
Fakultät II – Informatik, Wirtschafts- und Rechtswissenschaften

Department für Informatik

Efficient State Space Exploration
of Reactive Object-Oriented Programs

Dissertation zur Erlangung des Grades eines

Doktors der Naturwissenschaften

von

Dipl.-Inform. Marc Lettrari

Gutachter:

Prof. Dr. Werner Damm

Prof. Dr. Ernst-Rüdiger Olderog

Tag der Disputation: 25. November 2005

http://www.bis.uni-oldenburg.de/publikationen/dissertation/2006/leteff05/leteff05.html
http://www.bis.uni-oldenburg.de/publikationen/dissertation/2006/leteff05/leteff05.html

Zusammenfassung

Für im Bereich sicherheitskritischer Systeme eingesetzte Programme, die häufig reaktiv
und zunehmend in objekt-orientierten Sprachen wie z.B. C++ realisiert sind, ist ein
möglichst fehlerfreier Ablauf wichtig. Ein Ansatz zum Aufspüren möglicher Fehler in
solchen Programmen ist das sogenannte Software Model Checking, das im Gegensatz zum
herkömmlichen Testen einen im Idealfall vollständigen Nachweis der Fehlerfreiheit eines
Programmes durchführen kann. In der Praxis gelingt solch ein Nachweis, der auf einer
vollständigen Zustandsexploration der zugrundeliegenden Programme beruht, aufgrund
der Größe der Zustandsräume der betrachteten Programme eher selten. Doch selbst
wenn eine vollständige Zustandsexploration nicht durchgeführt werden kann, können
partielle Zustandsexplorationen durch Software Model Checker sehr hilfreich sein, da
mit ihnen Fehler entdeckt werden können, die durch herkömmliches Testen nur schwer
zu finden sind.

In dieser Arbeit wird ein neuer Ansatz zur Zustandsexploration von eingebetteten
C++ Programmen vorgestellt, der eine effiziente Suche nach Fehlern oder Zuständen
mit bestimmten Eigenschaften erlaubt. Da C++ standardmäßig keine Sprachmittel zur
Beschreibung von Parallelität und Synchronisation bereitstellt, benutzen eingebettete
C++ Programme in der Regel betriebssystemspezifische Funktionen zur Realisierung von
Parallelität bzw. Synchronisation. Um eine einheitliche Behandlung solcher Programme
zu ermöglichen, wird zunächst eine Erweiterung von C++ um die Konzepte Parallelität
und Synchronisation vorgestellt, die wir SymC++ nennen.

Basierend auf einer Analyse bestehender Verfahren zur Zustandsexploration von Pro-
grammen sowie der Identifikation von Ansatzpunkten zur Verbesserung dieser Verfahren,
werden im Anschluss daran zwei neue Techniken für eine effiziente Zustandsexploration
von SymC++ Programmen vorgestellt. Der erste Ansatz beruht auf einer kombinierten
explizit-symbolischen Darstellung von Zustandsmengen von SymC++ Programmen.
Diese Darstellungsform erlaubt auf der einen Seite eine kompakte Repräsentation von
großen Zustandsmengen und auf der anderen Seite eine effiziente Realisierung von
Operationen auf diesen Zustandsmengen, die für eine effiziente Zustandsexploration
benötigt werden. Insbesondere können bekannte Approximationsalgorithmen, die zu
Leistungsverbesserungen des Explorationsalgorithmus führen, mittels geeigneter Anpas-
sungen an diese Darstellungsform angewendet werden. Die Effizienz der entwickelten
Techniken wird anhand mehrerer Testprogramme experimentell evaluiert.

Der zweite Ansatz beruht auf der Anwendung heuristischer Suchmethoden in der
Zustandsexploration. Im Gegensatz zu den vorher betrachteten uninformierten Suchal-
gorithmen wie Breitensuche oder Tiefensuche benutzen heuristische Suchverfahren dy-

namisch Informationen, die die Suche gezielt in Richtung eines Zustands mit bestimmten
Eigenschaften lenken sollen. Wir entwickeln einen neuen Ansatz zur automatischen
Berechnung solcher Informationen aus SymC++ Programmen. Dazu wird zunächst
eine Abstraktion des zugrundeliegenden Programms generiert. Auf der Basis der gener-
ierten Abstraktion und einer gegebenen Eigenschaft wird dann eine heuristische Funk-
tion berechnet, die zur heuristischen Zustandsexploration des ursprünglichen Programms
eingesetzt werden kann. Wiederum wird die Effizienz der entwickelten Methode anhand
mehrerer Testprogramme experimentell evaluiert.

Abstract

For programs employed in safety critical systems, which are often reactive and imple-
mented in object-oriented programming languages like e.g. C++, an error-free function-
ing is important. So-called Software Model Checking is an approach that can be used to
find potential errors in such programs. In contrast to traditional testing methods com-
monly used for software validation, software model checkers can potentially prove the
absence of errors in programs. Unfortunately, in practice such a proof, which is based on
a complete state space exploration of the considered programs, is seldom possible due
to the size of the state spaces of the programs. However, even if a complete state space
exploration is impossible, partial state space explorations performed by software model
checkers can be very useful since they can track down errors that are hard to detect by
traditional testing methods.

In this thesis we present a new approach for state space exploration of embedded C++
programs. The developed state space exploration methods allow an efficient search to-
wards program states characterized by a user-defined property. Since C++ by default
does not provide language constructs dealing with concurrency and synchronization, em-
bedded C++ programs often use operating system specific library functions for realizing
concurrency and synchronization. To facilitate a uniform treatment of such programs,
we define an extension SymC++ that extends C++ with the concepts of concurrency
and synchronization.

Based on an analysis of existing methods for state space exploration of programs and
the identification of starting points for improvements, in the sequel we present two new
approaches for an efficient state space exploration of SymC++ programs. The first
approach is based upon a composite explicit-symbolic representation of sets of states of
SymC++ programs. The proposed representation allows on the one hand a compact
characterization of large sets of states, and on the other hand an efficient realization
of operations on these representations that are necessary for an efficient state space
exploration. In particular, it is possible to adapt known approximation algorithms to
this representation, increasing the efficiency of state space exploration. The efficiency of
the developed techniques are evaluated experimentally by means of several test programs.

The second approach is based on the application of heuristic search techniques for
state space exploration. In contrast to uninformed search algorithms like breadth-first
search or depth-first search, heuristic search algorithms dynamically utilize information
that should guide the search towards states with a specific property. We develop a new
approach for computing such information automatically for SymC++ programs. For
this purpose we firstly generate an abstraction w.r.t. a given property of the considered

SymC++ program. Based on this abstraction we compute a heuristic function that
can be used for a heuristic state space exploration of the original program. Again, the
efficiency of the approach is evaluated experimentally by means of several test programs.

Danksagung

Ich möchte folgenden Personen danken, die in unterschiedlicher Weise zur Erstellung
dieser Arbeit beigetragen haben:

• Prof. Dr. Werner Damm, der mir die Möglichkeit gegeben hat, diese Arbeit zu er-
stellen und mir die nötigen Freiräume ließ, eigene Ideen zu entwickeln und umzuset-
zen.

• Allen aktuellen und ehemaligen Kolleginnen und Kollegen der Abteilung Sicher-
heitskritische Systeme für eine entspannte und angenehme Arbeitsatmosphäre. Ein
besonderer Dank geht an Christian Mrugalla für die oft stundenlange Klärung se-
mantischer Aspekte von C++.

• Allen Mitarbeitern der OSC Embedded Systems AG für die kostenlose Bereitstel-
lung von ca. 100 Litern Kaffee, die wesentlich zur Aufmerksamkeitssteigerung des
Verfassers beigetragen haben.

• Allen aktuellen und ehemaligen Mannschaftskollegen des TSV Ueffeln für die
fußballerischen Erfolge der letzten Jahre und die nötige sportliche Abwechslung.

• Meiner Familie, insbesondere meinen Eltern, die mir den Weg durch das Studium
ebneten und durch ihr beständiges Interesse am Fortschritt dieser Arbeit nicht
unwesentlich zur Fertigstellung beigetragen haben.

• Barbara, dass Du Dein Leben mit mir teilst, mich in Allem unterstützt und immer
an mich geglaubt hast. Danke für alles.

Contents

1 Introduction 13

1.1 Reactive Systems . 14

1.2 Verification and Validation . 15

1.3 Models and Programs . 18

1.4 Partial and Heuristic State Space Exploration 20

1.5 Organization of the Thesis . 22

2 Related Work and Design Decisions 25

2.1 Model Checking . 26

2.2 Heuristic Search . 29

2.3 Observations and Design Decisions . 32

2.4 Other Related Work . 35

3 SymC++ and Cmin 37

3.1 Overview of SymC++ . 37

3.1.1 C++ . 38

3.1.2 SymC++ Extensions and Limitations 42

3.2 Cmin . 44

3.3 Properties of Cmin programs . 55

3.4 Translating SymC++ to Cmin . 56

3.5 Test Programs . 67

3.5.1 Rhapsody UML Models . 67

3.5.2 Overview of test programs . 70

4 Explicit-Symbolic State Space Exploration 73

4.1 Explicit State Representation . 75

4.1.1 Dynamic Object Creation and Symmetries 79

4.1.2 Approximated Duplicate Detection 89

4.1.3 State Storage Reduction . 93

4.1.4 Experimental Results . 97

4.2 Explicit-Symbolic State Representation 101

4.2.1 Experimental Results . 117

4.3 Summary of results . 120

4.4 Related Work . 120

7

Contents

5 Heuristic State Space Exploration 123

5.1 Abstraction of Cmin programs . 126
5.1.1 Cfin . 126
5.1.2 Relation between Cmin and Cfin 129
5.1.3 Translating Cmin to Cfin . 134
5.1.4 Further Abstraction . 148

5.2 Abstraction-based Heuristic State Space Exploration 154
5.3 Experimental Results . 162

5.3.1 Summary of results . 167
5.4 Related Work . 169

6 Conclusion and Future Work 171

6.1 Summary of Contributions . 171
6.2 Future Work . 172

Bibliography 175

A SymC++ Restrictions 185

B PBX Sample Program 187

8

List of Figures

1.1 Reactive control program . 14

1.2 Models and Programs . 18

1.3 Complete and Partial State Space Exploration 21

2.1 Problems of C++ state space exploration 25

2.2 General state expanding exploration algorithm 26

2.3 Model Checking tools . 27

2.4 Heuristic Search Algorithm . 29

2.5 Uninformed and informed search . 30

2.6 Heuristic Search in Model Checking . 31

3.1 Pointers in C++ . 40

3.2 Starting memory configuration . 46

3.3 Memory configuration after initialisation 47

3.4 Type-based partitioning functions . 51

3.5 Translating class hierarchies . 59

3.6 Linearized Functions . 62

3.7 Translating function calls and returns . 64

3.8 Translating threads . 66

3.9 UML Model . 68

3.10 SymC++ UML framework . 69

4.1 General state expanding exploration algorithm 74

4.2 Explicit State Vectors . 76

4.3 Organization of All . 78

4.4 Symmetric configurations . 80

4.5 Exploring canonical states . 85

4.6 Exponential number of symmetric states 87

4.7 Duplicate detection of symmetric states 88

4.8 Approximative canonization by type-based object placement 89

4.9 Reconstructing states using symmetric configuration differences 91

4.10 Organization of All using configuration differences 92

4.11 Intermediate states . 94

4.12 Cycles in the state graph without exits . 95

9

List of Figures

4.13 Next reductions using backjumps and counters 97

4.14 Results for PBX (Explicit-State) . 98

4.15 Results for SMS (Explicit-State) . 98

4.16 Results for Dishwasher (Explicit-State) . 98

4.17 Results for CANBus (Explicit-State) . 99

4.18 Results for ARCS (Explicit-State) . 99

4.19 Results for Elevator (Explicit-State) . 99

4.20 Results for Pacemaker (Explicit-State) . 100

4.21 Results for HomeHeating (Explicit-State) 100

4.22 Results for HomeAlarm (Explicit-State) 100

4.23 Results for TCU (Explicit-State) . 101

4.24 Symbolic states . 104

4.25 Organization of All with symbolic states 114

4.26 Approximated symbolic duplicate detection 115

4.27 Organization of All with approximated symbolic duplicate detection . . . 116

4.28 Results for PBX (Explicit-Symbolic) . 117

4.29 Results for SMS(Explicit-Symbolic) . 117

4.30 Results for Dishwasher (Explicit-Symbolic) 117

4.31 Results for CANBus (Explicit-Symbolic) 118

4.32 Results for ARCS (Explicit-Symbolic) . 118

4.33 Results for Elevator (Explicit-Symbolic) 118

4.34 Results for Pacemaker (Explicit-Symbolic) 118

4.35 Results for HomeHeating (Explicit-Symbolic) 118

4.36 Results for HomeAlarm (Explicit-Symbolic) 118

4.37 Results for TCU (Explicit-Symbolic) . 119

4.38 Number of false duplicates . 119

5.1 Abstraction-based heuristic search procedure 124

5.2 Abstractions as heuristic functions . 125

5.3 π-corresponding states . 131

5.4 π-correspondence and dynamic object creation 136

5.5 The overall abstraction process . 154

5.6 Generation of the abstraction-based heuristic 156

5.7 Weighted A* algorithm . 157

5.8 Abstraction-based heuristic state space exploration 158

5.9 Saving an exponential number of states with heuristic state space exploration159

5.10 Abstraction-Refinement . 160

5.11 Results for PBX (Heuristic) . 162

5.12 Results for SMS (Heuristic) . 163

5.13 Results for Dishwasher (Heuristic) . 163

5.14 Results for CANBus (Heuristic) . 164

5.15 Results for ARCS (Heuristic) . 164

5.16 Results for Elevator (Heuristic) . 165

10

List of Figures

5.17 Results for Pacemaker (Heuristic) . 165
5.18 Results for HomeHeating (Heuristic) . 166
5.19 Results for HomeAlarm (Heuristic) . 166
5.20 Results for TCU (Heuristic) . 167
5.21 Summary of exploration results . 168
5.22 Summary of abstraction and exploration times 168

B.1 Object model diagram of class PBX . 187
B.2 Object model diagram of class Connection 188
B.3 Browser view for PBX . 189
B.4 Statechart of class PBX . 193
B.5 Statechart of class Telephone . 194
B.6 Statechart of class Line . 195
B.7 Statechart of class Connection . 196

11

List of Figures

12

1 Introduction

Nowadays, computers and computer programs are ubiquitous. We are confronted with
them when the programmable alarm-clock wakes us up in the morning. Several hidden
embedded computers surround us when we are driving in our cars to our workplaces,
where we use a key with a small computer inside to open the programmable lock of the
office door. We need several computer programs during work, and when we are back
at home in the evening we look at moving pictures generated by a computer program
inside our digital television. Hundreds of computers and computer programs control and
influence our daily life, most of them without being noticed by us.

The development of these systems is a complicated task. In fact, modern computer
systems are the most complicated structures mankind has ever built in its history: Mod-
ern microprocessors are implemented by millions of transistors, and computer programs
can consist of millions of lines of code. Therefore, it is no wonder that these systems
often have errors that can lead to malfunctions. The steadily growing size of these sys-
tems makes it important to avoid errors. If we assume that the number of errors in
these systems grows with their size, it becomes clear that the larger the systems are,
the more errors they will contain, and the probability that they will actually work is
reduced. This can have seriously economical risks for the manufacturers.

Besides the possibly economical risks, errors in so-called safety critical systems are
even more critical. A system is safety critical if a faulty behavior of the system can lead
to considerable damage of objects or humans. A good illustration of a serious failure of
a safety critical system is what happened September 14, 1993 on the runway at Warsaw
airport in Poland. A Lufthansa Airbus A320-200 with 72 people on board was landing in
heavy rain. The plane did not get much traction from the wheels in the landing gear on
the wet runway, but the pilots knew that they could count on the thrust reversers on the
main engines to bring the plane to a stop. As it happened, the thrust reversers failed to
deploy in time, and the plane overshot the end of the runway. A thrust reverser should
never be activated when a plane is in flight. Most planes have elaborate protection
built-in to prevent this from happening. Among other things the protection includes the
check of three conditions: the landing gear must be down, the wheels must be turning,
and the weight of the plane must be carried on the wheels. In this case the landing
gear was down, but the wheels were aquaplaning, and an unexpected tailwind provided
enough lift on the wings that the control software did not decide until nine seconds after
touchdown that the plane had landed. Two people lost their lives when the plane went
off the end of the runway.

Whether due to economical or safety reasons, it is clear that every computer controlled
system should have as few errors as possible. This thesis deals with the problem of the

13

1 Introduction

Technical System

Reactive /
Embedded System

Reactive Program

Figure 1.1: Reactive Programs. Schematic view of an reactive control program as a
component of an embedded system.

correctness of programs that realize such safety critical systems. In the following we will
shortly describe some characteristics of these systems.

1.1 Reactive Systems

Reactive systems are systems that somehow have to react to events coming from its
environment. Figure 1.1 shows the typical structure of a reactive system. A reactive
system is often a so-called embedded system, i.e., it is often a part of a bigger technical
system. In contrast to e. g. transformational systems like compilers, which perform some
computations on the given input and then terminate, reactive systems continuously
interact with their environment. Furthermore, unlike an interactive system like e. g. a
graphical user interface of an operating system, a reactive system normally must be fast
enough to react on a given environment event before the next event from the environment
occurs. For this reason, reactive systems often have to satisfy some real-time constraints
and therefore fall into the category of real-time systems.

As described in the example of the Airbus crash in the preceding section, reactive
systems often have to react and control several systems simultaneously. To achieve this
goal, reactive systems are often realized as concurrent systems. This means that these
systems consist of a couple of concurrent threads that may be dynamically generated and
aborted. The proper scheduling and synchronization of the threads must be designed
carefully because wrong scheduling or synchronization can lead to faults like deadlocks
or unintentional changes of variable values. For instance, when two threads concurrently
access a shared resource, then the access to the shared resource has to be protected so

14

1.2 Verification and Validation

that only one of the two threads can use the resource at a time.

There are many different ways to actually implement a reactive system. If execution
speed should be as fast as possible, one might suggest a complete hardware solution.
However, this would also be the most expensive solution, because the development of a
hardware circuit is much more expensive than that for an equivalent software compo-
nent. Furthermore, the performance of modern microprocessors is so good that often
elaborate hardware designs are not much faster than optimized programs running on a
microprocessor. Additionally, the systems to be realized are getting increasingly com-
plex, often using complex data types and heavily interacting threads. Because of the
increasing complexity and the lower costs, more and more reactive systems are at least
partly realized by reactive programs as it is depicted in fig. 1.1, where a reactive pro-
gram is running as a part of the reactive system. Aside from the better handling of the
complexity and the lower costs, the use of software for reactive systems also increases
the flexibility and maintainability by allowing software updates, as it is already common
for e.g. engine control software in modern cars.

In this thesis, we are dealing with reactive programs realizing reactive systems. As
we are concerned with the correctness of such programs, we will give a short overview
about verification and validation methods of computer programs in the next section.

1.2 Verification and Validation

The terms verification and validation describe procedures for establishing the correctness
of programs. To check the correctness of a program firstly one has to define the properties
the program should have. For instance, a program to calculate the sum of n integers
should have the property that, given i1, · · · , in integers as inputs, the program should
actually compute

∑n
i=0 in as the result. A program is said to be correct if it fulfills all

properties stated for that program. Verification and validation differ in their methods
and achievable results when it comes to demonstrate the correctness of programs.

The term validation includes techniques like simulation, testing and debugging, which
are currently the standard methods used in industry to validate the correctness of pro-
grams. Simulation and testing usually involve providing certain inputs and observing the
corresponding outputs. All these techniques are normally carried out manually, which
has both assets and drawbacks. An experienced programmer often has a good intuition
where possible errors reside, and therefore he can often find these errors quickly. How-
ever, the programmer’s intuition can also be a serious problem when there are errors in
the program that only show up under unusual circumstances. For instance, the Airbus
crash described in the introduction only occurred because of the unforeseen combination
of multiple events. In fact, when using testing and simulation for validation of programs
one can never be sure if errors still reside in the program because testing and simulation
are inherently incomplete, i.e. with these techniques one can normally only check a sub-
set of all possible behaviors. To overcome the limitations of these incomplete methods
the approach of formal verification has been suggested. While simulation and testing

15

1 Introduction

explore some of the possible behaviors of the system, formal verification tries to conduct
an exhaustive exploration of all possible behaviors. Thus, when a program is declared
correct with respect to given properties by a complete formal verification method, it im-
plies that all behaviors have been explored which could potentially influence the stated
properties.

Several approaches to formal verification have been proposed over the years. They can
be roughly classified into deductive and enumerative methods. In a deductive approach,
both the program and the properties to be checked are described by means of formulas
of a particular logic. Based on the logic’s underlying axioms and proof rules one tries
to deductively verify the given properties w.r.t the program. Early approaches in this
area stem from Floyd [Flo67] and Hoare [Hoa69], who proposed guarantee commitment
style proof rules for computer programs: Given that Φ and q were formulas of some
predicate logic and P is a program statement, then the Hoare triple {Φ}P{q} means
that if Φ holds in the starting state of P and P terminates then the property q holds.
In a Hoare triple Φ is called the precondition and q is called the postcondition. Based
on Hoare’s work several extensions for other classes of programs were proposed, e.g. for
concurrent [OG76a, OG76b] or distributed programs [AFdR80, LG81]. One problem of
these approaches is that they consider solely transformational programs, i.e. programs
that compute an output from some inputs and then terminate. To be able to handle re-
active programs adequately, Pnueli [Pnu77] used temporal logic to describe properties of
reactive programs. Within the framework of temporal logic many interesting properties
of reactive programs such as mutual exclusion or deadlock freedom can be described. A
detailed description of this approach can be found in [MP91].

A major problem of all deductive methods is the fact that it is quite hard to manually
prove a program to be correct. Even for small programs and persons with experience
using the proof-method it may require a lot of time to realize the proof completely,
and for larger programs it is practically impossible. Therefore, one often makes use of
so-called theorem provers, which are programs that can realize proofs automatically or
semi-automatically. There exist theorem provers for many different logics, e.g. provers
for first order predicate logic (ACL2 [KM94], LP [GG88]) or several higher order logics
(HOL [GM93], PVS [ORSS95], Isabelle [Pau94]). With the help of theorem provers many
necessary proof steps can be done automatically, and there are some impressive examples
using theorem proving approach, e.g. the verification of microprocessors AAMP5 [MS95].
However, even with automated theorem provers it is a hard task to verify a program. It is
important to realize that some mathematical tasks cannot be performed automatically,
which is an important result of the theory of computability [HU79]. In particular, it
shows that there cannot be an algorithm that decides whether an arbitrary computer
program terminates or has any other nontrivial property. Thus, most proof systems
cannot be completely automated, and therefore the decisive proof steps must often be
done manually.

In contrast to the proof-based methods, the enumerative methods try to verify the
correctness of a program w.r.t. a given property by exhaustively exploring the possible
computations of a program. A configuration or state of a program can be seen as a

16

1.3 Models and Programs

vertex in a directed graph, and a computation step corresponds to an edge from the
vertex representing the state before the computation step to the edge corresponding to
the state after the computation step. In this directed graph, the set of states reachable
from the starting states of the program is called the state space of the program. Given
a property usually formulated in some temporal logic, a so-called model checking algo-
rithm traverses the state graph of the program in order to find out if the property holds
for this program or not. When the state space of the program is finite and sufficient
computational resources are available, a model checking procedure will always terminate
with a definite yes/no answer. Model checking was developed independently by Clarke,
Emerson & Sistla [CE81, CES86] and Queille & Sifakis [QS82, QS83]. The main limita-
tion of this approach is that for larger programs or programs with parallel components
the reachable state space can be tremendously large, a problem usually called the state
explosion problem. For instance, a program using only two 32-bit integer variables can
have potentially 264 ≈ 1.8 · 1019 reachable states. To cope with such large state spaces,
a couple of different techniques have been developed. For instance, for concurrent pro-
grams which run asynchronously so-called partial order reductions can be applied. This
technique exploits the independence of concurrently executed events. Two events are
independent of each other when executing them in either order results in the same global
state. When a property to be checked cannot distinguish between two interleaving se-
quences that differ only by the order in which concurrently executed events are taken, it
is sufficient to analyze only one of them, thus reducing the number of states that must be
explored for model checking. Another approach to tackle large state spaces is to repre-
sent sets of states rather than individual states. The key idea is that sets of states can be
efficiently represented symbolically, i.e. the symbolic representation of all states in a set
can be much more compact than an individual representation of all states in the set, an
approach which is called symbolic model checking [BCMD90, BCM+92, BCM90]. Often
the well-known binary decision diagrams (BDDs, [Bry86]) are employed for the symbolic
representation, e.g. in the model checker SMV [McM93], but also other symbolic repre-
sentations like linear arithmetic constraints [DP01] have been used for model checking.
With an appropriate symbolic representation model checking is even applicable to sys-
tems with infinite state spaces provided that the number of symbolic states is finite.
For instance, model checkers for so-called timed automata which have to deal with the
infinite domain time use finite state symbolic representations, e.g. the timed automata
model checkers Uppaal [BLL+95] and Kronos [Yof97]. Though there have been many
improvements regarding the size of systems which can be analyzed by model checking,
the state explosion problem is still one of the main obstacles of automatic verification.
The next section explains another problem which lies in the discrepancy between what
can be verified and what is actually used for implementing reactive programs.

17

1 Introduction

1.3 Models and Programs

Besides the complexity problems of manual and automatic verification, one of the main
problems in the employment of verification techniques for real systems is the fact that
the system must be specified in the verification language, which is usually not the imple-
mentation language of the system. Figure 1.2 explains this discrepancy by showing the
current possibilities of automatic verification. Most automatic verification methods work
on a representation of the system which is usually much more abstract than the repre-
sentation of the same system as a program in a common programming language (v. fig.
1.2 left). Many different languages were developed for describing such abstract models,
e.g. the so-called synchronous languages Esterel [BC85, BdS91], Signal [BG90, BGJ91],
Lustre [CPHP87, CPHR91] or Statecharts [Har87, HN96, HP96]. While this is on the
one hand an advantage as to verification because the simplicity of the abstract model
allows an easier verification, it constitutes a serious problem on the other hand.

One problem is that sometimes certain aspects of the real system cannot be described
adequately in the abstract model. But even if all essential aspects of the system can be
described in the abstract model, usually not all aspects of a realization or implementation

Model

Program Binary

void main() {
int i = func1 ();

 ...
}

1001011101
0010111011
1011100110

Model
Properties

Program
Properties

Binary
Properties

Validation
 &
Verification

Validation
 &
(Restricted)
Verification

Validation

Figure 1.2: Validation and Verification for different system representations.
For abstract system representations (left) as e.g. finite state machines, au-
tomatic validation and verification methods are available. For programs of
common programming languages (middle) like C, C++ or Java, in most cases
only validation methods like testing are used. However, in recent times soft-
ware model checkers have been applied that are able to verify the correctness
of programs which use certain subsets of available language constructs. For
the deployed system including the hardware components and the compiled
binary program (right), only testing can be used to validate the correctness
of the system.

18

1.3 Models and Programs

of the system can be modeled. Therefore, even if properties can be verified to hold in the
abstract model, the same properties need not necessarily hold in an implementation of
the abstract model. In general, the problem of deriving a correct implementation from
an abstract model is an open problem.

Another problem lies in the practical applicability of automatic verification. As men-
tioned above, to be able to perform an automatic verification one has to have a model in
a verification language. However, for most existing systems there exists only the source
code of the program realizing the system. If we want to prove something about these
systems, one has to manually build an abstract version of the program in the verifica-
tion language, a process that is often complex, time consuming and error prone. Even
if a new system has to be developed and one can start with the design of an abstract
model, in most cases several components of already existing systems will be reused, i.e.,
at least these components must be redesigned in the verification language. This problem
is strengthened by the fact that the engineers of the systems do know common program-
ming languages, but seldom have enough knowledge of the verification language in order
to be able to build a verification model.

Because of the problems mentioned above, in recent times there has been an increas-
ing effort for building automatic verification methods and tools for real programming
languages, an approach which is called software model checking (v. fig. 1.2 middle).
We will describe this approach in more detail in sect. 2. In this thesis, we also fol-
low this approach by presenting new verification methods for reactive programs writ-
ten in a variant of a commonly used programming language. While there are exten-
sions regarding the implementation of reactive programs for all common programming
paradigms, e.g. specific extensions for functional or logic based programming languages
[FJ94, WR95, GR95, Gre97], imperative languages play the dominant role. The reasons
for that are diverse: functional and logic based programming languages usually have
higher memory requirements and their execution is slower, and due to the broad spread-
ing of imperative languages they usually have a better infrastructure (e.g. compilers for
specific hardware platforms or libraries for specific operating systems). In former times,
the imperative programming languages C and Ada were often used for implementation.
As object-orientated languages offer better structuring mechanisms for larger systems
and simplify the reuse and adaptation of program code, in recent times more and more
reactive programs have been implemented using object-oriented languages like Java and
C++. In this thesis, we will focus on SymC++ programs which is a variant of C++
suitable for describing reactive programs.

It is important to note that programs written in common programming languages
are more detailed models of the real systems, but nevertheless they are just another
form of an abstraction of a real system. This means that verification results obtained
by verifying programs need not necessarily hold for the compiled binaries, e.g. if the
compiler used to create the binaries works incorrectly for some programs. This restricted
validity of verification results is immanent for every verification method, independent
of the verification model. Even if we would be able to automatically verify the binary
programs (v. fig. 1.2 right), there would still be the need to check the real system to

19

1 Introduction

detect e.g. errors in the underlying hardware. Such a check is usually done by testing the
deployed system. However, having a verifiable model is very valuable in detecting many
design errors, and it definitively increases the correctness and quality of the implemented
system, even if it cannot be fully verified because of its complexity. The next section
explains the application of automatic verification methods for systems which are too
complex to be verified completely.

1.4 Partial and Heuristic State Space Exploration

As described in sect. 1.2, due to complexity problems a complete state space exploration
which is necessary for automatic verification is often infeasible. But even if a full ver-
ification cannot be achieved, model checking can still yield valuable results. A useful
feature of model checking tools is that in case the property to be verified does not hold
the model checker usually generates a counterexample showing an execution sequence of
the checked program that violates the property. Therefore, a model checker can also be
used as an automatic debugging tool, searching for execution traces that result in errors
or certain user defined states. If there exists at least one such state, a complete model
checking procedure will eventually find an execution trace to that state. But despite the
improvements regarding the size of systems which can be analyzed by model checking,
in many cases a complete exploration of the state space is still impossible. However, for
finding bugs a complete state space exploration is not necessary because it suffices to
explore the part of the state space that contains the desired state.

The left part of fig. 1.3 shows schematically the results obtainable with complete resp.
incomplete state space exploration for two different programs P1 and P2 when searching
for error states. Since the reachable state space of P1 contains no error states, a com-
plete exploration algorithm would detect this fact provided that enough computational
resources are available. Contrary to this, an incomplete exploration algorithm is in gen-
eral not able to decide that there is no error state reachable in P1. However, as there
are error states reachable in P2, both complete and incomplete algorithms are able to
find these states. A different aspect of complete resp. incomplete exploration algorithms
is shown in the right part of fig. 1.3. Even if we assume that due to restrictions of
computational resources a full exploration of the state space of program P3 is impos-
sible and therefore a complete exploration algorithm is unable to find the error state,
an incomplete exploration algorithm is still able to find this state. The reason for that
is that the number of states which can be explored with given computational resources
is in general larger if the exploration algorithm need not to be complete. For instance,
an incomplete exploration algorithm need not necessarily store all visited states, which
is essential for complete exploration algorithms to ensure termination. The right part
of fig. 1.3 also shows another aspect of incomplete exploration algorithms. While for
complete exploration algorithms it is in principle not important in which order states
are visited, at least as long as at the end of the search all states have been visited, it
is of central importance for incomplete exploration algorithms. When there are error

20

1.4 Partial and Heuristic State Space Exploration���� ��Reachable States of P1

Reachable States of P2

Error States

Starting State of P3

Error States

Reachable States of P3
States explored with
Complete Search

States explored with
Partial Search

Starting State of P1 and P2 ����
Figure 1.3: Complete and Partial State Space Exploration. A complete state

space exploration can prove that no error states are reachable in program
P1, which is in general not possible with a partial (or incomplete) state space
exploration (left). Contrary to this, both complete and partial state space
explorations are able to find the reachable error states in P2 (left). However,
as partial exploration algorithms can explore a larger number of states than
complete exploration algorithms within limited resources, partial exploration
algorithms can find error states in large state spaces that cannot be found
with complete exploration algorithms (right).

states reachable and not all states can be explored, then the search is only successful if
the algorithm explores a part of the state space that contains an error state.

The decision which part of the state space is explored is made by the underlying explo-
ration algorithm and in most cases statically determined, i.e., the order in which different
states are explored is fixed regardless the given property. Search algorithms that do not
take into account information regarding the search goal are so-called uninformed search
algorithms. Two prominent examples of such exploration algorithms are breadth-first
search (BFS) and depth-first search (DFS). Roughly speaking, in BFS, after exploring
the starting states of the system, all states which are reachable in one step are explored
first, then all states reachable in two steps and so on. Contrary to this, in DFS, before
the siblings of the current state and all states reachable from them are explored, first all
states reachable from the current state are explored. When searching for potential bugs,
the advantage of using breadth-first search is that it finds counterexamples of minimal
length which are, due to their conciseness, easy to analyze by users. The disadvantage
is that in breadth-first search the number of states grows exponentially with the search
depth, which means that it is hard or impossible to find property violating states with

21

1 Introduction

larger distance to the start states. In contrast to this, DFS can find property violating
states with larger distance to the start states. The disadvantage of DFS is that it yields
long counterexamples when it finds a property violating state, and sometimes DFS has
to explore much of the state space before reaching a property violating state with a short
distance to the start states.

In contrast to uninformed search algorithms, informed or heuristic search algorithms
take into account information about the search goal to direct the search into regions of
the state space where a property violating state is supposed. The information is obtained
by applying a so-called heuristic function h to each visited state. Given a state s, the
value h(s) estimates the distance from s to a state fulfilling the search goal. If h provides
a good estimation of the real distance to a goal state, heuristic search is able to find
a path even in state spaces where uninformed search algorithms fail, or it finds paths
much faster. However, crucial for the effectiveness of heuristic search algorithms is an
informative heuristic function.

1.5 Organization of the Thesis

After giving a short introduction to reactive systems and their validation and verification
procedures, reactive programs and the application of partial and heuristic state space
exploration for automatically debugging them, we now formulate the main aims and
the further structuring of the thesis. Primary aim of the thesis is the development of
an efficient state space exploration procedure for reactive object-oriented programs that
allows checking the validity of user given properties. Such a procedure can be used
for e.g. automatic debugging of programs or automatic test generation. The further
structure of the thesis is as follows:

• Section 2 will give a more detailed overview about current state space exploration
techniques. We will analyze the particularities of software model checking and
derive several requirements for an efficient state space exploration procedure. In
particular, the assets and drawbacks of complete and incomplete methods, the
use of symbolic and explicit state representations, and the application of heuristic
search and the generation of informative heuristic functions are discussed. As a
result of this analysis several design decisions for an efficient state space exploration
are formulated. Furthermore, we also give a short overview about other related
work.

• In sect. 3, the programming language SymC++ is introduced which will be used
throughout this thesis to describe reactive object-oriented programs. After describ-
ing the main features of SymC++, e.g. object-orientation and the thread concept,
we will introduce a simple language Cmin that we use throughout the thesis as a
formal model for SymC++ programs, and we define a simple logic TL that can be
used to define properties of such programs. We explain how SymC++ programs
can be translated into Cmin programs, and we show how we employ SymC++

22

1.5 Organization of the Thesis

to perform state space exploration of C++ programs that are generated by an
automatic code generator of a commercial UML case tool.

• After having introduced Cmin programs as a formal model of SymC++ programs,
in sect. 4 we define a state space exploration algorithm for Cmin programs. We
start with a very simple explicit-state algorithm that we successively extend with
different optimizations. The effectiveness of the optimizations is evaluated exper-
imentally. Later, in sect. 4.2, we define a composite explicit-symbolic state space
exploration algorithm, whose effectiveness is also evaluated experimentally.

• As a second component for efficient state space exploration, in sect. 5 an
abstraction-based heuristic search procedure is presented. Based on a program P
and a property, we generate an abstraction of P for which a complete state space
exploration is possible. We use the generated abstract state space as a heuristic
to guide the search in the concrete state space towards state that fulfill the given
property. Again, we evaluate the effectiveness of the presented heuristic search
procedure by means of several experiments.

• At the end, in sect. 6 we will give a summary of the contributions made by this
thesis. Moreover, several directions of further work are identified and discussed.

23

1 Introduction

24

2 Related Work and Design Decisions

In this section, we will give an overview about related work that will allow us to classify
the approach we follow in this thesis. Figure 2.1 shows the main problems that arise in
the context of state space exploration of reactive, object-oriented programs, in particular
C++ programs, and the techniques we apply to overcome these problems. A C++
program has a complicated program control flow due to object-oriented mechanism like
inheritance and polymorphism. Furthermore, direct or indirect recursive function calls
can create arbitrarily many function invocations during runtime. Using dynamic object
creation and pointer variables, a C++ program can create arbitrarily linked structures
like lists or graphs that can grow and shrink dynamically. Moreover, reasonable C++

C++ State Space Exploration
-Complicated, dynamic program control flow

- inheritance, polymorphism, function calls, recursion,...

-Complicated, dynamic data structures
-object creation and destruction, dynamic
 link topologies, ...

-Large Programs
- thousands of lines of code, thousands of variables
 and objects, hundreds of classes, ...

-Large number of reachable states

Model Checking
 Techniques

Heuristic Search
 Techniques

Adopt and combine techniques

Figure 2.1: Problems of C++ state space exploration. The main problems of
state space exploration of C++ programs are tackled with techniques from
model checking and heuristic search. The borrowed techniques have to be
combined and adapted to be effective in the context of C++ state space
exploration.

25

2 Related Work and Design Decisions

programs are often quite large, having hundreds of classes and thousands of lines of
code. Finally, because of e.g. many input values with large domains or concurrently
executing threads, the number of reachable states can be tremendously large or even
infinite. As can be seen in fig. 2.1, we use techniques both from the area of model
checking and heuristic search to be able to cope with the difficulties mentioned above.
In the following, we will review related work and techniques used in model checking
and heuristic search. After that, in sect. 2.3, we state some observations concerning
limitations of these approaches and propose several design decisions in order to realize
efficient state space exploration techniques for C++ programs.

2.1 Model Checking

A model checking algorithm decides whether a program P satisfies a particular formula
ϕ. As already mentioned in sect. 1.2, most model checking algorithms perform a kind
of graph traversal on the state graph of the program, in which vertices correspond to
program states and edges between vertices correspond to program transitions between
states. An example of such an algorithm is depicted in fig. 2.2, and it can be used to
decide if a program satisfies a so-called invariant formula ϕ. A program satisfies an
invariant formula ϕ if every reachable state of the program satisfies ϕ. To generate all
states reachable from the starting state s0, the algorithm utilizes two sets Open and

(1) procedure CheckInvariant
(2) All← ∅; Open← ∅
(3) Open.insert(s0)
(4) All.insert(s0)
(5) while (Open 6= ∅)
(6) u← Open.get();
(7) if ¬(u satisfies ϕ)
(8) return Program violates ϕ
(9) foreach successor v of u
(10) if (v /∈ All)
(11) Open.insert(v)
(12) All.insert(v)
(13) endwhile
(14) return Program fulfills ϕ
(15) end procedure CheckInvariant

Figure 2.2: Invariant Model Checking Algorithm. The depicted algorithm explores
the state space of a program in order to find a program state that violates
ϕ.

26

2.1 Model Checking

All. The set Open contains all states that have been generated but which are not yet
visited, and the set All contains all states that have been generated already. If a state u
is extracted from Open that violates ϕ, the algorithm returns that the program violates
the invariant ϕ. Otherwise, all successor states v of u are inserted both into Open and
All. If no state has been found that violates ϕ and there are no more states in Open,
the algorithm returns that the program fulfills ϕ. Although there exist many variants of
the algorithm depicted in fig. 2.2 which differ in several aspects, e.g. if individual states
or entire sets of states are processed or which logic is used to describe the formula ϕ,
because of its simplicity almost all existing model checking tools provide an algorithm
similar to the algorithm shown in fig. 2.2.

One way to classify existing model checkers is to distinguish them by means of the
kind of programs they operate on. They can be roughly subdivided into classical model
checkers that operate on abstract, finite state machine like input languages, and soft-
ware model checkers that are aimed to check the correctness of programs in common
programming languages. Figure 2.3 shows an overview of some of the current classical
and software model checkers. Both classical and software model checkers share a com-
mon set of techniques that have been adapted for specific model checkers. Among the
classical model checkers one can further distinguish between explicit state model check-

Classical Model Checking

Model Checking Techniques

-Symbolic representations
-State Reductions (Symmetry, Partial Order)
-Approximative Algorithms
-Abstractions

Symbolic

-SMV
-VIS

-SPIN

Software Model Checking

Transformational

Interpreting

-Bandera
-Java Pathfinder 1

-Verisoft

-SLAM
-FeaVer

-Steam
-Java PathFinder2

-dSPIN

-BLAST
-MAGIC
-CBMC

-SAT Solving

-DMC

Bounded

-NuSMV2

Explicit

-Murphi

-BMC

-CMC

Figure 2.3: Model Checking tools. Model checking tools can be roughly subdivided
into classical model checkers and software model checkers. They share a
common set of model checking techniques.

27

2 Related Work and Design Decisions

ers like SPIN [Hol91, Hol03] or its extension dSPIN [IS99], symbolic model checkers like
SMV [McM93] or VIS [Gro96], or so-called bounded model checkers like BMC [BCZ99]
or NuSMV2 [CCG+02]. Explicit model checkers employ an individual representation of
a system state. To cope with large state spaces, reduction strategies as partial order
reductions, approximative state matching or abstractions are used [Hol03]. Symbolic
model checkers utilize symbolic representations like BDDs [Bry86] or linear arithmetic
constraints [DP01] to symbolically encode entire sets of states. Similarly to explicit
state model checkers, reduction techniques like e.g. abstraction are used to widen the
class of models that can effectively be handled by symbolic model checkers. Finally,
bounded model checkers [GKvV95, BCZ99] encode the next-state relation of a system
as a propositional formula, unroll this to some given finite depth k, and augment it with
a corresponding finite unwinding of a temporal formula in order to obtain a propositional
satisfiability problem (SAT for short) which is satisfiable if an error trace of length k
exists. To solve the satisfiability of the generated propositional formula, modern SAT-
solver tools like PROVER [Bor97], SATO [Zha97], GRASP [Sil95] or ZChaff [MMZM01]
are used.

In contrast to classical model checkers that operate on an abstract, finite state ma-
chine like input languages, software model checkers are aimed to check the correctness
of programs in common programming languages. They can roughly be classified into
transformational and interpreting approaches. While the transformational approaches
take a program in some programming language and translate it into the input lan-
guage of a classical model checker, the interpreting approaches directly interpret a given
program. The Bandera tool set [Ce00] translates Java Source Code into the input lan-
guage of the model checkers SPIN or SMV. In order to do that, several abstractions
have to be performed, e.g. data abstractions. Similarly to Bandera, the Java Pathfinder
tool translates Java programs into Promela, the input language of the model checker
SPIN. Just like Bandera, several abstractions are performed to be able to translate
the Java program. The tool FeaVer [HS99, Hol00], which translates C programs into
Promela code, follows the same approach. The Verisoft tool [God97] explores all inter-
leavings of a concurrent C program. In contrast to the transformational model checkers,
Verisoft directly executes the compiled C programs. It uses special library functions to
be able to control the scheduling of the parallel components of the program. Similar
to Verisoft, the model checker CMC [MPC+02, ME04] executes compiled C programs
using special library functions. The Java PathFinder2 model checker [BHPV00] uses a
specialized Java virtual machine to execute Java bytecode directly. The virtual machine
is capable of e.g. exploring different thread interleavings. Similarly, the StEAM model
checker [LME04] uses a virtual machine to execute C and C++ programs that have
been compiled into so-called ELF binaries, which are assembly level representations of
such programs. The model checkers SLAM [BR01, BMMR01, TPR01, BR02], BLAST
[HJMS02, HJMS03] and MAGIC [CCG+03, CCGS03] can model check C programs, and
they work all according to the same principle. Firstly, a C program is abstracted into
an abstract representation. After that, a model checking algorithm is performed on the
abstract representation. If the model checking procedure proves the validity of a given

28

2.2 Heuristic Search

property on the abstract representation, than it is also valid for the original C program.
Otherwise, if a counterexample is found, it has to be checked if this counterexample is a
valid one or spurious. If it is spurious, the whole process is repeated with a more precise
abstraction.

2.2 Heuristic Search

Since model checking algorithms are usually aimed to exhaustively search the reachable
state space of a program, they normally employ so-called uninformed search algorithms
that do not take into account information regarding the property to be verified. Two
prominent examples of such uninformed search algorithms are breadth-first search (BFS)
and depth-first search (DFS). Roughly speaking, in BFS, after exploring the starting
states of the system, all states which are reachable in one step are explored first, then
all states reachable in two steps and so on. Contrary to this, in DFS, before the siblings
of the current state and all states reachable from them are explored, all states reachable
from the current state are explored first. For instance, the algorithm CheckInvariant
depicted in fig. 2.2 proceeds like BFS if the set Open is organized as a queue, and like
DFS if Open is organized as a stack.

However, when trying to verify a property that does not hold in some states of the
reachable state space, the time needed to find a path to such a state, a so-called coun-
terexample, is proportional to the number of states that have been explored until a
property violating state has been found. Obviously, it is desirable to explore as few

(1) procedure HeuristicSearch
(2) Closed← ∅; Open← ∅
(3) Open.insert(s0, h(s0))
(4) while (Open 6= ∅)
(5) u← Open.delmin();
(6) Closed.insert(u)
(7) if ¬(u satisfies ϕ)
(8) return Program violates ϕ
(9) foreach successor v of u
(10) if (v /∈ Closed)
(11) Open.insert(v, h(v))
(12) endwhile
(13) return Program fulfills ϕ
(14) end procedure HeuristicSearch

Figure 2.4: Heuristic Search Algorithm. The algorithm utilizes a heuristic function
h to obtain an ordering in which states are extracted from Open.

29

2 Related Work and Design Decisions

States explored with BFS and DFS with
 unlimited computational resources

States explored with optimal
 heuristic search

States explored with BFS
 with limited resources

States explored with DFS
 with limited resources

Figure 2.5: Uninformed and informed search. In the depicted state graph with the
starting state in the top left of the grid and the goal state in the bottom right,
both BFS and DFS (assuming that successor states are visited from right to
left) have to explore the entire state graph before reaching the goal state if
unlimited resources are available (top left). Both BFS (top right) and DFS
(bottom left) fail to find the goal state with limited resources. Contrary to
this, an optimal heuristic search (bottom right) would only explore a fraction
of the state space and would find the goal state even with limited resources.

states as possible before finding a counterexample, since this allows a fast detection of
counterexamples. Furthermore, the complete state space often cannot be explored with
reasonable computational resources, i.e., it is only possible to explore a fraction of the
entire state space. If counterexamples exist in the state space, then it is crucial to ex-
plore a part of the state space that contains at least one counterexample. To explore
the right part of the state space is the purpose of heuristic search [Pea85]. In contrast
to uninformed search algorithms, informed or heuristic search algorithms take into ac-
count information about the search goal to direct the search into regions of the state
space where it is likely to find a state that fulfills the search goal. The information
is obtained by applying a so-called heuristic function h to each visited state. Given

30

2.2 Heuristic Search

Heuristic Search in Model Checking

Property-Specific
 Heuristics

Structural Heuristics User-Defined
 Heuristics

-Java PathFinder2 -Java PathFinder2-SPIN
-HSF-SPIN
-Murphi

-StEAM

-Verisoft

-Murphi

Figure 2.6: Heuristic Search in Model Checking. The approaches using heuristic
search in model checking can be classified by the type of employed heuristics.
Property-specific heuristics exploit information about the property to guide
the search. Structural heuristics favor states that cover previously uncovered
branches of the program, and user-defined heuristics are hints provided by
the user.

a state s, the value h(s) estimates the distance from s to a state fulfilling the search
goal. An example of a heuristic search algorithm can be seen in fig. 2.4. In contrast
to the algorithm depicted in fig. 2.2, the algorithm shown in fig. 2.4 sorts states s with
increasing values h(s) in the set Open, i.e., a state s is processed before another state
s′ if h(s) < h(s′). Since states are sorted purely by means of the heuristic function h,
the algorithm from fig. 2.4 is called best first search. If h provides a good estimation
of the real distance to a goal state, heuristic search is able to find a path even in state
spaces where uninformed search algorithms fail, or it finds paths much faster. Figure
2.5 shows the effect of heuristic search compared to BFS and DFS. When applied to the
depicted state graph with the starting state in the top left and the goal state in the bot-
tom right, both BFS and DFS1 have to explore the entire state space before finding the
goal state. Additionally, if we assume that the available resources are limited and suffice
only to explore a limited number of states (30 in fig. 2.5), then both BFS and DFS fail
to find the goal state. Contrary to this, performing a heuristic search with an optimal
heuristic function would only explore a small fraction of the complete state space, thus
allowing to find the goal state quickly even with limited resources. However, crucial for
the effectiveness of heuristic search algorithms is an informative heuristic function.

