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Abstract

Formal methods for embedded systems currently mainly focus on single components
or fixed configurations of finitely many components. Examples for the former case are
open finite-state systems as models of single discrete controllers in a discrete environ-
ment. Examples for the latter comprise models of clusters of controllers with fixed
inter-connection, that is, no controllers are added or removed at runtime and the inter-
connection is not re-configured, e.g., the numerous controllers in a car for airbags, braking
assistance, etc.

These concepts are not sufficient when many autonomous systems interact. A char-
acteristic example is the Car Platooning application as studied by the California PATH
project. The intention of car platooning is to reduce fuel consumption by dynamically
merging cars into platoons where they drive with significantly reduced safety distance
and hence benefit from slipstream. To faithfully model car platooning, there have to be
means to describe (i) unbounded appearance and disappearance of cars within the sys-
tem “highway”, (ii) topologies, that is, selective connections between cars like between
leader and follower, and (iii) (asynchronous) communication.

We propose to extend the particular finitary abstraction Data Type Reduction (McMil-
lan, 2001) known for parameterised systems to the class of dynamic topology systems as
characterised by (i)–(iii). As computational model, we introduce labelled transition sys-
tems where states are labelled with graphs. This allows us to model nasty but possibly
critical effects like dangling links, i.e. connections to already disappeared processes.

Furthermore, we introduce a first-order extension of classical temporal logic. It is
process-oriented in the sense that quantified variables range over processes and follow
their evolution over time. We can express properties requiring that, for instance, the
particular car, which initiated a merge, will finally complete the merge. The semantics
of this logic for the first time completely and explicitly treats issues such as pre-mature
disappearance of processes.

By re-stating the finitary DTR abstraction in terms of the graph-labelled transition
system, we gain insight into the potentials and limitations of this technique; beforehand,
it has only been described in terms of a construction procedure. Individual-oriented
properties, which are easily lost in many other abstractions, are essentially preserved by
following what we call the spotlight principle (Wachter & Westphal, 2007).

Finally, we demonstrate the applicability of this approach by sketching a translation
from a relevant fragment of UML and of the DCS language (Bauer, Schaefer, Toben &
Westphal, 2006) into graph-labelled transition system, the latter allowed us to establish
safety and liveness properties for the car platooning case-study.
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Zusammenfassung

Formale Methoden für eingebettete Systeme konzentrieren sich heutzutage überwiegend
auf einzelne Komponenten oder endlich viele Komponenten in einer während der Laufzeit
statischen Konfiguration. Beispiele für den ersten Fall umfassen offene, endliche Tran-
sitionssysteme als Modelle eines einzelnen diskreten Controllers in einer als diskret
angenommenen Umgebung, Beispiele für den zweiten Fall sind Modelle von mehreren
Controllern die etwa durch Bussysteme in einer festen Topologie verbunden sind, etwa
verteilte Controller für Airbags, Bremsassistent etc. in modernen Fahrzeugen. Insbeson-
dere werden zur Laufzeit keine Controller hinzugefügt oder entfernt und die Verbindungs-
topologie wird zur Laufzeit des Systems nicht rekonfiguriert.

Diese Konzepte sind nicht ausreichend, wenn mehrere solcher, für sich autonomen,
Systeme miteinander interagieren sollen. Ein charakteristisches Beispiel hierfür ist die
,,Car Platooning” Anwendung, die seit den 1990er Jahren im California PATH Projekt
betrachtet wird. Die Idee des Car Platooning ist, das̈ Fahrzeuge auf der Autobahn
autonom Konvoys bilden, innerhalb denen mit verringertem Sicherheitsabstand gefahren
wird, um Energie zu sparen und die Fahrzeugdichte zu erhöhen. Um Bremsmnnövern
weiterhin sicher durchführen zu können, nimmt das erste Fahrzeug im Konvoy die Rolle
des ,,Leaders” ein, der den anderen Fahrzeugen, den sog. ,,Followers”, Bremsmnnöver
rechtzeitig ankündigt, um deren Reaktionszeit zu minimieren.

Um Systeme wie das Car Platooning adequat zu modellieren, Bedarf es Mitteln zur
Beschreibung von (i) unbeschränktem Erscheinen und Verschwinden (,,appearance and
disappearance”) von Fahrzeugen im System ,,Autobahnabschnitt”, (ii) (Kommunikations-
)Topologien, d.h., logische Verbindungen zwischen Fahrzeugen, wie etwa zwischen dem
Leader und seinen Followers und (iii) asynchroner Kommunikation. Und zwar sowohl zur
operationellen Beschreibung von Implementierungen als auch zur deklarativen Beschrei-
bung von Anforderungen an Implementierungen. Zur Analyse, ob eine Implementierung
gegebene Anforderungen erfüllt (,,model-checking”), bedarf es Abstraktionstechniken, da
das Problem, aufgrund der unbeschränkten Anzahl von Sub-Systemen, im allgemeinen
unentscheidbar ist.

Wir untersuchen, inwiefern und unter welchen Randbedingungen die für Parametrisierte
Systeme bekannte finitäre Abstraktion ,,Data Type Reduction” (McMillan, 2000) auf die
allgemeinere, durch (i)–(iii) charakterisierte Situation anwendbar ist.

Zu diesem Zweck führen wir, in Ermangelung eines geeigneten operationellen Modells
in der Literatur, das Konzept der Evolving Topology Transition Systems (ETTS) ein, im
wesentlichen zustandsbeschriftete, unendliche Transitionssystem, deren Zustände mit
Graphen beschriftet sind. Unser Modell erlaubt insbesondere, ,,unangenehme” aber
kritische Effekte wie logische Verbindungen zu bereits verschwundenen Fahrzeugen zu
modellieren. Als deklarative Beschreibungssprache verwenden wir eine Variante von
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Temporallogik erster Stufe, die insbesondere den Effekt des vorzeitigen Verschwindens
von referenzierten Sub-Systemen adäquat behandelt, was in existierenden Vorschlägen
in der Literatur erstaunlicherweise oft nicht erfolgt.

Durch die Formulierung von ,,Data Type Reduction” im ETTS Modell verstehen wir
nun erheblich besser, wie diese Abstraktion funktioniert und welche Eigenschaften sie
für ETTS erhält; zuvor ist im wesentlichen nur eine Implementierung bekannt gewesen
(McMillan, 2000). Das zugrundeliegende Prinzip haben wir in (Wachter & Westphal,
2007) zum ,,Spotlight Principle” generalisiert.

Wir demonstrieren die Anwendbarkeit des Verfahrens für ein relevantes Fragment der
bekannten UML und für die spezialisiertere Sprache DCS (Bauer, Schaefer, Toben &
Westphal, 2006), indem wir eine ETTS Semantik angeben, die uns erlaubte Sicherheits-
und Lebendigkeitseigenschaften für die ,,Car Platooning” Fallstudie nachzuweisen.
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1. Introduction

This work belongs to the domain of formal methods-based development of hard- and
software, that is, the idea that errors in hard- and software systems can be reduced by
formally and declaratively stating what the expectations on of the system (the require-
ments) and to (at best) automatically check whether a given operational implementation
satisfies its requirements.

What we just called the implementation can be manifold: it can range from an abstract
model of the system in languages like UML to the actually deployed implementation in
form of a programming language. But we always envision this duality between declara-
tive requirements and operational implementation.

Such approaches have three ingredients: there is a need for two rigorous formal lan-
guages for precise specifications of the requirements on the one and the implementation
on the other hand, and there is a need for techniques to formally verify whether the im-
plementation satisfies the requirements. Although this work is formally self-contained,
we have to assume some background on the related ideas and concepts, otherwise we
refer to textbooks such as [33].

Formal methods in this sense are on their way into the industrial practice, yet primarily
in the domain of finite, statically structured systems. That is, systems with a fixed
finite number of processes and static communication links between processes. Examples
are isolated embedded systems, single controllers, or strictly bounded networks of such
controllers. Assuming finiteness and fixed interconnections is perfectly reasonable where
it applies, as it matches the final deployment in trains or cars.

New questions arise if multiple of such super-systems, like trains or cars, are supposed
to interact in an intrinsically dynamic setting. Cars, for instance, can freely enter and
leave a highway and different relative positions may require adjustment of interconnec-
tion relations. Even if the single objects are finite state, that is, if all local variables of a
sub-system have finite domain, the whole system may grow arbitrarily large. We’ll see
examples like car platooning and a handler pattern in railway management applications
in more detail in Sections 1.1.2 and 1.1.1).

In this work, our goal is to investigate a certain technique for automated formal
verification for the class of systems with an unbounded number of objects or processes
which seemed promising in the pre-study [177], in particular for requirements in form of
scenarios.

Note that, from the at least five “sources of infiniteness” in a system [66], namely the
number of processes, infinite-domain data, asynchronous, message-queues based commu-
nication, recursion and call stacks, and real-time, we address exactly the first. Only if
the local representation of links, e.g. the address of the platoon leader car, counts a data,
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1. Introduction

the second aspect is addressed. But in the sense of arithmetical data like a real-valued
car-speed.

One our main findings is that, in some cases, we can treat this first aspect orthogonally
to the other ones. That is, if we have a procedure for finitely many processes with infinite-
domain data, like hybrid systems, then for a system with an unbounded number of hybrid
processes we’re confident that one can derive from our work strategies to construct an
abstraction that lies in the class of bounded-number hybrid systems and is thus treatable
with the methods for hybrid systems that assume finitely many processes.

More precisely, subject of this work is an investigation of the applicability of the
approach presented in [124, 127] for parameterised systems. The difference from pa-
rameterised systems to truly dynamic topologies is, even if each process in the latter
executes the same program locally, that a parameterised system describes all infinitely
many, but as such finite and fixed topology instances.

Taking the step to Dynamic Topology Systems as we shall call them raises a couple
of issues, both on the side of the computational model of implementations and on the
side of the requirements specification language. Furthermore, the abstractions employed
in [124, 127] are proved sound and successfully applied [28, 31], but far from understood,
in the sense that before this work there has been no assessment of which properties can
be expected to hold in the abstraction.

To get a more detailed idea of this problem domain and the proposed solutions, this
chapter briefly answers the most pushing questions and gives some background for the
whole work.

First of all, Section 1.1 introduces two examples of DTS, a railway system with au-
tonomous cars and car platooning on highways, to give a better intuition of the char-
acteristics of this class of systems. In Chapter 3 on the computational model, we’ll
address the Car Platooning application and its relevant properties in more detail, and
in Chapter 10 we’ll revisit both applications as case-studies and apply our methodology.

Assuming that DTS can precisely and unambiguously be described, Section 1.2 points
out what kinds of properties are desired to be formally verified for a DTS, in particular
what we understand as scenarios. A complete treatment follows in Chapter 4 on the
specification logic.

After Section 1.3, it shall be clear what we understand under the term formal verifi-
cation and why formal verification in this sense is both difficult and relevant for DTS.
Section 1.4 briefly outlines the approach we investigate in order to overcome the apparent
difficulties in DTS verification. The whole Part III is dedicated to this topic.

Finally, Section 1.6 gives a more informed overview over the structure of this work in
terms of the concepts introduced in the previous sections.

1.1. What is a Dynamic Topology System?

A Dynamic Topology System in the broader sense is basically a system of communicat-
ing processes with a dynamically changing communication topology and a dynamically
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1.1. What is a Dynamic Topology System?

Terminal

EntryExit

CarHandler

Car

Figure 1.1.: Automated Rail Cars System. Closed variant with 8 cars and 4 terminals.

changing number of processes without an upper bound on the number of processes ex-
isting simultaneously. It is possibly best understood on concrete examples, so we shall
give two prominent ones in the following.

1.1.1. Example 1: The Automated Rail Cars System

The Automated Rail Cars System [79] (ARCS) serves as a case-study for a particu-
lar executable object-oriented modeling employing a variant of the Unified Modeling
Language [138, 141, 140].

In the original design, it is a closed system of N autonomous rail cars shuttling on
one-way tracks between M terminals (cf. Figure 1.1). Each terminal has a number of
platforms, and entry and exit switches. The arrival and departure procedure for rail cars
in particular comprises reserving and setting the switches. It employs a handler pattern,
that is, each time a car approaches a terminal, a new handler is created which has access
to terminal internals and negotiates between car and terminal.

A complete arrival and departure procedure is shown in Figure 1.2. It starts by a
car approaching a terminal and reading the terminal’s address from a track-side barrier
(Figure 1.2(a)). On the arrival request by the car, the terminal creates a handler object
(Figure 1.2(b)) which reserves a platform at the terminal and negotiates the switches to
be set accordingly.

If everything is prepared, the car receives admission to enter from the handler (Fig-
ure 1.2(c)). If the admission doesn’t arrive in time, the car stops at a safe distance in
front of the terminal and awaits the admission.

The car handler is also responsible to support the car when leaving the terminal, that
is, the car leaves the terminal only after it has been notified by the handler that the
switches are set accordingly (Figure 1.2(e)). If the car is a safe distance away from the
terminal, it initiates destruction of the car handler, which then gives up its lock on the
outgoing switches and disappears (Figure 1.2(g)). The rail car is again freely cruising
afterwards.
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Car ExitEntry
Terminal

(a) Approaching terminal. (b) Creating car handler. (c) Switches set, entering.

(d) Stopping. (e) Switches set, leaving. (f) Away from terminal.

PLOPP

(g) Destroying handler. (h) Cruising freely.

Figure 1.2.: Arrival and Departure Procedure.

Note that handler is newly created and later destroyed and that the communication
topology changes dynamically: the rail car communicates with processes which didn’t
even exist before. In order to keep the interface between cars and terminals lean, and thus
in particular the amount of radio-based communication low, the handlers will typically
not be allocated within the cars but on the side of the terminal.

Even in the closed system, it is then not trivial to determine an upper bound for the
number of car handlers needed at any point in time without intimate knowledge of the
physical circumstances. Allocating as many handlers per terminal as there are cars may
not be sufficient if one handler is still alive and engaged in the departure procedure while
the car approaches the terminal again and another handler is needed to start the arrival
procedure.

Furthermore, we can easily imagine the system to be open, that is, to admit that rail
cars enter and leave the scope of the model freely. As the procedure shown in the figure
doesn’t depend on a fixed number of cars, there is then not even a fixed number of cars.

In practice, that is, for the final implementation it is of course essential to know how
much local memory is needed for the controller to work properly where a finite upper
bound will be determined. But for verification of the correctness of the arrival and
departure protocol one doesn’t want to depend on an upper bound but the aim is to
establish properties of the protocol in general, with arbitrarily many processes in the
system.

1.1.2. Example 2: Car Platooning

A second popular and even more epitomic example of Dynamic Topology Systems Car
Platooning as studied by the California PATH project [84, 53].

The idea is that cars shall be equipped with radio-based communication and controllers
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1.1. What is a Dynamic Topology System?

︸ ︷︷ ︸

Free Agent

︸ ︷︷ ︸

Follower

︸ ︷︷ ︸

Leader

︸ ︷︷ ︸

Platoon

Figure 1.3.: Car Platooning

ldr

flwc1 c2

(a) Stable two car platoon.

ldr

flw

✉ car ahead(c3)

c3

(b) Recognising other car.

ldr

flw

✉ req(c2)

(c) Requesting merge.

ldr

flw
flw

✉ ack

(d) Merge acknowledge.

ldr

flw

ldr

flw

✉ new ldr(c3)

(e) Announcing new leader to followers.

ldr

flw

ldr

flw

(f) Stable three car platoon.

Figure 1.4.: Merge Procedure.

to negotiate the formation of convoys (or platoons). A platoon comprises at least two
cars and we distinguish the front car, called leader, and the others, the followers. Cars
not participating in a platoon are called free agents (cf. Figure 1.3). As the platoon
leader is responsible to announce braking manoeuvres in time, cars may drive with
reduced safety distance and safe energy and highway space.

The basic procedures of car platooning are merge and split, the more complex change
lane procedure employs both. A merge is initiated by a leader or a free agent who
recognises another leader or free agent driving in front.

For example, consider the two-car platoon in Figure 1.4(a). If a third car c3 enters
the highway and gets into reach of the corresponding sensor of the platoon leader c2, the
latter sends a merge request message comprising its own identity to the car in front (cf.
Figure 1.4(b) and 1.4(c)). If the front platoon (or free agent) is willing to join, it adds
the requester to its followers and replies with a positive acknowledge (cf. Figure 1.4(d)).
Then the back leader, in the example this is c2, notifies all its followers about the join
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by a message announcing the new leader (cf. Figure 1.4(e)). If all these notifications
have been processed, in the example this is c3, a new stable three-car platoon has been
established (cf. Figure 1.4(f)).

A platoon is split into two platoons or free agents in a similar procedure. A split
is initiated by the car that wants to leave the platoon, which may be the leader or a
follower. The initiating car becomes leader of a new platoon or a free agent.

A third procedure, change lane, comprises becoming a free agent, that is, initiating
two split procedures in the worst case, and negotiating with the cars on the neighbour
lane and the lane behind to avoid collisions. For example in Figure 1.3, if the free agent
on the bottom-most lane wants to change to the middle lane, it would recognise the
neighboured three-car platoon and negotiate that it needs space on the middle lane.

This space could be provided by the three-car platoon accelerating, decelerating, or
splitting in half. Provided sufficient space, the bottom-most free agent would negotiate
with the cars on the top-most lane who changes lane in order to avoid collisions.

Note that cars freely enter and leave the highway, and dynamically change commu-
nication topology. Cars consider other cars as leader which didn’t even exist in their
world, which is the highway, until recently.

In practice, it is assumed that there is a maximal platoon length per highway segment
communicated by the roadside controller. But the aim is to verify the correctness of the
merge and split protocols independent from such bounds.

1.1.3. Dynamic Topology Systems vs. Parameterised Systems

The first example, the ARCS, is in the original definition similar to classical parame-
terised systems where there are finitely many finite programs P1, . . . , Pn executed by
fixed numbers of K1, . . . ,Kn processes. In the ARCS we had three programs, P1 for
the cars, P2 for the terminals, and P3 for the car handlers, and K1 = N car-, K2 = M
terminal-, and K3 = L handler processes executing them, assuming we had an upper
bound L on the number of car handlers. The challenge is then to prove properties (cf.
next section) for all infinitely many instantiations at once.

The ARCS and Car Platooning applications are different to typical parameterised
systems in the following aspects:

1. We’re not interested in infinitely many finite instances, but a single instance whose
extension may grow unboundedly as processes appear and disappear freely in the
system.

2. Processes have individual named relations (or links), that is, there are some rail
cars approaching a particular terminal now while some aren’t. This is in contrast
to typical parameterised systems where every process has access to every processes’
local memory.

3. Processes communicate according to the individual named relations, that is, a car
handler only asks the car it manages to enter the terminal (unless it accidentally
considers the wrong car as its managed one).
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Note that the particular kind of communication, asynchronous with event queues
or synchronous, rendezvous-like, is not important.

These are the constituent aspects of our notion of DTS: that there is a dynamically
changing number of processes, each with a unique identity, and that there may be
dynamically changing links between processes.

1.2. What Requirements Shall DTS satisfy?

In previous section, we already pointed out a possible error in the ARCS example: a car
handler shall not consider the wrong car to be its car as otherwise it may grant terminal
access to a car which actually should still wait.

A bit more precise, we’re interested in properties of the form

For each car handler h and each car c, whenever h sends a grant mes-
sage to c, then h is known as the responsible handler to c.

(1.1)

In general, there is a universal quantification over individuals (or processes) and a
generic temporal property, for instance, LTL. That is, the focus is on single processes,
or certain processes standing in a particular relation to each other, which behave in a
certain manner when traced over time. It is not, as with typical parameterised systems,
on the entirety of processes in a state, for instance, that at most one process in a state
is in a critical section when considering mutual exclusion examples.

The atomic terms in the temporal properties will comprise the following.

• Generic predicates, for example comparing local variables of multiple processes.

• Predicates indicating whether a process has just been created or will immediately
be destroyed to express, for instance, that a car handler manages one and the same
car throughout its lifetime.

• Link navigation to refer to links from one process to another, for example, a car
handler would have a link to the car it is responsible for.

A particular example of temporal logics for DTS is Mett, which has been introduced
in the joint work [9] to complement our definition of the DTS description language DCS
(cf. Chapter 10).

It is basically LTL with quantification over DTS processes and atomic propositions
referring to process creation and destruction, local state of processes, presence of named
links between two processes, and in addition sending and reception of events (cf. Chap-
ter 4 for details and a detailed comparison to other approaches).

In Mett, the natural language property (1.1) would read as follows.

G ∀h : CarHandler, c : Car . send[grant](h, c)→ conn[resp](c, h) (1.2)

9
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LSC: approach
AC: true
AM: invariant I: strict

c:Car

[1, 1]

h == c→ itsCarHandler

t:Terminal h:CarHandler

c == h→ handledCar

arrivReq(c)

arrivAck(h)

Figure 1.5.: Live Sequence Chart. If c contacts terminal t, then it is granted access by the
h responsible for it and establishes the link itsCarHandler.

Another particular example of temporal properties for DTS are Live Sequence Charts
[42, 43, 97, 81] (LSCs), one of the most prominent representative of languages scenario.

LSCs are basically a conservative extension of the well-known Message Sequence
Charts by modalities for chart elements and whole charts, which for instance allow
to require progress along instance lines. Each vertical so-called instance line binds, like
a quantified logical variable, to a correspondingly typed process in the system and gives
requirements on how and when this group of processes interacts. For example, Figure 1.5
is a requirement on the ARCS example (cf. Chapter 3 for details).

We will discuss both, Mett and LSCs, in more detail for DTS in Chapter 10.

Note that there is a principal and crucial difference to the indexed logics employed
with parameterised systems. The quantifiers in indexed-logic range over finitely many
processes, which are present in each system state. That is, these properties can be
unfolded into a finite non-quantified formula enumerating all processes of the N -instance
of the parameterised system.

With DTS there is true dynamics. So the range of logical variables covers an un-
bounded set of identities. And in addition, we have to be prepared for what we call
pre-mature disappearance. That is, individuals denoted by a logical variable may dis-
appear in the model while we still want to evaluate a logical term on them to decide
whether a temporal property holds or not.

Similar issues arise when considering reconfigurable systems in the sense of e.g. [103],
that is, systems of finitely many finite sub-systems with principally fixed topology but
with the option to replace sub-systems at run-time.

This can be seen as the finite fragment of DTS: there is no unbounded creation and de-
struction because each sub-component is replaced by exactly one other one, but there are
the same critical transitional situations where the old sub-component just disappeared
and the new one is not yet fully operational.
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1.3. What is Formal Verification of DTS, and Why is it
Difficult and Relevant?

Given a formal model M of a DTS, like the ARCS or Car Platooning, the formal veri-
fication (or model-checking) problem is to prove that M satisfies the requirement Φ, at
best with an automated method to establish or refute this relation.

As there is dynamic and unbounded creation and destruction of processes, DTS are
inherently infinite-state systems and the model-checking problem is in general unde-
cidable. For this reason, finitary abstractions are employed which yield a finite-state
transition system that simulates the original one.

That is, the abstraction shall be sound, i.e. if a property can be established for the
abstract system, for instance by finite-state model-checking techniques, then it also holds
in the concrete, infinite-state system.

But it is typically not complete, that is, not all properties holding in the concrete
system can be established in the abstract one; verification of the abstract system may
yield so-called spurious counter-examples that lead to a violation in the abstract system
but are not possible in the concrete one. The challenge is to chose an abstraction, that
is, the procedure mapping concrete to abstract systems, such that it is finite, effectively
computable, and preserves interesting properties.

Formal verification of DTS is relevant because in particular UML provides dynamic
creation and destruction of interlinked objects, thus UML models immediately classify
as DTS.

Assuming one of the many proposed formal semantics for it, the UML is an adequate
language to describe systems like the ARCS and Car Platooning in a model-based devel-
opment process, where a model of the system under design is built first, formally verified,
and then provides the starting point for automatic generation of the actual programming
language implementation or to serve as a “golden device” from which test-cases for the
final, manually conducted implementation can be derived.

1.4. What is the Approach?

We investigate the application of an abstraction technique that has been introduced
under the name Data-Type Reduction in [124, 129, 127] and which is typically used
together with a technique later called Query Reduction by [185].

In order to state our observation and to outline our investigations, we have do delve
a little bit deeper into these two techniques on the example they’ve originally been
presented for.

1.4.1. Hardware Verification By Compositional Model Checking

Query and Data-Type Reduction are actually part of a larger strategy [124, 129, 127]
that demonstrated how the techniques and procedures of the time are able to formally
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Abstract Abstract model

φ1 φ2 Refinement relations

U1

U2

BA Implementation

Figure 1.6.: Compositional Refinement Verification. [127]

verify properties of parameterised systems (cf. Section 1.1.3) using finite-state model
checking.

The strategy actually serves to establish a notion of refinement (cf. Figure 1.6). In the
concrete example, there is an abstract description of how a sequential micro-processor
executes instructions (“Abstract model” in Figure 1.6). The task is to check whether an
out-of-order-execution implemented by components U1 and U2 as observed on buses A
and B adheres to the refinement relations φ1 and φ2.

The whole strategy employs the following techniques.

1. Temporal Case Splitting [123, 127] breaks the apparent cyclicity when checking
φ1 and φ2 for U1 assuming U2 behaves as the abstract layer and vice versa (cf.
Figure 1.6).

2. Query [124, 127] and Data-Type Reduction [129, 127] treat replicated components.

3. Uninterpreted Functions [27, 14, 15] abstract from large combinatorics that com-
pute certain data values when the focus is on the control part, e.g. the transporta-
tion of data over buses.

4. In addition, for replicated components organised in certain topologies like a ring,
inductive arguments can be applied.

In [144], the approach is described it as “neither compositional nor verification” but
the best combination of deduction and model-checking to that time. At the end of
Chapter 9, we’ll provide an own opinion which justifies to view in particular the Data-
Type Reduction abstraction a special variant of compositional verification in the classical
sense.

In order to discuss the strategy in more detail, the following Section 1.4.1 briefly
introduces the case-study on which the whole strategy is demonstrated in [127]. Namely
a microprocessor that employs the Tomasulo algorithm [169] for out-of-order execution.

The subsequent Section 1.4.1 discusses Temporal Case Splitting and Uninterpreted
Functions and points out how they apply to the Tomasulo case-study and why we don’t
pursue them further.

In Section 1.4.1 we get back to Query and Data-Type Reduction and point out the
underlying principles in Section 1.4.1 to prepare for Section 1.4.2 where we lay out how
the combination of both applies to the domain of DTS.
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(a) Flow of Instructions [127].
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(c) Data-Type Reduction: abstract from
rest.
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(d) Second representative case.

Figure 1.7.: Data-Type Reduction for Tomasulo’s Algorithm.

Tomasulo Algorithm

The running example in [129] is a microprocessor that employs the Tomasulo algorithm
for out-of-order execution (cf. Figure 1.7(a)). That is, operations are not executed
strictly sequentially but an operation may be executed as early as its data-dependencies
are met.

Basically, when a three-address operation Op is loaded via the Instructions Bus, it is
assigned a suitable functional unit FU, like an adder, a multiplier, or a load/store unit.
Each functional unit FU is guarded by a reservation station RS.

If both operands opr1 and opr2 of Op are in the register file when Op is loaded, then
they are read from the register file and stored in the reservation station. Op can execute
immediately, unless the functional unit is busy.

If an operand is not yet in the register file, but still computed in one of the functional
units, the register file entry contains a tag that indicates which functional unit will
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provide the value. Then this tag is entered in the reservation station.

As every reservation listens on the Results Bus, on which tagged values are passed to
the register file, they recognise when an awaited value is available and directly read it
from the bus.

One of the main properties to be established for the Tomasulo implementation is the
following.

∀ k : TAG .

G
(
(st[k].valid ∧ st[k].opr1.valid)→ st[k].opr1.value = aux[k].opr1

) (1.3)

We don’t want to elaborate on the syntax and semantics of the property specification
language used in [127] here, but only quote how it reads out loud.

“[...] for all reservation stations, [whenever] the station is valid (contains an
instruction) and its opr1 operand is a value (not a tag), then the value must
be the correct operand value that we stored in the auxiliary array aux.” [127]

It refers to a set of auxiliary variables that are used to provide the correct values; they
are not necessary to understand the abstraction procedure.

Note that the property is in line with the class of properties outlined in Section 1.2,
namely outermost quantified temporal formulae.

Temporal Case Splitting and Uninterpreted Functions for the Tomasulo Algorithm

Temporal Case Splitting applies to the Tomasulo case-study by distinguishing the two
phases of obtaining correct operands at the reservation stations, and producing correctly
tagged values and entering them into the register file. Then the approach of [123, 127] is
to prove that each phase functions correctly up to step n+ 1 assuming the other phase
worked correctly until step n.

This approach in some cases yield great savings as for each phase there are parts of
the system which don’t influence the phase, like the register file in the first phase. These
parts can then automatically be removed from the system using the so-called “cone-of-
influence” reduction [34] but it doesn’t provide an approach to abstract unbounded DTS
to finite-state systems.

Uninterpreted Functions are applied to the Tomasulo algorithm to abstract from the
functional units. The focus of the verification is on the control part, first of all, the usage
of tags on the buses and in the register file.

The actual data on the buses shall not interfere with the control, thus the functional
units should be replaceable by simple combinatorics freely choosing from the possible
outcomes and possibly choosing the number of clock-cycles it may take the original
functional unit to compute the result. The number of clock-cycles varies, for example,
for multipliers depending on the data.

If the desired properties hold even with the abstract functional units, then we conclude
that it holds for the concrete functional units either. If doesn’t hold, then it may in
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general be a spurious error, but in case of the Tomasulo algorithm it means that the
data-related behaviour of the functional units influences the control part, which most
probably points out a serious design flaw.

Using Uninterpreted Functions allows to treat data of large or even unbounded domain,
for instance, if a module is replaced which internally operates on real-valued data, thus it
addresses the source of infiniteness “infinite-domain data” (cf. introduction of Chapter 1),
but in general not the infiniteness caused by the number of processes. The use of
Uninterpreted Functions is actually orthogonal to the other steps of the verification
strategy we discuss here, and also to our approach.

Query and Data-Type Reduction for the Tomasulo Algorithm

Given property (1.3), the idea of query and data-type reduction is as follows. Firstly, the
property is obviously equivalent to (1.4) below where we distinguish cases by explicitly
considering the functional unit i which shall provide the value for register j.

∀ k, i : TAG, j : REG .G
(
st[k].opr1.tag = i ∧ aux[k].src1 = j)→

(
(st[k].valid ∧ st[k].opr1.valid)→ st[k].opr1.value = aux[k].opr1

)) (1.4)

McMillan calls this path splitting because by the transformation of the formula we
focus on a particular path that, for instance, data may take through the system. In
the example, it involves the source functional unit i, the (whole) destination reservation
station k, and the register of interest j, here assuming the dependency is by the first
operand opr1 (cf. Figure 1.7(b)).

Instead of verifying 1.4 at once, it can be approached case by case, for example first
considering reservation station RS1 for k, functional unit FU2 for i, and a register j.

The idea of Data-Type Reduction is that for the verification of this particular case, it
shouldn’t be necessary to consider the complete behaviour of RS3 and FU3, it should be
sufficient to consider a reasonable abstraction of a functional unit, which emits tagged
values to the bus from time to time, as long as it doesn’t pretend to be FU2.

Following the same thoughts, it shouldn’t be necessary to consider functional unit
FU1, reservation station FU2, and any register except for j. In Figure 1.7(c), abstract
replacements are indicated by stars (“∗”).

Substituting the named components by abstract replacements that are capable of mim-
icking the behaviour of any number of concrete ones, possibly adding some behaviour,
first of all the model-checking task will typically use less time and space to complete
than the one conducted on the whole system. Furthermore, once established, we can
conclude that (1.4), in the particular binding, holds for all instances of the Tomasulo
algorithm with any number of reservation station/functional unit pairs next to RS1 and
FU2 and any number of registers next to register j. The property even holds for an
infinite register file or infinitely many reservation station/functional unit pairs [129].

It is not safe to simply remove all components outside the focused data path because in
the concrete system, the focused components can interact with the others. This possible
interaction has to be preserved.
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Note that the approach can only establish a single, particular case of property 1.4. In
other words, if the property can be established, then it is independent from the number of
accompanying functional units and registers around, but it remains the single, particular
case.

What helps us out is that the Tomasulo algorithm as described above is symmetric in
tag and register numbers, that is, for each run where reservation station k waits for the
value bound for j, there is a run, which is identical up to permutation of identities.

By symmetry, we can conclude from a verification of property 1.4 for the particular
binding above that the property holds for all symmetric bindings, that is, all registers j′

and all pairs k′, i′ of reservation stations and functional units with k′ 6= i′. When tracing
the behaviour of j′, k′, i′ in any computation path of the Tomasulo implementation,
we find that we’ve then already considered a path, which is similar up to exchanging
identities, that is, j by j′ etc.. Note that we can not conclude to the cases with k′ = i′

because in the case we have considered, k is different from i. It is only representative
for the cases with k′ 6= i′.

The proof of property 1.4 can easily be completed by considering one additional case,
for example reservation station RS1 for k and functional unit FU1 for i. Then also
a different abstraction can be used (cf. Figure 1.7(d)) since we don’t need an abstract
reservation station for the concrete functional unit and an abstract functional unit behind
the concrete reservation station as in the case before.

Note that the symmetry in tags and register numbers is a property of this particular
implementation, and not necessarily present in any implementation. For example, if
register number 0 had a special meaning, like constantly yielding the value 0, then there
is not necessarily a run where a reservation station waits for it to complete, thus we
then can’t conclude from using register 0 for j to any other register. To recognise these
symmetries, [124] uses the procedure of [88, 89]. A data-type can be declared to be
a scalarset, that is, to be symmetric, and if variables of this type adhere to certain,
effectively checkable well-formedness rules [88, 89], symmetry is guaranteed.

Alternatively, we will encounter system description languages, like the DCS description
language of [9], where every described system is symmetric in process identities as the
language doesn’t permit to break symmetry.

The Principles Underlying Query and Data-Type Reduction

In the strategy of [129, 127], Query Reduction can be applied to any outermost quantified
temporal logic property. It yields, depending on the number and type of quantifiers, that
is, how many quantified variables of each type are used, a finite set of representative cases.

In the Tomasulo example, tags and registers are two different types. The representative
cases basically represent all possibilities to bind quantified variables of the same type
to different or equal value. Therefore there are two representative cases in the example
in Section 1.4.1, one where the two quantified variables of type tag are equal and one
where they are different.

Given a particular binding of the free variables in a temporal property, the underlying
idea of Data-Type Reduction is to keep the components used within the binding precise
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and to abstract (as coarse as possible) from the rest. In other words, the labels i, j,
and k in Figure 1.7(b) can be seen as putting spotlights on the relevant components and
in Figure 1.7(c) we’ve abstracted from the rest. This abstraction, that is, the function
mapping concrete to abstract systems is sound in the sense that if we can establish the
desired property on the abstract system, then it also holds in the concrete one, but it
may yield spurious counter-examples.

Such an abstraction is only usable for formal verification if the abstract transition sys-
tem can effectively (and efficiently) be computed without enumerating the full, original
transition system.

It is a distinguishing property of Data-Type Reduction that given a description of the
behaviour of the considered system as a program P and given a few pre-requisites on the
language, which we will discuss in detail in Chapter 9, there is an efficient syntactical
transformation of the program P to P ′ which is in the finite fragment of the language
and describes a finite-state system that bisimulates the abstract transition system as
obtained by the mathematical description of the abstraction.1

Note that the abstraction is independent from symmetry and Query Reduction. It
applies to any DTS and any non-quantified formula with a particular binding of the free
variables, but it is then only conclusive for the particular valuation of free variables. The
conclusion to other (or all) combinations of processes is provided by symmetry.

1.4.2. Query and Data-Type Reduction for Dynamic Topology Systems

In [129], it is already recognised that, having established the property once for a par-
ticular binding implies that it holds for any larger instantiations. That is, it holds
as intended for all finite instantiations of the micro-processor with N registers and M
reservation station/functional unit combinations but it also holds for a processor with
infinitely many registers. It was left at that side-note as it may have been considered
not to be of practical use to verify a property for a micro-processor with an infinitely
large register file.

This reasoning immediately seems highly useful if we consider a property like

For all two different cars, c1 and c2, it is never the case that both
consider each other to be the leader.

(1.5)

and want to establish it for an implementation of the Car Platooning application.

Recall the principles of Query and Data-Type Reduction from Section 1.4.1. Like
with the Tomasulo example, we have a quantified temporal property, in this case with
quantification variables c1 and c2. Given a particular binding of the two variables (to
two different cars), the Data-Type Reduction idea applies immediately.

The abstract system then has states similar to the one shown in Figure 1.8(a). The
cars chosen for the particular binding are kept concrete, all other cars are represented
by a special identity represented by the star-labelled node. That is, the links from c2
point to some node different from c1 and c2.

1Less strictly speaking, the outcome of the syntactical transformation is the abstract transition system.
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Figure 1.8.: Data-Type Reduction for car platooning.

An alternative representation is shown in Figure 1.8(b), where the special node is un-
folded into the complement of c1 and c2. One of many possible concretisations is shown
in Figure 1.8(c) as a situation with two platoons and one free agent. If we remove the
spotlight, we obtain the ordinary topology of Figure 1.8(d) as one concretisation of Fig-
ure 1.8(a). Viewed in the opposite direction, Figure 1.8(a) is the abstract representation
of Figure 1.8(d) under Data-Type Reduction.

It is a characteristic of Data-Type Reduction that information about the darkness
is completely lost thus there are in particular no explicit links from the darkness into
the highlighted part remaining in Figure 1.8(b). In contrast, Figure 1.8(b) implicitly
represents all configurations with links originating at the star-labelled node, in particular
the configuration shown in Figure 1.8(c) where there is, for example, a ldr -link from the
shadows to c2 but not to c1.

In the pre-study, we played kind of a trick to employ this abstraction for the ARCS
case study. We thought of encoding the object system with terminal, car, and car handler
in an array program with one array per class, the indices playing the role of identities
just as in the Tomasulo example. In addition, and in difference to Tomasulo, each array
entry obtained a field to encode whether it is currently alive or not to model dynamic
creation and destruction.

Thereby, the overall approach showed as good match for Dynamic Topology Systems,
or object-oriented models, but left more questions open than it answered.

For example, what does the abstraction intuitively do? Why does it work? The nice
pictures in Figure 1.8 are one not to underestimate result of this work: we now have an
individual-oriented view on the abstraction.

Furthermore, what does the abstraction reflect, that is, what properties can we expect
to show? Is it limited to certain classes of properties or models, i.e. is there something
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particular exploited in the Tomasulo example?

Then, how is it practically implemented, why is the computation of the abstract
transition relation fast, and can it really match the theory?

Last but not least, issues of refinement. If the good properties, in particular the easy
computability of the abstract transition relation are to be preserved, then what can be
done to add precision?

1.5. What is the Contribution?

The main and general contribution is an investigation of the implications of the observa-
tion from Section 1.4. That is, an in depth assessment of how the application of Query
and Data-Type Reduction allows to treat the infiniteness of systems introduced by an
unbounded number of processes in presence of dynamic topologies.

In the following, we shall list the major contributions in some more detail. Complete
appreciations of our results, in particular in comparison to the literature, is given at the
end of each of the following chapters.

For the lack of fully adequate computational models of Dynamic Topology Systems, we
firstly contribute a new formal model called ETTS which is basically a topology-labelled
transition system with a new tracing of evolution over time.

Similar to computational models, there is a serious lack of truly adequate requirements
specification logics. A thorough survey conducted in the joint work [11] shows that
there is significant body of proposals for first-order temporal logics, yet they all share
a non-satisfactory treatment of pre-mature disappearance of individuals referenced by
quantified variables.

We propose a new temporal logic we’ll call EvoCTL∗ which is basically the union
of the legitimate features of existing logics, but not more. With certain new results
on monotonicity and definiteness we can show that the design is adequate, and as a
side-effect provide a common formal setting for possible further work on comparison of
the incorporated logics. This is significantly more involved than the indexed temporal
logics considered for parameterised systems and the reachability properties considered
by other approaches.

As QR/DTR is strictly restricted to formulae in prenex normal form, our results on
such normal forms help to estimate the range of properties the approach applies to, we
can in particular confirm that LSCs fall into this class.

