7(1)	-1(1)	1,2(8)	0(1)	
Cl32	13(2)	6(2)	15(1)	0(1)	8(1)	1(2)	
As1	7,8(5)	6,2(6)	2,5(4)	0,2(3)	1,9(3)	0,1(4)	
O11	9(4)	8(4)	7(3)	1(2)	5(3)	-1(3)	
O12	7(4)	3(4)	11(3)	-1(2)	4(3)	-1(3)	
013	15(4)	48(5)	2(3)	3(3)	-4(3)	10(4)	
As2	6,7(5)	5,4(5)	2,6(4)	0,2(3)	1,7(3)	0(4)	
O21	8(4)	6(4)	12(3)	-3(2)	0(3)	-3(3)	
O22	10(5)	8(4)	12(3)	-1(2)	0(3)	-3(3)	
O23	12(4)	41(5)	14(3)	1(3)	3(3)	4(4)	
Nd ₅ (AsO ₃	3) ₄ Cl ₃						
Nd1	4,0(3)	3,8(3)	2,6(2)	0	2,6(2)	0	
Nd2	4,0(2)	3,4(2)	2,7(2)	0,1(1)	2,4(1)	0,1(1)	
Nd3	6,5(2)	4,1(2)	5,7(2)	-0,7(2)	4,3(2)	0(2)	
Cl31	6,6(8)	6,4(8)	7,9(7)	0,5(6)	3,7(6)	0,2(7)	
C132	12(1)	9(1)	8(1)	0	3(1)	0	
As1	5,3(3)	4,3(3)	4,3(3)	-0,1(3)	2,9(3)	-0,1(3)	
O11	5(3)	11(3)	5(3)	0(2)	2(2)	-2(2)	
012	13(4)	5(3)	10(3)	1(2)	10(3)	3(2)	
	. *				. *		

Tabelle I.1.3: Fortsetzung								
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂		
Nd ₅ (AsO ₃) ₄ Cl ₃								
013	9(4)	5(3)	6(3)	-3,0(2)	6(3)	-1(2)		
As2	6,9(4)	4,2(3)	4,7(3)	0,5(3)	3,9(3)	0,3(3)		
O21	3(4)	6(3)	7(3)	3(2)	3(3)	3(2)		
O22	8(4)	4(3)	8(3)	1(2)	4(3)	2(2)		
O23	17(3)	6(3)	17(3)	-2(2)	15(3)	-2(2)		

Atom	Anel	v/a	v/b	z/b	$I_{1} = 10^{-1} / \text{ nm}^2 \text{ a}^3$
$\frac{1}{\mathrm{Sm}} \left(\Lambda_{\mathrm{SO}} \right) $		л/ a	y/0	<i>L</i> / U	Ueq.10 / pm
Sm1	2i	0 2318(1)	0 66209(8)	0 86837(5)	13 4(2)
Cl11	2i 2i	0.1952(6)	0,00209(0) 0.4847(4)	0,6602(3)	13, +(2) 18 1(7)
Cl12	2i	0,1752(0) 0.2701(6)	0, +0 + 7(+) 0 5077(3)	0,0002(3) 0.1111(2)	14, 3(6)
Sm2	2i	0,2701(0) 0.2340(1)	0.00300(8)	0,62783(5)	10.7(2)
Sm2	2i 2i	0,2570(1)	0,00300(0) 0.00427(8)	0,02703(5) 0.13030(5)	10,7(2)
	21 2;	0,2370(1) 0.3183(3)	0,77427(0)	0,13030(3) 0,4112(1)	10,3(2)
ASI 0112	21	0,3103(3)	0,7209(2) 0.1646(0)	0,4112(1) 0.4748(6)	7,8(3)
0112	21	0,439(2)	0,1040(9)	0,4740(0)	1,0(2)
012	21	0,084(2)	0,852(1)	0,4598(7)	13(2)
013	2i	0,408(2)	0,853(1)	0,2944(7)	14(2)
As2	2i	0,3133(3)	0,2877(2)	0,3440(1)	11,6(3)
O21	2i	0,062(2)	0,175(1)	0,2781(7)	15(2)
O22	2i	0,524(2)	0,190(1)	0,2474(7)	12(2)
As3	2i	0,2222(2)	0,2544(2)	0,9108(1)	10,6(3)
O31	2i	0,003(2)	0,183(1)	0,0149(6)	11(2)
O32	2i	0,483(2)	0,171(1)	0,9920(7)	11(2)
O33	2i	0,140(2)	0,093(1)	0,8155(7)	17(2)
Eu ₃ (AsO ₃)(A	$s_2O_5)Cl_2$				
Eu1	2i	0,23203(6)	0,66360(5)	0,86843(4)	5,7(1)
Cl11	2i	0,1946(3)	0,4870(2)	0,6607(2)	10,5(4)
Cl12	2i	0,2706(3)	0,5068(2)	0,1097(2)	8,0(4)
Eu2	2i	0,23453(6)	0,00156(5)	0,62768(4)	4,8(1)
Eu3	2i	0,25630(6)	0,99525(5)	0,12993(4)	4,8(1)
As1	2i	0,6874(1)	0,7119(1)	0,65573(7)	5(2)
O112	2i	0,5624(9)	0,8355(7)	0,5253(5)	7(1)
O12	2i	0,9414(9)	0,8249(7)	0,7225(5)	7(1)
013	2i	0,4791(9)	0,8106(7)	0,7537(5)	7(1)
As2	2i	0,3183(1)	0,72997(9)	0,41001(7)	5(2)
O21	2i	0,0865(9)	0,8527(7)	0,4600(5)	7(1)
O22	2 <i>i</i>	0,4130(9)	0,8513(7)	0,2936(5)	7(1)

Tab.II.1.1: Atomlagen und äquivalente isotropeAuslenkungsparameter für $SE_3(AsO_3)(As_2O_5)Cl_2$ (SE = Sm, Eu, Gd).

Tabelle II.1.1: Fortsetzung								
Atom	Lage	x/a	y/b	z/b	$U_{eq}.10^{-1}/\ pm^{2}$ a)			
Eu ₃ (AsO ₃)(A	$s_2O_5)Cl_2$							
As3	2i	0,2222(1)	0,2533(1)	0,90965(7)	4,8(2)			
O31	2i	0,0036(8)	0,1817(6)	0,0148(5)	5(1)			
O32	2i	0,4863(9)	0,1699(6)	0,9927(5)	6(1)			
O33	2 <i>i</i>	0,1370(9)	0,0932(7)	0,8144(5)	9(1)			
Gd ₃ (AsO ₃)(A	As ₂ O ₅)Cl ₂							
Gd1	2i	0,23315(3)	0,16492(2)	0,36882(2)	5,58(4)			
Cl11	2i	0,1948(2)	0,0120(1)	0,16094(8)	10,1(2)			
Cl12	2i	0,2709(2)	0,0063(1)	0,60908(8)	8,2(1)			
Gd2	2i	0,23484(3)	0,50100(2)	0,12760(1)	4,58(4)			
Gd3	2i	0,25608(3)	0,49549(2)	0,62968(1)	4,6(4)			
As1	2i	0,68822(7)	0,21245(5)	0,15586(3)	4,7(6)			
0112	2i	0,5629(5)	0,3365(4)	0,0254(2)	6,7(4)			
012	2i	0,9427(5)	0,3250(4)	0,2226(2)	6,8(4)			
013	2i	0,4791(5)	0,3119(4)	0,2540(2)	6(4)			
As2	2i	0,31797(7)	0,23055(5)	0,09062(3)	5(6)			
O21	2i	0,4138(5)	0,3519(4)	0,2069(2)	7(4)			
O22	2i	0,0857(5)	0,3522(4)	0,0414(2)	7(4)			
O23	2i	0,22137(7)	0,24696(5)	0,40871(3)	4,9(6)			
As3	2i	0,4861(5)	0,3306(4)	0,4915(2)	6,4(4)			
O31	2i	0,1345(6)	0,4066(4)	0,3133(2)	9(5)			
O32	2i	0,0014(5)	0,3177(4)	0,5141(2)	6,2(4)			

^{a)}
$$\overline{\mathbf{U}_{\text{eq}} = \frac{1}{3} \sum_{i} \sum_{j} U_{ij} a_i^* a_j^* a_i a_j}$$

-

Tab. II.1.2: Ausgewählte internukleare Abstände [pm] und Winkel [°] in $SE_3(AsO_3)(As_2O_5)Cl_2$ (SE = Sm, Eu, Gd).

