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0. Zusammenfassung 1

Zusammenfassung

In der vorliegenden Arbeit wurden Fragestellungen derBaimatik mit Monte Carlo
Verfahren der statistischen Physik behandelt.

Beim Vergleich von molekularen Sequenzen (Sequenz Aligriwerwendet man
statistische Tests, um die Signifikanz beobachtétemlichkeiten zu quantifizieren.
Verteilung der optimalen lokalen Alignment-Scores uUbafallssequenzen, insbeson-
dere seltene Ereignisse, sind ein wichtiger Bestandtieihso Tests. Ich erweiterte eine
bereits bestehende Arbeit, in der grol3e Abweichungen vothderetisch vorherge-
sagten Gumbel-Verteilung gefunden wurde, auf weitereolgisth relevante Protein-
und Score-Modelle. In den meisten Fallen konnten die Ablugigen durch eine
heuristisch modifizierte Gumbel-Verteilung beschriebe&mnden. Sie sind teilweise so
groR, dass einige signifikanfhnlichkeiten in der bisherigen Praxis nicht als solche
klassifiziert werden. Dies kann eintreten, wenn man ein 8wggtbnis weiter verfein-
ern mochte. Zuerst betrachtete ich die Verteilung beezlhigles Standardmodells fur
Proteinsequenzen fur verschiedene Alignment-Paranieteinem zweiten Schritt un-
tersuchte ich ein Modell, das Transmembran-Proteine beixth Auerdem studierte
ich Verteilungen freier Energien kanonischer Alignmentsémbles. Die temperat-
urabhangige Form dieser Verteilungen deutete ich anhaadikear-logarithmischen
Phaseniibergangs, der in diesem Modell auftritt.

In einer ahnlichen Weise untersuchte ich RNA Sekundaksiren. Hier wurde die
Verteilung der minimalen freien Energie ebenfalls Gibefallssequenzen bestimmt.
Mit diesen Verteilungen konnte ich biologische RNA Sequmngegen Zufallsmodelle
vergleichen. Dazu betrachtete ich mikrokanonische Sempresembles und verglich
deren statistische Eigenschaften mit biologischen RNAu8Segen aus einer Daten-
bank.

Auch fiir eine Studie der Monte Carlo Dynamik in komplexerEyielandschaften
betrachtete ich RNA Sekundarstrukturen. Diese stellersdiche Fragestellungen ein
ideales Modell dar, da es, im Gegensatz zu vielen andererelMdog exakt behan-
delt werden kann und gleichzeit komplexe glassartige Egeaften besitzt. Ich ver-
glich dynamische Eigenschaften verschiedener Monte Qgdorithmen mit statis-
chen Eigenschaften, die durch Transfermatrix-Berechemagganglich sind.

Abstract

This thesis treats problems from bioinformatics with Mo@&rlo methods from sta-
tistical physics.

Methods to compare molecular sequences (sequence alignmalke use of sta-
tistical tests to assess the significance of observed sitigka Distributions of optimal
alignment scores over random sequences, particularlyexamts, are integral parts of
such tests. | extended an existing work where large dewiatfmom the asymptoti-
cally predicted Gumbel distribution were found to furth@lbgically relevant scoring
and protein models. In most cases, deviations could beibescby an heuristically
modified Gumbel distribution. In some cases the deviatioassa large that, in the
previous praxis, some significant similarities are not prypclassified, in particular
when one wishes to refine a certain search result. Firstdledithe score distribution
for the standard protein model for different alignment paggers. In a second step, |
investigated a model which describes transmembrane pgotei

Furthermore | studied free-energy distributions of canahalignment ensembles.
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2 0. Zusammenfassung

| explained the temperature dependence of the shapes efdistgbutions with argu-
ments of the linear-logarithmic phase transition that esauthis model.

In a similar way, | studied RNA secondary structures. | aidithe minimum-free-
energy distribution over random sequences. This disidhullowed me to compare
biological RNA sequences against random models. For thisqse, | considered mi-
crocanonical sequence ensembles and compared theitisthfisoperties to those of
biological RNA sequences taken from a database.

| also used RNA secondary structures for a study of MontedCdyhamics in
complex energy landscapes. This model is an ideal systesuédr purposes, because,
in contrast to many other models, it can be treated exacily an the other side,
it exhibits complex glassy properties. | compared dynahpcaperties of different
Monte-Carlo algorithms to static properties which can babpd with transfer matrix
calculations.




Chapter 1

Introduction

Computational molecular biology, or bioinformatics [CBEBEDM9E], has arisen from
different scientific fields, like molecular biology, compuscience, probability theory
and statistics. Since recently also many physicists hawdiest problems from bioin-
formatics and figured out that many bioinformatics modelgehan equivalent or a
similar description in physics and vice versa. Just as tbermetendency of increasing
interchange between computer science and physics [HRODFHWhis point of view
allows one to interchange methods and concepts or eveitséstlveen bioinformatics
and physics [LV02].

Analysis and classification of molecular biological data ahallenging tasks in
bioinformatics. Most data is stored in form of biologicatigences in large databases
(for example UniProt [Uni]). A biological sequence, alsdlea primary structure,
is the linearly ordered chain of monomers of a biopolymechsasdeoxyribonucleic
acid (DNA), ribosomal nucleic aciqRNA) or proteins They are usually encoded as
character strings over finite alphabets, four letter alpksin the case of DNA or RNA
or the 20 letter amino acid alphabet for protein sequences.

Itis commonly assumed that related organisms, so chbedologsshare similari-
ties on the molecular level. For this reason sequence casopds a fundamental tool
to detect homological relationships. Common search tdidds,BLAST (Basic Lo-
cal Alignment Search Top|BLA], are used to search a given query sequence against
huge databases. In most cases search algorithms are bdsedlqrairwise sequence
alignment[CB05, RDM98]. It quantitatively measures similaritiestiween a pair of
sequences and detects corresponding regions in both sepudine approach uses the
dynamic programingparadigm|[CLR02] (commonly known dsansfer matrix calcu-
lationsin physical literature). The algorithms returmaav similarity scorethat quanti-
fies the similarity between the input objects. A more dethitdroduction to sequence
alignment is given in Chapter 3.

Unfortunately, the raw score is hard to interpret becausedwes not know the
absolute scale of the score. An interpretation becomeshpesshen specifying a
probabilistic null model for the input: Then the similarisgore becomes a random
variableS whose probabilitie®rob(S = s) under the null model can be determined.
Sometimes this can be done analytically [KA90, KD92, DKZd4]t usually one has
to apply numerical simulations [AG96, ABOHO01, RO99, ABOH0The p-valueas-
signed to an observed scorés defined agval(s) := Prob(S > s) in the null model
and— log pval(s) is a measure of surprise (and hence a universally normadize)
for s. It is one fundamental problem in bioinformatics to fiRdob(.S) for a given

3



4 1. Introduction

comparison method, a given scoring scheme, and a given odém

Since true homological relationships usually exhibit &asgores, the rare-event tail
of the score distribution is particularly interesting. Baavent tails are usually hardly
accessible with naive “simple sampling” methods. Similesljpems can be found
in statistical mechanics, where one is interested in tditround-state-energy distri-
butions of disordered systems with quenched disorder §ample [Pal03, ABMO04,
MGO06, KKHO06]). These are models with random interactionisere each realization
of random interactions induces a physical ensemble on its ow

A fruitful solution to the problem of probing the rare-evéait of such distributions
is to reinterpret the ensemble of realizations as a physits¢mble and make use of
methods to compute the microcanonical entropy functian, the logarithm of the
density of states (the number of micro states for a givenggferBecause feasible
exact methods are not available in most cases, such prohlemagpproached by Monte
Carlo simulations, such as parallel tempering combinetl vatveighting techniques
or generalized ensemble methods.

A few years ago Hartmann applied such a method to the alighpneblem [Har02,
HRO4] and figured out that the accurate score distributicngly differs from the an-
alytically predicted score distribution in the rare-eveilt Unfortunately these results
have not been considered in current database search toggsinpably because it was
applied for only one case so far.

It is one aim of this thesis to extend these results to a broahge of scoring
and protein models. Under the standard protein-sequendelirtbe effects of vary-
ing scoring parameters was studied. In a second step, the stdistics for a special
class of proteins that are hardly described by the standadthwas considered. Fi-
nally, the statistics of a finite-temperature version of lineal alignment algorithm
[Miy95, [KLOO] was investigated. The Monte Carlo algorithiist were used here
are introduced in Chaptet 2. The results for the local-afignt-score statistics are
discussed in Chapter 4.

Another important problem in bioinformatics, moleculaoloigy and biophysics
is the prediction of the spatial conformation, tiegtiary structure of molecules from
primary sequences. In contrast to the tertiary structusecandary structurdescribes
the conformation on a topological level, i.e. the set of @imonomers.

Such higher order structures are important because theyndiee the molecule’s
function. The protein folding problem (the prediction oéttinree dimensional structure
from the amino acid sequence) is probably the most promaenrhple. Beside protein
structures, also RNA structures play an important roleviimgj organisms. In order to
fulfill a certain biological function, the molecule’s stituce is assumed to sit in a global
minimum of the free energy in the structure space for a fixegisece. Hence, many
RNA structure prediction methods are based on free enengyniziation. Fortunately,
RNA structure prediction turned out to be much simpler thanigin folding, because
secondary structurewithout so calledoseudo knotétopologically crossing pairs) de-
scribe the essential features already quite well [TB99pIbigting pseudo knots allows
us to perform free-energy minimization in polynomial time dlynamic programing
(transfer matrix calculations) [dG68, NPGK78, Z581, Zuk88S94, MSZT99].
Such algorithms are explained in Chapter 5.

Because bhiological RNA sequences are products of evolutjoprocesses they
can hardly be seen as purely random objects. They rather aitdcal minimum of
the map from the space of sequences to minimum free-enetg898, CFKKO5].
Statistical evidence of the non-randomness of a given seguis often measured by
the so called:-score. That is the distance of the minimum-free-energyesélom the

4



1. Introduction 5

mean of a distribution over a random sequence ensemble fipechdy the standard
deviation [SD99, WK99, CFKKO5]. For this reason the freemgy distribution over
random sequences is of interest. Considering the mininreerénergy structure as the
ground state, the problem is again equivalent to the gratatd-energy distribution
over sequence ensembles and hence rare-event simulatibadaean be applied.

In Chapter 6, | present some results on this distributiopairticular on properties
of rare events in both tails, the one for unstable (largedresrgies) and the one for sta-
ble (low free energies) molecules. For this purpose | engaldire same methodology
as for the local-alignment-score distribution. This akmlvme to compare properties
of microcanonical-like ensembles of sequences, charaeteby the minimum free-
energy, to biological RNA sequences.

Interestingly, a simplified model of the RNA secondary diioe is also of fun-
damental interest in statistical mechanics of systems gugnched disorder. When
lowering the temperature the model exhibits a phase tianditom a molten phase
to a spin-glass-like phase [Hig96, PPRT00, Har01, BHO2bMBR, LW06]. The
latter one is characterized by rugged free-energy lanés;aphere thermodynamic
and ground-state properties exhibit large sample-to-Eafiyztuations. In contrast to
most other models featuring complex free-energy lands;agebing static properties
of RNA secondary structures is computationally feasible.e @he other side, due to
the glassiness of the model an interesting slow dynamickenstructure space can
be expected. Such properties are crucial when performingt®Garlo or molecular
dynamics simulations. Hence, the model provides an ideahdéwork to study the
relationship between static and dynamic properties.

Monte Carlo studies of this type are presented in ChaptetaficStructure proper-
ties, such as the number of metastable states or the degnéieaafietricity, of random
sequences were determined. The relationship of these npiesp& observations of
different Monte Carlo methods, like the tunneling time imggalized ensembles, or
sampling errors is worked out in detail. Finally, an impréwsampling scheme that
allows the Monte Carlo samplers to cross entropic barreepseésented.
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Chapter 2

Monte Carlo methods

The general concept of the "Monte Carlo method” was propdsesion Neumann,
Metropolis, Ulam and others in the 1940s [MU49] and sincentih@vas successfully
enhanced and used in many different scientific fields [HH6EJM99, Liu02, LB0O5].
The idea is to estimate expectation values of observabkssaostate space by generat-
ing random states by means of computer simulations. Therandss of the procedure
also gives the approach its name.

2.1 Simple sampling

In order to be more concrete, given a discrete state spaaed an observablé : y —

R one wishes to estimate expectation values with respectobapility mass function
p: x — [0,1]. The idea of "Monte Carlo” is to estimatel(X)), by drawing random
samplesyy, ..., z, € x according top and estimate the expectation value from the
sample average

n

(A = 3 A) - pla) & > Alw:) (2.1)

TEX i=1

Nearly all Monte Carlo algorithms can by classified asjaction-freeor as aeject-
accept methodPrototypes of these approaches areitrersion methoar thereject-
accept algorithnmjDev86] respectively. The requirements of the inversioritrod are
quite restrictive as it relies on the knowledge of the ingeskthe cumulative distribu-
tion functionF —!. This requires also a kind of ordering of all states to be dachg-or
each variate the algorithm uses an uniform vargate [0, 1] and then returng—1(¢)
[Dev86]. Note that in some cases it is possible to order thesthierarchically which
allows direct sampling with an inversion-like approach.isTidea is realized in the
Boltzmann sampling of RNA secondary structures and firategerature alignments
(see Appendix A.1 and Appendix A.2).

In many cases this method is infeasible because the undg#dtate space is an high
dimensional object and the inversionBfrequires much information about the system.
The reject-accept algorithm is more flexible. Suppose wéwsssample from the
distributionp, and we were able to compuytér) up to a global normalization constant
(partition function). In order to draw one sample with thgeot-accept method, one
repetitively drawg € [0,1] and states from y according to an arbitrary distribution

q until fc% < 1, wherec € R is a free parameter. In order to apply the reject-accept

7



8 2. Monte Carlo methods

procedure metropolisupdateg,w)
begin
proposey € N (z)
if w(E(y)) >w(E(x))or w(E(y))/w(E(x)) >rand()then
Ty
end
return z
end

procedure metropolis¢™,w)
begin
T — xinit
repeat
x « metropolisupdatef, w)
until z is in equilibrium

for i=1...ndo
20— x
repeat

x < metropolisupdateg,w)

until x andz0 are decorrelated
xsampls{i] —

done

return xSample

end

Algorithm 2.2.1: The Metropolis algorithm. Only equiliiesl and decorrelated states
should be sampled (see 2.5)

algorithm efficiently, the distributiop and the numbet should be chosen, such that
the ratim% is large.

Furthermore, Monte Carlo methods can be classified whellgegénerated out-
comes areorrelatedor uncorrelated Uncorrelated means that the Monte Carlo pro-
cedure returns random objects that are not correlated muttemes of previous calls.
This will be denoted as “simple sampling”.

Because simple sampling is hardly possible in many apmicandirect ways such
as Markov chain Monte Carlo (MCMC) methods, in particula Metropolis-Hastings
algorithm, had become very popular and successful. Thigisthgn is explained next.

2.2 The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm [MRF3, Has70] is a general reject-accept
Monte Carlo method that is suitable for problems, where &nfpncorrelated) sam-
pling is hardly possible. It is based on a discrete time Markbain in the state
spacey with transition matrixP, ,. The transition matrix?, , is constructed such
that its stationary distribution converges to the desiraah@ing distributionp, i.e.
> wey P(T) - Py = p(y) for all statesy € x.

The algorithm (see Algorithm 2.2.1) starts with some intaltez™" € y. At each

8



2. Monte Carlo methods 9

time step of the simulation a new state in the local neighbodof the current state
y € N(z) is proposed with the “proposal densit§}’, , = Prob(X = y|X = z). The
proposal is then acceptegdi§ used at the next time step) with the probability
Qpy =min<l, —F—— 7.
Y { p() - Qr,y}
Otherwise the proposal is rejected ani$ kept for the next iteration. The ratg, ,, in
Eq. (2.2) is constructed such that detailed balance,

(2.2)

ar,sz,yp(x) = O‘y-ﬂﬁQy-,zp(y)a

is guaranteed. Furthermore the chain needs to be ergodiemidans each state must
be reachable from any other state by a finite chain of tramsiti If these conditions
are fulfilled the chain converges towards the stationartridigion p and one may
approximate expectation values by averages over thedisittes.

In the case of symmetric proposdls, , = Q. the Metropolis-Hastings algo-
rithm in its general form Eq[. (2.2) [Has70] simplyfies to thetWpolis algorithm with

acceptance rate
: p(y) }
Oz y=minql, —= 4, (2.3)
Y { p()

which was proposed by Metropolis et. al. in their famoushtirom 1953 [MRR 53].
Usually the sampling distribution depends on a macroscolpservable, which is
the energy in most physical applications. We shall wsite) < w(E(x)), and hence

gy = min {1, 2200 (2.4)

In order to implement this algorithm, the weightsheed to be known up to normaliza-
tion. In the canonical ensemble,

w(E) < e P/,

the ratio in Eq./(2.4) only depends on the change of the entrglis associated with
the proposal,
0y =min{l,exp [-AE/T]}. (2.5)

2.3 The dynamics of the N-fold way

In a few discrete models, such as Ising spin systems or the &\andary structure,

it is possible to use a rejection-free dynamics and detegrtfie correct averages by
accounting for so calledaiting timesat each step of the simulations. This is referred
asN-fold way So as to follow the classification scheme that has beenidledabove,
the N-fold way is a rejection-free Monte Carlo method, thatdjuces correlated states.
It requires following assumptions:

1. there must be a small number of possible energy chafyés},i = 1... N
and

2. at each step there must be an efficient way to classify @$ipte proposals
y € N(x) by the associated energy chanf§&’. These sets are denoted as
classes of proposals

C(z,AE) ={y € N(2)|E(y) = E(z) + AE}

9



10 2. Monte Carlo methods

Each step in the N-fold way requires two random selectioirst & class is chosen
with a probability that corresponds to the Metropolis aition and secondly one mem-
ber from that class is selected with equal probability. Hrigposal is then used in the
next iteration with probability one. There are two timessainvolved, thecomputer
time measuring the number of MC steps and M€ timeassociated with a physical
time scale of the random walker. The first plays the majorirotee performance anal-
ysis of the algorithms and the latter one gives the corre@ihtédo the visited states. In
order to choose the class with the “Metropolis weight” (the probability of choosing
y € N(z) times the acceptance rate in Eq. (2.4)), the cumulativehteig

Q(k) = min {1, B

} IC(z, AEL)| + Q(k — 1)

with the boundary conditiof(0) = 0 have to be determined fér=1... N. Conse-
quentlyQ(k)/Q(N) is the probability that a flip occurs in thiefirst classes. The inver-
sion method allows choosing a cldswvith the same probability as it would have been
chosen with the Metropolis algorithm. Within that class agwsaly € C(z, AFE) is
chosen at random and accepted in any case. When computiagtatipn values from
the chain of visited states; . . . x,, in the form of Eq.[(2.1), the time that the random
walker would have stayed in each statebefore an acceptance from to x;; (the
waiting timé@ has to be taken into account.

It can be computed by the following considerations: L&k the probability that a
proposal in the firsk — 1 classes is selected, given that the random walker sitst& sta
z,i.e.p = Q(k — 1)/Q(N). Then the probability that the Metropolis algorithm had
selected clask afterm trials is given by

p(m) =p" (1 —p). (2.6)

The probability of staying at mosttime steps can be evaluated via geometric progres-
sion:

P(1) = Prob[m < 7] = Zp (1-p)=1—p ! (2.7)
m=0

In order to assign a waiting time to the current state one balraw a random
number according to the discrete distribution Eq./(2.8), i.

= [In(¢)/ In(p)],

where( is an uniformly distributed random number ahd| denotes rounding down
to the next integer. This completes one MC step. Expectattires are then approxi-
mated by

1 n
T (DA

i=1
In Sec| 7 a variant of the N-fold way is discussed. This wilrbfereed as “semi-
rejection free”.

(4) ~

2.4 Parallel tempering

Metropolis Coupled Markov Chain Monte Carlo (MCMCM@ps first invented by
Charles Geyer [Gey91] and then reinvented by Hukushima amddto [HN96] under

10



2. Monte Carlo methods 11

the termexchange Monte Carldn the physical literature MCMCMC is often denoted
asparallel tempering The method has become a standard tool in disordered systems
that feature a rough (free) energy landscape [EDO5]. Thasghrenergy landscapes
are characterized by high energy barriers and can be fourgdblems like protein
folding [ZBGO01], nucleation [AF01], spin-glasses [MPRLI&Y01] and other mod-
els characterized by rare events [Har01, KKHO6]. In thedastade it turned out that
MCMCMC accelerates equilibration and mixing remarkably.

In the framework of MCMCMGn copiesy(V, . .., x(™ of a system are simulated
in parallel. The sampling distributions, . .. pe,, belong to a single-parameter fam-

m

ily of distributions. This means one samples from the proddi¢he state spacg™
weighted with the joint distribution with weigh{{;_, pe;

In most applications where one wishes to sample from a Gaddsemann distribu-
tion, the parameter can be identified with the temperatuwe®i; = T; and hence the
sampling distribution is a product @f canonical ensembles. Without loss of general-
ity we will denote the parameter as “temperature” and assiime ... < T,, in the
following. The parallel tempering algorithm is designedetahange configurations
between different neighboring temperatures during theukition. For this purpose
let us define the space of all possible mappings fromrtheonfiguration to then
temperatures aemperature space

During the simulation mainly each of the replicated confagions will evolve inde-
pendently according to the underlying MCMC scheme charaeig by the Boltzmann
Weightexp(—T%E(a:)) at its current temperatufg, i.e. according to Eq. (2.5).

In addition to this evolution, ever,th step (for each replicated configuration) a
flip between two neighboring replicdsandk + 1 (k € {1,...,m — 1}) is attempted.

If an attempt is successful, the configuratioff® andz(**1) are exchanged (denoted
by 2(*) — 2(k+1) j.e. the configuration which has previously evolved atgenature

T}, will now evolve at temperaturg, . ; and vice versa. This exchange is accepted with
the probability

k+1 (k)
! (x(k) R x(’”l)) =minq 1, pr (e*1) . PTiss (€ 7) . (2.8)
pr (z®)) - pry, (2D)

In the canonical ensemble this ratio depends on the diféerefthe inverse tempera-
ture Af, = 71— — 4 and on the energy differenceE = E(«*1) — E(a*),

Trt1

o (xw) o x<k+1>) = min {1, exp [ABLAE]}, (2.9)

This leads to a “random walk in the temperature space”.

The parallel tempering approach has the advantage ovetahdasd Metropolis
algorithm that the different configurations are not confiteed fixed temperature, but
perform a random walk in temperature space, i.e. visit aligeratures several times.
Thus, mixing is accelerated and hence fewer Monte Carlssteprequired.

It is suitable for at least three purposes:

e optimization, i.e. finding low energy states in rugged epdamdscapes,

e approximating canonical averages over the ensemble vatlottest temperature
T, and

e determine canonical averages &rytemperature within the interval
[Th Tm] .

11



12 2. Monte Carlo methods

For the first two applications the high temperatures ensesrdrke only auxiliary for the
sake of decreasing equilibration time. For the latter ajyilbn, data from all chains
are relevant for the data analysis. In particular, when shmpl’,,, = oo together
with a broad range of temperaturés, .. ., T,,_1, the density of states (DOS) can be
determined. The methodology of reweighting such mixtufesnapirical distributions
is described in detail in Sec. 2.6.

2.5 Convergence

Due to the fact that the Metropolis-Hastings algorithm getescorrelated states,
some care has to be taken when computing averages in the fdeop ¢2.1) for two
reasons. Firstly, because the inital configuration mightabeway from the equilib-
rium of the sampling distributiop. For this reason usually the first steps of the chain
(calledburnin or equilibrationtime) have to be ignored in the estimators. Secondly
the generated states are correlated, which is crucial éoestimation of the statistical
error. To avoid this the chain is usually thinned out, i.ely@verynyinth visited state

is considered for data production (see Ref. [CC96] for arere\

2.5.1 Equilibration

The estimation of the equilibration time is not always &ivind depends strongly on
the model.

A visual way, which has been proven to be appropriate to ourgre (see Sec. 4.2),
is to compare the convergence of two chains starting fromdifferent initial config-
urations. For instance, if we consider to simulate a physigstem in the canonical
ensemble at temperatué and we were able to generate low-temperature configu-
rations (for example ground states), then it is possiblehtmose two distinct starting
configurations. When starting from a random configuration¢kampleél’ = ~, i.e. a
disordered configuration) and equilibrating the system siystem can reach in princi-
ple most regions of the energy landscape at the beginningcé]dypically the energy
decreases or stays the same during the simulation with emehergy fluctuations. In
contrast, when starting from a low energy, i.e. a minimurrhefénergy landscape, the
reverse process is possible. One can use this fact to wahfsther a system has equi-
librated, i.e. whether it is able to overcome the typicatieas in the energy landscape.
This is the case when the average energy for two runs, ortengtarith a disordered
configuration and one starting with a “ground-state” contigjion, have converged to
the same value (within fluctuations). If the temperaturedsdmall, this is not possible
in many glassy systems. An example of this approach is showiyi/4.3.

2.5.2 Relaxation

So as to estimate the thinning interval many different apphes are available
[MEJN99, CC96, Jan02]. To estimate the times scales ovechwtiie simulation
decorrelates, we considered the autocorrelation function

(E(to) E(to + 1)), — (E(to)),
(E(to))t, — (E(to))i,

(--)¢, denoting the average over different times and independerst rThe typical
time scale, over which correlation vanish is the correfatime = defined viaé(r) =

£(t) =

(2.10)

12



2. Monte Carlo methods 13

1/e. The correlation time increases with decreasing temperathich corresponds
to a growth of the equilibration time with decreasing tengpere. However, by the
generation of the histograms the correlations will average but estimates of the
errors are more complicated when the data is correlated.niaan rule of thumb is
to choosewnin =~ 27 as thinning interval.

Another method that aims at a direct computation of thestteail error is Flyvbjerg
and Petersen’s blocking method [FP89], which has two mawamdges. Firstly it is
computationally less complex than the computation of thia@rrelation function,
and secondly a generalization to multidimensional obd#egas straightforward. For
a given Monte Carlo data set of correlated data of some oabkry, a4, ... a,, the
sample erro€(ay, - . ., a,) is a lower bound of the “true” error of the uncorrelated data.
The blocking method uses a series of blocking transformatibere the actual dataset

al(-k) (i = 1...nM)is transformed into a coarse grained set according to iee ru

1
aEkJrl) = B (a2i71 + agi) (Z =1.. .n(k)/2)
s _
2

This transformation keeps the expectation valde and the true statistical errefA)
invariant. The transformation is repeated unfil=x = 2. When the block size is at
least as large as the intrinsic correlation time the emglieror of the blocked data
approaches a plateau (within the statistical error) of tamsvalues fork > kg for
someky. This fixed point serves as an consistent estimate of thistatat error of the
correlated data.

2.6 Sampling of rare events I:
Importance sampling and reweighting

Suppose that we wish to estimate the probability distrdsutf an observabld, i.e.
P(a) = Prob(A(X) = a). Since distributions of this form can always be formulated
as expectation values of indicator functions, it is pogstblestimate probabilities via
Monte Carlo sampling,

1 n
Pla) = (0ax).alp & -~ > Sa@).a
=1

This simple sampling approach allows probing the regionhef distribution where
P(a) is large. If the probability to be estimated is small, say 0~?, we need about
10'2 samples to estimate it with reasonable precision. For \sg/@vents, this “naive”
sampling quickly becomes infeasible.

Importance sampling generates the “interesting” eventeeroften by sampling
from a different distribution and correcting for this biaseawards, which results in
a more accurate estimate with a reasonable number of sanmmép be the “target
distribution” andg be an alternative distribution ovet the so called “sampling distri-
bution”. Consequently samples fromin the following denoted as;, ..., z/,, allow
for estimates of the expectation value of an observableith respect to the target

13



14 2. Monte Carlo methods

distribution using the importance sampling formula

(AX)), = ZA(JJ) p(z

= Y Ae % a(x)
R VI (€Y
~ = ; A(z) )’ (2.11)
or, to estimate the probabilit®#(a),
P(a’) <6A(X) Z 5A(z ),a ” —i (212)

To successfully apply importance sampligdyas to fulfill three properties:
e it needs to put high probability on the region of interest,
e we need to be able to sample according emd
e we need to be able to compute the correcting weidhj/q(x).

For the estimator of rare-event probabilities it is not sigfit to put high prob-
ability on the rare event alone, because then the distabistnormalization remains
undetermined. Instead the entire range from high proliesil{whereP () is large)
down to rare events have to be sampled. Since this rangeyibkead it is hard to find
a good guess for the sampling distributipa priori.

Torrie and Valleau developed a technique called “umbredia@ing” [TV77],
which was originally used to estimate free-energy diffeeen The method makes

use of a parameterized family of sampling distributidns, }, ¥ = 1,...,m and
requires that the mixture covers the entire range of intefEsat can be for example
the mixture of canonical distribution®¢, = T, andqr, (z) x exp [ E(z )}) that

is involved in the parallel tempering algorithm.

Furthermore, we consider that the target distributigd@one member of the family,
without loss of generality we set = go,, and we shall writey, = ¢o,. Ferrenberg
and Swendsen [FS89] proposed a data analysis procedureh wéin be seen as a
generalization of Eql. (2.12) for a mixture of distributions

Later, Geyer developed a related method under the tefrarse logistic regression
[Gey91]. Meng and Wong [MW96] reviewed the basic conceptim framework of
Bayesian inference and proposed different recipes to mbiai relative normalization
constants (partition functions) which play a central roléhis methodology. We use
the selfconsistent method proposed in [MW96] to derive tbiemalization constants
from a mixture of Monte Carlo data.

Consider the family{q,} covering the region of interest and; independe@t
Monte Carlo sample§zy;, k =1...m,i = 1...n4} from each distributior;. Fur-
thermore we assume that eaghis only known up to (global) nhormalization constants

Cr = Zz (jk(x), i.e

(@) = chf) (2.13)

Ifor correlated data one has to account for autocorrelatioast and consider a thinned sample as de-
scribed in Se¢. 2.5

14



2. Monte Carlo methods 15
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Figure 2.1: Sketch of the graph of overlapping distribusign ..., ¢,. Distant distri-
butions have weak overlaps.

Since the support of the mixture distribution is broadentbach of the particular
distributions, not all pairs of distributiong andg; overlap in general. The overlaps of
the empirical data can be measured by the matrix

nEg mn
R % (g +mnq) Z ZZ Oz ,z; * O,z (2.14)

rzEX =1 j=1

and the set of distributions can be represented by a greph) with vertices being
the distributions” = {q¢1, ..., ¢ } and the set of all overlaps being the weighted edges
= {wy } with wy; > 0 (see Figl 2.1). We require, that the so constructed graph
is connectea This criterion was used in the study of the local alignmeatistics
discussed in Sec. 4.3
Geyer's idea is to generalize Eq. (2.11) to mixtures by “ttigg” from which
distribution each sample was drawn and assume that it wasndram the mixture.
This is done by replacing eagtby a “mixture weight”gmix,

(A)p ~ % ; X; A(wgi) - % (2.15)

with n = Z;”:l n; The mixture weightmix

gmix(z) =Y % k(@)

c
k=1 k

is known up to the normalization constanisthat have to be determined consistently
from all Monte Carlo data. This is possible up to a global (trivialps@ant by consid-
ering ratios of these constants

2L o= (25,

rEX zEx

(because; = ‘7183 vz, see EqJ(2.13)). Each pair of ratiog/c; are in principle
accessible from Monte Carlo data, if the distributions avetno distant. In general,
each distribution of interest should have a finite overlaghwix which ensures that

reweighting becomes possible on the full support.

2 In practice one must find paths between each pair of distoibsitwith not too small weights.

15



16 2. Monte Carlo methods

There might be incompatible (due to finite sample sizes)regts ofcy /c; that
are computed directly or mdwectl% =& cl’ using the “bridge distributiony;.
One wish to estimate these ratios con5|stently ualhdata that is available from the
mixture, i.e. usmgcc—l', cclk and Ccll in the case of three distributions. A method to obtain
self-consistent estimates of these normalization cotstadiscussed in the following.

2.6.1 Estimation of relative normalization constants

Geyer introduced arofile log-likelihood which depends on the unknown normaliza-
tion constants given the Monte Carlo data. Since there islaadtrivial normalization
constant the estimation reduces(ta — 1) ratios of normalization constants with re-
spect to an arbitrary reference distribution, gay Hence the aim is to estimate the
vectorr = (rq,...,7,) € R™~1 with r;, = ¢1/cx from the Monte Carlo mixture.
Additionally »; = 1 by definition and we do not consider it as a free parameter in
the following. Using the probability that has been sampled from tth distribution
pi(z,r) = % one can construct a log-likelihood (a function of the unknow
normalization constants) the for the complete data set

m  ng

r)=> > logpy(zk,r) (2.16)

k=11=1

and obtain the normalization constants by maximazingith respect tar, i.e. & =
argmaxL(r). In other words, the relative normalization constants atermnined by
a maximum likelihood estimator.

In practice one may implement the Newton-Raphson method degative proce-
dure. Meng and Wong [MW96] proposed a reliable selfconststeethod to obtaim,
which is easy to implement on one side and stable on the oither Shis approach is
explained in the following.

Letayg; : Q — R be a set of arbitrary functions withy,; = «;; and

0< Zakl ql( ) Q.

reN

The average ofy, () - ay () equals to

(Ge(z) - ap (@) = o Z ak () - ap(z) - q ()

zeN

ck }
= — ) qz) an() - qz)

€ e

C

= @) - o)
e
which can also be written in the form

e _ (@) - an()), (2.17)

a  (az) - aw(z)),
that Meng and Wong called the “key identity”. By using Egq.1(2.in terms ofr, =

16



2. Monte Carlo methods 17

¢1 /¢, and summing ovelr

D lan(@) - am(@)ire = Y (@) - cul@)n - m

£k 1#£k

brk

= Y (@) am(@)k e+ (@) - aak(@)k
—_——— —_———

1#£k,l#1
7kl bri br1

it becomes clear thatsatisfies the following linear system

bas  —baz ... —bom o ba1

—bzz b3z ... —b3m 3 b31
} = . (2.18)

_bm2 _bm3 cee _bmm m bml

with {bkk =@k (@) am(@) 2<k<m
ber = (Gu(x) - cu () kA1

The next step is to replace thg in Eq. (2.18) by the sample average and choose

ny Nk 1

N )

Sinceqmix and therefore théy; as well depend on the unknown rating&q. (2.18) is
not a true linear system in, but it is possible solve the equation self-consistently by
iterating the equation

Bx®) . pt+) = p(r®),

where B(r®) andb(r(") are the sample estimates igf; (k,I = 2...m) and b,
(k = 2...m) depending on the ratiasin the tth iteration. The solution of in the
(t+1)thiteration,r(**1) is obtained by solving the above linear system. This apgiroac
converges to the maximizer of Eq. (2116) [MW96].

2.6.2 lllustration: Reweighting probability distributio ns

The approach to obtain relative normalization constantgpfobability distributions
is essentially the same as for expectation values. This,ibestause this is a special
case of an expectation value. The reweighting equation/E§5] for this special
“observable” is given by

m Nk (i
P(a) = Prob(A ZZ(;A(M& (;k)), (2.19)
k=1 i=1 H

As illustration we consider a mixture of Gaussian deviatih standard deviation
o = 1 and mean values = {—3,—2,—1,0,1,2,3} (see Fig. 2.2) The PMF in the
above statements is substituted by a probability densitgtfion (PDF) anch = g,,—o.
The x; are drawn fromA\/(y, 1), which can be easily generated by a Box-Muller
transform [PFTV92]. For each distributiar®), 000 samples were generated (see the
upper plot in Figl. 2.2). The data had been reweighted to tteilolition V' (0, 1) using
the iterative scheme described above (Fig. 2.2, lower).

17



18 2. Monte Carlo methods

10 -7-6-5-4-3-2-1012 345677

X

Figure 2.2:

top: Histograms of a Gaussian mixtuk& y, 1) with different mean values, obtained
via Box-Muller sampling. The bin size was 0.02.

bottom: Reweighted data. The distribution of empirical &aan deviates is very
broad. The tail is accessible via reweighting of a mixture.

In Fig.[2.3 the estimate afix as well as the relative error of the empirical estimate
P with respect to the exact distribution

p(z) — p¥ix)
oAt ;)

is illustrated. Obviously the data become noisy beyprid> 3 where the support is
governed by the mixture only weakly. This example is triliacause the normalized
distributions are known and there is no need for simulatedredl. For this reason it

provides a practical test of the reweighting procedure dsal @n instructive illustra-

tion.

e(x) ==

2.7 Sampling of rare events II:
Generalized ensemble methods

Generalized ensemble methods have become a popular tdatistisal physics since
the early 1990s. Similar to parallel tempering their ugefsks shows up in problems
where distributions over a broad parameter range have tarbpled and a usual Boltz-
mann sampling gets stuck in local minima of the energy laaplsc This usually hap-
pens close to critical points, where the correlation timeréases with a power law.
When sampling from a broad distribution instead of from taerow Boltzmann distri-
bution, the sampler is allowed to escape from such localmaniA second advantage
is that these methods aim at approximating the DOS, and hateén the thermo-

18



2. Monte Carlo methods 19
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Figure 2.3:

top: gmix estimated from the mixture

bottom: The relative error with respect to the true distitnu\/ (0, 1)

dynamics at any temperature, similar as reweighting of iég. In practice the data
analysis turns out to be simpler. There is no need to deterneiiative normalization

constants, because a single chain or multiple indepentairtcover the entire range.
Whereas the parallel tempering algorithm requires vangarameters, that have to be
chosen in advance (the number of temperatures and thegs)algeneralized ensem-
ble methods, especially the Wang-Landau algorithm (S&c1R .essentially require an

energy interval Enin, Emax] @s input. Hence only little a priori knowledge is needed.

The generalized ensemble method consists of two stagest, &ir heuristic al-
gorithm, like the multicanonical iteration [BN92], entiogsampling [Lee93], Wang-
Landau sampling [WLO1], transition matrix Monte Carlo [Vé&i, WTS99, WLO0O0]
or the ParQ| [HHO5, AHNt88] algorithm, approximates the DOS to a sufficient de-
gree of accuracy. Sec. 2.7.1 and Sec. 2.8.2 explain morésdetathe Wang-Landau
and the ParQ algorithm. In the second stage the Metrop@iwighm produces the
relevant data. The weights are chosenwé®) = w"(E) := 1/§(E), whereg(E)
denotes the approximated DOS from the first stage. Insteslteognergy, the DOS
might depend on other observables, for example order paeasaéhis is referred as
“joint density of states”. An implementation of the gen&edl ensemble method for
such two-dimensional objects is directly possible. In castt it is complicated for the
parallel tempering algorithm.

