
Fakultät II – Informatik, Wirtschafts- und Rechtswissenschaften

Department für Informatik

Analysis of Dynamic Evolution Systems

by Spotlight Abstraction Refinement

Dissertation zur Erlangung des Grades eines

Doktors der Naturwissenschaften

vorgelegt von

Dipl.-Inform. Tobe Toben

Gutachter:

Prof. Dr. Werner Damm

Prof. Dr. Ernst-Rüdiger Olderog

Tag der Disputation: 10. Februar 2009

c© 2009 by the author

) toben@informatik.uni-oldenburg.de

http://purl.oclc.org/net/phd/toben09

http://purl.oclc.org/net/phd/toben09

Für meinen Vater.

Abstract

Dynamic Evolution Systems describe an emerging class of systems that vary

dynamically in size and topology. Typical examples include the adhoc network-

ing principle where a routing infrastructure over a changing set of participants

is created and maintained. A corresponding routing protocol has to be able to

handle an arbitrary number of nodes and must in particular be prepared for

the integration of new and the proper dismissal of disappeared devices. Similar

structures occur in dynamic traffic management systems like the car platooning

scenario where physically adjacent cars establish interlinked groups.

This thesis presents a formal method to check whether a system in the sense

above adheres to requirements given in form of temporal scenarios. We observe

that the inherent unboundedness of the systems renders this task in general

undecidable and we present a sound but necessarily incomplete solution that is

based on the abstract-check-refine paradigm. Our approach employs the spot-

light abstraction principle to obtain a finite description of both the system and

the requirement. The idea of this abstraction technique is to exactly preserve

the behaviour of a finite set of spotlight processes and to provide one dedi-

cated abstract process to over-approximate the behaviour of the non-spotlight

processes. As the validity of a requirement often cannot be definitely decided

in the initial abstraction, we propose an automatic and iterative refinement of

the abstraction that is guided by the analysis of abstract counterexamples. The

refinement method is based on the observation that the precision of the abstrac-

tion can be tuned by two complementary principles, namely by enlarging the

size of the spotlight and by refining the behaviour of the non-spotlight part of

the abstraction. We demonstrate that the approach can be further improved by

integrating auxiliary system invariants, and we devise a static analysis method

to obtain such invariants for an existing modelling language.

Our approach is realised in form of a tool implementation. On this basis, we

perform a practical evaluation of our approach on a number of case studies that

cover a broad range of the addressed class of systems. We are in particular able

to automatically establish system properties for which manual intervention was

required before.

v

Zusammenfassung

Dynamic Evolution Systems beschreiben eine neue Klasse von Systemen welche

sich dynamisch in ihrer Größe und Verbindungsstruktur verändern. Ein typi-

sches Beispiel hierfür sind ad-hoc Netzwerke in welchen sich eine Routingstruk-

tur über eine wechselnde Anzahl von Teilnehmern dynamisch bildet und an-

passt. Ein zugehöriges Routingprotokoll ist dafür verantwortlich eine beliebige

Anzahl von Knoten zu integrieren und insbesondere auch verschwundene Teil-

nehmer sicher aus dem Netz zu entfernen. Ähnliche Strukturen entstehen in

Verkehrsmanagementsystemen wie dem Car Platooning in welchem sich be-

nachbarte Autos zu einer Gruppe zusammenschließen.

Diese Arbeit präsentiert eine Methode mit welcher überprüft werden kann

ob ein solches System formale Anforderungen in Form von Szenarien erfüllt.

Wir zeigen, dass die Unbeschränktheit der Systeme diese Aufgabe im Allge-

meinen unentscheidbar macht und präsentieren eine sichere aber notwendiger-

weise unvollständige Lösung die auf dem Prinzip abstract-check-refine basiert.

Unser Ansatz benutzt die Technik der “Spotlight Abstraction” um eine endliche

Darstellung des Systems und der Anforderung zu erhalten. Die Idee hinter dieser

Technik ist eine endliche Anzahl von Spotlichtprozessen präzise darzustellen

und alle anderen Prozesse zu einem abstrakten Prozess kollabieren zu lassen.

Da eine Eigenschaft oftmals nicht in der initialen Abstraktion bewiesen oder

widerlegt werden kann, schlagen wir eine Verfeinerungsmethode basierend auf

abstrakten Gegenbeispielen vor. Wir zeigen, dass die Präzision der Abstraktion

auf zwei grundsätzliche Arten verbessert werden kann, nämlich zum einen durch

Vergrößerung des Spotlights und zum anderen durch eine Verfeinerung des Ver-

haltens des abstrakten Prozesses. Zudem präsentieren wir eine Methode aus

dem Bereich der statischen Modellanalyse mittels welcher das Verfahren weiter

verbessert werden kann.

Wir haben eine Implementierung vorgenommen um unseren Ansatz evaluieren

zu können. Hierzu betrachten wir Fallstudien und Eigenschaften die einen

großen Bereich der gesamten Systemklasse abdecken. Wir sind insbesondere

in der Lage Eigenschaften automatisch zu beweisen, bei welchen bisher eine

manuelle Unterstützung nötig war.

vii

Acknowledgements

I want to thank my supervisor Prof. Dr. Werner Damm for his constant effort

in creating a perfect research environment which offers a broad scope of coop-

eration and inspiration. In particular the collaborative work within the AVACS

(www.avacs.org) project provided me with new and interesting aspects regard-

ing my research topic. I’m very glad that Prof. Dr. Ernst-Rüdiger Olderog

became the second reviewer of this thesis. My work in his group during my

studies fostered my interest in formal methods. In this context I also very much

appreciated the inspiring thoughts and lectures of Dr. habil. Henning Dierks.

The topic of this thesis has been developed in close collaboration with my

former colleague Bernd Westphal. Bernd is always a source of inspiration in

various areas like specification and abstraction techniques, innovative (yet some-

times weird) research ideas, travelling plans and on which text editor to use.

From the AVACS family I like to express my gratitude to Jörg Kreiker and Ina

Schaefer for openly sharing their ideas and scientific skills. I also thank my col-

leagues Jan-Hendrik Rakow for fruitful discussions concerning languages, tools

and swingsets, Christian Ammann for his reliable implementation work, Ingo

Schinz and Christian Mrugalla for thought-provoking conversations in the early

era, Jürgen Niehaus for managing every possible and impossible request, and

rest of the Mensakarawane, Eckard, Thomas, Pate Ralf, thias, Lars and Eike,

for ensuring an enjoyable lunch break.

From my social circle I like to mention the members of DownStairs and the

Pilshotline who provide sonorous and convivial times of recreation and who are

remaining close friends for many years now. Finally I want to thank my whole

family for their endless trust and support. This in particular addresses Manuela

and Tammo who keep me focussed on the real important aspects of life.

ix

www.avacs.org

Table of Contents

Abstract . v
Zusammenfassung . vii
Acknowledgements . ix
Table of Contents . xi
List of Figures . xiii

1 Introduction 1
1.1 Abstraction and Refinement . 2
1.2 Running Example . 6
1.3 Structure . 7

2 Preliminaries 9
2.1 Notations . 9
2.2 Basic Formalisms . 11
2.3 Model-Checking . 12
2.4 Three-Valued Logic . 15

3 Modelling Dynamic Evolution Systems 17
3.1 Intuition . 18
3.2 Semantical Domain . 20

3.2.1 Logical Structures . 20
3.2.2 Structured Labelled Transition Systems 31

3.3 Dynamic Evolution Systems . 33
3.3.1 Syntax . 33
3.3.2 Semantics . 35
3.3.3 Discussion . 41

3.4 Dynamic Communication Systems 42
3.4.1 Syntax . 43
3.4.2 Semantics . 46

3.5 Related Work . 49

4 Requirement Specification for DES 53
4.1 Syntax . 53
4.2 Three-Valued Semantics . 57
4.3 Specification Intricacies . 63
4.4 Related Work . 65

xi

xii Table of Contents

5 Analysis of Dynamic Evolution Systems 69
5.1 Undecidability Results . 70
5.2 Abstraction of Dynamic Systems 73

5.2.1 Spotlight Abstraction . 73
5.2.2 Query Reduction . 80
5.2.3 Model Checking . 83

5.3 Related Work . 86

6 Spotlight Abstraction Refinement 93
6.1 Refinement Strategies . 94

6.1.1 Spotlight Extension . 96
6.1.2 Shadow Refinement . 97

6.2 Counterexample Guided Refinement 100
6.2.1 Identifying Spurious Counterexamples 105
6.2.2 Abstraction Refinement Loop 110
6.2.3 Progress Property . 114

6.3 Communication Based Refinement 122
6.3.1 Intuition . 123
6.3.2 Message Dependencies 125
6.3.3 Message Counting . 129
6.3.4 Discussion . 133

6.4 Related Work . 135

7 Evaluation 141
7.1 Tool Support . 142
7.2 Case Studies . 143

7.2.1 AdHoc Networking . 145
7.2.2 Public/Private Servers 147
7.2.3 Automated Rail Cars System 152
7.2.4 Car Platooning . 155

7.3 Discussion . 160

8 Conclusion 163
8.1 Summary . 163
8.2 Perspectives . 165

Bibliography 169

A Proofs 187

B Tool Samples 205

Index 211

List of Figures

1.1 Spotlight Abstraction . 4

1.2 An MANET topology involving four participants. 6

3.1 A system snapshot and its representation as logical structure. . 19

3.2 Dangling links and re-use of identities. 20

3.3 A prefix of a run of JAdK. 41

3.4 Cad – the adhoc connection principle in terms of a DCS. 45

3.5 D(Cad) – the semantics of a DCS as a set of evolution rules. . . . 48

3.6 A prefix of a run in JD(Cad)K. 50

4.1 A prefix of a run in JAdK, annotated with life-cycle properties. . 55

4.2 Specification in terms of a Live Sequence Chart. 64

5.1 Spotlight Abstractions of Sad . 75

5.2 A prefix of a run of JAdK♯{u1}
. 79

5.3 A run of JAdK♯{u1,u2}
, indicating a possible violation of φ4. 85

5.4 Identity blurring under counter abstraction. 91

6.1 Spotlight Abstraction and Refinement 95

6.2 Counterexample Guided Abstraction Refinement. 101

6.3 A counterexample in Cex(Ad,G¬sl(x)) with [x 7→ u1]. 102

6.4 A concretisation run for (π♯,V) ∈ Cex(Ad, φ2). 104

6.5 Concretisation of the counterexample (π♯,V) 105

6.6 Counterexample Guided Spotlight Abstraction Refinement. . . . 112

6.7 Dynamic Communication System Cad (cf. Sect. 3.4). 124

6.8 A fragment of a run in JD(Cad)K1. 131

6.9 Cab – a DCS protocol with unreachable states. 134

7.1 The adhoc networking DES ‘Ad’. 145

7.2 The trace-viewer tool showing a concrete counterexample. . . . 147

7.3 The “Public/Private Servers” case study as DES ‘prvpub’. 148

7.4 Automated Rail Cars System [HG97] 152

7.5 The “ARCS” case study as DES ‘arcs’. 153

xiii

xiv List of Figures

7.6 A snapshot of the car platooning DCS model. 156

7.7 The “Car Platooning” case study as DCS ‘cars’. 158

7.8 The LSC specification for the DCS ‘cars’. 159

Chapter 1

Introduction

“Let there be Light.”

AC DC (australian rock band)

Ubiquity is prevalent. Nowadays, we are confronted with computing devices

not only at our desktops but rather in almost every situation in our daily life.

The ongoing decrease in cost, size and energy consumption allows computing

devices to become mobile. For example, modern cars are equipped with nav-

igation services, cellular phones have abilities to connect to internet services,

and so-called wearables are even directly integrated in our clothes and provide

health monitoring or entertainment functionalities. This kind of ubiquitous com-

puting [Wei91] is often seen as the “third wave in computing”: The beginning

of the technology era was dominated by mainframes, where each of them was

typically shared by a number of people. The second wave represents the era of

personal computing, where each person works on his own machine, typically at

one fixed location. And next comes ubiquitous computing, where several mobile

devices are associated to one person and where devices dynamically establish

and update connections to other devices depending on their internal status and

actual physical position.

There is a clear demand for formal analysis techniques for this new class of

systems. This demand is on the one hand based on financial aspects, as a proper

functionality of a product should be established before the product is actually

shipped to the customers. Any errors which are detected after the selling of the

product typically generates high costs for recalls. On the other hand, mobile

devices may also take over safety-critical functions like manoeuvre controlling

in automotive applications [Var93] or the management of movement authori-

sations in train systems like in the emerging European Train Control System

(ETCS) [UNI02]. In these cases, a rigorous proof of the proper functionality of

the device is indispensable.

1

2 Chapter 1 Introduction

For finite systems working in a fixed infrastructure, formal verification tech-

niques like model-checking [CGP99] or theorem-proving [Sch00] allow for a strin-

gent analysis of the correctness of systems with respect to given requirements.

Sophisticated tools have been developed and are already used in industrial devel-

opment processes, as for example described in [Hol94, Low96, SAH+00, HLP01].

However, these techniques are not immediately applicable to dynamic and mo-

bile systems in the sense described above, first of all as these systems vary

dynamically in size and topology. By this, the size of the system is in general

not bounded by any finite number. This fact rules out any technique that is

purely based on the exhaustive analysis of the induced state space of the system.

1.1 Abstraction and Refinement

Our approach to create a formal verification method for dynamic systems is

based on the thesis that the correctness of the overall system can often be es-

tablished on a small fraction of the system. Likewise, any incorrect behaviour is

visible already when considering only a certain part of the system. If this is the

case we can abstract the large (in general even infinitely large) system to a much

smaller (and in particular finite) system. Then, well-established techniques to

analyse the resulting abstract system can be applied and the results transfer

to the original system. According to [CGJ+00] a good abstraction technique

should have two properties, namely feasibility, that is, the resulting system can

actually be computed and handled by existing analysis techniques, and preser-

vation, that is, the behaviour that is relevant for the analysis is still contained

in the abstract system. Actually, abstraction techniques are quite heavily used

in formal methods, mainly in order to defeat the inherent complexity of the

verification procedures themselves [KP00].

“Abstraction is the elimination of the irrelevant

and the amplification of the essential.” [Mar95]

In this sense our goal is to identify the essential part of the system that is

sufficient to either establish or disprove the correctness of the system. There

is actually a hope to reach this goal for our class of systems as the overall

behaviour stems from replicated components, this means, we are dealing with

the interaction of several devices that however all follow the same, or at least

one of finitely many, behavioural descriptions. Intuitively, it might then be

sufficient to consider only a finite number of devices. While any violation of

the correctness specification within this finite set of devices immediately yields

Section 1.1 Abstraction and Refinement 3

a violation of the overall system, the fact that a specification holds for this part

the system does not ensure the overall correctness of the system. There might

actually be a violation involving more devices than considered. To address this

problem of obtaining false-positives, one typically applies an over-approximation

of the system by generating more behaviour than the original system, such that

a satisfaction in the abstract system directly transfers to a satisfaction in the

original system. The drawback of this method is that one now may obtain

false-negatives as a violation in the abstract system not necessarily corresponds

to a violation of the original system. In the model-checking community, these

false-negatives are also called spurious counterexamples.

In general, the identification of the essential fragment of the system, which

has to be emphasised by any over-approximating abstraction method, is hard.

It is hard already for a human user, but even harder if this decision should be

made automatically by some machine. Our approach to deal with this prob-

lem is the usage of refinement. The basic idea is that one may start which

a knowingly coarse abstraction and then gradually refine the abstraction un-

til the specification can be established or shown to be wrong. Refinement in

this sense corresponds to the elimination of behaviour that is not contained in

the original system. The decision which behaviour to eliminate can often be

made on the basis of prior verification results, in particular by the analysis of

the obtained counterexamples which demonstrate the (abstract) violation of the

specification. Any behaviour within the counterexample that can be identified

to be spurious can safely be removed from the abstract system. Then, the next

verification attempt of the refined abstract system can be initiated. If however a

counterexample comprises valid behaviour that it is completely reproducible in

the original system, one has identified a real counterexample violating the speci-

fication also in the original system. This verification framework is known under

the term counterexample-guided abstraction refinement (CEGAR), which has

already been applied to many abstraction techniques for quite different classes

of systems (cf. Sect. 6.2, page 101).

The particular abstraction technique that we employ for the analysis of the

considered class of dynamic systems follows the spotlight principle [WW07].

This principle generates heterogeneous abstraction techniques in the sense that

different parts of the systems are abstracted with different degrees of precision.

The basics of this technique were initially developed under the name “Data-

Type Reduction” in [McM99], which focussed on the verification of parame-

terized systems (cf. Sect. 3.5). It advanced to a generic abstraction technique

that applies in particular to systems with runtime creation and destruction of

objects in [DW05, Wes08]. In the particular instance discussed in this thesis,

4 Chapter 1 Introduction

s0

1

2

3

4

5

. . .

α{1,2,3}

s♯0

1

2

3

⊥

s1

1

2

3

4

5

. . .

link(4, 2)

α{1,2,3}

s♯1

1

2

3

⊥

link(⊥, 2)

Figure 1.1: Spotlight Abstraction. The local states and connection topology

among the spotlight processes 1, 2, 3 is preserved while any information

about non-spotlight processes is collapsed into the dedicated abstract

process ⊥ for which any configuration is assumed. Concrete evolutions

of the system can be mapped to abstract evolutions which reflect the

behaviour of the spotlight processes.

one finite part of the system, the so-called spotlight, is preserved without any

abstraction while the rest, the so-called shadows, is coarsely abstracted to one

summary processes (see Figure 1.1). The behaviour of this summary process

is constructed such that it yields an over-approximation of the behaviour of

an arbitrary number of concrete processes. In the sense of [Mar95] the sum-

mary processes realises the “elimination of the irrelevant” while the precisely

represented spotlight part serves as the “amplification of the essential”.

Contributions of this thesis

We observe that the refinement of spotlight abstractions first of all corresponds

to the elimination of spurious behaviour of the summary process. In this con-

text, spurious behaviour corresponds to behaviour that is not reproducible by

any number of concrete processes. This description already indicates that the

identification of spurious behaviour reveals a difficult problem as the analysis

of an unbounded number of concrete processes corresponds to a general verifi-

cation problem. Notably, there is another parameter by which the abstraction

can be tuned, namely by the content of the spotlight. A larger spotlight in-

tuitively increases the amount of concrete behaviour and allows us to identify

concrete counterexamples directly in the abstract system if they occur within

the spotlight.

Section 1.1 Abstraction and Refinement 5

We exploit this characteristic of the spotlight abstraction technique to de-

vise a validation method for abstract counterexamples. Roughly speaking, this

method gradually increases the spotlight until the abstract counterexample can

either be validated, which means the spotlight has become large enough to re-

play the counterexample with concrete processes, or the abstract counterexam-

ple has been shown to be spurious. The spuriousness of an abstract counterex-

ample is then used to obtain a refinement of the behaviour of the summary pro-

cess by integrating temporal assumptions. We have published this new variant

of the counterexample guided abstraction refinement framework for spotlight

abstraction in [Tob08]. In this thesis, we extend the initial idea by establishing

general termination and progress properties of the refinement algorithm and

we provide a detailed practical evaluation of the approach via a prototypical

tool implementation. Also, we extend the abstraction and refinement loop to

preserve local liveness properties by considering strong fairness constraints.

Besides this general strategy of spotlight abstraction refinement, we also

describe a complementary refinement approach that is tailored to a specific

modelling language for the addressed class of systems, the so-called Dynamic

Communication Systems (DCS). We have co-authored the initial publication

of this language in [BSTW06], which has spawned a number of research activi-

ties [Rak06, Jos06, Bau06, Amm07, Tob07, BTW07a, Wes08, Bac08]. In [Tob07]

we show how to exploit the inherent communication dependencies of a DCS vari-

ant that employs a synchronous communication paradigm. The method com-

putes refinement information for eliminating spurious message interferences,

which a major source of spurious behaviour stemming from the spotlight ab-

straction principle. In this thesis, we extend the method to also handle asyn-

chronous buffered communication and we integrate the approach in the overall

refinement loop. This resulting method is practically evaluated and we observe

interesting synergy effects with the counterexample-guided refinement approach.

The modelling languages are complemented by a temporal logic to specify re-

quirements of the addressed class of systems. The design of this logic is driven

by our research on first-order temporal logic and on graphical specification lan-

guages that have been published in [BTW07b, DTW06, WT06, KTWW06].

The logic is tailored to the employed abstraction principle by allowing the user

to specify desired or forbidden scenarios, that is, the interaction of a finite set

of processes over the time.

In summary, we present a concise description of the spotlight abstraction

principle applied to a general framework for the modelling and specification of

dynamic evolution systems. We in particular provide a formal characterisation

of the specific properties of the abstraction principle in terms of a three-valued

6 Chapter 1 Introduction

specification satisfaction relation. The proposed refinement strategies then turn

the rather coarse abstraction procedure into a proper verification and falsifica-

tion technique. We present formal models and requirement specifications of

a number of case studies from the addressed class of systems, on which we

demonstrate the suitability of our approach.

1.2 Running Example

One prominent example of the class of dynamic systems described above is char-

acterised by the term adhoc networking [FJL00], which describes a general class

of self-configuring networks. Participants of a so-called mobile adhoc network

(MANET) are typically equipped with some sort of radio antenna by which

short-ranged wireless connections to other nodes in the neighbourhood can be

established. A routing protocol then establishes, maintains and distributes in-

formation on how to reach other nodes in the network which are not within

the local scanning range. The difficulties for providing reliable routes stems

from the fact that mobile device may freely enter and leave the overall network

infrastructure. Thus the connection topology may change almost arbitrarily,

typically leading to temporarily inconsistent routing information that have to

be identified and restored.

sl

u1
ma

u2

sl

u3

dev

u4

link

link

link link

Figure 1.2: An MANET topology involving four participants.

The BluetoothTM protocol [Haa98] groups a certain number of physically ad-

jacent nodes into so-called piconets where one node becomes the master of this

subnet and all other nodes are slaves. Network routes are then established by

interlinking the master nodes of different piconets. Figure 1.2 shows a snap-

shot of a MANET topology following the bluetooth principle. The three nodes

u1, u2, u3 form a piconet with u2 being the master (‘ma’), and u1 and u3 being

slaves (‘sl’). To exchange data, the master has established bidirectional links

to its slaves. We have a forth device u4 (‘dev’) which is yet unconnected. This

Section 1.3 Structure 7

snapshot may now evolve into different topologies. For example, the master and

the free device may connect such that u4 becomes another slave in the piconet.

Alternatively, another free device may appear and subsequently build a new

piconet with u4. Clearly, connections may also be removed, for example if some

slave device leaves the networking area.

We will use this topology scenario as the running example in order to moti-

vate and explain our approach for the specification and verification of dynamic

evolution systems. This example is one the one hand small enough in order to

concisely illustrate the approach and one the other hand it provides all the chal-

lenging features of the addressed class of systems, in particular a dynamically

changing and a priori unbounded number of participants in combination with

a varying communication topology among them.

1.3 Structure

The structure of this thesis reflects the main problems that have to be addressed

in order to create the desired analysis method. We start in Chapter 2 by

providing a number of basic notations and formalisms.

As a formal analysis technique can only be established on both a formal de-

scription of the model and its requirements, Chapter 3 introduces the formal

language by with we will describe the systems to be analysed and Chapter 4

describes the logic to capture correctness specifications. We define the seman-

tical domain where the requirements are evaluated on in Section 3.2 as well as

two higher-level modelling languages in Sections 3.3 and 3.4 that translate into

this domain.

The remainder of this thesis then addresses the question how to analyse

whether a given system model satisfies its requirements. To this end, we provide

in Chapter 5 an abstraction mechanism that is suitable for the addressed class

of systems. This mechanism comprises the two techniques spotlight abstraction

and query reduction which in combination reduces the analysis of the infinite

state system into a finite set of finite state verification tasks. This mechanism

is turned into a verification procedure in Chapter 6 by devising an iterative

approach for abstraction refinement. This approach is separated into a general

technique that instantiates the counterexample guided abstraction refinement

framework in Section 6.2, which is improved by a complementary procedure

that exploits the specifics of the DCS language in Section 6.3.

8 Chapter 1 Introduction

We discuss related work at the end of each chapter. For the sake of readability

most of the formal proofs have been shifted into the appendix.

To evaluate our approach we have conducted a tool implementation which we

will demonstrate on a number of case studies in Chapter 7. Chapter 8 concludes

our thesis and gives perspectives on how this work might be continued.

Chapter 2

Preliminaries

2.1 Notations . 9

2.2 Basic Formalisms . 11

2.3 Model-Checking . 12

2.4 Three-Valued Logic . 15

This chapter introduces basic notations (Sect. 2.1) and formalisms (Sect. 2.2).

In particular, we introduce labelled transition systems as a standard representa-

tion of system behaviour. Moreover, we give an overview of model-checking and

abstraction techniques in Section 2.3, and we introduce a classical three-valued

extension of propositional logic in Section 2.4, which allows us to formally cap-

ture partially imprecise information.

2.1 Notations

Symbols and Operations By N0 := {0, 1, 2, . . .} we denote the natural num-

bers including 0, and we set N := N0 \ {0}. By Z := {. . . ,−2,−1, 0, 1, 2, . . .}
we denote the set of integers. For two sets X and Y , we write X∪̇Y to denote

the union of X and Y if X and Y are disjoint, that is, if X ∩ Y = ∅. By

2X := {X ′ | X ′ ⊆ X} we denote the set of all subsets of X.

Relations and Functions Given two sets X and Y , a relation is a subset of

X × Y . The domain of a relation R ⊆ X × Y are those elements of X which

are related to some element of Y , written as dom(R) := {x ∈ X | ∃ y ∈ Y :

(x, y) ∈ R}. Analogously, the range of R are those elements of Y to which some

element of X is related to, written as ran(R) := {y ∈ Y | ∃x ∈ X : (x, y) ∈ R}.

9

10 Chapter 2 Preliminaries

A relation f is called a (partial) function, written as f : X ⇀ Y , if each

element x ∈ X has at most one element from y ∈ Y related to it. For x ∈
dom(f), we may then write f(x) to denote this unique element y ∈ Y . We

write f(x) = undef to indicate that x 6∈ dom(f).

A function f is called total, written as f : X → Y , if dom(f) = X, and

surjective if ran(f) = Y . The inverse of a function f : X ⇀ Y is the relation

f−1 := {(f(x), x) ∈ Y × X | x ∈ dom(f)}. A function f is called injective if

its inverse is a function, and bijective if f is both injective and surjective. A

function f is called monotone if for all x1, x2 ∈ dom(X) we have that x1 < x2

implies f(x1) ≤ f(x2), and strong monotone if x1 < x2 implies f(x1) < f(x2).

To declare a function explicitly, we write f := [x1 7→ y1, . . . , xn 7→ yn],

yielding a function f with f(x1) = y1, . . . , and f(xn) = yn.

Restriction, Modification and Union Given a function f : X ⇀ Y and a set

X ′ ⊆ X, we use f |X′ to denote the restriction of f with respect to X ′, defined

as f |X′ := {(x, f(x)) ∈ X × Y | x ∈ dom(f) ∩X ′}.

For elements x′ ∈ X and y′ ∈ Y , we use f [x′ 7→ y′] to denote the modification

of x′ by y′ in f , defined as

f [x′ 7→ y′](x) :=

{

y′ if x = x′

f(x) else

where x ranges over X.

For two functions f1, f2 : X ⇀ Y with disjoint domains, i.e. dom(f1) ∩
dom(f2) = ∅, we denote the union of f1 and f2 by f1 ·f2, defined as

(f1 ·f2)(x) =

f1(x) if x ∈ dom(f1)

f2(x) if x ∈ dom(f2)

undef else

where x ranges over X.

Predicates and Atoms A predicate is a symbol p associated with an arity kp
from N0. We use the notation p/k to denote that p has arity k. Given a set of

predicates P and a set of logical variables X, an atom over P and X is of the

form

p(x1, . . . , xkp
)

where p ∈ P and x1, . . . , xkp
∈ X. The set {x1, . . . , xkp

} is called the arguments

of the atom, and the set of all atoms over X and P is denoted by AtomsX(P).

Section 2.2 Basic Formalisms 11

Sequences For a set A, we use A∗ to denote finite sequences over A, that is,

the set of all sequences of the form

(ai)0≤i≤n = a0, a1, . . . , an

with n ∈ N0 and ai ∈ A for all 0 ≤ i ≤ n. The case for n = 0 yields the

empty sequence, denoted by ǫ, and we call len((ai)0≤i≤n) := n the length of the

sequence.

By Aω we denote the set of all infinite sequences over A of the form

(ai)i∈N0 = a0, a1, . . .

with ai ∈ A for all i ∈ N0, and we set len((ai)i∈N0) := ∞.

By Prefixes(σ) := {v ∈ A∗ | ∃w ∈ Aω . vw = σ} we denote the set of all finite

prefixes of an infinite sequence σ ∈ Aω.

2.2 Basic Formalisms

Transition systems are a standard model to formally represent the behaviour of

reactive systems [MP92]. A transition system denotes the set of possible states

together with the set of transitions among these states. Additionally, a label is

associated to each transition.

Definition 2.1 (Labelled Transition System) A tuple T = (S,S0,L,→)

where

• S is a set of states,

• S0 ⊆ S is a set of initial states,

• L is a set of labels, and

• → ⊆ S × L × S is the transition relation,

is called a labelled transition system (LTS). ♦

We call an LTS (S,S0,L,→) finite iff both S and → are finite. Note that we

usually write a labelled transition (S, L, S ′) ∈ → in infix form as S
L
→ S ′.

Definition 2.2 (Runs of an LTS) Let T = (S,S0,L,→) be an LTS. A run

of T is an infinite sequence

π = ((Li, Si))i∈N0 ∈ (L × S)ω

of labels Li ∈ L and states Si ∈ S, where

12 Chapter 2 Preliminaries

1. the sequence starts at an initial state, i.e. S0 ∈ S0, and

2. consecutive pairs are in transition relation, i.e. Si
Li+1
−→ Si+1 for all i ∈ N0.

The set of all runs of T is denoted by Runs(T). ♦

The unusual notation of using pairs of “labels and states” rather than of

“states and labels” is motivated by our treatment of prefixes of runs in terms

of counterexamples in Section 6.2. As the initial label of a run is unrestricted,

it will not be shown in the representation of example runs in the following.

Based on the notion of a run, we define the reachability among two states with

and without visiting a certain transition label, and we introduce the classical

notion of reachability from an initial state of an LTS.

Definition 2.3 (Reachability) Let T = (S,S0,L,→) be an LTS. The state

S ′ ∈ S is reachable in T via label L′ ∈ L from state S ∈ S, written

S
L′

99KT S
′

if there exists a run π = ((Li, Si))i∈N0 ∈ Runs(T) with

1. Si = S for some i ∈ N0, and

2. (Lj, Sj) = (L′, S ′) for some j ∈ N0 with i ≤ j.

We say that S ′ is reachable from S in T, written S 99KT S ′, if S
L′

99KT S ′

for some label L′ ∈ L. We say that S is reachable in T, written 99KT S, if

S0 99KT S for some S0 ∈ S0. ♦

The subscript T of the reachability symbol may be omitted if the underlying

LTS is clear from the context.

2.3 Model-Checking

The term Model-Checking designates a collection of techniques to automatically

check whether a system model adheres to a given requirement specification.

We will introduce the basic notations and results of model-checking in this

section. For the overall thesis however, we regard model-checking merely as a

black-box technique that allows us to exhaustively analyse a given finite state

transition system with respect to some temporal requirement specification. For

an in-depth discussion of related formalisms and algorithms we refer to the

monographs [CGP99] and [HR00].

Section 2.3 Model-Checking 13

The classical formalism the specify the behaviour of the system to be analysed

is the Kripke Structure [Kri63, CGP99], which is a finite state transition system

where states are annotated by a set of properties that hold in the corresponding

system state. Given a finite number of atomic propositions AP (i.e. predicates

with arity zero), a Kripke Structure is a tuple K = (S, s0, R, L) over AP where

• S is a finite set of states,

• s0 ∈ S is the initial state,

• R ⊆ S × S is a transition relation with dom(R) = S, and

• L : S → 2AP labels each state with a set of atomic propositions.

The Kripke Structure can be seen as a compact representation of the systems

behaviour over infinite execution time. The semantics is given by unwinding

the Kripke Structure to an infinite computation tree with root node s0, which is

build by adding child nodes while recursively traversing the transition relation.

Requirements are typically given in some variant of Temporal Logic [Pnu77]

which allows a declarative specification of the system behaviour over qualitative

time. Typical requirements may be divided into two categories, namely safety

and liveness requirements. While requirements of the first categories states

that the system will never exhibit any behaviour that is considered to be bad,

a liveness specification requires to eventually observe some behaviour that is

considered to be good.

The main variation point of the different temporal logics is their underlying

model of time, namely whether they consider branching time or linear time.

Prominent examples of these different paradigms are the Computational Tree

Logic (CTL) [CES86] and Linear Time Logic (LTL) [MP92], respectively. While

a time point in linear time always has one unique successor, there may be mul-

tiple futures in the branching time paradigm. Consequently, linear time logics

are interpreted over individual paths of the computation tree, while branching

time reasons about the computation tree itself. Its is known that CTL and LTL

are expressively incomparable [CD89], and the question which timing paradigm

is better suited for specification and verification of reactive systems is subject of

a long and lively debate in the literature (see e.g. [Lam80, EH86, EL87, Var01]).

While LTL is considered to be more intuitive, CTL specifications are computa-

tionally easier to handle. The time complexity of CTL model-checking is linear

in both the size of the model and the size of specification, while LTL model-

checking is exponential in the size of the formula, which is basically determined

by the number of temporal operators. This difference in the worst-case com-

plexities is however regarded to be of minor relevance in practice [Var02], as

typical specifications belong to the common subset of LTL and CTL [Mai00].

14 Chapter 2 Preliminaries

In this thesis (cf. Chapter 4) we focus on LTL, defined as

φ ::= true | p | ¬φ | φ1 ∧ φ2 | Xφ | φ1 U φ2

where p ∈ AP is some atomic proposition. A Kripke Structure K is said to

satisfy an LTL specification φ, written

K |= φ,

if φ holds in all computation paths of K that starts in the initial state. The

intuition of the temporal operators is the following. Given a computation path

π = s0, s1, s2, . . ., the formula ‘Xφ’ holds in some state si if φ holds in the next

state si+1. The path π satisfies ‘φ1 U φ2’ if φ1 holds until φ2 eventually holds,

that is, φ1 holds in all states s0 up to sj−1 for some j ∈ N0 and φ2 holds in

sj. In particular, one may specify that some property finally holds by writing

‘Fφ’ as an abbreviation for ‘true U φ, and that some property globally holds by

writing ’Gφ’ as an abbreviation for ‘¬(F¬φ)’.

Given a Kripke Structure K and an LTL specification φ, the model-checking

problem is to compute the satisfaction relation K |= φ. An important result is

that the model-checking problem is decidable for (finite state) Kripke Structure,

that is, there exists an effective procedure to check whether K |= φ holds or not.

A major benefit of model-checker implementations is their ability to present a

counterexample if a specification does not hold. This counterexample represents

a certain part of the computation tree (or a single computation run in the case

of linear time) that violates the property. Using this information, the designer of

the system may be able to identify errors in the system (or in the specification).

In practice, model-checking often suffers from the so-called state explosion

problem as the Kripke Structure representations of real-world systems typically

become rather large in terms of states. To attack this problem, various tech-

niques including compact state representations [BCM+90], search space reduc-

tions [God90], and abstraction strategies [CGL94, KP00], have been developed.

As abstraction is one of the main topics of this thesis, we briefly recall the

basics of abstraction based on the notion of simulation in the context of model-

checking. For two Kripke Structures K = (S, s0, R, L) and K ′ = (S ′, s′0, R
′, L′),

the simulation preorder [Mil71] on S×S ′ requires that whenever a pair of states

(s, s′) are in simulation relation, then s and s′ are labelled by the same set of

atomic propositions, and for every successor s2 of s there is a successor s′2 of s′

such that s2 and s′2 are in simulation relation. Intuitively, every transition in K

can be matched by some transition in K ′. If there exists a simulation preorder

that in particular relates the initial states s0 and s′0, then K ′ is said to simulate

K. If this is the case, then K ′ |= φ implies K |= φ for any LTL specification

Section 2.4 Three-Valued Logic 15

φ by the property preservation theorem. Intuitively, K ′ over-approximates the

behaviour of K as each run of K is reflected by a corresponding run in K ′. How-

ever, as K ′ may comprise additional runs the converse of the above implication

does not hold, this means a specification may be violated in K ′ although it is

actually satisfied in K. Counterexamples for such kind of violations are called

spurious. Note that we will introduce a notion of simulation for a particular kind

of labelled transition systems in Section 3.2.2, and established a corresponding

preservation theorem for our specification language in Section 4.2.

In order to reduce the occurrences of spurious counterexamples one aims at

refining the abstraction. One particular approach to automatically obtain a

gradual refinement is the framework of counterexample-guided abstraction re-

finement [Kur94, CGJ+00]. There, the analysis of a spurious counterexample

provides information on how to refine the abstraction. We will elaborate on this

technique in Section 6.2.

2.4 Three-Valued Logic

We will use the symbols ‘1’ and ‘0’ to represent the boolean values true and

false, respectively. Three-valued logic now comprises the additionally symbol

‘1/2’ that denotes the unknown value, that is, neither true nor false. Thus, we

set the domain of three-valued logic as B3 := {0, 1, 1/2}, where the values 1 and 0

represent definite information while 1/2 stands for indefinite information. This

is reflected by the information order ⊏ ⊆ B3 × B3 defined as

⊏ := {(0, 1/2), (1, 1/2)}

which reads as “1/2 represents coarser information than both 0 and 1”. Ad-

ditionally, we assume the standard arithmetic order < ⊆ B3 × B3 defined as

<:= {(0, 1/2), (0, 1), (1/2, 1)}, and by minB (maxB) we denote the least (great-

est) element of B ⊆ B3 with respect to the arithmetic order <. We write

b1 ≤ b2 if b1 < b2 or b1 = b2

b1 ⊑ b2 if b1 ⊏ b2 or b1 = b2

for boolean values b1, b2 ∈ B3.

To transfer the boolean connectives to the domain of three-valued logic, we

follow the approach of Kleene [Kle52] which naturally preserves the indefinite

character of expressions whenever the unknown value is involved. Regarding

the negation operator, we have ¬1 = 0 and ¬0 = 1 just as in standard two-

valued boolean logic, and we set ¬1/2 = 1/2, that is, the negation of indefinite

16 Chapter 2 Preliminaries

b ¬b

1 0
1/2 1/2

0 1

∨ 1 1/2 0

1 1 1 1
1/2 1 1/2 1/2

0 1 1/2 0

∧ 1 1/2 0

1 1 1/2 0
1/2 1/2 1/2 0

0 0 0 0

Table 2.1: Interpretation of the boolean connectives in B3.

values remains indefinite. For disjunction, we have 1 ∨ 1/2 = 1 as, regardless of

what definite value 1/2 may actually stand for, the expression yields 1 also in

standard boolean logic. For conjunction however, we have 1 ∧ 1/2 = 1/2 as the

result of conjunction of 1 with some value b in standard boolean logic differs if

b = 1 or b = 0. As 1/2 represents indefinite information, the conjunction remains

indefinite, too. Note that b1 ∧ b2 = min{b1, b2} and b1 ∨ b2 = max{b1, b2}.

The semantics of negation, disjunction and conjunction in three-valued logic

is given in the Table 2.1, and the following remarks states a number of standard

relations between the information order and the boolean connectives.

Remark 2.4 (Three-Valued Logic) Let a, b, c, d ∈ B3 be three-valued boolean

values. Then the following conditions hold:

b ∈ {0, 1} ∧ (a ⊑ b) =⇒ a = b

(a ⊑ b) =⇒ ¬a ⊑ ¬b

(a ⊑ b) ∧ (c ⊑ d) =⇒ (a ∧ c) ⊑ (b ∧ d)

(a ⊑ b) ∧ (c ⊑ d) =⇒ (a ∨ c) ⊑ (b ∨ d) ♦

Proof. By the definition of the information order ⊑ and the truth-tables for

negation, disjunction and conjunction (cf. Table 2.1). �

In the course of this thesis we will make use of three-valued logic in several

formalisations. First of all, it allows us to formalise the loss of information that

occurs during the abstraction of concrete, potentially unbounded structures

to finite abstract structures (cf. Def. 5.5 on page 74). Any information that

is not precisely represented in the abstract structure will become indefinite.

Moreover, we will define a three-valued evaluation of a temporal specification in

an abstracted system (cf. Def. 4.2 on page 57), with the intuition in mind that

a definite result directly transfers to the evaluation result of the specification

in the original system. Consequently, an indefinite evaluation result will trigger

the refinement of the abstraction.

Chapter 3

Modelling Dynamic Evolution Systems

3.1 Intuition . 18

3.2 Semantical Domain . 20

3.2.1 Logical Structures 20

3.2.2 Structured Labelled Transition Systems 31

3.3 Dynamic Evolution Systems 33

3.3.1 Syntax . 33

3.3.2 Semantics . 35

3.3.3 Discussion . 41

3.4 Dynamic Communication Systems 42

3.4.1 Syntax . 43

3.4.2 Semantics . 46

3.5 Related Work . 49

In this chapter we provide means to formally describe the systems to be

analysed. We base our semantical domain (cf. Section 3.2) on the standard

notion of a logical structure, which basically interprets a number of predicates for

a given universe. To represent the appearance and disappearance of processes

over time, a subset of the universe is dedicated to represent the set of currently

alive processes. Both the content of this subset and the interpretation of the

predicates may vary when one logical structure evolves into another logical

structure.

We present two modelling languages for the developed semantical domain.

Firstly, a Dynamic Evolution System (DES, cf. Section 3.3) provides a sym-

bolic characterisation of the possible evolutions of logical structures in terms of

so-called evolution rules. This language serves as a concise low-level modelling

formalism throughout this thesis. Secondly, the language of Dynamic Commu-

nication Systems (DCS, cf. Section 3.4), which has been developed in a joint

17

18 Chapter 3 Modelling Dynamic Evolution Systems

paper [BSTW06], allows to specify the communication aspects of the system

from the viewpoint of a single process. In particular, this language alleviates the

gap between real-world systems and various low-level specification formalisms

like DES and others (see Section 3.5 on related modelling formalisms). The se-

mantics of a Dynamic Communication System will be defined by a translation

from DCS into the DES language. By this, the analysis techniques developed

for Dynamic Evolution Systems (cf. Chapters 5 and 6) are immediately lifted

to the DCS language.

3.1 Intuition

A process in our systems is uniquely identified by its process identity. A central

aspect of the considered class of systems is that processes may be created and

destroyed at runtime, that is, the set of alive processes may vary over the time.

Note that, however, during the lifetime of a process its identity will not change.

We assume a set of process identities as follows, where we already introduce

a dedicated process identity that will serve as a representation of the abstract

summary process (cf. Chapter 5).

Definition 3.1 (Process Identities) The countably infinite set Id is called

the set of process identities. The symbol ⊥ 6∈ Id denotes the abstract process

identity, and for a set of identities I ⊆ Id we define I⊥ := I ∪ {⊥}. ♦

To formally represent a single snapshot of a system, for example the adhoc

networking topology from Figure 1.2, we actually need to preserve three kinds

of information, namely

1. the set of alive processes,

2. the local status of each process, and

3. the connection topology among the processes.

To stress the importance of a process being alive or dead, we maintain a

dedicated subset of process identities that are currently alive. The local status

of each process (not necessarily only the alive ones) is given by an interpretation

of unary predicates, and the connection topology by an interpretation of binary

predicates. This encoding separates the different aspects of a system snapshot.

In Figure 3.1 we present the encoding of the snapshot of the adhoc networking

system given in Figure 1.2. We have {u1, u2, u3, u4} ⊂ Id as the set of alive

identities. The interpretation of the corresponding predicates for these identities

is given by the tables in Figure 3.1(b). The interpretation of the unary predicate

Section 3.1 Intuition 19

sl

u1
ma

u2

sl

u3

dev

u4

link

link

link link

(a) Snapshot (cf. Fig. 1.2)

sl ma dev

u1 1 0 0

u2 0 1 0

u3 1 0 0

u4 0 0 1

link u1 u2 u3 u4

u1 0 1 0 0

u2 1 0 1 0

u3 0 1 0 0

u4 0 0 0 0

(b) Predicate Interpretation

Figure 3.1: A system snapshot and its representation as logical structure.

sl yields true for identities u1 and u3, the predicate ma yields true for identity

u2, and dev yields true for identity u4. All other combinations evaluate to false.

Analogously, the connection topology is given by the interpretation of a binary

predicate link which yields true for the arguments (u1, u2), (u2, u1), (u3, u2), and

(u2, u3), and false for all other pairs of process identities.

By a configuration of a process, we will denote the information that is local

to this process, that is, firstly whether it is currently alive, secondly the local

status of this process, and thirdly the set of connections with other processes.

Formally, we will obtain the configuration of a set of processes by the focus

operator given in Def. 3.7 below.

The behaviour of the system over time will be captured by evolutions, which

are transitions from one logical structure into another logical structure. These

evolutions comprise the creation and destruction of processes, as well as modi-

fications of the interpretation functions. Evolutions will be given a name, indi-

cating what kind of transition the involved processes perform in this evolution.

Note that each evolution will only affect a certain subset of processes and we as-

sume an interleaving semantics. Formally, we use a set of evolution predicates

that serve, together with the set of affected process identities, as transition

labels. In fact, labelled transition systems having logical structures as states

and ground atoms over evolution predicates as transition labels form our basic

semantic domain, namely structured labelled transition systems (cf. Def. 3.15).

Our semantical domain allows us in particular to observe two artifacts that

are inherent to systems with runtime creation and destruction of processes,

namely dangling links and the re-use of identities. The two evolutions shown

in Figure 3.2 demonstrate these aspects. Starting from a snapshot with two

alive processes being connected, we evolve into a snapshot where process u2 has

disappeared from the system, indicated by its dotted border. However, process

u1 still recognised the link to u2 such that the connection is actually “dan-

gling”. The next evolution now comprises the creation of a new process which

20 Chapter 3 Modelling Dynamic Evolution Systems

s
u1

s′
u2

s
u1

s
u1

s0
u2

Figure 3.2: Dangling links and re-use of identities.

obtains the free identity u2, that is, this identity is actually “re-used” by a new,

potentially different process. Clearly, these situations may lead to system incon-

sistencies if process u1 does not account for these evolutions of his connection

partner. Note that our requirement specification language (cf. Chapter 4) and

the corresponding analysis methods (cf. Chapter 5 and 6) are able to formalise

and detect these artifacts.

3.2 Semantical Domain

In this section we will formally develop the semantical domain that we have

sketched in the previous section. In particular, we define logical structures in

Subsection 3.2.1 as a means to formally capture snapshots, and we introduce

structured labelled transition systems in Subsection 3.2.2 as our basic formalism

to represent the dynamic evolution of the considered class of systems.

3.2.1 Logical Structures

As sketched above, logical structures are suitable to represent system snapshots

via an interpretation of predicates. Actually, we already motivated the need

for different kinds of predicates, namely predicates to describe the local status,

their interconnection, and the evolution of processes. Together with a set of

logical variables, these sets of predicates form a signature as follows.

Definition 3.2 (Signature) A tuple S = (X ,PS,PL,PE), where

• X is a totally ordered set of variables,

• PS is a finite set of unary predicates, called the set of state predicates,

• PL is a finite set of binary predicates, called the set of link predicates, and

• PE is a finite set of predicates, called the set of evolution predicates,

is called a signature. Without loss of generality, we require PS, PL and PE to

be pairwise disjoint. We set PSL := PS ∪ PL and P := PS ∪ PL ∪ PE. ♦

Section 3.2 Semantical Domain 21

In Section 2.1, we have introduced the notion of an atom, which is a predicate

symbol p ∈ P taking a number of logical variables as argument, written as

p(x1, . . . , xkp
) where kp denotes the arity of p. In our setting, logical variables

will be used to denote process identities via a valuation function, that is, a

mapping from logical variables to process identities. Clearly, such a function

need not be injective such that two different variables may actually denote the

same identity.

Definition 3.3 (Valuation) Let S = (X ,PS,PL,PE) be a signature, X ⊆ X
a set of variables, and I ⊆ Id⊥ a set of identities.

A valuation of X to I is a total function V : X → I. The set of all valuations

of X to I is denoted by ValsI(X). ♦

Given an atom and a valuation of the arguments of the atom, we can instan-

tiate the atom by replacing all variables by the identities they denote, yielding

a so-called ground atom. Ground atoms will be used as a means to represent

predicate interpretations (cf. page 22) and will play a central role when defin-

ing the evolution of logical structures (cf. Def. 3.15) and the concretisation of

counterexamples (cf. Def. 6.8).

Definition 3.4 (Ground Atom) Let S = (X ,PS,PL,PE) be a signature, P ⊆
P a set of predicates and I ⊆ Id⊥ a set of identities.

A ground atom over P and I is of the form p(u1, . . . , ukp
) where p ∈ P

and u1, . . . , ukp
∈ I. The set of all ground atoms over P and I is denoted by

GroundAtomsI(P). The set of arguments of a ground atom g = p(u1, . . . , ukp
)

is defined as A(g) := {u1, . . . , ukp
}.

For an atom a = p(x1, . . . , xkp
) ∈ AtomsX(P) and a valuation V ∈ ValsI(X),

we set

a[V] := p(V(x1), . . . ,V(xkp
)) ∈ GroundAtomsI(P)

to be the ground atom of a under V, where each variable in the arguments of

the atom a is replaced by the identity it denotes by the valuation V. ♦

The central ingredient of a logical structure is the interpretation of the state

and link predicates. Formally, an interpretation is a set of functions from

product-sets of process identities to three-valued boolean values as follows.

Definition 3.5 (Interpretation) Let S = (X ,PS,PL,PE) be a signature, P ⊆
P a set of predicates and I ⊆ Id⊥ a set of identities.

An interpretation ι of P for I defines for each p ∈ P a total function

ι(p) : (I)kp → B3.

22 Chapter 3 Modelling Dynamic Evolution Systems

The set of all interpretations of P for I is denoted by InterI(P). An interpre-

tation ι ∈ InterI(P) is called two-valued if ran(ι(p)) ⊆ B for each p ∈ P , and

three-valued else.

By ιe ∈ InterI(P) we denote the initial interpretation which yields 0 for all

predicates p ∈ P and arguments Ikp. ♦

We observe that any interpretation ι ∈ InterI(P) can be precisely represented

by two (possibly infinite) sets of ground atoms, namely as (ι1, ι1/2) where

ι1 := {p(u1, . . . , ukp
) ∈ GroundAtomsI(P) | ι(p)(u1, . . . , ukp

) = 1}

ι1/2 := {p(u1, . . . , ukp
) ∈ GroundAtomsI(P) | ι(p)(u1, . . . , ukp

) = 1/2}.

This encoding simplifies the textual representation of an interpretation, in par-

ticular in the case when I and P are finite.

We are now prepared to define logical structures over process identities, com-

prising a set of alive identities and a predicate interpretation as follows.

Definition 3.6 (Logical Structure) Let S = (X ,PS,PL,PE) be a signature

and I ⊆ Id⊥ a set of identities. A tuple

S = (U, ι)

where U ⊆ I is the alive universe of S and ι ∈ InterI(PSL) is an interpretation

of PSL for I, is called a logical structure over S and I. The set I is called

the domain of S, written dom(S), and the set of all structures over S and I is

denoted by StrucsS(I).

A structure (U, ι) is called two-valued if ι is two-valued, and three-valued

else. The set of two-valued structures over S and I is denoted by Strucs2
S(I) ⊆

StrucsS(I), and we set Strucs3
S(I) := StrucsS(I) \ Strucs2

S(I).

By Se = (∅, ιe) ∈ StrucsS(I) we denote the empty structure with empty uni-

verse and initial interpretation. ♦

Note that a logical structure involves three sets of identities, namely firstly

Id⊥, the set of all possible identities, secondly a subset I ⊆ Id⊥ as the domain

over which the interpretation ranges, and thirdly U ⊆ I denoting the set of

currently alive processes in S. As U may be a proper subset of I, we in particular

may represent dangling links, that is, a connection of some alive process to some

dead process. For example, we allow (U, ι) to have ι(pl)(u1, u2) = 1 although

u2 6∈ U for some binary predicate pl ∈ PL.

Section 3.2 Semantical Domain 23

Let us reconsider the adhoc networking example. To faithfully represent local

configurations of this case study, we define its signature as

Sad = (X ,PS,PL,PE) with

state predicates PS := {dev,ma, sl},

link predicates PL := {link}, and

evolution predicates PE := {new, con, dis, free, del}.

With this, the snapshot depicted in Figure 1.2 on page 6 corresponds to the two-

valued logical structure Sad = (U, (ι1, ι1/2)) ∈ StrucsSad
(Id) with ι1 = {sl(u1),

ma(u2), sl(u3), dev(u4), link(u1, u2), link(u2, u1), link(u3, u2), link(u2, u3)}, ι1/2 = ∅
and U = {u1, u2, u3, u4}. Note that the evolution predicates are not used for

the characterisation of a single snapshot, but only for the evolution between

two snapshots. Often a logical structure becomes more readable if it is shown

in a graphical notation. For example, the structure Sad may be illustrated as

Sad

sl
u1

ma
u2

sl
u3

dev
u4

link

link

link

link

where each element u ∈ U is represented as a node having its name u as in-

dex. The set of state predicates ι1 is written inside of the node where we omit

brackets if exactly one predicate is present, and each link predicate pl ∈ PL
with pl(u1, u2) ∈ ι1 is illustrated as a solid directed arc from node u1 to node u2

that is labelled by pl. For representing the indefinite value 1/2 for ground atoms

in ι1/2, we use dashed nodes and arcs. Moreover, if we need to depict a dead

identity u′ 6∈ U in order to illustrate for example a dangling link, we draw the

corresponding node for u′ with a dotted border. For example, we represent the

logical structure SD := ({u1}, ({sl(u1)}, {link(u1, u2)})) as

SD

sl
u1 u2

link

Note that this graphical illustration is not suitable for arbitrary logical struc-

tures. For instance, structures with infinite domain or dead identities with an

indefinite predicate evaluation may not be faithfully represented. In these cases,

we will switch to the formal representation in terms of the sets (ι1, ι1/2).