While heuristic search is a common technique in e.g. artificial intelligence, it has only
been used for classical or software model checking recently. Figure 2.6 shows some of
the model checkers that have been used to perform some kind of heuristic search. They
can be classified based on the information they try to exploit. Property specific heuris-
tics analyze the error description as the negation of the correctness property. In some
cases the underlying methods are only applicable to special kinds of errors, e.g. dead-

1We assume that DFS always expands successor states from right to left.

31

2 Related Work and Design Decisions

lock detection. In contrast to property specific heuristics, structural heuristics exploit
information about already covered resp. uncovered branches of the program, similar to
code coverage metrics often used in software testing. The third class of heuristics is
formed by user-defined heuristics. User-defined heuristics can be specified e.g. by means
of source annotations or necessary conditions that must be met in order to reach the
search goal. In [ELL01b, ELL01a] the well known explicit state model checker SPIN has
been extended to allow the use of property specific heuristics for heuristic search. With
this extension, called HSF-SPIN, it was able to find counterexamples in cases where both
BFS and DFS failed. In this work, heuristics evaluating boolean combinations of expres-
sions are used to guide the search towards states fulfilling the compound expressions.
Additionally, specific heuristics like maximizing the number of process interleavings tai-
lored for e.g. finding deadlocks are used. Similarly to HSF-SPIN, in [LME04] the model
checker StEAM performs heuristic search for deadlocks using deadlock-specific heuristics
like e.g. maximizing the number of thread interleavings. Similarly, in [LCL88] heuristics
that e.g. maximize the length of message queues are used to guide the search towards
potential error states. In [YD98] the model checker Murphi has been extended with
heuristic search capabilities, enabling both the application of property specific and user-
defined heuristics. For instance, the user can give hints in form of boolean conditions
that must be fulfilled in order to reach a certain goal state. In [GK02], genetic algorithms
are used to extend the model checker Verisoft with heuristic search capabilities, using a
fitness function that favors states with a high number of thread interleavings, trying to
guide the search into deadlock states. The model checker Java PathFinder2 is augmented
with heuristic search algorithms employing structural heuristics in [GV02b, GV02a]. In
this work, structural coverage criteria like branch coverage [Bei90] are used to guide the
exploration process. Another approach using structural heuristics is presented in [EM03]
where the distance of specific byte code positions of compiled Java programs guide the
state space exploration. This approach has also been built on top of the model checker
Java PathFinder2.

2.3 Observations and Design Decisions

Summarizing the mentioned related approaches to software model checking one can make
the following observations:

• Although the ultimate goal of software model checking is the complete verification
of correctness properties of programs, the ability to generate counterexamples often
make software model checking approaches attractive for users. In many cases,
software model checkers are employed as sophisticated debugging and testing tools
allowing to find bugs or to generate particular program traces that can be reused
e.g. as test sequences.

• While symbolic model checkers have clear advantages compared to explicit state
model checkers when model checking synchronous hardware designs, in the area

32

2.3 Observations and Design Decisions

of software model checking the situation is more ambiguous. On the one hand,
several constructs found in programming language are difficult or impossible to
express symbolically. For instance, a BDD based model checker can only represent
a finite number of objects. When a program uses dynamic memory allocation it is
possible that more than this maximal number of objects are created dynamically.
The same holds for constructs like pointer arithmetic or recursive functions, too.
Contrary to this, all these constructs can adequately be represented in explicit state
model checkers, provided that they support a varying length state representation
as e.g. dSpin [IS99] or JavaPathFinder2 [BHPV00]. Additionally, the interleaved
execution model of multithreaded programs can easily be represented in explicit
state model checkers with an interleaving semantics as e.g. in SPIN [Hol91, Hol03].

• When applied to very large programs, often neither symbolic nor explicit state
model checkers are capable of performing a complete state space exploration. How-
ever, while it is often easily possible to perform a partial state space exploration
using an explicit state model checker, it is difficult or impossible to do the same
with a symbolic model checker. The reason for this lies in the fact that sym-
bolic model checkers usually compute symbolic representations for the set of all
states that are reachable from the predecessor set of states, i.e., they proceed in a
breadth-first manner. However, when the symbolic representations become larger
than a certain threshold, these image computations cannot be performed within
reasonable resources. The threshold varies with the applied symbolic representa-
tion. For instance, bounded model checking approaches [GKvV95, BCZ99] using
SAT solvers outperforms BDD based model checkers when applied to large models
as several comparisons [BCRZ99, Sht89] indicate. The reason for this lies in the
fact that SAT solvers can cope with propositional formulas of a size for which
equivalent BDD representations are too large to be handled by current BDD tools.

• A crucial drawback of explicit state model checkers is simply the fact that each state
is represented explicitly, which implicates that at most a few million states can be
explored. This is particularly a problem when model checking embedded software,
since normally program variables can take a large range of values, especially when
the program reads several values from the environment. For instance, consider a
program with just two integer inputs represented using 32 bit. Since the variables
serve as inputs, they can take arbitrary values, which means that after selecting
input values already 264 distinct states are reachable, a number which cannot
be handled by explicit state model checkers like e.g. verisoft, CMC, StEAM or
JavaPathFinder.

• Software model checkers like Bandera, PathFinder1 or Feaver that translate a
program into the input language of a classical model checker often suffer from the
problem that only a restricted subset of programming constructs can be translated.
Additionally, in many cases several abstractions are necessary when translating real
programs. For instance, dynamic object creation or pointer arithmetic are often

33

2 Related Work and Design Decisions

abstracted. These abstractions need considerable human interaction, which means
that there is no guarantee that the applied abstractions are sound.

• The software model checkers that work according to the abstraction-refinement
scheme like SLAM, BLAST or MAGIC have similar problems as the translating
model checkers. Firstly, in many cases some constructs of the program cannot be
abstracted adequately. For instance, BLAST and MAGIC cannot handle recursive
functions, and SLAM cannot handle concurrent programs. Furthermore, several
constructs like e.g. pointer arithmetic are abstracted into uninterpreted functions,
i.e., if the correctness of a property depends on such constructs, than this cannot be
verified by the model checker. Besides these problems, a major disadvantage of all
model checkers relying solely on abstraction-refinement is that they are often only
effective if they can prove a property to be correct. If a property does not hold for a
program, then they often fail to produce a real counterexample because the applied
conservative abstraction often generates spurious counterexamples. Ruling out all
spurious transitions in a spurious counterexample often needs many iterations and
many new predicates with the effect that the abstraction becomes too large for the
model checker.

• Heuristic search can effectively reduce the number of explored states resp. the time
needed to find a state with a given property. However, crucial for the effective-
ness of heuristic search is an informative heuristic function that provides a good
approximation of the real distance to a goal state. However, while the heuristics
used in model checkers like e.g. HSF-SPIN or StEAM are effective for certain kinds
of error states like deadlocks, they are not effective for more general properties,
which need other kinds of heuristics.

Based on these observations, we make some design decisions concerning our approach to
state space exploration of C++ programs:

• We concentrate on incomplete state space exploration. Firstly, reasonable pro-
grams are as large s.t. it is very unlikely that a complete state space exploration
is possible. Furthermore, as mentioned above, software model checkers are often
employed as sophisticated debugging and testing tools allowing to find bugs or to
generate particular program traces. For this application incomplete state space ex-
ploration algorithms are advantageous compared to complete algorithms because
they allow the application of approximating algorithms which are faster and more
scalable than exact algorithms, i.e., incomplete state space exploration algorithms
can explore larger state spaces in shorter time.

• We try to combine the benefits of symbolic and explicit state model checkers by
employing a composite explicit-symbolic state representation in our state space
exploration tool set. This composite representation enables on the one hand a
compact symbolic treatment of large sets of states and on the other hand an

34

2.4 Other Related Work

explicit treatment of programming constructs that are difficult to handle symbol-
ically. Furthermore, this representation allows us to apply several approximation
algorithms that make state space exploration more efficient.

• We try to combine the benefits of abstraction and heuristic search by defining an
abstraction-based heuristic search procedure. Based on a program P and a prop-
erty, we generate an abstraction of P for which a complete state space exploration
is possible. We use the generated abstract state space as a heuristic to guide the
search in the concrete state space towards states that fulfill the given property.
Since the abstraction-based heuristic takes both the program and the property
into account it can give accurate hints even in cases where other heuristics are not
informative.

The design decisions mentioned above form the basis of the state space exploration
techniques we present in this thesis. However, before we introduce the programming
language SymC++ in chapter 3, the next section briefly summarizes other work dealing
with validation and verification of software that does not belong to the area of model
checking.

2.4 Other Related Work

Besides software model checking, other approaches related to validation and verification
of software can roughly be classified into the following categories:

• Manual and Semi-Automated Program Verification: In these approaches, both the
program and the properties to be checked are described by means of formulas of a
particular logic. Based on the logic’s underlying axioms and proof rules one tries to
deductively verify the given properties w.r.t the program. As already mentioned
in the introduction, early approaches in this area stem from Floyd [Flo67] and
Hoare [Hoa69] and have later been extended for various classes of programs, e.g.
in [OG76a, OG76b, AFdR80, LG81]. An overview can be found in [AO94, AO97].
In contrast to the model checking approach, manual or semi-automatic approaches
do not suffer from the state explosion problem, i.e., they can in principle be used
to verify programs of arbitrary size. However, in practice it is seldom possible
to verify even moderate sized programs because of the proof explosion problem.
To verify such programs, thousands or millions of proofs have to be carried out,
a task which cannot be done manually. Even when automated theorem provers
are used that can realize some proofs automatically as e.g. in [MS95], the decisive
proof steps have to be performed manually. Another problem stems from the fact
that in case a program cannot proved to be correct usually no counterexample is
generated that can provide hints regarding possible errors in the program.

• Static Analysis: Approaches based on static analysis try to deduce information
about the behavior of a program without actually executing it. Static analyses are

35

2 Related Work and Design Decisions

often based on abstract interpretation [CC77, CC92, NNH99], and are mostly used
to find common program errors or coding mistakes. There are various approaches
and tools for different languages, among others LCLint [EGHT94, Eva96], a static
checker for the programming language C that can be used to detect e.g. unused
variables or common coding errors, or JLint [AB01], the Java variant of LCLint.
In contrast to software model checking approaches which usually allow checking
a large class of properties, static analysis tries to detect specific errors which are
often found in programs of a particular programming language. Furthermore, in
case an error is detected they usually do not provide an execution trace leading to
that error.

• Design by Contract and Runtime Verification: Design by Contract [Mey92, Mey97]
describes a programming methodology that is based on precise checkable interface
specifications for software components. These specifications include pre- and post-
conditions of methods or class invariants. Approaches based on Design by Contract
differ in the considered programming language and in the way the specifications
are used. For instance, in the programming language Eiffel [Mey92] an exception
is thrown during runtime if a contract is violated which represents a kind of run-
time verification. Similarly, the Java Modeling Language (JML) [LBR98, LBR99]
realizes design by contract for Java. Several tools utilize JML specifications in
different ways. For instance, the runtime assertion checker jmlc [CL02] checks as-
sertions at runtime and reports violations. Another tool is the program checker
ESC/Java [FLL+02] which performs an extended form of static analysis. For in-
stance, ESC/Java can statically detect violations of invariants annotated in JML
syntax. The rich specifications used in approaches based on design by contract
like e.g. JML provide a good way of formally specifying the intended behavior of
programs that could also be used by software model checkers or state space explo-
ration tools. However, in our approach we concentrate on very simple specifications
since the main aim of the thesis is the development of an efficient state space ex-
ploration algorithm. The extension of this algorithm towards richer specifications
as provided by e.g. JML is subject of future work and discussed in sect. 6.2.

36

3 SymC++ and Cmin

In this chapter, we will give an overview of the programming language SymC++, a
variant of the well-known programming language C++ [Str00, ISO03] that is widely
used for implementing embedded programs, and the language Cmin that serves as a
formal model of SymC++ programs. SymC++ extends C++ with the two concepts of
concurrency and nondeterminism which are needed for the implementation of embedded
programs. However, while SymC++ with all its features like inheritance etc. offers
powerful and elegant ways for realizing also complex programs, it is far too complicated
to explain the concepts and methods we develop for efficient state space explorations
of such programs. Therefore, in sect. 3.2 we introduce a much simpler language Cmin

that we will use throughout the thesis as an underlying formal model for explaining
the developed concepts and methods. Although Cmin is much simpler than SymC++
it is powerful enough to adequately capture the semantics of the language constructs
available in SymC++. However, since SymC++ programs are much more concise and
readable than Cmin program, we will use SymC++ for describing sample programs.

In the following, we first give a brief overview about the language SymC++ s.t. the
reader will be able to understand the sample programs we use. After that, in sect.
3.2 we introduce the language Cmin that will be used as a formal model for SymC++
programs, and in sect. 3.3 we describe a simple logic TL that can be used to formulate
properties about Cmin programs. In sect. 3.4 we explain how SymC++ programs can be
translated into Cmin programs. Finally, as concrete examples of embedded programs, in
sect. 3.5 we consider programs that have been generated from a widely used UML case
tool named Rhapsody [HG97, GHP02]. Since these programs make use of many features
of C++, we will use these programs for experimental evaluations of the methods we
develop in the chapters 4 and 5.

3.1 Overview of SymC++

SymC++ is a variant of the well-known programming language C++. As already men-
tioned, C++ supports numerous features and programming constructs, e.g.

• Object-oriented programming constructs like classes, objects, methods, inheritance
and polymorphism.

• Imperative language constructs like functions or different kinds of loops.

37

3 SymC++ and Cmin

• Language constructs for generic programming like template classes and template
functions.

• Language constructs for exception handling.

As one can see, C++ is a very manifold language and accordingly rather complicated,
which is also made clear by the fact that the official ISO standard for C++ [ISO03]
contains 757 pages. Therefore, we cannot give here a complete description of C++
resp. SymC++. Contrary to this, in the following we will give a brief review of the
central language constructs of C++, and after that we will describe the extensions and
limitations of SymC++ in sect. 3.1.2. Later, in sect. 3.4, we will sketch how we can
translate SymC++ programs into the simple language Cmin introduced in sect. 3.2,
that we will use throughout this thesis as a formal model to explain the state space
exploration techniques we develop in the chapters 4 and 5.

3.1.1 C++

A C++ program consists of one or more class definitions, variable definitions and func-
tion definitions. C++ defines a set of predefined types as e.g. char, int or float. Using
these types one can define variables like int i, or other types, e.g. pointer types like
int* or int**. Furthermore, one can define class types that are simply called classes. A
class is a collection of variable definitions and function definitions. For instance, consider
the following small program:

class C {

int i;

C(int k) { i = k; }

int f() { return i; }

};

void main() {

C* c1 = new C(1);

C* c2 = new C(2);

int i1 = c1->f();

int i2 = c2->f();

}

This program defines a class C that has a so-called member variable i of type int. Fur-
thermore, C defines two functions C() and f(). The function C() is called a constructor
and is invoked whenever an object of class C is created, as it is the case in the function
main by using the new operator that creates new objects dynamically. Each object of a
class has its own member variables, i.e., in the program above two objects are created
that both have a member variable i. The function f() is called a member function of C
since it can only be invoked on a specific object of class C. For instance, in the program
above there are two invocations of f(), one for the object c1 points at and one for the

38

3.1 Overview of SymC++

object c2 points at. Within a member function of a class one can access all member
variables of the object on which the function has been called. Classes can inherit variable
and function definitions from other classes, as in the following program:

class A { int a; A() {a=0;}; virtual int f() { return a; } };

class B : A

{ int b; B() {b=1;}; virtual int f() { return b;} };

class C : A

{ int c; C() {c=2;}; virtual int f() { return c;} };

void main() {

int i;

B* b = new B(); C* c = new C;

A* a = (A*)b;

i = a->f();

a = (A*)c;

i = a->f();

}

This program defines a class A with a so-called virtual member function f(). Further-
more, two classes B and C are defined that both inherited from A, i.e., both B and C

also contain all member variables that are defined in A. The classes B and C are called
subclasses of A, and A is called a superclass of C. Since an object of a subclass inherits
all member variables and functions of its superclasses, whenever a certain language con-
struct expects an object of the superclass, then always an object of any of its subclasses
can be used instead, a mechanism which is called polymorphism. For instance, in the
main function of the program above an object of class B and an object of class C are cre-
ated. After that, a variable a is defined as a pointer to the superclass A, and the pointer
to the B-object b is assigned to a. Now, the following call a->f() of the virtual member
function f() results in the call of the function B::f(), since the variable a points at a
B-object. After that, the pointer to a C-object c is assigned to a, and the following call
of a->f() results in the call of C::f(), since the variable a now points at a C-object. In
contrast to e.g. Java, in C++ it is allowed that a class can have several superclasses:

class A { int a; A() {a=0;}; int f() { return a; } };

class B { int b; B() {b=1;}; int g() { return b; } };

class C : A,B { int c; C() {c=2;}; int h() { return c; } };

void main() { C* c = new C(); int i = c->f()+c->g()+c->h(); }

39

3 SymC++ and Cmin

n n

c1 c2

c3

i i n n

c1 c2

c3

i i*c3=c1;

l1 l2 l3 l4 l1 l2 l3 l4

Figure 3.1: Pointers in C++. When executing the statement *c3=c1 in the left con-
figuration, in the successor configuration on the right the location l2 points
at l1.

In this program, the class C inherits both from A and B, i.e., C contains all member
variables and member functions of A and B, and thus a C-object can be used whenever a
A-object or B-object is expected.

Besides object-oriented language constructs, C++ programs often make use of pointers
and dynamic object creation and destruction. The memory is an ordered sequence of
memory locations l0, l1, · · · , and each variable used in program has a certain address, i.e.,
each variable v is located at a particular address li. If v is a variable, then &v denotes
the address where v is stored in memory. Each pointer variable can be dereferenced with
the *-operator, i.e., if p points at an object stored at li, then *p yields the value stored
at li. Pointer variables can be used to indirectly change the values of other variables
or to dynamically create new objects if necessary. For instance, consider the following
program:

class C { int i; C* n; C() {i=0; n=0;} };

void main() {

C* c1 = new C(); C* c2 = new C();

c1->n = c2; C3** c3 = &(c1->n);

*c3 = c1;

}

This program defines a class C which has two member variables i and n, whereas i

denotes an integer variable and n denotes a pointer variable of type C*. In the main

function, two objects of class C are created, and pointer to these objects are assigned to
the variables c1 resp. c2. Furthermore, the member variable n of the object to which c1

points at is assigned the value of c2. Additionally, the pointer variable c3 is assigned the
address of the variable n of the object c1 points at. After executing the statements of
the first two lines of the main function, a memory configuration as depicted in the left of
fig. 3.1 has been created. The variable c1 points at l1, the beginning of the first C-object,
and the variable c2 points at l3, the beginning of the second C-object. Furthermore, the
variable c3 points at l2, the address of the member variable n of the first C-object. Now,
if we execute the statement *c3=c1, then we change the value of the location l2 to l1,

40

3.1 Overview of SymC++

since c3 points at l2. As a result, the memory configuration shown in the right of fig.
3.1 has been reached. In C++, pointers are closely related to arrays. The reason for
this lies in the fact that array elements are stored in consecutive memory locations. For
instance, consider the following program:

int a[100];

int sum = 0;

void main() {

for (int j=0; j < 100; j++) {

a[j] = j;

sum = sum + a[j];

}

}

In this program, an array a of 100 integer variables is declared. The first element of this
array is the element a[0] stored at location li, and the last element of this array, a[99],
is stored at the location li+99. With the index operator [] one can access every element
of the array. In C++, there is no range check for arrays, i.e., one can also write a[102]

or a[-5]. The reason for this lies in the fact that C++ treats arrays similar as pointers.
To evaluate an expression like a[i], C++ performs the following steps:

• Get the address of the first element of the array a, i.e., compute the address
lk =&a[0].

• Compute the value of i, i.e., x =i.

• Compute the address of the location where the element a[i] is stored by computing
lk+x, i.e., add x to the address lk.

• Get the value at location lk+x.

Against this background, an alternative formulation of the above program could be as
follows:

int a[100];

int sum = 0;

void main() {

int* p = &a[0];

for (int j=0; j < 100; j++) {

sum = sum + *p;

p = p + 1;

}

}

41

3 SymC++ and Cmin

In this program, we use a pointer variable p to access the individual elements of the
array a. The direct manipulation of p in the expression p = p + 1 is called pointer
arithmetic and frequently used in C++. If p is a pointer of type t* and points at an
element a[i] of an array of type t, i.e., p=&a[i], then p+x points at a[i+x]. The use of
pointers and pointer arithmetic allows very efficient implementations, but it is also very
error-prone, since if a[i+x] exceeds the array bounds, then the program might crash or
other variables are accidentally changed. Besides the addition of a pointer and an integer
value, a second pointer arithmetic operation is the difference of two pointers p2-p1. The
difference p2-p1 of two pointers p1=&a[i] and p2=&a[i+k] yields the integer value k.
As already mentioned, because of the complexity of C++ we can explain here only the
C++ constructs that are needed to understand the sample programs we use in this
thesis. For a complete description of C++ the reader is referred to [Str00, ISO03].

3.1.2 SymC++ Extensions and Limitations

Although C++ supports many language constructs, it lacks of language constructs for
the explicit treatment of concurrency. For implementing concurrent programs with C++,
one often uses specific low-level routines of the underlying operating system. Therefore,
to provide a uniform set of functions dealing with concurrency, SymC++ extends C++
with a thread model similar to the thread model used in Java [GJSB00]. Technically,
we define a new base class Thread as follows:

class Thread {

Thread();

void Start();

virtual void Run();

void await(int* p);

};

The class Thread represents the base class for all threads in a program. If one wants to
create a new thread one first has to define a new subclass which inherits from Thread.
In the subclass, one has to implement the virtual function Run that represents the main
loop of the thread. After defining a new subclass of Thread, one can define arbitrary
many objects of this class. However, all thread objects must be declared statically,
i.e., it is not allowed to create new threads during runtime. In the beginning of the
program, an internal thread is started that executes the global main function. Within
the main function, other threads can be started by calling the Start member function
of the corresponding thread objects. For synchronization, the function await(int* p)

can be used. The functionality of this function depends on the value *p, i.e., the value
of the variable p points at. If *p>0, then the function assigns 0 to the variable p points
at, i.e., it executes the assignment *p=0, and returns. Otherwise, the calling thread is
blocked until eventually the condition *p>0 evaluates to true. All the actions during the
invocation of the await function cannot be interrupted by other threads, i.e., a call to
the await function is atomic.

42

3.1 Overview of SymC++

Besides the support for concurrency, SymC++ also provides explicit support for non-
determinism by defining a global function symcpp_nondet(int a, int b). If this func-
tion is called, it returns an arbitrary value in the interval [a,b] if a<=b holds, otherwise
it returns 0. To demonstrate the use of threads and nondeterminism, we realize a small
program that consists of two threads, a sensor thread and an actuator thread. The
sensor thread reads input values from a sensor and stores them in a buffer variable. The
actuator thread doubles the stored value and writes it to an output.

int sem; int buf; int out;

class Sensor : Thread {

virtual void Run() {

while (1) {

await(&sem);

buf = symcpp_nondet(0,1000);

sem = 1;

}

}

};

class Actuator : Thread {

virtual void Run() {

while (1) {

await(&sem);

out = 2 * buf;

sem = 1;

}

};

};

Sensor sensor;

Actuator actuator;

void main() {

sem = 1;

sensor.Start();

acuator.Start();

}

In this program, two classes Sensor and Actuator are defined that both inherit from
the base class Thread, i.e., objects of these classes represent separate threads. In the
main loop of the Run() function of the class Sensor, with the call await(&sem) it is
guaranteed that the other thread cannot access the shared variable buf when the sensor
thread reads a new value into buf, i.e., the variable sem acts like a semaphore that

43

3 SymC++ and Cmin

guarantees the mutual exclusive access to buf. To model the reading of a sensor value,
we nondeterministically select a value from the interval [0,1000] by calling the function
symcpp_nondet(0,1000), and store this value in the variable buf. Finally, we assign
to the variable sem the value 1, which allows the other thread to read the variable buf

again. The Run() function of the class Actuator works similarly, with the difference
that it writes a new value to the variable out. In the global main function, at first the
semaphore variable sem is assigned the value 1. After that, both threads are started,
i.e., they begin to execute their nonterminating Run() methods.

Besides the described extensions, SymC++ currently has several restrictions of the
supported language features of C++. The most important restrictions are the following:

• In contrast to C++, which supports several signed and unsigned integer types
like short, unsigned short or long, in SymC++ all these types are currently
interpreted as signed integers. Furthermore, no floating point types are supported.

• In C++ it is possible to allocate, access and deallocate memory on a byte-level. For
instance, in C++ it is allowed to allocate an array of bytes and use this memory
to store an object of another type if the size of this object is not larger than the
size of the array. Such a low-level memory handling is not supported in SymC++.
Contrary to this, in SymC++ new objects can only be created using the typed
new operator.

• Exception handling and function pointers are not supported.

As already mentioned, we do not want to give a complete description of all language
features of C++ resp. SymC++ here but rather a brief overview s.t. the reader is able to
understand the sample programs we use to illustrate some of the difficulties that arise in
the context of state space exploration of such programs. Appendix A contains a complete
description of the C++ constructs that are currently unsupported in SymC++. In the
next section, we will introduce the simple language Cmin that serves as a formal model
for SymC++ programs.

3.2 Cmin

While a programming language like SymC++ with all its features like inheritance etc.
offers powerful and elegant ways for realizing also complex programs, it is far too compli-
cated to be handled formally directly. Therefore, we introduce an intermediate language
which is on the one hand expressive enough to capture the semantics of SymC++ but
on the other hand simple enough to be handled more formally. We will introduce the
language Cmin that serves as such an intermediate language. The following example
should give a short overview about the language and its constructs.

44

3.2 Cmin

Example

struct Sensor {

int value;

}

struct Controller {

int state;

}

Controller* c1 = 0;

Sensor* s1 = 0;

Sensor* s2 = 0;

int started = 0;

int polled = 0;

int* p = 0;

thread(1) {

1: new(c1) 2: new(s1) 3: new(s2) 4: started := 1; p := &polled;

5: await(poll = 0,poll := 1) 6: await(poll = 0,skip)

7: c1->state := s1->value+s2->value > 10 ? 1 : 0

8: jump(true,5,8);

}

thread(2) {

9: await(started = 1, skip) 10: await(poll = 1, skip)

11:[s1->value:=nd,s2->value:=nd]

12: *p := 0; 13: jump(true,10,13)

}

This sample program is very short and simple, but nevertheless it can be used to explain
some of the features of Cmin programs. Firstly, a Cmin program contains two parts, a
declaration part and an action part. The declaration part can contain arbitrary many
structure declarations and variable declarations. A structure declaration describes a
new type with a new name together with the types and names of the components of
the structure. For instance, in our sample program there are two structure declarations
Sensor and Controller. A variable declaration introduces a new variable with a certain
type. As in C++, besides simple types like integer or boolean, a Cmin program can also
have so-called pointer types. In contrast to variables of simple type like integer that can
hold integer values, variables of pointer types hold addresses or locations. Figure 3.2
shows the connection between variables and locations. The memory of a program is an
infinite sequence of locations {l1, l2, · · · }, and each declared variable has an associated
fixed location. For instance, fig. 3.2 shows that the variable started is located at location
l1 and the variable s1 is located at location l4. The initial value of a variable of type
int or bool can be any value in the domain of that type and is provided by an explicit

45

3 SymC++ and Cmin

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11

c1 s1 s2

null nullnull 0 0 null free free free free free

started poll p

Figure 3.2: Starting memory configuration. Each static variable of a Cmin program
is mapped to a particular location. The initial values stored at these locations
are determined by explicit initial values for integer and boolean variables.
Variables of pointer types always have the initial value null (or 0).

initialization when the variable is declared, e.g. int started=0;. The initial value of
variables of pointer type is always null (or 0 which is just a shortcut for null when used
for pointer types) representing the fact that a pointer variable is currently not pointing
at a valid location, therefore the values at location l3, l4, l5 and l6 are null.

The value of a pointer variable will change when a new-statement as new(c1) in
the sample program is executed. The effect of a new statement is that formerly free
locations are allocated to represent a new object of the type of the given variable, i.e.,
for each member variable of the allocated type one location is used to store values for
the associated member variable. Furthermore, the value of the pointer variable used in
the new statement changes to the first allocated location. Figure 3.3 shows the memory
configuration after execution of the statements 1− 4 of thread 1. Besides the allocation
of new objects, the value of a pointer variable can also change by simply assigning other
values to it. For instance, by using the address-operator & the statement p:=&polled

stores the location of the variable polled in p, and a statement like s1:=s2 would change
s1 to point at l9 instead of l8. By using the dereference-operator * as in the statement
*p:=0 of thread 2, a new value can be stored in the location the dereferenced variable
points at. For pointers with structure type like c1, the selection operator -> can be used
to access individual member variables of that structure. For instance, statement 7 of
thread 1 accesses the member variables c1->state, s1->value and s2->value. Simple
(non-pointer) variables are handled as usual, i.e., an assignment to a simple variable like
started:=1 changes the value stored in the location (l1 in fig. 3.3) associated with this
variable.

To adequately represent concurrency, a Cmin program allows the definition of arbitrary
many threads that are distinguished by their associated number. Our sample program
defines two threads , thread 1 and thread 2. Thread 1 firstly creates a Controller object
and two Sensor objects. After that, in a never-ending loop it polls the two sensors, and
dependent on the values of the sensors it switches the state member variable of the
controller object. When two or more threads access common variables it is important
to synchronize these accesses. In a Cmin program, an await statement can be used for

46

3.2 Cmin

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11

c1 s1 s2

l8 l9l7 1 0 l2 0 0 0 free free

started poll p

Controller.state

Sensor.value

Figure 3.3: Memory configuration after initialization. After executing the state-
ments 1 − 4 of thread 1, 3 new objects have been created and allocated at
the locations l7, l8, and l9, and the values stored at the locations l3, l4, l5
and l6 have been changed.

that purpose. A statement like await(poll=0,poll:=1) can only be executed when
the guard poll=0 evaluates to true, therefore a thread is blocked at that statement as
long as the guard is not true. When the guard is true, the statement can be executed,
i.e., the assignment poll:=1 will be executed. With this mechanism it is possible to
synchronize accesses to shared variables from different threads.

Another aspect of reactive programs, the reading of input values from the environment,
can be expressed in a Cmin program by using nondeterministic expressions. The meaning
of an expression nd is the nondeterministic choice of one value from the domain int, i.e.,
after execution of a statement like s1->value:=nd the variable s1->value can have an
arbitrary integer value. Besides assignment-, new- and await-statements there is also the
jump-statement. In a Cmin program, each statement is labeled by a unique number. The
meaning of a jump statement like jump(true,5,8) is that depending on the condition
in the jump statement (true in this case) the control moves either to statement 5 or
to statement 8. With jump statements, all kinds of control-flow constructs such as
if-then-else, while loops or switch-case statements can be realized.

After this short introduction into the programming language Cmin and its constructs
by means of an example, in the following we will introduce Cmin programs formally.

Definition of Cmin

A Cmin program P is a tuple

P = (Structs(P), V ars(P), init(P), Threads(P)),

with the following components:

• Structs(P) = {C1, · · · , Ck} is a set of so-called structures. Each structure Ci de-
fines a sequence of so-called member variables MemberV ars(Ci) = 〈m1, · · · , ml〉.
The set of all member variables of all structures is denoted with MemberV ars.

47

3 SymC++ and Cmin

• V ars(P) = {v1, · · · , vm} is a set of variables.

• init(P) = V ars(P)→ D is an initialization function that assigns to each variable
v ∈ V ars(P) an initial value init(v) from the domain D. The concrete set D will
be defined later when we define the semantics of expressions.

• Threads(P) = {T1, · · · , Tn} is a set of threads. The detailed structure of threads
will be explained later.

Based on a given Cmin program P we define the set of types induced by the program.
We distinguish between the basic types int and bool, the set Structs(P) of structures
and the set PTypes of so-called pointer types, which are inductively defined as follows:

• int∗ ∈ PTypes and bool∗ ∈ PTypes.

• if C ∈ Structs(P) then C∗ ∈ PTypes.

• if t ∈ PTypes then t∗ ∈ PTypes.

The set of all types is defined as Types = {int, bool} ∪ Structs(P) ∪ PTypes. Fur-
thermore, the set CTypes = {C∗ | C ∈ Structs(P)} ⊂ PTypes denotes the set of all
structure pointer types, and we assume a function

type : V ars(P) ∪MemberV ars→ Types

that defines the type type(v) for every variable v ∈ V ars(P) ∪MemberV ars. As a re-
striction, we assume that type(v) /∈ Structs(P) for every v ∈ V ars, i.e., it is only allowed
to declare variables of structure pointer types, but not structured variables directly. To
distinguish between variables that are pointer to structures and other variables we de-
fine the set CV ars = {v ∈ V ars(P) | type(v) ∈ CTypes} of pointer variables with a
structure pointer type. Furthermore, we define the sets

IV ars = {v ∈ V ars(P) | type(v) = int} and BV ars = {v ∈ V ars(P) | type(v) = bool}

of all integer- resp. boolean variables, and we define BIV ars = BV ars ∪ IV ars. For
the definition of the semantics we need the two functions

size : Types→ N

size(t) =

{

1 if t ∈ Types \ Structs(P)
∑n

i=1 size(type(vi)) if t ≡ C ∈ Structs(P) and C = 〈v1, · · · , vn〉

and

off : Types×MemberV ars→ N

off(t, vk) =

{

∑k−1
i=1 size(type(vi)) if t ≡ C andC = 〈v1, · · · , vk, · · · , vn〉

0 otherwise

The function size yields the number of locations size(t) that are needed to store an
object of type t, and off yields the offset off(C, vk) of the member variable vk within
the structure C.

48

3.2 Cmin

Typed Expressions In the following we define typed expressions, i.e., we define the
syntax of expressions and their type which is determined by the syntactical components
of the expressions. If t is a type, then Expt denotes the set of expressions of type
t. We distinguish between expressions that can occur on the left side of assignments
and other expressions. Expressions that can occur on the left side of assignments are
called l-expressions, all other expressions are simply called expressions. L-Expressions
are defined as follows:

• (Simple variable):
if v ∈ V ars(P) and type(v) = t then v ∈ LExpt.

• (Referenced location of simple variable):
if v ∈ V ars(P) and type(v) = t∗ then ∗v ∈ LExpt.

• (Member variable):
if v ∈ CV ars, type(v) = C∗, m is a member variable of C and type(m) = t then
v → m ∈ LExpt.

The set of all L-expressions is LExp =
⋃

t∈Types LExpt. As expressions can contain
constants, we define the sets

intc = {min, · · · ,−1, 0, 1, · · · , max} resp. boolc = {false, true}

of integer constants resp. boolean constants. Additionally, we assume the special con-
stant failc, and for pointer types we define the set nullc = {nullt | t ∈ PTypes}, whereby
each constant nullt denotes an invalid pointer of type t. With this, we can define the
set Const of all constants as

Const = intc ∪ boolc ∪ {failc} ∪ nullc.

In the following, as a shortcut we often simply write 0 to denote either the integer
constant 0, an invalid pointer value nullt ∈ nullc or the boolean constant false. Ad-
ditionally, we define the sets of arithmetic operations AOp = {+,−, ∗, div, mod}, arith-
metic relations ARel = {<, <=, =, <>, >=, >}, pointer relations PRel = {==, <>}
and boolean operations BOp = {and, or, not}, and we define

Op = AOp ∪ARel ∪ PRel ∪BOp.

Expressions are defined as follows:

• if c ∈ Const and type(c) = t then c ∈ Expt.

• (Nondeterministic choice): nd ∈ Expint.

• if e ∈ LExpt then e ∈ Expt.

• (Location of simple variable):
if v ∈ V ars(P) and type(v) = t then &v ∈ Expt∗.

49

3 SymC++ and Cmin

• (Location of member variable):
if v ∈ CV ars, type(v) = C∗, m is a member variable of C and type(m) = t then
&v → m ∈ Expt∗.

• (Arithmetic expressions):
if e1, e2 ∈ Expint and op ∈ AOp then e1 op e2 ∈ Expint.

• (Conditional expressions):
if e ∈ Expbool, e1, e2 ∈ Expt then e?e1 : e2 ∈ Expt.

• (Arithmetic relations):
if e1, e2 ∈ Expint and op ∈ ARel then e1 op e2 ∈ Expbool.

• (Pointer relations):
if e1, e2 ∈ Expt∗ and op ∈ PRel then e1 op e2 ∈ Expbool.

• (Boolean expressions):
if e1, e2 ∈ Expbool then not e1, e1 and e2, e1 or e2 ∈ Expbool.

The set of all expressions is Exp =
⋃

t∈Types Expt. Additionally, we introduce the
function adr : LExp→ Exp that is defined as

adr(e) =

v if e ≡ ∗v

&v if e ≡ v

&v → m if e ≡ v → m

We will use the function adr to define the semantics of assignments.

Semantics of expressions For the definition of the semantics of expressions we will use
the following semantic domains:

• A finite interval of integers Dint = {min, . . . ,−1, 0, 1, . . . , max}.

• The boolean values Dbool = {true, false}.

• The special values free and fail.

• A countable infinite set of locations Dloc = {l1, l2, . . .}.

We use the special value free to be able to distinguish between used and unused loca-
tions, and the special value fail to indicate an erroneous computation. In our setting,
a state will be a mapping from the set of locations to values. As values can be integers,
booleans or locations, we define D = Dint∪Dbool∪Dloc∪{free} and σ : Dloc → D. The
set of all such states is denoted by Σ. Furthermore, we define Σf = Σ∪{fail}. To be able
to handle dynamic object creation and destruction, we assume a type-based partitioning
of the set of locations, i.e., we assume to have partial functions tls : Dloc → Structs(P)
and tl : Dloc → Types \ Structs(P) that satisfy the following criteria for all l ∈ Dloc:

50

3.2 Cmin

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11

null nullnull 0 0 null free free free free free

{int int

Controller*

Sensor* int* int

Controller

int

Sensor{

tl

tls

Figure 3.4: Type-based partitioning functions. The functions tls and tl are exam-
ples of valid type-based partitioning functions.

1. ∀t ∈ Structs(P)∃ l ∈ Dloc : tls(l) = t.

2. tls(l) = t⇒ ∃ l′ > l : tls(l′) = t.

3. tls(l) = t⇒ ∀l′ ∈ {l + 1, · · · , l + size(t)− 1} : tls(l′) is undefined.

4. ∀t ∈ Types \ Structs(P)∃ l ∈ Dloc : tl(l) = t.

5. tl(l) = t⇒ ∃ l′ > l : tl(l′) = t.

6. tls(l) = C ⇒ ∀v ∈MemberV ars(C) : l′ = l + off(C, v)⇒ tl(l′) = type(v).

1 and 2 resp. 4 and 5 ensure that there are indeed infinite many locations for every type
occurring in the program. Furthermore, 3 ensures that locations of structured types are
non-overlapping, and 6 assures that the types of the locations of the member variables
of an object of type C correspond to the types of the member variables. Figure 3.4
shows the beginning of suitable functions tls and tl for our sample program. By using
the functions tl resp. tls we avoid to store additional type information in the memory
which will ease the definition of the semantics of dynamic object creation, i.e., whenever
a particular memory location l is used (σ(l) 6= free), then its type its determined by the
functions tl resp. tls.

The semantics of expressions is in general a set of values because of possible nondeter-
ministic expressions. To be able to also use the locations of declared (static) variables, we
assume that each declared variable of a program P has a fixed location that is determined
by an injective function varloc : V ars(P) → Dloc. For elements s1, s2 ∈ {free, fail}
and every d ∈ D and op ∈ Op we define

d op s1 = fail, s1 op d = fail, s1 op s2 = fail, not s1 = fail.

With this, the semantics of an expression e ∈ Exp is a mapping

[[e]] : Σf → P(D ∪ fail),

51

3 SymC++ and Cmin

and is defined as follows:

• if e ≡ c ∈ Const then [[e]](σ) = {c}

• (Nondeterministic choice): if e ≡ nd then [[e]](σ) = {d | d ∈ Dint}

• (Simple variable): if e ≡ v then [[e]](σ) = σ(varloc(v))

• (Dereferenced simple variable): if e ≡ ∗v then

[[e]](σ) =

{

σ(σ(varloc(v))) if σ(varloc(v)) 6= 0 ∧ σ(σ(varloc(v))) 6= free

fail otherwise

• (Member variable): if e ≡ v → m then

[[e]](σ) =

σ(σ(varloc(v)) + off(type(v), m)) if σ(varloc(v)) 6= 0

∧σ(σ(varloc(v))) 6= free

fail otherwise

• (Location of simple variable): if e ≡ &v then [[e]](σ) = varloc(v)

• (Location of member variable): if e ≡ &v → m then

[[e]]l(σ) =

{

σ(varloc(v)) + off(type(v), m) if σ(varloc(v)) 6= 0

fail otherwise

• (Arithmetic expressions): if e ≡ e1 op e2, op ∈ AOp, then
[[e]](σ) = {d1 op d2 | d1 ∈ [[e1]](σ), d2 ∈ [[e2]](σ)}

• (Conditional expressions): if e ≡ e1?e2 : e3, then

[[e]](σ) =

{

{d | d ∈ [[e2]] ∧ true ∈ [[e1]](σ)}

∪ {d | d ∈ [[e3]] ∧ false ∈ [[e1]](σ)}

• (Arithmetic relations): if e ≡ e1 op e2, op ∈ ARel, then
[[e]](σ) = {d1 op d2 | d1 ∈ [[e1]](σ), d2 ∈ [[e2]](σ)}

• (Pointer relations): if e ≡ e1 op e2, op ∈ PRel, then
[[e]](σ) = {d1 op d2 | d1 ∈ [[e1]](σ), d2 ∈ [[e2]](σ)}

• (Boolean expressions):

[[e1 and e2]](σ) = {d1 ∧ d2 | d1 ∈ [[e1]](σ), d2 ∈ [[e2]](σ)}

[[e1 or e2]](σ) = {d1 ∨ d2 | d1 ∈ [[e1]](σ), d2 ∈ [[e2]](σ)}

[[not e1]](σ) = {¬d | d ∈ [[e1]](σ)}

52

3.2 Cmin

Updates of states To describe the semantics of assignments, we need the notion of an
update of a state σ, written as σ[l := d], where l, l′ ∈ Dloc and d ∈ D, and it is defined
as

σ[l := d](l′) =

{

d if l = l′

σ(l′) otherwise.

Furthermore, we define σ[l := fail] = σ[fail := d] = fail, and we extend this definition
to a set of values with

σ[l := {d1, · · · , dn}] = {σ[l := d] | d ∈ {d1, · · · , dn}}.

Based on this, we define a sequence of updates with

σ[l1 := d1, l2 := d2, · · · , ln := dn] = (σ[l1 := d1])[l2 := d2, · · · , ln := dn].

Threads As mentioned before, a Cmin program contains a set of threads

Threads(P) = {t1, · · · , tn}.

A thread ti = (i, stmsi) consists of an identifier i ∈ {1, · · · , n} and a sequence of labeled
statements

stmsi = 〈(k1
i , stm

1
i), · · · , (k

ji

i , stmji

i)〉, kl
i ∈ N.

The set of labels of a thread with identifier i is denoted by

Labels(i) = {kl
i | k

l
i ∈ {k

1
i , · · · , k

ji

i }},

and we assume that

i1 6= i2 ⇒ Labels(i1) ∩ Labels(i2) = ∅.

With firsti we denote the label of the first statement of thread i, and for a label kl
i,

stm(kl
i) describes the statement labeled with kl

i. The set of all labels of all threads is
denoted by Labels, and we use a function

next : Labels→ Labels

next(kl
i) =

{

kl+1
i if l < ji

kl
i otherwise

that yields for every except the last label of a thread the subsequent label, and for
the last label simply again the last label. For the definition of statements we need the
notions of assignment and concurrent assignment. An assignment el := e sets the value
of the expression e ∈ Exp to the location of the expression el ∈ LExp. A concurrent
assignment [e1

l := e1, · · · , e
n
l := en] describes the execution of all assignments ei

l := ei in
one transition. Based on the notion of concurrent assignments we can now define the
set of possible statements STMi for a thread i as follows:

53

3 SymC++ and Cmin

• (Concurrent assignment):
if stm ≡ [e1

l := e1, · · · , e
n
l := en] is a concurrent assignment then stm ∈ STMi

• (Synchronization):
if e ∈ Expbool and [e1

l := e1, · · · , e
n
l := en] is a concurrent assignment, then

await(e, [e1
l := e1, · · · , e

n
l := en]) ∈ STMi

• (Branching):
if e ∈ Expbool and k1, k2 ∈ Labels(i) then jump(e, k1, k2) ∈ STMi

• (Object creation):
if v ∈ V ars(P) and type(v) ∈ PTypes then new(v) ∈ STMi

• (Object destruction):
if v ∈ V ars(P) and type(v) ∈ PTypes then delete(v) ∈ STMi

The set STM of all statements of a program is defined as STM =
⋃n

i=0 STMi.

Semantics With each thread ti = (i, stmsi) we associate a so-called program counter
pci ∈ Labelsi. A thread configuration tc of a program is a tuple

tc = (pc, σ), σ ∈ Σf .

A thread transition (pc, σ)→ (pc′, σ′) between two configurations describes one compu-
tation step of one thread corresponding to one statement, and is defined as follows:

• (Concurrent assignment):

(pc, σ)→ (pc′, σ′)⇔

stm(pc) = [e1
l := e1, · · · , e

n
l := en]

∧ pc′ = next(pc)

∧σ′ ∈ σ[[[adr(e1
l)]](σ) := [[e1]](σ), · · · , [[adr(en

l)]](σ) := [[en]](σ)]

• (Synchronization):

(pc, σ)→ (pc′, σ′)⇔

stm(pc) = await(e, [e1
l := e1, · · · , e

n
l := en])

∧ pc′ = next(pc) ∧ true ∈ [[e]](σ)

∧σ′ ∈ σ[[[adr(e1
l)]](σ) := [[e1]](σ), · · · , [[adr(en

l)]](σ) := [[en]](σ)]

• (Branching):

(pc, σ)→ (pc′, σ′)⇔

{

stm(pc) = jump(e, lab1, lab2) ∧ σ′ = σ ∧

((true ∈ [[e]](σ) ∧ pc′ = lab1) ∨ (false ∈ [[e]](σ) ∧ pc′ = lab2))

• (Object creation):

(pc, σ)→ (pc′, σ′)⇔

stm(pc) = new(v) ∧ pc′ = next(pc)

∧∃l ∈ Dloc : ((type(v) = C ∗ ∧tls(l) = C ∧ σ(l) = free)∨

(type(v) = t∗ /∈ CTypes ∧ tl(l) = t) ∧ σ(l) = free))

∧σ′ = σ[[[adr(v)]](σ) := l, l := 0, · · · , l + size(t)− 1 := 0]

54

3.3 Properties of Cmin programs

• (Object destruction):

(pc, σ)→ (pc′, σ′)⇔

stm(pc) = delete(v) ∧ pc′ = next(pc)

∧σ′ = σ[[[v]](σ) := free, · · · ,

[[v]](σ) + size(type(∗v))− 1 := free]

Furthermore, for each transition (pc, σ)→ (pc′, σ′) we require that σ 6= fail, i.e., there is
no transition from a failure state. Based on the transition relation for single threads we
can now define the possible transition of a whole program. A configuration of a program
P is a tuple

c = (pc1, · · · , pcn, σ).