There is still the freedom to choose a global normalizationstant. Frequently
the DOS is normalized t@ in order to interpret it as the energy-distribution in the
canonical ensemble at infinite temperature. Alternativéhé case that the degeneracy
of at least one level is known, it is possible to determinedbgeneracy of each energy
level. Thenln g(E) equals the microcanonical entropy function.

19



20 2. Monte Carlo methods

procedure wanglandauf™, Epin, Fmax,d™)
begin
T — xinit
(b . (binit
for i = Enin ... Enax do
w[z] —1
hli] <0
done
repeat
repeat
x < metropolisupdatef,w)
w[B(2)] — wE()]/¢
hE(z)] «— h[E(z)] + 1
until A is flat
¢ — Vo
for i = Eny . .. Einax dO
hli] <0
done
until ¢ < ¢final
return w
end

Algorithm 2.7.1: The Wang-Landau algorithm.

2.7.1 Wang-Landau sampling

The algorithm of Wang and Landau [WLO01] provides an efficiand easy to imple-
ment way to estimate the weights for the flat histogram ensenferovided that the
specific energy function is available, the algorithm canrbpléemented in a few lines
of programming code (see Algorithm 2.7.1).

Instead of sampling from a distribution with fixed weighisthe weights are up-
dated dynamically such that the random walker is biasedrisstates that have been
sampled rarely so far. It employs an histograf’) and the weights(E). After each
step the histogram entry of the current state is incremdnyerhe and the weights are
changed according to

w(E) — w(E)/9,

where¢ is the modification factor for the weights. Once the histogtaas become
"approximately flat"¢ is reduced via the rule

¢ — /o

and the histogram is reseted@owhile the weightsw are kept for the next iteration.
This procedure is repeated undilis close to one. In total there are the following
parameters that have to be tuned:

e the energy intervdlEwin , Emax),
e the initial and final value o, ¢ and¢™? and

o the flatness criterion for the histogram.

20



2. Monte Carlo methods 21

Usually the weightav(FE) are underestimated in the low energy region in the early
stage of the algorithm. This bias is successively correateghch step of iteration.
When ¢t is chosen too large, this kind of underestimation is vergdaand a lot of
computational effort has to be put for the correction in tbkofving iterations. On
the other side, using a small value @' yields a long simulation time in the first
iteration. In the applications here, the simulation of sswe alignments, as well as
for the minimum (free-) energy distribution of the RNA sedary structure, a value
of " = %1 was a suitable compromise. The flatness criterion is notwsatrfor
the algorithm. Wang and Landau [WLO01] suggested the remqérg, that the number
of visits of each energy level is at leai% of the expected number for an uniform
energy distribution, i.e.

N
flat£"
%

wherek is the number of distinct energy levels on the interval ahe- > . h(E) the
total number of events. The choicedf depends on the problem, the choiceft
on the dimensionality of the weights to be estimated. In m@ases it is sufficient to
guarantee that the random walker has cycled several times k., to E,,;, in the
energy space. The choice®™ requires some experimentation. Because the weights
w(F) are systematically underestimated for small energiesédo the ground state)
the first hint for convergence is the change of the normalizegjhts between two
iterations. The quality of convergence can be seen easithi@arsecond part of the
generalized ensemble simulation. If Wang-Landau sampliagstopped too early the
random walker does not mix very well and get stuck in the loerggpregion. That can
be detected by few Monte Carlo steps in the generalized drisem

Another reason for slow convergence in the Wang-Landaurigthgo is due to the
choice of the energy interval. If it was chosen too broad im ¢émergy landscape,
the sampler might also get stuck in local minima. This alsppeas in the parallel
tempering approach as discussed above. the algorithmligdpp

h(E) > VE € [Emina Emax]7

2.7.2 Optimized ensembles

Perfectly flat histogram ensembles are only optimal in thseethat all macrostates
are visited with equal probability. There might remain logrrelations due to the fact
that the random walker stays in local minima for a long timspécially near phase
transitions, where the specific heat diverges, a huge anwfurdmputation time is
spent. This effect is known asitical slowing down

This is also related to theegeneratiorof Markov chains in the following sense: A
Markov chain is regenerative if there are timtgssuch that the process aftgbecomes
independent from times befotg

The paths between regeneration points are cétlacs Usually the distribution of
tour lengths exhibits an heavy tail and only a very smallticaccof tours hit one of
the ground states. THest-passage timéalso calledtunneling timg is the time the
random walker needs to hit the ground state starting atstyégeneration point. This
is an extremal event and, hence the distribution of firssags times might be, at least
approximately, a generalized extreme-value distribugiimibiting a heavy tail.

Small first-passage times increase mixing and performaifitbe sampler. We will
also use theound-trip time which is the tunneling time plus the time needed to go back
to regeneration. Since the turn from regeneration to thergictate is much longer
than the turn back, first-passage time and round trip timappeoximately equal.
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22 2. Monte Carlo methods

Trebst et. al. [THTO04] developed an iterative algorithm imize round-trip
times in a generalized ensemble. Instead of giving all msiates the weight'(E)
1/g(F) a different weight functionv®f'( E) is chosen, such that theumber of round
trips on an energy intervall; andE_ is maximized.

The equilibrium distribution of the optimized ensemble isogortional to
woP(E) - g(E), which is not a flat histogram in general. The method works for
both, for Metropolis and n-fold dynamics. In the iteratidvat is proposed in Ref.
[THTO4], on need to know the the fraction of visif§ E') at energyE, where the
last visit to £, has occurred more recently than to the stdte A sample estimate
for f can be made by labeling the random walker with two differabels “-" or
“—", depending on whether it has visited the state or £_ most recently. During
the simulation a separate energy histogrEm(E) for each label is updated and an
approximation off for the given weights is given by

By H, (E)
HE) = H+(E)++ H_(E)

The derivativelf /dE can be approximated by a polynomial interpolatiorf ¢&) and
numerical derivation.

By diffusion arguments one shows that the weights of thentp&d ensemble can
be obtained iteratively [THTO04]. The feedback iteratiogigen by

1 df
Wt E) = w*(E) - \/H+(E) TH(E) b (2.20)

where the histogram&_ and the derivate‘d% for the weights of iteratiorfk + 1) is
obtained empirically from iteratioh.

For the n-fold way, or as in the case of a semi rejection-fygmchics (see Chap-
ter[7), the iteration has to account for the two intrinsicdistales. Since one aims at
optimizing the computer time the iteration scheme Eq. (Rifénodified by the factor
7(FE), which is the accumulated waiting time at energy leiéein other words

1 _ 1 df 1
wht (E)—wk(E)-\/H+(E)+H(E)-E-T(E). (2.21)

After each iteration the number of MC steps, which is usedcmumulate the his-
tograms, is doubled.

This method will be compared with other Monte Carlo methad<Chapter 7.
Fig.[2.4 illustrates the convergence pfior the model of the RNA secondary struc-
ture. Details of the model will be introduced in Chapter 5t ibis not essential in
the general description of the method in this chapter. Alaintionvergence behavior
has also been observed in other systems such as Ising motEl94]. In the first
iteration the random walker spends much time for tours froergy levelO towards
low energy levels. After the optimization the fraction ofite in positive and negative
direction become more balanced. Convergence is achietedoedly 4 iterations. The
inset shows the decrease of the round-trip time, which haady converged after the
first iteration.
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Figure 2.4: Convergence ¢gf(E) using iteration scheme Ed. (2]121), shown by lines
connecting the data points, for better visibility. Betwétemation 4th and 5th no sig-
nificant difference off (E) is visible.

Inset: Convergence of round-trip times. Lines in the insetgaides to the eyes only.
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2.8 Sampling of rare events lll:
Evaluation of the number of potential moves

During the course of a generalized ensemble or a parallgi¢eing simulation, more
information than just the visited states is available.dastof estimating the DOS from
Eg. (2.12), matrix based methods aim at estimating the D®® thenumber of po-
tential movegto be specified below) during a course of a Monte Carlo sitrara It

is not crucial to use a particular ensemble. The only requergts are that the entire
energy range is covered by the simulation and secondly et state within each
microcanonical ensembler = {z € x|E(x) = E} is visited with equal probability.
Simulations with detailed balance guarantee th&rocanonical propertyautomati-
cally [Wan99a].

2.8.1 The density of states by transition matrix estimates

The connection between the transition matrix and the DOS®eanade as follows:
Consider an infinitely long simulation in the canonical enbée at infinite temper-
ature, wherall attempts are allowed. In entropic systems, like the RNA sdaoy
structure, there might bfrbiddenconfigurationsE(x) = co. Proposals that yield
infinite energy are not accepted even at infinite temperature
The discrete time and state master equation for the so cmtestichain on the level
of the macrostates is given by

p(Ejt+1)=>_ Qi;-p(Eit), (2.22)
E;

wherep(E;, t) denotes the probability of finding macrostate stétet timet andQ; ;

is the macrostate transition matrix, i.e. the probabilftjponping to a state with energy
E;, given that the random walker sits in a state with endrgySince(); ; is stochastic
we require that the columns sum to one, Ej Qi,; = 1forall i. The stationary
distribution of Eq.[(2.22) is the desired DQ$E). For a known infinite temperature
transition matrix( the stationary distribution can either be computed viaiaglthe
eigenvalue problem

9(Ej) = Qi; - 9(Ey).
E;

Alternatively one can also obtag( E) iteratively. This means one starts with some
inital guess forg(F) and applies Eq! (2.22) until the relative change @F) is suffi-
ciently small & 10~1°) for all energy values.

The microstate infinite temperature transition matrix @ ketropolis algorithm is
defined as

3

ro_ 1 ifyeN(x)andE(y) < oo
“Y 10 otherwise

i.e. it equals 1 if the statg is a neighbor ofc. Furthermore, let us define the number
of neighbors of: with energyF(z) + AE, or the number of potential moves, as

Hy e N(@)|E(y) = E(z) + AE}| fAE#0

N AB) = {HyeN(azﬂE(y) .Y it AE =0
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The macrostate transition matiix can be written as a microcanonical expectation
value ofT’,

1
Qij = FZ

2

(Z Foy- 5E<y>.Ej> “0B(2), B,

TEX \YEX
- Ci > N(x,Ej = E(x)) - 6p(),m, (2.23)
7 zex
= NGB - B@)e, (2.24)

whered; ; and theC;'s are chosen such thk; ; is stochastic.

A sample estimate af); ; can be made [AHM88, WL00, HHO5] from MC data
on attempted moves: In the matii; ; we count the number of attempted moves from
1 to j if the energy change is finite. Otherwisfém» is incremented byi. Hence,
the microcanonical average in Ef. (2.23) can be obtained Sinulations in other
ensembles than the microcanonical one.

Suppose we have datasafdifferent simulations (a mixture of canonical ensembles
or even a combination of generalized and canonical ensanidlgossible), yielding
transition matriceﬂﬁ/i’fj with £ = 1...n. Then all data are added into one master

matrix W; ; = 3, W, and the DOS is determined fro@y ; =

1 W
Sy Wiy o

2.8.2 The ParQ algorithm

Simulated annealing [KGV83, JJS06] is a stochastic opation method that is in-
spired by the physical annealing process. The cost funiitanslated to the energy
of the corresponding physical system and hence the tenypeicn be seen as parame-
ter that controls the sub-optimality of the system. The lgigttis algorithm Algorithm
[2.2.1 with Boltzmann weights(E) o« exp(—3F) and a time-dependent temperature
schedule3(t) provides the dynamics of the annealing procedure. By lawgetie tem-
perature successively, the system approaches low enetgg sind the simulation will
end in a state close to the ground state. Geman and Geman [@B&¢ able to proof
the convergence of simulated annealing.

In most applications of simulated annealing, only the fitetisis of interest and the
data during the course of the simulation is irrelevant. H@mveas has been illustrated
above, information about the number of potential moves iges/an estimate of the
infinite temperature transition matrix and hence an es@noftthe DOS [AHM"88,
HHO5].

The ParQ method [HHO5] aims at estimating the infinite temperatuamsition
matrix (the letter “Q” in the acronym ParQ) from a paralléPétr”) run of independent
simulated annealing simulations. The data fralihsimulations are collected after-
wards and evaluated as described above.

It is an open question under which conditions the estimatwveges toward the
true DOS when the number of simulations, at a fixed number ofdt¢ps each, tends
to infinity. In section Chapter|7 we will examine convergepeeperties of the ParQ
method for the RNA secondary structure and show that theoméeronical property is
explicitly violated.

For the other limit, one simulated annealing run subjechfimitely slow cooling,
the convergence can be conjectured by the convergencethdor simulated anneal-
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ing [GG84] and by the microcanonical property of the Metiopalgorithm, which is
the limiting case of simulated annealing.
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Chapter 3

Sequence alignment

Comparative genomidslar03] is a young, growing research field that aims at stuglyi
the relationship between genetic information and funatiaeross different organisms.
Regions of coding DNA sequences, that are conserved betarganisms play a key
role in this framework, because conserved genetic infaonds also translated to
related proteins which characterize the organisms’ foneti For this reason the study
of conserved regions in the sequences of protein molecsiesiidespread approach.

Also DNA sequences that are responsible for gene regulatierconserved be-
tween related species. In analogy to the terms “genome” g@aldmics”, “protenome”
and “protenomics” are often used, when looking at propemiethe complete set of
proteins in organisms.

Since the introduction of new biochemical methods in the 0E9the amount
of molecular biological sequence information, which is thasis of comparative
genomics, has increased dramatically. The history of geneequencing projects
began with the discovery of the chain termination method BADsequencing by
Sanger and its application to the complete genom®&.6fl 74 bacteriophage[SNC77].
Sanger determined this genome consisting of 5,386 bp (lzas® manually. Over the
years the method was improved towards computer aided seiqgefsKSH86] and
further genomes with increasing sizes could be sequencehe $nilestones are the
full genomic sequence of Saccharomyces cerevisiae (y@a$§96 (12,070,000 bp)
[GBB+96] and Escherichia coli (a prokaryotic model organism) 891 (4,290,000
bp) [BIBT97]. Almost the complete genome of the model organism Drogap
melanogaster (fruit fly, 180,000,000 bp) was sequencedgusia whole-genome
shutgun method in 2000 [VAR8, ACH™ 00, MSD"00] and finally a “working draft”
of the human genome (2,700,000,000 bp) was obtained in 26€11] and finalized
in 2003.

Large databases of DNA, proteins or RNA are available aretmational collab-
orations try to synchronize and standardize informatioth mrake them available by
access tools. The information that is stored in the recofdease databases ranges
from sequences of bases or amino acids to citations of thesymonding publications.
Also crosslinks (for example between genes and translateips) are very impor-
tant.

An important resource is maintained by thdernational Nucleotide Sequence
Database Collaboration (INSDJINS], which consits of three sub-organizations, the
European Molecular Biology Laboratory (EMBIEMB], the GenBankhosted by the
National Center for Biotechnology Information (NCBIYSA [NCB] and theDNA
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Figure 3.1: Growth of the SwissProt and TrEMBL database theyears

Data Bank of Japan (DDBJ)DDB].

On the protein level the databases of the Universal ProteBo&ce Knowledge-
base (UniProtKB) [Uni] UniProtKB/SwissProand UniProtKB/TrEMBL, are popular
resources. In order to give an impression of the increasigydf these databases, the
number of entries (proteins) over the years is illustrateéig.[3.1. The SwissProt
database contains manually checked and updated infommti@each entry, implying
an high degree of usability. In contrast the “supplemenE&NIBL is generated by
all EMBL nucleotide sequence entries by automatic traimsiaexpect for those that
are already integrated in SwissProt (TrEMBL stands fordiated from EMBL). Most
of the TrEMBL entries are seen as possible candidates fossR&dt. Because the
TrEMBL entries are generated automatically much more secpgeare stored in that
database.

This exploding database sizes require computational thalsare able to analyze
data, in particular searching for so called homologicaltiehshipg, i.e. relationships
due to common ancestry, between sequences.

This chapter is dedicated sequence alignmenivhich is the workhorse of com-
parative genomics / protenomics. It is a method to quartiéysimilarity between two
(pairwise alignmentor more (ultiple alignment biological sequences.  Further-
more sequence alignment can be literally translated tossicial physical model with
guenched disorder and, hence, many methods and concaptstabstical mechanics
can be adopted to this problem. Some of them will be discuisstindls chapter, others
in the following one.

Basic definitions are introduced in Sec. 3.1 and after treastatistical inference of
scoring parameters are outlined in Sec. 3.2. [Sec. 3.3 wettnization algorithms for
pairwise alignment. Variants that also consider sub-ogiti@lignments are discussed
in Sec] 3.4 followed by an outline of the so call@tkar-logarithmic phase transition
in Sec| 3.5. lllustrative biological examples in 3.8 glose this chapter.

1n fact homology is a much broader term that describes siitiéla on different levels from entire or-
ganisms to the molecular biological level.
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AAIGTIGT

. AAGT-|GT
A|GTICGA |A-|GT|CGA

Figure 3.2: Two representations of an alignment. Matcheslaown as solid lines and
dashed lines indicate mismatches.

Left: Topological representation. Aligned letters aremected by lines.

Right: Bioinformatics representation. Aligned letterg aonnected by vertical bars
and gaps are indicated by the symbol “-".

3.1 Notation of sequence alignment

As mentioned above pairwise alignment (in the following giynreferred as “align-
ment”) aims at measuring the similarity between two molacsequences. Although
we will focus on protein alignment alone later on, the présigon here will be general.
This means amino acids or bases are referrddteersand the set of possible letters
asalphabet This is the four letter alphab&t = { A, T, G, C'} in the case of DNA and
the 20 letter amino acid alphabet for proteins.

An alignment relates letters from one sequence to the sesmuence. These rela-
tionships should reflect correlated regions between theesexgs, that exhibits a large
fraction of conserved letters in the evolutionary proc&ssce deletion or insertion of
letters at certain positions in the sequences occur as neetidncept of so called gaps
is crucial. Formally we define an alignment by

Definition 3.1.1 Leta = a;...a; € XL andb = b;...by € XM a pair of se-
quences OVeE.

(a) AnalignmentA of a andb is an ordered set of pairings
A={01,71),---,(n,Jn)}Withl < iy < ipp1 < Landl < ji < jey1 <M

fork=1... N — 1. Thesetof all alignmentsof a andb is denoted ag 23>

(b) Lettersa; andb; with (i, ) € A are calledalignedto eachother anda; andb;
aligned. Ifa; = b; the pair (7, j) is denoted asnatch otherwise amignatch.
Letters that are not aligned are calleohpaired orgaped.

(c) Alignments with gaped letters are also caltgped.

(d) If Tht1 =tk + 1 andij =g +1+1 with! > 0 and(z‘k,jk), (ik+1,jk+1) € A,
thenb is said to contain ayapof lengthl! betweeni; andi;; and likewise for the
sequence. If j; =1+ 1 > 2, thenb is said to have gap of length! at the bagin,
if jy = M — 1 < M, thenb has agap of length! at theend and likewise for the
sequence.

The conditions for the order of the aligned letters ensuattthe relationships are not
crossing, which implies polynomial alignment algorithraeg Sed. 3.3. Alignments
can be represented in different ways. For example in[Figtt82alignmentd =
{(1,1),(3,2),(4,3),(5,5),(6,6)} of the input sequencaes = AAGTGT andb =
AGTCGA is shown in two different representations. In bioinforroatihe symbol “-”
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30 3. Sequence alignment

is commonly used to indicate gaps. Gaps are illustrated $griimg “-” between the
corresponding positions. Note that each bioinformatipsasentation can be translated
into the set of paired letters, whereas the reverse mapgingtiunique. For example,
the (suboptimal) alignmend = {(1,1), (5,5), (6,6)} can either be translated to

A———AGTGT AAGT-——GT
| || orto | | |
AGGC——-GT A———GGCGT

amongst other representations. For this purpose we defiaranical bioinformatics
representation by disallowing gaps in the first sequentet follow a gap in second
sequencd. This implies that the second representation in the aboample is not in
its canonical form. This distinction is relevant not only fasualization of alignments,
but also for the purpose to exclude redundant alignments fn@ partition function of
suboptimal alignments (see Sec.|3.4).

The objective is a measure for the similarity or the degremofervation between
the sequences or regions of the sequences. The classicas wagssign ascorefor
each alignment via anbjective functionS : x2%°* — R and then maximizings

among all alignments
So(a,b) = max S(A;a,b)
APt —  argmaxS(A;a,b). (3.1)
For the choice of the objective function and its parametersieed to know

(i) whether we are looking at locally conserved region or thike the entire se-
guences should be considered,

(i) how matches and mismatches should be evaluated and
(iii) how gaps should penalize the overall score.

To address the first issue there are in principle two typegtive functions, namely
optimal local alignment scoresi®@ andoptimal global alignment scores{®*?. Op-
timal global alignment scores involve contributions frolimaatches, mismatches and
gaps. The optimal local alignment score is the optimum ollgyl@bal alignments of
all subsequences afandb,

local lobal
S(()ma (av b) = 1<Il'11131X<L Sgo a(ay e Gy, bj/ .. b]) (3.2)
1<)/ <j<M

Alternatively S (a, b) can be seen as a global alignment where gaps at the begin or
end of the sequences are not penalized. Formally we defingtdbe space of local
alignments by (see also Fig. 3.3)

Definition 3.1.2 Leta = a;...a;, € L andb = b;...by; € XM be a pair of
sequences over. Thesetof local alignmentsof a andb is given by

ol = U {thft_’ii_’bj,___bj|ai,,bj, and a;, b; aligned to each othgr
1<’ <i<L
1<j' <j<M

U
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AlAIGITIGT]

AIGAIGITIAIC/G  |A[GA-|GT AlC/G

Figure 3.3: Representations of a local alignment.

Left: Topological representation.

Right: Bioinformatics representations. Aligned letters aonnected by vertical bars
and gaps are indicated by the symbol “-".

This definition is introduced in order to avoid overcountwfgocal alignments that
have a gap at the begin or the end of either sequence, bedtthesa alignments have
an unique topological representation.

The second issue requires the knowledge of a relationshigelea the letters of the
underlying alphabet. This is usually realized by so cadledistitution or score matrices
that assign each pair of letters a real number,d.e.X x ¥ — R. In generic studies
often a very simple score matrix is used. This matrix ass@in®ismatches the same
number—y (1 > 0) and all matches,

U(a’b):{1 ifa=b

—p otherwise

However, for the case of protein alignment this setup isngtiy oversimplified, be-

cause different types of amino acid substitution are mordess functionally conser-
vative. That means certain substitutions affect physiadl@emical properties of the
protein, than others, because the amino acids themselaes similar properties. Mu-
tations between such related amino acids occur more likalynost cases the score
matrices are derived by so called log-odds ratios that coenpababilities between

two models
Prob(a,b|aandb are related

Prob(a,b|aandb are unrelateg’
see Sed. 3.2 for details. The contribution of all letters sumatches or mismatch is
then a sum over all these contribution.

Regarding the gaps one compromises between a computdtasddle and biolog-
ical evident penalty functiop. That means each gdpof lengthir yields a negative
contribution of—g(ir) to the overall score, which is then defined as

S(A;ab)= > alaiby)—> g(in) (3.3)
r

(i,5)€A

o(a,b) =log

Usually g is a monotonously increasing function of the length. Thgratient algo-
rithms for gaped alignments with arbitrary gap penaltidsitagika cubic time complex-
ity (O(max(L, M)?min(L, M))). In practiceaffine gapcost functions

g(lr)=a+p(Ir—1), witha>pg (3.4)

are commonly used, because the computational complexduces to O(LM)
[Got82]. The opening parametarpenalizes an opening of a gap, i.e. it is a general
contribution for the existence of a gap at all. The extengiarameters is usually
chosen to be smaller than hence
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32 3. Sequence alignment

(i) longer gaps are penalized more than shorter ones and
(i) opening a gap is always more expensive than extensions.

The affine gap penalty Ed. (3.4) is based on the empiricalrgasen that the size
distribution of insertions and deletions in evolutionarggesses is well described by a
power-law distribution [GCB92, GL95]

P(lp) = P(1) 1% Ir=1,2,...

with b ~ 1.8. Together with the ratia of insertions or deletions to substitutions or
conservations the natural gap penalty has a log-affine form

g(lr) x loga + bloglr,

which is computational more expensive than linear-affing gasts. However in a
recent study the commonly used affine form Eq. (3.4) has bestifi¢d by bench-
marking the accuracy of logarithmi¢ir) = Bloglr, log-affineg(lr) = a + Bloglir
and linear-affingy(ir) = a + Blr gap costs [Car06]. The result is that the practical
choice of linear-affine gap costs approximates the realcstse very well. Pure log-
arithmic gap costs are significantly worse. In praxis somgriktics for the optimal
choice of scoring matrices and corresponding gap costgjisirel (see for example
[RP0O2, VEA9S]).

Before describing in Sel. 3.3 the optimization procedugetdorm the maximiza-
tion Eq. (3.1) for global and local alignment in polynomiat&, more about the choice
of the protein scoring matricesis said in the next section.

3.2 Scoring models

Now, as we have fixed the notation of sequence alignment,pbssible to describe
the methods, which had been used to derive scoring matriéesprotein alignment.
There are three approaches relevant in this scopePA¢[DSO78] andBLOSUM
matrices [HH92], which are most common, and a special p@&rgosring matrix for
transmembrane proteiisi| M[MRRO1].

3.2.1 ThePAMfamily

The starting point of the derivation of tHeAM matrices [DSO78] ar@hylogenetic
treesof closely related proteins (see Fig. 3.4). Usually onlyusawe data of the leafs
of such tree is available and the rest of the tree is congtiuzy parsimony methods
[RDM98, CBO05]. At each edge of the tree of proteins a mutatlae to a change in
the gene, i.e. in the coding region of the DNA, occurred. Hiiwvs one to construct
such trees not only for DNA but also for proteins.

Trees of sequences such as in Fig. 3.4 can be described d@ssacfanutations,
which are defined as follows.

Definition 3.2.1 Let X be an alphabet. Aacceptedpoint substitution is an operation
on a sequenca over

n n . * n
Y- .al...ai_laiaiﬂ...an—>a1...ai_1aiai+1...anEE

with 1 < ¢ < n and a lettera) # a;.
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ABGJ or ABI H

[ACGH| [DBGH| [ADI J | [CBI J |

Figure 3.4: Sketch of a phylogenetic tree of a protein fanych trees are usually
derived from the sequences that are located at the leafddlmmt by solid lines) At

each edge the mutations are counted. Note that mutationsreddess frequently in

the data set used in Ref. [DSO78] than in this illustration.

Dayhoff, Schwartz and Orcutt [DSO78] have chosen 71 fasiitié closely related
proteins. That means each pair of sequences does not diffaore than15% of
letters. This implies the reasonable assumption that eeels£hanged at most once.
Also insertions or deletions of letters are not considenetiis study.

From the constructed trees the total number of inferred@edepoint mutations
from lettera € ¥ to b € 3 are counted in an matriX, ;. This matrix is constructed
symmetrically which means whenever a mutation fiota b is observed4,, , andA4,
is incremented by. The normalized frequencies of all amino acfds) .y, fo = 1,
in all branches are estimated from the data. This allows aitiefi of the so called
mutation probability matrixia

P,y :Ai fora#b and PFP,,=1—A fora=2b,
Zc¢a Aa,c

whereA is a tunable parameter that is specified below. This matfidte following
properties:

¢ the rows are normalized to ong,, P, , = 1, i.e. P is stochastic and
e the average fraction of amino acids that are changed is 9yen, ., fa fo Pa.p-

The last property allows one to choose the scale parameten practical way based
on the following definition:

Definition 3.2.2

(@) Two sequences,b € X* are said to have an evolutionary distancekoPAM
(pointacceptednuations), if they have evolved by a seried 06 x k/L accepted
point substitutions, i.ek is the average number of substitutions per 100 residues.
The unitP AM defines an evolutionary distance.

(b) The matrixPé}b) is said to be thel PAM muation probability marix, if A is
chosen such that,, fa fy P.)) = 0.01.

The definition of thel PAM mutation probability matrix is the starting point of the
derivation of matrices for larger distances, when congidethe sequence evolution
as a Markov process. That means that an initial composjfiowill evolve to f, =

> faP(lb) for an one PAM process. Larger distance can be obtained lpatieg the

a”
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process:-times. This yields théP AM mutation probability matrix?(*) as a power
of the1PAM matrix.

pk) _ p) p)  p(1) _ {pu)r
k times

In order to translate the probability matriXinto a score matrix, let us consider
a gapless global alignment of two sequenzesndb (or a gapless local alignment af
andb). We want to discriminate the hypothesis that both sequefaresubsequences
in the case of local alignment) stem from a common ancestmrding to the process
described above (modé@l;) against thenull hypothesisvhich states that both are
unrelated and their composition is i.i.d. according to thekground frequencies,
(model My). For modelM; we further assume that all sequences have an average
compositionf, and that is equally likely to replace with b or vise versa. Hence
the probability of observing the pait, b is given bbe .= P, b = faPap. . The
probabilities that the observatianandb are described by the model of, or M1 are
given by

Prob(a, b|M,) = H fa,H f», and
=1

Prob(a,b|M;) = pai,bi

—

i=1

respectively. A common measure of discrepancy between tadels is the so called
log-odd ratio,

& Prob(a, b|My) Jai fb

This also justifies the fact that the contributions for matland mismatches in Eq.
(3.3) was chosen additive and we can identify

5= log DO ] Pt 1 P

Py
'AM
(a,b) = log T, fb

Apparently,c depends on the PAM distance. For this reason different PAdfesc
matrices for different purposes have been derived. Thigicest are denoted as
“PAME”. Hence the acronym “PAM” has two meanings, the evolutigriame unit as
well as the name of the matrix family.

Popular matrices are for exam@&aM30 or PAM250. These matrices are usually
scaled by an factoB( log 2 in the case oPAM250) and then rounded to integer. The
more distant a pair of sequences is suspected to be the thegeAM value should be
chosen. Hence the methods requires some experience toectimobest substitution
matrix. To be on the safe side, it is also possible to use a owtibn of different
matrices for a single biological question [FFBO4].

3.2.2 TheBLOSUMfamily

The PAM approach is most powerful for shorter distanceslszd relies on an extrap-
olation of the 1 PAM matrix. Fourteen years after the intrctthin of the PAM family,
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> 62% identity

CCDED |CDEAAD
ADCDED |ADEAAD
EIDADED

Ape+— Ape+ le

Figure 3.5: Construction of thBLOSUM family from clusters of highly conserved
blocks.

Heinkoff and Heinkoff derived another family of substituii matrices, thé8LOSUM
family [HH92], which is most commonly used today, in parteuto detect distant
relationships.

This matrices have been derived from known so called unghppstiple align-
ments. That are blocks of conserved regions of equal lenptbhaare written in top
of each other, similar as in pairwise alignment. Each coluepnesents a position and
each row is a fragment of a protein sequence. These bloclduastered according to
the percentage of identical letter at each site (see Fiy. Bie clusters are constructed
such that for each sequence withi# cluster there is at least one sequence in the same
cluster withk% or more identical letters..

A matrix A, counts the weighted frequencies of letteandb in different clus-
ters, i.e. each time letteris observed in a cluster and letteis observed in the same
column but different clusted, ; is incremented byl /nin2, wheren; andn, are the
sizes (number of sequences) of the respective clustersidar to avoid overcount-
ing of many highly similar sequences, when estimating théanacid background
frequenciesf,,, Heinkoff and Heinkoff have provided a unbiased estimateAjj ;,
instead of simply counting amino acids,

_ Zb Aa,b

fa a 207(1 Ac7d .

Again, the score matrix is a log-odd score of pair probabﬂi% and the back-
ground frequencies, i.e. )

BLOSUM Py
o (a,b) = log h
By the construction ofd,, ; the score matrix®-%5"™(q, b) is symmetric. The percent-
age threshold value that defines the cluster is the analdghe ®AM distance. The
difference is that a large value, i.e. a large fraction ohidml letters, yields a ma-
trix that is more sensitive for distant proteins. The staddaatrix from that family is
BLOSUMB2, where all blocks with at lea62% identical letters are clustered.

3.2.3 Position specific scoring for transmembrane proteinsising
the SLI Mfamily

Transmembrane proteins are important players in the mialediology of the cell
[AJLT08]. They extend from one side of the cell membrane (a sodttie bilayer)
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cytoplasmic sndK &

membrane

non-—cytoplasmic aV w

Figure 3.6: Transmembrane proteins crossing the lipiggbilance (a) or several times
(b). The transmembrane region is characterized by helicadtsires in most cases.

to the other one either once (see Fig. 3.6 (a)) or severast{fig. 3.6 (b)). The amino

acid composition and the three dimensional structure gtyafepends on the structural
domain, i.e. the sub sequence that is part of a certain elewhéme three dimensional

structure. Domains inside the cell, the so caltgtbplasmic sideand domains outside
the cell are characterized by a typical hydrophilic amind aomposition. Whereas the
membrane domains exhibits a hydrophobic composition tiaguh helical structures

in most cases [AJLO8].

The strong difference in the composition for transmembugoreains and the rest
of the molecule implies that the standard matrices sucheg®ANlor theBL OSUMfam-
ilies are less powerful because they rely on general backgrérequencies and pair
probabilities. A score matrix to align two transmembranendims has been derived
by Jones [JTT94]. This kind of alignment is desirable whea @ninterested in find-
ing good alignments between two transmembrane proteihsrrétan discriminating
between different sequences. For this purpose Ng, HeiakafHeinkoff [NHHOO] de-
rived a special purpose matriRHAT (Predicted Hydrophobic And Transmembrine
which accounts for hydrophobic bias and is designed to udatmbase search.

On this basis Muller, Rahmann and Rehmsmeier derivedstiev (Scorematrix
Leading to Intra-Membrane domain&mily [MRRO1] that is designed to align trans-
membrane regions against “general” regions, as it occucages where transmem-
brane queries are searched against huge general protabades. It is explicitly non-
symmetric by construction,

SLIM 3 Tap
o (a,b) = ) In <fTbe>

The construction of the matriX is based on a generalization of Dayhoff's PAM ap-
proach to continuous time Markov processes [MV00] basecherpair probabilities
of the PHAT matrix, details can be found in [MRRO1]. The subject freqties f,
have been taken from the general purpose maffixL. [MV0OQ], whereas the fre-
quencies| fTM} stem from the software tool PHDhtm [RFC96], that allows jtag
transmembrane helical regions by a neural network approach

A typical application for a database search requires thdigtien of the positions
of the transmembrane regignsf the query. With this data the database is searched

2Beside PHDhtm, there are numerous approaches for the sarpespuavailable| [vH92, NK92,
HBCM98, TS98, CWS 97, PA97, SVHK98, KLVHS01, DWi01,| AMIT04, KKS04, KKS05, Jon07]. |

36



3. Sequence alignment 37

with theposition specific scoring scheme

oS " ™a;, b;) if 4 is a transmembrane position
S(Aa a7b) = Z { bl osum, o .
inea Lo (a;,b;) otherwise
—> g(ir) (3.5)
r

instead of Eq/(3.3) for general purpose scoring.

3.3 Optimal alignment

In the following, the optimization algorithms by Needlensrd Wunsch [NW70] and
Smith and Waterman [SW81] for the global and local alignnagatdescribed.

3.3.1 Global alignment

The optimization problem to find the optimal global pairwaignment allowing gaps
can be solved bgynamic programmin¢known as transfer matrix method in statistical
physics). Itis referred ddeedleman-Wunsch algorithidW70], which was originally
designed for linear gap costs, where= § in Eq. (3.4). A modified version also
allows for general affine gap costs, where> [ within the same time complexity
class of O(LM) [Got82]. The computation requires three auxiliary masio# size
L x M. Infactthe computation can also be performed in linearsg¥enax(L, M))
[Hir75], but memory efficiency is not essential here.

Following the paradigms of dynamic programming [CLR02], eiide the prob-
lem in subproblems. Let us define the matrix elemdnis, P; ; and@; ; by the op-
timal score of the subproblem ...a; andb; .. .b;, given thata;, andb; are aligned,
given thata; is gaped and given thaj is gaped respectively, i.e.

a;
ij = SgIObal a...aq,by... b]‘; given |

bj
Pi’j = Sglobal (al co.ag, byl b]‘; given <aj>)

Qi,j SgIObal (a1 ... Qg bl ce bj; given <b_>> (36)
J

The case that both sequences end up in a gap is not possibteiagto the topological
definition Def| 3.1.1.

We assume that the matrix elementdfP, @ are known for all indicesi’, j') <
(i,4), where “<” denoteslexicographic ordering. In particular this applies to the
indices(: — 1,5 — 1), (i — 1,4), (¢, — 1). Then the so far unknown matrix elements

D

have used TMHMM (Transmembrane Hidden Markov Model) [SviBKRLVHSO01], because recent bench-
mark results are convincing [CDS05] (see $ecl 4.5)
3(i",5") < (i,5) ifand only if i’ < i ori’ =dandj’ < j
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D, ;, P; ;,Q; ; can be determined by the recursion relations

Di_1,-1
D’L] = U(U/i,bj) + max Pifl,jfl (373)
Qi-1,-1
Difl,j —
Pij = maxq{Qi_1,; —« (3.7b)
P_1,;—-p8
D;iq—
Qi; = max{ T7° (3.7¢)
Qij—1— 0
with the boundary conditions
Doop = 0
PO’Q = — 00
Qoo = —00
Dy = —o0 fori=1...L
Dy; = -0 forj=1...M
Py = —a—-(>G(-1)p fori=1...L
Qo; = —a—(j—1)8 forj=1...M

and the final result

SgIObal(al .. .aL,b1 .. bM) = maX{DL_,M,PL_,M, QL,M}-

After filling the matrices a trace back procedure can be agdpb determine an optimal
alignmentA°P,  Because a gap in the second sequence cannot follow a gap in th
first one by definition, only two cases occur in the recursion B.7¢). This is not
essential for optimal alignments, but turned out to be irtgrarfor finite temperature
alignments.

Because optimal alignments might be exponentially deggein particular in the
linear phase, see Séc. B.5) one has to distinguish, whether

(i) oneis interested in an arbitrary optimal alignment, tvether

(i) one (ore more) alignmentis to be chosen with the costatistical weight, where
each optimal alignment is equally likely.

The second task requires additional matridé8, N N that account for the
degeneracy of the corresponding subproblems. These emtran be computed in a
similar way as the recursion Eq. (3.7),

D _ D
Nij = NiZija 5Di,j7Di—1,j—1+U(ai7bj) +
P
Nifl,jfl 5Di,j,Pi—l,j—1+<7(a7’,’bj) +

Q
Nifl,jfl 6Di,j’ Qi—1,j—1+0(ai,bj)

NI = NP 6p Dy y—at
Ngl,j 5Pi,.7‘-, Qi-1—at
Nijil.,j 6Pi.j;Pi—1.j*B

NP = NP _160,, D, 1—a+

Q
Ni,j—l 5@1‘.1, Qij—1—P
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> o0 0 -4d 60 >

@ (b)

Figure 3.7:
(a) Path graph representation of a global alignment.
(b) Interpretation as DPRM

To perform the backtracing we set up a rectangular lattictzef( L + 1) x (M +1)
(see Figl 3.7(a)) Each pai0,0) < (i,5) < (L, M) corresponds to a site. The opti-
mal alignment corresponds taw@nimum weighted directed pattom the site(L, M)
to (0,0). This yields third alignment representation denotegath graph(see Fig.
3.7(a)).