24 Chapter 3 Modelling Dynamic Evolution Systems

Focus

To obtain the configuration of a certain subset of processes, we introduce the fo-

cussing of a logical structure. This operation can be seen as an restricted view

on a subset of identities neglecting the information about the rest, however

by keeping those predicate interpretations where both focused and unfocused

processes are involved. Hence, a focus provides a concise view on the configu-

ration of the focused processes and their relationship to unfocused ones while

dismissing information which only concerns unfocused processes.

Definition 3.7 (Focus of a Structure) Let S be a signature, I ⊆ Id⊥ a set

of identities, and S = (U, ι) ∈ StrucsS(I) a logical structure.

For a set of identities I ′ ⊆ I, we define the I ′-focus on S as

SMI′ := (U, ιMI′) ∈ StrucsS(I)

where

ιMI′(p)(u1, . . . , ukp
) =

{

ι(p)(u1, . . . , ukp
) if {u1, . . . , ukp

} ∩ I ′ 6= ∅
1/2 else

for p ∈ PSL and u1, . . . , ukp
∈ I. ♦

For example, the {u1, u2}-focus on Sad yields the structure

(U, ({sl(u1),ma(u2), link(u1, u2), link(u2, u1), link(u3, u2), link(u2, u3)},

{ps(u), link(u, u′) | ps ∈ PS, u, u
′ ∈ {u3, u4}}))

with alive identities U = {u1, u2, u3, u4}. This focused snapshot is graphically

represented as

SadM{u1,u2}

sl
u1

ma
u2

PS
u3

PS
u4

link

link

link

link

link

link

link

and shows a proper master-slave connection among u1 and u2 and the fact that

there is another bidirectional connection to some other process u3. However,

the information from Sad that u3 is actually an alive slave and that there exists

another unconnected process u4 being a free device is dismissed.

Section 3.2 Semantical Domain 25

Embedding

Party anticipating the abstraction of dynamic evolution systems to be discussed

in Chapter 5, we investigate the relation of two logical structures in terms of

an information ordering. To this end, we formalise the intuition of one logical

structure representing only a certain subset of the information which another

logical structure represents. Such a relation will be called embedding, and the

basic ingredient is a mapping between the domains of the two logical structures

via an embedding function as follows.

Definition 3.8 (Embedding Function) Let I1, I2 ⊆ Id be two sets of identi-

ties with I2 ⊆ I1. The function eI1I2 : I1 → I⊥2 with

eI1I2(u) =

{

u if u ∈ I2

⊥ else

is called the embedding function from I1 to I2.

For a valuation V ∈ ValsI1(X), we define the embedded valuation eI1I2(V) ∈
ValsI⊥2 (X) as eI1I2(V)(x) := eI1I2(V(x)) where x ranges over X . ♦

Each process identity in I1 \ I2 is mapped by the embedding function to the

abstract process identity ⊥. Restricted to I2, the embedding function is actually

the identity function.

Based on this function, an embedding of ground atoms is simply the point-

wise application of the embedding function to the arguments of the ground atom

as follows.

Definition 3.9 (Ground Atom Embedding) Let S = (X ,PS,PL,PE) be a

signature, I1, I2 ⊆ Id⊥ with I2 ⊆ I1 two sets of identities, and

g1 = p(u1
1, . . . , u

1
kp

) ∈ GroundAtomsI1(P)

g2 = p(u2
1, . . . , u

2
kp

) ∈ GroundAtomsI⊥2 (P)

be two ground atoms. We say that g2 is embedded in g1, written g1 ⋐ g2, if

u2
i = eI1I2(u

1
i)

for all 1 ≤ i ≤ kp. ♦

The embedding of logical structures is a bit more involved, as it requires to not

only relate the domains and the universes, but also the interpretation functions.

Here, the information order of the three-valued logic (cf. page 15) comes into

play as it allows us to characterises a potential loss of definite information to

indefinite information. We define the embedding of logical structures as follows.

26 Chapter 3 Modelling Dynamic Evolution Systems

Definition 3.10 (Structure Embedding) Let S = (X ,PS,PL,PE) be a sig-

nature, I1, I2 ⊆ Id with I2 ⊆ I1 two sets of identities, and S1 = (U1, ι1) ∈
StrucsS(I1) and S2 = (U2, ι2) ∈ StrucsS(I⊥2) two logical structures.

We say that S2 is embedded in S1, written S1 ⋐ S2, if

1. S2 preserves the aliveness of processes, that is,

u ∈ U1 ⇐⇒ eI1I2(u) ∈ U2

for all identities u ∈ I2, and

2. S2 over-approximates the interpretation of predicates, that is,

ι1(p)(u1, . . . , ukp
) ⊑ ι2(p)(e

I1
I2

(u1), . . . , e
I1
I2

(ukp
))

for all predicates p ∈ P and identities u1, . . . , ukp
∈ I1. ♦

Intuitively, if S1 ⋐ S2 we have that S2 represents less information and is more

abstract than S1. We consider the following example embedding of Sad:

Sad

sl
u1

ma
u2

sl
u3

dev
u4

link

link

link

link

S ′
ad

sl
u1

ma
u2

PS
⊥

link

link

link

link

For the structures Sad and S ′
ad = ({u1, u2,⊥}, ι′), where ι′ is given in the above

box, we provide the embedding function from {u1, u2, u3, u4} to {u1, u2,⊥} by

the dotted arcs. We have Sad ⋐ S ′
ad as S ′

ad preserves the aliveness of processes

u1 and u2 and the predicate interpretation ι is over-approximated by ι′, as for

example

ι(sl)(u1) = 1 ⊑ 1 = ι′(sl)(u1)

ι(ma)(u1) = 0 ⊑ 0 = ι′(ma)(u1)

ι(sl)(u3) = 1 ⊑ 1/2 = ι′(sl)(⊥)

ι(sl)(u4) = 0 ⊑ 1/2 = ι′(sl)(⊥)

ι(link)(u1, u4) = 0 ⊑ 0 = ι′(link)(u1,⊥)

ι(link)(u2, u3) = 1 ⊑ 1/2 = ι′(link)(u2,⊥)

ι(link)(u2, u4) = 0 ⊑ 1/2 = ι′(link)(u2,⊥)

Section 3.2 Semantical Domain 27

In Chapter 5 we will introduce the spotlight abstraction of a logical structure

as a systematic method to obtain an embedded structure. This provides us

with a proper abstraction technique as an important observation is that the

embedding of a logical structure weakly preserves its properties. For example,

if some property holds in a logical structure, then this property can not be

violated in a corresponding embedding structure. However, the satisfaction of

the property may become unknown as the embedding structure may represent

less precise information. To formalise this intuition, we firstly discuss how

to specify properties of logical structures, and then show the preservation of

properties by embedded structures in Lemma 3.14 below.

Formulas

Properties of a logical structure will be formally characterised by formulas. To

this end, a formula may first of all reason about the state and link predicates,

that is, it may comprise atoms over PSL. To denote that a process x has a

connection to some (anonymous) process, we take the liberty of writing pl(x),

disregarding the fact that pl ∈ PL is a actually a binary predicate. We also

syntactically allow atoms over evolution predicates. However, a semantics for

these terms can only be given for transitions systems over logical structures. We

will do so in Def. 4.2 in Chapter 4. To express that a process is currently alive we

use the notation ⊚x. Finally, the usual constructs to reason about equality and

the standard boolean connectives are also contained in our property language.

Definition 3.11 (Formula) Let S = (X ,PS,PL,PE) be a signature and P ⊆
P a set of predicates.

A formula over P is generated by the grammar

ψ ::= tt | a | pl(x1) | ⊚x1 | x1 = x2 | ¬ψ | ψ1 ∧ ψ2

where a ∈ AtomsX (P), pl ∈ PL ∩ P and x1, x2 ∈ X .

The set of all formulas over P is denoted by Forms(P). ♦

The variables of a formula ψ ∈ Forms(P) are denoted by vars(ψ) and are

canonically defined inductively as

vars(tt) := ∅ vars(x1 = x2) := {x1, x2}

vars(p(x1, . . . , xkp
)) := {x1, . . . , xkp

} vars(¬ψ) := vars(ψ)

vars(pl(x1)) = vars(⊚x1) := {x1} vars(ψ1 ∧ ψ2) := vars(ψ1) ∪ vars(ψ2)

28 Chapter 3 Modelling Dynamic Evolution Systems

where p ∈ P . By evovars(ψ) ⊆ vars(ψ) we denote the set of variables which

only occur as arguments for evolution predicates PE in ψ.

We assume a number of abbreviations for a formula, namely

ff := ¬tt x1 ∨ x2 := ¬(¬x1 ∧ ¬x2)

⊕x := ¬⊚x x1 → x2 := ¬x1 ∨ x2

x1 6= x2 := ¬(x1 = x2) x1 ↔ x2 := x1 → x2 ∧ x2 → x1,

where the (only non-standard) notation ⊕x allows us to express that the identity

denoted by x is dead.

We assume the usual binding priorities, that is, the unary operators ⊚,⊕
and ¬ bind most tightly, followed by equality (=), then conjunction (∧), then

disjunction (∨), then both kinds of implication (→,↔).

Note that the formula language does not comprise any quantification mecha-

nism, all variables occur free. To define the evaluation of a formula in a logical

structure, we hence need a valuation that assigns to each variable of the formula

some process identity from the domain of the logical structure.

Definition 3.12 (Formula Evaluation) Let S = (X ,PS,PL,PE) be a signa-

ture, and I ⊆ Id⊥ a set of identities.

The evaluation of a formula ψ ∈ Forms(PSL) in a structure S = (U, ι) ∈
StrucsS(I) under a valuation V ∈ ValsI(vars(ψ)) is denoted by S[ψ](V) ∈ B3

and is defined inductively as

S[tt](V) := 1

S[⊚x1](V) :=

{
1/2 if V(x1) = ⊥

V(x1) ∈ U else

S[ps(x1)](V) := ι(ps)(V(x1))

S[pl(x1, x2)](V) := ι(pl)(V(x1),V(x2))

S[pl(x1)](V) := max {ι(pl)(V(x1), u) | u ∈ U}

S[x1 = x2](V) :=

V(x1) = V(x2) if {V(x1),V(x2)} ⊆ I \ {⊥}
1/2 if V(x1) = ⊥ = V(x2)

0 else

S[¬ψ](V) := ¬S[ψ](V)

S[ψ1 ∧ ψ2](V) := S[ψ1](V) ∧ S[ψ2](V)

where ps ranges over PS, and pl ranges over PL. ♦

Section 3.2 Semantical Domain 29

The max operator denotes the greatest element with respect to the arithmetic

order in the three-valued domain as introduced on page 15 such that pl(x1) yields

e.g. 1 if there is at least one definite link pl from x1 to some other process.

In order to avoid the need for reasoning over an potentially infinite set, the

evaluation of pl(x1) only considers connections to alive processes, whose number

will be unbounded but always finite. Further note that Def. 3.12 is tailored for

the specific character of the abstract process ⊥. This in particular affects the

semantics for the comparison of variables. As the abstract process will be used

to represent any number of concrete processes, comparing ⊥ with itself yields
1/2. In contrast, comparing some identity from Id with ⊥ yields 0, as ⊥ will

represent only processes that are not concretely represented (cf. Def. 5.5).

Clearly, the evaluation of predicates is not limited to valuations that denote

alive identities. In particular, one may query the existence of a dangling link,

for example

sl(x) ∧ link(x, y) ∧ ⊕y

Actually, the reasoning over processes that may be dead yields some further

intricacies. For example, the formula

ψx := ¬sl(x)

holds for the adhoc networking structure Sad (cf. page 23) both under the valu-

ation [x 7→ u4] and under [x 7→ u5]. However, it holds for u4 because u4 is rather

a device than a slave while it holds for u5 because no unary predicates holds

for the dead process u5. Note that we do not require that all state predicates

yields 0 for some dead process, however typical system models will actually have

this property. Then, although ψx is satisfied under these two valuations for the

same reason, namely because the interpretation of the sl predicate yields 0 in

both cases, the intuitive consequences of this satisfaction is different. While

one expects for the alive process u4 that either the interpretation of some other

state predicate (like dev or ma in the adhoc example) yields 1, no interpretation

of any state predicate for a dead process like u5 is expected to yield 1. However,

one does not obtain any information about the aliveness of the corresponding

process unless the ⊚ operator is explicitly used in the formula. These specifics

of reasoning over appearing and disappearing processes have to be carefully con-

sidered when using formulas to characterise logical structures, and in particular

when specifying temporal system requirements. We have thoroughly discussed

these aspects in a technical report [BTW07b], and we will reconsider the main

issues in Section 4.3.

Let us consider some further example formulas. The expression

ψ1 := ma(x1) ∧ link(x1, x2) ∧ link(x1, x3) ∧ x2 6= x3

30 Chapter 3 Modelling Dynamic Evolution Systems

states that some master process has links to two different processes. It evaluates

to Sad[ψ1](V) = 1 for V := [x1 7→ u2, x2 7→ u1, x3 7→ u3]. The formula

ψ2 := ¬link(x)

says that there are no outgoing links from the process denoted by x. Here,

we have Sad[ψ2](V1) = 0 for e.g. V1 := [x 7→ u1], and Sad[ψ2](V2) = 1 for

V2 := [x 7→ u4].

Formulas may also evaluate indefinite, e.g. for V3 := [x1 7→ u1, x2 7→ u2]

ψ3 := link(x1, x2) ∧ ⊕x2

evaluates to SD[ψ3](V3) = 1/2, indicating that the process denoted by x1 possibly

has a dangling link in the logical structure SD (introduced on page 23).

We observe that besides the comparison and aliveness of variables denoting ⊥,

the only other reason for a formula evaluating indefinite is that some predicate

interpretation yields the indefinite value. This entails the remark stating that

two-valued logical structures (cf. Def. 3.6) over Id always evaluate definite.

Remark 3.13 (Definite Formula Evaluation) Let S = (X ,PS,PL,PE) be a

signature, ψ ∈ Forms(PSL) a formula, I ⊆ Id a set of identities, S ∈ StrucsS(I)

a logical structure, and V ∈ ValsI(vars(ψ)) a valuation.

If S is two-valued, then ψ evaluates definite, that is,

S ∈ Strucs2
S(I) =⇒ S[ψ](V) ∈ B. ♦

We now relate the evaluation of formulas and the embedding of logical struc-

tures (cf. Def. 3.10). As already mentioned, the embedding ensures a weak

preservation of the evaluation of formulas, in the sense that the evaluation may

become indefinite but not change from 1 to 0 or vice verse. We again use the

information order of three-valued logic to formalise this property.

Lemma 3.14 (Property Preservation) Let S = (X ,PS,PL,PE) be a sig-

nature, I1, I2 ⊆ Id with I2 ⊆ I1 two sets of identities, and S1 = (U1, ι1) ∈
StrucsS(I1) and S2 = (U2, ι2) ∈ StrucsS(I⊥2) two logical structures with S1 ⋐ S2.

For any formula ψ ∈ Forms(P) and valuation V ∈ ValsI1(vars(ψ)), we have

S1[ψ](V) ⊑ S2[ψ](eI1I2(V)). ♦

Proof. By induction over the structure of the formula. The proof is given in

the appendix (page 187). �

Section 3.2 Semantical Domain 31

This concludes our investigation of logical structures as a means to formally

represent system snapshots. In particular, we have introduced the specifica-

tion of properties in terms of a formula language (thereby partly anticipating

Chapter 4 on specifying temporal requirements), and the embedding of logical

structures, which will serve as a basic notion for the abstraction of dynamic

evolution systems in Chapter 5.

3.2.2 Structured Labelled Transition Systems

To be able to define the behaviour over time of the considered systems we

combine the notion of a labelled transition system (cf. Def. 2.1) with logical

structures and ground atoms as introduced above, yielding so-called structured

labelled transition systems (SLTS). The states of an SLTS correspond to logical

structures, and the transitions among logical structures are labelled by ground

atoms over evolution predicates, thereby indicating both what kind of transition

has been made (by the predicate of the ground atom) and which set of identities

are involved in this transition (by the arguments of the ground atom).

Definition 3.15 (Structured Labelled Transition System) Let S be a sig-

nature and I ⊆ Id⊥ a set of identities. An LTS (S,S0,L,→) where

1. states are logical structures over S and I, i.e. S ⊆ StrucsS(I), and

2. labels are ground atoms over PE and I, i.e. L ⊆ GroundAtomsI(PE),

is called a structured labelled transition system (SLTS) over S and I. The set

of all structured labelled transition systems over S and I is denoted by TS(I).

A structured labelled transition system T = (S,S0,L,→) ∈ TS(I) is called

two-valued if all states are two-valued structures, i.e. if S ⊆ Strucs2
S(I). The

set of all two-valued SLTS over S is denoted by T 2
S (I). ♦

The notion of a run (Def. 2.1) transfers directly from labelled transition sys-

tems to structured labelled transition systems. A run of an SLTS (S,S0,L,→)

is an infinite sequence ((Li, Si))i∈N0 of pairs of ground atoms Li ∈ L and logical

structures Si ∈ S such that S0 ∈ S0 and (Si, Li+1, Si+1) ∈→ for all i ∈ N0.

In the previous section, we have devised the embedding of logical structures in

order to state their relation in terms of information order. We now lift this con-

cept to Structured Labelled Transition Systems, yielding a notion of simulation

for SLTSs. This generalises the simulation preorder ([Mil71], cf. Section 2.3) by

relating those states and transition labels of two structured labelled transition

systems which form an embedding relation.

32 Chapter 3 Modelling Dynamic Evolution Systems

Definition 3.16 (SLTS Simulation) Let S be a signature, I1, I2 ⊆ Id two

sets of identities with I2 ⊆ I1 and

T1 = (S1,S1
0,L

1,→) ∈ TS(I1)

T2 = (S2,S2
0,L

2,) ∈ TS(I⊥2)

two structured labelled transition systems over S.

A relation ∼ ⊆ (S1 × S2) ∪ (L1 × L2) is called a simulation relation if

1. simulating elements form an embedding relation, that is,

R1 ∼ R2 =⇒ R1 ⋐ R2

for R1 ∈ S1 ∪ L1 and R2 ∈ S2 ∪ L2, and

2. each transition in T1 is reflected by a transition in T2, that is,

S1 ∼ S2 =⇒ ∀S ′
1 ∈ S1, L1 ∈ L1 with S1

L1→ S ′
1

∃S ′
2 ∈ S2, L2 ∈ L2 : S2

L2
 S ′

2 ∧ S
′
1 ∼ S ′

2 ∧ L1 ∼ L2

for any states S1 ∈ S1 and S2 ∈ S2.

We say that T2 simulates T1, written T1 � T2, iff there exists a simulation

relation ∼ ⊆ (S1 × S2) ∪ (L1 × L2) that relates initial states, that is,

∀S0 ∈ S1
0 ∃S ′

0 ∈ S2
0 : S0 ∼ S ′

0.

T1 and T2 are similar, written T1 ≈ T2, iff both T1 � T2 and T2 � T1. ♦

As in the classical variant of simulating transition systems we obtain a corre-

sponding path lemma, stating that for each run of an SLTS there is corresponding

run in a simulating SLTS that embeds each element of the original run.

Lemma 3.17 (Corresponding Runs) Let S be a signature, I1, I2 ⊆ Id two

sets of identities, and T1 ∈ TS(I1) and T2 ∈ TS(I⊥2) two SLTSs with T1 � T2.

Then for every run π1 = ((L1
i , S

1
i))i∈N0 ∈ Runs(T1) there exists a run π2 =

((L2
i , S

2
i))i∈N0 ∈ Runs(T2) with

L1
i ⋐ L2

i and S1
i ⋐ S2

i

for all i ∈ N0. The run π2 is called a corresponding run of π1. ♦

Proof. By induction over the length of the run. The proof is given in the

appendix (page 188). �

We have presented the semantical domain for the considered class of sys-

tems, which in particular exhibits a notion of simulation which will be used to

prove the soundness of the considered abstraction in Chapter 5. We proceed by

developing suitable modelling languages for the developed semantical domain.

Section 3.3 Dynamic Evolution Systems 33

3.3 Dynamic Evolution Systems

In the following, we introduce a symbolic description language for structured

labelled transition systems called Dynamic Evolution Systems (DES for short).

The syntax of this language is rule-based and will be given in Subsection 3.3.1.

The formal semantics of DES in terms of an SLTS follows in Subsection 3.3.2.

3.3.1 Syntax

Dynamic Evolution Systems will be modelled by a set of so-called evolution

rules, each of them comprising a name, a guard and a sequence of statements.

The effect of an evolution rule is that each logical structure satisfying the guard

may evolve into the structure that results by executing the sequence of state-

ments. The name of the rule will be used to label the corresponding transition

by an evolution ground atom, that is, the name is actually an atom over evolu-

tion predicates. The guard of the rule is a formula over state and link predicates

as introduced in Definition 3.11, and the language of statements is defined as

follows.

Definition 3.18 (Statement) Let S = (X ,PS,PL,PE) be a signature. A

statement over S is generated by the following grammar

stm ::= stm1; stm2 | a | ¬a | ¬pl(x) | ⊛x | ⊗x | skip

where a ∈ AtomsX (PSL), pl ∈ PL and x ∈ X . The set of all statements over S
is denoted by StmsS . ♦

The intuition of the seven ingredients of the statement grammar is as follows.

The notion stm1; stm2 denotes sequential composition of the statements stm1

and stm2, which allows us to actually build sequences of statements. An atom

a = p(x1, . . . , xkp
) ∈ AtomsX (PSL) will be used to set the interpretation for p

and the identities denoted by x1, . . . , xkp
to the boolean value 1. Analogously,

the negated version of the atom ‘¬a’ sets the corresponding interpretation to

0. The negated variant of a binary predicate pl comprising only one variable

‘¬pl(x)’ will set all interpretations for pl with the identity denoted by x as the

first argument to 0. Speaking in terms of our application domain, ¬pl(x) will

remove all outgoing pl-connections of the process denoted by x. The notion ⊛x

represents the create statement that adds the identity denoted by x to the set

of alive processes. Analogously, the notion ⊗x represents the destroy statement

that removes the identity denoted by x from the set of alive processes. The skip

statement has no effect on the structure.

34 Chapter 3 Modelling Dynamic Evolution Systems

The variables of a statement stm ∈ StmsS are denoted by vars(stm) and are

canonically defined inductively as

vars(stm1; stm2) := vars(stm1) ∪ vars(stm2)

vars(¬pl(x)) = vars(⊛x) = vars(⊗x) := {x}

vars(skip) := ∅

and vars(a) and vars(¬a) for atoms a ∈ AtomsX (PSL) are as defined on page 27.

For convenience, the positive variants of an atom statement may be followed

by the overwrite modifier ‘!’ that ensures that

• for state atoms ps(x) ∈ AtomsX (PS) the interpretations of all state predi-

cates except for ps becomes 0 for the identity denoted by x, and

• for link atoms pl(x1, x2) ∈ Atomsx(PL) that all interpretations of the link

predicate pl becomes 0 for the identity denoted by x1 as first argument,

except of the two identities denoted by x1 and x2 as first and second

argument, respectively. Speaking in terms of our application domain,

the overwrite modifier for binary predicates will delete all outgoing pl-

connections of the identity denoted by x1 first, and then establish a single

pl-connection to the identity denoted by x2.

Given a signature (X ,PS,PL,PE) with PS = {p1
s, . . . , p

n
s}, we define the overwrit-

ing statement a! for atoms a ∈ AtomsX (PSL) as the following two abbreviations

ps!(x) := ¬p1
s(x); . . . ;¬p

n
s (x); ps(x)

pl!(x1, x2) := ¬pl(x1); pl(x1, x2)

for ps ∈ PS and pl ∈ PL.

We are now prepared to define the syntax of Dynamic Evolution Systems as

a set of evolution rules as motivated above.

Definition 3.19 (Dynamic Evolution System) Let S = (X ,PS,PL,PE) be

a signature. An evolution rule over S is a triple

(name, guard, stm) ∈ AtomsX (PE) × Forms(PSL) × StmsS

where vars(name) = vars(guard)∪ vars(stm). The set of all evolution rules over

S is denoted by EvoRuleS .

A Dynamic Evolution System (DES) over S is a finite set of evolution rules

D ⊂ EvoRuleS , and by DS we denote the set of all Dynamic Evolution Systems

over S. ♦

Section 3.3 Dynamic Evolution Systems 35

Evolution rules will be written in the form ‘name • guard ◮ stm’. As an

example system, we model the adhoc networking case study as the Dynamic

Evolution System Ad over the signature Sad as given on page 23. It comprises

the following five evolution rules

new(x) • ⊕x ◮ ⊛x; dev(x)

con(x, y) • dev(x) ∧ (dev(y) ∨ ma(y)) ∧ x 6= y ◮ sl!(x); ma!(y); link(x, y); link(y, x)

dis(x, y) • ma(x) ∧ link(x, y) ◮ dev!(y);¬link(x, y);¬link(y, x)

free(x) • ma(x) ∧ ¬link(x) ◮ dev!(x)

del(x) • dev(x) ◮ ⊗x

where the intuition of these rules are that

1. the first rule allows a dead identity to appear as a free device, and

2. the second rule allow two different identities, where one is a free device

and the other is either a device or a master to connect, such that the first

becomes a slave, the second becomes a master and links in both directions

are established, and

3. the third rule allows a master having a link to some identity to disconnect

this identity such that it becomes a free devices and the links to and from

it are removed, and

4. the fourth rule allows a master device that has no link to any identity to

become a free device again, and finally

5. the last rule allows a free device to disappear from the network.

3.3.2 Semantics

To be able to define the formal semantics of an DES, we need to formalise the

intuition of the effects of the statements as discussed on page 33.

Definition 3.20 (Statement Execution) Let S = (X ,PS,PL,PE) be a sig-

nature, and I ⊆ Id⊥ a set of identities.

The execution of a statement is a function

·〈·〉(·) : StrucsS(I) × StmsS × ValsI(X) → StrucsS(I)

which is defined inductively as

S〈stm1; stm2〉(V) := S〈stm1〉(V)〈stm2〉(V)

S〈p(x1, . . . , xkp
)〉(V) := (U, ι[p 7→ ι(p)[(V(x1), . . . ,V(xkp

)) 7→ 1]])

36 Chapter 3 Modelling Dynamic Evolution Systems

S〈¬p(x1, . . . , xkp
)〉(V) := (U, ι[p 7→ ι(p)[(V(x1), . . . ,V(xkp

)) 7→ 0]])

S〈¬pl(x)〉(V) := (U, ι[pl 7→ ι(pl)⇃V(x)])

S〈⊛x〉(V) := (U ∪ {V(x)}, ι)

S〈⊗x〉(V) := (U \ {V(x)}, ι)

S〈skip〉(V) := S

where S = (U, ι) and p ∈ PSL. The notation ι(pl)⇃u sets all interpretations for

predicate pl and identity u as the first argument to 0, that is,

ι(pl)⇃u(u1, u2) :=

{

0 if u1 = u

ι(pl)(u1, u2) else

for pl ∈ PL and u, u1, u2 ∈ I. ♦

We will now specify when two logical structures are related by an evolution

rule, that is, when a (source) structure may evolve into a (target) structure via

some evolution ground atom. This notion of evolution is the central concept

for defining the formal semantics of a Dynamic Evolution System in terms of a

SLTS below.

Definition 3.21 (Evolution) Let S = (X ,PS,PL,PE) be a signature, r =

(name, guard, stm) ∈ EvoRuleS an evolution rule over S, and I ⊆ Id a set of

identities.

Then r enables the evolution of the logical structure S ∈ StrucsS(I) into the

logical structure S ′ ∈ StrucsS(I) via the ground atom g ∈ GroundAtomsI(PE)

under I, denoted

S
g

−−−→
r, I

S ′

if there is a valuation V ∈ ValsI(vars(name)) such that the following three

conditions are satisfied:

1. The source structure S satisfies the guard under V, that is,

S[guard](V) = 1.

2. The rule name under V yields the evolution ground atom g, that is,

name[V] = g.

3. Executing the statements stm on S yields the target structure S ′, that is,

S ′ = S〈stm〉(V).

Section 3.3 Dynamic Evolution Systems 37

We say that a Dynamic Evolution System D ∈ DS enables the evolution of a

structure S ∈ StrucsS(I) into S ′ ∈ StrucsS(I) via the evolution ground atom

g ∈ GroundAtomsI(PE) under I, denoted

S
g

−−−→
D, I

S ′

if there is a rule r ∈ D such that S
g

−−−→
r, I

S ′
. ♦

To illustrate the concept of evolution, we consider some examples from the

adhoc networking case study Ad as defined on page 35. We fix a set of identities

I := {u1, u2} ⊂ Id, and have

S1 := ({u1}, ({dev(u1)}, ∅))
new(u2)
−−−−→

Ad, I
({u1, u2}, ({dev(u1), dev(u2)}, ∅)) =: S2

by the evolution rule

new(x) • ⊕x ◮ ⊛x; dev(x)

as for the valuation V = [x 7→ u2] the guard is satisfied in S1, that is,

S1[⊕x](V) = 1,

and the rule name under V yields the evolution ground atom, that is,

new(x)[V] = new(u2),

and the target structure S2 is the result of executing the statement in S1, i.e.

S2 = S1〈⊛x; dev(x)〉(V).

Similarly, we have

S2
con(u1,u2)
−−−−−−→

Ad, I
({u1, u2}, ({sl(u1),ma(u2), link(u1, u2), link(u2, u1)}, ∅))

by the evolution rule

con(x, y) • dev(x)∧ (dev(y)∨ma(y))∧ x 6= y ◮ sl!(x); ma!(y); link(x, y); link(y, x)

under the valuation [x 7→ u1, y 7→ u2]. Thus, the two devices u1 and u2 may

connect such that u1 becomes a master and u2 a slave. Note that the symmetric

evolution, namely where u2 becomes the master and u1 the slave, is also possible

under the valuation [x 7→ u2, y 7→ u1]. We will discuss symmetry properties of

Dynamic Evolution Systems in more detail in Section 5.2.2.

We observe that an evolution only affects processes which are in the range of

the valuation function according to Def. 3.21. As the name of a rule comprises

all variables of both the guard and the statements, we obtain the following

remark.

38 Chapter 3 Modelling Dynamic Evolution Systems

Remark 3.22 (Locality of Evolution) Let r ∈ EvoRuleS be an evolution

rule over signature S, I ⊆ Id a set of identities, and S, S ′ ∈ StrucsS(I) two

logical structures.

If S evolves into S ′ via g, then the focus of S onto the arguments of g evolves

into the same focus of S ′ and vice versa, that is,

S
g

−−−→
r, I

S ′
⇐⇒ SMA(g)

g
−−−→
r, I

S ′MA(g) ♦

Proof. The proof is given in the appendix (page 188). �

The concrete semantics of a Dynamic Evolution System will be defined by

collecting all evolving structures in a structured labelled transition system. To

facilitate a flexible mechanism to characterise the initial snapshot of the con-

sidered system, we need to introduce a notion of identity permutation before.

In fact, we allow to specify a designated logical structure characterising the

initial snapshot of the system. However, in order to not break the symmetry

properties of the induced transition system (cf. Section 5.2.2), we need to take

all permutations of this given structure into account when constructing the set

of initial states of the induced transition system.

Definition 3.23 (Permutation) Let S be a set. A permutation of S is a

bijective function σ : S → S.

The set of all permutations of S is denoted by ΣS. ♦

For a set of identities I ⊆ Id⊥, we canonically extend a permutation function

σ ∈ ΣI to work on a set I ′ ⊆ I of identities by setting σ(I ′) := {σ(u) | u ∈ I ′},
and we define the application of a permutation to valuations, ground atoms and

logical structures as follows.

Definition 3.24 (Permutations) Let I ⊆ Id be a set of identities, and σ ∈ ΣI

a permutation of I.

• The permutation of a valuation V ∈ ValsI(X) under σ is defined as

σ(V)(x) := σ(V(x))

for each variable x ∈ dom(V).

• The permutation of a ground atom g = p(u1, . . . , ukp
) ∈ GroundAtomsI(P)

under σ is defined as

σ(g) := p(σ(u1), . . . , σ(ukp
)).

and is extended to a set of ground atoms V = {g1, . . . , gn} as

σ(V) := {σ(g1), . . . , σ(gn)}

Section 3.3 Dynamic Evolution Systems 39

• The permutation of a logical structure S = (U, ι) ∈ StrucsS(I) under σ is

defined as

σ(S) := (σ(U), (σ(ι1), σ(ι1/2)). ♦

With this, we are able to define the concrete semantics of Dynamic Evolution

System, parameterised by a given logical structure describing the initial snap-

shot of the system. Note that this initial structure may in particular be the

empty structure Se as defined on page 22.

Definition 3.25 (Semantics of DES) Let S be a signature, D ∈ DS a Dy-

namic Evolution System over S, I ⊆ Id a set of identities, and S ∈ StrucsS(I)

a logical structure.

The semantics of D and S under I, denoted JD, SKI , is the structured labelled

transition system (S,S0,L,→) ∈ T 2
S (I) where

• the states are two-valued logical structures over S and I, that is,

S := Strucs2
S(I),

• the given structure S determines the set of initial states, that is,

S0 := {σ(S) ∈ Strucs2
S(I) | σ ∈ ΣI}

• the labels are evolution ground atoms over PE and I, that is,

L := GroundAtomsI(PE),

• and the evolution determines the transition relation, that is,

→ := {(S, g, S ′) ∈ S × L × S | S
g

−−−→
D, I

S ′
}.

If no restriction on the set of available identities is given, that is, if I = Id, we

call

JD, SK := JD, SKId

the concrete semantics of D and S.

If no logical structure S is given, we take the empty structure as the initial

state, that is, we set

JDKI := JD, SeKI

for any I ⊆ Id. ♦

40 Chapter 3 Modelling Dynamic Evolution Systems

For a subset of identities I ⊂ Id, we call JD, SKI the I-underapproximated

semantics of D. This notion is well-defined by the following lemma, stating

that each run in any underapproximated semantics of D corresponds to a run

in the concrete semantics of D.

Lemma 3.26 (Under-Approximation) Let D ∈ DS be a Dynamic Evolution

System over S, I ⊆ Id a set of identities and S ∈ StrucsS(I) a logical structure.

Then

∀π′ ∈ Runs(JD, SKI) ∃π ∈ Runs(JD, SKId) : π′ = π|I

where π|I := ((Li, (Ui, ιi|I))i∈N0 denotes the element-wise restriction of the in-

terpretation function to identities from I. ♦

Proof. According to Def. 3.21, evolution of logical structures requires the exis-

tence of a rule (name, guard, stm) ∈ D and a valuation V ∈ ValsI(vars(name))

of variables to identities I. As each valuation to a subset I ⊆ Id is in particular

a valuation for Id, we have that any two structures that are enabled under I

are also enabled under Id. Then the claim follows by Remark 3.22 (Locality of

Evolution) and by the semantics of DES (cf. Def. 3.25). �

A run of the concrete semantics of a Dynamic Evolution System D (i.e. of

the underlying structured labelled transition system) stands for one particular

behaviour of the system. The set of all a runs of JD, SK represents the complete

behaviour of D and S. For the adhoc networking case study, we present a prefix

of a run π ∈ Runs(JAdK) where two processes u1 and u2 appear, connect them-

selves, and disconnect again. Then the device u1 disappears, and u2 becomes a

device and disappears.

π = (∅, ιe),

(new(u1), ({u1}, ({dev(u1)}, ∅)),

(new(u2), ({u1, u2}, ({dev(u1), dev(u2)}, ∅)),

(con(u1, u2), ({u1, u2}, ({sl(u1),ma(u2), link(u1, u2), link(u2, u1)}, ∅)),

(dis(u2, u1), ({u1, u2}, ({dev(u1),ma(u2)}, ∅)),

(del(u1), ({u2}, ({ma(u2)}, ∅)),

(free(u2), ({u2}, ({dev(u2)}, ∅)),

(del(u2), (∅, ιe)), . . .

Using the graphical notation for logical structures as introduced on page 23, we

show an illustration of these evolution steps in Figure 3.3.

Section 3.3 Dynamic Evolution Systems 41

new(u1)

new(u2)

con(u1, u2)

dis(u2, u1)

del(u1)

free(u2)

del(u2)

dev
u1

dev
u1

dev
u2

sl
u1

ma
u2

link

link

dev
u1

ma
u2

ma
u2

dev
u2

Figure 3.3: A prefix of a run of JAdK.

3.3.3 Discussion

The language of Dynamic Evolution System equips us with a concise formalism

to specify the behaviour of systems where both the number of alive processes

and their configurations varies over the time. Clearly, DES is a rather low-level

language as the evolution of processes is based on a “partly global view” on the

system. For example, the possible evolutions of some process may depend on the

local status of some other process. However, when implementing the behaviour

of a process in a distributed system, each process has only a local view on

the system, namely its own configuration. Information about other process is

typically gathered by communication with other processes, that is, each process

builds its own view of a certain part of the overall system by querying other

processes and storing their answers as part of its local configuration.

In a joint paper [BSTW06] we have addressed this issue by developing a

modelling language called Dynamic Communication Systems (DCS for short).

There, the behaviour of a single process is given in terms of a finite transition

42 Chapter 3 Modelling Dynamic Evolution Systems

system, where the transitions are labelled by certain actions like sending and

receiving of messages over named communication channels. The semantics of

the overall system is then given by the parallel composition of arbitrarily many

processes, each one following the same behavioural description.

We will introduce this language in the following section. However, the reader

who is more interested in our approach to actually analyse the considered class

of systems may safely skip the next section upon the first reading and directly

proceed to Chapter 4. We will reconsider the DCS language in Section 6.3 where

we exploit the specifics of this language for a new kind of abstraction refinement.

However, the overall approach for requirement specification, abstraction and

analysis given in Chapters 4 to 6 is purely defined in terms of the DES language

and hence may be understood without knowing the DCS language.

3.4 Dynamic Communication Systems

As the name Dynamic Communication Systems already indicates, this language

opens up a new issue in our modelling framework, namely communication. As

motivated before, the behaviour of a single process operating in a distributed

system is mainly driven by communication with other processes. This is because

the local configuration of processes is not directly visible from the outside but

has to be acquired via message communication. The DCS language accounts

for this fact by modelling the behaviour from the local view of a single process,

thereby specifying a behavioural template that each process will follow. This is

clearly related to the notion of a class in object-oriented programming [Str00],

where each instance of this class adheres to the given description during runtime.

A DCS process may only sent messages to processes it knows. This kind of

acquaintanceship is realised by establishing named channels among processes.

There are basically two possibility for a process to establish a new channel,

either by creating a new process or by receiving a message that comprises a

process identity as parameter. A process may also delete one of its channels.

A Dynamic Communication System may comprise a set of so-called environ-

ment messages, which are non-deterministically sent from the environment to

alive processes. By these messages one can abstract from physical aspects of

the real-world system, for example to model the detecting of processes via hard-

ware sensors. Environment messages are in particular suitable to bootstrap the

communication protocols by providing initial channel contents.

Section 3.4 Dynamic Communication Systems 43

The previous paragraph has already introduced the four basic actions, namely

• creation of processes,

• sending and receiving of messages, and

• reset of channels.

Additionally, there are three kinds of environment actions, namely appearance

and disappearance of processes and sending of environment messages. Note

that sending a message always attaches the process identity of the sender to

the message. In particular we do not consider the feature of the DCS variant

in [BSTW06] that may use the content of a channel as a message parameter.

Moreover, we assume that each channel holds at most one process identity at

a time. These restrictions allow for a precise static analysis of communication

dependencies (cf. Sect. 6.3) without limiting the expressiveness of the overall lan-

guage (cf. page 72). We will give the formal syntax of Dynamic Communication

Systems in the following Subsection 3.4.1, and its semantics in Subsection 3.4.2.

3.4.1 Syntax

A Dynamic Communication System is specified by a behavioural template, the

so-called DCS protocol. Actually, there may be more than one DCS protocol

in a Dynamic Communication System, that is, the processes are typed, and

each type has its own protocol description. In particular, the creation action is

parameterised in the type of process which is to be created. Formally, we define

the set of DCS actions as follows.

Definition 3.27 (DCS Actions) Let T be a set of types, C a set of channel

names, and M a set of message names. We define

• the set of create actions over C and T as

NewC,T := {∗c
t | c ∈ C, t ∈ T },

• the set of receive actions over C and M as

RcvC,M := {?m(c) | c ∈ C,m ∈ M},

• the set of send actions over C and M as

SndC,M := {c!m | c ∈ C,m ∈ M}, and

• the set of reset actions over C as

ClrC := {c | c ∈ C}. ♦

44 Chapter 3 Modelling Dynamic Evolution Systems

Note that the channel of a receive action will not specify the channel over

which the message is to be received but rather the channel in which the identity

of the sender of the message will be stored. Besides creation of new processes,

this storing mechanism allows a process to acquire new process identities. As

each channel holds at most one identity, each process has at most |C| communi-

cation partners at a certain point in time, however these partners may of course

vary over the time.

A DCS protocol is given as a transition system where the transitions are

annotated by some DCS action as defined above. A DCS protocol declares a

subset of its states to be initial and fragile. The set of initial state determine

in which state a new process may appear. If some process is in a fragile state,

it may disappear from the system. Additionally, we declare a set of channel

names under which a process can establish connections to other processes.

Definition 3.28 (DCS Protocol) Let T be a set of types, M a set of message

names, and MX a subset of M.

A DCS Protocol over T , M and MX is given by a tuple

P = (Q,A,F,C, succ)

where

• Q is a finite set of states,

• A ⊆ Q is the set of initial states,

• F ⊆ Q is the set of fragile states,

• C is a finite set of channel names,

• succ ⊆ Q × (NewC,T ∪ SndC,M\MX
∪ RcvC,M ∪ ClrC) × Q is the transition

relation.

The set of all DCS Protocols over T , M and MX is denoted by P(T ,M,MX).

We use the notations QP, AP, FP, CP and succP to access the respective

components of a DCS protocol P = (Q,A,F,C, succ). ♦

A Dynamic Communication System is basically a set of DCS protocols. It

additionally declares a common set of message names by which the different

instances of the protocols may communicate. A subset of these message is

tagged as environment messages, indicating that these message will only by

sent from the environment.

Definition 3.29 (Dynamic Communication System) A tuple

C = (M,MX ,P)

where

Section 3.4 Dynamic Communication Systems 45

dev

det sreq

rreq srep

?detect(link)

link !req

?nack(link)

?ack(link)

?req(link)

link !ack

link !nack

link

Figure 3.4: Cad – the adhoc connection principle in terms of a DCS.

• M is a finite set of message names,

• MX ⊆ M is a set of environment message names, and

• P : T → P(T ,M,MX) is a mapping from a finite set of types T to DCS

protocols over T , M and MX ,

is called a Dynamic Communication System (DCS). The set of all Dynamic

Communication Systems is denoted by DCS. ♦

We will illustrate the concepts of the DCS language by modelling a sim-

ple adhoc connection protocol as the Dynamic Communication System Cad :=

(M,MX ,P). For this system, we employ messages M := {detect, req, ack, nack}
where ‘detect’ is the only environment messages, that is, MX := {detect}.
The DCS comprises only one single type ‘d’, whose DCS protocol is given by

P(d) := (Q,A,F,C, succ) with

• states Q := {dev, det, sreq, rreq, srep},

• initial state A := {dev},

• no fragile states F := ∅,

• a single channel name C := {link},

• and the transition relation succ as depicted in Figure 3.4.

Each new process starts being in state ‘dev’. In this state, it is sensible for

receiving the environment message ‘detect’ and the request message ‘req’. Upon

receiving ‘detect’, the process implicitly establishes a ‘link’ channel to the sender

of the message and proceeds to state ‘det’. From here, it sends a ‘req’ message

over the ‘link’ channel to the just detected process, and enters state ‘sreq’. The

46 Chapter 3 Modelling Dynamic Evolution Systems

process then waits for an answer of his request, which may either be an error

message ‘nack’ or an positive reply ‘ack’. In the case of an error message, it will

re-send the request by going back to state ‘det’. If it receives a positive reply,

it will proceed to state ‘dev’.

If a process receives a request message ‘req’, it stores the attached iden-

tity in its ‘link’ channel and switches to state ‘rreq’. From here, it will non-

deterministically reply with a ‘nack’ or a ‘ack’ message. In both cases, it enters

state ‘sreq’ and will reset its ‘link’ channel when moving back to ‘dev’.

3.4.2 Semantics

The semantics of Dynamic Communication Systems is given by a translation to

Dynamic Evolution Systems. Most of the constituents of a DCS protocol have a

canonical counterpart in the DES world. For example, the states become unary

predicates and the channels are represented by binary predicates. Transitions of

the Dynamic Communication System, e.g. message communication or process

creation, will be captured by corresponding evolution predicates.

The translation procedure itself largely depends on the underlying communi-

cation paradigm. For DCS, we assume an asynchronous communication mech-

anism, where the sending of messages is non-blocking and the messages are

buffered on the receiver side. This buffer can faithfully be organised as a set,

as the underlying transport protocols in distributed systems are typically un-

reliable, that is, neither the preservation of the order of the messages nor the

proper delivery of the messages at all is guaranteed. Typical examples of such

low-level protocols include the Internet Protocol (IP) [Pos81] and the User Data-

gram Protocol (UDP) [Pos80]. As a consequence, the communication protocol

itself has to take care for the potential loss and overtaking of messages.

The set of pending incoming messages will be represented by binary predi-

cates, where the name of the predicate corresponds to the name of the message.

The fact that the interpretation of a message predicates ‘m’ yields true for a

pair of processes (u1, u2) then encodes the fact that the message ‘m’ has been

sent from process u2 to process u1.

Following the discussion above, we will start the translation of DCS to DES

by defining the signature induced by a given Dynamic Communication System.

Definition 3.30 (DCS Signature) Let C = (M,MX ,P) ∈ DCS be a DCS. We

define the induced signature of C as S(C) = (X ,PS,PL,PE) where

• the set of variables comprises at least three elements {x, y, z} ⊆ X ,

Section 3.4 Dynamic Communication Systems 47

• the state predicates comprises the states of all DCS protocols of C, i.e.

PS := {qt | t ∈ dom(P), q ∈ QP(t)},

• the link predicates comprises the messages and the channels of all DCS

Protocols of C, i.e.

PL := M ∪ {ct | t ∈ dom(P), c ∈ CP(t)}, and

• the evolution predicates denote messages communication, channel modifi-

cations and the creation, appearance and disappearance of typed processes

PE := {snd[m]/2, rcv[m]/2 | m ∈ M} ∪

{create[t]/2, clr[ct]/1 | t ∈ dom(P), c ∈ CP(t)} ∪

{appear[t]/1, disappear[t]/1 | t ∈ dom(P)}. ♦

The translation of DCS to DES comprises of two parts. One part deals with

the translation of the behaviour that is given by the DCS protocols, and the

second part realises the behaviour of the environment. In fact, each transition

in each DCS protocol becomes a separate evolution rule. For the environment,

there will be rules to let fresh process appear in one of their initial state, to re-

move process which are in one of their fragile states, and to send an environment

message to alive processes.

Definition 3.31 (DES Semantics of DCS) Let C = (M,MX ,P) ∈ DCS be a

Dynamic Communication System.

We define the translation of a transition (q, a, q) ∈ succP(t) for some type

t ∈ dom(P) to a set of evolution rules as follows.

T ((q, ∗c
t′ , q

′)t) := (create action)

{create[t′](x, y) • qt(x) ∧ ⊕y ◮ ⊛y; q0
t′ !(y); c!(x, y); q

′
t!(x) | q

0 ∈ AP(t′)}

T ((q, c1!m, q
′)t) := (send action)

{snd[m](x, y) • qt(x) ∧ c(x, y) ◮ m(y, z); q′t!(x)}

T ((q, ?m(c), q′)t) := (receive action)

{rcv[m](x, y) • qt(x) ∧ m(x, y) ◮ c!(x, y);¬m(x, y); q′t!(x)}

T ((q, c, q′)t) := (reset action)

{clr[ct](x) • qt(x) ◮ ¬c(x); q′t!(x)}

48 Chapter 3 Modelling Dynamic Evolution Systems

appear[d](x) • ⊕x ◮ ⊛x; devd(x)

snd[detect](x, y) •⊚x ∧⊚y ∧ x 6= y ◮ detect(y, x)

rcv[detect](x, y) • devd(x) ∧ detect(x, y) ◮ linkd!(x, y);¬detect(x, y); detd!(x)

snd[req](x, y) • detd(x) ∧ linkd(x, y) ◮ req(y, x); sreqd!(x)

rcv[req](x, y) • devd(x) ∧ req(x, y) ◮ linkd!(x, y);¬req(x, y); rreqd!(x)

snd[nack](x, y) • rreqd(x) ∧ linkd(x, y) ◮ nack(y, x); srepd!(x)

snd[ack](x, y) • rreqd(x) ∧ linkd(x, y) ◮ ack(y, x); srepd!(x)

rcv[nack](x, y) • sreqd(x) ∧ nack(x, y) ◮ linkd!(x, y);¬nack(x, y); detd!(x)

rcv[ack](x, y) • sreqd(x) ∧ ack(x, y) ◮ linkd!(x, y);¬ack(x, y); devd!(x)

clr[linkd](x) • srepd(x) ◮ ¬linkd(x); devd!(x)

Figure 3.5: D(Cad) – the semantics of a DCS as a set of evolution rules.

We define the environment rules of C as

Env(C) :=

{appear[t](x) • ⊕x ◮ ⊛x; qt!(x) | t ∈ dom(P), q ∈ AP(t)} ∪ (appearance)

{disappear[t](x) • qt(x) ◮ ¬qt(x);⊗x | t ∈ dom(P), q ∈ FP(t)} ∪ (disappear.)

{snd[m](x, y) •⊚x ∧⊚y ∧ x 6= y ◮ m(y, x) | m ∈ MX} (env. message)

Combining both translations yields the DES semantics of C as the following

set of evolution rules:

D(C) := Env(C) ∪
⋃

t∈dom(P)

⋃

tr∈succP(t)

T (tr) ♦

For the DCS Cad we obtain the signature S(Cad) = (X ,PS,PL,PE) with

• state predicates PS := {devd, detd, sreqd, rreqd, srepd},

• link predicates PL := {detect, req, nack, ack, linkd}, and

• evolution predicates

PE := {appear[d], clr[linkd]} ∪ {snd[m], rcv[m] | m ∈ M}

and the resulting DES D(Cad) as given in Figure 3.5. The first rule reflects the

non-deterministic appearance of processes by the environment, that is, any dead

process may appear being in the initial state ‘dev’. The second rule corresponds

Section 3.5 Related Work 49

to the sending of the environment message ‘detect’ among two different alive

process. The third rule models the reception of such an environment message,

corresponding to the transition from state ‘dev’ to ‘det’ in the DCS protocol.

This means, a process being in state ‘dev’ and having an connection labelled

‘detect’ to some process may change to state ‘det’ and thereby establish the

channel ‘link’ to the message parameter identity and remove the pending mes-

sage. Similar, the sending and receiving of internal messages takes place in

the following six rules. The last rules corresponds to the removal of the ‘link’

connection in the transition from state ‘srep’ to ‘dev’.

We show an example run of JD(Cad)K in Figure 3.6 on the following page,

where two processes appear and perform a successful negotiation leading to two

processes being in state ‘devd’ and having a directed ’link’ connection.

3.5 Related Work

In this section we compare our methods for modelling the considered class of

dynamic systems with other existing approaches.

As the overall aim of this thesis is to devise refinement strategies for the

spotlight abstraction technique, it is suggestive to employ a semantical domain

where this abstraction is defined on. Otherwise, additional effort is required

to transfer the abstraction mechanism to this new domain. In [Wes08], which

is the main reference for the spotlight abstraction principle, a certain variant

of labelled transition systems called “Evolving Topology Transition Systems”

(ETTS) serve as the basic semantical structure. There, the states corresponds

to labelled multi graphs and the transitions are labelled by a consistent evolution

annotation. This annotation enables a very precise tracking of the life-cycle of

processes, in particular one may observe the immediate re-use of process iden-

tities. We basically follow the approach of [Wes08] and use labelled transition

systems as our semantical domain. However, we prefer to employ the basic

concept of logical structures rather than labelled multi graphs. The usage of

logical structures as a means to represent varying connection topologies is ac-

tually inspired by the seminal work on shape analysis in [SRW02]. Moreover,

we modified the labelling of the transitions by annotating them with the set

of processes involved in the corresponding evolution and the respective kind of

evolution. Actually, this dedicated labelling will facilitate the refinement of the

behaviour of the abstract process via temporal assumptions (cf. Section 6.1.2).

50 Chapter 3 Modelling Dynamic Evolution Systems

appear[d](u1)

appear[d](u2)

snd[detect](u1, u2)

rcv[detect](u2, u1)

snd[req](u2, u1)

rcv[req](u1, u2)

snd[ack](u1, u2)

clr[linkd](u1)

rcv[ack](u2, u1)

devd
u1

devd
u1

devd
u2

devd
u1

devd
u2detect

devd
u1

detd
u2linkd

devd
u1

sreqdu2linkd

req

rreqdu1

sreqdu2linkd

linkd

srepdu1

sreqdu2linkd, ack

linkd

devd
u1

sreqdu2linkd, ack

devd
u1

devd
u2linkd

Figure 3.6: A prefix of a run in JD(Cad)K.

For a symbolic description of Structured Labelled Transition Systems, we

devised a concise specification formalism called Dynamic Evolution Systems

(DES). In this formalism, a set of rules (consisting of a guard and a sequence of

statements) determine the possible evolutions of the system. This formalism is

clearly related to graph transformation rules [Roz97], where a rule is made up of

two disjoint graphs (left-hand side and right-hand side). Intuitively, the system

may evolve under a graph transformation rule if the left-hand side of the rule

can be matched somewhere in the current snapshot of the system. The resulting

snapshot is then given by applying the transformation of the left-hand side graph

to the right-hand side graph on the just matched substructure of the snapshot.

In fact, graph transformation systems (GTS) have gained a lot of attention for

Section 3.5 Related Work 51

specifying dynamic systems, for example in [KK06, HPR06a, BW07, SWJ08].

However, the usage of GTS typically require a non-trivial machinery for hyper-

graph morphism and rewriting. For the application of spotlight abstraction, one

would have to additionally take care that the identities of spotlight processes

are not blurred under the inherent graph morphism steps. Note that GTS typi-

cally do not preserve dangling links. We believe that DES can actually serve as

a light-weight alternative to graph transformation systems, in particular if not

the complete specification power and -comfort of GTS is required.

