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Abstract

With today’s rise of multi-core processors in the desktop market and in common server systems,
concurrency becomes a ubiquitous challenge in software development. Concurrency allows the
improvement of software performance by exploiting available processor cores. However, possible
performance gained by concurrency can be limited by software bottlenecks or inherently sequential
parts of the application. Performance prediction methods help software architects to find software
bottlenecks in multiprocessing environments during the design phase. Unfortunately, in highly
concurrent systems, current prediction methods result in errors up to several orders of magnitude.
They neglect important influences of the operating system schedulers and middleware leading to
erroneous predictions. Therefore, this thesis addresses the challenge of performance prediction
in symmetric multiprocessing environments. It proposes a performance modelling framework for
operating system schedulers such as implemented in Windows or Linux. The modelling approach
reflects the performance-relevant features of operating system schedulers and can be customised
to represent the system under study. It can also be combined with other prediction methods to
increase their prediction accuracy. The influence of the middleware on software performance is
addressed by a performance modelling approach to message-oriented middleware. The approach
combines abstract performance models with measurements and, thus, can omit implementation
details of vendors. A series of case studies conducted in the scope of this thesis demonstrates
that both techniques reduce the prediction error to less than 5% to 10% in most cases.

Zusammenfassung

Mit der breiten Einführung von Mehrkernprozessoren im Desktop- und Server-Markt wird Ne-
benläufigkeit zu einer allgegenwärtigen Herausforderung für die Software-Entwicklung. Neben-
läufigkeit ermöglicht es die verfügbaren Prozessoren und Kerne zu nutzen und so die Leis-
tungsfähigkeit von Software-Systemen zu steigern. Allerdings kann der mögliche Nutzen durch
Engpässe oder sequentielle Anteile der Anwendung beschränkt sein. Performanz-Vorhersagen
zur Entwurfszeit können Software-Architekten dabei unterstützen solche Engpässe einer An-
wendung frühzeitig zu identifizieren. Allerdings führen momentan übliche Vorhersageverfahren
in hochgradig nebenläufigen Systemen zu Fehlern von bis zu mehreren Größenordnungen. Sie
vernachlässigen wichtige Einflussfaktoren des Betriebssystem-Schedulers und der Middleware
wodurch die fehlerhaften Vorhersagen entstehen. Durch diese Problemstellung motiviert, be-
schäftigt sich die vorliegende Arbeit mit der Verbesserung von Performance-Vorhersageverfahren
in symmetrischen Mehrkern- und Mehrprozessorumgebungen. Die Arbeit führt einen Ansatz zur
hierarchischen Modellierung von Betriebssystem-Schedulern (wie sie beispielsweise in Windows
oder Linux zu finden sind) ein. Die Modelle bilden die kritischen Einflüsse der Betriebssystem-
Scheduler ab und können an die Ausführungsumgebung des untersuchten Systems angepasst wer-
den. Desweiteren lassen sie sich mit anderen existierenden Vorhersageverfahren integrieren, um
deren Vorhersagegenauigkeit zu verbessern. Um den Einfluss der Middleware zu berücksichtigen,
wird ein Ansatz zur Kombination abstrakter Performance-Modelle mit Messergebnissen vorge-
schlagen. Der Ansatz abstrahiert dabei von implementierungsspezifischen Details. Im Rahmen
dieser Arbeit wurde mit diesem Ansatz der Einfluss nachrichtenbasierter Kommunikation in
Unternehmensanwendungen vorhergesagt. Eine Reihe von Fallstudien, die im Rahmen dieser
Arbeit durchgeführt wurden, hat gezeigt, dass beide Ansätze den Vorhersagefehler in den meis-
ten Fällen auf weniger als 5% bis 10% reduzieren können.
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1. Introduction

Nowadays multi-core processor systems are becoming ubiquitous in the desktop market and in
common server systems [Cre05]. Most of the main processor vendors, such as Intel and AMD,
are adapting their product lines to the new technology. To exploit the available processor cores,
software developers must design and implement applications with a high degree of concurrency.
While the development of such applications is error prone and time consuming [Lee06], the
possible benefit in software performance may be limited due to software bottlenecks or inherently
sequential parts of the application (Amdahl’s Law [Rod85]). Software architects and developers
are thus confronted with the question of when the additional effort for introducing concurrency
into their application pays off.

Performance predictions can support software architects in answering such questions early in
the design phase. Predicted performance metrics like response time, throughput, and resource
utilisation help to plan hard- and software capacities as well as to avoid design faults. Due to
the counter-intuitive behaviour of concurrent software systems, such estimates are essential for
their development [GPB+06]. Using performance prediction methods, software architects and
developers can create software systems that confidently fulfil their performance requirements,
such as being highly scalable and being able to serve several thousands of users simultaneously.
In a business case for a medium sized project, Williams and Smith [WS03] estimate the possible
financial benefit of software performance prediction to be several million US-dollars.

However, in order to be meaningful, prediction methods have to consider the influence of the
underlying middleware, the operating system, and hardware on performance [LFG05, DPE04,
Apa]. Especially for highly concurrent systems, like typical enterprise applications, the operating
system and middleware have a major impact on performance (see, for example [CMZ02]). Some
researchers even consider them to be the determining factors for the performance of enterprise
applications (e.g., [LFG05, DPE04]). The influence of the infrastructure as well as the mutual
dependencies between hardware, operating system, middleware, and software application pose
new challenges for software performance prediction.

In this thesis, we address the problem of software performance prediction in symmetric mul-
tiprocessing (SMP) environments. Our work is focussed on the influence of General Purpose
Operating Systems (GPOS) schedulers, as implemented in the Windows and Linux operating
system series. To capture their influence for software performance prediction, we introduce a
performance modelling framework for GPOS schedulers. Furthermore, we propose a performance
modelling technique for message-oriented middleware in order to analyse concurrent software
systems in distributed settings. We validated the proposed models and methods by conduct-
ing a number of case studies based on real world applications. In the considered scenarios, our
method increases the prediction accuracy up to several orders of magnitude compared to common
methods.

1.1. Research Questions

In the scope of this thesis, we address research questions from the areas of (i) operating system
schedulers, (ii) message-oriented middleware, and (iii) performance modelling methods which are
discussed in the following.



2 1. Introduction

General Purpose Operating System Schedulers Operating system schedulers manage the con-
current access of multiple tasks to limited resources (e.g., processors). The chosen scheduling
algorithm can affect software performance by several orders of magnitude [BSUK07]. In software
performance engineering, common abstractions for operating system schedulers are processor
sharing and first-come, first-served scheduling. However, real operating system schedulers are
much more complex. They have to fulfil a broad range of different requirements for real-time,
batch, and interactive systems.

When selecting tasks for execution, GPOS schedulers may take into account the previous
behaviour of each task, e.g., the periods when it used different resources (e.g., network and
hard drive). Other schedulers may prefer tasks which have just been granted access to some
critical resource (e.g., protected by a semaphore). Such policies are meant to keep the overall
utilisation of resources high while minimising response times [Tan01]. They lead to a strong
mutual dependency between the behaviour of tasks and the GPOS scheduler which is usually not
considered in performance prediction.

In multi-core and multiprocessor systems, schedulers must decide how the load is to be balanced
among the available cores or processors. Balancing policies implemented in today’s operating
systems determine when load balancing is initiated, whether it dynamically intervenes with the
system, and if it is adapted to different load conditions. During load balancing, schedulers have
to identify processors that need to be balanced as well as tasks to be moved. In doing so, various
constraints, such as processor and cache affinities of tasks, have to be considered.

Current operating systems employ a broad range of strategies for task scheduling and multi-
processor load balancing. For example, Windows keeps interference with the program execution
as low as possible. By contrast, Linux constantly ensures a fair distribution of processing time
among all competing tasks. Even though such behaviour is difficult to capture, performance
prediction methods have to include its influences on software performance. Common scheduler
abstractions can lead to prediction errors of several orders of magnitude for task response times
and throughput (cf. Section 5.2). Therefore, modelling and prediction of GPOS schedulers require
to answer the following questions:

1. What are the most relevant features of the behaviour of operating system schedulers with
respect to software performance?

2. What are the important aspects for symmetric multiprocessing environments?

3. How can these aspects be identified?

4. How do task behaviour, scheduling policy, and workload influence software performance?

5. How can mutual influences task behaviour, scheduling policy, and workload on software
performance be captured?

6. What level of abstraction of schedulers is adequate to provide good predictions?

7. What models and model solution techniques (analytical, simulation based, combined) are
appropriate for modelling GPOS schedulers?

8. Is there a general method for modelling GPOS schedulers?

9. What prediction accuracy can be achieved using performance models for GPOS schedulers?
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Message-oriented Middleware Enterprise applications mostly employ message-based commu-
nication (using, for example, Java Message Service, JMS [HBS+08, MHC02]) to process jobs
asynchronously or to communicate in distributed systems. Hence, message passing is a major
technology for implementing concurrent behaviour in enterprise applications. The performance
of message passing depends on the vendor implementation and the execution environment. Fur-
thermore, the usage of the message-oriented middleware (MOM) influences its resource demands.
For example, the message size and the number of messages in a transaction significantly affect
the delivery time of a message. Therefore, the following questions need to be answered before
commencing performance model design:

1. How can message-oriented middleware be modelled independent of the vendor implemen-
tation?

2. What performance models are appropriate for MOM?

3. How can such performance models be integrated into existing software architecture models?

Derivation of Performance Models The major challenge in the design of performance models
for complex software systems is the right level of abstraction. Performance models need to include
all relevant aspects of the system under study and, at the same time, provide an abstraction from
its complexity in order to remain solvable. Hence, performance analysts are confronted with the
question of what must be included into a performance model and what parts of the system under
study can be simplified. Unfortunately, these questions cannot be answered from specifications,
documentation, or source code, since, especially for concurrent systems, performance properties
are often counter-intuitive even for experts [GPB+06]. In order to support performance analysts
to find proper performance abstractions, we address the following questions in the scope of this
thesis:

1. How can performance-relevant and -irrelevant features be distinguished?

2. How can degrees of freedom of the specification be fitted in?

3. How can performance models for accurate predictions be designed efficiently?

1.2. Existing Solutions

As discussed in the previous section, software architects and developers have to consider the
influence of scheduling policies in order to accurately predict software performance. Several
existing approaches address this problem. They (i) measure or model specific features of GPOS
schedulers, simulate scheduling algorithms for (ii) high performance computing and (iii) real-
time applications or stem from the area of (iv) queueing theory. In the following, we give a brief
overview of the state-of-the-art for these areas.

Several experimental evaluations of the Linux scheduler [TCM06, KN07] give interesting in-
sights into its interactivity and multiprocessor load-balancing properties. However, the results
are not sufficient for the definition of scheduler performance models. Other authors use for-
mal prediction methods (such as stochastic automata networks or continuous time Markov
chains) to predict the influence of changes in the Linux scheduler on software performance
(e.g., [CCF+06, CZS06, KGC+06]). The proposed performance models focus on one specific
scheduler properties and, hence, employ strong simplifications. For this reason, the authors ne-
glect most of the performance-relevant features of the Linux scheduler. Furthermore, they do not
validate their predictions, i.e., they do not compare predictions with measurements.
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In high performance computing, simulation models are used to evaluate the influence of differ-
ent scheduling algorithms on the performance of highly concurrent applications [MEB88, LV90,
GTU91, Maj92, AD96, RSSS98]. Interestingly, the authors come to different and often contra-
dicting conclusions regarding the best and worst scheduling algorithms. Apart from different foci
of the approaches, the varying assumptions of the simulation models are a major factor that leads
to the diverging results. The considered scheduling policies are very specific to high performance
computing and are usually not applied for enterprise applications.

Simulators for real-time operating systems are already widely used to assess the schedulability
and timing behaviour of embedded software systems with soft and hard deadlines [SG06, MPC04,
JLT85]. These simulators are very specific to the domain of real-time systems and reflect sched-
ulers on a very detailed level. For example, the model includes the time for saving and restoring
a task’s context [MPC04]. While such aspects can be important for real-time systems, they are
negligible for general-purpose operating systems. Furthermore, the scheduling algorithms which
are modelled (e.g., round robin and earliest deadline first) as well as the performance metrics
which are considered (e.g., the number of missed deadlines) are specific to real-time systems.

In queueing theory [Bos02], the implications of scheduling policies in single- and multi-server
queueing systems are investigated from a more formal perspective (e.g., [BSUK07, SHB02, Oso05,
HBOSWW05]). Several authors have demonstrated (and proven) that scheduling can have a
major impact on software performance (e.g., [BSUK07, SHB02]). Furthermore, they have shown
how load balancing (also called cycle stealing [Oso05]) and different routing policies for multi-
server systems (e.g., [HBOSWW05]) influence mean response times. While these works give
interesting insights into the nature of scheduling, they impose too strong abstractions for GPOS
schedulers in most cases.

1.3. Contributions

In the scope of this work, we proposed a systematic method for the experiment-based derivation
of performance models, conducted several experimental analyses of operating system schedulers,
developed a performance modelling framework for GPOS schedulers, and designed a performance
model for message-based communication. In the following, we discuss the contributions of this
work in more detail.

A Method for the Experiment-Based Derivation of Performance Models Our novel method
for the experiment-based derivation of performance models tightly couples performance model
design with systematic experiments. The method is meant to identify features that are important
for system performance and to quantify their effect. The modelling effort is focussed on the most
crucial features and performance analysts are guided in finding appropriate performance abstrac-
tions. We extend the well known Goal-Question-Metrics approach [BCR94] for experiment design
to fulfil the needs of software performance evaluation. For each experiment, performance analysts
define specific questions about the performance properties of the system based on specification
and documentation. The results of the experiments allow performance analysts to answer these
questions as well as to fill in remaining degrees of freedom. With this information, they can de-
sign prediction models that capture the performance-relevant features of the system under study.
Once a performance model is defined, its prediction accuracy is validated to ensure that the model
is representative. In the scope of this thesis, we apply this method for the design of performance
models of GPOS schedulers and of message-oriented middleware.



1.3. Contributions 5

Experimental Analysis and Identification of Performance-relevant Features of Operating Sys-
tem Schedulers In the scope of this thesis, we conducted a series of experiments to identify
the performance-relevant features of GPOS schedulers. Each feature was evaluated extensively
in order to quantify its effect on the performance of concurrently executing tasks. Furthermore,
we classified the features considering the following dimensions: time sharing (e.g., priorities and
timeslices); treatment of interactive and I/O-bound tasks; and different policies for multiprocessor
load balancing. All features mentioned here exhibited significant influence on the performance of
the considered experimental scenarios.

We structured the identified performance-relevant properties using feature diagrams and, addi-
tionally, used them for developing performance models of GPOS schedulers. The feature diagrams
enable software architects to customise the performance model of GPOS schedulers to their exe-
cution environments.

Performance Modelling Framework for General Purpose Operating System Schedulers The
main contribution of this thesis is a novel performance Model for general purpose Operating
System Schedulers called MOSS. The model reflects the influence of time sharing, interactivity,
and multiprocessor load balancing policies of GPOS schedulers on software performance. Software
architects can provide their own configurations of the model based on feature diagrams [CE00]
or choose among a set of standard configurations. MOSS supports the schedulers of the Linux
2.5 and 2.6 Kernel series (up to 2.6.22), Windows 2000, Windows XP, Windows Server 2003, and
Windows Vista operating systems.

We use timed coloured Petri nets (CPNs) to model the behaviour of schedulers. The CPN
models designed in the scope of this thesis can be customised using the configurations men-
tioned in the paragraph above. MOSS is structured hierarchically, so that different aspects of a
scheduler can be modelled independently of one another. For performance evaluation, the CPNs
are simulated in order to obtain the performance metrics of interest. For this purpose, existing
simulation tools for CPNs can be used [JKW07]. Furthermore, as part part of this thesis, we
implemented a discrete event simulation technique [LMV02, LB05] which is specialised for MOSS
and was integrated with the Palladio Component Model (PCM [RBH+07, BKR08]). The PCM
is an architectural modelling language that supports early design time performance predictions.
The integration with the PCM hides the complexity of MOSS from software architects and per-
formance analysts and enables them to consider realistic scheduling policies in their performance
predictions without additional modelling effort.

MOSS was designed and validated applying the method for experiment-based model deriva-
tion introduced above. We conducted detailed experiments to identify the performance-relevant
properties for each major scheduling feature (time sharing, interactivity, multiprocessor load bal-
ancing). We validated models iteratively to ensure a high prediction accuracy of MOSS.

Furthermore, we conducted a case study, demonstrating that MOSS can predict the influence
of the Linux and Windows schedulers on software performance with an error less than 5% to
10% in most cases. Existing performance prediction techniques based on queueing models yield
errors up to several orders of magnitude. The case study models a typical scenario for business
intelligence reporting.

Performance Model for Message-based Communication Due to the importance of message-
based communication for enterprise applications, we developed a performance model for message-
oriented middleware (called messaging completion). The model is based on design patterns for
message-based communication [HW03]. In combination with measurements, it allows a straight-
forward integration of enterprise messaging systems (like Java Message Service [MHC02]) into
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software performance models. To customise the model to new execution environments, software
architects execute an automated test driver that collects the necessary performance data. A pre-
diction model for a new execution environment is constructed by the injection of measurement
results into the performance model.

Similarly to MOSS, we integrated the messaging completion with the PCM. Software architects
can annotate connections between software components with configurations for messaging. The
configuration reflects performance-relevant messaging patterns of the sender, receiver, and mes-
sage channel, e.g., guaranteed delivery or transactional messages. A transformation generates the
corresponding performance model. We defined the messaging completion in terms of the PCM,
e.g., components, behavioural specifications of services, and connections.

To evaluate the prediction quality of the messaging completion, we conducted a case study using
the SPECjms2007 Benchmark [SPE]. The benchmark models a typical supply chain management
scenario of a supermarket. The scenario involves multiple parties, like supermarkets selling goods
and headquarters responsible for administration and accounting. In the case study, we evaluated
three design alternatives with varying pattern selections for message-based communication as well
as with varying message sizes. The resulting predictions and measurements differ by less than
20%.

1.4. Overview

• Chapter 2 describes the foundations necessary for this thesis. We introduce the basic
terms and concepts of software performance engineering. We provide an overview of well
established formal methods for performance prediction as well as of model-driven perfor-
mance evaluation. A description of scheduling algorithms currently used in the operating
systems Linux and Windows concludes the chapter.

• In Chapter 3, we introduce an iterative method for the experiment-based derivation of
software performance models. We apply the method in Chapters 4, 5, and 6 to define cus-
tomisable performance models of GPOS schedulers for single- and multiprocessor environ-
ments as well as for message-oriented middleware. The methodology provides a systematic
approach to measurement, performance modelling and model evaluation.

Additionally, Chapter 3 provides an overview of the hierarchical structure of MOSS. We
demonstrate how different feature configurations can be realised in terms of CPNs and
how MOSS is integrated with the Palladio Component Model. Finally, we summarise the
performance-relevant features of GPOS schedulers that are evaluated in Chapters 4 and 5.

• In Chapter 4, we apply the method introduced in Chapter 3 to derive a performance model
for GPOS schedulers in single processor systems. We systematically evaluate influences of
different time sharing and interactivity policies on software performance. In addition to
the extensive validation during model design, we evaluate the applicability and prediction
accuracy of MOSS by means of a real world case study. The case study demonstrates that
MOSS can increase prediction accuracy by several orders of magnitude.

• Chapter 5 continues the evaluation and modelling of GPOS schedulers for symmetric
multiprocessing environments. We evaluate the influence of different load balancing poli-
cies on software performance and include their performance-relevant behaviour into MOSS.
Moreover, we extend the case study from Chapter 4 and demonstrate that the significant
performance increase of multi-core processors for software performance can be accurately
predicted by MOSS.



1.5. Executive Summary 7

• In Chapter 6, we introduce a performance modelling technique for message-oriented mid-
dleware. The technique allows software architects to define relevant features of message-
based communication. The available features were selected based on messaging patterns.
Therefore, the technique is a general solution for a wide range of message-oriented middle-
ware platforms. We validate the performance model by a comparison between measurements
and predictions for the SPECjms2007 benchmark [SPE].

• In Chapter 7, we discuss the current state-of-the-art in software performance engineering
with respect to modelling scheduling policies. The discussion includes work from the areas
of queueing theory, operating systems research, real-time operating systems, and high per-
formance computing. In addition, we summarise approaches that integrate details of the
middleware platforms into performance prediction models.

• Chapter 8 concludes this thesis. We summarise the most important scientific contributions
of our work and discuss open questions. Finally, we discuss future directions of our research.

1.5. Executive Summary

Software performance engineering [Smi02] enables the reliable construction of software systems
with high performance requirements. With today’s rise of multi-core and multiprocessor systems,
operating system schedulers can become a determining factor for software performance and,
thus, must be considered in software performance prediction. In this thesis, we design and
evaluate a performance model for General Purpose Operating Systems (GPOS) schedulers, such
as implemented in the Windows and Linux operating system series.

In order to reach this aim, we propose a method that tightly couples systematic measurements
with performance model design (Chapter 3). The method is inspired by the work of Jain [Jai91]
and extends the Goal/Question/Metric approach of Basili, Caldiera, and Rombach [BCR94]. The
tight coupling of measurements and performance model design is essential for the development
of performance models of complex and highly concurrent systems, such as operating system
schedulers and message-oriented middleware.

In Chapters 4 and 5, we apply the method to design a performance Model for general purpose
Operating System Schedulers (MOSS). We describe a series of detailed performance evaluations
of operating system schedulers. Based on the results, we construct a customisable performance
model for operating system schedulers. Feature diagrams [CE00] enable the customisation of
MOSS and specify its degrees of freedom. MOSS covers various features of run queues, of strate-
gies to prefer I/O-bound and interactive tasks, and of static and dynamic multiprocessor load
balancing. A case study demonstrates that MOSS can increase the prediction accuracy by several
orders of magnitude.

In addition to MOSS, we develop a performance model for message-oriented middleware (Chap-
ter 6) based on design patterns for message-based communication (called messaging completion).
Messaging completions are an abstraction of details specific to vendor implementations. For this
purpose, software architects inject measurements from the target platform into the messaging
completion, adjusting the model to new execution environments. We use concepts and technolo-
gies of model-based (or model-driven) performance engineering [BMIS04] to hide the complexity
of the messaging completion from software architects. In a case study based on the SPECjms2007
Benchmark [SPE], we predicted the influence of message-based communication with an error of
less than 20%.
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2. Foundations

In this chapter, we introduce the concepts and terms from the area of software performance
engineering and operating system research relevant for this thesis. Section 2.1 describes the ba-
sic concepts of software performance engineering. It provides an overview of well-established
prediction models and newly emerging approaches in model-driven performance engineering. In
Section 2.2, we summarise the currently used scheduling policies in performance evaluation. Fur-
thermore, we point out important aspects for the performance evaluation of scheduling policies.
In Section 2.3, we describe the schedulers realised in today’s operating systems: Windows XP,
Windows Server 2003, Windows Vista, and Linux 2.5 – 2.6.22.

2.1. Software Performance Engineering

In 1980, Connie Smith introduced Software Performance Engineering (SPE) [Smi80] to provide a
better integration of performance predictions in the software development process. Her approach
was meant to enable performance evaluation of software systems on the basis of simple models
during early development phases [Smi02, Smi90]. The predictions help software architects to
identify and solve potential performance problems. For this purpose, she used well-established
performance modelling techniques (Sections 2.1.1 and 2.1.2) and made them easily accessible for
software architects and developers.

Later, model-based performance prediction approaches (Section 2.1.3) picked up SPE’s core
idea. They provide performance annotations for architecture description languages, such as
UML [(OM04], to close the gap between performance models and domain-specific languages
used by software architects and developers. The annotated software models are transformed to
analytical models such as queueing networks, stochastic Petri nets, or stochastic process algebras.

In addition, newly emerging approaches exploit the capabilities of model-driven technologies to
increase prediction accuracy. They inject low-level details of the target execution environment into
high-level architecture models by means of so-called performance completions (Section 2.1.4). In
the following, we give a brief overview of performance models, workload characterisation, model-
driven performance engineering, and performance completions.

2.1.1. Performance Models

Numerous models for performance analysis emerged during the past decades (see [BH07] for an
overview). In the following, we briefly discuss queueing network models, stochastic Petri nets,
and stochastic process algebras.

Queueing network models are the central approach to performance evaluation [LZGS84,
BGTdM98, RS95, DB78, Whi83, BCS07]. They provide a resource-centric view of the system
under study. A system is modelled in terms of service centres (see Figure 2.1(a) and (b)) that
embody a queue and one or multiple servers. Jobs (also called customers, users, or tasks) float
through the system and request service from the service centre.
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Jobs have to wait in the service centre’s queue until the server is available. A server processes
jobs according to some scheduling policy, e.g., first-come, first-served (cf. Section 2.2). Once
the resource demand of a job has been processed, it leaves the service centre. Jobs can either
circulate infinitely in the system (closed workload) or arrive at the system according to some
arrival process and leave the system as soon as they finished processing (open workload).

Stochastic Petri Nets (SPN) [MBB+89, CGL94, MBC+95, BK96, ZFH01] and Stochastic Pro-
cess Algebras (SPA) [Hil96, BBG97, HHK02, BDC02, BD04] provide a behaviour-centric view
on the system under study. Both model the timing behaviour and interaction of multiple pro-
cesses or tokens. Their expressiveness with respect to stochastic processes ranges from simple
continuous-time Markov processes with exponentially distributed delays (e.g., [Hil96, HHK02])
to generalised semi-Markov processes with generally distributed delays (e.g., [BD04]). While the
first can be solved analytically, the latter have to be simulated.

Queueing network models allow straightforward modelling of resources with different schedul-
ing policies. However, the description of complex control flow, i.e., software behaviour, is chal-
lenging [Kou06]. For example, queueing networks cannot model the forking of new jobs or the
synchronisation of multiple jobs in the system. By contrast, SPNs and SPAs can describe complex
(software) behaviour but suffer from missing resource models.

Thus, several combined approaches have been proposed in literature (e.g., [Bau93, Fra99, KB06,
Jen92]). These combined models integrate resource models from queueing theory with complex
behavioural models. In this thesis, timed coloured Petri nets (Appendix B) are used to model
the behaviour of general purpose operating system schedulers.

2.1.2. Open and Closed Workloads

For software performance evaluation, the workload of a system under study specifies the arrival
of new jobs. In a closed system model, new job arrivals are only triggered by job completions
followed by think time. By contrast, new jobs arrive independently of job completions in open
system model. In the scope of this thesis, the workload type refers to the available variants of
workloads.

For open and closed systems, jobs request service from a particular service centre (queue and
server) or system (one or more services centres). For a job t, the response time RT(t) with mean
E[RT(t)] is the time from the moment the job submits a request until its request is processed, i.e.,
it leaves the service centre. Furthermore, the utilisation of a single server (denoted by u) is the
fraction of time that the server is busy. In the following, we describe how requests are generated
in closed and open systems.

Infinite
Server

(a) Closed workload model.

ServerQueue

Service CentreInter-Arrival Time

Job

(b) Open workload model.

Figure 2.1.: Open and closed workload models.
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Closed Systems Figure 2.1(a) depicts a closed system, where a fixed number of jobs uses the
system forever. This number of tasks is typically called the multiprogramming level (MPL) and
denoted by N . Each of these N jobs submits a request, waits for the response, and, once the
response is received, waits (or “thinks” in case of users or customers) for some amount of time.
Thus, a new request is only triggered by the completion of a previous request.

In a closed system, Nthink denotes the number of jobs, who are currently thinking, and Nsystem

the number of users, who are either running or waiting in the queue. Since the the total number
of jobs is N , both numbers must sum up to N , i.e., Nthink +Nsystem = N . In closed systems, the
utilisation of a single server is the product of its (mean) throughput (usually denoted by X) and
the mean resource demand (E[S]).

Open System Figure 2.1(b) depicts an open system. Jobs arrive at the service centre as a
constant stream with average arrival rate λ for a Poisson arrival process. Each job is assumed
to submit one request to the system, wait to receive the response, and then leave the system.
The number of tasks in the system (queued or running, Nsystem) may range from zero to infinity
(Nsystem ∈ N). Its mean value is denoted by E[Nsystem]. For an open system, the utilisation u is
the product of the mean arrival rate of requests, λ, and the mean resource demand E[S].

The above modelling formalisms and workload types allow well-trained performance analysts
to model and evaluate software performance. For better integration of performance evaluation
into the software development process, model-driven performance engineering employs transfor-
mations of architectural models to performance models. In the following section, we describe the
envisioned approach in more detail.

2.1.3. Model-driven Performance Engineering
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Figure 2.2.: Overview of the model-driven performance engineering process.

Model-driven performance prediction [BMIS04] allows software architects to design perfor-
mance models in a language specific to their domain. This can be UML models [(OM07c] anno-
tated with performance-relevant information (using for instance the UML-SPT profile [(OM05]
or MARTE [(OM07b]) or architecture description languages specialised for performance evalua-
tion like the Palladio Component Model (PCM, see Section A). To derive performance metrics
from architectural models enriched with performance-relevant information, the software model
is transformed into a performance model as shown in Figure 2.2. Typical models for perfor-
mance analysis are queueing networks [LZGS84, Bos02], stochastic Petri nets [BK96, CGL94] or
stochastic process algebras [HHK02, Hil96]. Thus, model-driven performance engineering closes
the gap between formal performance model and architectural description languages. The solution
of the performance models by analytical or simulation-based methods yields various performance
metrics for the system under study, such as response times, throughput, and resource utilisation.
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Finally, the results are fed back into the software model. This enables software architects to in-
terpret the effect of different design and allocation decisions on the system performance and plan
capacities of the application’s hard- and software environment. In practice, tools encapsulate the
transformation and solution of the models and hide their complexity.

Often detailed information on the execution environment (middleware, database, operating sys-
tem, processor architecture) is required to get meaningful predictions. Model-driven technologies
can be exploited to add such performance-relevant information on the infrastructure to high-level
architectural specifications.

2.1.4. Performance Completions

For performance predictions during early development phases, software architecture models have
to be kept on a high level of abstraction since implementation details are not yet known. By
contrast, detailed information on the system is necessary to determine the performance of the
modelled architecture correctly [VDGD05, GMS06]. While such information is not available for
the modelled system, the infrastructure of the system, e.g., the middleware platform used, might
be known even during early development stages.

Based on technologies from model-driven software development [VS06], performance comple-
tions [WPS02, WW04] automatically refine design time software models with low-level infrastruc-
ture details to increase prediction accuracy. In the process shown in Figure 2.2, infrastructure
models are used to complete the transformation from the software to the performance model.
Performance completions hide the complexity of the underlying infrastructure from software ar-
chitects, who only choose among the infrastructure’s performance-relevant options.

For example, a transformation can insert the influence of Message-oriented Middleware (MOM)
into the application’s performance model (cf. Chapter 6). The result of the transformation
reflects the influence of message-based communication (as implemented in the middleware) on the
application’s performance. Software architects can configure message channels in their software
architecture based on a set of performance-relevant options.

Software 
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Extended
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Figure 2.3.: Performance completions in the PCM.

Figure 2.3 shows how performance completions can be realised. Elements of a software archi-
tecture model, such as components or connectors, are referenced by elements of an Annotation
Model. Annotations mark elements in the architecture model that are to be refined and provide
configurations that are required. For example, if a connector is to be replaced by a remote pro-
cedure call, the annotation can provide information about the target infrastructure, e.g., SOAP
or Java RMI. A transformation takes the necessary infrastructure models from a Completion
Library, adjusts them according to the configuration, and generates a performance model that
reflects the performance properties of the software model completed by the infrastructure model.



2.2. Scheduling in Software Performance Evaluation 13

Performance completions can occur on the architectural level, on the performance model level,
or on some intermediate level (e.g., if the transformation uses some intermediate performance
model such as the core scenario model [PW02] or KLAPER [GMS05]). Which level is best
suited for a specific performance completion depends on its modelling requirements (i.e., can it
be expressed in terms of the architectural description language) as well as on the intended usage.

For example, the performance completion for GPOS schedulers proposed in this thesis (Chap-
ter 3 to Chapter 5) is specified in terms of CPNs and, thus, placed on the performance model
level. The advantage of an accurate prediction model that exploits the specific features of CPNs
comes at the cost of the commitment to a single analysis formalism.

By contrast, the messaging completion (cf. Chapter 6) is defined on the architectural level.
The result of the transformation is an expanded architectural model whose annotated elements
have been replaced by detailed performance specifications. Keeping the model on the architectural
level allows the use of all analytical and simulation-based solvers implemented for the architectural
specification language. However, this approach has the drawback that the messaging completion
cannot be used in other architectural languages.

In the next section, we describe how scheduling and routing policies are modelled in software
performance prediction.

2.2. Scheduling in Software Performance Evaluation

In software performance evaluation, various policies have been introduced and studied to model
the scheduling and routing in single-server systems and multi-server systems. In the fol-
lowing, we describe scheduling and routing policies available in approaches and tools that
are commonly used in software performance evaluation, e.g., approaches from queueing the-
ory [HSZT00, BCS06, BCS07, LZGS84, Bos02], Layered Queueing Networks (LQNs) [Fra99,
FMW+07], Queueing Petri Nets (QPNs) [Bau93, KB06], and the standardised performance mod-
elling notations “UML Profile for Schedulability, Performance and Time” (UML-SPT) [(OM05]
and “UML Profile for Modelling and Analysis of Real-Time and Embedded systems”
(MARTE) [(OM07b].

2.2.1. Scheduling Policies

Scheduling policies determine the execution order of tasks at a single server. The policies assign
the server to competing tasks in a non-preemptive or in a preemptive way. While non-preemptive
policies wait until the currently running task is finished before they schedule a new task, pre-
emptive policies can interrupt a currently running task to allocate the server to a new task. When
a task is pre-empted, its already completed work can either be kept or neglected. This mainly
depends on the analyses method that is used to solve the queueing network model. For example,
mean value analysis is limited to FCFS, LCFS, PS, and IS scheduling [RL80]. The following list
summarises scheduling policies used in queueing theory:

• First Come, First Served (FCFS) serves tasks in the order of their arrival.

• Last Come, First Served (LCFS) serves newly arriving tasks immediately, preempting
the running task. The work of the interrupted task is not lost (preemptive-resume).

• Round-Robin Scheduling (RR) Round-Robin limits the time a task is allowed to use
the processor to a fixed timeslice. When a task’s timeslice expires, the scheduler preempts
the task’s execution and reinserts it at the end of the processor’s queue.
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• Priority, Preemptive Resume (PPR) Tasks with priorities higher than the task cur-
rently running on the server will preempt the running task. The work of the interrupted
task is not lost. If multiple tasks with equal priorities exist, PPR schedules them with
round-robin.

• Head-of-Line priority (HoL) Tasks with higher priorities will be served by the processor
first. Tasks in the queue will not preempt a task running on the processor even though the
running task may have a lower priority. HoL uses FCFS to schedule tasks of equal priority.

• Processor Sharing (PS) The processor runs all tasks “simultaneously”. For performance
predictions, PS approximates the behaviour of round-robin scheduling [LZGS84]. Proces-
sor sharing describes a round robin algorithm, whose time slice and context switch times
converge to zero. So, if n tasks are in the system, each task receives approximately 1/n of
the processor’s power.

• Random scheduling (Rand) The processor selects a task at random. The execution of
tasks is not preempted.

• Infinite Server (IS) An infinite number of servers is available so that each task can be
processed within its service time.

• Preemptive Expected Longest Job First (PELJF) The task with the largest resource
demand is given preemptive priority. PELJF is an example of a policy that performs badly
and is included to understand the full range of possible response times.

2.2.2. Task Routing in Multi-Server Systems

If a task can be serviced by any of a set of servers, the system needs to decide on which of the
servers the task is to be executed. Such situations are particularly important in symmetric multi-
processing environments where multiple processors can execute a single task. The distribution of
tasks among the available processors strongly influences software performance. Determining the
optimal assignment strategy for multiple service centres is one of today’s major research ques-
tions in queueing theory [HBOSWW05]. In the following, we describe the central queue model
and the immediate dispatching model as inherently different concepts for load distribution in
multi-server systems. Furthermore, we summarise some of the most important routing strategies
for the immediate dispatching model.

Server
Queue

Service Centre

(a) Central queue.

Scheduling Policy

Routing 
Policy

(b) Immediate dispatching.

Figure 2.4.: Load distribution in multi-server queueing models.
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Central Queue and Immediate Dispatching Figure 2.4 illustrates the central queue and imme-
diate dispatching models for load distribution in multi-server systems. The central queue model
(Figure 2.4(a)) holds all tasks that require service in a central queue. Whenever a server finishes
a task, it fetches the first task waiting in the queue. The immediate dispatching model (Fig-
ure 2.4(b)) distributes tasks among the available servers at the moment of their arrival. Each
server holds a separate queue of tasks and is scheduled according to the policy of the local server.
A routing policy decides how the tasks are distributed among the available servers. The policy
can distribute arriving tasks statically or dynamically. In the first case, the policy does not con-
sider the state the system or properties of the task. In the second case, the policy may take into
account the current state of the queues, the past performance of the server, or the resource de-
mand of the task. The following list summarises typical routing policies for multi-server systems
as depicted in Figure 2.4(b).

• Round Robin (RR) starts at the first service centre and assigns new tasks to successive
service centres in a cyclic fashion.

• Probabilistic Routing (PR) assigns arriving tasks to a server with a specific probability
(e.g., 1/k where k is the number of service centres).

• Join Shortest Queue (JSQ) assigns arriving tasks to the service centre with the least
number of waiting tasks.

• Join-Shortest-Response-Time (JSRT) routes tasks to the service centre with the short-
est average response time observed so far.

• Join Least Utilisation (JLU) assigns arriving tasks to the service centre with the smallest
observed average utilisation.

• Join Fastest Service (JFS) routes tasks to the server with the shortest average service
time for its class. This method is related to the dedicated policy [SHB04, HBCM99] which
separates tasks according to their size.

2.2.3. The Performance Influence of Workload Types and Scheduling Policies

Open and closed workloads (cf. Section 2.1.2) are widely employed in all areas of software
performance evaluation, e.g., performance benchmarking [SPE, ZBLG07], simulation-based eval-
uations [BCS07, Kou06], and analytical solution methods [BK92, DB78]. While widely used, the
impact of different workload types on the resulting performance metrics has only been pointed
out recently by Schroeder et al. [SWHB06].

In a series of implementation and simulation experiments, Schroeder et al. have observed
vast differences in performance between open and closed workloads in real-world settings. Their
results for both types of workload differ significantly even if resource utilisations and service time
distributions are equal. For example, the mean response time for a system with an open workload
(open system) can exceed that for a system with a closed workload (closed system) by several
orders of magnitude. Furthermore, both workload types respond fundamentally differently to
variance in service demands and of scheduling policies. For example, the variance in service
demands (job sizes) has a huge impact on response times for open workloads but much less of an
effect for closed workloads.
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The Effect of Mean Response Times For a fixed utilisation of each server, mean response
times are significantly lower in closed systems than in open systems [SWHB06].

If the utilisation of a server becomes high, the response times for closed systems are orders
of magnitude lower than those for open systems. Schatte [Sch84] has proven that, under FCFS,
the open system will always serve as an upper bound for the response time of the closed system.
The effect is a consequence of the fixed number of tasks, N , in closed systems, also called the
multi-programming level (MPL). The MPL limits the queue length observed in closed systems
even under very high load. By contrast, no such limit exists for an open system.

Approximating Open with Closed Systems As the MPL grows, closed systems become open,
but convergence is slow for practical purposes [SWHB06].

With an increasing MPL the mean response time of a closed system approaches the mean
response time of a similar open system (equal resource demand and load). Schatte [Sch84] has
proven that as N (i.e., the number of tasks) grows to infinity, a closed FCFS queue converges to an
open FCFS queue. Even though the response times differ significantly for both systems, an open
system can thus be a reasonable approximation for a closed system with a high MPL. However,
the closed and open system models may still behave significantly differently if the service times
are highly variable. Furthermore, convergence of closed systems is slow in practice [SWHB06].

Service Time Variability While variability has a large effect in open systems, the effect is much
smaller in closed systems [SWHB06].

The variability of service times directly affects the mean response time in open systems. For
example, a service centre with an FCFS scheduling policy and high service time variability results
in larger mean response times for short requests, which get stuck behind long requests.

For closed systems, variability has comparatively little effect on mean response time. The
number of requests in the system (Nsystem) is bounded by the overall number of tasks (N). Thus,
only a limited number of short requests get stuck behind long requests. The influence of resource
demand variability thereby depends on the MPL. With an increasing MPL, the influence of
variability on mean response times can increase as well.

The Effect of Scheduling Policies While open systems benefit significantly from scheduling
with respect to response time, closed systems improve much less. Scheduling only significantly
improves response time in closed systems under very specific parameter settings: Moderate load
(think times) and high MPL [SWHB06].

The choice of scheduling policies yields fundamentally different behaviour of mean response
time in the open and closed systems. In an open system, the discrepancy between the response
times of the scheduling policies grows with an increasing utilisation and eventually differs by
orders of magnitude. By contrast, scheduling policies tend to perform similarly at both high and
low resource utilisation in closed systems. Only for moderate resource utilisation, Schroeder et
al. observed larger differences (factor of 2.5) between the considered policies (FCFS, PS, SRPT,
PELJF).

The limited effects of scheduling in closed systems are a consequence of the closed feedback
loop. Especially for closed systems with a think time of zero, the above scheduling policies yielded
similar response times. Schroeder et al. explain this effect as follows.

For a closed system with N tasks, throughput X, and a mean response time E[RT(t)] for task
t, Little‘s Law states that N = X E[RT(t)]. Thus, the mean response time, E[RT(t)], is constant
if X and N are also constant across all work conserving scheduling policies. While performance
analysts specify the number of tasks, N , the throughput is determined by the number of tasks,
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the think time, and service time of the system. For systems with a think time of zero and a low
service time variability, all work conserving scheduling policies will complete the same number
of requests over a long period of time, since a new request is only created when a request is
completed. The constant throughput across work conserving scheduling policies results in similar
mean response times.

The argument above does not hold for open systems because for such systems Little‘s Law
states that E[N ] = λE[RT(u)] and E[N ] is not constant across scheduling policies. For closed
systems, scheduling provides small improvement across all loads, but can only result in substan-
tial improvement when load (think time) is moderate. In contrast, scheduling always provides
substantial improvements for open systems.

However, the argument above does hold for the specific cases of closed workloads with low
resource demand variability, a single class of tasks, and FCFS, PS, SRPT, or PELJF scheduling
policies. If resource demand variability increases or different classes of tasks have to be considered,
closed systems also yield larger differences in response times for different scheduling policies, as
the results in Chapter 3 to Chapter 6 demonstrate.

Variability Reduction of Scheduling Policies Scheduling can limit the effect of variability in
both open and closed systems [SWHB06].

For open and closed systems, scheduling policies such as PS and SRPT reduce the negative
effect of increased variability on mean response times. For such policies, short requests cannot
get stuck behind large ones. For PS, a request immediately gets a share of 1/Nsystem’th of the
server. For SRPT, a request receives service as soon as all shorter requests have been finished.
The overall response time strongly benefits from the preference of short requests. However, the
improvement is smaller for closed systems since variability has less of an effect in closed systems
in general.

2.3. General Purpose Operating System Schedulers

In general purpose operating systems (GPOS), complex scheduling algorithms share the available
processing power among competing tasks. These algorithms are based on multi-level feedback
queues and exhibit a much higher complexity than the scheduling and routing policies currently
used in software performance prediction. They prefer tasks according to resources used and past
behaviour. Furthermore, they redistribute load dynamically during run time.

In this section, we describe fundamental scheduling concepts necessary to understand the in-
fluence of operating system schedulers on software performance. We introduce basic concepts
and terminology (Section 2.3.1) including processes and threads (Section 2.3.2) and multilevel
feedback queues (Section 2.3.3). Based on these concepts, we give a detailed description of the
scheduling algorithms implemented in the operating system series of Windows (Section 2.3.4) and
Linux (Section 2.3.5).

2.3.1. Basic Concepts and Terms

Schedulers manage the access of processes, threads, or tasks to limited resources. For example,
if only one CPU is available, a scheduler chooses the process to run next according to a de-
fined scheduling algorithm [Tan01, p.132]. In most cases, the GPOS schedulers use preemptive
scheduling policies. They run a task for the maximum of some fixed time called timeslice (or
quantum) and suspend it afterwards. To implement such a behaviour, a clock interrupt triggers
the operating system scheduler, which can suspend the currently running task and assign another
task to the resource. For the scope of this thesis, we define a scheduler as follows.
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Definition 2.1 (Scheduler [SGG05]). If multiple processes share access to a limited resource, the
scheduler selects one of the processes in the queue that are ready to be executed and allocates the
resource to that process. The algorithm used is called scheduling algorithm or scheduling policy.

Scheduling policies mainly differ in their extra-functional properties, such as fairness and ef-
ficiency of the scheduler, and software performance. Thus, the choice of a good scheduling
algorithm depends on the system’s functional and performance requirements. The requirements
can be classified into the three major categories of interactive, batch, and real-time systems.

Interactive Systems Interactive systems feature many interactions with users and with differ-
ent resources in the systems. Therefore, interactive processes are I/O-bound, i.e., they wait long
times for users or for I/O devices, followed by short bursts of computation. To keep response
times short and all resources as busy as possible, schedulers have to process requests of interactive
processes as quickly as possible [SGG05, Tan01]. Furthermore, the fulfilment of user expectations
is especially important in interactive systems. The system must respond to requests quickly. For
example, users are not meant to notice the time between a keystroke and the character appearing
on the screen (key to glass response time). By contrast, processes with long execution times can
be further deferred without beeing noticed by users. For example, longly running tasks, such as
compiling a Kernel, can be delayed for a few seconds longer without being noticed. The differ-
ent treatment of interactive an non-interactive processes requires the scheduler to automatically
classify tasks according to their runtime behaviour.

Batch Systems In batch systems, a series of jobs is processed without human interaction. The
overall aims are to maximise the throughput of jobs while minimising turnaround times (i.e.,
the time necessary to process a job including its waiting time). To reach these conflicting goals,
batch systems have to do as much real work (i.e., job processing) as possible. A reduction of the
number of context switches may limit the scheduling overhead and grants more processing time
to tasks. However, a high throughput can only be achieved if all resources are kept busy. To do
so, multiple jobs have to be executed in parallel, leading to additional context switches.

Real-Time Systems Real-time systems can be considered as mission critical in a given context.
For example, the control system of a car’s air bag has to react within a given time interval to
protect passengers in case of an accident. Thus, the total correctness of real-time systems not only
depends on the functional correctness of the system, but also on the time upon which an action is
performed. To construct systems that meet hard and soft deadlines, a high predictability of the
scheduling algorithm and of the software are required. Research on performance analysis of real-
time systems deals with worst and best case execution times as well as with schedulability and
feasibility analysis for periodic and aperiodic tasks under different scheduling algorithms [LM99,
Hap05a, KH05].

Fairness and Efficiency Furthermore, fairness and efficiency are important properties of sched-
ulers for all kinds of systems. A fair scheduler assigns comparable service to comparable pro-
cesses [Tan01, p.137]. Thus, each process receives a fair share of the resource, depending on
its class. A scheduler is called efficient if it produces as little overhead as possible and lets the
system do as much real work (e.g., execute processes) as possible [Tan01]. The overhead of a
scheduler refers, for example, to the number and the time consumption of context switches. In
order to achieve a high efficiency, schedulers may prefer I/O-bound processes over compute-bound
processes, to keep all resources busy. I/O-bound processes are limited by the processing power
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of external resources, while compute-bound processes are limited by the processing power of the
CPU. Each process issues a sequence of I/O bursts and CPU bursts. Depending on the duration
and frequency of the bursts the scheduler can classify processes.

The different requirements are often contradictory. For example, an interactive scheduler needs
relatively small timeslices, which introduce a lot of scheduling overhead contradicting the general
goal of efficiency. However, widely used operating systems, such as Windows (2000, XP, Server
2003, and Vista, cf. Section 2.3.4) and Linux (Kernel 2.6 series, cf. Section 2.3.5), implement
multipurpose schedulers which can handle real-time, interactive and batch processes.

2.3.2. Processes and Threads

In modern operating systems, processes, kernel-level threads, and user-level threads are different
types of active entities. Informally, a process is a program in execution [SGG05, p.82]. A (heavy-
weight) process contains all information necessary for executing a program, including a program
counter, code, data, file handlers, registers, and an execution stack. Threads belong to a process.
They share code, data, and file handlers, but own separate program counters, registers and stack
copies. Therefore, context switches between threads of the same process are faster than switches
between separate processes in terms of clock cycles needed to complete the switch. Switching
between threads of one process instead of switching between processes has further performance
benefits. Since the threads of one process share data, the thread is likely to find its data in the
processor cache.

Furthermore, threads are subdivided into kernel-level and user-level threads. While kernel-level
threads are directly managed by the operating system, user-level threads are managed without
direct support of the operating system [SGG05, p.129]. However, the user-level threads need to be
mapped to kernel-level threads for execution. This mapping can yield a many-to-one, one-to-one,
or many-to-many relationship between user-level and kernel-level threads.

In a many-to-one relationship, a thread library maps many user-level threads to one kernel-
level thread. This will block the whole process if one of its threads issues a blocking system call.
Furthermore, multiple threads cannot run in parallel on multiprocessors, since the Kernel can
only access one kernel-level thread.

A one-to-one mapping of user-level threads to kernel-level threads allows more concurrency,
but leads to additional overhead. Creating a kernel-level thread for each user-level thread can
put a high load on the operating system. Therefore, operating systems limit the total number of
threads in the system. In general, the Linux and Windows operating system series implement a
one-to-one mapping [SGG05, p.130]. However, the actual type of mapping depends on the thread
library used.

A many-to-many relationship multiplexes many user-level threads to a smaller or equal number
of kernel-level threads. This strategy allows high concurrency and does not require a limit for
the number of user-level threads in the system.

Definition 2.2 (Task). A task is an active and executable entity visible to the operating system
scheduler.

For performance prediction, an explicit distinction between processes, kernel-level, and user-
level threads is not necessary in most cases. Therefore, definition 2.2 introduces the term task
for the general concept of processes, user-level and kernel-level threads, which are visible to
the operating system scheduler. For the remainder of this thesis, we use the term task as an
abstraction from processes or threads and apply the exact terms only if necessary.
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Figure 2.5.: Task states [SGG05, p.83].

From the scheduler’s perspective, all tasks (no matter whether processes or threads) pass
through different states during their life cycle. Figure 2.5 illustrates the states important to
a scheduling algorithm [SGG05, p.83]. The states printed in dark gray are relevant for the
performance model developed in Chapter 3 to Chapter 5.

The lifecycle of a task starts in state new when it is being created. If the scheduler accepts a
task, it enters state ready where it is waiting to be assigned to a processor. Once the scheduler
dispatches the tasks, it enters state running and can execute instructions on a processor. From
there, the scheduler can either interrupt the task putting it back into state ready, the task can
wait for the completion of an I/O operation or an external event entering state waiting, or it
can finish execution going to state terminated. This overall behaviour of a task is independent
of the actual scheduling algorithm.

2.3.3. Multilevel Feedback Queues

Multilevel Feedback Queues (MLFQ) classify tasks into different groups with similar properties
and schedule each group separately. The tasks which belong to the same class can be scheduled
according to an arbitrary scheduling algorithm, e.g., FCFS or RR. MLFQs create multimode
systems [SGG05]. For example, a MLFQ can distinguish interactive and batch tasks. Both types
have different response time requirements and, thus, different scheduling needs. Since interactive
tasks have to respond quickly to user requests, they have priority over batch tasks.

To be able to adopt separate scheduling algorithms for each class, MLFQs partition the queue
of tasks that request processing into several separate queues. All tasks are assigned to a queue
based on their properties, such as their memory size, priority, or type. Furthermore, MLFQs
realise scheduling among the queues, in order to decide which class is processed next, if tasks of
multiple classes are available. For example, priority preemptive scheduling can be used to prefer
tasks in the interactive queue over tasks in the batch queue.

In MLFQs, the classification of a task can change according to its behaviour. Thus, tasks
can move between queues. MLFQs usually distinguish tasks with respect to the characteristics
of their CPU-bursts. For example, if a task uses too much CPU time, it will be moved to a
lower-priority queue. This scheme leaves I/O-bound and interactive tasks in the higher-priority
queues. Furthermore, if long waiting tasks in low-priority queues are moved to higher-priority
queues, starvation is prevented.

Figure 2.6 shows a simple example of an MLFQ which distinguishes three classes of
tasks [SGG05]. The upper two classes manage foreground tasks while the bottom class holds
batch tasks. When a task arrives, it lines up at the end of the top-level queue. The scheduler
assigns a timeslice of 8 ms to each task in the queue. If a task does not finish processing within
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Timeslice = 8 ms (RR)

Timeslice = 16 ms (RR)

FCFS

Figure 2.6.: Simple example of a multilevel feedback queue [SGG05, p.168].

its timeslice, the scheduler moves it to the end of the middle queue. Only if the top-level queue
is empty, the scheduler selects a task of the middle queue for processing. If the task still requires
processing time after 16 ms, the scheduler moves it to the bottom queue, which processes all
tasks with FCFS. This queue holds batch processes and is only served if both other queues are
empty. With this strategy, the scheduler prefers interactive tasks, which finish in less than 8 ms
over tasks which require between 8 and 16 ms and batch processes.

MLFQ schedulers provide a high flexibility for the design of scheduling algorithms. They
defined by the following parameters [SGG05]:

• The number of queues

• The scheduling algorithm for each queue

• The method to determine when to upgrade or degrade a process to a higher- or lower-priority
queue

• The method used to determine which queue a process will enter, when that process needs
service

In the operating systems Windows and Linux, MLFQ schedulers are implemented (cf. Sec-
tions 2.3.4 and 2.3.5). However, both implementations differ significantly in their concepts of
time sharing, interactivity, and multiprocessor load balancing.

2.3.4. Windows

Today, the Windows operating system is available in many different versions and variants. At
the time of writing Windows XP, Windows 2000, Windows Server 2003, and Windows Vista
are the most relevant ones. For the scope of this thesis, we use the term Windows to refer to
all Windows versions. The full operating system name is only used if the versions differ in the
realisation of the described concepts. In the following, we explain the basic scheduling concepts of
time sharing, interactivity handling, and multiprocessor load-balancing realised in the Windows
operating system series.

Time Sharing

Priorities Windows implements an MLFQ scheduling algorithm. It supports 32 different priority
levels ranging from 0 (lowest priority) to 31 (highest priority) [SR05, p.329]. Each priority level
represents a separate task class with its own run queue. Windows employs a priority preemptive
scheduling algorithm between the queues, i.e. higher priority tasks preempt lower priority ones.
A task on a certain priority level can only be executed if all queues on higher priority levels
are empty. Furthermore, the priority levels are divided into the classes real-time (16 to 31),
interactive (1 to 15), and idle (0). Depending on their behaviour, tasks can change the priority
within their class, but cannot migrate between classes.
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Windows categorises all user and business applications, like word processors, databases, and
application servers, as interactive tasks. Since the scheduler performance model developed in
Chapter 3 to Chapter 5) is targeted at such applications, the following explanation focusses on
Windows’ processing of interactive tasks.

Run Queues Windows uses a separate run queue (also called a ready queue) for each priority
level to hold the tasks ready for execution (i.e., the tasks in the ready state, cf. Figure 2.5). The
tasks in a queue on each priority level are executed using a round robin scheduling algorithm.
The timeslice duration depends on the Windows operating system version as explained in the
next paragraph.

Timeslices Windows defines the duration of a timeslice in terms of scheduling quanta. For
example, on x86 systems, a scheduling quantum is 15.625ms. This value is mainly determined
by the clock interrupt frequency of the underlying hardware. Windows distinguishes short (2
quanta, 31.5ms) and long (12 quanta, 187.5ms) timeslices. Short timeslices are generally used
on client systems (Windows 2000/XP/Vista), as they lead to a higher responsiveness. On server
systems (Windows Server 2003), long timeslices are preferred, since they reduce context switching
overhead [SR05].

Interactivity and I/O Operations

Windows specifically ”‘boosts”’ tasks which interact with the user or access I/O devices, in
order to increase the responsiveness of the system. For this purpose, the scheduler increases a
task’s priority and timeslices (more specifically, grants more processing time to the task). The
completion of an I/O operation, the occurrence of events or the access of semaphores triggers
the boosting of a task’s priority. Furthermore, tasks which did not receive any processing time
for a long period get a top level priority for a full timeslice to prevent starvation (i.e., to not
perpetually deny their access to the processor). Table 2.1 shows the priority boosts for different
I/O devices and semaphores.

Resource Boost
semaphore +1

disk +1
network +2

keyboard or mouse +6
sound +8

Table 2.1.: Priority boosts after the acquisition of the named resources [SR05].

To realise changing priorities, Windows distinguishes dynamic and static priorities for each
task. While the latter are explicitly given, for example, by a user or by another task, the former
depend on a task’s behaviour, e.g., its accesses to I/O devices and semaphores. When a task
is boosted, Windows computes its new dynamic priority by adding the corresponding priority
boost (cf. Table 2.1) to the task’s static priority. This strategy prevents tasks from accumulating
priority boosts. Furthermore, the dynamic priority of interactive tasks cannot exceed the highest
priority for interactive tasks (15), no matter how large their boost is. When a task received a
priority boost, Windows decreases its dynamic priority again over time. Whenever the task’s
timeslice expires, its dynamic priority is reduced by 1 until its static priority is reached. As a
consequence, full boosts are only available to tasks until the end of their timeslices.
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In addition to priority boosts, the timeslice of a task can be reset when it finishes a wait
operation, e.g., for user input or an I/O device. Windows only resets the timeslice if the task’s
priority is increased at the same time (i.e., the task is not already boosted) or the task’s static
priority is equal to or above 14. Windows also employs a mechanism to ensure that task’s
timeslice will eventually expire (is used up). Each time a task accesses one of the resources listed
in Table 2.1, Windows reduces its timeslice by one third of a scheduler quantum. Thus, tasks
cannot access critical resources too often without using up their timeslice.