The weights depend on the choices that have been made duoeirttybhamic pro-
gramming procedure in forward direction and that are storede matricedD, P and
Q. Initially (3, j) is set to(L, M) and we define; ; = max{D, ;, P, ;,Q; ;} as the
unconditioned optimal socres of the subproblems. At eaghisis determined which
of the three matrix elements is chosen as maximum and go bdekli, —1), (—1,0)
or (0,—1) direction depending on whethé, ; = D, ;, F; ; = P, ; or F; ; = Q;;
respectively. In the case that the choice is not unique tleetidn is chosen randomly
weighted with the corresponding degeneration that aregtorN°, N andN%. To
translate the path graph representation into the standairdfdrmatics representation

(see Fig. 3.7(b)) the symbols

HENERE

are attached in front of the alignment, depending on thetime that has been chosen.
That means a step in diagonal direction corresponds to ehrpataismatch, horizontal
or vertical steps to gaps in either sequence.

Assuming thaty; ; = o(a;,b;) are independent, local alignment with linear gap
costsé = a = f is equivalent to one of the best studied models in statigpicgsics,
directed paths in random media in (1+1) dimensi¢gp$RM) [HH85, Kar87, Mez90,
FH91, Kar94] (see Fig. 3.7(b)). This model describes a gaahis directed in a posi-
tive temporal dimension, which is related(@j) viat = i + j — 1, and may fluctuate
in one spatial dimensian = i — j. The energy of the path corresponds to the negative
score andd can be interpreted as a “line tension”, which forces the patiollow a
straight line. In contrasty; ; corresponds to a random potential that is responsible for
fluctuations in the spatial dimension. This analogy hasiiegpresearchers to study
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40 3. Sequence alignment

global sequence alignment from a statistical mechanicspeetive and look at prop-
erties like localization-delocalization transition [HER percolation [SAYO05] or apply
methods like replica calculations [Yu04]. In order to stwipoptimal alignments also
a finite-temperature version has been formulated, see BJi¥#95, KLOO, MHSO02]
and Sed. 416.

3.3.2 Local alignment

At the first glance the optimization problem for local aligemh Eq.[(3.2) is much more
complex. Interestingly it can be solved within the same clexity as the global align-
ment problem. The matriceB and Q are defined in the same way as in Eq. (3.7)
except that the global objective functiGd**® is replaced with!¢2!. Note that an
integral difference between local and global alignmertia aps at the begin and end
of a or b are not penalized. In particular the null alignmetit = {} has scor® and it

is always better to choos4’ instead of an alignment with negative score. Hence we
define

a;
D; ; :=S'(§’cal ai...a;,br...bj; given| |
b;
Consequently, the recursion of for the local alignmentiggiby
0
D1
Dij = o(a;,b;)+max bt (3.8a)
i—1,5—1
Qiflhjfl
Di_l_’j—oz
P = maxq{Qi1;—« (3.8b)
Pi1;—p
D; ;i 1—
Qi = max{ W0 (3.8¢)
Qz}jfl - ﬂ

which is almost identical to the global alignment problenueDo the fact that align-
ments with gaps at the begin@br b are never chosen as optimal and because optimal
local alignments can start at any point the boundary camitare given by

Dio=PFPo=Qin = —0o0 fori=0...L
Doj=Pyj=Qo; = —oo forj=0...M

This is defines the famous Smith-Waterman algorithm, whiak ariginally proposed
for linear gap costa: = 5 [SW81].

The end of a local alignment can be any point{inj) < (L, M) and hence the
optimum is

local
So%(ay...ar,by...by) = max {(i7j)rgz(1z<7M) {Di;}, O} .
The back-tracing procedure is quite similar to that of glalignment. Initially the end
point is set to the position of the maximum (instead bf M) for global alignment).
Then the traceback is performed in the same way as globaimégt until a point with
D; ; = 0(a;,b;) = max{D, ;, P; ;,Q; ;} is reached, which is then the starting point
of the alignment.
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3. Sequence alignment 41

3.4 Finite-temperature local alignment

Sometimes it is also desirable to consider alternativecptbmal alignments. One
approach to detect alternative local alignments beyond(tienum is to consider a
canonical ensemble of local alignments for each pair ofseges. Hence, in the jargon
of statistical mechanics, sequence alignment is a diseddsystem with quenched
disorder. Each pair of sequences corresponds to one tialipéithe disorder inducing
a canonical ensemble on its own. We interpret the sGoas a negative energy and,
hence, the optimal alignmef reads as the ground state of the system.
The patrtition function of the canonical ensemble at temjpeed” of all local align-

ments is given by
7 = Z eS(.A;mb)/T.
AE€Xa,b

The temperature plays the role of a control parameter whidsgsuboptimal align-
ments more weight with increasing value. In the infinite tenagure limit all align-
ments have equal weight, i.e. the entropy dominates. TleeclinergyF’ = T'log Z is
the finite temperature analogue of the optimal score and

: _ clocal
lim F' = Sg
T—0

The partition function version of the alignment problem vpasposed by Zhang and
Marr [ZM95] as well as by Miyazawa [Miy95] at about roughlyetlsame time. The
first authors suggest to use the partition function formalfier an algebraic expansion
in the scoring parameters in order to investigate the parazpendence of the free
energy [ZM95]. A similar approach for the optimal alignmeves proposed by Wa-
terman [Wat94]. The connection between information theorg reliability of finite
temperature alignments has been worked out by Kschischbassig [KLOO].

As the Smith Waterman algorithm (Eg. (3.8)), the partitiandtion version of the
Smith-Waterman algorithm requires three auxiliary maficThat is the partition func-
tion of all local alignments ending &, j), Z}?j and two matrices of all non-canonical
alignments that end in a gap in either sequence. The comespprecursion relation
reads as

Zi[,)j = (1 + ZiD—l.,j—l + Zz'P—l,j—l + ZlQ—l,j—l) - eolaib)/T (3.9a)
zbh = (221 + 221 ,) e Tzl eI (3.9b)
Zf?] Zil?jfl . e_o‘/T + Zi?j—l . e_ﬂ/T (39C)

with the boundary conditions

Zhy=2z=2z3 = 0 fori=0...L

2

Z(ijZé),j:Zé?j =0 forj=0...M.

Since an alignment may start anywhere and may also incledertipty alignment, the
full partition function is given by

L M
Z=1+> > 7"j.
i=1 j=1

Note that the contributions frof” and Z are explicitly excluded because they are
auxiliary only and contain non-canonical alignments.
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42 3. Sequence alignment

Muckstein, Hofacker and Stadler proposed a stochastikttzae procedure that
allows sampling local alignments from the Gibbs-Boltzmatistribution in a direct
fashion [MHS02]. The algorithm is illustrated in AppendixiA

Instead of expanding the partition function in all scoregpaeters, as proposed by
Zhang and Marr [ZM95], we shall perform a numeribah temperature expansidaa
obtain thedensity of state€@DOS) of all alignments for a fixed pair of sequences. This
is by far less costly than parametric expansion for realjstotein alignment, because
there are210 possible entries in the score matrix plus two parameterhtoaffine gap
costs.

This expansion is feasible when all scoring parametersaegeérs, which is usu-
ally the case, because the scoring matrices are roundedsestlintegers. The par-
tition functions in Eq.[(3.9) are replaced by polynomialdtie expansion parameter
z =T, e.q.ZP (z) instead ofZz2;, and all additions and multiplications are opera-
tions on polynomials. The full partition function is also alynomial in z,

L L
Z(z)=1 +ZZZDi,j(z) = chz”.
i=1 j=1 n

When re-substituting = e'/7 in Z(z) the DOS can easily identified with the coeffi-
cient of the expansion

Z(z) = che"/T = Zg(S)es/T.
n S

Applications of this methodology are discussed in Sed. fief brief statements about
the so called "linear-logarithmic” phase transition.

3.5 The linear-logarithmic phase transition

The correspondence between the physical model of DPRM aquesee alignment
was outlined in Sec. 3.3.1. Hence there is a connection leetwmtistical physics and
sequence alignment. The study of sequence alignment fratrpirspective yields
interesting results that have improved the optimal chofcpawameters of sequence
alignment. Thdinear-logarithmic phase transitiofWGA87, AW94, BHO0O0] is the
most important aspect regarding this issue.

The name stems from the fact that there is a continuous, desdriven transition
between phases where the average local score (or the "fenfgéhlocal alignment)
grows either linearly or logarithmically with sequencedém The main mechanism
of this transition can be seen by looking at the DPRM analogegfuence alignment
and consider the local growth of the local alignment scoreaoflom sequences. In
the linear regime, where gaps are penalized only weaklystbee grows essentially
unbounded, because a mismatch can be easily circumventabywith low penalty.
In the biological relevant logarithmic phase the growthssemtially bounded by restart
condition of the Smith-Waterman algorithm (the first casEdp (3.8)).

In the logarithmic regime, when looking at the path graphoafl alignments or
the dynamic programming matri®; ; one observes an ensemble of isolated islands of
positive scoring segments (see Fig.]3.5(a)).

In contrast, in the linear phase there is essentially orgelaluster of the order of
the alignment lattice (see Fig. 3.5(b)). This means thesttiam can be mapped on a
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3. Sequence alignment 43

Figure 3.8: The score landscapes (the mgtfix ;,0}) of optimal local alignment of
two protein sequences in different phases. Darker gregysnahns higher score. The
bl osunb2 matrix and different gap penalties have been used as paresnet

(a) The landscape of two random sequences in the logaritbinaise ¢ = 12, 5 = 1).
This phase is characterized by isolated high score islands.

(b) The linear phasex(= 6, 5 = 1) exhibits a single growing cluster.

(c) A pair of non-random related proteins aligned (see [S&}.\@ith the parameters of
the logarithmic phase. The growth rate is comparable toitieal phase.

percolation problem [SAYOB](see Se¢. 4.6).

From the biological point of view the linear phase is not dade because large
high scoring alignments occur even for random sequencesaadingfull alignments
can hardly be distinguished from random ones. On the otHer §on-random) strong
relationships show a long "percolating” optimal alignmewen in the logarithmic
regime (see Fig. 3|5(c) and Sec.]3.6). The main differena@igmments of random
sequences in the linear regime is that this optimal aligrinseimique, or only weakly
degenerate, whereas optimal alignments of random seguéntee linear phase are
highly degenerate.

Scaling laws close to the transition line have been studiesi similar fashion as
it is commonly done in the field of critical phenomena [HL96,98, RO99, DHLO0O0]
5. An important implication for weakly related sequences basn drawn from the
scaling behavior: The optimal parameter set is close to thumdthary of the transition
on the logarithmic side. In Chaptel 4 another aspect of thissttion, regarding the
alignment score distribution, is discussed.

In the following section some illustrative biological exples of optimal and finite
temperature alignments are presented.

4 A perfect percolation of the alignment-path frdih, M) to (0, 0) occurs rarely due to the geometry of
the lattice and the lack of periodic boundary conditionstdad the path is of the order of the lattice size in
the linear phase.

5 Although the phase transition is essentially parameteedrthe extension to finite temperature align-
ment is also possible [KLOO]. Results for this model are uised in Sec. 4.6
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44 3. Sequence alignment

3.6 Thermodynamics of local alignments by biological
examples

In order to illustrate the alignment methods | picked ouesalexamples of more or
less related proteins. All data presented in this sectierbased on local alignment
usingbl osunb2 score matrix and affine gap costs with the standard gap costrpa
etersa. = 12 andg = 1. For random subjects thd osun62 background frequencies
had been used.

subjects

acc.no. protein organism length | identity | Soc&

P68873 Hemoglobin Pan troglodytes 147 | 100% | 780
subunit beta (Chimpanzee)

P18989 Procyon lotor 146 90% | 709
(Raccoon)

P02088 Mus musculus 147 80% | 638
(Mouse)

P84792 Aythya fuligula 147 70% | 558
(Tufted duck)

P10060 Sphenodon 146 63% | 496
punctatus
(Hatteria)

Q0486 Danio rerio 148 51% | 417
(Zebrafish)

013077 Gadus morhua| 147 41% | 326
(Atlantic cod)

P56692 Dasyatis akajei| 142 33% | 200
(Red stingray)

P02042 Hemoglobin Homo sapiens 147 93% | 727
subunitdelta | (Human)

P02100 Hemaoglobin 147 75% | 607
subunit epsilon

@BWWB | Cytoglobin 190 28% | 173
(Histoglobin)

B4DUI 1 cDNA 136 23% 93
FLJ55163
random 147 29

Table 3.1: A list of proteins that are related to the human biglobin subunit beta
protein (accession numbeé8871). The accession number of the SwissProt database,
the protein name, the species and the length of the protasimaign for each subject.
The similarity is measured by number of identical residuesthe similarity score.
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0 . . . . .
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Figure 3.9: The DOS of local sequence alignments of humaaglebin to the beta-
globin of eight different species (see Tab.]3.1).

3.6.1 Strong homologs

If we submit the human hemoglobin subunit beta (or betaiglola protein that is
responsible for oxygen transport, against a current prataiabase [Uni] we receive a
list of homological related proteins. Some of these resarkslisted in Tab. 3]1. The
first block shows the related proteins of other species edley the similarity, whereas
the second block contains a list of results of human protieora the globin family.
The resulting scores can be compared with the optimal sdaheduman beta globin
aligned against a random sequence. It is no surprise thathmafim (chimpanzee,
raccoon and mouse) hemoglobin show highest similarity éohihman one, whereas
fishes (zebrafish, Atlantic cod and red stingray) only haveaksr related beta-globin.
Birds (tufted duck) and Reptiles (hatteria) are intermtdia

For that purpose to look at the “thermodynamics” of the cacedrensemble of all
local alignments, | first determined the density of stat€s of all alignments because
the partition functionZr, free energyFr and any moment of the score distribution
(S™)r at any temperature is in principle known. The resulting relired DOS for
the eight alignments in the first block in Tab. 3.1 is showniig. B.9. The optimum
is positive by construction, but most alignment scores efdtate space of all local
alignments are negative. Of particular interest is thedase of the microcanonical
entropyS(S) = log ¢g(S), when going towards lower score values (higher excitations
in terms of physics). The inset of Fig. 3.9 displays a closefithe unnormalized DOS
that has been shifted horizontally such that the groundstattch a6. The entropy
increases faster for relative weak homologs and the fagtestth is observed for the
random subject. Small entropies imply that there are oniyariations of high score
alignments, implying a high degree of reliability of the iopal solution.
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—— P68873
........ P18989
---- P02088
——— P84792
------ P10060

(F-F)/F

10 15

Figure 3.10:

top: Specific heat of the canonical ensemble of alignmentsfixed sequences of dif-
ferent degree of homology.

bottom: Relative free energy differences between sequaligements of fixed se-
guences against homologs and the same sequence agaircban rame.

Thermodynamic quantities, such as the specific heat

Cy — <52>TL— (S)%

and the free energy

F=TlogZr=T long(S) exp(S/T)
s

can be computed from the DOS. As mentioned above the tenuperapntrols the
balance between the optimal solution and the entropy. Tkienapsolution emerges
below the peak of the specific heat (see top of Fig. 3.10). Thisbe seen, when
looking at the relative free energy difference [KLOO]

_F-F,

F
F.

between the free energy of the human beta-globin sequence aligned against ho-
mologs and the free enerdy. of the same human sequence aligned against a random
one as a function of the temperature. This ratio is incregsiith decreasing temper-
ature which means that the zero temperature limit is mostepioil to discriminate

this kind of homological relationships against random Einities. Hence the optimal
alignment score is the best quantity in this case and notkiggined when looking in
suboptimal alignments.
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query subjects score
PDBID | organism L PDBID | organism L | S
1SMW: A | Sesbania 266 | 1BBT: 3 | Foot-and-mouth 220 | 34
mosaic virus disease virus
random 220 | 27
1BDM A | Thermus 327 | 1DIH Escherichia 273 | 49
thermophilus coli
random 273 | 38

11 sz Streptomyces | 436 | 1FWJ Mus musculus | 134 | 68
olivaceoviridis

random 134 | 30

2DOR Lactococcus | 311 | IMJC Pseudomonas | 373 | 32
lactis putida

random 373 | 27

Table 3.2: Four pairs of proteins that are known to have ainstructures. Their
optimal sequence similarity scof°@ is small. BDBID is the ID of the protein data
bank [PDB]. Example$SMWV: A—1BBT: 3and1BDM A-1DI H have been inspired
by Ref. [JLGO2] andll SZ —1FWJ and2DOR vs.1MJC by Ref. [KKKO4].

3.6.2 Weak homologs

When looking in the biological literature it is possible tadiexamples where sub-
optimal alignments are important and increase accuracy.irstance higher order
structures (secondary structure or even the three dimeaistonformation) show up
higher similarity than the primary sequences, in particfita weak homologs (also
called "twilight zone"), because structures are more coraive than sequences during
the course of evolution.

Therefore known structures are used in benchmarks of abgihmethods [VEA95,
JLGO02]. Algorithms to compare structures have become nmop@itant. One example
is the "Combinatorial extension* (CE) algorithm [SB98].

| took four examples from literature [JLG02, KKK04] that dm@own to show sim-
ilar structures, see Tab. 3.2. The sequence similarityesisastill larger in comparison
to optimal sequence alignments of the queries against rrsgguences, but the dis-
crepancy is not as large as for the examples above, henexthigples should illustrate
typical behavior in the twilight zone.

Here, the differences of the DOS of the alignment ensemblgsegair of weakly
homolog sequences and the random reference are much sthatién the example of
beta-globin, see Fig. 3.11. The microcanonical entropgtions close to the optimum
(inset of Fig[3.11) are approximately linear with the sardopes. Surprisingly the
entropy at score values below the optimum score is largdrdarologs, which means
that there might be many suboptimal alignments with highresco

Also the behavior of the specific heat and relative free-girsi(see Fig. 3.12) differ
strongly from strong homologs. The specific heat exhibiteler structure featured
with more than one peak. Each peak may indicate the emergéraceet suboptimal
local alignments. When looking at the relative free enexrgikat are defined in the
same way as above, one observes that they are not just monstgaecreasing func-
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Figure 3.11: The normalized DOS of local sequence alignmefitthe protein
1BDM A and1Dl H [JLGO2] in comparison of the alignments d8BDM A against
arandom sequence. Inset: The DOS close to the optimum.

tions of the temperature but exhibit a local maximum betwEen 2.5 and3.5 for the
pairs1BDM A-1Dl H, 11 SZ-1FWJ and2DOR-1MJC and betweerd” = 1 and2 for
1SMWV: A-1BBT: 3. In three out of the four examples, the relative free enetghea
peaks was even larger than the in the zero temperature IMate that this was not
observed in the analysis of Kschischo and Lassig [KLOO]emehartificial homologs
where generated by a Markov process and a simple scoringlinad®&een used.

The locii of the peaks are interesting from the statisticalchranics perspective
because they can be associated with the linear-logarithinaise transition (see Sec.3.5
and Sed. 4.6). Kschischo and Lassig [KLOOQ] have observattiie finite temperature
algorithm overestimates the length of a related segmertiansequences, when the
temperature is increased.

At first glance the peaks in specific heat and free energy satigest that there are
optima abovel” = 0. However some care has to be taken if there is a real biolbgica
enhancement at these temperature values. A look at thetaxipeosalue of the score
(S)r suggest that alignments above a temperature of approdimate 3 become
meaningless because they have an negative expected score.

For this reason | studied the interesting temperature répge0 to approximately
1.8 for the pairlBDM A-1DI Hin more detail. First an ensemble of finite-temperature
alignments have been drawn from the Gibbs-Boltzmann Higitn using the stochas-
tic backtrace procedure (Algoritim A.1.1 described in Apgig/A.1).

Each pair of alignmentd; and.A; have been compared quantitatively by a distance
measure on the state space

A N A

* Xa a,b — 71: iy G iy '::1_—7
d Xa,b X Xa,b [O ] .A .AJ d(.A A]) max(|.Az|,|.Aj|)

(3.10)
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Figure 3.12:

top: Specific heat of the canonical ensemble of alignmenti®tequences that are
listed in Tabl. 3.2. Three of them exhibits more than one peak.

middle: Relative free-energy differences between sequiatignments of the weak
homologs and the random reference.

bottom: Thermal expectation value of the score as a fundid@emperature. Negative
values are not shown.

i.e. the number of common pairs in both alignments normdlizethe larger one. The
distancel(.A;, A;) equalsl if both alignments have no common base pair @ifdwo
identical alignments are compared. A comparison of allgpafralignments yields to
a distance matrix\; ; := d(A;, A;) which can be used to visualize the structures of
the ensemble at different temperatrues. The states hanechestered according to the
distances, i.e. similar alignments are grouped in hieiaaticlusters. The method is
described in Appendix A.3. Fig. 3.1.3 shows sorted distanatrioes, where abscissa
and ordinate represent the sampled states and the graygsass the distance between
the states. A darker color means smaller distance, henaliabenal is allways black
because two identical alignments are comparifl sampled states &t ~ 2.8 and

T = 1.7 for the sequence pairBDM A-1Dl Hand for1BDM A against a randomly
generated sequence are illustrated.

The matrix close to the point, where the expected score dg@ay: 1.7) for the
non-random alignment exhibits a rich structure. There awem®l groups of "simi-
lar alignments” that are slight variations of each othehesitin length or in aligned
residues. When the temperature is lowered the emergenbe ofuster that contains
the ground state, i.e. the optimal alignment, is observedl’ A= 0 only one cluster
persists, if the ground state is not degenerate, which igdlse here. In the entropy
dominated infinite temperature limit only a light gray arexgect of the diagonal)
remains. Hence all alignments have equal probability tazsband are therefore mean-
ingless. Itis remarkable that close to the position of th&imam of the relative free
energy ratio between the homolog pair and the random ond~{ge8.12) most infor-
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1BDM vs. random

Figure 3.13: Distance matrices at the temperatures affdyiag the clustering (see
AppendiX A.3) with the distance measure Eq. (3.10).

mation is already destroyed, which can be seen by the pagstste of the distance
matrix at that temperaturé, ~ 2.8. In comparison with the random alignment, one
learns that in the interesting temperature regiory 1.7, the ensemble of the homolo-
gous pair exhibits a rich structure. In contrast, the grestate dominates the ensemble
of the random pair. This viewpoint might give more insightloé reliability of finite
temperature alignment.

Next a comparison of structural, the optimal and the findteqperature alignment is
provided by looking at the paths graphs of these alignmditits.solid line in Figl. 3.14
indicates the structural alignment obtained by the CE+étlym [SB98] and is assumed
to the “standard of truth” [JLG02, VEA95]. The dashed linewk one alignment taken
from the finite temperature alignment ensemble.

The reliability of the optimal alignment is bad because ie$sentially too short.
The finite temperature algorithm yields better resultshasatignments become longer
and predict matched segments better. However, it alsotéagsedict the last segments
of the structural alignment, which deviate from diagondiisleffect was also observed
in Ref. [JLGO2], where an hybrid algorithm has been employiéds algorithm com-
bines an iterative algorithm [SS91] and a parametric aligorithat uses several score
parameters at the same time [JPG98, WEL92]. A recent studyKpd] shows how
this drawback can be circumvented by introducing periodicridlary conditions. A
more detailed study on this issue has not be done here, asdy@nd the main scope
of this thesis.

Instead, the statistical significance of local alignmertifferent variants that have
been discussed in this chapter are subject of the next ahapteliscussion of the
examples of this section is provided in Sec. 4.4 and[Sec. 4.6.
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Figure 3.14: Comparison of the alignment path of the stmattalignment with the
optimal alignment and a finite temperature alignmeft at 1.7. Note that the optimal
alignment covers the structural alignment and the finitepemature alignment only

partly.
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Chapter 4

Statistics of local sequence
alignment

Pairwise alignment algorithms find optimum alignment se&ig?(a, b) and associ-
ated alignments of two sequeneeandb for a given scoring system. Different variants
of local alignment algorithms were introduced and illuschin the previous chapter.
We have also seen that the optimal score of two sequencesagsapositive even for
random sequences. This leads to problems when one wishtitogdiish betweettrue
andfalse positivesPositives are hits (results from a database query) thatpoeted as
homologe to the input sequence by the search program. Tsitves are caused by a
true biological relationship and, accordingly, a falseifissis reported as a hit though
the score occurred by pure chance. Similarly, a false negatbiological relationship
which have been missed by the search program.

The task to better distinguish between these cases requirassessment of the
statistical significance of an observed score. The mostéetly used approach for
sequence alignment relies on classical test theory (s€dJFdr a introduction). In
this framework the statistical significance is quantifiedhmp-valuefor a given score.
This means under a random sequence model, one wants to keguvdhability for
the occurrence of at least one hit with a score greater thasgoal to some given
threshold valué, i.e. Prob(S > b). Note that this definition is different to many
other statistical tests, where a large p-value means higtifisiance. Here we have to
interpret a small p-value as much evidence for a true pesi®ften E-values are used
instead. They describe the number of expected hits with eegreater than or equal
to some threshold value.

One possible access to the statistical significance canhievad under the null
model of random sequences. In such a model, the pair of segsiéha random vari-
able, implying that the optimal alignment score, as a fuomctf a random variable,
is also random. The probability of the occurrence of the esounder this model,
P(s) = Prob(S = s), provides the basis for estimates of the p-values.

Analytic expressions for the probability distribution 8fare only known asymp-
totically in the case of gapless alignments of long sequgnebere arextreme-value
distribution (also calledGumbel distributiois predicted (see Sec. 4.1 below).

Because significant hits usually exhibit a high score, the-exent tail, where the
p-values are very small, are of particular interest. By wgythe alignment problem as
a physical system, we are able to adopt Markov-chain Monte@aethods to obtain
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54 4, Statistics of local sequence alignment

the density of states from statistical physics (see Ch&)tand address the problem
numerically.

The results of the asymptotic theory including some recestilts and approxima-
tions are outlined in Sec. 4.1. After that a few comments enMlonte Carlo methods
are made in Sec. 4.2. In the result sections Sec. 4.3-Seavd will successively re-
lease the assumptions of the theory and study the scorédigin for more realistic
models by numerical simulations.

4.1 Karlin-Altschul-Dembo theory and beyond

In the early 1990s, Altschul, Dembo, Karlin and Zeitouni eleped a theory (Karlin-
Altschul-Dembo statistics [KA90, KD92, DKZ94]) that dedmas the infinite sequence
limit of the relevant probabilityProb(S > b) or the probability density function
P(s) = Prob[S°a(A, B) = s]1, whereA andB are random sequences.

In order to formulate this more precisely, we assume thaitheandom sequences
are described by the distributiop®'®” andpsu?iect With this notation we may define
P(s) as

P(s) = Prob[S¢%(A,B) = s]
= Y D b saap) - P M@ D). 4.1)
aexl bexM

Since the optimal score can be seen as the ground state afrdetied system, the dis-
tribution P(s) is equivalent to the ground-state-energy distributioriskKind of prob-
lem is an active research field in statistical physics, beedtom the shape of this dis-
tribution one can learn much about the microscopical itéwa and vice versa [Pal03,
KKL 05, KKHO6, MG06, MGO08]. Of particular interest is the questiwhether
the ground-state energy distribution is skewed like theeewe-value [Gum58] or the
Tracy-Widom distribution [TW96] or symmetric like the Gaign one. The latter one
indicates an extensive character of the ground-state en&ypically skewed ground-
state-energy distribution are observed in disordered fsosli¢h long-range interac-
tions, such as the Sherrington-Kirkpatrick model [KKQ5].

Instead of the state space of alignments, one may also setathespace of random
sequences as a classical physical ensemble and integitimal score as (negative)
energy. The score distribution reads as the density ofsstdtthe system (up to nor-
malization) and its logarithrtog P(s) as the microcanonical entropy function, or rate
function in the language of large deviation theory. One 4iitihis chapter is to discuss
the shape of these functions for different scoring and secgimodels.

Given the amino acid background frequencies (se€ Sec) 302 the queryfauey
¥ — [0,1] and the subjecfsUPect: 3 — [0, 1] and the score matrix : ¥ x ¥ — R
(see Sed. 3.1), the statistical theory requires that

() the letters in the random sequences are independentdantidally distributed
(i.i.d.), i.e.

L M
pMeMa) = [T £ and p™tb) = T £ (4.2)
i=1

i=1

1In the asymptotic theory the score can be seen as a contivadable.

54
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(i) SPe@is the objective function of ungapped local alignment, veher= 3 = oo,
(iii) the expected score is negative, i), , fauergsublect; ( p) < 0 and

(iv) a positive score must be possibll"®Y s (4, b) > 0 for at least one pair
a,be X,

Condition (iii) states that the theory is only valid in thgéithmic regime (see Sec. 3.5
and Sed. 4.6 below) and is by construction automaticalllfilfatl for BLOSUM and
PAM matrices, when gaps are not allowed. If condition (iv) was fudfilled, the
optimal local alignment would be the empty alignment forigiut sequences.

Under conditions (i)-(iv) the probability’(s) approaches a Gumbel distribution
[Gum58]

Poumbel(s) = Prob(S = s) = AK LqLs exp [—As — K LqgLse "] . (4.3)

as both sequence lengthg andLg tend to infinity with the same rate. The parameters
K and) are determined by the score matsixand the background frequencig$'e”
and fsUbiectpy a transcendental equation[KA90]. Even though the prétfis theorem

is non-trivial, some of the ideas can be understood withtiotu Itis done in two steps.
First one natices that the dynamic programming matrix ofSh@th-Waterman algo-
rithm D; ; thatis filled via Eq./(3.8) exhibits many zero valued entdes to condition
(iii). This yields independent so called high-scoring segis as already illustrated in
Fig.[3.5(a). By renewal theory one can show that the locaksthe maximum of those
segments) is distributed according to the Poisson distabuAfter filling the dynamic
programming matrixD; ;, the optimal score is given by the maximum over all matrix
entries. Because the score of the segments are virtualgpertient, one may apply
the extremal types theorem [Gum58]. This theorem statéghbamaximum of i.i.d.
random numbers converges to one out of three universalldisoms. The limiting
distribution depends on the original distribution of thedam numbers over which the
maximum was taken. If this distribution decays faster th@ower law, which is the
case here, the limiting distribution is the Gumbel disttibo given by Eq.[(4.8).

The biological relevant case of gapped alignment and fimtgiences is not gov-
erned by the analytical theory. Numerical studies [AG9@] arPoisson approximation
[Wat94] suggest that, at least in the high probability regisee below), the Gumbel
form is still a valid description o (s). However the parametepsand K cannot be
predicted directly. One practical approach to this probiemo use pre-computed pa-
rameters based on numerical simulations [AG96, ABOHO1)vEmious widely used
parameters.

According to Eq.[(4.B), the form of the Gumbel distributienimdependent of the
sequence length in the limity = Ls — oo. In practice this is not the case due
to edge effects [RO99, ABOHO01] and database applicatioasadfusted\’s, but the
distribution is still assumed to be of Gumbel form. Sinces thffect vanishes in the
limit of infinite sequences, the tail of Eq. (4.3) can be ustiesd as an upper bound
for finite sequences.

Another consequence of finite system sizes becomes onbjevisi the rare-event
tail of the score distribution. This region is charactediz®y high scores and long
alignments. The length of these alignments are of the orflétensequence length
and hence condition (iii) is not fullfilled any more. Hartnmestudied this problem by
parallell-tempering Monte Carlo simulations (see Sec). & reweighting techniques
[Har02]. He found strong deviations of the score distribatirom the Gumbel formin
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Figure 4.1: Probability distribution P(s) for gapped sewpee alignment using

BLOSUM62 matrices and affine gap costs with= 12,8 = 1 for two sequences

lengthsLq = Ls = 40 andLq = Ls = 400 [Har02]. Strong deviations from the Gum-
bel distribution become visible in the tail. The dotted Erghow the original Gumbel

distribution, when fitted to the region of high probabilitfhe inset shows the same
data with linear ordinate.

the rare-eventtail (see Fig. 4.1). Where the entropy fonaif the Gumbel distribution

exhibit a straight line, the accurate entropy function theaparabolic. This result was
obtained heuristically by a least square fit of the empiritzth to amodified Gumbel

distributionin the form

P(s) Poumbel(s) - exp [_/\2 (s — 50)2

Aexp [—/\ (s —s0) — Az (s — s0)° — 67,\(5750)} , (4.4)

with sg = log(K LsLq)/A. We use normalized score$ = s — s by subtracting
the position of the maximurg, of the probability distribution throughout. Note that
we would have to use a different normalization constant ,heué since the correc-
tion dominates the tail of the distribution, the normali@atconstant is numerically
indistinguishable from.

Results as in Ref. [Har02] are only useful if one obtains thsribution for a
large range of parameter values which are commonly usedinfbrmatics. It is one
purpose of this thesis to study the score distribution foeotelevant cases.

In the following section, the Monte Carlo approaches are enexplicit. Their
general formulation was made in Chagter 2, in particularMegropolis algorithm
(Sec! 2.2) in combination with importance sampling and igiting (Sec! 2.6). For
the first sub-project presented in Sec. 4.3, | used paraligbering and the technique of
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° 3 T
a[tlelefi [w[r]ale]  w[L][c][oft|w][r[a[e] a[t]|c[o|r|w][r[a[E]
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o [t]elefi[wlt]ale] o [c]e[eft[w]T]a]E]

Figure 4.2: (i) substitution, (ii) insertion with left shjf(iii) insertion with right
shift,(iv) deletion with right shift and (v) deletion witleft shift.

reweighting mixtures (see Séc. 2.4 and $ec. 2.6.1). Bethaseweighting procedure
is quite complicated for practical terms, | used the gelerdlensemble methods (see
Sec! 2.7) in all further studies on this problem.

4.2 Sampling of rare events in the sequence space

In order to sample pairs of sequences from the distributiH&Y and ps'Piect with
Markov-chain Monte Carlo methods we need to define a locahtirhood\V/ (a) of
a sequenca € XX, This construction is explained in the following.

First, one of the two sequences are chosen at random. Sexoaddom letter is
drawn from the alphabét according to the frequencigis and a random positiohis
chosen. The sequence is then modified by one of the followioges (see also Fig.

4.2) WHRH]
(i) substitution at positiot,
(ii) insertion at positiork with left shift and removal of the first letter
(i) insertion at positiork with right shift and removal of the last letter,
(iv) deletion at positiork with left shift and insertion at the last position,
(v) deletion at positiort with right shift and insertion at the first position.

For the studies in the following section, | only used prop@ga After finishing that
work | realized that the performance can be enhanced witladokéional moves (ii)-
(v). Hence all other simulations in Sec. 4.4-Sec| 4.6, iditlg those that are presented
in Chapter 6, employed all five proposals.

It is easy to show that this choice guarantees detailed bal@aee Se€. 2.2) when
funift — \_él for all @ € X. This proposal is accepted according to the Metropolis rule

Eq.(2.4)

) w(slé)cal(a*7 b*)) _pquery(a*) -pS”bjecfb*)
Q(a,b),(a*,br) = Min 4 1, local query, subjec
w(Sg%(a, b)) - pie(a) - psbleeb)

The implementation dependent weighisare specified below. For the case of i.i.d.
sequences, one may use Hastings’ generalization of theoptdis algorithm to con-
struct more efficient acceptance rates [Has70]. Insteacdopbng the new letters
from an uniform distributiory "’ = \_él one may draw them directly from the desired
frequencies,. Consequently the proposal densities

(4.5)

Qa,a~ = Prob(a”|a)
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58 4, Statistics of local sequence alignment

are not symmetric any more. By the constructioo\ffa) we may write

Qa*,a

_ 1 p(a) o Qa,a* . p(a) _ p(a)
Qa,a* Qa,a*

p(@*)  Qaa- p(ar) plar)

and thanks to Hastings generalization Eq.1(2.2) and dueet@atttorization Eq/ (412)
one may compensate such asymmetric proposals by

- Prob(a*|a) -

1
Yab),(arbr) = I { w(S5(a",b"))-pMM@") p***Ub*)-Qax .a-Qbr b
w(sl(())cal(a’b)),pquery(a).psubjec(b).Qa’a* 'Qb,b*
w(Sg(a, b*)) }

w(SEa, b)) (“©)

= min{l,

In cases, where | considered i.i.d. sequences, | used tlep@acce criterion Eq.
(4.6) throughout. This also applies the the investigatiat is discussed in Chapter 6.

At least approximately, the distribution of local alignmésilows a Gumbel distri-
bution, which exhibits an exponential behavior in the tailerefore an obvious choice
for the biased weights is an exponential distribution

we(s) x exp[s/O]. 4.7

Since we may consider the sequence space as physical syssamfers to sampling
from the Gibbs-Boltzmann distribution

Po(a,b) = Zi@ exp [SE%(a,b)/6],

whereZg is the (usually unknown) partition function. The parameédecorresponds

to the temperature and the optimal sc6f? to the energy function. Note that this
perspective is different to the canonical ensemble of quibv@l alignments introduced
in Sec/ 3.4, where the state space was defined as the set mieligs rather than
sequences.

Having defined the local neighborhoaf a), it is easy to implement the Metropo-
lis algorithm in the canonical ensemble. In order to acegéeequilibration, | used the
parallel tempering algorithm (see Sec.2.4).

Equilibration was detected by a criterion that checks waietlistinct Monte Carlo
chains converge to the same score independent from thangtadnfiguration. This
method is possible because we are able to generate paigusrsees with high scores
(low energies) directly by using the second sequence as-toemee copy of the first
one. On the other side, we may also start with completelygaddent random se-
guences yielding a low score (high energy). The chain isidensd to be in equilib-
rium when both runs converge to the same score value (withatuitions). This is
usually detected by averaging the chains over differergpeddent runs starting from
both extremes. Fig. 4.3 illustrates this test for a very sirddetter toy model. In order
to determine correct error bars from correlated data, | asd a thinning interval that
had been determined by the autocorrelation time (see Seé)2.

