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Abstract

Graph transformation has many application areas in computer science, such
as software engineering or the design of concurrent and distributed systems.
Being a visual modeling technique, graph transformation has the potential
to play a decisive role in the development of increasingly larger and complex
systems. However, the use of visual modeling techniques alone does not
guarantee the correctness of a design. In context of rising standards for
trustworthy systems, there is a growing need for the verification of graph
transformation systems and programs. The research of appropriate methods
for this purpose is the topic of this thesis.

The primary goal is to obtain the capability to decide graphical program
specifications. These specifications consists of a graphical precondition, a
graph program, and a graphical postcondition. As usual, such a specification
is said to be correct, if all those system states satisfy the postcondition that
are reachable by applying the program on a start state satisfying the pre-
condition. In the considered programs, the selection, deletion, addition and
deselection of a graph’s nodes and edges are the elementary constructs that
can be composed to more complex programs by non-deterministic choice, se-
quential composition and iteration. The resulting programming language is
computationally complete and is able to model transactions that deal with
an unbounded number of nodes and edges. As language for the specification
of state properties, graph conditions are investigated and used. We show
that graph conditions provide an intuitive formalism for first-order struc-
tural properties and are suited to infer knowledge about the behavior of
graph transformation systems and programs.

According to Dijkstra, the correctness of program specifications can be
shown by constructing a weakest precondition of the program relative to the
postcondition and checking whether the specified precondition implies the
weakest precondition. Hence the correctness problem of program specifica-
tions is reduced to an implication problem of conditions. In this thesis, it is
shown how to construct weakest preconditions for graph programs and graph
conditions. Following a dual approach, a sound and complete satisfiability
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algorithm for graph conditions is investigated and a fragment of conditions is
identified, for which the algorithm decides. On the other hand, a resolution-
based calculus for graph conditions is presented and its soundness is proven.
Implementations of the aforementioned deciders for conditions are compared
with existing theorem provers and satisfiability solvers for first-order logic by
verifying three case studies: a railroad control, an access control for computer
systems, and, as an external example, a car platoon maneuver protocol.

The research is done within the framework of the so-called weak adhesive
high-level replacement categories. Therefore, the results will be applicable
to different kinds of graph replacement systems and Petri nets, providing
theoretical fundamentals and general concepts for the development of correct
transformation-based systems and programs.
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Zusammenfassung

Graphtransformation hat viele Anwendungsgebiete in der Informatik, zum
Beispiel im Softwareentwurf oder in der Modellierung von nebenläufigen oder
verteilten Systemen. Als visuelle Modellierungstechnik hat Graphtransforma-
tion das Potenzial, eine entscheidende Rolle in der Entwicklung von immer
größer und komplexer werdenden Systemen einzunehmen. Allerdings garan-
tiert die Benutzung einer visuellen Modellierungstechnik noch nicht die Kor-
rektheit eines Modells. Im Hinblick auf steigende Standards für vertrauens-
würdige Systeme ergibt sich ein wachsendes Interesse an der Verifikation von
Graphtransformationssystemen und -programmen. Die Entwicklung entspre-
chender Methoden zu diesem Zweck ist das Thema dieser Dissertation.

Primäres Ziel ist die Erlangung der Fähigkeit, grafische Programmspezifi-
kationen zu entscheiden. Diese Spezifikationen bestehen aus einer grafischen
Vorbedingung, einem Graphprogramm und einer grafischen Nachbedingung.
Man nennt eine solche Spezifikation korrekt, wenn diejenigen Systemzustän-
de der Nachbedingung genügen, die durch Ausführung des Graphprogramms
von einem die Vorbedingung erfüllenden Startzustand aus erreichbar sind. In
den betrachteten Programmen sind das Selektieren, Löschen, Hinzufügen und
Deselektieren von Knoten und Kanten eines Graphen die elementaren Kon-
strukte, die durch nichtdeterministische Auswahl, sequentielle Komposition
und Iteration zu komplexeren Programmen verknüpfbar sind. Die entstehen-
de Programmiersprache ist Turing-vollständig und erlaubt beispielsweise die
Modellierung von Transaktionen, die eine unbeschränkte Anzahl von Knoten
und Kanten betreffen. Als Beschreibungssprache für Zustandseigenschaften
werden Graphbedingungen untersucht und benutzt. Es wird gezeigt, dass
Graphbedingungen einen intuitiven Formalismus für Struktureigenschaften
erster Stufe bereit stellen und darüber hinaus geeignet sind, Informationen
über das Verhalten von Systemen und Programmen abzuleiten.

Die Korrektheit von Programmspezifikationen kann, nach Dijkstra, unter-
sucht werden durch Konstruktion einer schwächsten Vorbedingung aus dem
Programm relativ zur Nachbedingung und durch Entscheiden, ob die spe-
zifizierte Vorbedingung die schwächste Vorbedingung impliziert. In diesem
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Sinne wird das Problem der Korrektheit von Programmspezifikationen auf
das Implikationsproblem von Bedingungen reduziert. In dieser Arbeit wird
gezeigt, wie schwächste Vorbedingungen für Graphprogramme und Graphbe-
dingungen konstruiert werden. Einem dualen Ansatz folgend, wird einerseits
ein korrekter und vollständiger Erfüllbarkeitsalgorithmus für Graphbedin-
gungen untersucht und ein Fragment von Graphbedingungen identifiziert, für
das der Algorithmus entscheidet. Andererseits wird ein resolutionsbasierter
Kalkül für das Beweisen von Graphbedingungen präsentiert und seine Kor-
rektheit bewiesen. Implementierungen der zuvor genannten Komponenten
werden mit bestehenden Werkzeugen für Logik erster Stufe anhand dreier
Fallstudien verglichen: einem Eisenbahnkontrollsystem, einer Zugangskon-
trolle für Computersysteme und, als externe Fallstudie, einem Protokoll für
Manöver von Autokolonnen.

Die Untersuchungen werden innerhalb des Rahmenwerks der so genannten
schwach adhesiven high-level Ersetzungskategorien durchgeführt. Die Ergeb-
nisse sind damit auf verschiedene Arten von Graphersetzungssystemen und
Petri-Netzen anwendbar und stellen ein generelles Konzept zur Entwicklung
von korrekten transformationsbasierten Systemen und Programmen dar.
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1. Introduction

Graph transformation has many application areas in computer science, such
as software engineering or the design of concurrent and distributed sys-
tems. Especially the operational behavior of structure changing systems
such as “mobile” systems (in the sense of dynamically changing communi-
cation topologies) is suited to be modeled by graph transformation rules
[EHKP91].

In the context of increasingly larger and more complex systems that hard-
ware and software engineers have to construct, visual modeling techniques
such as graph transformation can be expected to play a key role in the future.
However, the use of visual modeling techniques alone does not guarantee the
correctness of a design. The complexity of the problem to consider all possi-
ble outcomes of a given behavior specification remains the same whether such
a specification is visual or not. In context of rising standards for trustworthy
systems, there is a growing need for the verification of graph transformation
systems and programs. The research of appropriate methods for this pur-
pose is the topic of this thesis. More precisely, a major goal is the ability
to determine the correctness of graph program specifications consisting of a
graph precondition, a graph program and a graph postcondition such as the
one presented in Figure 1.1. As usual, such a specification is correct, if all

∀

(

1 2 3

, ∃
1 2 3

) precondition: Every user
logged into a system has the
appropriate access right.

〈

1 2 3

⇀֒
1 2 3

〉 program: If a user with the
appropriate access right pro-
poses a session, it is accepted.

∀

(

1 2 3

, ∃
1 2 3

) postcondition: Every user
logged into a system has the
appropriate access right.

Figure 1.1: Example specification of an access control system
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those system states satisfy the postcondition that are reachable by applying
the program on a start state satisfying the precondition.

In our approach, graphs represent system states. Directed labeled graphs
are ubiquitous in computer science and suited to represent discrete aspects of
system states. A key feature of graphs is their well-known graphical represen-
tation, which is able to directly visualize relations between a set of elements.

As language for specifying state properties, we consider graph conditions
[HHT96, HW95, KMP05, EEHP04, Pen04, Ren04a, HP05, EEHP06]. Graph
conditions may be seen as a tree of graph mappings equipped with logical
symbols and provide an intuitive, yet precise formalism, well-suited to de-
scribe structural properties.

We introduce so-called graph programs with interface to model system
transitions by structural transformations. The selection, deletion, addition
and deselection of a graph’s nodes and edges are the basic program state-
ments that can be composed to more complex programs by non-deterministic
choice, sequential composition and iteration. The considered programming
language subsumes double pushout transformation rules and programs based
thereon [HP01, HPR06] and is able to model transactions that deal with an
unbounded number of elements.

According to Dijkstra, the correctness of program specifications can be
shown in a classical way by constructing a weakest precondition of the pro-
gram relative to the postcondition and checking whether the specified pre-
condition implies the weakest precondition. In this sense, the correctness
problem of program specifications is reduced onto the implication problem of
conditions.

To determine whether or not a precondition implies a weakest precondi-
tion, either a proof or a counterexample must be found. We follow a dual
approach by investigating dedicated components for proving and solving con-
ditions. Following the outlines of [AHPZ07], the components sketched in
Figure 1.2 are implemented. The overall approach is evaluated by model-
ing and verifying three case studies. The prover and solver components are
evaluated against existing tools such as Vampire, Darwin and Paradox

applied onto straightforward translations of graph conditions into first-order
graph formulas [Ren04a, HP06, HP09], using the axiomatization of Courcelle
[Cou97] for finite, directed graphs, which is extended by labeling axioms.

We are interested in programs and conditions over graph-like structures.
To avoid similar investigations for comparable structures, we abstract from
specific definitions and conduct our research in the framework of weak ad-
hesive high-level replacement categories. Therefore, our results hold for
replacement-capable structures such as Petri-nets, graphs, and hypergraphs.
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specification

conditions

graphs

programs

graphs

conditions

graphs

requirements

properties

states

transitions

states

properties

states

real world formal world

weakest
precondition

transformer [HPR06]

conditions

graphs

theorem prover [Pen08b]

sat. solver [Pen08a]

yes/no/
unknown

converter
[HP09]

1st-order logic
+graph axioms

Vampire
Darwin

Paradox

Figure 1.2: Overview of this thesis

Related work

More than 35 years ago [EPS73], graph transformation was proposed as a
generalization of string replacement with the intent to yield an operational
notation that captures and inherits the advantage of graphs – the ability to
directly visualize relationships between elements. Since then, a number of
programming languages based on graph transformation rules have been in-
vestigated, for instance, a minimal, but still computationally complete graph
program language [HP01].

Yet, surprisingly little effort was made to transfer the idea of graph-based
formalisms to logical languages, let alone program specifications. Tradition-
ally, the analysis of graph transformation systems focused on properties con-
cerning only the systems themselves, such as confluence [Plu93, Plu05] and
termination [Plu95]. In the last six years, verification of graph transforma-
tion systems in terms of model checking became en-vogue. Ultimately, these
approaches are based on the simple idea of a systematical exhaustive ex-
ploration of all reachable graphs and transitions of a graph transformation
system with respect to a start graph. Consequently they are restricted to fi-
nite transformation systems [Var03, DFRdS03], finite transformation systems
up to ismorphism [Ren04b], or they apply abstraction [BK02, RD06, Bau06]
and necessarily cover only fragments of logics [BKK03] that are compatible
with the considered abstraction. In the latter case, for instance, one may
verify that “Two nodes are never connected (by a path)” but not “Two nodes
are always connected (by a path)”.

At the starting point of our research, there existed no approach that
was able to decide graph-based program specifications such as the one pre-
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sented in Figure 1.1. However, parallel and independent to our work, Strecker
[Str08] investigated a model of graph programs in the proof assistant Isabelle.
His approach supports the manual verification of formulas of “a fragment of
first-order logic enriched by transitive closure”, therefore is at least able to
formalize specifications such as the one given in Figure 1.1.

Contributions

The main contribution of this thesis is the ability to automatically verify or
refute graph program specifications. While the correctness problem of the
considered graph program specifications is undecidable, almost every test
specification of the case studies considered in the evaluation of our approach
can be automatically decided.

To this end, we introduce and investigate programs with interface to
describe structural transformations within a category of objects that are re-
strictable to a previously selected context handed over between elementary
computation steps. We define weakest liberal preconditions of programs with
interface and nested conditions. We present a construction for weakest liberal
preconditions and consider algorithms for the construction of (weakest) in-
variants. We relate the decidability of the implication, the tautology and the
satisfiability problem of conditions. We classify the expressivity of graph con-
ditions by investigating translations between graph conditions and first-order
formulas on graphs. We lift the undecidability of the satisfiability problem
of first-order logic on graphs to the satisfiability problem of graph condi-
tions. Following a dual approach, we investigate a sound satisfiability solver
for conditions that is complete for a class of weak adhesive HLR categories.
We investigate a fragment of conditions for which the solver terminates and
decides. On the other hand, we present a calculus for proving conditions and
show its soundness. We evaluate our approach and the implementations of
the aforementioned transformations and algorithms by modeling and verify-
ing three different case studies: a railroad control [Pen04, HP05], an access
control for computer systems [HPR06], and, as an external example, a car
platoon maneuver protocol [Bau06, HESV91]. We show that our implemen-
tation is able to decide 327 of 330 considered test specifications. We also show
that the developed prover and solver for conditions are superior in terms of
performance and coverage to existing first-order theorem provers and satisfi-
ability solvers applied onto straightforward translations of graph conditions
into first-order graph logic. We give a number of possible reasons for this
observation.
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Thesis structure

Chapter 2 recalls the basic notions such as categories, morphisms, and the
framework of weak adhesive high-level replacement (HLR) categories. As
an example structure, we consider finite, directed, labeled graphs which –
together with the class of injective graph morphisms – constitutes a weak
adhesive HLR category.

In Chapter 3 we consider nested conditions, investigate two notions of
satisfiability for conditions, namelyM- and A-satisfiability, and classify the
expressiveness of nested graph conditions by showing that nested graph con-
ditions and first-order graph formulas are expressively equivalent.

Chapter 4 introduces programs with interface as a means of structural
transformation and considers a normal form. We classify the computational
power of this programming language by relating it to the existing notion of
graph programs.

In Chapter 5 we define correctness of program specifications, define and
show how to construct weakest liberal preconditions of programs with inter-
face and postconditions, and demonstrate the use of weakest liberal precon-
ditions to reduce the correctness problem of program specifications onto the
implication problem of nested conditions.

Chapter 6 investigates the connections between the implication, the tau-
tology and the satisfiability problem of conditions, shows that all problems
are undecidable for the category of graphs, and presents a satisfiability algo-
rithm as well as a calculus for proving conditions over a class of weak adhesive
HLR categories.

In Chapter 7 we model and verify selected aspects of three real-world
systems to evaluate our approach to the verification of program specification.

Chapter 8 summarizes the results of this thesis and discusses topics for
future work. Appendix A introduces partial monomorphism as spans of
morphisms, while in Appendix B, some of the proofs are collected.
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2. Preliminaries

In the following we recall the basic notions used in this thesis such as objects
and morphisms, categories, and weak adhesive high-level replacement (HLR)
categories. We review the standard definition of directed, labeled graphs
which – together with the class of injective graph morphisms – constitutes
a weak adhesive HLR category. We assume the reader to be familiar with
basic mathematical concepts and termini such as functions and mappings.

2.1 The category of graphs

In the following we recall the notions of categories, in particular the category
of graphs, pushouts and pushout complements. A category consists of a set
of objects and morphisms between the objects. In this thesis, an object rep-
resents discrete aspects of a system state, while a morphism relates a pair
of objects. Objects can be all kinds of structures which are of interest in
computer science and mathematics such as Petri-nets, (hyper)graphs, and
algebraic specifications. Morphisms, such as net, (hyper)graph, and specifi-
cation morphisms, are typically structure-preserving mappings relating the
elements contained within the objects. Readers interested in the category-
theoretic background may consult [AL91, AHS90, AM75].

Definition 2.1 (category). A category is a tuple C = 〈O,A〉 consisting of a
class O of objects and a class A of so-called morphisms between the objects.
Each morphism a ∈ A has a unique source object, called domain and de-
noted by dom(a), and a unique target object, called codomain and denoted by
codom(a). We write a: dom(a) → codom(a) or just dom(a) → codom(a) to
denote a morphism. Let A(A, B) denote the class of all morphisms with do-
main A and codomain B. There is a binary operation A(A, B)×A(B, C)→
A(A, C) called composition of morphisms, denoted by b◦a for morphisms a, b
with codom(a) = dom(b), for every objects A, B, C ∈ O. Moreover, the fol-
lowing axioms hold:
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• associativity: for every morphisms a, b, c with codom(a) = dom(b) and
codom(b) = dom(c), we have c ◦ (b ◦ a) = (c ◦ b) ◦ a.

• identity: for every object A, there exists a morphism idA: A→ A, called
the identity morphism for A, such that for every morphism a, we have
idcodom(a) ◦ a = a = a ◦ iddom(a).

A morphism m is a monomorphism, if m ◦ a = m ◦ b implies a = b for all
morphisms a, b with codom(a) = codom(b) = dom(m). A morphism e is
an epimorphism, if a ◦ e = b ◦ e implies a = b for all morphisms a, b with
dom(a) = dom(b) = codom(e). A morphism a is an isomorphism, if there is
a morphism a−1 such that a ◦ a−1 = idcodom(a) and a−1 ◦ a = iddom(a). For an
isomorphism a, dom(a) and codom(a) are isomorphic, which is denoted by
dom(a) ∼= codom(a). Let Mon ,Epi , Iso denote the set of all monomorphisms,
epimorphisms and isomorphisms, respectively. A category in which every
monomorphic epimorphism is an isomorphism is called balanced.

Assumption 2.2. From now on, we assume that C is a balanced category.

Notation. Objects are denoted by upper-case letters while morphisms are
denoted by lower-case letters. We sometimes write A ∈ C as a synonym for
A ∈ O, and B ← A as a synonym for A→ B. We write “ →֒” instead of “→”
to indicate that a morphism is in Mon , and we write “↔” instead of “→” to
indicate that a morphism is in Iso.

As a typical category, we consider the category of finite, directed, labeled
graphs [CMR+97, Ehr79]: Graphs are a well-known, general-purpose struc-
ture and their graphical representation is able to directly visualize relation-
ships between elements. Graphs consists of a set of nodes (or vertices), a set
of edges, and every node and edge is assigned to a label from a finite label al-
phabet. Graph morphisms are total, structure-preserving pairs of mappings:
every node in the domain is mapped onto some node in the codomain; every
edge in the domain is mapped onto some edge in the codomain. Moreover,
for all mapped edges, the image of the source node of an edge corresponds
to the source node of the edge’s image. The same holds for target nodes.
Finally, labels are preserved: nodes and edges may only be mapped onto
elements carrying the same label.

Definition 2.3 (graphs and graph morphisms). Let C = 〈CV, CE〉 be
a fixed, finite, disjoint label alphabet. A graph over C is a system G = (VG,
EG, sG, tG, lG, mG) consisting of two finite sets VG and EG of nodes (or
vertices) and edges, (total) source and target functions sG, tG: EG → VG, and
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two (total) labeling functions lG: VG → CV and mG: EG → CE. A graph
with an empty set of nodes is empty and denoted by ∅. A graph morphism
g: G → H consists of two (total) functions gV: VG → VH and gE: EG →
EH that preserve sources, targets, and labels, that is, sH ◦ gE = gV ◦ sG,
tH ◦ gE = gV ◦ tG, lH ◦ gV = lG, and mH ◦ gE = mG. A graph morphism
g is injective (surjective) if both gV and gE are injective (surjective). The
composition of graph morphisms is the componentwise composition, that is,
(h ◦ g) = 〈hV ◦ gV, hE ◦ gE〉.

VG

EG

VH

EH

gV

gE

sG tG sH tH=

CV

CE

lG

mG

lH

mH

=

=

Figure 2.1: A graph morphism g: G→ H

Notation. In drawings of graphs, nodes are drawn by circles carrying the
node label inside, for instance, “ ”; edges are drawn by arrows pointing
from the source to the target node and the edge label is placed next to the
arrow, for instance, “

a
”. In graphical depictions of graph morphisms, indices

convey (only) the mapping of nodes and edges, if necessary. Indices do not
state whether nodes and edges of the domain and codomain are identical or
not. Additionally, colors may be used to highlight mapped elements and/or
to highlight elements of the codomain that have no preimage.

Example 2.4 (access control graphs). In the following we present state
graphs of a simple access control for computer systems, which abstracts au-
thentication and models user and session management in a simple way. We
use this example solely for illustrative purposes. A more elaborated, role-
based access control model is considered in [KMP05].

Let be C = 〈{ , , }, {_}〉 the access control alphabet. The basic
items of our control system are users , sessions , and computer systems
, which we represent as labeled nodes ( , , and ) in our access control
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graphs. Directed edges between these nodes represent binary relations on
these elements.

proposed connection established connection

access right

An edge between a user and a system ( ) represents that the user has
the right to access the system, that is, the right to establish a session with the
system. Every session is connected to a user ( ) and a system (
or ). The direction of the latter edge differentiates between sessions
that have been proposed ( ) and sessions that have been established
( ). A typical access control graph, such as the one depicted below,
consists of a arbitrary, but finite number of user, session and computer nodes
connected by directed edges as described below.

Consider the following example access control morphisms. According to
our convention, indices convey the mapping, not the identities of the nodes.
For instance, the isomorphism

1
↔

1
maps a user node onto a user node,

but it remains open whether the user nodes refer to the same user or not.

∅ ↔ ∅ ∅ →֒

↔
1

→֒
1

↔
1 2

→
1=2

Graphs and graph morphisms form a category.

Fact 2.5 ([Ehr79]). The set of all (finite, directed, labeled) graphs and
the set of all graph morphisms form the category Graphs. Graph monomor-
phisms are exactly injective graph morphisms and graph epimorphisms are
exactly surjective graph morphisms, and graph isomorphisms are exactly
morphisms that are both injective and surkective [EEPT06, Example A.11,
Fact A.14 and Fact 2.15].
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category category of graphs
object graph
morphism (graph) morphism
monomorphism injective morphism
epimorphism surjective morphism
isomorphism morphisms both injective and surjective

Table 2.1: Correspondence of categorical and graph notions

Later on, we use the fact that isomorphisms are closed under decomposition.

Fact 2.6 (decomposition of isomorphisms). For all morphisms a, b ∈ A,
we have: (b ◦ a) is an isomorphism implies a and b are isomorphisms.

Proof. We have that a is an isomorphism: a−1 = (b ◦ a)−1 ◦ b is the inverse
of a with a−1 ◦ a = iddom(a) and a ◦ a−1 = idcodom(a). We have that b is an
isomorphism: b−1 = a ◦ (b ◦ a)−1 is the inverse of b with b−1 ◦ b = iddom(b) and
b ◦ b−1 = idcodom(b). �

Spans and cospans are pairs of morphisms with a common domain (codomain)
and used in the definition of pushout and pullbacks.

Definition 2.7 (span and cospan). A span 〈a, b〉 is a pair of mor-
phisms a, b with a common domain dom(a) = dom(b). Analogously, a cospan
〈a∗, b∗〉 is a pair of morphisms a∗, b∗ with a common codomain codom(a∗) =
codom(b∗).

The following categorical notion will be used to formally define the semantics
of the considered programming language.

Definition 2.8 (pushout). Given a span of morphisms 〈a, b〉, a pushout,
is a cospan of morphisms 〈b∗, a∗〉 such that the diagram b∗ ◦ a = a∗ ◦ b
commutes and the universal property holds: For every other cospan of mor-
phisms 〈a∗∗, b∗∗〉 such that b∗∗ ◦ a = a∗∗ ◦ b, there exists a unique morphism
u: codom(a∗)→ codom(a∗∗) such that a∗∗ = u ◦ a∗ and b∗∗ = u ◦ b∗.

• •

• •

•

b

b∗

b∗∗

a a∗

a∗∗
=

u=

=

Sometimes, we refer to the whole diagram b∗ ◦ a = a∗ ◦ b as the pushout and
to the common codomain codom(a∗) = codom(b∗) as the pushout object.



12 2. Preliminaries

(PO)

Figure 2.2: A set-theoretic depiction of a pushout

Remark 2.9. In the category of sets and similar categories, the pushout
can be seen as a most general union, or alternatively, addition. Suppose a, b
are inclusions in the category of sets and codom(a) ∩ codom(b) = dom(a) =
dom(b). Then the pushout object is the union of codom(a) and codom(b).
For a span 〈a, b〉 of injective graph morphisms, the pushout is intuitively con-
structed by “gluing” the graphs codom(a) and codom(b) together according
to their common domain dom(a) = dom(b).

Example 2.10 (graph pushouts). Consider the following pushouts.

∅ ∅

∅ ∅

(PO)

∅
1

∅
1

(PO)

∅
2

1 1 2

(PO)

1 1

1 1

(PO)

1 1 2

1 1 2

(PO)

1 1 2

1 3 3 1 2

(PO)

1 2 1 2

1=2 1=2

(PO)

1 2 1 2 3

1=2 1=2 3

(PO)

Note that the indices represent the mappings, but not necessarily the iden-
tities of the elements. For instance, in the third pushout, whether user

1
of the bottom left corner and

2
of the upper right corner have the same

identity or not, the pushout object consists of two distinct users. Further-
more, the last two pushouts involve non-injective morphisms, and therefore
identify elements.

In the category Graphs, pushouts exist for every span 〈a, b〉 of morphisms
and can be effectively constructed. The following formal description of the
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pushout construction is taken from [HMP01, Ehr79].

Construction (graph pushouts). For a span of graph morphisms 〈a, b〉,
the pushout 〈b∗, a∗〉 is constructed as follows: Let codom(a∗) = D and con-
struct D, separately for nodes and edges, by constructing the disjoint union
codom(a) + codom(b) and fusing elements according to the smallest equiv-
alence relation ≈ with a(x)≈ b(x) for all x in dom(a). Let [x] denote the
equivalence class of x according to ≈, for x ∈ codom(a) + codom(b) Define:
sD([e]) = [scodom(a)(e)], if e ∈ Ecodom(a), otherwise sD([e]) = [scodom(b)(e)]. De-
fine tD analogously to sD. Define: lD([v]) = lcodom(a)(v) if v ∈ Vcodom(a), other-
wise lD([v]) = lcodom(b)(v). Define mD analogously to lD. Now a∗: codom(b)→
D and b∗: codom(a) → D are the graph morphisms that send each element
to its equivalence class, that is, a∗(x) = [x] for x ∈ codom(b) and b∗(x) = [x]
for x ∈ codom(a), separately for nodes and edges.

If a composition of morphisms a ◦ b is given, the question arises whether or
not it can be extended to a pushout.

Definition 2.11 (pushout complement). Given a composition of mor-
phisms a ◦ b, a pushout complement is a composition of morphisms b∗ ◦ a∗

such that a ◦ b = b∗ ◦ a∗ is a pushout.

• •

• •

b

a

b∗

a∗(PO)

Remark 2.12. In the category of sets and similar categories, the pushout
complement construction of a composition of monomorphisms a ◦ b corre-
sponds intuitively to the deletion of those elements in codom(a) that have a
preimage in dom(a) = codom(b), but not a preimage in dom(b). However,
in the category of graphs, the pushout complement cannot always be con-
structed: source and target nodes of preserved edges may not be deleted and
identified elements must be preserved. Otherwise, either the definition of
graph or pushout is violated. The existence of a pushout complement for a
composition of graph morphisms a◦b can be expressed as sufficient condition,
called “gluing condition” [CMR+97, Ehr79].

Example 2.13 (graph pushout complements). Consider the following
example pushout complements.
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∅ ∅

∅ ∅

(PO)

∅

∅

(PO)

2
∅

1 2 1

(PO) (PO) (PO)

(PO)

1 2 1 2

1=2 1=2

(PO)

1 2 3 1 2

1=2 3 1=2

(PO)

Example 2.14 (non-existing graph pushout complements).

1
∅

1

1
∅

1
∅

(PO)

1
∅

1 1

(PO)

1 2 1

1=2
∅

(PO)

1 2 1

1=2 1

(PO)

In the first square, the lower right object depicts a “dangling edge”, a situation
that would occur if the node

1
is deleted but the loop is preserved. For the

remaining examples, the squares do not constitute pushouts. There are no
objects for the lower right corner of these diagrams such that the result would
be a pushout.

Finally, let us review the notion of the pullback, which is the categorical
dual of the pushout. If the pushout is seen as a most general union, the
pullback corresponds to the intersection. For instance, if a, b are inclusions in
the category of sets, the pullback object would be {〈x, y〉 ∈ dom(a)×dom(b) |
a(x) = b(y)}. For details, we refer to [Ehr79, EEPT06].

Definition 2.15 (pullback). Given a cospan of morphisms 〈a, b〉, a pull-
back, is a span of morphisms 〈a∗, b∗〉 such that the diagram a ◦ b∗ = b ◦ a∗

commutes and the universal property holds: For every other cospan of mor-
phisms 〈a∗∗, b∗∗〉 such that a ◦ b∗∗ = b ◦ a∗∗, there exists a unique morphism
u: dom(a∗∗)→ dom(a∗) such that a∗∗ = a∗ ◦ u and b∗∗ = b∗ ◦ u.

• •

• •

•

b

a

b∗

b∗∗

a∗

a∗∗
=

u=

=
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Sometimes, we refer to the whole diagram a ◦ b∗ = b ◦ a∗ as the pullback and
to the common domain dom(a∗) = dom(b∗) as the pullback object.

2.2 Weak adhesive HLR categories

While graphs are a suitable structure for our research, our results should
not be limited to a particular definition of graphs. In fact, our goal is to
support similar structures such as Petri-nets and hypergraphs while avoiding
separate investigations. Therefore, we abstract from a specific structure and
use the framework of so-called weak adhesive high-level replacement (HLR)
categories. These are categories with additional properties with respect to a
selected class of monomorphisms. For details, we refer to [EEPT06, EHPP06,
LS04, EHKP91].

Definition 2.16 (weak adhesive HLR category). A category C with a
morphism class M ⊆ A is a weak adhesive HLR category, if the following
properties hold:

(1) M is a class of monomorphisms closed under isomorphisms, composi-
tion, and decomposition, that is, for morphisms g ◦f : (f ∈M, g ∈ Iso

or f ∈ Iso, g ∈ M) implies g ◦ f ∈ M; f, g ∈ M implies g ◦ f ∈ M;
and g ◦ f ∈M, g ∈M implies f ∈M.

(2) C has pushouts and pullbacks alongM-morphisms, that are, pushouts
and pullbacks where at least one of the given morphisms is inM, and
M-morphisms are closed under pushouts and pullbacks, that is, given a
pushout (1), m ∈M implies n ∈M and, given a pullback (1), n ∈ M
implies m ∈M.

•

•

•

•

m n(1)

(3) Pushouts in C alongM-morphisms are weak van Kampen-squares, that
is, for any commutative cube in C where we have the pushout in the
bottom with m ∈M and (f ∈M or b, c, d ∈M) and the back faces are
pullbacks, it holds: the top is pushout iff the front faces are pullbacks.

•

• •

•

f
c•

• •

•

b d
m
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The framework of weak adhesive HLR categories is suitable to represent
directed, labeled graphs.

Fact 2.17 (Ehrig et al. 2006c). The category 〈Graphs, Inj 〉 of graphs
with class Inj of all injective graph morphisms is a weak adhesive HLR cate-
gory. Further examples of weak adhesive HLR categories are the categories of
hypergraphs with all injective hypergraph morphisms, place-transition nets
with all injective net morphisms, and algebraic specifications with all strict
injective specification morphisms.

Weak adhesive HLR categories have a number of desired properties, called
HLR properties [EHKP91].

Fact 2.18 (HLR properties of weak adhesive HLR categories). Given
a weak adhesive HLR category 〈C,M〉, the following HLR conditions are
satisfied.

(1) Pushouts alongM-morphisms are pullbacks.

(2) Pushout-pullback decomposition. If the diagram (1)+(2) is a pushout,
(2) a pullback, w ∈ M and (l ∈ M or c ∈ M), then (1) and (2) are
pushouts and also pullbacks.

• • •

• • •

c

w

l (1) (2)

(3) Uniqueness of pushout complements for M-morphisms. Given mor-
phisms m ∈ M and a ∈ A, then there is up to isomorphism at most
one tuple 〈a∗, m∗〉 of morphisms such that diagram (3) is a pushout.

• •

• •

m

m∗

a∗ a(3)

Proof. See [LS04, EEPT06]. �

Besides the properties of weak adhesive HLR categories, we require additional
properties for some of our results, see Remark 2.20 below.

Assumption 2.19. Assume that 〈C,M〉 is a weak adhesive HLR category
with
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(1) an M-initial object I, that is, an object I ∈ C such that, for every
object G ∈ C, there exists a unique morphism iG: I →֒ G, called the
initial morphism to G, and iG is inM,

(2) epi-M-factorization, that is, for every morphism there is an epi-mono-
factorization with monomorphism in M and this decomposition is
unique up to isomorphism of the intermediate object, and

(3) pullback-pushout-M property, that is, for every pair of M-morphisms
B →֒ D ←֓ C, the unique morphism D′ → D of the pushout 〈B →֒ D′,
D′ ←֓ C〉 of the pullback 〈B ←֓ A →֒ C〉 of B →֒ D ←֓ C is inM.

B D

CA

D′

=

=
(PO)

As the weak adhesive HLR category framework does not consider finiteness
properties, we require additionally:

(4) a finite number of M-matches, that is, for every morphism l in M
and every object G, there exist only a finite number of morphisms
m: codom(l) →֒ G in M such that 〈l, m〉 has a pushout complement.
This property implies a finite number of M-morphisms, that is, for
every objects L, G, there exists only a finite number of morphisms
L →֒ G inM (up to isomorphism),

(5) a finite number of epimorphisms for any domain G, that is, for every
object G, there is only a finite number of epimorphisms e: G→ H (up
to isomorphism),

(6) a finite number ofM-decompositions, that is, the set of all decomposi-
tions a2◦a1 = a of a ∈M with a1, a2 inM is finite (up to isomorphism),
and

(7) a finite length of M-decompositions, that is, for every morphism m in
M, the length of every decomposition mn ◦ . . . ◦m1 = m consisting of
non-epimorphisms mj inM (1 ≤ j ≤ n) is finite.

Remark 2.20. The first two assumptions are essential for our results: We
assume the existence of an initial object in the definition of conditions, while
epi-M-factorization is used, for instance, in the proof of Lemma 5.4, therefore
concerns the soundness of the construction of weakest liberal preconditions
presented in Section 5.3. The pullback-pushout-M property is required in
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Section 6.2 to show the completeness of our satisfiability solver. The proper-
ties (4)-(6) ensure the effectiveness of the constructions in this thesis, while
the last property is again needed for the completeness of our satisfiability
solver, presented in Section 6.2.

Fact 2.21 (Properties of Graphs). The weak adhesive HLR category
〈Graphs, Inj 〉 with Inj the class of all injective graph morphisms satisfies
Assumption 2.19.

Proof. The empty graph ∅ is the Inj -initial object in 〈Graphs, Inj 〉. The
epi-Inj -factorization is the epi-mono-factorization [EEPT06, Fact A.15], and
the monomorphisms are exactly those morphisms that are injective [EEPT06,
Fact A.14 and Fact 2.15]. Moreover, every graph is finite, the number of
epimorphisms and matches is finite, and the number and length of injective
decompositions is finite. �

For the definition of programs with interface in Section 4.1, we require par-
tial monomorphisms. Given a weak adhesive HLR category 〈C,M〉, a partial
monomorphisms p = 〈a, b〉 can be seen as span ofM-morphisms 〈a, b〉 with-
out the need of further axioms. There is a composition of partial monomor-
phisms, based on pullback construction, that is associative and for which
identity morphisms are neutral elements. For details, we refer to Appendix A.
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3. Conditions

In this chapter we consider nested conditions for weak adhesive HLR cat-
egories, investigate two notions of satisfiability for conditions, namely M-
and A-satisfiability, and classify the expressiveness of nested graph condi-
tions by showing that nested graph conditions and first-order graph formulas
are expressively equivalent.

3.1 Nested conditions

In search for a graphical formalism to specify sets of objects as well as mor-
phisms, we use the framework of weak adhesive HLR categories and consider
nested conditions for high-level structures such as Petri nets, (hyper)graphs,
and algebraic specifications. Syntactically, nested conditions may be seen
as a tree of morphisms equipped with certain logical symbols such as first-
order quantifiers and connectives. An overview on the different symbols of a
condition is given in Table 3.1.

condition over P is satisfied by a morphism with domain P , if . . .
true always
false never
∃a there exists a commutative M-morphism
∃(a, c) there exists a commutative M-morphism satisfying c
∀(a, c) for all commutative M-morphisms, c is satisfied
∧j∈J cj all subconditions are satisfied
∨j∈J cj some subcondition is satisfied
c ⊻ d exclusively c or d is satisfied
c⇒ d satisfaction of c implies satisfaction of d

Table 3.1: Conditions and their meaning
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Definition 3.1 (conditions). A (nested) condition over an object P is of
the form true or ∃(a, c), where a: P → C is a morphism and c is a condition
over C. Moreover, Boolean formulas over conditions over P yield conditions
over P , that is, ¬c and ∧j∈J cj are conditions over P , where J is an index set
and c, (cj)j∈J are conditions over P . Additionally, ∃a abbreviates ∃(a, true),
∀(a, c) abbreviates ¬∃(a,¬c), false abbreviates ¬true, ∨j∈J cj abbreviates
¬∧j∈J ¬cj , c⊻d abbreviates (c∧¬d)∨ (¬c∧d) and c⇒ d abbreviates ¬c∨d.
A condition is finite if the index sets J of all subconditions of the form ∨j∈J cj

and ∧j∈J cj are finite. Let Cond be the set of all conditions.
A condition true is satisfied by all morphisms and objects. A morphism p

satisfies a condition ∃(a, c), if there exists a morphism q in M such that
q ◦ a = p and q satisfies c.

P

G

C
a

p q
=

, c

|=

)∃(

A morphism p satisfies a condition ¬c over C, if p does not satisfy c. A mor-
phism p satisfies a condition ∧j∈J cj over C, if p satisfies cj for each j ∈ J .
An object G satisfies a condition ∃(a, c), if the condition is over the initial
object I and the initial morphism iG: I →֒ G satisfies the condition. The
satisfaction of conditions by objects is extended onto Boolean formulas over
conditions in the usual way. We write G |= c to denote that the object G
satisfies c and write p |= c to denote morphism p satisfies c. For two condi-
tions c, d over C, d is a deduction or logical implication of c, written c ⇛ d,
if for all morphisms p in M with domain C, p |= c implies p |= d. Two
conditions c and c′ over C are equivalent, denoted by c ≡ c′, if, for all mor-
phisms p with domain C, p |= c iff p |= c′. Two conditions c and c′ over C are
M-equivalent, denoted by c ≡M c′, if, for all M-morphisms p with domain
C, p |= c iff p |= c′. For a condition c over C, we write dom(c) to denote its
domain C.

Example 3.2. For graph morphisms with domain
1
, the graph condition

c = ∃(
1
→֒

1
)∨∃(

1
→֒

1
) has the meaning “The image of the node

has a proper outgoing or incoming edge”. For graphs, one may consider the
universal closure ∀(∅ →֒

1
, c) with the meaning “All nodes have an outgoing

or incoming proper edge”.

In the context of objects, conditions (over the initial object I) are also called
constraints.
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Notation. For every morphism a: P → C in a condition, we just depict
the codomain C, if the domain P can be unambiguously inferred. This is
the case for constraints, which are by definition conditions over I. For in-
stance, the constraint ∀(∅ →֒

1
, ∃(

1
→֒

1 2
)) with the meaning “Every

node has an outgoing edge to another distinct node” can be represented
by ∀(

1
, ∃(

1 2
)). Note that many of the automatically generated pre-

sentations of conditions are in conjunctive normal form (which will be of
importance in Section 6.3) and therefore may contain the connectives

∨
or∨

over singletons, for instance
∨
∀(

1
,
∨
∃(

1 2
)).

Example 3.3 (access control conditions). Consider the access control
graphs introduced in Example 2.4. Conditions allow to formulate statements
on the graphs of the access control and can be combined to form more com-
plex statements. The following conditions are over the empty graph:
∃( ) A user is logged into a system.

∃( ) A user has an access right to the sys-
tem.

∃( ) There is a user logged into a system
with an access right.

∃( ) A session is proposed

∃( ) A session is established

∀( , ∃( ) ⊻ ∃( )) Every session is either proposed or
established

¬∃( ) No session is shared between two
users

∀( , ∃( )) Every session is associated to a user

∀( , ∃( ) ∧ ¬∃( )) Every session is associated to exactly
one user

¬∃( ) There exist at most one access right
for every user and every computer.

∀( , ∃( )) Every user that is logged into a sys-
tem, has an access right.

In our examples, we will focus on the last condition, which we will call secure.

Remark 3.4 (history of conditions). Conditions for graph morphisms
of the form ¬∃a were first introduced in [HHT96] as negative application
conditions in the context of graph transformation rules. Shortly thereafter,
conditions for graphs of the form ∀(I →֒ P, ∃(P → C)) were introduced as
graph consistency constraints in [HW95]. The concepts of graph constraints
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and application conditions of [HW95] were lifted to weak adhesive HLR cat-
egories in [EEHP06, EEHP04], and, unified and generalized to nested con-
ditions in [Ren04a] for edge-labeled graphs (without parallel edges) and in
[Pen04, HP05] for weak adhesive HLR categories.

Since [HP09], we have a common notion of equivalence for morphisms and
objects. We use the following fact in Section 6.2 by defining transformations
for conditions that hold with respect to objects as well as morphisms.

Fact 3.5 (equivalence). For conditions c, c′ over the initial object I,

c ≡ c′ iff c ≡M c′

c ≡M c′ iff (for all objects G, G |= c ⇔ G |= c′).

Proof. First statement.
Only if. Assume c ≡ c′. For all morphisms p with domain I, p |= c⇔ p |= c′.
As every M-morphism is a morphism, we have for allM-morphisms p with
domain I, p |= c⇔ p |= c′. Therefore, c ≡M c′.
If. Assume c ≡M c′. For allM-morphisms p with domain I, p |= c⇔ p |= c′.
As every morphism with domain I is inM, we have for all morphisms p with
domain I, p |= c⇔ p |= c′. Therefore, c ≡ c′.
Second statement.
Only if. Assume, c ≡M c′. For all morphisms p with domain I, p |= c ⇔
p |= c′. In particular, this means for objects G, iG |= c ⇔ iG |= c′ where iG
is the initial M-morphisms to G. By Definition 3.1, we conclude for every
object G, G |= c⇔ G |= c′.
If. Conversely, if for every object G, G |= c⇔ G |= c′, then iG |= c⇔ iG |= c′

where iG is the initial M-morphism to G. Let p: I →֒ G be any morphism.
By the M-initiality of I, we know that p = iG in M, therefore we conclude
for allM-morphisms p with domain I, p |= c⇔ p |= c′ and c ≡M c′. �

Conditions are allowed to consist of morphisms not in M. In context of
arbitrary morphisms, such conditions may be useful to specify the identifi-
cation or non-identification of elements. However, for conditions over I, the
use of morphisms not in M does not increase the expressiveness. For cer-
tain constructions such as SeekSat in Section 6.2, we assume conditions to
be in M-normal form, that is, if for all subconditions ∃(a, c) the morphism
a is in M. We show that every condition over I can be transformed into
M-normal form.

Definition 3.6 (M-normal form). A condition is in M-normal form
(MNF), if for all subconditions of the form ∃(a, c), the morphism a is inM.
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Fact 3.7 (M-normal form). For every condition c over I, there is a
conditionMNF(c) inM-normal form such that c ≡MNF(c).

Construction. Define MNF(true) = true and

MNF(∃(a, c′)) =

{
false if a 6∈ M
∃(a, MNF(c′)) otherwise.

For Boolean formulas over conditions, the transformation is extended in
the usual way, that is, MNF(¬c′) = ¬MNF(c′) and MNF(∧j∈J cj) =
∧j∈J MNF(cj).

Proof. Obviously, for every condition c,MNF(c) is inM-normal form. By
induction over the structure of conditions, we show for every p ∈ M, p |= c
iff p |=MNF(c).
Basis. For c = true, we have c = true =MNF(true) =MNF(c).
Hypothesis. Assume, for every p ∈M, p |= c′ iff p |=MNF(c′) and p |= cj

iff p |=MNF(cj) for every j ∈ J .
Step. Let c = ∃(a, c′). If a ∈ M, then we have, for every p ∈ M,
p |= MNF(c) = MNF(∃(a, c′)) = ∃(a, MNF(c′)) iff p |= ∃(a, c′) = c by
the definition ofMNF and the induction hypothesis. Otherwise a 6∈ M, and
MNF(∃(a, c′)) = false. We show, for every p ∈M, p |= ∃(a, c′) iff p |= false.
Only if. Assume morphism p in M satisfies ∃(a, c′). Then there is a mor-
phism q in M with p = q ◦ a. However, p, q in M and M closed under
decomposition implies a ∈M, contradiction.
If. No morphism satisfies false, therefore for every morphism p, p |= false
implies p |= ∃(a, c′). For Boolean formulas over conditions, the statement fol-
lows directly from the definitions and the inductive hypothesis. For c = ¬c′,
we have, for every p ∈ M, p |= MNF(c) = MNF(¬c′) = ¬MNF(c′) iff
p |= ¬c′ = c. For c = ∧j∈J cj, we have, for every p ∈ M, p |= MNF(c) =
MNF(∧j∈J cj) = ∧j∈J MNF(cj) iff p |= ∧j∈J cj = c. �

3.2 Comparison of M- and A-satisfiability

In this section, we investigate the different satisfiability notions for condi-
tions. As it turns out in Section 3.3, the transformations Msat and Asat
are an important step in the conversion of graph conditions into first-order
graph formulas and vice versa. However, we require this conversion mainly
to evaluate our algorithms on condition, therefore we suggest to skip this and
the next section at first and to read it when needed.
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Remark 3.8 (M-satisfiability). The satisfaction of a condition is
established by the presence and absence of certain morphisms from the ob-
jects within the condition to the tested object. The presented satisfiability
notion restricts these morphisms to the class M: for Graphs, no identifi-
cation of nodes and edges is allowed. Hence, explicit counting such as the
existence/non-existence of n nodes or n edges is easily expressible. We speak
ofM-satisfiability andM-satisfiable conditions.