Another prominent mechanism for defining dynamic systems comes from the

domain of algebraic specifications, namely the π-calculus [MPW92, Mil99]. The

expressive power of π stems from from the possibility of passing names among

agents. This feature allows to model dynamic changes in the communication

structure. Since π has no native concept of process identities, the transfer from

a π specification to SLTS or ETTS is not obvious, and hence not addressed

for the reasons given above. We will compare our verification approach with

techniques for the analysis of π-calculus specifications in Section 5.3.

The verification of system with an arbitrary number of processes is also ad-

dressed in the area of parameterized systems [CGB86, ZP04], which represent

the parallel composition of a finite set of identical processes. The task is then

to prove properties of a system P (N) for any number N of processes. However,

these systems typically assume a fixed topology, for example a linear ring or a

tree topology, and the behaviour of some process either depends solely on its di-

rect connection neighbours or on the local states of all N processes. In general,

the representation of dynamic creation/destruction and a varying connection

topology would require a non-natural encoding in parameterized systems.

Evolving link structures naturally occurs in the execution of pointer programs,

where heap objects are allocated and deallocated at runtime and pointers among

heap objects may represent a kind of connection topology. However, heap ob-

jects are typically passive objects and the behaviour of the overall system is

determined by the program in the stack. In Dynamic Evolution Systems, the

processes themselves exhibit active behaviour and there is no global control flow

which determines the scheduling and interconnection of processes. Neverthe-

less, pointer programs can of course be used to model our addressed class of

systems, and we will elaborate on related analysis techniques in Section 5.3.

For the DCS language, we observe a relation to dynamic I/O automata [AL01],

which are an extension of classical input/output automata [LT89] by the pos-

sibility of creating new automata at runtime. There is however no basic notion

of connectivity in these systems, but an automaton may rather modify the set

of events to which it is sensible for. Also, DCS can be seen to be the very core

52 Chapter 3 Modelling Dynamic Evolution Systems

of the Unified Modelling Language (UML) [OMG01, OMG07] with respect to

object creation and interlinking. That is, DCS abstracts from many high-level

constructs like hierarchies in state-charts, class attributes, class inheritance,

different types of associations, and the like (which can all be compiled into

a low-level kernel UML language [DJPV02]). In fact, one motivation for the

development of the DCS language was to better understand the difficulties re-

garding the dynamic aspects of UML, which we encountered while working on

a verification framework for UML models [STMW04, MRS+05].

Chapter 4

Requirement Specification for DES

4.1 Syntax . 53

4.2 Three-Valued Semantics 57

4.3 Specification Intricacies 63

4.4 Related Work . 65

This chapter addresses the need for an appropriate language for specifying

requirements of the considered class of systems. As already mentioned, we em-

ploy a temporal logic that allows us to reason over the behaviour of the system

over the time. As the underlying semantical domain (SLTS) represents the be-

haviour of individual processes, the language will comprise logical variables to

denote process identities. The syntax is given in Subsection 4.1.

We will define a new three-valued satisfaction relation in Subsection 4.2. This

definition is in particular tailored for the evaluation of a specification in spotlight

abstractions of structured labelled transition systems. However, we will observe

that we always obtain a definite value for the evaluation in SLTSs induced by

the concrete semantics of Dynamic Evolution Systems (cf. Def. 3.25).

Subsection 4.3 discusses certain intricacies that arise due to the presence of

appearing and disappearing processes, and sketches the relation of the graphical

language of Live Sequence Charts to our specification language. Further related

work is considered in Subsection 4.4.

4.1 Syntax

The syntax of our specification language is a rather mild extension of the formula

language defined in Section 3.2, namely we basically add the classical temporal

operators X, G, F and U from the linear time logic [MP92]. This extension,

53

54 Chapter 4 Requirement Specification for DES

however, has a considerable impact on its expressiveness as we are now able

to reason about the evolution of the system over time, and not only about

isolated snapshots. In particular, we may formulate safety properties stating

that a certain configuration of processes is not reachable in any snapshot, or

liveness properties that require to eventually reach some desired configuration.

Formally, the requirement specification logic is defined as follows.

Definition 4.1 (Specification Logic) Let S = (X ,PS,PL,PE) be a signa-

ture. A specification over S is generated by the grammar

φ ::= ψ | φ=1 | Xφ | Gφ | Fφ | φ1 U φ2

where ψ ∈ Forms(P) is a formula.

The set of all specifications over S is denoted by SpecsS . ♦

The variables of a specification φ ∈ SpecsS are denoted by vars(φ) and

are defined inductively as usual as vars(φ = 1) = vars(Xφ) = vars(Gφ) =

vars(Fφ) := vars(φ), vars(φ1 U φ2) := vars(φ1) ∪ vars(φ2), and vars(ψ) for a

formula ψ ∈ Forms(P) as defined on page 27.

This requirement specification language in particular covers the complete

(non-temporal) formula language from Definition 3.11. Thus we may query

the state-, the link- and the evolution predicates of the system. Additionally,

we may ask for the definite satisfaction of a (sub-)formula via ‘φ = 1’. This

construct will be used for spotlight abstraction refinement via logical implication

in Section 6.1.2. The constructs Xφ and φ1 U φ2 denote the standard temporal

operators from LTL, stating that φ holds in the next state and stating that φ1

holds until φ2 finally holds, respectively. The finally operator ‘F’ requires that

some property φ eventually holds, the globally operator ‘G’ requires that some

property φ holds from now on forever.

As in the formula language, there is no explicit quantification mechanism

in our specification logic. Intuitively, the truth value of a specification is the

validity of its universal closure in the set of runs induced by the underlying

structured labelled transition system, this means there is an implicit universal

quantification.

Note that we in particular import the notion ⊚x, stating that some process is

currently alive, from the formula language. By the following two abbreviations

⊙x := ¬⊚x ∧ X⊚x ⊖x := ⊚x ∧ X¬⊚x

we allow to reason about the life-cycle of a process, that is, we may state that

some process is about to newly appear by ⊙x or that some process will now

disappear by ⊖x.

Section 4.1 Syntax 55

S5

S4

S3

S2

S1

S0

u1

⊙ ⊕

new(u1)

⊚

new(u2)

⊚

con(u1, u2)

⊚

dis(u2, u1)

⊖⊚

del(u1)

⊕

dev
u1

dev
u1

dev
u2

sl
u1

ma
u2

link

link

dev
u1

ma
u2

ma
u2

Figure 4.1: A prefix of a run in JAdK, annotated with life-cycle properties.

We illustrate the concept of life-cycle queries and temporal operators on the

adhoc networking system Ad. Figure 4.1 displays a prefix of the example run

π ∈ Runs(JAdK) from page 40, but now each logical structure is annotated with

the valid life-cycle properties for the identity u1. That is, u1 is dead and about

to appear in S0, is then alive from S1 to S4, disappears in S4 and is dead in S5.

Note that the proposed mechanisms to observe to birth and death of process

may actually fail in certain situations. Consider for example the evolution rule

resurrect(x) •⊚x ◮ ⊗x;⊛x

which kills an existing processes and immediately creates it again. The death

of x is not observable by ‘⊖x’ as x is alive in both the source and the tar-

get structure. To circumvent such problems, related specification formalism

like VTL [YRSW06] or EvoCTL∗ [Wes08] use dedicated transition annotations

which comprises the set of created and deleted process. Although we do not ex-

plicitly provide such an annotation, our specification language allows to observe

such kind of “invisible” life-cycles by using atoms over evolution predicates PE,

for example by stating ‘F resurrect(x)’ to require that the process denoted by x

finally resurrects.

We now consider a number of example specifications for our case study Ad.

56 Chapter 4 Requirement Specification for DES

1. “A process is never both a master and a slave at the same time”:

G
(
¬(sl(x) ∧ ma(x))

)

This specification reasons purely about state predicates for a single vari-

able x, stating that the two predicates ‘sl’ and ‘ma’ never become true

simultaneously for any process. We expect this specification to hold for

the Ad system.

2. “A process will never become a slave”:

G
(
¬(sl(x))

)

If we remove ‘ma’ from the previous specification, we require that the

‘sl’ predicate never becomes true. We expect a counterexample for this

specification, which then witnesses how a process becomes a slave device.

3. “A connection always established bidirectional links”:

G
(

con(x1, x2) → (link(x1, x2) ∧ link(x2, x1))
)

This specification demonstrates how to reason about evolution predicates

‘con’ and link predicates ‘link’ of two logical variables. It guarantees a

certain topological shape after each connection of any two processes.

4. “A connected process does not disappear”:

G
(

link(x1, x2) → ¬⊖x1

)

We also may combine predicates and life-cycle queries, stating that any

process that is connected to some process will not disappear from the

system.

5. “Whenever some new process appears, it finally becomes a master or a

slave”:

G
(
⊙x→ F (ma(x) ∨ sl(x))

)

This requirement expresses a liveness property of some process, namely

that whenever it appears, it eventually will connect to some other process

(and hence become either a master of a slave device).

We will discuss further requirement specifications of different Dynamic Evo-

lution Systems in the evaluation phase given in Chapter 7.

Section 4.2 Three-Valued Semantics 57

4.2 Three-Valued Semantics

Partly anticipating the subsequent chapter on abstraction techniques, we will

define the satisfaction relation for the requirement specification language to (in

particular) work on spotlight abstractions of Dynamic Evolution Systems. This

means the definition is prepared to encounter the identity ⊥ of the abstract

process, both in the evaluation of state and link predicates in a logical structure

and also as argument of an evolution ground atom on a transition label.

We will now shortly sketch the basic idea of the three-valued satisfaction

relation, while the formal investigation follows in Chapter 5. Recall from the

introduction that the abstract process serves as an over-approximative repre-

sentation of any number of processes that are not in the spotlight. In general,

this abstraction mechanism introduces runs in the abstract semantics that are

not contained in the concrete semantics. However, as long as only spotlight

processes are involved in the evolutions of the abstract run, the corresponding

prefix is also a concrete run. In these cases, we can identify definitive violations

of the specification also in an abstract run. However, as soon as the abstract

process is involved in an evolution step, any subsequent violation may be spu-

rious. The satisfaction relation accounts for this fact by distinguishing three

possible outcomes, namely a definitive result ‘1’ if the specification holds in the

run, a definitive result ‘0’ if the specification is violated in a concrete prefix of

an run, and the indefinite result ‘1/2’ in all other cases. Note that the definition

can decide whether a prefix of a violating abstract run corresponds to a con-

crete prefix by making the temporal operators sensitive to the arguments of the

observed evolution ground atoms. This intuition is formalised as follows.

Definition 4.2 (Specification Evaluation) Let S be a signature, I ⊆ Id⊥ a

set of identities, T ∈ TS(I) a SLTS over S and I, and φ ∈ SpecsS a specification

over S. The evaluation of φ in a run

π = ((Li, Si))i∈N0 ∈ Runs(T)

under a valuation V ∈ ValsI(vars(φ)) is defined as π[φ]0(V) ∈ B3 where

π[tt]i(V) := 1

π[⊚x]i(V) := Si[⊚x](V)

π[x1 = x2]
i(V) := Si[x1 = x2](V)

π[ps(x)]
i(V) := Si[ps(x)](V)

π[pl(x1, x2)]
i(V) := Si[pl(x1, x2)](V)

π[pe(x1, . . . , xkpe
)]i(V) := Li = pe(V(x1), . . . ,V(xkpe

))

58 Chapter 4 Requirement Specification for DES

π[¬φ]i(V) := ¬π[φ]i(V)

π[φ1 ∧ φ2]
i(V) := π[φ1]

i(V) ∧ π[φ2]
i(V)

π[φ=1]i(V) := π[φ]i(V) = 1

π[Xφ]i(V) :=

1 if π[φ]i+1(V) = 1

0 if π[φ]i+1(V) = 0 ∧ ⊥ 6∈ A(Li+1)

1/2 else

π[Gφ]i(V) :=

1 if ∀ k ≥ i : π[φ]k(V) = 1

0 if ∃ k ≥ i :
(
π[φ1]

k(V) = 0 ∧

∀ j ∈ {i, . . . , k} : ⊥ 6∈ A(Lj)
)

1/2 else

π[Fφ]i(V) :=

1 if ∃ k ≥ i : π[φ]k(V) = 1

0 if ∀ k ≥ i :
(
π[φ]k(V) = 0 ∧ ⊥ 6∈ A(Lk)

)

1/2 else

π[φ1 U φ2]
i(V) :=

1 if ∃ k ≥ i :
(
π[φ2]

k(V) = 1 ∧

∀ j ∈ {i . . . k} : π[φ1]
j(V) = 1

)

0 if ∃ k ≥ i :
(
π[φ1]

k(V) = 0 ∧

∀ j ∈ {i . . . k} : π[φ2]
j(V) = 0 ∧ ⊥ 6∈ A(Lj)

)

∨ ∀ k ≥ i : π[φ2]
k(V) = 0 ∧ ⊥ 6∈ A(Lk)

1/2 else

where ps ∈ PS, pl ∈ PL, pe ∈ PE, and i ∈ N0. ♦

A ‘globally’ formula ‘Gφ’ becomes 1 if φ globally holds, and becomes 0 if φ

is violated somewhere in the future and the abstract identity ⊥ is not involved

until this point of violation. In all other cases, the ‘globally’ formula evaluates

indefinite. Analogously, a ‘finally’ formula ‘Fφ’ becomes 1 if φ eventually holds,

and becomes ‘0’ if φ never holds and the abstract identity ⊥ is never involved

in any evolution. In all other cases, the ‘finally’ formula evaluates indefinite.

The same principle is used for the evaluation of an ‘until’ specification. These

definitions fit with our intuition that a counterexample can only be trusted if

it occurs among the set of concrete identities. As soon as behaviour of the

abstract identity yields a violating run, one remains inconclusive because the

run may be spurious.

We follow the approach of [AS85] in order to formally distinguish between

safety and liveness specifications (cf. Sect. 2.3). We call φ a safety specification

if and only if every infinite run that does not satisfy φ contains a finite prefix

Section 4.2 Three-Valued Semantics 59

which cannot be extended to an infinite run satisfying the specification. On

the other hand, a violation of a liveness specification can not be witnessed by

a finite run, that is, every finite prefix of a run can be extended to an infinite

run satisfying the specification. We formalise this intuition as follows.

Definition 4.3 (Safety and Liveness) Let φ ∈ SpecsS be a specification over

a signature S = (X ,PS,PL,PE). We call φ a safety specification iff

∀π ∈ (ES)ω . π[φ]0(V) = 0 =⇒

∃ p ∈ Prefixes(π) . (∀π′ ∈ (ES)ω . pπ′[φ]0(V) = 0)

and a liveness specification iff

∀ p ∈ (ES)∗ ∃π ∈ (ES)ω . pπ[φ]0(V) = 1

where ES = (GroundAtomsId(PE) × Strucs2
S(Id)). ♦

Note that this definition does not give a procedure to effectively decide

whether a specification has safety or liveness character. A mechanical way to

distinguish between safety and liveness via a translation to Büchi automata has

been proposed in [AS87]. Typical specifications, however, can be syntactically

identified, and a syntactic safety fragment of LTL has been proposed by [Sis94].

Further note that not every specification can be classified as being either safety

or liveness. However, [AS85] shows that each specification can be decomposed

into a safety and a liveness part such that we restrict our research to pure safety

and liveness specifications in the following.

For linear time logic it is known that {X,U} form an adequate set [HR00]

of temporal connectives, because G and F can be defined in terms of the until

operator as

Fφ := tt U φ and G := ¬F¬φ.

In particular, F and G are duals of each other and X is dual with itself as

¬Xφ = X¬φ. While the F operator can also be defined via U in our spec-

ification language, the semantical distinction between concrete and abstract

violations does not preserve the dualities of standard LTL. However, we are

able to establish the following reasonable relations, stating that for each tem-

poral operator a definitive violation entails a definitive violation of its dual, and

a definitive satisfaction entails a possible satisfaction of its dual. In particular

if a specification is known to evaluate to a definite value (cf. Rem. 4.7 below)

then the classical dualities are preserved.

60 Chapter 4 Requirement Specification for DES

Remark 4.4 (Temporal Relations) Let T ∈ TS(I) a SLTS over signature S,

φ ∈ SpecsS a specification, V ∈ ValsId⊥(vars(φ)) a valuation and π ∈ Runs(T)

a run. Then

π[Oφ]i(V) = 0 =⇒ π[¬OD¬φ]i(V) = 0

π[Oφ]i(V) = 1 =⇒ π[¬OD¬φ]i(V) ≥ 1/2

for any position i ∈ N0 and temporal operator O ∈ {F,G,X} where OD denotes

its dual, defined as FD := G, FD := G, XD := X. ♦

Proof. The proof is given in the appendix (page 189). �

We have defined and discussed the evaluation of a specification in a single run

under a single valuation. We make now the transition to the general case, by

defining the specification satisfaction of a structured labelled transition system

as the minimal boolean value for all runs of the system under a given valuation.

Definition 4.5 (Specification Evaluation for SLTS) Let S be a signature

and I ⊆ Id⊥ a set of identities.

The evaluation of a specification φ ∈ SpecsS in a SLTS T ∈ TS(I) under a

valuation V ∈ ValsI(vars(φ)) is defined as

T[φ](V) := min{π[φ]0(V) ∈ B3 | π ∈ Runs(T)}. ♦

When discussing the abstraction of Dynamic Evolution Systems in Section 5.2

we will establish a strong relation between the evaluation of a specification in

the concrete and abstracted DES, namely that the abstract evaluation may

only yield less precise results, but not wrong results. We already prepare this

observation by establishing that the satisfaction of a requirements specification

is weakly preserved under SLTS simulation according to Definition 3.16. The

intuition is that the simulating transition system comprises less precise infor-

mation than the original transition system. Hence if these information suffices

to establish the satisfaction of a specification, then the original system will also

satisfy the specification.

Lemma 4.6 (Simulation Preservation) Let S be a signature, I1, I2 ⊆ Id

two sets of identities with I2 ⊆ I1, T1 ∈ TS(I1) and T2 ∈ TS(I⊥2) two structured

labelled transition systems with T1 � T2, and φ ∈ SpecsS a specification. Then

T2[φ](eI1I2(V)) = 1 =⇒ T1[φ](V) = 1

for any valuation V ∈ ValsI1(vars(φ)). ♦

Proof. By Lemma 3.17. The proof is given in the appendix (page 189). �

Section 4.2 Three-Valued Semantics 61

Definitive Evaluation

Note that a specification may only evaluate indefinite in the following cases:

Equality As the evaluation of equality ‘x1 = x2’ is mapped to the evaluation

of the corresponding equality expression (cf. Def. 3.11), we obtain the

indefinite result iff both variables x1 and x2 denote the abstract identity

⊥ (cf. Def. 3.12).

Predicates Also the evaluation of state and link predicates is mapped to the

evaluation of the corresponding expressions (cf. Def. 3.11), thus the evo-

lution becomes indefinite iff the interpretation of the corresponding pred-

icate is indefinite in the logical structure (cf. Def. 3.12).

Life-cycle The abstract process is always considered to be possibly alive (⊚).

Temporal operator The evaluation of a temporal formula becomes indefinite

iff it is violated and there is an evolution within the violating part of the

run where the abstract identity is involved.

We observe that two-valued structured labelled transition system over con-

crete identities Id always yield a definite evaluation of any specification. This

is a direct consequence of the reasons for indefinite evaluations listed above,

together with Remark 3.13 concerning the definite evaluations of formulas.

Remark 4.7 (Definite Specification Evaluation) Let S be a signature, φ ∈
SpecsS a specification, I ⊆ Id a set of identities and T ∈ TS(I) a structured la-

belled transition system. If T is two-valued, then φ always evaluates definite,

that is,

T ∈ T 2
S (I) =⇒ ∀π ∈ Runs(T) : π[φ]0(V) ∈ B

for any valuation V ∈ ValsI(vars(φ)). ♦

Satisfaction Relation for Dynamic Evolution Systems

To conclude the investigation of the formal syntax and semantics of our require-

ment specification language, it remains to lift the satisfaction relation the DES

language. As we are also interested in liveness properties of DES systems, we

consider a set of compassion constraints (strong fairness) [Kwi89, PS08] for a set

of identities F and a given set of evolution rules. Intuitively, these constraints

ensure that an evolution that is enabled for F infinitely often is also executed

infinitely often. By this we eliminate trivial violations of liveness properties by

starvation. As we parametrise the fairness constraint by a given set of identities

62 Chapter 4 Requirement Specification for DES

we are in the end able to realise the idea of [Wes08] that spotlight abstrac-

tion is able to preserve local liveness properties within the spotlight part of the

abstraction.

Definition 4.8 (Fair Runs) Let D ∈ DS be a Dynamic Evolution System over

signature S, and I, F ⊆ Id two sets of identities with F ⊆ I.

A run π = ((Li, Si))i∈N0 ∈ Runs(JD, SKI) is F -fair if

∀ r = (name, guard, stm) ∈ D,V ∈ ValsF (vars(name)) :

π[guard,V] = ∞ → π[name, stm,V] = ∞

where

π[guard,V] := |{i ∈ N0 | π[guard]i(V) = 1}|

π[name, stm,V] := |{i ∈ N0 | π[name]i(V) = 1 ∧ Si = Si−1〈stm〉(V)}|

denote how many times the rule r is enabled and executed in π, respectively.

The set of all F -fair runs of DS is denoted by FairRunsF (JD, SKI). ♦

Note that the set F of fair process identities occur as the range of the con-

sidered valuation functions in the definition above. Hence, the fair evaluation

of a specification in a DES under a given valuation function considers all runs

where the process identities in the range of the valuation function are treated

fair.

Definition 4.9 (Fair Specification Evaluation) Let D ∈ DS a Dynamic Evo-

lution System over signature S, I ⊆ Id a set of identities, and S ∈ StrucsS(I)

an initial snapshot.

The fair evaluation of a specification φ ∈ SpecsS under a valuation V ∈
ValsI(vars(φ)) is defined as

JD, SKI [φ](V) := min{π[φ]0(V) ∈ B | π ∈ FairRunsran(V)(JD, SKI)}. ♦

To evaluate a specification under the implicit universal quantification we eval-

uate it under all possible valuation of the logical variables of the specification.

Recall that the concrete semantics of DES yields a two-valued structured la-

belled transition systems over (a subset of) Id (cf. Def. 3.25), thus by Remark 4.7

this evaluation always yields a definitive value.

Definition 4.10 (Specification Evaluation for DES) Let D ∈ DS a Dy-

namic Evolution System over signature S, I ⊆ Id a set of identities, S ∈
StrucsS(I) an initial snapshot, and φ ∈ SpecsS a specification.

Section 4.3 Specification Intricacies 63

The evaluation of φ in D and S under I is defined as

DI
SJφK := min{ JD, SKI [φ](V) ∈ B | V ∈ ValsI(vars(φ))} ♦

For convenience, we write DS |=I φ if DI
SJφK = 1, and DS 6|=I φ else.

As before, we omit the initial logical structure S if it coincides with the empty

structure (∅, ιe). Also, we leave out the subscript I in the case I = Id.

4.3 Specification Intricacies

When defining the evaluation of formulas (cf. Def. 3.12), we already observed

that the presence of dead processes yields some subtle difficulties. In particular,

one can draw no conclusion concerning the aliveness of processes from the fact

that some predicate evaluates to 0 (see the discussion on page 29). These issues

become even more important for the design of temporal specifications. Consider

a simple system where some process may issue a request to some other process

which has to finally acknowledge this request. In-between, the first process

should not raise any failure. One attempt to formalise this requirement is

req(x, y) →
(
¬fail(x) U ack(y, x)

)
.

Note that this specification holds in particular in a run where the process de-

noted by x disappears before the acknowledgement is send to him. It is ques-

tionable whether this behaviour is valid in the sense of the informal specification

given above. One possibility to solve these difficulties it to explicitly require the

aliveness of processes. For the running example, we may write

req(x, y) →
(
(¬fail(x) ∧⊚x) U ack(y, x)

)

which no longer satisfies the run sketched above. We will mention other ap-

proaches to resolve this specification problem, for which the term premature

disappearance has been coined in [Wes08], in the section on related work below.

The explicit annotation of life-cycle predicates is in particular meaningful

when compiling from high-level specification mechanisms into our specification

logic. We will illustrate this idea in terms of the language of Live Sequence

Charts (LSC) [DH01], which is a formally rigorous variant of the well-known

Message Sequence Charts (MSC) as standardised by the ITU in [IT99]. From

the MSC language, an LSC inherits the typical constructs to graphically spec-

ify scenarios, that is, lifelines to denote processes, condition boxes to require

certain system properties, and message arrows to denote communication among

64 Chapter 4 Requirement Specification for DES

LSC: L
AC: tt
AM: invariant

x y

¬busy

req

ack

done

Figure 4.2: Specification in terms of a Live Sequence Chart.

processes. The main enhancement of LSCs in comparison to MSCs is that all

LSC elements are equipped with a temperature, which may be hot or cold. This

temperature annotation is used to define a formal semantics of an LSC in terms

of a symbolic Büchi automaton [Klo03]. Intuitively, the resulting automaton ac-

cepts exactly those system runs that are supposed to satisfy the corresponding

Live Sequence Chart.

In Figure 4.2 we give an extended variant of the specification discussed above

in terms of an LSC. The LSC comprises three parts, namely a header (the box on

the top), a pre-chart (the hexagonal with dashed lines), and a main-chart (the

rectangle with solid lines). The header names the LSC with ‘L’ and provides

an activation condition ‘tt’ and an activation mode ‘invariant’. An invariant

LSC is supposed to hold in a run whenever the activation condition is satisfied.

However, the pre-chart further restricts the activation of the LSC in the sense

that the behaviour specified in the main-chart has only be observed after the

behaviour given in the pre-chart has been observed.

The temperature of the whole LSC is hot, as indicated by the solid border of

the main-chart. A hot LSC is also called universal LSC as it has to be satisfied by

all runs of the system under consideration, in contrast to an cold (existential)

LSC for which only one run has to satisfy the LSC. The temperature of the

lifelines are hot (solid lines) up to the message arrow labelled by ‘ack’ after

which they become cold (dashed lines). Hot lifelines require progress, that is,

the subsequent element has finally to be observed in order to satisfy the LSC,

while cold lifelines allow the runs to remain at this location forever. Summing

up, the LSC specification in Figure 4.2 reads as

Section 4.4 Related Work 65

“Whenever process x sends a message ‘req’ to process y, and y is

not busy when receiving this message, then finally y answers with a

‘ack’ message to x. Afterwards, x may send ‘done’ back to y.”

In a joint work [DTW06], we have observed that the LSC language in the

sense of [Klo03] corresponds to a proper subset of first-order CTL∗, that is, any

LSC can be translated into this general temporal branching logic. Moreover,

the fragment of universal LSCs translates into first-order LTL with outermost

universal quantification, this means it can in particular be represented in terms

of our specification logic as given in Definition 4.1. The basic structure of the re-

sulting formulae is that of a nested chain of until expressions which correspond to

the consecutive observation of the specified LSC elements. Following [KHP+05],

pre-charts can be treated by an implication between the pre-chart formula and

the conjunction of the pre-chart formula with the main-chart formula.

Concerning the problem of premature disappearance as stated above, a natu-

ral interpretation of a lifeline is that the process denoted by this lifeline should

be permanently alive until all required LSC elements have been observed. Note

that this idea has already been mentioned in [Wes08]. Combining the trans-

lation schema from [DTW06] and the interpretation of a lifeline as described

above, we obtain the following formula for the LSC from Figure 4.2

φ(L) := G
(
(tt ∧ req(x, y) ∧ ¬busy(y)) →

(tt ∧ req(x, y) ∧ ¬busy(y) ∧⊚x ∧⊚y ∧

X ((¬ack(y, x) ∧⊚x ∧⊚y) U ((ack(y, x) ∧⊚x ∧⊚y) ∧

X ((¬done(x, y) ∧⊚x ∧⊚y) W (done(x, y) ∧⊚x ∧⊚y)))))
)

which requires that after each satisfaction of the pre-chart, the required ‘ack’

message is observed. By the weak until operator, a ‘done’ answer may be ob-

served later, but a run not exhibiting this message also satisfies the formula.

The lifelines have been turned into alive predicates, such that any premature

disappearance of participating processes yields a violation of the LSC.

4.4 Related Work

Our proposed specification language is inspired by a number of existing log-

ics for specifying temporal requirements for systems with a varying number

processes. One of the most basic approaches is the Allocation Temporal Logic

(AℓℓTL) [DRK02]. This logic reasons about pure allocation sequences, that is,

only the birth, aliveness and death of processes is observable. Interestingly, the

66 Chapter 4 Requirement Specification for DES

model-checking problem for AℓℓTL on HABAs (High-Level Allocational Büchi

Automata) is decidable. This logic has been extended to NaℓℓTL [DKR04] by

providing means to reason about one fixed pointer name, that is, one may spec-

ify that two processes are connected via some pointer link. This allows for the

specification of properties for e.g. linked data-structures in the heap. The Evo-

lution Temporal Logic (VTL, but also known as ETL) [YRSW06] can be seen

as a further extension of NaℓℓTL, as it allows for the reasoning about general

predicates concerning the underlying model. This in particular comprises local

states of processes and pointer structures. Moreover, as the authors are inter-

esting in the analysis of reachability in heap structures, they provide a transitive

closure operator for binary predicates. In fact, VTL introduces the symbols ⊙
and ⊚ to denote fresh and alive processes which we also use in our specification

logic. In [BSTW06], we complemented the DCS language with a requirement

specification logic called Mett. This logic is basically VTL without transitive

closure, but with explicit notations for specifying message communication.

Notably, all mentioned logics so far are linear time logics. EvoCTL∗ [Wes08]

transfers the existing concepts to general branching time. EvoCTL∗ comes with

a three-valued satisfaction relation in order to formally capture the problem of

premature disappearance as discussed above. Note that this intended mean-

ing of a three-valued result differs from our interpretation. While we use the

indefinite result to indicate a possibly imprecise answer due to the employed

abstraction, an indefinite evaluation of an EvoCTL∗ formula indicates a prema-

ture disappearance of a “relevant” process. Clearly, such a notion of relevance

is not decidable in general, hence the satisfaction relation may conservatively

become indefinite also for definite cases. However, there are syntactic criteria

which ensure the definiteness of a specification evaluation.

A three-valued extension of temporal logic has been considered in [BG99]

where a three-valued semantics of CTL in Kripke structures comprising par-

tially unknown behaviour is given. A related tool is presented in [ECD+03].

Refinement in this framework is addressed by [SG07], which employs the game-

theoretic approach for CTL model-checking. These approaches however work

on a given abstract transition system while our definitions and procedures are

tailored to the specifics of spotlight abstractions of concrete systems.

Moreover, there exists several approaches to extend the Object Constraints

Language (OCL) [OMG06] by temporal operators. The Object-Based Temporal

Logic (BOTL) [DKR00] can be seen as a merge of OCL and AℓℓTL. In [ZG03]

and [BFS02], OCL expressions are used as basic propositions for the linear

time logic and the µ-calculus, respectively. The work in [FM04] in particular

addresses the combination of the temporal past operators with OCL. Seman-

Section 4.4 Related Work 67

tically, the proposed temporal extensions are typically limited to one life-cycle

of the processes, that is, reappearance of processes is not considered and pre-

mature disappearance is treated by evaluating the overall specification to false

(see the discussion above).

Besides these recent approaches, there is a large body of work in the domain

of first-order modal logic, in particular by Barcan [Bar46], Kripke [Kri63] and

Lewis [Lew68]. An excellent overview is given in the monograph of Fitting and

Mendelssohn [FM98]. These works discuss in particular the impact of different

choices regarding the underlying semantical domain, e.g. whether the individual

worlds have a fixed or disjoint universe of objects. Note however that only the

correspondents of the globally and finally operators are treated, but neither the

general until- nor the next operator. In the joint work [BTW07b], we provide

an detailed discussion how the research on first-order modal logic transfers to

the specification of temporal requirements for the addressed class of systems.

The specification and verification of parameterised systems with respect to

first-order temporal logic is addressed in [AJN+04] and [DFKL07]. The latter

in particular treats monadic first-order logic. General aspects of first-order

temporal specification logics are also discussed in a recent textbook [KM08].

To sum up, we observe that our specification logic is a proper subset of VTL

(and thus of EvoCTL∗), as we only provide outermost universal quantification

of processes and we omit the transitive closure operator. We additionally allow

for the observation of general transitions (or evolutions) by using atoms over

evolution predicates PE.

68 Chapter 4 Requirement Specification for DES

Chapter 5

Analysis of Dynamic Evolution Systems

5.1 Undecidability Results . 70

5.2 Abstraction of Dynamic Systems 73

5.2.1 Spotlight Abstraction 73

5.2.2 Query Reduction 80

5.2.3 Model Checking . 83

5.3 Related Work . 86

After having defined a computational model in Chapter 3 and a corresponding

language for the specification of requirements in Chapter 4, we now address the

question how to analyse whether a model satisfies its requirements.

We start in Section 5.1 by observing that this problem is in general not de-

cidable, which is shown by a reduction from the reachability problem for Two-

Counter Machines to Dynamic Evolution Systems under an unbounded number

of processes. We address this problem by introducing finitary abstraction tech-

niques for DES in the course of Section 5.2. Our abstraction strategy applies

spotlight abstraction (cf. Sect. 5.2.1) and query reduction (cf. 5.2.2), which in

combination allows for a reduction of both the model and the universally quan-

tified specification to finite instances. We relate the verification results of the

abstracted system to the original system by a new embedding theorem that is

based on the information order of three-valued logic. This theorem combines

the general soundness of the considered abstraction with its ability to preserve

concrete counterexamples.

We conclude the investigation of the abstraction of Dynamic Evolution Sys-

tems by applying the presented technique to the running example and thereby

motivate the need for abstraction refinement strategies. We provide an overview

of related abstraction techniques in Section 5.3.

69

70 Chapter 5 Analysis of Dynamic Evolution Systems

5.1 Undecidability Results

Given a Dynamic Evolution System D, an initial snapshot S and a specification

φ, the DES Model-Checking Problem is to compute the satisfaction function

DSJφK according to Def. 4.10. In the following we show that the DES Model-

Checking Problem is undecidable, that is, there exists no algorithm that is

able to compute the result of the satisfaction relation for arbitrary inputs of

systems and specifications. This result is based on the observation that Dynamic

Evolution Systems form a turing-complete language, such that any computation

of a Turing Machine [Tur36] can also be performed by a corresponding Dynamic

Evolution System. Turing-completeness of DES will be shown by encoding

another turing-complete formalism, namely Two-Counter Machines [Min67], as

a Dynamic Evolution System.

A Two-Counter Machine is a finite-state transition system equipped with

two registers (or counters) where each register stores a natural number. A

counter can be incremented, decremented and tested for zeroness. Without loss

of generality, we assume that each decrement operation is guarded by a test for

a positive value such that no counter becomes negative.

Definition 5.1 (Two-Counter Machine) A Two-Counter Machine (2CM)

is a tuple M = (L, l0, I) where

• L is a finite set of locations,

• l0 ∈ L is the initial location, and

• I ⊆ L× {inc, dec, zero} × {0, 1} × L× L is a finite set of instructions.

A configuration of M is a tuple c = (l,K0, K1) ∈ L×N0×N0. The configuration

c′ = (l
′

, K
′

0, K
′

1) of M is a M-successor of the configuration c = (l,K0, K1) of

M, denoted cM c′, if there is a instruction (l1, op, i, l02, l
1
2) ∈ I with

• l = l1

• K ′
1−i = K1−i

• K ′
i =

Ki + 1 if op = inc

Ki − 1 if op = dec

Ki if op = zero

• l′ =

{

l02 if op ∈ {inc, dec} or Ki = 0

l12 else

A location l ∈ L is reachable in M, denoted M l, if (l0, 0, 0)∗
M (l,K1, K2)

for some K1, K2 ∈ N0. ♦

Section 5.1 Undecidability Results 71

It is known from [Min67] that the reachability problem for 2CMs is undecid-

able, that is, there is no algorithm that decides for arbitrary machines M and

locations l whether M l or not. If we are able to encode (i.e. simulate) the be-

haviour of any 2CM by a corresponding Dynamic Evolution System, we transfer

this result to the reachability problem for DES. As the model-checking prob-

lem in particular covers reachability questions, we have that the model-checking

problem for DES is undecidable, too.

The encoding of a Two-Counter Machine to a DES is rather straightforward.

The idea is to have one dedicated process which executes the instructions of

the machine. The values for the two counters are stored by maintaining a

corresponding number of connections to other “passive” processes. To this

end, we use two links to distinguish between the two counters. For instance,

the representation of a 2CM configuration (l, 1, 2) in terms of a DES snapshot

corresponds to a following structure:

u2

l
u1 u3 u4

c0
c1

The increment operation then translates to the creation of a new process, and

the decrement operation to the removal of a corresponding connection link. Zero

testing can be simulated by testing for the emptiness of the corresponding link.

Formally, the translation is defined as follows.

Definition 5.2 (DES Encoding of 2CM) Let M = (L, l0, I) be a 2CM. We

define the encoding of M as the Dynamic Evolution System D(M) over the

signature (X ,PS,PL,PE) with

• variables X := {x, x′},

• state predicates PS := L,

• link predicates PL := {c0, c1}, and

• evolution predicates PE = {inc, dec, zero}

where D(M) comprises the following set of rules:

{inc(x, x′) • l1(x) ∧ ¬⊚x′ ◮ ⊛x′; ci(x, x
′); l02!(x) | (l1, inc, i, l02, l

1
2) ∈ I} ∪

{dec(x, x′) • l1(x) ∧ ci(x, x
′) ◮ ⊗x′;¬ci(x, x

′); l02!(x) | (l1, dec, i, l02, l
1
2) ∈ I} ∪

{zero(x) • l1(x) ∧ ¬ci(x) ◮ l02!(x),

zero(x) • l1(x) ∧ ci(x) ◮ l12!(x) | (l1, zero, i, l
0
2, l

1
2) ∈ I}. ♦

72 Chapter 5 Analysis of Dynamic Evolution Systems

We establish the correctness of the translation by showing that a location in a

Two-Counter Machine is reachable if and only if the active process in the encod-

ing Dynamic Evolution System can obtain the corresponding location predicate.

We query the reachability in the DES by stating that the corresponding predi-

cate is globally not set. If this specification can be violated, we have that there

exists a run which reaches a corresponding snapshot.

Lemma 5.3 (Correctness) Let M = (L, l0, I) be a Two-Counter Machine.

Then

M l ⇐⇒ D(M)S 6|= G¬l(x)

for S := ({u}, {l0(u)}) and any location l ∈ L. ♦

Proof. Let JD(M), S0K = (S,S0,L,→). We define the encoded configuration of

a logical structure as a function cfg : S → L× N0 × N0 with

cfg(S) = (l,K0, K1) :⇐⇒ ∃u ∈ U : ι(l)(u) = 1∧K0 = |Sc0(u)|∧K1 = |Sc1(u)|

for some S = (U, ι) ∈ S where Sc(u) := {u′ ∈ U | ι(c)((u, u′)) = 1} denotes the

set of processes to which process u ∈ U is connected to via c. The proof is based

on the observation that relating the configuration of the Two-Counter Machine

with the encoded configuration of the corresponding DES yields a bisimulation

relation. The complete proof is given in the appendix (page 190). �

Theorem 5.4 (DES model-checking is undecidable) Let D ∈ DS a Dy-

namic Evolution System over signature S, S ∈ StrucsS(Id) a logical structure

and φ ∈ SpecsS a specification over S.

There exists no general algorithm to compute the result of DSJφK. ♦

Note that restricting the initial snapshot S0 to the empty snapshot does not

effect the undecidability result, as an additional evolution rule may be added in

order to dynamically create processes which then executes the instructions.

We know that the DCS semantics uses only a subset of the DES language, in

particular the construct to check for the emptiness of a channel is not available

as a DCS action, and each channel comprises at most one identity at a time.

Interestingly the expressiveness is not affected by these restrictions, and also the

DCS language is turing-complete. The encoding however requires some more

technical effort as the counter values have to be encoded by a linked list of

processes with a corresponding length. The instructions are then carried out

via communication, that is, the operations are forwarded to the head process

of the corresponding list and a confirmation message is sent back to the main

process. The formal encoding is given in the appendix on page 192.

Section 5.2 Abstraction of Dynamic Systems 73

Note that the encodings of a 2CM into the languages DES and DCS cor-

respond to the notions of unbounded breadth and depth, respectively, in the

π-calculus according to [Mey09]. Clearly, the correctness of the encodings rely

on the fact that there is no upper bound on the maximal number of alive pro-

cesses in the concrete semantics such that any value of an unbounded counter

can be faithfully represented. In fact, as soon as the maximal number of pro-

cess is bounded to some finite number, we obtain a finite state transition sys-

tem for which the model-checking problem is decidable using standard tech-

niques [CGP99]. But as the size of the resulting transition systems typically

grows exponentially in the number of processes, it is may be helpful to employ

abstraction techniques also for bounded approximations (cf. Def. 3.25).

5.2 Abstraction of Dynamic Systems

In this section we will formally define spotlight abstraction and query reduction.

These techniques are able to reduce the analysis of a DES under any number of

processes to its analysis under a typically rather small number of processes.

Spotlight abstraction will be introduced in Subsection 5.2.1 and query re-

duction in Subsection 5.2.2. While the first technique addresses the size of the

induced structured labelled transition systems, the latter technique reduces the

number of valuation to be considered according to the specification evaluation

(cf. Def. 4.10) to a finite number. The combination of both techniques, which

will be described in Subsection 5.2.3, then allows for the model-checking of the

resulting finitary abstractions using standard procedures.

5.2.1 Spotlight Abstraction

The term spotlight principle has been coined by Wachter & Westphal in [WW07]

and nicely resembles the intuition behind this abstraction technique, namely to

put a spotlight onto a subset of processes

and abstract from those in the shadows.

By this, the information concerning the spotlight processes are kept precise

while any information about abstracted processes is dismissed by collapsing

them into a single abstract process with identity ⊥. More precisely, we have to

distinguish between three classes of information, namely

1. information that affect spotlight processes only, i.e. interpretations of state

or link predicates for spotlight processes,

74 Chapter 5 Analysis of Dynamic Evolution Systems

2. information that affect abstracted processes only, i.e. interpretations of

state or link predicates for processes outside of the spotlight, and

3. information that affect both spotlight and abstracted processes.

Clearly, the first class of information will be kept precise while the second class

will be dismissed (i.e. set to 1/2). The last class only applies to binary link pred-

icates, that is, we have to define how links from spotlight to abstracted process

and vice versa are represented in the abstract structure. We actually employ

a rather coarse variant of the spotlight principle by setting all the correspond-

ing interpretations to 1/2. Hence we conservatively assume any link structure

among concrete and abstracted processes to be possible. Note that the spotlight

abstraction variants presented in [WW07, Wes08] preserve at least the absence

of links from the spotlight into the shadows. We refrain from this feature as

any impreciseness that may be introduced by dismissing this information during

the abstraction is easily re-established by our refinement strategies. In return,

we obtain an abstraction technique for which the abstract transition relation is

almost trivially computable.

Definition 5.5 (Spotlight Abstraction) Let S = (X ,PS,PL,PE) be a signa-

ture, I ′ ⊆ Id a set of identities, and S = (U, ι) ∈ StrucsS(I ′) a logical structure.

The spotlight abstraction of S under the set of spotlight identities I ⊆ I ′ is

defined as

αI(S) := ((U ∩ I) ∪ {⊥}, αI(ι)) ∈ StrucsS(I⊥)

where

αI(ι)(ps)(u) :=

{

ι(ps)(u) if u ∈ I

1/2 else

αI(ι)(pl)(u1, u2) :=

{

ι(pl)(u1, u2) if {u1, u2} ⊆ I

1/2 else

for predicates ps ∈ PS and pl ∈ PL.

The spotlight abstraction of a ground atom g ∈ GroundAtomsI′(P) under I,

denoted αI(g) ∈ GroundAtomsI⊥(P), replaces all identities from I ′ \ I by the

abstract identity, that is,

αI(g) := g[I ′ \ I 7→ ⊥]. ♦

We illustrate spotlight abstraction for the logical structure Dad (cf. page 23)

from the running example in Figure 5.1. For a spotlight comprising only identity

u1 we end up with a structure comprising two processes, u1 and ⊥. All state

Section 5.2 Abstraction of Dynamic Systems 75

Sad

sl
u1

ma
u2

sl
u3

dev
u4

link

link

link

link

α{u1}(Sad)
sl
u1

PS
⊥

link
link

α{u1,u2}(Sad)

sl
u1

ma
u2

PS
⊥

link
link

link

link

link

Figure 5.1: Spotlight Abstractions of Sad

predicates PS evaluate to 1/2 for ⊥ as well as the interpretation of the binary

link predicate link for (⊥,⊥). Intuitively, ⊥ represents any number of concrete

processes being in any state and having any inter-linking topology. Moreover,

link evaluates to 1/2 for (⊥, u1) and for (u1,⊥), representing any number of links

between u1 and processes Id \ {u1}. The only information kept precise is the

fact that u1 is actually a slave. Note then when applying the abstraction under

the spotlight {u1, u2} we maintain a proper linking infrastructure between a

master u2 and a slave u1. Typically, the abstraction becomes more precise

when enlarging the spotlight. We will formalise this kind of increased precision

in Section 6.1.1.

We will use spotlight abstraction to obtain a finite over-approximation of large

structured labelled transition systems. To prepare the theorem that establishes

the soundness of the abstraction we observe that spotlight abstraction actually

provides us with a mechanism to obtain an embedded structure according to

Definition 3.10. This observation in particular allow us to employ the preserva-

tion lemma (cf. Lemma 3.14) to show that a logical structure under spotlight

abstraction weakly preserves the evaluation of formulas.

Lemma 5.6 (Embedding via Spotlight Abstraction) Let S be a signature,

I ′ ⊆ Id a set of identities, and S ∈ StrucsS(I ′) a logical structures.

For any set of spotlight identities I ⊆ I ′, the spotlight abstraction of S under

I yields an embedded structure, that is,

S ⋐ αI(S) ♦

Proof. The proof is given in the appendix (page 193). �

76 Chapter 5 Analysis of Dynamic Evolution Systems

The major benefit of the employed variant of spotlight abstraction is that

the representation of the abstract process is stateless in the sense that the con-

figuration of ⊥ is independent of the configuration of the processes outside the

spotlight. Thus, in the resulting abstract SLTS the configuration of the abstract

process will be the same in every snapshot. Clearly, the drawback of this coarse

abstraction is a large amount of spurious behaviour that we will eliminate by

our refinement approaches to be described in Chapter 6. The advantage how-

ever is that we obtain the abstract transition system by a simple syntactical

modification of the statements. The general principle is to ignore the effect of

statements that affect the abstract process. Note that this in particular en-

ables a straight-forward tool implementation of the abstraction technique, that

is, the abstract semantics can be directly expressed in any standard program-

ming language. We will present our implementation of spotlight abstraction

and refinement in Section 7.1.

Definition 5.7 (Abstract Statement Execution) Let S = (X ,PS,PL,PE)

be a signature, and I ⊆ Id a set of spotlight identities.

The abstract execution of a statement is a function

·〈·〉♯(·) : StrucsS(I⊥) × StmsS × ValsI⊥(X) → StrucsS(I⊥)

which is defined inductively as

S〈stm1; stm2〉
♯(V) := S〈stm1〉

♯(V)〈stm2〉
♯(V)

S〈stm(x1, . . . , xk)〉
♯(V) :=

{

S〈stm(x1, . . . , xk)〉(V) if {V(x1), . . . ,V(xk)} ⊆ I

S else

where stm1, stm2, stm(x1, . . . , xk) ∈ StmsS according to Def. 3.18. ♦

With this abstract version of executing a sequence of statements we directly

obtain a notion of abstract evolution. The only two differences to the (concrete)

evolution as defined in Def. 3.21 is on the one hand that the guard only needs

to be possibly satisfied in the source structure, and on the other hand that we

employ the abstract statement execution to obtain the target structure.

Definition 5.8 (Abstract Evolution) Let S = (X ,PS,PL,PE) be a signa-

ture, r = (name, guard, stm) ∈ EvoRuleS an evolution rule over S, and I ⊆ Id

a set of spotlight identities.

Then r enables the abstract evolution of the logical structure S ∈ StrucsS(I⊥)

into the logical structure S ′ ∈ StrucsS(I⊥) via the evolution ground atom g ∈
GroundAtomsI⊥(PE) under I, denoted

S
g

−−−→
r, I

♯ S ′

Section 5.2 Abstraction of Dynamic Systems 77

if there is a valuation V ∈ ValsI⊥(vars(name)) such that the following three

conditions are satisfied:

1. The source structure S possibly satisfies the guard under V, that is,

S[guard](V) ≥ 1/2.

2. The rule name under V yields the evolution ground atom g, that is,

name[V] = g.

3. Abstractly executing the statements stm on S yields the target structure

S ′, that is,

S ′ = S〈stm〉♯(V). ♦

We show that the abstract execution of statements preserves the effects of

spotlight abstraction. This means each concrete evolution can be reflected by an

abstract evolution of the corresponding spotlight abstractions of the source and

target structures. This observation is the key to establish the weak preservation

of the specification evaluation in Theorem 5.12 below.

Lemma 5.9 (Abstract Execution and Evolution) Let S be a signature,

I ′ ⊆ Id a set of identities, and S, S ′ ∈ StrucsS(I ′) two logical structures with

S
g

−−−→
r, I′

S ′

by some evolution rule r ∈ EvoRuleS . Then

αI(S)
αI(g)
−−−→
r, I

♯ αI(S
′)

for any set of spotlight identities I ⊆ I ′. ♦

Proof. The proof is given in the appendix (page 194). �

The abstract semantics of a Dynamic Evolution System is defined similar to

the concrete semantics by collecting evolving structures in a structured labelled

transition system. The states now become three-valued logical structures, the

spotlight abstraction is applied to the initial states, and the abstract evolution

according to Definition 5.8 is used to define the transition relation.

78 Chapter 5 Analysis of Dynamic Evolution Systems

Definition 5.10 (Abstract Semantics of DES) Let S be a signature, D ∈
DS a Dynamic Evolution System over S, I ⊆ Id a set of spotlight identities, and

S ∈ StrucsS(Id) a logical structure.

The abstract semantics of D and S under I, denoted JD, SK♯I , is the structured

labelled transition system (S,S0,L,→) ∈ TS(I⊥) where

• the states are three-valued logical structures over S and I⊥, that is,

S := Strucs3
S(I⊥),

• the given structure S determines the set of initial states, that is,

S0 := {αI(σ(S)) ∈ StrucsS(I⊥) | σ ∈ ΣI}

• the labels are evolution ground atoms over PE and I⊥, that is,

L := GroundAtomsI⊥(PE),

• and the abstract evolution determines the transition relation, that is,

→ := {(S, g, S ′) ∈ S × L × S | S
g

−−−→
D, I

♯ S ′
}. ♦

As for the concrete DES semantics, we will omit the initial structure S if

it coincides with the empty structure (∅, ιe). For the adhoc networking case

study, we present a prefix of a run of the abstract transition system for Dad

with only one concrete identity ‘u1’ in the spotlight. In the following run π♯ ∈
Runs(JAdK♯{u1}

), the process u appears and connects with the abstract process.

π♯ = ({⊥}, ({},

{dev(⊥), sl(⊥),ma(⊥), link(⊥,⊥), link(u1,⊥), link(⊥, u1)})),

(new(u1), ({u1,⊥}, ({dev(u1)},

{dev(⊥), sl(⊥),ma(⊥), link(⊥,⊥), link(u1,⊥), link(⊥, u1)})),

(con(u1,⊥), ({u1,⊥}, ({sl(u1)},

{dev(⊥), sl(⊥),ma(⊥), link(⊥,⊥), link(u1,⊥), link(⊥, u1)})),

Using the graphical notation for logical structures as introduced on page 23, we

show an illustration of these evolution steps in Figure 5.2. As a consequence

of Definition 5.10, the abstract process is present in every snapshot, and the

interpretation of any predicate involving ‘⊥’ becomes the indefinite value ‘1/2’.

In fact, the set of ground atoms representing the indefinite values are identical in

each snapshot, only the predicate interpretation that solely affect the spotlight

process yield definitive values and vary over the time.

Section 5.2 Abstraction of Dynamic Systems 79

S2

S1

S0

new(u1)

con(u1,⊥)

u1

PS
⊥

link
link

dev
u1

PS
⊥

link
link

sl
u1

PS
⊥

link
link

Figure 5.2: A prefix of a run of JAdK♯{u1}
.

For the overall understanding of the abstraction principle and its refinement,

it is important to see that a spotlight process can interact with the abstract

process just like it would interact which some concrete process that has now been

shadowed by the abstraction. However, the effects of these interactions are only

observable within the spotlight. In particular, interactions that solely involve

the abstract process will no longer be visible in the abstract semantics, that is,

large portions of concrete runs are folded away by the employed abstraction.

The notion of a fair run in terms of compassion constraints as introduced

in Definition 4.8 directly transfers to runs in the abstract transition system.

In particular, we obtain the abstract fair specification evaluation analogously

to Definition 4.9 by considering all spotlight processes to be fair. Note that

this preservation of local fairness constraints for spotlight processes is a strong

feature of the spotlight abstraction principle.

Definition 5.11 (Abstract Fair Specification Evaluation) Let D ∈ DS a

Dynamic Evolution System over signature S, S ∈ StrucsS(Id) a logical structure,

and I ⊆ Id a set of spotlight identities.

The abstract fair evaluation of a specification φ ∈ SpecsS under a valuation

V ∈ ValsI⊥(vars(φ)) is defined as

JD, SK♯I [φ](V) := min{π[φ]0(V) ∈ B3 | π ∈ FairRunsI(JD, SK
♯
I)} ♦

There is a clear demand for a strong correspondence between the concrete and

the abstract semantics of a DES. Typically, one requires that any specification

that is satisfied in the abstract system is also satisfied in the concrete, such that

one does not obtain “false positives”. Interestingly, the heterogeneous charac-

ter of spotlight abstraction allows us to identify cases where also the opposite

direction of implication holds, namely where the violation of a specification in

the abstract system is also a violation of the concrete system [Tob08]. Intu-

itively, these are those cases where the violation happens completely within the

80 Chapter 5 Analysis of Dynamic Evolution Systems

spotlight part of the abstraction. Together with the three-valued definition of

specification satisfaction we obtain the following embedding theorem.