Sm ₃ (AsO ₃)(As	$_{2}O_{5})Cl_{2}$		Sm2	O12	227,6(9)
Sm1	O22	228,3(8)		O33	231,7(8)
	O31	230,0(8)		O12	234,3(8)
	O32	252,0(8)		013	238,3(8)

Tabelle II.1.2	: Fortsetzung				
Sm1	O21	259,0(8)	Sm2	O22	245,3(8)
	Cl11	274,4(3)		O21	247,4(9)
	Cl12	299,0(3)		O112	250,0(8)
	Cl12	306,1(3)		O112	260,7(8)
	Cl12	309,0(3)			
			As1	O13	176,3(8)
Sm3	O11	227,7(8)		O12	176,4(9)
	O33	239(1)		O112	196,5(8)
	O31	241,1(8)			
	O32	246,8(8)	As2	O21	176,7(9)
	O22	247,7(9)		O22	183,0(8)
	O32	251,8(8)		O112	187,4(8)
	O21	253,1(8)			
	O31	253,2(8)	As3	O33	174,9(9)
				O32	177,1(9)
				O31	182,4(8)
O13-A	As1-O12	97,2(4)	O21-A	As2-O22	90,9(4)
O13-A	s1-0112	90,2(4)	O21-A	s2-O112	104,5(4)
O12-A	s1-0112	90,1	O22-A	90,0(4)	
O33-A	As3-O32	99,0(4)			
O33-A	As3-O31	89,3(4)			
O32-A	As3-O31	94,7(4)			
Eu ₃ (AsO ₃)(As	$S_2O_5)Cl_2$				
Eu1	O13	227,4(6)	Eu2	O21	228,4(5)
	O31	229,5(5)		O33	230,7(6)
	O32	249,4(5)		O21	232,1(5)
	O12	255,7(5)		O22	236,9(5)
	Cl11	272,7(2)		013	244,9(5)
	Cl12	297,1(2)		O12	245,9(6)
	Cl12	305,0(2)		O112	249,5(6)
	Cl12	309,0(2)		O112	259,4(5)

Tabe	lle II.1.2: Fortsetzung				
Eu3	O22	228,7(5)	As1	O12	177,4(5)
	O33	237,7(6)		O13	182,8(5)
	O31	238,6(5)		O112	186,3(5)
	013	245,3(5)			
	O32	245,6(5)	As2	O22	174,9(6)
	O32	250,7(6)		O21	175,2(5)
	O31	251,9(5)		O112	196,6(5)
	012	252,8(6)			
			As3	O33	174,1(6)
				O32	178,4(5)
				O31	182,5(5)
	O12-As1-O13	90,4(2)		O22-As2-O21	98,6(3)
	O12-As1-O112	104,4(2)		O22-As2-O112	90,0(2)
	O13-As1-O112	90,1(2)		O21-As2-O112	89,6(2)
	O33-As3-O32	99,8(2)			
	O33-As3-O31	89,1(3)			
	O32-As3-O31	94,4(2)			
Gd2()	$AsO_2(As_2O_2)Cl_2$				
Gd1	013	226.6(3)	Gd2	022	227.6(3)
	033	227.8(3)		032	229.6(3)
	O31	248.9(3)		022	232.8(3)
	012	254.7(3)		O21	236.3(3)
	Cl11	272.3(1)		013	243.6(3)
	Cl12	295.94(9)		012	244.9(3)
	Cl12	303.89(9)		0112	248.5(3)
	Cl12	309,5(1)		0112	258,1(3)
	-	/- X /		-	· \- /
Gd3	O21	228,0(3)	As1	O12	177,2(3)
	O32	236,4(3)		O13	183,0(3)
	O33	239,1(3)		O112	186,2(3)
	O31	244,0(3)			

2 174,1(3)
1 174,6(3)
12 197,1(3)
2 174,0(3)
1 178,1(3)
3 182,4(3)
98,6(1)
89,8(1)
89,7(1)

Tab. II.1.3: Koeffizienten der anisotropen Verschiebungsparameter $[10^{-1}/ \text{ pm}^2]$ fürSE₃(AsO₃)(As₂O₅)Cl₂ (SE = Sm, Eu, Gd).

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂				
Sm ₃ (AsO ₃)(Sm ₃ (AsO ₃)(As ₂ O ₅)Cl ₂									
Sm1	12,8(4)	16,4(3)	11,2(3)	-0,2(2)	2,4(2)	-0,7(2)				
Cl11	18(1)	19(1)	17,5(9)	-1,7(8)	1,6(8)	0,1(8)				
Cl12	15(1)	15(1)	13,1(8)	0,1(7)	0,9(7)	-0,3(8)				
Sm2	9,8(4)	13,7(3)	8,5(3)	-0,2(2)	0,6(2)	-0,5(2)				
Sm3	9,9(4)	13,9(3)	7,8(3)	0,5(2)	0,8(2)	-0,4(2)				
As1	10,6(6)	12,3(5)	9,5(5)	0,3(4)	1,0(4)	-0,1(4)				
O112	8(2)	8(2)	8(2)	1(1)	0(1)	0(1)				
O12	14(2)	13(2)	13(2)	0(1)	1(1)	1(1)				
O13	14(2)	14(2)	14(2)	0(1)	1(1)	0(1)				
As2	10,9(6)	13,2(5)	10,6(5)	0,1(4)	0,6(4)	-0,2(4)				
O21	15(2)	15(2)	15(2)	-1(1)	1(1)	0(1)				
O22	12(2)	13(2)	12(2)	0(1)	1(1)	0(1)				

Tabelle II.1.3: Fortsetzung									
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂			
Sm ₃ (AsO	3)(As ₂ O ₅)Cl ₂								
As3	10,7(6)	12,7(5)	8,4(5)	0,3(4)	0,8(4)	-0,3(4)			
O31	11(2)	11(2)	10(2)	0(1)	1(1)	0(1)			
O32	11(2)	11(2)	11(2)	1(1)	1(1)	1(1)			
O33	17(2)	17(2)	17(2)	-1(1)	2(1)	0(1)			
Eu ₃ (AsO ₃)(As ₂ O ₅)Cl ₂								
Eu1	5(2)	7,8(2)	4,5(2)	-0,2(2)	1,0(1)	-0,1(1)			
Cl11	9,7(8)	12(1)	10(1)	-1(8)	1,9(7)	-0,1(7)			
Cl12	9,1(8)	8(1)	6(1)	0(8)	0,7(7)	-0,8(7)			
Eu2	4,3(2)	7,2(2)	2,9(2)	-0,2(2)	0,1(1)	-0,3(1)			
Eu3	4,1(2)	6,9(2)	3,2(2)	0,3(2)	0,1(1)	-0,3(1)			
As1	4,0(3)	6,5(4)	4,5(4)	0,4(3)	0(3)	-1,0(3)			
O112	6(1)	6(1)	7(1)	0,4(9)	-0,1(9)	0(9)			
O12	7(1)	8(1)	7(1)	-0,6(9)	0,4(9)	-0,5(9)			
013	7(3)	8(1)	7(1)	0(9)	0,5(9)	0,7(9)			
As2	4,4(3)	5,8(4)	4,9(4)	-0,5(3)	0,6(3)	-0,3(3)			
O21	8(1)	7(1)	7(1)	0,4(9)	0,2(9)	0,4(9)			
O22	7(1)	7(1)	7(1)	0,3(9)	0,7(9)	-0,5(9)			
As3	4,2(3)	6,0(4)	4,0(5)	0,2(3)	0,1(3)	-0,3(3)			
O31	5(1)	5(1)	5(1)	-0,5(9)	0,8(9)	-0,2(9)			
O32	6(1)	6(1)	7(1)	-0,3(9)	1,1(9)	-0,2(9)			
O33	9(1)	9(1)	9(1)	0(9)	1,1(9)	-0,7(9)			
Gd ₃ (AsO ₃	$(As_2O_5)Cl_2$								
Gd1	5,10(7)	6,65(7)	5,06(6)	0,16(5)	0,79(5)	-0,07(6)			
Cl11	10,1(4)	11(4)	9,2(3)	-1,8(3)	0,4(3)	0,3(3)			
Cl12	9,0(4)	7,8(3)	7,7(3)	1,1(3)	0,3(3)	-0,2(3)			
Gd2	3,88(7)	6,28(7)	3,52(6)	0,21(5)	-0,05(5)	0,13(5)			
Gd3	4,00(7)	5,84(7)	3,94(6)	0,49(5)	-0,04(5)	0,01(5)			
As1	4,3(1)	5,1(2)	4,6(1)	0(1)	-0,3(1)	0,1(1)			
O112	6(1)	8(1)	6,2(9)	1,6(8)	-0,5(8)	-0,1(9)			
012	6(1)	9(1)	6,2(9)	-0,5(9)	-0,5(8)	-1,2(9)			

Tabelle II.1.3: Fortsetzung									
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂			
Gd ₃ (AsO ₃)(As ₂ O ₅)Cl ₂								
013	5(1)	8(1)	5,5(9)	-0,6(8)	1,3(8)	0(9)			
As2	5,1(2)	5(2)	4,9(1)	0,2(1)	0,5(1)	0,2(1)			
O21	7(1)	8(1)	5,8(9)	1,9(8)	0,3(8)	-1,7(9)			
O22	6(1)	8(1)	6,8(9)	-0,7(9)	-0,6(8)	2,3(9)			
As3	4,6(1)	5,7(2)	4,4(1)	0,9(1)	0(1)	-0,4(1)			
O31	4(1)	9(1)	5,8(9)	0,5(9)	0,2(8)	0,8(9)			
O32	9(1)	11(1)	7(1)	-2,6(9)	2,7(9)	-3(1)			
O33	5(1)	8(1)	6,2(9)	-0,4(8)	1,6(8)	0,2(9)			