Given these pre-requisites, we show soundness of the DTR abstraction employing a new
simulation relation on ETTS which takes evolution into account. One result of stating
DTR in the graph-based setting is a thorough and intuitive understanding of how and
why it works, what can be expected to be reflected, and where strategies for refinement
should start. Most notably, this is the first closed and declarative characterisation, the
original works provide rather an implementation without a good intuition.

Similarly, we introduce QR in the particular setting of DTS based on a notion of
symmetry in identities. As new results we have identified the minimal representative
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set and we discuss singularities, that is, identities breaking symmetry which appear
naturally in object-oriented programs in form of NULL.

Having defined DTR formally, we discuss the issue how to obtain the abstract transi-
tion system effectively. This is not provided by the original work, and later applications
work rather by example.2

To this end, we contribute a high-level description language which resembles both, the
DCS language and a core of UML. On this level, we’re able to discuss further reflection
properties relative to the higher-level description, which cannot be discussed on the level
of general ETTS. Furthermore, we discuss the symmetry issue completely, including
requirements on the particular language instances, like symmetry of communication and
scheduling. Interestingly, a prerequisite for DTR/QR as known seems to be an effective
interleaving semantics.

And for the first time, we discuss in how far the syntactical transformation matches
the theoretical description. We actually find further losses in precision, but are able to
sketch ways to overcome these.

We close the circle by reports on verification case-studies conducted for the two exam-
ples, ARCS and Car Platooning, in their respective formalisms. This shows the principle
effectiveness of the approach to verify scenario properties including true liveness aspects
using our implementation of the procedure from Chapter 9.

1.5.1. Publications

Some of the results have already been published. We shall briefly discuss these publica-
tions in order of appearance.

The investigated observation first appeared in [177, 48], back then with a focus on the
UML dialect and semantics used by the schematic entry tool Rhapsody in C++ [79, 87]
for the description of systems and Live Sequence Charts as property specification lan-
guage. An integrated, revised, and extended version of these three publications resulted
in [49].

In [178], we first reported on experimental results for a simplified version of the ar-
rival procedure of the ARCS case study integrated into the Rhapsody UML Verification
Environment [159].

The aim of the cooperation [9] was to provide a leaner system specification language
to focus on the essential problems with Dynamic Topology Systems, that is, the dynamic
extension of the system and the dynamically changing topology assuming asynchronous
communication.

In the joint work [174], we view DTR as a canonical abstraction (cf. Chapters 5 and 6).
The intuition gained from our closed definition certainly was useful in that undertaking.

Our contribution to [10], where we present an approach to consider topology invariants
obtained via static analysis to refine the abstraction, is already further work from the
perspective of this thesis.

2Most probably because of the incredible tediousness of the complete definition we have.
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1.6. How is it Obtained?

To the joint work [11], we’ve contributed a simplified version of our definition of
EvoCTL∗ and preliminary results on monotonicity and definiteness, which are clearly
marked in the publication. The survey part and the relation to philosophical logic is
completely joint work and not claimed.

1.6. How is it Obtained?

(Or: What is the Structure of the Work?)

The work is split into five parts. The first part comprises this introduction and a
collection of preliminaries for self-containedness.

The second part is dedicated to a formal model of Dynamic Topology Systems. Chap-
ter 3 introduces Evolving Topology Transition Systems (ETTS) and Chapter 4 the com-
plementing requirements specification logic EvoCTL∗.

The third part provides the formal investigation of the QR/DTR approach. Chapter 5
introduces a notion of simulation relation that takes evolution of individuals into account.
It shows that simulation corresponds to over-approximation for the universal fragment
of EvoCTL∗. Proving soundness of DTR in the DTS setting then amount to providing a
simulation relation in Chapter 6. Chapter 7 discusses Query Reduction and Chapter 8
the strategy for a combination of both.

The fourth part is dedicated to the practical application. In Chapter 9, we introduce a
high-level DTS description language and discuss issues like symmetry detection and how
to obtain the abstract transition system effectively. To be of practical use, the chapter
concludes by an encoding of the high-level language, and in particular the finite abstract
transition system in form of ordinary array programs that are amenable to off-the-shelf
finite-state model-checkers. Chapter 10 briefly discusses the two case-studies.

The fifth part comprises only the conclusion, Chapter 11.

21



1. Introduction

22



2. Preliminaries

The sections of this chapter provide standard definitions in order to achieve self-containedness
and to disambiguate our usage or certain standard concepts and notions.

The extension of the respective presentation is driven by the overall characterisation
of this work. Alltogether, it is biased towards the classical transition systems and model-
checking community when it comes to choosing names, notations, and the amount of
further explanation to admit for each topic. For example, by spending more time on the
introduction of Galois connections than on transition systems in the following sections.

The underlying computational model of this work is basically Kripke structures, the
specification language is temporal logic, and the verification approach is based on ab-
straction in the sense of [34]. These basics are readily defined on top of notions of
relations, functions, and sequences as introduced in Sections 2.1 and 2.2.

Yet there are twists which require additional notions. First of all, the states of our
Kripke structures are not labelled with atomic propositions, but by multi-graphs as
introduced in Section 2.3.

The temporal logic is a first order variant over varying domains, hence has to cater for
unexpected disappearance of objects. We solve this by employing three-valued Kleene
logic with the third “indefinite” value 1/2 as introduced in Section 2.5.

In the section on abstraction, we need notions from the theory of abstract interpreta-
tion in the sense of [40], in particular lattices and Galois connections as introduced in
Section 2.4.

2.1. Sets, Relations, and Functions

To avoid confusion, we consistently write N0 to denote the set of natural numbers in-
cluding 0 and N

+ to denote the set of positive natural numbers.1

We use Z to denote the set of integers and Z
− and Z

+ to denote the set of negative
and positive integers, and Z

−
0 and Z

+
0 to include zero. Similarly, we use R and, for

example, R+
0 for the set of real numbers.

Definition 2.1.1 (Disjoint Union). Let A, A1, and A2 be sets. We write A = A1 ∪̇ A2 if
and only if A is the union of A1 and A2, and if A1 and A2 are disjoint, i.e. if A1∩A2 = ∅.
♦

Definition 2.1.2 (Partitioning). Let A be a set. The subsets A1, . . . , An, n ∈ N
+, of A

are called a partitioning of A if and only if

1As the former is the natural and non-debatable meaning of N for many people in computing science
while the latter is the natural and non-debatable meaning of N for many mathematicians.
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2. Preliminaries

1. the subsets are non-empty, i.e. Ai 6= ∅, 1 ≤ i ≤ n,

2. the subsets are pairwise disjoint, i.e. Ai ∩Aj = ∅, 1 ≤ j 6= i ≤ n, and

3. together the sub-sets cover A, i.e. A1 ∪ · · · ∪An = A.

We may write A = A1 ∪̇ . . . ∪̇ An to introduce the partitioning A1, . . . , An of A. ♦

Definition 2.1.3 (Relation). Let A and B be sets. A set r ⊆ A × B of pairs is called
(binary) relation between A and B. We say b ∈ B is in r-relation to a ∈ A if (a, b) ∈ r;
we sometimes use the alternative predicate notation r(a, b), infix notation a r b, or,
primarily in diagrams, a

r
−→ b, to indicate (a, b) ∈ r.

The set {a ∈ A | (a, b) ∈ r} is called the domain and the set {b ∈ B | (a, b) ∈ r}
is called the range of r. We use r−1 to denote the inversion of r, i.e. the relation
{(b, a) | (a, b) ∈ r} between B and A.

A binary relation is called total if and only if each a ∈ A is related to at least one
b ∈ B, i.e. if ∀ a ∈ A ∃ b ∈ B : (a, b) ∈ r. ♦

Definition 2.1.4 (Partial Function, Image of Set, Restriction). Let A and B be sets. A
relation f ⊆ A×B is called partial function, denoted by f : A 7→ B, if and only if each
element a ∈ A is related to at most one b ∈ B, i.e.

∀ a ∈ A ∀ b1, b2 ∈ B : (a, b1) ∈ f ∧ (a, b2) ∈ f =⇒ b1 = b2 (2.1)

A partial function is defined for a ∈ A if and only if a ∈ dom(f). We may write f(a)
to denote the unique b ∈ B, called the image of a under f , if f is defined for a, that is,
when writing b = f(a) we deliberately mean that f is defined for a and b is the image of
a under f . To define a function, we sometimes use the notation {a 7→ f(a) | a ∈ A}.

Let f : A 7→ B be a partial function and A′ ⊆ A; we deliberately use f(A′) to denote
the set of images of elements from A′ under f , i.e. the set

{f(a) | a ∈ A′ ∩ dom(f)}. (2.2)

Let f : A 7→ B be a partial function and C a set; by f |C we denote the restriction of
f to C, that is, the partial function from C to B that coincides with f on C where f is
defined, i.e. f |C = {(c, f(c)) | c ∈ C ∩ dom(f)}. ♦

Definition 2.1.5 (Total Function). Let A and B be sets. A partial function f : A 7→ B
is called (total) function, denoted by f : A→ B, if and only if f is defined for all a ∈ A,
i.e. if dom(f) = A.

If not otherwise stated, we use f−1 : B 7→ A and f−1 : B → A if the inverse of the
relation f is again a partial or total function; f−1 is then called the inversion of f .

In some cases we use f−1(b) to denote the set of pre-images of b under f , that is

f−1(b) = {a | f(a) = b}; (2.3)

if f has an inversion, this set of pre-images comprises exactly one element. ♦
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2.2. Sequences

Definition 2.1.6 (Identity Function). Let A be a set. The function f : A → A with
f = {(a, a) | a ∈ A} is called the identity function on A and denoted by idA. ♦

Definition 2.1.7 (Power-set, Multi-set). Let A be a set. We use P(A) to denote the
power-set of A, i.e. the set of subsets of A, and M(A) to denote the set of multi-sets
over A, i.e. the set of total functions from A to N0.

We use ‘{|’ and ‘|}’ to indicate multi-set comprehension. ♦

2.2. Sequences

Definition 2.2.1. Let A be a set.

1. We use A+ to denote the set of finite sequences over A, that is, the set of sequences

a0, a1, . . . , an (2.4)

with n ∈ N0 and ai ∈ A for each 0 ≤ i ≤ n.

2. We use A∗ to denote the set of finite sequences including the empty sequence ε,
i.e. A∗ := A+ ∪ {ε}.

3. We use Aω to denote the set of infinite sequences over A, that

a0, a1, . . . (2.5)

with ai ∈ A for each i ∈ N0.

4. Given a finite sequence π = a0, a1, . . . , an over A, we use π/k to denote the suffix
of π starting at the k-th element, k ∈ N0, that is

π/k =

{

ak, ak+1, . . . , an , if k ≤ n

ε , otherwise
(2.6)

and we use π(k) to denote the k-th element of π for k ≤ n, i.e. π(k) = ak.

5. Given an infinite sequence π = a0, a1, . . . over A, we use π/k to denote the suffix
of π starting at the k-th element, k ∈ N0, that is

π/k = ak, ak+1, . . . (2.7)

and we use π(k) to denote the k-th element of π, i.e. π(k) = ak. ♦
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2. Preliminaries

2.3. Labelled Multi-Graphs

Definition 2.3.1 (Labelled Multi-Graph). Let ΣV and ΣE be (possibly infinite) sets. A
(ΣV ,ΣE)-labelled multi-graph is a quintuple

G = (V,E,ψ, f, g) (2.8)

of two disjoint (possibly infinite) sets V and E, a total function ψ : E → V × V , and
two partial functions f : V 7→ ΣV and g : E 7→ ΣE.

The elements of V are called vertices of G, the elements of E are called edges of G.
The function ψ is called incidence function. It denotes the two vertices connected by
a given edge. If e ∈ E is an edge and ψ(e) = (v1, v2) is its value under the incidence
function, then v1 and v2 are called initial and terminal vertex of e and denoted by ini(e)
and ter(e).

The function f is called vertex labelling function, the elements of its domain ΣV are
called vertex labels. Analogously, g is called edge labelling function, the elements of ΣE

edge labels.

The vertices and edges of G are referred to as V (G) and E(G), its incidence function
as ψ(G), and its vertex and edge labelling as f(G) and g(G). ♦

Note that we permit the labelling functions to be partial. This is highly unusual
for graphs, but it provides a method to distinguish alive nodes from non-alive ones in
the following chapters in a more natural way than by employing a designated label to
indicate the aliveness of a node.

Definition 2.3.2 (Degree). Let G be a labelled multi-graph. Let v ∈ V be a node and

Ev = {e ∈ E | ψ(e) = (v, v′), v′ ∈ V } (2.9)

the set of outgoing edges. If Ev is of finite cardinality n ∈ N0, then n is called the
(out-)degree of v. ♦

The following definition is necessary because we consider multi-graphs for which a
finite vertex set doesn’t imply that the graph is finite.

Definition 2.3.3 (Finite Labelled Multi-Graph). A labelled multi-graph G is called
finite if and only if both, the sets V (G) and E(G) of vertices and edges, are finite. ♦

As we don’t use unlabelled, simple or undirected graphs in the following, from now
on we may use the term graph to denote labelled multi-graphs in the sense of Def. 2.3.1.

2.4. Complete Lattices, Galois Connections, and Abstract
Interpretation

In the following, we provide the formal basics for (data) abstraction, namely complete
lattices and Galois connections between them. As said in the introduction, we’re biased
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2.4. Lattice Theory

towards the model-checking community regarding our audience. Thus we spend a little
bit more time on motivation in this section than would strictly be necessary for the
actual purpose, rendering this work self-contained.

Note that we don’t need the fixed point theory of the abstract interpretation domain
because our approach is far from classical static analysis, but rather related to temporal
logic model-checking. Our presentation follows [77] and partly [50].

2.4.1. Partially Ordered Sets

Definition 2.4.1 (Partial Order). Let L be a set. A binary relation ⊑ on L, i.e.
⊑⊆ L× L, is called partial order if and only if it is

1. reflexive, i.e. l ⊑ l for all l ∈ L,

2. anti-symmetric, i.e. if l1 ⊑ l2 and l2 ⊑ l1, then l1 = l2 for all l1, l2 ∈ L,

3. transitive, i.e. l1 ⊑ l2 and l2 ⊑ l3 implies l1 ⊑ l3 for all l1, l2, l3 ∈ L.

Given a partial order ⊑, we write l1 < l2 if and only if l1 ⊑ l2 and l1 6= l2. We may
write l2 ⊒ l1 and l2 = l1 for l1 ⊑ l2 and l1 < l2. ♦

Definition 2.4.2 (Partially Ordered Set). A partially ordered set (L,⊑L) is a set L
equipped with a partial order ⊑L, where the index may be omitted if the set is clear from
the context. ♦

Example 2.4.3 (Three valued logic). Let B denote the set of truth-values {0, 1}. We
use B3 to denote the domain of three valued logic, {0, 1, 1/2}. The third truth value 1/2
is also called uncertain (or indefinite).

The relation
⊑:= {(b, b), (b, 1/2) | b ∈ B3} (2.10)

is a partial order on B3. Intuitively, b1 ⊑ b2 read as “b2 is less definite than b1”. ♦

If not otherwise noted, we consider B3 to be equipped with the partial order from
Def. 2.4.3 in the following.

Note 2.4.4.

1. Let b1 ∈ B, b2 ∈ B3. If b2 ⊑ b1, then b2 = b1.

2. Let b ∈ B3. If 1/2 ⊑ b, then b = 1/2. ♦

2.4.2. Join and Meet

Definition 2.4.5 (Upper and Lower Bound). Let A be a subset of the partially ordered
set L.

• l ∈ L is an upper bound of A if and only if it is larger or equal to all elements in
A, that is,

∀ a ∈ A : a ⊑ l. (2.11)
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2. Preliminaries

• l ∈ L is a lower bound of A if and only if

∀ a ∈ A : a ⊒ l. (2.12)

• An upper bound l ∈ L of A is called least upper bound of A if and only if all other
upper bounds of A are larger or equal to l, that is if l′ being an upper bound of A
implies l ⊑ l′.

• Similarly, a lower bound l ∈ L of A is called greatest lower bound of A if and only
if all other lower bounds of A are smaller or equal to l, that is if l′ being a lower
bound of A implies l′ ⊑ l.

If the least upper bound of A exists, it is denoted by
⊔
A and if the greatest lower

bound of A exists, it is denoted by
d
A. To explicate in which partially ordered set L

bounds are formed, we may write
⊔

LA and
d
LA. ♦

Note 2.4.6. Let A be a subset of the partially ordered set L. The least upper and greatest
lower bound of A are unique, if they exist, due to anti-symmetry of the partial order. ♦

Definition 2.4.7. Let L be a partially ordered set. By setting

⊔ : L× L→ L

(l1, l2) 7→
⊔
{l1, l2}

and
⊓ : L× L→ L

(l1, l2) 7→
d
{l1, l2}

(2.13)

we obtain the join and meet operators on L, typically written in infix-notation. ♦

Note 2.4.8. Let L be a partially ordered set. The join and meet operators on L are

• associative, i.e. for all l1, l2, l3 ∈ L,

(l1 ⊔ l2) ⊔ l3 = l1 ⊔ (l2 ⊔ l3) (l1 ⊓ l2) ⊓ l3 = l1 ⊓ (l2 ⊓ l3) (2.14)

• commutative, i.e. for all l1, l2 ∈ L,

l1 ⊔ l2 = l2 ⊔ l1 l1 ⊓ l2 = l2 ⊓ l1 (2.15)

• idempotent, i.e. for all l ∈ L,

l ⊔ l = l l ⊓ l = l, (2.16)

which is a consequence of, for all l1, l2 ∈ L,

l1 ⊑ l1 ⊔ l2 l1 ⊓ l2 ⊑ l1 (2.17)

• absorbing, i.e. for all l1, l2 ∈ L,

l1 ⊔ (l1 ⊓ l2) = l1 l1 ⊓ (l1 ⊔ l2) = l1 (2.18)

♦
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2.4. Lattice Theory

Definition 2.4.9. Let f1, f2 : A → L be two (total) functions from a set A into a
partially ordered set (L,⊑L). We write f1 ⊑ f2 if and only if

∀ a ∈ A : f1(a) ⊑ f2(a). (2.19)

♦

Note 2.4.10. The order on functions as introduced in Def. 2.4.9 is a partial order on
the set of (total) functions between A and L. ♦

Definition 2.4.11. Let f : L → M be a (total) function between two partially ordered
sets (L,⊑L) and (M,⊑M ).

• f is called monotone (or order-preserving) if and only if

∀ l, l′ ∈ L : l ⊑L l
′ =⇒ f(l) ⊑M f(l′). (2.20)

• f is called additive (or join morphism) if and only if

∀ l1, l2 ∈ L : f(l1 ⊔ l2) = f(l1) ⊔ f(l2) (2.21)

• f is called multiplicative (or meet morphism) if and only if

∀ l1, l2 ∈ L : f(l1 ⊓ l2) = f(l1) ⊓ f(l2) (2.22)

• f is called completely additive (or complete join morphism) if and only if

∀A ⊆ L : f(
⊔

LA) =
⊔

M{f(l) | l ∈ A} (2.23)

whenever
⊔
A exists in L.

• f is called completely multiplicative (or complete meet morphism) if and only if

∀A ⊆ L : f(
d
LA) =

d
M{f(l) | l ∈ A} (2.24)

whenever
d
A exists in L.

• f is called isomorphism if and only if it is monotone and if its inverse f−1 exists
and is monotone. The two ordered sets are then called isomorphic and said to be
identical up to isomorphism. ♦

2.4.3. Lattices

Definition 2.4.12 (Lattice). A partially ordered set (L,⊑) is called join semi-lattice if
and only if all pairs of elements from L have a least upper bound in L, that is, for all
l1, l2 ∈ L the least upper bound l1 ⊔ l2 exists in L.

Analogously, it is called meet semi-lattice if and only if all pairs of elements from L
have a greatest lower bound.

It is called lattice if and only if it is a join semi-lattice and a meet semi-lattice. ♦
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{1, 2, 3}

{1, 2} {1, 3} {2, 3}

{1} {2} {3}

∅

(a) (P({1, 2, 3}),⊆,⊤,⊥).

{1, 2, 3}

{1} {2} {3}

(b) ({{1}, {2}, {3}, {1, 2, 3}},⊆,⊤).

1/2

0 1

(c) (B3,⊑,⊤)

Figure 2.1.: Hasse diagrams.

Definition 2.4.13 (Complete Lattice). A triple (L,⊑,⊤) is called complete join semi-
lattice if and only if

1. (L,⊑) is a join semi-lattice,

2. all subsets of L have a least upper bound, that is, for all A ⊆ L, the least upper
bound

⊔
A exists, and

3. ⊤ =
⊔
L.

Dually, a triple (L,⊑,⊥) is called complete meet semi-lattice if all subsets of L have
a greatest lower bound and ⊥ =

d
L.

A quadruple (L,⊑,⊤,⊥) is called complete lattice if and only if

• (L,⊑,⊤) is a complete join semi-lattice and

• (L,⊑,⊥) is a complete meet semi-lattice.

⊤ is also called greatest or top element, ⊥ is also called least or bottom element. ♦

Example 2.4.14 (Lattices).

1. Let A be a set. The power-set P(A) with set inclusion ⊆ as order is a complete
lattice with ⊥ = ∅ and ⊤ = A.

2. Let A be a set. The set

{A} ∪ {{a} | a ∈ A} (2.25)

with set inclusion ⊆ as order and ⊤ = A is a complete join semi-lattice.

We call it the canonical join semi-lattice completion of A.

3. (B3,⊑,⊤) with ⊤ = 1/2 is a complete join semi-lattice.

Note that (B3,⊑,⊤) is isomorphic to the canonical join semi-lattice completion of
B. ♦
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2.4. Lattice Theory

A lattice like (B3,⊑,⊤) can be depicted as a diagram called Hasse diagram. The
elements of B3 provide the nodes and there are edges between immediate successors in
the order relation. An edge going upwards from some l1 to some l2 indicates l1 ⊑ l2.
Figure 2.1 shows Hasse diagrams of the lattices introduced in Example 2.4.14 above

In the following, we only consider complete join semi-lattices and sometimes only write
lattice as a shorthand for complete join semi-lattices if it’s clear from the context that
we don’t mean a (possibly non-complete) lattice in the sense of the Def. 2.4.12.

2.4.4. Galois Connection

Definition 2.4.15 (Galois Connection). Let (L,⊑,⊤) and (M,⊑,⊤) be complete join
semi-lattices. A quadruple (L,α, γ,M) is called Galois connection between L and M if
and only if

1. α : L→M and γ : M → L are monotone functions,

2. ∀ l ∈ L : l ⊑ γ(α(l)), and

3. ∀m ∈M : α(γ(m)) ⊑ m

α is called abstraction (function) and γ is called concretisation (function). If the
two lattices are clear from context, we only use the pair (α, γ) to denote the Galois
connection.

If we read ⊑ as information order, then item 2 ensures that we don’t lose safety by
first abstracting and then concretising again, but we may lose precision.

The following note states that iterating abstraction and concretisation neither gains
nor loses precision. In other words, if (α, γ) is a Galois connection, then γ doesn’t destroy
the precision preserved by α and vice versa.

Note 2.4.16. Let (L,α, γ,M) be a Galois connection.

1. α ◦ γ ◦ α = α and γ ◦ α ◦ γ = γ.

2. If α(l1) 6= α(l2) for l1, l2 ∈ L then γ(α(l1)) 6= γ(α(l2)) and if γ(m1) 6= γ(m2) for
m1,m2 ∈M then α(γ(m1)) 6= α(γ(m2)).

Proof. 1. Let l ∈ L. By Def. 2.4.15, l ⊑ γ(α(l)). As α is monotone, we have
α(l) ⊑ α(γ(α(l))), and thus α ⊑ α ◦ γ ◦ α.

By Def. 2.4.15, we have α(γ(α(l))) ⊑ α(l), thus α ◦ γ ◦ α ⊑ α, and hence α =
γ ◦ α ⊑ α.

The relation γ ◦ αγ = γ follows analogously.

2. Let l1, l2 ∈ L such that α(l1) 6= α(l2). Assume γ(α(l1)) = γ(α(l2)). Then clearly
α(γ(α(l1))) = α(γ(α(l2))) and α(l1) = l2 follows by (1) from above, in contradic-
tion to the premises.

The second part follows analogously.
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Alternatively to Def. 2.4.15, Galois connections can be introduced as an adjunction.

Definition 2.4.17 (Adjunction). Let (L,⊑,⊤) and (M,⊑,⊤) be complete join semi-
lattices.

A quadruple (L,α, γ,M) is called adjunction between L and M if and only if

∀ l ∈ L ∀m ∈M : α(l) ⊑ m ⇐⇒ l ⊑ γ(m). (2.26)

Note 2.4.18 ([77]). (L,α, γ,M) is an adjunction if and only if (L,α, γ,M) is a Galois
connection.

Lemma 2.4.19 ([77]). Let (L,α, γ,M) be a Galois connection.

1. The abstraction function α uniquely determines the concretisation function γ by
γ(m) =

⊔
{l | α(l) ⊑ γ}.

2. The abstraction function α is completely additive.

Note that, in general, Galois connections are defined not only for complete semi-
lattices, but for complete lattices.

As already noted earlier, we don’t do this because the complete join semi-lattices are
sufficient for our purposes, we don’t need the additional properties of full lattices.

2.5. Kleene Logic

Note that in Example 2.4.3, we’ve introduced the logical domain of Kleene logic which
we’ll use to define the semantics of formulae in Chapter 4.

When defining that semantics, we’ll form minima and maxima in B3 = {0, 1, 1/2}.
Given two boolean values a, b ∈ B3, we write min(a, b) and max(a, b) to denote the
smaller and larger value of the two in arithmetic order of the set of rational numbers.
Given a non-empty set of boolean values ∅ 6= A ⊆ B3, we write minA and maxA to
denote the smallest and largest element in A and set min ∅ = 1 and max ∅ = 0.

Note 2.5.1. Let a, b ∈ B3. Then 1−min(a, b) = max(1− a, 1− b). ♦

2.6. Labelled Fair Transition Systems

The definition of labelled (fair) transition system is standard [34]. We always include
the fair case because we need fairness when considering liveness properties of individuals
in an interleaving semantics in Chapter 9.

Definition 2.6.1 (Labelled Fair Transition System). A labelled transition system (LTS)
is a quintuple

M = (S, S0 , R,L, F) (2.27)

of (possibly infinite) sets S and ∅ 6= S0 ⊆ S, a total binary relation R on S, a function
L : S → D , and a set of sets F ⊆ P(S).
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2.6. Labelled Fair Transition Systems

The elements of S are called states of M , the elements of S0 initial states. The relation
R is called transition relation of M , a state s′ ∈ S is called successor of state s ∈ S if
and only if they are in transition relation, i.e. (s, s′) ∈ R. State s is then also called the
source state and state s′ the destination state of r. The function L : S → D is called
labelling function of M , its (possibly infinite) domain D is called labelling domain. The
elements of F are called fairness constraints. The components of M are referred to as
S(M), S0(M), R(M), L (M), and F (M), respectively.

If F comprises only S, i.e. if F = {S}, we may omit the fifth component. ♦

Note that the transition relation is assumed to be total, as usual. The general case
reduces to this special one by adding self-transitions to all states with no outgoing
transition, and in case of ETTS (see below) additional self-evolution of all non-newly
created individuals.

Definition 2.6.2 (Finite- and infinite-state Transition System). A labelled fair transi-
tion system (S, S0 , R,L, F) is called finite-state if the set of states S is finite, otherwise
it is called infinite-state. ♦

For completeness and for reference, the following definition introduces Kripke struc-
tures as a special case of LTS.

Definition 2.6.3 (Kripke Structure).
A finite-state labelled fair transition system (S, S0 , R,L, F) is called Kripke structure if
and only if the domain D of the labelling function L is the power-set of a finite set of
atomic propositions AP, i.e. D = P(AP). ♦

The following definition introduces the standard notions of infinite (fair) computation
paths in LTS. In addition, we’ll need finite variants.

Definition 2.6.4 (Computation Path). Let M = (S, S0 , R,L, F) be a labelled fair tran-
sition system.

1. A sequence

π = s0, s1, s2 . . . (2.28)

of successive states of M , i.e. si ∈ S and (si, si+1) ∈ R, i ∈ N0, is called infinite
(computation) path or path in M from state s0.

A finite sequence

π = s0, s1 . . . , sn (2.29)

of successive states is called finite (computation) path or (computation) path from
s0 to sn in M .

2. Let π = s0, s1, s2 . . . be a path in M . We use π/k to denote the suffix of π starting
at sk and πk to denote the k-th state of π, i.e. π/k = sk sk+1 . . . and πk = sk.
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3. A path π in M is called fair if and only if it each fairness constraint is visited
infinitely often by π, i.e. if

∀C ∈ F : C ∩ inf(π) 6= ∅ (2.30)

where inf(π) denotes the set of states occurring infinitely often in π, i.e.

inf(π) = {s ∈ S | ∀ i ∈ N0 ∃ j ∈ N0 : j > i ∧ π(j) = s}. (2.31)

4. We use Πs(M) and ΠF
s (M) to denote the sets of paths and fair paths in M from

state s ∈ S and Π(M) and ΠF (M) to denote the sets of paths and fair paths from
an initial state. In addition, Πs,s′(M) denotes the set of finite paths in M from
state s ∈ S to state s′ ∈ S. ♦
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3. Computational Model: Evolving
Topology Transition Systems

As we’ll see in the discussion in Section 3.7, there is unfortunately currently not a single
agreed formal model for model-checking the class of systems we’re interested in (cf.
Chapter 1). In the following, we employ a graph-based approach to model states and
employ a classical labelled transition system to model temporal evolution.

To keep the presentation readable, we have separated the motivation from the formal
definitions. In Section 3.1, we discuss the class of “real-world” systems and the corre-
sponding intuitive notions of snapshots, agents, and inter-agent connections along the
Car Platooning example known from Chapter 1. Then we’ll discuss how we formally
model these notions by topologies, individuals, and links in Sections 2.6 to 3.5, and why
we chose these models. For instance, by naming which effects from the “real-world” we
want to see preserved in the formal model and from which we abstract right-away.

Beginning with Section 2.6, which introduces classical labelled transition systems as
the underlying formal computational model catering for system evolution over (discrete)
time, we’ll keep motivational notes to a minimum and only discuss how our choices meet
the requirements named in Section 3.1. The dynamically changing and possibly infinite
number of agents to consider in a particular system snapshot is represented by labelling
transition system states with so-called topologies as introduced in Sections 3.2 and 3.3.

The evolution of particular agents over time, that is, telling which agents newly ap-
peared, remained alive, or will disappear, is captured by an annotation of transition
system transitions with an evolution relation between the agents in the topologies of the
source and destination state. This relation, together with a notion of consistency, which
for instance excludes that an agent is new and non-new at the same time, is discussed
in Section 3.4.

Putting it all together, we obtain the notion of evolving topology transition system
(ETTS) in Section 3.5 and briefly discuss some particular sub-classes, for example the
effects of disregarding evolution of agents over time or disregarding identities, and recall
the relation to array programs.

Section 3.7 discusses the detailed relation between our approach and the numerous dif-
ferent other approaches to formal models of this class of systems, Section 3.6 contributes
definitions of different paradigms to these discussions.
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(i) (ii) (iii)

(a)
id1 id1

σ1.a

(b)
id1

id1

σ1.b

(c)
id2 id1

σ2.c σ1.c

id2 id1

(d)
id2 id1

ldr

flw

σ2.d σ1.d

id2 id1
ldr

flw

(e)
id2 id1ldr

σ2.e σ1.e

id2 id1ldr

(f)
id2

id1ldr

σ2.f σ1.f

id2 id1ldr

(g)
id2

ldr

σ2.g

id2 id1ldr

...
...

...
...

(h)
id1 id2

ldr

σ1.h σ2.h

id1 id2
ldr

Figure 3.1.: Dynamic Topology Systems with re-usable identities and dangling links. Each
column shows a snapshot of car platooning with level of abstraction increasing from
left to right. Time (non-uniformly) increases from top to bottom.
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3.1. Modelling Multi-Agent Systems by Evolving Topology
Transition Systems: The Intuition

In order to motivate the computational model as introduced in this chapter, we shall first
examine a bit closer what the characteristics of the real-world systems we’re supposed
to cover actually are (cf. Chapter 1). To this end, Figure 3.1 shows side by side different
levels of abstraction, from the “real-world” system to an intuition of the formal model.

3.1.1. Multi-Agent Systems

Column (i) of Figure 3.1 shows, with time (non-uniformly) increasing from top to bot-
tom, snapshots of real-world car platooning. That is, a system of (traffic) agents freely
entering and leaving a highway and autonomously negotiating the merge into platoons
(or convoys) with reduced safety distance (cf. Chapter 1).

Firstly, in row (a), there may be a single car cruising on the highway. Later another
car may enter the highway and recognise the first car driving ahead ((b) to (c)). They
may negotiate to form a platoon and reduce the safety distance in between and cruise
on as a platoon (cf. snapshot (d)). After a while, the platoon leader may decide to leave
the highway and to this end break up the platoon. Consequently, the safety distance is
increased again (cf. snapshot (e)). Then the former leader actually leaves the highway,
leaving the former follower in situation (f), which looks similar to snapshot (a). Later in
time, another car may enter the highway and approach the former follower from behind
(cf. snapshot (h)), possibly starting over the procedure to form a platoon.

3.1.2. Multi-Agent Systems with Re-usable Identities and Evolution

Column (ii) of Figure 3.1 takes a more conceptual view. First of all, the cars are dis-
tinguished by unique identifiers or identities. The car present in snapshot (a) has the
identifier id1 and the car appearing in snapshot (b) is assigned identifier id2. When both
have completed the negotiation procedure “merge” to form a platoon in snapshot (d),
they know each other (by identifier), that is, there are (logical) inter-agent connections
between the cars. Car id2 knows that id1 is its leader, as indicated by the ldr connection
in snapshot (d), and car id1 has id2 as follower. These connections first of all indicate
potential communication: the leader may inform the follower of an upcoming braking
manoeuvre and the follower may send a request for splitting the platoon to the leader.
In general, connections indicate that the source of the connection may interact with the
destination. Which needn’t be limited to message communication, but may include ac-
cessing the local memory of the destination for reading or even for writing. This is just
not appropriate for the car platooning model. Cars will in the contrary be interested
in encapsulating their local state from the environment and only communicate with the
environment via a well-defined protocol.

Via the connection to the follower, the leader may initiate a “split” manoeuvre, for
instance in order to leave the highway. At the end of the splitting procedure, the leader
will have given up the connection to its followers, thus the flw connection from id1
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to id2 is gone in snapshot (e). As cars are autonomous agents, the reverse link from
the follower to the leader need not be gone as well at this point in time. That is,
because the connection is logically by identification, the follower may consider car id1

to be its leader even if the car formerly carrying this identification has already left the
highway (cf. snapshot (g)). Making matters worse, the identification may principally be
re-assigned, for instance by some roadside equipment, that recognises cars entering the
highway. Then the formerly dangling connection may again denote a legal destination
for communication. For example, in snapshot (h), car id2 may request a split at car
id1 although the car with identification id1 may now be in free-agent mode such that it
doesn’t expect such requests.

3.1.3. Topologies and Evolution

Finally, row (iii) in Figure 3.1 shows how we’re going to model such multi-agent systems
formally. We’ll discuss three aspects in the following sections. Firstly, snapshots are
represented by graphs, called topologies, whose nodes represent identities. Secondly, over
a sequence of topologies, evolution, that is, which node evolves into which, is indicated
by an evolution relation. And finally, there is a notion of life-cycle defined in terms of
evolution, that is, distinguishing new, alive, or disappearing identities.

Topologies

A snapshot in column (iii) is a graph, which we’ll call topology. The nodes of the graph
are identities, that is, there may be a node even if there isn’t a corresponding car as
in snapshot (g). The reason for choosing identities as nodes instead of agents, i.e. cars
in the particular example, is that agents as nodes would not allow to naturally model
dangling connections and re-use of identities.1 Nodes may principally appear in and
disappear from the graph, but we’ll see later that there is not much practical difference
between a constant graph of possibly unused nodes and a dynamically changing graph
comprising only nodes in use.

Nodes may be labelled with a local state σ and are then called individuals. In the
example, the local state may comprise, for example, the current role of a car, that is,
whether it is acting as a leader or as a follower. The domain of the local state labels
is a priori not assumed to be finite, it may also comprise, for instance, the R-valued
current speed of a car. In Figure 3.1, we depict the label of a node by σi.n, i = 1, 2 and
n the snapshot, and connect it to the node with a dotted line in order to resolve possible
ambiguities.

Note that nodes intentionally need not have a label, the labelling function is only
partial2. In Figure 3.1, for example, node id1 has lost its label in snapshot (g) because
the corresponding car disappeared beforehand. It models that there no longer is a car

1When re-visiting this issue in Section 3.7 where we relate our computational model to other, existing
ones, we’ll see that there are domains where dangling connections and re-use don’t matter or can be
assumed not to exist and that our approach is the more general one.

2Alternatively, one could choose a designated label to indicate that a node doesn’t have a sensible label.
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with this identity on the highway. Thus in particular the result of querying the current
mode or speed of id1 becomes undefined.

Further note that disappearance denotes the point in time when the behaviour of the
considered individual becomes undefined. In the running example, this would be the
case when a car leaves the range of the wireless network. In a different setting, like
object-oriented programs with dynamic creation and destruction of objects this would
clearly be the case after the destructor has completely been executed and the memory
has been reclaimed. Accessing the former object via a now dangling link yields undefined
results.

If the memory-management in the latter setting would guarantee that an access after
destruction would yield the last value after destruction or a defined constant value, it
would be a matter of choice how to map this memory-management into our computa-
tional model. If both, destruction and the guaranteed values after destruction and re-use
are of interest, a natural approach would be to keep the local state label or set it to a
constant value and to shift the aspect of being after destruction into the local state. In
other words, to add a boolean component to the local state σ which indicates whether
the individual has been destroyed.

If re-use in the sense that former dangling links may become valid again later is not of
interest, a natural approach would be to have multiple designated identities like NULL
providing the guaranteed constant value and changing the links at disappearance time.

If one is not interested in the time after destruction, one could simply remove the
local state label from the corresponding identity at the point in time where destruction
completes. In all three cases, re-use would be modelled by a discontinued chain of
evolution (see below).

Edges, which we’ll call links, are directed and are labelled with labels from a finite
alphabet. In Figure 3.1, links are depicted by solid arrows, in the example labelled with
ldr or flw. Note that in general, we don’t assume that links are uniquely determined by
source, destination, and label. For example, one individual is allowed to have multiple
links with the same label to a single identity. Thus formally, topologies are labelled
multi-graphs (cf. Section 2.3).

Evolution over Time

Until now we’ve only discussed single snapshots represented by single topologies, but
not their evolution over time. As we’re considering identities as nodes — instead of
completely anonymous nodes like for example in [190, 191] — at first sight a natural
notion of evolution of individuals could be to consider an individual to evolve between
two topologies if and only if its identity is present and labelled in both topologies.

For example, the combination of identity id1 being labelled by σ1.a in snapshot (a)
and by σ1.b in snapshot (b) would mean that a particular car with identity id1 evolved
from local state σ1.a to σ1.b between the two snapshots.

At second sight, this notion falls short of sensibly capturing evolution in the presence
of re-use of identities. As an example consider the two steps from snapshot (f) over
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Figure 3.2.: Life-cycle of individuals in terms of being labelled with a local state and being
source or destination of an evolution.

snapshot (g) to snapshot (h). In the corresponding topologies we have exactly the
situation just described: node id1 is labelled with local state σ1.f in topology (f) and
with local state σ1.h in topology (h) but these are the local states of different cars. The
evolution of the car denoted by id1 in snapshot (f) actually ended in snapshot (f) and a
different car obtained identity id1 in snapshot (h). From there on, it may evolve or even
choose to immediately leave the highway again, that is, choose not to evolve.

For this reason, we adopt a more elaborate approach, principally following [190, 191]
where evolution of anonymous objects is explicitly traced. Similarly, we consider an
explicit evolution relation between the sets of individuals of different topologies. In
Figure 3.1, this relation is indicated by dashed arrows between nodes. These arrows
indicate, for example, that the car from snapshot (a), or, more general, the agent denoted
by identity id1 in snapshot (a), evolves until snapshot (f) and then leaves the highway.