Multiprocessor Systems

Windows can handle systems with multiple processors and cores, including simultaneous multi-
threading (SMT), symmetric multiprocessing (SMP) and non-uniform memory access (NUMA)
architectures. Scheduling tasks in such environments requires strategies to decide which task
should run on which processor. This question can be examined from the perspective of a task
or from the perspective of a processor. If a task becomes ready, schedulers for multiprocessing
systems have to assign the task to a processor, where it can execute (”‘task’s perspective”’).
By contrast, schedulers have to select the next runnable task for an idle processor (”‘processor’s
perspective”’). Schedulers for multiprocessing systems need to implement strategies for both
perspectives. For the Windows operating system series, the processor selection from a task’s
perspective is similar for all versions, but the task selection from a processor’s perspective differs
for Windows 2000/XP and Windows Server 2003/Vista.

While Windows 2000/XP provide a single run queue for all processors, Windows Server
2003/Vista hold a separate run queue for each processor. This difference leads to different process
selection strategies and has a significant influence on scalability and performance (cf. Section 5.1).
The following discussion first explains the processor selection from a task’s perspective common
to all Windows versions [SR05]. Then the processor selection from a task’s perspective based on a
single run queue realised in Windows 2000 and Windows XP is explained. Finally, the scheduling
of run queues for each processor implemented in Windows Server 2003 and Windows Vista is
described.

Windows restricts the selection of processors for a runnable task to a list of processors called
affinity mask. The scheduler can only assign a task to processors listed in its affinity mask. This
strategy allows the explicit distribution of tasks among the available processors by users of an
application or by the applications themselves. Moreover, affinity masks can prevent undesirable
processor switches by forcing a task to remain on one of the available processors.

To optimise a task’s performance, Windows tries to always assign one task to the same pro-
cessor. The assignment to the same processor increases the probability for a task to find its data
in the processor caches, which is likely to improve the task’s computation speed. On the other
hand, Windows needs to keep all processors busy. To deal with these conflicting requirements,
Windows identifies an appropriate processor for a task in multiple steps.

Each task receives an ideal processor during its creation following a simple round robin schema.
Windows always tries to allocate a task to its ideal processor first. This might require the
interruption of a running process or the task’s insertion into the processor’s run queue. Only
if the ideal processor is busy and other processors are idle, Windows looks for an appropriate
new processor. Its first choice is the last processor the task ran on (if not the same as the ideal
processor). Next, it is checked whether the currently active processor (i.e., the one performing
the scheduling operation) is in the list of idle processors. If none of the above processors is idle,
the task is allocated to the first idle processor that is in the affinity mask of the task and not
sleeping. For SMT and NUMA architectures, the processor selection has to consider various other
conditions, e.g., shared internal resources of a processor and memory access times.
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Windows XP and 2000 manage tasks that are ready for execution in a single run queue. To
choose a runnable task for a processor, the scheduler looks at the highest priority non-empty
queue. It chooses the first task fulfilling one of the following conditions in the given order: The
task previously ran on the current processor; the current processor is its ideal processor; or the
task is the first in its queue. The use of a single run queue ensures that the highest priority tasks
always run first. Furthermore, the load is automatically balanced between different processors,
since each processor selects its tasks from the same run queue. However, the run queue can
become a bottleneck of the system, as system-wide locks are needed to access it. Especially on
multiprocessor systems, global locks can be very expensive. This results in major scalability
issues, which led to the development of per-processor run queues implemented in Windows Server
2003 and Vista.

To improve scalability, Windows Server 2003 and Vista use per-processor run queues. This
limits the use of global locks to special cases, such as load balancing or priority changes of a task.
To select a runnable task for a processor, the scheduler simply looks at the processor’s run queue.
It chooses the head of the highest priority non-empty queue for execution.

The use of per-processor run queues improves the scalability of the scheduler, but requires
additional effort to balance the load among the available processors. If a processor is idle and
its run queue is empty, it looks for another executable task and moves it to its run queue.
This strategy avoids processors from idling while tasks for execution are available. Furthermore,
it prevents additional overhead through intensive balancing attempts in an overloaded system.
However, the system may not achieve a fully balanced state using this strategy.

Important Details for Performance Prediction

Some details of the Windows scheduler are especially important for performance prediction. In
the following, we describe the most important aspects.

Fairness and Starvation In general, the Windows scheduler is not fair and only guarantees to run
the single highest priority task on one of the available processors [SR05]. The unfairness is a result
of the strict preference of high-priority tasks over low-priority ones. Thus, no statements about
other tasks can be made. Especially for Windows versions with per-processor run queues (Server
2003 and Vista), this policy can lead to major imbalances. In a system with two processors, for
example, multiple high priority tasks might share one processor, while the other processor is used
by a single low priority task.

Windows implements a basic mechanism to prevent starvation. If a task cannot use the proces-
sor for more than 4 seconds, its dynamic priority is set to 15, the highest priority for interactive
tasks. The task receives a timeslice of either 62.5ms (for systems with short timeslices) or 750ms
(for systems with long timeslices). When the task has used up its timeslice, its dynamic priority is
immediately reset to its static priority. This strategy differs from the usual resetting of timeslices,
where the dynamic priority of a task decreases one by one with each timeslice until the static
priority is reached.

Run Queue Management Windows’ management of task interruptions can significantly influ-
ence software performance. When a higher priority task becomes ready, the currently running
task is preempted and returned to the head of its priority queue. Windows stores the task’s
timeslice and priority. So, the task can finish its timeslice when the processor becomes available
again. The keeping of the task’s priority and timeslice needs to be modelled for performance
predictions to be accurate.
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Resetting Timeslices When the priority of a task is boosted, Windows might also reset its
timeslice. The amount of time granted to an interactive task can significantly influence its per-
formance. It depends on the resources used and the task’s remaining timeslice.

Windows manages timeslices as multiples of so-called scheduling quanta, which directly relate
to the intervals of the timer interrupt. Thus, a quantum’s exact duration is determined by the
underlying hardware. For example, a quantum lasts 15.625 ms for x86 architectures. For internal
computations, Windows stores a task’s remaining timeslice as the number of remaining scheduling
quanta multiplied by three. For short timeslices with 2 quanta this yields 6, for long timeslices
with 12 quanta this yields 36.

The scaling of a task’s remaining quanta allows Windows to stepwise degrade its remaining
processing time. Thus, Windows can prevent tasks from blocking the processor without punish-
ing them too hard. Such preventions become necessary when a task accesses the same resource
multiple times and avoid that a tasks receives infinite processing time [SR05]. For this purpose,
Windows reduces a task’s remaining quanta each time the task accesses a resource. The re-
duction affects the reset of timeslices and differs for each type of resource. Depending on the
considered system and its load conditions, this can have a major impact on software performance
(cf. Section 4.2).

2.3.5. Linux

When the Linux 2.6 Kernel was introduced major changes were incorporated in the implemen-
tation of the scheduler. These changes were aimed at improving the Kernel’s support for multi-
processor systems and at enhancing interactivity for desktop applications [Aas05, BC05, Mau03].
While the former 2.4 Kernel uses a single run queue for all processors, the 2.6 Kernel maintains
a separate run queue for each processor. This separation increases the scalability of the sched-
uler for multiprocessors and offers better support for server systems with an increasing amount
of processors. However, the strongly conflicting goals of scalability and interactivity had led to
multiple revisions of the scheduler implementation. At the moment of writing, a new Completely
Fair Scheduler (CFS) has just been introduced into the Kernel’s main line [Tra]. The following
sections describe the implementation of the Linux 2.6.22 scheduler which is a variant of the initial
O(1) scheduler [Aas05].

Time Sharing

Priorities Linux distinguishes 140 different priority levels ranging from 0 (highest) to 139 (low-
est) [Aas05, BC05, Mau03]. For each priority level, a separate run queue manages the tasks with
equal priorities. Furthermore, Linux divides the priorities into classes for real-time (0 – 99) and
interactive or batch tasks (100 – 139). The latter directly map to so called nice levels, which
represent the usual priorities of user and business applications. Nice levels range from the highest
priority of -20 (= 100) to the lowest priority of 19 (= 139). The following description focusses on
Linux’ task processing within this range.

Run Queues Linux keeps a separate queue for each priority level in a data structure called
priority array. The tasks within the same priority level are executed using a RR scheduling algo-
rithm. To ensure fairness between different priority levels and to minimise scheduling overhead,
Linux uses an active and an expired priority array. Figure 2.7 illustrates the main concepts of
Linux’ run queue. The active priority array contains all tasks whose timeslice is not yet used
up, while the expired priority array contains all tasks which have already finished their timeslice.
The scheduler only executes tasks from the active priority array. It always selects tasks on higher
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Figure 2.7.: Schematic overview of the run queue of Linux’ O(1) scheduler.

priority levels first. If the timeslice of a task expires, it is moved from the active to the expired
priority array. If the active priority array becomes empty, both arrays are switched making the
expired array active again. This is called an epoch of the scheduler. The complete arrays are
exchanged in this process. For Linux, different timeslice sizes are used to assign a larger share of
processing time to tasks with higher priorities. The following paragraph explains the concept of
timeslices used in Linux 2.6.22 in more detail.

Timeslices Linux assigns different timeslices to tasks depending on their priority. The higher
the priority of a task is, the larger is its timeslice. For example, tasks on the lowest priority level
(nice level 19) receive a timeslice of 5ms, while tasks on the highest priority level (nice level -20)
get 800ms.

Priority -20 -19 -18 -17 -16 -15 -14 -13 -12 -11
Timeslice (ms) 800.0 780.0 760.0 740.0 720.0 700.0 680.0 660.0 640.0 620.0

Priority -10 -9 -8 -7 -6 -5 -4 -3 -2 -1
Timeslice (ms) 600.0 580.0 560.0 540.0 520.0 500.0 480.0 460.0 440.0 420.0

Priority 0 1 2 3 4 5 6 7 8 9
Timeslice (ms) 100.0 95.0 90.0 85.0 80.0 75.0 70.0 65.0 60.0 55.0

Priority 10 11 12 13 14 15 16 17 18 19
Timeslice (ms) 50.0 45.0 40.0 35.0 30.0 25.0 20.0 15.0 10.0 5.0

Table 2.2.: Priority-dependent timeslices of the Linux scheduler.

Table 2.2 lists the timeslices in dependency of the process priority. The table is derived from
the following formula implemented in the Linux scheduler [lin]. Let pt be the priority of the
current task, pmin = 19 which is the lowest priority, and

ts =

{
100 ms , if pt ≥ 0
400 ms , if pt < 0



2.3. General Purpose Operating System Schedulers 27

the basic timeslice from which all other timeslices are derived. Then

(|pt − pmin|+ 1) ∗ ts
20

yields the exact timeslice assigned to each task by the Linux scheduler. Scaling the timeslices
from 5 ms to 800 ms enables a fair scheduling between all tasks in all queues. During an epoch,
all tasks in the active priority array receive a share of processing time according to their priority.
The higher their priority, the larger is their share of computation time.

Interactivity and I/O Operations

Linux rewards I/O-bound tasks with an increased priority, while compute-bound tasks are pun-
ished with a priority decrease. This improves the interactive behaviour of the system and efficient
use of I/O devices. Analogously to Windows, Linux assigns a dynamic priority to each task in
addition to its static priority. The dynamic priority depends on the task’s behaviour. Linux keeps
track of the time a task is waiting, compared to the time it computes. This value is called sleep
average. A task’s priority bonus ranges from -5 to +5 and depends on its sleep average.

Furthermore, Linux classifies tasks as interactive and non-interactive. If the timeslice of an
interactive task expires, the task’s timeslice is reset and it is reinserted into the active priority
array. Non-interactive tasks are moved to the expired priority array. This distinction ensures
that interactive tasks remain reactive all the time. The exact realisation of Linux interactivity
handling has a major impact on software performance (cf. Section 4.2 and [TCM06]). Therefore,
the following paragraphs explain the sleep average, the computation of dynamic priorities, and
the classification of interactive tasks.

Sleep Average The Linux scheduler uses a so-called sleep average to determine a task’s dynamic
priority. The sleep average keeps track of a task’s waiting and computation times. It thus
monitors the task’s past behaviour as it is relevant from the scheduler’s perspective. In general,
the scheduler assigns a larger priority bonus to tasks with relatively long waiting times and
strongly penalises tasks with long periods of processing and short waiting times. Therefore, the
scheduler adds the waiting time of a task to its sleep average and subtracts the scaled computation
time from its sleep average.

A task can only accumulate samax = 1000 ms of sleeping time, which limits the maximum
bonus. When a task finishes waiting for a resource, its new sleep average san+1 results from the
last value san and the waiting time twait:

san+1 = min(samax, san + twait).

To account for the time a task is allocated to a processor, Linux subtracts its computation time
from the sleep average. Since interactive tasks should not loose their status too quickly, Linux
explicitly scales down the influence of the computation time by the last priority bonus it received.
Let tcomp be a task’s computation time, san its last sleep average and bn its last bonus (ranging
from 0 to 10). Then the computation time accounted to its sleep average given by

t′comp =

{
tcomp/bn , if bn > 0
tcomp , otherwise
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The new sleep average san+1 is further computed by

san+1 = max(0, san − t′comp).

where zero represents the sleep average’s lower limit. The dynamic priority of a task directly
results from its sleep average.

Dynamic Priorities To compute the dynamic priority of a task, Linux linearly scales the sleep
average to a priority bonus from 0 to bmax = 10. The new bonus bn+1 of a task results from

bn+1 =
san+1

samax
∗ bmax.

The task t’s dynamic priority dyt is then derived by

dyt = pt − (bn+1 −
bmax

2
)

where the actual bonus (or penalty) is first shifted into the range from -5 to +5 and then sub-
tracted from t’s static priority pt. The dynamic priority is not the only determining factor of
Linux’ interactivity handling. The classification of interactive tasks described next can also have
a major impact on software performance.

Interactivity Classification The classification of tasks as interactive and non-interactive depends
on their sleep averages and static priorities. For a maximum sleep average of samax = 1000 ms,
Linux computes an interactivity threshold ranging from 290 ms for tasks with a priority of -20 to
more than 1000 ms for tasks with a priority of 8 or less. In other words, tasks with low priorities
never receive the interactivity status. The complex computations in [lin] for this threshold boil
down to the following formula. Let samax = 1000 ms be the maximum sleep average, bmax = 10
the maximum bonus, and pt the tasks static priority, and tsched = 10 ms the time of a clock
interval, then

int(t) = samax ∗ (
3

bmax
+

20 + pt

40
)− tsched

defines the interactivity threshold for a task t.
Since some interactive tasks might stay in the active priority array for a long period, other

tasks, whose timeslices have expired, might not be able to access the processor for a long time.
To prevent starvation, Linux moves interactive tasks only back into the active priority array until
a task spend more then the maximum sleep average (sa = 1000 ms) in the expired priority array.
Section 4.2 evaluates and predicts the large performance influences of Linux’ dynamic priority
bonuses and interactivity handling on software performance.

Multiprocessor Systems

The Linux scheduler balances the system’s load among all available CPUs, in order to maximise
system performance and to assign fair shares of processing time to each task. However, balancing
the load in large multiprocessor systems can lead to large costs in terms of long delays. For
example, load balancing has to take into account the cost of moving a task from one processor
to another and the effect of different memory access times for different processors. For good load
balancing decisions, Linux maintains a simplified model of the underlying hardware architecture.
Based on this model that consists of hierarchically structured scheduling domains (more precisely,
sched domain [lin]), Linux’ load balancer decides whether and where to move tasks.
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Figure 2.8.: Example of multiple levels of scheduling domains [CCF+06].

Figure 2.8(a) shows an example for a NUMA machine with multiple nodes and processors and
the hierarchy of scheduling domains maintained by the Linux scheduler [CCF+06]. The NUMA
machine consists of four different nodes, each of which contains a memory unit and two CPUs.
All nodes communicate via a bus. While all nodes can access all memory units, the access times
of a node’s local memory are much faster than the access times of distant memory. Linux has to
take into account such facts when balancing the load among the available processors.

The structure of the scheduling domains resembles the physical hardware [BDHH04]. CPUs at
the bottom of the hierarchy are most closely related in terms of memory access. For this reason,
Linux performs load balancing most often at the lower domains that are closely related. Each
scheduling domain contains one or more CPU groups among which the domain balances its load.
The scheduling domain treats CPU groups as a single unit. So, it does not care about how the
load is distributed within a group. The lower level scheduling domains balance the load within
the CPU-groups.

Figure 2.8(b) shows the scheduling domains and CPU groups for the NUMA machine in Fig-
ure 2.8(a). The processors on each node form a separate scheduling domain called CPU Domain,
which contains two CPU groups with one processor, respectively. The top level scheduling domain
Node Domain balances the load among the four nodes. Each of its four CPU groups contains the
processors of one node.

The balancing of each level involves different costs including, for example, the time needed
to move a task from one processor to another. The scheduling domains thus need to employ
different strategies for load balancing. A strategy determines how often the processors need to
be balanced, how much the load must differ for balancing to be triggered, and how much time
must pass until cache affinity of a task is lost (i.e., the time a task is likely to find valid data in
a processor cache). The Linux scheduler uses different values depending on how the CPU groups
in a domain are related to each other. In SMT systems, for example, processors share the same
caches and moving a task cannot affect its cached data.

In each scheduling domain, load balancing can be triggered by an event (called event balanc-
ing) or periodically at regular intervals (called active balancing). Events are state changes of a
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processor’s run queue, such as the creation of a new task, the awakening of a task, or the removal
of the last task from queue (leaving the processor idle). While event balancing occurs locally,
active balancing can affect all scheduling domains. Starting at the highest level, it is checked
whether the CPUs in each domain require balancing. Active balancing ensures that processors
with few events, which execute multiple CPU-intensive tasks, also participate in load balancing.
The balancing interval determines how often balancing efforts occur. The interval grows if the
system stays in balance. The scheduler moves up the domain hierarchy and checks if balancing
is needed. If the load of the domain’s CPU groups differs too much, it moves processes from the
busiest CPU group to the most idle one. Factors such as cache affinity times, CPU-power, and
the last time a domain was last balanced, influence the scheduler’s load balancing decisions. In
general, the scheduler performs less balancing at higher domains in the hierarchy.

Even though scheduling domains can represent nearly any combination of SMT, SMP, and
NUMA systems, this section mainly focusses on the load balancing decisions for SMP systems.
SMP systems contain a set of similar physical processors that have equal access times to memory
and may also share a common memory bus. Furthermore, each processor provides its own caches
and does not share any internal resources (i.e., parts of its processing logic) with other processors.
The separate caches for each processor compel the scheduler to consider cache affinities before
moving a task. To maximise performance, Linux always selects tasks with the least cache affinity
for moving. Furthermore, it is assumed that caches do not contain any useful data for a task
after a few seconds. Active balancing of SMP systems occurs in regular intervals, which are
curtailed fairly sharply if the system as a whole is busy. Event balancing is triggered, when the
system’s load changes. In general, balancing attempts should occur only when necessary and
useful. Therefore, the balancing threshold for SMP systems tolerates minor imbalances between
the processors.

Important Details for Software Performance Prediction

Linux’ classification of tasks into interactive and non-interactive has to be considered in software
performance prediction. Since interactive tasks remain in the active priority array, the classifica-
tion destroys the fundamental concept of differently sized timeslices. Linux’ run queue (consisting
of the active and expired priority arrays) are meant to avoid starvation and ensure fair schedul-
ing. With the exception of interactive tasks, Linux loses these properties. The evaluations in
Sections 4.1 and 4.2 demonstrate the this effect as well as the influence of the accuracy and the
computation of the sleep average discussed in the following.

Being a part of Linux’ interactivity handling, the computation of the sleep average mainly
influences the performance of systems with interactivity and/or I/O operations. The computation
of the sleep average is performed in terms of the number of scheduling interrupts that occurred
(called jiffies). Therefore, its accuracy is limited by the scheduling interval. With a typical
scheduling rate of 100 Hz, this leaves an accuracy of 10 ms for the sleep average. This inaccuracy
can influence a task’s dynamic priority as well as its interactivity classification.

Furthermore, the accounting of a task’s waiting time affects the sleep average. For the Linux
scheduler, a task is waiting from the moment it is put into the waiting state. The waiting period
is terminated as soon as the task is executed on one of the processors. Thus, the waiting time
that is accounted by the scheduler period includes the time a task is waiting for a resource as
well as the time it is ready and waiting the run queue. The additional time that is added to the
sleep average can influence the task’s dynamic priority and, thus, its performance.
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2.4. Summary

In this chapter, we have introduced fundamental concepts in the areas of (i) software performance
engineering and (ii) scheduling theory that are necessary to understand the performance model
for general purpose operating system schedulers developed in Chapters 3 to 5. The performance
influence of scheduling policies is mainly determined by the following factors:

• The workload type determines the effect of scheduling policies on software performance
mean response time. While scheduling policies can influence mean response time by orders
of magnitudes for open systems, they have limited influence in closed systems.

• The performance influence of scheduling policies depends on the variance of resource de-
mand distributions. “Good” scheduling policies help to minimize mean response times for
all requests. For “bad” scheduling policies, mean response times suffer from disproportion-
ally long delays.

The behaviour of the schedulers of the Linux and Windows operating system series follow
entirely different philosophies. Windows interferes as little as possible with the running system
and, thus, accepts major imbalances for the distribution of processing time among competing
tasks. Linux assigns a “fair” share of processing time to all tasks. These different philosophies
affect all parts of the scheduler behaviour:

• Run queues: Linux assigns timeslices to tasks according to their static priority. Since all
tasks have to be processed before new timeslices are assigned, each task is guaranteed to
receive a minimum share of processing time. Windows assigns equal time slices to all tasks.
Furthermore, the Windows scheduler strictly prefers higher priority tasks over lower priority
ones. Lower priority tasks may thus starve.

• Dynamic priorities: Linux keeps track of a task’s behaviour to determine its dynamic
priorities. By contrast, Windows uses the resources acquired by a task in order to assign
dynamic priorities.

• Load balancing : While Linux constantly tries to keep the load balanced among the available
processors, Windows moves tasks only if a processor becomes idle.
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3. Basics of the Performance Modelling
Framework for Operating System Schedulers

In this chapter, we introduce the basic concepts and terms of our novel performance Model for
general purpose Operating System Schedulers called MOSS. This model is based on validated
hypotheses about the performance properties of GPOS schedulers implemented in the Windows
and the Linux operating system series. Using MOSS, software architects and developers can
predict influences of different time sharing strategies, dynamic priorities for I/O bound and in-
teractive tasks, and different multiprocessor load balancing strategies on software performance.
Furthermore, we integrated MOSS with the Palladio Component Model (PCM, cf. Appendix A).
Software architects can choose between different scheduler configurations, e.g., Windows Server
2003 and Linux 2.6.

We use feature diagrams [CE00] to capture the performance-relevant configurations for GPOS
schedulers. Based on a specific configuration, transformations generate Coloured Petri Nets
(CPN, cf. Appendix B), which model the behaviour of GPOS schedulers and formally define their
performance-relevant features. The CPNs are hierarchically structured allowing the combination
of different scheduling features. This structure enables a straightforward integration of new
scheduling algorithms into the model.

We validated MOSS in two steps. In the first step, we focussed on specific features of the
scheduler model and evaluated each feature in isolation. This strategy provides a high control
over possible disturbing factors. In the second step, we compared predictions and measurements
in a general scenario. A larger case study evaluates the combined effect of different scheduling
features. The results show a prediction accuracy of 5 – 10% in most cases. The comparison
with classical scheduler models for performance prediction emphasis the benefit of more detailed
models. MOSS increases the prediction accuracy by several orders of magnitude.

This chapter is structured as follows. In Section 3.1, we present an iterative method for the
experiment-based derivation of performance models. The method is employed in Chapters 4 and 5
to design MOSS. Section 3.2 provides a broader overview of MOSS, its scheduling features, and
hierarchical structure.

3.1. Experiment-based Derivation of Software Performance-Models

Creating accurate performance models for complex software systems requires a systematic ap-
proach to (i) identify and quantify performance-relevant features of the system under study (e.g.,
which configurations of an application server influence software performance?), (ii) define accu-
rate performance models of the identified features (e.g., model the application server’s thread
pool with CPNs), and (iii) validate the prediction accuracy of the proposed models (i.e., com-
pare predictions to measurements). In this section, we propose a systematic approach for the
definition of performance models of black box systems where only limited information on the
system’s internals are available. Inspired by the general ideas and rules proposed by Jain [Jai91],
the method combines existing knowledge of the system under study with iterative, goal-oriented
measurements. The measurements support performance analysts to identify valid assumptions
for performance modelling and allow assessing the prediction accuracy of the model.
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3.1.1. Motivation

Jain [Jai91] points out several common mistakes in software performance evaluation, which mo-
tivate the experiment-based derivation of software performance models proposed in this chapter.
In the following, we list some of the most common mistakes in no specific order [Jai91]:

• No goals

• Unsystematic approach

• Analysis without understanding the problem

• Overlooking important parameters

• Ignoring significant factors

• Inappropriate experimental design

• Inappropriate level of detail

In software performance engineering, one of the most common mistakes is the absence of con-
crete goals. Performance analysts try to design models that answer all design questions that may
arise. According to Jain [Jai91] such general purpose models do not exist, since a part of the
system design varies from problem to problem. Most factors require different levels of modelling
detail in different contexts.

For example, an enterprise application (such as used in the case studies in Sections 5.2 and 6.4)
may suffer from very different performance problems. Lock contention in the database may cause
long delays for one company using the application. For another client, the database works fine, but
the communication delay between the involved parties takes too much time. While both clients
use the same business application, their performance problems are very different (probably caused
by customisations or the execution environment) and, thus, require detailed models of different
parts of the system. While a general and detailed model of the complete software application is
possible in theory, it cannot be realised in practice. Thus, performance analysts need to state
their modelling goals to adhere to in advance.

Furthermore, unsystematic approaches and analyses without understanding the problem can
lead to unnecessary high effort and inaccurate performance models. Relying on specifications and
knowledge of the system alone does not suffice to design performance models. Such an approach
may lead to overlooking important parameters and factors. The choice of modelled factors must
be driven by the problem and their relevance, not the analyst’s knowledge.

Moreover, the experimental design must follow certain standards in order to yield reliable
results. Often inappropriate experimental designs can lead to wrong conclusions [Jai91]. Another
risk of performance model design lies in the level of detail. Abstractions which are too strong
may lead to erroneous predictions. For example, processor sharing is a common abstraction for
round-robin scheduling in software performance evaluation. While it is a good abstraction in
many cases, it can lead to large prediction errors in many others (cf. Section 4.1).

Similarly, too many details are likely to distract performance analysts from the important in-
fluences and can lead to overcomplicated models that are difficult to maintain. However, whether
detailed modelling is necessary or not strongly depends on the system under study. For example,
the performance properties of message-oriented middleware can be modelled with a high level of
abstraction. For GPOS schedulers on the other hand, many details have to be included in the
model in order to yield accurate predictions. These modelling risks as well as the varying level of
abstraction emphasise the need for a tight coupling of experimental evaluation and performance
modelling.
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According to Jain [Jai91], a performance model has to be validated and verified. For valida-
tion, Jain proposes comparing predictions with expert intuition, real system measurements, or
theoretical results. However, expert intuition can be misleading especially for highly complex and
concurrent software systems [GPB+06]. Theoretical results can be as erroneous as the predic-
tions. Therefore, real system measurements provide the only acceptable alternative for validation.
In the context of this thesis, validation always refers to the comparison between predictions and
measurements, i.e., performance observations.

Verification (in the sense of Jain) is mainly “model debugging”, e.g., continuity tests and seed
independence for simulations. While such tests are necessary, they are not sufficient. Performance
analysts have to ensure that their models include all performance-relevant factors and lie on an
appropriate level of abstraction. Due to the above differences and possible misunderstandings
with formal verification, the following uses the terms assumption validation and model validation.

During performance model design, analysts must make assumptions about the system under
test. To efficiently construct models that accurately reflect the performance properties of the
system, assumption validation helps performance analysts to (i) identify the assumptions neces-
sary and (ii) assess their validity. The early validation allows performance analysts to focus their
design effort on the most influential factors of the system under study.

Furthermore, performance analysts need to examine the prediction accuracy of their perfor-
mance models. Even if all assumptions stated by the analysts hold, the models may break others
that have not yet been considered. Moreover, the models may not reflect the model assumptions
correctly (caused by errors or oversimplification) or the assumption validation did not capture all
necessary factors completely.

3.1.2. A Method for Experiment-based Performance Model Derivation

The design of reliable performance models that accurately predict the performance properties
must be tightly coupled with goal-oriented measurements. The measurements narrow down the
design space to the performance-relevant factors and allow a systematic model design based on
validated assumptions. In this section, we introduce a method for experiment-based performance
model derivation which has been employed in the context of this thesis.

The method supports performance analysts and software architect in evaluating the perfor-
mance of complex software systems. Performance analysts can use the method to design cus-
tomisable performance models, such as a performance model for operating system schedulers
(MOSS, cf. Chapters 4 and 5) or a messaging completion (cf. Chapter 6).

Furthermore, software architects (who use the performance completions designed by perfor-
mance analysts) can employ the method to create prediction models for existing parts of a system.
The usage of measurements enables them to keep the model on an abstract level and to focus on
the most relevant factors.

Performance model design is driven by a specific goal that directs the design effort to the
factors of interest. Similar to the GQM-approach (cf. Section 3.1.3), the goal is defined by a
specific purpose, issue, object, and viewpoint. For the proposed method, the purpose sets the
general goal, for example, designing a configurable performance model or performance prediction
in general. Furthermore, issues focus the goal on specific characteristics of the system under
test, such as different configurations or a high load. Objects determine the system under test and
direct the effort towards a specific part of the system, e.g., the messaging service of an application
server. Finally, viewpoints define the perspective for which the performance predictions are to
be made. The viewpoint can be a specific user group or another part of the system, e.g., the
performance of the database from the perspective of the application layer.
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Figure 3.1.: Experimental derivation of performance models.

Driven by a concrete goal, performance analysts can design performance models for highly
complex software systems following the process model shown in Figure 3.1. The steps listed
there are executed iteratively. With each iteration, performance analysts and software architects
successively refine the performance model and add further assumptions and performance-relevant
factors. In the following, we describe the experimental derivation of software performance models
in more detail.

Identification of Performance-relevant Factors and Degrees of Freedom The first step of the
experimental performance model derivation method aims for the identification of an initial set of
possible performance-relevant factors and degrees of freedom of the system under study. Follow-
ing the GQM schema, questions address these factors and degrees of freedom. For example, the
configuration of a message channel may influence its performance (cf. Chapter 6). Thus, perfor-
mance analysts may ask: “How does guaranteed delivery (storing messages persistently) influence
the performance of a message channel?”. Based on documentation and (functional) specifications,
performance analysts formulate questions regarding the remaining degrees of freedom (with re-
spect to performance) and performance-relevant factors. Since documentation and specification
focus on the description of functional features, it may be difficult or even impossible to judge
whether a specific factor influences software performance (e.g., does a selective consumer, i.e., a
message filter, affect performance?). Moreover, interactions (with respect to performance) of mul-
tiple factors are difficult to assess (e.g., does the message size change affect performance similarly
for messages with and without guaranteed delivery?). In the first step of the experiment-based
performance model derivation, all possible performance-relevant factors (e.g., all configurations
of a message channel) are listed if they are of interest with respect to the modelling goal. Then,
the following steps systematically identify those features that influence performance.
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Experiment Design The experiment designed in this step systematically evaluates the perfor-
mance influences of the factors and degrees of freedom, separating relevant ones from irrelevant
ones. Furthermore, they provide information to fill in the degrees of freedom and the necessary
parametrisation of performance models. The Goal-Question-Metric (GQM) method of Basili,
Caldiera, and Rombach [BCR94] supports the definition of questions and performance metrics.
Its extension for software performance evaluation adds specific scenarios and hypotheses leading
to experiment results. However, the detailed introduction is deferred to Section 3.1.3.

To answer the question, whether guaranteed delivery influences the performance of a message
channel, a concrete scenario has to be defined first. The scenario includes the experimental
setting, e.g., the workload and execution environment. In the example, sender, receiver, and
MOM are deployed on the same machine. Furthermore, the message size is fixed to 1000 bytes.
Comparing the delivery time of messages (i.e., the time it takes from sending a message until
it reaches its receiver) allows to compare both configurations. Performance analysts formulate
hypotheses that define the expected outcome of the experiment to assess whether the performance
of a messaging channel conforms to their expectation. For example, they may state that the mean
delivery time of a message increases by 50% for a channel with guranteed delivery compared to
a channel without guranteed delivery. After the experiments have been designed, the next step
guides the conduction of experiments.

Experiment In this step, the previously defined experiments are executed and the required per-
formance metrics are measured. The results directly relate to the previously formulated questions
and hypotheses. If the results conform to the hypotheses, performance analysts may consider the
underlying assumptions as valid for the construction of a performance model until proved oth-
erwise. In case the measurements deviate from the hypotheses, the causes need to be examined
and more detailed evaluations might be necessary.

For the above example, performance analysts need to set up the MOM and deploy a test driver
which measures the delivery time for a message channel with and without guaranteed delivery.
After the execution of the test driver, they can compare the results to their hypotheses. If the
results show, for example, that guaranteed delivery delays the message transfer by 25% only, the
hypothesis needs to be revised. Futhermore, the results raise the question if the factor is constant
for different message sizes. Performance analysts need to evaluate such newly arising questions
in an additional iteration.

If the experiment successfully validated the hypotheses, performance analysts can build a pre-
diction model for the system under study. At this point, the model can already be considered as
“assumption valid”.

Performance Model Design Based on the experiments above, performance analysts can design
a prediction model. In combination with the hypotheses, the experiment results provide the
necessary answers to the questions of the GQM-plan. The results provide enough information to
decide whether a specific feature needs to be included in the performance model or whether it can
be neglected. Furthermore, the results should give direct hints on how degrees of freedom in the
specification and documentation can be approximated and/or modelled. Finally, the experiment
results quantify resource demands on a specific platform.

For the example above, performance analysts may decide to model the two messaging channels
by a single resource demand to a processor, where channels with guaranteed delivery request
25% more processing time. At this stage, the models are strong abstractions of the system under
study, focussing on the factors that have been evaluated. Therefore, the model may not reflect
the system’s performance correctly for all scenarios. For example, it may not scale correctly, since
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resources, such as network and hard drive, are not considered. An additional validation step is
necessary to decide under which conditions a prediction model is a valid abstraction of a system.

Model Validation The model validation ensures that the model predicts the performance metrics
of interest with the expected accuracy and reflects the influences of all performance-relevant
factors. Creating abstract performance models for complex software systems carries several risks
that can be minimised by this step. In the following, we briefly summarise the most important
ones:

• The degrees of freedom of specifications and documentations are not filled in correctly, i.e.,
the chosen abstraction or model reflects their influence partially but cannot be generalised
for other scenarios.

Similarly, overfitted models accurately reflect the performance of a specific behaviour or
scenario but cannot be generalised. Thus, such models are only valid for specific scenarios.
However, these performance models can be adequate if they not used in more general
scenarios. For the example above, the model of a message channel with guaranteed delivery
does not issue resource demands to the hard drive and, thus, incorrectly reflects performance
for high loads.

• Not all performance-relevant factors have been identified. There are influences that may
not be directly observable from the measurements but shown by comparing predictions to
measurements.

• Factors that are considered as independed on the first glance may influence each other’s
performance.

• The main cause of an observed effect is not included in the model. Since it is not always
obvious what caused a specific performance observation, the performance model may not
include the actual cause.

• Modelling errors. Model validation identifies modelling errors, which can be easily intro-
duced in performance models of highly complex software systems.

The outcome of the validation may require the performance analyst to refine or adjust the
model. These refinements can require further experiments to evaluate and quantify additional
properties of the system under study. Similar to the initial experiments, the model validation
employs the scenario-based GQM method to evaluate the prediction quality of the proposed
model in a controlled environment. In this case, the hypotheses do not make statements about
the expected performance of the system under study, but on the expected prediction accuracy of
the model. While it is intuitive to minimise the prediction error of the model, it may be necessary
and desirable to allow a certain degree of inaccuracy in particular scenarios. Thus, performance
analysts (and software architects) can keep the performance model simple, while still achieving
a moderate prediction accuracy. Model validations give insights into the expected error for such
scenarios and may direct future modelling effort.

Prediction models may be used in more general scenarios than evaluated during their design.
However, each model only reflects factors identified in preceding experiments. For all other
scenarios and factors, the validation does not make any statement about the expected prediction
accuracy of the model. The generalisation of the prediction model to other scenarios strongly
depends on the broadness of the considered scenarios and the sensitivity of the system to changes.
To ensure a good prediction accuracy, experiments must reflect a wide range of different scenarios
and environments to give a higher confidence in the prediction model.
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3.1.3. The Goal/Question/Metric-Approach for Experiment-based Performance
Model Design

In this section, we summarise the Goal/Question/Metric (GQM) approach proposed by Basili,
Caldiera, and Rombach [BCR94] and extend the GQM-approach for the experiment-based deriva-
tion of performance models.

The Goal/Question/Metric Appraoch

GQM is a process model for measurements targeting a particular set of issues (goals) and a set of
rules for the interpretation of the measured data. In order to be meaningful, measurements must
be goal-oriented and, thus, are defined in a top-down fashion. Basili, Caldiera, and Rombach argue
that measurements, which are not performed in a goal-oriented way, are likely to be inefficient.
The absence of concrete goals carries the risk of collecting large amounts of unnecessary data.
Large amounts of data and missing goals may complicate the interpretation of measurements.
For the scope of this thesis, GQM provides a structured approach for the evaluation of operating
system schedulers with respect to software performance.
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Figure 3.2.: Relations between goals, questions, and metrics [BCR94].

The GQM method starts with the explicit definition of a measurement goal. Several questions
serve to refine the goal and to identify its major components that need to be answered by the
measurements. Questions are further refined by metrics. Figure 3.2 depicts the relation between
goals, questions, and metrics.

When the measurements for each metric have been taken, the resulting data is interpreted
bottom up. Each metric is directed towards specific questions. The collected data answers the
questions with respect to the goal. This evaluation allows deciding whether the goal has been
attained or not. Figure 3.2 further indicates that the same metric can answer different questions.

Goals, Questions, Metrics, and Hypotheses In GQM, goals are located on a conceptual level.
They strongly depend on the context in which measurements take place. The context subsumes
the objects, the reasons, the points of view, and the environment of the measurements, as well
as the considered models of quality. Possible objects of measurements are products (artefacts,
deliverables, or documents), processes (software related activities), or resources (e.g., personnel,
hardware, or software). To correctly embed a goal into a given context, the GQM method requires
the explicit definition of the goal’s issue, object or process, viewpoint, and purpose.

Questions determine the assessment of a specific goal. They characterise the object of mea-
surement (product, process, resource) with respect to selected quality attributes from the selected
viewpoint.
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On a quantitative level, metrics associate a set of data to each question. The data answer
the questions in a quantitative way. In GQM, there exists a distinction between objective and
subjective metrics. While objective metrics depend only on the object under measurement (e.g.,
lines of code), subjective metrics depend on the viewpoint from which the measurements are
taken (e.g., readability of a text).

When selecting metrics, various factors have to be considered. Basili et al. [BCR94] summarise
the most important ones as follows:

• Amount and quality of existing data: To minimise the effort during data collection,
the use of existing data sources can be maximised.

• Maturity of the objects of measurement: Objective metrics are preferable for more
mature measurement objects, while subjective evaluations are better suited for informal or
unstable objects.

• Learning process: GQM plans need iterative refinement and adaptation. The defined
metrics have to evaluate not only the object of measurement but also the reliability of the
model in use.

Solingen and Berghout [SB99] extend the GQM approach by hypotheses, which define the
expected outcome of the measurements for each question. Hypotheses initiate thinking about the
system under study and stimulate a better understanding of the process and/or product. After
measurement and during data interpretation, these hypotheses can be compared with actual
measurements. Solingen and Berghout use hypotheses as (informal) descriptions of the expected
outcome. The comparison between expectation and observation supports the identification and
analysis of the underlying reasons for any possible deviation.

The experiment-based derivation of performance models heavily relies on hypotheses to define
the expected outcome of an experiment and to stepwise evaluate modelling assumptions. However,
the performance evaluations require the definition of concrete scenarios in order to be reproducible
and in order to allow a clear formulation of hypotheses.

Introducing Scenarios to the GQM Approach

In the following, we extend the GQM approach for the area of software performance evaluation.
The extensions add scenarios to the GQM method and make intensive use of hypotheses.

Scenarios A scenario determines the experimental setting for performance evaluation. The
setting includes, for example, the workload (e.g., the arrival rate of messages), the execution
environment, the deployment of the system under test, task behaviour, and resource demands.
Scenarios operationalise the questions defined within a GQM-plan and fill in the degrees of free-
dom. For typical applications of the GQM approach (e.g., [FLM+98, SB99, SB01]), the scenario
is fixed by external sources (e.g., the structure of company) and cannot be changed. In such cases,
GQM-plans are designed for a single, specific scenario. In the context of software performance
evaluation, such constraints are (usually) not given. Therefore, scenarios have to be defined ex-
plicitly. Analysts have to identify representative scenarios to evaluate the influence of specific
factors on software performance.

For example, the question “How does guaranteed delivery influence the performance of a mes-
sage channel?” does not provide enough information for measurement and data collection. Several
degrees of freedom remain even if the performance metrics of interest (e.g., delivery time) are
known. Without a specific scenario (e.g., an execution environment, the deployment of senders,
receivers, and message-oriented middleware) the experiment is not reproducible and hypotheses
cannot be formulated.
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Scenarios fill the gaps and define the experimental setting that should answer the questions
posed in the GQM-plan. The performance influences of a specific factor (e.g., guaranteed deliv-
ery) are likely to depend on the experimental setting (e.g., the message size and the distribution
of senders, receivers, and MOM). Thus, a carelessly chosen scenario can lead to wrong conclusions
from the measurements. Furthermore, the inclusion of scenarios into the GQM-plan ensures the
reproducibility of experiments. The scenarios can be used to quantify platform dependent influ-
ences for different execution environments (cf. Section 3.1.4). In addition, scenarios define the
scope of validity for the answers of the experiments. The assumptions and restrictions of the sce-
narios must also hold for the target environment. Therefore, the scenarios must be representative
for the overall measurement goal. For example, if the delivery time of a message has only been
measured on a single machine, then no statement about message transfer in distributed systems
can be made.

Hypotheses Scenarios allow the definition of concrete hypotheses with respect to the expected
outcomes. Based on the available specification and documentation of the system under study,
hypotheses formulate the expected outcome of the experiments for each question. Similar to
Solingen and Berghout [SB99], the term “hypothesis” is used in a general sense. Hypotheses help
performance analysts to answer questions posed in the GQM-Plan. For this purpose, hypotheses
must be revisable. They must be formulated in such a way that they can be rejected and/or
revised based on the measured data.

For example, a simple hypothesis “Factor X affects performance” does not help in answering
any specific question. By contrast, hypothesis “The mean response time without factor X is at
least 30% below the mean response time with factor X. The mean processor utilisation for both
cases deviates less than 5%” is a formulation which enables a comparsion between expectation
and measured data.

3.1.4. Parametrisation of Performance Models

The performance-relevant factors and degrees of freedom that have been identified in the previous
steps may depend on the execution environment of the system under study. For example, the
delivery time of a message (i.e., the time from sending the message until it is processed) depends
not only on the system’s configuration, but also on the underlying hard- and software of the MOM
as well as its implementation. While all available MOM platforms offer a similar set of features
(defined in standards such as Java Message Services [HBS+08]), their implementation may vary
significantly. Performance models should abstract from such implementation dependencies (if
possible) and provide an abstract view on the system under study. In combination with mea-
surements, the abstraction can be customised automatically for different vendor implementations
and yield accurate predictions for a broad range of middleware platforms.

Filling in degrees of freedom by measurements allows parametrising over the underlying software
and hardware layers. However, resource demands cannot be accurately determined in every case.
For example, the message delivery time is measurable but the processing demands for hard drives,
network connections, or processors cannot be determined with the accuracy necessary. A mapping
of all resource demands to the same (possibly load depended) resource is a possible solution to this
problem. Even though such an abstraction requires strong assumptions (e.g., no severe resource
conflicts with other parts of the system), it can yield a simple but accurate performance model.
For example, Section 6 demonstrates the applicability of this approach for messaging systems.

In the following, we describe how the scenarios of the GQM-plan can support the parametri-
sation of performance models. Furthermore, we introduce the process model for combining mea-
surements with parametric performance models.
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From Performance Model Design to Automated Parametrisation Many performance models
require the specification of resource demands (e.g., processing time on the CPU), which strongly
depend on the underlying hardware, operating system, and middleware. If the performance
model has to be employed for numerous different environments, performance analysts may want
to parametrise the resource demands and keep the general behaviour of the model constant.

For example, the delivery time of a message changes for different MOM implementations and
different hardware while the general behaviour for each configuration is not affected (cf. Chap-
ter 6). Thus, it is sufficient to determine the resource demands for a new environment in order
to instantiate the performance model for that environment.

Performance analysts have designed experiments to evaluate the performance of a system un-
der study and to answer questions related to its performance properties. Therefore, they have
implemented a series of test drivers that collect the necessary data, which also includes demands
to different resources. Thus, it is sufficient to re-execute the relevant test drivers and determine
the new resource demands from the results.

The execution of the test driver and the computation of resource demands can be done in an au-
tomated fashion, transparent to the software architect. Therefore, performance analysts provide
automated test drivers (based on their initial experiments) that collect necessary measurement
data and determine resource demands for the system under study. For example, software archi-
tects can use such automated test drivers to automatically determine the resource demands of
a MOM platform and, thus, to include the influence of message-based communication into their
prediction model.
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Figure 3.3.: Process of creating platform-specific completion components.

Parametrising Performance Models More generally, performance evaluations of a system un-
der test yield a performance model that fills in several degrees of freedom with measurements.
Parametrising over these degrees of freedom allows performance analysts to create platform in-
dependent models that can be refined with measurements of an automated test driver.

Figure 3.3 illustrates the process of creating a platform-specific performance model from a
platform-independent performance model. The automated test driver runs on the selected target
platform. The driver measures the performance of the infrastructure for all performance-relevant
features identified during the experimentation phase.
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For example, a performance analyst constructs a prediction model for MOM based on messaging
patterns (cf. Chapter 6). The model without the platform-specific resource demands is called a
performance model skeleton. Software architects then execute the automated test driver on their
specific MOM platform (Experiment Run). The measurements provide the necessary information
to determine the resource demands for the specific platform.

Furthermore, resource demands may depend on input parameters of the system under study
(cf. Section A). Conducting regression analyses of measurement results identifies dependencies
between input parameters and the resource demands. For example, the delivery time of a mes-
sage may depend on its size. Regression analyses yields an (approximated) functional dependency
between the message size and the corresponding resource demands. The resulting parametric re-
source demands are integrated with the performance model skeletons to define a platform-specific
performance model. For example, executing the automated test driver for MOM on a system
with Sun’s Java System Message Queue 3.6 and an AMD X2 machine yields a performance
model specific to this environment. The combination of model-based and measurement-based
methods allows considering the infrastructure as a black-box, neglecting details specific to the
implementation. In this thesis, we combine this concept with performance completions (cf. Sec-
tion 2.1.4) to integrate performance-relevant factors of the infrastructure into high-level software
performance models.

In the following section, we provide an overview of the performance modelling framework for
GPOS schedulers developed in Chapters 4 and 5. During model design, we intensively employed
the method for experiment-based derivation of performance models. Furthermore, in Chapter 6,
we use the parametrisation of performance models to capture the various performance influences
of MOM on different platforms.

3.2. Overview of the Performance Modelling Framework

In this section, we provide an overview of MOSS, a complex modelling and prediction framework
for GPOS schedulers. During its design, we addressed various questions regarding the influence of
GPOS schedulers on software performance (Section 3.2.1). Based on a series of experiments (cf.
Chapters 4 and 5), we identified categories of performance-relevant factors of GPOS Schedulers
(Section 3.2.2). These categories form the basic configuration options for GPOS schedulers whose
performance influence can be evaluated using MOSS. For performance predictions, we defined a
set of hierarchically structured CPNs (cf. Appendix B) that formally model the behaviour of the
possible configurations of MOSS (Section 3.2.3.

3.2.1. Performance-related Questions for GPOS Schedulers

The mutual dependencies of task behaviour, underlying symmetric multiprocessing environments,
and GPOS schedulers raise various questions regarding their influence on software performance.
Our aim is to to create a performance model which captures these mutual influences and accu-
rately predicts the performance from a user’s perspective:

Goal: Purpose Predict
Issue mutual performance influences

Object of of task behaviour, GPOS schedulers
in symmetric multiprocessing environments

Viewpoint from the user’s point of view.
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Question Experiment / Section

How to model the influence of GPOS 

schedulers' time sharing features on software 

performance?

Time Sharing 

How to model the influence of the interaction 

of GPOS schedulers with task behaviour on 

software performance?

Interactivity

How to model the influence of GPOS 

schedulers in symmetric multiprocessing 

environments on software performance?

Multiprocessor Load Balancing

Performance Model for Operating System Schedulers

Table 3.1.: How to model different scheduling features influencing software performance.

Table 3.1 refines the goal by three questions concerned with the performance modelling of dif-
ferent features of GPOS schedulers and their interaction with task behaviour and multiprocessing
environments. In the following, we describe the rationale of these questions.

GPOS schedulers execute competing tasks pseudo-concurrently on a single processor. They
employ different strategies to share the available processing time among all tasks. Thus, the
first question asks how a performance model needs to reflect the influence of GPOS scheduler’s
time sharing features on software performance. In software performance evaluation, FCFS, PS,
or preemptive priority are common approximations for time sharing policies of GPOS schedulers.
However, these abstractions are not adequate for many scenarios. Consequently, we design a
more realistic time sharing model for GPOS schedulers in Chapter 4 (Section 4.1).

For interactive and I/O-bound tasks, the current and past behaviour of tasks (i.e., how long a
task used what resources) influences decisions of GPOS schedulers. Therefore, the second question
asks for a valid performance model of schedulers with respect to task behaviour. In Chapter 4
(Section 4.2), we refine MOSS by adding the interactivity features necessary.

In (symmetric) multiprocessing environments, GPOS schedulers distribute competing tasks
among the available processors. For accurate predictions, performance models need to reflect their
load balancing and distribution policies. Thus, the third question asks for accurate performance
models of GPOS schedulers in symmetric multiprocessing environments. In Chapter 5, we enhance
MOSS by introducing multiprocessor load balancing capabilities.

3.2.2. Categorisation of Performance-relevant Factors of GPOS Schedulers

In this section, we introduce the categories of performance-relevant features for time sharing,
interactivity, and multiprocessor load balancing. We use feature diagrams [CE00] to model the
performance-relevant factors and variation points of MOSS.

Time Sharing

Time sharing addresses the management of tasks and the selection of the next task for execution.
For this purpose, priority levels and run queues are used. The feature diagram in Figure 3.4
reflects the available priorities, the type of the run queue, and the timeslices of a scheduler. A
range from the lowest to the highest priority defines the available interactive priority levels. For
example, the interactive priorities (also called nice-levels) of Linux range from 19 (lowest) to -20
(highest). Run queues can either be fair (e.g., Linux) or unfair (e.g., Windows). Fair run queues
assign a fair share of processing time to each task. By contrast, unfair run queues always prefer
the task with the highest priority over the tasks with lower priorities and, thus, accept the risk
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Figure 3.4.: Feature diagram of a scheduler’s time sharing properties.

of starvation for the latter. Finally, timeslices can be of a fixed (Windows) or priority-dependent
duration (Linux). The first option defines the timeslice’s duration by a single value (duration),
while the second specifies a different timeslice (duration) for each (priority) level.
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Figure 3.5.: Feature diagram of a scheduler’s interactivity properties.

Interactivity refers to the different strategies used to prefer interactive and I/O-bound tasks
over CPU-bound ones (for details see Section 2.3). Figure 3.5 shows a feature diagram of the
performance-relevant properties of a scheduler’s interactivity handling. The feature diagram
distinguishes between resource-dependent and history-dependent policies. The first considers the
type of resource used by a task to boost its dynamic priority (as implemented in Windows). The
second policy observes a task’s behaviour and determines its dynamic priority based on its past
waiting and processing times (as implemented in Linux). A combination of both policies is not
possible (exclusive or). The resource-dependent policy increases a task’s priority depending on the
resources it holds. Therefore, it contains a list associating a bonus with each type of resource. By
contrast, the history-dependent policy maps the observed processing and waiting times to a range
of dynamic priorities reaching from maximum bonus (e.g., +5 for Linux) to maximum penalty
(e.g., -5 for Linux). Furthermore, the memory period determines the time, a scheduler remembers
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a task’s behaviour (e.g., 1 second for Linux). Finally, the interactivity threshold determines how
long a task must wait for a resource in order to be considered as interactive. This value depends
on the task’s static priority (e.g, 790 ms for a task with a nice-level of 0 under Linux on x86
systems).
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Figure 3.6.: Feature diagrams for classifying load balancing strategies.

The multiprocessor load balancing is responsible for distributing the system’s load among
the available processors. In the following, we introduce a classification for multiprocessor load
balancing strategies based on the work of Shivaratri et al. [SKS92], who categorise load bal-
ancing strategies of distributed systems. Even though multiprocessor systems differ in some
important aspects (e.g., the communication is much faster than between distributed nodes) their
classification provides a sound basis for multiprocessor systems. We extend the general features
(Figure 3.6(a)) from Shivarati et al. with concrete characteristics for multiprocessor systems (Fig-
ures 3.6(b) to (e)). The latter directly relates to multiprocessor load balancing policies realised
in GPOS schedulers, such as Windows and Linux. The next paragraphs systematically introduce
the feature diagrams in Figure 3.6.
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The first distinguishing feature for load balancing policies is their degree of centralisation. Load
balancing policies can be centralised, hierarchical, fully decentralised, or in any combination of
these. Policies with centralised components suffer from a potential bottleneck and a single point
of failure. These limitations affect their scalability and reliability. Hierarchy can reduce these
risks, but only fully decentralised systems, where all nodes function independently, can solve these
problems. Centralisation mainly influences the location policy of the load balancing depicted in
Figure 3.6(f).

Furthermore, load balancing policies can be characterised as static, dynamic, adaptive, or any
combination of these. Figure 3.6(a) shows relevant features for multiprocessor systems, i.e., static
and dynamic policies. Static policies use a priori knowledge on the system for balancing decisions.
In Figure 3.6(a), the exclusive choice for static policies offers the features cyclic splitting, same
as parent, and random. Cyclic splitting assigns tasks to processors in a round robin fashion
independently of the task and the processor’s load. Following a similar philosophy, the random
policy assigns tasks to each processor with a predefined probability. The probability can be equally
distributed or varied for different CPUs, e.g, to consider the influence of differing processing
power. Same as parent is specific to multiprocessor environments. It allocates a new task to the
same processor as its creator. Thus, it leaves the actual load balancing to the dynamic policies,
which use information on the system state for load balancing decisions. Dynamic load balancing
policies consider, for example, the current load of each processor and assign a new task to the least
loaded processor. A more detailed description of performance-relevant load balancing features
follows in the next paragraphs. Finally, adaptive policies choose between different policies (static
and dynamic) depending on the observed system state. These policies allow, for example, the
reduction of load balancing activity when the load is balanced among all processors. However,
adaptivity is a cross cutting concern with respect to static and dynamic load balancing policies
and is thus not depicted in Figure 3.6.

The mandatory features of dynamic load balancing policies in Figure 3.6(a) determine when
and where load balancing will take place. Load indices estimate the performance of a task on
a particular processor (Figure 3.6(e)). Therefore, load indices reflect a processor’s load during
runtime. Multiple different measures have been proposed for this purpose. However, Kunz showed
that the current CPU queue length represents the best indicator for a tasks performance on a
particular node [Kun91]. For multiprocessor systems, various derivations of the CPU queue length
have been used, such as the average CPU queue length over a predefined time span or an ageing
CPU queue length.

Ageing variables are on-the-fly estimators for continuously changing variables. They take into
account past valuations of the variable and level out brief peak conditions providing stable es-
timates of the CPU’s queue length. The weighted sum of the processor’s last and current load
yields the ageing CPU queue length. The weight determines the influence of the last load on the
estimator. To compute the ageing load index Loadn+1(CPU) at time n+1 for processor CPU, let
Loadcurr(CPU) be the processors current load (without ageing), Loadn(CPU) its previous load
index (i.e., its ageing load at time n), and w the weight, then the new value of the load index is
computed by [Tan01, p. 146]:

Loadn+1(CPU) = w Loadcurr(CPU) + (1− w) Loadn(CPU)

Taking into account a CPU queue’s history levels out disturbances of short peak loads and idle
periods. It avoids unnecessary balancing attempts in systems with strongly fluctuating loads.

The transfer policy (Figure 3.6(b)) determines whether a processor can participate in a task
transfer as a sender or as a receiver. Threshold -based policies define an upper and lower bound for
a processor’s load index. If a processor’s load falls below the lower bound, it becomes a (potential)
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receiver. Otherwise, if a processor’s load rises above the upper bound it becomes a (potential)
sender. The processor does not participate in load balancing as it is assumed to be ideally loaded
between these bounds. Relative policies consider a processor’s load in relation to loads of other
processors. Load balancing is initiated if the load of two processors differs more than a predefined
value.