Theorem 5.12 (Specification Embedding) Let D ∈ DS a Dynamic Evolu-

tion System over signature S, I ′ ⊆ Id a set of identities, S ∈ StrucsS(I ′) a

logical structure, and φ ∈ SpecsS a specification.

Then for any valuation V ∈ ValsI′(vars(φ)), we have

JD, SKI′ [φ](V) ⊑ JD, SK♯I [φ](V)

where I := ran(V) determines the content of the spotlight. ♦

Proof. The case for JD, SK♯I [φ](V) = 1 can be shown by establishing a simulation

relation JD, SKI′ � JD, SK♯I . The case for JD, SK♯I [φ](V) = 0 follows by the

three-valued semantics of the specification satisfaction in combination with the

locality of evolutions. The proof is given in the appendix (page 194). �

Instantiating the above theorem with I ′ = Id and S = (∅, ιe) yields

JDK[φ](V) ⊑ JDK♯I [φ](V)

Thus whenever φ evaluates to 1 (resp. 0) in the abstract semantics JDK♯I
under V , it also evaluates to 1 (resp. 0) in the concrete semantics JDK under the

same valuation V . If φ evaluates to 1/2 in JDK♯I , one remains inconclusive. This

means the evaluation of the specification satisfaction in the abstract semantics

may give less information than in the concrete, but it never gives any wrong

information. In particular, we may obtain concrete counterexamples directly in

the abstract semantics of DESs, namely if they occur within the spotlight.

So far we have not required that the set of spotlight identities I is actually a

finite set. However, we easily obtain the following remark for finite spotlights.

Remark 5.13 (Finite Spotlight) Let D ∈ DS a Dynamic Evolution System

over signature S, S ∈ StrucsS(Id) a logical structure, and I ⊂ Id a finite set of

spotlight identities. Then JD, SK♯I is a finite SLTS. ♦

5.2.2 Query Reduction

Theorem 5.12 allows us to (approximatively) reduce the verification of large (or

even infinite) state system to the verification of a finite state system, however

yet only for a single valuation of the variables in the requirement specification.

Recalling Definition 4.10 concerning the specification evaluation, we observe

Section 5.2 Abstraction of Dynamic Systems 81

that we actually have to analyse the specification under all possible valuations

of the variables to identities from Id, yielding a potentially infinite number of

verification tasks. To resolve this problem, we apply a technique called query

reduction [ID96, Wes08] in order to reduce this number to a finite number of rep-

resentative cases. We show that this reduction is possible as Dynamic Evolution

Systems induces transition systems that are symmetric in identities [Wes08]. In-

tuitively, this notion states that the behaviour of the processes does not depend

on their actual identity number, e.g. process u1 behaves exactly the same as

process u42 whenever they are in the same configuration.

Symmetric behaviour is formalised in terms of permutations of identities as

defined in Def. 3.23 and 3.24. Basically following [Wes08], we define the no-

tion of a transition system being symmetric in identities by requiring that any

permutation of a transition is also a valid transition.

Definition 5.14 (Symmetric SLTS) Let S be a signature, I ′ ⊆ Id a set of

identities and T = (S,S0,L,→) ∈ TS(I ′) a structured labelled transition system.

Then T is called symmetric in identities iff for all permutations σ ∈ ΣI′ both

1. the permutation of an initial state is also an initial state, that is,

S0 ∈ S0 =⇒ σ(S0) ∈ S0

2. and the permutation of a transition is also a transition, that is,

(S, g, S ′) ∈ → =⇒ (σ(S), σ(g), σ(S ′)) ∈ → . ♦

The direct consequence of this definition is that symmetric SLTS exhibit

symmetric runs. That is, each run where a particular set of identities reaches a

certain configuration has corresponding runs where any permutation on this set

of identities reaches the same, but permutated, configuration. In other words,

the behaviour of processes does not depend on their identity.

We observe that Dynamic Evolution Systems by construction induces transi-

tion systems that are symmetric in identities. Hence, there is no need to further

check for symmetric behaviour when using DES as a modelling language.

Lemma 5.15 (Symmetric DES) Let D ∈ DS be a Dynamic Evolution Sys-

tem over signature S, I ′ ⊆ Id a set of identities, and S ∈ StrucsS(I ′) a logical

structure.

Then JD, SKI′ is symmetric in identities. ♦

Proof. The proof is given in the appendix (page 196). �

82 Chapter 5 Analysis of Dynamic Evolution Systems

As already sketched above, we benefit from this symmetric behaviour by

reducing the number of valuations that have to be considered when checking

for the satisfaction of the universal closure of a given specification (cf. Def. 4.10).

Actually, it suffices to consider a finite valuation basis [Wes08] instead of the in

general infinite set of valuations.

Definition 5.16 (Valuation Basis) Let S = (X ,PS,PL,PE) be a signature

and I ′ ⊆ Id a set of identities. A subset of valuations

ValBasis(X) ⊆ ValsI′(X)

is called a valuation basis of ValsI′(X) iff each valuation of ValsI′(X) is a per-

mutation of a valuation of ValBasis(X), that is,

∀V ∈ ValsI′(X) ∃σ ∈ ΣI′ ∃V0 ∈ ValBasis(X) : σ(V0) = V ♦

For an example of a valuation basis, consider two variables X = {x1, x2}.
The valuations of variables X to identities Id is the infinite set of functions

ValsId(X) = {[x1 7→ u, x2 7→ u′] | u, u′ ∈ Id}.

A valuation basis for ValsId(X) are the two functions

ValBasis(X) := {[x1 7→ u1, x2 7→ u1], [x1 7→ u1, x2 7→ u2]}

where u1, u2 ∈ Id are two identities with u1 6= u2. Obviously, each valua-

tion in ValsId(X) can be obtained by a permutation of one of the elements of

ValBasis(X).

Having established the symmetric behaviour for Dynamic Evolution Systems

in Lemma 5.15 above, we may replace the set of valuation functions used in

the definition of the evaluation of a specification in Definition 4.10 by a finite

valuation basis as follows.

Lemma 5.17 (Query Reduction) Let D ∈ DS be a Dynamic Evolution Sys-

tem over signature S, I ′ ⊆ Id a set of identities, and S ∈ StrucsS(I ′) a logical

structure.

For any specification φ ∈ SpecsS , there exists a finite valuation basis

ValBasis(vars(φ)) ⊆ ValsI′(vars(φ))

sufficient to compute the satisfaction relation of φ for D and S under I ′, i.e.

DI′

S JφK = min{ JD, SKI′ [φ](V) ∈ B | V ∈ ValBasis(vars(φ))}. ♦

Proof. By a straight adaption of the proof given in [Wes08], Section A.3. �

Section 5.2 Abstraction of Dynamic Systems 83

5.2.3 Model Checking

In this section, we observe that the combination of spotlight abstraction and

query reduction allows us to apply standard model-checking techniques in or-

der to obtain an approximative value for the specification satisfaction relation

according to Definition 4.10. Note that the computed value in general can only

be an approximation by the undecidability results from Section 5.1, however it

is approximative in terms of the information order of three-valued logic, that

is, the result may be indefinite but not wrong.

A valuable integration of spotlight abstraction and query reduction can be

obtained by first applying query reduction to the specification and then using

the range of the valuation functions as the contents of the spotlight under

which the transition system is abstracted. In other words, we first generate

a finite set of valuation functions via query reduction and then analyse the

requirement separately under each of these valuation functions whereby the

spotlight is chosen as the set of identities denoted by the actually considered

valuation. Formally, this procedure yields the abstract specification satisfaction

relation as follows.

Definition 5.18 (Abstract Specification Evaluation for DES) Let D ∈
DS be a Dynamic Evolution System over signature S, S ∈ StrucsS(Id) a logical

structure, and φ ∈ SpecsS a specification.

The abstract evaluation of φ in D and S is defined as

D
♯
SJφK := min{ JD, SK♯

ran(V)[φ](V) ∈ B3 | V ∈ ValBasis(vars(φ))}.

where ValBasis(vars(φ)) is a finite valuation basis of ValsId(vars(φ)). ♦

Having defined the (concrete) evaluation of a specification in Def. 3.25 and the

abstract evaluation above, we can lift the embedding theorem 5.12 to the anal-

ysis of the universal closure of a requirement specification for a given Dynamic

Evolution System.

Lemma 5.19 (DES Embedding) Let D ∈ DS be a Dynamic Evolution Sys-

tem over signature S, S ∈ StrucsS(Id) a logical structure, and φ ∈ SpecsS a

specification. Then

DSJφK ⊑ D
♯
SJφK ♦

Proof. We prove the more general case in Lemma 6.3. �

As a specification only comprises finitely many variables, each of the finitely

many valuations yields a verification task for a finite state transition system.

84 Chapter 5 Analysis of Dynamic Evolution Systems

These tasks can now be solved by standard model-checking techniques. For

example, we consider the specification

φ4 := G
(

link(x1, x2) → ¬⊖x1

)

from page 56, stating that a connected process does not disappear from the

adhoc networking system Dad. As already observed above, a finite valuation

basis for vars(φ) = {x1, x2} comprises the two valuations

V1 := [x1 7→ u1, x2 7→ u1]

V2 := [x1 7→ u1, x2 7→ u2]

where u1, u2 ∈ Id with u1 6= u2. According to Definition 5.18, we compute

Ad♯JφK as the minimum of the two values for

JAdK♯{u1}
[φ4](V1) := b1

JAdK♯{u1,u2}
[φ4](V2) := b2

Note that by Definition 5.18, we only keep the process u1 when analysing the

case for V1 where both x1 and x2 map to process u1, and we put the spotlight on

both u1 and u2 for the valuation V2 where both variables denote different pro-

cesses. For the first case, we obtain b1 = 1, basically as the premise link(x1, x2)

never becomes true when x1 and x2 denote same process. For the second case,

we obtain b2 = 1/2, as there is the following run π4 in the abstract semantics

JAdK♯{u1,u2}
that indicates a possible violation of the specification.

π4 = α{u1,u2}((∅, ιe)),

(new(u1), α{u1,u2}(({u1}, ({dev(u1)}, ∅))),

(new(u2), α{u1,u2}(({u1, u2}, ({dev(u1), dev(u2)}, ∅))),

(con(u1, u2), α{u1,u2}(({u1, u2}, ({sl(u1),ma(u2), link(u1, u2), link(u2, u1)}, ∅))),

(dis(⊥, u1), α{u1,u2}(({u1, u2}, ({dev(u1),ma(u2), link(u1, u2), link(u2, u1)}, ∅))),

(del(u1), α{u1,u2}(({u2}, ({ma(u2), link(u1, u2), link(u2, u1)}, ∅))), . . .

We illustrate this run graphically in Figure 5.3. It shows that two pro-

cesses u1 and u2 appear and connect themselves in snapshot S3. By the over-

approximative representation of the summary process ⊥, the evolution labelled

dis(⊥, u1) is enabled for S3, such that process ⊥ disconnects process u1, lead-

ing to u1 being a free device in snapshot S4. Note that u2 still has the ‘link’

connection to u1. Now the last rule of Ad is enabled and the connected process

u1 disappears from the system in snapshot S5. This run is by Definition 4.2

Section 5.2 Abstraction of Dynamic Systems 85

S5

S4

S3

S2

S1

S0

new(u1)

new(u2)

con(u1, u2)

dis(⊥, u1)

del(u1)

u1 u2

PS
⊥

link
link

link

dev
u1 u2

PS
⊥

link

link

link

dev
u1

dev
u2

PS
⊥

link

link

link

sl
u1

ma
u2

PS
⊥

link
link

link

link

link

dev
u1

ma
u2

PS
⊥

link
link

link

link

link

u1

ma
u2

PS
⊥

link
link

link

link

link

Figure 5.3: A run of JAdK♯{u1,u2}
, indicating a possible violation of φ4.

however only a possible violation as the abstract process ⊥ is involved in the

evolution to snapshot S4.

By this abstract run we obtain Ad♯JφK = 1/2, and yet cannot conclude any-

thing about AdJφK. In particular, we do not know whether the abstract run π4

corresponds to a definite violation in JAdK, or whether it represents spurious

behaviour introduced by the spotlight abstraction.

We may manually argue the adhoc networking example was designed to obey

a “proper disconnection property”, that is, a process that has just been discon-

nected does not have any outgoing links, formally represented as

Ad |= G (dis(x, y) → ¬link(y))

Obviously, the run π4 does not respect this invariant, and hence represents

spurious behaviour of ⊥. As we will demonstrate in the following, this line

of reasoning allows us to actually refine spotlight abstraction. However, this

approach opens up three non-trivial subtasks, namely

1. devise candidates for invariant system properties,

2. establish that these candidates are in fact invariants of the system, and

3. use the invariants to suppress spurious behaviour of the abstract process.

Actually, none of these problems are easy to solve. Firstly, finding candidates

typically requires an overall “understanding” of the system and is thus is hard

86 Chapter 5 Analysis of Dynamic Evolution Systems

to automate. Secondly, proving that a property is an invariant of the system

in general reduces to a model-checking problem and hence again requires to

employ abstraction techniques. Thirdly, refining the behaviour of the abstract

process ought to effectively suppress spurious behaviour while maintaining the

advantage of a stateless representation. We will address all three problems in

the following Chapter 6 on automatic refinement of spotlight abstraction.

5.3 Related Work

In this section, we compare the spotlight abstraction mechanism with several

other abstraction techniques that in some sense summarise processes. The over-

all principle of summarising abstractions is to count the number of those pro-

cesses which coincides on a certain property, whereby this notion of “property”

has different instantiations. The counter values are then cut off at a certain

number K, that is, the largest value K+1 denotes that there are more than

K processes. This cutoff leads to a summarisation of all sets of processes ex-

ceeding the counter K, and the abstraction is thereby in particular be able to

reduce even infinite structures to finite ones. It has been shown in [WW07]

that spotlight abstraction can be seen as a particular instance of the canonical

abstraction framework (see below).

The underlying ideas of the different abstractions is best explained on a con-

crete example. We consider the following snapshot of the adhoc network cases

study, comprising six processes in configurations as given in the following figure.

S
sl
u1

ma
u2

sl
u3

ma
u4

dev
u5

ma
u6

link

link
link

link

One of the earliest approach in the domain of summarising abstractions is

the Counter Abstraction [Lub84, GS92, PXZ02] which is typically applied for

parameterized systems. The basic idea is to count the number of those processes

which are in the same local state. For the running example we count the number

of free devices, of slaves and of masters. Under a cutoff of 1, we obtain the

following abstraction of the snapshot from above. The values of the counters

are given by the border of the nodes. A dotted border indicates value 0, a solid

Section 5.3 Related Work 87

border indicates 1 and a dashed border indicates “more than 1”. For illustration

purposes we index each summary node by the set of concrete identities which

abstract to this node.

Counter Abstraction

S♯CT

dev
{u5}

sl
{u1, u3}

ma
{u2, u4, u6}

We obtain the information that the original structure comprises more than one

master and slaves nodes and exactly one device node. Note that the links

among the processes are not taken into account such that all kind of topology

information gets lost. This makes classical counter abstraction inappropriate

for our addressed class of systems.

There is a large body of work in the area of Shape Analysis which aims

at a precise and finite characterisation of the overall shape of heap allocated

data-structures. Probably the most prominent approach defines the canoni-

cally abstraction framework [SRW02] which tags a subset of unary predicates

as abstraction predicates. These abstraction predicates induce an equivalence

relation on processes by merging processes which are indistinguishable under

these predicates. All predicates that do not serve as abstraction predicates

(i.e. in particular binary predicates) will keep their definite values whenever

possible. However, by the merge of processes into summary processes under the

given abstraction predicates it is often necessary to revert to the indefinite value

in order to obtain a sound abstraction. Using ‘{ma, sl}’ as the set of abstraction

predicates yields the following structure.

Canonical Abstraction

S♯CA

ma sl
{u2, u4, u6}

ma sl
{u1, u3}

ma sl
{u5}

link

link

Regarding the local states of the processes, we obtain similar information as

in the counter abstraction given above. For the summary nodes of the masters

and slaves, the ‘link’ connection obtains the indefinite value in both directions,

because the abstraction has to represent cases where the summarised nodes

actually have a connection in the original structure, but also cases where there

is no such connection in the original structure. The rightmost node representing

the free device soundly maintains the information of not having any outgoing

88 Chapter 5 Analysis of Dynamic Evolution Systems

and incoming links. A refinement of the abstraction can be achieved by adding

more abstraction predicates, however only unary predicates may be used in

order to enhance the precision of the abstraction.

This kind of shape analysis has been extensively used to analyse heap struc-

tures, for example in [LAS00, LARSW00, MYRS05]. It has also been applied

to establish temporal properties for multi-threaded Java programs in [Yah01]

and [YRSW06], respectively. Also, there exists promising approaches in sym-

bolic variants [PW05, BCC+07] of shape analysis that in particular allow for an

automatic refinement of the abstraction.

An extension of canonically abstraction that is tailored for the analysis of

communication topologies as present in the considered class of dynamic systems

is given in [Bau06, BW07]. The proposed Partner Abstraction principle on the

one hand takes binary predicates into account for abstraction, and on the other

hand employs a two-staged variant of the abstraction. The basic principle is to

first perform an abstraction step local to each strongly connected component

by merging those nodes which are in the same local states and who have the

same neighbourship, that is, the same set of outgoing and incoming links to

neighbours being the same local states. In a second step, isomorphic components

are summarised. When applying this principle we obtain the following abstract

structure.

Partner Abstraction

S♯PA

sl
{u1, u3}

ma
{u2} ma

{u4, u6}

dev
{u5}

link

link

The two slave devices u1 and u3 have been summarised in the first step as they

are “partner equivalent” as sketched above. In the second step, the two masters

u4 and u6 are summarised as they represent isomorphic connected components.

The partner abstraction techniques is able to establish a conservative approx-

imation of the set of possible topologies. This has been demonstrated for the car

platooning case study (see Section 7.2.4) in [Bau06, BTW07a]. Under certain re-

strictions the approach is guaranteed to compute an exact approximation of the

possible topologies. However, the worst-case complexity of computing the tran-

sition system under this abstraction mechanism is triple-exponentially [Bau06].

A different view on topologies is taken in the approach of Environment Ab-

straction [CTV06, CTV08], which is advertised as a combination of predicate

Section 5.3 Related Work 89

and counter abstraction. There, the abstraction is performed from the viewpoint

of a single process, the so-called reference process. The abstraction preserves

the local state of the reference process and its relationship in terms of binary

connections to all other processes. That is, is maintains how many processes in

the environment of the reference processes exists to which the reference process

has a certain connection. For example, using the master ‘u2’ as the reference

process leads to the following abstract structure.

Environment Abstraction

S♯EA

ma
u2

ma

ma

sl

dev

dev

sl

0
1

0

1
0

1

In this representation, arcs are labelled by the counter value and the style of

the arc determines where this counter value is true (solid line) or false (dotted

line). The structure represents that there are 1 or more slaves connected to

the reference process u2, and no other masters or free devices. Note that only

the identity of the reference process is kept while the environment processes are

anonymised by the abstraction.

In [CTV08], the environment abstraction approach has been applied to the

verification of semaphore based distributed algorithms and to several classical

mutual exclusion protocols in the area of parameterized verification. Note that

the property to be analysed via environment abstraction may comprise at most

two variables.

The method of Indexed Predicate Abstraction [LB04, LB07] generalised pred-

icate abstraction [GS97] to work on predicates comprising free variables. The

task is to compute a boolean combination of these predicates such that the uni-

versal closure of this formula holds in every reachable state of the system. The

employed abstraction function maps a concrete snapshot to the set of abstract

snapshots under the different valuations of the free variables. Initiating this

abstraction principle on the indexed predicates ‘ma(x)’, ‘sl(x)’ and ‘link(x, y)’

we obtain 62 abstract states for the different valuations of {x, y} to {u1, . . . , u6}.
Each row in the following tables represents one element of the abstract states

under one of the possible valuations.

90 Chapter 5 Analysis of Dynamic Evolution Systems

x y ma(x) sl(x) link(x, y)

u2 u1 1 0 1

u2 u2 1 0 0

u2 u3 1 0 1

u2 u4 1 0 0

u2 u5 1 0 0

u4 u4 0 1 0

u5 u5 0 0 0

.

From the full set of abstract states, one can e.g. conclude that links are always

bidirectional, that is ∀x, y . link(x, y) → link(y, x) is an invariant of the system.

The approach has been demonstrated to work on cache coherence protocols

and adhoc networking routing protocols in [Lah04]. For dynamic systems in our

setting, we anticipate that the same class of invariants can also be obtained by

evaluating the set of abstract topologies as computed by partner abstraction.

Moreover, partner abstraction will likely preserve more properties as it takes

the overall neighbour-ship into account whereas the focus of indexed predicate

abstraction is limited to the range of the actual valuation function.

For completeness, we also give the resulting snapshot under Spotlight Abstrac-

tion according to Def. 5.5 for processes u1 and u2.

Spotlight Abstraction

S♯SA

sl
u1

ma
u2

PS
{u3, . . . , u6}=⊥

link

link

link

One central difference to the related abstraction techniques is that spotlight

abstraction allows for a very efficient computation of the abstract transition

system. Indeed, only the evolution of the finite spotlight processes have to be

taken into account (cf. Def. 5.7) as the representation of the abstract part of the

structure is identical in each state. In contrast, all related analysis techniques

require a non-trivial computation of the abstract transition relation.

Another point where spotlight abstraction is unique is that it preserves the

process identities for the spotlight processes. In contrast, the abstraction mech-

anisms above suffer from the problem of identity blurring [Wac05], that is,

processes may migrate from one abstract node to another abstract node due

Section 5.3 Related Work 91

α1 α1 α1

s
u1

s′
u2

s′
u1

s′
u2

s
u1

s′
u2

s s′ s’ s s′

Figure 5.4: Identity blurring under counter abstraction.

to their evolutions. Consider for example the evolutions of the three concrete

snapshots in the upper part of Figure 5.4. The property s(x) → X X s(x) is lost

for example under counter abstraction as we cannot tell which process from the

summary node s′ evolves into which successor node. Identity blurring in general

inhibits the analysis of full temporal properties where configurations of a ded-

icated process in different snapshots are related by temporal operators. This

affects both temporal safety and liveness properties, e.g. in the requirement

req(x, y) →
(
¬fail(x) U ack(y, x)

)

from page 63, the processes denoted by ‘ack(y, x)’ should be the same processes

that have exchanged the ‘req’ message before. Note that despite abstracting

from concrete process identities the important class of invariant safety prop-

erties, that is, specifications of the form ‘Gφ’ where ‘φ’ contains no temporal

operators, can still be treated.

It is known that liveness properties are typically not preserved under fini-

tary abstractions, independently of the specific abstraction technique. In the

approach of [YRSW06] mentioned above, identities and liveness properties are

partly maintained by a dedicated augmentation of the abstract states. This basi-

cally follows the general approach of adding some variant of progress monitoring

to the abstraction as described in [KP99]. We integrated the idea of [Wes08]

by which fairness constraints and liveness properties local to the spotlight are

preserved under the abstraction. This allows us to establish local liveness prop-

erties without the need for additional augmentation. Our refinement strategy

will additionally exploit this fact by increasing the scope of the fairness con-

straints by spotlight extension (cf. Sect. 6.1.1 below). We will demonstrate the

analysis of liveness properties by our approach for the considered case studies

in Chapter 7.

92 Chapter 5 Analysis of Dynamic Evolution Systems

Chapter 6

Spotlight Abstraction Refinement

6.1 Refinement Strategies . 94

6.1.1 Spotlight Extension 96

6.1.2 Shadow Refinement 97

6.2 Counterexample Guided Refinement 100

6.2.1 Identifying Spurious Counterexamples 105

6.2.2 Abstraction Refinement Loop 110

6.2.3 Progress Property 114

6.3 Communication Based Refinement 122

6.3.1 Intuition . 123

6.3.2 Message Dependencies 125

6.3.3 Message Counting 129

6.3.4 Discussion . 133

6.4 Related Work . 135

The spotlight embedding theorem 5.12 ensures that any definite result for the

abstract evaluation of a specification immediately transfers to the same value

for its concrete evaluation. We however remain inconclusive whenever we obtain

the indefinite result. For this case we will now devise a method to transfer this

indefinite result ‘1/2’ into a definite result, that is, to either ‘0’ or ‘1’. The

method is based on an iterative refinement of the employed abstraction.

Our general strategy for spotlight abstraction refinement uses two comple-

mentary kinds of refinement, namely spotlight extension and shadow refinement,

which are explained in Section 6.1. The realisation of this strategy by exploit-

ing the information contained in abstract counterexamples is then described in

Section 6.2. It turns out that the key problem is the identification of spuri-

ous counterexamples. We show that the problem is undecidable in general and

93

94 Chapter 6 Spotlight Abstraction Refinement

we provide a sound but incomplete method that is able to solve the problem

in many cases. In Section 6.3 we describe an additional technique to obtain

refinements for Dynamic Communication Systems by statically deriving com-

munication dependencies in a given DCS protocol. We describe related work

in Section 6.4 where we discuss related refinement strategies as well as further

existing approaches to analyse the considered class of dynamic systems.

6.1 Refinement Strategies

We recall and illustrate the basic principles and properties of the employed

spotlight abstraction in Figure 6.1. With respect to the concrete semantics of

a Dynamic Evolution System DS in the form of the infinite SLTS JD, SK, we

compute the abstract semantics JD, SK♯I for a finite spotlight I ⊆ Id according

to Chapter 5. In general, this abstract system is a proper over-approximation

of the original system such that any suitable concretisation operator on the

abstract system yields a system comprising more behaviour than JD, SK. We

gave an example of such an over-approximative behaviour in Section 5.2.3 in

terms of a spurious run of the abstract SLTS.

Due to the heterogeneous character of spotlight abstraction in the sense that

different parts of the system are abstracted with different degrees of precision,

we obtain a certain part of the abstract semantics that exactly corresponds

to the same part within the concrete semantics, namely JD, SKI . Intuitively,

this transition system comprises exactly those evolutions where only process

identities of I are involved. We have established that this transition system

is an under-approximation of JD, SK in Lemma 3.26, hence any specification

violation within this transition system yields a definite violation also in the

concrete transition system JD, SK. Note that our three-valued satisfaction re-

lation (cf. Def. 4.2) exploits this property by monitoring whether the violating

counterexample remains within JD, SKI . Combining this feature with the sound-

ness of the abstraction according to Lemma 4.6 provides us with the spotlight

embedding theorem 5.12.

One natural way to increase the precision of the abstraction is hence to extend

the spotlight to some set I ′ ⊃ I. By this, also counterexamples employing con-

crete processes from I ′ \ I are identifiable as concrete counterexamples directly

in the abstract semantics. Our strategy to obtain a meaningful enlargement of

the spotlight will be driven by the analysis of abstract counterexamples. These

counterexamples comprise evolutions involving the abstract process identity,

and each occurrence of this process identity will increase the spotlight by one

Section 6.1 Refinement Strategies 95

JD, SK

JD, SK♯I

αI
γ

=

JD, SKI

JD, SKI

Figure 6.1: Spotlight Abstraction and Refinement

concrete process identity. Intuitively, we try to replay the abstract counterex-

ample with purely concrete processes under the enlarged spotlight. Note that

the size of the spotlight is completely determined by the variables of the speci-

fication (cf. Def. 5.18). So in order to obtain the desired spotlight extension we

generate a specification comprising the right number of variables. By this we do

not have to modify the abstraction mechanism itself and may reuse the estab-

lished procedure of spotlight abstraction, query reduction and model-checking.

This in particular leads to a very compact refinement algorithm as given on

page 111 below.

By the translation of abstract counterexamples to specifications we obtain a

validation mechanism for abstract counterexamples. The validation task reduces

to checking whether the negation of the resulting specification holds in each

run of the abstract system under the enlarged spotlight. The analysis of this

counterexample specification can have three outcomes again. Firstly, it can be

‘0’ and we obtain a concrete counterexample which demonstrates the feasibility

of the abstract counterexample under an enlarged spotlight. We then may

immediately stop our verification procedure. Secondly, we can obtain the result

‘1’, stating that the behaviour of the abstract counterexample is not possible

with concrete processes. While this does not imply that the original specification

is satisfied (as there may exist other counterexamples), it allows us to refine

the abstraction by eliminating those behaviour that has just been identified

to be spurious from the abstraction. This elimination phase is called shadow

refinement and will be explained below. Thirdly, we may obtain the result ‘1/2’

96 Chapter 6 Spotlight Abstraction Refinement

and thereby obtain another abstract counterexample. In this case, we initiate a

further extension of the spotlight by taking also the abstract evolutions of the

new abstract counterexample into account. This extension procedure will be

repeated until a definitive answer has been obtained.

We so far have identified two kinds of refinement for spotlight abstraction,

namely spotlight extension and shadow refinement, which we explain in more

detail in the two following sections. Notably, both refinement strategies preserve

the advantage of a stateless representation of the abstract process. In particular

the shadow refinement will not increase the precision of the configuration of the

abstract process itself but will rather remove those abstract evolutions that have

been identified to be spurious under certain spotlight configurations.

6.1.1 Spotlight Extension

As sketched above, we can increase the precision of the abstraction by extend-

ing the spotlight. By this, more concrete behaviour of the original systems is

precisely represented in the abstract semantics. Hence, the main purpose of

spotlight extension is to transfer abstract counterexamples into concrete coun-

terexample.

Following Definition 5.10 the size of the spotlight is completely determined

by the variables of the specification. In particular, the spotlight is at most as

large as the number of variables. The extension of the spotlight is hence driven

by introducing fresh variables to a specification. Clearly, the new specification

should relate to the original specification in the sense that any violation under

the enlarged specification yields a violation of the original specification. This

leads to the following definition of spotlight extension.

Definition 6.1 (Spotlight Extension) Let D ∈ DS be a DES over signature

S, S ∈ StrucsS(Id) a logical structure and φ, φ′ ∈ SpecsS two specifications.

Then φ′ is called a spotlight extension of φ for D if vars(φ′) ⊃ vars(φ) and

DSJφ
′K = 0 implies that DSJφK = 0. ♦

Our refinement procedure in Section 6.2 will automatically construct new

specifications from abstract counterexamples that yield spotlight extensions of

the original specification. Note that extending the spotlight also extends the

scope of the fairness constraints as all spotlight processes are required to adhere

to the compassion constraints induced by the system description (cf. Def. 5.11).

Section 6.1 Refinement Strategies 97

6.1.2 Shadow Refinement

The shadow refinement of spotlight abstraction will be driven by successively

adding assumptions regarding the behaviour (i.e. the evolutions) of the abstract

process ⊥. This approach basically follows the strategy of analysing an open

system under certain assumptions concerning the environment – the so-called

assume-guarantee paradigm [Pnu85]. Here, a specification consists of a pair

〈θ, φ〉 where φ describes a property of the system that has to be guaranteed

whenever the environment obeys the assumption θ. When both θ and φ are

linear temporal logic formulae, the pair can be rewritten to a single formula via

implication, that is, to θ → φ. For branching time logics, one has to revert to

modular verification techniques [GL94, Jos93].

In this sense, we aim at proving the original specification for the spotlight part

of the abstraction in an open environment that is represented by the abstract

process. The behaviour of the abstract process may then be refined by adding

assumptions for the DES under consideration. Hence, the main purpose of

shadow refinement is to establish the validity of a specification under a refined

behaviour of the abstract process. To be able to reason about behaviour of the

abstract process, we need to declare a subset of variables that actually denote

the abstract process. We do so by extending Definition 5.18 as follows.

Definition 6.2 (Extended Abstract Specification Satisfaction) Let D ∈
DS a Dynamic Evolution System over signature S, S ∈ StrucsS(I) a logical

structure, and φ ∈ SpecsS a specification.

The extended abstract evaluation of φ in D and S under X is defined as

D
♯
S,XJφK := min{ JD, SK♯

ran(V)[φ](V · VX) ∈ B3 | V ∈ ValBasis(X ′)}

where

• X∪̇X ′ = vars(φ) is a disjoint partitioning of the variables of φ,

• ValBasis(X ′) is a finite valuation basis of ValsId(X
′), and

• VX(x) := ⊥ if and only if x ∈ X. ♦

In particular, we obtain

D
♯
S,∅JφK = D

♯
SJφK

that is, if no variable in φ denotes ⊥, Definition 6.2 coincides with Defini-

tion 5.18. In general however, the result of D
♯
S,XJφK tends to become indefinite

if variables denote the abstract process as its predicate interpretations yield 1/2

by the definition of spotlight abstraction (cf. Def. 5.5). We obtain the following

generalisation of the Embedding Lemma 5.19.

98 Chapter 6 Spotlight Abstraction Refinement

Lemma 6.3 (Extended Embedding) Let D ∈ DS be a Dynamic Evolution

System over signature S, S ∈ StrucsS(Id) a logical structure and φ ∈ SpecsS a

specification. Then

DSJφK ⊑ D
♯
S,XJφK

for any set of variables X ⊆ vars(φ). ♦

Proof. The proof is given in the appendix (page 196). �

We observe that both the assumptions obtained by spurious counterexamples

as well as the refinement based on the DCS protocol analysis to be described in

Section 6.3 form a proper subset of our general specification language. We call

this subset the language of evolution constraints as these assumptions constraint

the execution of evolutions. We give the formal definition and some examples

below.

Definition 6.4 (Evolution Constraint) Let S = (X ,PS,PL,PE) be a signa-

ture. An evolution constraint over S is generated by the grammar

θ ::= ff | a→ ψ ∨ θ1 | X a→ ψ ∨ θ1 | G θ1

where a ∈ AtomsX (PE) is an atom over evolution predicates PE and ψ ∈
Forms(PSL) is a formula over state and link predicates PSL.

The set of all evolution constraints over S is denoted by EvoCS . ♦

Let us consider some examples of evolution constraints over Sad.

1. G
(
dis(x, y) → dev(y) ∧ ¬link(y, x)

)

This evolution constraint expresses that always after process x disconnects

process y, the process y becomes a free device and has no connection link

to (its former master) x.

2. G
(
dis(x, y) → dev(y) ∧ ¬link(y)

)

This evolution constraints strengthens the previous example as it requires

that a disconnected process y has no connection to any process (and hence

in particular not to process x).

3. G
(
X dis(x, y) → dis+(x, y)

)

Evolution constraints of the form X a → a+ require a positive counter

value for a evolutions. These counter values are updated by observing

those evolutions that affect a. We postpone the formal treatment of these

kind of evolution constraints to Section 6.3.

Section 6.1 Refinement Strategies 99

So far, the language of evolution constraints provides us with a syntax to

formulate candidates for the Dynamic Evolution System under consideration.

These candidates become evolution constraints for a Dynamic Evolution System

with respect to a specification. This allows us to obtain evolution constraints

tailored for the actual specification under consideration, although the candidate

might not be a valid evolution constraint for every specification.

Definition 6.5 (Evolution Constraints for DES) Let D ∈ DS a Dynamic

Evolution System over signature S, S ∈ StrucsS(Id) a logical structure, φ ∈
SpecsS a specification, and θ ∈ EvoCS an evolution constraint.

Then θ is an evolution constraint for DS and φ if each run of DS satisfies θ

or φ, that is, if DS |= θ ∨ φ holds. ♦

In the case of φ = ff , we simply say that θ is an evolution constraint for DS.

If we re-write the above condition to ¬φ → θ we observe that the satisfaction

of the evolution constraint is only relevant for paths where the specification is

violated. This is meaningful as evolution constrains will be used to eliminate

spurious violations of the original specification.

We are now able to use an evolution constraint θ for refining the abstract

behaviour by setting a subset of evolution variables evovars(θ) to denote the

abstract process and using θ as premise to the specification. Note that by

Definition 4.2 an abstract run violating the evolution constraint then however

only yields a possible violation as the abstract process is involved in at least

one evolution label. But as 1/2 → b yields 1/2 for any b ∈ B3, using ‘θ’ as an

assumption does not lead to an effective refinement.

However, if θ is an evolution constraint for DS and φ we may actually require

a definite satisfaction of the evolution constraint. We express this by requiring

‘θ=1’ as a premise, which becomes definitely violated when the abstract process

exhibits evolutions that do not adhere to the constraints given in θ, turning the

implication 0 → b to 1 for any b ∈ B3. We formally characterise shadow

refinement as follows.

Theorem 6.6 (Shadow Refinement) Let D ∈ DS be a dynamic system over

signature S, S ∈ StrucsS(Id) a logical structure, φ ∈ SpecsS a specification, and

θ ∈ EvoCS an evolution constraint for D and φ. Then

DSJφK ⊑ D
♯
S,XJ (θ=1) → φ K

for any set of variables X ⊆ evovars(θ). ♦

Proof. The proof is given in the appendix (page 197). �

100 Chapter 6 Spotlight Abstraction Refinement

To demonstrate shadow refinement, we reconsider the specification

φ4 = G
(

link(x1, x2) → ¬⊖x1

)

for the adhoc networking example Ad. As observed above, this property yields

a possible violation in the abstract semantics JAdK♯{u1,u2}
by the abstract run

π4 shown in Figure 5.3, that is, we have Ad♯Jφ4K = 1/2. Given that “proper

disconnection” (cf. page 85)

θ4 = G
(
dis(b, x1) → ¬link(x1)

)

where b is a fresh variable that will be bound to the abstract process identity

below, is indeed an evolution constraint for Ad, we observe that under the

valuation V = [b 7→ ⊥, x1 7→ u1] we obtain

π4[θ4 = 1]0(V) = 0,

and in consequence shadow refinement with

Ad
♯
{b}J(θ4 = 1) → φ4K

yields the value 1 as there is no other run violating the specification. The

constraint θ4 requires that each evolution ‘dis(b, x1)’ yields a logical structure

where the process denoted by variable x1 is fully disconnected. Hence, the

abstract run π4 violating this constraint is dismissed by the premise θ4 =1. By

Theorem 6.6 we may then conclude that the infinite state system Ad satisfies

φ4, that is,

Ad |= φ4.

Clearly, we yet have to separately establish that θ4 is indeed an evolution con-

straint for Ad and φ4 in order to use θ4 for a sound refinement. As already

sketched, the validation of abstract counterexample via spotlight extension will

provide us with a method to automatically obtain valid evolution constraints.

This fruitful combination of spotlight extension and shadow refinement is the

topic of the next section.

6.2 Counterexample Guided Refinement

By using abstract counterexamples as a means to drive the refinement of the ab-

straction we follow the general principle of counterexample-guided abstraction

refinement (CEGAR), which has been initially presented in [Kur94] and has

been adapted to the verification of general ACTL⋆ specifications in [CGJ+00].

Section 6.2 Counterexample Guided Refinement 101

M, φ Abstraction

Refinement

Verification M |= φ

Validation M 6|= φ

M♯

counter-
example

true

validspurious

Figure 6.2: Counterexample Guided Abstraction Refinement.

This approach is also known as the abstract-check-refine paradigm [HJMS02].

The basic procedure as sketched in Figure 6.2 starts by applying a suitable

abstraction technique to the model M, yielding the abstract model M♯. This

model is then verified against the specification φ. If the outcome is true, the

abstraction was already precise enough to establish the validity of the specifica-

tion, and the refinement loop stops. Else the obtained abstract counterexample

is validated, that is, it is checked whether the counterexample corresponds to

a concrete counterexample of the original model M. If this is the case, the

specification is shown to be violated and the refinement loop stops. If the coun-

terexample however is identified to be spurious, this information is used to refine

the abstraction, yielding a refined abstract model. Then the next iteration of

the loop is entered and the refined abstract model is verified against the spec-

ification. This procedure is iterated until it stops by one of the possibilities

described above.

Note that none of the boxes in Figure 6.2 are bound to a specific technique. By

this, the framework is applicable to different abstraction and verification tech-

niques, and hence domain-specific validation and refinement techniques have

to be used in order to obtain an effective refinement procedure. Indeed, the

framework has been applied to many abstraction techniques for quite different

classes of systems, for example for hybrid systems [CFH+03, Seg07], C pro-

grams [BMMR01, BHJM07], FIFO queues [LW05], pushdown system [EKS06],

and graph transformation systems [KK06]. Here, we instantiate the framework

for dynamic evolution systems under spotlight abstraction.

Counterexamples

A counterexample is a system run that witnesses the violation of a given tem-

poral specification. From Def. 4.3 we have that actually a finite prefix of a run

is sufficient to demonstrate the violation of a safety specification, while for live-

ness specifications an infinite run is necessary. However, for finite state systems,

102 Chapter 6 Spotlight Abstraction Refinement

S2

S1

S0

new(u1)

con(u1,⊥)

u1

PS
⊥

link
link

link

dev
u1

PS
⊥

link
link

link

sl
u1

PS
⊥

link
link

link

Figure 6.3: A counterexample in Cex(Ad,G¬sl(x)) with [x 7→ u1].

it is known that this infinite run can be finitely represented in a lasso-shaped

form [VW86], that is, a finite prefix with a looping suffix.

Definition 6.7 (Counterexample) Let D ∈ DS be a DES over signature

S = (X ,PS,PL,PE), I ⊂ Id a finite set of identities, S ∈ StrucsS(I) a logi-

cal structure and φ ∈ SpecsS a specification.

A counterexample for a safety specification φ for D and S is a tuple

δ = (π̄,V)

where π̄ is a prefix of a run π = ((Li, Si))i∈N0 ∈ Runs(JD, SKI) ∪ Runs(JD, SK♯I)

and V ∈ ValsId⊥(vars(φ)) is a valuation such that π̄w[φ](V) ≤ 1/2 for all se-

quences w ∈ (GroundAtomsI(PE) × StrucsS(I))ω.

A counterexample for a liveness specification φ for D and S is a tuple

δ = (π̄,V)

where π̄ is a prefix of a run π = ((Li, Si))i∈N0 ∈ Runs(JD, SKI) ∪ Runs(JD, SK♯I)

and there exists a position l ∈ {0, . . . , len(π̄)} and a valuation V ∈ ValsId⊥(vars(φ))

such that π̄
(
(Ll, Sl) . . . (Llen(π̄), Slen(π̄))

)ω
[φ](V) ≤ 1/2.

We call δ an abstract counterexample if π[φ](V) = 1/2, and a concrete coun-

terexample if π[φ](V) = 0. The set of all counterexamples for φ in D and S is

denoted by Cex(DS, φ).

By ⊥(δ) := {i ∈ len(π̄) | ⊥ ∈ A(Li)} we denote the positions of the abstract

evolutions in an abstract counterexample. ♦

As an example, we consider the abstract run π♯ ∈ Runs(JAdK♯{u1}
) from page 78

in Figure 6.3. Under the valuation V := [x 7→ u1] the prefix of this run is a

counterexample for

φ2 := G
(
¬sl(x)

)

Section 6.2 Counterexample Guided Refinement 103

as u1 becomes a follower in snapshot S2, that is, S2[sl(x)](V) = 1. Note that this

run represents an abstract counterexample for the requirement as the abstract

process is involved in the evolution leading to this snapshot S2, that is, we

obtain π♯[G(¬sl(x))]0(V) = 1/2 by Definition 4.2.

By this run, we have that Ad♯Jφ2K = 1/2, and we remain inconclusive about

the value of AdJφ2K. In particular, we do not know whether π♯ corresponds to

a concrete run in JAdK or whether it represents spurious behaviour introduced

by the abstraction.

To answer this question we need to define the concretisation of a counterexam-

ple, which is a run in the concrete semantics that also violates the specification

and that is in some sense related to the counterexample. We intentionally use

a rather weak notion of relationship between the counterexample and its con-

cretisation. In fact, we basically only require that all evolutions of the abstract

process also occur in the same order in the concretisation run. Additionally,

these concretised evolutions must lead to the same configuration of the involved

processes. In particular, we do not require that the concrete evolutions of the

counterexample are contained in the concretisation run. Moreover, as the ab-

stract process represents an arbitrary number of concrete processes and hence

may abstractly summarise an arbitrary chain of evolution steps, we do not im-

pose any correspondence between the lengths of the counterexample and its

concretisations.

The general strategy of counterexample concretisation is hence to focus on

the critical points in an abstract counterexample, namely the evolutions of the

abstract process. Actually, this liberal notion of concretisation is the key to

obtain effective evolution constraints below.

Definition 6.8 (Counterexample Concretisation) Let D ∈ DS a Dynamic

Evolution System over S, S ∈ StrucsS(Id) a logical structure, φ ∈ SpecsS a spec-

ification, and δ = (((Li, Si))0≤i≤n,V) ∈ Cex(DS, φ) an abstract counterexample.

A run π ∈ Runs(JD, SK) is a concretisation of δ, denoted δ � π, if

1. the run π is a concrete counterexample for φ, that is,

π[φ]0(V) = 0,

2. and there exists a monotone function f : ⊥(δ) → N0 such that

∀ i ∈ dom(f) : L′
f(i)[Id \ I 7→ ⊥] = Li ∧ αI(S

′
f(i)MA(Li)) = SiMA(Li)

where I := ran(V) \ {⊥} and π = ((L
′

i, S
′

i))i∈N0.

The set of all concretisation of δ is γ(δ) := {π ∈ Runs(JD, SK) | δ � π}. ♦

104 Chapter 6 Spotlight Abstraction Refinement

S ′
3

S ′
2

S ′
1

S ′
0

new(u1)

new(u2)

con(u1, u2)

dev
u1

dev
u1

dev
u2

sl
u1

ma
u2

link

link

Figure 6.4: A concretisation run for (π♯,V) ∈ Cex(Ad, φ2).

For the abstract counterexample (π♯,V) from above, it is easy to come up

with a concretisation run π ∈ Runs(JAdK), namely

π = (∅, ιe),

(new(u1), ({u1}, ({dev(u1)}, ∅)),

(new(u2), ({u1, u2}, ({dev(u1), dev(u2)}, ∅)),

(con(u1, u2), ({u1, u2}, ({sl(u1),ma(u2), link(u1, u2), link(u2, u1)}, ∅)),

represented graphically in Figure 6.4. According to Definition 6.8, we have that

π[φ2]
0(V) = 0 and we observe the required relation between the abstract and

the concrete counterexample as follows. We have ⊥(π♯) = {2}, that is, the

abstract identity is only involved in the evolution to snapshot S2. We then may

construct the required correspondence function f with f(2) = 3 because

• replacing every identity except for u1 by the abstract identity in the con-

crete evolution L′
3 = con(u1, u2) yields L2, that is,

L′
3[Id \ {u1} 7→ ⊥] = con(u1,⊥) = L2

• and the concrete snapshot S ′
3 (cf. Fig. 6.4) under spotlight abstraction

with {u1} yields the abstract snapshot S2 (cf. Fig. 5.2) focussing on u1:

α{u1}(S
′
3M{u1})

= ({u1,⊥), ({sl(u1)}, {dev(⊥), sl(⊥),ma(⊥)}, link(⊥,⊥), link(⊥, u1), link(u1,⊥)})

= S2M{u1}

We visualise this relationship in Figure 6.5, which shows that the concrete

process u2 takes over the behaviour of the abstract process as given in the

abstract counterexample (π♯,V). Note that in this small example, the focus of

Section 6.2 Counterexample Guided Refinement 105

u1

PS
⊥

link

S0

new(u1)
−−−−→

dev
u1

PS
⊥

link

S1

con(⊥,u1)
−−−−−→

fl
u1

PS
⊥

link

S2

α{u1}(·)

·[u2 7→ ⊥]

S′
0

u1

u2

new(u1)
−−−−→

dev
u1

u2 S′
1

new(u2)
−−−−→

dev
u1

dev
u2 S′

2

con(u2,u1)
−−−−−−→

fl
u1

ld
u2

link

S′
3

�

Figure 6.5: Concretisation of the counterexample (π♯,V) with f(2) = 3.

the abstract snapshot S2 on A(L2) has no effect, however for counterexamples

involving more concrete processes it allows us to concentrate on those processes

that are actually influenced by the considered evolution.

Having defined the concretisation of counterexamples, we obtain a natural

notion of a counterexample being spurious as follows.

Definition 6.9 (Spurious Counterexample) Let D ∈ DS a Dynamic Evolu-

tion System over signature S, S ∈ StrucsS(Id) a logical structure and φ ∈ SpecsS
a specification.

An abstract counterexample δ ∈ Cex(DS, φ) is called spurious, denoted (̥δ),

if it has no concretisations, i.e. if γ(δ) = ∅. ♦

For the abstract counterexample (π♯,V) from above, we have manually estab-

lished that this counterexample is not spurious by identifying a concretisation

run according to Definition 6.8. We will automate this reasoning by turning the

problem of identifying spurious counterexamples into a model-checking problem.

6.2.1 Identifying Spurious Counterexamples

As already sketched, we devise a translation of an abstract counterexample to a

specification in order to validate the counterexample. To this end, we establish

a correspondence between the satisfiability of the obtained specification and the

question whether the given counterexample is spurious. The translation of an

abstract counterexample is based on two (rather technical) subtasks, namely on

1. turning an evolution ground atom into an atom (in Def. 6.10), and

2. turning a logical structure into a formula (in Def. 6.11).

106 Chapter 6 Spotlight Abstraction Refinement

We will illustrate these subtasks and the overall translation schema in terms of

the abstract counterexample (π♯,V) ∈ Cex(Ad, φ2) from above.

Definition 6.10 (Atom of an Evolution Ground Atom) For a signature

S = (X ,PS,PL,PE), a valuation V ∈ ValsI(X) for a set of identities I ⊆ Id⊥,

and an evolution ground atom g = p(u1, . . . , ukp
) ∈ GroundAtomsI(PE), the

atom of g under V and i ∈ N, denoted evo(g,V , i), is defined as

evo(p(u1, . . . , ukp
),V , i) := p(νi,1(V , u1), . . . , νi,kp

(V , ukp
))

where

νi,j(V , u) :=

{

Vu if u 6= ⊥

xi,j ∈ X \ dom(V) else

for an identity u ∈ I and numbers i, j ∈ N and where

Vu := max{x ∈ dom(V) | V(x) = u}

determines a variable that maps to identity u ∈ I under V. ♦

Turning a ground atom into an atom translates each identity to a logical

variable. For concrete processes, we select a unique variable from the domain

of the valuation function. Note that this selection is well-defined as the set

of variables is totally ordered. For each occurrence of the abstract process we

introduce a fresh variable. The argument i ∈ N is used to guarantee distinct

variables when more than one evolution ground atom has to be translated during

the counterexample translation defined below. Regarding the evolution L2 =

con(u1,⊥) in the abstract counterexample (π♯,V), we obtain the atom

evo(con(u1,⊥),V , 1) = con(x, x1,2)

with x1,2 ∈ X \ dom(V) being a fresh variable.

Definition 6.11 (Formula of a log. Structure) Let S = (X ,PS,PL,PE) be

a signature, I ⊆ Id⊥ a set of identities, S = (U, (ι1, ι1/2)) ∈ StrucsS(I) a logical

structure and V ∈ ValsI(X) a valuation for a set of variables X ⊆ X .

The formula of S under V, denoted expr(S,V), is defined as

expr(S,V) :=
∧

u∈I′,ps∈PS

(
vital(u,V)∧ atom(ps, u,V)∧

∧

u′∈I′,pl∈PL

atom(pl, u, u
′,V)

)

where I ′ := I \ {⊥} and

Section 6.2 Counterexample Guided Refinement 107

vital(u1,V) :=

{

⊚Vu1 if u1 ∈ U

⊕Vu1 if u1 6∈ U

atom(p, u1, . . . , ukp
,V) :=

p(Vu1 , . . . ,Vukp
) if p(u1, . . . , ukp

) ∈ ι1

tt if p(u1, . . . , ukp
) ∈ ι1/2

¬p(Vu1 , . . . ,Vukp
) else

for predicates p ∈ PSL and identities u1, . . . , ukp
∈ I ′. ♦

By Definition 6.11 we obtain a formula as a conjunction over all state and

link predicates for all elements in the domain of the logical structure excluding

the abstract process. For example, regarding the logical structure S2 =

({u1,⊥}, ({sl(u1)}, {dev(⊥), sl(⊥),ma(⊥), link(⊥,⊥)), link(⊥, u1), link(u1,⊥)})

from Figure 5.2 and the valuation V = [x 7→ u1]. We obtain the formula

expr(S2,V) =

vital(u1,V)
︷︸︸︷
⊚x ∧

atom(dev,u1,V)
︷ ︸︸ ︷

¬dev(x) ∧

atom(sl,u1,V)
︷︸︸︷

sl(x) ∧

atom(ma,u1,V)
︷ ︸︸ ︷

¬ma(x) ∧

atom(link,u1,u1,V)
︷ ︸︸ ︷

¬link(x, x)

As in the Ad system at most one unary predicate holds for each process, we

may reduce the expression in order to enhance its readability to

expr(S2,V) = ⊚x ∧ sl(x) ∧ ¬link(x, x)

which characterises an alive slave device that has no connection to itself.

We observe that the formula of a logical structure precisely captures its def-

inite information, and in particular the formula of the spotlight abstraction

under a set of identities I of a structure S2 is guaranteed to hold for a larger

structure S1 whenever both agree on a common set of focussed identities F . This

property is formalised in the following lemma, which will be used to establish

the correspondence between the evaluation of the counterexample specification

and its validity in Theorem 6.14 below.

Lemma 6.12 (Spotlight Formula) Let S = (X ,PS,PL,PE) be a signature,

I1, I2 ⊆ Id two sets of identities with I2 ⊆ I1.

For any two structures S1 ∈ StrucsS(I1) and S2 ∈ StrucsS(I⊥2), we have

S2MF = αI2(S1MF) ⇐⇒ S1[expr(S2MF ,V)](V) = 1

for a valuation V ∈ ValsI2(X) and focused identities F ⊆ ran(V). ♦

Proof. The proof is given in the appendix (page 197). �

108 Chapter 6 Spotlight Abstraction Refinement

We combine both translation schemes from Definitions 6.10 and 6.11 and

obtain the specification of an abstract counterexample as a nested chain of ‘F’

expressions as follows.

Definition 6.13 (Counterexample Specification) Let D ∈ DS be a DES

over signature S, S ∈ StrucsS(Id) a logical structure and

δ = (((Li, Si))0≤i≤n,V) ∈ Cex(DS, φ)

an abstract counterexample for a specification φ ∈ SpecsS .