The start configuration of a program is (first1, · · · , firstn, σ0), whereby σ0 fulfills the
conditions

• ∀v ∈ V ars(P) : σ0(varloc(v)) = init(v).

• ∀l ∈ Dloc : l /∈ Ran(varloc)⇒ σ0(l) = free.

A transition (pc1, · · · , pcn, σ)→ (pc′1, · · · , pc′n, σ′) describes one computation step of the
whole program, and it is defined as

(pc1, · · · , pck, · · · , pcn, σ)→ (pc1, · · · , pc′k, · · · , pcn, σ′)⇔ (pck, σ)→ (pc′k, σ
′),

i.e., the transitions of the whole program are all possible interleavings of the transitions
of all threads. A run r of a program P is a sequence of configurations r = 〈c0, c1, · · · 〉
s.t. c0 is the starting configuration of P and ∀i ≥ 0 : ci → ci+1 is a transition of P . With
Conf(r) we denote the set of all configurations occurring in r. We denote the set of all
runs of a program P with Runs(P), and we define

Conf(P) =
⋃

r∈Runs(P)

Conf(r)

and

States(P) = {σ ∈ Σf | (pc1, · · · , pcn, σ) ∈ Conf(P)}.

In the following, when it is not necessary to distinguish the components of a configuration
c, we often simply say that c is a state of P .

3.3 Properties of Cmin programs

After having defined the possible runs of a program, we will now define a formalism
to specify properties of programs. Given a program P , in the sequel we use σ(r, i) to
denote state i in a run r = 〈c0, c1, · · · 〉 of P . With BExp(V) resp. IExp(V) we denote
the set of all boolean resp. integer expressions only containing variables v ∈ V , and we

55

3 SymC++ and Cmin

define BIExp(V) = BExp(V) ∪ IExp(V). Given an expression e ∈ BExp(BIV ars),
for a configuration ci of a run r we define

ci � e⇔ [[e]](σ(r, i)) = true.

Additionally, we define ci 2 e ⇔ ¬(ci � e). For the specification of properties, we will
use a restricted form of temporal logic TL. Given a program P , the syntax of TL is
defined as follows:

• if q ∈ BExp(BIV ars) then q is a state formula.

• if q is a state formula, then EFq ∈ TL.

The semantics of TL-formulas w.r.t. a program P can be given in terms of the runs of
P . Intuitively, the notation P � q means that program P fulfills formula q. Given a
program P , the relation � is defined as

P � EFq ⇔ ∃r = 〈c0, c1, · · · 〉 ∈ Runs(P),∃i ≥ 0 : ci � q

The intuitive meaning of a formula EFq w.r.t. a program P is that eventually an execu-
tion sequence of the program P will lead to a program configuration where q evaluates
to true. Formulas of the form EFq are often called reachability formulas because they
express that a configuration must be reachable in which q holds, and a run

r = 〈c0, c1, · · · , ci〉

with ci � q is called a witness for EFq. In contrast to other temporal logics like
e.g. linear time temporal logics (LTL), TL allows only rather restricted specifications.
However, if it is not possible to specify property of interest in TL directly, one can often
annotate the program with additional statements and variables such that the property
is expressible as a TL-formula speaking over the newly introduced variables. Given a
formula ϕ in some logic, the additional statements to the original program are often
called an observer for ϕ. The introduction of observers has been described for different
logics and computation models, e.g. in [DL02]. Using such an observer, one often can
use a simple reachability algorithm to decide if a program fulfills a particular formula ϕ.
This approach also has the advantage that the application of a reachability algorithm
to decide the reachability of a particular state of the observer for ϕ is often much more
efficient than the application of a more complex algorithm which is needed to decide the
validity of ϕ directly. However, in this thesis we will not further investigate the problem
of richer specification languages and the construction of observers. This is subject of
future work and will be discussed in sect. 6.2.

3.4 Translating SymC++ to Cmin

In this section, we will explain how SymC++ programs can be translated into Cmin

programs. The translation process can be roughly subdivided into three phases: In

56

3.4 Translating SymC++ to Cmin

the first phase, all object-oriented constructs are translated into equivalent imperative
constructs using additional variables, and expressions using arrays are translated into
equivalent expressions using pointer arithmetic. In the second phase, function calls
and returns are replaced by equivalent constructs using dynamic object creation and
destruction, and pointer arithmetic operations are replaced by operations on linked lists.
Finally, in the third phase, Cmin threads are created from the intermediate program. The
first phase consists of the following 3 steps:

1. All template classes and template functions are expanded into real classes and
functions by instantiating the template definitions with the actual template pa-
rameters.

2. All member variables, all statically defined variables and all function local vari-
ables of a class type or array type are transformed into pointer variables with a
corresponding pointer type. According to that, all array accesses are transformed
into equivalent expressions using pointer arithmetic. Furthermore, all implicitly
called initialization and destruction functions are made explicit, i.e., implicit con-
structor and destructor calls for member variables or base classes. For instance, a
class definition like

class A { ... }

class B { ... };

class C : B {

A a;

int d[10];

int i;

C() { i=0; }

int f() { A a1; d[i] = 5; ...; return 1; }

...

};

is transformed into a class definition

class A { ... };

class B { ... };

class C : B {

A* a;

int* d;

int i;

C() { B(); a = new A(); d = new int[10]; i=0; }

int f() { A* a1 = new A(); *(d+i)=5; ...; delete a1; return 1; }

...

};

57

3 SymC++ and Cmin

3. All classes are transformed into corresponding structures. Each class definition is
replaced by a structure definition with the same name and variables. All member
functions of a class are replaced by normal functions with the same parameters
and the same function bodies, but with an additional this parameter. According
to that, all accesses to member variables are transformed into accesses using the
this parameter. For correctly representing the inheritance relation and virtual
function calls we need some additional variables in each structure. Let

Classes = {C1, · · · , Cn}

denote the set of all classes of a SymC++ program, let id(Ci) = i ∈ {1, · · · , n}
denote a unique identifier for a class Ci and let inherit denote the inheritance
relation between classes, i.e., inherit(A, B) iff B inherits from A. For a class C,
with

pre(C) = {C ′ ∈ Classes | inherit(C ′, C)}

and

post(C) = {C ′ ∈ Classes | inherit(C, C ′)}

we denote the set of direct predecessors resp. direct successors of C in the inher-
itance relation, and with pre∗(C) resp. post∗(C) we denote the transitive closure
of pre resp. post. To each structure corresponding to a class C we add for each
C ′ ∈ pre(C) ∪ post(C) a variable C ′ of type C ′∗. Furthermore, we introduce a
variable cid of type int into each structure that serves as a class identifier. Figure
3.5 shows a SymC++ class hierarchy (left) and the corresponding Cmin structure
definitions (right). To adequately represent the construction of a new object of a
class, for every class C we define a new function init C that creates a a new object
of the corresponding structure. In this function, also new objects of all structures
corresponding to classes in pre∗(C) are created, and the pointers C ′ are set ac-
cording to the inheritance relation. Furthermore, init C sets all cid variables of
all classes in pre∗(C) to the class index id(C). The pointer variables C ′ are used
to correctly represent type casts, and the cid variables are used to select the right
function in case of virtual function calls. A type cast (C1*)c2 of a variable c2 of
type C2 into a variable of type C1 is transformed into the expression c2->_C1, as
it is done in the main function of fig. 3.5. A virtual function call like c->f() on
the variable c of type C* is transformed into a conditional expression that tests
the value of the cid variable of the structure corresponding to C. Depending on
the cid variable, that contains the index of the real class of the object on which
the virtual function is called, the right function to call is selected. For instance, in
the main function of fig. 3.5, the virtual function call a->f() is translated into the
conditional expression

a->cid=1 ? A::f(a) : C::f(a->_C);

58

3.4 Translating SymC++ to Cmin

A
int a

B
int b

C
int c

class A {
 int a;
 A() { a=0; }
 virtual int f() {
 return a;
 } }

class B {
 int b;
 B() { b=1; }
 virtual int g() {
 return b;
 } }

class C : A,B {
 int c;
 C() { c=2; }
 virtual int f() { return c; }
 virtual int g() { return c; }
}

struct A {
 int a;
 C* _C;
 int cid; }

A
int a

B

C

int b
C* _C C* _C

A* _A
int c

B* _B

struct B {
 int b;
 C* _C;
 int cid; }

struct C {
 int a;
 A* _A;
 B* _B; int cid; }

A* init_A() {
 A* a=new A;
 a->cid = 1;
 a->_C = 0;
 A::A(a);
 return a; }

B* init_B() {
 B* b=new B;
 b->cid = 2;
 a->_C = 0;
 B::B(b);
 return b; }

C* init_C() {
 C* c=new C; c->cid = 3;
 c->_A=newA; c->_A->cid=3;
 c->_A->_C=c; c->_B=new B;
 c->_B->cid=3; c->_B->_C=c;
 C::C(c); return c; }

A::A(A* this) {
 this->a=0;
}

B::B(B* this) {
 this->b=1;
}

C::C(C* this) {
 A::A(this->_A);
 B::B(this->_B); this->c=2; }

A::f(A* this) {
 return this->a;
}

B::g(B* this) {
 return this->b;
}

C::f(C* this) {
 return this->c;
}

C::g(C* this) {
 return this->c;
}

void main() {
 C* c = new C();
 A* a = (A*)c;
 int i = a->f(); /* calls C::f */
}

int cid int cid

void main() {
 C* c = init_C();
 A* a = c->_A;
 int i = a->cid=1 ? A::f(a) : C::f(a->_C);
}

Figure 3.5: Translating class hierarchies. A SymC++ class hierarchy consisting of
three class A, B and C (left) and the corresponding Cmin structure definitions
(right).

If a points at a real A-object, then a->cid would have the value 1 and thus the
function A::f(a) would be called. Since in the example shown in fig. 3.5 a points
at the A-part of a C-object, a->cid has the value 3 and thus C::f(a->_C) is called.
As one can see, the use of the cid variables guarantees the selection of the right
function in case of virtual function calls.

After these 3 steps have been performed, the SymC++ program does not contain any
classes, arrays or implicit function calls any more, i.e., all object-oriented constructs are
transformed into usual imperative constructs, and all array constructs are transformed
into constructs using pointer arithmetic. However, as Cmin programs do not support
function calls and pointer arithmetic directly, the translation steps 4, 5, 6 and 7 transform

59

3 SymC++ and Cmin

pointer arithmetic and function calls into equivalent constructs available in Cmin.

4. Using fresh variables, all expressions are transformed s.t. function calls and pointer
arithmetic only occur as single expressions or as a single expression on the right
side of an assignment. For instance, an expression like

int* f() {...}; int g(int* p) { ... };

*f() = g(f()+1) + 23;

is transformed into the following sequence of expressions:

int* f() {...};

int g(int* p) { ... };

int* tmp1 = f();

int* tmp2 = f();

int* tmp3 = tmp2 + 1;

int tmp4 = g(tmp3);

*tmp1 = tmp4 + 23;

Additionally, all occurrences of the function call symcpp_nondet are translated
into corresponding nondeterministic expressions in Cmin, i.e., a call

x = symcpp_nondet(0,100);

is translated into

tmp = nd;

x = tmp >= 0 && tmp <= 100 ? tmp : 0;

Furthermore, all new and delete statements are transformed such that they only
operate on simple variables. Again, fresh variables are introduced if necessary.

5. All types t that are used in pointer arithmetic expressions are transformed into
corresponding structure types t_struct with additional variables prev and next

of type t_struct*. These additional variables are used to realize an array of
elements as a double linked list. When a new array is created by a call of the
new[] operator for arrays, e.g. C* c = new C[10], this call is translated into a
sequence of calls of the single new operator, and the elements are linked via the
prev and next variables of the corresponding structure type. Furthermore, each
pointer arithmetic expression is translated into a traversal of the double linked list
representing the underlying array. For instance, the following program

60

3.4 Translating SymC++ to Cmin

struct C { int i; }

void f() {

C* c = new C[10];

C* c2 = c+5;

}

is translated as follows:

struct C_struct { int i; C_struct* prev; C_struct* next; }

void f() {

C_struct* c = new C;

C_struct* tmp = c;

int k;

for (k=1; k < 10; k++) {

tmp->next = new C;

tmp->next->prev = tmp;

tmp = tmp->next;

}

C_struct* c2 = c;

k=1;

while (k != 5) {

c2 = c2->next;

k = k + 1;

}

}

6. All control-dependent statements, i.e., while-, do-while-, for- and switch-
statements, are transformed into equivalent statement using only if-statements
and goto-statements. For instance, the loop

while (i < 10) {

i = i + 1;

}

is transformed into the loop

L0: if (i < 10) goto L2;

L1: goto L3;

L2: i = i + 1;

goto L0;

L3: ...

7. Let 〈f1, · · · , fm〉 an arbitrary linearization of the set of all functions {f1, · · · , fm}.
We create a new function prog() that contains the sequence of statements of all

61

3 SymC++ and Cmin

class A : Thread {
 int a;
 virtual void Run() {
 while(1) {
 a = f(a);
 a = a % 10;
 }
 return;
 }
}

class B : Thread {
 int b;
 virtual void Run() {
 int i;
 while(1) {
 i = g(1);
 a = f(i);
 }
 return;
 }
}

int f(int i1) {
 int i2 = i1+1;
 return i2;
}

int g(int i3) {
 int i4 = i3-1;
 return i4;
}

A a;
B b;
void main() {
 a.Start();
 b.Start();
 return;
}

prog() {
 L0: int i2 = i1 + 1;
 L1: return i2;
 L2: int i4 = i3-1;
 L3: return i4;
 L4: if (1) goto L6;
 L5: goto L9;
 L6: a = f(a);
 L7: a = a % 10;
 L8: goto L4;
 L9: return;
 L10: if (1) goto L12;
 L11: goto L15;
 L12: i = g(1);
 L13: a = f(i);
 L14: goto L10;
 L15: return;
 L16: Thread::Start(a);
 L17: Thread::Start(b);
 L18: return;
}

Figure 3.6: Linearized Functions. The function prog (right) contains a linearized
sequence of all statements of all functions of the SymC++ program (left).
However, there are still functions calls and return statements in the linearized
sequence.

functions according to the given linearization, and we provide each single statement
with a unique label. For instance, fig. 3.6. shows the function prog for a small
SymC++ program. Now, to remove function calls and returns from this sequence
we create for each function f a corresponding structure f_params that contains
the following variables:

• A variable for each parameter of the function.

• A variable for each local variable of the function.

• A variable for the return value of the function.

• Two variables prev and next of type f_params*.

• A variable call of type int.

For instance, for the function

C* f(D* d,int i) {

C* c; ... }

62

3.4 Translating SymC++ to Cmin

the corresponding structure f_params is defined as follows:

struct f_params {

D* d;

int i;

C* c;

C* ret;

f_params *prev,*next;

int call;

}

We will use these structures as stack frames during function execution. When a
function f is called, a new f_params object is created. The parameter values of
the function call are stored in the corresponding variables of the f_params object.
Furthermore, we assume that each location has a unique identifier of type int, and
we store the identifier of the location of the call in the call-variable of the f_params
object. The value of the call-variable will be used at the return statement inside
the called function to determine the location to which the call has to return.
However, during runtime there can exist more than one active invocation of a
function due to direct or indirect recursive function calls. Therefore, we organize
f_params objects as double-linked lists, whereas the variables next and prev can
be used to navigate through these lists. For each structure f_params we define
a variable f_p of type f_params*. The variable f_p always points at the latest
f_params object. When a function f is called, firstly it is checked if f_p already
points at a f_params object. In such a case a new f_params object is created
and assigned to f_p->next. Furthermore, f_p->next->prev gets the value of f_p
and f_p gets the value of f_p->next, i.e., f_p now points at the newly created
f_params object. Otherwise, if f_p is not pointing at a f_params object, a new
f_params object is created and is simply assigned to f_p. During execution of the
function f, all accesses to parameters and local variables are performed w.r.t. f_p,
i.e., an access to a local variable i in a function f is performed via f_p->i. When
a return statement of a function f is reached, we copy the return value into the
ret variable of the f_params object f_p is currently pointing at. Furthermore,
depending on the value of the call variable, a goto to the statement directly after
the corresponding call statement is executed. After returning to the statement
after the call statement, the return value is copied from f_p->ret, f_p is set back
to f_p->prev, and the latest f_params object is deleted. As an example, consider
the function call depicted in fig. 3.7. For the function f the structure f params

and the pointer variable f p are created. The function call at L0 is translated to
the sequence of statements between L0a and L0k. There, a new f_param object
is created and assigned to f_p. Furthermore, the parameter value 2 is stored in
f_p->i2, and the index of the location of the call, L0a, is stored in f_p->call.
After initializing the elements of f_p, the goto statement at location L0h jumps to

63

3 SymC++ and Cmin

int f(int i1) {
 int i2 = i1+1;
 return i2;
}

struct f_params {
 int i1;
 int i2;
 int ret;
 f_params* prev;
 f_params* next;
 int call;
}

int a;
prog() {
 ...
 L0: a = f(2);
 ...
 L25: int i2 = i1 + 1;
 L26: return i2;
 ...
}

f_params* f_p;
int a;
prog() {
 ...
 L0a: if (f_p != 0) goto L0d;
 L0b: new(f_p) L0c: goto x
 L0d: new(f_p->next);
 L0e: f_p->next->prev = f_p; L0f: f_p=f_p->next;
 L0g: f_p->i1 = 2; L0h: f_p->call = L0a;
 L0h: goto L25;
 L0i: a = f_p->ret;
 L0j: f_p = f_p->prev;
 L0k: delete(f_p->next);
 ...
 L25: f_p->i2 = f_p->i1 + 1;
 L26a: f_p->ret = f_p->i2;
 L26b: if (f_p->call == L0a) goto L0i;
 ...
}

Figure 3.7: Translating function calls and returns. For the function f the structure
f params and the pointer variable f p are created. The function call at
L0 is translated to the sequence of statements between L0a and L0k. The
statements L26 and L27 belonging to the function f are translated to the
statements L25, L26a and L26b.

the first statement of the function f at location L25. The access to the parameter i1
and the local variable i2 of function f is realized through f_p->i1 resp. f_p->i2.
When reaching the return statement, at location L26a the computed return value
is stored in f_p->ret. After that, at location L26b the value of f_p->call is
tested. If the current call was made at L0a, i.e., if f_p->call == L0a, the goto
statement branches back to location L0i. There, the return value is copied from
f_p->ret into the global variable a. After that, f_p is reset to the previously
active f_params object, and the f_params object f_p is pointing at is deleted.

A special case is a return statement in the main function resp. in a Run function.

64

3.4 Translating SymC++ to Cmin

Since these functions cannot return to any other functions, the return statements
of these functions are translated into a goto statement of the form Lk: goto Lk,
i.e., whenever the control of a thread reaches such a return statement, the thread
stays forever at the label Lk.

After the steps 4, 5, 6 and 7 have been performed, we have created a set of structure and
variable definitions as well as a prog function that contains all statements of all func-
tions. The generated structure and variable definitions are already valid Cmin definitions.
Furthermore, each single statement of the prog function can directly be translated into
corresponding Cmin statements. However, each thread of the original SymC++ program
has its own call stack, i.e. own copies of local variables. Furthermore, at the beginning
of a SymC++ program only the default thread executing the global main function is
active. To represent this behavior in the generated Cmin program, we have to perform
two additional transformation steps:

8. Let {t1, · · · , tn} be the set of all thread objects of the original SymC++ program.
For each thread object ti we create a new function thread(i), and for the main

function we create a new function thread(0). For each function thread(i) we
create own copies of all f_p variables denoted as f_p_i. Additionally, for each func-
tion thread(i) we create copies of all statements of the prog function replacing
the variables f_p by the corresponding thread-local variables f_p_i. Furthermore,
at the beginning of each function thread(i) we add an additional goto statement
branching to the first statement of the corresponding Run function of ti resp. to
the first statement of the main function.

9. Since at the beginning of a SymC++ program only the default thread executing
the global main function is active, i.e. thread(0), we create for each function
thread(i) with i>0 a new integer variable start_i that initially has the value
0. At the beginning of each function thread(i) we add an additional statement
await(start_i=1).

After the transformation steps 8 and 9 have been performed, the resulting program
has already become very similar to a Cmin program, as one can see in fig. 3.8. The
function thread(0) represents the thread executing the main function. Therefore, the
first statement in thread(0) is a goto statement branching to the first statement of
the translated main function. The function thread(1) represents the thread belonging
to the A object. Since this thread is not active at the beginning, the first statement
of thread(1) is an await statement waiting that the condition started_1==1 becomes
true. When this condition becomes true and the await statement can be executed,
the subsequent goto statement jumps to the first statement of the translated A::Run

function. The function thread(2) is build up analogously.

Now, the last task we have to realize is the translation of the statements of the
functions thread(i) into valid Cmin syntax. This task can be performed straightforward:

65

3 SymC++ and Cmin

class A : Thread {
 int a;
 virtual void Run() {
 while(1) {
 a = a+1 % 10;
 }
 return;
 } }

class B : Thread {
 int b;
 virtual void Run() {
 while(1) {
 b = b + 2 % 5
 }
 return;
 } }

A a;
B b;
void main() {
 a.Start();
 b.Start();
 return;
}

thread(0) {
L0_0: goto L0_main1 ;

 ...
L0_main1 : start_1=1;
L0_main2 : start_2=1;

 ...
}

thread(1) {
L1_0: await(start_1=1);
L1_1: goto L1_A::Run;

 ...
L1_A::Run:

 ...
}

thread(2) {
L2_0: await(start_2=1);
L2_1: goto L2_B::Run;

 ...
L2_B::Run:

 ...
}

Figure 3.8: Translating threads. The thread objects a and b are translated into
Cmin threads thread(1) and thread(2). Additionally, the function main is
translated into the Cmin thread thread(0).

• Each assignment el := e of an expression e to a location el is translated into a
Cmin concurrent assignment [el := e].

• Each await statement await(e) is translated into a Cmin await statement
await(∗e > 0, [∗e := 0]).

• Each if statement Li: if(e) goto Lk is translated into a Cmin jump statement
jump(e,Lk,Li+1). Furthermore, each simple goto statement Li: goto L is trans-
lated into a jump statement jump(true,L,Li+1).

• All new statements resp. all delete statements are already valid Cmin statements.

After this last step, starting from a SymC++ program we have created an equivalent
Cmin program. Since C++ lacks of a formal semantics we cannot give here a formal
proof of the equivalence of the two programs. However, for the evaluation of the state
space exploration methods we have tested several SymC++ programs, and for none of
these programs we encounter a program run of the corresponding Cmin program that was
not a real run of the original program, which experimentally validates the correctness
of the presented translation. In the next section, we give an overview of the SymC++
programs we used for evaluating the state space exploration methods that we present in
the chapters 4 and 5.

66

3.5 Test Programs

3.5 Test Programs

In this section, we will give an overview of the SymC++ programs we use to evalu-
ate the state space exploration methods that we present in the chapters 4 and 5. We
use programs that are generated from the automatic code generator of the commercial
UML case tool Rhapsody [HG97, GHP02]. These programs are ideal candidates for an
evaluation, since they show several important characteristics:

• They make intensive use of object-oriented features like inheritance and polymor-
phism.

• They contain dynamic object creation and destruction, and also recursive function
calls.

• They are reactive, i.e., they have cyclic behavior and react to stimuli coming from
the environment.

• They contain concurrently running threads.

Therefore, by using such programs we cover a broad range of available SymC++ con-
structs. In the next section, we will shortly describe Rhapsody UML Models, and we
show how we can apply our SymC++ framework to the automatically generated C++
code of these models. After that, in sect. 3.5.2, we give a brief overview about the
individual test programs.

3.5.1 Rhapsody UML Models

The Unified Modelling Language (UML) has become accepted as the de facto standard
notation for the design of object-oriented software systems. UML contains graphical
languages that on the one hand can represent the static structure of a system, e.g. class
diagrams, as well as languages that define the dynamic behavior of systems, e.g. state
machine diagrams. The class diagrams are used to specify static aspects of a model, e.g.
attributes of classes, inheritance relationships, associations and so on. State machines
can be used to describe the reactive behavior of classes, i.e. how an instance of this class
reacts to signal events or call events coming from the environment or from other objects.
Furthermore, a so-called action language is used to describe all kinds of actions in the
systems, e.g. the action part of state machine transitions or the effect of operations of
classes. Figure 3.9 shows a very simple class diagram and two state machines. Both
class A and class B are so-called reactive classes, a notion which in UML is defined
as a class which behavior is described by a state machine. An instance of a reactive
class, a reactive object, can react to events or operation calls. Besides reactive objects
there exists also so-called active objects which are objects with an own thread of control,
and which are usually used to manage a set of reactive objects. Each active object is
equipped with an event queue which stores all incoming events. The event processing
is divided into so-called run-to-completion (RTC) steps. In one RTC step, an event is

67

3 SymC++ and Cmin

S0

S1

S3

S2

S0

S1

e1 /
itsB->gen(e2)

1itsB

itsA

e3

e0 /
itsB->gen(e2)

e0/
itsA->m1()

 e2 /
itsA->gen(e0)

m1()/
itsA->gen(e1)e1

A B

Figure 3.9: UML Model. The UML classes A and B are reactive as their behavior is
defined by UML state machines.

first dispatched from the queue. Dispatching this event enables some transitions in the
state machine of the reactive object the event has been sent to, and depending on the
current state configuration and values of attributes of the receiving object, a maximal set
of non-conflicting transitions will be taken, i.e. the state configuration changes and the
actions associated to the taken transitions are executed. After that, so-called completion

events will be dispatched until the reactive object is in a stable configuration, i.e. the
object cannot take any transitions without dispatching a new event (not a completion
event) from the event queue. For example, when an instance of class A is in state s0
and it dispatches an event e0 from the queue then it will change its state to s1, and
when taking the transition it will send the event e2 (via the framework function gen)
along the association itsB (which is implemented as a pointer to an object of type B).
In contrast to asynchronous event sending an object of class A can also communicate
synchronously with an object of class B, e.g. when A takes the transition from s1 to
s3 by calling the method m1 of B. For a more complete overview about UML see e.g.
[Gro04].

The commercial UML case tool Rhapsody [HG97, GHP02] allows the development
of so-called executable UML models. The name executable stems from the fact that
an automatic code generator can generate C++ code from these models. The C++
code is generated according to the UML semantics of the model, and it is divided into
model specific code that reflects e.g. the behavior of a particular state machine, and
model independent code that is shared between different Rhapsody UML models. The
model independent code forms a set of so-called framework classes which encapsulate
the semantics of certain UML constructs, e.g. the run-to-completion semantics of state
machines. The framework classes depend on operating system specific functions to im-
plement e.g. multiple threads. Therefore, we built our own version of these framework

68

3.5 Test Programs

Thread

Start()
...

Active

dispatchEvent()
...

Reactive

runToCompletion()
...

Event

...

EventQueue

queueEvent(Event* e)
...

A

func1()
...

B

func2()
...

SymC++ base class

SymC++ UML
framework

C++ Model Code

eventmanager

1 *

C++ Environment

Send Events
Call Operations

Stable

void Active::Run() {

Event* e;

while (true) {

if (queue.size() > 0)

{

e = queue.top();

dispatchEvent(e);

}

}

}

Figure 3.10: SymC++ UML framework. Based on the SymC++ class Thread, UML
framework classes are realized. The Run method of the class Active itera-
tively checks its event queue and processes received events via the method
dispatchEvent.

classes in SymC++. Figure 3.10 shows how we represent the semantics of Rhapsody
UML models in our framework. For example, the class Active inherits from the SymC++
base class Thread. Each thread has a method Run which contains the main loop of the
thread. Active’s implementation of the run method (v. fig. 3.10 right) is a never end-
ing loop which continuously checks the event queue associated to this object, and if
there is an event in the queue, it is dispatched, i.e. a new RTC step with this event is
initiated. To allow also reactive classes without an own thread of control there is the
class Reactive. Every class which inherits from Reactive has to implement the method
runToCompletion, which must perform the event processing together with possible com-
pletion events. An active class with a statechart can therefore be achieved by inheriting
both from Active and Reactive, as it is shown in fig. 3.10 for classes A and B.

In addition to the actual SymC++ code realizing the behavior of the model, we
generate a so-called environment thread that sends events to objects of the model resp.
calls operations and selects input values of parameters. The decision what event or
operation is called and which parameter values are used is made nondeterministically,
i.e., the generated code for the environment thread simulates the later environment
of the embedded program. Additionally, the environment thread is synchronized with

69

3 SymC++ and Cmin

the model threads such that it sends events and calls operations only when the model
is stable, i.e., when no model thread can proceed any further without a new external
stimulus. After generating a new stimulus, the environment thread again waits until
the model is stable again. During the processing of the external stimulus, more than
one model thread can be active. However, the threads can interleave only at certain
points during the computation. Since each model thread belongs to an active object,
and since RTC steps are atomic, different threads can only interleave after a RTC step
has completed.

3.5.2 Overview of test programs

In this section, we shortly review the individual test model resp. test programs we use
for evaluating the state space exploration methods that we present in the chapters 4 and
5:

• PBX: The PBX models the behavior of a telephone system consisting of 4 tele-
phones. Each telephone realizes several features, e.g. a quick dial operation. The
generated C++ code contains 841 classes and 39340 lines of code. The large
number of classes and lines of code stem from the fact that several libraries of
the windows operating system are used. In appendix B we give a more detailed
overview about this program.

• SMS: The SMS models the behavior of a stores management system of an aircraft.
The aircraft has several stores that can store different types of loadings. Based on
some characteristics of the individual loadings the SMS controls several important
parameters of the aircraft. The generated C++ code contains 131 classes and
12295 lines of code.

• Dishwasher: The Dishwasher is a model of a dishwasher with several washing
programs. For instance, a quick washing program finishes faster than the normal
program, but cleans not as thorough as the normal program. The generated C++
code contains 94 classes and 6798 lines of code.

• CANBus: The CANBus models the behavior of an implementation of a CANBUS
bus protocol. The model contains different parts of a system connected with a
bus, e.g. a receiver, a transmitter and a bus controller. The generated C++ code
contains 103 classes and 7454 lines of code.

• ARCS: The ARCS models the behavior of an automated rail cars system of an
airport. Rail cars carry passengers from one terminal to other terminals. During
driving the rail cars steadily control the distance to other rail cars and automat-
ically accelerate resp. brake if necessary. The generated C++ code contains 171
classes and 12930 lines of code.

• Elevator: The Elevator models the behavior of two elevators in a high rise. A
controller arrange the floors where the elevators halt next if an elevator is requested

70

3.5 Test Programs

at different floors at the same time. The generated C++ code contains 98 classes
and 6360 lines of code.

• Pacemaker: The Pacemaker models the behavior of a computer controlled pace-
maker. A controller steadily checks the heart rate of the person wearing the pace-
maker, and emits electrical impulses according to that heart rate. The generated
C++ code contains 102 classes and 9778 lines of code.

• HomeHeating: The HomeHeating models the behavior of a computer controlled
heating installation. The user can program a desired temperature, and a controller
regulates several radiators in order to establish this temperature. The generated
C++ code contains 86 classes and 6885 lines of code.

• HomeAlarm: The HomeAlarm models the behavior of an alarm plant. The user
can define a PIN with which one can turn on and off the alarm plant. If the alarm
plant is enabled, a controller steadily checks the rooms for movements or noise.
The generated C++ code contains 96 classes and 7180 lines of code.

• TCU: The TCU is a model of mobile telephone control unit in a car. The mobile
phone can be used to make or receive phone calls. Furthermore, in case of a
breakdown the nearest breakdown service is called automatically, and in case of a
crash an emergency call is made. The generated C++ code contains 134 classes
and 19147 lines of code.

71

3 SymC++ and Cmin

72

4 Explicit-Symbolic State Space

Exploration

In this chapter, we will define an efficient state space exploration algorithm for Cmin

programs that can be used to find witnesses for formulas EFq. As described in chapter
2, a state space exploration algorithm has to address several issues in order to be efficient:

1. Complexity of the state: In contrast to state space exploration or model checking
tools that operate on a more abstract level, a Cmin program can handle arbitrary
dynamic structures. For instance, in a Cmin program one can use data structures
like lists, sets or graphs that cannot be used in verification languages that do not
support dynamic memory. Therefore, an efficient treatment of dynamic memory
allocation has to be found.

2. Size of programs and state: Although it is in principle possible to build large models
or programs in any language, programs in general purpose programming languages
like C++ are usually much larger and more detailed than models build in more
abstract verification languages. Furthermore, such programs often handle large
amount of data. As a consequence, the amount of memory needed to represent a
state of a C++ program is usually much larger than the amount of memory needed
to represent a state in more abstract verification languages.

3. Number of possible states: An embedded program usually has a certain interface,
i.e., a set of functions or methods that are called by the environment as reactions
to specific events occurring in the embedded system. These functions or methods
usually have several parameters that represent e.g. input values read by some
sensors. Due to the possible large domain of these variables, allowing arbitrary
input values for these variables results in a tremendous number of possible states.
For instance, choosing an arbitrary value for a normal integer variable i with
domain {−231 + 1, · · · , 231} in a state σ leads to 232 different successor states.

4. Concurrency: In a program with n concurrent threads each having m distinct
states, the global state space can have up to mn global states. This state explosion
due to the interleaving of asynchronously executing threads is present in all lan-
guages allowing concurrency, i.e., also in more abstract verification languages, and
it has always been a major obstacle when performing a state space exploration. As
described in sect. 2, partial order reduction is a successful technique to alleviate
this problem.

73

4 Explicit-Symbolic State Space Exploration

(1) procedure Explore
(2) All← ∅; Open← ∅
(3) Open.insert(s0)
(4) All.insert(s0)
(5) while (Open 6= ∅)
(6) u← Open.get();
(7) if (eval(u, q) = true)
(8) return path(u)
(9) foreach v ∈ next(u)
(10) if (v /∈ All)
(11) Open.insert(v)
(12) All.insert(v)
(13) end procedure Explore

Figure 4.1: General state expanding exploration algorithm. The depicted algo-
rithm explores the state space of a Cmin program in order to find a witness
of a formula EFq.

In this chapter, we will address in particular the problems 1, 2 and 3. We will not directly
address problem 4 in this chapter, but the heuristic state space exploration procedure
presented in chapter 5 can be used to alleviate the state explosion due to concurrency.
As already mentioned in sect. 2.1, partial order techniques can sometimes successfully
alleviate the effects of concurrency. However, in this thesis we do not further investigate
the use of partial order reductions.

The basis of our state space exploration algorithm is the general state expanding
search algorithm depicted in fig. 4.1. The algorithm utilizes two sets Open and All. The
set Open contains all states that have been generated but which are not yet visited.
Contrary to this, the set All contains all states that have been generated already. In the
beginning, the starting state s0 is inserted into Open. In the main loop of the algorithm,
states are extracted from Open by calling the operation Open.get. Given a formula
EFq, if q evaluates to true in a state s then the path from s0 to s is a witness for EFq.
According to that, in line 7 of the algorithm the current state u is evaluated and the
path from s0 to the current state is returned (line 8) if q is true in u. As long as no state
is found that fulfills q, all direct successor states v ∈ next(u) of the current state u are
generated. If a successor state v has not been generated before, i.e. v is not in All, then
it is inserted into Open. This procedure is repeated until either a state s is found with
eval(s, q) = true or all states have been visited, i.e., Open = ∅ at line 5.
For the efficiency of the general state expanding search algorithm depicted in fig. 4.1,
the following aspects are of particular importance:

• The representation of a state and the realization of the function next. Since the
function next and also the sets Open and All have to support operations on states,

74

4.1 Explicit State Representation

e.g. the operation All.insert, the representation of a state inevitable has impact
on the realization of these operations.

• The organization of All. As mentioned above, for realistic programs the number of
states that have to be explored by the exploration algorithm can be tremendously
large. Therefore, the set All should be realized s.t. a large number of states can be
stored. To avoid revisiting states, before inserting a newly generated state s into
Open it is checked if already s ∈ All. The efficiency of this operation is crucial for
the efficiency of the search algorithm. Furthermore, since states are stored both in
Open and All, to avoid redundancy one typically stores only a link or number in
Open instead of the complete state. As a consequence, when a state is extracted
from Open it must be possible to restore this state from the content stored in All
in order to be able to compute the functions eval and next. Additionally, since in
case a state s is found with eval(s, q) = true the algorithm should return a path
from the starting state to s as a witness for EFq, it must be possible to construct
such a path from the content stored in All.

• The organization of Open. The operation Open.get controls the order in which
states are generated and visited. Therefore, the realization of this operation has
a crucial impact on the effectiveness of the exploration algorithm. Furthermore,
the order in which states are extracted from Open also has implications for the
organization of All. For instance, if states can be extracted from Open in an
arbitrary order it must be possible to restore an arbitrary state from the content
stored in All.

In the sequel, we will discuss and evaluate different realizations for the aspects in the
list above. With regard to the last point, the organization of Open, in this chapter we
will only consider the uninformed search algorithms breadth-first search and depth-first
search. When Open is implemented as a stack, algorithm 4.1 performs a depth-first
search. Contrary to this, if Open is implemented as a queue, algorithm 4.1 performs
a breadth-first search. In section 5, where we present an abstraction-based heuristic
search procedure, we will evaluate the usage of informed search algorithms. As a starting
point, in the next section we will present an exploration algorithm based on an explicit
representation of individual states, and we discuss and evaluate how the operations listed
above can be realized efficiently w.r.t. the explicit state representation. After that, in
sect. 4.2, we extend the techniques developed in sect. 4.1 to work not only for individual
states but also for entire sets of states which are represented by a composite explicit-
symbolic representation.

4.1 Explicit State Representation

Beginning with the starting configuration, the state space exploration algorithm shown
in fig. 4.1 generates successor configurations from already visited configurations. The
generation of successor configurations is repeated until either a witness for a formula EFq

75

4 Explicit-Symbolic State Space Exploration

is found or all reachable configurations have already been visited. A configuration is a
tuple (pc1, · · · , pcn, σ) consisting of the program counters of all threads and a state σ that
maps the infinite set of locations to values from D. However, to handle configurations
algorithmically we need a finite representation for a configuration. Given a state σ ∈ Σ,
a state vector v(σ) ∈ D∗ is a sequence

v(σ) = (σ(l1), · · · , σ(lk)) s.t. σ(lk) 6= free ∧ ∀i > k : σ(i) = free,

i.e., v(σ) denotes the finite sequence of values from σ(l1) to σ(lk) whereby lk is the
largest location of σ that is not mapped to free. Figure 4.2 shows two states and their
corresponding state vectors. As can be seen in fig. 4.2, state vectors vary in length, but
their length is always finite. Given a configuration c = (pc1, · · · , pcn, σ), a configuration
vector v(c) ∈ Labelsn ×D∗ is a sequence

v(c) = (pc1, · · · , pcn, v(σ)),

i.e., a configuration vector is simply a state vector extended by a prefix that describes
the current valuation of the program counters. Since a configuration vector is finite, it
can be used as a data structure to represent configurations in our state space exploration
algorithm shown in fig. 4.1. After defining configuration vectors, we can now define how
the function next and the two sets Open and All operate on configurations vectors.
Given a configuration vector v(c), the function next : Conf(P)→ P(Conf(P)) with

next(v(c)) = {v(c′) | c→ c′}

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11

c1 s1 s2

null nullnull 0 0 null free free free free free

started poll p

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11

c1 s1 s2

l8 l9l7 1 0 free free

started poll p

Controller.state

Sensor.value

l2 0 2 5

σ1

v(σ1)

σ2

v(σ2)

Figure 4.2: Explicit State Vectors. Two states σ1 and σ2 and their corresponding
state vectors v(σ1) and v(σ2).

76

4.1 Explicit State Representation

computes the set of configuration vectors that are successors of the current configuration
vector. To allow fast membership checking v(c) ∈ All of a newly generated configuration
vector v(c), the set All of already generated configuration vectors is organized as a
hashing table. In a hashing table of configuration vectors with m slots, the index of the
slot to store a configuration vector v(c) is determined by a hashing function

h : Labelsn ×D∗ → {0, · · · , m− 1}.

We do not define h in more detail here, but we assume that h distributes uniformly
over the range {0, · · · , m − 1}. Since |dom(h)| > |ran(h)|, it is clear that in general h
cannot be injective. Therefore, we can have two configuration vectors v(c1) 6= v(c2) with
h(v(c1)) = h(v(c2)), a situation that is called hash collision. One strategy for dealing
with hash collisions is linear probing that we will use because of its simplicity. In linear
probing, in case of a hash collision at position i = h(v(c)), we successively test the
positions

(i + 1) mod m, (i + 2) mod m, · · ·

for the membership of v(c), until either at position (i+k) mod m we find the element v(c)
or we find a free slot in the hashing table. However, if all m slots of the hashing table are
occupied, then we cannot store newly generated states any more. In theory, in such a case
one could extend h to a larger range {0, · · · , m′− 1} with m′ > m. However, in practice
one can choose m such that most of the available randomly accessible memory will be
reserved for the hash table. When all entries of the hashing table are filled, and we try
to increase the number of entries of the hashing table in order to store more states, then
the operating system has to swap parts of the hashing table into secondary memory.
The effect of holding parts of the hashing table into secondary memory is a drastic
performance decrease, since the entries of the hashing table are addressed randomly, i.e.,
the probability that an entry of the hashing table that resides on a secondary memory
device is accessed is very high. Therefore, when the size of the hashing table becomes
larger than the available random access memory, then most of the time will be consumed
by memory swapping. In practice this means that if a state space exploration is not
successful until all available random access memory is exhausted, then one cannot simply
allocate more memory for the hashing table because of the described deceleration of the
exploration process. There are two different approaches to deal with such a situation.
Either one can simply stop the exploration process, knowing that neither the search has
found a witness for a formula EFq nor it has been complete. Alternatively, one can
only hold the states in memory which belongs to the current execution path and forget
all states belonging to other paths. While such an approach would still be complete in
theory, in practice this would also result in a drastic performance decrease, because no
duplicate states would be detected that lie on different execution paths. Therefore, in
practice one prefers the first alternative, and we also follow this approach.

When the set All is organized as a hashing table, then we can use the computed hash
value h(v(c)) as an identifier for the configuration vector v(c) in the set Open, avoiding
a redundant storage of v(c). Figure 4.3 shows a typical situation during the execution

77

4 Explicit-Symbolic State Space Exploration

V(C2)=(pc1,...,pcn,v(s2))

V(C2)=(pc1,...,pcn,v(s2))
h(V(C2))

ALLOPEN

i

k:

k

V(C1)=(pc1,...,pcn,v(s1))i:next(i)

Figure 4.3: Organization of All. Using an appropriate hashing function h, the set All
can be organized as a hashing table storing configuration vectors v(c). The
set Open can use the index h(c) to identify a configuration c.

of algorithm 4.1. Since the index i is extracted from Open (line 6 of algorithm 4.1), the
next configuration vector to expand (line 9 of algorithm 4.1) is the configuration vector
stored at position i in the hashing table representing the set All. Since at position i the
configuration vector v(c1) is stored, next(v(c1)) computes all successor configurations
vectors of v(c1), among other things v(c2). To check if v(c2) ∈ All (line 10 of algorithm
4.1) we compute the index k = h(v(c2)). If v(c2) is already in All, then we do not insert
v(c2) into All and we do not insert k in Open, since we have done this already before. If
v(c2) /∈ All, then we insert v(c2) into All at position k (line 12 of algorithm 4.1) and also
insert index k into Open (line 11 of algorithm 4.1). Furthermore, if the search goal is
EFq, and sometimes later we will find a configuration vector v(c) that fulfills q, we want
to return a path from the starting configuration to c as a witness for the search goal EFq
(line 8 of algorithm 4.1). In order to reconstruct the path, for each configuration vector
we also store a predecessor link that points at the direct predecessor of the configuration
vector. In fig. 4.3, since v(c1) is a predecessor of v(c2), in addition to v(c2) we store at
position k a predecessor link pointing at position i.

The algorithm depicted in fig. 4.1 concretized with the described treatment of configu-
rations, the successor function next and the sets Open and All together form a complete
implementation of a state space exploration algorithm of Cmin program w.r.t formulas
EFq. Because of its simplicity we will call the described solution the naive or simple
approach. In the next sections, we analyze some of the deficiencies of the naive ap-
proach and describe some improvements. After that, in sect. 4.1.4 we will analyze the
runtime behavior of the naive approach compared to the improved approaches by means
of several experiments.

78

4.1 Explicit State Representation

4.1.1 Dynamic Object Creation and Symmetries

As described in the previous section, one purpose of having the set All of already gen-
erated configuration vectors is the possibility to detect configuration vectors that have
been generated before, so-called duplicates. However, in a Cmin program objects can be
allocated and deallocated dynamically, which can result in configurations that differ only
in the locations where the objects are allocated and the values of the pointer variables.
As an example, consider the following program fragment:

class C { int x; };

class D { int x; };

C* c1;

D* d1;

void main() {

L0: if (symcpp_nondet(0,1)) {

L1:

c1 = new C(); c1->x = 1;

d1 = new D(); d1->x = 2;

}

else {

L2:

d1 = new D(); d1->x = 2;

c1 = new C(); c1->x = 1;

}

L3:

...

}

When the execution of the program reaches label L0, due to the nondeterminism in the
condition of the if-statement two successor configurations are possible, one at which the
program counter points at the statement at L1 and one at which the program counter
points at the statement at L2. When executing both paths until label L3 is reached, and
if newly allocated objects are mapped to the smallest free location, then we would get
the states shown in fig. 4.4. The states shown on the left side of fig. 4.4 belong to the
execution sequence

c1 = new C; c1->x=1;

d1 = new D; d1->x=2;

and the states shown on the right side belong to the execution sequence

d1 = new D; d1->x=2;

c1 = new C; c1->x=1;

79

4 Explicit-Symbolic State Space Exploration

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11

 free free 1l3 null free free free free free free

c1 d1 C.x

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11

 1 free 2l4 l3 free free free free free free

c1 d1 D.x C.x

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11

 2 free 1l3 l4 free free free free free free

c1 d1 C.x D.x

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11

 free free 2 null l3 free free free free free free

c1 d1 D.x

l1

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11

 free free free null null free free free free free free

c1 d1

Figure 4.4: Symmetric configurations. The two configurations at the bottom are
symmetric since they differ only in the locations where the objects are allo-
cated and the values of the pointer variables c1 and c2

As one can see, the two execution sequences lead to different states, since e.g. location
l3 has the value 1 in the left state and the value 2 in the right state. However, the
semantics of Cmin programs does not depend on the concrete locations used to store
objects. Looking at the values reachable from program variables, then we observe that
in both states c1 points at an object that has a member variable x with value 1 and d1
points at an object that has a member variable x with value 2, i.e., the two states shown
at the bottom of fig. 4.4 differ only in the positions of the objects, they are symmetric.
To define symmetry for states formally we need the notion of a permutation. Given
n0 ∈ N, a permutation π is a bijection from the set of natural numbers {1, · · · , n0} to
itself. For a location li ∈ Dloc and a permutation π we define π(li) = lπ(i), and for all
d ∈ Dint ∪Dbool we define π(d) = d, i.e., values from Dint ∪Dbool are not changed by π.
The following definition formalizes the notion of symmetric states.

Definition 4.1 Let P be a Cmin program and σ, σ′ states of P . We say that two states
σ and σ′ are symmetric (in symbols σ ≡ σ′) iff there exists a permutation π s.t. ∀i ≥ 0
it holds

1. li ∈ Ran(varloc)⇒ π(i) = i, i.e., all locations belonging to static variables are not
permuted

2. π(σ(li)) = σ′(lπ(i)), i.e., the permuted value of location li in state σ is equal to the
value of location lπ(i) in state σ′.

80

4.1 Explicit State Representation

Furthermore, we say that two configurations c1 = (pc1, · · · , pcn, σ) and c2 =
(pc′1, · · · , pc′n, σ′) are symmetric (in symbols c1 ≡ c2) if pci = pc′i for all i ∈ {1, · · · , n}
and σ ≡ σ′ holds.

We state now some important properties of symmetric states. Firstly, the value of an
expression e ∈ Exp(P) is equivalent in symmetric states. Secondly, if two states are
symmetric, when changing both the value of a location in one state and the value of
the permuted location in the other state, then the resulting states are also symmetric.
Additionally, we state that successors of symmetric states are also symmetric.