The location policy (Figure 3.6(f)) is responsible for the identification of a suitable transfer
partner for processors which require load balancing. In a centralised system, this step is not an
issue, as the coordinator can easily assign a transfer partner to a processor. In decentralised
systems, the current processor cannot know the global system state. So, it can pick a node
at random, broadcast its request to all nodes, choose the nearest neighbour, or use information
collected during previous calls to find a transfer partner (memory). The different policies vary in
chance and overhead for finding a transfer partner. However, for SMP systems this is in general
no issue as all processors and cores have equal access to the necessary data.

The information policy (Figure 3.6(c)) determines when information about the states of other
processors in the system is to be collected and triggers load balancing. Demand-driven poli-
cies exchange information whenever a processor becomes a sender (sender-initiated) or receiver
(receiver-initiated). If both cases are possible, the policy is called symmetrically initiated. When
collecting data periodically, the interval determines the period length in which balancing ef-
forts occur. Furthermore, state-change-driven policies pass information whenever a node’s state
changes. The most important events for multiprocessing systems are OnFork, which is activated
whenever a new task is created, OnIdle, which is activated whenever a processor becomes idle,
and OnWake, which signals that a process resumes execution after waiting.

If a processor becomes a sender, the selection policy (Figure 3.6(d)) chooses tasks for transfer.
The policy can optimise load balancing by minimising transfer overhead. To achieve a good
optimisation, the policy selects tasks which (presumably) have a long live-span and which have a
minimum number of location dependencies. For example, newly originated tasks are preferable
for transfer, since they do not need to be preempted and do not have any state that needs
to be transferred. Moreover, they can be assumed to live relatively long and do not have any
location dependencies. If the selection policy does not find a suitable task for transfer, it no
longer considers the processor as a sender. All selection criteria in Figure 3.6(d) are optional and
can be combined arbitrarily. Selection policies that take into account cache affinities migrate
only tasks that did not run on the processor for at least duration milliseconds. The selection
policy assumes that all other tasks still have useful data in the cache and, thus, avoids to move
them. Additionally, processor affinity limits the shifting of tasks to a predefined set of processors.
This option allows the load balancer to select only tasks whose affinity list contains the receiving
processor. When multiple tasks are available for migration, the options preferred priority and
preferred waiting time determine which one to select. If the preferred priority is high (low), higher
(lower) priority tasks are migrated first. Furthermore, if the preferred waiting time is short, tasks
at the end of a queue are preferred over tasks in the beginning of the queue and vice versa for
long waiting times.

For multiprocessing systems, the choice of an optimal task for transfer mainly depends on
the underlying hardware architecture. In SMT systems, for example, task transfers are cheap
since the virtual processors share all necessary resources. Task transfers can thus happen quite
often. For NUMA systems, the scheduler has to consider dependencies on the local memory and
high costs for transfer. Task transfers on this level should happen only when necessary. Conse-
quently, schedulers for multiprocessing systems employ different balancing policies for different
architectural levels.
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Feature Configurations for Windows and Linux

The Windows and Linux operating systems differ with respect to time sharing, interactivity, and
multiprocessor load balancing. Table 3.2 summarises the feature configurations for both operating
systems. In the following, we describe the different feature configurations in more detail.

As time sharing policy, Windows uses an unfair run queue with fixed timeslices. By contrast,
Linux employs a fair run queue and priority-dependent timeslices to allow a fair distribution of
processing time among competing tasks.

The operating systems further differ in their interaction with task behaviour. Linux keeps track
of a task’s history, to determine its bonus or penalty. For this purpose, Linux compares the time
a task spend waiting (or sleeping) to the time it spend processing. Furthermore, tasks that spend
a larger fraction waiting than processing are classified as interactive. In general, interactive tasks
are privileged and, thus, can circumvent the fairness properties of Linux’ run queue. The amount
of waiting time necessary to be classified as interactive depends on a task’s static priority. By
contrast, Windows uses static priority boosts. Table 3.2 lists the bonuses for different resources.
A task’s bonus decreases slowly with each timeslice it receives.

For multiprocessor load balancing, both operating systems combine static and dynamic load
balancing policies. While Windows balances as little as possible, Linux keeps the system’s evenly
balanced among the available processors. Windows’ static balancing policy uses cyclic splitting to
assign newly created tasks to processors. Its dynamic balancing policy realises a threshold-based
transfer policy. Windows uses the CPU queue length (including the running task) as a load index.
If the load of a CPU drops below one (the CPU becomes idle), the CPU becomes a receiver. All
CPUs with a load greater than one are potential senders (threshold-based transfer policy). Once
idle, a processor looks for executable tasks on other processors implementing a demand-driven,
receiver initiated information policy. Windows’ location policy chooses the processor with the
highest load as sender. Its selection policy prefers tasks with high priorities, but also considers
their processor and cache affinity. The latter directly relates to the time a task last ran. When
more time elapses, a task’s cache affinity decreases and it becomes more likely that it will be
moved. Additionally, processor affinities restrict the selection of processors where a task can be
moved. Windows employs a state-change-driven policy. Whenever a task becomes ready (e.g.,
after blocking or creation) and an idle CPU (receiver) is available, the scheduler tries to migrate
the task to the idle CPU.

In contrast to Windows, Linux uses an ageing CPU queue length as load index. Its relative
transfer policy initiates load balancing only if the distance exceeds a threshold of 2. Furthermore,
Linux uses a state-change-driven as well as periodic information policy. The state-change-driven
policy reacts whenever a new task is created (OnFork), a task is about to be awakened (OnWake),
or a CPU becomes idle (OnIdle). The periodic policy checks at regular intervals if the CPUs of
a scheduling domain need to be balanced. If the load differs too much, it moves tasks from the
busiest processor in the domain to the most idle one. The selection policy of the Linux scheduler
considers factors like cache affinity time and processor affinities. Moreover, it prefers tasks with
a low priority and a long waiting time for migration.

3.2.3. MOSS – Overview of the Prediction Model

In the following, we give an overview of the definition of MOSS in terms of timed Coloured Petri
Nets (CPNs, cf. Appendix B). The hierarchical structure of CPNs allows the straightforward
integration of different feature configurations for schedulers. Due to the simulation and analysis
capabilities of CPNs, they are well suited for performance evaluation of complex systems. The
detailed models of MOSS follow in Chapters 4 and 5.
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Table 3.2.: Comparison between Linux and Windows schedulers.
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For performance prediction, we integrated MOSS with the Palladio Component Model (PCM,
cf. Appendix A). Software architects can configure schedulers either using the available scheduler
features or selecting from a set of predefined configurations, e.g., for Windows XP or Linux 2.6.
In the following, we explain the basic concepts of the integration of MOSS and the PCM.
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Figure 3.7.: Integration of the scheduler performance model (MOSS) into the PCM.

Relation to the PCM The PCM describes the behaviour of a software system in an abstract
fashion. It decomposes the system’s behaviour into hierarchically structured components. Each
component provides and requires a set of services grouped to interfaces. For performance pre-
diction, so-called “resource demanding service effect specifications” (RD-SEFFs, cf. Section A)
abstractly describe the behaviour of each service (cf. Figure 3.7). They model the order and
extent of resource usages as well as calls to other components. The static architecture shown on
the left-hand side of Figure 3.7 contains components (basic and composite) their connections and
their deployment. Each (basic) component’s service is associated with an abstract behavioural
specification (RD-SEFF). Components, connections, RD-SEFFs, and deployment relations pro-
vide a full description of the overall system needed for performance prediction.

While the PCM provides a detailed model of the software system, MOSS describes the be-
haviour and performance influences of GPOS schedulers on performance. Figure 3.7 abstractly
illustrates the connection of MOSS to the PCM. For each service provided by a basic component,
the PCM abstractly models the service’s behaviour as an RD-SEFF. RD-SEFF’s consist of a set
of internal an external actions that are structured by control flow elements (e.g., loops, branches,
and forks). For all internal actions that require processing time on a CPU, MOSS refines the
behaviour of that action and decomposes it into multiple steps (right hand side of Figure 3.7).

When an internal action demands processing time on the CPU, it notifies MOSS by putting a
token on place Request. The scheduler model processes the request (including possible contention
in the system). Once the request has been processed, it notifies the internal action, whose demand
has been processed, by putting a token on place Response. This token allows to continue the RD-
SEFF’s execution. Furthermore, the behavioural model informs MOSS whenever a task changes
its state of processing, e.g., is waiting for a passive resource or is waking up.
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MOSS – Hierarchical Structure In Figure 3.7, substitution transition Scheduler Model encap-
sulates MOSS’ behaviour. The transition’s interactions are limited to Requests and Responses.
Figure 3.8 illustrates the hierarchical refinement of MOSS by multiple layers of substitution transi-
tions. The hierarchical structure of CPNs encapsulates the behaviour of all feature configurations
in separate subnets. The top level scheduler model contains several fusion places which enable
the communication of the scheduler model with behavioural performance models, such as the
PCM. Several substitution transitions serve to further refine the top level net. Figure 3.8 exem-
plarily shows the subnet for transition Schedule. Its subnet contains further fusion places and
substitution transitions.

MOSS’ hierarchical structure integrates different time sharing, interactivity, and load balancing
features into a single CPN. Each substitution transition resembles a possible variation point.
Transformations select the subnets according to a given feature configuration. Each feature may
be further subdivided into several smaller parts, which represent its independent variation points.
Figure 3.8 illustrates exemplarily how a run queue’s fairness property affects the subnet selection
of substitution transition RunQueue. For unfair run queues, the transformation selects a different
subnet than for its fair counterpart. While different features are defined independently in separate
subnets, they strongly interact with each other. For this purpose, fusion places model interaction
points which allow flexible communication between the separate scheduler features.
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Figure 3.9.: Schematic overview of the scheduler performance model.

An abstract view of MOSS From an abstract point of view, MOSS behaves similarly for all
feature configurations. It accepts requests, i.e., demands of processing time, notifies the calling
behaviour when its request is finished, starts processing new tasks, terminates finished tasks,
and puts tasks to sleep or wakes them up. Figure 3.9 gives a schematic overview of the CPN
model realising this behaviour. The model’s substitution transitions encapsulate the scheduler’s
time sharing, interactivity, and multiprocessor load balancing strategies. The boldly printed
places represent interaction points of MOSS to task behaviour models (such as the PCM), which
require access to scheduled resources. All other places are internal to MOSS. The communication
between all subnets is based on fusion places. However, for reasons of readability, Figure 3.9 uses
input/output places to denote communication. Figure 3.9 is only an abstract representation of
the actual CPN.
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All places accept tokens of colours printed in Listing 3.1. MOSS communicates with behavioural
models of tasks based on a unique task identifier (TASK ID). For each identifier, the scheduler
model manages its internal information (e.g., timeslices and priorities) using colour SCHED TASK.

Listing 3.1: Basic colour sets of the scheduler model.
colset TASK ID = INT ; p
colset DEMAND = INT ;
colset TASKDEMAND = (TASK ID , DEMAND) ;

colset SCHED TASK = product ID ∗ CPU ID ∗ PRIORITY ∗ TIMESLICE timed ;
colset SCHED TASK LIST = l i s t SCHED TASK;
colset CPU RUNQUEUE = product CPU ID ∗ TASKLIST;

When a new task is created, its unique identifier is put on place New to notify the sched-
uler, that a new task requires scheduling. Transition Initialise Task then creates the initial
scheduling information for the task (SCHED TASK), which contains its initial processor, timeslice,
and priority. The transition selects the processor according to the chosen static load balancing
policy (cf. Section 3.2.2). Finally, it inserts the new token at the end of list SCHED TASK LIST on
place Incoming. Whenever, a SCHED TASK is added to this list, transition Schedule assigns the
task to its processor’s run queue. Place Ready holds a separate run queue (CPU RUNQUEUE) for
each processor. It contains those tasks that are ready for execution on that specific processor.
Whenever a processor is idle or the currently running task’s timeslice expires, transition Schedule
removes the currently executing task from place Running and puts the next executable task of
the processor’s run queue there.

When a task requests processing time, it puts a TASK DEMAND token on place Request. The
token contains the task’s unique identifier (TASK ID) as well as the demand which is required
(DEMAND). As soon as the task is running (i.e., its SCHED TASK token lies on place Running), it
can reduce its demand according to the time it spend on place Running. As soon as a task’s
demand reaches zero, transition Schedule puts its TASK ID on place Response to notify the task
behavioural model that its request has been processed and that it can continue execution. Tran-
sition Dynamic Balancing levels the load between multiple processors according to the specified
dynamic load balancing policy.

Furthermore, MOSS reflects the mutual performance influences of passive resources (i.e.,
semaphores) and the GPOS scheduler. It may be necessary to put a task to sleep until the
resources that have been requested by a task become available. As soon as these resources are
available, the scheduler needs to resume processing of that task. To notify the scheduler about
such state changes, a task’s unique identifier is put on places PutToSleep or WakeUp. Transition
Start Waiting removes the task from the processor it is currently running on and puts its token
on place Waiting. As soon as a passive resource notifies the scheduler to wake up that task,
transition Stop Waiting removes the corresponding token from place Waiting and inserts it at
the end of the SCHED TASK LIST on place Incoming.

Finally, when the execution of a task is finished, the behavioural model notifies MOSS by
putting the task’s unique identifier on place Terminate. Transition Terminate then removes the
internal SCHED TASK token of that task.
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3.3. Summary

In this chapter, we have presented an iterative method for the design of performance models
for complex systems. For the experiment-based derivation of performance models, performance
analysts (i) start from existing documentation and specifications, (ii) systematically evaluate all
candidates of performance-relevant features using the GQM approach, (iii) design performance
models based on the measurements, and (iv) validate the resulting performance models. These
steps are repeated iteratively until the desired degree of accuracy has been achieved.

Furthermore, we have provided an overview of MOSS’ hierarchical structure which is defined
in terms of CPNs. MOSS consists of multiple subnets that reflect the behaviour of different parts
of operating system schedulers. For performance prediction, different subnets can be combined in
order to consider the influence of different operating system schedulers on software performance.

In the following chapters, we refine MOSS’ behavioural model systematically with time sharing
and interactivity handling (Chapter 4) as well as multiprocessor load balancing (Chapter 5).
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4. Single Processor Scheduling

In this chapter, we systematically evaluate the performance influence of operating system sched-
ulers in single processor environments. Based on the results, we define a hierarchical CPN model
called MOSS. The model captures the performance influence of different time sharing policies
(Section 4.1) and of different interactivity policies (Section 4.2). In a case study (Section 4.3),
we demonstrate MOSS’ broader applicability using a real-world business information system. We
discuss the benefits and drawbacks of MOSS (Section 4.4) and summarise our results (Section 4.5)
to conclude this chapter.

4.1. Time Sharing

Time sharing can strongly influence the response time and throughput of a software system.
Depending on the chosen policy, different tasks benefit (i.e., shorter response times) or suffer
(i.e., longer response times). In this section, we evaluate and model the influence of time sharing
on software performance. We focus on mutual dependencies of priorities, timeslices, run queues,
and task behaviour (i.e., the type of workload and request sizes).

The structure of this section follows the experiment-based derivation of software performance
models introduced in Section 3.1. In a series of experiments, we answer questions regarding the
performance influence of different time sharing features (Section 4.1.1). Based on the results, we
design a CPN model for time sharing (Section 4.1.3). The model refines the abstract CPN model
introduced in Section 3.2.3. In a case study, we validate the prediction accuracy of the model
(Section 4.1.4). The model predicts the influence of the time sharing policies for Windows and
Linux with an error of less than 5% in the considered scenarios.

4.1.1. Experiments – Overview and Motivation

The experiments presented in this section were conducted to evaluate time sharing and to identify
valid assumptions for MOSS. Based on documentation (cf. Section 2.3), hypotheses state prelim-
inary assumptions regarding the influence of time sharing properties on software performance.
For example, fair run queues might be expected to prevent starvation. While such statements
can be found in literature (e.g., [Aas05]), it remains unclear under which conditions they hold.
The combination with other scheduler properties (e.g., interactivity handling, cf. Section 4.2)
might affect the behaviour and performance of fair run queues. In the following GQM plan, we
formulate questions that address such mutual dependencies of task behaviour, time sharing and
other scheduler properties.

The Goal

For the experiments, we applied the scenario-based GQM methodology introduced in Sec-
tion 3.1.3. Like in the original GQM approach, goals are refined by a purpose, an issue, an
object, and a view point. In the following, we describe the goal for the performance evaluation
of different time sharing properties for GPOS schedulers.



58 4. Single Processor Scheduling

Goal: Purpose Identify
Issue (mutual) performance influences

Object of different time sharing properties
Viewpoint from the user’s point of view.

The goal addresses the different performance influences of time sharing properties and their
mutual dependencies. For example, fair run queues profit from priority-dependent timeslices.
With this goal, we specifically target the user’s perspective on software performance, i.e., exter-
nally observable performance metrics such as response time and throughput. The utilisation of
resources, even though it is interesting for performance analysis, is only slightly affected by time
sharing: The total amount of work a resource processes during a period is not affected by the
time sharing policy.

In the following, we motivate the questions listed in Table 4.2. In Section 4.1.2, we describe
the corresponding scenarios, metrics, hypotheses, and results.

Motivation of the Questions

Timeslices Most GPOS schedulers use timeslices in combination with a variant of round-robin
(RR) to share the available processing time among competing tasks. In software performance
prediction, processor sharing (PS) is used to approximate such behaviour. PS abstracts from
timeslices and cyclic resource assignment. From a theoretical point of view, it uses timeslices and
context switch times that are infinitely close to zero [LZGS84]. As a result, processing time is
equally distributed among competing tasks. However, GPOS schedulers may use strongly varying
timeslice sizes to share processing time among tasks. If the requested processing times are smaller
than a single timeslice, PS may not approximate task response times accurately. Furthermore, the
effect of timeslices on response time distribution needs to be evaluated. Therefore, Question TS.1
(Table 4.2) addresses the influence of timeslices.

Run Queues GPOS schedulers use different kinds of run queues to manage tasks that are waiting
to be processed. In this section, we focus on the effect of fair and unfair run queues as implemented
in the Linux 2.6 and Windows operating system series. Unfair run queues assign (almost) all
processing time to the tasks with the highest priority. This policy can lead to starvation of lower
priority tasks. By contrast, fair run queues are meant to prevent starvation and to assign a fair
share of processing time to all tasks. In addition, Linux 2.6 scales timeslice sizes according to
task priorities. This policy can directly affect task response time and throughput.

However, the scheduler may prefer I/O-bound and interactive tasks, to ensure a good overall
system utilisation. This behaviour may countervail a run queue’s fairness. Thus, tasks with
lower priorities benefit only under certain conditions from the run queue’s fairness. Question
TS.2 (Table 4.2) addresses the influence of different run queue types.

Priorities Fair scheduling assigns larger timeslices to tasks with higher priorities in order to
grant a larger share of processing time to them. However, the assignment of timeslices is not
linear (cf. Table 2.2 on page 26). The actual share of processing time depends on the task’s
priority as well of the priorities of all concurrently running tasks. Due to the non-linearity, small
changes of task priorities may lead to large differences in the observed performance. While the
(pure) effect of priority-dependent timeslices may be derived from Table 2.2, its interactions with
other scheduler properties require further investigation. Question TS.3 (Table 4.2) addresses the
influence of priorities.

In the following, we present the design that is common to all experiments described in this
section.
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Experiment Design

The experiment design is focussed on the type of workload (open/closed), task priorities, and
the performance metrics response time and throughput. The behaviour of a task is parametrised
over the demanded processing time as well as its delay or inter-arrival time.
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Figure 4.1.: Task behaviour for closed and open workloads of the experiment.

Open and Closed Workload Figures 4.1(a) and (b) depict the task behaviour for closed and
open workloads in an RD-SEFF-like notation. RD-SEFFs are well-suited for this purpose, since
they allow the parametrisation of resource demands (cf. Appendix A). The behaviour of closed
workloads includes two internal actions executed in a loop. The first action (Delay) loads a delay
server (DelayResource) that defers the task’s execution for Delay.VALUE milliseconds. Internal
action Process then requires CpuDemand.VALUE milliseconds of processing time on the processing
resource CPU. The experiment is finished when either enough measurements have been taken, a
certain time period has been exceeded, or a given confidence level has been reached (see [Jai91])
for details).

For open workloads, tasks behave analogously. The control flow is split after internal action
Arrival. The first part executes internal action Process while the second part checks whether
the experiment should be continued. Accordingly, it waits for the next arrival or finishes the
experiment. The value of input parameter InterArrivalTime determines the inter-arrival time
of the open workload.

For simulation, resource demands are directly linked to requests to the corresponding resources
that defer the execution of the tasks. However, it is necessary to mimic the resource demands in
order to measure the performance on real systems. Therefore, a set of algorithms typically used



60 4. Single Processor Scheduling

for CPU benchmarks, such as SPEC CPU2000 [Cor00, Hen00], generates the necessary load on
the CPU. A detailed description of the resource demand generation can be found in [BDH08] and
Appendix C.3. Furthermore, tasks are put to sleep to model the specified delays, e.g., by calling
the Java function Thread.sleep(). Appendix C.2 describes the effect of this approach in more
detail and discusses how accurate delays can be achieved.

Metrics The scenarios presented above require an exact definition of the performance metrics
response time and throughput. For response time, the exact measurement points can strongly
influence the results (see [Koz08b] for a discussion of different views on response time). Figure 4.1
depicts the start- and endpoints of response time measurements for open and for closed workloads.
In the case of closed workloads, response time corresponds to the time for processing internal
action Process. For open workloads, the response time includes the time passed from issuing
a request until its completion. Thus, measurements start at the branch of the control flow and
end at internal action Process. In addition to the pure (possibly contented) processing time, the
measurement includes initial delays caused, for example, by other tasks occupying the CPU.

Throughput (X) is defined as the number of Process actions (N) completed during the entire
experiment time (T ), i.e., X = N/T [LZGS84].

Nice-level

Windows Linux

19 4 139

15 4 135

10 6 130

5 6 125

0 8 120

-5 10 115

-10 10 110

-15 13 105

-20 24 100

Priority

Table 4.1.: Mapping of nice-levels to operating system priorities.

Priorities To evaluate and quantify different time sharing properties, it is necessary to compare
and to relate task priorities independent of the underlying operating system. In this section,
we use nice-levels [BC05] for this purpose. Nice-levels are mapped directly to priorities and are
available for most Unix-like systems. Furthermore, third party tools implement a mapping of
nice-levels to priorities for all variants of the Windows operating system series [RH]. Table 4.1
shows the mapping of nice-levels to native operating system priorities. For Windows operating
systems, it is necessary to map a set of nice-levels to the same priority. For the experiments
presented here, we refer to nice-levels instead of operating system priorities and use both terms
interchangeably.

4.1.2. Answering the Questions – Scenarios, Metrics, Hypotheses, and Results

In the following, we define scenarios, metrics, and hypotheses in order to answer the questions
raised in the beginning of this section. The experiment results for the first question (TS.1) are
determined by means of simulation. For the other two questions, measurements of a Linux 2.6.22
and Windows XP system provide the necessary results.
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Performance influences of different time sharing properties from the user's point of view
TS.1 TS.2 TS.3

Questions To what extent do timeslices 
influence task response 
times?

Under which conditions do 
fair/unfair run queues 
influence software 
performance?

How do priorities influence 
the processing time of tasks in 
fair run queues?

Experiment Simulation Measurement Measurement

Scenarios ContinuousLong
ContinuousShort
ExponentialShort

Closed
Open

Close
Medium
Shifted
Far

Metrics Response Time and Throughput

Hypotheses Timeslices influence the 
variance but not the mean of 
response time distributions.

Fair run queues have a major 
influence for contiuous load. 
Otherwise they yield similar 
performance as unfair ones.

For fair run queues, priorities 
have a major impact on 
performance.

Table 4.2.: GQM plan – questions and expectations concerning the performance influence of time
sharing policies.

Question TS.1: To what extent do timeslices influence task response times?

Question TS.1 (cf. Table 4.2) is motivated by the abstraction of PS from RR, which is widely
used in performance prediction. It targets the influence of time slices and round robin on the
response time distribution’s variance. It specifically evaluates the mutual influences of processing
times, timeslice sizes, and the number of requests in the system.

Scenarios The evaluation of Question TS.1 includes two major scenarios. The first scenario
employs a closed workload with zero think time, with varying request sizes, and with different
numbers of concurrent tasks. We focussed on influences of timeslices on response time. The
demands of the tasks are either smaller than a single timeslice or significantly larger. Timeslices
can be expected to have different effects on response time distribution for both cases. Furthermore,
the closed workload keeps the processor’s load constant and avoids disturbances by an increasing
number of tasks in the system.

The second scenario resembles an open workload with short demands and an exponentially
distributed inter-arrival time. We focussed on the influence of a fluctuating number of tasks.
Since the influence of scheduling policies on response time is largest for open workloads and a
high resource utilisation [SWHB06], the scenario is meant to point out differences and similarities
of the scheduling policies with respect to response time.

Table 4.3 summarises the scenario configurations. The values given for the inter-arrival time and
delay determine the valuation of the input parameters InterArrivalTime and Delay of the RD-
SEFFs for open and closed workloads in Figure 4.1. Similarly, column CPU Demand stands for the
valuation of input parameter CpuDemand. For the closed workload scenarios, the number of tasks
is 2, 16, or 32. The inter-arrival time of scenario ExponentialShort is exponentially distributed
with a rate of λ = 1/21, i.e., with a mean of 21 ms. Little’s Law states that the utilisation s of a
server with a mean service time E[S] and an arrival rate λ is given by u = λ ∗ E[S], for queueing
networks with an open workload. Therefore, the inter-arrival time and resource demand given
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Name Workload Delay Number of Tasks CPU Demand
ContinuousLong closed 0 ms 2, 16, and 32 450 ms
ContinuousShort closed 0 ms 2, 16, and 32 20 ms

Inter-Arrival Time
ExponentialShort open ExponentialDist(1 / 21) 20 ms

Table 4.3.: Evaluation scenarios for Question TS.1.

in this scenario lead to a utilisation of u = 1/21 ∗ 20 = 0.952 for the CPU. The combination of
short requests, open workload, and high resource utilisation emphasises the (possible) differences
of scheduling policies.

Response time is the only metric considered to answer Question TS.1. Special emphasis lays on
its distribution. Thus, the standard deviation (sdRT[t]) and the coefficient of variation (covRT[t])
are provided in addition to the mean value (ERT[t]). The coefficient of variation aggregates the
standard deviation and mean into a single value, i.e., the coefficient of variation is defined as the
standard deviation of a data set divided by its mean.

Hypotheses For the scenarios ContinuousLong and ContinuousShort, Hypothesis TS.1.a ex-
pects the mean response time of each task to be the product of the number of concurrent tasks
(N) and the request size. For scenario ContinousLong (ContinousShort), let tl (ts) be a task
and Nl (Ns) the number of tasks, then

ERT[tl] ≈ Nl ∗ 450 ms and ERT[ts] ≈ Ns ∗ 20 ms (TS.1.a)

In other words, PS, which assigns each task 1/Nth of the processor, is assumed to accurately
predict the scenarios’ mean response times. However, Hypothesis TS.1.b (see Table 4.2) expects
the coefficient of variation for ContinuousShort to be much larger than for ContinuousLong.
Let tl (ts) and Nl (Ns) be defined as above, then

covRT[ts]� covRT[tl] for all Ns = Nl. (TS.1.b)

Furthermore, Hypothesis TS.1.c expects the variation of the response time distribution to increase
with the number of concurrently executing tasks for both scenarios. Let tN be a task for a scenario
with N concurrent tasks, then

sdRT tN < sdRT tN+i for all i > 0. (TS.1.c)

As a consequence, TS.1.d considers PS only a good approximation of RR-based time sharing
policies if the coefficient of variation is below 0.2, i.e., the majority of observed response times
deviates at most by 20% from the mean response time:

covRT[ts] < 0.2 and covRT[tl] < 0.2 (TS.1.d)

For scenario ExponentialShort, Hypothesis TS.1.e expects FCFS, PS and RR scheduling to
yield the same mean response time. The results should only differ in terms of variance. PS is
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expected to have the smallest standard deviation, followed by RR and then FCFS, i.e., let tfcfs,
tps, trr be a task of scenario ExponentialShort with FCFS, PS, and RR scheduling respectively,
then:

ERT[tps] ≈ ERT[trr] ≈ ERT[tfcfs]
sdRT(tps) < sdRT(trr) < sdRT(tfcfs) (TS.1.e)

In the following, we present the results of the experiments and evaluate whether the hypotheses
listed above can be considered as valid.

Scenario

Continuous 

Short 2 40 8,2 0,21

16 319 101,7 0,32

32 649 203,6 0,33

Continuous 

Long 2 900 10,1 0,012

16 7199 125,1 0,017

32 14397 255,3 0,017

Number 

of Tasks

Mean 

[ms]

Coefficient 

of Variation

Standard Deviation 

[ms]

Table 4.4.: Characteristics of the measured response times for scenarios ContinuousLong and
ContinuousShort.

Results Table 4.4 summarises the results for scenarios ContinuousLong and ContinuousShort.
In all cases, the response time approximately equals the product of the number of tasks and the
resource demand as expected by Hypothesis TS.1.a. The measured mean response time differs
less than 1% from the expected result. In addition, the coefficient of variation is more than 10
times larger in scenario ContinuousShort compared to ContinuousLong. While the mean scales
linearly with the request’s size, the standard deviation increases only slightly for long requests
compared to short ones. The similar standard deviation leads to large differences for the coefficient
of variation and, thus, supports Hypothesis TS.1.b. Furthermore, the standard deviations listed
in Table 4.4 suggest an almost linear increase with the number of concurrent tasks independent
of the request size, which supports Hypothesis TS.1.c. In all cases, the coefficient of variation is
below 0.2 for scenario ContinuousLong and above 0.2 for scenario ContinuousShort. Following
Hypothesis TS.1.d, this suggests that PS sufficiently approximates the response time distribution
of long requests, while smaller requests are stronger affected by timeslices. For the latter reason,
Hypothesis TS.1.d has to be rejected.

Figure 4.2 depicts the simulated response time distribution for scheduling policies RR (with a
timeslice of 31.5 ms), FCFS, and PS. While RR and FCFS appear similar in the histogram, the
response time distribution of PS has a heavier tail. A comparison between the mean response
times of the three scheduling policies confirms this impression (cf. Table 4.5).

The mean response time predicted by PS is about two times larger than the mean response times
predicted by RR and by FCFS. Newly arriving tasks delay the execution of all tasks currently
in the queue under PS scheduling. Thus, tasks currently waiting in the queue complete their
processing later and keep the load high for a longer time. When additional tasks arrive within
this period, the effect is amplified. The newly arriving tasks further defer the tasks currently
being processed. For FCFS (and RR in this case), newly arriving tasks do not affect the tasks
currently waiting in the queue, which can proceed without disturbances. Thus, short periods of
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Figure 4.2.: Comparison between the response time distribution of scenario ExponentialShort
for round-robin, first-come-first-served, and processor-sharing.

Scheduling Policy Mean Response Time Standard Deviation
RR 231.5 ms 208.4 ms

FCFS 254.7 ms 250.0 ms
PS 488.3 ms 491.4 ms

Table 4.5.: Simulation results for scenario ExponentialShort.

high load only affect the newly arriving tasks instead of all tasks waiting in the queue. The mean
response times of FCFS and RR scheduling differ approximately 10% (23 ms). In comparison to
PS scheduling, FCFS can be considered as a good approximation of RR.

The results presented above lead to a rejection of Hypothesis TS.1.e, which expected the means
to be similar. Additionally, the ordering of the standard deviation differs from TS.1.e’s expecta-
tion. In the results, RR has the least standard deviation directly followed by FCFS. The standard
deviation of PS is (similarly to the mean) approximately twice as large. Furthermore, Hypoth-
esis TS.1.e has to be rejected based on the results of scenario ExponentialShort. The results
emphasise the effect of scheduling policies on (mean) response time also observed in [SWHB06].

To answer question TS.1, the relation between processing demands and timeslices of RR
scheduling can have a strong influence on response time. PS can be an appropriate abstrac-
tion for RR based time sharing strategies if the resource demands are several times larger than
the timeslices. For smaller resource demands, PS can lead to a large prediction error for the mean
response time as well as the variation of the predicted response times. The extent of the error
depends on the type of workload and the utilisation of the scheduled resource.

In the following experiments, we use resource demands that take significantly longer than a
single timeslice, to minimise the effect on response times for the succeeding questions.
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Question TS.2: Under which conditions do fair/unfair run queues influence software
performance?

Fair run queues share the time between tasks according to their priority. However, operating
systems, such as Linux, implement mechanisms to circumvent a run queue’s fairness for I/O
bound and interactive tasks. Question TS.2 evaluates how the type of workload (open/closed)
influences the behaviour of a run queue using measurements of the Windows XP and Linux
2.6.22 operating systems. In the following, we present the scenarios, hypotheses, and results of
this question.

Scenarios Two scenarios, called Open and Closed, provide the necessary data to answer Ques-
tion TS.2. Scenario Open uses a variant of the open workload in Figure 4.1(b) to mimic the effect
of competing interactive tasks. It simultaneously starts two tasks with different priorities (low
priority = -5 and high priority = 5) for each arrival. Both issue a resource demand of 450 ms
(CpuDemand.VALUE = 450) to the processing resource called CPU. To exclude disturbing effects of
an increasing number of tasks, the inter-arrival time is set to 1 second (InterArrivalTime.VALUE
= 1000). This workload generates two tasks simultaneously and allows both to complete their
resource demand before new tasks arrive. Since both tasks start simultaneously, their response
time allows to draw conclusions about the share of processing time each task receives.

Scenario Closed uses closed workloads to generate a comparable load. It concurrently exe-
cutes two tasks with different priorities. The higher priority task (th) requests no think time
(Delay.VALUE = 0) while the lower priority task (tl) waits for 450 ms after finishing a request
(Delay.VALUE = 450). Both tasks request a processing time of 450 ms (CpuDemand.VALUE = 450)
on the CPU. The priorities of tasks th and tl are set to −5 and 5, respectively. The performance
metrics, considered for tasks th and tl, are mean response time (ERT[t]) and throughput (TP(t)).

Hypotheses For scenario Open, Hypothesis TS.2.a (cf. Table 4.2) expects fair and unfair run
queues to behave similar. In both cases, the higher priority task th suppresses the lower priority
task tl. Thus, the expected mean response time of task th is similar to the specified resource
demand of 450 ms. For task tl, the expected mean response time should increase by 450 ms to
900 ms. Since task th suppresses tl, the latter has to wait for th to finish before it can start
execution.

ERT[th] ≈ 450 ms and ERT[tl] ≈ 900 ms (TS.2.a)

For scenario Closed, Hypothesis TS.2.b expects the lower priority task to starve under unfair
run queues. Due to starvation prevention mechanisms, low priority tasks receive a small share of
processing time so that a few requests may be completed. Due to the overall preference of th over
tl, Hypothesis TS.2.b expects the mean response time of tl to be larger than 30 seconds and its
throughput less than 3 tasks per minute. Task tl is explicitly not expected to starve completely,
since Windows grants a small fraction of processing time to all tasks that could not run on the
processor for more than 4 seconds.

ERT[th] ≈ 450 ms and ERT[tl] ≥ 30 sec
TP(th) > 120 req/min and TP(tl) < 3 req/min (TS.2.b)

For fair run queues, processing time is distributed between competing tasks according to their
priority. Task th (priority −5) receives a timeslice of 500 ms while tl (priority 5) receives 75 ms.
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Thus, tl should receive approximately 13% and th 87% of the total processing time. Hypothe-
sis TS.2.c expects the following response time and throughput for th and tl:

ERT[tl] ≈ 1/0.13 ∗ 450 ms = 3450 ms and ERT[th] ≈ 1/0.87 ∗ 450 ms = 517 ms (TS.2.c)

Open Closed Open Closed

High (-5) 435 503 440 451

Low (5 ) 867 3822 892 50670

High (-5) 60 119 60 133

Low (5 ) 60 14 60 1

Linux Windows

Response Time [ms]

Throughput [req / min]

Table 4.6.: Mean response time and throughput for high and low priority tasks under open and
closed workload.

Results In the following, we present the results of the experiments for Windows and Linux.
Table 4.6 summarises the measured mean response times and throughput for fair (Linux) and
unfair (Windows) run queues. The resulting response times only exhibit a slight distribution,
making the mean values sufficient for an interpretation of the results.

The results support all hypotheses of TS.2. For open workloads (scenario Open), the use of fair
and unfair run queues does not affect the mean response time or throughput (Hypothesis TS.2.a).
As a consequence of this observation, I/O-bound and interactive tasks can override the run
queue’s fairness property. Section 4.2 evaluates this effect in more detail. Furthermore, the
measured response time of the high and low priority tasks are slightly below expectation, e.g.,
435 ms compared to the defined 450 ms. This effect is a result of the employed resource demand
generator that underestimates the computational effort necessary to generate a load of 450 ms
(see Appendix C.3).

For closed workloads (scenario Closed), unfair run queues suppress lower priority tasks. The
measured mean response time of task tl is (with more than 50 seconds) even longer than expected
in Hypothesis TS.2.b. Similarly, its throughput is close to 1 req/min. Furthermore, the higher
priority task achieves a throughput of 133 req/min and a mean response time of 451 ms as expected
in TS.2.b. In the case of fair run queues, lower priority task tl receives a slightly smaller share
of processing time than expected (10.5% instead of 13%). Its mean response time is about 11%
larger (3.8 sec compared to 3.4 sec) than expected in Hypothesis TS.2.c.

In this section, we have evaluated the conditions under which fair run queues can influence
software performance. Based on the observation presented here, the next question addresses the
mutual influences between task priorities and shares of processing time.

Question TS.3: How do priorities influence the processing time of tasks in fair run queues?

The results of Question TS.2 demonstrate that fair and unfair run queues can affect task response
times and throughput. The scheduler of Linux 2.6.22 combines a fair run queue with priority-
dependent timeslices, where a task’s timeslice increases with its priority. The results of question
TS.2 suggest that the share of processing time received by tasks can be computed from their
timeslice sizes. Question TS.3 targets the validity of this assumption. It combines tasks that
differ with respect to think time and priority to evaluate how these properties influence task
response time and throughput.
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Scenarios In the following scenario, we compare the performance of a higher priority task th
and a lower priority task tl for varying priorities under closed workloads, to evaluate the mutual
influences of priorities and fair run queues. Both tasks th and tl demand a processing time of
500 ms (CpuDemand.VALUE = 500). While task th has a zero think time (Delay.VALUE = 0), task
tl delays its execution for 500 ms once it finishes a request (Delay.VALUE = 500). Due to the
long delay of 500 ms, the Linux scheduler classifies task tl as interactive [TCM06]. The priorities
of both tasks vary to determine the mutual influence of priorities, timeslices, and interactivity
on software performance. Let ph be the priority of task th and pl the priority of task tl. The
four scenarios listed in Table 4.7 evaluate the influence of priorities on performance for fair run
queues. Based on these scenarios, we define the following hypotheses.

Name Distance ph pl

Close 5 0 5
Medium 10 0 10
Shifted 10 -5 5
Far 30 -15 15

Table 4.7.: Scenarios for Question TS.3.

Hypotheses Hypothesis TS.3.a expects the high and low priority tasks to receive processing
time according to their timeslice sizes. For example, task tl receives timeslices of 75 ms while
task th receives 100 ms in scenario PrioritySmall. These timeslices lead to 43% and 57% shares
of processing time for tasks tl and th, respectively. To get the exact shares, both tasks must
compute without interruption. Since task tl additonally imposes a delay, the shares can only be
considered as lower and upper bounds. Given these shares, the expected response time bounds
can be estimated:

ERT[th] ≈ 500/0.57 ms ≈ 872 ms and ERT[tl] ≈ 500/0.43 ms ≈ 1163 ms .

Similarly, the throughput of both tasks can be estimated by:

TP(th) ≈ 120 ∗ 0.57 req/min ≈ 68 req/min and TP(tl) ≈ 120 ∗ 0.43 req/min ≈ 52 req/min

where 120 req/min is the maximum throughput for task processing times of 500 ms.

Scenario Throughput [req / min] Mean Response Time [ms]
TP(tl) (<) TP(th) (>) ERT[tl] (>) ERT[th] (<)

Close 52 68 1163 872
Medium 40 80 1500 750
Shifted 17 103 3833 575
Far 4 116 14500 518

Table 4.8.: Expected response times and throughputs of Hypothesis TS.3.a.

Table 4.8 lists the expected outcome of all four scenarios. Due to the omission of tl’s delay
in the computation, they can be considered as upper (<) and lower (>) bounds for both tasks.
Hypothesis TS.3.a expects the actual response times and throughputs to improve for task th and
to degrade for task tl. In the following, we present the measurements of all four scenarios.
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Figure 4.3.: Response time and throughput of task th and tl with different priorities for the fair
run queue with priority-dependent timeslices implemented under Linux.

Results Figure 4.3 summarises the measurements for all four combinations of priorities. The
results of scenarios Medium, Shifted, and Far support Hypothesis TS.3.a. However, Hypothe-
sis TS.3.a does not hold for scenario Close. The mixture of waiting time and processing time for
task tl leads to the Linux scheduler overriding its run queue’s fairness. After the waiting period,
task tl receives a higher dynamic priority than task th and completely suppresses th. This increase
of tl’s priority leads to a mean response time of 500 ms for tl and to a mean response time of
about 1000 ms for th. In this scenario, tl’s behaviour changes the order of priorities for both
tasks. Executing the same experiments without a delay for task tl yields the expected behaviour.
However, the results for scenario Close already point out the need for a detailed evaluation and
modelling of interactivity policies (cf. Section 4.2).

A priority distance 10 suffices for the Linux scheduler to enforce a fair share of processing
time. The measured response time and throughput follow the expected trend. Like expected
in Hypothesis TS.3.a, the throughput and response time of th improve with a larger difference
in priorities while tl’s performance degrades. Additionally, the shift of priorities from scenario
Medium to scenario Shifted affects the response time and throughput of task th and tl.

A comparison between the measurements (and estimates) of all four scenarios shows that at a
certain point th benefits only little from the additional processing time, while tl suffers heavily.
For example, th’s response time decreases by less than 10% from 559 ms to 514.4 ms from scenario
Shifted to scenario Far. Task tl is strongly penalised as its response time almost quadruples
from 4 seconds to more than 15 seconds.

Conducting the same experiments for unfair run queues (Windows XP) yields the expected
results. The actual priorities do not affect task response times and throughput. For all cases the
results are similar to the results of scenario Closed. Due to the suppression of tl by th, task tl‘s
mean response time is approximately 56 seconds. It only receives little processing time from the
starvation prevention mechanism implemented by the Windows operating system scheduler. By
contrast, the mean response time of task th approximates its uninterrupted processing time (502
ms). The throughput is with 119.6 req/min almost at the possible maximum throughput of 120
req/min. In the following, we continue the discussion of the results of questions TS.1 to TS.3.
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Discussion

The questions and experiments that have been conducted to answer Questions TS.1 to TS.3
evaluated the mutual influences of timeslices, fair/unfair run queues, priorities and task behaviour.
The results demonstrate that a task’s behaviour can significantly affect the influence of a run
queue’s fairness. Especially the Linux 2.6.22 scheduler does not enforce fairness as strictly as
expected. When a task spends a larger fraction of time waiting, fair run queues appear similar
to their unfair counterpart with respect to task response time and throughput. However, the
performance influence of both run queue types strongly differs if tasks spend most of their time
processing. Fair run queues especially affect the performance of lower priority tasks, which risk
starvation under unfair run queues.

The priority assigned to each task influences the throughput and response time of all tasks for
fair run queues in combination with priority-dependent timeslices. A task’s priority determines
the share of processing time it receives, relative to its competitors. The results for question TS.3
suggest that priorities have to be chosen carefully. At a certain point, assigning a higher priority
to a task yields only little benefit, while lower priority tasks are heavily penalised.

A continuous, closed workload where processing time and delay are well-balanced gives further
insights in the interdependencies of task behaviour, run queues and priorities. If the priorities
of the two competing tasks are close, the delayed task preempts the continuous one. This effect
vanishes when the distance of the priorities increases. The Linux scheduler’s interactivity handling
classifies the continuously processing task as compute-bound and, hence, reduces its dynamic
priority. By contrast, the task that is delayed is classified as I/O-bound and interactive. Therefore,
it receives a higher dynamic priority. The increase leads to a change in the order of task preference
if priorities differ only slightly.

The unfair run queues implemented in the Windows scheduler yielded the expected results.
Unfair run queues suppress lower priority tasks for the sake of higher priority ones. To prevent
starvation, Windows assigns a very small fraction of processing time to lower priority tasks. The
main purpose of this behaviour is to prevent priority inversion.

4.1.3. The MOSS Prediction Model for Scheduler Time Sharing

In this section, we introduce MOSS’ CPN model for performance-relevant time sharing prop-
erties which have been identified in the previous section. We enhance the model presented in
Section 3.2.3. For this purpose, we focusse on the subnet of transition Schedule (cf. Figure 3.9).
First, we give an overview of the scheduler’s overall behaviour followed by a detailed description
of the run queue, task processing, and task preemption. The description includes the modelling
alternatives for each variation point (cf. Section 3.2.2).

Overview

Figure 4.4 provides an overview of the scheduler’s behaviour. It depicts the CPN underlying
substitution transition Schedule in Figure 3.9. The depicted CPN schematically models the
interactions of subnets Process, RunQueue, and Return. In the following, we describe the be-
haviour of the scheduler’s CPN model in an abstract fashion. Details on the behaviour of each
subnet follow in the next subsections.

The scheduler model accepts requests (TASK DEMANDs) that require processing. Whenever the
run queue assigns a task to a processor, its remaining demand is reduced by the time it spends
processing. However, it may be preempted and returned to the run queue during its execution.

Transition Process communicates with the the task’s behavioural model (i.e., the RD-SEFF)
via places Request and Response. Whenever a task requires processing time on the scheduled
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Figure 4.4.: Schematic overview of the scheduler’s behaviour.

resource it puts a TASK DEMAND token on place Request. Transition Process tracks the remaining
processing time and notifies the behavioural mdoel as soon as its request is finished by putting
the task’s identifier (TASK ID) on place Response. To determine the processing time received
by a task, transition Process continuously monitors place Running. This place contains the
currently executing tasks for each processor. Figure 4.4 shows two idle tasks (idle 1 and idle
2) running on processors 1 and 2, respectively. The idle tasks on place Running represent available
processors. Whenever a task releases its processor, a corresponding idle task takes its place.

Furthermore, transition Process manages the passage of time within the scheduler subnet. Fol-
lowing the modelling of time in CPN’s, it defers the availability of tokens on the places Response,
and Preempted. When a task’s timeslice expires, transition Process puts the identifier of its
processor (CPU ID) on place Preempted and, thus, notifies transition Return to remove the task
from the processor. Transition Return removes the task’s token from place Running and enqueues
it in the list of incoming tasks of the run queue (place Incoming). The run queue (transition
RunQueue) is responsible for assigning tasks to (idle) processors for execution. The task that has
been chosen replaces the idle task’s token on place Running and starts a new scheduling cycle.

Listing 4.1: Basic data types for time sharing.
colset PRIORITY = INT ;
colset TIMESLICE = INT ;
colset DEMAND = INT ;
colset CPU ID = INT timed ;
colset TASK ID = INT timed ;

colset TASKDEMAND = product TASK ID ∗ DEMAND timed ;
colset SCHED TASK = product CPU ID ∗ TASK ID ∗ PRIORITY ∗ TIMESLICE timed ;
colset SCHED TASK LIST = l i s t SCHED TASK;
colset PRIORITY TIMESLICE = product PRIORITY ∗ TIMESLICE ;

colset RUNQUEUE = l i s t SCHED TASK;
colset CPU RUNQUEUE = product CPU ∗ RUNQUEUE;

fun i d l e cpu = ( cpu , IDLE TASK ID , 0 , 0 ) ;
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Processing of Demands

The processing of resource demands requires the scheduler model to keep track of the remaining
work for each task and its current state from the scheduler’s perspective (e.g., the remaining
timeslice). Tokens represent tasks within the model. MOSS uses the two distinct colour sets
SCHED TASK and TASK DEMAND (cf. Listing 4.1) to represent the information necessary for the
scheduler model and, thus, distinguishes the internals of the scheduler behaviour from the task’s
behaviour. A TASK DEMAND and a SCHED TASK token, which refer to the same task, can be joined
by their unique identifier (TASK ID) (identifier matching pattern and identifier manager pattern,
cf. Section B.6). The TASK DEMAND allows MOSS to keep track of a task’s remaining demand,
while SCHED TASKS provides the necessary data for scheduling.
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Figure 4.5.: Subnet of transition Process – the processing of resource demands.

Figure 4.5 depicts the CPN describing substitution transition Process. Incoming demands ar-
rive on place Request and are moved to the subnet’s internal place Demanding, which manages all
demands and their subsequent processing. The demand processing directly communicates with
the run queue via the places Running and Preempted. Whenever a task demands processing time
(TASK DEMAND token on place Demanding) and receives a processor (corresponding SCHED TASK
token on place Running), the task may either finish processing its demand within its remaining
timeslice (transition Finish is enabled) or it is preempted (transition Preempt is enabled). In the
first case, MOSS puts the task’s identifier (TASK ID) on place Response and notifies the task’s
behavioural model that its demand has been processed. The availability of the token for firing
is deferred until the remaining demand’s time passed. The task’s timeslice is further reduced by
the remaining demand. At this point, the task still occupies the processor even though its pro-
cessing demand finished. This strategy allows the task’s behavioural model to issue new demands
without interruption, resembling the behaviour of real systems. When preemption is necessary,
MOSS reduces the demand of the interrupted task by the remaining timeslice. Furthermore,
it initiates the task’s processor freeing by placing the processor’s identifier on Preempted. The
actual preemption is deferred by the task’s remaining timeslice. Next MOSS needs to return the
preempted task to the run queue and reset its timeslice as described in the following.
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Returning Preempted Tasks
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Figure 4.6.: Assignment of fixed and priority-dependent timeslices.

Once a task is preempted, transition Return (introduced in Figure 4.4, detailed view in Fig-
ure 4.6) is responsible for returning the task to the run queue and resetting its timeslice. Its
subnet can vary with respect to the assignment of time slices, which can either be fixed or priority-
dependent. In the case of fixed timeslices (Figure 4.6(a)), transition Reset simply assigns a fixed
value (TIMESLICE) to the task’s timeslice. For priority-dependent timeslices (Figure 4.6(b)), the
tokens on place TimesliceForPriority map each task priority to an individual timeslice. In this
case, transition Return selects a task’s new timeslice according to its priority (prio). When a
processor’s identifier token (CPU ID) becomes available for firing on place Preempted, transition
Return replaces the task currently running on the processor by the idle task. Furthermore, it
resets the preempted task’s timeslice (as discussed above) and inserts it into the list of tasks
on place Incoming. These steps return the task to the run queue and prepares it for further
processing.

Run queues

Run queues can either employ a fair (Figure 4.7(a)) or unfair (Figure 4.7(b)) policy to assign the
available processors to competing tasks. Both policies differ mainly in their queueing of tasks
which are ready for execution (places Ready, Active, and Expired), while their overall behaviour
remains similar.

All tasks arrive at place Incoming of the run queue. They have to be enqueued before any
other activity in the run queue can occur. This constraint guarantees that the run queue selects
the correct task out of all tasks ready for execution. The inhibitor arc pattern (cf. Appendix B.6)
ensures that all transitions (except Enqueue) are only enabled if the list of incoming tasks is
empty.
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Figure 4.7.: Model for fair and unfair run queues.

While unfair run queues manage waiting tasks in a single queue for each processor (place Ready),
their fair counterpart distinguishes between active (place Active) and expired (place Expired)
tasks. While active tasks still have a remaining timeslice, expired tasks already received their
share of processing time. Thus, transition Execute only selects active tasks for processing. If the
timeslice of a task is finished, the task is inserted into the expired run queue. Only if no active
task remains, all expired tasks are reactivated (i.e., transiton Swap fires). Incoming tasks (usually
the ones that just used up their timeslice) automatically join the expired queue. This behaviour
resembles the fair time sharing of the Linux 2.6 scheduler.

Priorities

The range and meaning of priorities strongly varies for different GPOS schedulers. Therefore,
MOSS models priorities by simple integer numbers. The priority of a task influences its position
in the CPU RUNQUEUE. In combination with function priorityInsert, it realises the priority queue
pattern (cf. Appendix B.6). In priority queues, the head of the queue always contains the highest
priority task. The order of priority values may be ascending or descending depending on the
operating system. These differences are considered by the priority queues.
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Preemption by Higher Priority Tasks

The CPN model presented so far does not reflect preemption of tasks by newly arriving ones
with higher priorities. Whenever a higher priority task arrives at a processor’s run queue, the
scheduler preempts the currently executing task and adds it at the beginning of its previous run
queue. It maintains the task’s current timeslice and resource demand.

To include such a behaviour into MOSS, it is necessary to interrupt the delay of tokens on
places Preempted and Response (see, for example, Figure 4.7). In CPNs, transitions can override
a token’s delay. A transition called Preempt (similar to transition Return in Figure 4.6) is enabled
as soon as the run queue contains a task with a higher priority than the currently executing one.
The transition returns the preempted task to the beginning of its run queue and determines the
new values for the task’s timeslice and processing demand.

So far, we assumed that tasks will not be preempted by higher priority tasks. MOSS adjusted
timeslices and demands according to this assumption (subnet Process in Figure 4.5). In order to
maintain the correct state of a task after preemption, transition Preempt recomputes its remaining
timeslice and processing demand for the current simulation time. Finally, the transition returns
the preempted task to the beginning of its previous run queue, so that it can directly continue
execution as soon as the higher priority task releases the processor.

4.1.4. Validation of MOSS’ Prediction Accuracy

In this section, we present a validation of MOSS’ time sharing model introduced in the previous
section. The validation compares the predicted response times and throughput of MOSS with
measurements of the Windows Server 2003 and Linux 2.6 operating systems. In the validation, we
target the prediction quality of fair run queues in combination with priority-dependent timeslices
(Linux 2.6) as well as unfair run queues with different task behaviour and priorities (Windows
operating system series). Therefore, we explicitly exclude scenarios affected by a scheduler’s
interactivity or starvation features.

Goal: Purpose Assessment
Issue of MOSS’ prediction accuracy

Object for time sharing features
Viewpoint from the software architect’s point of view.

Similar to Section 4.1.1, the validation of MOSS’ prediction accuracy employs the scenario-
based GQM method introduced in Chapter 3.1. The differences between the predicted and
measured response times and throughput indicate the prediction accuracy. Analogously to the
experiments in Section 4.1.1, we focus on the performance metrics response time and throughput.
In the following, we refine the goal by questions specific to time sharing.

The questions target the mutual influences of a run queue’s fairness, the size of timeslices, and
task priorities. Thus, the first question (TS.V1, where “V” stands for validation) asks whether
MOSS accurately models the influence of fair and unfair run queues. The second question (TS.V2)
evaluates MOSS’ prediction accuracy of the mutual influences of priorities and timeslices for fair
run queues. Table 4.9 summarises the scenario-based GQM plan of the validation introduced in
the following.

Question TS.V1: Does MOSS accurately predict the effect of fair/unfair run queues?

Question TS.V1 targets the influence of fair and unfair run queues in combination with priorities
on response time and throughput. To assess MOSS’ prediction accuracy, the predictions for
scenarios Medium and Open (cf. Section 4.1.1) are compared to measurements.
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TS.V1 TS.V2

Questions Does MOSS accurately predict 

the effect of fair/unfair run 

queues?

Does MOSS accurately predict the 

mutual influence of priorities and 

timeslices?

Scenarios Medium

Open

Medium

Shifted

Far

Metrics

Hypotheses

Prediction Error for Response Time and Throughput

MOSS predicts the performance 

of all tasks with an error less than 5%

MOSS' Prediction Accuracy for Time Sharing Features

Table 4.9.: GQM plan for the validation of time sharing.

We chose the relative prediction error of the mean values to answer the questions above. For
any performance metric m, the relative prediction error is defined as follows. Let Ep[m] be the
predicted and Em[m] the measured mean, then Error(m) is:

Error(m) =
|Ep[m]− Em[m]|

Em[m]
∗ 100

The prediction error is always given relative to the mean of the measurements.

Hypotheses
Error(TP) < 5% and Error(RT) < 5% (TS.V1.a)

Error(TP(th))� 5% and Error(RT(tl))� 5% (TS.V1.b)

For both scenarios (Medium and Open), Hypothesis TS.V1.a expects a prediction error of less
than 5%. Since MOSS cannot predict the influence of starvaton prevention, Hypothesis TS.V2.b
further expects a large prediction error in an exceptive case (scenario Medium, task tl, unfair run
queue).

Results The results summarised in Tables 4.10(a) and 4.10(b) do not reject Hypotheses TS.V1.a
and TS.V1.b. The prediction error for almost all scenarios is less than 5%. Task tl in scenario
Medium forms the only exception as expected by Hypothesis TS.V1.b for unfair run queues.
Scenario Open evaluates the performance prediction of lower priority tasks by MOSS for unfair
run queues. The differences between measurements and predictions lie below 3% for throughput
and response time of both tasks.

The remaining prediction error stems from caching and memory effects, from deviations of
the defined and actual resource demands of the test application (cf. Appendix C.1), and from
influences of the Java virtual machine (e.g., garbage collection) not captured by the prediction
model. Section 5.3 further discusses the assumptions and limitations of MOSS.

Discussion The simulation lets higher priority task th fully suppress tl. Thus, tl starves com-
pletely as expected by Hypothesis TS.V1.b, while the measurements suggest that lower priority
task tl still receives a small share of processing time. In the simulation, tl’s processing time corre-
sponds to the total duration of the experiment. The final cool down phase of the simulation allows
all remaining tasks to finish execution. Thus, tl’s total execution time includes the experiment
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(a) Unfair run queue (Windows Server 2003).