We define the counterexample specification of δ inductively as ϕ(δ) := ϕ(δ)1

where

ϕ(δ)i :=

F
(
evo(Li,V , i) ∧ expr(SiMA(Li),V) ∧ (ϕ(δ)i+1)

)
if i ∈ ⊥(δ)

ϕ(δ)i+1 if i 6∈ ⊥(δ) ∧ i ≤ n

tt else

By fresh(ϕ(δ)) := vars(ϕ(δ)) \ dom(V) we denote the new variables in ϕ(δ). ♦

For the abstract counterexample (π♯,V) we obtain the counterexample specifi-

cation

ϕ((π♯,V)) = F
(
evo(L2,V , 2) ∧ expr(S2MA(L2),V) ∧ tt

)

= F
(
con(x, x2,2) ∧⊚x ∧ sl(x) ∧ ¬link(x, x)

)

with vars(ϕ) = {x, x2,2} and fresh(ϕ) = {x2,2}. This specification requires to

finally observe the abstract evolution L2 leading to S2, this time however by

concrete processes denoted by x2,2 and x. If there is a run in Ad satisfying

the counterexample specification and violating the initial specification, we have

obtained a concretisation run and the counterexample is not spurious. Other-

wise, if no concrete run exists that both satisfies the counterexample formula

and violates the specification, then the counterexample is spurious. Hence, we

actually claim the negation of the conjuncted specifications in order to obtain

a concrete counterexample (if one exists), leading to the following method for

validating abstract counterexamples.

Theorem 6.14 (Counterexample Validation) Let D be a Dynamic Evolu-

tion System over signature S, S ∈ StrucsS(Id) a logical structure, φ ∈ SpecsS a

specification and δ ∈ Cex(DS, φ) an abstract counterexample. Then

(̥δ) ⇐⇒ DSJ¬(ϕ(δ) ∧ ¬φ)K ♦

Proof. By Lemma 6.12. The proof is given in the appendix (page 198). �

Section 6.2 Counterexample Guided Refinement 109

This result in particular shows that the validation of abstract counterexamples

corresponds to a verification problem for Dynamic Evolution System. By the

undecidability of this problem (cf. Thm. 5.4) we obtain the following corollary.

Corollary 6.15 (Spuriousity is undecidable) Let D be a Dynamic Evolu-

tion System over signature S, S ∈ StrucsS(Id) a logical structure, φ ∈ SpecsS a

specification and δ ∈ Cex(DS, φ) an abstract counterexample.

It is undecidable whether δ is spurious or not. ♦

Actually, this negative result is not very surprising given the fact that the

abstract process may represent the behaviour of any number of concrete pro-

cesses. Hence, to validate whether the behaviour of the abstract is valid may in

general require to analyse the behaviour of this potentially unbounded number

of processes.

A natural way to address this undecidability result is to again apply spotlight

abstraction in order to reduce the new verification task to a computable prob-

lem. Regarding the running counterexample, we have to compute the result of

AdJ¬(ϕ((π♯,V)) ∧ ¬φ2)K, that is check whether

Ad |= ¬
(
F(con(x, x2,2) ∧⊚x ∧ sl(x) ∧ ¬link(x, x)) ∧ ¬G(¬sl(x))

)

holds. For this specification, the spotlight is increased to at most two distinct

process identities, say {u1, u2}, and we obtain a concrete counterexample in

JAdK♯{u1,u2}
. Indeed, this counterexample coincides with the concretisation run

π that we manually established on page 104 (cf. Fig. 6.4). We thus have es-

tablished by Theorem 6.14 that π♯ is not spurious and thereby simultaneously

obtained a concrete counterexample for Ad violating φ2 by Lemma 5.19.

As just mentioned, the usage of the counterexample specification leads to an

enlarged spotlight as each occurrence of abstract identity ⊥ by a fresh variable in

the translation of an evolution ground atom to an atom in Definition 6.10. For-

mally, the method of counterexample validation as presented in Theorem 6.14

yields a spotlight extension according to Definition 6.1.

Remark 6.16 (Validation by Spotlight Extension) Let D be a Dynamic

Evolution System over signature S, S ∈ StrucsS(Id) a logical structure, φ ∈
SpecsS a specification and δ ∈ Cex(DS, φ) an abstract counterexample.

Then ¬(ϕ(δ) ∧ ¬φ) is a spotlight extension of φ for D and S. ♦

Proof. We have vars(¬(ϕ(δ)∧¬φ))) ⊃ vars(φ) by Definition 6.13 and we obtain

DSJ¬(ϕ(δ) ∧ ¬φ)K = 0 =⇒ DSJφK = 0 by Definition 4.2. �

110 Chapter 6 Spotlight Abstraction Refinement

In the above example, we have established that the counterexample is not

spurious. In the case that we identify a spurious counterexample, an important

benefit of the validation according to Theorem 6.14 is that we automatically ob-

tain an evolution constraint according to Definition 6.5. Note that this perfectly

fits with the overall strategy of counterexamples guided abstraction refinement

(cf. Fig. 6.2), that is, a spurious counterexamples triggers and determines the

abstraction refinement for the next iteration. We will give an example for the

following remark below.

Remark 6.17 (Evolution Constraints for Spurious Counterexamples)

Let D be a Dynamic Evolution System over signature S, S ∈ StrucsS(Id) a log-

ical structure, φ ∈ SpecsS and δ ∈ Cex(DS, φ) an abstract counterexample.

If δ is spurious, then ¬ϕ(δ) is an evolution constraint for D and φ. ♦

Proof. We observe ¬ϕ(δ) ∈ EvoCS via simple syntactical transformations. As

δ is spurious, we have by Theorem 6.14 that DSJ¬ϕ(δ) ∨ φK = 1. This implies

that ¬ϕ(δ) is an evolution constraint for DS and φ by Definition 6.5. �

In general, the application of spotlight abstraction in order to validate an

abstract counterexample may not give a definitive result, such that we must to

prepared to obtain another abstract counterexample, indicating only a possible

validation of the first counterexample. Clearly, we may use the same technique

of validation again, thereby gradually increasing the size of the spotlight. This

indicates the need for a two-staged variant of counterexample guided abstrac-

tion refinement, because the validation of abstract counterexamples in general

requires an abstraction refinement loop on its own. We will describe our in-

stantiation of the CEGAR loop in the next Section, thereby integrating all the

results given above in one concise framework.

6.2.2 Abstraction Refinement Loop

In order to instantiate the framework of counterexample guided abstraction re-

finement (cf. Fig. 6.2) for spotlight abstraction, we first of all need to integrate

the fact that we work with a three-valued satisfaction relation. Additionally,

we implement a two-staged variant of the loop following the discussion above.

Algorithm 1 below addresses these issues by recursively calling itself. It com-

pactly represents our approach of Counterexample Guided Spotlight Abstraction

Refinement (CEGSAR), and in particular facilitates the implementation of a

verification tool as we will demonstrate in Section 7.1.

The algorithm takes a Dynamic Evolution System D, an initial snapshot S

and a specification φ, and initialises the evolution constraints θ to tt and the set

Section 6.2 Counterexample Guided Refinement 111

Algorithm 1 cegsar(D, S, φ) returns B

1: let θ := tt

2: let X := ∅
3: let b := D

♯
SJφK

4: while b = 1/2 do

5: let δ ∈ Cex(DS, θ → φ)

6: if cegsar(D, S, ¬ϕ(δ) ∨ φ) then

7: let X := X ∪ fresh(ϕ(δ))

8: let θ := θ ∧ (¬ϕ(δ)=1)

9: let b := D
♯
S,XJθ → φK

10: else

11: b := 0

12: end if

13: end while

14: return b

of variables X denoting the abstract process to the empty set in lines 1 and 2,

respectively. It computes the abstract evaluation of φ in DS by standard model-

checking techniques (cf. Sect. 5.2.3). If the result is a definitive value (i.e. either

1 or 0), the algorithm directly returns this value in line 14. If the result is 1/2

we enter the counterexample validation phase. This phase is implemented by

a new instance of the algorithm by calling cegsar(D, S, ¬ϕ(δ) ∨ φ) in line 6. If

this call returns with value 1, we enlarge the set X by the fresh variables of

the counterexample formula in line 7, and integrate the evolution constraint for

refinement in line 8. The next iteration of the refinement loop is performed in

line 9 by computing the abstract satisfaction relation for D
♯
S,X with respect to

θ → φ. Otherwise, if the counterexample validation returns 0 and a concrete

counterexample has been identified, we pass this return value to our caller.

The different phases of the algorithm are graphically represented in Figure 6.6,

which shows an extension of the general approach of CEGAR as given in Fig. 6.2.

We observe that we obtain an additional refinement loop in vertical direction,

which accounts for the fact that the validation of abstract counterexamples re-

quires a separate verification task. In each validation stage, a new instance of

the classical abstraction refinement loop is performed, as indicated by the gray

area. As soon as an abstract counterexample is identified to be not spurious,

the procedure may terminate with a concrete counterexample (¬). If the coun-

terexample is spurious (), the corresponding evolution constraint is used for

refinement (®). If the counterexample cannot be definitely analysed under the

given spotlight, a refined validation phase is performed (¯).

112 Chapter 6 Spotlight Abstraction Refinement

D, S

φ

Abstract

Refine

D
♯
SJφ

′K
1
0

Validate δ 0

φ′

D♯

φ′

1/2

1

0Validate δ′

1/2
1

Validate δ′′

1/2
1

1/2
1

Validate δ′D, S

¬ϕ(δ′)∨φ

Abs.

Ref.

D
♯
SJ·K

Val.

¬

¯

1
®

Figure 6.6: Counterexample Guided Spotlight Abstraction Refinement.

As already noted above, the vertical refinement loop performs a gradually

enlargement of the spotlight (spotlight extension), while the horizontal refine-

ment loops iteratively integrate evolution constraints for shadow refinement.

The algorithm is shown to be correct by the following theorem.

Theorem 6.18 (Correctness of CEGSAR) Let D be a Dynamic Evolution

System over signature S, S ∈ StrucsS(Id) a logical structure and φ ∈ SpecsS a

specification. Then

DSJφK = cegsar(D, S, φ) ♦

Proof. By induction over the number of iterations of the algorithm. The

induction base corresponds to the case b ∈ B in line 3, for which we have

cegsar(D, S, φ) = b = DSJφK by Lem. 6.3 (Spotlight Embedding).

In the i-th iteration, we have that θ is an evolution constraint for D and φ as

(̥δ) ⇐⇒ cegsar(D, S,¬ϕ(δ) ∨ φ) by Thm. 6.14 (Counterexample Validation)

and the induction hypothesis. Hence b′′ = D
♯
S,XJ(θ ∧ (¬ϕ(δ)=1)) → φK in line 9

entails cegsar(D, S, φ) = DSJφK by Thm. 6.6 (Shadow Refinement) if b′′ ∈ B. If

cegsar(D, S,¬ϕ(δ) ∨ φ) = 0, we have cegsar(D, S, φ) = 0 = DSJφK by Thm. 6.14

(Counterexample Validation). �

For an illustration of the CEGSAR iterations for the running ad-hoc network-

ing case study Ad we reconsider the specification

φ4 = G
(

link(x1, x2) → ¬⊖x1

)

Section 6.2 Counterexample Guided Refinement 113

from page 56. Following Algorithm 1, we start by computing Ad
♯
∅Jφ4K for which

we, as discussed on page 84, obtain the result 1/2 by the abstract counterex-

ample 〈π4,V〉 (cf. Fig. 5.3) with V = [x1 7→ u1,V2 7→ u2]. We hence enter the

counterexample validation phase by calling

cegsar(Ad,¬ϕ(π4) ∨ φ4)

where the counterexample formula of π4 is

ϕ((π4,V)) = [Def. 6.13 (Counterexample Specification)]

F
(
evo(L4,V) ∧ expr(S4M{u1},V) ∧ tt

)

= [Def. 3.7 (Focus)]

F
(
evo(dis(⊥, u1),V) ∧ expr(({u1}, ({dev(u1), link(u1, u2)}, ι1/2))))

)

= [Def. 6.10, 6.11 (Translations)]

F
(
dis(x4,1, x1) ∧⊚x1 ∧ dev(x1) ∧ ¬link(x1, x1) ∧ link(x1, x2)

)

which states that x1 is finally disconnected by x4,1 while remaining a link connec-

tion to some process x2. Calling cegsar(Ad,¬ϕ(π4)∨φ4) leads to the verification

task

Ad
♯
∅J¬F

(
dis(x4,1, x1) ∧⊚x1 ∧ dev(x1) ∧ ¬link(x1, x1) ∧ link(x1, x2)

)
∨ φ4K

that is, the counterexample validation is performed on a maximum spotlight

size of three processes.

We postpone the discussion of the above verification task to page 115, and

for now assume that it yields 1, that is, the counterexample (π4,V) is indeed

identified to be spurious. The call of cegsar(Ad,¬ϕ(π4)∨φ4) hence returns 1 to

its caller which enters the refinement phase by

• setting X := {x4,1} in line 7,

• setting θ := tt ∧ ¬ϕ(π4)=1 in line 8, and

computing Ad
♯
XJθ → φK in line 9, which translates to

Ad
♯
{x4,1}

JG (dis(x4,1, x1) → ¬(⊚x1 ∧ dev(x1) ∧ ¬link(x1, x1) ∧ link(x1, x2)))=1

→ G (link(x1, x2) → ¬⊖x1)K

by a syntactical transformation of ¬ϕ(π4) to the evolution constraint language.

By this, all evolutions of the abstract process that in some point in time dis-

connects some process x1, which is currently connected to some other process

x2, are eliminated. This refined verification task yields 1 and algorithm 1 ter-

minates in line 14. We then may conclude by Theorem 6.18 that Ad |= φ4, that

is, the specification φ4 is satisfied for the concrete semantics of Ad.

114 Chapter 6 Spotlight Abstraction Refinement

6.2.3 Progress Property

For obtaining an effective refinement in the CEGAR framework, one desires

a certain notion of progress, namely progress in the sense that each iteration

excludes a new source for spurious behaviour. For refining reactive systems it

is usually not viable to exclude a single spurious counterexample per iteration,

because infinitely many “similar” counterexamples exists, which for example

only differ in their number of idle steps or which exhibit a differently interleaved

execution of concurrent processes. Similar problems exists when considering

loops in counterexamples [Dam03], where naive refinement strategies will only

exclude one concrete number of unrolling of the loop per iteration.

In our setting of CEGSAR, we actually can investigate two different notions

of progress, namely the classical progress of removing spurious behaviour in the

refinement loop (refinement progress) and additionally the progress in terms of

the validation of counterexamples (validation progress). Interestingly, we may

easily establish refinement progress while we substantially have to improve the

translation of counterexamples to specifications (cf. Def. 6.13) in order to obtain

validation progress.

To investigate refinement progress, we consider a slight modification of algo-

rithm 1 by replacing the validation call in line 6 by a general test for spurious-

ness, that is, by (̥δ). We refer to this modification by algorithm 1b. We now

may investigate properties of our refinement loop under the assumption that

the spuriousity of counterexample is decidable, e.g. by some oracle. We observe

that the obtained evolution constraints in fact exclude an infinite class of spu-

rious counterexamples, namely all runs where the abstract process exhibits the

corresponding spurious evolutions, independently of their exact position in the

run and independently of the behaviour of the concrete processes in-between

these evolutions. This ensures termination of algorithm 1b as follows.

Lemma 6.19 (Refinement Progress) Let D ∈ DS a Dynamic Evolution Sys-

tem over signature S, S ∈ StrucsS(Id) a logical structure, and φ ∈ SpecsS a

specification.

Then algorithm 1b terminates and returns DSJφK. ♦

Proof. The proof is given in the appendix (page 198). �

As in the worst case at most one evolution to a spurious configuration is

eliminated per iteration, the number of required iterations is exponentially in

both the size of the system and the content of the spotlight. Our practical

evaluation in Chapter 7 however shows that the shadow refinement loop for

Section 6.2 Counterexample Guided Refinement 115

typical systems already terminates after two or three iterations. Note that this

guaranteed termination of this refinement phase does not contradict the general

undecidability result given in Theorem 5.4, as Lemma 6.19 is only valid under

the assumption that the validation of abstract counterexamples is decidable. In

fact, the validation of abstract counterexamples turns out to be the key problem

in our CEGSAR framework. To illustrate the difficulties for obtaining a general

notion of validation progress, we reconsider the validation of π4 as discussed on

page 113. There, we deliberately postponed the verification of

Ad
♯
∅J¬F

(
dis(x4,1, x1) ∧⊚x1 ∧ dev(x1) ∧ ¬link(x1, x1) ∧ link(x1, x2)

)
∨ φ4K

as this task does not yield the desired value 1 (and thus shows that π4 is indeed

spurious), but rather yields the indefinite value 1/2. This is because

ϕ((π4,V)) = F
(
dis(x4,1, x1) ∧⊚x1 ∧ dev(x1) ∧ ¬link(x1, x1) ∧ link(x1, x2)

)

is possibly satisfied by the following run π′
4 ∈ Runs(JAdK♯I) with I = {u1, u2, u3}.

π′
4 = αI((∅, ιe)),

(new(u1), αI(({u1}, ({dev(u1)}, ∅))),

(new(u2), αI(({u1, u2}, ({dev(u1), dev(u2)}, ∅))),

(new(u3), αI((I, ({dev(u1), dev(u2), dev(u3)}, ∅))),

(con(u1, u2), αI((I, ({sl(u1),ma(u2), dev(u3), link({u1, u2})}, ∅))),

(dis(⊥, u1), αI((I, ({dev(u1),ma(u2), dev(u3), link({u1, u2})}, ∅))),

(con(u1, u3), αI((I, ({sl(u1),ma(u2),ma(u3), link({u1, u2}), link({u1, u3})}, ∅))),

(dis(u3, u1), αI((I, ({dev(u1),ma(u2),ma(u3), link({u1, u2})}, ∅))),

(del(u1), αI(({u2, u3}, ({ma(u2),ma(u3), link({u1, u2})}, ∅))), . . .

We observe that ϕ((π4,V)) is possibly satisfied under the valuation

V ′ = [x1 7→ u1, x2 7→ u2, x4,1 7→ u3]

due to the concrete evolution dis(u3, u1), which corresponds to a disconnection

of two concrete processes whereby u1 keeps a link connection to u2. However,

the reason for u1 having this connection is the disconnect evolution dis(⊥, u1)

two steps before. Roughly speaking, the abstract process “plays the same trick

again”. For validating the run π′
4 we obtain the counterexample specification

ϕ((π′
4,V

′)) = F
(
dis(x5,1, x1) ∧⊚x1 ∧ dev(x1) ∧ ¬link(x1, x1) ∧ link(x1, x2)

)

which coincides with ϕ((π4,V)) up to renaming. Clearly, using this specification

for validation would lead to an infinite chain of validation attempts.

116 Chapter 6 Spotlight Abstraction Refinement

Summing up, we have observed that the counterexample specifications accord-

ing to Definition 6.13 are well-suited for shadow refinement but are too weak for

an effective validation of abstract counterexamples. To improve this, we again

exploit the inherent symmetry of Dynamic Evolution Systems (cf. Sect. 5.2.2).

The basic idea is to concentrate the search for a concrete counterexample to a

minimal one, in the sense that only the earliest possible violation of the negation

of a counterexample specification is considered. To this end, we strengthen the

counterexample specification by claiming that no symmetric evolution happens

before the concretisation of the abstract evolution is observed in a run satisfying

the counterexample specification. Formally, we define the minimal violation of

a formula (i.e. a non-temporal specification) as follows.

Definition 6.20 (Minimal Violation) Let D ∈ DS a Dynamic Evolution Sys-

tem over signature S, S ∈ StrucsS(Id) a logical structure, φ ∈ Forms(P) a

formula, and JD, SK = (S,S0,L,→) the concrete semantics of D and S.

The pair (L′, S ′) ∈ L × S is a called a minimal violation of φ from S ∈ S,

denoted

S
φ
99K• (L′, S ′)

if the following three conditions holds:

1. (L′, S ′) is a violation of φ, i.e. there exists a valuation V ∈ ValsId(vars(φ))

such that

(L′, S ′)[φ]0(V) = 0,

2. S ′ is reachable from S by L′, i.e. there exists a run

π = ((Li, Si))i∈N0 ∈ Runs(JD, SK)

with S = Si and (L′, S ′) = (Lj, Sj) for some i, j ∈ N0 with i ≤ j, and

3. there is no further violation of φ in the run from S to S ′, i.e.

π[φ]k(V ′) = 1,

for all i ≤ k < j and for all valuations V ′ ∈ ValsId(vars(φ)). ♦

A minimal violation requires that no other processes are in a configuration

violating the specification before the minimal violation is observed. In other

words, no symmetric configuration of the minimal violation exists before. We

are able to establish that whenever there exists a run that comprises a violating

configuration, then there exists a minimal violation in this run.

Section 6.2 Counterexample Guided Refinement 117

Lemma 6.21 (Existence of Minimal Violations) Let D ∈ DS a Dynamic

Evolution System over signature S, S ∈ StrucsS(I) a logical structure, φ ∈
Forms(P) a formula, and JD, SK = (S,S0,L,→) the concrete semantics of D

and S.

If some violation of φ is reachable from state S ∈ S, then there exists a

minimal violation of φ from S, that is,

S
L′

99K S ′ =⇒ ∃ (L′′, S ′′) : S
φ
99K• (L′′, S ′′)

with (L′, S ′), (L′′, S ′′) ∈ L × S being violations of φ. ♦

Proof. The proof is given in the appendix (page 199). �

This results allows us to limit the search for a concrete run violating the

negation of the counterexamples specification to a run comprising only minimal

violations. If no such minimal concretisation run exist, no concretisation run

exist at all. To be able to formalise the search for minimal concretisation in

terms of a specification we need to modify a formula by permuting its variables.

Recall from Definition 3.23 that a permutation is a bijective function on a given

set. Permuting a formula results in the conjunction of all the variants where

(as subset of) its variables is permuted. We will give an example below.

Definition 6.22 (Formula Permutation) Let S = (X ,PS,PL,PE) be a sig-

nature and ψ ∈ Forms(P) a formula.

For a set of permutations Σ ⊆ ΣX on the set of variables, we define the

permutated conjunction of ψ under Σ as

Σ(ψ) :=
∧

σ∈Σ

σ(ψ)

where the permutation of a formula is defined canonically as

σ(ψ) := ψ[x1 7→ σ(x1)] . . . [xn 7→ σ(xn)]

for vars(ψ) = {x1, . . . , xn}. ♦

This notion allows us to formalise the search for minimal violations by turn-

ing the finally operators of a counterexample specification to until operators,

whereby the expression on the left hand side of the untils is set to the per-

mutation of the negation of the expression of the right hand side. Intuitively,

this schema filters out all symmetry violations before a minimal violation is

observed.

118 Chapter 6 Spotlight Abstraction Refinement

Lemma 6.23 (Specification Contraction) Let S = (X ,PS,PL,PE) be a sig-

nature, D ∈ DS a Dynamic Evolution System over S, S ∈ StrucsS(Id) a logical

structure, and φ ∈ Forms(P) a formula. Then

DS |= ¬Fφ ⇐⇒ DS |= ¬
(
Σ(¬φ) U φ

)

where Σ ⊆ Σvars(ψ) is a set of permutations of vars(ψ). ♦

Proof. By Lemma 6.21. The proof is given in the appendix (page 200). �

We generalise the idea of this contraction lemma to the general case of coun-

terexample specification comprising a nested chain of finally operators. In this

strict variant of a counterexample specification, we employ ‘U’ operators rather

than ‘F’ operators and set the left hand side of each until expression to the con-

junction of the negated right hand side under the permutation of all variables

in the right hand side expression. The fresh variables in the left hand side will

be bound to the abstract process identity when using the strict counterexample

specification for validation. By this we effectively eliminate validation loops

which stems from the fact that the abstract process performs the same evolu-

tions which are currently to be validated (see the example given on page 115).

Definition 6.24 (Strict Counterexample Specification) Let D ∈ DS be a

Dynamic Evolution System over signature S, S ∈ StrucsS(Id) a logical structure

and δ = (((Li, Si))0≤i≤n,V) ∈ Cex(DS, φ) an abstract counterexample for some

specification φ ∈ SpecsS .

We define the strict counterexample formula of δ as ϕU(δ) := ϕU(δ)1 where

ϕU(δ)i :=

(
(ΣXi

(¬τ(Li, Si,V , n+1))) U

τ(Li, Si,V , i) ∧ (ϕU(δ)i+1)
) if i ∈ ⊥(δ)

ϕU(δ)i+1 if i 6∈ ⊥(δ) ∧ i ≤ n

tt else

where

τ(L, S,V , i) := (evo(L,V , i) ∧ expr(SMA(L),V))

is the translation of label L and structure S under valuation V at position i as

introduced in Definition 6.13, and Xi := vars(τ(L, S,V , i)) denotes the corre-

sponding set of variables for each i ∈ ⊥(δ). ♦

To ease understanding of this translation, let us construct the strict coun-

terexample formula of (π4,V) from page 100. As described on page 113, the

(non-strict) counterexample specification is

Section 6.2 Counterexample Guided Refinement 119

ϕ(δ)((π4,V)) = F
(
dis(x4,1, x1) ∧⊚x1 ∧ dev(x1) ∧ ¬link(x1, x1) ∧ link(x1, x2)
︸ ︷︷ ︸

τ(L4,S4,V,4)

)

with X4 = vars(τ(L4, S4,V , 4)) = {x4,1, x1, x2}.

The permutations on X4 are

ΣX4 = { [x1 7→ x1, x2 7→ x2, x4,1 7→ x4,1],

[x1 7→ x1, x2 7→ x4,1, x4,1 7→ x2],

[x1 7→ x2, x2 7→ x1, x4,1 7→ x4,1],

[x1 7→ x2, x2 7→ x4,1, x4,1 7→ x1],

[x1 7→ x4,1, x2 7→ x2, x4,1 7→ x1],

[x1 7→ x4,1, x2 7→ x1, x4,1 7→ x2] }

and hence we obtain

ϕU((π4,V)) =
(
ΣX4(¬(τ(L4, S4,V , 6))) U τ(L4, S4,V , 4)

)

=
(
¬(dis(x6,1, x1) ∧⊚x1 ∧ dev(x1) ∧ ¬link(x1, x1) ∧ link(x1, x2)) ∧

¬(dis(x6,1, x1) ∧⊚x1 ∧ dev(x1) ∧ ¬link(x1, x1) ∧ link(x1, x4,1)) ∧

¬(dis(x6,1, x2) ∧⊚x2 ∧ dev(x2) ∧ ¬link(x2, x2) ∧ link(x2, x1)) ∧

¬(dis(x6,1, x2) ∧⊚x2 ∧ dev(x2) ∧ ¬link(x2, x2) ∧ link(x2, x4,1)) ∧

¬(dis(x6,1, x4,1) ∧⊚x4,1 ∧ dev(x4,1) ∧ ¬link(x4,1, x4,1) ∧ link(x4,1, x2)) ∧

¬(dis(x6,1, x4,1) ∧⊚x4,1 ∧ dev(x4,1) ∧ ¬link(x4,1, x4,1) ∧ link(x4,1, x1))
)

U (dis(x4,1, x1) ∧⊚x1 ∧ dev(x1) ∧ ¬link(x1, x1) ∧ link(x1, x2))

with fresh(ϕU((π4,V))) = {x6,1}.

We may use the strict variant of a counterexample specification for validation

by the following theorem.

Lemma 6.25 (Strict Counterexample Validation) Let D be a Dynamic

Evolution System over signature S, S ∈ StrucsS(Id) a logical structure, φ ∈
SpecsS a specification and δ ∈ Cex(DS, φ) an abstract counterexample. Then

(̥δ) ⇐⇒ DSJ¬(ϕU(δ) ∧ ¬φ)K ♦

Proof. The proof is given in the appendix (page 201). �

Returning to the running example, we observe that the strict counterexample

specification for the validation of (π4,V) identifies it to be spurious as

Ad
♯
{x6,1}

J¬ϕU((π4,V)) ∨ φ4K = 1

120 Chapter 6 Spotlight Abstraction Refinement

and we can use the (non-strict) counterexample specification of (π4,V) to obtain

an evolution constraint for refinement as described on page 113.

In algorithm 2 given below we integrate the strict variant of the counterex-

ample translation for counterexample validation into the CEGSAR algorithm 1

given on page 111. The main modification is to use the strict counterexample

specification in the validation phase, which requires to pass the set of fresh

variables to the validation instance of the algorithm. The correctness of this

algorithm follows analogously to the proof of Theorem 6.18 using Lemma 6.25.

Algorithm 2 cegsar(D, S, φ, F) returns B

1: let θ := tt

2: let X := F

3: let b := D
♯
S,XJφK

4: while b = 1/2 do

5: let δ ∈ Cex(DS, θ → φ)

6: if cegsar(D, S, ¬ϕU(δ) ∨ φ, fresh(ϕU(δ)) then

7: let X := X ∪ fresh(ϕ(δ))

8: let θ := θ ∧ (¬ϕ(δ)=1)

9: let b := D
♯
S,XJθ → φK

10: else

11: b := 0

12: end if

13: end while

14: return b

From the above discussions we observe that cegsar(Ad, (∅, ιe), φ4, ∅) terminates

after one iteration with the value 1, that is, we have established

Ad |= G
(

link(x1, x2) → ¬⊖x1

)
.

We will describe a tool implementation that demonstrates the feasibility of

our refinement algorithm 2 in Chapter 7. There we in particular describe the

individual verification tasks of the discussed specifications for the running adhoc

networking example in more detail.

We can use the strict variant of counterexample validation in order to estab-

lish a notion of validation progress in the sense that an abstract counterexample

δ′, which has been obtained for the validation validation of an abstract coun-

terexample δ, does not comprise (or cover) this counterexample δ. We formalise

this notion of coverage as follows.

Section 6.2 Counterexample Guided Refinement 121

Definition 6.26 (Counterexample Coverage) Let D ∈ DS be a Dynamic

Evolution System over signature S, S ∈ StrucsS(Id) a logical structure, and

δ1 = (((L1
i , S

1
i))0≤i≤n1 ,V1) ∈ Cex(DS, φ1)

δ2 = (((L2
i , S

2
i))0≤i≤n2 ,V2) ∈ Cex(DS, φ2)

two abstract counterexamples for specifications φ1, φ2 ∈ SpecsS , respectively.

We say that δ1 covers δ2, denoted δ1 ≫ δ2, if there exists a permutation

σ ∈ Σran(V2)\{⊥} and an element ai ∈ {a1, . . . , an} = ⊥(δ1) such that

(σ(L2
ai

), σ(S2
ai

)) = (L1
j , S

1
j)

for

j ∈

{

{0, . . . , f(a1)} if i = 1

{f(ai−1), . . . , f(ai)} if i > 1

where f is the concretisation mapping from δ2 to δ1 according to Def. 6.8. ♦

We have encountered such an undesirable coverage by our attempt to validate

the counterexample δ = (π4,V) by the non-strict counterexample specification

on page 115. For this validation task we have obtained the abstract counterex-

ample δ′ = (π′
4,V

′) which covers δ as (L4, S4) = (L′
5, S

′
5) and f(4) = 7. We

observe that the covering counterexample δ′ represents a “pumped” version of

δ as some permutated variant of the abstract evolution is observed in δ′ before

the actual concretisation of this abstract evolution takes place. Clearly, this

pumping can be repeated ad infimum as the concretisation of the new variant

of the abstract evolution can be concretised by the same pattern. We observe

that the strict variant of counterexample excludes such effects as follows.

Lemma 6.27 (Counterexample Discoverage) Let D ∈ DS be a Dynamic

Evolution System over signature S, S ∈ StrucsS(Id) a logical structure, φ ∈
SpecsS a specification, and δ ∈ Cex(DS, φ) an abstract counterexample.

If the strict validation of δ yields a counterexample δ′, this counterexample

does not cover δ, that is,

δ′ ∈ Cex(DS,¬(ϕU(δ) ∧ ¬φ)) =⇒ δ′ 6≫ δ ♦

Proof. The proof is given in the appendix (page 202). �

A practical evaluation of our approach on realistic case studies has shown

that the presented pumping schema occurs in many of these systems, which we

now can effectively suppress by our strict variant of counterexample validation.

We present the evaluation results in Chapter 7.

122 Chapter 6 Spotlight Abstraction Refinement

Complexity of the Approach

The worst-case complexity of verifying LTL specifications is known to be linear

in the size of the transition system and exponentially in the size of the specifi-

cation [CGP99, HR00]. For characterising the complexity of our approach it is

hence of interest how the refinement influences these two parameters.

From Definitions 6.13 and 6.24, we have that the size of the obtained spec-

ifications corresponds to the number of abstract evolutions in the given ab-

stract counterexample. However, the specifications themselves exhibit a certain

structure, namely a nested chain of until operators. The resulting Büchi au-

tomaton for such kind of specifications only require a linear number of states

and do not trigger the worst-case scenario of yielding an exponential number

of states [SB00]. Note that this observation holds in particular for the strict

variant of the counterexample specification.

By spotlight extension, each occurrence of the abstract process identity in an

evolution of the abstract counterexample contributes one concrete process in the

validation of abstract counterexample. This in general leads to an exponential

grow of the resulting transition system of the model. In fact, we observe in

Chapter 7 that a large size of the spotlight inhibits an efficient verification of

large systems. To limit the increase of the spotlight in practice we propose a

modification of the translation which we call the tail heuristic. The basic idea

is that the translation operation when applied in algorithm 2 at a recursion

level of n only considers the last n abstract evolutions of the counterexample

to be validated. In particular, the validation attempt for the first abstract

counterexample considers only the last abstract evolution. As there is no bound

on the recursion depth of the algorithm, each number of abstract evolutions

will finally be captured by this approach. This heuristic turns out be be rather

effective in practice (cf. Chapter 7), intuitively as the back-most evolutions

typically have more impact on the violating part of the counterexample. If

these evolutions can already be shown to be spurious one obtains small evolution

constraints and in particular avoids the validation under a too large spotlight.

In the case of genuine abstract counterexamples this heuristic may however lead

to additional validation attempts under intermediate spotlight sizes.

6.3 Communication Based Refinement

As the semantics of Dynamic Communication Systems is given by a transla-

tion into the DES language, the abstraction refinement procedure as described

Section 6.3 Communication Based Refinement 123

in the previous section is in particular applicable to the DCS language. In

this section, we propose an alternative method for obtaining evolution con-

straints for Dynamic Communication Systems that exploits the correlationship

of message communication as given by some DCS protocol. These additional

evolution constraints will be called communication constraints, and they can be

easily combined with the overall refinement loop. In particular, if the available

communication constraints are not precise enough to concretise an indefinite

evaluation result we automatically fall back to the standard refinement loop

based on the analysis of abstract counterexamples.

The basic idea of communication constraints is based on the thesis that we can

characterise for each process in a given system snapshot a set of messages that

this process may receive, and this characterisation can be established purely

in terms of the evolution (i.e. communication) steps that led to this snapshot.

To obtain communication constraints we hence drop our principle of having a

stateless representation of the abstract process to a certain amount. We now

maintain a special kind of information of those processes that are summarised

by the abstract process, namely information about the currently valid message

communication between the concrete processes and the abstracted processes.

We will given the intuition of our approach in more detail in Section 6.3.1

and provide the theoretical foundation for determining the dependencies among

messages in Section 6.3.2. In Section 6.3.3 we perform an augmentation of the

SLTSs by counters that determine valid message interferences and we describe

how these information may be used to obtain communication constraints.

6.3.1 Intuition

To demonstrate the basic idea of spotlight abstraction refinement by commu-

nication constraints we reconsider the adhoc DCS example in Figure 3.4. This

example has been introduced in Section 3.4 to illustrate the syntax and seman-

tics of Dynamic Communication Systems.

A desirable property of this protocol is that the reception of a request message

implies the existence of a connection from the sender to the recipient, that is

φr := G
(
rcv[req](x1, x2) → linkd(x2, x1)

)
.

We expect this property to be true for the example system, intuitively as each

request (‘req’) has to be handled by the recipient before any new communication

happens. By this, the senders waits being connected in state ‘det’ for the answer

of his request.

124 Chapter 6 Spotlight Abstraction Refinement

dev

det sreq

rreq srep

?detect(link)

link !req(id)

?nack(link)

?ack(link)

?req(link)

link !ack(id)

link !nack(id)

link

Figure 6.7: Dynamic Communication System Cad (cf. Sect. 3.4).

Under abstraction with spotlight I = {u1, u2}, we however obtain the abstract

counterexample δr = (πr,Vr) ∈ Cex(D(Cad), φr) with Vr = [x1 7→ u1, x2 7→ u2]

πr = αI((∅, ιe)),

(appear[d](u1), αI(({u1}, ({dev(u1)}, ∅))),

(appear[d](u2), αI((I, ({dev(u1), dev(u2)}, ∅))),

(snd[detect](u1, u2), αI((I, ({dev(u1), dev(u2), detect(u2, u1)}, ∅))),

(rcv[detect](u2, u1), αI((I, ({dev(u1), det(u2), link(u2, u1)}, ∅))),

(snd[req](u2, u1), αI((I, ({dev(u1), sreq(u2), link(u2, u1), req(u1, u2)}, ∅))),

(snd[ack](⊥, u2), αI((I, ({dev(u1), dev(u2), link(u1, u2), req(u1, u2)}, ∅))),

(rcv[ack](u2,⊥), αI((I, ({dev(u1), dev(u2), link(u2,⊥), req(u1, u2)}, ∅))),

(rcv[req](u1, u2), αI((I, ({rreq(u1), dev(u2), link(u2,⊥), link(u1, u2)}, ∅))),

where u2 detects u1 and sends a request. Then however the abstract process

⊥ interferes by sending an ‘ack’ message to u2. The reception of this message

deletes the ‘link’ connection of u2 to u1, and hence the subsequent reception of

‘req’ by u1 leads to a contradiction of the specification φr. We observe that the

abstract process violates the informal assumption given above, namely it issues

a reply to some process which is currently negotiating with some third process.

In particular, there was no corresponding request message sent from u1 to ⊥.

Communication constraints are able to suppress spurious interferences like

the one discussed above. As already sketched, the idea is to maintain informa-

tion about legal message communication between the concrete and the abstract

process and then use constraints to limit the system evolutions to valid message

Section 6.3 Communication Based Refinement 125

communication. The maintained information is tailored to the DCS language

as it is on the one hand directly computable from the syntax of a DCS proto-

col and can be easily integrated in the resulting abstract SLTS. On the other

hand, this information allows us to exclude spurious message interferences to

a large amount, and these interferences are a major source of spurious be-

haviour in spotlight abstractions of communicating systems as demonstrated

in [DW05, BTW07a, Tob07].

We illustrate the usage of communication constraints for the running DCS

example Cad. For this protocol we can statically derive a relationship between

the sending and reception of certain messages. For example, we derive the

information that sending a ‘req’ message enables the recipient to reply with

either an ‘ack’ or a ‘nack’ message. Moreover, the reception of a ‘req’ message

is actually necessary to become able to send an ‘ack’ or a ‘nack’ message, as

only this reception established the ‘link’ channel in the transition from state

‘dev’ to ‘sreq’ over which the reply messages are sent. For refining the abstract

behaviour, we can thus soundly suppress the sending of ‘ack’ and ‘nack’ from the

abstract process to some concrete process unless this concrete process has itself

send a request to the abstract process. To this end, we keep for each message a

counter indicating how many of these messages may be sent from the current

configuration. These counters are updated based on the static information of

communication dependencies and the observed evolutions of the processes. We

then construct communication constraints, which limit the reception of messages

to a non-zero value of the corresponding message counter.

6.3.2 Message Dependencies

To formalise the algorithm that statically analyses a given DCS protocol with

respect to its communication dependencies we need to introduce some technical

notations before.

Definition 6.28 (Transition Notations) Let P = (Q,A,F,C, succ) be a DCS

Protocol over messages M, environment messages MX and types T .

We define the following notations for a transition tr = (q, a, q′) ∈ succ:

• By src(tr) := q and dst(tr) := q′ we denote the source and destination

state of tr, respectively.

• By kind(tr) ∈ {create, snd, rcv, clr} we denote the kind of tr, defined as

kind((q, ∗c
t , q

′)) := create kind((q, c1!m, q
′)) := snd

kind((q, c, q′)) := clr kind((q, ?m(c), q′)) := rcv

126 Chapter 6 Spotlight Abstraction Refinement

• By chan(tr) ∈ C we denote the channel of tr, defined as

chan((q, ∗c
t , q

′)) := c chan((q, c!m, q′)) := c

chan((q, c, q′)) := c chan((q, ?m(c), q′)) := c

• By msg(tr) ∈ M∪̇{ } we denote the message of tr, defined as

msg((q, ∗c
t , q

′)) := msg((q, c1!m, q
′)) := m

msg((q, c, q′)) := msg((q, ?m(c), q′)) := m ♦

Let us recall the four different DCS actions (cf. Sect. 3.4.1, Def. 3.27). A create

action creates a new process and updates the given channel to comprise the

new process identity. Analogously, a receive action modifies the given channel

to comprise the received process identity. Note that both actions will remove

the current content of the channel before assigning the new identity to it. A

reset action clears the affected channel, and a send action sends a message to

the process denoted by a non-empty channel.

Now given a path of transitions in a DCS protocol we can determine the

send actions in this path over a given channel up to the next modification of

this channel in this path. This information will serve as the basic ingredient

for computing the communication dependencies of a DCS protocol. Intuitively,

whenever a process acquires a new process identity and stores it in one of its

channel, the possible sendings up to the next modification of this channel will

be enabled.

Definition 6.29 (Transition Path Sendings) Let P = (Q,A,F,C, succ) be

a DCS Protocol over messages M, environment messages MX and types T .

A transition path in P is a finite or infinite sequence of transitions

τ = tr0, tr1, . . . ∈ succ∗ ∪ succω

such that dst(tri) = src(tri+1) for all 0 ≤ i < len(τ). The set of all transition

paths of P is denoted by PathsP, and the set of all transition paths of P starting in

state q ∈ Q is defined as PathsP(q) := {τ = tr0, tr1, . . . ∈ PathsP | src(tr0) = q}.

For a transition path τ ∈ PathsP we determine the number of send actions of

a message m ∈ M over an unmodified channel c ∈ C as

SendsP(τ,m, c) := | {i ∈ {0, . . . , len(τ)} |

kind(tri) = snd ∧ msg(tri) = m ∧ chan(tri) = c ∧

∀ 0 ≤ j < i : (chan(trj) = c → kind(trj) = snd)} |. ♦

Section 6.3 Communication Based Refinement 127

In the following definitions, we lift this notion in order to obtain a charac-

terisation of message dependencies. The first step is to consider the possible

sendings from a given state in a DCS protocol. As there may be multiple tran-

sition paths originating from this state we will conservatively enable the set of

all possible message sendings. Moreover, as there may be multiple send action

for the same message we keep track of the maximal number of sendings for all

outgoing paths. Note that this number may in particular be infinite in the case

of loops in a transition path.

Definition 6.30 (Enabled Messages) Let P = (Q,A,F,C, succ) be a DCS

Protocol over messages M, environment messages MX and types T .

We define the enabled messages of a process in state q ∈ Q over a channel

c ∈ C as a function

⊲P : (Q × C) → (2M\MX × N
∞
0)

with

⊲P((q, c)) := ({m ∈ M \ MX | ∃ τ ∈ PathsP(q) : SendsP(τ,m, c) > 0},

max{Σm∈MSendsP(τ,m, c) ∈ N
∞
0 | τ ∈ PathsP(q)})

For an enabled set ⊲P((q, c)) = (E, n) we use

⊲M
P ((q, c)) := E

⊲N
P((q, c)) := n

to denote the enabled messages and corresponding number, respectively. ♦

Note that Definition 6.30 does not provide an effective algorithm to compute

the enabled messages, basically as PathsP(q) may be an infinite set due to loops

in the successor relation. However, as a loop immediately leads to an infinite

number of replies for the affected set of messages, it actually suffice to employ a

depth-first search through the successor graph in order to visit all simple paths,

with additional bookkeeping whether some state has already been visited. This

search can be done in O(|Q| + |succ|) for a given state and channel name.

For demonstrating the concept of enables messages, we give the corresponding

sets for the adhoc DCS example from Fig. 3.4. As this DCS protocol comprises

five states and one channel name, we obtain the following five sets:

⊲d(dev, link) = (∅, 0)

⊲d(det, link) = ({req}, 1)

⊲d(sreq, link) = (∅, 0)

⊲d(rreq, link) = ({ack, nack}, 1)

⊲d(srep, link) = (∅, 0)

128 Chapter 6 Spotlight Abstraction Refinement

There is clearly a tradeoff between the precision of the characterisation of

messages dependencies and the cost for its representation We decided to over-

approximate the number of sendings of a certain message m in a transition path

by the maximal number of sendings of any message in this path. This allows

us to assign counter values to sets of messages rather than to each message

individually. Note that this characterisation still preserves the fact that either

an ‘ack’ or a ‘nack’ message is enabled in state ‘rreq’ but not both, as the

maximal number of sendings is computed to be ‘1’ for each outgoing path. The

alternative to increase the counter to both messages individually would have

the drawback that the decrement of one counter would not affect the counter

of the other message, which hence remains spuriously enabled.

By considering the two possibilities of acquiring new process identities, namely

the reception of messages and creation of processes, we obtain the desired char-

acterisation of message dependencies. The creation of a new process under a

channel ‘c’ enables the sending of those messages that are possible for ‘c’ in the

destination state of the create action. Alternatively, the sending of a message

‘m’ enables the sending of those messages that are possible after any receive

action of ‘m’.

Definition 6.31 (Reply Messages) Let P = (Q,A,F,C, succ) be a DCS Pro-

tocol over messages M, environment messages MX and types T .

We define the reply messages as a function

⊳P : M ∪ {⋆} → (2M\MX × N
∞
0)

with

⊳P(⋆) := (
⋃

(q,∗c
t
,q′)∈succ

⊲M
P (q′, c), max{ ⊲N

P(q′, c) | (q, ∗c
t , q

′) ∈ succ})

⊳P(m) := (
⋃

tr∈succ(m)

⊲M
P (dst(tr), chan(tr)), max{ ⊲N

P(dst(tr), chan(tr)) | tr ∈ succ(m)})

for m ∈ M, where succ(m) ⊆ succ denotes those transitions where m is received,

that is, succ(m) := {tr ∈ succ | kind(tr) = rcv ∧ msg(tr) = m}. ♦

For the running example we obtain

⊳d(detect) = ({req}, 1) and ⊳d (req) = ({ack, nack}, 1)

and empty set of reply messages for the create action and all other messages.

Note that these relations precisely capture the basic communication aspects of

the protocol, that is,

Section 6.3 Communication Based Refinement 129

• after receiving a ‘detect’ message the process may send a request ‘req’,

• after receiving a ‘req’ message the process may answer by either an ‘ack’

or a ‘nack’ message,

• and elsewhere no sending of non-environment messages it possible.

We exploit this characterisation of message dependencies by monitoring the

send and create evolutions in order to approximate the message receptions that

are possible in the future. This monitoring will be carried out by maintaining

counters for valid message receptions. A sending of a message ‘m’ will increase

the counter for the set of reply messages ‘⊳M
P (m)’ by the corresponding number

‘⊳N
P(m)’. Likewise, the creation of a new process will increase the counter for

possible message sendings to the new process. A reception of a message m will

then decrease the counter of a corresponding set of messages, that is, for a set

of messages E with m ∈ E. To keep the characterisation finite we will only

count up to a finite bound and fall back to uncertainty if the counter exceeds

this bound. That is, we employ a variant of counter abstraction (cf. Sect. 5.3)

on top of spotlight abstraction.

6.3.3 Message Counting

By finite counting we denote the counting that is precise up to a certain bound

and that collapses all values exceeding this bound to the value ∞.

Definition 6.32 (Finite Counting) We call K ∈ N a cutoff value, and de-

fine the K-cutoff set NK as {0, . . . , K,∞}.

For an integer Z ∈ Z, we define its K-cutoff as

Z|K :=

0 if Z < 0

Z if Z ∈ NK

∞ if Z > K.

The addition and subtraction operation for NK is defined as

N1 ⊕K N2 := (N1 +N2)|K

N1 ⊖K N2 := (N1 −N2)|K

where N1, N2 ∈ NK. ♦

The valid message interferences are represented by counters such that each

set of messages that is possibly enabled in a given DCS protocol is mapped

to a finite number under a given cutoff value. Each pair of identities is then

equipped with such a counter.

130 Chapter 6 Spotlight Abstraction Refinement

Definition 6.33 (Message Counter) Let C = (M,MX ,P) ∈ DCS be a Dy-

namic Communication System and K ∈ NK a cutoff.

The message counter of C for K is a function

ΠC
K : 2M\MX ⇀ NK

with dom(ΠC) := {⊲M
P ((q, c)) ⊆ M \ MX | P ∈ dom(P), q ∈ QP, c ∈ CP}.

For a set of identities I ⊆ Id⊥, we define the process message counter of C

and K as a function

Π :
(
I2 × dom(ΠC

K)
)
→ NK

where the update operator is defined by function modification as

Π〈(u1, u2, E) ⊗K N〉 := Π[((u1, u2), E) 7→ Π((u1, u2,), E) ⊗K N]

for u1, u2 ∈ I, E ∈ dom(ΠC
K), ⊗ ∈ {⊕,⊖}, and N ∈ NK. ♦

We now exploit the semantics of the different DCS actions to obtain a precise

updating of the counters. To this end, we extend an Structured Labelled Tran-

sition System by process message counters as introduced above. All counters

are initialised to the value zero. The transition relation of the original SLTS

is then refined to update the counters for the involved processes. Note that

this counter augmentation of an SLTS is possible both for the concrete and the

abstract semantics of a DCS model.

Definition 6.34 (Counter Augmentation) Let C ∈ DCS be a Dynamic Com-

munication System, K ∈ NK a cutoff, and T = (S,S0,L,→) a SLTS.

The K-augmentation of T for C and K is TC
K := (SK ,SK0 ,L

K ,→K) with

• states SK := S × [I2 → [ΠC
K]]

• SK0 := {(S0, ((u1, u2), (E, 0)) ∈ SK | S0 ∈ S0, u1, u2 ∈ I, E ∈ dom(ΠC
K)}

• labels LK := L, and

• transition relation

succK := {((S,Π), L, (S ′,Π′)) ∈ SK × LK × SK | (S, L, S ′) ∈ succ ∧

Π′ =

Π〈(u2, u1, ⊳
M
t(u1)(⋆)) ⊕K ⊳

N
t(u1)(⋆)〉 if L = create[t](u1, u2)

Π〈(u1, u2, ⊳
M
t(u2)(m)) ⊕K ⊳

N
t(u2)(m)〉 if L = snd[m](u1, u2)

Π〈(u1, u2, E) ⊖K 1〉 if L = rcv[m](u1, u2) ∧

∃E ∈ dom(ΠC
K) : m ∈ E)

Π else }

where u1, u2 ∈ I, m ∈ M, and t ∈ dom(P). ♦

Section 6.3 Communication Based Refinement 131

Π(u1, u2) Π(u2, u1)

{req} 7→ 1

{req} 7→ 1

{req} 7→ 1 {ack,nack} 7→ 1

{ack,nack} 7→ 1

{ack,nack} 7→ 1

snd[detect](u1, u2)

rcv[detect](u2, u1)

snd[req](u2, u1)

rcv[req](u1, u2)

snd[ack](u1, u2)

rcv[ack](u2, u1)

dev
u1

dev
u2

dev
u1

dev
u2detect

dev
u1

det
u2link

dev
u1

sreq
u2link

req

rreq
u1

sreq
u2link

link

srep
u1

sreq
u2link, ack

link

srep
u1

dev
u2link

link

Figure 6.8: A fragment of a run in JD(Cad)K1.

We illustrate the updating of process message counters by a run in the 1-

augmentation of the concrete semantics of Cad in Figure 6.8. For sake of read-

ability this run is annotated by positive counter values only. We observe that

the sending of the environment message ‘detect’ with parameter u1 to process

u2 increases the counter for valid ‘req’ receptions for the pair (u1, u2) from zero

to one. This counter value is kept set until the ‘req’ message is received by u1.

In the evolution before, the sending of ‘req’ of u2 to u1 increases counter for

the set of reply messages {ack, nack} from zero to one. Again, this counter is

decremented when a corresponding message, in this case an ‘ack’, is received.

To establish the soundness of the abstract refinement by communication con-

straints we show that each reception of a message implies the existence of a

positive counter value for a corresponding set of reply messages.

Lemma 6.35 (Positive Counter) Let C ∈ DCS be a Dynamic Communica-

tion System, I ⊆ Id a set of identities, and JD(C)KI
C

K = (SK ,SK0 ,L
K ,→K) the

concrete semantics of C under I with counter augmentation.

132 Chapter 6 Spotlight Abstraction Refinement

Then

∀ ((S,Π), rcv[m](u1, u2), (S
′,Π′)) ∈ succK :

∃E ∈ dom(ΠC
K) : m ∈ E ∧ Π((u1, u2), E) > 1

for each non-environment message m ∈ M \ MX . ♦

Proof. The proof is given in the appendix (page 202). �

To use the property of message counter in order to obtain evolution con-

straints we introduce a mechanism to reason over the values of the augmented

counter in our specification language. It suffices to state that a counter value

for a set of identities and a set of enabled messages is positive.

Definition 6.36 (Counter Formula) Let C ∈ DCS a Dynamic Evolution Sys-

tem, S(C) = (X ,PS,PL,PE) its signature, I ⊆ Id⊥ a set of identities, and

K ∈ N a cutoff.

A counter formula is of the form E(x, y) where E ∈ dom(ΠC
K) and x, y ∈ X .

The positive counter formula of a message m ∈ M \ MX is defined as

m+(x, y) :=
∨

E∈dom(ΠC
K

),m∈E

E(x, y)

Given a run π ∈ Runs(JD(C)KI
C

K) we define the evaluation of a counter for-

mula at position i ∈ N0 under a valuation V ∈ ValsI(X)({x, y}) as

π[E(x, y)]i(V) := Πi((V(x),V(y)), E) > 1 ♦

We combine this notion of counter formulas with Lemma 6.35 in order to

obtain the desired set of communication constraints for a given DCS model.

Theorem 6.37 (Communication Constraints) Let C = (M,MX ,P) ∈ DCS
a Dynamic Evolution System and K ∈ N a cutoff.