Beside M-satisfiability one may consider A-satisfiability and A-satisfiable
conditions, where A denotes the class of all morphisms. The definition of
A-satisfiability is obtained from the one of M-satisfiability by replacing all
occurrences ofM by A or by deleting all occurrences of “inM”, respectively.

Definition 3.9 (A-satisfiability). Every object and morphism A-satisfies
true. An object G A-satisfies a condition ∃(a, c), if the condition is over the
initial object I and the initial morphism iG: I →֒ G A-satisfies the condition.
A morphism p A-satisfies a condition ∃(a, c), if there exists a morphism q
such that q ◦ a = p and q A-satisfies c. The A-satisfaction of conditions by
objects and morphisms is extended onto Boolean formulas over conditions in
the usual way. We write G |=A c resp. p |=A c to denote that the object G
resp. the morphism p A-satisfies c. Two conditions c and c′ are A-equivalent,
denoted by c ≡A c′, if, for all morphisms p, p |=A c iff p |=A c′.

Remark 3.10 (A-satisfiability). A-satisfiability allows nodes or edges
of a condition to be identified and is closely related to the satisfiability of
first-order formulas as indicated in Section 3.3 for the case of directed, la-
beled graphs. We will see that, under reasonable assumptions, A- and M-
satisfiability are expressively equivalent. Unless explicitly stated, theorems
concern M-satisfiable conditions.

Example 3.11 (A-satisfiability). The meaning of the graph condition
∃(

1
→֒

1
) for graph morphisms with domain

1
with respect to A-

satisfiability is: “There exists an outgoing edge, that is, either a proper edge
or a loop”.

In the following we prove thatA-satisfiability andM-satisfiability are expres-
sively equivalent. First, there is a transformation from A- toM-satisfiability.
In case pushouts for arbitrary pairs of morphisms exist, e.g. for the category
Graphs [EEPT06, Fact A.19], this transformation of conditions has some
similarities to the transformation A in Section 5.2. In the case that the
existence of pushouts cannot be guaranteed, one can resort to a modified
transformation which requires anM-initial object and makes use of the ex-
istence of pushouts alongM-morphisms.
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Theorem 3.12 (from A- to M-satisfiability). Let 〈C,M〉 be a weak ad-
hesive HLR category with M-initial object and epi-M-factorization. There
is a transformation Msat such that, for every condition c and for every mor-
phism p, p |= Msat(c)⇔ p |=A c, and for every condition c over I and for
every object G, G |= Msat(c)⇔G |=A c.

A-satisfiable conditions allow elements to be identified. The idea of the
following construction is to consider a disjunction ofM-satisfiable conditions,
one for each possible level of identification. The construction of Msat(c) with
single parameter of type condition is defined by the auxiliary transformation
Msat(e, c) where the first parameter is of type epimorphism and the second
parameter is of type condition.

Construction. For a condition c over P , Msat(c) = ∨e∈E′ ∃(e, Msat(e, c))
where the set E ′ ranges over all epimorphisms with domain P . For ev-
ery epimorphism e, the transformation Msat(e, c) is defined inductively by
Msat(e, true) = true and

Msat(e, ∃(a, c′)) = ∨d∈E ∃(b, Msat(f, c′))

where, in the case that 〈C,M〉 has pushouts, (1) is the pushout of the mor-
phisms a and e leading to morphisms a′: P ′ → C ′ and e′: C → C ′ and the set
E ranges over all epimorphisms d with domain C ′ such that b = d ◦ a′ is in
M and f = d ◦ e′.

In the case that 〈C,M〉 has pushouts only alongM-morphisms, construct
the pushout (2) of the initialM-morphisms iC : I →֒ C and iP ′: I →֒ P ′ leading
to morphisms a′: P ′ → C ′ and e′: C → C ′ and the set E ranges over all
epimorphisms d with domain C ′ such that b = d ◦ a′ is inM, f = d ◦ e′ and
b ◦ e = f ◦ a.

P ′

C ′

P

C

D

e

a

e′

a′

d
f

b

(1)

P ′

C ′

I

P

C

D

iP ′

iC

e

a

e′

a′

d
f

b

(2)

For Boolean formulas over conditions, Msat(_) and Msat(_, _) are extended
in the usual way.

Example 3.13. The meaning of condition c = ∃(
1 2
→֒

1 2
) for graph

morphisms w.r.t. A-satisfiability is “There exists an edge from the image of
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node 1 to the image of node 2”. Msat(c) is constructed as follows:

Msat(c) = ∨e∈E ∃(e, Msat(e, c)) = ∃(id, Msat(id, c)) ∨ ∃(f, Msat(f, c))

= ∃(id, ∃(
1 2
→֒

1 2
)) ∨ ∃(f, ∃(

1
→֒

1
))

≡ ∃(
1 2
→֒

1 2
) ∨ ∃(

1 2
→

1 = 2
)

where f :
1 2
→

1 = 2
. The meaning of Msat(c) in case ofM-satisfiability is

“There is a proper edge from the image of node 1 to a distinct image of node
2 or both images are identical and there is a loop”.

Remark 3.14. The definition of a weak adhesive HLR category 〈C,M〉
requires the existence of pushouts along M-morphisms, but does not guar-
antee the existence of pushouts for arbitrary morphisms. In the construction
of Theorem 3.12, both e and a may not be M-morphisms. Especially, one
may not assume that a is inM (i.e. part of a condition inM-normal form),
because in the context of A-satisfiability, the requirement to use only M-
morphisms would restrict the expressiveness of conditions. For instance,
a property like “Two nodes are distinct” can only be expressed by an A-
satisfiable condition by using a morphisms not in M, e.g. ¬∃( 1

→
2 1=2). We

include the more general construction for the sake of a more general result,
but prefer to use the simpler and more efficient construction for the category
Graphs.

Before we prove Theorem 3.12, we prove a property for the auxiliary trans-
formation Msat(e, c).

Lemma 3.15 (Msat(e, c)). Let 〈C,M〉 be a weak adhesive HLR category
with M-initial object and epi-M-factorization. For every condition c over
P , every epimorphism e: P → P ′, and every morphism p′: P ′ →֒ G in M,
p′ |= Msat(e, c)⇔ p′ ◦ e |=A c.

P ′

G

P
e

p′ p
=

cMsat(e, c)

|=A=|

Proof. By structural induction.
Basis. For c = true, we have c = true = Msat(e, true) = Msat(e, c).
Hypothesis. Assume the statement holds for condition c′.
Step. For c = ∃(a, c′), we distinguish two cases:

Case 1. 〈C,M〉 has pushouts of arbitrary morphisms. Only if. Let
p′ |= Msat(e, ∃(a, c′)) = ∨d∈E ∃(b, Msat(f, c′)). There is some epimorphism
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d: C ′ → D with b = d◦a′ inM and f = d◦e′ such that p′ |= ∃(b, Msat(f, c′)).
By definition of M-satisfiability, there is some q′: D →֒ G in M such that
q′◦b = p′ and q′ |= Msat(f, c′). Define now q = q′◦f . Together with q′◦b = p′,
b = d ◦ a′, a′ ◦ e = e′ ◦ a, f = d ◦ e′, we observe q ◦ a = p (p |= ∃a). By
inductive hypothesis, q |=A c′, therefore p |=A ∃(a, c′). If. Let p |=A ∃(a, c′).
By definition of A-satisfiability, there is some q: C → G such that q ◦ a = p
and q |=A c′. Let (1) be the pushout of a: P → C and e: P → P ′. By the
universal property of pushouts, there is some g: C ′→ G with g ◦ a′ = p′ and
g ◦ e′ = q. Let g = q′ ◦ d be an epi-M-factorization of g with epimorphism d
and monomorphism q′ in M, b = d ◦ a′, and f = d ◦ e′. Since p′ and q′ are
in M, q′ ◦ b = p′, and M is closed under decomposition, the morphism b is
in M and d is in E. As p′ = g ◦ a′, g = q′ ◦ d and b = d ◦ a′, we observe
p′ = q′ ◦ b (p′ |= ∃b). By inductive hypothesis, q′ |= Msat(f, c′), therefore
p′ |= ∨d∈E ∃(b, Msat(f, c′)) = Msat(e, ∃(a, c′)).

Case 2. 〈C,M〉 has only pushouts along M-morphisms. Only if. As
above, by using the morphism f : C → D and the inductive hypothesis. If.
Let p |=A ∃(a, c′). By definition of A-satisfiability, there is some q: C → G
such that q ◦ a = p and q |=A c′. Since 〈C,M〉 has pushouts along M-
morphisms, we can construct the pushout (2) of theM-morphisms iC : I →֒ C
and iP ′ : I →֒ P ′ leading to morphisms a′: P ′ → C ′ and e′: C → C ′. By the
universal property of pushouts, there is some g: C ′→ G with g ◦ a′ = p′ and
g ◦ e′ = q. Let g = q′ ◦ d be an epi-M-factorization of g with epimorphism
d and monomorphism q′ in M, b = d ◦ a′, and f = d ◦ e′. Since p′ and q′

are in M, q′ ◦ b = p′, and M is closed under decomposition, the morphism
b is in M and d is in E. It turns out that q′ ◦ b ◦ e = q′ ◦ f ◦ a and, by the
monomorphism property of q′, b ◦ e = f ◦ a. As b is inM and f ◦ a = b ◦ e,
the tuple 〈D, b, f〉 belongs to the construction. As p′ = g ◦ a′, g = q′ ◦ d and
b = d ◦ a′, we observe p′ = q′ ◦ b (p′ |= ∨d∈E ∃b). By inductive hypothesis,
q′ |= Msat(f, c′), therefore p′ |= ∨d∈E ∃(b, Msat(f, c′)) = Msat(e, ∃(a, c′)).
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For Boolean formulas over conditions, the statement follows from the defi-
nitions and the inductive hypothesis. Consequently, the statement holds for
all conditions. �

Theorem 3.12 follows directly from Lemma 3.15.

Proof of Theorem 3.12. Let p: P → G be a morphism and p = p′ ◦ e an
epi-M-factorization of p with epimorphism e and monomorphism p′ in M.
By Lemma 3.15, the definitions ofM-satisfiability (|=) and Msat(c), and the
uniqueness of epi-M-factorizations up to isomorphism, we have: p |=A c ⇔
p′ |= Msat(e, c) ⇔ p |= ∃(e, Msat(e, c)) ⇔ p |= ∨e∈E′ ∃(e, Msat(e, c)) =
Msat(c). Fact 3.5 lifts the result to objects and conditions over I. �

If M is strictly closed under decomposition, that is, g ◦ f ∈ M implies
f ∈ M, there is also a transformation from M- to A-satisfiability. As the
class Mon of all monomorphisms of a category is always strictly closed under
decomposition, a weak adhesive HLR category 〈C,M〉 inherits this property,
if M coincides with Mon , as in the case of Graphs.

Theorem 3.16 (from M- to A-satisfiability). Let 〈C,M〉 be a weak
adhesive HLR category with epi-M-factorization andM strictly closed under
decomposition. There is a transformation Asat on conditions such that, for
every condition c and for every morphism p, p |=A Asat(c)⇔ p |= c, and for
every condition c over I and for every object G, G |=A Asat(c)⇔G |= c.

A-satisfiable conditions allow elements to be identified. The idea of the
construction is to prevent identification by expressing the property “the mor-
phism is inM” by subconditions.

Construction. For a morphism a: P → C and a condition c over C,
Asat(true) = true and Asat(∃(a, c′)) = ∃(a, inMC ∧Asat(c′)) where inMC =
∧e∈E ¬∃e is a condition over C, the conjunction ranges over all epimorphisms
e: C → C ′ not inM. For Boolean formulas over conditions, the transforma-
tion is extended in the usual way.

Example 3.17. The condition c = ∃(
1 2

→֒
1 2

) meaning for graph
morphisms w.r.t. M-satisfiability “There exists a proper edge from the image
of 1 to the distinct image of 2” is transformed into the condition Asat(c) =
∃(

1 2
→֒

1 2
, ¬∃(

1 2
→

1=2
)) meaning w.r.t. A-satisfiability “There

exists an edge from the image of 1 to the image of 2 and the images are
distinct”.
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Example 3.18 (access control condition). Consider the access control
condition

secure = ∀

(

1 2 3

, ∃
1 2 3

)
.

Due to the fact that every node has a distinct label, no inequations are
generated, that is, inM(I →֒

1 2 3
) = true and inM(

1 2 3
→֒

1 2 3
) = true. In this case, Asat(secure) = secure.

Proof of Theorem 3.16. First, we prove that for every morphism q: C →
G, q |=A inMC iff q is in M. Proof by contraposition. Only if. Assume
q |=A inMC , but q not in M. Consider an epi-M-factorization q = q′ ◦ e of
q with epimorphism e and monomorphism q′ in M. Then e is not in M,
q |=A ∃e and q 6|=A inMC . Otherwise, by closure of M under compositions,
e and q′ in M would imply q in M, contradiction. If. Assume q 6|=A inMC

and q in M. Then q |=A ∃e for some epimorphism e: C → C ′ not in M.
Then there is some q′: C ′ → G such that q′ ◦ e = q. Then q is not in M.
Otherwise, by the strict closure of M under decomposition, q in M would
imply e inM, contradiction.

G

C C ′e

q q′=
)∃(

The statement for Asat is shown by structural induction:
Basis. For c = true, we have c = true = Asat(true) = Asat(c).
Hypothesis. Assume the statement holds for condition c′.
Step. For c = ∃(a, c′), we have the following. If. Let p |= ∃(a, c′). Then
there is a morphism q: C →֒ G inM such that q ◦ a = p and q |= c′. By the
inductive hypothesis and the application condition inMC being equivalent to
“morphism is in M”, q |=A inMC and q |=A Asat(c′). Consequently, p |=A

∃(a, inMC ∧ Asat(c′)) = Asat(∃(a, c′)). Only if. Let p |=A Asat(∃(a, c′)) =
∃(a, inMC ∧ Asat(c′)). Then there is some q: C → G such that q ◦ a = p,
q |=A inMC , and q |=A Asat(c′). The property of inMC yields q ∈ M, and
by the inductive hypothesis, q |= c′. Together, p |= ∃(a, c′). For Boolean
formulas over conditions, the statement follows from the definitions and the
inductive hypothesis. This completes the inductive proof. Fact 3.5 lifts the
result to objects and conditions over I. �

Fact 3.19. The construction above inserts the requirement “in M” behind
every morphism of the condition. However, it suffices to express that newly
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introduced elements are distinct. An optimized transformation Asat can be
defined as follows:

Asat(true) = Asat′(true) = true
Asat(∃(a, c′)) = ∃(a, inMC ∧ Asat′(c′))
Asat′(∃(a, c′)) = ∃(a, inMa ∧ Asat′(c′))

where inMa = ∧e∈E′ ¬∃e is a condition over C and E ′ is constructed as
follows: Let E be set of all epimorphisms e: C → C ′ not inM such that e◦a
in M. The set E ′ consists of all epimorphisms e ∈ E such that there is no
(non-isomorphic) decomposition of e into epimorphisms e′′ ◦ e′ = e such that
e′ ∈ E and e′′ not in M. For all morphisms p in M and q with p = q ◦ a,
q |=A inMa iff q in M. Note that for the initial M-morphism iC : I →֒ C,
inMiC = inMC .

Proof. We show for all morphisms p inM and q with p = q ◦ a, q |=A inMa

iff q inM. By contraposition. Let p be inM and p = q ◦ a.

P

G

C C ′a e
e ◦ a

p
q

q′
= =

Only if. Assume q |=A inMa, but q not in M. As in the proof of Theo-
rem 3.16, consider an epi-M-factorization q = q′ ◦ e of q with epimorphism e
and monomorphism q′ in M. Then e is not inM. Otherwise, by closure of
M under compositions, e and q′ inM would imply q inM. Moreover, e ◦ a
in M. Otherwise, by q′ in M and the closure of M under decompositions,
e ◦ a not inM would imply p not inM. Now e is an epimorphism not inM
and e ◦ a inM, therefore e ∈ E. If there is now a decomposition e′′ ◦ e′ of e
with e′ ∈ E and e′′ not inM, let e = e′ from now and repeat this argument.
If there is no such decomposition, we have e ∈ E ′, and we conclude q |=A ∃e
and q 6|=A inMa, contradiction. If. Assume q 6|=A inMa and q in M. As in
the proof of Theorem 3.16, q 6|=A inMa implies q not inM, contradiction. �

By Theorems 3.12 and 3.16, we obtain the following corollary.

Corollary 3.20 (equivalence). For weak adhesive HLR categories with
M-initial object, epi-M-factorization, and M strictly closed under decom-
position, A-satisfiability andM-satisfiability are expressively equivalent.

conditions
A-satisfiability

Msat

Asat

conditions
M-satisfiability
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3.3 Comparison of graph conditions and graph

formulas

We are interested in classifying nested conditions, that is, we want to clas-
sify the kind of graph properties that can be expressed by graph conditions,
and we want to know if it is decidable whether or not a graph condition is
satisfiable at all (satisfiability problem), or whether or not a graph condi-
tion is always valid (tautology problem). To this effect, we compare graph
conditions and first-order formulas on graphs [Cou90, Cou97] and prove that
the concepts are expressively equivalent. Similar to [Ren04a], we show that
there are transformations from A-satisfiable graph conditions into equivalent
graph formulas and vice versa. However, we consider graphs with parallel
edges, that is, multiple, distinguishable edges which may have the same label.
Together with the transformations betweenM- and A-satisfiability, we yield
the wanted result. As an additional result, the transformations enable the
use of existing first-order proof tools to tackle the tautology and satisfiability
problem of graph conditions.

For simplicity, we consider graphs with a common labeling function for
nodes and edges, while maintaining the disjointness of the node and edge
alphabet, that is a single labeling function lG: VG+EG → CV∪CE with
lG(VG)⊆CV and lG(EG)⊆CE, where + denotes the disjoint union. Note
that all considerations can be done for graphs with separate labeling func-
tions as well.

The definition of first-order graph formulas is similar to [Cou90, Cou97]:
We allow quantification over nodes and edges, consider a tertiary incidence
relation and introduce a unary predicate for each label. For a fixed, finite
label alphabet C = 〈CV, CE〉 with CV ∩CE = ∅, the induced signature Σ =
(∅, {labb | b ∈ C}∪{inc, =}) contains a unary predicate symbol labb for every
label b, a tertiary predicate symbol inc and a binary predicate symbol =.

Definition 3.21 (first-order graph formulas). Let Var be an infinite,
countable set of variables. The set of all (first-order graph) formulas over
Σ is inductively defined: For b ∈ C and x, y, z ∈ Var, labb(x), inc(x, y, z)
and x = y are formulas over Σ. For formulas F , Fj (j ∈ J) over Σ and
x ∈ Var, true, ¬F , ∧j∈J Fj , and ∃x F are formulas over Σ. Additionally,
false abbreviates ¬true, ∨j∈J Fj abbreviates ¬∧j∈J ¬Fj , F ⇒ G abbreviates
¬F ∨ G, ∀x F abbreviates ¬∃x ¬F , edge(x) abbreviates ∃y ∃z inc(x, y, z),
and node(x) abbreviates ¬edge(x). For a formula F , Free(F ) denotes the set
of all free variables of F . A formula is closed, if Free(F ) = ∅, that is, if F
does not contain free variables.
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The semantics of graph formulas are given in terms of a domain of values
and an interpretation of the (non-logical) symbols of Σ.

Definition 3.22 (semantics of graph formulas). For a non-empty graph
G, let (DG, IG) be the induced Σ-structure consisting of a non-empty domain
DG = VG + EG and the interpretation IG of the predicate symbols with
IG(labb)(d) = true iff lG(d) = b, IG(inc)(e, u, v) = true iff e ∈ EG, sG(e) = u
and tG(e) = v, and IG(=)(d, d′) = true iff d = d′. The semantics GJF K(σ)
of a formula F over Σ in the graph G under the assignment σ: Var→ DG is
inductively defined by:

GJp(x1, . . . , xn)K(σ) = IG(p)(σ(x1), . . . , σ(xn)) for an n-ary predicate p.

GJ∃x F K(σ) = true iff there exists d ∈ DG such that GJF K(σ{x/d}) = true,
where σ{x/d} is the modified assignment with σ{x/d}(x) = d and
σ{x/d}(y) = σ(y) otherwise.

The semantics is extended to the operators true,¬ and ∧ in the usual way.

A graph G satisfies a formula F , denoted by G |= F , iff for all assignments
σ: Var→ DG, GJF K(σ) = true.

Example 3.23. The first-order graph formula

F = node(u) ∧ lab0(u)⇒ ∃v∃e node(v) ∧ lab1(v) ∧ inc(e, u, v) ∧ laba(e)

has the meaning “For all nodes with label 0, there exists an edge with label
a from this node to a node with label 1”.

For automated theorem proving, one requires an exact axiomatization of the
above structures to restrict considerations to directed, totally labeled graphs.
We use the axiomatization of [Cou97] for unlabeled graphs and extend it to
labeled graphs.

Fact 3.24 (axiomatization). For an alphabet C = 〈CV, CE〉 with
CV ∩CE = ∅, the class of structures (DG, IG) over Σ are exactly those which
satisfy the following properties:

(1) (Target and source) nodes cannot be edges:
∀e ∀x ∀y (inc(e, x, y)⇒ ¬∃u ∃v (inc(x, u, v) ∨ inc(y, u, v)))

(2) An edge has at most one source and one target:
∀e ∀x ∀y ∀x′ ∀y′ ((inc(e, x, y) ∧ inc(e, x′, y′))⇒ (x =x′ ∧ y = y′))
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(3) An element has at most one label:
∀x ∧b,d∈CV,b6=d ¬(labb(x)∧ labd(x)) ∧ ∧b,d∈CE,b6=d ¬(labb(x)∧ labd(x))

(4) Every node has a node label, every edge has an edge label:
∀x node(x)⇔ ∨b∈CV

labb(x) and ∀x edge(x)⇔ ∨b∈CE
labb(x)

Every other statement is implicit, such as “An edge has source and target
nodes” (otherwise it is not an edge).

There is a transformation from first-order graph formulas into graph condi-
tions.

Theorem 3.25 (from formulas to conditions). There is a transforma-
tion Cond from first-order graph formulas to graph conditions, such that, for
all first-order formulas F over Σ and all graphs G,

G |= F if and only if G |=A Cond(F ).

Before we present a construction of Cond, let us make some preliminary con-
siderations. We consider formulas on directed, labeled graphs with multiple
parallel edges. Hence edges are handled as individuals. If F is a rectified for-
mula, that is, distinct quantifiers bind occurrences of distinct variables, the
variables of F can be represented by isolated nodes and edges in the graphs of
a constructed condition. Let X be such a graph. Let DX = VX + EX be the
domain and D′

X ⊆ VX + EX be the set of all isolated nodes and all edges in
X. If D′

X is a subset of the set Var of variables, then every graph morphism
m: X → G into a non-empty graph G induces an assignment σ: Var → DG

such that m = σ[D′
X ], that is, m(x) = σ(x) for each x ∈ D′

X . Vice versa, an
assignment σ: Var→ DG induces a mapping D′

X → DG that may be extended
to a graph morphism m: X → G with m = σ[D′

X ].

XDXD′
X

Var

Free(F )

DG G

⊆

m
σ

⊆

⊇
=

The main problem of translating a formula into a condition is quantifiers.
The flexibility of formulas allows to separate quantifiers and predicates. For
instance, it is possible to express “There is an element” and leaving open
whether that element is a node or an edge and how it is labeled. In contrast,
the rigid structure of conditions does not allow to separate quantifiers and
statements. Due to the fact that we consider total, totally labeled graphs, we



34 3. Conditions

either have to depict a labeled node or a labeled edge (together with labeled
source and target nodes).

The key idea of the transformation Cond is to represent existential quan-
tification in a formula by disjunction over all possible choices, that is, nodes
or edges with all their possible labels. Some of these branches may later
become unsatisfiable, depending on occurring lab predicates.

Construction. Assume that F is a closed and rectified formula over Σ.
Otherwise, consider the universal closure of F and rename the variables.
The graph condition is given by Cond(F ) = Cond(∅, F ), where ∅ denotes the
empty graph. For a formula F over Σ and a graph X with Free(F ) ⊆ D′

X ⊆
Var, the graph condition Cond(X, F ) is constructed as follows:

Cond(X, labb(x)) = true if lX(x) = b; false otherwise.

Cond(X, inc(x, y, z)) = ∃(X → X[sX(x) = y][tX(x) = z]) if x ∈ EX , y, z ∈
VX , lX(sX(x)) = lX(y) and lX(tX(x)) = lX(z); false otherwise.
A graph X[x=y] is obtained from X by identifying the elements x
and y.

Cond(X, x = y) = ∃(X → X[x = y]) iff x and y are identifiable, that is,
(x, y ∈ VX or x, y ∈ EX , sX(x) = sX(y), tX(x) = tX(y)) and lX(x) =
lX(y); false otherwise.

Cond(X, ∃x F ) =
∨b∈CV

∃(X →֒ Y, Cond(Y, F )) ∨ ∨b∈CE,d,d′∈CV
∃(X →֒ Z, Cond(Z, F ))

where Y = X+
x

b is obtained from X by adding a node x with label b
and Z = X+ d

b
x d′ by adding an edge x with label b together with a

d-labeled source and a d′-labeled target.

Cond(X, F ) is extended to Boolean formulas with the operators true, ¬, ∧
as usual.

Example 3.26. Let CV = {0, 1} and CE = {a, b}. The first-order graph
formula F = ∃x laba(x) with the meaning “There exists an item with label
a” is transformed into the graph condition

Cond(∃x laba(x)) = Cond(∅, ∃x laba(x))

= ∨m∈CV
∃(∅ →֒

x
m , Cond(

x
m , laba(x)))

∨ ∨k,n∈CV,m∈CE
∃(∅ →֒ k

m
x n , Cond( k

m
x n , laba(x)))

= ∃(∅ →֒ 0 , false) ∨ ∃(∅ →֒ 1 , false)
∨ ∨k,n∈CV

(∃(∅ →֒ k
a
x n , true) ∨ ∃(∅ →֒ k

b
x n , false))

≡ ∨k,n∈CV
∃(∅ →֒ k

a
x n ),
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with the meaning “There exists an edge with label a and arbitrarily labeled
source and target”. This example shows that, in case of total, totally labeled
graphs, unspecifiedness is represented by disjunction over all possibilities,
which may, at least temporarily, lead to rather large conditions. A remedy
could be the consideration of conditions over partial and/or partially labeled
graphs.

The proof of Theorem 3.25 depends on the following lemma.

Lemma 3.27. For all rectified formulas F over Σ, all graphs G, and all
graphs X with Free(F ) ⊆ D′

X ⊆ Var we have: For all morphisms m: X → G
and all assignments σ: Var → DG with m = σ[D′

X ], GJF K(σ) = true if and
only if m |=A Cond(X, F ).

Proof. By structural induction.
Basis. For F = true, the statement is straightforward. For atomic formulas,
the statement follows directly from the definitions:

GJlabb(x)K(σ) = true

⇔ lG(σ(x)) = b (Def. GJ_K(σ))
⇔ lG(m(x)) = b (m = σ[D′

X ], x ∈ Free(labb(x)) ⊆ D′
X)

⇔ m |=A true and lX(x) = b (m label-preserving)
⇔ m |=A Cond(X, labb(x)) (Def. Cond)

GJinc(x, y, z)K(σ) = true

⇔ σ(x) ∈ EG, sG(σ(x)) =σ(y)and tG(σ(x)) =σ(z) (Def. GJ_K(σ))
⇔ m(x) ∈ EG, sG(m(x)) = m(y) and tG(m(x)) = m(z)

(m = σ[D′
X ], x, y, z ∈ Free(inc(x, y, z)) ⊆ D′

X)
⇔ x ∈ EX , y, z ∈ VX , m(sX(x)) =m(y)

and m(tX(x)) =m(z) (m is a morphism)
⇔ m |=A ∃(X → X[sX(x) = y][tX(x) = y])

and x ∈ EX , y, z ∈ VX

and lX(sX(x)) = lX(y), lX(tX(x)) = lX(z) (Def. |=A)
⇔ m |=A Cond(X, inc(x, y, z)) (Def. Cond)

GJx = yK(σ) = true

⇔ (σ(x), σ(y) ∈ VG or σ(x), σ(y) ∈ EG)and σ(x) = σ(y) (Def. GJ_K(σ))
⇔ m(x) =m(y) (m =σ[D′

X ], x, y ∈ Free(x = y) ⊆ D′
X , m is a morphism)

⇔ m |=A ∃(X → X[x = y]) and x, y are identifiable (Def. |=A)
⇔ m |=A Cond(X, x = y) (Def. Cond)
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Hypothesis. Assume, the statement holds for rectified formulas F and
Fj (j ∈ J).
Step. For formulas of the form ∃x F , the proof uses the inductive hypothe-
sis:

GJ∃x F K(σ) = true

⇔ ∃o ∈ DG. GJF K(σ{x/o}) = true (Def. JK)
⇔ ∃o ∈ VG. ∃b ∈ CV. lG(o) = b and GJF K(σ{x/o}) = true or

∃o ∈ EG. ∃b ∈ CE. lG(o) = b and GJF K(σ{x/o}) = true (Assignment)
⇔ ∃b ∈ CV. ∃m′. m = m′ ◦X → Y and m′ |=A Cond(Y, F ) or

∃b ∈ CE. ∃d, d′ ∈ CV. ∃m′. m = m′ ◦X → Z

and m′ |=A Cond(Z, F ) (Hypothesis, m′ = σ{x/o}[D′
X ])

⇔ ∃b ∈ CV. m |=A ∃(X → Y, Cond(Y, F )) or
∃b ∈ CE. ∃d, d′ ∈ CV. m |=A ∃(X → Z, Cond(Z, F )) (Def. |=A)

⇔ m |=A Cond(X, ∃x F ) (Def. Cond)
where Y = X+

x
b is obtained from X by adding a node x with label b and

Z = X+ d
b
x d′ by adding an edge x with label b together with d-labeled

source and d′-labeled target nodes. The rectifiedness of F guarantees that x
does not already exists. For formulas built with the operators ¬ and ∧, the
proof of the statement is straightforward and uses the inductive hypothesis.
This completes the inductive proof. �

With Lemma 3.27 we prove Theorem 3.25.

Proof of Theorem 3.25. For all closed, rectified formulas F over Σ and all
graphs G, we have: G |= F , iff for all assignments σ: Var→ DG, GJF K(σ) =
true (Definition |=), iff for all morphisms iG: ∅ →֒ G, iG |=A Cond(∅, F )
(Lemma 3.27, for Free(F ) = ∅ = D′

X and X = ∅), iff G |=A Cond(∅, F )
(Definition |=A). �

Vice versa, there is a transformation from graph conditions into first-order
graph formulas.

Theorem 3.28 (from conditions to formulas). There exists a transfor-
mation Form from graph conditions to first-order graph formulas, such that,
for all graph conditions c over the empty graph ∅ and all graphs G,

G |=A c if and only if G |= Form(c).

For the construction of the transformation Form, we consider morphisms and
conditions in a certain normal form, such that the identities of the nodes and
edges in a condition can be associated with variables, that is, no unnecessary
identity changes of elements take place within a condition. A morphism
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a: P → C is identity-preserving, if y ∈ C implies (y = a(y) or (y 6∈ a(P ) and
y 6∈ P )), elementwise for nodes and edges. This is no restriction, as every
condition may be transformed into an equivalent condition, by subsequently
replacing all morphisms not in this form by morphisms with this property.

Fact 3.29. Every identity-preserving graph morphism a with domain P is
either the identity id: P ↔ P or can be decomposed into morphisms that,
starting from P , subsequently add nodes, add edges, identify nodes, and
identify edges. There may be multiple decompositions for a given morphism.

The key idea of the transformation Form is to decompose the condition
∃(a, c′) into a nested condition ∃(a1, . . . , ∃(an, ∃(id, c′)) ), such that in each
morphism aj , 1 ≤ j ≤ n, either exactly one element is added or two elements
are identified. To this end, we introduce the following notation.

Notation. Let [vb]a, [euvb]a, [u = v]a and [e = e′]a denote morphisms that
are decomposable into an atomic morphism (adding exactly either one node,
one edge, or identiyfing two elements) and a remaining morphism a: P → C.
More precisely, a morphism

[vb]a is decomposable into [vb]P →֒ P
a
→ C such that the morphism [vb]P →֒

P only adds a b-labeled node v in P .

[euvb]a is decomposable into [euvb]P →֒ P
a
→ C such that the morphism

[euvb]P →֒ P only adds a b-labeled edge e from a node u to a node v
in P .

[u = v]a is decomposable into [u = v]P → P
a
→ C such that the morphism

[u = v]P → P only identifies two nodes u, v in P .

[e = e′]a is decomposable into [e = e′]P → P
a
→ C such that the morphism

[e = e′]P → P only identifies two edges e, e′ in P (that already have
common source and target nodes).

Construction. For conditions based on identity-preserving graph mor-
phisms, Form is defined as follows:

Form(true) = true
Form(∃(id, c′)) = Form(c′)
Form(∃([vb]a, c′)) = ∃v (node(v) ∧ labb(v) ∧ Form(∃(a, c′)))
Form(∃([euvb]a, c′)) = ∃e (inc(e, u, v) ∧ labb(e) ∧ Form(∃(a, c′)))
Form(∃([u = v]a, c′)) = (u = v ∧ Form(∃(a, c′)))
Form(∃([e = e′]a, c′)) = (e = e′ ∧ Form(∃(a, c′)))

Form is extended for the operators ¬,∧ as usual. Note that Form is not
unique, but well defined.
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Remark 3.30. For every graph condition c over P , all free variables of the
constructed formula Form(c) correspond to elements in P : Free(Form(c)) ⊆
DP ⊆ Var.

Example 3.31. Let CV = {0, 1} and CE = {b, d}. The graph condition

∀(∅ →֒
u

0 , ∃(
u

0 →֒
u

0
b
e

v
1 ))

with the meaning “For every node with label 0, there exists an outgoing
b-labeled edge to a node with label 1” is transformed into the following first-
order formula:

Form(¬∃(∅ →֒
u

0 , ¬∃(
u

0 →֒
u

0
b
e

v
1 )))

= ¬Form(∃(∅ →֒
u

0 , ¬∃(
u

0 →֒
u

0
b
e

v
1 )))

= ¬∃u (node(u) ∧ lab0(u) ∧ Form(∃(
u

0 →֒
u

0 , ¬∃(
u

0 →֒
u

0
b
e

v
1 ))))

= ¬∃u (node(u) ∧ lab0(u) ∧ Form(¬∃(
u

0 →֒
u

0
b
e

v
1 )))

= ¬∃u (node(u) ∧ lab0(u) ∧ ¬Form(∃(
u

0 →֒
u

0
b
e

v
1 )))

= ¬∃u (node(u) ∧ lab0(u) ∧ ¬∃v (node(v) ∧ lab1(v)
∧Form(∃(

u
0

v
1 →֒

u
0

b
e

v
1 ))))

= ¬∃u (node(u) ∧ lab0(u) ∧ ¬∃v (node(v) ∧ lab1(v) ∧ ∃e (inc(e, u, v) ∧ labb(e)
∧Form(∃(

u
0

b
e

v
1 →֒

u
0

b
e

v
1 )))))

= ¬∃u (node(u) ∧ lab0(u)
∧¬∃v (node(v) ∧ lab1(v) ∧ ∃e (inc(e, u, v) ∧ labb(e) ∧ true)))

≡ ∀u ((node(u) ∧ lab0(u))⇒ ∃v ∃e (node(v) ∧ lab1(v) ∧ inc(e, u, v) ∧ labb(e))).

with the same meaning “For every node u with label 0, there is a node v with
label 1 and an b-labeled edge from u to v.”

Example 3.32 (access control formula). Consider the access control
condition

secure = ∀

(

1 2 3

, ∃
1 2 3

)
.

The application of Form on secure yields the following first-order graph for-
mula

Form (secure) = ∀n1 (lab (n1)⇒ (∀n2 (lab (n2)⇒ (∀n3 (lab (n3)⇒

(∀e4 ((inc(e4, n1, n2) ∧ lab(e4))⇒

(∀e5 ((inc(e5, n3, n2) ∧ lab(e5))⇒

∃e6 (inc(e6, n1, n3) ∧ lab(e6))))))))))).

The proof of Theorem 3.28 depends on the following lemma.
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Lemma 3.33. For all graph conditions c over P and all graphs G we have:
For all graph morphisms m: P → G and all assignments σ: Var → DG with
m = σ[DP ],

m |=A c iff GJForm(c)K(σ) = true.

Proof. By structural induction.
Basis. For c = true, we have m |= true⇔ GJtrueK(σ) = true.
Hypothesis. Assume the statement holds for condition c′.
Step. For conditions of the form c = ∃(a, c′), the statement is proved by
induction over the decomposition of morphisms. If the morphism a is the
identity id: P → P , we observe for all morphisms m: P → G, and all as-
signments σ: Var → DG with m = σ[DP ], m |=A ∃(id, c′) ⇔ m |=A c′ ⇔
GJForm(c′)K(σ) = true (hypothesis for c′).

Assume, the statement holds for a condition ∃(a, c′). We prove that the
statement holds for all conditions ∃(a′, c′) with extended morphism a′ = a[vb],
a[euvb], a[u=v], and a[e=e′]:

m |=A ∃([vb]a, c′)
⇔ m |=A ∃([vb]P → P, ∃(a, c′)) (Def. |=A)
⇔ ∃m′. m = m′ ◦ [vb]P → P and m′ |=A ∃(a, c′) (Def. |=A)
⇔ ∃o ∈ DG. σ′ = σ{v/o} and GJnode(v)K(σ′) = true

and GJlabb(v)K(σ′) = true

and GJForm(∃(a, c′))K(σ′) = true (Hypothesis, σ′[DP ] = m′)
⇔ GJ∃v (node(v) ∧ labb(v) ∧ Form(∃(a, c′)))K(σ) = true (Def. GJ_K(σ))
⇔ GJForm(∃([vb]a, c′))K(σ) = true (Def. Form)
⇔ G |= Form(∃([vb]a, c′)) (Def. |=)

m |=A ∃([euvb]a, c′)
⇔ m |=A ∃([euvb]P → P, ∃(a, c′)) (Def. |=A)
⇔ ∃m′. m = m′ ◦ [euvb]P → P and m′ |=A ∃(a, c′) (Def. |=A)
⇔ ∃o ∈ DG. σ′ = σ{e/o} and GJinc(e, u, v)K(σ′) = true

and GJlabb(e)K(σ
′) = true

and GJForm(∃(a, c′))K(σ′) = true (Hypothesis, σ′[DP ] = m′)
⇔ GJ∃e (inc(e, u, v) ∧ labb(e) ∧ Form(∃(a, c′)))K(σ) = true (Def. GJ_K(σ))
⇔ GJForm(∃([euvb]a, c′))K(σ) = true (Def. Form)
⇔ G |= Form(∃([euvb]a, c′)) (Def. |=)

m |=A ∃([u=v]a, c′)
⇔ m |=A ∃([u=v]P → P, ∃(a, c′)) (Def. |=A)
⇔ ∃m′. m = m′ ◦ [u=v]P → P and m′ |=A ∃(a, c′) (Def. |=A)
⇔ σ(u) =σ(v) and GJu = vK(σ) = true

and GJForm(∃(a, c′))K(σ) = true (Hypothesis, σ[DP ] = m′)
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⇔ GJ(u = v ∧ Form(∃(a, c′)))K(σ) = true (Def. GJ_K(σ))
⇔ GJForm(∃([u=v]a, c′))K(σ) = true (Def. Form)
⇔ G |= Form(∃([u=v]a, c′)) (Def. |=)

m |=A ∃([e=e′]a, c′) ⇔ G |= Form(∃([e=e′]a, c′)) (as above)
Since all identity-preserving graph morphisms may be decomposed into graph
morphisms that subsequently add nodes, add edges, identify nodes and iden-
tify edges, the statement holds for all conditions of the form ∃(a, c′). For con-
ditions built with the operators ¬, ∧, the proof of the statement is straight-
forward. �

With Lemma 3.33 we prove Theorem 3.28.

Proof of Theorem 3.28. For all graph conditions c over ∅ and all graphs
G, we have the following: G |=A c iff for all morphisms iG: ∅ →֒ G, iG |=A c
(Definition |=A) iff for all assignments σ: Var → DG, GJForm(c)K(σ) = true

(Lemma 3.33, for P = ∅ and Free(Form(c)) = ∅ = DP ) iff G |= Form(c)
(Definition |=). �

By Theorems 3.25 and 3.28, we obtain the equivalence of graph conditions
under A-satisfiability and first-order graph formulas.

Corollary 3.34 (A: equivalence of graph conditions and formulas).
A-satisfiable graph conditions and first-order graph formulas are expressively
equivalent.

first-order
graph formulas

Cond

Form

conditions
A-satisfiability

The standard semantics for conditions is M-satisfiability. By Fact 2.21 and
Theorems 3.12 and 3.16, A-satisfiable graph conditions can be transformed
into M-satisfiable graph conditions and vice versa (in the case of Graphs,
the class M of injective graph morphisms is strictly closed under decom-
position). Therefore, M-satisfiable graph conditions and first-order graph
formulas are expressively equivalent, as well.

Corollary 3.35 (M: equivalence of graph conditions and graph for-
mulas). M-satisfiable graph conditions and first-order graph formulas are
expressively equivalent.

first-order
graph formulas

CondM

FormM

conditions
M-satisfiability
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Proof. Immediate consequence of Theorems 3.25, 3.28 together with Theo-
rems 3.12, 3.16, which allow to switch between A- andM-satisfiability: De-
fine CondM = Msat ◦ Cond and FormM = Form ◦ Asat. By Theorems 3.25
and 3.12, for all formulas F over Σ and all graphs G, G |= F ⇔ G |=A

Cond(F ) ⇔ G |= Msat(Cond(F )) = CondM(F ). By Theorems 3.28 and
3.16, for all formulas F over Σ and all graphs G, G |= c⇔ G |=A Asat(c)⇔
G |= Form(Asat(c)) = FormM(c).

formulas
conditions
A-sat

conditions
M-sat

Cond

Form

Msat

Asat

CondM

FormM

�

Conditions and formulas are finite, if the index set J of every conjunc-
tion ∧j∈J and every disjunction ∨j∈J is finite. In the following, we want
to strengthen the statement of Corollary 3.35 by showing that every finite
graph condition can be translated into a finite first-order graph formula and
vice versa. Assumption 2.19 ensures the effectiveness of the constructions.

Asat and Msat yield finite results for finite inputs.

Fact 3.36 (transformation of finite conditions). Let 〈C,M〉 be a weak
adhesive HLR category with a finite number of epimorphisms for every given
domain. For every finite condition c, the conditions Msat(c) and Asat(c) of
Theorem 3.12 and 3.16 are finite, respectively.

Proof. For Msat(c) we have: As C has a finite number of epimorphisms
for a given domain, the set E in the construction of Msat(e, c) is finite for
every epimorphism e, and the set E in the construction of Msat(c) is finite.
For Asat(c) we have: As C has a finite number of epimorphisms for a given
domain, the set E in the construction of inMC is finite for every object C ∈ C,
therefore Asat(c) is finite. �

Every finite graph condition can be translated into a finite first-order graph
formula and vice versa.

Fact 3.37 (equivalence of finite graph conditions and formulas).
Finite M-satisfiable graph conditions, finite A-satisfiable graph conditions
and finite first-order graph formulas are expressively equivalent.
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Proof. By Corollaries 3.34 and 3.35, it suffices to show that all involved
transformations preserve finiteness. For every finite graph condition c, the
graph formula Form(c) is finite: For every graph morphism, there exists a
finite decomposition, such that each morphism either adds a node, adds an
edge, identifies two nodes, or identifies two edges. For every finite first-order
graph formula F , the graph condition Cond(F ) is finite: The disjunctions
in the case Cond(X, ∃x F ) are finite, as the label alphabet C = CV ∪ CE is
finite. As the category (Graphs, Inj ) satisfies Assumption 2.19, we have by
Fact 3.36: For every finite graph condition c, the graph conditions Msat(c)
and Asat(c) are finite. �

3.4 Summary and discussion

We use the framework of weak adhesive HLR categories and consider (nested)
conditions as a graphical formalism to specify sets of objects as well as mor-
phisms, similar to graph predicates as introduced independently in [Ren04a].
For a category associated with a graphical representation such as graphs,
conditions are a graphical and intuitive, yet precise formalism, well-suited to
describe structural properties.

We show that (nested) graph conditions are expressively equivalent to
first-order graph formulas, that is, (nested) graph conditions exactly capture
first-order graph properties. The first part of this proof includes transforma-
tions between two satisfiability notions of conditions, namelyM-satisfiability
and A-satisfiability. The second part is specific to the category Graphs and
includes transformations between A-satisfiable graph conditions and first-
order formulas on graphs, similar to a proof presented earlier in [Ren04a] for
edge-labeled graphs without parallel edges.