Life-Cycle

From the description of the previous section, we can tell that our model distinguishes a
four-phase life-cycle of individuals: an individual, i.e. a labelled identity, can be

1. newly created, that is, alive for the first point in time,

2. just alive,

3. disappearing, that is, alive for the last point in time, and

4. none of the three phases, where we strictly speaking don’t even have an individual
but only an identity.

The combination of the evolution relation and the labelling of the node indicates
in which phase of its life-cycle an agent is in a certain topology. Partly anticipating
Chapter 4, Figure 3.2 shows all possible cases an individual might face. Like in column
(iii) of Figure 3.1, a topology is rendered as an ellipsis, individuals as circles, and labels
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3.1. Intuition

are attached to individuals via dotted lines. The dashed lines indicate the evolution
relation, which may originate at an individual in a previous topology which is not shown
in Figure 3.2. The individual we’re interested in is the one rendered with a solid gray
interior in each case.

First of all, an individual is alive, denoted by the symbol ⊚, if and only if it is labelled
with a local state σ. This is the case for all situations in Figure 3.2 except for the cases
3.2(i) to 3.2(l) in the bottom row.

An individual is newly created, as denoted by the symbol ⊙, if and only if it is alive
and didn’t evolve along the transition to the current topology. In Figure 3.2 this is the
case for the four cases 3.2(a), 3.2(d), 3.2(e), and 3.2(h). It is not the case for case 3.2(i)
although there is no incoming evolution relation, because in this case the considered
individual is not labelled, thus not alive.

An individual is disappearing, that is, alive for the last point in time as denoted by the
symbol ⊗, if and only if it is alive and isn’t in evolution relation with another individual
or if it is but the other individual is not alive. The former criterion holds for cases 3.2(c),
3.2(d), 3.2(g), and 3.2(h), the latter for the whole middle row.

Note that an individual cannot be newly created or disappearing without being alive
but it may be only alive as demonstrated by case 3.2(b).

From this brief discussion we can already tell that there are some cases where the
evolution relation is redundant. Firstly, there are two indications that an individual
disappears: it may not evolve, like in cases 3.2(c) to 3.2(k) and 3.2(d) to 3.2(l) in the
lower two rows of Figure 3.2, or it evolves into an unlabelled identity, like in cases 3.2(e)
to 3.2(h) in the middle column of Figure 3.2. Secondly, the evolution relation doesn’t
change our view on unlabelled nodes, that is, identities not in use by an alive individual
like in cases 3.2(i) to 3.2(l) in the right column of Figure 3.2. The notions of being newly
created or disappearing is simply not defined for non-alive individuals.

But without the evolution relation we obtain ambiguous situations. For example,
without the evolution relation we couldn’t distinguish case 3.2(a) from 3.2(d), that is,
couldn’t tell whether a re-use of the gray marked identity takes place as in case 3.2(d)
or not as in case 3.2(a).

3.1.4. Overview and Graphical Representation

Table 3.1 provides an overview over the concepts mentioned in the previous sections and
provides references to the places in the following text where they are formally defined.

The left two columns of Table 3.1 are related to columns (i) and (ii) of Figure 3.1 and
Section 3.1.1 and 3.1.2. The right three columns are related to column (iii) of Figure 3.1
and Section 3.1.3.

Figure 3.3 graphically illustrates the concepts from Table 3.1, showing the graphical
representation of the modelled system and the formal representation side by side. In
the following, we will adhere to the graphical representations introduced in Figure 3.3 in
order to illustrate definitions, discussions, or examples, but note that we may omit some
of the annotations or relations shown in Figure 3.3 when they are clear from context or
not relevant for the illustrated context.
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“real-world” example model name alter. names cf.

system car pla-
tooning

labelled
transition
system

ETTS DCS Def. 3.5.1,
p. 57

snapshot highway labelled
multi-
graph

topology world, con-
figuration,
situation,
global state,
state

Def. 3.2.1,
p. 45

agent car labelled
node

individual object,
process

Def. 3.2.1,
p. 45

agent’s state free-agent node label (local)
state

state, mode Def. 3.2.1,
p. 45

unique
identifier

network
address

node,
identity
mapping
into nodes

identity name Def. 3.2.1,
p. 45

inter-agent
connection

leader edge link channel,
pointer,
reference

Def. 3.2.1,
p. 45

system
evolution

merge
procedure

ETTS
transition

transition - Def. 3.5.1,
p. 57

agent
evolution

become
leader

evolution
relation

evolution - Def. 3.4.1,
p. 51

agent
appearance

car enters
highway

didn’t
evolve

newly
created

object
creation

Def. 3.4.1,
p. 51

agent disap-
pearance

car leaves
highway

evolves in-
to unlabel-
led, if

disap-
pearing

object
destruction

Def. 3.4.1,
p. 51

Table 3.1.: Concepts and names introduced in this chapter. The “real-world” column
gives the name we’ll use to refer to the phenomena we’re modelling, like agents. The
next column mentions examples or instances of theses names.
The middle column lists the mathematical means we use to model the corresponding
concepts and column labelled “name” gives the name we’ll use throughout this work
to denote parts of the model.
The rightmost column provides alternative names used in related works for the
corresponding concept. We shall avoid these alternative names in the following.
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Figure 3.3.: Graphical representation of the concepts and names introduced in this chapter
(cf. Table 3.1). We elaborate on the right-hand side pictures in Figure 3.4 and
Example 3.2.2.

3.2. Topologies

As discussed in Section 3.1, a topology is basically a labelled multi-graph with nodes
taken from a fixed set of identities and with the uncommon partial node-labelling.

The set of identities is assumed to be equipped with a three-valued function comparing
for identity. This function can be thought of as the natural equality relation until
Chapter 5 on abstraction, where we’ll have identities which compare neither equal nor
unequal to itself.

Similarly, the definition of alive and non-alive individuals is already prepared for the
needs of abstraction in Chapter 5 where we’ll have individuals which are both alive and
non-alive.

Definition 3.2.1 (Topology). Let (Id, eqId) be a (possibly infinite) set of identities
equipped with an equality function eqId : Id × Id → B3 and let Σ and Λ be (possibly
infinite) sets of local states and link names.

A tuple

G = ((U⊚, U 6⊚), L, ψ, σ, λ) (3.1)

is called (Σ,Λ)-topology over Id, topology for short, if and only if

(U⊚ ∪ U 6⊚
︸ ︷︷ ︸

=:U

, L, ψ, σ, λ) (3.2)

is a (Σ,Λ)-labelled multi-graph with U ⊆ Id, σ : U 7→ Σ total on U⊚ (and partial on
U 6⊚), and λ : L→ Λ total.
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The elements of U⊚ are called individuals (or alive), the elements of U 6⊚ are called
non-alive, and the elements of L are called links. Given an identity id ∈ U , σ(id) is
called the local state of id; given a link ℓ ∈ L, λ(ℓ) is called the name of ℓ.

We assume associated with link name λ ∈ Λ of topology G a set dom(λ) as the do-
main of link navigation and a function λ : U → dom(λ) providing link navigation.
We may write idλ in in-fix notation to denote λ(id).

The components of G are referred to as U⊚(G), U 6⊚(G), their union as U(G), L(G),
ψ(G), σ(G), λ(G), and G

λ , respectively. ♦

If not otherwise noted, eqId is defined as

eqId(id1, id2) =

{

1 , if id1 = id2

0 , otherwise
(3.3)

and the domain of all link navigation functions is M(Id), the set of multi-sets over Id,
and each function yields for identity id the multi-set of the destinations of all links with
source id and name λ, that is

λ(id) = {|id0 7→ |{ℓ ∈ L | λ(ℓ) = λ ∧ ψ(ℓ) = (id, id0)}| | id0 ∈ U |}. (3.4)

Note that U⊚ and U 6⊚, and thus the derived notions of being alive or non-alive, are a
priori not disjoint. This will, as said above, turn out useful in the section on abstraction
where identities may indeed be alive and non-alive at the same time.

In this and the subsequent chapter though, where we’re referring to concrete topolo-
gies, one can in most cases think of both sets as being disjoint.

The notion of finiteness carries over from graphs, i.e. from Def. 2.3.3, to topologies.

Example 3.2.2 (Topology). Let Id ⊇ {id0, id1, . . . , id27} be a set of identities with
natural equality, Σ a set of local states, and Λ = {ldr,flw} a set of link names.

Then
G = ((U⊚, U 6⊚), L, ψ, σ, λ) (3.5)

with

• U⊚ = {id0, id1, id2, id27}, U
6⊚ = {id4, id5},

• L = {ℓ0, ℓ1, ℓ2, ℓ3},

• ψ = {ℓ0 7→ (id0, id1), ℓ1 7→ (id1, id2), ℓ2 7→ (id2, id1), ℓ3 7→ (id2, id0)},

• σ = {id0 7→ σ0, id1 7→ σ1, id2 7→ σ2, id27 7→ σ3},

• λ = {ℓ0 7→ ldr, ℓ1 7→ flw, ℓ2 7→ ldr, ℓ3 7→ flw}.

is a (Σ,Λ)-topology over Id.

Figure 3.4(a) introduces the graphical representation of topologies on the example of
G, Figure 3.4(b) a possible “real-world” Car Platooning snapshot modelled by topology
G. ♦
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G

u0 u1:σ1

u2

id27

u4

σ3

ℓ0 ldr

ℓ2
ldr

ℓ1
flw

ℓ3

flw
-

(a)

ldr ldr

flwflwu3 = id27
u0 u2 u1

(b)

Figure 3.4.: Graphical representation of topologyG from Example 3.2.2 following Figure 3.3.
A topology G is basically represented as a node and edge labelled graph, enclosed in
an ellipsis. The ellipsis indicates the extension ofG, that is, the set of alive and non-
alive identities from U⊚ and U 6⊚, but identities irrelevant for a certain illustration
needn’t be shown, in particular unlabelled identities are typically omitted, e.g. u5.
Identities are represented by a circle. The identity from Id may be shown next to
a circle denoted by the name id ∈ Id, e.g. id27, alive ones alternatively by ui.
If the local state of an individual is shown, it either follows the identity separated by
a colon, e.g. u1, or is connected to the circle by a dotted line, e.g. id27. To explicate
that an identity is unlabelled, it may be rendered with a dash within the circle as
shown for u4. Unlabelled identities are typically only shown if they’re affected by
dangling links.
Links from L are depicted by arrows between identities which may be labelled with
the link name. The gray labels in Figure 3.4 are only shown for completeness, to
explicate the connection between L, ψ, and λ. Links not relevant for a certain
illustration may be omitted.

flw

ldr

(a) Different single links.

NULL

ldr

(b) Single link and designated NULL.

flw[1]

flw[2]

(c) Possibly unbounded arrays of links.

flw

flw

(d) Sets of links.

Figure 3.5.: Different notions of agent connections.
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Note that the weak restrictions on links in Def. 3.2.1, firstly, that there may be multiple
links of the same name, and secondly, that the set of labels needn’t be finite, provides
for the coverage of a broad range of paradigms (or classes) of agent interconnection.
Namely, we can have

• at most one link per link name to individuals, for example connecting leader and
follower in a platoon; the leader link, for instance, is simply absent if a car doesn’t
have a leader (cf. Figure 3.5(a)), if all topologies have this form, we’ll say it has
the single-link property (cf. Def. 3.2.3),

• alternatively, a car not having a leader can be modelled having the ldr -link point
to a designated NULL identity (cf. Figure 3.5(b)),

• the previous models allow to represent followers as kind of a singly linked list (for
instance, cf. Figure 3.4), alternatively they can be kept in an array; then each flw[i]
is simply a link name (cf. Figure 3.5(c)), and

• alternatively, an unbounded number of followers can be modelled as a set of links,
that is, by having many links with the same name (cf. Figure 3.5(d)).

There may even be multiple links with the same name between two individuals, which
corresponds to multi-sets of links (in Figure 3.5(d), there could be an additional link
with name flw from the left-most individual to one of the two on the right).

Definition 3.2.3 (Single-Link Property). A topology G has the single-link property if
and only if for each pair of identities id1, id2 ∈ U(G) and each link name λ ∈ Λ(G),
there it at most one link ℓ ∈ L(G) with name λ from identity id1 to id2, i.e.

∀ ℓ1, ℓ2 ∈ L(G) : (ψ(G)(ℓ1) = ψ(G)(ℓ2) ∧ λ(G)(ℓ1) = λ(G)(ℓ2))

=⇒ ℓ1 = ℓ2.
(3.6)

♦

Note that alternatively, we can give an analogous definition of a c-link property for
any number c ∈ N

+. Then the class of topologies with the single-link property is
identical to the class of topologies with the 1-link property. Further note that the class
of topologies with the c-link property is isomorphic to the class of topologies with the
single-link property if we use Λ×{1, . . . , c} as link names, that is, if we explicitly count
the multiplicity of links in link names.

This property will be useful in Chapters 6 and 9 to tell when the abstraction for a
topology-labelled transition system is finite. Because if we don’t have the single- or
c-link property, there may be infinitely many links in a topology even if there are only
finitely many individuals.

A distinguishing feature of our model over more natural graphs as employed in [7, 12]
or first-order logical structures, as in [190, 191], is that we can represent all kinds of
nasty effects emergent in dynamic topology applications.
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Dangling links as introduced in the following, that is, links from an alive individual to
non-alive individuals, are among the most prominent ones. In a clean graph or logical
structure setting in contrast, disappearance of a node causes immediate disappearance
of all adjacent links. We will classify ETTS along these concepts in more detail in
Section 3.6.

Definition 3.2.4 (Dangling Link). A link ℓ ∈ L(G) of a topology G is called dangling
if and only if its destination is non-alive, i.e. if ψ(G)(ℓ) = (u, u′) and u′ ∈ U 6⊚(G). ♦

A second effect we’re able to model is re-use of identities. For example in pointer
programs, a chunk of memory denoted by a dangling pointer may later be re-used for
another newly created object (also cf. Section 3.1).

The following definition generalises the untyped topologies of Def. 3.2.1 to typed ones.
Definition 3.2.1 is then the special case with only a single subset of Id providing the
partitioning

Typing doesn’t affect most of the following definition, and on the level of transition
systems we needn’t be aware of the further structure. Typing will be considered in
Chapter 4 where the specification logic is defined and in the later sections on abstraction,
in particular Chapters 6 and 9. One of the properties of the abstraction considered in
Chapter 6 is that it is sensitive to typing information in the sense that different types
are treated differently.

Definition 3.2.5 (Typed (Or: Many-sorted) Topology). A (Σ,Λ)-topology G over iden-
tities Id is called typed if and only if

• Id and Σ are partitioned into n partitions

Id1 ∪̇ . . . ∪̇ Idn and Σ1 ∪̇ . . . ∪̇ Σn, (3.7)

• individuals from Idi are assigned local states from Σi by σ, i.e.

σ|Idi
: Idi 7→ Σi (3.8)

for 1 ≤ i ≤ n,

• links with the same name connect individuals from the same partitions, i.e.

∀λ ∈ Λ∃ 1 ≤ i, j ≤ n∀ ℓ ∈ L(G) : λ(ℓ) = λ =⇒ ψ(ℓ) ∈ Idi × Idj . (3.9)

The relation between linknames λ and partitions Idi and Idj is called the typing of
link names.

It is called many-sorted if n > 1 and single-sorted otherwise. We call Idi the sort of an
individual. ♦

Finally note that the sets Σ of local states and Λ of link names give hints on how the
topologies may look like, but they don’t completely determine the possible topologies –
they furthermore depend on, for example, the multiplicity (or degree) of links, that is,
whether there may be at most one link of a given name originating at each individual
(see above), or N ∈ N

+, or arbitrarily many.
We leave this underspecified here, the higher-level languages in Chapter 10 will briefly

discuss how to impose restrictions, like that links are understood to be single links.
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3.3. TTS: Topology-Labelled Transition Systems

The simplest model of applications with dynamically changing topologies is an LTS
whose states are labelled with topologies over a common vocabulary of local states and
link names. These are introduced as TTS in Def. 3.3.1 below.

In TTS, individuals in topologies of different states are a priori not explicitly related.
Consequently there is not yet a notion of being newly created or disappearing, because
these notions are intrinsically connected to considering individuals at different states
being related.

For completeness, we also distinguish disjoint-universe TTS, where the topologies
of different states use disjoint sets of nodes although this doesn’t make a semantical
difference for TTS, but it will make a difference for ETTS, the next stage.

Definition 3.3.1 (Fair Topology Transition System). A labelled fair transition system

M = (S, S0 , R,L, F) (3.10)

is called (fair) (Σ,Λ)-topology transition system (TTS) over Id if and only if L : S → D

assigns each state a (Σ,Λ)-topology over the set of identities Id.

Let s ∈ S be a state of M . The topology L (s) is then called the topology of s and
we write, e.g., U⊚(s) to access the components of the state’s topology, that is, as an
abbreviation for U⊚(L (s)).

We say the TTS M is of the disjoint-universe kind if and only if the topologies of
all states have pairwise disjoint sets of identities, that is, if U(s) ∩ U(s′) = ∅ for all
s 6= s′ ∈ S(M), otherwise it’s said to be of the shared-universe kind.
M is called typed if all topologies are typed with the same typing of link names. ♦

In other words, the notion of identity in TTS is a rather local one. This is different
to the ETTS defined in the following section. From there on, we have the option to also
consider identities to be meaningful across topologies of different LTS states, and may
ask questions like whether the car denoted by identity id may become a leader within at
most three steps from now.

In particular note that the notion of TTS is not yet sufficient to faithfully model the
systems discussed in Section 3.1. But they are principally still useful; in Section 3.7
we’ll discuss a number of related approaches where one wants to abstract from (global)
identities right-away.

For example, if we would only be interested in whether an illegal connection, where two
cars mutually consider each other to be the leader, is possible, then to prove the absence
of this situation, we needn’t necessarily trace which car is which in what situation. For
instance, [7, 12] follows this principle.

3.4. Evolution Relation

The final missing concept is evolution, that is, in particular providing the information
whether an individual is new, going to disappear, or none of both (cf. Figure 3.2). We
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will provide it by annotating transitions with an evolution relation3 as defined in the
following.

Note that the definition is slightly more general than necessary for our primary pur-
pose, namely the investigation of the DTR abstraction [127] in Chapter 6. There, we
will only consider linear evolution (see below), while the general definition also provides
notions of merging and splitting, which don’t directly correspond to, e.g. in the Car
Platooning application, but could serve to represent whole platoons by a single node of
type “platoon” next to cars.

Still, the general definition allows us to define the specification logic in Chapter 4 for
the general case, and to compare other approaches to ours in our terms in Section 3.7.

Definition 3.4.1 (Evolution Relation). Let M be a TTS over identities Id.

1. Let r = (s, s′) ∈ R(M) be a transition of M . A relation e〈r〉 between the identities
in the topologies of the source and the destination state of r, i.e. e〈r〉 ⊆ U(s) ×
U(s′), is called evolution relation of r.

We call it linear if and only if it is an injective partial function, i.e. e〈r〉 : U(s) 7
U(s′). We call it summarising if and only if it is non-injective and splitting if and
only if it is not a partial function.

It is called identity-preserving if and only if e〈r〉 doesn’t relate different identities,
i.e. if (id, id′) ∈ e〈r〉 implies id = id′.

2. Let e〈r〉 be an evolution relation of a transition r = (s, s′) ∈ R(M) of M .

a) We say an individual u ∈ U⊚(s) evolves into u′ ∈ U(s′) along r, denoted by

u
r
 e u

′ or (alternatively) u
(s,s′)
 e u

′, (3.11)

if and only if (u, u′) ∈ e〈r〉.

b) An individual u ∈ U⊚(s) is said to disappear along r, denoted by

u
r
 e or (alternatively) u

(s,s′)
 e , (3.12)

if and only if u is not in the domain of e〈r〉, i.e. u /∈ dom(e〈r〉), or if u evolves

into a non-alive identity, i.e. u
r
 e u

′ and u′ ∈ U 6⊚(s′).

c) An individual u ∈ U⊚(s′) is said to appear or be newly created along r,
denoted by

r
 e u or (alternatively)

(s,s′)
 e u, (3.13)

if and only if u is not in the range of e〈r〉, i.e. u /∈ ran(e〈r〉), or if u is not
alive in s, i.e. u ∈ U 6⊚(s).

3Called counterpart relation in [116].
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3. Let π = s0, s1 . . . , sn be a finite computation path in M such that each transition
ri = (si, si+1), 0 ≤ i < n, has an evolution relation e〈ri〉.

We say an individual u ∈ U⊚(s0) evolves into u′ ∈ U(sn) along π, denoted by

u
π
 e u

′, (3.14)

if and only if there are individuals ui ∈ U
⊚(si), 0 < i < n, such that

u
r0
 e u1

r1
 e u2 . . . un−1

rn−1

 e u
′. (3.15)

Such a sequence of individuals u, u1, u2, . . . , u
′ is called (finite) evolution chain of

u. An evolution chain may be infinite if the individual doesn’t disappear.

4. Let π = s0, s1, s2 . . . be a computation path in M such that each transition ri =
(si, si+1), i ∈ N0, has an evolution relation e〈ri〉.

Given a identity id ∈ U(s0), we use ∆(id, π) to denote the set of maximal finite
and infinite evolution chains of id along π (the destiny of u), i.e. the set

∆(id, π) = {{u0, u1, . . . , un} maximal | u0 = id, ui
si,si+1

 e ui+1, 0 ≤ i < n}

∪ {u0, u1, . . . | u0 = id, ui
si,si+1

 e ui+1, i ∈ N0}.

(3.16)

5. An evolution annotation of M is a mapping e : R→ P(Id× Id) which assigns each
r ∈ R an evolution relation e〈r〉. An evolution annotation is called linear if and
only if each evolution relation is linear, and summarising or splitting if and only
if at least one evolution relation is summarising or splitting. ♦

Note 3.4.2. Let M be a TTS and u ∈ U(s) an individual. Then by Def. 3.4.1, u evolves

into itself along the empty path prefix ǫ, i.e. u
ǫ
 e u. ♦

Having defined evolution as a relation (instead of a function) is rather weak. It obvi-
ously covers the natural four-phase life-cycle of individuals as introduced in Section 3.1.3
(cf. Figure 3.6(a) and Figure 3.6(b)). In addition, it principally allows for summarisa-
tion, for example Figure 3.6(c) can be viewed as id representing both, id1 and id2, in the
second state. Complementary, it allows for splitting, so Figure 3.6(d) can be seen as id
representing two identities which are unfolded into id1 and id2 in the last transition.

In the following, we will start with linear evolution and even restrict it further such that
identities only evolve into itself and call this consistent evolution in Def. 3.4.4. Then, for
instance, the evolution annotation shown in Figure 3.6(a) would not evolve consistently if
u was different from u′ (cf. Figure 3.7(c) vs. Figure 3.7(e)). This assumption is natural
as, for instance, cars in the car platooning example don’t merge into single cars and
objects in object-oriented programming don’t merge either. But as said above, one may
wish to model Car Platooning with types for cars and platoons. A different application
is in summarising abstractions where abstract nodes represent variable sets of concrete
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→
u

→
u′

→

(a) Appearance, Evolution, and Disappearance.

→ →

(b) Linear evolution annotation.

id1

id2
→

id0

→

(c) Non-linear, summarising evolution annotation.

→
id0

→
id1

id2

(d) Non-linear, splitting evolution annotation.

Figure 3.6.: Evolution and evolution annotation. A dashed arrow between nodes indicates
an evolution relation between individuals. The arrows from and to locations outside
the topologies in 3.6(a) emphasise that some individuals didn’t or won’t evolve, they
are typically omitted.
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nodes (cf. Section 3.7 and Chapter 5). We don’t consider such abstractions, but with
the general definition of evolution, they can be seen as proper ETTS (cf. Section 3.5)
with merging and splitting.

We’ll see in the Chapter 4 on requirements specification logic, that the formal seman-
tics doesn’t depend on this aspect of consistency; we “only” lose a direct intuition of
what it means for certain formulae to hold or not to hold when permitting inconsistent
evolution.

When redefining consistent evolution to a sense where it is sufficient that an identity
id evolves into another identity which is equal to or represents id, we can have finite
abstractions of infinite TTS where we still have a well-defined semantics of property
specification formulae. This would not be possible by just annotating “this one does
evolve” to an individual, which is obviously sufficient to encode linear evolution.

Note 3.4.3. Let M be a TTS over identities Id. Let π = s0, s1, s2 . . . be a computation
path in M such that each transition ri = (si, si+1), i ∈ N0, has an evolution relation
e〈ri〉.

Given an identity id ∈ Id, its evolution chain is the empty sequence if and only if id
is not an individual in s0, i.e.

∆(id, π) = {ε} ⇐⇒ id /∈ U⊚(s0). (3.17)

♦

Proof. Distinguish two cases, namely whether id is an individual in s0 or not.

Let identity id ∈ Id be not alive in s0, that is, id /∈ U⊚(s0). Any sequence different
from the empty sequence is not a legal member of ∆(id, π) because evolution is only
defined for individuals (cf. Def. 3.4.1.2a). The empty sequence ε is a legal member
of ∆(id, π) because it is consequently maximal and the set-comprehension requirement
trivially satisfied as there is no index i to consider.

Let identity id ∈ Id alive in s0, that is, id ∈ U⊚(s0). Then ε is not in ∆(id, π) because
if id doesn’t evolve, then the sequence id is in ∆(id, π), and if id does evolve, then there
is a sequence with id and a successor id′ in ∆(id, π). Thus ∅ is not maximal as both
cases are proper extensions of ε.

The other aspect of the evolution relation, next to tracing who evolves into whom,
is that it encodes appearance and disappearance. An individual is considered to be
disappearing in a certain state of a path, that is, alive for the last point in time, if it will
not evolve along the transition that relates the current to the next state in the path.

In contrast, it is considered to be new in a certain state, that is, alive for the first
point in time, if it didn’t evolve along the transition which led to the current state.
By this description, we’d have to look back in time. In the definition of the property
specification logic in Chapter 4, we want to avoid looking back in time, that is, define
appearance only in terms of a path suffix.

To this end, we introduce consistent appearance below. Intuitively, it requires that
if an individual appears newly in a state, then it does so along all incoming transitions
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id1
→ id2

→ id3

(a) Inconsistent evolution if id1 6< id2 and id1 6= id2.

→

→

(b) Inconsistent appearance.

id1

→

→

id0

id0

→

→

id2

id3

(c) Consistent if id0 is the top element.

id1

→

→

id1

(d) Consistent evolution.

id1

→

→

id1

id1

→

→
id1

(e) Consistent evolution.

Figure 3.7.: Inconsistent vs. consistent evolution.

of that state (cf. Figure 3.7(b)). Then we can decide newness by considering the state
only.

Note that this treatment of appearance and disappearance has the disadvantage of
being unsymmetric in the sense that we need to establish additional requirements in order
to define appearance, which we don’t need for disappearance. This may correspond to
the observation that it is perfectly legal that an individual appears along one transition
while it remains alive along another one (cf. Figure 3.7(d)), while it seems strange to
have appearance along some but not along other transitions.

On the other hand, our treatment has the advantage that it is symmetric in the sense
that both notions, being new and being disappearing, lie naturally within the lifetime
of an individual, i.e. the individual is also alive at both points in time (cf. Figure 3.3 on
45). This is similar to the approach of [57] while, for instance, [190, 191] chose to have
an artificial state of individuals denoting that the individual has last been alive in the
previous state.

Definition 3.4.4 (Consistent Evolution Annotation). Let M be a TTS over Id. An
evolution annotation e of M is called consistent if and only if the following two conditions
are met.

1. (Consistent Appearance) If an individual appears newly in a state s′ ∈ S, then it
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doesn’t evolve along any transition with destination s′, i.e.

∀ (s1, s
′) ∈ R ∀u ∈ U(s′) :

(s1,s′)
 e u =⇒

(

∀ (s2, s
′) ∈ R :

(s2,s′)
 e u

)

.
(3.18)

2. (Consistent Evolution) If (Id,⊑) is a partially ordered set, identities evolve into
⊑-related identities, i.e.

∀ r ∈ R(M) ∀ (id, id′) ∈ e : id ⊑ id′ ∨ id′ ⊑ id. (3.19)

♦

The rationale behind the definition of consistent evolution is to disallow unconstrained
changes of identities. Our intuition is that an evolution relation is either identity-
preserving, and thus only an expensive encoding of appearance and disappearance, or
adheres to an information order on individuals.

In the first case, the encoding is expensive because it would be sufficient to simply
annotate to a transition the set of identities remaining alive, because in this case, the
evolution relation consists of pairs of the same identity, which doesn’t carry more infor-
mation.

Alternatively, one can think of annotating being new, alive, or disappearing directly
to the individuals. Annotating disappearance is not an option because disappearance is
a property depending on the taken transition, not on the state (cf. Figure 3.7(d)); on
the other hand, appearance is actually not a property of transitions but rather one of
states (cf. discussion related to Def. 3.4.4).

Allowing evolution between individuals that are related by an information order pro-
vides means to capture summarisation and splitting, and in particular treat them in the
evolution chain-based interpretation of quantification (cf. Chapter 4). In the following,
we will in most cases consider equality as partial order, which has the consequence that
the evolution relation is linear and identity-preserving, thus not very involved.

Note 3.4.5. Let M be a TTS over (Id,=) and e a consistent evolution annotation of
M with respect to the equality relation as partial order. Then

1. e is linear.

2. e is identity-preserving.

Proof. Let M be a TTS over (Id,=) and e a consistent evolution annotation. Let
r ∈ R(M) be a transition and e its evolution annotation. Let (id, id′) ∈ e.

As the evolution annotation is consistent, id and id′ are partially ordered, thus id = id′

because we assumed equality as partial order. Thus e is identity-preserving.

It is also linear because assuming id1 and id2 to evolve into id or id to evolve into id′1
and id′2 leads to the consequence that id1 = id2 and id′1 = id′2.
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As TTS in general have an infinite number of states and transitions, we unfortunately
have the following restriction.

Note 3.4.6. Let M be a TTS and e an evolution annotation of R(M). In general, it is
undecidable whether e is consistent or not. ♦

Still it can be proven in some cases, and, even more relevant, it can be obtained
by construction. For example, in Chapter 9 we’ll introduce a high-level modeling lan-
guage which has an ETTS semantics. All ETTS obtained from the high-level modeling
language sport consistent evolution by construction.

Further note that the specification logic of Chapter 4 doesn’t depend on consistent
evolution. It is also defined for ETTS with non-consistent evolution.4

Note 3.4.7. Let M be a TTS and e a consistent evolution annotation. Every individual
evolves into itself along a cycle, that is, if there is a path π in M from s to s then u

π
 e u.

♦

Proof. By Note 3.4.2, u
ǫ
 e u thus by consistency also for any other path as the empty

path leads from s to s.

3.5. ETTS: Topology-Labelled
Transition Systems with Evolution

Given the evolution evolution relation by Section 3.4, we can complete TTS to obtain
ETTS.

Definition 3.5.1 (Fair Evolving Topology Transition System). A (fair) (typed) TTS
M over Id is called (fair) (typed) evolving topology transition system (ETTS) if and
only if its transition relation R(M) is equipped with an appearance consistent evolution
annotation, i.e. if R(M) = (R, e). ♦

According to the following note we may, in the following, focus the discussion on ETTS
as they are a proper superset of TTS.

A given TTS becomes an ETTS by annotating each transition with the empty relation,
that is, by explicating that the TTS is not concerned with evolution over time but views
all individuals as transient.

Note that the following statement uses the yet undefined notion of equivalence be-
tween transition systems which won’t be formally introduced (as bisimulation) before
Chapter 5.

Note 3.5.2 (TTS vs. ETTS). Each TTS M is “equivalent” to the ETTS obtained by
equipping the transition relation of M with the empty transition annotation, that is, with
e = {r 7→ ∅ | r ∈ R(M)}.

4 As a side-note, we’re even able to specify inconsistency:
∃ id ∈ Id : F(¬⊚ id ∧ (E X ⊙ id) ∧ ¬(A X ⊙ id)) (cf. Chapter 4).
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U⊗

−→Ru

G1 G2

(a) Dangling links.

U⊗

−→R

G1 G2

(b) Vanishing links.

Figure 3.8.: Vanish vs. Dangling link semantics.

Finally, we’re interested in sufficient criteria for finiteness of ETTS. As the abstractions
discussed from Chapter 5 onwards map into ETTS, we are supposed to tell whether the
resulting ETTS is finite, which is our overall goal, or not. A simple sufficient criterion
is the following.

Note 3.5.3 (Finiteness Criteria for ETTS). Let M = (S, S0 , R,L, F) be an (Σ,Λ)-
ETTS over Id. Let the states of M be distinguished by their labelling, that is,

∀ s1, s2 ∈ S : L (s1) = L (s2) =⇒ s1 = s2. (3.20)

1. In general, it is not sufficient for M being finite-state that the sets of local states
Σ and link names Λ are finite.

2. In general, it is not sufficient for M being finite-state that all topologies have the
single-link property in addition to 1.

3. M is finite state if and only if Id is finite, Σ is finite, Λ is finite, and all topologies
have the single-link property. ♦

3.6. Supporting Vanish and Re-use Semantics

In the following, we elaborate a bit further on the difference between our approach and
approaches employing more natural graphs like [7, 12] or first-order logical structures,
as [190, 191] as promised in Section 3.2.

The two main issues are the treatment of dangling links and support of re-use of
identities when ETTS, or other models, are used as semantical domain of higher-level
languages (cf. Chapter 9).

The difference between dangling and vanishing semantics is illustrated by Figure 3.8.
In general, disappearance of an individual in ETTS doesn’t imply that links directed to
it appear along.

For example, individual u is disappearing in topology G1 in Figure 3.8(a)). Then, in
general, the links to u remain, u is just non-alive in the subsequent topology G2.

This corresponds to many programming languages supporting dynamic memory. Deal-
locating an object doesn’t automatically care to remove all pointers referencing this
object.
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U⊗

−→R −→R

U⊙

id id
id

G1 G2 G3

(a) Re-use of identities.

U⊗

−→R −→R

U⊙
u1

u2

G1 G2 G3

(b) No re-use of identities.

Figure 3.9.: Re-use semantics.

In contrast, with a vanish semantics, the interpretation of a deallocation of an object
is that it is (in some not further specified way) cared for removal of all references to this
object.

For example, individual u is also disappearing in G1 in Figure 3.8(b), but it is removed
from the topology in G2 and all links are gone with it.

This corresponds to programming languages with garbage collection, where objects
are only reclaimed if they are no longer reachable, that is, remain present at least as
long as there are references.

Definition 3.6.1 (Vanish Semantics). An ETTS M over Id is said to model a vanish
semantics if and only if there aren’t any dangling links in any of its topologies, i.e. in
any topology from L (S(M)). ♦

Assuming that an ETTS models a vanish semantics is obviously simplifying the rep-
resentation (cf. Figure 3.8(b)). It is then adequate to employ more natural labelled
multi-graphs to represent topologies, which in particular includes a total node labelling.
This is the strategy of, for example, [7, 12].

Yet this assumption needs to be justified. We cover the more complex case, too, as
it doesn’t complicate the discussion too much and as our aim to apply the methods
discussed here also to UML models with different semantics, in particular with action
languages like C++, which clearly don’t have a vanish semantics in ETTS.

The topic of re-use is illustrated by Figure 3.9. The individual id is disappearing in
topology G1 of Figure 3.9(a), and non-alive in G2, with two dangling links pointing to
it. For G3, identity id is chosen for creation, so it is again alive in G3 and the formerly
dangling links are again pointing to a regular individual.

This effect can also be observed in programming languages with dynamic memory
management and pointers, but also with network addresses in the Car Platooning.

In contrast, there may be high-level languages where the semantics of creation is that
new individuals obtain unique, unused identities. This corresponds to a setting with
strictly disjoint topologies, where new individuals cannot be traced back to individuals
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1:σ1

2:σ2 3:σ3 →

1:σ′1

2:σ2 3:σ3

Figure 3.10.: Parameterised System of sizeN = 3 encoded as ETTS. In the shown transition,
process 1 changes state from σ1 to σ′

1.

that existed formerly. Figure 3.9(b) gives an example. The ETTS model again supports
both cases.

3.7. Discussion

In the following, we compare the definition of ETTS to other well-known formalisms
employed to model systems which resemble the dynamic topology systems discussed in
Section 3.1.

In the comparison, we’re basically interested in whether the considered formalism can
encode ETTS and be encoded in ETTS, and in how far it doesn’t suit our needs in the
following chapters.

Note that some of the comparisons anticipate Chapter 9, where we introduce a higher-
level language with ETTS semantics. For example, parameterised systems are often
introduced and defined by a description language, which then has a transition system
semantics. The latter corresponds to this chapter while the former is more related to
Chapter 9 such that these aspects will be primarily considered there.

3.7.1. Parameterised Systems

We characterise the, in details very diverse, class of parameterised systems as follows.
There is a single program which is executed by N ∈ N0 processes, the program is
principally parameterised in identities. Processes are arranged in a fixed topology, in
contrast to the dynamics we consider. In many cases processes access central data
which is shared between all processes or are fully connected such that each process can
read parts of every other processes’ memory. There is no creation or destruction, all N
processes are present in the initial state and remain alive throughout the system runtime.
The challenge is to verify that, for all possible choices of N , the corresponding system
instance has a certain property [32, 33].

Typical examples are cache coherency protocols, mutual exclusion, for example, via
the bakery algorithm, or leader election algorithms. Variations stem from different fixed
topologies, different concepts of shared memory, different limits to local data, etc.

A parameterised system can be encoded as an ETTS in two ways. Firstly it can be
seen as a family {M1,M2, . . . } of ETTS over identities IdN = {1, 2, . . . ,N}, N ∈ N0.
Each MN , N ∈ N

+, features N newly created individuals in the initial state(s), none
of them disappearing along a path. All these individuals are fully connected via one
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σ1

σ2
σ3 →

σ2

σ3
σ1

Figure 3.11.: Abstract Parameterised System. In contrast to Figure 3.10, identities are
not traced.

link, all links are labelled with the same link name. A combination of shared and local
memory can be encoded by adding a single designated individual in addition to the N
ones modelling the shared memory (cf. Figure 3.10).

Secondly, it can be seen as the union M of the just named families, that is, with
Id = N

+ and transitions only between states whose topology is of the same size.

In general, an ETTS doesn’t encode directly as a parameterised system because in-
dividuals need by no means behave symmetrically. That is, there needn’t be a finite
program which induces the desired ETTS behaviour when executed on any number of
processes.

The higher-level languages considered in Chapter 9 are by far closer to parameterised
systems because they assume a finite number of programs executed by processes. The
difference to classical parameterised systems remains that they don’t consider dynamic
creation and destruction of individuals and that they assume fixed connections. That
is, ETTS as considered in Chapter 9 are infinite-state systems while classical param-
eterised systems typically define infinitely many finite-state systems; unless there are
local variables of unbounded domains like R, or real-time aspects, etc.. In other words,
the infinitely many instantiations are not infinite-state by the number of identities, but
at most for other reasons like variables.

ETTS seem to most closely resemble something like the limit of classical parameterised
systems for N → ∞, with additional local variables indicating whether a process shall
be considered newly appearing, alive, or disappearing.

In case of a given single-link property, links would be encoded as local variables with
domain Id, that is, this would directly introduce infinite-domain local variables. Encod-
ing ETTS that are lacking the single-link property would require to (ab-)use processes
to encode the more general link connections.

Then we were able to capture the dynamics of, e.g., the Car Platooning case study.
We’ll employ exactly this encoding in Chapter 9 to check abstractions of high-level mod-
els in common model-checkers, but for studying the effects of abstractions in Chapters 5
and 6 it is not the right representation.

A variant are abstract parameterised systems (cf. Figure 3.11), for example obtained
by counter abstraction. There the only information is how many processes are in which
local state, but it is not traced over transitions which process changes local state.
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3. Computational Model

3.7.2. Communicating Finite State Systems

Communicating finite state machines [21] (CFSM) are different from parameterised sys-
tems in that there is a fined finite number of processes, yet each one may execute a
different (finite) program operating on a finite local state.

The processes are also fully connected, not via shared memory but with unbounded
message-queues. A process has one message per possible sender, that is, one queue per
other process. Sending is asynchronous, that is, non-blocking, the receiver needn’t be
ready to consume an event at the time it is sent.

Some model-checking problems are shown undecidable for CFSM in [21], intuitively
caused by the unbounded queues.

