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Abstract

People with hearing impairment have great difficulties communicating in noisy and rever-

berant environments. They usually require a higher signal-to-noise ratio (SNR) to achieve

the same listening performance as normal hearing people. But even for normal hearing

people a noise reduction is desirable in these environments, especially when using modern

communication systems such as mobile phones, handsfree devices, or teleconferencing sys-

tems. Hence, the development and evaluation of noise reduction algorithms is an active

field of research. To achieve the maximum performance and subjective benefit, these al-

gorithms generally need to be evaluated with objective measures that should be based on

auditory models in order to predict human perception as closely as possible. The current

dissertation contributes to this field by adding yet another dimension to the problem -

binaural hearing (i.e., listening with two ears).

As a starting point of this thesis, some frequently used objective performance measures

and novel objective measures based on recent knowledge of the auditory system are re-

viewed. Using subjective listening tests on signals processed by monaural noise reduction

schemes, those measures are identified that exhibit the highest correlation with subjec-

tive data. Using these measures, it is possible to optimize single-channel noise reduction

algorithms on a perceptual scale. However, the performance of single-channel noise re-

duction systems is limited and leads to a trade-off between signal distortion and noise

reduction. Therefore, multi-channel beamformer algorithms are investigated throughout

the main part of the thesis. In general, they introduce less signal distortions and achieve

higher noise reduction for non-stationary signals. Typically, beamformers do not have

binaural outputs. To provide the user with information on the spatial arrangement of

signals, different strategies to partially preserve or reconstruct the binaural information

are developed and evaluated with objective and subjective assessment data. For the ob-

jective evaluation of the benefit on binaural speech perception, a novel binaural speech

intelligibility measure is used and compared to subjective data. For the binaural beam-

former schemes, the influence of head diffraction on the performance is analyzed. It is

shown, that at least simple head-models should be integrated into the algorithm design

to increase the performance compared to traditional free-field designs and to make use of

the acoustic decoupling due to the head shadow effects. In order to utilize the algorithm
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under real-life conditions, the problem of moving target signals and head movements is

tackled, that can reduce the effective benefit for the user of the microphone-array hearing

aids. A self-steering beamformer is finally developed and evaluated under realistic rever-

berant conditions, that exhibits increased performance compared to non-steered systems

at positive signal-to-noise ratios.

It is expected that both, the algorithms and objective assessment methods, will prove to

be beneficial for human communication in noise in the future.
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Zusammenfassung

Menschen mit einer Hörproblematik haben große Schwierigkeiten in lauten und widerhal-

lenden Umgebungen zu kommunizieren. Gewöhnlich benötigen sie einen höheren Störpe-

gelabstand als normal hörende Menschen, um dieselbe Hörleistung zu erzielen. Aber selbst

für Normalhörende ist eine Störgeräuschreduktion in diesen Umgebungen erwünscht, be-

sonders wenn moderne Kommunikationssysteme wie Handys, Freisprecheinrichtungen oder

Telekonferenzanlagen verwendet werden. Daher ist die Entwicklung und Evaluation von

Störgeräuschreduktionsalgorithmen ein aktives Forschungsfeld. Um den maximalen Nut-

zen und subjektiven Gewinn zu erzielen, müssen diese Algorithmen im allgemeinen mit

objektiven Maßen bewertet werden, die auf auditorischen Modellen basieren sollten, um die

menschliche Wahrnehmung möglichst genau vorherzusagen. Die vorliegende Dissertation

trägt zu diesem Forschungsfeld bei, indem sie dem Problem noch eine weitere Dimension

hinzufügt - binaurales Hören (d.h., Hören mit zwei Ohren).

Zum Einstieg dieser Doktorarbeit wird ein Überblick über einige häufig genutzte objektive

Gütemaße und neuartige, auf aktuellen Kenntnissen des Auditorischen Systems beruhen-

de, objektive Maße gegeben. Mit Hilfe von subjektiven Hörtests, mit den durch monau-

rale Störgeräuschreduktion verarbeiteten Signalen, können die Maße mit der höchsten

Übereinstimmung mit subjektiven Daten identifiziert werden. Mit Hilfe dieser Maße ist

es dann möglich, einkanalige Störgeräuschreduktionsalgorithmen anhand einer perzepti-

ven Bewertungsskala zu optimieren. Allerdings ist die Leistungsfähigkeit von einkanaligen

Störgeräuschreduktionsalgorithmen begrenzt und führt auf einen Kompromiss zwischen

Signalverzerrung und Störgeräuschreduktion. Daher wurden in dieser Arbeit hauptsäch-

lich mehrkanalige Beamformer-Algorithmen untersucht. Im allgemeinen führen diese zu

geringeren Signalverzerrungen und erzielen eine höhere Störgeräuschreduktion bei nicht-

stationären Signalen. Normalerweise haben Beamformer keine binauralen Ausgänge. Um

dem Benutzer die räumliche Information über die Signale darbieten zu können, werden ver-

schiedene Strategien entwickelt und anhand subjektiver Bewertungen evaluiert, welche die

binaurale Information teilweise erhalten oder rekonstruieren. Zur objektiven Evaluation

des Gewinns an binauraler Sprachwahrnehmung, wird ein neuartiges binaurales Sprach-

verständlichkeitsmaß verwendet und mit subjektiven Daten verglichen. Für die binauralen

Beamformer wird der Einfluss der Beugung am Kopf auf die Leistungsfähigkeit analy-
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siert. Es wird gezeigt, dass wenigstens einfache Kopfmodelle in den Algorithmenentwurf

integriert werden sollten, um die Leistungsfähigkeit gegenüber traditionellen Freifeldent-

würfen zu verbessern und die akustische Entkopplung aufgrund des Kopfschattens zu

nutzen. Um den Algorithmus unter realen Bedingungen anwendbar zu machen, wird das

Problem bewegter Nutzsignale und der Kopfbewegungen angegangen, welches den effekti-

ven Gewinn für den Nutzer des Hörgeräte-Mikrofonarrays verringern kann. Ein sich selbst

ausrichtender Beamformer wird schließlich entwickelt und unter realistischen widerhal-

lenden Bedingungen evaluiert, der im Vergleich zu statischen Systemen eine verbesserte

Leistungsfähigkeit bei positivem Störpegelabstand aufweist. Es ist zu erwarten, dass sich

sowohl Algorithmen als auch objektive Bewertungsmethoden in der Zukunft als gewinn-

bringend für die menschliche Kommunikation im Störgeräusch erweisen.
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1. Introduction

Hearing impaired people have great difficulties communicating in noisy and reverberant
environments. To achieve the same level of speech understanding, they generally require
a signal-to-noise ratio (SNR) that is 5 − 10 dB higher than a normal hearing person
would need [57]. Similar problems also exist for normal hearing persons in acoustically
difficult situations (e.g., train stations, car, large noisy rooms,...), especially when using
telecommunication systems. This communication bottleneck under real-life conditions is a
great challenge for our communicating and ageing society [42, 79].

The problem of poor listening performance in background noise has motivated a lot of
research into noise reduction schemes that are applicable for hearing aids and other com-
munication supporting systems. Many of these algorithms have their origin in telecommu-
nication applications where computational complexity is no hindrance, primarily because
of lower restrictions on power consumption. However, in modern times the boundaries
between telecommunication applications and hearing aids become blurred. For all ap-
plications maximum signal quality and speech intelligibility at a relatively low power
consumption are desirable. This opens the way towards more integrated research and
development approaches. The current thesis contributes to this emerging field of research.

Noise reduction schemes are usually classified by the number of inputs (single channel
or multi-channel) or outputs (monaural1 or binaural). The differences of noise reduction
schemes - and also their principle limitations - lie in the definition of (and assumptions on)
signal and noise. The desired target signal in most cases is speech2. Thus, the terminus
speech enhancement is often used interchangeably, whereas the definition of unwanted
noise is often strongly related to the noise estimation method used in the algorithm. Noise
reduction schemes aim at enhancing the speech intelligibility, the ease of listening, or other
dimensions related to the audible signal quality, although sometimes only sub-goals can
be reached.

Much research efforts have been put on single-channel (and monaural) noise reduc-
tion schemes in the short-time discrete Fourier transform (DFT) domain. These are
characterized as the class of single-channel short time spectral attenuation (STSA) al-
gorithms, and include Wiener-filtering, spectral subtraction [2, 7] and minimum mean
squared error (MMSE) filtering techniques. STSA algorithms use time-varying spectral
envelope filters and discriminate between speech and noise based on statistical properties
of the signals. Generally, only magnitude gain factors are derived while the phase of the
degraded signal is preserved in the processed signal. When the short-time spectral ampli-
tudes can be accurately estimated, additional (and independently derived) information on
the phase is of little use [76, 78, 81]. STSA algorithms generally have several parameters

1including dual monaural (diotic) representation
2For diverse applications of modern communications, other target signals are starting to attract increasing

interest.
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1. Introduction

that influence the amount of noise reduction. Limitations of the single-channel STSA
algorithms are given by the fact that a high noise reduction may attenuate and distort the
desired speech signal. Another problem posed by STSA is that background noise can even
become more annoying after the processing, e.g., by introducing random spectral peaks
referred to as musical noise or musical tones. These reduce the audio-quality of the noise
reduction algorithms so that a trade-off between noise reduction, speech distortion and
other side-effects such as musical noise has to be found. Single-channel STSAs that rely on
statistical estimates, have not been shown to improve the speech intelligibility until now
[6, 50], except if they are used in conjunction with speech coders (e.g. low-bit rate codecs
in telecommunication) [10] or cochlea implants [17, 46]. The current thesis contributes to
objectively asses the potential benefits and limitations of these algorithms.

With directional microphones the spatial distribution of signal sources can be exploited
to suppress signals deviating from the desired signal’s direction. Hence, the definition of
noise is spatially motivated. A directivity can be applied by a specific delayed interfer-
ence of sound at the microphone sensors. In hearing aid applications fixed and adaptive
directional microphones [21] have shown considerable success in speech intelligibility and
quality enhancement. Microphone arrays of more than two microphones offer an even
higher directivity and flexibility in signal processing strategies. Thus, much research has
been done on Microphone-Array Hearing Aids, as summarized in, e.g., [26]. Because of
their simplicity and achievement in many communication applications, several authors
investigated microphone-array-based beamformers for hearing aid applications. The stan-
dard configuration for a single hearing aid on one side employs two or three microphones
spaced closely together (maximum distance approx. two centimeters), and uses either a
fixed or an adaptive beamforming algorithm [20, 27, 37] in order to typically enhance
the signals emanating from a direction straight in front of the wearer’s head. A higher
functional array gain (i.e., improvement in signal-to-noise ratio assuming a constant micro-
phone noise) at low frequencies can be achieved by applying superdirectivity [5, 11], which
however increases the susceptibility to self-noise of the microphones and model errors, and
by increasing the physical distance between the left-most and rightmost microphone of the
array. Hence, several solutions for hearing aid wearers with external arrays, e.g., mounted
in a pair of glasses [68, 69], have successfully been introduced. Generally, beamformers
combine all input channels to a monaural output which disrupts the spatial impression
of the enhanced signal. To preserve the binaural cues that could be used for localization,
separation of acoustical objects and for spatial perception of the environment, beamform-
ers with binaural outputs have been suggested in [13, 47, 82]. Another important point is
the model of wave propagation. It was found in several studies [13, 17, 43, 51, 55, 84] that
the performance of beamformers designed for free-field but used in head-worn systems
was significantly reduced. However, up to now no comparative study of different types of
head-models integrated into the beamformer design is available. Furthermore, the influ-
ence of head movements and moving sound sources has only been accounted for indirectly
as a matter of robustness, as a detrimental effect to spatial filters with a sharp main lobe
(e.g., [27]). The current thesis therefore treats these aspects in a systematic way.

Multi-channel Wiener filters (MWF) are another microphone-array based class of noise
reduction schemes that are closely related to beamforming. In steady state and by as-
suming optimal estimates, multi-channel Wiener filters (MWFs) are equivalent to a su-

2



perdirective beamformer with a single-channel Wiener post-filter [67]. While beamformers
need information about the relative microphone positions and the source direction, MWFs
generally need a voice activity detection to update the noise estimate in speech pauses.
Recently, MWFs have been investigated for use in hearing aids [15, 16, 39, 74, 75] including
different strategies to preserve binaural cues. The decision between the using combined
beamformer post-filter schemes or MWFs primarily depends on the signal conditions they
are used in. However, the boundaries between the respective classes often overlap, es-
pecially for noise-adaptive beamformers. A comparison between adaptive and fixed and
beamformers is therefore included in the current thesis.

Objective performance assessment of the aforementioned noise reduction schemes with
perceptual models is a developing research field. Until the 1990s, the standard way to
measure the quality of different speech processing schemes was to conduct a subjective
listening test, which gives the subject group’s mean opinion score (MOS) of the quality of
each condition under test [61]. Testing human subjects in a controlled environment is the
most valid and reliable method to measure quality, but is not feasible for the assessment
of algorithms on a day-to-day basis during algorithm development. The goal of objective
measurement is therefore to estimate MOS automatically based on direct measurements of
a system or algorithm. In telecommunication applications many objective measures have
been developed that consider signal degradations relevant for speech coding purposes.
These measures have also been used in the development and assessment of noise reduction
schemes. However, there is only little research on the significance of these measures for the
subjective assessment of noise reduction schemes. The studies by Marzinzik [50] showed
that besides signal quality the reduction of mental effort that is needed to listen to speech
in noise is an important factor. Recently, binaural noise reduction schemes have been
studied by many researchers. Currently, no reliable objective measure exists that includes
perceptual effects of the binaural system. In summary, objective quality measures can
only be evaluated reliably under realistic signal conditions and using recent noise reduc-
tion algorithms. Hence, the development and evaluation of noise reduction schemes and
objective perceptual quality measures needs to be investigated simultaneously.

The goal of this thesis is to investigate possibilities of improving speech communication
in adverse conditions for hearing-impaired and normal hearing listeners using hearing aids.
In particular, the following research questions are investigated in this work:

• Which objective measures can predict speech intelligibility and mean opinion score
of subjects for the different dimensions of signal quality of noise reduction systems,
including binaural effects?
• What are the limitations of single-channel noise reduction systems under realistic

conditions? How can the parameters that influence the noise reduction and signal
quality be perceptually optimized with objective measures?
• How does head diffraction influence the performance of head-worn microphone ar-

rays and can the influence be compensated?
• Is a binaural connection of microphone-array hearing aids beneficial and robust in

realistic signal conditions?
• How do moving source signals and head movements influence the performance of

these algorithms and is there a way to compensate?

3



1. Introduction

To answer these questions, in this work the approach is taken to develop and evaluate
noise reduction algorithms and objective performance measures simultaneously and check
their significance with subjective listening tests.

Chapter 2 summarizes objective measures that are frequently used for the performance
evaluation of noise reduction and speech coding systems and discusses measures based on
current psychoacoustic models of the auditory system, including a novel binaural mea-
sure. With these objective measures, monaural noise reduction schemes are evaluated in
chapter 3. Subjective assessment data is used to identify the objective measures that have
the highest correlation with different dimensions of subjective quality. These measures are
used for parameter optimization of novel noise reduction algorithms. In chapter 4, a class
of binaural noise reduction schemes is evaluated with these objective measures and sub-
jective listening tests. Head influences on the sound propagation, adaptation to realistic
non-stationary noise fields, robustness against model errors, and different binaural output
strategies are investigated. Finally, chapter 5 analyzes the problem of head movement
and non-stationary moving source signals and proposes a combined direction of arrival
estimation and binaural noise reduction algorithm to increase performance compared to
fixed systems.

4



2. Development of a Toolbox for Objective
Quality Assessment of Noise Reduction
Schemes

2.1. Introduction

In order to alleviate speech perception and the reception of other desired sound sources
in a noisy acoustical environment, considerable effort is being spent on provision efficient
means to subjectively reduce the impact of noise on perception. Performance evalua-
tion and patient benefit are important factors in the development of such noise reduction
schemes, particularly for hearing aid applications. The most reliable assessment can be
achieved by listening tests with a representative1 group of subjects. However, subjec-
tive listening tests often are time-intensive, depend on instruction, training, assessment
conditions, experience and hearing ability of the listeners and thus in practice may be
inapplicable in early stages of algorithm development. Hence, much research has been fo-
cused on objective measures that quantify average subjective ratings of quality and speech
intelligibility, possibly as a function of the hearing loss. The development goal is to maxi-
mize the correlation between objective measures with subjective data across a wide range
of typical (and ecologically valid) listening conditions. Because audition is a complex pro-
cess, most objective measures include more or less complex models of speech production
and perception. This chapter provides a short overview of various objective measures
proposed in the literature [59] that have been used to evaluate noise reduction or speech
enhancement systems. Although historically most measures have been developed for the
assessment of speech coding systems [45] these can (with modifications) also be applied
to noise reduction schemes for speech-in-noise input signals.

All measures presented here need a reference signal (usually the undistorted desired
signal or speech) and a test signal (generally, the processed output signal). Some measures
additionally need the speech and noise component separated at the input and the output
of the tested system. These measures are usually denoted as intrusive measures [61] in
opposite to non-intrusive measures that need no reference signal and can, e.g., be used in a
live network. Hence, for the intrusive measures investigated in the following, it is assumed
that the desired signal s and the background noise n, are available separately before and
after the processing. This type of processing is often used in simulated systems where
all test signals are known and the separated signals can be processed with the previously
saved filters that were calculated for the mixed input signal x (see Fig. 2.1). These systems
are sometimes referred to as master/slave or shadow-filter processing schemes that allow
for a relatively exact objective evaluation.

1e.g., listeners for which the algorithms under test are intended
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2. Development of a Toolbox for Objective Quality Assessment of Noise Reduction Schemes

The aim of this chapter is to provide a framework of different objective measures that
have been used to evaluate speech enhancement systems of various types in research. A
subset of these measures together with real-world audio signals recorded in typical acoustic
environments for the hearing aid application is used to build an objective performance
test-bench for the developed noise reduction schemes.

s

n

x

copy

filter

shadow-filter
objective

assessment

subjective
assessment

master

slave

reference signal

Figure 2.1.: Concept of the master/slave filtering system for objective quality assessment.
The gray signal paths are generally only known during simulations and thus
invisible to the algorithm indicated by the block filter.

2.2. SNR Based Measures in Time and Frequency Domain

The most commonly used performance measures are based on the SNR, i.e., the ratio
of a desired signal power to the undesired noise power corrupting the signal, usually
expressed in terms of the logarithmic decibel scale. Generally, the power is averaged
either over the complete signal or over small time segments and can be evaluated for
a broadband signal or in frequency bands (e.g., auditory filters). There exist several
definitions of the SNR, depending on the way the signal and noise powers are calculated,
averaged and weighted. Thus, a comparison of absolute SNR values over different studies
is often difficult. For this reason, some researchers make their toolboxes of objective
measures available in MATLAB

R©code [29, 45, 59]. Some of the most commonly used
measures based on the SNR are defined below. In general, measures based on the SNR
are not capable to assess all perceptually relevant target signal distortions, especially, if
intermodulations between signal s and noise n occur.

2.2.1. Broadband Signal-to-Noise-Ratio

Generally, speech pauses need to be excluded before averaging the SNR. For the broadband
SNR used here this is done as follows. First, the DC-component is removed from the
discrete2 speech and the noise signal, respectively.

x̃(k) = x(k)− µx (2.1)

2If not stated otherwise, all signals are adequately sampled and processed according to the sampling
theorem.
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2.2. SNR Based Measures in Time and Frequency Domain

Then the expected values of the signal and the noise power are estimated averaging only
values that exceed a specific threshold, e.g., thrdB = −80, thus excluding (speech) pauses.

x̃′(kthr) =

{

x̃(k) if |x̃(k)| ≥ 10(thrdB/20)

[ ] otherwise
(2.2)

E
{

|x̃′(kthr)|
2
}

≈
1

Nthr

Nthr−1
∑

kthr=0

|x̃′(kthr)|
2 (2.3)

The expected values of s and n are calculated by (2.2-2.3), thus the broadband SNR is:

SNRdB = 10 log10

(

E
{

|s(kthr)|
2
})

− 10 log10

(

E
{

|n(kthr)|
2
})

. (2.4)

2.2.2. Segmental SNR Measure

For segmental SNR measures the SNR is first calculated for signal portions of 10 to 30 ms
and then averaged over these time segments (see eq. (2.5)). The segmenting makes
the average SNR independent on the absolute level of the utterance in the short-time
segment. However, the measure poses a problem if there are intervals of silence in the
speech utterance [59]. In these segments any amount of noise will give rise to a large
negative signal-to-noise ratio for that segment which would bias the overall SNR. To
overcome this, either a limitation to a minimum SNR value can be applied or segments
with low speech energy can be excluded from the averaging.

segSNR =
10

M

M−1∑

m=0

log10

∑Nm+N−1
k=Nm s2(k)

∑Nm+N−1
k=Nm n2(k)

(2.5)

In (2.5) M is the number of segments, N is the segment length and k is the sample index.

