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0. Zusammenfassung 1

Zusammenfassung

In der vorliegenden Arbeit wurden Fragestellungen der Bioinformatik mit Monte Carlo
Verfahren der statistischen Physik behandelt.

Beim Vergleich von molekularen Sequenzen (Sequenz Alignment) verwendet man
statistische Tests, um die Signifikanz beobachteterÄhnlichkeiten zu quantifizieren.
Verteilung der optimalen lokalen Alignment-Scores über Zufallssequenzen, insbeson-
dere seltene Ereignisse, sind ein wichtiger Bestandteil solcher Tests. Ich erweiterte eine
bereits bestehende Arbeit, in der große Abweichungen von der theoretisch vorherge-
sagten Gumbel-Verteilung gefunden wurde, auf weitere biologisch relevante Protein-
und Score-Modelle. In den meisten Fällen konnten die Abweichungen durch eine
heuristisch modifizierte Gumbel-Verteilung beschrieben werden. Sie sind teilweise so
groß, dass einige signifikantëAhnlichkeiten in der bisherigen Praxis nicht als solche
klassifiziert werden. Dies kann eintreten, wenn man ein Suchergebnis weiter verfein-
ern möchte. Zuerst betrachtete ich die Verteilung bezüglich des Standardmodells für
Proteinsequenzen für verschiedene Alignment-Parameter. In einem zweiten Schritt un-
tersuchte ich ein Modell, das Transmembran-Proteine beschreibt. Außerdem studierte
ich Verteilungen freier Energien kanonischer Alignment-Ensembles. Die temperat-
urabhängige Form dieser Verteilungen deutete ich anhand des linear-logarithmischen
Phasenübergangs, der in diesem Modell auftritt.

In einer ähnlichen Weise untersuchte ich RNA Sekundärstrukturen. Hier wurde die
Verteilung der minimalen freien Energie ebenfalls über Zufallssequenzen bestimmt.
Mit diesen Verteilungen konnte ich biologische RNA Sequenzen gegen Zufallsmodelle
vergleichen. Dazu betrachtete ich mikrokanonische Sequenzensembles und verglich
deren statistische Eigenschaften mit biologischen RNA Sequenzen aus einer Daten-
bank.

Auch für eine Studie der Monte Carlo Dynamik in komplexen Energielandschaften
betrachtete ich RNA Sekundärstrukturen. Diese stellen f¨ur solche Fragestellungen ein
ideales Modell dar, da es, im Gegensatz zu vielen anderen Modellen, exakt behan-
delt werden kann und gleichzeit komplexe glassartige Eigenschaften besitzt. Ich ver-
glich dynamische Eigenschaften verschiedener Monte CarloAlgorithmen mit statis-
chen Eigenschaften, die durch Transfermatrix-Berechnungen zugänglich sind.

Abstract

This thesis treats problems from bioinformatics with MonteCarlo methods from sta-
tistical physics.

Methods to compare molecular sequences (sequence alignment) make use of sta-
tistical tests to assess the significance of observed similarities. Distributions of optimal
alignment scores over random sequences, particularly rareevents, are integral parts of
such tests. I extended an existing work where large deviations from the asymptoti-
cally predicted Gumbel distribution were found to further biologically relevant scoring
and protein models. In most cases, deviations could be described by an heuristically
modified Gumbel distribution. In some cases the deviations are so large that, in the
previous praxis, some significant similarities are not properly classified, in particular
when one wishes to refine a certain search result. First, I studied the score distribution
for the standard protein model for different alignment parameters. In a second step, I
investigated a model which describes transmembrane proteins.

Furthermore I studied free-energy distributions of canonical alignment ensembles.
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2 0. Zusammenfassung

I explained the temperature dependence of the shapes of these distributions with argu-
ments of the linear-logarithmic phase transition that occurs in this model.

In a similar way, I studied RNA secondary structures. I obtained the minimum-free-
energy distribution over random sequences. This distribution allowed me to compare
biological RNA sequences against random models. For this purpose, I considered mi-
crocanonical sequence ensembles and compared their statistical properties to those of
biological RNA sequences taken from a database.

I also used RNA secondary structures for a study of Monte Carlo dynamics in
complex energy landscapes. This model is an ideal system forsuch purposes, because,
in contrast to many other models, it can be treated exactly and, on the other side,
it exhibits complex glassy properties. I compared dynamical properties of different
Monte-Carlo algorithms to static properties which can be probed with transfer matrix
calculations.

2



Chapter 1

Introduction

Computational molecular biology, or bioinformatics [CB05, RDM98], has arisen from
different scientific fields, like molecular biology, computer science, probability theory
and statistics. Since recently also many physicists have studied problems from bioin-
formatics and figured out that many bioinformatics models have an equivalent or a
similar description in physics and vice versa. Just as the recent tendency of increasing
interchange between computer science and physics [HR01, HW05], this point of view
allows one to interchange methods and concepts or even results between bioinformatics
and physics [LV02].

Analysis and classification of molecular biological data are challenging tasks in
bioinformatics. Most data is stored in form of biological sequences in large databases
(for example UniProt [Uni]). A biological sequence, also called primary structure,
is the linearly ordered chain of monomers of a biopolymer, such asdeoxyribonucleic
acid (DNA), ribosomal nucleic acid(RNA) or proteins. They are usually encoded as
character strings over finite alphabets, four letter alphabets in the case of DNA or RNA
or the 20 letter amino acid alphabet for protein sequences.

It is commonly assumed that related organisms, so calledhomologs, share similari-
ties on the molecular level. For this reason sequence comparison is a fundamental tool
to detect homological relationships. Common search tools,like BLAST (Basic Lo-
cal Alignment Search Tool) [BLA], are used to search a given query sequence against
huge databases. In most cases search algorithms are based onlocal pairwise sequence
alignment[CB05, RDM98]. It quantitatively measures similarities between a pair of
sequences and detects corresponding regions in both sequences. The approach uses the
dynamic programingparadigm [CLR02] (commonly known astransfer matrix calcu-
lations in physical literature). The algorithms return araw similarity scorethat quanti-
fies the similarity between the input objects. A more detailed introduction to sequence
alignment is given in Chapter 3.

Unfortunately, the raw score is hard to interpret because one does not know the
absolute scale of the score. An interpretation becomes possible when specifying a
probabilistic null model for the input: Then the similarityscore becomes a random
variableS whose probabilitiesProb(S = s) under the null model can be determined.
Sometimes this can be done analytically [KA90, KD92, DKZ94], but usually one has
to apply numerical simulations [AG96, ABOH01, RO99, ABOH01]. Thep-valueas-
signed to an observed scores is defined aspval(s) := Prob(S ≥ s) in the null model
and− log pval(s) is a measure of surprise (and hence a universally normalizedscore)
for s. It is one fundamental problem in bioinformatics to findProb(S) for a given

3



4 1. Introduction

comparison method, a given scoring scheme, and a given null model.
Since true homological relationships usually exhibit large scores, the rare-event tail

of the score distribution is particularly interesting. Rare-event tails are usually hardly
accessible with naive “simple sampling” methods. Similar problems can be found
in statistical mechanics, where one is interested in tails of ground-state-energy distri-
butions of disordered systems with quenched disorder (for example [Pal03, ABM04,
MG06, KKH06]). These are models with random interactions, where each realization
of random interactions induces a physical ensemble on its own.

A fruitful solution to the problem of probing the rare-eventtail of such distributions
is to reinterpret the ensemble of realizations as a physicalensemble and make use of
methods to compute the microcanonical entropy function, i.e. the logarithm of the
density of states (the number of micro states for a given energy). Because feasible
exact methods are not available in most cases, such problemsare approached by Monte
Carlo simulations, such as parallel tempering combined with reweighting techniques
or generalized ensemble methods.

A few years ago Hartmann applied such a method to the alignment problem [Har02,
HR04] and figured out that the accurate score distribution strongly differs from the an-
alytically predicted score distribution in the rare-eventtail. Unfortunately these results
have not been considered in current database search tools, presumably because it was
applied for only one case so far.

It is one aim of this thesis to extend these results to a broader range of scoring
and protein models. Under the standard protein-sequence model, the effects of vary-
ing scoring parameters was studied. In a second step, the score statistics for a special
class of proteins that are hardly described by the standard model was considered. Fi-
nally, the statistics of a finite-temperature version of thelocal alignment algorithm
[Miy95, KL00] was investigated. The Monte Carlo algorithmsthat were used here
are introduced in Chapter 2. The results for the local-alignment-score statistics are
discussed in Chapter 4.

Another important problem in bioinformatics, molecular biology and biophysics
is the prediction of the spatial conformation, thetertiary structure, of molecules from
primary sequences. In contrast to the tertiary structure, asecondary structuredescribes
the conformation on a topological level, i.e. the set of paired monomers.

Such higher order structures are important because they determine the molecule’s
function. The protein folding problem (the prediction of the three dimensional structure
from the amino acid sequence) is probably the most prominentexample. Beside protein
structures, also RNA structures play an important role in living organisms. In order to
fulfill a certain biological function, the molecule’s structure is assumed to sit in a global
minimum of the free energy in the structure space for a fixed sequence. Hence, many
RNA structure prediction methods are based on free energy minimization. Fortunately,
RNA structure prediction turned out to be much simpler than protein folding, because
secondary structureswithout so calledpseudo knots(topologically crossing pairs) de-
scribe the essential features already quite well [TB99]. Neglecting pseudo knots allows
us to perform free-energy minimization in polynomial time by dynamic programing
(transfer matrix calculations) [dG68, NPGK78, ZS81, Zuk89, HFS+94, MSZT99].
Such algorithms are explained in Chapter 5.

Because biological RNA sequences are products of evolutionary processes they
can hardly be seen as purely random objects. They rather sit in a local minimum of
the map from the space of sequences to minimum free-energy [FHS99, CFKK05].
Statistical evidence of the non-randomness of a given sequence is often measured by
the so calledz-score. That is the distance of the minimum-free-energy value from the

4



1. Introduction 5

mean of a distribution over a random sequence ensemble normalized by the standard
deviation [SD99, WK99, CFKK05]. For this reason the free-energy distribution over
random sequences is of interest. Considering the minimum-free-energystructure as the
ground state, the problem is again equivalent to the ground-state-energy distribution
over sequence ensembles and hence rare-event simulation methods can be applied.

In Chapter 6, I present some results on this distribution, inparticular on properties
of rare events in both tails, the one for unstable (large freeenergies) and the one for sta-
ble (low free energies) molecules. For this purpose I employed the same methodology
as for the local-alignment-score distribution. This allowed me to compare properties
of microcanonical-like ensembles of sequences, characterized by the minimum free-
energy, to biological RNA sequences.

Interestingly, a simplified model of the RNA secondary structure is also of fun-
damental interest in statistical mechanics of systems withquenched disorder. When
lowering the temperature the model exhibits a phase transition from a molten phase
to a spin-glass-like phase [Hig96, PPRT00, Har01, BH02b, FKM02, LW06]. The
latter one is characterized by rugged free-energy landscapes, where thermodynamic
and ground-state properties exhibit large sample-to-sample fluctuations. In contrast to
most other models featuring complex free-energy landscapes, probing static properties
of RNA secondary structures is computationally feasible. One the other side, due to
the glassiness of the model an interesting slow dynamics in the structure space can
be expected. Such properties are crucial when performing Monte Carlo or molecular
dynamics simulations. Hence, the model provides an ideal framework to study the
relationship between static and dynamic properties.

Monte Carlo studies of this type are presented in Chapter 7. Static structure proper-
ties, such as the number of metastable states or the degree ofultrametricity, of random
sequences were determined. The relationship of these properties to observations of
different Monte Carlo methods, like the tunneling time in generalized ensembles, or
sampling errors is worked out in detail. Finally, an improved sampling scheme that
allows the Monte Carlo samplers to cross entropic barriers is presented.

5
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Chapter 2

Monte Carlo methods

The general concept of the ”Monte Carlo method” was proposedby Von Neumann,
Metropolis, Ulam and others in the 1940s [MU49] and since then it was successfully
enhanced and used in many different scientific fields [HH64, MEJN99, Liu02, LB05].
The idea is to estimate expectation values of observables over a state space by generat-
ing random states by means of computer simulations. The randomness of the procedure
also gives the approach its name.

2.1 Simple sampling

In order to be more concrete, given a discrete state spaceχ, and an observableA : χ→R one wishes to estimate expectation values with respect to a probability mass function
p : χ→ [0, 1]. The idea of ”Monte Carlo” is to estimate〈A(X)〉p by drawing random
samplesx1, . . . , xn ∈ χ according top and estimate the expectation value from the
sample average

〈A(X)〉p =
∑

x∈χ

A(x) · p(x) ≈ 1

n

n∑

i=1

A(xi) (2.1)

Nearly all Monte Carlo algorithms can by classified as arejection-freeor as areject-
accept method. Prototypes of these approaches are theinversion methodor thereject-
accept algorithm[Dev86] respectively. The requirements of the inversion method are
quite restrictive as it relies on the knowledge of the inverse of the cumulative distribu-
tion functionF−1. This requires also a kind of ordering of all states to be sampled. For
each variate the algorithm uses an uniform variateξ ∈ [0, 1] and then returnsF−1(ξ)
[Dev86]. Note that in some cases it is possible to order the states hierarchically which
allows direct sampling with an inversion-like approach. This idea is realized in the
Boltzmann sampling of RNA secondary structures and finite-temperature alignments
(see Appendix A.1 and Appendix A.2).

In many cases this method is infeasible because the underlying state space is an high
dimensional object and the inversion ofF requires much information about the system.
The reject-accept algorithm is more flexible. Suppose we wish to sample from the
distributionp, and we were able to computep(x) up to a global normalization constant
(partition function). In order to draw one sample with the reject-accept method, one
repetitively drawsξ ∈ [0, 1] and statesx from χ according to an arbitrary distribution
q until ξc q(x)

p(x) ≤ 1, wherec ∈ R is a free parameter. In order to apply the reject-accept

7



8 2. Monte Carlo methods

proceduremetropolisupdate(x,w)
begin

proposey ∈ N (x)
if w(E(y)) > w(E(x)) or w(E(y))/w(E(x)) > rand()then

x← y
end
return x

end

proceduremetropolis(xinit,w)
begin

x← xinit

repeat
x← metropolisupdate(x, w)

until x is in equilibrium

for i = 1 . . . n do
x0← x
repeat

x← metropolisupdate(x,w)
until x andx0 are decorrelated
xsample[i]← x

done
return xsample

end

Algorithm 2.2.1: The Metropolis algorithm. Only equilibrated and decorrelated states
should be sampled (see Sec. 2.5)

algorithm efficiently, the distributionq and the numberc should be chosen, such that
the ratioc q(x)

p(x) is large.
Furthermore, Monte Carlo methods can be classified whether the generated out-

comes arecorrelatedor uncorrelated. Uncorrelated means that the Monte Carlo pro-
cedure returns random objects that are not correlated to theoutcomes of previous calls.
This will be denoted as “simple sampling”.

Because simple sampling is hardly possible in many application, indirect ways such
as Markov chain Monte Carlo (MCMC) methods, in particular the Metropolis-Hastings
algorithm, had become very popular and successful. This algorithm is explained next.

2.2 The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm [MRR+53, Has70] is a general reject-accept
Monte Carlo method that is suitable for problems, where simple (uncorrelated) sam-
pling is hardly possible. It is based on a discrete time Markov chain in the state
spaceχ with transition matrixPx,y. The transition matrixPx,y is constructed such
that its stationary distribution converges to the desired sampling distributionp, i.e.∑

x∈χ p(x) · Px,y = p(y) for all statesy ∈ χ.
The algorithm (see Algorithm 2.2.1) starts with some initalstatexinit ∈ χ. At each

8



2. Monte Carlo methods 9

time step of the simulation a new state in the local neighborhood of the current state
y ∈ N (x) is proposed with the “proposal density”Qx,y = Prob(X = y|X = x). The
proposal is then accepted (y is used at the next time step) with the probability

αx,y = min
{
1,

p(y) ·Qy,x

p(x) ·Qx,y

}
. (2.2)

Otherwise the proposal is rejected andx is kept for the next iteration. The rateαx,y in
Eq. (2.2) is constructed such that detailed balance,

αx,yQx,yp(x) = αy,xQy,xp(y),

is guaranteed. Furthermore the chain needs to be ergodic. This means each state must
be reachable from any other state by a finite chain of transitions. If these conditions
are fulfilled the chain converges towards the stationary distribution p and one may
approximate expectation values by averages over the visited states.

In the case of symmetric proposalsQx,y = Qy,x the Metropolis-Hastings algo-
rithm in its general form Eq. (2.2) [Has70] simplyfies to the Metropolis algorithm with
acceptance rate

αx,y = min

{
1,

p(y)

p(x)

}
, (2.3)

which was proposed by Metropolis et. al. in their famous article from 1953 [MRR+53].
Usually the sampling distribution depends on a macroscopicobservable, which is

the energy in most physical applications. We shall writep(x) ∝ w(E(x)), and hence

αx,y = min

{
1,

w(E(y))

w(E(x))

}
. (2.4)

In order to implement this algorithm, the weightsw need to be known up to normaliza-
tion. In the canonical ensemble,

w(E) ∝ e−E/T ,

the ratio in Eq. (2.4) only depends on the change of the energy, that is associated with
the proposal,

αx,y = min {1, exp [−∆E/T ]} . (2.5)

2.3 The dynamics of the N-fold way

In a few discrete models, such as Ising spin systems or the RNAsecondary structure,
it is possible to use a rejection-free dynamics and determine the correct averages by
accounting for so calledwaiting timesat each step of the simulations. This is referred
asN-fold way. So as to follow the classification scheme that has been described above,
the N-fold way is a rejection-free Monte Carlo method, that produces correlated states.
It requires following assumptions:

1. there must be a small number of possible energy changes{∆Ei}, i = 1 . . .N
and

2. at each step there must be an efficient way to classify all possible proposals
y ∈ N (x) by the associated energy change∆E. These sets are denoted as
classes of proposals

C(x, ∆E) = {y ∈ N (x)|E(y) = E(x) + ∆E}

9



10 2. Monte Carlo methods

Each step in the N-fold way requires two random selections. First a class is chosen
with a probability that corresponds to the Metropolis algorithm and secondly one mem-
ber from that class is selected with equal probability. Thisproposal is then used in the
next iteration with probability one. There are two timescales involved, thecomputer
time measuring the number of MC steps and theMC timeassociated with a physical
time scale of the random walker. The first plays the major rolein the performance anal-
ysis of the algorithms and the latter one gives the correct weight to the visited states. In
order to choose the class with the “Metropolis weight” (i.e.the probability of choosing
y ∈ N (x) times the acceptance rate in Eq. (2.4)), the cumulative weights

Q(k) = min

{
1,

w(E + ∆Ei)

w(E)

}
|C(x, ∆Ek)|+ Q(k − 1)

with the boundary conditionQ(0) = 0 have to be determined fork = 1 . . .N . Conse-
quentlyQ(k)/Q(N) is the probability that a flip occurs in thek first classes. The inver-
sion method allows choosing a classk with the same probability as it would have been
chosen with the Metropolis algorithm. Within that class a proposaly ∈ C(x, ∆E) is
chosen at random and accepted in any case. When computing expectation values from
the chain of visited statesxi . . . xn in the form of Eq. (2.1), the time that the random
walker would have stayed in each statexi before an acceptance fromxi to xi+1 (the
waiting time) has to be taken into account.

It can be computed by the following considerations: Letp be the probability that a
proposal in the firstk − 1 classes is selected, given that the random walker sits in state
x, i.e. p = Q(k − 1)/Q(N). Then the probability that the Metropolis algorithm had
selected classk afterm trials is given by

p(m) = pm(1− p). (2.6)

The probability of staying at mostτ time steps can be evaluated via geometric progres-
sion:

P (τ) = Prob [m ≤ τ ] =
τ∑

m=0

pm · (1− p) = 1− pτ+1 (2.7)

In order to assign a waiting time to the current state one has to draw a random
number according to the discrete distribution Eq. (2.7), i.e.

τ = ⌊ln(ζ)/ ln(p)⌋,

whereζ is an uniformly distributed random number and⌊x⌋ denotes rounding down
to the next integer. This completes one MC step. Expectationvalues are then approxi-
mated by

〈A〉 ≈ 1

n +
∑

i τi

n∑

i=1

(τi + 1)A(xi)

In Sec. 7 a variant of the N-fold way is discussed. This will berefereed as “semi-
rejection free”.

2.4 Parallel tempering

Metropolis Coupled Markov Chain Monte Carlo (MCMCMC)was first invented by
Charles Geyer [Gey91] and then reinvented by Hukushima and Nemoto [HN96] under

10



2. Monte Carlo methods 11

the termexchange Monte Carlo. In the physical literature MCMCMC is often denoted
asparallel tempering. The method has become a standard tool in disordered systems
that feature a rough (free) energy landscape [ED05]. These rough energy landscapes
are characterized by high energy barriers and can be found for problems like protein
folding [ZBG01], nucleation [AF01], spin-glasses [MPRL98, KPY01] and other mod-
els characterized by rare events [Har01, KKH06]. In the lastdecade it turned out that
MCMCMC accelerates equilibration and mixing remarkably.

In the framework of MCMCMCm copiesχ(1), . . . , χ(m) of a system are simulated
in parallel. The sampling distributionspΘ1 . . . pΘm

belong to a single-parameter fam-
ily of distributions. This means one samples from the product of the state spaceχm

weighted with the joint distribution with weights
∏m

j=1 pΘj
.

In most applications where one wishes to sample from a Gibbs-Boltzmann distribu-
tion, the parameter can be identified with the temperature, i.e. Θj = Tj and hence the
sampling distribution is a product ofm canonical ensembles. Without loss of general-
ity we will denote the parameter as “temperature” and assumeT1 < . . . < Tm in the
following. The parallel tempering algorithm is designed toexchange configurations
between different neighboring temperatures during the simulation. For this purpose
let us define the space of all possible mappings from them configuration to them
temperatures astemperature space.

During the simulation mainly each of the replicated configurations will evolve inde-
pendently according to the underlying MCMC scheme characterized by the Boltzmann
weightexp(− 1

Tj
E(x)) at its current temperatureTj , i.e. according to Eq. (2.5).

In addition to this evolution, everytexcth step (for each replicated configuration) a
flip between two neighboring replicask andk + 1 (k ∈ {1, . . . , m− 1}) is attempted.
If an attempt is successful, the configurationsx(k) andx(k+1) are exchanged (denoted
by x(k) ↔ x(k+1)), i.e. the configuration which has previously evolved at temperature
Tk will now evolve at temperatureTk+1 and vice versa. This exchange is accepted with
the probability

α
(
x(k) ↔ x(k+1)

)
= min

{
1,

pTk
(x(k+1))

pTk
(x(k))

· pTk+1
(x(k))

pTk+1
(x(k+1))

}
. (2.8)

In the canonical ensemble this ratio depends on the difference of the inverse tempera-
ture∆βk = 1

Tk+1
− 1

Tk
and on the energy difference∆E = E(x(k+1))− E(xk),

α
(
x(k) ↔ x(k+1)

)
= min {1, exp [∆βk∆E]} , (2.9)

This leads to a “random walk in the temperature space”.
The parallel tempering approach has the advantage over the standard Metropolis

algorithm that the different configurations are not confinedto a fixed temperature, but
perform a random walk in temperature space, i.e. visit all temperatures several times.
Thus, mixing is accelerated and hence fewer Monte Carlo steps are required.

It is suitable for at least three purposes:

• optimization, i.e. finding low energy states in rugged energy-landscapes,

• approximating canonical averages over the ensemble with the lowest temperature
T1 and

• determine canonical averages foranytemperature within the interval
[T1, Tm].

11



12 2. Monte Carlo methods

For the first two applications the high temperatures ensembles are only auxiliary for the
sake of decreasing equilibration time. For the latter application, data from all chains
are relevant for the data analysis. In particular, when choosing Tm = ∞ together
with a broad range of temperaturesT1, . . . , Tm−1, the density of states (DOS) can be
determined. The methodology of reweighting such mixtures of empirical distributions
is described in detail in Sec. 2.6.

2.5 Convergence

Due to the fact that the Metropolis-Hastings algorithm generatescorrelated states,
some care has to be taken when computing averages in the form of Eq. (2.1) for two
reasons. Firstly, because the inital configuration might befar away from the equilib-
rium of the sampling distributionp. For this reason usually the first steps of the chain
(calledburnin or equilibration time) have to be ignored in the estimators. Secondly
the generated states are correlated, which is crucial for the estimation of the statistical
error. To avoid this the chain is usually thinned out, i.e. only everynthinth visited state
is considered for data production (see Ref. [CC96] for an review).

2.5.1 Equilibration

The estimation of the equilibration time is not always trivial and depends strongly on
the model.

A visual way, which has been proven to be appropriate to our purpose (see Sec. 4.2),
is to compare the convergence of two chains starting from twodifferent initial config-
urations. For instance, if we consider to simulate a physical system in the canonical
ensemble at temperatureT and we were able to generate low-temperature configu-
rations (for example ground states), then it is possible to choose two distinct starting
configurations. When starting from a random configuration (for exampleT =∞, i.e. a
disordered configuration) and equilibrating the system, the system can reach in princi-
ple most regions of the energy landscape at the beginning. Hence, typically the energy
decreases or stays the same during the simulation with only few energy fluctuations. In
contrast, when starting from a low energy, i.e. a minimum of the energy landscape, the
reverse process is possible. One can use this fact to verify,whether a system has equi-
librated, i.e. whether it is able to overcome the typical barriers in the energy landscape.
This is the case when the average energy for two runs, one starting with a disordered
configuration and one starting with a “ground-state” configuration, have converged to
the same value (within fluctuations). If the temperature is too small, this is not possible
in many glassy systems. An example of this approach is shown in Fig. 4.3.

2.5.2 Relaxation

So as to estimate the thinning interval many different approaches are available
[MEJN99, CC96, Jan02]. To estimate the times scales over which the simulation
decorrelates, we considered the autocorrelation function

ξ(t) =
〈E(t0)E(t0 + t)〉t0 − 〈E(t0)〉2t0
〈E(t0)2〉t0 − 〈E(t0)〉2t0

, (2.10)

〈· · · 〉t0 denoting the average over different times and independent runs. The typical
time scale, over which correlation vanish is the correlation timeτ defined viaξ(τ) =

12



2. Monte Carlo methods 13

1/e. The correlation time increases with decreasing temperature, which corresponds
to a growth of the equilibration time with decreasing temperature. However, by the
generation of the histograms the correlations will averageout, but estimates of the
errors are more complicated when the data is correlated. A common rule of thumb is
to choosenthin ≈ 2τ as thinning interval.

Another method that aims at a direct computation of the statistical error is Flyvbjerg
and Petersen’s blocking method [FP89], which has two main advantages. Firstly it is
computationally less complex than the computation of the autocorrelation function,
and secondly a generalization to multidimensional observables is straightforward. For
a given Monte Carlo data set of correlated data of some observableA, a1, . . . an, the
sample error̂ǫ(a1, . . . , an) is a lower bound of the “true” error of the uncorrelated data.
The blocking method uses a series of blocking transformation, where the actual dataset
a
(k)
i (i = 1 . . . n(k)) is transformed into a coarse grained set according to the rule

a
(k+1)
i =

1

2
(a2i−1 + a2i) (i = 1 . . . n(k)/2)

n(k+1) =
n(k)

2

This transformation keeps the expectation value〈A〉 and the true statistical errorǫ(A)
invariant. The transformation is repeated untilnkmax = 2. When the block size is at
least as large as the intrinsic correlation time the empirical error of the blocked data
approaches a plateau (within the statistical error) of constant values fork ≥ k0 for
somek0. This fixed point serves as an consistent estimate of the statistical error of the
correlated data.

2.6 Sampling of rare events I:
Importance sampling and reweighting

Suppose that we wish to estimate the probability distribution of an observableA, i.e.
P (a) = Prob(A(X) = a). Since distributions of this form can always be formulated
as expectation values of indicator functions, it is possible to estimate probabilities via
Monte Carlo sampling,

P (a) = 〈δA(X),a〉p ≈
1

n

n∑

i=1

δA(xi),a.

This simple sampling approach allows probing the region of the distribution where
P (a) is large. If the probability to be estimated is small, say≈ 10−9, we need about
1012 samples to estimate it with reasonable precision. For very rare events, this “naive”
sampling quickly becomes infeasible.

Importance sampling generates the “interesting” events more often by sampling
from a different distribution and correcting for this bias afterwards, which results in
a more accurate estimate with a reasonable number of samples. Let p be the “target
distribution” andq be an alternative distribution overχ, the so called “sampling distri-
bution”. Consequently samples fromq, in the following denoted asx′

1, . . . , x
′
n, allow

for estimates of the expectation value of an observableA with respect to the target

13



14 2. Monte Carlo methods

distribution using the importance sampling formula

〈A(X)〉p =
∑

x

A(x) · p(x)

=
∑

x

A(x) · p(x)

q(x)
· q(x)

≈ 1

n

n∑

i=1

A(x′
i) ·

p(x′
i)

q(x′
i)

, (2.11)

or, to estimate the probabilityP (a),

P (a) =
〈
δA(X),a

〉
p
≈ 1

n

n∑

i=1

δA(x′
i),a
· p(x′

i)

q(x′
i)

. (2.12)

To successfully apply importance sampling,q has to fulfill three properties:

• it needs to put high probability on the region of interest,

• we need to be able to sample according toq and

• we need to be able to compute the correcting weightp(x)/q(x).

For the estimator of rare-event probabilities it is not sufficient to put high prob-
ability on the rare event alone, because then the distribution’s normalization remains
undetermined. Instead the entire range from high probabilities (whereP (a) is large)
down to rare events have to be sampled. Since this range is very broad it is hard to find
a good guess for the sampling distributionq a priori.

Torrie and Valleau developed a technique called “umbrella sampling” [TV77],
which was originally used to estimate free-energy differences. The method makes
use of a parameterized family of sampling distributions{qΘk

}, k = 1, . . . , m and
requires that the mixture covers the entire range of interest. That can be for example

the mixture of canonical distributions (Θk ≡ Tk andqTk
(x) ∝ exp

[
− 1

Tk
E(x)

]
), that

is involved in the parallel tempering algorithm.
Furthermore, we consider that the target distributionp is one member of the family,

without loss of generality we setp = qΘm
and we shall writeqk ≡ qΘk

. Ferrenberg
and Swendsen [FS89] proposed a data analysis procedure, which can be seen as a
generalization of Eq. (2.12) for a mixture of distributions.

Later, Geyer developed a related method under the termreverse logistic regression
[Gey91]. Meng and Wong [MW96] reviewed the basic concept in the framework of
Bayesian inference and proposed different recipes to obtain the relative normalization
constants (partition functions) which play a central role in this methodology. We use
the selfconsistent method proposed in [MW96] to derive the normalization constants
from a mixture of Monte Carlo data.

Consider the family{qk} covering the region of interest andnk independent1

Monte Carlo samples{xki, k = 1 . . .m, i = 1 . . . nk} from each distributionqk. Fur-
thermore we assume that eachqk is only known up to (global) normalization constants
ck =

∑
x q̃k(x), i.e.

qk(x) =
q̃k(x)

ck
(2.13)

1for correlated data one has to account for autocorrelation times and consider a thinned sample as de-
scribed in Sec. 2.5

14
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Figure 2.1: Sketch of the graph of overlapping distributions q1, ..., q4. Distant distri-
butions have weak overlaps.

Since the support of the mixture distribution is broader than each of the particular
distributions, not all pairs of distributionsqk andql overlap in general. The overlaps of
the empirical data can be measured by the matrix

wkl ≈
1

1
2 (nk + nl)

∑

x∈χ

nk∑

i=1

nl∑

j=1

δx,xki
· δx,xlj

(2.14)

and the set of distributions can be represented by a graph(V, E) with vertices being
the distributionsV = {q1, ..., qm} and the set of all overlaps being the weighted edges
E = {wkl} with wkl > 0 (see Fig. 2.1). We require, that the so constructed graph
is connected.2 This criterion was used in the study of the local alignment statistics
discussed in Sec. 4.3

Geyer’s idea is to generalize Eq. (2.11) to mixtures by “forgetting” from which
distribution each sample was drawn and assume that it was drawn from the mixture.
This is done by replacing eachq by a “mixture weight”qmix,

〈A〉p ≈
1

n

m∑

k=1

nk∑

i=1

A(xki) ·
p(xki)

qmix(xki)
, (2.15)

with n =
∑m

j=1 nj The mixture weightqmix

qmix(x) =

m∑

k=1

nk

n
· q̃k(x)

ck

is known up to the normalization constantsck that have to be determined consistently
from all Monte Carlo data. This is possible up to a global (trivial) constant by consid-
ering ratios of these constants

ck

cl
=
∑

x∈χ

q̃k(x)

cl
=
∑

x∈χ

q̃k(x)

q̃l(x)
· ql(x) =

〈
q̃k(X)

q̃l(X)

〉

l

(becausecl = q̃l(x)
ql(x) ∀x, see Eq. (2.13)). Each pair of ratiosck/cl are in principle

accessible from Monte Carlo data, if the distributions are not too distant. In general,
each distribution of interest should have a finite overlap with qmix which ensures that
reweighting becomes possible on the full support.

2 In practice one must find paths between each pair of distributions with not too small weights.
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16 2. Monte Carlo methods

There might be incompatible (due to finite sample sizes) estimates ofck/cl that
are computed directly or indirectlyck

cl
= ck

cl′
· cl′

cl
using the “bridge distribution”ql′ .

One wish to estimate these ratios consistently usingall data that is available from the
mixture, i.e. usingck

cl
, ck

cl′
and cl′

cl
in the case of three distributions. A method to obtain

self-consistent estimates of these normalization constants is discussed in the following.

2.6.1 Estimation of relative normalization constants

Geyer introduced aprofile log-likelihood, which depends on the unknown normaliza-
tion constants given the Monte Carlo data. Since there is a global trivial normalization
constant the estimation reduces to(m − 1) ratios of normalization constants with re-
spect to an arbitrary reference distribution, sayq1. Hence the aim is to estimate the
vectorr = (r2, . . . , rm) ∈ Rm−1 with rk = c1/ck from the Monte Carlo mixture.
Additionally r1 = 1 by definition and we do not consider it as a free parameter in
the following. Using the probability thatx has been sampled from thekth distribution
pk(x, r) = q̃k(x)·rk

P

l q̃l(x)·rl
one can construct a log-likelihood (a function of the unknown

normalization constants) the for the complete data set

L(r) =

m∑

k=1

nk∑

i=1

log pk(xki, r) (2.16)

and obtain the normalization constants by maximazingL with respect tor, i.e. r̂ =
argmax

r
L(r). In other words, the relative normalization constants are determined by

a maximum likelihood estimator.
In practice one may implement the Newton-Raphson method or an iterative proce-

dure. Meng and Wong [MW96] proposed a reliable selfconsistent method to obtainr,
which is easy to implement on one side and stable on the other side. This approach is
explained in the following.

Let αkl : Ω→ R be a set of arbitrary functions withαkl = αlk and

0 <

∣∣∣∣∣
∑

x∈Ω

αkl(x) · qk(x) · ql(x)

∣∣∣∣∣ <∞.

The average of̃qk(x) · αkl(x) equals to

〈q̃k(x) · αkl(x)〉l = ck

∑

x∈Ω

qk(x) · αkl(x) · ql(x)

=
ck

cl

∑

x∈Ω

qk(x) · αkl(x) · q̃l(x)

=
ck

cl
〈q̃l(x) · αkl(x)〉k

which can also be written in the form

ck

cl
=
〈q̃k(x) · αkl(x)〉l
〈q̃l(x) · αlk(x)〉k

(2.17)

that Meng and Wong called the “key identity”. By using Eq. (2.17) in terms ofrk =

16



2. Monte Carlo methods 17

c1/ck and summing overl

∑

l 6=k

〈q̃k(x) · αkl(x)〉l
︸ ︷︷ ︸

bkk

·rk =
∑

l 6=k

〈q̃l(x) · αlk(x)〉k · rl

=
∑

l 6=k,l 6=1

〈q̃l(x) · αlk(x)〉k︸ ︷︷ ︸
bkl

·rl + 〈q̃1(x) · α1k(x)〉k︸ ︷︷ ︸
bk1

it becomes clear thatr satisfies the following linear system




b22 −b23 . . . −b2m

−b32 b33 . . . −b3m

...
...

. . .
...

−bm2 −bm3 . . . −bmm









r2

r3

...
rm




=





b21

b31

...
bm1




(2.18)

with

{
bkk =

∑
l 6=k〈q̃k(x) · αkl(x)〉l , 2 ≤ k ≤ m

bkl = 〈q̃l(x) · αlk(x)〉k , k 6= l

The next step is to replace theblk in Eq. (2.18) by the sample average and choose

αlk(x) =
nl nk

n2

1

qmix(x)
.

Sinceqmix and therefore thebkl as well depend on the unknown ratiosr Eq. (2.18) is
not a true linear system inr, but it is possible solve the equation self-consistently by
iterating the equation

B̂(r(t)) · r(t+1) = b̂(r(t)),

whereB̂(r(t)) and b̂(r(t)) are the sample estimates ofbkl (k, l = 2 . . .m) and bk1

(k = 2 . . .m) depending on the ratiosr in the tth iteration. The solution ofr in the
(t+1)th iteration,r(t+1) is obtained by solving the above linear system. This approach
converges to the maximizer of Eq. (2.16) [MW96].

2.6.2 Illustration: Reweighting probability distributio ns

The approach to obtain relative normalization constants for probability distributions
is essentially the same as for expectation values. This is so, because this is a special
case of an expectation value. The reweighting equation Eq. (2.15) for this special
“observable” is given by

P (a) = Prob(A = a) ≈
m∑

k=1

nk∑

i=1

δA(xki),a
p(xki)

qmix(xki)
. (2.19)

As illustration we consider a mixture of Gaussian deviates with standard deviation
σ = 1 and mean valuesµ = {−3,−2,−1, 0, 1, 2, 3} (see Fig. 2.2) The PMFq in the
above statements is substituted by a probability density function (PDF) andp = qµ=0.
The xki are drawn fromN (µk, 1), which can be easily generated by a Box-Müller
transform [PFTV92]. For each distribution10, 000 samples were generated (see the
upper plot in Fig. 2.2). The data had been reweighted to the distributionN (0, 1) using
the iterative scheme described above (Fig. 2.2, lower).
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18 2. Monte Carlo methods
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Figure 2.2:
top: Histograms of a Gaussian mixtureN (µk, 1) with different mean values, obtained
via Box-Müller sampling. The bin size was 0.02.
bottom: Reweighted data. The distribution of empirical Gaussian deviates is very
broad. The tail is accessible via reweighting of a mixture.

In Fig. 2.3 the estimate ofqmix as well as the relative error of the empirical estimate
p̂ with respect to the exact distribution

ǫ(x) :=
p̂(x) − pexact(x)

pexact(x)

is illustrated. Obviously the data become noisy beyond|x| > 3 where the support is
governed by the mixture only weakly. This example is trivialbecause the normalized
distributions are known and there is no need for simulationsat all. For this reason it
provides a practical test of the reweighting procedure and also an instructive illustra-
tion.

2.7 Sampling of rare events II:
Generalized ensemble methods

Generalized ensemble methods have become a popular tool in statistical physics since
the early 1990s. Similar to parallel tempering their usefulness shows up in problems
where distributions over a broad parameter range have to be sampled and a usual Boltz-
mann sampling gets stuck in local minima of the energy landscape. This usually hap-
pens close to critical points, where the correlation time increases with a power law.
When sampling from a broad distribution instead of from the narrow Boltzmann distri-
bution, the sampler is allowed to escape from such local minima. A second advantage
is that these methods aim at approximating the DOS, and henceobtain the thermo-
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Figure 2.3:
top: ˆqmix estimated from the mixture
bottom: The relative error with respect to the true distributionN (0, 1)

dynamics at any temperature, similar as reweighting of mixtures. In practice the data
analysis turns out to be simpler. There is no need to determine relative normalization
constants, because a single chain or multiple independent chains cover the entire range.
Whereas the parallel tempering algorithm requires variousparameters, that have to be
chosen in advance (the number of temperatures and their values), generalized ensem-
ble methods, especially the Wang-Landau algorithm (Sec. 2.7.1), essentially require an
energy interval[Emin, Emax] as input. Hence only little a priori knowledge is needed.