Lemma 4.2 Let P be a Cmin program, σ, σ′ ∈ Σ be two states with σ ≡ σ′, e ∈ Exp(P)
be an expression, li ∈ Dloc a location and d ∈ D an arbitrary value. Let further c1 and
cπ
1 configurations of P s.t. c1 ≡ cπ

1 . Then the following holds:

1. π([[e]](σ)) = [[e]](σ′).

2. σ[li := d] ≡ σ′[lπ(i) := π(d)].

3. c1 → c2 ⇒ ∃c
π
2 : cπ

1 → cπ
2 ∧ c2 ≡ cπ

2 .

Proof:

1. (By structural induction):

• if e ≡ c ∈ Const then π([[e]](σ)) = π(c) = c = [[e]](σ′)

• if e ≡ v then π([[e]](σ)) = π(σ(varloc(v))) = σ′(π(varloc(v))). Since
varloc(v) ∈ Ran(varloc), from 1 of def. 4.1 we know that π(varloc(v)) =
varloc(v), thus we have σ′(π(varloc(v))) = σ′(varloc(v)) = [[e]](σ′). The
cases

e ≡ ∗v, e ≡ v → m, e ≡ &v, and e ≡ &v → m

can be shown similarly.

• (Nondeterministic choice): if e ≡ nd then
π([[e]](σ)) = π({d | d ∈ Dint}) = {d | d ∈ Dint} = [[e]](σ′)

• (Arithmetic expressions): Suppose the lemma holds for expressions e1 and e2.
If e ≡ e1 op e2, op ∈ AOp, then

π([[e]](σ)) = π({d1 op d2 | d1 ∈ [[e1]], d2 ∈ [[e2]]})

= {d1 op d2 | d1 ∈ π([[e1]](σ)), d2 ∈ π([[e2]](σ))}

= {d1 op d2 | d1 ∈ [[e1]](σ
′)), d2 ∈ [[e2]](σ

′)}

= [[e]](σ′)

The cases

e ≡ e1?e2 : e3, e ≡ e1 op e2, op ∈ ARel, e ≡ e1 op e2, op ∈ PRel,
e1 and e2, e1 or e2, not e1

can be shown similarly.

81

4 Explicit-Symbolic State Space Exploration

2. If lk 6= li we have

π(σ[li := d](lk)) = π(σ(lk)) = σ′(lπ(k)) = σ′[lπ(i) := π(d)](lπ(k)).

Otherwise, if lk = li we have

π(σ[li := d](lk)) = π(d) = σ′[lπ(i) := π(d)](lπ(k)).

3. Let c1 = (pc1, · · · , pci, · · · , pcn, σ) and cπ
1 = (pc1, · · · , pci, · · · , pcn, σπ) be two

symmetric configurations related by the permutation π. Let further c2 =
(pc1, · · · , pc′i, · · · , pcn, σ′) be a successor configuration of c1, i.e., thread i performs
a transition (pci, σ)→ (pc′i, σ

′). We distinguish the following cases:

• Concurrent assignment stm(pci) = [e1
l := e1, · · · , e

n
l := en]. Let

σ′ ∈ σ[[[adr(e1
l)]](σ) := [[e1]](σ), · · · , [[adr(en

l)]](σ) := [[en]](σ)]

be an arbitrary successor state of σ. Since c1 ≡ cπ
1 , from 1 and 2 of lemma

4.2 we can conclude that

∀σi ∈ σ[[[adr(e1
l)]](σ) := [[e1]](σ), · · · , [[adr(en

l)]](σ) := [[en]](σ)]

∃σk ∈ σπ[[[adr(e1
l)]](σ

π) := [[e1]](σ
π), · · · , [[adr(en

l)]](σπ) := [[en]](σπ)] : σi ≡ σk,

i.e., we can choose σπ′

s.t. σ′ ≡ σπ′

. Since furthermore

cπ
2 = (pc1, · · · , pc′i, · · · , pcn, σπ′

)

is a successor of cπ
1 we can conclude that c2 ≡ cπ

2 .

• Synchronization stm(pci) = await(e, [e1
l := e1, · · · , e

n
l := en]). Let

σ′ ∈ σ[[[adr(e1
l)]](σ) := [[e1]](σ), · · · , [[adr(en

l)]](σ) := [[en]](σ)]

be an arbitrary successor state of σ. With 1 of lemma 4.2 it is clear that

true ∈ [[e]](σ)⇔ true ∈ [[e]](σπ),

i.e., there is also a transition possible from cπ
1 . Furthermore, since c1 ≡ cπ

1 ,
from 1 and 2 of lemma 4.2 we can conclude that

∀σi ∈ σ[[[adr(e1
l)]](σ) := [[e1]](σ), · · · , [[adr(en

l)]](σ) := [[en]](σ)]

∃σk ∈ σπ[[[adr(e1
l)]](σ

π) := [[e1]](σ
π), · · · , [[adr(en

l)]](σπ) := [[en]](σπ)] : σi ≡ σk,

i.e., we can choose σπ′

s.t. σ′ ≡ σπ′

. Thus, since

cπ
2 = (pc1, · · · , pc′i, · · · , pcn, σπ′

)

is a successor of cπ
1 we can conclude that c2 ≡ cπ

2 .

82

4.1 Explicit State Representation

• Branching stm(pci) = jump(e, lab1, lab2). With 1 of lemma 4.2 it is clear that

[[e]](σ) = [[e]](σπ).

Therefore, if true ∈ [[e]](σ)∧ pc′i = lab1, then also true ∈ [[e]](σπ)∧ pc′i = lab1,
and if false ∈ [[e]](σ) ∧ pc′i = lab2, then also false ∈ [[e]](σπ) ∧ pc′i = lab2.
Thus we have c2 ≡ cπ

2 .

• Object creation stm(pci) = new(v). Let lj be the first location where the
newly created object has been allocated in state σ, i.e.,

σ′ = σ[[[adr(v)]](σ) := lj , lj := 0, · · · , lj + size(t)− 1 := 0].

Analogously, let lm be the first location where the newly created object has
been allocated in state σπ, i.e.,

σπ′

= σπ[[[adr(v)]](σπ) := lm, lm := 0, · · · , lm + size(t)− 1 := 0].

The permutation π′ that is defined as

π′(i) =

{

m + i− j if i ∈ {j, · · · , j + size(t)− 1}

π(i) otherwise

fulfills the requirements from def. 4.1, therefore we have c2 ≡ cπ
2 .

• Object destruction stm(pci) = delete(v). From the definition of the seman-
tics we know that

σ′ = σ[[[v]](σ) := free, · · · , [[v]](σ) + size(type(∗v))− 1 := free]

and

σπ′

= σπ[[[v]](σπ) := free, · · · , [[v]](σπ) + size(type(∗v))− 1 := free].

Since c1 ≡ cπ
1 , from 1 and 2 of lemma 4.2 we can directly conclude that

σ′ ≡ σπ′

and also c2 ≡ cπ
2 .

⊓⊔
By using the fact that the set of permutations together with functional composition and
identity forms a group it can be shown that ≡ is an equivalence relation on configurations
(v. e.g. [CGP99]). The equivalence class, also known as the orbit, of a configuration c is
denoted by [c], i.e., for each c′ ≡ c we have c′ ∈ [c]. We now define a so-called canonization
function which computes for each equivalence class [c] a unique representative.

Definition 4.3 Let P be a Cmin program and ≡ a symmetry relation as defined in
definition 4.1. A function n : Conf(P) → Conf(P) is called a canonization function
for ≡ iff for all c, c′ ∈ Conf(P) it holds

c ≡ c′ ⇔ n(c) = n(c′).

83

4 Explicit-Symbolic State Space Exploration

Given a canonization function n and a program P , we can define the set of canonized
runs of P as follows:

Definition 4.4 Let P be a Cmin program, ≡ a symmetry relation as defined in definition
4.1 and n a canonization function. The set NRuns(P) of canonized runs is defined as

NRuns(P) =

{

〈n(c0), n(c1), · · · 〉

∣

∣

∣

∣

c0 is starting configuration of P
∧∀i ≥ 0 : n(ci)→ ci+1

}

Each canonized run starts with the canonized starting configuration. Furthermore, when
there is a transition n(c)→ c′ possible in P , then we use n(c′) as the successor configu-
ration of n(c) instead of c′. The following theorem states the important result that for
each run r ∈ Runs(P) we have a symmetric run r′ ∈ NRuns(P) and vice versa.

Theorem 4.5 Let P be a Cmin program and ≡ a symmetry relation as defined in defi-
nition 4.1. Then the following holds:

r = 〈c0, c1, · · · 〉 ∈ Runs(P)⇔ r′ = 〈n(c0), n(c1), · · · 〉 ∈ NRuns(P)

Proof:

• ”⇒”: By induction on the length of runs. Let r = 〈c0〉 ∈ Runs(P). Since c0 is the
starting configuration of P , from definition 4.4 we can conclude that r′ = 〈n(c0)〉 ∈
NRuns(P). Now suppose the theorem holds for all runs up to length k, and let
r = 〈c0, · · · , ck, ck+1〉 ∈ Runs(P) be a run of length k+1. Since the theorem holds
for all runs up to length k we know that r′ = 〈n(c0), · · · , n(ck)〉 ∈ NRuns(P).
Since ck ≡ n(ck), from 3 of lemma 4.2 we know that if ck → ck+1 then there exists a
c′k+1 ≡ ck+1 s.t. n(ck)→ c′k+1. Since c′k+1 ≡ ck+1 we know that n(c′k+1) = n(ck+1),
and therefore r′ = 〈n(c0), · · · , n(ck+1)〉 ∈ NRuns(P).

• ”⇐”:

By induction on the length of runs. Let r′ = 〈n(c0)〉 ∈ NRuns(P). Since n(c0)
is the canonized starting configuration of P we know from definition 4.4 that
c0 is the starting configuration of P , and therefore it holds that r = 〈c0〉 ∈
Runs(P). Now suppose the theorem holds for all runs up to length k, and let
r′ = 〈n(c0), · · · , n(ck), n(ck+1)〉 ∈ NRuns(P) be a run of length k + 1. Since the
theorem holds for all runs up to length k we know that r = 〈c0, · · · , ck〉 ∈ Runs(P).
Since n(ck) ≡ ck, from 3 of lemma 4.2 we know that if n(ck)→ n(ck+1) then there
exists a c′k+1 ≡ n(ck+1) s.t. ck → c′k+1. Since c′k+1 ≡ n(ck+1) we know that
n(c′k+1) = n(ck+1), and therefore r = 〈c0, · · · , ck, ck+1〉 ∈ Runs(P).

⊓⊔
Since from 1 of lemma 4.2 we know that the value of expressions is equivalent in symmet-
ric configurations, and since theorem 4.5 holds, to check whether P � EFq it suffices to

84

4.1 Explicit State Representation

(1) procedure Explore
(2) All← ∅;
(3) Open← ∅
(4) Open.insert(n(s0))
(5) while (Open 6= ∅)
(6) u← Open.get();
(7) if (eval(u, q) = true)
(8) return path(u)
(9) foreach v ∈ next(u)
(10) if (n(v) /∈ All)
(11) Open.insert(n(v))
(12) All.insert(n(v))
(13) end procedure Explore

Figure 4.5: Exploring canonical states. The depicted exploration algorithm uses a
canonization function n to canonize configurations before they are inserted
into All and Closed.

explore only canonized runs instead of all runs. The slightly modified search algorithm
depicted in fig. 4.5 utilizes a canonization function n. Instead of a configuration c, the
algorithm always inserts a canonized configuration n(c) into Open and All. Addition-
ally, for checking if a newly generated configuration c has already been generated before
(line 10 of algorithm 4.5) the canonized configuration n(c) is used. The advantage of
algorithm 4.5 compared to the simple algorithm is that in general algorithm 4.5 explores
fewer configurations than the simple algorithm. The reason for this lies in the fact that a
canonized configuration is a unique representative of all configurations that are symmet-
ric to each other. For instance, consider the following program which is slightly modified
compared to the program from fig. 4.4:

class C { C* n; };

class D { D* n; }

C *c1,*cl1;

D *d1,*dl1;

int i=0;int N=100;

85

4 Explicit-Symbolic State Space Exploration

void main() {

L0: while (i < N) {

if (symcpp_nondet(0,1)) {

L1:

if (i=0) {

c1 = new C(); c1->n = 0; cl1 = c1;

d1 = new D(); d1->n = 0; dl1 = d1; }

else {

cl1->n = new C(); cl1 = cl1->n; cl1->n = 0;

dl1->n = new D(); dl1 = dl1->n; dl1->n = 0; }

}

else {

L2:

if (i=0) {

d1 = new D(); d1->n = 0; dl1 = d1;

c1 = new C(); c1->n = 0; cl1 = c1; }

else {

dl1->n = new D(); dl1 = dl1->n; dl1->n = 0;

cl1->n = new C(); cl1 = cl1->n; cl1->n = 0; }

}

i = i + 1;

}

L3: ...

}

The program creates two single linked lists of objects of class C resp. class D. The
variables c1 resp. d1 point at the roots of the lists, and the variables cl1 resp. dl1 point
at the last elements. In each iteration of the while loop it is nondeterministically chosen
which list is extended first. Therefore, the simple algorithm would generate 2N different
configurations that reaches label L3, as can be seen in fig. 4.6. However, algorithm 4.5
that canonizes configurations with a canonization function n would only generate a single
configuration that reaches label L3, as can be seen in fig. 4.7. Although the order of the
object creations is chosen nondeterministically, by canonizing generated configurations
in each loop iteration a duplicated configuration is detected. Therefore, only a single
configuration would be generated that reaches label L3.

A prerequisite for applying algorithm 4.5 is a suitable canonization function n. Unfor-
tunately, it has been shown that the general problem of finding a canonical representation
for every element in the same orbit is at least as hard as testing graph isomorphism, for
which no polynomial-time solution is known to exist [CFJ93]. In [Ios01] the more spe-
cific problem of finding a canonical heap representation for heap-manipulating programs
without explicit object destruction was considered. To compute a canonical represen-
tative, after each program transition a complete depth-first reachability analysis of the

86

4.1 Explicit State Representation

 free free free null null free free free free free free

c1 d1

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11

 null free null l4 l3 free free free free free free

c1 d1 D.n C.n

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11

 null free null l3 l4 free free free free free free

c1 d1 C.n D.n

l1

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11

 l6 null l5 l3 l4 null free free free free free

c1 d1 C.n D.n

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11

 l5 null l6 l3 l4 null free free free free free

c1 d1 C.n D.n

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11

 l6 null l5 l4 l3 null free free free free free

c1 d1 D.n C.n

l1

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11

 l5 null l6 l4 l3 null free free free free free

c1 d1 D.n C.n

l1

Loop iteration 1

Loop iteration 2

C.n D.n

D.n C.n

D.n C.n

C.n D.n

Figure 4.6: Exponential number of symmetric states. In each loop iteration, two
new objects are created. Since the order of the object creations is chosen
nondeterministically, after N loop iterations there are 2N different configu-
rations reachable.

heap objects has to be performed whose complexity grows linear with the number of
heap objects. Clearly, such a complex computation after each program transition dras-
tically slows down the exploration process. To avoid such complex computations that
slow down the exploration process, we consider an approximative canonization function
n which can be computed very efficiently in constant time but which is in general not
optimal, i.e., there can be symmetric configurations c, c′ s.t. n(c) 6= n(c′). The basic idea
for the computation of n is to memorize the type of the object that has been allocated
at a particular location. During the exploration process, whenever a location l is used
the first time, we memorize the type T of the object that has been allocated at l, and
for the rest of the exploration process at l only objects of type T can be allocated. More
formally, for each type T we maintain a list loc(T) = 〈li1 , li2 , · · · , lin〉 of locations that
already have been used for storing objects of type T . At the beginning of the explo-
ration process all these lists are empty. If a new object o of type T has to be created,
the list loc(T) is searched for a free location. If there is a free location lik ∈ loc(T), then
this location is used for storing o. If no such location is found in loc(T), then a new
location lnew is used to store o. This new location must not occur in any list so far, i.e.,
it must hold that ∀t ∈ Types(P) : lnew /∈ loc(t). This can be achieved by maintaining a

87

4 Explicit-Symbolic State Space Exploration

 free free free null null free free free free free free

c1 d1

Loop iteration 1

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11

 null free nulll3 l4 free free free free free free

c1 d1 C.n D.n

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11

 null free nulll3 l4 free free free free free free

c1 d1 C.n D.n

canonical canonical

Duplicate

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11

l6 nulll5l3 l4 null free free free free free

c1 d1 C.n D.n C.n D.n

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11

l6 nulll5l3 l4 null free free free free free

c1 d1 C.n D.n C.n D.n

canonical canonical

Duplicate

Loop iteration 2

Figure 4.7: Duplicate detection of symmetric states. In each loop iteration, two
new objects are created. Although the order of the object creations is chosen
nondeterministically, by normalizing generated configurations in each loop
iteration a duplicated configuration is detected.

variable lmax that contains the largest location that has been used in all configurations.
Additionally, the location lnew is inserted into loc(T). The algorithm in fig. 4.8 realizes
the described allocation scheme. It is easy to see that the described treatment of object
creations yields optimal symmetry reductions for the examples shown in fig. 4.4 and fig.
4.6, since the placement of an object depends only on the number of already generated
objects with the same type and not on the particular program path that has been exe-
cuted. However, there are programs for which our allocation scheme will not lead to a
canonical representation of symmetric states, as can be seen in the following example:

class C {int x}; C* c1; C* c2;

void main() {

if (symcpp_nondet(0,1)) {

c1 = new C; c2 = new C;

delete c1; c1 = 0;

}

else { c2 = new C; }

L3:

...

}

88

4.1 Explicit State Representation

(1) procedure New(Type t)
(2) if (∃ free location l ∈ loc(t))
(3) return l
(4) else
(5) l = lmax;
(6) loc(t).insert(l);
(7) lmax = lmax + size(t);
(8) return l
(9) end procedure New

Figure 4.8: Approximative canonization by type-based object placement. By
using the depicted algorithm for calculating a new free location for storing
an object of type t, a fast approximative canonization is realized.

Both execution paths that reaches label L3 lead to configurations that are symmetric,
since at L3 in both configurations c2 points at an object of class C and c1 points at 0.
Unfortunately, our allocation scheme would yield two different configurations at L3, since
the location of the object pointed at by c2 is different in both configurations. However,
in practice our algorithm is able to detect many symmetric configurations, and the time
overhead is almost non-existent due to the simplicity of the algorithm. The experimental
results in sect. 4.1.4 will provide evidence on the effectiveness of our algorithm.

4.1.2 Approximated Duplicate Detection

As described in sect. 4.1, to safely detect state duplicates we have to store complete states
in the set All of already generated states. However, when searching for a witness of a
formula EFq, storing complete states can be counterproductive. As already mentioned,
in practice the limiting factor of the number of states that can be stored is the available
randomly accessible memory, i.e., there exists a maximum number m of states that can
be stored. However, for realistic programs the number of reachable states n is often
far larger than m, i.e. n ≫ m. Thus, for realistic programs a complete state space
exploration will seldom be possible.

One way to increase the number of states that can be stored is to use an approximated
duplicate detection instead of an exact one. Techniques for approximated duplicate
detection often fall into the category of probabilistic methods because there is a certain
probability with which different states are wrongly assumed to be duplicates. The first
who applied such a method in the context of state space exploration was Holzmann who
invented a technique called bitstate hashing [Hol87, Hol91]. Instead of maintaining a
conventional table in which complete states are stored, bitstate hashing only maintains
a huge table of bits which are initially set to zero. When a state is inserted into the table,
one or more hash values are calculated from the state and the bits corresponding to these

89

4 Explicit-Symbolic State Space Exploration

hash values are set to one. When the algorithm examines a newly generated state and
finds that the bits corresponding to this state are already set to one, it assumes that it
has visited the newly generated state already. Clearly, this assumption can be incorrect,
since with a certain probability two different states will have the same hash values. In
such a case, the newly generated state and potential successors are not explored. Another
method called hash compaction [WL93] was introduced by Wolper and Leroy and later
refined by Stern and Dill [SD95a, SD95b]. Like bitstate hashing, hash compaction aims
at reducing the memory requirements for the state table. However, hash compaction
stores a compressed state in a conventional table instead of setting bits corresponding
to hash values.

As already mentioned in sect. 4.1, we do not want to restrict the possible search order
in which states can be explored. Since in bitstate hashing no predecessor information can
be stored in the hashing table, it can usually only be used in combination with depth-first
search, storing the path to the current state on the depth-first stack. Therefore, we adopt
the method of hash compaction, since in addition to the calculated hash value we have to
store additional information in the table if we want to be able to explore the state space
in an arbitrary order. Firstly, as in the simple approach, for each state stored in the
table we store a predecessor link pointing at the entry in the table where the predecessor
state has been stored. For a configuration vector v(c), pred(v(c)) = v(c′) denotes the
predecessor configuration vector of v(c). Secondly, if c′ is a successor configuration of c,
then we store the content of all memory locations of c′ that are different compared to c.
Formally, if v(c = 〈pc1, · · · , pcn, σ〉) and v(c′ = 〈pc′1, · · · , pc′n, σ′〉) are two configuration
vectors, then d(v(c), v(c′)) ∈ (N × Labels)∗ × (Dloc ×D)∗ with

d(v(c), v(c′)) = 〈(j1, pc′j1), · · · , (jk, pc′jk
), (li1 , σ

′(li1)), · · · , (lil , σ
′(lil))〉

s.t. j ∈ {j1, · · · , jk} ⇔ pcj 6= pc′j

∧ i ∈ {i1, · · · , il} ⇔ σ(li) 6= σ′(li)

is the difference of v(c) and v(c′), i.e., d(v(c), v(c′)) contains all program counters and
memory locations from v(c′) that are different compared to v(c). To restore an arbitrary
configuration vector v(ci), one can now proceed as follows:

• Create the path 〈v(c0), v(c1), · · · , v(ci)〉 s.t. for all j ∈ {1, · · · , i} it holds that
pred(v(cj)) = v(cj−1), i.e., we use the predecessor link to reconstruct the path
from the starting configuration vector v(c0) to v(ci).

• Beginning with the starting configuration, successively apply the stored differences
〈d(v(c0), v(c1)), · · · , d(v(ci−1), v(ci))〉 to restore v(ci).

However, the described method can become inefficient if we have to restore states with
a large path length. In such situations it can be beneficial if we can reconstruct a state
from any other state. For instance, consider the situation depicted on the left side of
fig. 4.9. Suppose the last state that has been expanded is state y, and its successors
have been generated. Now, due to the search order, the next state to expand is state

90

4.1 Explicit State Representation

Depth N

a

y

x

z

Depth N

a

y

x

z

Figure 4.9: Reconstructing configurations using symmetric configuration dif-
ferences. For reconstructing states using only the difference d(v(c1), v(c2))
of a configuration vector and its predecessor, all states lying on the path from
a to z must be reconstructed (left). When using the symmetric difference
sd(v(c1), v(c2)), starting from y we can directly reconstruct x and then z
(right).

z, i.e., we have to reconstruct z in order to be able to compute next(z). If for each
state we have only stored the difference to the predecessor, then we must restore z
by traversing the whole path from the starting state a to z. If the path length N is
large, the time needed to reconstruct states can dominate the overall exploration time.
Therefore, instead of storing the difference d(v(c), v(c′)) at the entry for v(c′), we store
the symmetric difference sd(v(c), v(c′)) at v(c′), which is defined as

sd(v(c), v(c′)) ∈ (N × Labels× Labels)∗ × (Dloc ×D ×D)∗

sd(v(c), v(c′)) = 〈(j1, pcj1 , pc′j1), · · · , (jk, pcjk
, pc′jk

),

(li1 , σ(li1), σ
′(li1)), · · · , (lil , σ(lil), σ

′(lil))〉

s.t. j ∈ {j1, · · · , jk} ⇔ pcj 6= pc′j

∧ i ∈ {i1, · · · , il} ⇔ σ(li) 6= σ′(li).

The symmetric difference sd(v(c), v(c′)) of two configuration vectors contains both the
program counters and memory locations of v(c) and also the program counters and
memory locations of v(c′) that are different from each other. Therefore, the symmetric
difference sd(v(c), v(c′)) is 1

3 larger than d(v(c), v(c′)). However, the moderate increase
in the amount of memory needed for storing one state allows a much faster restoring of
states as one can see on the right side of fig. 4.9. If y is the last state that has been
expanded, and the next state to expand is z, then from y we can reconstruct x and from
x we can reconstruct z, avoiding the time consuming reconstruction of all states lying
on the path from a to z. Situations similar to the one depicted in fig. 4.9 occur quite

91

4 Explicit-Symbolic State Space Exploration

V(C2)=(pc1,...,pcn,v(s2))

h2(V(C2))h1(V(C2))

ALLOPEN

i

k:

k

i:next(i)

sd(V(C1),V(C2))

h2(V(C2))

h2(V(C1))

sd(V(C1),V(C0))

Figure 4.10: Organization of All using configuration differences. The set All or-
ganized as a hashing table. Instead of storing complete states, only hash sig-
natures computed by a second hash function h2 are stored together with the
symmetric difference sd(v(c1), v(c2)) between a configuration vector v(c2)
and its predecessor v(c1).

often during state space exploration, especially in breadth-first search, where the next
state to expand is almost always a neighbor state.

The overall organization of the set All when storing only hash signatures and differ-
ences between states is shown in fig. 4.10. Since the index i is extracted from Open, the
next configuration vector to expand is the configuration vector stored at position i in
the hashing table representing the set All. The configuration is reconstructed using the
information in the hashing table, and its successors next(v(c1)) are generated, among
other things v(c2). To check if v(c2) ∈ All, we compute the index k = h1(v(c2)) and
the hashing signature h2(v(c2)). If at position k there is already an entry with the
signature h2(v(c2)), we assume that v(c2) has already been generated before, therefore
we do not insert v(c2) into Open and All again. Otherwise, we insert at position k the
hashing signature h2(v(c2)) and the symmetric difference sd(v(c1), v(c2)), and we set
the predecessor link to i. To get an impression of the memory savings that are possible
using the described approach, consider the following part of a program:

int N=1000; int a[N];

void main() {

for(int i=0; i<1000; i++) {

a[i] = 0;

...

}

92

4.1 Explicit State Representation

The program declares an array of N integers. If one integer is 4 byte large, then the
memory needed to represent one configuration is around 4N bytes. If N = 104 and if
256 MByte are available for the hashing table, then at most 6400 states can be explored
if we store complete states. Contrary to this, when using the storing scheme based on
hash compaction, the memory needed to store one state is almost constant, because in
most cases two consecutive configurations differ only in one program counter and one
memory location. In addition to the changed program counter and memory location1 we
need 4 byte for the predecessor link and 4 byte for the hashing signature, i.e., to store
one state we need around 6 · 4 = 24 byte. Thus we can store around 107 states in the
hashing table, i.e., more than 103 times more states than if we store complete states.
The experimental results in sect. 4.1.4 will provide evidence on the effectiveness of the
presented approximated duplicate detection.

4.1.3 State Storage Reduction

While in the previous section we have presented a method that aims at reducing the
memory needed to store one state, in this section we will describe an approach that aims
at reducing the number of states to store. To illustrate the idea of the reduction consider
the following part of a program:

void main() {

...

L0: x = 0; y = 0; z = 0;

L1: x = symcpp_nondet(0,1);

L2: x = x + 1;

L3: y = 2*x + y + 1;

L4: z = z - y;

L5: y = symcpp_nondet(0,1);

...

}

When a configuration reaches label L2, our state space exploration algorithm would
generate and store successively 3 configurations, one after executing the statement at
L2, one after executing the statement at L3 and one after executing the statement at L4.
However, if between L2 and L4 only one thread is active and if the search goal does not
contain x, y and z, then it is not necessary to store the intermediate states at L2, L3 and
L4. The left side of fig. 4.11 shows a part of the state graph of the above program. The
state a corresponds to a configuration whose next statement to execute is the statement
at L1. Because of the nondeterminism of this statement, two successor states b1 and
c1 are generated. The states b1, b2 and b3 resp. c1, c2 and c3 correspond to the states
that are reached after executing the statements at L2, L3 and L4. Finally, the states b
and c correspond to states whose next statement to execute is the statement at L5. If

1We assume that a program counter and a memory location can be represented using 4 bytes.

93

4 Explicit-Symbolic State Space Exploration

x=0,y=0,z=0

x=0,y=0,z=0

x=1,y=3,z=0

x=1,y=3,z=-3

x=1,y=0,z=0

x=2,y=0,z=0

x=2,y=5,z=0

x=1,y=0,z=0

x=2,y=5,z=-5

a

b1

b2

b3

c1

c2

c3

b c

x=0,y=0,z=0
a

x=1,y=3,z=-3 b x=2,y=5,z=-5c

Figure 4.11: Intermediate states. The states b1, b2 and b3 resp. c1, c2 and c3 need
not be stored if the search goal does not depend on x, y or z, because they
all have only a single successor state. Therefore, it would be sufficient to
store only states b and c.

the search goal does not contain variables that can be changed by the statements at L2,
L3 and L4, instead of storing the states b1, b2 and b3 resp. c1, c2 and c3, it is sufficient
to store only the states a, b and c and the difference between these states. The reason
for this is simple: if state a does not fulfill the search goal, then none of the states b1,
b2 and b3 resp. c1, c2 and c3 can fulfill the search goal. Furthermore, if we later find
another path that leads to one of the states b1, b2 and b3 resp. c1, c2 and c3, then we
will detect a duplicate of state b resp. state c, because there is no nondeterminism on
the path between b1 and b resp. c1 and c.

We can achieve the reduction described above by defining a new successor function
next′ that computes the set of successor configuration vectors next′(v(c)) for a configura-
tion vector v(c). For two configuration vectors v(c), v(c′), let change(v(c), v(c′)) denote
the set of locations that are different in v(c) and v(c′), and let EFq be the search goal.
A possible definition of next′ could be

next′(v(c)) =

v(cni

i)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

next(v(c)) = {v(c1
1), · · · , v(c1

n)}
∧∀i ∈ {1, · · · , n} : ∀j ∈ {1, · · · , ni − 1} :

next(v(cj
i)) = {v(cj+1

i)}

∧ change(v(cj
i), next(v(cj+1

i))) ∩ varloc(V ars(q)) = ∅
∧∀i ∈ {1, · · · , n} : |next(v(cni

i))| > 1

However, a serious problem of the above definition is that an algorithm comput-
ing the function next′ can be nonterminating since there can be infinite paths

94

4.1 Explicit State Representation

a

b1

b2

c1

c2

b3 c3

Figure 4.12: Cycles in the state graph without exits. Two cycles b1 → b2 → b3 →
b1 and c1 → c2 → c3 → c1 without exits.

v(c1), next(v(c1)), · · · , next(v(cn)) = v(c1), · · · , i.e., paths that contain loops. For in-
stance, consider the following part of a program:

void main() {

...

L0: x = symcpp_nondet(0,1);

L1: y = 1;

L2: z = 2;

L3: goto L1;

...

}

Figure 4.12 shows a part of the state graph of the above program. Since at label L3 there
is a goto statement, there exists e.g. the infinite path b1→ b2→ b3→ b1→ ..., i.e., an
algorithm computing next′ would be nonterminating since for no state bi the condition
|next(bi)| > 1 is true. To avoid nonterminating behavior, we modify the definition of
next′ s.t. no such infinite sequences of configurations can occur during the computation
of next′. Since the number of statements of a program is finite, an infinite path executes
at least one statement infinitely many times. Since the statements are totally ordered,
to execute a statement infinitely many times there must be at least one transition c→ c′

with c = (pc1, · · · , pci, · · · , pcn, σ), c′ = (pc1, · · · , pc′i, · · · , σ
′) s.t. pc′i ≤ pci. We call such

a transition a backjump. Based on this, we can now define next′ as follows:

next′(v(c)) =

v(cni

i)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

next(v(c)) = {v(c1
1), · · · , v(c1

n)}
∧∀i ∈ {1, · · · , n} : ∀j ∈ {1, · · · , ni − 1} :

next(v(cj
i)) = {v(cj+1

i)}

∧ change(v(cj
i), next(v(cj+1

i))) ∩ varloc(V ars(q)) = ∅
∧∀i ∈ {1, · · · , n} :

(|next(v(cni

i))| > 1) ∨ (cni−1
i → cni

i is a backjump)

95

4 Explicit-Symbolic State Space Exploration

When using the function next′ instead of next, much fewer states are generated and
stored. For instance, for the program whose unreduced state graph is shown on the left
side of fig. 4.11, using next′ instead of next would produce only the states depicted on
the right side of fig. 4.11. Furthermore, next′ always terminates due to the specified
treatment of backjumps. However, there is still the potential to optimize the function
next′ further. The reason for this lies in the fact that most loops in programs are
terminating. For instance, consider the following part of a program:

int a[1000]; int i;

void main() {

...

L0: i = symcpp_nondet(0,1);

L1: for (i=0; i < 1000; i++) {

L2: a[i] = i; }

L3: i = symcpp_nondet(0,1);

...

}

The part of the state graph representing the loop of the above program is depicted on
the left side of fig. 4.13. Using the function next′, only the black states are generated
and stored, the intermediate grey states are omitted, i.e., the function next′ reduces the
number of generated states only from 2N to N , since there are N backjumps in the de-
picted sequence. However, since the sequence of all 2N states is completely deterministic
and contains no cycle, for this sequence it would be sufficient to store only the last state
at label L3, since this state has more than one successor state. To achieve this, we can
change next′ in the following way: We introduce a number maxtrans ∈ N that denotes
the maximal number of internal transitions the function next′ is allowed to compute. If
a deterministic sequence is longer than maxtrans, then this sequence is interrupted at
the next backjump transition:

next′(v(c)) =

v(cni

i)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

next(v(c)) = {v(c1
1), · · · , v(c1

n)}
∧∀i ∈ {1, · · · , n} : ∀j ∈ {1, · · · , ni − 1} :

next(v(cj
i)) = {v(cj+1

i)}

∧ change(v(cj
i), next(v(cj+1

i))) ∩ varloc(V ars(q)) = ∅
∧∀i ∈ {1, · · · , n} :

(|next(v(cni

i))| > 1)

∨ (ni ≥ maxtrans ∧ cni−1
i → cni

i is a backjump)

Contrary to the previous definition of next′, with this definition a deterministic sequence
of transitions is only interrupted when it is longer than maxtrans. Therefore, for the
program of fig. 4.13, if we choose maxtrans s.t. maxtrans > N , then only the state at
label L3 will be generated, as can be seen on the right side of fig. 4.13. Additionally, by
restricting the maximal number of internal transitions that can be computed by next′,
next′ is guaranteed to terminate. The only drawback of the above definition is that

96

4.1 Explicit State Representation

L0:

L1:

L2:

L1:

L1:

L3:

N loop iterations

N states
L2:

L1:

L0:

L1:

L2:

L1:

L1:

L3:

L2:

L1:

N loop iterations

1 state

Figure 4.13: Next reductions using backjumps and counters. If deterministic
state sequences are interrupted after each backjump, for the depicted state
sequence N states would be stored (left). Contrary to this, interrupting
deterministic state sequences only after maxtrans transitions, only 1 state
would be stored (if maxtrans > 2N).

next′ computes for every nonterminating loop at least maxtrans transitions, i.e., the
computation time of next′ can be larger for nonterminating loops than if we generate
a new state for each backjump. However, since non-terminating loops are very seldom,
in practice we choose large values for maxtrans. The experimental results in sect. 4.1.4
will provide evidence on the effectiveness of the presented treatment of the successor
function next.

4.1.4 Experimental Results

To evaluate the effectiveness of the described optimizations presented in the previous
sections, we apply them to our collection of test programs. For each of the test programs
we define a reachable property. Furthermore, we restricted the possible values of input
variables s.t. for each program we were able to compute a witness with the simple algo-
rithm described in sect. 4.1. Allowing large domains of input variables is a problem that
is treated separately in sect. 4.2. For each program, we measure the number of generated

97

4 Explicit-Symbolic State Space Exploration

states, the average number of bytes stored per state, and the overall search time using
both DFS with a depth limit and BFS. We perform these measures with 5 different
configurations: The simple algorithm from sect. 4.1 (Simple), the algorithm using the
canonization function from sect. 4.1.1 (HS), the algorithm using the approximated du-
plicate detection from sect. 4.1.2 (AD), the algorithm using the state storage reduction
from sect. 4.1.3 (SSR), and a configuration which applies all these optimizations together
(All).

PBX Simple HS AD SSR All

#states (BFS) 217000 96000 217000 2440 1230

#states (DFS) 243000 114000 242000 2490 1260

bytes per state (BFS) 920 925 24 920 42

bytes per state (DFS) 934 946 24 934 42

time (BFS) 206 98 23 11 4

time (DFS) 238 116 25 12 5

Figure 4.14: Results for PBX.

SMS Simple HS AD SSR All

#states (BFS) 67000 48000 67000 930 760

#states (DFS) 62000 47000 62000 916 750

bytes per state (BFS) 2930 2942 24 2930 56

bytes per state (DFS) 3015 3022 24 3015 56

time (BFS) 228 172 29 9 2

time (DFS) 214 170 27 8 2

Figure 4.15: Results for SMS

Dishwasher Simple HS AD SSR All

#states (BFS) 181000 97000 181000 1800 1060

#states (DFS) 193000 101000 193000 1910 1100

bytes per state (BFS) 891 894 24 891 38

bytes per state (DFS) 902 906 24 902 38

time (BFS) 192 99 20 10 2

time (DFS) 208 105 21 11 2

Figure 4.16: Results for Dishwasher

98

4.1 Explicit State Representation

CANBus Simple HS AD SSR All

#states (BFS) 95000 82000 95000 1120 1070

#states (DFS) 72000 67000 72000 1030 995

bytes per state (BFS) 1812 1812 24 1812 48

bytes per state (DFS) 1828 1832 24 1828 48

time (BFS) 242 212 26 8 3

time (DFS) 220 206 23 7 3

Figure 4.17: Results for CANBus

ARCS Simple HS AD SSR All

#states (BFS) 103000 91000 103000 970 960

#states (DFS) 123000 116000 123000 1090 1070

bytes per state (BFS) 2130 2142 24 2130 52

bytes per state (DFS) 2268 2292 24 2268 52

time (BFS) 248 229 29 8 2

time (DFS) 282 273 32 10 3

Figure 4.18: Results for ARCS

Elevator Simple HS AD SSR All

#states (BFS) 227000 182000 227000 2100 2010

#states (DFS) 224000 181000 224000 2080 1990

bytes per state (BFS) 765 765 24 765 38

bytes per state (DFS) 771 771 24 771 38

time (BFS) 248 229 29 8 2

time (DFS) 282 273 32 10 3

Figure 4.19: Results for Elevator

99

4 Explicit-Symbolic State Space Exploration

Pacemaker Simple HS AD SSR All

#states (BFS) 156000 142000 156000 1350 1330

#states (DFS) 169000 158000 158000 1410 1400

bytes per state (BFS) 1290 1298 24 1290 56

bytes per state (DFS) 1312 1316 24 1312 56

time (BFS) 254 240 32 10 3

time (DFS) 275 267 33 10 3

Figure 4.20: Results for Pacemaker

HomeHeating Simple HS AD SSR All

#states (BFS) 173000 144000 173000 1670 1490

#states (DFS) 171000 143000 171000 1660 1480

bytes per state (BFS) 826 834 24 826 42

bytes per state (DFS) 844 852 24 844 42

time (BFS) 190 167 23 9 2

time (DFS) 182 166 22 9 2

Figure 4.21: Results for HomeHeating

HomeAlarm Simple HS AD SSR All

#states (BFS) 144000 141000 144000 830 820

#states (DFS) 129000 128000 129000 770 760

bytes per state (BFS) 730 732 24 730 38

bytes per state (DFS) 733 734 24 733 38

time (BFS) 152 150 19 8 1

time (DFS) 144 143 17 7 1

Figure 4.22: Results for HomeAlarm

100

4.2 Explicit-Symbolic State Representation

TCU Simple HS AD SSR All

#states (BFS) 125000 117000 125000 930 910

#states (DFS) 129000 123000 129000 970 960

bytes per state (BFS) 1410 1414 24 1410 60

bytes per state (DFS) 1425 1428 24 1425 60

time (BFS) 217 210 27 7 2

time (DFS) 231 226 29 8 2

Figure 4.23: Results for TCU

In summary one can say that each optimization we have presented improves the per-
formance of the state space exploration algorithm, more or less independent from a
specific search order (BFS or DFS) or a specific test program. However, the magnitude
of performance improvements differ for the different optimizations. In the best case,
state canonization for detecting symmetric states halves the number of generated states
(PBX). Much larger performance improvements are realized by the state storage reduc-
tion. When state storage reduction is applied, only 0.5% (HomeAlarm) to 1.3% (SMS)
of the number of states are generated compared to the number of states generated by
the simple algorithm. Applying approximated duplicate detection reduces the consumed
memory per states to 1.8% (SMS) to 5% (HomeAlarm) of the memory needed by the
simple algorithm. The experiments show that the savings gained with approximated
duplicate detection grow with the unreduced state size. Furthermore, both approxi-
mated duplicate detection and state storage reduction yields considerable reductions of
the exploration time. However, the greatest reductions are gained when applying all
optimizations together, which shows that the presented optimizations are more or less
orthogonal, i.e., applying one optimization does not have a negative influence for the
other optimizations.

Nevertheless, as described above, to be able to successfully find witnesses of formulas
EFq for the test programs required that we reduce the domains of input variables man-
ually, a task that can be complicated, requires knowledge of the programs and which
is error-prone. Therefore, in the next section we will present an alternative explicit-
symbolic state representation that allows us to successfully perform state space explo-
rations without these manual tasks.

4.2 Explicit-Symbolic State Representation

A major source of complexity when performing a state space exploration of programs
are the normally large domains of numerical variables. As an example, consider the
following program:

101

4 Explicit-Symbolic State Space Exploration

int min(int x1, int x2, int x3) { ... }

int x1,x2,x3,y;

int error=0;

void main() {

L1: x1 = symcpp_nondet(-50000,50000);

L2: x2 = symcpp_nondet(-50000,50000);

L3: x3 = symcpp_nondet(-50000,50000);

L4: y = min(x1,x2,x3);

// check result

if (y == x1) error = (x2 < x1) || (x3 < x1);

else if (y == x2) error = (x1 < x2) || (x3 < x2);

else if (y == x3) error = (x1 < x3) || (x2 < x3);

else error = 1;

// end check result

}

The program implements a function min that should compute the minimum of three
integers x1, x2 and x3. In the main function we want to check if the implemented
function min works correctly when x1, x2, x3 ∈ [−5 · 104, 5 · 104]. Therefore, we choose
nondeterministically values for x1, x2 and x3 in the range [−5 · 104, 5 · 104], compute
the value y=min(x1,x2,x3) and check if y is indeed the minimum of x1, x2 and x3.
If y is not the minimum, then the variable error is set to 1. Therefore, a witness for
the formula EF error = 1 will contain values for x1, x2 and x3 for which the function
min works incorrectly. Unfortunately, even this small program has a very large state
space of more than 1015 states, since each of the variables xi can have one of 105 distinct
values. If the function min works incorrectly for a single combination of values x1,x2
and x3, due to the tremendous number of states of the program it is very unlikely that
this combination of values can be found within reasonable time.

To cope with this problem, in this section we will define a composite explicit-symbolic
state representation that allows us to handle entire sets of states rather than only in-
dividual states as with the pure explicit representation. As described in sect. 2.1, a
symbolic representation of all states in a set can be much more compact than an indi-
vidual representation of all states in the set. Unfortunately, symbolic representations
also have serious drawbacks compared to explicit representations. For instance, it is
sometimes hard or impossible to represent certain programming constructs fully sym-
bolically, as it is the case for e.g. pointers and dynamic object creation. Furthermore,
when a symbolic representation becomes too large, then often necessary symbolic com-
putations using these representations cannot be performed efficiently any more. Against
this background we decided to use a composite explicit-symbolic state representation,
trying to combine the succinctness of symbolic representations with the flexibility of
explicit representations. More precisely, our approach works as follows:

102

4.2 Explicit-Symbolic State Representation

• We use arithmetic and boolean expressions as symbolic representations for the
(possibly very large) set of concrete values fulfilling these expressions, i.e., the
sets of possible values of numeric or boolean variables are represented by symbolic
expressions.

• Since reasonable programs can easily contain hundreds or thousands of variables,
e.g. if large arrays are used, we represent only some of these variables symboli-
cally, thus preventing too large symbolic representations that cannot be handled
efficiently any more. The variables which are handled symbolically are those that
directly or indirectly depend on variables that occur in nondeterministic assign-
ments x := nd. Depending on the computations performed on these variables,
the symbolically represented part of the program variables can grow and shrink in
different states.

• Pointer variables are always represented explicitly, which allows a simple treatment
of mechanisms like pointer aliasing, dynamic object creation or object destruction.

As mentioned above, we will use expressions containing variables from a set I as a
symbolic representation for the (possibly very large) set of concrete values fulfilling these
expressions. Given an infinite set I = {I1, I2, · · · } of variables with domain Dint, with
Exp(I) we denote the set of expressions that can be build using constants from intc,
arithmetic operations from AOp, arithmetic relations from ARel and boolean operations
from BOp. For instance,

27, 2 + I1, or (I2 + 25 ∗ I5/3 > 2 ∗ I4) and (I6 == I3/2)

are expressions from Exp(I). Furthermore, with BExp(I) ⊂ Exp(I) we denote the set
of boolean expressions over variables in I. A valuation val : I → Dint is a mapping from
variables to values, and the set of all valuations is denoted with V AL. The semantics
of an expression e ∈ Exp(I) is a function [[e]] : V AL → (Dint ∪ Dbool) with the usual
meaning. For instance, if val(I1) = 4, then [[3+I1]](val) = 7. Furthermore, for a boolean
expression b ∈ BExp(I),

[[b]] = {val ∈ V AL | [[b]](val) = true}

denotes the set of all valuations val s.t. the semantics of b evaluates to true. Additionally,
we say that a boolean expression b ∈ BExp(I) is satisfiable if [[b]] 6= ∅. As defined in
sect. 3.2, a state σ is a mapping from the set of locations Dloc to the set of values D.
However, in the composite state representation we are dealing with so-called symbolic
states. A symbolic state s = (σ̂, pcond) is a tuple consisting of a mapping

σ̂ : Dloc → D ∪ Exp(I)

that assigns to each location either an element from Exp(I) or a value d ∈ D, and a
so-called path condition pcond ∈ BExp(I). With Σ̂ we denote the set of all symbolic

103

4 Explicit-Symbolic State Space Exploration

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11

c1 s1 s2

null nullnull 0 0 null free free free free free

started poll p

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11

c1 s1 s2

l8 l9l7 1 0 free free

started poll p

Controller.state

Sensor.value

pcond: true

pcond: I1 > 0 and
I1< 100000 and
I2 > 0 and
I2< 100000 and
I2< I1

I1 I22*I1- I2

l2

Figure 4.24: Symbolic states. The upper symbolic state does not map any location
to a symbolic expression, and the path condition is simply true. Contrary
to that, the lower symbolic state maps l8 to to the expression I1, l9 to
I2 and l2 to 2 ∗ I1 − I2. Furthermore, for this state the path condition is
I1 > 0 ∧ I1 < 100000 ∧ I2 > 0 ∧ I2 < 100000 ∧ I2 < I1.

states, and we define Σ̂f = Σ̂∪{fail}. Figure 4.24 shows an example of a symbolic state.
While the upper symbolic state does not map any location to a symbolic expression and
has simply true as the path condition, the lower symbolic state maps l8 to the expression
I1, l9 to I2 and l2 to 2 ∗ I1 − I2, and it has the path condition

I1 > 0 ∧ I1 < 100000 ∧ I2 > 0 ∧ I2 < 100000 ∧ I2 < I1.