Atom	Lage	x/a	y/b	z/b	$U_{eq}.10^{-1}/\text{ pm}^2$
Dy ₂ Zn(AsO ₃)(As ₂ O ₅)Cl				e)
Dy1	2i	0,27315(2)	0,98486(2)	0,87755(1)	5,26(4)
Dy2	2i	0,21584(3)	0,9812(2)	0,63275(1)	5,34(4)
As1	2i	0,66693(6)	0,73817(4)	0,64198(3)	5,50(6)
011	2i	0,8950(4)	0,8611(3)	0,5618(2)	7,4(4)
012	2i	0,5540(4)	0,8522(3)	0,7362(2)	7,4(4)
0133	2i	0,4325(4)	0,1650(3)	0,4932(2)	6,9(4)
As2	2i	0,17375(6)	0,25817(4)	0,03231(3)	5,78(6)
O21	2i	0,0614(5)	0,1361(3)	0,1765(2)	8,6(4)
O22	2i	0,4219(4)	0,1451(3)	0(2)	8,8(4)
O23	2i	0,0349(4)	0,1666(3)	0,9443(2)	7,5(4)
As3	2i	0,33844(6)	0,27267(4)	0,61061(3)	5,51(6)
O31	2i	0,0894(4)	0,1589(3)	0,6864(2)	6,7(3)
O32	2i	0,5550(4)	0,1665(3)	0,7243(2)	7,3(4)
Zn1	2i	0,17391(7)	0,27011(5)	0,78287(4)	7,11(7)
Cl1	2i	0,1720(2)	0,5257(1)	0,7165(1)	18,3(2)
Ho ₂ Zn(AsO ₃)((As ₂ O ₅)Cl				
Ho1	2i	0,2455(2)	0,01010(9)	0,37003(6)	6,6(3)
Ho2	2i	0,7242(2)	0,01013(9)	0,13177(6)	6,5(3)
As1	2i	0,1561(3)	0,2688(2)	0,0973(2)	7,7(4)
011	2i	0,406(3)	0,147(2)	0,175(1)	13(3)
O12	2i	0,060(2)	0,168(2)	0,218(1)	10(2)
0133	2i	0,045(2)	0,162(1)	0,014(1)	7(2)
As2	2i	0,2873(3)	0,2611(2)	0,5185(2)	7(4)
O21	2i	0,394(2)	0,131(2)	0,665(1)	10(2)
O22	2i	0,507(2)	0,167(2)	0,436(1)	10(2)
O23	2i	0,032(2)	0,159(1)	0,48(1)	9(2)
As3	2i	0,1993(3)	0,2625(2)	0,1539(2)	6,9(4)
O31	2i	0,082(2)	0,15(1)	0,245(1)	5(2)
O32	2i	0,415(2)	0,141(1)	0,069(1)	6(2)
Zn1	2i	0,2370(4)	0,2679(3)	0,3265(2)	11,1(5)

Tab.III.1.1: Atomlagen und äquivalente isotropeAuslenkungsparameter für $SE_2Zn(AsO_3)(As_2O_5)Cl$ (SE = Dy, Ho, Er, Yb).

Tabelle III.1.1	Tabelle III.1.1: Fortsetzung							
Atom	Lage	x/a	y/b	z/b	$U_{eq}.10^{-1}/\text{ pm}^2$			
Ho ₂ Zn(AsO ₃)((As ₂ O ₅)Cl							
Cl1	2i	0,2711(9)	0,5225(6)	0,2535(4)	19(1)			
$Er_2Zn(AsO_3)($	$As_2O_5)Cl$							
Er1	2i	0,2458(2)	0,0100(1)	0,37038(9)	15,5(3)			
Er2	2 <i>i</i>	0,7241(1)	0,0098(1)	0,13174(9)	16,1(3)			
As1	2i	0,1583(3)	0,2679(3)	0,0978(2)	15,7(5)			
011	2i	0,407(2)	0,144(2)	0,18(1)	18(3)			
012	2i	0,055(2)	0,165(2)	0,219(1)	17(3)			
0133	2i	0,046(2)	0,160(2)	0,011(2)	20(3)			
As2	2i	0,2886(3)	0,2607(3)	0,5193(2)	16,1(5)			
O21	2i	0,400(3)	0,127(2)	0,667(2)	22(3)			
O22	2i	0,505(2)	0,166(2)	0,438(1)	17(3)			
O23	2 <i>i</i>	0,031(3)	0,155(2)	0,481(2)	21(3)			
As3	2 <i>i</i>	0,1988(3)	0,2624(3)	0,1547(2)	16,0(5)			
O31	2i	0,077(2)	0,147(2)	0,242(1)	12(3)			
O32	2i	0,422(2)	0,141(2)	0,067(1)	8(2)			
Zn1	2 <i>i</i>	0,2382(4)	0,2664(3)	0,3270(3)	20,4(6)			
Cl1	2i	0,2728(9)	0,5226(7)	0,2521(6)	26(1)			
Yb ₂ Zn(AsO ₃)(As ₂ O ₅)Cl							
Yb1	2i	0,2449(2)	0,00962(9)	0,37117(6)	12,9(2)			
Yb2	2i	0,7231(1)	0,01000(9)	0,13209(6)	13,0(2)			
As1	2 <i>i</i>	0,1637(3)	0,2684(2)	0,0986(2)	13,2(4)			
011	2i	0,413(2)	0,150(1)	0,18(1)	17(2)			
012	2i	0,055(2)	0,168(1)	0,217(1)	16(2)			
0133	2 <i>i</i>	0,052(2)	0,161(1)	0,013(1)	12(2)			
As2	2 <i>i</i>	0,2906(3)	0,2594(2)	0,5218(2)	13,1(4)			
O21	2i	0,404(2)	0,13(1)	0,670(1)	16(2)			
O22	2i	0,506(2)	0,164(1)	0,438(1)	18(2)			
O23	2i	0,031(3)	0,155(2)	0,483(1)	20(3)			
As3	2i	0,1945(3)	0,2602(2)	0,1546(2)	12,3(4)			
O31	2i	0,075(2)	0,142(1)	0,245(1)	11(2)			
O32	2i	0,418(2)	0,138(1)	0,071(1)	12(2)			

Tabelle III.	1.1: Fortsetzung				
Atom	Lage	x/a	y/b	z/b	$U_{eq}.10^{-1}/ \text{ pm}^2$
Yb ₂ Zn(AsO	3)(As ₂ O ₅)Cl				
Zn1	2i	0,2436(5)	0,2650(3)	0,3228(2)	26,7(5)
Cl1	2i	0,28(1)	0,5203(6)	0,2478(5)	28(1)
a)	* *				

^{a)} U_{eq} = $\frac{1}{3} \sum_{i} \sum_{j} U_{ij} a_i^* a_j^* a_i a_j$

Tab. III.1.2: Ausgewählte internukleare Abstände [pm] und Winkel [°] in $SE_2Zn(AsO_3)(As_2O_5)Cl$ (SE = Dy, Ho, Er, Yb).

Dy ₂ Zn(AsO ₃)(As ₂ O ₅)Cl				
Dy1	O22	227,6(3)	Dy2	O21	224,9(3)
	O21	230,5(2)		O11	225,1(2)
	O12	232,1(2)		O11	227,9(2)
	O23	240,7(3)		O32	243,1(3)
	O31	247,6(3)		O133	245,1(2)
	O32	250,4(2)		O133	273,4(3)
	011	225,1(2)		O31	249,6(2)
	O22	234,5(3)		O12	229,6(2)
As1	O12	174,0(2)	As2	O22	175,1(3)
	011	174,5(3)		O21	175,5(3)
	O133	194,9(2)		O23	183,7(2)
As3	O31	176,0(2)	Zn1	O23	193,0(3)
	O32	181,1(3)		O32	196,4(2)
	O133	182,7(2)		O31	212,3(2)
				Cl1	218,8(1)
012-	As1-011	101,0(1)		O22-As2-O21	100,1(1)
O12-A	As1-0133	89,0(1)		O22-As2-O23	92,3(1)
O11-A	As1-0133	89,5(1)		O21-As2-O23	89,7(1)
031-	As3-O32	93,7(1)		O23-Zn1-O32	117,6(1)
O31-A	As3-0133	100,3(1)		O23-Zn1-O31	90(1)
O32-A	As3-0133	92(1)		O32-Zn1-O31	92,2(1)