CFSM are more closely related to the high-level language of Chapter 9, the main
difference is that Chapter 9 considers a finite number of programs that can be executed
by a variable and unbounded number of processes, while CFSM have a fixed number of
processes.

The high-level language in Chapter 9 can, with its included message based communi-
cation, be seen as a generalisation of CFSM.

3.7.3. Array Programs

It is said that there is work showing that parameterised systems are equivalent to a kind
of array programs.5

Following that idea, we can ask whether ETTS are equivalent to array programs with
infinite arrays where it is also allowed that the index types may occur as the domain of
an array, not only as the index.

An array program can be encoded in an ETTS even with finite local state for example
by having one kind of individual per array with the value as local state. An array index
as value can be encoded as a link.

The other direction is similar to the case of parameterised systems. In general, an
ETTS can show more behaviour than can be described in a finite program. But if we
assume that an ETTS is given by something like the high-level language of Chapter 9,
then these ETTS can be encoded in array programs by having one array per kind of
individuals indexed by identities. Places of the arrays are chosen such that they represent
the local state of an individual and the current life-cycle phase. This way, single-link
systems are encoded straight-forwardly, more general cases need more effort. Note we
demonstrate exactly this encoding in Chapter 9.

The original proposal of the Data Type Reduction abstraction we investigate in Chap-
ter 6, has actually been discussed in the context of array programs [127] and proposed
for parameterised system.

It is one motivation of our presentation that we felt that this very technical presenta-
tion hinders a clear view on the effect of the abstraction. A presentation in a setting of
topologies seems more natural in order to understand, among others, the strengths and

5unfortunately we’re missing the exact reference
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id1

id2
x n

G1

6←
id1

x →
id1

id3
x n

G2

(a) Distinct cases.

x → x n

(b) No identities.

Figure 3.12.: Abstracting from Identities.

weaknesses of the abstraction, ways to improvements, and side-conditions to be kept up
when considering improvements.

3.7.4. Shapes

A wide and diverse area of techniques which is naturally interested in systems with
dynamically changing topologies falls under the name shape analysis. The typical mo-
tivation is the analysis of pointer programs operating on lists, trees, or other dynamic
data-structures on the heap. The analysis obtains its name by its abstract domain, finite
representations of shapes of data-structures, e.g. [60, 155]. Yet viewing the highway in
the Car Platooning application as the heap, the class of dynamic topology systems is
just that: a data-structure of cars.

In the following, we have to partly anticipate Chapter 5 while referring to some extent
to the particular abstractions in order to be able to discuss the motivation behind the
computational models employed there.

In the named approaches, abstract graphs closely resemble our topologies – and even
more closely our abstract topologies from Chapter 5. Technically, many approaches
employ logical structures to represent the shape of the heap at certain program points,
in particular at the program points corresponding to completion of a heap manipulating
function.

One main difference to our approach is that these analyses already assume a rather
abstract world, namely where one can disregard particular identities. In terms of our
definitions, their topologies aren’t over a common set of identities Id, but each topology
only had a set of own nodes U . Consequently, it is not intended to refer to particular
identities, for example, one is not interested in properties like the following.

“The car, which asks the car in front for a merge manoeuvre now will finally
be the follower of the front car.”

But rather, whether a list reversal program has a memory leak or yields a structure
which is not a list.

Other effects are that issues with link navigation are neglected because with binary
relations, there is typically no notion of navigation. It is in the best case mapped to
quantification, for which it is not clear whether it raises all intricacies we address. And
it is not suitable to represent multi-sets. That is, the issue of an unbounded number of
links, possibly to the same individual, is lost in a logical structure encoding, while it is
present in our model.
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id0

x →

id0

x n
→

id0

x n
n → id0

x

n
n

Figure 3.13.: Abstract Heaps. Fragment of a run of a TTS model for an abstract heap. The
node denoted by global variable x is used to form a doubly linked list of two nodes,
which is reversed in the rightmost step by changing the destination of x.

For example, we want to distinguish topologies G1 and G2 in Figure 3.12(a) because
our approach is able to treat this case. Without identities, topologies G1 and G2 are
identical so the view is rather similar to Figure 3.12(b).

This assumption is reasonable as, for example, in a pointer program inserting data into
a linked list and to this and allocating and deallocating list-nodes, there is no natural
interest in which particular list-node is allocated or deallocated, i.e. which memory
address it has.

The brief discussion of considered properties leads to another main difference. Namely
that many of the static analyses belonging to the class discussed above don’t trace
evolution over time, with the exception of [190, 191]. Then they are interested only
in the information which topologies are possible over the whole lifetime of a system or
runtime of a program, but they are often not interested in what sequences of topologies
are possible.

On the other hand, if possible shapes are annotated to a control flow graph, for instance
by a static analysis, the control flow graph can be viewed as a TTS and be queried with
temporal properties like the ones from Chapter 4. For instance, whether the node newly
added during Figure 3.13 is always finally deallocated This would allow analyses similar
to the approach of Huuck et al. [67], which considers temporal properties of control flow
graphs.

Figure 3.13 illustrates how a sequence of operations on a doubly-linked list can be
modelled by a TTS. The pictures naturally closely resemble the graphical presentation
of logical structures in, e.g. [60, 155], yet have a different interpretation here.

Assume a global program variable x pointing to a single heap node, and assume an
operation appends one node and establishes the doubly-linked list property, and then
changes x to the new node, thus effectively reversing the list. In the leftmost topology
in Figure 3.13, the single list node is shown without identity, as the analysis is not
interested in distinguishing heap nodes by actual identity. As TTS as such don’t support
global variables natively, the encoding uses one designated node with identity id0 as the
source of all links corresponding to global variables. In comparison, the representations
of [155] are more natural and concise on this aspect, although (finitely many) global
variables could easily be added to TTS. In the second topology in Figure 3.13, a new
node appeared and has already been connected via the n link to the existing node, the
third topology adds a link back to obtain a doubly-linked list, and the fourth topology
shows the result of what would be something like an assignment x := x->n in pointer
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programming languages. Note that there are no evolution relations in Figure 3.13, as
the named analyses are often also not interested into who evolves into whom; whether
the four operations break the list property, or, for instance, render nodes unreachable
by updating the wrong link becomes visible even if identities are not traced.

Most closely related to, and actually inspiring, our computational model are the fol-
lowing approaches. [190, 191] aim at checking a first-order extension of temporal logic
similar to the one introduced in Chapter 4. The semantics of the logic is given for traces,
that is, sequences of disjoint topologies, where appearance, disappearance, and evolu-
tion is explicitly traced by an annotation of consecutive pairs of topologies. Behaviour is
given in form of a next-step function, which iteratively defines a set of traces given a set
of initial states. The analysis is based on a fixed point iteration applying the next-step
function of the considered model to a minimal and maximal topology. The outcome
is a set of abstract traces, i.e. finite sequences of abstract topologies with appearance,
disappearance, and evolution traced as precise as possible in the abstraction (cf. dis-
cussion in Chapter 5), on which the temporal expressions can be evaluated. The most
obvious commonality between this and our model is the annotation of evolution, the
most obvious difference that they don’t trace identities.

The aim of [7, 12] is to determine a finite, abstract characterisation of all possibly
reachable topologies of a given TTS (in our terms). They assume the system behaviour
to be given in terms of a graph transformation system (GTS) with application conditions,
there called partner constraints, in contrast to our high-level language from Chapter 9.
The natural behavioural semantics of a GTS is a transition system where the states are
labelled graphs, thus topologies in our terms. The main difference to our approach is
that identities are not traced and dangling links are disregarded by assuming a vanish
semantics for the modelled system.

A symbolic variant of shape analysis for Java programs is presented in [148, 181].
Instead of a rather explicit representation of system states in form of boolean struc-
tures [155], a predicative representation is chosen. In this framework, some of the
properties from [7] can be established on a Java encoding of the Car Platooning ap-
plication [147].

3.7.5. π Calculus

The π [137] calculus is a widely studied algebraic model of mobility and communication.
Most importantly, π extends the CCS process algebra [136] by means to pass names
between processes, that is, means to establish links in our terminology of ETTS. For
example, the merge procedure of the Car Platooning application has successfully been
modelled in the π calculus [131].

A major difference is that there is no natural notion of an identity in the structural
operational term rewriting semantics. A notion of structural equivalence considers large
classes of π terms equivalent, for example permutations of processes along commutative
operators like parallel composition. Then we cannot refer to individual cars as easily as
in our explicit setting, in particular from the specification logic side.
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:C

:C :C
→ :C

:C :C
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:C :C
→ :C

:C

id1

id2
id3 →

id1

id2
id3 →

id1

id2
id3 →

id1

id2 id3

Figure 3.14.: UML. The first row shows a fragment of a run of a UML system as sequence
of object diagrams. If the right object is destroyed, there is in general no overall
garbage collection which removes all links, thus the link becomes dangling and
we have to keep the object in a non-alive state (dashed outline). The space may
be re-used for creation of a new object. Alternatively, objects may disappear
completely, as demonstrated by the left object in the last step.
The second row shows a corresponding fragment of a run of a TTS/id model. In
the second topology, individual 3 is there but no longer alive, the link from 1
is dangling. In the step to the third topology, identity 3 is re-used for a newly
created individual. In the last step, individual 2 really disappears.

In addition, the π calculus considers synchronous, blocking communication while the
examples in Chapter 10 are of asynchronous nature. The π model can be considered to
be the most basic form of communication and can be employed to model asynchronous,
non-blocking communication, but this again easily becomes hardly treatable.

The π calculus is able to encode TTS models but the encoding in pure π easily becomes
awkward when data aspects should be considered. Applied π [156], which is often em-
ployed to obtain clearer encodings in such cases, is already similar to the DCS language
discussed in Chapter 10.

There are also efforts in the π community aiming at formal verification, in particu-
lar model-checking of mobile communicating systems [133]. So there is a common goal
despite the differences in computational model and description language which is ap-
proached from two different directions. The approach of the π community is to start
from an established model and to develop specification and verification techniques for
it, while our approach is to start from the established (finite state) specification and
verification theory and to add coverage of typical π features like mobility and commu-
nication.

3.7.6. UML Semantics and UML Verification

The growing popularity of the employment of the Unified Modelling Language (UML) [138,
141, 140] for model driven development of safety or mission critical system, gave rise to
numerous attempts to formally capture the precise the semantics of UML.

That these attempts are naturally related to our work becomes obvious in Chapters 9
and 10 where we discuss how ETTS are useful to encode a significant fragment of UML in
order to obtain formal verification for UML, which has actually been one of the original
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starting points of this work. Anticipating Chapter 9, Figure 3.14 outlines the relation
between a run of an instance of a UML model and a run of an ETTS.

The named attempts are not directly usable because they either take an even more
abstract view (like [82, 86, 151, 152]) or try to capture too many aspects of UML, and
thus remain too concrete, too close to full-fledged programming languages, or they don’t
employ transition systems.

The early approaches to UML model-checking mainly aimed at employing available
finite-state model-checking technology. The difference to our approach is that they didn’t
treat (and thus needn’t model) unbounded creation and destruction of objects but in
the most developed cases demanded finite upper bound, or a set stage of finitely many
objects, or even demonstrated their procedures only on pairs of state-charts, disregarding
object creation and destruction at all. To achieve these results, there is basically no
need for an elaborate formal semantics of UML, in contrast we can characterise these
approaches as giving a formal UML semantics in terms of a (finite) fragment of the
informal description of UML.

Our computational model, in contrast, could serve as a domain for a full UML seman-
tics, as sketched in Chapters 9 and 10, and we discuss how to obtain an abstraction to
a finite-state setting.

The computational model underlying our work et al. [159], was oriented on the array-
based semantics of [45, 46] which prefers to exclude re-use of identities. It was the first to
present the life-cycle of objects integrated with the run-to-completion semantics of UML
in form of a state chart. That is, initially an object is the semantical state of being not
yet created, after construction is completed, it is idle or in a run-to-completion step of its
UML state-machine, and from both it may be destroyed, that is, complete a destructor,
and then be dead.

Xie, Browne, and others [187, 185, 188, 186, 160, 184, 189] base their tool ObjectCheck
on the automata of the COSPAN model-checker [106].

Shen and others [37, 38, 161, 162, 163] don’t consider object creation and destruction
for their ASM6-based tool VeriUML.

David, Möller, and Yi [52, 51] are mainly interested in the aspect of timed state-
machines in UML, not in topologies in their Uppaal7-based tool UML RT/Uppaal.

Knapp, Merz et al. [157, 100, 101] discuss the verification of collaborations by their
tools Hugo and Hugo/RT, that is, temporal behaviour in given fixed topologies, and are
hence not concerned with the dynamic extension of the topology.

Eshuis and Wieringa [65], have an LTS and array-based semantics of UML, which
is parameterised in many variation points like event-queue vs. event-set, i.e. with and
without preservation of order. It is basically extension of the Statemate semantics of [44]
to UML.

The UMLAUT/CADP approach of [74, 73, 93] uses UML object diagrams instead of
topologies, which can be encoded into our topologies with the general notion of links.

6 Abstract State Machines [75]
7 Uppaal timed-automata model-checker [13, 109, 110]

67



3. Computational Model

Lilius and Porres [118, 117] basically consider state-machines in isolation for their tool
vUML, which is based on the SPIN model-checker [83].

Similarly, Latella, Majzik, and Massink [111, 112] are basically interested in single
state-machines and discuss an operational semantics which exhibits the same drawbacks
as the π-calculus as discussed in Section 3.7.5.

Varro, Pataricza, and others [143, 172, 41] aim to support semantics-preserving trans-
formations of UML models and to this end consider a graph transformation system-based
view on the behaviour.

A similar model is employed by the USE tool of Richters and Gogolla [153], which
aims at checking OCL constraints against class diagrams as such, thus is not interested
in temporal properties and hence doesn’t need an elaborate execution semantics. Both
are, by their underlying formalism, related to [7, 12], thus the comments given there
apply here as well.

3.7.7. Other Models

In the domain of hybrid systems, there are emerging efforts to provide means for mod-
elling and analysis of what they call reconfigurable systems.

Some consider only finite technical systems where single components can be replaced
during runtime, thus the system remains of finite extension in number of components
but has to treat the — typically noncontinuous — reconfiguration operations. Others
are sufficiently general to model the Car Platooning application in a hybrid setting.
Most prominent among them is the language SHIFT [53], which basically obtains a
semantics by a programming and simulation environment, the formal semantics remains
on a sketchy level. The newer R-Charon [103] is a straight-forward dynamic topology
extension of the Charon language [1], yet with less emphasis on the graph form than
ours. Yet a straight-forward extension of ETTS with hybrid aspects would resemble
R-Charon.

Semantically, both employ a similar, natural approach of evolving sets of individuals.
In SHIFT, each world is finite; there’s no explicit discussion of evolution or identities. In
R-Charon, components from a fixed set can be added and removed during run-time, links
are removed along (“vanish semantics”). Identities are not explicitly discussed in [103],
the presentation may imply that identities are implicit, by name.

At their current states, they are at the stage of modelling, not yet property specifica-
tion and all the issues concerning pre-mature disappearance of individuals.

3.7.8. Summary

For convenience, Table 3.2 summarises relations between ETTS and the computational
models discussed in Section 3.7.1 and Section 3.7.3 in terms of expressive power. Note
that some of the relations are established and some only conjectured; in this work, we
won’t answer the corresponding interesting and relevant questions but consider them to
lie outside of the scope of this work.
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Table 3.2.: Expressiveness of Computational models in informal comparison.

Shape abstractions, in comparison, are employed under different assumptions and with
different aims, so they typically abstract right-away from identities (cf. Section 3.7.4).

The π calculus can be used to model systems similar ETTS, but employs much more
elementary means which makes it difficult to identify properties that are visible in higher-
level description language but become invisible after an encoding in π. As discussed in
Section 3.7.5 above, there are although common goals shared between this work and
efforts aiming at formal verification, in particular model-checking, of mobile communi-
cating systems given in the π calculus.

The existing approaches to UML verification merely choose finite-state verification
tools and employ the semantic domains of the chosen tool to give ad hoc semantics to
(finite) fragments of UML, thus typically require finite upper bounds on the number of
objects simultaneously alive (cf. Section 3.7.6).
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4. Property Specification Logic: EvoCTL∗

Similarly to ETTS of Chapter 3 being a conservative generalisation of classical labelled
transition systems, we’ll introduce a formalism for requirements specifications of ETTS
systems as a first-order extension of classical temporal logic [34].

This chapter is also structured similarly to Chapter 3. In Section 4.1, we begin with an
extensive motivation and assessment of the features to expect from an adequate property
specification logic for ETTS and lay out how we’re approaching these issues.

We’ll find the most intricate points to be the quantification over individuals over time,
that is, tracing the evolution of individuals along computation paths to evaluate temporal
properties for single individuals and then the treatment of pre-mature disappearance.
That is, the semantics of formulae in case individuals bound to logical variables have
already disappeared when they’re needed to evaluate the formula.

For self-containedness, we introduce preliminaries like notions of signatures and struc-
tures in Section 4.2, together with a concept of compatibility to ETTS. Sections 4.3 and
4.4 first give the formal syntax and semantics of terms and formulae, and then turn to
discussions of properties like monotonicity and definitiveness.

In Section 4.5, we discuss in particular which EvoCTL∗ formulae have equivalent
prenex normal forms because the abstraction of Chapter 6 requires formulae in this
normal form, so we give extended estimates for the range of properties Chapter 6 applies
to.

We conclude the chapter with Section 4.6 where we discuss a number of different
other approaches to treat topologies with dynamic appearance and disappearance of
individuals and variable interconnection.

4.1. Requirements Specification for ETTS:
The Intuition

In the following, we’ve got to assume some working knowledge in temporal logic in order
to keep the discussion focused. The reader not familiar with temporal logic at all, is
referred to a textbook like [34]. The reader with basic knowledge in this topic may wish
to firstly skim through Sections 4.3 and 4.4, which give the formal syntax and semantics
of terms and formulae, to recall the main operators and their semantics and then get
back to Section 4.1 for an explanation of the differences between the ETTS case and
classical temporal logic for Kripke structures.
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4.1.1. State vs. Temporal Properties

Recall from the well understood case of requirements specification for Kripke structures
by temporal logic that we can basically distinguish two aspects: Firstly, properties of
a certain state, which boils down to logical expressions with atomic propositions as
atoms. Secondly, behaviour of state-properties over time, for instance, whether certain
state-properties hold in all next state, don’t occur at all, hold globally, or until others,
corresponding to the well-known modal operators of CTL∗.

For ETTS, the first aspect of properties of states corresponds to properties of topolo-
gies which is again twofold:

• firstly, each individual in a state’s topology has a local state on which requirements
should be stated, for example, whether an individual in the car platooning example
is a leader or a follower, or at which speed it is cruising, and

• secondly, individuals in a state’s topology are interconnected, that is, it should be
possible to express requirements like, for example, that a follower has a leader,

and of course combinations of both, for instance, that the leader of a follower is in a
certain local state.

The second aspect, namely the behaviour of state-properties over time, is also twofold
for ETTS:

• firstly, there is obviously a direct correspondence to Kripke structures in the sense
that it should be possible to state requirements on the temporal evolution of the
just named topology properties, for example, that there is no state where two cars
mutually consider each other to be the leader,

• the second, more intricate thing with ETTS is the evolution of single individuals
over time. That is, it should be possible to state that

“each car, which is now a follower, remains in that role until a platoon
split manoeuvre has been completed successfully”.

(4.1)

Table 4.1 summarises this first informal discussion to point out what we’ve got to
expect from EvoCTL∗ as defined from Section 4.2 on.

4.1.2. Tracing Individuals over Time

The intricacy of properties referring to the evolution of single individuals over time,
in contrast to the whole topology, is severely affected by the possible disappearance of
individuals.

Firstly, for the evaluation of a requirement like (4.1) above, we have to take into
account that the individual may (pre-maturely) disappear at any time due to an error
in the platooning protocol.

We propose to employ three-valued logic with a third value “undefined” in addition
to “true” and “false”, in contrast to most other approaches which resort to “false” in
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Table 4.1.: Property specification for ETTS in contrast to plain Kripke structures.
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Figure 4.1.: Identity vs. Instance evolution.

case of disappearance. In the latter case, the evaluation of terms is called biased towards
“false”, as this value is ab-used to encode the case of pre-mature disappearance.

The reason for discouraging the use of a biased evaluation is basically that pre-mature
disappearance may be shadowed when not sticking to negative normal forms. And that,
if there are procedures to verify such properties, a “false” is strictly speaking misleading
because there actually needn’t be a counter-example where an individual violates the
desired property.

Secondly, given a computation path, a requirement like (4.1) above, and an individual
to establish the requirement for, we have to define which individual to consider in the
next state. That is, given a computation path π = s0, s1, s2 . . . of an ETTS M and an
individual u ∈ U(s0), which individual is to be inspected in s1? The answer is not as
clear as it may seem at first sight, as we’ll see in the following.

As an example consider the computation path in Figure 4.1 and assume that we want
to evaluate the requirement

“for all x, if x is alive now, then the local state of x is σ until it
disappears”.

(4.2)

As there is only one individual in the topology of s0, we identify x with the individual
with identity id1 and find the local state to be σ, thus the requirement possibly satisfied.
All other identities trivially satisfy the implication because they’re not alive.

On the transition to s1, the individual with identity id1 evolves, thus x denotes this
individual and still the local state is σ; in addition, the individual disappears, so the
overall requirement is satisfied here.
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If id1 is immediately re-used, as in s2, we basically have two options to interpret the
requirement. The first option is an identity-based interpretation, that is, considering
x to bind to identities. Then evaluation of the quantified property starts over as the
identity denoted by x is alive; according to the requirement, the individual should have
local state σ, which is not the case in s2, thus the overall property is not satisfied for
the computation path shown in Figure 4.1.

The second option is an evolution chain-based interpretation, that is, it rather disre-
gards identities and considers the quantification to be over evolution chains (cf. Chap-
ter 3). Then in order to evaluate the above requirement in the given computation path
starting at s0, x binds to any evolution chain active in s0. In the example, there is
only one such evolution chain, the one of id1. The evolution chain starting in s2 is not
considered because the property binds logical variables only in the first state of the given
computation path, here in s0. Thus in this interpretation, the requirement is satisfied
by the computation path shown in Figure 4.1.

We now continue with a more elaborate discussion of both interpretations stemming
from the literature (cf. Section 4.6) and then with an intuitive comparison.

To enable a more formal comparison in Section 4.4.7, we’ll define two kinds of logical
variables, or, as an alternative view, two kinds of quantification and treat them as “first-
class citizens” throughout this chapter.

The Identity-based Interpretation

In case of a computational model with identities as ours, the most natural approach is
quantification over identities. That is, logical variables are of the identity type and an
assignment maps a logical variable x to a fixed identity.

This assignment in particular doesn’t change over time; for example, consider a re-
quirement of the form

ϕ := ∀x : T . ϕ0(x), (4.3)

i.e. outermost quantified (or in prenex normal form, cf. Section 4.5), where ϕ0(x) is a
temporal logic formula with x of type T as free variable.

When evaluating ϕ for a given computation path π = s0, s1, s2 . . . , then x is bound
to an identity from Id, independent from the topology of s0, and this binding remains
throughout π.

Note that formula (4.3) is of limited use if ϕ0(x) doesn’t take into account that the
identity to which x is bound needn’t be in use.

For example, the inner formula

ϕ0 := (G(σ(x) 6= 0)) (4.4)

(“individual x’s local state never is 0 ∈ Σ”)

becomes immediately indefinite (cf. Sections 4.3.4 and 4.4.6) in a topology where there
is no individual with the identity bound to x, i.e. (by definition) where the partial node
labelling function σ is not defined for this identity (cf. Def. 3.2.1).
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id0

id1σ

s0

→ id⊤ σ

s1

→ id2 σ

s2

→
id0

id1σ

s3

→ . . .

Figure 4.2.: Evolution chain covering different identities.

For instance, binding x to id2 in the path shown in Figure 4.1 renders the formula
indefinite; the formula doesn’t definitively hold and isn’t definitely violated for id2, there
just is no individual with identity id2 to evaluate it for.

In contrast, with the inner formula

ϕ0 := G(⊚ x→ (σ(x) 6= 0)) (4.5)

(“x being alive implies that its local state isn’t 0 ∈ Σ”)

(4.3) may hold in state s0 of Figure 4.1 because the local state is only considered if there
is an individual with the identity denoted by x, and this local state may be equal to 0.

Note that individuals in formula (4.3) are effectively anonymous, because in the for-
mula we don’t refer to particular individuals by identity, but the property applies to
each individual independent from the identity.

The Evolution Chain-based Interpretation

The second approach is to follow evolution chains, disregarding identities. This is in
particular natural when the computational model doesn’t provide identities, because
then individuals actually are anonymous, so there is not even a choice to refer to them
by identity.

The idea than is to follow chains of the evolution relation, disregarding the identity.
For example, consider the computation path shown in Figure 4.2 where the evolution
relation has a non-standard form by merging id1 into the summary node id⊤ and, possibly
having lost the information which node merged into, evolves into id2.

To indicate that a formula like (4.3) should be evaluated in this sense, we’ll use bold-
face letters for logical variables, that is, the formula (4.3) becomes

ϕ := ∀xxx : T . ϕ0(xxx). (4.6)

Evaluating (4.6) for the computation path in Figure 4.2 with (4.4) as inner formula
necessarily binds xxx to id1, as this is the only alive individual in the topology of state s0.

In state s1, xxx denotes the individual with identity id⊤ as this is the individual id1

evolves into according to the evolution relation. In state s2, xxx denotes id2, but afterwards
the individual doesn’t evolve so there is no binding for xxx and the overall formula turns
indefinite for the computation path in Figure 4.2.

Note that s3 is not considered at all. The reason is that the modal operator “G” (read:
globally) appears under the quantifier, that is, the logical variable xxx is not bound anew
in any of the states, only once in state s0, the first state of the computation path for
which the formula is considered.
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In this interpretation, invariants like the one in (4.6) can only be satisfied if the
affected individuals don’t disappear at all, otherwise the outcome is either a violation or
an indefinite result because of pre-mature disappearance.

Comparing the Two Interpretations

Anticipating the more elaborate discussion of the relation between these two interpre-
tations in Section 4.4.7, we note that the evolution chain-based interpretation seems
natural, but makes a couple of implicit assumptions. For example, from example (4.6)
with different inner formulae we can tell that invariants for individuals have to be used
with care as they are only global invariants if the individual under consideration doesn’t
disappear. On the other hand, this interpretation never misses the disappearance (and
re-use) of an identity as the assignment of logical variables is only considered as long as
the traced individual doesn’t disappear and turns undefined afterwards.

In contrast, the identity-based interpretation may not notice a disappearance and
re-use. For example, the computational path shown in Figure 4.1 satisfies the formula

∀x : T . X(X(⊚ x)) (4.7)

(“x will be alive in two steps”)

which on first sight seems to say that id1 remains alive for the next two steps, but on
second sight, all it requires is that the individual with identity id1 has a certain local
state, it isn’t interested at all in the individual’s fate in the meantime.

The first meaning would require a formula like the following

∀x : T .⊚ x→ (¬⊗x ∧ X(¬⊗x) ∧ X(X(⊚ x))). (4.8)

(“x will be alive in two steps, and won’t disappear before”)

When defining the semantics in Section 4.4.2, we’ll see that the main difference is that
in the identity-based interpretation, a logical variable is bound to a single identity once
(and for all), while in the evolution chain-based interpretation it may be bound to a
different identity in each state of the considered trace.1

4.1.3. The Plan

The fundamental difference between plain CTL∗ and EvoCTL∗ is that properties are
finally evaluated for individuals, which are in most cases denoted by logical variables.
This gives rise to three issues. Firstly, how to evaluate expressions in the topology
of a given state? Secondly, and far less obvious, how does evolution of individuals
affect the meaning of formulae? That is, given a binding of logical variables in one
state of a computation path, how do these variables bind in the successor state? And

1As one of the referees pointed out, one can think of even more modes for binding logical variables (or:
more kinds of logical variables), which to the best of our knowledge didn’t appear in the literature
yet. For instance, to initially bind to an identity, then await the creation of an individual with this
identity, and trace only the first life-cycle, i.e. the first evolution chain.
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id0

id1

s0

σp →
id0

id1

s1

σp →
id0

id1

s2

σp →
id0

id1

s3

σ¬p → . . .

s0 s1 s2 s3
∀x : T . G p(x.σ) : θ1(x) : id0 id0 id0 id0

s, θ1 |= p(x.σ) : 1/2 1/2 1/2 1/2

θ2(x) : id1 id1 id1 id1

s, θ2 |= p(x.σ) : 1 1 1 0

∀xxx : T . G p(xxx.σ) : θ(xxx) : id1, id1 id1 n/d n/d

s, θ |= p(xxx.σ) : 1 1 n/a n/a

(a) Unique evolution.

id0

s0

σ¬p →
id1

id0

s1

σ¬p → id0

s2

σp → . . .

s0 s1 s2
∃x : T . F p(x.σ) : θ1(x) : id0 id0 id0

s, θ |= p(x.σ) : 0 0 1

θ2(x) : id1 id1 id1

s, θ |= p(x.σ) : 1/2 0 1/2

∃xxx : T . F p(xxx.σ): θ1(xxx) : id0, id1 id1 n/d

s, θ |= p(xxx.σ) : 0 0 n/a

θ2(xxx) : id0, id0, id0 id0, id0 id0

s, θ |= p(xxx.σ) : 0 0 1

(b) Multiple different chains of evolution.

Figure 4.3.: Identity vs. Evolution Chain quantification.

thirdly, assuming we know how to follow the evolution of individuals, how is pre-mature
disappearance to be treated? That is, if an individual disappears before we are able
to give a definite answer whether a formula holds or not, which truth value shall we
evaluate the formula to?

The first issue is treated straightforwardly by relating logical variables to individuals
in a topology and accessing their local state and link configuration. In case we need to
access, for instance, the local state of an identity which is currently not in use, that is,
which currently doesn’t have a local state as it is not in the domain of σ, we’ll revert
to three-valued logic, which may cause whole formulae to evaluate to 1/2, the indefinite
value.

The second issue is more intricate. Consider the computation path prefix shown
in Figure 4.3(a) and assume that topologies are over the finite set of identities Id =
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{id0, id1}. In Figure 4.3(a), identity id0 is unused while there is an individual with
identity id1 in all four states, but it is re-used once: it is disappearing in state s1 and
newly created in state s3, as indicated by the dashed arrows for the evolution relation.
Now if we want to assign a semantics to the EvoCTL∗ formula

∀x : T . G p(x.σ), (4.9)

we’re supposed to bind the logical variable x.
As x is of type T (for now considering only a single type), we’ll bind it to an iden-

tity, that is, there are two possible assignments of x, namely θ1 and θ2 as shown in
Figure 4.3(a) (assignments are formally introduced in Def. 4.2.6). Now evaluating the
predicate p in each state for each of the assignments yields 1/2 for θ1 and a definite value
for θ2. The whole formula evaluates to 0 as the predicate is definitely not satisfied by
the topology of state s3 under assignment θ2.

Note that the assignment itself is not affected by the temporary disappearance of
individual id1 in state s1.

If we were only interested in the fate of the particular individuals alive in s0, we’d to
change the specification to

∀x : T .⊚ x→ ((¬⊗x ∧ p(x.σ)) W (⊗x ∧ p(x.σ))). (4.10)

As (4.10) explicitly refers to the life-cycle of the individual bound to x by the operators
⊚ and⊗, it is satisfied by both assignments in Figure 4.3(a). For θ1, it is trivially satisfied
as id0 is not alive, and for θ2 it is satisfied because predicate p holds during the whole
life-cycle.

Alternatively, we could use a logical variable of the second kind, i.e. of type TTT . Ex-
changing the type of the variable in (4.9) yields

∀xxx : T . G p(xxx.σ), (4.11)

as xxx is of kind TTT , we’ll bind it to an evolution chain instead of simply an identity, in
case of universal quantification to all possible evolution chains of all alive individuals in
a given state.

For the computation path in Figure 4.3(a), there is only a single evolution chain
as only id1 is alive and evolves linearly. Evaluating, for instance, the boolean term
p(xxx.σ) with assignment θ1 from Figure 4.3(a) will be explained by evaluation for the
first element of the evolution chain θ1(xxx), in this case id1. By considering evolution
chains, this interpretation is implicitly sensitive for disappearance. Formula (4.11) holds
in Figure 4.3(a) because id1 satisfies the boolean term during the whole life-cycle from
s0 to s1.

Figure 4.3(b) illustrates existential quantification. In case of logical variables of type T ,
quantification may bind to any of the identities from Id, independent from the question
whether there is currently an alive individual with the bound identity or not. Hence
there are the two possible assignments θ1 and θ2 shown in Figure 4.3(b) for the formula

∃x : T . F p(x.σ), (4.12)
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the whole formula holds because the inner boolean term finally holds for id0. Thereby,
we can express, for example, that behind a given state there will finally be a second
individual appearing. In case of logical variables of type TTT , that is, for the formula

∃xxx : T . F p(xxx.σ), (4.13)

quantification may bind to any of the evolution chains starting in the state where the
formula is evaluated. Thus there are two possibilities for the computation path shown
in Figure 4.3(b). Firstly, evolution can follow the materialisation from id1 out of id0

and secondly, it can follow the summary node id0. The whole formula (4.13) also holds
because the latter evolution chain leads to a situation where the inner boolean term is
finally satisfied.

This discussion of how we’ll consider evolution in the semantics of EvoCTL∗ already
indicated how we’ll treat the third issue raised above, namely pre-mature disappearance.
In case of logical variables of kind T it’s treated not at all. If a requirement should be
sensitive for disappearance, it has to be explicitly stated within the EvoCTL∗ formula
by employing the life-cycle operators ⊙, ⊚, and ⊗. In case of logical variables of kind
TTT in contrast, it’s treated implicitly. The semantics of a temporal operator like ‘X’
will be defined such that evaluation yields the indefinite value 1/2 in case of pre-mature
disappearance and definite values only if the formula can be evaluated for an alive
individual.

Note that logical variables in [190, 191] are implicitly of the type TTT as they right-away
abstract from identities (cf. Section 3.7). They provide the semantics by defining how an
assignment evolves over time. We obtain the same semantics by binding these variables to
evolution chains. When temporal logic is employed for classical parameterised systems,
identities are typically considered so their semantics is more akin to our logical variables
of type T . We’ll discuss the relation to other approaches and between other approaches
in more detail in Section 4.6.

4.2. Signature and Structure

4.2.1. Signature

Note that signatures as introduced in the following are not minimal as they, for exam-
ple, provide types and a collection of function symbols which are strictly speaking not
necessary for a discussion of requirements specification for dynamic topology systems.

The reason for having these features is that they allow us to develop the abstraction
theory of Chapters 5 and 6 such that they directly apply to higher-level languages like
UML or DCS as discussed in Chapters 9 and 10.

Definition 4.2.1 (Signature). A signature is a quadruple

S = (T,V,F,Λ) (4.14)

of finite sets of types T , typed logical variables V = VT ∪̇ VTTT , typed function symbols
F , and link names Λ.
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The set of types comprises at least the following basic types: the booleans B, the
type of local states S, the type of link sets L, the types of identities T1, . . . , Tn, and the
types of evolution chains TTT 1, . . . ,TTT n, n ∈ N

+, i.e. T ⊇ {B, S, L, T1, . . . , Tn,TTT 1, . . . ,TTT n}.
Non-basic types are also called additional types.

Logical variables x, y, . . . ∈ VT are of identity type, i.e. of T1, . . . , or Tn, and called
identity variables as they denote identities. Logical variables xxx,yyy, . . . ∈ VTTT are of evolu-
tion chain type, i.e. TTT 1, . . . , or TTT n, and called destiny variables as they denote evolution
chains. Identity and evolution chain types Ti and TTT i are said to correspond. If the type
is not relevant in a particular context, we may use v,w, · · · ∈ V to denote logical variables
of any of the two classes of types.

A function symbol f : τ1×· · ·× τk → τ from F is said to have arity k, argument type
τ1 × · · · × τk, and (result) type τ . Argument and result types may not be TTT . Function
symbols of type B are called predicate symbols. We use P and Pk to denote the subsets
of F consisting of predicates and predicates of arity k.

The components of S are referred to as T (S), V(S), VT (S), VTTT (S), F(S), P(S), and
Λ(S), respectively. ♦

Correspondence between types anticipates that the domain of TTT i will be the set of
sequences of identities from the domain of Ti. In the semantics section, we’ll see that
the reason for not admitting TTT as the type of function argument or result types is that
evolution chains are supposed to be used interchangeably with identity types, which is
achieved by considering only their first element.

The set of legal formulae over a signature will depend on the function symbols and
link names. In order to later evaluate a formula for an ETTS we will have to require that
they are (syntactically) compatible. Syntactical compatibility concerns link names from
Λ, because link names are used within terms (cf. Def. 4.3.1) to access the interconnection
in a topology on the level of the logic. It only concerns link names because the local
state of individuals will be accessed by a fixed operator of the logic and then may be
the argument of function symbols from F . There we will need a semantical notion of
compatibility, requiring that the interpretations of function symbols operate on Σ, the
set of local states in the ETTS.

Definition 4.2.2 (Compatibility). A (Σ,Λ)-topology over identities Id is called compat-
ible with a signature S, or S-compatible, if and only if Λ(S) comprises only link names
from Λ, i.e. if Λ(S) ⊆ Λ.

Analogously, a (Σ,Λ)-topology transition system M is called compatible with S, or
S-compatible, if and only if Λ(S) ⊆ Λ. ♦

Note that in the following, we always assume that signatures considered in combination
with topologies or ETTS are compatible, even if we don’t explicitly mention this fact.

We will need the following relation in the context of simulation relations in Chapter 5.

Definition 4.2.3 (Subset-relation for Signatures). We say that a signature S1 is a
subset of the signature S2, denoted by S1 ⊆ S2, if and only if S2 comprises at least all
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the types, (typed) logical variables, (typed) function symbols, and link names of S2, that
is, if T (S1) ⊆ T (S2), V(S1) ⊆ V(S2), F(S1) ⊆ F(S2), and Λ(S1) ⊆ Λ(S2).

Function Symbols

In this section, we shall briefly discuss what we imagine will belong into F and what
not.

There is a clear separation between local-state dependent things and a global inter-
pretation. This separation, as well as the choice of functions symbols discussed below,
is driven by the needs, or by the intention to support, the discussion of abstractions in
Chapters 5 and 6, and the connections to higher-level languages in Chapters 9 and 10.

The main difference between function symbols and operators in the logic is that func-
tion symbols obtain a global interpretation while operators depend on the topology. For
example, accessing the local state, link configuration, and aliveness are clearly operators
because an identity may obtain a different local state in each topology. As is comparison
for equal identity, which is a part of the topology (in form of the function eqId) which is
made visible in the logic. Then the semantics definition immediately applies to abstract
topologies as discussed in Chapter 5, where in particular eqId is subject to abstraction.

Comparing local states, in contrast, is clearly a function symbol because whether two
local states are considered equal doesn’t depend on the topology they’re found in. The
reason is that we don’t want to have an interpretation of function symbols per ETTS
state, but a global one, because we feel that this yields a clearer separation of issues in
Chapter 5 on abstractions. An example where variable interpretations are employed are
the approaches that represent topologies by logical structures, which naturally provide
the interpretation of predicates.

Constants. In Chapter 9 we’ll see that there’s some need for 0-ary function symbols,
or constants, of type T denoting identities, and of type L denoting the empty multi-set.

Thus natural examples for 0-ary function symbols in F are:

• constant numbers etc. of S or any additional type,

• id0 : T for a particular identity, or

• ∅ : L for the empty multi-set

In Chapter 7 on query reduction, we’ll see that constants of T have to be treated with
care as they may break an otherwise given symmetry in identities.

Comparison for Equality. An equality relation symbol

=: τ × τ → B, (4.15)

typically written infix, belongs to the signature with the single exception of the type T
for reasons discussed above.
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As a consequence, the predicate “=” for L, the type of links, may be defined inde-
pendently from T . This is sensible, because we have a rather abstract notion of link
navigation. In a more restricted setting, “=” on L could well be defined in terms of the
one on T .

Local State and Attributes. In case of typed (or many-sorted) ETTS (cf. Def. 3.2.5,
Section 3.2), local states are by definition further structured into n components, i.e.