Scenario Prediction Measurement Error [%] Prediction Measurement Error [%]

Open

th 451 440 2,4 60,0 60,1 0,2

tl 901 892 1,0 60,0 60,1 0,1

Medium

th 500,5 501,5 0,2 107,8 106,6 1,2

tl 360500 56300 540,3 0,2 1,0 83,3

Scenario Prediction Measurement Error [%] Prediction Measurement Error [%]

Medium

th 0,65 0,65 0,3 92 92 0,3

tl 1,54 1,60 3,8 29 30 2,8

Shifted

th 0,56 0,56 0,1 107 107 0,1

tl 4,07 4,25 4,2 12 13 4,9

Far

th 0,52 0,51 0,4 117 116 0,4

tl 14,69 15,44 4,9 4 4 3,6

Response Time [ms] Throughput [req / min]

Response Time [ms] Throughput [req / min]

(b) Fair run queue (Linux 2.6).

Scenario Prediction Measurement Error [%] Prediction Measurement Error [%]

Open

th 451 440 2,4 60,0 60,1 0,2

tl 901 892 1,0 60,0 60,1 0,1

Medium

th 500,5 501,5 0,2 107,8 106,6 1,2

tl 360500 56300 540,3 0,2 1,0 83,3

Scenario Prediction Measurement Error [%] Prediction Measurement Error [%]

Medium

th 0,65 0,65 0,3 92 92 0,3

tl 1,54 1,60 3,8 29 30 2,8

Shifted

th 0,56 0,56 0,1 107 107 0,1

tl 4,07 4,25 4,2 12 13 4,9

Far

th 0,52 0,51 0,4 117 116 0,4

tl 14,69 15,44 4,9 4 4 3,6

Response Time [ms] Throughput [req / min]

Response Time [ms] Throughput [req / min]

Table 4.10.: Comparison between measurements and predictions for fair and unfair run queues
with different priorities and timeslices.

duration (360000 ms) plus its processing demand (500 ms). Usually, the results do not include
observations during the cool down phase. In this case, it clearly demonstrates that tl does not
receive any processing time during the experiment run.

The results do not reject Hypotheses TS.V1.a and TS.V1.b. MOSS reflects the behaviour of
fair and unfair run queues with the expected accuracy. The next question addresses the mutual
influences of priorities and timeslices under fair run queues.

Question TS.V2: Does MOSS accurately predict the mutual influence of priorities and
timeslices?

In the following, we focus on scenarios Medium, Shifted, and Far (cf. Section 4.1.2, Question
TS.3) in order to assess MOSS’ prediction accuracy for mutual dependencies of priorities and
timeslices. We explicitly exclude scenario Close, which is strongly affected by the scheduler’s
interactivity handling (Section 4.2 examines the interactivity features of GPOS scheduler).

Hypothesis
Error(TP) < 5% and Error(RT) < 5% (TS.V2.a)

Similar to Hypothesis TS.V1.a, Hypothesis TS.V2.a expects MOSS to predict the response
time and throughput of tasks th and tl with an error of less than 5% in the selected scenarios. As
a consequence of the hypothesis, MOSS should accurately predict the share of processing time
received by each task.
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Results Table 4.10(b) summarises the predictions, measurements, and errors for all three sce-
narios. MOSS fulfils the expectation of Hypothesis TS.V2.a in all cases. The prediction accuracy
for task th exceeds the expectation with an error of less than 1%. The prediction error for lower
priority task tl ranges from 4 – 5%.
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Figure 4.8.: Comparison between measurements and predictions for unfair run queues (Linux).

Figure 4.8 depicts the measured and predicted response time (Figure 4.8(a)) and throughput
(Figure 4.8(b)) of lower priority task tl. For higher priority task th, response time and throughput
only change slightly and, thus, are not depicted here (cf. Table 4.10). In both figures, the
predictions trace the trend of scenarios Medium, Shifted, and Far. With an increasing difference
in priorities, the response time of tl increases and less requests get processed. The share of
processing time received by each task can be computed from its throughput. For example, in
scenario Medium, higher priority task th receives 75% (predicted and measured) of processing time
while lower priority task tl receives 25% (predicted and measured). MOSS estimates the share of
processing time for all tasks with a deviation of less than 1%.

4.2. Interactivity

The experiments and predictions of GPOS schedulers (with respect to time sharing features)
already point out the importance a scheduler’s interactivity features for software performance.
The mutual influences of task behaviour and a scheduler’s interactivity policy require careful
evaluation. In this section, we describe a series of experiments for the influence of interactivity
policies as well as an extension and refinement of MOSS’ CPN model. Analogously to Sec-
tion 4.1, we employ the experiment-based derivation of performance models. First, we present
an overview and motivation of the experiments (Section 4.2.1), then we describe their design
(Section 4.2.2) and, finally, we summarise their results (Section 4.2.3). The proposed extension
of MOSS (Section 4.2.4) is validated (Section 4.2.5) demonstrating the prediction accuracy of
MOSS for different interactivity policies of GPOS schedulers.
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4.2.1. Experiments – Overview and Motivation

The experiments conducted in the scope of this section evaluate two distinct interactivity policies
realised in the Windows and Linux operating system series. The first policy (Windows) is based
on the resources a task uses. Therefore, it is called resource-dependent policy. The second policy
keeps track of a task’s history (Linux). Its decisions are based on the previous behaviour of a task.
Therefore, it is called history-dependent policy. Due to the inherently different characteristics of
both policies, the following evaluation defines separate questions for both policies.

The Goal

Goal: Purpose Identify
Issue mutual performance influences

Object of interactivity features and task behaviour
Viewpoint from the user’s point of view.

For both interactivity policies, the behaviour of a task determines its dynamic priority and, thus,
its performance. The resources used determine the priority bonus of a task for the resource-
dependent policy. Therefore, the evaluation focuses on resource usage as the most important
factor of a task’s behaviour. For the history-dependent policy, the previous waiting and pro-
cessing times of a task determine its dynamic priority. Thus, the evaluation is focussed on the
influence of waiting times and of processing times on software performance. The effect of both
policies on externally observable performance metrics is of greatest interest. The goal targets
the identification of influences that affect the performance perceivable by users of a system, e.g.,
response time. However, it is necessary to measure additional performance characteristics in or-
der to design a performance model that reflects the influence of different interactivity policies on
externally visible performance metrics correctly.

Motivation of the Questions

Resource-dependent Policy The resource-dependent interactivity policy increases the dynamic
priority of tasks whenever they gain access to a resource. For example, when a task acquires
a semaphore, it receives a priority bonus of one for its remaining timeslice. Whether the task
benefits from the bonus (or not) depends on the other tasks running in parallel as well as the size
of the bonus, which varies with the type of resource (cf. Section 2.3.4). Question IR.1 addresses
the influence of different priority bonuses on software performance.

Whenever a task receives a priority bonus, the resource-dependent policy may reset its timeslice.
The reset enables interactive and I/O-bound tasks to finish short requests of processing without
interruption. They can efficiently utilise external resources and maximise the overall system
utilisation. To prevent tasks from growing timeslices boundlessly (by infinite series of resets),
the resource-dependent policy considers a task’s previous priority bonus as well as its remaining
timeslice. However, the exact behaviour of the policy is not documented. Question IR.2 addresses
the influence of timeslice resets for different resources on software performance. Furthermore,
Question IR.3 evaluates the effect of time penalties for a set of resource acquisitions on software
performance.

History-dependent Policy The history-dependent policy determines the dynamic priority of
tasks based on their waiting time and processing times. It assigns bonuses to tasks with long
waiting times and penalties to tasks with long processing times. Question IH.1 addresses the
dependency of waiting and processing times and the dynamic priority of a task.
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Additionally, the history-dependent policy explicitly distinguishes interactive and non-
interactive tasks. Tasks, which are classified as interactive due to their behaviour, are preferred
over non-interactive ones. Under Linux, for example, they circumvent the fair policy of the run
queue and, thus, are guaranteed to quickly receive processing time when needed. Therefore,
Question IH.2 addresses the conditions under which a task is classified as interactive.

4.2.2. Experiment Design

In this section, we introduce the scenarios and metrics necessary to determine the influences of
a scheduler’s interactivity policy on software performance. For this purpose, it is desirable to
measure the time for which a task receives a priority bonus. However, this metric cannot be
measured directly. It requires specific scenarios for indirect measurement. In the following, we
first describe the scenarios that allow us to determine the influence of priority bonuses on software
performance and then introduce a specific performance metric called high priority time (HPT)
for its measurement.

Scenarios

<<InternalAction>>

Delay

<<InternalAction>>

Process

<<ParametricResourceDemand>>

processingResourceType = DelayResource

Specification = Delay.VALUE ms

<<ParametricResourceDemand>>

processingResourceType = CPU

Specification = CpuDemand.VALUE ms

Experiment 

finished?

Yes

No

Task Response Time

<<AcquireAction>> <<ReleaseAction>>

<<PassiveResource>>

Semaphore

Capacity = 1

Figure 4.9.: Closed workload with acquisition and release of a passive resource (Closed
Interactive).

In order to measure the influence of resource-dependent interactivity policies, the closed work-
load scenario introduced in Section 4.1.1 needs to be extended by the acquisition and release of
different resources. Figure 4.9 illustrates the behaviour for the acquisition of a semaphore. An
AcquireAction and ReleaseAction surround internal action Process and model the acquisition
and the release of PassiveResource Semaphore. The measured response time includes possible
contention delays of the resource acquisition.

The evaluation of different interactivity policies is focussed on three major scenarios which
only differ in type of resources used. All scenarios subsume two competing tasks ti and tn. Task
ti resembles an interactive or I/O bound task, which uses different resources. Its behaviour is
depicted in Figure 4.9. By contrast, task tn is non-interactive. It behaves according to the closed
workload specified in Figure 4.1(a).

Task Priority Workload
ti 8 Closed Interactive
tn 9 Closed

Table 4.11.: Priority and Workload of interactive task ti and non-interactive task tn.

Table 4.11 lists the workload and priority of both tasks. The priorities here are given in terms
of the target operating system (Windows), since the mapping of nice-levels to operating system
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priorities is too coarse grained for this purpose. In the combination with Windows’ unfair run
queues, tn suppresses task ti due to its higher priority. However, if ti receives a priority bonus, it
may interrupt task tn. We use this effect to determine the metrics of interest as described in the
next section.

Name Acquisition Action Bonus Workload of Task ti
No Boost – 0 Closed
Semaphore Acquire semaphore 1 Closed Interactive
Network Read data from network device 2 Closed Interactive

Table 4.12.: Scenarios for the evaluation of different interactivity policies.

Table 4.12 lists the three scenarios considered in the scope of this evaluation, which mainly
differ with respect to the priority bonus and resource used. The scenarios allow a comparison
between the performance of tasks ti and tn in similar settings with different priority bonuses.
Scenario No Boost represents the neutral reference case for the resource-dependent interactivity
policy. The evaluation of the history-dependent interactivity policy only uses this scenario, since
the type of resource does not affect performance, but only the processing and waiting times.

High Priority Time - A Performance Metric specific to Interactivity Policies

In the following, we introduces a performance metric specifically defined for the evaluation of
resource-dependent interactivity policies, called High Priority Time (HPT). This metric refers
to the time a task’s priority bonus keeps, i.e., the time its dynamic priority is larger than its
static. Since this value cannot be measured directly, we introduce a heuristic method to estimate
the time a task receives a higher priority in the following.

The scenarios above provide the necessary circumstances to indirectly measure the time that
a task keeps a priority bonus. The non-interactive task tn runs with a higher priority than
interactive task ti, more specifically prio(tn) = prio(ti) + 1. If ti receives no priority bonus, it
is delayed until task tn is finished since Windows uses an unfair run queue (cf. Section 2.3.4).
In other words, ti can only preempt tn if it receives a bonus. Thus, the delay of tn quantifies
the high priority processing time of ti. However, this metric can be very vague, due to other
disturbances of the measurement environment. The measurement of the time a task computes
without interruption as well as the time it waits for the processor described in the following can
yield much more accurate results.

Figure 4.10 illustrates the effect of priority bonuses for scenario Network. As soon as task ti
acquires its data from the network device, it receives a priority bonus of 2. This bonus increases
its dynamic priority to 10 preempting task tn. When ti’s next timeslice finishes (at 93 ms), the
resource-dependent policy decreases its dynamic priority by 1. Now ti and tn compete for the
processor on the same priority level. In the depicted case, ti directly continues execution until
its next timeslice is finished and until its dynamic priority decreases back to 8. Now, tn takes
over the processor again. The completion of ti is deferred after tn is finished. Thus, the high
priority time of ti corresponds to the time tn is interrupted as well as the time ti computes before
tn’s execution is finished. The latter is the most reliable measure for HPT, since the interruption
time of tn suffers from similar disturbances like its response time. In the following, we introduce
a heuristic method to measure the uninterrupted processing time as well as the waiting time of a
task for scenarios No Boost, Semaphore, and Network.

A simple heuristic algorithm estimates the time a task is processing and waiting. It repeatedly
measures the current system time using the most accurate clock (usually with the resolution of the
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Figure 4.10.: The effect of priority bonuses on processing and waiting times.

processor’s clock frequency). The heuristic estimates whether the task lost the processor between
two subsequent measurements or not, based on the time passed between the measurements.

For this purpose, the heuristic measures the current time in a continuous loop. The time
spend processing between to subsequent measurements is much smaller than 1 ms (� 1 ms).
Therefore, the heuristic assumes that the task has only been preempted if the time passed between
two measurements is larger than 1 ms. In all other cases, it is assumed that the task could
proceed without interruption. The heuristic aggregates continuous chunks of processing time,
i.e., processing times not interrupted by waiting periods are summed up. Whenever a period of
processing has been interrupted by a waiting period (i.e., two subsequent measurements differ
more than 1 ms), a new measurement of waiting times and processing times is started.

Processing Time [ms] 31 31 31 12 4 31 31 31 31

Waiting Time [ms] 31 31 31 5 31 31 31 31

Table 4.13.: Sequence of processing times and waiting times measured.

The continuous measurement of subsequent processing and waiting times can yield a sequence
as shown in Table 4.13. The table contains the measurements for a scenario with two tasks of
equal priority under Windows Server 2003. The periods of processing and waiting times identified
by the heuristic correspond to the timeslice size of 31 ms. The only disturbance (the sequence 12,
5, 4) is caused by an operating system interrupt. The sum of the times measured in the disturbed
period yields a full timeslice of 31 ms. The interruption thus falls into the task’s processing time
and is not caused by competing tasks.

4.2.3. Answering the Questions – Scenarios, Metrics, Hypotheses, and Results

In the following, we refine the questions of the GQM-plan using the scenarios and metrics pre-
sented above. Furthermore, we present the results of the experiments that answer the questions.

Question IR.1: Do priority bonuses influence software performance?

The resource-dependent policy grants priority bonuses to tasks according to the resources used.
Question IR.1 targets the influence of these bonuses on software performance. In the following,
we describe the scenarios, hypotheses, and result quantifying their effect.
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Table 4.14.: GQM plan for the resource-dependent interactivity policy.

Task CpuDemand.VALUE Delay.VALUE
ti interactive 20 20
tn non-interactive 500 20

Table 4.15.: Parameter characterisations for tasks ti and tn.

Scenarios For all three scenarios (No Boost, Semaphore, and Network), Table 4.15 lists the
resource demands and delays of Question IR.1. All scenarios use similar values in order to
compare the influence of different bonuses on response times. The resource demand of interactive
task ti (20 ms) is smaller than a single timeslice (31 ms). This value should allow ti to finish
its demand within its bonus period. The significantly longer processing time (500 ms) of task tn
delays the remaining demand of ti in case its boosted period does not suffice. The delay of ti is
clearly visible, due to the large demand of tn. The following hypotheses compare the response
times of tasks ti and tn for all three scenarios.

Hypotheses In general, Hypotheses IR.1.a and IR.1.b expect task ti to receive a larger share
of processing time with an increasing priority bonus. This effect becomes visible in a decreasing
response time for ti and, thus, an increasing response time for tn. Let tNonei , tSemi , tNeti be the
interactive tasks of scenarios No Boost, Semaphore, and Network, respectively. Similarly, tNonen ,
tSemn , tNetn denote the corresponding non-interactive tasks of those scenarios, then Hypotheses IR.1.a
expects:

ERT[tNonei ] > ERT[tSemi ] > ERT[tNeti ] (IR.1.a)

Analogously, Hypothesis IR.1.b expects an increasing response time for tn:

ERT[tNonen ] < ERT[tSemn ] < ERT[tNetn ] (IR.1.b)

The next paragraph presents the results answering the question.

Results Figure 4.11 shows the mean response times (Figure 4.11(a)) of tasks ti and tn for all
three scenarios as well as their distribution (Figures 4.11(b) – 4.11(e)). The results conform to the
expectation of Hypotheses IR.1.a and IR.1.b. For scenario No Boost, task ti is always delayed by
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Figure 4.11.: Mean response times and their distribution for tasks ti and tn.
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the full processing demand of tn (500 ms) resulting in a total response time of approximately 520
ms. The histogram and the cumulative distribution functions (Figures 4.11(b) and (c)) confirm
this observation. Less than 3% of the requests deviate from the expectation.

In scenario Semaphore, task ti receives a priority bonus of 1 for its remaining timeslice. Thus,
ti either finishes its demand within 20 ms (about 1/3 of all cases in Figure 4.11(b) and (c)) if its
remaining timeslice is larger than 20 ms or it is delayed otherwise (2/3 of all cases). The bonus of
ti only affects the response time of tn slightly. Compared to scenario No Boost, its mean response
time increases by about 10 ms.

In scenario Network, the priority bonus of 2 always allows ti to finish processing without
interruptions caused by tn. In addition to the shorter response time of ti, its throughput increases
from 2 req/sec (scenario No Boost) and 3 req/sec (scenario Semaphore) to about 23 req/sec. The
increased load of ti causes a significant delay for tn leading to its mean response time of 727 ms.

The results suggest that priority bonuses can have a large influence on software performance,
e.g., response time and throughput. The next question addresses the duration of priority bonuses.

Question IR.2: How long does a task profit from a priority bonus?

Whenever a task receives a priority bonus, the resource-dependent interactivity policy may reset
its timeslice in order to finish its computation without interruption. Therefore, Question IR.2 tar-
gets the duration of priority bonuses quantifying the effect observed in the evaluation of Question
IR.1.

Task CpuDemand.VALUE Delay.VALUE
ti interactive 100 100
tn non-interactive 500 100

Table 4.16.: Parameter characterisations for tasks ti and tn.

Scenarios The evaluation of Question IR.2 focusses on scenarios Semaphore and Network. Sce-
nario No Boost is omitted at this point, due to the absence of priority bonuses. Table 4.16 lists
the valuations of the resource demand and delay for tasks ti and tn in both scenarios. The 100 ms
of processing time of task ti should capture the maximum possible high priority time of 62 ms.
The high priority time of task ti is the only performance metric relevant for answering Question
IR.2. In the following, we present the hypotheses and results of this question.

Hypotheses The actual mechanisms for timeslice resets are vaguely documented. However,
existing documentation suggests that a task’s timeslice is always fully reset when acquiring a
resource for the first time during its current timeslice [SR05]. By contrast, the results for Question
IR.1 indicate that this statement may not hold. Therefore, we formulate two different expectations
for the evaluation’s outcome. The Hypothesis IR.2.a expects the documentation to be valid and,
thus, expects a HPT of full timeslices only for ti. Hypothesis IR.2.b is more general and just
assumes a certain range for ti’s HPT. More precisely, IR.2.a expects a mean HPT of one timeslice
for scenario Semaphore and a mean HPT of two timeslices for scenario Network:

EHPT[tSemi ] = 31 ms and EHPT[tNeti ] = 62 ms (IR.2.a)

Hypothesis IR.2.b weakens the previous expectation. It (only) expects the high priority time
of task ti to increase by a timeslice (31 ms) for an additional bonus of 1. This means that, for the
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scenario Semaphore, ti receives a bonus of one timeslice at most. Analogously, the high priority
time is expected to be larger than one (31 ms), but smaller than two timeslices (62 ms) for the
scenario Network:

0 ms < HPT(tSemi ) ≤ 31 ms and 31 ms ≤ HPT(tNeti ) ≤ 62 ms (IR.2.b)
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Figure 4.12.: Distribution of the high priority time of task ti.

Results Figure 4.12 depicts the distribution of task ti’s high priority processing time for scenarios
Semaphore and Network. In scenario Semaphore, ti’s HPT is either half a timeslice (15.5 ms)
with a probability of 0.5 or a full one (31 ms) with a probability of 0.5. For scenario Network,
its HPT is approximately equally distributed between 31 ms and 62 ms. Due to this results,
the resetting of timeslices is more complex than suggested by the documentation. Therefore,
Hypothesis IR.2.a has to be rejected. However, the results support the more general expectation
of Hypothesis IR.2.b.

The results for scenario Semaphore suggest that the timeslice is not fully reset in every case. In
fact, the resetting of timeslices occurs on a more fine-grained level. Assuming that the remaining
timeslices are equally distributed between 0 ms and 31 ms at the moment of resource acquisition,
the resource-dependent policy rounds up the remaining timeslice to the next 15.5 ms.

For scenario Network, the equal distribution of the high priority time between 31 ms and 62
ms suggests that the timeslice is not reset. The high priority time of ti (Figure 4.12) is a result of
the remaining current timeslice and an additional full timeslice. Since ti receives a priority bonus
of 2, the remaining timeslice resembles the equally distributed part.

The next question addresses the effect of resource acquisitions on a task’s high priority pro-
cessing time.
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Question IR.3: Does a series of resource acquisitions affect performance?

The resource-dependent interactivity policy should decrease the timeslice of a task which performs
a series of resource acquisitions in a row [SR05]. In the following, we present the necessary
scenarios, hypotheses and results.

Scenario To answer Question IR.3, scenario Semaphore requires slight modification. After a
delay of 100 ms (Delay.VALUE = 100), it acquires and releases the same semaphore multiple
times in a loop to measure the influence of a series of resource acquisitions on the high priority
time of task ti. Its total processing time sums up to 100 ms. To measure the HPT for 1, 10, and
100 acquisitions, the resource demand within the loop (after acquisition) must be 100 ms, 10 ms,
and 1 ms, respectively.
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Figure 4.13.: High priority time of task ti for an increasing number of semaphore acquisitions.

Hypotheses Following the documentation [SR05], Hypothesis IR.3.a expects the high priority
time of ti to decrease with the number of semaphore acquisitions. Let t1i , t10

i , and t100
i denote

the interactive task of scenario Semaphore with 1, 10, and 100 resource acquisitions respectively,
then Hypothesis IR.3.a expects:

E[HPT (t1i )] > E[HPT (t10
i )] > E[HPT (t100

i )] (IR.3.a)

In the following, we present the results for Question IR.3.

Results Figure 4.13 shows the distribution of ti’s high priority time for an increasing number of
semaphore acquisitions. In the considered scenario, the number of semaphore acquisitions does
not affect the high priority time of ti and, thus, contradicts Hypothesis IR.3.a. This observa-
tion refers to Java semaphores only and cannot be (directly) generalised for other semaphore
implementations or resource types.

The next questions target the performance properties of the history-dependent interactivity
policy implemented in the Linux 2.6. operating system.
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IH.1 IH.2

Question How do longer waiting times influence a 

task's dynamic priority and thus its 

performance?

What is the shortest waiting time for a task 

to be classified as interactive?

Scenario No Boost No Boost

Metric Dynamic priority

Mean Response Time

Interactivity Threshold

Hypotheses Dynamic priority increases and the mean 

response time decreases

 with longer waiting times 

The interactivity threshold linearly 

increases with the the processing time.

Performance influences of task behaviour and the history-dependent interactivity policy

Table 4.17.: GQM plan for the history-dependent interactivity policy.

Question IH.1: How do longer waiting times influence a task’s dynamic priority and, thus,
its performance?

History-dependent policies determine a task’s dynamic priority based on its previous waiting and
processing times. Question IH.1 addresses the mutual influences of both times on the response
time and dynamic priority of a task.

Task CpuDemand.VALUE Delay.VALUE Priority
ti interactive 80 0 – 20 0
tn non-interactive 80 0 0

Table 4.18.: Parameter characterisations for tasks ti and tn.

Scenarios To evaluate these mutual influences, we use scenario No Boost with a static priority
of 0 (nice-level) for tasks ti and tn. Table 4.18 summarises the parameter valuations for the
experiments. A resource demand of 80 ms prevents irregular disturbances by preemptions due
to expired timeslices (100 ms) in measured response times. The waiting time of task ti varies
between 0 ms and 20 ms to evaluate its influence on ti’s dynamic priority. The performance
metrics considered to answer Question IH.1 are ti’s average dynamic priority during the measure-
ment period (E[prio(ti)]) as well as its mean response time (E[RT(ti)]). The latter indicates the
performance gain of ti for longer waiting times.

Hypothesis Hypothesis IH.1.a expects the priority to increase continuously with longer waiting
times based on the realisation of the history-dependent interactivity policy in the Linux 2.6
scheduler (cf. Section 2.3.5). Let tdi denote the interactive task with a delay of d ms, then IH.1.a
expects:

E[prio(tdi )] < E[prio(td
′

i )] ∀ d < d′ (IH.1.a)

Since task ti and tn run with the same static priority, the scheduler assigns an equal amount
of processing time to both. Due to ti’s higher dynamic priority, Hypothesis IH.1.b expects its
response time to decrease with an increasing delay:

E[RT(tdi )] > E[RT(td
′

i )] ∀ d < d′ (IH.1.b)
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Hypotheses IH.1.a and IH.1.b do not state anything about the response time or dynamic priority
of the non-interactive task tn. However, ti’s increasing delay and dynamic priority should affect
its performance. In the following, we describe the results to answer Question IH.1.
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Figure 4.14.: Dynamic priority and response time of tasks ti and tn for an increasing delay of ti.

Results Figure 4.14 depicts the measured dynamic priorities (Figure 4.14(a)) and response times
(Figure 4.14(b)). Both curves show an abrupt change between a delay of 8 ms and 9 ms. Delays
of 8 ms or less lead to a penalty of approximately -5 on the dynamic priority of both tasks. When
the delay further increases (≥ 9 ms), task ti’s dynamic priority changes from a penalty of -5 to a
bonus of +5. Similarly, its response time drops from 175 ms to 80 ms while tn’s response time
rises from 145 ms to nearly 800 ms. The latter indicates that tn receives the processor only during
ti’s waiting periods. Such a behaviour is only possible if ti circumvents the fairness properties
of Linux’ run queue. In fact, the scheduler classifies task ti as interactive if their waiting time
exceeds a certain threshold (cf. Section 2.3.5). In the following, the minimum time that a task
must wait in order to be classified as interactive is called interactivity threshold.
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Furthermore, ti’s dynamic priority (and consequently its response time) is penalised for delays
smaller than 9 ms. In this case, the scheduler classifies ti as a compute-bound tasks due to its
large processing and small waiting times. For a delay of 0 ms, both tasks receive a similar share of
processing time leading to a response time of approximately 160 ms for both. With an increasing
delay, the response time of ti (first) rises to 175 ms while the response time of tn lowers to 145
ms. The dynamic priority of ti remains close to -5. Only for delays of 9 ms and more does the
situation change as discussed above. The increase in response times of ti observed for small delays
greater than zero is a consequence of the timeslices used by the scheduler. When ti starts waiting
it releases the processor and, thus, allows tn to continue processing. However, when its delay is
finished, the processor is still occupied by tn. Since both tasks have the same priority in most
cases, ti must wait until tn finished its timeslice. Thus, ti’s release of the processor leads to the
long response times observed here.

To conclude, the dynamic priority of ti does not increase continuously with longer delays as
suggested by the documentation (Section 2.3.5). Thus, Hypotheses IH.1.a and IH.1.b have to be
rejected. The next question addresses the abrupt changes in the dynamic priority and response
time of ti.

Question IH.2: What is the shortest waiting time for a task to be classified as interactive?

Since the experiment results of the question above require further investigation, Question IH.2
addresses the threshold of delays necessary to classify a task as interactive. Classifying a task as
interactive refers to the abrupt change in priority and response time visible in Figure 4.14. In
the following, we present the scenarios, hypotheses, and results for Question IH.2.

Task CpuDemand.VALUE Delay.VALUE
ti interactive 80, 160, 240, 320, 400, 480, 560 0 – 100
tn non-interactive 80, 160, 240, 320, 400, 480, 560 0

Table 4.19.: Parameter characterisations for tasks ti and tn.

Scenario Similar to Question IH.1, scenario No Boost provides the necessary results to answer
Question IH.2. Therefore, its resource demands and delays are varied as listed in Table 4.19. The
interactivity threshold of the interactive task ti, denoted by IT(ti), is compared for the different
scenarios of the evaluation. IT(ti) resembles the minimum delay for the abrupt change in priority
and response time, e.g., IT(ti) = 9 ms for the scenarios evaluated in the context of Question IH.1.
In the following, we formulate two hypotheses on the expected outcome of the experiments.

Hypotheses In general, Hypotheses IH.2.a and IH.2.b expect the interactivity threshold of task
ti to increase for longer processing demands, i.e., the longer a task spends processing, the longer
it has to wait to be classified as interactive. Hypothesis IH.2.b further expects the interactivity
threshold to increase linearly (motivated by the results in [TCM06]).

Hypothesis IH.2.a expects the effect observed in Question IH.1 to occur for any task with any
processing time. The interactivity threshold thus increases with ti’s resource demand. Let tri
denote the interactive task ti with a resource demand of r ms, then

IT(tri ) < IT(tr
′

i ) ∀r < r′ (IH.2.a)
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Hypothesis IH.2.a does not quantify the increase of the delay. Yet, Hypothesis IH.2.b does
expect a linearly increasing interactivity threshold.

∃c ∈ R :
IT(tri )
r

= c ∀ r ∈ R>0 (IH.2.b)

Hypotheses IH.2.b assumes the ratio of the interactivity threshold and the resource demand of ti
to be constant. In the following, we present the results that answer Question IH.2.
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Figure 4.15.: Interactivity threshold for an increasing processing time.

Results Figure 4.15 illustrates the interactivity threshold of task ti in dependence of its pro-
cessing time. For example, a task with an average processing time of 160 ms has to wait at least
18 ms on average to be classified as interactive. Similarly, a task with an average processing time
of 400 ms hast to wait 45 ms. The interactivity threshold increases for larger resource demands
(as expected by Hypotheses IH.2.a). Furthermore, the increase is constant leading to linear de-
pendency of processing time and interactivity threshold (as expected by Hypotheses IH.2.b). In
the considered scenarios, the slope of the function in Hypothesis IH.2.b is c = 0.1125.

In the following, we summarise and discuss the results for different interactivity policies.

Discussion

The experiments conducted within this section have evaluated the influence of resource-dependent
and history-dependent interactivity policies on software performance. The first three questions
have addressed the influence of different priority bonuses for the resource-dependent policy while
the last two questions have targeted the influence of waiting and processing times for the history-
dependent policy.

The results demonstrate that both policies react significantly different. The resource-dependent
policy neglects a task’s history focussing on its currently acquired resources. By contrast, the
used resources play no role for the history-dependent policy, which only compares the waiting
and processing time of a task. However, both policies strongly influence the response time of the
interactive and non-interactive tasks.

For the resource-dependent policy, the priority bonus does not only affect the response time, but
also the resetting of timeslices. This behaviour is of particular importance for the performance
prediction of strong and weak semaphores [Hap07]. The necessary performance metric (high
priority time) can only be measured indirectly in combination with non-interactive task tn.
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The results confirm the observation of Section 4.1.2 for the history-dependent policy that the
interactivity policy affects the time sharing policy. The influence of processing and waiting times
on a task’s dynamic priority and performance have been different than its documentation and
implementation suggest in the first place. Instead of a continuous increase in priority and, thus,
performance for longer delays, the delay has almost no effect until it sharply rises the task’s
dynamic priority. Further evaluations of this behaviour have shown a linear dependency of the
processing time and the interactivity threshold.

The questions, experiments and results presented above form the basis for the prediction model
described in the next section.

4.2.4. Extending MOSS’ Prediction Model for GPOS Schedulers by Interactivity
Policies

In this section, we introduce MOSS’ CPN model for resource- and history-dependent interactivity
policies. The model extends the CPNs for time sharing described in Section 4.1.3. Furthermore,
it introduces the acquisition and release of resources such as semaphores, connection pools, or
network devices. In the following, we describe the CPNs for both policies. The CPN model
presented here is geared to the implementations of Windows’ resource-dependent and Linux’
history-dependent interactivity policy.
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Figure 4.16.: CPN modelling a fair run queue with an history-dependent interactivity policy.

Run Queue The changes necessary to model interactivity policies affect the scheduler’s task
preemption as well as its run queue. For the latter, the resource-dependent interactivity policy
does not require any adjustments while the history-dependent policy needs to keep track of the
tasks processing and waiting time. Figure 4.16 depicts a fair run queue for the history-dependent
policy. The extensions to the original CPN model of fair run queues (Figure 4.7 on page 73) are
printed in boldface.

Whenever transition Execute puts a task on place Running for execution, it also puts a new
TIMESTAMP token (cf. Listing 4.2) on place StartProcessingTimes. The token contains the
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task’s identifier (TASK ID) and the current simulation time (sim time()). It logs the time the
processing started. Fusion place StartProcessingTimes allows other subnets (e.g., Figure 4.17
and 4.19) to use the information in order to determine the time a task spends processing.

Furthermore, transition Enqueue updates a task’s dynamic priority based on the time it spend
waiting and/or processing. Its input/output/action declaration performs the necessary update
operation. If a task is interactive (interactive(task) = true), transition Enqueue directly
adds it to the active run queue. Otherwise (function interactive(task) = false), tasks are
assigned to the expired run queue first.

Listing 4.2: Functions, colour sets, and data types for the history-dependent interactivity policy.
colset PRIORITY = product INT ∗ INT ∗ INT ;
colset TIMESTAMP = product TASK ID ∗ INT ;

(∗ The parameter va l u e s are de f ined in the f e a t u r e con f i g u r a t i on ∗)
(∗ o f the h i s t o ry−dependent i n t e r a c t i v i t y p o l i c y . ∗)
val MAX PRIORITY = −20;
val MIN PRIORITY = 19 ;
val MAXIMUMBONUS = 10 ;
val MAXIMUM DISTANCE = MIN PRIORITY − MAX PRIORITY + 1 ;
val MAX WAITING TIME = 1000

fun update ( s t a t i c p r i o r i t y , dynamic pr io r i ty , wa i t ing t ime ) =
let

val bonus = MAXIMUMBONUS ∗ wai t ing t ime div MAX WAITING TIME;
in

( s t a t i c p r i o r i t y , min (MIN PRIORITY, max(MAX PRIORITY, s t a t i c p r i o r i t y
− ( bonus − MAXIMUMBONUS div 2 ) ) ) , wa i t ing t ime )

end

fun de l t a ( s t a t i c p r i o r i t y , dynamic pr io r i ty , wa i t ing t ime ) =
s t a t i c p r i o r i t y ∗ MAXIMUMBONUS div MAXIMUM DISTANCE + 2

fun i n t e r a c t i v e ( cpu , id , ( s t a t i c p r i o r i t y , dynamic pr io r i ty ,
wa i t ing t ime ) , t im e s l i c e ) =

let
val ( s t a t i c p r i o r i t y , dynamic pr io r i ty , wa i t ing t ime ) =

update ( ( s t a t i c p r i o r i t y , dynamic pr io r i ty , wa i t ing t ime ) ) ;
in

( dynamic pr i o r i ty <= s t a t i c p r i o r i t y −
de l t a ( s t a t i c p r i o r i t y , dynamic pr io r i ty , wa i t ing t ime ) )

end

Listing 4.2 shows the necessary colour sets, values and functions for the run queue’s sub-
net. The functions listed here directly correspond to the Linux 2.6 scheduler’s behaviour de-
scribed in Section 2.3.5. A task’s priority (PRIORITY) embodies three integers (instead of a single
one, as is the case for the time sharing policies). The first resembles the task’s static priority
(static priority), the seconds its dynamic priority (dynamic priority), and the third its wait-
ing time (waiting time). The waiting time has to be modelled as an integer due to restrictions
of CPNs (cf. Appendix B.4).

Function priorityInsert adds an incoming task into a run queue. It sorts the tasks accord-
ing to their dynamic priority. The function is a realisation of the priority queue pattern (cf.
Appendix B.6).
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Function update determines the task’s current dynamic priority based on its waiting time
and static priority. It linearly scales the waiting time to the range of priority bonuses (0 –
MAXIMUM BONUS). The upper limit (MAX WAITING TIME) ensures that the possible priority bonus
(or penalty) stays within the predefined bounds. Furthermore, function update shifts the bonus’s
range from 0 – MAXIMUM BONUS to -MAXIMUM BONUS/2 – MAXIMUM BONUS/2, leading to a penalty for
tasks with low waiting times and with high processing times. The function finally ensures that
the dynamic priority does not exceed the minimum (MIN PRIO) and maximum priority (MAX PRIO)
for interactive tasks.

Furthermore, function interactive compares the current dynamic priority of a task to its in-
teractivity threshold. If the dynamic priority is large enough, the task is considered as interactive
and may be directly inserted into the active run queue, avoiding the run queues fairness. To con-
sider the latest changes of the waiting time, the function first updates the dynamic priority of the
considered task (calling function update). Furthermore, it needs to determine the interactivity
threshold of the task, which depends on its static priority. The individual thresholds can either be
explicitly modelled or – like in this case – be expressed as a function of the task’s static priority.
Therefore, function delta determines the threshold for a given static priority implementing the
formula given in Section 2.3.5. Finally, function interactive compares the dynamic priority to
the interactivity threshold (static priority - delta). A task is considered as interactive if its
dynamic priority is higher (i.e., the value is less or equal) than its interactivity threshold.

Task Preemption The interactivity policies require changes of the scheduler’s preemption mech-
anism which returns running tasks to their run queue. Figure 4.17 depicts the behaviour for the
resource-dependent (Figure 4.17(a)) as well as the history-dependent (Figure 4.17(b)) interactiv-
ity policies.

Listing 4.3: Functions, colour sets, and data types for the resource-dependent interactivity policy.
colset PRIORITY = product INT ∗ INT ;

fun dec rea se ( ( s t a t i c p r i o , dynamic pr io ) , t im e s l i c e ) =
i f dynamic pr io > s t a t i c p r i o andalso t im e s l i c e = 0

then ( s t a t i c p r i o , dynamic pr io − 1)
else ( s t a t i c p r i o , dynamic pr io )

fun r e s e t ( t ime s l i c e , n ew t ime s l i c e ) =
i f t im e s l i c e > 0

then t im e s l i c e
else new t imes l i c e ;

When returning a preempted task to the run queue, the resource-dependent policy needs to
decrease the task’s dynamic priority (function decrease in Listing 4.3) and reset its timeslice
(function reset in Listing 4.3). Transition Return calls both functions when adding the task’s
token (SCHED TASK) to the list on place Incoming. For the resource-dependent interactivity policy,
a task’s PRIORITY contains only its static priority and its dynamic priority omitting the waiting
time. If a task’s timeslice is expired and its dynamic priority is larger than its static, function
decrease reduces a its dynamic priority by one. Otherwise, the function does not change the
task’s priorities. This behaviour ensures that whenever a task finishes its timeslice, its priority
bonus (if it exists) is reduced. If a task’s timeslice expired, function reset assigns a new timeslice
to the task. The new timeslice may depend on external factors such as the the task’s static priority
and, thus, is given as a parameter to the function.
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Figure 4.17.: CPN modelling task preemption.
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Listing 4.4: Function addProcessingTime

fun addProcessingTime ( ( s t a t i c p r i o , dynamic prio , wa i t ing t ime ) , s t a r t t ime ) =
let

val bonus = max(MAX BONUS ∗ wai t ing t ime div MAX WAITING TIME, 1 ) ;
val passed t ime = ( intTime ( ) − s t a r t t ime ) div bonus ;

in
( s t a t i c p r i o , dynamic prio , max(0 , wa i t ing t ime − passed t ime ) )

end

The history-dependent preemption (Figure 4.17(b)) continues the measurement of process-
ing and waiting times started in the run queue. It uses the time stamps stored on place
StartProcessingTimes (added by transition Execute) to determine the time a task spent pro-
cessing. Transition Return selects the start time (TIMESTAMP) for the current task (which is
uniquely identified by its TASK ID) from place StartProcessingTimes and adds it to the task’s
current waiting time calling function addProcessingTime (cf. Listing 4.4). Parameter prio em-
bodies the static and dynamic priority as well as the waiting time of the task (cf. Listing 4.2).
The function determines the current bonus (not shifted) and divides the passed time (sim time()
- start time) by the bonus. This division scales down the effect of longer processing times for
tasks with a large priority bonus and contributes to the sharp change in priorities and response
times observed during the experiments (cf. Section 4.2.3). As a consequence, a task needs only
to spend a small fraction of its time waiting in order to receive a high priority bonus and in order
to be classified as interactive. Finally, function addProcessingTime subtracts the scaled time
value from the task’s waiting time and ensures that the result is not smaller than 0.

The history-dependent policy resets a task’s timeslice in the same way as the resource-dependent
policy. Only the new timeslice value (new timeslice) depends on the tasks static priority.

Resource Acquisition The acquisition of resources such as semaphores, connection pools, or
network devices is central to both interactivity policies. Figure 4.18 depicts MOSS’ behaviour
for the acquisition of a semaphore. Tasks that require access to a semaphore put their identifier
(TASK ID) on input place StartAcquisition. When the acquisition is successfully completed,
the acquisition’s subnet puts the TASK ID on output place AcquisitionFinished. In the mean
time, the task may be put to sleep and wait for the resource to become available.

Listing 4.5: Function available.
fun av a i l a b l e ( semaphore , queue ) =
( semaphore>0 andalso l ength queue = 0)

Furthermore, transitions Acquire and Wait require the demanding task to be currently run-
ning, i.e., its SCHED TASK token has to lie on place Running. This condition is necessary since only
tasks that are assigned to a processor can acquire passive resources. If the resource is currently
available (available(semaphore, queue) = true), transition Acquire puts the task’s identifier
(TASK ID) on place AcquisitionFinished and decreases the semaphore’s counter by one. Func-
tion available (Listing 4.5) checks whether the semaphore counter is larger than zero and the
queue of waiting tasks is empty.

For the resource-dependent interactivity policy, transition Acquire assigns a bonus to the task
that successfully acquired a resource. Function boost (Listing 4.6) checks the task’s current
dynamic priority. If the dynamic priority is already equal to or larger than the task’s static
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Figure 4.18.: CPN model for the acquisition of passive resources.
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Listing 4.6: Function boost

fun c o n d i t i o n a l r e s e t ( t im e s l i c e ) = i f t im e s l i c e > 15 then 31 else 15

fun boost ( ( cpu , id , ( s t a t i c p r i o r i t y , dynamic pr i o r i ty ) , t im e s l i c e ) , bonus ) =
i f ( dynamic pr i o r i ty >= s t a t i c p r i o r i t y + bonus )

then ( cpu , id , ( s t a t i c p r i o r i t y , dynamic pr i o r i ty ) , t im e s l i c e )
else ( cpu , id , ( s t a t i c p r i o r i t y , s t a t i c p r i o r i t y + bonus ) ,

c o n d i t i o n a l r e s e t ( t im e s l i c e ) )

priority plus the bonus, then the function does not change the task’s dynamic priority or timeslice.
Otherwise, it sets the task’s dynamic priority to the static one plus the bonus and conditionally
resets the task’s timeslice. The term “conditional” refers to the type of resource and its behaviour.
The experiments in Section 4.2.3 have demonstrated that the resource-dependent policy treats
the timeslice differently for different types of resources. The function, printed in Listing 4.6,
approximates the observed behaviour of semaphores. However, it is necessary to keep track
of the remaining quanta (cf. Section 2.3.5) and compute the remaining timeslice accordingly,
to achieve accurate predictions for the resource-dependent policy implemented in the Windows
scheduler.

If a resource is currently not available (available(semaphore, queue) = false), the execu-
tion of a task that tries to acquire the resource needs to be delayed until the resource (semaphore
in the example) becomes available. The treatment of waiting tasks is of major importance for
the observed performance (see, for example, [Kou06]). To impose a specific order on the waiting
tasks, place Queue stores their identifiers in a list. In Figure 4.18, the subnet uses a FIFO queue to
manage the waiting tasks and, thus, implements a strong semaphore [Hap07]. However, different
queueing policies can be considered here.

When a resource is not available, transition Wait inserts the task’s identifier (TASK ID) at the
end of the list on place Queue and, additionally, puts its identifier on place StartWaiting. The
latter triggers the removal of the task from its current processor and keeps track of the task’s
waiting time. Whenever the semaphore’s value is increased and tasks are waiting in the queue,
transition WakeUp takes the queue’s first task and assigns it to the semaphore. The transition
puts the tasks identifier on places AcquisitionFinished and StopWaiting. The first allows the
task’s behaviour to continue execution while the later notifies the scheduler that the task is no
longer waiting.

Managing Waiting Tasks Figure 4.19 depicts the management of waiting tasks for the resource-
(Figure 4.19(a)) and history-dependent (Figure 4.19(b)) interactivity policy. Whenever a task
begins to wait for a resource, its identifier is put on place StartWaiting and triggers the necessary
operations of the scheduler. Transition PutToSleep removes a task whose identifier lies on place
StartWaiting from its processor (replacing its SCHED TASK token on place Running by an idle
cpu token) and stores its scheduling data (SCHED TASK) on place Waiting. Once the requested
resource(s) become available, the task’s identifier is placed on StopWaiting. Then transition
WakeUp retrieves its SCHED TASK token from place Waiting and adds it to the list of tasks on
place Incoming returning it to the schedulers run queue. Transition WakeUp boosts the task’s
dynamic priority with a bonus specific to the resource requested.

The management of waiting tasks for history-dependent policies (cf. Figure 4.19(b)) needs to
keep track of the waiting times and of the processing times. Therefore, transition PutToSleep
retrieves the time a task’s processing started from place StartProcessingTimes and incor-
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Figure 4.19.: CPN managing waiting tasks.
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Listing 4.7: Function addWaitingTime.

fun addWaitingTime ( ( s t a t i c p r i o r i t y , dynamic pr io r i ty , wa i t ing t ime ) , s t a r t t ime ) =
let

val passed t ime = intTime ( ) − s t a r t t ime ;
in

( s t a t i c p r i o r i t y , dynamic pr io r i ty , min (MAX WAITING TIME,
wa i t ing t ime + passed t ime ) )

end

porates the result with the task’s current waiting time (as part of prio) by calling function
addProcessingTime. Simultaneously, the transition puts an new TIMESTAMP for the task on
place StartWaitingTimes to measure the time it spends waiting for the required resource. Tthe
time stamp on place StartWaitingTimes is used to determine the task’s waiting time when the
resource becomes available and transition WakeUp is enabled. Function addWaitingTime (List-
ing 4.7) computes the passed time span and adds it to the tasks waiting time while ensuring that
the maximum waiting time (MAX WAITING TIME) is not exceeded.

semaphore
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semaphore+1

Release

Running
RunningTasks

FinishRelease
Out

StartRelease
In

Semaphore
I/O

1

INTI/O
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RunningTasks
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SCHED_TASK
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TASK_ID
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Figure 4.20.: CPN modelling the release or passive resources (e.g., semaphores).

Releasing Resources Once a task finished its processing with respect to some required resource,
it may return the resource making it available for other tasks. Figure 4.20 depicts the subnet
to release a semaphore. Whenever a task wants to release the semaphore it puts its unique
identifier on input place StartRelease. If the task is currently running (i.e., its SCHED TASK
token lies on place Running), transition Release simply increases the semaphores counter by
one and places the task’s identifier on FinishRelease allowing the task’s behaviour to proceed.
Increasing the semaphores counter automatically enables transition WakeUp of the acquisition’s
subnet (Figure 4.18) if other tasks are waiting for access to the resource. Transition WakeUp fires
before the simulation time progresses.

4.2.5. Validation of MOSS’ Prediction Accuracy

In this section, we present a validation of the prediction accuracy of MOSS’s interactivity features
based on the experiments presented in Section 4.1.1. The validation is focussed on the major
features for resource-dependent and history-dependent interactivity policies. We compare the
predictions of MOSS with measurements of Windows Server 2003 and Linux 2.6. In a complex
case study (Section 5.2), we evaluate the mutual influences of different scheduler features.
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Goal: Purpose Assessment
Issue of MOSS’ prediction accuracy

Object for resource- and history-dependent interactivity policies
Viewpoint from the software architect’s point of view.

In the following validation, the assessment of MOSS’ prediction accuracy focusses on scenarios
No Boost, Semaphore, and Network. The prediction error gives insights into the prediction
accuracy of MOSS.

IR.V1 IH.V1 IH.V2

Questions How accurate does MOSS 

predict the influence of different 

priority bonuses on a task's 

performance?

Does MOSS correctly classify non-

interactive and interactive tasks?

Does MOSS accurately predict 

the performance of interactive 

and non-interactive tasks?

Scenarios No Boost

Semaphore

Network

No Boost No Boost

Metrics Error(RT) 

Error(HPT)

Error(IT) Error(RT)

Hypotheses Yes, the prediction error 

is less than 5%

Yes, the prediction error 

is less than 5%

Yes, the prediction error 

is less than 5%

Evaluation of the Prediction Accuracy for Interactive Tasks

Table 4.20.: GQM plan to evaluate the prediction accuracy of the developed model for interactive
schedulers.

The questions listed in Table 4.20 address the prediction accuracy for different priority bonuses
of the resource-dependent policy (Question IR.V1). Furthermore, the classification of interactive
and non-interactive task (Question IH.V1) as well as the general prediction accuracy for tasks
with different behaviour (Question IH.V2) are of major relevance for the history-dependent policy.

Question IR.V1: How accurate does MOSS predict the influence of different priority
bonuses on a task’s performance?

Question IR.V1 targets MOSS’ prediction accuracy with respect to different resources used by
tasks under a resource-dependent interactivity policy. Therefore, it represents the validation’s
counterpart of Questions IR.1 and IR.2. Consequently, it considers the prediction error (cf.
Section 4.1.4) of the response time and high priority time for scenarios No Boost, Semaphore,
and Network.

Hypotheses As a result, Hypothesis IR.V1.a expects no deviation larger than 5% between the
predictions and the measurements. Let ti be the interactive and tn be the non-interactive task in
all three scenarios, then:

Error(E[RT(ti)]) < 5%, Error(E[RT(tn)]) < 5%, and Error(E[HPT(ti)]) < 5% (IR.V1.a)

for all three scenarios.
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(d) Response time distribution of task ti for scenario
Semaphore.
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(e) High priority time distribution of task ti for sce-
nario Semaphore.
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(f) High priority time distribution of task ti for sce-
nario Network.

Figure 4.21.: Predictions and measurements for interactive tasks under Windows.
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Results Figure 4.21 depicts the predicted and measured response times (Figures 4.21(a) – (d))
and high priority times (Figures 4.21(e) and (f)) for the resource-dependent interactivity policy.
The predicted and measured mean response times (Figures 4.21(a) and (b)) deviate only slightly.
The corresponding distribution functions (Figures 4.21(c) and (d)) widely overlap. For scenario
Semaphore, MOSS accurately predicts the fraction of tasks than can execute their processing
demand without interruption as well as the fraction of tasks that are disrupted. However, the
curve of the simulation shows less disturbances than the measurement. The peak found in the
measurements, at about 450 ms, cannot be found in the predictions. Similarly, the distribution of
the predicted and measured high priority processing times (Figures 4.21(e) and (f)) only deviate
slightly. MOSS accurately predicts the timeslice reset as well as the effect of priority bonuses.

Prediction Measurement Error (%)

No Boost 521 530,8 1,846269781 No Boost

Semaphore 352,3 353,2 0,254813137 Semaphore

Network 21,2 21,6 1,851851852 Network

Interactive Non-Interactive

No Boost 1,85 1,55

Semaphore 0,25 1,20

Network 1,85 0,66

Semaphore 2,16  - 

Network 1,50  - 

Interactive Non-Interactive

Error High Priority Processing Time [%]

Error Response Time [%]

521

352,3

21,2

530,8

353,2

21,6

No Boost Semaphore Network

Response Time Task ti [ms]

Prediction Measurement

500,5

No Boost

Table 4.21.: Prediction error for interactive tasks under Windows.

Table 4.21 summarises the prediction error for response times and high priority processing
times. For the response times, the prediction deviates less than 2% from the measurements. A
similar result is achieved for the high priority processing time in scenario Network. Only the
prediction error for scenario Semaphore deviates slightly more than 2%. The results confirm
Hypothesis IR.V1.a.

Question IH.V1: Does MOSS correctly classify non-interactive and interactive tasks?

This question addresses MOSS prediction accuracy with respect to the classification of tasks ac-
cording to their behaviour. The question is motivated by the underlying question of whether
MOSS models the history-dependent interactivity policy with sufficient detail or whether it re-
quires further refinements. To answer this question, we consider measured and predicted inter-
activity thresholds of scenario No Boost with the valuations given in Table 4.19.

Hypothesis Similarly to Hypothesis IR.V1.a, Hypothesis IH.V1.a expects a prediction error of
less than 5% for the interactivity threshold:

Error(E[IT(ti)]) < 5% (IH.V1.a)

Results Table 4.22 summarises the predicted and measured interactivity thresholds for task ti.
Interestingly, predictions and measurements do not deviate at this point leading to a prediction
error of 0%. This indicates that the interactivity threshold tolerates minor disturbances of the
tasks execution and behaves exactly as reflected in MOSS. The absence of any prediction error is
a consequence of the fact that the results only represent one decision after a long measurement
or simulation run. The results support Hypothesis IH.V1.a. In this scenario, MOSS correctly
classifies interactive and non-interactive tasks.
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Demand [ms] Error [%]

Predicted Measured 

80 9 9 0,0

160 18 18 0,0

240 27 27 0,0

320 36 36 0,0

400 45 45 0,0

480 54 54 0,0

560 63 63 0,0
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Table 4.22.: Prediction and measurement ti’s interactivity threshold.

Question IH.V2: Does MOSS accurately predict the performance of interactive and
non-interactive tasks?

While Question IH.V1 validates MOSS with respect to its prediction accuracy of the interactivity
threshold, Question IH.V2 validates the more general prediction accuracy of interactive tasks
(ti) and of non-interactive tasks (tn). We focus on the deviation of the predicted an measured
response time in scenario No Boost with the a processing demand of 80 ms and a delay between
0 ms and 20 ms (cf. Table 4.18). In the following, we describe the question’s hypotheses, the
predictions, and the actual results.

Hypothesis Similar to the hypotheses of the questions above, Hypothesis IH.V2.a expects a
prediction error of less than 5% for task ti and tn:

Error(E[RT(ti)]) < 5% and Error(E[RT(tn)]) < 5% (IH.V2.a)

Results In the following, we present the predictions and measurements for interactive and non-
interactive tasks with varying processing demands and delays. Figures 4.22(a) and (b) show the
mean response times that have been predicted and measured for a task with 80 ms processing
demand and varying delay between 0 ms and 20 ms. The response times largely overlap for task
ti (Figure 4.22(a)) and for task tn (Figure 4.22(b)). The interactivity threshold of task ti at 9 ms
is clearly visible in both figures. The response time of ti is reduced to 80 ms while the response
time of tn is increased to almost 800 ms. The overall prediction error is below 3%.

Figures 4.22(c) to (f) depict the response time distribution of tasks ti and tn with a process-
ing demand of 80 ms and a delay of 8 ms. In this case, the history dependent policy does not
(yet) classify task ti as interactive, but rather it receives a higher dynamic priority than tn. The
response time predicted for ti (Figures 4.22(c) and (d)) deviates only sightly from the measure-
ments. MOSS accurately predicts the response time peaks at 80 ms, 172 ms, and 272 ms. The
probability densities correspond to the measurements. However, the measurements show more
disturbances than the predictions. The response time distribution predicted for task tn (Fig-
ures 4.22(e) and (f)) widely overlaps with the measurements. The distribution captures the three
major peaks at 80 ms, 160 ms, and 240 ms as well as the distribution between the peaks.

Altogether, MOSS predicts the mean response times of tasks ti and tn with an error of less than
5% in all cases. The predicted response time distribution accurately resembles measurements of
the history-dependent interactivity and, hence, supports Hypothesis IH.V2.a.
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(a) Mean response times of task ti with varying delays.
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(b) Mean response times of task tn with varying delays.
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(c) Response time distribution of task ti (80 ms de-
mand, 8 ms delay).
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(d) Response time distribution of task ti (80 ms de-
mand, 8 ms delay).
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(e) Response time distribution of task tn (80 ms de-
mand, 8 ms delay).
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(f) Response time distribution of task tn (80 ms de-
mand, 8 ms delay).

Figure 4.22.: Predictions and measurements for interactive and non-interactive tasks for the
history-dependent interactivity policy.
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4.3. Case Study

In this section, we present a case study to evaluate the applicability and prediction accuracy of
MOSS for enterprise applications. Here, we focus on single processor systems. In Section 5.2, we
continue the case study for multiprocessing environments. While each scheduling feature modelled
in MOSS has already been extensively validated, this case study assesses the prediction accuracy
of MOSS in a more complex setting. The setting contains various types of request as well as
fluctuating workloads. However, the case study still requires some simplifications as discussed in
the following.

The case study is focussed on the influence of different workloads and of different operating sys-
tems on performance. Therefore, we minimise the impact of other components and services that
are typically used in the chosen application scenario. Simplification is necessary to avoid distur-
bances of other system components that cannot be modelled accurately with current performance
prediction methods. This approach achieves a high internal validity of the results at the cost of
external validity. However, case studies with a high external validity require performance models
for databases, hard drives, and network connections of the same accuracy as MOSS. For this
reason, we simplify the database used to store business data and manage the application state,
which could easily become the limiting factor in the case study. Additionally, a load generator
emulates the resource demands of the application (cf. Appendix C.1).