Dy ₂ Zn(As	$sO_3)(As_2O_5)Cl$				
				O23-Zn1-Cl1	120,25(8)
				O32-Zn1-Cl1	115,44(8)
				O31-Zn1-Cl1	113,48(8)
Ho ₂ Zn(As	sO ₃)(As ₂ O ₅)Cl				
Ho1	O31	228(1)	Ho2	O32	227(1)
	O21	230(1)		O32	227(1)
	O11	238(1)		O21	228(1)
	O23	240(1)		O11	234(1)
	O22	241(1)		O31	234(1)
	O12	244(1)		O12	240(1)
	O22	245(1)		O133	248(1)
	O23	248(1)		O133	263(1)
As1	O11	173(1)	As2	O21	172(1)
	O12	185(1)		O23	179(1)
	O133	185(1)		O22	185(1)
As3	O32	173(1)	Zn1	O22	194(1)
	O31	174(1)		O12	195(1)
	O133	194(1)		O23	213(1)
				Cl1	218(5)
0	11-As1-O12	93,1(6)		O21-As2-O23	100,0(6)
01	1-As1-O133	99,9(6)		O21-As2-O22	89,6(6)
01	2-As1-O133	90,6(5)		O23-As2-O22	92,8(6)
0	32-As3-O31	100,8(6)		O22-Zn1-O12	122,5(5)
03	32-As3-O133	88,5(5)		O22-Zn1-O23	89,0(5)
03	31-As3-O133	89,9(5)		O12-Zn1-O23	88,0(5)
				O22-Zn1-Cl1	116,3(4)
				O12-Zn1-Cl1	115,0(4)
				O23-Zn1-Cl1	118,9(4)

Tabelle III.1.2: Fortsetzung							
Er ₂ Zn(A	AsO ₃)(As ₂ O ₅)Cl						
Er1	O21	226(2)	Er2	O32	225(1)		
	O31	229(1)		O32	226(1)		
	O11	234(2)		O21	227(2)		
	O23	237(2)		O31	231(1)		
	O22	240(1)		O11	234(2)		
	O12	242(1)		O12	238(1)		
	O22	244(1)		O133	248(2)		
	O23	246(2)		O133	260(2)		
As1	011	174(1)	As2	O21	175(2)		
	O133	183(2)		O23	181(1)		
	O12	184(2)		O22	183(2)		
As3	O31	173(1)	Zn1	O22	194(2)		
	O32	177(1)		O12	197(2)		
	O133	197(1)		O23	214(1)		
				C11	219,9(7)		
(011-As1-0133	100,2(7)		O21-As2-O23	99,2(7)		
	O11-As1-O12	91,4(7)		O21-As2-O22	88,2(7)		
(0133-As1-012	89,5(7)		O23-As2-O22	92,3(7)		
	O31-As3-O32	101,3(6)		O22-Zn1-O12	123,3(6)		
(O31-As3-O133	88,7(6)		O22-Zn1-O23	88,5(6)		
(O32-As3-O133	87,8(6)		O12-Zn1-O23	87,0(6)		
				O22-Zn1-Cl1	116,2(5)		
				O12-Zn1-Cl1	114,7(5)		
				O23-Zn1-Cl1	119,9(4)		
Yb ₂ Zn(2	AsO ₃)(As ₂ O ₅)Cl						
Yb1	O31	223(1)	Yb2	O32	220(1)		
	O21	227(1)		O21	223(1)		
	O23	234(1)		O32	227(1)		
	O22	236(1)		O31	229(1)		

Tabelle III.1.2: Fortsetzung								
Yb ₂ Zn(A	sO ₃)(As ₂ O ₅)Cl							
Yb1	O11	237(1)	Yb2	O11	234(1)			
	O22	242(1)		O12	237(1)			
	O12	243(1)		O133	246(1)			
	O23	246(1)		O133	263(1)			
As1	O11	171(1)	As2	O21	174(1)			
	O12	183(1)		O23	179(1)			
	O133	183(1)		O22	184(1)			
As3	O32	175(1)	Zn1	O22	193(1)			
	O31	176(1)		O12	194(1)			
	O133	195(1)		O23	218(1)			
				Cl1	219(6)			
С	011-As1-O12	93,1(6)		O21-As2-O23	100,1(6)			
0	11-As1-O133	100,9(5)		O21-As2-O22	89,0(6)			
0	12-As1-O133	89,8(5)		O23-As2-O22	92,1(6)			
С	031-As3-O32	99,9(5)		O22-Zn1-O12	124,9(5)			
O	31-As3-O133	88,9(5)		O22-Zn1-O23	86,6(5)			
O	32-As3-O133	88,8(5)		O12-Zn1-O23	86,9(5)			
				O22-Zn1-Cl1	116,2(4)			
				O12-Zn1-Cl1	114,3(4)			
				O23-Zn1-Cl1	119,7(4)			

Tab. III.1.3: Koeffizienten der anisotropen Verschiebungsparameter $[10^{-1}/ \text{ pm}^2]$ fürSE2Zn(AsO3)(As2O5)Cl (SE = Dy, Ho, Er, Yb).

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Dy ₂ Zn(AsO ₃	$(As_2O_5)Cl$					
Dy1	4,21(6)	7,52(6)	4,27(6)	-1,85(4)	-0,62(4)	-0,12(4)
Dy2	4,20(6)	7,71(6)	4,15(6)	-1,59(4)	-0,11(4)	-0,15(4)

Tabelle III.1.3: Fortsetzung									
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂			
Dy ₂ Zn(As	$sO_3)(As_2O_5)Cl$								
As1	5,1(1)	5,9(1)	5,3(1)	-1,0(1)	-0,92(9)	0,07(9)			
011	6,5(8)	8,7(9)	6,3(9)	-0,6(7)	0,1(7)	1,1(7)			
O12	7,0(8)	10,1(9)	6,1(9)	-3,9(7)	0,5(7)	-1,7(7)			
O133	6,3(8)	8,9(9)	5,7(8)	-2,3(7)	0,7(7)	0,4(7)			
As2	5,7(1)	6,4(1)	5,4(1)	-1,6(1)	-0,42(9)	-0,12(9)			
O21	7,3(9)	13(1)	4,4(8)	-0,3(8)	-1,2(7)	-2,1(7)			
O22	5,9(8)	13(1)	8,2(9)	-4,7(8)	-1,3(7)	2,1(7)			
O23	6,4(8)	10(1)	6,0(9)	-2,1(7)	-1,8(7)	-0,6(7)			
As3	5,2(1)	6,1(1)	5,2(1)	-1,6(1)	-0,30(9)	0,32(9)			
031	4,6(8)	8,9(9)	6,3(9)	-1,5(7)	0,8(6)	-0,4(7)			
032	5,3(8)	9,8(9)	6,5(9)	-1,3(7)	-2,0(7)	-0,6(7)			
Zn1	6,9(1)	7,5(2)	7(2)	-1,6(1)	-2,9(1)	0,4(1)			
Cl1	14,7(4)	7,7(3)	30,2(5)	0,1(3)	-4,0(3)	0,1(3)			
Ho ₂ Zn(As	sO ₃)(As ₂ O ₅)Cl								
Ho1	2,1(5)	12,9(5)	5,0(4)	3,0(3)	1,1(3)	0,1(3)			
Ho2	2,7(5)	12,9(5)	4,9(4)	4,0(3)	1,0(3)	-0,1(3)			
As1	4(1)	12,6(9)	6,5(7)	2,1(7)	0,7(6)	0(7)			
011	13(3)	14(3)	13(3)	4,0(1)	1(1)	1(1)			
012	10(3)	10(3)	10(3)	3(1)	1(1)	0(1)			
O133	7(2)	7(2)	7(2)	2(1)	1(1)	0(1)			
As2	3(1)	12,1(9)	5,6(7)	1,8(7)	0,1(6)	-1,1(7)			
O21	10(3)	10(3)	10(3)	3(1)	1(1)	1(1)			
O22	10(3)	10(3)	10(3)	3(1)	1(1)	1(1)			
O23	9(3)	9(3)	9(3)	3(1)	0(1)	0(1)			
As3	2(1)	12,2(9)	7,1(8)	3,7(7)	2,4(6)	0,4(7)			
O31	5(2)	6(2)	5(2)	2(1)	0(1)	0(1)			
O32	6(2)	6(2)	6(2)	2(1)	0(1)	0(1)			
Zn1	8(1)	14(1)	9,8(9)	1,1(8)	5,3(8)	-1,6(8)			
Cl1	13(3)	15(2)	26(2)	2(2)	2(2)	-4(2)			
Er ₂ Zn(As	O ₃)(As ₂ O ₅)Cl								
Er1	7,5(4)	25,5(6)	14,0(5)	6,7(4)	0,9(3)	1,3(3)			