Σ = Σ1 × . . .Σn, n ∈ N0. (4.16)

Then a natural set of function symbols are of the form

.ni : T → τi, 1 ≤ i ≤ n, (4.17)

where τi obtains domain Σi in order to individually access the components of a local
state σ by name ni.

Navigation Operations

Link navigation, that is, accessing individuals indirectly via a link name and a given
source individual, is not a function symbol but an operator for similar reasons as com-
parison of identities.

By a link name, one obtains a (possibly empty) multi-set comprising the individuals
accessible via this link name. This is the natural representation because we may have
multiple links of the same name to the same other node, and it will be used as the canon-
ical domain of L. In order to further use multi-sets, we’ll consider only an exemplary
set of functions, namely

• a constant for the empty link (see above),

• a comparison for equality of links (see above), and

• ∗ : L→ T to access the only element in single-links, that is, in multi-sets of size 1.

This setting allows to state properties like

(xλ 6= ∅)→ σ(∗(xλ)) 6= 0

(“if x has a λ-link to somebody, then the local state of this guy won’t be 0”).

In the following sections and chapters, we’ll often restrict ourselves to single links and
implicitly assume a cast from multi-sets of at most size one to a single identity by the
just introduced function ∗.

In general, one would have to consider general multi-set arithmetics. We consider it
as far as we can with reasonable effort because it is an issue which comes up with the
high-level language in Chapter 9 the latest, but we refrained from a full treatment, which
is a topic in its own right, to limit the extension of this thesis.

A possible alternative to multi-sets would be to consider, as natural domain of the
link type, structures on which iterators operate, similar to iteration concepts in UML’s
Object Constraint Language [139] (OCL).
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4.2.2. Structure

Definition 4.2.4 (Structure). Let S = (T,V,F,Λ) be a signature. A structure of S is
a pair

M = (ι,D) (4.18)

of a (type-consistent) interpretation ι of the function symbols in F and a set D of
domains for the types in T .

A type-consistent interpretation ι of the function symbols in F assigns each function
symbol f ∈ F of type f : τ1 × · · · × τk → τ a (possibly total) function

ι(f) : D(τ1)× · · · × D(τk) 7→ D(τ) (4.19)

where D(τ) denotes the domain of τ as given by D.
We also use D to denote the union of all domains D(τ), τ ∈ T , that is, the set of all

semantical values used by the semantical domain D. ♦

Note that the interpretation of function symbols from F is global. The local things
(current local state of an individual, for example, or being alive, newly created, or
disappearing) is explicitly part of the syntax and obtains an explicit semantics (cf. Sec-
tion 4.2.1).

Definition 4.2.5 (Canonical Structure). Let S be a signature with n identity types and
let G be a compatible (Σ,Λ)-topology over identities Id partitioned into Id1 ∪̇ . . . ∪̇ Idm.
A structure M of S is called canonical structure wrt. G if and only if the following
domains are chosen as follows.

• D(B) = B3 = {0, 1, 1/2}

• D(S) = Σ

• D(L) =
⋃

λ∈Λ dom(λ)

• D(Tj) ∈ {Id1, . . . , Idm}, 1 ≤ j ≤ n

• D(TTT j) = D(Tj)
+ ∪ D(Tj)

ω, 1 ≤ j ≤ n

A structure is called canonical wrt. an topology transition system M over Id if and
only if it is canonical wrt. M ’s topologies. ♦

The canonical domain of the booleans B is three-valued, i.e. B3, in order to cater for
all kinds of undefinedness; first of all, arising from pre-maturely disappearing individual,
but also from navigating dangling links.

The canonical domain of the local states S is simply the set of local states, The
canonical domain of the type of link sets is the set of multi-sets over identities in order
to semantically represent the different notions of agent inter-connections (cf. Figure 3.5)

Concerning logical variables, there are two different kinds of domains as discussed in
the introduction of this section.

The canonical domain of logical variables of type T is simply the set of identities, or
one of the partitions in case of typed topologies, the canonical domain of logical variables
of type TTT is the set of finite and infinite sequences of individuals.

Note that in the following, we only distinguish if necessary between having only one
identity type T or multiple ones. In most cases, it’ll be sufficient to discuss the single
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type case as it generalises straightforwardly to multiple types in our notion of typed
topologies.

4.2.3. Assignment

The definition of assignment itself in terms of semantical domains is standard.

Definition 4.2.6 (Assignment and Modification). Let M = (ι,D) be a structure of
the signature S = (T,V,F,Λ). An assignment of a set of variables V ⊆ V in M is
a function θ : V → D assigning each v ∈ V of type τ a value from D(τ). We use
AssignM(V ) to denote the set of all assignments of V inM. The index may be omitted
if it is determined by the context.

The modification of θ at v to d, that is, the assignment of V which coincides with θ
on V \ {v} and yields d for v, is denoted by θ[v 7→ d]. ♦

Definition 4.2.7 (Assignment Information Order). Let S be a signature and G a com-
patible topology over Id. Let M = (ι,D) be a canonical structure of S wrt. G and
θ1, θ2 ∈ AssignM(V ) two assignments of a set of variables V ⊆ V(S).

We say, θ2 is more indefinite than θ1, denoted by

θ1 ⊑ θ2, (4.20)

if and only if they are identical up to length of evolution chains, that is, if θ1(x) = θ2(x)
for each x ∈ V of type T and θ1(v)/k = θ2(v)/k for 0 ≤ k < n where n is the length of
θ2(v) for each v ∈ V of type TTT . ♦

Definition 4.2.8 (Assignment Evolution). Let S be a signature and G a compati-
ble topology over Id. Let M = (ι,D) be a canonical structure of S wrt. G and θ ∈
AssignM(V ) an assignment of variables V ⊆ V(S).

The k-step evolution of θ, denoted by θ/k, is the assignment of V which coincides
with θ on all variables not of type TTT and yields the sequence suffix starting at the k-th
element for all variables of type TTT , i.e.

(θ/k)(v) =

{

θ(v)/k , if v is of type TTT

θ(v) , otherwise
(4.21)

♦

Note that the k-step evolution changes the valuation of TTT -typed variables to the empty
sequence if the original valuation is of finite length smaller than k.

Note 4.2.9 (Assignment Information Order Under Evolution). Let S be a signature and
G a compatible topology over Id. Let M = (ι,D) be a canonical structure of S wrt. G
and θ1, θ2 ∈ AssignM(V ) two assignments of a set of variables V ⊆ V(S).

Information order is invariant under evolution, that is,

θ1 ⊑ θ2 =⇒ ∀ k ∈ N0 : θ1/k ⊑ θ2/k. (4.22)

♦
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G1

σ

σ σ ⊑

G2

σ

σ ,

G3

σ σ ⊑

G4

σ

Figure 4.4.: Information order on topologies. Topology G1 is less defined than both, G2

and G3, which are unordered with respect to each other but both are less defined
than G4.

Definition 4.2.10. Let S be a signature, G a compatible topology, and M a canonical
structure of S wrt. G. Let θ ∈ AssignM(V ) be an assignment of a set of variables
V ⊆ V(S).

We call θ an assignment in G if and only if θ maps every destiny variable to the
empty evolution chain or an evolution chain beginning with an alive individual from the
topology G, i.e. if

∀xxx ∈ VTTT : θ(xxx) = ε ∨ θ(xxx)/1 ∈ U⊚(G). (4.23)

♦

Definition 4.2.11 (Assignment in State or Path). Let S be a signature, M a compatible
evolving topology transition system, and M a canonical structure of S wrt. G. Let
θ ∈ AssignM(V ) be an assignment of a set of variables V ⊆ V(S).

1. Let s ∈ S(M) be a state of M . We call θ an assignment in s if and only if θ is an
assignment in the topology of s, i.e. in L (s).

2. Let π ∈ Πs(M) be a computation path in M starting at some state s ∈ S(M). We
call θ an assignment in π if and only if all evolution chains used by θ are evolution
chains along π, i.e. if

∀xxx ∈ V ∩ VTTT : θ(xxx) ∈ ∆(U⊚(π0), π) (4.24)

The set of all assignments of V in a given state s and path π is denoted by AssignM(V, s)
and AssignM(V, π). ♦

4.2.4. Topology and ETTS Information Order

One important property we expect from our EvoCTL∗ semantics is that it indicates
unexpected disappearance of objects by yielding the indefinite value 1/2.

As mentioned in Section 4.1, we intuitively consider disappearance of an individual to
be unexpected if a logical variable refers to it and is not guarded by a life-cycle operator
– like “⊚” – which always evaluates definite in case of disappearance.

In order to formally discuss whether our semantics satisfies these expectations, we
define a notion of information order on topologies. The expectation is then more precisely
that the evaluation of an EvoCTL∗ tends to change to 1/2 with growing undefinedness
(cf. Sections 4.3.4 and 4.4.6).
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Definition 4.2.12 (Topology Information Order). Let G1 and G2 be (Σ,Λ)-topologies
over Id. We say, G2 is more undefined than G1, denoted by

G1 ⊑ G2, (4.25)

if and only if G1 and G2 are identical up to local state labelling, that is,

1. U(G1) = U(G2), L(G1) = L(G2), ψ(G1) = ψ(G2), λ(G1) = λ(G2),

2. G1

λ = G2

λ , for all λ ∈ Λ, and

3. ∀ id ∈ dom(σ(G2)) : id ∈ dom(σ(G1)) ∧ σ(G2)(id) = σ(G1)(id). ♦

Note that the information order on topologies doesn’t have the nice property of being
a complete lattice. There is no single largest element, only subsets of the same size have
a largest element.

The following definition extends information order to paths and states to prepare the
above named sections on monotonicity.

Definition 4.2.13 (ETTS Information Order). Let M1 and M2 be two (Σ,Λ)-ETTS
over Id. We say that M1 is less defined than M2, denoted by

M1 ⊑ M2, (4.26)

if and only if

1. they have identical state and initial state sets, that is, S(M1) = S(M2), S01
(M1) =

S02
(M2),

2. they have identical transition sets and M2 admits at least as much evolution as
M1, that is, given R(M1) = (R1, e1) and R(M2) = (R2, e2), R1 = R2 and ∀ r ∈
R1 = R2 : e1〈r〉 ⊆ e2〈r〉,

3. the corresponding labellings of states are in topology information order, that is,
∀ s ∈ S(M1) = S(M2) : L (M1)(s) ⊑ L (M2)(s). ♦

4.3. Terms

4.3.1. Syntax

Terms are used to express properties of a single topology (or world), for instance, logical
connectives of the local states individuals are in or who has links to whom. A term is
basically a predicate logic expression over predicates and functions.

Note that for completeness we introduce two flavours of logical variables, ranging over
identities and over evolution chains as discussed in Section 4.1, although evolution is not
relevant when evaluating terms for topologies. We’ll discuss the relation between the
two kinds of logical variables formally after having defined the semantics of terms.
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Further note that quantification is limited to identities and individuals, that is, we
don’t admit direct quantification over links or local states. Accessing links is only indi-
rectly possible by employing individuals. For example, the property of existence of at
least one link labelled with λ is equivalent to the existence of two identities u1 and u2

such that u1 has a λ-link to u2.
Following [190, 191], it is also sensible to have a general transitive closure operator

in order to express properties of reachability which is highly important when treating
data-structures like linked lists, but not of that vital importance in our scope; thus, and
because it is easily lost in our abstraction, we leave it out.

In the following, we distinguish between functional and logical terms. The intention
is to avoid logical terms, like whole quantified expressions, as the argument of function
or predicate symbols. Function or predicate symbols shall only depend on individu-
als, logical connections can always be expressed employing the explicitly given logical
connectives.

Definition 4.3.1 (Term). Let S = (T,V,F,Λ) be a signature. A type-consistent word
of the grammar

a ::= x | xxx | ⊚ a1 | σ(a1) | λ(a1) | a1 = a2 | f(a1, . . . , ak) (4.27)

where x,xxx ∈ V are logical variables, λ ∈ Λ is a link name, and f ∈ F a function symbol,
is called (typed) functional term over S, i.e.

• if x and xxx are logical variables from V denoting an identity or an evolution chain,
i.e. of type T or TTT , then x and xxx are functional terms over S of type T and TTT ,
respectively,

• if a1 is a functional term of type T or TTT , then ⊚ a1, σ(a1), and λ(a1), are functional
terms over S of type B, S, and L, respectively,

• if a1 and a2 are functional terms, each of type T or TTT , then a1 = a2 is a functional
term over S of type B,

• if f : τ1 × · · · × τk → τ is a function symbol from F and a1, . . . , ak are terms of
types τ1, . . . , τk, then f(a1, . . . , ak) is a functional term over S of type τ , and

• nothing else is a functional term over S.

A type-consistent word of the grammar

t ::= 0 | 1 | a | ¬(t1) | (t1 ∨ t2) | (t1 ∧ t2)

| ∀x : T . t1 | ∃x : T . t1 | ∀xxx : T . t1 | ∃xxx : T . t1,
(4.28)

where a is a functional term of type B and x,xxx ∈ V are logical variables of the identity
type T ∈ {T1, . . . , Tn} and the evolution chain type TTT ∈ {TTT 1, . . . ,TTT n}, is called (typed)
(logical) term over S, i.e.

• 0 and 1 are logical terms over S,

87



4. Property Specification Logic

• if a is a functional term of type B over S, then a is a logical term over S,

• if t1 and t2 are logical terms over S, then ¬(t1), (t1 ∨ t2), (t1 ∧ t2), ∀x : T . t1,
∃x : T . t1, ∀xxx : T . t1, and ∃xxx : T . t1 are logical terms over S, and

• nothing else is a logical term over S.

We use Termτ (S) and Term(S) to denote the sets of all terms of type τ and of all
terms over S. The terms in TermB(S) are called boolean terms. ♦

Definition 4.3.2 (Bound and Free Variables.). Let t be a logical term over signature
S = (T,V,F,Λ). A variable v ∈ V is said to occur bound in t if and only if each
occurrence of v takes place in a sub-term of t of the forms ∀ v . t1 or ∃ v . t1. Otherwise
v is called free.

We use Free(t) to denote the set of free variables in t. ♦

Abbreviations, Alternative Notations, and Binding Priorities

We shall use the following common abbreviations and alternative notations.

1. t.σ and t.λ for σ(t) and λ(t),

2. t.λ. · · · .λ.σ for σ(∗(λ(. . . ∗ (λ(t)) . . . )))
if F comprises the link-projection operator ∗ (see Section 4.2.1 above),

3. (t1 ∨̇ t2) for (t1 ∧ ¬t2) ∨ (¬t1 ∧ t2),

4. (t1 → t2) for (¬t1) ∨ t2,

5. (t1 ↔ t2) for (t1 → t2) ∧ (t2 → t1),

6. ∀ v1 : τ1, v2 : τ2, . . . , vn : τn . t for ∀ v1 : τ1 . ∀ v2 : τ2 . . . . ∀ vn : τn . t,
where vi ∈ V of type τi, 1 ≤ i ≤ n,

7. ∃ v1 : τ1, v2 : τ2, . . . , vn : τn . t for ∃ v1 : τ1 . ∃ v2 : τ2 . . . . ∃ vn : τn . t
where vi ∈ V of type τi, 1 ≤ i ≤ n,

8. ∀ v1, v2, . . . , vn : τ . t for ∀ v1 : τ . ∀ v2 : τ . . . . ∀ vn : τ . t,
where vi ∈ V of type τ , 1 ≤ i ≤ n, and

9. ∃ v1, v2, . . . , vn : τ . t for ∃ v1 : τ . ∃ v2 : τ . . . . ∃ vn : τ . t
where vi ∈ V of type τ , 1 ≤ i ≤ n.

We shall use the following common binding priorities to avoid parentheses.

1. Negation (¬) binds most tightly.

2. Next in order is conjunction (∧).

3. Then come disjunctions with equal priority (∨ and ∨̇).
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4. Finally implication and equivalence with equal priority (→ and ↔).

Using ≪ do denote lower binding priority, we thus have

{¬}≪ {∧}≪ {∨, ∨̇}≪ {→,↔}. (4.29)

4.3.2. Semantics

Although we assume a complete assignment of the free variables in a term below, terms
may be undefined because we may navigate empty links, or links comprising more than
one individual, or dereference an identity for which there is currently no individual.

Furthermore, we admit that functions may be undefined for certain values, for exam-
ple, the link-projection operator ∗ will typically be undefined for empty links, or, most
common example, division by 0 if there is arithmetics on local states.

The whole term may of course still yield a definite value, even if some sub-term is
undefined as it may be a tautology or a contradiction.

Definition 4.3.3 (Term Semantics). Let S be a signature, G a compatible topology over
identities Id, and M = (ι,D) a canonical structure of S wrt. G.

Let t be a term over S and let θ be an assignment of the variables occurring free in
t, i.e. an assignment of the set θ ∈ AssignM(Free(t)). The valuation of t is inductively
defined as follows.

1. ιJ0K(G, θ) = 0

2. ιJ1K(G, θ) = 1

3. ιJxK(G, θ) = θ(x)

4. ιJxxxK(G, θ) = θ(xxx)(0), if θ(xxx) 6= ε, undefined otherwise

5. ιJ⊚ t1K(G, θ) =







0 , if t1 has a valuation and

(ιJt1K(G, θ) ∈ U 6⊚(G) \ U⊚(G))

1 , if t1 has a valuation and

(ιJt1K(G, θ) ∈ U⊚(G) \ U 6⊚(G))

1/2 , otherwise

6. ιJσ(t1)K(G, θ) = σ(G)(ιJt1K(G, θ)) if t1 has a valuation which
is in dom(σ(G)), undefined otherwise

7. ιJλ(t1)K(G, θ) = λ(ιJt1K(G, θ))
if t1 has a valuation, undefined otherwise

8. ιJf(t1, . . . , tk)K(G, θ) = ι(f)(ιJt1K(G, θ), . . . , ιJtkK(G, θ)),
if t1, . . . , tk have a valuation and ι(f) is defined

for these values, undefined otherwise

89
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9. ιJp(t1, . . . , tk)K(G, θ) = ι(p)(ιJt1K(G, θ), . . . , ιJtkK(G, θ)),
if t1, . . . , tk have a valuation and ι(p) is defined

for these values, 1/2 otherwise

10. ιJt1 = t2K(G, θ) = eqId(ιJt1K(G, θ), ιJt2K(G, θ)),
if t1 and t2 have a valuation, 1/2 otherwise

11. ιJ¬(t1)K(G, θ) = 1− ιJt1K(G, θ)

12. ιJ(t1 ∨ t2)K(G, θ) = max{ιJt1K(G, θ), ιJt2K(G, θ)}

13. ιJ(t1 ∧ t2)K(G, θ) = min{ιJt1K(G, θ), ιJt2K(G, θ)}

14. ιJ∀x : T . t1K(G, θ) = min{ιJt1K(G, θ[x 7→ id]) | id ∈ Id}

15. ιJ∃x : T . t1K(G, θ) = max{ιJt1K(G, θ[x 7→ id]) | id ∈ Id}

16. ιJ∀xxx : T . t1K(G, θ) = min{ιJt1K(G, θ[xxx 7→ id]) | id ∈ U⊚(G)}

17. ιJ∃xxx : T . t1K(G, θ) = max{ιJt1K(G, θ[xxx 7→ id]) | id ∈ U⊚(G)} ♦

Def. 4.3.3 gives rise to the following equivalences – which we recall here in order to
point out differences between 3-valued Kleene logic and classical 2-valued Boolean logic.
Note 4.3.4.4 exemplifies the significant consequence of using three-valued logic that many
syntactical indications for tautologies or contradictions known for classical boolean logic
are lost in three-valued logic.

Note 4.3.4 (Indefiniteness of Terms). Let t1 and t2 be logical terms over signature S, G
a topology over identities Id compatible with S, and M a canonical structure of S wrt.
G. Then

1. ιJ¬t1K(G, θ) = 1/2 if and only if ιJt1K(G, θ) = 1/2,

2. ιJt1 ∨ t2K(G, θ) = 1/2 if ιJt1K(G, θ) = 1/2 and ιJt2K(G, θ) 6= 1,

3. ιJt1 ∧ t2K(G, θ) = 1/2 if ιJt1K(G, θ) = 1/2 and ιJt2K(G, θ) 6= 0.

4. t1 ∨ ¬t1 is not a tautology, t1 ∧ ¬t1 is not a contradiction. ♦

4.3.3. Semantical Equivalence

Definition 4.3.5 (Semantical Equivalence of Terms). Let t1 and t2 be terms over sig-
nature S = (T,V,F,Λ). We say t1 and t2 are semantically equivalent, denoted by

t1 ≡ t2, (4.30)

if and only if their valuation is independent from the employed structure, that is, if

ιJt1K(G, θ) = ιJt2K(G, θ) (4.31)

for any canonical structure M = (ι,D) of S wrt. an S-compatible topology G and any
assignment θ. ♦
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4.3.4. Definiteness and Monotonicity

Given the three-valued semantics of terms from Section 4.3.2 we can investigate defi-
niteness and monotonicity properties. The former denotes the wish to give syntactical
criteria which ensure that a given term evaluates definite, that is, not to 1/2, under all
circumstances. As this is only a side-aspect of our work, we’re content to only obtain
some sufficient criteria and a characterisation of sources for indefiniteness, but no exact
criteria.

The second denotes the desired property that a term evaluates rather to 1/2 on a more
undefined topology (cf. Section 4.2.4).

In this section, we assume concrete topologies, that is, U⊚(G) ∩ U 6⊚(G) = ∅.

Monotonicity

The following lemma indicates that our semantics of terms (without life-cycle queries) is
monotone in the employed topologies, that is, with the same assignment, a more defined
topology in the sense of Def. 4.2.12 yields a more definite valuation.

The exclusion of “⊚” in the lemma provides the following understanding. Aliveness
queries allow us to distinguish topologies that are in information order.2 For example, if
a topology G1 is more defined than a topology G2 at identity id, then an aliveness query
for id may yield 0 in G2 and 1 in G1, two logical values that are not in information order.
The other way round, if life-cycle queries are present and guard certain variables, they
express an awareness for disappearance. Yet this is different from saying that formulae
with guarded variables always evaluate definite.

The crucial case is when they’re left out. Then the formula is not aware of disappear-
ance, and then the evaluation should become less definite in less defined topologies.

For a similar reason, quantification is excluded from the discussion of logical terms
because quantification can also distinguish topologies that only differ in alive individuals.
For example the query whether there exists an individual with a certain local state is
1 if one is present in G1 and turns 0 if they are removed (or dead) in G2. Our initial
observations are still useful since they tell us what happens to the term under the
quantifier, in particular, what happens with evolution over time, which we’ll see in a
later lemma.

Note that for terms, only the first element of sequences assigned to variables of type
TTT is relevant. This will naturally change when considering temporal properties.

Lemma 4.3.6 (Monotonicity of Term Evaluation). Let S = (T,V,F,Λ) be a signature,
G1 ⊑ G2 two S-compatible topologies over Id, andM a canonical structure wrt. G1 and
G2.

1. The evaluation of a boolean functional term a without sub-terms of the form ⊚ a0

is monotone in the topology, that is,

ιJaK(G1, θ) ⊑ ιJaK(G2, θ) (4.32)

2 Distinction in the formal sense that the formula evaluates to different definite values, or: that we
know something about both cases, which is different for both cases.
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G1:
id

G2:
idσ

Figure 4.5.: Example topologies supporting the claim of Note 4.3.7.

for any assignments θ1 ⊑ θ2 of a’s free variables.

2. The evaluation of logical terms where logical variables of type TTT only occur freely
is monotone in the valuation of their boolean sub-terms.

3. The valuation of a boolean term a without sub-terms of the form ⊚ a0 and where
logical variables of type TTT only occur freely is monotone in the topology, that is,

ιJtK(G1, θ) ⊑ ιJtK(G2, θ) (4.33)

for any assignments θ1 ⊑ θ2 of t’s free variables. ♦

Proof. See Section A.1.

The following note complements the lemma. Together we’re close to an “if-and-only-
if”, the missing point are again possibly occurring tautologies.

Note 4.3.7. Let S be a signature such that V(S) comprises at least one logical variable
xxx of an evolution chain type TTT and one logical variable x of an identity type T .

Let t denote a term of the form

1. ⊚ v, or 2. ∀xxx : T . ψ.

Then we can choose ψ such that there exist two S-compatible topologies G1 and G2, a
canonical structure M of S wrt. G1 and G2, and assignments θ1, θ2 with G1 ⊑ G2 and
θ1 ⊑ θ2, but

ιJϕK(G1, θ1) 6⊑ ιJϕK(G2, θ2). (4.34)

♦

Proof.

1. Consider the topologies G1 and G2 shown in Figure 4.5. We have G1 ⊑ G2 because
both are identical up to definedness of σ. Assuming θ assigns id to v, as sequence
of length one in case v is of type TTT and plainly otherwise, we obtain

ιJ⊚ vK(G1, θ) = 0 6⊑ 1 = ιJ⊚ vK(G2, θ). (4.35)

2. With the same setting as in the previous case, we have

ιJ∀xxx : T . 0K(G1, θ) = 1 6⊑ 0 = ιJ∀xxx : T . 0K(G2, θ) (4.36)

because the first quantification ranges over the empty set and the second doesn’t.
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Definiteness

Lemma 4.3.8 (Definite Valuation of Terms). Let S be a signature, G a compatible
topology over identities Id, and M = (ι,D) a canonical structure of S wrt. G.

Let t be a logical term such that

1. all variables occurring in t are of type TTT and bound,

2. none of the operators λ ∈ Λ(S) occurs in t,

3. the interpretation of all function and predicate symbols f and p occurring in t by
ι is total and definite.

Then t evaluates definite in G under M, i.e., ιJtK(G, θ) 6= 1/2, for any assignment θ. ♦

Proof. See Section A.1.

On second sight, the previous lemma has very strong premises, namely the exclusion
of link navigation. Without them we’d have to impose semantical restrictions, which
means giving up the aim of this section: to tell by the (syntactical) form of a formula
whether it evaluates definite or not. We’d have to take into account the topology where
the formula is evaluated.

A syntactical alternative lies in our restriction to single links instead of using full multi-
sets. This doesn’t directly ensure definite evaluation because, for instance, comparison
for equality still evaluates indefinite on dangling links.

The assumption of complete absence of dangling links, that is, links don’t even tem-
porally dangle, is in general to strict. A remaining way to exclude this source for indef-
initeness is to assume query links only in a guarded fashion, that is, to transform terms
of the form

a := p(∗(λ(v))) (4.37)

to

λ(v) 6= ∅ ∧ a or λ(v) 6= ∅ =⇒ a (4.38)

Note that this is obviously not semantics preserving in case of dangling links. One
has to consider carefully whether (4.38) is admissible, that is, actually characterises the
intended property.

Here the problem is that (4.38) is biased, that is, the former expression maps the
undefined case to one to the definite value 0, to second one maps it to 1. In other words:
these definite value 0 suddenly happens to mean two things, namely, that the link exists
and p evaluates to 0 and that the link doesn’t exist.

The following note complements Lemma 4.3.8 by listing cases in which we cannot
assume definite valuations of terms. By the monotonicity lemma, Lemma 4.3.6, such
indefinite valuations are likely to propagate through to the valuation of the whole term
unless they appear explicitly guarded, for example by implications depending on alive-
ness or in tautologies or contradictions . That is, together they’re still not complete, but
provide a first indication of what we can and have to expect.
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Firstly, logical variables of type TTT lead to indefiniteness of functional terms if they
are assigned the empty sequence ε. Secondly, any logical variable denoting a non-alive
individual immediately leads to indefinite valuation of functional terms by definition.
And thirdly, function and predicate symbols may obtain an interpretation which yields
indefinite values or is partially undefined, for instance division is often undefined when
dividing by zero.

Note 4.3.9 (Indefinite Valuation of Terms). Let S = (T,V,F,Λ) be a signature.

• Let t denote any of the functional terms

⊚xxx, σ(xxx), λ(xxx), f(. . . ,xxx, . . . ), p(. . . ,xxx, . . . ),xxx = v (4.39)

xxx ∈ V of type TTT , f, p ∈ F .

Then for all S-compatible topologies G and canonical structures M = (ι,D) of S
wrt. G, there is an assignment θ of the free variables in t such that the valuation
of t is indefinite or undefined.

• Let t denote any of the functional terms

σ(v1), λ(v1), f(. . . , v1, . . . ), p(. . . , v1, . . . ), v1 = v2 (4.40)

v1, v2 ∈ V of type T or TTT , f, p ∈ F .

Then for all S-compatible topologies G with at least one non-alive identity and all
canonical structures M = (ι,D) of S wrt. G, there is an assignment θ of the free
variables in t such that the valuation of t is indefinite or undefined.

• Let t denote any of the functional terms

f(. . . , v, . . . ), p(. . . , v, . . . ), (4.41)

v ∈ V of type T or TTT , f, p ∈ F .

Then for all S-compatible topologies G there exists a canonical structure M =
(ι,D) of S wrt. G such that the valuation of t is indefinite or undefined for any
assignment θ of the free variables in t. ♦

Proof.

1. By assigning the empty evolution chain to xxx, that is, θ(xxx) = ε, the valuation of t
immediately turns indefinite by definition.

2. Let id ∈ Id denote a non-alive identity. Assigning id to v, that is, θ(x) = id or
θ(xxx) = id (sequence of length 1), the valuation of t immediately turns indefinite
by definition.

3. The interpretation of f and p can be chosen to be undefined or to constantly yield
the indefinite value 1/2. Then the valuation of the term is indefinite independent
from topology and assignment.
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Evolution Chain vs. Identity Quantification

The following note states that, within terms, the only difference between quantification
of logical variables of types T and TTT is that for the latter only alive individuals are
considered.

This can be expressed with quantification over variables of type T by employing the
aliveness operator ⊚.

Treating logical variables of type TTT at all in terms is necessary because terms form the
building blocks of temporal formulae where variables of this type may also be bound and
then referred to in terms. In this case, of terms within temporal formulae, the difference
between identities and evolution chains becomes visible.

Note 4.3.10 (Identities vs. Evolution Chains in Terms). Let t be a term over signature
S and x,xxx ∈ V(S) logical variables. Then:

1. ∀xxx : T . t ≡ ∀x : T . (⊚ x)→ t

2. ∃xxx : T . t ≡ ∃x : T . (⊚ x) ∧ t ♦

Proof. We have to show that for each compatible (concrete) topology G over identities
Id, and canonical structureM = (ι,D) of S wrt. G we have

1. ιJ∀xxx : T . tK(G, θ) = ιJ∀x : T . (⊚ x)→ tK(G, θ) and

2. ιJ∃xxx : T . tK(G, θ) = ιJ∃x : T . (⊚ x) ∧ tK(G, θ)

for any assignment θ.
This is evident because the identities considered for xxx are, by definition, taken from

the set U⊚(G). Also by definition, ⊚ is interpreted as the characteristic function of
U⊚(G) (in concrete topologies, that is, U⊚(G) ∩ U 6⊚(G) = ∅). The logical combinations
of ⊚ x and t ensure coincidence in particular in the trivial case U⊚(G) = ∅.

4.4. EvoCTL∗

The logic introduced in the following is called EvoCTL∗ because it is a conservative
first-order extension of CTL∗ which is in addition aware of evolution and has primitives
to query life-cycle properties.3

Our aims are the same as, for instance [190, 190] or any other proposal of first-order
temporal logic for the specification of dynamic topology systems, but we give a more
adequate semantics, and we see that evolution can also be added to a branching time
logic.

The semantics is more adequate because by employing a three-valued semantics, we
preserve well-known invariants of LTL, which most biased (see above) proposals fail.
Examples can be found in the joint work [11].

3 The name ETL is already occupied, even more than once [105, 191], although the ETL of [191] has
later been renamed VTL [190].
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4. Property Specification Logic

Furthermore, the inclusion of both, quantification over identities and destinies in the
same formalism, allows to compare them for expressiveness, and strengths and weak-
nesses.

Note that EvoCTL∗ is basically first-order CTL∗ over dynamic domains, where “first-
order” refers to the possibility to quantify over individuals and destinies in addition to
the first-order quantification over paths already provided by CTL∗.

4.4.1. Syntax

Definition 4.4.1 (Evolution CTL∗). Let S = (T,V,F,Λ) be a signature.

1. A type-consistent word of the grammar

φ ::= t | ⊙ a | ¬φ1 | φ1 ∨ φ2 | φ1 ∧ φ2

| ∀x : T . φ1 | ∃x : T . φ1 | ∀xxx : T . φ1 | ∃xxx : T . φ1 | A ψ | E ψ
(4.42)

where x ∈ V, is called state formula over S, i.e.

• if t ∈ TermB(S) is a boolean term over S, then t is a state formula over S,

• if t ∈ TermT (S) is a term over S of identity type, then ⊙ a is a state formula
over S,

• if φ1 and φ2 are state formulae over S, then ¬φ1, φ1 ∨ φ2, and φ1 ∧ φ2 are
state formulae over S,

• if φ1 is a state formula over S and x,xxx ∈ V are logical variables of types
T and TTT , then ∀x : T . φ1 (“for all identities, φ1”), ∃x : T . φ1 (“for some
identity, φ1”), ∀xxx : T . φ1 (“for all individuals’ fate, φ1”), and ∃xxx : T . φ1

(“for some individual’s fate, φ1”) are state formulae over S,

• if ψ is a path formula over S, then A ψ (“on all paths ψ”) and E ψ (“on some
path ψ”) are state formulae over S, and

• nothing else is a state formula over S.

2. A type-consistent word of the grammar

ψ ::= φ | ⊗ a | ¬ψ1 | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | ∀x : T . ψ1 | ∃x : T . ψ1

| ∀xxx : T . ψ1 | ∃xxx : T . ψ1 | X ψ1 | F ψ1 | G ψ1 | ψ1 U ψ2 | ψ1 R ψ2
(4.43)

is called path formula over S, i.e.

• if φ is a state formula over S, then φ is a path formula over S,

• if t ∈ TermT (S) is a term over S of an identity type, then ⊗ a is a path
formula over S,

• if ψ1 and ψ2 are path formulae over S, then ¬ψ1, ψ1 ∨ ψ2, and ψ1 ∧ ψ2 are
path formulae over S,
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• if ψ1 is a path formula over S and x,xxx ∈ V are logical variable of an identity
type T and an evolution chain type TTT , then ∀x : T . ψ1, (“for all identities,
ψ1”), ∃x : T . ψ1 (“for some identity, ψ1”), ∀xxx : T . ψ1, (“for all individuals’
fate, ψ1”), and ∃xxx : T .ψ1 (“for some individual’s fate, ψ1”) are path formulae
over S,

• if ψ1 and ψ2 are path formulae over S, then X ψ1 (“next ψ1”), F ψ1 (“finally
ψ1”), G ψ1 (“globally ψ1”), ψ1 Uψ2 (“ψ1 until ψ2”), and ψ1 Rψ2 (“ψ1 releases
ψ2”) are path formulae over S, and

• nothing else is a path formula over S.

3. Evolution CTL∗ (EvoCTL∗) is the set of path formulae over S.

The symbols ⊙, ⊚, and ⊗ are called life cycle queries. The symbols A and E are called
universal and existential path quantifier. The symbols X, F, G, U, and R are called
temporal modalities. ♦

Note that the use of terms (cf. Def. 4.3.3) in EvoCTL∗ is type consistent because we
assumed B3 as the domain boolean terms evaluate to and boolean terms are the atoms
of temporal formulae.

Note 4.4.2 (Formulae over Subset-related Signatures). Let S1 ⊆ S2 be two signatures.
Then each EvoCTL∗ formula over S1 is also an EvoCTL∗ formula over S2. ♦

Definition 4.4.3 (Bound and Free Variables.). Let ϕ be an EvoCTL∗ formula over
signature S = (T,V,F,Λ). A variable v ∈ V is said to occur bound in ϕ if and only
if each occurrence of v takes place in a sub-formula of ϕ of the forms ∀ v . φ or ∃ v . φ.
Otherwise v is called free.

We use Free(ϕ) to denote the set of free variables in ϕ. ♦

Definition 4.4.4 (Variables Under Temporal Operators.). Let ϕ be an EvoCTL∗ for-
mula over signature S = (T,V,F,Λ). A variable v ∈ V is said to occur under temporal
operator X (F, . . . ) if and only if ϕ has a sub-formula of the form X ϕ̃ and v occurs in
ϕ̃.

It is said to occur directly under X if and only if there don’t occur any temporal
operators in ϕ̃. ♦

Abbreviations and Binding Priorities

The abbreviations from Section 4.3.1 apply correspondingly to EvoCTL∗.
In addition, we shall use the following common abbreviations.

1. ψ1 W ψ2 for (G ψ1) ∨ (ψ1 U ψ2) (“ψ1 unless ψ2”)

2. Xk ψ1 for X . . .X
︸ ︷︷ ︸

k times

ψ1, k ∈ N0

Binding priorities for EvoCTL∗ are as follows.
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1. Unary temporal connectives (X, G, F) bind equally strong to negation (¬).

2. The binary temporal connectives (U, R, W) bind less tightly than the unary ones
and more tightly than binary logical connectives like conjunction and disjunction.

3. The path quantifiers A and E bind least tightly.

Using the symbol from (4.29) for terms on page 89, for EvoCTL∗ we have

{¬,X,G,F}≪ {U,R,W}≪ {∧}≪ {∨, ∨̇}≪ {→,↔}≪ {A,E}. (4.44)

Named Fragments of EvoCTL∗

Actually, we’re only interested in three fragments of EvoCTL∗, namely the one that
doesn’t refer to evolution (by quantifying only locally, within terms) and the one that
does (by accessing logical variables in the scope of different temporal operators).

Furthermore, as soon as we’re studying abstractions, we’re interested in the universally
quantified (both, paths and logical variables) fragment. For completeness and to sort
in the just named three, in the following we name the commonly used fragments of
temporal logic in terms of EvoCTL∗.

Definition 4.4.5 (Named Fragments of EvoCTL∗).

1. An EvoCTL∗ formula only consisting of a term is called state property (or state
invariant), otherwise it’s called temporal property.

2. An EvoCTL∗ formula where quantification only occurs in terms is called local
topology property, otherwise it’s called evolution property.

3. The set of EvoCTL∗ formulae comprising only universal quantifiers, both path and
other quantifiers, is called AEvoCTL∗, the set of EvoCTL∗ formulae comprising
only existential quantifiers is called EEvoCTL∗.

4. An EvoCTL∗ formula which comprises only identity variables is called identity
property, an EvoCTL∗ formula which comprises only destiny variables is called
destiny property.

5. The set of EvoCTL∗ formulae of the form A ϕ where ϕ doesn’t comprise further path
quantifiers is called FO-LTL. The set of EvoCTL∗ formulae where each occurrence
of the temporal modalities X, F, G, U, and R is immediately preceded by a path
quantifier is called FO-CTL.

6. The set of EvoCTL∗, FO-LTL, and FO-CTL where terms comprise only 0-ary pred-
icates (also called atomic propositions) and no logical variables are called CTL∗,
LTL, and CTL, respectively. ♦
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4.4.2. Semantics

Definition 4.4.6 (EvoCTL∗ Semantics). Let S be a signature, M a compatible evolving
topology transition system, and M = (ι,D) a canonical structure of S wrt. M .

Let φ be an EvoCTL∗ state formula over S. Given a state s ∈ S(M) and an assignment
θ ∈ Assign(Free(φ), s) of the free variables of φ in s, the valuation of φ in s under θ is
inductively defined as follows.