Intuitively, the lower symbolic state represents all those states σ ∈ Σ in which all vari-
ables occurring in expressions e ∈ Ran(σ̂) are instantiated with values s.t. the associated
path condition evaluates to true. In this example, the depicted symbolic state represents
more than 9 ∗ 109 simple states, since 99999 ∗ 99998 combinations of values for I1 and I2

fulfill the given path condition.
Given a symbolic state s = (σ̂, pcond) and a valuation val ∈ V AL, σ̂[val] ∈ Σ denotes a
state with

σ̂[val](l) =

{

σ̂(l) if ˆσ(l) ∈ D

[[σ̂(l)]](val) otherwise

For instance, for the symbolic state s = (σ̂, pcond) depicted in fig. 4.24 and a valua-
tion val with val(I1) = 2 and val(I2) = 3, σ̂[val] denotes a state with σ̂[val](l8) = 2,

104

4.2 Explicit-Symbolic State Representation

σ̂[val](l9) = 3, σ̂[val](l2) = 2 ∗ 2− 3 = 1 and σ̂[val](l) = σ̂(l) for all l ∈ Dloc \ {l2, l8, l9}.
Furthermore, for a symbolic state s = (σ̂, pcond), with [[s]] we denote the set of states
that is defined as

[[s]] = {σ̂[val] | val ∈ [[pcond]]},

i.e., [[s]] denotes the set of all states in Σ that we get if we evaluate all expressions assigned
to locations in σ̂ under all valuations val s.t. the path condition pcond evaluates to true.

In sect. 3.2 we have defined the semantics of expressions and statements of Cmin programs
w.r.t. states σ ∈ Σ. We now define an alternative symbolic semantics that operates on
symbolic states directly. To this end, we assume for every operation op ∈ AOp∪ARel∪
BOp a corresponding symbolic operation ops that syntactically constructs compound
expressions from its operands, i.e., given two expressions e1, e2 ∈ Exp(I), e1 ops e2

denotes the compound expression ’e1 op e2’. Given an expression e ∈ Exp and a symbolic
state s = (σ̂, pcond) ∈ Σ̂, the symbolic semantics is a mapping

[[e]]s : Σ̂→ D ∪ Exp(I) ∪ fail.

For expressions e of kind

e ≡ c, e ≡ fail, e ∈ LExp, e ≡ &v, e ≡ &v → m, e ≡ e1 op e2, op ∈ PRel

the symbolic semantics is defined analogously to the semantics in sect. 3.2. The other
cases are defined as follows:

• (Nondeterministic choice): if e ≡ nd then
[[e]]s(s) = Ik, whereby Ik ∈ I and Ik /∈ V ars(s).

• (Arithmetic expressions): if e ≡ e1 op e2, op ∈ AOp, then

[[e]]s(s) =

{

[[e1]]s(s) ops [[e2]]s(s) if
∨2

i=1([[ei]]s(s) ∈ Exp(I))

[[e1]]s(s) op [[e2]]s(s) otherwise

• (Conditional expressions): if e ≡ e1?e2 : e3, then

[[e]]s(s) =

{

[[e1]]s(s) ?s [[e2]]s(s) :s [[e3]]s(s) if
∨3

i=1([[ei]]s(s) ∈ Exp(I))

[[e1]]s(s) ? [[e2]]s(s) : [[e3]]s(s) otherwise

• (Arithmetic relations): if e ≡ e1 op e2, op ∈ ARel, then

[[e]]s(s) =

{

[[e1]]s(s) ops [[e2]]s(s) if
∨2

i=1([[ei]]s(s) ∈ Exp(I))

[[e1]]s(s) op [[e2]]s(s) otherwise

105

4 Explicit-Symbolic State Space Exploration

• (Boolean expressions):

[[e1 and e2]]s(s) =

{

[[e1]]s(s) ands [[e2]]s(s) if
∨2

i=1([[ei]]s(s) ∈ Exp(I))

[[e1]]s(s) ∧ [[e2]]s(s) otherwise

[[e1 or e2]]s(s) =

{

[[e1]]s(s) ors [[e2]]s(s) if
∨2

i=1([[ei]]s(s) ∈ Exp(I))

[[e1]]s(s) ∨ [[e2]]s(s) otherwise

[[not e1]]s(s) =

{

nots[[e1]]s(s) if [[e1]]s(s) ∈ Exp(I)

¬[[e1]]s(s) otherwise

In contrast to the semantics of expressions defined in sect. 3.2 which is in general a set of
values, the symbolic semantics either computes a value from D or fail or an expression
from Exp(I). For instance, consider the lower symbolic state s = (σ̂, pcond) depicted in
fig. 4.24 and the expression e ≡ poll > s1→ value + s2→ value. Then

[[poll > s1→ value + s2→ value]]s(s) = (2 ∗ I1 − I2) > (I1 + I2),

since σ̂(l2) = 2 ∗ I1 − I2, s1 → value points at l8, s2 → value points at l9, σ̂(l8) = I1

and σ̂(l9) = I2. Furthermore, since

pcond = I1 > 0 ∧ I1 < 100000 ∧ I2 > 0 ∧ I2 < 100000 ∧ I2 < I1,

we can find both valuations val1 and val2 of I1 and I2 s.t. [[pcond]](val1) = true,
[[pcond]](val2) = true, [[e]](σ̂[val1]) = true and [[e]](σ̂[val2]) = false, for instance with
val1(I1) = val2(I1) = 3, val1(I2) = 1 and val2(I2) = 2. Therefore, the symbolic seman-
tics of the expression e in the symbolic state s yields an expression which is a symbolic
representation for the set {true,false}.

After defining the symbolic semantics of expressions, we can now define the symbolic
semantics of statements. Updates of symbolic states are defined analogously to updates
of simple states. Furthermore, a symbolic thread configuration is a tuple

tc = (pc, s = (σ̂, pcond)).

A symbolic thread transition (pc, s)→ (pc′, s′) with s = (σ̂, pcond) and s′ = (σ̂′, pcond′)
between two symbolic thread configurations describes a computation step of one thread
corresponding to one statement. For statements stm of kind

stm ≡ new(v) or stm ≡ delete(v),

the symbolic thread transition is defined analogously to simple thread transitions. The
other cases are defined as follows:

• (Concurrent assignment):

(pc, s)→ (pc′, s′)⇔

stm(pc) = [e1
l := e1, · · · , e

n
l := en]

∧ pc′ = next(pc) ∧ pcond′ = pcond

∧ σ̂′ = σ̂[[[adr(e1
l)]]s(s) := [[e1]]s(s), · · · , [[adr(en

l)]]s(s) := [[en]]s(s)]

106

4.2 Explicit-Symbolic State Representation

• (Synchronization):

(pc, s)→ (pc′, s′)⇔

stm(pc) = await(e, [e1
l := e1, · · · , e

n
l := en])

∧ [[pcond ∧ [[e]]s(s)]] 6= ∅

∧ pc′ = next(pc) ∧ pcond′ = pcond ∧ [[e]]s(s)

∧ σ̂′ = σ̂[[[adr(e1
l)]]s(s) := [[e1]]s(s), · · · , [[adr(en

l)]]s(s) := [[en]]s(s)]

• (Branching):

(pc, s)→ (pc′, s′)⇔

stm(pc) = jump(e, lab1, lab2) ∧ σ̂′ = σ̂ ∧

(([[pcond ∧ [[e]]s(s)]] 6= ∅

∧ pc′ = lab1 ∧ pcond′ = pcond ∧ [[e]]s(s))

∨ ([[pcond ∧ ¬[[e]]s(s)]] 6= ∅

∧ pc′ = lab2 ∧ pcond′ = pcond ∧ ¬[[e]]s(s)))

Analogously to sect. 3.2, a symbolic configuration of a program P is a tuple

cs = (pc1, · · · , pcn, s),

and Confs(P) denotes the set of all symbolic configurations of a program P . The starting
configuration is

c0
s = (first1, · · · , firstn, s0 = (σ̂0, true)),

whereby σ̂0 has to fulfill the same conditions as in the normal semantics, i.e.

• ∀v ∈ V ars(P) : σ̂0(varloc(v)) = init(v)

• ∀l ∈ Dloc : l /∈ Ran(varloc)⇒ σ̂0(l) = free

. A transition (pc1, · · · , pcn, s)→ (pc′1, · · · , pc′n, s′) is defined as

(pc1, · · · , pck, · · · , pcn, s)→ (pc1, · · · , pc′k, · · · , pcn, s′)⇔ (pck, s)→ (pc′k, s
′).

Given a symbolic configuration cs = (pc1, · · · , pcn, s),

[[cs]] = {(pc1, · · · , pcn, σ) | σ ∈ [[s]]}

denotes the set of simple configurations belonging to the symbolic configuration cs. A
symbolic run rs = 〈c0

s, c
1
s, · · · 〉 is a sequence of symbolic configurations, Runss(P) denotes

the set of all symbolic runs of a program P , and

[[rs]] = {〈c0, c1, · · · 〉 | ∀i : ci ∈ [[ci
s]]}

denotes the set of all simple runs belonging to the symbolic run rs. Given an expression
e ∈ BExp(BIV ars), for a symbolic configuration ci

s = (pc1, · · · , pcn, si = (σ̂i, pcond))
of a symbolic run rs we define

ci
s �s e⇔ true ∈ [[[[e]]s(si)]].

107

4 Explicit-Symbolic State Space Exploration

Additionally, we define ci
s 2s e ⇔ ¬(ci

s � e). Given a formula EFq ∈ TL, we define the
relation �s as follows:

P �s EFq ⇔ ∃rs = 〈c0
s, c

1
s, · · · 〉 ∈ Runss(P),∃i ≥ 0 : ci

s � q.

After defining symbolic configurations and runs, one can now ask for the relationship
between normal runs r ∈ Runs(P) and symbolic runs rs ∈ Runss(P). The following
lemma states that the two semantics are equivalent in the sense that for each simple run
one can find a corresponding symbolic run s.t. each configuration ci of the simple run is
an element of the set of configurations [[ci

s]] that are instantiations of the corresponding
symbolic configuration ci

s, and vice versa.

Lemma 4.6 Let P be a Cmin program. Then the following holds:

1. r ∈ Runs(P)⇒ ∃rs ∈ Runss(P) : r ∈ [[rs]].

2. rs ∈ Runss(P)⇒ ∃r ∈ Runs(P) : r ∈ [[rs]].

Proof:
1 (by induction): Let r = 〈c0, c1, · · · , ci〉 ∈ Runs(P) be a run of P . We show that there
exists a corresponding symbolic run rs = 〈c0

s, c
1
s, · · · , c

i
s〉 ∈ Runss(P) s.t. r ∈ [[rs]].

• Case i = 0. The starting configuration of P is

c0 = (first1, · · · , firstn, σ0),

and the symbolic starting configuration is

c0
s = (first1, · · · , firstn, s0 = (σ̂0, true)).

Since the starting conditions for σ0 and σ̂0 are the same, we have ∀l ∈ Dloc :
σ0(l) = σ̂0(l), and therefore c0 ∈ [[c0

s]].

• Case i + 1: Let r = 〈c0, · · · , ci = (pc1, · · · , pcn, σi)〉 be a simple run of P and
rs = 〈c0

s, · · · , c
i
s = (pc1, · · · , pcn, (σ̂i, pcondi)) a corresponding symbolic run. A

successor configuration ci+1 = (pc1, · · · , pc′k, · · · , pcn, σi+1) of ci can be reached by
one of the following cases:

– stm(pck) = [e1
l := e1, · · · , e

n
l := en]. From the definition of the semantics it

follows that

σi+1 ∈ σi[[[adr(e1
l)]](σi) := [[e1]](σi), · · · , [[adr(en

l)]](σi) := [[en]](σi)]

and si+1 = (σ̂i+1, pcondi+1) with

σ̂i+1 = σ̂i[[[adr(e1
l)]]s(si) := [[e1]]s(si), · · · , [[adr(en

l)]]s(si) := [[en]]s(si)].

108

4.2 Explicit-Symbolic State Representation

Because of the definition of expressions and because σi ∈ [[si]], for all k ∈
{1, · · · , n} we have

[[adr(ek
l)]](σi) = [[adr(ek

l)]]s(si)

and
[[ek]](σi) ⊆ {[[ek]]s(si)(val) | val ∈ [[pcond]]}.

Furthermore we have pcondi+1 = pcondi, and therefore σi+1 ∈ [[si+1]] and
ci+1 ∈ [[ci+1

s]].

– stm(pck) = await(e, [e1
l := e1, · · · , e

n
l := en]). Since

[[e]](σi) ⊆ {[[e]]s(si)(val) | val ∈ [[pcond]]},

also from ci
s we can execute the await-statement. Furthermore, from the

definition of the semantics we know that

σi+1 ∈ σi[[[adr(e1
l)]](σi) := [[e1]](σi), · · · , [[adr(en

l)]](σi) := [[en]](σi)]

and si+1 = (σ̂i+1, pcondi+1) with

σ̂i+1 = σ̂i[[[adr(e1
l)]]s(si) := [[e1]]s(si), · · · , [[adr(en

l)]]s(si) := [[en]]s(si)].

Additionally, from the definition of expressions and because σi ∈ [[si]], we
know that for all k ∈ {1, · · · , n}

[[adr(ek
l)]](σi) = [[adr(ek

l)]]s(si)

and
[[ek]](σi) ⊆ {[[ek]]s(si)(val) | val ∈ [[pcond]]}

holds. Moreover, we know that pcondi+1 = pcondi ∧ [[e]]s(s), from which we
can conclude that σi+1 ∈ [[si+1]] and ci+1 ∈ [[ci+1

s]].

– stm(pck) = jump(e, lab1, lab2). From the definition of expressions and because
σi ∈ [[si]], we know that

[[e]](σi) ⊆ {[[e]]s(si)(val) | val ∈ [[pcond]]}.

If now [[e]](σi) = true and pc′k = lab1, we know that also true ∈
{[[e]]s(si)(val) | val ∈ [[pcond]]} and therefore ci+1 ∈ [[ci+1

s]]. Otherwise, if
[[e]](σi) = false then also false ∈ {[[e]]s(si)(val) | val ∈ [[pcond]]} and there-
fore ci+1 ∈ [[ci+1

s]].

– stm(pck) = new(v) or stm(pck) = delete(v): From the definition of the
semantics we know that both σi+1 resp. σ̂i+1 differ from σi resp. σ̂i only in
the newly allocated locations resp. deallocated locations. Since the values of
these locations are the same both in σi+1 and σ̂i+1 it follows immediately that
ci+1 ∈ [[ci+1

s]].

109

4 Explicit-Symbolic State Space Exploration

2 (by induction): Let rs = 〈c0
s, c

1
s, · · · , c

i
s〉 ∈ Runss(P) be a symbolic run of P .

• Case i = 0. The symbolic starting configuration of P is

c0
s = (first1, · · · , firstn, s0 = (σ̂0, true)),

and the starting configuration of P is

c0 = (first1, · · · , firstn, σ0).

Since the starting conditions for σ0 and σ̂0 are the same, we have ∀l ∈ Dloc :
σ0(l) = σ̂0(l), and therefore c0 ∈ [[c0

s]].

• Case i + 1: Let r = 〈c0
s, · · · , c

i
s = (pc1, · · · , pcn, si = (σ̂i, pcondi))〉 be a symbolic

run and r = 〈c0, · · · , ci = (pc1, · · · , pcn, σi)〉 be a corresponding simple run. A
successor configuration ci+1

s = (pc1, · · · , pc′k, · · · , pcn, si+1 = (σ̂i+1, pcondi+1)) of
ci
s can be reached by one of the following cases:

– stm(pck) = [e1
l := e1, · · · , e

n
l := en]. From the definition of the semantics it

follows that si+1 = (σ̂i+1, pcondi+1) with

σ̂i+1 = σ̂i[[[adr(e1
l)]]s(si) := [[e1]]s(si), · · · , [[adr(en

l)]]s(si) := [[en]]s(si)].

Now consider an arbitrary σi+1 ∈ [[si+1]]. Then there exists a valuation val ∈
[[pcondi+1]] s.t. σi+1 = s[val]. Since pcondi+1 = pcondi it follows that val ∈
[[pcondi]]. With σi = si[val] we have

σi+1 ∈ σi[[[adr(e1
l)]](σi) := [[e1]](σi), · · · , [[adr(en

l)]](σi) := [[en]](σi)],

i.e., there exists a transition ci → ci+1 with ci ∈ [[ci
s]] and ci+1 ∈ [[ci+1

s]].

– stm(pck) = await(e, [e1
l := e1, · · · , e

n
l := en]). From the definition of the

semantics it follows that si+1 = (σ̂i+1, pcondi+1) with

σ̂i+1 = σ̂i[[[adr(e1
l)]]s(si) := [[e1]]s(si), · · · , [[adr(en

l)]]s(si) := [[en]]s(si)]

and pcondi+1 = pcondi ∧ [[e]]s(s). Now consider an arbitrary σi+1 ∈ [[si+1]].
Then there exists a valuation val ∈ [[pcondi+1]] s.t. σi+1 = s[val]. Since
pcondi ∧ [[e]]s(s) ⇒ pcondi it follows that val ∈ [[pcondi]]. With σi = si[val]
we have

σi+1 ∈ σi[[[adr(e1
l)]](σi) := [[e1]](σi), · · · , [[adr(en

l)]](σi) := [[en]](σi)],

and we know also that [[e]](σi) = true, i.e., there exists a transition ci → ci+1

with ci ∈ [[ci
s]] and ci+1 ∈ [[ci+1

s]].

110

4.2 Explicit-Symbolic State Representation

– stm(pck) = jump(e, lab1, lab2). We distinguish two cases: Either we have
pc′k = lab1 and pcondi+1 = pcond ∧ [[e]]s(s). Consider an arbitrary σi+1 ∈
[[si+1]]. Then there exists a valuation val ∈ [[pcondi+1]] s.t. σi+1 = s[val]. Since
pcondi∧ [[e]]s(s)⇒ pcondi it follows that val ∈ [[pcondi]]. With σi = si[val] we
have [[e]](σi) = true and therefore also a transition ci → ci+1 with ci ∈ [[ci

s]]
and ci+1 ∈ [[ci+1

s]]. The same argument holds for the case pc′k = lab2 and
pcondi+1 = pcond ∧ ¬[[e]]s(s).

– stm(pck) = new(v) or stm(pck) = delete(v): From the definition of the
semantics we know that both σi+1 resp. σ̂i+1 differ from σi resp. σ̂i only in
the newly allocated locations resp. deallocated locations. Since the values of
these locations are the same both in σi+1 and σ̂i+1 it follows immediately that
ci+1 ∈ [[ci+1

s]].

⊓⊔
After we have proven that for each simple run one can find a corresponding symbolic
run and vice versa, we can now prove the equivalence of � and �s.

Theorem 4.7 Let P be a Cmin program and EFq ∈ TL be a formula. Then the follow-
ing holds:

P � EFq ⇔ P �s EFq.

Proof:
⇒: Let r = 〈c0, · · · , ck〉 ∈ Runs(P) be a run of P s.t. ck � EFq. From lemma 4.6 we
know that there exists a symbolic run rs = 〈c0

s, · · · , c
k
s〉 ∈ Runss(P) s.t. ck ∈ [[ck

s]]. Hence
it follows that ck

s �s EFq. The other direction proceeds analogously. ⊓⊔

Since theorem 4.7 holds, as an alternative to the state space exploration algorithm from
sect. 4.1 which is based on the original semantics we can also define an exploration al-
gorithm that is based on the symbolic semantics. The advantage of using the symbolic
semantics is that the number of symbolic states that have to be generated to reach a
certain search goal is in general much smaller than the number of simple states. How-
ever, to be able to apply the state space exploration algorithm shown in fig. 4.1 using
the symbolic semantics, we have to define symbolic configuration vectors, the symbolic
successor function nexts and the treatment of the set All of already generated states.
Given a symbolic state s = (σ̂, pcond), a symbolic state vector v(s)

v(s) ∈ (D ∪ Exp(I))∗ ×BExp(I)

v(s) = (σ̂(l1), · · · , σ̂(lk), pcond) s.t. σ̂(lk) 6= free ∧ ∀i > k : ˆσ(i) = free,

is a sequence denoting the finite sequence of values from σ̂(l1) to σ̂(lk) whereby lk is
the largest location of σ̂ that is not mapped to free. Given a symbolic configuration
c = (pc1, · · · , pcn, s), a symbolic configuration vector v(c)

v(c) ∈ Labelsn × (D ∪ Exp(I))∗ ×BExp(I)
v(c) = (pc1, · · · , pcn, v(s)),

111

4 Explicit-Symbolic State Space Exploration

is simply a symbolic state vector extended by a prefix that describes the current valuation
of the program counters. Since a symbolic configuration vector is finite, it can be used
as a data structure to represent symbolic configurations in our state space exploration
algorithm shown in fig. 4.1. After defining symbolic configuration vectors, we can now
define how the symbolic successor function nexts and the two sets Open and All operate
on symbolic configurations vectors. Given a symbolic configuration vector v(c), the
function nexts : Confs(P)→ P(Confs(P)) with

nexts(v(c)) = {v(c′) | c→s c′}

computes the set of symbolic configuration vectors that are successors of the current
symbolic configuration vector. However, to check if there is a transition from c to c′ for
the cases

• stm(pc) = await(e, [e1
l := e1, · · · , e

n
l := en])

• stm(pc) = jump(e, lab1, lab2)

requires to check [[pcond ∧ [[e]]s(s)]] 6= ∅ resp. [[pcond ∧ ¬[[e]]s(s)]] 6= ∅, i.e., we have to
check if [[pcond∧ [[e]]s(s)]] resp. [[pcond∧¬[[e]]s(s)]] are satisfiable. If [[e]]s(s) ∈ D, i.e., the
expression evaluates to an explicit value d ∈ {true, false}, the check is trivial, since the
path condition pcond is always satisfiable. Otherwise, if [[e]]s(s) ∈ BExp(I), since all
variables in e have finite domains, the satisfiability problem is decidable, because we can
simply evaluate e under all possible valuations of the occurring variables. While there
is no general algorithm that can solve arbitrary arithmetic and boolean expressions over
finite domains efficiently, for certain subsets of expressions efficient solvers have been
implemented. In our implementation, we use a hierarchy of different solving techniques
when checking the satisfiability of a symbolic expression. Firstly, we apply a solver that
can solve systems of linear integer constraints. Whenever this solver fails to prove or
disprove the satisfiability of a boolean expression b, a simple random solver tries to solve
b by selecting random values for the variables occurring in b several times. When also the
random solver cannot solve b, then an exhaustive enumerative solver definitely proves
or disproves the satisfiability of b. In our test models, almost all expressions could be
solved efficiently already with the linear constraint solver. This does not mean that
there occur only linear expressions in these programs. As mentioned above, as long as
[[e]]s(s) ∈ D, the satisfiability check is trivial, even for nonlinear expressions. However,
if there are many expressions e in a program s.t. [[e]]s(s) ∈ BExp(I) contains nonlinear
expressions, it might be necessary to apply other constraint solving techniques that are
better tailored for such cases, since otherwise the time needed for constraint solving will
dominate the overall exploration time.

After defining the symbolic successor function nexts, we now have to explain how the
set All of already generated symbolic configuration vectors can be organized s.t. the
membership testing of a newly generated configuration vector v(c) ∈ All can be realized
efficiently. Since a symbolic configuration vector v(c) is a symbolic representation for

112

4.2 Explicit-Symbolic State Representation

the set
[[v(c)]] = {v(c′)|c′ ∈ [[c]]}

of simple configurations, the membership test v(c) ∈ All is in fact a subset check of
[[v(c)]] ⊆ [[All]], i.e., we have to check if each simple configuration contained in [[v(c)]]
is already contained in

⋃

v(c)∈All[[v(c)]]. To realize such a precise membership test, we
firstly have to define a formula representation f(v(s)) of a symbolic state vector v(s) as
follows:

f((σ̂(l1), · · · , σ̂(lk), pcond) =

(

k
∧

i=1

li = σ̂(li) ∧ pcond

)

.

For a symbolic configuration vector v(c) with c = (pc1, · · · , pcn, s) we define f(v(c)) =
f(s). With this, we could organize the set All as depicted in fig. 4.25. Since all program
counters have explicit values, we can use the sequence of program counters to com-
pute the index h((pc1, · · · , pcn)) of the slot of the hashing table where all states whose
program counters have values equal to pc1, · · · , pcn are stored. Suppose we want to
test the membership of a newly generated configuration vector v(c′ = (pc′1, · · · , pc′n, s)).
Firstly, we compute the index h((pc′1, · · · , pc′n)) of the corresponding slot in the hash-
ing table. Each slot of the hashing table contains 4 different entries. The first
entry is the sequence (pc1, · · · , pcn) of program counters that identifies a slot. If
(pc′1, · · · , pc′n) 6= (pc1, · · · , pcn), a hash conflict has occurred, and a new index i′ will
be computed by e.g. linear probing. The second entry is the disjunction of formula rep-
resentations f(v(c1), · · · , f(v(cm)) of all configurations vectors that have been generated
so far whose program counters equals pc1, · · · , pcn. To check if all possible values of all
locations of c′ are already covered by c1, · · · , cm we have to evaluate the formula

F (v(c′)) := ∀I1, · · · , Ik∃I
′

1, · · · , I
′

l : f(v(c′)) ∧

(

m
∨

i=1

f(v(ci))

)

,

whereby {I1, · · · , Ik} = V ars(f(v(c′)) and {I ′1, · · · , I
′

l} =
⋃m

i=1 V ars(f(v(ci))). If
[[F (v(c′))]] = true, then all possible values of all locations of v(c′) are already pos-
sible in at least one of the configuration vectors v(c1), · · · , v(cm), i.e., it holds that
v(c′) ∈ All and thus we can discard v(c′). Otherwise, if [[F (v(c′))]] = false, there
exists at least one location of v(c′) that can hold a value which is not possible in all
configuration vectors v(c1), · · · , v(cm), thus we add v(c′) to the set of configuration vec-
tors already stored at this slot. The third entry contains the symmetric differences
sd(v(c1), pred(v(c1))), · · · , sd(v(cm), pred(v(cm))) of all configuration vectors v(ci) and
their predecessors pred(v(ci)), and the fourth entry contains the indices of predecessors
of all configuration vectors v(ci). Together the third and fourth entry are needed to
restore a configuration vector v(ci).

While the above described organization of All allows precise membership tests, a
serious problem of this solution are the high memory requirements for maintaining the
hashing table and the enormous complexity of the membership test. In practice, a state
space exploration procedure treating All as described above would be very inefficient,

113

4 Explicit-Symbolic State Space Exploration

ALL

k:

i:

f(v(c1))∨ ∨f(v(cn))

sd(v(c1),pred (v(c1))),

index(pred (v(c1))),

pc1, pcn

v(c2)=(pc1,...,pcn,v(s2))

h(pc1,...,pcn)

OPEN

i k

next(i)

Figure 4.25: Organization of All with symbolic states. For a precise membership
testing of symbolic states, in the hashing table representing the set All
formula representations of symbolic configuration vectors have to be stored.

since only a few states could be stored and the complexity of the membership test would
slow down the exploration process heavily. Therefore, we propose a solution that allows
a fast approximate duplicate detection for composite explicit-symbolic states, similar to
the approximate duplicate detection for purely explicit states described in sect. 4.1.2.
There, we used two hashing functions h1 and h2 that compute both the index h1(v(c))
of the slot in the hashing table where an purely explicit configuration vector v(c) has to
be stored and a hashing signature h2(v(c)) that serves as a fingerprint to identify v(c).
According to that, we define two hashing functions hs1 resp. hs2 that compute hashing
values for explicit-symbolic configuration vectors v(c). Given a value v ∈ D ∪ Exp(I),
with ex(v) ∈ D we denote an explicit value that is defined as

ex(v) =

{

dex if v ∈ Exp(I)

v otherwise,

whereas dex ∈ D denotes an arbitrary but fixed element from D. Given a symbolic
configuration vector v(c = (pc1, · · · , pcn, s = (σ̂, pcond))), with ex(v(c)) we denote an
explicit configuration vector that is defined as

ex((pc1, · · · , pcn, σ̂(l1), · · · , σ̂(lk), pcond))
= (pc1, · · · , pcn, ex(σ̂(l1)), · · · , ex(σ̂(lk))),

i.e., all symbolic values occurring in v(c) are replaced by the explicit value dex in ex(v(c),
and the path condition pcond is simply dropped. With this we can define hs1 resp. hs2

114

4.2 Explicit-Symbolic State Representation

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11

l8 l9l7 1 0 free free

pcond: I1 > 0 and I1< 10
 and I2 > 0 and I2< 10
 and I2< I1

I1 I22*I1- I2

l2

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11

l8 l9l7 1 0 free free

pcond: I1 > 0 and I1< 10
 and I2 > 0 and I2< 10
 and I3> 2 and I3< 18
 and I2< I1

I1 I2 I3

l2

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11

l8 l9l7 1 0 free free

pcond: I1 > 3 and I1< 7
 and I2 > 0 and I2< 3
 and I2< I1

I1 I2I1 + 3*I2

l2

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11

l8 l9l7 1 0 free free

pcond: I1 > 0 and I1< 10
 and I2 > 0 and I2< 10
 and I1< I2

I1 I2I1- 2*I2

l2

c1

c2

c3

c4

[[c2]] = [[c1]]

⊂[[c3]] [[c1]]

[[c4]] [[c1]]∩ =∅

Figure 4.26: Approximated symbolic duplicate detection. Due to the definition
of hs1 resp hs2, during state space exploration we assume that the config-
uration vectors v(c1), v(c2), v(c3) and v(c4) are duplicates.

as

hs1(v(c)) = h1(ex(v(c)))

hs2(v(c)) = h2(ex(v(c))),

i.e., hs1 resp. hs2 simply apply the hashing functions h1 resp. h2 on the explicit config-
uration vector ex(v(c)). The idea behind the definition of hs1 resp. hs2 is the following:
Often the larger part of a configuration is represented by explicit values from D. Since all
explicit values of two symbolic configuration vectors v(c1) and v(c2) remain unchanged
in ex(v(c1)) and ex(v(c2)), and since all symbolically represented locations of v(c1) and
v(c2) are changed to dex in ex(v(c1)) and ex(v(c2)), if all explicitly represented locations
of v(c1) are also explicitly represented in v(c2), and if the values of corresponding loca-
tions are identical, then we have hs1(v(c1)) = hs1(v(c2)) resp. hs2(v(c1)) = hs2(v(c2)),
i.e., we assume that v(c1) and v(c2) are identical. In other words, we assume that v(c1)
and v(c2) are identical if:

• All explicitly represented locations of v(c1) are also explicitly represented in v(c2)
and vice versa.

• All explicitly represented locations of v(c1) and v(c2) have identical values.

115

4 Explicit-Symbolic State Space Exploration

• All symbolically represented locations of v(c1) are also symbolically represented in
v(c2) and vice versa.

For instance, consider the symbolic configuration vectors c1, c2, c3 and c4 depicted in
fig. 4.26. It is easy to see that [[c2]] = [[c1]], [[c3]] ⊂ [[c1]] and [[c4]] ∩ [[c1]] = ∅. Suppose
c1 has already been stored in the hashing table representing the set All, and we would
successively test c2, c3 and c4 for membership in All. Due to the definition of hs1 we
have hs1(v(c1)) = hs1(v(c2)) = hs1(v(c3)) = hs1(v(c4)), and the same holds for hs2,
i.e., we assume that c2, c3 and c4 are duplicates of c1, and thus we do not explore them
any further. While this is safe for c2 resp. c3, discarding c4 leads to a pruning of the
reachable state space. Such an unsafe pruning is the price we have to pay for the very
efficient membership test via hs1 and hs2. However, the experimental results in sect.
4.2.1 will show that the usage of hs1 and hs2 for membership testing rarely produces an
unsafe pruning.

Using the functions hs1 resp. hs2 we can organize the set All as depicted in fig. 4.27.
The symmetric difference of two symbolic configuration vectors v(c1) and v(c2) can be
defined as it has been done for purely explicit states in sect. 4.1.2, with the addition that
sd(v(c1), v(c2)) also contains the difference of the path conditions of v(c1) and v(c2). To
store a newly generated configuration vector v(c2) that is a successor of v(c1), we compute
the index k = hs1(v(c2)), and store the fingerprint hs2(v(c2)), the symmetric difference

V(C2)=(pc1,...,pcn,v(s2))

hs2(V(C2))hs1(V(C2))

ALLOPEN

i

k:

k

i:next(i)

sd(V(C1),V(C2))

hs2(V(C2))

hs2(V(C1))

sd(V(C1),V(C0))

Figure 4.27: Organization of All with approximated symbolic duplicate detec-
tion. The organization of All as a hashing table that stores only signa-
tures hs2(v(c)) of symbolic configuration vectors and symmetric differences
sd(v(c1), v(c2)). Using the hashing function hs1 resp. hs2, storing states is
very memory efficient, and approximated membership testing can be per-
formed almost as fast as for purely explicit states.

116

4.2 Explicit-Symbolic State Representation

sd(v(c1), v(c2)) and a predecessor link to the index of v(c1) at the slot with index k.
Using such an organization, storing symbolic states and performing duplicate detection
can be realized as efficiently as for purely explicit states. Furthermore, the detection of
symmetric states described in sect. 4.1.1 as well as the state storage reduction described
in sect. 4.1.3 are fully compatible with the explicit-symbolic state representation, thus
we can apply these reductions also when using the explicit-symbolic state representation
without any modifications.

4.2.1 Experimental Results

To evaluate the effectiveness of the presented explicit-symbolic state representation, we
performed a series of experiments with our test programs. For each of the test programs
we define a reachable property. We build 4 configurations of each program that differ in
the range of input values, allowing 8, 16, 32 and 232 different values for input variables.
For the ranges 8, 16 and 32 we perform a state space exploration with the explicit
state representation using all optimizations described in the previous sections (All-8,
All-16, All-32). We stopped the exploration process if more than 106 states have been
generated. For the ranges 32 and 232 we perform a state space exploration using the
explicit-symbolic state representation, also using all optimizations (All-Sym-32 and All-
Sym-232). Since BFS and DFS performed similarly in the experiments in sect. 4.1.4,
here we concentrate on BFS only. The results are shown below.

PBX All-8 All-16 All-32 All-Sym-32 All-Sym-232

#states 63000 > 106 > 106 890 880

time 103 - - 4 4

Figure 4.28: Results for PBX

SMS All-8 All-16 All-32 All-Sym-32 All-Sym-232

#states 189000 > 106 > 106 1720 1820

time 327 - - 9 10

Figure 4.29: Results for SMS

Dishwasher All-8 All-16 All-32 All-Sym-32 All-Sym-232

#states 39000 572000 > 106 760 760

time 49 781 - 3 3

Figure 4.30: Results for Dishwasher

117

4 Explicit-Symbolic State Space Exploration

CANBus All-8 All-16 All-32 All-Sym-32 All-Sym-232

#states 27000 381000 > 106 630 660

time 31 637 - 3 3

Figure 4.31: Results for CANBus

ARCS All-8 All-16 All-32 All-Sym-32 All-Sym-232

#states 67000 > 106 > 106 950 890

time 114 - - 5 4

Figure 4.32: Results for ARCS

Elevator All-8 All-16 All-32 All-Sym-32 All-Sym-232

#states 31000 297000 > 106 1130 1130

time 47 493 - 5 5

Figure 4.33: Results for Elevator

Pacemaker All-8 All-16 All-32 All-Sym-32 All-Sym-232

#states 75000 > 106 > 106 1330 1410

time 126 - - 7 8

Figure 4.34: Results for Pacemaker

HomeHeating All-8 All-16 All-32 All-Sym-32 All-Sym-232

#states 52000 449000 > 106 920 920

time 86 710 - 5 5

Figure 4.35: Results for HomeHeating

HomeAlarm All-8 All-16 All-32 All-Sym-32 All-Sym-232

#states 47000 > 106 > 106 1080 990

time 94 - - 5 5

Figure 4.36: Results for HomeAlarm

118

4.2 Explicit-Symbolic State Representation

TCU All-8 All-16 All-32 All-Sym-32 All-Sym-232

#states 74000 > 106 > 106 1470 1470

time 125 - - 8 8

Figure 4.37: Results for TCU

As one can see, the usage of the composite explicit-symbolic state representation leads
to considerable performance improvements for all tested programs. While none of the
state space explorations of the All-32 configurations were successful, all explorations
using the explicit-symbolic state representation with an input range of 32 resp. 232

were successful. Furthermore, the number of generated states as well as the exploration
time for the configurations All-Sym-32 resp. All-Sym-232 are approximately equal, with
slight fluctuations. This indicates that the number of generated states and therefore the
exploration time is are more or less independent from the ranges of input variables in
the tested programs.

A second set of experiments have been performed to evaluate how many false dupli-
cates are produced by the presented approximated explicit-symbolic duplicate detection.
To determine the number of wrong duplicates, we have implemented a version of the
exploration algorithm that writes the complete configuration vectors that are assumed to
be duplicates by the approximated duplicate detection into a file. After the exploration
algorithm terminates, in a subsequent phase we checked if the configuration vectors
stored in the files are real duplicates by applying an exhaustive solver. Because of the
high time requirements of the exhaustive solver we perform these experiments for 5 pro-
grams only. For each program we measured the number of explored explicit-symbolic
states, the number of duplicates detected by the approximated duplicate detection, and
the number of false duplicates. The results are shown below.

PBX Dishwasher Elevator Pacemaker HomeAlarm

#states 12700 9800 15300 17100 12600

detected duplicates 2640 1250 2180 3690 2030

false duplicates 1 1 2 5 0

Figure 4.38: Number of false duplicates

As can be seen in fig. 4.38, although the presented approximated duplicate detection
for composite explicit-symbolic states seems to be rather inaccurate, when applied to
real programs it only produces very few false duplicates. Additionally, since in reactive
programs there exist in most cases many execution paths that reach a particular program
state, there is a good chance that the exploration algorithm finds at least one of these
paths even if wrong duplicates are detected.

119

4 Explicit-Symbolic State Space Exploration

4.3 Summary of results

The experiments carried out show that the optimizations developed in this section suc-
cessfully improves the performance of a state space exploration procedure for Cmin pro-
grams. The optimizations presented in sect. 4.1 considerably reduce the number of
generated states as well as the memory consumption per state. However, these opti-
mizations are not enough to be able to cope with programs that have input variables
with large domains. As the experiments show, using the composite explicit-symbolic
state representation developed in sect. 4.2 allows us to perform successful state space
explorations also for programs with large input ranges. However, this might be traced
back to the fact that the solver used for solving the symbolic expressions occurring in
the programs could solve almost all expressions very efficiently. For programs that cre-
ate symbolic expressions during state space exploration that cannot be solved efficiently
with this solver we might need a different solver to be able to perform a successful state
space exploration.

4.4 Related Work

We already described related work in chapter 2, thus we concentrate here on work which
is similar to our approach. A preliminary version of the described composite explicit-
symbolic state representation has been presented in [Let03]. Concerning the presented
symmetry reductions in sect. 4.1.1, a similar approach has been proposed in [LV01]. Con-
trary to our approach, in [LV01] the instruction that created an object together with the
number of times the instruction has been executed is used to identify a particular memory
location. However, e.g. for the programs shown in fig. 4.4 or 4.6 such an approach would
not detect the symmetric states. In [Ios01] a complete depth-first reachability analysis
of the heap objects is used to compute a canonical state representation. The advantage
of that approach is that it detects all symmetric states. However, the disadvantage lies
in the fact that the computation of the canonical state representation is very complex,
and it has to be performed after each program transition which results in a drastic decel-
eration of the exploration process. While it is standard to have a kind of approximated
duplicate detection in explicit state model checkers ([Hol87, Hol91, SD95a]) similar to
the approximated duplicate detection presented in sect. 4.1.2, to our knowledge the pre-
sented symmetric difference to cut down the memory requirements for storing states is
new. Concerning the state storage reduction, a similar approach has been presented in
[BLP03] in the context of model checking timed automata. However, to our knowledge
no one has applied the presented state storage reductions in the context of software
verification. In [KPV03] an extension of the model checker JavaPathFinder has been
proposed that uses symbolic execution to generate a symbolic execution tree. In contrast
to our approach, they do not perform duplicate detection as in our approach with the
approximated duplicate detection from sect. 4.2. Another approach using symbolic exe-
cution has been presented in [CDGP01] that addresses the problem of verifying programs

120

4.4 Related Work

in the language Safer-C which is a subset of the C programming language. Contrary to
our approach, they neither have a composite explicit-symbolic state representation nor
they address the problem of duplicate detection.

121

4 Explicit-Symbolic State Space Exploration

122

5 Heuristic State Space Exploration

In this section, we will apply heuristic search techniques to state space exploration of
Cmin programs w.r.t. a formula EFq. As described in sect. 2.2, a heuristic search
algorithm takes into account additional information to direct the search into regions of
the state space where it is likely to find a state that fulfills q. The additional information
is obtained by applying a heuristic function h to states s yielding a value h(s) that
estimates the distance from s to a state satisfying q. By ordering the exploration of
states by means of increasing heuristic values, heuristic search can effectively reduce the
number of states which has to be explored when searching for states fulfilling q. The
reduction of the number of explored states can shorten the exploration time, and in
some applications goal states can be found where uninformed search algorithms fail due
to time and space restrictions.

Crucial for the effectiveness of heuristic search algorithms is an informative heuristic
function h. However, when searching for witnesses of formulas EFq regarding a program
P , the question is how to obtain such a function h. Since we want to deal with arbitrary
programs P and arbitrary formulas EFq, it is clear that the function h must take both
P and q into account. Therefore, we propose a process which can be roughly separated
into the following steps:

• Given a program P and a formula EFq, generate a function h(P, q) that estimates
the distance of an arbitrary state of P to a state of P that fulfills q.

• Perform a heuristic state space exploration of P w.r.t. EFq using the function
h(P, q) as a heuristic to guide the search to states fulfilling q.

For the first step, however, the question remains how to generate such a heuristic h(P, q)
that is specific for a particular program P and formula q. The central idea is that,
starting from P and q, we can generate a new program P a which is an abstraction of P
w.r.t. q. Roughly speaking, P a is called an abstraction of P w.r.t. q if for every run

r = 〈c0, c1, · · · 〉 ∈ Runs(P)

there exists an abstract run

ra = 〈ca
0, c

a
1, · · · 〉 ∈ Runs(P a)

such that the truth-value of q in a configuration ci is preserved in the corresponding
abstract configuration ca

i . Through a collapsing of many (sometimes infinite many)
concrete states into one abstract state we can make the state space of P a finite state

123

5 Heuristic State Space Exploration

Program P

Generate Abstract
 Program

Formula EF qProgram P

yes:Generate
 Heuristic

Heuristic h

Heuristic
State Space
Exploration of
P w.r.t EF q
using h

Refine
Heuristic

 P |= EF q Witness
EF q ?

Witness
EF q ?

not(P |= EF q)

 yes

 no

 no

a

Figure 5.1: Abstraction-based heuristic search procedure. Based on a program
P and a property EFq, an abstraction P a of P w.r.t. EFq is generated.
Based on the generated abstraction a heuristic function h is created that is
used for a heuristic state space exploration of the original program P .

and reasonable small so that it is possible to perform a complete state space exploration
of P a w.r.t. q. Such a complete state space exploration immediately yields a decision
procedure for the problem P a � EFq. As said before, every concrete run of P has
a corresponding abstract run in P a, but through the construction of P a there can be
so-called spurious abstract runs

ra = 〈ca
0, c

a
1, · · · , c

a
i 〉 ∈ Runs(P a)

which do not have corresponding concrete runs. Therefore, from P a 2 EFq we can
safely conclude P 2 EFq, but from P a � EFq we cannot directly conclude P � EFq.
However, since

P � EFq ⇒ P a
� EFq,

i.e., for each concrete witness r = 〈c0, · · · , ci〉 there is also a corresponding abstract
witness ra = 〈ca

0, · · · , c
a
i 〉, we can use the abstract witnesses as a guide to search for

concrete witnesses. More precisely, using such an abstraction P a we can set up an
exploration process as depicted in fig. 5.1. The process passes through the following
steps:

1. Given a program P and a formula EFq, generate a finite state program P a that
is an abstraction of P w.r.t. EFq.

2. Build the complete state space graph of P a and find all states in the graph that
fulfill q. If no abstract state fulfills q, terminate and return P 2 EFq.

124

2

1
max

0

Concrete state space Abstract state space Heuristic

max

During Exploration

Before Exploration

Step 1

2

max 1

Step 2

0 0

Step 3 Step 4

Figure 5.2: Abstractions as heuristic functions. The concrete state space (top
left), the corresponding abstract state space (top middle) and the computed
heuristic values for the abstract states (top right). During state space explo-
ration of the concrete state space, the heuristic values of the corresponding
abstract states are utilized as heuristic values for the concrete states.

3. Create a heuristic that contains for each abstract state the distance in terms of
transitions to the nearest abstract state that fulfills q.

4. Perform a heuristic state space exploration of P w.r.t. EFq using the generated
heuristic. For a concrete configuration c, use the value of the corresponding ab-
stract configuration ca stored in the heuristic as the heuristic value for c.

5. After timeout or when the (incomplete) search terminates, refine the heuristic and
go back to step 1.

As an example, consider the situation depicted in fig. 5.2. According to step 1 and 2 in
the procedure described above, before exploring the concrete state space (fig. 5.2 left),
a corresponding abstract state space is constructed. In the abstract state space, one
or more concrete states are summarized into one abstract state, and for all transitions
between two concrete states there is a transition between the corresponding abstract
states. Therefore, every path in the concrete state space has a corresponding path in

125

5 Heuristic State Space Exploration

the abstract state space. Then, in step 3, based on the abstract state space a heuristic
function is generated that yields for every abstract state the minimal transition distance
to an abstract target state. After the heuristic function has been generated, in step 4 the
heuristic exploration of the concrete state space can be performed. For every concrete
state the corresponding abstract state is computed, and the value for the abstract state
provided by the heuristic is taken as the heuristic value for the concrete state. In
the bottom of fig. 5.2 one can see different stages of the exploration process, where
successively larger parts of the state space are constructed. However, due to the heuristic
exploration process (the heuristic values are depicted for the leaf states of the currently
created part of the state space), only a fraction of the state space has to be constructed
before a target state is found.

Given a program P and a formula EFq, the first task in the proposed procedure is the
generation of a suitable program P a that is an abstraction of P w.r.t. EFq. In the next
section, we will show how to create such an abstract program P a. After that, in sect.
5.2 we show how we utilize the generated abstraction for computing a heuristic function
that will be used for heuristic state space exploration of the original program.

5.1 Abstraction of Cmin programs

In a Cmin program, both boolean variables and integer variables have finite domains.
However, since in a Cmin program objects can be dynamically created, the range of
pointer variables is in general infinite. Therefore, when trying to find a program P a that
is both an abstraction of a program P w.r.t. EFq and that has only finite many states,
one first has to find a suitable abstraction for object creation. Correspondingly, we will
build P a in a two-step process: in the first step, we will create a finite state program P f

that is an abstraction of P w.r.t. EFq. P f will use both boolean and integer variables
with their usual domain, but pointer variables will be replaced by restricted integer
variables, and also the number of objects will be restricted to a finite domain. Although
the reachable state space of P f is finite, it can nevertheless be very large. To be able to
perform a complete state space exploration, we further abstract P f into a more abstract
program P a that uses only boolean variables. In the next section, we will introduce a
restricted subset of Cmin that is sufficient to describe finite state programs.

5.1.1 Cfin

The syntax of Cfin is defined as the syntax of Cmin in sect. 3.2 but with some limitations.
All declared variables must be of type int or bool, i.e., a Cfin program contains no struc-
tures and no pointer variables. Furthermore, in expressions the address-operator &, the
dereference-operator * and the selection-operator -> are not allowed. Additionally, the
new-statement and the delete-statement are not allowed. As in sect. 3.2, with V ars(P f)
we denote the set of all declared variables, and the function typef : V ars(P f)→ Types
yields the type typef (v) for every variable v ∈ V ars(P f). An assignment v := e stores

126

5.1 Abstraction of Cmin programs

the value of the expression e ∈ Exp in the variable v ∈ V ars(P f). A concurrent assign-
ment [v1 := e1, · · · , vn := en] describes the execution of all assignments vi := ei in one
transition. Furthermore, as in sect. 3.2, with Exp we denote the set of all expressions,
STMi denotes the set of all statements of thread i, and STM =

⋃n
i=0 STMi.