The generalized ensemble method consists of two stages. First, an heuristic al-
gorithm, like the multicanonical iteration [BN92], entropic sampling [Lee93], Wang-
Landau sampling [WL01], transition matrix Monte Carlo [Wan99b, WTS99, WL00]
or the ParQ [HH05, AHM+88] algorithm, approximates the DOS to a sufficient de-
gree of accuracy. Sec. 2.7.1 and Sec. 2.8.2 explain more details on the Wang-Landau
and the ParQ algorithm. In the second stage the Metropolis algorithm produces the
relevant data. The weights are chosen asw(E) ≡ wflat(E) := 1/ĝ(E), whereĝ(E)
denotes the approximated DOS from the first stage. Instead ofthe energy, the DOS
might depend on other observables, for example order parameters. This is referred as
“joint density of states”. An implementation of the generalized ensemble method for
such two-dimensional objects is directly possible. In contrast, it is complicated for the
parallel tempering algorithm.

There is still the freedom to choose a global normalization constant. Frequently
the DOS is normalized to1 in order to interpret it as the energy-distribution in the
canonical ensemble at infinite temperature. Alternative, in the case that the degeneracy
of at least one level is known, it is possible to determine thedegeneracy of each energy
level. Thenln g(E) equals the microcanonical entropy function.
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20 2. Monte Carlo methods

procedurewang landau(xinit,Emin,Emax,φinit)
begin

x← xinit

φ← φinit

for i = Emin . . . Emax do
w[i]← 1
h[i]← 0

done
repeat

repeat
x←metropolisupdate(x,w)
w[E(x)]← w[E(x)]/φ
h[E(x)]← h[E(x)] + 1

until h is flat
φ← √φ
for i = Emin . . . Emax do

h[i]← 0
done

until φ ≤ φfinal

return w
end

Algorithm 2.7.1: The Wang-Landau algorithm.

2.7.1 Wang-Landau sampling

The algorithm of Wang and Landau [WL01] provides an efficientand easy to imple-
ment way to estimate the weights for the flat histogram ensemble. Provided that the
specific energy function is available, the algorithm can be implemented in a few lines
of programming code (see Algorithm 2.7.1).

Instead of sampling from a distribution with fixed weightsw, the weights are up-
dated dynamically such that the random walker is biased towards states that have been
sampled rarely so far. It employs an histogramh(E) and the weightsw(E). After each
step the histogram entry of the current state is incrementedby one and the weights are
changed according to

w(E)← w(E)/φ,

whereφ is the modification factor for the weights. Once the histogram has become
”approximately flat”φ is reduced via the rule

φ←
√

φ

and the histogram is reseted to0 while the weightsw are kept for the next iteration.
This procedure is repeated untilφ is close to one. In total there are the following
parameters that have to be tuned:

• the energy interval[Emin, Emax],

• the initial and final value ofφ, φinit andφfinal and

• the flatness criterion for the histogram.
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Usually the weightsw(E) are underestimated in the low energy region in the early
stage of the algorithm. This bias is successively correctedat each step of iteration.
Whenφinit is chosen too large, this kind of underestimation is very large, and a lot of
computational effort has to be put for the correction in the following iterations. On
the other side, using a small value ofφinit yields a long simulation time in the first
iteration. In the applications here, the simulation of sequence alignments, as well as
for the minimum (free-) energy distribution of the RNA secondary structure, a value
of φinit = e0.1 was a suitable compromise. The flatness criterion is not as crucial for
the algorithm. Wang and Landau [WL01] suggested the requirement, that the number
of visits of each energy level is at least80% of the expected number for an uniform
energy distribution, i.e.

h(E) > ǫflatN

k
∀E ∈ [Emin, Emax],

wherek is the number of distinct energy levels on the interval andN =
∑

E h(E) the
total number of events. The choice ofǫflat depends on the problem, the choice ofφinit

on the dimensionality of the weights to be estimated. In manycases it is sufficient to
guarantee that the random walker has cycled several times from Emax to Emin in the
energy space. The choice ofφfinal requires some experimentation. Because the weights
w(E) are systematically underestimated for small energies (close to the ground state)
the first hint for convergence is the change of the normalizedweights between two
iterations. The quality of convergence can be seen easily inthe second part of the
generalized ensemble simulation. If Wang-Landau samplingwas stopped too early the
random walker does not mix very well and get stuck in the low energy region. That can
be detected by few Monte Carlo steps in the generalized ensemble.

Another reason for slow convergence in the Wang-Landau algorithm is due to the
choice of the energy interval. If it was chosen too broad in the energy landscape,
the sampler might also get stuck in local minima. This also happens in the parallel
tempering approach as discussed above. the algorithm is applied.

2.7.2 Optimized ensembles

Perfectly flat histogram ensembles are only optimal in the sense, that all macrostates
are visited with equal probability. There might remain large correlations due to the fact
that the random walker stays in local minima for a long time. Especially near phase
transitions, where the specific heat diverges, a huge amountof computation time is
spent. This effect is known ascritical slowing down.

This is also related to theregenerationof Markov chains in the following sense: A
Markov chain is regenerative if there are timesti, such that the process afterti becomes
independent from times beforeti.

The paths between regeneration points are calledtours. Usually the distribution of
tour lengths exhibits an heavy tail and only a very small fraction of tours hit one of
the ground states. Thefirst-passage time(also calledtunneling time) is the time the
random walker needs to hit the ground state starting at its last regeneration point. This
is an extremal event and, hence the distribution of first-passage times might be, at least
approximately, a generalized extreme-value distributionexhibiting a heavy tail.

Small first-passage times increase mixing and performance of the sampler. We will
also use theround-trip time, which is the tunneling time plus the time needed to go back
to regeneration. Since the turn from regeneration to the ground state is much longer
than the turn back, first-passage time and round trip time areapproximately equal.
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22 2. Monte Carlo methods

Trebst et. al. [THT04] developed an iterative algorithm to optimize round-trip
times in a generalized ensemble. Instead of giving all macrostates the weightw(E) ∝
1/g(E) a different weight functionwopt(E) is chosen, such that thenumber of round
trips on an energy intervalE+ andE− is maximized.

The equilibrium distribution of the optimized ensemble is proportional to
wopt(E) · g(E), which is not a flat histogram in general. The method works for
both, for Metropolis and n-fold dynamics. In the iteration that is proposed in Ref.
[THT04], on need to know the the fraction of visitsf(E) at energyE, where the
last visit toE+ has occurred more recently than to the stateE−. A sample estimate
for f can be made by labeling the random walker with two different labels “+” or
“−”, depending on whether it has visited the stateE+ or E− most recently. During
the simulation a separate energy histogramH±(E) for each label is updated and an
approximation off for the given weights is given by

f̂(E) =
H+(E)

H+(E) + H−(E)
.

The derivativedf/dE can be approximated by a polynomial interpolation off(E) and
numerical derivation.

By diffusion arguments one shows that the weights of the optimized ensemble can
be obtained iteratively [THT04]. The feedback iteration isgiven by

wk+1(E) = wk(E) ·
√

1

H+(E) + H−(E)
· df

dE
, (2.20)

where the histogramsH± and the derivatedf
dE for the weights of iteration(k + 1) is

obtained empirically from iterationk.

For the n-fold way, or as in the case of a semi rejection-free dynamics (see Chap-
ter 7), the iteration has to account for the two intrinsic time scales. Since one aims at
optimizing the computer time the iteration scheme Eq. (2.20) is modified by the factor
τ(E), which is the accumulated waiting time at energy levelE, in other words

wk+1(E) = wk(E) ·
√

1

H+(E) + H−(E)
· df

dE
· 1

τ(E)
. (2.21)

After each iteration the number of MC steps, which is used to accumulate the his-
tograms, is doubled.

This method will be compared with other Monte Carlo methods in Chapter 7.
Fig. 2.4 illustrates the convergence off̂ for the model of the RNA secondary struc-
ture. Details of the model will be introduced in Chapter 5, but it is not essential in
the general description of the method in this chapter. A similar convergence behavior
has also been observed in other systems such as Ising models [THT04]. In the first
iteration the random walker spends much time for tours from energy level0 towards
low energy levels. After the optimization the fraction of tours in positive and negative
direction become more balanced. Convergence is achieved after only 4 iterations. The
inset shows the decrease of the round-trip time, which has already converged after the
first iteration.
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Figure 2.4: Convergence off(E) using iteration scheme Eq. (2.21), shown by lines
connecting the data points, for better visibility. Betweeniteration 4th and 5th no sig-
nificant difference off(E) is visible.
Inset: Convergence of round-trip times. Lines in the inset are guides to the eyes only.
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2.8 Sampling of rare events III:
Evaluation of the number of potential moves

During the course of a generalized ensemble or a parallel tempering simulation, more
information than just the visited states is available. Instead of estimating the DOS from
Eq. (2.12), matrix based methods aim at estimating the DOS from thenumber of po-
tential moves(to be specified below) during a course of a Monte Carlo simulation. It
is not crucial to use a particular ensemble. The only requirements are that the entire
energy range is covered by the simulation and secondly that each state within each
microcanonical ensembleχE = {x ∈ χ|E(x) = E} is visited with equal probability.
Simulations with detailed balance guarantee thismicrocanonical propertyautomati-
cally [Wan99a].

2.8.1 The density of states by transition matrix estimates

The connection between the transition matrix and the DOS canbe made as follows:
Consider an infinitely long simulation in the canonical ensemble at infinite temper-

ature, whereall attempts are allowed. In entropic systems, like the RNA secondary
structure, there might beforbiddenconfigurationsE(x) = ∞. Proposals that yield
infinite energy are not accepted even at infinite temperature.

The discrete time and state master equation for the so constructed chain on the level
of the macrostates is given by

p(Ej , t + 1) =
∑

Ei

Qi,j · p(Ei, t), (2.22)

wherep(Ei, t) denotes the probability of finding macrostate stateEi at timet andQi,j

is the macrostate transition matrix, i.e. the probability of jumping to a state with energy
Ej , given that the random walker sits in a state with energyEi. SinceQi,j is stochastic
we require that the columns sum to one, i.e.

∑
j Qi,j = 1 for all i. The stationary

distribution of Eq. (2.22) is the desired DOSg(E). For a known infinite temperature
transition matrixQ the stationary distribution can either be computed via solving the
eigenvalue problem

g(Ej) =
∑

Ei

Qi,j · g(Ei).

Alternatively one can also obtaing(E) iteratively. This means one starts with some
inital guess forg(E) and applies Eq. (2.22) until the relative change ofg(E) is suffi-
ciently small (≈ 10−10) for all energy values.

The microstate infinite temperature transition matrix of the Metropolis algorithm is
defined as

Γx,y =

{
1 if y ∈ N (x) andE(y) <∞
0 otherwise

,

i.e. it equals 1 if the statey is a neighbor ofx. Furthermore, let us define the number
of neighbors ofx with energyE(x) + ∆E, or the number of potential moves, as

N(x, ∆E) :=

{
|{y ∈ N (x)|E(y) = E(x) + ∆E}| if ∆E 6= 0

|{y ∈ N (x)|E(y) =∞}| if ∆E = 0
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2. Monte Carlo methods 25

The macrostate transition matrixQ can be written as a microcanonical expectation
value ofΓ,

Qi,j =
1

Ci

∑

x∈χ

(
∑

y∈χ

Γx,y · δE(y),Ej

)
· δE(x),Ei

=
1

Ci

∑

x∈χ

N(x, Ej − E(x)) · δE(x),Ei
(2.23)

=
1

Ci
〈N(x, Ej − E(x))〉Ei

(2.24)

whereδi,j and theCi’s are chosen such thatQi,j is stochastic.
A sample estimate ofQi,j can be made [AHM+88, WL00, HH05] from MC data

on attempted moves: In the matrix̂Wi,j we count the number of attempted moves from
i to j if the energy change is finite. OtherwisêWi,i is incremented by1. Hence,
the microcanonical average in Eq. (2.23) can be obtained from simulations in other
ensembles than the microcanonical one.

Suppose we have data ofm different simulations (a mixture of canonical ensembles
or even a combination of generalized and canonical ensembles is possible), yielding
transition matricesŴ k

i,j with k = 1 . . . n. Then all data are added into one master

matrixŴi,j =
∑n

k=1 Ŵ k
i,j and the DOS is determined from̂Qi,j = 1

P

j Ŵi,j
Ŵi,j .

2.8.2 The ParQ algorithm

Simulated annealing [KGV83, JJS06] is a stochastic optimization method that is in-
spired by the physical annealing process. The cost functionis translated to the energy
of the corresponding physical system and hence the temperature can be seen as parame-
ter that controls the sub-optimality of the system. The Metropolis algorithm Algorithm
2.2.1 with Boltzmann weightsw(E) ∝ exp(−βE) and a time-dependent temperature
scheduleβ(t) provides the dynamics of the annealing procedure. By lowering the tem-
perature successively, the system approaches low energy states and the simulation will
end in a state close to the ground state. Geman and Geman [GG84] where able to proof
the convergence of simulated annealing.

In most applications of simulated annealing, only the final state is of interest and the
data during the course of the simulation is irrelevant. However, as has been illustrated
above, information about the number of potential moves provides an estimate of the
infinite temperature transition matrix and hence an estimate of the DOS [AHM+88,
HH05].

The ParQ method [HH05] aims at estimating the infinite temperature transition
matrix (the letter “Q” in the acronym ParQ) from a parallel (“Par”) run of independent
simulated annealing simulations. The data fromall simulations are collected after-
wards and evaluated as described above.

It is an open question under which conditions the estimate converges toward the
true DOS when the number of simulations, at a fixed number of MCsteps each, tends
to infinity. In section Chapter 7 we will examine convergenceproperties of the ParQ
method for the RNA secondary structure and show that the microcanonical property is
explicitly violated.

For the other limit, one simulated annealing run subject to infinitely slow cooling,
the convergence can be conjectured by the convergence theorem for simulated anneal-
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26 2. Monte Carlo methods

ing [GG84] and by the microcanonical property of the Metropolis algorithm, which is
the limiting case of simulated annealing.
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Chapter 3

Sequence alignment

Comparative genomics[Har03] is a young, growing research field that aims at studying
the relationship between genetic information and functions across different organisms.
Regions of coding DNA sequences, that are conserved betweenorganisms play a key
role in this framework, because conserved genetic information is also translated to
related proteins which characterize the organisms’ functions. For this reason the study
of conserved regions in the sequences of protein molecules is a widespread approach.

Also DNA sequences that are responsible for gene regulationare conserved be-
tween related species. In analogy to the terms “genome” and “genomics”, “protenome”
and “protenomics” are often used, when looking at properties of the complete set of
proteins in organisms.

Since the introduction of new biochemical methods in the 1970s the amount
of molecular biological sequence information, which is thebasis of comparative
genomics, has increased dramatically. The history of genome sequencing projects
began with the discovery of the chain termination method of DNA sequencing by
Sanger and its application to the complete genome ofΦX174 bacteriophage[SNC77].
Sanger determined this genome consisting of 5,386 bp (base pairs) manually. Over the
years the method was improved towards computer aided sequencing [SKSH86] and
further genomes with increasing sizes could be sequenced. Some milestones are the
full genomic sequence of Saccharomyces cerevisiae (yeast)in 1996 (12,070,000 bp)
[GBB+96] and Escherichia coli (a prokaryotic model organism) in 1997 (4,290,000
bp) [BIB+97]. Almost the complete genome of the model organism Drosophila
melanogaster (fruit fly, 180,000,000 bp) was sequenced using the whole-genome
shutgun method in 2000 [VAS+98, ACH+00, MSD+00] and finally a “working draft”
of the human genome (2,700,000,000 bp) was obtained in 2001 [Int01] and finalized
in 2003.

Large databases of DNA, proteins or RNA are available and international collab-
orations try to synchronize and standardize information and make them available by
access tools. The information that is stored in the records of those databases ranges
from sequences of bases or amino acids to citations of the corresponding publications.
Also crosslinks (for example between genes and translated proteins) are very impor-
tant.

An important resource is maintained by theInternational Nucleotide Sequence
Database Collaboration (INSDC)[INS], which consits of three sub-organizations, the
European Molecular Biology Laboratory (EMBL)[EMB], the GenBankhosted by the
National Center for Biotechnology Information (NCBI), USA [NCB] and theDNA
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Figure 3.1: Growth of the SwissProt and TrEMBL database overthe years

Data Bank of Japan (DDBJ)[DDB].

On the protein level the databases of the Universal Protein Resource Knowledge-
base (UniProtKB) [Uni],UniProtKB/SwissProtandUniProtKB/TrEMBL, are popular
resources. In order to give an impression of the increasing size of these databases, the
number of entries (proteins) over the years is illustrated in Fig. 3.1. The SwissProt
database contains manually checked and updated information on each entry, implying
an high degree of usability. In contrast the “supplement” TrEMBL is generated by
all EMBL nucleotide sequence entries by automatic translation, expect for those that
are already integrated in SwissProt (TrEMBL stands for translated from EMBL). Most
of the TrEMBL entries are seen as possible candidates for SwissProt. Because the
TrEMBL entries are generated automatically much more sequences are stored in that
database.

This exploding database sizes require computational toolsthat are able to analyze
data, in particular searching for so called homological relationships1, i.e. relationships
due to common ancestry, between sequences.

This chapter is dedicated tosequence alignment, which is the workhorse of com-
parative genomics / protenomics. It is a method to quantify the similarity between two
(pairwise alignment) or more (multiple alignment) biological sequences. Further-
more sequence alignment can be literally translated to a classical physical model with
quenched disorder and, hence, many methods and concepts from statistical mechanics
can be adopted to this problem. Some of them will be discussedin this chapter, others
in the following one.

Basic definitions are introduced in Sec. 3.1 and after that the statistical inference of
scoring parameters are outlined in Sec. 3.2. Sec. 3.3 treatsoptimization algorithms for
pairwise alignment. Variants that also consider sub-optimal alignments are discussed
in Sec. 3.4 followed by an outline of the so calledlinear-logarithmic phase transition
in Sec. 3.5. Illustrative biological examples in Sec. 3.6 will close this chapter.

1In fact homology is a much broader term that describes similarities on different levels from entire or-
ganisms to the molecular biological level.
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A A G T G T

A G T C G A
A A G T T− G
A AGCTG−

Figure 3.2: Two representations of an alignment. Matches are shown as solid lines and
dashed lines indicate mismatches.
Left: Topological representation. Aligned letters are connected by lines.
Right: Bioinformatics representation. Aligned letters are connected by vertical bars
and gaps are indicated by the symbol “-”.

3.1 Notation of sequence alignment

As mentioned above pairwise alignment (in the following simply referred as “align-
ment”) aims at measuring the similarity between two molecular sequences. Although
we will focus on protein alignment alone later on, the presentation here will be general.
This means amino acids or bases are referred aslettersand the set of possible letters
asalphabet. This is the four letter alphabetΣ = {A, T, G, C} in the case of DNA and
the 20 letter amino acid alphabet for proteins.

An alignment relates letters from one sequence to the secondsequence. These rela-
tionships should reflect correlated regions between the sequences, that exhibits a large
fraction of conserved letters in the evolutionary process.Since deletion or insertion of
letters at certain positions in the sequences occur as well the concept of so called gaps
is crucial. Formally we define an alignment by

Definition 3.1.1 Let a = a1 . . . aL ∈ ΣL and b = b1 . . . bM ∈ ΣM a pair of se-
quences overΣ.

(a) AnalignmentA of a andb is an ordered set of pairings
A = {(i1, j1), . . . , (iN , jN )} with 1 ≤ ik < ik+1 ≤ L and1 ≤ jk < jk+1 ≤ M

for k = 1 . . . N − 1. Thesetof all alignmentsof a andb is denoted asχglobal
a,b .

(b) Lettersai and bj with (i, j) ∈ A are calledalignedto eachother andai andbj

aligned. Ifai = bj the pair (i, j) is denoted asmatch otherwise asmismatch.
Letters that are not aligned are calledunpaired orgaped.

(c) Alignments with gaped letters are also calledgaped.

(d) If ik+1 = ik + 1 andjk+1 = jk + 1 + l with l > 0 and(ik, jk), (ik+1, jk+1) ∈ A,
thenb is said to contain agapof lengthl betweenik andik+1 and likewise for the
sequencea. If j1 = l + 1 > 2, thenb is said to have agapof lengthl at thebegin,
if jN = M − l < M , thenb has agapof lengthl at theend and likewise for the
sequencea.

The conditions for the order of the aligned letters ensure that the relationships are not
crossing, which implies polynomial alignment algorithms,see Sec. 3.3. Alignments
can be represented in different ways. For example in Fig. 3.2the alignmentA =
{(1, 1), (3, 2), (4, 3), (5, 5), (6, 6)} of the input sequencesa = AAGTGT andb =
AGTCGA is shown in two different representations. In bioinformatics the symbol “-”
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30 3. Sequence alignment

is commonly used to indicate gaps. Gaps are illustrated by inserting “-” between the
corresponding positions. Note that each bioinformatics representation can be translated
into the set of paired letters, whereas the reverse mapping is not unique. For example,
the (suboptimal) alignmentA = {(1, 1), (5, 5), (6, 6)} can either be translated to

A−−−AGTGT
| | |
AGGC−−−GT

or to
AAGT−−−GT
| | |
A−−−GGCGT

amongst other representations. For this purpose we define a canonical bioinformatics
representation by disallowing gaps in the first sequencea that follow a gap in second
sequenceb. This implies that the second representation in the above example is not in
its canonical form. This distinction is relevant not only for visualization of alignments,
but also for the purpose to exclude redundant alignments from the partition function of
suboptimal alignments (see Sec. 3.4).

The objective is a measure for the similarity or the degree ofconservation between
the sequences or regions of the sequences. The classical wayis to assign ascorefor
each alignment via anobjective functionS : χglobal

a,b → R and then maximizingS
among all alignments

S0(a,b) = max
A
S(A;a,b)

Aopt = argmaxS(A;a,b). (3.1)

For the choice of the objective function and its parameters we need to know

(i) whether we are looking at locally conserved region or whether the entire se-
quences should be considered,

(ii) how matches and mismatches should be evaluated and

(iii) how gaps should penalize the overall score.

To address the first issue there are in principle two types of objective functions, namely
optimal local alignment scoresSlocal

0 andoptimal global alignment scoresSglobal
0 . Op-

timal global alignment scores involve contributions from all matches, mismatches and
gaps. The optimal local alignment score is the optimum over all global alignments of
all subsequences ofa andb,

Slocal
0 (a,b) = max

1≤i′<i≤L
1≤j′<j≤M

S
global
0 (ai′ . . . ai, bj′ . . . bj). (3.2)

AlternativelySlocal
0 (a,b) can be seen as a global alignment where gaps at the begin or

end of the sequences are not penalized. Formally we define thestate space of local
alignments by (see also Fig. 3.3)

Definition 3.1.2 Let a = a1 . . . aL ∈ ΣL and b = b1 . . . bM ∈ ΣM be a pair of
sequences overΣ. Thesetof local alignmentsof a andb is given by

χlocal
a,b =

⋃

1≤i′<i≤L
1≤j′<j≤M

{χglobal
ai′ ...ai,bj′ ...bj

|ai′ , bj′ and ai, bj aligned to each other}

⋃
{}
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TG T GT C A A
A G −A G

G T G TT C A A

A G T A C G A G T A C G

Figure 3.3: Representations of a local alignment.
Left: Topological representation.
Right: Bioinformatics representations. Aligned letters are connected by vertical bars
and gaps are indicated by the symbol “-”.

This definition is introduced in order to avoid overcountingof local alignments that
have a gap at the begin or the end of either sequence, because all these alignments have
an unique topological representation.

The second issue requires the knowledge of a relationship between the letters of the
underlying alphabet. This is usually realized by so calledsubstitution or score matrices
that assign each pair of letters a real number, i.e.σ : Σ × Σ → R. In generic studies
often a very simple score matrix is used. This matrix assignsall mismatches the same
number−µ (µ > 0) and all matches1,

σ(a, b) =

{
1 if a = b

−µ otherwise
.

However, for the case of protein alignment this setup is strongly oversimplified, be-
cause different types of amino acid substitution are more orless functionally conser-
vative. That means certain substitutions affect physical and chemical properties of the
protein, than others, because the amino acids themselves share similar properties. Mu-
tations between such related amino acids occur more likely.In most cases the score
matrices are derived by so called log-odds ratios that compare probabilities between
two models

σ(a, b) = log
Prob(a, b | a andb are related)

Prob(a, b | a andb are unrelated)
,

see Sec. 3.2 for details. The contribution of all letters dueto matches or mismatch is
then a sum over all these contribution.

Regarding the gaps one compromises between a computationalfeasible and biolog-
ical evident penalty functiong. That means each gapΓ of lengthlΓ yields a negative
contribution of−g(lΓ) to the overall score, which is then defined as

S(A; a,b) =
∑

(i,j)∈A

σ(ai, bj)−
∑

Γ

g(lΓ) (3.3)

Usually g is a monotonously increasing function of the length. The alignment algo-
rithms for gaped alignments with arbitrary gap penalties exhibit a cubic time complex-
ity (O(max(L, M)2 min(L, M))). In practiceaffine gapcost functions

g(lΓ) = α + β (lΓ − 1), with α > β (3.4)

are commonly used, because the computational complexity reduces toO(LM)
[Got82]. The opening parameterα penalizes an opening of a gap, i.e. it is a general
contribution for the existence of a gap at all. The extensionparameterβ is usually
chosen to be smaller thanα, hence
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(i) longer gaps are penalized more than shorter ones and

(ii) opening a gap is always more expensive than extensions.

The affine gap penalty Eq. (3.4) is based on the empirical observation that the size
distribution of insertions and deletions in evolutionary processes is well described by a
power-law distribution [GCB92, GL95]

P (lΓ) = P (1) l−b
Γ , lΓ = 1, 2, . . .

with b ≈ 1.8. Together with the ratioa of insertions or deletions to substitutions or
conservations the natural gap penalty has a log-affine form

g(lΓ) ∝ log a + b log lΓ,

which is computational more expensive than linear-affine gap costs. However in a
recent study the commonly used affine form Eq. (3.4) has been justified by bench-
marking the accuracy of logarithmicg(lΓ) = β log lΓ, log-affineg(lΓ) = α + β log lΓ
and linear-affineg(lΓ) = α + βlΓ gap costs [Car06]. The result is that the practical
choice of linear-affine gap costs approximates the realistic case very well. Pure log-
arithmic gap costs are significantly worse. In praxis some heuristics for the optimal
choice of scoring matrices and corresponding gap costs is required (see for example
[RP02, VEA95]).

Before describing in Sec. 3.3 the optimization procedure toperform the maximiza-
tion Eq. (3.1) for global and local alignment in polynomial time, more about the choice
of the protein scoring matricesσ is said in the next section.

3.2 Scoring models

Now, as we have fixed the notation of sequence alignment, it ispossible to describe
the methods, which had been used to derive scoring matricesσ for protein alignment.
There are three approaches relevant in this scope, thePAM [DSO78] andBLOSUM
matrices [HH92], which are most common, and a special purpose scoring matrix for
transmembrane proteinsSLIM [MRR01].

3.2.1 ThePAM family

The starting point of the derivation of thePAM matrices [DSO78] arephylogenetic
treesof closely related proteins (see Fig. 3.4). Usually only sequence data of the leafs
of such tree is available and the rest of the tree is constructed by parsimony methods
[RDM98, CB05]. At each edge of the tree of proteins a mutationdue to a change in
the gene, i.e. in the coding region of the DNA, occurred. Thisallows one to construct
such trees not only for DNA but also for proteins.

Trees of sequences such as in Fig. 3.4 can be described as a series of mutations,
which are defined as follows.

Definition 3.2.1 LetΣ be an alphabet. Anacceptedpoint substitution is an operation
on a sequencea overΣ

Σn → Σn : a1 . . . ai−1aiai+1 . . . an → a1 . . . ai−1a
∗
i ai+1 . . . an ∈ Σn

with 1 6 i 6 n and a lettera∗
i 6= ai.
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Figure 3.4: Sketch of a phylogenetic tree of a protein family. Such trees are usually
derived from the sequences that are located at the leafs (bordered by solid lines) At
each edge the mutations are counted. Note that mutations occurred less frequently in
the data set used in Ref. [DSO78] than in this illustration.

Dayhoff, Schwartz and Orcutt [DSO78] have chosen 71 families of closely related
proteins. That means each pair of sequences does not differ in more than15% of
letters. This implies the reasonable assumption that each site is changed at most once.
Also insertions or deletions of letters are not considered in this study.

From the constructed trees the total number of inferred accepted point mutations
from lettera ∈ Σ to b ∈ Σ are counted in an matrixAa,b. This matrix is constructed
symmetrically which means whenever a mutation froma to b is observedAa,b andAb,a

is incremented by1. The normalized frequencies of all amino acidsfa,
∑

a∈Σ fa = 1,
in all branches are estimated from the data. This allows a definition of the so called
mutation probability matrixvia

Pa,b = Λ
Aa,b∑

c 6=a Aa,c
for a 6= b and Pa,a = 1− Λ for a = b,

whereΛ is a tunable parameter that is specified below. This matrix exhibits following
properties:

• the rows are normalized to one,
∑

b Pa,b = 1, i.e. P is stochastic and

• the average fraction of amino acids that are changed is givenby
∑

a6=b fa fb Pa,b.

The last property allows one to choose the scale parameterΛ in a practical way based
on the following definition:

Definition 3.2.2

(a) Two sequencesa,b ∈ ΣL are said to have an evolutionary distance ofk PAM
(pointacceptedmutations ), if they have evolved by a series of100×k/L accepted
point substitutions, i.e.k is the average number of substitutions per 100 residues.
The unitPAM defines an evolutionary distance.

(b) The matrixP (1)
a,b is said to be the1PAM mutation probability matrix, if Λ is

chosen such that
∑

a6=b fa fb P
(1)
a,b = 0.01.

The definition of the1PAM mutation probability matrix is the starting point of the
derivation of matrices for larger distances, when considering the sequence evolution
as a Markov process. That means that an initial compositionf̂a will evolve to f̂b =∑

a f̂aP
(1)
a,b for an one PAM process. Larger distance can be obtained by repeating the
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processk-times. This yields thekPAM mutation probability matrixP (k) as a power
of the1PAM matrix.

P (k) = P (1) P (1) . . . P (1)
︸ ︷︷ ︸

k times

=
[
P (1)

]k
.

In order to translate the probability matrixP into a score matrixσ, let us consider
a gapless global alignment of two sequencesa andb (or a gapless local alignment ofa

andb). We want to discriminate the hypothesis that both sequences (or subsequences
in the case of local alignment) stem from a common ancestor according to the process
described above (modelM1) against thenull hypothesiswhich states that both are
unrelated and their composition is i.i.d. according to the background frequenciesfa

(modelM0). For modelM1 we further assume that all sequences have an average
compositionfa and that is equally likely to replacea with b or vise versa. Hence
the probability of observing the paira, b is given byP̂b,a = P̂a,b = faPa,b. . The
probabilities that the observationa andb are described by the model ofM0 or M1 are
given by

Prob(a,b|M0) =

N∏

i=1

fai

N∏

i=1

fbi
and

Prob(a,b|M1) =

N∏

i=1

P̂ai,bi

respectively. A common measure of discrepancy between two models is the so called
log-odd ratio,

S = log
Prob(a,b|M1)

Prob(a,b|M0)
= log

N∏

i=1

P̂ai,bi

fai
fbj

=
N∑

i=1

log
P̂ai,bi

fai
fbj

.

This also justifies the fact that the contributions for matches and mismatches in Eq.
(3.3) was chosen additive and we can identify

σPAM(a, b) = log
P̂a,b

fa fb

Apparently,σ depends on the PAM distance. For this reason different PAM score
matrices for different purposes have been derived. This matrices are denoted as
“PAMk”. Hence the acronym “PAM” has two meanings, the evolutionary time unit as
well as the name of the matrix family.

Popular matrices are for examplePAM30 or PAM250. These matrices are usually
scaled by an factor (3/ log 2 in the case ofPAM250) and then rounded to integer. The
more distant a pair of sequences is suspected to be the largerthe PAM value should be
chosen. Hence the methods requires some experience to choose the best substitution
matrix. To be on the safe side, it is also possible to use a combination of different
matrices for a single biological question [FFB04].

3.2.2 TheBLOSUM family

The PAM approach is most powerful for shorter distances because it relies on an extrap-
olation of the 1 PAM matrix. Fourteen years after the introduction of the PAM family,
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3·2

Figure 3.5: Construction of theBLOSUM family from clusters of highly conserved
blocks.

Heinkoff and Heinkoff derived another family of substitution matrices, theBLOSUM
family [HH92], which is most commonly used today, in particular to detect distant
relationships.

This matrices have been derived from known so called ungapped multiple align-
ments. That are blocks of conserved regions of equal length which are written in top
of each other, similar as in pairwise alignment. Each columnrepresents a position and
each row is a fragment of a protein sequence. These blocks areclustered according to
the percentage of identical letter at each site (see Fig. 3.5). The clusters are constructed
such that for each sequence withink% cluster there is at least one sequence in the same
cluster withk% or more identical letters..

A matrix Aa,b counts the weighted frequencies of lettera andb in different clus-
ters, i.e. each time lettera is observed in a cluster and letterb is observed in the same
column but different clusterAa,b is incremented by1/n1n2, wheren1 andn2 are the
sizes (number of sequences) of the respective clusters. In order to avoid overcount-
ing of many highly similar sequences, when estimating the amino acid background
frequenciesfa, Heinkoff and Heinkoff have provided a unbiased estimate via Aa,b,
instead of simply counting amino acids,

fa =

∑
b Aa,b∑

c,d Ac,d
.

Again, the score matrix is a log-odd score of pair probabilities Aa,b
P

c,d Ac,d
and the back-

ground frequencies, i.e.

σBLOSUM(a, b) = log
Pa,b

fa fb

By the construction ofAa,b the score matrixσBLOSUM(a, b) is symmetric. The percent-
age threshold value that defines the cluster is the analogue of the PAM distance. The
difference is that a large value, i.e. a large fraction of identical letters, yields a ma-
trix that is more sensitive for distant proteins. The standard matrix from that family is
BLOSUM62, where all blocks with at least62% identical letters are clustered.

3.2.3 Position specific scoring for transmembrane proteinsusing
the SLIM family

Transmembrane proteins are important players in the molecular biology of the cell
[AJL+08]. They extend from one side of the cell membrane (a so called lipid bilayer)
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(a) (b)

membrane

cytoplasmic side

non−cytoplasmic side

Figure 3.6: Transmembrane proteins crossing the lipid bilayer once (a) or several times
(b). The transmembrane region is characterized by helical structures in most cases.

to the other one either once (see Fig. 3.6 (a)) or several times (Fig. 3.6 (b)). The amino
acid composition and the three dimensional structure strongly depends on the structural
domain, i.e. the sub sequence that is part of a certain element of the three dimensional
structure. Domains inside the cell, the so calledcytoplasmic side, and domains outside
the cell are characterized by a typical hydrophilic amino acid composition. Whereas the
membrane domains exhibits a hydrophobic composition resulting in helical structures
in most cases [AJL+08].

The strong difference in the composition for transmembranedomains and the rest
of the molecule implies that the standard matrices such as thePAM or theBLOSUM fam-
ilies are less powerful because they rely on general background frequencies and pair
probabilities. A score matrix to align two transmembrane domains has been derived
by Jones [JTT94]. This kind of alignment is desirable when one is interested in find-
ing good alignments between two transmembrane proteins rather than discriminating
between different sequences. For this purpose Ng, Heinkoffand Heinkoff [NHH00] de-
rived a special purpose matrix,PHAT (Predicted Hydrophobic And Transmembrane),
which accounts for hydrophobic bias and is designed to use indatabase search.

On this basis Müller, Rahmann and Rehmsmeier derived theSLIM (Scorematrix
Leading to Intra-Membrane domains) family [MRR01] that is designed to align trans-
membrane regions against “general” regions, as it occurs incases where transmem-
brane queries are searched against huge general protein databases. It is explicitly non-
symmetric by construction,

σSLIM(a, b) =
3

ln(2)
ln

(
Ta,b

fTM
a fb

)
.

The construction of the matrixT is based on a generalization of Dayhoff’s PAM ap-
proach to continuous time Markov processes [MV00] based on the pair probabilities
of the PHAT matrix, details can be found in [MRR01]. The subject frequenciesfb

have been taken from the general purpose matrixVTML [MV00], whereas the fre-
quencies

{
fTM

a

}
stem from the software tool PHDhtm [RFC96], that allows predicting

transmembrane helical regions by a neural network approach.
A typical application for a database search requires the prediction of the positions

of the transmembrane regions2 of the query. With this data the database is searched

2Beside PHDhtm, there are numerous approaches for the same purpose available [vH92, NK92,
HBCM98, TS98, CWS+97, PA97, SvHK98, KLvHS01, DWL+01, AMI+04, KKS04, KKS05, Jon07]. I

36



3. Sequence alignment 37

with theposition specific scoring scheme

S(A, a,b) =
∑

(i,j)∈A

{
σslim(ai, bj) if i is a transmembrane position

σblosum(ai, bj) otherwise

−
∑

Γ

g(lΓ) (3.5)

instead of Eq. (3.3) for general purpose scoring.

3.3 Optimal alignment

In the following, the optimization algorithms by Needlemanand Wunsch [NW70] and
Smith and Waterman [SW81] for the global and local alignmentare described.

3.3.1 Global alignment

The optimization problem to find the optimal global pairwisealignment allowing gaps
can be solved bydynamic programming(known as transfer matrix method in statistical
physics). It is referred asNeedleman-Wunsch algorithm[NW70], which was originally
designed for linear gap costs, whereα = β in Eq. (3.4). A modified version also
allows for general affine gap costs, whereα > β within the same time complexity
class ofO(LM) [Got82]. The computation requires three auxiliary matrices of size
L×M . In fact the computation can also be performed in linear spaceO(max(L, M))
[Hir75], but memory efficiency is not essential here.

Following the paradigms of dynamic programming [CLR02], wedivide the prob-
lem in subproblems. Let us define the matrix elementsDi,j , Pi,j andQi,j by the op-
timal score of the subproblema1 . . . ai andb1 . . . bj, given thatai andbj are aligned,
given thatai is gaped and given thatbj is gaped respectively, i.e.

Di,j := S
global
0



a1 . . . ai, b1 . . . bj; given




ai

|
bj









Pi,j := S
global
0

(
a1 . . . ai, b1 . . . bj ; given

(
ai

−

))

Qi,j := S
global
0

(
a1 . . . ai, b1 . . . bj ; given

(
−
bj

))
(3.6)

The case that both sequences end up in a gap is not possible according to the topological
definition Def. 3.1.1.

We assume that the matrix elements ofD, P , Q are known for all indices(i′, j′) <
(i, j), where “<” denoteslexicographic ordering3. In particular this applies to the
indices(i − 1, j − 1), (i− 1, j), (i, j − 1). Then the so far unknown matrix elements

have used TMHMM (Transmembrane Hidden Markov Model) [SvHK98, KLvHS01], because recent bench-
mark results are convincing [CDS05] (see Sec. 4.5)

3 (i′, j′) < (i, j) if and only if i′ < i or i′ = i andj′ < j
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Di,j , Pi,j ,Qi,j can be determined by the recursion relations

Di,j = σ(ai, bj) + max






Di−1,j−1

Pi−1,j−1

Qi−1,j−1

(3.7a)

Pi,j = max






Di−1,j − α

Qi−1,j − α

Pi−1,j − β

(3.7b)

Qi,j = max

{
Di,j−1 − α

Qi,j−1 − β
(3.7c)

with the boundary conditions

D0,0 = 0
P0,0 = −∞
Q0,0 = −∞
Di,0 = −∞ for i = 1 . . . L
D0,j = −∞ for j = 1 . . .M
Pi,0 = −α− (i− 1)β for i = 1 . . . L
Q0,j = −α− (j − 1)β for j = 1 . . .M

and the final result

S
global
0 (a1 . . . aL, b1 . . . bM ) = max{DL,M , PL,M , QL,M} .