Having obtained the chaifsay;, by;)} for them temperaturesd, . . ., ©,,) with
ng sampleseachk(=1,...,mandi = 1,...,ng), the score distributions are obtained
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Figure 4.3: lllustration of the equilibration criterionrf@a 4-letter systemlIfy =
Ls = 20) with temperature§” = 0.5,0.6, 0.7, 1.0, oo Equilibrium is reached after
20000, 15000, 10000, 1000, 100 steps (indicated by arrows) respectivefi(z) is aver-
aged oveR50 independent runs in this example.

by the reweighting procedure described in Sec. 2.6.1,quaatily Eq. (2.19)

m  ng

Po—oc)(aki, bri)
- Z Z 5slocal(ak1 bk?) s’ .

n == Gmix (i, Br;)

=1 Qm|x aku bla)

P(s) = Prob(S = s)

Q

The data analysis for the Wang-Landau / generalized engemdthod turns out to
be much simpler because there is no need to detergrineThe reweighting for this
method is performed by the usual importance reweightingéda Eq.|(2.12)

n

1 6slocal a“b )7
P(s) = Prob(s ;Z oS B’

with z = 3" w(S). The generalized ensemble weightsare obtained by the Wang-
Landau iteration Algorithm 2.7.1. A second advantage oeealtel tempering is that
a generalization to bivariate distributions is straighifard. We shall use this property
later on in Sed. 4.5.
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4.3 Statistics of two i.i.d. sequences

This section deals with the results from the application haf parallel-tempering
method to biological relevant systems: local sequencenal@nt of protein se-
qguences usingLOSUMB2 [HHI2] (see Sec. 3.2.2) arfPAMR50 [DSO78, SD78] (see
Sec/ 3.2.1) matrices. In contrast to the results of the resttan, | used amino acid
background frequencies by Robinson and Robinson [RR91pnkidered different
affine gap cost with0 < « < 16, 5 = 1 for theBLOSUMB2 matrix andll < « < 17,

B = 3 when using thePAMR250 matrix, as well as infinite gap costs. Furthermore
different sequence lengths betwekh = L = 40 and M = L = 400, in detail

L = 40,60, 80, 100, 150, 200, 250, 300, 350, 400, were considered. For one case, also
sequence lengths up fo= 800 were used.

Only temperatures where equilibration was guaranteedmwilreasonable com-
putation time were used for the calculation Bfs). This means that we cannot re-
solve the score probability distribution over its full swpp i.e. the ground state, the
pair with the maximal possible score, cannot be reachedlfsequence lengths. But
the range of temperatures is large enough to evaluate thrébdi®ns down to values
P(s) ~ 107%°, The temperature sets | used in the parallel-temperingitgak varied
between{2.00, 2.25, 2.50, 3.00, 5.00, 7.00, co} (L = 40) and{3.25, 3.50, 4.00, 5.00,
7.00,00} (L = 400) for BLOSUMB2 matrices and betwee{2.75, 3.00, 3.25, 4.00,
5.00, 7.00, 00} and{4.00, 4.25, 4.50, 5.00, 8.00, oo} for the PAMR50 matrices. For
each run, | performed x 10° Monte Carlo steps. The resulting probabilities were
obtained froml0 (L = 400) up to 100 (L = 40) independent runs. As emphasized
in Sec! 2.6, it is required that all distribution overlapfai€ntly. The typical overlap
matrix that serves as a quantitative measure for this donditiefined in Eq.[(2.14))
was

1 0.6850 0.5017 0.2717 0.0480 0.0015
0.6850 1 0.7857 0.4624 0.0984 0.0034
(wi;) = 0.5017 0.7857 1 0.6409 0.1607 0.0117
” 0.2717 0.4624 0.6409 1 0.3587 0.0549
0.0480 0.0984 0.1607 0.3587 1 0.3777

0.0015 0.0034 0.0117 0.3777 0.3777 1

for L = 400 andBLOSUMB2. Thus the overlap graph is connected sufficiently. For
L = 40 the relative errors of the normalization constants varigveen10~* (highest
temperature) an@.4 (lowest temperature) and similarly fér= 400.

The main result is that most of the distributions deviatersgty from the Gumbel
form, which is indicated in Fig. 4.1 and Fig. 4.4 by dottedtkn One observes that the
discrepancy seems to be stronger for shorter sequences, tAéscase without gaps
(Fig.[4.4) deviates, at least fdrs = Lq = 400, only weakly from the Gumbel distri-
bution. This might be expected due to the previous analyticak [KA90, DKZ94].
Qualitatively the behavior of theAM250-matrices is the same and therefore the plots
are not shown here. A quantitative analysis of all resultslv given below. Empiri-
cally we find that the resulting distributions can be desatiby the modified Gumbel
distribution given in Eq/(4.4) [Har01]. | modeled the datacbweighted least square
fit using the prograngnupl ot [GNU]. The resulting fit parameters are shown in Tab.
'C.1 and Tah. C.2 in the appendix.

Note that only for not too small sequenggsis in the order of one. This means that
Eqg. (4.4) describes the data better for longer sequencesevn biological relevant
sequence lengthd.(> 200) sit in the range were the fit works fine. Moreover, the
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Figure 4.4: Probability distribution P(s) for ungapped wnge alignment using
BLOSUMb2-matrices. Deviations form the Gumbel-distribution catydye observed
for short sequenced.(< 250). The inset shows the same data with linear ordinate.

results for shorter sequences are still several orders ghinale below the asymptotic
Gumbel result, which yield &2 value of aboutl 0* for the L = 40 system.

Next, we study the scaling behavior of the correction patame, i.e. the cur-
vature of the entropy function. Since the distributionsnsee approach the Gumbel
distribution with increasing sequence length, as can beisdeig./4.1 and Fig. 4/4, we
expect that\, decreases fof. — oo. Furthermore, when looking at Fig. 4.5, where
P(s) is shown for one sequence lendth = Lq = 250 but for different gap-opening
costsa, we expect a weak dependencelgfon a.. In order to provide more quanti-
tative evidence, we fitted all distributions to EqQ. (4.4) amnpared the resulting fit
parameters.

Parametel BLOSUM62 oo = 10,3 =1 | BLOSUMB2 o = 12,3 =1
a 0.00928 + 0.0001 0.0309 £ 0.01
b 0.643 4 0.027 0.971 4 0.08
1075\ 4.9+1.2 3.242.0
Parameter; PAM250 o =11,8=3 PAM250 « = 13,8 =3
a 0.0049 £ 0.0008 0.0053 £ 0.0005
b 0.575 4 0.046 0.591 4 0.023
107° N3 3.015 4 2.0 6.1+1.1

Table 4.1: . Fitting parameters of the scaling relation Bg)
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Figure 4.5: Probability distribution®(s) comparing different gap costs. The dotted
line denotes the distribution without Gaussian correcfion= 0). Deviations from
the Gumbel distribution become stronger for small gap cdsis inset shows the same
data with linear ordinate.

In the gapless case, no deviations from Gumbel could be téetdor sequence
lengths > 200. For the other cases, the dependence of the scaling behavar
the sequence length is plotted in Fig. 4.6(a) and|Fig. 4. ®&bPSUMG2 andPAM250
behaves qualitatively the samg, seems to decay with a power law

Ao (L) =aL b+ X (4.8)

for the smallest gap costs and faster than a power law foedaygp costs.

By fitting the limiting cases (two smallest gap costs) to thigction an upper bound
of the decay could be estimated. The results are summarizéad/4.1. Note that
these arguments are purely heuristically attempts to lothesscaling behavior and its
upper bound. Itis hard to decide whether the extrapolaimalid forLs = Lq — oc.
However, an important range of biological interesting sste lengths are governed
with this scaling analysis.

4.4 The biological example revisited

What do the results that we have seen above imply for the diicdbexample that has
been discussed in Séc. 3.6.1? Without any adjustment, tredug-that is reported by
BLAST is determined by the Karlin-Altschul formula [BLA]

E=KLyN exp (4.9)
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Figure 4.6: Scaling of the correction parameter((a) BLOSUMG2, (b) (PAM250)).

The decay of\, with system size shows approximately a power law near theritgn-
linear transition (two smallest gap costs). For this casedit to Eg.[(4.8) is shown by

a line (@ = 10) and dots & = 12). The lines of the remaining cases are guides to the
eye connecting the data points.

where Lg is the “edge-corrected” query length and the “effective database size
(sum of lengths of all sequences stored in the database)cdrnections account for
the abovementioned edge effects in the high probabilitioregrhe BLAST E-values
are listed in Tab. 4]2 which completes the examples from[3dh.The exponential in
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64 4, Statistics of local sequence alignment

subjects E-value

acc.no. organism length | S™°¢ BLAST accurate

P68873 | Pantroglodytesf 147 | 780 | 8 x 10732 | 3 x 107 14¢
(Chimpanzee)

P18989 | Procyon lotor 146 | 709 | 1x107™ | 1 x 10712
(Raccoon)

P02088 | Mus musculus 147 | 638 | 2x 1075 | 2 x 107107
(Mouse)

P84792 | Aythyafuligula | 147 | 558 | 5x 107°° | 6x 107
(Tufted duck)

P10060 | Sphenodon 146 | 496 | 7x107% | 2x107 7
punctatus
(Hatteria)

Q90486 | Danio rerio 148 | 417 | 1x 1073 | 7x107°
(Zebrafish)

013077 | Gadus morhua| 147 | 326 | 4x107%° | 1x107%
(Atlantic cod)

P56692 | Dasyatis akajei| 142 | 200 | 2x 107 | 7x 10718
(Red stingray)

acc.no. protein length | S™° BLAST accurate

P02042 | Hemoglobin 147 | 727 | 1x 1077 | 4 x 10713
subunit delta

P02100 | Hemoglobin 147 | 607 | 1x107% | 1x107%
subunit epsilon

@BWMWB | Cytoglobin 190 | 173 | 1x107'" | 4x 107"
(Histoglobin)

B4DUI 1 | cDNA 136 | 93 0.039 | 1x107?
FLJ55163

Table 4.2: Completion of Tab. 4.2. The last two columns shusvBLAST E-value
and its correction according to the accurate distribution.

Eq. (4.9) is derived from the approximation of the cumukt@umbel distribution for
large s

Prob(S > s) =1 —exp [_67,\(5750)} ~ exp [—A(s — s0)] -

To address the question how the E-values change when onelemssthe accurate
distribution, | adjusted the original BLAST E-value by

acc __ Z:is P(t)
BT = Eexp [—A(s —s0)]

where P(s) is the accurate distribution and the parametemd s, are obtained by
a fit. Hence, the rati%% gives a correcting factor. To determits) |

repeated the simulations for the model of i.i.d. sequencereH! used the Wang-
Landau / generalized ensemble approach instead of patediglering. In detall, |
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4, Statistics of local sequence alignment 65

used exactly the same query lengil (= 147) and the same subject sequence lengths
as listed in Tab. 4.2. The distribution was obtained over iy \goad range up to
the scores that occur in the result set. For exampleLfoe= Ly = 147 we obtain
P(780) = 3 x 107156, The corrected E-values are listed in the last column in Tab.
[4.2. The discrepancies between the original and the ceddgtvalue spread over
several orders of magnitude. Hence the BLAST E-value urstienates the statistical
significance, which would yield false negatives, when onisrested in strongly
significant results.

4.5 Statistics of position dependent alignment for
transmembrane protein models

Most of the existing statistical work for pairwise sequenomparison focuses on null
models where both sequences are random and at each pos#gimbmla € ¥ is
chosen independently of the other positions. These modetperned by the Karlin-
Altschul-Dembo theory (see Sec. 4.1). We shall refer to tiiglel later as “random
guery - general-purpose scoring” (RQGS). The (RQGS) madabnvenient, because
the problem of computing significance values reduces to stiemation of only two
parametera and K for each scoring scheme, which can be pre-computed. Thigesu
from the last section suggest that a third length dependaminpeter), is required
when one desires a better accuracy.

Itis not always possible to extend the Karlin-Altschul-D@miheory to more com-
plex null models than the i.i.d. model, which is one of thesmes that they are not
used in practice. Another striking consequence is the iatig one: The E-values
reported by (the original) BLAST only depend on the raw scamd query and sub-
ject length, and not on the individual query. This leads tgdadistortions when the
qguery composition does not match the null model compositiéor example, when
we run a homology search for the Human transmembrane pndtedopsin (UniProt
accessiorP08100) with BLAST (BLOSUM 62, gap-init 12, gap-extend 1, no com-
position adjustment, no filtering), we find a possibly remutenolog@BNH42 with an
E-value of9 - 10~8. However, using a recent “composition-based adjustmepiivn
[YWAOQ3, YAO5] leads to a very different E-value 6f001 for the same protein.

The statistics of position-dependent scoring and/or gagt-echemes, like used in
PSI-BLAST [AMS™97] or in hidden Markov model (HMM) frameworks, are much
less well explored. The central question here is, “givenerga and a position-specific
scoring scheme, what is the score distribution when randalimmodel sequences of
given length are scored agair&t’. We refer to this model as “fixed query - position-
dependent scoring” (FQPS). As a compromise between the@gRQGS) and the
very specific (FQPS) models, one may release the i.i.d. g#sumon the query of
the (RQGS) model and draw query sequences according tolghitiba given by an
HMM.

In the following two subsections, we discuss the statisicsransmembrane pro-
teins (see Sec. 3.2.3). Obviously this biologically impattclass of proteins is hardly
described by an i.i.d. model, because the amino acid comiosirongly depends on
the position in sequence. As pointed out in $ec. 3.2.3 thediehembrane regions
mainly consist of hydrophobic amino acids. Here, we dis¢hesstatistics under the
bipartite scoring model for transmembrane proteins that giacussed in Selc. 3.2.3
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66 4, Statistics of local sequence alignment

[MRRO1]. Recall that the scoring function for this model &fided by Eq./(3.5),

S(A, a,b) = >

(i,4)eA
- Zg(lr)-
r

In order to assign each position an indicator to decide wdrétibelongs to a trans-
membrane helix or a globular region, the scoring schemeinesja suitable method
to predict the loci of the transmembrane regions. For thip@se various methods
are available (see footnote on page 43). For practical nsaaod because the bench-
mark results are quite convincing [CDS05], | used TMHMMgnsmembrane Hidden
Markov Mode) [SvHK98, KLVvHSO01].

Before describing the features of TMHMM, some importantiieas of HMMs
[Rab89, RDM98] are stated briefly. In this general probabdiframework one as-
sumes that a sequence of observed “output” symbols is geddiaough a sequence
of “hidden” states. This state sequence, also cagtlath follows a simple Markov
chain. The states are connected to the output symbols thremdssion probabilities;
that is, a state can produce a symbol according to a didwibot/er all possible sym-
bols. More formally, a HMM consists of

A (7 b;) if ¢ is a transmembrane position
o osUM(q, b;)  otherwise

¢ afinite sett of symbols (in our case the amino acid alphabet),
o afinite set) of (hidden) states,

e inital state probabilities, forall x € Q with 3 . 7, =1,

e emission probabilitieg) in each statg € @ andforallo € Ywith ) py =
]-1

e astochastic transition probability matd, , p, 7 € Q,i.e.3>_ o P = 1for
allpe @

The sequence of hidden symbals ... Z; and the sequence of output symbols
X;... X is a stochastic process, which characterized by the transihatrix
P, - together with the emission probabilitipg. One can generate such sequences
X =x1...27 andz = 2 ... zy, via simple sampling. Given these model parameters
and a fixed sequence= z; ...z, of output symbols, the state sequete .. 7y, is
also a stochastic process.

For the Monte Carlo sampling as needed here, it is not pessildimulate a HMM
directly to generate output sequences, since importamepls®y changes the underly-
ing sequence probabilities. Nevertheless, one still nedempute the probabilities
fHMM (%) for the Monte Carlo acceptance procedure, i.e. the prakiabithatx is
the observed sequence generated by the HMM. These prdiesbilan be computed
in O(L - |Q|*) time using the well knowrforward algorithm[RDM98, Rab89] as
described in the following. One introduces the auxiliaryiafles f,,(¢), which cor-
respond to the probability that the subsequence. . z; is generated by the model
given that the last state variablt has the valugu, i.e. f,(i) = Prob(X;...X; =
a1...x;|Z; = p). The overall probability is thegf ™™ (x) = 3= ., f.(L). The
probabilitiesf,, (i) can be determined by the recursion

.f,u(l) = pgi Z f‘r(Z - 1)]?7-.,# (410)
TEQ
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cytoplasmic side membrane non-cytoplasmic side

cap 1 helix core *@_gap_%{nllgg __________________
S ===
G gloulars oop), X

) SNE - ;
cap i~ helix core [+~ cap ;= loop-.: globularD

Figure 4.7: The layout of the HMM for transmembrane proteatzording to
Sonnhammer et.al. [SVHK98]. Each box corresponds to a gobgpates. For ex-
ample, the helix-core block consists of 25 internal stakezch line type of the boxes
represent different emission probabilities. For more itietee refer the reader to the
original publication.

with initial conditionsf,, (1) = m.p% .
Within the same time complexity, théterbi algorithm)’ computes the most prob-
able state path for a given sequence of observations, that is

21...2 =V(xy...xp) = argmax, , cor Prob(Zy...Zp =Zz1...Zp|x1 ... xL).

Let v, (i) be the probability of the most probable path ending in state @ with
observation;. These values can be computed recursively by

v (i) = pl, max {or(i = 1) pr u} (4.11)
TE

with boundary condition,, (1) = 7(u) - p4 . Note that these probabilities are not
normalized, in particulap ., v, (i) < 1. The most probable path is reconstructed
by backtracing [RDM98].

The HMM approach we use to sample transmembrane querieg iISNtHMM
developed by Sonnhammer et al. [SYHK98]. In this setting,dbtput symbols are
(structural) domains, and hidden states are “tied” acogrth their emission probabil-
ities. They are classified into seven groups (se€ Fig. 4.7):

e Helix core,

o two different groups of caps (a crossover region betweeredir &nd a loop) on
either side,

e loops on the cytoplasmic side,
e short and long loops on the non-cytoplasmic side,
e globular domains.

The internal structure of the helix core and loop moduleveslonodeling different
lengths of the corresponding protein domain by assigningpjprobabilities. The glob-
ular domains have a self-looping structure and hence mayhelge various lengths.
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Q s -—. P50052 (LQ:LS:363)
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— P08100 (LQ:LS=348)
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Figure 4.8: The score distributions for (RQGS) (classieal) (FQPS) models where
the subject length equals the query length. In order to coenibee shape, the distri-
butions have been shifted by the centdgr All distributions from the (RQGS) agree
outside the tails (only two lengths are shown).

AC Description Organism Length
P08100 Rhodopsin H. sapiens 348

P50052 type-2 angiotension Il receptor H. sapiens 363
Q18179 putative neuropeptide Y receptor C. elegans 455
P35348 Alpha-1A adrenergic receptor H. sapiens 466

Table 4.3: A selection of transmembrane proteins.

The other modules have fixed length. The overall number ofehparameters i216.
Fig.[4.7 shows the actual layout of TMHMM. Each box represengroup of “tied”
states. The states corresponding to “helix core” reprebentransmembrane helices
that connect states of the cytoplasmic side and the norplagmic side of the mem-
brane. The prediction of the positions of the “helix coredtes determines the loci of
the special purpose scoring matrix SLIM for position spedafignment.

4.5.1 Fixed queries versus random subjects

In the model of (FQPS), the query sequeaceemains fixed whereas the subject that
models the composition of the database is random. Recalitb&L1 Mmatrix is es-
pecially designed for aligning transmembrane regionsresjgieneral proteins, which
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Figure 4.9: The rescaled score distributions for (RQG2)s&ital) and (FQPS) models
where the subject length equals the query length in a |dgaitt view.

are well described by the i.i.d. model. Hence the scoreildigton Eq. [(4.1) in this

framework reads '
P(s;a) = Z 5575'363'(51,1;) 'Psubjectb)
bexM

We discuss four different transmembrane proteins as cgi€siee Tah. 4.3) in the
(FQGS) scheme.

First, the transmembrane helical regions had been preldictee for each protein.
The score distribution is obtained by Wang-Landau sampdimmbined with a final
Metropolis run in the generalized ensemble. Some resudtstaown in Fig. 4.8 and
Fig.[4.9, where the distributions of (FQGS) and (RQGS) ammared against each
other. The subject lengths equal the query lengths herethE@roduction run of one
distribution that is show in Fig. 4.9 = LS = 348) 16,777,216 Metropolis-Hastings
updates had been performed. This took about 16 hours on ehRahtium 4 with
3.4GHz.

We observe that the curvature is more pronounced in the (F@i@8el: Signif-
icant differences of shapes already show up in the high fibityaregion, which is
accessible by simple sampling (Fig. 4.8). All (RQGS) andPSQdistributions match
almost perfectly (only two lengths for (RQGS) are shown here

More pronounced differences are seen in the behavior ofihéFig.[4.9), which
is accessible via our importance sampling approach. THerdifce between the prob-
abilities spans several orders of magnitude; hence a wrooige of the model would
falsify the estimation of significance drastically. Mostgortantly, the entropy func-
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o-0 P08100 (L,=348) |
- P50052 (L,=363)
-0 Q18179 (L,=455)
A-A P35348 (L,=466) |
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0.351

0.301

~ 0.254 i
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Figure 4.10: Dependence of the modified Gumbel parametar the subject/query
length ratioLs/Lq. The lines are guide to the eyes only. The vertical line cpoads

to Fig.[4.8 and Fig. 4.9, wherks = Ly. For Ls > Lg, ) varies only slightly in the

subject length.

tion obtained using the position-specific scoring is comsably curved. Thus, using
estimates from fits to data of the high-probability regioeven more questionable here
than in the (RQGS) model, where the entropy function is atrassraight line.

To investigate the impact of dissimilar query and subjentjtesZq and Ls on the
parameters of the modified Gumbel distribution, | varigdand consider the parame-
ters) and), as functions of the ratidis / Lq (see Fig. 4.10 and Fig. 4.11). All resulting
fit parameters are summarized in Tab.|C.3 in the appendixlarge gap between the
values of\ for the two different models reflects the qualitative diffiece of the shape
in the high probability regime. We see that in the modgls, virtually independent of
qguery and sequence length. However, in model (FQRSries with each individual
query only slightly. For\s one has to distinguish betweég < Lq andLs > Lgq. In
the first case), decreases, which is not surprising, since the correctiom describes
a finite-size effect and should vanish for increasing segeiéengths.

Once the target subject exceeds the query length, the sgaack is still growing,
but the finite length of the query enforces subject lengtiepehdent edge effects.
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Figure 4.11: Dependence of the modified Gumbel parameten the subject/query
length ratioLs/Lq. The vertical line corresponds to Fig. 4.8 and Fig] 4.9, wlgr=

Lq. The lines are guide to the eyes only. Hay > Lq, A varies only slightly in the
subject length. The parameter characterizes the curvature of the entropy function in
the tail (see Fig. 4.9). Large differences between (RQG8)&OPS) show up in the
case wherd.s > Lqg. A2 becomes subject-length independentligr> L.

4.5.2 Random queries and position specific scoring

The statistics for (FQPS) is very accurate because it madelslistic search procedure,
where a fixed query is searched against variable subjectsattice such simulations
are not feasible for each individual query that occur in d¢gpilarge scale research
projects. The TMHMM compromises between the model of (RQ&3) (FQPS),
because we may

e draw sequences with Monte Carlo sampling and the probasilif'*™(b) (via
the forward algorithm Eql (4.10)) and

e predict the transmembrane regions (the most likely patbuiin the HMM via
the Viterbi algorithm Eq/(4.11))

in polynomial time. The model contains more informationriiae distribution ofS in
the sense that each randomly drawn query is a member of anceuta:-class. These
classes are characterized by the number of transmembmginasé# of TM helices”.
Below we will denote this function a& : ¥ — N. This observable is determined
by a simple analysis of the output of the Viterbi algorithm.
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Figure 4.12: Score distributions for different alignmeradels (i.i.d., fixed query and
TMHMM) with Lg = Lq = 348. The distributions for the (HMM) have been obtained
from the joint distribution.

In order to take this property into account we deal with thmtjgprobability
Prob(S = s,# of TM helices= n) and determine a score distribution for each class

P, (s) = Prob(S = s|# of TM helices= n).

In practice, when one wishes to query a transmembrane pratginst a database,
one first uses TMHMM or a related approach to setup the postjmecific scoring
system and count the numberof transmembrane regions. To assess the statistical
significance one may choose a query specific score diswitpud, (s). Below we shall
see that these distributio3, (s) differ significantly for differentn.

Because the subject is still i.i.d., | used a hybrid Metrégpélastings update rule,
that combines the Metropolis-Hastings update for the siuliig. (4.6) sequence and
Eq. (4.5) for the query sequence,

1
(a,b),(a*,bv) = MiN { w(Sg™(a”,b");N(a")) p™(a”)
w(S§™(a,b);N(a))-pTey(a)

For the subject the newly drawn letters are sampled fronBtle&SUMletter frequen-
cies, and those for the query from the uniform frequencies.

The performance of the Monte Carlo simulation of the HMM isaker than for
(FQPS) or (RQGS) for three reasons: Firstly, we are intedest a joint distribution
for that we need more samples. Secondly, more proposalsjactad from the sampler
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Figure 4.13: Fit parametex for the score distributiong(S|# of helices for the
(HMM) with a fixed query length.q = 348 and various subject lengttig. The lines
are guide to the eyes only. The shape parametiscreases with increasing number of
helices. The bars show the distribution of number of tramebrane helices obtained
by direct simulations of the (HMM).

due to the HMM-weights and finally the computation of the fardrprobabilities re-
quires additional floating point operations. The compatatif 16,777,216 Metropolis-
Hastings updates for this model costs about 45 CPU hours. s&/@m 8 times larger
sample size in order to account for the first drawback. Heweegput an overall com-
putational effort on this model, which is 23 times as largéoagFQGS) and (RQGS)
(apart from the Wang-Landau iterations).

Next, we discuss the results for this model. | approximatedscore distribution
within each class (number of helices:). The shape of the distributions clearly agrees
with the curvature for (RQGS) and (FQPS) and the modified Galuhilstribution could
be fitted (see Fig. 4.12) when the number of helices was natrtadl. This is indicated
by a large reduceg? value for distributions with a small number of helices. Atsui-
sual inspection of the fit to the data supports this argunfhtesulting fit parameters
are summarized in Tab. C.4 and Tab.]C.5 in the appendix.

The rare-event tail shows clear differences between tlierdiit sub-classes of the
model over several orders of magnitude. Fig. 4.13 and Figk display the dependency
of the fit parameters on the respective sub-class of the mddhe effect of the ratio
of sequence lengthbs/Lq is shown in Figl 4.15(a) and Fig. 4.15(b). Note that for
distributions that are not well described via Eq. (4.4), lyditted the data in the high
probability region. Those data points are left out in thet fido A\ in Fig.[4.15(b) and
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Figure 4.14: Fit parametew, for score distribution>(S|# of helices for the (HMM)

with a fixed query lengtlLy = 348 and various subject lengtlis. The lines are guide

to the eyes only. Like\, the shape parametas decrease with increasing number of
helices. The dependency on the subject length is stronges fthan for\. For Lg >

L the dependency of; on the subject length is only of marginal order. The bars show
the distribution of number of transmembrane helices obthly direct simulations of
the (HMM).

are connected by dotted lines in Fig. 4.15(a).

In analogy to (RQGS) and (FQPS) the curvature remains consteenLs > L.
Regarding the dependence on the number of helices the atev@gcays with increas-
ing number of transmembrane regions and then approachgspaoxanate constant
value.
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Figure 4.15: ThelLg/Lg dependency of (a) and\, (b) extracted from the same
data as in Fig. 4.13. The lines are guide to the eyes only. &héhes show the
corresponding scaling behavior for the (FQRS) and (RQGSJeiso The result for
n = 2, that has been obtained from the high probability regioas (ext), is indicated
by dotted lines in (a)
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4.6 Phase diagram and statistics of finite-temperature
alignment

Sec| 3.4 treats the generalization of the optimal scoreu(uiestate energy) to a canon-
ical ensemble of sub-optimal alignments (finite-temperalignment). The optimal
score is replaced by a free enerfly In the same spirit as for the optimal score, we
investigate the free-energy distribution over an ensemne random i.i.d. sequences.
The biological relevant 20 amino acid alphabet togetheh wie BLOSUM52 score
matrix was used for this purpose.

In order to choose a temperature range, where one would eapeiateresting
crossover of the shape of the free-energy distribution, st fnoked at the linear-
logarithmic phase transition (see Sec.] 3.5, [WGA87, AW9HKIOB]) for finite tem-
perature alignment [KLOO].

At T = 0, the critical values were studied analytically by a selfisistent equation
[BHOO] or numerically by a finite-size scaling analysis [S#8]. Both studies rely on
a simple scoring model with a single mismatch parameterhénldtter approach the
problem was approached by considering the linear-logardhphase transition as a
percolation phenomenon [SA94]. In percolation problems vsually asks the ques-
tion under which conditions a geometric object spans a velafinterest.

| adopted some ideas from the work of Sardiu et. al. [SAYO5B]ldoal alignment
with the abovementioned scoring paramé?erAs outlined in Sed. 315, the gap-costs
are the crucial parameters that control whether alignmgrte linearly (small gap
costs) or logarithmically (large gap costs). Hence theeedstical gap cost parameter
a. (we consider affine gap-costs with= 1 and only varya throughout this section),
at which the transition occurs.

| probed the critical line in thex — T' plane that separates the linear phase from
the logarithmic one. For that purpose we require a definitioa percolation criterion
h: xap — {0,1} that assigns each alignment a binary decision, “non-patiog’ or
“percolating”. There are various possibilities to achiéivis [SAY05]. Here, | regard
an alignmentA as percolatingh(.A) = 1, if the distances between the first aligned
letter and the last aligned letter in both sequences arerléngnZ /2 at the same time.
Otherwiseh(.A) is set to0. This choice is motivated by the fact that for large sequence
lengths essentially all alignments in the logarithmic ghas> «. are reported as non-
percolating, i.e.h(A) = 0, whereas the opposite occurs in the linear phase a.
where the alignment length grows like the sequence length.

The phase transition is investigated by the average pei@olarobability

PperC(a; T;L):= < 1 Z h(A) - eS(.A;a7b)/T> ,

T;a,b A€Xa,b

whereZr., 1, denotes the partition function of the canonical alignmerseenble over
a fixed realizatior andb, i.e. a pair of sequences. The averagés taken over these
realizations of the disorder of random i.i.d. sequences.

Thanks to finite size scaling theory [SA94], we may extrafmbiata from finite
sequence length to the thermodynamic lithit— oo. In this limit the percolation
probability approaches a step function, whichligor & < .. In finite systems,

23ardiu et. al. studied percolation of global alignment. yrbensidered ground states alone and varied
gap costs and a disorder parameter that models a simplegsystem.
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0.001
0

Figure 4.16: Percolation probabili#?*'(«; T = 0; L). Dashed line indicate the
critical paramater obtained by the finite-size scaling atgm [HHO4].
Inset: rescaled data according to Eq. (4.12).

L < oo, the crossover is smeared out meaning that a finite peraonlatiobability
remains even above,.

Scaling theory states that the behavior/d*™(«; T'; L) close to criticality is de-
scribed by

PPe(q; T; L) = PP | (o — ac)Ll/”} , (4.12)

wherePPe'eis an universal scaling function. We may use Eq. (4.12) teeekthe crit-
ical exponents and the critical gap costs, as a function of the temperature simulta-
neously. The fit is performed by minimizing a weightgéHike objective functionS
[HHO4], that measures the distance (measured in standangeof the data from the
master curve.

To numerically determine the probabilitié®¥*“(«; T'; L), | generatedV random
pairs of sequences and dreW (finite temperature) alignments for each realization.
The method to sample alignments from the canonical digtabyMHSO02] is ex-
plained in Appendik A.1. The temperature varied betw&en 0 (optimal alignment)
andT = 4. Fig/4.16 displays the empirical percolation probala#?e"(«; T'; L) for
T = 0 and sequence lengths betweer-= 80 and L = 640. In fact | used lengths up
to L = 1920, but the transition curves for larger sequences look qiritdar to those
of L = 640. 1 usedN = 1600 realizations for the largest systems aNd= 12, 800
for the smallest one. For each realizatibh = 100 alignments were drawn from the
canonical ensemble. The inset in Fig. 4.16 shows the resda. Although the vi-
sual inspection suggests a quite nice collaps, the fit tuonétb be not very accurate.
| obtain a valueS = 60 for ' = 0, where a value of ~ 2 is desirable for a strongly
reliable result.
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Figure 4.17: Phase diagram of finite-temperature alignmdime dashed line indi-
cates the parameter-set of optimal alignment that is comynmed in bioinformatics
(a = 12,3 = 1). Stars show data points at which the free-energy distobstivere
obtained.

Inset: The critical exponemtas a function of the temperature.

However, the data is good enough to approximately deterthmeritical gap costs
for different temperature values. The phase diagram imtheT" plane is shown in
Fig.[4.17. One observes that the critical gap costs increitbethe temperature. At
infinite temperature a logarithmic growth of the alignmantdth is expected because
short alignments are entropically favorable. Eventudlbre is a critical point, where
the critical line ends. This has not been probed so far.

In comparison with the illustrations in Sec. 3)6.2, one fitlat fundamental
crossovers of thermodynamic properties come along withptireolation transition.
For example, the specific heat exhibits a peak close to thsitien and the expected
score (internal energy) changes from a positive value inldgarithmic phase to a
negative value in the linear phase (see Fig.3.12). Furtbesnthe phase space exhibits
a hierarchical structure close to the transition (see FiI8)3

The critical exponents as a function of the temperatureteres in the inset. These
values have to taken with care because they are usually rapséige to the quality of
the collaps. For the critical exponent we observe a crosdovm v = 2 forT = 0
and a value between2 and1.5 for larger temperatures.

Sardiu et.al. obtained values betweerx 2 andv =~ 2.5 [SAY05]. However
their approach differs in several points (see above). Fodam (bond) percolation
the critical exponent is known exactly, = 4/3. The critical exponent for larger
temperatures seems to be closer to this value thaff’fer 0. A detailed analysis of
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Figure 4.18: Rescaled free-energy distribution of findeyperature alignments. At
T = 2.50 and below the data is well described by a modified Gumbelidigton. For
large temperature an exponential tail is observed.

Inset: The same data shown with a linear ordinate. In the high pribyategion the
data forT = 5.00 is well described by a Gaussian distribution.

T A 104/\2 S0
0.00 | 0.2966(4) | 3.182(1) | 37.4(1)
1.00 | 0.2924(1) | 2.900(5) | 24.6(1)
2.00 | 0.2907(2) | 3.122(7) | 31.56(6)
2.50 | 0.2980(2) | 3.16(1) | 38.29(7)

Table 4.4: Fit parameters of leagt-fits of the free-energy distributions to the modified
Gumbel distribution Eq! (414) faks = Ly = L = 120.

other critical exponents and scaling relations is beyordtiope here.

Instead, we use the phase diagram as a guide to study therfezgy distribution
for various temperatures. | kept the gap-costs fixed< 12, 3 = 1) fixed and only
varied the temperature (betwe®&n= 0 andT = 5). The values are indicated by stars
in the phase diagram in Fig. 4/17.

The simulations were performed in the generalized enseastdbove. The produc-
tion run employed.8 x 107 Monte Carlo steps for each distribution. In the logarithmic
regime (" = 0, 1,2, 2.5) the free-energy distribution is well described by the nfiedi
Gumbel distribution Eq/ (4.4) (see Fig. 4.18). Note thatVeneescaled the distribu-
tions to unit variance and zero mean. The fit parameters dragpge slightly with the
temperature (see Tab. 4.4).
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The crossover from the logarithmic to the linear regime coaleng with a change
of the skewness, as can be seen in the inset of Fig. 4.18. higheprobability region
and forT = 5.00 a Gaussian distribution describes the data well. This warooed
by a Kolmogorov-Smirnov test that yields a p-valueéaf4. ForT = 1/0.275 ~ 3.64
the evidence for a Gaussian distribution is much smalleryalpe of2 x 10711). |
also checked that the change of the shape accompanies sedinamglogarithmic to
linear growth of typical free energies (the position of theximum) with the sequence
length, i.e. the free energy becomes extensive (not showe).h&@his result is not
surprising because the partition functions that occur etthnsfer matrix calculation
Eg. (3.9) become (more or less) independent and hence ifaetdrhe total free en-
ergy decomposes into a sum of independent contributionth@ntkentral limit theorem
applies.

When considering the rare-event tail at higher temperatuhe free-energy dis-
tribution is rather exponential than Gaussian, as can be isethe main plot of Fig.
[4.18. Hence, we observe a crossover from a Gaussian dtgtrida the high prob-
ability region to the characteristic exponential tail oét&umbel distribution. With
the same argumentation as for the optimal alignment, segueairs appearing in the
tail feature high similarities. The overall free energy @ninated by the the ground
state. This was confirmed by looking at the difference betwtbe free energy and
the ground-state energy for those sequences that occue irailhof the distribution.
The summation in the transfer matrix are virtually replabganaximizations yielding
an exponential tail. The finite-size effect that is respblesfor the curvature of the
optimal alignment statistics seems to be of marginal onlénis case.

4.7 Concluding discussion

In this chapter, | have presented a simple universal meth@tturately sample the
far right tails of the score distribution of various sequenomparison algorithms. The
most widely used search program, BLAST [BLA], reports Eued that are based on
the assumption that the Gumbel distribution is the accutstgibution for finite se-
guences. We observe clear deviations from the Gumbellaigion in the biologically
relevant rare-event tail, which is out of reach of simple gbmg methods used so far.
In almost all cases, a modified Gumbel distribution turndobe a suitable description
of the data.

The method has a disadvantage: Because of the high numbameples required
for estimation of the distribution, it can presently not Ised in on-line database search
web services. For example, to generate the 16,777,216 eafioplFigl 4.8({.q = Ls =
348) took approximately 16 hours on an Intel Pentium 4 with 3.4GMery recently
(during the preparation of this dissertation), a promisaitgrnative method has been
published|[New08]. This allows one to draw sequences frorimguortance sampling
distribution in a direct way, i.e. with zero autocorrelatioThis means the Markov-
Chain Monte Carlo approach to the alignment statistics lprolseems to become ob-
solete in near future.
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Chapter 5

RNA secondary structure
prediction

Biopolymers such as DNA, RNA or proteins are heteropolymdisat means they
consist of different types of linearly connected monomé@rsis linear connection is
called “backbone”. In the case of RNA, which is consideregttand in the following
two chapters, the monomers are called “nucleotides”. Tloegist of one out of four
nitrogenous bases (adenine (A), cytosine (C), guanine (Glezil (U)), a ribose sugar
and a phosphate connected through phosphodiester borelsedbences of bases are
referred as “primary structures”.

In the last two decades fundamental knowledge about RNA bdas hchieved, in
particular the fact that the transport of genetic informiat{via messenger RNA, or
MRNA), where the relevant description is the primary sttt is only one out of
many functions of RNA.

Nowadays, it is established that RNA also work as catalygJ€1, GTGM"83]
and regulator [MG90]. In particular in biochemical procesm the ribosome, so called
ribosomal RNA (rRNA) plays a leading role in the translatfmmocess [Nol91]. To-
gether with the change of the viewpoint of RNA playing anaethiochemical role
instead of a passive information carrier, the spatial con&dion of the molecule has
become of particular interest, because, in analogy to pt¢he three-dimensional
structure, ottertiary structure determines the molecule’s function. However, the pre-
diction of higher order structures from primary sequense®nceptional simpler than
protein-folding, because the formations#condary structure@.e. the topology of the
folded molecule in terms of paired bases) is energeticalhasated from the full three-
dimensional structure [TB99]. This implies that the tastiatructure can be seen as a
perturbation to the secondary structure, in contrast tgthtein folding problem. For
this reason the RNA secondary structure that is determigpékebprimary sequence is
already a meaningful description of the molecule.