In the following, we describe the scenario of the case study (Section 4.3.1), its software ar-
chitecture (Section 4.3.2), the performance questions (Section 4.3.3), the experimental setting
(Section 4.3.4), and the results of the case study (Section 4.3.5).

4.3.1. Evaluated Use Cases

The case study is placed in the scenario of a supply chain management for supermarkets (as
described in [SPE]). The whole scenario models a set of supply chain interactions between a
supermarket company, its stores, its distribution centres, and its suppliers. In this case study, we
focus on a sales statistics scenario (based on [WW04]) that includes business intelligence reporting
to headquarters (HQ). Supermarkets send statistics to HQ that include, for example, the type
and amount of goods purchased by customers visiting the store. HQ uses this data as a basis
for data mining in order to study customer behaviour and to provide useful information to their
marketing department. In this case study, we evaluate the performance of business intelligence
reporting, online monitoring, and requests to static web pages described in the following.

Business Intelligence Reporting HQ collects the necessary information about sales statistics
from supermarkets and distribution centres. To support better business decision making, the
business intelligence reporting integrates, analyses, and presents the supermarkets’ business in-
formation. Statistical processing of data generates comprehensible overviews for managers and
department heads (i.e., heads of the supermarket stores). Different managers and stores are in-
terested in different information. Thus, business intelligence reporting supports various kinds of
reports.

Online Monitoring Online monitoring allows managers and department heads to track sales
over the day. They can identify peak times or observe whether new marketing strategies had the
expected impact. Department heads can directly react on changes and organise their personnel
accordingly. The online monitoring updates whenever a supermarket sends new sales data to HQ.
It generates static web pages which the supermarket market’s personnel can access.
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Requests to Static Pages Requests to static web pages are an essential part of intranet applica-
tions. The intranet provides department heads, managers, accountants, and other employees with
access to internal information such as marketing strategies, reports on new goods, or rankings of
supermarket stores.

Workload

For the scope of this case study, the workload of the HQ’s server consists of requests to static web
pages, online monitoring, and business reporting. The number of supermarkets, the amount of
products sold per supermarket, and the number of reporting and monitoring requests determine
the workload of the HQ’s server. In the case study, HQ manages 1500 supermarket stores all over
the country. Depending on a store’s size, 1 to 5 persons can access the HQ’s server. Additionally,
50 employees at HQ use the business reporting system on a regular basis.

From observations of the current system, performance analysts expect a strongly fluctuating
load of the system, with burst periods of 5 to 10 minutes. They approximate this behaviour by
the curve shown in Figure 4.23. Even though the curve does not reflect the exact behaviour of
the system, it allows the effect of peak loads on software performance to be determined. The
arrival rate ranges from 60 to 180 requests per minute depending on the time of day, i.e., at noon
the load is generally low but several peaks can be observed during the early afternoon. In most
cases, users request static web pages via intra-net (70% of all requests). Business reports are
requested in 10% of all cases. The remaining 20% of the requests stem from supermarkets, which
send new sales reports to HQ. Thus, online monitoring is updated 12 (= 60 * 0.2) to 36 (= 180
* 0.2) times a minute.
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Figure 4.23.: Function modelling the fluctuating workload of HQ’s business reporting.

To analyse the influence of load peaks on the applications performance, performance analysts
must use fluctuating arrival rate of 60 to 180 requests per minute. The modelled workload
continuously fluctuates following a sinus curve with a period length of 20 minutes (cf. Figure 4.23).
Its low periods reflect the system’s usual workload of 60 requests per minute, its high periods
reflect the burst conditions where the workload triples. This workload allows performance analysts
to estimate the influence of burst periods on system’s response times, resource utilisation and
throughput. Furthermore, the load of HQ’s application is expected to double during the next two
years. To ensure a good performance of the application in the long term, performance analysts
need to evaluate the system’s scalability for an increasing load.

The architecture of the HQ’s server application described in the following section efficiently
handles the high load of computation intensive requests.
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4.3.2. Architecture of HQ’s Application
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Figure 4.24.: Static and deployment view of the HQ’s server application.

Static Architecture View The hardware environment of the HQ’s server system presented in
Figure 4.24 contains the HQ’s server as well as several supermarket servers and HQ clients. The
software system consists of several components distributed among the hardware nodes. For the
case study, the architecture has been modelled using the PCM (cf. Appendix A).

Supermarket servers are responsible for managing the warehouse inventory, order goods from
distribution centres, and communication with HQ. Figure 4.24 abstracts their software system into
a single composite component called Supermarket Management. Figure 4.24 only shows the inter-
faces relevant for the HQ’s server application. The provided interface ISupermarketManagement
allows the Business Information Manager to request information on the supermarket’s state,
update prices, distribute product announcements, or request sales statistics. Furthermore, super-
markets actively inform HQ on their current state via the IBusinessInformation interface. The
Business Information Manager stores information about supermarkets in the Data Warehouse
and updates the Online Monitoring of the supermarket stores. When requested, the Online
Monitoring provides an overview of the current state of the supermarket stores. For more detailed
information, the Business Intelligence Reporting generates individually configured business
reports.
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The application server running the HQ’s application uses a thread pool to limit the number
of concurrent requests in the system. It uses a dynamic pool with a maximum number of 32
worker threads per processor or processor-core. The performance model approximates the pool’s
dynamic behaviour with a thread pool of fixed size. To reduce context switch overheads, the
application server manages worker threads in a Last-In-First-Out (LIFO) queue. This strategy
increases the chance of finding necessary data in the processor’s caches. Additionally, workers
can continue processing requests without context switches if requests queue up. To treat requests
similarly, the application server queues incoming requests in a First-In-First-Out order.
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Figure 4.25.: Behaviour (RD-SEFFs) of the HQ’s server components.

Dynamic Architecture View RD-SEFFs (cf. Appendix A) specify the dynamic architecture
of the HQ’s application (Figure 4.25) relevant for performance evaluation. The RD-SEFFs in-
clude the dispatching of requests by the Web Form (Figure 4.25(a)), the generation of reports
by the Business Intelligence Reporting (Figure 4.25(b)), and the Online Monitoring (Fig-
ure 4.25(c)). The Web Form dispatches incoming HTTP requests to the Business Intelligence
Reporting or serves requests to static web pages. The RD-SEFF in Figure 4.25(a) models
the choice as a guarded branch action. The guards evaluate the value of input parameter
RequestType, which represents a performance abstraction of the HTTP protocol. It only contains
the types Reporting, Monitoring, and StaticPage, for the considered scenario. The guarded
branch action contains an alternative for each possible value. Its branching probabilities depend
on the probability distribution of the values of parameter RequestType. In the PCM, an EnumPMF
specifies the probability distribution over an enumeration of values. For example, a valuation

EnumPMF[(’Reporting’;0.1) (’Monitoring’;0.2) (’StaticPage’;0.7)]
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of the input parameter RequestType leads to branching probabilities of 0.1, 0.2, and 0.7 for
reporting, monitoring, and static pages, respectively. To handle reporting and monitoring, the
Web Form calls the generateReport and updateMontioring methods on the IReporting and
IMonitoring interface respectively. For requests to static pages, an internal action models the
corresponding resource demand with a normal distribution. Figure 4.25(a) specifies the distribu-
tion’s mean value as 50 CPU units with a variance of 1. In the PCM, CPU or workload units
allow the abstraction from the underlying hardware platform [RBH+07, KB07]. For the sake of
simplicity, we assume that 10 CPU units correspond to 1 ms of processing time for all considered
processor types.

In method generateReport of component Business Intelligence Reporting), a loop action
iterates over a set of ReportItems and includes them into the report. The caller (i.e., component
WebForm in the case study) passes a collection of ReportItems to the method. The collection
contains, for example, references to the supermarkets which are included into the report. The
size (i.e., NUMBER OF ELEMENTS) of collection ReportItems determines the number of loop iter-
ations (see Figure 4.25(b)). Method generateReport retrieves the report items from the Data
Warehouse. This specification is an abstraction of different types of report items and contains
only a single method call for all possible types. Finally, generateReport combines the report
items into a single web page and returns it to the caller.

To update the current statistics, the Business Information Manager calls the Online
Monitoring whenever new status information arrives from a supermarket. It calls the method
updateMonitoring on the IMonitoring interface to generate new static pages which summarise
the status of the supermarkets. The behaviour of Online Monitoring is similar to report gen-
eration. However, the processing is completely internal. In the next section, we discuss the
performance questions relevant for the HQ’s server application.

4.3.3. Performance Questions

The HQ’s server system has to handle an intensive workload while retaining high responsiveness.
Thus, it can easily become a bottleneck for management and accounting of the supermarket com-
pany. Performance analysts decide to conduct an initial performance study before deploying the
application. They want to answer the following questions given the high and strongly fluctuating
workload of the HQ’s server system:

1. Can the new software system handle the workload with the given hardware?

2. How does the system react under overload conditions?

3. Which operating system (Linux 2.6 or Windows Server 2003) provides the best performance
under heavy load?

The questions are motivated by the possible overload conditions that can occur due to the
strongly fluctuating load. Scheduling is one possibility to improve performance without buying
additional hardware [SWHB06]. Thus, performance analysts want to make sure that the system’s
performance meets the requirements for intensive load. Furthermore, they are mainly interested
in the response times for different requests (business intelligence reporting, online monitoring,
and static pages). The acceptable response time bounds strongly depend on the type of request.
For example, requests to static pages must be served immediately (i.e., with a response time of
a few milliseconds) while requests to the business reporting can be delayed by several seconds.

In the following section, we present the experimental settings of the case study. This includes a
description of the measurement environment as well as the prediction model and chosen solution
method.
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4.3.4. Experimental Settings

Measurements For the case study, we implemented the HQ’s application in Java and instru-
mented it for measurements. The specified resource demands (cf. Figure 4.25) have been
generated by a resource demand generator (cf. Appendix C.3). The generator loads the
CPU using typical algorithms found in benchmark applications for processors, such as SPEC
CPU2000 [Hen00, Cor00]. A workload generator has simulated the user behaviour, i.e., the calls
to the HQ’s application. The implementation thus ensures that the case study focusses on effect
of scheduling and excludes disturbances of the environment. The confidence level of the mea-
surements is 90% for requests generateReport and updateMonitoring in Section 4.3.5. For the
relatively short requests to static pages, the confidence level is 80%, since small disturbances (of a
few milliseconds) already have a large impact. All measurements were taken on a single machine
with the accuracy of the machines clock frequency (i.e., 1.87 GHz in for the measurements on a
single core processor).

Predictions For performance prediction, a discrete event simulation technique [LMV02, LB05]
specialised for MOSS has been implemented and integrated with the Palladio Component Model.
The simulation employs the method of overlapping batch means [Jai91] to achieve reliable results.
The confidence levels for the predictions are 95% for generateReport and updateMonitoring,
and 90% for requests to static pages (same argumentation as above). A simulation run lasted
from 45 to 60 seconds and simulated a run time of approximately 8 hours. The customisations of
MOSS used to predict the influences of the Linux and Windows scheduler are listed in Table 3.2
on page 50.

To allow a better interpretation of the measurements and predictions, the parameters of the
application (resource demands and number of report items) have been adjusted so that the total
resource demands of all request have the following means:

Static Page Requests: 5 ms
Online Monitoring: 250 ms

Generate Report: 3000 ms

Outlier Removal Due to the periods of transient overload in the scenario, measurements (and
predictions) contain strong outliers that heavily contribute to the predicted and measured mean
response times. In order to achieve stable results (for predictions and measurements), we consider
only predictions and measurements for which the topmost 5% to 10% of outliers have been
removed. Additionally, the confidence intervals for the predictions and measurements are based
on the results after outlier removal. Even though the outlier removal leaves some room for
discussion, it is unavoidable to achieve stable measurements and predictions for scenarios with
transient overload as considered here.

In the next section, we present the results (predictions and measurements) to answer the
questions and to assess the accuracy of the prediction model proposed in this chapter.

4.3.5. Results

The results summarised in the following demonstrate the differences and similarities of the Win-
dows and Linux operating systems with respect to software performance as well as the prediction
accuracy of MOSS. The prediction quality varies strongly for the commonly used scheduling poli-
cies FCFS and PS. In this case study, their prediction errors range from more than 70% to up to
40000%. By contrast, MOSS predicts the influence of Windows and Linux schedulers on software
performance with an error of less than 5% to 10% in most cases. The prediction error does
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not exceed 30%. MOSS represents a significant increase of the prediction accuracy compared to
commonly used scheduling policies in performance prediction. In the following, we present the
experimental setting for the case study and discuss the prediction accuracy of MOSS with respect
to PS and FCFS.
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Figure 4.26.: Predictions and measurements for static page requests under Linux 2.6.22.

Prediction Accuracy Figure 4.26 shows the cumulative distribution functions predicted and
measured for the response time of static page requests under Linux 2.6.22. The figure illustrates
the role of outliers in the results of this case study. Approximately 90% of all requests are
processed within 5 ms for predictions and measurements. However, processing of the upper 10%
of all requests is delayed for several seconds (up to 15 seconds in the cumulative distribution
function shown). The heavy tail of their response time distribution significantly influences its
mean value. Due to this heavy tail, the mean value of the response time distribution is rather
unstable. Tight confidence bounds are only reached very slowly. The upper 5% of outliers have
been removed from the distribution to reduce the influence of the response time distribution’s
tail. The prediction error is less than 5% for Windows and Linux (see Table 4.23).

Figure 4.27 shows cumulated distribution functions of the response times for online monitoring.
The predictions and measurements widely overlap for the Linux and Windows operating system.
Furthermore, the predicted and measured mean values and medians deviate no more than 15%
(Table 4.23).

The response times for monitoring requests differ significantly for both operating systems.
Linux limits the distribution to 250 ms to 1600 ms, while the response time under Windows
ranges from 250 ms to 6000 ms. The differences in response times are visible in the mean value
and median. The response time of monitoring requests under Linux is less than one third of the
response time under Windows (see Table 4.23).

Table 4.23 summarises the predicted and measured mean response times for all request types
and scenarios. The prediction error is approximately 5% – 10% in the most cases and does not
exceed 30%. As discussed above, MOSS accurately predicts the mean and median of the response
time for static page and monitoring requests. Due to the the heavy tail of the response time
distribution for static page requests under Linux, its mean value (50 ms) is much larger than its
counterpart under Windows (5 ms). However, the median is similar for both operating systems.
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Figure 4.27.: Predictions and measurements for monitoring requests.

Furthermore, the measured response times of the business reporting are comparable for both
operating systems. However, the predicted and measured response times deviate by 32% for the
business reporting under Linux. One cause of the deviation lies in the artificial load driver used
in the experiment setting. Under Linux, the load driver cannot maintain its pace for the arriving
requests during peak loads. It freezes several times for a period of 1 to 10 seconds loosening the
system’s tension. The simulator does not suffer from such difficulties, since it can easily maintain
the defined pace. Especially long requests suffer from the additional load due to their decaying
priority bonus. This behaviour contributes to the additional delay of the reporting requests
observed in the simulation. Furthermore, the deviation of the resource demand generator (cf.
Appendix C.1) increases for larger processing demands. The generator uses previously calibrated
algorithms to emulate the necessary computation demand on a processor. While it yields accurate
results for short requests, its error increases for longer resource demands. Both effects together
explain the deviation predictions and measurements observed for the business reporting requests.

A comparison between the medians for both operating systems (Table 4.23) yields the im-
pression that Linux performs much better than Windows. However, it is important to notice
that Linux suffers from a large number of outliers for static page and monitoring requests that
significantly lower its performance with respect to the overall response time distribution.

Comparison with Models using Processor Sharing and First-Come-First-Serve MOSS can
accurately predict response times of requests to static web pages, online monitoring, and business
reporting. Figure 4.28 gives an impression how MOSS improves prediction accuracy with respect
to scheduling policies commonly used in software performance prediction, namely PS and FCFS.
In the following, we compare the measurements for Windows and Linux with their prediction
results.

Figure 4.28 depicts the cumulative response time distributions of requests to static pages (Fig-
ure 4.28(a)) and online monitoring (Figure4.28(b)). Both figures show measurements for Linux
and Windows on a single-core system and the corresponding predictions for PS.

PS predicts a strong delay for most of the requests for requests to static web pages (cf. Ta-
ble 4.23). The additional delay induced by PS leads to a prediction error factor of up to 5 for
mean values and 3 for medians. While the response time distribution and median for Linux
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Measurement Prediction Error [%] Prediction Error [%] Prediction Error [%]

Windows

Static Pages 5,4 5,0 7,2 14,3 163,3 30,9 469,2

Monitoring 814,1 704 13,5 736 9,6 289,6 64,4

Reporting 12100 9546 21,1 8538 29,4 3027 75,0

Linux

Static Pages 5,1 5,5 7,4 14,3 180,8 30,9 507,1

Monitoring 261,4 266,2 1,8 736 181,6 289,6 10,8

Reporting 11480 13720 19,5 8538 25,6 3027 73,6

Measurement Prediction Error [%] Prediction Error [%] Prediction Error [%]

Windows

Static Pages 5,2 4,9 5,0 24,3 372,6 2180,0 42230,1

Monitoring 1398,0 1226,0 12,3 1233,0 11,8 2398,0 71,5

Reporting 19520,0 17480,0 10,5 14630,0 25,1 5075,0 74,0

Linux

Static Pages 48,5 47,9 1,3 24,3 49,8 2180,0 4396,7

Monitoring 438,9 438,9 0,0 1233,0 180,9 2398,0 446,4

Reporting 18520,0 24460,0 32,1 14630,0 21,0 5075,0 72,6

MOSS Processor Sharing FCFS

Mean Value

Median

MOSS Processor Sharing FCFS

Table 4.23.: Prediction accuracy for single-core system running under Linux and Windows.

appears similar to the one for Windows, its mean value is nearly 10 times larger due to the heavy
tail of the distribution. This example illustrates the importance of response time distributions.
While a mean response time of 50 ms is acceptable for requests to static web pages, timeouts for
10% of the requests are not. In the following, we briefly explain the causes of this effect, which
MOSS accurately predicts (see Table 4.23).

The long delays for 10% of the requests result from Linux’ dynamic priority assignment in
combination with the application server’s thread pool. The application server uses an unfair
(also called weak) semaphore [GPB+06] to manage its worker threads. It basically prefers worker
threads which have been running recently over those waiting in the queue. Linux lowers a thread’s
priority according to the time it spent processing. Thus, continuously processing threads receive
a lower priority than threads waiting in the queue. If such a thread processes a request to a
static page, other threads can easily preempt it due to its lower priority. Additionally, a higher
load increases the chance that a lower priority thread serves static page requests. This behaviour
leads to the heavy tail of the response time distribution.

For requests to the online monitoring (Figure 4.28(b)), Linux outperforms Windows by a factor
of 2 to 3. Linux’ slowly decaying priorities ensure that requests to the online monitoring are
only interrupted by requests which received a similar amount of processing time (assuming they
started at similar priorities). Therefore, it preempts all reporting requests that received more
than (approximately) 250 ms of processing time.

Windows grants a similar priority boosts to all tasks. The boost is independent of their previous
processing time and lasts two timeslices (approximately 60 ms) at most (cf. Section 2.3.4). While
short requests (smaller than 60 ms) benefit from this policy, longer requests, which cannot be
completed within this period, may be delayed. Thus, requests to online monitoring (that last
approx. 250 ms) compete with each other and the business intelligence reporting. For these
reasons, the results shown in Figure 4.28(b) suggest that processor sharing can approximate the
response time of the online monitoring under Windows.
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Figure 4.28.: Differences between Windows, Linux, and processor sharing.

The differences in the response times of both operating systems already suggest that scheduling
policies such as FCFS or PS can predict response times only with limited accuracy. Especially
FCFS shows large deviations between the predicted and the measured response times (see Ta-
ble 4.23). In the case of static pages, it predicts a mean response time of more than two seconds,
while the measured mean response time is about 5 ms (Windows) and 50 ms (Linux). The results
demonstrate how FCFS prefers long requests. The mean response time of the business intelligence
reporting is only 1/4 of the measured mean response times for both operating systems.

In the beginning of this section, performance analysts asked whether the system can fulfil the
performance requirements with the existing systems. In the following, we discuss the results of
the case study with respect to the questions.

Answers to the Performance Questions Performance analysts predicted the response times of
the HQ’s application. They come to the following conclusions based on the results discussed in
this section.

The current hardware environment can handle the application’s workload only insufficiently.
Especially during peak load, the response time increases by several orders of magnitude. Under
Linux, such heavy load can lead to timeouts for requests to static pages for more than 10% of all
requests. Windows poses a significant delay on the online monitoring (up to 6 seconds) which is
not acceptable. Thus, further performance analysis is necessary to evaluate the performance of
the applciation in multiprocessing environments. The results of this evaluation are presented in
Section 5.2. In the next section, we discuss the limitations and assumptions of MOSS for single
processor systems.

4.4. Discussion of Assumptions and Limitations

Focus on Linux and Windows Operating System Series MOSS is focussed on the Linux and
Windows operating system series. It can predict the performance influence of Windows XP and
Windows Server 2003 as well as the Linux Kernel versions 2.5 to 2.6.22. With the introduction
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of Windows Server 2008 and Windows Vista, Microsoft changed the implementation of their
operating system schedulers [Rus07]. The changes require further evaluations and adjustments
of MOSS in order to accurately reflect the new scheduler’s performance influences. However, the
prediction validation in Section 5.1.5 demonstrates that Vista’s multiprocessor load balancing is
not affected with respect to its influence on software performance.

Additionally, the implementation of the Linux has been changed with Kernel version 2.6.23.
Linux now uses a so-called Completely Fair Scheduler [Tra] which is based on the fair queue-
ing [Nag87] scheduling policy. The scheduler approximates the shortest remaining processing time
(SRPT) policy. However, it uses similar heuristics as the O(1) scheduler modelled by MOSS to
identify interactive processes (called sleeper fairness). Extending MOSS to the new CFS sched-
uler requires new evaluations. Following the documentation, it may be sufficient to replace the
run queue model by a model for fair scheduling to enable good performance predictions for the
CFS scheduler.

Simulation-based Solution Method We used timed Coloured Petri Nets to model the
performance-relevant features of GPOS schedulers in MOSS. While CPNs provide a high flexibil-
ity and expressiveness, they can only be solved by simulation for performance prediction [Wel02].
Simulation provides an efficient solution for complex systems. However, it carries the risk of inac-
curate or of unrepresentative results. Kounev et al. [Kou06, KB06, KB03] have used simulation-
based as well as analytical methods to predict the performance of distributed component-based
software systems. They come to the conclusion that simulation is the only feasible option for
solving large performance models. Due to their computational complexity, analytical solution
techniques require strong simplifications of the system under study, which may lead to invalid
results.

Independent and Identically Distributed Random Variables From a mathematical perspec-
tive, MOSS assumes that resource demands of different tasks are independent and identically
distributed (iid) random variables. Thus, subsequent resource demands of a task do not depend
on each other. Additionally, the resource demands of two concurrently running tasks are assumed
to be independent. These assumptions do not have to hold in reality. For example, subsequent
resource demands of a task may depend on the same input parameters, e.g., a task first sorts an
array and then prints it. In this case, both associated resource demands depend on the size of
the array. This assumption is addressed in [Koz08a, Bec08].

The independence of concurrently executing tasks holds for specific cases only. Whenever two
tasks run on separate processors (or cores), they may produce contention on low-level resources
of the processor and execution environment. These contentions include caching effects and the
memory bus (see Section 5.3 for discussion). Furthermore, tasks may access shared memory on
a fine grained level. While MOSS supports coarse-grained synchronisation mechanisms based on
semaphores, it cannot predict the performance influence of atomic actions, such as test-and-set
operations. Therefore, the performance influences of low-level resource contention requires further
investigation.

Limited Synchronisation Methods The performance influences of process synchronisation and
communication are tightly coupled to features of operating system schedulers. MOSS accurately
predicts the effect of strong and weak semaphores on software performance. However, operating
systems and middleware platforms provide a wide range of different synchronisation mechanisms
(e.g., reader writer looks and different resource pools). While many synchronisation mechanisms
are based on semaphores and, thus, can be modelled and predicted with MOSS, others tend to use
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entirely different operations. It is necessary to evaluate the performance influences of the most
relevant synchronisation methods and to extend MOSS towards them for a general prediction
method in multiprocessing environments.

No Real-Time Capabilities MOSS explicitly does not support real-time schedulers. Further-
more, its predictions are only stochastic approximations of the performance metrics of the system
under test. Thus, MOSS does not guarantee a correctly predicted upper and lower performance
bound as required in real-time environments. Literature [BMdW+04, BKR95, EE00, FNNS06,
HZS01, LM99, MPC04, YW98] reports on numerous approaches that allow performance predic-
tions of real-time system with different scheduling policies.

Constant Processing Power MOSS assumes that the processing power of the available cores
and processors does not change over time. Most modern processors implement some power-saving
functionality that allows the operating system to throttle the processing power when the system is
lightly loaded. Furthermore, emerging virtualisation technologies share the available processing
power among a set of concurrently running operating systems. In both cases, MOSS cannot
predict the effect of fluctuating processing power on software performance. Instead, it assumes
a constant processing power of all processors and cores of the system. Since scheduling becomes
most important in situations where the processor’s load is high, power-saving should not effect
the relevant cases for performance evaluation. However, in lightly loaded situations MOSS is
likely to overestimate the performance of the system under study.

4.5. Summary

In this chapter, we have evaluated the performance-relevant factors of time sharing and interactiv-
ity policies implemented in GPOS schedulers. The evaluation has pointed out major differences
in the behaviour of the Windows and Linux schedulers.

• Linux employs a fair policy to distribute the processing time among all tasks. However,
tasks can circumvent this property if they spend a small fraction of their processing time
(≈12%) waiting. In this case, they are classified as interactive and gain a significantly larger
share of processing time as they are entiteled to. The task’s dynamic priority increases (or
decreases) aprubtly when the waiting time crosses a narrow border around 12%.

• Windows strictly prefers higher priority tasks over lower priority ones and, thus, employs
an unfair policy. It only grants brief periods of processing time to low priority tasks in
order to prevent starvation. Furthermore, the resource-dependent interactivity policy of
Windows boosts a task’s dynamic priority and resets its timeslice. Especially the reset of
timeslices follows different strategies for different resources, e.g., to either 15 ms or 31 ms
for semaphores and no reset for accesses to network devices.

Furthermore, we have presented a customisable performance model for single processor systems
that is based on the evaluation results. In the case study, we have demonstrated that both
operating systems can yield significantly different response times. MOSS accurately predicted
the performance of both operating systems. In the following chapter, we further refine MOSS
with respect to the influences of symmetric multiprocessor systems on software performance.
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In this chapter, we continue the experimental evaluation and the modelling of performance-
relevant features of GPOS schedulers from Chapter 4. We extend the model for time sharing and
interactivity towards symmetric multiprocessing environments like multi-core processors (Sec-
tion 5.1). Furthermore, we continue the case study of Section 4.3 and extend it towards symmetric
multiprocessing environments (Section 5.2). A discussion of the model’s benefits and drawbacks
concludes this chapter (Section 5.3).

5.1. Multiprocessor Load Balancing

In this section, we extend MOSS towards symmetric multiprocessing environments. Section 5.1.1
accounts for the experiments that are necessary to determine the performance influences of multi-
processor load balancing policies. The experiments are based on the specification of the Windows
and Linux operating systems (cf. Section 2.3). We systematically evaluate the different features
of both operating system with respect to load balancing. The experiment design is described in
Section 5.1.2. In Section 5.1.3, we refine the goal by means of question, scenarios, and hypothe-
ses. Furthermore, we present the experiment results which provide the necessary answers. The
results prepare the extension of MOSS to multiprocessing environments in Section 5.1.4. In a
final validation in Section 5.1.5, we demonstrate the prediction accuracy of MOSS for symmetric
multiprocessor systems.

5.1.1. Experiments – Overview and Motivation

In this section, we evaluate two distinct load balancing policies implemented in the Windows
Server 2003 / Vista and the Linux 2.6.0 - 2.6.22 operating systems. Windows Server 2003 and
Vista use a receiver-initiated load balancing policy that is only triggered when a processor becomes
idle (cf. Section 2.3.4). Therefore, it tolerates major imbalances in the system and is referred to
as lazy-balancing. By contrast, Linux 2.6.22 actively balances the system’s load trying to keep
the load imbalances below a certain level. Its load balancing policy is called active-balancing.

The Goal

Goal: Purpose Identify
Issue the relevant performance properties

Object of multiprocessor load balancing policies
Viewpoint from the user’s point of view.

The goal is focussed on the evaluation of different multiprocessor load balancing policies realised
in today’s GPOS schedulers. We are especially interested in the effect of load balancing on the
performance perceived by users. The lazy- and active-balancing policies are inherently different
concepts and lead to different response times and throughputs given the same workload.
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Motivation of the Questions

Lazy-Balancing Lazy-balancing is a receiver-initiated policy, which is only triggered when a
processor becomes idle. The system’s load characteristics are thus of major importance for the
performance influence of this policy. The heavier the system’s load, the less balancing attempts
occur and the more imbalances remain. Questions LB.Lazy.1 and LB.Lazy.2 (Table 5.2) address
the performance influence of different load conditions for lazy-balancing. Furthermore, load bal-
ancing only reacts if the system’s load changes, e.g., tasks arrive or leave the processor. Therefore,
Question LB.W.3 addresses the influence of a decreasing system load on performance.

Active-Balancing Active-balancing is a symmetrically initiated, active load balancing policy.
The scheduler triggers balancing attempts as soon as differences in the system’s load distribution
exceed a predefined threshold (cf. Section 2.3.5). Thus, active-balancing leads to an equally
distributed load. Question LB.Act.1 (Table 5.4) evaluates its achieved balance under different
load conditions. Furthermore, the active-balancing policy adapts its balancing activities according
to the system’s state. For example, the interval length of load balancing attempts increases with
an increasing system load. Question LB.Act.2 addresses the time necessary to balance heavily
loaded systems. Finally, the Linux scheduler prefers interactive tasks over non-interactive ones (cf.
Section 4.2). Question LB.Act.3 targets the influence of interactive load on software performance
in combination with load balancing.

5.1.2. Experiment Design

In this section, we extend the experiment design of Section 4.1 and 4.2 for symmetric multipro-
cessing environments. We describe the generation of unevenly distributed load as well as the
estimation of a processor’s load based on task response times. The first is necessary to evaluate
the effect of different load balancing policies under controlled conditions. The latter allows to
determine a processor’s load independent of the underlying operating system.

Generating Unevenly Distributed Load To evaluate the influences of different load balancing
policies, it is necessary to intentionally produce situations in which the load is unevenly distributed
among the available processors. The imbalanced situation is used for the scenarios throughout
the experiments. It assigns all tasks to a single processor while all other processors stay idle. The
scheduler’s load balancing policy then distributes the load among the available processors.

Name Workload of Task ti CpuDemand.VALUE Delay.VALUE
Heavy Load Closed 250 0

Moderate Load Closed 250 10
Decaying Load Closed 250 0

Table 5.1.: Scenarios for the evaluation of different multiprocessor load balancing policies.

Main Scenarios The evaluation is focussed on three scenarios called Heavy Load, Moderate
Load, and Decaying Load (Table 5.1). In all three scenarios, the tasks are executed in a closed
workload with a processing demand of 250 ms. For scenario Heavy Load, the delays are set to
0 ms in order to evaluate the influence of load balancing policies for compute-bound tasks (cf.
Section 2.3). The delay of 10 ms of scenario Moderate Load allows the load balancing policy to
redistribute the load among the available processors. Finally, scenario Decaying Load limits the
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number of repetitions for each task. Instead of endless processing, tasks finish execution after
a predefined number of iterations, which is equal for all tasks. Since the system is imbalanced,
the tasks that can solely execute on a processor without interruption finish first. When their
processor becomes available, the scheduler allocates a task from the busiest CPU to the now idle
processor.

Estimating a Processor’s Load It is necessary to measure or estimate the load of the processors
to answer some of the questions in Table 5.2 and 5.4. In this context, the term “load” refers to
the number of tasks running on a specific processor. Since the measurements or estimations
should not influence the underlying operating system, we propose an heuristic approximation in
the following.

Furthermore, the estimation allows to determine the processor’s load for operating systems,
which do not support the measurement of a single processor’s queue length (such as Windows
Server 2003). The load of a processor is estimated based on the response times of the currently
running tasks. The approximation computes the number of simultaneously running tasks by
dividing the task response times by the uncontented processing time, which is 250 ms for the
scenarios defined above. For example, the estimation computes a load of two tasks for a response
time of 500 ms. This approximation is possible, since all tasks are executed with the same
priority and, thus, share the processor equally. However, the execution of multiple tasks can
overlap and a task’s delay can further shift the overlap. Therefore, the approximation clusters
response times around multiples of the processing time. For example, if the resource demand of a
task is 250 ms, then two concurrent tasks without waiting time yield a response time of 500 ms.
We use tolerance bounds of ± 125 ms and, thus, consider all response times from 375 ms to
625 ms as concurrent execution of two tasks. This approximation is only a rough estimate of the
actual load distribution, but it already shows the large imbalance of the system’s load.

LB.Lazy.1 LB.Lazy.2 LB.Lazy.3

Questions How does continuous load 

influence load balancing?

Do waiting times influence 

load distribution and software 

performance?

What happens when 

system load decreases?

Scenario Heavy Load Moderate Load Decaying Load

Metric RT, Load(CPUi) RT, Load(CPUi),

COV(E[RT(t)])

RT, Load(CPUi)

Hypothesis The scheduler does not 

change the initial load 

distribution and imbalances 

(even a strong ones) remain.

The System stayes balanced. The scheduler moves 

one task from the busiest 

processor to the idle one.

 Identify the relevant performance properties of multiprocessor load balancing policies

Table 5.2.: GQM plan for the evaluation of lazy-balancing.
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5.1.3. Answering the Questions – Scenarios, Metrics, Hypotheses, and Results

In this section, we present the necessary experiments to evaluate and answer the questions of the
GQM plan in Table 5.2 for GPOS schedulers in symmetric multiprocessing environments.

Question LB.Lazy.1: How does continuous load influence load balancing?

Lazy-balancing is only initiated when a processor becomes idle. Question LB.Lazy.1 addresses its
load balancing capabilities under continuous heavy load, which should avoid all load balancing
attempts and should maintain initial imbalances.

Scenario Scenario Heavy Load provides the initial load imbalances to evaluate the influence of
lazy-balancing in combination with continuous load. The response time distribution (Hist(RT))
of each task as well as the number of tasks running on a processor (Load) provide the necessary
information to answer Question LB.Lazy.1.

Hypotheses Since lazy balancing can only be initiated by a receiver (i.e., idle processor), Hy-
pothesis LB.Lazy.1.a expects an initial balancing attempt where each idle processor receives one
task from the busiest processor. The load distribution then does not change any further and
imbalances remain. Formally, let m be the number of processors, n number of tasks, and CPUi

with i ∈ {1 . . .m} the processors where CPU1 is the initially loaded processor, then Hypothesis
LB.Lazy.1.a expects:

Load(CPUj) =

{
n−m+ 1 , for j = 1
1 , for all j > 1

(LB.Lazy.1.a)

Furthermore, the mean response time of a task tj with j ∈ {1 . . . n} is expected to be:

E[RT(tj)] =

{
(n−m+ 1) ∗ 250 ms , if tj is running on CPU1

250 ms , if tj is running on CPUi with i ∈ {2 . . .m}
(LB.Lazy.1.b)

The first case represents the shared execution time of all (n−m+1) tasks running on CPU1. The
second case resembles the uninterrupted execution time on an uncontended CPUi. The following
presents the measurements of scenario Heavy Load with seven tasks on a dual-core system.

Results Figures 5.1(a) and (b) show the response times measured for tasks t1, t2, and t3 of
scenario Heavy Load with two processors (m = 2) and seven tasks (n = 7). For reasons of clarity,
the figures are limited to the response times of the first three tasks. The cumulative distribution
function (Figure 5.1(a)) as well as the histogram (Figure 5.1(b)) show two peaks of the response
times: One at 250 ms and one at 1500 ms. The results correspond to Hypothesis LB.Lazy.1.b,
which expects a task response time of either 250 ms or 1500 ms (= (7− 2 + 1) ∗ 250 ms) for n = 7
tasks and m = 2 processors. Estimating the load distribution from these values complies to the
expectation of Hypothesis LB.Lazy.1.a.

For each task, Hypothesis LB.Lazy.b expects either a response time of 250 ms or 1500 ms.
However, the measurements show mixed response times of 250 ms and 1500 ms for single tasks.
These values suggest that the task is executed on different processors during the experiment.

Figure 5.2 supports this observation. It shows the response time measurements of one task
during the experiment. The task runs on CPU1 for the first 120 iterations. It shares the processor
with five other tasks, which yields a response time of 1500 ms. It then executes on CPU2 for
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Figure 5.1.: Response time distribution for scenario Heavy Load.

more than 200 iterations and does not have to share the processor with other tasks. However, the
overall load distribution is not affected, since all resource demands are either processed within 250
ms or 1500 ms. During the whole execution of scenario Heavy Load, CPU1 has been processing
six tasks while CPU2 has been executing one task. The results confirm Hypothesis LB.Lazy.1.a.

While Hypothesis LB.Lazy.1.b correctly reflects the general behaviour of lazy-balancing, it does
not capture the observed effect of “random task switches” shown in Figure 5.2. The effect leads
to a rejection of the hypothesis. However, the measurements confirm the fact that lazy-balancing
does not distribute the system’s load equally if all processors are busy.
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Figure 5.2.: Evolution of the measured response times during the experiments (Heavy Load).
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Discussion The “random task switches” result from the realisation of user-level threads (either
in the Java virtual machine or the operating system). Scenario Heavy Load uses Java threads to
implement the concurrently running tasks, which need to be mapped to light-weight processes (or
kernel-level threads) to execute. Windows uses a one-to-one mapping of user-level threads and
light-weight processes [SGG05], but their association can change during runtime. These changes
are not visible to the scheduler’s load balancer, which deals only with light-weight processes, but
affect the response times measured for single tasks. Section 5.1.5 discusses this effect in more
detail.

Question LB.Lazy.2: Do waiting times influence load distribution and software performance?

Question LB.Lazy.1 is intentionally focussed on compute-bound tasks that limit the capabilities of
the lazy-balancing policy. This question targets its influence on load distribution and performance
for less loaded systems. Lazy-balancing requires a processor to become idle in order to initiate
load balancing. If tasks successively demand short periods of processing and waiting time, then
the load of the processor changes continuously and, thus, should trigger load balancing. In the
following, we describe the scenarios, hypotheses, and results for Question LB.Lazy.2.

Scenarios In scenario Moderate Load, tasks execute a resource demand of 250 ms followed by
a waiting period of 10 ms. This short interruption should allow the scheduler to initiate load
balancing.

Hypotheses Hypothesis LB.Lazy.2.a expects the system to reach a balanced state and, hence,
distribute its load evenly among the available processors. As a consequence, the response times of
all tasks are expected to be similar, i.e., only differ within a certain range. Let m be the number
of processor, n the number of tasks, and d the delay of task ti, then Hypothesis LB.Lazy.2.a
expects the following mean response time for all tasks:

E[RT(tj)] = n/m ∗ 250 ms−d for all ti with i ∈ {1 . . . n}. (LB.Lazy.2.a)

This formula yields a response time of 865 ms for n = 7 tasks, m = 2 processors, and a delay of
10 ms. To compare the response times of all tasks, the coefficient of variation (COV) of the tasks
mean response times is expected to be below 5%:

|COV(E[ti])| < 5% for all ti with i ∈ {1 . . . n} (LB.Lazy.2.b)

This equation expresses that all tasks receive the same amount of processing time on average.
Furthermore, Hypothesis LB.Lazy.2.c expects the load of the processors to differ within predefined
bounds:

|Load(CPUj)− Load(CPUk)| < n/(2 ∗m) for CPUj and CPUk with j 6= k (LB.Lazy.2.c)

For example, for a system with two processors (m = 2) and seven tasks (m = 7), the load of
the processors is expected to differ no more than 1.75 tasks in average. The bounds are given by
the deviation from the ideal distribution, e.g., n/m = 3.5 for the previous example. Hypotheses
LB.Lazy.2.c expects the load distribution to deviate less then 50% from the ideal distribution.
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Figure 5.3.: Response time distribution for scenario Moderate Load.

Results Figures 5.3(a) and (b) show the response time distributions for scenario Moderate Load
with seven concurrently running tasks (n = 7) on a system with two processors (m = 2). For
clarity, the figures only show the first three tasks. The task response times are distributed between
250 ms and 1200 ms. This distribution is a considerable difference to the results of scenario Heavy
Load, where the response times bundled at two values.

Task 1 2 3 4 5 6 7

Mean Response Time [ms] 786,0 724,4 760,1 768,6 785,1 750,5 712,0

Table 5.3.: Mean response times of tasks t1 to t7 for scenario Moderate Load.

Table 5.3 lists the mean response time of all tasks of scenario Moderate Load. The coefficient
of variation of the mean response times listed there is 3.7% and, thus, below the threshold of
5% specified in Hypothesis LB.Lazy.2.c. However, the average response time of all tasks is with
755.5 ms about 110 ms below the expected value of 865 ms rejecting Hypothesis LB.Lazy.2.a.
The task waiting time is responsible for this difference in measurement and expectation. Even
though the specification of the scenario demands a delay of 10 ms, the actual delay during the
execution is approximately 135 ms. Due to the high load of seven simultaneously running tasks,
the operating system is not able to adhere to the specified waiting times. Computing the expected
mean response time with a value value of 135 ms yields an expected response time of 740 ms,
which is much closer to the actually measured value.

Figure 5.4(a) depicts the histogram of joined response times for tasks t1 to t7. Despite the
stronger distribution of the response times compared to scenario Heavy Load, the histogram
contains multiple peaks in the response time distribution. Especially for 250 ms, 500 ms, and
1250 ms, the histogram shows high densities.

Figure 5.4(b) approximates the load distribution for scenario Moderate Load based on the
response times of tasks t1 to t7 (cf. Section 5.1.2). It depicts the resulting relative frequencies for
the number of simultaneously running tasks. As expected from the response time distribution,
the undisturbed execution of a task has a relative frequency of 20%. However, the concurrent
execution of six tasks (the expected counterpart when seven tasks are running in parallel) does
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Figure 5.4.: Response time and load distribution for scenario Moderate Load.

not occur. The effect is caused by long waiting times of each task, which reduces the overall load
of the system. In Figure 5.4(b), two (27%) and five (26%) tasks are most likely to be executed
concurrently. However, the optimal load distribution of three and four tasks has the least relative
frequency of 16% and 12%. Lazy-balancing distributes the load more evenly in scenario Moderate
Load than in scenario Heavy Load, but still allows strong imbalances to occur. Thus, Hypothesis
LB.Lazy.2.c must be rejected.

Question LB.Lazy.3: What happens when system load decreases?

Question LB.Lazy.3 targets the behaviour of lazy-balancing under decreasing load. If tasks finish
successively, the policy needs to move tasks from the busiest to the new idle processor.

Scenarios Scenario Decaying Load resembles such a behaviour (cf. Section 5.1.2). The concrete
scenario subsumes six tasks running in parallel on a two processor system. Each task issues 400
resource demands of 250 ms and a waiting time of 0 ms in a loop and then terminates. The initial
load distribution of the scenario consists of five tasks running on the first processor and one on
the second processor.

Hypotheses Hypothesis LB.Lazy.3.a expects the number of tasks running on the busiest pro-
cessor to decrease continuously until each processor executes a single task.

Let m be the number of processors, CPUi with i ∈ {1 . . .m} be a single processor, where CPU1

denotes the busiest processor and n be the current number of running tasks with n > m + 1.
Furthermore, let Loadt(CPUi) denote the loads of processor CPUi at time t, then:

∀ Loadt(CPU1) = n−m+ 1 and Loadt(CPUi) = 1 with i > 1,∃ ∆ ∈ R>0 :
Loadt+∆(CPU1) = (n−m) and Loadt+∆(CPUi) = 1 (LB.Lazy.3.a)



5.1. Multiprocessor Load Balancing 125

In other words, whenever a task finishes, the number of tasks on the busiest processor is reduced.
If the task is running on a lightly loaded processor (Load(CPU) = 1), then the processor becomes
idle and receives a task from the busiest processor. Otherwise, the task has already been running
on the busiest processor (Load(CPU) = n −m + 1). In both cases, the busiest processor looses
one of its tasks. Analogously to Question LB.Lazy.2, the number of concurrently running tasks
is determined on the basis of the task response times (cf. Section 5.1.2).
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(a) Task t1.
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(b) Task t2.

Figure 5.5.: Response time measurements for the scenario Decaying Load.

Results Figure 5.5 depicts the evolution of response times for two tasks as a series of measure-
ments. Figure 5.5(a) shows a series of response times for a task running on the busiest processor.
For the first 160 iterations, the task has a response time of 1250 ms and, thus, shares its pro-
cessor with four other tasks. Then, during a period of 10 iterations, the task’s response time
decreases from 1250 ms to 500 ms in intervals of 250 ms. Each decrease corresponds to the
completion of another task. The sudden termination of three tasks in a brief period suggests
that not only a single task runs on the second processor as expected by Hypothesis LB.Lazy.2.a,
but the second processor executed (at least) three tasks. From the measurements, three tasks
can be identified that exhibit “random task switches” already observed in scenario Heavy Load
(Question LB.Lazy.1). Their total execution time matches the time of the first 160 iteration in
Figure 5.5(a).

Figure 5.5(b) depicts the response time of a task executing for a long period on the second,
uncontended processor. However, the task switches multiple times between short (250 ms) and
long (1250 ms) response times. In total, it executes 290 requests in 250 ms and 101 requests in
1250 ms. Even though the number of uncontended iterations exceeds the number of contended
ones, the task spends only 36% of its processing time on the uncontended processor compared to
64% on the contended one. Likewise, two other tasks of scenario Decaying Load show a behaviour
similar to the task depicted in Figure 5.5(b). Furthermore, their total execution time sums up to
approximately 200 seconds which corresponds to the execution time of the first 160 iteration of
the task shown in Figure 5.5(a). These measurements suggest, that three tasks randomly share
the uncontended processor. After 200 seconds, the three tasks finish in a relatively short period,
which leads to the decreasing response time shown in Figure 5.5(a).
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Despite the “random task switches” between the contended and uncontended processor, the
tasks in the scenario behave as expected. Only one task at a time is running on the uncontended
processor, whereas all other tasks share the other processor. Furthermore, the lazy-balancing
polices moves only one task at a time if a processor becomes idle.

LB.Act.1 LB.Act.2 LB.Act.3

Questions How well does the scheduler 

balance the system?

How long does the scheduler 

need to balance the system's 

load?

Does interactive load 

influence load balancing?

Scenario Heavy Load Heavy Load Moderate Load

Metric RT, Load(CPUi) RT,  E[transient],

Pr(Imbalance)

RT, Load(CPUi), 

COV(E[RT(t)])

Hypothesis The System stayes balanced The system balances during 

the first seconds.

Interactive Load allows 

better balancing than 

continuous load.

 Identify the relevant performance properties of multiprocessor load balancing policies

Table 5.4.: GQM plan for load balancing under Linux 2.6.22.

Question LB.Act.1: How well does the scheduler balance the system?

Question LB.AB.1 addresses the capabilities of the active-balancing policy for compute-bound
tasks. It expects the policy to evenly distribute the load among the available processors.

Scenario Scenario Heavy Load answers Question LB.AB.1. The resulting load distribution as
well as the task response times give hints on the capabilities of the active-balancing policy.

Hypotheses Hypothesis LB.Act.1.a and LB.Act.1.b expect the active-balancing policy to evenly
distribute the load among the available processors. Thus, the load of all processors should at most
differ by one task. For a system with n tasks and m processors, the expected load of a processor
CPUi with i ∈ {0 . . .m} is:

Load(CPUi) =

{
bn/mc , for m− (n mod m) processors
dn/me , for (n mod m) processors

(LB.Act.1.a)

Furthermore, Hypothesis LB.Act.1.b expects the response time of a task tj with j ∈ {1 . . . n}
to be a multiple of the load of the processor CPUi executing tj . The actual task response time
depends on the number of interruptions of task tj . In the experiment, all tasks have the same
priority and timeslice (prio(tk) = 0 and TS(tk) = 100 ms ∀ k ∈ {1 . . . n}, cf. Table 2.2 page 26).

For task tj , which demands a processing time of dj = 250 ms, the scheduler interrupts its
processing time either two or three times for a timeslice of 100 ms. Due to the fair run queues of
the Linux scheduler, all other tasks have to finish their timeslice, before tj resumes its execution.
This behaviour yields the following expected response times for all tasks:

RT(tj) =

{
bdj/TS(tj)c ∗ Load(CPUi) ∗ TS(tj) + (dj mod TS(tj))
(ddj/TS(tj)e ∗ Load(CPUi)− 1) ∗ TS(tj) + (dj mod TS(tj))

(LB.Act.1.b)
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The actual response time depends on the number of interruptions of the task’s execution ex-
pressed by bdj/TS(tj)c and ddj/TS(tj)e. The first case represents the response time for the
minimum number of interruptions, while the second case yields the maximum number of inter-
ruptions.
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Figure 5.6.: Response time distribution for scenario Heavy Load.

Results Figures 5.6(a) and (b) present the results for scenario Heavy Load and active-balancing.
The scenario was executed on a two processor system with seven concurrent tasks. For clarity,
the figures depict the response time of the first three tasks. The response times of the remaining
four tasks are similar to the depicted ones. Hypothesis LB.Act.1.b expects a response time of
either 650 ms or 850 ms for the processor loaded with three tasks and either 850 ms or 1150 ms
for the processor loaded with four tasks. The following formula computes the task response time
for three concurrent tasks to illustrate the interpretation of Hypothesis LB.Act.1.b:

RT(t1) =

{
b250 ms /100 msc ∗ 3 ∗ 100 ms +50 ms = 650 ms (lowest RT)
(d250 ms /100 mse ∗ 3− 1) ∗ 100 ms +50 ms = 850 ms (highest RT)

The results presented in Figures 5.6(a) and (b) confirm the expectation of Hypothesis LB.Act.1.b.
In the experiment, the load balancer assigns three tasks to the first and four to the second
processor. Furthermore, the task response times lie around 650 ms, 850 ms, and 1150 ms as
anticipated. Thus, Hypotheses LB.Act.1.a and LB.Act.1.b cannot be rejected.

However, the series of measured response times (Figure 5.7) suggests that the load distribution
changes during the measurements. For the first 50 iterations, the task runs on a processor with
two other tasks yielding a response time of 650 ms and 850 ms. Then the number of concurrently
executing tasks increases to four for the next 110 iterations leading to a response time of 850 ms
and 1150 ms. For the last 120 iterations, the load drops back to three tasks, but the response
time shows more disturbances.
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Figure 5.7.: Measurements of the task response time for load balancing under Linux.

To answer Question LB.Act.1, active-balancing equally distributes the running tasks among
the available processors. The next question addresses the time a system needs to reach a balanced
state.

Question LB.Act.2: How long does the scheduler need to balance the system’s load?

The results of Question LB.Act.1 suggest that active-balancing equally distributes the load over
the available processors. However, the system’s load in scenario Heavy Load is relatively high.
Balancing events occur only during task creation and active load balancing intervals. Thus, Ques-
tion LB.Act.2 addresses the time necessary for active-balancing in heavily loaded environments.
Its hypotheses expect balancing to occur during the first seconds of scenario execution. During
this initial transient phase, imbalances occur irregularly until the scenario reaches a steady state.

Scenarios Like for Question LB.Act.1, we consider scenario Heavy Load with m processors and
n tasks in the following. The duration of the initial transient phase provides sufficient information
to answer Question LB.Act.2.

Hypotheses Hypothesis LB.Act.2 expects the initial transient phase to last longer with an in-
creasing number of tasks. A system reaches its steady state when the systems load disperses as
specified in Hypothesis LB.Act.1.a and the response time of all tasks falls into the categories de-
fined in Hypothesis LB.Act.1.b for the remaining execution time. The first time the requirements
above are fulfilled, then, for the remainder of the experiment, the requirements above mark the
end of the transient phase and the beginning of the steady state behaviour.

Hypothesis LB.Act.2.a expects the transient time of scenario heavy load to increase with the
number of tasks in the system. Let E[transn] be the expected transient time for n concurrent
tasks, then

E[transn] ≤ E[transk] with n < k and n, k ∈ N (LB.Act.2.a)

Furthermore, Hypothesis LB.Act.2.b states that imbalances occur irregularly during the transient
phase and the number of imbalances increases with the number of tasks in the system. To distin-
guish balanced from imbalanced requests, the expected response times of Hypothesis LB.Act.1.b
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define the upper and lower bound for the range of balanced requests. For a task tj with a pro-
cessing demand dj , the lower bound is the minimum response time on the least loaded processor.
Similarly, its upper bound is the maximum response time on the most loaded processor:

lower(tj) = bdj/TS(tj)c ∗ bn/mc ∗ TS(tj) + (dj mod TS(tj))
upper(tj) = (ddj/TS(tj)e ∗ dn/me − 1) ∗ TS(tj) + (dj mod TS(tj))

For example, a system with m = 2 processors, n = 7 tasks, and a demand of 250 ms has a lower
bound of 2∗3∗100 ms +50 ms = 650 ms and an upper bound of (3∗4−1)∗100 ms +50 ms = 1150 ms.
All response times within this range are considered as balanced, while all others are considered
as imbalanced. Due to disturbances of single response time measurements, the tolerance bounds
may be extended by half a timeslice, e.g., to 600 ms and 1200 ms.

Formally, let Prn(Imbalance) be the probability that the response time of a task tj with j ∈
{1 . . . n} is not within the balanced range for a system with n tasks and m processors, i.e.,
Prn(Imbalance) = Pr((RT(tj) > upper(tj)) ∨ (RT(tj) < lower(tj))), then

Prn(Imbalance) ≤ Prk(Imbalance) with n < k and n, k ∈ N (LB.Act.2.b)
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Figure 5.8.: Response time series for three tasks on a dual-core processor.

Results Figure 5.8 shows the initial transient phase during the experiment’s execution. It de-
picts the response times of three out of seven tasks. Its x-axis represents the execution time
of the experiment and its y-axis a task’s measured response times. Hypotheses LB.Act.2.a and
LB.Act.2.b consider the measured response times that fall into the range from 650 ms to 1150
ms as balanced. The light grey area in Figure 5.8 emphasises the balanced region. During the
first 5 seconds of the experiment, several of the measured response times lie below or above this
region. After this initial phase, the response time measurements scatter less and start forming a
regular pattern within the balanced range.

Table 5.5 lists the average transient times for n = 1 to 7 tasks as well as the relative amount
of imbalanced requests during that period. Like Hypotheses LB.Act.2.a and LB.Act.2.b expect,
the initial transient phase as well as the probability of imbalanced requests increases with the
number of tasks in the system. Thus, both hypotheses cannot be rejected.
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#Tasks Total Amount of unbalanced requests 

1 0

2 0

3 2

4 3

5 9

6 13

7 16

#Tasks Unbalanced Requests [%]

1 0

2 0

3 5

4 7,5

5 22,5

6 32,5

7 40

Tasks

Transient 

Time [sec]

Imbalanced 

Requests [%]

1 0 0

2 0 0

3 1,6 5

4 2,5 7,5

5 3,3 22,5

6 5,1 32,5

7 6,7 40

Table 5.5.: Changes of load balancing with an increasing number of tasks.

Question LB.Act.3: Does interactive load influence load balancing?

Questions LB.Act.1 and LB.Act.2 are focussed on the performance influences of active-balancing
for compute-bound tasks. Question LB.Act.3 targets its balancing capabilities for interactive
tasks, since interactivity strongly influences the Linux scheduler’s behaviour (cf. Section 4.2).

Scenarios In the following hypotheses and experiments, we employ scenario Moderate Load to
answer Question LB.Act.3. Its results give an impression on the mutual influences of interactivity
and multiprocessor load balancing. We use a waiting time of 50 ms (Delay.VALUE = 50) instead
of 10 ms in order to force the Linux scheduler to classify all tasks as interactive.

Hypotheses In general, Hypothesis LB.Act.3.a expects a stronger variation of response times
and processor loads compared to scenario Heavy Load. Thus, the peaks in response time distri-
butions are expected to disappear. The load of a processor is expected to vary between three and
four concurrent tasks in most cases. Even though the task response times are less regular, the
coefficient of variation (COV) for the response times of all tasks is expected to be less than 5%.
In other words, the system is expected to be balanced:

|COV(E[ti])| < 5% for all ti with i ∈ {1 . . . n} (LB.Act.3.a)

Furthermore, the load is expected to be equally balanced. The following hypotheses formulate
the expectations on mean response times and the load distribution for scenario Moderate Load.

For a system with n tasks and m processors, each processor CPUi with i ∈ {1 . . .m} has the
following load in 90% of all cases:

Load(CPUi) =

{
bn/mc , for m− (n mod m) processors
dn/me , for (n mod m) processors

(LB.Act.3.b)

For seven tasks (n = 7) and two processors (m = 2), this yields an expected load of 3 to 4
tasks per processor during 90% of the measurement period. For a processing time of di = 250 ms,
and a delay (waiting time) of wi = 50 ms for all tasks ti with i ∈ {1 . . . n}, the expected mean
response time is given by:

E[RT(ti)] = di ∗ n/m− wi. (LB.Act.3.c)

For the system above, the equation yields an expected mean response time of 825 ms for all tasks.
To reject Hypothesis LB.Act.3.c, the measured mean response time of all tasks must deviate more
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than 5% from the expected value. Since active-balancing should lead to an equal distribution,
Hypothesis LB.Act.3.d expects 90% of all tasks to execute their resource demand within the
lower (650 ms for the system above) and the upper (1150 ms for the system above) response time
bounds:

Pr(RT(ti) < upper(ti) ∧ RT(ti) > lower(ti)) > 0.9 (LB.Act.3.d)
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Figure 5.9.: Response time distribution for scenario Moderate Load.