Tabelle III.1.3: Fortsetzung							
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂	
Er ₂ Zn(As0	O ₃)(As ₂ O ₅)Cl						
Er2	8,5(4)	27,7(6)	13,8(6)	8,5(4)	2,2(4)	1,2(4)	
As1	9,8(8)	26(1)	12(1)	7,4(9)	2,1(8)	3,1(7)	
011	18(3)	18(3)	18(3)	5(1)	1(1)	1(1)	
012	17(3)	17(3)	17(3)	5(1)	1(1)	1(1)	
0133	20(3)	20(3)	20(3)	6(1)	1(1)	1(1)	
As2	8,8(8)	23(1)	16(1)	5,5(9)	1,9(8)	0,8(7)	
O21	22(3)	22(3)	22(3)	7(1)	2(1)	1(1)	
O22	17(3)	17(3)	17(3)	5(1)	1(1)	1(1)	
O23	21(3)	21(3)	21(3)	6(1)	2(1)	1(1)	
As3	9,2(8)	25(1)	16(1)	8,4(9)	3,5(8)	2,2(7)	
O31	12(3)	12(3)	12(3)	4(1)	0(1)	1(1)	
O32	7(2)	8(3)	8(3)	2(1)	0(1)	0(1)	
Zn1	16(1)	24(1)	21(1)	4(1)	6(1)	0,9(9)	
Cl1	22(2)	29(3)	26(3)	5(2)	9(2)	-2(2)	
Yb ₂ Zn(As	O_3)(As ₂ O ₅)C	1					
Yb1	8,8(4)	22,6(4)	8,3(3)	6,0(3)	2,2(2)	1,2(3)	
Yb2	8,8(5)	23,1(4)	8,2(3)	6,0(3)	2,3(2)	0,7(3)	
As1	12(1)	21,2(9)	8,3(7)	6,3(6)	3,3(6)	2,9(7)	
011	17(3)	17(3)	17(3)	5(1)	1(1)	0(1)	
O12	16(3)	17(2)	16(2)	5(1)	2(1)	0(1)	
O133	12(2)	12(2)	11(2)	4(1)	1(1)	0(1)	
As2	9(1)	21,2(9)	9,8(7)	5,8(6)	3,5(6)	0,9(6)	
O21	16(3)	16(2)	16(2)	5(1)	2(1)	1(1)	
O22	18(3)	18(3)	18(3)	6(1)	2(1)	1(1)	
O23	20(3)	20(3)	20(3)	6(1)	1(1)	1(1)	
As3	9(1)	20,9(9)	8,8(7)	6,3(6)	3,0(6)	2,3(6)	
O31	11(2)	11(2)	11(2)	3(1)	1(1)	1(1)	
O32	11(2)	12(2)	12(2)	4(1)	1(1)	1(1)	
Zn1	29(2)	23(1)	29(1)	5,5(9)	21(1)	1(1)	
Cl1	24(3)	23(2)	35(2)	4(2)	10(2)	-1(2)	

	.	,	/1	a	
Atom		x/a	y/b	z/b	$U_{eq}.10^{-7} \text{ pm}^2$
$Sm_2Fe(AsO_3)$	$(As_2O_5)Cl$	0.25702(8)	0.00044(5)	0.96955(4)	0.0(2)
Sml	21	0,25792(8)	0,00944(5)	0,86855(4)	9,0(3)
Sm2	21	0,77693(9)	0,00459(5)	0,62914(4)	10,4(1)
Fel	21	0,8471(4)	0,2927(2)	0,9695(2)	10,8(4)
Fe2	2i	0,974(1)	0,7002(6)	0,9139(5)	30(1)
Fe3	1 <i>e</i>	1/2	1/2	0	17(6)
As1	2i	0,3118(2)	0,7392(1)	0,14778(8)	10,9(2)
011	2i	0,149(2)	0,8721(9)	0,2285(6)	20(1)
O12	2i	0,515(1)	0,8438(8)	0,0603(6)	19(1)
013	2i	0,061(1)	0,8238(8)	0,0187(6)	14(1)
As2	2i	0,4610(2)	0,7286(1)	0,72862(8)	10,4(2)
O21	2i	0,17(1)	0,8545(8)	0,7439(6)	17(1)
O22	2 <i>i</i>	0,633(1)	0,8188(7)	0,8062(5)	12(1)
O233	2 <i>i</i>	0,527(1)	0,8351(7)	0,5672(6)	13(1)
As3	2i	0,7964(2)	0,7377(1)	0,47481(8)	9,4(2)
O31	2 <i>i</i>	0,987(1)	0,8493(8)	0,4977(6)	14(1)
O32	2i	0,636(1)	0,8509(8)	0,3305(6)	14(1)
Cl1	2i	0,079(1)	0,5107(7)	0,855(1)	22(1)
Cl2	2i	0,068(2)	0,493(1)	0,796(1)	29(2)
C13	2i	0,122(4)	0,498(2)	0,914(2)	27(4)
As4	2 <i>i</i>	0,951(5)	0,736(3)	0,401(2)	22(7)
Gd ₂ Fe(AsO ₃)((As2O5)Cl				
Gd1	2 <i>i</i>	0.25846(7)	0.50727(5)	0.36922(4)	7.5(1)
Gd2	2i	0,77785(7)	0,50332(5)	0,12964(4)	8(1)
Fe1	2i	0,8451(4)	0,2064(3)	0,4725(2)	15,0(4)
Fe2	2 <i>i</i>	0,9784(8)	0,2007(5)	0,4114(4)	15,2(7)
Fe3	1d	1/2	0	1/2	6(4)
As1	2i	0,3101(2)	0,2399(1)	0,65028(8)	10,2(2)
O11	2i	0,058(1)	0,3270(8)	0,5198(6)	11(1)
O12	2i	0,512(1)	0,346(1)	0,5624(7)	17(1)
013	2i	0,146(1)	0,371(1)	0,7315(7)	18(1)
As2	2i	0,797(2)	0,2392(1)	0,97334(8)	7,9(2)
O21	2i	0,633(1)	0,3525(8)	0,8293(6)	11(1)
O22	2i	0,987(1)	0,3496(8)	0,9979(6)	11(1)
O233	2i	0,527(1)	0,3362(8)	0,0666(6)	12(1)
As3	2i	0,4616(2)	0,2279(1)	0,22871(8)	9,1(2)

Tab. IV.1.1: Atomlagen und äquivalente isotrope Auslenkungsparameter für $SE_2Fe(AsO_3)(As_2O_5)Cl$ (SE = Sm, Gd).

Tabelle IV.1.1: Fortsetzung										
Atom	Lage	x/a	y/b	z/b	$U_{eq}.10^{-1}/ \text{ pm}^2$					
Gd ₂ Fe(AsO	Gd ₂ Fe(AsO ₃)(As ₂ O ₅)Cl									
031	2i	0,167(1)	0,3514(9)	0,2474(7)	15(1)					
O32	2i	0,635(1)	0,3202(8)	0,3063(6)	11(1)					
As4	2i	0,955(4)	0,234(3)	0,901(2)	20(4)					
Cl1	2i	0,924(1)	0,9907(8)	0,6441(7)	23(1)					
Cl2	2i	0,932(2)	0,006(1)	0,7054(8)	3(1)					
C13	2i	0,878(2)	0,002(1)	0,589(1)	7(2)					

^{a)} U_{eq} = $\frac{1}{3} \sum_{i} \sum_{j} U_{ij} a_i^* a_j^* a_i a_j$

Tab. IV.1.2: Ausgewählte internukleare Abstände [pm] und Winkel [°] in $SE_2Fe(AsO_3)(As_2O_5)Cl$ (SE = Sm, Gd).

Sm ₂ Fe(AsO ₃)(As ₂ O ₅)Cl								
Sm1	011	233,7(8)	Sm2	011	231,1(7)			
	O32	236,9(6)		O31	232,0(6)			
	O12	240,5(7)		O21	238,5(7)			
	O21	241,9(7)		O31	238,9(6)			
	O12	243,9(7)		O32	239,4(7)			
	013	251,5(6)		O22	250,4(6)			
	O22	253,8(6)		O233	258,5(7)			
	013	254,6(6)		O233	262,3(7)			
Fe1	013	200,6(7)	Fe2	O13	201,2(8)			
	O22	202,0(7)		O22	209,1(8)			
	O12	229,6(7)		C13	184(2)			
	Cl1	232,6(8)		Cl1	199,3(9)			
	Cl3	234(2)		C13	242(2)			
	Cl1	255,1(8)		C12	256(1)			
	Cl2	269(1)						
	Cl3	195(2)						
Fe3	Cl3	233(2)	As1	O11	176,0(7)			
	Cl3	233(2)		O12	178,8(7)			
				O13	185,0(7)			
As2	O21	173,6(7)	As3	O32	174,1(6)			
	O22	181,4(6)		O31	175,6(7)			
	O233	186,0(6)		O233	193,5(6)			