The composite transformation of graph formulas intoM-satisfiable graph
conditions is used in Section 6.1 to show the undecidability of certain prob-
lems on the level of (graph) conditions. The composite transformation of
M-satisfiable graph conditions to graph formulas allows the use of existing
first-order tools to solve problems for graph conditions. We will use this fact
in Chapter 7 for a comparison of our satisfiability solver and theorem prover
for conditions with off-the-shelf tools for first-order logic.
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4. Programs and transformation

systems

In the following we introduce our notion of structural transformations, namely
programs with interface. Programs with interface are based on four elemen-
tary constructs, that is, the selection, addition, deletion and unselection of
an object’s elements. These primitives can be combined to more complex
programs by the usual control constructs, such as non-deterministic choice,
sequential composition, conditional execution and iteration. The resulting
programming language is computationally complete.

The fact that programs with interface allow explicit control over the se-
lection of elements and are capable of handing over selections between com-
putations is our main justification for their consideration: This hand-over
mechanism can be used to restrict the execution of programs to a previ-
ously selected context, which is, for instance, crucial for the definition of a
satisfiability algorithm as it turns out later in Section 6.2.

As we will discover in Section 4.3, programs with interface are a gen-
eralization of programs over transformation rules, as considered in [HP01,
PS04]. Graph programs over graph transformation rules, while computation-
ally complete in the context of relabeling [HP01], do not have a comparable
control mechanism. They always unselect all preserved and created elements
after every computation step. To recover an element in a next computation
step, elements are marked by fresh labels or reserved structure such as loops,
which requires changes to the considered graph model.

4.1 Programs with interface

We define programs with interface that are capable of handing over a selec-
tion of elements between computation steps. An overview over the program
constructs together with their intuitive meaning is given in Table 4.1.
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Skip //No computation
Abort //Abort of computation
Assert(c) //Assertion of a condition c

Sel(x: X →֒ L) //Selection of additional elements (L− x(X))

Sel(x: X →֒ L, c) //As above, but any result must satisfy condition c

Del(l: L ←֓ K) //Selective deletion of elements (L− l(K))

Add(r: K →֒ R) //Addition of elements (R− r(K))

Uns(y: R ←֓ Y ) //Unselection of selected elements (R− y(Y ))

〈〈L ←֓ K →֒ R〉 , acL〉 //Transformation rule with left application condition
(P; Q) //Sequential composition of program Q after P
{P, . . . , Q} // (Demonic) non-deterministic choice of programs
Fix(P) //Computation path-specific unselection of elements
Pj // j-times execution of program P

P∗ //Reflexive, transitive closure of program P

↓P↓ //As long as possible iteration of program P

if c then P fi //Conditional execution of program P

if c then P else Q fi //Conditional execution of programs P and Q

while c do P od //Conditional iteration of program P

Table 4.1: Program constructs and their meaning
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Definition 4.1 (syntax of programs with interface). Programs with
interface are defined inductively. For M-morphisms m: C →֒ D and con-
ditions d over D, the expressions Sel(m, d), Del(m), Add(m), Uns(m) are
elementary programs with interface C. Given a program P with interface C
and a program Q with arbitrary interface, the expression (P; Q) is a program
with interface C. Given programs P, . . . , Q with interface C, the expressions
{P, . . . , Q}, Fix(P), P∗, ↓P↓ are programs with interface C. Programs P∗, ↓P↓
are iterated programs. For every program ↓P↓, we assume P is free of any
form of iteration.

Additionally, we introduce the following abbreviations:

Assert(c) = Sel(idC , c),

Skip = Assert(true),

Abort = Assert(false),

Sel(m) = Sel(m, true),

〈〈L ←֓ K →֒ R〉 , acL〉 = Sel(I →֒ L, acL); Del(L ←֓ K);
Add(K →֒ R); Uns(R ←֓ I),

P0 = Skip,

Pj = (Fix(P); Pj−1) with j > 0,

if c then P fi = {(Assert(c); P), Assert(¬c)},

if c then P else Q fi = {(Assert(c); P), (Assert(¬c); Q)}, and

while c do P od = ((Assert(c); P)∗; Assert(¬c)).

Definition 4.2 (transformation system). For programs P, . . . , Q with
interface, programs of the form {P, . . . , Q}∗ are transformation systems.

Traditionally, the term transformation system refers to the reflexive, tran-
sitive closure of a non-deterministic choice of transformation rules. In this
sense, programs with interface generalize transformation rules.

Let P denote the set of all partial monomorphisms, see Appendix A.
Programs with interface transform morphisms instead of objects. The se-
mantics of a program P consists of triples 〈m, m∗, mP〉 ∈ M×M×P, where
the first twoM-morphisms represent input and result, while the last partial
monomorphism is an “interface relation” from the domain of the input to the
domain of the result morphism. The input interface represents a number of
elements that are assumed to be present in the input object at the begin of
a computation. In this sense the input interface of a program may be seen
as a kind of input type.
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•input interface · · · · · ·

•input object · · · · · ·

• · · · · · · output interface

• · · · · · · output object

m

mP

m∗

Figure 4.1: Triple 〈m, m∗, mP〉 of the semantics of a program P

Definition 4.3 (semantics of programs). Let m, m∗, x, l, r, y be M-
morphisms and mP, mQ partial monomorphisms. The semantics of a pro-
gram P with interface C, denoted by JPK, is a subset of M×M× P such
that for all 〈m, m∗, mP〉 ∈ JPK, dom(m) = C = dom(mP), and dom(m∗) =
codom(mP) and is defined as follows:

JSel(x, c)K = {〈m, m∗, x〉 | m∗ ◦ x = m, m∗ ∈M and m∗ |= c}

JDel(l)K = {〈m, m∗, l−1〉 | l∗ ◦m∗ is pushout complement of m ◦ l}

JAdd(r)K = {〈m, m∗, r〉 | 〈r∗, m∗〉 is pushout of 〈m, r〉}

JUns(y)K = {〈m, m ◦ y, y−1〉 | true}
JFix(P)K = {〈m, m∗ ◦mP, id〉 | 〈m, m∗, mP〉 ∈ JPK and mP ∈M}

J(P; Q)K = {〈m, m∗, mQ ◦mP〉 | 〈m, m′, mP〉 ∈ JPK and 〈m′, m∗, mQ〉 ∈ JQK}

J{P, . . . , Q}K =
⋃

R∈{P,...,Q}JRK

JP∗K =
⋃∞

j =0 JPjK

J↓P↓K = {〈m, m∗, id〉 ∈ JP∗K | ∄m′. 〈m∗, m′, id〉 ∈ JFix(P)K}

where id is the identity on the domain of m (and m∗). Two programs P, Q
are equivalent, denoted by P ≡ Q, if JPK = JQK.

• •

•

x

m
=

m∗

c

|=

•

•

•

•

l

l∗

m m∗(PO)

•

•

•

•

r

r∗

m m∗(PO)

•

•

•
y

=
m m∗

Figure 4.2: Semantics of Sel(x, c), Del(l), Add(r) and Uns(y)

Example 4.4 (access control rule). Before we formally describe the
access control system as a graph program with interface, let us consider the
graph transformation rule

Access =

〈

1 2 3

⇀֒
1 2 3

〉
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which is a simplified part of the login procedure. The rule Access has the
form 〈L ⇀֒ R〉, which is an abbreviation for 〈〈L ←֓ K →֒ R〉 , true〉 where we
depict the span 〈L ←֓ K, K →֒ R〉 as a partial monomorphism L ⇀֒ R.

Concerning the semantics of such a rule: the left-hand side L expresses
the prerequisites of a rule’s application “If a user proposes a session to a
system for which he has the appropriate access right” and the right-hand
side R, together with the partial monomorphism, expresses the local effect of
the rule’s application “Then this proposed session is accepted and becomes
established by first deleting the edge from the session to the computer node
and by adding an edge in the reverse direction”.

Example 4.5 (access control system). Consider the access control
graphs in Example 2.4. The dynamic part of the access control system is the
reflexive, transitive closure AccessControl∗ of the non-deterministic choice
of graph programs AccessControl = {AddUser, Grant, Login, Logout,

Process, Revoke, Delete}. The programs model the addition and dele-
tion of users, the grant and removal of access rights and the login/logout
procedure.

(AddUser) Adds a user to the system. A user node is created and unselected:(
Add

1
; Uns

1

)

(Grant) Grants a user access to a system. Selects a user and a system (for
which not already an access right exists), adds an access right, and
unselects everything:(

Sel
1 2

, ¬∃
1 2

; Add
1 2

; Uns
1 2

)

(Login) A user requests to log into a system. The program selects a user and
a system, adds a session node with its edges and unselects everything:(
Sel

1 2
; Add

1 3 2
; Uns

1 3 2

)

(Logout) A user is logged out. A session is selected and whether it is estab-
lished or proposed, it is closed:



Sel
1 2

;




(
Sel

1 2 4
; Del

1 2 4

)
,

(
Sel

1 2 4
; Del

1 2 4

)





;

Uns
1 4
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(Process) The system reacts to a log in. The program selects a proposed
session. If the user has the appropriate access right, the session is es-
tablished. Otherwise, the session is closed:



Sel
1 2 3

;

if

(
∃

1 2 3

)

then
(
Del

1 2 3
; Add

1 2 3
; Uns

1 2 3

)

else
(
Del

1 2 3
; Uns

1 3

)
fi





(Revoke) The access right of a user to a system is revoked. Beforehand, the
user’s established sessions to that system are closed:



Sel
1 2

;

while

(
∃

1 4 2

)

do
(
Sel

1 4 2
; Del

1 4 2

)
od ;

Del
1 2

;

Uns
1 2





(Delete) A user is deleted. Beforehand, the user’s sessions are closed and
the user’s access rights are revoked:



Sel
1

;

while
(
∃

1 2 3

)

do
(
Sel

1 2 3
; Del

1 2 3

)
od ;

while
(
∃

1 2 3

)

do
(
Sel

1 2 3
; Del

1 2 3

)
od ;

while
(
∃

1 2

)

do
(
Sel

1 2
; Del

1 2
; Uns

1 2

)
od ;

Del
1





We now make some observations over program in general, before we discuss
properties of some constructs.

Remark 4.6 (interface and sequential composition). For a given
input morphism, all possible executions of a program may be depicted as an
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unfolded tree. Therefore, programs have a single input interface (by defini-
tion), but may have a set of possible output interfaces that correspond to the
leafs of the aforementioned tree. Consider the semantics of the sequential
composition (P; Q). A prerequisite for the existence of results is that the in-
terface of Q coincides with one of the output interfaces of P. Otherwise such
a composition is doomed to abort.

Remark 4.7 (iteration and Fix). The semantics of the sequential com-
position implies that a program with interface C may only be iterated, if the
output interface of the previous computation equals the (input) interface C.
Consider the semantics of Fix(P). The statement Fix is a generic way of
making programs iterable that do not delete or unselect elements of their
interface. Fix ensures that every possible computation ends with the output
interface C by finally deselecting all elements additionally selected during
a run of the program. Figure 4.3 illustrates the different semantics: while
〈m, m∗, r〉 ∈ JAdd(∅

r
→֒ )K, we have 〈m, m∗ ◦ r, id〉 ∈ JFix(Add(∅

r
→֒ ))K.

In this sense, the semantics of Fix corresponds to a specific Uns statement
at the end of each program branch, as we show later in Section 4.2.

Ginput object · · · · · · G+
1

∅input interface · · · · · · 1

m m∗

r

Ginput object · · · · · · G+
1

∅input interface · · · · · · 1

r

m m∗

Figure 4.3: Semantics of Add(∅ →֒ ©) and Fix(Add(∅ →֒ ©))

Remark 4.8 (M-matching). Consider the semantics of Sel(x, c). The
result morphism m∗ is required to be in M. This corresponds to the no-
tion of M-matching in [HP09] and means intuitively that selected elements
are always distinct. For example, the graph program Sel(∅ →֒

1 2
) with

interface ∅ will always attempt to select two distinct nodes of an input object.

Remark 4.9 (determinism). For a given morphism m, the outcome of
the elementary programs Del, Add, Uns is deterministic, that is, unique up to
isomorphism. In contrast, Sel is non-deterministic as there may be several
morphisms m∗ for a given input morphism m.

Remark 4.10 (existence of results). For a given input morphism m,
the elementary programs Sel, Del may fail, whereas Add, Uns are guaranteed
to yield a result morphism m∗.
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For all objects C, the identity morphism idC on C reduces the elementary
constructs Sel, Del, Add and Uns to the semantics of Skip.

Fact 4.11 (identity as parameter). Sel(id, true) = Assert(true) =
Skip ≡ Del(id) ≡ Add(id) ≡ Uns(id).

The statement Skip is the identity element (or neutral element) of sequential
composition, while Abort is the annihilator of sequential composition.

Fact 4.12 (Skip). (Skip; R) ≡ R ≡ (R; Skip) and (Abort; R) ≡ Abort ≡
(R; Abort).

Sequential composition is associative.

Fact 4.13 (associativity). For all programs P, Q, R, we have ((P; Q); R) ≡
(P; (Q; R)).

Proof. By the semantics of the sequential composition, we have
J((P; Q); R)K

= {〈m, m∗, mR ◦mP;Q〉 | 〈m, m′, mP;Q〉 ∈ J(P; Q)K
and 〈m′, m∗, mR〉 ∈ JRK} (Def. J(_; _)K)

= {〈m, m∗, mR ◦mQ ◦mP〉 | 〈m, m′′, mP〉 ∈ JPK
and 〈m′′, m′, mQ〉 ∈ JQK and 〈m′, m∗, mR〉 ∈ JRK} (Def. J(_; _)K)

= {〈m, m∗, mQ;R ◦mP〉 | 〈m, m′′, mP〉 ∈ JPK
and 〈m′′, m∗, mQ;R〉 ∈ J(Q; R)K} (Def. J(_; _)K)

= J(P; (Q; R))K (Def. J(_; _)K)
�

As the order of sequential compositions is irrelevant for the semantics of
programs, we allow to write (P; Q; R).

Sequential composition is right-distributive over nondeterministic choice.
Later on, we use this property to transform programs into equivalent pro-
grams that do not contain the statement Fix.

Fact 4.14 (distributivity). For all programs P, . . . , Q, R, we have

({P, . . . , Q}; R) ≡ {(P; R), . . . , (Q; R)}.

Proof. Let S denote {P, . . . , Q}. By the semantics of the sequential compo-
sition, nondeterministic choice, we have

J(S; R)K

= {〈m, m∗, mS ◦mR〉 | 〈m, m′, mS〉 ∈ JSK
and 〈m′, m∗, mR〉 ∈ JRK} (Def. J(_; _)K)
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= {〈m, m∗, mS ◦mR〉 | 〈m, m′, mS〉 ∈
⋃

S∈SJSK
and 〈m′, m∗, mR〉 ∈ JRK} (Def. J{_, . . . , _})K)

=
⋃

S∈S{〈m, m∗, mS ◦mR〉 | 〈m, m′, mS〉 ∈ JSK
and 〈m′, m∗, mR〉 ∈ JRK} ({. . . | . . .})

=
⋃

S∈SJ(S; R))K (Def. J(_; _)K)
= J(

⋃
S∈S(S; R)))K (Def. J{_, . . . , _}K)

�

4.2 Elimination of Fix statements

The statement Fix is a generic way of making programs iterable that do not
delete or unselect elements of their interface. Fix ensures that every possible
computation ends with the “output” interface C by finally deselecting all
elements additionally selected during a run of the program. In this sense,
the semantics of Fix corresponds to a specific Uns statement at the end of
each program branch.

In the following we present a construction yielding for every program an
equivalent program not containing the statement Fix by generating specific
Uns statement at the end of every branch of the program. On the one hand,
the construction demonstrates that Fix is not a strictly necessary part of
our program language. On the other hand, as Fix is a core construct in our
language, we depend on the following construction later on as an indirect
way to construct weakest preconditions for Fix.

Definition 4.15 (Fix-free program). A program with interface is Fix-
free, if it does not contain the statement Fix.

Theorem 4.16 (Fix does not increase the generative power). For ev-
ery program P, there exists a Fix-free program Ffree(P) such that Ffree(P)≡ P.

Construction. We introduce an intermediate program construct Fix(P, p),
where P is a program with some interface C and p a partial monomorphism
with codomain C. The semantics is

JFix(P, p)K = {〈m, m∗ ◦ (mP ◦ p), p−1〉 | 〈m, m∗, mP〉 ∈ JPK and (mP ◦ p) ∈M}.

Construct Ffree(P) by applying the following equations, interpreted as sub-
stitutions strictly from left to right, as long as possible: For a program P

with interface C, let be Fix(P) = Fix(P, idC).
For a program P and partial monomorphism p, Fix(P, p) is defined as

follows: Let be Fix(Skip, p) = Uns(p) if p ∈ M, and Fix(Skip, p) = Abort
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otherwise. If P is neither Skip, nor of the form (Q; R) for arbitrary programs
Q, R, then let be Fix(P, p) = Fix((P; Skip), p). Furthermore, let be

Fix((Skip; R), p) = Fix(R, p)

Fix((Abort; R), p) = Abort

Fix((Assert(c); R), p) = (Assert(c); Fix(R, p))

Fix((Sel(x, c); R), p) = (Sel(x, c); Fix(R, x ◦ p))

Fix((Del(l); R), p) = (Del(l); Fix(R, l−1 ◦ p))

Fix((Add(r); R), p) = (Add(r); Fix(R, r ◦ p))

Fix((Uns(y); R), p) = (Uns(y); Fix(R, y−1 ◦ p))

Fix(({P, . . . , Q}; R), p) =
⋃

S∈{P,...,Q}

Fix((S; R), p)

Fix((Fix(P); R), p) = Fix(P); Fix(R, p)

Fix(((P; Q); R), p) = Fix((P; (Q; R)), p)

Fix((if c then P fi; R), p) = if c thenFix((P; R), p) elseFix(R, p) fi

Fix((if c then P else Q fi; R), p) = if c thenFix((P; R), p)

elseFix((Q; R), p) fi

Fix((P0; R), p) = Fix(R, p)

Fix((Pj; R), p) = (Pj ; Fix(R, p))

Fix((P∗; R), p) = (P∗; Fix(R, p))

Fix((↓P↓; R), p) = (↓P↓; Fix(R, p))

Fix((while c do P od; R), p) = (while c do P od; Fix(R, p))

Proof. See Appendix B. �

Fact 4.17 (idempotency of Fix). Fix(Fix(P)) ≡ Fix(P).

Proof. By the semantics of the Fix construct, we have:
JFix(Fix(P))K

= {〈m, m∗
Fix ◦mFix, id〉 | 〈m, m∗

Fix, mFix〉 ∈ JFix(P)K
and mFix ∈M} (Def. JFixK)

= {〈m, m∗ ◦mP ◦ id, id〉 | 〈m, m∗ ◦mP, id〉 ∈ JFix(P)K} (Def. JFixK)
= {〈m, m∗ ◦mP, id〉 | 〈m, m∗, mP〉 ∈ JPK and mP ∈ M} (Def. JFixK)
= Fix(P) (Def. JFixK)

�
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4.3 Related concepts

Programs with interface relate easily to existing transformation concepts such
as double pushout (DPO) transformation rules [Ehr79, CMR+97, EEPT06]
and programs based thereon [HP01].

First, every transformation rule 〈L ←֓ K →֒ R〉 with matching morphisms
restricted to the morphism class M, called M-matching and M-matched
transformation rule, can be simulated by a sequence of elementary programs
with initial interface I, as suggested by the definition. Let G ⇒ρ,m,m∗ H be
a derivation as defined in [EEPT06].

Fact 4.18. For every transformation rule ρ, G⇒ρ,m,m∗ H with m, m∗ ∈ M
iff 〈iG, iH , idI〉 ∈ JρK.

Moreover, every program P over transformation rules with the matching mor-
phism restricted to M [HP01, PS04, HP09] can be seen as a program with
the initial object as interface. For a program P, let JPKHP01 ⊆ O ×O be the
semantics of programs, as defined in [HP01], where O is the set of objects of
a given category C.

Fact 4.19. For every program P over M-matched transformation rules,
〈G, H〉 in JPKHP01 if and only if 〈iG, iH , idI〉 in JPK.

Proof. By induction on the structure of programs over M-matched trans-
formation rules, we show that every program is syntactically a program with
interface: For every set R of DPO transformation rules, R and ↓R↓ are pro-
grams with interface I. Given programs P, Q with interface I, then (P; Q) is
a program with interface I. By induction on the structure of programs over
M-matched transformation rules, we show that the program semantics cor-
respond: We have 〈G, H〉 ∈ JRKHP01 iff 〈G, H〉 ∈

⋃
ρ∈RJρKHP01 iff there a ρ ∈ R

such that 〈G, H〉 ∈ JρKHP01 iff there a ρ ∈ R such that 〈iG, iH , idI〉 ∈ JρK iff
〈iG, iH , idI〉 ∈

⋃
ρ∈RJρK iff 〈iG, iH , idI〉 ∈ JRK. Moreover, 〈G, H〉 ∈ J↓R↓KHP01

iff 〈G, H〉 ∈ JRK∗HP01 and there is no M ∈ O such that 〈H, M〉 ∈ JRKHP01 iff
〈iG, iH , idI〉 ∈ JR∗K and there is no iM ∈ M such that 〈iH , iM , idI〉 ∈ JFix(R)K
iff 〈iG, iH , idI〉 ∈ J↓R↓K. Finally, 〈G, H〉 ∈ J(P; Q)KHP01 iff 〈G, M〉 ∈ JPKHP01

and 〈M, H〉 ∈ JQKHP01} iff 〈iG, iM , idI〉 ∈ JPK and 〈iM , iH , idI〉 ∈ JQK iff
〈iG, iM , idI〉 ∈ J(P; Q)K. �

Graph programs over injectively matched, relabeling DPO graph transfor-
mation rules, as shown in [HP01], are computationally complete. However,
the proof makes use of special relabeling rules, for instance 〈

1
S ←֓

1
→֒

1
T 〉.

Strictly speaking, the graphs and the morphisms used in these rules do not
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fit to our definition of totally labeled graphs and label-preserving morphisms.
And in contrast to edges, it is not possible to use rules such as 〈 S ←֓ ∅ →֒ T 〉
to delete nodes (temporarily) and recreate them with the new label: a node
S may have incident edges which effectively prevents its deletion.

However, relabeling can be simulated by a graph program with interface
by selecting the node

1
S , creating the node

2
T and shifting any edge incident

to
1

S to
2

T .

Fact 4.20 (simulation of relabeling). For a fixed, finite label alphabet
C = 〈CV, CE〉, every relabeling transformation rule 〈

1
S ←֓

1
→֒

1
T 〉 can be

simulated by the following program

Sel(
1

S ); Add(
1

S
2

T );y
⋃

A∈CV,a∈CE
MoveEdgeA,a ∪

⋃
a∈CE

MoveLoopa

y ;

Del(
1

S
2

T ); Uns(
2

T )

where for a node label A ∈ CV and edge label a ∈ CE, the subprogram
MoveEdgeA,a is





(Sel(

1
S

a

3
A

2
T ); Del(

1
S

a

3
A

2
T ); Add(

1
S

3
A

a

2
T ); Uns(

1
S

3
A

a

2
T )),

(Sel(
1

S
a

3
A

2
T ); Del(

1
S

a

3
A

2
T ); Add(

1
S

3
A

a

2
T )); Uns(

1
S

3
A

a

2
T )),






and the subprogram MoveLoopa is

{
(Sel(

1
S

a

2
T ); Del(

1
S

a

2
T ); Add(

1
S

a

2
T ); Uns(

1
S

a

2
T ))
}

.

As we can simulate the computationally complete graph programs considered
in [HP01], every computable function on graphs can be computed by a graph
program with interface.

Corollary 4.21 (computational completeness). Graph programs with
interface are computationally complete.

It is possible to consider an extension of DPO transformation rules that pro-
vides the concept of explicit selection and deselection on the level of trans-
formation rules, as investigated in [Pen08a].

Definition 4.22 (rules with external interface). A rule with external in-
terface ρ = 〈〈X ⇀֒ L ←֓ K →֒ R〉 , acL〉 consists of a partial monomorphism
x: X ⇀֒ L, the external interface, two M-morphisms l: K →֒ L, r: K →֒ R,
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and a (left) application condition acL over L.

LX K R

DG H

x

m

l r

l∗ r∗

m′ d m∗(PO) (PO)
=

For anM-morphism m, a triple 〈m, m∗, r ◦ l−1 ◦ x〉 is in the semantics of ρ,
denoted by JρK, if there is an M-morphism d: K →֒ D and two pushouts
〈m′, l∗〉 and 〈r∗, m∗〉 such that m = m′ ◦ x and m′ |= acL. AsM-morphisms
are closed under pushouts, the match m′: L→ G is inM.

Fact 4.23 (rules with external interface). For every M-matched
rule with external interface ρ = 〈〈X ⇀֒ L ←֓ K →֒ R〉 , acL〉 with partial
monomorphism X ⇀֒ L = 〈X ←֓ Y →֒ L〉, there is a program with interface
P = Uns(X ←֓ Y ); Sel(Y →֒L, acL); Del(L ←֓ K); Add(K →֒R) such that
P ≡ ρ.

Programs over transformation rules with external interface, as considered in
[Pen08a], are defined similarly to programs with interface. In fact, every
program over M-matched rules with external interface can be simulated by
a program with interface.

4.4 Summary and discussion

We use the framework of weak adhesive HLR categories and introduce pro-
grams with interface. Programs with interface can be seen as a generalization
of programs over graph transformation rules, as considered in [HP01, PS04].
The main motivation for considering programs with interface is their ability
to explicitly hand-over matching informations between computation steps.
Instead of objects G, M-morphisms m: X →֒ G of a given weak adhesive
HLR category are input and output of computation steps, representing a
selection of elements X in G.

Consequently, the selection, deletion, addition and deselection of an ob-
ject’s elements are the basic program statements that can be composed to
more complex programs by non-deterministic choice, sequential composition
and iteration. The resulting programming language is computationally com-
plete and is able to model transactions that deal with an unbounded number
of elements. We use the features of this programming language to model the
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dynamic behavior of an access control for computer systems and to imple-
ment a satisfiability solver for conditions, see Section 6.2.

An important program construct is the statement Fix(P) which is used
to make a program P iterable. The effect of Fix on program P corresponds
to a computation path-specific deselection of elements selected during the
execution of P. However, this dynamic behavior makes static analysis dif-
ficult, especially the construction of weakest preconditions. Therefore, we
show that Fix statements can be replaced by a specific Uns statement in
every branch of a program, that is, every program can be converted into a
program that does not contain Fix.
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5. Correctness of program

specifications

In the following we consider program specifications consisting of a precon-
dition, a program with interface and a postcondition and define their cor-
rectness. With the intention of reducing the correctness problem of pro-
gram specifications onto the implication problem of conditions, we define and
show how to construct weakest liberal preconditions of programs with inter-
face and conditions, similar to the ones for Dijkstra’s guarded commands in
[Dij76, DS89]. For the construction, we require a number of transformations
on conditions that we introduce beforehand.

5.1 Program specifications

We are interested in formalizing the requirements of real-world systems in a
graphical way. We have seen that graph conditions visually describe system
state properties and that graph programs with interface provide a visual
model of system transitions. As usual, a program specification consists of a
(nested) precondition, a program with interface and a (nested) postcondition
to specify the input/output behavior of systems and programs.

Definition 5.1 (program specification). A program specification is a
triple {c}P{d}, where c, d are conditions and P is a program with interface
dom(c). The conditions c and d are called precondition and postcondition,
respectively.

A program specification is correct, if all results of a program, starting with
any input satisfying the precondition, satisfy the postcondition.

Definition 5.2 (correctness). A specification {c}P{d} is correct, if for
all M-morphisms m with domain dom(c) that satisfy c, 〈m, m∗, mP〉 ∈ JPK
implies m∗ |= d, for allM-morphisms m∗ and all partial monomorphisms mP.
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Example 5.3 (access control specification). The following access con-
trol specification expresses that if every user logged into a system has the
appropriate access right (precondition) and the system grants a user access
to a system to which he possesses an access right (program; more precisely,
a transformation rule), then every user logged into a system has the appro-
priate access right (postcondition).

∀

(

1 2 3

, ∃
1 2 3

) precondition: Every user
logged into a system has the
appropriate access right.

〈

1 2 3

⇀֒
1 2 3

〉 program: If a user with the
appropriate access right pro-
poses a session, it is accepted.

∀

(

1 2 3

, ∃
1 2 3

) postcondition: Every user
logged into a system has the
appropriate access right.

While this specification seems to be correct, let us apply our formal methods
to decide the correctness.

Correctness, as defined above, is more precisely weak partial correctness.
The notion is called weak, as opposed to strong [Apt81], because it does
not guarantee the existence of results (programs with interface may abort
without results). The notion is called partial, as opposed to total, because
the above definition does not guarantee the termination of P for every input
satisfying c. In [HPR06], we consider weakest preconditions ensuring the
termination of programs and the existence of results. In the following we will
restrict ourselves to so-called weakest liberal preconditions ensuring (weak
partial) correctness.

5.2 Basic transformations on conditions

In this section, we present transformations on conditions that we use later
on for the construction of weakest preconditions, see Section 5.3, and for the
definition of certain deduction rules of our calculus for proving conditions,
see Section 6.3.

Let m be anM-morphism, c be a condition and let Cond denote the set
of all conditions. We consider the following transformations that create or



5.2. Basic transformations on conditions 59

modify a condition:

transformation intuitive meaning

A(m, c) shifts c along m; conjunctively incorporates ∃m into c

Del(m, c) applies Del(m) on every morphism of c

Deletable(m) expresses the applicability of Del(m) as a condition

Add(m, c) applies Add(m) on every morphism of c

First, we consider a transformation A:M× Cond → Cond , that for anM-
morphism m, shifts a condition c over dom(m) along m to yield a condition
over codom(m) representing a conjunctive combination of c and ∃m. This
construction is used in Section 5.3 in the construction of weakest liberal
preconditions for the program construct Uns, as well as in the definition of
the deduction rules (Lift), (Partial lift), and (Supporting lift) in Section 6.3.

Lemma 5.4 (shifting of conditions along M-morphisms). There is
a transformation A, such that for all m ∈ M and every condition c over
dom(m) we have: For all m′′ ∈M with dom(m′′) = codom(m),

m′′ |= A(m, c) ⇔ m′′ ◦m |= c.

••
m

cA(m, c)

The idea of the transformation A is a case differentiation of all possible
overlappings of the additional elements in codom(m) with the elements in the
objects of the condition c. Transformation A generalizes the corresponding
construction for “basic conditions” in [EEHP06], first described for graphs in
[HW95]. At first view, it is similar to the construction of Theorem 3.12, but
most importantly, as m ∈M, the pushout is guaranteed to exist.

Construction. For M-morphisms m and conditions over dom(m), let
A(m, true) = true and A(m, ∃(a, c′)) = ∨e∈Epi ∃(b, A(r, c′)), where 〈a′, q〉 is
the pushout of 〈m, a〉. The disjunction ∨e∈Epi ranges over all epimorphisms
e with domain codom(a′) such that both b = e ◦ a′ and r = e ◦ q are in M.
Furthermore, A(m, ¬c′) = ¬A(m, c′) and A(m, ∧j∈J c′j) = ∧j∈J A(m, c′j).

•

•

•

•

•

(PO)a′

e

m

a

q

r

b
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Example 5.5 (transformation A). Consider the access control condition

secure = ∀

(

1 2 3

, ∃
1 2 3

)
.

The transformation A(
1 2 3

←֓ I, secure) yields the following condition
over

1 2 3
(superfluous subconditions are omitted):

acA =
∨
¬∃

(
,
∨
¬∃

)

∧
∨
¬∃

(

,
∨
¬∃

)

∧
∨
¬∃

(
,
∨
¬∃

)

∧
∨
¬∃
(

,
∨
¬∃

)

∧
∨
¬∃

(

,
∨
¬∃

)

∧
∨
¬∃

(
,
∨
¬∃

)

Note that in the above condition, any occurence of the connective
∨

ranges
over singletons.

Proof of Lemma 5.4. By induction over the structure of conditions.
Basis. For c = true, we have A(m, c) = A(m, true) = true = c.
Hypothesis. Assume the statement holds for condition c′.
Step. Let c = ∃(a, c′).
Only if. Assume m′′ |= A(m, ∃(a, c′)) = ∨e∈Epi ∃(b, A(r, c′)). There is an
e ∈ Epi such that m′′ |= ∃(b, A(r, c′)). By definition of |=, there exists an
M-morphism q′′ with m′′ = q′′ ◦ b. Define q′ = q′′ ◦ r. As q′′, r ∈ M and M
closed under composition, we have q′ ∈ M. Let m′ =m′′ ◦m. As m, m′′ ∈M
andM closed under composition, m′ ∈M. By construction, (1) is a pushout
and we have a′◦m = q◦a, r = e◦q and b = e◦a′. Together, m′′◦m =m′ = q′◦a
and m′ = m′′ ◦m |= ∃a. Using the inductive hypothesis, q′′ |= A(m, ∃(a, c′))
implies q′ = q′′ ◦ r |= c′, we have m′ = m′′ ◦m |= ∃(a, c′).

•

•

•

•

•

•

(1)a′

e

b

q′′

m

a

q

r

q′
h

m′′

m′
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If. Assume m′′◦m |= ∃(a, c′). Let m′ = m′′◦m. As m′′, m inM andM closed
under composition, m′ inM. By definition of |=, there exists a morphism q′ in
M with m′ = q′◦a. Following the construction, we yield the pushout (1) with
object C ′ together with the morphisms a′ and q. As q′ ◦a = m′ =m′′ ◦m, the
pushout guarantees the existence of a unique morphism h with m′′ =h◦a′ and
q′ = h◦ q. Consider q′′ ◦ e = h, an epi-M-factorization of h with epimorphism
e andM-morphism q′′. Let r = e◦q. As q′′◦r = q′, q′, q′′ inM andM closed
under decomposition, r inM. Define b = e ◦ a′. As m′′, q′′ are inM andM
closed under decomposition, we have b is in M. In every case, m′′ =h ◦ a′,
h = q′′ ◦ e and b = e ◦ a′ yield m′′ = q′′ ◦ b (m′′ |= ∨e∈Epi ∃b = A(m, ∃a)). Using
the inductive hypothesis, q′ = q′′ ◦ r |= c′ implies q′′ |= A(m, ∃(a, c′)), we have
m′′ |= ∨e∈Epi ∃(b, A(r, c′)) =A(m, ∃(a, c′)).

For Boolean formulas over conditions, the statement follows directly from
the definitions and the inductive hypothesis. Thus, the statement holds for
all conditions. �

Next, we consider a transformation Del:M × Cond → Cond that takes
anM-morphism r and a condition c as parameters and yields a condition c∗

representing the pushout complement of c with respect to r. In this sense, the
pushout complement constructionM×M→M×M, as defined in Def. 2.11,
is lifted from morphisms to conditions and Del can be seen as a generalization
of the program construct Del from morphisms to conditions. The following
lemma states that for every transition 〈m∗, m, r〉 in the semantics of Add(r),
the input m∗ satisfies c∗ if and only if the output m satisfies condition c.
This relation is used in Section 5.3 in the construction of weakest liberal
preconditions for the program construct Add.

Lemma 5.6 (pushout complement of conditions). There is a transfor-
mation Del such that, for everyM-morphism r, every condition c, and every
tuple 〈m∗, m, r〉 ∈ JAdd(r)K,

m∗ |= Del(r, c) iff m |= c.

••
r

cDel(r, c)

The effect of the transformation is the deletion of elements as specified by r.
The logical structure of the input condition is either preserved or truncated,
depending on whether or not all pushout complements exist.

Construction. Transformation Del(r, c) is defined inductively as follows:
Del(r, true) = true and Del(r, ∃(a, c′)) = ∃(a∗, Del(r∗, c′)) if the pushout
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complement r∗◦a∗ of a◦r exists, otherwise Del(r, ∃(a, c′)) = false. Note that
as r is in M, the pushout complement is unique, if existent. Furthermore,
Del(r,¬c′) = ¬Del(r, c′) and Del(r,∧j∈J c′j) = ∧j∈J Del(r, c′j).

• •

• •

r

r∗

a∗ a(POC)

Example 5.7 (transformation Del). Consider the condition acA con-
structed in Example 5.5. The transformation Del(

1 2 3
→֒

1 2 3
,

acA) yields the following condition over
1 2 3

:

acDel =
∨
¬∃

(
,
∨
¬∃

)

∧
∨
¬∃

(

,
∨
¬∃

)

∧
∨
¬∃

(
,
∨
¬∃

)

∧
∨
¬∃
(

,
∨
¬∃

)

∧
∨
¬∃

(
,
∨
¬∃

)

∧
∨
¬∃

(
,
∨
¬∃

)

Proof. By structural induction. Let 〈m∗, m, r〉 ∈ JAdd(r)K be arbitrary and
let 〈r∗∗, m〉 be the pushout of 〈m∗, r〉.
Basis. For c = true, we have Del(r, c) = Del(r, true) = true = c.
Hypothesis. Assume the statement holds for condition c′.
Step. Case c = ∃(a, c′) and the pair a ◦ r has a pushout complement.
Only if. Assume m∗ |= Del(r, ∃(a, c′)) = ∃(a∗, Del(r∗, c′)). There exists an
M-morphism q∗ such that q∗ ◦ a∗ = m∗ and q∗ |= Del(r∗, c′). According
to the construction, 〈r∗, a〉 is the pushout of 〈a∗, r〉. As M is closed under
pushouts, r ∈ M implies r∗ ∈ M. By the universal property of pushouts,
there exists a unique morphism q such that the arising diagrams commute.
As q ◦ a = m and q |= c′ (Hypothesis), we conclude m |= ∃(a, c′).
If. Assume m |= ∃(a, c′). There exists anM-morphism q such that q◦a = m
and q |= c′. Construct 〈q∗, r∗, 〉 as the pullback of 〈r∗∗, q〉. By the univer-
sal property of pullbacks, there exists a unique morphism a′: dom(a∗) →
codom(a∗) such that the arising diagrams commute. Let (1’) denote a ◦ r =
r∗ ◦ a′. By the pushout-pullback decomposition, (1’) and (2) are pushouts.
As pushouts are unique up to isomorphisms, a′ = a∗ and (1’) equals (1) up
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to isomorphism. As M is closed under pushouts, r ∈ M implies r∗ ∈ M.
As q ◦ a = m and q |= c′ (Hypothesis), we conclude m |= ∃(a, c′).

• •

• •

• •

r

r∗

a∗ a(1)

q∗ q

r∗∗

(2)

m∗ m

Case c = ∃(a, c′) and the pair a◦r has no pushout complement. In this case,
Del(r, ∃(a, c′)) = false. We have to show that m∗ |= false ⇔ m |= ∃(a, c′):
As no morphism satisfies false, it suffices to show m 6|= ∃(a, c′). Assume
m |= ∃(a, c′). Then there exists some M-morphism q with q ◦ a = m. Thus
there is a decomposition of the existing pushout into two pushouts (1) and
(2) as above. Hence the pair a◦ r has a pushout complement. Contradiction.
For Boolean formulas over conditions, the statement follows directly from
the definition and the inductive hypothesis. This concludes the proof. �

As pushouts exists along M-morphisms, that is, ∀m∗ ∃m. 〈m∗, m, r〉 ∈
JAdd(r)K, we can strengthen the statement of Lemma 5.6.

Corollary 5.8 (pushout complement of conditions). There is a trans-
formation Del such that, for everyM-morphisms r, m∗, and every condition c,

m∗ |= Del(r, c) iff (∀m ∈M. 〈m∗, m, r〉 ∈ JAdd(r)K implies m |= c).

Next, we consider a transformation Deletable:M → Cond that creates a
condition expressing the applicability of the Del(l) program construct. More
precisely, the existence of a pushout complement for a pair of morphisms
m ◦ l is expressed by a condition over codom(l).

Lemma 5.9 (existence of pushout complements). There is a transfor-
mation Deletable such that, for every pair ofM-morphisms m ◦ l,

m |= Deletable(l) iff ∃m∗.
〈
m, m∗, l−1

〉
∈ JDel(l)K.

Using conditions, one cannot directly express that a pushout complement
exists. However, it is possible to consider the negation of a minimal covering
of negative conditions for which pushout complements are guaranteed not to
exist.
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Construction. For anM-morphism l, let Deletable(l) = ∧a∈A¬∃a and the
set A ranges over all M-morphisms a with domain codom(l) such that the
pair a◦ l has no pushout complement and whenever there is a decomposition
a = a′′◦a′ of morphism a with a′ ∈M (which implies a′′ ∈M),M-morphism
a′′ is an isomorphism or a′ ◦ l has a pushout complement. The non-existence
of such a decomposition ensures that we only consider minimal morphisms a.
The morphism a′′ is required to be non-isomorphic, otherwise there always
is such a decomposition and A would be empty. The requirement a′′ in M
is necessary in context of anM-satisfiable condition. We can restrict A to a
set ofM-morphisms as the lemma assumes m to be inM.

• •

• •

• a

l

a′

a′′
(PO)

Example 5.10 (transformation Deletable). For a morphism m with
domain , an application of the program Del( ←֓ ∅) requires the absence
of edges adjacent to the deleted user node. Deletable(∅ →֒ ) yields the
following condition over :

Deletable(∅ →֒ ) = ¬∃( ) ∧ ¬∃( ) ∧ ¬∃( )
∧¬∃( ) ∧ ¬∃( ) ∧ ¬∃( ) ∧ ¬∃( )

Remark 5.11. For the category 〈Graphs, Inj 〉, a morphism m satisfies the
condition Deletable(l) iff m satisfies the so-called contact and identification
condition [Ehr79]. The graph condition Deletable(l) is finite for every graph
morphism l, that is, a finite conjunction of conditions (up to isomorphism).

Proof. Only if. Assume the pair m ◦ l has no pushout complement. Let
a = m and m′ = idcodom(a). Now, we have some M-morphism a with m =
m′ ◦ a for someM-morphism m′ such that a ◦ l has no pushout complement.
If there is a decomposition a = a′′ ◦ a′ of a such that a′ ∈ M, a′ ◦ l has
no pushout complement and a′′ in M is not an isomorphism, let be a = a′,
m′ = m′ ◦ a′′, m′ in M and repeat the argument. As there are only finitely
many M-decompositions, eventually there is no such decomposition and a
belongs to the construction. As m = m′ ◦ a and m′ in M, m |= ∃a and
m 6|= Deletable(l).
If. Assume the pair m ◦ l has a pushout complement l∗∗ ◦ m∗, but m 6|=
Deletable(l). Then there exists an a ∈ A such that m |= ∃a, that is, there is
anM-morphism m′ such that m = m′ ◦a. Construct as pullback of 〈m′, l∗∗〉.
By the universal property of pullbacks, there is a morphism a∗ such that the
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resulting diagrams commute. By the pushout-pullback decomposition, the
pushout (1)+(2) has a decomposition into two pushouts (1) and (2) and, in
particular, a ◦ l has a pushout complement, contradiction. Consequently, for
every morphism a ∈ A, m |= ¬∃a implying m |= Deletable(l).

• •

• •

• •

a

m m∗

l

a∗

m′

l∗

(1)

(2)

�

Next, we consider a transformation Add:M× Cond → Cond that takes an
M-morphism l and a condition c as parameters and yields a condition c∗

representing the pushout of c with respect to r. In this sense, the notion of
pushout, as defined in Def. 2.8, is lifted from morphisms to conditions and
Add can be seen as a generalization of the program construct Add from mor-
phisms to conditions. The following lemma states that for every transition
〈m, m∗, l−1〉 in the semantics of Del(l), the input m satisfies c∗ if and only
if the output m∗ satisfies condition c. Together with Lemma 5.9, it is used
in Section 5.3 in the construction of weakest liberal preconditions for the
program construct Del.

Lemma 5.12 (pushout of conditions). There is a transformation Add
such that, for every M-morphism l, every condition c, and every tuple
〈m∗, m, l−1〉 ∈ JDel(l)K,

m∗ |= Add(l, c) iff m |= c.

•• l cAdd(l, c)

The effect of the transformation is the addition of elements as specified by l.
The logical structure of the input condition is preserved.

Construction. Transformation Add(l, c) is defined inductively as follows:
Add(l, true) = true and Add(l, ∃(a, c′)) = ∃(a∗, Add(l∗, c′)) where 〈a∗, l∗〉
is the pushout of 〈l, a〉. For Boolean conditions, we have Add(l,¬c′) =
¬Add(l, c′) and Add(l,∧j∈J c′j) = ∧j∈J Add(l, c′j).

• •

••

l

l∗

aa∗ (PO)
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Example 5.13 (transformation Add). Consider the condition acDel con-
structed in Example 5.7. The transformation Add(

1 2 3
←֓

1 2 3
,

acDel) yields the following condition over
1 2 3

:

acAdd =
∨
¬∃
(

,
∨
¬∃

)

∧
∨
¬∃



 ,
∨
¬∃





∧
∨
¬∃

(
,
∨
¬∃

)

∧
∨
¬∃

(
,
∨
¬∃

)

∧
∨
¬∃

(

,
∨
¬∃

)

∧
∨
¬∃

(
,
∨
¬∃

)

Proof. By structural induction. Let 〈m∗, m, l−1〉 ∈ JDel(l)K be arbitrary
and let l∗∗ ◦m be the pushout complement of m∗ ◦ l.
Basis. For c = true, we have Add(l, c) = Add(l, true) = true = c.
Hypothesis. Assume the statement holds for condition c′.
Step. Case c = ∃(a, c′).
Only if. Assume m∗ |= Add(l, ∃(a, c′)) = ∃(a∗, Add(l∗, c′)). There exists
an M-morphism q∗ such that q∗ ◦ a∗ = m∗ and q∗ |= Add(l∗, c′). Construct
〈l∗, q〉 as the pullback of 〈q∗, l∗∗〉. By the universal property of pullbacks,
there exists a unique morphism a′: dom(a)→ codom(a) such that the arising
diagrams commute. Let (1’) denote a∗ ◦ l = l∗ ◦ a′. By the pushout-pullback
decomposition, (1’) and (2) are pushouts. As pushouts are unique up to
isomorphisms, a′ = a and (1’) equals (1) up to isomorphism. As M is
closed under pushouts, l ∈ M implies l∗ ∈ M. As q ◦ a = m and q |= c′

(Hypothesis), we conclude m |= ∃(a, c′).