Results Figures 5.9(a) and (b) show the response time distributions of the first three tasks for
scenario Moderate Load with seven concurrently running tasks (n = 7) on a system with two
processors (m = 2). In this scenario, the response times are distributed between 350 ms and
slightly more than 1100 ms.

Windows Task 1 2 3 4 5 6 7

Mean Response Time [ms] 786,0 724,4 760,1 768,6 785,1 750,5 712,0

Linux Task 1 2 3 4 5 6 7

Mean Response Time [ms] 812,6 826,8 805,2 834,8 814,0 792,9 841,8

Task 1 2 3 4 5 6 7 COV

Windows 786,0 724,4 760,1 768,6 785,1 750,5 712,0 3,8

Linux 812,6 826,8 805,2 834,8 814,0 792,9 841,8 2,1
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Table 5.6.: Mean response times of tasks t1 to t7 for scenario Moderate Load for Windows and
Linux.

Table 5.3 lists the mean response time of all tasks of scenario Moderate Load for Windows
(lazy-balancing) as well as for Linux (active-balancing). For active-balancing, the coefficient of
variation of the mean response times is 2.1% meeting the exception of hypothesis LB.Act.3.a
of 5%. The average response time of all tasks is 816.9 ms and deviates less than 1% from the
expected response time of 825 ms. The difference is below the specified threshold of 5%. Thus,
Hypothesis LB.Act.3.c cannot be rejected.

Figure 5.10(a) shows a histogram of accumulated response times for tasks t1 to t7 under Linux
2.6.22. Hypothesis LB.Act.3.d expects 90% of all values to fall in the range of 650 ms to 1150 ms.
For the experiment, 1462 response time measurements of a total of 1614 measurements lie in this
range. Thus, 90.6% of all response times lie in the expected range and Hypothesis LB.Act.3.d.
cannot be rejected.
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Figure 5.10.: Load distribution for scenario Moderate Load.

Estimating the load distribution of the processors based on the task response times (cf. Sec-
tion 5.1.2) yields the number of simultaneously running tasks depicted in Figure 5.10(b). The
active-balancing policy of Linux concurrently executes three and four tasks in most cases (90%).
Only in 10% of all cases do two tasks share one processor. The figure depicts the results for the
lazy-balancing policy of Windows. The comparison between both policies shows, that the Linux
scheduler keeps a good balance of all tasks most of the time. By contrast, Windows minimises its
balancing effort and, thus, tolerates larger imbalances in the system, but minimises its overhead
for moving tasks.

5.1.4. Extending MOSS to Symmetric Multiprocessor Systems

In this section, we extend the CPN model of MOSS introduced in Sections 4.1.3 and 4.2.4 by
different load balancing policies for symmetric multiprocessing environments. The prediction
model reflects the variation points presented in Section 3.2.2.

Static Load Balancing

Static load balancing policies assign newly created tasks to a processor. Figure 5.11 depicts the
static load balancing policies available in the context of MOSS: cyclic splitting, random, and same
as parent. The static load balancing policy is part of the subnet InitialiseTask (cf. Figure 3.9
page 53) and, hence, is responsible for assigning an initial processor to the newly created task.
Place New holds newly created tasks, which already received a unique identifier (id), static and
dynamic priority (prio), and timeslice (timeslice). The subnets for the static load balancing
policy assign an initial processor to the new tasks and hand them over to the scheduler. Therefore,
transitions CyclicSplitting, Random, and SameAsParent take the new task’s SCHED TASK token
with its UNDEFINED processor from place New, determine the initial processor of the task, and
enqueue it in the list of incoming tasks of the scheduler on place Incoming.

Transition CyclicSplitting (Figure 5.11) uses the CPU token on place NextCPU to determine
the new task’s processor. Place NextCPU contains a single token of colour CPU, which specifies the
identifier of the next available processor. When transition CyclicSplitting fires, it removes one
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Figure 5.11.: Static load balancing.

of a newly created task from place New, takes the next processor’s identifier from place NextCPU
and the list of the scheduler’s incoming tasks from place Incoming. It appends a new token
to the scheduler’s list of incoming tasks (taskList). The token contains the identifier, priority,
and timeslice that have already been defined. Its initial processor is set to the value of cpu.
Furthermore, transition CyclicSplitting determines the processor for the next arriving task
((cpu MOD NUM CPU) + 1). The computation ensures that the set of processor identifiers ranges
from 1 to NUM CPU. A processor identifier of 0 stands for an undefined processor (UNDEFINED).

The subnets for the random and same as parent policies follow the same structure. Transition
Random calls function randomInt to generate a uniformly distributed random number between 1
and NUM CPU, which represents the selected processor of the new task. Transition SameAsParent
looks up the SCHED TASK token of the task which created the new task, i.e., its parent.

Listing 5.1: Colour set PARENT SCHED TASK.
colset PARENT SCHED TASK = product TASK ID ∗ SCHED TASK;
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Place ParentTask contains the SCHED TASK tokens of the parent tasks associated to the iden-
tifier (TASK ID) of the created task (cf. Listing 5.1). This tokens allows transition SameAsParent
to look up the parent’s processor (p cpu) and assign the new task to the same processor. All
three transitions of the static balancing policy subnets retrieve the token onForkList from place
OnFork. Independent of the list’s current content, they return a list with a single token. The
new token on fusion place OnFork notifies the dynamic load balancing policy that a new task has
been created.

Dynamic Load Balancing

DetermineLoad

CPULIST

Receiver

[]

CPULOADLIST

Sender

[]

CPULOADLIST

Load

DetermineLoad

Start DetermineRole

DetermineRole

Couple

CoupleCouple

Pairs

CPUPAIR

Balance

BalanceBalance

Trigger

TriggerTrigger
StartBalancing

CPULOADLIST DetermineRole

[][]

Figure 5.12.: Overview of dynamic load balancing.

MOSS reflects the influence of various features for dynamic multiprocessor load balancing
policies. It includes different load indices as well as transfer, location, information, and selection
policies. MOSS requires a high flexibility as it allows various configurations of different features.
In Figure 5.12, the CPN for dynamic load balancing policies is split into multiple subnets, which
are represented by substitution transitions, to support such a flexibility. In the following, we give
an overview of the overall dynamic load balancing behaviour.

When load balancing has been activated (i.e., transition Trigger fired), transition Determine-
Load determines the current load index for all processor identifiers on place StartBalancing and
stores the result on place Load. Next transition DetermineRole partitions the processors into
senders and receivers based on their current load. Whether a processor needs to participate in
load balancing as well as its role depend on the specified transfer policy. When all processors
have been partitioned and a sender and a receiver are available, transition Couple creates pairs
of potential senders and receivers. The transition’s behaviour depends on the information policy
of the load balancer. Transition Balance models the movement of tasks from one processor
to another. It chooses the tasks for transfer according to the defined selection policy. In the
following, we present the realisation of each substitution transition in detail.

Activating Dynamic Load Balancing

Figure 5.13 depicts the general behaviour of subnet Trigger. The GUARD of transition
StartLoadBalancing depends on the selected information policy. The places TaskFinished,
TaskPutToSleep, TaskWokeUp, and TaskArrived belong to the fusion sets OnFinished, OnSleep,
OnWake, and OnFork, respectively, and represent state changes of the scheduler important for load
balancing. Whenever one of these events occurs, the scheduler puts a token on the respective
event’s place.
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Figure 5.13.: Subnet Trigger for the state change driven activation of load balancing.

For example, Figure 5.14 depicts the extended subnet for the management of waiting tasks
from Section 4.2.4. Additionally to their original behaviour, transitions PutToSleep and WakeUp
insert tokens into the lists on places PutTaskToSleep and WokeUpTask of fusion sets OnSleep and
OnWake respectively. Thus, when a task is put into the waiting queue during the acquisition of a
semaphore, the subnet notifies the load balancer that an OnSleep event occurred.

Each event place contains a single list of tokens. Transition StartLoadBalancing retrieves all
lists and concatenates the ones of interest. If the concatenated list contains at least one element,
then an event of interest occurred. When transition StartLoadBalancing fires, it removes all
tokens from the event places and inserts all processor identifiers into the list on place Start. The
latter belongs to the fusion set StartBalacing, which finally triggers the load balancing. The
inhibitor arc to place Incoming ensures that all incoming task are placed in the run queue before
load balancing is initiated. The inhibitor arc prevents wrong load balancing decisions for the
events OnWake and OnFork.

The different feature configurations of the state-change-driven information policy influence the
guard of transition StartLoadBalancing. Listing 5.2 shows the conditions for the state-change
driven information policies implemented in Windows Server 2003 and Linux 2.6.22. The con-
dition modelling the behaviour of the Windows Server 2003 operating system reacts when a
processor becomes (or currently is) idle (OnIdle). Whenever an event occurs (i.e., the concate-
nated event list is greater than zero) transition StartLoadBalancing checks whether a processor
is idle (i.e., it executes the idle task with id = IDLE ID) and whether its run queue is empty
(i.e., length(runQueue) = 0). The transition ensures this condition by its bidirectional arcs to
the places Ready (or Active and Expired) and Running. The arcs select the currently executing
task and the run queue of a processor. Only if the run queue is empty and a processor is idle,
then transition StartLoadBalancing fires.

Similarly, transition StartLoadBalancing for Linux 2.6.22 waits for tokens on places Task-
Finished, TaskPutToSleep, TaskWokeUp, and TaskArrived. While the latter two directly con-
form to the events OnWake and OnFork, respectively (like their fusion set is called), event
OnIdle is triggered if the number of executable tasks in the system reduces and, hence, a pro-
cessor becomes idle. Condition length onWakeListˆˆonForkList > 0 enables the transition
if either a token lies on place TaskWokeUp of fusion set onWake or on place TaskArrived of
fusion set onFork. To initiate load balancing whenever a processor becomes idle, condition
length(onFinishedListˆˆonSleepList) > 0 checks whether event onFinished or onSleep oc-
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Figure 5.14.: Load balancing activation.

curred. Furthermore, condition id = IDLE ID requires the idle tasks to currently execute on one
of the processors whose active and expired run queues are empty (length (activeQueue ˆˆ
expiredQueue) = 0). These conditions enable transition StartLoadBalancing, whenever a task
finishes or starts waiting and a processor becomes idle.

Transition StartLoadBalancing encapsulates the complex load balancing activation to guar-
antee atomicity. Furthermore, its inhibitor arc to place Incoming of the scheduler only allows
to start balancing if all scheduling operations have been finished. Using a single transition that
is only activated if the scheduling is terminated ensures that no invalid balancing operations are
executed, e.g., the processors are balanced even though not all tasks have been placed in run
queues. Furthermore, the transition reduces the simulation overhead necessary, since it combines
a set of events into a single scheduling attempt.

Determining the Load

If load balancing has been initiated, then the load of each processor has to be determined next.
Figure 5.15 depicts two subnets for substitution transition DetermineLoad.

The first subnet (Figure 5.15(a)) determines the current CPU queue length. It collects the
necessary information from places Ready and Running and stores the resulting load in the list on
place Start. The second subnet (Figure 5.15(b)) computes the ageing CPU queue length using
the subnet in Figure 5.15(a). It incorporates the current load with the previously determined
one.

For the computation of the current CPU queue length, transition DetermineCurrentLoad is
enabled as soon as an element is added to the CPU LIST on place Start. Furthermore, a bidirec-
tional arc with an empty list ensures that the TASK LIST on place Incoming is empty (inhibitor arc
patter, cf. Appendix B.6). When firing, transition DetermineCurrentLoad removes the first ele-
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Listing 5.2: Different variants of the guard of transition Trigger Load Balancing.
val NUM CPU = 2 ;
val UNDEFINED = 0 ;
colset CPU = in t with 0 . .NUM CPU;
val ALLCPUs = CPU. a l l ( ) −− 1 ‘UNDEFINED;

(∗ OnIdle (Windows Server 2003) ∗)
[ l ength onFin i shedL i s t ˆˆ onS l e epL i s t ˆˆonWakeList ˆˆ onForkList > 0
andalso id = IDLE ID andalso l ength runQueue = 0 ]

(∗ OnWake, OnFork , and OnIdle ( Linux 2 . 6 . 22 ) ∗)
[ ( l ength onF in i shedL i s t ˆˆ onS l e epL i s t > 0 andalso id = IDLE ID

andalso l ength ( activeQueue ˆˆ expiredQueue ) = 0)
orelse l ength onWakeList ˆˆ onForkList > 0 ]

ment from the CPU LIST on place Start and gets the corresponding run queue (from place Ready)
as well as the currently running task (from place Running). Furthermore, it adds a new token of
colour CPULOAD (cf. Listing 5.3) to the list on place Load. The CPULOAD embodies a CPU represent-
ing the processor’s identifier and an integer representing its load. Function insertAscending (cf.
Listing 5.3) realises the priority queue pattern (cf. Appendix B.6) and ensures that processors on
place Load are ordered according to their current load. Finally, transition Determine Current
Load uses function determineLoad to compute the processor’s load from the run queue and the
executing task’s identifier (cf. Listing 5.3).

The age based load index (Figure 5.15(b)) requires multiple steps to determine the ageing load
from the current and last load of a processor. Furthermore, it is necessary to determine the load for
all processors on place Start before transition DetermineRole is enabled. Place DetermineLoad
of fusion set IsDeterminingLoad contains a list of processor identifiers whose load has not yet
been computed. The realisation of transition DetermineRole employs an inhibitor arc on this
place to ensure that the load of all processors is available.

Listing 5.3: Functions determineLoad and insertAscending.
colset CPULOAD = product CPU ∗ INT ;
colset CPULOADLIST = l i s t CPULOAD;

fun determineLoad ( runQueue , id ) =
i f id = IDLE ID

then l ength runQueue
else l ength runQueue + 1 ;

fun lowerLoad ( ( cpu1 , load1 ) , ( cpu2 , load2 ) ) =
( load1 < load2 ) ;

fun i n s e r tAscend ing ( elm , [ ] ) = [ elm ]
| i n s e r tAscend ing ( elm , ( q : : queue ) ) =

i f lowerLoad ( elm , q )
then elm : : q : : queue
else q : : ( in s e r tAscend ing ( elm , queue ) ) ;

When a list of processor identifiers is put on place Start, transition StartDetermineLoad
is enabled. It removes the list of processors from place Start and puts a copy on place
IsDetermingLoad and on place GetCurrentLoad. While the latter ensures, that the load bal-
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Figure 5.15.: Subnets for different load indices.

ancer determines the load of all processors, before it assigns roles (i.e., sender or receiver) to each
processor, the first initiates the actual load computation. When a list of processors is put on
place GetCurrentLoad substitution transition DetermineCurrentLoad sums up the length of the
(active and expired) run queue including the currently running process. Its subnet is similar to
the one for the feature CPU queue length in Figure 5.15(a).

When a new CPULOAD token is inserted into the list on place CurrentLoad, transition Ageing
is enabled. It takes the processor’s newly computed load (token (cpu, newLoad)) and its last
known load (token (cpu, lastload)) from place LastLoad and computes the aged load from both
values. Parameter weight determines the influence of the past and current load’s value. Finally,
transition Enqueue adds the resulting load in the CPULOADLIST on place Load, removes the proces-
sor’s identifier from the list on place IsDeterminingLoad, and stores the resulting load on place
LastLoad for the next balancing attempt. Transition Enqueue uses function insertAscending
to add the computed load to the list on place Load.
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Figure 5.16.: Subnets to determine senders and receivers for load balancing.
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Determine Senders and Receivers

When the load of all processors has been determined, senders and receivers for balancing need to
be identified. The transfer policy determines how the scheduler classifies the processors based on
their current load index. Figure 5.16 shows the subnets of the threshold-based (Figure 5.16(a))
and relative (Figure 5.16(b)) transfer policies.

For the threshold-based policy (Figure 5.16(a)), either transition IsReceiver, IsBalanced, or
IsSender fires depending on the processor’s load. If the lower bound is smaller than the upper
bound, the guards of all three transitions are disjoint and only one transition is enabled at a time.
In case both bounds are equal, only transitions IsReceiver and IsSender can be enabled.

If the load of a processor lies below the lowerBound, transition IsReceiver considers the pro-
cessor as a receiver and inserts it into the list on place Receiver. For the insertion, transition
IsReceiver calls function insertAscending. Analogously, transition IsSender fires if a proces-
sor’s load lies above the upperBound. Function insertDescending adds the tuple (cpu, load)
to the list on place Sender in descending order (cf. Listing 5.4). By sorting the receivers in an
ascending order and the senders in a descending order, MOSS allows the direct identification of
the highest and least loaded processors for balancing. Finally, transition IsBalanced fires if no
balancing for the selected processor is necessary. The transition simply removes the processor
from the list of currently balanced processors and, thus, aborts balancing for this processor.

Listing 5.4: Functions insertDescending and trim.

fun higherLoad ( ( cpu1 , load1 ) , ( cpu2 , load2 ) ) =
( load1 > load2 ) ;

fun i n s e r tDescend ing ( elm , [ ] ) = [ elm ]
| i n s e r tDescend ing ( elm , ( q : : queue ) ) =

i f higherLoad ( elm , q )
then elm : : q : : queue
else q : : ( in s e r tDescend ing ( elm , queue ) ) ;

fun tr im ( head : : l ) = L i s t . take ( l , l ength l − 1)
| tr im ( [ ] ) = [ ] ;

Figure 5.16(b) shows the role assignment for the relative transfer policy as implemented in
Linux 2.6.22. Once the load of all processors is determined, either transition IdentifyMinMax
or NoTransferPartner is enabled. While the first requires at least two processors in the
CPULOADLIST on place Load and determines the list’s minimum and maximum, the latter is
responsible for removing a single processor from the list, for which no proper partner can be
found. Transition IndentifyMinMax takes the list of processor loads (loadList) from place Load
and puts its head on place Min and its tail on place Max. Finally, function trim(loadList) (cf.
Listing 5.4) returns the list without its head and tail to place Load. Since the list of processor
load tokens in loadList is sorted in an ascending order, its first and last elements are the min-
imum and maximum of the list, respectively. Once the minimum and maximum are available,
either transition BalancingRequired or BalancingNotRequired is enabled. In the first case, the
load difference of the minimum and maximum loaded processor is equal to or larger than the
predefined distance and load balancing is required. When transition BalancingRequired fires,
it moves the minimum loaded processor token ((minCpu, minLoad)) to place Receiver and the
maximum loaded processor token ((maxCpu, maxLoad)) to place Sender.
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If instead transition BalancingNotRequired is enabled, the difference of the minimum and
maximum load is smaller than the predefined distance. Thus, transition BalancingNotRequired
terminates the balancing attempt for both processors. It removes their tokens from places Min
and Max as well as their processor identifiers minCpu and maxCpu from the list on place Balancing.

Finding Partners for Transfer

To eventually create a balanced situation for all processors of a system, the load balancing policy
needs to identify transfer partners, i.e., senders and receivers, so that tasks can be moved from
one to the other. The subnet of substitution transition Couple realises the identification of fitting
transfer partners in the context of MOSS.

[]

balanceList

[]

[]

senderList

[]

[]

(sender, 
receiver, 
(maxLoad - 
minLoad) div 2)

(sender, maxLoad)::
senderList

Bind

[]

CPU_LIST

IsDeterminingRole
IsDeterminingRole CPU_LIST

CPULOADLIST

CPULOADLIST

Pairs
Out
CPUPAIR
Out

IsDeterminingRole

Sender
InIn

Receiver
InIn

IsBalancing
IsBalacingIsBalacing 1`sender++

1`receiver

balanceList

receiverList

[]

Terminate
Balancing

[]

(receiver, minLoad)::
receiverList

[cannotBalance(
senderList, 
receiverList)]

Figure 5.17.: Subnet for substitution transition Couple.

Figure 5.17 depicts its subnet with the input places Sender and Receiver and the output place
Pairs. It contains two fusion places IsBalancing and IsDeterminingRole, which ensure that
the role of all processors involved in load balancing has been determined. If this is the case, either
transition TerminateBalancing or Bind is enabled. The first ensures that the balancing attempt
is terminated if no redistribution of load is possible. Its guard calls function cannotBalance which
checks whether the receiverList or whether the senderList is empty while its counterpart
still contains at least one element. In this case, the system is either overutilised (contains only
senders) or underutilised (contains only receivers) and balancing is not possible. Thus, transition
TerminateBalancing terminates the balancing attempt, removes all senders and receivers, and
empties the list of currently balanced tasks on place IsBalancing.

Listing 5.5: Function cannotBalance.
colset CPUPAIR = product CPU ∗ CPU ∗ INT ;

fun cannotBalance ( senderL i s t , r e c e i v e r L i s t ) =
( l ength r e c e i v e r L i s t = 0 andalso l ength s ende rL i s t > 0)
or else

( l ength s ende rL i s t = 0 andalso l ength r e c e i v e r L i s t > 0)
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If, otherwise, the lists on places Sender and Receiver contain at least one element each,
transition Bind is enabled. It takes the first sender and receiver token from the lists on places
Sender and Receiver and puts a new CPUPAIR token on place Pairs. The token contains the
sending and receiving processor’s identifiers as well as the number of tasks to move. By default,
MOSS assumes that threshold based policies just move a single task while relative policies equalize
the load of the sender and receiver. Furthermore, transition Bind terminates the load balancing
attempts for all other processors and removes their tokens from places Sender, Receiver, and
IsBalancing. The termination is necessary, since the load balancing of the two selected processors
changes the overall load distribution. If further balancing is required, a whole new balancing
attempt must be started to determine the new senders and receiver. For example, one of the
processors involved in the current load balancing attempt may still be the busiest processor after
balancing is finished. Continuing load balancing with the remaining processors would not resolve
such situations.

Balancing the Load
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Figure 5.18.: Subnet for substitution transition Balance.

After substitution transition Couple identified two transfer partners, transition Balance (Fig-
ure 5.18) can select and move tasks from the sender to the receiver. For each pair on place
Pairs, it moves the specified number of tasks from the sending to the receiving processor. The
task transfer is executed in multiple steps. During each step, transition MoveTask moves one
task from the sender to the receiver until no further tasks have to be moved. Then transition
BalancingFinished terminates the load balancing operation.

Transition MoveTask takes a CPUPAIR token from place Pairs, whose number of tasks to move
is greater than zero (num > 0). Furthermore, it selects the sender’s (active and expired) run
queue from places Active and Expired. Transition MoveTask first tries to move the last task
of the expired queue. If such a task exists (i.e., length sExpired > 0), transition MoveTask
removes it from the sender’s expired run queue and adds it to the list of tasks on place incoming
(taskListˆˆlast(sExpired, receiver)), where function last returns the last element of a run
queue and sets its processor identifier to the specified one (cf. Listing 5.6). The functions last
and removeLast realise the selection policy of the load balancer. Its preferred priority is low, its
preferred waiting time is short, and processor as well as cache affinities are not considered.
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Listing 5.6: Functions update and interactive.
fun l a s t ( [ ] , newCpu) = [ ]

| l a s t ( [ ( cpu , id , pr io , t im e s l i c e ) ] , newCpu) = [ ( newCpu , id , pr io , t im e s l i c e ) ]
| l a s t ( q : : queue , newCpu)= l a s t ( queue , newCpu ) ;

fun removeLast [ ] = [ ]
| removeLast [ elm ] = [ ]
| removeLast ( q : : queue ) = q : : removeLast ( queue ) ;

The scheduler’s subnet automatically places the tasks in the list on place Incoming in the
correct run queue of the receiving processor. If the expired run queue of the sender is empty,
transition MoveTask switches to its active run queue performing the same operations as for the
expired one. Finally, it return the CPUPAIR token to place Pairs reducing its number of tasks by
one. If the number is still greater than zero, transition MoveTask is enabled again and can move
the next task.

As soon as the number of tasks to move reaches zero, transition BalancingFinished is acti-
vated. It empties the list of currently balanced processors on place Balancing. This terminates
the balancing operation.

For MOSS, we considered the configurations of information policies, load indices, transfer
policies, and selection policies. However, we neglected the different location policies. Location
policies have only a limited influence on software performance, since the load balancing itself does
not consume simulated time. In the next section, we validate the prediction accuracy of MOSS
for symmetric multiprocessing environments.

5.1.5. Validation of MOSS’ Prediction Accuracy

In this section, we present a validation of MOSS’ prediction accuracy for symmetric multipro-
cessing environments following the same structure as in Sections 4.1.4 and 4.2.5. The validation
is based on the experiments in Section 5.1.3 and targets the prediction accuracy of the multipro-
cessor load balancers of Windows Server 2003 and Linux 2.6.22 under different load conditions.
In the validation, we compare predictions and measurements for single-, dual-, and quad-core
systems and, thus, extend the scenarios of Section 5.1.2.

Goal: Purpose Assessment
Issue of MOSS’ prediction accuracy

Object for symmetric multiprocessing environments
Viewpoint from the software architect’s point of view.

Table 5.7 shows the scenario-based GQM plan of the validation. The first question addresses the
influences of initial imbalances under heavy load conditions. While the imbalances are expected to
remain under Windows, the Linux scheduler is expected to balance the system (cf. Section 5.1.3).
The second question addresses MOSS’ prediction accuracy for moderately loaded systems, where
both operating systems achieve a more balanced state. In the following, we answer both questions
for the considered operating systems and discuss the effect of changes in the prediction model on
performance results. For brevity, we only list the scenarios and hypotheses in Table 5.7 omit a
detailed description.
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(a) Histogram for scenario Heavy Load.
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(b) Histogram for scenario Moderate Load.
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(c) Cdf for scenario Heavy Load.
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(d) Cdf for scenario Moderate Load.
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(e) Comparison between predicted and measured load distribution.

Figure 5.19.: Predictions and measurements for load balancing under Windows.
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Questions Can the model predict the

 influence of heavy load?

Can the model predict the 

influence of moderate load?

Scenarios Heavy Load

250 ms Demand

0 ms Delay

7 Tasks

Moderate Load

250 ms Demand

Windows: 10 ms Delay

Linux: 50 ms Delay

7 Tasks

Metrics Err(RT), Err(Load(CPU)) Err(RT), Err(Load(CPU))

Hypotheses Yes, the prediction error 

is less than 5%

Err(RT) < 5%

Err(Load(CPU)) < 5%

Yes, the prediction error 

is less than 5%

Err(RT) < 5%

Err(Load(CPU)) < 5%

Evaluation of the Prediction Accuracy for Multiprocessor Load Balancing

Table 5.7.: GQM plan for the multiprocessor load balancing prediction model.

Prediction Accuracy for Lazy Load Balancing

MOSS accurately predicts the effect of Window’s lazy-balancing policy on software performance.
Figure 5.19 depicts the response time distributions for scenarios Heavy Load and Moderate Load.
MOSS predicts the task response times for both scenarios with an error of less than 1% (Ta-
ble 5.8(b)). Figures 5.19(a) and 5.19(c) show the accumulated response time distributions of all
seven tasks for scenario Heavy Load. As expected, one task is executed without preemptions on
one processor while the remaining six tasks share the second processor. This behaviour yields
the depicted response time distribution, where 50% of all requests finish within 250 ms and 50%
in 1500 ms. Analogously, Figures 5.19(b) and Figure 5.19(d) show the accumulated results for
scenario Moderate Load.

(a) Estimated load distribution for scenario
Moderate Load.
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(b) Measured and predicted response times for scenarios
Heavy Load and Moderate Load.

Min. 1st Qu. Median Mean 3rd Qu.Max.

Min. 1st Qu. MedianMean 3rd Qu.

Moderate

Measurement  [ms] 541,6 693 804,4 909,3

Prediction  [ms] 448,8 610,5 795,7 949,7

Error [%] 17,13 11,90 1,08 4,44

Heavy

Measurement  [ms] 653,8 853,5 885,9 859,9

Prediction  [ms] 653,6 853,4 884,8 855,9

Error [%] 0,03 0,01 0,12 0,47

Prediction Measurment Error [%]

Min. 251,9 251,8 0,0

1st Qu. 471,5 476,1 1,0

Mean 753 754,5 0,2

3rd Qu. 1124 1123 0,1

Max 1224 1237 1,1

Min. 251,8 251,8 0,0

1st Qu. 251,9 251,8 0,0

Mean 881 886 0,6

3rd Qu. 1512 1502 0,7

Max 1513 1503 0,7

Heavy Load

Task Response Time [ms]

Scenario

Moderate Load

Table 5.8.: Prediction accuracy for Windows Server 2003.

Tables 5.8(a) and 5.8(b) summarise the prediction error for both scenarios. The predicted load
distribution among the available processor (Figures 5.19(e)) matches the measurements with an
error of approximately 2% for scenario Moderate Load and less than 1% for scenario Heavy Load.
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Prediction Accuracy for Active Load Balancing

Similar to the lazy load balancing policy, MOSS accurately predicts the task response times
and load distribution for scenarios Heavy Load (Figures 5.20(a) and 5.20(c)) and Moderate Load
(Figures 5.20(b) and 5.20(d)). However, the predictions for scenario Moderate Load show a larger
variance than the corresponding measurements. This difference becomes evident in the predicted
and measured load distribution (Figure 5.20(e)).

(a) Estimated load distribution for scenario
Moderate Load.

pre  0.00000000 0.23157002 0.43144664 0.27112893 0.06153609

meas 0.000000000 0.085256712 0.609985869 0.300518135 0.004239284

Error [%]

Tasks Predicted Measured

1 0,0 0,0 0,00

2 23,2 8,5 14,63

3 43,1 61,0 17,85

4 27,1 30,1 2,94

5 6,2 0,4 5,73
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(b) Measured and predicted response times for scenarios
Heavy Load and Moderate Load.

Min. 1st Qu. Median Mean 3rd Qu.Max.

Min. 1st Qu. MedianMean 3rd Qu.

Moderate

Measurement  [ms] 541,6 693 804,4 909,3

Prediction  [ms] 448,8 610,5 795,7 949,7

Error [%] 17,13 11,90 1,08 4,44

Heavy

Measurement  [ms] 653,8 853,5 885,9 859,9

Prediction  [ms] 653,6 853,4 884,8 855,9

Error [%] 0,03 0,01 0,12 0,47

Prediction Measurment Error [%]

Min. 419,0 541,6 22,6

1st Qu. 635,0 693,0 8,4

Mean 790,6 804,4 1,7

3rd Qu. 934,0 909,3 2,7

Max 1261,0 1136,0 11,0

Min. 653,6 653,8 0,0

1st Qu. 853,4 853,5 0,0

Mean 884,8 885,9 0,1

3rd Qu. 855,9 859,9 0,5

Max 1154,0 1154,0 0,0

Heavy Load

Task Response Time [ms]

Scenario

Moderate Load

Table 5.9.: Prediction accuracy for Linux 2.6.22.

For scenario Heavy Load, MOSS predicts the response time with an error of less than 1%
(Table 5.9). It predicts the mean response time for scenario Moderate Load with the same
accuracy. However, the quantiles show larger differences due to the larger variance of the predicted
response times compared to the measured response times. The first quantile of both distributions
differs by 12% and the third by 17%. Furthermore, the minimum and maximum response times
deviate by 17% and 16% respectively. While the measurements show a load of 3 and 4 tasks in
most cases, the prediction expects a load distribution ranging from 2 to 5 tasks. Hence, MOSS
does not achieve the same degree of balancing as the Linux scheduler.

Thread vs. Process Load Balancing

In this section, we examine the effect of “random task switches” observed in Section 5.1.3. The
effect is caused by the dynamic remapping of light weight processes (LWPs [SGG05]) or kernel-
level threads and user-level threads. The mapping affects the performance metrics observed for
the tasks in scenarios Heavy Load and Moderate Load. For scenario Heavy Load, the response
time predicted for a single task strongly deviates from the measurements, while the accumulated
response time of all tasks is predicted accurately. The histogram in Figure 5.21(a) compares the
predictions and measurements. While MOSS predicts an almost constant response time of 1500
ms, the measurements alternate between 250 ms and 1500 ms. Thus, the task switched processors
during its execution. However, it did not affect the overall response time of all tasks as the results
depicted in Figures 5.19(a) and (c) show.

A changing association between user-level threads and light weight processes (or kernel-level
threads) explains this effect. In general, Windows uses a separate LWP for each user-level thread.
However, the relation can change in multiprocessing environments. Whenever a user-level thread
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(a) Histogram scenario Heavy Load.
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(b) Histogram scenario Moderate Load.
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(c) Cdf scenario Heavy Load.
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(d) Cdf scenario Moderate Load.
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(e) Comparison between predicted and measured load distribution.

Figure 5.20.: Predictions and measurements for load balancing under Linux.
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(a) Histogram scenario Moderate Load.
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(b) Cdf scenario Moderate Load.

Figure 5.21.: Differences in predictions and measurements for load balancing under Windows.

has to wait for a resource, its associated LWP looks for a new user-level thread of the same
heavy weight process to execute. Such situations lead to the “random task switches” observed in
scenario Heavy Load. In this case, two user-level threads switch processors without affecting the
overall balancing situation, i.e., one processor still executes a single task while the other processor
executes the remaining six.

The “random task switches” also occur in scenario Moderate Load. Lazy-balancing alone is
not sufficient to explain the measurements shown in Figure 5.19(b) and 5.19(d). Consider, for
example, the predicted response times for scenario Moderate Load with lazy-balancing (Fig-
ure 5.21(b)). Compared to the measurements, the predictions show a higher variance, i.e., short
requests are interrupted less often while long requests are additionally delayed.

To better understand the effect, consider the results of a simplified version of scenario Moderate
Load in Figures 5.22(a) and (b). The figures compare predictions for process load balancing with
measurements for thread load balancing. In the first case, an idle processor moves an available
light weight process from the busiest processor to its run queue. In the second case, a light weight
process (whose user-level thread starts waiting) looks for a new user-level thread to execute in
exchange for its waiting one. The predictions depicted in Figure 5.22 demonstrate the different
performance influences of both strategies, which affect the delay of each task (Figure 5.22(a)) as
well as its response time (Figure 5.22(b)).

The delay distribution (Figure 5.22(a)) provides information on how often and at what times the
load balancing policy moves tasks between the available processors. For process load balancing,
tasks wait for one timeslice, in most cases (≈80%). A task only waits for a full timeslice if
the scheduler does not move it to another processor, assuming that the scheduling interupts of
both processors occur independently. If the task would be moved, the remaining timeslice of the
currently running task is most likely to be less than a full timeslice. Only if the task remains
on the same processor, then it either has to wait for a full timeslice or wait until the currently
running task on the same processor finishes execution.
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(a) Predicted and measured delay.
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(b) Predicted and measured response time.

Figure 5.22.: Prediction results for load balancing with 3 tasks (and no LWP-thread switches).

For thread load balancing, a task has to wait less than a full timeslice in 60% of all cases.
This is only possible if the scheduler moves the thread to another processor (where the currently
running task’s timeslice already progressed). However, the lazy-balancing policy is not sufficient
to explain this effect. The measurements and predictions in Figure 5.22(a) suggest that the
processing of a task must start before the timeslice of the currently running task is finished and
before the second processor becomes idle. Both can only happen if the task is already in the
other processor’s run queue. Such a reallocation of tasks is not possible with the lazy-balancing
policy of Windows. Only a change in the association of light weight processes and user-level
threads explains the observed effect. If two LWPs switch their executing threads, then this keeps
both processors busy and adds the currently waiting user-level thread to the busiest processor’s
run queue. The change in the association explains the “random task switches” in scenario Heavy
Load.

Lifting MOSS to Different Environments.

MOSS has been validated and modelled according to the measurement results on a dual-core
system with Windows Server 2003 and Linux 2.6.22. In the following, we present predictions
and measurements of scenarios Heavy Load and Moderate Load for a quad-core system with
Windows Vista to emphasise its transferability to other platforms. The experiments address
the following two questions: (i) Does the number of symmetric multiprocessors influence load
balancing? (ii) Do newer operating system versions implement a more efficient (or different) load
balancing strategies?

Figure 5.23 shows the resulting measurements and predictions. As predicted by MOSS, the
imbalances generated in scenario Heavy Load remain and, thus, yield the extreme response times
of 250 ms and 1000 ms. The predicted long response times (i.e., four tasks sharing one processor)
deviate approximately 12% from the measurements (Figures 5.23(a) and 5.23(d)). The relative
large deviation of about 100 ms results from an additional preemption of the tasks, which does not
occur in the predictions. The task is preempted by its three competing tasks and, thus, prolongs
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(b) Histogram scenario Moderate Load.
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(c) Cdf scenario Heavy Load.
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(d) Cdf scenario Moderate Load.

Figure 5.23.: Predictions and measurements for a quad-core system with Windows Vista.
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the response time by three timeslices (94.5 ms) plus its remaining processing time. The additional
interruption is a result of the approximated generation of resource demands (cf. Appendix C.1)
and of disturbing influences in multiprocessing environments explained in the following.
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Figure 5.24.: Influence of the load on other processors on task response time.

In multiprocessing environments, the response time of a task solely running on its own processor
is influenced by the activity of the other processors. If all processors in the system are busy
processing a single task, the response time of each task increases compared to its response time
in a system where all other CPUs are idle. Figure 5.24 illustrates this effect. The initially
specified response time of 250 ms increases up to 280 ms. The task executes a computation
intensive algorithm that only rarely accesses main memory. Therefore, possible contention effects
of the main memory and memory buses cannot cause this effect (cf. Section 5.3). The additional
processing time yields the delay observed in Figures 5.23(a) and (c).

Quad

Min. 1st Qu. Median Mean 3rd Qu. Max.

moderate 344,4

339,3

heavy 257,9

265,4

Prediction Measurment Error [%]

Moderate Load

Min. 251,8 254,1 0,9

1st Qu. 282,1 268,8 4,9

Mean 365,9 374,1 2,2

3rd Qu. 414,7 436,1 4,9

Max 663,7 685,6 3,2

Heavy Load

Min. 253,4 253 0,2

1st Qu. 255,3 254,9 0,2

Mean 434,2 442 1,8

3rd Qu. 279,9 280,5 0,2

Max 1122 1122 0,0

Scenario

Task Response Time [ms]

Table 5.10.: Prediction error Windows Vista quad-core.

Table 5.10 summarises the prediction quality of MOSS for quad-core processors with Windows
Vista. The predictions and measurements for the quantiles and mean deviate by less than 5%.
The results demonstrate that the model is capable of predicting the performance of tasks on
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platforms with more processors as well as newer versions of the Windows operating system.
However, it may be necessary for other platforms to reexecute the defined scenarios in order to
validate the validity of the scheduler performance model on the new platform.

5.2. Case Study

In this section, we continue the case study of Section 4.3, which is placed in the scenario of a supply
chain management for supermarkets. For the business intelligence reporting use case evaluated
in Section 4.3, the predictions and measurement showed that a single-core system cannot handle
the load of the HQ application. With the given hardware, the HQ server can easily become a
bottleneck for management and accounting of the supermarket company. In the following, we
continue the performance evaluation, discusse the relevant performance questions (Section 5.2.1),
and present the results (Section 5.2.2). Please see Section 4.3 for an introduction to the overall
scenario of the case study.

5.2.1. Performance Questions

Driven by the performance problems discovered in the previous case study (Section 4.3), per-
formance analysts decide to continue the evaluation. In order to resolve the bottleneck, they
evaluate the benefit of a multiprocessor system for the HQ application. They want to answer the
following questions:

1. How would a new multiprocessor system improve performance?

2. Which operating system (Linux 2.6.22 or Windows Server 2003) provides the best perfor-
mance under heavy load?

A multiprocessor system could be used to improve performance if the processor was the bottle-
neck. However, overload conditions can occur even with additional hardware due to the strongly
fluctuating load. Thus, performance analysts want to further ensure, that the system’s perfor-
mance meets the requirements for intensive load.

5.2.2. Results

In this section, we discuss the predicted and measured response times for a dual-core processor
running with the Windows Server 2003 and Linux 2.6.22 operating systems. The results demon-
strate the differences and similarities in performance of single- and multi-core systems as well as
the prediction accuracy MOSS.

Prediction Accuracy To illustrate MOSS’s prediction accuracy, the predictions and measure-
ments of the following four scenarios are compared:

1. Dual-core Windows 180 requests / minute
2. Dual-core Linux 180 requests / minute
3. Dual-core Windows 360 requests / minute
4. Dual-core Linux 360 requests / minute

Figure 5.25 shows the cumulated distribution functions of the response times of the online
monitoring in all four scenarios. Furthermore, Table 5.11 summarises the predicted and measured
median of response times for all request types and scenarios. The prediction error ranges from 5%
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(a) 1. Windows Server 2003 and 180 req/min.

250 300 350 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative Distribution Function

t : Time [ms]

F
(t

)

Prediction
Measurement

(b) 2. Linux 2.6.22 and 180 req/min.
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(c) 3. Windows Server 2003 and 360 req/min.
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(d) 4. Linux 2.6 and 360 req/min.

Figure 5.25.: Monitoring requests, results for a single-core system.
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Prediction Measurement Error [%] Prediction Measurement Error [%]

Windows  (Dual)

Static Pages 5,0 5,1 2,5 5,0 5,1 1,8

Monitoring 256,6 256,5 0,0 463,3 458,4 1,1

Reporting 3191,0 3028,0 5,4 4584,0 4653,0 1,5

Linux (Dual)

Static Pages 5,2 5,3 1,8 5,3 5,2 2,0

Monitoring 252,6 255,6 1,2 259,3 258,5 0,3

Reporting 3018,0 3009,0 0,3 5739,0 4445,0 29,1

Windows (Single)

Static Pages 5,0 5,4 7,2

Monitoring 704,0 814,1 13,5

Reporting 9546,0 12100,0 21,1

Linux (Single)

Static Pages 5,5 5,1 7,4

Monitoring 266,2 261,4 1,8

Reporting 13720,0 11480,0 19,5

180 req / min 360 req / min

Table 5.11.: Predicted and measured median of the response time distribution under Linux 2.6.22
and Windows Server 2003.

to 10% in most cases and does not exceed 30%. The prediction error for business reporting under
Linux is caused by the same influences as discussed in the previous case study (cf. Section 4.3.5).

The results for the dual-core scenario suggest a significant improvement in response time for
all request classes when compared to a single-core system. Even though the load doubles (360
requests per minute), the system shows a much better response time than the single-core system
with the original load (180 requests per minute).

Single- versus Dual-core Processors Using a system with an additional processor core in the
HQ server represents a significant performance gain for the whole application (cf. Table 5.11). If
the load conditions stay similar, then Windows maintains a mean response time of 5 ms for static
pages, while Linux reduces it from 50 ms to 5 ms (factor of 9.5). However, the median response
time stays similar for both operating systems (5 ms). This performance gain indicates that the
response time distribution for the dual-core processor does not have a heavy tail as the one for
the single-core system. The additional processor core reduces contention and allows Windows
and Linux to serve incoming requests to static pages immediately. The number of threads in
the pool increases with the additional processor core. The threads reduce the contention of the
thread pool and further decrease the delay of incoming requests.

For online monitoring under Windows, the median of the response time decreases from 814
ms to 256 ms. By contrast, the additional processor does not affect the response time’s median
under Linux, but rather reduces its mean value. Similar to the static page requests, the heavy
tail of the distribution vanishes which yields the reduction of mean response times. Finally, the
response time of the business reporting benefits by a factor of 3 to 4 for both operating systems.

The reduced contention leads to a significant performance gain for all request types. The
response time not only halves (as one might expect) but improves by a factor ranging from 2 to
5. This large gain is a consequence of the reduced contention. The additional processor reduces
waiting times and, thus, significantly increases the performance perceived by users.

If the server’s load doubles from 180 to 360 requests per minute, the response times listed in
Table 5.11 still suggest an overall performance-gain of a factor up to 2. For the mean values
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Figure 5.26.: Comparison between single-core and dual-core performance.

the factor is even larger, ranging from 1 to 6. All request types benefit from the second core
even though the system utilisation is similar to the single-core scenario. This effect may not be
expected in the first place, but it is a direct result of the operating system scheduler’s behaviour.
Figure 5.26 compares the response times of the online monitoring for a single- and dual-core
system. It depicts the cumulative distribution functions of the response time under Windows
Server 2003 (Figures 5.26(a)) and Linux 2.6.22 (Figures 5.26(b)). For the scenarios single-core
and dual-core (same rate), requests arrive at a rate of 180 requests per minute, for dual-core
(double rate) with 360 requests per minute.

The speedup of the dual-core processor is a consequence of the multiprocessor load balancing
implemented in the Windows and Linux operating systems. It significantly reduces the waiting
time for all tasks executing currently. For a single-core processor, the execution of one task
delays all others waiting in the queue. In a dual-core system, the operating system scheduler
moves tasks as soon as one of the processors becomes idle (Windows) or is less loaded (Linux).
Load balancing between the processor cores reduces the delay for each request. In this case,
delays are determined by the tasks currently running on both cores. If a request is finished, the
scheduler moves tasks from the busier to the more idle core to balance the load. This balancing
affects the delay of all requests. Since the load of the (previously) busier core is reduced, the
remaining tasks can process with shorter waiting times. The tasks moved to the second core find
a less contended processor and receive a larger share of processing time. As a result, a major
decrease of the response times can be observed, especially under Windows.

In the beginning of this section, performance analysts asked whether a dual-core system can
provide sufficient performance for the HQ application. In the next paragraph, we answer the
questions that the performance analysts posed before this case study.

Answers to the Performance Questions Performance analysts predicted the response times
for multiprocessing environments of the HQ application. Based on the results, they suggest
to deploy the application on a new dual-core processor system running Windows Server 2003.
This execution environment profits from the major performance gain of the second core even
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under heavy load conditions and ensures fast responses to static web pages. However, from the
performance analyst’s perspective, the risk of timeouts for static page requests under Linux is
significantly larger than possible delays in the online monitoring under Windows. Hence, the
performance analysts prefer the Windows Server 2003 system over Linux 2.6.

5.3. Discussion of Assumptions and Limitations

In the case study presented in the section above, we demonstrated the good prediction accuracy
of MOSS. MOSS increases the accuracy of the predicted response times of the business report-
ing use case by several orders of magnitude compared to scheduling policies classically used in
performance prediction. However, MOSS still requires several assumptions and simplifications to
make multiprocessing environments predictable. In this section, we discuss the assumptions and
limitations underlying MOSS.

No Memory Access In symmetric multiprocessing environments, different processors and cores
may share common caches and memory buses. These contented low-level resources can become
a limiting factor for the scalability of software applications. Therefore, the task’s memory usage,
the processor cache sizes, and the memory bus together determine the influence of memory access
on software performance. Thus, the effect varies for different processor architectures. The first
dual-core processors showed strong influences of concurrent memory access on software perfor-
mance [HKR06]. The concurrent execution of memory intensive tasks could actually prolong task
response times instead of reducing it. Even though today’s multi-core processor architectures still
show a similar effect, its influence on software performance has been strongly reduced [BDH08].
Current research in processor design is directed towards the optimisation of memory buses for
concurrent memory access [AS01, IZG+07].

MOSS explicitly neglects contentions of the memory bus, varying memory access times, and
caching effects. While these factors can have a large influence on software performance, the actual
influence depends on the underlying processor architecture. Thus, we assume that memory access
times are uniform (uniform memory access, UMA) and do not depend on the memory location.
Consequently, we do not consider the influence of non-uniform memory access (NUMA) in MOSS.
Furthermore, predicting the contention at the memory bus requires a behavioural model for tasks
(such as RD-SEFFs, cf. Appendix A) that reflects the type and degree of memory access and keeps
track of the data’s location in memory. Modelling memory access requires much additional effort
for the software architects, which cannot be justify by the small benefit for software performance
prediction. With the rapid development of multi-core processors, contentions of the memory bus
are likely to vanish or become marginal in the near future.

Focus on Symmetric Multiprocessing Environments MOSS has been designed for performance
predictions in symmetric multiprocessing environments. Therefore, it assumes that all processors
and cores in the evaluated system are similar with respect to their performance properties. MOSS
cannot accurately predict performance in asymmetric multiprocessing environments such as IBM’s
cell processor [IBM]. In such processor architectures, a single main processor executes (parts of)
the operating system and delegates work to other, specialised processors.

Furthermore, MOSS cannot predict the influence of simultaneous multi-threading (SMT, also
called hyper-threading) on software performance. SMT systems allow multiple threads to run
concurrently on a single processor utilising internal resources of the processor. Due to these shared
internal resources, the influence of SMT processors on software performance is hard to estimate.
In [BP04], Bulpin and Pratt evaluate the performance of different SPEC CPU2000 benchmarks



5.4. Summary 157

on a Pentium 4 with hyper-threading. They systematically execute different combinations of
benchmarks concurrently. The results show that the actual performance gain or loss caused by
SMT technology strongly depends on the properties of the combined benchmarks. The observed
effect ranges from a performance gain of more than 30% to a slowdown of more than 20%.
Determining the relevant properties of a software application beforehand is nearly impossible for
software architects. Thus, MOSS does not reflect the performance influences of SMT systems.

Simplified Model of Linux’ Multiprocessor Load Balancing Policy Linux uses a hierarchical
model that reflects the structure of the underlying hardware to make load balancing decisions.
It uses different decision policies on each level of the hierarchy. The policies reflect the varying
costs for moving tasks between the processors. The costs include the task’s transfer itself as well
as its dependencies to the local memory or any other resource. While MOSS reflects the decision
policies of all layers, it does not model the hierarchical processor structure. Instead, it focusses on
a single level of the hierarchy and treats all processors equally. This restriction is closely related
to the focus on symmetric multiprocessing environments.

Furthermore, the results of the case study as well as the validation of MOSS prediction accuracy
in Section 5.1.5 suggest that MOSS does not reflect all performance-relevant properties of Linux’
multiprocessor load balancing policy. In general, the measurements show a more balanced load
distribution than the predictions of MOSS. The effect can be caused by Linux load balancing
policy as well as other scheduler features such as the interactivity policy or starvation prevention.

5.4. Summary

In this chapter, we have presented an extension of MOSS to symmetric multiprocessing environ-
ments. Similarly to Chapter 4, we have systematically evaluated the influences of multiprocessor
load balancing on software performance. Furthermore, we have introduces a CPN model to
address the performance-relevant factors identified in the evaluation.

A comparison between the results for the active-balancing policy and the results for the lazy-
balancing policy implemented in the Linux and Windows schedulers shows that active-balancing
leads to more evenly distributed load than lazy-balancing. As a consequence, response times show
less variance under Linux than under Windows. However, the throughput and mean response
times are similar for both systems in the scenarios that have been considered.

A closer examination of the results shows that not only load balancing itself influences the
response time of the tasks, but the association of kernel- and user-level threads also plays a major
role. For both systems, the association can change during execution. As soon as a user-level
thread starts waiting, its kernel-level thread looks for a new task to execute for the remaining
timeslice. Interestingly, this behaviour – an effect of the thread library used by Java – further
reduces the variance of response times.
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6. Message-based Communication

Details about the underlying Message-oriented Middleware (MOM) are essential for accurate per-
formance predictions for software systems using message-based communication. The MOM’s con-
figuration and usage strongly influence its throughput, resource utilisation and timing behaviour.
However, the inclusion of MOM in software architecture models requires additional effort as well
as detailed knowledge of the infrastructure used. As a consequence, software architects might
omit its influence. However, this can lead to erroneous or even misleading predictions. Detailed
performance models for MOM (such as [LG05]) are difficult to apply for software architects, espe-
cially if they are not integrated into proper architecture description languages. Prediction models
need to reflect these effects and allow software architects to evaluate the performance influence of
MOM that has beed configured for their needs. In the context of the Palladio Component Model
(PCM, cf. Appendix A), performance completions (cf. Section 2.1.4 or [WPS02, WW04, Bec08])
provide the general concept to include low-level details of execution environments into perfor-
mance models.

In this chapter, we present a meta-model extension to the PCM for Message-oriented Mid-
dleware [HFBR08] using the concept of performance completions. Our performance completion
for message-based communication integrates abstract descriptions for MOM based on messaging
patterns [HW03] in software architecture models. The messaging completion allows software ar-
chitects to specify message-based communication in a pattern-based language tailored to their
vocabulary. The use of pattern-based configurations in combination with model transformations
reduces the model complexity (from the software architect’s perspective) and increases prediction
accuracy. For performance evaluation, a model-to-model transformation integrates the low-level
details of a MOM into software architecture models.

In a case study based on the SPECjms2007 Benchmark [SPE], we evaluate the prediction
accuracy of the messaging completion. The benchmark models a typical supply chain management
scenario of a supermarket. The case study evaluates three design alternatives with varying pattern
selections for message based communication as well as varying message sizes. In the case study,
predictions and measurements deviate less than 20%.

This chapter is structured as follows. Section 6.1 introduces the GQM plan for the perfor-
mance evaluation of messaging patterns. In Section 6.2, we elaborate their influence on software
performance and describe parametrisation of messaging completion. In Section 6.3, messaging
completion is introduced to the PCM. In Section 6.4, we evaluate the prediction accuracy of
the messaging completion in a case study. The assumptions and limitations of the messaging
completion are discussed in Section 6.5. In Section 6.6, we summarise the main results of this
chapter.

6.1. Performance Evaluation of Messaging Patterns

In this section, our goal is the identification of performance-relevant patterns for message-based
communication. Analogously to Chapters 4 and 5, a detailed performance evaluation provides
the information necessary to design a performance model for MOM. However, this section differs
in several aspects from our previous evaluations:
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• Message-oriented middleware has multiple dependencies between parameters (e.g., message
sizes, number of message consumers, or number of messages in a transaction) and perfor-
mance. The evaluation needs to study the influence of these parameters systematically.

• The evaluation targets the definition of a general performance model for MOM that does
not depend on its underlying implementation and is sustainable for future implementations.
Thus, the model is based on measurements and messaging patterns only.

• Different patterns can lead to different performance models (i.e., different behaviour of the
MOM) or just affect the model’s resource demands.

Due to the combination of models and measurements, it is necessary to determine resource
demands for each execution environments independently. In Section 3.1.4, we already presented
the general idea of parametric performance completions. We apply this concept for the design of
the messaging completion. Before the performance prediction can take place, an automated test
driver evaluates the resource demands of the specific MOM platform used. The results are added
to the performance model skeletons defined in Section 6.3.

For the sake of brevity, this section is limited to the most relevant results of the evaluation. A
full description of the evaluation that includes the implementation of the benchmark application
and all results can be found in Holger Friedrich’s master’s thesis [Fri07].

The Goal

Goal: Purpose Identify
Issue the performance influence of MOM

Object for different messaging patterns
Viewpoint from the user’s point of view.

Similar to the evaluation of GPOS schedulers, this evaluation should identify the performance-
relevant features. However, in the case of MOM, the level of abstraction is considerably higher.
Instead of looking at the implementation details of each MOM, we focus on the more general
messaging patterns that are realised in most MOM platforms (e.g., most patterns can be found
in the Java Message Service standard [HBS+08]). This abstraction is possible since the ac-
tual implementation of a pattern influences the MOM’s resource demands but not its general
behaviour. For GPOS schedulers, the resource demands of the scheduler are dispensable for soft-
ware performance. Only its behaviour determines the response time and throughput of a software
application. Thus, for MOM, it is sufficient to model the general behaviour as specified by the
messaging patterns and determine the necessary resource demands by measurements.

Questions

MOM enables loosely-coupled components to communicate via the exchange of messages. The
messaging patterns summarised in [HW03] structure the various implementation and configu-
ration possibilities for message-based communication. They present standard solutions for dif-
ferent types of senders, receivers, and message channels. From these messaging patterns, the
evaluation has to be focussed on those patterns useful in the context of Java Message Ser-
vice [HBS+08, MHC02]. Furthermore, the performance model should contain only options that
have an actual influence on performance or provide special features for message-based communi-
cation.
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Therefore, the questions address the influence of each messaging pattern (described below),
the combination of different patterns, and the influence of variable parameters, such as message
sizes or the number of message consumers. For the sake of brevity, we only present the most
relevant questions. All other questions are analogous. The performance metric for MOM used
in the evaluation is the delivery time of a message, i.e., the time passed from sending a message
until its processing starts (the onMessage method is executed).

1. How does guaranteed delivery influence the delivery time of a message?

2. How does an increasing message size influence the delivery time of a message?

3. How does an increasing message size influence the delivery time of a message with guaranteed
delivery?

The first question addresses the influence of a single feature (guaranteed delivery) on the
delivery time of a message. The pattern guaranteed delivery persistently stores messages before
they are delivered to ensure their arrival even in the case of failures. Its performance influence is
determined by comparing the delivery time of the same message with enabled/disabled guaranteed
delivery. Depending on the results, the pattern’s performance influence is classified.

The second question addresses the influence of message sizes. The delivery time is expected
to grow with an increasing message size. This effect requires several measurements for different
message sizes. It is important to notice that the delivery time is unlikely to grow linearly with
an increasing message size due to the general overhead of the transmitted message and due to
packet sizes of the network.

The third question targets the mutual dependency of two different influencing factors. For an
efficient evaluation of all parameter combinations, a k-factorial analysis [Jai91] allows to determine
the mutual influences of various parameters with a minimum set of experiments.

6.2. The Performance Influence of Messaging Patterns

Messaging Pattern

~0  < 0.1 <= 1.0 > 1.0

Point-to-Point x

Publish-Subscribe (x)

Guranteed-Delivery x

Idempotent-Receiver x

Selective Consumer x

Transactional Client x

Durable Subscriber x

Competing Consumer x

Message Size x

Remote Receiver/MOM x

Influence Factor

Table 6.1.: Messaging patterns and features categorised according to their performance influence.