Tabelle IV.1.2: Fortsetzung				
Sm ₂ Fe(AsO ₃)(As ₂ O ₅)Cl				
As4 O31	176(2)			
O32	182(3)			
O13-Fe1-O22	115,3(3)		O13-Fe2-O22	112,0(4)
O13-Fe1-O12	88,0(3)		Cl3-Fe2-Cl3	63,5(8)
O22-Fe1-O12	84,8(3)		Cl1-Fe2-Cl3	75,9(6)
Cl3-Fe1-Cl1	14,8(6)		Cl3-Fe2-Cl2	30,8(6)
Cl3-Fe1-Cl3	64,0(8)		Cl1-Fe2-Cl2	11,4(3)
Cl1-Fe1-Cl3	71,8(5)		Cl3-Fe2-Cl2	84,5(6)
Cl3-Fe1-Cl1	73,4(6)		Cl3-Fe2-Cl1	19,5(5)
Cl1-Fe1-Cl1	83,5(4)			
Cl3-Fe1-Cl1	14,8(4)		Cl3-Fe3-Cl3	180,0(1)
Cl3-Fe1-Cl2	28,8(6)			
Cl1-Fe1-Cl2	14,4(3)		O11-As1-O12	99,6(3)
Cl3-Fe1-Cl2	83,3(5)		O11-As1-O13	90,7(3)
Cl1-Fe1-Cl2	96,1(4)		O12-As1-O13	92,9(3)
O21-As2-O22	92,9(3)		O32-As3-O31	101,8(3)
O21-As2-O233	99,0(3)		O32-As3-O233	91,4(3)
O22-As2-O233	93,2(3)		O31-As3-O233	92,2(3)
O31-As4-O32	99(1)			
Gd ₂ Fe(AsO ₃)(As ₂ O ₅)Cl				
Gd1 013	232,0(7)	Gd2	013	228,3(7)
O21	234,8(6)		O22	230,4(6)
O12	238,2(7)		O21	237,0(7)
011	250,4(7)		O32	246,1(6)
011	247,6(6)		O233	256,0(6)
O12	240,8(7)		O22	236,5(6)
031	239,8(7)		O233	259,9(7)
O32	250,9(7)		O31	236,1(7)
Fe1 O32	201,6(6)	Fe2	O32	207,0(7)
O12	229,1(8)		O11	203,3(7)
011	201,1(6)		O31	235,3(9)
C13	236(1)		C13	184(1)
Cl1	255,4(8)		Cl1	197,8(9)
Cl1	226,7(8)		Cl2	254(1)

Tabelle 1	V.1.2: Fortsetzun	g			
Gd ₂ Fe(A	sO ₃)(As ₂ O ₅)Cl				
Fe1	C12	264,9(9)	Fe2	C13	245(1)
	C13	193(1)			
			As1	O13	174,5(7)
Fe3	C13	233(1)		O12	177,9(7)
				O11	184,7(6)
As2	O21	172,6(6)			
	O22	174,3(6)	As3	O31	173,7(7)
	O233	192,6(6)		O32	182,4(6)
				O233	185,2(7)
As4	O13	234(2)			
	O22	176(2)			
	O21	184(2)			
C	011-Fe1-O32	113,5(3)		O11-Fe2-O32	110,3(3)
(Cl3-Fe1-Cl1	14,5(3)		O11-Fe2-O31	85,1(3)
C	011-Fe1-O12	87,2(3)		O32-Fe2-O31	86,7(3)
C	032-Fe1-O12	85,1(3)		Cl3-Fe2-Cl1	18,4(3)
(Cl3-Fe1-Cl3	65,3(4)		Cl3-Fe2-Cl3	64,4(5)
(Cl1-Fe1-Cl3	72,5(3)		Cl1-Fe2-Cl3	75,5(4)
(Cl3-Fe1-Cl1	73,7(4)		Cl3-Fe2-Cl2	30,1(4)
(Cl1-Fe1-Cl1	83,0(3)		Cl1-Fe2-Cl2	11,9(3)
(Cl3-Fe3-Cl3	180,0(5)		O13-As1-O12	99,6(4)
				O13-As1-O11	90,4(3)
C	021-As2-O22	102,7(3)		O12-As1-O11	92,4(3)
O.	21-As2-O233	91,2(3)			
0	22-As2-O233	91,8(3)		O31-As3-O32	92,8(3)
				O31-As3-O233	100,1(3)
С	022-As4-O21	97(1)		O32-As3-O233	92,7(3)
С	022-As4-O13	92(1)			
С	021-As4-O13	91(1)			

Atom	U_{11}	U22	U22	U22	U ₁₂	U12
Sm ₂ Fe(AsO	$(A_{s_2}O_5)Cl$	U 22	- 33	0 23	015	U12
Sm1	7,3(2)	14,0(2)	8,0(2)	-4,3(2)	2,4(1)	-4,2(2)
Sm2	7,9(3)	16,7(2)	8,2(2)	-5,0(2)	3,4(2)	-5,1(2)
Fe1	6(1)	11(1)	16(9)	-6,7(7)	-5,7(8)	0,3(7)
Fe2	37(3)	23(3)	31(2)	-6(2)	-15(2)	-10(2)
Fe3	21(1)	9(9)	15(9)	-4(6)	-2(6)	5(7)
As1	9,6(4)	12,4(4)	10,4(4)	-3,5(3)	0,9(3)	-2,7(3)
011	20(2)	21(2)	20(2)	-7(1)	0(1)	-5(1)
O12	18(2)	19(2)	19(2)	-5(1)	1(1)	-6(1)
013	13(2)	14(2)	14(2)	-4(1)	0(1)	-5(1)
As2	9,8(4)	13,0(4)	10,0(3)	-4,1(3)	3,5(3)	-5,4(3)
O21	18(2)	18(2)	17(2)	-7(1)	1(1)	-4(1)
O22	12(2)	12(2)	12(1)	-4(1)	-0,1(9)	-4(1)
O233	13(2)	13(2)	13(1)	-4(1)	1,4(9)	-4(1)
As3	8,5(5)	12(4)	8,6(4)	-3,9(3)	1,5(3)	-3,4(3)
O31	13(2)	14(2)	14(2)	-4(1)	1(1)	-5(1)
O32	13(2)	14(2)	13(2)	-4(1)	0,1(9)	-4(1)
Cl1	17(3)	13(3)	35(4)	-4(4)	4(3)	-4(2)
C12	22(5)	32(6)	37(6)	-12(5)	9(5)	-9(4)
C13	29(9)	17(7)	21(8)	4(7)	7(7)	4(6)
As4	22(7)	22(7)	22(7)	-6(2)	2(1)	-6(2)
Gd ₂ Fe(AsU	$(AS_2O_5)CI$	10.4(2)	ϵ	21(1)	1 5 (1)	2.9(1)
Gul	0,3(2)	10,4(2) 11.8(2)	0,0(2)	-3,1(1)	1,3(1)	-3,8(1)
	0,9(2)	11,0(2) 10,4(4)	0,0(2)	-3,0(1)	2,3(1)	-4,3(1)
AS1 011	10,1(3) 12(3)	10,4(4) 12(3)	9,3(3)	-2,9(3)	-0,9(3)	-1,7(3)
012	12(3) 15(3)	12(3) 28(4)	10(2) 13(3)	-4(2)	-1(2) 1(2)	-0(2)
012	13(3) 11(3)	28(4)	13(3) 17(3)	-0(3)	-1(2)	-14(3)
Δs2	7 A(3)	20(4)	7 3(3)	-13(3)	-4(2)	-3.0(3)
A32 021	11(3)	15(3)	11(3)	-5,1(3)	1(2)	-3,0(3)
021	8(2)	15(3) 15(3)	11(3) 12(3)	-3(2)	1(2) 2(2)	-5(2)
022	8(2)	13(3) 17(3)	12(3) 12(3)	-7(2)	2(2) 3(2)	-3(2)
As3	9 3(3)	10.9(4)	8 3(3)	-3 3(3)	2(2)	-4.7(3)
031	9(3)	24(4)	16(3)	-13(3)	-2(2)	-2(3)
032	7(2)	18(3)	7(2)	-2(2)	0(2)	-3(2)
As4	20(4)	20(4)	20(4)	-6(2)	2(1)	-6(2)
				······································	-(-)	······································

Tab. IV.1.3: Koeffizienten der anisotropen Verschiebungsparameter $[10^{-1}/ \text{ pm}^2]$ fürSE2Fe(AsO3)(As2O5)Cl (SE = Sm, Gd).