Semantics Since in a Cfin program there are no pointer variables and no dynamic
object creation, we can define a simpler semantics than the semantics presented in sect.
3.2. For the definition of the semantics of expressions we will use the semantic domains
Dint and Dbool as defined in sect. 3.2, and we define Df = Dint∪Dbool∪{free}. However,
in contrast to Cmin programs, where a state is a mapping from locations to values, a
state of a Cfin program is a mapping σf : V ars(P f) → Df from variables to values,
and the set of such states is denoted by Σf . As in sect. 3.2, we also use a special state
fail, and we define Σf

f = Σf ∪ {fail}. With this, the semantics of an expression e is a
mapping

[[e]] : Σf
f → P(Df ∪ {fail}),

and it is defined as follows:

• if e ≡ c ∈ Const then [[e]](σf) = {c}

• if e ≡ v ∈ V ars then [[e]](σf) = σf (v)

• (Nondeterministic choice): if e ≡ nd then [[e]](σf) = {d | d ∈ Dint}

• (Arithmetic expressions): if e ≡ e1 op e2, op ∈ AOp, then
[[e]](σf) = {d1 op d2 | d1 ∈ [[e1]](σ

f), d2 ∈ [[e2]](σ
f)}

• (Conditional expressions): if e ≡ e1?e2 : e3, then

[[e]](σf) =

{

{d | d ∈ [[e2]](σ
f) ∧ true ∈ [[e1]](σ

f)}

∪ {d | d ∈ [[e3]](σ
f) ∧ false ∈ [[e1]](σ

f)}

• (Arithmetic relations): if e ≡ e1 op e2, op ∈ ARel, then
[[e]](σf) = {d1 op d2 | d1 ∈ [[e1]](σ

f), d2 ∈ [[e2]](σ
f)}

• (Boolean expressions):

[[e1 and e2]](σ
f) = {d1 ∧ d2 | d1 ∈ [[e1]](σ

f), d2 ∈ [[e2]](σ
f)}

[[e1 or e2]](σ
f) = {d1 ∨ d2 | d1 ∈ [[e1]](σ

f), d2 ∈ [[e2]](σ
f)}

[[not e1]](σ
f) = {¬d | d ∈ [[e1]](σ

f)}

As in sect. 3.2, to describe the semantics of assignments we need the notion of an update
of a state σf , written as σf [v := d], where v, v′ ∈ V ars(P f) and d ∈ Df , and it is defined
as

σf [v := d](v′) =

{

d if v = v′

σf (v′) otherwise.

127

5 Heuristic State Space Exploration

Furthermore, we define σf [v := fail] = σf [fail := d] = fail, and we extend this
definition to a set of values with

σf [v := {d1, · · · , dn}] = {σf [v := d] | d ∈ {d1, · · · , dn}}.

Based on this, we define a sequence of updates with

σf [v1 := d1, v2 := d2, · · · , vn := dn] = (σf [v1 := d1])[v2 := d2, · · · , vn := dn].

As in sect. 3.2, with each thread ti = (i, stmsi) we associate a program counter pci ∈
Labelsi. A thread configuration tc of a program is a tuple

tc = (pc, σf), σf ∈ Σf
f .

A thread transition (pc, σf)→ (pc′, σf ′

) between two configurations describes one com-
putation step of one thread corresponding to one statement, and is defined as follows:

• (Concurrent assignment):

(pc, σf)→ (pc′, σf ′

)⇔

stm(pc) = [v1 := e1, · · · , vn := en]

∧ pc′ = next(pc)

∧σf ′

∈ σf [v1 := [[e1]](σ
f), · · · , vn := [[en]](σf)]

• (Synchronization):

(pc, σf)→ (pc′, σf ′

)⇔

stm(pc) = await(e, [v1 := e1, · · · , vn := en])

∧ pc′ = next(pc) ∧ true ∈ [[e]](σf)

∧σf ′

∈ σf [v1 := [[e1]](σ
f), · · · , vn := [[en]](σf)]

• (Branching):

(pc, σf)→ (pc′, σf ′

)⇔

{

stm(pc) = jump(e, lab1, lab2) ∧ σf ′

= σf ∧

((true ∈ [[e]](σf) ∧ pc′ = lab1) ∨ (false ∈ [[e]](σf) ∧ pc′ = lab2))

Based on the transition relation for single threads we can now define the possible tran-
sition of a whole program. A configuration of a program P f is a tuple

cf = (pc1, · · · , pcn, σf).

The starting configuration of a program P f is

cf
0 = (first1, · · · , firstn, σf

0),

whereby whereby σf
0 fulfills the condition

∀v ∈ V ars(P f) : σf
0 (v) = init(v).

A transition (pc1, · · · , pcn, σf) → (pc′1, · · · , pc′n, σf ′

) describes one computation step of
the whole program, and it is defined as

(pc1, · · · , pck, · · · , pcn, σf)→ (pc1, · · · , pc′k, · · · , pcn, σf ′

)⇔ (pck, σ
f)→ (pc′k, σ

f ′

),

128

5.1 Abstraction of Cmin programs

i.e., the transitions of the whole program are all possible interleavings of the transitions
of all threads. A run rf of a program P f is a sequence of configurations rf = 〈cf

0 , cf
1 , · · · 〉

s.t. cf
0 is the starting configuration of P f and ∀i ≥ 0 : cf

i → cf
i+1 is a transition of P f .

With Conf(rf) we denote the set of all configurations occurring in rf . We denote the
set of all runs of a program P f with Runs(P f), and we define

Conf(P f) =
⋃

rf∈Runs(P f)

Conf(rf)

and

States(P f) = {σf ∈ Σf
f | (pc1, · · · , pcn, σf) ∈ Conf(P f)}.

For the specification of properties, we can use TL as defined in sect. 3.3 without any
restrictions since formulas EFq ∈ TL only contain boolean and integer variables. There-
fore, for a configuration cf and a formula EFq ∈ TL we define cf � EFq as in sect.
3.3. Additionally, for a Cfin program P f and a formula EFq ∈ TL, we also define the
relation P f � EFq as in sect. 3.3.

5.1.2 Relation between Cmin and Cfin

As mentioned before, our goal is to generate, for a given Cmin program P and a formula
EFq, a Cfin program P f that is an abstraction of P w.r.t. EFq. The following definition
formalizes the notion of abstraction.

Definition 5.1 Let P be a Cmin program, P f be a Cfin program and let EFq ∈ TL be
a formula. We say P f is an abstraction of P w.r.t. EFq iff for all runs

r = 〈c0, c1, · · · 〉 ∈ Runs(P)

there exists a run

rf = 〈cf
0 , cf

1 , · · · 〉 ∈ Runs(P f)

s.t. ∀i ≥ 0 : ci |= q ⇔ cf
i |= q holds.

Based on the definition of abstraction we can state the following lemma.

Lemma 5.2 Let P be a Cmin program, EFq ∈ TL a formula and P f be a Cfin program
that is an abstraction of P w.r.t. EFq. Then P � EFq ⇒ P f � EFq.

Proof:
Assume P � EFq. Then there exists a run r = 〈c0, · · · , ci〉 ∈ Runs(P) of P with ci � q.

Because P f is an abstraction of P there also exists a run rf = 〈cf
0 , · · · , cf

i 〉 ∈ Runs(P f)

with cf
i � q, and therefore we have P f � EFq. ⊓⊔

One way to show that a program P f is an abstraction of a program P is to show that
P f can simulate P . Roughly speaking, a program P f simulates a program P if for all

129

5 Heuristic State Space Exploration

runs r = 〈c0, c1, · · · 〉 ∈ Runs(P) there exist a run rf = 〈cf
0 , cf

1 , · · · 〉 ∈ Runs(P f) s.t. the
values of all variables v ∈ V ars(P) ∩ V ars(P f) are equal or equivalent in some sense.
However, a state σ of a Cmin program is a mapping from the infinite set of locations
Dloc to values, whereas a state σf of a Cfin program is a mapping from variables to
values. Furthermore, a value in a Cmin program can either be an integer or boolean
or a location, whereas a value in a Cfin program can only be an integer or boolean.
Therefore, before we can define a simulation relation between a Cmin program P and a
Cfin program P f , we have to define an appropriate relation which relates states σ ∈ Σ
with states σf ∈ Σf . To define such a relation ∼π appropriately, we will use an injective,
partial function

π : Dloc → V ars(P f)

that maps locations used in a state σ ∈ Σ to variables of P f . Given a state σ ∈ Σ, a state
σf ∈ Σf for which σ ∼π σf should hold must fulfill several conditions. Firstly, a location
belonging to a variable v ∈ V ars(P) ∩ V ars(P f) must be mapped to the same variable
v ∈ V ars(P f) by π. Secondly, every location l ∈ Dloc whose type is not a pointer type
and that is in the domain of π must have the same value both in σ and σf . Together
these two conditions ensure that the value for an expression e ∈ Exp(P) ∩ Exp(P f) is
equivalent in σ and σf . Additionally, for all locations l in the domain of π that have
a pointer type we require a certain kind of consistency between σ(l) and σf (π(l)). We
assume that each variable v ∈ V ars(P f) has a unique index given by the function

index : V ars(P f)→ {1, · · · , |V ars(P f)|}

that yields for any v ∈ V ars(P f) a unique index index(v) ∈ {1, · · · , |V ars(P f)|}. Addi-
tionally, we define index(0) = 0, and we define the constant top ≡ |V ars(P f)|+ 1. The
meaning of the constant top is following: since a Cfin program P f has only finite many
variables, we cannot map all locations of a state σ to variables of P f . When a location l
is mapped by π to a variable v ∈ V ars(P f), and the value of l is another location l′ that
is not in the domain of π, then we use the constant top as the corresponding value for
v, indicating that v points at something that is not represented in P f . For two states σ,
σf with σ ∼π σf we require that for all locations l that have a pointer type the following
holds: if v = π(l) and v′ = π(σ(l)) then σf (v) = index(v′), i.e., if l points at l′, then the
value of v is the index of v′. Furthermore, if σ(l) /∈ Dom(π) then σf (v) = top, i.e., if l
points at some location l′ that is not in the domain of π, then the value of v is top. The
following definition summarizes the above reflections.

Definition 5.3 Let P be a Cmin program, let

tl : Dloc → Types \ Structs(P)

be a type-based partitioning function as defined in sect. 3.2 and let σ ∈ Σ. Let P f be a
Cfinprogram and

index : V ars(P f)→ {1, · · · , |V ars(P f)|}

130

5.1 Abstraction of Cmin programs

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11

l8 l9l7 1 0 l2 0 0 0 free free

 6 0 7 1 0 0

Function

Program P : started poll c1s1 v5 v6
index: 1 2 3 4 5 6

Program P: started poll c1 s1 s2 p

π

f

Figure 5.3: π-corresponding states. The function π maps locations from a state of
a program P to variables of a program P f . Since all conditions of definition
5.3 are fulfilled, the two states are π-corresponding.

be an index function and σf ∈ Σf . Let further π : Dloc → V ars(P f) be a partial,
injective function. We say σ and σf are π-corresponding (in symbols: σ ∼π σf) iff
∀l ∈ Dloc the following holds:

1. (v ∈ V ars(P) ∩ V ars(P f) ∧ l = varloc(v))⇒ π(l) = v.

2. (tl(l) ∈ {bool, int} ∧ v = π(l))⇒ σ(l) = σf (v).

3. (tl(l) /∈ {bool, int} ∧ v = π(l) ∧ v′ = π(σ(l)))⇒ σf (v) = index(v′).

4. (tl(l) /∈ {bool, int} ∧ v = π(l) ∧ σ(l) /∈ Dom(π))⇒ σf (v) = top.

As an example of two π-corresponding states, consider the situation shown in fig. 5.3.
According to 1 in definition 5.3, since both in P and P f we have the variables started,
poll, c1 and s1, π maps these variables in P to their corresponding variables in P f .
Furthermore, according to 2 the values of the variables started and poll are the same
both in P and in P f , because they are both of type int. The pointer variable c1 located
at location l3 points at l7 and π maps l7 to the variable v6 which has the index 6.
Therefore, according to 3 in definition 5.3, the value of c1 in P f is 6, and according to
2 the variable v6 has the same value as location l7. The pointer variable s1 located at
location l4 points at l8. Since l8 is not in the domain of π, according to 5 in definition
5.3 the value of s1 in P f is top = 6 + 1 = 7.

Based on definition 5.3, we define π-correspondence for configurations and runs. Given
two configurations c = (pc1, · · · , pcn, σ) and cf = (pcf

1 , · · · , pcf
m, σf), we say c and cf are

131

5 Heuristic State Space Exploration

π-corresponding if

n = m ∧ ∀i ∈ {1, · · · , n} : pci = pcf
i ∧ σ ∼π σf ,

i.e., two configurations are π-corresponding if all program counters are equal and σ and
σf are π-corresponding. Additionally, two runs r = 〈c0, c1, · · · 〉 and rf = 〈cf

0 , cf
1 , · · · 〉 are

π-corresponding if ∀i ≥ 0 : ci ∼π cf
i holds. As for states, we write c ∼π cf resp. r ∼π rf if

c and cf resp. r and rf are π-corresponding. The following lemma states two important
properties about the value of a variable v ∈ V ars(P) ∩ V ars(P f) in π-corresponding
states σ and σf . If type(v) ∈ {int, bool}, then the value of v is equal in both states.
On the other hand, if type(v) /∈ {int, bool} and therefore typef (v) = int, then either the
index of the variable that is the image of the value of v in σ is equal to the value of v in
σf or the value of v in σf is the constant top.

Lemma 5.4 Let P be a Cmin program, P f be a Cfin program and v ∈ V ars(P) ∩
V ars(P f). Let further σ ∈ Σ and σf ∈ Σf with σ ∼π σf . Then the following holds:

1. type(v) ∈ {int, bool} ⇒ [[v]](σ) = [[v]](σf).

2. type(v) /∈ {int, bool} ⇒ index((π([[v]](σ))) = [[v]](σf)) ∨ [[v]](σf) = top.

Proof:

1. Let l = varloc(v). Since σ ∼π σf , from definition 5.3 we get

1.∀l ∈ Dloc : (v ∈ V ars(P) ∩ V ars(P f) ∧ l = varloc(v))⇒ π(l) = v

and
2.∀l ∈ Dloc : (tl(l) ∈ {bool, int} ∧ v = π(l))⇒ σ(l) = σf (v),

thus [[v]](σ) = σ(l) = σf (π(l)) = σf (v) = [[v]](σf).

2. Let l = varloc(v). Since σ ∼π σf , from definition 5.3 we get

1.(v ∈ V ars(P) ∩ V ars(P f) ∧ l = varloc(v))⇒ π(l) = v.

We have to distinguish between two cases: either σ(l) ∈ Dom(π). Then from 3 of
definition 5.3 we can conclude that

index(π([[v]](σ))) = index(π(σ(l))) = index(v′) = σf (v) = [[v]](σf).

On the other hand, in the case σ(l) /∈ Dom(π) with 4 of definition 5.3 we can
conclude that top = σf (v) = [[v]](σf).

⊓⊔
The following lemma states that the values [[e]](σ) and [[e]](σf) for an expression e ∈
Exp(P)∩Exp(P f) that uses only variables v with type(v) ∈ {bool, int} are equal for all
states σ and σf which are π-corresponding.

132

5.1 Abstraction of Cmin programs

Lemma 5.5 Let P be a Cminprogram, P f be a Cfinprogram and e ∈ Exp(P) ∩
Exp(P f) an expression. Let further σ ∈ Σ and σf ∈ Σf with σ ∼π σf . Then
[[e]](σ) = [[e]](σf).

Proof:
(By structural induction): Let e ∈ Exp(P)∩Exp(P f). The case e ≡ c ∈ Const is clear.

For the case e ≡ v ∈ V ars(P)∩V ars(P f) with lemma 5.4 we get [[v]](σ) = [[v]](σf). The
case e ≡ nd is also clear since the definition of the semantics [[nd]](σ) resp. [[nd]](σf) is
identical.
Induction: The assumption holds for expressions e1,e2,e3. Now consider the following
cases:

• (Arithmetic expressions): if e ≡ e1 op e2, op ∈ AOp, then

[[e]](σ) = {d1 op d2 | d1 ∈ [[e1]](σ), d2 ∈ [[e2]](σ)}

= {d1 op d2 | d1 ∈ [[e1]](σ
f), d2 ∈ [[e2]](σ

f)}

= [[e]](σf)

• (Conditional expressions): if e ≡ e1?e2 : e3, then

[[e]](σ) =

{

{d | d ∈ [[e2]](σ) ∧ true ∈ [[e1]](σ)}

∪ {d | d ∈ [[e3]](σ) ∧ false ∈ [[e1]](σ)}

=

{

{d | d ∈ [[e2]](σ
f) ∧ true ∈ [[e1]](σ

f)}

∪ {d | d ∈ [[e3]](σ
f) ∧ false ∈ [[e1]](σ

f)}

= [[e]](σf)

• (Arithmetic relations): if e ≡ e1 op e2, op ∈ ARel, then

[[e]](σ) = {d1 op d2 | d1 ∈ [[e1]](σ), d2 ∈ [[e2]](σ)}

= {d1 op d2 | d1 ∈ [[e1]](σ
f), d2 ∈ [[e2]](σ

f)}

= [[e]](σf)

• (Boolean expressions):

[[e1 and e2]](σ) = {d1 ∧ d2 | d1 ∈ [[e1]](σ), d2 ∈ [[e2]](σ)}

= {d1 ∧ d2 | d1 ∈ [[e1]](σ
f), d2 ∈ [[e2]](σ

f)}

= [[e]](σf).

The cases e ≡ e1 or e2 and e ≡ not e1 can be shown analogously.

⊓⊔
Based on the definition of π-correspondence of runs we can now define what it means
that a program P f simulates a program P .

133

5 Heuristic State Space Exploration

Definition 5.6 Let P be a Cmin program and P f be a Cfin program. We say P f

simulates P iff holds:

∀r ∈ Runs(P)∃ rf ∈ Runs(P f) : r ∼π rf

Given a Cmin program P and a formula EFq, when we can construct a Cfin program
P f that contains at least the variables v ∈ V ars(q) and that is a simulation of P , then
P f is an abstraction of P w.r.t. EFq, which is stated in the following lemma.

Lemma 5.7 Let P be a Cmin program and P f be a Cfin program that is a simulation
of P . Let further EFq ∈ TL be a formula with V ars(q) ⊆ V ars(P) ∩ V ars(P f). Then
P f is an abstraction of P w.r.t. EFq.

Proof:
Since P f simulates P and V ars(q) ⊆ V ars(P)∩V ars(P f), with lemma 5.5 we conclude
that for all runs

r = 〈c0, c1, · · · 〉 ∈ Runs(P)

there exists a run
rf = 〈cf

0 , cf
1 , · · · 〉 ∈ Runs(P f)

s.t. ∀i ≥ 0 : [[q]](σi) = [[q]](σf
i) holds. Therefore we have ∀i ≥ 0 : ci |= q ⇔ cf

i |= q, from
which by definition 5.1 we can conclude that P f is an abstraction of P . ⊓⊔

In the next section, we will show how to construct, for a given Cmin program P and a
formula EFq, a Cfin program P f that simulates P .

5.1.3 Translating Cmin to Cfin

In this section we will define a transformation function

trans : Cmin × (Types→ N)→ Cfin

that will perform a syntactical transformation of P into a Cfin program P f s.t. P f

will be a simulation of P . Besides a Cmin program P , the transformation function has
an additional parameter, a so-called memory configuration m : Types(P) → N, that
specifies for each type t ∈ Types(P) the number m(t) of objects of type t which can
dynamically be allocated in the transformed program. Given a Cmin program

P = (Structs(P), V ars(P), init(P), Threads(P)),

and a memory configuration m, trans(P, m) = P f will be a Cfin program

P f = (V ars(P f), init(P f), Threads(P f)).

The set V ars(P f) of variables will be subdivided into two disjunctive sets. The first
set will contain so-called static variables and the second set so-called dynamic variables.
Before we explain the use of static and dynamic variables we will give some definitions.

134

5.1 Abstraction of Cmin programs

Definition 5.8 Given a Cmin program P and a memory configuration m, SV ars(P)
denotes the set of variables

SV ars(P) = {v|v ∈ V ars(P)}

DV ars(P, m) denotes the set of variables that is defined as

DV ars(P, m) =

{

{t[j]| 0 < j ≤ m(t) ∧ t /∈ Structs(P)}

∪ {t.m[j]|0 < j ≤ m(t) ∧ t ∈ Structs(P) ∧m ∈MemberV ars(t)}

and V ars(P, m) = SV ars(P) ∪DV ars(P, m). The type of the variables in V ars(P, m)
is given by the function typef (v) and defined as

typef (v) =

bool if (v ∈ SV ars(P) ∧ type(v) = bool)

∨ ((v ≡ t[j] ∨ v ≡ t.m[j]) ∧ t = bool)

int otherwise

For instance, suppose P is a Cmin program that defines a structure C that
has three member variables x, y and z of type bool. Furthermore, there is
a integer variables i2 defined in P . Moreover, assume m is a memory con-
figuration with m(int) = 3 and m(C) = 2. Then SV ars(P) = {i2} and
DV ars(P, m) contains three integer variables {int[1], int[2], int[3]}, and 6 boolean vari-
ables {C.x[1], C.y[1], C.z[1], C.x[2], C.y[2], C.z[2]}.

To illustrate the intended use of static variables in SV ars(P) and dynamic variables
in DV ars(P, m), consider the situation depicted in fig. 5.4. The top left of fig. 5.4 shows
a state σ of a Cmin program P that uses the variables V = {started, poll, c1, s1, s2, p}.
At the bottom left one can see a state σf of a program P f , that also uses all variables
in V , i.e., SV ars(P) = V . Furthermore, P f also has two dynamic variables int[1] and
int[2]. Since all conditions from definition 5.3 are fulfilled, the states σ and σf are π-
corresponding. However, the question is how to get again a π-corresponding state σf ′

when P executes a statement and changes its state from σ to σ′. For instance, P can
execute a new-statement like new(p). The top right of fig. 5.4 shows a possible successor
state σ′ of P after execution of this statement. The effect of the new statement is that
l6 now points at the newly allocated location l11, and according to that l11 is initialized
to 0. To emulate the effect of this statement in σf , we can use the dynamic variables in
DV ars(P, m). Since the dynamic variable int[2] is unused in state σf , we can change π
s.t. π(l11) = int[2], thus int[2] represents the location l11 in σf ′

. According to the change
of l6, in σf ′

we have to change the value of p to 8, since index(int[2]) = 8. Additionally,
according to the change of l11, in σf ′

we have to change the value of int[2] to 0. After
these changes, again all conditions of definition 5.3 are fulfilled, therefore σ′ and σf ′

are
π-corresponding. To achieve the behavior described above, the statements of P must
be transformed into statements of P f appropriately. For our example in fig. 5.4, the
statement

135

5 Heuristic State Space Exploration

Program P: started poll c1 s1 s2 p

Program int[1]

index: 1 2 3 4 5 6

started poll c1 s1 s2 p

7 8

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11

l9 l10l8 1 0 l2 free 0 0 0 free

 9 9 7 1 0 2 0 free

Function π

Pf:

SVars (Pf) DVars (Pf)

Program P: started poll c1 s1 s2 p

Program

index: 1 2 3 4 5 6

started poll c1 s1 s2 p

7 8

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11

l9 l10l8 1 0 l11 free 0 0 0 0

 9 9 7 1 0 8 0 0

Function π

Pf:

SVars (Pf) DVars (Pf)

int[2] int[1] int[2]

Figure 5.4: π-correspondence and dynamic object creation. The configuration of
the program P (top left) is π-corresponding to the configuration of program
P f (bottom left). Executing the statement new(p) in the depicted configu-
ration of P yields the successor configuration depicted in the top right. To
get again a π-corresponding state for P f , the new statement must be trans-
formed in P f s.t. its effect can be represented using the dynamic variables
int[1] resp. int[2].

new(p)

has to be transformed into the statements

p:=(int[1]=free ? 7 : (int[2] = free ? 8 : 9))

[int[1]:= p=7 ? 0 : int[1], int[2]:= p=8 ? 0 : int[2]]

In the assignment representing the transformed new-statement of type t we successively
test all variables in m(t) if they are used in the current state. If there is at least one
free variable, then we return the index of the found variable. If there is no free variable,
then we return the constant top = 9. Additionally, in the following assignment we set
the newly allocated variable to 0.

The purpose of the constant top can be demonstrated when trying to dereference a
variable having this value. As mentioned before, when in a state σf the variable v has
the value σf (v) = top, then v is pointing at a location l that is not represented in σf ,
i.e., l /∈ Dom(π), and therefore we do not know which value is stored in the referenced
location. For instance, suppose the program P in fig. 5.4 is in state σ′ and the next
statements to be executed are:

new(p)

started:=*p

Since in σf ′

there is no free dynamic variable, the transformed new-statement (v. above)
yields p = 9. The transformation of the assignment

136

5.1 Abstraction of Cmin programs

started:=*p"

yields the statement

started:= p=7 ? int[1] : (p=8 ? int[2] : (p=0 ? fail : nd)).

If p = 9, then we do not know anything about the value of the variable p is pointing
at, thus in the transformed statement we have to select nondeterministically a value by
executing the nondeterministic expression nd. This additional nondeterminism leads to
states in the transformed program P f that are not possible int the original program P .
For instance, after execution of the assignment above, the transformed program can be
in a state with started = 1. In contrast to this, the original program can only be in a
state with started = 0. However, since we want to construct a program that simulates
the original program, the additional nondeterminism is unavoidable. In the following, we
will define the transformation of statements formally. We begin with the transformation
of expressions. To this end, given a Cmin program P , a type t ∈ Types(P) and a memory
configuration m, V (t) denotes the set

V (t) =

{v ∈ SV ars(P)|type(v) = t}

∪ {v ∈ DV ars(P, m)|v ≡ t[j]}

∪ {v ∈ DV ars(P, m)|v ≡ t.m[j] ∧ offset(t, m) = 0}

∪ {v ∈ DV ars(P, m)|v ≡ t1.m[j] ∧ type(t1.m) = t},

i.e., V (t) denotes the set of all variables in V ars(P, m) whose type in P is t. Additionally,
for a variable t.m[j] ∈ DV ars(P, m) we define

MV (t.m[j]) = {t.m′[j] |m′ ∈MemberV ars(t)}

i.e., MV (t.m[j]) denotes the set of variables v′ ∈ DV ars(P, m) that belong to the
same object instance j of the structured type t. Given a set V ⊆ V ars(P, m), the set
I(V) = {index(v)|v ∈ V } denotes the set of all indices of variables in V . Furthermore,
given a type t ∈ Types(P) we define

ND(t) =

nd = 0?false : true if t = bool

nd if t = int

nd = 0?0 : nd = 0?i1 : · · ·

· · ·nd = 0?in : top if t /∈ {bool, int} ∧ ij ∈ I(V (t)),

i.e., ND(t) nondeterministically selects one element of the domain of t. For the types
bool resp. int we select a value from {false, true} resp. {min, max}, and for all structure
and pointer types we select an index of a variable with the referenced type. With this,
we can define the transformation of expressions as follows:

Definition 5.9 Let P be a Cmin program and m a memory configuration. Let further
e ∈ Exp(P) an expression. Then trans(e) denotes an expression that is defined as
follows:

137

5 Heuristic State Space Exploration

• if e ≡ c ∈ Const then trans(e) = e.

• (Simple variable): if e ≡ v then trans(e) = e.

• (Referenced location of simple variable): Let e ≡ ∗v, t = type(e) and
V (t) = {v1, · · · , vn}. Then trans(e)

v = index(v1)?v1 : · · · v = index(vn)?vn : v = top?ND(t) : fail.

• (Member variable): Let e ≡ v → mk, t = type(v) and
V (t) = {t.m1[1], · · · , t.m1[n]}. Then trans(e)

v = index(t.m1[1])?t.mk[1] : · · ·

· · · v = index(t.m1[n])?t.mk[n] : v = top?ND(type(v → mk)) : fail.

• (Location of simple variable): If e ≡ &v then trans(e) = index(v).

• (Location of member variable): Let e ≡ &v → m, t = type(v) and
V (t) = {t.m1[1], · · · , t.m1[n]}. Then trans(e)

v = index(t.m1[1])?index(t.mk[1]) : · · ·

· · · v = index(t.m1[n])?index(t.mk[n]) : v = top?ND(type(v → mk)) : fail

• (Nondeterministic choice): if e ≡ nd then trans(e) = e.

• (Arithmetic expressions): if e ≡ e1 op e2, op ∈ AOp, then
trans(e) = trans(e1) op trans(e2).

• (Conditional expressions): if e ≡ e1?e2 : e3, then
trans(e) = trans(e1) ? trans(e2) : trans(e3).

• (Arithmetic relations): if e ≡ e1 op e2, op ∈ ARel, then
trans(e) = trans(e1) op trans(e2).

• (Pointer relations): if e ≡ e1 op e2, op ∈ PRel, then

trans(e) = (trans(e1) = top and trans(e2) = top)?ND(bool)

: (trans(e1) op trans(e2)).

• (Boolean expressions):

trans(e1 and e2) = trans(e1) and trans(e2).

trans(e1 or e2) = trans(e1) or trans(e2).

trans(not e1) = not trans(e1).

138

5.1 Abstraction of Cmin programs

The following lemma describes the relationship between the semantics of an expression
e ∈ Exp(P) in a state σ and its transformed expression trans(e) in a state σf that is
π-corresponding to σ.

Lemma 5.10 Let P be a Cmin program, m a memory configuration and e ∈ Exp(P) an
expression. Let further P f be a Cfin program and trans(e) ∈ Exp(P f). If σ ∈ Σ and
σf ∈ Σf are π-corresponding, then the following holds:

1. type(e) ∈ {bool, int} ⇒ [[e]](σ) ⊆ [[trans(e)]](σf).

2. type(e) /∈ {bool, int} ⇒ I(π([[e]](σ) ∩Dom(π))) ⊆ [[trans(e)]](σf).

3. type(e) /∈ {bool, int} ⇒ [[e]](σ) * Dom(π)⇒ top ∈ [[trans(e)]](σf).

Proof:
(By structural induction): Let e ∈ Exp(P).
Base cases:

• Case e ≡ c ∈ Const is clear since trans(c) = c.

• Case e ≡ v ≡ trans(v). Let l = varloc(v). We distinguish two cases.

– If type(v) ∈ {bool, int} then 2 and 3 are true. Additionally, with 1 of lemma
5.4 we get [[e]](σ) = [[trans(e)]](σf) which proves 1.

– If type(v) /∈ {bool, int} then 1 is true. We distinguish two cases:

∗ If σ(l) ∈ Dom(π) with 2 of lemma 5.4 we get 2 and 3.

∗ If σ(l) /∈ Dom(π) again with 2 of lemma 5.4 we get 2 and 3.

• Case e ≡ ∗v and trans(e) ≡

v = index(v1)?v1 : · · · v = index(vn)?vn : v = top?ND(t) : fail.

Let l = varloc(v) and l′ = σ(l).

– If type(∗v) ∈ {bool, int} then 2 and 3 are true. Since [[∗v]](σ) = σ(l′) we
distinguish the cases l′ ∈ Dom(π) and l′ /∈ Dom(π). If l′ ∈ Dom(π), then
from definition 5.3 we get σf (v) = index(vj) and σf (vj) = σ(l′), therefore
from the construction of trans(e) we can conclude 1. If l′ /∈ Dom(π), then
from definition 5.3 we get σf (v) = top, therefore from the construction of
trans(e) we can conclude 1.

– If type(∗v) /∈ {bool, int} then 1 is true. We distinguish the cases l′ ∈ Dom(π)
and l′ /∈ Dom(π). If l′ ∈ Dom(π), then from definition 5.3 we get σf (v) =
index(vj). If σ(l′) ∈ Dom(π) then from 3 of definition 5.3 we can conclude 2
and 3. If σ(l′) /∈ Dom(π) then from 4 of definition 5.3 we can conclude 2 and
3. The case l′ /∈ Dom(π) can be shown analogous.

139

5 Heuristic State Space Exploration

The cases e ≡ v → mk, e ≡ &v and e ≡ &v → m can be shown similarly.

• (Nondeterministic choice): if e ≡ nd then trans(e) = e. Therefore, 1, 2 and 3 hold.

Induction: Assume 1, 2 and 3 hold for expressions e1, e2 and e3. Now consider the
following cases:

• (Arithmetic expressions): if e ≡ e1 op e2, op ∈ AOp, then 2 and 3 hold since
type(e) = int. Additionally, we have

[[e]](σ) = {d1 op d2|d1 ∈ [[e1]](σ), d2 ∈ [[e2]](σ)}

⊆ {d1 op d2|d1 ∈ [[e1]](σf), d2 ∈ [[e2]](σ
f)}

= [[trans(e1) op trans(e2)]](σ
f) = [[trans(e)]](σf).

• (Conditional expressions): if e ≡ e1?e2 : e3, then

trans(e) = trans(e1)?trans(e2) : trans(e3).

Since the assumption holds for e1 we know that [[e1]](σ) ⊆ [[trans(e1)]](σ
f). Now

we can distinguish two cases. Either type(e) ∈ {bool, int}, then we have

[[e2]](σ) ⊆ [[e2]](σ
f) and [[e3]](σ) ⊆ [[e3]](σ

f),

and therefore 1, 2 and 3 hold. Otherwise, if type(e) /∈ {bool, int}, we distinguish
two cases. Either [[e2]](σ) ∈ Dom(π), then we have

(π([[e2]](σ) ∩Dom(π))) ⊆ [[trans(e2)]](σ
f),

which proves 2. Otherwise, if [[e2]](σ) /∈ Dom(π), we have

[[e2]](σ) * Dom(π)⇒ top ∈ [[trans(e2)]](σ
f),

which proves 3. The same arguments holds for e3.

• (Arithmetic relations): if e ≡ e1 op e2, op ∈ ARel, then 2 and 3 hold since type(e) =
bool. Additionally, we have

[[e]](σ) = {d1 op d2|d1 ∈ [[e1]](σ), d2 ∈ [[e2]](σ)}

⊆ {d1 op d2|d1 ∈ [[e1]](σf), d2 ∈ [[e2]](σ
f)}

= [[trans(e1) op trans(e2)]](σ
f) = [[trans(e)]](σf).

The cases e1 op e2, op ∈ PRel, e1 and e2, e1 or e2 and not e1 can be shown simi-
larly.

⊓⊔
After describing the transformation of expressions, we can now define the transformation
of assignments.

140

5.1 Abstraction of Cmin programs

Definition 5.11 Let P be a Cmin program and el := e an assignment of P . Then
trans(el := e) is defined as

• Case 1: If el ≡ v then trans(v := e) = v := trans(e).

• Case 2: Let el ≡ ∗v and t = type(v) and V (t) = {v1, · · · , vn}. Then

trans(∗v := e) = [v1 := v = index(v1)?trans(e) : (v = 0?fail : v1), · · ·

· · · vn := v = index(vn)?trans(e) : (v = 0?fail : vn)].

• Case 3: Let el ≡ v → mk and type(v) = t and
V (t) = {t.m1[1], · · · , t.m1[n]}. Then

trans(v → m := e) = [t.mk[1] := v = index(t.m1[1])?trans(e)

: (v = 0?fail : t.mk[1]), · · ·

· · · t.mk[n] := v = index(t.m1[n])?trans(e)

: (v = 0?fail : t.mk[n])].

Based on the transformation of assignments, we now prove that, given two π-
corresponding states σ, σf and an assignment el := e, for every state σ′ in the set
of updated states σ[[[adr(el)]](σ) := [[e]](σ)] there exist a π-corresponding state σf ′

in the
set of updated states σf [trans(el := e)]. Before we prove this fact we state some simple
relationships between the updated states of two π-corresponding states σ and σf .

Lemma 5.12 Let P be a Cmin program, P f be a Cfin program, σ ∈ Σ and σf ∈ Σf

with σ ∼π σf . Let further l1, l2, l3, l4 ∈ Dloc with l1, l2 ∈ Dom(π), l3, l4 /∈ Dom(π) and
d ∈ Df . Then it holds:

1. σ[l1 := d] ∼π σf [π(l1) := d]

2. σ[l1 := l2] ∼π σf [π(l1) := index(π(l2))]

3. σ[l1 := l3] ∼π σf [π(l1) := top]

4. σ[l3 := d] ∼π σf

5. σ[l3 := l1] ∼π σf

6. σ[l3 := l4] ∼π σf

Proof:

1. Since l1 ∈ Dom(π) we have v = π(l1) ∈ V ars(P f). σ[l1 := d] differs from σ
only at location l1, and σf [π(l1) := d] differs from σf only at variable v. Since
σ[l1 := d](l1) = d = σf [π(l1) := d](v), all conditions of definition 5.3 are fulfilled
and therefore σ[l1 := d] ∼π σf [π(l1) := d] holds.

141

5 Heuristic State Space Exploration

The other cases can be shown similarly. ⊓⊔

Lemma 5.13 Let P be a Cmin program, m a memory configuration and el := e an as-
signment. Let further P f be a Cfin program. If σ ∈ Σ and σf ∈ Σf are π-corresponding,
then the following holds:

∀σ′ ∈ σ[[[adr(el)]](σ) := [[e]](σ)] ∃σf ′

∈ σf [trans(el := e)] : σ′ ∼π σf ′

.

Proof:
Let l ∈ [[adr(el)]](σ), d ∈ [[e]](σ) and σ′ = σ[l := d]. We distinguish the following cases:

• Case el ≡ v. Then l ∈ Dom(π) and there exists a v ∈ V ars(P, m) with π(l) = v
and trans(v := e) ≡ v := trans(e). We distinguish the following cases:

– type(d) ∈ {bool, int}, then with 1 of lemma 5.10 we get d ∈ [[trans(e)]](σf),
therefore σf ′

= σf [v := d] ∈ σf [trans(el := e)], and with 1 of lemma 5.12 we
get σ ∼π σf ′

.

– type(d) /∈ {bool, int}. If d ∈ Dom(π) then with 2 of lemma 5.10 we get
d ∈ [[trans(e)]](σf), therefore σf ′

= σf [v := d] ∈ σf [trans(el := e)], and with
2 of lemma 5.12 we get σ ∼π σf ′

. If otherwise d /∈ Dom(π), then with 3
of lemma 5.10 we get top ∈ [[trans(e)]](σf), therefore σf ′

= σf [v := top] ∈
σf [trans(el := e)], and with 3 of lemma 5.12 we get σ ∼π σf ′

.

The cases e ≡ ∗v and e ≡ v → mk can be shown similarly. ⊓⊔

After defining the transformation of expressions and assignments, we can now define the
transformation of statements.

Definition 5.14 Let P be a Cmin program and stm ∈ STM(P) be a statement of P .
Then trans(stm) is defined as follows:

• (Concurrent assignment):
if stm ≡ [e1

l := e1, · · · , e
n
l := en] is a concurrent assignment, then

trans(stm) = [trans(e1
l := e1), · · · , trans(en

l := en)].

• (Synchronization):
if stm ≡ await(e, [e1

l := e1, · · · , e
n
l := en])) is an await statement,then

trans(stm) = await(trans(e), trans([e1
l := e1, · · · , e

n
l := en])).

• (Branching):
if stm ≡ jump(e, k1, k2) is a jump statement, then

trans(stm) = jump(trans(e), k1, k2).

142

5.1 Abstraction of Cmin programs

• (Object creation):
Case stm ≡ new(v): Let t = type(∗v), V (t) = {v1, · · · , vn} and MV (vj) =
{v1

j , · · · , v
mj

j } then

trans(stm) = [v := v1 = free?index(v1) : · · · vn = free?index(vn) : top,

v1
1 := v1 = free?0 : v1

1, · · · , v
m1

1 := v1 = free?0 : vm1

1 ,

· · · , v1
n := vn = free?0 : v1

n, · · · , vmn
n := vn = free?0 : vmn

n].

• (Object destruction):
Case stm ≡ delete(v): Let t = type(∗v), V (t) = {v1, · · · , vn} and MV (vj) =
{v1

j , · · · , v
mj

j }, then

trans(stm) = [v1
1 := v = index(v1)?free : v1

1, · · · ,

vm1

1 := v = index(v1)?free : vm1

1 ,

v1
n := v = index(vn)?free : v1

n, · · · ,

vmn
n := v = index(vn)?free : vmn

n , v := 0].

Given a labeled statement (l, stm), we define trans((l, stm)) = (l, trans(stm)). Addi-
tionally, for a sequence of labeled statements 〈(l1, stm1), · · · , (ln, stmn)〉 we define

trans(〈(l1, stm1), · · · , (ln, stmn)〉) = 〈trans((l1, stm1)), · · · , trans((ln, stmn)〉

With this preliminaries, we can now define the abstract program P f formally.

Definition 5.15 Given a Cmin program

P = (Structs(P), V ars(P), init(P), Threads(P))

and a memory configuration m, we define the Cfin program

P f (m) = (V ars(P f (m)), init(P f (m)), Threads(P f (m)))

s.t.

• V ars(P f (m)) = V ars(P, m)

• init(P f (m)) is an initialization function that is defined as

init(P f (m))(v) =

{

init(v) if v ∈ V ars(P)

free otherwise

• Threads(P f (m)) = {(1, stmsf
1), · · · , (n, stmsf

n)} s.t.

∀i ∈ {1, · · · , n} : stmsf
i = trans(stmsi).

143

5 Heuristic State Space Exploration

After we have defined the transformation of a Cmin program P into the Cfin program
P f (m) formally, we will now prove that P f (m) is indeed a simulation of P .

Theorem 5.16 Let P be a Cmin program and m a memory configuration. Then P f (m)
is a simulation of P .

Proof:
By induction. We have to show that

∀r ∈ Runs(P)∃ rf ∈ Runs(P f) : r ∼π rf .

Let r = 〈c0, · · · , ci〉 ∈ Runs(P). We construct a corresponding run rf = 〈cf
0 , · · · , cf

i 〉 ∈
Runs(P f (m)) s.t. r ∼π rf .

• Case i = 0: c0 = (start1, · · · , startn, σ0) is the starting configuration of P , and

cf
0 = (start1, · · · , startn, σf

0) is the starting configuration of P f (m). From the
definition of starting configurations we know that

– ∀v ∈ V ars(P) : σ0(varloc(v)) = init(v)

– ∀l ∈ Dloc : l /∈ Ran(varloc)⇒ σ0(l) = free

hold. Furthermore we know that

∀v ∈ V ars(P f) : σf
0 (v) = init(v)

holds. Now we choose π s.t. π(l) = v ⇔ l = varloc(v) holds. With such a π all
conditions of def. 5.3 are fulfilled:

1. From the definition of π it follows directly that

(v ∈ V ars(P) ∩ V ars(P f) ∧ l = varloc(v))⇒ π(l) = v,

which proves 1 of def. 5.3.

2. From the definition of σ0, σf and π we know that

∀v ∈ BIV ars(P) ∃ l ∈ Dloc : v = π(l)) ∧ σ(l) = σf (v)

holds. Additionally, we know that π(l) = v ⇔ l = varloc(v). From this we
can directly conclude

(tl(l) ∈ {bool, int} ∧ v = π(l))⇒ σ(l) = σf (v),

which proves 2 of def. 5.3.

144

5.1 Abstraction of Cmin programs

3. From the definition of σ0, σf and π we know that

∀v ∈ V ars(P) \BIV ars(P) ∃ l ∈ Dloc : v = π(l)) ∧ σ(l) = 0 = σf (v)

holds. Additionally, we know that π(l) = v ⇔ l = varloc(v). Since
index(0) = 0, we can conclude

(tl(l) /∈ {bool, int} ∧ v = π(l) ∧ v′ = π(σ(l)))⇒ σf (v) = index(v′),

which proves 3 of def. 5.3.

4. From the definition of σ0, σf and π we know that

∀v ∈ V ars(P) \BIV ars(P) ∃ l ∈ Dloc : v = π(l)) ∧ σ(l) = 0 = σf (v)

holds. Since all pointer variables v ∈ V ars(P)\BIV ars(P) all already in the
domain of π, i.e.,

v ∈ V ars(P) \BIV ars(P)⇒ v ∈ Dom(π)

holds, it follows directly that

(tl(l) /∈ {bool, int} ∧ v = π(l) ∧ σ(l) /∈ Dom(π))⇒ σf (v) = top

holds, which proves 4 of def. 5.3.

Since all conditions of definition 5.3 are fulfilled, it follows that σ0 ∼π σf
0 and

therefore c0 ∼π cf
0 .

• Case i + 1: Assume the theorem holds for all runs up to length i, i.e., ∀j ∈
{0, · · · , i} : ci ∼π cf

i . From ci = (pc1, · · · , pcn, σi) we can reach a successor con-
figuration ci+1 = (pc1, · · · , pc′k, · · · , pcn, σi+1) by executing a transition ci → ci+1

of a thread k of P . Let stm denote the statement at the label corresponding to
the program counter pck of thread k, and let stmf denote the statement of the
corresponding thread of P f (m). We show that executing stmf in configuration

cf
i leads to a configuration cf

i+1 with ci+1 ∼π cf
i+1. We have to distinguish the

following cases:

– (Concurrent assignment):
if stm ≡ [e1

l := e1, · · · , e
n
l := en] is a concurrent assignment, then

σi+1 ∈ σ[[[adr(e1
l)]](σ) := [[e1]](σ), · · · , [[adr(en

l)]](σ) := [[en]](σ)]

and
stmf = [trans(e1

l := e1), · · · , trans(en
l := en)].

From lemma 5.13 we know that for all assignments ei
l := ei it holds that

∀σ′ ∈ σ[[[adr(el)]](σ) := [[e]](σ)] ∃σf ′

∈ σf [trans(el := e)] : σ′ ∼π σf ′

.

145

5 Heuristic State Space Exploration

Therefore, by applying lemma 5.13 n times we get

∀σi+1 ∈ σ[[[adr(e1
l)]](σ) := [[e1]](σ), · · · , [[adr(en

l)]](σ) := [[en]](σ)]

∃σf
i+1 ∈ σf [trans(e1

l := e1), · · · , trans(en
l := en)] : σi+1 ∼π σf

i+1,

i.e., we can always choose σf
i+1 s.t. σi+1 ∼π σf

i+1 holds, and thus we have

ci+1 ∼π cf
i+1.

– (Synchronization):
if stm ≡ await(e, [e1

l := e1, · · · , e
n
l := en])) is an await statement, then

true ∈ [[e]](σi)

and

σi+1 ∈ σ[[[adr(e1
l)]](σ) := [[e1]](σ), · · · , [[adr(en

l)]](σ) := [[en]](σ)].

Additionally, we know that

stmf = await(trans(e), trans([e1
l := e1, · · · , e

n
l := en])).

Since type(e) = bool, from lemma 5.10 (1) we know that

[[e]](σi) ⊆ [[trans(e)]](σf
i),

thus we can conclude that
true ∈ [[e]](σf

i).

Additionally, from lemma 5.13 we know that for all assignments ei
l := ei it

holds that

∀σ′ ∈ σ[[[adr(el)]](σ) := [[e]](σ)] ∃σf ′

∈ σf [trans(el := e)] : σ′ ∼π σf ′

.

Therefore, by applying lemma 5.13 n times we get

∀σi+1 ∈ σ[[[adr(e1
l)]](σ) := [[e1]](σ), · · · , [[adr(en

l)]](σ) := [[en]](σ)]

∃σf
i+1 ∈ σf [trans(e1

l := e1), · · · , trans(en
l := en)] : σi+1 ∼π σf

i+1,

i.e., we can always choose σf
i+1 s.t. σi+1 ∼π σf

i+1 holds, and thus we have

ci+1 ∼π cf
i+1.

– (Branching):
if stm ≡ jump(e, k1, k2) is a jump statement, then

true ∈ [[e]](σi) ∧ pc′ = k1) ∨ (false ∈ [[e]](σi) ∧ pc′ = k2))

and
stmf = jump(trans(e), k1, k2).

If true ∈ [[e]](σi), from lemma 5.10 (1) we know that in this case also true ∈

[[e]](σf
i) and therefore pc′ = k1 = pcf ′

. The same argument holds also for the

case false ∈ [[e]](σi), thus we can conclude that ci+1 ∼π cf
i+1.

146

5.1 Abstraction of Cmin programs

– (Object creation):
Case stm ≡ new(v): Let t = type(∗v), V (t) = {v1, · · · , vn} and MV (vj) =
{v1

j , · · · , v
mj

j }. From the definition of the semantics we know that

∃l ∈ Dloc : (t ∈ CTypes(P) ∧ tls(l) = t ∧ σi(l) = free)

∨(t /∈ CTypes ∧ tl(l) = t ∧ σi(l) = free)

and

σi+1 = σi[[[adr(e)]](σi) := l, l := 0, · · · , l + size(t)− 1 := 0].