Biochemically, the bases in the primary sequence interétbt @ther ones in the
same chain by forming hydrogene bonds. The base pairs adeninacil (A-U) are
formed by two and cytosine — guanine (C-G) are formed by thyelrogen bonds.
Pairs of bases that may form bonds are said to be complergéAtald and C-G), or
Watson-Crick pairs. In RNA in particular in tRNA some modifieon-standard bases,
such as Inosine (1), occur [KniO6]. Also non-Watson-Criesb pairings are possible,
for example the "Wobble" pairs G-U, or I-C [Cri66]. Their azcencies depend on
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Figure 5.1: Three different cases of orders of the p@irg) and(k, () illustrated in
the fold (left) and diagrammatic (right) representatiothef RNA secondary structure:
(a) separated pairs, (b) nested pairs and (c) pseudo knots.

the context of the nearest neighborhood in the primary sespiand are considered in
modern models [MSZT99, XSB8], such as the free-energy model that is introduced
in Sec| 5.3.

In order to formalize the secondary structure predictigmathms in Sed. 5/2 and
Sec] 5.3, the basic notation is fixed in the following section

5.1 Notation of RNA secondary structures

The presentation here is restricted to the standard RNAahkh For realistic free-
energy models, that are outlined in Sec. 5.3, non-stanadteld and non-standard
pairings are also considered.

Let ¥ be the alphabet of bases & {A,U,C,G}) anda = a; ...ar, € X% be an
RNA-sequence ovetr. A base pair between the basgsanda; is denoted by, 5).
Within this notation, we always assume that ;.

Each base can be paired with another base at most once anyfovabase pairs
(i,4) and(k, 1) there are in principle three possible cases, namely

(a) i < j < k < I (separated pairs)
(b) i < k <l < j(nested pairs) and
(c) i < k < j <l (pseudoknots) .

These cases are illustrated in Fig.]5.1 in two differentesentations, the "fold” and
"diagrammatic” representation. In both representatibediackbone is shown as a thin
line and paired bases are indicated as dots. Bonds betwses age indicated by bold
lines connecting the dots. The fold representation resesninore the true structure,
i.e. the backbone s flexible and the hydrogene bond reptasams are of equal length.
In the diagrammatic representation the backbone is a btraagizontal line and bonds
are drawn as arcs, whose radii measures the distance initharprsequence. This
kind of picture is interesting for computational and thdigraspects.

When disallowing the case of pseudo knots, efficient algorit to determine the
minimum-free-energy structure based on free-energy nsatel available.
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5. RNA secondary structure prediction 83

The precise notation of secondary structures is fixed by
Definition 5.1.1

(i) A (pseudeknotfree)semndarystrudure C on the sequence=a; ...ay; € X~
is a set of pairing® = {(i1,J1),-.., (in,jn)} Withig < jpfork =1,... N,
such that each two bonds, j), (k,1) € C with i < k are either nestedi(< k <
[ < j)orseparatedq{ < j < k < 1).

(i) The state space of all secondary structuresads denoted ag,.
(iii) The baseu; is calledunpaired, if there is nd, j) € C or (j,1) € C.

Note that this definition has remarkable similarities to dieéinition of the state space
of sequence alignments, that was fixed in Def. 3.1.1 in [Sdc. Birstly, both spaces
are sets of pairings of letters either between two distieguences in the case of align-
ment or a self-interaction here. Secondly, disallowingsiogs or pseudo knots allows
for algorithms to find ground states and partition functiom@olynomial time (see
Sec!/5.2, Sec. 5.3 and [dG68, NJ80, ZS81, ZS84, McC90;19ABfor the RNA sec-
ondary structure prediction) For sequence alignment thlgggithms were described in
detail in Sed. 3.3 and in Sec. 8.4. Thirdly, direct samplimgyf the Gibbs-Boltzmann
distribution is possible in both cases (see [MHS02, Hig@gjpendix A.1 and Ap-
pendiX A.2).

Each secondary structure can uniquely be decomposed i ttedlsdsecondary
structure elementsThat are different types dbops

e hairpin loops

e stacked pairs

e bulges

e internal loopsand
e multi-loops

and dangling ends at the begin and end of the sequence. Nwteatbes may belong to
different loops. The loops are shown as grey areas in Fif). Ba2topological order
of a loopis given by number of base pairs that close these areas. Hengepaired
base and hairpin loops are of ord2(0) andO(1) respectively. stacked pairs, bulges
and internal loops are of second ord®2), and, accordingly, multi-loops have higher
orders than two. A formal definition can be found in Ref. [S38FS" 94, CB05].

So calledstacksare an important feature of the secondary structure, bedhey
stabilize the molecule. These objects are defined as

Definition 5.1.2 A stackof sizen is a set of consecutive base pafisj), (i + 1,5 —
1),...,(i+n,j—n)eC.

Single bases and stacked pairs are special cases, i.es efastke0 and1.

In the following the algorithms for a simple model of RNA sedary structures
is introduced. After that, in Sec. 5.3 a more realistic feeergy model is discussed
without going into the detalils.
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Figure 5.2: Classification of the RNA secondary structummants hairpin loops,
stems, bulges, internal loops and multi-loops. Each of tlseshown in the fold and the
diagrammatic representation. Thin lines represent thaleav backbone, thick lines
the hydrogen bonds and dots the paired bases with theira@sppositions, j, k or !
in the sequence. For all diagrams it assumedihatl < k£ < j and additionally for
multi-loopsk < I’ < k' < j. Multi-loops are only shown up to third order.

5.2 The pair-energy model

RNA folding algorithms rely on particulagnergy modelsThat is a function that as-
signs each structure of a fixed sequea@n energyr : xa — R.

A very simple model, the so callegair-energy modebr pair-matching model
NPGK78, NJ80], involves contributions due to hydrogeneds The negative energy
is given by the number of base-pair and only states thatlfthiifollowing constraints
are allowed:

(i) Only Watson-Crick pairs can be built.

(ii) Due to the bending rigidity of the RNA molecule it is imgsible that two bases
a; anda; close to each other in the primary structure can be pairedgetbre we
require a minimum distance, i.e— ¢ > hmin, here | uséimin = 2 throughout.

This two conditions yield the energy function
E(C, a) = Z €55
(i,5)€C
with

o _ ) cpar if a; anda; are complementary ang — i > hmin
! 00 otherwise '
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Figure 5.3: Diagrammatic representation of recursiontiaeEqg. (5.1). Dashed arcs
represent partition functions of subsystems regardlessthien connected bases are
paired or not. The solid line represents a base pair.

The parametetpair > 0 defines the energy scale and is setgg = 1 for the simple
base-pair counting here

Now, let us consider the canonical ensemble of all seconsteugtures for a fixed
sequence at the temperatteThe partition function of this system is given by

— Z e—E(C;a)/T
CExa

It is possible to comput& using dynamic programming (i.e. transfer matrix) tech-
nigues [McC90]. This method is discussed now.

There are.? /2 — L /2 possible subsequences: - - a; (i < j) with corresponding
partition functionsZ; ;. Since pseudo knots are also excluded, the hypothetically i
serted paifk, j + 1) induces two independent subsystems. - a;—; andag41 - - - a;.
Therefore the partition functiod; ;; dependson alt;; (i < k < I < j) and the
subsequence; - - - a; a;+1 only. One has to sum over the different cases of bond for-
mation of the last positiofi + 1. There are at most — i — hmin + 2 candidate pairs
that connect the base at the positjos 1 with any other base at positignin the sub-
sequence. Due to the definition of the energy model positiotisj — k& + 1 < hmin
and non-complementary bases are excluded.

Hence the partition functio; ;, can be written recursively

J—hmin+1
Zijy1=Zij; + Z Zi k-1 ce— kgt /T Zp41,j (5.1)
k=i

The diagrammatic representation of Eq. (5.1) is shown in%:ig

Starting with the boundary conditiod§ ; = 1 andZ; ,_; = 1, one can calculate
Z; ; forincreasing values of — ¢, finally arriving ati = 1 andj = L — 1 which yields
the full partition functionZ = Z; ;. Since the number of possible subsequences
grows quadratic in the sequence length and the sum in EQ. ¢arilbe computed in
linear time, the overall time complexity is of orde? and the required memory grows
like L2.

The partition functionsZ; ; can be used to sample states from the canonical en-
semble directly [Hig96]. Also direct sampling of groundists with equal weights is
possible [HarO1] without using a temperature variable. itlea is quite similar to the
stochastic backtracing method for sequence alignment. Igarithm is provided in
Appendix A.2.

1n fact epair IS an effective free energy and one would have to accountifiarent bond energies of
different bases pairs. On the other side, even with a motmdise pair energy contribution this model is
still too simple to predict realistic secondary structuriéss rather a powerful vehicle to study fundamental
physical properties of secondary structures either analist or numerically.
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Figure 5.4: Normalized DOS of different randomly generd®®h sequences. Lines
are guides to the eyes only.

With the same arguments as in Sec. 3.4 the dynamic progragratigjorithm for the
partition function can easily be generalized to exact DO8utations, here irO(L?)
time complexity. This is possible because the energy odourailtiples of an energy
“gquantum” (the energy of a paifar) and the DOS is obtained by an high temperature
expansion in the parameter= e~/7. The numbers in Eql (5.1) are replaced by
polynomials inz, i.e. Z; ;(z) instead ofZ; ; and the full partition function is also a
polynomial inz,

Z(2) = Z1.1( Z cn2"

with some coefficients,,. The DOS can be obtained by re-substituting: e /7 in
Z(z) and noting that the energy can only occur as a multiplg,af = 1. This implies
thatE = —n andg(—n) = c,.

In Fig./5.4 the normalized DO§(E) for four different randomly generated RNA
sequences of lengths betweghand 160 are illustrated. If one is interested in low
lying excitations alone, for example in quantities such as

e the ground state enerdy,
e the ground state degeneragy¥,) or
¢ the microcanonical entropy differenSe= log g(Eo)/g(Eo + 1),

one may employ a truncated polynomial, where only the teriitis thie two largest
degrees are considered. This allows one to compute thesgitiggin O(L?) time
complexity instead o (L?) for the full DOS.

It is also straightforward to modify the partition-funaticalculation given in Eq.
(5.1) to determine various other thermodynamic quantiteeh as the expectation
value of the internal enerdy?)+ or the specific heat i@ (L?3) time complexity without
computing the full DOS [McC90Q].
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5.3 The free-energy model

Although the simple pair-energy model describes the fgginocess qualitatively it

lacks in the description of natural RNA, because it involeely a single energy scale.
Also the temperature, which enters in the partition funtalculation discussed in
the last section, can hardly be associated with a realetiperature (for example the
physiological temperaturi&r°C).

Hence, more sophisticated energy models have been ineddared much effort
have been made to adjust the parameters in order to increeseaay in secondary-
structure prediction. Fortunately, efficient algorithnos RNA secondary structure
prediction are not only available for the simple pair-eryempdel [dG68, NPGK78,
NJ80], but also for more realistic models [2S81], which, ipged with empirical free-
energy parameters, are able to predict structures to amaagycof60 — 90% in terms of
correctly predicted base pairs [MSZT99]. Surprisinglysth@lgorithms work without
increasing the characteristic computational complexit®?¢6L?), when one considers
some biologically reasonable approximations.

Each structure is assigned a Gibbs free-e&(@;ﬁree enthalpyA G : xa — R,
where each loop contribute a certain amount that dependwedgyte, size and compo-
sition of loops, in particular the terminal bases. The feeergy parameters had been
determined experimentally (mainly via absorbance vemsomperature melting curves
[FKJ*T86, WTK' 94,/ MSZT99)) at the standard physiological temperafiieand a
given salt concentration. Next, they have been improveddmparison of predicted
structures with those known from phylogenetic analysiZB9]. The locality of the
loop contributions are described by the so called neamghibor model [XSB98].
Within that model the dependence of the free-energy carttdb is assumed to de-
pend only on few bases close to the boundaries of the loopk&igairs consist of an
enthalpic and entropic term, whereas other loops contibntropically

AGPA" = AH — TAS and AG°® = _TAS.

Since these contributions depend on the position we writearialogy ofe; ; in
Eq. @),AGE}} for the free-energy contribution of first order loops (haig) and

AGl(._’Qj);k’l for the one of second order loops.
The pairs(i, j) and(k,l) denote terminal pairs. Higher order loops are treated
effectively, details are not presented here. The functﬁn@él) andAG(Q) contain

nearly all essential free-energy parameters; there arérbde of those [MSZT99]
The partition function of the full system is given by

Z = Z exp [-AG(C)/RT],

CEXa

where R denotes the gas constant. The calculatiorZalequires auxiliary partition
functions similar as for the affine gap-cost sequence alantralgorithm Eq.[(3)9).
That are the partition functions of structures on the subsecesy; . . . a; given that

(i,4) are paired, denoted 3”, and, as usual, the partition function of all structures

ona; ...a; regardless whethéi, 5) is paired or notZ, ;. HenceZ; ; equals the full
partition function.

2G=U+pV -TS
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Figure 5.5: Diagrammatic representation of Eq.](5.2). @dshrcs represent the un-
constrained partition functiong; ;, and solid arcs the partition funcuo@r’a" The

dotted corresponds to the Boltzmann factor of the first olafgp e =2 7+1/RT The
partition function of the empty structure translates to arizontal line. The symbol
“O(3)” represents the effective treatment of multiloops

Without restrictions the transfermatrix calculationf ;, can be done ifO(L*)
time complexity via iterating the equation

—AGM _ <2>
Zf?l_r;'_l — AGl ]+1/RT + Z AG ik Z/RT Zpalr+ O( )
i<k<l<j+1
_ pair pair
Zi7(7+1 - Z’L ,J+1 Z Zi,kfl . Zk’l ) (52)
z<k<l<j+1

whose diagrammatic representation is shown in[Fig. 5.5. syh&bol “O(3)” denotes
the effective treatment of multiloops.

The unconstrained partition functidfy ;. involve contributions from the empty
structure, from the possibility to build the pdir, j + 1) and a sum over all possible
pairings of(k, {) on the subsequeneg,; ... a;. In order to achieve a time complexity
of O(L?), loops are usually restricted in size and hence the doulnies s Eq. (5.2)
are computable in linear time.

The prediction of the “optimal” secondary structure is lshea minimizing the
free-energyAG = —T'log Z. Corresponding minimization algorithms can easily be
obtained from Eq/ (5!2) by replacing summations by minirtiires and multiplications
by additions. The optimal structure is then obtained by &tracing procedure[CBO05,
RDM98].

Different implementations of this model have been publisivwo popular alterna-
tives are the programf ol d, maintained by Michael Zuker [Zuk03] and tkieenna
package [HF$94], maintained by Ivo Hofacker. Here, | have usedthenna pack-
age, because it offers a well documented C interface. Siottegrograms are based
on the same algorithms and parameters, | would not expediffeyence in the main
results in Chapter|6. The package contains a bundle of saftiwadifferent purposes,
including

o the prediction of the minimum free-energy structure ancklpssr probabilities

e the computation of partition functions and the specific loeatve,
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5. RNA secondary structure prediction 89

Figure 5.6: RNA secondary structures of the same molecul#fatent temperatures.
The sequence was taken from the rRNA database "SivlaDB* [PO (16S riboso-
mal RNA of Escherichia coli [BDSN81], accession numbéd0348). The structure
was predicted with thei enna package [HF$94] by minimizing the free energy at
the physiological temperatufié = 37 °C (a) andT’ = 100 °C(b).

e suboptimal folding,
e inverse folding, i.e. RNA design and

o diverse analysis tools,

only to mention a few.

Let us consider biological examples of secondary strustarenatural rRNA se-
guences. Similar as in the case of local sequence aligni8ent 8.6), each sequence
features its own thermodynamic properties. The tempegatod salt concentration are
control parameters that determine the structure. It ismasduthat natural conforma-
tion of most RNA molecules are the one that have a minimumérergy and, hence,
when the temperature is decreased slowly enough the fofitimgess is described by
equilibrium thermodynamics [TB99].

With decreasing temperature, the enthalpy dominates ttiegnmore and more,
which means that more hydrogene bonds are built. The foomati these bonds also
decreases the entropy for further loop formation. Predistmimum free-energy struc-
tures at two temperatures (at the physiological tempezdtue 37 °C and above) are
shown in Figl 5.6. The high temperature behavior is charizei® by large loops and
only a few hydrogene bonds. Chagter 6 describes an analysestabilizing / stabi-
lizing effects due to extremely rare sequences.

Of importance is, of course, the specific heat as a functie@mperature, as shown
in Fig.[5.7 for different rRNA molecules. These "melting eas* depend strongly on
the sequence and may exhibit several peaks correspondihg formation of certain
loops.

89



90 5. RNA secondary structure prediction

150 b b e b
4 | — V00348 o
— 1 |-- AADB02002333 I/‘\ C
—~ 1 |'— AABU01000252 ;o C
x ] C
© 100 o
£ ] :
N
- ] s
g8 :
¢ 507 -
> ] -
O ] C
07‘“‘““‘\‘“““"\““““‘\““““‘\““““‘7
0 20 40 60 80 100

T[°C]

Figure 5.7: The melting curve (specific heat vs. temperatafethe RNA sec-
ondary structure of rRNA molecules of the organisms Esché&icoli [BDSN81]
(accession numbei’00348), Drosophila melanogaster (fruit fly, accession number:
AABU01000252) and Homo Sapiens (accession numb&ADB02002333) taken
from the data base "SivlaDB! [PQKO7]. The specific heat was computed with the
vi enna package.
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5.4 The molten-glass transition

Physically, RNA secondary structures can be seen as a disardystem with a rugged
free-energy landscape [Hig96]. In this context the seqeiénconsidered as a an ran-
dom object and each particular realization induces a Gérsemble of possible struc-
tures.

The low-temperature properties of the simple pair-energydeh which was
introduced in Sec. 5.2, is suitable to understand the lonptrature properties of
RNA qualitatively. The model exhibits a static phase traosiat a finite tem-
perature [PPRT00, BHO2b, BH02a, FKM02, LWO06, HT06] betweetimolten”
high-temperature phase and a “glassy” low-temperatureghén the molten phase
the disorder does not play a role, i.e., in the thermodyndimit, the structure of the
phase space does not depend on the realization of the disorde

The low-temperature phase is characterized by large satm@ample fluctuations
that do not vanish as the sequence length tends to infingtyifilacks self averaging).
This phenomenon also occurs in other disordered systerhsasigpin glasses [You98].

One approach to determine the critical temperature is baseithe Parisi order
paramater, i.e. the overlap between different structyf€s, C). Let}_, .. denote
the sum over unpaired bases in the structurd he Parisi order parameter for RNA
secondary structures has been defined [Hig96, PPRT00] as

q(cl,cz)z% 2 ) > kbt DY Gikl (5.3)

(3,7)€C1 (k,1)EC2 1¢Cy1 k¢Co

where the first double sums is taken over all pairs and thenskooe over all unpaired
bases in both structures. Note th@f,,C;) = 1, butC; N Cy; = {} does not imply
q(C1,C2) = 0in general.
In the low temperature phase the distributiory ér a given sequence is broad and
it fluctuates from sample to sample, which indicates a coripddaviour [PPRTO0O0].
The relationship between these aspects of complex statdghe dynamics of
Monte Carlo algorithms is to be discussed in Chapter 7.
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Chapter 6

Minimum-free-energy
distribution of RNA secondary
structures

Beside the simplification of the energy model as pair cogntiso the consideration of
RNA sequences as purely random objects is not valid for ahbltimlogical sequences.

It is established that, in most cases, natural sequencesahlawer minimum free
energy than random sequences drawn from ensembles witlasataitistical properties
as the natural one (for example the same composition) [Hig#899, SD99, CB05].
Higgs has illustrated that natural tRNA sequences have arlavinimum free energy
than purely random ones with the same composition [Hig98]edso that the probabil-
ity to find the minimum free energy (among all states) is lafgerealistic sequences
at realistic physiological temperatures. In the case of ARMNs issue has been dis-
cussed controversially. Where Seffens and Digby foundemnadd that natural mMRNA
are more stable than random ones [SD99], Workman and Kragidfoontrary results
[WK99]. This could be explained by the dependency of freergn contributions in
the local neighborhood of a stacked base pair [WK99, CBOSJtkan and Krogh in-
cluded this kind of local dependency explicitly in their segce model by a description
of the sequence as a first order Markov process. In other witrtdsned out that the
results depend on different definitions of the random secgiensembles, i.e. different
shuffling procedures.

Another important observation [Hig93, SD99, MSZT99] istttree minimum free
energy is strongly correlated with tli¢+ G content of the sequence.

The evidence that a natural RNA sequence has a lower fregyetiean random
ones is measured by the so called z-score of the minimum freee of the natural
sequence against the random ensemble. This quantity nesathé distance of the
observed free energy valdg,;, from the mean: of the free-energy distribution over
an ensemble in terms of standard deviations,

Grin — 1
z-score— —min — H

The free-energy distribution is determined by a randorioratf the natural sequence
[Hig93, SD99, WK99, CBO05], according to a random sequencdeho
Here, we approach the problem from a different directiorstdad of comparing

93



94 6. Minimum free-energy distribution

natural RNA against a reference ensemble characterizeebgtatistical properties
(e.g. the composition) we keep the (normalized) free enéirggl and compare en-
tropic properties of natural RNA sequences against thoseia@canonical sequence
ensembles. For example, one may ask how likely natural seggeare modeled by
a i.i.d. sequences with uniform composition (each letteruoe with equal probabil-
ity) constrained that the random and the natural sequeraesthe same minimum
free-energy. Since each sequence in a microcanonical ®esgotcurs equally likely,
one may check how likely a natural sequence is compatible &ihaximum entropy
principle. To address this problem | adopted the methoddlogt has been applied to
the score statistics of local sequence alignment (ChajjtéarD2, WBHO7, WHRH]).
Having access to the tail of the free-energy distributidioses one to probe proper-
ties of large deviations (in the sequence space) and rélage tto the corresponding
minimum free energy. These properties are then comparddpriperties of natural
rRNA sequences taken from a current database.

This chapter is organized as follows. In 6.1 the i.eduence model and
a comparison method are introduced. The generalized efsandihods that are
used here were discussed in detail in Chdpter 2 particlla®gec| 2.7. Sec. 6.2 treats
some special issues that are importanthere. The maingésciliding the comparison
between random and natural sequences are presented(in®ed general discussion
in Sec| 6.4 completes this chapter.

6.1 Sequence models

The sequence space of RNA is the set of all possible sequehéesgth L over the
alphabet: = {A, C, G, U}. This space will be denoted a¥".

For random sequences | have chosen a simple model of i.ddnt{cally and in-
dependent distributed) sequences. That means eachdettet occurs with a fixed
probability f, (fo = 1/|X| = 1/4 Va € X here) independent of the other letters and
of the position in the sequence. Hence the sequarzurs with probability

L
p(a) =plas,...ar) = Hf‘lf‘ = ﬁ
i=1

Later on, we shall compare composition of natural RNA segasmgainst micro-
canonical averaged compositions or uniform compositiodor this purpose | used
the Bhattacharyya distance measure (BDM) [Bha43], whidefined as

B(pllq) =Zx/zﬁ~ Vali). (6.1)

The BDM, measures the “distance” between the distributipaadg and fulfills the
properties

e 0< B(pllg) <1,

e B(pllg) =1,ifand only ifp = ¢, and

e B(pllg) = Blqllp).
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6. Minimum free-energy distribution 95

This allows one to measure the distance of an observed niaed@ompositiorf (a) =
% Zle da,a; Of @ given sequence = a; ... ar to a “null” distribution fy(a)
B = B(fllf)

I=]

— > i)l
a=1

The BDM alone does not provide a statistical interpretaiticthe spirit of test the-
ory, because it depends on the sample size (here the sedaagt® and the number
of bins (here the alphabet size). Under the assumptionftiimtescribed byf,, the
BDM deviates froml more likely for short sequences than for longer ones. Agttedil
interpretation becomes possible, if one assgssalue to an observed BDMB. This
issue together with an algorithm to compute thealue is discussed in Appendix A.4.

6.2 Simulation method

The structure of the problem is very similar to that undersideration in Chapter|4.
Firstly, the space of the realizations of the disorder ageisaces over finite alphabets
(the 20 letter amino acid alphabet in Chapter 4). Secorfutyrrtinimization of the free
energy (or maximization of the similarity score, respedipy is of polynomial run-
ning time and based on transfer-matrix calculations in loages (the Smith-Waterman
algorithm [SW81] in Chapter|4).

Instead of the optimal-score distribution, the quantibéterest in this chapter
is the distribution of the minimum-free-energy distrilmutifor the biological relevant
model that was described in Sec.]5.3,

P(Gmin) - Z p(a) 5Gmin-,Gmin(a)'

aexl

The construction of the Markov chain for the i.i.d. lettemgmosition can be directly
adopted from Sec. 4.2, in particular, the five moves that tmen described there.
Throughout this chapter | have used the generalized enseldlropolis algorithm

in combination with the Wang-Landau scheme. This methaglois discussed in

Sec[2.7.

Since the weights depend on floating point numbers, | madeofisiéscretized
weights. The bin size was chosenl&sal/mol (the standard physical unit that is used
in thevi enna package).

Given n sampled sequencesy,...a,} and corresponding free-energy values
= Gmin(a;), €xpectation values are approximated by

Nl - A(al)
<A>P ~ ; Z mv

i=1 min

Gi

min

where[Gmin] denotes rounding to the closest integer arid the normalization con-
1

min]

| used data sampled from the generalized ensemble to apmaiximicrocanonical
averages

1< A@) [10f Gum—A <G, < G+ A
<A>Gmin ~ ? Z 7 {

im1 m 0 otherwise
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96 6. Minimum free-energy distribution

with some bin-size\ and a normalization constant This was used to determine the
compositions as a function of the free energy.

Alternatively, in order to avoid binning effects and to dhthetter statistics, a made
use of canonical-like ensembles to determine thermodymgrrantities as a function
of the minimum free energy. For this purpose | introducedhaptise “temperature®.
By choosing different values @ one may probe the entire free-energy range that has
been sampleddq < 0 probes the right tail above the mean ad> 0 the left one).
Expectation values in this ensemble are defined as

~ Ly A@) e,
Wom o 2 ulen) < ©2

with zg = "1 e % fw([G2,;,]). As afirst step, the temperature is tuned such
that the expectation value of the free energy equals a degileeG i, = (Gi ;. )e
and then the “canonical” average of the quantity of inteebty is computed and
related to{Gmin)e Via ©, for the sake of simplicity denoted a G, ) below.

| sampled the minimum-free-energy distributions for diéiet sequence lengths be-
tweenL = 40 and L = 160 and different temperature%'(= —100, 0, 37 °C). For the
largest system.5 x 107 Monte Carlo steps for the production run in the generalized e
semble were performed, yielding 2d, 000 “uncorrelated” sequences. The correlation
time was determined through the autocorrelation functidescribed in Set. 2.5.2.

6.3 The minimum-free-energy distributions

In this section, the resulting distributions are discusdgefore presenting the data of
the rare event simulation, first the scaling properties efrttean, standard deviation
and the skewness of the distributions are discussed. Foptirpose | used simple
sampling (see Sec. 2.1) for considerable larger systers @igetoL = 1280).

Informal spoken, the skewness measures how much prolyabdiss is located at
either side of the mean. A positive (negative) value indisahe distribution to have
more mass on the right (left) tail. It is defined as

skewness= B3

o3’
where us = <(<X - <X>)3> is the third moment about the mean aad =

\/ (X — (X))?) the width of the distribution. The sample size varied betwee
10, 000 for the smallest{ = 40) and1300 for the largest system. The result is shown
in Fig.[6.1. The first moments and the widths scale in analogyrévious studies
[SD99] as

<Gmin>L =c¢+-L+c¢ and U[Gmin]L =d-L" (63)

The resulting fit-parameters of a leagtfit are summarized in Tab. 6.1.

The small skewness differs from other models with quenchsarder and long
range interaction. For example, the long-range spin-giakibits ground state energy
distribution that can be described by a modified Gumbelibigtion [KKHO06], i.e. a
skewed distribution. Also for the ground-state-energyritiistion of the pair-energy
model introduced in Selc. 5.2, | found a different behaviesglts not shown here). For
this model | found positive skewed distributions. For snsalfjuences, the skewness
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Figure 6.1: Skewness of the minimum-free-energy distidoubver an random ensem-
ble of i.i.d. sequences for different temperatures as atimmof sequence length.
Insets: scaling of the first moments and widths of theseibligtons with sequence
length.

is much smaller, even negative, for human-body temperakuiad! cases the skewness
approaches$ for large system sizes, which means that the distributisasasential
symmetric in the high probability region. This can also bersia the inset of Fig. 612,
where the unscaled free-energy distributions for diffetemperatures are shown.

The main plot of Figl 6.2 displays the distributions obtalirg the generalized
ensemble simulation in a logarithmic scale. The shape di$teibutions at different
temperatures differ slightly. Interestingly the one fowéy temperature seems to be
more symmetric, which is again in contrast to other modéis the distribution of
finite-temperature alignment that is discussed in[Sec. 4.6.

In order to better understand the finite-size effects, tisealed distributions for
different system sizes arld = 37° are shown in Figd. 6!3. For large probabilities and

Co c1 d v
T=37°C,B=1 6.7(4) | 0.324(2)| 0.581(1)| 0.382(4)
T=37°C 8.9(4) | 0.331(2)| 0.51(1) | 0.511(5)
T=0°C 10.6(5) | 0.691(4)| 0.75(1) | 0.498(3)
T=-100°C 17.8(7) | 1.842(5)| 1.29(2) | 0.494(3)

Table 6.1: Fit parameters of a least square fit of the meantandard deviation of the
minimum free-energy distributions to the functional form. £6.3).
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Figure 6.2: Raw minimum-free-energy distributions ateliént temperatures for the
largest systeni = 160.

for the short tail the distributions collapse quite wellttie long tail some effects show
up. Long sequences seem to have a given rescaled free eresglkely than short
sequences (for intermediate values of the rescaled fra@e(@ i, — )/ o).

6.3.1 Entropy and thermodynamics of large deviations

For the pair-energy model one observes (not shown herd)thtasequence compo-
sition is uniform in the left tail and highly non-uniform ite far right tail. This can
be understood by entropic arguments: In order to achievevaeiergy the sequence
requires to have many complementary bases. Ideally thenddualf of the sequence
consists of complementary partners of the first one in theeslamear order. In this
case the ground-state is just a single stack of &iZ2 (neglecting the condition that
only bases with a larger distance thagi, can be paired). Such sequences exhibit
an uniform composition, because one may choose the lettatgedirst half freely.
In contrast, for a large ground-state energy, the sequastopasition requires a huge
amount of non-complementary bases, because the preseac®dhin letter requires
its complementary partner to occur rarely in the sequence.

In the same spirit, | analyzed the sequence ensembles thhiamed towards very
rare events of the free-energy distribution. Here, in asitto the simplified pair-
energy model, the observed letter distributions were n@iferm in both tails, which is
shown in the bottom of Fig. 6.4. Also in Fig. 6.4 the functibaependence aB(f|| fo)
with fo(a) = 1/|X] Va € X on Gui, is shown. That means for each samalehe
empirical compositiory’* and the corresponding value of the BDBI = B(fi||f0)
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Figure 6.3: Rescaled minimum-free-energy distribution¥' a= 37°C for different
system sizes.

was estimated. Then the canonical averages for diffépéntvere determined using
Eg. (6.2) and identified witli.,;,, as explained in Sec. 6.2.

Close to the mean of the distribution the valBeis also close td as would be
also expected from simple sampling. Far in the left tail thiig shrinks, what is also
supported by the form of the histograms that are shown in ttiim of the figure. In
the right tail also non-uniform compositions are obseru@g]ying B to deviate from
1.

The plots in Figl 6.4 are labeled with the medians of the piesilof a BDM test
of the observed microcanonical sequence ensembles (dagentG,,in) against an
uniform letter composition (see Appendix A.4).

Note, that to determine the histograms and the p-valuesd bismed free-energy
intervals instead of the reweighting procedure. For thappse the free energy range
was divided intd50 bins for the largest systeii = 160.

Sequences at the left end of the distribution essentially consist of the bases
C andG, which form three hydrogen bonds. The resulting structaresvery stable
[Hig93, SD99, MSZT99].

The composition in the right tail seems to be unexpected affitht glance, in
particular as it not only describes the average composibiahit also turned out that
individual sequences in this region have a similar empitietier frequency. Even
though there are many — U Watson-Crick pairs available, the minimum free energy
is relatively large. This is so because a loop needs to bedlbg a stable pair, ideally
by C - G.

Additionally, the presence daf's without the complementary partnérseems to
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Figure 6.4: top: Observed BDM as a function of the rescalegimmim free energy.
Non-uniform compositions are found in both tails. Vertittaés indicate the rescaled
minimum-free-energy range of the selection of natural rRf¢4uences (see Sec. 6.3.2)
bottom: Histograms of observed compositions in differénspvery far and far from
the mean on the left side, close to the mean and far in thetdghT he medians of the
corresponding p-values for the BDM-test (against a pdsfectiform composition) are
written in the plots of the histograms.

destabilizethe structure, which can be supported by the following serq@mputer
experiment on a sequence of length= 160. First the sequence is initialized as
AL2UL/2 yielding a low minimum free-energy structui@ (;, = —63.50kcal /mol)
consisting of a single large stack. Then the sequence isfiredthy randomly replacing
letters withC's. The minimum free energy increases rapidly with the commagan of
C’s and reacheé&/,i, = 0, when approximately every third letter is modified. On the
other side, when repeating the experiment by replacingetiers withG instead ofC'

a much higher fraction of replacements (approximaiéli) is neccessary in order to
achieveGyin = 0.

By looking in the standard free-energy reference matesinich was summarized
by Mathews et.al. | [MSZT99], this effect can be explained lepglty terms to the
overall free energy for certain unstable secondary straatuotives. Noticeable are
so called “olgio-C loops” and “tandem mismatches” (see @ahl and Table 11. in
ref. [MSZT99]). Olgio-C loops are hairpin-loops, in which anpaired bases ar€.
Tandem mismatches are internal loops with two unpairedsbasesach strand. Free-
energy contributions of loops of this kind have differeries depending on the types
of the mismatches (unpaired letters) and on closing bass.p&ome combinations
have negative contributions others have positive pesaltiases, where tandem mis-
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Figure 6.5;: Reweighted stack-size distribution as a fematif G,,,;,, for L = 160 and
typical structures in the generalized ensemble.

matches are closed by— U pairs and that contaif — A, C — U or C'—C mismatches
are penalized most4 + U rich sequences that are “dotted” wifh are entropically
more favorable than sequences that contain only few conwiéary letters, which is
the condition to achieve a large ground-state energy in éiregmergy model.

The thermodynamics of large deviations can be studied bsinganot only at the
sequences and values of the free energy but also at prapeftthe minimum-free-
energy structures, which are also reported by the prodridAf ol d. Fontana et. al.
[FKSS93] studied various of such quantities using simphapgdiang of random RNA
sequences and compared the statistics of this ensemblesatitral RNA sequences.
One quantity that was considered in [FKSS93] is the distidiouof stack sizes over
the ensemble of minimum free-energy structures, which @ptatl here for the biased
ensembles.

Three typical structures that occur in the biased sequemsengble are shown in
Fig.[6.5. The underlying sequence of structure A has a typicaG rich composition,
which occurs in the left tail of the minimum free-energy diastion. Large stabilizing
stacks are characteristic for those sequences. Althowgie thiructure are most stable,
from the biological point of view, they are not very inteiiagtfor lack of important
structural elements. The sequence with B as minimum-fregegy structure was drawn
from the rare event tail on the right side and consists ofddogps, that are usually
very unstable. More attractive is structure C, which hasa-fnergy of 2.0 standard
deviations below the mean of the minimum-free-energyitistion.

Reweighted stack-size distributions (based on the methsdribed in Sec. 2,.6) for

101
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three values of the minimum free-energy is also shown in/€ig. In the ensemble
of large minimum free energies only short stacks occur. koseé sequences that have
an extremely low minimum free energy, stack sizes on alltleisgales occur equally
likely. Additionally a strong peak for stack sizes that afahe order of the half of
the sequence length is observed. This reflects the obsamatistructure A, where a
large stack is interrupted by a small internal loop. Inténggy, the difference between
the biological interesting free-energy range (slightljolbethe mean) and the extreme
unstable region is not significant. However deviations updgx = 15 become not
as unlikely as for those sequences from the far right taile Tdop-size distribution
(note shown here) seems to be a better description in ordévai@cterize differences
between the right tail and sequences from the left tail inrdarimediate probability
range, whereas the stack-size distribution distinguibkésr very rare events from the
left tail and typical sequences.

The mean stack size and the width of the stack-size disipibais function of the
Gmin is shown in the upper row of Fig. 6.7. The left plots indicdtattonly a small
fraction of sequences have minimum free-energy structtir@sconsist of a single
stack in the order of the sequence length. Fontana et.alSE9] observed that the
mean stack size converges to a length independent valupahdmately3 base pairs.
By studying the width of the stack size distribution one dtsarns that the greatest
variety of stack lengths occurs in very rare sequences.

Both, the composition of the sequences and the stack-sagbdition is discussed
under the viewpoint of natural biological sequences in tlieWwing.

6.3.2 Comparison between random and natural RNA sequences

The distribution of random RNA sequences allows one to gaimeninsight in the
guestion in which sense natural RNA sequences differ framaen i.i.d. sequences.
Under the viewpoint of rare events in the sequence space,an¢ tov study thermo-
dynamic and entropic aspects for natural ribosomal RNA eeges. For that purpose
| randomly selected 2078 large subunit rRNA sequences friffierent species up to
lengthsL = 1000 from a current database [P@K7]. This kind of selection seems
reasonable to me, because we are not interested in the ic@ldgtails in this study.
First of all, the minimum free energies of all sequences vadriined. In order to
make the values of sequences of different lengths more cableathe free-energy
values have been rescaled by subtracting the average vaduthen dividing by the
width which are given by the scaling relations Eq. {6.3)ngdhe fit parameters that
are listed in Tab. 6.1. This rescaled free energy is the reswgith respect to the i.i.d.
sequence ensemble for each sequence.

In a similar way as for the random sequence ensemble, | peefdBhattacharyya
test against an uniform letter distributigp(a) = 1/|3| (see Appendix A.4) for each
individual sequence and | found the relationship betweeslpes of the test and
rescaled free energy energy that is shown in/Fig. 6.6(a).