• •

••

• •

l

l∗

aa∗ (1)

q∗ q

l∗∗

(2)

m∗

m

If. Assume m |= ∃(a, c′). There exists anM-morphism q such that q◦a = m
and q |= c′. According to the construction, 〈a∗, l∗〉 is the pushout of 〈l, a〉.
As M is closed under pushouts, l ∈ M implies l∗ ∈ M. By the universal
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property of pushouts, there exists a unique morphism q∗ such that the arising
diagrams commute. As q∗ ◦ a∗ = m∗ and q∗ |= Add(l∗, c′) (Hypothesis), we
conclude m∗ |= ∃(a∗, Add(l∗, c′)).
Case c = ¬c′. We have m∗ |= Add(l, c) iff m∗ |= Add(l,¬c′) = ¬Add(l, c′)
iff m |= ¬c′.
Case c = ∧j∈J c′j. We have m∗ |= Add(l, c) iff m∗ |= Add(l,∧j∈J c′j) =
∧j∈J Add(l, c′j) iff m |= ∧j∈J c′j. This concludes the proof. �

As we can express the applicability of Del construct as a condition, see
Lemma 5.9, we can strengthen the statement of Lemma 5.12.

Corollary 5.14 (pushout of conditions). There is a transformation Add
such that, for every M-morphisms l, m∗, and every condition c,

m∗ |= (Deletable(l)⇒ Add(l, c))
iff (∀m ∈M. 〈m∗, m, r〉 ∈ JDel(l)K implies m |= c).

5.3 Weakest liberal preconditions

In the following we consider weakest liberal preconditions to reduce the cor-
rectness problem of program specifications into the implication problem of
conditions. A weakest liberal precondition of a program P and postcondition
d is a least restrictive precondition still ensuring correctness of P with respect
to d.

Definition 5.15 (weakest liberal preconditions). A liberal precon-
dition for a program P and a postcondition d is a condition c such that a
program specification {c}P{d} is correct. A weakest liberal precondition of
a program P and a postcondition d, denoted by wlp(P, d), is a liberal pre-
condition such that any other liberal precondition of P relative to d implies
wlp(P, d).

One way to prove the correctness of a program specification {c}P{d} is to
prove that c really is a (liberal) precondition of P and d. A weakest liberal
precondition covers all necessary premises for a program with respect to a
postcondition, thus it suffices to prove that c is stronger than, or equiva-
lently, implies wlp(P, d). In this sense, the correctness problem of program
specifications can be reduced onto the implication problem of conditions by
constructing weakest preconditions, as depicted in Figure 5.1.

A weakest precondition is a precondition that is not more restrictive than
necessary. In this sense, the following characterization points out a simple
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precondition c

program P

postcondition d
Wlp

weakest
precondition Does c imply wlp(P, d) ?

yes/no

Figure 5.1: Decider for the correctness problem

proof scheme for weakest liberal preconditions. When comparing the charac-
terization with Definition 5.2, notice that the attribute “weakest” is reflected
by the “only if” of the following iff-statement.

Fact 5.16 (characterization wlp). A condition c over C is a weakest
liberal precondition of program P with interface C relative to condition d if,
for all morphisms m in M with domain C, (m |= c) iff (〈m, m∗, mP〉 ∈ JPK
implies m∗ |= d, for all m∗, mP (where m∗ ∈M, mP ∈ P)).

Weakest liberal preconditions can be constructed for programs with interface.
The following theorem is a major result of this thesis.

Theorem 5.17 (weakest liberal preconditions). For every program P

with interface C and condition d, a condition Wlp(P, d) over C can be con-
structed that is a weakest liberal precondition of P and d, that is, Wlp(P, d) ≡
wlp(P, d).
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Construction. The Wlp is defined by induction over the structure of pro-
grams:

Wlp(Skip, d) = d
Wlp(Abort, d) = true
Wlp(Assert(c), d) = (c⇒ d)
Wlp(Sel(x, c), d) = ∀(x, (c⇒ d))
Wlp(Del(l), d) = Deletable(l)⇒ Add(l, d)
Wlp(Add(r), d) = Del(r, d)
Wlp(Uns(y), d) = A(y, d)
Wlp(Fix(P), d) = Wlp(Ffree(Fix(P)), d)
Wlp({P, . . . , Q}, d) =

∧
R∈{P,...,Q} Wlp(R, d)

Wlp((P; Q), d) = Wlp(P, Wlp(Q, d))
Wlp(if c then P fi, d) = (c⇒Wlp(P, d)) ∧ (¬c⇒ d)
Wlp(if c then P

else Q fi, d) = (c⇒Wlp(P, d)) ∧ (¬c⇒Wlp(Q, d))
Wlp(P0, d) = d
Wlp(Pj , d) = Wlp(Fix(P), Wlp(Pj−1, d))
Wlp(P∗, d) =

∧∞
j=0 Wlp(Pj , d)

Wlp(↓P↓, d) = Wlp(P∗, Wlp(Fix(P), false)⇒ d)
Wlp(while c do P od, d) = Wlp((Assert(c); P)∗,¬c⇒ d)

Furthermore, Wlp(〈〈L ←֓ K →֒ R〉 , acL〉 , d) = ∀(iL, (Deletable(L ←֓ K) ∧
acL)⇒ Add(L ←֓ K, Del(K →֒R, A(iR, d)))).

Example 5.18 (access control wlp). Consider the access control specifi-
cation of Example 5.3:

∀

(

1 2 3

, ∃
1 2 3

) precondition: Every user
logged into a system has the
appropriate access right.

〈

1 2 3

⇀֒
1 2 3

〉 program: If a user with the
appropriate access right pro-
poses a session, it is accepted.

∀

(

1 2 3

, ∃
1 2 3

) postcondition: Every user
logged into a system has the
appropriate access right.

To decide its correctness, we now want to construct a weakest liberal precon-
dition of the above rule and postcondition, to which we refer to as Access

and secure, respectively. As the rule’s (implicit) application condition is true
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and Deletable(
1 2 3

←֓
1 2 3

) = true (deletion of edges is always
possible), the weakest liberal precondition reduces to

Wlp(Access, secure) = ∀(∅ →֒
1 2 3

,

Add(
1 2 3

←֓
1 2 3

,

Del(
1 2 3

→֒
1 2 3

,

A(
1 2 3

←֓ ∅, secure)))).

Taking the results of Example 5.5-5.13 into consideration, we yield the fol-
lowing condition over ∅:

acwlp =
∨
¬∃

(
,
∨
¬∃

)

∧
∨
¬∃

(

,
∨
¬∃

)

∧
∨
¬∃

(
,
∨
¬∃

)

∧
∨
¬∃
(

,
∨
¬∃

)

∧
∨
¬∃

(

,
∨
¬∃

)

∧
∨
¬∃

(
,
∨
¬∃

)

Consider furthermore the condition noSharing = ¬∃ . The weak-
est liberal precondition Wlp(Access, secure ∧ noSharing) is

ac2wlp =
∨
¬∃

(
,
∨
¬∃

)

∧
∨
¬∃

(

,
∨
¬∃

)

∧
∨
¬∃

(
,
∨
¬∃

)

∧
∨
¬∃

(
,
∨
¬∃

)

∧
∨
¬∃

∧
∨
¬∃

∧
∨
¬∃

Proof of Theorem 5.17. By induction over the structure of programs.
Basis.

Case Sel. For every morphism m inM:
m |= wlp(Sel(x, c), d)
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iff ∀m∗, mSel. (〈m, m∗, mSel〉 ∈ JSel(x, c)K implies m∗ |= d) (Def. wlp)
iff ∀m∗. ((m∗ ◦ x = m and m∗ ∈M and m∗ |= c)

implies m∗ |= d) (Def. JSelK)
iff ∀m∗. ((m∗ ◦ x = m and m∗ ∈M)

implies (m∗ |= c implies m∗ |= d)) ( ((F∧G)⇒H)
≡(F⇒(G⇒H))

)

iff ∀m∗. ((m∗ ◦ x = m and m∗ ∈M) implies m∗ |= (c⇒ d)) (Def. |=)
iff m |= ∀(x, (c⇒ d)) (Fact 3.1)
iff m |= Wlp(Sel(x, c), d) (Def. Wlp)

Case Del. For every morphism m inM:
m |= wlp(Del(l), d)

iff ∀m∗, mDel. (〈m, m∗, mDel〉 ∈ JDel(l)K implies m∗ |= d) (Def. wlp)
iff ∀m∗. (〈m, m∗, l−1〉 ∈ JDel(l)K implies m∗ |= d) (Def. wlp)
iff m |= (Deletable(l)⇒ Add(l, d)) (Cor. 5.14)
iff m |= Wlp(Del(l), d) (Def. Wlp)

Case Add. For every morphism m inM:
m |= wlp(Add(r), d)

iff ∀m∗, mAdd. (〈m, m∗, mAdd〉 ∈ JAdd(r)K implies m∗ |= d) (Def. wlp)
iff ∀m∗. (〈m, m∗, r〉 ∈ JAdd(r)K implies m∗ |= d) (Def. JAddK)
iff m |= Del(r, d) (Cor. 5.8)
iff m |= Wlp(Add(r), d) (Def. Wlp)

Case Uns. For every morphism m inM:
m |= wlp(Uns(y), d)

iff ∀m∗, mUns. (〈m, m∗, mUns〉 ∈ JUns(y)K implies m∗ |= d) (Def. wlp)
iff ∀m∗. ((m∗ = m ◦ y) implies m∗ |= d) (Def. JUnsK)
iff m ◦ y |= d (m∗ = m ◦ y)
iff m |= A(y, d) (Lem. 5.4)
iff m |= Wlp(Uns(y), d) (Def. Wlp)

Case Assert(c).
wlp(Assert(c), d)

= wlp(Sel(idC , c), d) (Def. Assert)
= Wlp(Sel(idC , c), d) (Hypothesis)
= ∀(idC , (c⇒ d)) (Def. Wlp)
≡ (c⇒ d) (Table 6.3)

Case Skip.
wlp(Skip, d)

= wlp(Assert(true), d) (Def. Skip)
≡ Wlp(Assert(true), d) (Hypothesis)
= (true⇒ d) (Def. Wlp)
≡ d



72 5. Correctness of program specifications

Case Abort.
wlp(Abort, d)

= wlp(Assert(false), d) (Def. Abort)
≡ Wlp(Assert(false), d) (Hypothesis)
= (false⇒ d) (Def. Wlp)
≡ true

Case ρ = 〈〈L ←֓ K →֒ R〉 , acL〉.
wlp(ρ, d)

= wlp(Sel(iL, acL); Del(L ←֓ K); Add(K →֒ R); Uns(iR), d) (Def. ρ)
≡ Wlp(Sel(iL, acL); Del(L ←֓ K); Add(K →֒ R); Uns(iR), d) (Hypothesis)
= ∀(iL, (Deletable(L ←֓ K) ∧ acL)

⇒ Add(L ←֓ K, Del(K →֒R, A(iR, d)))) (Def. Wlp)

Hypothesis. Assume Wlp(R, d) = wlp(R, d) for R ∈ {P, . . . , Q}.
Step.

Case Fix(P). As we have shown in Section 4.2, for every program Fix(P),
there is an equivalent, Fix-free program Ffree(Fix(P)).

wlp(Fix(P), d)
≡ wlp(Ffree(Fix(P)), d) (Theorem 4.16)
≡ Wlp(Ffree(Fix(P)), d) (Hypothesis)

Case S = {P, . . . , Q}.
m |= wlp(S, d)

iff ∀m∗, mS . (〈m, m∗, mS〉 ∈ JSK implies m∗ |= d) (Def. wlp)
iff ∀m∗, mS . (〈m, m∗, mS〉 ∈

⋃
R∈SJRK implies m∗ |= d) (Def. JSK)

iff ∀m∗, mS .
∧

R∈S (〈m, m∗, mS〉 ∈ JRK implies m∗ |= d) ( (F∨G)⇒H≡
(F⇒H)∧(G⇒H)

)

iff
∧

R∈S ∀m
∗, mS . (〈m, m∗, mS〉 ∈ JRK implies m∗ |= d) ( ∀xF∧G≡

∀xF∧∀xG
)

iff
∧

R∈S m |= wlp(R, d) (Def. wlp)
iff

∧
R∈S m |= Wlp(R, d) (Hypothesis)

iff m |=
∧

R∈S Wlp(R, d) (Def. |=)

Case (P; Q).
m |= wlp((P; Q), d)

iff ∀m∗, mP;Q. (〈m, m∗, mP;Q〉 ∈ J(P; Q)K implies m∗ |= d) (Def. wlp)
iff ∀m∗, mQ. ∀m

′, mP. ((〈m, m′, mP〉 ∈ JPK
and 〈m′, m∗, mQ〉 ∈ JQK) implies m∗ |= d) (Def. J(P; Q)K)

iff ∀m′, mP. ∀m
∗, mQ. (〈m, m′, mP〉 ∈ JPK

implies (〈m′, m∗, mQ〉 ∈ JQK implies m∗ |= d)) ( (F∧G)⇒H≡
(F⇒(G⇒H))

)

iff ∀m′, mP. (〈m, m′, mP〉 ∈ JPK

implies ∀m∗, mQ. (〈m′, m∗, mQ〉 ∈ JQK implies m∗ |= d)) ( x 6∈Free(F ):
∀x(F∨G)≡F∨∀xG

)



5.3. Weakest liberal preconditions 73

iff ∀m′, mP. (〈m, m′, mP〉 ∈ JPK implies m′ |= wlp(Q, d)) (Def. wlp)
iff ∀m′, mP. (〈m, m′, mP〉 ∈ JPK implies m′ |= Wlp(Q, d)) (Hypothesis)
iff m |= wlp(P, Wlp(Q, d)) (Def. wlp)
iff m |= Wlp(P, Wlp(Q, d)) (Hypothesis)

Case if c then P fi.
wlp(if c then P else Q fi, d)

= wlp({(Assert(c); P), Assert(¬c)}, d) (Def. if-then)
≡ Wlp({(Assert(c); P), Assert(¬c)}, d) (Hypothesis)
= Wlp((Assert(c); P), d) ∧Wlp(Assert(¬c), d) (Def. Wlp)
= Wlp(Assert(c), Wlp(P, d)) ∧Wlp(Assert(¬c), d) (Def. Wlp)
= (c⇒Wlp(P, d)) ∧ (¬c⇒ d) (Def. Wlp)

Case if c then P else Q fi.
wlp(if c then P else Q fi, d)

= wlp({(Assert(c); P), (Assert(¬c); Q)}, d) (Def. if-then-else)
≡ Wlp({(Assert(c); P), (Assert(¬c); Q)}, d) (Hypothesis)
= Wlp((Assert(c); P), d) ∧Wlp((Assert(¬c); Q), d) (Def. Wlp)
= Wlp(Assert(c), Wlp(P, d)) ∧Wlp(Assert(¬c), Wlp(Q, d)) (Def. Wlp)
= (c⇒Wlp(P, d)) ∧ (¬c⇒Wlp(Q, d)) (Def. Wlp)

Case P0.
wlp(P0, d)

= wlp(Skip, d) (Def. P0)
≡ Wlp(Skip, d) (Hypothesis)
= d (Def. Wlp)

Case Pj , j > 0.
wlp(Pj, d)

= wlp((Fix(P); Pj−1), d) (Def. Pj)
≡ Wlp((Fix(P); Pj−1), d) (Hypothesis)
= Wlp(Fix(P), Wlp(Pj−1, d)) (Def. Wlp)

Case P∗.
wlp(P∗, d)

= wlp(
⋃∞

j =0 Pj , d) (Def. P∗)
≡ Wlp(

⋃∞
j = 0 Pj , d) (Hypothesis)

=
∧∞

j = 0 Wlp(Pj , d) (Def. Wlp)

Case ↓P↓.
m |= wlp(↓P↓, d)

iff ∀m∗, m↓P↓. (〈m, m∗, m↓P↓〉 ∈ J↓P↓K implies m∗ |= d) (Def. wlp)
iff ∀m∗. ((〈m, m∗, id〉 ∈ JP∗K

and ∄m′. (〈m∗, m′, id〉 ∈ JFix(P)K)) implies m∗ |= d) (Def. J↓P↓K)
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iff ∀m∗. ((〈m, m∗, id〉 ∈ JP∗K
and ∀m′. (〈m∗, m′, id〉 ∈ JFix(P)K) implies false)

implies m∗ |= d) ( ¬∃xF
≡∀x¬F

)
iff ∀m∗. ((〈m, m∗, id〉 ∈ JP∗K and m∗ |= wlp(Fix(P), false))

implies m∗ |= d) (Def. wp)
iff ∀m∗. ((〈m, m∗, id〉 ∈ JP∗K and m∗ |= Wlp(Fix(P), false))

implies m∗ |= d) (Hypothesis)
iff ∀m∗. (〈m, m∗, id〉 ∈ JP∗K

implies (m∗ |= Wlp(Fix(P), false) implies m∗ |= d)) ( (F∧G)⇒m∗≡
F⇒(G⇒H)

)

iff ∀m∗. (〈m, m∗, id〉 ∈ JP∗K
implies m∗ |= (Wlp(Fix(P), false)⇒ d)) (Def. |=)

iff m |= Wlp(P∗, Wlp(Fix(P), false)⇒ d) (Def. wlp, IH. P∗)

Case while c do P od.
wlp(while c do P od, d)

= wlp(((Assert(c); P)∗; Assert(¬c)), d) (Def. while c do P od)
≡ Wlp(((Assert(c); P)∗; Assert(¬c)), d) (Hypothesis)
= Wlp((Assert(c); P)∗, Wlp(Assert(¬c), d)) (Def. Wlp)
= Wlp((Assert(c); P)∗,¬c⇒ d) (Def. Wlp)

This completes the proof. �

5.4 Weakest invariants

We have presented a construction of weakest liberal preconditions. For any
program not containing a possibly unbounded form of iteration, the construc-
tion is effective. For as-long-as-possible and while-a-condition-is-satisfied it-
erations, the construction reduces to the construction of weakest precondi-
tions for reflexive, transitive closures. However, the problem to construct a
weakest (liberal) precondition for a reflexive, transitive closure contains the
difficult problem to find a weakest invariant that implies the given postcon-
dition.

Definition 5.19 (invariant). A condition c is an invariant of a program P,
if {c}P{c} is a correct specification.

First, we show that every weakest (liberal) precondition for a reflexive, tran-
sitive closure is necessarily an invariant.

Fact 5.20. For every program P and every condition d, Wlp(P∗, d) is an
invariant of P.
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Proof. According to Definition 5.2, we have to show Wlp(P∗, d) ⇛ Wlp(P,
Wlp(P∗, d)). We have Wlp(P∗, d) =

∧∞
j=0 Wlp(Pj, d) ⇛

∧∞
j=1 Wlp(Pj , d) =∧∞

j=0 Wlp(Pj+1, d) =
∧∞

j=0 Wlp(P, Wlp(Pj , d)) ≡ Wlp(P,
∧∞

j=0 Wlp(Pj , d)) =
Wlp(P, Wlp(P∗, d)), where we use the fact that wlp is universal conjunctive,
that is, wlp(P, d ∧ d′) ≡ wlp(P, d) ∧ wlp(P, d′). �

A direct consequence is the following.

Corollary 5.21. {c}P∗{c} is correct if and only if {c}P{c} is correct.

Concerning a specification {c}P∗{c}, either c is an invariant of P, or the
specification is not correct. If P itself does not contain iteration, for instance,
P is a choice of transformation rules, the correctness of such specifications
can be investigated without the need for weakest invariants.

The main problem of the construction Wlp(P∗, d), as presented in Sec-
tion 5.3, is its ineffectiveness: the construction yields an infinite condition.
Even worse, there may not always be a finite equivalent.

Example 5.22 (no finite weakest invariant). For discrete graphs, con-
sider the program P = Sel(∅ →֒

1 2
); Del(

1 2
←֓ ∅) that selects and deletes

two nodes, and consider the postcondition d = ¬∃ with the meaning “There
is no node”. A weakest precondition Wlp(↓P↓, d) = Wlp(P∗, (¬∃

1 2
⇒ d))

is a condition expressing that the number of nodes is even. However, such a
condition is not expressible by a finite first-order graph formula and thus is
not expressible by a finite graph condition.

In some cases, it may be possible to approximate a finite representation of∧∞
j=0 Wlp(Pj , d) by replacing ∞ with some k ∈ N.

Algorithm 5.23 (invariant approximation).
Parameters: program P and postcondition d.
Condition inv = d;
Condition wlp = Wlp(P, inv);
while(inv 6⇛ wlp) do

inv = wlp;

wlp = (d ∧Wlp(P, inv));
od;

return inv;

For ascending k ≥ 0, the algorithm tries to prove the invariance of the con-
dition

∧k
j=0 Wlp(Pj , d) with respect to P. However, as the following example

shows, the approximation is not guaranteed to terminate with a result, even
if a finite weakest invariant exists.
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Example 5.24 (non-termination). Consider the program P = Sel(∅ →֒
1
);

Del(
1
←֓ ∅) that selects and deletes a node, and consider the postcondition

d = ∃ with the meaning “There is a node”. On the one hand, we have∧k
j=0(Wlp(Pj, d)) 6⇛

∧k+1
j=0(Wlp(Pj , d)) for arbitrary k, while on the other

hand, Wlp(P∗, d) ≡ false.

The above algorithm does not terminate for a large class of inputs and seems
therefore of little practical relevance. A different approach to approximate
invariants uses counterexamples. The following algorithm tries to strengthen
non-invariant conditions by forbidding any situations violating the invari-
ance.

Algorithm 5.25 (counterexample-based invariant approximation).
Parameters: program P and postcondition d.
Condition inv = d;
Condition wlp = Wlp(P, inv);
while(inv 6⇛ wlp) do

while(inv 6⇛ wlp) do

cex = counterexample(inv ⇛ wlp);
inv = (inv ∧ ¬∃cex );

od;

wlp = Wlp(P, inv);
od;

return inv;

It is assumed that the method counterexample(inv ⇛ wlp) returns a small-
est counterexample. Moreover, the inner while-loop delays the recomputation
of a weakest liberal precondition to make the procedure more robust with
respect to the order of the counterexamples.

Algorithm 5.25 is sound, as after exiting the outer while loop, inv is invari-
ant and implies d. However, Algorithm 5.25 is not guaranteed to terminate,
especially if the seeked invariant concerns properties other than first-order,
for instance, paths of arbitrary length.

Example 5.26 (non-termination of Algorithm 5.25). Consider the
specification {c}ρ{c}, consisting of the condition c = ¬∃ and the rule ρ =
〈

1 2
⇀֒

1 2
〉 that moves a loop along a proper edge. The subsequent

refinements involve paths of arbitrary length of which the start and end nodes
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have each a loop:

...

Moreover, in case of termination, the approximated invariant may not be a
weakest precondition and may be not weak enough to carry out a proof.

Example 5.27 (over-approximation). Consider the correct specification
{c}P{c}, consisting of the condition c = ∀(

1
, ∃

1
) expressing “Every node

has a loop” and the program P = (Sel
1
; ↓(Sel

1
; Del

1
)↓; Del

1
) that

selects a node, selects and deletes all loops of the selected node and deletes
the selected node. The weakest liberal precondition of program Del

1
and

condition c is a condition over
1

wlpDel = (∃
1
∨ ∃

1
∨ ∃

1
∨ ∀(

1 2
, ∃

1 2
))

but wlpDel is not invariant with respect to (Sel
1

; Del
1

) as the graph
morphism cex :

1
→

1 2
is a counterexample of (wlpDel ⇒ wlpSelDelDel),

where wlpSelDelDel is the weakest liberal precondition of (Sel
1

; Del
1

)
and wlpDel, with

(wlpDel ⇒ wlpSelDelDel) ≡ wlpSelDelDel = ∀



 1
,

∃
1

∨ ∃
1

∨ ∃
1

∨ ∀(
1 2

, ∃
1 2

)




.

Algorithm 5.25 strengthens the input condition wlpDel by conjunctively com-
bining it with ¬∃

1 2
. Although the refined condition wlpDel ∧ ¬∃

1 2
is

invariant, it turns out that it is not weak enough to prove the correctness of
{c}P{c}.

In practice, counterexample-based refinement is able to approximate useful
invariants, if the postcondition is ∀-free. In contrast, the approximation is
usually too strong in the presence of universal conditions. Taking the above
example as a guide, we see that Algorithm 5.25 draws the wrong conclu-
sion from the counterexample: it should have strengthened the condition by
appending ∀(

1 2
, ∃

1 2
) instead of ¬∃

1 2
. The following improved

algorithm tries to select a subcondition of a condition responsible for a coun-
terexample and reasserts it.
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Algorithm 5.28 (counterexample-guided invariant approximation).
Parameters: program P and postcondition d.
Condition inv = d;
Condition wlp = Wlp(P, inv);
while(inv 6⇛ wlp) do

Morphism cex = counterexample(inv ⇛ wlp);
Condition theorem = (inv ⇒ wlp);
unmark(theorem);
while(cex 6= null) do

if (¬markCondition(theorem, cex)) throw new Exception();

cex = counterexample((inv ∧ getSubtree(theorem)) ⇛ wlp);
od;

inv = inv ∧ getSubtree(theorem);
wlp = Wlp(P, inv);

od;

return inv;

where, for a condition c over C, the subroutine markCondition(c, cex)
marks the smallest subcondition s of c over C such that the marking of s
ensures cex |= (getSubtree(c) ⇒ c) and returns true if and only if at least
some subcondition of s was previously unmarked. For a condition c over C,
the subroutine getSubtree(c) returns the smallest subcondition of c over C
that contains every marked subconditions. The subroutine unmark(c) recur-
sively removes all markings of a condition c. In this context, a marking is a
binary meta-information temporarily added to a condition: marked parts will
be reasserted in the next refinement as they can exclude a given counterex-
ample, while non-marked parts do not (yet) play a role in the refinement. In
case of an exception (signaling unsuccessful termination), one may resort to
Algorithm 5.25.

Example 5.29 (couterexample-guided invariant approximation). Let
us resume Example 5.27, that is, consider the correct specification {c}P{c},
consisting of the condition c = ∀(

1
, ∃

1
) expressing “Every node has a

loop” and the program P = (Sel
1
; ↓(Sel

1
; Del

1
)↓; Del

1
) that se-

lects a node, selects and deletes all loops of the selected node and deletes
the selected node. The weakest liberal precondition of program Del

1
and

condition c is a condition over
1

wlpDel = (∃
1
∨ ∃

1
∨ ∃

1
∨ ∀(

1 2
, ∃

1 2
))

but wlpDel is not invariant with respect to (Sel
1

; Del
1

) as the graph
morphism cex :

1
→

1 2
is a counterexample of (wlpDel ⇒ wlpSelDelDel),
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where wlpSelDelDel is the weakest liberal precondition of (Sel
1

; Del
1

)
and wlpDel, with

(wlpDel ⇒ wlpSelDelDel) ≡ wlpSelDelDel = ∀



 1
,

∃
1

∨ ∃
1

∨ ∃
1

∨ ∀(
1 2

, ∃
1 2

)




.

The method markCondition(wlpSelDelDel, cex) marks the subcondition

∀



 1
,

∃
1

∨ ∃
1

∨ ∃
1

∨ ∀(
1 2

, ∃
1 2

)





as it is the smallest subcondition able to neutralize the above counterexam-
ple. As there are no further markings, the method getSubtree(wlpSelDelDel)
returns the optimized condition ∀(

1 2
, ∃

1 2
). The refined condition

(wlpDel∧∀(
1 2

, ∃
1 2

)) is invariant and weak enough to prove {c}P{c}.

The counterexample-guided Algorithm 5.28 is used for the case studies in
Chapter 7. It has the highest coverage of test cases compared to Algo-
rithm 5.25 (good coverage of the car platooning case study, but insufficient
coverage of access control specifications) and Algorithm 5.23 (completely
useless).

All presented algorithms for finding invariants rely on deciding the im-
plication problem. In this sense, finding invariants really is the hardest part
of program verification as it may be necessary to decide a number of impli-
cation problems. Even if the computation of an invariant is successful, it
may be not weak enough to prove the input specification and we (internally)
yield a counterexample that may be spurious. Therefore, in cases where the
construction of weakest liberal preconditions requires the computation of in-
variants, we conduct a state space exploration to verify the authenticity of
counterexamples.

5.5 Related concepts

The Wp and Wlp predicate transformers, first introduced by Edsger W. Dijk-
stra in [Dij75], can be seen as a constructive interpretation of the well-known
Floyd-Hoare calculus. The Floyd-Hoare calculus consists of a set of logical
deduction rules enabling mathematical reasoning about the correctness of
assignment-based while-programs with respect to pre- and postcondition. It
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was first published in [Hoa69], acknowledging earlier contributions in form
of a similar system for flowcharts [Flo67]. Program verification using the
Floyd-Hoare calculus is traditionally understood as a manual and tedious
task, performed by experts using mind and hand [AO97]. Our results show
that predicate transformers, as intended by Dijkstra, are a suitable approach
to automatize such proofs as far as possible.

A closely related approach to logically infer the correctness of graph trans-
formation specifications is a translation of graph transformation rules into
logical formulas [Cou90], similar to the translation of graph conditions into
graph formulas. Following this idea, Strecker [Str08, SG06] models typed
graph transformations rules and programs in the proof assistant Isabelle.
His approach supports the manual verification of “a fragment of first-order
logic enriched by transitive closure”. While the proof assistant offers some
guidance, verification remains a manual task while the advantages of a graph-
ical notation are lost due to the translation.

A completely different approach to program verification is model check-
ing, which usually refers to a systematical exhaustive exploration of all reach-
able states and transitions of a model with respect to a start state. In this
sense, model checking proves the correctness of specifications of the form
{S}P{d}, where S represents a single object instead of an (usually) infinite
set of objects, as represented by a precondition. Model checking is possible
for finite models, that is, programs or transformation systems that are guar-
anteed to terminate for S. It is also applicable to infinite models, if there
exists a finite representation of the infinite state space that is compatible
with the postcondition d.

Among the first papers considering model checking of graph transforma-
tions are [Var03, Var04], in which typed, attributed graph transformation
rules with negative application conditions are translated to Promela and
checked by Spin against safety and reachability of “property graphs” which
correspond to the ∃¬∃-fragment/∀-free fragment of conditions. Due to the
use of Spin, which only checks models with a finite number of transitions,
upper bounds of element types have to be fixed in advance. Effectively, only a
prefix of the transformation system is checked. Furthermore, any counterex-
amples found by Spin are not translated back into graphs. Independently, a
similar approach is followed by [DFRdS03, dSDR04] in which “object-based
graph grammars” are translated to Promela.

In [Ren04b, KR06], the transformation-based tool Groove is presented.
It conducts a state space exploration of edge-labeled graph transformation
rules with negative application conditions and verifies properties in Ctl over
first-order graph logic, enriched with transitive closure. While Groove per-
forms graph isomorphism checks to detect cycles in a model, it is still re-
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stricted to transformation systems with a finite number of states (up to iso-
morphism). An abstraction of infinite transformation systems is investigated
in [RD06], but has not yet been implemented. In [RSV04], the approaches
of Rensink and Varró are compared.

A Petri net-based approach to model checking is investigated in [BK02,
BKK03, KK06, KK08]. Attributed hypergraphs are abstracted to so-called
“Petri graphs” and node-preserving transformation rules without applica-
tion conditions are over-approximated by McMillan unfoldings using counter-
example guided abstraction refinement. The associated tool Augur checks
properties in ACtl∗ over the ∀-fragment of MsoGl, for instance, the prop-
erty “Never there exists a link/path between two elements” can be checked.
However, properties such as “Always exists a link between two elements”
are not expressible in the considered logic. In [BKR05], the approaches of
Rensink and König are compared.

Another abstraction based model checking approach is investigated in
[Bau06, BW07], in which a fixpoint approximation of directed, labeled graph
relabeling rules with “local” negative application conditions, called “partner
constraints”, is considered. The considered logic Gl is based on Ctl without
the Next operator over first-order graph logic. In [BBKR08], an abstraction
method is presented that generalizes previous approaches by Rensink and
Bauer.
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approach model checking theorem proving
based on tool Spin – – – Isabelle –
automated yes yes yes yes no yes
graph. counterex. no yes yes yes no yes
infinite systems no no yes yes yes yes
AccessControl no yes no no yes yes
secure no yes no no1 yes yes
always, paths exists no yes no no yes no
publications 2003/04 2003-08 2004-08 2006-07 2006/08 2005-08

Table 5.1: Summary of dedicated GT verification approaches

A summary of the various verification approaches dedicated to graph
transformation (GT) is given in Table 5.1. At this point, each approach has

1expressible in Gl, but not preserved under abstraction



82 5. Correctness of program specifications

its own strengths and weaknesses. On the one hand, the model checking
approaches are either restricted to finite models, or due to abstraction, con-
sider only a certain fragment of a logic. On the other hand, these fragments
are usually based on monadic second order logic or do at least include the
transitive closure, thus a certain fragment of path properties is covered.

5.6 Summary and discussion

We are interested in deciding the correctness of program specifications con-
sisting of a nested precondition, a program with interface and a nested post-
condition. By considering weakest liberal preconditions we reduce the cor-
rectness problem of these specifications onto the problem whether or not the
precondition implies a weakest precondition. We presented a construction
Wlp of programs with interface and conditions into weakest liberal precon-
ditions and proved its soundness.

Aside weakest liberal preconditions ensuring (partial) correctness, there
exists weakest preconditions ensuring the existence of results and termina-
tion, as investigated for programs over double pushout transformation rules
in [HPR06]. Complementary to weakest preconditions is the concept of
strongest postconditions, as investigated for graph transformation rules and
nested preconditions in [HP09].

For programs that do not contain a possibly unbounded form of itera-
tion, the construction Wlp is effective. For as-long-as-possible and while-a-
condition-is-satisfied iterations, the construction reduces to the construction
of weakest preconditions for reflexive, transitive closure. In this case, the
problem to construct a weakest (liberal) precondition for a reflexive, tran-
sitive closure contains the difficult problem to find a weakest invariant for
a program that implies the given postcondition. Two algorithms to find
(weakest) invariants were presented and we discussed their properties. We
also pointed out that for some specifications, the construction of weakest in-
variants can be avoided, namely for specifications of {c}P∗{c}, if P itself does
not contain iteration.



83

6. The implication problem of

conditions

In this chapter we consider the implication problem of conditions, that is,
the problem to decide for any conditions whether or not a condition implies
another condition. After the computation of a weakest precondition, the
implication problem is the second step in deciding whether or not a program
specification is correct.

precondition c

program P

postcondition d
Wlp

weakest
precondition Does c imply wlp(P, d) ?

yes/no

We investigate the connections between the implication, the tautology and
the satisfiability problem of conditions, show that all problems are unde-
cidable for the category Graphs, and present a satisfiability algorithm as
well as a calculus for proving conditions over a class of weak adhesive HLR
categories.

6.1 Implication, tautology and satisfiability

The implication problem may be seen as a special instance of the tautol-
ogy problem, which again is complementary to the satisfiability problem of
conditions. We show that, for recursively enumerable categories, the satisfi-
ability problem is not decidable, but semi-decidable and present a sound and
complete satisfiability algorithm. Consequently, the tautology problem is un-
decidable and we present a sound tautology algorithm. For the definitions of
decidability, semi-decidability, and completeness, we refer to [LP98, Sch08].

Definition 6.1 (implication problem). For a given category C, the
implication problem is the problem to decide for any given conditions c, d
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over I whether or not ∀G ∈ C. G |= c implies G |= d.

Does c imply d ?
∀G ∈ C. G |= c implies G |= d ?

conditions c, d yes/no

As “G |= c implies G |= d” iff “G |= (c ⇒ d)”, the implication problem can
be seen as a tautology problem, the fundamental problem to decide for any
claimed statement whether or not it is true for all possible system states.

Definition 6.2 (tautology problem). For a given category C, the tau-
tology problem (or validity problem) is the problem to decide for any given
condition c over I whether or not ∀G ∈ C. G |= c. If so, c is a tautology, and
a contradiction otherwise.

Is c a tautology ?
∀G ∈ C. G |= c ?

condition c yes/no

We write “ |= c” if c is a tautology and “ 6|= c” if c is not a tautology. As “∀G ∈
C. G |= c” iff “¬∃G ∈ C. G |= ¬c”, the tautology problem is complementary to
the satisfiability problem, the problem to decide for any statement whether
or not there is a system state that satisfies it.

Definition 6.3 (satisfiability problem). For a given category C, the
satisfiability problem is the problem to decide for any given condition c over I
whether or not ∃G ∈ C. G |= c. If so, c is satisfiable, and unsatisfiable other-
wise.

Is c satisfiable ?
∃G ∈ C. G |= c ?

condition c yes/no

The satisfiability problem can be used to show that a system specification
is conflict free or to prove that a statement is invalid, that is, if the negated
statement is satisfiable. If some object G is provided along with a positive
answer, one yields a counterexample for the latter case, illustrating an invalid
system state. In this sense, a satisfiability algorithm complements a theorem
prover, with the prover searching for proof and the satisfiability algorithm
looking for a counterexample.

The following fact summarizes that any instance of an implication, tau-
tology or satisfiability problem can be translated into an equivalent instance
of the other two problem types.
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Fact 6.4 (connection). The implication, tautology or satisfiability problem
are connected as follows:

problem instance equivalent instance
c is satisfiable ¬c is not a tautology
c is not satisfiable ¬c is a tautology
c is a tautology ¬c is not satisfiable
c is not a tautology ¬c is satisfiable
c is a tautology true implies c

c is not a tautology true does not imply c

c implies d (c⇒ d) is a tautology
c does not imply d (c⇒ d) is not a tautology

A direct consequence is the connection between the decidability of the three
problems.

Corollary 6.5 (problem decidability). For a given category C, the satis-
fiability problem is decidable if and only if the tautology problem is decidable
if and only if the implication problem is decidable.

For the category Graphs of finite, directed, labeled graphs, conditions are
expressively equivalent to first order graph formulas, as proved in Section 3.3.
By the undecidability of first-order graph formulas [Tra50, Cou90], we get
that there are no effective procedures for deciding if a given graph condition
is satisfiable at all, satisfied by every graph, nor if a given graph condition
implies another given graph condition.

Corollary 6.6 (Undecidability of graph conditions). The satisfiability,
the tautology, and the implication problem of (finite) graph conditions are
undecidable.

Proof. Assume, any of the problems were decidable for (finite) graph con-
ditions. Then by Corollary 6.5, all of the problems would be decidable for
(finite) graph conditions. By Corollary 3.35, we could construct for every
(finite) first-order graph formula Fj (j = 1, 2) a (finite) graph condition
CondM(Fj) such that G |= Fj iff G |= CondM(Fj). Then the satisfiability
problem of (finite) first-order graph formulas would be decidable, contradic-
tion [Tra50, Cou90]. �

The undecidability of the implication problem alone implies the undecidabil-
ity of the correctness problem of the considered program specifications.
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Corollary 6.7 (Undecidability of correctness). The correctness of spec-
ifications consisting of programs with interface and nested conditions is un-
decidable.

Proof. We have: ({c}Skip{d} is correct), iff (c implies Wlp(Skip, d)), iff
(c implies d). If the correctness problem were decidable, the implication
problem would be decidable, contradiction. �

As the aforementioned problems of conditions are undecidable for Graphs,
there does not exist an algorithm that decides the satisfiability of arbitrary
conditions over arbitrary categories. Any category-independent algorithm
for the satisfiability problem of conditions is necessarily either unsound, in-
complete or not guaranteed to terminate. As the satisfiability problem is
semi-decidable for recursively enumerable categories such as Graphs, we
seek a sound and complete satisfiability algorithm that may not terminate
for some unsatisfiable conditions.

Definition 6.8 (recursive enumerability). A set S = {s1, s2, . . .} is
recursively enumerable, if there is an algorithm that enumerates the members
s1, s2, . . . of S. A category C = 〈O,A〉 is recursively enumerable, if O is
recursively enumerable.

Example 6.9 (recursive enumerability of graphs). Let C = 〈CV, CE〉
be an arbitrary, finite alphabet of node and edge labels. If applied onto the
empty graph, the reflexive transitive closure of the following graph program
with interface enumerates all graphs over C:

⋃
m∈CV

{〈∅ ⇀֒ m 〉}

∪
⋃

l∈CE, m∈CV
{〈

1
m ⇀֒

1
m

l
〉}

∪
⋃

l∈CE, m,n∈CV
{〈

1
m

2
n ⇀֒

1
m

l

2
n 〉}

Fact 6.10 (semi-decidability). If the category C is recursively enumer-
able, then the satisfiability problem is semi-decidable.

Proof. Let C be a recursively enumerable category. As programs with
interface are computationally complete, there exists a program Enumerate

that, if applied onto the initial object, enumerates C. For any condition c,
the program Enumerate; Assert(c) enumerates all objects satisfying c, hence
the satisfiability problem is semi-decidable. �
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6.2 Satisfiability solver SeekSat

In this section we present a sound and complete algorithm for conditions over
weak adhesive HLR categories that is not always guaranteed to terminate for
unsatisfiable conditions, but will find a satisfiable object for every satisfiable
condition in finite time. The algorithm answers yes, as soon a result is
found, answers no, if it terminates without results, and does not answer in
case of non-termination. Instead of enumerating all possible objects of a
category to approach the problem, the presented algorithm uses the input
condition in a constructive way. Starting from the initial object, for instance,
the empty graph, elements of positive statements are added if necessary,
while the absence of forbidden patterns is checked. The result is a monotone
(non-deleting) algorithm which non-deterministically progresses towards a
satisfying object. Technically, we generate for each condition c a program
SeekSat(c).

program
construction

program
application

condition c program
SeekSat(c)

yes, G |= c/no/unknown

Satisfaction of conditions by objects is defined by the presence (or absence)
of morphisms. For each condition c, we define a program Sat(c) that for a
given input m in M is supposed to deliver some results m∗ in M such that
m∗ |= c.

Construction (SeekSat). For a condition c over the initial object I in
MNF, define SeekSat(c) = Sat(c) and define Sat as follows:

Sat(true) = Skip

Sat(¬true) = Abort

Sat(∃(a, c)) = if¬∃(a, c) then Fix(⋃
a2◦a1=a, a1,a2∈M

{ Sel(a1); Add(a2) }; Sat(c)) fi

Sat(¬∃(a, c)) = while ∃(a, c) do Fix(Sel(a, c); Sat(¬c)) od

Sat(¬∧j∈J cj) = if∧j∈J cj then
⋃

j∈J{Sat(¬cj)} fi

Sat(∧j∈J cj) = while (¬∧j∈J cj) do

(
;j∈J Sat(cj)

)
od

Sat(¬¬c) = Sat(c)

where a1, a2 ∈ M and ;j∈{1,...,n}Pj = ((P1; P2); . . . ; Pn) an arbitrary sequen-
tialization.

No computation is necessary in the case of true, and the search for a satisfying
morphism fails in case of false. Positive existential statements correspond to
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an expansion of existing substructures (if necessary): Let be a: P →֒ C and
a2 ◦ a1: P →֒ C ′ →֒ C be a decomposition of a into two M-morphisms
a1, a2. Given an M-morphism m: P →֒ G and provided that ∃(a, c) is not
already satisfied, the program Sat(∃(a, c)) non-deterministically extends any
partial occurrence C ′ of C in G to C and subsequently applies Sat(c) on that
occurrence.

In case of negative existential statements ¬∃(a, c), an occurrence of C in G
satisfying c is selected in the hope that a subsequent application of Sat(¬c)
yields a result in which C satisfies ¬c, or equivalently does not satisfy c (this
iteration may not terminate). For the special case c = true, if ∃a is satisfied,
then ¬∃a is and will remain unsatisfiable for this branch of the search tree.
Hence the computation can be aborted and a depth-first interpreter would
backtrack, see Sat(¬∃a) in Remark 6.11 below.

Moreover, conjunction corresponds to an iterated random sequentializa-
tion until a solution is found (this iteration may not terminate). The com-
pleteness of Sat(c) implies that the execution order of the subprograms cj is
irrelevant for the overall problem, and it suffices to consider any sequential-
ization. Disjunction corresponds to nondeterministic choice between alter-
natives: only one subcondition has to be satisfied such that the disjunction
becomes satisfied.

Remark 6.11. For abbreviated conditions, the construction of Sat is ex-
tended according to Definition 3.1 and the previous construction:

Sat(false) = Sat(¬true) = Abort

Sat(¬false) = Sat(true) = Skip

Sat(∃a) = if¬∃a then Fix(⋃
a2◦a1=a, a1,a2∈M

{ Sel(a1); Add(a2) }; Sat(true)) fi

= if¬∃a then Fix(⋃
a2◦a1=a, a1,a2∈M, a2 6∈Iso{ Sel(a1); Add(a2) }) fi

Sat(¬∃a) = while ∃(a, true) do Fix(Sel(a, true); Sat(¬true)) od

= while ∃a do Abort od

= if ∃a then Abort fi

= Assert(¬∃a)

Sat(∀(a, c)) = Sat(¬∃(a,¬c))

Sat(c⇒ d) = Sat(¬c ∨ d) = {Sat(¬c), Sat(d)}

Sat(∨j∈J cj) = Sat(¬∧j∈J ¬cj)

Sat(¬∨j∈J cj) = Sat(∧j∈J ¬cj)

Example 6.12 (satisfiable graph condition). Consider the following
graph condition c = ∀(

1
, ∃(

1
)) ∧ ¬∃( ) ∧ ∃( ) expressing “All
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nodes have an outgoing edge, there exists no cycle of length two and there is
a node”. The program SeekSat(c) is:

while ¬c do

while ∃(
1
,¬∃(

1
)) do Fix( // P1

Sel(∅ →֒
1
,¬∃(

1
)); // select a node

if¬∃(
1

) then Fix(

{Sel(
1
→֒

1 2
); Add(

1 2
→֒

1 2
), // choose

Sel(
1
→֒

1
); Add(

1
→֒

1
)}

) fi

) od ;

Assert(¬∃( )) ; // P2

if¬∃( ) then Fix({Sel(∅ →֒ ∅); Add(∅ →֒ )}) fi // P3

od

A fragment of the semantics of SeekSat(c) is depicted in Figure 6.1 by
representing each input/output morphism with its codomain (all those mor-
phisms have domain ∅).