2.2.3. Frequency Weighted SNR

There exist many different frequency weighted SNR measures, some of them are sum-
marized in [45, 59]. The following frequency weighted SNR has been suggested in [73]

fwSNRseg =
10

M

M−1∑

m=0

∑K
j=1Bj log10[F 2(m, j)/|F (m, j)− F̂ (m, j)|2]

∑K
j=1Bj

, (2.6)

where Bj is the weight placed on the jth frequency band, K is the number of bands, M is
the total number of frames in the signal, F (m, j) is the filterbank amplitude of the clean
signal in the jth frequency band at the mth frame and F̂ (m, j) is the filterbank amplitude
of the enhanced signal in the same band. Hence |F (m, j)− F̂ (m, j)|2 is an estimate of the
remaining noise power after processing in the respective frame and band. Various forms of
weighting functions Bj can be suggested, one possibility is to choose the weights Bj based
on articulation index (see table A.1). In the following, another definition of an ERB-band
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2. Development of a Toolbox for Objective Quality Assessment of Noise Reduction Schemes

weighted SNR is used:

SNRERB =
B∑

b=1

10 log10

∑k=N−1
k=0

(
∑fc(b)+ERB(b)/2
n=fc(b)−ERB(b)/2 S(n, k)

)2

10 log10

∑k=N−1
k=0

(
∑fc(b)+ERB(b)/2
n=fc(b)−ERB(b)/2N(n, k)

)2 (2.7)

where S(n, k), N(n, k) denote the short time Fourier transform (STFT) of the discrete
time signals s(t), n(t) respectively, fc(b) and ERB(b) denote the center frequency and the
the equivalent rectangular bandwidth (ERB) of band number b, respectively, and B is the
total number of auditory filter bands. For the calculation of the center frequency fc(b)
and bandwidth ERB(b) see A.3.

The main differences between the definitions (2.6) and (2.7) are as follows. In (2.6)
the frequency- weighted short-term SNRs are added which may lead to a stronger bias
if speech-pauses and fluctuating noise occur. On the other hand the difference term
|F (m, j) − F̂ (m, j)|2 in (2.6) also includes signal distortions between unprocessed and
processed target signal components. However, also a broadband gain would bias this term
which may be of less relevance for signal quality. Thus in summary, (2.7) seems to be
a more robust estimate even though it assumes that a separate estimate of the noise is
available.

2.2.4. Signal-to-Noise Ratio Enhancement

Often, one is not interested in the absolute SNR but in the difference of SNRs before and
after the processing with an algorithm, e.g. a noise reduction scheme. The signal-to-noise
ratio enhancement (SNRE) or ∆SNR is the difference between the SNR measured at the
output of a noise reduction system and the SNR at the input. In the following, most of the
(segmental) SNR measures defined above will be used as relative enhancement measures
between unprocessed and processed signals which is indicated by a ∆ or the suffix "E".

2.3. LPC Based Objective Measures

Several objective measures have been proposed that are based on dissimilarities between
linear predictive models of unprocessed clean speech signal and processed enhanced (mixed)
signal. These measures assume that - for short time intervals - speech can be represented
by an pth order all-pole model of the form

x(k) =
p
∑

i=1

ax(i)x(k − i) +Gxu(k) (2.8)

where ax(i) are the coefficients of the all-pole filter determined by linear prediction tech-
niques, Gx is the filter gain and u(k) is a unit variance (σ2

u = 1) white noise excitation.
For voice coding purposes (LPC Vocoder) the all-pole filter is interpreted as a model of the
vocal tract that filters the signal produced by the glottis. This excitation signal u(k) can
either be white noise, a periodic excitation with a certain pitch or a mixture of both. In
general, the filter coefficients are determined by linear prediction with the side condition
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2.3. LPC Based Objective Measures

that u(k) has a maximum flat (=white) spectrum. As most of the speech information is
contained in the filter coefficients ax(i) and the filter gain Gx, these parameters are used to
determine several distance or distortion measures (see below). The parameters are usually
calculated for signal frames of 10− 30 ms duration.

2.3.1. Log-Likelihood Ratio Measure

The log-likelihood ratio (LLR) is defined as:

dLLR(ax,ad, n) = log
aTd (n)Rxx(n)ad(n)

aTx (n)Rxx(n)ax(n)
(2.9)

where aTx = [1,−αx(1),−αx(2), . . . ,−αx(p)] are the LPC coefficients of the clean signal
in segment n, aTd = [1,−αd(1),−αd(2), . . . ,−αd(p)] are the LPC coefficients of the the
enhanced signal in segment n, and Rxx denotes the squared auto-correlation matrix of
dimension (p+1)×(p+1) of the signal segment for which the optimal predictor coefficients
ax have been computed.

The nominator of (2.9) can be interpreted as the energy of the prediction residual that
remains when the clean speech signal is filtered with the linear predictive coefficients cal-
culated for the enhanced speech. This measure shows how well the current observed signal
x is represented by the speech model coefficients (i.e., the most important components)
of the enhanced signal. The denominator is the prediction residual of the clean speech
filtered with its optimal LPC coefficients. Thus, the denominator is always smaller than
the nominator and the LLR measure is always positive.

2.3.2. Itakura Saito Distortion

The Itakura-Saito Distortion measure has another weighting of the LPC-coefficients and
is defined by:

dIS(ax,ad, n) =
G2
x(n)

G2
d(n)

aTd (n)Rxx(n)ad(n)

aTx (n)Rxx(n)ax(n)
+ log

(

G2
d(n)

G2
x(n)

)

− 1 (2.10)

where Gx and Gd are the all-pole gains of the clean and enhanced signals, respectively.
The all-pole gains Gx, Gd can be computed as follows:

Gx =
(

rTxax

)1/2
, Gd =

(

rTd ad

)1/2
, (2.11)

where rTx = [rx(0), rx(1), . . . , rx(p)] contains the autocorrelations of the clean signal. The
same accordingly applies to the enhanced signal. The Itakura-Saito Distortion measure
penalizes the differences in the all-pole filter gains, i.e., differences in the overall spectral
levels of clean and enhanced signals [45]. Usually, the Itakura-Saito Distortion is averaged
over all signal frames n. Another definition of the Itakura-Saito distortion is given in [77]:

d(ax,ad, n) =
(ax(n)− ad(n))TRxx(n)(ax(n)− ad(n))

ax(n)Rxx(n)ax(n)
. (2.12)
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2. Development of a Toolbox for Objective Quality Assessment of Noise Reduction Schemes

For the LPC measures various variants and weightings exist in literature. Quackenbush
et al. [59], e.g., evaluated over thirty different measures of that kind and identified the
Log-Area-Ratio (LAR) measure (see below) to have high correlation with subjective data.
For the Itakura-Saito Distortion used in this study, the definition due to (2.10) and [29]
was used.

2.3.3. Log-Area-Ratio Measure

The Log-Area-Ratio (LAR) Measure is a performance measure that had shown high corre-
lation with subjective quality measurement in [50, 59]. It is frequently used for evaluation
of noise reduction systems [4, 23, 29]. The distance measure is based on the tube model of
speech production (see [78]). First, the reflection coefficients also known as partial correla-
tion (PARCOR)-coefficients are calculated based on the Levinson-Durbon recursion from
the all-pole filter coefficients [36] of a signal frame l. Second, the area-ratio coefficients
are calculated by

g(p) =
1 + k(p)

1− k(p)
p ∈ {1, . . . , P}. (2.13)

Finally, the LAR is calculated for each frame n as the log-ratio of the coefficients gx for
clean speech and gd for the distorted (processed) speech.

LAR(n) = 20 ·
P∑

p=1

log10

∣
∣
∣
∣

gx(p, n)

gd(p, n)

∣
∣
∣
∣ . (2.14)

2.4. Perceptually Motivated Objective Measures

2.4.1. Weighted Spectral Slope (WSS) Distance Measure

In a psychoacoustical study by Klatt [40] about the distortion of synthetic vowels it was
found that subjects assigned the largest perceptual distance to vowels with changes in
spectral peak (formant) locations while ignoring other spectral changes such as spectral tilt
or overall level. The weighted spectral slope (WSS) measure was developed to emphasize
these changes which is realized by following processing steps: First, the spectral slopes of
each critical band spectra (see A.2) are calculated by

Sx(b) = Cx(b+ 1)− Cx(b) (2.15)

Sd(b) = Cd(b+ 1)− Cd(b), (2.16)

where Cx(b) and Cd(b) denote the critical band spectra in dB and Sx(b) and Sd(b) are the
spectral slopes for the clean speech and the processed speech for band b, respectively. For
the calculation of critical band spectra based on STFT-spectra compare (2.7) and section
A.2. Then a weight is calculated that emphasis spectral slopes that are near to a spectral
peak or valley:

W (b) =
Kmax

Kmax + Cmax − Cx(b)

Kloc max

Kloc max + Cloc max − Cx(b)
(2.17)
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2.4. Perceptually Motivated Objective Measures

where Cmax is the largest log-spectral magnitude among all bands, Cloc max is the value of
the peak nearest to band b, and Kmax,Kloc max are the constants which can be adjusted
using regression analysis to maximize the correlation between the subjective listening tests
and values of the objective measure. The experiments in [40] showed a high correlation
for Kmax = Klocmax = 1. Finally, the WSS measure is calculated for each frame of speech
as:

dWSS(Cx, Cd) =
B∑

b=1

W (b)(Sx(b)− Sd(b))
2 (2.18)

where B is the number of critical bands used.

2.4.2. PEMO-Q

The preceding objective measures contained only limited knowledge about the perceptual
aspects of the auditory system. The LPC-based measures basically include a model of
speech production instead of a speech perception model. The WSS measure analyzes the
signal in critical bands but the measure only focuses on the distortion of spectral peaks
and thus it does not cover all effects influencing the perceptual quality. Exploring the
potential of more detailed auditory models for improving quality estimation is therefore
highly desirable.
Objective measures based on a psychoacoustic model were developed by Huber [33, 34]
and summarized under the name "PEMO-Q". Primarily, PEMO-Q estimates a perceptual
correlation between a reference and a test signal and additionally calculates some deduced
measures that include some cognitive effects and allow a direct mapping of objective data
to subjective rating scales, e.g., the objective differential grade (ODG) versus subjective
differential grade (SDG). However, in the following evaluation of noise reduction schemes
only the basis of the deduced measures, namely, the perceptual similarity measure PSM,
is used from the PEMO-Q model.
PEMO-Q is an advancement of the speech quality measure qC by Hansen and Kollmeier
[30] who successfully applied their method to predict subjectively rated speech transmis-
sion qualities of mainly low-bit rate speech codecs. The idea of this measure is to transform
the original and the distorted signal into an internal representation (which is thought of
as the information that is accessible to higher neural stages of perception) and compare
them in this "auditory domain". This transformation is based on the quantitative model
of the "effective" signal processing in the auditory system by Dau et al. [12? ], excluding
its final detector stage and is shown in the right panel of Fig. 2.2.
The left panel of Fig. 2.2 shows the block diagram of the quality estimation which in
general is also valid for other perceptual model based measures. In a first step the signals
should be delay-compensated and long-term level aligned. The level alignment depends
on the experiments that are made: Regarding noise reduction schemes, the block "lossy
processing" in Fig. 2.2 which connects the reference and the test signal includes both, the
interference of clean speech with additive noise and the enhancement by a noise reduction
scheme. Thus, a level alignment between the clean speech and the more energetic noisy
mixture would be biased by the absolute noise level in the test-signal. In cases were the
residual noise level is relevant the level alignment should be omitted or calculated only
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2. Development of a Toolbox for Objective Quality Assessment of Noise Reduction Schemes

based on the level of the desired speech component in both, reference and test signal.
Subsequently, the signals are transformed by an auditory model into internal representa-
tions which is shown in more detail on the right panel of Fig. 2.2. In the first stage of
the auditory processing the signals are filtered by a gammatone-filterbank [32, 56] which
consists of overlapping 4th- order bandpass filters with critical bandwidth (see section
A.2). A half-wave rectification and lowpass-filter of 1 kHz simulates the basic charac-
teristic of the inner hair cells (IHC) that only emit an action potential if bended to one
direction [30]. For signals below 1 kHz a phase coding in the primary auditory fibers can
be observed whereas for higher frequencies primarily the envelope of the auditory filters
is used. The next stage accounts for temporal adaptation and dynamic compression. It
consists of five cascaded feedback loops that have lowpass time constants in the feedback
path ranging from 5 to 500 ms. The input of the first feedback loop is limited to a lower
bound accounting for the absolute threshold of hearing that is assumed to be 100 dB below
the maximum input level. The adaptation loops have been introduced by Püschel [58] to
quantitatively model the temporal masking effects. The output of the adaptation loops is
filtered by an 8 Hz lowpass filter according to [? ] which reduces amplitude modulations
and was found by detection and masking experiments for temporal integration. Alterna-
tively, a modulation filterbank [12] accounting for modulation frequencies up to about 160
Hz can be applied. The modulation filterbank mode allows a more accurate estimation
of perceptual quality, particularly if the perceptual differences between the clean speech
reference and the processed signal are small. Here, the simpler lowpass version was used
as the differences between reference and the processed test signal are relatively large com-
pared to, e.g., high quality speech codecs. Returning to the block diagram on the left
panel, the internal representations of reference and test signal may be biased to account
for further perceptual effects (like, e.g., "Beerends-Berger-assimilation", see [33]). Finally,
a cross correlation coefficient is calculated from the resulting signals and denoted as a
perceptual similarity measure (PSM). For values of PSM very close to 1 the differences
between reference and test signal are inaudible whereas lower values indicate an audible
difference. Thus by choosing an appropriate reference signal (generally: the clean speech
signal) any PSM value lower than 1 can be interpreted as a quality reduction. The selection
of the reference and test signals is discussed below.

2.4.3. PESQ

The evaluation of speech quality measure (PESQ) described in [60] was selected as the ITU-
T recommendation P.862 in a competition between different objective measures for speech
quality estimation across a wide range of codec and network conditions. The general idea
of PESQ is similar to PEMO-Q in that a test signal and a reference signal are transformed
by means of an auditory processing model and a distance measure is calculated from a
comparison of the signal representations. Compared to PEMO-Q (or its predecessor qC)
the preprocessing attributed to the auditory model is much simpler and has a more refined
distance calculation [31] specialized on telecommunication aspects such as limited speech
bandwidth, packet loss and coding artifacts. There are diverse parameters in PESQ that
are trained based on the subjective ratings of a large speech database. Thus PESQ is an
effectively trained objective quality measure that includes single aspects of the auditory
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Figure 2.2.: The processing scheme of PEMO-Q [34]

system but does not aim to transform the signals into an internal representation in the
sense that it models the information accessible to the neural system.
Several transformation steps are applied to the signal: First, the Bark-band spectra based
on fast Fourier transform (FFT) are calculated for both, reference and test signal (see
A.2). In a frequency equalization step the long-term bark spectrum of the test signal
is applied to the reference signal to override spectral differences that are system-related
(e.g., reduced bandwidth) and thus have minor effect on the interesting perceived quality
criteria. Then, a short-term (broadband) gain equalization between the "audible power"
of reference and test signal spectrum is applied, i.e., the gain is only calculated based on
the importance-weighted frequency bands. Afterwards, the bark spectra are transformed
to a sone loudness scale [72, 86] with a compression factor. Finally, the difference between
original and degraded loudness spectrum is calculated. Different weights are applied to
negative and positive values, because their influence on the perceived quality is different.
Negative differences are perceived as new signal components in the test signal which are
perceptually more salient than missing components (positive differences). The weighted
differences are summed to a single time varying quality measure.
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2.4.4. PEAQ

The Perceptual Evaluation of Audio Quality (PEAQ) measure has been defined as the
new ITU-R recommendation BS-1387 to fulfill the requirements of a more general qual-
ity measure that is not restricted to narrow-band speech signals. Similarly to PESQ, it
is a composite and expansion of the best elements from different quality measures and
characterized by a high degree of optimization and adaptation to a single task [34]. The
main purpose of PEAQ is the prediction of subjective quality ratings of low-bit-rate coded
audio signals.

2.4.5. BSIM

The preceding objective physical and psychoacoustical-model-based performance measures
are single channel (monaural) measures that do not adequately take into account the
respective benefit of binaural cues in the output signal that can be utilized by the human
user of the binaural processing scheme. The binaural speech intelligibility model developed
by Beutelmann and Brand [3] tries to estimate the speech intelligibility from binaural
signals. It combines two established models, the binaural equalization-cancellation (EC)
processing by Durlach [19] with the monaural speech intelligibility index (SII, [1]). For the
calculation of the measure the binaural signals of the speech and the binaural noise signals
are needed separately as input to the model. In a first stage the signals are transformed by a
gammatone filterbank [32, 54]. To account for individual hearing thresholds, uncorrelated
gaussian noise which is spectrally shaped by the individual pure tone audiogram for left
and right ear is added to the signals. In the EC stage, the SNR of each auditory frequency
channel is maximized by first applying an optimum relative delay and amplitude gain
between left and right ear channel (equalization step) and second subtracting the right
from the left channel (cancellation step). The optimum delay and gain which maximizes
the SNR can be found by a minimum search (see [3]). If the maximized (binaural) SNR
is lower than the SNR observed at a single ear, this higher SNR is chosen. This takes into
account the better ear effect which is the ability (of a normal hearing subject) to focus on
the sound at the ear nearest to the signal of interest and ignoring the noise or disturbance
at the averted side. After the model parameters that a lead to an optimal SNR are found,
the auditory filterbank signal can be resynthesized according to [32] and analyzed by the
speech intelligibility index (SII) model according to [1].
The EC stage of BSIM looks quite similar to a beamformer or a multi-channel wiener filter.
However, the most apparent differences are that the model (i) has a priori knowledge about
all four input signal components (desired speech left/right, undesired noise left/right),
(ii) knows of the better-ear effect, (iii) uses an auditory filter bank and (iv) is inserting
additional internal noise to account for restrictions within the individual hearing ability.
For a detailed description of the model and its artificial processing errors see [3].
For the assessment of noise reduction schemes the performance improvement achieved by
the algorithm is of major importance. Thus, the difference between the binaural speech
intelligibility measure (BSIM) at the output of the scheme and the input, namely the
∆BSIM needs to be calculated:

∆BSIM = BSIMout(sL, Ss, nL, nR,params)− BSIMin(sL, sR, nL, nR,params). (2.19)
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2.5. Reference and Test Signal

An important aspect for all quality measures presented here is the type of reference and
test signals that are used. For objective noise reduction and speech coding assessment in
most cases the unprocessed speech signal, i.e. the clean speech, will be used as a reference
signal. This reference is compared against the test signal – usually the processed noisy
speech or coded speech signal. The aim is to mimic the assessments done by subjects who
often have an idea of the desired (reference) signal which in many cases may be the clean
speech3. However, if the system under test is producing output signals that are percep-
tually far-off the optimum clean speech signal it is reasonable to use a different reference
signal. In this case it is suggested to use a signal that was processed by an optimal (cod-
ing or noise reduction) system which has access to a priori information that in practise
is unknown to the real-world system. A possible application scenario is the assessment
of low-rate speech codecs and noise reduction schemes that do not aim to produce an
output signal similar to the unprocessed clean speech. Some objective measures, e.g.,
PESQ (section 2.4.3) pursue this strategy by adjusting the reference signal to account for
system-related long-term spectral differences between reference and test signal.
For the application of noise reduction systems it may also be interesting to have a per-
ceptual speech distortion measure that is more or less independent of concurrent noise
reduction quality aspects. This measure should also account for masking effects of the
residual noise in the processed noisy speech signal. Thus, a noisy reference signal is sug-
gested here that has the same signal-to-noise ratio as the processed output signal. The
correlation of different objective measures based on auditory models with subjective data
using the noisy reference is proven in section 3.2. By measuring the distortion of the speech
component alone, the beneficial masking effects of the residual noise that may allow for a
higher acceptable speech distortion would be ignored.
Besides the definition of applicable reference and test signals it is of major importance to
consider realistic signal conditions, ideally, real-world recorded signals in acoustical scenar-
ios for which the algorithms under test are intended. Thus in the following studies, these
factors influencing the objective quality estimation and performance of noise reduction
schemes have particularly been considered.

2.6. Discussion

The preceding list of objective measures (except the newer auditory model based measures)
has frequently been used in the research field of speech coding and speech enhancement.
The extensive studies by Quackenbush et al. [59], identified measures that were highly
correlated with subjective data gained from assessments of many different artificial signal
distortions, including additive noise. However, no signals processed by noise reduction
algorithms were included in the list of signals, so that the typical artifacts applied by, e.g.,
spectral subtraction, were not evaluated. In a study by Hansen and Pellom [29] different
single-channel noise reduction algorithms were evaluated with objective measures (ISD,
LLR, LA, segSNR, WSS, see above). Novel objective measuring methods where suggested

3In case subjects have a stable internal reference, direct comparison tests are possibly not needed.
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as a standard criteria for algorithm performance comparison, including audio test-files
that are applicable for noise reduction, but no subjective listening tests were carried out
to identify the most significant measures in that study. Moreover, no measures based on
sophisticated auditory models were available at that time. Because only little knowledge
on the significance of the abovesaid measures for subjective benefit is available by now (ex-
cept for the studies done by Marzinzik [50], see below), all measures4 are compared against
subjective data in the study described in section 3.2. Subjective assessment methods for
noise reduction schemes, on the other hand, have been studied quite well. It is known,
that the assessment of subjective overall quality of noise reduction schemes is a com-
plex interaction of diverse (quality) dimensions such as speech distortion, noise reduction,
ease of listening, speech intelligibility and others. Hence, the ITU-T Standard P.835 [35]
recommends to rate different concurrent aspects at the same time in subjective listening
tests. This subjective test method was carried out to identify the most significant objective
performance measures from the preceeding list (see section 3.2). As multiple dimensions
of signal quality are evaluated simultaneously, it is expected that different measures can
have high correlations with subjective data, depending on the quality parameter that is
addressed.

To conclude this chapter, an ultimate selection of applicable measures cannot be given
at this point. However, the following chapters will show which measures are covering the
interesting aspects of signal quality and hence, are predestinated to form a test-bench for
objective quality assessment.