Natural sequences, which have a minimum free energy belewngtan down to
about5 standard deviations (a z-score-6$), exhibit intermediate and large p-values
(dots in Fig[ 6.6(a)). This indicates that there is someawie that all letters of those
sequences occur (more or less) equally frequently. Howievthis region there are
also realizations with relatively small p-values (downtd 0~?), but these values are
large, in comparison to sequences that are more ihsiandard deviations below the
mean, where p-values down 4@ 1026 occur. Since the distribution of p-values is
broad, | included their medians as a function of the resdaésxlenergy (dashed line).
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Figure 6.6: (a) Dependence of the p-values of Bhattachagsta against an uniform
letter composition on the rescaled minimum free energygusatural rRNA sequences
(dots). The dashed line marks the median of the p-value ofraltRNA sequences.
The solid Line indicates the median of the p-value of the cem@dequence model in
the generalized ensemble (L=160).

(b) The p-values of a Bhattacharyya test of the compositicthe natural sequences
against compositions that occur at the same rescaled minifree-energies in the
random sequence model. The dashed line indicates the madiambserved p-values
are much smaller for large deviations towards small freergies.

(c) The observed frequencies@f+ C' as a function of minimum free energy.

Sequences above the mean are also very unlikely modeleduyifanrm i.i.d. letter
distribution, also indicated by very small p-values of tladumal sequences. | compared
this with the random sequence model by calculating the digrese of the median
of the p-values as function of deviation of the free energyrfithe mean, which is
shown as solid lines in Fig. 6.6(a). The qualitative beharésembles those of natural
sequences. Numerical deviations are probably due thelfatthe largest system for
the random-sequence model was- 160, whereas the natural sequences are explicitly
longer. Additionally, in agreement with previous obseiwas [Hig93, SD99, WK99,
MSZT99], one observes that most of the sequences are |dceked the mean.

For the free-energy model the stabilizing effect(f— G pairs shows up in the
clear correlation between free-energies @hd- G content, as shown in Fig. 6.6(c).
In addition, the mean of thé' + G content of the random ensemble, shown by lines,
tells us that the random model is suitable to explain low &pergies due stabilizing
C — @G pairs over a broad free energy range , as it is also obserydwous studies of
natural RNA[Hig93, SD99, MSZT99]. In order to support thigament, the statistical
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104 6. Minimum free-energy distribution

test of the sequence composition of the collection of nasegquences was repeated
under the assumption of a different null hypothesis. Thalhésassumption, that the
composition of a natural biological sequence is given byntiean composition of the
random sequence model given the same rescaled minimunrfeegygthe histograms
in Fig.[6.4 aret out of 50 different reference compositions).

At this point a few statements about the approximation &f thst should be made.
It is assumed that the composition is determined by the leddeee energy alone
and not on the sequence lengths (expect the scaling of the amehthe width). The
sequence lengths are much larger for the collection of absequences. This assump-
tion becomes reasonable, when comparing [Fig. 6.4 with thescplot in Fig! 6.6.
The rescaled free energies of the natural sequences (@s$c@nge from-10to 5. At
least in the left tail, the finite size effects of the BDM aréatizely small for lengths
L > 120 in the biological relevant range of the rescaled free eesrgihe test was
performed by using frequency tables, obtained by binnimgntiinimum-free-energy
range for. = 160 into 50 bins. These the empirical frequencies of the natural se-
guences were tested against those distributions. Thespameing p-values, see Fig.
[6.6 (b), show a significant increasing of the values for logefenergies in comparison
to the original test against a perfectly uniform compositi@n the other side, for large
free energies no such observation could be made. Hencegktias, that low free
energies are strongly related to thie+ G content is further confirmed. Note that the
free energy parameters rely on the nearest neighbor mo&B 48] (see Se¢. 5.3).
This means th&' + G content alone is only the leading effect to obtain a low free
energy. This issue is discussed at the end of this chaptedheA.

Obviously, natural sequences with relatively large minimfuee energies do not
have compositions that are comparable with the random seguaodel, wherel +
U + C'rich sequences are entropically favorable.

Regarding the stack sizes we find, in agreement with [FKSS@3]correlation
between the value of the minimum free energy and mean andh widhe stack-size
distribution, as shown in the bottom in Fig. 6.7. The biobagirelevant free-energy
region is above the sequence length dependent thresholel, wathere stacks sizes are
of the order of the sequence length. Also the maximum of tlighwivhere the greatest
variety of stack sizes is expected, sits below this region.

In analogy, | also checked for a possible correlation betvike minimum free en-
ergy and other thermodynamic quantities, for example a aredesr the non-extensive
character of the free energy [BHO2b, BH02a, HT06]. That esdifference between
free energy of the entire sequence and the sum of the fregiesef the first and
the second half of the sequence, when it is broken exactlganriddle AG i, =
Gmin(rla .. .TL) — Gmin(rl R ,T‘L/Q) — Gmin(TL/Q-t,-l R ,TL). Again, AGmin is
largest for very low free energies, but in the biologicaévent region it remains small
and is not correlated to the free energy of natural sequeA¢ssthe mean loop size of
structures of natural sequences does not correlate witmihienum free energy (not
shown).

6.4 Discussion and outlook

To my knowledge, | have presented the first Monte-Carlo stfdye rare-event tail
of the minimum-free-energy distribution of RNA secondaimustures down to very
small probabilities4 10~7°). Large-deviation properties of random RNA sequences
are discussed. | have illustrated how they can provide aitiadal classification of
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Figure 6.7: Top: mean and width of the stack-size distrdrutiormalized to sequence
length as a function of the rescaled minimum free energy.

Bottom: Scatter plot of the mean and width of the stack-sig&ridutions of natural
biological rRNA sequences (see Sec. 6.3.2)

“randomness” of natural RNA sequences.

Properties of large deviations can be explained by entrapitthermodynamic ar-
guments (Sec. 6.3.1). As an entropic measure on the segleertehe Bhattacharyya
distance measure was used in order to discriminate obsepaences against the
null-model with perfectly uniform composition, which isgected in the high proba-
bility region close to the mean. For the pair-energy modeldbmposition is flat, even
in the far left tail (low energies), whereas the compositieniates significantly from
an uniform distribution in the right tail.

For the free-energy model non-uniform compositions oceinath tails. The lead-
ing effect for stable structures in the left tail (low freeeegies) is due t@r + C' rich
sequences. The destabilizing effect4f+ U + C rich sequences are responsible
for very large free energies. These sequences are entilgiesaorable over such se-
guences that have many non-complementary bases, whiclldweuhe reason for a
large ground-state energy within the pair-energy model.

In comparison to natural biological sequenc@si C' rich sequences also have
the lowest minimum free energies, whereas mdny U + C rich sequences are not
found. One expects that all sequences in a microcanorikeedthsemble occur equally
likely, due to the maximum entropy principle. From the stital tests of the natural
sequences against those in the microcanonical ensembleayénfer that natural
seguences, constrained on low minimum free energies, avee(ar less) compatible
with entropy maximization. For large free energies thisiagstion seems not to be the
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106 6. Minimum free-energy distribution

case.

There is a plenty of room for further studies of the z-scaaéistics from this micro-
canonical perspective. Even though, at least in the Idfttte p-value have increased
significantly when going from the uniform null distributido the one obtained from
microcanonical ensemble, they are still relatively sm&lbr example, the median of
p-values changes from~2° to 0.02 for the free-energy bifG i, — p)/0 ~ —10.
One may change the sequence model from i.i.d. to a first ordekdw model, like in
Ref. [WK99] or even more complicated shuffling proceduredS{&05]. Possibly one
would observe even larger p-values in the left tail. Eveljuhese models allow one
to better describe the microcanonical sequences from g tail as well. Similarly
one may also modify the test statistics from the BDM to momaplicated descriptions
like Markov sequences instead of an i.i.d. model.
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Chapter 7

Complex state spaces and glassy
Monte Carlo dynamics

Beside its usefulness to model problems in molecular bisiglsy RNA secondary
structures are of fundamental interest to understand tagae between static and
dynamic properties of disordered systems. The model eshipienched disorder, as
described in Sec. 5.4, and has a complex low-energy landscap

The static behavior of the model can be analyzed exacthygysantition-function
calculations for each single realization of the disordexrsBown in Chaptér 5, the com-
putation time grows only polynomially with the system siZéis approach also allows
one to generate secondary-structure configurations itileguim without rejection and
exhibiting zero correlations between different configiaras (see Appendix Al2).

There are only a few models that combine complex static ptigseand a feasible
computational complexity. For example two-dimensiofial Ising spin glasses and
fully frustrated models can be solved exactly by transfetrinanethods/[MB80] or
by the program of Saul and Kardar in polynomial time [SK94h e other hand, no
rejection-free equilibrium sampling method is known. Rermore, two-dimensional
spin glasses only have a phase transition at zero tempe{#ilii7]. Better comparable
to the RNA secondary structures is a model of directed potgrirerandom media
[Mez90, Kar94], where direct sampling using transfer neasiof the partition function
could be used and a non-trivial phase transition was detedteis model is related to
the sequence-alignment problem, which was pointed outéi%8.1.

Such complex energy landscapes usually feature also sloandigal properties
that can be seen in Monte Carlo or molecular dynamics sionistt The question,
which static properties causes slow dynamics is often &t smanswer. The aim of
the study in this chapter is to gain more insight into thetiehship between static and
dynamic complexity. Furthermore a study of this kind allawee to benchmark new
Monte Carlo approaches.

In Chapter 2, different Monte Carlo approaches were desdrifhese algorithms
allow one to obtain the full DOS. This chapter treads two @nthh namely the gen-
eralized ensemble method (see Sec. 2.7) in two variantshenBarQ algorithm (see
Sec! 2.8.2). The variants of the generalized ensemble migiholude a perfectly flat
histogram ensemble and the optimized ensemble. In the fiesthee weights are cho-
sen asw(E) «x 1/g(E) and the weights of the latter one uses weights that minimize
the round trip time.
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108 7.Complex state spaces and glassy Monte Carlo dynamics

As in the Monte Carlo studies of the local alignment scorésties in Chapter 4
and the analysis of the minimum-free-energy distributiorChapter 6, the disorder
plays a key role in this study as well. A major difference iattim those investigations,
| focused on rare events in the space of realizations of therdér. Here, the real-
izations are quenched and taken from the typical regimeishatcessible by simple
sampling and the attention is drawn to rare events that andhe state space of RNA
secondary structures over fixed realizations. In this séteglisorder plays an impor-
tant role when comparing rare-event properties of the M@atdo algorithms to static
properties among different realizations.

In the following section some details on the Monte Carlo &thms that are consid-
ered here are explained. After that, in Sec. 7.2, the coevesgproperties of a “hard”
realization are examined. Sample-to-sample fluctuatiodglze relationship between
structural and Monte Carlo complexity are to be discussesiein] 7.8. In Se¢€. 7.4 a
possible performance enhancement by extended state spacamsidered and a final
discussion in Sec. 7.5 closes this chapter.

7.1 Markov chain Monte Carlo sampling of secondary
structures

The state space of a pseudo-knot-free secondary strugiy@sthe sequence €
was defined in Def. 5.1.1. All algorithms here are based on &iachain on this
space. In this chapter, only the pair-energy model is caensitl In order to formulate
this more precisely, one has to specify the update routirlesolMetropolis algorithm,
see Algorithm 2.2.1. In particular the neighborhood refaship /' (C) of a structure
C € xa has to be made explicit. Because the major difference betweegeneral-
ized ensemble methods and the ParQ algorithm is that thehtgaid ) that occur
in the Metropolis algorithm are time-dependent in the tasigproach, the following
statements apply to both Monte Carlo approaches.

Formally, we define the neighborhodd(C) of the structure as

Definition 7.1.1 LetC € xa. a pseudo-knot-free secondary structurezonThe local
neighborhoodV (C) is set of structures for which eacti € A/(C) fullfills the follow-
ing properties:

(i) itis pseudo-knot free, i.&€* € xa,
(i) itis valid according to the pair-energy model, i.&(C*;a) < co and

(i) the structuresC* and( differ in at most one pair, i.e[(C*\C)U (C\C*)| =1
orC =C"

The first two conditions define constraints of the model, wherthe third one
defines the locality of the neighborhood. In the simplestlénentation of a Monte
Carlo move, one may draw one out of théL — 1) random pairgi, j) with i < j. If
the current structur€ contains(i, j), i.e. (¢, ) € C, the pair(i, j) is proposed to be
removed fronC, C* = C\(4, j). According to the pair-energy model the energy of the
new structure&™ is given by

E(C*;a) = E(C;a) + epair = E(C;a) + 1.
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7. Complex state spaces and glassy Monte Carlo dynamics 109

Otherwise, if(i, j) ¢ C, one attempts to insert the pair info If all three conditions
above are valﬁ the energy of the proposed state is given by

E(C*;a) = E(C;a) — epar = E(C;a) — 1.

In the case that one condition is violated, the endrgg*; a) is set toco.
The moves are accepted with the usual Metropolis acceptate&q./(2.4), i.e.

age,cx :min{l,%} , (7.2)
wherew(oco) = 0. This means “forbidden” structures never occur in the satioh.

Since the average number of pairs increases linearly andutmder of proposed
pairs quadratic with the sequence length, most of the palpaedll be rejected, espe-
cially close to the ground state. In order to avoid this, ldhemplemented a variant of
the N-fold way [BKL75] (see Sec. 2.3) where only allowed sttues are proposed. At
the beginning of the simulation a list of @lpgssibiePOssible pairs{(i, j)} is created.
These pairs are compatible to the energy medel, a;) < oo, i.e. all @;, a;) are
Watson-Crick pairs and have sufficient distarigg, along the sequence. There are
still O(L?) of possible pairs.

At each stage of the simulation the set of allowed pairs igldifinto three classes.
The first class consists of the setaiftive pairs i.e. that pairs that are currently con-
tained in the secondary structure. The class of inactiviesgain be divided into two
sub-classes. The first one containsallbwed pairs That are those that can be in-
serted into the current structure without violating coiadit(i) in Def.[7.1.1. Those
that would violate (i), but fullfill (ii) and (iii) belong totie class oturrently forbidden
pairs. Active pairs are associated with an energy changa Bf = 1, allowed pairs
with AE = —1 and forbidden pairs witlAE = oo. The current number of members
in each class given the structutes denoted byV (C, +1), N(C,—1) andN(C,0) for
active, possible and forbidden pairs respectively.

A secondary structure is represented as a list of links tetiéc array of possible
pairs. Then the simulation requires some bookkeeping digtsefor all three classes.
For this purpose it makes sense to setup a list of cross4iekgeen all pairs indicating
incompatibility, i.e. for each pair a list of references tber pairs that lead to pseudo
knots, when both are inserted at the same time.

The “forbidden attempts” are taken into account, by advamthie simulation-time
clock sufficiently. This kind of dynamics combines a “rejeatfree dynamics”, as
implemented in the n-fold way [BKL75] (see Skc.]2.3), withretard acceptance prob-
abilities.

When performing the simulation, one has to account fontéing timesr due
to forbidden transitions in the local environment. This tivaj times are determined
with the concepts of the N-fold way described in Sec. 2.3: jLbe the probability
that a forbidden pair is selected, given that the random s#kin the state’, i.e.

p = N(C,0)/Npossivle Consequently the probability that the random walk selacts
non-forbidden pair in the current state aftettrials is given by Eq/(2.6),

p(m) =p™ (1 —p)

and a random waiting time can be drawn from that distributiarEq. (2.3).

1The condition (iii) always holds by construction
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QEzE—l QE,E

QE,E+1
Eo Eo+1 Ep+2 —1 0

Figure 7.1: Macro states and possible transitions.

After the simulation-time clock has advanced by the randaitimg time, a pair is
selected from the set of active and allowed pairs with unifprobability, and the pair
is flipped with a probability given by Ed. (7.1). Hence, if thip is rejected, then the
current structure persists. This reject-accept part ohtgerithm completes one MC
step.

For each Monte Carlo methalf independent rung = 1,..., M had been per-
formed. During each simulation three quantities of intewesre sampled. That are the
energy a randomenergy changé\E = 0, =1 associated with each attempt (regard-
less if the step is accepted or not) and a ran@aiting time This yields independent
chains

(ED, AED #0),(ED, AED 7).
The transitions proposed in all steps are counted in thatyahal matrixWE7E+AE.

The waiting times are allways added to the diagonal of thigimarom W a stochas-
tic transition matrix is determined by

WE,E+AE

QE.54+aE = —7 K .
YoAp——1 WE E+AE

Fig.[7.1 illustrates all macro states and all possible ttimms. Note that jumps from
the empty structure allways occur with zero waiting time.eThethod described in
Sec[ 2.8.1 can be used to obtain an estimate of the @$from Q. This is done by
iterating the master equation

g(Eit+1) = ZQ(Ek),(E,i) - g(Ey;t) (7.2)
%

with some initial guesg(E;0). The iteration is stopped, when the relative change of
g(E) between theth and the(t + 1)th iteration is sufficient small for all energies.

As discussed in Selc. 2.8.1, if the microcanonical propsriylifilled, g converges
towards the true DOS as the number of simulatiavfs,tends to infinity. These con-
vergence properties are to be discussed in/Set. 7.2 for thalgerithms under con-
sideration here. Although the general concepts of the MQaido algorithms were
introduced in Chaptér]2, a few remarks which are relevanttferspecific application
of the RNA secondary structure are made in the following.
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Figure 7.2: Specific heat as a function of the temperatu@ysHor two realization
of length L. = 80 with a typical (solid line) and a large (dashed) ragid®:)/g(Ep).
Inset: low temperature decay rate of the reduced specificcigd ~ e~# is the same
for all realizations. Dotted lines show some other reailires.

7.1.1 The ParQ simulation

The ParQ algorithm [AHM 88, HHO5] combines ideas from simulated annealing
[KGV83, JJS06] and Transition Matrix Monte Carlo. Instedastimating the transi-
tion matrix from an equilibrium simulation, the temperatis lowered according to a
certain protocol. The acceptance rule is the usual Metiepole

a = min (1, exp[-BAE]),

whereg = 1/T.

The advantage of the method is that no assumption about ti&i®©@quired at the
beginning of the simulation. Secondly, in contrast to thengvhandau method, ParQ
is easy to parallelize because many independent runs casrioerped simultaneously.

Itis required that all regions of interest are visited by thedom walk. Therefore,
the annealing schedule has to be adjusted. Basically tmertwa ingredients: the
functional form of the (inverse) temperature protog@l) and the start and end value
of the temperaturg; andf.. At infinite temperature, the random walk is located at
the maximum of the DOS (see Fig. 5.4 in Chapter 5), which epwads to simple
sampling, where all allowed steps are accepted. In ordeo foegond the maximum
towards the unfolded RNA, i.e. increasing the energy, oreethachose anegative
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112 7.Complex state spaces and glassy Monte Carlo dynamics

temperature. For the opposite direction, towards the gfctete, the temperature has
to be positive and finite.

The simplest annealing schedule is a linear increase ofntlezse temperaturgé
from 5; < 0to B2 > 0. This kind of protocol will be denoted daverse schedule
(INV).

However, this kind of cooling schedules might not be optimBherefore | also
checked two other forms, where the inverse temperaturestariicreased fron®; to a
certain positive value above the critical temperature [FFOR say3 = 1 in a linear
fashion. Then the system is cooled down either linearly poeentially in the temper-
atureT’. We will denote these scheduleslaear (LIN) or exponentialEXP) cooling
respectively and compare the performance of the three mgiater on.

The temperature randgg, 32] should be chosen, such that the energy fluctuations
vanish sufficiently. This can be assessed by consideringgbeific heat capacity =
62(<e2> — <e>2) [JJS06] obtained from exact calculations, wherie the energy per
base, i.ee = E/L. For the usual case of other systems, where the DOS is nov@ pri
known, ¢() has to be estimated from a few primary simulations or the tzatpre
range has be estimated in other heuristic ways.

The specific heat capacity for two different realizationteoigth . = 80 is shown
in Fig.[7.2. For these two examples, | used inverse temperaaingeg—10, 10] and
[—10, 15], respectively. Note that the decayin the low temperature limi — oo
(see inset of Fig. 712) can be understood very well [WS88}varatiog(£1)/g(Eo)
of the number of first excitations with enerdyy = FEy + 1 and the degeneracy of
ground states. At low temperatures the partition functiodaminated by the ground
state and first excitations only and hence

/ 2 E) g —
7 = (€)= (e)° ~ (B0~ E1)?- % com B E)
SinceF; — Ey = 1 for all realization in our simple model the specific heat aifya
decays a€’/3? ~ exp(—f) and only the prefactor is dominated by large sample-to-
sample fluctuations of(E1)/g(Eo) (see Sec. 7.3.1). A large value of this ratio implies
a narrowed peak of the specific heat capacity and hence Biogha slow relaxation
times. In more complex systems, such as RNA secondary steugith hybrid energy
models [BHO5], even the exponent may vary because of variabérgy difference
between ground states and first excitations.

7.1.2 Flat-histogram and optimized ensembles

The generalized ensemble was introduced in[Sec. 2.7. Theibea is that each macro
state is sampled with equal probability, instead of sangpdianfigurations according
to the Boltzmann weightv(E) x exp(—8E). A perfectly flat histogranensemble,
wherew(E) «x 1/g(F), requires the knowledge of the DQEE).

In Monte Carlo simulations it is usually desired to reducedhitocorrelation times
in order to obtain more independent samples within fewer fdddarlo steps (see
Sec/ 2.5.R). For this reason, the perfectly flat histograseerble might not be the
best choice. Especially near phase transitions, wherethafi heat diverges, a huge
amount of computation time is required. Therefore | alscstbgred the optimized en-
semble method [THT04] , where the weights are optimized hyimizing the round-
trip time (see Sec. 2.7.2). The optimal weight¥'( E') are determined iteratively via
the recursion relation Eq. (2.21). Note that the pair-epengdel of RNA secondary
structures was also used to illustrate the convergenceahtthod in Fig. 2/4.

112



7. Complex state spaces and glassy Monte Carlo dynamics 113

Since the events for going from a first excited stateto the ground staté, oc-
cur very rarely, the statistics and the iteration scheme(E@1) converges slowly, if
the complete energy spectrum is considered for optimiZiegensemble. For this
reason | employed two energy intervals, the complete[@ige0] and a restricted one
[E_,EL] = [Eo + 1,0]. All states of the complete energy range are allowed to be
visited by the random walk. For the optimization of the weggtie restricted energy
interval was used. The link to the remaining weight ! (E,) can be made by requir-
ing the next iteration(: + 1), to visit either the ground state or the first excitationgwit
equal probability (any other finite fraction will work as Wel.e. we set

9(Er)
9(Eo)
During each iteration, the round-trip time of the randomkn@Ver the full spectrum
from E, to the null structure was used as a quantity which descriimpérformance.
For a small systeni. = 40, | compared the performance of the optimization over the
full spectrum and the restricted spectrum and found no fsogmt difference in round-
trip times. In both cases the round-trip time decreases bytaff of abou® already in
the second iteration of updating the weights. [Eox 40 this iteration scheme was
already illustrated in the general introduction to Montel@anethods in Fig. 2.4.

wi+1 (EO) _ wi+1 (El)

7.2 Convergence properties of the Monte Carlo algo-
rithms

In order to assess the performance of different MC algostHroonducted simulations
using the different approaches described above. | compghsegerformance using

a fixed realization of lengtt. = 80 and small ground-state degeneracy, i.e. a large
ratio g(E1)/g(Ep). This ratio is somehow a measure for the amount of metaestabl
states. It is a purely local property and does not depend e Istructures of the
energy landscape. Those instances with a large value ofatic are the expected
to be “hardest” instances by comparison with spin glass@$i[®04, DTW*'04], as
indeed confirmed by our results, see $ec. 7.3.

For all simulations techniques,x 10'° MC steps (Metropolis updates) were used
totally. Measured in real time, one run®k 10° steps costs approximately one hour on
a modern CPU. Simulated annealing with exponential coaliag only slightly slower
than the optimized ensemble.

| performed various independent simulations (25 for Par@ the optimized en-
semble and 16 for the flat histogram approach) with diffess®d values but fixed
realization. The convergence properties which are disclissthe following are aver-
aged over these simulations. The DOS is estimated from @rapiransition matrices
obtained up to certain numbers of Monte Carlo steps.

The ParQ result was obtained by a linear and inverse temyersthedule with a
temperature range frofi, = —10 to 5, = 15 (data for the inverse schedule is not
shown in Figl. 7.8) and the overallx 10'° MC steps were separated in 10 independent
runs of lengths x 10°. For inverse schedule also 100 independent ruds$ & 10°
steps were tested.

The so approximated DOS obtained from ParQ was used as anfarghe flat-
histogram method, as well as for the first iteration of theirojzed flat-histogram
method. This might be a realistic procedure, because the B@8t known in gen-
eral. For the standard flat-histogram approach, no furttigistment had to be made,
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Figure 7.3: Relative error of the DOS of a low degeneracy olugd states using
flat histogram ensemble, optimized ensemble and ParQ wigd ibooling rate § x
1019 steps per run). The inset shows the same data with a linearated The ratio
g(E1)/g(Ep) for the realization wa8120649/16, which is larger than typical values.
Lines are guides to the eyes only.

hence the histograms could be sampled using all availablest@s. For the opti-
mized ensemble, to optimize the functigiE), describing the history of the walk
with respect to the labels and —, | applied10° MC steps for the first iteration and
then doubled this number always for each following iterati&imilar to thel. = 40
system (Figl 2.4), the estimate $fE£) converged after only 5 iterations, i.e. totally
(1+2+4+8+16) x 10° = 3.1 x 10° steps.

Hence, the optimal weights were found quickly. Via this optation, the round-
trip time decreased by a factor of abdut

For the remaining .9 x 10'° steps where the weights were kept fixed the transition
matrices from all iterations had been used to obtain theam®ance of the DOS.

To compare the power of the different algorithms, | consédehe relative error of
the MC approximation with respect to the exact solution

e(E) = |g(E) — g*°(E)| /¢**(E),

whereg is the sample estimate obtained by the iteration of the masgeation, Eq.
(7.2). The averaged(FE) is shown in Fig[ 7.3. A second quantity, which gives a
relevant measure of performance is the sample error of theeafthe number of first
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Figure 7.4: Rate of convergence of the relative error of #t®g(E,)/g(Ey) of one
instance for different simulation methods: ParQ for ineeard linear cooling schedule
using500 x 10% and5000 x 10° steps per run. For the ParQ run witho x 10° steps,
only accumulated data up to certain numbers of MC steps arersh

For 5000 x 108 steps no significant difference between inverse and linealirg is
visible. Flat histogram and the optimized ensemble sargpdierform much better
than ParQ. The ratig(E1)/g(Ep) for the realization wa8120649/16, which is larger
than for typical instances.

excitations and ground states

9(E1)/9(Eo) — g¥*NEL) /9% Eo)|
gexact( El ) / gexact( EO) :

This quantity as a function of MC steps is shown in Fig] 7.4.

From Fig/ 7.3 and Fig. 7.4 one can learn that in the high-gnegion were only
a few sites are connected by bonds, the flat histogram methadycoutperforms the
other methods, whereas in the relevant low-energy regiemghimized random walk
seems to be best. The most significant difference betweemdtieods is located at
the ground state of the system, where the ParQ method is notiweurate. Also the
rate and form of the annealing schedule affects the perfocmarhe linear schedule
seems to outperform the inverse schedule and, as expeetedhrig runs beat many
short ones.

Note that Fig. 7.3 and Fig. 7.4 are worst case scenariosybedpicked out a sam-
ple, where the ratig(E1)/g(Ep) is very large, i.e. there are many meta-stable states
that might be separated by large barriers from ground sthééso performed the same

(7.3)

€ratio =
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116 7.Complex state spaces and glassy Monte Carlo dynamics

kind of simulations for a typical realization of the samedtm whereg(FE1)/g(Ep) is
relatively small. The errors of the ratio decrease by a faot®.5, 35 and 39 for the
ParQ, flat histogram and optimized ensemble method respbgtibut the generalized
ensemble methods still outperform the ParQ method. o

In order to check, if the qualitative ranking of the methdids, eobimzed . flat

ParQLIN js a general feature of the system | generated an ensen@6fealizations

of length L = 40 and performed the same kind of simulations as before &vith10”
steps for all simulations. In the majority of the cases (59%)d the same kind of
ranking and second most frequently (33%) a ranking(if, < ¢onr2ed < FaQLIN
Only in 2% percent of the cases ParQ outperforms one of the generaizeemble
methods. Sample averagesefif ™2 &l andePaHN were0.030, 0.055 and0.551
respectively. Probably these differences increase fgelsystems.

| also checked that linear cooling is better than the otheraiternatives ir53% of

the cases (exponential and inverse cooling dalf and31% respectively).

7.3 Correlation between algorithmic and structural
complexity

As already mentioned, the performance strongly depends®natiog(E1)/g(Ep),
which was also obtained for theJ spin glasses [ATHT04, DTWO04]. In this section
we want to study the distribution of this ratio and its redaship to the performance
of MC algorithms in the case of RNA secondary structuresso aheck if there is a
correlation between the degree of ultrametricity at findmperature (see Sec. 7./3.2)
and performance.

7.3.1 Ratio of number of first excitations and ground states

For the usual 2d. x L Ising ferro magnet without disorder it is obvious that thigora
g(E1)/g(Ep) scales ad.?, because there are exacflyx L possibilities to excite the
ground state by one single spin flip. In our model, RNA second&ructures, the
scaling behavior can not be obtained with such simple argisne

Hence, | generated ensembles of uplto000 realizations for sequence lengths
betweenl = 20 andL = 1021 and obtained the distribution ¢ E4)/g(E). Even
though the transfer matrix algorithm is polynomial, the garations of systems larger
than . = 320 become very time consuming. Therefore, | only computed theber
of ground states and first excitations instead of the coragleergy spectrum for larger
systems. This can be achieved by truncations of the polyalsrim the transfer matrix
after the term of the second largest power.

Empirically one can find @eneralized extreme-value distributi¢gsee Figl 7.5),
whose cumulative distribution function is given by

Prob <g(—§1) > x) = exp l— <1 +eZ ; M>_1/51 ; (7.4)

9(Eo)

similar as in [DTWF04].

The parameters of the distributian(location), £ (shapg ando (scalg, were ob-
tained through a maximum likelihood fit using tRORTRAN program by Hosking
[Hos85, Mac89]. The resulting probability density funatso(pdf) and the scaling be-
havior of the fit parameters are shown in Fig. 7.5.
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Figure 7.5: Probability density of the ratig(E;)/g(F,) for different sequence
lengths. Squares indicate binned data. The largest erriglzes large as the sym-
bols. Insets: scaling of the location, scale and shape peteaion a double logarithmic
scale.

The qualities of the maximum likelihood fits were not goodegoto be convinced
that the data indeed follows Ed. (7.4), especially for laggguences. This is also
supported by small p-values of Kolmogorov-Smirnov testarf}9]. But the data at
least allows one to distinguish between an exponential dpebeaic growth of the
location and scale parameter: Similar as fortheémodel [SK94] we find an algebraic
behavior of location and shape parametéf) = A - L*» and¢(L) = B - L* with
exponents of,, = 2.1(1) andz; = 2.4(9). Although the quality of the fit is not very
high (as can be seen already in the lower left inset of Figwhére the empirical data
do not follow a straight line in the log-log plot), an expotiahscaling can be safely
excluded by the data.

7.3.2 Ultrametricity of the phase space

The study of ultrametric spaces dates back many decadesarehtered the physical
literature in the context of spin-glass theory (see [RTV&6d references therein). An
ultrametric spacé/ is defined by following axioms:

(i) 0<d(A,B)andd(A,B) =0 < A=8B
(i) d(A,B) = d(B, A)
(iiiy d(A,C) < max {d(A,B),d(B,C)},
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Figure 7.6: Scatter plot betweeliF,)/g(Ey) ands* atT = 0.125.

forall A, B,C € M and the metriél(-, -). Note that every ultrametric space is a metric
space.

Higgs found evidence that RNA secondary structures exhibitltrametric struc-
ture [Hig96] at low temperatures. The existence of a phasssition was then con-
firmed numerically by Pagnani et al. [PPRTO00] by considetirgwidth of the overlap
distribution (see Sec. 5.4) and then examined by other asitliging droplet theory
[BHO2b], thee-coupling method [FKM02] and renormalized field theory [L&J0

Ultrametricity can be detected by considering the “dis&ifetween two structures
drawn from a canonical ensemble at a given temperatureglifsantransfer matrix; ;
it is possible to draw states directly without performingrkta/ chain MC [Hig96] (see
Appendix A.2).

The overlap of two structurey andC,) was defined by EdL. (5.3),

q(C1,C2) = % 2 Z Z 0i 1041 + Z Z dik| >

(,9)€C1 (k,1)ECs i¢Cy kgCo
With this definition we may define a normalized distance betwk andC,, by
d(Cl,Cg) =1- q(Cl,Cg).

In perfectly ultrametric spaces each triangle is isos¢élesthe two largest sides
of a triangle are of equal length. This property provides merical criterion for the
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detection of ultrametricity [Hig96]: The degree of ultraimeity can be estimated by

the difference of the two largest distances of a set of candittiangles. This quantity,

which is denoted as, vanishes in perfectly ultrametric spaces and become small
approximately ultrametric spaces.

There might be different reasons, whymay vanish in the thermodynamic limit
and therefore one has to filter real ultrametricity againgtal one. E.g. in the high
temperature phase,also scales a& ~'/2 and the maximum size of is limited by
the triangle equation. To distinguish from this trivial ralinetricity, Higgs sampled
[Hig96] sets of “uncorrelated” triangles by computatiortlufee independent distances
d(C1,Cs),d(Cs,Cy),d(Cs,Cs). EachC; was drawn from the canonical distribution

P(C) =  expl-HE(C)]

If these distances fulfill the triangle inequalities, i.e.
d(Cl,Cg) < d(C3, C4) + d(C5, Cg)

and for all other combinations of the distances, the difieesbetween the two largest
distances is computed. Finally the average of the diffexeniaken over all valid
uncorrelated triangles,ncor is computed. Non-trivial ultrametricity should emerge
faster than the trivial ultrametricity obtained from unedated distances. Hengé =

s/ suncorShould vanish in the presence of an ultrametric structutiedrthermodynamic
limit.

In principle one should distinguish the finite temperaturd aero temperature be-
havior in complex phase, as already pointed out in [HarOHing direct sampling of
ground states a “non-trivial” overlap distribution at zeemnperature could be ruled
out by numerical extrapolation. This implies that grountdges alone areot ultra-
metric. For this reason | considered only finite temperature statbsre the overlap
distribution is non-trivial [PPRTO0Q] and evidence for atrainetric phase space still
remains.

In small systems the correlations between the rgti®, ) /g(Ey) ands* (see Fig.
[7.6) are stronger. We assume that this is a finite-size effecause this effect is weaker
for larger systems.

A widely used technique to visualize hierarchical spacéisasise of dendrograms
and distance matrices, which had already been shown irf S&@.i8 the context of
finite-temperature sequence alignment. Here, | used tie@ndis measuré(-, -) intro-
duced above and the clustering method by Ward [JD88] (seergip A.3) to illustrate
the structure of the static state space.

In Fig.[7.7 four different distance matrices for differepalizations and temper-
atures are illustrated. As one can see, a clear clustertsteuemerges only at low
temperatures. Note that one can apply a clustering algotithany set of data, hence
also to non-ultrametric ones. There are quantitative misthwhich test how much the
tree imposed by the clustering algorithm correlates withdistances in the data. Here,
we have just used the visual impressions obtained by lockitige matrices. Further-
more, in Sed. 7.314 we will use the so detected clusters tokcivbether all ground
states are visited with equal probability.
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© @

Figure 7.7: Hierarchical structure of the states illugidaby distance matrices. Darker
gray scales correspond to large overlaps.

(&) L = 120 atT = 2. No hierarchical structure could be detected £ 1)

(b) L = 120 atT = 0.125for a realization exhibiting a weak ultrametricity*(~= 0.74)

(c) L = 120 at T = 0.125 for a realization exhibiting stronger ultrametricity
(s* = 0.45)

(d L = 40 atT = 0.0 for a realization having low ground-state degeneracy
(9(Er)/9(Ep) = 14638/16) Deviation from ultrametricity was* ~ 0.5. Realiza-
tion (d) was also used in Sec. 7.3.4. The corresponding dgnaim is illustrated in
Fig./7.10.

7.3.3 Distribution of tunneling times of the flat histogram random
walk

Next, we consider the tunneling time for the flat histogramdiam walk for sequence
lengths up tal20. Recall that the tunneling time was defined as the number oft®o
Carlo steps that the generalized ensemble random walk nedidsl the ground state
starting from the empty structure. The round trip time, i time to find the ground
state and go back to the empty structure is effectively tirdjsiishable in the system
here, because the tour back to empty structure is one oraeaghitude faster.

Note that larger systems become infeasible if one wants an splarge energy
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Figure 7.8:

Left column: Scatter plot between the ratig 1 )/g(Fy) and tunneling time of the
flat histogram sampler fat = 40 (top) andL = 120 (bottom).

Right column: Scatter plot between deviation from ultrametricity andrteling time
of the flat histogram sampler fdr = 40 (top) andL = 120 (bottom).

interval, which we need to when studying tunneling timeribstions. Already for
L = 120 | found tunneling times fluctuating, in real time, betweeoms®s and days
on a modern CPU.

There is a strong correlation betweg(F;)/g(Ey) and the tunneling time, see
Fig.[7.8. | found that this is in particular true when thisigdas much larger than all
other ratios between neighboring energy densities. Thi@meance of the algorithm
is then dominated by the rare event of finding a ground stasnvgtarting from a first
excitation. Two scatter plots of the ultrametricity ind€xversus tunneling time are
shown in Fig[ 7.8. Hence, whether there is a true correldtieween tunneling time
7 and degree of ultrametricity* is not clear, because for larger system the correlation
appears to be rather weak.

To investigate the issue of correlations between staticsorea and computational
hardness more quantitatively, | calculated the empiriearBon correlation coefficients
for all pairs of quantitiedog T, AS = log (9(E1)/9(Eo)) ands*. The results are
summarized in Tab. 7.1.