After filling the matrices a trace back procedure can be applied to determine an optimal
alignmentAopt. Because a gap in the second sequence cannot follow a gap in the
first one by definition, only two cases occur in the recursion Eq. (3.7c). This is not
essential for optimal alignments, but turned out to be important for finite temperature
alignments.

Because optimal alignments might be exponentially degenerate (in particular in the
linear phase, see Sec. 3.5) one has to distinguish, whether

(i) one is interested in an arbitrary optimal alignment, or whether

(ii) one (ore more) alignment is to be chosen with the correctstatistical weight, where
each optimal alignment is equally likely.

The second task requires additional matricesND, NP , NQ that account for the
degeneracy of the corresponding subproblems. These matrices can be computed in a
similar way as the recursion Eq. (3.7),

ND
i,j = ND

i−1,j−1 δDi,j , Di−1,j−1+σ(ai,bj) +

NP
i−1,j−1 δDi,j , Pi−1,j−1+σ(ai,bj) +

NQ
i−1,j−1 δDi,j , Qi−1,j−1+σ(ai,bj)

NP
i,j = ND

i−1,j δPi,j , Di−1,j−α +

NQ
i−1,j δPi,j , Qi−1,j−α +

NP
i−1,j δPi,j , Pi−1,j−β

NQ
i,j = ND

i,j−1 δQi,j , Di,j−1−α +

NQ
i,j−1 δQi,j , Qi,j−1−β
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Figure 3.7:
(a) Path graph representation of a global alignment.
(b) Interpretation as DPRM

To perform the backtracing we set up a rectangular lattice ofsize(L+1)×(M +1)
(see Fig. 3.7(a)) Each pair(0, 0) ≤ (i, j) ≤ (L, M) corresponds to a site. The opti-
mal alignment corresponds to aminimum weighted directed pathfrom the site(L, M)
to (0, 0). This yields third alignment representation denoted aspath graph(see Fig.
3.7(a)).

The weights depend on the choices that have been made during the dynamic pro-
gramming procedure in forward direction and that are storedin the matricesD, P and
Q. Initially (i, j) is set to(L, M) and we defineFi,j = max {Di,j , Pi,j , Qi,j} as the
unconditioned optimal socres of the subproblems. At each step it is determined which
of the three matrix elements is chosen as maximum and go back in (−1,−1), (−1, 0)
or (0,−1) direction depending on whetherFi,j = Di,j , Fi,j = Pi,j or Fi,j = Qi,j

respectively. In the case that the choice is not unique the direction is chosen randomly
weighted with the corresponding degeneration that are stored inND, NP andNQ. To
translate the path graph representation into the standard bioinformatics representation
(see Fig. 3.7(b)) the symbols




ai

|
bj








−

bj



 or




ai

−





are attached in front of the alignment, depending on the direction that has been chosen.
That means a step in diagonal direction corresponds to a match or mismatch, horizontal
or vertical steps to gaps in either sequence.

Assuming thatui,j ≡ σ(ai, bj) are independent, local alignment with linear gap
costsδ ≡ α = β is equivalent to one of the best studied models in statistical physics,
directed paths in random media in (1+1) dimensions(DPRM) [HH85, Kar87, Mez90,
FH91, Kar94] (see Fig. 3.7(b)). This model describes a path that is directed in a posi-
tive temporal dimension, which is related to(i, j) via t = i + j − 1, and may fluctuate
in one spatial dimensionx = i− j. The energy of the path corresponds to the negative
score andδ can be interpreted as a “line tension”, which forces the pathto follow a
straight line. In contrast,ui,j corresponds to a random potential that is responsible for
fluctuations in the spatial dimension. This analogy has inspired researchers to study
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global sequence alignment from a statistical mechanics perspective and look at prop-
erties like localization-delocalization transition [HL96], percolation [SAY05] or apply
methods like replica calculations [Yu04]. In order to studysuboptimal alignments also
a finite-temperature version has been formulated, see [Miy95, ZM95, KL00, MHS02]
and Sec. 4.6.

3.3.2 Local alignment

At the first glance the optimization problem for local alignment Eq. (3.2) is much more
complex. Interestingly it can be solved within the same complexity as the global align-
ment problem. The matricesP andQ are defined in the same way as in Eq. (3.7)
except that the global objective functionSglobal

0 is replaced withSlocal
0 . Note that an

integral difference between local and global alignment is that gaps at the begin and end
of a or b are not penalized. In particular the null alignmentA0 = {} has score0 and it
is always better to chooseA0 instead of an alignment with negative score. Hence we
define

Di,j := S
local
0



a1 . . . ai, b1 . . . bj ; given




ai

|
bj









Consequently, the recursion of for the local alignment is given by

Di,j = σ(ai, bj) + max






0

Di−1,j−1

Pi−1,j−1

Qi−1,j−1

(3.8a)

Pi,j = max






Di−1,j − α

Qi−1,j − α

Pi−1,j − β

(3.8b)

Qi,j = max

{
Di,j−1 − α

Qi,j−1 − β
, (3.8c)

which is almost identical to the global alignment problem. Due to the fact that align-
ments with gaps at the begin ofa or b are never chosen as optimal and because optimal
local alignments can start at any point the boundary conditions are given by

Di,0 = Pi,0 = Qi,0 = −∞ for i = 0 . . . L
D0,j = P0,j = Q0,j = −∞ for j = 0 . . .M

This is defines the famous Smith-Waterman algorithm, which was originally proposed
for linear gap costsα = β [SW81].

The end of a local alignment can be any point in(i, j) ≤ (L, M) and hence the
optimum is

S
local
0 (a1 . . . aL, b1 . . . bM ) = max

{
max

(i,j)≤(L,M)
{Di,j} , 0

}
.

The back-tracing procedure is quite similar to that of global alignment. Initially the end
point is set to the position of the maximum (instead of(L, M) for global alignment).
Then the traceback is performed in the same way as global alignment until a point with
Di,j = σ(ai, bj) = max {Di,j , Pi,j , Qi,j} is reached, which is then the starting point
of the alignment.
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3.4 Finite-temperature local alignment

Sometimes it is also desirable to consider alternative sub-optimal alignments. One
approach to detect alternative local alignments beyond theoptimum is to consider a
canonical ensemble of local alignments for each pair of sequences. Hence, in the jargon
of statistical mechanics, sequence alignment is a disordered system with quenched
disorder. Each pair of sequences corresponds to one realization of the disorder inducing
a canonical ensemble on its own. We interpret the scoreS as a negative energy and,
hence, the optimal alignmentS0 reads as the ground state of the system.

The partition function of the canonical ensemble at temperatureT of all local align-
ments is given by

Z =
∑

A∈χa,b

eS(A;a,b)/T .

The temperature plays the role of a control parameter which gives suboptimal align-
ments more weight with increasing value. In the infinite temperature limit all align-
ments have equal weight, i.e. the entropy dominates. The free energyF = T log Z is
the finite temperature analogue of the optimal score and

lim
T→0

F = Slocal
0

The partition function version of the alignment problem wasproposed by Zhang and
Marr [ZM95] as well as by Miyazawa [Miy95] at about roughly the same time. The
first authors suggest to use the partition function formalism for an algebraic expansion
in the scoring parameters in order to investigate the parametric dependence of the free
energy [ZM95]. A similar approach for the optimal alignmentwas proposed by Wa-
terman [Wat94]. The connection between information theoryand reliability of finite
temperature alignments has been worked out by Kschischo andLässig [KL00].

As the Smith Waterman algorithm (Eq. (3.8)), the partition function version of the
Smith-Waterman algorithm requires three auxiliary matrices. That is the partition func-
tion of all local alignments ending at(i, j), ZD

i,j and two matrices of all non-canonical
alignments that end in a gap in either sequence. The corresponding recursion relation
reads as

ZD
i,j =

(
1 + ZD

i−1,j−1 + ZP
i−1,j−1 + ZQ

i−1,j−1

)
· eσ(ai,bj)/T (3.9a)

ZP
i,j =

(
ZD

i−1,j + ZQ
i−1,j

)
· e−α/T + ZP

i−1,j · e−β/T (3.9b)

ZQ
i,j = ZD

i,j−1 · e−α/T + ZQ
i,j−1 · e−β/T (3.9c)

with the boundary conditions

ZD
i,0 = ZP

i,0 = ZQ
i,0 = 0 for i = 0 . . . L

ZD
0,j = ZP

0,j = ZQ
0,j = 0 for j = 0 . . .M.

Since an alignment may start anywhere and may also include the empty alignment, the
full partition function is given by

Z = 1 +

L∑

i=1

M∑

j=1

ZDi, j.

Note that the contributions fromZP andZQ are explicitly excluded because they are
auxiliary only and contain non-canonical alignments.
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Mückstein, Hofacker and Stadler proposed a stochastic backtrace procedure that
allows sampling local alignments from the Gibbs-Boltzmanndistribution in a direct
fashion [MHS02]. The algorithm is illustrated in Appendix A.1.

Instead of expanding the partition function in all score parameters, as proposed by
Zhang and Marr [ZM95], we shall perform a numericalhigh temperature expansionto
obtain thedensity of states(DOS) of all alignments for a fixed pair of sequences. This
is by far less costly than parametric expansion for realistic protein alignment, because
there are210 possible entries in the score matrix plus two parameters forthe affine gap
costs.

This expansion is feasible when all scoring parameters are integers, which is usu-
ally the case, because the scoring matrices are rounded to closest integers. The par-
tition functions in Eq. (3.9) are replaced by polynomials inthe expansion parameter
z = e1/T , e.g.ẐD

i,j(z) instead ofZD
i,j , and all additions and multiplications are opera-

tions on polynomials. The full partition function is also a polynomial inz,

Ẑ(z) = 1 +

L∑

i=1

L∑

j=1

ẐDi, j(z) =
∑

n

cnzn.

When re-substitutingz = e1/T in Ẑ(z) the DOS can easily identified with the coeffi-
cient of the expansion

Ẑ(z) =
∑

n

cnen/T =
∑

S

g(S)eS/T .

Applications of this methodology are discussed in Sec. 3.6 after brief statements about
the so called ”linear-logarithmic“ phase transition.

3.5 The linear-logarithmic phase transition

The correspondence between the physical model of DPRM and sequence alignment
was outlined in Sec. 3.3.1. Hence there is a connection between statistical physics and
sequence alignment. The study of sequence alignment from that perspective yields
interesting results that have improved the optimal choice of parameters of sequence
alignment. Thelinear-logarithmic phase transition[WGA87, AW94, BH00] is the
most important aspect regarding this issue.

The name stems from the fact that there is a continuous, parameter-driven transition
between phases where the average local score (or the ”length“ of a local alignment)
grows either linearly or logarithmically with sequence length. The main mechanism
of this transition can be seen by looking at the DPRM analog ofsequence alignment
and consider the local growth of the local alignment score ofrandom sequences. In
the linear regime, where gaps are penalized only weakly, thescore grows essentially
unbounded, because a mismatch can be easily circumvented bygaps with low penalty.
In the biological relevant logarithmic phase the growth is essentially bounded by restart
condition of the Smith-Waterman algorithm (the first case inEq. (3.8)).

In the logarithmic regime, when looking at the path graph of local alignments or
the dynamic programming matrixDi,j one observes an ensemble of isolated islands of
positive scoring segments (see Fig. 3.5(a)).

In contrast, in the linear phase there is essentially one large cluster of the order of
the alignment lattice (see Fig. 3.5(b)). This means the transition can be mapped on a
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(a) (b) (c)

j

i

Figure 3.8: The score landscapes (the matrix{Di,j , 0}) of optimal local alignment of
two protein sequences in different phases. Darker greyscale means higher score. The
blosum62 matrix and different gap penalties have been used as parameters.
(a) The landscape of two random sequences in the logarithmicphase (α = 12, β = 1).
This phase is characterized by isolated high score islands.
(b) The linear phase (α = 6, β = 1) exhibits a single growing cluster.
(c) A pair of non-random related proteins aligned (see Sec. 3.6) with the parameters of
the logarithmic phase. The growth rate is comparable to the linear phase.

percolation problem [SAY05]4 (see Sec. 4.6).
From the biological point of view the linear phase is not desirable because large

high scoring alignments occur even for random sequences andmeaningfull alignments
can hardly be distinguished from random ones. On the other side, (non-random) strong
relationships show a long ”percolating“ optimal alignmenteven in the logarithmic
regime (see Fig. 3.5(c) and Sec. 3.6). The main difference toalignments of random
sequences in the linear regime is that this optimal alignment is unique, or only weakly
degenerate, whereas optimal alignments of random sequences in the linear phase are
highly degenerate.

Scaling laws close to the transition line have been studied in a similar fashion as
it is commonly done in the field of critical phenomena [HL96, HL98, RO99, DHL00]
5. An important implication for weakly related sequences hasbeen drawn from the
scaling behavior: The optimal parameter set is close to the boundary of the transition
on the logarithmic side. In Chapter 4 another aspect of this transition, regarding the
alignment score distribution, is discussed.

In the following section some illustrative biological examples of optimal and finite
temperature alignments are presented.

4 A perfect percolation of the alignment-path from(L, M) to (0, 0) occurs rarely due to the geometry of
the lattice and the lack of periodic boundary conditions. Instead the path is of the order of the lattice size in
the linear phase.

5 Although the phase transition is essentially parameter driven the extension to finite temperature align-
ment is also possible [KL00]. Results for this model are discussed in Sec. 4.6
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3.6 Thermodynamics of local alignments by biological
examples

In order to illustrate the alignment methods I picked out several examples of more or
less related proteins. All data presented in this section are based on local alignment
usingblosum62 score matrix and affine gap costs with the standard gap cost param-
etersα = 12 andβ = 1. For random subjects theblosum62 background frequencies
had been used.

subjects

acc.no. protein organism length identity Slocal

P68873 Hemoglobin Pan troglodytes 147 100% 780
subunit beta (Chimpanzee)

P18989 Procyon lotor 146 90% 709
(Raccoon)

P02088 Mus musculus 147 80% 638
(Mouse)

P84792 Aythya fuligula 147 70% 558
(Tufted duck)

P10060 Sphenodon 146 63% 496
punctatus
(Hatteria)

Q90486 Danio rerio 148 51% 417
(Zebrafish)

O13077 Gadus morhua 147 41% 326
(Atlantic cod)

P56692 Dasyatis akajei 142 33% 200
(Red stingray)

P02042 Hemoglobin Homo sapiens 147 93% 727
subunit delta (Human)

P02100 Hemoglobin 147 75% 607
subunit epsilon

Q8WWM9 Cytoglobin 190 28% 173
(Histoglobin)

B4DUI1 cDNA 136 23% 93
FLJ55163

random 147 29

Table 3.1: A list of proteins that are related to the human Hemoglobin subunit beta
protein (accession numberP68871). The accession number of the SwissProt database,
the protein name, the species and the length of the protein isshown for each subject.
The similarity is measured by number of identical residues and the similarity score.
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Figure 3.9: The DOS of local sequence alignments of human beta-globin to the beta-
globin of eight different species (see Tab. 3.1).

3.6.1 Strong homologs

If we submit the human hemoglobin subunit beta (or beta-globin), a protein that is
responsible for oxygen transport, against a current protein database [Uni] we receive a
list of homological related proteins. Some of these resultsare listed in Tab. 3.1. The
first block shows the related proteins of other species ordered by the similarity, whereas
the second block contains a list of results of human proteinsfrom the globin family.
The resulting scores can be compared with the optimal score of the human beta globin
aligned against a random sequence. It is no surprise that mammalian (chimpanzee,
raccoon and mouse) hemoglobin show highest similarity to the human one, whereas
fishes (zebrafish, Atlantic cod and red stingray) only have a weaker related beta-globin.
Birds (tufted duck) and Reptiles (hatteria) are intermediate.

For that purpose to look at the “thermodynamics” of the canonical ensemble of all
local alignments, I first determined the density of statesg(S) of all alignments because
the partition functionZT , free energyFT and any moment of the score distribution
〈Sm〉T at any temperature is in principle known. The resulting normalized DOS for
the eight alignments in the first block in Tab. 3.1 is shown in Fig. 3.9. The optimum
is positive by construction, but most alignment scores of the state space of all local
alignments are negative. Of particular interest is the increase of the microcanonical
entropyS(S) = log g(S), when going towards lower score values (higher excitations
in terms of physics). The inset of Fig. 3.9 displays a close upof the unnormalized DOS
that has been shifted horizontally such that the ground states match at0. The entropy
increases faster for relative weak homologs and the fastestgrowth is observed for the
random subject. Small entropies imply that there are only few variations of high score
alignments, implying a high degree of reliability of the optimal solution.
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Figure 3.10:
top: Specific heat of the canonical ensemble of alignments with fixed sequences of dif-
ferent degree of homology.
bottom: Relative free energy differences between sequencealignments of fixed se-
quences against homologs and the same sequence against a random one.

Thermodynamic quantities, such as the specific heat

CV =
〈S2〉T − 〈S〉2T

L

and the free energy

F = T log ZT = T log
∑

S

g(S) exp(S/T )

can be computed from the DOS. As mentioned above the temperature controls the
balance between the optimal solution and the entropy. The optimal solution emerges
below the peak of the specific heat (see top of Fig. 3.10). Thiscan be seen, when
looking at the relative free energy difference [KL00]

F =
F − Fr

Fr

between the free energyF of the human beta-globin sequence aligned against ho-
mologs and the free energyFr of the same human sequence aligned against a random
one as a function of the temperature. This ratio is increasing with decreasing temper-
ature which means that the zero temperature limit is most powerfull to discriminate
this kind of homological relationships against random similarities. Hence the optimal
alignment score is the best quantity in this case and nothingis gained when looking in
suboptimal alignments.
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query subjects score

PDBID organism L PDBID organism L Slocal

1SMV:A Sesbania 266 1BBT:3 Foot-and-mouth 220 34
mosaic virus disease virus

random 220 27

1BDM:A Thermus 327 1DIH Escherichia 273 49
thermophilus coli

random 273 38

1ISZ Streptomyces 436 1FWU Mus musculus 134 68
olivaceoviridis

random 134 30

2DOR Lactococcus 311 1MUC Pseudomonas 373 32
lactis putida

random 373 27

Table 3.2: Four pairs of proteins that are known to have similar structures. Their
optimal sequence similarity scoreSlocal is small. BDBID is the ID of the protein data
bank [PDB]. Examples1SMV:A –1BBT:3 and1BDM:A –1DIH have been inspired
by Ref. [JLG02] and1ISZ – 1FWU and2DOR vs.1MUC by Ref. [KKK04].

3.6.2 Weak homologs

When looking in the biological literature it is possible to find examples where sub-
optimal alignments are important and increase accuracy. For instance higher order
structures (secondary structure or even the three dimensional conformation) show up
higher similarity than the primary sequences, in particular for weak homologs (also
called ”twilight zone“), because structures are more conservative than sequences during
the course of evolution.

Therefore known structures are used in benchmarks of alignment methods [VEA95,
JLG02]. Algorithms to compare structures have become more important. One example
is the ”Combinatorial extension“ (CE) algorithm [SB98].

I took four examples from literature [JLG02, KKK04] that areknown to show sim-
ilar structures, see Tab. 3.2. The sequence similarity score is still larger in comparison
to optimal sequence alignments of the queries against random sequences, but the dis-
crepancy is not as large as for the examples above, hence thisexamples should illustrate
typical behavior in the twilight zone.

Here, the differences of the DOS of the alignment ensembles of the pair of weakly
homolog sequences and the random reference are much smallerthan in the example of
beta-globin, see Fig. 3.11. The microcanonical entropy functions close to the optimum
(inset of Fig. 3.11) are approximately linear with the same slope. Surprisingly the
entropy at score values below the optimum score is larger forhomologs, which means
that there might be many suboptimal alignments with high score.

Also the behavior of the specific heat and relative free-energies (see Fig. 3.12) differ
strongly from strong homologs. The specific heat exhibits a richer structure featured
with more than one peak. Each peak may indicate the emergenceof a set suboptimal
local alignments. When looking at the relative free energies, that are defined in the
same way as above, one observes that they are not just monotonously decreasing func-
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Figure 3.11: The normalized DOS of local sequence alignments of the protein
1BDM:A and1DIH [JLG02] in comparison of the alignments of1BDM:A against
a random sequence. Inset: The DOS close to the optimum.

tions of the temperature but exhibit a local maximum betweenT = 2.5 and3.5 for the
pairs1BDM:A–1DIH, 1ISZ–1FWU and2DOR–1MUC and betweenT = 1 and2 for
1SMV:A–1BBT:3. In three out of the four examples, the relative free energy at the
peaks was even larger than the in the zero temperature limit.Note that this was not
observed in the analysis of Kschischo and Lässig [KL00], where artificial homologs
where generated by a Markov process and a simple scoring model had been used.

The locii of the peaks are interesting from the statistical mechanics perspective
because they can be associated with the linear-logarithmicphase transition (see Sec. 3.5
and Sec. 4.6). Kschischo and Lässig [KL00] have observed that the finite temperature
algorithm overestimates the length of a related segment in the sequences, when the
temperature is increased.

At first glance the peaks in specific heat and free energy ratiosuggest that there are
optima aboveT = 0. However some care has to be taken if there is a real biological
enhancement at these temperature values. A look at the expectation value of the score
〈S〉T suggest that alignments above a temperature of approximately 2 − 3 become
meaningless because they have an negative expected score.

For this reason I studied the interesting temperature rangefrom 0 to approximately
1.8 for the pair1BDM:A–1DIH in more detail. First an ensemble of finite-temperature
alignments have been drawn from the Gibbs-Boltzmann distribution using the stochas-
tic backtrace procedure (Algorithm A.1.1 described in Appendix A.1).

Each pair of alignmentsAi andAj have been compared quantitatively by a distance
measure on the state space

d : χa,b × χa,b → [0, 1] : Ai,Aj 7→ d(Ai,Aj) := 1− |Ai ∩ Aj |
max (|Ai| , |Aj |)

, (3.10)
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Figure 3.12:
top: Specific heat of the canonical ensemble of alignments ofthe sequences that are

listed in Tab. 3.2. Three of them exhibits more than one peak.
middle: Relative free-energy differences between sequence alignments of the weak
homologs and the random reference.
bottom: Thermal expectation value of the score as a functionof temperature. Negative
values are not shown.

i.e. the number of common pairs in both alignments normalized by the larger one. The
distanced(Ai,Aj) equals1 if both alignments have no common base pair and0 if two
identical alignments are compared. A comparison of all pairs of alignments yields to
a distance matrix∆i,j := d(Ai,Aj) which can be used to visualize the structures of
the ensemble at different temperatrues. The states have been clustered according to the
distances, i.e. similar alignments are grouped in hierarchical clusters. The method is
described in Appendix A.3. Fig. 3.13 shows sorted distance matrices, where abscissa
and ordinate represent the sampled states and the gray-scale gives the distance between
the states. A darker color means smaller distance, hence thediagonal is allways black
because two identical alignments are compared.200 sampled states atT ≈ 2.8 and
T = 1.7 for the sequence pair1BDM:A–1DIH and for1BDM:A against a randomly
generated sequence are illustrated.

The matrix close to the point, where the expected score decays (T ≈ 1.7) for the
non-random alignment exhibits a rich structure. There are several groups of ”simi-
lar alignments“ that are slight variations of each other either in length or in aligned
residues. When the temperature is lowered the emergence of the cluster that contains
the ground state, i.e. the optimal alignment, is observed. At T = 0 only one cluster
persists, if the ground state is not degenerate, which is thecase here. In the entropy
dominated infinite temperature limit only a light gray area (expect of the diagonal)
remains. Hence all alignments have equal probability to occur and are therefore mean-
ingless. It is remarkable that close to the position of the maximum of the relative free
energy ratio between the homolog pair and the random one (seeFig. 3.12) most infor-
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Figure 3.13: Distance matrices at the temperatures after applying the clustering (see
Appendix A.3) with the distance measure Eq. (3.10).

mation is already destroyed, which can be seen by the poor structure of the distance
matrix at that temperature,T ≈ 2.8. In comparison with the random alignment, one
learns that in the interesting temperature region,T ≈ 1.7, the ensemble of the homolo-
gous pair exhibits a rich structure. In contrast, the ground-state dominates the ensemble
of the random pair. This viewpoint might give more insight ofthe reliability of finite
temperature alignment.

Next a comparison of structural, the optimal and the finite-temperature alignment is
provided by looking at the paths graphs of these alignments.The solid line in Fig. 3.14
indicates the structural alignment obtained by the CE-algorithm [SB98] and is assumed
to the “standard of truth” [JLG02, VEA95]. The dashed line shows one alignment taken
from the finite temperature alignment ensemble.

The reliability of the optimal alignment is bad because it isessentially too short.
The finite temperature algorithm yields better results, as the alignments become longer
and predict matched segments better. However, it also failsto predict the last segments
of the structural alignment, which deviate from diagonal. This effect was also observed
in Ref. [JLG02], where an hybrid algorithm has been employed. This algorithm com-
bines an iterative algorithm [SS91] and a parametric algorithm that uses several score
parameters at the same time [JPG98, WEL92]. A recent study [KKK04] shows how
this drawback can be circumvented by introducing periodic boundary conditions. A
more detailed study on this issue has not be done here, as it isbeyond the main scope
of this thesis.

Instead, the statistical significance of local alignment indifferent variants that have
been discussed in this chapter are subject of the next chapter. A discussion of the
examples of this section is provided in Sec. 4.4 and Sec. 4.6.
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Figure 3.14: Comparison of the alignment path of the structural alignment with the
optimal alignment and a finite temperature alignment atT = 1.7. Note that the optimal
alignment covers the structural alignment and the finite temperature alignment only
partly.
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Chapter 4

Statistics of local sequence
alignment

Pairwise alignment algorithms find optimum alignment scores Slocal
0 (a,b) and associ-

ated alignments of two sequencesa andb for a given scoring system. Different variants
of local alignment algorithms were introduced and illustrated in the previous chapter.
We have also seen that the optimal score of two sequences is always positive even for
random sequences. This leads to problems when one wish to distinguish betweentrue
andfalse positives. Positives are hits (results from a database query) that arereported as
homologe to the input sequence by the search program. True positives are caused by a
true biological relationship and, accordingly, a false positive is reported as a hit though
the score occurred by pure chance. Similarly, a false negative is biological relationship
which have been missed by the search program.

The task to better distinguish between these cases requiresan assessment of the
statistical significance of an observed score. The most frequently used approach for
sequence alignment relies on classical test theory (see [PJ01] for a introduction). In
this framework the statistical significance is quantified bythep-valuefor a given score.
This means under a random sequence model, one wants to know the probability for
the occurrence of at least one hit with a score greater than orequal to some given
threshold valueb, i.e. Prob(S ≥ b). Note that this definition is different to many
other statistical tests, where a large p-value means high significance. Here we have to
interpret a small p-value as much evidence for a true positive. Often E-values are used
instead. They describe the number of expected hits with a score greater than or equal
to some threshold value.

One possible access to the statistical significance can be achieved under the null
model of random sequences. In such a model, the pair of sequences is a random vari-
able, implying that the optimal alignment score, as a function of a random variable,
is also random. The probability of the occurrence of the score s under this model,
P (s) = Prob(S = s), provides the basis for estimates of the p-values.

Analytic expressions for the probability distribution ofS are only known asymp-
totically in the case of gapless alignments of long sequences, where anextreme-value
distribution(also calledGumbel distribution) is predicted (see Sec. 4.1 below).

Because significant hits usually exhibit a high score, the rare-event tail, where the
p-values are very small, are of particular interest. By viewing the alignment problem as
a physical system, we are able to adopt Markov-chain Monte Carlo methods to obtain
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the density of states from statistical physics (see Chapter2) and address the problem
numerically.

The results of the asymptotic theory including some recent results and approxima-
tions are outlined in Sec. 4.1. After that a few comments on the Monte Carlo methods
are made in Sec. 4.2. In the result sections Sec. 4.3-Sec. 4.6, we will successively re-
lease the assumptions of the theory and study the score distribution for more realistic
models by numerical simulations.

4.1 Karlin-Altschul-Dembo theory and beyond

In the early 1990s, Altschul, Dembo, Karlin and Zeitouni developed a theory (Karlin-
Altschul-Dembo statistics [KA90, KD92, DKZ94]) that describes the infinite sequence
limit of the relevant probabilityProb(S ≥ b) or the probability density function
P (s) = Prob[Slocal

0 (A,B) = s] 1, whereA andB are random sequences.
In order to formulate this more precisely, we assume that thetwo random sequences

are described by the distributionspquery andpsubject. With this notation we may define
P (s) as

P (s) = Prob[Slocal
0 (A,B) = s]

=
∑

a∈ΣL

∑

b∈ΣM

δs,Slocal
0 (a,b) · pquery(a) · psubject(b). (4.1)

Since the optimal score can be seen as the ground state of a disordered system, the dis-
tributionP (s) is equivalent to the ground-state-energy distribution. This kind of prob-
lem is an active research field in statistical physics, because from the shape of this dis-
tribution one can learn much about the microscopical interaction and vice versa [Pal03,
KKL +05, KKH06, MG06, MG08]. Of particular interest is the question whether
the ground-state energy distribution is skewed like the extreme-value [Gum58] or the
Tracy-Widom distribution [TW96] or symmetric like the Gaussian one. The latter one
indicates an extensive character of the ground-state energy. Typically skewed ground-
state-energy distribution are observed in disordered models with long-range interac-
tions, such as the Sherrington-Kirkpatrick model [KKL+05].

Instead of the state space of alignments, one may also see thestate space of random
sequences as a classical physical ensemble and interpret the optimal score as (negative)
energy. The score distribution reads as the density of states of the system (up to nor-
malization) and its logarithmlog P (s) as the microcanonical entropy function, or rate
function in the language of large deviation theory. One aim of this chapter is to discuss
the shape of these functions for different scoring and sequence models.

Given the amino acid background frequencies (see Sec. 3.2.1) for the queryfquery :
Σ → [0, 1] and the subjectf subject : Σ → [0, 1] and the score matrixσ : Σ × Σ → R
(see Sec. 3.1), the statistical theory requires that

(i) the letters in the random sequences are independent and identically distributed
(i.i.d.), i.e.

pquery(a) =
L∏

i=1

fquery
ai

and psubject(b) =
M∏

i=1

f subject
bi

, (4.2)

1In the asymptotic theory the score can be seen as a continuousvariable.
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(ii) Slocal
0 is the objective function of ungapped local alignment, whereα = β =∞,

(iii) the expected score is negative, i.e.
∑

a,b fquery
a f subject

b σ(a, b) < 0 and

(iv) a positive score must be possible,fquery
a f subject

b σ(a, b) > 0 for at least one pair
a, b ∈ Σ.

Condition (iii) states that the theory is only valid in the logarithmic regime (see Sec. 3.5
and Sec. 4.6 below) and is by construction automatically fullfilled for BLOSUM and
PAM matrices, when gaps are not allowed. If condition (iv) was not fullfilled, the
optimal local alignment would be the empty alignment for allinput sequences.

Under conditions (i)-(iv) the probabilityP (s) approaches a Gumbel distribution
[Gum58]

PGumbel(s) = Prob(S = s) = λKLQLS exp
[
−λs−KLQLSe

−λs
]
. (4.3)

as both sequence lengthsLQ andLS tend to infinity with the same rate. The parameters
K andλ are determined by the score matrixσ and the background frequenciesfquery

andf subjectby a transcendental equation[KA90]. Even though the proof of this theorem
is non-trivial, some of the ideas can be understood with intuition. It is done in two steps.
First one notices that the dynamic programming matrix of theSmith-Waterman algo-
rithm Di,j that is filled via Eq. (3.8) exhibits many zero valued entriesdue to condition
(iii). This yields independent so called high-scoring segments as already illustrated in
Fig. 3.5(a). By renewal theory one can show that the local score (the maximum of those
segments) is distributed according to the Poisson distribution. After filling the dynamic
programming matrixDi,j , the optimal score is given by the maximum over all matrix
entries. Because the score of the segments are virtually independent, one may apply
the extremal types theorem [Gum58]. This theorem states that the maximum of i.i.d.
random numbers converges to one out of three universal distributions. The limiting
distribution depends on the original distribution of the random numbers over which the
maximum was taken. If this distribution decays faster than apower law, which is the
case here, the limiting distribution is the Gumbel distribution given by Eq. (4.3).

The biological relevant case of gapped alignment and finite sequences is not gov-
erned by the analytical theory. Numerical studies [AG96] and a Poisson approximation
[Wat94] suggest that, at least in the high probability region (see below), the Gumbel
form is still a valid description ofP (s). However the parametersλ andK cannot be
predicted directly. One practical approach to this problemis to use pre-computed pa-
rameters based on numerical simulations [AG96, ABOH01] forvarious widely used
parameters.

According to Eq. (4.3), the form of the Gumbel distribution is independent of the
sequence length in the limitLQ = LS → ∞. In practice this is not the case due
to edge effects [RO99, ABOH01] and database applications use adjustedλ’s, but the
distribution is still assumed to be of Gumbel form. Since this effect vanishes in the
limit of infinite sequences, the tail of Eq. (4.3) can be understood as an upper bound
for finite sequences.

Another consequence of finite system sizes becomes only visible in the rare-event
tail of the score distribution. This region is characterized by high scores and long
alignments. The length of these alignments are of the order of the sequence length
and hence condition (iii) is not fullfilled any more. Hartmann studied this problem by
parallell-tempering Monte Carlo simulations (see Sec. 2.4) and reweighting techniques
[Har02]. He found strong deviations of the score distribution from the Gumbel form in
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Figure 4.1: Probability distribution P(s) for gapped sequence alignment using
BLOSUM62 matrices and affine gap costs withα = 12, β = 1 for two sequences
lengthsLQ = LS = 40 andLQ = LS = 400 [Har02]. Strong deviations from the Gum-
bel distribution become visible in the tail. The dotted lines show the original Gumbel
distribution, when fitted to the region of high probability.The inset shows the same
data with linear ordinate.

the rare-event tail (see Fig. 4.1). Where the entropy function of the Gumbel distribution
exhibit a straight line, the accurate entropy function is rather parabolic. This result was
obtained heuristically by a least square fit of the empiricaldata to amodified Gumbel
distribution in the form

P (s) = PGumbel(s) · exp
[
−λ2 (s− s0)

2
]

= λ exp
[
−λ (s− s0)− λ2 (s− s0)

2 − e−λ(s−s0)
]
, (4.4)

with s0 = log(KLSLQ)/λ. We use normalized scoress∗ = s − s0 by subtracting
the position of the maximums0 of the probability distribution throughout. Note that
we would have to use a different normalization constant here, but since the correc-
tion dominates the tail of the distribution, the normalization constant is numerically
indistinguishable fromλ.

Results as in Ref. [Har02] are only useful if one obtains the distribution for a
large range of parameter values which are commonly used in bioinformatics. It is one
purpose of this thesis to study the score distribution for other relevant cases.

In the following section, the Monte Carlo approaches are made explicit. Their
general formulation was made in Chapter 2, in particular theMetropolis algorithm
(Sec. 2.2) in combination with importance sampling and reweighting (Sec. 2.6). For
the first sub-project presented in Sec. 4.3, I used parallel tempering and the technique of
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Figure 4.2: (i) substitution, (ii) insertion with left shift, (iii) insertion with right
shift,(iv) deletion with right shift and (v) deletion with left shift.

reweighting mixtures (see Sec. 2.4 and Sec. 2.6.1). Becausethe reweighting procedure
is quite complicated for practical terms, I used the generalized ensemble methods (see
Sec. 2.7) in all further studies on this problem.

4.2 Sampling of rare events in the sequence space

In order to sample pairs of sequences from the distributionspquery and psubject with
Markov-chain Monte Carlo methods we need to define a local neighborhoodN (a) of
a sequencea ∈ ΣL. This construction is explained in the following.

First, one of the two sequences are chosen at random. Second,a random letter is
drawn from the alphabetΣ according to the frequenciesfa and a random positionk is
chosen. The sequence is then modified by one of the following moves (see also Fig.
4.2) [WHRH]

(i) substitution at positionk,

(ii) insertion at positionk with left shift and removal of the first letter

(iii) insertion at positionk with right shift and removal of the last letter,

(iv) deletion at positionk with left shift and insertion at the last position,

(v) deletion at positionk with right shift and insertion at the first position.

For the studies in the following section, I only used proposal (i). After finishing that
work I realized that the performance can be enhanced with theadditional moves (ii)-
(v). Hence all other simulations in Sec. 4.4-Sec. 4.6, including those that are presented
in Chapter 6, employed all five proposals.

It is easy to show that this choice guarantees detailed balance (see Sec. 2.2) when
funif

a = 1
|Σ| for all a ∈ Σ. This proposal is accepted according to the Metropolis rule

Eq. (2.4)

α(a,b),(a∗,b∗) = min

{
1,

w(Slocal
0 (a∗,b∗)) · pquery(a∗) · psubject(b∗)

w(Slocal
0 (a,b)) · pquery(a) · psubject(b)

}
(4.5)

The implementation dependent weightsw are specified below. For the case of i.i.d.
sequences, one may use Hastings’ generalization of the Metropolis algorithm to con-
struct more efficient acceptance rates [Has70]. Instead of sampling the new letters
from an uniform distributionfunif

a = 1
|Σ| , one may draw them directly from the desired

frequenciesfa. Consequently the proposal densities

Qa,a∗ ≡ Prob(a∗|a)
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are not symmetric any more. By the construction ofN (a) we may write

Qa∗,a

Qa,a∗

=
1

Qa,a∗

· Prob(a∗|a) · p(a)

p(a∗)
=

Qa,a∗

Qa,a∗

· p(a)

p(a∗)
=

p(a)

p(a∗)

and thanks to Hastings generalization Eq. (2.2) and due to the factorization Eq. (4.2)
one may compensate such asymmetric proposals by

α(a,b),(a∗,b∗) = min

{
1
w(Slocal

0 (a∗,b∗))·pquery(a∗)·psubject(b∗)·Qa∗,a·Qb∗,b

w(Slocal
0 (a,b))·pquery(a)·psubject(b)·Qa,a∗ ·Qb,b∗

= min
{

1,
w(Slocal

0 (a∗,b∗))

w(Slocal
0 (a,b))

}
(4.6)

In cases, where I considered i.i.d. sequences, I used the acceptance criterion Eq.
(4.6) throughout. This also applies the the investigation that is discussed in Chapter 6.

At least approximately, the distribution of local alignment follows a Gumbel distri-
bution, which exhibits an exponential behavior in the tail.Therefore an obvious choice
for the biased weightsw is an exponential distribution

wΘ(s) ∝ exp [s/Θ] . (4.7)

Since we may consider the sequence space as physical system this refers to sampling
from the Gibbs-Boltzmann distribution

PΘ(a,b) =
1

ZΘ
exp

[
Slocal

0 (a,b)/Θ
]
,

whereZΘ is the (usually unknown) partition function. The parameterΘ corresponds
to the temperature and the optimal scoreSlocal

0 to the energy function. Note that this
perspective is different to the canonical ensemble of sub-optimal alignments introduced
in Sec. 3.4, where the state space was defined as the set of alignments rather than
sequences.

Having defined the local neighborhoodN (a), it is easy to implement the Metropo-
lis algorithm in the canonical ensemble. In order to accelerate equilibration, I used the
parallel tempering algorithm (see Sec. 2.4).