1. MJtK(s, θ) = ιJtK(L (s), θ)

2. MJ⊙ aK(s, θ) =







1 , if id := ιJaK(L (s), θ) exists, is in U⊚(s), and
∀ r = (′s, s) ∈ R(M) :

r
 e id ∧ ∀ ′id ∈ Id :′ id

r
 e id =⇒ ′id /∈ U⊚(′s)

0 , if id := ιJaK(L (s), θ) exists, is in U⊚(s), and

∃ r = (′s, s) ∈ R(M) ∃ ′id ∈ Id :′ id
r
 e id ∧′ id /∈ U 6⊚(′s)

1/2 , otherwise

3. MJ¬φK(s, θ) = 1−MJφK(s, θ)

4. MJφ1 ∨ φ2K(s, θ) = max(MJφ1K(s, θ),MJφ2K(s, θ))

5. MJφ1 ∧ φ2K(s, θ) = min(MJφ1K(s, θ),MJφ2K(s, θ))

6. MJ∀x : T . φK(s, θ) = min{MJφK(s, θ[x 7→ id]) | id ∈ Id}

7. MJ∃x : T . φK(s, θ) = max{MJφK(s, θ[x 7→ id]) | id ∈ Id}

8. MJ∀xxx : T . ψ1K(s, θ) = min{MJψ1K(π, θ[xxx 7→ id]) | id ∈ U⊚(s)}

9. MJ∃xxx : T . ψ1K(s, θ) = max{MJψ1K(π, θ[xxx 7→ id]) | id ∈ U⊚(s)}

10. MJA ψK(s, θ) = min{MJψK(π, θ[xxx1 7→ δ1] . . . [xxxn 7→ δn]) |

π ∈ Πs(M), δi ∈ ∆(θ(xxxi)(0), π), i = 0, . . . , n}
where xxx1, . . . ,xxxn are the destiny variables obtaining non-
empty evolution chains from θ, i.e. θ(xxxi) 6= ε, 1 ≤ i ≤ n

11. MJE ψK(s, θ) = max{MJψK(π, θ[xxx1 7→ δ1] . . . [xxxn 7→ δn]) |

π ∈ Πs(M), δi ∈ ∆(θ(xxxi)(0), π), i = 0, . . . , n}

with xxx1, . . . ,xxxn as in the previous case

Let ψ be an EvoCTL∗ path formula over S. Given a path π ∈ Π(M) and an assignment
θ ∈ Assign(Free(ψ), π) of the free variables of ψ in π, the valuation of ψ on π under θ
is inductively defined as follows.

12. MJφK(π, θ) = MJφK(π0, θ)
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13. MJ⊗ aK(π, θ) =







1 , if id := ιJaK(L (π0), θ) exists, is in U⊚(π0), and is not in
dom(e〈π0, π1〉) or e〈π0, π1〉(id) ∈ U 6⊚(π0) \ U⊚(π0)

0 , if id := ιJaK(L (π0), θ) exists, is in U⊚(π0), and is in
dom(e〈π0, π1〉) and e〈π0, π1〉(id) ∈ U⊚(π0) \ U 6⊚(π0)

1/2 , otherwise

14. MJ¬ψ1K(π, θ) = 1−MJψ1K(π, θ)

15. MJψ1 ∨ ψ2K(π, θ) = max(MJψ1K(π, θ),MJψ2K(π, θ))

16. MJψ1 ∧ ψ2K(π, θ) = min(MJψ1K(π, θ),MJψ2K(π, θ))

17. MJ∀x : T . ψ1K(π, θ) = min{MJψ1K(π, θ[x 7→ id]) | id ∈ Id}

18. MJ∃x : T . ψ1K(π, θ) = max{MJψ1K(π, θ[x 7→ id]) | id ∈ Id}

19. MJ∀xxx : T . ψ1K(π, θ) = min{MJψ1K(π, θ[xxx 7→ δ]) | δ ∈ ∆(U⊚(π0), π)}

20. MJ∃xxx : T . ψ1K(π, θ) = max{MJψ1K(π, θ[xxx 7→ δ]) | δ ∈ ∆(U⊚(π0), π)}

21. MJX ψ1K(π, θ) =







1 , if ε /∈ (θ/1)(Free(ψ1)) and MJψ1K(π/1, θ/1) = 1

0 , if ε /∈ (θ/1)(Free(ψ1)) and MJψ1K(π/1, θ/1) = 0

1/2 , otherwise

22. MJF ψ1K(π, θ) =







1 , if there is a k ∈ N0 such that
ε /∈ (θ/k)(Free(ψ1)) and MJψ1K(π/k, θ/k) = 1
and for all j < k, MJψ1K(π/j, θ/k) = 0

0 , if for all k ∈ N0,
ε /∈ (θ/k)(Free(ψ1)) implies MJψ1K(π/j, θ/k) = 0

1/2 , otherwise

23. MJG ψ1K(π, θ) =







1 , if for all k ∈ N0,
ε /∈ (θ/k)(Free(ψ1)) implies MJψ1K(π/k, θ/k) = 1

0 , if there is a k ∈ N0 such that
ε /∈ (θ/k)(Free(ψ1)) and MJψ1K(π/k, θ/k) = 0
and for all j < k, MJψ1K(π/j, θ/k) = 1

1/2 , otherwise
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24. MJψ1 U ψ2K(π, θ) =







1 , if there is a k ∈ N0 such that
ε /∈ (θ/k)(Free(ψ2)) and MJψ2K(π/k, θ/k) = 1
and for all 0 ≤ j < k,
ε /∈ (θ/j)(Free(ψ1)) and MJψ1K(π/j, θ/j) = 1

0 , if for all k ∈ N0,
ε /∈ (θ/k)(Free(ψ1 U ψ2)) and MJψ1K(π/k, θ/k) = 1, and
MJψ2K(π/k, θ/k) = 0,
or there is k ∈ N0 such that
ε /∈ (θ/k)(Free(ψ1 U ψ2)) and
MJψ1K(π/k, θ/k) =MJψ2K(π/k, θ/k) = 0,
and for all j < k,
MJψ1K(π/j, θ/j) = 1 and MJψ2K(π/j, θ/j) = 0,

1/2 , otherwise

25. MJψ1 R ψ2K(π, θ) =







1 , if there is a k ∈ N0 such that
ε /∈ (θ/k)(Free(ψ1)∪ Free(ψ2)) and MJψ1K(π/k, θ/k) = 1 and
MJψ2K(π/k, θ/k) = 0
and for all 0 ≤ j < k, MJψ1K(π/j, θ/j) = 0,
or for all k ∈ N0,
ε /∈ (θ/k)(Free(ψ1) ∪ Free(ψ2)) and MJψ2K(π/k, θ/k) = 1,

0 , if there is a k ∈ N0 such that
ε /∈ (θ/k)(Free(ψ2)) and MJψ2K(π/k, θ/k) = 0,
and for all 0 ≤ j ≤ k,
ε /∈ (θ/k)(Free(ψ1)) and MJψ1K(π/j, θ/j) = 0,

1/2 , otherwise

Recall that, for instance, (θ/1)(Free(ψ1)) denotes the set-extension of θ/1, that is, the
set {θ/1(v) | v ∈ Free(ψ1)} of all semantical values assigned by θ/1 to any variable from
Free(ψ1). ♦

Note 4.4.7. The definition of ⊗ t is stronger than the definition of disappearance along
a transition from Chapter 3.

The latter calls an individual already disappearing if it evolves into something non-
alive, that is, into an individual from U 6⊚. The former in addition requires it not to
evolve into something alive, i.e. into an individual from U⊚. This difference will be
relevant in the section on abstraction where abstract nodes may have the property to be
both, alive and non-alive. ♦
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Satisfaction Relation

As we’re dealing with three-valued logic, we define the notions of a systems satisfying
or not satisfying a formula explicitly. Note that, in contrast to the typical setting with
Kripke structures, there remains a case in the middle: we may neither be able to say
that the system definitely satisfies or definitely doesn’t satisfy a formula.

Definition 4.4.8 (Satisfaction Relation). Let M be an ETTS compatible with signature
S and let M be a canonical structure of S wrt. M .

1. Given a state formula φ, a state s ∈ S(M) of M , and an assignment θ of the free
variables of φ in s, we say

• s satisfies φ under θ,
denoted by M,s, θ |=M φ, iff MJφK(s, θ) = 1 and

• s doesn’t satisfy φ under θ,
denoted by M,s, θ 6|=M φ, iff MJφK(s, θ) = 0.

2. Given a path formula ψ, a path π ∈ Π(M) of M , and an assignment θ of the free
variables of ψ in π, we say

• π satisfies ψ under θ,
denoted by M,π, θ |=M ψ, iff MJψK(π, θ) = 1 and

• π doesn’t satisfy ψ under θ,
denoted by M,π, θ 6|=M ψ, iff MJψK(π, θ) = 0.

We say, the transition system M satisfies a given EvoCTL∗ formula ϕ, denoted by

M |=M ϕ, (4.45)

if and only if M,s, θ |=M ϕ for all initial states s ∈ S0(M) and all assignments θ ∈
Assign(Free(ϕ)) in s; we say, M doesn’t satisfy ϕ, denoted by

M 6|=M ϕ, (4.46)

if and only if there is an initial state s ∈ S0 and an assignment θ ∈ Assign(Free(ϕ)) in
s such that M,s, θ 6|=M ϕ.

The structure index can be omitted if it is clear from the context. ♦

A consequence of this separate definitions of ‘|=’ and ‘6|=’ is

M,s, θ |= ¬φ↔M,s, θ 6|= φ, (4.47)

which is not very surprising, but also

M,s, θ |= ¬φ 6↔ ¬(M,s, θ |= φ), (4.48)

which has to be considered carefully – the reason is that we can’t say anything if an
individual disappears while we still want to refer to it, so we’re actually treating the
unexpected disappearance of individuals.

This is in our opinion better than [190, 191], as it makes loss of individuals more
explicit; in ETL one has to double-check all outcomes for whether the contrary holds,
too.

102



4.4. EvoCTL∗

The Model-Checking Problem of EvoCTL∗ and ETTS

The model-checking problem of EvoCTL∗ is, given an ETTSM and an EvoCTL∗ formula
ϕ, decide whether M |= ϕ holds.

The problem is in general considered undecidable, as other undecidability results [4, 5,
165] are likely to carry over, because it is easily imaginable how to encode a two-counter
machine or a Turing machine tape in a topology.

An interesting question, is how the decidability problem depends on particular features
of the higher-level languages (cf. Chapter 9) like, for instance, communication or the
single-link property.

4.4.3. Fairness

The semantics of EvoCTL∗ with respect to fair ETTS is very similar to the just pre-
sented semantics with respect to an ordinary ETTS . The main difference is that path
quantification only considers fair paths and in addition state propositions hold in a state
only if there is a fair path starting at that state.

Definition 4.4.9 (Fair EvoCTL∗ Semantics). Let M be a fair ETTS compatible with
signature S and let M be a canonical structure of S wrt. M . Let ϕ be an EvoCTL∗

formula over S.
Then the fair valuation of ϕ under an assignment θ of the free variables in ϕ, denoted

by MJϕKF (s, θ) if ϕ is a state formula and by MJϕKF (π, θ) if ϕ is a path formula, is
defined inductively by the set of rules obtained from Def. 4.4.6 by replacing (1), (10),
and (11) by

1 MJtKF (s, θ) =

{

sJtK(θ) , if ΠF
s (M) 6= ∅

1/2 , otherwise

10 MJA ψKF (s, θ) = max
(
(ΠF

s (M) = ∅), min
π∈ΠF

s (M)
MJψK(π, θ)

)

11 MJE ψKF (s, θ) = min
(
(ΠF

s (M) 6= ∅), max
π∈ΠF

s (M)
MJψK(π, θ)

)
♦

The definition of the satisfaction relation remains unchanged from Section 4.4.2. We
write, for example, M |=F ϕ to denote that the fair ETTS M satisfies the EvoCTL∗

formula ϕ.

4.4.4. Semantical Equivalence

Definition 4.4.10 (Semantical Equivalence of Formulae). Let ϕ1 and ϕ2 be EvoCTL∗

formulae over signature S, both state or both path formulae. We say ϕ1 and ϕ2 are
semantically equivalent, denoted by

ϕ1 ≡ ϕ2, (4.49)
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if and only if their valuation is independent from the employed ETTS and structure, that
is, if

MJϕ1K(s, θ) =MJϕ2K(s, θ) (4.50)

in case both are state formulae and

MJϕ1K(π, θ) =MJϕ2K(π, θ) (4.51)

for any evolving topology transition system M compatible with S, any canonical structure
M of S wrt. M , any state or path of M , and any assignment θ.

We say ϕ1 and ϕ2 are semantically equivalent under property “prop”, denoted by

ϕ1 ≡prop ϕ2, (4.52)

if and only if their valuation is independent from the employed ETTS and structure as
long as they have property “prop”. An example for such a property is linearity of the
evolution relation of ETTS. ♦

Negative Normal Form

The following results will be useful for proofs of the behaviour of EvoCTL∗ formulae
under abstraction.

Definition 4.4.11 (Negative Normal Form). An EvoCTL∗ formula ϕ is said to be
in negative normal form if and only if the negation operator (“¬”) only appears in
terms or in front of aliveness queries, that is, if ¬ϕ0 is a sub-formula of ϕ, than either
ϕ0 ∈ TermB(S), or ϕ0 = ⊙ϕ1, or ϕ0 = ⊗ϕ1. ♦

Lemma 4.4.12 (Negation-related Equivalences). Let S = (T,V,F,Λ) be a signature.
Let x ∈ V be a logical variable of an identity type T and xxx ∈ V a logical variable of an
evolution chain type TTT . The we have the following equivalences for EvoCTL∗ formulae
ϕ1, ϕ2, state formulae φ, and path formulae ψ1, ψ2 over S.

1. ¬¬ϕ1 ≡ ϕ1, ¬(ϕ1 ∨ ϕ2) ≡ ¬ϕ1 ∧ ¬ϕ2, ¬(ϕ1 ∧ ϕ2) ≡ ¬ϕ1 ∨ ¬ϕ2.

2. ¬∀ v : τ . ϕ1 ≡ ∃ v : τ . ¬ϕ1, ¬∃ v : τ . ϕ1 ≡ ∀ v : τ . ¬ϕ1,

3. ¬A ψ ≡ E ¬ψ, ¬E ψ ≡ A ¬ψ,

4. ¬X ψ1 ≡ X ¬ψ1.

5. ¬F ψ1 ≡ G ¬ψ1, ¬G ψ1 ≡ F ¬ψ1,
¬(ψ1 R ψ2) ≡ ¬ψ1 U ¬ψ2, ¬(ψ1 U ψ2) ≡ ¬ψ1 R ¬ψ2. ♦

Proof. Cases 1., 2., and 3. are obvious by definition in terms of maximum and minimum
over {0, 1, 1/2} and Note 2.5.1; for instance,

¬(ϕ1 ∨ ϕ2) = 1−max(MJφ1K(s, θ),MJφ2K(s, θ))
= min(1−MJφ1K(s, θ), 1−MJφ2K(s, θ)) = ¬ϕ1 ∧ ¬ϕ2.

(4.53)
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Cases 4. and 5. are clear by close inspection of Def. 4.4.6. In case 4., the two definite
cases are the logical inverse of each other and the indefinite case remains indefinite under
negation. Case 5. follows similarly but involves pairs of operators. Use that, for instance,
the definition of the positive definite case of “F” is the logical inverse of the negative
definite case of “G”.

Corollary 4.4.13 (Negative Normal Form). For each EvoCTL∗ formula ϕ there is a
semantically equivalent EvoCTL∗ formula ϕ̃, which is in negative normal form. ♦

Proof. Recursive application of the equivalences from Lemma 4.4.12 to largest sub-
formulae comprising negation. The procedure terminates rule application moves nega-
tion operators inwards.

Minimal Syntax

The following properties come in handy for proofs of monotonicity properties.

Lemma 4.4.14 (Other Equivalences). Let ψ1 and ψ2 be EvoCTL∗ path formulae over
signature S. Then

1. F ψ1 ≡ 1 U ψ1.

2. ψ1 R ψ2 ≡ G ψ2 ∨ ((¬ψ1) U (ψ1 ∧ ¬ψ2)), in particular G ψ ≡ 0 R ψ.

3. F ψ1 ≡ ψ1 ∨ X F ψ1, G ψ1 ≡ ψ1 ∧ X G ψ1.

4. ψ1 U ψ2 ≡ ψ2 ∨ (ψ1 ∧ X(ψ1 U ψ2)). ♦

Proof. We only show case 1. LetM be an evolving topology transition system compatible
with S and M = (ι,D) a canonical structure of S wrt. M . Let π ∈ Π(M) be a path of
M and θ an assignment.

We have
MJF ψ1K(π, θ) = 1 ⇐⇒ MJ1 U ψ1K(π, θ) = 1 (4.54)

because both cases require existence of k ∈ N0 such that MJψ1K(π/k, θ/k) = 1 and
require definite evaluation of ψ1 for j < k. The additional requirement of definite
(positive) evaluation of the left-hand side of U is trivially given.

Similarly, we have

MJF ψ1K(π, θ) = 0 ⇐⇒ MJ1 U ψ1K(π, θ) = 0. (4.55)

The remaining cases of both sides are the indefinite cases.

Definition 4.4.15 (Normal EvoCTL∗). Let S = (T,V,F,Λ) be a signature.
A type-consistent word of the grammar

φ ::= t | ⊙a | ¬φ1 | φ1 ∧ φ2 | ∀ v . φ1 | A ψ (4.56)
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where t is a normal term and v ∈ V, is called normal state formula and a type-consistent
word of the grammar

ψ ::= φ | ⊗ a | ¬ψ1 | ψ1 ∧ ψ2 | ∀ v . ψ1 | X ψ1 | ψ1 U ψ2 (4.57)

is called normal path formula over S.

Normal EvoCTL∗ is the set of normal path formulae over S. ♦

Corollary 4.4.16 (Normal EvoCTL∗). For each EvoCTL∗ formula ϕ there is a seman-
tically equivalent normal EvoCTL∗ formula ϕ̃. ♦

Proof. Recursive application of the equivalences from Lemma 4.4.12 and Lemma 4.4.14
replaces all operators not occurring in Def. 4.4.15 by admitted operators.

Note that being new (“⊙”) or disappearing (“⊗”) doesn’t reduce to being alive (“⊚”)
because a process can disappear now and reappear in the subsequent state. Then it
is constantly alive but in two different life-cycles. This is different in other proposed
specification logics, for example, in ATL [57] (cf. Section 4.6).

4.4.5. Relation to CTL∗

We note without a proof that Def. 4.4.6 is a conservative extension of CTL∗. Recall
that, by Def. 2.6.3, the class Kripke structures, is a proper sub-class of ETTS. Given
an EvoCTL∗ formula adhering to the well-known syntax of CTL∗, that is, in particular
without quantification, function symbols, and non-0-ary predicates, Def. 4.4.6 yields
the same value on a Kripke structure embedded casted to ETTS than in the classical
semantics.

Which is good because it says that our definition is reasonable and a lot of intuitions
carry over, at least as long as the intricacies of three-valued logics are kept in mind.

4.4.6. Definiteness and Monotonicity

Technically viewed, monotonicity means that a formula without life-cycle queries eval-
uates more indefinite in a more indefinite system. In other words, if a system is less
defined than expected and the formula cares for less life-cycle issues than it should, then
the outcome may be indefinite, which is better than a definite outcome contrary to the
intention

Viewed more practical: can we tell from the syntax, which formulae evaluate definite
and which in general don’t? Strictly speaking, we can not, at least not for an interesting
class of formulae because predicates may evaluate to the indefinite value any time. If
we exclude that issue semantically, we can ask what class of formulae is sensitive to
indefiniteness due to pre-mature disappearance of actors.
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Monotonicity

Note that for first results we use a rather pragmatic than strict definition when requiring
that topologies are nearly identical in the sense that they only differ in local state
labelling.

One can easily think of relaxations where in addition the absence of individuals is
permitted, which is identical to not having a local state for those individuals which are
not destinations of links. For now, we avoid the intricacies of this discussion involving
links and stick to a stronger definition. It is sufficient to make our point, the nice
property of the EvoCTL∗ semantics given by Lemma 4.4.17.

The following lemma corresponds to Lemma 4.3.6 for terms and is accordingly stronger
than Note 4.4.20. It relates the findings of Lemma 4.3.6 for single topologies to sequences
of topologies. That is, if two transition systems only differ by the aliveness of individuals,
then any EvoCTL∗ formula evaluates more precise in the more definite transition system.

Similar to ⊚, life cycle operators are excluded because they of course distinguish
different paths in the sense discussed before Lemma 4.3.6. In addition, usage of variables
of type TTT is restricted because they, in combination with the temporal operators based
on “U” provide an implicit “sensor” for disappearance because they only evaluate within
evolution chains. Similarly, the valuation of quantification over TTT depends on the set
of alive individuals in a state. The lemma is still useful as explained above – and not
maximally strong as also explained above.

Lemma 4.4.17 (Monotonicity of Formula Evaluation). Let S be a signature, M1 ⊑
M2 two compatible evolving topology transition systems, and M = (ι,D) a canonical
structure of S wrt. M1 and M2.

Let ϕ be an EvoCTL∗ state formula over S without life cycle queries and such that all
variables of type TTT in ϕ occur free and directly under X. Then

MM1
JϕK(s, θ1) ⊑ MM2

JϕK(s, θ2) or MM1
JϕK(π, θ1) ⊑ MM2

JϕK(π, θ2) (4.58)

for each state s ∈ S(M1) = S(M2) or path π in M1 and M2 if ϕ is a state or path
formula, and assignments θ1 ⊑ θ2. ♦

Proof. See Section A.1.

The following examples show that Lemma 4.4.17 is close to complete in the sense
that in general we can’t admit live cycle query operators, and neither quantification
over variables of an evolution chain type TTT nor such variables under other temporal
operators. They have in common that they have the power to definitely distinguish two
ETTS in information order, that is, yield 0 for one and 1 for the other. Using only
EvoCTL∗ constructs admitted in Lemma 4.4.17, the distinction is not definite.

Note 4.4.18 (Monotonicity of Formula Evaluation). Let S = (T,V,F,Λ) be a signature
such that V comprises at least one logical variable xxx of an evolution chain type TTT and x
of an identity type T .

Let ϕ denote one of the EvoCTL∗ formulae
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M1:
id

L1(s1)

σ
→

id

L1(s2)

σ
M2:

id

L2(s1)

σ
→

id

L2(s2)

σ

Figure 4.6.: Example ETTS supporting the claims of Note 4.4.18.

1. ⊙ v,

2. ⊗ v,

3. ⊚ v,

4. ∀xxx : T . ψ, or

5. ψ1 U ψ2.

Then there exist two S-compatible ETTS M1 and M2, a canonical structure M of S
wrt. M1 and M2, and assignments θ1, θ2 such that M1 ⊑ M2 and θ1 ⊑ θ2, but

MM1
JϕK(s, θ1) 6⊑ MM2

JϕK(s, θ2) or MM1
JϕK(π, θ1) 6⊑ MM2

JϕK(π, θ2) (4.59)

where s ∈ S(M1) = S(M2) and π is a path in M1 and M2. ♦

Proof. See Section A.1.

The gap to be closed for exactness lies in the prerequisites of Note 4.4.18. The patho-
logical cases of no variables in the structure may be admitted in Lemma 4.4.17. We
refrain from doing so since in our opinion, the gained insight wouldn’t weigh up the
technical complication added to the proof of Lemma 4.4.17.

Definiteness

Lemma 4.4.19 (Definite Evaluation of Formulae). Let S be a signature, M a compatible
ETTS, and M = (ι,D) a canonical structure of S wrt. M .

Let ϕ be an EvoCTL∗ state formula over S such that

1. all variables occurring in t are of an evolution chain type TTT and bound,

2. the interpretation of all function and predicate symbols f and p occurring in ϕ by
ι is total,

3. the temporal next operator (“X”) doesn’t occur in ϕ.

4. for each occurrence of the temporal until operator (“U”), the free variables of the
left hand side are a subset of the ones of the right hand side, i.e. Freeψ1 ⊆ Freeψ2

for any a sub-formula of ϕ of the form ψ1 U ψ2.

Then ϕ evaluates definite at any state s ∈ S(M) of M , that is, MJϕK(s, θ) 6= 1/2, for
any assignment θ. ♦

Proof. See Section A.1.
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The strong premises are inherited from Lemma 4.3.8, that is, in particular the practical
exclusion of dangling links . The notable finding is that logical variables of an evolution
chain type TTT mostly ensure definite valuation, which is probably the motivation for their
introduction in the literature .

Although there are two twists: firstly, the temporal next operator is not admitted
(which may not be the greatest loss of all times in asynchronous systems), and secondly,
the until operator may still turn indefinite if the left hand side disappear pre-maturely
as we’ll see in the following note.

Note that the corresponding premise in Lemma 4.4.19 is not necessary, but only
sufficient; the necessary condition is absence of pre-mature disappearance, which is a
too deeply semantical property to be appropriate in such a syntax oriented lemma as
Lemma 4.4.19. Further note, that the premise is trivially satisfied for the globally and
the finally operator, thus restriction to these operators yields a “definitely definite”
fragment.

The following note is similar to Note 4.3.9.

Note 4.4.20 (Definite Evaluation of Formulae). Let S = (T,V,F,Λ) be a signature.

• Let ϕ denote any of the EvoCTL∗ formulae

⊙xxx or ⊗xxx, (4.60)

xxx ∈ V of an evolution chain type TTT , or an EvoCTL∗ formula the form

X ψ1 (4.61)

such that Freeψ1 comprises at least one logical variable of an evolution chain type
TTT .

Then for all S-compatible ETTS M and canonical structuresM = (ι,D) of S wrt.
M , there is an assignment θ of the free variables in ϕ such that the evaluation of
ϕ is indefinite.

• Let ϕ be an EvoCTL∗ formula of the form

X ψ1 or ψ1 U ψ2. (4.62)

For certain EvoCTL∗ formulae ψ1 and ψ2, there exists a S-compatible ETTS M
such that for all canonical structures M = (ι,D) of S wrt. M , there is an assign-
ment θ of the free variables in ϕ such that the evaluation of ϕ is indefinite.

• Let ϕ be an EvoCTL∗ formula of the form

ψ1 U ψ2. (4.63)

For certain EvoCTL∗ formulae ψ2, there exists a S-compatible ETTS M such that
for all canonical structures M = (ι,D) of S wrt. M , there is an assignment θ of
the free variables in ϕ such that the evaluation of ϕ is indefinite. ♦
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Proof. See Section A.1.

Again, the setting is not hopeless, because we have the possibility to guard sub-
formulae by implications. Together with life cycle queries, it will be definite on the
desired cases and indefinite on some border cases.

4.4.7. Destiny vs. Identity Quantification

One of the reasons for having both notions, destiny and identity quantification, included
in EvoCTL∗ is to be able to compare them for expressive power. The basic finding
is that we can reduce some destiny quantifications to identity quantification and thus
also treat some properties with destiny quantification with the DTR abstraction, which
depends on identity quantification as discussed in Chapter 6.

Note that we need a boolean constant denoting “half” in the following (which we
intentionally don’t have natively in the logic). Without it, the lemma is still useful
because we obtain a biased definition as often used in the literature.

Lemma 4.4.21 (Evolution Chain vs. Identity Quantification). Let S = (T,V,F,Λ) be
a signature such that for each logical variable xxx ∈ V of an evolution chain type TTT there
is a unique logical variable xxxx ∈ V a logical variable of the corresponding identity type T
and such that there is a 0-ary predicate indef ∈ F .

The syntactical transformation f on EvoCTL∗ formulae is defined as follows:

1. f(∀xxx : TTT . ψ1) := ∀xxxx : T .⊚ xxxx → f(ψ1) where T corresponds to TTT

2. f(ψ1 U ψ2) :=

(
(((¬disap1 ∨ X(¬disap2 ∧ f(ψ2)))

∧ ¬disap2 ∧ f(ψ1)) U (¬disap2 ∧ f(ψ2)))→ 1
)

∧
(
((¬disap1 ∧ ¬disap2 ∧ f(ψ1)) U (disap2 ∧ ¬f(ψ2)))→ 0

)

∧
(
((¬disap1 ∧ ¬disap2 ∧ f(ψ1)) U (disap1 ∧ ¬f(ψ2)))→ indef

)

(4.64)

where
disapi :=

∨

xxx∈Free(ψi)

⊗xxxx. (4.65)

3. f(ψ1) = ψ1[xxxx/xxx] otherwise.

Let ϕ be an EvoCTL∗ formula over S without free occurrences of any of the variables
xxxx. Then ϕ ≡lin.,id. presv.,indef f(ϕ), that is, both sides are equivalent on any linear and
identity preserving ETTS if indef is constantly interpreted as the indefinite value 1/2. ♦

Proof. Definition 1 just rephrases the restriction to alive individuals. The formula 2
distinguishes the three cases: positive, negative, and indefinite by disappearance and
explicates the aliveness (or non-disappearance) property of evolution chains (cf. Sec-
tion B.1). If one of the two sub-formulae ψ1 or ψ2 evaluates indefinite pre-maturely,
formula (4.64) also turns indefinite.
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Equivalence is in general not given if the considered ETTS is not identity preserving,
that is, if the evolution chain comprises different identities. Equivalence is not given if
the considered ETTS is not linear but splitting or summarising, because variables of an
identity type T cannot split to denote two different individuals.

Corollary 4.4.22 (Identity EvoCTL∗). For each EvoCTL∗ formula ϕ there is an EvoCTL∗

formula ϕ̃, which employs only variables of an identity type T , such that ϕ ≡lin.,id. presv.,indef

ϕ̃. ♦

Proof. Cor. 4.4.16 and Lemma 4.4.21.

That is, in the case “linear, identity preserving”, evolution chains are “only” more
concise but can be eliminated, In other settings they are more expressive. All concrete
models of our application domain that is, the models before applying any abstraction,
that we’ve seen up to now are “linear, identity preserving” or can be treated as such (cf.
discussion of fixed vs. variable universe in Chapter 3).

Together with Section 4.4.6, we also learn something about the definiteness of formulae
from Cor. 4.4.22. Namely, Section 4.4.6 indicates that formulae employing the temporal
globally and finally operators (“G” and “F”) and quantified variables of an evolution
chain type TTT evaluate definite as long as the interpretation of predicates or function
symbols goes well.

Now Cor. 4.4.22 indicates how we can ensure definite evaluations for formulae over
variables of an identity type T . The strategy is to guard functional terms and whole
sub-formulae by life cycle queries, thereby making explicit what one expects from the
quantified identities. What one expects could be that they are alive as long as the formula
applies or that they may also satisfy the formula by disappearing, and for this reason
not doing something bad. This backs up our claim from section Section 4.4.6 that the
situation is not hopeless. Despite the numerous reasons for indefinite evaluation, there
are reasonable EvoCTL∗ properties for reasonable ETTS.

In the disjoint universe model, identity quantification is only sensible with local topol-
ogy properties, that is, where quantification only appears in terms. Otherwise it’s hardly
useful because formulae evaluate indefinite as soon as two or more topologies are involved:
in the disjoint universe model, an individual exists in at most one topology, thus formu-
lae evaluate indefinite in one or the other if two or more are involved. Destiny variables
are particularly fine with disjoint universes.

4.5. Prenex Normal Forms, Case-Split, and Other Useful
Equivalences

In the following, we provide rules to obtain a prenex normal form from some EvoCTL∗

formulae. This is important as the basic idea of the verification technique we’re investi-
gating in the following chapters Chapters 5 and 6 is
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• given a formula
ϕ := ∀x1 : T1, . . . , xn : Tn . ϕ1 (4.66)

over variables of identity types Ti in universal prenex normal form,

• construct a finite set of representative cases, that is, assignments θ1, . . . , θm of the
quantified variables,

• then “ϕ[x1/θi(x1), . . . , xn/θi(xn)]” (in parentheses as this kind of substitution is
not properly defined yet) is a propositional temporal logic formula and as such
amenable to standard CTL∗, LTL, or CTL model-checkers,

• given an ETTS M , we’ll actually construct a finite-state abstraction M ♯ depending
on θi, then the whole task is amenable to standard finite state model-checkers.

As a prerequisite is that formulae are in prenex normal form, the findings of this
section gives an indication of the fragment of EvoCTL∗ that we can treat with the
sketched verification technique.

Which is nice but not necessary – Chapter 10 indicates that even the plain fragment
of formulae in prenex normal form are useful as they cover a wide range of so-called
scenario properties.

The later Sections 4.5.3 and 4.5.4 discuss further equivalences and approaches to
certain phenomena carrying over from higher-level languages which will turn out useful
when applying the verification technique to higher-level languages like UML/LSC and
DCS/METT in Chapters 9 and 10.

4.5.1. Identity Quantification

When quantifying identities, we often have a normal form. The intuitive prerequisite is
that the evaluation time and extension of inner quantification is fixed and known before-
hand. Which is the case for the modalities “next” and “globally”, but not necessarily
for “finally”.

Lemma 4.5.1 (Prenex Normal Form, Identity). Let ϕ1 and ϕ2 be EvoCTL∗ formulae
over signature S. Then

1. (∀x : T . ϕ1) ∧ ϕ2 ≡ ∀x : T . ϕ1 ∧ ϕ2,

2. (∀x : T . ϕ1) ∨ ϕ2 ≡ ∀x : T . ϕ1 ∨ ϕ2,

3. ϕ1 → (∀x : T . ϕ2) ≡ ∀x : T . ϕ1 → ϕ2,

4. X ∀x : T . ϕ1 ≡ ∀x : T . X ϕ1,

5. G ∀x : T . ϕ1 ≡ ∀x : T . G ϕ1,

6. (∀x : T . ϕ1) U ϕ2 ≡ ∀x : T . (ϕ1 U ϕ2), and

7. ϕ1 R (∀x : T . ϕ2) ≡ ∀x : T . (ϕ1 R ϕ2).
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idp ¬p → id
q

(a) M1.

id1id2

p ¬p
→

id1id2

¬p p
→ . . .

(b) M2.

Figure 4.7.: Example ETTS supporting the claims of Note 4.5.2.

For M over a finite set Id of identities, we also have

8. F G ∀x : T . ϕ1 ≡ ∀x : T . F G ϕ1. ♦

Proof. See Section A.1.

For completeness, we recall examples where a prenex normal form doesn’t exist. What
the examples have in common is that they address the whole set of identities at once,
not individually, and where the point in time where the formula under quantification
holds is not fixed as it is for the temporal next and globally operators (“X” and “G”).

Note 4.5.2 (No Prenex Normal Form, Identity). Let ϕ1 and ϕ2 be EvoCTL∗ formulae
over signature S. Then (in general)

1. ¬∀x : T . ϕ1 6≡ ∀x : T . ¬ϕ1,

2. (∀x : T . ϕ1)→ ϕ2 6≡ ∀x : T . ϕ1 → ϕ2,

3. F ∀x : T . ϕ1 6≡ ∀x : T . F ϕ1,

4. ϕ1 U (∀ : Tx . ϕ2) 6≡ ∀x : T . (ϕ1 U ϕ2), and

5. (∀x : T . ϕ1) R ϕ2 6≡ ∀x : T . (ϕ1 R ϕ2).

6. F G ∀x : T . ϕ1 6≡ ∀x : T . F G ϕ1. ♦

Proof. By counter-examples.

1. Lemma 4.4.12.

2. Consider (∀x : T . p(x))→ q(y) vs. (∀x : T . p(x)→ q(y)). The latter holds in M1

from Figure 4.7 with θ = {y 7→ id}, the former doesn’t hold.

3. Consider F ∀x : T . p(x) vs. ∀x : T .F p(x). The latter holds in M2 from Figure 4.7,
the former doesn’t.

4. Similar to the previous case.

5. Similar to the previous case.
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→
id2

→
id2

(a) M1

→
id2

(b) M2

Figure 4.8.: Example ETTS supporting the claims of Lemma 4.5.3.

6. The right hand side in general doesn’t imply the left hand side if there are infinitely
many identities in Id. Choosing to enumerate identities from Id with natural
numbers, we can construct an ETTS with a path where identity idk satisfies

(¬ϕ1) ∧ · · · ∧ (Xk ¬ϕ1) ∧ (Xk+1 G ϕ1) (4.67)

for all k ∈ N0, that is, each identity finally globally satisfies ϕ1 but there is no
point in time where all identities have satisfy ϕ1.

Note that one conclusion from the above is that bounded discrete time modalities
have a normal form because they can be explained in terms of finally many “X’s”. This
is in general good news, but it doesn’t gain us much when turning to an interleaving
semantics in Chapter 9.

4.5.2. Evolution Chain Quantification

Quantification over evolution chains, that is, logical variables of type TTT , in general don’t
have a prenex normal form. The reason is simply that the domain of evolution chains
depends on the state where the quantification evaluates.

This is different from identities, the set Id is constant. For example, consider M2 in
Figure 4.8(b). In the left state, there are no individuals thus quantifiers evaluate trivially
in this state. In the right state, there is at least one individual. The following lemma
states a weak claim in this direction and proves it by a simple example.

The situation would become more intricate if we allowed a prenex normal form in-
cluding logical variables of an identity type T . We conjecture that the situation then is
similar to the one discussed in the previous section on prenex normal forms with vari-
ables of type T . Namely that the existence of a normalisation depends on whether we
can exactly characterise the point in time and extension of the set of individuals.

Lemma 4.5.3 (No Prenex Normal Form, Destiny). Let ϕ be an EvoCTL∗ formula over
signature S such that all logical variables occurring in ϕ are of an evolution chain type
TTT and at least one such variable does occur.

Then there needn’t be any EvoCTL∗ formula ϕ̃ in prenex normal form which is equiv-
alent to ϕ and only employs variables of type TTT .
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Proof. For example, consider

ϕ := A X ∀xxx : T .⊗xxx. (4.68)

If there were an EvoCTL∗ formula ϕ̃ in prenex normal form equivalent to ϕ, then it
either has the form

ϕ̃1 = ∀xxx1 : T1 . ϕ1 (4.69)

or
ϕ̃2 = ∃xxx2 : T2 . ϕ2. (4.70)

In the former case, consider the ETTS M1 from Figure 4.8. Then we have

MM1
JϕK(s, θ) = 0 6= 1 =MM1

Jϕ̃1K(s, θ) (4.71)

and
MM2

JϕK(s, θ) = 1 6= 0 =MM2
Jϕ̃2K(s, θ) (4.72)

for canonical structures MM1
and MM2

of M1 and M2 and any assignment θ yielding
a definite valuation of ϕ1 and ϕ2. Otherwise, the right hand sides in (4.71) and (4.72)
evaluate to the indefinite value 1/2, and as such also different from the left hand sides.

4.5.3. Case-Split

Case-split in the sense of [127] is a simple quantifier introduction rule, which could be
written as.

ϕ

∀ d ∈ D(x) . x = d→ ϕ
, x a program variable (4.73)

The basic idea is that

∀x . ϕ (4.74)

holds if and only if

∀x, y . ∗(λ(x)) = y → ϕ (4.75)

holds, because whatever value λ(x) may have when ϕ is evaluated in (4.74), we know
from (4.75) that ϕ holds in that case.

In the other direction we can consider the cases in which ϕ is evaluated in (4.74), and
find that the navigation expression has some value in each case. Maybe only few values
are reachable, maybe only a single one, maybe all. For the values that are actually not
assumed, (4.74) holds trivially and for the others, it holds because of (4.75).

The abstraction technique investigated in Chapters 6 and 8 employs a heuristics to
derive the minimal reasonable abstraction from the formula, more precise, from the num-
ber of quantified variables. Consequently, the introduction of new quantified variables
provides a way to refine the abstraction, and case splits are one particular way. The
informal intuition behind this refinement is, that we refine

“for all x, property”, (4.76)
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where the concrete object denoted by x may have links into an abstract part of the
model to

“for all x, y, where x has a particular relation to y, property”, (4.77)

where we focus on cases in which x has links within the (now extended) concrete part
of the abstract model.

The heuristics and the refinement strategy is introduced in [127].

Recall from Chapter 1 that [127] considers parameterised systems, or array programs
(cf. Chapter 9), where each variable or array field always carries some value. In our
setting of ETTS, we want to introduce case-splits on links, which needn’t be present.
So their domain (in case of single-links) is not only the set of identities Id, but also the
additional case that they’re not present at all.

For these reasons, we introduce case-splits for valid navigation expression. We’ll dis-
cuss after Lemma 4.5.5 why this restriction doesn’t necessarily render the approach
useless.

Definition 4.5.4 (Valid Navigation Expression). Let S = (T,V,F,Λ) be a signature,
M = (S, S0 , R) a S-compatible ETTS, and M = (ι,D) a canonical structure of S wrt.
M .

Let a be a navigation expression over S, i.e. of an identity type T . We call ‘a’ a valid
navigation expression in state s ∈ S under assignment θ if and only if it is defined, i.e.
if

ιJaK(L (s), θ) ∈ Id. (4.78)

It is called valid in state s or path π if and only if it is valid in s or π under all
assignments θ ∈ Assign(V, s), and valid in M if and only if it is valid in all states
s ∈ S. ♦

Lemma 4.5.5 (Case-Split). Let ϕ1 and ϕ2 be EvoCTL∗ formulae over signature S =
(T,V,F,Λ), let x be a logical variable of type T not occurring freely in ϕ1 or ϕ2, and let
a denote a navigation expression over S of type T .