The correlation betweest might be trivial, because it might be induced by correla-
tion of the ratiog(E1)/g(Ep) and tunneling time. This means, although ultrametricity
is usually considered as a landmark of complex and glasggrsgs at least for the
behavior of RNA secondary structures it is not related todyr@amic glassy behavior
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L =40 logr  AS 5?T:0.125) 5?T:0.033)

log T 1 0.89 —0.40 —0.33
AS 1 —0.37 —0.30
$(1=0.125) 1 0.87
S?T:O.OBB) 1
L =120 logr AS 5?T:0.125) 5?T:0.033)
log T 1 0.82 —0.18 —0.16
AS 1 0.02 —0.13
STr—o2s) 1 0.28
S?T:O.OBB) 1

Table 7.1: Empirical Pearson correlation coefficients fbpairs of quantitiedog 7,
AS =log(g(E1)/9(Ey)) ands* for L = 40 andL = 120.
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Figure 7.9: Scaling of the location (square symbols) anteguarameters (circles) on
the tunneling time. Insets: scaling of the shape paramstegua logarithmic abscissa
(top) and scaling of the location and scale parameters wsilogarithmic ordinate
(bottom).

seen in MC simulations. To my believe the effect of ultranediris superimposed by
the presence of a large number of metastable states.

| fitted also the distributions of the tunneling time to a gatiged extreme-value
distribution Eq./(7.4) and analyzed the scaling of the patens. Location and scale
parameter have almost the same algebraic dependence authense length, see Fig.
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[7.9. As can be seen on the semi-logarithmic plot in the boitwset in Fig/ 7.9, an
exponential scaling can safely be excluded (at least oretigth scale up t920). The
exponent describing the power-law is roughly= 7. On the other hand, the shape
parameter seems to scale logarithmically in sequenceHerge upper inset in Fig.
[7.9. With the same arguments as in Sec. 7.3.1, we cannotdextiat the distribution
deviates from a generalized extreme-value distribution.

These results differ from the-J Ising model, where an exponential tunneling
time was observed in the literature. On the other hand, thesiailar to the fully
frustrated Ising model, investigated by Dayal et al. [DT04]. They argued, that
sub-exponential growth of tunneling times and of the ra{&,)/g(Ep) stem from
a smaller growth of the number of meta-stable states. Thesdts suggest that the
model of RNA is dynamically “simpler” thas-J spin glasses and has a similar com-
plexity as the fully frustrated model.

On the other hand, sample-to-sample fluctuations are mugérléhan in thet.J
model, as can be seen by comparing the shape parameter enthe of investigated
system sizes. For the largest systems in [DTO¥], the scaling parameter was about
0.9 (see also Appendix B). Hence, although typically RNA ins@sare not so hard
for a MC algorithm, compared t&r.J spin glasses, there is larger fraction of rare hard
instances for RNA secondary structures.

7.3.4 Are all ground states visited with equal probability?

From Fig[ 7.4 one can also see that the error for the optinénsdmble are one order
of magnitude smaller than that of the ParQ method. Sincetin tases the data were
obtained from the transition matrix, the significant diflace must be caused in the
underlying MC scheme, probably the non-equilibrium chtmaof ParQ. In order to
gain insight to this issue | checked whether the microcasairoperty is fulfilled.

In detail, | considered histograms of visited ground stétesimulated annealing
(ParQ) and the optimized ensemble sampler and checkedliistegrams were suffi-
ciently flat. A simple and powerful check for the flatness ofistdgram is the Bhat-
tacharyya distance measure (BDM) [Bha43] for two given ptility mass functions
p andq, which was introduced in Ed. (6.1) in Chapter 6

Bole) = 3 Vo) - v/ali)

In Chapter 6, this measure was already used for model testiteye, thenull
hypothesiscorresponds to the assertion that all ground states aredigiith equal
probability. LetK = g(E,) be the ground state degeneracy afij denote the number
of events that the random walk visits ground statdence the objective is given by

B:i\/ﬁ(i)/N-\/g,

whereN = Zfil h(i) is the total number of events, where the sampler hits one of
the ground states. We shall make use of the p-value whictsacated with the ob-
servationB3. This is the probability that an empirical BDM d# or larger occurred
by pure chance (see Appendix A.4). If the p-value is bela¥s the evidence that the
null-hypthesis is true is very small.

Note that the BDM requires the empirical events to be inddpah Hence, | gen-
erated histograms of independently visited ground statea §mall systeml{ = 40)
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Figure 7.10: Histograms of visited ground states. uppetimoped ensemble random
walk, lower simulated annealing. The Bhattacharyya messand the corresponding
p-values indicate, that simulated annealing does not ailsground states with equal
weight.

and low ground-state degeneracy (I selected a realizakbibiging K = 16) in the
following way: For the optimized ensemble | considered thend-trip timer and
checked each’th MC step if the random walk sits currently at the groundestand,
if so, the histogranﬁz(i) is updated. For simulated annealing, which provides a basis
for ParQ, this procedure is not possible in this way, becthee is no natural mixing
time, which could serve as a thinning interval. Thereforeherated histograms of
all visited ground states and renormalized the empirical gistms by considering an
effective sample size such that each of Mg neaingannealing runs has a “weight” of
1, 1.e.

2 eff/ . NannealingA .

Fe(i) = —EReh i)
whereN =", h(i) is the total number of events.

Note that in the case that the random variable mixes faséerttihe number of MC
steps for one annealing run the BDM for the effective hishogmight be overesti-
mated (and hence the p-values as well). This would yielefptssitives. However the
opposite case might not occur, because all annealing rensdependent from each
others. Therefore the so defined effective histograms cdntmnused to reject the
hypthesis, which is exactly what we do here.

The results for both simulation methods are shown in [Fig0.7 The upper plot
shows one of ten histograms of independent runs for the getrensemble random
walk, which has a large p-value 6f68. The other nine runs yield p-values between
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0.007 and0.67 (0.4(1) on average) and hence we can accept the null hypthesis. For
simulated annealing we find that not all ground states aredisvith equal probability
(lower plot). The p-values for ten independent runs varievieen { x 10~ and5 x
10~2). Therefore we have to reject the null hypthesis, hencestbigsulated annealing
runs visit ground states with a bias. For an even faster mgatchedule we find p-
values betweefd x 10-2% and2 x 10~3. The reason for this bias might be that the
random walk gets stuck in preferable local minima. The gdbstate structure in form
of a dendrogram illustrated in Fig. 7.10 below the histoggampports this argument.
The connection between two ground states indicates thee tivo are merged into one
cluster, and the vertical distances are proportional t&\taed-distance, specified in Eq.
(A.1) (see Appendix Al3). One can see thathin the largest clusters the histogram
becomes flatter and that the main source of the non-flatnestfiarences in sampling
betweerthe largest clusters.

7.4 Rate of convergence in extended state spaces

The relative error of the Monte Carlo estimate of the DOSwshim Fig./ 7.3, suggests
that the ground state is hardest to sample. Additionallghasvn in the previous sec-
tion, simulated annealing fails to find all ground stateshvétjual probability. This
leads to the question whether the dynamics of both algostbam be improved by
increasing the number of possible paths from higher exeitatto the ground state.
It is also desirable to enhance the dynamics such that ttdonanvalks are allowed
to move from one ground state to another, especially for #r€@RBimulations at the
finial low-temperature stage, where it is less likely to @egne a barrier through higher
excitations.

The main reason of the slow dynamics close to the ground istalige to entropic
constraints. In the method that is described in this sectios constraints are partially
released in a controlled manner. The idea is to sample froextanded state space
X%, where a certain amount of pseudo knots are allowed. The geinsity of states
defined on the energy and the number of pseudo knots is thentasbtain the DOS
of the original model by a projection. Details on this metlawe explained now.

In Def.[5.1.1 we have defined a secondary strucfuas a set of bonds, where all
pairs of bondqi, j), (k,1) € C with (i < k) are either nested (< k < | < j) or
separatedi(< j < k < [). Here we also allow the case of pseudo knots

i<k<j<l (7.5)

A new observable, denotedasmber of violation¥”, measures the number of violated
constraints in the form of Eg. (7.5). The caBe= 0 corresponds to the original
model. Note that non-complementary base pairs and painseketbases with a shorter
distance tharhmi, in the primary sequence are still excluded.

It is straightforward to generalize the Metropolis algomit for RNA secondary
structures such that also those structures Witk 0 are taken into account. Besides
the energy, also the numbers of violatiovisand their potential changesV are to
be sampled in the same way as above. This yields the chaingsefwables in the
extended state spagg,

(B VD AED AV 30, (B9, V9, AED, AVD 70)).

Similar as in Sed. 7115 denotes the index of the simulation, i.g. = 1,...M,
where M is the total number of independent simulations. A macroestdt the
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Figure 7.11: Allowed macro states and possible transifiotise extended state space.

extended state space is characterized by the @aj/). This also requires a
generalization of the matri%l/, that counts the proposed transitions. Instead of
counting all transitions between energy states the tiansitbetween all possible
transitions between the joint staté®, ') have to be considered. This yields the
generalized matriW(E,V)_,(EJrAE,VJrAV) from which a stochastic transition matrix

Q(E,V)_,(EJrAE,VJrAV) can be estimated by normalization

A W(E,V)7(E+AE7V+AV)
Q(E,V)7(E+AE7V+AV) =

T - .
ZAE/:fl ZAV’ W(E7V),(E+AE’,V+AV’)

The joint DOSg(E, V) is obtained by iterating the master equation for the joiatest
transition matrixQ),

g(B;, Vst +1) = ZZQ(Ek,Vk),(Ei,Ej) - 9(Ey; Vist).
k1

An estimate of the DOS of the original model is then obtaingthle projection

1
g(F) = =———=9g(E,0).
)= sem Y
In order to estimate the specific heat, we will also need tomdmthe marginal DOS
1
gmarg(E)

= S ET) XV: g(E,V).

Because the state space grows drastically, when remalliegnstraints that leads
to pseudo knots, we shall concentrate on the interestingn@ipse to the ground state
alone. Hence not all states on the— V plane are considered. A setup, which turned
out to be efficient is to allow all states with = 0 as usual and additionally allow for
the state$Fy—1,1), (Ey, 1) and(Ey+1, 1). Hence, most of the pseudo-knots are still
forbidden. Only close to the ground state, where the MontgoGamulations exhibit
extremely slow dynamics, we extend the state space by thigidanal macrostates.
This setup is illustrated in Fig. 7.11. | also tried a largetref forbidden states beyond
V' = 1 and also more than three macrostates, but the choice of ithe thentioned
states seems to be the best compromise | found. Becauseattgestill forbidden
structures in this setup, the waiting times have to be tak&reiccount for the extended
state space as well.
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Here, | considered the same sequencé ef 80 that was also considered in the
analysis of convergence in Sec.]7.2. The correspondingtemaispace exhibits a large
ratio g(E1)/g(Ey) and the ground state is therefore hard to sample. The asalfsi
the extended state space was divided into four parts,

(1) a short ParQ simulation to obtain a rough estimate"™5f% £') and from that an
estimate of the specific heat,

(2) several ParQ simulations to obtain a guesg(éf, ),
(3) several generalized ensemble simulations with flabgistm weights and finally
(4) several generalized ensemble simulations with opéohizeights.

In the simulated annealing setup, each proposal is acceggtearding to the
Metropolis algorithm with semi-rejection free dynamicdjeve the number of viola-
tions V' did not enter the acceptance rate. For this reason the spkedi based on
the marginal DOS was estimated after the primarily ParQ tnA visual inspection
of the specific heat curve suggested to use the same tempgeratge [—10, 15]) as
for the standard state space at least for this particuldizagian. In step (2), longer
independent ParQ simulations with linear schedule andnagai 10° Monte Carlo
steps were performed. The resulting rate of convergenggof)/g(Fo) measured
by eratio is shown in Fig/ 7.12. The results were obtained by averagiey ten
independent blocks of runs, i.e. 100 runs had been carriethaatal. Interestingly,
the ParQ method in the extended state space is almost asfpbagthe optimized
ensemble method in the standard state space.

The joint DOSg(F, V') was then used to choose the weights for the generalized
ensemble method as(E,V) « 1/¢g(F,V). This means, for part (3) and (4) the
generalized Metropolis criterion

. ( w(E+AE,V+AV))
a = min | 1,

w(E,V)

was used. The generalization of the iteration scheme foofitienized ensemble Eq.
(2.21) is straightforward. The labels and —, that the random walk is assigned to
in each time step in the extended state space are determyrtee bbservation if the
random walk has visited the stat& _,0) = (Ey + 1,0) or (F,,0) = (0,0) most
recently. The histogramB . (E) are defined accordingly and the optimized ensemble
iteration is generalized to

1 df 1
H,(E)+H_(E) dE 7(E)

w" Y B, V) = wt(B,V) - \/

The rate of convergence gf E1)/g(Ep) is again obtained by averaging over ten
independentruns. As one can see also inFig./7.12, the dereeransemble method in
the extended state space enhances further the rate of geneer Most likely the rea-
son for this kind of enhancement is that the random walk maldhound states more
quickly (see Fig. 7.11) . The escape rate from the ground statigher excitations is
also enhanced.

We may conclude that Monte Carlo simulations in extendei# sfpaces enhance
the performance for all three cases, for the ParQ algorithatlae generalized ensem-
ble methods in both variants that have been considereddrcitzipter. In Appendix B
a related approach applied to the/ spin glass is discussed.
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Figure 7.12: Convergence of the relative error of the rgti6, ) / g(Ep) in the extended
state space. For comparison the data of the best methodefstahdard state space is
also included.

7.5 Conclusion

In this chapter, | discussed the relation between statiq®it) dynamic properties of
RNA secondary structures and the relation to the performandifferent MC algo-
rithms. This model is an ideal test system for this purposdhiee reasons: i) The
model exhibits quenched disorder and has a complex lowggh@ndscape, where an
interesting dynamical behavior can be expected. ii) It kithia static phase transition
at finite temperature. iii) The static behavior of the modah de analyzed exactly
using polynomial-time partition-function calculatiors feach single realization of the
disorder.

Analyzing the static behavior, | calculated the DOS for enisies of sequences of
different lengths. In particular, | studied the ratioE1)/g(Ey), which plays the key
role in the complexity of MC methods. The distribution ofgiatio could be fitted (but
not perfectly) to a generalized extreme-value distributgimilar as previously found
for the case oftJ spin glasses. Location, scale and shape of this distritsiale
algebraically with system size, in contrastito’ spin glasses. | also computed Higgs'’s
measures* for the degree of ultrametricity of each realization anddukirarchical
clustering approaches to analyze the structure of the tapes

For the dynamics, | examined two different MC approachescivbkerved as basis
for evaluating the infinite-temperature transition matithe nature of the model ren-
ders a direct MC implementation very inefficient, hence b ateluded anV-fold way
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7. Complex state spaces and glassy Monte Carlo dynamics 129

sampling scheme. Generalized ensembles with flat-histogred optimized weights
provided examples for equilibrium simulations, whereasPia based on simulated
annealing, which is an out-of-equilibrium method. In castrto+.J model [HHO5],
the ParQ method did not yield very accurate results nearrtengl state and therefore
equilibrium methods should be preferred. However, thedligatage of theses meth-
ods is that already suitable initial guesses of the DOS ayeired. The simulations
show that ParQ can provide such guesses and hence a goedtraght be to com-
bine the ParQ method for a first estimate and use the optinézsemble method for
further refinement.

The tunneling time, as a measure of complexity for the flablgiem random walk,
is also distributed according to a generalized extremaewdistribution. The scaling of
location and scale parameters seems to be algebraic witkpament ofz ~ 7, which
differs from the spin-glass model studied in the literatuféne scaling of the shape
parameter indicate much larger sample-to-sample fluctosithan the spin-glass case.
Hence, computationally very hard instances occur moraofte

Concerning the relation of static properties and dynamiediavior, | found a
strong correlation of the MC tunneling times to the valuehef tatiog(E1 )/ g(Eo).

On the other hand, | couldot detect a strong direct correlation between MC tun-
neling times and degree of ultrametricity of the model. Amymerically observed
correlations appear only in a trivial way, i.e. due to a clatien between the degener-
acy ratio ands*. Hence, an ultrametric phase space (a kind of global cheriaation
of the energy landscape), as it seems to be present for RNh@&ary structures, does
not necessarily lead to a complex dynamics. The presencetafgtable states, which
is only a local property of the energy landscape, appears touch more important.

The analysis of the histogram of visited ground states ples/ireasons for the
failure of the ParQ algorithm: Microstates with equal eryeae not visited with equal
probability and hence evaluation of the infinite tempematuansition matrix does not
work correctly. This was not the case for equilibrium method

Finally | considered an extended state space, where onlgam&raint may be vi-
olated. In all cases, the rate of convergence of the Montl@#gorithms is enhanced.
For the ParQ algorithm and the optimized ensemble methodaimpling error of the
ratiog(E1)/g(Eop) is one order of magnitude smaller than in the original stp&es.
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Appendix A

Additional algorithms

A.1 Stochastic backtracing for local alignment

This appendix describes the stochastic backtracing ptwedny Miickstein, Hofacker
and Stadler [MHSO02] to sample finite temperature local atignts from the Gibbs-
Boltzmann distribution. It depends on the local partitiuncftionsZi’f’j, Zi{’j ande?j
that are calculated in the dynamic programming algorithniifite temperature align-
ment Eq.((3.9).

Firstly a starting pointi, j) of a non-empty alignment or the empty alignment
A = {} is selected with probabilitier’j/Z or 1/Z respectively using the inversion
method [Dev86]. If the empty alignment has been selectesl iiefurned, otherwise
a random walk in backward direction is performed. This waiicts at the randomly
chosen starting poir(t, 7). The probabilities in each step are chosen according to the
local partition functionsz”;, ZF ande% as well as the local scorega;, b;). Details

of are shown in Algorithm A.1]1.

A.2 Pair probabilities of RNA secondary structures
and hierarchical backtracing

In the last section a stochastic backtrace procedure fdirtite temperature alignment
has been discussed. A related method for RNA secondarytstesds also available
[Hig96]. Here, the algorithm for pair-matching model is ggated. The partition func-
tions of structures on the subsequenge. . a; are available after the course of the
dynamic programming algorithm Eq. (5.1).

Due the hierarchical structure, the easiest way is to impterthis algorithm recur-
sively. The procedurbi er ar chi cal _backtrace in Algorithm/A.2.1 returns a
structure on the sequeneg. . . a; drawn according to the Boltzmann weights. First the
probability thatj is paired withh is computed for alh = i...j — hmin. Probabilities
can be computed from the partition functiafig; with i < k < [ < j [McC90],

—en /T
Zin_1-e €n,j/ Zps1,j-1

Ph =
Zij
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132 A. Additional algorithms

procedure stochasticdbacktracef”, Z¥, Z9, i, j, T)
begin

A—{}

state— match

while(state != stopylo
p_diag, pgapa, pgapb, p.stop+— 0
case stateof
match:
A— AU{(i,4)}
if(¢=21or j=1) then p_stop— 1
else
pdiag— (22, ; 1/2}})- et /T
p-gapa«<— (Zip—l,j—l/Zi[,)j) e (anby)/T
p-gapb « (Zgl,j—l/Zil,)j) - eo(@b)/T
p_stop« 1 - p_diag - pgapa - p.gapb

end
t—i1—1; j—73—-1
gapb:
if i=2and j =1then p_diag+ 1
else
p—dlag<_( i— 1]/ZP) —Ot/T
p.gapb — (2], ;/2];) - e PIT
p-gapa<— 0
end
1—1—1
gapa:
if i=1and j =2then p.diag«+ 1
else

pdiag— (25,_,/2] o) e /T
pgapb<—(ZJ 1/Z ) -eme/T
p.gapac— (29 _ /2% ') 0/
end
J—ij—1
end
set state to match, gam gapb, stop
with probabilities pdiag, pgapa, pgapqg, p-stop
end
return A
end

Algorithm A.1.1: The stochastic backtrace procedure faalalignment with affine
gap costs/ [MHSQ02]. It is assumed that a starting péinj) has been chosen with
probability Z”; / Z.
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A. Additional algorithms 133

procedure hierarchicalbacktracef, i, j)
begin
C—{}
for hin i...j5 — hmindo
plh] — Z; h—1 - efe’“-"/T “Zhi1,j—1/Z5
Punpaired<— 1- 2;71::1 Ph-
h — choose h or undefined with probabilities p[hhired
if h# undefinedhen
C—Cu{(h,j)}
C — C U hierarchicalbacktracé€Z, i, h — 1)
C < C U hierarchicalbacktraceZ, h + 1,5 — 1)
else
C « C UhierarchicalbacktracéZ,i,j — 1)
end
end

return C
end

Algorithm A.2.1: Hierarchical backtrace procedure for gdimg of RNA secondary
structures from the canonical ensemble [Hig96]. It is assdithat the partition func-
tions Z; ; are known. To sample a structure on the complete sequenceay, the
procedure has to be called as hierarchlzatktracet, 1, L)

The probability thay is not paired with any letter < h < j is given by

j—1

Punpaired= 1 — th'
h=1

Next, a new state foj is drawn with the inversion method: It is paired kowith
probability p, or remains unpaired withunpairea This kind of selection induces inde-
pendent subsystems. jfwas paired with the systems,; ... an—1 andapy1 ... aj—1
are treated in the same way independently of each otherrfiteea larger subsystem
a;...aj—1 is left for the next recursion. This procedure is repeatetl un= j — 1

in each branch. A related method to sample ground-state®acaiconicaly, i.e. with
equal weight was proposed by [Har01].

A.3 The clustering method

Fig.[3.13 in Sec. 3]6 and Fig. 7.7 in Sec. 71.3.2 display distanatrices of local align-
ments and RNA secondary structures in the canonical ensembé states have been
sorted according to a certain cluster criterion, which iglaxed in this appendix.

The algorithm used here is Ward’s algorithm [JD88], an ag@rative hierarchical
matrix updating algorithm, also called minimum variancemeé as it is designed to
minimize the variance of the constructed clusters. The otkthquires a set of states
from a state spacg and a distance measufe x x x — R. The algorithm works as
follows. Initially each state forms a cluster of its own, @hd distance matrid ,; with
the distances of all pairs of clusters (each containing @mdiguration) is calculated
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134 A. Additional algorithms

using the distancd. Then in each step the two clustersand ¢ with the smallest
distance are fused to form a new clusteThe distance matrix is updated using

(e +1p) Avp + (y +1g) Apg — 0 Dy

Art =
Ny + Ny

(A1)

wherer refers to any of the other clusters left unchanged in theectirstep anch,,

is the number of configurations in cluster This is repeated until only one cluster
remains which now contains all configurations. Afterwande @an re-order the con-
figurations according to the cluster hierarchy obtainedaftising process, and draw
a color-coded visualization of the distance matrix suchndsig.[3.13 or Fig. 7.7.

A.4 Statistical significance of the Bhattacharyya dis-
tance measure

The Bhattacharyya distance measure (BDM) was introducethiapter 6 and used
in the discussion of entropy effects of the minimum freergpalistribution of RNA
secondary structures. Furthermore it provided a measurtadoviolation of the mi-
crocanonical property of the ParQ algorithm. This issue eiasussed in Set. 7.3.4.
In this appendix the Monte Carlo method that allows one tamede the statistical
significance of the BDM is described.

Let X be a discrete random variable with possible outcomes betivaadk. We
want to test the hypothesis thatis described by a certain model, the so called “null-
model”. This model states thaf is described by the PMpy.

Let x1 ...z, be the outcomes of an experiment on the random variablend
define the empirical histogram as

ﬁ(l) = 5i7$g"
1

n

S|

J

The BDM between two probability mass functionandq was introduced in Eq. (61.1).
Here, we measure the BDM between the empirical distribygiandpy,

k
B = B(p|lpo) = Z V(i) - V/po(i)-
i=1

If p(¢) = po(¢) foralli = 1...k, one would obtain a BDM of. Finite samples hardly
reach a BDM ofl even though the null hypothesis was correct. Deviationsfto
strongly depend ok andn.

It is possible to assess a p-value of the observaliofThis is the probability that
a BDM of B or smaller occurred by pure chance under the assumptioritteatull
model is true. To define this more precisely, Y&t...Y,, be a random vector where
eachy; is described by,. Under this conditions the BDM is also a random variable

The p-value for the observed BDM is defined as

p-value:= Prob {B < B} .
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A. Additional algorithms 135

procedure bdmupdateg[l...n|,h[1...%],Bmax)
begin
B — 3 V- v/po(i)
j < random integer betwednhandn
y* < choose random integer betweeandk with probabilitiesp(-)

B* — B+(v/hlyljll = 1 = /hly[]])v/po(yli])
+(VAly T+ 1= Vhly D vy
if B* < Bmax then
B« B*
ylj] = y*
hly[jl) < hly[j]] — 1
hly*] < hly*] +1
end
return (y,h,B)
end

Algorithm A.4.1: Monte Carlo update procedure for the BDMadue algorithm. It
requires the threshold valug,, ., a working histogrank|1 ... k] and a working array
y[1...n], where eachy[i] can be integers betwednand k. It returns a modified
working array, the histogram and the curréhb M .

One would accept the model if the p-value was large enougbhwiépends on how
conservative the test is desired to be.

By randomization it is possible to compute a p-value for asepbed3 with fixedn
andk. One generates independent histograms according to thmodé! (realizations
of the random vectoY;) and counts the fraction of events, where the BDM is smaller
than or equal td3 [Sco04]. If the p-value is very small this simple samplingthoel
becomes infeasible very quickly. For those cases one maleimgmt an importance
sampling approach. Here the method of Wilbur [Wil98] is dissed. It is a Monte
Carlo method designed to approximate very small p-values

The method is based on Markov chain Monte Carlo that aimsmapkiag the ran-
dom vectorY; .. .Y, from the distribution(py)™. The so constructed chain is denoted

as(\” .y, @™ L y{™), wherem is the number of samples. Initially the

vectory§0), . .yflo) is drawn randomly from the distributiofp,)™. At each time step

t > 1, a new vectowy, ...,y is proposed by a local modification of the previous
vectory!"™" .. 4~ This is done by choosing an indéx< j* < n randomly
and then replacing thg*th component with some discrete random numgedrawn
from pg, i.e.

(t-1) (=) e

* * 1 _
yla"')yn:yl ,...,yj ) (t 1).

t—
179 7yj*+17"'7yn

This proposal yields the new BDM

1 A related sampling technique in the context of free-enemyiers,successive umbrella samplingas
proposed by Virnau and Miller [VM04]
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136 A. Additional algorithms

This proposal is accepted, #* is smaller than a certain threshold valBg, .., which
is specified below. In that casgg, ...,y is used in the next time step as usual. The
update procedure is illustrated in Algorithm A.4.1.

The simulation consists of two stages. In the first one a sefi¢hreshold values
B,(I?QLX . B,(,i‘;:;*) is determined iteratively. In each of those iterationst tra labeled
aso,...,(lmax — 1), a predefined number of Monte Carlo steps is performed as de-

scribed above, wherB,(r?;x is set tol in the first iteration. After each iteration the
threshold value of the next iteration is set to the mediahe#isited BDMs of the cur-
rent iteration. This is repeated until the BDM that has todsted, i.e.3, is smaller
than the25% quantile of the simulated BDMs. This happens in the iterakideled by

luax — 1. The last threshold value is setBinstead of the median, i.@{m) = B.

In the second stage, the iteratidns . (I,,.x — 1) are repeated with the fixed thresh-
old valuesBr(I?gx, ceey Br(fl‘j;;*q) that have been determined in the first stage. In order
to achieve a better accuracy, it is possible to choose arlargaber of Monte Carlo
steps per iteration than in the first stage. In each iteratienfraction of events;
with B < B{LY is measured. The serigs, ..., fi..__, yields to a Monte Carlo

approximation of the p-value,

Imax—1

p-value~ [] £

=0

This approach is very general and could in principle also fij#ied to the local se-

guence alignment statistics as it was discussed in Chiapt&u#to my believe the

parallel tempering or the Wang-Landau approach has betkmgrproperties because
the random walker is allowed to travel across differentedevels in two directions.

The method that is described here is more simulated angdéde
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Appendix B

The +/- J spin glass: Algebraic
tunneling times?

In Sec! 7.4 you have seen that the performance of the Par@uhetiuld be increased
by the reduction of frustration in a system with entropic stoaints.

This result arises the question whether the principle magdwmpted to other sys-
tems with high energetic or entropic barriers. In the casdysthich is presented in
this appendix, we consider the two-dimensioftal spin glass, which is a prototype
of glassy systems with quenched disorder [EA75, BY86, MPW98, FH93]. As
already mentioned in Chapter 7, this model is charactetigddrge sample-to-sample
fluctuations, which results in extremely broad tunnelimgetidistributions of general-
ized ensemble Monte Carlo algorithms. In contrast to the Rigfondary structure
(the results of Se€. 7.3.3), typical tunneling times growamential with the system
size [DTW"04]. The aim of the present study is to check whether thisgperéince
limitation can be overcome by extended state spaces siaslar Sec. 74.

In the following two sections, the model including its exdem will be briefly
introduced and, after that, the resulting convergencegatigs and tunneling time dis-
tributions are presented.

B.1 The Edwards-Anderson Hamiltonian

The state space of the two-dimensiottal Ising spin glass is a set of Ising spifis; },
i.e. variables that only havel or —1 as possible values (orientations). In the geometry
which is chosen here, these spins sit on the sites of a radtarigttice with periodic
boundary conditions in both directions (see Fig.|B.1(agclEof theM = 2N bonds
of this lattice is assigned a variablg,; € {+1, —1}.

Bonds withJ; ; = +1 are denoted aferromagnetic those withJ; ; = —1 as
anti-ferromagnetic In terms of statistical mechanics of disordered systehms,set
of random bonds referres to the realizations of the dispgietilar as the molecular
sequence in the model of the RNA secondary structure.

The Hamiltonian of the model is given by

E(U) = Z O'iJiJU]‘,
(4:3)
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Figure B.1:

(a) Geometry of the two-dimensional Ising spin-glass wignigdic boundary condi-
tions. The circles indicate the spins, which are enumerfateal0 to L2 — 1.

(b) A non-frustrated plaquette. Ferromagnetic bonds apgvshas straight lines and
anti-ferromagnetic bonds as rugged lines. Each bond caatisfied, i.e. spins that are
connected by ferromagnetic (anti-ferromagnetic) bonds legual (opposite) orienta-
tion.

(c) In a frustrated plaquette one bond cannot be satisfied.

where the sum runs over all nearest neighbors. This kinderfggrfunction is referred
as Edwards Anderson Hamiltonian with/ interaction. In contrast to the model of the
RNA secondary structure, there are no entropic constraiatsall 2V spin configura-
tions are possible states for every realization of the deofThe frustration is more of
energetic nature, due to so called frustrated plaquettes.

A plaquette is closed path on the lattice consisting of faands (see Fig. Bl1 (b)
and (c)). A plaquette is referred fsistrated if the product of the four bond variables
equals—1. Spins connected by ferromagnetic bonds energeticaliyr fay take the
same orientation and those connected by anti-ferromaghetids prefer to take the
opposite orientation. Therefore all bonds of a frustratedpette cannot be “satisfied”
at the same time.

The J; ; had been drawn from the bimodal distribution

1
P(J) = 5 (0g-1+651).

Since the aim is to study the generalized ensemble methodenaed state spaces, itis
desirable to know the exact DOS for each realization of tkerdier as a reference. For
that purpose, | used the algorithm of Saul and Kardar [SK34iis method requires
that the number of frustrated and non-frustrated plagsiettgials, which is also the
case in the thermodynamic limit. Hence, only such realiretihad been considered.
In figure Fig.B.2, the DOS for different realizations of syst sizes froml, = 4 to
L = 20 are illustrated. The data have been produced by the origimg@émentation
by Saul and Kardar.

If the number of spins is even, the energy changes its siganamsimultaneous spin
flip of every second spin. Hence the DOS is symmetric and ihiaugh to consider
only negative energies. Hence, the maximal possible eneigye, Fi,.x, is either0
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Figure B.2: The DOS of different realizations ©f/ spin-glasses in two dimensions
on square lattice obtained by the algorithm by Saul and Kd&&94]

or —2 depending on the bond configuratidn

B.2 Extension of the state space

In order to remove frustration from the system in a similat bot equivalent way
as described in Selc. 7.4, | consideredMl] anti-ferromagnetic bonds as additional
degrees of freedom. This means they are allowed to change femomagnetic to
anti-ferromagnetic. This allows one to interpolate betw#® original spin glass and
a ferromagnet, where all anti-ferromagnetic bonds havpdtip In this case the frus-
tration is removed completely.

Let V' denote the magnetization like observable, that measuesriount of
changed bonds. We shall denoted this macroscopic quastitplation. The original
system has/ = 0 and the ferromagnét’ = M,. Similar as for the RNA sec-
ondary structure, we are aiming at simulating the joint dgrf statesg(F, V). The
normalized DOS of the original system is then obtained bypttogection

9(E) E,0)

1
= =59
> 9(E',0)
The performance is measured by the tunneling times fromttie B, andV = 0
to the ground state of the original systdip andV = 0 in the generalized ensemble.
In order to measure the performance | implemented threamiarof the simulation
program,

e the Wang-Landau algorithm,
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140 B.The +/- J spin glass. Algebraic tunneling times?

class number o; | number of neighbors AE | new class
with Ji,jaj =1

o + 0 -8 5

1| + 1 -4 6

2| + 2 0 7

3| + 3 4 8

4| + 4 8 9

5| - 0 8 0

6| - 1 4 1

7 - 2 0 2

8| - 3 -4 3

9| - 4 -8 4
class number by 0i\ 0 AFE | new class

0] + +,+0r—, — 2 2

1T + +,—or—,+ -2 3

2| — +,4+0r—, — -2 0

3| — +,—o0r—,+ 2 1

Table B.1: Energy classes for spins and bonds. The tablesshaass number, the
current spin or bond value, the local environment of the abjbe energy change a flip
would cause and the class identifier of the spin/bond aftesaiple flip.

o the generalized ensemble method with Metropolis updates Gec. 2]7) and
o the generalized ensemble method with n-fold way updates &ed. 2.3).

All three algorithms employ weights(E, V') on a two-dimensional domain. For the n-
fold way, all N + M, variables are divided in onli0 + 4 classes, that are characterized
by the energy change that a flip would cause. These classdistackin Tab/ B.1
for the spin and bond variables. For Metropolis updates efects one of thev +
M, variables at random, performs a trial flip, which is acceptiétth the acceptance
criterion given by Eq/(2.4),

i [ WE ARV +AV)
o ’ w(E,V) ’

whereAFE andAV are the changes of energy and violation that the flip wouldeau
When using the n-fold way dynamics, all proposals are aetegbd one accounts for
the waiting times a spin flip would cause (see Sed. 2.3).

Spin flips may change the energy by multiplesdoénd the energy may change
by +2 due to bond flips (see Tdb. B.1). A spin flip leaves the viotaiiounchanged,
whereasV is increased or decreased by one by a bond flip. This meanscerihin
macro states are in principle possible. Only those states osbe taken into account,
when checking the flatness of the histogram in the Wang-Laadgorithm. Further-
more the state space is restrictedio> Ejy, even for states witly > 0. The largest
possible value o¥ is of courseM,. The closeup sketch in Fig. B.3 shows possible
states and jumps close to the ground state. However, a dguifithe number of vari-
ables is not desirable in systems where the state space gmmasentially with the
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Figure B.3: Allowed macro states in tlie— V' plane.
closeup: possible states and jumps close to the ground state

number of variables. Therefore, the set of possible maatestare further reduced.
We allow only states that have zero violatibh= 0 or that sit in theE — V' plane
below the curve

Vinax(E) = (1 — )M, - exp[-B(E — Ej)]. (B.1)
a € [0, 1] is atunable parameter atiti > 0 is chosen such that, . ((1 — ) Ep) = 1,
_log[(1 — a)M,]
B == e .

Furthermore one has to guarantee that each allowed matedstaachable from the
ground state by a chain of thé + 4 jumps listed in Tab. Bl1, i.e. the states have to
be ergodic. The states in thie — V' plane after this kind of restriction are illustrated
in Fig.[B.3. The limita = 0 corresponds to all discrete states on the full rectangular
supportEy < E < 0and0 < V < M, that are reachable from the ground state.
The other extreme cage = 1 restricts the allowed states to thE = 0)-axis, which
corresponds to the original state space.

In the following section, the performance of the Monte Calymamics in the ex-
tended state space is discussed.

B.3 Performance in the extended state space

In afirst step, | generated the generalized ensemble weigtfsV') for a small num-
ber of realizations betweeh = 4 and L = 20 by the Wang-Landau algorithm (10
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142 B.The +/- J spin glass. Algebraic tunneling times?

Figure B.4: Top: Performance of the extended state-spatieothén comparison to
the standard method measured by the ratio of tunneling tamesfunction ofx.
Bottom: Ratio of number of macro states of the extended sfaee to the number of
energy levels of the original system.

realization per system size). The paramatéhat controls the size the of state space
was chosen between7 and1.0 for L < 16 and0.75 for L = 16 andL = 20. The
parameters for the Wang-Landau algorithms were tuned'ds= 0.6, log ¢° = 0.1
andlog ¢ = 1 x 10~8. Fora = 1 (the original problem) the exact DOS were used
to determine the weights ag(E) = 1/¢(F). For each realization and several values
of o, a generalized ensemble simulation with n-fold way dynamias performed and
the corresponding tunneling times were measured.

The resulting tunneling times, for the casex = 1 are used as reference and
the performance of the extended state space method is redaasithe ratio of the
observed tunneling time for « < 1 to the referencey as a function ot (see Fig.
[B.4). Obviously, there is a local optimum at~ 0.85. Possibly, this also a global
optimum. However, | also experimented with restrictioneventhe boundary function
Vimax defined in Eq.[(B.1) was changed by choosing another valuB,afuch that
Vimax(E) = 1 was shifted towards the ground state, while the verticaatfivas kept
fixed. | found no significant enhancement.

In realistic applications, where the DOS is not known, itéguired to have “effi-
cient” weights such that all states are visited with equabpbility. Hence, also the
methods to obtain those weights, i.e. the Wang-Landau ihgoiin this case, have
to be efficient. For example, if the tunneling time decredmsea factor of2, but the
Wang-Landau iteration requires four times as much comjmmatteffort as in the orig-
inal state-space, nothing is gained. Therefore | also aetie dynamics of the Wang
Landau iteration witl = 0.85. For this purpose, | picked out an “easy” and an “hard”
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Figure B.5: Convergence of the Wang-Landau iteration fdemaed state space
a = 0.85 and the standard cage = 1. The plot displays the number of Monte
Carlo sweeps required to achieve different modificatiotoiedog ¢. A sweep is mea-
sured by number of MC steps per spin variable. The data haddeaged over0
independent runs.

realization of L = 20. The easy realization was chosen close to the median of the
distribution of the ratiog(E1)/g(Fo). Again, E; denotes the energy of first excita-
tions, which isEy + 4 for this model. The value of the ratio for the easy instancs wa
g(E1)/g9(Ep) =~ 972. The hard instance was taken from the tail, where this ratio i
large, i.e.g(E1)/g(Ep) ~ 95,651. This ratio turned out to be the crucial measure for
Monte Carlo complexity (see Sec. 7.3.3 and [DT0M]).

The result is shown in Fig. B.5, where the number of Monte €aweeps vs.
modification factors is displayed. Note that a sweep is ddfanumber of Monte
Carlo steps pespinin both cases, i.e. number of steps / 4000« 20. Surprisingly,
even though the Wang-Landau histogram is defined on a lacgeaith for the extended
state space, the algorithm converges faster in this case.