Equilibration was detected by a criterion that checks whether distinct Monte Carlo
chains converge to the same score independent from the starting configuration. This
method is possible because we are able to generate pairs of sequences with high scores
(low energies) directly by using the second sequence as a one-to-one copy of the first
one. On the other side, we may also start with completely independent random se-
quences yielding a low score (high energy). The chain is considered to be in equilib-
rium when both runs converge to the same score value (within fluctuations). This is
usually detected by averaging the chains over different independent runs starting from
both extremes. Fig. 4.3 illustrates this test for a very simple 4 letter toy model. In order
to determine correct error bars from correlated data, I onlyused a thinning interval that
had been determined by the autocorrelation time (see Sec. 2.5.2).

Having obtained the chains{(aki,bki)} for them temperatures (Θ1, . . . , Θm) with
nk samples each (k = 1, . . . , m andi = 1, . . . , nk), the score distributions are obtained
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Figure 4.3: Illustration of the equilibration criterion for a 4-letter system (LQ =
LS = 20) with temperaturesT = 0.5, 0.6, 0.7, 1.0, ∞ Equilibrium is reached after
20000, 15000, 10000, 1000, 100 steps (indicated by arrows) respectively.S(t) is aver-
aged over250 independent runs in this example.

by the reweighting procedure described in Sec. 2.6.1, particularly Eq. (2.19)

P (s) = Prob(S = s) ≈ 1

n

m∑

k=1

nk∑

i=1

δSlocal
0 (aki,bki),s

· P(Θ=∞)(aki,bki)

qmix(aki,bki)

=
1

n

m∑

k=1

nk∑

i=1

δSlocal
0 (aki,bki),s

qmix(aki,bki)
.

The data analysis for the Wang-Landau / generalized ensemble method turns out to
be much simpler because there is no need to determineqmix. The reweighting for this
method is performed by the usual importance reweighting formula Eq. (2.12)

P (s) = Prob(S = s) ≈ 1

z

n∑

i=1

δSlocal
0 (ai,bi),s

w(Slocal
0 (ai,bi))

,

with z =
∑

S
w(S). The generalized ensemble weightsw are obtained by the Wang-

Landau iteration Algorithm 2.7.1. A second advantage over parallel tempering is that
a generalization to bivariate distributions is straightforward. We shall use this property
later on in Sec. 4.5.
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4.3 Statistics of two i.i.d. sequences

This section deals with the results from the application of the parallel-tempering
method to biological relevant systems: local sequence alignment of protein se-
quences usingBLOSUM62 [HH92] (see Sec. 3.2.2) andPAM250 [DSO78, SD78] (see
Sec. 3.2.1) matrices. In contrast to the results of the next section, I used amino acid
background frequencies by Robinson and Robinson [RR91]. I considered different
affine gap cost with10 ≤ α ≤ 16, β = 1 for theBLOSUM62 matrix and11 ≤ α ≤ 17,
β = 3 when using thePAM250 matrix, as well as infinite gap costs. Furthermore
different sequence lengths betweenM = L = 40 and M = L = 400, in detail
L = 40, 60, 80, 100, 150, 200, 250, 300, 350, 400, were considered. For one case, also
sequence lengths up toL = 800 were used.

Only temperatures where equilibration was guaranteed within a reasonable com-
putation time were used for the calculation ofP (s). This means that we cannot re-
solve the score probability distribution over its full support, i.e. the ground state, the
pair with the maximal possible score, cannot be reached for all sequence lengths. But
the range of temperatures is large enough to evaluate the distributions down to values
P (s) ∼ 10−60. The temperature sets I used in the parallel-tempering technique varied
between{2.00, 2.25, 2.50, 3.00, 5.00, 7.00,∞} (L = 40) and{3.25, 3.50, 4.00, 5.00,
7.00,∞} (L = 400) for BLOSUM62 matrices and between{2.75, 3.00, 3.25, 4.00,
5.00, 7.00,∞} and{4.00, 4.25, 4.50, 5.00, 8.00,∞} for thePAM250 matrices. For
each run, I performed8 × 105 Monte Carlo steps. The resulting probabilities were
obtained from10 (L = 400) up to 100 (L = 40) independent runs. As emphasized
in Sec. 2.6, it is required that all distribution overlap sufficiently. The typical overlap
matrix that serves as a quantitative measure for this condition (defined in Eq. (2.14))
was

(wij) =





1 0.6850 0.5017 0.2717 0.0480 0.0015
0.6850 1 0.7857 0.4624 0.0984 0.0034
0.5017 0.7857 1 0.6409 0.1607 0.0117
0.2717 0.4624 0.6409 1 0.3587 0.0549
0.0480 0.0984 0.1607 0.3587 1 0.3777
0.0015 0.0034 0.0117 0.3777 0.3777 1




.

for L = 400 andBLOSUM62. Thus the overlap graph is connected sufficiently. For
L = 40 the relative errors of the normalization constants varied between10−4 (highest
temperature) and0.4 (lowest temperature) and similarly forL = 400.

The main result is that most of the distributions deviate strongly from the Gumbel
form, which is indicated in Fig. 4.1 and Fig. 4.4 by dotted lines. One observes that the
discrepancy seems to be stronger for shorter sequences. Also, the case without gaps
(Fig. 4.4) deviates, at least forLS = LQ = 400, only weakly from the Gumbel distri-
bution. This might be expected due to the previous analytical work [KA90, DKZ94].
Qualitatively the behavior of thePAM250-matrices is the same and therefore the plots
are not shown here. A quantitative analysis of all results will be given below. Empiri-
cally we find that the resulting distributions can be described by the modified Gumbel
distribution given in Eq. (4.4) [Har01]. I modeled the data by a weighted least square
fit using the programgnuplot [GNU]. The resulting fit parameters are shown in Tab.
C.1 and Tab. C.2 in the appendix.

Note that only for not too small sequencesχ2
∗ is in the order of one. This means that

Eq. (4.4) describes the data better for longer sequences. However biological relevant
sequence lengths (L > 200) sit in the range were the fit works fine. Moreover, the
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Figure 4.4: Probability distribution P(s) for ungapped sequence alignment using
BLOSUM62-matrices. Deviations form the Gumbel-distribution can only be observed
for short sequences (L < 250). The inset shows the same data with linear ordinate.

results for shorter sequences are still several orders of magnitude below the asymptotic
Gumbel result, which yield aχ2

∗ value of about104 for theL = 40 system.

Next, we study the scaling behavior of the correction parameter λ2, i.e. the cur-
vature of the entropy function. Since the distributions seem to approach the Gumbel
distribution with increasing sequence length, as can be seen in Fig. 4.1 and Fig. 4.4, we
expect thatλ2 decreases forL → ∞. Furthermore, when looking at Fig. 4.5, where
P (s) is shown for one sequence lengthLS = LQ = 250 but for different gap-opening
costsα, we expect a weak dependence ofλ2 on α. In order to provide more quanti-
tative evidence, we fitted all distributions to Eq. (4.4) andcompared the resulting fit
parameters.

Parameter BLOSUM62 α = 10, β = 1 BLOSUM62 α = 12, β = 1
a 0.00928± 0.0001 0.0309± 0.01
b 0.643± 0.027 0.971± 0.08

10−5 λ∗
2 4.9± 1.2 3.2± 2.0

Parameter PAM250 α = 11, β = 3 PAM250 α = 13, β = 3
a 0.0049± 0.0008 0.0053± 0.0005
b 0.575± 0.046 0.591± 0.023

10−5 λ∗
2 3.015± 2.0 6.1± 1.1

Table 4.1: . Fitting parameters of the scaling relation Eq. (4.8).
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Figure 4.5: Probability distributionsP (s) comparing different gap costs. The dotted
line denotes the distribution without Gaussian correction(λ2 = 0). Deviations from
the Gumbel distribution become stronger for small gap costs. The inset shows the same
data with linear ordinate.

In the gapless case, no deviations from Gumbel could be detected for sequence
lengthsL > 200. For the other cases, the dependence of the scaling behaviorλ2 on
the sequence length is plotted in Fig. 4.6(a) and Fig. 4.6(b). BLOSUM62 andPAM250
behaves qualitatively the same.λ2 seems to decay with a power law

λ2 (L) = a L−b + λ⋆
2 (4.8)

for the smallest gap costs and faster than a power law for larger gap costs.
By fitting the limiting cases (two smallest gap costs) to thisfunction an upper bound

of the decay could be estimated. The results are summarized in Tab. 4.1. Note that
these arguments are purely heuristically attempts to look at the scaling behavior and its
upper bound. It is hard to decide whether the extrapolation is valid forLS = LQ →∞.
However, an important range of biological interesting sequence lengths are governed
with this scaling analysis.

4.4 The biological example revisited

What do the results that we have seen above imply for the biological example that has
been discussed in Sec. 3.6.1? Without any adjustment, the E-value that is reported by
BLAST is determined by the Karlin-Altschul formula [BLA]

E = KL′
QN

′ exp−λs (4.9)
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Figure 4.6: Scaling of the correction parameterλ2 ((a)BLOSUM62, (b) (PAM250)).
The decay ofλ2 with system size shows approximately a power law near the logarithm-
linear transition (two smallest gap costs). For this cases the fit to Eq. (4.8) is shown by
a line (α = 10) and dots (α = 12). The lines of the remaining cases are guides to the
eye connecting the data points.

whereL′
Q is the “edge-corrected” query length andN ′ the “effective database size”

(sum of lengths of all sequences stored in the database). Thecorrections account for
the abovementioned edge effects in the high probability region. The BLAST E-values
are listed in Tab. 4.2 which completes the examples from Tab.3.1. The exponential in
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64 4. Statistics of local sequence alignment

subjects E-value

acc.no. organism length S
local BLAST accurate

P68873 Pan troglodytes 147 780 8× 10
−82

3× 10
−146

(Chimpanzee)

P18989 Procyon lotor 146 709 1× 10
−73

1× 10
−125

(Raccoon)

P02088 Mus musculus 147 638 2× 10
−65

2× 10
−107

(Mouse)

P84792 Aythya fuligula 147 558 5× 10
−56

6× 10
−88

(Tufted duck)

P10060 Sphenodon 146 496 7× 10
−49

2× 10
−73

punctatus
(Hatteria)

Q90486 Danio rerio 148 417 1× 10
−39

7× 10
−56

(Zebrafish)

O13077 Gadus morhua 147 326 4× 10
−29

1× 10
−39

(Atlantic cod)

P56692 Dasyatis akajei 142 200 2× 10
−14

7× 10
−18

(Red stingray)

acc.no. protein length S
local BLAST accurate

P02042 Hemoglobin 147 727 1× 10
−75

4× 10
−131

subunit delta

P02100 Hemoglobin 147 607 1× 10
−61

1× 10
−99

subunit epsilon

Q8WWM9 Cytoglobin 190 173 1× 10
−11

4× 10
−14

(Histoglobin)

B4DUI1 cDNA 136 93 0.039 1× 10
−3

FLJ55163

Table 4.2: Completion of Tab. 4.2. The last two columns show the BLAST E-value
and its correction according to the accurate distribution.

Eq. (4.9) is derived from the approximation of the cumulative Gumbel distribution for
large s

Prob(S > s) = 1− exp
[
−e−λ(s−s0)

]
≈ exp [−λ(s− s0)] .

To address the question how the E-values change when one consideres the accurate
distribution, I adjusted the original BLAST E-value by

Eacc = E

∑∞
t=s P (t)

exp [−λ(s− s0)]
,

whereP (s) is the accurate distribution and the parameterλ ands0 are obtained by

a fit. Hence, the ratio
P

∞

t=s P (t)

exp[−λ(s−s0)] gives a correcting factor. To determineP (s) I
repeated the simulations for the model of i.i.d. sequence. Here, I used the Wang-
Landau / generalized ensemble approach instead of parallel-tempering. In detail, I
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used exactly the same query length (LQ = 147) and the same subject sequence lengths
as listed in Tab. 4.2. The distribution was obtained over a very broad range up to
the scores that occur in the result set. For example, forLS = LQ = 147 we obtain
P (780) = 3 × 10−156. The corrected E-values are listed in the last column in Tab.
4.2. The discrepancies between the original and the corrected E-value spread over
several orders of magnitude. Hence the BLAST E-value underestimates the statistical
significance, which would yield false negatives, when one isinterested in strongly
significant results.

4.5 Statistics of position dependent alignment for
transmembrane protein models

Most of the existing statistical work for pairwise sequencecomparison focuses on null
models where both sequences are random and at each position asymbola ∈ Σ is
chosen independently of the other positions. These models are governed by the Karlin-
Altschul-Dembo theory (see Sec. 4.1). We shall refer to thismodel later as “random
query - general-purpose scoring” (RQGS). The (RQGS) model is convenient, because
the problem of computing significance values reduces to the estimation of only two
parametersλ andK for each scoring scheme, which can be pre-computed. The results
from the last section suggest that a third length dependent parameterλ2 is required
when one desires a better accuracy.

It is not always possible to extend the Karlin-Altschul-Dembo theory to more com-
plex null models than the i.i.d. model, which is one of the reasons that they are not
used in practice. Another striking consequence is the following one: The E-values
reported by (the original) BLAST only depend on the raw scoreand query and sub-
ject length, and not on the individual query. This leads to large distortions when the
query composition does not match the null model composition. For example, when
we run a homology search for the Human transmembrane proteinrhodopsin (UniProt
accessionP08100) with BLAST (BLOSUM 62, gap-init 12, gap-extend 1, no com-
position adjustment, no filtering), we find a possibly remotehomologQ8NH42 with an
E-value of9 · 10−8. However, using a recent “composition-based adjustment” option
[YWA03, YA05] leads to a very different E-value of0.001 for the same protein.

The statistics of position-dependent scoring and/or gap-cost schemes, like used in
PSI-BLAST [AMS+97] or in hidden Markov model (HMM) frameworks, are much
less well explored. The central question here is, “given a querya and a position-specific
scoring scheme, what is the score distribution when random null-model sequences of
given length are scored againsta?”. We refer to this model as “fixed query - position-
dependent scoring” (FQPS). As a compromise between the general (RQGS) and the
very specific (FQPS) models, one may release the i.i.d. assumption on the query of
the (RQGS) model and draw query sequences according to probabilities given by an
HMM.

In the following two subsections, we discuss the statisticsfor transmembrane pro-
teins (see Sec. 3.2.3). Obviously this biologically important class of proteins is hardly
described by an i.i.d. model, because the amino acid composition strongly depends on
the position in sequence. As pointed out in Sec. 3.2.3 the helical membrane regions
mainly consist of hydrophobic amino acids. Here, we discussthe statistics under the
bipartite scoring model for transmembrane proteins that was discussed in Sec. 3.2.3
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[MRR01]. Recall that the scoring function for this model is defined by Eq. (3.5),

S(A, a,b) =
∑

(i,j)∈A

{
σslim(ai, bj) if i is a transmembrane position

σblosum(ai, bj) otherwise

−
∑

Γ

g(lΓ).

In order to assign each position an indicator to decide whether it belongs to a trans-
membrane helix or a globular region, the scoring scheme requires a suitable method
to predict the loci of the transmembrane regions. For this purpose various methods
are available (see footnote on page 43). For practical reasons and because the bench-
mark results are quite convincing [CDS05], I used TMHMM (Transmembrane Hidden
Markov Model) [SvHK98, KLvHS01].

Before describing the features of TMHMM, some important features of HMMs
[Rab89, RDM98] are stated briefly. In this general probabilistic framework one as-
sumes that a sequence of observed “output” symbols is generated through a sequence
of “hidden” states. This state sequence, also calledpath, follows a simple Markov
chain. The states are connected to the output symbols through emission probabilities;
that is, a state can produce a symbol according to a distribution over all possible sym-
bols. More formally, a HMM consists of

• a finite setΣ of symbols (in our case the amino acid alphabet),

• a finite setQ of (hidden) states,

• inital state probabilitiesπµ for all µ ∈ Q with
∑

µ∈Q πµ = 1,

• emission probabilitiespµ
σ in each stateµ ∈ Q and for allσ ∈ Σ with

∑
σ∈Σ pµ

σ =
1,

• a stochastic transition probability matrixPµ,τ µ, τ ∈ Q, i.e.
∑

τ∈Q Pµ,τ = 1 for
all µ ∈ Q

The sequence of hidden symbolsZ1 . . . ZL and the sequence of output symbols
X1 . . .XL is a stochastic process, which characterized by the transition matrix
Pµ,τ together with the emission probabilitiespµ

σ. One can generate such sequences
x = x1 . . . xL andz = z1 . . . zL via simple sampling. Given these model parameters
and a fixed sequencex = x1 . . . xL of output symbols, the state sequenceZ1 . . . ZL is
also a stochastic process.

For the Monte Carlo sampling as needed here, it is not possible to simulate a HMM
directly to generate output sequences, since importance sampling changes the underly-
ing sequence probabilities. Nevertheless, one still needsto compute the probabilities
fHMM (x) for the Monte Carlo acceptance procedure, i.e. the probabilities thatx is
the observed sequence generated by the HMM. These probabilities can be computed
in O(L · |Q|2) time using the well knownforward algorithm [RDM98, Rab89] as
described in the following. One introduces the auxiliary variablesfµ(i), which cor-
respond to the probability that the subsequencex1 . . . xi is generated by the model
given that the last state variableZi has the valueµ, i.e. fµ(i) = Prob(X1 . . . Xi =
x1 . . . xi|Zi = µ). The overall probability is thenfHMM (x) =

∑
µ∈Q fµ(L). The

probabilitiesfµ(i) can be determined by the recursion

fµ(i) = pµ
xi

∑

τ∈Q

fτ (i− 1) pτ,µ (4.10)
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Figure 4.7: The layout of the HMM for transmembrane proteinsaccording to
Sonnhammer et.al. [SvHK98]. Each box corresponds to a groupof states. For ex-
ample, the helix-core block consists of 25 internal states.Each line type of the boxes
represent different emission probabilities. For more details we refer the reader to the
original publication.

with initial conditionsfµ(1) = πµpµ
x1

.
Within the same time complexity, theViterbi algorithmV computes the most prob-

able state path for a given sequence of observations, that is

z1 . . . zL = V (x1 . . . xL) = argmax̄z1...z̄L∈QL Prob(Z1 . . . ZL = z̄1 . . . z̄L|x1 . . . xL).

Let vµ(i) be the probability of the most probable path ending in stateµ ∈ Q with
observationxi. These values can be computed recursively by

vµ(i) = pµ
xi

max
τ∈Q
{vτ (i− 1) pτ,µ} (4.11)

with boundary conditionvµ(1) = π(µ) · pµ
x1

. Note that these probabilities are not
normalized, in particular

∑
µ∈Q vµ(i) ≤ 1. The most probable path is reconstructed

by backtracing [RDM98].
The HMM approach we use to sample transmembrane queries is the TMHMM

developed by Sonnhammer et al. [SvHK98]. In this setting, the output symbols are
(structural) domains, and hidden states are “tied” according to their emission probabil-
ities. They are classified into seven groups (see Fig. 4.7):

• Helix core,

• two different groups of caps (a crossover region between an helix and a loop) on
either side,

• loops on the cytoplasmic side,

• short and long loops on the non-cytoplasmic side,

• globular domains.

The internal structure of the helix core and loop module allows modeling different
lengths of the corresponding protein domain by assigning jump probabilities. The glob-
ular domains have a self-looping structure and hence may also have various lengths.
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Figure 4.8: The score distributions for (RQGS) (classical)and (FQPS) models where
the subject length equals the query length. In order to compare the shape, the distri-
butions have been shifted by the centers0. All distributions from the (RQGS) agree
outside the tails (only two lengths are shown).

AC Description Organism Length
P08100 Rhodopsin H. sapiens 348
P50052 type-2 angiotension II receptor H. sapiens 363
Q18179 putative neuropeptide Y receptor C. elegans 455
P35348 Alpha-1A adrenergic receptor H. sapiens 466

Table 4.3: A selection of transmembrane proteins.

The other modules have fixed length. The overall number of model parameters is216.
Fig. 4.7 shows the actual layout of TMHMM. Each box represents a group of “tied”
states. The states corresponding to “helix core” representthe transmembrane helices
that connect states of the cytoplasmic side and the non-cytoplasmic side of the mem-
brane. The prediction of the positions of the “helix core” states determines the loci of
the special purpose scoring matrix SLIM for position specific alignment.

4.5.1 Fixed queries versus random subjects

In the model of (FQPS), the query sequencea remains fixed whereas the subject that
models the composition of the database is random. Recall that theSLIM matrix is es-
pecially designed for aligning transmembrane regions against general proteins, which
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Figure 4.9: The rescaled score distributions for (RQGS) (classical) and (FQPS) models
where the subject length equals the query length in a logarithmic view.

are well described by the i.i.d. model. Hence the score distribution Eq. (4.1) in this
framework reads

P (s;a) =
∑

b∈ΣM

δs,Slocal
0 (a,b) · psubject(b).

We discuss four different transmembrane proteins as queries (see Tab. 4.3) in the
(FQGS) scheme.

First, the transmembrane helical regions had been predicted once for each protein.
The score distribution is obtained by Wang-Landau samplingcombined with a final
Metropolis run in the generalized ensemble. Some results are shown in Fig. 4.8 and
Fig. 4.9, where the distributions of (FQGS) and (RQGS) are compared against each
other. The subject lengths equal the query lengths here. Forthe production run of one
distribution that is show in Fig. 4.9 (LQ = LS = 348) 16,777,216 Metropolis-Hastings
updates had been performed. This took about 16 hours on an Intel Pentium 4 with
3.4GHz.

We observe that the curvature is more pronounced in the (FQPS) model: Signif-
icant differences of shapes already show up in the high probability region, which is
accessible by simple sampling (Fig. 4.8). All (RQGS) and (FQPS) distributions match
almost perfectly (only two lengths for (RQGS) are shown here)

More pronounced differences are seen in the behavior of the tail (Fig. 4.9), which
is accessible via our importance sampling approach. The difference between the prob-
abilities spans several orders of magnitude; hence a wrong choice of the model would
falsify the estimation of significance drastically. Most importantly, the entropy func-
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Figure 4.10: Dependence of the modified Gumbel parameterλ on the subject/query
length ratioLS/LQ. The lines are guide to the eyes only. The vertical line corresponds
to Fig. 4.8 and Fig. 4.9, whereLS = LQ. For LS > LQ, λ varies only slightly in the
subject length.

tion obtained using the position-specific scoring is considerably curved. Thus, using
estimates from fits to data of the high-probability region iseven more questionable here
than in the (RQGS) model, where the entropy function is almost a straight line.

To investigate the impact of dissimilar query and subject lengthsLQ andLS on the
parameters of the modified Gumbel distribution, I variedLS and consider the parame-
tersλ andλ2 as functions of the ratioLS/LQ (see Fig. 4.10 and Fig. 4.11). All resulting
fit parameters are summarized in Tab. C.3 in the appendix. Thelarge gap between the
values ofλ for the two different models reflects the qualitative difference of the shape
in the high probability regime. We see that in the models,λ is virtually independent of
query and sequence length. However, in model (FQPS),λ varies with each individual
query only slightly. Forλ2 one has to distinguish betweenLS < LQ andLS > LQ. In
the first case,λ2 decreases, which is not surprising, since the correction term describes
a finite-size effect and should vanish for increasing sequence lengths.

Once the target subject exceeds the query length, the searchspace is still growing,
but the finite length of the query enforces subject length independent edge effects.
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Figure 4.11: Dependence of the modified Gumbel parameterλ2 on the subject/query
length ratioLS/LQ. The vertical line corresponds to Fig. 4.8 and Fig. 4.9, whereLS =
LQ. The lines are guide to the eyes only. ForLS > LQ, λ varies only slightly in the
subject length. The parameterλ2 characterizes the curvature of the entropy function in
the tail (see Fig. 4.9). Large differences between (RQGS) and (FQPS) show up in the
case whereLS > LQ. λ2 becomes subject-length independent forLS > LQ.

4.5.2 Random queries and position specific scoring

The statistics for (FQPS) is very accurate because it modelsa realistic search procedure,
where a fixed query is searched against variable subjects. Inpractice such simulations
are not feasible for each individual query that occur in typical large scale research
projects. The TMHMM compromises between the model of (RQGS)and (FQPS),
because we may

• draw sequences with Monte Carlo sampling and the probabilitiespquery(b) (via
the forward algorithm Eq. (4.10)) and

• predict the transmembrane regions (the most likely path through the HMM via
the Viterbi algorithm Eq. (4.11))

in polynomial time. The model contains more information than the distribution ofS in
the sense that each randomly drawn query is a member of a certain sub-class. These
classes are characterized by the number of transmembrane regions “# of TM helices”.
Below we will denote this function asN : ΣLQ → N. This observable is determined
by a simple analysis of the output of the Viterbi algorithm.

71



72 4. Statistics of local sequence alignment

0 100 200 300 400 500 600
s* = s - s0

10
-60

10
-50

10
-40

10
-30

10
-20

10
-10

10
0

P
(s

*)

P(s* | fixed query)
P(s* | i.i.d. model )
P(s* | # of TM helices )

11 TM helices

1 TM helix

LQ = LS = 348

no TM helix

Figure 4.12: Score distributions for different alignment models (i.i.d., fixed query and
TMHMM) with LS = LQ = 348. The distributions for the (HMM) have been obtained
from the joint distribution.

In order to take this property into account we deal with the joint probability
Prob(S = s, # of TM helices= n) and determine a score distribution for each class

Pn(s) = Prob(S = s|# of TM helices= n).

In practice, when one wishes to query a transmembrane protein against a database,
one first uses TMHMM or a related approach to setup the position specific scoring
system and count the numbern of transmembrane regions. To assess the statistical
significance one may choose a query specific score distribution,Pn(s). Below we shall
see that these distributionsPn(s) differ significantly for differentn.

Because the subject is still i.i.d., I used a hybrid Metropolis-Hastings update rule,
that combines the Metropolis-Hastings update for the subject Eq. (4.6) sequence and
Eq. (4.5) for the query sequence,

α(a,b),(a∗,b∗) = min

{
1
w(Slocal

0 (a∗,b∗);N(a∗))·pquery(a∗)

w(Slocal
0 (a,b);N(a))·pquery(a)

.

For the subject the newly drawn letters are sampled from theBLOSUM letter frequen-
cies, and those for the query from the uniform frequencies.

The performance of the Monte Carlo simulation of the HMM is weaker than for
(FQPS) or (RQGS) for three reasons: Firstly, we are interested in a joint distribution
for that we need more samples. Secondly, more proposals are rejected from the sampler
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Figure 4.13: Fit parameterλ for the score distributionsP (S|# of helices) for the
(HMM) with a fixed query lengthLQ = 348 and various subject lengthsLS. The lines
are guide to the eyes only. The shape parameterλ decreases with increasing number of
helices. The bars show the distribution of number of transmembrane helices obtained
by direct simulations of the (HMM).

due to the HMM-weights and finally the computation of the forward-probabilities re-
quires additional floating point operations. The computation of 16,777,216 Metropolis-
Hastings updates for this model costs about 45 CPU hours. We use an 8 times larger
sample size in order to account for the first drawback. Hence,we put an overall com-
putational effort on this model, which is 23 times as large asfor (FQGS) and (RQGS)
(apart from the Wang-Landau iterations).

Next, we discuss the results for this model. I approximated the score distribution
within each class (number of helices= n). The shape of the distributions clearly agrees
with the curvature for (RQGS) and (FQPS) and the modified Gumbel distribution could
be fitted (see Fig. 4.12) when the number of helices was not toosmall. This is indicated
by a large reducedχ2 value for distributions with a small number of helices. Alsoa vi-
sual inspection of the fit to the data supports this argument.All resulting fit parameters
are summarized in Tab. C.4 and Tab. C.5 in the appendix.

The rare-event tail shows clear differences between the different sub-classes of the
model over several orders of magnitude. Fig. 4.13 and Fig. 4.14 display the dependency
of the fit parameters on the respective sub-class of the model. The effect of the ratio
of sequence lengthsLS/LQ is shown in Fig. 4.15(a) and Fig. 4.15(b). Note that for
distributions that are not well described via Eq. (4.4), I only fitted the data in the high
probability region. Those data points are left out in the plot for λ2 in Fig. 4.15(b) and
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Figure 4.14: Fit parameterλ2 for score distributionsP (S|# of helices) for the (HMM)
with a fixed query lengthLQ = 348 and various subject lengthsLS. The lines are guide
to the eyes only. Likeλ, the shape parameterλ2 decrease with increasing number of
helices. The dependency on the subject length is stronger for λ2 than forλ. ForLS >
LQ the dependency ofλ2 on the subject length is only of marginal order. The bars show
the distribution of number of transmembrane helices obtained by direct simulations of
the (HMM).

are connected by dotted lines in Fig. 4.15(a).
In analogy to (RQGS) and (FQPS) the curvature remains constant whenLS > LQ.

Regarding the dependence on the number of helices the curvature decays with increas-
ing number of transmembrane regions and then approaches an approximate constant
value.
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Figure 4.15: TheLS/LQ dependency ofλ (a) andλ2 (b) extracted from the same
data as in Fig. 4.13. The lines are guide to the eyes only. Dashed lines show the
corresponding scaling behavior for the (FQRS) and (RQGS) models. The result for
n = 2, that has been obtained from the high probability regions (see text), is indicated
by dotted lines in (a)
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4.6 Phase diagram and statistics of finite-temperature
alignment

Sec. 3.4 treats the generalization of the optimal score (ground-state energy) to a canon-
ical ensemble of sub-optimal alignments (finite-temperature alignment). The optimal
score is replaced by a free energyF . In the same spirit as for the optimal score, we
investigate the free-energy distribution over an ensembleover random i.i.d. sequences.
The biological relevant 20 amino acid alphabet together with theBLOSUM62 score
matrix was used for this purpose.

In order to choose a temperature range, where one would expect an interesting
crossover of the shape of the free-energy distribution, I first looked at the linear-
logarithmic phase transition (see Sec. 3.5, [WGA87, AW94, BH00]) for finite tem-
perature alignment [KL00].

At T = 0, the critical values were studied analytically by a self-consistent equation
[BH00] or numerically by a finite-size scaling analysis [SAY05]. Both studies rely on
a simple scoring model with a single mismatch parameter. In the latter approach the
problem was approached by considering the linear-logarithmic phase transition as a
percolation phenomenon [SA94]. In percolation problems one usually asks the ques-
tion under which conditions a geometric object spans a volume of interest.

I adopted some ideas from the work of Sardiu et. al. [SAY05] for local alignment
with the abovementioned scoring parameters2. As outlined in Sec. 3.5, the gap-costs
are the crucial parameters that control whether alignmentsgrow linearly (small gap
costs) or logarithmically (large gap costs). Hence there isa critical gap cost parameter
αc (we consider affine gap-costs withβ = 1 and only varyα throughout this section),
at which the transition occurs.

I probed the critical line in theα − T plane that separates the linear phase from
the logarithmic one. For that purpose we require a definitionof a percolation criterion
h : χa,b → {0, 1} that assigns each alignment a binary decision, “non-percolating” or
“percolating”. There are various possibilities to achievethis [SAY05]. Here, I regard
an alignmentA as percolating,h(A) = 1, if the distances between the first aligned
letter and the last aligned letter in both sequences are larger thanL/2 at the same time.
Otherwiseh(A) is set to0. This choice is motivated by the fact that for large sequence
lengths essentially all alignments in the logarithmic phaseα > αc are reported as non-
percolating, i.e.h(A) = 0, whereas the opposite occurs in the linear phaseα < αc

where the alignment length grows like the sequence length.
The phase transition is investigated by the average percolation probability

P perc(α; T ; L) :=

〈
1

ZT ;a,b

∑

A∈χa,b

h(A) · eS(A;a,b)/T

〉
,

whereZT ;a,b denotes the partition function of the canonical alignment ensemble over
a fixed realizationa andb, i.e. a pair of sequences. The average〈·〉 is taken over these
realizations of the disorder of random i.i.d. sequences.

Thanks to finite size scaling theory [SA94], we may extrapolate data from finite
sequence length to the thermodynamic limitL → ∞. In this limit the percolation
probability approaches a step function, which is1 for α < αc. In finite systems,

2Sardiu et. al. studied percolation of global alignment. They considered ground states alone and varied
gap costs and a disorder parameter that models a simple scoring system.
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Figure 4.16: Percolation probabilityP perc(α; T = 0; L). Dashed line indicate the
critical paramater obtained by the finite-size scaling algorithm [HH04].
Inset: rescaled data according to Eq. (4.12).

L < ∞, the crossover is smeared out meaning that a finite percolation probability
remains even aboveαc.

Scaling theory states that the behavior ofP perc(α; T ; L) close to criticality is de-
scribed by

P perc(α; T ; L) = P̃ perc
[
(α− αc)L

1/ν
]
, (4.12)

whereP̃ perc is an universal scaling function. We may use Eq. (4.12) to extract the crit-
ical exponentsν and the critical gap costsαc as a function of the temperature simulta-
neously. The fit is performed by minimizing a weighted-χ2-like objective functionS
[HH04], that measures the distance (measured in standard errors) of the data from the
master curve.

To numerically determine the probabilitiesP perc(α; T ; L), I generatedN random
pairs of sequences and drewM (finite temperature) alignments for each realization.
The method to sample alignments from the canonical distribution [MHS02] is ex-
plained in Appendix A.1. The temperature varied betweenT = 0 (optimal alignment)
andT = 4. Fig. 4.16 displays the empirical percolation probabilitiesP perc(α; T ; L) for
T = 0 and sequence lengths betweenL = 80 andL = 640. In fact I used lengths up
to L = 1920, but the transition curves for larger sequences look quite similar to those
of L = 640. I usedN = 1600 realizations for the largest systems andN = 12, 800
for the smallest one. For each realizationM = 100 alignments were drawn from the
canonical ensemble. The inset in Fig. 4.16 shows the rescaled data. Although the vi-
sual inspection suggests a quite nice collaps, the fit turnedout to be not very accurate.
I obtain a valueS = 60 for T = 0, where a value ofS ≈ 2 is desirable for a strongly
reliable result.
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Figure 4.17: Phase diagram of finite-temperature alignment. The dashed line indi-
cates the parameter-set of optimal alignment that is commonly used in bioinformatics
(α = 12, β = 1). Stars show data points at which the free-energy distributions were
obtained.
Inset: The critical exponentν as a function of the temperature.

However, the data is good enough to approximately determinethe critical gap costs
for different temperature values. The phase diagram in theα − T plane is shown in
Fig. 4.17. One observes that the critical gap costs increasewith the temperature. At
infinite temperature a logarithmic growth of the alignment length is expected because
short alignments are entropically favorable. Eventually there is a critical point, where
the critical line ends. This has not been probed so far.

In comparison with the illustrations in Sec. 3.6.2, one findsthat fundamental
crossovers of thermodynamic properties come along with thepercolation transition.
For example, the specific heat exhibits a peak close to the transition and the expected
score (internal energy) changes from a positive value in thelogarithmic phase to a
negative value in the linear phase (see Fig. 3.12). Furthermore, the phase space exhibits
a hierarchical structure close to the transition (see Fig. 3.13).

The critical exponents as a function of the temperature are shown in the inset. These
values have to taken with care because they are usually more sensitive to the quality of
the collaps. For the critical exponent we observe a crossover from ν = 2 for T = 0
and a value between1.2 and1.5 for larger temperatures.

Sardiu et.al. obtained values betweenν ≈ 2 andν ≈ 2.5 [SAY05]. However
their approach differs in several points (see above). For random (bond) percolation
the critical exponent is known exactly,ν = 4/3. The critical exponent for larger
temperatures seems to be closer to this value than forT = 0. A detailed analysis of
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large temperature an exponential tail is observed.
Inset: The same data shown with a linear ordinate. In the high probability region the
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T λ 104λ2 s0

0.00 0.2966(4) 3.182(1) 37.4(1)
1.00 0.2924(1) 2.900(5) 24.6(1)
2.00 0.2907(2) 3.122(7) 31.56(6)
2.50 0.2980(2) 3.16(1) 38.29(7)

Table 4.4: Fit parameters of leastχ2-fits of the free-energy distributions to the modified
Gumbel distribution Eq. (4.4) forLS = LQ = L = 120.

other critical exponents and scaling relations is beyond the scope here.
Instead, we use the phase diagram as a guide to study the free-energy distribution

for various temperatures. I kept the gap-costs fixed (α = 12, β = 1) fixed and only
varied the temperature (betweenT = 0 andT = 5). The values are indicated by stars
in the phase diagram in Fig. 4.17.

The simulations were performed in the generalized ensembleas above. The produc-
tion run employed4.8×107 Monte Carlo steps for each distribution. In the logarithmic
regime (T = 0, 1, 2, 2.5) the free-energy distribution is well described by the modified
Gumbel distribution Eq. (4.4) (see Fig. 4.18). Note that I have rescaled the distribu-
tions to unit variance and zero mean. The fit parameters only change slightly with the
temperature (see Tab. 4.4).
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The crossover from the logarithmic to the linear regime comes along with a change
of the skewness, as can be seen in the inset of Fig. 4.18. In thehigh probability region
and forT = 5.00 a Gaussian distribution describes the data well. This was confirmed
by a Kolmogorov-Smirnov test that yields a p-value of0.14. ForT = 1/0.275 ≈ 3.64
the evidence for a Gaussian distribution is much smaller (a p-value of2 × 10−11). I
also checked that the change of the shape accompanies a change from logarithmic to
linear growth of typical free energies (the position of the maximum) with the sequence
length, i.e. the free energy becomes extensive (not shown here). This result is not
surprising because the partition functions that occur in the transfer matrix calculation
Eq. (3.9) become (more or less) independent and hence factorize. The total free en-
ergy decomposes into a sum of independent contributions andthe central limit theorem
applies.

When considering the rare-event tail at higher temperatures, the free-energy dis-
tribution is rather exponential than Gaussian, as can be seen in the main plot of Fig.
4.18. Hence, we observe a crossover from a Gaussian distribution in the high prob-
ability region to the characteristic exponential tail of the Gumbel distribution. With
the same argumentation as for the optimal alignment, sequence pairs appearing in the
tail feature high similarities. The overall free energy is dominated by the the ground
state. This was confirmed by looking at the difference between the free energy and
the ground-state energy for those sequences that occur in the tail of the distribution.
The summation in the transfer matrix are virtually replacedby maximizations yielding
an exponential tail. The finite-size effect that is responsible for the curvature of the
optimal alignment statistics seems to be of marginal order in this case.

4.7 Concluding discussion

In this chapter, I have presented a simple universal method to accurately sample the
far right tails of the score distribution of various sequence comparison algorithms. The
most widely used search program, BLAST [BLA], reports E-values that are based on
the assumption that the Gumbel distribution is the accuratedistribution for finite se-
quences. We observe clear deviations from the Gumbel distribution in the biologically
relevant rare-event tail, which is out of reach of simple sampling methods used so far.
In almost all cases, a modified Gumbel distribution turns outto be a suitable description
of the data.

The method has a disadvantage: Because of the high number of samples required
for estimation of the distribution, it can presently not be used in on-line database search
web services. For example, to generate the 16,777,216 samples for Fig. 4.8(LQ = LS =
348) took approximately 16 hours on an Intel Pentium 4 with 3.4GHz. Very recently
(during the preparation of this dissertation), a promisingalternative method has been
published [New08]. This allows one to draw sequences from animportance sampling
distribution in a direct way, i.e. with zero autocorrelation. This means the Markov-
Chain Monte Carlo approach to the alignment statistics problem seems to become ob-
solete in near future.
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Chapter 5

RNA secondary structure
prediction

Biopolymers such as DNA, RNA or proteins are heteropolymers. That means they
consist of different types of linearly connected monomers.This linear connection is
called “backbone”. In the case of RNA, which is considered here and in the following
two chapters, the monomers are called “nucleotides”. They consist of one out of four
nitrogenous bases (adenine (A), cytosine (C), guanine (G) or uracil (U)), a ribose sugar
and a phosphate connected through phosphodiester bonds. The sequences of bases are
referred as “primary structures”.