For any message m ∈ M \ MX , the specification

ϕC(m) := G
(
X rcv[m](x, y) → m+(x, y)

)

is an evolution constraint for CK. ♦

Proof. By Lemma 6.35. The proof is given in the appendix (page 203). �

A communication constraint can be used for spotlight abstraction refinement

by binding one of its variable to a concrete spotlight identity and the other to

Section 6.3 Communication Based Refinement 133

the abstract process identity. By this, the communication between these two

processes is limited to valid communication with respect to the derived set of

reply messages.

For the abstract run πr given in the introduction of this section on page 124

we observe that the communication constraint ‘ϕCad
(ack)’ is violated under the

valuation Vr = [x 7→ u2, y 7→ ⊥] as the reception of ‘ack’ by u2 from ⊥ is

not enabled by a prior sending of a ‘req’ message from u2 to ⊥. Hence, this

reception represents a spurious message interference which is effectively removed

by applying the corresponding communication constraint.

We will demonstrate the suitability of using communication constraints for

spotlight abstraction refinement on a small DCS model in the next subsection

and on the larger case study of a car platooning system in Section 7.2.4.

6.3.4 Discussion

It is easy to see the refinement based on communication constraints is in gen-

eral not complete in the sense that every spurious message interferences can be

eliminated via communication constraints. The first kind of uncertainty stems

from the cutoff parameter K. Whenever a counter value exceeds this bound

it will become ∞ and will remain at this value. There is not yet a method to

identify a sufficient cutoff parameter for a given DCS protocol, however exper-

iments show that already a cutoff at 1 or 2 effectively refines the abstraction

(cf. Sect. 7.2.4). This effect relates to the notion of communication slackness as

introduced in [DJ02], observing that typical communication patterns exhibits

certain dialogues depending on local modes of the communication partners. In

particular it is typically not the case that one partner keeps sending messages

without waiting for acknowledgements from the receiver.

The second kind of impreciseness stems from the fact that the dependency

relation is in general only an over-approximation of the exact correlationship of

messages. We will discuss this issue on the DCS model given in Figure 6.9. It

comprises four states s0 to s3, one channel ‘c’ and three messages {a, b, e} where

‘e’ is an environment message. By Definition 6.31 we obtain the communication

dependencies for this protocol as

⊳(e) = ({a},∞) and ⊳ (a) = ({b},∞)

stating that receiving an (environment) message ‘e’ enables the sending of any

number of ‘a’ messages, and receiving an ‘a’ enables the process to reply with

any number of ‘b’ messages.

134 Chapter 6 Spotlight Abstraction Refinement

s0

s1

s2 s3

?b(c) ?a(c)

?a(c) ?e(c)

c!ac!b

Figure 6.9: Cab – a DCS protocol with unreachable states.

From the initial state ‘s0’ there are two possibility to reach the next state

‘s1’, either by receiving an ‘a’ or a ‘b’. The sending of both messages is pos-

sibly enabled by the sets of reply messages as computed above, the protocol

itself, however, exhibits a cyclic dependency as both send transitions are only

reachable from state ‘s1’.

Under a spotlight abstraction comprising one concrete process u the abstract

process is able to send an ‘a’ or ‘b’ message to u, basically as each state predicate

is possibly satisfied for the abstract process. The task of abstraction refinement

is now to identify and eliminate these spurious interferences. In this example,

the communication constraints are able to eliminate any spurious reception of

‘b’ messages for the spotlight process as it requires the sending of an ‘a’ before,

which is not possible for any concrete process.

The spurious reception of ‘a’ however can not be handled by communica-

tion constraints in isolation. Intuitively, the dependency analysis cannot decide

whether the corresponding reception transition of ‘e’ is actually reachable in

the protocol. In this case, the CEGSAR procedure steps in and identifies the

abstract reception of ‘a’ leading to state ‘s1’ as being spurious and generates an

according evolution constraints. In combination with the communication con-

straint for ‘b’, both constraints are then sufficient to prove that ‘s1’ is actually

not reachable for any concrete process.

This example demonstrates an interesting synergy effect among both refine-

ment approaches. On the one hand, the CEGSAR approach is able to eliminate

spurious behaviour that is not identifiable by communication constraints. On

the other hand, many spurious message interferences can be treated by com-

munication constraints such that the number of abstract counterexamples to be

validated by the CEGSAR algorithm is reduced. This in particular avoids to

Section 6.4 Related Work 135

enlarge the spotlight for counterexample validation and in return decreases the

overall analysis time. Indeed, not using any kind of communication constraints

for the example above forces the CEGSAR algorithm to refute three abstract

counterexample under a maximal spotlight of three, in contrast to one abstract

counterexample under a spotlight of two in the discussion above. We will pro-

vide the detailed listing of the running times for the different combinations of

refinement strategies in the evaluation chapter on page 143.

6.4 Related Work

In this section we discuss two sorts of related work, namely firstly existing meth-

ods to refine the spotlight abstraction technique and secondly the relation of

our overall verification approach by spotlight abstraction refinement in contrast

to other existing analysis techniques for the addressed class of dynamic systems.

Spotlight Abstraction Refinement

The spotlight principle is used in [CM02, MC05] for the analysis of telecom-

munication protocols involving an unbounded number of participants. As the

authors are able to establish the considered requirements already in the initial

abstraction, refinement strategies are left out as further work.

In [DW05, Wes06] the spotlight abstraction principle is applied to the verifica-

tion of UML models against Life Sequence Charts ([DH01], cf. Sect. 4.3). For ab-

straction refinement the paper proposes to transfer the idea of non-interference

lemmata from [McM01] to the domain of communicating systems. The general

form of these lemmata is characterised as “If some entity sends something to

me, then it is allowed to do so.”. Similar to our approach, these lemmata are

then used as an assumption for the proof of the original specification. The

lemmata themselves are derived from the static information given in terms of

UML class diagrams, and hence exclude any communication that is not possible

under the given association relations. Any runtime aspects of the infinite state

system under consideration are however not considered.

In a joint work [BTW07a] we have proposed to use the analysis method of

[Bau06] for spotlight abstraction refinement. Recall from Sect. 5.3 that [Bau06]

is able to compute an over-approximation of the possible communication topolo-

gies of the system under consideration. The result is given as a set of so-called

abstract clusters comprising summary nodes, and each concrete topology is an

instance of some combination of these clusters. The basic idea is to restrict the

136 Chapter 6 Spotlight Abstraction Refinement

behaviour of the abstract process to the valid communication topologies. The

theoretical and technical difficulties of this approach stems from the fact that

two abstract topologies representations, namely abstract clusters and spotlight

abstracted structures, have to be combined. Interestingly, the solution pre-

sented in [BTW07a] can be seen as a further source for evolution constraint as

the behaviour of the abstract process is limited to those evolution that result

in topologies adhering to some combination of abstract clusters. However, the

overall refinement approach has no immediate potential for iteration, that is, if

the obtained abstract clusters are not precise enough to establish the desired

property one remains inconclusive.

Our refinement approaches as published in [Tob07] and [Tob08] are presented

and extended in Sections 6.3 and 6.2, respectively. The analysis of communi-

cation dependencies in distributed systems is mainly addressed in the area of

compiler optimisation [Tse95, PA01], and for systems with a static communi-

cation topology, e.g. in [GL84, Hua90, LS94]. The work in [ABJ98, BJNT00]

computes the possible content of unbounded FIFO queues in terms of regular

languages, and in particular treat the effect of loops in control structures. An

abstract-interpretation based approach of characterising queue expressions is

given in [GJJ06]. Note that our analysis does not address the content of the

message queues explicitly but rather computes the effect of send actions in terms

of valid reply messages. A similar idea is used by the authors of [DJ02, Jos06]

who propose a symbolic representation of the queue by marking enabled transi-

tions on the receiver side. We are not aware of other approaches to actually use

communication dependencies for the refinement of summarising abstractions in

the sense of Section 5.3.

Our proposal to refine by spotlight extension (cf. Def. 6.1) can actually be

seen as the automatic variant of case-split [McM00]. The principle of case-

splitting is to manually refine the specification by introducing new quantifiers.

This in consequence increases the number of concretely represented processes.

[Wes08] observes that the heuristics for creating case-splits following [McM00]

are not directly applicable to system with dynamic topologies. Our approach to

analyse abstract counterexamples in order to automatically obtain an extended

spotlight is one solution for this problem.

Proving parts of a systems separately under assumptions of the system envi-

ronment is in particular employed in the approach of thread-modular verifica-

tion [FFQ02, MPR07]. By this methodology the complexity is reduced from one

large verification task to several smaller verification tasks on subcomponents of

the system. In our setting these “components” are determined by the content

of the spotlight and the set of evolution constraints serve as assumptions.

Section 6.4 Related Work 137

Analysis of DES-like Systems

The system models of [HPR06b, Pen08] are given as extended graph pro-

grams, which are graph transformation rules with application conditions, non-

deterministic choice, sequential composition, conditional execution and iteration

constructs. Requirements specification are given as graph conditions describing

structural graph properties. The correctness of a graph program with respect

to a pre- and postcondition is then shown by constructing the weakest precon-

dition for the postcondition and deciding whether the precondition implies the

postcondition. The corresponding tool implementation Enforce [AHPZ07] has

been evaluated on the basis of railroad systems and access-control models.

The Augur2 tool [KK08] abstracts hyperedge graph transformation rules to

petri graphs, which are then analysed based on coverability graphs and back-

ward reachability algorithms. Correctness specifications are given as regular

expressions, which characterise forbidden graph paths. The usage of monadic

second-order logic for graphs is under development. The refinement of the

abstraction procedure is guided by abstract counterexamples [KK06] or by in-

creasing the unfolding depth. The case studies considered for this approach

stems from the networking domain, such as firewall systems or the private/pub-

lic servers case study (cf. Sect. 7.2.2).

As already mentioned above, [Bau06, BW07] performs an abstract execution

of graph transformation rules with negative application conditions in order to

to compute a sound over-approximation of the reachable graph structures. The

resulting structures may then be analysed for invariant structural properties,

for example given as OCL constraints as demonstrated in [BDTW07], or for

abstraction refinement as described above. The underlying partner abstraction

principle implemented in the Hiralysis tool is tailored to distributed commu-

nication systems as it preserves relevant information of the “communication

neighbourhood” for each process. The approach is in particular able to handle

the merge manoeuvre of the car platooning case study (cf. Sect. 7.2.4).

An abstraction principle tailored to adhoc networking systems is described

in [SWJ08]. The corresponding GBT tool checks whether any undesirable graph

configuration is reachable from an initial graph by means of backward reachabil-

ity algorithms. The approach is able to establish loop freedom for a non-trivial

adhoc routing protocol called DYMO.

Other tools for graph transformation systems like CheckVML [Var04] or

Groove [Ren03] handle only a finite number of nodes.

Note that all approaches presented so far are only interested in reachability

problems for different kinds of structural patterns. While this allows the user to

138 Chapter 6 Spotlight Abstraction Refinement

find unwanted system configuration and likewise to show the existence of desired

configurations, no statement about temporal relations of different configurations

can be made. In particular, the behaviour of individual processes over time can

not be traced nor queried.

The work of [MKS08, Mey09] considers finite control processes, a subset of

the π-calculus [Mil99], for modelling dynamically reconfigurable systems and de-

vises a translation into bounded petri nets, which may then be analysed with re-

spect to temporal specification by well-established verification techniques. More

efficient unfolding-based techniques for safe petri nets are applicable when re-

stricting finite control processes to so-called safe processes. The Petruchio

tool is shown to be more efficient in terms of runtime and memory consump-

tion than earlier approach for model-checking π-specifications like the mobility

workbench [VM94] or HAL [FGMP03].

The system model of [GMRT06] is given by a set of active process classes, and

the behaviour of each class is specified by a set of sequence diagrams. Instances

of these classes are summarised by a variant of counter abstraction under a

behavioural equivalence relation, leading to a symbolic execution algorithm.

A method to identify spurious traces is provided. As the focus of this work

is rather on the efficient simulation of large systems than on verification, no

explicit specification logic and no abstraction refinement procedure has been

addressed in the paper.

Verification using shape analysis techniques ([SRW02], cf. Sect. 5.3) is mainly

applied in the context of Java programs, e.g. using the TVLA tool [LAS00].

In [Yah01] the verification of invariant properties for concurrent Java programs

is presented. The efficiency and precision of this procedure is improved in [YR04]

by decomposing the verification problem into a set of verification subproblems.

In [YRS01, YRSW06] a first-order extension of LTL is evaluated on sets of

abstract traces of a given Java program. It allows to establish mutual exclusion

properties of concurrent threads and liveness guarantees such as that every

request is eventually followed by a thread creation.

Research on symbolic variants [PW05] of shape analysis techniques led to the

implementation of the Bohne tool [WKZ+06]. The basic idea is to characterise

heap structures by first-order expressions instead of using an explicit encod-

ing. The tool is in particular able to establish some of the topology invariants

computed by [Bau06] for a Java encoding of the car platooning case study.

The verification of parameterized systems has been addressed by a large num-

ber of approaches, for example based an network invariants [KPSZ02], counter

abstraction [PXZ02], regular model-checking [ADHR07, BHV04] or quotient

Section 6.4 Related Work 139

symmetry reductions [GS99, ID99]. These techniques are however bounded to

the specifics of the underlying system languages, which typically assume a static

set of processes and a global visibility of their internal states.

The existing verification frameworks for the UML language assume a fi-

nite upper bound on the number of simultaneously alive objects. Typical ex-

amples include vUML [PL99], UMLAUT [JHGP99], Hugo/RT [KMR02], Ob-

jectCheck [XLB02], and RUVE [STMW04]. An integration of spotlight ab-

straction into the RUVE framework is demonstrated in [Wes06], however the

overhead of the UML meta-model leads to a high verification complexity which

as of yet renders this combination inapplicable for larger models.

Most of the discussed approaches consider full temporal properties of the

system, however only for anonymous processes. This means that entities in

different snapshots of a system run may not be identified to actually denote the

same process. Only [YRSW06] maintains an explicit evolution relation along

the transitions in order to trace individual process behaviour over time. The

scalability of this approach is however unclear and not yet practically evaluated.

As discussed in Section 5.3, the spotlight principle preserves the identities of

the spotlight processes over the time. By this, even liveness properties among

these processes can be established if a fair scheduling of the concrete processes

is assumed and any relevant spurious interferences from the abstract process is

eliminated. This exactly is the task of spotlight abstraction refinement and we

will demonstrate the feasibility of our approach in Section 7.2.

140 Chapter 6 Spotlight Abstraction Refinement

Chapter 7

Evaluation

7.1 Tool Support . 142

7.2 Case Studies . 143

7.2.1 AdHoc Networking 145

7.2.2 Public/Private Servers 147

7.2.3 Automated Rail Cars System 152

7.2.4 Car Platooning . 155

7.3 Discussion . 160

In this chapter we demonstrate the feasibility of our approach by analysing

a number of case studies from the addressed class of systems. To this end, we

have conducted a tool implementation of the abstraction and refinement pro-

cedure as developed in the previous chapters. In its basic mode, the command

line tool takes a textual description of the DES model and the specification and

performs the recursive refinement loop according to algorithm 2. Counterexam-

ples are presented graphically using an external visualisation tool. Moreover,

the algorithms and translations related to the DCS language exist as a compi-

lation frontend. We will discuss the tool and its architecture in more detail in

Section 7.1.

In Section 7.2 we present a number of case studies for which formal models

have been generated. For each of the case studies a number of formal require-

ment specifications are investigated and the performance of our tool implemen-

tation is reported. The case studies are selected in order to cover a wide range

of the addressed class of systems and they are in particular not restricted to a

typical shape of connection topologies. Most of the case studies have been inves-

tigated by other researchers before and we compare our results to these existing

verification approaches. We are however not aware of any related approach that

is able to treat all the case studies and specifications that we consider here.

141

142 Chapter 7 Evaluation

7.1 Tool Support

Our proposed verification approach for Dynamic Evolution Systems has been

realised by the SARMC tool – the Spotlight Abstraction Refinement Model-

Checker. The DES model is given in an XML format and the specification

in an ASCII text-file according to the syntax as given in Definition 4.1. As an

example, we present the XML version of the running adhoc networking example

‘Ad’ together with some samples of the tool output in Appendix B.

The SARMC implements the abstract semantics of DESs according to Defi-

nition 5.10 via a translation from the XML model into a low-level verification

language called SMI [Bro99]. Moreover, it automates the translation of abstract

counterexamples to specifications according to Definitions 6.13 and 6.24, and

it triggers the recursive refinement loops according to algorithm 2. We also

implemented the translation from the DCS to the DES language according to

Definition 3.31 including the static protocol analysis in order to compute com-

munication constraints as described in Section 6.3. By this, the whole range of

abstraction and refinement strategies that have been proposed in the previous

chapters can be practically evaluated using the SARMC tool.

The verification tasks themselves are carried out by the VIS model-checker

in the version 2.1 [Gro96], which is a freely available analysis engine supporting

the efficient verification of CTL and LTL specifications for finite-state transition

systems. Note that the VIS tool is not aware of the three-valued satisfaction

relation (cf. Def. 4.2) but rather implements the classical two-valued LTL se-

mantics [MP92] which we will denote by ‘D, S |=2 φ’ for a Dynamic Evolution

System D, an initial snapshot S and a specification φ. Recall that the main

purpose of our new satisfaction relation is to distinguish between concrete and

abstract counterexamples. In fact, we obtain the classical satisfaction relation

from our Definition 4.10 by the following mapping.

D♯, S |=2 φ =

{

true if D
♯
SJφK = 1

false if D
♯
SJφK ∈ {0, 1/2}

That is, the ‘|=2’ relation collapses both abstract and concrete counterexamples

into the result ‘false’. On the other hand, we can use such an unspecific coun-

terexample to recover the three-valued semantics from the classical semantics

by setting

D
♯
SJφK =

1 if D♯, S |=2 φ

0 if not D♯, S |=2 φ and ∀ 0 ≤ i ≤ n : ⊥ 6∈ A(Li)

1/2 else

Section 7.2 Case Studies 143

where ((Li, Si))0≤i≤n is the counterexample for the case that D, S |=2 φ does

not hold. By this, we postpone the distinction between abstract and concrete

counterexamples to a simple syntactical check, which is also implemented in

the SARMC tool. Note that this mapping schema allows us to employ any of the

available and highly optimised model-checking engines in order to compute our

abstract three-valued satisfaction relation.

In its default mode, the SARMC tool activates the tail heuristic (cf. page 122)

for the validation of counterexamples. We evaluate and discuss the effect of this

heuristic on a representative case study presented in Section 7.2.2 below.

7.2 Case Studies

We consider four case studies from different domains to evaluate our verifica-

tion approach. Section 7.2.1 will provide the evaluation data for the adhoc

networking case study, which was introduced as the running example for this

thesis in Section 1.2. In Section 7.2.2 we investigate a case study from the

domain of access control systems. This example has been originally been in-

troduced in [KK06] and represents an unbounded system of servers which are

capable of spawning new processes. We are able to re-establish the known

safety properties of this system and in addition investigate full temporal spec-

ifications. Section 7.2.3 models the Automated Rail Cars System [HG97] as a

Dynamic Evolution System and demonstrate that our approach is in particular

able to treat the handing-over of processes. Finally, a DCS model of the Car

Platooning [HESV91] case study is presented and analysed in Section 7.2.4.

Requirements for this case study are in particular given in terms of an LSC.

All experiments have been performed on a Linux host equipped with 16

GBytes of RAM and an Intel R© Xeon CPU with a frequency of 3 GHz.

Notations

We start our evaluation phase by reconsidering the DCS example ‘Cab’ from

Figure 6.9 that was used to demonstrate the combination of communication

and evolution constraints. On the basis of this example we will also explain our

notations for technical data like running times and memory consumption. The

discussion on page 133 indicates that no process is able to reach state ‘s1’, that

is, the specification

φ := G
(
¬s1(x)

)

is expected to hold for the DCS model.

144 Chapter 7 Evaluation

According to algorithm 2, the SARMC tool performs the steps given in the fol-

lowing table in order to establish this property. In the tables, the first column

denotes the verification task which has been initiated by the tool. The second

column gives the maximal size of the spotlight that is induced by the corre-

sponding specification, that is, by its number of variables. The third column

list the (three-valued) result of the verification task, and if the result is not

‘1’ the name of the obtained counterexample is given. The last two columns

show the running time and the memory consumption of the actual task. Note

that the times to actually compute the employed evolution and communication

constraints are in the range of some milliseconds for all considered cases studies

and are hence not explicitly listed. The last row combines the outcomes of the

individual verification task by summing up the overall verification times and by

listing the maximum amount of required memory.

task spot result time memory

C
♯
abJφK 1 1/2 (δ♯1) 0.2 s 2 MB

C
♯
abJ¬ϕ

t
U(δ♯1) ∨ φK 2 1/2 (δ♯2) 0.5 s 2 MB

C
♯
abJ¬ϕ

t
U(δ♯2) ∨ (¬ϕtU(δ♯1) ∨ φ)K 3 1 2.1 s 2 MB

C
♯
abJ¬ϕ

t(δ♯2) → (¬ϕtU(δ♯1) ∨ φ)K 2 1 0.6 s 2 MB

C
♯
abJ¬ϕ

t(δ♯1) → φ)K 1 1/2 (δ♯3) 0.2 s 2 MB

C
♯
abJ¬ϕ

t
U(δ♯3) ∨ φ)K 2 1 0.3 s 2 MB

C
♯
abJ(¬ϕ

t(δ♯1) ∧ ϕ
t(δ♯3)) → φ)K 1 1 0.2 s 2 MB

Cab |= φ 4.1 s 2 MB

In the table above, the first row corresponds to the analysis of the specification

in the initial spotlight abstraction, which yields an abstract counterexample

δ♯1. The next task performs the validation of this counterexample which again

yields an abstract counterexample δ♯2. This run is identified as being spurious

in the third row and the corresponding evolution constraints is used to validate

the first counterexample δ♯1 in the task in row four. Now δ♯1 is identified to

be spurious and the original specification is analysed under the corresponding

evolution constraint in row five. This yields another abstract counterexample

δ♯3 that is invalidated and used for a further refinement such that the original

specification can be established by the last verification task.

The evolution constraints for the first and third counterexample remove the

spurious receptions of a ‘b’ and ‘a’ message, respectively. As discussed on

page 133 we can reduce the overall verification time by incorporating the com-

munication constraint for ‘b’ which we will denote by ϕ(b).

Section 7.2 Case Studies 145

new(x) • ⊕x ◮ ⊛x; dev(x)

con(x, y) • dev(x) ∧ (dev(y) ∨ ma(y)) ∧ x 6= y ◮ sl!(x); ma!(y); link(x, y); link(y, x)

dis(x, y) • ma(x) ∧ link(x, y) ◮ dev!(y);¬link(x, y);¬link(y, x)

free(x) • ma(x) ∧ ¬link(x) ◮ dev!(x)

del(x) • dev(x) ◮ ⊗x

Figure 7.1: The adhoc networking DES ‘Ad’.

task spot result time memory

C
♯
abJϕ(b) → φK 1 1/2 (δ♯3) 0.3 s 2 MB

C
♯
abJϕ(b) → (¬ϕtU(δ♯3) ∨ φ)K 2 1 0.7 s 2 MB

C
♯
abJ(ϕ(b) ∧ ¬ϕt(δ♯3)) → φ)K 1 1 0.5 s 2 MB

Cab |= φ 1.5 s 2 MB

As a consequence, the spurious reception of ‘b’ messages no longer occurs as

abstract counterexample and hence only the reception of an ‘a’ message has to

be removed by a counterexample analysis. This reduces the overall verification

time from 4.1 seconds to 1.5 seconds. Note that however the running times

of individual tasks are slightly larger than before as the representation of the

counter values increase the overall state space of the system.

7.2.1 AdHoc Networking

We present the analysis results of the example specifications for the adhoc net-

working system Ad, which was used as the running example in this thesis.

Recall that this example comprises the five evolution rules given in Figure 7.1,

which generate an arbitrary number of arbitrarily large star-shaped topologies

of devices. The rules are explained in detail on page 35.

Firstly, we reconsider the specification

φ2 := G
(
¬sl(x)

)

which has been discussed on page 102. It takes SARMC less than a second to

discover a concrete counterexample for this specification under a spotlight com-

prising two processes. The two steps of the underlying abstraction refinement

algorithm and their results are listed in the following table.

146 Chapter 7 Evaluation

task spot result time memory

Ad♯Jφ2K 1 1/2 (δ♯2) 0.2 s 2 MB

Ad♯J¬ϕtU(δ♯2) ∨ φ2K 2 0 (δ2) 0.4 s 2 MB

Ad 6|= φ2 0.6 s 2 MB

The strict counterexample specification for the counterexample δ♯2 (cf. Fig. 6.3),

which has been generated by SARMC according to Definition 6.24 and which leads

to the identification of the concrete counterexample δ2 (cf. Fig. 6.4), is

ϕtU(δ♯2) =¬(con(x, b) ∧⊚x ∧ ¬dev(x) ∧ sl(x) ∧ ¬ma(x) ∧ ¬link(x, x))

¬(con(x1, b) ∧⊚x1 ∧ ¬dev(x1) ∧ sl(x1) ∧ ¬ma(x1) ∧ ¬link(x1, x1))

U
(
con(x, x1) ∧⊚x ∧ ¬dev(x) ∧ sl(x) ∧ ¬ma(x) ∧ ¬link(x, x))

In fact, the run δ2 from Figure 6.4 presents a definite violation of the negation

of this specification under a spotlight comprising two processes {u1, u2} for the

valuation

[b 7→ ⊥, x 7→ u1, x1 7→ u2].

Whenever SARMC identifies a concrete counterexample, it will represent it graph-

ically to the user by invoking a so-called trace-viewer program. A screenshot of

this tool showing the counterexample ‘δ2’ is given in Figure 7.2.

Secondly, we reconsider the specification

φ4 := G
(

link(x1, x2) → ¬⊖x1

)

which has discussed on page 84ff. It takes less than 2 seconds for SARMC to

establish that this specification holds for Ad. The individual verification tasks

are listed in the following table.

task spot result time memory

Ad♯Jφ4K 2 1/2 (δ♯4) 0.4 s 2 MB

Ad♯J¬ϕtU(δ♯4) ∨ φ4K 3 1 0.9 s 2 MB

Ad♯J¬ϕt(δ♯4) → φ4K 2 1 0.4 s 2 MB

Ad |= φ4 1.7 s 2 MB

The initial verification task yields an abstract counterexample (δ♯4), which we

already discussed on page 85 (cf. Fig. 5.3). The second task corresponds to the

validation phase. To this end, the strict formula of the abstract counterexample

is computed (the resulting formula is given on page 119) and analysed. As the

Section 7.2 Case Studies 147

Figure 7.2: The trace-viewer tool showing a concrete counterexample.

counterexample formula introduces a fresh variable, the size of the spotlight is

automatically increased from two to three. The verification yields ‘1’ by which

we obtain the evolution constraint

¬ϕt(δ♯4) := G
(
dis(x4,1, x1) → ¬(dev(x1) ∧ ¬link(x1, x1) ∧ link(x1, x2))

)

Using this evolution constraint for abstraction refinement yields ‘1’ in the

third verification task, by which the initial specification φ4 is shown to be cor-

rect.

7.2.2 Public/Private Servers

The “Public/Private Servers” case study has been introduced in [KK06] in order

to evaluate their verification approach for Graph Transformation Systems (see

the discussion on related work in Sect. 6.4). This example is also considered by

other researchers in [SWJ08].

The system initially comprise one private server, and an arbitrary number of

public servers may be created during runtime. Any (private or public) server

may establish connections to other public servers. A server is also able to spawn

new processes. More specific, a public server may create external processes and

a private server may create internal processes. These processes can then move

along existing server connections to other servers. At some point in time, the

private server can decide to turn itself into a public server.

148 Chapter 7 Evaluation

newpub(x) • ⊕x ◮ ⊛x; pub(x)

pub2pubc(x) • pub(x) ◮ pubc!(x)

prv2prvc(x) • prv(x) ◮ prvc!(x)

conpubpubc(x, y) • pub(x) ∧ pubc(y) ∧ x 6= y ◮ con(x, y); pub!(y)

conprvpubc(x, y) • prv(x) ∧ pubc(y) ∧ x 6= y ◮ con(x, y); pub!(y)

conprvprvc(x, y) • prv(x) ∧ prvc(y) ∧ x 6= y ◮ con(x, y); prv!(y)

newext(x, y) • prv(x) ∧ ⊕y ◮ ⊛y; int(y); acc(x, y)

newint(x, y) • pub(x) ∧ ⊕y ◮ ⊛y; ext(y); acc(x, y)

crossint(x, y, z) • int(x) ∧ acc(x, y) ∧ con(y, z) ◮ ¬acc(x, y); acc(x, z)

crossext(x, y, z) • ext(x) ∧ acc(x, y) ∧ con(y, z) ◮ ¬acc(x, y); acc(x, z)

prv2pub(x) • prv(x) ◮ pub!(x)

Figure 7.3: The “Public/Private Servers” case study as DES ‘prvpub’.

Figure 7.2.2 shows the straight-forward translation of the case study given

in terms of graph transformation rules into the DES language. The system

comprises eleven evolution rules which we will briefly describe. The first rule

corresponds to the ability of creating arbitrarily many public servers, that is,

any dead process may appear and become a public server. The next two rules

set servers into a “connecting mode” by switching from ‘pub’ to pubc (for public

servers) and from prv to prvc (for private servers). Any server in this connection

mode may then by connected by some other server, such that both private and

public servers may connect to some public server being in state ‘pubc’ (rules

four and five). Also, a private server may connect to some other private server

being in state ‘prvc’. The next two rules allow the system to create internal and

external process by private and public servers, respectively. These processes

may transition from the server to which they are connected via ‘acc’ to other

servers following some ‘con’ connection. Note that these two rules do not restrict

the kind of the servers. Finally, the last rule transforms the private server into

a public one. The initial snapshot for the system comprises exactly one private

server, that is, we set S := ({u1}, ({prv(u1)}, {})).

In [KK06], two safety invariants are specified as “bad graph patterns” and

verified for the case study. Informally, the two specifications are given as

(NC) No connection will ever be created from a public to a private server.

(EP) External process will never access private servers.

Section 7.2 Case Studies 149

and we may formulate them in our specification language as follows:

φNC := G¬
(
pub(x) ∧ prv(y) ∧ con(x, y)

)

φEP := G¬
(
ext(x) ∧ prv(y) ∧ acc(x, y)

)

The first specification φNC is verified by SARMC in the very first iteration in less

than one second. Hence, no refinement was necessary to establish this property.

The second specification φEP requires more effort, as shown in the following

table.

task spot result time memory

prvpub
♯
SJφEPK 2 1/2 (δ♯1) 0.5 s 2 MB

prvpub
♯
SJ¬ϕ

t
U(δ♯1) ∨ φEPK 3 1 1.8 s 2 MB

prvpub
♯
SJ¬ϕ

t(δ♯1) → φEPK 2 1/2 (δ♯2) 0.6 s 2 MB

prvpub
♯
SJ¬ϕ

t
U(δ♯2) ∨ φEPK 3 1 2.0 s 3 MB

prvpub
♯
SJ¬ϕ

t(δ♯1) ∧ ¬ϕt(δ♯2) → φEPK 2 1 0.6 s 2 MB

prvpubS |= φEP 5.5 s 3 MB

Two abstract counterexamples have been obtained. In δ♯1, there is an abstract

evolution crossext(u2,⊥, u1) leading to a configuration with

{ext(u2), prv(u1), acc(u2, u1)}

This evolution is contained in the abstract system as ‘acc(u2,⊥)’ and ‘con(⊥, u1)’

are always possibly satisfied. The abstract evolution in δ♯2 is ‘conprvprvc(⊥, u1)’,

stemming from the fact that ‘prv(⊥)’ is possibly satisfied.

Both abstract counterexample are directly identified to be spurious by our

validation strategy. The two resulting evolution constraints are the following:

¬ϕt(δ♯1) = G
(
crossext(x, b, y) → ¬(ext(x) ∧ prv(y) ∧ acc(x, y) ∧ . . .)

)

¬ϕt(δ♯2) = G
(
conprvprvc(b, y) → ¬(prv(y) ∧ . . .)

)

To ease readability, we use dots to abstract from those terms that are actually

not relevant for effectiveness of the evolution constraints. The first constraint

states that a ‘crossext’ evolution cannot lead to a snapshot where an external

process has access to a private server. The second evolution constraint removes

the evolution that connects two private servers, which is clearly spurious as there

is at most one private server in the system. Both constrains in combination

are sufficient to establish the property in the last verification task. Notably,

150 Chapter 7 Evaluation

both evolution constraints represent very natural and intuitive invariants of the

systems.

The graph based approaches from [KK06, SWJ08] are able to establish both

properties in about one second, that is, they are faster on φEP than our approach.

In contrast, we are not limited to invariant specifications but are also able to

establish full temporal properties, for example that some external process never

becomes an internal process, i.e.

φp := G
(
int(x) → ¬F ext(x)

)

The SARMC tool proves this specification in less than a second. Clearly, this

property depends on the fact that processes do not disappear from the system.

For the extended DES prvpubD defined as

prvpubD := prvpub ∪ {destroy(x) • int(x) ∨ ext(x) ◮ ⊗x}

we obtain a concrete counterexample as follows.

task spot result time memory

prvpubD
♯
SJφpK 1 1/2 (δ♯1) 0.3 s 2 MB

prvpubD
♯
SJ¬ϕ

t
U(δ♯1) ∨ φpK 2 1/2 (δ♯2) 0.7 s 2 MB

prvpubD
♯
SJ¬ϕ

t
U(δ♯2) ∨ (¬ϕtU(δ♯1) ∨ φp)K 3 0 (δ3) 4.6 s 3 MB

prvpubDS 6|= φp 5.6 s 3 MB

We see that the validation of the first abstract counterexample yields another

abstract counterexample. The validation of this counterexample leads to the

detection of a concrete counterexample. Likewise, the size of the spotlight

is gradually extended in each validation phase until we have three concrete

processes, say u1, u2 and u3, in the spotlight under which a definite violation

can be observed with the following evolutions:

newpub(u2) → newint(u2, u3) → destroy(u3) → newext(u1, u3)

The violating run reuses the process identity u3 to create a new internal

process after it has disappeared from the system. If we now require that the

transformation of some internal to an external process is only forbidden during

the lifetime of the process by stating

G
(
int(x) → ¬(⊚x U ext(x))

)

we are able to establish this property also for prvpubD in less than a second.

Section 7.2 Case Studies 151

The last experiment on the public/private server case study evaluates the

effect of the tail heuristics. The specification is

φw := G¬
(
ext(x) ∧ int(y)

)

stating that never both an external and an internal process exists. We expect

this specification to be false and search for a concrete counterexample that

witnesses the existence of such processes. The verification tasks of SARMC using

the (default) tail heuristics are as follows.

task spot result time memory

prvpub
♯
SJφwK 2 1/2 (δ♯1) 0.4 s 2 MB

prvpub
♯
SJ¬ϕ

t
U(δ♯1) ∨ φwK 3 1/2 (δ♯2) 2.7 s 2 MB

prvpub
♯
SJ¬ϕ

t
U(δ♯2) ∨ (¬ϕtU(δ♯1) ∨ φw)K 4 0 (δ3) 20.1 s 3 MB

prvpubS 6|= φw 23.2 s 3 MB

The first abstract counterexample comprises two abstract evolutions, namely

newint(⊥, u1) and newext(⊥, u2). Due to the tail heuristics, only the last evolu-

tion is validated in the second verification task under a spotlight of three. This

task yields another abstract counterexample comprising the ‘newint(⊥, u1)’ evo-

lution, which is successfully validated in the next verification under a spotlight

of four, yielding a concrete counterexample.

If we disable the tail heuristics, both abstract evolutions of δ♯1 are validating

directly in the first validation phase, leading to the same concrete counterex-

ample as follows.

task spot result time memory

prvpub
♯
SJφwK 2 1/2 (δ♯1) 0.4 s 2 MB

prvpub
♯
SJ¬ϕU(δ♯1) ∨ φwK 4 0 (δ3) 16.1 s 3 MB

prvpubS 6|= φw 16.5 s 3 MB

We observe that the validation phase under a spotlight of three is skipped,

and SARMC directly increases the spotlight from two to four. Clearly, this reduces

the overall verification time. It hence is advisable to disable the tail heuristics

when expecting a counterexample for the specification under consideration. By

this, all abstract evolutions are considered and validated in the subsequent

verification task, thereby potentially saving intermediate indefinite validation

results as in the example above.

152 Chapter 7 Evaluation

Terminal

EntryExit

CarHandler

Car

Figure 7.4: Automated Rail Cars System [HG97]

In contrast we observe that disabling the tail heuristic for the verification

of φEP increases the overall running time to about 8 minutes, basically as the

validation of the complete abstract counterexamples requires a spotlight size of

five processes. In general the performance benefits of having the tail heuristic

enabled outweigh its disadvantage of potentially forcing intermediate extension

steps of the spotlight.

7.2.3 Automated Rail Cars System

The Automated Rail Cars System (ARCS) has been introduced in [HG97] as an

illustrating example for modelling executable systems using UML state-charts.

It comprises a cyclic path of two railways, one for clockwise, the other for

counter-clockwise travelling of passengers in railcars. Several terminals are lo-

cated along the railways where passengers can enter and leave a railcar. See

Figure 7.4 for a graphical illustration of the system.

Each terminal has a number of platforms where railcars are waiting for their

employment. Whenever a railcar approaches a terminal, the terminal has to

allocate a platform for the approaching railcar. For this purpose, the terminal

is creating a so-called CarHandler object which then becomes responsible for

the negotiation between the railcar and the resources of the terminal.

This procedure employs a typical interaction pattern that can often be found

in distributed communication systems, namely the handing-over of processes.

In this pattern, some process p has connections to two different processes p1

and p2 and uses this relationship to introduce process p2 to process p3. In other

Section 7.2 Case Studies 153

newcar(x) • ⊕x ◮ ⊛x; cruise(x)

detect(x, y) • cruise(x)∧term(y) ◮ appr!(x); req(y, x)

handover(x, y, z) • appr(x)∧term(y)∧req(y, x)∧⊕z ◮ ⊛z; carh(z); hnd(z, x);¬req(y, x)

busy(x, y) • carh(x)∧appr(y)∧hnd(x, y) ◮ cruise!(y);¬hnd(z, x)

free(x, y) • carh(x)∧appr(y)∧hnd(x, y) ◮ park!(y);¬hnd(z, x)

leave(x, y) • park(x)∧carh(y)∧hnd(x, y) ◮ cruise!(x);¬hnd(x, q);⊗y

Figure 7.5: The “ARCS” case study as DES ‘arcs’.

words, process p hands over p2 to p3. In the terms of the case study, a terminal

that has received a request from a car creates a new handler process and hands

over the identity of the car to the new car handler.

We will demonstrate that our abstraction refinement approach is able to treat

handover patterns on the basis of the DES implementation of the ARCS case

study as given in Figure 7.2.3. We focus on a single terminal which an arbitrary

number cars may request to enter. The six evolution rules read as follows. The

first rule creates fresh cars which may detect the terminal process via the second

rule, thereby establishing a ‘req’ link from the terminal to the car. This request

triggers the third rule which in turn creates a new car handler process and hands

over the identity of the requesting car to the new handler by establishing a ‘hnd’

connection among them. The car handler may non-deterministically decide to

either disallow the car to enter the terminal by the fourth rule called ‘busy’ or

to grant the car’s request which in turn enters its parking mode by the fifth

rule called ‘free’. A parking car then may leave the terminal by the last rule

whereby the corresponding handler process is destroyed.

We begin the analysis of the arcs system by considering a simple reachability

property, namely φ1 := G
(
¬park(x)

)
for which we expect a counterexample that

demonstrates how a car can enter its parking mode. The SARMC tool performs

the following verification steps by which the spotlight is gradually increased

until a concrete counterexample can be identified.

task spot result time memory

arcs
♯
SJφ1K 1 1/2 (δ♯1) 0.4 s 2 MB

arcs
♯
SJ¬ϕ

t
U(δ♯1) ∨ φ2K 2 1/2 (δ♯2) 0.5 s 2 MB

arcs
♯
SJ¬ϕ

t
U(δ♯2) ∨ (¬ϕtU(δ♯1) ∨ φ2)K 4 0 (δ3) 5.1 s 3 MB

arcsS 6|= φ1 6.0 s 3 MB

154 Chapter 7 Evaluation

The next requirements addresses the handover procedure. A natural require-

ment is that a car is not handed over twice. More precisely, after a car that

has been handed over it is not handed over again while it is in the approach-

ing mode. In order to concisely formulate this requirement we make use of a

particular feature of SARMC that allows us to actually provide less variables for

an evolution atom than the arity of the corresponding predicate. By this, the

non-specified variables become don’t care values as the evaluation of the term

with respect to an evolution ground atom only considers the given variables.

For example, the specification

φ2 := G
(

handover(x, y) → ¬(appr(x) U X handover(x))
)

requires that whenever process x is handed by process y to some anonymous

handler, then it is afterwards not handed over again (by some anonymous ter-

minal to some anonymous handler) while it is approaching. We exploit the fact

that the actual handler processes are not relevant for the specification. In re-

turn, we start with a smaller size of the spotlight as the specification comprises

fewer variables.

task spot result time memory

arcs
♯
SJφ2K 2 1/2 (δ♯1) 0.5 s 2 MB

arcs
♯
SJ¬ϕ

t
U(δ♯1) ∨ φ2K 3 1/2 (δ♯2) 1.8 s 2 MB

arcs
♯
SJ¬ϕ

t
U(δ♯2) ∨ (¬ϕtU(δ♯1) ∨ φ2)K 5 1 58.1 s 7 MB

arcs
♯
SJ¬ϕ

t(δ♯2) → (¬ϕtU(δ♯1) ∨ φ2)K 3 1 1.9 s 3 MB

arcs
♯
SJ¬ϕ

t(δ♯1) → φ2K 2 1 0.6 s 2 MB

arcsS |= φ2 62.9 s 7 MB

The tool needs a recursion depth of two in order to identify the second ab-

stract counterexample δ♯2 (which is indeed an abstract counterexample for the

validation of the first abstract counterexample δ♯1) as spurious. Under the cor-

responding evolution constraint, the fourth verification task then shows δ♯1 to

be spurious. The resulting evolution constraint for arcs and φ2 is

¬ϕt(δ♯1) = G
(
handover(x, y, b) → ¬(appr(x) ∧ term(y) . . .)

)

stating that on all concrete runs where φ2 is violated there is no handover of the

approaching car x to some other handler b that is represented by the abstract

process (cf. Def. 6.4). This constraint sufficiently refines the behaviour of the

abstract process such that the original specification can be established.

Section 7.2 Case Studies 155

We are also interesting in liveness properties of the systems such as that an

entering car finally dismisses its car handler, formalised as

φ3 := G
(
free(x, y) → F⊖y

)

Following Definition 4.9 we consider the processes that are denoted by the

variables in the specification to be fair, in the sense that each evolution that

is constantly enabled for these processes is finally executed. To establish the

liveness property under spotlight abstraction we need to eliminate one spurious

counterexample that corresponds to that fact that the entering car assumes

the abstract identity to be its handler and kills this process when leaving the

terminal by rule ‘leave(x, y)’. In consequence, the real handler keeps being alive.

SARMC rules out this spurious behaviour by the following steps:

task spot result time memory

arcs
♯
SJφ3K 2 1/2 (δ♯) 0.6 s 2 MB

arcs
♯
SJ¬ϕ

t
U(δ♯) ∨ φ3K 3 1 1.6 s 3 MB

arcs
♯
SJ¬ϕ

t(δ♯) → φ3K 2 1 0.6 s 2 MB

arcsS |= φ3 2.8 s 3 MB

7.2.4 Car Platooning

The Car Platooning case study according to [HESV91] has gained a lot of at-

tention both in industrial and academic projects. We will discuss the relevant

approaches below. The overall aim is to increase both the safety and the capac-

ity of highways. To this end, individual cars are supposed to form coordinated

groups of interlinked cars driving with a reduced safety distance. Car platooning

has several advantages:

• The highway capacity is substantially increased as a lot of space is no

longer wasted as safety distances.

• The reduction of aerodynamic resistance within a platoon decreases the

consumption of fuel and hence the emission of carbon dioxide.

• The on-board electronics can react faster to breaking manoeuvres than a

human driver can, thus hopefully leading to fewer accidents.

The car at the front of a platooning group is called the leader, the other

cars in this group are followers. A car that is not yet involved in a platoon

is called a free agent. To dynamically form platoons on a highway, individual

cars approaching a car platoon may join the platoon after a negotiation phase.

156 Chapter 7 Evaluation

u1

free

u2

last

u3

flw

u4

ldr
cahead fc

bc

fc

bc

Figure 7.6: A snapshot of the car platooning DCS model.

On the other hand, a car may leave its platoon, e.g. if it is about to reach its

destination exit. Hence, the two elementary manoeuvres in order to realise the

platooning system are merge and split.

As already mentioned there already exists a number of approaches to for-

mally specify and analyse this case study. Notably, all approaches that we are

aware of fall short in certain aspects. The PATH project1 designed and anal-

ysed car platooning systems, their models [HESV91, Var93] however did not

properly respect the dynamic and distributed characteristics of the case study

as only a fixed communication topology among at most three cars was con-

sidered. Currently, the Car2Car Consortium2 is establishing an open standard

for car communication systems, based on wireless components. So far, they

have not designed any formal models of their approach. Academic work on the

car platooning case study investigated only the merge operation in isolation,

for example in [Bau06, Mey06, BTW07a, Wes08]. Clearly, these restrictions

hides problems that may occur for example when not properly disconnected

cars try to re-merge with different platoons, leading to inconsistent connection

topologies. Note that one of the formal models of [Bau06] integrates a split

operation in a purely synchronous variant where both cars disconnects in one

atomic step. This does however not properly reflect the uncoupled nature of the

car platooning manoeuvres for distributed implementations of the protocols.

DCS model

Our DCS model of the car platooning system comprises in particular a split

mechanism, which is initiated by the leader of the platoon. We assume four

basic car modes: a car can be a free agent (‘free’), a leader (‘ldr’), a follower

(‘flw’) or the last follower of a platoon (‘last’). A snapshot of the system is

shown in Figure 7.2.4, where the three cars u2, u3, u4 form a platoon. The

communication topology is organised as a doubly-linked list, such that the car

in front in reachable under the ‘fc’ channel and the back car via the ‘bc’ channel.

This interlinking schema accounts for the fact that the sending radius of the

1http://www.path.berkeley.edu
2http://www.car-to-car.org

Section 7.2 Case Studies 157

communication hardware of a car is typically limited. In Figure 7.2.4, the free

car u1 is about to detect the car ‘u2’ driving in front, which is represented by

the pending environment message ‘cahead’. The reception of this message will

trigger the merge negotiation phase as described below.

The behaviour of a car is given as a DCS protocol in Figure 7.7. Both free

agents and leaders a sensible for detecting new cars driving in front of them.

This recognition is modelled by a car-ahead message (‘cahead’) sent by the

environment. The reception of such a message triggers the sending of a merge

request message (‘merge’) to the detected car. If this message is acknowledged

(‘mack’) by the recipient the back car proceeds to its new mode. The leader of

a platoon can leave the platoon by sending a split message (‘split’) to its back

car. After this split request has been acknowledged, the former leader clears its

‘bc’ channel and becomes a free car. A split request is acknowledged by sending

a ‘sack’ message, and the new mode of the sender depends on the cars’ former

position in the platoon, that is, a car in mode ‘last’ becomes a free car while a

car in mode ‘flw’ becomes the new leader of the platoon.

We obtain the following characterisation of the message dependencies of the

DCS protocol in terms of reply messages according to Section 6.3.

⊳cars(cahead) = ({merge}, 1) ⊳cars(mack) = ({}, 0)

⊳cars(merge) = ({mack, split}, 2) ⊳cars(sack) = ({}, 0)

⊳cars(split) = ({sack}, 1)

These sets concisely capture the basic negation principles of both the merge and

the split manoeuvres as modelled by the DCS protocol cars. The reply messages

of the ‘merge’ message suggest to employ cutoff value of at most 2.

Analysis Results

The first requirement excludes a circular connection among platoon leaders by

stating that no two leaders recognise each other to be their leaders. We formally

express this property as

φ1 := G
(
(ldr(x) ∧ ldr(y)) → ¬(fc(x, y) ∧ fc(y, x))

)

This property has also been investigated for the merge protocol in [BSTW06]

where the communication behaviour of the abstract process was refined by an

assumption that has manually been derived from the DCS protocol. In our

approach the communication constraint ‘ϕ(split)’ with a cutoff of 1 suffice to

establish this property under a spotlight of two processes within 39.8 seconds.

158 Chapter 7 Evaluation

free

s1

s2

s6

last

ldr

flw

s7

s8

s5

s4

s3 s9

s10

s11s12

?cahead(fc)

fc!merge

?mack(fc)

?merge(bc) bc!mack

?cahead(fc)

fc!merge

?mack(fc)

?merge(bc) bc!mack

?split(fc)

fc!sack

fc

bc!split?sack(bc)bc

?split(fc)

fc!sack

fc

Figure 7.7: The “Car Platooning” case study as DCS ‘cars’.

Intuitively, this constraints eliminates the spurious interferences of ‘sack’ mes-

sage leading to illegal topologies comprising connected free agent cars. Using

the full set of communication constraints as computed above increases the ver-

ification time to 70.3 seconds.

The protocol is designed such that each merge that has been accepted will

be acknowledged to the requester afterwards. We can formally establish this

property by verifying the following specification.

φ2 := G
(
rcv[merge](x, y) → F snd[mack](x, y)

)

SARMC establishes this response property within 92.4 seconds in the initial spot-

light abstraction under the set communication constraints with a cutoff of 2.

The next specification for the platooning system addresses the split mecha-

nism and is given in terms of the Live Sequence Chart in Figure 7.2.4. This

LSC requires that whenever a merge is acknowledged by a ‘mack’ message, the

recipient of this message will keep a ‘fc’ connection to the sender unless it re-

ceives a ‘split’ message. As the lifeline fragment is dashed (“cold”) after the

reception of the first message, the split message is actually not required to fi-

nally occur. However, if it occurs the connection topology must adhere to the

Section 7.2 Case Studies 159

LSC: L
AC: tt
AM: invariant

x y

mack

split
fc(x, y)

Figure 7.8: The LSC specification for the DCS ‘cars’.

local invariant, that is, ‘fc(x, y)’ must be satisfied up to but excluding the point

in time of receiving the ‘split’ message.

As both possible orderings between the sending of ‘split’ and the reception of

‘mack’ have to be considered, the LSC requirement translates (cf. Sect. 4.3) to

a rather complex temporal logic formula as follows.

G
(
(¬snd[mack](y, x) U snd[mack](y, x) ∧ X¬rcv[mack](x, y) U rcv[mack](x, y))

→

(¬snd[mack](y, x) U snd[mack](y, x) ∧ X¬rcv[mack](x, y) ∧ ¬snd[split](y, x) U

(snd[split](y, x) ∧ X (¬rcv[mack](x, y) U rcv[mack](x, y) ∧ fc(x, y)∧

X (¬rcv[split](x, y) ∧ fc(x, y) W rcv[split](x, y))))

∨

(rcv[mack](x, y) ∧ fc(x, y) ∧ X ((¬snd[split](y, x) ∧ fc(x, y) W

snd[split](y, x) ∧ fc(x, y) ∧ X (¬rcv[split](x, y) ∧ fc(x, y) W rcv[split](x, y))))))
)

SARMC is able to establish this property in about 29 minutes using 382 MBytes

of memory in the initial spotlight abstraction under the set communication

constraints with a cutoff of 2.

We observe that exploiting the communication constraints for refinement is

actually necessary to establish the desired properties in a reasonable time. Us-

ing the pure CEGSAR approach for the analysis of this case study leads to

validation attempts of abstract counterexamples under a spotlight comprising

up to 5 processes. These validation tasks do not finish within 24 hours. We

conjecture that the increased state space needed for representing the configura-

160 Chapter 7 Evaluation

tion of each car process in combination with the interleaving of asynchronous

communication triggers the classical state-explosion problem whenever the size

of the spotlight exceeds a certain number of given processes. This observation

substantiates the need of auxiliary sources of evolution constraints derived from

the specific modelling language. Communication constraints are one particular

example for the DCS language.

Note that the CEGSAR loop is still required and suitable to identify concrete

counterexamples, for example to witness the reachability of certain topology

configurations. For example, the requirement φf := G
(
¬flw(x)

)
cannot be

disproved by communication constraints in isolation such that the CEGSAR

iteration takes over and detects a concrete counterexample as follows.

task spot result time memory

cars♯JφfK 1 1/2 (δ♯) 6.1 s 4 MB

cars♯J¬ϕtU(δ♯) ∨ φfK 2 0 (δ) 39.1 s 11 MB

cars 6|= φf 45.2 s 11 MB

7.3 Discussion

We have reported on a number of successful verification tasks using the spotlight

abstraction refinement procedure. The analysis of the car platooning system,

however, indicates that the size of the system under consideration is currently

the limiting factor for the applicability of the SARMC tool.

To discuss the tool limits in more detail we have to distinguish between two

notions of “system size”, namely on the one hand the number of predicates in the

underlying signature in order to describe the configurations and the evolutions

of the processes, and on the other hand the number of processes to be considered.

By the spotlight abstraction principle, the number of processes in the spotlight

is completely determined by the specification. By this, we can in principle

analyse very large numbers of processes (and even infinitely many) as long as

the specification addresses only a small number of process configurations. For

example, our approach easily handles a variant of the ARCS case study where

several terminals are located on a large track, basically as the query reduction

principle allows us to focus on small representative cases. The size in terms of

the number of predicates is not reducible by our approach, that is, each process

inside of the spotlight is completely represented by all its predicates. This fact

inhibits the efficient verification of e.g. the platooning case study under spotlight

sizes larger than four. To enhance the applicability of the SARMC tool it is

Section 7.3 Discussion 161

hence important to reduce the verification complexity by integrating orthogonal

reduction techniques. We discuss some ideas in the concluding section 8.2.

Note that the proposed tail heuristic and the usage of communication con-

straints are two particular possibilities in order to reduce to required sizes for the

spotlight. From our evaluation phase we observe that both techniques should

be enabled in the default mode of the tool. The performance benefits of the tail

heuristic more than compensate its disadvantage of potentially forcing inter-

mediate extension steps of the spotlight in all the considered cases. Similarly,

the ability to suppress spurious counterexamples directly by exploiting com-

munication constraints outweigh the disadvantage of increasing the number of

predicates in order to represent the counter values.