∅ ∅ ∅
1 1

1

1

...

1 1

P1 P2 P3 P1

P1

P1

6
P2

P2

6
P2

P3

SeekSat(c)

Figure 6.1: A fragment of the semantics of SeekSat(c)

There exists some G ∈ Graphs such that 〈id∅, iG, id∅〉 ∈ JSeekSat(c)K,
hence c is satisfiable.
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Example 6.13 (access control refutation). Consider the access control
specification

∀

(

1 2 3

, ∃
1 2 3

) precondition: Every user
logged into a system has the
appropriate access right.

〈

1 2 3

⇀֒
1 2 3

〉 program: If a user with the
appropriate access right pro-
poses a session, it is accepted.

∀

(

1 2 3

, ∃
1 2 3

) postcondition: Every user
logged into a system has the
appropriate access right.

To refute its correctness, we have constructed a weakest liberal precondition
of the rule and the condition in Example 5.18. We now want to disprove
that the precondition c implies the weakest precondition acwlp, therefore we
search for a counterexample for the condition

¬∃
(

,
∧ ∨

¬∃

)

⇒





¬∃
(

,
∧ ∨

¬∃

)

∧ ¬∃



 ,
∧ ∨

¬∃





∧ ¬∃

(
,
∧ ∨

¬∃

)

∧ ¬∃

(
,
∧ ∨

¬∃

)

∧ ¬∃

(

,
∧ ∨

¬∃

)

∧ ¬∃

(
,
∧ ∨

¬∃

)







6.2. Satisfiability solver SeekSat 91

We negate the above condition and bring it into normal form (to get a better
overview).

c = ¬∃
(

,
∧ ∨

¬∃

)

∧





∃
(

,
∧ ∨

¬∃

)

∨ ∃



 ,
∧ ∨

¬∃





∨ ∃

(

,
∧ ∨

¬∃

)

∨ ∃

(
,
∧ ∨

¬∃

)

∨ ∃

(
,
∧ ∨

¬∃

)

∨ ∃

(
,
∧ ∨

¬∃

)





The program SeekSat(c) is of the following form:

while ¬c do

while ∃(
1 2 3

,¬∃
1 2 3

) do Fix(

Sel(
1 2 3

,¬∃
1 2 3

);

Add(
1 2 3

→֒
1 2 3

)

) od ; { // choice
...

if¬∃(
1 2 3 4

, ¬∃
1 2 3 4

) then Fix({ // choice
...

Add(∅ →֒
1 2 3 4

); Assert(¬∃
1 2 3 4

)

}) fi

}

od

Application of SeekSat(c) on the empty graph eventually yield the sat-
isfying graph , which is a counterexample for the specification
above. The specification is incorrect, because there is a secure situation, that
is, the counterexample itself, in which granting a user access to a system,
even though he has the appropriate access right, would lead to an insecure
situation, as another user without an access right gets access to the system,
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too.

Remark 6.14 (effectiveness of the construction). The construction is
effective for all categories satisfying Assumption 2.19 in Chapter 2. For every
finite condition c inMNF, Sat(c) is a program of finite size: As we consider
only finite conjunctions and disjunctions of conditions and the number of all
decompositions a2 ◦ a1 = a is finite for a ∈ M, all program sets are finite,
and the sequentialization in case of Sat(∧j∈J cj) is of finite length.

For every condition c, SeekSat(c) unselects any elements selected during an
execution, which corresponds to an implicit enclosing Fix statement.

Fact 6.15 (implicit unselection). For every condition c,

JSeekSat(c)K = JFix(SeekSat(c))K.

Proof. By induction over the definition of Sat(c).
Basis. Skip and Abort do not select.
Hypothesis. Assume JSeekSat(c)K = JFix(SeekSat(c))K for given condi-
tion c.
Step. Every Sel statement is enclosed by Fix statements. As J

⋃
j∈J Fix(Pj)K

= JFix(
⋃

j∈J Pj)K, we can prove Jif ¬∃(a, c) then Fix(. . .) fiK = JFix(if
¬∃(a, c) then . . . fi)K. Analogously, with JFix(P)∗K = JFix(P∗)K we can
show Jwhile ∃(a, c) do Fix(. . .) odK = JFix(while ∃(a, c) do . . . od)K.
The remaining cases are proven in a similar way using the induction hypoth-
esis. �

As a consequence, every interface relation mP of a program Sat(c) is an
identity.

Corollary 6.16 (identity). For every condition c over C in MNF,
〈m, m∗, mP〉 in JSat(c)K implies mP is the identity morphism for C.

For every condition c, SeekSat(c) is a program that does not contain the
statements Del and Uns.

Fact 6.17 (every morphism inM). For every non-deleting, non-unselec-
ting program with interface, that is, every program without the statements
Del and Uns, every interface relation mP is in M. Moreover, for all tuples
〈m, m∗, mP〉 in JPK, there exists an M-morphism m∗

P from the input object
to the output object such that the resulting square commutes.

•input interface · · · · · ·

•input object · · · · · ·

• · · · · · · output interface

• · · · · · · output object

m

mP

m∗

m∗
P

=
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A consequence of Fact 6.17 is the monotonicity of SeekSat.

Corollary 6.18 (monotonicity). For every condition c inMNF, for every
〈m, m∗, id〉 ∈ Sat(c) implies m = m∗ or there is a morphism m∗

P: codom(m) →֒
codom(m∗) inM but not in Iso, such that m∗

P ◦m = m∗.

SeekSat preserves satisfiability: If SeekSat(c) is applied onto a morphism m
satisfying c, it terminates without changing the input.

Fact 6.19 (preservation). For every condition c in MNF, for every M-
morphism m with m |= c, {〈m, m∗, id〉} ∈ Sat(c) implies m = m∗.

Proof. By induction over the definition of Sat(c). Basis. The statement is
true for Sat(true) = Skip, as well as for Sat(false), as no morphism satisfies
false. Hypothesis. Assume the statement is true for given condition c.
Step. In each case, we see that the program Sat(c) is either prefixed by
if¬c then . . . fi or while¬c do . . . od. In the case of m |= c, the programs
have the semantics of Skip, therefore m = m∗. �

The soundness and completeness of SeekSat is a main result of this sec-
tion.

Theorem 6.20 (SeekSat). For each condition c over I inMNF, there is a
program SeekSat(c) that is sound and complete, that is,

〈idI, iM , idI〉 ∈ JSeekSat(c)K implies M |= c,

(∃H ∈ C. H |= c) implies ∃M ∈ C. 〈idI, iM , idI〉 ∈ JSeekSat(c)K.

The proof of Theorem 6.20 is based on the following lemma.

Lemma 6.21 (Sat). For each condition c in MNF, Sat(c) is a program
that, with respect to the satisfiability problem, is

(sound) ∀m, m∗ ∈M. 〈m, m∗, id〉 ∈ JSat(c)K implies m∗ |= c,

(complete) ∀m, x ∈M. x ◦m |= c implies
∃m∗, y, z ∈M. 〈m, m∗, id〉 ∈ JSat(c)K, m∗ = z ◦m and x = y ◦ z.

•domain of c · · · · · ·

•input object · · · · · · • • · · · · · · satisfying object

m
z y

m∗

=

x
=
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Completeness means, if a givenM-morphism m can be extended by anM-
morphism x to x ◦ m such that it satisfies c, there is a transition from m
to an M-morphism m∗ (m∗ = z ◦m for some M-morphism z) and m∗ lies
exactly along the way towards x ◦m (x = y ◦ z), preserving the possibility
to eventually yield x ◦ m. While this does not imply a guarantee to reach
x ◦m at all, we can reach a possibly smaller morphism, namely m∗ that also
satisfies the subcondition c (see soundness).

Proof of Lemma 6.21. We prove the soundness of Sat(c) by induction
over the definition of Sat.

Basis. Sat(true): allM-morphisms m ∈M satisfy true.

Sat(false): there is no triple 〈m, m∗, id〉 in JSat(false)K = JAbortK = ∅.

Hypothesis. For a given condition c, Sat(c) is sound.

Step. Sat(∃(a, c)): 〈m, m∗, id〉 ∈ JSat(∃(a, c))K = Jif¬∃(a, c) then . . . fiK ⊆
JFix(

⋃
a2◦a1=a{ Sel(a1); Add(a2) }; Sat(c))K implies

〈
m, m∗∗, mSat(∃(a,c))

〉

∈ J
⋃

a2◦a1=a{Sel(a1); Add(a2)}; Sat(c)K for some m∗∗ ∈ M with m∗ =
m∗∗ ◦mSat(∃(a,c)) (Def. Fix, Fact 6.17), which implies there is a m′ ∈M
and some decomposition a2 ◦ a1 = a of a such that 〈m, m′, a〉 ∈
JSel(a1); Add(a2)K and 〈m′, m∗∗, id〉 ∈ JSat(c)K with mSat(∃(a,c)) = id ◦ a
(a1, a2 may be isomorphisms, semantic of seq. comp., Fact 6.15), which
implies m∗∗ ◦ a |= ∃a and m∗∗ ◦ id |= c (inductive hypothesis) implies
m∗ |= ∃(a, c).

•domain of the condition · · · · · · • •

•input object · · · · · · • •

a

a1 a2

m m′ m∗∗ ◦ id

Sat(¬∃(a, c)): 〈m, m∗, id〉 ∈ JSat(¬∃(a, c))K = Jwhile ∃(a, c) do . . . odK im-
plies m∗ |= ¬∃(a, c).

Sat(¬∧j∈J cj): 〈m, m∗, id〉 ∈ JSat(¬∧j∈J cj)K = Jif∧j∈J cj then⋃
j∈J{Sat(¬cj)} fiK ⊆ J

⋃
j∈J {Sat(¬cj)}K =

⋃
j∈J JSat(¬cj)K implies

there is some j ∈ J with 〈m, m∗, id〉 ∈ JSat(¬cj)K, which implies there
is some j ∈ J with m∗ |= ¬cj (induction hypothesis), which implies
m∗ |= ¬∧j∈J cj .

Sat(∧j∈J cj): 〈m, m∗, id〉 ∈ JSat(∧j∈J cj)K = Jwhile (¬∧j∈J cj) do . . . odK
implies m∗ |= ∧j∈J cj.
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Sat(¬¬c): sound, as JSat(¬¬c)K = JSat(c)K (¬¬c ≡ c, induction hypothe-
sis).

We prove the completeness of Sat(c) by induction over its definition. For
the proof, we require (for the first time) the so-called pullback-pushout-M
property and certain assumptions on the finiteness of C such as a finite length
ofM-decompositions. For details, we refer to Assumption 2.19 in Chapter 2.

Basis. Sat(true): for every m ∈M, 〈m, m, id〉 ∈ JSkipK = JSat(true)K with
m = id ◦m and x = y ◦ id (m∗ = m, y = x and z = id).

Sat(¬true): no morphism satisfies not true, hence there are no m, x ∈ M
such that x ◦m |= ¬true.

Hypothesis. For a given condition c, Sat(c) is complete.

Step. Sat(∃(a, c)): x ◦ m |= ∃(a, c) implies ∃q ∈ M. x ◦ m = q ◦ a and
q |= c. As x ◦ m |= ∃a, construct 〈m′, a2〉 as the pullback of 〈x, q〉.
As x ◦ m = q ◦ a, there is a unique morphism a1 with m = m′ ◦ a1

and a = a2 ◦ a1. As x, q ∈ M, m′, a2 ∈ M. As m, m′ ∈ M, a1 ∈
M. According to the construction, the program Sel(a1); Add(a2) is in⋃

a2◦a1=a{Sel(a1); Add(a2)}. Apply the program (construct the pushout
of 〈m′, a2〉) to yield 〈z, n〉. As x◦m′ = q◦a2, there is a unique morphism
y in M (pullback-pushout-M property) with y ◦ n = q and x = y ◦ z.
Consequently, 〈m, n, a〉 ∈ J

⋃
a2◦a1=a{Sel(a1); Add(a2)}K.

Now y◦n = q |= c implies ∃m∗, y′, z′ ∈M. 〈n, m∗, id〉 ∈ JSat(c)K, m∗ =
z′ ◦m′ and y = y′◦z′ (inductive hypothesis for c) implies ∃m∗◦a, y′, z′◦
z ∈ M. 〈m, m∗ ◦ a, id〉 ∈ JFix(

⋃
a2◦a1=a{Sel(a1); Add(a2)}; Sat(c))K =

JSat(∃(a, c))K, m∗ ◦ a = z′ ◦ z ◦m and x = y′ ◦ z′ ◦ z.

•domain of the condition · · · · · · • •

•input object · · · · · · • • •

a

a1 a2

m′m n

q

z

y

x

z′ y′

m∗

Sat(¬∃(a, c)): Assume x ◦ m |= ¬∃(a, c). If m |= ¬∃(a, c), 〈m, m, id〉 ∈
Jwhile ∃(a, c) do . . . odK = JSat(¬∃(a, c))K with m = id ◦m and x =
y ◦ id (m∗ = m, y = x and z = id). If m |= ∃(a, c), there is a
morphism q in M with m = q ◦ a, q |= c and 〈m, q, a〉 ∈ JSel(a, c)K.
As x ◦ m |= ¬∃(a, c), x ◦ q |= ¬c. By induction hypothesis, there
∃m∗∗, y, z ∈ M. 〈q, m∗∗, id〉 ∈ JSat(c)K, m∗∗ = z ◦ q and x = y ◦ z.
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Consequently, 〈m, m∗∗ ◦ a, id〉 ∈ JSat(¬∃(a, c))K, m∗∗ ◦ a = z ◦m and
x = y ◦ z.

•domain of the condition · · · · · · •

•input object · · · · · · • •

a

m q m∗∗

z y

x

Sat(¬∧j∈J cj): x◦m |= ¬∧j∈J cj implies ∃j ∈ J. x◦m |= ¬cj implies ∃j ∈ J
∃m∗, y, z ∈ M. 〈m, m∗, id〉 ∈ JSat(¬cj)K ⊆

⋃
j∈JJSat(¬cj)K = J

⋃
j∈J

{Sat(¬cj)}K = J
⋃

j∈J{Sat(¬cj)}K = JSat(¬∧j∈J cj)K, m∗ = z ◦m and
x = y ◦ z (inductive hypothesis).

Sat(∧j∈J cj): x ◦m |= ∧j∈J cj implies ∀j ∈ J. x ◦m |= cj implies ∀j ∈ J
∃m∗

j , yj, zj ∈ M.
〈
m, m∗

j , id
〉
∈ JSat(cj)K, m∗

j = zj ◦ m and x =
yj ◦ zj (inductive hypothesis). By induction over the length of the se-
quential composition j, one can show ∃m∗, y, z ∈ M. 〈m, m∗, id〉 ∈
J;j∈J Sat(cj)K, m∗ = z ◦ m and x = y ◦ z. By the monotonicity of
Sat (Corollary 6.18) and the finite length of every M-decomposition,
∃m∗, y, z ∈M. 〈m, m∗, id〉 ∈ Jwhile (¬∧j∈J cj) do (;j∈J Sat(cj)) odK =

JSat(∧j∈J cj)K = JSat(∧j∈J cj)K, m∗ = z ◦m and x = y ◦ z.

•domain of the condition · · · · · ·

•input object · · · · · · • . . . • •

m m∗
1

m∗
n

z1 z2 zn yn

x
y1

Sat(¬¬c): complete, as JSat(¬¬c)K = JSat(c)K (¬¬c ≡ c, induction hy-
pothesis).

�

Proof of Theorem 6.20. As SeekSat(c) = Sat(c), the soundness and
completeness of SeekSat(c) is a special case of the soundness and complete-
ness of Sat(c). More precisely, as m = idI: I ↔ I and any morphism from
the initial object is inM and c is a condition over I inMNF, the soundness
of Sat(c) reduces to 〈idI, iM , idI〉 ∈ JSat(c)K implies iM |= c, which implies
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M |= c, and the completeness of Sat(c) reduces to H |= c implies iH |= c,
which implies ∃iM . 〈idI, iM , idI〉 ∈ JSat(c)K.

Idomain of c · · · · · ·

Iinput object · · · · · · M H

idI

iM y

iM
=

iH

=

�

SeekSat is guaranteed to terminate for a certain fragment of conditions.
Hence it is able to decide the satisfiability problem of this subclass.

Definition 6.22 (non-nested fragment). Let NonNested be the set of
conditions such that for every subcondition ∃(a, c), c = true.

The non-nested fragment of conditions includes the well-known fragment of
negative application conditions (NAC) as introduced in [HHT96].

Theorem 6.23. For the NonNested fragment of conditions, SeekSat is
guaranteed to terminate.

For the termination of SeekSat(c) with c ∈ NonNested, it suffices to show
that all conjunctive while-loops terminate. For the proof, we will use the
fact that for each c ∈ NonNested, Sat(c) either does not change the input,
or reduces the number of subconditions for which the satisfiability of c is not
guaranteed from m∗ on for every possible extension x.

Proof. There is a termination function val:M×NonNested→ N such that
val(m, c) > val(m∗, c) or m = m∗, for all conditions c ∈ NonNested, for all
〈m, m∗, id〉 ∈ JSat(c)K.

Define val as follows: val(m, true) = 0, val(m,¬c) = val(m, c), val(m,
∧j∈J cj) = Σj∈J val(m, cj) and val(m, ∃a) = 0 if m |= ∃a, 1 otherwise.

First, val(m, c) never increases for any condition c ∈ NonNested and any
extension x ∈ M, that is, for every x ◦m ∈ M, val(m, c) ≥ val(x ◦m), as
m |= ∃a implies x◦m |= ∃a. Therefore val(m, c) = 0 implies val(x◦m, c) = 0,
for every x ◦m ∈M.

Second, for all conditions c ∈ NonNested, for all 〈m, m∗, id〉 ∈ JSat(c)K,
val(m, c) > val(m∗, c) or m = m∗. By induction over NonNested, we prove:
Basis. For conditions c = true, c = false or c = ¬∃a, 〈m, m∗, id〉 ∈
JSat(c)K implies m = m∗, therefore val(m, c) > val(m∗, c) or m = m∗.
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For 〈m, m∗, id〉 ∈ Sat(∃a), either we have m 6|= ∃a and 1 = val(m, ∃a) >
val(m∗, ∃a) = 0, or we have m |= ∃a and m = m∗.
Hypothesis. Assume, the statement holds for given NonNested condi-
tions. Step. For 〈m, m∗, id〉 ∈ JSat(∨j∈J cj)K, there is a j ∈ J such that
〈m, m∗, id〉 ∈ JSat(cj)K. By inductive hypothesis, val(m, cj) > val(m∗, cj)
and Σj∈J val(m, cj) > Σj∈J val(m∗, cj) (val never increases), or we have m =
m∗. Similarly, for 〈m, m∗, id〉 ∈ JSat(∧j∈J cj)K, each step

〈
mj, m

∗
j , id

〉
∈

JSat(cj)K in the sequence has the property val(mj , cj) > val(m∗
j , cj) or mj =

m∗
j . As val never increases, we have Σj∈J val(m, cj) > Σj∈J val(m∗, cj) or

m = m∗. �

As already stated, each instance of the tautology problem may be viewed as
an instance of the satisfiability problem, by negating both the input condi-
tion, as well as the answer. However, in contrast to positives answers, nega-
tive answers of a satisfiability algorithm may only be lifted to the tautology
problem in case of termination and completeness. Otherwise, the incom-
pleteness of the algorithm would correspond to unsoundness in the case of
the tautology problem. A consequence of Theorem 6.20, Theorem 6.23 and
Corollary 6.5 is the following:

Corollary 6.24. For the NonNested fragment of conditions, SeekSat de-
cides the tautology problem.

Despite being a complete satifiability solver, SeekSat does not cover the
tautology problem for all tautologies. In fact, there are provable tautolo-
gies outside the decidable fragment of conditions for which SeekSat never
terminates, therefore SeekSat cannot subsitute a dedicated theorem prover.

Example 6.25 (non-termination). Consider the example graph condition
∀(

1
, ∃

1
) ⇒ ∀(

1 2
, ∃

1 2
) with the meaning “Every node has a loop

implies for every pair of nodes, each node has a loop”, which is clearly a
valid statement. SeekSat cannot show the unsatisfiability of c = ¬∃(

1
,

¬∃
1

) ∧ ∃(
1 2

, ¬∃
1 2

) In each iteration, SeekSat(c) will first add a
loop to every loop-free node, then add at least two nodes without a loop.

This clearly motivates the need for an algorithm dedicated to proving condi-
tions.

We compare our satisfiability solver with related work in Section 6.4.

6.3 Theorem prover ProCon

In the previous section we investigated a sound and complete satisfiability
algorithm that, for a certain fragment of conditions, decides the tautology
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problem of conditions. However, we also showed that there are provable tau-
tologies for which the algorithm does not terminate. To cover the full class
of conditions, we now present a resolution-based calculus for proving con-
ditions, show its soundness, and investigate the necessity of each deduction
rule.

Beforehand, we introduce the notion of anM-pushout, which we require
for a certain rule in our calculus. An M-pushout is a special pushout for
which it can be guaranteed that the unique morphism u is in M, if the
commutative morphisms p, q are inM.

Definition 6.26 (M-pushout). A pushout c ◦ a = d ◦ b with c, d ∈M is
calledM-pushout, if for allM-morphisms p, q with p ◦ a = q ◦ b, the unique
existing morphism u with p = c ◦ u and q = d ◦ u is inM.

• •

• •

•

b

a d

c

(PO) q

u
p

We use the following characterization ofM-pushouts.

Fact 6.27 (M-pushout). A pushout c ◦ a = d ◦ b with c, d ∈ M is an
M-pushout, if and only if for all epimorphisms e with dom(e) = codom(d)
we have e 6∈ M implies e ◦ c 6∈ M or e ◦ d 6∈ M.

Proof. Via epi-M-factorization using the converse statement.
e 6∈ M implies (e ◦ c 6∈ M or e ◦ d 6∈ M) (characterization)

⇔ not (e ◦ c 6∈ M or e ◦ d 6∈ M) implies not e 6∈ M (converse)
⇔ (e ◦ c ∈ M and e ◦ d ∈M) implies e ∈M (deMorgan)
⇔ (m ◦ e ◦ c ∈M and m ◦ e ◦ d ∈M) implies m ◦ e ∈ M

„

m ∈ M, M closed
under comp./decomp.

«

⇔ (u ◦ c ∈M and u ◦ d ∈M) implies u ∈M (epi-M-factorization)
⇔ (p ∈M and q ∈M) implies u ∈M (commutativity)

�

A straightforward approach to answer the tautology problem for a condi-
tion c is to deduce “true ⇛ c”, that is, to show that c is a logical consequence
of true. This can be done by constructing a proof chain “true ⇛ . . . ⇛ c”,
starting without any assumptions (true), yielding in logical deductions the
given condition c. Instead of constructing such a proof top-down, resolution
follows a more target-oriented view and considers the complementary prob-
lem of refuting the negated condition “¬c”. In this case, the goal is to find a
refutation “¬c ⇛ . . . ⇛ false”.
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After negation of an input F , a resolution-based algorithm on formulas
[Rob65] would transform the negated statement ¬F into prenex normal form
and skolemize to yield clauses. However neither does there exists a compa-
rable normal form for conditions, nor is skolemization possible for a given
category such as Graphs: Skolemization requires the introduction of fresh
function symbols of unbounded arity, for which there seems to be no equiva-
lent operation on a fixed structure. Nevertheless, it is possible to transform
the negated input ¬c into conjunctive normal form.

Definition 6.28 (conjunctive normal form). The empty conjunc-
tion ∧j∈∅ cj ≡ true is in conjunctive normal form (CNF). Every condition
∧j∈J ∨k∈Kj

ck is in CNF, if for every j ∈ J and every k ∈ Kj , ck = ∃(ak, dk)
or ck = ¬∃(ak, dk), where ak ∈M is not an isomorphism and dk is a condition
in CNF.

In general, there is no way to get rid of the nesting of a condition. For every
existential subcondition ∃(a, c) of a condition in CNF, c is again a (possibly
non-empty) conjunction of disjunctions.

If a true resolution calculus were possible for conditions, derived facts
(disjunctions) could now be added to the outermost conjunction. The goal
would be the addition of false as a conjunct. Each refutation step “⇛” would
be of the form:

• Select two disjunctions (¬∃(a, c) ∨ c1) and (∃(b, d) ∨ c2) from the con-
junction such that ∃(b, d) ⇛ ∃(a, c).

• Add the resolvent (c1 ∨ c2) to that conjunction.

Special case: if c1 and c2 do not exist, or equivalently, are false, the resolvent
is false and the negated input condition is refuted, which is the goal of this
procedure.

However, we cannot restrict deductions to the outermost conjunction:
We can decide ∃b ⇛ ∃a by checking, if there is an M-morphism m such
that m ◦ a = b. However, to decide ∃(b, d) ⇛ ∃(a, c) is as hard as the
original problem true ⇛ cinput as it contains the subproblem d ⇛ c. Even
more problematic, d and c are over different domains, and we cannot move d
and c towards the root of the condition without losing information. Only a
condition false may descend against a morphism, that is, ∃(a, false) ≡ false.

•
•

•

a

b

c

d
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However, recall that we can shift conditions along M-morphisms. If neces-
sary, we can “lift” the whole condition ∃(a, c) along b to bring c and d closer
together. We reuse transformation A(b, ∃(a, c)) of Section 5.2 which, for an
M-morphism b, shifts ∃(a, c) over b to yield a condition over codom(b) of
same depth, representing the incorporation of ∃b into ∃(a, c).

• •b
∃(a, c) A(b, ∃(a, c))

Besides a core resolution rule as described above, we will consider additional
rules that create, manage and (hopefully) solve nested subproblems of this
form to decide ∃(b, d) ⇛ ∃(a, c).

First, we define the notion of a non-negated subcondition, which we use
thereafter to restrict the applicability of deduction rules.

Definition 6.29 (non-negated subcondition). A condition c is a non-
negated subcondition of a condition d, if c = d or if d is of the form ∃(a, e)
or ∧j∈J ej or ∨j∈J ej) and c is a non-negated subcondition of e or ej for some
j ∈ J .

Formally, these deduction rules are defined as follows.

Definition 6.30 (deduction rules). Let c1, . . . , cn, e be conditions. A
(deduction) rule R has the form

c1
...
cn

e

if α

and is shortly denoted by R = [c1, . . . , cn/e]α. The conditions c1, . . . , cn are
called premises, e is the resolvent and α is an (informal) side condition. A
rule may be applied to a condition c in CNF if there is exists a non-negated
subcondition c′ in c such that c′ = ∧j∈J dj is a conjunction of disjunctions
(dj)j∈J that contains all premises of R, that is, for all 1 ≤ k ≤ n, there is
a j ∈ J with ck = dj, and the side condition α is satisfied. Application of
R yields a new condition d that is derived from c by adding the resolvent e
(brought into CNF if necessary) to the conjunction c′. We write c ⊢R d to
denote such a derivation step, whereas we write c ⊢K d to denote a derivation
sequence c ⊢R . . . ⊢Q d with rules R, . . . , Q in some rule set K.

The deduction rules of our calculus are possibly applicable on any non-
negated subconditions within a condition. The rules themselves contain
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variables for morphisms and conditions. Prior to a rule application, these
variables must be matched in an unification process, as usual, to yield an
applicable instance of the rule.

We now present our calculus K for proving high-level conditions, repre-
senting the possible actions our theorem prover ProCon performs.

Definition 6.31 (calculus K). The calculus K for high-level conditions
consists of the following four core rules: (Descend), (Partial resolve), (Lift)
and (Supporting lift). Let a, b, m be morphisms and let c, d, c1, c2 be condi-
tions.

(Descend)

∃(a, false ∧ c) ∨ c1

c1

(Partial resolve)

¬∃(a, true) ∨ c1

∃(b, d) ∨ c2

¬∃(m∗, true) ∨ c1 ∨ c2

if ∃m ∈M. m ◦ b = a and
〈m∗, b∗〉 is theM-pushout
complement of 〈b, m〉
and d 6= false

• •

••

b
a

m∗

b∗

m

(Lift)

¬∃(a, c) ∨ c1

∃(b, d) ∨ c2

∃(b, d ∧ A(b,¬∃(a, c))) ∨ c1 ∨ c2

if c 6= false
and d 6= false

(Supporting lift)

∃(a, c) ∨ c1

∃(b, d) ∨ c2

∃(b, d ∧ A(b, ∃(a, c))) ∨ c1 ∨ c2

if c 6= false
and d 6= false

To simplify manual proofs, we introduce the deduction rules (Resolve) and
(Partial lift). They can be derived using the above rules, as we show later:

(Resolve)

¬∃(a, true) ∨ c1

∃(b, d) ∨ c2

c1 ∨ c2

if ∃m ∈M. m ◦ a = b
and d 6= false

• •

•b

a

m

(Partial lift)

¬∃(a, c) ∨ c1

∃(b, d) ∨ c2

∃(b, d ∧ A(m,¬c)) ∨ c1 ∨ c2

if ∃m ∈M. m ◦ a = b
and c 6= false
and d 6= false

• •

•b

a

m
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The rule (Descend) is used to carry over a successful nested refutation into
an outer refutation and is the only core rule that may reduce the num-
ber of disjuncts in a disjunction. The rule (Partial resolve) is necessary for
proving the validity of conditions outside the decidable fragment of condi-
tions. The rules (Lift) and (Supporting lift) are similar in the sense that they
combine informations from different conditions creating additional facts for
nested refutations. Note that (Supporting lift) is the only rule for which re-
peated applications on its own resolvent may be necessary. For the category
Graphs, unbounded applications of (Supporting lift) are the only reason a
theorem prover based on K does not terminate, assuming that the deduction
of structurally equivalent conditions is surpressed, as discussed later on.

The rule (Resolve) represents a straightforward case for which the prob-
lem ∃(b, d) ⇛ ∃(a, c) is decidable. (Resolve) will be shown to be a special case
of (Descend) and (Lift). The rule (Partial lift) is also a special case of (Lift)
which only considers a preselected combination of the two facts ¬∃(a, c) and
∃(b, d), given by the morphism m.

Example 6.32. Consider the tautology ∀(
1
, ∃

1
) ⇒ ∀(

2 3
, ∃

2 3
)

expressing “Every node has a loop implies for every pair of nodes, each node
has a loop”. A transformation of the negated statement into CNF yields

(1) ¬∃(
1
, ¬∃

1
)

(2) ∧ ∃(
2 3

, ¬∃
2 3

)

We showed in Example 6.25 that SeekSat does not terminate for this input,
therefore is unable too prove the unsatisfiability. However, to prove the
statement’s validity using K is as follows:

(1) ¬∃(
1
, ¬∃

1
)

(2) ∃(
2 3

, ¬∃
2 3

)

(3) ∃(
2 3

, (3.1) ¬∃
2 3

)

(3.2) ∧ ∃
2 3

(3.3) ∧ ∃
2 3

(3.4) ∧ ¬∃(
2 3

, ¬∃
2 3

)

(Lift)
1
→֒

2=1 3

1
→֒

2 3=1

1
→֒

2 3 1

(3.1) ¬∃
2 3

(3.2) ∃
2 3

(3.5) ¬∃
2 3

(Partial resolve)
2 3 2 3

2 32 3
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(3.5) ¬∃
2 3

(3.3) ∃
2 3

(3.6) false

(Resolve)
1 2 2 3

2 3

(3) ∃(
2 3

, (3.1) ∧ . . . ∧ (3.6))

(4) false
(Descend)

Example 6.33 (access control proof). Consider the modified access
control specification

∀

(

1 2 3

, ∃
1 2 3

)

∧ ¬∃

Every user logged into a sys-
tem has the appropriate ac-
cess right and no two users
share a session

〈

1 2 3

⇀֒
1 2 3

〉 If a user with the appropriate
access right proposes a ses-
sion, it is accepted

∀

(

1 2 3

, ∃
1 2 3

)

∧ ¬∃

Every user logged into a sys-
tem has the appropriate ac-
cess right and no two users
share a session

To verify its correctness, we have constructed a weakest liberal precondition
ac2wlp of the rule and the condition in Example 5.18. We now want to prove
that the precondition c implies ac2wlp. Therefore, we prove that the condition




∀

(
, ∃

)

∧ ¬∃





⇒





∨
¬∃

(
,
∨
¬∃

)

∧
∨
¬∃

(

,
∨
¬∃

)

∧
∨
¬∃

(
,
∨
¬∃

)

∧
∨
¬∃

(
,
∨
¬∃

)

∧
∨
¬∃

∧
∨
¬∃

∧
∨
¬∃
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is a tautology. After negation and transformation into CNF, we yield the
condition below and it remains to show its unsatisfiability by deriving false.

(1)
∨
¬∃

∧ (2)
∨
¬∃
(

,
∧ ∨

¬∃

)

∧ (3.1) ∃

∨ (3.2) ∃

∨ (3.3) ∃

∨ (3.4) ∃

(

,
∧ ∨

¬∃

)

∨ (3.5) ∃



 ,
∧ ∨

¬∃





∨ (3.6) ∃

(
,
∧ ∨

¬∃

)

∨ (3.7) ∃
(

,
∧ ∨

¬∃

)

Given the rules of K, our goal is to refute the disjunction (3) with the help
of the facts (1) and (2). The rule (Resolve) can be applied with argument
(1) to resolve (3.1)-(3.3), for instance,

(1)
(3.1) ∨ ((3.2) ∨ . . . ∨ (3.7))
(3.2) ∨ . . . ∨ (3.7)

(Resolve)

Subconditions (3.4)-(3.7) are resolved by applying rule (Partial lift) with
argument (2) and subsequent application of (Resolve) on the nested subcon-
ditions, and (Descend), for instance,

(2)
(3.7) ∨ ((3.4) ∨ . . . ∨ (3.6))
(3.7′) ∨ (3.4) ∨ . . . ∨ (3.6)

(Partial lift)

with (3.7’) ∃



 ,
∨
¬∃

∧
∨
∃





Eventually, we yield an empty disjunction, or equivalently, false as an el-
ement of the outer conjunction, thus the negated input condition is refuted
and the original condition proved.

The main result of this section is the soundness of the calculus K. We show
that every application of a rule R in K corresponds to a logical deduction.
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Theorem 6.34 (soundness of K). The calculus K for high-level conditions
is sound, that is, for every conditions c, d over C in CNF the following holds:

c ⊢K d implies c ⇛ d.

The proof is done in three steps: first, we establish that we can investigate
the soundness of deduction rules independently of disjunctive context. In the
following, let r, pj , qj be conditions for 1 ≤ j ≤ n.

Fact 6.35. For rules [(p1 ∨ q1), . . . , (pn ∨ qn)/(r∨ q1 ∨ . . . ∨ qn)]α we have
(p1 ∧ . . . ∧ pn) ⇛ r implies ((p1 ∨ q1)∧ . . .∧ (pn ∨ qn)) ⇛ (r ∨ q1 ∨ . . . ∨ qn).

Second, we can prove the soundness of each individual rule R in K.

Lemma 6.36. For every rule R = [c1, . . . , cn/d]α in K, if α holds then
(c1 ∧ . . . ∧ cn) ⇛ d.

Proof. For the rule (Descend), we have ∃(a, false∧ c) ≡ ∃(a, false) ≡ false.
For every rule of the form R = [(p1 ∨ q1), . . . , (pn ∨ qn)/(r∨ q1 ∨ . . . ∨ qn)]α
with cj = (pj ∨ qj) for 1 ≤ j ≤ n, we first show (p1 ∧ . . . ∧ pn) ⇛ r:

(Partial resolve). First, we transform the proof obligation:
(¬∃(a, true) ∧ ∃(b, d))⇒ ¬∃(m∗, true)

≡ ¬(¬∃(a, true) ∧ ∃(b, d)) ∨ ¬∃(m∗, true) (Def. ⇒)
≡ ∃(a, true) ∨ ¬∃(b, d) ∨ ¬∃(m∗, true) (De Morgan)
≡ ∃(a, true)⇐ ¬(¬∃(b, d) ∨ ¬∃(m∗, true)) (Def. ⇒)
≡ ∃(a, true)⇐ (∃(b, d) ∧ ∃(m∗, true)) (De Morgan)
Finally, we show (∃(b, d) ∧ ∃(m∗, true)) ⇛ ∃(a, true):

p |= (∃(b, d) ∧ ∃(m∗, true))

⇔ ∃q ∈ M. q ◦ b = p and q |= d
and ∃r ∈M. r ◦m∗ = p and r |= true (Def. 3.1)

⇒ ∃s ∈M. r ◦m∗ = s ◦ b∗ ◦m∗ = s ◦ a = p and s |= true (M-Pushout)

• •

• •

•

b

m∗ a
m

b∗

p
q

r s

(Lift). We show ∃(b, d) ∧ ¬∃(a, c) ⇛ ∃(b, d ∧ A(b,¬∃(a, c))):
p |= ∃(b, d) ∧ ¬∃(a, c)

⇔ ∃q ∈ M. q ◦ b = p and q |= d and q ◦ b |= ¬∃(a, c) (Def. 3.1)
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⇔ ∃q ∈ M. q ◦ b = p and q |= d and q |= A(b,¬∃(a, c)) (Lem. 5.4)
⇔ p |= ∃(b, d ∧A(b,¬∃(a, c))) (Def. 3.1)

• •

•

b

p
q

A(b,¬∃(a, c))¬∃(a, c)

(Supporting lift). The proof is analogous to (Lift) except ¬∃(a, c) is replaced
with ∃(a, c).

By Fact 6.35, we can lift any statement (p1∧ . . .∧pn ⇛ r) for any disjunctive
context q1, . . . , qn and yield (p1 ∨ q1) ∧ . . . ∧ (pn ∨ qn) ⇛ (r ∨ q1 ∨ . . . ∨ qn).
This concludes the soundness proof for the deduction rules in K. �

Third, we show that deductions concerning non-negated subconditions within
a condition in CNF can be lifted to the whole condition.

Fact 6.37. For any non-negated condition c′ within a condition c over
C in CNF, with d derived from c by replacing c′ with d′, we have c′ ⇛

d′ implies c ⇛ d.

Proof. By induction over the structure of conditions.
Basis: c = c′ ⇛ d′ = d.
Step: We show, for all morphisms m inM with domain C:
Case ∃(a, c): m |= ∃(a, c) iff (∃q ∈ M. m = q ◦ a and q |= c) implies
(∃q ∈M. m = q ◦ a and q |= d) iff m |= ∃(a, d).
Case (c ∧ e): m |= (c ∧ e) iff (m |= c and m |= e) implies (m |= d and
m |= e) iff m |= (d ∧ e).
Case (c ∨ e): analogous to (c ∧ e).
The case ¬c is excluded by the assumption that c′ is a non-negated subcon-
dition. �

Finally, we can prove the soundness of K.

Proof of Theorem 6.34. Let c, d be arbitrary conditions over C in CNF. A
deduction c ⊢K d is a sequence of deductions c ⊢R . . . ⊢Q d for rules R, . . . , Q
in K. Using induction over the length of the deduction, we can reduce the
proof obligation to “c ⊢R d implies c ⇛ d”, where c, d are arbitrary conditions
over C in CNF and R = [c1, . . . , cn/e]α is an arbitrary deduction rule in K.
Assume, c ⊢R d. By Definition 6.30, there is a non-negated subcondition c′

which is a conjunction (c1∧ . . .∧cn∧q) and d is derived from c by adding e to
the conjunction, that is, (c1∧. . .∧cn∧q) ⊢ (e∧c1∧. . .∧cn∧q). By Lemma 6.36,
we have (c1∧. . .∧cn) ⇛ e. Consequently, (c1∧. . .∧cn∧q) ⇛ (e∧c1∧. . .∧cn∧q).
By Fact 6.37, we conclude c ⇛ d. �
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In the following we prove that (Resolve) and (Partial lift) are derivatives
of the four core rules (Descend), (Partial resove), (Lift) and (Supporting
lift). To this end, we require the notion c ⊆ d, expressing that c is a logical
conseqence of d and every result c′ of a deduction sequence beginning with c
is a logical conseqence of the same deduction sequence beginning with d.

Definition 6.38. For two conditions c, d we write c ⊆ d, if d ⇛ c and for
all deductions c ⊢R c′, there is a deduction d ⊢R d′ such that c′ ⊆ d′.

First, we prove (Partial lift) is a special case of (Lift).

Fact 6.39. For every deduction c′ ⊢(Partial lift) d′, there is a deduction c′ ⊢(Lift)

f ′ with d′ ⊆ f ′.

Proof. According to the premises and the side conditions, (Lift) is applicable
whenever (Partial lift) is. Concerning the resolvents, it remains to prove
A(m,¬c) ⊆ A(b,¬∃(a, c)) if m ◦ a = b.

According to the construction, A(b,¬∃(a, c)) is of the form ∧k∈K¬∃(ak,
A(rk, c)): After constructing the pushout 〈a′, q〉 of 〈b, a〉, the set K con-
sists of indices for all epimorphisms ek (up to isomorphism) with domain
codom(a′) = codom(q) such that both ak = ek ◦ a′ and rk = ek ◦ q are inM.

As m ◦ a = b, there is k ∈ K and an ek such that ak is the identity
(or an isomorphism) and rk = m (up to ismorphism), hence in that case
¬∃(ak, A(rk, c)) ≡ ¬∃(id, A(m, c)):

•

•

•

•

•
(PO)

a′

ek

b
m

a

q

rk =m

ak = id

For the pair 〈id, m〉 we have id◦ b = b = m◦a. Due to the universal property
of pushouts, a unique morphism e: codom(a′) → codom(b) with a′ ◦ e = id
and q ◦ e = m exists. As m ◦ a = b and m, b ∈ M, a is in M (M closed
under decomposition) and therefore a′ ∈M (M closed under pushouts). As
a′ ∈ M and e ◦ a′ = id, e is an epimorphism. As both m and id are in M,
ek = e (up to isomorphism) and therefore ak = a′ ◦ ek = a′ ◦ e = id and
rk = q ◦ ek = q ◦ e = m.

Transformation of ¬∃(id, A(m, c)) into CNF will yield ¬A(m, c), hence
A(m,¬c) = ¬A(m, c) = ¬∃(id, A(m, c)) ⊆ ∧k∈K¬∃(ak, A(rk, c)) = A(b,
¬∃(a, c)), using the fact d ⊆ d ∧ f for all conditions d, f . Using Fact 6.35
and Lemma 6.36, our considerations can be lifted to arbitrary c′, d′ with
c′ ⊢(Partial lift) d′. �
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Second, every deduction made by (Resolve) may be replaced by a sequence
of deductions using (Partial lift) and (Descend).

Fact 6.40. For every deduction c′ ⊢(Resolve) d′, there is a sequence of deduc-
tions c′ ⊢(Partial lift) e′ ⊢(Descend) f ′ with d′ ⊆ f ′.

Proof. Let c′ = (¬∃(a, true) ∧ ∃(b, d)). Then c′ ⊢(Partial lift’) e′ with e′ =
(c′ ∧ ∃(b, d ∧ false)) and e′ ⊢(Descend) f ′ with f ′ = (e′ ∧ false). We have d′ =
false ⊆ (false∧e′) = f ′. Using Fact 6.35 and Lemma 6.36, our considerations
can be lifted to arbitrary c′, d′ with c′ ⊢(Resolve) d′. �

The deduction rules of K represent the main computation steps our theorem
prover ProCon performs. Besides an implementation of those rules, we re-
quire a method that transforms any input condition into conjunctive normal
form.

Construction (conjunctive normal form). The equivalences listed in
Table 6.3, strictly read from left to right, can be applied as long as possible to
transform any condition into an (optimized) condition in conjunctive normal
form.

In [Pen04], the equivalences are proven and it is shown that an as long as
possible application yields the desired normal form.

Another implementational aspect is the prevention of redundancy of rule
applications with the intention of containing non-termination as far as pos-
sible. For example, any of the rules (Partial lift), (Lift) or (Supporting lift)
may add subconditions to a conjunction that are already present anyway.
Repeated application of such a rule on its own resolvent would lead into an
infinite redundant branch of the search space. In theses cases, a notion of
structural equivalence can help to filter out double subconditions to prevent
unnecessary deductions.

Definition 6.41 (structural equivalence). Two conditions c over C and d
over D are said to be structurally equivalent with respect to an isomorphism
m: C ↔ D, denoted by c =̂ d, if c = true = d, or if c = ¬c′, d = ¬d′ and c′, d′

are structurally equivalent with respect to m, or if c = (c1∧c2), d = (d1∧d2)
and at least (c1, d1 and c2, d2) or (c1, d2 and c2, d1) are structurally equivalent
(case ∨ analogous) with respect to m, or if c = ∃(a, c′), d = ∃(b, d′) and
there exists an isomorphism m′ ◦ a = b ◦m such that c′, d′ are structurally
equivalent with respect to m′.