In the last two decades fundamental knowledge about RNA has been achieved, in
particular the fact that the transport of genetic information (via messenger RNA, or
mRNA), where the relevant description is the primary structure, is only one out of
many functions of RNA.

Nowadays, it is established that RNA also work as catalyst [CZG81, GTGM+83]
and regulator [MG90]. In particular in biochemical processes in the ribosome, so called
ribosomal RNA (rRNA) plays a leading role in the translationprocess [Nol91]. To-
gether with the change of the viewpoint of RNA playing an active biochemical role
instead of a passive information carrier, the spatial conformation of the molecule has
become of particular interest, because, in analogy to proteins, the three-dimensional
structure, ortertiary structure, determines the molecule’s function. However, the pre-
diction of higher order structures from primary sequences is conceptional simpler than
protein-folding, because the formation ofsecondary structures(i.e. the topology of the
folded molecule in terms of paired bases) is energetically separated from the full three-
dimensional structure [TB99]. This implies that the tertiary structure can be seen as a
perturbation to the secondary structure, in contrast to theprotein folding problem. For
this reason the RNA secondary structure that is determined by the primary sequence is
already a meaningful description of the molecule.

Biochemically, the bases in the primary sequence interact with other ones in the
same chain by forming hydrogene bonds. The base pairs adenine – uracil (A–U) are
formed by two and cytosine – guanine (C–G) are formed by threehydrogen bonds.
Pairs of bases that may form bonds are said to be complementary (A–U and C–G), or
Watson-Crick pairs. In RNA in particular in tRNA some modified non-standard bases,
such as Inosine (I), occur [Kni06]. Also non-Watson-Crick base pairings are possible,
for example the ”Wobble“ pairs G–U, or I–C [Cri66]. Their occurrencies depend on
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Figure 5.1: Three different cases of orders of the pairs(i, j) and(k, l) illustrated in
the fold (left) and diagrammatic (right) representation ofthe RNA secondary structure:
(a) separated pairs, (b) nested pairs and (c) pseudo knots.

the context of the nearest neighborhood in the primary sequence and are considered in
modern models [MSZT99, XSB+98], such as the free-energy model that is introduced
in Sec. 5.3.

In order to formalize the secondary structure prediction algorithms in Sec. 5.2 and
Sec. 5.3, the basic notation is fixed in the following section.

5.1 Notation of RNA secondary structures

The presentation here is restricted to the standard RNA alphabet. For realistic free-
energy models, that are outlined in Sec. 5.3, non-standard letters and non-standard
pairings are also considered.

Let Σ be the alphabet of bases (Σ = {A, U, C, G}) anda = a1 . . . aL ∈ ΣL be an
RNA-sequence overΣ. A base pair between the basesai andaj is denoted by(i, j).
Within this notation, we always assume thati < j.

Each base can be paired with another base at most once and for any two base pairs
(i, j) and(k, l) there are in principle three possible cases, namely

(a) i < j < k < l (separated pairs)

(b) i < k < l < j (nested pairs) and

(c) i < k < j < l (pseudo knots) .

These cases are illustrated in Fig. 5.1 in two different representations, the ”fold“ and
”diagrammatic“ representation. In both representations the backbone is shown as a thin
line and paired bases are indicated as dots. Bonds between bases are indicated by bold
lines connecting the dots. The fold representation resembles more the true structure,
i.e. the backbone is flexible and the hydrogene bond representations are of equal length.
In the diagrammatic representation the backbone is a straight horizontal line and bonds
are drawn as arcs, whose radii measures the distance in the primary sequence. This
kind of picture is interesting for computational and theoretic aspects.

When disallowing the case of pseudo knots, efficient algorithms to determine the
minimum-free-energy structure based on free-energy models are available.
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5. RNA secondary structure prediction 83

The precise notation of secondary structures is fixed by

Definition 5.1.1

(i) A (pseudo-knot-free)secondarystructureC on the sequencea = a1 . . . aL ∈ ΣL

is a set of pairingsC = {(i1, j1), . . . , (iN , jN )} with ik < jk for k = 1, . . . , N ,
such that each two bonds(i, j), (k, l) ∈ C with i < k are either nested (i < k <
l < j) or separated (i < j < k < l).

(ii) The state space of all secondary structures ona is denoted asχa.

(iii) The baseai is calledunpaired, if there is no(i, j) ∈ C or (j, i) ∈ C.

Note that this definition has remarkable similarities to thedefinition of the state space
of sequence alignments, that was fixed in Def. 3.1.1 in Sec. 3.1. Firstly, both spaces
are sets of pairings of letters either between two distinct sequences in the case of align-
ment or a self-interaction here. Secondly, disallowing crossings or pseudo knots allows
for algorithms to find ground states and partition functionsin polynomial time (see
Sec. 5.2, Sec. 5.3 and [dG68, NJ80, ZS81, ZS84, McC90, HFS+94] for the RNA sec-
ondary structure prediction) For sequence alignment thesealgorithms were described in
detail in Sec. 3.3 and in Sec. 3.4. Thirdly, direct sampling from the Gibbs-Boltzmann
distribution is possible in both cases (see [MHS02, Hig96],Appendix A.1 and Ap-
pendix A.2).

Each secondary structure can uniquely be decomposed in the so calledsecondary
structure elements. That are different types ofloops,

• hairpin loops,

• stacked pairs,

• bulges,

• internal loopsand

• multi-loops,

and dangling ends at the begin and end of the sequence. Note that bases may belong to
different loops. The loops are shown as grey areas in Fig. 5.2. Thetopological order
of a loop is given by number of base pairs that close these areas. Hencean unpaired
base and hairpin loops are of orderO(0) andO(1) respectively. stacked pairs, bulges
and internal loops are of second order,O(2), and, accordingly, multi-loops have higher
orders than two. A formal definition can be found in Ref. [San85, HFS+94, CB05].

So calledstacksare an important feature of the secondary structure, because they
stabilize the molecule. These objects are defined as

Definition 5.1.2 A stackof sizen is a set of consecutive base pairs(i, j), (i + 1, j −
1), . . . , (i + n, j − n) ∈ C.

Single bases and stacked pairs are special cases, i.e. stacks of size0 and1.
In the following the algorithms for a simple model of RNA secondary structures

is introduced. After that, in Sec. 5.3 a more realistic free-energy model is discussed
without going into the details.
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Figure 5.2: Classification of the RNA secondary structure elements hairpin loops,
stems, bulges, internal loops and multi-loops. Each of themis shown in the fold and the
diagrammatic representation. Thin lines represent the covalent backbone, thick lines
the hydrogen bonds and dots the paired bases with their respective positionsi, j, k or l
in the sequence. For all diagrams it assumed thati < l < k < j and additionally for
multi-loopsk < l′ < k′ < j. Multi-loops are only shown up to third order.

5.2 The pair-energy model

RNA folding algorithms rely on particularenergy models. That is a function that as-
signs each structure of a fixed sequencea an energyE : χa → R.

A very simple model, the so calledpair-energy modelor pair-matching model
[NPGK78, NJ80], involves contributions due to hydrogene bonds. The negative energy
is given by the number of base-pair and only states that fullfil the following constraints
are allowed:

(i) Only Watson-Crick pairs can be built.

(ii) Due to the bending rigidity of the RNA molecule it is impossible that two bases
ai andaj close to each other in the primary structure can be paired, therefore we
require a minimum distance, i.e.j − i ≥ hmin, here I usehmin = 2 throughout.

This two conditions yield the energy function

E(C;a) =
∑

(i,j)∈C

ǫi,j ,

with

ǫi,j =

{
−epair if ai andaj are complementary andjk − ik ≥ hmin

∞ otherwise
.
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j−hmin+1∑

k=i

= +
i j+1 i j j+1 i j+1k

Figure 5.3: Diagrammatic representation of recursion relation Eq. (5.1). Dashed arcs
represent partition functions of subsystems regardless whether connected bases are
paired or not. The solid line represents a base pair.

The parameterepair > 0 defines the energy scale and is set toepair = 1 for the simple
base-pair counting here1.

Now, let us consider the canonical ensemble of all secondarystructures for a fixed
sequence at the temperatureT . The partition function of this system is given by

Z =
∑

C∈χa

e−E(C;a)/T

It is possible to computeZ using dynamic programming (i.e. transfer matrix) tech-
niques [McC90]. This method is discussed now.

There areL2/2−L/2 possible subsequencesai · · · aj (i < j) with corresponding
partition functionsZi,j . Since pseudo knots are also excluded, the hypothetically in-
serted pair(k, j + 1) induces two independent subsystemsai · · · ak−1 andak+1 · · · aj .
Therefore the partition functionZi,j+1 depends on allZk,l (i ≤ k < l ≤ j) and the
subsequenceai · · ·aj aj+1 only. One has to sum over the different cases of bond for-
mation of the last positionj + 1. There are at mostj − i − hmin + 2 candidate pairs
that connect the base at the positionj + 1 with any other base at positionk in the sub-
sequence. Due to the definition of the energy model positionswith j − k + 1 < hmin

and non-complementary bases are excluded.
Hence the partition functionZi,j+1 can be written recursively

Zi,j+1 = Zi,j +

j−hmin+1∑

k=i

Zi,k−1 · e−ǫk,j+1/T · Zk+1,j . (5.1)

The diagrammatic representation of Eq. (5.1) is shown in Fig. 5.3.
Starting with the boundary conditionsZi,i = 1 andZi,i−1 = 1, one can calculate

Zi,j for increasing values ofj− i, finally arriving ati = 1 andj = L− 1 which yields
the full partition functionZ = Z1,L. Since the number of possible subsequences
grows quadratic in the sequence length and the sum in Eq. (5.1) can be computed in
linear time, the overall time complexity is of orderL3 and the required memory grows
like L2.

The partition functionsZi,j can be used to sample states from the canonical en-
semble directly [Hig96]. Also direct sampling of ground-states with equal weights is
possible [Har01] without using a temperature variable. Theidea is quite similar to the
stochastic backtracing method for sequence alignment. An algorithm is provided in
Appendix A.2.

1 In fact epair is an effective free energy and one would have to account for different bond energies of
different bases pairs. On the other side, even with a more distinctive pair energy contribution this model is
still too simple to predict realistic secondary structures. It is rather a powerful vehicle to study fundamental
physical properties of secondary structures either analytically or numerically.

85



86 5. RNA secondary structure prediction

-70 -60 -50 -40 -30 -20 -10 0
E

10
-40

10
-32

10
-24

10
-16

10
-8

10
0

P
(E

)

L = 20
L = 40
L = 80
L = 160

Figure 5.4: Normalized DOS of different randomly generatedRNA sequences. Lines
are guides to the eyes only.

With the same arguments as in Sec. 3.4 the dynamic programming algorithm for the
partition function can easily be generalized to exact DOS calculations, here inO(L5)
time complexity. This is possible because the energy occursin multiples of an energy
“quantum” (the energy of a pairepair) and the DOS is obtained by an high temperature
expansion in the parameterz = e−1/T . The numbers in Eq. (5.1) are replaced by
polynomials inz, i.e. Ẑi,j(z) instead ofZi,j and the full partition function is also a
polynomial inz,

Ẑ(z) ≡ Ẑ1,L(z) =
∑

n

cnzn

with some coefficientscn. The DOS can be obtained by re-substitutingz = e−1/T in
Ẑ(z) and noting that the energy can only occur as a multiple ofepair ≡ 1. This implies
thatE = −n andg(−n) = cn.

In Fig. 5.4 the normalized DOŜg(E) for four different randomly generated RNA
sequences of lengths between20 and160 are illustrated. If one is interested in low
lying excitations alone, for example in quantities such as

• the ground state energyE0,

• the ground state degeneracyg(E0) or

• the microcanonical entropy differenceS = log g(E0)/g(E0 + 1),

one may employ a truncated polynomial, where only the terms with the two largest
degrees are considered. This allows one to compute these quantities inO(L3) time
complexity instead ofO(L5) for the full DOS.

It is also straightforward to modify the partition-function calculation given in Eq.
(5.1) to determine various other thermodynamic quantities, such as the expectation
value of the internal energy〈E〉T or the specific heat inO(L3) time complexity without
computing the full DOS [McC90].
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5.3 The free-energy model

Although the simple pair-energy model describes the folding process qualitatively it
lacks in the description of natural RNA, because it involvesonly a single energy scale.
Also the temperature, which enters in the partition function calculation discussed in
the last section, can hardly be associated with a realistic temperature (for example the
physiological temperature37◦C).

Hence, more sophisticated energy models have been introduced and much effort
have been made to adjust the parameters in order to increase accuracy in secondary-
structure prediction. Fortunately, efficient algorithms for RNA secondary structure
prediction are not only available for the simple pair-energy model [dG68, NPGK78,
NJ80], but also for more realistic models [ZS81], which, equipped with empirical free-
energy parameters, are able to predict structures to an accuracy of60−90% in terms of
correctly predicted base pairs [MSZT99]. Surprisingly these algorithms work without
increasing the characteristic computational complexity of O(L3), when one considers
some biologically reasonable approximations.

Each structure is assigned a Gibbs free-energy2 (or free enthalpy)∆ G : χ a → R,
where each loop contribute a certain amount that depends on the type, size and compo-
sition of loops, in particular the terminal bases. The free-energy parameters had been
determined experimentally (mainly via absorbance versus temperature melting curves
[FKJ+86, WTK+94, MSZT99]) at the standard physiological temperature37◦ and a
given salt concentration. Next, they have been improved by comparison of predicted
structures with those known from phylogenetic analysis [JTZ89]. The locality of the
loop contributions are described by the so called nearest-neighbor model [XSB+98].
Within that model the dependence of the free-energy contribution is assumed to de-
pend only on few bases close to the boundaries of the loop. Stacked pairs consist of an
enthalpic and entropic term, whereas other loops contribute entropically

∆Gpair = ∆H − T∆S and ∆Gloop = −T∆S.

Since these contributions depend on the position we write, in analogy ofǫi,j in

Eq. (5.1),∆G
(1)
i,j for the free-energy contribution of first order loops (hairpins) and

∆G
(2)
i,j;k,l for the one of second order loops.
The pairs(i, j) and (k, l) denote terminal pairs. Higher order loops are treated

effectively, details are not presented here. The functions∆G
(1)
i,j and∆G

(2)
i,j;k,l contain

nearly all essential free-energy parameters; there are hundreds of those [MSZT99].
The partition function of the full system is given by

Z =
∑

C∈χa

exp [−∆G(C)/RT ] ,

whereR denotes the gas constant. The calculation ofZ requires auxiliary partition
functions similar as for the affine gap-cost sequence alignment algorithm Eq. (3.9).
That are the partition functions of structures on the subsequencesai . . . aj given that
(i, j) are paired, denoted asZpair

i,j , and, as usual, the partition function of all structures
on ai . . . aj regardless whether(i, j) is paired or not,Zi,j. HenceZ1,L equals the full
partition function.

2G = U + pV − TS
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Figure 5.5: Diagrammatic representation of Eq. (5.2). Dashed arcs represent the un-
constrained partition functionsZi,j , and solid arcs the partition functionsZpair

i,j . The

dotted corresponds to the Boltzmann factor of the first orderloop e−∆G
(1)
i,j+1/RT . The

partition function of the empty structure translates to an horizontal line. The symbol
“O(3)” represents the effective treatment of multiloops

Without restrictions the transfermatrix calculation ofZ1,L can be done inO(L4)
time complexity via iterating the equation

Zpair
i,j+1 = e−∆G

(1)
i,j+1/RT +

∑

i<k<l<j+1

e−∆G
(2)
i,j;k,l

/RT · Zpair
k,l +O(3)

Zi,j+1 = 1 + Zpair
i,j+1 +

∑

i<k<l<j+1

Zi,k−1 · Zpair
k,l , (5.2)

whose diagrammatic representation is shown in Fig. 5.5. Thesymbol “O(3)” denotes
the effective treatment of multiloops.

The unconstrained partition functionZi,j+1 involve contributions from the empty
structure, from the possibility to build the pair(i, j + 1) and a sum over all possible
pairings of(k, l) on the subsequenceai+1 . . . aj . In order to achieve a time complexity
of O(L3), loops are usually restricted in size and hence the double sums in Eq. (5.2)
are computable in linear time.

The prediction of the “optimal” secondary structure is based on minimizing the
free-energy∆G = −T log Z. Corresponding minimization algorithms can easily be
obtained from Eq. (5.2) by replacing summations by minimizations and multiplications
by additions. The optimal structure is then obtained by a backtracing procedure[CB05,
RDM98].

Different implementations of this model have been published, two popular alterna-
tives are the programmfold, maintained by Michael Zuker [Zuk03] and thevienna
package [HFS+94], maintained by Ivo Hofacker. Here, I have used thevienna pack-
age, because it offers a well documented C interface. Since both programs are based
on the same algorithms and parameters, I would not expect anydifference in the main
results in Chapter 6. The package contains a bundle of software for different purposes,
including

• the prediction of the minimum free-energy structure and base pair probabilities

• the computation of partition functions and the specific heatcurve,
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(a)

(b)

Figure 5.6: RNA secondary structures of the same molecule atdifferent temperatures.
The sequence was taken from the rRNA database ”SivlaDB“ [PQK+07] (16S riboso-
mal RNA of Escherichia coli [BDSN81], accession number:V00348). The structure
was predicted with thevienna package [HFS+94] by minimizing the free energy at
the physiological temperatureT = 37 ◦C (a) andT = 100 ◦C(b).

• suboptimal folding,

• inverse folding, i.e. RNA design and

• diverse analysis tools,

only to mention a few.

Let us consider biological examples of secondary structures on natural rRNA se-
quences. Similar as in the case of local sequence alignment (Sec. 3.6), each sequence
features its own thermodynamic properties. The temperature and salt concentration are
control parameters that determine the structure. It is assumed that natural conforma-
tion of most RNA molecules are the one that have a minimum free-energy and, hence,
when the temperature is decreased slowly enough the foldingprocess is described by
equilibrium thermodynamics [TB99].

With decreasing temperature, the enthalpy dominates the entropy more and more,
which means that more hydrogene bonds are built. The formation of these bonds also
decreases the entropy for further loop formation. Predicted minimum free-energy struc-
tures at two temperatures (at the physiological temperatureT ≈ 37 ◦C and above) are
shown in Fig. 5.6. The high temperature behavior is characterized by large loops and
only a few hydrogene bonds. Chapter 6 describes an analysis of destabilizing / stabi-
lizing effects due to extremely rare sequences.

Of importance is, of course, the specific heat as a function oftemperature, as shown
in Fig. 5.7 for different rRNA molecules. These ”melting curves“ depend strongly on
the sequence and may exhibit several peaks corresponding tothe formation of certain
loops.
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Figure 5.7: The melting curve (specific heat vs. temperature) of the RNA sec-
ondary structure of rRNA molecules of the organisms Escherichia coli [BDSN81]
(accession number:V00348), Drosophila melanogaster (fruit fly, accession number:
AABU01000252) and Homo Sapiens (accession number:AADB02002333) taken
from the data base ”SivlaDB“ [PQK+07]. The specific heat was computed with the
vienna package.
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5.4 The molten-glass transition

Physically, RNA secondary structures can be seen as a disordered system with a rugged
free-energy landscape [Hig96]. In this context the sequence is considered as a an ran-
dom object and each particular realization induces a Gibbs-ensemble of possible struc-
tures.

The low-temperature properties of the simple pair-energy model, which was
introduced in Sec. 5.2, is suitable to understand the low-temperature properties of
RNA qualitatively. The model exhibits a static phase transition at a finite tem-
perature [PPRT00, BH02b, BH02a, FKM02, LW06, HT06] betweena “molten”
high-temperature phase and a “glassy” low-temperature phase. In the molten phase
the disorder does not play a role, i.e., in the thermodynamiclimit, the structure of the
phase space does not depend on the realization of the disorder.

The low-temperature phase is characterized by large sample-to-sample fluctuations
that do not vanish as the sequence length tends to infinity (i.e. it lacks self averaging).
This phenomenon also occurs in other disordered systems such as spin glasses [You98].

One approach to determine the critical temperature is basedon the Parisi order
paramater, i.e. the overlap between different structuresq(C1, C2). Let

∑
k/∈C denote

the sum over unpaired bases in the structureC. The Parisi order parameter for RNA
secondary structures has been defined [Hig96, PPRT00] as

q(C1, C2) =
1

L



2
∑

(i,j)∈C1

∑

(k,l)∈C2

δi,kδj,l +
∑

i/∈C1

∑

k/∈C2

δi,k



 , (5.3)

where the first double sums is taken over all pairs and the second one over all unpaired
bases in both structures. Note thatq(C1, C1) = 1, but C1 ∩ C2 = {} does not imply
q(C1, C2) = 0 in general.

In the low temperature phase the distribution ofq for a given sequence is broad and
it fluctuates from sample to sample, which indicates a complex behaviour [PPRT00].

The relationship between these aspects of complex statics and the dynamics of
Monte Carlo algorithms is to be discussed in Chapter 7.
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Chapter 6

Minimum-free-energy
distribution of RNA secondary
structures

Beside the simplification of the energy model as pair counting, also the consideration of
RNA sequences as purely random objects is not valid for natural biological sequences.

It is established that, in most cases, natural sequences have a lower minimum free
energy than random sequences drawn from ensembles with similar statistical properties
as the natural one (for example the same composition) [Hig93, WK99, SD99, CB05].
Higgs has illustrated that natural tRNA sequences have a lower minimum free energy
than purely random ones with the same composition [Hig93] and also that the probabil-
ity to find the minimum free energy (among all states) is larger for realistic sequences
at realistic physiological temperatures. In the case of mRNA this issue has been dis-
cussed controversially. Where Seffens and Digby found evidence that natural mRNA
are more stable than random ones [SD99], Workman and Krogh found contrary results
[WK99]. This could be explained by the dependency of free-energy contributions in
the local neighborhood of a stacked base pair [WK99, CB05]. Workman and Krogh in-
cluded this kind of local dependency explicitly in their sequence model by a description
of the sequence as a first order Markov process. In other words, it turned out that the
results depend on different definitions of the random sequence ensembles, i.e. different
shuffling procedures.

Another important observation [Hig93, SD99, MSZT99] is that the minimum free
energy is strongly correlated with theC + G content of the sequence.

The evidence that a natural RNA sequence has a lower free energy than random
ones is measured by the so called z-score of the minimum free energy of the natural
sequence against the random ensemble. This quantity measures the distance of the
observed free energy valueGmin from the meanµ of the free-energy distribution over
an ensemble in terms of standard deviations,

z-score:=
Gmin − µ

σ
.

The free-energy distribution is determined by a randomization of the natural sequence
[Hig93, SD99, WK99, CB05], according to a random sequence model.

Here, we approach the problem from a different direction. Instead of comparing
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94 6. Minimum free-energy distribution

natural RNA against a reference ensemble characterized by the statistical properties
(e.g. the composition) we keep the (normalized) free energyfixed and compare en-
tropic properties of natural RNA sequences against those ofmicrocanonical sequence
ensembles. For example, one may ask how likely natural sequences are modeled by
a i.i.d. sequences with uniform composition (each letter occurs with equal probabil-
ity) constrained that the random and the natural sequences have the same minimum
free-energy. Since each sequence in a microcanonical ensembles occurs equally likely,
one may check how likely a natural sequence is compatible with a maximum entropy
principle. To address this problem I adopted the methodology that has been applied to
the score statistics of local sequence alignment (Chapter 4,[Har02, WBH07, WHRH]).
Having access to the tail of the free-energy distributions allows one to probe proper-
ties of large deviations (in the sequence space) and relate those to the corresponding
minimum free energy. These properties are then compared with properties of natural
rRNA sequences taken from a current database.

This chapter is organized as follows. In Sec. 6.1 the i.i.d. sequence model and
a comparison method are introduced. The generalized ensemble methods that are
used here were discussed in detail in Chapter 2 particularlyin Sec. 2.7. Sec. 6.2 treats
some special issues that are important here. The main results including the comparison
between random and natural sequences are presented in Sec. 6.3. A general discussion
in Sec. 6.4 completes this chapter.

6.1 Sequence models

The sequence space of RNA is the set of all possible sequencesof lengthL over the
alphabetΣ = {A, C, G, U}. This space will be denoted asΣL.

For random sequences I have chosen a simple model of i.i.d. (identically and in-
dependent distributed) sequences. That means each lettera ∈ Σ occurs with a fixed
probabilityfa (fa = 1/ |Σ| = 1/4 ∀a ∈ Σ here) independent of the other letters and
of the position in the sequence. Hence the sequencea occurs with probability

p(a) = p(a1, . . . aL) =

L∏

i=1

fai
=

1

|Σ|L .

Later on, we shall compare composition of natural RNA sequences against micro-
canonical averaged compositions or uniform compositions.For this purpose I used
the Bhattacharyya distance measure (BDM) [Bha43], which isdefined as

B(p||q) =
∑

i

√
p(i) ·

√
q(i). (6.1)

The BDM, measures the “distance” between the distributionsp andq and fulfills the
properties

• 0 ≤ B(p||q) ≤ 1,

• B(p||q) = 1, if and only if p = q, and

• B(p||q) = B(q||p).
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This allows one to measure the distance of an observed normalized composition̂f(a) =
1
L

∑L
j=1 δa,aj

of a given sequencea = a1 . . . aL to a “null” distributionf0(a)

B̂ = B(f̂ ||f0)

=

|Σ|∑

a=1

√
f̂(a)

√
f0(a).

The BDM alone does not provide a statistical interpretationin the spirit of test the-
ory, because it depends on the sample size (here the sequencelength) and the number
of bins (here the alphabet size). Under the assumption thatf̂ is described byf0, the
BDM deviates from1 more likely for short sequences than for longer ones. A statistical
interpretation becomes possible, if one assess ap-value to an observed BDM̂B. This
issue together with an algorithm to compute thep-value is discussed in Appendix A.4.

6.2 Simulation method

The structure of the problem is very similar to that under consideration in Chapter 4.
Firstly, the space of the realizations of the disorder are sequences over finite alphabets
(the 20 letter amino acid alphabet in Chapter 4). Secondly, the minimization of the free
energy (or maximization of the similarity score, respectively) is of polynomial run-
ning time and based on transfer-matrix calculations in bothcases (the Smith-Waterman
algorithm [SW81] in Chapter 4).

Instead of the optimal-score distribution, the quantitiesof interest in this chapter
is the distribution of the minimum-free-energy distribution for the biological relevant
model that was described in Sec. 5.3,

P (Gmin) =
∑

a∈ΣL

p(a) δGmin,Gmin(a).

The construction of the Markov chain for the i.i.d. letter composition can be directly
adopted from Sec. 4.2, in particular, the five moves that havebeen described there.
Throughout this chapter I have used the generalized ensemble Metropolis algorithm
in combination with the Wang-Landau scheme. This methodology is discussed in
Sec. 2.7.

Since the weights depend on floating point numbers, I made useof discretized
weights. The bin size was chosen as1kcal/mol (the standard physical unit that is used
in thevienna package).

Given n sampled sequences{a1, . . .an} and corresponding free-energy values
Gi

min ≡ Gmin(ai), expectation values are approximated by

〈A〉p ≈
1

z

n∑

i=1

A(ai)

w([Gi
min])

,

where[Gmin] denotes rounding to the closest integer andz is the normalization con-
stantz =

∑n
i=1

1
w([Gi

min])
.

I used data sampled from the generalized ensemble to approximate microcanonical
averages

〈A〉Gmin ≈
1

z′

n∑

i=1

A(ai)

w([Gi
min])

{
1 if Gmin −∆ ≤ Gi

min < Gmin + ∆

0 otherwise
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with some bin-size∆ and a normalization constantz′. This was used to determine the
compositions as a function of the free energy.

Alternatively, in order to avoid binning effects and to obtain better statistics, a made
use of canonical-like ensembles to determine thermodynamic quantities as a function
of the minimum free energy. For this purpose I introduced an inverse “temperature”Θ.
By choosing different values ofΘ one may probe the entire free-energy range that has
been sampled (Θ < 0 probes the right tail above the mean andΘ > 0 the left one).
Expectation values in this ensemble are defined as

〈A〉Θ ≈
1

zΘ

n∑

i=1

A(ai)

w([Gi
min])

· e−ΘGi
min, (6.2)

with zΘ =
∑n

i=1 e−ΘGi
min/w([Gi

min]). As a first step, the temperature is tuned such
that the expectation value of the free energy equals a desired valueGmin = 〈Gi

min〉Θ
and then the “canonical” average of the quantity of interest〈A〉Θ is computed and
related to〈Gmin〉Θ via Θ, for the sake of simplicity denoted asA(Gmin) below.

I sampled the minimum-free-energydistributions for different sequence lengths be-
tweenL = 40 andL = 160 and different temperatures (T = −100, 0, 37 ◦C). For the
largest system4.5×107 Monte Carlo steps for the production run in the generalized en-
semble were performed, yielding to24, 000 “uncorrelated” sequences. The correlation
time was determined through the autocorrelation function as described in Sec. 2.5.2.

6.3 The minimum-free-energy distributions

In this section, the resulting distributions are discussed. Before presenting the data of
the rare event simulation, first the scaling properties of the mean, standard deviation
and the skewness of the distributions are discussed. For this purpose I used simple
sampling (see Sec. 2.1) for considerable larger system sizes (up toL = 1280).

Informal spoken, the skewness measures how much probability mass is located at
either side of the mean. A positive (negative) value indicates the distribution to have
more mass on the right (left) tail. It is defined as

skewness:=
µ3

σ3
,

where µ3 =
〈
(〈X − 〈X〉)3

〉
is the third moment about the mean andσ =

√
〈(X − 〈X〉)2〉 the width of the distribution. The sample size varied between

10, 000 for the smallest (L = 40) and1300 for the largest system. The result is shown
in Fig. 6.1. The first moments and the widths scale in analogy to previous studies
[SD99] as

〈Gmin〉L = c1 · L + c0 and σ[Gmin]L = d · Lν (6.3)

The resulting fit-parameters of a least-χ2 fit are summarized in Tab. 6.1.
The small skewness differs from other models with quenched disorder and long

range interaction. For example, the long-range spin-glassexhibits ground state energy
distribution that can be described by a modified Gumbel distribution [KKH06], i.e. a
skewed distribution. Also for the ground-state-energy distribution of the pair-energy
model introduced in Sec. 5.2, I found a different behavior (results not shown here). For
this model I found positive skewed distributions. For smallsequences, the skewness
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Figure 6.1: Skewness of the minimum-free-energy distribution over an random ensem-
ble of i.i.d. sequences for different temperatures as a function of sequence length.
Insets: scaling of the first moments and widths of these distributions with sequence
length.

is much smaller, even negative, for human-body temperature. In all cases the skewness
approaches0 for large system sizes, which means that the distributions are essential
symmetric in the high probability region. This can also be seen in the inset of Fig. 6.2,
where the unscaled free-energy distributions for different temperatures are shown.

The main plot of Fig. 6.2 displays the distributions obtained by the generalized
ensemble simulation in a logarithmic scale. The shape of thedistributions at different
temperatures differ slightly. Interestingly the one for lower temperature seems to be
more symmetric, which is again in contrast to other models like the distribution of
finite-temperature alignment that is discussed in Sec. 4.6.

In order to better understand the finite-size effects, the rescaled distributions for
different system sizes andT = 37◦ are shown in Fig. 6.3. For large probabilities and

c0 c1 d ν
T=37 ◦C, B = 1 6.7(4) 0.324(2) 0.581(1) 0.382(4)
T=37 ◦C 8.9(4) 0.331(2) 0.51(1) 0.511(5)
T=0 ◦C 10.6(5) 0.691(4) 0.75(1) 0.498(3)
T=−100 ◦C 17.8(7) 1.842(5) 1.29(2) 0.494(3)

Table 6.1: Fit parameters of a least square fit of the mean and standard deviation of the
minimum free-energy distributions to the functional form Eq. (6.3).
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Figure 6.2: Raw minimum-free-energy distributions at different temperatures for the
largest systemL = 160.

for the short tail the distributions collapse quite well. Inthe long tail some effects show
up. Long sequences seem to have a given rescaled free energy less likely than short
sequences (for intermediate values of the rescaled free energy (Gmin − µ)/σ).

6.3.1 Entropy and thermodynamics of large deviations

For the pair-energy model one observes (not shown here), that the sequence compo-
sition is uniform in the left tail and highly non-uniform in the far right tail. This can
be understood by entropic arguments: In order to achieve a low energy the sequence
requires to have many complementary bases. Ideally the second half of the sequence
consists of complementary partners of the first one in the same linear order. In this
case the ground-state is just a single stack of sizeL/2 (neglecting the condition that
only bases with a larger distance thanhmin can be paired). Such sequences exhibit
an uniform composition, because one may choose the letters of the first half freely.
In contrast, for a large ground-state energy, the sequence composition requires a huge
amount of non-complementary bases, because the presence ofa certain letter requires
its complementary partner to occur rarely in the sequence.

In the same spirit, I analyzed the sequence ensembles that are biased towards very
rare events of the free-energy distribution. Here, in contrast to the simplified pair-
energy model, the observed letter distributions were non-uniform in both tails, which is
shown in the bottom of Fig. 6.4. Also in Fig. 6.4 the functional dependence ofB(f̂ ||f0)
with f0(a) = 1/|Σ| ∀a ∈ Σ on Gmin is shown. That means for each sampleai the
empirical composition̂f i and the corresponding value of the BDMBi ≡ B(f̂ i||f0)
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Figure 6.3: Rescaled minimum-free-energy distributions at T = 37◦C for different
system sizes.

was estimated. Then the canonical averages for differentΘ’s were determined using
Eq. (6.2) and identified withGmin, as explained in Sec. 6.2.

Close to the mean of the distribution the valueB is also close to1 as would be
also expected from simple sampling. Far in the left tail the value shrinks, what is also
supported by the form of the histograms that are shown in the bottom of the figure. In
the right tail also non-uniform compositions are observed,implying B to deviate from
1.

The plots in Fig. 6.4 are labeled with the medians of the p-values of a BDM test
of the observed microcanonical sequence ensembles (depending onGmin) against an
uniform letter composition (see Appendix A.4).

Note, that to determine the histograms and the p-values I used binned free-energy
intervals instead of the reweighting procedure. For that purpose the free energy range
was divided into50 bins for the largest systemL = 160.

Sequences at the left end of the distribution essentially only consist of the bases
C andG, which form three hydrogen bonds. The resulting structuresare very stable
[Hig93, SD99, MSZT99].

The composition in the right tail seems to be unexpected at the first glance, in
particular as it not only describes the average composition, but it also turned out that
individual sequences in this region have a similar empirical letter frequency. Even
though there are manyA− U Watson-Crick pairs available, the minimum free energy
is relatively large. This is so because a loop needs to be closed by a stable pair, ideally
by C −G.

Additionally, the presence ofCs without the complementary partnerG seems to
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minimum-free-energy range of the selection of natural rRNAsequences (see Sec. 6.3.2)
bottom: Histograms of observed compositions in different bins, very far and far from
the mean on the left side, close to the mean and far in the righttail. The medians of the
corresponding p-values for the BDM-test (against a perfectly uniform composition) are
written in the plots of the histograms.

destabilizethe structure, which can be supported by the following simple computer
experiment on a sequence of lengthL = 160. First the sequence is initialized as
AL/2UL/2, yielding a low minimum free-energy structure (Gmin = −63.50kcal/mol)
consisting of a single large stack. Then the sequence is modified by randomly replacing
letters withCs. The minimum free energy increases rapidly with the concentration of
C ’s and reachesGmin = 0, when approximately every third letter is modified. On the
other side, when repeating the experiment by replacing the letters withG instead ofC
a much higher fraction of replacements (approximately70%) is neccessary in order to
achieveGmin = 0.

By looking in the standard free-energy reference material,which was summarized
by Mathews et.al. [MSZT99], this effect can be explained by penalty terms to the
overall free energy for certain unstable secondary structure motives. Noticeable are
so called “olgio-C loops” and “tandem mismatches” (see Table 6. and Table 11. in
ref. [MSZT99]). Olgio-C loops are hairpin-loops, in which all unpaired bases areC.
Tandem mismatches are internal loops with two unpaired bases on each strand. Free-
energy contributions of loops of this kind have different values depending on the types
of the mismatches (unpaired letters) and on closing base pairs. Some combinations
have negative contributions others have positive penalties. Cases, where tandem mis-
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Figure 6.5: Reweighted stack-size distribution as a function ofGmin for L = 160 and
typical structures in the generalized ensemble.

matches are closed byA−U pairs and that containC−A, C−U or C−C mismatches
are penalized most.A + U rich sequences that are “dotted” withC are entropically
more favorable than sequences that contain only few complementary letters, which is
the condition to achieve a large ground-state energy in the pair-energy model.

The thermodynamics of large deviations can be studied by looking not only at the
sequences and values of the free energy but also at properties of the minimum-free-
energy structures, which are also reported by the programRNAfold. Fontana et. al.
[FKSS93] studied various of such quantities using simple sampling of random RNA
sequences and compared the statistics of this ensembles with natural RNA sequences.
One quantity that was considered in [FKSS93] is the distribution of stack sizes over
the ensemble of minimum free-energy structures, which is adopted here for the biased
ensembles.

Three typical structures that occur in the biased sequence ensemble are shown in
Fig. 6.5. The underlying sequence of structure A has a typical C +G rich composition,
which occurs in the left tail of the minimum free-energy distribution. Large stabilizing
stacks are characteristic for those sequences. Although these structure are most stable,
from the biological point of view, they are not very interesting for lack of important
structural elements. The sequence with B as minimum-free-energystructure was drawn
from the rare event tail on the right side and consists of large loops, that are usually
very unstable. More attractive is structure C, which has a free-energy of 2.0 standard
deviations below the mean of the minimum-free-energy distribution.

Reweighted stack-size distributions (based on the method described in Sec. 2.6) for
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102 6. Minimum free-energy distribution

three values of the minimum free-energy is also shown in Fig.6.5. In the ensemble
of large minimum free energies only short stacks occur. For those sequences that have
an extremely low minimum free energy, stack sizes on all length scales occur equally
likely. Additionally a strong peak for stack sizes that are of the order of the half of
the sequence length is observed. This reflects the observation of structure A, where a
large stack is interrupted by a small internal loop. Interestingly, the difference between
the biological interesting free-energy range (slightly below the mean) and the extreme
unstable region is not significant. However deviations up tonstack = 15 become not
as unlikely as for those sequences from the far right tail. The loop-size distribution
(note shown here) seems to be a better description in order tocharacterize differences
between the right tail and sequences from the left tail in an intermediate probability
range, whereas the stack-size distribution distinguishesbetter very rare events from the
left tail and typical sequences.

The mean stack size and the width of the stack-size distribution as function of the
Gmin is shown in the upper row of Fig. 6.7. The left plots indicate that only a small
fraction of sequences have minimum free-energy structuresthat consist of a single
stack in the order of the sequence length. Fontana et.al. [FKSS93] observed that the
mean stack size converges to a length independent value of approximately3 base pairs.
By studying the width of the stack size distribution one alsolearns that the greatest
variety of stack lengths occurs in very rare sequences.

Both, the composition of the sequences and the stack-size distribution is discussed
under the viewpoint of natural biological sequences in the following.

6.3.2 Comparison between random and natural RNA sequences

The distribution of random RNA sequences allows one to gain more insight in the
question in which sense natural RNA sequences differ from random i.i.d. sequences.
Under the viewpoint of rare events in the sequence space, we want to study thermo-
dynamic and entropic aspects for natural ribosomal RNA sequences. For that purpose
I randomly selected 2078 large subunit rRNA sequences from different species up to
lengthsL = 1000 from a current database [PQK+07]. This kind of selection seems
reasonable to me, because we are not interested in the biological details in this study.
First of all, the minimum free energies of all sequences wereobtained. In order to
make the values of sequences of different lengths more comparable the free-energy
values have been rescaled by subtracting the average value and then dividing by the
width which are given by the scaling relations Eq. (6.3), using the fit parameters that
are listed in Tab. 6.1. This rescaled free energy is the z-score with respect to the i.i.d.
sequence ensemble for each sequence.