4excluding the binaural measure BSIM which is used for binaural algorithms in chapter 4. The measures
WSSD and PEAQ have been calculated but are not included in table 3.1.
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3. Monaural Noise Reduction Schemes -
Performance Evaluation and Optimization

3.1. Introduction

Objective measures for the assessment of different aspects of signal quality have been
summarized in chapter 2. As quite a few measures have their origin in the speech coding
area and have been designed for detecting and evaluating signal degradations that typi-
cally occur in these applications, it is unclear if the measures are also appropriate for the
assessment of noise reduction systems. Thus, in section 3.2, single channel noise reduc-
tion schemes based on short time spectral attenuation (STSA) are evaluated by objective
measures and subjective assessment. The subjective listening tests have been performed
according to a test methodology by the ITU-T [35] that recommends to assess the quality
of noise reduction systems with three absolute categorial rating (ACR) scales in parallel,
each for one dimension of signal quality. These subjective data are compared to objective
evaluation data estimated by all measures summarized in chapter 2 (except for the binaural
measure). With a correlation analysis between objective and subjective data the measures
that are appropriate to predict the mean opinion score (MOS) of normal hearing subjects
will be identified. Compared to similar studies by Marzinzik [50], who evaluated listening
effort and speech intelligibility for normal hearing and hearing impaired subjects, the cur-
rent study evaluates a broader range of output signal qualities and noise types processed
by different single-channel STSA algorithms. The significant objective measures are then
combined to a test-bench that is useful for the development and parameter optimization
of the algorithms in the following sections.

In section 3.3 a noise reduction scheme is proposed that replaces the STFT of a noise
reduction algorithm by an auditory filterbank. It has a high dimensional parameter space
and therefore poses a problem for the optimization based on a single objective perceptual
measure. Thus, as a possible solution a sub-band quality measure is proposed that can
reduce the degrees of freedom for optimization.

Finally, section 3.4 suggests to use the objective measures for a combined audio quality
assessment and a low-power optimization that is desirable for hearing aids.

17



3. Monaural Noise Reduction Schemes - Performance Evaluation and Optimization

3.2. Comparison of Objective and Subjective Data for the
Assessment of Single Channel Noise Reduction Algorithms1

The short time spectral attenuation (STSA)-algorithms contain parameters that are af-
fecting the amount of noise reduction. However, maximizing the attenuation of noise with
these parameters in general leads to a distortion of the desired signal which can only be
tolerated to a certain amount.

In subjective quality assessment tests of noise reduction schemes subjects often have
difficulties in rating the overall quality which seems to be a trade-off between the amount
of background noise removal and speech distortion. Another point is that background
noise can even become more annoying if processed by a suppression algorithm, e.g., by
introducing musical tones or amplitude fluctuations.
The same difficulty exists for predicting the overall quality with objective measures. While
it should be feasible to quantify the amount of noise reduction or to measure speech
distortion separately, the prediction of the overall quality seems to be more complex. The
idea is to find objective perceptual measures that have a high correlation with the results
from subjective ratings. This measures can then be used as a test-bench for evaluation
and parameter optimization in noise reduction schemes. The results of this section have
been presented in [62].

3.2.1. Algorithms

STSA algorithms according to Ephraim and Malah’s weighting rules [22] where employed
as single channel state-of-the-art algorithms. These algorithms are characterized by a
strong reduction of noise while introducing only little of the well known musical tones or
musical noise that result from subtracting an average noise spectrum from a non-stationary
frame-based spectral estimate. A detailed description of the involved filter parameters can
be found in Cappé [9]. The most important parameters are two signal-to-noise ratio (SNR)
estimates: An instantaneously estimated (a posteriori) SNR and an a priori SNR estimate
that is calculated by a recursive smoothing of preceding a posteriori values. The considered
algorithms need a reliable noise power estimation. Here, the minimum statistics method
(MinStat) by Martin [48] and a Voice Activity Detection (VAD) algorithm by Marzinzik
[50] are used.

3.2.2. Signals

The speech signals used here were taken from the Oldenburg Logatome Speech Corpus
(OLLO) [83] and consisted of six sentences spoken by german male and female speakers.
The noise signals were speech-shaped noise, cafeteria noise, icra7 noise (speech like mod-
ulated noise) and white gaussian noise. All signals had an approximate duration of 20
seconds and a sampling rate of 16 kHz. In the simulation system the signals were mixed
at a SNR of 0 dB and 5 dB. The calculation of the time-variant filter was made on this

1Parts of this section have been published as "Objective Perceptual Quality Measures for the Evaluation
of Noise Reduction Schemes" in proceedings of 9th International Workshop on Acoustic Echo and Noise
Control (IWAENC), 2005 [62]

18



3.2. Comparison of Objective and Subjective Assessment Data

mixture while the filtering process was also done on the separate speech and noise sig-
nals for subsequent quality assessment and the calculation of the SNRE and other quality
measures.

3.2.3. Objective Measures

For the objective quality estimation the following measures are calculated that are de-
scribed in chapter 2. In addition to the signal-to-noise ratio measures SNRE, the seg-
mental SNR (segSNR), and frequency weighted SNR (based on equation (2.7)) a linear
coherence coefficient is calculated between the time signal of the processed output and
the clean speech. These performance measures can be considered as technically motivated
measures that primarily aim to predict the amount of noise reduction achieved by the
system.

The measures based on linear predictive coding (LPC), Log-Area Ratio (LAR), Log-
Likelihood Ratio (LLR), and Itakura Saito Distance (ISD), are motivated by a speech
production model (see section 2.3) and thus primarily aim to predict the quality of speech
or the overall quality. These measures are calculated for segments of 30 ms duration and
the short-time estimates are averaged over time.

From the perceptually motivated measures, PSM (PEMO-Q) and PESQ, different ver-
sions are derived. First, the perceptual similarity measure (PSM) is calculated between
the processed output and the clean speech (see section 2.4.2). Second, PSM is also cal-
culated for the the noisy input and the clean speech (PSMin). The difference between
input and output PSM is referred to as ∆PSM. It shows the increase in perceptual sim-
ilarity between input and output signal that is achieved by the noise reduction scheme.
Positive ∆PSM values predict a higher quality of the processed signal compared to the
unprocessed signal, whereas negative values indicate a signal degradation. A parameter
that influences the weighting ("Beerends-Berger" option) is optionally switched off in the
measure (PSM_b), (as this option is primarily intended for the prediction of moderate
coding artifacts). Similarly, for the perceptual speech quality measure PESQ (2.4.3), the
absolute value and the relative increase, ∆PESQ is calculated.

Both psychoacoustical measures, PESQ and PSM, aim to predict the overall quality if
calculated between the clean speech and the output signal. As the noise reduction schemes
often lead to speech signal distortions, it is also interesting to estimate the perceptual
speech distortion in the presence of residual noise using these perceptual measures. To
achieve this, it is suggested here, to use a noisy reference signal with the same signal-to-
noise ratio as the output signal. From the technically viewpoint the SNR enhancement
between noise reference and output then is zero. But for the perceptual measures, the
quality reduction applied to the target signal may pop out. In the following, these measures
using the noisy reference are referred to as SNR_PSM and SNR_PESQ.

A comparison analysis between the objective predictions and the subjective data will
identify the significance of these measures.
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3.2.4. Experiments

Signal Processing and Objective Quality Assessment

The recursive smoothing parameter τ for the a priori SNR-estimate in Ephraim and
Malah’s algorithms has great influence on the noise reduction strength. In order to find
an optimal setting and to cover a broad range of qualities for a subsequent correlation
analysis of objective and subjective measures, τ was varied in the range from 0− 800ms.
All signals were processed with the noise estimators Minstat and VAD, respectively. For
each setting, the above mentioned quality measures were calculated for a number of speech
signals mixed with different types of noise (see Section 3.2.2). For subjective listening tests
a subset of 7 time-constants per noise type, algorithm and input-SNR was chosen.

Subjective Listening Tests and Quality Assessment

The subjective listening tests were done according to the ITU-T Recommendation P.835
[35] which describes a methodology for evaluating the subjective quality of speech in
noise and is particularly appropriate for the evaluation of noise suppression algorithms.
The methodology uses separate absolute categorial rating scales (ACR) to independently
estimate the subjective quality of the speech signal alone, the background noise alone and
the overall quality. 16 normal hearing subjects were tested. The whole test consisted of
8 sessions with 15 trials each and took approximately 1 hour. One trial was composed of
three sub-samples. Each sub-sample consisted of two sentences, male and female talkers, of
3.25 seconds duration each. In the first sub-sample the subjects were instructed to attend
only to the background noise and rate it on a five category scale from "1 - sehr störend"
(very disturbing) to "5 - gerade wahrnehmbar" (just noticeable). In the second sub-sample
subjects were instructed to attend only to the speech signal and rate it on a scale from
"1 - sehr stark verzerrt" (very much distorted) to "5 - unverzerrt" (not distorted). In the
third sub-sample subjects were instructed to listen to the speech + background and rate
it on a five category overall quality scale from "1 - schlecht" (bad) to "5 - ausgezeichnet"
(excellent). The ratings were done with an ACR - software using sliders that allowed a
sub-categorial rating in 0.1 steps.

3.2.5. Results

Fig. 3.2 shows the subjective data in the left panels for both noise estimators and two of
the four noise types. Initially, it can be stated that all subjective tests - independent of
noise type, input-SNR or noise estimators - show consistent behavior in the way that the
perceived speech-signal qualities (red dotted line) decrease and the amount of perceived
noise reduction (green dashed line) increase monotonically by increasing the smoothing
constant τ . As stated before, the overall quality ratings (black solid line) seem to be a
trade-off between both rating tasks. Obviously the subjects prefer in virtually all cases
a certain amount of smoothing. Another point is that the two noise estimators, MinStat
and VAD, show different performance for fluctuating noise, e.g., speech-modulated icra7-
noise, but similar behavior for stationary noise while the mean opinion score (MOS) for
the overall quality is almost the same. The subjects reported that - especially in cases
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3.2. Comparison of Objective and Subjective Assessment Data

of fluctuating noise - they were uncertain what to prefer - reducing noise and accepting
signal-distortion or the opposite. This may be the reason why there was no preference for
one of the noise estimators observable although the outputs were very different.

To find out which objective measure describes the respective quality rating tasks best,
the correlation between different objective measures and the subjective data were evalu-
ated (see Tab. 3.1). The highest correlations of all objective measures are indicated with
bold black numbers, the highest negative correlations are printed in red. The first four
columns show the correlation for each noise type separately. The last column contains
the overall correlation for all signal types, algorithms, and input-SNR’s. Rows 1-7 show
more technically measures, i.e. these measures are not based on a complex psychoacoustic
model. Rows 8-12 contain the perceptual measures and their relative enhancement rep-
resentations (∆PSM, ∆PESQ) all with clean speech reference. The last rows contain the
perceptual measures but with an output-SNR-aligned noisy reference signal, indicated by
the prefix "SNR_".

As for the background noise rating, the highest correlations are gained by the SNRE.
This means that SNRE is a good measure to rate the amount of noise reduction by
an algorithm, independent of the speech signal quality. Also, high correlation values
are gained by the ∆PSM measure if different types of background noise are considered
separately. The correlation for ∆PSM with the subjective data can be seen in Fig. 3.1. The
functional relationship between subjective and objective measures varies across different
types of background noise, hence the overall correlation is less. As a consequence the
objective measure should incorporate some noise dependent scaling to better model the
subjective data.
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Correlation of background noise rating
with objective measure ∆PSM

∆PSM
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MinStat cafeteria
MinStat white
MinStat speech-shaped
MinStat ICRA7
VAD cafeteria
VAD white
VAD speech-shaped
VAD ICRA7

Figure 3.1.: Noise dependent correlation between objective and subjective data for differ-
ent noise reduction algorithms. ACR data for normal hearing listeners are
plottet over the objective measure ∆PSM.
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3. Monaural Noise Reduction Schemes - Performance Evaluation and Optimization

In terms of speech-signal rating most of the correlations are negative. The strongest
anticorrelated measure is the frequency weighted SNRE, which may result from the fact
that noise reduction and speech distortion are competing processes in the considered algo-
rithms. The strongest correlations are achieved for the perceptual measures with the noisy
reference, especially SNR_PESQ, as expected. The best correlation in terms of overall
quality rating show the perceptual measures with clean speech reference, especially PESQ
and PSM_b.
The right panels in Fig. 3.2 show the prediction of the subjective data on the left pan-
els by the objective measures that had the highest correlations for each rating task, i.e.,
SNRE for the prediction of perceived noise reduction, SNR_PESQ for the speech-signal
degradation and PSM_b for the prediction of the overall quality. The curves have been
linearly fitted to match the scaling of the MOS.
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Correlation with

background

noise rating

Cafeteria

noise

White

noise

Speech-

shaped

noise

ICRA7

noise

Overall-

Correlation

SNRE 0.93 0.91 0.88 0.90 0.75

Coherence 0.50 0.67 0.58 0.68 0.53

seg. SNRE 0.71 0.62 0.63 0.84 0.54

freq. wt. SNRE 0.70 0.79 0.54 0.66 0.49

mean LAR 0.33 -0.89 0.18 0.35 -0.06

mean LLR -0.08 -0.73 0.06 0.05 -0.14

mean ISD 0.55 -0.51 0.54 0.67 0.20

PSM 0.57 0.89 0.84 0.70 0.69

PSM_b 0.52 0.66 0.70 0.69 0.60

PESQ 0.37 0.66 0.64 0.62 0.63

 PSM 0.76 0.92 0.89 0.83 0.62

 PESQ 0.42 0.81 0.64 0.84 0.56

SNR_PSM -0.56 -0.49 -0.39 -0.58 -0.28

SNR_PESQ -0.60 -0.81 -0.58 -0.53 -0.41

Correlation with

speech signal

rating

Cafeteria

noise

White

noise

Speech-

shaped

noise

ICRA7

noise

Overall-

Correlation

SNRE -0.67 -0.77 -0.94 -0.87 -0.67

Coherence 0.27 0.02 -0.21 -0.04 -0.05

seg. SNRE -0.06 0.09 -0.32 -0.46 -0.17

freq. wt. SNRE -0.90 -0.89 -0.79 -0.93 -0.70

mean LAR -0.88 0.33 -0.46 -0.67 -0.06

mean LLR -0.66 0.01 -0.41 -0.72 -0.22

mean ISD -0.79 -0.13 -0.63 -0.89 -0.62

PSM 0.22 -0.31 -0.58 -0.07 -0.15

PSM_b 0.25 0.07 -0.38 -0.06 -0.02

PESQ 0.41 0.06 -0.33 0.05 -0.01

 PSM -0.05 -0.75 -0.90 -0.49 -0.39

 PESQ 0.34 -0.27 -0.73 -0.52 -0.23

SNR_PSM 0.84 0.76 0.67 0.87 0.61

SNR_PESQ 0.87 0.92 0.86 0.87 0.74

Correlation with

overall quality

rating

Cafeteria

noise

White

noise

Speech-

shaped

noise

ICRA7

noise

Overall-

Correlation

SNRE 0.35 0.66 0.41 0.29 0.35

Coherence 0.83 0.88 0.93 0.93 0.65

seg. SNRE 0.74 0.89 0.89 0.71 0.53

freq. wt. SNRE -0.17 0.40 -0.05 -0.11 0.00

mean LAR -0.46 -0.90 -0.45 -0.28 -0.07

mean LLR -0.75 -0.94 -0.61 -0.68 -0.43

mean ISD -0.24 -0.79 -0.04 -0.16 -0.34

PSM 0.82 0.92 0.93 0.87 0.70

PSM_b 0.85 0.91 0.94 0.93 0.76

PESQ 0.85 0.92 0.94 0.94 0.81

 PSM 0.71 0.69 0.58 0.54 0.39

 PESQ 0.86 0.92 0.48 0.65 0.47

SNR_PSM 0.12 -0.04 0.09 0.01 0.04

SNR_PESQ 0.09 -0.36 0.05 0.07 0.00

Table 3.1.: Correlation between objective and subjective measures for the three rating
tasks (i.e., background noise, speech signal, and overall quality) and the types
of background noises.
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Figure 3.2.: Subjective (left panel) and objective (right panel) data for different noise types
and algorithms
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3.2. Subband-based Parameter Optimization

3.3. Subband-based Parameter Optimization in Noise Reduction
Schemes by means of Objective Perceptual Quality

Measures2

In general, noise reduction schemes for application in hearing-aids or car environments have
parameters that are determined by technical distance measures or heuristically based on
informal listening by the algorithm developers. In section 3.2it was shown that quality
measures based on psychoacoustic models are better suited to optimize single parameters
in terms of the best subjective overall quality than pure technical measures like, e.g., the
signal-to-noise ratio. In other words, a test-bench based on objective quality measures and
several typical noise types can support the search for the best-sounding noise reduction
algorithms and their internal parameter settings. However, if the algorithms become more
complex, e.g., because of frequency-dependent parameters, a single broadband measure
might not be feasible to assess optimal settings because of the high dimensionality of
the parameter space. In this case a subband-based perceptual quality measure might
be feasible. In this study, we exemplarily apply subband-based quality prediction to
parameter optimization in a noise reduction algorithm based on auditory filters.

The aim of this study is to improve the applicability of perceptual objective measures
to the systematic optimization of noise reduction algorithms. In particular, perceptual
measures calculated in subbands are used to optimize a multidimensional parameter set
band-wise. The technique is exemplarily applied to a monaural state-of-the-art noise re-
duction scheme, which was adopted to work with gammatone auditory filterbank signals
instead of short-time fourier transformed (STFT-) signals. The parameterized noise reduc-
tion algorithm described in section 3.3.1 is then optimized with the perceptual subband
measure which is defined in section 3.3.2. To assess the effects of noise reduction on the
so called internal representations we take a look at processed speech signals mixed with
stationary speech-shaped noise in section 3.3.4. The results are summarized in section 3.5.

3.3.1. Algorithm

2

2

X(t, f)

Φ̂NN (t, f)

Ŝ(t− 1, f)

τx

τs

Φ̂XX

Φ̂SS

a posteriori
SNR

a priori
SNR

G(t, f) Ŝ(t, f)

Figure 3.3.: Noise reduction scheme based on gammatone auditory filterbank

The proposed noise reduction scheme (see Fig. 3.3) is based on the idea of Ephraim and

2Parts of this chapter have been published as "Subband-based Parameter Optimization in Noise Reduction
Schemes by means of Objective Perceptual Quality Measures", in proceeding of 10th International
Workshop on Acoustic Echo and Noise Control (IWAENC), 2006 [63]
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Malah’s MMSE3 log-STSA4 [22] algorithm. Instead of the short-time fourier transform
(STFT) we use a complex-valued gammatone filterbank which is supposed to have a
frequency resolution similar to that of the auditory system. The gammatone filters [54] are
widely used in computational auditory models for modeling the peripheral filtering in the
cochlea. [32] proposes an efficient complex-valued implementation with signal resynthesis,
which is used here.

Let s(t) and n(t) denote the speech and the noise signals, respectively. The observed
signal x(t) is given by

Ŝ(t, f) = G(t, f) ·X(t, f). (3.1)

Ŝ(t, f) can be resynthesized into a time signal ŝ(t) with low delay by using the synthesis
algorithm in [32]. G(t, f) is calculated due to [9, 22] based on two SNR estimates:

G(t, f) = f{SNRpost(t, f),SNRprio(t, f)} (3.2)

with

SNRpost(t, f) = P

[

Φ̂XX(t, f)

Φ̂NN (t, f)
− 1

]

(3.3)

with P [x] =

{

x x > 0
0 x ≤ 0

(3.4)

SNRprio(t, f) = α
Φ̂SS(t, f)

Φ̂NN (t, f)
+ (1− α)SNRpost(t, f)

In this equations Φ̂NN , Φ̂XX and Φ̂SS denote power estimates of the signals N,X and Ŝ,
respectively. In practice, Eq. (3.2) is precalculated and stored in a two-dimensional gain
table spanned by the two SNR estimates. Eq. (3.5) is known as the decision directed
approach [9]. The a priori SNR, SNRprio, is a weighted sum of the previously estimated
SNR and the instantaneous a posteriori SNR. The weighting factor α has the character
of a smoothing constant with the equivalent low-pass time-constant τ(f) = −Ta

ln(α(f)) , Ta :

sampling period (block period).
Φ̂NN (t, f) is estimated using a modified version of the minimum statistics method by
Martin [49]. Φ̂XX and Φ̂SS are calculated as follows:

Φ̂SS(t, f) = αs(f)Φ̂SS(t− 1, f) + (1− αs(f))|Ŝ(t− 1, f)|2 (3.5)

Φ̂XX(t, f) = αx(f)Φ̂XX(t− 1, f) + (1− αx(f))|X(t, f)|2 (3.6)

It has been found experimentally that frequency dependent smoothing of the power
estimates for X and Ŝ with the smoothing parameters αx, αs (lowpass time constants
τx, τs) is useful when processing gammatone filterbank signals. In STFT-based algorithms

3MMSE: minimum mean squared error
4STSA: short-time spectral attenuation
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these smoothing parameters are 0, accordingly

Φ̂XX(t, f) = |X(t, f)|2 (3.7)

Φ̂SS(t, f) = |Ŝ(t− 1, f)|2. (3.8)

The amount of smoothing reduces amplitude modulations and has to be selected care-
fully to not destroy important speech information. On the other hand, the choice of the
time constants has an influence on distortions in the filtered output signal. Therefore con-
stants will be evaluated experimentally with a perceptual quality measure that is discussed
in the following section.