Additionally, we know that

stmf = [v := v1 = free?index(v1) : · · · vn = free?index(vn) : top,

v1
1 := v1 = free?0 : v1

1, · · · , v
m1

1 := v1 = free?0 : vm1

1 ,

· · · , v1
n := vn = free?0 : v1

n, · · · , vmn
n := vn = free?0 : vmn

n].

We distinguish the following cases:

∗ ∃vj = t.m[j] ∈ V (t) with σf
i (t.m[j]) = free. Then σi+1(v) =

index(t.m[j]), and for all variables t.m′[j] ∈ MV (t.m[j]) we have
σi+1(t.m

′[j]) = 0. If we change π s.t. π(l) = t.m[j] and π(l′) = t.m′[j] for
all locations l′ belonging to member variables m′ of the object instance
created at location l, then all conditions of definition 5.3 are fulfilled.
Therefore, it follows that σi+1 ∼π σf

i+1 and ci+1 ∼π cf
i+1.

∗ ∀vj ∈ V (t) : σf
i (vj) 6= free. Then σi+1(v) = top, and all conditions of

definition 5.3 are fulfilled. Therefore, it follows that σi+1 ∼π σf
i+1 and

ci+1 ∼π cf
i+1.

– (Object destruction): This case can be shown analogously to the case of object
construction.

⊓⊔

By proving theorem 5.16 we have shown that we can construct for a given Cmin program
P a Cfin program P f (m) that simulates P . Since P f (m) simulates P and since all
variables v ∈ V ars(P) are also contained in P f (m), from lemma 5.7 we can conclude that
P f (m) is an abstraction of P w.r.t. any formula EFq ∈ TL. As a consequence, we could
now apply an appropriate finite-state model checker to build the complete state space of
P f (m) in order to create the abstraction-based heuristic function. Unfortunately, due
to the possible large domains of the variables used in P f (m), the reachable state space
will be much too large for programs of reasonable size. Therefore, in the next section
we show how we can further abstract P f (m) into a more abstract program whose state
space will be small enough s.t. we can explore its state space completely.

147

5 Heuristic State Space Exploration

5.1.4 Further Abstraction

In this section, we will describe how we can further abstract P f (m) into a program
B(P f (m), P reds) by using a technique known as predicate abstraction [GS97, DDP99].
Contrary to P f (m), the program B(P f (m), P reds) will have only boolean variables
denoted with B = {b1, · · · , bn}. The number of boolean variables is determined by the
set Preds = {p1, · · · , pn} of so-called predicates. A predicate p is a boolean expression
over variables in P f (m), i.e. pi ∈ BExp(V ars(P f (m))) for i ∈ {1, · · · , n}. Concrete
states of the system are mapped to abstract states according to the evaluation of the
given predicates. A mapping β : Preds→ B maps each predicate pi to a corresponding
boolean variable β(pi) = bi in B. A concrete state σf of P f (m) corresponds to an
abstract state σa of B(P f (m), P reds) if for all bi the value of bi in σa is equivalent to
the value of pi in σf . Given a state σf ∈ States(P f (m)), abs(σf) denotes a state of
B(P f (m), P reds) with

∀i ∈ {1, · · · , n} : abs(σf)(β(pi)) = [[pi]](σ
f).

For a configuration c = (pc1, · · · , pcm, σf) of P f (m), abs(c) denotes a configuration of
B(P f (m), P reds) with

abs(c) = (pc1, · · · , pcm, abs(σf)).

We can now define what it means that B(P f (m), P reds) is an abstraction of P f (m).

Definition 5.17 Let P f (m) be a Cfin program and Pred = {p1, · · · , pn} a set of pred-
icates pi ∈ BExp(V ars(P f (m)). Let further B(P f (m), P reds) be a Cfin program with
V ars(B(P f (m), P reds)) = {b1, · · · , bn} and type(bi) = bool, i ∈ {1, · · · , n}. We say
B(P f (m), P reds) is an abstraction of P f (m) iff

〈c0, c1, · · · 〉 ∈ Runs(P f (m))⇒ 〈abs(co), abs(c1), · · · 〉 ∈ Runs(B(P f (m), P reds))

If we want to check if P f (m) � EFq, and if B(P f (m), P reds) is an abstraction of P f (m)
and q ∈ Preds, then instead of performing a state space exploration of P f (m) we can
perform an exploration of B(P f (m), P reds) whose state space is usually much smaller
than the state space of P f (m). Subject to the result of the state space exploration of
B(P f (m), P reds) we can draw conclusions about the behavior of P f (m).

Lemma 5.18 Let P f (m) be a Cfin program, Pred = {p1, · · · , pn} a set of predicates
pi ∈ BExp(V ars(P f (m)) and EFpk ∈ TL a formula with pk ∈ Preds. Let further
B(P f (m), P reds) be an abstraction of P f (m). Then it holds

(P f (m) � EFpk)⇒ (B(P f (m), P reds) � EFβ(pk)).

Proof:
Let

〈c0, c1, · · · , cj = (pc1, · · · , pcm, σf
j)〉 ∈ Runs(P f (m))

148

5.1 Abstraction of Cmin programs

with [[pk]](σ
f
j) = true. Because B(P f (m), P reds) is an abstraction of P f (m) we have

〈abs(co), abs(c1), · · · , abs(cj) = (pc1, · · · , pcm, abs(σf
j))〉 ∈ Runs(B(P f (m), P reds)).

Since [[pk]](σ
f
j) = abs(σf

j)(β(pk)) we have B(P f (m), P reds) � EFβ(pk). ⊓⊔

When a complete state space exploration of B(P f (m), P reds) yields B(P f (m), P reds) 2
β(pk), then we can safely conclude P f (m) 2 pk. However, if the result yields
B(P f (m), P reds) � β(pk), then both P f (m) 2 pk and P f (m) � pk are possible. In the
latter case we will use the generated state space to build an abstraction-based heuristic
which itself can be used for a heuristic state space exploration of the original program
P . In the following we will describe how we transform a Cfin program P f (m) into a
Cfin program B(P f (m), P reds) that is an abstraction of P f (m).

For a statement v := e and a predicate p, let WP (v := e, p) denote the weakest liberal
precondition [Dij76, Gri81] of p with respect to the statement v := e. WP (v := e, p)
is defined as the weakest predicate whose truth before v := e entails the truth of p
afterwards. The standard weakest precondition rule says that WP (v := e, p) is p with
all occurrences of v replaced with e, denoted p[e/v]. For instance

WP (v := v + 2, v < 8) = (v + 2) < 8 = v < 6.

Given a statement v := e, a set Preds = {p1, · · · , pn} of predicates and a predicate
pj ∈ Preds, it can happen that WP (v := e, pj) /∈ Preds. In such a case we can
strengthen the weakest precondition to an expression over the predicates in Preds. A
monomial m is a conjunction c1 ∧ · · · ∧ cn where each ci is one of {bi,¬bi}. We extend
the function β to range also over monomials, i.e.

β(c1 ∧ · · · ∧ cn) = β(c1) ∧ · · · ∧ β(cn)

and disjunctions of monomials, i.e.

β(m1 ∨ · · · ∨mn) = β(m1) ∨ · · · ∨ β(mn).

Based on this, we formalize the strengthening of predicates as follows:

Definition 5.19 Let Preds = {p1, · · · , pn} be a set of predicates, e a boolean expression
and B = {b1, · · · , bn} a set of boolean variables. With W (e) = m1 ∨ · · · ∨mk we denote
the largest disjunction of monomials mi such that β−1(mi)⇒ e.

The predicate β−1(W (e)) represents the weakest predicate over Preds that is stronger
than e. For instance, if Preds = {v < 8, v = 3} and B = {b1, b2}, then

W (v < 6) = (b1 ∧ b2) ∨ (¬b1 ∧ b2).

149

5 Heuristic State Space Exploration

With the notion of the weakest precondition we can now define the transformation of
assignments. Given a set of predicates Preds = {p1, · · · , pn}, a function β as described
above and an assignment v := e, B(v := e) is defined as

[

β(p1) := W (WP (v := e, p1))?true : W (WP (v := e,¬p1))?false : ND(bool),

· · ·

β(pn) := W (WP (v := e, pn))?true : W (WP (v := e,¬pn))?false : ND(bool)

]

The translated statement B(v := e) must appropriately update all of the boolean vari-
ables that correspond to predicates that are affected by the assignment. If WP (v := e, p)
is true, then β(p) may be safely set to true. Similarly, if WP (v := e,¬p) is true, then β(p)
may be safely set to false. Because the predicate WP (v := e, p) may not be in Preds we
need to weaken it to a predicate over expressions in Preds that implies WP (v := e, p),
therefore we compute W (WP (v := e, p)). Similarly we weaken WP (v := e,¬p). How-
ever, if neither W (WP (v := e, p)) nor W (WP (v := e,¬p)) is true, i.e., we cannot
determine the value of β(p) after execution of v := e, then we conservatively update
β(p) nondeterministically with true or false. Analogously to assignments, for await- and
jump-statements with a guard e we have to find the weakest predicate over expressions
in Preds that implies e resp. ¬e, i.e., we transform such a guard e into another guard

B(e) = W (e)?true : W (¬e)?false : ND(bool).

For instance, if we have a guard v > 0 and Preds = {v > 2, v = 0}, then

B(v > 0) = v > 2?true : v = 0?false : ND(bool).

Based on this, we can now define the translation of arbitrary statements.

Definition 5.20 Let P f (m) be a Cfin program and stm ∈ STM(P f (m)) be a statement
of P f (m). Then B(stm) is defined as follows:

• (Concurrent assignment):
if stm ≡ [v1 := e1, · · · , vn := en] is a concurrent assignment, then

B(stm) = [B(v1 := e1), · · · , B(vn := en)].

• (Synchronization):
if stm ≡ await(e, [v1 := e1, · · · , vn := en])) is an await statement,then

B(stm) = await(B(e), [B(v1 := e1), · · · , B(vn := en)]).

• (Branching):
if stm ≡ jump(e, k1, k2) is a jump statement, then

B(stm) = jump(B(e), k1, k2).

150

5.1 Abstraction of Cmin programs

Given a statement sequence stms = 〈(1, stm1), · · · , (n, stmn)〉, B(stms) denotes the
statement sequence with B(stm) = 〈(1, B(stm1)), · · · , (n, B(stmn))〉. Based on this, the
following definition formalizes the complete translation of P f (m) into B(P f (m), P reds).

Definition 5.21 Let P f (m) = (V ars(P f (m)), init(P f (m)), Threads(P f (m))) be a
Cfin program with

Threads(P f (m)) = {(1, stms1), · · · , (n, stmsn)}.

Let further Pred = {p1, · · · , pn} be a set of predicates pi ∈ BExp(V ars(P f (m)).
Then B(P f (m), P reds) = (V ars(B(P f (m))), init(B(P f (m))), Threads(B(P f (m)))) is
defined as:

• V ars(B(P f (m), P reds) = {b1, · · · , bn}.

• init(B(P f (m))) is an initialization function that is defined as follows:

init(B(P f (m)))(bi) =

{

true if [[β−1(bi)]](σ
f
0) = true

false otherwise,

whereby σf
0 denotes a state with σf

0 (vi) = init(P f (m))(vi) for all vi ∈
V ars(P f (m)).

• Threads(B(P f (m), P reds)) = {(1, B(stms1)), · · · , (n, B(stmsn))}.

After defining B(P f (m), P reds) formally, we can now prove that it is indeed an abstrac-
tion of P f (m), which is stated in the following theorem.

Theorem 5.22 Let P f (m) be a Cfin program and Pred = {p1, · · · , pn} a set of predi-
cates pi ∈ BExp(V ars(P f (m)). Then B(P f (m), P reds) is an abstraction of P f (m).

Proof:
(By induction). We have to show that

〈cf
0 , cf

1 , · · · 〉 ∈ Runs(P f (m))⇒ 〈abs(cf
0), abs(cf

1), · · · 〉 ∈ Runs(B(P f (m), P reds))

Let

〈cf
0 , cf

1 , · · · , cf
j = (pc1, · · · , pcm, σf

j)〉 ∈ Runs(P f (m))

be a run of P f (m). We construct a corresponding abstract run

〈abs(cf
0), abs(cf

1), · · · abs(cf
j) = (pc1, · · · , pcm, σa

j)〉 ∈ Runs(B(P f (m), P reds)).

151

5 Heuristic State Space Exploration

• Case j = 0: From the definition of the starting configuration cf
0 =

(first1, · · · , firstm, σf
0) for P f (m) we know that

∀v ∈ V ars(P f) : σf
0 (v) = init(v).

Additionally, from the definition of the starting configuration ca
0 =

(first1, · · · , firstm, σa
0) we know that ∀bi ∈ V ars(B(P f (m))) it holds that

init(B(P f (m)))(bi) =

{

true if [[β−1(bi)]](σ
f
0) = true

false otherwise.

Thus, we have
∀i ∈ {1, · · · , n} : [[pi]](σ

f
0) = [[β(pi)]](σ

a
0),

and therefore σa
0 = abs(σf

0) resp. ca
0 = abs(cf

0).

• Case j + 1: Assume we already constructed

〈abs(cf
0), abs(cf

1), · · · , abs(cf
j) = (pc1, · · · , pcm, σa

j)〉.

Suppose that in configuration cf
j thread i executes a statement stmj s.t.

cf
j+1 = (pc1, · · · , pc′i, · · · , pcm, σf

j+1).

We then construct abs(cf
j+1) subject to cf

j+1.

– Case stmj = [v1 := e1, · · · , vk := ek]: Then

σf
j+1 = σf

j [v1 := [[e1]](σ
f
j), · · · , vk := [[ek]](σ

f
j)]

From definition of B(P f (m), P reds) we know that

B(stmj) = [B(v1 := e1), · · · , B(vk := ek)].

Now let pr be an arbitrary predicate in Preds. If no assignment in stmj

changes a variable of pr, then

WP (vi := ei, pr) = pr and WP (vi := ei,¬pr) = ¬pr

for all i ∈ {1, · · · , k}, and therefore also

W (WP (vi := ei, pr)) = pr and W (WP (vi := ei,¬pr)) = ¬pr

for all i ∈ {1, · · · , k}. Since

β(pr) := W (WP (vi := ei, pr))?true : W (WP (vi := ei,¬pr))?false : ND(bool)

152

5.1 Abstraction of Cmin programs

we know that if [[pr]](σ
f
j+1) = true then either

[[W (WP (vi := ei, pr))]](σ
a
j) = true and therefore [[β(pr)]](σ

a
j+1) = true

or

[[W (WP (vi := ei, pr))]](σ
a
j) = false and [[W (WP (vi := ei,¬pr))]](σ

a
j) = false,

in which case we have β(pr) := ND(bool), so we can choose s.t.

[[β(pr)]](σ
a
j+1) = true. The case [[pr]](σ

f
j+1) = false proceeds analogously.

If on the other hand there is at least one assignment in stmj that changes a
variable of pr then there is a last assignment vi := ei in stmj that changes a

variable of pr. If [[pr]](σ
f
j+1) = true then either

[[W (WP (vi := ei, pr))]](σ
a
j) = true and therefore [[β(pr)]](σ

a
j+1) = true

or

[[W (WP (vi := ei, pr))]](σ
a
j) = false and [[W (WP (vi := ei,¬pr))]](σ

a
j) = false,

in which case we have β(pr) := ND(bool), so we can choose s.t.

[[β(pr)]](σ
a
j+1) = true. Again, the case [[pr]](σ

f
j+1) = false proceeds analo-

gously. Therefore we can conclude that abs(cf
j)→ abs(cf

j+1).

– Case stmj = await(e, [v1 := e1, · · · , vk := ek]): cf
j can make a transition to

cf
j+1 only when [[e]](σf

j) = true. Since

B(stmj) = await(B(e), [B(v1 := e1), · · · , B(vn := en)])

and
B(e) = W (e)?true : W (¬e)?false : ND(bool),

either [[W (e)]](σa
j) = true and therefore [[B(e)]](σa

j) = true, or [[W (e)]](σa
j) =

false and [[W (¬e)]](σa
j) = false, in which case we have B(e) = ND(bool),

so we can choose s.t. [[B(e)]](σf
j) = true. The updates due to the assignment

sequence can be handled as in the proof of the assignment sequence, therefore
we can conclude that abs(cf

j)→ abs(cf
j+1).

– Case stmj = jump(e, l1, l2): If next(pci) = l1 then [[e]](σf
j) = true. Since

B(stmj) = jump(B(e), k1, k2)

and
B(e) = W (e)?true : W (¬e)?false : ND(bool),

either [[W (e)]](σa
j) = true and therefore [[B(e)]](σa

j) = true, or [[W (e)]](σa
j) =

false and [[W (¬e)]](σa
j) = false, in which case we have B(e) = ND(bool),

153

5 Heuristic State Space Exploration

so we can choose s.t. [[B(e)]](σf
j) = true. If [[e]](σf

j) = false and next(pci) =
l2, then either [[W (¬e)]](σa

j) = true and therefore [[B(e)]](σa
j) = false, or

[[W (e)]](σa
j) = false and [[W (¬e)]](σa

j) = false, in which case we have B(e) =

ND(bool), so we can choose s.t. [[B(e)]](σf
j) = true, therefore we can conclude

that abs(cf
j)→ abs(cf

j+1).

⊓⊔
After we have formally described how to create, starting with an arbitrary Cmin program
P , a Cfin program B(P f (m), P reds) that is a finite state abstraction of P , in the next
section we will demonstrate how we can use B(P f (m), P reds) to create an appropriate
heuristic function h that can be used to guide an exploration process of P to find a
witness for a given formula EFq.

5.2 Abstraction-based Heuristic State Space Exploration

Before we explain how we can use B(P f (m), P reds) to create an heuristic function h
that can be used for state space exploration of P , we sum up the overall abstraction
process described in the previous sections. Figure 5.5 shows the flow of abstractions we
have to perform to construct B(P f (m), P reds). Starting with a Cmin program P , the
first abstraction yields a finite state Cfin program P f (m). Although the state space of

 P

EF q

Pf(m)

EF q

 B(Pf(m),Preds)

EF bq

 Memory
Configuration

m

 Predicates
Preds ={p1,...,pn}

 false true

 Heuristic
 Function

 Heuristic
 State Space
 Exploration

Figure 5.5: The overall abstraction process. Starting with P , we first abstract
P into P f (m), and subsequently into B(P f (m), P reds). A complete state
space exploration of B(P f (m), P reds) yields a heuristic function that we can
then use for heuristic state space exploration of P .

154

5.2 Abstraction-based Heuristic State Space Exploration

P f (m) is finite, it can still be much too large for an exhaustive state space exploration.
Therefore, with another abstraction we get a more abstract program B(P f (m), P reds).
Due to the fact that B(P f (m), P reds) is more abstract than P f (m), it is much more
likely that we can perform an exhaustive state space exploration of B(P f (m), P reds).
If we assume that the property to be checked is EFq, as the result of such an exhaustive
exploration we get B(P f (m), P reds) 2 EFq or B(P f (m), P reds) � EFq. Because
B(P f (m), P reds) is an abstraction of P f (m) and P f (m) itself is an abstraction of P ,
in the case B(P f (m), P reds) 2 EFq we can conclude that both P f (m) 2 EFq and
P 2 EFq.

Unfortunately, in the case B(P f (m), P reds) � EFq we cannot conclude either
P f (m) � EFq or P � EFq, since a witness for B(P f (m), P reds) � EFq need not neces-
sarily be a witness for P f (m) � EFq or P � EFq. However, if there is at least one witness
for P � EFq, then there is also a witness for P f (m) � EFq and B(P f (m), P reds) �

EFq. Therefore we can try to use a witness for B(P f (m), P reds) � EFq as a hint to
search for a witness for P � EFq.

We will exploit the information gained by the exhaustive state space exploration of
B(P f (m), P reds) by means of a so-called abstraction-based heuristic. For a property
EFq, in the abstraction-based heuristic we store for each state of B(P f (m), P reds) the
shortest path in the state graph of B(P f (m), P reds) that leads to a configuration ca with
ca � q. For a sequence ra = 〈ca

1 → ca
2 → · · · → ca

n〉 of consecutive configurations, let ra(i)
denote the postfix of ra starting at configuration ca

i . Furthermore, let len(ra) = n denote
the length of a sequence ra. The function dist : Conf(B(P f (m), P reds)×TL→ N with

dist(ca
i , EFq) =

{

min{len(ra(i))|ra = 〈ca
0, · · · , c

a
n〉 ∈ Runs(B(P f (m), P reds)) ∧ ca

n � q}

∞ otherwise

computes for a configuration ca
i the minimal number of transitions that must be taken

to reach a configuration ca
j with ca

j � q. For a property EFq, to create the heuris-
tic we compute the value dist(ca

i , EFq) for every configuration ca
i that is reachable in

B(P f (m), P reds). After creating the abstraction-based heuristic, in a subsequent state
space exploration of P we will compute a value for a configuration c by means of the
heuristic function h. If we encounter a configuration c during the exploration of P , we
compute the corresponding abstract configuration ca of B(P f (m), P reds) and retrieve
the computed value stored for ca. Let c be a configuration of P , ca the correspond-
ing abstract configuration of B(P f (m), P reds) and EFq a property, then we define the
heuristic function h : Conf(P)× TL→ N as

h(c, EFq) = dist(ca, EFq).

This function h can effectively be computed by the algorithm shown in fig. 5.6. The
depicted algorithm is just a little variation of the standard breadth-first algorithm for
computing shortest paths. We assume that we have already computed the reachable state
space of a program B(P f (m), P reds) and that we have marked all states that fulfill a
property q. Furthermore, we assume that for every state s of B(P f (m), P reds) we store

155

5 Heuristic State Space Exploration

(1) procedure CreateHeuristic(q)
(2) Dist← ∅; Closed← ∅;
(3) ActStates← {s|s � q}; d← 0
(4) while (ActStates 6= ∅)
(5) PredStates← ∅
(6) Closed = Closed ∪ActStates
(7) foreach v ∈ Actstates
(8) Dist.insert(v, d)
(9) if (v.pred /∈ Closed)
(10) PredStates.insert(v.pred)
(11) d = d + 1
(12) ActStates = PredStates
(13) end procedure CreateHeuristic
(14)
(15) procedure h(c)
(16) ca = abs(c);
(17) return Dist(ca);
(18) end procedure h

Figure 5.6: Generation of the abstraction-based heuristic. The algorithm
CreateHeuristic performs a backward traversal of the abstract state space
to store for every abstract state a minimal transition distance to the nearest
goal state in the set Dist. The algorithm h maps a concrete state to the
corresponding abstract one and returns the value of the abstract state stored
in Dist.

a predecessor link s.pred. Based on this, the algorithm in 5.6 performs a backward
traversal starting from the set of states fulfilling q. For each state s encountered during
this backward traversal we store in Dist the distance d to the nearest state fulfilling
q. After having computed the abstraction-based heuristic and therefore defined the
heuristic function h, h can now be used in a heuristic search algorithm like the weighted
A* algorithm [Poh70] which is depicted in fig. 5.7. In the weighted A* algorithm, we
compute for every configuration ci a value

f(ci) = g(ci) + w ∗ h(ci) = g(ci−1) + 1 + w ∗ h(ci),

whereby g(ci) denotes the length of the path from the starting configuration c0 to ci,
i.e., the value f(c) is the weighted sum between between the path length of ci and the
product of the weighting factor w and the heuristic estimate h(ci). In contrast to the
simple best-first search algorithm described in sect. 2.2, in the weighted A* algorithm the
weighting factor w determines how far the heuristic estimate h(ci) influences the value
f(ci). For w = 0, weighted A* works like BFS, and for w = 1 it works like standard A*

156

5.2 Abstraction-based Heuristic State Space Exploration

(1) procedure WA*
(2) Closed← ∅; Open← ∅
(3) Open.insert(s0, h(s0))
(4) while (Open 6= ∅)
(5) u← Open.delmin();
(6) Closed.insert(u)
(7) if (goal reach(u))
(8) return Goal Reached
(9) foreach successor v of u
(10) f ′(v)=g(v)+w∗h(v) =
(11) g(u) + 1 + w ∗ h(v)
(12) if (v /∈ Closed)
(13) Open.insert(v, f ′(v))
(14) end procedure WA*

Figure 5.7: Weighted A* algorithm

[HNR68]. For larger values w > 1, weighted A* behaves more like best first search.

To illustrate the usage of the abstraction-based heuristic, consider the situation de-
picted in fig. 5.8. In the top left we see the grid-like state space of a program P under
consideration. The big circle in the middle of the grid indicates the starting state of P ,
and the square in the bottom right of the grid indicates a goal state, i.e., a state of P
that fulfills a certain property q. According to our abstraction-based heuristic search
procedure, we compute an abstraction B(P f (m), P reds) and perform a exhaustive state
space exploration of B(P f (m), P reds). In the top right of fig. 5.5 we can see thereby
generated abstract state space. In the abstract state space, several states of the original
state space are summarized into one abstract state. Additionally, due to the abstrac-
tion process there are also two additional abstract goal states, one at the bottom left
of the abstract grid and one at the bottom middle. These two abstract goal states are
reachable in the abstract state space, but not in the concrete one. However, due to the
fact that B(P f (m), P reds) is an abstraction of P , there is also an abstract counterpart
for the only concrete goal state at the bottom right of the abstract grid. After applying
algorithm 5.6 for creating the abstraction-based heuristic, the heuristic contains for each
abstract state a distance value corresponding to the color table depicted at the right of
fig. 5.5. If we perform a state space search of P using BFS, we would generate almost
the entire state space before finding the goal state (v. fig. 5.5 bottom left). On the other
hand, if we perform a heuristic state space search of P using the weighted A* algorithms
with w = 3, we would only generate the part of the state space depicted in the bottom
right of fig. 5.5. During heuristic search, a state of the concrete state space would only
be generated if the distance of the corresponding abstract state to the nearest abstract
goal state is less or equal 2. All concrete states whose corresponding abstract states have

157

5 Heuristic State Space Exploration

Distance

4
3
2
1
0

Complete concrete state space Complete abstract state space

Explored state space with BFS Explored state space with WA*

Figure 5.8: Abstraction-based heuristic state space exploration. When using
BFS to find a goal state (black square), almost the entire state space is ex-
plored (bottom left). When using the abstraction based heuristic for heuristic
state space exploration, only the fraction of the state graph depicted in the
bottom right is explored.

a distance d > 2 to an abstract goal state are not generated.

For the example in fig. 5.5, the abstraction-based heuristic search procedure generates
around a half of the number of states generated with an uninformed search algorithm like
BFS. However, the benefit of applying the abstraction-based heuristic search procedure
can sometimes be much higher. For instance, consider the sample program depicted in
the top left of fig. 5.9. We assume that N > 1 is a predefined constant. In the main loop
of the program, the variable x is incremented, and the possible values of the variables y
and z increase with every iteration of the loop. In the top right one can see the state
space generated by a BFS state space exploration up to search depth 3. Given a search
depth d, it is easy to see that BFS has to generate 2d − 1 states until a state of depth
d has been generated. Suppose a goal state should have the property x = N ∧ z = 0.
Then BFS would has to generate at least 2N − 1 states before a goal state can be
found. Since it is seldom possible to generate more than a few million states within a

158

5.2 Abstraction-based Heuristic State Space Exploration

x=0; y=0; z=0;
while (x < N || z>0) {
 x = x + 1;
 y = 2*y + nondet(0,1);
 z = z + y;
}

p1=0; p2=1; p3=0; p4=1; p5=0
while (p2 || p5) {
 if (!p1) {p1=1;p2=1;}
 else if (p1&&p2) {
 if (nondet(0,1)) { p2=1; }
 else { p2=0; p3=1; }
 }
 p4 = nondet(0,1);
 if (!p5) p5=nondet(0,1);
}

Predicate
abstraction :

p1: x > 0
p2: x < N
p3: x = N
p4: y = 0 :
p5: z > 0

x=0,y=0,z=0

x=1,y=0,z=0 x=1,y=1,z=1

x=2,y=0,z=0 x=2,y=1,z=1 x=2,y=2,z=3 x=2,y=3,z=4

Concrete State Space(BFS)

x=0,y=0,z=0

x=1,y=0,z=0 x=1,y=1,z=1

x=2,y=0,z=0 x=2,y=1,z=1

Concrete State Space(WA*)

x=3,y=0,z=0 x=3,y=1,z=1

x=N,y=0,z=0

!p1,p2,!p3,p4,!p5

p1,p2,!p3,!p4,p5 p1,p2,!p3,p4,!p5

p1,!p2,p3,!p4,p5p1,!p2,p3,p4,p5 p1,!p2,p3,p4,!p5

Abstract State Space

A0

A1 A2

A3 A4 A5

A0

A2

A5
A1

Figure 5.9: Saving an exponential number of states with heuristic state space
exploration.

reasonable amount of time and space, for values N > 25 it will be hard or impossible to
find a goal state with BFS. Contrary to this, applying our abstraction-based heuristic
search procedure allows us to find goal states for very large N also. According to our
procedure, given some abstraction predicates we compute an abstract program depicted
in the bottom left of fig. 5.9. We then perform an exhaustive state space exploration of
this abstract program retrieving the abstract state space shown in the bottom right of
fig. 5.9, where the abstract state A5 is the only abstract goal state. After computing
the abstraction-based heuristic (A0 = 2, A1 =∞, A2 = 1, A3 =∞, A4 =∞, A5 = 0) we
can then perform the abstraction-based heuristic search, which is shown in the middle
of fig. 5.9. When expanding the starting state we get two successor states, one that
is mapped to A2 and one that is mapped to A1. Since dist(A2) < dist(A1), the next
state to expand is the state mapped to A2. After expanding this state, we get again
two successor states, one belonging to A2 and one belonging to A1. Therefore, we again

159

5 Heuristic State Space Exploration

x=0; y=0; z=0;
while (x < N || z>0) {
 x = x + 1;

y = 2* y + nondet (0,1);
z = z + y;

}

p1=0; p2=1; p3=0; p4=1; p5=0
while (p2 || p5) {
 if (! p1) {p1=1;p2=1;}
 else if (p1&&p2) {
 if (nondet (0,1)) { p2=1; }
 else { p2=0; p3=1; }
 }

p4 = nondet (0,1);
 if (!p5) p5=nondet (0,1);
}

Predicate
abstraction :

p1: x > 0
p2: x < N
p3: x = N
p4:y = 0:
p5:z > 0

!p1,p2,!p3,p4,!p5

p1,p2,!p3,!p4,p5 p1,p2,!p3,p4,!p5

p1,!p2,p3,!p4,p5p1,!p2,p3,p4,p5 p1,!p2,p3,p4,!p5

Abstract State Space

A0

A1 A2

A3 A4 A5

Spurious abstract counter example: A0,A2,A5

1

Refine abstract program

Refined
abstract
program

1

Iteration 1

Abstract State Space 2

Spurious abstract counter example:
A0,A21,A22,A5

Iteration 2

Iteration N

Counter example:
A0,A21,...,A2N,A5

Figure 5.10: Abstraction-Refinement. Contrary to the heuristic state space explo-
ration shown in fig. 5.9, model checking approaches based on abstraction-
refinement would have to generate N refinements adding altogether N pred-
icates. If N is large, the state space of the abstraction becomes too large
to be analyzed completely.

expand the state belonging to A2. This procedure will continue until finally we reach
the concrete goal state (x = N, y = 0, z = 0) that is mapped to A5. Obviously, when
using the abstraction-based heuristic search procedure, only 2N states are generated
before finding a goal state, which allows us to find goal states even for very large N > 106.

The example in fig. 5.9 demonstrates also the potential benefit of the abstraction-based
heuristic search procedure with regard to approaches based on abstraction-refinement.
Figure 5.10 on the following page shows the application of the abstraction-refinement
approach to our sample program. As described in sect. 2.1, in abstraction-refinement
the state space exploration is performed on the abstract state graph. Since model check-

160

5.2 Abstraction-based Heuristic State Space Exploration

ers usually find shortest counterexamples1, in our example a model checker would find
the abstract path 〈A0, A2, A5〉. Checking this counterexample would detect that this
counterexample is spurious, i.e., there is no corresponding concrete counterexample.
Therefore, based on the generated abstract counterexample, the current abstraction is
refined by adding one or more predicates that eliminate this abstract counterexample.
To rule out the given abstract counterexample, one has to split state A2 into at least
two new states A21 and A22, for example by adding a predicate x = 1 to the current
set of predicates. Exploring the state graph of the refined abstract program would yield
the spurious abstract counterexample 〈A0, A21, A22, A5〉. Again, the state A22 has to
be split into two new states, for instance by adding the predicate x = 2. However, the
abstraction has to be refined until N − 1 states A21, · · · , A2N−1 can be distinguished in
the abstract state graph, whereby each A2i correspond to a concrete state that fulfills
x = i. To distinguish all N − 1 different values of x means that we have to add at least
log2 N − 1 predicates to the initial set, if we encode the value of x in a binary way, or
N − 1 predicates if we encode each value with a single predicate. For each iteration, a
new abstract program has to be generated, which is often quite time consuming since
the computation of the abstract transitions usually requires the usage of decision pro-
cedures. Additionally, since the number of predicates grows with each iteration, the
time and space needed for the generation of the abstract program and exploration of the
abstract state space will also grow. In practice, if the number of predicates used in the
abstract program exceeds a certain threshold, model checking the abstract program will
be similar complex as model checking the original program.

Nevertheless, refining an abstraction can also be beneficial for our abstraction-based
heuristic search procedure. If the computed abstraction is too coarse, i.e., it contains too
many spurious transitions, then it may be the case that the abstraction-based heuristic
is not informative enough to give good guidance towards real goal states. In such a case,
refining the abstraction can improve the accuracy of the abstraction-based heuristic.
An abstraction B(P f (m), P reds) can be refined by adding additional predicates that
rule out certain spurious transitions. However, similarly to model-checking approaches
based on abstraction-refinement, adding more predicates usually increases the number of
states of the abstraction, i.e., care must be taken that the state space of the abstraction
remains small enough s.t. it can be completely generated. As already described in sect.
2.1, several model-checking approaches define a fully automated abstraction-refinement
scheme where no user-interaction is necessary to create the abstractions or refinements.
Contrary to this, in our approach the user has to provide a memory configuration m
and the set Preds of abstraction predicates. Automating these manual steps is subject
of future work and will be discussed in sect. 6.2. In the next section, we experimentally
evaluate the described abstraction-based heuristic exploration procedure.

1In our context, the term ”counterexample” is just a synonym for a witness of the negation of a property.

161

5 Heuristic State Space Exploration

5.3 Experimental Results

To evaluate the effectiveness of the abstraction-based heuristic search procedure pre-
sented in the previous section, we apply it to our collection of test programs we already
used for the evaluation of the explicit-symbolic state space exploration. For each pro-
gram in the test suite we check a formula stating the reachability of a particular state
of an object used in the program. For our abstraction-based heuristic search procedure,
we computed two abstractions A1 and A2 s.t. A2 is a refinement of A1. To compute an
abstraction for a program P , we firstly define an appropriate memory configuration m
so that we are able to compute the finite-state program P f (m). For the generation of
the boolean program B(P f (m), P reds) we manually create a set of abstraction predi-
cates. The predicates we choose mainly correspond to conditionals in the program that
use variables of the object referenced in the formula. For each abstraction, we list the
number of predicates (#preds), the number of states (#states) and the time needed to
generate the state space of the abstraction. Furthermore, for each program we list the
number of generated states (#states) resp. the time needed to find a goal state. We
measure the number of generated states and the search time for 3 different configura-
tions: BFS, WA* using the heuristic based on A1 and WA* using the heuristic based
on A2. For the heuristic searches we choose a large weighting factor w = 100, i.e., the
search order is mainly determined by the abstraction-based heuristic function h.

PBX

PBX
Abstraction Results

A1: #preds 15

A1: # states 123519

A1: time (sec) 41

A2: #preds 49

A2: # states 727881

A2: time (sec) 312

PBX
Search Results

BFS (states) 323700

BFS (time) 615

WA*,A1 (states) 46540

WA*,A1 (time) 25

WA*,A2 (states) 46540

WA*,A2 (time) 25

Figure 5.11: Results for PBX

In the PBX program, using the abstraction-based heuristic search significantly decreases
the number of generated states from 323700 with BFS to 46540 with WA*. According to
that, also the exploration time decreases from 615 to 25 seconds. However, computing
and using the more precise abstraction A2 instead of A1 does not pay off for this pro-
gram, since using A2 in the abstraction-based heuristic does not decrease the number of
generated states any more.

162

5.3 Experimental Results

SMS

SMS
Abstraction Results

A1: #preds 21

A1: # states 243500

A1: time (sec) 112

A2: #preds 34

A2: # states 566173

A2: time (sec) 289

SMS
Search Results

BFS (states) 489100

BFS (time) 760

WA*,A1 (states) 512000

WA*,A1 (time) 802

WA*,A2 (states) 328000

WA*,A2 (time) 570

Figure 5.12: Results for SMS

In the SMS program (#LOC: 12295, #classes: 131), using A1 for the abstraction-based
heuristic search has no positive effect on the number of generated states. With WA*
using A1, 512000 states are generated, while BFS only generates 489000 states. This
increase in the number of states results due to spurious abstract goal states that leads
the heuristic search into the wrong direction. Using the refined abstraction A2 then
reduces the number of generated states to 328000 states.

Dishwasher

Dishwasher
Abstraction Results

A1: #preds 12

A1: # states 101980

A1: time (sec) 40

A2: #preds 27

A2: # states 421800

A2: time (sec) 176

Dishwasher
Search Results

BFS (states) 612000

BFS (time) 912

WA*,A1 (states) 29170

WA*,A1 (time) 19

WA*,A2 (states) 29170

WA*,A2 (time) 19

Figure 5.13: Results for Dishwasher

In the Dishwasher program, when using A1 for the abstraction-based heuristic search,
the number of generated states decreases from 612000 with BFS to 29170 with WA*. Ac-
cording to that, also the search time decreases from 912 seconds with BFS to 19 seconds
with WA*. However, using the more detailed abstraction A2 leads to no improvements
w.r.t. generated states or decreased search time.

163

5 Heuristic State Space Exploration

CANBus

In the CANBus program, the number of generated states using A1 with WA* decreases
only moderately from 567100 with BFS to 472080. Using the more precise abstraction
A2, the number of generated states again drops moderately down to 425880.

CANBus
Abstraction Results

A1: #preds 16

A1: # states 143212

A1: time (sec) 58

A2: #preds 31

A2: # states 389400

A2: time (sec) 126

CANBus
Search Results

BFS (states) 567100

BFS (time) 780

WA*,A1 (states) 472080

WA*,A1 (time) 643

WA*,A2 (states) 425880

WA*,A2 (time) 591

Figure 5.14: Results for CANBus

ARCS

ARCS
Abstraction Results

A1: #preds 19

A1: # states 209350

A1: time (sec) 104

A2: #preds 35

A2: # states 566920

A2: time (sec) 376

ARCS
Search Results

BFS (states) 471290

BFS (time) 793

WA*,A1 (states) 61800

WA*,A1 (time) 64

WA*,A2 (states) 55610

WA*,A2 (time) 58

Figure 5.15: Results for ARCS

In the ARCS program, using the abstraction-based heuristic search significantly de-
creases the number of generated states from 471290 with BFS to 61800 with WA*.
According to that, also the exploration time decreases from 793 to 64 seconds. Using
the more precise abstraction A2 instead of A1 yields another decrease in the number of
generated states down to 55610.

Elevator

In the Elevator program using A1 for the abstraction-based heuristic search yields only
small savings in the number of generated states. With WA* using A1, 392130 states are

164

5.3 Experimental Results

Elevator
Abstraction Results

A1: #preds 12

A1: # states 87230

A1: time (sec) 39

A2: #preds 23

A2: # states 201900

A2: time (sec) 114

Elevator
Search Results

BFS (states) 414610

BFS (time) 721

WA*,A1 (states) 392130

WA*,A1 (time) 688

WA*,A2 (states) 392130

WA*,A2 (time) 688

Figure 5.16: Results for Elevator

generated, while BFS generates 414610 states. Using the refined abstraction A2 has no
effect on the number of generated states.

Pacemaker

Pacemaker
Abstraction Results

A1: #preds 17

A1: # states 176210

A1: time (sec) 86

A2: #preds 29

A2: # states 436970

A2: time (sec) 305

Pacemaker
Search Results

BFS (states) 523923

BFS (time) 823

WA*,A1 (states) 425095

WA*,A1 (time) 641

WA*,A2 (states) 391105

WA*,A2 (time) 598

Figure 5.17: Results for Pacemaker

In the Pacemaker program, using A1 for the abstraction-based heuristic search yields
only small savings in the number of generated states. With WA* using A1, 425095
states are generated, while BFS generates 523923 states. Using the refined abstraction
A2 reduces the number of generated states down to 391105.

Home Heating

In the Home Heating program, when using A1 for the abstraction-based heuristic search,
the number of generated states decreases from 470042 with BFS to 35266 with WA*. Ac-
cording to that, also the search time decreases from 772 seconds with BFS to 31 seconds
with WA*. However, using the more detailed abstraction A2 leads to no improvements
w.r.t. generated states or decreased search time.

165

5 Heuristic State Space Exploration

Home Heating
Abstraction Results

A1: #preds 14

A1: # states 136226

A1: time (sec) 57

A2: #preds 26

A2: # states 428803

A2: time (sec) 194

HomeHeating
Search Results

BFS (states) 470042

BFS (time) 772

WA*,A1 (states) 35266

WA*,A1 (time) 31

WA*,A2 (states) 35266

WA*,A2 (time) 31

Figure 5.18: Results for Home Heating

Home Alarm

Home Alarm
Abstraction Results

A1: #preds 12

A1: # states 84523

A1: time (sec) 31

A2: #preds 17

A2: # states 177905

A2: time (sec) 72

Home Alarm
Search Results

BFS (states) 536184

BFS (time) 851

WA*,A1 (states) 27412

WA*,A1 (time) 16

WA*,A2 (states) 26826

WA*,A2 (time) 15

Figure 5.19: Results for Home Alarm

In the Home Alarm program, when using A1 for the abstraction-based heuristic search,
the number of generated states decreases from 536184 with BFS to 27412 with WA*.
According to that, also the search time decreases from 851 seconds with BFS to 16
seconds with WA*. Using the more detailed abstraction A2 leads again reduces the
number of generated states and the search time to 26826 states resp. 15 seconds.

TCU

In the TCU program, using A1 for the abstraction-based heuristic search has a negative
effect on the number of generated states. With WA* using A1, 678235 states are gen-
erated, while BFS only generates 577380 states. This increase in the number of states
results due to spurious abstract goal states that leads the heuristic search into the wrong
direction. Although using the refined abstraction A2 decreases the number of generated
states to 592206, WA* still behaves worse than BFS.

166

5.3 Experimental Results

TCU
Abstraction Results

A1: #preds 21

A1: # states 271518

A1: time (sec) 194

A2: #preds 37

A2: # states 642329

A2: time (sec) 622

TCU
Search Results

BFS (states) 577380

BFS (time) 834

WA*,A1 (states) 678235

WA*,A1 (time) 962

WA*,A2 (states) 592206

WA*,A2 (time) 891

Figure 5.20: Results for TCU

5.3.1 Summary of results

Summing up the experimental results, one can say that for the programs PBX, Dish-
washer, ARCS, Heating and Alarm the usage of the abstraction-based heuristic search
procedure significantly reduces the number of generated states resp. the search time, as
one can see in fig. 5.21 and 5.22. For the programs CANBus, Elevator and Pacemaker,
the usage of the abstraction-based heuristic search procedure reduces the number of
generated states only marginally. Additionally, when looking at the sum of the genera-
tion time for the abstraction A2 and the search time for the abstraction-based heuristic
search, one can observe that for the programs Elevator and Pacemaker the overall time is
higher than if using pure BFS, i.e., although the usage of the abstraction-based heuristic
search procedure decreases the number of generated states a little, due to the overhead
induced by the generation of the abstraction the overall search time increases. Even
worse are the results for the programs SMS and TCU. In both programs, using the
abstraction-based heuristic search procedure with abstraction A1 increases the number
of generated states compared to BFS. Accordingly, the overall search time is larger than
the search time for BFS. Although using A2 instead of A1 decreases the number of
generated states a little, the overall search time is still larger than the search time with
BFS.

The achieved results shows that an abstraction-based heuristic can sometimes be very
effective when searching for particular paths in large state spaces. For several sample
programs, using the abstraction-based heuristic search procedure significantly reduces
both the number of states to be generated and the needed search time. However, the
experiments also affirm the dependency between the quality of the heuristic function
and the effectiveness of heuristic search. For some programs, in particular SMS and
TCU, the abstraction-based heuristic is not informative enough to reduce the number
of generated states or the search time when used in a heuristic search procedure.

167

5 Heuristic State Space Exploration

PBX SMS Dishwasher CANBus ARCS Elevator Pacemaker Heating Alarm

5

10

15

20

25

30

35

40

45

50

55

60

104 states

TCU

BFS
WA*, A1
WA*, A2

Figure 5.21: Summary of exploration results. The bar chart shows the number of
generated states for our test programs when using BFS, WA* with abstrac-
tion A1 and WA* with abstraction A2.

PBX SMS Dishwasher CANBus ARCS Elevator Pacemaker Heating Alarm

seconds

TCU

BFS
A1 + WA*
A2 + WA*

100

200

300

400

500

600

700

800

900

1000

1100

1200

Figure 5.22: Summary of abstraction and exploration times. The bar chart shows
the search time for our test programs when using BFS resp. the sum of the
generation time of the abstractions A1 resp. A2 and the search time using
WA* with A1 and A2.

168

5.4 Related Work

5.4 Related Work

We already described related work in chapter 2, thus we concentrate here on work which
is similar to our approach. A preliminary version of the described abstraction-based
heuristic state space exploration has been presented in [Let03]. In [ELL01b, ELL01a]
the well known explicit state model checker SPIN has been extended to allow the use
of property specific heuristics for heuristic search. For an atomic boolean expression
like x=1 the heuristic yields 0 if x=1 holds and 1 otherwise. For compound boolean
expressions the heuristic computes the minimum for disjunctions resp. the maximum for
conjunctions. Contrary to our abstraction-based heuristic, the property based heuristic
does not take into account information about the underlying program. As a result, a
heuristic search towards a state that fulfills x=1 proceeds like an uninformed BFS. In
[GV02b, GV02a] the model checker JavaPathFinder2 is augmented with heuristic search
algorithms employing structural heuristics. In this work, structural coverage criteria
like branch coverage [Bei90] are used to guide the exploration process. Contrary to
our approach, these heuristics do not take into account information about the property
searching for. Recently, in [EL04] so-called abstraction databases are used for guiding the
search towards specified goal states. As in our abstraction-based heuristic state space
exploration procedure, an abstraction of the program is computed, and the distances to
an abstract goal state in the abstract state space are taken as estimates of the distances
to a concrete goal state in the concrete state space. However, in [EL04] programs for
the model checker SPIN are considered, and the abstraction are computed by means
of the tool α-SPIN [GMMP02] that can be used to perform data abstraction on the
considered finite-state programs. In contrast to this, our approach deals with abstraction
of programs that in general can have an infinite number of states due to dynamic object
creation. Furthermore, the predicate abstraction applied in our approach is more general
than the data abstraction in α-SPIN. Another approach that employs abstraction for
heuristic search is presented in [QN04]. Similar as in [EL04], data abstraction is used
to compute an abstraction with the model checker NuSMV2 [CCG+02]. In contrast to
our work, the reachable abstract states are stored symbolically as BDDs, i.e., a BDD
bn is used to represent all abstract states reachable in n steps. During the symbolic
forward search of the concrete system, in each step the BDD representing the current
frontier states is partitioned w.r.t. the BDDs representing the abstraction. The generated
partitions are then explored individually, starting with the partition that was generated
by the BDD with the minimal distance to an abstract goal state. The results described
in [QN04] show that this guided symbolic search can outperform standard symbolic
search on some sample problems. However, a serious drawback of this approach is that
in contrast to ordinary symbolic forward search all states reachable in n steps are not
represented by one BDD any more but by many different BDDs. In extreme cases, the
number of BDDs used to represent all states reachable in n steps grows exponentially
with n. Additionally, since BDDs are used both for computing the abstraction and the
concrete system, the approach is limited to finite state systems.

169

5 Heuristic State Space Exploration

170

6 Conclusion and Future Work

In this final chapter, we briefly summarize the contributions of this thesis, and we identify
some directions in which future work can be done.