The applicability of deduction rules may then be restricted to those cases for
which the resolvent is not structurally equivalent to already existing condi-
tions. Except for the rule (Supporting lift), this effectively prevents recursive
application of rules to derived conditions.
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∃a ≡ ∃(a, true)
∀(a, c) ≡ ¬∃(a,¬c)
∃(a, c) ≡ false if a 6∈ M
¬¬c ≡ c
¬true ≡ false
¬false ≡ true

∃(a, ∨j∈J cj) ≡ ∨j∈J ∃(a, cj)
¬(∨j∈J cj) ≡ (∧j∈J ¬cj)
¬(∧j∈J cj) ≡ (∨j∈J ¬cj)

((∧j∈J cj) ∨ c) ≡ (∧j∈J (cj ∨ c))
∃(id, c) ≡ c

∃(a, false) ≡ false
∃(a, ∃(b, c)) ≡ ∃(b ◦ a, c)

∨j∈J cj ≡ true if ∃k ∈ J. ck = true
∨j∈J cj ≡ ∨j∈Jr{k} cj if ∃k ∈ J. ck = false
∧j∈J cj ≡ ∧j∈Jr{k} cj if ∃k ∈ J. ck = true
∧j∈J cj ≡ false if ∃k ∈ J. ck = false
∨j∈∅ cj ≡ false
∧j∈∅ cj ≡ true

Table 6.3: Equivalences for conjunctive normal form

6.4 Related concepts

In Section 3.3 we have shown that graph conditions and first-order logic on
graphs are expressively equivalent. The proof was based onto two steps:
First, there are high-level transformations between M-satisfiable conditions
and A-satisfiable conditions. Second, there are graph-specific transforma-
tions between A-satisfiable graph conditions and graph formulas, relating
the semantics of formulas and conditions: on the one hand assignments of
variables to a structure representing the tested graph, on the other hand
arbitrary morphisms from the graphs of the condition to the tested graph.

graph conditions
M-satisfiability

graph conditions
A-satisfiability

first-order
graph formulas

yes/no/unknown

Sec. 3.3 Sec. 3.2

Prover9 and Mace4 [McC03]
Vampire and Paradox [RV02, CS03]
Darwin [BFT06]

ProCon and SeekSat
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An obvious approach to solve the tautology and satisfiability problem of
graph conditions would be a transformation of the input condition into a
first-order graph formula and the application of existing provers and solvers.
In fact we will use this strategy in Chapter 7 to compare ProCon and
SeekSat with existing tools for first-order logic. However, such a translation
does not represent a general solution to the problem, as the second part
of the transformation is structure-specific and would have to be customized
for every considered category. In contrast, ProCon and SeekSat make a
translation of the problem unnecessary by providing a theorem prover and
satisfiability solver for any category satisfying the assumptions of Chapter 2.

Many first-order satisfiability solvers, including the most successful ones
[Pfe07] such as Darwin [BFT06] and Paradox [CS03] are based on finite
model building, like their predecessors Mace2, Mace4 [McC03], Falcon

[Zha96] and Sem [ZZ95]. Most of these tools (except Darwin) approach
the problem by translating it, for a given domain size, into a decidable sat-
isfiability problem of either propositional logic or at least ground clauses
with equality. This has the advantage of using existing implementations
of well-known (propositional) satisfiability algorithms, such as the dominat-
ing Davis-Putnam-Logemann-Loveland (DPLL) algorithm [DLL62] and its
derivatives, thus benefiting from years of experience and know-how. How-
ever, the translation phase is usually associated with a significant blow-up:
Generating all ground instances over a domain of size n for a clause with v
variables will yield nv instances alone [McC03]. Also, the problem has to be
solved again and again for increasing domain sizes, while only few tools are
capable of reusing earlier results.

In contrast, SeekSat contains no such translation. Nevertheless, SeekSat
seems, to some degree, related to the family of enumeration algorithms that
are based on tree search and splitting, like the DPLL algorithm. SeekSat is
based on a tree search where internal nodes correspond to partial solutions
(morphisms), branches are choices (partitioning the search space), and leaf
nodes are complete results or dead ends. Instead of splitting, that is, the pro-
cess of branching by selecting a propositional variable x from a formula and
assigning true and false, respectively, SeekSat will either skip, modify the
morphism by adding elements to its codomain (positive statement) or back-
track (negative statement), depending on the satisfaction of the considered
subcondition by the current morphism.

In [BT03, BFT06], the Model Evolution (ME) Calculus is presented,
which lifts the propositional DPLL procedure to first-order logic. Similar
to SeekSat, the split rule of the ME calculus is restricted to positive literals
(the model evolves only in case of positive statements). Like SeekSat, the
ME calculus is shown to be sound and complete. The authors claim that the
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ME calculus can decide the Bernays-Schönfinkel (∃∀) fragment of first-order
logic. The tool Darwin is an implementation of the ME calculus [BFT06]
and was among the best satisfiability solvers at the CADE 2007 [Pfe07].

The earliest attempts to find deduction rules for proving graph conditions
are made by Koch et. al. [KMP05], but remain incomplete. They investigate
the notion of conflicting conditions of the form ∀(I →֒P, ∃(P →C)) and state
prerequisites under which a conjunction of two graph conditions of this form
is unsatisfiable.

Independently of our work, Orejas et. al. [OEP08] investigate sound and
complete calculi for three fragments of graph conditions: the fragment of
Boolean conditions over basic existential conditions ∃(I →֒C), the fragment
of Boolean conditions over basic existential conditions ∃(I →֒C) and non-
negated “atomic” conditions of the form ∀(I →֒P, ∃(P →C)), and the frag-
ment of Boolean conditions over “atomic” conditions of the form ∀(I →֒P,
∃(P →C)). Their deduction rules relate to our own as follows: (R1) is a
special case of (Resolve), (R2) is comparable to the rule (Supporting Lift),
and (R3) is comparable to the rule (Partial lift), although (R2), (R3) do not
lift (parts of) the resolvent (as this is neither necessary nor possible for the
considered fragments of conditions). The operator ⊕ used by Orejas et al. is
a special instance of A restricted to basic existential conditions.

In [Ore08], a sound and complete calculus for the fragment of “basic” and
“positive atomic” attributed graph constraints is presented. Attributed graph
constraints are conditions over attributed graphs combined with a formula
expressing conditions on the attributes such as “(x > y)”.

6.5 Summary and discussion

In Section 6.1 we have investigated the connections between the implication,
the tautology and the satisfiability problem of conditions. These are the
problems to decide for any condition whether or not a condition implies an-
other condition, whether or not a condition is satisfied by every object, and
whether or not a condition is satisfied by some object, respectively. It was
shown that any instance of these problems can be translated into instances of
the remaining two problems. These problems are undecidable for some cate-
gories, in particular for the category Graphs, but the satisfiability problem
is semi-decidable for recursively enumerable categories such as Graphs.

In Section 6.2 we presented a satisfiability algorithm for conditions of
weak adhesive high-level replacement categories. Instead of enumerating all
possible objects of a category to approach the problem, the algorithm uses
the input condition in a constructive way. Starting from the initial object,
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for instance, the empty graph, elements of positive statements are added if
necessary, while the absence of forbidden patterns is asserted. The result is
a monotone (non-deleting) algorithm which non-deterministically progresses
towards satisfying objects by searching through a tree shaped space, where
internal nodes correspond to partially satisfying solutions and leafs are either
satisfying results or dead ends.

We showed that for every condition c in MNF, there exists a program
with interface SeekSat(c) that, with respect to the satisfiability problem, is
correct and complete. Due to the semi-decidability of the satisfiability prob-
lem, the program SeekSat(c) terminates, if c is satisfiable, but may or may
not terminate, if c is unsatisfiable. A fragment of conditions was identified,
namely the NonNested fragment of conditions, for which the termination of
SeekSat was proven. Consequently, the algorithm decides the satisfiability
problem as well as the complementary tautology problem for this subclass of
conditions. We also showed that there exist provable tautologies for which
SeekSat does not terminate, hence SeekSat cannot substitute a dedicated
theorem prover.

In Section 6.3 we presented a calculus for proving conditions over weak
adhesive high-level replacement categories. We took resolution [Rob65], the
most successful approach to first-order theorem proving, as an ideal and pre-
sented deduction rules able to refute conditions in conjunctive normal form.
We proved that every rule application corresponds to a logical deduction, and
investigated whether or not omission of any rule leads to an incomplete calcu-
lus. We discussed practical aspects concerning our implementation ProCon

such as filtering out structurally equivalent conditions. We also showed that
ProCon’s calculus is able to prove tautologies for which SeekSat does not
terminate. This is due to ProCon’s ability of considering infinite sets of
morphisms, which enables it to prove the validity of statements involving uni-
versal quantifications: While every state of ProCon is a condition in CNF
representing usually an infinite set of morphisms, every state of SeekSat is
a state in the execution of a program with interface, representing at most a
finite set of morphisms.

We propose to let run ProCon and SeekSat in parallel. For a given
implication problem, ProCon will search for a proof, while SeekSat will
search for a counterexample. This dual approach is motivated by the results
of the system competition of the conference on automated deduction CADE
[Pfe07]: well-respected theorem provers such as Vampire [RV02] dominate in
problem classes with provable statements, while dedicated satisfiability solver
such as Paradox [CS03] lead in problem classes with refutable statements.
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7. Case studies

In this chapter we conduct case studies to evaluate our approach to the
verification of graph transformation systems and programs. We model and
verify selected aspects of three real-world systems: a railroad control [Pen04,
HP05], a platoon maneuver protocol [Bau06, HESV91], and an access control
for computer systems [HPR06]. For a start, we describe our general set-up
and the content of our tests.

7.1 General set-up

In the following we describe how the case studies are conducted using our
implementation Enforce. Enforce is a framework for verifying graphical
program specifications. It is written in Java 6 and provides suitable data
structures, for instance, graphs, categories, morphisms, conditions, rules, pro-
grams, as well as operations on these structures, such as, enumeration of all
epimorphisms for a given domain, a construction of weakest liberal precondi-
tions as presented in Section 5.3, the theorem prover ProCon, the satisfiabil-
ity solver SeekSat, and so forth. The basic design of Enforce is presented in
[AHPZ07, Zuc06]. Some graph-specific operations were adapted from [Bus04,
Möl03] such as the enumeration of all morphisms between two graphs, also
known as matching. The source code of Enforce is available in the repos-
itory (login required) svn://homer.informatik.uni-oldenburg.de/svn/

graphtrans/trunk.
Each case study is represented by a JUnit test, as shown in Table 7.1.

The free and platform independent development environment Eclipse [Ecl]
is recommended to view and execute the tests, as indicated in Figure 7.1.

The system states of our example systems are represented by directed
labeled graphs. Consequently, we use graph conditions to model state prop-
erties and use graph programs or graph transformation rules to model state
transitions. For each case study, a number of conditions and programs (or
transformation rules) are considered. The necessary nodes, edges, graphs and
graph morphisms are manually defined using the API of the classes Node,
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case study JUnit test
railroad control tests/enforce/dlgengine/dlgraph/RailroadTest.java

car platoons tests/enforce/dlgengine/dlgraph/CarPlatooningTest.java

access control tests/enforce/dlgengine/dlgraph/AccessControlTest.java

Table 7.1: Correspondence of case studies and JUnit tests

Edge, Graph, and Morphism of the package enforce.dlgengine.dlgraphs

and the operations of enforce.dlgengine.operations.DlgOperations such
as initial(Graph) and inclusion(Graph,Graph).

The main goal of each case study is the automatic verification or refuta-
tion of a number of selected specifications. The majority of our specifications
has the form {c}P{c}, where c is a condition and P is a program or trans-
formation rule. We consider “elementary” specifications concerning a single
program and single property as well as “composite” specifications that con-
sists of a choice of programs and rules and/or a conjunction of conditions.

According to our approach, all specifications are tested by first comput-
ing a weakest precondition and then deciding the implication problem. If
P is a program without iteration or a set of transformation rules, a weak-
est precondition can be effectively computed for specifications of the form
{c}P∗{c}, using the fact that {c}P∗{c} is correct iff {c}P{c} is correct. In all
other cases, an invariant is approximated using the algorithm of Section 5.4.
However, if the approximation fails or yields a precondition that is not weak
enough, even a correct specification may not be automatically verified.

Concerning the implication problem, we will compare the following pairs
of theorem provers and satisfiability solvers, listed in Table 7.2. Meta refers
to the hypothetical tool that arises by taking the minimum response time of
the off-the-shelf provers and solvers for each test specification.

no. prover and solver reference
1 ProCon and SeekSat Chapter 6
2 Vampire 9.0 and Paradox 3.0 [RV02, CS03]
3 Darwin 1.3 [BT03, BFT06]
4 Prover9 and Mace4 (v2008-09A) [McC, McC06, McC03]
5 Meta min time of 2, 3 and 4

Table 7.2: Considered pairs of theorem provers and satisfiability solvers

The external tools are applied onto translations of graph conditions into
first-order graph formulas, as described in Section 3.3. For this task, Enforce
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Figure 7.1: Execution of the access control JUnit test in Eclipse

supports the file formats Tptp [SS98] and Ladr [McC]. For each test case,
we measure three values: the time it takes to construct a weakest precondi-
tion, denoted by twlp, the time to decide the implication problem, denoted by
t|= and the time to decide the specification, denoted by tΣ, which is roughly
the sum of the previous values. To enable a fair comparison between our
deciders and the existing ones for first-order logic, the time to translate a
graph condition into a first-order graph formula is excluded from t|=. In the
same spirit, the time it takes to transform a graph condition into conjunctive
normal form is included in t|=, in the case of ProCon.

7.2 Railroad control system

In the following we introduce state graphs of a simple control system for
railroad networks. Our goal is to model the extension of a net of railroad
tracks and the addition and movement of trains thereon. The basic items of
our models are waypoints “ ”, tracks “ ”, switches “ ” and trains
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“ ”.

Example 7.1 (railroad graphs). Let C be an alphabet that consists of
suitable labels for waypoints, railroad tracks, switch edges and trains, for
instance, C = 〈{waypoint}, {track, switchhead, switchend, train}〉. An ex-
ample of a (concrete) graph and its graphical representation, called abstract
graph, is given in Figure 7.2. Note that every proper undirected edge in the
abstract graph represents a pair of directed edges in the concrete graph.

G = 〈{v1, v2, v3}, {e1, . . . , e6}, sG, tG, lG, mG〉 with
i 1 2 3 4 5 6

lG(vi) waypoint
sG(ei) v1 v2 v1 v1 v2 v3

tG(ei) v2 v1 v2 v1 v3 v2

mG(ei) track train switchhead switchend

v1 v2

v3

Figure 7.2: Concrete graph and its graphical representation

Figure 7.3: Railroad network with a train and two switches

With the intent to reason about the security of the railroad control, we
exemplarily formalize some constraints on the railroad graphs. For instance,
the control system should ensure that trains do not derail (every train is on
a track), that trains do not crash (two trains do not occupy the same piece
of track) and that trains keep a safety distance of one track (two trains do
not occupy neighboring pieces of track, except if they drive apart).

Example 7.2 (railroad conditions). The following conditions are over
the empty graph:

(onTrack) Every train occupies a piece of track:

∀
(

1 2
, ∃

1 2

)

(noTwo) Different trains occupy different waypoints (pieces of track):

¬∃ ∧ ¬∃
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(direction) Two adjacent trains drive apart:

¬∃ ∧ ¬∃

Let decidable = noTwo ∧ direction and consistent = onTrack ∧ decidable.

Example 7.3 (railroad control system). The following graph trans-
formation rules constitute the dynamic part of our railroad control system
and model the extension of a net of railroad tracks and the addition and
movement of trains thereon. The notation 〈〈L ⇀֒ R〉 , acL〉 corresponds to a
transformation rule 〈〈L ←֓ K →֒ R〉 , acL〉, where K ⊆ (L ∩ R) is the graph
that consists of all elements common to L and R.

(Build1) Extension of the net:

1
⇀֒

1 2

(Build2) Connection of two waypoints:

1 2
⇀֒

1 2

(Build3) Build of a switch:

1
⇀֒

1 2 3

(Add) Addition of a train to the railroad net:

1 2
⇀֒

1 2

(Move) Movement of a train along the railroad net:

1 2 3
⇀֒

1 2 3

(Switch) Switch of points:

1 2 3
⇀֒

1 2 3

While already functional, not every transformation rule is safe with respect to
the railroad graph conditions of Example 7.2. For instance, trains may crash
if a train moves onto a piece of track that is already occupied by another
train, or trains may derail, if a switch is toggled while a train is on it. Thus
we need to formalize which behavior we exclude. One possible way is to
describe the set of forbidden system states and to ensure that these states or
graphs are never reached by a transition. In [Pen04], we have claimed that
the following transformation rules restricted by application conditions will
preserve the satisfaction of the presented railroad conditions.
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(AddAC) (Restricted) addition of a train:

1 2
⇀֒

1 2
,

¬∃
1 2

∧ ¬∃
1 2

∧ ¬∃
1 2 5

∧ ¬∃
1 2 5

∧ ¬∃
5 1 2

(MoveAC) (Restricted) movement of a train:

1 2 3
⇀֒

1 2 3
,

¬∃
1 2 3

∧ ¬∃
1 2 3

∧ ¬∃
1 2 3 9

∧ ¬∃
1 2 3 9

∧ ¬∃
1 2 3

∧ ¬∃
1 2 3

(SwitchAC) (Restricted) switch of points:

1 2 3
⇀֒

1 2 3
,

¬∃
1 2 3

∧ ¬∃
1 2 3

Let Railroad = {Build1, Build2, Build3, AddAC, MoveAC, SwitchAC}
be the non-deterministic choice of the aforementioned graph transformation
rules.

We now want to verify whether or not the railroad control system will pre-
serve the railroad graph conditions of Example 7.2. We will use Enforce to
automatically verify or refute test specifications of the form {c}R{c}, where
c is a railroad condition and R is either a railroad transformation rule or the
whole railroad control.

Example 7.4 (railroad verification). Table 7.3 on page 122 shows a log
of the railroad case study. The second column states the specification of
each test case. The column “ |wlp|” states the complexity of the constructed
weakest preconditions, that is, the number of logical symbols. The column
“result” compares the expected result with the computed result in the sense
of an automated unit test. Here, True stands for tautology, False stands for
contradiction, and an Exception would indicate no decision. The following
columns state the number of seconds it took to decide each specification
“tΣ”, which is roughly the sum of the time it took to construct the weakest
precondition “twlp” and the time to decide the implication problem “t|=”. The
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last column “decider” states which algorithm contributed the decision of the
implication problem.

Aside the railroad conditions defined in Example 7.2, we consider two sim-
ilar conditions, which turn out to be not invariant with respect to Railroad.

(altNoTwo) Different trains occupy different pieces of track (alternative):

¬∃ ∧ ¬∃

(altDirection) Two adjacent trains face in opposite directions (alternative):

¬∃ ∧ ¬∃

The results can be interpreted as follows: Most importantly, all test cases
can be automatically decided by Enforce. Concerning performance, all but
5 test cases can be decided in less than 2 seconds, the majority in less than
0.2 seconds. Concerning correctness, we have proven that the railroad sys-
tem preserves “consistency”, that is, every transition from a state satisfying
the condition consistent will end up in a consistent state. As predicted, the
unrestricted transformation rules Add, Move and Switch are not correct with
respect to the condition consistent . Interestingly, one may not substitute the
conditions noTwo and direction with their alternative versions, for instance,
compare the cases #8 versus #9. Moreover, note that the condition direc-
tion itself is not invariant with respect to the rule MoveAC (#31), still MoveAC
is consistent (#35). Concerning the implication problem, Figure 7.4 shows
a comparison between the decision times t|= of ProCon‖SeekSat (see Ta-
ble 7.3) and existing first-order theorem provers and satisfiability solvers such
as Vampire, Paradox, Darwin, Prover9 and Mace4 (see Table 7.4).
Even all first-order tools combined (Meta) can only decide 37 of 70 test spec-
ifications given 5 minutes of time per specification (Intel T5600, 1.83GHz).
Notably, Vampire and Darwin are able to solve different test cases, which
one may take as an indication that each of these tools has its own difficulties
with the test instances.

An interesting characteristic of the railroad control system is that its
model involves many identically labeled elements. For instance, there is only
one node label “waypoint” and most edge labels can be expected to be either
tracks or trains. Remember also, that any undirected edge in the graphical
representation really corresponds to a pair of directed edges. This leads to
a relatively high number of elements that may or may not be identical – for
once during the construction of weakest preconditions, resulting in rather
complex conditions, but also during the translation of graph conditions into
first-order graph formulas, resulting in a rather high number of inequations
that are necessarily generated.
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# specification |wlp| result tΣ twlp t|= decider

1 {noTwo} Build1 {noTwo} 18 T=T 0.0 0.0 0.0 SeekSat
2 {altNoTwo} Build1 {altNoTwo} 18 T=T 0.1 0.0 0.1 SeekSat
3 {direction} Build1 {direction} 18 T=T 0.1 0.1 0.0 SeekSat
4 {altDirection} Build1 {altDirection} 18 T=T 0.1 0.1 0.0 SeekSat
5 {onTrack} Build1 {onTrack} 20 T=T 0.1 0.0 0.1 ProCon
6 {decidable} Build1 {decidable} 34 T=T 0.1 0.1 0.0 SeekSat
7 {consistent} Build1 {consistent} 51 T=T 0.7 0.1 0.6 ProCon
8 {noTwo} Build2 {noTwo} 18 T=T 0.0 0.0 0.0 SeekSat
9 {altNoTwo} Build2 {altNoTwo} 18 F=F 0.0 0.0 0.0 SeekSat

10 {direction} Build2 {direction} 18 T=T 0.0 0.0 0.0 SeekSat
11 {altDirection} Build2 {altDirection} 22 F=F 0.0 0.0 0.0 SeekSat
12 {onTrack} Build2 {onTrack} 20 T=T 0.1 0.0 0.1 ProCon
13 {decidable} Build2 {decidable} 34 T=T 0.1 0.1 0.0 SeekSat
14 {consistent} Build2 {consistent} 51 T=T 0.9 0.0 0.9 ProCon
15 {noTwo} Build3 {noTwo} 18 T=T 0.0 0.0 0.0 SeekSat
16 {altNoTwo} Build3 {altNoTwo} 18 T=T 0.0 0.0 0.0 SeekSat
17 {direction} Build3 {direction} 18 T=T 0.0 0.0 0.0 SeekSat
18 {altDirection} Build3 {altDirection} 18 T=T 0.0 0.0 0.0 SeekSat
19 {onTrack} Build3 {onTrack} 20 T=T 0.0 0.0 0.0 ProCon
20 {decidable} Build3 {decidable} 34 T=T 0.1 0.1 0.0 SeekSat
21 {consistent} Build3 {consistent} 51 T=T 0.3 0.1 0.2 ProCon
22 {noTwo} AddAC {noTwo} 54 T=T 0.0 0.0 0.0 SeekSat
23 {altNoTwo} AddAC {altNoTwo} 54 T=T 0.0 0.0 0.0 SeekSat
24 {direction} AddAC {direction} 50 T=T 0.1 0.0 0.1 SeekSat
25 {altDirection} AddAC {altDirection} 50 T=T 0.0 0.0 0.0 SeekSat
26 {onTrack} AddAC {onTrack} 55 T=T 0.1 0.0 0.1 ProCon
27 {decidable} AddAC {decidable} 66 T=T 0.2 0.1 0.1 SeekSat
28 {consistent} AddAC {consistent} 79 T=T 0.1 0.1 0.9 ProCon
29 {noTwo} MoveAC {noTwo} 76 T=T 0.3 0.2 0.0 SeekSat
30 {altNoTwo} MoveAC {altNoTwo} 76 T=T 0.2 0.1 0.1 SeekSat
31 {direction} MoveAC {direction} 80 F=F 0.5 0.0 0.5 SeekSat
32 {altDirection} MoveAC {altDirection} 80 F=F 0.3 0.1 0.2 SeekSat
33 {onTrack} MoveAC {onTrack} 79 T=T 0.4 0.0 0.4 ProCon
34 {decidable} MoveAC {decidable} 102 T=T 0.2 0.0 0.2 SeekSat
35 {consistent} MoveAC {consistent} 125 T=T 0.1 0.1 0.9 ProCon
36 {noTwo} SwitchAC {noTwo} 62 T=T 0.0 0.0 0.0 SeekSat
37 {altNoTwo} SwitchAC {altNoTwo} 62 F=F 0.1 0.0 0.1 SeekSat
38 {direction} SwitchAC {direction} 128 T=T 0.3 0.1 0.2 SeekSat
39 {altDirection} SwitchAC {altDirection} 128 F=F 1.1 0.4 0.7 SeekSat
40 {onTrack} SwitchAC {onTrack} 73 T=T 1.0 0.0 1.0 ProCon
41 {decidable} SwitchAC {decidable} 176 T=T 1.4 0.7 0.6 SeekSat
42 {consistent} SwitchAC {consistent} 234 T=T 29.8 2.1 27.6 ProCon
43 {noTwo} Add {noTwo} 34 F=F 0.0 0.0 0.0 SeekSat
44 {altNoTwo} Add {altNoTwo} 13 F=F 0.0 0.0 0.0 SeekSat
45 {direction} Add {direction} 26 F=F 0.0 0.0 0.0 SeekSat
46 {altDirection} Add {altDirection} 18 F=F 0.0 0.0 0.0 SeekSat
47 {onTrack} Add {onTrack} 27 T=T 0.1 0.0 0.1 ProCon
48 {decidable} Add {decidable} 46 F=F 0.0 0.0 0.0 SeekSat
49 {consistent} Add {consistent} 56 F=F 0.1 0.0 0.1 SeekSat
50 {noTwo} Move {noTwo} 86 F=F 0.3 0.0 0.2 ProCon
51 {altNoTwo} Move {altNoTwo} 58 F=F 0.2 0.0 0.2 SeekSat
52 {direction} Move {direction} 94 F=F 0.2 0.0 0.2 SeekSat
53 {altDirection} Move {altDirection} 58 F=F 1.4 0.1 1.3 SeekSat
54 {onTrack} Move {onTrack} 69 T=T 0.4 0.0 0.4 ProCon
55 {decidable} Move {decidable} 130 F=F 0.4 0.0 0.4 SeekSat
56 {consistent} Move {consistent} 161 F=F 10.2 0.1 10.1 ProCon
57 {noTwo} Switch {noTwo} 90 T=T 0.1 0.0 0.1 SeekSat
58 {altNoTwo} Switch {altNoTwo} 90 F=F 0.4 0.0 0.4 ProCon
59 {direction} Switch {direction} 222 T=T 0.5 0.1 0.4 SeekSat
60 {altDirection} Switch {altDirection} 222 F=F 6.9 0.2 6.7 SeekSat
61 {onTrack} Switch {onTrack} 83 F=F 0.4 0.0 0.4 ProCon
62 {decidable} Switch {decidable} 310 T=T 1.2 0.3 0.9 SeekSat
63 {consistent} Switch {consistent} 390 F=F 7.7 0.4 7.3 ProCon
64 {noTwo} Railroad {noTwo} 183 T=T 0.1 0.0 0.1 SeekSat
65 {altNoTwo} Railroad {altNoTwo} 183 F=F 0.2 0.1 0.1 SeekSat
66 {direction} Railroad {direction} 249 F=F 0.4 0.2 0.2 SeekSat
67 {altDirection} Railroad {altDirection} 253 F=F 1.2 0.5 0.6 SeekSat
68 {onTrack} Railroad {onTrack} 219 T=T 0.9 0.0 0.9 ProCon
69 {decidable} Railroad {decidable} 327 T=T 1.1 0.5 0.6 SeekSat
70 {consistent} Railroad {consistent} 436 T=T 28.2 0.6 27.5 ProCon

µ arithmetic mean 93.7 1.5 0.1 1.4
µ1/2 median 60 0.2 0.0 0.1

Table 7.3: Railroad control case study: results
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# result t|= decider result t|= decider result t|= decider

1 T=T 22.3 Vampire T=T 0.2 DarwinProver T=T 2.5 Prover9
2 T=T 42.8 Vampire T=T 7.2 DarwinProver T=T 134.0 Prover9
3 T=T 21.3 Vampire T=T 1.2 DarwinProver T=T 30.5 Prover9
4 T=T 124.8 Vampire T6=E - - T6=E - -
5 T=T 21.3 Vampire T=T 0.4 DarwinProver T=T 34.6 Prover9
6 T=T 85.8 Vampire T=T 1.2 DarwinProver T6=E - -
7 T=T 168.9 Vampire T=T 2.0 DarwinProver T6=E - -
8 T=T 21.3 Vampire T=T 0.2 DarwinProver T=T 1.2 Prover9
9 F=F 0.2 Paradox F=F 0.2 DarwinSolver F=F 0.4 Mace4

10 T=T 41.7 Vampire T=T 1.2 DarwinProver T=T 30.5 Prover9
11 F=F 0.4 Paradox F 6=E - - F 6=E - -
12 T=T 42.8 Vampire T=T 0.4 DarwinProver T=T 16.1 Prover9
13 T=T 86.9 Vampire T=T 1.2 DarwinProver T6=E - -
14 T=T 86.9 Vampire T=T 2.0 DarwinProver T6=E - -
15 T=T 41.8 Vampire T=T 0.2 DarwinProver T=T 2.5 Prover9
16 T=T 42.8 Vampire T=T 7.2 DarwinProver T=T 71.5 Prover9
17 T=T 22.3 Vampire T=T 1.2 DarwinProver T=T 15.1 Prover9
18 T=T 65.3 Vampire T6=E - - T6=E - -
19 T=T 21.2 Vampire T=T 0.4 DarwinProver T=T 34.6 Prover9
20 T=T 168.0 Vampire T=T 1.2 DarwinProver T6=E - -
21 T=T 168.9 Vampire T=T 2.0 DarwinProver T6=E - -
22 T=T 97.1 Vampire T=T 4.2 DarwinProver T6=E - -
23 T6=E - - T6=E - - T6=E - -
24 T6=E - - T6=E - - T6=E - -
25 T6=E - - T6=E - - T6=E - -
26 T=T 67.4 Vampire T6=E - - T6=E - -
27 T6=E - - T6=E - - T6=E - -
28 T6=E - - T6=E - - T6=E - -
29 T6=E - - T=T 79.7 DarwinProver T6=E - -
30 T6=E - - T6=E - - T6=E - -
31 F 6=E - - F 6=E - - F 6=E - -
32 F 6=E - - F 6=E - - F 6=E - -
33 T6=E - - T6=E - - T6=E - -
34 T6=E - - T6=E - - T6=E - -
35 T6=E - - T6=E - - T6=E - -
36 T6=E - - T=T 148.4 DarwinProver T6=E - -
37 F 6=E - - F 6=E - - F 6=E - -
38 T6=E - - T6=E - - T6=E - -
39 F 6=E - - F 6=E - - F 6=E - -
40 T=T 181.4 Vampire T6=E - - T6=E - -
41 T6=E - - T6=E - - T6=E - -
42 T6=E - - T6=E - - T6=E - -
43 F=F 0.4 Paradox F 6=E - - F 6=E - -
44 F=F 0.3 Paradox F=F 0.2 DarwinSolver F=F 1.6 Mace4
45 F=F 0.4 Paradox F 6=E - - F 6=E - -
46 F=F 6.4 Paradox F 6=E - - F 6=E - -
47 T=T 37.7 Vampire T=T 1.6 DarwinProver T6=E - -
48 F=F 0.6 Paradox F=F 202.7 DarwinSolver F 6=E - -
49 F=F 0.4 Paradox F 6=E - - F 6=E - -
50 F 6=E - - F 6=E - - F 6=E - -
51 F 6=E - - F 6=E - - F 6=E - -
52 F 6=E - - F 6=E - - F 6=E - -
53 F 6=E - - F 6=E - - F 6=E - -
54 T6=E - - T=T 215.0 DarwinProver T6=E - -
55 F 6=E - - F 6=E - - F 6=E - -
56 F 6=E - - F 6=E - - F 6=E - -
57 T6=E - - T=T 51.0 DarwinProver T6=E - -
58 F 6=E - - F 6=E - - F 6=E - -
59 T6=E - - T6=E - - T6=E - -
60 F 6=E - - F 6=E - - F 6=E - -
61 F 6=E - - F 6=E - - F 6=E - -
62 T6=E - - T6=E - - T6=E - -
63 F 6=E - - F 6=E - - F 6=E - -
64 T6=E - - T=T 251.9 DarwinProver T6=E - -
65 F 6=E - - F=F 2.5 DarwinSolver F 6=E - -
66 F 6=E - - F 6=E - - F 6=E - -
67 F 6=E - - F 6=E - - F 6=E - -
68 T6=E - - T6=E - - T6=E - -
69 T6=E - - T6=E - - T6=E - -
70 T6=E - - T6=E - - T6=E - -

µ 54.5 35.2 28.9
µ1/2 41.7 1.4 16.1

Table 7.4: Railroad: decision times of first-order provers and solvers
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Figure 7.4: Railroad control: comparison of deciders (“t|=”)

7.3 Car platoon maneuver protocol

According to [Bau06], the following car platooning case study is “a prototyp-
ical instance of a dynamic communication system”. Originally taken from
the California Path project [HESV91], it represents a protocol for cars on
a highway that can organize themselves into platoons, by driving close to-
gether, with the aim to conserve space and fuel. A typical platoon, such as

Figure 7.5: Car platoon

the one depicted in Figure 7.5, consists of a unique leader and a number of
followers. Such a platoon can be modeled as a tree of height one, with the
leader being the root and the followers constituting the leafs. Platoons may
temporarily assume a different form during maneuvers such as the merge of
two platoons or the splitting of a platoon.

Example 7.5 (car platooning graphs). Let C = 〈{fa, ldr, flw, fl, rl, spl,
acc}, {_}〉 be an alphabet. An overview of the labels and their meaning is
given in Table 7.5. A car platooning state graph consists of zero or more
platoons. As we will see later on, platoons are inductively defined: Every
single car, called “free agent”, constitutes a platoon of size one. Two platoons
may merge: the leader of the rear platoon, temporarily called “rear leader”,
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hands over all followers to the leader of the platoon in front, temporarily
called the “front leader”. If the “rear leader” has no followers left, it degrades
into a follower of the “front leader” and the “front leader” becomes the new
leader of the merged platoon. A number of car platoons are depicted in
Figure 7.6. Any combination of them constitutes a car platooning state
graph.

fa free agent – a single car not associated with a platoon; may disap-
pear

ldr leader – the leader of a platoon, not engaged in a merge or split
maneuver

flw follower – a member of a platoon, not the leader
fl front leader – the leader of a platoon that is about to merge with

another platoon; will remain the leader
rl rear leader – the leader of a platoon that is about to merge with

another platoon; will become a follower
spl spliting follower – the follower that becomes the leader after the

split
acc accelerating leader – the leader of a platoon that needs to split

Table 7.5: Car platoons case study: alphabet

fa fa fa flrl ldrflw . . . rlflw

flw

flw

flw

flw
fl

Figure 7.6: Car platoons state graphs

Example 7.6 (car platooning conditions). We now present a num-
ber of graph conditions over the empty graph that concern the structure of
platoons, for instance, “Two leaders are never connected”. We cover 3 of 4
example properties considered in [Bau06]. The fourth property concerns a
liveness aspect of an extension of the car platooning protocol with respect
to asynchronous communication. To our best knowledge, it remains open
whether the analysis techniques presented in [Bau06] are able to decide it.
In the following a unlabeled node represents a labeled node with arbitrary
label.
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(ldrNeverHasLdr) A leader is never connected to another leader. More for-
mally, for all nodes that have an incoming edge from a leader, it is not
true that the label is leader, that is, they are not leaders themselves.
This condition corresponds to property “(3.1)” of [Bau06, p. 45]:
∀
(

ldr
1 2

, ¬∃ ldr
1

ldr
2

)

(ldrHasNeighbor) A leader must always be connected to someone else. More
formally, for all leaders, there is a node connected with an outgoing edge
or there is a node connected with an incoming edge. This condition
corresponds to property “(3.2)” of [Bau06, p. 45]:
∀
(

ldr
1

, ∃ ldr
1 2

∨ ∃ ldr
1 2

)

(uniqueLdr) Each car that is not a leader or a free agent has a unique leader.
More formally, for every node, the label is leader or the label is free
agent or the node is associated to one and not two leaders. This con-
dition is comparable to property “(3.4)” of [Bau06, p. 56]:

∀
(

1
, ∃ ldr

1
∨ ∃ fa

1
∨
(
∃

1
ldr
2
∧ ¬∃

1
ldr
2

ldr
3

) )

(ldrHasFlw) A leader must always be connected to a follower or splitting
follower. More formally, for all leader nodes, there exists an outgoing
edge to a follower node or there exists an outgoing edge to a splitting
follower:
∀
(

ldr
1

, ∃ ldr
1

flw
2
∨ ∃ ldr

1
spl
2

)

(flwHasLdr) Every follower has one and only one leader. More formally, for
every follower node, there is an incoming edge from a leader node and
there are not two incoming edges from two leader nodes:

∀

(
flw
1

, ∃ flw
1

ldr
2
∧ ¬∃ flw

1
ldr
2

ldr
3

)

(flwHasSomeLdr) Every follower has some sort of leader:

∀




flw
1

,

∃ flw
1

ldr
2

∨ ∃ flw
1

fl
2

∨ ∃ flw
1

rl
2

∨ ∃ flw
1

spl
2

∨ ∃ flw
1

acc
2





(freeAgents) A free agent is isolated. More formally, there does not exist an
outgoing edge to another node nor does there exist an incoming edge
from another node:
¬∃ fa ∧ ¬∃ fa
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Example 7.7 (car platooning system). The following graph transforma-
tion rules, taken from [Bau06, p. 41ff], constitute the dynamic part of the
car platooning protocol and model the appearance and disappearance of free
agents, the merge and splitting of platoons. The “partner constraints” of the
rules in [Bau06] have been translated into negative application conditions.
Note that while we could, we do not use label schemata, but present each ap-
plication condition explicitly. The notation 〈〈L ⇀֒ R〉 , acL〉 corresponds to a
transformation rule 〈〈L ←֓ K →֒ R〉 , acL〉, where K ⊆ (L ∩ R) is the graph
that consists of all elements common to L and R. Some of the rules apply
relabeling, for instance InitSplit1. Strictly speaking, the graphs and the
morphisms used in these rules do not fit to our definition of totally labeled
graphs and label-preserving morphisms. However, Enforce also handles
partially labeled graphs and label-preserving morphisms.

(Create) A free agent appears:
∅ ⇀֒ fa

(Destroy) A free agent disappears:
fa ⇀֒ ∅

(InitMerge1 − 4) Initiates a merge between two suitable actors, that is, any
pair of leaders and free agents:

ldr
1

ldr
2

⇀֒ rl
1

fl
2

ldr
1

fa
2

⇀֒ rl
1

fl
2

fa
1

ldr
2

⇀֒ rl
1

fl
2

fa
1

fa
2

⇀֒ rl
1

fl
2

(Pass1) Passes a follower of a rear leader to the front leader:

rl
1

fl
2

flw
3

⇀֒ rl
1

fl
2

flw
3

(Ldr2Flw) Converts a rear leader (with no followers) into a follower:

rl
1

fl
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(InitSplit1) Initiates a split of a platoon by a follower:
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(Pass2) Passes a follower of a leader to the split initiating car, dividing the
platoon into two:
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(SplitMiddle) Splits the platoon, converting the split initiating car (that
has followers) into a leader:

ldr
1

spl
2

⇀֒ ldr
1

ldr
2

,

∃ flw
4

ldr
1

spl
2

∧ ∃ ldr
1

spl
2

flw
4

∧ ¬∃ ldr
1

spl
2

∧ ¬∃ ldr
1

spl
2

fl
4

∧ ¬∃ ldr
1

spl
2

spl
4
∧ ¬∃ ldr

1
spl
2

rl
4

∧ ¬∃ ldr
1

spl
2

fa
4

∧ ¬∃ ldr
1

spl
2

ldr
4

∧ ¬∃ ldr
1

spl
2

acc
4
∧ ¬∃ ldr

1
spl
2

fl
4

∧ ¬∃ ldr
1

spl
2

spl
4
∧ ¬∃ ldr

1
spl
2

rl
4

∧ ¬∃ ldr
1

spl
2

fa
4

∧ ¬∃ ldr
1

spl
2

ldr
4

∧ ¬∃ ldr
1

spl
2

acc
4
∧ ¬∃ ldr

1
spl
2

∧ ¬∃ ldr
1

spl
2

∧ ¬∃ ldr
1

spl
2

fl
4

∧ ¬∃ ldr
1

spl
2

spl
4
∧ ¬∃ ldr

1
spl
2

rl
4

∧ ¬∃ ldr
1

spl
2

fa
4

∧ ¬∃ ldr
1

spl
2

ldr
4

∧ ¬∃ ldr
1

spl
2

acc
4
∧ ¬∃ ldr

1
spl
2

fl
4

∧ ¬∃ ldr
1

spl
2

spl
4
∧ ¬∃ ldr

1
spl
2

rl
4

∧ ¬∃ ldr
1

spl
2

fa
4

∧ ¬∃ ldr
1

spl
2

ldr
4

∧ ¬∃ ldr
1

spl
2

acc
4
∧ ¬∃ ldr

1
spl
2

(SplitLast) Splits the platoon, converting the split initiating car (that has
no followers) into a free agent:
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(InitSplit2) Initiates a split of a platoon by the leader:
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(TwoSplit) Splits a platoon consisting of two cars:
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(Pass3) Selects a new leader, handing over a follower:
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(Pass4) Handing over another follower to the new platoon leader:
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(AccLeader) Splits the platoon, the leader becomes a free agent:
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Let BasicCarPlatooning= {Create, Destroy, InitMerge1, InitMerge2,

InitMerge3, InitMerge4, Pass1, Ldr2Flw} be a non-deterministic choice
of graph transformation rules, and let CarPlatooning be the non-determin-
istic choice consisting of every above mentioned graph transformation rule.

We now want to verify whether or not the car platooning rules are correct
with respect to the car platooning conditions of Example 7.6. We will use
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Enforce to automatically verify or refute test specifications of the form
{c}R{c} and {¬∃ }P∗{c}, where c is a condition, R a transformation rule
and P a set of transformation rules. The condition ¬∃ represents the empty
graph, the start graph of the car platooning protocol.

Example 7.8 (car platooning verification). Table 7.6 and Table 7.7 on
page 131f show a log of the car platooning case study. The second column
states the specification of each test case. The column “ |wlp|” states the
complexity of the constructed weakest preconditions, that is, the number
of logical symbols. The column “result” compares the expected result with
the computed result in the sense of an automated unit test. Here, True
stands for tautology, False stands for contradiction, and an Exception would
indicate no decision. The following columns state the number of seconds it
took to decide each specification “tΣ”, which is roughly the sum of the time it
took to construct the weakest precondition “twlp” and the time to decide the
implication problem “t|=”. The last column “decider” states which algorithm
contributed the decision of the implication problem.

The results can be interpreted as follows: Most importantly, all test spec-
ifications can be automatically decided by Enforce. Concerning perfor-
mance, all but 7 test cases can be decided in less than 2 seconds, the major-
ity in less than 0.1 seconds. Concerning the correctness of CarPlatooning
with respect to the start graph ∅, we have proven that a leader “ldr” is
never connected to another leader node (ldrNeverHasLdr, see case #134),
every follower is associated to some kind of leader, that is, “ldr”, “rl”, “fl”,
“spl” or “acc” (flwHasSomeLdr, see case #139), and every free agent is iso-
lated (freeAgents, see case #140). In accordance with [Bau06], we have
shown that ldrHasNeighbor is satisfied in every reachable state from ∅ by
BasicCarPlatooning∗ , but not by CarPlatooning∗ (compare #128 vs. #135).
Furthermore, we have discovered that during a split maneuver, not every
leader may have a follower (ldrHasFlw, see case #136).

Concerning the implication problem, Figure 7.7 shows a comparison be-
tween the decision times t|= of ProCon‖SeekSat (see Table 7.6 and 7.7) and
selected first-order theorem provers and satisfiability solvers (see Table 7.8).
In contrast to the railroad case study, this time the off-the-shelf tools perform
almost competitive, both in terms of coverage and performance. All tools
combined (Meta) are able to solve all but one specification (that is #121),
given 5 minutes of time per specification (Intel T5600, 1.83GHz). Again,
Vampire and Darwin are able to solve different test cases.