3.3.2. Perceptual Quality Measures

The perceptual similarity measure (PSM) described in section 2.4.2 is a broadband mea-
sure and therefore it can not directly be used to analyze noise reduction effects in subbands.
To have a frequency dependent quality measure the perceptual similarity measure was cal-
culated by omitting the integration step over all subbands which is done in the original
PSM.
Let Itf denote the time-frequency dependent internal representation of the estimated
speech signal ŝ(t), i.e., the transformation of the audio signal by the auditory model
depicted in the right panel of 2.2 including the modulation lowpass. Dtf is the internal
representation of the desired signal, the reference, respectively. µI , µD denote the tempo-
ral mean of the internal representations Itf and Dtf . The subband similarity measure is
then given by

PSM(f) =

∑

t
(Itf − µI(f))(Dtf − µD(f))

√
∑

t
(Itf − µI(f))2

∑

t
(Dtf − µD(f))2

(3.9)

3.3.3. Parameter Optimization

In [62] we showed that the perceptual quality measure PSM from PEMO-Q has a high
correlation with the subjective ratings of the overall quality. By varying the smoothing
parameter of the STFT-based Ephraim-Malah algorithm (according to α in eq. 3.5) we
could predict the optimal smoothing in terms of subjective overall quality. As a conse-
quence, the parameter τ could be optimized by maximizing PSM.
In the case of the gammatone-filterbank based algorithm we have multiple parameters that
are frequency dependent because of variable filter bandwidths and time resolution. The
filterbank in the noise reduction system is similar to that used in PEMO-Q. This allows
us to see the effects of frequency dependent algorithm parameters on each subband of the
internal representation. If we combine the smoothing parameters τX(f) and τS(f) (eqns.
3.5,3.6) to a parameter vector

params(f) = {τX(f), τS(f), . . .} (3.10)
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then
paramsopt(f) = arg max

params(f)
PSM(f) (3.11)

describes the optimal frequency dependent parameter vector. This can be used for auto-
matic subband quality optimization of the proposed algorithm. However, unconstrained
independent subband optimization can lead to a large variation of the optimal parameters
across frequency bands. This happens if the variance of subband PSM-values for differ-
ent settings is small, then, slight numerical changes of the input signal can cause a great
change of "optimal" values. To overcome this problem we suggest to add the constraint
that only small parameter changes between adjacent frequency bands are allowed and that
the parameter values change monotonically with frequency.

The following section discusses the effects of the noise reduction system on the internal
representation.

3.3.4. Effects of the Noise Reduction on the Internal Representations

Fig. 3.4 (a) shows a temporal section of the power envelope and (b) the related internal
representation (IR) in subband 10 (569 Hz) for the clean speech signal (red dotted) and
the noisy (speech-shaped noise, 5dB SNR) input signal (black solid). It can be seen
in (b) that the most striking differences between clean speech and noisy signal are the
stronger overshoots and undershoots in the clean speech signal IR whereas the behavior
of the subband power envelope (a) is different: Here, the additive noise only influences
the envelope in speech pauses and does not raise the peaks significantly. For stationary
inputs, the (adaptation) feedback loops of the auditory model have a compressive effect
(see [34]). Therefore, the noisy signal IR has less peaks than the clean speech signal IR,
assuming that the noise is stationary compared to the speech signal. The task of the
noise reduction scheme can be interpreted as reconstruction of the peaks of the speech
signal IR. One drawback of spectral subtraction based noise reduction schemes is the
occurrence of musical tones that can be identified in the IR as erroneous peaks (see Fig.
3.4 (c)). Here, the parameters of the noise reduction algorithm have been optimized to
generate a processed signal IR (green dashed) that has the highest possible correlation
for the given parameter space. The correlation between the reference IR (red dotted) and
the processed signal IR (green dashed) is only slightly higher than the correlations of the
IRs in (b), while the difference between the related audio signals is clearly audible. This
shows that the results in single channel noise reduction systems are always a suboptimal
trade-off between noise reduction and speech distortion. Even if the SNR is enhanced, the
perceptual quality, predicted by the measure PSM, can hardly be improved. This implies
that with the given parameter space of the algorithm it is impossible to get closer to the
desired clean speech reference. Note that a perfect match (correlation = 1) between the
IRs would predict that the processed signal is indiscriminable from the clean speech.

In summary, the clean speech signal IR cannot be reconstructed by single channel noise
reduction schemes. This leads us to the assumption that a noisy signal at a higher SNR
is better suited than a clean speech reference for perceptual optimization. The effect of
the optimization with different reference signals on the IR is depicted in Fig. 3.5. It
shows the IRs of the test signals (green dashed) and the references (red dotted) at higher

28



3.3. Subband-based Parameter Optimization

−80

−70

−60

−50

−40

−30

−20

−

−

p
ow

er
/[

d
B

]
IR

am
p
li
tu

d
e

IR
am

p
li
tu

d
e

increased peaks

subband power envelope

subband IR

subband IR

t/[s]

processed signal
clean speech

clean speech

clean speech

mix

mix

erroneous peak

a)

b)

c)
600

600

400

400

200

200

200

200

0

0

3.5

3.5

3.5

4

4

4

4.5

4.5

4.5

5

5

5

5.5

5.5

5.5

Figure 3.4.: Subband power envelope (a) and internal representations (b,c) for subband
10 (center frequency fc = 569 Hz)

frequency bands (fc = 2119 Hz). The noise reduction seems to be better suited for high
frequency bands and therefore also the correlation between test signal and reference IR
is higher compared to low frequency bands. We found that the optimization with the
noisy reference signal sometimes leads to less artifacts (erroneous peaks in the test signal,
see Fig. 3.5 (a) 1.6 sec.), because the noisy reference allows for residual noise after noise
reduction (0.5-1 sec.). Using a noisy signal with an SNR of 25 dB (20 dB above the
input signal) as a reference for the quality measure and incorporating the optimization
constraints mentioned above, the perceptually optimal time constants of the proposed
noise reduction algorithm are shown in table 3.2.

The subjective quality of the output signals was significantly better compared to the
direct implementation with time constants τx, τs = 0. This approves the assumption that
automatic parameter optimization with perceptual quality measures leads to a higher
quality of the processed audio signal. However, compared to the STFT-based noise reduc-
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Figure 3.5.: Parameter optimization using a clean speech reference (a) and a noisy (25 dB
SNR) speech reference (b)

Band 1 2 3 4 5 6 . . . 26 27
τs/[ms] 2.0 2.0 1.9 1.9 1.8 1.8 . . . 1.0 1.0
τx/[ms] 100.0 96.5 93.1 89.6 86.2 82.7 . . . 13.5 10.0

Table 3.2.: Perceptually optimal smoothing time constants derived from a subband-based
parameter optimization of the auditory filterbank-based noise reduction algo-
rithm.

tion scheme the quality could not be improved, yet. Two reasons can be given for that:
First, the bandwidths of the auditory filterbank for low frequencies are smaller than typ-
ical FFT-bandwidths which results in stronger envelope fluctuations in these bands. This
means that the discrimination between speech and noise based on statistical properties of
the envelope is more difficult and leads to more errors. Second, the proposed gain-table
by [22] was optimized on the statistical properties of STFT-signals and does not hold for
filterbank-signals with variable bandwidths.

3.4. Quality Assessment for Low-Power Applications

Hearing aids make high demands regarding the energy efficiency of the DSP circuit. Typi-
cally, the minimum requirements on operation time using a single battery are at least a few
days. Thus, low-power optimization techniques are of high interest. Typically, low-power
optimizations techniques work at a low level of abstraction and begin when the algorithms
are already finalized. This reduces the effective degrees of freedom for power optimization
which would be higher if the information about the expected power consumption of, e.g.,
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a noise reduction scheme would already be available to the developer on a higher level of
abstraction. One possibility to reduce power consumption is, e.g., to reduce the bit-rate
of digital signals or to use adapted fixed point number systems that are appropriate for
audio-signal processing applications. However, quantization effects are a consequence that
generally have a non-linear influence on both the perceptual audio quality and the power
consumption of the circuit. Furthermore, the quantization of algorithm parameters (e.g.,
filter coefficients) and data (e.g., time-varying spectral envelope) may have different re-
quirements on accuracy. Consequently both, expected power consumption and perceptual
audio quality should be available to the algorithm developer to facilitate decisions on a
trade-off scale at least between these both competing properties of a low power algorithm.
Hence, in a DFG-funded project AVSy, a mixed interdisciplinary team of computer scien-
tists, electrical engineers and (psycho-)physicists explored ways to combine both measures
in a single application. The subsequent section gives a brief summary of one of the main
project outcomes.

3.4.1. Experiments and Results
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Figure 3.6.: Trade-off between power consumption and audio quality in a Matlab algorithm

Fig. 3.6 shows the results of a low-power optimization experiment with an arbitrary finite
impulse response (FIR)-filter. The aim was to show the dependency of bitlength versus
power consumption and bitlength versus signal quality on a high abstraction level, i.e., in
a Matlab algorithm. It is realized using three toolboxes from the project partners that
had been integrated in a Matlab simulation environment: (i) A library that simulates the
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behavior of low-power circuits, (ii) a tool that can estimate the expected signal-dependent
power consumption for the low-power circuit and (iii) the signal quality toolbox. The left
panel, Fig. 3.6a, shows that the precision of the filter coefficients has a non-linear influence
on both power consumption and signal quality. In the right panel, Fig. 3.6b, these
results are used to show the dependance between power consumption and signal quality.
Obviously, the highest objective quality enhancement per mWs energy consumption is
expected between 7 and 9 Bit precision of the filter coefficient. For 11 to 13 Bit the
quality enhancement becomes significantly lower and is negligible between over 14 Bit
precision.With this information available, the developer would most probably decide to
use a FIR filter with a precision around 12 Bit, while a decision based on the power
consumption alone or only on the estimated signal quality would be difficult.

3.5. Conclusion

The results in section 3.2 showed that objective measures are able to predict subjective
ratings in noise reduction schemes. In terms of noise reduction alone the SNRE mea-
sure was appropriate, but for objective assessment of perceived speech signal distortion or
overall quality, perceptual measures such as PESQ and PSM (PEMO-Q) had higher cor-
relations with subjective data and thus were better suited. Whereas PESQ was optimized
for speech quality, PSM is a more general audio quality measure that is also applicable to,
e.g., processed music and transients. The LAR measure which had shown high correlation
with subjective quality measurement in [50, 59] in the current study only had high corre-
lation with the overall quality rating for stationary white noise. For the overall correlation
analysis done here, using different noise types and covering a broader range of signal qual-
ities than in comparable studies, the high correlation of the LAR with subjective overall
quality ratings could not be confirmed.
In section 3.3 a new method for subband based quality prediction and parameter optimiza-
tion was proposed which was tested and analyzed on a monaural noise reduction algorithm.
The direct conversion of the STFT-based algorithm due to [22] led to strong interferences
and artifacts in the audio signal. These artifacts could be reduced by the proposed per-
ceptual quality optimization scheme. With these settings the processed audio signal had
a quality which was comparable to STFT-processed signals. However, the noise reduction
scheme could not be improved compared to a constant bandwidth STFT-method by using
an auditory filterbank. Looking at details of the internal representations in subbands, we
were able to interpret the principle limitations of the monaural noise reduction scheme.
In section 3.4 parts of the results from the joint project AVSy were shown. The goal was
to design an integrative simulation and evaluation tool for low-power algorithms which
are applicable for hearing aids. The power optimization of those algorithm types is gen-
erally done at a stage of development where the algorithm design is already fixed and,
moreover, only technical distortion measures are considered. Thus, it was desirable to
have the information about power consumption and perceptual signal quality available at
a higher abstraction level of the algorithm development. This was realized with the devel-
opment of an integrative simulation and evaluation tool including power loss estimation
and objective signal quality assessment. However, for complexity reasons concerning the
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simulation of low-power circuits only exemplary results optimizing the bit resolution of
FIR-filter coefficients could be shown here.

To conclude, from a selection of the best objective measures for each rating task to-
gether with representative noise types (section 3.2) a test-bench was defined and used for
quality assessment of a typical low-power application (section 3.4) and for the parameter
optimization of a novel noise reduction scheme (section 3.3). However, because of the high
dimensionality of the parameter space, a sub-band measure based on PEMO-Q was derived
which could successfully be used for parameter optimization. Although the single-channel
noise reduction scheme was based on auditory filters, to match the frequency resolution of
the algorithm to human perception, no significant benefit to traditional STFT-based meth-
ods was found. Hence, it is suggested that there are principle limitations of single-channel
short time spectral attenuation (STSA) algorithms that cannot easily be overcome. There-
fore, in the next section multi-channel algorithms are investigated and evaluated using the
performance measures that have been identified to be significant for human perception of
noise reduction.
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4. Multi-Channel Noise Reduction Schemes
with Binaural Output - Performance
Evaluation and Optimization1

4.1. Introduction

Multi-channel spatial beamformers have been shown in the literature to be a useful ele-
ment of hearing aids in order to suppress noise from undesired directions and to enhance
the sound emanating from a target direction (see, e.g. [17, 27, 56]). The standard con-
figuration for a single hearing aid on one side employs two or three microphones spaced
closely to each other (maximum distance approx. two centimeters) and uses either a fixed
or an adaptive beamforming algorithm ([20, 27, 37]) in order to typically enhance the
signals emanating from the front of the wearers head. A higher functional array gain
(i.e., improvement in signal-to-noise ratio assuming a constant microphone noise) at low
frequencies can be achieved by applying superdirectivity [5, 11] which increases the suscep-
tibility to self-noise of the microphones and model errors, and by increasing the physical
distance between the left-most and rightmost microphone of the array. Hence, several
solutions for hearing aid wearers with external arrays (for example mounted in a pair of
glasses as broadside or endfire array according to Soede, [68, 69]) have successfully been
introduced. An alternative approach to extend the physical dimensions is to utilize the
acoustical input to both ears of the user and hence to mimic (to a certain degree) the
acoustical aspects of the cocktail party processing normally performed by the human brain
on the input from both ears ([13, 44, 82]). Since this requires a preferably wireless connec-
tion between the microphones at both sides of the head a number of papers considering
this general setup has emerged only recently ([38, 47, 64, 65, 75, 85]). However, several
problems connected to this binaural array processing have not been dealt with in the pre-
vious approaches in a systematic way. One important point is the binaural output mode:
While the classical beamforming algorithms provide only one (monaural) output signal,
classical cocktail-party processing schemes (such as, e.g. [43, 44]) provide a binaural out-
put signal to both ears that enable the listener to still take advantage of the remaining
binaural cues in the output signal (e.g., for localization and separation of acoustical ob-
jects and for spatial perception of the environment). Even if a binaural output is provided
by a beamformer system, several options exist about the interaural relation between both
output channels ([38, 47, 75, 82]) that may interact with the user’s remaining binaural
processing capability in a yet to be explored way. The current chapter therefore studies

1Parts of this chapter have been submitted as "Parameter Optimization for a Class of Binaural Multi-
Channel Noise Reduction Schemes for Hearing Aids based on Perceptual Quality Measures" to IEEE
Trans. on Audio, Speech and Language Processing, 2008
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the effect of the binaural output mode in a systematic way.
Another important point is the model of the wave propagation: The diffraction properties
of the sound propagating around the users head provide an acoustic decoupling across
the microphones at both sides which might improve the array performance when properly
considered in the beamformer design. A comparatively coarse model of this propagation
has the advantage of being largely independent from the individual’s exact geometric di-
mensions of the head and the pinna whereas an exact model (incl., e.g., measured head
related transfer functions (HRTF)) may provide a better functional array gain. In order
to find out if any of these extreme cases in head-shadow modeling or any compromise
provides the best solution, a systematic evaluation was performed in this study.
Most beamformer approaches in the past have been designed and evaluated using a certain
model of the ambient noise field to be suppressed (such as, e.g. isotropic noise under free
field assumption, measured noise fields on a head or incoherent noise at the microphones,
[5, 52]). In practical every day listening situations, however, these assumptions are not
necessarily met. Additionally, certain noise field assumptions raise the array’s susceptibil-
ity against uncorrelated or spatially white noise which has influence on the noise reduction
performance and signal quality. Hence, the influence of different noise field characteristics
is an important factor for a beamformer design and will be studied in a systematic way.
In literature, adaptive beamforming schemes have often been found to be superior in
noise reduction performance to fixed beamformers [26]. While a fixed beamforming array
characteristic has the advantage of being robust against estimation errors of the respec-
tive target and noise signal, adaptive beamformers are known to be less robust but have
the advantage to adaptively steer spatial notches to the most disturbing noise source di-
rection(s). Since it is unclear if the relative benefits from each solution outperform the
respective potential disadvantages (in particular with respect to the more complex prop-
agation model for head-worn arrays) a systematic evaluation was performed here.
In order to study the influence of those parameters listed above in a systematic way, a
class of six-channel binaural beamformer systems is investigated here that operates on the
output signal from a pair of binaurally-connected three-microphone behind-the-ear (BTE)
hearing aids. An optimization of the respective parameters was performed by evaluating
the performance of the algorithm with different objective measures and analyzing its ro-
bustness against mismatch of the real situation from the assumed acoustical situation.
As a most common physical performance measure the enhancement of the signal-to-noise
ratio (SNRE) is considered here. The SNRE had shown high correlations with subjective
ratings of background noise reduction for monaural noise reduction schemes [62]. How-
ever, as the amount of noise reduction often competes with speech distortion [35, 62] the
SNRE does not accurately reflect human benefit in speech intelligibility or overall subjec-
tive perceptual quality. Hence a monaural objective quality measure based on an elaborate
psychoacoustical processing model (PEMO-Q, [34]) has been used in the study to estimate
the objective performance.
Psychoacoustical-model-based performance measures used in the past do not adequately
take into account the respective benefit of binaural cues in the output signal that can be
utilized by the human user of the binaural processing scheme. Hence, some discrepancies
can be observed between the actual performance of binaural noise reduction schemes with
humans and the predicted performance [75]. In order to account for this effect, a binaural
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speech intelligibility prediction model BSIM [3] was used to assess the relative benefit that
human listeners can achieve from the (remaining) binaural cues in the output signal.
The different binaural output schemes where tested in a subjective listening test with nor-
mal hearing listeners. The remainder of this chapter is organized as follows. In Section
4.2 the acoustical setup is introduced as a basis for the algorithm and evaluation. Sec-
tion 4.3 describes the signal model, the beamformer algorithms and the binaural output
schemes. The influence of the propagation model on the beamformer design is discussed in
Section 4.3.4. A summary of signal-independent and signal-dependent performance mea-
sures is given in Section 4.4. The experiments and results on the perceptual optimization
of the white noise gain constraint and on the binaural output quality follow in Section
4.5 together with a comparison of adaptive and fixed beamformers and robustness mea-
surements. These results are discussed in Section 4.7 and the different binaural output
modes are assessed with normal hearing listeners in a subjective listening test measuring
the hearing effort in Section 4.6. Finally, Section 4.8 concludes the paper.

4.2. Acoustical Setup
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Figure 4.1.: Acoustical setup: Two linear microphone arrays are mounted bilaterally on a
B&K HATS. Each array consists of 3 hearing aid microphones mounted in a
hearing aid shell with a distance of 8 mm. The frontal direction is the x-axis
which is equal to an azimuth angle θ = 0◦ and an elevation angle φ = 90◦.

Fig. 4.1 shows schematically the acoustical setup and the coordinate system used for
defining microphone positions and sound source directions. 6-channel signals (M = 6)
have been recorded from two 3-channel BTE hearing aid shells (Siemens Acuris) mounted
on a Brüel & Kjær (B&K) head and torso simulator (HATS). The impulse responses (IRs)
for all microphones have been measured with this setup in an anechoic room for azimuth
directions of 0-180◦ in 5◦ steps at an elevation of 0◦ (horizonal plane). In the following
these are referred to as 6-channel head related transfer functions (HRTFs) in the frequency
domain that include head-shadow and diffraction effects, and the characteristics of the mi-
crophones. Similarly, HRTFs have been measured in an office environment (reverberation
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time τ60 = 300 ms).
Directional target speech and interfering noise signals were calculated by filtering source

signals with these HRTFs. In addition, real-world environmental noise has been recorded
in a cafeteria and in an office room. Furthermore, an artificial diffuse noise has been
generated by filtering a speech-colored random noise with the anechoic HRTFs from all
directions and summing up all filtered noise signals. This signal simulates a cylindrical 2D-
isotropic noise field. From the database of 6-channel directional speech and noise signals
various mixtures have been calculated for different signal-to-noise ratios (SNRs).

The target signal was varied in three acoustic scenes: Target speaker with anechoic
HRTF from 30◦ (condition 1), from 0◦ (condition 2), and target speaker with office HRTF
from 30◦ (condition 3). All signals were mixed with the superposition of recorded noise
from the cafeteria and an interferer speech signal from −135◦. The input signal-to-noise
ratio (SNR) and performance values (see section 4.4.2) are given in table 4.1.

con-
dition

rever-
beration
τ60

target
sig-
nal

input
SNR
Left

input
SNR
Right

input
PSM
Left

input
PSM
Right

input
SRT

1 < 5 ms 30◦ 4.3 dB 1.3 dB 0.6 0.34 -9.85 dB
2 < 5 ms 0◦ 2.4 dB 3.2 dB 0.52 0.45 -8.15 dB
3 300 ms 30◦ 3.2 dB 2.5 dB 0.60 0.45 -10.25 dB

Table 4.1.: Signal conditions and input values of the reference microphones

4.3. Algorithm

Fig. 4.2 shows the block diagram of the noise reduction scheme which will be described
in the following. Note that the algorithm is not limited to the 6-channel setup used here
but applies to any M-channel microphone array mounted near to a head. Throughout the
paper, vectors and matrices are printed in boldface, scalars in italics. t denotes the time,
ω the radian frequency and k the block-index. The superscripts T , ∗ and H denote the
transposition, the complex conjugation and the Hermitian transposition, respectively.