Tabelle IV.1.3: Fortsetzung									
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂			
Gd ₂ Fe(AsO ₃	Gd ₂ Fe(AsO ₃)(As ₂ O ₅)Cl								
Cl1	22(1)	22(2)	24(2)	-7(1)	0,9(9)	-7(1)			
Cl2	29(2)	30(2)	30(2)	-8(1)	2(1)	-9(1)			
C13	8(2)	7(27)	7(2)	-2(1)	2(1)	-2(1)			
Fe1	13,8(7)	14,2(7)	18,5(7)	-7,4(6)	-6,9(6)	-2,9(6)			
Fe2	16(1)	16(1)	14(1)	-4,6(8)	-1,6(8)	-5,9(8)			
Fe3	6(4)	6(4)	5(4)	-2(2)	1(1)	-2(2)			

\mathbf{F} uz \mathbf{F} ez(\mathbf{A} sz \mathbf{O} e)2(\mathbf{A} s2 \mathbf{O} z)2(\mathbf{A} sO2)2						
Raumgruppe	P1(Nr.2)					
Kristallsystem	triklin					
Gitterkonstanten						
<i>a</i> (pm)	987,26(6)					
<i>b</i> (pm)	998,66(7)					
<i>c</i> (pm)	1119,59(8)					
<u>(°)</u>	99,486(8)					
β (°)	102,101(8)					
.y (°)	105,888(8)					
Zellvolumen (cm ³ /mol)	1008,7(1)					
Zahl der Formeleinheiten	2					
Diffraktometer	Stoe IPDS I					
Strahlung	Mo-K α (Graphitmonochromator, α =71,07 pm)					
Temperatur	153 K					
Meßbereich	$3,3^{\circ} < 2\theta < 52,1^{\circ}$					
Rotationsbereich, φ- Inkrement	$0^{\circ} < \phi < 270^{\circ}; 1,8^{\circ}$					
Indexbereich	$-12 \leq h \leq 12$					
	$-12 \leq k \leq 12$					
	$-13 \leq l \leq 13$					
Anzahl der Bilder	150					
Belichtungszeit	3 min					
Detektorabstand	70 mm					
Datenkorrekturen	Polarisations- u. Lorentzfaktoren					
μ (cm ⁻¹)	240,51					
Gemessene Reflexe	3743					
Symmetrieunabhängige Reflexe,	3055					
davon mit $I_0 > 2\sigma(I_0)$	296					
R _{int}	0,0487					
Strukturbestimmung	SHELXS97 und SHELXL97 [65, 66]					
Streufaktoren	Intern. Tables, Vol. C [113]					
Extinktionskoeffizient	0,0003(1)					
Goodness of fit	0,981					
R1; wR2 $(I_0 > 2\sigma(I_0))$	0,0409; 0,1025					
R1; wR2 (alle Daten)	0,0497; 0,1057					

 $\textbf{Tab. V.1.1:} Kristallographische Daten von Eu_6Fe_5(As_4O_9)_2(As_3O_7)_2(AsO_3)_2.$

Atom	Lage	x/a	y/b	z/b	$U_{eq}.10^{-1}/\ pm^{2}$ a)
Eu1	2i	0,14252(6)	0,18336(6)	0,55681(4)	17,5(2)
Eu2	2i	0,49298(6)	0,49967(6)	0,66687(4)	18,5(2)
Eu3	2i	0,16538(6)	0,16593(6)	0,20413(4)	18,5(2)
Fe1	2i	0,1584(2)	0,4612(2)	0,0704(1)	24,7(4)
Fe2	1 <i>e</i>	1/2	1/2	0	18,4(5)
Fe3	2i	0,1608(2)	0,1900(2)	0,8851(1)	18,3(3)
As1	2i	0,1847(1)	0,9292(1)	0,71917(9)	18,6(2)
O11	2i	0,0781(9)	0,9661(8)	0,8179(6)	20(2)
O12	2i	0,092(1)	0,9420(9)	0,5730(6)	24(2)
O132	2 <i>i</i>	0,2895(9)	0,1307(8)	0,7582(6)	19(2)
As2	2 <i>i</i>	0,4923(1)	0,1933(1)	0,79819(9)	17,6(2)
O21	2 <i>i</i>	0,5184(9)	0,3756(9)	0,8437(6)	21,3(2)
O223	2 <i>i</i>	0,5245(9)	0,1454(9)	0,9474(6)	22(2)
As3	2 <i>i</i>	0,5181(1)	0,8241(1)	0,90446(9)	17,8(2)
O31	2 <i>i</i>	0,6949(9)	0,8180(9)	0,9476(6)	22(2)
O324	2 <i>i</i>	0,4314(9)	0,6230(8)	0,8621(6)	20(2)
As4	2 <i>i</i>	0,2283(1)	0,5212(1)	0,81058(9)	18,9(3)
O41	2 <i>i</i>	0,2452(9)	0,4197(8)	0,6770(6)	18,4(2)
O42	2 <i>i</i>	0,2520(9)	0,4176(9)	0,9233(6)	21(2)
As5	2 <i>i</i>	0,4319(1)	0,1572(1)	0,44074(9)	20,6(3)
O51	2 <i>i</i>	0,3987(9)	0,2572(9)	0,5671(6)	20(2)
O52	2 <i>i</i>	0,4103(8)	0,2536(8)	0,3235(6)	18(2)
O536	2 <i>i</i>	0,2285(9)	0,0471(9)	0,3868(7)	22(2)
As6	2 <i>i</i>	0,8243(1)	0,1463(1)	0,69235(9)	19,6(3)
O61	2 <i>i</i>	0,0096(9)	0,1957(9)	0,7137(6)	20(2)
O627	2 <i>i</i>	0,8120(9)	0,0814(9)	0,8368(6)	23(2)
As7	2 <i>i</i>	0,8591(1)	0,2134(1)	0,98535(9)	18,6(3)
O71	2i	0,879(2)	0,358(1)	0,918(1)	64(4)
072	2 <i>i</i>	0,047(1)	0,230(1)	0,0252(7)	28(2)
As8	2 <i>i</i>	0,8162(1)	0,5243(1)	0,61803(9)	19,3(3)
O81	2 <i>i</i>	0,757(1)	0,5671(9)	0,7611(7)	25(2)
082	2 <i>i</i>	0,1203(9)	0,2938(8)	0,3849(6)	20(2)
O83	2 <i>i</i>	0,3636(9)	0,5318(9)	0,4787(6)	21(2)

Tab. V.1.2: Atomlagen und äquivalente isotrope Auslenkungsparameter für $Eu_6Fe_5(As_4O_9)_2(As_3O_7)_2(AsO_3)_2.$

 $^{a)}\overline{U_{eq}=1/3\Sigma_{i}\Sigma_{j}U_{ij}a^{*}{}_{i}a^{*}{}_{j}a_{i}.a_{j}}$

		Eu ₆ Fe ₅ (As ₄ O ₉)	$(As_3O_7)_2(As_3O_$	$AsO_3)_2$	
Eu1	O12	233,3(8)	As1	011	174,1(7)
	O41	234,1(7)		O12	174,3(8)
	O12	236,9(8)		O132	192,1(8)
	O82	237,1(7)			
	O51	240,5(8)	As2	O132	185,6(8)
	O61	240,9(7)		O21	173,9(8)
	O536	257,9(7)		O223	180,1(7)
	O132	262,7(7)			
			As2	O21	175,1(6)
Eu2	O51	232,7(8)		O23	178,9(6)
	O83	234,3(7)		O22	182,8(6)
	O52	236,1(8)			
	O41	239,0(8)	As3	O31	173,0(8)
	O83	240,8(7)		O223	179,4(7)
	O81	244,9(9)		O324	188,8(8)
	O21	250,8(7)			
	O324	259,6(7)	As4	O324	189,5(8)
				O41	172,9(6)
Eu3	O11	234,2(8)		O42	177,6(8)
	O52	234,5(8)			
	072	237,2(8)	As5	O51	173,6(7)
	O82	240,1(7)		O52	176,3(7)
	O31	240,1(7)		O536	191,6(9)
	O81	250,2(9)			
	O627	251,6(8)	As6	O61	171,3(8)
	O536	257,9(8)		O627	185,4(8)
				O536	186,5(8)
Fe1	O71	193(1)			
	O81	199,6(8)	As7	O627	182,7(7)
	O42	209,3(7)		O71	172(1)
	072	219(1)		072	177,3(9)
	O71	273(2)			
	O21	301,9(9)	As8	O83	175,7(8)
				O82	176,0(8)
Fe2	O21	204,4(7)		O81	184,4(7)
	O21	204,4(7)			
	O324	223,5(7)			
	O324	223,5(7)			

Tab. V.1.3: Ausgewählte internukleare Abstände [pm] und Winkel [°] in $Eu_6Fe_5(As_4O_9)_2(As_3O_7)_2(AsO_3)_2$.