The differences to the railroad control results may be explained by the fact
that for the graphs used in the railroad conditions and rules, the number of
elements is higher. At the same time, the railroad graphs feature fewer labels,
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# specification |wlp| result tΣ twlp t|= decider

1 {ldrNeverHasLdr} Create {ldrNeverHasLdr} 10 T=T 0.0 0.0 0.0 SeekSat
2 {ldrHasNeighbor} Create {ldrHasNeighbor} 20 T=T 0.0 0.0 0.0 ProCon
3 {ldrHasFlw} Create {ldrHasFlw} 20 T=T 0.0 0.0 0.0 ProCon
4 {uniqueLdr} Create {uniqueLdr} 32 T=T 0.1 0.0 0.1 ProCon
5 {flwHasLdr} Create {flwHasLdr} 21 T=T 0.0 0.0 0.0 ProCon
6 {flwHasSomeLdr} Create {flwHasSomeLdr} 38 T=T 0.1 0.0 0.1 ProCon
7 {freeAgents} Create {freeAgents} 18 T=T 0.0 0.0 0.0 SeekSat
8 {ldrNeverHasLdr} Destroy {ldrNeverHasLdr} 25 T=T 0.0 0.0 0.0 SeekSat
9 {ldrHasNeighbor} Destroy {ldrHasNeighbor} 35 T=T 0.2 0.0 0.2 ProCon

10 {ldrHasFlw} Destroy {ldrHasFlw} 35 T=T 0.1 0.0 0.1 ProCon
11 {uniqueLdr} Destroy {uniqueLdr} 47 T=T 0.1 0.0 0.1 ProCon
12 {flwHasLdr} Destroy {flwHasLdr} 33 T=T 0.0 0.0 0.0 ProCon
13 {flwHasSomeLdr} Destroy {flwHasSomeLdr} 53 T=T 0.1 0.0 0.1 ProCon
14 {freeAgents} Destroy {freeAgents} 30 T=T 0.1 0.0 0.1 SeekSat
15 {ldrNeverHasLdr} InitMerge1 {ldrNeverHasLdr} 10 T=T 0.0 0.0 0.0 SeekSat
16 {ldrHasNeighbor} InitMerge1 {ldrHasNeighbor} 36 T=T 0.1 0.0 0.1 ProCon
17 {ldrHasFlw} InitMerge1 {ldrHasFlw} 20 T=T 0.1 0.0 0.1 ProCon
18 {uniqueLdr} InitMerge1 {uniqueLdr} 51 F=F 0.0 0.0 0.0 SeekSat
19 {flwHasLdr} InitMerge1 {flwHasLdr} 21 F=F 0.0 0.0 0.0 SeekSat
20 {flwHasSomeLdr} InitMerge1 {flwHasSomeLdr} 46 T=T 0.0 0.0 0.0 ProCon
21 {freeAgents} InitMerge1 {freeAgents} 26 T=T 0.0 0.0 0.0 SeekSat
22 {ldrNeverHasLdr} InitMerge2 {ldrNeverHasLdr} 10 T=T 0.0 0.0 0.0 SeekSat
23 {ldrHasNeighbor} InitMerge2 {ldrHasNeighbor} 36 T=T 0.0 0.0 0.0 ProCon
24 {ldrHasFlw} InitMerge2 {ldrHasFlw} 20 T=T 0.1 0.0 0.1 ProCon
25 {uniqueLdr} InitMerge2 {uniqueLdr} 55 F=F 0.0 0.0 0.0 SeekSat
26 {flwHasLdr} InitMerge2 {flwHasLdr} 21 F=F 0.0 0.0 0.0 SeekSat
27 {flwHasSomeLdr} InitMerge2 {flwHasSomeLdr} 46 T=T 0.1 0.0 0.1 ProCon
28 {freeAgents} InitMerge2 {freeAgents} 30 T=T 0.0 0.0 0.0 SeekSat
29 {ldrNeverHasLdr} InitMerge3 {ldrNeverHasLdr} 10 T=T 0.0 0.0 0.0 SeekSat
30 {ldrHasNeighbor} InitMerge3 {ldrHasNeighbor} 36 T=T 0.0 0.0 0.0 ProCon
31 {ldrHasFlw} InitMerge3 {ldrHasFlw} 20 T=T 0.1 0.0 0.1 ProCon
32 {uniqueLdr} InitMerge3 {uniqueLdr} 55 F=F 0.0 0.0 0.0 SeekSat
33 {flwHasLdr} InitMerge3 {flwHasLdr} 21 F=F 0.0 0.0 0.0 SeekSat
34 {flwHasSomeLdr} InitMerge3 {flwHasSomeLdr} 46 T=T 0.1 0.0 0.1 ProCon
35 {freeAgents} InitMerge3 {freeAgents} 30 T=T 0.0 0.0 0.0 SeekSat
36 {ldrNeverHasLdr} InitMerge4 {ldrNeverHasLdr} 10 T=T 0.0 0.0 0.0 SeekSat
37 {ldrHasNeighbor} InitMerge4 {ldrHasNeighbor} 36 T=T 0.0 0.0 0.0 ProCon
38 {ldrHasFlw} InitMerge4 {ldrHasFlw} 20 T=T 0.0 0.0 0.0 ProCon
39 {uniqueLdr} InitMerge4 {uniqueLdr} 51 F=F 0.0 0.0 0.0 SeekSat
40 {flwHasLdr} InitMerge4 {flwHasLdr} 21 T=T 0.0 0.0 0.0 ProCon
41 {flwHasSomeLdr} InitMerge4 {flwHasSomeLdr} 46 T=T 0.0 0.0 0.0 ProCon
42 {freeAgents} InitMerge4 {freeAgents} 22 T=T 0.0 0.0 0.0 SeekSat
43 {ldrNeverHasLdr} Pass1 {ldrNeverHasLdr} 10 T=T 0.0 0.0 0.0 SeekSat
44 {ldrHasNeighbor} Pass1 {ldrHasNeighbor} 44 T=T 0.1 0.0 0.1 ProCon
45 {ldrHasFlw} Pass1 {ldrHasFlw} 24 T=T 0.1 0.0 0.1 ProCon
46 {uniqueLdr} Pass1 {uniqueLdr} 66 T=T 0.4 0.0 0.4 ProCon
47 {flwHasLdr} Pass1 {flwHasLdr} 32 T=T 0.0 0.0 0.0 ProCon
48 {flwHasSomeLdr} Pass1 {flwHasSomeLdr} 46 T=T 0.0 0.0 0.0 ProCon
49 {freeAgents} Pass1 {freeAgents} 42 T=T 0.0 0.0 0.0 SeekSat
50 {ldrNeverHasLdr} Ldr2Flw {ldrNeverHasLdr} 41 F=F 0.0 0.0 0.0 SeekSat
51 {ldrHasNeighbor} Ldr2Flw {ldrHasNeighbor} 63 T=T 0.0 0.0 0.0 ProCon
52 {ldrHasFlw} Ldr2Flw {ldrHasFlw} 51 T=T 0.0 0.0 0.0 ProCon
53 {uniqueLdr} Ldr2Flw {uniqueLdr} 69 T=T 0.0 0.0 0.0 ProCon
54 {flwHasLdr} Ldr2Flw {flwHasLdr} 54 F=F 0.1 0.0 0.1 ProCon
55 {flwHasSomeLdr} Ldr2Flw {flwHasSomeLdr} 69 T=T 0.1 0.0 0.1 ProCon
56 {freeAgents} Ldr2Flw {freeAgents} 50 T=T 0.0 0.0 0.0 SeekSat
57 {ldrNeverHasLdr} InitSplit1 {ldrNeverHasLdr} 10 T=T 0.0 0.0 0.0 SeekSat
58 {ldrHasNeighbor} InitSplit1 {ldrHasNeighbor} 28 T=T 0.0 0.0 0.0 ProCon
59 {ldrHasFlw} InitSplit1 {ldrHasFlw} 24 T=T 0.0 0.0 0.0 ProCon
60 {uniqueLdr} InitSplit1 {uniqueLdr} 44 T=T 0.1 0.0 0.1 ProCon
61 {flwHasLdr} InitSplit1 {flwHasLdr} 21 T=T 0.1 0.0 0.1 ProCon
62 {flwHasSomeLdr} InitSplit1 {flwHasSomeLdr} 42 T=T 0.0 0.0 0.0 ProCon
63 {freeAgents} InitSplit1 {freeAgents} 26 T=T 0.0 0.0 0.0 SeekSat
64 {ldrNeverHasLdr} Pass2 {ldrNeverHasLdr} 19 T=T 0.0 0.0 0.0 SeekSat
65 {ldrHasNeighbor} Pass2 {ldrHasNeighbor} 44 T=T 0.0 0.0 0.0 ProCon
66 {ldrHasFlw} Pass2 {ldrHasFlw} 28 T=T 0.0 0.0 0.0 ProCon
67 {uniqueLdr} Pass2 {uniqueLdr} 65 F=F 0.0 0.0 0.0 SeekSat
68 {flwHasLdr} Pass2 {flwHasLdr} 50 F=F 0.0 0.0 0.0 ProCon
69 {flwHasSomeLdr} Pass2 {flwHasSomeLdr} 46 T=T 0.0 0.0 0.0 ProCon
70 {freeAgents} Pass2 {freeAgents} 42 T=T 0.0 0.0 0.0 SeekSat

Table 7.6: Car platoons case study: results 1-70
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# specification |wlp| result tΣ twlp t|= decider

71 {ldrNeverHasLdr} SplitMiddle {ldrNeverHasLdr} 143 T=T 0.0 0.0 0.0 SeekSat
72 {ldrHasNeighbor} SplitMiddle {ldrHasNeighbor} 191 T=T 1.0 0.0 0.9 ProCon
73 {ldrHasFlw} SplitMiddle {ldrHasFlw} 159 T=T 0.4 0.0 0.4 ProCon
74 {uniqueLdr} SplitMiddle {uniqueLdr} 169 F=F 0.0 0.0 0.0 SeekSat
75 {flwHasLdr} SplitMiddle {flwHasLdr} 154 F=F 0.1 0.0 0.1 SeekSat
76 {flwHasSomeLdr} SplitMiddle {flwHasSomeLdr} 167 T=T 0.4 0.0 0.4 ProCon
77 {freeAgents} SplitMiddle {freeAgents} 144 T=T 0.0 0.0 0.0 SeekSat
78 {ldrNeverHasLdr} SplitLast {ldrNeverHasLdr} 37 T=T 0.0 0.0 0.0 SeekSat
79 {ldrHasNeighbor} SplitLast {ldrHasNeighbor} 76 F=F 0.0 0.0 0.0 SeekSat
80 {ldrHasFlw} SplitLast {ldrHasFlw} 52 F=F 0.0 0.0 0.0 SeekSat
81 {uniqueLdr} SplitLast {uniqueLdr} 63 T=T 0.1 0.0 0.1 ProCon
82 {flwHasLdr} SplitLast {flwHasLdr} 48 T=T 0.0 0.0 0.0 ProCon
83 {flwHasSomeLdr} SplitLast {flwHasSomeLdr} 65 T=T 0.0 0.0 0.0 ProCon
84 {freeAgents} SplitLast {freeAgents} 50 T=T 0.0 0.0 0.0 SeekSat
85 {ldrNeverHasLdr} InitSplit2 {ldrNeverHasLdr} 10 T=T 0.0 0.0 0.0 SeekSat
86 {ldrHasNeighbor} InitSplit2 {ldrHasNeighbor} 28 T=T 0.0 0.0 0.0 ProCon
87 {ldrHasFlw} InitSplit2 {ldrHasFlw} 20 T=T 0.1 0.0 0.1 ProCon
88 {uniqueLdr} InitSplit2 {uniqueLdr} 44 F=F 0.0 0.0 0.0 SeekSat
89 {flwHasLdr} InitSplit2 {flwHasLdr} 21 F=F 0.0 0.0 0.0 SeekSat
90 {flwHasSomeLdr} InitSplit2 {flwHasSomeLdr} 42 T=T 0.1 0.0 0.1 ProCon
91 {freeAgents} InitSplit2 {freeAgents} 26 T=T 0.0 0.0 0.0 SeekSat
92 {ldrNeverHasLdr} TwoSplit {ldrNeverHasLdr} 45 T=T 0.0 0.0 0.0 SeekSat
93 {ldrHasNeighbor} TwoSplit {ldrHasNeighbor} 71 T=T 0.1 0.0 0.1 ProCon
94 {ldrHasFlw} TwoSplit {ldrHasFlw} 55 T=T 0.1 0.0 0.1 ProCon
95 {uniqueLdr} TwoSplit {uniqueLdr} 67 T=T 0.0 0.0 0.0 ProCon
96 {flwHasLdr} TwoSplit {flwHasLdr} 53 T=T 0.1 0.0 0.1 ProCon
97 {flwHasSomeLdr} TwoSplit {flwHasSomeLdr} 73 T=T 0.1 0.0 0.1 ProCon
98 {freeAgents} TwoSplit {freeAgents} 62 T=T 0.0 0.0 0.0 SeekSat
99 {ldrNeverHasLdr} Pass3 {ldrNeverHasLdr} 197 T=T 0.1 0.0 0.1 SeekSat

100 {ldrHasNeighbor} Pass3 {ldrHasNeighbor} 227 T=T 1.2 0.0 1.2 ProCon
101 {ldrHasFlw} Pass3 {ldrHasFlw} 207 T=T 0.6 0.0 0.6 ProCon
102 {uniqueLdr} Pass3 {uniqueLdr} 238 T=T 0.2 0.0 0.2 ProCon
103 {flwHasLdr} Pass3 {flwHasLdr} 210 T=T 0.2 0.0 0.2 ProCon
104 {flwHasSomeLdr} Pass3 {flwHasSomeLdr} 229 T=T 1.2 0.0 1.2 ProCon
105 {freeAgents} Pass3 {freeAgents} 210 T=T 0.1 0.0 0.1 SeekSat
106 {ldrNeverHasLdr} Pass4 {ldrNeverHasLdr} 19 T=T 0.0 0.0 0.0 SeekSat
107 {ldrHasNeighbor} Pass4 {ldrHasNeighbor} 44 T=T 0.1 0.0 0.1 ProCon
108 {ldrHasFlw} Pass4 {ldrHasFlw} 24 T=T 0.0 0.0 0.0 ProCon
109 {uniqueLdr} Pass4 {uniqueLdr} 65 F=F 0.0 0.0 0.0 SeekSat
110 {flwHasLdr} Pass4 {flwHasLdr} 34 F=F 0.0 0.0 0.0 SeekSat
111 {flwHasSomeLdr} Pass4 {flwHasSomeLdr} 46 T=T 0.0 0.0 0.0 ProCon
112 {freeAgents} Pass4 {freeAgents} 42 T=T 0.0 0.0 0.0 SeekSat
113 {ldrNeverHasLdr} AccLeader {ldrNeverHasLdr} 37 T=T 0.0 0.0 0.0 SeekSat
114 {ldrHasNeighbor} AccLeader {ldrHasNeighbor} 76 F=F 0.0 0.0 0.0 SeekSat
115 {ldrHasFlw} AccLeader {ldrHasFlw} 52 T=T 0.0 0.0 0.0 ProCon
116 {uniqueLdr} AccLeader {uniqueLdr} 63 T=T 0.0 0.0 0.0 ProCon
117 {flwHasLdr} AccLeader {flwHasLdr} 48 T=T 0.1 0.0 0.1 ProCon
118 {flwHasSomeLdr} AccLeader {flwHasSomeLdr} 65 T=T 0.1 0.0 0.1 ProCon
119 {freeAgents} AccLeader {freeAgents} 50 T=T 0.0 0.0 0.0 SeekSat
120 {ldrNeverHasLdr} BasicCarPlatooning {ldrNeverHasLdr} 65 F=F 0.0 0.0 0.0 SeekSat
121 {ldrHasNeighbor} BasicCarPlatooning {ldrHasNeighbor} 223 T=T 0.1 0.0 0.1 ProCon
122 {ldrHasFlw} BasicCarPlatooning {ldrHasFlw} 143 T=T 0.0 0.0 0.0 ProCon
123 {uniqueLdr} BasicCarPlatooning {uniqueLdr} 284 F=F 0.0 0.0 0.0 SeekSat
124 {flwHasLdr} BasicCarPlatooning {flwHasLdr} 125 F=F 0.0 0.0 0.0 SeekSat
125 {flwHasSomeLdr} BasicCarPlatooning {flwHasSomeLdr} 261 T=T 0.1 0.0 0.1 ProCon
126 {freeAgents} BasicCarPlatooning {freeAgents} 80 T=T 0.0 0.0 0.0 SeekSat
127 {empty} BasicCarPlatooning* {ldrNeverHasLdr} 102 T=T 49.0 49.0 0.0 SeekSat
128 {empty} BasicCarPlatooning* {ldrHasNeighbor} 17 T=T 0.1 0.1 0.0 SeekSat
129 {empty} BasicCarPlatooning* {ldrHasFlw} 17 T=T 0.1 0.1 0.0 SeekSat
130 {empty} BasicCarPlatooning* {uniqueLdr} 6 F=F 2.0 2.0 0.0 SeekSat
131 {empty} BasicCarPlatooning* {flwHasLdr} 6 F=F 184.4 184.4 0.0 SeekSat
132 {empty} BasicCarPlatooning* {flwHasSomeLdr} 29 T=T 0.1 0.1 0.0 SeekSat
133 {empty} BasicCarPlatooning* {freeAgents} 14 T=T 0.0 0.0 0.0 SeekSat
134 {empty} CarPlatooning* {ldrNeverHasLdr} 102 T=T 200.1 200.1 0.0 SeekSat
135 {empty} CarPlatooning* {ldrHasNeighbor} 6 F=F 643.9 643.9 0.0 SeekSat
136 {empty} CarPlatooning* {ldrHasFlw} 6 F=F 374.2 374.2 0.0 SeekSat
137 {empty} CarPlatooning* {uniqueLdr} 6 F=F 371.0 371.0 0.0 SeekSat
138 {empty} CarPlatooning* {flwHasLdr} 6 F=F 384.3 384.3 0.0 SeekSat
139 {empty} CarPlatooning* {flwHasSomeLdr} 29 T=T 1.6 1.6 0.0 SeekSat
140 {empty} CarPlatooning* {freeAgents} 14 T=T 0.4 0.4 0.0 SeekSat

µ arithmetic mean 59.1 15.9 15.8 0.1
µ1/2 median 43 0.0 0.0 0.0

Table 7.7: Car platoons case study: results 71-140
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for instance, “waypoint” is the only node label and “track” and “train” are
the main edge labels, resulting in a higher number of possible combinations
that every decider has to consider. So while the railroad control looks like
a simpler transformation system, it is actually harder to verify due to its
model.

Furthermore, a distinct characteristic of the car platoons rules is the
fact that the “partner constraints” considered by Bauer really correspond
to strong assertions (for some rules at least) making the verification of this
transformation system relatively easy.

Figure 7.7: Car platoons: comparison of deciders (“t|=”)

7.4 Access control for computer systems

In this section we briefly repeat the graph conditions and programs of the
access control case study and present the results of the verification of its test
specifications.

Example 7.9 (access control conditions). Consider the access control
graphs as introduced in Example 2.4. The following graph conditions over
the empty graph are used in the access control cased study:

(noSharing) No session is shared between two users:
¬∃

(noTwoRights) No user has more than one access right to one and the same
system:
¬∃
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# result t|= decider result t|= decider result t|= decider

1 T=T 0.1 Vampire T=T 0.1 DarwinProver T=T 0.0 Prover9
2 T=T 0.1 Vampire T=T 0.1 DarwinProver T=T 0.4 Prover9
3 T=T 0.0 Vampire T=T 0.1 DarwinProver T=T 0.1 Prover9
4 T=T 0.0 Vampire T=T 0.1 DarwinSolver T=T 0.0 Prover9
5 T=T 0.1 Vampire T=T 0.2 DarwinProver T=T 0.4 Prover9
6 T=T 21.3 Vampire T=T 0.1 DarwinProver T=T 69.4 Prover9
7 T=T 0.1 Vampire T=T 0.1 DarwinProver T=T 0.6 Prover9
8 T=T 0.1 Vampire T=T 0.1 DarwinProver T=T 0.1 Prover9
9 T=T 0.9 Vampire T=T 0.1 DarwinProver T=T 0.6 Prover9

10 T=T 0.2 Vampire T=T 0.1 DarwinProver T=T 0.2 Prover9
11 T=T 0.1 Vampire T=T 0.1 DarwinProver T=T 0.1 Prover9
12 T=T 0.1 Vampire T=T 0.1 DarwinProver T=T 0.2 Prover9
13 T=T 22.3 Vampire T=T 0.1 DarwinProver T=T 76.6 Prover9
14 T=T 0.1 Vampire T=T 0.1 DarwinProver T=T 0.6 Prover9
15 T=T 0.0 Vampire T=T 0.1 DarwinProver T=T 0.1 Prover9
16 T=T 246.8 Vampire T=T 0.1 DarwinProver T=T 3.6 Prover9
17 T=T 0.1 Vampire T=T 0.1 DarwinProver T=T 0.1 Prover9
18 F=F 0.2 Paradox F=F 0.1 DarwinProver F=F 127.9 Mace4
19 F=F 0.2 Paradox F=F 0.4 DarwinSolver F 6=E - -
20 T=T 21.2 Vampire T=T 0.4 DarwinProver T=T 224.2 Prover9
21 T=T 41.8 Vampire T=T 0.1 DarwinProver T6=E - -
22 T=T 0.1 Vampire T=T 0.1 DarwinProver T=T 0.1 Prover9
23 T=T 4.2 Vampire T=T 2.0 DarwinProver T=T 0.9 Prover9
24 T=T 0.1 Vampire T=T 0.1 DarwinProver T=T 0.1 Prover9
25 F=F 0.2 Paradox F=F 0.1 DarwinProver F 6=E - -
26 F=F 0.1 Paradox F=F 0.2 DarwinSolver F 6=E - -
27 T=T 40.7 Vampire T=T 0.2 DarwinProver T=T 176.1 Prover9
28 T=T 41.8 Vampire T=T 0.2 DarwinProver T6=E - -
29 T=T 0.0 Vampire T=T 0.1 DarwinProver T=T 0.1 Prover9
30 T=T 3.7 Vampire T=T 0.6 DarwinProver T=T 0.6 Prover9
31 T=T 0.1 Vampire T=T 0.1 DarwinProver T=T 0.1 Prover9
32 F=F 0.2 Paradox F=F 0.1 DarwinProver F 6=E - -
33 F=F 0.2 Paradox F=F 0.2 DarwinSolver F=F 163.7 Mace4
34 T=T 40.7 Vampire T=T 0.1 DarwinProver T=T 88.9 Prover9
35 T=T 41.8 Vampire T=T 0.2 DarwinProver T6=E - -
36 T=T 0.1 Vampire T=T 0.1 DarwinProver T=T 0.0 Prover9
37 T=T 0.1 Vampire T=T 0.1 DarwinProver T=T 0.9 Prover9
38 T=T 0.1 Vampire T=T 0.1 DarwinProver T=T 0.0 Prover9
39 F=F 0.2 Paradox F=F 0.1 DarwinProver F=F 9.0 Mace4
40 T=T 0.1 Vampire T=T 0.1 DarwinProver T=T 0.9 Prover9
41 T=T 41.7 Vampire T=T 0.1 DarwinProver T=T 38.7 Prover9
42 T=T 12.0 Vampire T=T 0.1 DarwinProver T6=E - -
43 T=T 0.1 Vampire T=T 0.1 DarwinProver T=T 0.1 Prover9
44 T=T 0.4 Vampire T=T 5.6 DarwinProver T=T 2.5 Prover9
45 T=T 0.1 Vampire T=T 0.2 DarwinProver T=T 0.1 Prover9
46 T6=E - - T=T 0.6 DarwinProver T6=E - -
47 T=T 87.9 Vampire T=T 0.2 DarwinProver T6=E - -
48 T=T 41.8 Vampire T=T 0.2 DarwinProver T6=E - -
49 T=T 22.3 Vampire T=T 0.4 DarwinProver T6=E - -
50 F=F 0.1 Paradox F=F 1.2 DarwinSolver F=F 0.2 Mace4
51 T=T 0.6 Vampire T=T 0.2 DarwinProver T=T 0.6 Prover9
52 T=T 0.1 Vampire T=T 0.1 DarwinProver T=T 0.2 Prover9
53 T=T 0.1 Vampire T=T 0.1 DarwinProver T=T 0.6 Prover9
54 F=F 0.9 Paradox F 6=E - - F 6=E - -
55 T=T 21.3 Vampire T=T 0.4 DarwinProver T6=E - -
56 T=T 25.4 Vampire T=T 0.9 DarwinProver T6=E - -
57 T=T 0.0 Vampire T=T 0.1 DarwinProver T=T 0.0 Prover9
58 T=T 0.1 Vampire T=T 0.1 DarwinProver T=T 0.2 Prover9
59 T=T 35.6 Vampire T=T 0.1 DarwinProver T=T 0.1 Prover9
60 T=T 142.3 Vampire T=T 0.2 DarwinProver T6=E - -
61 T=T 0.2 Vampire T=T 0.1 DarwinProver T=T 0.4 Prover9
62 T=T 21.3 Vampire T=T 0.1 DarwinProver T=T 61.2 Prover9
63 T=T 40.7 Vampire T=T 0.1 DarwinProver T6=E - -
64 T=T 45.8 Vampire T=T 0.4 DarwinProver T6=E - -
65 T=T 3.0 Vampire T=T 9.1 DarwinProver T=T 3.0 Prover9
66 T=T 0.2 Vampire T=T 0.2 DarwinProver T=T 0.2 Prover9
67 F=F 0.6 Paradox F=F 9.0 DarwinSolver F 6=E - -
68 F=F 0.2 Paradox F 6=E - - F 6=E - -
69 T=T 41.8 Vampire T=T 0.4 DarwinProver T6=E - -
70 T=T 151.5 Vampire T=T 0.4 DarwinProver T6=E - -

# result t|= decider result t|= decider result t|= decider

71 T=T 142.2 Vampire T=T 0.9 DarwinProver T6=E - -
72 T6=E - - T6=E - - T=T 13.0 Prover9
73 T=T 32.6 Vampire T=T 0.4 DarwinProver T=T 12.0 Prover9
74 F=F 1.2 Paradox F=F 1.6 DarwinSolver F=F 43.8 Mace4
75 F=F 1.6 Paradox F=F 1.2 DarwinSolver F=F 86.9 Mace4
76 T=T 22.3 Vampire T=T 0.9 DarwinProver T6=E - -
77 T=T 41.8 Vampire T=T 0.9 DarwinProver T6=E - -
78 T=T 0.1 Vampire T=T 0.2 DarwinProver T=T 2.0 Prover9
79 F=F 0.2 Paradox F=F 0.2 DarwinSolver F=F 0.4 Mace4
80 F=F 0.1 Paradox F=F 0.1 DarwinSolver F=F 0.2 Mace4
81 T=T 43.9 Vampire T=T 6.4 DarwinProver T=T 8.1 Prover9
82 T=T 41.8 Vampire T=T 2.0 DarwinProver T6=E - -
83 T=T 22.3 Vampire T=T 0.2 DarwinProver T6=E - -
84 T=T 171.0 Vampire T=T 1.6 DarwinProver T6=E - -
85 T=T 0.0 Vampire T=T 0.1 DarwinProver T=T 0.1 Prover9
86 T=T 2.5 Vampire T=T 0.1 DarwinProver T=T 0.9 Prover9
87 T=T 0.1 Vampire T=T 0.1 DarwinProver T=T 0.1 Prover9
88 F=F 0.2 Paradox F=F 0.1 DarwinProver F=F 0.6 Mace4
89 F=F 0.2 Paradox F=F 0.1 DarwinSolver F=F 0.1 Mace4
90 T=T 41.8 Vampire T=T 0.2 DarwinProver T=T 82.8 Prover9
91 T=T 22.3 Vampire T=T 0.1 DarwinProver T6=E - -
92 T=T 0.2 Vampire T=T 0.1 DarwinProver T=T 0.1 Prover9
93 T=T 2.0 Vampire T=T 1.2 DarwinProver T=T 0.6 Prover9
94 T=T 0.1 Vampire T=T 0.1 DarwinProver T=T 0.1 Prover9
95 T=T 0.1 Vampire T=T 0.1 DarwinProver T=T 0.1 Prover9
96 T=T 0.2 Vampire T=T 0.1 DarwinProver T=T 0.1 Prover9
97 T=T 46.9 Vampire T=T 0.4 DarwinProver T6=E - -
98 T6=E - - T=T 0.6 DarwinProver T6=E - -
99 T=T 0.1 Vampire T=T 0.6 DarwinProver T=T 0.6 Prover9

100 T=T 0.9 Vampire T=T 0.4 DarwinProver T=T 1.2 Prover9
101 T=T 7.2 Vampire T=T 0.2 DarwinProver T=T 0.2 Prover9
102 T=T 0.1 Vampire T=T 0.2 DarwinProver T6=E - -
103 T=T 0.1 Vampire T=T 0.2 DarwinProver T=T 19.2 Prover9
104 T=T 22.4 Vampire T=T 0.4 DarwinProver T6=E - -
105 T=T 40.8 Vampire T=T 3.0 DarwinProver T6=E - -
106 T=T 27.4 Vampire T=T 0.2 DarwinProver T6=E - -
107 T=T 3.6 Vampire T=T 0.2 DarwinProver T=T 2.5 Prover9
108 T=T 0.3 Vampire T=T 0.1 DarwinProver T=T 0.1 Prover9
109 F=F 19.2 Paradox F 6=E - - F 6=E - -
110 F=F 0.6 Paradox F 6=E - - F 6=E - -
111 T=T 22.3 Vampire T=T 0.4 DarwinProver T6=E - -
112 T6=E - - T=T 0.4 DarwinProver T6=E - -
113 T=T 0.2 Vampire T=T 0.2 DarwinProver T=T 1.2 Prover9
114 F=F 0.2 Paradox F=F 0.1 DarwinSolver F=F 0.1 Mace4
115 T=T 0.6 Vampire T=T 0.1 DarwinProver T=T 0.9 Prover9
116 T=T 0.1 Vampire T=T 0.1 DarwinProver T=T 0.2 Prover9
117 T=T 90.0 Vampire T=T 2.0 DarwinProver T6=E - -
118 T=T 24.4 Vampire T=T 0.4 DarwinProver T6=E - -
119 T6=E - - T=T 2.0 DarwinProver T6=E - -
120 F=F 0.4 Paradox F=F 58.2 DarwinSolver F 6=E - -
121 T6=E - - T6=E - - T6=E - -
122 T=T 196.7 Vampire T=T 2.0 DarwinProver T6=E - -
123 F=F 0.9 Paradox F=F 0.4 DarwinSolver F 6=E - -
124 F=F 0.4 Paradox F 6=E - - F 6=E - -
125 T6=E - - T=T 12.0 DarwinProver T6=E - -
126 T=T 181.3 Vampire T=T 0.6 DarwinProver T6=E - -
127 T=T 0.3 Vampire T=T 0.3 DarwinProver T6=E - -
128 T=T 0.1 Vampire T=T 0.1 DarwinProver T=T 0.1 Prover9
129 T=T 0.1 Vampire T=T 0.1 DarwinProver T=T 0.1 Prover9
130 F=F 0.2 Paradox F=F 0.2 DarwinProver F=F 0.1 Mace4
131 F=F 0.3 Paradox F=F 0.2 DarwinProver F=F 0.1 Mace4
132 T=T 0.2 Vampire T=T 0.2 DarwinProver T=T 0.1 Prover9
133 T=T 0.1 Vampire T=T 0.2 DarwinProver T=T 0.2 Prover9
134 T=T 0.2 Vampire T=T 0.4 DarwinProver T6=E - -
135 F=F 0.2 Paradox F=F 0.1 DarwinProver F=F 0.1 Mace4
136 F=F 0.2 Paradox F=F 0.1 DarwinProver F=F 0.1 Mace4
137 F=F 0.3 Paradox F=F 0.2 DarwinProver F=F 0.2 Mace4
138 F=F 0.4 Paradox F=F 0.1 DarwinProver F=F 0.2 Mace4
139 T=T 0.1 Vampire T=T 0.1 DarwinProver T=T 0.1 Prover9
140 T=T 0.2 Vampire T=T 0.1 DarwinProver T=T 0.1 Prover9

µ 19.2 1.1 15.0
µ1/2 0.3 0.2 0.2

Table 7.8: Car platoons: decision times of first-order provers and solvers
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(someAccess) There is some user that has an established session to some
system:
∃

(noMultiSession) No session is associated to more than one system:

¬∃ ∧ ¬∃ ∧ ¬∃

(sessionStates) Every session is either proposed or established: etch1.4

∀
(

1
, ∃

1 2
∨ ∃

1 2

)

(secure) Every user logged into a system has the corresponding access right:

∀

(

1 2 3
, ∃

1 2 3

)

(sessionDeletable) Every session is deletable, that is, there exists no addi-
tional edges that prevent deletion of a session node:

¬∃ ∧ ¬∃

∧ ¬∃ ∧ ¬∃

∧ ¬∃ ∧ ¬∃

∧ ¬∃ ∧ ¬∃

Let secureInvariant = secure ∧ noSharing ∧ sessionDeletable, let decidable =
noSharing ∧ noTwoRights ∧ noMultiSession ∧ sessionDeletable and let
ACConstraint = secureInvariant ∧ sessionStates.

Example 7.10 (access control system). The following graph programs
constitute the dynamic part of our access control and model the addition and
deletion of users, the grant and removal of access rights and the login/logout
procedure.

(AddUser) Adds a user to the system. A user node is created and unselected:(
Add

1
; Uns

1

)

(Grant) Grants a user access to a system. Selects a user and a system (for
which not an access right already exists), adds an access right, and
unselects everything:(

Sel
1 2

, ¬∃
1 2

; Add
1 2

; Uns
1 2

)



136 7. Case studies

(Login) A user requests to log into a system. The program selects a user and
a system, adds a session node with its edges and unselects everything:(
Sel

1 2
; Add

1 3 2
; Uns

1 3 2

)

(Logout) A user is logged out. A session is selected and whether it is estab-
lished or proposed, it is closed:



Sel
1 2

;




(
Sel

1 2 4
; Del

1 2 4

)
,

(
Sel

1 2 4
; Del

1 2 4

)





;

Uns
1 4





(Process) The system reacts to a log in. The program selects a proposed
session. If the user has the appropriate access right, the session is
established. Otherwise, the session is closed:



Sel
1 2 3

;

if

(
∃

1 2 3

)

then
(
Del

1 2 3
; Add

1 2 3
; Uns

1 2 3

)

else
(
Del

1 2 3
; Uns

1 3

)
fi





(Revoke) The access right of a user to a system is revoked. Beforehand, the
user’s established sessions to that system are closed:



Sel
1 2

;

while

(
∃

1 4 2

)

do
(
Sel

1 4 2
; Del

1 4 2

)
od ;

Del
1 2

;

Uns
1 2





(Delete) A user is deleted. Beforehand, the user’s sessions are closed and
the user’s access rights revoked:
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Sel
1

;

while
(
∃

1 2 3

)

do
(
Sel

1 2 3
; Del

1 2 3

)
od ;

while
(
∃

1 2 3

)

do
(
Sel

1 2 3
; Del

1 2 3

)
od ;

while
(
∃

1 2

)

do
(
Sel

1 2
; Del

1 2
; Uns

1 2

)
od ;

Del
1





Let AccessControl = {AddUser, Grant, Login, Logout, Process,

Revoke, Delete} be the non-deterministic choice of the above graph pro-
grams. Aside the access control programs defined above, we consider two
similar programs where we deliberately induce certain errors.

(GrantWrong) Grants a user access to a system, but does not check whether
an access right already exists. This is expected to violate the condition
noTwoRights.(
Sel

1 2
; Add

1 2
; Uns

1 2

)

(RevokeWrong) The access right of a user to a system is revoked, but it
is assumed, the user has exactly one session established to that com-
puter system. This is expected to violate the secure as well as the
secureInvariant condition.(
Sel

1 2
; Del

1 2
; Uns

1 2

)

We also consider alternative programs of Revoke and Delete using the as-
long-as-possible iteration instead of a while-loop.

(RevokeAlt) The access right of a user to a system is revoked. Beforehand,
the established sessions of the user to that system are closed as long as
there are such sessions:



Sel
1 2

;y

(
Sel

1 4 2
; Del

1 4 2

)y ;

Del
1 2

;

Uns
1 2
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(DeleteAlt) A user is deleted. Beforehand, the user’s sessions are closed
and the user’s access rights revoked as long as possible:



Sel
1

;
y





Sel
1 2

;




(
Sel

1 2 4
; Del

1 2 4

)
,

(
Sel

1 2 4
; Del

1 2 4

)





;

Uns
1 4





y

;

y
(
Sel

1 2
; Del

1 2
; Uns

1 2

)y ;

Del
1





We now want to verify whether or not the access control programs are correct
with respect to the access control conditions of Example 7.9. We will use
Enforce to automatically verify or refute test specifications of the form
{c}P{c}, where c is a condition and P is a program.

Example 7.11 (access control verification). Table 7.9 and 7.10 on
page 139f show a log of the access control case study. The second column
states the specification of each test case. The column “ |wlp|” states the
complexity of the constructed weakest preconditions, that is, the number of
logical symbols. The column “result” compares the expected result with the
computed result in the sense of an automated unit test. Here, True stands
for tautology, False stands for contradiction, and an Exception indicates
no decision. The following columns state the number of seconds it took
to decide each specification “tΣ”, which is roughly the sum of the time it
took to construct the weakest precondition “twlp” and the time to decide the
implication problem “t|=”. The last column “decider” states which algorithm
contributed the decision of the implication problem.

The results can be interpreted as follows: Most importantly, 117 of 120
test specifications can be automatically decided by Enforce. In test case
#110, the approximation of an invariant weak enough to conduct a proof fails.
In cases #88 and #92, the alleged counterexample cannot be retraced. Con-
cerning performance, 87 test cases can be decided in less than 2 seconds, the
majority in less than 0.2 seconds. Concerning correctness of AccessControl,
we have proven that noSharing, noTwoRights, noMultiSession, decidable and
secureInvariant are invariants, while someAccess and secure are not (see test
case #112 or #118). Concerning the implication problem, Figure 7.8 shows
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# specification |wlp| result tΣ twlp t|= decider

1 {noSharing} AddUser {noSharing} 9 T=T 0.0 0.0 0.0 SeekSat
2 {noTwoRights} AddUser {noTwoRights} 9 T=T 0.0 0.0 0.0 SeekSat
3 {someAccess} AddUser {someAccess} 7 T=T 0.0 0.0 0.0 SeekSat
4 {noMultiSession} AddUser {noMultiSession} 25 T=T 0.0 0.0 0.0 SeekSat
5 {sessionDeletable} AddUser {sessionDeletable} 60 T=T 0.0 0.0 0.0 SeekSat
6 {decidable} AddUser {decidable} 97 T=T 0.0 0.0 0.0 SeekSat
7 {sessionStates} AddUser {sessionStates} 20 T=T 0.1 0.0 0.1 ProCon
8 {secure} AddUser {secure} 12 T=T 0.0 0.0 0.0 ProCon
9 {secureInvariant} AddUser {secureInvariant} 78 T=T 1.2 0.0 1.2 ProCon

10 {ACConstraint} AddUser {ACConstraint} 96 T=T 1.2 0.0 1.2 ProCon
11 {noSharing} Grant {noSharing} 18 T=T 0.0 0.0 0.0 SeekSat
12 {noTwoRights} Grant {noTwoRights} 22 T=T 0.0 0.0 0.0 SeekSat
13 {someAccess} Grant {someAccess} 28 T=T 0.0 0.0 0.0 SeekSat
14 {noMultiSession} Grant {noMultiSession} 35 T=T 0.0 0.0 0.0 SeekSat
15 {sessionDeletable} Grant {sessionDeletable} 96 T=T 0.1 0.0 0.1 SeekSat
16 {decidable} Grant {decidable} 139 T=T 0.2 0.0 0.2 SeekSat
17 {sessionStates} Grant {sessionStates} 35 T=T 0.1 0.0 0.1 ProCon
18 {secure} Grant {secure} 29 T=T 0.1 0.0 0.1 ProCon
19 {secureInvariant} Grant {secureInvariant} 122 T=T 6.5 0.0 6.5 ProCon
20 {ACConstraint} Grant {ACConstraint} 146 T=T 11.0 0.0 11.0 ProCon
21 {noSharing} GrantWrong {noSharing} 9 T=T 0.0 0.0 0.0 SeekSat
22 {noTwoRights} GrantWrong {noTwoRights} 9 F=F 0.0 0.0 0.0 SeekSat
23 {someAccess} GrantWrong {someAccess} 24 T=T 0.0 0.0 0.0 SeekSat
24 {noMultiSession} GrantWrong {noMultiSession} 25 T=T 0.0 0.0 0.0 SeekSat
25 {sessionDeletable} GrantWrong {sessionDeletable} 84 T=T 0.0 0.0 0.0 SeekSat
26 {decidable} GrantWrong {decidable} 121 F=F 0.1 0.0 0.1 SeekSat
27 {sessionStates} GrantWrong {sessionStates} 28 T=T 0.0 0.0 0.0 ProCon
28 {secure} GrantWrong {secure} 27 T=T 0.1 0.0 0.1 ProCon
29 {secureInvariant} GrantWrong {secureInvariant} 116 T=T 3.6 0.0 3.6 ProCon
30 {ACConstraint} GrantWrong {ACConstraint} 142 T=T 4.3 0.0 4.3 ProCon
31 {noSharing} Login {noSharing} 9 T=T 0.0 0.0 0.0 SeekSat
32 {noTwoRights} Login {noTwoRights} 9 T=T 0.0 0.0 0.0 SeekSat
33 {someAccess} Login {someAccess} 24 T=T 0.0 0.0 0.0 SeekSat
34 {noMultiSession} Login {noMultiSession} 25 T=T 0.0 0.0 0.0 SeekSat
35 {sessionDeletable} Login {sessionDeletable} 84 T=T 0.0 0.0 0.0 SeekSat
36 {decidable} Login {decidable} 121 T=T 0.1 0.0 0.1 SeekSat
37 {sessionStates} Login {sessionStates} 28 T=T 0.1 0.0 0.1 ProCon
38 {secure} Login {secure} 34 T=T 0.1 0.0 0.1 ProCon
39 {secureInvariant} Login {secureInvariant} 123 T=T 3.6 0.0 3.6 ProCon
40 {ACConstraint} Login {ACConstraint} 149 T=T 2.5 0.0 2.5 ProCon
41 {noSharing} Logout {noSharing} 80 T=T 0.0 0.0 0.0 SeekSat
42 {noTwoRights} Logout {noTwoRights} 88 T=T 0.0 0.0 0.0 SeekSat
43 {someAccess} Logout {someAccess} 101 F=F 0.0 0.0 0.0 SeekSat
44 {noMultiSession} Logout {noMultiSession} 107 T=T 0.0 0.0 0.0 SeekSat
45 {sessionDeletable} Logout {sessionDeletable} 214 T=T 0.3 0.1 0.2 SeekSat
46 {decidable} Logout {decidable} 283 T=T 0.6 0.2 0.4 SeekSat
47 {sessionStates} Logout {sessionStates} 111 T=T 0.2 0.0 0.2 ProCon
48 {secure} Logout {secure} 112 T=T 0.4 0.0 0.4 ProCon
49 {secureInvariant} Logout {secureInvariant} 269 T=T 16.2 0.1 16.1 ProCon
50 {ACConstraint} Logout {ACConstraint} 311 T=T 18.3 0.1 18.2 ProCon
51 {noSharing} RevokeWrong {noSharing} 14 T=T 0.0 0.0 0.0 SeekSat
52 {noTwoRights} RevokeWrong {noTwoRights} 22 T=T 0.0 0.0 0.0 SeekSat
53 {someAccess} RevokeWrong {someAccess} 24 F=F 0.0 0.0 0.0 SeekSat
54 {noMultiSession} RevokeWrong {noMultiSession} 41 T=T 0.0 0.0 0.0 SeekSat
55 {sessionDeletable} RevokeWrong {sessionDeletable} 148 T=T 0.1 0.0 0.1 SeekSat
56 {decidable} RevokeWrong {decidable} 217 T=T 0.1 0.0 0.1 SeekSat
57 {sessionStates} RevokeWrong {sessionStates} 28 T=T 0.0 0.0 0.0 ProCon
58 {secure} RevokeWrong {secure} 34 F=F 0.0 0.0 0.0 SeekSat
59 {secureInvariant} RevokeWrong {secureInvariant} 191 F=F 0.1 0.0 0.1 SeekSat
60 {ACConstraint} RevokeWrong {ACConstraint} 217 F=F 0.1 0.0 0.1 SeekSat

Table 7.9: Access control case study: results 1-60



140 7. Case studies

# specification |wlp| result tΣ twlp t|= decider

61 {noSharing} Process {noSharing} 19 T=T 0.0 0.0 0.0 SeekSat
62 {noTwoRights} Process {noTwoRights} 21 T=T 0.0 0.0 0.0 SeekSat
63 {someAccess} Process {someAccess} 91 T=T 0.0 0.0 0.0 SeekSat
64 {noMultiSession} Process {noMultiSession} 38 T=T 0.0 0.0 0.0 SeekSat
65 {sessionDeletable} Process {sessionDeletable} 109 T=T 0.3 0.1 0.1 SeekSat
66 {decidable} Process {decidable} 152 T=T 0.4 0.2 0.2 SeekSat
67 {sessionStates} Process {sessionStates} 34 T=T 0.0 0.0 0.0 ProCon
68 {secure} Process {secure} 76 F=F 2.0 0.0 2.0 ProCon
69 {secureInvariant} Process {secureInvariant} 143 T=T 9.3 0.2 9.1 ProCon
70 {ACConstraint} Process {ACConstraint} 167 T=T 18.5 0.2 18.3 ProCon
71 {noSharing} Revoke {noSharing} 27 T=T 0.0 0.0 0.0 SeekSat
72 {noTwoRights} Revoke {noTwoRights} 27 T=T 0.0 0.0 0.0 SeekSat
73 {someAccess} Revoke {someAccess} 29 F=F 4.6 4.6 0.0 SeekSat
74 {noMultiSession} Revoke {noMultiSession} 64 T=T 0.1 0.1 0.0 SeekSat
75 {sessionDeletable} Revoke {sessionDeletable} 217 T=T 1.2 0.8 0.4 SeekSat
76 {decidable} Revoke {decidable} 300 T=T 1.3 1.2 0.1 SeekSat
77 {sessionStates} Revoke {sessionStates} 28 T=T 0.0 0.0 0.0 ProCon
78 {secure} Revoke {secure} 56 T=T 0.4 0.3 0.1 ProCon
79 {secureInvariant} Revoke {secureInvariant} 277 T=T 23.4 11.3 12.0 ProCon
80 {ACConstraint} Revoke {ACConstraint} 321 T=T 37.0 23.9 13.1 ProCon
81 {noSharing} RevokeAlt {noSharing} 55 T=T 0.1 0.1 0.0 SeekSat
82 {noTwoRights} RevokeAlt {noTwoRights} 55 T=T 0.1 0.1 0.0 SeekSat
83 {someAccess} RevokeAlt {someAccess} 61 F=F 23.7 23.7 0.0 SeekSat
84 {noMultiSession} RevokeAlt {noMultiSession} 92 T=T 0.1 0.1 0.0 SeekSat
85 {sessionDeletable} RevokeAlt {sessionDeletable} 245 T=T 0.8 0.6 0.2 SeekSat
86 {decidable} RevokeAlt {decidable} 328 T=T 1.3 1.1 0.2 SeekSat
87 {sessionStates} RevokeAlt {sessionStates} 28 T=T 0.1 0.1 0.0 ProCon
88 {secure} RevokeAlt {secure} 91 F 6=E - 9.9 0.2 ProCon
89 {secureInvariant} RevokeAlt {secureInvariant} 305 T=T 47.3 21.8 25.4 ProCon
90 {ACConstraint} RevokeAlt {ACConstraint} 349 T=T 44.3 19.8 24.4 ProCon
91 {noSharing} Delete {noSharing} 33 T=T 0.2 0.2 0.0 SeekSat
92 {someAccess} Delete {someAccess} 45 F 6=E - 147.7 0.0 SeekSat
93 {noTwoRights} Delete {noTwoRights} 33 T=T 0.2 0.2 0.0 SeekSat
94 {noMultiSession} Delete {noMultiSession} 72 T=T 0.3 0.3 0.0 SeekSat
95 {sessionDeletable} Delete {sessionDeletable} 185 T=T 1.4 1.4 0.0 SeekSat
96 {decidable} Delete {decidable} 260 T=T 2.0 1.9 0.1 SeekSat
97 {sessionStates} Delete {sessionStates} 20 T=T 0.4 0.3 0.1 ProCon
98 {secure} Delete {secure} 74 T=T 4.1 4.0 0.1 ProCon
99 {secureInvariant} Delete {secureInvariant} 239 T=T 382.6 377.7 4.9 ProCon

100 {ACConstraint} Delete {ACConstraint} 293 T=T 426.4 420.8 5.6 ProCon
101 {noSharing} DeleteAlt {noSharing} 83 T=T 0.4 0.4 0.0 SeekSat
102 {someAccess} DeleteAlt {someAccess} 101 F=F 583.7 583.7 0.0 SeekSat
103 {noTwoRights} DeleteAlt {noTwoRights} 83 T=T 0.4 0.4 0.0 SeekSat
104 {noMultiSession} DeleteAlt {noMultiSession} 120 T=T 0.7 0.6 0.1 SeekSat
105 {sessionDeletable} DeleteAlt {sessionDeletable} 205 T=T 2.2 2.2 0.0 SeekSat
106 {decidable} DeleteAlt {decidable} 266 T=T 3.4 3.3 0.1 SeekSat
107 {sessionStates} DeleteAlt {sessionStates} 20 T=T 0.6 0.5 0.1 ProCon
108 {secure} DeleteAlt {secure} 118 T=T 8.8 8.2 0.6 ProCon
109 {secureInvariant} DeleteAlt {secureInvariant} 245 T=T 531.3 518.2 13.1 ProCon
110 {ACConstraint} DeleteAlt {ACConstraint} 223 T6=E - 1152.7 0.1 SeekSat
111 {noSharing} AccessControl {noSharing} 147 T=T 0.4 0.4 0.0 SeekSat
112 {someAccess} AccessControl {someAccess} 171 F=F 128.9 128.9 0.0 SeekSat
113 {noTwoRights} AccessControl {noTwoRights} 165 T=T 0.4 0.4 0.0 SeekSat
114 {noMultiSession} AccessControl {noMultiSession} 238 T=T 0.7 0.7 0.0 SeekSat
115 {sessionDeletable} AccessControl {sessionDeletable} 579 T=T 2.5 2.2 0.3 SeekSat
116 {decidable} AccessControl {decidable} 784 T=T 4.5 3.8 0.6 SeekSat
117 {sessionStates} AccessControl {sessionStates} 228 T=T 0.7 0.6 0.1 ProCon
118 {secure} AccessControl {secure} 339 F=F 7.5 3.8 3.7 ProCon
119 {secureInvariant} AccessControl {secureInvariant} 786 T=T 454.1 377.4 76.7 ProCon
120 {ACConstraint} AccessControl {ACConstraint} 984 T=T 475.2 428.0 47.2 ProCon

µ arithmetic mean 131.9 28.3 35.8 2.8
µ1/2 median 89 0.2 0.0 0.0

Table 7.10: Access control case study: results 61-120
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a comparison between the decision times t|= of ProCon‖SeekSat (see Ta-
ble 7.9 and 7.10) and selected first-order theorem provers and satisfiability
solvers (see Table 7.11). In contrast to the car platooning case study, all
off-the-shelf tools combined (Meta) can only decide 77 of 120 specifications,
given 5 minutes of time per specification (Intel T5600, 1.83GHz). Again,
Vampire and Darwin are able to solve different test cases.