4.3.1. Signal Model

The multi-channel signal x(t) = [x0(t), . . . , xM−1(t)]T (Fig. 4.1, 4.2) is assumed to be a
mix of the directional target signal s(t) and a noise signal n(t). In the frequency domain
the signal model can be formulated as

X(ω, k) = dS(ω)S(ω, k)
︸ ︷︷ ︸

S(ω,k)

+N(ω, k) (4.1)

where the capital letters denote the time-frequency transformed signals of x, s, and n
calculated by a STFT. The propagation vector dS(ω) = d(ω, θS , φS) is the vector of
transfer functions between the source signal S(ω) and the signal vector S(ω) observed at
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Figure 4.2.: Multi-channel beamformer system with binaural output. WH is the fixed
beamformer filter, B denotes the blocking matrix, Ha is the adaptive filter,
and Hb is the filter that generates a binaural output from the reference mi-
crophone signals X2(= XL) and X3(= XR) at the left and right ear, p is the
compensation vector that cancels the target signal in combination with B.

the sensors. In general, the propagation vector for a signal coming from the azimuth angle
θ and the elevation angle φ is

d(ω, θ, φ) = [d0(ω, θ, φ), . . . , dM−1(ω, θ, φ)]T (4.2)

where the transfer function to a microphone i = 0 . . .M − 1 is

di(ω, θ, φ) = ai(ω, θ, φ)e
−jϕi(ω,θ,φ) (4.3)

where ai(ω, θ, φ) denotes the amplitude spectrum and the group-delay can be calculated

by τi(ω, θ, φ) = ∂ϕi(ω,θ,φ)
∂ω .

4.3.2. Beamformer

A fixed filter-and-sum beamformer can be designed in the frequency domain to produce
a monaural output that contains less noise energy than the multi-channel input signal X
by

Yf (ω, k) =
M−1∑

i=0

W ∗i (ω)Xi(ω, k) =WH(ω)X(ω, k). (4.4)

The optimal filterW can be calculated by the well-known minimum variance distortionless
response (MVDR) solution [5]:

W (ω, θ, φ) =
ΦNN

−1(ω)d(ω, θ, φ)

dH(ω, θ, φ)ΦNN
−1(ω)d(ω, θ, φ)

, (4.5)
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where ΦNN
−1 denotes the inverse noise correlation matrix which is discussed in 4.3.4.

The fixed beamformer can be extended by an adaptive noise cancellation path which con-
sists of a delay- (and amplitude-) compensation step, denoted by the delay compensation
vector p, followed by a blocking matrix B (producing the noise reference X ′) and an a
multi-channel Wiener filter Ha that is adapted to cancel out noise components that X ′

and Yf have in common. The (element-wise) Hadamard product of the delay compen-
sation vector p and the propagation vector d should result in a zero-delay vector with
amplitude 1:

p • d = 1 = [1, . . . , 1]T . (4.6)

Thus, p is defined by

p(ω, θ, φ) =
[
d0
∗(ω, θ, φ)

|d0(ω, θ, φ)|2
, . . . ,

dM−1
∗(ω, θ, φ)

|dM−1(ω, θ, φ)|2

]T

, (4.7)

and the blocking matrix (which is a [M − 1×M ] - subtraction matrix) is [5]

B =









1 −1 0 0 . . . 0
0 0 0 0 . . . 0
...

. . .
. . .

. . .
. . .

...
0 . . . 0 0 1 −1









. (4.8)

The noise reference matrix X ′ at the output of the blocking matrix is

X ′(ω, k) = B(p(ω, θ, φ) •X(ω, k)). (4.9)

The multi-channel Wiener filter is designed with

Ha(ω) = ΦX′X′
−1(ω)ΦX′Yf

(ω) (4.10)

where the PSD-matrix ΦX′X′ and the cross-PSD row vector ΦX′Yf
denote expectation

values defined by

ΦX′X′(ω) = E
{

X ′(ω)X ′H(ω)
}

, (4.11)

ΦX′Yf
(ω) = E

{

X ′(ω)Y ∗f (ω)
}

. (4.12)

In practice, ΦX′X′ and ΦX′Yf
are calculated by recursively averaging instantaneous short-

time spectra:

ΦX′X′(ω, k) = αΦX′X′(ω, k − 1) + (1− α)X ′(ω, k)X ′H(ω, k),ΦX′Yf
(ω, k) (4.13)

= αΦX′Yf
(ω, k − 1) + (1− α)X ′(ω, k)Y ∗f (ω, k). (4.14)

Therefore, also the filter Ha is slowly varying over time and the noise estimate of the
adaptive path, Ya, is calculated by

Ya(ω, k) =HHa (ω, k)X ′(ω, k) (4.15)
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which then can be subtracted from the fixed beamformer output so that we get the monau-
ral output of the generalized sidelobe canceller (GSC):

Z(ω, k) = Yf (ω, k)− Ya(ω, k). (4.16)

In summary, we get the monaural outputs of the two beamformer types:

fixed : Z(ω, k) = Yf (ω, k) =WH(ω)X(ω, k), (4.17)

adaptive : Z(ω, k) =WH(ω)X(ω, k)−HHa (ω)X ′(ω, k). (4.18)

Thus, the difference between fixed and adaptive beamformer consists of an additional noise
subtraction path which can be added to the fixed beamformer. Note, that the original
GSC [28] uses a standard delay-and-sum (D&S) beamformer in the fixed processing path,
whereas we use an arbitrary superdirective design here, which is discussed below.

4.3.3. Binaural Output

The output can be extended to a binaural signal with left and right output signal YbL and
YbR

Yb(ω, k) = [YbL(ω, k), YbR(ω, k)]T (4.19)

with different strategies.

Target signal phase reconstruction

The simplest solution might be to reconstruct the phase and amplitude response of the
target signal by multiplying the monaural output with the propagation coefficients dL, dR
that relate to the reference microphones (denoted as xL and xR in Fig. 4.1) at the left
and right hearing aid array, respectively:

YbL(ω, k) = dL(ω, θ, φ)Z(ω, k), (4.20)

YbR(ω, k) = dR(ω, θ, φ)Z(ω, k). (4.21)

However, this can only reconstruct the gross magnitude and phase characteristic of the
target signal that is included in the assumed propagation model whereas the binaural
information of the interfering noise signal is lost.

Binaural post-filter

A method to preserve the phase of both, signal and noise, can be realized according to
[47] by applying a real-valued time-varying post-filter to the reference microphone signals
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XL, XR:

Hb(ω, k) =

(
|dL(ω, θ, φ)|2 + |dR(ω, θ, φ)|2

)
ΦZZ(ω, k)

ΦXLXL(ω, k) + ΦXRXR(ω, k)
(4.22)

YbL(ω, k) = Hb(ω, k)XL(ω) (4.23)

YbR(ω, k) = Hb(ω, k)XR(ω). (4.24)

ΦZZ ,ΦXLXL and ΦXRXR denote the power spectral density estimates for the signals
Z,XL, XR, respectively. In practice, these can be estimated by recursively smoothing in-
stantaneous signal powers. The binaural post-filter can be interpreted as a single-channel
envelope Wiener filter applied to both reference channels XL, XR. Additional gain rules
known from single channel noise reduction systems can be applied here.

Bilateral Beamformer

To investigate the behavior of two independently working unilateral beamformers WL
(left) and WR (right), the system depicted in Fig. 4.2 can be split into two subarrays
where XL = [X0, X2, . . . XM−2] denotes the signal matrix of the left subarray using the
even-numbered microphones and XR = [X1, X3, . . . XM−1] denotes the signal of the right
subarray using the odd-numbered microphones. X ′L,X

′

R are defined according to (4.9)
but for shorter blocking matrices and delay compensation vectors pL,pR, respectively.

YbL(ω, k) = ZL(ω, k)

=WL
H(ω)XL(ω, k)−HHaL(ω)X ′L(ω, k) (4.25)

YbR(ω, k) = ZR(ω, k)

=WR
H(ω)XR(ω, k)−HHaR(ω)X ′R(ω, k) (4.26)

The subarrays do not need to be restricted to one side but can use any combination of
microphones from both sides if a connection between the bilateral arrays exists. In the
case of a complete bilaterally connected system every filter gets the complete M -channel
information. However, in this case additional constraints have to be included into the
beamformer design to partially reconstruct the binaural information of the target and
noise signal. A detailed analysis of binaural systems of this type for two microphones can
be found in [82] and for six microphones in [15].

In summary, three different methods that produce a binaural output can be distin-
guished. In the following, the signal phase reconstruction method is denoted as (BIN_-
PR), the binaural post-filter as (BIN_PF), and the bilateral system using only the left
(respectively, right) subarray is denoted as (BIN_BL). The monaural output Z is denoted
as (MON).

42



4.3. Algorithm

4.3.4. Influence of Different Propagation Models on the Beamformer Design

The fixed beamformer coefficients given by (4.5) ideally reduce a noise field2 with the
correlation matrix ΦNN under the constraint of an undistorted signal response in the
desired look direction. The more exactly ΦNN is known, the higher is the noise reduction
performance. The absence of distortion for the MVDR beamformer, however, is only
given if the propagation model d used for the beamformer design and the true signal
wave propagation vector dS perfectly match. In general, the exact transfer functions dS
are unknown and several assumptions about the wave propagation must be made. The
influences of the exactness of the propagation model on the beamformer performance are
discussed below.

Propagation vector

All effects could be perfectly integrated into the beamformer design if the transfer func-
tions dS could be measured in the situation of interest, including the room response, the
head-shadow and diffraction effects, and the microphone characteristics. However, as esti-
mating the room response for a given target signal is not feasible under realistic conditions
the second-best solution is measuring the anechoic transfer functions of the system includ-
ing the head-influences and the microphone characteristics. These transfer functions can
directly be used as a propagation vector d in (4.2) and will be referred to as HRTF in the
following. If the anechoic HRTF is not available, the gross head-shadow and diffraction
effects can be modeled by the wave propagation observed on a rigid sphere [8, 18]. For
head-models, both, ai and τi in (4.3) are angle and frequency dependent.
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Figure 4.3.: Interaural time delay for measured HRTFs and head models.

In general, it is assumed that the target source is approximately in the horizontal plane,
i.e., φS ≈ 90◦. Therefore, the elevation angle φS will be disregarded in the following for
the head-related wave propagation models used in this study. The first head model (HM1)
by [8] is a simple and effective parametric model that estimates the characteristics of a
sphere. The interaural time difference (ITD) cues are modeled by Woodworth and Schlos-
berg’s frequency independent (ray-tracing) formula. The gross magnitude characteristics
of the HRTF spectrum, namely the interaural level difference (ILD) cues, are covered by a

2a superposition of many unknown noise signals
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Figure 4.4.: Interaural level differences for measured HRTFs and head model (HM2).

single-pole, single-zero head-shadow filter which also accounts for an additional frequency
dependent delay at low frequencies. For each microphone of the array an angle of a ray
from the center of the sphere to the microphone θi, i = 0 . . .M − 1, can be calculated.
Choosing the angle to the desired sound source θS and some additional model parameters
(e.g. sphere radius r = 8.2 cm, speed of sound, fitting parameters αmin, θmin, see [8]), the
transfer function is calculated by

d(ω, θS) = [HHM1(ω, θS , θ0,params), . . . , HHM1(ω, θS , θM−1,params)]T . (4.27)

The spherical head model is calculated by

HHM1(ω, θS , θmic) =
1 + j α(θS−θmic)

2ω0
ω

1 + j ω2ω0

e−jωTd(θS−θmic) (4.28)

Td(θ) =

{
r
c cos(θ) 0 ≤ |θ| < π2
r
c (|θ| −

π
2 ) π

2 ≤ |θ| < π
(4.29)

ω0 =
c

r
(4.30)

α(θ) =
(

1 +
αmin

2

)

+
(

1−
αmin

2

)

cos
(
θ

θmin
180◦

)

(4.31)

αmin = 0.1 θmin = 150◦ (4.32)

where ω0 is the radian frequency corresponding to the speed of sound c and the radius r
of the sphere, Td is the travel time around the sphere from the angle of incidence θ to the
angle θmin corresponding to the microphone position. The second head model (HM2)
[18] additionally incorporates the distance of the source for modeling near-field effects and
interference effects that introduce ripples in the response that are quite prominent on the
shadowed side. It is numerically calculated by a recursive algorithm given in [18]. The
propagation vector is built similar to HM1 (4.27). The far-field assumption implies that all
microphones see the target sound wave arriving from the same angles (θS , φS) as a plane
wave. Additionally assuming free-field (FF), i.e., no objects inside the sound wave path
and a unity microphone response ai(ω, θ, φ) = 1, ∀(ω, θ, φ, i), the propagation coefficient
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(4.3) simplifies to

d(ω, θS , φS) =
[

e−jωτ00(θS ,φS), . . . , e−jωτ0M−1(θS ,φS)
]T

(4.33)

where τ0i is a constant group delay measured between a reference microphone 0 and micro-
phone i. The group delay can easily be calculated based on the microphone array geometry
where l0i is the vector difference between a reference microphone 0 and the microphone i,
c is the speed of sound, and er(θS , φS) = [sin(θS) cos(φS), sin(θS) sin(φS), cos(φS)]T is the
unit vector in target direction:

τ0i(θS , φS) =
l0i
Ter(θS , φS)

c
. (4.34)

Thus, under the FF assumption the beamformer can be designed knowing the relative mi-
crophone positions and the direction of the target signal. The differences of the interaural
time difference (ITD) for the propagation models are shown in Fig. 4.3 and the different
interaural level difference (ILD) in Fig. 4.4.

Noise PSD-matrix

The normalized noise PSD-matrix ΦNN contains the information of how much the mi-
crophone signals are correlated expressed by their complex pairwise cross-power spectral
densities for a measured or an assumed noise field. It is defined by

ΦNN (ω) =
1

ΦNN (ω)









ΦN0N0(ω) . . . ΦN0NM−1
(ω)

ΦN1N0(ω) . . . ΦN1NM−1
(ω)

...
. . .

...
ΦNM−1N0(ω) . . . ΦNM−1NM−1

(ω)









(4.35)

where the normalization factor ΦNN (ω) forces the trace of ΦNN to equal M . The fact
that it is inverted in the MVDR equation (4.5) can be interpreted as a decorrelation of
the noise components included in X. Thus, the subsequent summation of the microphone
signals leads to an enhancement of correlated signal components compared to uncorrelated
components. The simplest noise field model makes the assumption that the noise field
is already uncorrelated, i.e. no further decorrelation is needed, and therefore it has a
correlation matrix

ΦNN (ω) = ΦNN = I =









1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1









= ΦNN
−1. (4.36)
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The optimal MVDR beamformer design for uncorrelated noise leads to a delay-and-sum
(D&S)-beamformer (aka: conventional beamformer):

W (ω) =
d(ω)

dH(ω)d(ω)
=
d(ω)

∑

i a
2
i (ω)

(4.37)

=
1

M
d(ω), ai(ω) = 1∀i (4.38)

By summing up uncorrelated noise and correlated signal components the theoretical SNRE
is 10 log10(M) dB, i.e., ≈ 7.8 dB for M = 6 microphones. However, natural sound sources
in general are correlated. Thus, a better noise field model can be used in (4.5) and a higher
directivity can be achieved by designing a superdirective beamformer. It is important for
the beamformer performance that the applied noise field model matches the observed noise
PSD-matrix. The cross-spectral density ΦXiXk of a signal Q arriving from azimuth angle
θ as observed between the microphones i and k is given by

ΦXiXk(ω, θ) = E {Q(ω)di(ω, θ)Q
∗(ω)d∗k(ω, θ)} (4.39)

= ΦQQ(ω)di(ω, θ)d
∗
k(ω, θ) (4.40)

= ΦQQ(ω)ai(ω, θ)ak(ω, θ)e
jω(τi(ω,θ)−τk(ω,θ)). (4.41)

The noise PSD-matrix of all noise sources can be calculated as the sum of individual noise
cross power spectral densities arriving from different azimuth directions θv:

ΦNiNk(ω) =
∑

θv

ΦXiXk(ω, θv). (4.42)

If the directions of individual noise sources Q are unknown (which is mostly the case)
the assumption of homogenously distributed sources is often made. Two typically used
noise characteristics can be distinguished: A spherically isotropic or diffuse noise field
(diff3D) is a good model for a reverberant room, and a cylindrical isotropic noise field
(diff2D) for rooms with relatively low reflections from the ceiling and the floor. For the
free-field case where the magnitude of the propagation vector ai, ak equal 1 and the delay
only depends on the microphone distance lik and the angle of incidence θ, both noise fields
can be derived by solving the integral of equal-power noise sources from all directions: If
the propagation delay between two microphones i, k equals

τi(θ)− τk(θ) =
lik
c

sin(θ) (4.43)

then the cross power spectral density of a noise source Q equals

ΦXiXk(ω, θ) = ΦQQ(ω)ejω
lik
c

sin(θ). (4.44)

Summing up an infinite number of noise sources in a plane with equal power ΦQQ = 1

46



4.3. Algorithm

from all directions we get

ΦNiNk(ω) =
1

2π

∫ π

−π
ΦXiXk(ω, θ)dθ (4.45)

=
1

2π

∫ π

−π
ejω

lik
c

sin(θ)dθ (4.46)

= J0

(

ω
lik
c

)

(4.47)

where J0 is the zero-oder Bessel function of the first kind which describes the characteristic
of a cylindrical isotropic noise. Beamformers using this noise model can easily be modified
for an optimal front-to-back ratio by adjusting the limits of the integral [5]:

ΦNiNk(ω) =
1

2(π − δ)

∫ θ0+π−δ

θ0−π+δ
ejω

lik
c

sin(θ)dθ 0 ≤ δ ≤ π (4.48)

For spherically homogenous isotropic noise the integral over all azimuth and elevation
angles leads to the well-known sinc-characteristic in free-field:

ΦNiNk(ω) =
1

2π

∫ π

−π

∫ π/2

−π/2
ejω

lik
c

cos(φ) sin(θ)dφdθ (4.49)

=
sin(ω likc )

ω likc
= sinc

(

ω
lik
c

)

(4.50)

However, for head-related systems these solutions of the integrals are not valid due to
the more general definition of the propagation vector d. The head can be seen as spatial
filter that reduces the correlation observed between the microphone signals. More precise
noise field PSD matrices can be calculated by integrating (or summing) the propagation
vectors over all directions using eq. (4.39)-(4.42). In summary, the different noise field
models that were used are uncorrelated noise (uncorr), cylindrical isotropic noise (diff2D),
spherical isotropic diffuse noise (diff3D), integrated HRTF or HM2 (intHRTF, intHM2)
and long-term measured noise from real-world recordings (measured). In the literature
the noise power cross-correlation matrix is often normalized so that we get the coherence
matrix

ΓNiNk(ω) =
ΦNiNk(ω)

√

ΦNiNi(ω)ΦNkNk(ω)
. (4.51)

In free-field, the coherence matrix ΓNN and the noise correlation matrix ΦNN are equiv-
alent and can be used likewise. However, as the definition of ΦNN is more general for any
noise field characteristic this is used in the following.

4.3.5. Algorithm Combinations

The different propagation models, output types, and algorithm settings are summarized in
Table 4.2. All combinations are possible and a subset of combinations was evaluated (see
section 4.4). If not stated otherwise, the noise field model intHRTF is used in combination
with the propagation model HRTF, intHM2 with HM2, and diff2D with HM1 and FF.
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For stability reasons of the beamformer design the noise correlation matrices ΦNN have
to be mixed with a certain amount of uncorrelated noise (see section 4.4.1). This WNG
constraint has been evaluated and optimized in section 4.5.

Output Type Wave Propagation Model d Noise field model ΦNN Beamformer type
BIN_PR HRTF uncorr fixed
BIN_PF HM2 diff2D adaptive
BIN_BL HM1 diff3D

MON FF intHRTF
intHM2

measured

Table 4.2.: List of possible algorithm combinations

4.4. Evaluation Methods

For microphone arrays signal-independent measures exist to evaluate the theoretically ex-
pected performance for different noise field characteristics. These measures allow a coarse
estimate of the beamformer performance and are helpful for the numerical adjustment
and optimization towards the desired system properties. In this study, modifications to
existing measures that are suitable for head-worn systems are suggested in section 4.4.1.
For a more elaborate performance analysis, simulations with realistic signals, such as real-
world recordings on a prototype array-system have to be done. These signal-dependent
performance measures are described in section 4.4.2.

4.4.1. Signal-independent Performance Measures and the Influences Of The
Head

Array Gain

The array gain is a measure that shows the improvement of the SNR between the input
signal of one sensor i and the output of the array. It is defined by

Gi(ω) =
SNRout(ω)

SNRin,i(ω)
(4.52)

SNRout(ω) =
ΦSS(ω)

ΦNN (ω)

|WH(ω)dS(ω)|2

WH(ω)ΦNN (ω)W (ω)
(4.53)

SNRin(ω) =
ΦSS(ω)|di(ω)|2

ΦNNi
. (4.54)

If the input SNRs of all microphones (SNRin,0 . . .SNRin,M−1) are the same the array gain
for the fixed beamformer can be calculated by

Gi(ω) = G(ω) =
|WH(ω)dS(ω)|2

WH(ω)ΦNN (ω)W (ω)
. (4.55)

48



4.4. Evaluation Methods

In this form, the array gain is only valid for a free-field or a symmetric situation and should
be modified if head-shadow and diffraction effects need to be considered. The nominator
of (4.55) shows the amount of signal distortion for a signal with the measured propagation
vector dS whereas the denominator shows the ability to reduce a noise field which has the
measured PSD-matrix ΦNN and may differ from the assumption made for the beamformer
design. subsubsectionWhite noise gain The white noise gain (WNG) is a measure that
shows the ability to reduce uncorrelated (i.e., spatially white) noise. Such noise can be
associated to model errors, e.g., position, amplitude, phase errors, and self-noise of the
microphones and is an important robustness measure for microphone arrays. If the WNG
is small the beamformer is susceptible to uncorrelated noise (and model errors), i.e., such
noise is increased rather than decreased. Thus, the WNG has to be limited to a minimum
δ2:

WNG(ω) =
|WH(ω)dS(ω)|2

WH(ω)W (ω)
≥ δ2. (4.56)

One of the most popular robust approaches to achieve this is to apply a diagonal loading
[5, 17, 37] :

W (ω, θ, φ) =
(ΦNN (ω) + µ(ω)I)−1

d(ω, θ, φ)

dH(ω, θ, φ)(ΦNN (ω) + µ(ω)I)−1
d(ω, θ, φ)

. (4.57)

However, the choice of µ(ω) that limits the WNG to a minimum of δ2 is not simple. It
can be calculated, e.g., in a trial-and-error iterative process [17] or by a scaled projection
algorithm [11] which was presented in [37]. In this study, a simple iterative trial-and-error
method is used, and the relevance of this constraint is studied based on the perceptual
performance measures described in 4.4.2.