Let M be a S-compatible ETTS, s ∈ S(M) a state, and θ an assignment in a structure
M of S canonical wrt. M . Then

1. ϕ1 ≡a valid ∀x : T . a = x→ ϕ1,

2. ϕ1 ≡
s
a valid ∀x : T . a = x→ ϕ1, and

3. ϕ1 ≡
s,θ
a valid ∀x : T . a = x→ ϕ1. ♦

Proof. See Section A.1.

The premises of Lemma 4.5.5 pose harsh restrictions for full equivalence. The naviga-
tion expression the case-split should be based on has to be valid. This is easy in static or
finite systems, but far from easy in the dynamic setting we consider. Yet there is hope.
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π :

id2

id1

id3

λ
p
¬p →

id2

id1

id3

λ

p
¬p → . . .

Figure 4.9.: Temporal Evaluation of navigation expressions.

First of all, we can sometimes know for particular situations of dynamic individuals
whether there are links or not. Then in order to avoid indefinite valuation, our formulae
will typically have the form of an implication where the quantified variables are tested
for being alive and also to be in a certain configuration. That certain configurations
guarantee existence of links is amenable to static analyses like [7, 12].

Secondly, the situation is friendlier when considering M with only single links where
undefinedness is encoded by a particular designated value id0 ∈ Id. Then is is sufficient
to know aliveness of an individual denoted by a logical variable x, this then implies
that a one-step navigation expression starting at x certainly has a value from Id . The
following simple note will be of help in such situations, namely if t1 characterises a
certain configuration under which validity of navigation expression a is known, then we
can apply a case-split to obtain the right hand side.

Note 4.5.6 (Case-Split). Let S be a signature, let

t1 → ϕ1 (4.79)

be an EvoCTL∗ formula over S. Let M be a compatible ETTS and let a be a navigation
expression such that t1 implies validity of a in M .

Then we can apply a case-split, that is,

t1 → ϕ1 ≡ ∀x : T . a = x→ t1 → ϕ1. (4.80)

♦

Proof. Via t1 → a→ ϕ1 ≡ t1 → a→ ϕ1.

The following notes something trivial, just to have it recalled. Namely, when doing
case-split for a term t on a navigation expression a, then we can replace already existing
occurrences of a in t by the newly introduced logical variable. This may render t more
readable.

In general, we cannot do this substitution below temporal operators because the nav-
igation expression a is evaluated anew in each state – unless we know that it’s crys-
tallised [158] (cf. Section 7.5).

For example, consider the path shown in Figure 4.9. The navigation expression x.λ
evaluates to id2 in state π0 and to id3 in state π1 under θ = {x 7→ id1}. Then

G p(x.λ) (4.81)

doesn’t hold in π under θ while
G p(y) (4.82)
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holds under θ′ = θ ∪ {y 7→ id2}.

In other words, by case-split, we don’t crystallise [158], we don’t fix links, but we
consider particular starting situations case by case. These starting situations may evolve
over time as they like, we can’t influence that from the (observing) side of the formula.

Note 4.5.7. Let S = (T,V,F,Λ) be a signature comprising equation of identities, that
is, =∈ F . Let t be a logical term over S and let a denote a navigation expression over
S of an identity type T .

Then occurrences of a in t can be replaced by the logical variable x if x is introduced
for case-split, that is,

∀x : T . a = x→ t ≡ ∀x : T . a = x→ t[a/x]. (4.83)

♦

4.5.4. Quantification Over Links

We know from Section 4.5 that some formulae have prenex normal forms and some
doesn’t. Unfortunately, formulae like

(∀ y : T . y ∈ x.λ→ p(y))→ q(x) (4.84)

where “∈” is a predicate symbol, don’t have one. Recall that the reason is the dynamic
extension of the left-hand side of the first implication.

This is unfortunate because it is actually a frequent or desirable pattern; it’s not
unreasonable to say something like this pattern instantiation, assuming a system from
the rail domain:

“If all switches of track x are set, then x is signalled clear.” (4.85)

Here, y would range over the switches belonging to track x, p would indicate “being
set” for switches, and q would indicate “signal clear” for the track.

Another example is the following:4

G ((∀x : T .⊚(x) ∧ switch(x)→ p(x)) =⇒ X q(y)) (4.86)

(if all switches in the system (not of a particular track) are set, then something happens).

Yet we can do something about this (the former) case. In case we know that the
link is finite, the following paragraph “The Finite Case” applies. In case the link is not
bounded, the subsequent paragraph “The Infinite Case” may apply.

4the property needn’t be stated in terms of a logical variable x, but may also be global
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switch1

track switch2

. . .

switchn

(a) Set-valued link.

1 switch1

track 2 switch2

. . .

n switchn

. . .
(b) Array-valued link.

Figure 4.10.: Set-valued links with finite bounds.

The Finite Case

If a maximum size N of a link set is known, then the model can be changed to employ
N single links named λ1, . . . , λN . A designated identity id0 would be used to indicate
unused links, and we would have this name as a constant of type T in the set of function
symbols (only a little bit more tricky for fixed universes). Rewriting the encoding is
straight-forward, and it is also clear on the level of operations how to rewrite them to
operate on the single links.

Equation (4.84) then becomes

(x.λ1 6= id0 → p(x.λ1)) ∧ · · · ∧ (x.λN 6= id0 → p(x.λN ))→ q(x) (4.87)

This way, we can also have, for example, the sum over the local state of a set of identities;
if it is formerly written as

f(x.λ) > 0, (4.88)

then it may become

(x.λ1 6= id0 ∧ · · · ∧ x.λN 6= id0)→ (f(x.λ1, f(. . . )) > 0)

. . .

(x.λ1 = id0 ∧ · · · ∧ x.λN = id0)→ (f0() > 0)

(4.89)

assuming a binary variant of f (and a commutative operation), and assuming a 0-ary
constant f0 yielding the value obtained for the empty set.

Note that this may require quite some rewriting, at least from functional to logical
terms since we have implication only for logical terms. Alternatively one could have a
(finite) set comprehension operator which takes N values and constructs a set of size (at
most) N .

In the latter case from above we can also do something by changing the model such
that there is a known global place to access the switches – and a known finite upper
bound on their size.

The Infinite Case

Figure 4.10(a) depicts a track with a set of n switches, where switches may arbitrarily be
removed or added. Conceptionally, we can view this set as an unbounded array as shown
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in Figure 4.10(b), possibly indicating unused entries by a designated identity id0. Still,
identities of switches may arbitrarily be removed or added, thus in general we cannot
obtain a prenex form as we do not know the number of links beforehand, but only at
binding time .

Despite this general fact, we’ll see in Chapter 9 an approach to also treat ETTS
with unbounded links under certain preconditions. These situations are characterised
by formulae that refer to finite destination vertex, for example that for all two differ-
ent switches at a track, a certain property holds. In the terms of Chapter 10, this is
introducing a kind of sub-scenario, similar to the top-level scenario.

The preconditions are roughly that the set of links is symmetric in identities, that
there is no order on the destination vertices and that system behaviour doesn’t depend
on the exact number of destination vertices. Then we can apply the same abstraction
to links that we apply to reduce ETTS to finite-state systems.

4.6. Discussion

In the domain of parameterised systems, it is often sufficient to consider indexed variants
of temporal logic for the requirements specification. The employed quantification can
be unfolded into an ordinary formula without quantification because each instance of a
parameterised system is finite.

For this reason, most recent proposals for property specification languages related to
EvoCTL∗ stem from the domain of UML [138, 141, 140] or object orientation in general,
of which ETTS also provide an adequate semantical domain (cf. Chapter 10).

The main novelty of EvoCTL∗ is that it employs a three-valued domain to handle
unexpected disappearance of individuals adequately in the domain of critical systems
specification. Other approaches either exclude the topic or employ a biased semantics
(cf. Section 4.1.2).

Existing approaches cover a broad range. The Bandera Specification Logic (BSL) [39],
a collection of LTL-based patterns for Java verification, simply restricts the discussion
to Java without disappearance.

Others, as the Allocational Temporal Logic (ATL) [57] (and its variant NallTL) ad-
dress appearance and disappearance (or: memory allocation and deallocation) exclu-
sively. Its life-cycle queries referring to whether an object is newborn (“⊙”), alive (“⊚”),
or disappearing (“⊗”) inspired VTL/ETL [190, 191] (cf. footnote on page 95) and our
syntax.

There is a large body of literature proposing to extend UML’s (non-temporal) Object
Constraint Language (OCL) [139] with temporal operators [57, 58, 30, 193, 20]. Most
of them don’t discuss the problem of disappearance explicitly, and all of them implicitly
opt for a biased semantics. That is, they explicitly define the positive case and map
both, a negative witness disproving a formula and pre-mature disappearance of objects
to “false”, although OCL provides the third logical value oclUndefined. Only Flake
et al. [69, 70] employ this value in their proposal, OCL as term language of LTL with
past operators, yet with issues in the formal definition.
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Our proposal can be seen as an extension of VTL [190, 191], which is positioned in
the context of the abstract interpretation-based analysis of Java-like, heap-manipulating
programs. The logic METT [9] is basically VTL without transitive closure and additional
operators to refer to event-based communication (cf. Chapter 10), but in the cited version
also with a biased semantics in mind.

Our earlier proposal [99, 48, 49] of to adopt the visual scenario language LSCs [43]
to systems with dynamic appearance and disappearance of objects didn’t consider the
issue of disappearance in the depth covered here. They’re related to EvoCTL∗ because
their expressive power is equivalent to a strict fragment of CTL∗ [47, 168]. As we’ll see
in Chapter 10, their life-lines express requirements on aliveness.

We refer to [11] for a slightly more elaborate discussion.

Another aspect to classify the named other works is the kind of quantification. Most
proposals choose a quantification over identities, only few, like VTL [190, 191] and [69, 70]
employ something similar to our destiny quantifiers. EvoCTL∗ is, to our knowledge, the
first proposal to include both, in order to be able to discuss them in a common framework.
A discussion, we’ve started with Section 4.4.7.

These topics as such have long been discussed for first-order modal logic in philosoph-
ical logic, for example by Barcan [6], Lewis [116], and Kripke [104]. A good overview is
given in the excellent textbook [68]. As a side note, interestingly none of the above cited
approaches, with the only exception of [190, 191], refers to these fundamental sources.

The main questions are those of disjoint vs. fixed universes (cf. Chapter 3), the former
being embeddable in the latter, and the treatment of predicate evaluation for no-longer
or not-yet existing individuals.

The choices are to accept that there will be some value, from which source ever, and
to consider that predicates may hold and not hold at the same time [68]. The latter
corresponds to a three-valued logic. We argue for this choice because in the domain
of critical systems, we cannot assume that some evaluation of the predicate “being in
critical state” obtains an evaluation from somewhere.

These issues shall best be made explicit, with a certain monotonicity to err on the
safe side.

Furthermore, the only modalities discussed in [68] are 2 and 3. In our domain, there
is typically a clear need for richer languages, including X and U and means to refer to the
appearance and disappearance of objects, our life-cycle queries. This is not discussed in
the literature on (philosophical) first-order modal logic.

In the discussion whether branching or linear time temporal logics are the best choice [170,
171], the race seems to be run in favour of linear time. For example, all of the approaches
named above are linear.

Our EvoCTL∗ is a generalisation of branching and linear time for two reasons. Firstly,
we’re interested in the applicability of certain abstractions (cf. Chapters 5 and 6) and
this applicability is, as we show, not limited by a certain flavour of logic.

From the proofs in Chapters 5 and 6 we can actually tell that it’ll apply to even more
general formalisms like the µ calculus.

It is arguable that the semantics of EvoCTL∗ is good, as it has certain nice properties
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in favour of existing proposals, but still not optimal. It is, for instance, too pessimistic in
the sense that it evaluates formulae to the indefinite value 1/2 as soon as certain possibly
relevant variables turn undefined. The twist is that relevance cannot be exactly captured
by syntactical means as long as tautologies or contradictions may occur within a given
EvoCTL∗ formula. For example with the two formulae ψ1 := p(xxx) ∨ 1 and ψ2 := 1 we
have ψ1 ≡ ψ2 but not X ψ1 6≡ X ψ2, which is surprising at first sight, but seems to be
an inherent issue when striving for a completely definite fragment which includes the
“next” (“X”) modality. Yet the discussion in Chapter 9 clarifies that this operator is, in
the clasical interpretation, hardly usable in interleaving semantics.

Furthermore, there are quite a few issues with EvoCTL∗. For example our character-
isations of monotinicity and definiteness are good first steps, but not exact. Similarly,
the exact relation between the two flavours of logical variables is not completely under-
stood, the same holds for the question of prenex normal forms. And we currently don’t
know anything of the relation between EvoCTL∗ and ETTS system, similar to results
on temporal logic and Kripke structures.

122



Part III.

Query and Data-Type Reduction for
ETTS

123





5. Abstraction

In the following, we introduce a notion of simulation between ETTS which is a conser-
vative extension of the common definition for Kripke structures (cf. [34] for details). We
first informally – but, due to its importance, in quite some detail – recall the definition
for Kripke structures to point out in how far it is a natural extension of the classical
definition.

The formal definitions in Section 5.4 then concentrate only on ETTS as we will exclu-
sively focus this class of transition systems in the subsequent chapters. Note that the
definitions in the following sections don’t depend formally on the introductory text in
Section 5.1, it only provides the motivations behind the definitions of Section 5.2 and
later.

5.1. From Simulation Relations for Kripke Structures to
Topology Embeddings and Corresponding Evolution

Given two Kripke structures M and M ♯, the classical definition of simulation goes back
to [135]. Intuitively, M ♯ should be called simulating M if each path of M has a corre-
sponding path in M ♯, while there may be much more paths in M ♯.

Two paths π♯ and π of M ♯ and M correspond, if the i-th state in path π♯ is labelled
with a safe over-approximation of the label of the i-th state of π.

And intuitively, a label of a state is a safe over-approximation of another state’s label
if the information isn’t contradictory. That is, the approximating label may carry the
same or less precise information as long as it doesn’t preclude the information in the
approximated label. In addition, concerning additional information that is not related
to the approximated label, the approximating label is free to carry any information.

s
L (M)
−−−−→ d

=⇒

s♯
L (M♯)
−−−−→ d♯

H =/⊑ γ(·)

(a) If two states are in simulation
relation, then their labels corre-
spond according to “⊑ γ(·)”.

s
R(M)
−−−→ s′

s♯

H =⇒ ∃ s♯′ :

s′

s♯
R(M♯)
−−−−→ s♯′

H

(b) If two states are in simulation relation H
and the simulated system can take a transi-
tion, then the simulating system can take a
transition to a H-related state.

Figure 5.1.: Simulation Relation. Common definition for Kripke structures.
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This intuition is formalised for Kripke structures using the notion of a so-called sim-
ulation relation, a relation H between the state sets of the two Kripke structures, i.e.
H ⊆ S(M)× S(M ♯).

Given two Kripke structures M and M ♯ over the same set of atomic propositions, a
relation H between the state sets is called simulation relation if, given a pair (s, s♯) of
H-related states,

1. the label of s♯ is equal to the label of s, i.e.

(L (M))(s) = (L (M ♯))(s♯) (5.1)

and

2. ifM can take a transition from s to some state s′, thenM ♯ can take a corresponding
transition, that is, it can take a transition to an H-related state, i.e.

∀ (s, s′) ∈ R(M), (s, s♯) ∈ H ∃ s♯′ ∈ S(M ♯) :

(s♯, s♯′) ∈ R(M ♯) ∧ (s′, s♯′) ∈ H
(5.2)

(cf. Figure 5.1(a) and Figure 5.1(b)).

Concerning requirement 1 on states, there is also a slightly generalised definition in
use which admits M ♯ to use a subset of M ’s atomic proposition. Then 1 requires that
they agree on the common atomic propositions.

Note that the above definition — which we will follow — is sometimes called strong
simulation relation. In particular in the domain of process algebra, which distinguishes
invisible τ -transitions and visible transitions, it is sensible to define a weak simulation
relation which permits the simulating system to take an arbitrary number of τ -transitions
before and after the visible transition required in item 2.

The classical definition as given above requires that the labelling of related states
is identical. This notion is primarily concerned with the abstraction of the temporal
behaviour of a Kripke structure, that is, with its transitions. Instead, we also want to
consider an abstraction of state labels.

Anticipating Section 5.4, it is obvious that a formula using the set of atomic proposition
of a Kripke structure as atoms can directly be evaluated on both, the simulated and the
simulating system in the sense of the classical definition. The reason is that the classical
definition, even in the slight generalisation, enforces that both Kripke structures have
the relevant atomic propositions in common.

This is too strict for the kind of safe over-approximation we informally envisaged in
the introductory paragraph. Our primary aim, in contrast, is an abstraction of the state
labelling because with ETTS, the labelling domain is typically unbounded as there are
no necessary bounds on the number of individuals in a topology. For example, in an
ETTS modeling car platooning using topologies as shown in Figure 3.4 there is a priori
no bound on the number of cars present in each topology as they may freely enter and
leave the highway.
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(v=0) (v=1) (v=1) (v=2)

(a) Original system.

(v=0) (v=1)

(v=2)

(v=3)

(b) Classical notion.

v0 v+

v+

v∗

(c) Relaxed notion.

Figure 5.2.: Simulation Relation. The Kripke structure shown in Figure 5.2(b) simulates the
one given by Figure 5.2(a) in the strict classical notion, the Kripke structure given
by Figure 5.2(c) simulates both others in the relaxed notion.
Notation: half-connected arrows point to initial states, states are labelled with
atomic propositions as given by the labelling.

To this end, we adopt from the domain of abstract interpretation [40] the usage of
Galois connections to denote the relation between concrete and abstract domains (cf.
Section 2.4), in our case, these are the domains D and D ♯ of the labellings of the
simulated and the simulating system M and M ♯. As Galois connections as introduced
in Section 2.4 assume complete join semi-lattices as concrete and abstract domain, we
shall from now on assume that D and D ♯ are complete join semi-lattices.

Given a Galois connection
(
D , α, γ,D ♯

)
between the labelling domains, we relax the

condition (5.1) on H-related states s and s♯ to

(L (M))(s) ⊑ γ((L (M ♯))(s♯)), (5.3)

that is, we require that the concretisation of the label of s♯ over-approximates the label
of s, i.e. it is the same value or something less precise, but covering the original value.

Note that every simulation relation in the original definition is also a simulation re-
lation in the relaxed definition (5.3), but in general not vice versa because even when
using the minimal lattice, the relaxed version necessarily admits to label all states of
M ♯ with the greatest element. Then the labellings may be non-equal as required by the
original definition.

As an example, consider the Kripke structures shown in Figure 5.2(a) and Figure 5.2(b),
both over the set

AP = {(v = −3), (v = −2), (v = −1), (v = 0), (v = 1), (v = 2), (v = 3)}, (5.4)

of atomic propositions.1

The Kripke structure shown in Figure 5.2(b) simulates the former in the classical
definition as it only adds additional states and additional transitions. Our aim is to
in addition abstract from the labelling of states, for example, to encode instead of the
actual value of v only the sign of the value. For example, we want to consider the Kripke
structure over atomic propositons “v is positive”, “v is 0”, “v is negative”, and “don’t

1 Note that with Kripke structures, the elements of AP are not expressions but only names. Though,
the particular elements of AP may have been chosen as an easily readable representation of the
encoding that a variable v has a certain integer value.
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know”, i.e.
AP♯ = {v+, v0, v−, v∗}, (5.5)

as given by Figure 5.2(c) to simulate both others because the labelling of the states is
a safe approximation of the original labelling. In order to see that property (5.3) is
satisfied, we have to view AP as a complete join semi-lattice (by taking the canonical
completion) and order AP♯ canonically.

This straightforward step of generalising the requirements imposed on states in simu-
lation relation is principally sufficient to treat the requirement 1 on states in our case of
ETTS. Recall that states are labelled with topologies, that is, we have to define a notion
of abstractions of topologies. In general, anything can be an abstraction of a topology
as long as it is linked via a Galois connection to the original domain. In order to sup-
port a good understanding of the particular abstraction technique we’re discussing, we
take a particular approach where we aim at an abstract domain which itself as closely
as possible resembles topologies. The elements actually are topologies in the sense of
the original definition in Section 3.3. In the course of this chapter it will become clear
why some definitions, like equality function, alives and non-alives set, and navigation
function, have been chosen as presented here.

Our approach follows [155] in that we define in Section 5.2 the embedding of on
topology into another, more abstract one. The idea is that multiple nodes of the concrete
topology can be mapped to, and thus represented by, a single (abstract) node in the
abstract topology, yet the abstract node has to carry a suitable local state which doesn’t
contradict the concrete ones and links have to be considered carefully. In addition,
abstract nodes have to respect life-cycle properties of represented nodes and the equality
relation on identities.

The fundamental difference to [155] is that they consider uninterpreted (up to the
summary predicate) logical structures while we address topology notions like node label,
links, and evolution. We discuss this relation and the advantages and disadvantages in
more detail in Section 5.7.

Yet the requirement 1 on transitions needs another extension of the original notion
because ETTS are “less memory-less” than Kripke structure by the evolution relation.
Namely, whether an individual is newly created or about to disappear in a state depends
on the transition, it is not a sole property of the state but depends on the transition.

With Kripke structures, there is only the labelling of states, each property of a state
depends solely on the atomic propositions assigned by the labelling. But in order to
evaluate life-cycle properties in the simulating transition system, we introduce a notion
of corresponding evolution and disappearance in Section 5.4. Then, in addition to 1, we
not only require that there is some transition in the simulating system, but we require
that there is one along which individuals evolve and disappear accordingly.

Having established a suitable relation between states independent from the choice of
(5.1) or (5.3), the Kripke structure M ♯ is then said to simulate M if and only if each
initial state of M is H-related to an initial state of M ♯.

In the context of model-checking of Kripke structures and temporal logic, the sim-
ulating system M ♯ is also commonly called an abstraction (or, more precise, a safe
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abstraction) of M [34]. Note that this usage of the name is different from the abstract
interpretation community where typically an abstraction function, or the pair of abstrac-
tion and concretisation function, is called abstraction (cf. Section 2.4). As we make use
of both domains, we will use the term seldom, and if, the meaning should be clear from
the context.

Given a simulation relation, a Corresponding Path Lemma establishes the original in-
tuition, that for each path inM there is a corresponding path inM ♯. This Corresponding
Path Lemma can then be used to establish the theorem that for certain temporal logic
properties (in our case the temporal logic EvoCTL∗ from cf. Chapter 4), if M ♯ satisfies
the property, then so does M (but not necessarily vice versa). In the slightly generalised
definition of the simulation relation where M ♯ uses a subset of the atomic propositions
of M , only formulae over the common atomic propositions are considered.

In other words, a simulating system in the classical sense preserves all violations of a
temporal property exactly, while in the generalised sense there is for each violation an
abstract path which concretises to the violation. Intuitively, this claim is immediately
clear: if there is a path in M violating the property, then there is, by the simulation
property, a corresponding path in M ♯ that also violates the property. It is formally
established in the following sections.

5.2. Topology Embedding

Definition 5.2.1 (Embedding). Let G be a (Σ,Λ)-topology over Id and G♯ a (Σ♯,Λ)-
topology over Id♯, both identities and local states sets partitioned into n partitions. Let
Σi and Σ♯

i, and dom(λ) and dom( ♯
λ) form complete join semi-lattices for 1 ≤ i ≤ n

and each λ ∈ Λ.
Assuming there are Galois connections

(

Σi, αΣi
, γΣi

,Σ♯
i

)

and
(

dom(λ), αλ, γλ,dom( ♯
λ)
)

, (5.6)

a pair (f, g) of functions
f : U(G)→ U(G♯) (5.7)

and
g : L(G)→ L(G♯) (5.8)

is called embedding of G into G♯ if and only if

1. f assigns each identity id ∈ U(G) ∩ Idi an identity id♯ ∈ U(G♯) ∩ Id♯i such that

a) the local state of id♯ is a safe over-approximation of the local state of id, that
is, if

∀ id ∈ U(G) : σ(id) ⊑ γΣi
(σ♯(f(id))), (5.9)

b) aliveness is respected, i.e.

f(U⊚(G)) ⊆ U⊚(G♯) and f(U 6⊚(G)) ⊆ U 6⊚(G♯), (5.10)
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c) equality is respected, i.e.

eqId(id1, id2) ⊑ eqId♯(f(id1), f(id2)), (5.11)

2. g assigns each link ℓ ∈ L(G) a link ℓ♯ ∈ L(G♯) such that the link names of ℓ and
ℓ♯ coincide, that is, if

∀ ℓ ∈ L(G) : λ(ℓ) = λ♯(g(ℓ)), (5.12)

3. identity assignments and link navigation are consistent, that is,

∀u ∈ U(G) ∀λ ∈ Λ : αλ(λ(u)) ⊑dom(♯
λ
)


♯
λ(f(u)) (5.13)

The two components of an embedding (f, g) are called individual and link embedding
function, respectively.

We say (f, g) embeds G into G♯, denoted by G ⊑(f,g) G♯, if (f, g) is an embedding,
and we say a topology G can be embedded into G♯, if there exists an embedding of G
into G♯. To explicate the two topologies for which an embedding is provided, we shall
write (fG,G♯ , gG,G♯), in the context of ETTS we will alternatively refer to states, that is,
we may write (fs,s♯, gs,s♯) as an abbreviation for (fL (s),L ♯(s♯), gL (s),L ♯(s♯)). ♦

Definition 5.2.2 (Tight Embedding). Let G and G♯ be topologies such that (f, g) em-
beds G into G♯. The embedding (f, g) is called tight if and only if

1. f assigns each identity id ∈ U(G) an identity id♯ ∈ U(G♯) such that

a) the local state is most precisely represented, i.e.

∀ id ∈ U(G) ∩ Idi : σ♯(id♯) =
⊔
{αΣi

(σ(id)) | f(id) = id♯}, (5.14)

b) aliveness and equality are most precisely respected, i.e.

{id | f(id) = id♯} ⊆ U⊚(G) =⇒ id♯ /∈ U 6⊚(G♯), (5.15)

{id | f(id) = id♯} ⊆ U 6⊚(G) =⇒ id♯ /∈ U⊚(G♯), (5.16)

c) equality is most precisely respected, i.e.

eqId♯(id
♯
1, id

♯
2) =

⊔
{eqId(id1, id2) | id

♯
1 = f(id1), id

♯
2 = f(id2)} (5.17)

2. navigation is most precisely represented, i.e.


♯
λ(id

♯) =
⊔
{αλ(λ(id)) | id♯ = f(id)}. (5.18)

♦
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u1

u2

u3

u4

v=29.8

v=33.7

v=31.0

v=27.3

aux

ldr

flw

ldr

ldr
G

u5

u6

u7

u8

v=slow

v=fast

v=⊤

ldr

ldrflw

ldr

ldr

G♯

f

f

f

f
g

g

g

g
g

(a) Topology embedding functions.

⊤ = R
+
0

[0, 30[ [30,∞[

. . . {27.3} . . . {29.8} . . . {31.0} . . . {33.7} . . .
(b) Concrete local states lattice Σ.

⊤

slow fast
(c) Abstract local
states lattice Σ♯.

Figure 5.3.: Topology Embedding. Topology s can be embedded into s♯ given the lattices
for abstract and concrete local state and the shared lattice for link names.

We could continue to discuss best abstract structures and the effect of best abstract
structures on tightly embedded topologies on term evaluations. We don’t, because the
embedding we’ll discuss later is far from tight, and most probably won’t become tight
either, because the high level of abstraction is the key to a good implementability.

Figure 5.3 gives an example for a topology embedding. Consider G and G♯ to be
topologies representing car platoons with nodes representing cars and the typical links
ldr (leader), flw (follower), and aux (auxiliary). For the example, we in addition consider
that the local state of a car is a non-negative, denoted by v and a value from R

+
0 in

Figure 5.3(a).
We chose to use the lattices shown in Figure 5.3(b) and Figure 5.3(c) as concrete

and abstract local state. The Galois connection between the local states maps velocities
strictly below 30.0 to ‘slow ’ and others to ‘fast ’. That is, in this example we want to
abstract from the actual velocity and only distinguish between slow and fast.

The embedding functions f and g are given by Figure 5.3(a). We can already identify
some characteristic examples:

• All individuals in G have a representative in G♯, but not every individual in G♯

needs to represent one, for example u7 is not a representative.

• An individual in G♯ may represent one, like u5, or more individuals from G, like
u8, then called summary individual.

• Similarly, all links in G have a representative in G♯, but not every link has to be
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5. Abstraction

a representative, and there are summary links.

• For example, the loop at u7 is not a representative, and the loop at u8 represents
two links, thus is a summary link (shown dashed in Figure 5.3(a)).

• The meaning of navigating a summary link is provided by the navigation functions
of G♯ (not shown in the picture). For instance,  ldr could yield the multi-set
with two occurrences of u8 at u8 corresponding to the two edges it represents.
Alternatively, it could yield an indefinite value ⊤ indicating complete uncertainty
about represented individuals.

Dashed lines and double outlines in Figure 5.3(a) give additional information which is
not part of the embedding, but can be derived from it. The double outline of individual
u8, for instance, points out that this (abstract) individual represents multiple (concrete)
ones. The dashed arrow to and from u8 indicates, that in G, this edge exists only for
some of the nodes represented by u8. Note that this is similar to a summary edge2 in
[155], but not quite the same. The difference is that the dashed line in Figure 5.3(a) has
to be read as part of the link name, i.e. (ldr, dashed) ∈ Λ♯.

Requirement 1 of Def. 5.2.1 is satisfied because the local states of the individuals in G♯

concretise to supersets of the ones in G. The velocity of u8 is indefinite as it represents
cars at both, a slow and a fast velocity, thereby trivially satisfying 1. The velocity of u7

is irrelevant because it is not representing a concrete node.
Requirement 2 of Def. 5.2.1 is satisfied because the link names in G♯ are faithful to the

ones in G. Finally, it’s easily verified that requirement 3 of Def. 5.2.1 is satisfied because
each link between individuals in G has a corresponding link between corresponding
individuals in G♯.

5.3. Abstract Structure and Term Evaluation

In order to evaluate EvoCTL∗ terms on abstract topologies, in particular terms com-
prising function symbols on local states from Σ♯, we employ an abstract structure. To
this end, we slightly extend the definition of canonical structure.

Definition 5.3.1 (Canonical Id-Lattice Structure). Let S be a signature and G a com-
patible topology over identities Id = Id1 ∪̇ . . . ∪̇ Idn. A structure M = (ι,D) of S with
m identity types T1, . . . , Tm ∈ T (S) is called canonical Id-lattice structure of S wrt. G
if and only if

1. the domain D(Ti) of identity type Ti, 1 ≤ i ≤ m, a complete join semi-lattice

Idj ∪̇ {⊤Ti
} (5.19)

with the reflexive closure of

{id ⊑ ⊤Ti
| id ∈ D(Ti)} (5.20)

as ⊑ and ⊤Ti
as top element, and

2 a binary predicate with indefinite valuation
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5.3. Abstract Structure and Term Evaluation

2. the structure M′ = (ι′,D′) which coincides with M except for D′(Ti) := D(Ti) \
{⊤Ti

} is a canonical structure of S wrt. G. ♦

Definition 5.3.2 (Abstract Structure wrt. Embedding). Let S be a signature, G a
compatible (Σ,Λ)-topology over Id and G♯ a T a compatible (Σ♯,Λ)-topology over Id♯.
Let M = (ι,D) be a canonical structure of S wrt. G and M♯ = (ι♯,D♯) a canonical
Id♯-lattice structure of S wrt. G♯.

Let (f, g) be an embedding of G into G♯. We call M♯ an abstract structure of S in
G♯ wrt. the concrete structure M and the embedding (f, g), denoted by

M⊑(f,g) M♯, (5.21)

if and only if

1. there are Galois connections between corresponding domains, i.e.
(

D(τ), ατ , γτ ,D
♯(τ)

)

(5.22)

for all types τ except for identity types T , evolution chain types TTT , and links L.
where the (identical) boolean domains are connected by the identical functions on
D(B), i.e., αB = γB = idB. To simplify notation, we use αT to denote f and αL
to denote the point-wise application of f to multi-sets in the following.

2. link navigation is safe, i.e. given id ∈ D(T ) and id♯ ∈ D♯(T ) such that f(id) ⊑ id♯,
we have

α(ι(λ)(id)) ⊑D♯(L) ι
♯(λ)(id♯). (5.23)

3. the interpretation of function symbols is safe, i.e. given a function symbol f :
τ1 × · · · × τk → τ of arity k and type τ and given k pairs of semantical values
di ∈ D(τi) and d♯i ∈ D

♯(τi) such that

ατi(di) ⊑D♯(τi) d
♯
i (5.24)

for i = 1, . . . , k, we have

α(ι(f)(d1, . . . , dk)) ⊑D♯(τ) ι
♯(f)(d♯1, . . . , d

♯
k). (5.25)

♦

Figure 5.4 illustrates the relations between domains for abstract structures. If the
abstract domain is fixed, there is a notion of a best abstract structure similar to the
tight embedding above.

Definition 5.3.3 (Corresponding Assignment). Let S be a signature and G and G♯ two
S-compatible topologies such that (f, g) embeds G into G♯. Let M and M♯ be canonical
structures of S wrt. G, G♯, and (f, g).

Let θ♯ ∈ AssignM♯(V ) and θ ∈ AssignM(V ) be assignments of some logical variables
V ⊆ VT in the structures M♯ and M. We say θ and θ♯ correspond wrt. G and G♯,
denoted by

(θ,G) ∼(f,g) (θ♯, G♯), (5.26)

if and only if
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D(TTT i) = D(Ti)
+ ∪ D(Ti)

ω 6↔ D♯(Ti)
+ ∪ D(Ti)

ω = D♯(TTT )

D(Ti) = Idj
α(=f)
→ Id♯j ∪̇ {⊤Ti

} = D♯(Tj)

D(L) =
⋃

λ∈Λ dom(λ)
αλ,λ∈Λ
↔

⋃

λ∈Λ dom( ♯
λ) = D♯(L)

D(B) = B3
(id,id)
↔ B3 = D♯(B)

D(S) = Σ
(α,γ)
↔ Σ♯ = D♯(S)

D(τ1)
(α,γ)
↔ D♯(τ1)

. . . . . . . . .

Figure 5.4.: An abstract structure wrt. a given embedding and a concrete structure provides
certain connections between semantical domains except for TTT . The domains of T
and L are related by the individual embedding function f. The boolean domains
shall be identical, and all other types shall be Galois connected. For S, this is
a consequence of Def. 5.2.1, for all additional types, like τ1 above, it is a plain
requirement.

1. θ and θ♯ are assignments in G and G♯,

2. θ♯ is f ◦ θ in the sense that

a) for each identity variable x ∈ V , if θ(x) ∈ U(G) then θ♯(x) = f(θ(x)), and

otherwise, i.e. if θ(x) /∈ U(G), θ♯(x) =: id♯0 is also from the complement of
U(G♯) in Id♯ or it is from U 6⊚(G♯) with

σ(G♯)(id♯0) = ⊤ ∈ D♯(S) (5.27)

and


♯
λ(id

♯
0) = ⊤ ∈ D♯(L) (5.28)

for each link name λ ∈ Λ(G) = Λ(G♯),

b) for each pair of identity variables x1, x2 ∈ V equality is preserved,3 that is

eqId(θ(x1), θ(x2)) ⊑ eqId♯(θ♯(x1), θ
♯(x2)), (5.29)

and

c) for each destiny variable xxx ∈ V , if θ(xxx)(0) ∈ U⊚(G) then θ♯(xxx)(0) = f(θ(xxx)(0)),
and otherwise, i.e. if θ(xxx) = ε, then also θ♯(xxx) = ε. ♦

Note 5.3.4 (Aliveness in Corresponding Assignments). Let S be a signature and G and
G♯ two S-compatible topologies such that (f, g) embeds G into G♯. Let M and M♯ be
canonical structures of S wrt. G, G♯, and (f, g).

Let θ and θ♯ be corresponding assignments of some logical variables V ⊆ VT in the
structures M♯ and M, i.e. (θ,G) ∼(f,g) (θ♯, G♯).

Then θ♯ assigns (non-)alive individuals if θ does. ♦

3 Note that in case both, θ(x1) and θ(x2), are from U(G), then is this property is already a consequence
of the previous requirement by Def. 5.2.1.1c.
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5.3. Abstract Structure and Term Evaluation

Proof. Given the premises, we have to show that

θ(x) ∈ U⊚(G) =⇒ θ♯(x) ∈ U⊚(G♯) (5.30)

and

θ(xxx)(0) ∈ U⊚(G) =⇒ θ♯(xxx)(0) ∈ U⊚(G♯) (5.31)

where x ∈ VT and xxx ∈ VTTT , and analogously for U 6⊚(G) and U 6⊚(G♯).

This is a direct consequence of the fact that the identities employed by θ and θ♯ are
related by (f, g) and that embeddings preserve aliveness, cf. Def. 5.2.1.1b.

Lemma 5.3.5 (Embedding). Let S be a signature and G and G♯ two S-compatible
topologies such that (f, g) embeds G into G♯. Let M♯ be an abstract structure of S in
G♯ wrt. a structure M of S and (f, g).

Let t be a quantifier free logical term over S and θ and θ♯ corresponding assignments
of the free variables of t in M. Then

ιJtK(G, θ) ⊑ ι♯JtK(G♯, θ♯). (5.32)

♦

Proof. See Section A.2.

Corollary 5.3.6 (Embedding). Let S be a signature and G and G♯ two S-compatible
topologies such that (f, g) embeds G into G♯. Let M and M♯ be canonical structures of
S wrt. G, G♯, and (f, g).

Let t be a logical term over S and θ an assigment of the free variables of t in M.

1. If t is universally quantified, then

ι♯JtK(G♯, f(θ)) = 1 =⇒ ιJtK(G, θ) = 1 (5.33)

and

ι♯JtK(G♯, f(θ)) = 0 =⇒ ιJtK(G, θ) = 0. (5.34)

2. If t is existentially quantified, then ιJtK(G, θ) ⊑ ι♯JtK(G♯, f(θ)). ♦

Proof. By pointwise application of Lemma 5.3.5 considering the definition of the seman-
tics of both quantifiers.

Until this point in our presentation, we’ve also covered abstraction of links, that is,
the situation shown in Figure 5.5 where more than one link in the concrete topology
G maps to a single link in G♯. In order to meet the premises of Def. 5.3.2, functional
symbols with arguments of type L have to consider such a fact. Whatever they do,
they’re supposed to do something sound, that is, if we had an operator

| · | : L→ N (5.35)
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G G♯

ℓ♯

g
g

f

Figure 5.5.: Abstract link. In order for (f, g) to be an embedding, the navigation function
 ℓ♯ along link ℓ♯ has to be consistent with f. Note that it needn’t be the default
multi-set comprehension.

which counts the elements in a link, than it has to obtain a sound interpretation on G♯

in order to satisfy Def. 5.3.2.
This applies in particular if f maps to an identity type T , that is, functions like

projection must do “the right thing”. It’s not immediately clear whether this is possible
for links in general; For example:

• a “pick” operator (cf. Section 9.2.5) pick(·) : L→ T can clearly be treated;

• a comparison for equality, = ∅(·) : L→ B, also;

• link projection ∗(·) : L → T has to turn undefined if the size of the argument is
not 1, i.e. ∗(λ(id)) is not defined if |λ(id)| 6= 1, in particular if |λ(id)| > 1;

• fancy operators like summing up the local states of all individuals in a link multi-
set, sum(·) : L → N, has to yield ⊤N if one (or more) individual(s) are labelled
with ⊤Σ;

• counting the elements in a link is more difficult, as it can no longer be defined point-
wise, but has to depend on the content, the collected identities – or D♯(L) cannot
remain canonical but needs to carry additional information to suit all operators;

In Chapter 6, we’ll provide a solution for a particular special case, but we’ll limit the
operations with L arguments to a minimum. The topic is also revisited in Chapter 9.

Note that there is an apparent discrepancy between the indentities appearing in topolo-
gies and the domain of the process type T in the abstract structure.

Namely that the domain of T comprises a top-element ⊤, which is not used in topolo-
gies. The reason is that ∁ is different from ⊤. The latter is covering all identities, the
concrete and the non-concrete ones, thus it wouldn’t be correct to have ⊤ in a topology.

For the evaluation of terms we need this element, though. Namely if we navigate via
∁, for instance in xλ with x bound to ∁. Then λ can point to anything, both concrete
and non-concrete individuals, thus ⊤ is only correct value.