The differences to the car platooning results may be explained by the
fact that the car platooning case study only consists of transformation rules,
while the access control case study considers more complex programs. This
explanation is supported by the higher mean complexity of the weakest pre-
conditions.

Figure 7.8: Access control: comparison of deciders (“t|=”)

7.5 Summary and discussion

We have successfully evaluated our approach to the verification of graph
transformation systems and programs by modeling and verifying selected
aspects of three real-world systems: a railroad control, a platoon maneuver
protocol, and an access control for computer systems. In each of these cases,
we were able to formalize important properties that gave rise to a number of
graphical specifications. For instance, in case of the access control system, we
were able to express the security property “Every user logged into a system
has the appropriate access right”, which is an invariant of the system only
in conjunction with additional conditions such as the property “Never is a
session shared between two users”. Of 330 considered test specifications, 327
can be automatically decided using our implementation Enforce. In two
cases, the alleged counterexample can not be retraced. In the remaining
case, the verification fails as an approximated invariant is not weak enough
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# result t|= decider result t|= decider result t|= decider

1 T=T 0.2 Vampire T=T 0.1 DarwinProver T=T 0.2 Prover9
2 T=T 0.1 Vampire T=T 0.1 DarwinProver T=T 0.1 Prover9
3 T=T 0.2 Vampire T=T 0.2 DarwinProver T=T 0.2 Prover9
4 T=T 33.6 Vampire T=T 0.5 DarwinProver T6=E - -
5 T6=E - - T6=E - - T6=E - -
6 T6=E - - T6=E - - T6=E - -
7 T=T 0.2 Vampire T=T 0.1 DarwinProver T=T 0.1 Prover9
8 T=T 0.2 Vampire T=T 0.2 DarwinProver T=T 0.2 Prover9
9 T=T 98.4 Vampire T6=E - - T6=E - -

10 T6=E - - T6=E - - T6=E - -
11 T=T 0.1 Vampire T=T 0.4 DarwinProver T=T 2.5 Prover9
12 T=T 166.8 Vampire T=T 0.4 DarwinProver T6=E - -
13 T=T 0.1 Vampire T=T 0.3 DarwinSolver T=T 0.2 Prover9
14 T=T 157.3 Vampire T=T 0.4 DarwinProver T6=E - -
15 T6=E - - T6=E - - T6=E - -
16 T6=E - - T6=E - - T6=E - -
17 T=T 6.5 Vampire T=T 0.2 DarwinProver T=T 0.2 Prover9
18 T=T 41.0 Vampire T=T 2.5 DarwinProver T6=E - -
19 T6=E - - T6=E - - T6=E - -
20 T6=E - - T6=E - - T6=E - -
21 T=T 0.2 Vampire T=T 0.2 DarwinProver T=T 0.2 Prover9
22 F=F 0.3 Paradox F=F 0.2 DarwinSolver F=F 0.2 Mace4
23 T=T 0.1 Vampire T=T 0.3 DarwinSolver T=T 0.2 Prover9
24 T=T 23.3 Vampire T=T 0.4 DarwinProver T6=E - -
25 T6=E - - T6=E - - T6=E - -
26 F=F 0.9 Paradox F 6=E - - F 6=E - -
27 T=T 0.4 Vampire T=T 0.2 DarwinProver T=T 0.1 Prover9
28 T=T 0.2 Vampire T=T 1.3 DarwinProver T6=E - -
29 T6=E - - T6=E - - T6=E - -
30 T6=E - - T6=E - - T6=E - -
31 T=T 0.3 Vampire T=T 0.2 DarwinProver T=T 0.1 Prover9
32 T=T 0.3 Vampire T=T 0.2 DarwinProver T=T 0.2 Prover9
33 T=T 0.1 Vampire T=T 0.3 DarwinProver T=T 0.2 Prover9
34 T=T 21.5 Vampire T=T 0.3 DarwinProver T6=E - -
35 T6=E - - T6=E - - T6=E - -
36 T6=E - - T6=E - - T6=E - -
37 T=T 0.6 Vampire T=T 0.2 DarwinProver T=T 0.2 Prover9
38 T=T 0.3 Vampire T=T 2.0 DarwinProver T6=E - -
39 T=T 108.8 Vampire T6=E - - T6=E - -
40 T6=E - - T6=E - - T6=E - -
41 T=T 169.4 Vampire T=T 133.1 DarwinProver T6=E - -
42 T=T 168.5 Vampire T=T 206.9 DarwinProver T6=E - -
43 F=F 1.7 Paradox F=F 35.7 DarwinSolver F 6=E - -
44 T6=E - - T=T 29.5 DarwinProver T6=E - -
45 T6=E - - T6=E - - T6=E - -
46 T6=E - - T6=E - - T6=E - -
47 T6=E - - T=T 23.4 DarwinProver T6=E - -
48 T=T 31.7 Vampire T6=E - - T6=E - -
49 T6=E - - T6=E - - T6=E - -
50 T6=E - - T6=E - - T6=E - -
51 T=T 40.8 Vampire T=T 0.5 DarwinProver T=T 38.8 Prover9
52 T=T 87.2 Vampire T=T 0.5 DarwinProver T6=E - -
53 F=F 0.3 Paradox F=F 0.3 DarwinSolver F=F 2.0 Mace4
54 T=T 99.5 Vampire T=T 1.6 DarwinProver T6=E - -
55 T6=E - - T6=E - - T6=E - -
56 T6=E - - T6=E - - T6=E - -
57 T=T 0.2 Vampire T=T 0.1 DarwinProver T=T 0.2 Prover9
58 F=F 0.5 Paradox F 6=E - - F 6=E - -
59 F=F 14.2 Paradox F 6=E - - F 6=E - -
60 F=F 8.2 Paradox F 6=E - - F 6=E - -

# result t|= decider result t|= decider result t|= decider

61 T=T 41.1 Vampire T=T 4.2 DarwinProver T6=E - -
62 T=T 97.4 Vampire T=T 1.6 DarwinProver T6=E - -
63 T=T 2.6 Vampire T=T 6.4 DarwinProver T6=E - -
64 T6=E - - T=T 29.5 DarwinProver T6=E - -
65 T6=E - - T6=E - - T6=E - -
66 T6=E - - T6=E - - T6=E - -
67 T=T 34.6 Vampire T=T 0.3 DarwinProver T=T 0.3 Prover9
68 F 6=E - - F=F 12.2 DarwinSolver F 6=E - -
69 T6=E - - T6=E - - T6=E - -
70 T6=E - - T6=E - - T6=E - -
71 T=T 95.5 Vampire T=T 1.2 DarwinProver T6=E - -
72 T=T 94.4 Vampire T=T 0.9 DarwinProver T6=E - -
73 F=F 0.5 Paradox F=F 0.9 DarwinSolver F=F 16.1 Mace4
74 T=T 108.8 Vampire T=T 5.7 DarwinProver T6=E - -
75 T6=E - - T6=E - - T6=E - -
76 T6=E - - T6=E - - T6=E - -
77 T=T 0.2 Vampire T=T 0.2 DarwinProver T=T 0.2 Prover9
78 T=T 22.3 Vampire T6=E - - T6=E - -
79 T6=E - - T6=E - - T6=E - -
80 T6=E - - T6=E - - T6=E - -
81 T=T 93.3 Vampire T=T 1.3 DarwinProver T6=E - -
82 T=T 91.4 Vampire T=T 0.5 DarwinProver T6=E - -
83 F=F 1.0 Paradox F=F 2.5 DarwinSolver F 6=E - -
84 T6=E - - T=T 12.1 DarwinProver T6=E - -
85 T6=E - - T6=E - - T6=E - -
86 T6=E - - T6=E - - T6=E - -
87 T=T 0.4 Vampire T=T 0.2 DarwinProver T=T 0.3 Prover9
88 F=F 61.4 Paradox F 6=E - - F 6=E - -
89 T6=E - - T6=E - - T6=E - -
90 T6=E - - T6=E - - T6=E - -
91 T=T 97.5 Vampire T=T 0.3 DarwinProver T6=E - -
92 F=F 0.6 Paradox F=F 33.7 DarwinSolver F 6=E - -
93 T=T 95.5 Vampire T=T 0.2 DarwinProver T6=E - -
94 T=T 168.5 Vampire T=T 1.0 DarwinProver T6=E - -
95 T6=E - - T6=E - - T6=E - -
96 T6=E - - T6=E - - T6=E - -
97 T=T 0.2 Vampire T=T 0.1 DarwinProver T=T 0.1 Prover9
98 T=T 41.1 Vampire T=T 150.5 DarwinProver T6=E - -
99 T6=E - - T6=E - - T6=E - -

100 T6=E - - T6=E - - T6=E - -
101 T=T 93.5 Vampire T=T 0.5 DarwinProver T6=E - -
102 F=F 7.5 Paradox F 6=E - - F 6=E - -
103 T=T 82.0 Vampire T=T 0.3 DarwinProver T6=E - -
104 T=T 110.6 Vampire T=T 1.6 DarwinProver T6=E - -
105 T6=E - - T=T 49.1 DarwinProver T6=E - -
106 T6=E - - T=T 86.9 DarwinProver T6=E - -
107 T=T 0.2 Vampire T=T 0.2 DarwinProver T=T 0.2 Prover9
108 T=T 57.5 Vampire T6=E - - T6=E - -
109 T6=E - - T6=E - - T6=E - -
110 T6=E - - T6=E - - T6=E - -
111 T6=E - - T6=E - - T6=E - -
112 F=F 4.3 Paradox F=F 27.5 DarwinSolver F 6=E - -
113 T=T 112.9 Vampire T=T 207.9 DarwinProver T6=E - -
114 T6=E - - T=T 112.6 DarwinProver T6=E - -
115 T6=E - - T6=E - - T6=E - -
116 T6=E - - T6=E - - T6=E - -
117 T6=E - - T=T 137.2 DarwinProver T6=E - -
118 F 6=E - - F 6=E - - F 6=E - -
119 T6=E - - T6=E - - T6=E - -
120 T6=E - - T6=E - - T6=E - -

µ 42.7 20.2 2.5
µ1/2 11.2 0.5 0.2

Table 7.11: Access control: decision times of first-order provers and solvers
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to carry out the proof, which may be a starting point for further research on
this topic.

On the other hand, the railroad control case study, originally considered in
[Pen04, HP05], and the external car platooning case study [Bau06, HESV91]
are both fully verified. Also, the verification of the access control system, to
which the 3 unverified program specifications belong, can be seen as success-
ful, as we were able to show the invariance of the conjunction ACConstraint
with respect to AccessControl.

We conducted a comparison of our developed prover and solver com-
ponents with pairs of existing first-order theorem provers and satisfiability
solvers. SeekSat and ProCon outperform any tool pair both in terms of per-
formance and completeness, including the hypothetical Meta representing
the minimal response time of the off-the-self tools. This tendency is obvious
for the railroad and access control case studies, but even for the car platoon-
ing case study, a translation of the implication problem from conditions to
first-order graph formulas is not on a par with the developed components.

The good performance of ProCon and SeekSat may be explained as
follows: Both components are high-level, that is, for the most part, they
are structure-independent and rely only on a small number of structure-
specific operations such as the pushout operation. For these operations, it is
asserted that the output (morphisms and objects) always belong to the given
category. In this sense, ProCon and SeekSat become structure-specific in
a constructive way, once the necessary operations are provided. In contrast,
theorem prover and satisfiability solver for general first-order logic necessarily
consider arbitrary structures and have to be restricted by a set of axioms to
a target structure, which adds to the complexity of the problem. Even worse,
translations of problem instances originally belonging to a decidable fragment
of conditions may be outside of a decidable fragment of first-order logic, if
the axioms themselves do not belong to a decidable fragment.

Furthermore, an algorithm on conditions can and should use the fact that
conditions make quantifications and statements in bulks, that is, a quantifier
may introduce a number of elements. In this sense, conditions may have a
lower logical complexity when compared to their translations in first-order
logic, see Example 3.32 on page 38.

Finally, the transformation of graph conditions into graph formulas itself
may add to the problem: distinct elements in M-satisfiable conditions are
implicitly mapped onto distinct elements in the test object. For formulas,
it remains open if the values of variables are equal or distinct, unless it is
explicitly stated. If the nodes and edges of a graph condition are not distinct
by their labels, inequations have to be introduced during the translation.
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8. Conclusion

We have researched, implemented and evaluated a method that aims at ver-
ifying or refuting the correctness of graph transformation systems and pro-
grams with respect to pre- and postconditions, as far as possible. While the
correctness problem is undecidable for the considered program specifications,
almost every test specification of the case studies considered in the evaluation
of our approach can be automatically decided. No other approach dedicated
to graph transformation is ready to reproduce the results of our implemen-
tation, mostly due to limitations on the kind of specifications that can be
handled, see Section 5.5. Only the approach of Strecker [Str08] is capable
of encoding all considered test specifications, however it is not automatized.
Therefore, our research constitutes a valuable method for the development
of correct graph transformation systems and programs.

We showed that our specifications consisting of graph conditions and
graph programs with interface capture important system requirements, for
instance, the security of an access control for computer systems. Conditions
are the basis for solving the correctness problem of these specifications. By
constructing weakest preconditions, we reduce the correctness problem to
the implication problem of conditions. Despite some difficulties, the evalu-
ation shows that conditions do not only provide an intuitive formalism for
first-order structural properties, but are also suited to infer knowledge about
the behavior of graph transformation systems and programs. Moreover, the
introduced and investigated language of programs with interface is an im-
portant generalization of existing programs on graph transformation rules
[HP01, PS04]. The practical relevance of programs with interface is demon-
strated by the fact that one of the key components in our approach, the
satisfiability solver SeekSat, is such a program.

8.1 Results

Our main contributions are the following:
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1. We investigated nested conditions [Pen04, HP05] and showed that nest-
ed graph conditions and first-order logic on graphs are expressively
equivalent [HP06, HP09]. The second part of the proof is similar to
translations between first-order logic and predicates on edge-labeled
graphs with single edges [Ren04a].

2. We introduced programs with interface to describe structural trans-
formations within a category of objects. Programs with interface al-
low explicit control over the selection of elements and are capable of
handing over selections between computations steps, which can be used
to restrict the execution of programs to a previously selected context
[Pen08a].

3. We defined weakest liberal preconditions of programs with interface
and (nested) postconditions. We presented a construction for weakest
liberal preconditions [HPR06, HP09] and considered algorithms for the
construction of (weakest) invariants.

4. We related the decidability of the implication, the tautology and the
satisfiability problem of conditions. We lifted the undecidability of
the satisfiability problem of first-order logic on graphs [Cou90] to the
satisfiability problem of graph conditions [HP09]. Following a dual
approach, we investigated a sound satisfiability solver for conditions
that is complete for a class of weak adhesive HLR categories [Pen08a].
We investigated a fragment of conditions for which the solver terminates
and decides. On the other hand, we presented a calculus for proving
conditions and showed its soundness [Pen08b].

5. We evaluated our approach and the implementations of the aforemen-
tioned transformations and algorithms by modeling and successfully
verifying three case studies: a railroad control [Pen04, HP05], an access
control for computer systems [HPR06], and, as an external example,
a car platoon maneuver protocol [Bau06, HESV91]. We showed that
our implementation is able to decide 327 of 330 considered test spec-
ifications. We also showed that the developed prover and solver for
conditions are superior in terms of performance and coverage to ex-
isting first-oder theorem provers and satisfiability solvers applied onto
straightforward translations of graph conditions into first-order graph
logic.

We have successfully presented our work on renowned international confer-
ences in the research area of graph transformation [HPR06, HP06, Pen08a,
Pen08b] and published our results in established journals in theoretical com-
puter science [EEHP06, HP09]. Our work revived the interest in graph-based
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conditions, and was picked up, for instance, in [OEP08, Ore08].
The most important take-home points are:

First, algorithms based on operations that preserve a given target struc-
ture C can be expected to outperform algorithms working on a more
general structure restricted to C by subsequent assertions. For instance,
a satisfiability algorithm on graph-preserving operations will only con-
sider graphs. In constrast, a first-order logic based satisfiability solver
used with graph axioms will still generate all kinds of intermediate
structures, many of which may be much later discarded as they vio-
late the graph axioms. If performance is the ultimate criterion and
all other options have been exploited, the idea of basing computations
onto structure-preserving operations seems to be a viable strategy to
improve results.

Second, approximation of invariants really is the hardest part of program
verification. All the presented algorithms are refinement based, there-
fore rely on deciding possibly multiple instances of the implication prob-
lem.

We conclude that category-theoretic approaches for describing structural
transformations, and graph transformation in particular, are a suitable basis
for modeling and verifying discrete aspects of real-world systems.

8.2 Open problems and future work

For every question answered there are new ones to ask. We distinguish
between open questions concerning our work, and future work intended to
extend the coverage of the presented approach. The following topics remain
open:

1. A proof of the completeness of our calculus for proving conditions, see
Section 6.3: While we conjecture the completeness of our calculus, a
formal proof has yet to be devised.

2. A formal definition of a proof format and an independent implementa-
tion of a proof checker: A proof format should be investigated that doc-
uments the essential deductions leading to the empty clause. A proof
checker based on ProCon’s calculus should be implemented that is
capable to retrace such proofs.

To increase the attractiveness of the presented approach to the verification of
graphical program specifications, we suggest to research the following topics:
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3. An extension of the approach to typed attributed graphs [EEPT06]:
As a theorem prover for attributed graph conditions has been already
investigated in [Ore08], this goal has come within reach.

4. An extension of the notion of conditions to capture monadic second-
order properties, or at least path properties in the sense of a reflexive,
transitive closure: While monadic second order logic is more expressive
than first-order logic, the model checking problem remains decidable,
although it becomes more complex.

5. An investigation of the logic that is tractable by weakest precondi-
tions: In terms of expressiveness, a suitable logic such as dynamic logic
[HKT84] may extend beyond the inflexible concept of program specifi-
cations.

6. An evaluation of our method with respect to liveness properties: Live-
ness properties are dual to safety properties such as correctness. The
dual of weakest liberal preconditions ensuring correctness are weak-
est preconditions ensuring the existence of results, as investigated in
[HPR06] for programs over double pushout transformation rules.

7. A lifting of programs with interface from morphism to conditions with
the intent to describe ProCon and other transformation on condi-
tions as such programs: Programs with interface turned out to be a
suitable basis for the satisfiability solver SeekSat, as they are close to
an implementation, yet allow elegant proofs of algorithmic properties.
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A. Partial monomorphisms

For the definition of programs with interface, we require partial monomor-
phisms. Given a weak adhesive HLR category 〈C,M〉, these partial mono-
morphisms can be introduced as spans ofM-morphisms without the need of
further axioms. There is a composition of partial monomorphisms, based on
pullback construction, that is associative and for which identity morphisms
are neutral elements.

Definition A.1 (partial monomorphisms). For a given weak adhesive
HLR category 〈C,M〉, a partial monomorphism p = 〈a, b〉 is a 2-tuple ofM-
morphisms a, b ∈ M with dom(a) = dom(b). The domain of p is codomain
of a, that is, dom(p) = codom(a), the codomain of p is the codomain of
b, that is, codom(p) = codom(b), and the interface of p refers to the com-
mon domain of a and b, that is, iface(p) = dom(a) = dom(b). We write
p: dom(p) ⇀֒ codom(p) to denote a partial monomorphism. The set of all
partial monomorphisms is denoted by P, while P(A, B) denotes the class of
all partial monomorphisms with domain A and codomain B. Two partial
monomorphism p, q: A ⇀֒ B are commutative, denoted by p = q, if there
is a (total) isomorphism iface(p)↔ iface(q) such that the resulting triangles
commute. For a partial monomorphism p = 〈a, b〉, 〈b, a〉 is the inverse partial
monomorphism, denoted by p−1. A partial monomorphism p = 〈a, b〉 is said
to be inM, if a is an isomorphism.

Every M-morphism represents a partial monomorphism.

Fact A.2. M⊆ P.

Proof. For every m ∈M, m ◦ iddom(m) = m is inM and
〈
iddom(m), m

〉
∈ P.

�

Partial monomorphism are closed under composition, that is, A ⇀֒ B and
B ⇀֒ C can be composed to A ⇀֒ C. No further axioms are required.
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Fact A.3 (closure under composition). For every objects A, B, C ∈ O,
there is a binary operation P(A, B) × P(B, C) → P(A, C) called compo-
sition of partial monomorphisms, denoted by q ◦ p for morphisms p q with
codom(p) = dom(q) and the following holds:

• associativity: for every morphisms p, q, r with codom(p) = dom(q) and
codom(q) = dom(r), we have r ◦ (q ◦ p) = (r ◦ q) ◦ p.

• identity: for every object A, there exists a morphism idA: A→ A, called
the identity morphism for A, such that for every partial monomorphism
p, we have idcodom(p) ◦ p = p = p ◦ iddom(p).

Proof. The composition is obtained by pullback construction: For p = 〈a, b〉
and q = 〈c, d〉 with codom(p) = dom(q), construct 〈c∗, b∗〉 as the pullback
of 〈b, c〉. Then let be q ◦ p = 〈a ◦ c∗, d ◦ b∗〉. The result is unique up to
ismorphism.

• •

•

•

• •(PB)
a

b

c∗ b∗

c

d

p q

q ◦ p

Associativity: Follows from the uniqueness of pullbacks.
Identity: Follows from the identity axiom in Def. 2.1 and the fact that〈
iddom(b), b

〉
is the pullback of

〈
b, idcodom(b)

〉
: We have idcodom(p)◦p = idcodom(b)◦

〈a, b〉 =
〈
a ◦ iddom(b), idcodom(b) ◦ b

〉
= 〈a, b〉 = p. Analogously, for the compo-

sition 〈a, b〉◦
〈
idcodom(a), idcodom(a)

〉
, one yields

〈
a, iddom(a)

〉
as the the pullback

of
〈
idcodom(a), a

〉
. Then let be p ◦ iddom(p) = 〈a, b〉 ◦ idcodom(a) = 〈idcodom(a) ◦ a,

b ◦ iddom(a)〉 = 〈a, b〉 = p. �

Equality of partial monomorphisms is a reflexive property.

Fact A.4 (reflexivity). For p, q ∈ P, we have p = q implies q = p.

Proof. Let p = 〈a, b〉 and q = 〈c, d〉. We have 〈a, b〉 = 〈c, d〉 if and only if
there is an isomorphism m: iface(〈a, b〉) ↔ iface(〈c, d〉) such that a = c ◦m
and b = d ◦ m if and only if there is an isomorphism m−1: iface(〈c, d〉) ↔
iface(〈a, b〉) such that c = a◦m−1 and d = b◦m−1 if and only if 〈c, d〉 = 〈a, b〉.

�

The inverse of composition q after p equals the composition of the inverse of
p after the inverse of q.
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Fact A.5. For p, q ∈ P, we have (q ◦ p)−1 = p−1 ◦ q−1.

Proof. Let p = 〈a, b〉 and q = 〈c, d〉. Then (〈c, d〉◦ 〈a, b〉)−1 = 〈d ◦ b∗, a ◦ c∗〉=
〈b, a〉 ◦ 〈d, c〉 = 〈a, b〉−1 ◦ 〈c, d〉−1. �

Two partial monomorphisms are equal if and only if their inverses are equal.

Fact A.6. For p, q ∈ P, we have p = q if and only if p−1 = q−1.

Proof. Let p = 〈a, b〉 and q = 〈c, d〉. We have 〈a, b〉 = 〈c, d〉 if and only if
there is an isomorphism m: iface(〈a, b〉) ↔ iface(〈c, d〉) such that a = c ◦m
and b = d ◦ m if and only if there is an isomorphism m: iface(〈a, b〉−1) ↔
iface(〈d, c〉−1) such that b = d ◦m and a = c ◦m if and only if 〈b, a〉 = 〈d, c〉.

�

Every M-morphism can be neutralized by its inverse via composition.

Fact A.7 (special cases of composition). 〈b, c〉 ◦ 〈a, b〉 = 〈a, c〉. For
m ∈M, we have m−1 ◦m = iddom(m).

Proof. For the composition 〈b, c〉 ◦ 〈a, b〉, one yields 〈id, id〉 with dom(id) =
codom(id) = codom(a) = dom(b) = codom(c) as the the pullback of 〈b, b〉.
Then, we have 〈b, c〉 ◦ 〈a, b〉 = 〈a ◦ id, c ◦ id〉 = 〈a, c〉. Special case m ∈ M:
m−1 ◦m = 〈id, m〉−1 ◦ 〈id, m〉 = 〈m, id〉 ◦ 〈id, m〉 = 〈id, id〉 = id. �

The following fact states the requirements such that a composition of two
partial monomorphisms yields anM-morphism.

Fact A.8 (M-decomposition). For all partial monomorphisms 〈a, b〉,〈c, d〉
with codom(b) = dom(c) we have: 〈c, d〉 ◦ 〈a, b〉 ∈ M if and only if a is
an isomorphism, 〈a, b〉 ∈ M and there is anM-morphism m: iface(〈a, b〉) →֒
iface(〈c, d〉) such that c ◦m = b.

Proof. If. First, we show 〈c, d〉 ◦ 〈a, b〉 = 〈a, d ◦m〉. Construct the compo-
sition 〈c, d〉 ◦ 〈a, b〉, that is, construct the pullback 〈c∗, b∗〉 of 〈b, c〉. We have
c ◦ b∗ = b ◦ c∗ = c ◦m ◦ c∗, which implies b∗ = m ◦ c∗ (Def. 2.1). For the mor-
phism c∗, we have dom(c∗) = iface(〈c, d〉◦〈a, b〉) and codom(c∗) = dom(m) =
codom(a) = iface(〈a, d ◦m〉). Moreover, there exists an inverse morphism
(c∗)−1: Construct the pullback of 〈m, m〉 and yield

〈
iddom(m), iddom(m)

〉
. As

iddom(m) ◦ b = iddom(m) ◦m ◦ c, the universal property of pullback guarantees
the existence of a morphism (c∗)−1: dom(m)→ dom(c∗) such that c◦(c∗)−1 =
idcodom(c∗) and (c∗)−1 ◦ c = iddom(c∗). Finally, 〈c, d〉 ◦ 〈a, b〉 = 〈a, d ◦m〉 is in
M as a is an isomorphism.
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Only if. Conversely, assume 〈c, d〉◦〈a, b〉 = 〈a ◦ c∗, d ◦ b∗〉 is inM, then a◦c∗

is an isomorphism (Def. A.1). According to Fact 2.6, a is an isomorphism
and c∗ is an isomorphism. Then 〈a, b〉 is in M (Def. A.1). Moreover, there
exists a morphism m: iface(〈a, b〉) →֒ iface(〈c, d〉) which is b∗ ◦ (c∗)−1. As c∗

is an isomorphism and pullback squares are commutative, b = c ◦m. �
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B. Proof

In this section we prove the soundness of the transformation of a program
with interface into a Fix-free program.

Proof of Theorem 4.16. We show the equivalence for every equation
of the construction. Obviously, Fix(P) ≡ Fix(P, idC) for programs P with
interface C.

First, we show Fix(Skip, p) ≡ Uns(p) if p ∈ M, and Fix(Skip, p) ≡
Abort.
Case p ∈M.

JFix(Skip, p)K

= {〈m, m∗ ◦ (mSkip ◦ p), p−1〉 |
〈m, m∗, mSkip〉 ∈ JSkipK and (mSkip ◦ p) ∈M} (Def. JFix(_, _)K)

= {〈m, m ◦ (id ◦ p), p−1〉 | (id ◦ p) ∈M} (Def. JSkipK)
= {〈m, m ◦ p, p−1〉 | p ∈M} (Fact A.3)
= {〈m, m ◦ p, p−1〉 | true} (p ∈M)
= JUns(p)K (JUnsK)
Case p 6∈ M. Then

JFix(Skip, p)K

= {〈m, m∗ ◦ (mSkip ◦ p), p−1〉 |
〈m, m∗, mSkip〉 ∈ JSkipK and (mSkip ◦ p) ∈M} (Def. JFix(_, _)K)

= {〈m, m ◦ (id ◦ p), p−1〉 | (id ◦ p) ∈M} (Def. JSkipK)
= {〈m, m ◦ p, p−1〉 | p ∈M} (Fact A.3)
= {〈m, m ◦ p, p−1〉 | false} (p 6∈ M)
= ∅ ({. . . | . . .})
= JAbortK (Def. JAbortK)

Second, Fix(P, p) ≡ Fix((P; Skip), p) by Fact 4.12.
Finally, we prove the remaining equations of the construction by induction
over structure of conditions P in a sequential composition (P; Q):
Basis.

Case Sel.
JFix((Sel(x, c); R), p)K
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= {〈m, m∗ ◦ (mSel;R ◦ p), p−1〉 | 〈m, m∗, mSel;R〉 ∈ J(Sel(x, c); R)K
and (mSel;R ◦ p) ∈M} (Def. JFix(_, _)K)

= {〈m, m∗ ◦ ((mR ◦ x) ◦ p), p−1〉 | 〈m, m′, x〉 ∈ JSel(x, c)K
and 〈m′, m∗, mR〉 ∈ JRK and ((mR ◦ x) ◦ p) ∈M} (Def. J(_; _)K)

= {〈m, (m∗ ◦mR ◦ (x ◦ p)), p−1 ◦ (x−1 ◦ x)〉 |
〈m, m′, x〉 ∈ JSel(x, c)K and 〈m′, m∗, mR〉 ∈ JRK
and (mR ◦ (x ◦ p)) ∈M} (Fact A.7)

= {〈m, (m∗ ◦mR ◦ (x ◦ p)), (x ◦ p)−1 ◦ x〉 |
〈m, m′, x〉 ∈ JSel(x, c)K and 〈m′, m∗, mR〉 ∈ JRK
and (mR ◦ (x ◦ p)) ∈M} (Fact A.5)

= {〈m, (m∗ ◦mR ◦ (x ◦ p)), (x ◦ p)−1 ◦ x〉 |
〈m, m′, x〉 ∈ JSel(x, c)K and
〈m′, (m∗ ◦mR ◦ (x ◦ p)), (x ◦ p)−1〉 ∈
{〈m′, m∗ ◦ (mR ◦ (x ◦ p)), (x ◦ p)−1〉 |
〈m′, m∗, mR〉 ∈ JRK and (mR ◦ (x ◦ p)) ∈M} ({. . . | . . .})

= {〈m, m∗ ◦ (mR ◦ (x ◦ p)), (x ◦ p)−1 ◦ x〉 |
〈m, m′, x〉 ∈ JSel(x, c)K and
〈m′, (m∗ ◦mR ◦ (x ◦ p)), (x ◦ p)−1〉 ∈ JFix(R, (x ◦ p))K (Def. JFix(_, _)K)

= J(Sel(x, c); Fix(R, (x ◦ p)))K (Def. J(_; _)K)

Case Del.
JFix((Del(l); R), p)K

= {〈m, m∗ ◦ (mDel;R ◦ p), p−1〉 |
〈m, m∗, mDel;R〉 ∈ J(Del(l); R)K and (mDel;R ◦ p) ∈M} (Def. JFix(_, _)K)

= {〈m, m∗ ◦ ((mR ◦ l−1) ◦ p), p−1〉 | 〈m, m′, l−1〉 ∈ JDel(l)K
and 〈m′, m∗, mR〉 ∈ JRK and ((mR ◦ l−1) ◦ p) ∈M} (Def. J(_; _)K)

= {〈m, (m∗ ◦mR ◦ (l−1 ◦ p)), p−1 ◦ ((l−1)−1 ◦ l−1)〉 |
〈m, m′, l−1〉 ∈ JDel(l)K and 〈m′, m∗, mR〉 ∈ JRK
and (mR ◦ (l−1 ◦ p)) ∈M} (∗, see below)

= {〈m, (m∗ ◦mR ◦ (l−1 ◦ p)), (l−1 ◦ p)−1 ◦ l−1〉 |
〈m, m′, l−1〉 ∈ JDel(l)K and 〈m′, m∗, mR〉 ∈ JRK
and (mR ◦ (l−1 ◦ p)) ∈M} (Fact A.5)

= {〈m, (m∗ ◦mR ◦ (l−1 ◦ p)), (l−1 ◦ p)−1 ◦ l−1〉 |
〈m, m′, l−1〉 ∈ JDel(l)K and
〈m′, (m∗ ◦mR ◦ (l−1 ◦ p)), (l−1 ◦ p)−1〉 ∈
{〈m′, m∗ ◦ (mR ◦ (l−1 ◦ p)), (l−1 ◦ p)−1〉 |
〈m′, m∗, mR〉 ∈ JRK and (mR ◦ (l−1 ◦ p)) ∈M} ({. . . | . . .})

= {〈m, m∗ ◦ (mR ◦ (l−1 ◦ p)), (l−1 ◦ p)−1 ◦ l−1〉 |
〈m, m′, l−1〉 ∈ JDel(l)K
and 〈m′, (m∗ ◦mR ◦ (l−1 ◦ p)), (l−1 ◦ p)−1〉 ∈
JFix(R, (l−1 ◦ p))K (Def. JFix(_, _)K)
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= J(Del(l); Fix(R, (l−1 ◦ p)))K (Def. J(_; _)K)
(∗): Note that mR ◦ (l−1 ◦ p) ∈ M implies (l−1 ◦ p) in M (Fact A.8).

Instead of showing p−1 ◦ l ◦ l−1 = p−1, we show l ◦ l−1 ◦ p = p (Facts A.6
and A.5). Let p = 〈a, b〉. Consider the composition l ◦ l−1 ◦ p = 〈l ◦ a∗, b ◦ l∗〉
where 〈a∗, l∗〉 is the pullback of 〈l, a〉. According to the definition of equality
(Def. A.1), it suffices to prove that l∗ is an isomorphism. As l−1 ◦ p is in
M, we know b ◦ l∗ is an isomorphism (Fact A.8) and l∗ is an isomorphism
(Fact 2.6).

Case Add. Analogously to the program Sel.

Case Uns. Analogously to the program Del.

Case (Assert(c); R).
Fix((Assert(c); R), p)

≡ Fix((Sel(id, c); R), p) (Def. Assert)
≡ (Sel(id, c); Fix(R, id ◦ p)) (Hypothesis)
≡ (Sel(id, c); Fix(R, p)) (Fact A.3)
≡ (Assert(c); Fix(R, p)) (Def. Assert)

Case (Skip; R).
Fix((Skip; R), p)

≡ Fix((Assert(true); R), p) (Def. Skip)
≡ (Assert(true); Fix(R, p)) (Hypothesis)
≡ (Skip; Fix(R, p)) (Def. Skip)
≡ Fix(R, p) (Fact 4.12)

Case (Abort; R).
Fix((Abort; R), p)

≡ Fix((Assert(false); R), p) (Def. Abort)
≡ (Assert(false); Fix(R, p)) (Hypothesis)
≡ (Abort; Fix(R, p)) (Def. Abort)
≡ Abort (Fact 4.12)

Hypothesis.
Step.

Case ({P, . . . , Q}; R). Let be S = {P, . . . , Q}.
JFix((S; R), p)K

= JFix(
⋃

S∈S(S; R), p)K (Fact 4.14)
= {

〈
m, m∗ ◦mS ◦ p, p−1

〉
|
〈
m, m∗, mS

〉
∈ J
⋃

S∈S(S; R)K
and (mS ◦ p) ∈M} (Def. JFix(_, _)K)

= {
〈
m, m∗ ◦mS ◦ p, p−1

〉
|
〈
m, m∗, mS

〉
∈
⋃

S∈SJ(S; R)K
and (mS ◦ p) ∈M} (Def. J{_, . . . , _}K)
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=
⋃

S∈S{
〈
m, m∗ ◦mS ◦ p, p−1

〉
|
〈
m, m∗, mS

〉
∈ J(S; R)K

and (mS ◦ p) ∈M} ({. . . | . . .})
=

⋃
S∈SJFix((S; R), p)K (Def. JFix(_, _)K)

= J
⋃

S∈S Fix((S; R), p)K (Def. J{_, . . . , _}K)

Case (Fix(P); R).
Fix((Fix(P); R), p)

= {〈m, m∗ ◦ (mFix;R ◦ p), p−1〉 |
〈m, m∗, mFix;R〉 ∈ J(Fix(P); R)K and (mFix;R ◦ p) ∈M} (Def. JFix(_, _)K)

= {〈m, m∗ ◦ ((mR ◦ id) ◦ p), p−1〉 | 〈m, m′, id〉 ∈ JFix(P)K
and 〈m′, m∗, mR〉 ∈ JRK and ((mR ◦ id) ◦ p) ∈M} (Def. J(_; _)K)

= {〈m, m∗ ◦ (mR ◦ p), p−1〉 | 〈m, m′, id〉 ∈ JFix(P)K
and 〈m′, m∗, mR〉 ∈ JRK and (mR ◦ p) ∈ M} (Fact A.3)

= {〈m, m∗ ◦ (mR ◦ p), p−1〉 | 〈m, m′, id〉 ∈ JFix(P)K
and 〈m′, m∗ ◦ (mR ◦ p), p−1〉 ∈ JFix(R, p)K} (Def. JFix(_, _)K)

≡ Fix(P); Fix(R, p) (Def. J(_; _)K)

Case ((P; Q); R).
Fix(((P; Q); R), p)

≡ Fix((P; (Q; R)), p) (Fact 4.13)

Case (if c then P fi; R).
Fix((if c then P fi; R), p)

≡ Fix(({(Assert(c); P), Assert(¬c)}; R), p) (Def. if-then)
≡ {Fix(((Assert(c); P); R), p), Fix((Assert(¬c); R), p)} (Hypothesis)
≡ {Fix((Assert(c); (P; R)), p), Fix((Assert(¬c); R), p)} (Fact 4.13)
≡ {(Assert(c); Fix((P; R), p)), (Assert(¬c); Fix(R, p))} (Hypothesis)
≡ if c thenFix((P; R), p) elseFix(R, p) fi (Def. if-else)

Case (if c then P else Q fi; R).
Fix((if c then P else Q fi; R), p)

≡ Fix(({(Assert(c); P), (Assert(¬c); Q)}; R), p) (Def. if-else)
≡ {Fix(((Assert(c); P); R), p), Fix(((Assert(¬c); Q); R), p)} (Hypothesis)
≡ {Fix((Assert(c); (P; R)), p), Fix((Assert(¬c); (Q; R)), p)} (Fact 4.13)
≡ {(Assert(c); Fix((P; R), p)), (Assert(¬c); Fix((Q; R), p))} (Hypothesis)
≡ if c thenFix((P; R), p) elseFix((Q; R), p) fi (Def. if-else)

Case (P0; R).
Fix((P0; R), p)

≡ Fix((Skip; R), p) (Def. P0)
≡ Fix(R, p) (Hypothesis)

Case (Pj ; R), j > 0.
Fix((Pj ; R), p)
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≡ Fix(((Fix(P); Pj−1); R), p) (Def. Pj)
≡ Fix((Fix(P); (Pj−1; R)), p) (Fact 4.13)
≡ (Fix(P); Fix((Pj−1; R), p)) (Hypothesis)
≡ (Fix(P); . . . ; Fix(P); Fix((P0; R), p)) (. . . )
≡ (Fix(P); . . . ; Fix(P); P0; Fix(R, p)) (Hypothesis)
≡ (Pj ; Fix(R, p)) (Def. Pj)

Case (P∗; R).
Fix((P∗; R), p)

≡ Fix(((
⋃∞

j=0 P
j); R), p) (Def. P∗)

≡
⋃∞

j=0 Fix((Pj ; R), p) (Hypothesis)
≡

⋃∞
j=0(P

j ; Fix(R, p)) (Hypothesis)
≡ ((

⋃∞
j=0 P

j); Fix(R, p)) (Fact 4.13)
≡ (P∗; Fix(R, p)) (Def. P∗)

Case (↓P↓; R).
JFix((↓P↓; R), p)K

= {〈m, m∗ ◦ (m↓P↓;R ◦ p), p−1〉 | 〈m, m∗, m↓P↓;R〉 ∈ J(↓P↓; R)K
and (m↓P↓;R ◦ p) ∈M} (Def. JFix(_, _)K)

= {〈m, m∗ ◦ (mR ◦ id ◦ p), p−1〉 | 〈m, m′, id〉 ∈ J↓P↓K
and 〈m′, m∗, mR〉 ∈ JRK and (mR ◦ id ◦ p) ∈M} (Def. (_; _))

= {〈m, m∗ ◦ (mR ◦ p), p−1〉 | 〈m, m′, id〉 ∈ J↓P↓K
and 〈m′, m∗, mR〉 ∈ JRK and (mR ◦ p) ∈ M} (Fact A.3)

= {〈m, (m∗ ◦ (mR ◦ p)), p−1〉 | 〈m, m′, id〉 ∈ J↓P↓K
and 〈m′, (m∗ ◦ (mR ◦ p)), p−1〉 ∈ JFix(R, p)K} (Def. JFix(_, _)K)

= J(↓P↓; Fix(R, p))K (Def. (_; _))

Case (while c do P od; R).
Fix((while c do P od; R), p)

≡ Fix(((if c then P fi∗; Assert(¬c)); R), p) (Def. while)
≡ Fix((if c then P fi∗; (Assert(¬c); R)), p) (Fact 4.13)
≡ (if c then P fi∗; Fix((Assert(¬c); R), p)) (Hypothesis)
≡ (if c then P fi∗; (Assert(¬c); Fix(R, p))) (Hypothesis)
≡ ((if c then P fi∗; Assert(¬c)); Fix(R, p))) (Fact 4.13)
≡ (while c do P od; Fix(R, p)) (Def. while)

�
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