Directivity Index

The directivity index is a performance measure for directional microphones that shows
the difference between target signal suppression and the suppression of noise coming from
all directions, i.e., isotropic diffuse noise:

DI(ω) = 10 log10

(

|WH(ω)dS(ω)|2

WH(ω)ΦNN
diffuse(ω)W (ω)

)

. (4.58)

Note that the head can be seen as spatial filter that changes the correlation between the
sensors. Thus, the correlation matrix of a diffuse noise field in free-field is different from
the correlation matrix measured on a head-worn sensor-array. The head-related diffuse
noise field can be estimated by integration of HRTFs from all directions (see section 4.3.4).
To have a scalar performance value, the frequency dependent directivity index (DI) can
be weighted by a band importance function γk for speech perception taken from the
articulation index [27, 70]. Thus, the sum over all bands k is

DIAI =
∑

k

γkDI(ωk). (4.59)
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Spatial Directivity Pattern

The spatial directivity pattern or beam pattern is the response of the beamformer filterW
to a signal arriving from the direction θ, φ with the wave propagation d(ω, θ, φ):

|HDP (ω, θ, φ)|2 = 10 log10 |W (ω)Hd(ω, θ, φ)|2. (4.60)

For the objective evaluation of head-worn arrays, d should contain the true measured
wave propagation, which is not necessarily the same d as used for the beamformer design.
Another well-known definition of the beam pattern used in [5] is based on the array gain
(4.55). Here, the noise correlation matrix ΦNN is replaced by the correlation matrix of a
signal source in direction θ, φ with the true wave propagation d(ω, θ, φ):

ΦDD(ω, θ, φ) = d(ω, θ, φ)dH(ω, θ, φ), (4.61)

leading to

|HBP (ω, θ, φ)|2 = −10 log10

(

|WH(ω)ds(ω)|2

WH(ω)ΦDD(ω, θ, φ)W (ω)

)

. (4.62)

However, the second definition does not allow us to see target signal distortions caused by
an imperfect filter W .

4.4.2. Signal-dependent Performance Measures

Signal-dependent performance measures allow for a more precise performance analysis
especially if calculated on real-world recordings of typical acoustical scenes. For the per-
formance measures used here, the separated desired signal and the noise signals have
been processed with the same time-varying filters that have been calculated based on the
mixture. This method, sometimes referred to as a shadow filter or master/slave process-
ing method, is only appropriate in simulation environments. Given the target and the
noise signals processed separately, different signal based performance measures such as
the SNRE as well as perceptual quality measures can be calculated accurately.

Signal-to-Noise Ratio Enhancement (SNRE)

The SNR-Enhancement (SNRE) is the difference of the SNR at the output of the beam-
former and a reference input-SNR, both measured in dB. For binaural systems the SNRE
is calculated between the left (right) output of the binaural system and the left (right)
input at the reference microphone, respectively. Although there exist many modifications
to this measure, e.g., by using short-time (segmental) SNRE estimates or incorporating
speech importance band weighting, the linear broadband SNRE is still an appropriate
measure that had shown high correlations with subjective data on the assessment of back-
ground noise reduction [62]. The SNR was calculated as the mean power of the broadband
speech component on a dB scale (excluding speech pauses, i.e. signal segments with levels
of -60 dB re full scale and below) minus the broadband noise power in dB. For head-worn
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systems bilateral performance evaluation is relevant because a better-ear effect would be
ignored by simply taking the mean SNRE.

Perceptual Similarity Measure (PSM)

The quality measure PSM from PEMO-Q [34] estimates the perceptual similarity between
the processed signal and the clean speech source signal. It has shown high correlations
between objective and subjective data and has been used for quality assessment of noise
reduction schemes in [62, 64, 65]. PSM increases with increasing (input) SNR. As we are
also interested in the quality enhancement introduced by the algorithm, we use the deduced
measure ∆PSM that is calculated as the difference between the perceptual similarity
measure (PSM) of the output and of the unprocessed input signal.

Binaural Speech Intelligibility Measure (BSIM)

The Binaural Speech Intelligibility Measure (BSIM) aims to predict the speech reception
threshold (SRT) which is defined as the signal-to-noise ratio (SNR) at 50% speech intel-
ligibility. It is calculated based on a psychoacoustic model from four input signals, the
speech signal and the noise signal at the left and right ear. The model which is based
on the equalization-cancellation (EC) processing by Durlach and the speech intelligibility
index (SII) is described in [3]. It has shown high correlations between the individually
measured speech reception threshold (SRT) for normal hearing and hearing impaired sub-
jects and objective predictions made by BSIM. If BSIM (i.e., the estimated SRT) is lower
for the output of a noise reduction scheme than for the input signal this means that the
speech intelligibility has increased due to the algorithm. However, as speech intelligibil-
ity, and thus BSIM, is a nonlinear function of the SNR and other signal features such as
the preservation of binaural cues, we use the difference between input and output BSIM,
namely the ∆BSIM, as an indirect objective measure for the increase of intelligibility.

4.5. Experiments and Results

4.5.1. Spatial Directivity Pattern

Fig. 4.5a shows the spatial directivity pattern for the monaural output (MON) of a beam-
former designed with optimal information about the HRTF for a target signal direction
of 30◦ as observed on a head-worn microphone array. Generally, directivity patterns are
plotted on a linear frequency scale. Here, we use a logarithmic scale to better emphasize
attenuations that are relevant for speech perception. The best attenuation can be seen
on the averted side and on the rear hemisphere. The main lobe is broad enough to be
robust against target signal movement within ±10◦ degree over a broad frequency range.
Fig. 4.5b shows the directivity pattern of a beamformer designed for free-field applications
but observed on a head-worn microphone array (all other settings as for Fig. 4.5a). The
distortionless response constraint of the MVDR-design is violated as the desired target
direction is distorted. Furthermore, the side lobes caused by spatial aliasing are relatively
strong. DIAI values for the two designs are 6.3 dB and 5.0 dB, respectively.
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Figure 4.5.: Directivity pattern observed on a head-worn microphone array. a) Optimal
superdirective design using head-related impulse responses (HRTF) and b)
design using the free-field assumption (FF).

4.5.2. Perceptual Optimization of the White Noise Gain Limitation
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Figure 4.6.: Directivity pattern of a conventional beamformer which is optimal for the
suppression of uncorrelated white noise. DIAI = 3.2 dB

A common method to raise the beamformer’s robustness against various inaccuracies
is to limit the WNG to a minimum δ2 (see section 4.4.1). The WNG limitation, on the
other hand, reduces the directivity and thus the noise reduction performance. The highest
robustness is achieved for conventional beamformers (Fig. 4.6) with a low spatial selectiv-
ity and noise reduction performance. However, the robustness problems of superdirective
designs (Fig. 4.5) mainly occur at low frequencies (long wavelength relative to microphone
distance) where the correlation of the observed signals is high. In this frequency area, a
high amplification of the superdirective beamformer is needed to guarantee a distortionless
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response for the desired signal. As an unwanted secondary effect, also uncorrelated noise
is increased which may lead to a degradation of the sound quality. This trade-off between
directivity and robustness was evaluated with the perceptual performance measures to find
the optimal setting for a prototype hearing aid array under realistic acoustic conditions.
For the simulation of model errors and internal microphone noise, white uncorrelated noise
was added to the microphone signals at a digital signal level of −55 dB re full scale, i.e.,
30 dB below the averaged rms-level of the target speech signal observed at the microphone
array. Then the beamformer coefficients were constrained iteratively based on (4.57) start-
ing with ΦNN , intHRTF (intHM2, respectively) and increasing µ(ω) for each frequency
ω independently. The iteration was stopped when the frequency dependent WNG (4.56)
did not exceed a predefined value of δ2. After the processing with a fixed beamformer and
the binaural post-filter (BIN_PF) the signal quality was evaluated with the performance
measures PSM (averaged between left and right output) and BSIM for conditions 1 and
2. Fig. 4.7 shows BSIM and PSM as a function of the minimum white noise gain δ2. For
the HRTF (left panel) the optimal WNG limitation was found to be in the range between
−24 and −17 dB. This value was consistent for both conditions and for both perceptual
measures. For HM2 (right panel) the optimal values lay only slightly higher, between −22
and −15 dB. Models with lower exactness may need a stronger restriction of the WNG.
In practice, the frequency dependent WNG needed to be constrained up to a frequency
of 3000 Hz. Between 0 − 1000 Hz the resulting optimized µ(ω) was decreasing from −30
to −60 dB, between 1000− 3000 Hz it was fluctuating and slightly increasing to −55 dB,
and for frequencies higher than 3000 Hz the resulting µ(ω) was decreasing to −80 dB and
below indicating that for these frequencies the correlation is low and no WNG constraint
is needed.
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Figure 4.7.: Perceptual measures BSIM and PSM as a function of the minimum white
noise gain δ2 for the HRTF (left panel) and HM2 (right panel) assumptions
for conditions 1 and 2.
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4.5.3. Binaural Output Quality

∆BSIM ∆PSM
Left

∆PSM
Right

∆PSM
mean

SNRE
Left

SNRE
Right

SNRE
mean

BIN_PF 7.5 dB 0.19 0.31 0.25 6.7 dB 6.1 dB 6.4 dB
BIN_PR 5.0 dB 0.14 0.32 0.23 6.1 dB 7.7 dB 6.9 dB
BIN_BL 5.2 dB 0.11 0.21 0.16 4.3 dB 4.5 dB 4.4 dB

Table 4.3.: Overall performance for beamformer processing with binaural output.

The performance values for the different binaural strategies (BIN_PF, BIN_PR, BIN_-
BL) averaged over all conditions and propagation models are shown in Table 4.3. The
binaural post-filter (BIN_PF) had the highest ∆BSIM and ∆PSM values and thus had
the highest speech intelligibility and perceptual sound quality improvement. The binaural
target signal phase reconstruction filter (BIN_PR) had a slightly higher SNRE, a similar
∆PSM mean but a lower ∆BSIM than BIN_PF as the phase of the background noise
was not reconstructed and binaural information was lost. The bilateral beamformers
(BIN_BL) had lower ∆PSM and lower SNRE values compared to the other binaural
output systems which was caused by the smaller array size (3-microphones instead of 6).
Interestingly, binaural information was partially preserved which led to a slightly higher
∆BSIM than for BIN_PR.

4.5.4. Performance Analysis of Adaptive and Fixed Beamformers

∆BSIM ∆PSM SNRE
fixed adaptive fixed adaptive fixed adaptive

HRTF 8.5 dB 8.5 dB 0.28 0.27 7,1 dB 6.8 dB
HM2 8.1 dB 7.6 dB 0.27 0.27 7.0 dB 6.5 dB
HM1 7.9 dB 7.4 dB 0.25 0.26 6.4 dB 6.0 dB
FF 7.3 dB 5.1 dB 0.23 0.19 5.8 dB 5.4 dB

Table 4.4.: Performance of fixed and adaptive Beamformers

Table 4.4 shows the performance values for the fixed and the adaptive beamformer in
combination with the binaural post filter (BIN_PF) which were averaged over all condi-
tions for each propagation model. The HRTF model had a good performance for both,
fixed and adaptive beamformers. The averaged ∆BSIM was 8, 5 dB for both, adaptive and
fixed beamformer, as the adaptive beamformer was only better under optimal conditions
(conditions 1, 2). The averaged ∆PSM (additionally averaged over left and right ∆PSM)
was almost equal for adaptive and fixed beamformers if head influences were included. The
head models HM1 and HM2 had a good average performance for the fixed beamformer,
and only slightly lower ∆BSIM values for the adaptive beamformer. The free-field model
(FF) showed a significantly lower performance than the head models in all situations and
in particular for the adaptive beamformers.
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4.5.5. Robustness Against Steering Errors
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Figure 4.8.: PSM measure at left and right ear (panel a–d) and SNRE and BSIM (panel e–
h) for fixed and adaptive designs as a function of the steering angle. The design
target direction was 30◦, the respective values at the input of the beamformer
(without processing) are indicated with solid lines. Different curves denote
different propagation models.

For head-worn microphone arrays it is usually assumed that the look-direction is fixed
at zero degrees, and that the user always turns his or her head towards the desired signal.
Thus, we are interested how the performance reduces if the signal is not exactly coming
from the desired direction which can be attributed to steering errors or head-movements.
Fig. 4.8 shows the robustness results for fixed and adaptive beamformers in combination
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with the binaural postfilter (BIN_PF) using different propagation models in signal con-
dition 1. The target speech signal arrives from 30◦, so the best performance values should
be expected if the beamformer is steered to this direction. However, for free-field beam-
formers (FF, .......s ) the optimum steering direction is dragged to greater azimuth angles
because head-shadow and diffraction effects are neglected. The left panels (a–d) show the
performance values for the measure PSM Left and Right. The lowest PSM values are
measured for the FF propagation model, the highest values for the measured HRTFs. The
PSM values for the two headmodels HM1, HM2 lie in between. The quality enhancement
compared to the PSM of the input signal (∆PSM, distance between the PSM curves and
the Input PSM) was relatively robust for the fixed beamformers (panel a,c). For the adap-
tive beamformers (panel b,d) the PSM curves have a sharper peak at the 30◦ target signal
direction, but for steering errors greater ± 10◦ the predicted signal quality falls below the
input signal’s quality. Interestingly, this rapid quality reduction can not be seen with the
SNRE measure (see panel f for the left head-side): The enhancement of the signal-to-noise
ratio does not reduce to 0 dB (i.e. the input SNR) within ± 10◦ because the measure
doesn’t include all the effects of the target signal distortion. Furthermore, in panel f) the
ranking of the propagation models as predicted by the SNRE is questionable. Thus, the
SNRE might not be appropriate for a precise performance analysis. The BSIM integrates
the binaural information, therefore only one measure is needed for the evaluation of the
binaural noise-reduction system. A lower speech reception threshold (SRT) can lead to
a better speech intelligibility (see discussion on quality evaluation). The adaptive beam-
former based on HRTF had a 2dB lower BSIM than the fixed beamformer (panel g,h), but
this higher performance was reduced or even turned negative in case of imperfect steering
or an imperfect propagation model.

4.5.6. Robustness Against Positioning Errors and Head Model Variation
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Figure 4.9.: Robustness against variation of array position and model parameters for HM2.

56



4.6. Subjective Listening Test

In practical applications the exact positions of BTE-hearing aids may vary and the in-
fluence of the position offset on the noise reduction performance is of interest. Parametric
head models are useful, because the individual transfer functions to the hearing aid mi-
crophones are usually unavailable. Thus, Fig. 4.9a schematically shows the displacements
of the hearing aids that have been tested using HM2. The microphone spacing within
a hearing aid shell was fixed. Fig. 4.9b shows the influence of a position offset in look-
direction on the performance measures PSM and BSIM for BIN_PF in combination with
HM2 in noise condition 1 for fixed and adaptive beamformers, respectively. Obviously, the
fixed beamformers are robust for a shift of ±5 mm (i.e, one hearing aid was shifted 5 mm
forward, the other one backward). Adaptive beamformers were slightly more susceptible
to displacements, resulting in steeper PSM and BSIM curves. Additionally, different head-
sizes have been analyzed which are not shown here. Measures show robustness against
this type of deviation within ±1.5 cm head diameter.

4.6. Subjective Listening Test

4.6.1. Method

Figure 4.10.: Measuring tool: Two signals A and B are played alternately

Paired comparison tests were carried out with 10 normal hearing subjects. A pair of
two signals, an unprocessed noisy speech signal A and a signal B processed by one out of
three different binaural beamformer algorithms were presented to the listeners. The task
was to adjust the level of the noise component in signal A by a slider so that signals A
and B needed the same subjective listening effort. 18 signals where presented in a random
order consisting of three successive sentences spoken by female and male german speakers
(taken from the OLSA sentence test corpus, [80]) which were mixed with recorded babble
noise from a cafeteria and artificial speech-spectrum-like diffuse noise. The output signals
of the binaural beamformer algorithms described in 4.3 were calculated for input signals of
−4 dB,−2 dB, and 2 dB SNR. Subjects were advised to make their decisions on the hearing
effort in two steps. First, they should attend to the background noise and adjust the slider
so that signal A had the same perceptual noise level than signal B. In a second step, this
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4. Parameter Optimization for Binaural Noise Reduction Schemes

value should be corrected so that the signals would need the same listening effort, keeping
in mind that a severe distortion of the speech component in the noisy signal might reduce
the ease of listening and increase the listening effort in difficult acoustical situations. The
results of three trials of the listening test were averaged per subject and test signal.

4.6.2. Results

The results of the overall average for each binaural output type, bilateral beamformer
(BIN_BL), binaural postfilter (BIN_PF), and binaural phase reconstruction (BIN_PR)
are shown in figure 4.11a. The values show the average benefit in listening effort expressed
through the ∆SNR between processed output signals and unprocessed input signals of the
beamformer schemes. Negative ∆SNR values indicate that the processed signal needs a
higher listening effort than the unprocessed input signal (which is undesirable) whereas
positive values show a reduced listening effort that is achieved by the algorithm. As
the ∆SNR values emerge from subjective assessment they may differ from the physically
measurable SNRE that the algorithm may show compared to the input signal. With
respect to a high standard deviation, the binaural phase reconstruction (BIN_PR) seems
to achieve the lowest listening effort for normal hearing subjects although the binaural
information of the background noise is not preserved with this binaural method. The
order of preference could be predicted by the objective quality measure ∆PSM shown in
Figure 4.11b which is discussed in section 4.7.6. A two-way repeated measures ANOVA
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Figure 4.11.: Comparison of objective and subjective Assessment

(binaural output type [3] × background noise type [2]) was performed to check if the results
where significant in a statistical sense and with parameters led to a significant subjective
difference. The results (see Table 4.5) showed a highly significant main effect of binaural
output type on the measured subjective listening effort. Also statistically significant is the
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4.6. Subjective Listening Test

effect on the noise type, i.e., the subjective difference between diffuse and babble noise.
However, no interaction was found between noise type and binaural output type. Thus,
there was no algorithm that performed better only on a specific noise type than others. A
low interaction between subjects and binaural output type was found which indicated that
there may be groups that preferred different binaural output types. For the significant
data post-hoc tests were applied to test the amount of binaural output preference (Fig.
4.12a) and the difference regarding the noise type (Fig. 4.12b). Figure 4.12a shows

Source Prob>F
Subject 0.0141
Bin_Algo 0.0007
Noise_Type 0.0018
Subject*Bin_Algo 0.0002
Subject*Noise_Type 0.078
Bin_Algo*Noise_Type 0.3746

Table 4.5.: Results from the analysis of variance (ANOVA) test
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SNR / dB
0 1 2 3 4

(a) Listening effort for the binaural output
types

babble
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1 1.5 2 2.5 3 3.5

(b) Listening effort for the noise types

that all binaural types are significantly different from the others and that all algorithms
reduce the listening effort on average compared to the input signal. For BIN_BL the
reduction of listening effort was below 1 dB, for BIN_PF about 2.5 dB, and for BIN_PR
about 3.5 dB. This indicates that the listening effort, e.g., the output signal processed by
BIN_PF has the same subjective listening effort than the input signal to the beamformer
system increased by 2.5 dB in SNR. In other words, the algorithm had a subjective SNR
enhancement of 2.5 dB.
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4.7. Discussion

4.7.1. Influences of the Head and Head Models

The head influence was found to be quite small in case a unilateral array is attached to
the head. It becomes particularly relevant in the case of binaural arrays, i.e., if the head
is in between the coupled microphones. In summary, three aspects of the head-effect can
be distinguished:
(i) The frequency-dependent noise field correlation characteristic is changed in that case
so that the microphone signals can already be considered as uncorrelated at lower frequen-
cies [17]. A mismatch between model and true noise field correlation lowers the maximum
directivity that would be possible. The first beamformer algorithms that were considering
head influences only modified the noise correlation matrix so that they were valid for head-
related sound fields of isotropic noise. However, the practical advantage and performance
increase depends on the actual sound field.
(ii) For lateral target signals the accuracy of the propagation vector d becomes relevant
to avoid signal distortion. The influence of the correct choice of the propagation vector
increases with increasing number of microphones and higher spatial selectivity. However,
most of the microphone array systems assume that the target signal is in front (0◦) of the
hearing aid user. For these symmetric situations the influence of the head might be lower.
On the other hand, a fixed orientation to the front direction might become inconvenient
for the hearing aid user and thus may be replaced by self-steering beamformers [65] in
the future. For the more general case of a lateral target direction, the head influences for
the target direction are quite prominent and should not be neglected in the beamformer
design.
(iii) For the binaural perception of lateral target signals head-shadow and diffraction effects
play an important role because these factors influence the interaural time difference (ITD)
and interaural level difference (ILD). As these binaural cues are different for the indi-
vidual human head, a reconstruction of the cues after beamforming is an ambitious task.
As the microphone position of the BTE-hearing aid differs from the ear vent position the
inclusion of pinnae effects in the binaural reconstruction filter might be useful as well.
It is known that adaptive beamformers are principally more susceptible to model errors
than fixed beamformers. Our evaluations have shown, that for a typical cocktail-party sit-
uation adaptive beamformers perform worse than fixed superdirective beamformers. Only
for an optimum head model (HRTF) and an optimum choice of the propagation vector
d an advantage is visible. That means that model deviations prevent the adaptive sys-
tem from estimating the noise field properly, because of the interference of the estimation
process with model errors.