In a similar way as for the random sequence ensemble, I performed Bhattacharyya
test against an uniform letter distributionf0(a) = 1/|Σ| (see Appendix A.4) for each
individual sequence and I found the relationship between p-values of the test and
rescaled free energy energy that is shown in Fig. 6.6(a).

Natural sequences, which have a minimum free energy below the mean down to
about5 standard deviations (a z-score of−5), exhibit intermediate and large p-values
(dots in Fig. 6.6(a)). This indicates that there is some evidence that all letters of those
sequences occur (more or less) equally frequently. Howeverin this region there are
also realizations with relatively small p-values (down to∼ 10−9), but these values are
large, in comparison to sequences that are more than5 standard deviations below the
mean, where p-values down to∼ 10−26 occur. Since the distribution of p-values is
broad, I included their medians as a function of the rescaledfree energy (dashed line).
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Figure 6.6: (a) Dependence of the p-values of Bhattacharyyatests against an uniform
letter composition on the rescaled minimum free energy using natural rRNA sequences
(dots). The dashed line marks the median of the p-value of natural rRNA sequences.
The solid Line indicates the median of the p-value of the random sequence model in
the generalized ensemble (L=160).
(b) The p-values of a Bhattacharyya test of the composition of the natural sequences
against compositions that occur at the same rescaled minimum free-energies in the
random sequence model. The dashed line indicates the median. The observed p-values
are much smaller for large deviations towards small free-energies.
(c) The observed frequencies ofG + C as a function of minimum free energy.

Sequences above the mean are also very unlikely modeled by anuniform i.i.d. letter
distribution, also indicated by very small p-values of the natural sequences. I compared
this with the random sequence model by calculating the dependence of the median
of the p-values as function of deviation of the free energy from the mean, which is
shown as solid lines in Fig. 6.6(a). The qualitative behavior resembles those of natural
sequences. Numerical deviations are probably due the fact that the largest system for
the random-sequence model wasL = 160, whereas the natural sequences are explicitly
longer. Additionally, in agreement with previous observations [Hig93, SD99, WK99,
MSZT99], one observes that most of the sequences are locatedbelow the mean.

For the free-energy model the stabilizing effect ofC − G pairs shows up in the
clear correlation between free-energies andC + G content, as shown in Fig. 6.6(c).
In addition, the mean of theC + G content of the random ensemble, shown by lines,
tells us that the random model is suitable to explain low freeenergies due stabilizing
C−G pairs over a broad free energy range , as it is also observed inprevious studies of
natural RNA [Hig93, SD99, MSZT99]. In order to support this argument, the statistical
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test of the sequence composition of the collection of natural sequences was repeated
under the assumption of a different null hypothesis. That isthe assumption, that the
composition of a natural biological sequence is given by themean composition of the
random sequence model given the same rescaled minimum free energy (the histograms
in Fig. 6.4 are4 out of50 different reference compositions).

At this point a few statements about the approximation of this test should be made.
It is assumed that the composition is determined by the rescaled free energy alone
and not on the sequence lengths (expect the scaling of the mean and the width). The
sequence lengths are much larger for the collection of natural sequences. This assump-
tion becomes reasonable, when comparing Fig. 6.4 with the scatter plot in Fig. 6.6.
The rescaled free energies of the natural sequences (z-scores) range from−10 to 5. At
least in the left tail, the finite size effects of the BDM are relatively small for lengths
L > 120 in the biological relevant range of the rescaled free energies. The test was
performed by using frequency tables, obtained by binning the minimum-free-energy
range forL = 160 into 50 bins. These the empirical frequencies of the natural se-
quences were tested against those distributions. The corresponding p-values, see Fig.
6.6 (b), show a significant increasing of the values for low free energies in comparison
to the original test against a perfectly uniform composition. On the other side, for large
free energies no such observation could be made. Hence the assertion, that low free
energies are strongly related to theC + G content is further confirmed. Note that the
free energy parameters rely on the nearest neighbor model [XSB+98] (see Sec. 5.3).
This means theC + G content alone is only the leading effect to obtain a low free
energy. This issue is discussed at the end of this chapter in Sec. 6.4.

Obviously, natural sequences with relatively large minimum free energies do not
have compositions that are comparable with the random sequence model, whereA +
U + C rich sequences are entropically favorable.

Regarding the stack sizes we find, in agreement with [FKSS93], no correlation
between the value of the minimum free energy and mean and width of the stack-size
distribution, as shown in the bottom in Fig. 6.7. The biological relevant free-energy
region is above the sequence length dependent threshold value, where stacks sizes are
of the order of the sequence length. Also the maximum of the width, where the greatest
variety of stack sizes is expected, sits below this region.

In analogy, I also checked for a possible correlation between the minimum free en-
ergy and other thermodynamic quantities, for example a measure for the non-extensive
character of the free energy [BH02b, BH02a, HT06]. That is the difference between
free energy of the entire sequence and the sum of the free energies of the first and
the second half of the sequence, when it is broken exactly in the middle,∆Gmin =
Gmin(r1, . . . rL) − Gmin(r1 . . . , rL/2) − Gmin(rL/2+1 . . . , rL). Again, ∆Gmin is
largest for very low free energies, but in the biological relevant region it remains small
and is not correlated to the free energy of natural sequences. Also the mean loop size of
structures of natural sequences does not correlate with theminimum free energy (not
shown).

6.4 Discussion and outlook

To my knowledge, I have presented the first Monte-Carlo studyof the rare-event tail
of the minimum-free-energy distribution of RNA secondary structures down to very
small probabilities (≈ 10−70). Large-deviation properties of random RNA sequences
are discussed. I have illustrated how they can provide an additional classification of
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Figure 6.7: Top: mean and width of the stack-size distribution normalized to sequence
length as a function of the rescaled minimum free energy.
Bottom: Scatter plot of the mean and width of the stack-size distributions of natural
biological rRNA sequences (see Sec. 6.3.2)

“randomness” of natural RNA sequences.
Properties of large deviations can be explained by entropicand thermodynamic ar-

guments (Sec. 6.3.1). As an entropic measure on the sequencelevel, the Bhattacharyya
distance measure was used in order to discriminate observedsequences against the
null-model with perfectly uniform composition, which is expected in the high proba-
bility region close to the mean. For the pair-energy model the composition is flat, even
in the far left tail (low energies), whereas the compositiondeviates significantly from
an uniform distribution in the right tail.

For the free-energy model non-uniform compositions occur in both tails. The lead-
ing effect for stable structures in the left tail (low free energies) is due toG + C rich
sequences. The destabilizing effect ofA + U + C rich sequences are responsible
for very large free energies. These sequences are entropically favorable over such se-
quences that have many non-complementary bases, which would be the reason for a
large ground-state energy within the pair-energy model.

In comparison to natural biological sequences,G + C rich sequences also have
the lowest minimum free energies, whereas manyA + U + C rich sequences are not
found. One expects that all sequences in a microcanonical-like ensemble occur equally
likely, due to the maximum entropy principle. From the statistical tests of the natural
sequences against those in the microcanonical ensemble onemay infer that natural
sequences, constrained on low minimum free energies, are (more or less) compatible
with entropy maximization. For large free energies this assumption seems not to be the
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case.
There is a plenty of room for further studies of the z-score statistics from this micro-

canonical perspective. Even though, at least in the left tail, the p-value have increased
significantly when going from the uniform null distributionto the one obtained from
microcanonical ensemble, they are still relatively small.For example, the median of
p-values changes from10−20 to 0.02 for the free-energy bin(Gmin − µ)/σ ≈ −10.
One may change the sequence model from i.i.d. to a first order Markov model, like in
Ref. [WK99] or even more complicated shuffling procedures [CFKK05]. Possibly one
would observe even larger p-values in the left tail. Eventually these models allow one
to better describe the microcanonical sequences from the right tail as well. Similarly
one may also modify the test statistics from the BDM to more complicated descriptions
like Markov sequences instead of an i.i.d. model.
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Chapter 7

Complex state spaces and glassy
Monte Carlo dynamics

Beside its usefulness to model problems in molecular biophysics, RNA secondary
structures are of fundamental interest to understand the relation between static and
dynamic properties of disordered systems. The model exhibits quenched disorder, as
described in Sec. 5.4, and has a complex low-energy landscape.

The static behavior of the model can be analyzed exactly using partition-function
calculations for each single realization of the disorder. As shown in Chapter 5, the com-
putation time grows only polynomially with the system size.This approach also allows
one to generate secondary-structure configurations in equilibrium without rejection and
exhibiting zero correlations between different configurations (see Appendix A.2).

There are only a few models that combine complex static properties and a feasible
computational complexity. For example two-dimensional±J Ising spin glasses and
fully frustrated models can be solved exactly by transfer matrix methods [MB80] or
by the program of Saul and Kardar in polynomial time [SK94]. On the other hand, no
rejection-free equilibrium sampling method is known. Furthermore, two-dimensional
spin glasses only have a phase transition at zero temperature [Vil77]. Better comparable
to the RNA secondary structures is a model of directed polymers in random media
[Mez90, Kar94], where direct sampling using transfer matrices of the partition function
could be used and a non-trivial phase transition was detected. This model is related to
the sequence-alignment problem, which was pointed out in Sec. 3.3.1.

Such complex energy landscapes usually feature also slow dynamical properties
that can be seen in Monte Carlo or molecular dynamics simulations. The question,
which static properties causes slow dynamics is often not easy to answer. The aim of
the study in this chapter is to gain more insight into the relationship between static and
dynamic complexity. Furthermore a study of this kind allowsone to benchmark new
Monte Carlo approaches.

In Chapter 2, different Monte Carlo approaches were described. These algorithms
allow one to obtain the full DOS. This chapter treads two of them, namely the gen-
eralized ensemble method (see Sec. 2.7) in two variants and the ParQ algorithm (see
Sec. 2.8.2). The variants of the generalized ensemble methods include a perfectly flat
histogram ensemble and the optimized ensemble. In the first one the weights are cho-
sen asw(E) ∝ 1/g(E) and the weights of the latter one uses weights that minimize
the round trip time.
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108 7.Complex state spaces and glassy Monte Carlo dynamics

As in the Monte Carlo studies of the local alignment score statistics in Chapter 4
and the analysis of the minimum-free-energy distribution in Chapter 6, the disorder
plays a key role in this study as well. A major difference is that in those investigations,
I focused on rare events in the space of realizations of the disorder. Here, the real-
izations are quenched and taken from the typical regime thatis accessible by simple
sampling and the attention is drawn to rare events that occurin the state space of RNA
secondary structures over fixed realizations. In this setupthe disorder plays an impor-
tant role when comparing rare-event properties of the MonteCarlo algorithms to static
properties among different realizations.

In the following section some details on the Monte Carlo algorithms that are consid-
ered here are explained. After that, in Sec. 7.2, the convergence properties of a “hard”
realization are examined. Sample-to-sample fluctuations and the relationship between
structural and Monte Carlo complexity are to be discussed inSec. 7.3. In Sec. 7.4 a
possible performance enhancement by extended state spacesare considered and a final
discussion in Sec. 7.5 closes this chapter.

7.1 Markov chain Monte Carlo sampling of secondary
structures

The state space of a pseudo-knot-free secondary structuresχa on the sequencea ∈ ΣL

was defined in Def. 5.1.1. All algorithms here are based on a Markov chain on this
space. In this chapter, only the pair-energy model is considered. In order to formulate
this more precisely, one has to specify the update routine ofthe Metropolis algorithm,
see Algorithm 2.2.1. In particular the neighborhood relationshipN (C) of a structure
C ∈ χa has to be made explicit. Because the major difference between the general-
ized ensemble methods and the ParQ algorithm is that the weights w(E) that occur
in the Metropolis algorithm are time-dependent in the latter approach, the following
statements apply to both Monte Carlo approaches.

Formally, we define the neighborhoodN (C) of the structureC as

Definition 7.1.1 Let C ∈ χa a pseudo-knot-free secondary structure ona. The local
neighborhoodN (C) is set of structures for which eachC∗ ∈ N (C) fullfills the follow-
ing properties:

(i) it is pseudo-knot free, i.e.C∗ ∈ χa,

(ii) it is valid according to the pair-energy model, i.e.E(C∗;a) <∞ and

(iii) the structuresC∗ andC differ in at most one pair, i.e.|(C∗ \ C) ∪ (C \ C∗)| = 1
or C = C∗.

The first two conditions define constraints of the model, whereas the third one
defines the locality of the neighborhood. In the simplest implementation of a Monte
Carlo move, one may draw one out of theL(L − 1) random pairs(i, j) with i < j. If
the current structureC contains(i, j), i.e. (i, j) ∈ C, the pair(i, j) is proposed to be
removed fromC, C∗ = C\(i, j). According to the pair-energy model the energy of the
new structureC∗ is given by

E(C∗;a) = E(C;a) + epair ≡ E(C;a) + 1.
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Otherwise, if(i, j) /∈ C, one attempts to insert the pair intoC. If all three conditions
above are valid1, the energy of the proposed state is given by

E(C∗;a) = E(C;a)− epair ≡ E(C;a)− 1.

In the case that one condition is violated, the energyE(C∗;a) is set to∞.
The moves are accepted with the usual Metropolis acceptancerate Eq. (2.4), i.e.

αC,C∗ = min

{
1,

w(E(C∗;a))

w(E(C;a)

}
, (7.1)

wherew(∞) = 0. This means “forbidden” structures never occur in the simulation.
Since the average number of pairs increases linearly and thenumber of proposed

pairs quadratic with the sequence length, most of the proposals will be rejected, espe-
cially close to the ground state. In order to avoid this, I have implemented a variant of
the N-fold way [BKL75] (see Sec. 2.3) where only allowed structures are proposed. At
the beginning of the simulation a list of allNpossiblepossible pairs{(i, j)} is created.
These pairs are compatible to the energy modele(ai, aj) < ∞, i.e. all (ai, aj) are
Watson-Crick pairs and have sufficient distancehmin along the sequence. There are
still O(L2) of possible pairs.

At each stage of the simulation the set of allowed pairs is divided into three classes.
The first class consists of the set ofactive pairs, i.e. that pairs that are currently con-
tained in the secondary structure. The class of inactive pairs can be divided into two
sub-classes. The first one contains allallowed pairs. That are those that can be in-
serted into the current structure without violating condition (i) in Def. 7.1.1. Those
that would violate (i), but fullfill (ii) and (iii) belong to the class ofcurrently forbidden
pairs. Active pairs are associated with an energy change of∆E = 1, allowed pairs
with ∆E = −1 and forbidden pairs with∆E = ∞. The current number of members
in each class given the structureC is denoted byN(C, +1), N(C,−1) andN(C, 0) for
active, possible and forbidden pairs respectively.

A secondary structure is represented as a list of links to thestatic array of possible
pairs. Then the simulation requires some bookkeeping of thelists for all three classes.
For this purpose it makes sense to setup a list of cross-linksbetween all pairs indicating
incompatibility, i.e. for each pair a list of references to other pairs that lead to pseudo
knots, when both are inserted at the same time.

The “forbidden attempts” are taken into account, by advancing the simulation-time
clock sufficiently. This kind of dynamics combines a “rejection-free dynamics”, as
implemented in the n-fold way [BKL75] (see Sec. 2.3), with standard acceptance prob-
abilities.

When performing the simulation, one has to account for thewaiting timesτ due
to forbidden transitions in the local environment. This waiting times are determined
with the concepts of the N-fold way described in Sec. 2.3: Letp be the probability
that a forbidden pair is selected, given that the random walksits in the stateC, i.e.
p = N(C, 0)/Npossible. Consequently the probability that the random walk selectsa
non-forbidden pair in the current state afterm trials is given by Eq. (2.6),

p(m) = pm(1 − p)

and a random waiting time can be drawn from that distributionvia Eq. (2.3).

1The condition (iii) always holds by construction
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Figure 7.1: Macro states and possible transitions.

After the simulation-time clock has advanced by the random waiting time, a pair is
selected from the set of active and allowed pairs with uniform probability, and the pair
is flipped with a probability given by Eq. (7.1). Hence, if theflip is rejected, then the
current structure persists. This reject-accept part of thealgorithm completes one MC
step.

For each Monte Carlo methodM independent runsj = 1, . . . , M had been per-
formed. During each simulation three quantities of interest were sampled. That are the
energy, a randomenergy change∆E = 0,±1 associated with each attempt (regard-
less if the step is accepted or not) and a randomwaiting time. This yields independent
chains

(Ê
(j)
1 , ∆Ê

(j)
1 , τ̂

(j)
1 ), . . . , (Ê(j)

n , ∆Ê(j)
n , τ̂ (j)

n ).

The transitions proposed in all steps are counted in the tridiagonal matrixŴE,E+∆E.
The waiting times are allways added to the diagonal of this matrix. FromŴ a stochas-
tic transition matrix is determined by

Q̂E,E+∆E =
ŴE,E+∆E∑1

∆E′=−1 ŴE,E+∆E′

.

Fig. 7.1 illustrates all macro states and all possible transitions. Note that jumps from
the empty structure allways occur with zero waiting time. The method described in
Sec. 2.8.1 can be used to obtain an estimate of the DOSg(E) from Q̂. This is done by
iterating the master equation

g(Ei; t + 1) =
∑

k

Q̂(Ek),(Ei) · g(Ek; t) (7.2)

with some initial guessg(E; 0). The iteration is stopped, when the relative change of
g(E) between thetth and the(t + 1)th iteration is sufficient small for all energies.

As discussed in Sec. 2.8.1, if the microcanonical property is fullfilled, g converges
towards the true DOS as the number of simulations,M , tends to infinity. These con-
vergence properties are to be discussed in Sec. 7.2 for the two algorithms under con-
sideration here. Although the general concepts of the MonteCarlo algorithms were
introduced in Chapter 2, a few remarks which are relevant forthe specific application
of the RNA secondary structure are made in the following.
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Figure 7.2: Specific heat as a function of the temperature, shown for two realization
of lengthL = 80 with a typical (solid line) and a large (dashed) ratiog(E1)/g(E0).
Inset: low temperature decay rate of the reduced specific heat c/β2 ∼ e−β is the same
for all realizations. Dotted lines show some other realizations.

7.1.1 The ParQ simulation

The ParQ algorithm [AHM+88, HH05] combines ideas from simulated annealing
[KGV83, JJS06] and Transition Matrix Monte Carlo. Instead of estimating the transi-
tion matrix from an equilibrium simulation, the temperature is lowered according to a
certain protocol. The acceptance rule is the usual Metropolis one

α = min (1, exp[−β∆E]) ,

whereβ = 1/T .
The advantage of the method is that no assumption about the DOS is required at the

beginning of the simulation. Secondly, in contrast to the Wang Landau method, ParQ
is easy to parallelize because many independent runs can be performed simultaneously.

It is required that all regions of interest are visited by therandom walk. Therefore,
the annealing schedule has to be adjusted. Basically there are two ingredients: the
functional form of the (inverse) temperature protocolβ(t) and the start and end value
of the temperatureβ1 andβ2. At infinite temperature, the random walk is located at
the maximum of the DOS (see Fig. 5.4 in Chapter 5), which corresponds to simple
sampling, where all allowed steps are accepted. In order to go beyond the maximum
towards the unfolded RNA, i.e. increasing the energy, one has to chose anegative
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temperature. For the opposite direction, towards the ground state, the temperature has
to be positive and finite.

The simplest annealing schedule is a linear increase of the inverse temperatureβ
from β1 < 0 to β2 > 0. This kind of protocol will be denoted asinverse schedule
(INV).

However, this kind of cooling schedules might not be optimal. Therefore I also
checked two other forms, where the inverse temperature is first increased fromβ1 to a
certain positive value above the critical temperature [PPRT00], sayβ = 1 in a linear
fashion. Then the system is cooled down either linearly or exponentially in the temper-
atureT . We will denote these schedules aslinear (LIN) or exponential(EXP) cooling
respectively and compare the performance of the three methods later on.

The temperature range[β1, β2] should be chosen, such that the energy fluctuations
vanish sufficiently. This can be assessed by considering thespecific heat capacityc =
β2(
〈
e2
〉
− 〈e〉2) [JJS06] obtained from exact calculations, wheree is the energy per

base, i.e.e = E/L. For the usual case of other systems, where the DOS is not a priori
known, c(β) has to be estimated from a few primary simulations or the temperature
range has be estimated in other heuristic ways.

The specific heat capacity for two different realizations oflengthL = 80 is shown
in Fig. 7.2. For these two examples, I used inverse temperature ranges[−10, 10] and
[−10, 15], respectively. Note that the decay ofc in the low temperature limitβ → ∞
(see inset of Fig. 7.2) can be understood very well [WS88] viathe ratiog(E1)/g(E0)
of the number of first excitations with energyE1 = E0 + 1 and the degeneracy of
ground states. At low temperatures the partition function is dominated by the ground
state and first excitations only and hence

c

β2
=
〈
e2
〉
− 〈e〉2 ∼ (E0 − E1)

2 · g(E1)

g(E0)
· e−β(E1−E0)

SinceE1 − E0 = 1 for all realization in our simple model the specific heat capacity
decays asC/β2 ∼ exp(−β) and only the prefactor is dominated by large sample-to-
sample fluctuations ofg(E1)/g(E0) (see Sec. 7.3.1). A large value of this ratio implies
a narrowed peak of the specific heat capacity and hence increasingly slow relaxation
times. In more complex systems, such as RNA secondary structure with hybrid energy
models [BH05], even the exponent may vary because of variable energy difference
between ground states and first excitations.

7.1.2 Flat-histogram and optimized ensembles

The generalized ensemble was introduced in Sec. 2.7. The basic idea is that each macro
state is sampled with equal probability, instead of sampling configurations according
to the Boltzmann weightw(E) ∝ exp(−βE). A perfectly flat histogramensemble,
wherew(E) ∝ 1/g(E), requires the knowledge of the DOSg(E).

In Monte Carlo simulations it is usually desired to reduce the autocorrelation times
in order to obtain more independent samples within fewer Monte Carlo steps (see
Sec. 2.5.2). For this reason, the perfectly flat histogram ensemble might not be the
best choice. Especially near phase transitions, where the specific heat diverges, a huge
amount of computation time is required. Therefore I also considered the optimized en-
semble method [THT04] , where the weights are optimized by minimizing the round-
trip time (see Sec. 2.7.2). The optimal weightswopt(E) are determined iteratively via
the recursion relation Eq. (2.21). Note that the pair-energy model of RNA secondary
structures was also used to illustrate the convergence of the method in Fig. 2.4.
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Since the events for going from a first excited stateE1 to the ground stateE0 oc-
cur very rarely, the statistics and the iteration scheme Eq.(2.21) converges slowly, if
the complete energy spectrum is considered for optimizing the ensemble. For this
reason I employed two energy intervals, the complete one[E0, 0] and a restricted one
[E−, E+] ≡ [E0 + 1, 0]. All states of the complete energy range are allowed to be
visited by the random walk. For the optimization of the weights the restricted energy
interval was used. The link to the remaining weightwi+1(E0) can be made by requir-
ing the next iteration,(i+1), to visit either the ground state or the first excitations with
equal probability (any other finite fraction will work as well), i.e. we set

wi+1(E0) = wi+1(E1) ·
g(E1)

g(E0)
.

During each iteration, the round-trip time of the random walk over the full spectrum
from E0 to the null structure was used as a quantity which describes the performance.
For a small systemL = 40, I compared the performance of the optimization over the
full spectrum and the restricted spectrum and found no significant difference in round-
trip times. In both cases the round-trip time decreases by a factor of about2 already in
the second iteration of updating the weights. ForL = 40 this iteration scheme was
already illustrated in the general introduction to Monte Carlo methods in Fig. 2.4.

7.2 Convergence properties of the Monte Carlo algo-
rithms

In order to assess the performance of different MC algorithms, I conducted simulations
using the different approaches described above. I comparedthe performance using
a fixed realization of lengthL = 80 and small ground-state degeneracy, i.e. a large
ratio g(E1)/g(E0). This ratio is somehow a measure for the amount of meta-stable
states. It is a purely local property and does not depend on large structures of the
energy landscape. Those instances with a large value of thisratio are the expected
to be “hardest” instances by comparison with spin glasses [ATHT04, DTW+04], as
indeed confirmed by our results, see Sec. 7.3.

For all simulations techniques,5× 1010 MC steps (Metropolis updates) were used
totally. Measured in real time, one run of5×109 steps costs approximately one hour on
a modern CPU. Simulated annealing with exponential coolingwas only slightly slower
than the optimized ensemble.

I performed various independent simulations (25 for ParQ and the optimized en-
semble and 16 for the flat histogram approach) with differentseed values but fixed
realization. The convergence properties which are discussed in the following are aver-
aged over these simulations. The DOS is estimated from empirical transition matrices
obtained up to certain numbers of Monte Carlo steps.

The ParQ result was obtained by a linear and inverse temperature schedule with a
temperature range fromβ1 = −10 to β2 = 15 (data for the inverse schedule is not
shown in Fig. 7.3) and the overall5×1010 MC steps were separated in 10 independent
runs of length5 × 109. For inverse schedule also 100 independent runs á0.5 × 109

steps were tested.
The so approximated DOS obtained from ParQ was used as an input for the flat-

histogram method, as well as for the first iteration of the optimized flat-histogram
method. This might be a realistic procedure, because the DOSis not known in gen-
eral. For the standard flat-histogram approach, no further adjustment had to be made,
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Figure 7.3: Relative error of the DOS of a low degeneracy of ground states using
flat histogram ensemble, optimized ensemble and ParQ with fixed cooling rate (5 ×
1010 steps per run). The inset shows the same data with a linear ordinate. The ratio
g(E1)/g(E0) for the realization was3120649/16, which is larger than typical values.
Lines are guides to the eyes only.

hence the histograms could be sampled using all available MCsteps. For the opti-
mized ensemble, to optimize the functionf(E), describing the history of the walk
with respect to the labels+ and−, I applied109 MC steps for the first iteration and
then doubled this number always for each following iteration. Similar to theL = 40
system (Fig. 2.4), the estimate off(E) converged after only 5 iterations, i.e. totally
(1 + 2 + 4 + 8 + 16)× 109 = 3.1× 1010 steps.

Hence, the optimal weights were found quickly. Via this optimization, the round-
trip time decreased by a factor of about4.

For the remaining1.9×1010 steps where the weights were kept fixed the transition
matrices from all iterations had been used to obtain the convergence of the DOS.

To compare the power of the different algorithms, I considered the relative error of
the MC approximation with respect to the exact solution

ǫ(E) =
∣∣g(E)− gexact(E)

∣∣ /gexact(E),

whereg is the sample estimate obtained by the iteration of the master equation, Eq.
(7.2). The averagedǫ(E) is shown in Fig. 7.3. A second quantity, which gives a
relevant measure of performance is the sample error of the ratio of the number of first
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Figure 7.4: Rate of convergence of the relative error of the ratio g(E1)/g(E0) of one
instance for different simulation methods: ParQ for inverse and linear cooling schedule
using500× 106 and5000× 106 steps per run. For the ParQ run with500× 106 steps,
only accumulated data up to certain numbers of MC steps are shown.
For 5000 × 106 steps no significant difference between inverse and linear cooling is
visible. Flat histogram and the optimized ensemble sampling perform much better
than ParQ. The ratiog(E1)/g(E0) for the realization was3120649/16, which is larger
than for typical instances.

excitations and ground states

ǫratio =
|g(E1)/g(E0)− gexact(E1)/gexact(E0)|

gexact(E1)/gexact(E0)
. (7.3)

This quantity as a function of MC steps is shown in Fig. 7.4.
From Fig. 7.3 and Fig. 7.4 one can learn that in the high-energy region were only

a few sites are connected by bonds, the flat histogram method clearly outperforms the
other methods, whereas in the relevant low-energy region the optimized random walk
seems to be best. The most significant difference between themethods is located at
the ground state of the system, where the ParQ method is not very accurate. Also the
rate and form of the annealing schedule affects the performance: The linear schedule
seems to outperform the inverse schedule and, as expected, few long runs beat many
short ones.

Note that Fig. 7.3 and Fig. 7.4 are worst case scenarios, because I picked out a sam-
ple, where the ratiog(E1)/g(E0) is very large, i.e. there are many meta-stable states
that might be separated by large barriers from ground states. I also performed the same
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kind of simulations for a typical realization of the same length, whereg(E1)/g(E0) is
relatively small. The errors of the ratio decrease by a factor of 9.5, 35 and 39 for the
ParQ, flat histogram and optimized ensemble method respectively, but the generalized
ensemble methods still outperform the ParQ method.

In order to check, if the qualitative ranking of the methods,i.e. ǫoptimized
ratio < ǫflat

ratio <

ǫParQ,LIN
ratio , is a general feature of the system I generated an ensemble of2000 realizations

of lengthL = 40 and performed the same kind of simulations as before with5 × 107

steps for all simulations. In the majority of the cases (59%)I find the same kind of
ranking and second most frequently (33%) a ranking ofǫflat

ratio < ǫoptimized
ratio < ǫParQ,LIN

ratio .
Only in 2% percent of the cases ParQ outperforms one of the generalizedensemble
methods. Sample averages ofǫoptimized

ratio , ǫflat
ratio andǫParQ,LIN

ratio were0.030, 0.055 and0.551
respectively. Probably these differences increase for larger systems.

I also checked that linear cooling is better than the other two alternatives in53% of
the cases (exponential and inverse cooling only15% and31% respectively).

7.3 Correlation between algorithmic and structural
complexity

As already mentioned, the performance strongly depends on the ratiog(E1)/g(E0),
which was also obtained for the±J spin glasses [ATHT04, DTW+04]. In this section
we want to study the distribution of this ratio and its relationship to the performance
of MC algorithms in the case of RNA secondary structures. I also check if there is a
correlation between the degree of ultrametricity at finite temperature (see Sec. 7.3.2)
and performance.

7.3.1 Ratio of number of first excitations and ground states

For the usual 2dL × L Ising ferro magnet without disorder it is obvious that the ratio
g(E1)/g(E0) scales asL2, because there are exactlyL × L possibilities to excite the
ground state by one single spin flip. In our model, RNA secondary structures, the
scaling behavior can not be obtained with such simple arguments.

Hence, I generated ensembles of up to40, 000 realizations for sequence lengths
betweenL = 20 andL = 1021 and obtained the distribution ofg(E1)/g(E0). Even
though the transfer matrix algorithm is polynomial, the computations of systems larger
thanL = 320 become very time consuming. Therefore, I only computed the number
of ground states and first excitations instead of the complete energy spectrum for larger
systems. This can be achieved by truncations of the polynomials in the transfer matrix
after the term of the second largest power.

Empirically one can find ageneralized extreme-value distribution(see Fig. 7.5),
whose cumulative distribution function is given by

Prob

(
g(E1)

g(E0)
≥ x

)
= exp

[
−
(

1 + ξ
x− µ

σ

)−1/ξ
]

, (7.4)

similar as in [DTW+04].
The parameters of the distributionµ (location), ξ (shape) andσ (scale), were ob-

tained through a maximum likelihood fit using theFORTRAN program by Hosking
[Hos85, Mac89]. The resulting probability density functions (pdf) and the scaling be-
havior of the fit parameters are shown in Fig. 7.5.
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Figure 7.5: Probability density of the ratiog(E1)/g(E0) for different sequence
lengths. Squares indicate binned data. The largest errorbar is as large as the sym-
bols. Insets: scaling of the location, scale and shape parameter on a double logarithmic
scale.

The qualities of the maximum likelihood fits were not good enough to be convinced
that the data indeed follows Eq. (7.4), especially for largesequences. This is also
supported by small p-values of Kolmogorov-Smirnov tests [Har09]. But the data at
least allows one to distinguish between an exponential and algebraic growth of the
location and scale parameter: Similar as for the±J model [SK94] we find an algebraic
behavior of location and shape parameterµ(L) = A · Lzµ andξ(L) = B · Lzξ with
exponents ofzµ = 2.1(1) andzξ = 2.4(9). Although the quality of the fit is not very
high (as can be seen already in the lower left inset of Fig. 7.5where the empirical data
do not follow a straight line in the log-log plot), an exponential scaling can be safely
excluded by the data.

7.3.2 Ultrametricity of the phase space

The study of ultrametric spaces dates back many decades and has entered the physical
literature in the context of spin-glass theory (see [RTV86]and references therein). An
ultrametric spaceM is defined by following axioms:

(i) 0 ≤ d(A,B) andd(A,B) = 0 ⇐⇒ A = B

(ii) d(A,B) = d(B,A)

(iii) d(A, C) ≤ max {d(A,B), d(B, C)} ,
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Figure 7.6: Scatter plot betweeng(E1)/g(E0) ands∗ atT = 0.125.

for allA, B, C ∈M and the metricd(·, ·). Note that every ultrametric space is a metric
space.

Higgs found evidence that RNA secondary structures exhibitan ultrametric struc-
ture [Hig96] at low temperatures. The existence of a phase transition was then con-
firmed numerically by Pagnani et al. [PPRT00] by consideringthe width of the overlap
distribution (see Sec. 5.4) and then examined by other authors using droplet theory
[BH02b], theǫ-coupling method [FKM02] and renormalized field theory [LW06].

Ultrametricity can be detected by considering the “distance” between two structures
drawn from a canonical ensemble at a given temperature. Using the transfer matrixZi,j

it is possible to draw states directly without performing Markov chain MC [Hig96] (see
Appendix A.2).

The overlap of two structuresC1 andC2) was defined by Eq. (5.3),

q(C1, C2) =
1

L



2
∑

(i,j)∈C1

∑

(k,l)∈C2

δi,kδj,l +
∑

i/∈C1

∑

k/∈C2

δi,k



 ,

With this definition we may define a normalized distance betweenC1 andC2, by

d(C1, C2) = 1− q(C1, C2).

In perfectly ultrametric spaces each triangle is isosceles, i.e. the two largest sides
of a triangle are of equal length. This property provides a numerical criterion for the
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detection of ultrametricity [Hig96]: The degree of ultrametricity can be estimated by
the difference of the two largest distances of a set of candidate triangles. This quantity,
which is denoted ass, vanishes in perfectly ultrametric spaces and become smallin
approximately ultrametric spaces.

There might be different reasons, whys may vanish in the thermodynamic limit
and therefore one has to filter real ultrametricity against trivial one. E.g. in the high
temperature phase,s also scales asN−1/2 and the maximum size ofs is limited by
the triangle equation. To distinguish from this trivial ultrametricity, Higgs sampled
[Hig96] sets of “uncorrelated” triangles by computation ofthree independent distances
d(C1, C2), d(C3, C4), d(C5, C6). EachCi was drawn from the canonical distribution

P (C) =
1

Z
exp[−βE(C)].

If these distances fulfill the triangle inequalities, i.e.

d(C1, C2) ≤ d(C3, C4) + d(C5, C6)

and for all other combinations of the distances, the difference between the two largest
distances is computed. Finally the average of the differences taken over all valid
uncorrelated trianglessuncor is computed. Non-trivial ultrametricity should emerge
faster than the trivial ultrametricity obtained from uncorrelated distances. Hences∗ =
s/suncorshould vanish in the presence of an ultrametric structure inthe thermodynamic
limit.

In principle one should distinguish the finite temperature and zero temperature be-
havior in complex phase, as already pointed out in [Har01]. Using direct sampling of
ground states a “non-trivial” overlap distribution at zerotemperature could be ruled
out by numerical extrapolation. This implies that grounds states alone arenot ultra-
metric. For this reason I considered only finite temperature states, where the overlap
distribution is non-trivial [PPRT00] and evidence for an ultrametric phase space still
remains.

In small systems the correlations between the ratiog(E1)/g(E0) ands∗ (see Fig.
7.6) are stronger. We assume that this is a finite-size effect, because this effect is weaker
for larger systems.

A widely used technique to visualize hierarchical spaces isthe use of dendrograms
and distance matrices, which had already been shown in Sec. 3.6.2 in the context of
finite-temperature sequence alignment. Here, I used the distance measured(·, ·) intro-
duced above and the clustering method by Ward [JD88] (see Appendix A.3) to illustrate
the structure of the static state space.

In Fig. 7.7 four different distance matrices for different realizations and temper-
atures are illustrated. As one can see, a clear cluster structure emerges only at low
temperatures. Note that one can apply a clustering algorithm to any set of data, hence
also to non-ultrametric ones. There are quantitative methods, which test how much the
tree imposed by the clustering algorithm correlates with the distances in the data. Here,
we have just used the visual impressions obtained by lookingat the matrices. Further-
more, in Sec. 7.3.4 we will use the so detected clusters to check whether all ground
states are visited with equal probability.
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Figure 7.7: Hierarchical structure of the states illustrated by distance matrices. Darker
gray scales correspond to large overlaps.
(a)L = 120 atT = 2. No hierarchical structure could be detected (s∗ ≈ 1)
(b)L = 120 atT = 0.125 for a realization exhibiting a weak ultrametricity (s∗ ≈ 0.74)
(c) L = 120 at T = 0.125 for a realization exhibiting stronger ultrametricity
(s∗ ≈ 0.45)
(d) L = 40 at T = 0.0 for a realization having low ground-state degeneracy
(g(E1)/g(E0) = 14638/16) Deviation from ultrametricity wass∗ ≈ 0.5. Realiza-
tion (d) was also used in Sec. 7.3.4. The corresponding dendrogram is illustrated in
Fig. 7.10.

7.3.3 Distribution of tunneling times of the flat histogram random
walk

Next, we consider the tunneling time for the flat histogram random walk for sequence
lengths up to120. Recall that the tunneling time was defined as the number of Monte
Carlo steps that the generalized ensemble random walk needsto find the ground state
starting from the empty structure. The round trip time, i.e.the time to find the ground
state and go back to the empty structure is effectively indistinguishable in the system
here, because the tour back to empty structure is one order ofmagnitude faster.

Note that larger systems become infeasible if one wants to span a large energy
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Figure 7.8:
Left column: Scatter plot between the ratiog(E1)/g(E0) and tunneling time of the
flat histogram sampler forL = 40 (top) andL = 120 (bottom).
Right column: Scatter plot between deviation from ultrametricity and tunneling time
of the flat histogram sampler forL = 40 (top) andL = 120 (bottom).

interval, which we need to when studying tunneling time distributions. Already for
L = 120 I found tunneling times fluctuating, in real time, between seconds and days
on a modern CPU.

There is a strong correlation betweeng(E1)/g(E0) and the tunneling time, see
Fig. 7.8. I found that this is in particular true when this ratio is much larger than all
other ratios between neighboring energy densities. The performance of the algorithm
is then dominated by the rare event of finding a ground state when starting from a first
excitation. Two scatter plots of the ultrametricity indexs∗ versus tunneling time are
shown in Fig. 7.8. Hence, whether there is a true correlationbetween tunneling time
τ and degree of ultrametricitys∗ is not clear, because for larger system the correlation
appears to be rather weak.

To investigate the issue of correlations between static measures and computational
hardness more quantitatively, I calculated the empirical Pearson correlation coefficients
for all pairs of quantitieslog τ , ∆S = log (g(E1)/g(E0)) and s∗. The results are
summarized in Tab. 7.1.