In this section, we describe the evaluation results for all message patterns for the JMS im-
plementation Sun Java System Message Queue 3.6 conducted within a master’s thesis [Fri07].
Table 6.1 lists the resulting classification for the evaluated messaging patterns. We distinguish
features without performance influence (mean delivery time not changed), features with a small
influence (below 10%), features with a moderate influence (between 10% and 100% change of



162 6. Message-based Communication

mean delivery time), and features with a large influence (more than 100% change of mean de-
livery time). For the last category, all of its features depend on input parameters, e.g., message
size, number of messages in a transaction, or number of competing consumers. A benchmark

Messaging

Point-to-Point 

Channel
Publish-Subscribe 

Channel

Message 

Channel

Pool Size

Competing 

Consumers

Exclusive OR

Mandatory Feature

Optional Feature

Message 

Size

Selective 
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Durable 

Subscriber

Transactional 

Client

Transaction 

Size

Guaranteed 

Delivery
Legend

Receiver
Sender

Figure 6.1.: Feature diagram of the relevant messaging patterns.

application measured the delivery time for each messaging pattern. The results of the benchmark
form the basis for the pattern selection presented in Figure 6.1. In the feature diagram, we dis-
tinguish patterns for message channels, receivers, and senders. In the following, we explain the
patterns and their performance influences in more detail.

Message channels Message channels are logical connections between communicating compo-
nents. They can be considered as queues. While point-to-point channels only allow a single
receiver for messages, multiple receivers can subscribe to publish-subscribe channels. Optionally,
a receiver can durably subscribe to the latter. In this case, the MOM keeps all published messages
until they can be delivered if a receiver disconnects from a messaging channel.

The influence of multiple receivers on performance is not considered in this thesis (see Sec-
tion 6.5 for a discussion). For a single receiver, the choice between publish-subscribe and point-
to-point channels has no considerable effect on the delivery time. However, this distinction is
necessary for modelling multiple receivers and, thus, is included in the model. Furthermore,
durable subscription leads to longer delivery times even if the receiver always stays connected.

Senders Senders add messages to a message channel. The sender of a message determines its
size, transaction boundaries, and type of delivery. The message size depends on the data that
needs to be transferred from the sender to the receiver. A message is a simple data structure
containing a header and a body. However, message size refers only to the body of a message
neglecting the influence of possible overheads in the message, such as its header. To guarantee
the delivery of a message, the MOM stores messages persistently during their transfer. The
implementation of the MOM determines how the message is stored, for example, using a database
or file system. Stored messages can survive system crashes and, if possible, are delivered after
a restart. A transactional client sends one or multiple messages as a single transaction. The
transaction boundaries are specified by the sender.

The size of a message significantly influences its delivery time. Figure 6.2 illustrates this effect.
With an increasing message size the delivery time of a message increases as well. While the slope
of the curves is rather small for short messages, its impact grows for messages larger than 10000
bytes. The influence of the message size strongly depends on the evaluated platform. For the
evaluated system in Figure 6.2, the message size influences the delivery time, but its effect is
limited. However, its influence becomes clearly visible for the system depicted in Figure 6.5.For guaranteed delivery (Figure 6.2(a)), the access to additional resources, e.g., the hard disk,
leads to longer delivery times. Compared to the delivery time without guaranteed delivery,
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Figure 6.2.: The influence of message size on the delivery time.

Figure 6.2(a) yields a factor of approximately 25% for its increase. If the MOM or the message
receiver is deployed on a remote machine, the necessary transfer over the network further delays
the delivery of a message (Figure 6.2(b)). The network’s influence is much larger and cannot be
captured by a single factor. For transactional clients, the delivery time of a message strongly
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Figure 6.3.: Delivery time of messages in a transaction set with 1000 messages.

depends on the number of messages in a transaction and the message’s position in the transaction
set. The delivery time increases linearly with the message’s position in the transaction set (see
Figure 6.3) The MOM stores all messages until it receives the last message of a transaction set
and then executes the message sequentially. Since the generation of a message is much faster
than its processing, successive tasks exceed the accounted waiting time of the first message (0.4
seconds). The sequential processing of messages leads to the observed linearly increasing delivery
times.

Receivers Receivers remove messages from a message channel. They can employ multiple, com-
peting consumers to process incoming messages concurrently. The consumers wait for incoming
messages. When a message arrives, it is processed by the next waiting consumer. If no consumer
is available, messages queue up until a consumer finishes processing its current message. Further-
more, message receivers can filter messages delivered via its subscribed channels. These selective
consumers only accept messages, which match their filter criteria.

Competing consumers can have a large impact on performance. If too few consumers are
available, congestion is likely and will lead to long delivery times. For example, if messages
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Figure 6.4.: The effect of competing consumers on delivery time.

are received and processed sequentially by a single consumer, the consumer can easily become a
bottleneck leading to congestion on receiver side. In Figure 6.4(a), a single consumer processes all
incoming messages. However, it cannot keep pace with the arriving messages. Message delivery
times increase constantly up to 1400 seconds. When multiple consumers are used to processing
the same load (Figure 6.4(b)), the system can maintain the pace of message arrivals and yields
acceptable message delivery times of less than 10 ms. Thus, multiple competing consumers can
avoid congestion on the receiver end.

The influence of selective consumers depends on the complexity of the filters used. For their
simple filters considered in this evaluation, the influence on delivery times was marginal.

In the next section, we describe how parameter dependent resource demands can be derived
from measurements and be included in the performance completion.

Parameter Dependent Resource Demands
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Figure 6.5.: Regression analysis for different message sizes.

The size of a message’s content strongly influences its delivery time. With an increasing mes-
sage size, the usage of resources increases. Figure 6.5 shows how the message size affects the
average delivery time. Here, the sender, receiver, and MOM are deployed on the same machine.
A single regression analysis [Fre05] over the measured times yields the linear function in Fig-
ure 6.5(a). While the approximation is good for large messages, it largely deviates for small
ones. To achieve better prediction results, multiple regression functions are necessary: One for
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messages smaller than 1000 bytes and one for messages larger than 1000 bytes. The more fine
grained approximations yields the curve shown in Figure 6.5(b) and reduces the estimation error
to 5% – 30%.

In the PCM, stochastic expressions [BKR07, RBH+07] reflect the influence of different param-
eters on software performance and, thus, can model resource demands depending on messages
sizes. Stochastic expressions support basic arithmetic operations on probability distributions and
parameters (cf. Appendix A). For example, the average delivery time of messages larger than
1000 bytes can be computed by a linear function with a slope of 0.02 and a y-intercept of -32.8
yielding the following stochastic expression:

0.02 * message.BYTESIZE - 32.8

In the prediction model, a branch condition selects the correct regression for a specific mes-
sage size. The stochastic expressions resulting from the regression analysis are integrated in the
messaging completion described in the following.

6.3. PCM Completion Models

The messaging completion takes into account the patterns described in Section 6.1 together with
message sizes and the allocation of the MOM. An annotation model allows software architects
to easily choose among different design alternatives regarding the messaging service. Completion
components realise the performance-relevant messaging patterns.

Message
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IMessageSender
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Messaging Completion

Transformation

(a) Annotated connector (b) Result of the transformation

Figure 6.6.: Replacement of an annotated connector by completion components.

Messaging Annotation Model Message-based communication affects the connectors between
components in the software architecture. An annotation model allows to select and customising
connectors for message-based communication. Figure 6.6(a) shows an example for a messaging
annotation. The annotation references a connector between two communicating components.
The possible configurations are defined by the feature diagram in Figure 6.1. In the example,
we configured the communication between the components as a point-to-point channel. The
transfer of messages is transactional and messages are stored persistently during the transaction
(guaranteed delivery). The message size is specified by a probability mass function over the
domain of integers. With a probability of 0.01 the message size is 10 bytes, with a probability of
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0.04, 100 bytes, and with a probability of 0.95, 500 bytes. The receiver uses a single consumer to
process messages and does not filter the incoming messages.

In addition to the options shown in the feature diagram, the annotation contains a reference to a
connector and a resource container where the MOM is deployed. In the example, the annotation
references the connector with identifier RfidAdapter InventoryManagement and the resource
container with identifier WarehouseApplicationServer. As shown in figure 6.6, a transformation
replaces annotated connectors by completion components, which are described in the following.

6.3.1. Messaging Completion Components
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Figure 6.7.: Interactions of the messaging completion components.

Figure 6.6(b) and 6.7 show the components generated by the transformation as well as their
interactions. The transformation selects a platform-specific MOM component corresponding to the
configuration of the messaging annotation. Furthermore, it generates the adapters necessary to
hide the message-based communication from the sender and receiver.

A MessageSenderAdapter provides the same interface as required by the sender. When the
sender calls a service on this interface, the adapter generates a message of the size specified in
the annotation model and starts the message transfer by calling publishMessage. As soon as the
message has been added to its channel, the control flow returns and allows the sender to continue
its execution.

The MOM component loads the CPU and hard disk of its resource container with the resource
demands caused by the message. Then, it forwards the call to the MessageReceiverAdapter,
which hides the messaging service from the called component. Its onMessage method calls the
corresponding service on the receiver component.

In the PCM model of the messaging completion, RD-SEFFs specify the communication and
resource demands of the components. Furthermore, they model the data flow between the com-
ponents. Figure 6.8 shows the RD-SEFFs of the sender and receiver adapters. Since an interface
can contain multiple services, the sender adapter (Fig. 6.8(a)) needs to pass a unique identifier
of the called service. Furthermore, it sets the size of the message according to the size speci-
fied in the annotation model. The ExternalCallAction of service publishMessage passes this
information to the MOM Component with two InputVariableUsages. The first sets the value of
parameter calledService to the service’s name, which is assumed to be unique.
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<< ResourceDemandingSEFF >>

onMessage

<< BranchAction >>

selectRequiredService

<< GuardedBranchTransition >>

serviceName.VALUE == "service"

<< ExternalCallAction >>

Interface.service

<< ResourceDemandingSEFF >>

service

<< ExternalCallAction >>

IMessageSender.publishMessage

    << InputVariableUsage >>
message.BYTESIZE =  

IntPMF[(10;0.01)(100;0.04)(500;0.95)]

<< InputVariableUsage >>
serviceName.VALUE = "service"

(a) Sender Adapter (b) Receiver Adapter

Figure 6.8.: Behavioural specification for the completion’s basic components.

The receiver adapter uses this parameter in its onMessage method (Figure 6.8(b)) to identify
the service addressed by the message. The BranchAction contains a GuardedBranchTransition
for each available service. If the serviceName’s value complies with the identifier specified in the
condition, then the transition calls the selected service. The second InputVariableUsage of the
sender adapter sets the size of the message. The MOM component uses this value to determine
the resource demand for delivering the message. The size of a message can be a probabilistic
distribution over different message sizes as shown in Figure 6.6(a).

MOM Completion Components

The component MessageOrientedMiddleware decouples the receiving process from the sending
process and generates resource demands according to its configuration. Figure 6.9 shows its
internal structure and the interaction of its subcomponents.

Component MessageSender asynchronously invokes service transferMessage on the
MessagingSystem. This decouples the delivery of a message from the sender process. After
internally processing the message transfer, the MessagingSystem asynchronously calls the ser-
vice deliverMessage of the MessageReceiver. Figure 6.10(a) shows its RD-SEFF. The transfer
of a message starts with an InternalAction, which represents the internal processing of the
MessagingSystem. The resource demand of this action is a stochastic expression, whose resource
demand increases with the message size (cf. Section 6.2). The whole resource demand is assigned
to a single resource (instead of hard disk drive, memory, and processor), which does not reflect
the actual load distribution in distributed scenarios (discussion in Section 6.5). When the internal
processing finishes, a ForkAction starts a new thread which calls service deliverMessage. As
the property synchronize is set to false the execution of transferMessage continues immedi-
ately and does not wait for the ForkActions behaviour to finish. This models the asynchronous
call of deliverMessage in the PCM.

Next, deliverMessage calls the onMessage service of the MessageReceiverAdapter. Its
RD-SEFF (Fig. 6.10(b)) models the influence of competing consumers. The passive resource
ConsumerPool contains the maximum number of competing consumers specified in the annota-
tion model. Before calling onMessage, the method acquires one of the consumers from the pool.
AcquireAction blocks until a consumer becomes available. When the processing of onMessage
finishes, the ReleaseAction returns the consumer to the pool. This limits the number of con-
currently processed messages.
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Figure 6.9.: Subcomponents of the MessageOrientedMiddleware component and their
interactions.

6.3.2. Transformation

An in-place model-to-model transformation [(OM07a] integrates the messaging completion com-
ponents into the architecture model. Following the scheme of a Y-transformation, it takes as
input a PCM instance (software architecture model) and an instance of the messaging annotation
model. The latter references a connector in the software architecture model which needs to be
replaced. The transformation is implemented in plain Java code. Both models are specified in
Ecore, the meta-modelling language of the Eclipse Modelling Framework1 (EMF).

The transformation (1) generates adapter components for the sender and receiver, (2) selects a
MOM component for the annotated configuration, (3) connects the new components to the sender
and receiver, and finally (4) allocates the new components to its resource containers. See [Fri07]
for a more detailed description of the transformation.

6.4. Case Study

In this section, present a case study that evaluates the prediction quality of the messaging
completion described in Section 6.3. A comparison between predictions based on architec-
tural specifications and measurements of an implementation gives an impression of the predic-
tion accuracy on messaging completion. The case study is based on the SPECjms2007 Bench-
mark [SPE, SKCB07, SKBB07] and is focussed on the influence of the MOM on performance.
Since the messaging completion should support early design decisions, the case study evaluates
three design alternatives for one of the benchmark’s interactions. The case study should answer
the question: Are the predictions of our messaging completion good enough to support design
decisions and to identify the MOM configuration with the best actual performance?

The SPECjms2007 Benchmark [SPE, SKCB07, SKBB07] provides suitable scenarios for the
case study. It is a standard industry benchmark for performance analyses of JMS developed
by SPEC’s OSG-Java subcommitee (including IBM, TU Darmstadt, Sun, Sybase, BEA, Apache,
Oracle, and JBoss). SPECjms2007 reflects the way messaging services are used in real-live systems
including the communication style, the types of messages, and the transaction mix. Furthermore,
it is focussed on the influence of the MOM’s implementation and configuration. The benchmark
minimises the impact of other components and services that are typically used in the chosen
application scenario. For example, the database used to store business data and manage the

1http://www.eclipse.org/modeling/emf/
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Figure 6.10.: Behavioural specification for the MOM-model’s basic components.

application state could be easily become the limiting factor of the benchmark and, thus, is not
represented in the benchmark. This design allows us to focus our evaluation on the influences of
the MOM without possible disturbances of other infrastructure components.

keeping the traffic per destination constant. In the vertical
scaling, the traffic (in terms of message count) pushed through
a destination is increased while keeping the number of des-
tinations fixed. Both types of scaling should be supported in
a manner that preserves the relation to the real-life business
scenario modeled. In addition, the user should be offered the
possibility to scale the workload in an arbitrary manner by
defining his own set of scaling points.

III. APPLICATION SCENARIO FOR SPECJMS:
SUPERMARKET SUPPLY CHAIN

The application scenario chosen for SPECjms models the
supply chain of a supermarket company. The participants
involved are the supermarket company, its stores, its distri-
bution centers and its suppliers. The scenario was defined
based on the requirements discussed in the previous section.
It offers an excellent basis for defining interactions that stress
different subsets of the functionality offered by JMS servers,
e.g. different message types as well as both point-to-point and
publish/subscribe communication. The scenario also offers a
natural way to scale the workload, e.g. by scaling the number
of supermarkets (horizontal) or by scaling the amount of
products sold per supermarket (vertical).

Company HQ

Super-

markets

Suppliers Supermarket Company

Distribution

Centers

= goods and 

information flow

= only information 

flow

Fig. 1. Overview of the Modeled Scenario and its Roles

The following four roles of participants involved in the
scenario are defined:

1) Company Headquarters
2) Distribution Centers
3) Supermarkets
4) Suppliers

The first three roles are owned by the supermarket com-
pany and therefore all communication among them is intra-
company. The suppliers are external companies and therefore
their communication with the roles of the supermarket com-
pany is inter-company. The interactions among the different
roles are illustrated in Figure 1.

A. Company Headquarters (HQ)

The company’s corporate headquarters are responsible for
managing the accounting of the company, managing informa-
tion about the goods and products offered in the supermarket
stores, managing selling prices and monitoring the flow of
goods and money in the supply chain.

B. Distribution Centers (DCs)

The distribution centers supply the supermarket stores which
sell goods to end customers. Every distribution center is
responsible for a set of stores in a given area. The distribution
centers in turn are supplied by external suppliers.

The distribution centers are involved in the following activ-
ities:

• Taking orders from supermarkets.
• Ordering goods from suppliers.
• Delivering goods to supermarkets.
• Providing statistical data to HQ (e.g. for data mining).

C. Supermarkets (SMs)

The supermarkets sell goods to end customers. The scenario
focuses on the management of the inventory of a supermarket
including its warehouse (back room). Not every supermarket
offers the same products. Some supermarkets could be smaller
than others, so that they do not have enough room for all
products, others may be specialized for some product groups
like food. We assume that every supermarket is supplied by
exactly one of the distribution centers.

D. Suppliers (SPs)

The suppliers deliver goods to distribution centers of the
supermarket company. Not every supplier offers the same
products. Instead, the suppliers have their own product cata-
logues. They deliver goods on demand, i.e. they must receive
an order from the supermarket company to send a shipment.
To keep things simple, it is assumed that each SP offers either
all products of a given product family or none of them.

IV. MODELED INTERACTIONS

The following interactions are modeled in SPECjms:
1) Order / Shipment Handling between SM and its assigned

DC
2) (Purchase) Order / Shipment Handling between a DC

and the SPs
3) Price Updates
4) Inventory Management
5) Sales Statistics Collection
6) Product Announcements
7) Credit Card Hotlists
Inter-company communication, i.e. communication between

the suppliers and the supermarket company, is implemented
using TextMessages containing XML documents. For intra-
company communication (between supermarkets, distribution
centers and the company headquarters) the whole set of
possible message types supported by JMS is used.

Figure 6.11.: Overview of the interactions of the supermarket supply chain [SKBB07].

The SPECjms2007 Benchmark resembles a typical scenario of the supply chain management
domain. It models a set of supply chain interactions between a supermarket company, its stores,
its distribution centres, and its suppliers (Figure 6.11). In the following, we describe the involved
parties, their responsibilities, and a business reporting use case for the company headquarters.

The company headquarters are responsible for managing the accounting of the company. This
includes managing information about goods and products offered in the supermarkets like their
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selling prices. HQ monitors the flow of goods and money in the supply chain. Distribution centres
supply goods to supermarket stores in a given area. They take orders from supermarkets and
deliver goods on demand. In addition, they order goods from external suppliers and provide
statistical data to HQ for data mining. Supermarkets sell goods to consumers and manage
the inventory of their warehouses. The different supermarket stores vary in size and range of
products. Some supermarkets do not have enough room for all products and, thus, have to order
goods on demand. Other supermarkets are specialised for some product groups (e.g., food). A
supermarket receives its goods always from a single distribution centre. Finally, external suppliers
deliver goods to distribution centres. Each supplier offers different groups of products and has
its own product catalogue. Suppliers deliver goods on demand.
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RFID
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Adapter
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Adapter
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<<Interface>>
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Figure 6.12.: Architecture of the warehouse application.

The case study is focussed on the inventory management of a supermarket. Inventory man-
agement is necessary when goods leave the warehouse of a supermarket, to refill a shelf. RFID
readers register goods leaving the warehouse and notify the local warehouse application, which
updates its inventory.

Architecture of the Warehouse Application Figure 6.12 shows the static architecture of
the warehouse application. A hardware RFID Reader is directly connected to the Warehouse
Application Server. An RFID Adapter component manages the connection to the RFID
reader. It converts and forwards the read data to the Inventory Management. A Messaging
Annotation configures the connector between the Inventory Management and the RFID Adapter
as persistent and transactional messaging channel. The message service allows RFID Adapter to
quickly accept new requests from the RFID Reader as it will not block its execution. Persis-
tency ensures that no inventory update is lost in case of failures. When notified, the Inventory
Management updates the inventory data using the DB Adapter component.

Usually, many goods leave the warehouse at once, e.g., an employee brings a lorry with goods
into the supermarket to refill the shelves. In this case, the RFID reader sends many messages
in a short time period. Experts estimate the number of messages up to 100 in a second. The
software architect now wants to know whether such a high load can be handled by the Message-
oriented-Middleware. In addition, it needs to be ensured that the warehouse application itself is
not affected.

Design Alternatives The software architect considers three design alternatives of the warehouse
application (Table 6.2). The original architecture (alternative 1, Persistent) sends the complete
data, i.e., message.BYTESIZE = Full from the RFID Reader to the Inventory Management.



6.4. Case Study 171

Arrival Rate Message Size Configuration

1.  Persistent 100 Full Persistent, Transacted

2.  Non-Persistent 100 Full

3.  Small 100 Identifier Persistent, Transacted

Full := IntPMF[(10;0.01)(100;0.04)(500;0.95)]

Identifier := IntPMF[(10;0.95)(100;0.04)(500;0.01)]

Alternative 

Table 6.2.: Design alternatives.

Alternative 2 (Non-Persistent) uses a reconfigured message service, since persistency and trans-
actionality might produce too many overheads. However, turning both off carries the risk of
loosing messages in case of failures, but might solve possible performance problems. Alternative
3 (Small) reduces the message sizes. Instead of transmitting all data kept on an RFID chip to the
inventory management, the message could be limited to a single product identifier. This strategy
reduces the message size, but also requires changes of the Inventory Management component.
Thus, this alternative should only be considered if really necessary.

To make a decision, the software architect defines performance requirements for the warehouse
application. The RFID reader should not affect the rest of the application too much, so it should
not utilise the system more than 50%, which enables the other components to keep working
properly. Furthermore, the system must be able to handle 100 RFID reads per second, which is
the expected maximum number of goods taken out of the warehouse at once. Finally, the delivery
time of a message must not exceed 1 second in 90% of all cases.

Results A simulation of the model for each alternative predicted the delivery times and CPU
utilisations. Each simulation run lasted 5 minutes and simulated the delivery of over one million
messages. A warm-up period of the first 2500 measurements was not included in the prediction
results.

The measurements were conducted with the SPECjms2007 Benchmark version 1.0. The bench-
mark was deployed on a single machine, to focus on the effects of message sizes and the message
service’s configuration. Sun’s Java System Message Queue 3.6 provided the necessary infrastruc-
ture for the measurements. During the measurement period, the benchmark executed only the
inventory movement interaction. The upper 5% of measured values were removed, to exclude
disturbances from the results. All other interactions were disabled and, thus, not considered in
the case study. A warm-up period of 10 minutes preceded the measurement period of 30 minutes.

Figure 6.13 summarises the predictions and measurements for the three design alternatives.
It shows the average and percentile 90% of the delivery time as well as the CPU utilisation.
Measured values are printed in dark grey, predicted values in light grey. The prediction error
for the average delivery time (Fig. 6.13(a)) as well as the percentile 90% (Fig. 6.13(b)) is below
15% in all cases. The messaging completion predicts the CPU utilisation (Fig. 6.13(c)) with an
error below 2% for design alternatives 1 (Persistent) and 2 (Non-Persistent). For alternative 3
(Small), the prediction error is nearly 20%. In the scenarios considered, the usage of persistent
message transfer has a major influence on the delivery time of a message. While the measured
and predicted average delivery times for alternative 2 (Non-Persistent) are 150 ms and 165 ms,
respectively, they are 722 ms and 650 ms for alternative 1 (Persistent). The percentile 90% of
the latter exceeds the upper bound of 1 second. The delivery time for measurements is 1354 ms
and for the prediction 1537 ms.
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Figure 6.13.: Predictions and measurements of the three design alternatives.

To allow a visual comparison, Figure 6.14 shows the cumulative distribution function (cdf)
of the predicted and measured delivery times for design alternative 2 (Non-Persistent). The
measured time is printed in dark grey and the predicted time in light grey. Both functions match
to a large extent. The model predicted that 90% of all messages are delivered in less than 411
ms. This estimate is confirmed by the measurements, where 90% of all messages are delivered in
less than 449 ms. In this case, the prediction error is 8.5%. However, the predicted and measured
CPU utilisation (Figure 6.13(c)) of about 96% for alternative 2 exceed the required maximum
utilisation of 50%.

Alternative 3 (Small) shows the best performance. Its measured and predicted delivery times
are much smaller than for the other alternatives. For example, 90% of all messages are delivered in
less than 2.2 ms (measured) and 2.1 ms (predicted). The measured and predicted CPU utilisation
is in the range of 24% and 29% and, thus, below the required upper bound of 50%. Alternative
3 is the best choice for the software architect with respect to performance. Coming back to the
question posed in the beginning of this section, messaging completion can correctly rank different
design alternatives concerning message services. It can predict the delivery time of messages with
an error of less than 15% and the resource utilisation with an error less than 20%. In the following
section, we discuss the results of the case study as well as the design of the messaging completion.



6.5. Discussion of Assumptions and Limitations 173

0

0,2

0,4

0,6

0,8

1

0 50 100 150 200 250 300 350 400 450 500 550 600 650

P
ro

b
ab

ili
ty

Time [ms]

Measured Predicted 

Percentile 90%

Predicted
411ms

Measured
449ms

Figure 6.14.: Delivery time of alternative 2 (cdf).

6.5. Discussion of Assumptions and Limitations

Case Study The case study in section 6.4 demonstrated the prediction accuracy of the mes-
saging completion. The different configurations of alternative 1 and 2 significantly influence
performance. Furthermore, the delivery time of a message strongly depends on its size. Espe-
cially in highly loaded systems, different message sizes can change the delivery time by several
orders of magnitude. Therefore, the MOM’s configuration as well as message sizes are important
factors for performance of systems using message-based communication.

The case study showed that predictions and measurements can deviate up to 20%. This devi-
ation is mainly caused by the abstraction of the model compared to a real system. In the model,
demands to multiple resources, e.g., processor, hard disk, and network, are summarised into a
single resource demand. Furthermore, the model does not represent the actual arrival rates of
messages in the benchmark. The benchmark tries to achieve the specified rate of messages. How-
ever, if the system is overloaded, the benchmark reduces the pace, since the workload driver does
not get enough processing time. The approximation of the resource demands by linear regres-
sion introduces another abstraction to the model. Therefore, the uncontended resource demands
derived from a linear function already deviate from the demands in a real system.

Measurement-based Model The resource demands of the completion’s internal actions are
based on measurements. To predict the performance of a MOM system on different hardware
platforms, it is necessary to re-execute the benchmark application for each platform in order
to determine its resource demands. If the target platform is available, then it is no longer a
problem. However, the necessary hardware might not be available if the performance of an
application should be evaluated during early development stages.

Relying on measurements of time consumption leads to further challenges. The MOM might
access different resources during the measured period. For example, a persistent message channel
will access the hard drive. Measuring the whole period makes it challenging to assign the correct
load to single resources, but requires to assign all load to a single resource. This simplification
can lead to false predictions if another resource than the loaded one becomes a bottleneck. Here,
detailed measurements for each resource are needed.
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Not only the assignment of load to different resources is challenging, but also the allocation
of load to involved components is difficult. Since the MOM is considered as a black box, its
internal time consumptions cannot be measured. Thus, the proper load of the sender, receiver,
and MOM components cannot be determined. Instead, all load is assigned to the MOM. It
might be possible to measure the time consumption of each component for open source MOM
implementations. However, such an approach would impose a lot of effort and would be limited
to open source systems.

Limitations of the Messaging Completion While constructing the performance completion for
message oriented middleware, several assumptions and simplifications were necessary.

The type of a message (Object, Map, or Text) might influence its delivery time. The MOM
completion does not reflect this effect and is focussed on text messages with varying sizes. The
delivery time of object messages and map messages may depend on the object that is send. To
include such effects on performance, the messaging completion can be combined with a mar-
shalling completion developed by Becker [Bec08]. Most of the additional resource consumption
will be produced by the marshalling and demarshalling of messages. Using an already evaluated
marshalling completion would easily allow to predict the performance of other message types.

In the description of the SPECjms2007 Benchmark, Kounev and Sachs [SKBB07] distinguish
horizontal and vertical scaling. For horizontal scaling, the number of receivers for a message is
varied, while for vertical scaling the number of messages in the system is varied. As demonstrated
in the case study presented in Section 6.4, messaging completions can successfully predict the
influence of additional messages in the system. The influence of additional message receivers can
however only be predicted with limited accuracy.

Furthermore, the model does not consider service parameters. So, software architects need to
specify the size of a message in the annotation model. Ideally, the specification should be derived
automatically from the parameters of a service. A similar problem is the forwarding of parameter
characterisations from the sender to the receiver. Forwarding of parameters is not supported by
current messaging completion.

6.6. Summary

In this chapter, we have presented a performance completion for Message-oriented Middleware.
The completion is customisable for different messaging patterns, like publish-subscribe or com-
peting consumers. Messaging annotations allow software architects to specify message-based
communication in software architecture models in a language specific to their domain. An in-
place model-to-model transformation generates components, which represent the MOM as well
as adapters for the communication components. The behaviour of generated components reflects
the configuration of the MOM. Parameter dependencies model the influence of varying message
sizes on performance. The MOM is treated as a black box. This approach makes the model inde-
pendent of the MOM’s actual implementation, but requires to initially measure the performance
of the MOM. The measurements determine the resource demands of messaging completion. Re-
gression analysis approximates the influence of message sizes on resource demands. A case study
based on the SPECjms2007 Benchmark has demonstrated the prediction quality of messaging
completion. For the three design alternatives: Persistent, Non-Persistent, and Small, the deliv-
ery time of a message was predicted with an error less than 15%. The predictions of the CPU
utilisation showed an error of at most 20%.

The messaging completion supports software architects to predict the influence of message
services on the performance of their applications. The messaging annotations for the PCM hide
the underlying complexity and allow an easy integration of different message services.
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7. Related Work

In this chapter, we summarise the state-of-the-art of software performance evaluation with respect
to scheduling. In Section 7.1, we discuss recent analytical solutions for queueing models with var-
ious scheduling policies and their implications for software performance. From a more practical
perspective, we present measurements and prediction results for specific features of general pur-
pose operating systems in Section 7.2. Furthermore, we provide an overview of the existing work
on scheduling in real-time systems and high performance computing. In Section 7.3, we outline
approaches that integrate infrastructure performance models into architectural specifications.

7.1. Performance Evaluation of Scheduling Policies in Queueing
Theory

A significant part of ongoing work in the area of queueing theory is devoted to assessment and
evaluation of performance influences of different scheduling policies. The overall aim of this work
is the identification of optimal scheduling policies with respect to mean response time, fairness,
and resource utilisation. In the following, we describe the current research for single-server
(Section 7.1.1) and multi-server queues (Section 7.1.2).

7.1.1. Performance Properties of Scheduling Policies in Single-Server Queues

Advanced policies for single-server systems prefer shorter jobs over longer ones or extend processor
sharing with priorities and job classes. Such policies can provide an initial approximation of
specific features of GPOS schedulers, like their preference of I/O-bound and interactive tasks or
task priorities. In the following, we discuss the performance influences of policies which are biased
towards small jobs. Furthermore, we describe recent results regarding their fairness properties
compared to other scheduling policies. Finally, we summarise existing work on performance
evaluation with extended processor sharing.

Bias Towards Small Jobs Wierman et al. [WHBO05] introduced a class of scheduling policies
called SMART policies, which are biased towards jobs with small sizes. Such scheduling policies
promise better interactivity and responsiveness for desktop and server systems. Thus, these po-
lices can approximate the behaviour of GPOS schedulers which prefer interactive and I/O-bound
tasks over compute-bound ones. SMART policies subsume the well known Shortest Remaining
Processing Time (SRPT) [Sch68] and Preemptive Shortest Job First (PSJF) policies. If the job
sizes are not known, Least-Attained-Service (LAS, also known as feedback scheduling) is typi-
cally used to approximate SRPT [YWSHB06]. LAS prioritises jobs with a short life span (little
attained service) so that short jobs (which always have little attained service) tend to have the
server for themselves. If several jobs received the same service, they share the processor via PS.

Yang et al. [YWSHB06] have shown that the mean delay of any SMART policy is near op-
timal under all service distributions. Furthermore, they have proved that all SMART policies
have the same response time distribution as SRPT, which is well-known to be optimal for mean
delays [Sch68]. Additionally, they have come to the conclusion that the delay distribution of
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SMART policies improves upon the delay distribution of LAS. However, LAS still provides an
improvement over FCFS for most job sizes [YWSHB06] and over PS for specific job size distri-
butions [WBHB03].

The applicability LAS and SMART policies has been evaluated in empirical studies. Harchol-
Balter and Schroeder [HBSBA03, SHB02] compared the performance of a webserver under a
fair scheduling policy and a variant of SRPT. They found that the performance can be dra-
matically improved for short jobs using SRPT. In their experiments, long jobs experienced
only negligibly higher response times. Inspired by the use of SRPT for webservers, Rawat and
Kshemkalyani [RK03] introduced the so called SWIFT scheduling policy for web servers. Addi-
tionally to the job size, SWIFT considers the network and server characteristics. Taking these
effects into account, the SWIFT scheduling policy can improve response times of long jobs by
additional 2.5% to 10%.

Name Description Policies

Always Fair
Policies that are fair under all load 

and all service distributions

Processor Sharing, 

Preemptive Last Come 

First Serve

Sometimes Fair

Policies that are unfair for some load 

and some service distributions, but are 

fair under other loads and other service 

distributions

Shortest Remaining 

Processing Time, 

Shortest Job First

Always Unfair
Policies that are unfair under all load 

and all service distributions

First Come First Served, 

Least Attained Service, 

Preemptive Shortest Job 

First

Table 7.1.: Fairness classification of scheduling policies [WHB03].

Fairness Scheduling policies which are biased towards small jobs optimise mean response times.
However, SMART policies tend not to be used in practice due to their expected unfairness. This
trade-off also occurs for age based policies such as LAS. Wierman and Harchol-Balter [WHB03]
address the question of fairness for different scheduling policies and classify them accordingly.
They define three classes of fairness: Always fair, sometimes fair, and always unfair (cf. Table 7.1).
Based on a formal definition of the fairness classes, they show that SRPT (being an instance of
the SMART policies) is only unfair under certain service time distributions and under certain
load distributions. Interestingly, LAS (being an approximation of SMART policies) is classified
as always unfair, since it disproportionately penalises long jobs independently of service times
and load distributions.

Beyond Processor Sharing Processor sharing is commonly used in software performance eval-
uation to approximate the behaviour GPOS schedulers. However, PS does not consider the
performance influence of priorities and different classes of tasks (or jobs). To predict such influ-
ences, extended processor sharing policies have been introduced (surveyed by [AAB+07]). These
policies can discriminate different job classes and assign different service-levels to jobs depending
on their class. Common extensions to processor sharing are Discriminatory Processor Sharing
(DPS), Generalised Processor Sharing (GPS), and Multilevel Processor Sharing (MLPS) ex-
plained below.
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DPS assigns a positive weight factor to each job class. The service capacity is shared among all
jobs present in proportion to the respective class-dependent weights. Therefore, DPS can be used
to abstractly model the behaviour of Linux’ run queue. Linux uses priority-dependent timeslice
sizes that can be approximated by DPS weights.

Unlike DPS, GPS uses class-dependent weights to share the service capacity among all non-
empty classes (i.e., classes that currently have jobs waiting). It does not consider the actual
number of jobs present for a class. Thus, all jobs of one class share the capacity assigned to
their class. This policy guarantees a minimum capacity to each class and isolates competing
classes. GPS is mostly used in telecommunications to reflect the behaviour of routers with shared
bandwidth.

Finally, MLPS exploits the variability in service demands to improve the overall system perfor-
mance. It gives precedence to shorter requests over longer ones. It assigns arriving jobs to classes
based on their service time. Within a class, jobs are served by ordinary PS policy. Therefore,
MLPS is an approximation of simple multi-level feedback queue schedulers.

Discussion The analytical solutions for queueing networks with generally distributed service
times are becoming increasingly powerful. However, they are still limited to simple scheduling
policies that do not reflect the complexity of GPOS schedulers.

Policies that are biased towards small jobs (SMART policies) provide the best mean response
times when job sizes are known a priori. These policies are not as unfair as expected. However,
job sizes cannot be known a priori in GPOS. Furthermore, tasks use processors as well as other
resources alternately so that the same task enters and leaves a processor’s queue several times
during its lifetime. Some GPOS schedulers (such as the O(1) and CFS implemented in Linux 2.6)
consider the task’s past waiting and processing times in order to make good scheduling decisions.
Therefore, models that only consider the duration of a job are not sufficient for performance
prediction.

The implementations of GPOS schedulers, such as the Windows and Linux operating system
series, are based on MLFQ to prefer I/O-bound and interactive tasks. The dynamic priority of
a task decreases with the time a task spends computing. However, the priority decay depends
on the scheduling policy and significantly determines the share of processing time received by
a task (cf. Section 4.2). Static priorities additionally favour specific tasks independent of their
behaviour or size.

The performance influences of GPOS schedulers mentioned above affect the applicability of ex-
tended processor sharing policies. DPS, GPS, and MLPS partially model the run queue of GPOS
schedulers, but neglect influences of its interactivity and multiprocessor load balancing policies.
The focus on specific features only allows good performance estimates for specific scenarios only.
Furthermore, the prediction accuracy of PS (or one of its variants) for GPOS schedulers strongly
depends on the workload characteristics. For example, PS yields large prediction errors for small
requests (e.g., that are smaller than a single timeslice), while FCFS provides a good approximation
for such cases (cf. Section 4.1)

In the next section, we summarise and discuss current research on the performance evaluation
of different scheduling and routing policies in multi-server queueing models.
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7.1.2. Performance Properties of Scheduling and Routing Policies for Multi-Server
Queues

While scheduling policies for single-server systems are well understood and analytically tractable,
multi-server queueing models pose several new challenges [Squ07]. For example, the SRPT policy,
which is proven to be the optimal scheduling policy with respect to mean response time for single-
server queues, is not optimal for multi-server systems [LR97]. An optimal strategy for multi-server
systems is yet unknown. Furthermore, analytical solutions have a limited availability, i.e., for
specific combinations of scheduling and routing policies.

For multi-server systems with immediate dispatching, the routing policy is crucial for achieving
good utilisation and low response times. However, its mutual influences with local scheduling of
service centres is not yet fully understood. Accurate models for load distribution in multi-server
systems are essential for performance evaluation of symmetric multiprocessing and distributed
systems. In such environments, the dynamic re-distribution of load plays a major role for software
performance. Thus, researchers address the question of how analytical models of load balancing
policies, such as cycle stealing or coupled processor models [Oso05], can improve the overall
system performance.

In the following, we describe work devoted to the analysis of multi-server systems with different
routing and scheduling policies. First, we present approaches that evaluate the performance
influence of priorities in multi-server systems. Second, we discuss analytical approaches for the
performance evaluation of load balancing and/or load distribution.

Priorities Harchol-Balter et al. [HBOSWW05] analysed multi-server systems with prioritisation
and compared the resulting response times with their single-server counterparts. Priority queueing
is difficult to analyse in a multi-server setting, since jobs of different priorities may be in service
(at different servers) at the same time, which leads to complex Markov chains. They came to
the conclusion that the effects of prioritisation in multi-server systems cannot be predicted by
considering a comparable single-server system. Furthermore, the authors state that a set of servers
provides a strong benefit in dealing with highly variable job sizes, yet they hinder performance
under light load. Finally, SMART prioritisation has much stronger effect in a single-server system
than in a multi-server system of equal capacity.

Choosing a Queue – The Routing Policy In multi-server systems, the distribution of jobs
among the available servers is one of the most important design questions. The central queue
model and the immediate dispatching model are two different concepts addressing this question.

In the immediate dispatching model, random and round-robin are the simplest assignment
strategies. While the random policy assigns an incoming job to each server with probability
1/k, where k is the number of servers, round-robin distributes jobs to servers in a cyclic order.
However, they neither maximise utilisation nor minimise mean response times. Under the Join-
the-Shortest-Queue (JSQ) policy, incoming jobs are immediately dispatched to the host with the
fewest number of jobs in the queue. This policy has been shown to be optimal for exponentially
distributed service times and unknown job sizes [Win77, TSC92, MS91, EVW80].

In the central queue model, the M/G/k/FCFS policy has been proven to minimise mean
response time and maximise utilisation for exponentially distributed service times and unknown
job sizes [Wol89]. The M/G/k/FCFS policy holds all jobs in a central queue. When a host
becomes free, it receives a job from the central queue in the order of their arrivals.

While policies like Join-Shortest-Queue and M/G/k/FCFS perform well when job sizes are
exponentially distributed, they perform poorly when the job size distribution has higher variabil-
ity [KST99, Whi86]. It has been shown analytically and empirically that the so-called dedicated
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routing policy outperforms both policies with respect to mean response time [SHB04, HBCM99].
The dedicated policy designates some servers as “short servers” and others as “long servers”. It
always routes short jobs to the “short server” and long jobs to the “long server”. The dedicated
policy is defined for both the immediate dispatching model and the central queue model, which
behave similarly under the dedicated policy. The dedicated policy performs well when job sizes
have high variability, because it isolates short jobs from the long jobs as waiting behind the long
jobs is costly [OHBSW05].

The unnecessary idling of some servers is the major disadvantage of the dedicated policy. For
example, if many short but no long jobs arrive the “long servers” remain idle while the “short
servers” become saturated with the load. Cycle stealing provides first concepts to overcome this
shortage.

Balancing the Load – Cycle Stealing In his Phd-Thesis [Oso05], Osogami addressed the prob-
lem of imbalanced situations for the dedicated policy. He introduced the concept of cycle stealing
to combine the variance reducing benefit of the dedicated policy with the high utilisation property
of M/G/k/FCFS and Join-the-Shortest-Queue. Basically, cycle stealing enables one server to
help another one when its own queue is empty. For example, if the “long server’s” queue is empty
while the “short server” is under heavy load, the latter may steal the “long servers’s” idle cycles
to serve short jobs.

However, cycle stealing grants short jobs access to the long server only when the long server is
free. It must not let long jobs starve causing them undue delay. Since jobs are not preemptive,
there is a penalty to a long job which arrives to find a short job using the long server. Osogami
shows that cycle stealing can provide an boundless benefit over the simple dedicated policy.

To be a good estimator for real systems, cycle stealing needs to reflect the costs of moving
jobs between servers [OHBSW05]. The additional costs may be caused by reloading memory, the
resumption of processing of donor jobs, remote execution costs, loading memory to the donor
machine. Thus, cycle stealing may pay off only if the beneficiary’s queue is sufficiently long.
Osogami analysed the optimal thresholds on the beneficiary and donor queue [OHBSWZ04].

Discussion In this section, we have presented current research on queueing theory which ad-
dresses the performance evaluation of scheduling and routing policies. The analytical solutions for
multi-server systems are still limited to specific combinations of routing and scheduling policies.
For example, just recently solutions for multi-server queues with JSQ routing and PS scheduling
have been proposed. The dedicated policy promises the best performance for multi-server systems
which have to process load with a high variance of service times. However, the analytical solutions
for different combinations of routing and scheduling policies as well as the load balancing models
are still an initial step towards the analytical solution of multi-server queueing systems.

Regarding the assumptions made by queueing network models, it is still unclear under which
conditions a multi-server queue yields accurate performance predictions for symmetric multipro-
cessors. The scheduling and routing policies used in queueing theory are strong abstractions of
the scheduling policies of real systems [RUKVB04]. To make good performance predictions, it is
necessary to understand the conditions for the applicability of a specific queueing model.
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7.2. Performance Evaluation of Operating System Schedulers

In this section, we summarise work involved in the performance evaluation of operating system
schedulers. These approaches include the performance evaluation of multiprocessor load balancing
policies for GPOS schedulers (Section 7.2.1), their interactivity features (Section 7.2.2), real-time
operating systems (Section 7.2.3), and high-performance computing (Section 7.2.4).

7.2.1. Multiprocessor Load Balancing of General Purpose Operating Systems

Chanin, Correa et al. [CCF+06, CZS06] analysed the influence of different load balancing polices
for NUMA systems on software performance focussing on the effect of different memory access
times. They proposed an optimised multilevel load balancing algorithm and demonstrated with
simulations, measurements and formal analyses of stochastic automata networks [PA91] the pos-
sible performance gain of the new algorithm. However, the results of the simulation and formal
analysis are contradicting. While the simulation and measurements yielded a performance gain of
2.2% to 10% depending on the underlying hardware architecture [CZS06], the analytical results
predicted an improvement of no more than 1% [CCF+06].

The contradicting results are a consequence of an oversimplified analytical model. Chanin et
al. [CCF+06] modelled the behaviour of processes by alternating periods of I/O and computation.
The period durations were approximated by exponential distributions. Furthermore, the model
contains only one explicit task. All other tasks in the system have a fixed influence on the
waiting time of the explicit task, i.e., the task’s waiting time in the different processor queues
does not change over time. The modelled load-balancer can only move a single task between the
available processors. This restriction strongly limits the capabilities of the modelled load balancer
compared to real systems. The simulation results and measurements in [CZS06] suggest that the
analytical model does not reflect the performance-relevant properties of the system under study
accurately.

The work presented above demonstrates the need for performance model validation, which
compares predictions to measurements. The authors neglected performance-relevant details of
the load balancer, which were essential for their approach. Omitting the model validation led to
misleading conclusions about the performance of the system under study.

Ahmad et al. [AGM+94] evaluated the influence of various load balancing policies and of their
parameters on software performance using neural networks. They trained a neural network using
simulation results of different load balancing policies for distributed multicomputer systems. The
simulation model is based on a simple queueing network with FCFS scheduling and exponentially
distributed service times. The neural network predicts the response time of the system under
study with different parameters for various load balancing strategies. The prediction error is below
5% in most cases. While the usage of neural networks to predict the influence of scheduling and
load-balancing policies seems promising, the examined system still contains strong restrictions,
such as exponential distributions, FCFS scheduling, and the restriction of the considered metrics
to mean response times.

Kluge et al. [KN07] developed a framework for monitoring the Linux scheduler called VAMPIR
that observes the number of task movements in multiprocessor environments. In a larger case
study, they observed the scheduler’s load balancing behaviour for an MPI application in three
different scenarios. In the first scenario (big blocks of work), the system was balanced quickly
and it remained balanced for the whole experiment. The second scenario (small blocks, busy
waiting) required repetitive balancing attempts of the scheduler, but still achieved a balanced
state. Finally, the third scenario (small blocks, yield CPU) led to continuous task movement
during the whole experiment and the system did not reach a balanced state. However, even
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though the third scenario was not stable with respect to load balancing, it yielded the fastest
overall response times. The results of Kluge et al. pointed out strong mutual dependencies
between multiprocessor load balancing and the interactivity policy of the Linux scheduler. The
usage of different synchronisation methods as well as the partitioning of the overall work into
differently sized blocks affected the overall response times.

7.2.2. Interactivity and Processor Reservation in GPOS Schedulers

In their experiments, Torrey et al. [TCM06] focus on the performance of interactive and I/O-
bound tasks under Linux 2.6.3. One of the main aims of the Kernel developers was the improve-
ment of interactivity in the Linux 2.6 scheduler. However, the MLFQ implementation of Torrey
et al. outperforms the Linux scheduler with respect to interactivity. The observed performance
gain comes at the cost of losing priority levels and starvation prevention. Furthermore, the perfor-
mance of batch processes and server systems was not evaluated. In their experiments, Torrey et
al. observed a fixed ratio of processing and sleeping times for tasks to be classified as interactive.
If a task sleeps for at least one quarter of its processing time, the Linux scheduler considers it as
interactive. While Torrey et al. evaluated many performance properties of the Linux scheduler,
the underlying concepts that cause the observed results remain unclear. Their study particularly
emphasises the difference between the Linux scheduler and formal scheduler models as described
in Section 7.1.

Kawasaki et al. [KGC+06] proposed an extension of the Linux operating system scheduler,
which reserves a percentage of the processor’s capacity to specific tasks. The reservation ensures
responsiveness and predictability of these tasks. The authors used a simple Markov model to
capture the behaviour of the Linux scheduler. The model demonstrates the improvements of their
approach compared to the current scheduler implementation. The evaluation of their performance
model is limited to a comparison with a simulation which contains similar simplifications and
assumptions like the proposed Markov model. According to their results, the reservation of
processor capacity for specific tasks can improve the performance of these tasks. However, this
reservation leads to a performance degradation of other tasks.

7.2.3. Real Time Operating Systems

There are numerous approaches for the performance evaluation of real-time systems available in
literature, e.g., [BMdW+04, BKR95, EE00, FNNS06, HZS01, LM99, MPC04, YW98, MPC04,
SG06, JLT85]. While the performance evaluation of real-time systems and component-based
enterprise applications may exhibit some common problems, their level of abstraction, their as-
sumptions about the underlying hard- and software infrastructure as well as the performance
metrics they consider vary significantly. For example, simulators of real-time operating systems
(such as [MPC04, SG06]), which allow system designers to evaluate the influence of different
scheduling policies on the performance of their system, include many low level details, such as
the saving and loading of tasks context, context-switch times, and scheduling latency, which are
negligible for GPOS schedulers. The performance metrics considered are mostly related to the
meeting of hard and soft deadlines. The scheduling policies available for modelling are often
limited to the most basic policies such as RR, FCFS, or SRPT. Their simplicity on the one hand
and the large number of low-level details on the other make them inapplicable for performance
evaluation in enterprise applications.
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Table 7.2.: Overview of scheduling policies for high performance computing [LV90].

7.2.4. High Performance Computing

In the past several decades, various scheduling policies for multiprocessing systems have been
evaluated in order to identify the critical factors for performance in high performance computing
applications (e.g., [MEB88, Maj92, GTU91, LV90, AD96, RSSS98]). Table 7.2 summarises the
most important scheduling policies of this area. The findings differ depending on the focus of
the authors. While Majumdar et al. [MEB88, Maj92] rate policies with a priori job knowledge
(especially Smallest Number of Processes First) best, Gupta et al. [GTU91], who emphasise the
influence of caching effects, favour co-scheduling. Leutenegger and Vernon [LV90] observe the
best performance for dynamic partitioning and round robin job policy (where a job subsumes
several processes). Au and Dandamudi [AD96] evaluated effects of a program’s structure on
the performance of scheduling policies for UMA systems. They observe the best performance
for preemptive shortest cumulative demand first scheduling. Rosti et al. [RSSS98] include I/O
accesses into their evaluation of scheduling policies. They demonstrate that the contention of disk
resources can become a dominating factor which significantly influences scheduler performance.

7.3. Infrastructure Performance Models

In this section, we describe model-driven performance prediction approaches that add platform-
specific performance specifications to software architectures. Furthermore, we discuss perfor-
mance prediction models for middleware infrastructures. The considered approaches provide the
necessary concepts to integrate MOSS as well as other infrastructure performance models into
high-level architectural models for performance prediction.
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Including Infrastructure Models into Abstract Software Architectures Inspired by the ideas
of component-based software engineering, Woodside and Wu [WW04] proposed the reuse of per-
formance (component) specifications. These previously calibrated sub-models or “performance
components” can be used flexibly in the system model. This approach allows the straightforward
integration of middleware details into prediction models. The envisioned concept is in line with
their earlier proposition of performance completions [Woo02], which supply additional information
not needed for functional specification but rather required for performance prediction.

Following the same idea, Grassi et al. [GMS06] used refinements from model-driven technologies
to integrate aspects of performance (and reliability) into their prediction model KLAPER. In
the considered example [GMS06], they integrate the overhead of remote procedure calls into a
performance specification of a distributed application. Woodside and Wu as well as Grassi et al.
focus on the concepts of completions and refinements.

Verdickt et al. [VDGD05] developed a framework to automatically include the impact of
CORBA middleware on the performance of distributed systems. Transformations map high-level
middleware-independent UML models to other UML models with middleware-specific informa-
tion. Their work is focused on the influence of Remote Procedure Calls (RPCs) as implemented
in CORBA, Java RMI, and SOAP. Their integration of delays imposed by RPCs is based on the
mean values of simple measurements. The proposed transformation approach extends the archi-
tectural specification by performance models of the infrastructure. While this method enables the
usage of various solutions for annotated UML specifications, infrastructure specification are con-
strained by the capabilities of UML. Thus, complex data dependencies or scheduling algorithms
are hard or even impossible to express.

Cortelessa et al. [CPR07] developed a framework that combines architectural performance
specifications with simulation prototypes of resources. In their case study, they evaluate the
influences of schedulers and webserver components on a web application. Resource prototypes
are reusable basic blocks for platform models. Their framework includes prototype models of
some of the most used resource types like CPU, mass memory, and network. To include resources
into software architecture, resource prototypes can be either directly instantiated or specialised
adding additional performance or behavioural information. These resource prototypes embed
specific probes to collect performance data. Resource prototypes can be assembled to processing
nodes or to whole platform models. For this purpose, special dispatching components standardise
the management of resource service requests.

Behaviour of resources is specified in terms of UML state-charts. Resources communicate via
ports, which can be regarded as the interface of a resource. For example, to specify a simple
scheduler, an external port accepting resource requests has to be modelled. When a request
arrives, a set of elementary jobs (required to satisfy the request) is enqueued (e.g., a disk reading
can be partitioned as a set of block reading jobs). When the scheduler selects a job for execution,
its behavioural specification (i.e., the statechart) moves to another state (e.g., “busy”) for a
specific time. Such transitions simulate the time spent by the physical resource to execute the
job. When all the jobs that are related to a request have been processed, the caller is notified
that its request has been satisfied.

Cortelessa et al. [CPR07] only give prototypical description of schedulers in their framework.
The state-charts are just an abstract representation of what happens inside the simulation. For
example, the authors do not model the queueing of jobs necessary for the scheduler. Furthermore,
they do not validate their prototypical resource models. However, validation is essential for
reliable prediction models.
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Measurement-based Development of Infrastructural Models Gorton and Liu [LFG05, GL03]
as well as Denaro et al. [DPE04] studied the influence of middleware on software performance.
Both considered middleware as the determining factor for performance in distributed systems
and, thus, focused on its modelling and evaluation.

Gorton and Liu [LFG05, GL03] proposed a measurement-based approach in combination with
mathematical models to predict the performance of J2EE applications. Measurements provide
the necessary data to compute the input values of a queueing network model. The computation
reflects the behaviour of the application under concern. The queueing network is solved to derive
performance metrics, such as response time and throughput for the application.

Denaro et al. [DPE04] completely focused on measurements and did not rely on predictions.
They assumed that the infrastructure of a software system is available during early development
stages. They use test cases based on architecture designs to provide performance estimates of a
software system. Both approaches strongly simplify the behaviour of an application neglecting its
influences on software performance. For measurements, they require the complete infrastructure
which may not be available during the design phase.

7.4. Summary

In this chapter, we have discussed approaches closely related to this thesis. We have addressed
approaches from (i) mathematical analysis of scheduling policies, (ii) performance evaluation of
operating system schedulers, and (iii) performance models for middleware platforms.

1. Formal analyses of scheduling policies have achieved interesting results about the influence
of scheduling policies on software performance. They point out possible performance gains
by the improvement scheduling policies. Unfortunately, the models are still simple compared
to the behaviour of real operating systems schedulers. However, the results guided the
experiments in Chapter 4 and 5.

2. Experiments on the performance influences of GPOS schedulers have provided interesting
insights into the performance influences of Linux’ interactivity and load balancing policies.
However, all performance prediction models for GPOS schedulers discussed here lack a
thorough validation. The lack of validation leads to oversimplified performance models
and, thus, erroneous predictions.

3. Performance models for middleware platforms provide background of the performance com-
pletion for message-oriented middleware (MOM). However, at their current state, significant
expertise is necessary for their application. The steep learning curve hinders their usage in
practice.

In this thesis, we have addressed the shortcomings of existing approaches and have proposed
a performance model for GPOS schedulers that accurately predicts their influence on software
performance (Chapters 3, 4, and 5). In addition, we have developed a performance completion for
MOM that allows software architects to include influences of MOM in their architectural model
(Chapter 6).
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8. Conclusions

8.1. Summary

In this thesis, we have presented performance modelling frameworks for general purpose operating
system schedulers and message-based communication in symmetric multiprocessing environments.
Their design followed a novel iterative method that experimentally derivates performance models
from specification and documentation. The models have been extensively validated and contain
only those factors that influence software performance. Software architects can customise the
models according to the requirements of the system under study. The proposed techniques help
software architects to predict response time, throughput, and resource utilisation with an error
of less than 5% to 10% in most cases and, thus, decrease the prediction error by several orders
of magnitude compared to today’s prediction methods. In the following, we summarise the main
contributions of our work.

Experiment-based Model Derivation For accurate performance predictions, model design needs
to be goal-oriented and tightly coupled with measurements. For this purpose, we have proposed
and employed a systematic approach to the experimental derivation of performance models from
initial specification and documentation. The method focuses the modelling effort and identifies the
performance-relevant factors before model design. An explicit validation of assumptions identifies
counter-intuitive performance-factors of the system under study and directs further investigation
if necessary. Based on the results, a performance model can be designed. Finally, a comparison
between predictions and measurements further ensures that the model captures all important
influences and has been defined on an appropriate level of abstraction.

Furthermore, performance models can be parametrised over the execution environment.
Parametrisation enables software architects to customise models for their specific target plat-
form. To determine the resource demands of that platform, automated test drivers execute a
series of predefined measurements. The results determine the parameter values of the model.
Additionally, parametrisation allows the definition of generic performance models for a class of
middleware platforms. Model-driven techniques integrate the models into architectural specifica-
tions and, thus, hide their complexity from software architects.