4.7.2. Adaptive Versus Fixed Beamfomers

The results in section 4.5.4, 4.5.5, and 4.5.6 have shown that the adaptive beamformer is
more susceptible to parameter mismatch (angle, head-size etc.) and deviations between
the propagation model (FF, HM1, HM2, HRTF) and the true wave propagation (anechoic
or office transfer functions) than the fixed beamformer. Thus model errors and parame-
ter mismatch lead to a distortion of the target speech signal which directly reduces the
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speech intelligibility. The overall-quality is also reduced but this influence can be seen
particularly for strong model deviations (FF). On the other hand, even for exact models
and correct steering to the target signal the performance improvement gained by adding
the adaptive noise canceler path seems to be low under realistic signal conditions. Sev-
eral reasons can be identified why other studies might show a greater increase of noise
reduction by adapting to the noise field: (i) most adaptive beamformers are based on the
standard GSC approach [28] that uses a conventional, low directivity beamformer in the
fixed path while we use a superdirective beamformer. Thus, the additional noise reduction
applied by the adaptive beamformer is lower. (ii) The performance strongly depends on
the signal condition. In situations with only few directional interferers, low reverberation
and low diffuse environmental noise a performance gain of the adaptive beamformer might
be visible more clearly. Here, we used a typical cocktail-party situation with diffuse bab-
ble noise and additional directional interferers in a reverberant environment. (iii) A priori
knowledge about speech pauses could be used to increase the performance. However, our
test-signals contain only few short speech pauses and we believe that a reliable detection
of speech pauses in babble noise with additional interfering speech is difficult.

4.7.3. Binaural Signal Reconstruction

Generally, beamformers based on the MVDR equation (4.5) provide a monaural output
since all available microphone channels are summated. Note, that the target phase recon-
struction filter (4.20, 4.21) is equivalent to the design of two separate MVDR beamformers
for each side with the constraint of reconstructing the desired signal as observed at the
left (respectively: right) side. Thus the optimal beamformer coefficients for the left (re-
spectively the right) side, WL (WR), are found by minimizing the expected noise field
(see [5])

min
WL

WHL ΦNNWL, (4.63)

and changing the constraint of an undistorted target signal from

WL
Hd = 1 to: WL

Hd = dL, (4.64)

where dL denotes the transfer function to the left ear reference microphone. However, if
the the noise phase should also be partially preserved, additional constraints are needed
that go at the expense of noise reduction. This kind of trade-off between interaural cue
preservation and noise reduction has been analyzed for multi-channel wiener filters in [38].
A similar finding applies to the MVDR beamformer: Its superdirectivity distorts the noise
phase (and thus the noise localization cues) for the sake of a higher noise reduction. The
bilateral beamformers suffer from the same effect. In particular, if the left or the right
beamformer uses signals from the opposite side, additional constraints for binaural cue
preservation would be needed. However, the binaural post-filter seems to be a possible way
out. Here, the phases of both, desired signal and noise are kept because the filter is real-
valued. On the other hand, it relies on a good speech-estimate in the beamformer output
Z(k). If the speech component in Z(k) is already distorted due to an inexact propagation

61



4. Parameter Optimization for Binaural Noise Reduction Schemes

model or parameter mismatch, this effect will be increased by the post-filter. To reduce
artifacts that can be caused by the rapidly fluctuating envelope filter, the involved power
spectral estimates need to be recursively smoothed. Here, a time constant of 30 ms was
found by objective perceptual optimization. Additionally, modifications of the binaural
post-filter could be suggested including statistical gain rules known from single-channel
envelope filters.

4.7.4. Objective Perceptual Measures

∆PSM is a suitable measure for predicting the overall perceptual quality of monaural sig-
nals. For the assessment of binaural noise reduction schemes ∆PSM has been evaluated
on the each side separately. In an asymmetric situation the performance measures for the
left and right head-side are quite different. For the perceptual signal quality it is unclear
how PSM Left and PSM Right are integrated to a binaural quality. Further research into
models of binaural sound quality are therefore indicated.
The BSIM measure that integrates binaural information, however, might not be able to
identify the principle differences between the increase of speech intelligibility and increase
of perceptual quality. ∆BSIM shows the decrease of the Speech Reception Threshold
compared to the SRT of the input signal. For a linear system this measure would be
equivalent to the increase of effective SNR (in terms of speech intelligibility) due to the
algorithm. In other words ∆BSIM shows the head-room which is left for understanding
speech. Based on the results presented both here and in the literature it can be assumed
that this measure is highly correlated to a SRT-change that is achieved by the noise re-
duction algorithm as long as this difference is moderate.

4.7.5. Realistic Signal Conditions

Frequently, algorithms developed and evaluated under laboratory conditions do not show
the expected performance under real life conditions, even if they were evaluated based on
established objective measurements. Moreover, it is impossible to cover the whole range of
signal conditions the algorithms are intended for in a test environment. Nevertheless, the
following three aspects of performance analysis which are proposed here (and were consid-
ered in the current study) may be important to improve laboratory evaluations and their
significance for real life conditions: (i) The biggest problems for hearing aid users occur for
conversations in cocktail-party-like situations where the interference is babble noise which
has the same average spectrum as the signal of interest. Therefore noise signals should
not be stationary and should have a similar spectrum than the target signals (which was
fulfilled here by, e.g., using babble noise from a cafeteria recording). (ii) Natural envi-
ronmental signals are generally correlated between the microphones to a certain amount
with a frequency dependent correlation function. Thus, broadband uncorrelated signals
may not be appropriate test signals for natural sound sources. However, they can be used
to test the susceptibility of the microphone sensors against self-noise or non-systematic
random model errors (see Section 4.5.2). Furthermore, additional directional interferers
may occur in reality that show a similar correlation characteristic than the signal of inter-
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est. Hence, if an algorithm is tested, also directional interferers should be considered. (iii)
The test signals should cover the presence of reverberation and multi-path propagation of
noise and target signal. Recorded signals and real-world impulse responses are preferred
as they are more realistic than simulations with, e.g., the image-source method. To check
the robustness of the test-algorithm against these effects a comparison to an anechoic
situation is appropriate.

If these aspects are considered in a laboratory test, algorithms will probably show a
comparable performance under real-life conditions.

4.7.6. Subjective Listening Tests

The results suggest the conclusion that for normal hearing subjects the speech signal dis-
tortion is the most important factor in terms of subjective listening effort whereas the
amount of noise reduction as well as the correctness of the binaural signal representa-
tion seems to play a minor role. This effect can be ascribed to the enormous efficiency
of the healthy human auditory system in object segregation in noisy environments that
can hardly be outperformed by technical noise reduction systems. Earlier experiments
showed that the objective measure PSM from PEMO-Q has the highest correlation with
subjective ratings if the overall quality is the decisive factor for the subjective listening
effort. Consequently, this objective measure can correctly predict the order of precedence
shown in Fig. 4.11b if applied to the better-ear side. However, the speech intelligibility pre-
dicted by the objective measure BSIM seems not to be the important factor for listening
effort. This is plausible, because all signals were presented at SNR values clearly above
the speech intelligibility threshold for normal hearing subjects (typically in an SNR range
where real-world noise reduction systems perform best).
On the other hand, the statistical analysis indicated that there may be groups of subjects
that benefit from the binaural cue preservation in (BIN_PF) in terms of listening effort.
More extensive subjective listening test are needed to account for this assumption.

4.8. Conclusions

This study illustrated that a performance evaluation of multi-channel noise reduction
schemes under realistic conditions is only reliable using perceptual models of the auditory
system and realistic signal conditions. With the objective perceptual measures suggested
here, the influence of various algorithm parameters and settings on the performance and
the robustness against model errors and deviations have been analyzed. This information
was used to optimize a binaural beamformer system on a trade-off scale between direc-
tivity and susceptibility to uncorrelated noise (such as self-noise of the microphones and
model inaccuracies).
For head-worn binaural hearing aid systems the influence of the propagation model that
was used for the beamformer design was analyzed.It was shown that systems with a high
spatial selectivity such as adaptive beamformers generally have higher requirements on the
exactness of the propagation model. If the deviations between the presumptions about
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the wave propagation and reality are too large the design constraints of the MVDR beam-
former are violated and the performance of the noise reduction system is significantly
reduced. Consequently, at least coarse head models should be included for head-worn sys-
tems. The inclusion of measured (anechoic) HRTFs, however, may only have theoretical
advantages that disappear in realistic echoic environments.
The binaural speech intelligibility measure (BSIM) provided an integrative measure of bin-
aural unmasking and could identify differences in the estimated speech-reception threshold
(SRT) if binaural information was distorted. The binaural post-filter technique had a good
performance and could preserve binaural information on the target signal, the background
noise and directional interferers. This information could be helpful for the hearing aid
user for spatial object segregation. However, a definite evaluation on how the preserved
binaural information is beneficial to the individual hearing impaired user has to be done
based on subjective listening tests.
The integrative approach from algorithm design to user benefit in binaural hearing aids
presented in this study may also be appropriate for other classes of hearing aid and man-
machine communication algorithms.

The listening tests showed that the speech signal distortion is probably the most impor-
tant factor in terms of subjective listening effort for normal hearing subjects. This raises
the suggestion that for these listeners the perceptual similarity measure (PSM) of the bet-
ter ear is the best prediction measure and that binaural information (which is not included
in PSM) may play a minor role for their listening effort. However, it can be expected that
hearing impaired subjects in general have other preferences and may accept a - for their
hearing ability inaudible- speech distortion to benefit from a higher noise reduction or a
binaural cue preservation. This of course needs to be analyzed in more extensive listening
tests with hearing impaired subjects.
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5. Combined Source Tracking and Noise
Reduction for Application in Hearing
Aids1

5.1. Introduction

Multi-microphone noise reduction schemes are promising solutions for hearing aids as
they are capable of exploiting the spatial distribution of the interfering signals. Thus,
they generally lead to less signal distortion and better noise reduction performance for
nonstationary signals compared to single-channel noise reduction algorithms.
Binaural connections between left and right hearing aids have been investigated in chapter
4 and in recent publications [16, 47, 65] and the first hearing aids that transfer program
and algorithm settings using wireless links are available on the market. It can be expected
that in near future also full-band audio information will be transmitted, provided that a
significant performance gain can be achieved. For binaural head-worn beamformer systems
head shadow and diffraction effects become important, in particular for algorithms with a
high spatial selectivity (section 4.3.4, [65]). Up to now, beamformer systems for hearing
aids made the assumption that the relative target direction is at the front. However, this
assumption might become unsatisfying for the hearing aid user if the signal of interest is
coming from the side or is even moving (due, e.g. to head movements of the wearer). In
order to overcome this problem, algorithms are necessary that track the location of the
desired sound source and adapt the spatial noise reduction algorithm accordingly.
In this chapter different direction of arrival (DOA) estimation techniques are suggested
based on the generalized cross correlation (GCC) approach by Knapp and Carter [41] and
the spatial response pattern (SRP)-phase transform (PHAT) extension by DiBiase [14].
They are used in combination with a beamformer that automatically steers to the most
prominent source. The importance of a proper model of wave propagation is investigated
for a head-worn DOA-beamformer system. Furthermore, the performance of the system is
evaluated in terms of estimation errors and signal-quality by means of objective perceptual
measures that are based on models of the auditory system (see chapter 2). With these
measures, the influences of inevitably occurring estimation errors can be quantified on a
perceptual scale. Based on these results, the optimum compromise between algorithmic
complexity and benefit can be derived.

1Parts of this chapter have been published as "Objective perceptual quality assessment for self-steering
binaural hearing aid microphone arrays", in proceedings of IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2008 [65]. and as "Combined Source Tracking and Noise
Reduction for Application in Hearing Aids", in proceedings of ITG-Fachtagung Sprachkommunikation,
2008 [66]
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5.2. Signal Model, Recorded Signals, And Binaural
Multi-Channel Noise Reduction
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Figure 5.1.: Signal model and beamformer setup2.

The noise reduction scheme used in this contribution is depicted in Fig. 5.1. With
two 3-channel BTE hearing aid shells mounted on a Brüel & Kjær (B&K) head and
torso simulator (HATS), 6-channel HRTFs were recorded in an anechoic room and in
an office environment (reverberation time τ60 = 300 ms) for azimuth directions of the
frontal hemisphere from −90◦ to 90◦ in 5◦ steps. A moving target signal was generated
by filtering a speech signal with time-varying office HRTFs and anechoic HRTFs that
change due to a pre-defined virtual azimuth path (Fig. 5.2). For the office HRTFs a
partitioned convolution algorithm was used. Within the 5◦ steps, the HRTFs were linearly
interpolated. Real-world environmental noise was also recorded in a cafeteria (including
babble, rattling dishes, and ambient noise) and in an office room (ventilation and ambient
noise from outdoors through an opened window). Additionally, an artificial diffuse noise
has been generated by summing up a speech-colored random noise that was filtered with
HRTFs from all directions to simulate a cylindrical 2D-isotropic noise field. The moving
speech signal was mixed with the noise signals at different SNRs.

Position
Mic. no. x in mm y in mm z in mm

(1) LF 14.9 0 4.7
(2) RF 14.9 -164 4.7
(3) LM 7.3 0 2.6
(4) RM 7.3 -164 2.6
(5) LB 0 0 0
(6) RB 0 -164 0

Table 5.1.: Microphone positions in mm (compare Figure 5.1).

2
Notation: Vectors and matrices are printed in boldface while scalars are printed in italic. k is the discrete
time index and n the discrete frequency index. The superscripts T , ∗, and H denote the transposition,
the complex conjugation and the Hermitian transposition, respectively.
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In Table 5.1 and 5.2 the absolute positions of the microphones used in the hearing aid
setup and the inter-microphone spacings are given, respectively. These show the applica-
bility using different microphone pairs for the DOA estimation, discussed below.

Distance in mm to microphone no.
Mic. no. (1) LF (2) RF (3) LM (4) RM (5) LB (6) RB
(1) LF - 164.0 7.9 164.2 15.6 164.7
(2) RF 164.0 - 164.2 7.9 164.7 15.6
(3) LM 7.9 164.2 - 164.0 7.7 164.2
(4) RM 164.2 7.9 164.0 - 164.2 7.7
(5) LB 15.6 164.7 7.7 164.2 - 164.0
(6) RB 164.7 15.6 164.1 7.7 164.0 -

Table 5.2.: Distances between microphones in mm. (L:left, R:right, F:front, M:middle,
B:back).
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Figure 5.2.: Virtual azimuth path of a moving speech source used for time-variant convo-
lution with anechoic and office HRTFs

In Fig. 5.1, Xi[n] denotes the audio signal transformed into the frequency domain by use
of the STFT, where i = 0..5 is the microphone channel index. A DOA detection algorithm
estimates the target signal’s azimuth angle Θ̂ which is used to steer the beamformer to this
direction by means of the propagation vector d[n, Θ̂]. The beamformer W[n, Θ̂] generates a
single channel output Yb[n] via the well known Minimum Variance Distortionless Response
(MVDR) approach [5]:

W[n,Θ] =
Γ−1
NN [n]d[n,Θ]

dH [n,Θ]Γ−1
NN [n]d[n,Θ]

. (5.1)
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d[n,Θ] = [d0[n,Θ], d1[n,Θ], . . . , dM−1[n,Θ]]T (5.2)

di[n,Θ] = |di[n,Θ]|e−j2πn
fs
N
τi[N,Θ], i = 0..M − 1 (5.3)

The fixed noise-field characteristic is coded in the coherence matrix ΓNN[n] which addi-
tionally influences the beamformer properties directivity and susceptibility to white noise,
and therefore has to be constrained (see section 4.5.2 and [5, 64]). Both, d[n,Θ] and
ΓNN[n] depend on to the assumed wave propagation model which may differ from the
true (and generally unknown) wave propagation from the source to the microphones. We
distinguish four models: free-field (FF), two head models (HM1 [8], HM2 [18]) and the
measured anechoic transfer functions from the source to the head-mounted hearing aid
microphone array (HRTF).
The simplest approach is to use a free-field / far-field assumption (FF), i.e., the sound
propagation is modeled as a plane wave without interfering objects in the propagation
path. For FF, d[n,Θ] has unity magnitude, |di[n,Θ]| = 1 ∀(i, n,Θ) and constant group
delay τ [n,Θ] = τ [Θ] that can be calculated from the inter-microphone distance and the
angle of incidence.
For head-worn arrays it is beneficial to include knowledge about head shadow and diffrac-
tion effects [25, 64], especially for lateral target signal sources. Thus, the head models
already introduced by Duda et al. [8, 18] are applied which are effective parametric mod-
els that are based on the characteristics of a sphere. In HM1, the ITD cues are modeled by
Woodworth and Schlosberg’s frequency independent ray-tracing formula. The gross mag-
nitude characteristics of the HRTF spectrum, namely the ILD cues, are covered by a first
order IIR head shadow filter which also accounts for an additional frequency dependent
delay at low frequencies [8]. In HM2, near-field effects and interference effects that intro-
duce ripples in the frequency response which are quite prominent on the shadowed side
are incorporated as described in [18]. For both head models (HM1, HM2) the frequency
dependent group delay τ [n,Θ] and magnitude have to be calculated for each microphone
and angle of incidence due to eq. (4.27)ff., [8, 18].
For HRTF, the propagation vector d[n,Θ] equals the measured anechoic 6-channel HRTF
for the angle of incidence Θ. ΓNN [n] can be estimated for a cylindrical isotropic diffuse
noise field by integrating the propagation vectors over all directions Θ. For FF, this solu-
tion can be calculated via the Bessel function of the first kind of order zero (4.45) . For
the white noise gain constraints and further details see section 4.3.4 and [5].

The binaural output is calculated by a real-valued time-varying post-filter based on [47]
that is controlled by the monaural beamformer output Yb:

HBin[n] =

(
|dl[n,Θ]|2 + |dr[n,Θ]|2

)
ΦYbYb [n]

ΦXlXl [n] + ΦXrXr [n]
(5.4)

Yl[n] = HBin[n]Xl[n] (5.5)

Yr[n] = HBin[n]Xr[n] (5.6)

Here Xl[n], Xr[n] (see Fig. 5.1) denote the reference input signals and dl[n], dr[n] the prop-
agation coefficients for the estimated signal direction Θ̂opt, at the left and right reference
microphone, respectively. ΦYbYb [n], ΦXlXl [n] and ΦXrXr [n] are the power spectral density
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estimates for the signals Yb[n], Xl[n], Xr[n], respectively. As depicted in Fig. 5.1 we chose
channel 3 and 4 as reference channels for the left and right site. For a detailed analysis of
the binaural output see section 4.3.3 and [64].

5.3. Performance Of Direction Of Arrival Estimators

5.3.1. Generalized Cross Correlation Phase Transform (GCC-PHAT)

Direction of arrival estimation is done by estimating the signal delay between microphone
pair xl[k] and xr[k] via the GCC-PHAT (Generalized Cross Correlation-Phase Transform)
[41] which has been proven to give reliable estimates for various environments. The time
delay corresponding to the estimated direction of arrival can be determined by

τ̂ = arg max
k
Rxlxr [k] (5.7)

with the generalized cross correlation [41]

Rxlxr [k] =
1

N

N−1∑

n=0

Ψ[n]Xl[n]X
∗
r [n]e

j 2π
N
nk. (5.8)

Typical signal delays that occur between the left and right microphones are about
8.3µs/1◦deg in the range of ±30◦ deg. For a sampling rate of 16 kHz these are 7.5◦

deg per sample. Thus, an appropriate oversampling of the generalized cross-correlation
Rxlxr [k] is suggested.

The time-delay of arrival due to diffraction is longer for lateral signals then expected in
the free-field case. Therefore the time-delay corresponds to other angles of incidence for
the head models than for the free-field. Fig. 5.3 depicts deviations that occur due to a
wrong delay-to-azimuth mapping. Fig. 5.3(a) shows the time delay of arrival between the
microphones xl[k] and xr[k] against the azimuth angle for different propagation models.
Between ±30◦ the dependency is almost linear and only small deviations between the
propagation models exist. For more lateral angles the differences increase due to the
increased traveling time of the sound signals around the human head. In Fig. 5.3(b) the
deviation of the estimated angle for the propagation model and true angle as determined
from the measured HRTF is depicted. Note that for the free-field model (FF) delays
beyond ±0.5 ms are assigned to ±90◦. Therefore, the azimuth error decreases for values
beyond these maximum delays. The gray and black bars show the corresponding values
in (a) and (b). It can be seen that the head models give a better approximation of the
true time delay than FF assumptions. Although the group delays for the head models
are frequency dependent [8], these effects are omitted in the GCC approach (eq. 5.7-
5.8). In practice, the direction of arrival for the GCC-PHAT method is determined in
three steps. First, Rxlxr [k] is calculated at equidistant time samples k. Since in practice,
time differences of arrival (TDOA) between two microphones are short and the interesting
area is covered by only a few samples, the crosscorrelation Rxlxr [k] is interpolated by an
oversampled IFFT. Second, the time-delay which corresponds to the highest correlation
value is found by a maximum search arg maxk. As we are interested in the correlation
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Figure 5.3.: a) "Interaural" delay as a function of azimuth for different propagation mod-
els. b) Azimuth error for different time delays τd and propagation models in
relation to the "correct" anechoic HRTF model.

function on an equidistant azimuth angle scale, namely, the direction of arrival, in a final
third step we have to re-map the time delay τ̂ to the azimuth angle with a non-linear
mapping function which can become quite complex for the head-related case.