The correlation betweens∗ might be trivial, because it might be induced by correla-
tion of the ratiog(E1)/g(E0) and tunneling time. This means, although ultrametricity
is usually considered as a landmark of complex and glassy systems, at least for the
behavior of RNA secondary structures it is not related to thedynamic glassy behavior
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L = 40 log τ ∆S s∗(T=0.125) s∗(T=0.033)

log τ 1 0.89 −0.40 −0.33
∆S 1 −0.37 −0.30

s∗(T=0.125) 1 0.87

s∗(T=0.033) 1

L = 120 log τ ∆S s∗(T=0.125) s∗(T=0.033)

log τ 1 0.82 −0.18 −0.16
∆S 1 0.02 −0.13

s∗(T=0.125) 1 0.28

s∗(T=0.033) 1

Table 7.1: Empirical Pearson correlation coefficients for all pairs of quantitieslog τ ,
∆S = log (g(E1)/g(E0)) ands∗ for L = 40 andL = 120.
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Figure 7.9: Scaling of the location (square symbols) and scale parameters (circles) on
the tunneling time. Insets: scaling of the shape parameter using a logarithmic abscissa
(top) and scaling of the location and scale parameters usinga logarithmic ordinate
(bottom).

seen in MC simulations. To my believe the effect of ultrametricity is superimposed by
the presence of a large number of metastable states.

I fitted also the distributions of the tunneling time to a generalized extreme-value
distribution Eq. (7.4) and analyzed the scaling of the parameters. Location and scale
parameter have almost the same algebraic dependence on the sequence length, see Fig.
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7.9. As can be seen on the semi-logarithmic plot in the bottominset in Fig. 7.9, an
exponential scaling can safely be excluded (at least on the length scale up to120). The
exponent describing the power-law is roughlyz ≈ 7. On the other hand, the shape
parameter seems to scale logarithmically in sequence length, see upper inset in Fig.
7.9. With the same arguments as in Sec. 7.3.1, we cannot exclude that the distribution
deviates from a generalized extreme-value distribution.

These results differ from the±J Ising model, where an exponential tunneling
time was observed in the literature. On the other hand, they are similar to the fully
frustrated Ising model, investigated by Dayal et al. [DTW+04]. They argued, that
sub-exponential growth of tunneling times and of the ratiog(E1)/g(E0) stem from
a smaller growth of the number of meta-stable states. These results suggest that the
model of RNA is dynamically “simpler” than±J spin glasses and has a similar com-
plexity as the fully frustrated model.

On the other hand, sample-to-sample fluctuations are much larger than in the±J
model, as can be seen by comparing the shape parameter in the range of investigated
system sizes. For the largest systems in [DTW+04], the scaling parameter was about
0.9 (see also Appendix B). Hence, although typically RNA instances are not so hard
for a MC algorithm, compared to±J spin glasses, there is larger fraction of rare hard
instances for RNA secondary structures.

7.3.4 Are all ground states visited with equal probability?

From Fig. 7.4 one can also see that the error for the optimizedensemble are one order
of magnitude smaller than that of the ParQ method. Since in both cases the data were
obtained from the transition matrix, the significant difference must be caused in the
underlying MC scheme, probably the non-equilibrium character of ParQ. In order to
gain insight to this issue I checked whether the microcanonical property is fulfilled.

In detail, I considered histograms of visited ground statesfor simulated annealing
(ParQ) and the optimized ensemble sampler and checked if thehistograms were suffi-
ciently flat. A simple and powerful check for the flatness of a histogram is the Bhat-
tacharyya distance measure (BDM) [Bha43] for two given probability mass functions
p andq, which was introduced in Eq. (6.1) in Chapter 6

B(p||q) =
∑

i

√
p(i) ·

√
q(i).

In Chapter 6, this measure was already used for model testing. Here, thenull
hypothesiscorresponds to the assertion that all ground states are visited with equal
probability. LetK = g(E0) be the ground state degeneracy andĥ(i) denote the number
of events that the random walk visits ground statei. Hence the objective is given by

B̂ =

K∑

i=1

√
ĥ(i)/N ·

√
1

K
,

whereN =
∑K

i=1 ĥ(i) is the total number of events, where the sampler hits one of
the ground states. We shall make use of the p-value which is associated with the ob-
servationB̂. This is the probability that an empirical BDM of̂B or larger occurred
by pure chance (see Appendix A.4). If the p-value is below0.05 the evidence that the
null-hypthesis is true is very small.

Note that the BDM requires the empirical events to be independent. Hence, I gen-
erated histograms of independently visited ground states for a small system (L = 40)
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Figure 7.10: Histograms of visited ground states. upper: optimized ensemble random
walk, lower simulated annealing. The Bhattacharyya measures and the corresponding
p-values indicate, that simulated annealing does not visitall ground states with equal
weight.

and low ground-state degeneracy (I selected a realization exhibiting K = 16) in the
following way: For the optimized ensemble I considered the round-trip timeτ and
checked eachτ ’th MC step if the random walk sits currently at the ground state and,
if so, the histogram̂h(i) is updated. For simulated annealing, which provides a basis
for ParQ, this procedure is not possible in this way, becausethere is no natural mixing
time, which could serve as a thinning interval. Therefore I generated histograms of
all visited ground states and renormalized the empirical histograms by considering an
effective sample size such that each of theNannealingannealing runs has a “weight” of
1, i.e.

ĥeff(i) =
Nannealing

N
ĥ(i)

whereN =
∑

i ĥ(i) is the total number of events.
Note that in the case that the random variable mixes faster than the number of MC

steps for one annealing run the BDM for the effective histogram might be overesti-
mated (and hence the p-values as well). This would yield false positives. However the
opposite case might not occur, because all annealing runs are independent from each
others. Therefore the so defined effective histograms can only be used to reject the
hypthesis, which is exactly what we do here.

The results for both simulation methods are shown in Fig. 7.10. The upper plot
shows one of ten histograms of independent runs for the optimized ensemble random
walk, which has a large p-value of0.68. The other nine runs yield p-values between
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0.007 and0.67 (0.4(1) on average) and hence we can accept the null hypthesis. For
simulated annealing we find that not all ground states are visited with equal probability
(lower plot). The p-values for ten independent runs varied between (7×10−13 and5×
10−2). Therefore we have to reject the null hypthesis, hence these simulated annealing
runs visit ground states with a bias. For an even faster cooling schedule we find p-
values between2 × 10−24 and2 × 10−3. The reason for this bias might be that the
random walk gets stuck in preferable local minima. The ground-state structure in form
of a dendrogram illustrated in Fig. 7.10 below the histograms supports this argument.
The connection between two ground states indicates that these two are merged into one
cluster, and the vertical distances are proportional to theWard-distance, specified in Eq.
(A.1) (see Appendix A.3). One can see thatwithin the largest clusters the histogram
becomes flatter and that the main source of the non-flatness are differences in sampling
betweenthe largest clusters.

7.4 Rate of convergence in extended state spaces

The relative error of the Monte Carlo estimate of the DOS, shown in Fig. 7.3, suggests
that the ground state is hardest to sample. Additionally, asshown in the previous sec-
tion, simulated annealing fails to find all ground states with equal probability. This
leads to the question whether the dynamics of both algorithms can be improved by
increasing the number of possible paths from higher excitations to the ground state.
It is also desirable to enhance the dynamics such that the random walks are allowed
to move from one ground state to another, especially for the ParQ simulations at the
finial low-temperature stage, where it is less likely to overcome a barrier through higher
excitations.

The main reason of the slow dynamics close to the ground stateis due to entropic
constraints. In the method that is described in this section, this constraints are partially
released in a controlled manner. The idea is to sample from anextended state space
χ∗

a
, where a certain amount of pseudo knots are allowed. The joint density of states

defined on the energy and the number of pseudo knots is then used to obtain the DOS
of the original model by a projection. Details on this methodare explained now.

In Def. 5.1.1 we have defined a secondary structureC as a set of bonds, where all
pairs of bonds(i, j), (k, l) ∈ C with (i < k) are either nested (i < k < l < j) or
separated (i < j < k < l). Here we also allow the case of pseudo knots

i < k < j < l (7.5)

A new observable, denoted asnumber of violationsV , measures the number of violated
constraints in the form of Eq. (7.5). The caseV = 0 corresponds to the original
model. Note that non-complementary base pairs and pairs between bases with a shorter
distance thanhmin in the primary sequence are still excluded.

It is straightforward to generalize the Metropolis algorithm for RNA secondary
structures such that also those structures withV > 0 are taken into account. Besides
the energy, also the numbers of violationsV and their potential changes∆V are to
be sampled in the same way as above. This yields the chains of observables in the
extended state spaceχ∗

a
,

(Ê
(j)
1 , V̂

(j)
1 , ∆Ê

(j)
1 , ∆V̂

(j)
1 , τ̂

(j)
1 ), . . . , (Ê(j)

n , V̂ (j)
n , ∆Ê(j)

n , ∆V̂
(j)
1 , τ̂ (j)

n ).

Similar as in Sec. 7.1,j denotes the index of the simulation, i.e.j = 1, . . .M ,
where M is the total number of independent simulations. A macro state of the
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Figure 7.11: Allowed macro states and possible transitionsin the extended state space.

extended state space is characterized by the pair(E, V ). This also requires a
generalization of the matrix̂W , that counts the proposed transitions. Instead of
counting all transitions between energy states the transitions between all possible
transitions between the joint states(E, V ) have to be considered. This yields the
generalized matrixŴ(E,V ),(E+∆E,V +∆V ) from which a stochastic transition matrix

Q̂(E,V ),(E+∆E,V +∆V ) can be estimated by normalization

Q̂(E,V ),(E+∆E,V +∆V ) :=
Ŵ(E,V ),(E+∆E,V +∆V )∑1

∆E′=−1

∑
∆V ′ Ŵ(E,V ),(E+∆E′,V +∆V ′)

.

The joint DOSg(E, V ) is obtained by iterating the master equation for the joint state
transition matrixQ̂,

g(Ei, Vj ; t + 1) =
∑

k

∑

l

Q̂(Ek,Vk),(Ei,Ej) · g(Ek; Vl; t).

An estimate of the DOS of the original model is then obtained by the projection

g(E) =
1∑

E g(E, 0)
g(E, 0).

In order to estimate the specific heat, we will also need to compute the marginal DOS

gmarg(E) =
1∑

E,V g(E, V )

∑

V

g(E, V ).

Because the state space grows drastically, when removingall constraints that leads
to pseudo knots, we shall concentrate on the interesting region close to the ground state
alone. Hence not all states on theE − V plane are considered. A setup, which turned
out to be efficient is to allow all states withV = 0 as usual and additionally allow for
the states(E0−1, 1), (E0, 1) and(E0+1, 1). Hence, most of the pseudo-knots are still
forbidden. Only close to the ground state, where the Monte Carlo simulations exhibit
extremely slow dynamics, we extend the state space by three additional macrostates.
This setup is illustrated in Fig. 7.11. I also tried a larger set of forbidden states beyond
V = 1 and also more than three macrostates, but the choice of the three mentioned
states seems to be the best compromise I found. Because thereare still forbidden
structures in this setup, the waiting times have to be taken into account for the extended
state space as well.
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Here, I considered the same sequence ofL = 80 that was also considered in the
analysis of convergence in Sec. 7.2. The corresponding structure space exhibits a large
ratio g(E1)/g(E0) and the ground state is therefore hard to sample. The analysis of
the extended state space was divided into four parts,

(1) a short ParQ simulation to obtain a rough estimate ofgmarg(E) and from that an
estimate of the specific heat,

(2) several ParQ simulations to obtain a guess ofg(E, V ),

(3) several generalized ensemble simulations with flat histogram weights and finally

(4) several generalized ensemble simulations with optimized weights.

In the simulated annealing setup, each proposal is acceptedaccording to the
Metropolis algorithm with semi-rejection free dynamics, where the number of viola-
tions V did not enter the acceptance rate. For this reason the specific heat based on
the marginal DOS was estimated after the primarily ParQ run (1). A visual inspection
of the specific heat curve suggested to use the same temperature range ([−10, 15]) as
for the standard state space at least for this particular realization. In step (2), longer
independent ParQ simulations with linear schedule and again 5 × 109 Monte Carlo
steps were performed. The resulting rate of convergence ofg(E1)/g(E0) measured
by ǫratio is shown in Fig. 7.12. The results were obtained by averagingover ten
independent blocks of runs, i.e. 100 runs had been carried out in total. Interestingly,
the ParQ method in the extended state space is almost as powerful as the optimized
ensemble method in the standard state space.

The joint DOSg(E, V ) was then used to choose the weights for the generalized
ensemble method asw(E, V ) ∝ 1/g(E, V ). This means, for part (3) and (4) the
generalized Metropolis criterion

α = min

(
1,

w(E + ∆E, V + ∆V )

w(E, V )

)

was used. The generalization of the iteration scheme for theoptimized ensemble Eq.
(2.21) is straightforward. The labels+ and−, that the random walk is assigned to
in each time step in the extended state space are determined by the observation if the
random walk has visited the state(E−, 0) ≡ (E0 + 1, 0) or (E+, 0) ≡ (0, 0) most
recently. The histogramsH±(E) are defined accordingly and the optimized ensemble
iteration is generalized to

wk+1(E, V ) = wk(E, V ) ·
√

1

H+(E) + H−(E)
· df

dE
· 1

τ(E)
.

The rate of convergence ofg(E1)/g(E0) is again obtained by averaging over ten
independent runs. As one can see also in Fig. 7.12, the generalized ensemble method in
the extended state space enhances further the rate of convergence. Most likely the rea-
son for this kind of enhancement is that the random walk may find ground states more
quickly (see Fig. 7.11) . The escape rate from the ground state to higher excitations is
also enhanced.

We may conclude that Monte Carlo simulations in extended state spaces enhance
the performance for all three cases, for the ParQ algorithm and the generalized ensem-
ble methods in both variants that have been considered in this chapter. In Appendix B
a related approach applied to the±J spin glass is discussed.
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Figure 7.12: Convergence of the relative error of the ratiog(E1)/g(E0) in the extended
state space. For comparison the data of the best method for the standard state space is
also included.

7.5 Conclusion

In this chapter, I discussed the relation between static and(MC) dynamic properties of
RNA secondary structures and the relation to the performance of different MC algo-
rithms. This model is an ideal test system for this purpose for three reasons: i) The
model exhibits quenched disorder and has a complex low-energy landscape, where an
interesting dynamical behavior can be expected. ii) It exhibits a static phase transition
at finite temperature. iii) The static behavior of the model can be analyzed exactly
using polynomial-time partition-function calculations for each single realization of the
disorder.

Analyzing the static behavior, I calculated the DOS for ensembles of sequences of
different lengths. In particular, I studied the ratiog(E1)/g(E0), which plays the key
role in the complexity of MC methods. The distribution of this ratio could be fitted (but
not perfectly) to a generalized extreme-value distribution, similar as previously found
for the case of±J spin glasses. Location, scale and shape of this distribution scale
algebraically with system size, in contrast to±J spin glasses. I also computed Higgs’s
measures∗ for the degree of ultrametricity of each realization and used hierarchical
clustering approaches to analyze the structure of the landscape.

For the dynamics, I examined two different MC approaches, which served as basis
for evaluating the infinite-temperature transition matrix. The nature of the model ren-
ders a direct MC implementation very inefficient, hence I also included anN -fold way
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sampling scheme. Generalized ensembles with flat-histogram and optimized weights
provided examples for equilibrium simulations, whereas ParQ is based on simulated
annealing, which is an out-of-equilibrium method. In contrast to±J model [HH05],
the ParQ method did not yield very accurate results near the ground state and therefore
equilibrium methods should be preferred. However, the disadvantage of theses meth-
ods is that already suitable initial guesses of the DOS are required. The simulations
show that ParQ can provide such guesses and hence a good strategy might be to com-
bine the ParQ method for a first estimate and use the optimizedensemble method for
further refinement.

The tunneling time, as a measure of complexity for the flat histogram random walk,
is also distributed according to a generalized extreme-value distribution. The scaling of
location and scale parameters seems to be algebraic with an exponent ofz ≈ 7, which
differs from the spin-glass model studied in the literature. The scaling of the shape
parameter indicate much larger sample-to-sample fluctuations than the spin-glass case.
Hence, computationally very hard instances occur more often.

Concerning the relation of static properties and dynamicalbehavior, I found a
strong correlation of the MC tunneling times to the value of the ratiog(E1)/g(E0).

On the other hand, I couldnot detect a strong direct correlation between MC tun-
neling times and degree of ultrametricity of the model. Any numerically observed
correlations appear only in a trivial way, i.e. due to a correlation between the degener-
acy ratio ands∗. Hence, an ultrametric phase space (a kind of global characterization
of the energy landscape), as it seems to be present for RNA secondary structures, does
not necessarily lead to a complex dynamics. The presence of meta-stable states, which
is only a local property of the energy landscape, appears to be much more important.

The analysis of the histogram of visited ground states provides reasons for the
failure of the ParQ algorithm: Microstates with equal energy are not visited with equal
probability and hence evaluation of the infinite temperature transition matrix does not
work correctly. This was not the case for equilibrium methods.

Finally I considered an extended state space, where only oneconstraint may be vi-
olated. In all cases, the rate of convergence of the Monte Carlo algorithms is enhanced.
For the ParQ algorithm and the optimized ensemble method thesampling error of the
ratiog(E1)/g(E0) is one order of magnitude smaller than in the original state space.
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Appendix A

Additional algorithms

A.1 Stochastic backtracing for local alignment

This appendix describes the stochastic backtracing procedure by Mückstein, Hofacker
and Stadler [MHS02] to sample finite temperature local alignments from the Gibbs-
Boltzmann distribution. It depends on the local partition functionsZD

i,j , ZP
i,j andZQ

i,j

that are calculated in the dynamic programming algorithm for finite temperature align-
ment Eq. (3.9).

Firstly a starting point(i, j) of a non-empty alignment or the empty alignment
A = {} is selected with probabilitiesZD

i,j/Z or 1/Z respectively using the inversion
method [Dev86]. If the empty alignment has been selected it is returned, otherwise
a random walk in backward direction is performed. This walk starts at the randomly
chosen starting point(i, j). The probabilities in each step are chosen according to the
local partition functionsZD

i,j , Z
P
i,j andZQ

i,j as well as the local scoresσ(ai, bj). Details
of are shown in Algorithm A.1.1.

A.2 Pair probabilities of RNA secondary structures
and hierarchical backtracing

In the last section a stochastic backtrace procedure for thefinite temperature alignment
has been discussed. A related method for RNA secondary structures is also available
[Hig96]. Here, the algorithm for pair-matching model is presented. The partition func-
tions of structures on the subsequenceai . . . aj are available after the course of the
dynamic programming algorithm Eq. (5.1).

Due the hierarchical structure, the easiest way is to implement this algorithm recur-
sively. The procedurehierarchical backtrace in Algorithm A.2.1 returns a
structure on the sequenceai . . . aj drawn according to the Boltzmann weights. First the
probability thatj is paired withh is computed for allh = i . . . j − hmin. Probabilities
can be computed from the partition functionsZk,l with i ≤ k < l ≤ j [McC90],

ph =
Zi,h−1 · e−ǫh,j/T · Zh+1,j−1

Zi,j
.
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procedurestochasticbacktrace(ZD, ZP , ZQ, i, j, T )
begin
A ← {}
state←match

while(state != stop)do
p diag, pgapa, p gapb, p stop← 0
case stateof

match:
A ← A∪ {(i, j)}
if ( i = 1 or j = 1) then p stop← 1
else

p diag← (ZD
i−1,j−1/Z

D
i,j) · eσ(ai,bj)/T

p gapa← (ZP
i−1,j−1/Z

D
i,j) · eσ(ai,bj)/T

p gapb← (ZQ
i−1,j−1/Z

D
i,j) · eσ(ai,bj)/T

p stop← 1 - p diag - p gapa - p gapb
end
i← i− 1; j ← j − 1

gapb:
if i = 2 and j = 1 then p diag← 1
else

p diag← (ZD
i−1,j/Z

P
i,j) · e−α/T

p gapb← (ZP
i−1,j/Z

P
i,j) · e−β/T

p gapa← 0
end
i← i− 1

gapa:
if i = 1 and j = 2 then p diag← 1
else

p diag← (ZD
i,j−1/Z

Q
i,j) · e−α/T

p gapb← (ZP
i,j−1/Z

Q
i,j) · e−α/T

p gapa← (ZQ
i,j−1/Z

Q
i,j) · e−β/T

end
j ← j − 1

end
set state to match, gapa, gapb, stop

with probabilities pdiag, pgapa, p gapq, p stop
end
return A

end

Algorithm A.1.1: The stochastic backtrace procedure for local alignment with affine
gap costs [MHS02]. It is assumed that a starting point(i, j) has been chosen with
probabilityZD

i,j/Z.
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procedurehierarchicalbacktrace(Z, i, j)
begin
C ← {}
for h in i . . . j − hmin do

p[h]← Zi,h−1 · e−ǫh,j/T · Zh+1,j−1/Zi,j

punpaired← 1−∑j=1
h=i ph.

h← choose h or undefined with probabilities p[h],punpaired

if h 6= undefinedthen
C ← C ∪ {(h, j)}
C ← C ∪ hierarchicalbacktrace(Z, i, h− 1)
C ← C ∪ hierarchicalbacktrace(Z, h + 1, j − 1)

else
C ← C ∪ hierarchicalbacktrace(Z, i, j − 1)

end
end

return C
end

Algorithm A.2.1: Hierarchical backtrace procedure for sampling of RNA secondary
structures from the canonical ensemble [Hig96]. It is assumed that the partition func-
tions Zi,j are known. To sample a structure on the complete sequencea1 . . . aL the
procedure has to be called as hierarchicalbacktrace(Z, 1, L)

The probability thatj is not paired with any letteri ≤ h < j is given by

punpaired= 1−
j−1∑

h=i

ph.

Next, a new state forj is drawn with the inversion method: It is paired toh with
probabilityph or remains unpaired withpunpaired. This kind of selection induces inde-
pendent subsystems. Ifj was paired withh the systemsai . . . ah−1 andah+1 . . . aj−1

are treated in the same way independently of each other. Otherwise a larger subsystem
ai . . . aj−1 is left for the next recursion. This procedure is repeated until i = j − 1
in each branch. A related method to sample ground-states microcanonicaly, i.e. with
equal weight was proposed by [Har01].

A.3 The clustering method

Fig. 3.13 in Sec. 3.6 and Fig. 7.7 in Sec. 7.3.2 display distance matrices of local align-
ments and RNA secondary structures in the canonical ensemble. The states have been
sorted according to a certain cluster criterion, which is explained in this appendix.

The algorithm used here is Ward’s algorithm [JD88], an agglomerative hierarchical
matrix updating algorithm, also called minimum variance method as it is designed to
minimize the variance of the constructed clusters. The method requires a set of states
from a state spaceχ and a distance measured : χ × χ → R. The algorithm works as
follows. Initially each state forms a cluster of its own, andthe distance matrix∆ab with
the distances of all pairs of clusters (each containing one configuration) is calculated
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using the distanced. Then in each step the two clustersp and q with the smallest
distance are fused to form a new clustert. The distance matrix is updated using

∆rt =
(nr + np)∆rp + (nr + nq)∆rq − nr ∆pq

nr + nt
(A.1)

wherer refers to any of the other clusters left unchanged in the current step andnx

is the number of configurations in clusterx. This is repeated until only one cluster
remains which now contains all configurations. Afterward, one can re-order the con-
figurations according to the cluster hierarchy obtained in the fusing process, and draw
a color-coded visualization of the distance matrix such as in Fig. 3.13 or Fig. 7.7.

A.4 Statistical significance of the Bhattacharyya dis-
tance measure

The Bhattacharyya distance measure (BDM) was introduced inChapter 6 and used
in the discussion of entropy effects of the minimum free-energy distribution of RNA
secondary structures. Furthermore it provided a measure for the violation of the mi-
crocanonical property of the ParQ algorithm. This issue wasdiscussed in Sec. 7.3.4.
In this appendix the Monte Carlo method that allows one to estimate the statistical
significance of the BDM is described.

Let X be a discrete random variable with possible outcomes between 1 andk. We
want to test the hypothesis thatX is described by a certain model, the so called “null-
model”. This model states thatX is described by the PMFp0.

Let x1 . . . xn be the outcomes of an experiment on the random variableX and
define the empirical histogram as

p̂(i) =
1

n

n∑

j=1

δi,xj
.

The BDM between two probability mass functionsp andq was introduced in Eq. (6.1).
Here, we measure the BDM between the empirical distributionp̂ andp0,

B̂ ≡ B(p̂||p0) =

k∑

i=1

√
p̂(i) ·

√
p0(i).

If p̂(i) = p0(i) for all i = 1 . . . k, one would obtain a BDM of1. Finite samples hardly
reach a BDM of1 even though the null hypothesis was correct. Deviations from 1
strongly depend onk andn.

It is possible to assess a p-value of the observationB̂. This is the probability that
a BDM of B̂ or smaller occurred by pure chance under the assumption thatthe null
model is true. To define this more precisely, letY1 . . . Yn be a random vector where
eachYi is described byp0. Under this conditions the BDM is also a random variable

B =
k∑

i=1

√√√√ 1

n

n∑

j=1

δi,Yj
·
√

p0(i).

The p-value for the observed BDM̂B is defined as

p-value:= Prob
[
B ≤ B̂

]
.
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procedurebdm update(y[1 . . . n],h[1 . . . k],Bmax)
begin

B ←∑k
i=1

√
h[i] ·

√
p0(i)

j ← random integer between1 andn
y∗ ← choose random integer between1 andk with probabilitiesp0(·)
B∗ ← B +(

√
h[y[j]]− 1−

√
h[y[j]])

√
p0(y[j])

+(
√

h[y∗] + 1−
√

h[y∗])
√

p0(y∗)
if B∗ ≤ Bmax then

B ← B∗

y[j]← y∗

h[y[j]]← h[y[j]]− 1
h[y∗]← h[y∗] + 1

end
return (y,h,B)

end

Algorithm A.4.1: Monte Carlo update procedure for the BDM p-value algorithm. It
requires the threshold valueBmax, a working histogramh[1 . . . k] and a working array
y[1 . . . n], where eachy[i] can be integers between1 and k. It returns a modified
working array, the histogram and the currentBDM .

One would accept the model if the p-value was large enough which depends on how
conservative the test is desired to be.

By randomization it is possible to compute a p-value for an observedB̂ with fixedn
andk. One generates independent histograms according to the null model (realizations
of the random vectorYi) and counts the fraction of events, where the BDM is smaller
than or equal toB̂ [Sco04]. If the p-value is very small this simple sampling method
becomes infeasible very quickly. For those cases one may implement an importance
sampling approach. Here the method of Wilbur [Wil98] is discussed. It is a Monte
Carlo method designed to approximate very small p-values1.

The method is based on Markov chain Monte Carlo that aims at sampling the ran-
dom vectorY1 . . . Yn from the distribution(p0)

n. The so constructed chain is denoted

as(y
(0)
1 . . . y

(0)
n ), . . . , (y

(m)
1 . . . y

(m)
n ), wherem is the number of samples. Initially the

vectory(0)
1 , . . . y

(0)
n is drawn randomly from the distribution(p0)

n. At each time step
t ≥ 1, a new vectory∗

1 , . . . , y
∗
n is proposed by a local modification of the previous

vectory(t−1)
1 , . . . , y

(t−1)
n . This is done by choosing an index1 ≤ j∗ ≤ n randomly

and then replacing thej∗th component with some discrete random numbery∗ drawn
from p0, i.e.

y∗
1 , . . . , y∗

n = y
(t−1)
1 , . . . , y

(t−1)
j∗−1 , y∗, y

(t−1)
j∗+1 , . . . , y(t−1)

n .

This proposal yields the new BDM

B∗ :=
k∑

i=1

√√√√ 1

n

n∑

j=1

δi,y∗
j
·
√

p0(i).

1 A related sampling technique in the context of free-energy barriers,successive umbrella sampling, was
proposed by Virnau and Müller [VM04]

135



136 A. Additional algorithms

This proposal is accepted, ifB∗ is smaller than a certain threshold valueBmax, which
is specified below. In that casey∗

1 , . . . , y∗
n is used in the next time step as usual. The

update procedure is illustrated in Algorithm A.4.1.
The simulation consists of two stages. In the first one a series of threshold values

B
(0)
max . . . B

(lmax)
max is determined iteratively. In each of those iterations, that are labeled

as0, . . . , (lmax − 1), a predefined number of Monte Carlo steps is performed as de-

scribed above, whereB(0)
max is set to1 in the first iteration. After each iteration the

threshold value of the next iteration is set to the median of the visited BDMs of the cur-
rent iteration. This is repeated until the BDM that has to be tested, i.e.B̂, is smaller
than the25% quantile of the simulated BDMs. This happens in the iteration labeled by
lmax − 1. The last threshold value is set tôB instead of the median, i.e.B(lmax)

max = B̂.
In the second stage, the iterations0 . . . (lmax−1) are repeated with the fixed thresh-

old valuesB(0)
max, . . . , B

(lmax−1)
max that have been determined in the first stage. In order

to achieve a better accuracy, it is possible to choose a larger number of Monte Carlo
steps per iteration than in the first stage. In each iterationthe fraction of eventŝfl

with B ≤ B
(l+1)
max is measured. The serieŝf0, . . . , f̂lmax−1 yields to a Monte Carlo

approximation of the p-value,

p-value≈
lmax−1∏

l=0

f̂l.

This approach is very general and could in principle also be applied to the local se-
quence alignment statistics as it was discussed in Chapter 4. But to my believe the
parallel tempering or the Wang-Landau approach has better mixing properties because
the random walker is allowed to travel across different score levels in two directions.
The method that is described here is more simulated annealing like.
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Appendix B

The +/- J spin glass: Algebraic
tunneling times?

In Sec. 7.4 you have seen that the performance of the ParQ method could be increased
by the reduction of frustration in a system with entropic constraints.

This result arises the question whether the principle may beadopted to other sys-
tems with high energetic or entropic barriers. In the case study which is presented in
this appendix, we consider the two-dimensional±J spin glass, which is a prototype
of glassy systems with quenched disorder [EA75, BY86, MPV87, You98, FH93]. As
already mentioned in Chapter 7, this model is characterizedby large sample-to-sample
fluctuations, which results in extremely broad tunneling time distributions of general-
ized ensemble Monte Carlo algorithms. In contrast to the RNAsecondary structure
(the results of Sec. 7.3.3), typical tunneling times grow exponential with the system
size [DTW+04]. The aim of the present study is to check whether this performance
limitation can be overcome by extended state spaces similaras in Sec. 7.4.

In the following two sections, the model including its extension will be briefly
introduced and, after that, the resulting convergence properties and tunneling time dis-
tributions are presented.

B.1 The Edwards-Anderson Hamiltonian

The state space of the two-dimensional±J Ising spin glass is a set of Ising spins{σi},
i.e. variables that only have+1 or−1 as possible values (orientations). In the geometry
which is chosen here, these spins sit on the sites of a rectangular lattice with periodic
boundary conditions in both directions (see Fig. B.1(a)). Each of theM = 2N bonds
of this lattice is assigned a variableJi,j ∈ {+1,−1}.

Bonds withJi,j = +1 are denoted asferromagnetic, those withJi,j = −1 as
anti-ferromagnetic. In terms of statistical mechanics of disordered systems, the set
of random bonds referres to the realizations of the disorder, similar as the molecular
sequence in the model of the RNA secondary structure.

The Hamiltonian of the model is given by

E(σ) := −
∑

〈i,j〉

σiJi,jσj ,
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Figure B.1:
(a) Geometry of the two-dimensional Ising spin-glass with periodic boundary condi-
tions. The circles indicate the spins, which are enumeratedfrom 0 to L2 − 1.
(b) A non-frustrated plaquette. Ferromagnetic bonds are shown as straight lines and
anti-ferromagnetic bonds as rugged lines. Each bond can be satisfied, i.e. spins that are
connected by ferromagnetic (anti-ferromagnetic) bonds have equal (opposite) orienta-
tion.
(c) In a frustrated plaquette one bond cannot be satisfied.

where the sum runs over all nearest neighbors. This kind of energy function is referred
as Edwards Anderson Hamiltonian with±J interaction. In contrast to the model of the
RNA secondary structure, there are no entropic constraints, i.e. all2N spin configura-
tions are possible states for every realization of the disorder. The frustration is more of
energetic nature, due to so called frustrated plaquettes.

A plaquette is closed path on the lattice consisting of four bonds (see Fig. B.1 (b)
and (c)). A plaquette is referred asfrustrated, if the product of the four bond variables
equals−1. Spins connected by ferromagnetic bonds energetically favor to take the
same orientation and those connected by anti-ferromagnetic bonds prefer to take the
opposite orientation. Therefore all bonds of a frustrated plaquette cannot be “satisfied”
at the same time.

TheJi,j had been drawn from the bimodal distribution

P (J) =
1

2
(δJ,−1 + δJ,1) .

Since the aim is to study the generalized ensemble method in extended state spaces, it is
desirable to know the exact DOS for each realization of the disorder as a reference. For
that purpose, I used the algorithm of Saul and Kardar [SK94].This method requires
that the number of frustrated and non-frustrated plaquettes equals, which is also the
case in the thermodynamic limit. Hence, only such realizations had been considered.
In figure Fig. B.2, the DOS for different realizations of system sizes fromL = 4 to
L = 20 are illustrated. The data have been produced by the originalimplementation
by Saul and Kardar.

If the number of spins is even, the energy changes its sign under a simultaneous spin
flip of every second spin. Hence the DOS is symmetric and it is enough to consider
only negative energies. Hence, the maximal possible energyvalue,Emax, is either0
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Figure B.2: The DOS of different realizations of±J spin-glasses in two dimensions
on square lattice obtained by the algorithm by Saul and Kardar [SK94]

or−2 depending on the bond configurationJ.

B.2 Extension of the state space

In order to remove frustration from the system in a similar but not equivalent way
as described in Sec. 7.4, I considered allMa anti-ferromagnetic bonds as additional
degrees of freedom. This means they are allowed to change from ferromagnetic to
anti-ferromagnetic. This allows one to interpolate between the original spin glass and
a ferromagnet, where all anti-ferromagnetic bonds have flipped. In this case the frus-
tration is removed completely.

Let V denote the magnetization like observable, that measures the amount of
changed bonds. We shall denoted this macroscopic quantity as violation. The original
system hasV = 0 and the ferromagnetV = Ma. Similar as for the RNA sec-
ondary structure, we are aiming at simulating the joint density of statesg(E, V ). The
normalized DOS of the original system is then obtained by theprojection

ĝ(E) =
1∑

E′ g(E′, 0)
g(E, 0)

The performance is measured by the tunneling times from the stateEmax andV = 0
to the ground state of the original systemE0 andV = 0 in the generalized ensemble.

In order to measure the performance I implemented three variants of the simulation
program,

• the Wang-Landau algorithm,
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class number σi number of neighbors ∆E new class
with Ji,jσj = 1

0 + 0 -8 5
1 + 1 -4 6
2 + 2 0 7
3 + 3 4 8
4 + 4 8 9
5 - 0 8 0
6 - 1 4 1
7 - 2 0 2
8 - 3 -4 3
9 - 4 -8 4

class number J∗
i,j σi, σj ∆E new class

0 + +, + or−,− 2 2
1 + +,− or−, + −2 3
2 − +, + or−,− −2 0
3 − +,− or−, + 2 1

Table B.1: Energy classes for spins and bonds. The table shows a class number, the
current spin or bond value, the local environment of the object, the energy change a flip
would cause and the class identifier of the spin/bond after a possible flip.

• the generalized ensemble method with Metropolis updates (see. Sec. 2.7) and

• the generalized ensemble method with n-fold way updates (see. Sec. 2.3).

All three algorithms employ weightsw(E, V ) on a two-dimensional domain. For the n-
fold way, allN +Ma variables are divided in only10+4 classes, that are characterized
by the energy change that a flip would cause. These classes arelisted in Tab. B.1
for the spin and bond variables. For Metropolis updates one selects one of theN +
Ma variables at random, performs a trial flip, which is acceptedwith the acceptance
criterion given by Eq. (2.4),

α = min

{
1,

w(E + ∆E, V + ∆V )

w(E, V )

}
,

where∆E and∆V are the changes of energy and violation that the flip would cause.
When using the n-fold way dynamics, all proposals are accepted and one accounts for
the waiting times a spin flip would cause (see Sec. 2.3).

Spin flips may change the energy by multiples of4 and the energy may change
by±2 due to bond flips (see Tab. B.1). A spin flip leaves the violation V unchanged,
whereasV is increased or decreased by one by a bond flip. This means, only certain
macro states are in principle possible. Only those states have to be taken into account,
when checking the flatness of the histogram in the Wang-Landau algorithm. Further-
more the state space is restricted toE ≥ E0, even for states withV > 0. The largest
possible value ofV is of courseMa. The closeup sketch in Fig. B.3 shows possible
states and jumps close to the ground state. However, a doubling of the number of vari-
ables is not desirable in systems where the state space growsexponentially with the
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Figure B.3: Allowed macro states in theE − V plane.
closeup: possible states and jumps close to the ground state.

number of variables. Therefore, the set of possible macro states are further reduced.
We allow only states that have zero violationV = 0 or that sit in theE − V plane
below the curve

Vmax(E) = (1− α)Ma · exp[−B(E − E0)]. (B.1)

α ∈ [0, 1] is a tunable parameter andB > 0 is chosen such thatVmax((1−α)E0) = 1,

B = − log [(1− α)Ma]

αE0
.

Furthermore one has to guarantee that each allowed macro state is reachable from the
ground state by a chain of the10 + 4 jumps listed in Tab. B.1, i.e. the states have to
be ergodic. The states in theE − V plane after this kind of restriction are illustrated
in Fig. B.3. The limitα = 0 corresponds to all discrete states on the full rectangular
supportE0 ≤ E ≤ 0 and0 ≤ V ≤ Ma that are reachable from the ground state.
The other extreme caseα = 1 restricts the allowed states to the(V = 0)-axis, which
corresponds to the original state space.

In the following section, the performance of the Monte Carlodynamics in the ex-
tended state space is discussed.

B.3 Performance in the extended state space

In a first step, I generated the generalized ensemble weightsw(E, V ) for a small num-
ber of realizations betweenL = 4 andL = 20 by the Wang-Landau algorithm (10
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Figure B.4: Top: Performance of the extended state-space method in comparison to
the standard method measured by the ratio of tunneling timesas a function ofα.
Bottom: Ratio of number of macro states of the extended statespace to the number of
energy levels of the original system.

realization per system size). The paramaterα that controls the size the of state space
was chosen between0.7 and1.0 for L < 16 and0.75 for L = 16 andL = 20. The
parameters for the Wang-Landau algorithms were tuned asǫWL = 0.6, log φ0 = 0.1
andlog φfinal = 1× 10−8. Forα = 1 (the original problem) the exact DOS were used
to determine the weights asw(E) = 1/g(E). For each realization and several values
of α, a generalized ensemble simulation with n-fold way dynamics was performed and
the corresponding tunneling times were measured.

The resulting tunneling timesτ0 for the caseα = 1 are used as reference and
the performance of the extended state space method is measured as the ratio of the
observed tunneling timeτ for α < 1 to the referenceτ0 as a function ofα (see Fig.
B.4). Obviously, there is a local optimum atα ≈ 0.85. Possibly, this also a global
optimum. However, I also experimented with restrictions where the boundary function
Vmax defined in Eq. (B.1) was changed by choosing another value ofB, such that
Vmax(E) = 1 was shifted towards the ground state, while the vertical offset was kept
fixed. I found no significant enhancement.

In realistic applications, where the DOS is not known, it is required to have “effi-
cient” weights such that all states are visited with equal probability. Hence, also the
methods to obtain those weights, i.e. the Wang-Landau algorithm in this case, have
to be efficient. For example, if the tunneling time decreasesby a factor of2, but the
Wang-Landau iteration requires four times as much computational effort as in the orig-
inal state-space, nothing is gained. Therefore I also checked the dynamics of the Wang
Landau iteration withα = 0.85. For this purpose, I picked out an “easy” and an “hard”
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Figure B.5: Convergence of the Wang-Landau iteration for extended state space
α = 0.85 and the standard caseα = 1. The plot displays the number of Monte
Carlo sweeps required to achieve different modification factorslog φ. A sweep is mea-
sured by number of MC steps per spin variable. The data had been averaged over10
independent runs.

realization ofL = 20. The easy realization was chosen close to the median of the
distribution of the ratiog(E1)/g(E0). Again, E1 denotes the energy of first excita-
tions, which isE0 + 4 for this model. The value of the ratio for the easy instance was
g(E1)/g(E0) ≈ 972. The hard instance was taken from the tail, where this ratio is
large, i.e.g(E1)/g(E0) ≈ 95, 651. This ratio turned out to be the crucial measure for
Monte Carlo complexity (see Sec. 7.3.3 and [DTW+04]).