162 Chapter 7 Evaluation

Chapter 8

Conclusion

“Exit Light, enter Night.”

Metallica (american rock band)

B. Westphal concludes his thesis on fundamental properties of the spotlight

abstraction principle by stating that future work on

“the topic of refinement is most prominent“ ([Wes08], page 302).

Our work makes a significant step into this research direction by turning existing

heuristics for manually refining the abstract transition system into automatic

procedures. In this chapter, we review our thesis by summarising its main con-

tributions in Section 8.1 and we provide an outlook on future research directions

related to our topic in Section 8.2.

8.1 Summary

To be able to concisely describe our refinement approach we first introduced

adequate languages to obtain formal models of the addressed class of systems.

In general we took a more light-weight modelling and specification approach

compared to [Wes08]. The reason is that our focus was not the investigation of

the basic properties of spotlight abstraction but rather on devising refinement

strategies that extends the applicability of the abstracting technique for the

falsification and verification of a useful class of systems and specifications. To

this end, we presented in Chapter 3 a clean semantical model which allows

us to focus on the basic features of the addressed class of systems, namely

the evolutions of a dynamically varying number of interconnected processes.

For a symbolic description of possible evolutions we introduced the low-level

modelling language of Dynamic Evolution Systems (DES). This language is

a contribution on its own as it provides an intuitive characterisation of the

163

164 Chapter 8 Conclusion

non-trivial behaviour of the corresponding system. We additionally considered

the more high-level language of Dynamic Communication Systems (DCS) that

allows the system designer to focus on the behaviour of a single process. We

integrated this language into our framework by devising a translation from DCS

to DES.

A good requirement specification logic for the addressed class of system is

a non-trivial problem on its own [BTW07b]. In Chapter 4, we introduced the

powerful class of outermost universally quantified first-order linear time logic,

which is a proper subclass of the specification logic EvoCTL∗ as introduced

in [Wes08]. The main contribution of this chapter is the new three-valued char-

acterisation of the satisfaction relation for this kind of specification logic. This

definition is the key for a concise presentation of the abstraction and refinement

principles in the subsequent chapters. We demonstrated the suitability of our

specification logic by a number of example specification and by relating the

important class of universal LSC specifications to our logic.

We started our investigation of a suitable verification procedure in Chapter 5

by observing that the presence of an unbounded number of interlinked pro-

cesses renders even simple reachability problems undecidable. We showed this

by an encoding of two-counter-machines in terms of DES and DCS systems.

We then applied the spotlight abstraction and query reduction principles to

our descriptions of dynamic systems and specifications, and we devised a gener-

alised soundness theorem of the abstraction technique in terms of an embedding

relation exploiting the three-valued definition of the specification satisfaction re-

lation. This embedding theorem contributes the first formal characterisation of

the fact that the spotlight abstraction principle exactly preserves the behaviour

of the processes within the spotlight.

The central contribution of Chapter 6 is the iterative refinement algorithm

for spotlight abstractions, which instantiates the classical CEGAR framework

in a non-usual two-staged manner. The additional second stage accounts for

the fact that we identified the validation of abstract counterexample as the key

problem. In fact, we showed that the validation of counterexamples under spot-

light abstraction requires a proper reachability analysis of the underlying system

model, which renders the validation problem undecidable for the typical domain

of infinite-process systems. Our iterative refinement procedure is based on two

complementary kinds of refinement, namely spotlight extension and shadow

refinement. Spotlight extension provides us with a sound but necessarily in-

complete method of counterexample validation and shadow refinement exploits

the information of a spurious counterexample for an effective refinement of the

behaviour of the abstract process. Both kinds of refinements were seamlessly

Section 8.2 Perspectives 165

integrated in a general approach for the analysis of dynamic evolution systems

via counterexample-guided spotlight abstraction refinement (CEGSAR).

In terms of the DCS language we demonstrate how to statically derive sys-

tems invariants in order to improve the proposed refinement algorithm. To this

end, we formalised the notion of message dependencies and applied a counter

augmentation to the resulting transition system in order to obtain a new form

of evolution constraints, the so-called communication constraints. In general,

we observe that evolution constraints serves as a general instrument for refining

the behaviour of the abstract process under spotlight abstraction, in particular

as also the related work in [BTW07a] can be formulated in this framework.

We have practically evaluated our verification approach on a number of real-

istic case studies. The considered examples cover a wide range of the applica-

tion domain and are in particular not restricted to a certain class of topology

shapes. For example, the adhoc networking system induces star-shaped topolo-

gies, the ARCS case studies employs the hand-over of processes and the car

platooning system is realised as a linked list of processes. The evaluation phase

demonstrates the suitability of our approach. We were able to automatically re-

establish a number of properties for which manually intervention was necessary

before (e.g. for the car platooning system). Moreover, we proved new properties,

including full temporal properties, which were not considered before (e.g. for

the existing Public/Private Server case study). An important side effect of our

refinement loop is its ability for falsification, that is, we are now able to auto-

matically obtain concrete counterexamples under spotlight abstraction, while

existing strategies for refinement are tailored to the verification of properties.

This is an important contribution as model-checking techniques are often used

to prove the reachability of desired system configuration by so-called “drive-

to-property” specifications. This is achieved by a falsification of the negation

of the configuration description. For larger system our approach still suffers

from the state-explosion problem, which we tackle only indirectly by a gradual

increase of the the size of the spotlight (in particular by considering the tail

heuristic). We discuss some solutions to this problem in the section on future

work below.

8.2 Perspectives

Summing up, our work has turned the sound technique of spotlight abstrac-

tion into a proper verification instrument that is applicable to a large class of

systems comprising a dynamically evolving set of processes. We conclude by

166 Chapter 8 Conclusion

discussing open problems and pointing to further work related to our approach.

We elaborate on the four categories efficiency, specification, scope and theory.

Efficiency The main limitation of our approach lies in the combinatorial ex-

plosion of the state- and transition-representation for larger models and sizes of

the spotlight. The two ways to tackle this problem are obvious, either speed-up

the verification procedure itself and/or reduce the required size of the spotlight.

We observed that the symbolic model-checking engine of VIS is not able to

efficiently handle the interleaving semantics of processes in combination with

asynchronous communication. A natural approach is to consider other verifi-

cation engines which are tailored to the analysis of communication protocols

like variants of the SPIN [Hol04] model-checker. SPIN comes with native

support for communication channels and employs a partial order reduction

method [God90] in order to eliminate redundant order of interleavings. We

supervised a number of experiments [Rak06, Amm07] on the verification of

DCS models using SPIN, which indicate that despite these optimisation tech-

niques the explicit state-space representation inhibits the exploration of DCS

models like the car platooning system for more than 3 concrete processes with

SPIN. There are recent trends to combine symbolic state-space representations

with partial-order reduction [KGS06, WYKG08], which are certainly worth to

evaluate once corresponding tools are available.

As our abstract transition system is defined in terms of three-valued logic

it might be suggestive to employ data-structures for verification that natively

deals with the indefinite logical value. This includes the usage of ternary decision

diagrams [Sas97] and related tools [LAS00, CDE01, ECD+03]. However, as the

indefinite value is purely used to capture the stateless representation of the

abstract process we do not expect significant performance gains.

A different approach to reduce the complexity problems is to minimise the size

of the spotlight under which an abstract counterexample is to be validated. The

tail heuristic in order to validate only a certain part of the counterexample is a

first step into this direction. Another approach would be to identify subgroups

of abstract evolution in the counterexample that, if they correspond to genuine

behaviour at all, have to be executed by the same set of processes. If this is

the case we do not need to introduce fresh variables for each occurrence of the

abstract process but may rather re-use existing variables. This in return allows

to validate under a reduced spotlight. We conjecture that static information

like the message dependencies in DCS protocols will allow us to identify related

abstract evolutions, as for example the abstract reply of an abstract request can

be soundly validated by increasing the spotlight by one rather than by two.

Section 8.2 Perspectives 167

Specification A natural continuation of our work with respect to the require-

ment specification logic is to consider quantification over paths. We are in

particular interested to adapt our approach for the alternating-time temporal

logic (ATL) [AHK02] as it allows for the selection of relevant paths based on

winning strategies of individual processes. For example, while the universal

path quantification in LTL will not establish that any two adjacent process

always eventually build a platoon, one may refine this query in ATL by stating

〈〈∅〉〉G
(
near(x1, x2) → 〈〈{x1, x2}〉〉F platoon(x1, x2)

)

where 〈〈X〉〉 is a path quantifier which ranges over all computations where

the processes denoted by variables X can actually resolve their internal non-

determinism in a way such that the requirement is satisfied independently of the

interaction of other processes. A counterexample-guided refinement algorithm

for two-player games is presented in [HJM03]. In this sense, spotlight abstrac-

tion addresses the abstraction of an unbounded number of players where the

size of the spotlight determines the number of concrete players and the abstract

player acts as the system environment.

Scope We observed that our abstraction and refinement technique is able to

handle quite different “topological shapes” like stars and lists. It would be

interesting to see if this result can be carried over to even more complex data-

structures. One example of particular research interest are processes which

communicate over unbounded FIFO queues [BZ83]. The idea is to model the

content of the queue as a linked list of processes such that each message in

the queue corresponds to one of these processes. The push and pop operations

then translate to corresponding evolution rules on this list. The effect of the

spotlight abstraction refinement strategy would be that a sufficient part of the

unbounded queue automatically moves into the spotlight in order to prove or

disprove a given specification.

Theory As we are working on a turing-complete formalism our verification

algorithm yields a necessarily incomplete solution of the problem. One obvious

way to obtain a decidable sub-language is to restrict the set of available identities

to a finite set. Then, the abstraction purely serves as a method to reduce the

complexity of the verification tasks by only considering a subset of identities

concretely. However, there is currently no systematic way to obtain a sufficient

number of identities under which every relevant system behaviour is preserved.

It is known that most verification problems for unbounded FIFO queues are

undecidable, too. In this context, [AJ96] shows that the reachability prob-

168 Chapter 8 Conclusion

lem becomes decidable when considering unreliable channels, the so-called lossy

queues. This observation has a strong practical impact as many real-world chan-

nels are in fact unreliable and have to be treated accordingly in the overlying

protocol. We believe that “lossyness” may also be a valid assumption in our ad-

dressed class of evolving systems as process may disappear quite unexpectedly.

It is thus be worth to investigate whether general decidability results can be

obtained for the class of lossy Dynamic Evolution Systems. This task involves

the establishment of a well-quasi order [FS01] on the resulting transition system

by incorporating ideas from the graph minor theory [DHiK05]. First approaches

in this direction are presented in [JK08].

Bibliography

[ABJ98] Parosh Aziz Abdulla, Ahmed Bouajjani, and Bengt Jonsson. On-

the-Fly Analysis of Systems with Unbounded, Lossy FIFO Chan-

nels. In Alan J. Hu and Moshe Y. Vardi, editors, CAV, volume

1427 of LNCS, pages 305–318. Springer, 1998.

[ADHR07] Parosh Aziz Abdulla, Giorgio Delzanno, Noomene Ben Henda, and

Ahmed Rezine. Regular Model Checking Without Transducers

(On Efficient Verification of Parameterized Systems). In Orna

Grumberg and Michael Huth, editors, TACAS, volume 4424 of

LNCS, pages 721–736. Springer, 2007.

[AHK02] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman.

Alternating-time temporal logic. J. ACM, 49(5):672–713, 2002.

[AHPZ07] Karl Azab, Annegret Habel, Karl-Heinz Pennemann, and Chris-

tian Zuckschwerdt. ENFORCe: A system for ensuring formal cor-

rectness of high-level programs. In Proc. 3rd International Work-

shop on Graph Based Tools (GraBaTs’06), volume 1, pages 82–93.

Electronic Communications of EASST, 2007.

[AJ96] Parosh Aziz Abdulla and Bengt Jonsson. Verifying Programs with

Unreliable Channels. Inf. Comput., 127(2):91–101, 1996.

[AJN+04] Parosh Aziz Abdulla, Bengt Jonsson, Marcus Nilsson, Julien

d’Orso, and Mayank Saksena. Regular Model Checking for

LTL(MSO). In Rajeev Alur and Doron Peled, editors, CAV, vol-

ume 3114 of LNCS, pages 348–360. Springer, 2004.

[AL01] Paul C. Attie and Nancy A. Lynch. Dynamic Input/Output Au-

tomata: A Formal Model for Dynamic Systems. In Kim Guld-

strand Larsen and Mogens Nielsen, editors, CONCUR, volume

2154 of LNCS, pages 137–151. Springer, 2001.

[Amm07] Christian Ammann. Verifikation von DCS-Beschreibungen mit

dem Modelchecker SPIN, August 2007. Individuelles Projekt (Stu-

dienarbeit), Carl von Ossietzky Universität Oldenburg.

169

170 Bibliography

[AS85] Bowen Alpern and Fred B. Schneider. Defining Liveness. Inf.

Process. Lett., 21(4):181–185, 1985.

[AS87] Bowen Alpern and Fred B. Schneider. Recognizing Safety and

Liveness. Distributed Computing, 2(3):117–126, 1987.

[Bac08] Peter Backes. An Interface between XML-coded DCS protocols

and the hiralysis representation of Graph Transformation Systems.

Master’s thesis, Universität des Saarlandes, 2008.

[Bar46] Ruth C. Barcan. A functional calculus of first order based on strict

implication. Journal of Symbolic Logic, 11:1–16, 1946.

[Bau06] Jörg Bauer. Analysis of Communication Topologies by Partner

Abstraction. PhD thesis, Universität des Saarlandes, 2006.

[BCC+07] Josh Berdine, Cristiano Calcagno, Byron Cook, Dino Distefano,

Peter W. O’Hearn, Thomas Wies, and Hongseok Yang. Shape

Analysis for Composite Data Structures. In Werner Damm and

Holger Hermanns, editors, CAV, volume 4590 of LNCS, pages 178–

192. Springer, 2007.

[BCM+90] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan,

David L. Dill, and L. J. Hwang. Symbolic Model Checking: 1020

States and Beyond. In LICS, pages 428–439. IEEE Computer So-

ciety, 1990.

[BDTW07] Jörg Bauer, Werner Damm, Tobe Toben, and Bernd Westphal.

Verification and Synthesis of OCL Constraints Via Topology Anal-

ysis. In Andy Schürr, Manfred Nagl, and Albert Zündorf, editors,

AGTIVE, volume 5088 of LNCS, pages 361–376. Springer, 2007.

[BFS02] Julian C. Bradfield, Juliana Küster Filipe, and Perdita Stevens.

Enriching OCL Using Observational Mu-Calculus. In Ralf-Detlef

Kutsche and Herbert Weber, editors, FASE, volume 2306 of LNCS,

pages 203–217. Springer, 2002.

[BG99] Glenn Bruns and Patrice Godefroid. Model Checking Partial State

Spaces with 3-Valued Temporal Logics. In Nicolas Halbwachs and

Doron Peled, editors, CAV, volume 1633 of LNCS, pages 274–287.

Springer, 1999.

[BHJM07] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Ma-

jumdar. The software model checker Blast. STTT, 9(5-6):505–525,

2007.

[BHV04] Ahmed Bouajjani, Peter Habermehl, and Tomás Vojnar. Abstract

Bibliography 171

Regular Model Checking. In Rajeev Alur and Doron Peled, editors,

CAV, volume 3114 of LNCS, pages 372–386. Springer, 2004.

[BJNT00] Ahmed Bouajjani, Bengt Jonsson, Marcus Nilsson, and Tayssir

Touili. Regular Model Checking. In E. Allen Emerson and

A. Prasad Sistla, editors, CAV, volume 1855 of LNCS, pages 403–

418. Springer, 2000.

[BMMR01] Thomas Ball, Rupak Majumdar, Todd D. Millstein, and Sriram K.

Rajamani. Automatic Predicate Abstraction of C Programs. In

PLDI, pages 203–213, 2001.

[Bro99] Udo Brockmeyer. Verifikation von STATEMATE Designs. PhD

thesis, Carl von Ossietzky Universität Oldenburg, Germany, 1999.

[BSTW06] Jörg Bauer, Ina Schaefer, Tobe Toben, and Bernd Westphal. Spec-

ification and Verification of Dynamic Communication Systems. In

ACSD, pages 189–200. IEEE Computer Society, 2006.

[BTW07a] Jörg Bauer, Tobe Toben, and Bernd Westphal. Mind the

Shapes: Abstraction Refinement Via Topology Invariants. In

Kedar S. Namjoshi, Tomohiro Yoneda, Teruo Higashino, and

Yoshio Okamura, editors, ATVA, volume 4762 of LNCS, pages

35–50. Springer, 2007.

[BTW07b] Jörg Bauer, Tobe Toben, and Bernd Westphal. The Tem-

poral Logic of Appearance and Disappearance. Reports of

SFB TR 14 AVACS 24, AVACS, June 2007. ISSN: 1860-9821,

http://www.avacs.org.

[BW07] Jörg Bauer and Reinhard Wilhelm. Static Analysis of Dynamic

Communication Systems by Partner Abstraction. In Hanne Riis

Nielson and Gilberto Filé, editors, SAS, volume 4634 of LNCS,

pages 249–264. Springer, 2007.

[BZ83] Daniel Brand and Pitro Zafiropulo. On Communicating Finite-

State Machines. J. ACM, 30(2):323–342, 1983.

[CD89] Edmund M. Clarke and I. A. Draghicescu. Expressibility results for

linear-time and branching-time logics. In Linear Time, Branching

Time and Partial Order in Logics and Models for Concurrency,

School/Workshop, pages 428–437, London, UK, 1989. Springer-

Verlag.

[CDE01] Marsha Chechik, Benet Devereux, and Steve M. Easterbrook. Im-

plementing a Multi-valued Symbolic Model Checker. In Tiziana

172 Bibliography

Margaria and Wang Yi, editors, TACAS, volume 2031 of LNCS,

pages 404–419. Springer, 2001.

[CES86] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Auto-

matic Verification of Finite-State Concurrent Systems Using Tem-

poral Logic Specifications. ACM Transactions on Programming

Languages and Systems, 8(2):244–263, 1986.

[CFH+03] Edmund M. Clarke, Ansgar Fehnker, Zhi Han, Bruce H. Krogh,

Olaf Stursberg, and Michael Theobald. Verification of Hybrid Sys-

tems Based on Counterexample-Guided Abstraction Refinement.

In Hubert Garavel and John Hatcliff, editors, TACAS, volume

2619 of LNCS, pages 192–207. Springer, 2003.

[CGB86] Edmund M. Clarke, Orna Grumberg, and Michael C. Browne.

Reasoning About Networks With Many Identical Finite-State Pro-

cesses. In PODC, pages 240–248, 1986.

[CGJ+00] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and

Helmut Veith. Counterexample-Guided Abstraction Refinement.

In E. Allen Emerson and A. Prasad Sistla, editors, CAV, volume

1855 of LNCS, pages 154–169. Springer, 2000.

[CGL94] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model

Checking and Abstraction. ACM Trans. Program. Lang. Syst.,

16(5):1512–1542, 1994.

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model

Checking. The MIT Press, Cambridge, Massachusetts, 1999.

[CM02] Muffy Calder and Alice Miller. Automatic verification of any num-

ber of concurrent, communicating processes. In ASE, pages 227–

230. IEEE Computer Society, 2002.

[CTV06] Edmund M. Clarke, Muralidhar Talupur, and Helmut Veith. En-

vironment Abstraction for Parameterized Verification. In E. Allen

Emerson and Kedar S. Namjoshi, editors, VMCAI, volume 3855

of LNCS, pages 126–141. Springer, 2006.

[CTV08] Edmund M. Clarke, Muralidhar Talupur, and Helmut Veith. Prov-

ing Ptolemy Right: The Environment Abstraction Framework for

Model Checking Concurrent Systems. In C. R. Ramakrishnan and

Jakob Rehof, editors, TACAS, volume 4963 of LNCS, pages 33–47.

Springer, 2008.

[Dam03] Dennis Dams. Comparing Abstraction Refinement Algorithms.

Electronic Notes in Theoretical Computer Science, 89(3), 2003.

Bibliography 173

[DFKL07] Clare Dixon, Michael Fisher, Boris Konev, and Alexei Lisitsa.

Efficient First-Order Temporal Logic for Infinite-State Systems.

CoRR, abs/cs/0702036, 2007.

[DH01] W. Damm and D. Harel. LSCs: Breathing Life into Message Se-

quence Charts. Formal Methods in System Design, 19(1):45–80,

July 2001.

[DHiK05] Erik D. Demaine, Mohammad Taghi Hajiaghayi, and Ken ichi

Kawarabayashi. Algorithmic Graph Minor Theory: Decompo-

sition, Approximation, and Coloring. In FOCS, pages 637–646.

IEEE Computer Society, 2005.

[DJ02] Werner Damm and Bengt Jonsson. Eliminating Queues from RT

UML Model Representations. In Werner Damm and Ernst-Rüdiger

Olderog, editors, FTRTFT, volume 2469 of LNCS, pages 375–394.

Springer, 2002.

[DJPV02] Werner Damm, Bernhard Josko, Amir Pnueli, and Angelika Vot-

intseva. Understanding UML: A Formal Semantics of Concurrency

and Communication in Real-Time UML. In Frank S. de Boer, Mar-

cello M. Bonsangue, Susanne Graf, and Willem P. de Roever, edi-

tors, FMCO, volume 2852 of LNCS, pages 71–98. Springer, 2002.

[DKR00] Dino Distefano, Joost-Pieter Katoen, and Arend Rensink. On

a Temporal Logic for Object-Based Systems. In Scott F. Smith

and Carolyn L. Talcott, editors, FMOODS, volume 177 of IFIP

Conference Proceedings, pages 285–304. Kluwer, 2000.

[DKR04] Dino Distefano, Joost-Pieter Katoen, and Arend Rensink. Who is

Pointing When to Whom? In Kamal Lodaya and Meena Mahajan,

editors, FSTTCS, volume 3328 of LNCS, pages 250–262. Springer,

2004.

[DRK02] Dino Distefano, Arend Rensink, and Joost-Pieter Katoen. Model

Checking Birth and Death. In Ricardo A. Baeza-Yates, Ugo Mon-

tanari, and Nicola Santoro, editors, IFIP TCS, volume 223 of IFIP

Conference Proceedings, pages 435–447. Kluwer, 2002.

[DTW06] Werner Damm, Tobe Toben, and Bernd Westphal. On the Expres-

sive Power of Live Sequence Charts. In Thomas W. Reps, Mooly

Sagiv, and Jörg Bauer, editors, Program Analysis and Compila-

tion, volume 4444 of LNCS, pages 225–246. Springer, 2006.

[DW05] Werner Damm and Bernd Westphal. Live and let die: LSC based

verification of UML models. Sci. Comput. Program., 55(1-3):117–

159, 2005.

174 Bibliography

[ECD+03] Steve Easterbrook, Marsha Chechik, Benet Devereux, Arie

Gurfinkel, Albert Lai, Victor Petrovykh, Anya Tafliovich, and

Christopher Thompson-Walsh. χchek: a model checker for multi-

valued reasoning. In ICSE ’03: Proceedings of the 25th Interna-

tional Conference on Software Engineering, pages 804–805, Wash-

ington, DC, USA, 2003. IEEE Computer Society.

[EH86] E. Allen Emerson and Joseph Y. Halpern. “Sometimes” and “not

never” revisited: On branching versus linear time temporal logic.

Journal of the ACM, 33(1):151–178, 1986.

[EKS06] Javier Esparza, Stefan Kiefer, and Stefan Schwoon. Abstraction

Refinement with Craig Interpolation and Symbolic Pushdown Sys-

tems. In Holger Hermanns and Jens Palsberg, editors, TACAS,

volume 3920 of LNCS, pages 489–503. Springer, 2006.

[EL87] E. Allen Emerson and Chin-Laung Lei. Modalities for model check-

ing: branching time logic strikes back. Science of Computer Pro-

gramming, 8(3):275–306, 1987.

[FFQ02] Cormac Flanagan, Stephen N. Freund, and Shaz Qadeer. Thread-

Modular Verification for Shared-Memory Programs. In Daniel Le

Métayer, editor, ESOP, volume 2305 of LNCS, pages 262–277.

Springer, 2002.

[FGMP03] Gian Luigi Ferrari, Stefania Gnesi, Ugo Montanari, and Marco Pi-

store. A model-checking verification environment for mobile pro-

cesses. ACM Trans. Softw. Eng. Methodol., 12(4):440–473, 2003.

[FJL00] M. Frodigh, P. Johansson, and P. Larsson. Wireless Ad Hoc Net-

working: The Art of Networking without a Network. Ericsson

Review, 4, 2000.

[FM98] Melvin Fitting and Richard L. Mendelsohn. First Order Modal

Logic. Kluwer, 1998.

[FM04] Stephan Flake and Wolfgang Müller. Past- and Future-Oriented

Time-Bounded Temporal Properties with OCL. In SEFM, pages

154–163. IEEE Computer Society, 2004.

[FS01] Alain Finkel and Ph. Schnoebelen. Well-structured transition sys-

tems everywhere! Theor. Comput. Sci., 256(1-2):63–92, 2001.

[GJJ06] Tristan Le Gall, Bertrand Jeannet, and Thierry Jéron. Verifica-

tion of Communication Protocols Using Abstract Interpretation

of FIFO Queues. In Michael Johnson and Varmo Vene, editors,

AMAST, volume 4019 of LNCS, pages 204–219. Springer, 2006.

Bibliography 175

[GL84] Eitan M. Gurari and Ten Hwang Lai. Deadlock detection in com-

municating finite state machines. SIGACT News, 15(4):63–64,

1984.

[GL94] Orna Grumberg and David E. Long. Model Checking and Modular

Verification. ACM Transactions on Programming Languages and

Systems, 16(3):843–871, May 1994.

[GMRT06] Ankit Goel, Sun Meng, Abhik Roychoudhury, and P. S. Thiagara-

jan. Interacting Process Classes. In Leon J. Osterweil, H. Di-

eter Rombach, and Mary Lou Soffa, editors, ICSE, pages 302–311.

ACM, 2006.

[God90] Patrice Godefroid. Using Partial Orders to Improve Automatic

Verification Methods. In Edmund M. Clarke and Robert P. Kur-

shan, editors, CAV, volume 531 of LNCS, pages 176–185. Springer,

1990.

[Gro96] The VIS Group. VIS: a System for Verification and Synthesis.

In Rajeev Alur and Thomas A. Henzinger, editors, Proc. CAV,

number 1102 in LNCS, pages 428–432. Springer, 1996.

[GS92] Steven M. German and A. Prasad Sistla. Reasoning about Systems

with Many Processes. J. ACM, 39(3):675–735, 1992.

[GS97] Susanne Graf and Hassen Säıdi. Construction of Abstract State

Graphs with PVS. In Orna Grumberg, editor, CAV, volume 1254

of LNCS, pages 72–83. Springer, 1997.

[GS99] Viktor Gyuris and A. Prasad Sistla. On-the-Fly Model Check-

ing Under Fairness that Exploits Symmetry. Formal Methods in

System Design, 15(3):217–238, 1999.

[Haa98] J. Haartsen. Bluetooth – the universal radio interface for adhoc,

wireless connectivity. Ericsson Review, 3, 1998.

[HESV91] A. Hsu, F. Eskafi, S. Sachs, and P. Varaiya. The Design of Platoon

Maneuver Protocols for IVHS. PATH Report UCB-ITS-PRR-91-6,

University of California, Berkeley, April 1991.

[HG97] David Harel and Eran Gery. Executable Object Modeling with

Statecharts. IEEE Computer, 30(7):31–42, 1997.

[HJM03] Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar.

Counterexample-Guided Control. In Jos C. M. Baeten, Jan Karel

Lenstra, Joachim Parrow, and Gerhard J. Woeginger, editors,

ICALP, volume 2719 of LNCS, pages 886–902. Springer, 2003.

176 Bibliography

[HJMS02] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and

Grégoire Sutre. Lazy abstraction. In POPL, pages 58–70, 2002.

[HLP01] Klaus Havelund, Michael R. Lowry, and John Penix. Formal Anal-

ysis of a Space-Craft Controller Using SPIN. IEEE Trans. Software

Eng., 27(8):749–765, 2001.

[Hol94] Gerard J. Holzmann. The Theory and Practice of A Formal

Method: NewCoRe. In IFIP Congress (1), pages 35–44, 1994.

[Hol04] Gerald J. Holzmann. The SPIN model checker: Primer and refer-

ence manual. Addison Wesley, 2004.

[HPR06a] Annegret Habel, Karl-Heinz Pennemann, and Arend Rensink.

Weakest Preconditions for High-Level Programs. In Andrea Corra-

dini, Hartmut Ehrig, Ugo Montanari, Leila Ribeiro, and Grzegorz

Rozenberg, editors, ICGT, volume 4178 of LNCS, pages 445–460.

Springer, 2006.

[HPR06b] Annegret Habel, Karl-Heinz Pennemann, and Arend Rensink.

Weakest preconditions for high-level programs. In Graph Trans-

formations (ICGT’06), volume 4178 of LNCS, pages 445–460.

Springer-Verlag, 2006.

[HR00] Michael R. A. Huth and Mark D. Ryan. Logic in Computer Sci-

ence: Modelling and Reasoning about Systems. Cambridge Uni-

versity Press, Cambridge, England, 2000.

[Hua90] S. T. Huang. A distributed deadlock detection algorithm for csp-

like communication. ACM Trans. Program. Lang. Syst., 12(1):102–

122, 1990.

[ID96] C. Norris Ip and David L. Dill. Better verification through sym-

metry. Formal Methods in System Design, 9(1/2):41–75, 1996.

[ID99] C. Norris Ip and David L. Dill. Verifying Systems with Repli-

cated Components in Murφ. Formal Methods in System Design,

14(3):273–310, 1999.

[IT99] ITU-T. ITU-T Rec. Z.120: Message Sequence Chart (MSC). ITU-

T, Geneva, 1999.

[JHGP99] Jean-Marc Jézéquel, Wai-Ming Ho, Alain Le Guennec, and

François Pennaneac’h. UMLAUT: an extendible UML transfor-

mation framework. In Robert J. Hall and Ernst Tyugu, editors,

Proc. of the 14th IEEE International Conference on Automated

Software Engineering, ASE’99. IEEE, 1999.

Bibliography 177

[JK08] Salil Joshi and Barbara König. Applying the Graph Minor Theo-

rem to the Verification of Graph Transformation Systems. In Aarti

Gupta and Sharad Malik, editors, CAV, volume 5123 of LNCS,

pages 214–226. Springer, 2008.

[Jos93] Bernhard Josko. Modular Specification and Verification of Reac-

tive Systems, 1993. Habilitation thesis.

[Jos06] Henning Jost. Eliminating FIFO Message Queues From Dynamic

Communication Systems. Master’s thesis, Carl von Ossietzky Uni-

versität Oldenburg, December 2006.

[KGS06] Vineet Kahlon, Aarti Gupta, and Nishant Sinha. Symbolic Model

Checking of Concurrent Programs Using Partial Orders and On-

the-Fly Transactions. In Thomas Ball and Robert B. Jones, edi-

tors, CAV, volume 4144 of LNCS, pages 286–299. Springer, 2006.

[KHP+05] Hillel Kugler, David Harel, Amir Pnueli, Yuan Lu, and Yves Bon-

temps. Temporal Logic for Scenario-Based Specifications. In Nico-

las Halbwachs and Lenore D. Zuck, editors, TACAS, volume 3440

of LNCS, pages 445–460. Springer, 2005.

[KK06] Barbara König and Vitali Kozioura. Counterexample-Guided Ab-

straction Refinement for the Analysis of Graph Transformation

Systems. In Holger Hermanns and Jens Palsberg, editors, TACAS,

volume 3920 of LNCS, pages 197–211. Springer, 2006.

[KK08] Barbara König and Vitali Kozioura. Augur 2 - A New Version of

a Tool for the Analysis of Graph Transformation Systems. Electr.

Notes Theor. Comput. Sci., 211:201–210, 2008.

[Kle52] Stephen Cole Kleene. Introduction to metamathematics. Biblio-

theca Mathematica. North-Holland, Amsterdam, 1952.

[Klo03] Jochen Klose. Live Sequence Charts: A Graphical Formalism for

the Specification of Communication Behavior. PhD thesis, Carl

von Ossietzky Universität Oldenburg, Germany, 2003.

[KM08] Fred Kröger and Stephan Merz. Temporal Logic and State Systems.

Texts in Theoretical Computer Science (EATCS). Springer, 2008.

[KMR02] Alexander Knapp, Stephan Merz, and Christopher Rauh. Model

Checking - Timed UML State Machines and Collaborations. In

Werner Damm and Ernst-Rüdiger Olderog, editors, FTRTFT, vol-

ume 2469 of LNCS, pages 395–416. Springer, 2002.

[KP99] Yonit Kesten and Amir Pnueli. Verifying Liveness by Augmented

178 Bibliography

Abstraction. In Jörg Flum and Mario Rodŕıguez-Artalejo, editors,

CSL, volume 1683 of LNCS, pages 141–156. Springer, 1999.

[KP00] Yonit Kesten and Amir Pnueli. Control and Data Abstraction:

The Cornerstones of Practical Formal Verification. International

Journal on Software Tools for Technology Transfer, 2(4):328–342,

2000.

[KPSZ02] Yonit Kesten, Amir Pnueli, Elad Shahar, and Lenore D. Zuck.

Network Invariants in Action. In Lubos Brim, Petr Jancar, Mojmı́r

Kret́ınský, and Antońın Kucera, editors, CONCUR, volume 2421

of LNCS, pages 101–115. Springer, 2002.

[Kri63] Saul Kripke. Semantical considerations on modal logic. Acta Philo-

sophica Fennica, 16:83–94, 1963.

[KTWW06] Jochen Klose, Tobe Toben, Bernd Westphal, and Hartmut Wit-

tke. Check It Out: On the Efficient Formal Verification of Live

Sequence Charts. In Thomas Ball and Robert B. Jones, editors,

CAV, volume 4144 of LNCS, pages 219–233. Springer, 2006.

[Kur94] Robert P. Kurshan. Computer-Aided Verification of Coordinating

Processes : the Automata-Theoretic Approach. Princeton Univer-

sity Press, Princeton, NJ, 1994.

[Kwi89] M. Z. Kwiatkowska. Survey of fairness notions. Inf. Softw. Tech-

nol., 31(7):371–386, 1989.

[Lah04] Shuvendu Lahiri. Unbounded System Verification using Decision

Procedure and Predicate Abstraction. PhD thesis, Carnegie Mellon

University, September 2004.

[Lam80] Leslie Lamport. “Sometime” is sometimes “not never”: on the

temporal logic of programs. In Proceedings of the 7th ACM

SIGPLAN-SIGACT symposium on Principles of Programming

Languages (POPL 1980), pages 174–185, New York, NY, USA,

1980. ACM.

[LARSW00] Tal Lev-Ami, Thomas W. Reps, Shmuel Sagiv, and Reinhard Wil-

helm. Putting static analysis to work for verification: A case study.

In ISSTA, pages 26–38, 2000.

[LAS00] Tal Lev-Ami and Shmuel Sagiv. TVLA: A System for Implement-

ing Static Analyses. In Jens Palsberg, editor, SAS, volume 1824

of LNCS, pages 280–301. Springer, 2000.

[LB04] Shuvendu K. Lahiri and Randal E. Bryant. Constructing Quan-

tified Invariants via Predicate Abstraction. In Bernhard Steffen

Bibliography 179

and Giorgio Levi, editors, VMCAI, volume 2937 of LNCS, pages

267–281. Springer, 2004.

[LB07] Shuvendu K. Lahiri and Randal E. Bryant. Predicate abstraction

with indexed predicates. ACM Trans. Comput. Log., 9(1), 2007.

[Lew68] David Lewis. Counterpart theory and quantified modal logic. Jour-

nal of Philosophy, LXV(5):113–126, 1968.

[Low96] Gavin Lowe. Breaking and Fixing the Needham-Schroeder Public-

Key Protocol Using FDR. Software - Concepts and Tools,

17(3):93–102, 1996.

[LS94] Peter B. Ladkin and Barbara B. Simons. Static analysis of multi-

way synchronization. In John E. Botsford, Ann Gawman, W. Mor-

ven Gentleman, Evelyn Kidd, Kelly A. Lyons, Jacob Slonim, and

J. Howard Johnson, editors, CASCON, page 39. IBM, 1994.

[LT89] Nancy A. Lynch and Mark R. Tuttle. An Introduction to In-

put/Output Automata. CWI Quarterly, 2(3):219–246, 1989.

[Lub84] Boris D. Lubachevsky. An Approach to Automating the Verifi-

cation of Compact Parallel Coordination Programs I. Acta Inf.,

21:125–169, 1984.

[LW05] Stefan Leue and Wei Wei. Counterexample-Based Refinement for

a Boundedness Test for CFSM Languages. In Patrice Godefroid,

editor, SPIN, volume 3639 of LNCS, pages 58–74. Springer, 2005.

[Mai00] Monika Maidl. The Common Fragment of CTL and LTL. In IEEE

Symposium on Foundations of Computer Science (FOCS), pages

643–652, 2000.

[Mar95] Robert Cecil Martin. Designing object-oriented C++ applications:

using the Booch method. Prentice-Hall, Inc., Upper Saddle River,

NJ, USA, 1995.

[MC05] Alice Miller and Muffy Calder. A Generic Approach for the Auto-

matic Verification of Featured, Parameterised Systems. In Stephan

Reiff-Marganiec and Mark Ryan, editors, FIW, pages 217–235. IOS

Press, 2005.

[McM99] Kenneth L. McMillan. Verification of infinite state systems by

compositional model checking. In Laurence Pierre and Thomas

Kropf, editors, CHARME, volume 1703 of LNCS, pages 219–234.

Springer, 1999.

180 Bibliography

[McM00] Kenneth L. McMillan. A methodology for hardware verification

using compositional model checking. Sci. Comput. Program., 37(1-

3):279–309, 2000.

[McM01] Kenneth L. McMillan. Getting Started with SMV. Cadence Design

Systems, March 2001.

[Mey06] Roland Meyer. Modelling and Specifying Mobile Systems, July

2006. Presentation Slides.

http://dsrg.mff.cuni.cz/teaching/seminars/2006-03-07-Meyer-

PiCalculus.pdf.

[Mey09] Roland Meyer. Structural Stationarity in the π-Calculus. PhD

thesis, Carl von Ossietzky Universität Oldenburg, Germany, 2009.

[Mil71] Robin Milner. An Algebraic Definition of Simulation between Pro-

grams. In Proceedings of the 2nd Joint Conference on Artificial

Intelligence, pages 481–489. British Computer Society Press, Lon-

don, 1971.

[Mil99] Robin Milner. The Pi Calculus. CU Press, 1999.

[Min67] Marvin Minsky. Computation: finite and infinite machines. Pren-

tice Hall, 1967.

[MKS08] Roland Meyer, Victor Khomenko, and Tim Strazny. A Practical

Approach to Verification of Mobile Systems Using Net Unfoldings.

In Kees M. van Hee and Rüdiger Valk, editors, Petri Nets, volume

5062 of LNCS, pages 327–347. Springer, 2008.

[MP92] Zohar Manna and Armir Pnueli. The Temporal Logic of Reactive

and Concurrent Systems: Specification. Springer, Berlin, January

1992.

[MPR07] Alexander Malkis, Andreas Podelski, and Andrey Rybalchenko.

Precise Thread-Modular Verification. In Hanne Riis Nielson and

Gilberto Filé, editors, SAS, volume 4634 of LNCS, pages 218–232.

Springer, 2007.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A Calculus of

Mobile Processes, Parts I and II. IC, 100:1–77, 1992.

[MRS+05] Christian Mrugalla, Oliver Robbe, Ingo Schinz, Tobe Toben, and

Bernd Westphal. Formal Verification of a Sensor Voting and Mon-

itoring UML Model. In Siv Hilde Houmb, Jan Jürjens, and Robert

France, editors, CSDUML, Fredrikstad, Norway, September 2005.

Technische Universität München.

Bibliography 181

[MYRS05] Roman Manevich, Eran Yahav, Ganesan Ramalingam, and

Shmuel Sagiv. Predicate Abstraction and Canonical Abstraction

for Singly-Linked Lists. In Radhia Cousot, editor, VMCAI, volume

3385 of LNCS, pages 181–198. Springer, 2005.

[OMG01] OMG. Unified Modeling Language Specification. Technical Report

1.4-UML-01-09-67, OMG, September 2001.

[OMG06] OMG. Object Constraint Language, version 2.0. Technical Report

formal/06-05-01, OMG, 2006.

[OMG07] OMG. Unified Modeling Language: Superstructure, version 2.1.1.

Technical Report formal/07-02-05, OMG, February 2007.

[PA01] Santosh Pande and Dharma P. Agrawal. Compiler Optimiza-

tions for Scalable Parallel Systems: Languages, Compilation Tech-

niques, and Run Time Systems, volume 1808 of LNCS. Springer,

2001.

[Pen08] Karl-Heinz Pennemann. Development of correct graph transfor-

mation systems – Preliminary abstract. In Graph Transformations

(ICGT’08), volume 5214 of LNCS, pages 508–510. Springer-Verlag,

2008.

[PL99] Ivan Porres Paltor and Johan Lilius. vUML: A tool for verifying

UML models. In Robert J. Hall and Ernst Tyugu, editors, Proc.

of the 14th IEEE International Conference on Automated Software

Engineering, ASE’99. IEEE, 1999.

[Pnu77] Amir Pnueli. The Temporal Logic of Programs. In Proceedings of

the 18th Annual Symposium on Foundations of Computer Science,

pages 46–57, Providence, Rhode Island, USA, October 1977. IEEE.

[Pnu85] Armir Pnueli. In transition from global to modular temporal rea-

soning about programs. Logics and models of concurrent systems,

pages 123–144, 1985.

[Pos80] J. Postel. User Datagram Protocol. RFC 768 (Standard), 1980.

[Pos81] J. Postel. Internet Protocol. RFC 791 (Standard), 1981.

[PS08] Amir Pnueli and Yaniv Sa’ar. All You Need Is Compassion. In

Francesco Logozzo, Doron Peled, and Lenore D. Zuck, editors,

VMCAI, volume 4905 of LNCS, pages 233–247. Springer, 2008.

[PW05] Andreas Podelski and Thomas Wies. Boolean Heaps. In Chris

Hankin and Igor Siveroni, editors, SAS, volume 3672 of LNCS,

pages 268–283. Springer, 2005.

182 Bibliography

[PXZ02] Amir Pnueli, Jessie Xu, and Lenore D. Zuck. Liveness with (0,

1, ∞)-Counter Abstraction. In Ed Brinksma and Kim Guld-

strand Larsen, editors, CAV, volume 2404 of LNCS, pages 107–

122. Springer, 2002.

[Rak06] Jan Rakow. Verification of Dynamic Communication Systems.

Master’s thesis, Carl von Ossietzky Universität Oldenburg, April

2006.

[Ren03] Arend Rensink. The GROOVE Simulator: A Tool for State Space

Generation. In John L. Pfaltz, Manfred Nagl, and Boris Böhlen,

editors, AGTIVE, volume 3062 of LNCS, pages 479–485. Springer,

2003.

[Roz97] Grzegorz Rozenberg, editor. Handbook of Graph Grammars and

Computing by Graph Transformations, Volume 1: Foundations.

World Scientific, 1997.

[SAH+00] Jørgen Staunstrup, Henrik Reif Andersen, Henrik Hulgaard, Jørn

Lind-Nielsen, Kim Guldstrand Larsen, Gerd Behrmann, K̊are J.

Kristoffersen, Arne Skou, Henrik Leerberg, and Niels Bo Theil-

gaard. Practical Verification of Embedded Software. IEEE Com-

puter, 33(5):68–75, 2000.

[Sas97] Tsutomu Sasao. Ternary decision diagrams: Survey. In Proc. of

ISMVL’97, pages 241–250, 1997.

[SB00] Fabio Somenzi and Roderick Bloem. Efficient Büchi Automata

from LTL Formulae. In E. Allen Emerson and A. Prasad Sistla, ed-

itors, CAV, volume 1855 of LNCS, pages 248–263. Springer, 2000.

[Sch00] Johann M. P. Schumann. Automated Theorem Proving in Software

Engineering. Springer-Verlag, 2000.

[Seg07] Marc Segelken. Abstraction and Counterexample-Guided Con-

struction of mega -Automata for Model Checking of Step-Discrete

Linear Hybrid Models. In Werner Damm and Holger Hermanns,

editors, CAV, volume 4590 of LNCS, pages 433–448. Springer,

2007.

[SG07] Sharon Shoham and Orna Grumberg. A game-based framework for

CTL counterexamples and 3-valued abstraction-refinement. ACM

Trans. Comput. Logic, 9(1):1, 2007.

[Sis94] A. Prasad Sistla. Safety, Liveness and Fairness in Temporal Logic.

Formal Asp. Comput., 6(5):495–512, 1994.

Bibliography 183

[SRW02] Shmuel Sagiv, Thomas W. Reps, and Reinhard Wilhelm. Para-

metric shape analysis via 3-valued logic. ACM Trans. Program.

Lang. Syst., 24(3):217–298, 2002.

[STMW04] Ingo Schinz, Tobe Toben, Christian Mrugalla, and Bernd West-

phal. The Rhapsody UML Verification Environment. In SEFM,

pages 174–183. IEEE Computer Society, 2004.

[Str00] Bjarne Stroustrup. The C++ Programming Language (Special 3rd

Edition). Addison-Wesley Professional, February 2000.

[SWJ08] Mayank Saksena, Oskar Wibling, and Bengt Jonsson. Graph

Grammar Modeling and Verification of Ad Hoc Routing Proto-

cols. In C. R. Ramakrishnan and Jakob Rehof, editors, TACAS,

volume 4963 of LNCS, pages 18–32. Springer, 2008.

[Tob07] Tobe Toben. Non-Interference Properties for Data-Type Reduc-

tion of Communicating Systems. In Jim Davies and Jeremy

Gibbons, editors, IFM, volume 4591 of LNCS, pages 619–638.

Springer, 2007.

[Tob08] Tobe Toben. Counterexample Guided Spotlight Abstraction Re-

finement. In Kenji Suzuki, Teruo Higashino, Keiichi Yasumoto,

and Khaled El-Fakih, editors, FORTE, volume 5048 of LNCS,

pages 21–36. Springer, 2008.

[Tse95] Chau-Wen Tseng. Communication Analysis for Shared and Dis-

tributed Memory Machines. In Proc. of the 7th IEEE Symposium

on Parallel and Distributed Processing, San Antonio, USA, Octo-

ber 1995.

[Tur36] Alan M. Turing. On Computable Numbers, with an Application

to the Entscheidungsproblem. Proceedings of the London Mathe-

matical Society, Second Series, 42:230–265, 1936.

[UNI02] UNISIG. Subset 026-ch. 3; vers. 2.2.2 (srs), March 2002.

http://www.aeif.org/.

[Var93] Pravin Varaiya. Smart cars on smart roads: problems of control.

IEEE Transactions on Automatic Control, 38(2):195–207, Febru-

ary 1993.

[Var01] Moshe Y. Vardi. Branching vs. Linear Time: Final Showdown. In

Tiziana Margaria and Wang Yi, editors, TACAS, volume 2031 of

LNCS, pages 1–22. Springer, 2001.

http://www.aeif.org/

184 Bibliography

[Var02] Moshe Y. Vardi. Model Checking: A Complexity-Theoretic Per-

spective (invited talk). Electr. Notes Theor. Comput. Sci., 68(4),

2002.

[Var04] Dániel Varró. Automated formal verification of visual modeling

languages by model checking. Software and System Modeling,

3(2):85–113, 2004.

[VM94] Björn Victor and Faron Moller. The Mobility Workbench - A Tool

for the π-Calculus. In David L. Dill, editor, CAV, volume 818 of

LNCS, pages 428–440. Springer, 1994.

[VW86] Moshe Y. Vardi and Pierre Wolper. An automata-theoretic ap-

proach to automatic program verification (preliminary report). In

LICS, pages 332–344. IEEE Computer Society, 1986.

[Wac05] Björn Wachter. Checking Universally Quantified Temporal Prop-

erties with three-valued Analysis. Master’s thesis, Universität des

Saarlandes, March 2005.

[Wei91] Mark Weiser. The Computer for the 21st Century. Scientific

American, February 1991.

[Wes06] Bernd Westphal. LSC Verification for UML Models with Un-

bounded Creation and Destruction. Electr. Notes Theor. Comput.

Sci., 144(3):133–145, 2006.

[Wes08] Bernd Westphal. Specification and Verification of Dynamic Topo-

logy Systems. PhD thesis, Carl von Ossietzky Universität Olden-

burg, Germany, 2008.

[WKZ+06] Thomas Wies, Viktor Kuncak, Karen Zee, Andreas Podelski, and

Martin C. Rinard. On Verifying Complex Properties using Sym-

bolic Shape Analysis. CoRR, abs/cs/0609104, 2006.

[WT06] Bernd Westphal and Tobe Toben. The Good, the Bad and the

Ugly: Well-Formedness of Live Sequence Charts. In Luciano Baresi

and Reiko Heckel, editors, FASE, volume 3922 of LNCS, pages

230–246. Springer, 2006.

[WW07] Björn Wachter and Bernd Westphal. The Spotlight Principle. In

Byron Cook and Andreas Podelski, editors, VMCAI, volume 4349

of LNCS, pages 182–198. Springer, 2007.

[WYKG08] Chao Wang, Zijiang Yang, Vineet Kahlon, and Aarti Gupta. Peep-

hole Partial Order Reduction. In C. R. Ramakrishnan and Jakob

Rehof, editors, TACAS, volume 4963 of LNCS, pages 382–396.

Springer, 2008.

Bibliography 185

[XLB02] Fei Xie, Vladimir Levin, and James C. Browne. ObjectCheck:

A Model Checking Tool for Executable Object-Oriented Software

System Designs. In Ralf-Detlef Kutsche and Herbert Weber, edi-

tors, FASE, volume 2306 of LNCS, pages 331–335. Springer, 2002.

[Yah01] Eran Yahav. Verifying Safety Properties of Concurrent Java Pro-

grams using 3-valued Logic. In POPL, pages 27–40, 2001.

[YR04] Eran Yahav and G. Ramalingam. Verifying Safety Properties using

Separation and Heterogeneous Abstractions. In William Pugh and

Craig Chambers, editors, PLDI, pages 25–34. ACM, 2004.

[YRS01] Eran Yahav, Thomas Reps, and Mooly Sagiv. LTL Model Check-

ing for Systems with Unbounded Number of Dynamically Created

Threads and Objects. Technical Report TR-1424, Computer Sci-

ences Department, Univ. of Wisconsin, Madison, WI, March 2001.

[YRSW06] Eran Yahav, Thomas W. Reps, Shmuel Sagiv, and Reinhard Wil-

helm. Verifying Temporal Heap Properties Specified via Evolution

Logic. Logic Journal of the IGPL, 14(5):755–783, 2006.

[ZG03] Paul Ziemann and Martin Gogolla. OCL Extended with Temporal

Logic. In Manfred Broy and Alexandre V. Zamulin, editors, Er-

shov Memorial Conference, volume 2890 of LNCS, pages 351–357.

Springer, 2003.

[ZP04] Lenore D. Zuck and Amir Pnueli. Model Checking and Abstrac-

tion to the Aid of Parameterized Systems. Computer Languages,

Systems & Structures, 30(3-4):139–169, 2004.

186 Bibliography

Appendix A

Proofs

Proof of Lemma 3.14 (page 30)

• The claim is trivially satisfied for the formula ‘tt’ as S[tt](V) = 1 for any

structure S ∈ StrucsS(Id⊥) and valuation V ∈ ValsId⊥(X) by Def. 3.12.

• S2[⊚x](e
I1
I2

(V)) = 1

⇒ [Def. 3.12 (Formula Evaluation)]

eI1I2(V(x)) ∈ U2 \ {⊥}

⇒ [Def. 3.10 (Structure Embedding)]

eI1I2(V(x)) = V(x) ∧ V(x) ∈ U1

⇒ [Def. 3.12 (Formula Evaluation)]

S1[⊚x](V) = 1

• S2[⊚x](V) = 0

Analogously to the previous case.

• S2[ps(x)](e
I1
I2

(V)) = b for b ∈ B

⇒ [Def. 3.12 (Formula Evaluation)]

ι2(ps)(e
I1
I2

(V(x))) = b

⇒ [Def. 3.10 (Structure Embedding)]

ι1(ps)(V(x)) = b

⇒ [Def. 3.12 (Formula Evaluation)]

S1[ps(x)](V) = b

• The cases for pl(x1, x2) and pl(x1) follow analogously to the previous case.

• S2[x1 = x2](e
I1
I2

(V)) = 1

⇒ [Def. 3.12 (Formula Evaluation)]

eI1I2(V(x1)) = eI1I2(V(x2)) = u with u ∈ I2 \ {⊥}

⇒ [Def. 3.8 (Embedding Function)]

V(x1) = V(x2) = u and u ∈ I1

187

188 Appendix A Proofs

⇒ [Def. 3.12 (Formula Evaluation)]

S1[x1 = x2](V) = 1

• S2[x1 = x2](V) = 0

Analogously to the previous case.

• The proofs for ¬ψ and ψ1∧ψ2 follow directly by the three-valued semantics

of the corresponding operator for negation and conjunction (cf. Rem. 2.4).

�

Proof of Lemma 3.17 (page 32)

Induction Base.

As T1 � T2, we have that for each initial state S1
0 ∈ S1

0 there exists an initial

state S2
0 ∈ S2

0 with S1
0 ∼ S2

0 , hence S1
0 ⋐ S2

0 . For the initial label, we set

L2
0 = eI1I2(L

1
0) which entails L1

0 ⋐ L2
0 by Def. 3.9.

Induction Step.

Let L1
i ∈ L1, L2

i ∈ L2, S1
i ∈ S2, S2

i ∈ S2 with L1
i ⋐ L2

i and S1
i ⋐ S2

i for some

i ∈ N. As T1 � T2, we have that for L1
i+1 ∈ L1 and S1

i+1 ∈ S1 there exist

L2
i+1 ∈ L2 and S2

i+1 ∈ S2 with L1
i+1 ∼ L2

i+1 and S1
i+1 ∼ S2

i+1, hence L1
i+1 ⋐ L2

i+1

and S1
i+1 ⋐ S2

i+1.