5.3.2. The Spatial Response Pattern (SRP-PHAT) extension

This three-step estimation method is suboptimal, because for a satisfying resolution of
lateral azimuth angles between |Θ| = 30◦. . . 90◦, the oversampling needs to be high whereas
for angles between [−30◦. . . 30◦] the DFT resolution is sufficient (for a microphone pair in
broadside direction). Thus, by directly applying time-delays that are equidistant on the
azimuth-scale only the interesting parameter space needs to be calculated. However, the
trade-off between the computationally efficient IFFT usually used for the GCC-approach
(eq. 5.8) and the lower dimension and higher precision (including group-delay dispersion)
of the azimuth-scaled response pattern (eq. 5.9) in the SRP-approach depends on the
conditions of use.

Rxlxr [Θ] =
1

N

N−1∑

n=0

Ψ[n]Xl[n]X
∗
r [n]e

j 2π
N
nτlr[Θ,n] (5.9)

Here ej
2π
N
nτlr[Θ,n] is the phase component of the inter-microphone transfer function between

microphone l and r for a source signal impinging from the direction Θ. Note, that τlr
may also be frequency dependent accounting for dispersion effects observed for head-worn
arrays.

The DOA estimation method in (5.9) has been described by DiBiase in [14] as the
spatial response phase transform (SRP-PHAT). DiBiase analyzed the performance of the
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SRP-PHAT using all microphone combinations l and r.

Θ̂ = arg max
Θ

M∑

i=1

M∑

j=1

Rxixj [Θ] (5.10)

Although redundancies of the correlation between microphone pairs [l, r],[r, l] and auto-
correlations [l, l] where included in the estimate, DiBiase found no detrimental effect using
all combinations. However, for the microphone array used here, it was expected that some
microphone pairs might not yield any information about the direction of arrival because
of a very low inter-microphone distance.

As it can be seen from Table 5.2 the distances between some of the microphone pairs
(e.g. microphone 1 and 3) are very small. Thus, they may be too small for a DOA estima-
tion by means of GCC-PHAT or SRP-PHAT since real-world noise fields often are diffuse.
Diffuse noise fields are highly correlated up to a certain edge frequency which is inversely
proportional to the inter-microphone distances. Furthermore, the spatial positions of the
microphone pair consisting of microphone 1 and 2 and the microphone pair consisting of
microphone 3 and 4, e.g., are quite similar. Thus, a combination of these microphone pairs
may provide only little more information about the desired signal. For the experiments a
subset of all possible microphone pairs was used and different combinations were evaluated
compared to a single microphone pair.

Θ̂ = arg max
Θ

P∑

p=1

Rxp,1xp,2 [Θ] (5.11)

Here p is number of the actual microphone pair and P is the number of microphone pairs
used. For the investigated hearing aid system, the DOA could theoretically be estimated
from Pmax = (M−1)·M

2 pairs where M = 6 is the number of microphones. However, due to
the constraints discussed above, a number of P ≤ 3 is realistic.

5.3.3. Source Tracking Constraints

Figure 5.4 shows the correlation pattern seen for a moving signal under office ambient
noise conditions at and SNR of 8 dB. In the algorithms presented here, only a single
moving source in the frontal hemisphere (−90 . . . 90)◦ is being tracked. The maximum
tracking speed of the DOA estimator is limited to 125◦/s as described in [25] to avoid
sudden peaks in the DOA estimate that lead to severe disturbances of the subsequent
beamformer. A simple speech activity detector based on the magnitude of Rxlxr is applied
by updating the DOA estimate only if Rxlxr is greater than a threshold ξ. During speech
pauses (occurring in Fig. 5.4at around 3s and 5.5s) the tracking algorithm continues the
update of the azimuth estimate based on the gradient of the last estimates. The gradient
was calculated by a simple regression over the last 10 estimates (approximately 80 ms
memory). However for the application in a hearing aid it might be useful to apply more
sophisticated tracking algorithms (including multiple source tracking) that increase the
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Figure 5.4.: Correlation Pattern Rxlxr [Θ] eq. (5.9) of SRP-PHAT over time. At 8 dB
the maximum tracking is relatively reliable. However, outlier and correlation
patterns induced by interfering (correlated) background noise degrade the
estimate.

robustness of the estimate while at the same time allowing for a quick change of direction
due to a moving speaker.

5.3.4. DOA Estimation Error

In Figure 5.5 the mean DOA estimation error ēΘ = 1
|A|

∑

AΘ− Θ̂ is shown dependent on

the input SNR for the GCC-Phat method (subplots a) and d)), the SRP-PHAT method
using one microphone pair (subplots b) and e)) and the SRP-PHAT method using two
microphone pairs (subplots c) and f)). Here, Θ and Θ̂ are the true and the estimated
direction of arrival, respectively. A is the set of frames where speech is present and
|A| its cardinality. The left subplots (a)-c)) show the performance of the algorithms
for an anechoic situation (no reverberation) in diffuse noise conditions while the right
subplots (d)-f)) show the performance of the DOA estimators in a reverberant environment
(τ60 ≈ 300ms) and babble noise conditions. Different propagation models (free-field (FF),
head models (HM1, HM2) and measured HRTFs) were evaluated. It can be seen that,
in general, the algorithms perform best for measured HRTFs and worst if no diffraction
and shadowing effects are incorporated into the design (FF). Using head models is a good
approximation for the measured HRTF which is unknown in practical systems.
Comparing the GCC-PHAT and SRP-PHAT curves reveals that the SRP-PHAT algorithm
performs slightly better. However, the averaging over multiple microphone pairs did not
lead to the expected performance improvement (particularly not for real-world conditions
including reverberation and high environmental noise) that was reported in literature. It
was found that a small variance decrease of the correlation matrix Rxp,1xp,2 could be seen
for an ideal diffuse noise field. Looking at real-world recorded babble noise this small effect
disappeared because the noise had a stronger correlation which was seen by all microphone
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pairs simultaneously.
In summary it can be stated that the SRP-PHAT algorithm using only one microphone

pair (5.9) showed the best performance for the given microphone setup.
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(a), d)) and SRP-PHAT for 1 microphone pair (b), e)) and 2 microphone pairs
(c), f)).

5.4. Objective Quality Assessment for the Complete Noise
Reduction System

It has been shown in Fig. 5.3 that the assumption of an imperfect propagation model leads
to systematic errors in the estimation of the signal-source direction. As we are interested
in the influence of these estimation errors on the performance in combination with a spa-
tial noise reduction algorithm and the resulting signal quality for realistic scenarios, we
propose three performance measures. They all estimate the benefit a subject will receive
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from a binaural noise-reduction scheme (described in 5.2) that utilizes any of the DOA
estimators including head models described so far.
SNRE: The SNR-Enhancement (SNRE) is the difference of the SNR at the output of the
beamformer and a reference input-SNR, both measured in dB. For binaural systems the
SNRE is calculated between the left (right) output of the binaural post-filter and the left
(right) input at the reference microphone, respectively; by simply taking the mean SNRE
a better-ear effect would be ignored.
PSM / ∆PSM: The quality measure PSM from PEMO-Q [34] estimates the perceptual
similarity between the processed signal and the clean speech source signal. It has shown
high correlations between objective and subjective data and has been used for quality
assessment of noise reduction schemes in [62–64]. PSM increases with increasing (input)
SNR. As we are interested in the quality enhancement introduced by the algorithm, we use
the deduced measure ∆PSM that is calculated as the difference between the perceptual
similarity measure (PSM) of the output and of the unprocessed input signal.
Binaural Speech Intelligibility Measure BSIM / ∆BSIM: The speech reception
threshold (SRT) is defined as the signal-to-noise ratio (SNR) at 50% speech intelligibil-
ity. In [3] a binaural model of speech intelligibility based on the equalization-cancelation
(EC) processing by Durlach had been defined which is able to predict the SRT with high
accuracy. This objective measure, described in section 2.4.5, is denoted as BSIM in the
following. If BSIM of the output of a noise reduction scheme is lower than for the input
signal this means that the speech intelligibility has increased due to the algorithm. How-
ever, as the speech intelligibility (and BSIM) are nonlinears function of the SNR and other
signal features such as the preservation of binaural cues, we use the difference between
output and input BSIM, namely the ∆BSIM, as an indirect measure for the increase of
intelligibility. BSIM as described in [3, 64] assumes a spatially stationary source configu-
ration. To be applicable to moving sources it had to be extended to a block-wise measure
with subsequent averaging across blocks.

5.5. Objective Perceptual Quality Results for the Combined

System

Figure 5.6 shows the performance of the combined SRP-PHAT-steered noise reduction
system evaluated in a reverberant office environment by three objective measures: the
signal-to-noise ratio enhancement SNRE, the perceptual similarity measure ∆PSM from
PEMO-Q (section 2.4.2,[34, 65]) and the binaural speech intelligibility measure ∆BSIM
[3, 65], see section 2.4.5.

All three measures show relative enhancements compared to the unprocessed signal and
are plottet over the SNR of the input signal (SNRin). With increasing SNRin the relative
performance enhancement decreases which is a fact common to all noise reduction systems
as for infinite SNRin no further improvement is possible. The ideal system (solid black line
with markers) has a priori information about the direction of arrival and uses the measured
anechoic HRTF as a propagation model. Therefore, it should set the upper performance
limit. The non-steered (0◦ fixed) system (light dashed gray line) has no information on
the direction of arrival. It is fixed to the 0◦ look direction (just like traditional directional
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hearing aids) and uses the measured anechoic HRTF as a propagation model. It marks
the decision criteria, from where a combined self-steering beamformer system has a higher
performance than a traditional non-steered system.

The broadband SNRE shows the amount of noise reduction in a technical sense. Al-
though it is an established measure which is correlated with the perceived amount of noise
reduction (section 3.2) it has some severe deficiencies as signal distortions may not be seen
properly. Thus inconsistencies may occur, e.g., in Figure 5.6 a) the estimated system is
better than the optimal system. In subplot b), ∆PSM shows the increase of the estimated
perceptual quality compared to the input signal. Both, SNRE and PSM are monaural
measures and therefore are evaluated for left and right output signal, respectively. The
difference between the input and output speech reception threshold is estimated by ∆BSIM
in Figure 5.6 c). This measure integrates binaural information that might be used by the
listener for localization and object segregation. The ∆BSIM plot shows that the perfor-
mances of the self-steered systems with included head-models converge to the ideal system
at about 8− 10 dB input SNR. A ∆BSIM value of −4 dB means, e.g., that the expected
speech reception threshold (i.e., 50% speech intelligibility) of the binaural output is 4 dB
lower than the speech reception threshold estimated for the input signal. Thus ∆BSIM
can be interpreted as the amount of additional head-room of speech intelligibility achieved
by the binaural noise reduction scheme.

The performance of the beamformer designed for free-field was much lower than for the
head-model based designs. This is partly due to the white noise gain constraint which
is an important factor that influences the amount of noise reduction and that had been
optimized for the head-worn array. However, it has already been shown in [64, 65]and in
section 4 that free-field beamformers are suboptimal for head-worn arrays.

5.6. Discussion

The study showed that theoretical advantages (such as, e.g., using 6 microphones instead
of 2) vanish as soon as realistic signals are involved. This is primarily because realistic
noise fields are correlated to some extent and thus apply additional interfering correlation
to the spatial response pattern, which can not be averaged out by the combination of
multiple microphone pairs. Hence, microphone pairing for the present behind-the-ear
(BTE) hearing aids was not beneficial.

With the SRP-PHAT method sound propagation models can be more complex compared
to the GCC-PHAT, as dispersive group-delays can be integrated in the calculation of the
spatial response pattern. Additionally, the SRP-PHAT method has a higher flexibility to
apply a direction of arrival search only within a spatial search area of interest or to use
variable angular resolution. This leads to a reduced parameter space for the subsequent
maximum tracking. On the other hand, the IFFT that can be used for the GCC-PHAT
is more efficient in terms of computational complexity. Under the conditions used here,
the SRP-PHAT showed slightly better DOA estimation results, hence it was used for the
evaluation of the combined DOA-beamformer system. However, computational complexity
was not investigated in this study.

For the evaluation of the combined binaural system, the objective measure ∆BSIM
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has the advantage that it has only a single performance value whereas the monaural
measures ∆PSM and SNRE need to be evaluated for both sides separately. Hence, using
the monaural measures for algorithm optimization the developer has to decide which side
is more relevant for the overall signal quality. Compared to the SNRE measure, ∆BSIM
leads to more robust results indicated by a system ranking as expected (i.e., optimal
system can not be outperformed).

The maximum performance gain measured with ∆BSIM between the traditional non-
steered and optimally steered system was approximately 1.5dB. For the head model based
systems the performance lay in between the non-steered system and the optimally steered
DOA-beamformer system for the total analyzed input SNR range from−2 dB to 16 dB. For
an input SNR > 8dB the performance difference between the optimal and the estimated
head-model based systems was negligible. Hence, an automatic steering was beneficial for
the signal conditions analyzed here.

5.7. Conclusion

The results show that the SRP-PHAT method using only a subset of microphone pairs
leads to a slightly higher performance than the GCC-PHAT method. The advantage of
using the SRP-PHAT is a higher precision and flexibility in the sampling of the param-
eter space with equidistant azimuth angles and no need for a TDOA-mapping. For the
microphone array used here, a combination of multiple microphone pairs did not lead to a
consistent improvement compared to a single microphone pair. This can be explained by
the low inter-microphone distances and the similarity of the correlation patterns for those
microphone pairs that are applicable to DOA estimation. The combination of SRP-PHAT
based direction of arrival estimation and a constrained superdirective beamformer showed
that the objectively estimated signal quality and the estimated speech intelligibility were
improved compared to traditional non-steered systems, if at least a rudimentary head
model was included in the DOA estimation algorithm and in the binaural noise reduction
scheme for head-worn microphone arrays.
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Figure 5.6.: Performance evaluation with the objective measures SNRE, ∆PSM and
∆BSIM for a speech signal in a reverberant office environment (τ60 = 300 ms)
mixed with babble noise at different input SNR’s and processed by the SRP-
PHAT-steered binaural noise reduction scheme. Data are presented such that
an improvement in performance is pointing upwards.
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The current work contributes novel monaural and binaural noise reduction algorithms for
applications in hearing aids and modern communication systems, that can improve speech
communication in adverse conditions. The proposed algorithms account comprehensively
for real-life conditions that are characterized by non-stationary noise, interfering speakers,
reverberation, diffraction effects for head-worn devices as well as movements of the source
signals and head movements. While other studies usually evaluate performance using
only a subset of these conditions, this study provides meaningful evaluation methods with
recorded signals from real listening environments and investigates the major influencing
factors in combination.

The development and parameter optimization of single and multi-channel noise reduc-
tion schemes is supported by objective evaluation measures, that are based on recent
knowledge of the human auditory system, including novel binaural measures. These psy-
choacoustic measures and other widely-used performance measures have been compared
to subjective data in the aforesaid listening conditions and the measures with the high-
est significance on perceptual signal quality have been identified. Hence, this work also
provides a toolbox for performance evaluation that is useful for the development of noise
reductions schemes in general.

The study on monaural noise reduction schemes (chapter 3) clearly showed the limita-
tions that single-channel noise reduction algorithms have when used in realistic fluctuating
non-stationary noise. From the results shown in this work it can be concluded that in most
cases this algorithm class leads to unexpected degradation of the desired signal, and hence
cannot be recommended for use in case of strong non-stationary noise backgrounds.

On the other hand, multi-channel noise reduction algorithms were shown to provide
a significant signal enhancement in adverse conditions if certain design criteria are met
(chapters 4 and 5). Binaural outputs that preserve the spatial configuration of all signals
are feasible without compromising noise reduction. For these adaptive binaural beam-
formers head-influences need to be incorporated into the algorithm design. Fortunately,
parametric head-models have shown convincing results, so that individual head related
transfer functions are not needed, even if they outperform the generic head-model based
HRTFs in certain conditions. The latter finding facilitates the use of these algorithms in
commercial audio devices and hearing instruments.

To account for head movements and moving target signals, self-steering binaural beam-
former algorithms have been proposed (chapter 5) and evaluated in realistic conditions.
For a single moving speech signal in a noisy and reverberant environment, these com-
bined direction-of-arrival (DOA) estimation and beamformer schemes have shown higher
performance compared to non-steered systems. These results encourage the use of these
self-steering beamformers as a future application in binaural hearing systems.

Because the human auditory system is perhaps the most complicated and less thoroughly
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understood human sense, only a few research problems could successfully be tackled here.
In terms of noise reduction the definition of noise is extremely difficult and subjective -
a fact on which any noise reduction algorithm must fail somehow. Algorithms that per-
form a Computational Auditory Scene Analysis (CASA) and leave the decision about the
desired audio objects to the user are highly desirable. However, CASA based algorithms
are computationally demanding and currently not applicable for real-time processing in
hearing aids. Moreover, not all effects of the auditory perception are understood and
much less is the resynthesis of internal representations to an audible signal. Hence, sig-
nal enhancement and noise reduction in hearing aids and mobile communication devices
presently remains a domain on empirical and more technically based approaches that are
optimized with measures based on auditory models. However, it is conceivable that these
approaches will gradually be transformed into more theory-driven approaches if our un-
derstanding on how the human brain processes these complex situations is improved and
translated into application-oriented computational models.

To conclude, this work provides a comprehensive survey of objective performance as-
sessment and development of noise reduction schemes for application in hearing aids and
modern communication systems and provides a solid scientific basis for existing and new
noise-reduction algorithms in terms of evaluation and applicability.
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A.1. Table of Articulation Index

The Articulation Index (AI) was first described by French and Steinberg (1947) [24] as a
way to express the amount of average speech information that is available to patients with
various amount of hearing loss. It is usually described as a number between 0 and 1.0 or
as a percentage, 0% to 100%. The AI can be calculated by dividing the average speech
signal into several bands and obtaining an importance weighting for each band. Based on
the amount of information that is audible to a patient in each band and the importance
of that band for speech intelligibility, the AI can be computed.

Band
Num-
ber

Center
Frequency
(Hz)

Weight
Band
Num-
ber

Center
Frequency
(Hz)

Weight

1 50 0.003 14 1148 0.032
2 120 0.003 15 1288 0.034
3 190 0.003 16 1442 0.035
4 260 0.007 17 1610 0.037
5 330 0.010 18 1794 0.036
6 400 0.016 19 1993 0.036
7 470 0.016 20 2221 0.033
8 540 0.017 21 2446 0.030
9 617 0.017 22 2701 0.029

10 703 0.022 23 2978 0.027
11 798 0.027 24 3276 0.026
12 904 0.028 25 3597 0.026
13 1020 0.030

Table A.1.: Table of articulation index in 1/3 octave filters (source: [59])

A.2. Critical Bandwidth / Equivalent Rectangular Bandwidth

(ERB)

The equivalent rectangular bandwidth (ERB) is a psychoacoustic measure to approximate
the critical bandwidth of auditory filters in human hearing [53]. It uses the simplification
of modeling filters as rectangular band-pass filters. An ERB passes the same amount of
energy as the auditory filter it corresponds to and shows how it changes with input fre-
quency. The ERB scale is very similar to the Bark-scale [86] (and also the mel-scale) their
differences are due to different psychoacoustic measuring methods and standardizations
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(e.g., "notched-noise", "within-band masking" or "pitch-perception" methods). The ERB
is calculated by the following equation:

ERB(f) = l +
f

q
, with l = 24.7, q = 9.265. (A.1)

To model the frequency resolution on the basilar membrane a gammatone filterbank [32,
54] can be built using band-spacing of 1 ERB. In the following, the 14th band of this
auditory filterbank is related to 1000 Hz. To have integer band numbers b an auxiliary
constant c1kHz is defined by:

c1kHz = q · log
(

1 +
1000

l · q

)

− 14 = 1.5725. (A.2)

The center frequency fc of the bth auditory filter now is:

fc(b) =
(

exp
(
b+ c1kHz
q

)

− 1
)

· l · q (A.3)

and the equivalent rectangular bandwidth of this auditory filter b is

ERB(b) = l · exp
(
b+ c1kHz
q

)

(A.4)

For a given center-frequency fc in Hz the auditory filter ("ERB-number") b is defined by:

b(fc) = q · log
(

1 +
fc
l · q

)

− c1kHz. (A.5)

For reasons of efficiency or the availability of linear frequency short-time spectral estimates
the frequency grouping of the auditory filter is often approximated by summing up (non-
overlapping, linear) frequency bands around a center-frequency on the ERB (or Bark)
scale. An example is given in eq. (2.7).
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BTE behind-the-ear

DFT discrete Fourier transform

DOA direction of arrival

GCC generalized cross correlation

GSC generalized sidelobe canceller

HRTF head related transfer function

ILD interaural level difference

ITD interaural time difference

MMSE minimum mean squared error

MVDR minimum variance distortionless response

PSM perceptual similarity measure

SNR signal-to-noise ratio

WNG white noise gain

WSS weighted spectral slope

SNRE signal-to-noise ratio enhancement

STFT short time Fourier transform

STSA short time spectral attenuation

SRT speech reception threshold

D&S delay-and-sum

SII speech intelligibility index

FFT fast Fourier transform

FIR finite impulse response

SRP spatial response pattern
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PHAT phase transform

MWF multi-channel Wiener filter

MOS mean opinion score
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