Next, we study the rate of convergence of the estimator ofdtie g(E1)/g(Ep).

As shown in Chapter 7, this quantity is very sensitive to theice of the Monte Carlo
method. Its relative error has already been defined by E8)) ifY¥ Chapter 7,

9(E1)/9(Eo) — g¥*NE) /g% Eo)|
gexact( El ) / gexact( EO) :

Fig.[B.6 illustrates the convergence of the extended stdeesalgorithm in com-
parison with the standard generalized ensemble. Obvidbslperformance could be
improved for the hard and the easy instance, where many sietée states prohibit a
direct jump from a first excitation to the ground state in ttemdard algorithm. When

€ratio =
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a=1.00
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Figure B.6: Rate of convergence of the extended state spaee (.85) method in
comparison with the standard generalized ensemble witholations ¢« = 1.0). Two
realizations ofl. = 20 have been considered. The convergence is enhanced for the
hard instance, wherg E1)/g(E)p) is large.

allowing extended states, the random walk is allowed topsé@m such local min-
ima resulting in smaller correlation times. Hence, with$hene number of n-fold way
updates, a smaller error is obtained, even though the gtate $s much larger than the
original one.

This effect is studied in more detail by the properties ofttmneling-time distri-
bution over ensembles of realizations of the disorder. &loéstributions were studied
by Dayal et.al. [DTW 04]. They observed that this distribution is well descrilbgd
a generalized extreme-value distribution, which was thikced by Eq. (7.4) in Chap-

ter/7,
l — )\ "¢
Prob (7 > z) = exp —(1+£T> .

The typical tunneling time described by the location par@meand the scale grows
exponentially with the system size. Here, | consideredgh8if different definition of
the tunneling time as in [DTWO04]. Where Dayal et. al. considered the entire range
energy range from the ground stdig to the anti-ground state £y, | made use of the
symmetry of the system for an even number of spins, as destaibove, and measured
the tunneling times only on the negative energy axis frormtla&imumFE,,,.. to the

ground state and back. This causes the typical tunnelingtiingrow likeexp [cx/f}

(instead okxp [¢’L]), which is still exponential. | generatéd00 realizations for each
system sizes fromh = 6 to L = 20. For L = 20 only 300 realizations were generated.
For each of those realizations the generalized ensembightedior the extended state
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Figure B.7: Scaling of the locatiom and shap& of the generalized extreme value
distribution of tunneling times. Lines show least squaketfitthe exponential function
Eq. (B.3). The scale parameteris not shown. It behaves similar as the location
parameter.

Top inset: scaling of the shape parameter.

Bottom inset: the location parameter on a log-log plot schires show least square
fits to the algebraic function Eqg. (B.2).

Tab.B.2 displays all fit-parameters including redugédzalues.

space ¢ = 0.85) were determined with the Wang-Landau algorithm. Aftet tihe
empirical tunneling-time distributions for the generatizensemble with n-fold way
updates were determined. In order to decide how strong tteméad state space im-
proves the statistics of tunneling times, the same digdidhuor the generalized en-
semble method witlx = 1.0 was obtained. Besides the n-fold way, also simulations
with standard Metropolis updates were employed for thig cas

In a similar way as in Chaptér 7, | determined the parameteationy., scalec
and shapé of the generalized extreme-value distribution by a maxintiketihood fit
[Hos85, Mac89]. The scaling behavior of those parametestsag/n in Figl B.7. As one
can see, the differences between the methods regardingaéhgof typical tunneling
timesy and the scale parameters differ significantly among diffemeethods, but some
evidence for exponential scaling for the extended statessgidll remains. All methods
exhibit a scaling somehow between exponential and algeldraorder to provide more
guantitative evidence in either direction, | fitted the datalgebraic

(L) =A, L and o(L)= A, L* (B.2)
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146 B.The +/- J spin glass. Algebraic tunneling times?

algebraic fit Zu A, X2 25 Ay /106 2
a=1.0
Metropolis 6.5(1)  0.022(6) 63.3 | 7.2(2) 0.003(1) 36.1
a=1.0
n-fold way 6.5(1)  0.014(4) 722 | 72(2) 0.015(6) 289
a=0.85
n-fold way 5.78(6) 0.048(6)  19.6 | 6.4(1)  0.005(1) 11.3

exponential fit| ¢, B, /106 X2 Co B,/105 2
a=1.0
Metropolis 4.34(7) 0.07(1) 36.3 | 4.63(5) 0.016(2) 5.8
a=1.0
n-fold way 4.26(8) 0.05(1) 47.7 | 4.57(6) 0.010(2) 8.6
a=0.85
n-fold way 3.8(1)  0.13(4) 1317 | 4.04(7) 0.031(7) 10.1

Table B.2: Fit parameters of the weighted chi-square fithefgarameters location
1 and scales of the generalized extreme value distribution to the algiebiunction
Eq. (B.2) and the exponential function EQ. (B.3). Weighthdstjuared valueg? are
included.

and exponential functions
u(L) = B, -explc, VL] and o(L) = B, - exple, VL] (B.3)

by a weighted chi-square fit. The resulting fit parameterkitting the weighted chi-
square valueg? are summarized in Tab. B.2. The data, in particulartfesalues,
suggests that, for the extended state space, the chastictexponential growth is less
likely than an algebraic growth.

To summarize the results of this appendix, | have considareextension of the
state space of-J Ising spin glasses, in order to check whether the performaan
be increased. Regarding the performance of the Wang-Laaidatithm and the gen-
eralized ensemble method, the answer is in principle pesés can be seen by the
convergence properties, especially for hard instancegic@ltunneling times are re-
duced by a factor of about2 for the largest system and some evidence for algebraic
growth of the tunneling times is found by a fit. However, anaxgntial growth cannot
be safely excluded. Hence, in a future work it would be ofrriegé whether the im-
provement remains for larger systems tlias- 20 or even three-dimensional systems,
where the exact density of states cannot be computed efficien
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Appendix C

Fit parameters

This appendix summarizes fit parameters for the alignmatistts discussed in Chap-
ter/4.

o | Lg, Ls A 104 Xy K So x2
10 20 | 0.3272 £ 0.108% | 8.6347 T 0.412% | 0.1028 £ 0.65% | 15.597 £ 0.0676% | 79.05
60 | 0.3034 +0.086% | 6.2007 & 0.285% | 0.0751 + 0.60% | 18.455 + 0.0645% | 49.40
80 | 0.2802 + 0.070% | 4.8781 4 0.222% | 0.0612 + 0.53% | 20.644 + 0.0540% | 21.67
100 | 0.2747 + 0.072% | 4.3187 £ 0.330% | 0.0472 + 0.58% | 22.413 + 0.0611% | 39.42
150 | 0.2541 4 0.083% | 3.2974 + 0.529% | 0.0303 &£ 0.61% | 25.682 + 0.0422% | 39.46
200 | 0.2432 4+ 0.063% | 2.6343 + 0.344% | 0.0241 + 0.52% | 28.257 + 0.0412% 10.47
250 | 0.2359 + 0.071% | 2.1999 + 0.454% | 0.0198 + 0.60% | 30.196 + 0.0459% 9.40
300 | 0.2303 +0.061% | 1.9101 + 0.348% | 0.0174 + 0.54% | 31.934 + 0.0408% 2.00
350 | 0.2261 4+ 0.046% | 1.6404 + 0.239% | 0.0153 +0.41% | 33.334 + 0.0300% 1.27
400 | 0.2224 + 0.052% | 1.4806 + 0.266% | 0.0136 + 0.49% | 34.556 + 0.0369% 1.36
600 | 0.2140 + 0.062% | 1.0206 + 0.384% | 0.0106 + 0.64% | 38.561 + 0.0472% 2.15
800 | 0.2090 + 0.063% | 0.7660 4+ 0.419% | 0.0088 + 0.67% | 41.320 + 0.0457% 1.82
12 40 | 0.3366 £ 0.117% | 7.0013 £ 0.518% | 0.1125 £ 0.74% | 15.426 £ 0.0799% | 34.31
60 | 0.3178 +£0.120% | 5.4247 + 0.484% | 0.0898 & 0.85% | 18.183 + 0.0836% | 66.67
80 | 0.3044 +0.085% | 4.2388 + 0.299% | 0.0715 £ 0.61% | 20.123 £ 0.0513% | 31.31
100 | 0.2987 4 0.087% | 3.2541 + 0.557% | 0.0663 & 0.65% | 21.748 + 0.0498% | 39.77
150 | 0.2896 & 0.081% | 1.9120 + 1.049% | 0.0562 & 0.63% | 24.663 + 0.0350% | 32.49
200 | 0.2843 £ 0.060% | 1.4542 4+ 0.639% | 0.0512 + 0.51% | 26.822 + 0.0282% 4.58
250 | 0.2815 + 0.055% | 0.9651 + 1.138% | 0.0487 +0.47% | 28.492 + 0.0207% 6.61
300 | 0.2761 + 0.075% | 0.8401 4+ 1.177% | 0.0423 + 0.69% | 29.858 + 0.0354% 1.49
350 | 0.2754 + 0.064% | 0.7118 + 1.017% | 0.0420 + 0.59% | 31.030 + 0.0265% 1.13
400 | 0.2715 + 0.054% | 0.6569 + 0.769% | 0.0374 + 0.53% | 32.034 + 0.0270% 1.26
12 40 | 0.3406 £ 0.132% | 7.5641 £ 0.593% | 0.1191 £ 0.80% | 15.411 £ 0.1074% | 161.70
60 | 0.3233+0.150% | 5.1473 + 0.636% | 0.0958 & 1.08% | 18.072 &+ 0.1091% | 119.48
80 | 0.3132 +0.134% | 3.9083 £ 0.520% | 0.0828 + 0.96% | 20.031 + 0.0739% | 52.61
100 | 0.3118 + 0.089% | 2.7370 + 0.661% | 0.0833 + 0.71% | 21.570 + 0.0560% | 46.20
150 | 0.3080 + 0.070% | 1.3077 + 1.383% | 0.0790 4+ 0.57% | 24.206 + 0.0208% 17.41
200 | 0.3039 + 0.061% | 0.9113 + 1.283% | 0.0743 + 0.53% | 26.313 + 0.0252% 4.03
250 | 0.3021 + 0.044% | 0.5421 4+ 1.745% | 0.0727 +0.39% | 27.878 + 0.0169% 1.69
300 | 0.2995 + 0.058% | 0.4089 + 2.364% | 0.0691 + 0.55% | 29.162 + 0.0248% 1.43
350 | 0.2982 4+ 0.038% | 0.4102 + 1.308% | 0.0668 + 0.37% | 30.212 + 0.0151% 0.76
400 | 0.2964 + 0.044% | 0.3697 + 1.424% | 0.0635 + 0.46% | 31.122 + 0.0232% 1.12
16 10 | 0.3423 £0.145% | 7.4174 T 0.624% | 0.1207 £ 0.98% | 15.376 £ 0.1177% | 127.67
60 | 0.3266 + 0.145% | 4.9880 & 0.631% | 0.1019 + 1.02% | 18.079 + 0.0925% | 96.12
80 | 0.3158 +0.136% | 3.7888 + 0.548% | 0.0852 + 1.10% | 19.956 + 0.1110% | 102.43
100 | 0.3192 4+ 0.099% | 2.4005 + 0.864% | 0.0951 + 0.77% | 21.480 + 0.0526% | 38.51
150 | 0.3172 £ 0.070% | 1.0875 + 1.574% | 0.0963 & 0.57% | 24.216 + 0.0246% | 22.37
200 | 0.3142 4+ 0.052% | 0.6405 + 1.585% | 0.0923 + 0.45% | 26.141 + 0.0175% 1.87
250 | 0.3117 + 0.056% | 0.4447 + 1.701% | 0.0885 + 0.54% | 27.647 + 0.0283% 5.08
300 | 0.3108 +0.041% | 0.3838 +2.118% | 0.0871 + 0.38% | 28.848 + 0.0119% 0.32
350 | 0.3091 4+ 0.034% | 0.2300 + 2.586% | 0.0845 + 0.34% | 29.910 + 0.0147% 0.39
400 | 0.3085 + 0.028% | 0.1676 + 2.554% | 0.0838 + 0.30% | 30.808 + 0.0146% 0.43
3 10 | 0.3457 £0.141% | 7.2080 £ 0.712% | 0.1298 £ 0.86% | 15.437 £ 0.0773% | 132.04
60 | 0.3281 +0.151% | 4.8936 + 0.679% | 0.1040 & 1.07% | 18.060 + 0.0983% | 128.56
80 | 0.3165+0.163% | 3.7511 + 0.634% | 0.0866 + 1.28% | 19.959 + 0.1208% | 95.18
100 | 0.3224 £ 0.125% | 2.3191 + 1.007% | 0.1020 & 0.94% | 21.485 + 0.0514% 11.77
150 | 0.3255 4 0.039% | 0.8343 + 1.162% | 0.1150 + 0.32% | 24.139 + 0.0078% 0.48
200 | 0.3262 4 0.032% | 0.3662 + 3.326% | 0.1219 + 0.30% | 26.029 + 0.0164% 0.90
250 | 0.3216 + 0.064% | 0.3022 + 3.597% | 0.1113 + 0.62% | 27.510 + 0.0260% 2.57
300 | 0.3248 + 0.016% - 0.1234 + 0.49% | 28.684 + 0.0503% 5.33
350 | 0.3241 + 0.009% - 0.1233 + 0.22% | 29.690 + 0.0207% 2.49
400 | 0.3220 + 0.013% - 0.1167 + 0.39% | 30.541 + 0.0371% 2.09

Table C.1: Fit parameters of the modified Gumbel distribufim. (4.4) for the clas-
sical i.i.d. model using thBLOSUMBE2 scoring matrix and different affine costsand

B=1.
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148 C. Fit parameters

o | Lg, Lg A 10% g K So x2
1 20 | 0.2615 £ 0.154% | 5.5852 £ 0.727% | 0.0995 £ 0.90% | 19.387  0.0882% 96.36
60 | 0.2373 +0.150% | 4.4494 + 0.612% | 0.0729 + 0.97% | 23.477 + 0.0903% | 114.50
80 | 0.2227 £ 0.149% | 3.6508 + 0.554% | 0.0585 + 1.01% | 26.610 + 0.0815% | 123.28
100 | 0.2099 £ 0.139% | 3.3410 + 0.560% | 0.0468 + 1.02% | 29.293 + 0.0906% 79.64
150 | 0.1920 £ 0.116% | 2.5551 + 0.400% | 0.0320 + 0.90% | 34.266 + 0.0713% 35.65
200 | 0.1825 +0.110% | 2.0098 + 0.355% | 0.0262 4+ 0.98% | 38.115 + 0.0875% 19.07
250 | 0.1729 +£0.110% | 1.7807 + 0.356% | 0.0203 + 1.06% | 41.312 + 0.1004% 18.50
300 | 0.1671 +0.072% | 1.5683 &+ 0.254% | 0.0168 + 0.64% | 43.796 + 0.0505% 3.63
350 | 0.1608 +0.073% | 1.4261 4+ 0.237% | 0.0135 + 0.70% | 46.080 + 0.0593% 3.78
400 | 0.1584 +0.052% | 1.2870 4 0.184% | 0.0125 + 0.44% | 48.005 + 0.0269% 0.82
13 40 | 0.2664 £ 0.117% | 5.4163 £ 0.680% | 0.1037 £ 0.66% | 19.186 £ 0.0550% 57.54
60 | 0.2464 + 0.079% | 4.0672 + 0.369% | 0.0824 + 0.51% | 23.101 + 0.0435% 26.45
80 | 0.2336 & 0.079% | 3.2958 + 0.352% | 0.0682 + 0.56% | 26.023 + 0.0461% 24.76
100 | 0.2228 +0.065% | 2.8870 + 0.327% | 0.0559 + 0.48% | 28.399 + 0.0407% 12.07
150 | 0.2085 4+ 0.042% | 2.1084 + 0.203% | 0.0414 + 0.34% | 32.797 + 0.0269% 6.13
200 | 0.1999 +0.039% | 1.6797 + 0.172% | 0.0337 + 0.34% | 36.039 + 0.0269% 1.57
250 | 0.1930 £ 0.030% | 1.4174 + 0.160% | 0.0273 + 0.29% | 38.553 + 0.0237% 1.49
300 | 0.1891 + 0.040% | 1.1849 + 0.216% | 0.0248 + 0.37% | 40.779 + 0.0263% 1.86
350 | 0.1852 + 0.044% | 1.0489 + 0.257% | 0.0219 + 0.40% | 42.617 + 0.0255% 1.80
400 | 0.1834 +0.058% | 0.9090 + 0.353% | 0.0204 4 0.54% | 44.100 + 0.0323% 2.06
15 20 | 0.2706 £ 0.090% | 5.1148 £ 0.527% | 0.1115 £ 0.53% | 19.158 £ 0.0480% 32.81
60 | 0.2520 +0.051% | 3.7530 + 0.273% | 0.0898 + 0.33% | 22.935 + 0.0261% 12.85
80 | 0.2403 +0.046% | 2.9795 + 0.214% | 0.0758 + 0.32% | 25.738 + 0.0252% 7.17
100 | 0.2315 4+ 0.036% | 2.5361 + 0.213% | 0.0644 + 0.28% | 27.938 + 0.0245% 4.12
150 | 0.2185 +0.035% | 1.8127 + 0.199% | 0.0492 + 0.30% | 32.074 + 0.0264% 4.21
200 | 0.2107 £ 0.056% | 1.4225 + 0.292% | 0.0404 + 0.50% | 35.072 + 0.0376% 3.14
250 | 0.2074 £ 0.051% | 1.0014 + 0.378% | 0.0374 + 0.49% | 37.394 + 0.0367% 4.17
300 | 0.2038 +0.050% | 0.9403 + 0.380% | 0.0340 + 0.50% | 39.377 + 0.0378% 2.96
350 | 0.2017 +0.054% | 0.7930 + 0.410% | 0.0318 4+ 0.57% | 41.001 % 0.0426% 1.68
400 | 0.2014 +0.056% | 0.6437 + 0.520% | 0.0314 4+ 0.59% | 42.326 + 0.0414% 1.05
17 10 | 0.2734 £ 0.080% | 4.8288 L 0.468% | 0.1166 £ 0.54% | 10.130 £ 0.0544% | 47.17
60 | 0.2551 +0.053% | 3.5604 + 0.202% | 0.0947 + 0.34% | 22.861 + 0.0253% 12.72
80 | 0.2442 +0.044% | 2.8332 +0.287% | 0.0811 4+ 0.30% | 25.605 + 0.0210% 4.65
100 | 0.2370 4+ 0.036% | 2.3250 + 0.267% | 0.0715 + 0.27% | 27.733 £ 0.0210% 4.37
150 | 0.2256 & 0.043% | 1.6046 + 0.262% | 0.0574 + 0.38% | 31.750 + 0.0305% 5.45
200 | 0.2195 +0.058% | 1.2004 + 0.379% | 0.0499 + 0.51% | 34.622 + 0.0341% 2.42
250 | 0.2170 +0.054% | 0.9041 + 0.511% | 0.0470 4+ 0.54% | 36.797 + 0.0411% 4.89
300 | 0.2144 +0.051% | 0.7326 + 0.470% | 0.0441 4+ 0.50% | 38.652 + 0.0334% 3.01
350 | 0.2136 +0.054% | 0.5908 + 0.605% | 0.0440 4+ 0.56% | 40.238 + 0.0351% 2.37
400 | 0.2131 +0.062% | 0.4726 + 0.828% | 0.0437 + 0.63% | 41.541 + 0.0350% 2.03
) 10 | 0.2737 £0.078% | 4.0254 £ 0.494% | 0.1163 £ 0.46% | 19.091 £ 0.0420% 30.06
60 | 0.2586 + 0.032% | 3.3695 + 0.183% | 0.1016 + 0.22% | 22.827 + 0.0178% 2.82
80 | 0.2500 + 0.026% | 2.5857 +0.133% | 0.0921 + 0.18% | 25.517 + 0.0128% 1.87
100 | 0.2439 4+ 0.049% | 2.0502 + 0.394% | 0.0840 + 0.38% | 27.606 + 0.0287% 7.82
150 | 0.2341 4 0.072% | 1.3787 + 0.537% | 0.0707 £ 0.61% | 31.490 + 0.0423% 14.51
200 | 0.2324 +0.074% | 0.9453 + 0.649% | 0.0709 + 0.66% | 34.209 + 0.0386% 3.20
250 | 0.2327 £ 0.066% | 0.5876 + 0.828% | 0.0744 + 0.62% | 36.294 + 0.0323% 4.97
300 | 0.2331 +0.042% | 0.3915 + 0.718% | 0.0773 + 0.42% | 37.957 + 0.0204% 1.32
350 | 0.2330 £0.037% | 0.2084 + 1.565% | 0.0792 + 0.36% | 39.395 + 0.0120% 0.48
400 | 0.2324 +0.030% | 0.1206 + 3.598% | 0.0786 + 0.29% | 40.620 + 0.0081% 0.32

Table C.2: Fit parameters of the modified Gumbel distributg. (4.4) for the classi-
cal i.i.d. model using theAM250 scoring matrix and affine gap costsands = 1.
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FQPS corresponding RQGS
Lg Lg Iy 1073y K Iy 1072y K
POBLO0 | 50 0.3016 £0.40% | 7.5741 £0.77% | 0.0654 £3.34%
348 100 | 0.1747 4+0.19% | 3.2202 +£0.32% | 0.0132 +1.49% | 0.2829 40.17% | 3.6884 +£0.36% | 0.0463 +4.09%
200 | 0.1617 +0.09% | 1.7968 4+0.18% | 0.0100 +1.31% | 0.2685 +0.15% | 1.8498 4+0.40% | 0.0315 +2.77%
300 | 0.1478 +0.14% | 1.3962 4+0.21% | 0.0059 +£2.20% | 0.2664 +0.14% | 1.1900 4+0.47% | 0.0292 +3.49%
320 | 0.1466 +0.15% | 1.3775 +0.28% | 0.0056 +2.33% | 0.2674 +0.11% | 1.1059 4+0.51% | 0.0295 +2.05%
348 | 0.1432 +0.22% | 1.4131 40.33% | 0.0051 +2.69% | 0.2681 +0.10% | 0.9909 4+0.43% | 0.0307 +£2.18%
360 | 0.1426 +0.17% | 1.4322 4£0.22% | 0.0047 £3.17% | 0.2678 +0.10% | 0.9883 +0.42% | 0.0302 +£2.49%
400 | 0.1418 +0.10% | 1.4201 4+0.17% | 0.0047 +£1.43% | 0.2648 +0.12% | 1.0238 4+0.50% | 0.0248 +£3.89%
500 | 0.1399 +0.26% | 1.4517 £0.35% | 0.0043 £3.94% | 0.2638 +0.17% | 1.0248 4+0.65% | 0.0255 +£5.65%
600 | 0.1405 +0.16% | 1.4392 +0.20% | 0.0047 +2.87% | 0.2650 +0.14% | 0.9917 4+0.74% | 0.0245 +3.85%
P50052 | 50 0.3024 *0.85% | 7.4294 ¥£1.70% | 0.0657 £6.19%
363 100 | 0.1795 +0.16% | 3.1869 +0.26% | 0.0132 +1.42% | 0.2818 4+0.25% | 3.6993 +£0.55% | 0.0458 +3.44%
200 | 0.1660 +0.18% | 1.8701 4+0.30% | 0.0096 +1.98% | 0.2698 +0.21% | 1.8027 40.58% | 0.0341 +4.60%
300 | 0.1550 +£0.22% | 1.3995 +0.36% | 0.0066 +£2.97% | 0.2643 +0.14% | 1.2232 4+0.42% | 0.0273 £3.55%
330 | 0.1512 +0.12% | 1.4130 £0.23% | 0.0057 +£1.30% | 0.2654 +0.18% | 1.0822 4+0.68% | 0.0274 +£5.32%
363 | 0.1509 +0.18% | 1.3881 4+0.27% | 0.0057 £3.53% | 0.2687 +0.24% | 0.9676 +1.00% | 0.0332 £7.75%
380 | 0.1489 +0.12% | 1.4138 4£0.19% | 0.0051 £1.17% | 0.2651 +0.30% | 0.9806 +1.28% | 0.0270 +£11.76%
400 | 0.1474 +0.20% | 1.4335 £0.32% | 0.0048 £3.27% | 0.2634 +0.15% | 0.9773 £0.75% | 0.0271 +£11.41%
500 | 0.1471 +0.08% | 1.4350 +0.16% | 0.0049 +1.13% | 0.2613 +0.21% | 0.9998 4+1.05% | 0.0226 +£7.60%
600 | 0.1457 +0.28% | 1.4640 40.54% | 0.0046 +3.24% | 0.2662 +0.15% | 0.9498 40.79% | 0.0250 +7.76%
QI8I79 | 50 0.3008 £0.70% | 7.6673 £1.23% | 0.0625 £5.34%
455 100 | 0.1798 +0.33% | 3.7190 +£0.59% | 0.0103 +2.84% | 0.2845 4+0.16% | 3.5814 +£0.35% | 0.0485 +2.86%
200 | 0.1723 +0.16% | 1.9839 4+0.32% | 0.0087 +£1.50% | 0.2685 +0.14% | 1.8391 4+0.49% | 0.0302 +£3.81%
300 | 0.1609 +0.25% | 1.4302 £0.40% | 0.0059 +£4.49% | 0.2632 +0.16% | 1.2382 4+0.53% | 0.0262 +4.69%
420 | 0.1569 +0.27% | 1.3665 £0.52% | 0.0050 £2.90% | 0.2636 +0.17% | 0.8441 4+0.59% | 0.0222 +£9.17%
450 | 0.1590 +0.25% | 1.3225 +0.61% | 0.0052 +£2.86% | 0.2611 +0.13% | 0.8203 4+0.43% | 0.0209 +4.93%
455 | 0.1548 +0.26% | 1.4038 40.52% | 0.0049 +2.76% | 0.2655 +0.12% | 0.7670 4+0.49% | 0.0246 +8.35%
480 | 0.1557 +£0.38% | 1.3664 +0.67% | 0.0051 £7.10% | 0.2610 +0.10% | 0.7929 4+0.41% | 0.0197 +6.70%
500 | 0.1521 +0.45% | 1.4145 40.77% | 0.0044 +£5.30% | 0.2615 +0.17% | 0.7783 40.62% | 0.0204 +£5.09%
600 | 0.1540 +0.25% | 1.3886 40.43% | 0.0043 +3.72% | 0.2596 +0.14% | 0.7706 4+0.60% | 0.0174 +5.71%
P35348 | 50 0.3046 £0.61% | 7.3443 £1.17% | 0.0668 £4.85%
466 100 | 0.1809 +0.18% | 3.1996 +£0.28% | 0.0135 +£2.06% | 0.2839 4+0.22% | 3.6314 +£0.49% | 0.0465 +2.49%
200 | 0.1625 +0.12% | 1.8687 +0.18% | 0.0079 +£1.63% | 0.2696 +0.15% | 1.8030 +0.48% | 0.0315 £3.97%
300 | 0.1643 +0.10% | 1.2089 40.15% | 0.0086 +2.23% | 0.2620 +0.13% | 1.2472 40.47% | 0.0241 +5.52%
400 | 0.1510 +0.24% | 1.2641 4+0.39% | 0.0051 +2.76%
450 | 0.1521 +0.33% | 1.2357 40.55% | 0.0050 +£5.39% | 0.2647 +0.16% | 0.7874 4+0.67% | 0.0246 +3.93%
466 | 0.1485 +0.17% | 1.2982 40.35% | 0.0046 +2.93%
480 | 0.1517 +£0.23% | 1.2359 40.34% | 0.0056 +£5.27% | 0.2609 +0.25% | 0.7981 4+1.25% | 0.0207 +9.36%
500 | 0.1492 +0.22% | 1.2845 4+0.35% | 0.0048 £3.64% | 0.2668 +0.09% | 0.7124 4+0.49% | 0.0265 +£6.00%
600 | 0.1509 +0.28% | 1.2383 4£0.40% | 0.0050 +3.86%

Table C.3: Fit parameters )\, and K of the modified Gumbel distribution for (FQPS) and (RQGS).
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HMM n=0 HMM n=1
L Lg Iy 10T 2o 105 K Iy 10T 2o 105 K
348 | 150 | 0.2890 £0.85% 19.4722 £7.27% 0.2310 £9.32% 21.4600 £66.56%
200 | 0.2894 +2.84% 50.0796 +24.47% | 0.2274 +1.74% 20.1017 +13.25%
300 | 0.2895 +2.69% 53.3472 +24.00% | 0.2240 +4.86% 17.8934 +37.22%
348 | 0.2088 +3.24% 72.2356 +30.15% | 0.2234 +2.39% 16.8704 +£18.79%
360 | 0.2895 +1.79% 51.9056 +16.04% | 0.2220 +2.14% 16.3757 +£16.52%
400 | 0.2859 +3.49% 48.4496 +£31.10% | 0.2232 +2.40% 17.5141 +£18.94%
500 | 0.2912 +6.63% 54.0687 +61.22% | 0.2182 +2.39% 14.7371 £19.10%
600 | 0.2001 +3.38% 51.9412 +31.74% | 0.2180 +2.59% 14.2439 £20.86%
AMM n=2 AMM n=3
L Lg By 1072 g K By 1072 g K
348 | 150 | 0.1068 £0.70% | 2.0247 E£1.37% | 12.0400 £6.48% 0.1767 £0.44% | 2.6797 £1.01% | 7.4435 £3.72%
200 | 0.1947 £2.12% 9.8704 +14.29% | 0.1795 +0.46% | 2.3586 +0.92% | 8.5733 +3.87%
300 | 0.1937 +3.60% 9.9597 +25.32% | 0.1863 £0.41% | 2.0008 +0.94% | 11.7859 +5.63%
348 | 0.1888 +3.19% 8.1338 +22.42% | 0.1876 +0.32% | 1.9328 +0.89% | 12.1223 +3.83%
360 | 0.1926 +3.17% 9.7957 +22.82% | 0.1853 +0.27% | 1.9530 +0.65% | 10.8640 +2.65%
400 | 0.1934 +1.05% 9.9321 48.22% 0.1757 +£1.64% 7.1756 +11.58%
500 | 0.1919 +1.61% 9.3630 +12.32% | 0.1783 +0.98% 7.7945 +7.18%
600 | 0.1912 +1.70% 9.3303  +13.25% | 0.1768 +1.01% 7.4165 +8.19%
AMM n=4 AMM n=5
L Lg By 107 2o 105 K By 107 2o 105 K
348 | 150 | 0.1732 £0.47% | 2.2110 £1.14% | 7.4991 *£6.08% 0.1710 £0.38% | 2.0698 £0.92% | 8.1950 £3.70%
200 | 0.1686 +£0.28% | 2.1187 +0.72% | 6.4162 +3.14% 0.1657 +£0.39% | 1.8231 +1.14% | 6.9148 +3.82%
300 | 0.1682 £0.36% | 1.9635 +0.79% | 6.5436 +4.22% 0.1599 +0.37% | 1.7836 +0.79% | 5.4451 +3.85%
348 | 0.1685 +£0.35% | 1.9408 +0.74% | 7.3851 +3.34% 0.1580 +0.28% | 1.7930 +0.68% | 5.3049 +2.61%
360 | 0.1678 +£0.42% | 1.9421 +0.92% | 6.5775 +4.07% 0.1605 +0.23% | 1.7481 4+0.50% | 5.7512 +2.89%
400 | 0.1662 £0.18% | 1.9782 +0.40% | 6.4164 +2.32% 0.1587 +0.28% | 1.7828 +0.73% | 5.4513 +2.57%
500 | 0.1693 £0.24% | 1.9047 +0.51% | 7.0735 +2.11% 0.1587 +0.16% | 1.7957 4+0.40% | 5.4770 +2.31%
600 | 0.1693 +£0.17% | 1.8994 +0.39% | 7.1112 +2.06% 0.1575 +0.29% | 1.8330 4+0.58% | 5.2125 +2.68%

Table C.4: The table shows the fit parameters of the scorghdion Prob(S

= s|#ofhelices=nfor0 < n < 5 for Lo = 348 and different
subject lengths. For entries, whexgis left out, a suitable fit (with a small reducgd value) to the modified Gumbel distribution Eg. (4.4) was not

possible and only the Gumbel parameters of the high prabatebion are shown.
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HMM n=0 HMM n=1
HMM n=6 HMM n=7
L Lg X 10T 2o 105 K Iy 1071y 10° K
348 | 150 | 0.1663 £0.49% | 2.1403 £1.04% | 7.09302 £5.83% | 0.1646 £0.30% | 2.1396 £0.65% | 8.7088 £4.21%
200 | 0.1614 £0.25% | 1.7767 +£0.65% | 6.7568 £2.30% | 0.1574 +0.41% | 1.7687 £1.17% | 6.5219 +3.81%
300 | 0.1551 £0.28% | 1.5986 +0.80% | 5.2551 £3.18% | 0.1514 +0.26% | 1.4638 £0.62% | 5.0238 +4.34%
348 | 0.1531 £0.20% | 1.5993 +0.55% | 4.9132 +£2.71% | 0.1482 +0.33% | 1.4755 +£0.77% | 4.4535 +4.13%
360 | 0.1536 £0.34% | 1.6036 +1.02% | 4.9160 +£3.41% | 0.1490 +0.39% | 1.4479 +£0.93% | 4.6858 +3.28%
400 | 0.1537 £0.27% | 1.5713 +0.62% | 4.9524 +£3.05% | 0.1494 +0.24% | 1.4328 +£0.70% | 4.6867 +2.08%
500 | 0.1519 +£0.23% | 1.6229 +0.67% | 4.6812 +£2.14% | 0.1472 +0.29% | 1.4706 +£0.63% | 4.2881 +2.50%
600 | 0.1489 +0.15% | 1.7148 +0.33% | 4.2283 +£2.16% | 0.1460 +0.18% | 1.5193 +0.49% | 4.2679 +1.74%
HMM n=8 HMM n=9
Lg Lg X 10T, 105K X 107X, 105K
348 | 150 | 0.1505 £0.47% | 2.2162 £1.01% | 7.5365 £4.01% | 0.1603 £0.23% | 2.1517 £0.48% | 8.0273 £2.17%
200 | 0.1534 £0.55% | 1.8019 +1.46% | 5.9224 £5.25% | 0.1508 +0.14% | 1.7854 £0.28% | 6.3535 +1.89%
300 | 0.1473 £0.47% | 1.3916 +£1.24% | 4.8483 £4.01% | 0.1413 £0.12% | 1.4118 £0.35% | 4.2141 +1.43%
348 | 0.1458 £0.32% | 1.3409 +0.85% | 4.6141 £3.69% | 0.1398 £0.10% | 1.3281 £0.33% | 3.9661 +1.44%
360 | 0.1469 £0.34% | 1.2868 +£0.90% | 4.9271 £2.73% | 0.1400 +0.16% | 1.2888 £0.43% | 4.0126 +1.79%
400 | 0.1440 £0.34% | 1.3591 +£1.05% | 4.0064 £3.48% | 0.1382 +0.25% | 1.2954 £0.67% | 3.7257 +2.14%
500 | 0.1433 £0.29% | 1.3382 +0.85% | 3.9952 £2.70% | 0.1352 +0.14% | 1.3472 +£0.42% | 3.1780 +1.68%
600 | 0.1416 £0.33% | 1.3760 +0.94% | 3.7782 +3.14% | 0.1359 4+0.13% | 1.3399 +0.38% | 3.3536 +1.49%
HMM n=10 HMM n=11
L Lg iy 107 2o 105 K By 1072, 105 K
348 | 150 | 0.1562 £0.14% | 2.2225 £0.30% | 6.7936 £2.08% | 0.1455 £0.14% | 2.3813 £0.15% | 4.0660 £3.82%
200 | 0.1459 +£0.22% | 1.8336 +0.37% | 5.7585 £3.30% | 0.1417 +0.17% | 1.8428 +£0.35% | 5.1264 +2.07%
300 | 0.1370 £0.22% | 1.4024 +0.56% | 3.8087 +£1.79% | 0.1324 +0.27% | 1.3842 +£0.68% | 3.2129 +2.79%
348 | 0.1353 £0.15% | 1.2962 +0.38% | 3.5507 +£1.68% | 0.1316 +0.22% | 1.2518 +£0.69% | 3.1546 +1.94%
360 | 0.1343 £0.13% | 1.2830 +0.36% | 3.4674 £1.39% | 0.1297 £0.25% | 1.2737 £0.52% | 2.9445 +2.81%
400 | 0.1334 £0.16% | 1.2602 +0.38% | 3.2164 £1.71% | 0.1302 £0.20% | 1.2160 £0.56% | 2.9704 +1.59%
500 | 0.1307 £0.16% | 1.3013 +0.46% | 2.8331 £1.22% | 0.1280 +0.30% | 1.2426 £0.86% | 2.7433 +2.73%
600 | 0.1305 £0.23% | 1.3097 +0.56% | 2.8239 £1.82% | 0.1257 +0.22% | 1.2908 £0.55% | 2.4921 +1.79%

Table C.5: The table shows the fit parameters of the scorglison Prob(S = s| # of helices = i for 6
subject lengths. For entries, whexgis left out, a suitable fit (with a small reducgd value) to the modified Gumbel distribution EQ. (4.4) was not

possible and only the Gumbel parameters of the high prabatsbion are shown.

< n < 11 for Lo = 348 and different
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Appendix D

List of acronyms

BDM
BLAST
BLOSUM
CE
DDBJ
DNA
DOS
DPRM
EMBL
EXP
FQPS
HMM
INSDC
iiid.

INV

LIN

MC
MCMC
MCMCMC
MRNA
PAM

Bhattacharyya distance measure

Basic Local Alignment Search Tool

BLOcks of Amino Acid SUbstitution Matrix
Combinatorial extension

DNA Data Bank of Japan
DeoxyriboNucleic Acid

Density Of States

Directed Paths in Random Media
European Molecular Biology Laboratory
EXPonential schedule

Fixed Query - Position-dependent Scoring
Hidden Markov Model

International Nucleotide Sequence Database Caitdiom
identically and independent distributed
INVerse schedule
LINear schedule

Monte Carlo
Markov chain Monte Carlo
Metropolis Coupled Markov Chain Monte Carlo
messenger RNA

Point Accepted Mutation
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154 D. List of acronyms
ParQ Paralle)

PDB Protein Data Bank

PHAT Predicted Hydrophobic And Transmembrane
PSI-BLAST Position Specific Iterative BLAST

RNA Ribosomal Nucleic Acid

RQGS Random Query - General-purpose Scoring
rRNA ribosomal RNA

SLIM Scorematrix Leading to Intra-Membrane domains
™ TransMembrane

TMHMM TransMembrane Hidden Markov Model

TrEMBL Translated from EMBL

UniProtKB Universal Protein Resource Knowledgebase
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