Tabelle V.1.3: Fortsetzung								
$Eu_{6}Fe_{5}(As_{4}O_{9})_{2}(As_{3}O_{7})_{2}(AsO_{3})_{2}$								
Fe2	O42	227,8(8)						
	O42	227,8(8)						
Fe3	011	210,3(8)						
	031	213,1(8)						
	O42	213,5(9)						
	O72	215,6(7)						
	061	219,0(7)						
	O132	220,8(7)						
	O71	193(1)						
071-Fe1-081		112.1(5)	O31-Fe3-O132	95.6(3)				
O71-Fe1-O42		111,8(4)	O42-Fe3-O132	98,9(3)				
O81-Fe1-O42		119,5(3)	O72-Fe3-O132	171,8(3)				
O71-Fe1-O72		142,2(5)	O61-Fe3-O132	84,9(3)				
O81-Fe1-O72		84,2(3)						
O42-Fe1-O72		85,8(3)	O11-As1-O12	104,2(4)				
O71-Fe1-O71		82,9(6)	O11-As1-O132	88,8(3)				
O81-Fe1-O71		131,1(3)	O12-As1-O132	89,4(4)				
O42-Fe1-O71		93,8(3)						
O72-Fe1-O71		62,1(3)	O21-As2-O223	101,9(3)				
O71-Fe1-O21		88,6(5)	O21-As2-O132	97,4(4)				
O81-Fe1-O21		70,5(3)	O223-As2-O132	97,3(3)				
O42-Fe1-O21		71,0(3)						
O72-Fe1-O21		129,2(3)	O31-As3-O223	102,6(3)				
O71-Fe1-O21		158,4(3)	O31-As3-O324	94,2(4)				
O71-Fe1-O81		112,1(5)	O223-As3-O324	96,3(3)				
O21-Fe2-O32	4	82,3(3)	O41-As4-O42	103,2(3)				
O21-Fe2-O32	4	97,7(3)	O41-As4-O324	91,6(3)				
O21-Fe2-O32	4	82,3(3)	O42-As4-O324	90,4(4)				
O21-Fe2-O42		89,9(3)						
O21-Fe2-O42		90,1(3)	O51-As5-O52	103,5(3)				
O324-Fe2-O4	2	70,6(3)	O51-As5-O536	88,9(3)				
O324-Fe2-O4	2	109,4(3)	O52-As5-O536	91,6(4)				
O21-Fe2-O42		90,1(3)						
O21-Fe2-O42		89,9(3)	O61-As6-O627	99,7(4)				
O324-Fe2-O4	2	109,4(3)	O61-As6-O536	100,2(4)				
O324-Fe2-O4	2	70,6(3)	O627-As6-O536	85,0(3)				

Tabelle V.1.3: Fortsetzung				
$Eu_{6}Fe_{5}(As_{4}O_{9})_{2}(As_{3}O_{7})_{2}(AsO_{3})_{2}$				
O11-Fe3-O31	94,0(3)	O71-As7-O72	95,4(6)	
O11-Fe3-O42	170,4(3)	O71-As7-O627	94,6(5)	
O31-Fe3-O42	91,8(3)	O72-As7-O627	95,2(4)	
O11-Fe3-O72	103,2(3)			
O31-Fe3-O72	77,4(3)	O83-As8-O82	102,4(4)	
O42-Fe3-O72	85,6(3)	O83-As8-O81	92,2(4)	
O11-Fe3-O61	85,4(3)	O82-As8-O81	92,1(4)	
O31-Fe3-O61	179,1(3)			
O42-Fe3-O61	88,9(3)			
O72-Fe3-O61	102,1(3)			
O11-Fe3-O132	72,9(3)			

VIII Danksagung

An dieser Stelle möchte ich all denjenigen danken, die zu dem Gelingen dieser Arbeit beigetragen haben:

Mein größter Dank gilt meinem Doktorvater Prof. Dr. Mathias Wickleder für die interessante Themenstellung, die hervorragende Betreuung und Unterstützung in jeder Hinsicht und dem steten Interesse an meiner Arbeit.

Besonders möchte ich auch Herrn Prof. Dr. R. Beckhaus für die freundliche Übernahme des Koreferats danken.

Herrn Wolfgang Saak und Herrn Detlev Haase möchte ich für die Messungen am Einkristalldiffraktometer danken.

Herrn Rainer Schmidt danke ich für die Unterstützung bei den Aufnahmen der IR-Spektren.

Allen Mitgliedern der Arbeitsgruppe Müller und Beckhaus danke ich für eine gute Zusammenarbeit und die netten Gespräche und außerhalb des Labors.

Frau Dr. Frauke Gerlach, Frau Andrea Mietrach sowie Herrn Stefan Schwarzer, Herrn Steffen Gagelmann und Herrn Christian Logemann bedanke ich mich für die Aufnahme von Pulverdiffraktogrammen.

Allen Mitgliedern der Arbeitsgruppe Wickleder danke ich für das besonders nette Arbeitsklima, die gute Zusammenarbeit aber auch für die netten Gespräche zwischendurch. Auch den ehemaligen Mitgliedern Dr. Annika Arndt, Dr. Makram Ben Hamida und Dr. Frauke Gerlach danke ich für die freundliche Aufnahme in den Arbeitskreis und das sehr nette Arbeitsklima.

VIII Danksagung

Mareike Ahlers danke ich für ihre unruhige Art und Ulf Betke für seine unglaubliche Auffassungsgabe, beiden danke ich besonders für das Korrekturlesen dieser Arbeit.

Zum Schluss gilt mein größter Dank meinem Mann, meinem Sohn und meinen Eltern, ohne deren Unterstützung und Interesse diese Arbeit nicht möglich gewesen wäre.

Diese Arbeit wurde im Rahmen des DFG Schwerpunktprogramms Lanthanoidspezifische Funktionalitäten in Molekül und Material (SPP 1166) durchgeführt.

Hiermit versichere ich, dass die von mir vorgelegte Dissertation selbstständig verfasst, die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit, einschließlich Tabellen, Daten und Abbildungen, die anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht wurden. Aus dieser Dissertation sind die auf den folgenden Seiten genannten Veröffentlichungen hervorgegangen. Die Dissertation hat weder zu Teilen noch in Gänze einer anderen wissenschaftlichen Hochschule zur Begutachtung in einem Promotionsverfahren vorgelegen. Aus der vorliegenden Dissertation sind die folgenden Veröffentlichungen hervorgegangen:

Tagungsbeiträge:

S. Schander und M. S. Wickleder: Oxo-Selenate (IV) des Neodyms, *Festkörperchemisches Seminar*, Rothenberge, von 27.09- 29.09.2006.

S. Schander und M. S. Wickleder: Oxo-Selenate (IV) des Neodyms, 9. Norddeutsches Doktorandentreffen der anorganisch-chemischen Institute, Warnemünde, 05.10-06.10.2006.

S. Schander, M. Ben Hamida und M. S. Wickleder: The transition metal poor chloride-oxoselenites(IV) Cu₃La₁₁(SeO₃)₁₂Cl₁₂ and Zn_{1,5}Nd₁₁(SeO₃)₁₂Cl₁₂, *XIX Tage der Seltenen Erden – Terrae Rarae 2006*, Oldenburg, 29.11-02.12.2006.

S. Schander, M. Ben Hamida und M. S. Wickleder: Übergangsmetallarme Chlorid-Oxo-Selenate(IV): Cu₃La₁₁(SeO₃)₁₂Cl₁₂ und Zn_{1,5}Nd₁₁(SeO₃)₁₂Cl₁₂, *Gemeinsame Jahrestagung der DGK und DGKK*, Bremen, 05.03-07.03.2007.

S. Schander und M. S. Wickleder: Chlorid-Oxo-Arsenate(III) der Selten-Erd-Elemente, *11. Norddeutsches Doktorandenkolloquium der Anorganischen Chemie*, Burg Warberg, 25.09-26.09.2008.

S. Schander und M. S. Wickleder: Zinc Containing Chloride-Oxo-Arsenates(III) oft he Lanthanides, *XXI. Tage der Seltenen Erden – Terrae Rarae 2008*, Bochum, 04.12-06.12.2008.

S. Schander und M. S. Wickleder: Zinkhaltige Chlorid-Oxo-Arsenate(III) der Selten-Erd-Elemente, *17. Jahrestagung der Deutschen Gesellschaft für Kristallographie*, Hannover, 09.03-12.03.2009.

S. Schander und M. S. Wickleder: Chloride-oxo-arsenates(III) of the lanthanides with zinc and iron, *7 IcfE 2009 Cologne*, Köln, 23.08-27.08.2009.

Lebenslauf

Lebenslauf

Persönliche Daten:

Name:	Svetlana Schander
Geburtsdatum:	8. Oktober 1979
Geburtsort:	Temirtau
Staatsangehörigkeit:	deutsch
Familienstand:	verheiratet, ein Kind

Ausbildung:

86-96	Allgemeine Schule, Temirtau
96-98	Staatliches Metallurgisches Institut Karaganda, Temirtau
98-99	Kreisvolkshochschule, Freiberg
99-00	Technische Universität Bergakademie, Freiberg

Hochschule:

00-02	Technische Universität Bergakademie Freiberg:	
	Diplomstudiengang Chemie	
02-06	Carl von Ossietzky Universität Oldenburg:	
	Diplomstudiengang Chemie	
	Thema der Diplomarbeit:	
	Oxo-Selenate(IV) des Neodyms	
06-	Carl von Ossietzky Universität Oldenburg:	
	Beginn der Promotion im Fach Chemie	

Tätigkeiten neben dem Studium:

09/06- Wissenschaftlicher Assistent am Institut für Reine und Angewandte Chemie der Carl von Ossietzky Universität Oldenburg (Arbeitskreis Prof. Dr. M. S. Wickleder)