The result is shown in Fig. B.5, where the number of Monte Carlo sweeps vs.
modification factors is displayed. Note that a sweep is defined as number of Monte
Carlo steps perspin in both cases, i.e. number of steps / 400 forL = 20. Surprisingly,
even though the Wang-Landau histogram is defined on a larger domain for the extended
state space, the algorithm converges faster in this case.

Next, we study the rate of convergence of the estimator of theratio g(E1)/g(E0).
As shown in Chapter 7, this quantity is very sensitive to the choice of the Monte Carlo
method. Its relative error has already been defined by Eq. (7.3) in Chapter 7,

ǫratio =
|g(E1)/g(E0)− gexact(E1)/gexact(E0)|

gexact(E1)/gexact(E0)
.

Fig. B.6 illustrates the convergence of the extended state space algorithm in com-
parison with the standard generalized ensemble. Obviouslythe performance could be
improved for the hard and the easy instance, where many meta-stable states prohibit a
direct jump from a first excitation to the ground state in the standard algorithm. When

143



144 B.The +/- J spin glass: Algebraic tunneling times?

1×10
6

1×10
7

1×10
8

MC sweep

10
-2

10
-1

10
0

εra
tio

α = 1.00
(hard instance)
α = 0.85
(hard instance)
α = 1.00
(easy instance)
α = 0.85
(easy instance)

Figure B.6: Rate of convergence of the extended state space (α = 0.85) method in
comparison with the standard generalized ensemble withoutviolations (α = 1.0). Two
realizations ofL = 20 have been considered. The convergence is enhanced for the
hard instance, whereg(E1)/g(E0) is large.

allowing extended states, the random walk is allowed to escape from such local min-
ima resulting in smaller correlation times. Hence, with thesame number of n-fold way
updates, a smaller error is obtained, even though the state space is much larger than the
original one.

This effect is studied in more detail by the properties of thetunneling-time distri-
bution over ensembles of realizations of the disorder. These distributions were studied
by Dayal et.al. [DTW+04]. They observed that this distribution is well describedby
a generalized extreme-value distribution, which was introduced by Eq. (7.4) in Chap-
ter 7,

Prob (τ ≥ x) = exp

[
−
(

1 + ξ
x− µ

σ

)−1/ξ
]

.

The typical tunneling time described by the location parameterµ and the scaleσ grows
exponentially with the system size. Here, I considered a slightly different definition of
the tunneling time as in [DTW+04]. Where Dayal et. al. considered the entire range
energy range from the ground stateE0 to the anti-ground state−E0, I made use of the
symmetry of the system for an even number of spins, as described above, and measured
the tunneling times only on the negative energy axis from themaximumEmax to the

ground state and back. This causes the typical tunneling time to grow likeexp
[
c
√

L
]

(instead ofexp [c′L]), which is still exponential. I generated1000 realizations for each
system sizes fromL = 6 to L = 20. ForL = 20 only 300 realizations were generated.
For each of those realizations the generalized ensemble weights for the extended state

144



B. The +/- J spin glass: Algebraic tunneling times? 145

10
10

3

10
4

10
5

10
6

10
7

2.5 3 3.5 4 4.5 5 5.5 6

L
1/2

10
3

10
4

10
5

10
6

10
7

µ
α = 1.00, Metropolis
α = 1.00, n-fold way
α = 0.85, n-fold way

5 10 15 20

0.2
0.4
0.6
0.8
1.0

ξ

Figure B.7: Scaling of the locationµ and shapeξ of the generalized extreme value
distribution of tunneling times. Lines show least square fits to the exponential function
Eq. (B.3). The scale parameterσ is not shown. It behaves similar as the location
parameter.
Top inset: scaling of the shape parameter.
Bottom inset: the location parameter on a log-log plot scale. Lines show least square
fits to the algebraic function Eq. (B.2).
Tab. B.2 displays all fit-parameters including reducedχ2

∗ values.

space (α = 0.85) were determined with the Wang-Landau algorithm. After that the
empirical tunneling-time distributions for the generalized ensemble with n-fold way
updates were determined. In order to decide how strong the extended state space im-
proves the statistics of tunneling times, the same distribution for the generalized en-
semble method withα = 1.0 was obtained. Besides the n-fold way, also simulations
with standard Metropolis updates were employed for this case.

In a similar way as in Chapter 7, I determined the parameters locationµ, scaleσ
and shapeξ of the generalized extreme-value distribution by a maximumlikelihood fit
[Hos85, Mac89]. The scaling behavior of those parameters isshown in Fig. B.7. As one
can see, the differences between the methods regarding the growth of typical tunneling
timesµ and the scale parameters differ significantly among different methods, but some
evidence for exponential scaling for the extended state space still remains. All methods
exhibit a scaling somehow between exponential and algebraic. In order to provide more
quantitative evidence in either direction, I fitted the datato algebraic

µ(L) = Aµ · Lzµ and σ(L) = Aσ · Lzσ (B.2)
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algebraic fit zµ Aµ χ2
∗ zσ Aσ/106 χ2

∗

α = 1.0
Metropolis 6.5(1) 0.022(6) 63.3 7.2(2) 0.003(1) 36.1
α = 1.0
n-fold way 6.5(1) 0.014(4) 72.2 7.2(2) 0.015(6) 28.9
α = 0.85
n-fold way 5.78(6) 0.048(6) 19.6 6.4(1) 0.005(1) 11.3

exponential fit cµ Bµ/106 χ2
∗ cσ Bσ/106 χ2

∗

α = 1.0
Metropolis 4.34(7) 0.07(1) 36.3 4.63(5) 0.016(2) 5.8
α = 1.0
n-fold way 4.26(8) 0.05(1) 47.7 4.57(6) 0.010(2) 8.6
α = 0.85
n-fold way 3.8(1) 0.13(4) 131.7 4.04(7) 0.031(7) 10.1

Table B.2: Fit parameters of the weighted chi-square fits of the parameters location
µ and scaleσ of the generalized extreme value distribution to the algebraic function
Eq. (B.2) and the exponential function Eq. (B.3). Weighted chi squared valuesχ2

∗ are
included.

and exponential functions

µ(L) = Bµ · exp[cµ

√
L] and σ(L) = Bσ · exp[cσ

√
L] (B.3)

by a weighted chi-square fit. The resulting fit parameters including the weighted chi-
square valuesχ2

∗ are summarized in Tab. B.2. The data, in particular theχ2
∗ values,

suggests that, for the extended state space, the characteristic exponential growth is less
likely than an algebraic growth.

To summarize the results of this appendix, I have consideredan extension of the
state space of±J Ising spin glasses, in order to check whether the performance can
be increased. Regarding the performance of the Wang-Landaualgorithm and the gen-
eralized ensemble method, the answer is in principle positive as can be seen by the
convergence properties, especially for hard instances. Typical tunneling times are re-
duced by a factor of about3.2 for the largest system and some evidence for algebraic
growth of the tunneling times is found by a fit. However, an exponential growth cannot
be safely excluded. Hence, in a future work it would be of interest whether the im-
provement remains for larger systems thanL = 20 or even three-dimensional systems,
where the exact density of states cannot be computed efficiently.

146



Appendix C

Fit parameters

This appendix summarizes fit parameters for the alignment statistics discussed in Chap-
ter 4.

α LQ, LS λ 104 λ2 K S0 χ2
∗

10 40 0.3272 ± 0.108% 8.6347 ± 0.412% 0.1028 ± 0.65% 15.597 ± 0.0676% 79.05
60 0.3034 ± 0.086% 6.2007 ± 0.285% 0.0751 ± 0.60% 18.455 ± 0.0645% 49.40
80 0.2892 ± 0.070% 4.8781 ± 0.222% 0.0612 ± 0.53% 20.644 ± 0.0540% 21.67

100 0.2747 ± 0.072% 4.3187 ± 0.330% 0.0472 ± 0.58% 22.413 ± 0.0611% 39.42
150 0.2541 ± 0.083% 3.2974 ± 0.529% 0.0303 ± 0.61% 25.682 ± 0.0422% 39.46
200 0.2432 ± 0.063% 2.6343 ± 0.344% 0.0241 ± 0.52% 28.257 ± 0.0412% 10.47
250 0.2359 ± 0.071% 2.1999 ± 0.454% 0.0198 ± 0.60% 30.196 ± 0.0459% 9.40
300 0.2303 ± 0.061% 1.9101 ± 0.348% 0.0174 ± 0.54% 31.934 ± 0.0408% 2.00
350 0.2261 ± 0.046% 1.6404 ± 0.239% 0.0153 ± 0.41% 33.334 ± 0.0300% 1.27
400 0.2224 ± 0.052% 1.4806 ± 0.266% 0.0136 ± 0.49% 34.556 ± 0.0369% 1.36
600 0.2140 ± 0.062% 1.0206 ± 0.384% 0.0106 ± 0.64% 38.561 ± 0.0472% 2.15
800 0.2090 ± 0.063% 0.7660 ± 0.419% 0.0088 ± 0.67% 41.320 ± 0.0457% 1.82

12 40 0.3366 ± 0.117% 7.9013 ± 0.518% 0.1125 ± 0.74% 15.426 ± 0.0799% 34.31
60 0.3178 ± 0.120% 5.4247 ± 0.484% 0.0898 ± 0.85% 18.183 ± 0.0836% 66.67
80 0.3044 ± 0.085% 4.2388 ± 0.299% 0.0715 ± 0.61% 20.123 ± 0.0513% 31.31

100 0.2987 ± 0.087% 3.2541 ± 0.557% 0.0663 ± 0.65% 21.748 ± 0.0498% 39.77
150 0.2896 ± 0.081% 1.9120 ± 1.049% 0.0562 ± 0.63% 24.663 ± 0.0350% 32.49
200 0.2843 ± 0.060% 1.4542 ± 0.639% 0.0512 ± 0.51% 26.822 ± 0.0282% 4.58
250 0.2815 ± 0.055% 0.9651 ± 1.138% 0.0487 ± 0.47% 28.492 ± 0.0207% 6.61
300 0.2761 ± 0.075% 0.8401 ± 1.177% 0.0423 ± 0.69% 29.858 ± 0.0354% 1.49
350 0.2754 ± 0.064% 0.7118 ± 1.017% 0.0420 ± 0.59% 31.030 ± 0.0265% 1.13
400 0.2715 ± 0.054% 0.6569 ± 0.769% 0.0374 ± 0.53% 32.034 ± 0.0270% 1.26

14 40 0.3406 ± 0.132% 7.5641 ± 0.593% 0.1191 ± 0.89% 15.411 ± 0.1074% 161.70
60 0.3233 ± 0.150% 5.1473 ± 0.636% 0.0958 ± 1.08% 18.072 ± 0.1091% 119.48
80 0.3132 ± 0.134% 3.9083 ± 0.529% 0.0828 ± 0.96% 20.031 ± 0.0739% 52.61

100 0.3118 ± 0.089% 2.7370 ± 0.661% 0.0833 ± 0.71% 21.570 ± 0.0560% 46.20
150 0.3080 ± 0.070% 1.3077 ± 1.383% 0.0790 ± 0.57% 24.296 ± 0.0298% 17.41
200 0.3039 ± 0.061% 0.9113 ± 1.283% 0.0743 ± 0.53% 26.313 ± 0.0252% 4.03
250 0.3021 ± 0.044% 0.5421 ± 1.745% 0.0727 ± 0.39% 27.878 ± 0.0169% 1.69
300 0.2995 ± 0.058% 0.4089 ± 2.364% 0.0691 ± 0.55% 29.162 ± 0.0248% 1.43
350 0.2982 ± 0.038% 0.4102 ± 1.308% 0.0668 ± 0.37% 30.212 ± 0.0151% 0.76
400 0.2964 ± 0.044% 0.3697 ± 1.424% 0.0635 ± 0.46% 31.122 ± 0.0232% 1.12

16 40 0.3423 ± 0.145% 7.4174 ± 0.624% 0.1207 ± 0.98% 15.376 ± 0.1177% 127.67
60 0.3266 ± 0.145% 4.9889 ± 0.631% 0.1019 ± 1.02% 18.079 ± 0.0925% 96.12
80 0.3158 ± 0.136% 3.7888 ± 0.548% 0.0852 ± 1.10% 19.956 ± 0.1110% 102.43

100 0.3192 ± 0.099% 2.4005 ± 0.864% 0.0951 ± 0.77% 21.480 ± 0.0526% 38.51
150 0.3172 ± 0.070% 1.0875 ± 1.574% 0.0963 ± 0.57% 24.216 ± 0.0246% 22.37
200 0.3142 ± 0.052% 0.6405 ± 1.585% 0.0923 ± 0.45% 26.141 ± 0.0175% 1.87
250 0.3117 ± 0.056% 0.4447 ± 1.701% 0.0885 ± 0.54% 27.647 ± 0.0283% 5.08
300 0.3108 ± 0.041% 0.3838 ± 2.118% 0.0871 ± 0.38% 28.848 ± 0.0119% 0.32
350 0.3091 ± 0.034% 0.2300 ± 2.586% 0.0845 ± 0.34% 29.910 ± 0.0147% 0.39
400 0.3085 ± 0.028% 0.1676 ± 2.554% 0.0838 ± 0.30% 30.808 ± 0.0146% 0.43

∞ 40 0.3457 ± 0.141% 7.2030 ± 0.712% 0.1298 ± 0.86% 15.437 ± 0.0773% 132.94
60 0.3281 ± 0.151% 4.8936 ± 0.679% 0.1040 ± 1.07% 18.060 ± 0.0983% 128.56
80 0.3165 ± 0.163% 3.7511 ± 0.634% 0.0866 ± 1.28% 19.959 ± 0.1208% 95.18

100 0.3224 ± 0.125% 2.3191 ± 1.007% 0.1020 ± 0.94% 21.485 ± 0.0514% 11.77
150 0.3255 ± 0.039% 0.8343 ± 1.162% 0.1150 ± 0.32% 24.139 ± 0.0078% 0.48
200 0.3262 ± 0.032% 0.3662 ± 3.326% 0.1219 ± 0.30% 26.029 ± 0.0164% 0.90
250 0.3216 ± 0.064% 0.3022 ± 3.597% 0.1113 ± 0.62% 27.510 ± 0.0260% 2.57
300 0.3248 ± 0.016% - 0.1234 ± 0.49% 28.684 ± 0.0503% 5.33
350 0.3241 ± 0.009% - 0.1233 ± 0.22% 29.690 ± 0.0207% 2.49
400 0.3220 ± 0.013% - 0.1167 ± 0.39% 30.541 ± 0.0371% 2.09

Table C.1: Fit parameters of the modified Gumbel distribution Eq. (4.4) for the clas-
sical i.i.d. model using theBLOSUM62 scoring matrix and different affine costsα and
β = 1.
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148 C. Fit parameters

α LQ, LS λ 104 λ2 K S0 χ2
∗

11 40 0.2615 ± 0.154% 5.5852 ± 0.727% 0.0995 ± 0.90% 19.387 ± 0.0882% 96.36
60 0.2373 ± 0.150% 4.4494 ± 0.612% 0.0729 ± 0.97% 23.477 ± 0.0903% 114.50
80 0.2227 ± 0.149% 3.6508 ± 0.554% 0.0585 ± 1.01% 26.610 ± 0.0815% 123.28

100 0.2099 ± 0.139% 3.3410 ± 0.560% 0.0468 ± 1.02% 29.293 ± 0.0906% 79.64
150 0.1920 ± 0.116% 2.5551 ± 0.400% 0.0320 ± 0.90% 34.266 ± 0.0713% 35.65
200 0.1825 ± 0.110% 2.0098 ± 0.355% 0.0262 ± 0.98% 38.115 ± 0.0875% 19.07
250 0.1729 ± 0.110% 1.7807 ± 0.356% 0.0203 ± 1.06% 41.312 ± 0.1004% 18.50
300 0.1671 ± 0.072% 1.5683 ± 0.254% 0.0168 ± 0.64% 43.796 ± 0.0505% 3.63
350 0.1608 ± 0.073% 1.4261 ± 0.237% 0.0135 ± 0.70% 46.080 ± 0.0593% 3.78
400 0.1584 ± 0.052% 1.2870 ± 0.184% 0.0125 ± 0.44% 48.005 ± 0.0269% 0.82

13 40 0.2664 ± 0.117% 5.4163 ± 0.680% 0.1037 ± 0.66% 19.186 ± 0.0550% 57.54
60 0.2464 ± 0.079% 4.0672 ± 0.369% 0.0824 ± 0.51% 23.101 ± 0.0435% 26.45
80 0.2336 ± 0.079% 3.2958 ± 0.352% 0.0682 ± 0.56% 26.023 ± 0.0461% 24.76

100 0.2228 ± 0.065% 2.8870 ± 0.327% 0.0559 ± 0.48% 28.399 ± 0.0407% 12.07
150 0.2085 ± 0.042% 2.1084 ± 0.203% 0.0414 ± 0.34% 32.797 ± 0.0269% 6.13
200 0.1999 ± 0.039% 1.6797 ± 0.172% 0.0337 ± 0.34% 36.039 ± 0.0269% 1.57
250 0.1930 ± 0.030% 1.4174 ± 0.160% 0.0273 ± 0.29% 38.553 ± 0.0237% 1.49
300 0.1891 ± 0.040% 1.1849 ± 0.216% 0.0248 ± 0.37% 40.779 ± 0.0263% 1.86
350 0.1852 ± 0.044% 1.0489 ± 0.257% 0.0219 ± 0.40% 42.617 ± 0.0255% 1.80
400 0.1834 ± 0.058% 0.9090 ± 0.353% 0.0204 ± 0.54% 44.100 ± 0.0323% 2.06

15 40 0.2706 ± 0.090% 5.1148 ± 0.527% 0.1115 ± 0.53% 19.158 ± 0.0480% 32.81
60 0.2520 ± 0.051% 3.7530 ± 0.273% 0.0898 ± 0.33% 22.935 ± 0.0261% 12.85
80 0.2403 ± 0.046% 2.9795 ± 0.214% 0.0758 ± 0.32% 25.738 ± 0.0252% 7.17

100 0.2315 ± 0.036% 2.5361 ± 0.213% 0.0644 ± 0.28% 27.938 ± 0.0245% 4.12
150 0.2185 ± 0.035% 1.8127 ± 0.199% 0.0492 ± 0.30% 32.074 ± 0.0264% 4.21
200 0.2107 ± 0.056% 1.4225 ± 0.292% 0.0404 ± 0.50% 35.072 ± 0.0376% 3.14
250 0.2074 ± 0.051% 1.0914 ± 0.378% 0.0374 ± 0.49% 37.394 ± 0.0367% 4.17
300 0.2038 ± 0.050% 0.9403 ± 0.380% 0.0340 ± 0.50% 39.377 ± 0.0378% 2.96
350 0.2017 ± 0.054% 0.7930 ± 0.410% 0.0318 ± 0.57% 41.001 ± 0.0426% 1.68
400 0.2014 ± 0.056% 0.6437 ± 0.520% 0.0314 ± 0.59% 42.326 ± 0.0414% 1.05

17 40 0.2734 ± 0.089% 4.8288 ± 0.468% 0.1166 ± 0.54% 19.130 ± 0.0544% 47.17
60 0.2551 ± 0.053% 3.5604 ± 0.292% 0.0947 ± 0.34% 22.861 ± 0.0253% 12.72
80 0.2442 ± 0.044% 2.8332 ± 0.287% 0.0811 ± 0.30% 25.605 ± 0.0210% 4.65

100 0.2370 ± 0.036% 2.3250 ± 0.267% 0.0715 ± 0.27% 27.733 ± 0.0210% 4.37
150 0.2256 ± 0.043% 1.6046 ± 0.262% 0.0574 ± 0.38% 31.750 ± 0.0305% 5.45
200 0.2195 ± 0.058% 1.2004 ± 0.379% 0.0499 ± 0.51% 34.622 ± 0.0341% 2.42
250 0.2170 ± 0.054% 0.9041 ± 0.511% 0.0470 ± 0.54% 36.797 ± 0.0411% 4.89
300 0.2144 ± 0.051% 0.7326 ± 0.470% 0.0441 ± 0.50% 38.652 ± 0.0334% 3.01
350 0.2136 ± 0.054% 0.5908 ± 0.605% 0.0440 ± 0.56% 40.238 ± 0.0351% 2.37
400 0.2131 ± 0.062% 0.4726 ± 0.828% 0.0437 ± 0.63% 41.541 ± 0.0350% 2.03

∞ 40 0.2737 ± 0.078% 4.9254 ± 0.494% 0.1163 ± 0.46% 19.091 ± 0.0420% 30.06
60 0.2586 ± 0.032% 3.3695 ± 0.183% 0.1016 ± 0.22% 22.827 ± 0.0178% 2.82
80 0.2500 ± 0.026% 2.5857 ± 0.133% 0.0921 ± 0.18% 25.517 ± 0.0128% 1.87

100 0.2439 ± 0.049% 2.0502 ± 0.394% 0.0840 ± 0.38% 27.606 ± 0.0287% 7.82
150 0.2341 ± 0.072% 1.3787 ± 0.537% 0.0707 ± 0.61% 31.490 ± 0.0423% 14.51
200 0.2324 ± 0.074% 0.9453 ± 0.649% 0.0709 ± 0.66% 34.209 ± 0.0386% 3.20
250 0.2327 ± 0.066% 0.5876 ± 0.828% 0.0744 ± 0.62% 36.294 ± 0.0323% 4.97
300 0.2331 ± 0.042% 0.3915 ± 0.718% 0.0773 ± 0.42% 37.957 ± 0.0204% 1.32
350 0.2330 ± 0.037% 0.2084 ± 1.565% 0.0792 ± 0.36% 39.395 ± 0.0120% 0.48
400 0.2324 ± 0.030% 0.1296 ± 3.598% 0.0786 ± 0.29% 40.620 ± 0.0081% 0.32

Table C.2: Fit parameters of the modified Gumbel distribution Eq. (4.4) for the classi-
cal i.i.d. model using thePAM250 scoring matrix and affine gap costsα andβ = 1.
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149

FQPS corresponding RQGS

LQ LS λ 104λ2 K λ 104λ2 K

P08100 50 0.3016 ±0.40% 7.5741 ±0.77% 0.0654 ±3.34%
348 100 0.1747 ±0.19% 3.2202 ±0.32% 0.0132 ±1.49% 0.2829 ±0.17% 3.6884 ±0.36% 0.0463 ±4.09%

200 0.1617 ±0.09% 1.7968 ±0.18% 0.0100 ±1.31% 0.2685 ±0.15% 1.8498 ±0.40% 0.0315 ±2.77%
300 0.1478 ±0.14% 1.3962 ±0.21% 0.0059 ±2.20% 0.2664 ±0.14% 1.1900 ±0.47% 0.0292 ±3.49%
320 0.1466 ±0.15% 1.3775 ±0.28% 0.0056 ±2.33% 0.2674 ±0.11% 1.1059 ±0.51% 0.0295 ±2.05%
348 0.1432 ±0.22% 1.4131 ±0.33% 0.0051 ±2.69% 0.2681 ±0.10% 0.9909 ±0.43% 0.0307 ±2.18%
360 0.1426 ±0.17% 1.4322 ±0.22% 0.0047 ±3.17% 0.2678 ±0.10% 0.9883 ±0.42% 0.0302 ±2.49%
400 0.1418 ±0.10% 1.4201 ±0.17% 0.0047 ±1.43% 0.2648 ±0.12% 1.0238 ±0.50% 0.0248 ±3.89%
500 0.1399 ±0.26% 1.4517 ±0.35% 0.0043 ±3.94% 0.2638 ±0.17% 1.0248 ±0.65% 0.0255 ±5.65%
600 0.1405 ±0.16% 1.4392 ±0.20% 0.0047 ±2.87% 0.2650 ±0.14% 0.9917 ±0.74% 0.0245 ±3.85%

P50052 50 0.3024 ±0.85% 7.4294 ±1.70% 0.0657 ±6.19%
363 100 0.1795 ±0.16% 3.1869 ±0.26% 0.0132 ±1.42% 0.2818 ±0.25% 3.6993 ±0.55% 0.0458 ±3.44%

200 0.1660 ±0.18% 1.8701 ±0.30% 0.0096 ±1.98% 0.2698 ±0.21% 1.8027 ±0.58% 0.0341 ±4.60%
300 0.1550 ±0.22% 1.3995 ±0.36% 0.0066 ±2.97% 0.2643 ±0.14% 1.2232 ±0.42% 0.0273 ±3.55%
330 0.1512 ±0.12% 1.4130 ±0.23% 0.0057 ±1.30% 0.2654 ±0.18% 1.0822 ±0.68% 0.0274 ±5.32%
363 0.1509 ±0.18% 1.3881 ±0.27% 0.0057 ±3.53% 0.2687 ±0.24% 0.9676 ±1.00% 0.0332 ±7.75%
380 0.1489 ±0.12% 1.4138 ±0.19% 0.0051 ±1.17% 0.2651 ±0.30% 0.9806 ±1.28% 0.0270 ±11.76%
400 0.1474 ±0.20% 1.4335 ±0.32% 0.0048 ±3.27% 0.2634 ±0.15% 0.9773 ±0.75% 0.0271 ±11.41%
500 0.1471 ±0.08% 1.4350 ±0.16% 0.0049 ±1.13% 0.2613 ±0.21% 0.9998 ±1.05% 0.0226 ±7.60%
600 0.1457 ±0.28% 1.4640 ±0.54% 0.0046 ±3.24% 0.2662 ±0.15% 0.9498 ±0.79% 0.0250 ±7.76%

Q18179 50 0.3008 ±0.70% 7.6673 ±1.23% 0.0625 ±5.34%
455 100 0.1798 ±0.33% 3.7190 ±0.59% 0.0103 ±2.84% 0.2845 ±0.16% 3.5814 ±0.35% 0.0485 ±2.86%

200 0.1723 ±0.16% 1.9839 ±0.32% 0.0087 ±1.50% 0.2685 ±0.14% 1.8391 ±0.49% 0.0302 ±3.81%
300 0.1609 ±0.25% 1.4302 ±0.40% 0.0059 ±4.49% 0.2632 ±0.16% 1.2382 ±0.53% 0.0262 ±4.69%
420 0.1569 ±0.27% 1.3665 ±0.52% 0.0050 ±2.90% 0.2636 ±0.17% 0.8441 ±0.59% 0.0222 ±9.17%
450 0.1590 ±0.25% 1.3225 ±0.61% 0.0052 ±2.86% 0.2611 ±0.13% 0.8203 ±0.43% 0.0209 ±4.93%
455 0.1548 ±0.26% 1.4038 ±0.52% 0.0049 ±2.76% 0.2655 ±0.12% 0.7670 ±0.49% 0.0246 ±8.35%
480 0.1557 ±0.38% 1.3664 ±0.67% 0.0051 ±7.10% 0.2610 ±0.10% 0.7929 ±0.41% 0.0197 ±6.70%
500 0.1521 ±0.45% 1.4145 ±0.77% 0.0044 ±5.30% 0.2615 ±0.17% 0.7783 ±0.62% 0.0204 ±5.09%
600 0.1540 ±0.25% 1.3886 ±0.43% 0.0043 ±3.72% 0.2596 ±0.14% 0.7706 ±0.60% 0.0174 ±5.71%

P35348 50 0.3046 ±0.61% 7.3443 ±1.17% 0.0668 ±4.85%
466 100 0.1809 ±0.18% 3.1996 ±0.28% 0.0135 ±2.06% 0.2839 ±0.22% 3.6314 ±0.49% 0.0465 ±2.49%

200 0.1625 ±0.12% 1.8687 ±0.18% 0.0079 ±1.63% 0.2696 ±0.15% 1.8030 ±0.48% 0.0315 ±3.97%
300 0.1643 ±0.10% 1.2089 ±0.15% 0.0086 ±2.23% 0.2620 ±0.13% 1.2472 ±0.47% 0.0241 ±5.52%
400 0.1510 ±0.24% 1.2641 ±0.39% 0.0051 ±2.76%
450 0.1521 ±0.33% 1.2357 ±0.55% 0.0050 ±5.39% 0.2647 ±0.16% 0.7874 ±0.67% 0.0246 ±3.93%
466 0.1485 ±0.17% 1.2982 ±0.35% 0.0046 ±2.93%
480 0.1517 ±0.23% 1.2359 ±0.34% 0.0056 ±5.27% 0.2609 ±0.25% 0.7981 ±1.25% 0.0207 ±9.36%
500 0.1492 ±0.22% 1.2845 ±0.35% 0.0048 ±3.64% 0.2668 ±0.09% 0.7124 ±0.49% 0.0265 ±6.00%
600 0.1509 ±0.28% 1.2383 ±0.40% 0.0050 ±3.86%

Table C.3: Fit parametersλ, λ2 andK of the modified Gumbel distribution for (FQPS) and (RQGS).
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HMM n=0 HMM n=1

LQ LS λ 104λ2 103K λ 104λ2 103K

348 150 0.2890 ±0.85% 49.4722 ±7.27% 0.2310 ±9.32% 21.4600 ±66.56%
200 0.2894 ±2.84% 50.0796 ±24.47% 0.2274 ±1.74% 20.1017 ±13.25%
300 0.2895 ±2.69% 53.3472 ±24.00% 0.2240 ±4.86% 17.8934 ±37.22%
348 0.2988 ±3.24% 72.2356 ±30.15% 0.2234 ±2.39% 16.8704 ±18.79%
360 0.2895 ±1.79% 51.9056 ±16.04% 0.2220 ±2.14% 16.3757 ±16.52%
400 0.2859 ±3.49% 48.4496 ±31.10% 0.2232 ±2.40% 17.5141 ±18.94%
500 0.2912 ±6.63% 54.0687 ±61.22% 0.2182 ±2.39% 14.7371 ±19.10%
600 0.2901 ±3.38% 51.9412 ±31.74% 0.2180 ±2.59% 14.2439 ±20.86%

HMM n=2 HMM n=3

LQ LS λ 104λ2 K λ 104λ2 K

348 150 0.1968 ±0.70% 2.9247 ±1.37% 12.0400 ±6.48% 0.1767 ±0.44% 2.6797 ±1.01% 7.4435 ±3.72%
200 0.1947 ±2.12% 9.8704 ±14.29% 0.1795 ±0.46% 2.3586 ±0.92% 8.5733 ±3.87%
300 0.1937 ±3.60% 9.9597 ±25.32% 0.1863 ±0.41% 2.0008 ±0.94% 11.7859 ±5.63%
348 0.1888 ±3.19% 8.1338 ±22.42% 0.1876 ±0.32% 1.9328 ±0.89% 12.1223 ±3.83%
360 0.1926 ±3.17% 9.7957 ±22.82% 0.1853 ±0.27% 1.9530 ±0.65% 10.8640 ±2.65%
400 0.1934 ±1.05% 9.9321 ±8.22% 0.1757 ±1.64% 7.1756 ±11.58%
500 0.1919 ±1.61% 9.3630 ±12.32% 0.1783 ±0.98% 7.7945 ±7.18%
600 0.1912 ±1.70% 9.3303 ±13.25% 0.1768 ±1.01% 7.4165 ±8.19%

HMM n=4 HMM n=5

LQ LS λ 104λ2 103K λ 104λ2 103K

348 150 0.1732 ±0.47% 2.2119 ±1.14% 7.4991 ±6.08% 0.1710 ±0.38% 2.0698 ±0.92% 8.1950 ±3.70%
200 0.1686 ±0.28% 2.1187 ±0.72% 6.4162 ±3.14% 0.1657 ±0.39% 1.8231 ±1.14% 6.9148 ±3.82%
300 0.1682 ±0.36% 1.9635 ±0.79% 6.5436 ±4.22% 0.1599 ±0.37% 1.7836 ±0.79% 5.4451 ±3.85%
348 0.1685 ±0.35% 1.9408 ±0.74% 7.3851 ±3.34% 0.1580 ±0.28% 1.7930 ±0.68% 5.3049 ±2.61%
360 0.1678 ±0.42% 1.9421 ±0.92% 6.5775 ±4.07% 0.1605 ±0.23% 1.7481 ±0.50% 5.7512 ±2.89%
400 0.1662 ±0.18% 1.9782 ±0.40% 6.4164 ±2.32% 0.1587 ±0.28% 1.7828 ±0.73% 5.4513 ±2.57%
500 0.1693 ±0.24% 1.9047 ±0.51% 7.0735 ±2.11% 0.1587 ±0.16% 1.7957 ±0.40% 5.4770 ±2.31%
600 0.1693 ±0.17% 1.8994 ±0.39% 7.1112 ±2.06% 0.1575 ±0.29% 1.8330 ±0.58% 5.2125 ±2.68%

Table C.4: The table shows the fit parameters of the score distribution Prob(S = s| # of helices = n) for 0 ≤ n ≤ 5 for LQ = 348 and different
subject lengths. For entries, whereλ2 is left out, a suitable fit (with a small reducedχ2 value) to the modified Gumbel distribution Eq. (4.4) was not
possible and only the Gumbel parameters of the high probability region are shown.
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HMM n=0 HMM n=1
HMM n=6 HMM n=7

LQ LS λ 104λ2 103K λ 104λ2 103K

348 150 0.1663 ±0.49% 2.1403 ±1.04% 7.9392 ±5.83% 0.1646 ±0.30% 2.1396 ±0.65% 8.7088 ±4.21%
200 0.1614 ±0.25% 1.7767 ±0.65% 6.7568 ±2.30% 0.1574 ±0.41% 1.7687 ±1.17% 6.5219 ±3.81%
300 0.1551 ±0.28% 1.5986 ±0.80% 5.2551 ±3.18% 0.1514 ±0.26% 1.4638 ±0.62% 5.0238 ±4.34%
348 0.1531 ±0.20% 1.5993 ±0.55% 4.9132 ±2.71% 0.1482 ±0.33% 1.4755 ±0.77% 4.4535 ±4.13%
360 0.1536 ±0.34% 1.6036 ±1.02% 4.9160 ±3.41% 0.1490 ±0.39% 1.4479 ±0.93% 4.6858 ±3.28%
400 0.1537 ±0.27% 1.5713 ±0.62% 4.9524 ±3.05% 0.1494 ±0.24% 1.4328 ±0.70% 4.6867 ±2.08%
500 0.1519 ±0.23% 1.6229 ±0.67% 4.6812 ±2.14% 0.1472 ±0.29% 1.4706 ±0.63% 4.2881 ±2.50%
600 0.1489 ±0.15% 1.7148 ±0.33% 4.2283 ±2.16% 0.1460 ±0.18% 1.5193 ±0.49% 4.2679 ±1.74%

HMM n=8 HMM n=9

LQ LS λ 104λ2 103K λ 104λ2 103K

348 150 0.1595 ±0.47% 2.2162 ±1.01% 7.5355 ±4.01% 0.1603 ±0.23% 2.1517 ±0.48% 8.0273 ±2.17%
200 0.1534 ±0.55% 1.8019 ±1.46% 5.9224 ±5.25% 0.1508 ±0.14% 1.7854 ±0.28% 6.3535 ±1.89%
300 0.1473 ±0.47% 1.3916 ±1.24% 4.8483 ±4.01% 0.1413 ±0.12% 1.4118 ±0.35% 4.2141 ±1.43%
348 0.1458 ±0.32% 1.3409 ±0.85% 4.6141 ±3.69% 0.1398 ±0.10% 1.3281 ±0.33% 3.9661 ±1.44%
360 0.1469 ±0.34% 1.2868 ±0.90% 4.9271 ±2.73% 0.1400 ±0.16% 1.2888 ±0.43% 4.0126 ±1.79%
400 0.1440 ±0.34% 1.3591 ±1.05% 4.0064 ±3.48% 0.1382 ±0.25% 1.2954 ±0.67% 3.7257 ±2.14%
500 0.1433 ±0.29% 1.3382 ±0.85% 3.9952 ±2.70% 0.1352 ±0.14% 1.3472 ±0.42% 3.1780 ±1.68%
600 0.1416 ±0.33% 1.3760 ±0.94% 3.7782 ±3.14% 0.1359 ±0.13% 1.3399 ±0.38% 3.3536 ±1.49%

HMM n=10 HMM n=11

LQ LS λ 104λ2 103K λ 104λ2 103K

348 150 0.1552 ±0.14% 2.2225 ±0.30% 6.7936 ±2.08% 0.1455 ±0.14% 2.3813 ±0.15% 4.9660 ±3.82%
200 0.1459 ±0.22% 1.8336 ±0.37% 5.7585 ±3.30% 0.1417 ±0.17% 1.8428 ±0.35% 5.1264 ±2.07%
300 0.1370 ±0.22% 1.4024 ±0.56% 3.8087 ±1.79% 0.1324 ±0.27% 1.3842 ±0.68% 3.2129 ±2.79%
348 0.1353 ±0.15% 1.2962 ±0.38% 3.5507 ±1.68% 0.1316 ±0.22% 1.2518 ±0.69% 3.1546 ±1.94%
360 0.1343 ±0.13% 1.2830 ±0.36% 3.4674 ±1.39% 0.1297 ±0.25% 1.2737 ±0.52% 2.9445 ±2.81%
400 0.1334 ±0.16% 1.2602 ±0.38% 3.2164 ±1.71% 0.1302 ±0.20% 1.2160 ±0.56% 2.9704 ±1.59%
500 0.1307 ±0.16% 1.3013 ±0.46% 2.8331 ±1.22% 0.1280 ±0.30% 1.2426 ±0.86% 2.7433 ±2.73%
600 0.1305 ±0.23% 1.3097 ±0.56% 2.8239 ±1.82% 0.1257 ±0.22% 1.2908 ±0.55% 2.4921 ±1.79%

Table C.5: The table shows the fit parameters of the score distribution Prob(S = s| # of helices = n) for 6 ≤ n ≤ 11 for LQ = 348 and different
subject lengths. For entries, whereλ2 is left out, a suitable fit (with a small reducedχ2 value) to the modified Gumbel distribution Eq. (4.4) was not
possible and only the Gumbel parameters of the high probability region are shown.
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Appendix D

List of acronyms

BDM Bhattacharyya distance measure

BLAST Basic Local Alignment Search Tool

BLOSUM BLOcks of Amino Acid SUbstitution Matrix

CE Combinatorial extension

DDBJ DNA Data Bank of Japan

DNA DeoxyriboNucleic Acid

DOS Density Of States

DPRM Directed Paths in Random Media

EMBL European Molecular Biology Laboratory

EXP EXPonential schedule

FQPS Fixed Query - Position-dependent Scoring

HMM Hidden Markov Model

INSDC International Nucleotide Sequence Database Collaboration

i.i.d. identically and independent distributed

INV INVerse schedule

LIN LINear schedule

MC Monte Carlo

MCMC Markov chain Monte Carlo

MCMCMC Metropolis Coupled Markov Chain Monte Carlo

mRNA messenger RNA

PAM Point Accepted Mutation

153



154 D. List of acronyms

ParQ ParallelQ

PDB Protein Data Bank

PHAT Predicted Hydrophobic And Transmembrane

PSI-BLAST Position Specific Iterative BLAST

RNA Ribosomal Nucleic Acid

RQGS Random Query - General-purpose Scoring

rRNA ribosomal RNA

SLIM Scorematrix Leading to Intra-Membrane domains

TM TransMembrane

TMHMM TransMembrane Hidden Markov Model

TrEMBL Translated from EMBL

UniProtKB Universal Protein Resource Knowledgebase
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