Performance Model for GPOS Schedulers We extensively employed the experiment-based
derivation method during the construction of MOSS, a performance model for general purpose
operating system schedulers. MOSS reflects the mutual influences of different time sharing, inter-
activity, and multiprocessor load-balancing policies on the performance of software applications.
MOSS specifically addresses the influence of GPOS schedulers in symmetric multiprocessing en-
vironments, such as today’s multi-core processors. In a series of goal-oriented experiments, we
have evaluated the performance influences of the Windows and Linux operating system series.
Based on the results, we have determined the performance-relevant properties of GPOS schedulers
described in the scope of this thesis.
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On an abstract level, feature diagrams model the performance-relevant properties of GPOS
schedulers. Feature characteristics reflect, for example, the different types of run queues, dynamic
priorities, and dynamic load balancing policies employed in both systems. Software architects
can customise the GPOS scheduler models based on the identified features.

For performance prediction, CPNs formally describe the behaviour of GPOS schedulers and
of their feature characteristics. These CPNs are hierarchically structured so that each subnet
represents a different feature. This separation of concerns allows the straightforward integration of
different feature characteristics in a single CPN. In a final validation of MOSS, we have compared
predictions to measurements and ensured that the model captures all important performance-
influences.

To hide the complexity of MOSS from software architects and from performance analysts,
MOSS has been integrated with the PCM, which is an architectural modelling language that
supports performance predictions during early development stages. For the integration, we have
implemented a discrete event simulation technique specialised for MOSS. Software architects
can either choose from existing scheduler configurations, e.g., Windows Server 2003 or Linux
2.6, or provide their own configuration. Depending on the configuration, the simulation chooses
different time sharing, interactivity and multiprocessor load balancing policies. This approach
hides the complexity of the scheduler model from software architects while significantly increasing
prediction accuracy.

However, MOSS also requires several assumptions on the task behaviour and underlying ex-
ecution environment. For example, memory access is not considered. Caching effects, possible
bottlenecks at memory buses, or varying memory access times for different memory spaces can
have a significant effect on software performance.

Messaging Completion Message-passing is widely used for communication in distributed enter-
prise applications. To model and predict the performance of such applications, we have proposed
a parametrised performance model for Message-oriented Middleware. Software architects can
customise a so-called messaging completion that models the behaviour of the underlying MOM
using a language specific to their domain. The model as well as its specification language are
based on design patterns for message-based communication. To a large extent, these patterns are
realised in standards for message-oriented middleware, such as Java Message Service [HBS+08].

For model design, we have identified those patterns that significantly influence the delivery
time of a message in a series of experiments. The proposed performance model only reflects
the behaviour specified in the messaging patterns and abstracts from the actual implementation.
Measurements determine the necessary resource demands of a specific MOM platform in the
target environment. For this purpose, an automated test driver measures the necessary data for
the new platform. To reflect the influence of different usage profiles (e.g., message and transaction
sizes), regression analyses extract the parametric dependencies of input parameters and resource
demands from the measurements. The resulting functions determine the resource demands in
dependency of the current input parameters.

Messaging can be customised for different execution environments and implementations of
MOM. The combination of pattern-based models with measurements allows accurate performance
predictions for different vendor implementations using the same performance model. Software
architects can customise the prediction model according to a feature diagram modelling the
performance-relevant messaging-patterns (e.g., publish subscribe or guaranteed delivery).
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The abstract modelling of complex middleware also requires several assumptions. For example,
demands to individual resources cannot be determined exactly by this approach. Thus, it is
assumed that the message delivery time is sufficient to model the performance of MOM. Even
though the assumption holds in the considered case study, more complex scenarios may require
a detailed resource demand breakdown to individual resources.

Validation In the scope of this thesis, we have validated the performance models by means
of a series of case studies all placed in the scenario of a supermarket supply chain management.
The case studies have provided detailed performance evaluations of HQ’s business reporting and a
supermarket’s warehouse applications. Both involve different types of requests as well as message-
based communication. The overall scenario of the case studies has been introduced in the context
of the SPECjms2007 benchmark [SPE, SKCB07]. We have extended the benchmark to reflect
additional classes of requests and support more elaborate scenarios.

The benefit of MOSS for performance prediction of business applications has been demonstrated
by a business reporting use case for HQ’s application. Supermarket managers as well as employees
of HQ can request different kinds of business reports. The reports are generated on the fly from
the collected data. The case study evaluates the performance of the system for different types
of requests and for different execution environments including a dual-core system under Linux
and Windows. MOSS predicts the response time for all types of requests with an error of less
than 5 – 10% in most cases. Compared to commonly used prediction models, MOSS increases
the prediction accuracy up to several orders of magnitude.

The performance completion for Message-oriented Middleware has been evaluated in the con-
text of the supermarkets warehouse management. An RFID-reader notifies the system whenever
goods leave the warehouse. The application keeps track of the stored goods and notifies the
supermarket management whenever new goods have to be ordered. In the case study, we have
evaluated the performance influence under peak load conditions that may occur when many goods
leave the warehouse at once, e.g., a lorry of goods is brought into the shop. The performance
model has predicted the message delivery time with an error of less than 15%. The resource
utilisation has been predicted with an error of 20%. The case study has demonstrated that some
of the assumptions underlying the messaging completion affect prediction accuracy and should
be weakened in the future. However, a prediction error of less than 30% is considered a good
performance prediction [MAD04] in general.

8.2. Benefits

The results of this thesis support software architects and performance analysts to i) focus their
modelling effort on the performance-relevant factors of the system under study, ii) transparently
evaluate the performance influences of different GPOS schedulers, and iii) include message-based
communication into their software performance models.

The proposed experimental derivation of performance models supports performance analysts
designing goal-oriented performance models. Its support for parametrisation allows abstracting
from the underlying hard- and software layers. Software architects can use the parametrised
models to predict performance properties of their software application in different environments
with little additional modelling effort.

The performance model for GPOS schedulers (MOSS) allows accurate predictions of influences
of the Windows and Linux operating system series on software performance. Such predictions are
especially useful in symmetric multiprocessing environments which become more common with
today’s multi-core technology. The model increases the prediction accuracy by several orders of
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magnitude reducing the risk of erroneous performance predictions. It supports software architects
judging different design alternatives correctly. Based on the predicted results, software architects
can identify the operating system best suited for their needs. Especially in heavy load situations,
operating systems differ significantly in their influence on software performance. Depending on
the scenario and the performance requirements, either equal distributions of processing time or
large differences may be preferable. While the first guarantees similar response times for all tasks,
the latter can be used to minimise the overall mean response time [WHBO05].

MOSS can further support operating system developers to predict the effect of changes in
scheduling algorithms on software performance a priori. Assessing the influence of changes with-
out measurement and/or simulation is a difficult or even impossible task. Today’s GPOS sched-
ulers target a wide range of systems with largely varying requirements. They must perform well
on desktop systems with few processors only and with high requirements to interactivity as well
as on sever systems with a large number of processors and tasks. Evaluating the influence of
changes to a scheduler in a set of representative scenarios reduces risk lowering the performance
for one user group while increasing the performance for another. Furthermore, it focuses the
development effort on the relevant scheduler features.

The messaging completion proposed in Chapter 6 enables software architects and performance
analysts to model and to predict the influence of asynchronous communication via message pass-
ing on performance of their application. They can configure the messaging completion using a
language specific to their domain that reflects the performance-relevant messaging patterns, e.g.,
durable subscription or competing consumers.

8.3. Lessons Learned

In the following, we summarise some of the lessons learned during the course of this thesis with
respect to software performance engineering.

For the design of accurate performance models, an initial validation of the model’s assumptions
is essential. Performance influences are often counterintuitive. Especially, mutual influences of
different system parts are difficult to track. For concurrent software systems, just the under-
standing of the functional behaviour can be challenging [Lee06]. Therefore, formal analyses
techniques, such as model checking, are essential to ensure correctness. It is mandatory for per-
formance prediction to understand the mutual influences of – on the first glance – independent
system behaviour, to design models that accurately reflect the behaviour of the overall system.
Goal-oriented experiments can guide the identification of such mutual dependencies. They help
performance analysts and software architects to get the complexity of today’s enterprise ap-
plications under control. The experiment-based derivation of performance models proposed in
Chapter 3 systematically challenges expert intuition by comparing their expectations to measure-
ments. This method supports performance analysts to focus their attention on the most critical
parts of the system under study.

However, not only counter-intuitive influences are a threat to validity for software performance
engineering but also the experimental settings selected for evaluation. For example, the workload
type (i.e., open or closed) is of major importance for the performance influence of scheduling
policies. While scheduling has a limited impact for closed workloads, it affects response times
up to several orders of magnitude for open workloads. Identifying the right experimental setting
for performance evaluation is challenging. The settings have to provide proper results answering
specific questions, but must not be too specific so that their results can still be generalised.
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While measurements are essential to build valid performance models for software systems,
they can also lower model complexity. In Chapter 6, simplified models were used to capture
the influence of Message-oriented Middleware. While this work has been focused on the basic
concepts underlying the simplification (parametrised performance models), the general approach
has much more potential for software performance engineering. With the increasing complexity
of software systems, strong abstractions are necessary for performance modelling. Parametrised
models in combination with measurements could help to get control over today’s complexity of
software systems.

While abstraction is necessary and helpful for some infrastructure models, such as message-
oriented middleware, it can hurt prediction accuracy for others. The design of MOSS has demon-
strated that some details can have a large impact on the overall software performance. Schedulers
affect all software artefacts running on the system under study, since they access and manage most
resources of a system. The identification of the relevant factors requires detailed measurements
to get a proper understanding of the mutual influences of scheduler features and task behaviour.

The validation of MOSS by multiple experiments and case studies captures a wide range of
possible influencing factors. However, a broader application of MOSS in different environments
and contexts is necessary to identify those factors not yet included.

8.4. Future Work

In the following, we propose several improvements of MOSS, parametrised performance comple-
tions, as well as performance modelling and model solution techniques.

MOSS - Performance Model for General Purpose Operating System Schedulers

Further Case Studies for Validation At the time of writing, a larger case study that continues
the supply chain management scenario for supermarket stores [SPE, SKBB07] is being conducted.
The validation integrates the performance modelling techniques prosed in this thesis. It includes
message passing, multi-core processors, different operating systems, and various types of requests.
The case study will give an impression on how the techniques can be combined and what the
expected prediction accuracy can be.

Support a boarder range of GPOS schedulers In this thesis, the design of MOSS has been
focussed on the Linux and Windows operating system series. For the future, we plan to support
a much wider range of operating systems common in the server and desktop market. MOSS is
planned to include the new Completely Fair Scheduler (CFS) of Linux as well as the operating
system schedulers of FreeBSD, Open Solaris, and AIX.

Integration with other simulation-based performance models Currently, MOSS is integrated
into the Palladio Component Model (PCM). However, its functionality is independent of the
PCM. Other performance simulation environments, such as Queueing Petri Nets (QPNs), are
planned to include MOSS to improve their prediction accuracy for GPOS schedulers. Further-
more, an integration with more powerful simulation environments is possible. For example, MOSS
may be implemented as a module for OMNeT++ [omn], which is a powerful and widely used
simulation environment for distributed systems. On the one hand, this allows MOSS to benefit
from OMNeT++’s network simulation capabilities and, on the other hand, OMNeT++ provides
an easy access to MOSS for a broad user community.
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Many-core processors If today’s trend of multi-core processors will continue, the number of
processors on a single chip is likely to increase according to Moore’s Law. Thus, the future
generations of processors will not only contain two, four, or eight cores, but several hundreds
or thousands of specialised processor cores. This expectation poses new challenges for operating
system development, programming language design, and software performance prediction. Ap-
propriate abstractions of such processors need to be identified for accurate software performance
prediction. MOSS is a first step in this direction. However, its prediction capabilities have to be
refined with the evolution of operating systems and processor technology.

NUMA architectures MOSS’ current support for symmetric multiprocessors (SMP) environ-
ments needs to be extended to non uniform memory access (NUMA) architectures as a major
step in this direction. Compared to SMP, NUMA architectures are connected to multiple memory
banks with different access times, which strongly influence software performance. The extension
of MOSS and the PCM towards such influencing factors requires the PCM to specify the used
memory and its location, i.e., the position of a task’s data in distributed memory, as well as
different memory access times.

Virtualisation of resources Furthermore, the increasing virtualisation of processing resources
poses new challenges to software performance prediction. Companies try to optimise the usage of
their existing hard- and software resources. Virtualisation provides the necessary technologies to
offer mutually independent software environments to different customers sharing the underlying
hardware resources. In such environments, the environment hosting the virtual operating systems
also influences task performance. In the long term, we plan to extend MOSS by an additional
virtualisation layer that allows predicting software performance in such dynamic environments.

Parametrised Performance Completions

Automated generation of platform-specific completions from measurements Parametric per-
formance completions use measurements of predefined performance metrics on the target envi-
ronment to predict the performance of the system under study. Within this thesis, a parametric
messaging completion has modelled the influence of different messaging patterns on the delivery
time of a message. For a broader application of parametric performance models, it is necessary to
automate the entire process of measuring the required performance metrics, executing regression
analyses, and creating platform-specific completions from measurements. This approach makes
the process transparent for software architects and provides the necessary prediction accuracy for
the target platform.

Additional infrastructure completions Furthermore, additional parametric performance models
for other infrastructure layers are planned, e.g., for databases and application servers. However,
databases require more sophisticated models for input parameters, since the processing time of
requests mainly depends on the query and the database state.

Performance characteristic curves The messaging completion assumes that resource contention
can be approximated by assigning the whole delivery time to single shared resource. However,
the discussion in Chapter 6 has shown that the approximation is not always sufficient. It may
be necessary to measure delivery times with respect to the number of concurrent messages in
the system and their size to increase prediction accuracy. The resulting function captures –
similar to characteristic curves in physics – the influences of different parameters on the observed
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performance. While this approach increases the prediction accuracy for the message delivery time,
it does not capture contention effects with other services using the same resources. Queueing
theory provides the necessary mathematics to compute the resource demands of a single request
from the observed resource utilisation and the message’s delivery time. However, measuring times
in distributed environments is challenging. The delivery time of a single message is often smaller
than the clock drift between the involved hardware nodes.

Regression splines Finally, the messaging completion uses linear regression to extract the func-
tional dependencies of the message delivery time and the message’s size. While this was appropri-
ate for the scenarios considered, better regression analyses for parameter dependencies of infras-
tructure performance models are desirable. Courtois and Woodside [CW00, WVCB01] propose
regression splines to model the functional dependencies between input parameters and observable
performance metrics. Applying this technique to parametrised performance completions allows
extracting much more complex functional dependencies from measurements.

Performance Modelling and Model Solution Techniques

Design patterns for concurrent software systems With the rise of multi-core processors in the
common server and desktop market, concurrency becomes ubiquitous in software development.
To ease performance modelling and implementation of concurrent software architectures, design
patterns can support the definition of software behaviour on an abstract level. Performance com-
pletions in combination with model-driven techniques (as proposed by Becker [Bec08]) enable
the automatic transformation of abstract pattern-based models to complete behavioural speci-
fications. The pattern-based approach encapsulates the implementation knowledge and allows
software architects to reason about systems on an abstract level. The transformation into full
behavioural specifications further enables the performance evaluation of the system under study
as well as automated code generation.

Variance reduction With the ubiquity of concurrency in multiprocessing environments, the need
for efficient analysis and simulation methods rises. As a first step, the use of statistical methods
for variance reduction can lower the simulation effort needed and aid the simulation of more
complex models.

Combining simulation and analytical methods A next step to increase the solution capabil-
ities for performance models is the combination of simulation and analytical methods. It is
often not necessary to predict all parts of the software architecture with similar (high) accuracy.
Therefore, it may be useful to select different solution techniques for different parts of a model.
Especially, the currently emerging fluid models that approximate solutions of continuous time
Markov chains (e.g., [Hil05, CDGH06, BP07]) are promising for highly concurrent software sys-
tems. Furthermore, efficient solutions for different types of GI/GI/n queues have been proposed
recently (e.g., [Oso05]). Combining such methods with discrete event simulation can help to cope
with the ever increasing complexity of performance models.
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A. The Palladio Component Model

The Palladio Component Model (PCM) [RBH+07, KBHR07, BKR08] is an architecture descrip-
tion language supporting design time performance evaluations of component-based software sys-
tems. The PCM provides transformations to stochastic regular expressions [FBH05, KBH07],
discrete-time Markov chains [Hap05b], Layered Queueing Networks [RS95, Fra99], and an event-
based simulation framework [BKR07]. The modelling and evaluation of the PCM is supported
by a tool called PCM Bench [Pal06]. In this section, we introduce the necessary concepts for the
messaging completion introduced in Chapter 6.

A.1. CBSE Development Process

In component-based software engineering (CBSE), the development of a software system is typ-
ically distributed over multiple independent roles. Each role takes different responsibilities and
contributes to the overall software system. In the context of the PCM, we distinguish four devel-
oper roles who produce artefacts of a software system [KH06]:

• Component developers specify and implement components. The specification contains an
abstract, parametric description of a component and its behaviour.

• Software architects assemble components in order to build applications. For the evaluation
of extra-functional properties, such as performance or reliability, they retrieve component
specifications from a repository. Based on these specifications, simulation-based and ana-
lytical methods predict the expected behaviour of a system.

• System deployers model the resource environment and the allocation of components to
different resources.

• Business domain experts, who are familiar with the customers or the users of a system,
provide usage scenarios as well as typical parameter values.

The PCM provides a domain specific modelling language for each developer role. It sup-
ports a mixture of top down and bottom up development for component-based software sys-
tems [KBHR08]. For performance evaluation, all model parts are combined and transformed
into a single performance model that can be solved using different analytical or simulation-based
solution techniques.

A.2. Component Specification (Component Developers)

Component developers specify and implement components, whose artefacts (e.g., specifications
and binaries) are stored in repositories. Additionally, they may assemble so-called composite
components from existing (sub-)components. To enable performance predictions, component
developers create abstract descriptions of service behaviour.
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Interfaces In the PCM, components communicate via interfaces which they can provide or
require. An interface serves as a contract between a client requiring a service and a server
providing the service. Components implement services specified in their provided interfaces and
may use services specified in their required interfaces during execution. The role of an interface
(i.e., provided or required) is thereby determined by its relation to a component. Note that an
interface can take multiple roles.

Components Software components are the core entities of the PCM. Basic components con-
tain an abstract behavioural specification called Resource-Demanding Service-Effect-Specification
(RD-SEFF) for each provided service. RD-SEFFs describe how component services use resources
and call required services using an annotated control flow graph. Basic components cannot be
further subdivided. Composite components are assembled from other components introducing
hierarchy into the model. To connect components, a connector binds a required interface of one
component to the provided interface of another component.

Resource Demanding Service Effect Specification RD-SEFFs are stochastic abstractions of
the control flow of a service. For each provided service of a component, an RD-SEFF describes
how the service uses hardware/software resources and how the service calls the component’s
required services.

Resource demands in RD-SEFFs abstractly specify the consumption of resources by the ser-
vice’s internal behaviour, e.g., in terms of CPU units needed, or in terms of bytes read or written
to a hard disk. Resource demands as well as calls to required services are included in an abstract
control flow specification, which captures call probabilities, sequences, branches, loops and forks.
In the following, we describes the elements of RD-SEFFs in more detail.

Internal actions model resource demands and abstract from computations performed inside
a component. For performance prediction, component developers need to specify demands of
internal actions to resources, like CPUs or hard disks. Demands can depend on parameters
passed to a service or return values of external service calls.

External call actions represent invocations by a component of services provided by other com-
ponents. For each external service call, component developers can specify performance-relevant
information about the service’s parameters. For example, the size of a collection passed to a
service can significantly influence its execution time, while the actual values may have only lit-
tle effect. Modelling only the size of the collection keeps the specification understandable and
the model analysable. Apart from input parameters, the PCM also deals with return values of
external service calls.

External service calls are always synchronous in the PCM, i.e., the execution is blocked until a
call returns. This is necessary for considering the effect of return values on performance. However,
asynchronous calls can be modelled by a combination of external service calls and fork actions
that allow parallel execution.

Control flow elements allow component developers to specify branches, loops, and forks of the
control flow. Branch actions represent “exclusive or” splits of the control flow, where only one of
the alternatives can be taken. In the PCM, the choice can either be probabilistic or determined
by a guard. In the first case, each alternative has an associated probability giving the likelihood
of its execution. In the latter case, boolean expressions on the service’s input parameters guard
each alternative. With a stochastic specification of the input parameters provided by the caller,
the guards are evaluated to probabilities.

Loop actions model the repetitive execution of a part of the control flow. A probability mass
function specifies the number of loop iterations. For example, a loop might execute 5 times with a
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probability of 0.7 or 10 times with a probability of 0.3. The number of loop iterations can depend
on the service’s input parameters. Furthermore, iterations over a collection are also modelled
explicitly where the number of repetitions depends on the size of a collection.

Fork actions split the control flow into multiple concurrently executing threads. The control
flow of each thread is modelled by a so-called forked behaviour. The main control flow only waits
for forked behaviours that are marked as synchronised. Its execution continues as soon as all
synchronised forked behaviours finished their execution (barrier pattern [Dou02]).

Acquire and release actions model the acquisition and release of limited passive resources,
e.g., semaphores or connection pools (see pooling pattern [Dou02]). Passive resources can have
a significant influence on the execution time of a service due to waiting times and, hence, are
included in the PCM.

Parametric Dependencies In the PCM, parameter dependencies [KHB06, KBH07] abstractly
specify input and output parameters of component services with a focus on performance-relevant
aspects. For example, the PCM allows to define the VALUE, BYTESIZE, NUMBER OF ELEMENTS,
or TYPE of a parameter. The characterisations can be stochastic, e.g., the byte size of a data
container can be specified by a probability mass function:

data.BYTESIZE = IntPMF[(1000;0.8) (2000;0.2)]

where IntPMF is a probability mass function over the domain of integers. The example specifies
that data has a size of 1000 bytes with probability 0.8 and a size of 2000 with probability 0.2.

Stochastic expressions model data flow based on parameter characterisations. For example, the
stochastic expression

result.BYTESIZE = data.BYTESIZE * 0.6

specifies that a compression algorithm reduces the size of data to 60%. The expression thus
yields: IntPMF[(600;0.8) (1200;0.2)]. Stochastic expressions support arithmetic operations
(∗,−,+,/,...) as well as logical operations for boolean expressions (==,>,<,AND,OR,...) on random
variables.

A.3. Architecture Model (Software Architect)

Software architects usually build systems from existing components. Similarly, component de-
velopers create composite components. Within these composed structures, the connection of
required and provided interfaces specifies the flow of control between different components. Fur-
thermore, delegation connectors forward incoming and outgoing requests from the surrounding
structure to the internal components and vice versa.

Architects and developers can use multiple instances of the same component in the same com-
posite structure. Components are embedded in unique contexts [BHK06], which separate the
component specification from its environment. All information that depends on a component’s
environment (i.e., parameter valuations, service times for specific resources) are held by its con-
text.
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A.4. Resource Model (System Deployer)

System deployers model the resource environment of a component-based software architecture and
allocate individual components to resources. According to the PCM, they instantiate abstract
resource types from a global resource repository to describe their concrete resources. The PCM
distinguishes between processing (or active) resource types (e.g., CPU, HD, Memory, etc.) and
passive resource types (e.g., semaphores etc.). Component developers specify RD-SEFFs which
reference resource types without knowing concrete resource instances.

Resource environments contain a number of resource containers (called nodes in UML) con-
nected by linking resources. Resource containers include processing resource specifications (e.g.,
a CPU with a processing rate 1000 work units per second) or passive resource specifications
(e.g., a data base connection pool with a capacity of 10). System deployers group resources in
resource containers. For example, a resource container that models a server contains multiple
CPUs, memory, and caches. To model distribution, the PCM provides link resources that model
network connections between multiple resource containers.

A component that is embedded in a specific software architecture (its so-called assembly con-
text) can be allocated to the concrete resources. The abstract resources referred to by the RD-
SEFFs can be substituted by the concrete resources from the resource environment to compute
actual resource demands.

A.5. Usage Model (Domain Expert)

Domain experts specify a system’s usage in terms of workload (i.e., the number of concurrent
users), user behaviour (i.e., the control flow of user system calls), and parameters (i.e., stochastic
characterisations of input data).

Usage models contain multiple scenarios, each of which models a single use case of the system.
For each scenario, a workload describes its usage intensity and a behavioural model describes its
flow of user actions (analogously to RD-SEFFs). Similar to queueing networks, the workload may
be open or closed (cf. Section 2.1.2).

Modelling alone is not sufficient to design performance models that accurately predict the
performance characteristics of interest. Therefore, performance modelling needs to be combined
with systematic experiments that support the model design [Jai91, Kou06].
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B. Timed Coloured Petri Nets

In this appendix, we described the concepts and features of timed Coloured Petri Nets
(CPNs) [Jen92] for the purpose of software performance evaluation. Further information on
the formal background of CPNs as well as their analytical capabilities can be found in the liter-
ature [Jen92, Jen94, JKW07].

CPNs are a formally well-founded modelling language for the evaluation of functional and extra-
functional properties of concurrent systems. They support the modelling of concurrent behaviour
as well as the specification of data flow and data manipulation. Thus, CPNs provide high flex-
ibility with respect to performance modelling. For example, they support generally distributed
service and transition times as well as customised performance monitors which collect the per-
formance metrics of interest. To ease the design of complex models, CPNs additionally allow the
definition of hierarchically structured nets. Modelling and evaluation of CPNs described in this
section have been implemented in a tool suite called CPN Tools [JKW07]. The tool determines
the performance characteristics of a CPN model by means of simulation. The expressive power
and modelling support for complex systems make CPNs well suited for the design of performance
models of operating system schedulers presented in Chapter 3 to Chapter 5.

In the next section, we informally introduces the basic modelling concepts of CPNs. Section B.2
describes their dynamic behaviour. In Section B.3, we introduce hierarchical modelling with
CPNs. Sections B.4 and B.5 describe the modelling of time and the collection of data in CPNs.
Both are fundamental concepts for software performance evaluation. In Section B.6, we summarise
CPN-patterns, i.e., typical solutions of problems in CPN modelling employed in the context of
this thesis.

B.1. Overview of the Structure of CPNs

Similarly to ordinary Petri nets [Pet62], places (denoted by circles or ellipses), transitions (denoted
by rectangles), and directed arcs connecting places and transitions constitute the structure of a
coloured Petri net. An arc always connects a place to a transition or a transition to a place.
Thus, arcs are not allowed between two nodes of the same kind, i.e., between two transitions or
two places. Furthermore, names are associated to places and transitions. For CPNs, the names
have no formal meaning but improve the readability of the net.

In addition, textual inscriptions are associated to places, transitions, and arcs. The inscrip-
tions have to be specified in a variant of Milner’s functional programming language Standard
ML [MTHM97] called CPN ML. In the graphical notation, inscriptions are written next to their
transition, place, or arc.

Figure B.1 exemplarily shows a CPN. It consists of two places (Source and Sink) and a single
transition (Transmit). By convention, the inscription below a place denotes the set of token
colours (data values) allowed on that place. The set is specified by means of a type (similar as
in programming languages) called the colour set of a place (colset in CPN ML). In Figure B.1,
places Source and Sink can hold tokens of the colour set INT, i.e., all integer values.

Each place can contain zero or more tokens of its colour set. Each token has an attached data
value called token colour or simply colour. For example, place Source in Figure B.1 can contain
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Figure B.1.: Example of the basic concepts of CPNs.

tokens with integer values. These tokens represent the current state of a place also called its
marking. The initial marking is, by convention, written above the place. The state of the system,
i.e., the marking of the whole CPN model, is the combined marking of the individual places.

The marking of a place subsumes its current number of tokens as well as their colours. In
Figure B.1, the current number of tokens on place Source is denoted by the number (7) in the
circle next to it. The individual token colours are listed in the box. The listing specifies a
multi-set, which contains multiple instances of the same token colour. The operators ‘ and ++
combine multiple token colours into a single set. The left argument of the infix operator ‘ is a
positive integer which denotes the number of appearances of the element specified as the right
argument. The ++ operator returns the union of two multi-sets (sum). Furthermore, multi-sets
can be multiplied, compared, and subtracted, which allows a straightforward manipulation of
tokens with CPNs. The initial (and current) marking of place Source (Figure B.1) contains
seven tokens: One token with value 5, two tokens with value 100, and 4 tokens with value 43.

Transitions represent the events that can take place in the modelled system. When a transition
fires, it removes tokens from its input places (those places that have an arc leading to the tran-
sition) and adds new tokens to its output places (those places that have an arc coming from the
transition). Arc expressions (textual inscriptions next to the arcs) determine the colours of tokens
removed from input places and added to output places. Guards (written next to the transition)
restrict the enabling of transitions.

In Figure B.1, transition Transmit removes a token from place Source, which is bound to
variable i in the scope of the transition. Variable i is declared as “var i : INT;” and has thus
to be bound to a value of type INT. A concrete binding of variable i for transition Transmit is
denoted by:

(Transmit, 〈i = 100〉)

Here, variable i receives the value 100 for the scope of transition Transmit. The transition’s
guard (i >= 10) restricts the binding of variable i to tokens colours whose value is equal to or
greater than 10 in the example. Only if tokens are available which fulfil this condition, transition
Transmit is enabled. When transition Transmit fires, it removes a token from place Source and
puts a new token on place Sink. The new token’s value is defined by the arc inscription i-10,
i.e., the value of the new token is 90 for the above binding (i = 100).

CPNs also allow to model double-headed arcs as a shorthand notation for two arcs in opposite
directions between a place and a transition with the same arc expression. Formally, the place is
both an input place and an output place for the transition. In practical terms, such arcs only
check the existence of specific token(s) in the respective place.
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B.2. Dynamic Behaviour

Enabling and Firing of Transitions Transitions represent events of a studied system in its
CPN model. The expressions on the input arcs of a transition together with the tokens on the
input places determine whether the transition is enabled, i.e., is able to fire in a given marking.
Therefore, a binding of the variables that appear in the adjacent arc expressions of the transition
must be found. The arc expressions of each input arc must evaluate to a multi-set of token colours
that is present on the corresponding input place.

When a transition fires with a given binding, it removes the multi-set of token colours to which
the corresponding input arc expression evaluates from each input place. Analogously, it adds the
multi-set of token colours to which the expression on the corresponding output arc evaluates to
each output place. In the following, we describe how CPNs resolve non-determinism and conflicts
of concurrently enabled transitions.

Source

INT INT
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INT

Storage
i+5

i

i

i

i

Store Retrieve

Transmit
i+1

1`5++
4`43++
2`100

1
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4`48++
1`105

Figure B.2.: Concurrency and conflicts in CPNs.

Steps, Concurrency, and Conflict Figure B.2 shows a CPN model with three simultaneously
enabled transitions. Boldly printed rectangles denote enabled transitions in the depicted CPN
model. For the shown marking, the binding of transitions Store and Retrieve can fire concur-
rently (i.e., in parallel) without any interferences. Transition Store requires a single token from
place Source while transition Retrieve requires a single token from place Storage. The pair
consisting of a transition and a binding for the variables of the transition is called a binding ele-
ment. For example, (Store, 〈i=100〉) is the only possible binding element for transition Store.
Transitions Store and Retrieve can get the required tokens without competing with each other
(cf. the current marking in Figure B.2). In general, multiple binding elements are concurrently
enabled in a given marking if there are enough tokens on the input places of the considered transi-
tions to simultaneously bind all variables. However, transitions Store and Transmit compete for
the remaining tokens on place Source and are thus in conflict with each other. Both transitions
are enabled in the current state but only one of them can fire since both require the last token
on place Source. The resolution of conflicts is discussed at the end of this section.

A step consists of a non-empty and finite multi-set of concurrently enabled binding elements.
The effect of firing of a set of concurrently enabled binding elements is the sum of the effects
caused by firing the individual binding elements (interleaving semantics). In other words, the
CPN model reaches the same marking as if the set of binding elements fired sequentially in
arbitrary order. For the marking in Figure B.2, the occurrence of a step with binding B (see
below) always results in markings MStorage and MSink for places Storage and Sink independently
of the order of the occurrence of individual transitions:
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B = 1‘(Store, 〈i = 100〉) ++ MStorage = 1‘105 MSink = 1‘10 ++
1‘(Retrieve, 〈i = 10〉) ++ 4‘48 ++
4‘(Retrieve, 〈i = 48〉) ++ 1‘105
1‘(Retrieve, 〈i = 105〉)

In general, an occurrence sequence describes an execution of a CPN model. It specifies the
steps that occur and the intermediate markings that are reached. A marking that is reachable
via an occurrence sequence starting in the initial marking is called a reachable marking. The
existence of a reachable marking with more than one enabled binding element makes the CPN
model non-deterministic, i.e., there may exist different occurrence sequences containing different
sequences of steps and leading to different reachable markings.

Simulation-based analyses need to select one of the enabled transitions to resolve non-
determinism. For CPNs, the simulation randomly chooses among the enabled transitions [Jen98].
Thereby, all transitions are selected with equal probability. Weighting or prioritisation of tran-
sitions, like in queueing Petri nets [Bau93, KB06], is not possible for the CPNs introduced by
Jensen. Timed CPNs (cf. Section B.4) employ the same policy of choosing among simultane-
ously enabled transitions, implementing a pre-selection policy [MBB+89], i.e., the transitions are
selected before their firing starts.

For CPNs, only the choice between the enabled steps is non-deterministic while the individual
steps themselves are deterministic. Once an enabled step has been selected in a given marking,
its occurrence always results in a uniquely determined marking. The only exception are random
functions discussed in Section B.4. In the next section, we describe hierarchical modelling with
CPNs.

B.3. Hierarchical Models

Modellers can structure their CPN model hierarchically into multiple hierarchically related mod-
ules and submodules, also called subnets in the context of this thesis. Hierarchy enables modellers
to separate different concerns of complex CPN models and use a single module for parts with
equal behaviour.

So-called substitution transitions and fusion sets define the hierarchy and communication points
for different modules. Substitution transitions encapsulate possibly complex behaviour as a single
transition. The behaviour of the transition is specified as a separate module with defined input
and output places (called input and output ports), which directly relate to the places connected
to the substitution transition. Fusion sets merge fusion places of different modules. Thus, tokens
on one fusion place are visible and available for firing on all other fusion places of the same fusion
set.

Figure B.3 continues the above example (Figure B.2). Here, the storage of tokens is encapsu-
lated in a separate submodule (Figure B.3(a)) which is now used by two substitution transitions
(Store 1 and Store 2 in Figure B.3(b)). Submodules receive tokens from their environment via
input ports (places tagged as In, e.g., Source in Figure B.3(a)) and send tokens to their environ-
ment via output ports (places tagged as Out, e.g., Sink in Figure B.3(a)). Note that input/output
ports (tagged as I/O) are also available and support the import and export of tokens. For the
example in Figure B.3(a), places Source and Sink constitute the interface for the Store module
to exchange tokens with its environment (i.e., other modules). The untagged place Storage is
internal to the module and cannot be accessed by other modules.

In Figure B.3(a), Place StoredElements is a fusion place and belongs to the fusion set Total-
StorageSize. Intuitively, all places belonging to the same fusion set can be considered identical.
Thus, the marking of a fusion place is identical for all places of the same set in all modules. In
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Figure B.3.: Modelling with hierarchical CPNs.

the example, the fusion set is used to keep track of the total number of elements of all storages.
Therefore, transitions Store and Retrieve increase and decrease the value of the place’s token
by one.

Figure B.3(b) depicts the higher-level module whose substitution transitions (drawn as double
rectangular boxes) are associated with submodule Store. In the CPN notation, the submodule
that is associated to a substitution transition is shown as a tag next to the transition. For each
substitution transition the ports of the submodule need to be mapped to places of the higher-level
module. Analogously to ports, they are called input, output, and input/output sockets.

The port assignment maps the port places of the submodule to the socket places of the sub-
stitution transition. After the assignment of a port to a socket, the two places constitute two
different views of a single place. Therefore, the port and socket place always share the same
marking and hence conceptually become the same place.

In Figure B.3(b), the input and output places of the submodule (Figure B.3(a)) are mapped
to places with the same name in the higher-level module for both substitution transitions.
Note that both substitution transitions have separate Storage places but share fusion place
StoredElements whose tokens thus reflect the total number of elements on the Storage places
of both submodules.

Hierarchy allows the decompositions of CPN models in multiple modules that communicate
via ports and sockets as well as fusion places. In the next section, we describe the modelling of
time in CPNs which is essential for software performance evaluation.

B.4. Time

To include timing aspects into a CPN model, the availability of a token for binding can be deferred
by an arbitrary delay. Thus, tokens in timed CPN models can carry a timestamp in addition to
the token colour. The marking of a place with timed tokens is a timed multi-set which specifies
the elements together with their number of appearances and timestamps.

The time value associated with a token (called timestamp) is a non-negative integer or real
number, from which the CPN Tools only support non-negative integers [JKW07]. The timestamp
determines the time at which the token is ready for usage, i.e., the time at which it can be removed
from the place by an occurring transition. The tokens on a place carry a timestamp if the colour
set of the place is timed (CPN ML keyword timed). The distribution of tokens among the places
together with their timestamps and the value of the global clock is called a timed marking.
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Figure B.4.: Modelling time in CPNs.

Figure B.4 depicts an excerpt of the submodel in Figure B.3(a) augmented with timing infor-
mation. Transition Store now defers the availability of tokens by the current value of their token
colour. Therefore, an additional inscription of transition Store adds the value (bound to variable
i) to the current simulation time. The symbol @ denotes the present value of the global clock
of a CPN model, i.e., the current simulation time. The global clock is unique for a CPN model,
i.e., in a hierarchical timed CPN model there is a single global clock that is shared among all the
modules.

The transition delay in Figure B.4 assigns a timestamp of @+i to all timed tokens created
by transition Store. For more fine grained modelling, the timestamps can also be specified for
individual tokens at the inscriptions of the transition’s output arcs. Instead of the transition
delay, the inscription of the arc between transition Store and place Storage can be changed to
i+5@+i which – as before – creates a new token on place Storage with the timestamp @+i but
does not affect other tokens created by the transition. Furthermore, arbitrary functions (specified
in CPN ML) can determine the timestamp assigned to a token. The functions can be well-known
probabilistic distributions, such as Normal, Binomial, Erlang, or Exponential distributions, or
can be defined individually. In the latter case, the function can depend on the current marking of
the net. For example, the delay can depend on the current number of tokens in a place modelling
a load dependent server.

Figure B.4 moreover depicts the current timed marking of place Storage. The marking contains
two tokens: One with value 48 and timestamp 43 and the other with value 105 and timestamp
100. Thus, all transitions which require a token from place Storage cannot be enabled before
the global clock reaches 43. Thus, the global clock controls the execution of a timed CPN model.
It is similar to event queues found in most simulation engines for discrete-event simulation (such
as [LMV02]). The model remains at a given simulation time as long as there are binding elements
that are enabled (i.e., have the needed input tokens) and are ready for execution (i.e., the required
tokens have timestamps which are less than or equal to the current value of the global clock).
When there are no such binding elements, the clock advances to the earliest model time at which
binding elements can be executed. Each marking exists in a closed interval of simulation time
(which may be a point, i.e., a single moment of time).

Timed CPNs resolve non-determinism with the same policy as plain CPNs. They randomly
choose the next binding element from all simultaneously enabled ones, employing a pre-selection
policy [MBB+89]. Please see [Jen92] for details.

In the next section, we describe how data collectors can be used to determine the performance
metrics of interest.

B.5. Data Collection

The CPN Tools support performance analyses via simulation combined with data collection. This
enables performance analysts to conduct a number of simulation runs and collect the performance
metrics of interest. They specify by means of data collector monitors what data needs to be
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collected during a simulation experiment. The data can be written in log files for post-processing.
Batch simulations help performance analysts to explore the parameter space of a model and
conduct multiple simulation runs without user intervention. In the following, we briefly summarise
the concepts and possibilities of data collection. For detailed information see [JKW07, cpn].

In general, numerical data can be extracted from binding elements that occur and markings
that are reached during a simulation run. CPNs Tools provide some generic data collector but also
allow the implementation of user-defined data collector monitors that are specific to a CPN model.
For example, the count transition occurrences monitor is a generic data collector monitor, which
counts the number of times a transition fires during a simulation run. Furthermore, the marking
size monitor measures the number of tokens on a place during a simulation run. Performance
analysts can assign the monitor directly to a transition or place.

Generic data collector monitors require the definition of some monitoring functions listed in
the following

• The predicate function determines when a monitor should collect data from the model, i.e,
data is only collected when the function returns true.

• The observation function collects numerical data from the model when predicate function
returns true.

• The initialisation function collects data from the initial marking of the model.

• The stop function collects data from the final marking of a simulation.

The data collectors enable performance analysts to determine the performance metrics of in-
terest, such as response time, throughput, and resource utilisation. All data collector monitors
can produce log files, statistical reports, and scripts for plotting data values as well as other
performance-related output. In the next section, we describe the CPN-patterns employed in the
design of the scheduler model in Chapter 3 to Chapter 5.

B.6. CPN Modelling Patterns

Despite their expressive power, CPNs lack some major modelling constructs for software perfor-
mance evaluation, e.g., queueing places and inhibitor arcs. Mulyar [MvdA05] proposed a set of
modelling patterns for CPNs (called CPN-patterns) that provide solutions to common problems
when modelling with CPNs. In the following, we summarise the patterns relevant for this thesis,
namely id matching, id manager, aggregated objects, and basic queues.

Id Matching In CPNs, tokens can represent information about an object, e.g., the state of a
process in supply chain management. In many cases, it is desirable to distribute the information
among multiple tokens, to change the information while keeping a copy, or to apply multiple
modifications to it simultaneously. In such cases, it is mandatory to keep track of the identity of
the object whose information is represented by multiple tokens.

The id matching pattern assigns the same identifier to each token holding information about the
same object. Multiple tokens can represent data related to the same object. For this purpose,
the affected colour sets are extended by an identifier (e.g., an affected colour set T becomes
colset IDxT = product INT * T). When the information about an object is distributed among
multiple tokens (Figure B.5), each token receives the same identifier. Furthermore, transitions
that combine tokens related to the same object have to bind the identifiers of the tokens to the
same value.
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Id Manager In most cases, the identifiers introduced above have to be unique in order to allow
the correct distribution data among tokens and its later merging. Id managers provide the
necessary constructs to generate unique identifiers and manage their lifecycle. For the scope of
this thesis, only the generation of unique identifiers is important.

Id managers store the next unique identifier on a distinct place (NextID in Figure B.5). When-
ever an identifier is requested, transition AssignIdentifier removes the token stored on place
NextID, assigns its value to the token requiring a unique identifier, and places a new token with
the value id+1 in NextID.

Aggregated Object Sometimes it is necessary to apply changes to or request information about
all tokens on a specific place. For example, information about all tokens on a place is necessary
for inhibitor arcs and queues described below. Instead of putting tokens on a place individually,
the colour set of that place (e.g., T) is changed to a list of tokens (e.g., list T). The considered
place then contains a list represented as single token. To access individual tokens, a transition
must retrieve and return the whole list. It selects individual tokens using access operators and
functions for lists. For example, the expression head::tail assigns the queue’s head to variable
head and its tail to variable tail. Both variables can be manipulated independently. Since all
transitions have to use the list in order to access individual tokens, the Petri net becomes more
complex.

Inhibitor Arc An inhibitor arc stops a transition from firing if its input place is not empty. Its
realisation is based on the aggregated object pattern, i.e., tokens are not stored directly in a place,
but are held within a collection. The inhibitor arc simply tests for the size of the collection. If
the collection contains no elements (length list = 0) the transition can be enabled.
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Figure B.5.: Model for different CPN patterns.

Queue In software performance evaluation, queues model the contention for hard- and software
resources. In CPNs, the queue pattern models unbounded queues with different queueing policies
(also called scheduling policies in the context of this thesis). The pattern extends the aggregated
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object pattern by different queueing policies. The general model is similar for all queueing policies.
The place that models the queue holds an ordered list of tokens. The insertion and removal of
tokens determines the queueing policy. In the following, we introduce the FCFS (First-Come,
First-Served) and priority queueing policies.

The FCFS policy sorts tokens according to their arrival time. For an FCFS queue, tokens are
appended at the end of the queue and removed from its beginning. Thus, tokens remain in the
queue until all tokens that where in the queue at the time of arrival have been removed.

Figure B.5 exemplarily depicts the behaviour of an FCFS queue. The queue stores tokens of
type IDxT in a list (LIST IDxT). Transition Enqueue removes a token (idt) from place FirstHalf
and the list token (q, i.e., the queue) from place Queue. It appends token idt at the end of list
q and stores the new list in place Queue. In CPN ML, [idt] denotes a list ([. . .]) with a single
element idt and statement qˆˆ[idt] concatenates the lists q and [idt].

If the queue contains at least one element, transition Dequeue is enabled. It removes the
current queue (idt::q) from place Queue where idt denotes the head and q the tail of the
queue. Furthermore, it puts the tail back and creates a new token with colour idt on place
ProcessedFirstHalf.

Listing B.1: Functions hasHigherPriority and priorityInsert for priority queues.
colset T = INT ; (∗ Basic co lour s e t o f the queued tokens ∗)
colset PT = product T ∗ INT ; (∗ Assoc ia t ing a p r i o r i t y (INT) to the token co lour ∗)
colset LIST PT = l i s t PT; (∗ Colour s e t o f the queueing p l ace ∗)

fun hasH ighe rPr i o r i ty ( ( t1 , p1 ) , ( t2 , p2 ) ) = (p1 > p2 ) ;

fun p r i o r i t y I n s e r t ( element , [ ] ) = [ element ]
| p r i o r i t y I n s e r t ( element , head : : queue ) =

i f hasH ighe rPr i o r i ty ( element , head )
then element : : head : : queue
else head : : ( p r i o r i t y I n s e r t element , queue ) ;

Priority queues order tokens according to an externally defined priority. The priority queue
ensures that all elements are ordered with respect to their priority, i.e., the highest priority comes
first, the lowest last. Transitions accessing a priority queue always remove the first element,
i.e., the token with the highest priority, from the queue. Listing B.1 shows the necessary data
types and functions for a priority queue. Colour set PT extends the basic colour set T by a
priority. Collection List PT represents the necessary collection. Function hasHigherPriority
compares the priority of two PT tokens. Finally, function priorityInsert directly inserts the
token (element) into the list if it is empty, or recursively moves through the list until the priority
of the current element is larger than the one of the queue’s head.

The queue pattern family requires that all transitions insert and remove elements according to
the defined policy. Mulyar [MvdA05] proposes further approaches for the modelling of queues.
However, all proposed models impose rules for transitions accessing the place. The above variant
provides a high flexibility and is thus well-suited for modelling general purpose operating system
schedulers.
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C. Technological Background

C.1. Benchmark Application

The resource demands specified in the model need to be mapped to actual code that consumes the
specified amount of processing time. Therefore, algorithms, like the Fast Fourier Transform or
Fibonacci number computations, generates the necessary load. Such algorithms are, for example,
used in the SPEC CPU2000 benchmark to measure the performance of a processor [Cor00, Hen00].
The resource demand generator [BDH08] automatically determines fitting input parameters for
an algorithm to meet the specified resource demands on a given platform. A calibration identifies
the dependency of input parameters and processing time for an algorithm. Its results define the
algorithm’s input parameters during prototype execution. If, for example, a Fibonacci number
generating algorithm needs to approximate a resource demand of 32 ms, then the calibration
will determine the amount of Fibonacci numbers to compute during this period, say 253. The
prototype uses this value, instead of the specified time, to generate the resource demand of 32 ms.
The calibration measures the execution time of an algorithm in the single-threaded case, i.e., its
(almost) uninterrupted and undisturbed execution time. During the prototype’s execution, the
system may process multiple requests concurrently. The measured performance metrics reflect
influences of the underlying platform such as resource contention and caching effects. Thus,
different load generating algorithms can lead to different performance results when executed
concurrently. In the following, we describe the requirements and preconditions of the proposed
approach and introduces the calibration as well as the execution of demands in detail. A discussion
of open challenges and limitations concludes this appendix.

Calibration Requirements The calibration needs to map specified processing times to input
parameters of an algorithm. It must be independent of the actual platform and algorithm, i.e.,
the calibration must automatically determine the input parameter of an algorithm on a given
platform to create the specified resource demands. For example, it may require 43 Fibonacci
number computations on one system and 345 on another to generate a demand of 1 ms. In
the scenarios considered in this paper, the times taken by the demand generating functions range
from one millisecond to several seconds. Furthermore, the framework should support multiple load
generating algorithms, since the different behaviour of algorithms (e.g., memory usage) can affect
a prototype’s performance. Finally, the calibration of an algorithm’s input parameters should be
fully automated and transparent to the software architect, to achieve a proper applicability of
our approach.

Calibration Strategy In order to fulfil the above requirements, assumptions such as the load
of an algorithm is controlled by a single integer value as input parameter, e.g., the amount of
Fibonacci numbers generated, must be made. The execution time of each algorithm needs to
be minimum for 0 and increases monotonically with the input value. For the Fibonacci number
generation, the computation of 0 numbers is (surprisingly) fastest and its execution time increases
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the more numbers it computes. Except for the need for a monotonically increasing function, we
do not make any further assumptions about the dependency of the input parameter’s value
and the algorithm’s execution time. The dependency can be linear, exponential or any other
monotonically increasing function.

To efficiently approximate resource demands, we first calibrate an algorithm for a given hard-
and software environment. Its input parameters are determined for a set of predefined execution
times. The results provide the basis for load generation during a prototype’s execution. Since a
prototype can issue many arbitrary resource demands, we cannot determine the input parameters
for all demands in advance. Instead, we compose requested demands of smaller, previously
calibrated ones. In the following, we explain the details of the calibration as well as the resource
demand break down.

C.1.1. Determining the Input Value for a Specific Resource Demand

The calibration method iteratively approximates the best input value to reach a specified ex-
ecution time. Therefore, it implements a variant of the bisection method [BF88], which is a
root-finding algorithm.
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Figure C.1.: Abstract illustration of the bisection method.

We want the execution time of an algorithm execalg(n) with input parameter n to match the
specified target execution time t: execalg(n) = t. Thus, we need to solve execalg(n)− t = 0. If we
define f(n) = execalg(n)− t, the problem becomes a typical root finding problem with f(n) = 0.
Figure C.1 illustrates the approximated function f(n) as well as the bisection method. Provided
that all implemented algorithms have strictly monotonic behaviour, each generated function has
got exactly one root point representing the corresponding iteration parameter to the targeted run
time.

To find function f ’s root, the calibration needs to identify two input values nleft and nright that
represent the borders of the first interval. The interval must contain the function’s root, thus
the function must be smaller than zero for the left border (f(nleft) < 0) and larger for the right
one (f(nright) > 0). For the first, the calibration selects zero (nleft = 0) as initial value, which
corresponds to the smallest possible value of f . To find a value for nright with f(nright) > 0,
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the calibration executes the algorithm with a predefined value. If the result for f is smaller
than zero, the calibration doubles the input value and re-executes the algorithm. This continues
until a value with f(nright) > 0 is found. For the above example, the interval’s left border is
nleft = 0. Since the generation of zero Fibonacci numbers consumes no time, the functions value
is f(nleft) = −32. The initial value for the right hand side is nright = 200. However, the functions
value f(nright) = −5 is still below zero. Thus, the calibration doubles the value (nright = 400)
and determines the new result, e.g., f(nright) = 48 which is greater than zero. The initial interval
borders are nleft = 0 and nright = 400.

When the borders of the first interval have been determined, the execution of the bisection
method starts. It repeatedly halves the interval, determines the execution time of the algorithm
for the interval’s mean value, and selects the subinterval which contains the function’s root. The
intervals mean value of the example is nmean = 200 with a value of f(200) = −5. Thus, the
bisection method selects n′

left = nmean = 200 as left and n′
right = nright = 400 as right border

of the new interval. Figure C.1 illustrates two iteration steps of the bisection method. The
approximation terminates as soon as the distance of the interval borders is equal or less than 1
millisecond or a predefined number of iterations is exceeded.

The execution time of an algorithm needs to be determined accurately to enable exact input
value calibrations. This requires multiple executions of the algorithm during each iteration of
the bisection method. The application of statistical methods removes outliers and achieves stable
results over multiple executions. In the next section, we describe how a single resource demand
can be mapped to multiple pre-calibrated input values of a load generating algorithm.

C.1.2. Resource Demand Break Down

The bisection method allows us to determine the input value of an algorithm on a specific platform
for a certain resource demand. However, the process requires several iterations including multiple
executions of the algorithm with different input values. As we want to keep the calibration
effort minimum, we focus on a limited number of resource demands whose input parameters are
determined during the calibration period. All other resource demands are composed from the
predetermined ones.

During the calibration the algorithm’s input values for 2n with n ∈ {0 . . . 10} milliseconds are
determined. The results of the calibration are stored in a table which contains approximated pa-
rameters associated with their individual execution times. Using the greedy strategy, an incoming
demand is dived into multiple sub-demands of 20 ms to 210 ms. To generate the workload of the
whole demand, each of the sub-demands is executed sequentially. This allows us to efficiently
and automatically approximate different demand types on arbitrary platforms. For example, a
demand of 300 ms is approximated by the sub-demands: 256 ms + 32 ms + 8 ms + 4 ms. For
each sub-demand the input value of the used algorithm is retrieved from the previous calibration.
Executing the algorithm four times with the corresponding input values leads to a total time
consumption of 300 ms. The overhead introduced by the break down and multiple executions
is much smaller than 1 ms and, hence, can be neglected. This allows an approximation of any
demand for any platform and algorithm. Next, we discuss the limitations of this calibration
approach.
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C.1.3. Discussion

The accuracy of the demand calibration is limited due to disturbances of the underlying platform,
like garbage collection or operating system services. During the calibration period, multiple
executions of the algorithm in combination with statistical analyses limit the influence of these
disturbances. However, these influences can lead to deviations about 6% of requested and actual
processing time during the run time of a prototype. Furthermore, it requires to execute the
prototype multiple times in order to achieve stable results. The varying execution times are a
result of disturbances of the underlying platform and cannot be totally excluded from the resource
demand generation. The use of longer calibration runs with more executions of the algorithm
can increase accuracy, but cannot totally remove the effect.

On the other hand, it can also be desirable to capture overheads on account of life cycle
activities such as garbage collection. An algorithm can, for example, mimic object creations,
memory usage, and even trigger stress related effects such as swapping. If the load generating
algorithm is chosen in the right way, it will allow software architects to identify the systems load
limits and evaluate the effect of memory usage on software performance. However, the amount
of memory used cannot be specified within the PCM, but would be defined by the algorithm in
use. This allows only vague estimations of the actual memory usage of an application.

The algorithm itself does not model I/O or CPU bursts of a process. The RD-SEFFs of
the PCM describe such behavioural aspects of an application, which software architects have to
describe explicitly. The following case study demonstrates the accuracy of our approach as well
as the influence of the underlying platform and the selected algorithm on performance.

It is often desirable to express the execution time of an internal action in dependency of the
system’s state. The PCM models such dependencies with stochastic expressions. They can,
for example, derive the execution time of an internal action from the number of concurrently
running tasks (load dependent server) or from the number of elements in an array. During
execution, the performance prototype evaluates the stochastic expressions. The result of the
evaluation represents the actual execution time and is passed to the calibrated resource demand,
which translates the demand into parameters for the load generating algorithm.

C.2. Workload Generation

The test driver needs to allow a flexible characterisation of workloads (open and closed) and
an exact specification of resource demands. It must enable maximum control over the system
load, user task behaviour, and task priorities. The actual handling must be comparable for the
considered operating systems. To reach this aim, the test driver consists of a load generator and
demand servers. Both run in separate operating system processes that communicate via remote
message invocation (RMI). The division of the test driver among multiple processes is necessary
to assign separate priorities to all involved tasks. For example, the load driver usually recieves a
higher priority than the worker tasks. To control task priorities, the nice command available in all
Unix operating systems is used [SGG05]. Under Windows, its Cygwin implementation [RH] maps
the different nice-level to windows priorities. This allows a comparison between the results among
different operating systems. The load driver always runs at the highest possible priority avoiding
disturbances by the currently executing demand servers. The usage of RMI allows synchronous
communication between different processes, but adds additional overhead, e.g., the marshalling
and demarshalling of method calls. However, the overhead can be tolerated for the scenarios
considered in this thesis (below 3 ms [Bec08]).
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C.3. Resource Demand Generation

To evaluate the different influences of processors and operating systems, the demand servers can
generate load with different algorithms:

1. Prime number Calculator

2. Fast Fourier Transformation

3. Quicksort (Java Implementation)

These algorithms are common in processor benchmarks such as SPEC CPU2000 [Hen00, Cor00].
The demand servers allow adjusting of the specification of resource demands with milliseconds
precision. For each algorithm and execution environment the demand server first calibrates, so
that it can translate requested execution times to parameters for the corresponding algorithm
(cf. Appendix C.1).

C.4. Experimental Setting

The description of the experimental setup should allow the reproduction of the experiment. It
includes a description of the hardware and software environment, the implemented test driver,
the measurement method, and a list of possible threads to validity. Furthermore, Appendix C.1
describes the implementation of the benchmark application and discusses how different execution
environments influence the measurements. For the experiments, the following hardware and
software environments have been used.

Processor:

1. Intel Pentium M, 1.86 GHz, 2 GB RAM

2. Intel Pentium D, 3 GHz, 2 GB RAM

3. AMD Athlon 64 X2 Dual Core Processor 5200+, 2.61 GHz, 2 GB RAM

Operating Systems:

1. Windows XP Professional (SP2)

2. Windows Server 2003 (SP2)

3. Ubuntu 7.10 Desktop Edition (Kernel 2.6.22)

Java Run-Time Environment:

• Java HotSpot(TM) Client VM (build 1.6.0 03-b05, mixed mode, sharing)
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