6.1 Summary of Contributions

The main contribution of this thesis is the development of efficient state space explo-
ration algorithms for embedded C++ programs. Since embedded C++ programs often
use specific low-level routines of the underlying operating system to realize e.g. con-
currency and synchronization, we introduce the language SymC++ that allows us to
handle embedded C++ programs in a uniform manner. As an underlying formal model
of SymC++ programs we introduce the language Cmin and the simple logic TL that
allows the specification of reachability properties of Cmin programs, and we describe
how SymC++ programs can be translated into Cmin programs. Additionally, we show
how several embedded C++ programs generated by an automatic code generator of the
UML case tool Rhapsody can be handled within the framework of SymC++. Through-
out this thesis these programs serve as test programs to evaluate the developed state
space exploration algorithms.

Starting with a very simple state space exploration algorithm for Cmin programs, we
successively improve the efficiency of this algorithm by introducing several optimizations.
The optimizations concerning symmetric states, the approximated duplicate detection
and the state storage reduction can successfully increase the efficiency of the basic state
space exploration algorithm, as it is made evident by the performed experiments. The
presented composite explicit-symbolic state representation combined with the approx-
imated algorithm for duplicate detection leads to even more drastic performance im-
provements, allowing the efficient state space exploration of large C++ programs with
very large state spaces, which is also validated experimentally.

To gain further performance improvements, in chapter 5 we present a heuristic state
space exploration algorithm for Cmin programs. The employed heuristic function is based
on an abstraction of the considered program that is generated prior to the state space
exploration. The abstraction-based heuristic function takes distances in the abstract
state space as heuristic values for states in the concrete state space. In contrast to
the optimizations presented in chapter 4, applying the abstraction-based heuristic state
space exploration not always yields performance improvements. However, for several
programs significant performance gains have been achieved.

171

6 Conclusion and Future Work

6.2 Future Work

Based on the contributions of this thesis, there are several starting points for future
work. Among others, the following directions could be interesting:

• Richer specification languages: The logic TL is only suitable for specifying
simple reachability properties. As described in sect. 2.4, there are several exten-
sions of common programming languages that allow specifications in a design by
contract style, i.e., specification of pre- and postconditions of methods or the spec-
ification of class invariants as it is possible in e.g. JML [LBR98, LBR99]. Such
specifications provide an easy way of formally specifying the intended behavior
of programs, and it would be desirable to have these possibilities in SymC++
programs, too. Having such a specification language, it would be interesting to
analyze to what extend the presented state space exploration algorithms can be
adapted to a richer specification language. As a first approach, one could try to
translate a program P with such a specification S into a new program P ′ and a
formula EFq of TL s.t. P � S iff P ′ � EFq. If this is possible, then one can reuse
the presented algorithms without any change.

• Symbolic representations and constraint solving: The explicit-symbolic
state representation presented in sect. 4.2 uses arithmetic constraints to symboli-
cally encode sets of states. As described in sect. 4.2, to find satisfying assignments
to the variables of the constraints we follow a three step approach. Firstly, we
apply a linear constraint solver. If this solver cannot solve a constraint, a ran-
dom solver is tried. If this solver also fails to solve the constraint, an exhaustive
test of all possible valuations of the variables of the constraint definitely solve the
constraint. For all tested programs, the linear constraint solver could already suc-
cessfully solve almost all occurring constraints. However, this may not be the case
for programs that use symbolically represented variables in complicated nonlinear
computations, e.g. a program computing an approximation of the sinus function.
For efficiently solving such constraints different solvers are needed, and it would
be desirable to extend the existing tool set to be able to utilize a dedicated solver
for certain kinds of constraints. Besides the application of other constraint solvers,
one could also explore the possibility to encode larger parts of a state symbolically
than only the variables which are directly or indirectly involved in computations
containing the nondeterministic choice symcpp_nondet. However, crucial for the
efficiency of such an approach is the choice of the right variables to represent sym-
bolically, and care must be taken that the symbolically represented part will not
become too large.

• Fully automatic heuristic state space exploration: For the abstraction-based
heuristic state space exploration algorithm presented in chapter 5, two steps have
to be performed manually. Firstly, the user has to provide a memory configuration
that specifies for each type the number of objects which can dynamically be allo-

172

6.2 Future Work

cated, and secondly he has to define the predicates which are used for predicate
abstraction. Although the other steps are already automated, it would be interest-
ing to explore the possibilities to automate the abstraction-based heuristic state
space exploration completely. As a starting point, one could try to adopt com-
pletely automated procedures used in existing model checking approaches based
on abstraction-refinement.

• Enhancement of supported language constructs: As described in sect. 3.1.2,
there are currently some restrictions concerning the C++ language constructs that
are supported in SymC++, e.g. unsigned types, bit operations, low-level memory
handling or exception handling. It would be desirable to extend SymC++ to
support these constructs, too.

173

6 Conclusion and Future Work

174

Bibliography

[AB01] C. Artho and A. Biere. Applying static analysis to large-scale, multithreaded
Java programs. In ASWEC’01: 13th Australian Software Engineering Con-
ference, pages 68–75, 2001.

[AFdR80] K.R. Apt, N. Francez, and W.P. de Roever. A proof system for communi-
cating sequential processes. ACM Transactions on Programming languages
and Systems, 2(3):359–385, 1980.

[AO94] K.R. Apt and E.R. Olderog. Programmverifikation. Sequentielle, parallele
und verteilte Programme. Springer-Lehrbuch, 1994.

[AO97] K.R. Apt and E.R. Olderog. Verification of Sequential and Concurrent
Programs. Springer-Texts in Computer Science, 2nd. ed., 1997.

[BC85] G. Berry and L. Cosserat. The Esterel synchronous programming language
and its mathematical semantics. In Seminar on Concurrency, volume 197 of
Lecture Notes in Computer Science, pages 389–448. Springer Verlag, 1985.

[BCM90] C. Berthet, O. Coudert, and J.C. Madre. New ideas on symbolic manipu-
lations of finite state machines. In Conference on Computer Aided Design
(ICAAD), 1990.

[BCM+92] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L. Hwang. Symbolic
Model Checking: 1020 States and Beyond. Information and Computation,
98(2):142–170, 1992.

[BCMD90] J.R. Burch, E.M. Clarke, K.L. McMillan, and D.L. Dill. Sequential circuit
verification using symbolic model checking. In Design Automation Confer-
ence (DAC), pages 46–51, Los Alamitos, CA, June 1990. ACM Press.

[BCRZ99] A. Biere, E. Clarke, R. Raimi, and Y. Zhu. Verifying safety properties of a
power pc microprocessor using symbolic model checking without BDDs. In
Proc. 11th Conference on Computer Aided Verification (CAV’99), Lecture
Notes in Computer Science. Springer Verlag, 1999.

[BCZ99] A. Biere, A. Cimatti, and Y. Zhu. Symbolic model checking without BDDs.
In TACAS’99, volume 1579 of Lecture Notes in Computer Science. Springer
Verlag, 1999.

175

Bibliography

[BdS91] F. Boussinot and R. de Simone. The ESTEREL Language. In Proceedings
of IEEE,79(9):1293-1304, September 1991, 1991.

[Bei90] B. Beizer. Software Testing Techniques. Van Nonstrand Reinhold, 1990.

[BG90] A. Benveniste and P. Le Guernic. Hybrid dynamical systems theory and the
SIGNAL language. IEEE Transactions on Automatic Control, 35(5):535–
546, May 1990.

[BGJ91] A. Benveniste, P. Le Guernic, and C. Jacquemot. Synchronous programming
with events and relations: the SIGNAL language and its semantics. Science
of Computer Programming, 16(2):103–149, September 1991.

[BHPV00] G. Brat, K. Havelund, S. Park, and W. Visser. Java PathFinder - Second
Generation of a Java Model Checker. In Proceedings of Post-CAV Workshop
on Advances in Verification, July 2000.

[BLL+95] J. Bengtsson, K.G. Larsen, F. Larsson, P. Petterson, and Wang Yi. Uppaal
- a Tool Suite for Automatic Verification of Real-Time Systems. In Hybrid
Systems III - Verification and Control, volume 1066 of Lecture Notes in
Computer Science, pages 232–243, 1995.

[BLP03] G. Behrmann, K. Larsen, and R. Pelanek. To store or not to store, 2003.

[BMMR01] T. Ball, R. Majumdar, T. Millstein, and S.K. Rajamani. Automatic Predi-
cate Abstraction of C Programs. In Proceedings of PLDI’01, 2001.

[Bor97] A. Boralv. The industrial success of verification tools based on Stal-
marck’s Method. In International Conference on Computer-Aided Verifi-
cation (CAV’97), number 1254 in LNCS. Springer Verlag, 1997.

[BR01] T. Ball and S.K. Rajamani. Automatically Validating Temporal Safety
Properties of Interfaces. In Proceedings of the 8th SPIN Workshop, volume
2057 of Lecture Notes in Computer Science, pages 103–122. Springer-Verlag,
2001.

[BR02] T. Ball and S.K. Rajamani. The SLAM Project: Debugging system software
via static analysis. In POPL 02: Principles of Programming Languages,
pages 1–3, January 2002.

[Bry86] R.E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, C-35(8), 1986.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints.
In Conference Record of the Fourth Annual ACM Symposium on Principles
of Programming Languages, pages 238–252, 1977.

176

Bibliography

[CC92] P. Cousot and R. Cousot. Abstract Interpretation Framework. Journal of
Logic and Computation, 4(2):511–547, August 1992.

[CCG+02] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. NuSMV 2: An opensource tool for symbolic
model checking. In Com-puter Aided Verification (CAV 2002), volume 2404
of LNCS, page 359364. Springer, 2002.

[CCG+03] S. Chaki, E.M. Clarke, A. Groce, S. Jha, and H. Veith. Modular Verification
of Software Components in C. In 25th International Conference on Software
Engineering (ICSE), pages 385–395, 2003.

[CCGS03] S. Chaki, E.M. Clarke, A. Groce, and O. Strichman. Predicate Abstraction
with Minimum Predicates. In 12th Advanced Research Working Conference
on Correct Hardware Design and Verification Methods (CHARME), volume
2860 of LNCS, pages 19–34, 2003.

[CDGP01] Alberto Coen-Porisini, Giovanni Denaro, Carlo Ghezzi, and Mauro Pezzè.
Using symbolic execution for verifying Safety-Critical systems. pages 142–
151, 2001.

[CE81] E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In Logic of Programs: Work-
shop, Yorktown Heights, NY, LNCS 131, May 1981.

[Ce00] J. Corbett and et.al. Bandera: Extracting Finite State Models from Java
Source Code. In Proceedings of the 22nd Int. Conf. On Software Engineer-
ing, pages 439–448. IEEE, 2000.

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Trans.
Progr. Lang. and Systems, 8:244–263, 1986.

[CFJ93] E.M. Clarke, T. Filkorne, and S. Jha. Exploiting Symmetry In Temporal
Logic Model Checking. In Proc. 5th Conference on Computer Aided Verifi-
cation, pages 450–462, 1993.

[CGP99] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press,
1999.

[CL02] Y. Cheon and G. Leavens. A runtime assertion checker for the java modeling
language, 2002.

[CPHP87] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. LUSTRE: A declarative
language for programming synchronous systems. In 14th ACM Symp. on
Principles of Programming Languages, January 1987.

177

Bibliography

[CPHR91] P. Caspi, D. Pilaud, N. Halbwachs, and P. Raymond. The Synchronous
Data Flow Programming Language LUSTRE. Proceedings of the IEEE,
79(9):1305–1320, September 1991.

[DDP99] S. Das, D.L. Dill, and S. Park. Experience with predicate abstraction. In
CAV’00: Computer Aided Verification, number 1633 in Lecture Notes in
Computer Science, pages 160–171. Springer Verlag, 1999.

[Dij76] E. Dijkstra. A discipline of Programming. Prentice-Hall, 1976.

[DL02] Henning Dierks and Marc Lettrari. Constructing test automata from graph-
ical real-time requirements. In FTRTFT ’02: Proceedings of the 7th Inter-
national Symposium on Formal Techniques in Real-Time and Fault-Tolerant
Systems, pages 433–454, London, UK, 2002. Springer-Verlag.

[DP01] G. Delzanno and A. Podelski. Constraint-based deductive model checking.
International Journal on Software Tools for Technology Transfer, 3(3):250–
270, 2001.

[EGHT94] David Evans, John Guttag, James Horning, and Yang Meng Tan. LCLint: A
tool for using specifications to check code. In Proceedings of the ACM SIG-
SOFT ’94 Symposium on the Foundations of Software Engineering, pages
87–96, 1994.

[EL04] S. Edelkamp and A.L. Lafuente. Abstraction Databases in Theory and
Model Checking Practice. In ICAPS Workshop on Connecting Planning
Theory with Practice, June 2004.

[ELL01a] S. Edelkamp, A.L. Lafuente, and S. Leue. Directed explicit model checking
with HSF-Spin. In SPIN, volume 2057 of LNCS, pages 57–79, 2001.

[ELL01b] S. Edelkamp, A.L. Lafuente, and S. Leue. Protocol verification with heuristic
search. In AAAI Symposium on Model-based Validation of Intelligence, 2001.

[EM03] S. Edelkamp and T. Mehler. Byte Code Distance Heuristics and Trail Direc-
tion for Model Checking Java Programs. In Workshop on Model Checking
and Artificial Intelligence (MoChart), August 2003.

[Eva96] David Evans. Static detection of dynamic memory errors. In SIGPLAN
Conference on Programming Language Design and Implementation (PLDI
’96), 1996.

[FJ94] S. Finne and S. Jones. Programming Reactive Systems in Haskell. In Glas-
gow Functional Programming Workshop, Ayr, Scotland. Springer-Verlag,
1994.

[FLL+02] C. Flanagan, K. Leino, M. Lillibridge, C. Nelson, J. Saxe, and R. Stata.
Extended static checking for java, 2002.

178

Bibliography

[Flo67] R. Floyd. Assigning meaning to programs. Symposia in Applied Mathemat-
ics: Mathematical Aspects of Computer Science, 19:19–31, 1967.

[GG88] S. Garland and J. Guttag. Inductive methods for reasoning about ab-
stract data types. In Symposium on Principles of Programming Languages
(POPL), pages 219–228, San Diego, California, 1988.

[GHP02] E. Gery, D. Harel, and E. Palachi. Rhapsody: A complete life-cycle model-
based development system. In Proceedings of the Third International Con-
ference on Integrated Formal Methods, pages 1–10, 2002.

[GJSB00] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specifica-
tion. Addison Wesley, 2000.

[GK02] P. Godefroid and S. Khurshid. Exploring very large state spaces using
Genetic Algorithms. In Proc. TACAS’02, pages 1–10, 2002.

[GKvV95] J.F. Groote, J.W.C. Koorn, and S.F.M. van Vlijmen. The Safety Guaran-
teeing System at station Hoorn-Kersenboogerd. In Proceedings of the 10th
IEEE Conference on Computer Assurance COMPASS 95, pages 131–150.
IEEE, 1995.

[GM93] M. Gordon and T. Melham. Introduction to HOL: A Theorem Proving
Environment for Higher Order Logic. Cambridge university Press, 1993.

[GMMP02] M. Gallardo, J. Martinez, P. Merino, and E. Pimentel. alpha spin: Ex-
tending spin with abstraction. In Proceedings of the 9th International SPIN
Workshop on Model Checking of Software, pages 254–258, London, UK,
2002. Springer-Verlag.

[God97] P. Godefroid. Model Checking for Programming Languages Using VerifSoft.
In Proceedings POPL’97, pages 174,186. ACM Press, 1997.

[GR95] S. Gregory and R. Ramirez. Tempo: a declarative concurrent programming
language. In Proceedings of the 12th International Conference on Logic
Programming. MIT Press, 1995.

[Gre97] S. Gregory. A declarative approach to concurrent programming. In Pro-
ceedings of the 9th International Symposium on Pramming Languages, Im-
plementations, Logics, and Programs. Springer-Verlag, 1997.

[Gri81] D. Gries. The Science of programming. Springer-Verlag, 1981.

[Gro96] The VIS Group. VIS : A System for Verification and Synthesis. In
8th international Conference on Computer Aided Verification, number
1102 in LNCS, 1996. VIS 1.3 is available from the VIS home-page:
http://www-cad.eecs.Berkeley.EDU/~vis.

179

Bibliography

[Gro04] Object Management Group. UML 2.0 Superstructure Specification, Oct.
2004.

[GS97] S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In
Proc. of the 9th International Conference on Computer Aided Verification,
number 1254 in Lecture Notes in Computer Science, pages 72–83. Springer,
1997.

[GV02a] A. Groce and W. Visser. Heuristic Model Checking for Java Programs. In
Proceedings of SPIN 2002, Grenoble, France, 2002.

[GV02b] A. Groce and W. Visser. Model Checking Java Programs using Strucural
Heuristics. In Proceedings of ISSTA 2002, Rome, Italy, 2002.

[Har87] D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science
of Computer Programming, 8:231–274, 1987.

[HG97] David Harel and Eran Gery. Executable Object Modeling. IEEE Computer,
1997.

[HJMS02] A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy Abstraction. In
ACM SIGPLAN-SIGACT Conference on Principles of Programming Lan-
guages, pages 58–70, 2002.

[HJMS03] A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software Verification
with BLAST. In Model Checking Software (SPIN), pages 235–239, 2003.

[HN96] D. Harel and A. Naamad. The STATEMATE semantics of statecharts. ACM
Transactions on Software Engineering and Methodology, 5(4), 1996.

[HNR68] P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for heuristic de-
termination of minimum path cost. IEEE Transactions on Systems Science
and Cybernetics, 4:100–107, 1968.

[Hoa69] C.A.R. Hoare. An axiomatic basis for computer programming. Communi-
cations of the ACM, 12:576–580, 1969.

[Hol87] G.J. Holzmann. On limits and possibilities of automated protocol analysis.
In Proc. 7th IFIP WG 6.1 Int. Workshop on Protocol Specification, Testing,
and Verification, pages 137–161. North-Holland Publ., Amsterdam, 1987.

[Hol91] G.J. Holzmann. Design and Validation of Computer Protocols. Prentice-
Hall, Englewood Cliffs, New Jersey, 1991.

[Hol00] G.J. Holzmann. Logic Verification of ANSI-C code with SPIN. In Model
Checking Software (SPIN), pages 112–127, 2000.

180

Bibliography

[Hol03] G.J. Holzmann. The SPIN Model Checker: primer and reference manual.
Addison-Wesley, Boston MA, 2003.

[HP96] David Harel and Michal Politi. Modeling Reactive Systems with Statecharts:
The STATEMATE Approach. Part No. D–1100–43. i-Logix Inc., Three
Riverside Drive, Andover, MA 01810, June 1996.

[HS99] G.J. Holzmann and M.H. Smith. Software Model Checking: Extracting
Verification Models from Source Code. Journal on Formal Methods for
Protocol Engineering and Distributed Systems, pages 481–497, 1999.

[HU79] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Addison Wesley, 1979.

[Ios01] R. Iosif. Exploiting Heap Symmetries in Explicit-State Model Checking of
Software. In Proc. 16th IEEE Conference on Automated Software Engineer-
ing, 2001.

[IS99] R. Iosif and R. Sisto. dSPIN: A Dynamic Extension of SPIN. In Proc. 6th
SPIN Workshop, volume 1680 of Lecture Notes in Computer Science, pages
261–276, 1999.

[ISO03] ISO. C++ Standard ISO/IEC 14882:2003, 2003.

[KM94] M. Kaufmann and J. Moore. Design goals for ACL2. Technical Report 101,
Computational Logic, Inc., 1994.

[KPV03] S. Khurshid, C. Pasareanu, and W. Visser. Generalized symbolic execution
for model checking and testing, 2003.

[LBK01] M. Lettrari, U. Brockmeyer, and J. Klose. UML Validation Suite. In
J. Tretmans and E. Brinksma, editors, Proceedings of FATES’01 - Formal
Approaches to Testing of Software, 2001.

[LBR98] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: a java modeling
language. In Formal Underpinnings of Java Workshop (at OOPSLA ’98),
1998.

[LBR99] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: A notation
for detailed design. In Haim Kilov, Bernhard Rumpe, and Ian Simmonds,
editors, Behavioral Specifications of Businesses and Systems, pages 175–188.
Kluwer Academic Publishers, 1999.

[LCL88] F.J. Lin, P.M. Chu, and M. Liu. Protocol verification using reachability
analysis: the state explosion problem and relief strategies. ACM, pages
126–135, 1988.

181

Bibliography

[Let03] M. Lettrari. Using abstractions for heuristic state space exploration of reac-
tive object-oriented systems. In FME 2003: Formal Methods, International
Symposium of Formal Methods Europe, Pisa, Italy, September 8-14, 2003,
Proceedings, volume 2805 of Lecture Notes in Computer Science, pages 462–
481. Springer, 2003.

[LG81] G. Levin and D. Gries. A proof technique for communicating sequential
processes. Acta Informatica, 15:281–302–385, 1981.

[LK01] Marc Lettrari and Jochen Klose. Scenario-based monitoring and testing of
real-time uml models. In UML’01: Proceedings of the 4th International
Conference on The Unified Modeling Language, Modeling Languages, Con-
cepts, and Tools, pages 317–328, London, UK, 2001. Springer-Verlag.

[LME04] P. Leven, T. Mehler, and S. Edelkamp. Directed error detection in C++ with
the assembly-level model checker StEAM. In Model Checking of Software
(SPIN), 2004.

[LV01] F. Lerda and W. Visser. Addressing Dynamic Issues of Program Model
Checking. In Proc. 8th SPIN Workshop, volume 2057 of Lecture Notes in
Computer Science, pages 80–102, 2001.

[McM93] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
1993.

[ME04] M. Musuvathi and D.R. Engler. Model checking large network protocol im-
plementations. In Proceedings of theFirst Symposium on Networked Systems
Design and Im-plementation, 2004.

[Mey92] B. Meyer. Eiffel: The Language. Prentice Hall, 1992.

[Mey97] B. Meyer. Object-Oriented Software Construction. Prentice Hall, 1997.

[MMZM01] M. Moskewics, C. Madigan, Y. Zhao, and L. Zhang S. Malik. Chaff: Engi-
neering an efficient SAT solver. In Proceedings of the 39. Design Automation
Conference (DAC), Las Vegas, 2001.

[MP91] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems - Specification. Springer, 1991.

[MPC+02] M. Musuvathi, D.Y. Park, A. Chou, D.R. Engler, and D.L. Dill. CMC:
A pragmatic approach to model check-ing real code. In Proceedings of the
Fifth Symposium onOperating Systems Design and Implementation, 2002.

[MS95] S. Miller and M. Srivas. Formal verification of the AAMP5 Microprocessor:
A Case Study in the Industrial Use of Formal Methods. In IEEE Computer
Society, WIFT’95: Workshop on Industrial-Strength Formal Specification
Techniques, 1995.

182

Bibliography

[NNH99] F. Nielson, H.R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer-Verlag, 1999.

[OG76a] S. Owicki and D. Gries. An axiomatic proof technique for parallel programs.
Acta Informatica, 6:319–340, 1976.

[OG76b] S. Owicki and D. Gries. Verifying properties of parallel programs: an ax-
iomatic approach. Communications of the ACM, 19:279–285, 1976.

[ORSS95] S. Owre, J. Rushby, N. Shankar, and M. Srivas. A tutorial on using PVS for
hardware verification. In Conference on Theorem Provers in Circuit Design
(TPCD), volume 901 of LNCS, pages 258–279, Bad Herrenalb, Germany,
1995. Springer-Verlag.

[Pau94] L. Paulson. Isabelle: A Generic Theorem Prover. LNCS, 828, 1994.

[Pea85] J. Pearl. Heuristics. Addison-Wesley, 1985.

[Pnu77] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE
Symposium on Foundations of Computer Science, , pages 46–57. , 1977.

[Poh70] I. Pohl. Heuristic search viewed as path finding in a graph. Artificial Intel-
ligence, 1:193–204, 1970.

[QN04] K. Qian and A. Nymeyer. Guided invariant model checking based on ab-
straction and symbolic pattern databases. In Tools and Algorithms for
the Construction and Analysis of Systems, 10th International Conference,
TACAS 2004, volume 2988 of Lecture Notes in Computer Science, pages
497–511. Springer, 2004.

[QS82] J.P. Quielle and J. Sifakis. Specification and verification of concurrent sys-
tems in CESAR. In Proceedings of the 5th International Symposium on
Programming, volume 137 of Lecture Notes in Computer Science, pages
337–371. Springer-Verlag, 1982.

[QS83] J.P. Quielle and J. Sifakis. Fairness and Related Properties in Transition
Systems - A Temporal Logic to Deal with Fairness. Acta Informatica,
19:195–220, 1983.

[SD95a] U. Stern and D.L. Dill. Automatic verification of the SCI cache coherence
protocol. In IFIP WG 10.5 Advanced Research Working Conference on
Correct Hardware Design and Verification Methods, pages 21–34, 1995.

[SD95b] U. Stern and D.L. Dill. Improved probabilistic verification by hash com-
paction. In IFIP WG 10.5 Advanced Research Working Conference on Cor-
rect Hardware Design and Verification Methods, pages 206–224, 1995.

183

Bibliography

[Sht89] O. Shtrichman. Tuning SAT checkers for bounded model checking. In Proc.
12th Intl. Conference on Computer Aided Verification (CAV’00), Lecture
Notes in Computer Science. Springer-Verlag, 1989.

[Sil95] J.P.M. Silva. Search Algorithms for Satisfiability Problems in Combinational
Switching Circuits. Ph.D. Dissertation, University of Michigan, 1995.

[Str00] B. Stroustrup. The C++ Programming Language. Addison Wesley, Reading
MA, 2000.

[TPR01] T.Ball, A. Podelski, and S.K. Rajamani. Boolean and Cartesian Abstraction
for Model Checking C Programs. In Proceedings TACAS’01, volume 2031 of
Lecture Notes in Computer Science, pages 268–283. Springer-Verlag, 2001.

[WL93] P. Wolper and D. Leroy. Reliable hashing without collision detection. In
Proc. of the 5th International Conference on Computer Aided Verification
(CAV-93), volume 7, pages 59–70, Berlin, 1993. Springer-Verlag.

[WR95] M. Wallace and C. Runciman. Extending a Functional Programming System
for Embedded Applications. Software - Practice and Experience, 25(1):73–
96, 1995.

[YD98] C.H. Yang and D.L. Dill. Validation with guided search of the state space.
In DAC, pages 599–604, 1998.

[Yof97] S. Yofine. Kronos: a verification tool for real-time systems. Software Tools
for Technology Transfer, 1(1+2):123–133, 1997.

[Zha97] H. Zhang. An Efficient Propositional Prover. In International Conference
on Automated Deduction (CADE’97), volume 1249 of LNAI, pages 272–275.
Springer Verlag, 1997.

184

A SymC++ Restrictions

The following C++ constructs are either not supported in SymC++ or are treated with
a slightly different semantics than defined in the ISO-standard [ISO03].

• Function pointers are not supported.

• Class temporaries created under a conditional operator are not destroyed after com-
pletely executing the conditional operator as it is defined in the standard [ISO03].

• Integral types unsigned char, unsigned short, unsigned int, unsigned long,
unsigned long long, char, short, long and long long are treated as int.

• Floating point types float, double and long double are not supported.

• Casts of integral integer types are ignored.

• Virtual base classes are treated as nonvirtual base classes.

• Exceptions are not supported.

• Union-types are treated as ordinary struct-types.

• Reference-variables are treated as pointer variables.

• Unnamed class-/struct-/union-/enum-types are not supported.

• Pointer to members are not supported.

• Type declarations within functions are not supported.

• Inline assembler code provided by the asm statement is not supported.

• The dynamic_cast operator is not supported.

• Bit-fields, i.e., explicit declaration of the number of bits used to represent member
variables in structures are ignored.

• Ellipsis, i.e., functions with varying number of arguments as e.g. the function
printf are not supported.

• C++ runtime type information function typeid() is not supported.

185

A SymC++ Restrictions

• Temporaries that have been bound to a static or global reference are destructed
after completely executing the corresponding expression that created the tempo-
raries and not at the end of the block corresponding to the expression as it is
defined in the standard [ISO03].

• Member-operator functions |, |= and || are not supported.

• Type-casts between pointer types that have no inheritance relation are not sup-
ported.

186

B PBX Sample Program

The PBX program describes the behavior of a telephone system consisting of 4 tele-
phones. As all our test programs, the PBX program has been generated by the auto-
matic code generator of the commercial UML design tool Rhapsody. Within Rhapsody,
parts of the structure and behavior of programs can be described by means of UML dia-
grams like object model diagrams or statecharts, and other parts like e.g. the behavior of
operations are described by C++ code directly. By using the built-in code generator of
Rhapsody one can automatically generate a complete C++ program that contains both
C++ representations of the graphical elements of a Rhapsody model and the explicitly
provided C++ code of the operations. Figure B.1 shows an object model diagram of
the PBX model. An object model diagram describes classes, objects and relationships
between the classes and objects of a particular model. In the PBX model, there is a
so-called composite class PBX that contains different so-called parts. Each part is rep-
resented as one or more objects of other classes. More precisely, the PBX class contains
one object of the class Registry, one object of the class CallRouter, 4 objects of the class
Connection, 4 objects of the class Line and 4 objects of the class Telephone. The number
of objects for each class can be seen in the top left corner of the corresponding class sym-
bol. Additionally, the object model diagram also shows some relationships between the

PBX

itsTelephone:Telephone4

evOffHook():void
evOnHook():void
evRing():void

itsConnection:Connection4

Busy:OMBoolean

NumberDialed():void
ConnectLines():void
Disconnect(Source:int):void

itsCallRouter:CallRouter1

OpenConnection():PhoneConnection
CloseConnection(OldConnection:PhoneConnection):...

41

itsRegistry:Registry1

nextExtension:int

PutInService(newLine:Line*):int
TakeOutOfService(extension:int):...

11

itsLine:Line4

extension:int
IsInService:OMBoolean

evOriginateCall():void
evAnswerCall():void

11

4

1

41
11

11

4

1

Figure B.1: Object model diagram of class PBX

187

B PBX Sample Program

Connection

Line

1

1

itsCaller

itsDestination

Line

1

1

itsCallee

itsSource

1

itsCall
{itsCall != this}

{itsSource != itsDestination,
 unless itsSource == itsDestination == NULL}

Figure B.2: Object model diagram of class Connection

different objects inside the PBX class by means of so-called links, which are represented
graphically as directed or undirected lines between objects. A link is an instantiation of
a so-called association, which represents a relationship between classes. Whenever there
is an association between a class A and a class B, an object (or instance) of class A can
have a link to an object of class B. In fig. B.1 one can see that the Registry object has a
link to the CallRouter object and one link to each of the 4 Line objects. Since the line
between the Registry object and the CallRouter object is undirected, also the CallRouter
object has a link to the Registry object. Contrary to this, since the line between the
Registry object and the Line objects is directed, only the Registry has links to the Line
objects, but not vice versa. Furthermore, fig. B.1 also shows that each instance of Line
is linked to one instance of Telephone and vice versa, the CallRouter instance has links
to each of the 4 instances of Connection and each instance of Connection has a link to
the instance of CallRouter.

Another object model diagram showing the relationship between class Line and class
Connection is depicted in fig. B.2. There exist several named associations between an
instance of Connection and an instance of Line. Each connection has two associations
named itsSource and itsDestination, whereby itsSource represents an association
to the line corresponding to the calling telephone and itsDestination represents an
association to the line corresponding to the called telephone. Furthermore, each line
has three associations named itsCallee, itsCaller and itsCall, whereby itsCallee

represents an association to a connection that is used if the line belongs to the telephone
that initiates a call, itsCaller represents an association to a connection that is used if
the line belongs to the telephone that receives a call, and itsCall represents a direct
association to the connected line once a call has been established.

Besides object model diagrams, Rhapsody offers a so-called browser that contains a
hierarchical representation of the entire UML model. Figure B.3 shows the browser of

188

Figure B.3: Browser view of the entire PBX model

the PBX model. The browser shows the classes CallRouter, Connection, Line, PBX,
Registry and Telephone. As can be seen in fig. B.3, the class PBX has an operation
Configure(), and it contains the parts we have already seen in fig. B.1. To get an
impression about the way the C++ code generated by the automatic code generator
reflects classes, objects and their relationships, in the following we list the C++ code
that contains the declarations for the class PBX1:

#ifndef PBX_H

#define PBX_H

#include <oxf/oxf.h>

#include "PbxPkg.h"

#include <oxf/omthread.h>

#include <oxf/omreactive.h>

#include <oxf/state.h>

#include<oxf/event.h>

#include <oxf/omlist.h>

//## package PbxPkg

//---

// PBX.h

//---

class CallRouter; class Connection; class Line;

class Registry; class Telephone;

// The PBX is a system level object which is responsible

// for instantiating and configuring all of the objects in the

// system. This object is instantiated from the main() function.

1The listed C++ code is slightly formatted for better readability.

189

B PBX Sample Program

//## class PBX

class PBX : public OMReactive {

//// Friends ////

public :

//// Constructors and destructors ////

public :

PBX(OMThread* p_thread = OMDefaultThread);

~PBX();

//// Operations ////

public :

//## operation Configure()

void Configure();

//// Additional operations ////

public :

CallRouter* getItsCallRouter() const;

CallRouter* newItsCallRouter();

Connection* newItsConnection();

Line* newItsLine();

Registry* getItsRegistry() const;

Registry* newItsRegistry();

Telephone* newItsTelephone();

//// Framework operations ////

public :

OMIterator<Connection*> getItsConnection() const;

OMIterator<Line*> getItsLine() const;

OMIterator<Telephone*> getItsTelephone() const;

//rootState:

inline int rootState_IN() const;

virtual void rootState_entDef();

virtual int rootState_dispatchEvent(short id);

//Ready:

inline int Ready_IN() const;

virtual OMBoolean startBehavior();

protected :

void initRelations();

void initStatechart();

//// Relations and components ////

protected :

CallRouter* itsCallRouter;

OMList<Connection*> itsConnection;

OMList<Line*> itsLine;

190

Registry* itsRegistry;

OMList<Telephone*> itsTelephone;

//// Framework ////

protected :

//states enumeration:

enum PBX_Enum{ OMNonState=0, Ready=1 };

int rootState_subState;

int rootState_active;

};

#endif

In the generated C++ code, the class PBX inherits from the framework class OMReac-
tive. Furthermore, the generated C++ code contains several declarations of variables and
operations. For instance, member variables itsConnection, itsLine and itsTelephone

are declared. As can be seen in the definition of the class PBX, these member variables
are so-called containers that can hold an arbitrary number of objects of a specific type.
These containers are realized as C++ template classes, and they are also part of the
Rhapsody UML framework. For instance, the member variable itsTelephone has the
type OMList<Telephone*>. The template class OMList implements a double linked list
and provides several operations to manage the list. For instance, one can use so-called
iterators to access individual elements in the list. An iterator is an object that can access
the elements stored in a container object. Normally, iterators provide operations to get
the element the iterator is currently pointing at, and also operations to move from the
current element to the first, last and next element of the associated container. With the
declaration

OMList<Telephone*> itsTelephone;

a member variable itsTelephone is defined as a container that is organized as a list of
pointer of Telephone objects. Additional declarations of member variables are generated
for the other parts of the class PBX, i.e. for the lines, connections, the CallRouter and
the Registry. The constructor operation PBX(OMThread*p_thread=OMDefaultThread)

is called whenever a new object of the class PBX is created, and it is implemented as
follows:

PBX::PBX(OMThread* p_thread) :

itsConnection(), itsLine(), itsTelephone() {

setThread(p_thread, FALSE);

initRelations();

initStatechart();

}

The argument of the constructor of the type OMThread* which is used as a parameter in
the call of the operation setThread specifies to which thread the newly created reactive
object should belong. Additionally, the member variables itsConnection, itsLine and

191

B PBX Sample Program

itsTelephone are initialized, and the operations initRelations and initStatechart

are called. The operation initRelations realizes the creation of the parts of a PBX
object and is implemented as follows:

void PBX::initRelations() {

itsCallRouter = newItsCallRouter();

for (int i = 0; i < 4; i++) newItsConnection();

for (int i = 0; i < 4; i++) newItsLine();

itsRegistry = newItsRegistry();

for (int i = 0; i < 4; i++) newItsTelephone();

OMIterator<Connection*> frIter(itsConnection);

while (*frIter){

(*frIter)->setItsCallRouter(itsCallRouter);

frIter++;

}

OMIterator<Telephone*> frIter(itsTelephone);

OMIterator<Line*> toIter(itsLine);

while (*frIter){

(*frIter)->setItsLine(*toIter);

toIter++;

frIter++;

}

itsCallRouter->setItsRegistry(itsRegistry);

OMIterator<Line*> frIter(itsLine);

while (*frIter){

(*frIter)->setItsCallRouter(itsCallRouter);

frIter++;

}

}

Firstly, the CallRouter object is created, and then 4 connections, 4 lines, a reg-
istry and 4 telephones. This is realized by calling the operations newItsCallRouter,
newItsConnection, newItsLine, newItsRegistry and newItsTelephone. Within these
operations, pointers to the generated objects are stored in the corresponding member
variables of the PBX object. After all parts have been created, the links between the
objects are instantiated by using iterator objects on the member variables of the PBX
object. For instance, the links of the connections to the CallRouter are set within the
following loop:

OMIterator<Connection*> frIter(itsConnection);

while (*frIter){

(*frIter)->setItsCallRouter(itsCallRouter);

frIter++;

}

192

Ready

/Configure();

Figure B.4: Statechart of class PBX

After the call of initRelations, in the constructor of the PBX class the operation
initStatechart is called. This operation realizes the starting of the startechart that
is associated with the PBX class. Figure B.4 shows the statechart for the PBX class.
It consists of only one state and a default transition into this state. When an object of
the class PBX is created, the statechart associated with PBX is started, and the default
transition is taken. In the action part of the default transition the operation Configure

is called, which is implemented as follows:

void PBX::Configure() {

//#[operation Configure()

OMIterator<Line*> iLine(itsLine);

for (iLine.reset(); *iLine; iLine++) {

(*iLine)->setItsCallRouter(itsCallRouter);

itsRegistry->PutInService((*iLine));

}

//#]

}

The operation Configure sets the links from the lines to the CallRouter. Additionally,
all lines are put into service by calling the operation PutInService of the registry object.
After the call of Configure returns, also initStatechart and therefore the constructor
of the PBX class terminate, i.e., after creating one object of the PBX class the whole
PBX system is completely initialized.

The reactive behavior of the running PBX system can be understood by looking at
the statechart of the class Telephone that is depicted in fig. B.5. A telephone can react
to different events which are special objects that can be send to reactive objects. The
initial state of a telephone is Idle. Independent of current state of a telephone, whenever
a telephone receives an event evRelease or an event evOnHook it switches to the Idle

state. When the telephone is idle and it receives an event evOffHook it changes its
state to Calling. When taking this transition, it sends an event evOriginateCall to
its associated line object whose statechart can be seen in fig. B.6 on page 195. When

193

B PBX Sample Program

Ready

Idle Ringing
evRing/itsLine->GEN(evAlerting); tm(REPEAT_TIME)

Talking

evOffHook/
itsLine->GEN(evAnswerCall);

evTalk/itsLine->GEN(evTalk);

evListen

Calling

evAnswerCall

evOffHook/
itsLine->GEN(evOriginateCall);

evDigitDialed/itsLine->GEN(evDigitDialed(params->Digit));

evDialTone

Busy

evBusy

tm(REPEAT_TIME)

evOnHook/itsLine->GEN(evRelease);evRelease

evRing/itsLine->GEN(evAlerting); tm(REPEAT_TIME)

evOffHook/
itsLine->GEN(evAnswerCall);

evTalk/itsLine->GEN(evTalk);

evListen
evAnswerCall

evOffHook/
itsLine->GEN(evOriginateCall);

evDigitDialed/itsLine->GEN(evDigitDialed(params->Digit));

evDialTone

evBusy

tm(REPEAT_TIME)

Figure B.5: Statechart of class Telephone

receiving this event, the line object takes the transition from state Idle to Dialing. In
the action part of this transition, the line first calls the operation OpenConnection and
then emits an event evDialTone back to the telephone. The operation OpenConnection

is implemented as follows:

void Line::OpenConnection() {

//#[operation OpenConnection()

Connection * NewConnection = NULL;

setItsCall(NULL);

setItsCaller(NULL);

NewConnection = itsCallRouter->OpenConnection();

setItsCallee(NewConnection);

NewConnection->GEN(evOriginateCall);

Source = 1;

//#]

}

This operation computes a pointer to a free connection NewConnection by calling the op-
eration OpenConnection of the CallRouter. This operation checks if one of the available
connections are currently unused, and returns a pointer to an appropriate connection.
After having computed a free connection, within the operation OpenConnection an event
evOriginateCall is sent to the chosen connection, whose statechart is depicted in fig.

194

InService

Idle

Dialing

evOriginateCall/
OpenConnection();
itsTelephone->GEN(evDialTone); evAlerting/

itsTelephone->GEN(evRingbackTone);

evDigitDialed/
itsCallee->GEN(evDigitDialed(params->Digit));

Ringing

evAlerting/
itsCaller->GEN(evAlerting);

evRing/
itsTelephone->GEN(evRing);
Source = 0;

Talking
evAnswerCall/
itsCaller->GEN(evAnswerCall);

evAnswerCall/
itsTelephone->GEN(evAnswerCall);

evTalk/
itsCall->GEN(evListen);

evListen/
itsTelephone->GEN(evListen);

Busy

evBusy/
itsTelephone->GEN(evBusy);

evRelease/
CloseConnection();

evOriginateCall/
OpenConnection();
itsTelephone->GEN(evDialTone); evAlerting/

itsTelephone->GEN(evRingbackTone);

evDigitDialed/
itsCallee->GEN(evDigitDialed(params->Digit));

evAlerting/
itsCaller->GEN(evAlerting);

evRing/
itsTelephone->GEN(evRing);
Source = 0;

evAnswerCall/
itsCaller->GEN(evAnswerCall);

evAnswerCall/
itsTelephone->GEN(evAnswerCall);

evTalk/
itsCall->GEN(evListen);

evListen/
itsTelephone->GEN(evListen);

evBusy/
itsTelephone->GEN(evBusy);

OutOfService

evPutInService/
extension = params->newNumber;
IsInService = TRUE;

evTakeOutOfService/
IsInService = FALSE;
extension = 0;

Figure B.6: Statechart of class Line

B.7 on page 196. When receiving this event, the connection takes the transition from
state Disconnected to state CollectDigits.

Among other events, within state Calling a telephone can receive an event
evDigitDialed that represents the dialing of a certain digit. When receiving such an
event, the telephone propagates this event to its line and the line propagates it to its cur-
rent associated connection. The connection collects the dialed digits until the operation
DialingDone used as a guard in the transition with the trigger evDigitDialed returns
true, which is the case if two or more digits have been entered. When DialingDone is
true, by calling the operations NumberDialed and ConnectLines a pointer to the desti-
nation line associated to the telephone belonging to the dialed number is stored in the
member variable itsDestination of the connection:

void Connection::ConnectLines() {

Line * DestinationLine =

itsCallRouter->getItsRegistry()->getItsLine(Extension);

if (!IS_IN(DestinationLine->Idle)) itsSource->GEN(evBusy);

else {

setItsDestination(DestinationLine);

itsDestination->setItsCallee(NULL);

itsSource->setItsCall(itsDestination);

itsDestination->setItsCall(itsSource);

DestinationLine->GEN(evRing); } }

In the operation ConnectLines, first a pointer named DestinationLine is computed
that points at the line belonging to the entered number. If the destination line be-

195

B PBX Sample Program

Ready

Disconnected

CollectDigits

evOriginateCall

WaitingToRing

Ringing

evAlerting/itsSource->GEN(evAlerting);

Connected

evAnswerCall/itsSource->GEN(evAnswerCall);

evTalk

evDigitDialed/NextDigit(params->Digit);

[DialingDone()]/
NumberDialed();
ConnectLines();

[else]

/Initialize();

evClose/Disconnect(params->Source);

evOriginateCall

evAlerting/itsSource->GEN(evAlerting);

evAnswerCall/itsSource->GEN(evAnswerCall);

evTalk

evDigitDialed/NextDigit(params->Digit);

[DialingDone()]/
NumberDialed();
ConnectLines();

[else]

Figure B.7: Statechart of class Connection

longs to a telephone that is not in its idle state, an event evBusy is sent to the source
line and propagated from the source line to its telephone. Otherwise, if the destina-
tion line belongs to a telephone that is indeed in its idle state, the member variable
itsDestination of the connection is set and also the member variables itsCallee,
itsCaller and itsCall of the source line and the destination line, i.e., a connection
between the source line and the destination line has been established. As a result, an
event evRing is sent to the destination line and propagated to the destination telephone,
i.e., the telephone belonging to the dialed number is ringing since it changes its state
from Idle to Ringing.

If an event evOffHook is now sent to the ringing telephone, it emits an event
evAnswerCall to its line and changes its state to Talking. The event evAnswerCall is
consumed by the associated line, which also emits an event evAnswerCall to the line of
the calling telephone. This line, which is currently in state Dialing, consumes this event,
sends also an event evAnswerCall to its associated telephone and changes its state to
Talking. After that, the source telephone receives this event and also changes its state
to Talking, i.e., both the source and the destination telephone are in state Talking.
As long as both telephones are in this state, each telephone can receive events evTalk

and evListen. If a telephone receives an event evTalk, it sends an event evListen via
its line to the other telephone. If one of the telephones receives an event evOnHook it

196

changes its state again to Idle and it emits an event evRelease to the other telephone.
As a result, also the other telephone changes its state to Idle again, thereby terminating
the call. For this program, in the experiments from sect. 4.1.4 and sect. 4.2.1 we checked
the reachability of a property that is fulfilled if a call was established correctly, i.e., if a
certain telephone is in state Talking. Additionally, in the experiments from sect. 5.3 we
checked the reachability of a property that is fulfilled if a certain telephone is in state
Busy which is the case if this telephone is calling a telephone which is already part of an
established call.

197

B PBX Sample Program

198

Curriculum Vitae

19. Februar 1975 geboren in Osnabrück
1981 - 1985 Grundschule Ueffeln
1985 - 1987 Orientierungsstufe Bramsche
1987 - 1994 Greselius-Gymnasium Bramsche, abgeschlossen mit

dem Abitur
1994 - 1995 Grundwehrdienst in Rotenburg und Fassberg

Oktober 1995 - April 2000 Studium der Informatik an der Universität Oldenburg
mit Nebenfach Physik. Die Diplomarbeit mit dem
Thema ,,Eine Testautomatensemantik für Constraint
Diagrams und ihre Anwendung“ wurde von Prof. Dr.
Ernst-Rüdiger Olderog und Dr. Henning Dierks be-
gutachtet.

Mai 2000 - August 2005 Wissenschaftlicher Mitarbeiter am Institut OFFIS im
Bereich ,,Sicherheitskritische Systeme“

Seit September 2005 Mitarbeiter der OSC Embedded Systems AG
25. November 2005 Disputation

199

	Title
	Zusammenfassung
	Abstract
	Danksagung
	Contents
	Introduction
	Reactive Systems
	Verification and Validation
	Models and Programs
	Partial and Heuristic State Space Exploration
	Organization of the Thesis

	Related Work and Design Decisions
	Model Checking
	Heuristic Search
	Observations and Design Decisions
	Other Related Work

	SymC++ and Cmin
	Overview of SymC++
	C++
	SymC++ Extensions and Limitations

	Cmin
	Properties of Cmin programs
	Translating SymC++ to Cmin
	Test Programs
	Rhapsody UML Models
	Overview of test programs

	Explicit-Symbolic State Space Exploration
	Explicit State Representation
	Dynamic Object Creation and Symmetries
	Approximated Duplicate Detection
	State Storage Reduction
	Experimental Results

	Explicit-Symbolic State Representation
	Experimental Results

	Summary of results
	Related Work

	Heuristic State Space Exploration
	Abstraction of Cmin programs
	Cfin
	Relation between Cmin and Cfin
	Translating Cmin to Cfin
	Further Abstraction

	Abstraction-based Heuristic State Space Exploration
	Experimental Results
	Summary of results

	Related Work

	Conclusion and Future Work
	Summary of Contributions
	Future Work

	Bibliography
	SymC++ Restrictions
	PBX Sample Program
	Curriculum Vitae

	link: Zur Homepage der Dissertation