�

Proof of Remark 3.22 (page 38)

S
g

−−−→
r, I

S ′

⇐⇒ [Def. 3.21 (Evolution)]

∃V ∈ ValsI(vars(name)) such that the conditions of Def. 3.21 are satisfied

⇐⇒ [vars(name) = vars(guard) ∪ vars(stm)]

∃V ∈ ValsA(g)(vars(name)) such that

1. SMA(g)[guard](V) = 1

2. name[V] = g

3. S ′MA(g) = SMA(g)〈stm〉(V)

⇐⇒ [Def. 3.21 (Evolution)]

SMA(g)
g

−−−→
r, I

S ′MA(g)

�

Appendix A Proofs 189

Proof of Remark 4.4 (page 60)

Let O = F.

Case 1:

π[Fφ]i(V) = 0

⇒ [Def. 4.2 (Specification Evaluation)]

∀ k ≥ i : π[φ]i(V) = 0

⇒ [Def. 4.2 (Specification Evaluation)]

∀ k ≥ i : π[¬φ]i(V) = 1

⇒ [Def. 4.2 (Specification Evaluation)]

π[G¬φ]i(V) = 1

⇒ [Def. 4.2 (Specification Evaluation)]

π[¬G¬φ]i(V) = 0

Case 2:

π[Fφ]i(V) = 1

⇒ [Def. 4.2 (Specification Evaluation)]

∃ k ≥ i : π[φ]i(V) = 1

= [logical transformation]

¬(∀ k ≥ i : π[¬φ]i(V) = 1)

⇒ [Def. 4.2 (Specification Evaluation)]

¬(π[G¬φ]i(V) = 1)

⇒ [logical transformation]

π[G¬φ]i(V) ≤ 1/2

⇒ [Def. 4.2 (Specification Evaluation)]

π[¬G¬φ]i(V) ≥ 1/2

The cases for O = G and O = X follow analogously. �

Proof of Lemma 4.6 (page 60)

We show the contraposition, that is, T1[φ](V) ≤ 1/2 =⇒ T2[φ](eI1I2(V)) ≤ 1/2.

By the premise there is a run π1 = ((L1
i , S

1
i))i∈N0 ∈ Runs(T1) with π1[φ]0(V) ≤

1/2.

As T1 � T2, we can apply Lemma 3.17 to obtain a corresponding run π2 =

((L2
i , S

2
i))i∈N0 ∈ Runs(T2) with L1

i ⋐ L2
i and S1

i ⋐ S2
i for all i ∈ N0.

We show by induction over the structure of φ that this implies π2[φ]0(eI1I2(V)) ≤
1/2, which entails T2[φ](eI1I2(V)) ≤ 1/2 by Def. 4.5.

• The cases for φ ∈ Forms(PSL) follow directly by Lemma 3.14.

190 Appendix A Proofs

• For an evolution atom ae = pe(x1, . . . , xkpe
) ∈ AtomsS(PE), we have that

π1[ae]
i(V) ≤ 1/2 implies that L1

i 6= ae[V] by Def. 4.2 (Specification Satisfac-

tion). With L1
i ⋐ L2

i we have L2
i 6= ae[e

I1
I2

(V)] by Def. 3.9 (Ground Atom

Embedding), hence π2[ae]
i(eI1I2(V)) ≤ 1/2.

• π1[Xφ2]
i(V) ≤ 1/2

⇒ [Def. 4.2 (Specification Evaluation)]

π1[φ]i+1(V) ≤ 1/2 ∨ ⊥ ∈ A(L1
i+1)

⇒ [L1

i
⋐ L2

i
for all i ∈ N0]

π2[φ]i+1(eI1I2(V)) ≤ 1/2 ∨ ⊥ ∈ A(L2
i+1)

⇒ [Def. 4.2 (Specification Satisfaction)]

π2[Xφ2]
i(eI1I2(V)) ≤ 1/2

• π1[φ1 U φ2]
i(V) ≤ 1/2

⇒ [Def. 4.2 (Specification Satisfaction)]

∀ k ≥ i :
(
π1[φ2]

k(V) ≤ 1/2 ∨ ∃ j ∈ {i . . . k} : π1[φ1]
j(V) ≤ 1/2

)

∨ ∃ k ≥ i :
(
π1[φ1]

k(V) = 0 ∧ ∀ j ∈ {i . . . k} : π1[φ2]
j(V) = 0 ∧ ⊥ 6∈ A(Lj)

)

∨ ∀ k ≥ i : π1[φ2]
k(V) = 0 ∧ ⊥ 6∈ A(Lk) (⋆)

As L1
i ⋐ L2

i have ⊥ 6∈ A(L1
i) =⇒ ⊥ 6∈ A(L2

i) for all i ∈ N0, hence (⋆)

implies

∀ k ≥ i :
(
π2[φ2]

k(V) ≤ 1/2 ∨ ∃ j ∈ {i . . . k} : π2[φ1]
j(V) ≤ 1/2

)

∨ ∃ k ≥ i :
(
π2[φ1]

k(V) = 0 ∧ ∀ j ∈ {i . . . k} : π2[φ2]
j(V) = 0 ∧ ⊥ 6∈ A(Lj)

)

∨ ∀ k ≥ i : π2[φ2]
k(V) = 0 ∧ ⊥ 6∈ A(Lk)

which entails π2[φ1 U φ2]
i(eI1I2(V)) ≤ 1/2 by Def. 4.2 (Specification Satisfac-

tion).

• Fφ and Gφ are special cases of φ1 U φ2.

�

Proof of Lemma 5.3 (page 72)

We observe that a Two-Counter Machine M induces a transition system T(M) =

(S1,S1
0,L

1,→) where the states S1 := L×N0 ×N0 are configurations of M, the

initial state is S1
0 := {(l0, 0, 0)}, and the transition relation is the M-successor

relation, i.e. → := M, whereby each transition is labelled by the underlying

operation from L1 := {inc, dec, zero}.

Let D(M) be the Dynamic Evolution System over signature (X ,PS,PL,PE)

that encodes M according the Def. 5.2 (2CM Encoding), and JD(M), S0K =

Appendix A Proofs 191

(S2,S2
0,L

2,) its semantics according to Def. 3.25 (.) We define the encoded

configuration of a logical structure as a function cfg : S2 → L× N0 × N0 with

cfg(S) = (l,K0, K1) :⇐⇒ ∃u ∈ U : ι(l)(u) = 1∧K0 = |Sc0(u)|∧K1 = |Sc1(u)|

for some S = (U, ι) ∈ S where Sc(u) := {u′ ∈ U | ι(c)((u, u′)) = 1} denotes the

set of processes to which process u ∈ U is connected to via c ∈ PL.

We define the relation ∼ ⊆ (S1 ∪ L1) × (S2 ∪ L2) as

S1 ∼ S2 :⇐⇒ S1 = cfg(S2)

L1 ∼ L2 :⇐⇒ L1 = pe(L2)

where pe(L) denote the evolution predicate of a transition label L ∈ L2.

We show that both ∼ and ∼−1 are simulation relations according to Def. 3.16

by distinguishing between the three operations of a 2CM. We only discuss the

treatment of the first counter as the second counter can be shown analogously.

‘inc’: Let S1 = (l1, K1, K2)
inc
→ (l02, K1+1, K2) by an instruction (l1, inc, 0, l02, l

1
2) ∈

I. From the construction in Def. 5.2, there is a corresponding evolution rule

inc(x, x′) • l1(x) ∧ ¬⊚ x′ ◮ ⊛x′; c1(x, x
′); l02!(x) ∈ D(M). (A.1)

As S1 ∼ S2, that is, S1 = cfg(S2), we have that its guard is satisfiable in S2,

i.e. S2[l1(x) ∧ ¬⊚ x′](V) = 1 for some valuation V ∈ ValsId(X). Then there is

an evolution S2
L2
 S ′

2 with pe(L2) = inc and cfg(S ′
2) = (l02, K1 + 1, K2) by the

actions of rule (A.1), i.e. S ′
1 ∼ S ′

2.

For ∼−1, we assume that S2
L2
 S ′

2 with cfg(S2) = (l1, K1, K2) and pe(L2) =

inc. This implies the existence of the evolution rule (A.1) in D(M) such that

cfg(S ′
2) = (L0t2, K1 +1, K2), and, by the construction in Def. 5.2, a correspond-

ing instruction (l1, inc, 0, l02, l
1
2) ∈ I. As S1 ∼ S2, that is, S1 = (l1, K1, K2), there

exists a configuration S ′
1 = (l02, K1+1, K2) ∈ S1 with S1

inc
→ S ′

1, hence S ′
2 ∼

−1 S ′
1.

‘dec’: The decrement case can be handled analogously to the increment instruc-

tion by observing that the evolution rule

dec(x, x′) • l1(x) ∧ c1(x, x
′) ◮ ⊗x′;¬c1(x, x

′); l02!(x) ∈ D(M) (A.2)

corresponding to a decrement instruction (l1, dec, 0, l2) ∈ I ensures that any pos-

itive value of the first counter in the encoded configurations is exactly decreased

by one and the successor state l02 is entered.

‘zero’: Let S1 = (l1, 0, K2)
zero
→ (l02, 0, K2) by an instruction (l1, zero, 0, l

0
2, l

1
2) ∈ I.

The corresponding rule according to the construction in Def. 5.2

zero(x) • l1(x) ∧ ¬c0(x) ◮ l02!(x) ∈ D(M) (A.3)

192 Appendix A Proofs

is enabled in any structure S2 ∈ S2 where cfg(S2) = (l1, 0, K2) for some K2 ∈ N0

(cf. Def. 3.12). Then there is a transition S2
L2
 S ′

2 with pe(L2) = zero and

cfg(S ′
2) = (l02, 0, K2), hence S ′

1 ∼ S ′
2. For the opposite direction of simulation,

we have that S2
L2
 S ′

2 with pe(L2) = zero by rule (A.3) ensures the existence

of a zero instruction (l1, zero, 0, l
0
2, l

1
2) ∈ I such that for any configuration S1 =

(l1, 0, K2) we have S1
zero
→ (l02, 0, K2) =: S ′

1, hence S ′
2 ∼

−1 S ′
1.

Analogously, a negative test for zeroness is simulated by the evolution rule

zero(x) • l1(x) ∧ c0(x) ◮ l12!(x) ∈ D(M) (A.4)

By S0 := ({u}, {l0(u)}, ∅), we have that cfg(S2
0) = (l0, 0, 0) for any S2

0 ∈ S2
0,

hence S1
0 ∼ S2

0 and S2
0 ∼−1 S1

0 for all initial states S1
0 ∈ S1

0 and S2
0 ∈ S2

0.

If D(M), S0 6|= G¬l(x), we have that S2
0 99K S with cfg(S) = (l,K1, K2) for some

values K1, K2 ∈ N0 and S2
0 ∈ S2

0. Using the simulation relation ∼−1 from above,

we have that by by Lemma 3.17 there exists a corresponding run in T(M), that

is, M l. Analogously, M l entails that D(M), S0 6|= G¬l(x) by ∼.

�

Encoding of a Two-Counter-Machine as DCS (page 72)

Let M = (L, l0, I) be a 2CM. We construct the DCS C(M) = (M,MX ,P) with

messages M = {inc, dec, zero, last, done} and MX = ∅.

A configuration (l,K0, K1) of the 2CM is encoded byK0+K1+3 processes where

one process is in state l and each counterKi is represented by a linked list ofKi+

1 processes. For convenience, we employ two DCS protocols {m, c} = dom(P),

where the first protocol will initiate the commands and mimic the transition of

the 2CM while instances of the second protocol will serve as elements of the

counter lists. The behaviour of the latter protocol is thus responsible to extend

and shrink the interlinked list of processes.

We set P(m) = (Qm,Am,Fm,Cm, succm) with

• states Qm := L ∪ I, Am = {l0}, Fm = ∅,

• channels Cm = {c0, c1}, and

• transition relation

succm := {(l0, ∗
c0
c , l0), (l0, ∗

c1
c , l0)} ∪

{(l1, ci!op, inst), (inst, ?done, l02) | inst = (l1, op, i, l02, l
1
2) ∈ I} ∪

{(inst, ?last, l12) | inst = (l1, i, zero, l
0
2, l

1
2) ∈ I}

and P(c) = (Qc,Ac,Fc,Cc, succc) with

Appendix A Proofs 193

• states Qc := {head, tail, tailop, headop, tailinc2 | op ∈ {inc, dec, zero}}

• initial and fragile states ,Ac = {head} and Fc = ∅,

• channels Cc = {next, prev}, and

• transition relation

succc := {(tail, ?op(prev), tailop), (tailop, next!op, tail) | op ∈ {inc, dec}} ∪

{(tail, ?done(next), taildone), (taildone, prev!done, tail)} ∪

{(head, ?inc(prev), headinc), (headinc, ∗
next
head, headinc2), (headinc2 , prev!done, tail)} ∪

{(head, ?dec(prev), headdec), (headdec, prev!last, head)} ∪

{(tail, ?last(next), taillast), (taillast, prev!done, head)}

{(tail, ?zero(prev), tailzero), (tailzero, prev!last, tail)}

{(head, ?zero(prev), headzero), (headzero, prev!done, head)}.

We define the encoded configuration of a snapshot of the DCS C(M) as

cfg((U, ι)) = (l,K0, K1) :⇐⇒ ∃u ∈ U : ι(l)(u) = 1 ∧ ∀ i ∈ {0, 1} :

∃ui0 , . . . , uiKi
∈ U ∀ k ∈ {0, . . . , Ki−1} :

ι(tail)(uik) = 1 ∧ ι(next)(uik , uik+1
) = 1 ∧

ι(head)(uiKi
) = 1 ∧ ι(ci)(u, ui0) = 1

The correctness of the encoding follows analogously to the proof of Lemma 5.3

by observing that the evolutions of an encoded configuration simulates the in-

structions of M in a corresponding configuration.

�

Proof of Lemma 5.6 (page 75)

Let αI(S) = (U ♯, ι♯) be the spotlight abstraction of a logical structure S =

(U, ι) ∈ StrucsS(I ′) under I ⊆ I ′.

By Def. 5.5, we have that U ♯ = (U ∩ I) ∪ {⊥}, hence u ∈ U ⇐⇒ eI
′

I (u) ∈ U ♯

for all u ∈ I, that is, αI(S) preserves aliveness.

To show that ι♯ over-approximates ι we only have to consider the case where ι♯

yields a definitive value. If ι♯(p)(eI
′

I (u1), . . . , e
I′

I (upk
)) ∈ B we have

{eI
′

I (u1), . . . , e
I′

I (upk
)} ⊆ I

and hence

ι♯(p)(eI
′

I (u1), . . . , e
I′

I (upk
)) = ι(p)(u1, . . . , upk

)

by Def. 5.5 (Spotlight Abstraction) for some predicate p ∈ PSL.

�

194 Appendix A Proofs

Proof of Lemma 5.9 (page 77)

Let S
g

−−−→
r, I′

S ′
by the evolution rule r = (name, guard, stm) ∈ EvoRuleS .

Then by Def. 3.21, there exists a valuation V ∈ ValsI′(vars(name)) such that

1. S[guard](V) = 1,

2. g = name[V], and

3. S ′ = S〈stm〉(V).

By Lemma 5.6 we have that S ⋐ αI(S), hence αI(S)[guard](eI
′

I (V)) ≥ 1/2 (⋆)

by Lemma 3.14, that is, the rule r is enabled in αI(S).

We set S♯1 = αI(S), S♯2 = αI(S
′), and S♯stm = S♯1〈stm〉♯(eI

′

I (V)), and show that

S♯2 = S♯stm, that is,

αI(S
′) = S♯1〈stm〉♯(eI

′

I (V)). (⋆⋆)

• ‘stm = skip’. Then S ′ = S by Def. 3.20 and S♯stm = S♯1 by Def. 5.7, hence

S♯2 = S♯stm.

• ‘stm = stm(x1, . . . , xk)’.

Case 1: {V(x1), . . . ,V(xk)} ⊆ I.

Then S〈stm〉♯(V) = S〈stm〉(V) by Def. 5.7 (Abstract Statement Execution),

and SMran(V) = S♯1Mran(V) by Def. 5.5 (Spotlight Abstraction). This entails

S ′Mran(V) = S♯stmMran(V), thus S♯2 = S♯stm.

Case 2: {V(x1), . . . ,V(xk)} ⊃ I.

Then S〈stm〉♯(V) = S by Def. 5.7 (Abstract Statement Execution), and

S♯1 = S♯2 by Def. 5.5 (Spotlight Abstraction). This entails S♯2 = S♯stm.

As name[eI
′

I (V)] = αI(g) by Def. 5.5, we have with (⋆) and (⋆⋆) that

αI(S)
αI(g)
−−−→
r, I

♯ αI(S
′)

by Definition 5.8 (Abstract Evolution).

�

Proof of Theorem 5.12 (page 80)

Note that I = ran(V) such that both the abstract and the concrete evaluation

of the specification employs the same set of fairness constraints according to

Definitions 4.9 and 5.11.

Appendix A Proofs 195

Case 1: JD, SK♯I [φ](V) = 1

Let JD, SKI′ := (S,S0,L,→) and JD, SK♯I = (S♯,S♯0,L
♯,).

We show that JD, SKI′ � JD, SK♯I for the spotlight I ⊆ I ′ by the relation ∼ ⊆
(S × S♯) ∪ (L × L♯) defined as

R ∼ R♯ :⇐⇒ R♯ = αI(R).

This setting entails that L ∼ L♯ implies L ⋐ L♯ for any label L ∈ L by Def. 3.9,

and S ∼ S♯ implies S ⋐ S♯ for any state S ∈ S by Lem. 5.6.

Now consider two states S, S ′ ∈ S and a label L′ ∈ L with S
L
→ S ′, that is,

S
L

−−−→
D, I′

S ′.

By Lemma 5.9 this entails

αI(S)
αI(L)
−−−→
r, I

♯ αI(S
′)

thus αI(S)
αI(g)
 αI(S

′) by Def. 5.10 (Abstract DES Semantics). As S ′ ∼ αI(S
′)

and L ∼ αI(L), we have that ∼ is a simulation relation according to Def. 3.16.

For all initial states S0 ∈ S0 there exist a state S♯ = αI(S0) ∈ S♯0 by Def. 5.10 (Ab-

stract DES Semantics).

This entails JD, SKI′ � JD, SK♯I , and Lemma 4.6 ensures JD, SKI′ [φ](V) = 1.

Case 2: JD, SK♯I [φ](V♯) = 0

By the definition of the three-valued satisfaction relation (cf. Def. 4.5), there

exists a run π♯ = ((Li, Si))i∈N0 ∈ FairRunsI(JD, SK
♯
I) with

π♯[φ]0(V) = 0

and ⊥ 6∈ A(Li) for all i ∈ N0.

Following Remark 3.22 (Locality) we have

π♯ ∈ Runs(JD, SKJ)

where J :=
⋃

i∈N0
A(Li), i.e. the run is contained in the J-underapproximated

semantics of D where J comprises all identities of the involved evolutions.

As I ⊆ I ′ we have J ⊆ I ′, thus by Lemma 3.26 (Under-approximation) there

exists a run π ∈ Runs(JD, SKI′) with π|J = π♯, hence π[φ]0(V) = 0. This entails

JD, SKI′ [φ](V) = 0 by Def. 4.10.

�

196 Appendix A Proofs

Proof of Lemma 5.15 (page 81)

Let JD, SKI′ = (S,S0,L,→) ∈ TS(I ′).

Requirement (1) of Def. 5.14 follows directly from the construction of the con-

crete semantics of DES as given in Def. 3.25.

Let (S, g, S ′) ∈ →. Then by Def. 3.25 we have

S
g

−−−→
r, I′

S ′

by some evolution rule r = (name, guard, stm) ∈ D. From the definition of

permutations in Def. 3.24 we obtain

1. σ(S)[guard](σ(V)) = 1,

2. σ(g) = name[σ(V)], and

3. σ(S ′) = σ(S)〈stm〉(σ(V)).

This implies σ(S)
σ(g)

−−−→
r, I′

σ(S ′) by Def. 3.21, thus (σ(S), σ(g), σ(S ′)) ∈ →.

�

Proof of Lemma 6.3 (page 98)

DSJφK

= [Def. 4.10 (Concrete Semantics)]

min{JD, SK[φ](V) ∈ B | V ∈ ValsId(vars(φ))}

= [Lem. 5.17 (Query Reduction)]

min{JD, SK[φ](V) ∈ B | V ∈ ValBasis(vars(φ))} (⋆)

Let X ′ := vars(φ) \X be the disjoint partitioning induced by the given set of

variables X, and let I := ran(V|X′) for some valuation V ∈ ValBasis(vars(φ)).

We apply Thm. 5.12 to obtain

JD, SK[φ](V) ⊑ JD, SK♯I [φ](V♯)

where V♯ := V|X′ ·VX with VX(x) := ⊥ for each x ∈ X. Thus we obtain

(⋆) ⊑ min{ JD, SK♯
ran(V)[φ](V♯) ∈ B3 | V ∈ ValBasis(X ′)}

which entails (⋆) ⊑ D
♯
S,XJφK by Def. 5.18.

�

Appendix A Proofs 197

Proof of Theorem 6.6 (page 99)

Case 1: D
♯
S,XJ(θ=1) → φK = 0

⇒ [Def. 6.2 (Abstract Satisfaction), Def. 4.2 (Specification Satisfaction)]

∃V ′ ∈ V ·VX ∃π♯ ∈ Runs(JD, SK♯
ran(V)) : π♯[θ]0(V ′) = 1 ∧ π♯[φ]0(V) = 0

⇒ [Def. 4.2 (Specification Satisfaction)]

D
♯
SJφK = 0

⇒ [Lemma 5.19 (Embedding)]

DI
SJφK = 0

Case 2: D
♯
S,XJ(θ=1) → φK = 1

⇒ [Def. 6.2 (Abstract Satisfaction)]

∀V ′ ∈ V ·VX ∀π♯ ∈ Runs(JD, SK♯
ran(V)) : π♯[θ=1]0(V ′) = 0 ∨ π♯[φ]0(V) = 1

⇒ [logical transformation]

∀V ′ ∈ V ·VX ∀π♯ ∈ Runs(JD, SK♯
ran(V)) : π♯[θ]0(V ′) ≤ 1/2 ∨ π♯[φ]0(V) = 1

⇒ [X ⊆ evovars(θ), Rem. 4.7 (Definiteness)]

∀V ′ ∈ V ·VX ∀π♯ ∈ Runs(JD, SK♯
ran(V)) : π♯[θ]0(V ′) = 0 ∨ π♯[φ]0(V) = 1

⇒ [Thm. 5.12 (Spotlight Embedding)]

∀V ∈ ValsI(vars(φ)) ∀π ∈ Runs(JD, SKI) : π[θ]0(V) = 0 ∨ π[φ]0(V) = 1

⇒ [DI

S
Jθ ∨ φK = 1 (as θ is evolution constraint for D and φ))]

∀V ∈ ValsI(vars(φ)) ∀π ∈ Runs(JD, SKI) : π[φ]0(V) = 1

⇒ [Def. 4.10]

DI
SJφK = 1 �

Proof of Lemma 6.12 (page 107)

S2MF = αI2(S1MF)

⇐⇒ [Def. 5.5 (Spotlight Abstraction), Def. 3.7 (Focus)]

There is a valuation V ∈ ValsF (X) such that for each atom a = p(x1, . . . , xkp
) ∈

AtomsX (PSL ∪ {⊚}), we have

S2MF [â](V) = 1 ⇐⇒ αI2(S1MF)[â](V) = 1

where â ∈ {a,¬a}.

⇐⇒ [Def. 6.11 (Structure Formula)]

αI2(S1MF)[expr(S2MF ,V)](V)

⇐⇒ [Def. 5.5 (Spotlight Abstraction) and Def. 3.7 (Focus) with F = ran(V) ⊆ I2]

S1[expr(S2MF ,V)](V)

�

198 Appendix A Proofs

Proof of Theorem 6.14 (page 108)

We show the contraposition.

Let δ = (((Li, Si))0≤i≤n,V) ∈ Cex(DS, φ) be an abstract counterexample.

DSJ¬(ϕ(δ) ∧ ¬φ)K = 0

⇐⇒ [Def. 4.2 (Specification Satisfaction)]

There exists valuations V ∈ ValsId(vars(φ)) and V ′ ∈ ValsId(vars(ϕ(δ))) with

V ′|dom(V) = V and a run π′ = ((L′
i, S

′
i))i∈N0 ∈ Runs(JD, SK) with

π′[ϕ(δ)]0(V ′) = 1 (⋆) and π′[φ]0(V) = 0 (⋆⋆).

⇐⇒ [(⋆), Def. 6.13 (Counterexample Spec.), Def. 4.2 (Specification Satisfaction)]

There exists a monotone function f : ⊥(δ) → N0 such that

π′[evo(Li,V , i) ∧ expr(SiMA(Li),V)]f(i)(V ′) = 1

for all i ∈ ⊥(δ).

⇐⇒ [Lem. 6.12 (Spotlight Formula) with F := A(Li) ⊆ ran(V)]

For all i ∈ ⊥(δ), Li = αran(V)(L
′
f(i)) and SiMA(Li) = αran(V)(S

′
f(i)MA(Li)).

⇐⇒ [(⋆⋆), Def. 6.8 (Counterexample Concretisation)]

∃π′ ∈ Runs(JD, SK) : π′ ∈ γ(δ)

⇐⇒ [Def. 6.9 (Spurious Counterexample)]

¬ (̥δ) �

Proof of Lemma 6.19 (page 114)

Let S = (X ,PS,PL,PE) be a signature and δi = (π,V) ∈ Cex(DS, θi → φ) with

θi := (¬ϕ(δ1)=1) ∧ . . . ∧ (¬ϕ(δi−1)=1)

be the abstract counterexample obtained in the i-th iteration of algorithm 1b.

π[θi → φ]0(V) = 1/2

=⇒ [semantics of →, π[θ=1]i(V) ∈ B]

π[θi]
0(V) = 1 and π[φ]0(V) = 1/2

=⇒ [logical transformation]

π[¬ϕ(δj)=1]0(V) = 1 for all 1 ≤ j < i.

Appendix A Proofs 199

By Def. 6.13 (Counterexample Specification) we have π[ϕ(δi)=1]0(V) = 1, hence

π[ϕ(δi)=1 ∧
∧

1≤j<i

¬ϕ(δj)=1]0(V) = 1 (⋆)

Now let nF-SpecsS denote the set of nested-finally specifications over S, gener-

ated by the grammar

η ::= F(ψ ∧ η1) | tt

where ψ ∈ Forms(P) is a formula.

For η1, η2 ∈ nF-SpecsS , we write η1 ∈∈ η2 to denote that η1 is a subformula of η2.

By Def. 4.2 have have that the satisfaction of η2 implies the satisfaction of the

subformula η1, that is

D
♯
X,SJ(η2 =1) → (η1 =1)K = 1 (⋆⋆)

for variables X ⊆ X .

Now assume that algorithm 1b diverges. As PSL is a finite set of predicates,

we eventually reach iteration k where ϕ(δj) ∈∈ ϕ(δk) for some j < k, that is,

we generate a counterexample specification for which a subformula has already

been generated before. With (⋆) this entails

π[(ϕ(δk)=1) ∧
∧

1≤i<k

(¬ϕ(δi)=1)]0(V) = 1

which is a contradiction to (⋆⋆). Thus algorithm 1b terminates. �

Proof of Lemma 6.21 (page 117)

As S ′ is reachable from S by L′, there exists a run π = ((Li, Si))i∈N0 ∈
Runs(JD, SK) with S = Si and (L′, S ′) = (Lj, Sj) for some i, j ∈ N0 with i ≤ j.

Let K := {i, k1, . . . , kn, j} ⊂ N0 be the maximal set of values with

• i < k1 < . . . < kn < j, and

• (Lk, Sk)[φ]0(Vk) = 0 for some valuation Vk ∈ ValsId(vars(φ)) for all k ∈ K,

and

• (Ll, Sl)[φ]0(V) = 1 for all valuations V ∈ ValsId(vars(φ)) and l ∈ {i, . . . , j}\
K.

Note that |K| ≥ 1 as (Lj, Sj) is a violation of φ from S. Then (LminK , SminK)

is a minimal violation of φ from S by Def. 6.20.

�

200 Appendix A Proofs

Proof of Lemma 6.23 (page 118)

Let JD, SK = (S,S0,L,→) and φ′ := (
∧

σ∈Σ σ(¬φ)) U φ.

“⇒” (via contraposition):

D 6|= ¬(φ′)

=⇒ [Def. 4.10 (DES Satisfaction)]

∃V ∈ ValsId(X), π = ((Li, Si))i∈N0 ∈ Runs(JD, SK) : π[¬φ′]0(V) = 0

=⇒ [Def. 4.2 (Specification Satisfaction)]

∃ i ∈ N0 : π[¬φ]i(V) = 0

=⇒ [Def. 4.2 (Specification Satisfaction)]

∃ i ∈ N0 : π[φ]i(V) = 1

=⇒ [Def. 4.10 (DES Satisfaction)]

D 6|= ¬Fφ

“⇐” (via contraposition):

D 6|= ¬Fφ

=⇒ [Def. 4.10 (DES Satisfaction)]

∃V ∈ ValsId(X), π = ((Li, Si))i∈N0 ∈ Runs(JD, SK) : π[Fφ]0(V) = 1

=⇒ [Def. 4.2 (Specification Satisfaction)]

∃ j ∈ N0 : π[φ]j(V) = 1

=⇒ [Def. 4.2 (Specification Satisfaction)]

∃ j ∈ N0 : π[¬φ]j(V) = 0

=⇒ [Def. 6.20 (Minimal Violation)]

(Lj, Sj) is a violation ¬φ from S0

=⇒ [Lem. 6.21 (Minimal Violation)]

∃ (Lk, Sk) ∈ L × S : S0

¬φ
99K• (Lk, Sk)

=⇒ [Def. 6.21 (Minimal Violation)]

∃π′ = ((L
′

i, S
′

i))i∈N0 ∈ Runs(JD, SK) such that

1. π′[¬φ]k(V ′) = 0 for some valuation V ′ ∈ ValsId(X), and

2. π′[¬φ]l(V ′′) = 1 for all valuations V ′′ ∈ ValsId(X) and all 0 ≤ l < k.

=⇒ [Def. 4.2 (Specification Satisfaction)]

π′[φ′]0(V ′) = 1

=⇒ [Def. 4.2 (Specification Satisfaction)]

π′[¬φ′]0(V ′) = 0

=⇒ [Def. 4.10 (DES Satisfaction)]

D 6|= ¬φ′

�

Appendix A Proofs 201

Proof of Lemma 6.25 (page 119)

Let δ = (((Lδi , S
δ
i))i∈N0 ,Vδ) ∈ Cex(CS, φ).

“⇒”:

(̥δ)

=⇒ [Theorem 6.14 (Counterexample Validation)]

DSJ¬(ϕ(δ) ∧ ¬φ)K = 1

=⇒ [DSJ¬ϕ(δ)K = 1 =⇒ DSJ¬ϕU(δ)K = 1 by Def. 4.2 (Specification Satisfaction)]

DSJ¬(ϕU(δ) ∧ ¬φ)K = 1

“⇐” (via contraposition):

¬ (̥δ)

=⇒ [Theorem 6.14 (Counterexample Validation)]

∃π′ = ((L
′

i, S
′

i))i∈N0 ∈ Runs(JD, SK),V ∈ ValsId(X) : π′[ϕ(δ) ∧ ¬φ]0(V) = 1 (⋆)

We show by induction over the nesting depth of ϕU(δ) the existence of a run

π = ((Li, Si))i∈N0 ∈ Runs(JD, SK) with π[ϕU(δ) ∧ ¬φ]0(V) = 1 and (Li, Si) =

(L′
i, S

′
i) for all i ∈ ⊥(δ).

Induction Base.

For a nesting depth of zero we have ϕU(δ)0 = ϕ(δ)0 = tt and set π = π′.

Induction Step.

By induction hypothesis we have a run π ∈ Runs(JD, SK) with

π[τ(Lδi , S
δ
i ,Vδ, i)]

f(i)(V) = 1

By (⋆) we have that Sf(i) 99K (Lf(i+1), Sf(i+1)) with

π[τ(Lδi+1, S
δ
i+1,Vδ, i+ 1)]f(i+1)(V) = 1

Assume there exists a pair (Lk, Sk) with i < k < f(i) with (Lk, S) = (σ(Lf(i)), Sk =

σ(Sf(i)) for a permutation σ ∈ ΣXf(i)
(vars(τ(Lδi+1, S

δ
i+1,Vδ, i+1))). This implies

(Li, Si) 99K (Lk), Sk) and (Lk, Sk) 99K (Lf(i+1), Sf(i+1)).

We can iteratively apply this relation until we obtain the identity permutation

of (Lf(i+1), Sf(i+1)). So we can construct a continuation of π/i with (Li, Si) 99K

(L′
k, S

′
k) where (L′

k, S
′
k) = (σn(L′

k), σ
n(S ′

k)) and (Ll, Sl) 6= (σ′(L′
k), σ

′(S ′
k)) for

any permutation σ′ ∈ ΣXf(i)
(vars(τ(Lδi+1, S

δ
i+1,Vδ, i+ 1))). This implies

π[(ΣXi+1
(¬τ(Li+1, Si+1,V , n+1))) U τ(Li+1, Si+1,V , i+ 1)]f(i+1)(V) = 1

by Def. 6.22 (Formula Permutation) and π[¬φ]f(i+1)(V) by the induction hypoth-

esis.

�

202 Appendix A Proofs

Proof of Lemma 6.27 (page 121)

Let ai ∈ {a1, . . . , an} = ⊥(δ) and

δ′ = (((L1
i , S

1
i))0≤i≤n1 ,V

′)

δ = (((L2
i , S

2
i))0≤i≤n2 ,V).

As δ′ ∈ Cex(DS,¬(ϕU(δ) ∧ ¬φ)) there exists j, k ∈ {0, . . . , len(δ′)} such that

j = max{f(ai−1), 0} and k = f(ai) according to Def. 6.8 (Counterexample Con-

cretisations).

As δ′[ϕU(δ)i]j(V ′) = 1 we have that there is no permutation σ ∈ ΣA(S1
k
) with

δ′[σ(τ(L1
k, S

1
k ,V

′, k + 1)]l(V ′) = 1

for l ∈ {j, . . . , k}. Thus δ′ does not cover δ according to Def. 6.26.

�

Proof of Lemma 6.35 (page 131)

Let ((S,Π), rcv[m](u1, u2), (S
′,Π′)) ∈ succK . By Def. 3.31 (DES Semantics of

DCS) this implies a corresponding send evolution

((Sm,Πm), snd[m](u2, u1), (S
′
m,Π

′
m)) ∈ succK

with (S ′
s,Π

′
s)) 99K (S,Π) induced by a send transition trs = (qs, c!m, q

′
s) ∈ succ.

For Ss = (U, ι) we obtain ι(c)(u2, u1) = 1 by Def. 3.31. We distinguish between

the two possibilities how the interpretation of predicate ‘c’ for (u2, u1) becomes

1.

Case 1: There is a create transition tr⋆ = (q, ∗c
t , q) ∈ succ with tr⋆

c
 trs which

denotes reachability on a transition path without modification of channel c, i.e.

tr
c
 tr′ :⇐⇒ ∃ tr0, tr1, . . . , trn ∈ PathsC(tr) : trn = tr′ ∧

∀ i ∈ {1, . . . , n} : chan(tri) = c → kind(tri) = snd

This entails by Def. 6.31 (Reply Messages) that m ∈ ⊳M(⋆) and ⊳N(⋆) > 1. The

corresponding create evolution

((S⋆,Π⋆), create[t](u2, u1), (S
′
⋆,Π

′
⋆)) ∈ succK

with (S ′
⋆,Π

′
⋆) 99K (Ss,Πs) ensures that Π((u1, u2), E) > 1 for some E ⊆ {m} by

the K-augmentation of JD(C)KI according to Def. 6.34.

Appendix A Proofs 203

Case 2: There is a receive transition trr = (qr, ?m
′(c), qr) ∈ succ with trr

c
 trs.

This entails m ∈ ⊳M(m′) and ⊳N(m′) > 1. The corresponding send evolution for

m′

((Sm′ ,Πm′), snd[m′](u1, u2), (S
′
m′ ,Π′

m′)) ∈ succK

with (S ′
m′ ,Π′

m′) 99K (Ss,Πs) ensures that Π((u1, u2), E)> 1 for some E ⊆ {m}
by the K-augmentation of JD(C)KI according to Def. 6.34. Note that m′ can in

particular be an environment message.

�

Proof of Theorem 6.37 (page 132)

Let π = (Li, (Si,Πi))i∈N0 ∈ Runs(JD(C)KK) be a run and V ∈ ValsI(X) a

valuation.

π[X rcv[m](x, y)]i(V) = 1

=⇒ [Def. 4.2 (Specification Satisfaction)]

Li+1 = rcv[m](x, y)[V]

=⇒ [Lem. 6.35 (Positive Counter)]

∃E ∈ dom(Πc
K) : m ∈ E ∧ Πi((V(x),V(y), E) > 1

=⇒ [Def. 6.36 (Counter Formula)]

π[m+(x, y)]i(V) = 1

=⇒ [logical implication]

π[X rcv[m](x, y) → m+(x, y)]i(V) = 1

This entails by Definition 4.10 (DES Specification Evaluation) that D(Ck) |= ϕ(m)

and by Definition 6.5 (Evolution Constraint) that ϕ(m) is an evolution constraint

for CK .

�

204 Appendix A Proofs

Appendix B

Tool Samples

This appendix gives a first impression of the developed tool implementation

SARMC (Spotlight Abstraction Refinement Model-Checker, cf. Sect. 7.1). To

this end, we provide the textual representations of both the model and the

specifications for the running adhoc networking DES example Ad, and we show

the console output when invoking the SARMC tool on these examples.

The DES model of Ad is specified in an XML document called ‘adhoc.xml’

which we list at the end of this section. The two specifications (cf. Sect. 7.2.1)

φ2 = G
(
¬sl(x)

)

φ4 = G
(
link(x1, x2) → ¬⊖x1

)

are provided in simple text files as follows:

$ cat 2.speck

forall x . G (! sl(x))

$ cat 4.speck

forall x,y . G (link(x,y) -> !(-)x)

Calling the SARMC for verification produces the following outputs which corre-
spond to the data given in the tables in Section 7.2.1:

$ sarmc -v adhoc.xml 2.speck

(stats) depth: 0 -- iteration: 0 -- spotlight: 1

(speck) forall x . G (! sl(x))

(spot) 1

(return) 1/2

(stats) depth: 1 -- iteration: 0 -- spotlight: 2

(speck) forall x,b0 . !((!(con(x,bot) * (o)x * sl(x) * !link(x,x)) *

!(con(b0,bot) * (o)b0 * sl(b0) * !link(b0,b0)) * TRUE) U (con(x,b0) *

(o)x * sl(x) * !link(x,x)) * (TRUE)) + (G (! sl(x)))

205

206 Appendix B Tool Samples

(spot) 2

(return) 0

(result) Specification is violated (see 2.speck.wfv).

The output indicates the current level of iteration recursion and maximal spot-

light for the current specification. The current size of the spotlight required for

the actual valution is given in the ‘(spot)’ lines. The ‘(return)’ lines denote

the three-valued result of the current verification task. The final ‘(result)’

line gives the return value of the overall verification task for the given model

and initial specification. In this example, the resulting counterexample is stored

in the file ‘2.speck.wfv’, which can be visualised by the trace-viewer tool as

shown in Figure 7.2 on page 147.

$ sarmc -v adhoc.xml 4.speck

(stats) depth: 0 -- iteration: 0 -- spotlight: 2

(speck) forall x,y . G (link(x,y) -> !(-)x)

(spot) 2

(return) 1/2

(stats) depth: 1 -- iteration: 0 -- spotlight: 3

(speck) forall x,y,b0 . !((!(dis(bot,x) * (o)x * dev(x) * !link(x,x) *

link(x,y)) * !(dis(bot,b0) * (o)b0 * dev(b0) * !link(b0,b0) *

link(b0,y)) * !(dis(bot,x) * (o)x * dev(x) * !link(x,x) * link(x,b0)) *

!(dis(bot,y) * (o)y * dev(y) * !link(y,y) * link(y,x)) * !(dis(bot,b0) *

(o)b0 * dev(b0) * !link(b0,b0) * link(b0,x)) * !(dis(bot,y) * (o)y *

dev(y) * !link(y,y) * link(y,b0)) * TRUE) U (dis(b0,x) * (o)x * dev(x) *

!link(x,x) * link(x,y)) * (TRUE)) + (G (link(x,y) -> !(-)x))

(spot) 1

(spot) 2

(spot) 2

(spot) 2

(spot) 3

(return) 1

(evocon) !((F(dis(bot,x) * (o)x * dev(x) * !link(x,x) * link(x,y)))

(stats) depth: 0 -- iteration: 1 -- spotlight: 2

(speck) forall x,y . ((!((F(dis(bot,x) * (o)x * dev(x) * !link(x,x) *

link(x,y)) * TRUE))) * TRUE) -> (G (link(x,y) -> !(-)x))

(spot) 2

(return) 1

(result) Specification holds.

Appendix B Tool Samples 207

Finally, we present the XML description of the Ad model.

$ cat adhoc.xml

<des name=”adhoc” author=” tobe ” xmlns=” ht tp : //www. avacs . org /

des ” xmlns :x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s t anc e ”

xs i : s chemaLocat ion=” ht tp : //www. avacs . org /des d e s l i b . xsd”>

<s i gna tu r e>

<s t a t e s>

<pr ed i c a t e name=”dev” a r i t y=”1”/>

<pr ed i c a t e name=” s l ” a r i t y=”1”/>

<pr ed i c a t e name=”ma” a r i t y=”1”/>

</ s t a t e s>

< l i n k s>

<pr ed i c a t e name=” l i n k ” a r i t y=”2”/>

</ l i n k s>

<evo l u t i on s>

<pr ed i c a t e name=”new” a r i t y=”1”/>

<pr ed i c a t e name=”con” a r i t y=”2”/>

<pr ed i c a t e name=” d i s ” a r i t y=”2”/>

<pr ed i c a t e name=” f r e e ” a r i t y=”1”/>

<pr ed i c a t e name=” de l ” a r i t y=”1”/>

</ evo l u t i on s>

<va r i a b l e s>

<va r i ab l e name=”x”/>

<va r i ab l e name=”y”/>

</ v a r i a b l e s>

</ s i gna tu r e>

<r u l e s>

<r u l e name=”new”>

<params>

<param name=”x”/>

</params>

<guard>

<dead><param name=”x”/></dead>

</guard>

<a c t i on s>

<c r e a t e><param name=”x”/></ c r e a t e>

<ac t i on name=”dev” ow=” true ”><param name=”x”/></ ac t i on>

</ a c t i on s>

</ ru l e>

208 Appendix B Tool Samples

<r u l e name=”con”>

<params>

<param name=”x”/>

<param name=”y”/>

</params>

<guard>

<term name=”dev”><param name=”x”/></term>

<s t r i n g name=”and”/>

<s t r i n g name=” (”/>

<term name=”dev”><param name=”y”/></term>

<s t r i n g name=”or ”/>

<term name=”ma”><param name=”y”/></term>

<s t r i n g name=”) ”/>

<s t r i n g name=”and”/>

<neq>

<param name=”x”/>

<param name=”y”/>

</neq>

</guard>

<a c t i on s>

<ac t i on name=” s l ” ow=” true ”><param name=”x”/></ ac t i on>

<ac t i on name=”ma” ow=” true ”><param name=”y”/></ ac t i on>

<ac t i on name=” l i n k ”>

<param name=”x”/>

<param name=”y”/>

</ ac t i on>

<ac t i on name=” l i n k ”>

<param name=”y”/>

<param name=”x”/>

</ ac t i on>

</ a c t i on s>

</ ru l e>

<r u l e name=” d i s ”>

<params>

<param name=”x”/>

<param name=”y”/>

</params>

<guard>

<term name=”ma”><param name=”x”/></term>

<s t r i n g name=”and”/>

<term name=” l i n k ”>

<param name=”x”/>

Appendix B Tool Samples 209

<param name=”y”/>

</term>

</guard>

<a c t i on s>

<ac t i on name=”dev”><param name=”y”/></ ac t i on>

<ac t i on name=” l i n k ” negate=” true ”>

<param name=”x”/>

<param name=”y”/>

</ ac t i on>

<ac t i on name=” l i n k ” negate=” true ”>

<param name=”y”/>

<param name=”x”/>

</ ac t i on>

</ a c t i on s>

</ ru l e>

<r u l e name=” f r e e ”>

<params><param name=”x”/></params>

<guard>

<term name=”ma”><param name=”x”/></term>

<s t r i n g name=”and not”/>

<term name=” l i n k ”><param name=”x”/></term>

</guard>

<a c t i on s>

<ac t i on name=”dev” ow=” true ”><param name=”x”/></ ac t i on>

</ a c t i on s>

</ ru l e>

<r u l e name=” de l ”>

<params><param name=”x”/></params>

<guard>

<term name=”dev”><param name=”x”/></term>

</guard>

<a c t i on s>

<ac t i on name=”dev” negate=” true ”><param name=”x”/></

ac t i on>

<dest roy><param name=”x”/></ des t roy>

</ a c t i on s>

</ ru l e>

</ r u l e s>

</des>

210 Appendix B Tool Samples

Index

Symbols

Ad (adhoc DES) 35

B3 (three-valued domain) 15

δ (counterexample) 102

� (concretisation) 103

C ∈ DCS (DCS) 44

P (DCS protocol) 44

⊲ (enabled messages) 127

⊳ (reply messages) 128

∪̇ (disjoint union) 9

D ∈ DS (DES) . 34

JD, SK . 39

JD, SKI . 39

JD, SK♯I . 78

ψ ∈ Forms(P) (formula) 27

≫ (coverage) . 121

⊥ (abstract identity) 18

I⊥ . 18

Id (identities) . 18

ι ∈ InterI(P) (interpretation) 21

⊑ (information order) 15

⊚ (alive) . 27, 65

⊕ (dead) . 28

⊖ (disappearing) 54, 56

⊗ (destroy) . 33

⊙ (appearing) 54, 56

⊛ (create) . 33

T = (S,S0,L,→) (LTS) 11

π ∈ Runs(T) (run) 11

|= (satisfaction) 14, 63

σ (permutation) 38

S = (X ,PS ,PL,PE) (signature) . . . 20

� (simulation) 32

≈ (similarity) . 32

φ ∈ SpecsS (specification) 54

̥ (spurious) . 105

stm ∈ StmsS (statement) 33

a! (overwrite modifier) 34

S = (U, ι) ∈ StrucsS(I) 22

 (2CM reachability) 70

a ∈ AtomsX(P) (atom) 10

a[V] . 21

99K (LTS reachability) 12

V ∈ ValsI(X) (valuation) 21

A(g) (arguments) 21

g ∈ GroundAtomsI(P) 21

⋐ (embedding) 25

A

abstraction . 2, 14

refinement 3, 15

adhoc networking 6, 85, 145

AℓℓTL . 65

ARCS . 152

ATL . 167

atom (a) . 10

ground (a[V]) 21

B

bluetooth . 6

branching time logic see CTL

C

car platooning 1, 155

LSC . 158

reply messages 157

split manoeuvre 156

Car2Car Consortium 156

case split . 136

CEGAR . 3, 100

211

212 Index

progress . 114

CEGSAR . 134

algorithm 1 110

algorithm 2 120

progress 114, 120

communication constraint . . 132, 143

compassion constraints 61

counter abstraction 86, 129

counterexample (δ) 102

abstract . 104

concretisation 103

coverage . 121

discoverage 121

evolution constraint 110, 113

specification 108

strict . 118

spurious 3, 85, 105, 113

validation 108, 113, 119

CTL . 13, 97

cutoff value (K) 129

D

dangling link 19, 29

data-type reduction 3

DCS . 5, 44

actions . 43

communication 46

counter formula 132

enabled messages 127

environment messages (MX) . . 44

example (Cad) 45

message counter 130

message dependency 123–127

messages (M) 44

METT . 66

protocol . 44

channel names (C) 44

fragile states (F) 44

initial states (A) 44

states (Q) 44

transition relation (succ) . . . 44

protocol function (P) 44

reply messages 128

semantics . 47

signature . 46

translation 47

DES . 34

abstract semantics 78

abstract spec. evaluation 83

adhoc example (Ad) 35

embedding 83

evolution . 36

abstract 76, 77

locality . 38

lossy . 168

model-checking problem 70

semantics . 39

specification evaluation 62

symmetry 37, 81

under-approximation 40

dynamic comm. system see DCS

dynamic evolution system . . see DES

E

embedding . 25

DES . 83

ground atom 25

logical structure 26

specification 80

spotlight abstraction 75

environment abstraction 88

environment message 43

ETCS . 1

ETTS . 49

EvoCTL∗ . 66

evolution . 19

constraint 98, 99, 143

DES . 36

locality . 38

predicates (PE) 20

rule . 33–34

guard . 34

name . 34

statement 34

F

fairness 61, 79, 155

Index 213

FIFO queue . 167

finite counting 129

first-order modal logic 66

formula (ψ) . 27

evaluation . 28

permutation 117

function . 9

domain (dom(·)) 9

modification (f [x 7→ y]) 10

range (ran(·)) 9

restriction (f |X) 10

union (f1 ·f2) 10

G

graph transformation system 50

verification 137

ground atom (g) 21

arguments . 21

embedding 25

permutation 38

spotlight abstraction 74

H

hand-over pattern 152

I

identity see process identity

identity blurring 90

K

Kripke structure 12

L

labelled transition system . . . see LTS

linear time logic see LTL

link predicates (PL) 20

liveness 13, 59, 61, 91, 155

logical structure (S) 22

embedding 26

evolution . 40

focus (M) 24, 107

graphical notation 23

permutation 39

spotlight abstraction 74

LSC . 63, 158

temporal logic 65, 159

LTL . 13, 53

LTS . 11

initial states (S0) 11

labels (L) . 11

reachability 12

run (π) . 11

states (S) . 11

structured see SLTS

transition relation (→) 11

M

MANET . 6

message interference 124, 134

message parameter 43

minimal violation 116

model-checking 1, 12, 83

N

NaℓℓTL . 65

non-interference lemma 135

O

OCL . 66, 137

P

parameterized systems 51, 67

verification 138

partial order reduction 166

partner abstraction 88, 135

PATH project 156

permutation . 38

formula . 117

π-calculus 51, 72, 138

pointer programs 51

predicate (p) 10, 20

arity (kp) . 20

interpretation (ι) 18, 21

predicate abstraction 89

indexed . 89

premature disappearance 29, 63

process

configuration 19

214 Index

identities (Id) 18

identity (u) 18

permutation 38

re-use . 19

Q

query reduction 80–82

R

relation . 9

S

safety . 13, 59

SARMC (tool) . 142

satisfaction relation

three-valued 95

sequence . 11

length (len(·)) 11

shadow refinement 97, 99

shape analysis 87, 138

hierarchical 88

symbolic . 88

signature (S) . 20

simulation preorder 14

SLTS . 31

counter augmentation 130

simulation . 32

specification evaluation 60

symmetry . 81

snapshot . 18

specification logic 5, 54

contraction 118

definite violation 57, 94

definiteness 61

duality . 59

evaluation . 57

SLTS . 60

examples . 55

fair evaluation 62, 79

liveness . 91

preservation 60

SPIN . 166

spotlight abstraction 3, 73

embedding 75

finite . 80

ground atom 74

intuition . 78

logical structure 74

refinement 4, 94, 135

stateless 76, 123

spotlight extension 94–96

state predicates (PS) 20

stateless representation . . 76, 96, 123

statement . 33

execution . 35

abstract 76, 77

overwrite modifier (!) 34

structure see logical structure

T

tail heuristic 122, 143, 150

temporal logic 13, 53

adequate set 59

ternary decision diagram 166

theorem-proving 1

three-valued logic 15, 57

domain (B3) 15

indefinite value (1/2) 15

information order (⊑) 15

trace-viewer . 146

transition system 11

TVLA . 138

Two-Counter Machine 70

Two-Counter machine 174

U

ubiquitous computing 1

UML . 51

verification 139

V

variable (x) . 20

valuation . 21

basis . 82

permutation 38

VIS . 142

VTL, ETL . 65

Curriculum Vitae

Tobe Toben, born 16.11.1975 in Wilhelmshaven, Germany

1982 - 1995 school in Wittmund, Germany

1995 - 1996 alternative civilian service in Wittmund, Germany

10/1996 - 02/2002 study of computer science at the Carl von Ossietzky Univer-

sität Oldenburg, Germany

02/2002 - 01/2004 research assistent at the OFFIS institute for computer sci-

ence in Oldenburg, Germany

since 02/2004 research assistent at the Carl von Ossietzky Universität Ol-

denburg, Germany

February 2009 defense of the dissertation

	Analysis of Dynamic Evolution Systems by Spotlight Abstraction Refinement
	Abstract
	Zusammenfassung
	Acknowledgements
	Table of Contents
	List of Figures
	Introduction
	Abstraction and Refinement
	Running Example
	Structure

	Preliminaries
	Notations
	Basic Formalisms
	Model-Checking
	Three-Valued Logic

	Modelling Dynamic Evolution Systems
	Intuition
	Semantical Domain
	Logical Structures
	Structured Labelled Transition Systems

	Dynamic Evolution Systems
	Syntax
	Semantics
	Discussion

	Dynamic Communication Systems
	Syntax
	Semantics

	Related Work

	Requirement Specification for DES
	Syntax
	Three-Valued Semantics
	Specification Intricacies
	Related Work

	Analysis of Dynamic Evolution Systems
	Undecidability Results
	Abstraction of Dynamic Systems
	Spotlight Abstraction
	Query Reduction
	Model Checking

	Related Work

	Spotlight Abstraction Refinement
	Refinement Strategies
	Spotlight Extension
	Shadow Refinement

	Counterexample Guided Refinement
	Identifying Spurious Counterexamples
	Abstraction Refinement Loop
	Progress Property

	Communication Based Refinement
	Intuition
	Message Dependencies
	Message Counting
	Discussion

	Related Work

	Evaluation
	Tool Support
	Case Studies
	AdHoc Networking
	Public/Private Servers
	Automated Rail Cars System
	Car Platooning

	Discussion

	Conclusion
	Summary
	Perspectives

	Bibliography
	Proofs
	Tool Samples
	Index
	Curriculum Vitae