5.4. Simulation Relation for ETTS

The following definitions formalises the discussion of Section 5.1.

Definition 5.4.1 (Corresponding Evolution and Disappearance). Let M be an ETTS
over Id and M ♯ an ETTS over Id♯. Let r = (s, s′) ∈ R(M) and r♯ = (s♯, s♯′) ∈ R(M ♯)
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R(M)
−−−→

s s′

s♯

H

e
e

f f =⇒ ∃ s♯′ :

R(M)
−−−→

R(M♯)
−−−−→

s s′

s♯ s♯′

H
∼e

e
e

e♯ e♯
f

Figure 5.6.: Individuals Evolve Accordingly if disappearance or evolution in M implies
disappearance or evolution, respectively, in M ♯.
Note that disappearing individuals are actually not in the domain of the evolution
function. To make the disappearance more prominently visible, we though show
dashed arrows resembling the notation for disappearance from Section 3.4.

be transitions such that the states of r can be embedded into the corresponding states of
r♯, i.e.

s ⊑(f1,g1) s♯ and s′ ⊑(f2,g2) s♯′. (5.36)

We say that individuals evolve and disappear correspondingly along both transitions
under (f1, g1) and (f2, g2), denoted by

r ∼e r
♯ (5.37)

if the embeddings are clear by context, if and only if, given an identity u ∈ U(s),

• if u disappears along r, then the corresponding identity f1(u) ∈ U(s♯) does not not
disappear along r♯, and

• if u evolves into u′ along r, then the corresponding identity f1(u) ∈ U(s♯) evolves
along r♯ into the corresponding identity f2(u

′) ∈ U(s♯′),

that is, if

∀u ∈ U(s) : u
r
 e =⇒ f1(u)

r♯

 e (5.38)

and

∀u ∈ U(s), u′ ∈ U(s′) : u
r
 e u

′ =⇒ f1(u)
r♯

 e f2(u
′). (5.39)

♦

Figure 5.6 illustrates Def. 5.4.1, Figure 5.7 illustrates Def. 5.4.2 and is best read in
comparison to Figure 5.1.

Definition 5.4.2 (Simulation Relation). Let M = (S, S0 , R,L, e) be a (Σ,Λ)-ETTS
over Id and let M ♯ = (S♯, S0

♯, R♯,L ♯, e♯) be a (Σ♯,Λ)-ETTS over Id♯.
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s
L (M)
−−−−→

=⇒

s♯
L (M♯)
−−−−→

H ⊑

(a) If two states are in simulation
relation, then their labels corre-
spond according to “⊑ γ(·)”.

s
R(M)
−−−→ s′

s♯

H =⇒ ∃ s♯′ :

s
R(M)
−−−→ s′

s♯
R(M♯)
−−−−→ s♯′

H
∼e

(b) In addition to the common definition, there
should exist a transition along which individuals
evolve according to the original definition.

Figure 5.7.: Simulation relation for ETTS.

A relation
H ⊆ S × S♯ (5.40)

between the states of M and M ♯ is called simulation relation between M and M ♯ if and
only if for each pair of states h = (s, s♯) ∈ H,

1. the pair determines an embedding (fh, gh) of the topology of s into the topology of
s′, i.e.

L (s) ⊑(fh,gh)
L

♯(s♯) (5.41)

and if U(s) ( Id then U(s♯) ( Id♯ or there is at least one id♯0 ∈ U(s♯) as in
Def. 5.3.3.2a and

2. if there is a transition in M with state s from the pair as source and another
state s′ ∈ S as destination, then there is a state s♯′ ∈ S♯ which is in H-relation
with s′ and which is the destination of a transition in M ♯ starting at s♯ such that
individuals evolve and disappear accordingly along these two transitions under the
embeddings determined by pairs h and (s′, s♯′), i.e.

∀ (s, s′) ∈ R, (s, s♯) ∈ H ∃ s♯′ ∈ S♯ :

(s♯, s♯′) ∈ R♯ ∧ (s′, s♯′) ∈ H ∧ (s, s′) ∼e (s♯, s♯′).
(5.42)

We say that M ♯ simulates M , denoted by M � M ♯, if there is a simulation relation
H between M and M ♯ such that each initial state of M is in H-relation with an initial
state of M ♯. To indicate a particular simulation relation, we may write M �H M ♯. ♦

Definition 5.4.3 (Simulation with Corresponding Appearance). Let M be a (Σ,Λ)-
ETTS over Id and let M ♯ be a (Σ♯,Λ)-ETTS over Id♯ such that M � M ♯.

We say that M ♯ simulates M preserving appearance, denoted by

M �⊙ M ♯ (5.43)

if and only if for each pair of related states h = (s, s♯) in the simulation relation, if an
individual newly appears in s then it newly appears in s♯, i.e. if

∀ (′s, s) = r ∈ R(M) :
r
 e id (5.44)
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s0
u1

s1

(a) In simulated system
M .

s♯0

s♯1

s♯1
′

u♯1

u♯1
′

(b) In simulating system M ♯.

f
(s1,s

♯
1
)

f
(s1,s

♯
1
′)

H

H

Figure 5.8.: Embedding Function. There is an embedding function per pair of related states
since one state in the simulated system may be related to multiple different states
with different individuals in the simulating system.

for id ∈ Id implies

∀ (′s♯, s♯) = r♯ ∈ R(M ♯) :
r♯

 e fh(id). (5.45)

♦

Note 5.4.4 (Partial Order). The relation ‘�’ as given by Definition 5.4.2 is a partial
order on evolving topology transition systems. ♦

Figure 5.8 illustrates why it is necessary to give an embedding function per pair of
related states, that is, why it is not sufficient to have an embedding function per state
of M . The reason is that a state in M may be related to different states in M ♯, like s1,
and s♯1 and s♯1

′, and an individual u of s1 may well evolve into different individuals u♯

and u♯′ in the different states s♯ and s♯′.

5.4.1. Fairness

The notion of simulation relation as defined in Def. 5.4.2 extends naturally to fair ETTS.
Namely by changing the requirement on paths as given by formula (5.42) in point 2 to

∀ (s, s♯) ∈ H ∀π ∈ ΠF
s (M) ∃π♯ ∈ ΠF

s♯(M
♯) ∀ i ∈ N0 :

(πi, πi) ∈ H ∧ (πi, πi) ∼e (π♯
i
, π♯

i
),

(5.46)

that is, instead of only requiring that the simulating system M ♯ can take corresponding
transitions we require that it has corresponding fair paths.

We say that the fair ETTS M ♯ simulates the fair ETTS M , denoted by M �F M ♯, if
there is a simulation relation H between M and M ♯ such that each initial state of M is
in H-relation with at least one initial state of M ♯. To indicate a particular simulation
relation, we may write M �FH M ♯.
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5.5. AEvoCTL∗ under Simulation

This section is the core of this chapter, and its core in turn is the soundness theorem,
Theorem 5.5.11, stating that a simulation system is a sound abstraction wrt. AEvoCTL∗.

Definition 5.5.1 (Abstract Structure wrt. Simulation). Let S be a signature and M and
M ♯ compatible ETTS such that M ♯ simulates M , i.e. M �H M ♯. LetM be a canonical
structure of S wrt. M and M♯ a canonical structure of S wrt. M ♯.

We callM♯ an abstract structure of S in M ♯ wrt. the concrete structureM, denoted
by

M⊑H M♯, (5.47)

if and only ifM♯ is an abstract structure of S in each topology of M ♯ wrt. the concrete
structure M in the corresponding topologies of M , that is, if

∀h = (s, s♯) ∈ H,L (s) ⊑(fh,gh)
L

♯(s♯) :M⊑(fh,gh) M♯. (5.48)

♦

Definition 5.5.2 (Corresponding Assignment wrt. Simulation). Let S be a signature
and G and G♯ two S-compatible topologies such that (f, g) embeds G into G♯. Let M
and M♯ be canonical structures of S wrt. G, G♯, and (f, g).

Let θ♯ ∈ AssignM♯(V ) and θ ∈ AssignM(V ) be assignments of some logical variables
V ⊆ VT in the structures M♯ and M.

We say θ and θ♯ correspond wrt. corresponding paths π ∼H π♯ in M and M ♯, denoted
by

(θ, π) ∼H (θ♯, π♯), (5.49)

if and only if θ and θ♯ correspond wrt. to each pair of states in π and π♯, that is, if

(θ, πk) ∼H (θ♯, π♯
k
), for all k ∈ N0. ♦

Note that identity variables are bound to a particular identity . They cannot follow
evolution, i.e. they cannot denote different things over time. Thus they cannot trace
materialisation like destiny variables can. But, in the setting of abstract topologies, the
precision of the denoted thing can change over time, that is, the denoted thing can be
labelled with ⊤ at one time and carry fully precise information at another time. And
the aliveness of the denoted thing can change over time.

The following is a direct consequence of the definition of simulation, abstract struc-
ture, corresponding assignments, and Lemma 5.3.5 – and the first step towards Theo-
rem 5.5.11.

Corollary 5.5.3 (Simulation and Term Evaluation). Let M and M ♯ be two evolving
topology transition systems over a signature S such that M1 �H M2, letM = (ι,D) and
M♯ = (ι♯,D♯) be canonical structures of S wrt. M and M ♯ such that M ⊑H M♯, and
let t be a universally quantified logical term over S.
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s0 s1 s2

r1 r2

(a) In simulated system M .

s♯0

s♯1

s♯1
′

s♯2

r♯
1

r♯
1
′

r♯
2

r♯
2
′

(b) In simulating system M ♯.

Figure 5.9.: Corresponding Paths. The path s♯
0, s

♯
1, s

♯
2 in M ♯ corresponds to the path

s0, s1, s2 in M , while s♯
0, s

♯
1

′
, s♯

2 doesn’t.

Then the evaluation of t in s♯ is a safe over-approximation of the evaluation in s if
these states are H-related, that is,

∀h = (s, s♯) ∈ H : ι♯JtK(L (s♯), fh(θ)). =⇒ ιJtK(L (s), θ) (5.50)

where θ is an assignment of the free variables in t in the topology L (s). ♦

Proof. Def. 5.4.2, Def. 5.3.2, and Lemma 5.3.5.

Definition 5.5.4 (Corresponding States and Paths). Let H be a simulation relation
between the evolving topology transition systems M and M ♯.

1. Let s ∈ S(M) be a state of M and s♯ ∈ S(M ♯) a state of M ♯.

We say s and s♯ correspond, denoted by s ∼H s♯, if and only if they are in simu-
lation relation, i.e. (s, s♯) ∈ H.

2. Let π ∈ Π(M) be a path of M and π♯ ∈ Π(M ♯) a path of M ♯.

We say π and π♯ correspond, denoted by π ∼H π♯, if and only if for every i ∈ N0,

states πi and π♯
i
correspond and individuals evolve and disappear correspondingly

along the transitions (πi, πi+1) ∈ R(M) and (π♯
i
, π♯

i+1
) ∈ R(M ♯). ♦

Note that this definition of corresponding paths is stronger compared to the notion
used with simulation (or bisimulation) for Kripke structures; the difference is that it
requires that corresponding transitions are taken, while the simulating system may have
multiple transition from one state to others which not necessarily provide that individuals
evolve sanely. This addition is again due to the fact that life-cycle properties in ETTS
depend not only on the state, but also on the taken transition.

As an example consider Figure 5.9 and assume that states si and s♯i are related by

H for 0 ≤ i ≤ 2 and in addition state s1 to s♯1
′
. Note that the individual u evolves

correspondingly to r1 along r♯1 but not along r♯1
′
. This is no contradiction to s0 being

in H-relation to s♯0 because Def. 5.4.2.2 only requires that there is a transition along
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5. Abstraction

which individuals evolve correspondingly. Neither is it a contradiction with respect to

s♯1
′
because from there on the individual evolves correspondingly.

This absence of contradictions is legitimate: the criterion in the definition is sufficient
to ensure that all bad paths of the simulated system have a correspondence in the

simulating system. In the classical definition, s0, s1, s2 and s♯0, s
♯
1

′
, s2 are segments of a

corresponding path. It is sufficient that the states in the path are pairwise related as
the transitions don’t contribute anything. In our setting, these path fragments should
not be considered corresponding as individuals don’t evolve correspondingly along them.
The following Lemma provides corresponding paths even for this stronger notion.

Lemma 5.5.5 (Corresponding Path and Assignment Suffix). Let M and M ♯ be two
ETTS compatible with signature S and M �H M ♯.

1. Let π and π♯ be corresponding paths in M and M ♯.

Then π/k ∼H π♯/k for each k ∈ N0.

2. LetM andM♯ be canonical structures of S wrt. M and M ♯ such thatM⊑H M♯.
Let θ and θ♯ be corresponding assignments of some logical variables V ⊆ VT inM
and M♯. Then

a) θ/k ∼H θ♯/k for each k ∈ N0 and

b) θ/k = ε if and only if θ♯/k = ε. ♦

Proof. See Section A.2.

Lemma 5.5.6 (Corresponding Path). Let H be a simulation relation between the evol-
ving topology transition systems M and M ♯.

Let s ∈ S(M) and s♯ ∈ S(M ♯) be two corresponding states. Then for each path of M
starting at s, there is a corresponding path of M ♯ starting at s♯. ♦

Proof. See Section A.2.

Definition 5.5.7 (Corresponding Evolution Chain). Let H be a simulation relation
between the evolving topology transition systems M and M ♯.

Let π ∈ Π(M) and π♯ ∈ Π(M ♯) be two corresponding paths, i.e. the pairs hi := (πi, π♯
i
)

are in simulation relation H. Let id ∈ U⊚(π0) be an individual in the first state of π
and δ an evolution chain of id along π, i.e. δ ∈ ∆(id, π).

Let δ♯ be an evolution chain of fh0
(id) along π♯, i.e. δ♯ ∈ ∆(fh0

(id), π♯). We say δ
and δ♯ correspond wrt. π and π♯, denoted by

(δ, π) ∼H (δ♯, π♯), (5.51)

if and only if δ♯ = fh0
(δ(0)), fh1

(δ(1)), . . . ♦
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5.5. AEvoCTL∗ under Simulation

Lemma 5.5.8 (Corresponding Evolution Chain). Let H be a simulation relation between
the evolving topology transition systems M and M ♯.

Let π ∈ Π(M) and π♯ ∈ Π(M ♯) be two corresponding paths. Then for each evolution
chain of an individual id ∈ U⊚(π0) along π, there is a corresponding evolution chain of
f(id) along π♯. ♦

Proof. Similar to the proof of Lemma 5.5.6 by induction over the finite prefixes of δ. The
evolution chain δ♯ is inductively constructed from δ employing the property of the sim-
ulation relation that individuals evolve and disappear accordingly along corresponding
transitions.

Lemma 5.5.9 (Corresponding Assignment). Let M and M ♯ be two evolving topology
transition systems over identities Id and Id♯ compatible with signature S and M1 �H M2.
Let M and M♯ be canonical structures of S wrt. M and M ♯ such that M⊑H M♯.

Let θ♯ ∈ AssignM♯(V ) be an assignment of some logical variables V ⊆ VT in the
structure M♯.

1. Let x ∈ V ∩ VT be an identity variable and let (s, s♯) ∈ H be a pair of correspond-
ing states. Then the set of assignments θ corresponding to a modification of θ♯

comprises the modifications of assignments θ corresponding to the unmodified θ♯,
that is, if

∀ id♯ ∈ Id♯ ∀ θ ∈ AssignM(V ), (θ, s) ∼H (θ♯[x 7→ id♯], s♯) :MJφK(s, θ) = 1 (5.52)

then

∀ θ ∈ AssignM(V ), (θ, s) ∼H (θ♯, s♯) ∀ id ∈ Id :MJφK(s, θ[x 7→ id]) = 1. (5.53)

2. Let (s, s♯) ∈ H be a pair of corresponding states. Then

∀π♯ ∈ Πs♯(M
♯)

∀ θ♯
′
= θ♯[xxx1 7→ δ1] . . . [xxxn 7→ δn], δi ∈ ∆(θ♯(xxxi)(0), π

♯), 1 ≤ i ≤ n

∀π ∈ Πs(M), π ∼H π♯ ∀ θ′ ∈ Assign(π), (θ′, π) ∼H (θ♯
′
, π♯) :

MJψK(π, θ′) = 1

(5.54)

implies

∀ θ ∈ Assign(s), (θ, s) ∼H (θ♯, s♯) ∀π ∈ Πs(M)

∀ θ′ = θ[xxx1 7→ δ1] . . . [xxxn 7→ δn], δi ∈ ∆(θ(xxxi)(0), π), 1 ≤ i ≤ n :

MJψK(π, θ′) = 1.

(5.55)

♦

Proof. See Section A.2.
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Lemma 5.5.10 (Soundness). Let M and M ♯ be two evolving topology transition systems
over a signature S such that M �H M ♯ and letM and M♯ be canonical structures of S
wrt. M and M ♯ such that M⊑H M♯.

1. Let φ be a ⊙-free state formula of AEvoCTL∗ over S♯. Let s ∈ S(M) and
s♯ ∈ S(M ♯) be corresponding states, i.e. s ∼H s♯, and let θ♯ ∈ Assign(s♯) be
an assignment of the free variables of φ in s♯.

Then

M ♯, s♯, θ♯ |= φ =⇒ M,s, θ |= φ (5.56)

for each assignment θ ∈ Assign(s) of the free variables of φ in s corresponding to
θ♯ wrt. (s, s♯).

2. Let ψ be a ⊙-free path formula of AEvoCTL∗ over S♯. Let π ∈ Π(M) and π♯ ∈
Π(M ♯) be corresponding paths in M and M ♯, i.e. π ∼H π♯, and let θ♯ ∈ Assign(π♯)
be an assignment of the free variables of ψ in π♯.

Then

M ♯, π♯, θ♯ |= ψ =⇒ M,π, θ |= ψ (5.57)

for each assignment θ ∈ Assign(π) of the free variables of ψ in π corresponding to
θ♯.

If M ♯ simulates M preserving appearance, i.e. if M �⊙ M ♯, then (5.56) and (5.57)
also hold if φ and ψ are not ⊙-free.

Proof. See Section A.2.

The following theorem is a direct consequence of Lemma 5.5.10.

Theorem 5.5.11 (Soundness). Let M and M ♯ be two evolving topology transition sys-
tems over a signature S such that M1 �H M2. Let M and M♯ be canonical structures
of S wrt. M and M ♯ such that M⊑H M♯.

Then for every ⊙-free AEvoCTL∗ formula ϕ over S, M ♯ |= ϕ implies M |= ϕ. If
M �⊙ M ♯ then the implication also holds if ϕ is not ⊙-free. ♦

Theorem 5.5.11 ensures that the abstraction comprises all behvaiour of the original
structure, but possibly more.

5.5.1. Fairness

With the notion of simulation between fair ETTSs from Section 5.4.1, a Corresponding
Path Lemma similar to Lemma 5.5.6 can be established, the proof closely resembles that
of Lemma 5.5.6.

A fair variant of the Soundness Lemma similar to Lemma 5.5.10 and based on the fair
notion of corresponding paths then gives rise to a fair variant of Theorem 5.5.11.
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5.6. Bisimulation

5.6. Bisimulation

Similar to simulation, one can define bisimulation equivalence for evolving topology
transition systems. For the scope of this work, simulation is most relevant as we are
discussing abstractions of ETTS, in particular finite ones; due to the unbounded nature
of ETTS, there is in general no hope for a bisimulation between an ETTS and a finite-
state transition system.

The definition as such is similar to Def. 5.4.2, adding the complement of item 2, that
is, considering the given pair of related states, each transition in M ♯ has to have a
corresponding transition in M . Then the Corresponding Path Lemma 5.5.6 and the
Soundness Lemma becomes bidirectional, such that the Soundness Theorem similar to
Theorem 5.5.11 would state that the bisimilar ETTS satisfies the same AEvoCTL∗ and
in addition EEvoCTL∗ properties as the simulated one.

5.7. Discussion

Our approach is basically standard for transition systems as laid out in Section 5.1. The
major difference is that we’ve got to take evolution into account. We solve this by an
introduction of according evolution in Def. 5.4.1, which shows to be sufficient to establish
the Soundness Theorem.

A minor difference is that we consider abstract local states, in the classical setting, it
is typically assumed that all (or at least the subset of the relevant) atomic propositions
are kept. We employ the lattice theory (cf. Chapter 2) which is also employed in the
domain which is commonly known under the name of abstract interpretation.

A particularity of our approach is that we, in a sense, separate abstraction in the
ETTS from abstraction in the logic. On the ETTS side, the abstract transition system
still has regular topologies as labelling, they’re only abstract in their local state and
link name labelling. This preserving of the topology form is one pre-requisite of the
syntactical transformations discussed in Chapter 9, that is, obtaining a definition of the
abstract transition system by a syntactical transformation of a higher-level language.

On the logic side, there is the abstract structure with abstract interpretation, in par-
ticular, of function symbols. In Chapters 6 and 9, we discuss how to canonically obtain
a quite coarse variant heuristically, yet there are options for refinement by providing
more “informed” definitions. In this point, this approach is fundamentally different
from the above named abstract interpretation. We introduce the notion of a tight em-
bedding, and by Chapter 2 we could directly have notions of best abstract structures
wrt. given abstract domains, yet we don’t provide a procedure to obtain these. It is one
aspect of the abstraction discussed in the following Chapter 6 that it is just not the best
one in many regards, instead precision is traded for easy computability of the abstract
transition relation (cf. Chapter 9).

Our orientation on a notion of embedding is a direct descendent of the abstract
interpretation-based approach of [155], with the only difference that our notion is on
topologies (or graphs) while theirs is on representations of graphs in form of logical
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5. Abstraction

structures. The most closely related derivative of [155] is [190, 191], which, as discussed
in Chapter 4, study the verification of the specification logic VTL/ETL which is similar
to EvoCTL∗. Their soundness proofs are not explicitly based on an elaborated the-
ory of simulation, but they prove rather directly that VTL/ETL formulae evaluation
is sound on abstract traces wrt. to concrete traces. Recall from Chapter 3 that their
computational model is a set of states, instead of a transition system in our case.

Another difference is related to the above named separate considerations of the ETTS
and the logic side. As the computational model of [190, 191] are logical structures, the
logic doesn’t have expressions like

σ(xλ) > 0 (5.58)

but rather a predicate p(x) denoting just (5.58). Thereby, the interpretation of formulae
is directly determined by the states, the logical structures. The states of the abstract
system then directly provide (abstract) interpretations of the predicate symbols. This
setting makes certain things easier to handle than in our theoretical machinery, but it is
a kind of pre-abstraction into predicates we wanted to avoid in particular for discussions
in Chapters 6 and 9.
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6. Data-Type Reduction

Having precisely defined what kind of systems we referred to in the introduction by Chap-
ter 3 and a corresponding property specification logic in Chapter 4, we now investigate
the applicability of the Data-Type Reduction [127] (DTR) abstraction in the context
of ETTS. With the particular symmetry reduction Query Reduction [127] from Chap-
ter 7, we obtain in Chapter 8 a finitary abstraction approach for ETTS and AEvoCTL∗

formulae in prenex normal form.

Recall from Chapter 3 that we introduced both, an untyped and a typed variant of
ETTS. While in the previous sections, the presentation has been reduced to the untyped
case, we assume a typed setting from now on.

That is, we assume that the set of identities Id is partitioned into n partitions,
i.e. Id1 ∪̇ . . . ∪̇ Idn. We think of each partition as providing the identities of one
type of processes, that is, in the following we assume signatures S with identity types
T1, . . . , Tn ∈ T (S) instead of just the single type T . In addition, we assume the set of
local states Σ is partitioned into Σ1 ∪̇ . . . ∪̇ Σn, that is, each type of individuals has its
own range of state labels, and that they’re each complete lattices (which can always be
achieved by adding a top element ⊤, cf. Chapter 2).

Types are important for DTR because we want to have one summary node for each
type. It should over-approximate individuals of its type, but not more.

The chapter is structured as follows. In Section 6.1, we formally define DTR for
our setting of ETTS. Section 6.2 establishes soundness employing the machinery of
Chapter 5.

While soundness is easy insofar as a system with complete “chaos” is clearly sound,
the more interesting question is which properties are preserved or reflected. That is,
which EvoCTL∗ properties hold in the abstraction if they hold in the concrete system.
We address this question in Section 6.3.

The outcome is that DTR is not exact, i.e. sound but not complete (which is not
surprising). The next interesting questions then are options for refinement, and before
that the decidability of whether a given (abstract) counter-example is spurious or not,
i.e. whether it doesn’t concretises to a computation path in the original system. We only
briefly elaborate on this topic in Section 6.4 as it is one of the main subjects of [167].

The overall aim is to obtain a finite abstract transition system. DTR as such firstly
only addresses the infiniteness stemming from the unbounded number of individuals in
ETTS. In Section 6.5 we discuss first ideas to also treat the possibly unbounded number
of links, even with finitely many individuals. We’ll get back to this topic in the more
application oriented setting of Chapter 9. Section 6.6 discusses related work.
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6.1. Data-Type Reduction

We define the Data-Type Reduction (DTR) abstraction in three steps. Firstly, as a
choice of individuals to represent concretely, secondly, its application to topologies, and
thirdly its application to whole ETTS.

6.1.1. The Spotlight

Definition 6.1.1 (Data-Type Reduction (DTR)). Let Id = Id1 ∪̇ . . . ∪̇ Idn be a set of
identities partitioned into n partitions.

A DTR of Id is a finite (possibly empty) set of pairs of partitions of Id and subsets of
the partitions such that each partition appears at most once, i.e. a set

D = {(dj1 , Idj1), . . . , (djm , Idjm)} (
⋃

1≤i≤n

P(Idi)× {Idi} (6.1)

is called DTR if and only if

1. dji ⊆ Idji , 1 ≤ i ≤ m,

2. each index ji, 1 ≤ i ≤ m, is from {1, . . . , n}, and

3. indices are pairwise different, i.e. ji 6= jk for each 1 ≤ i 6= k ≤ m.

We write u ∈ D to denote that u is in one of D’s subsets, i.e. as an abbreviation for
u ∈ dj1 ∪ · · · ∪ djm. We say a partition Idi of Id is considered by a DTR D, denoted by
Idi ∈ D, if and only if there is a subset di ⊆ Idi such that (di, Idi) ∈ D; and we write
Idi /∈ D if Idi is not considered by D.

A DTR D is called complete if each partition of Id is considered. ♦

In other words: D denotes a “spotlight” which lights the identities in the di such that
the complement lie in shadows. Partitions not affected by D remain completely lighted
(in this figurative intuition).

Given a DTR D on the identities, we set Id = Id1 ∪̇ . . . ∪̇ Idn, set

Id♯ := Id♯1 ∪ · · · ∪ Id♯n (6.2)

where

Id♯i :=

{

di ∪̇ {∁i} , if (di, Idi) ∈ D

Idi , otherwise
(6.3)

Then D induces the mapping fd : Id→ Id♯ as

id 7→

{

∁i , if (di, Idi) ∈ D and id ∈ Idi \ di

id , otherwise
(6.4)

that is, fd summarises, per partition of Id, the shadows to a single auxiliary identity.
As the identities in shadows are the complement of the lighted ones, the symbol for the
auxiliary identity is the complement symbol. Note that this node is (by choice) added
even if di = Idi.
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Definition 6.1.2 (Finite DTR). A DTR D on a set of identities

Id = Id1 ∪̇ . . . ∪̇ Idn (6.5)

is called finite if and only if the subset component of each pair (dj , Idj) ∈ D is finite,
i.e. if dj is finite. ♦

6.1.2. Application to Topology

Applying a DTR to a topology informally means completely dismissing all information
about the individuals in the shadows, except for their type.

Definition 6.1.3 (DTR’ed Topology). Let G = ((U⊚, U 6⊚), L, ψ, σ, λ) be a (Σ,Λ)-
topology over Id, both Id and Σ partitioned into n partitions.

Let D be a DTR of Id. Then D(G) denotes the topology

((U⊚♯, U 6⊚♯), L♯, ψ♯, σ♯, λ♯) (6.6)

over identities

Id♯ = dj1 ∪̇ {∁j1} ∪̇ . . . ∪̇ djm ∪̇ {∁jm} ∪̇
⋃

Idi /∈D,1≤i≤n

Idi (6.7)

with fresh identities ∁ji , 1 ≤ i ≤ n, and

1. the equality function on Id♯ defined as

eqId
♯(u♯1, u

♯
2) =







1/2 , if u♯1 = u♯2 = ∁i, 1 ≤ i ≤ n,

1 , if u♯1 = u♯2 ∈ Id♯ ∩ Id,

0 , otherwise,

(6.8)

2. aliveness is preserved precisely for lighted individuals and completely lost (in ab-
straction) for those in the shadows, i.e.

U⊚♯ = fd(U
⊚) ∪ {∁j1 , . . . , ∁jm}, (6.9)

and

U 6⊚♯ = fd(U
6⊚) ∪ {∁j1 , . . . , ∁jm}, (6.10)

3. local states are preserved precisely for lighted individuals and completely lost (in
abstraction) for those in the shadows, i.e.

σ♯(u♯) =

{

⊤Σi
, if u♯ = ∁i,

σ(u) , otherwise,
(6.11)
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4. links are kept if they originate within the spotlight, with changed destination in case
it happens to lie in the shadows, and additional self-links on the shadow individuals
labelled with ⊤ ∈ Λ♯, i.e.

L♯ = {ℓ ∈ L | ini(ℓ) ∈ D} ∪ {(∁i, ∁i) | di ∈ D} (6.12)

ψ♯ = {ℓ♯ 7→ (fd(u1), fd(u2))) | ψ(ℓ) = (u1, u2), ℓ
♯ ∈ L♯}

∪ {(∁i, ∁i) 7→ (∁i, ∁i) | di ∈ D},
(6.13)

and
λ♯ = λ|L♯ ∪ {(∁i, ∁i) 7→ ⊤ | di ∈ D}, (6.14)

5. the links from the shadows are catered for in a changed definition of the navigation
functions, namely


♯
λ : L♯ → U ♯ ∪̇ {⊤} (6.15)

with


♯
λ(u

♯) = ⊤ (6.16)

if u♯ ∈ U ♯\d is from the shadows and the regular multi-set comprehension if u♯ ∈ d,
i.e.


♯
λ(u

♯) = λ(u
♯). (6.17)

With top element ⊤, dom( ♯
λ) becomes a complete join semi-lattice. ♦

Note that the definition of eqId
♯ is the place where we have one similarity to the

summary nodes of, e.g. [155] (cf. Chapter 5).

Lemma 6.1.4 (Finite Topology). Let G be a (Σ,Λ)-topology over Id, both Id and Σ
partitioned into n subsets.

Given a DTR D, the topology D(G) is finite if and only if d is finite, all partitions
of Id not considered by D are finite, and all identities id ∈ D and in the partitions not
considered by D have finite out-degree. ♦

Proof. The topology G♯ := D(G) is called finite if both, the set of nodes U(G♯) and the
set of edges L(G♯) is finite.

The set of nodes becomes finite because it is a subset of Id♯ which by (6.7) comprises
the subsets from D, which are finite as D is finite, and finitely many fresh identities.
The rightmost union in (6.7) becomes finite by premises.

The set of edges becomes finite because the definition of L♯ only considers nodes from
Id♯ and these have finite out-degree by premises.

Corollary 6.1.5 (Finite and Complete Topology DTR). Let G be a (Σ,Λ)-topology over
Id with a finite upper bound on the out-degree of individuals, both Id and Σ partitioned
into n subsets.

Let D be a finite and complete DTR. Then D(G) is finite.

Proof. Lemma 6.1.4

150



6.1. Data-Type Reduction

6.1.3. Application to ETTS

Given the application to topologies, the application to ETTS is straight-forward. Namely
basically by state with the transition relation becoming an exists/exists abstraction.

Definition 6.1.6 (DTR of ETTS). Let M = (S, S0 , R,L, e) be an (Σ,Λ)-ETTS over
Id, both Id and Σ partitioned into n partitions.

Let D be a DTR of Id. Then D(M) denotes the ETTS

(S♯, S0
♯, R♯,L ♯, e♯) (6.18)

where

• the sets of states and initial states comprises the topologies used to label S under
D, i.e.

S♯ = D(L (S)) = {D(L (s)) | s ∈ S}, (6.19)

S0
♯ = D(L (S0)), (6.20)

• the transition relation is an exists/exists abstraction of R, i.e.

R♯ = {(D(s),D(s′)) | (s, s′) ∈ R}

(= {(s♯, s♯′) ∈ S♯ × S♯ |

∃ s ∈ S, s′ ∈ S : (s, s′) ∈ R ∧ s♯ = fd(s) ∧ s
♯′ = fd(s

′)}),

(6.21)

• as topologies are used as states (see above), states are labelled with itself, i.e.

L
♯ = idS♯ (= {s♯ 7→ s♯ | s♯ ∈ S♯}), (6.22)

• the evolution annotation
e♯ = {e♯〈r♯〉 | r♯ ∈ R♯} (6.23)

preserves evolution of lighted individuals and considers other individuals to evolve
constantly, i.e.

e♯〈r♯〉 = {(∁ji , ∁ji) | 1 ≤ i ≤ m}

∪
⋃

(D(s),D(s′))=r♯

{(fd(u), fd(u
′) | (u, u′) ∈ e〈(s, s′)〉} (6.24)

♦

Figure 6.1 illustrates the application of a DTR to a transition system on a prefix of a
computation path (employing a graphical representation of topologies slightly different
from our usual one).

Given the single-sorted topologies Figure 6.1(a), we choose the DTR D = {({id}, Id)}
as shown in Figure 6.1(b). Applying D to Figure 6.1(b) yields Figure 6.1(c) where links
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(a) Original transition system.
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(c) Abstract from the ones in darkness.
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(d) Folding shadows into single “other” node.

Figure 6.1.: DTR’d ETTS.

into the shadows are preserved but point to the light/shadow border now, links from the
shadows into the lights are not preserved. They’re shown dashed in Figure 6.1(c) because
the abstraction does preserve (and over-approximates) interactions of the shadows with
the concrete part.

Viewed as a proper topology, it can be depicted as in Figure 6.1(d). Note that the

new self-loop on s♯1 is an effect of the exists/exists abstraction. Under DTR, states s2
and s3 are not distinguishable, but have the same abstract representation. As there is a
transition between both, there is a self-transition at the abstract representation.

Two more illustrations of special cases can be found in Section B.2 (Figures B.1 and
B.2).

Lemma 6.1.7 (Finite ETTS). Let M be an (Σ,Λ)-ETTS over Id, both Id and Σ parti-
tioned into n subsets.

Given a DTR D, the ETTS D(M) is finite if and only if all topologies G♯ ∈ dom(L (D(M)))
are finite and if Σ is finite. ♦

Proof. Lemma 6.1.4.

Corollary 6.1.8 (Finite and Complete DTR for ETTS). Let M be an (Σ,Λ)-ETTS
over Id with a finite upper bound on the out-degree of individuals, Σ finite, and both Id
and Σ partitioned into n subsets.

Let D be a finite and complete DTR. Then D(G) is finite for each G ∈ dom(L (M)).
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Proof. Lemma 6.1.7

The most prominent example of immediately finite results are ETTS with finite local
state and the single-link property (cf. Chapter 3).

6.2. Soundness

We’re using the Soundness Theorem, Theorem 5.5.11, of Chapter 5 by showing that the
DTR’d ETTS simulates the original.

Let M be an ETTS over Id, D a DTR, and M ♯ := D(M). Then the simulation
relation is

H = {(s,D(L (M)(s))) | s ∈ S(M)}. (6.25)

Given a pair of related states h = (s, s♯) ∈ H, the pair (fh, gh) with

• fh = fd and

• gh = {ℓ 7→ ℓ | ini(ℓ) ∈ D} ∪ {ℓ 7→ (∁i, ∁i) | di ∈ D, ini(ℓ) ∈ Idi, ini(ℓ) /∈ D},

is an associated embedding in the sense of Def. 5.2.1 because

• we consider the identity function as Galois connection between the (sort related)
partitions of Σ and Σ♯, recall that we assume in this chapter that Σ is a complete
lattice,

• similarly for Λ,

• the local state property Def. 5.2.1.1a is clearly satisfied for lighted individuals, and
for the others by the assignment of ⊤Σi

as local state,

• the aliveness property Def. 5.2.1.1b is clear for lighted ones and by having the
other in both sets, alive and non-alive, i.e. ∁ ∈ U⊚ ∩ U 6⊚,

• the equality property Def. 5.2.1.1c is satisfied by definition of eqId
♯,

• the link embedding property Def. 5.2.1.2 is satisfied because links originating in the
concrete part are kept and others map to the respective self-links (cf. Def. 6.1.3),
and

• consistency as required by Def. 5.2.1.3 is given, because source and destination of
abstract links are defined consistently with the individuals’ embedding.

Thus we have L (s) ⊑(fh,gh) L ♯(s♯) as required by Def. 5.4.2.1.

For the transition property, i.e. Def. 5.4.2.2 let (s, s′) ∈ R(M) be a transition of M .
Then there is a corresponding transition in M ♯ by definition, namely (s♯, s♯′). That
individuals appear and disappear accordingly, i.e. that (5.38) and (5.39) are satisfied,
is clear for the lighted ones. They behave in M ♯ exactly as they do in M . There is
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in particular never a conflict: if id disappears along r1 and evolves along r2, then the
destination states are never merged because they are different topologies.

For the shadow ones, note that the definitions of appearance and disappearance in
Chapter 3 are carefully crafted such that the desired properties are obtained from ∁i
being both, alive and non-alive. Similarly, we even have corresponding appearance. It is
clear for the lighted individuals (similar argument as above), and by being in both sets
for the others.

Now theorem Theorem 5.5.11 yields that AEvoCTL∗ properties holding in M ♯ under
an abstract structure, i.e. evaluating to 1, also evaluate to 1 in M .

An abstract structure can be obtained as follows if we assume that we only have the
restricted set of function symbols operating and yielding T and L types (cf. Section 4.2.1).

For the domains not covered by the definition of canonical domain, use the minimal
lattices, i.e. simply add a ⊤ to each and use the canonical embedding (cf. Chapter 2).

Assign each function symbol not operating on T by a monotone interpretation, i.e.

ι♯(f)(d♯1, . . . , d
♯
k) =

{

ι(f)(d♯1, . . . , d
♯
k) , if d♯i 6= ⊤, 1 ≤ i ≤ k

⊤ , otherwise
(6.26)

Those having T parameters are defined to yield ⊤ for ∁i, the identity representing the
abstracted individuals.

The function symbols yielding T are actually only the link navigation functions and
dereference. Their interpretation in the abstract structure yields ⊤T for ⊤L.

Note that it is still possible to obtain one of the ∁i from a link, for example by
dereference, and to compare it against other links, but further navigation over ∁i will
then yield ⊤T (also cf. Chapter 9).

Theorem 6.2.1 (DTR Soundness). Let S be a signature, M a S-compatible (Σ,Λ)-
ETTS over Id, and M a canonical structure of S wrt. M .

Let ϕ be an AEvoCTL∗ formula over S and D a DTR. Then

D(M) |= ϕ =⇒ M |= ϕ. (6.27)

♦

Proof. Theorem 5.5.11 with simulation relation as given above.

Note that the abstraction is (by far) not the best for most purposes. A trivial but
useful observation is that it’s best on the focused ones in terms of local state precision.
The main benefit will become clear in Chapter 9. Namely that we’re able to compute
(or closely approximate) D(M) from a higher-level language description by simple syn-
tactical transformations. With respect to a higher-level language, there are additional
reflected properties as we’ll see in Chapter 9 when we have the high-level language. For
example, the atomic execution of operations, the property that communication from the
shadows is not complete chaos.

The following definition is useful for Section 6.4 on refinement.
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{(∅, Id1), . . . , (∅, Idn)} = ⊤

{({id1,1}, Id1), . . . , (∅, Idn)} . . . {(∅, Id1), . . . , ({idn,m}), Idn)}
... . . .

...
◦ . . . ◦

{(Id1, Id1), . . . , (Idn, Idn)}

∅ = ⊥

Figure 6.2.: DTR Lattice. ⊤ is the least and ⊥ the most precise DTR of a set of identities
Id = Id1 ∪̇ . . . ∪̇ Idn.

Definition 6.2.2 (Precision Order on DTRs). Let

D1 = {(d1,1, Idj1,1), . . . , (d1,n, Idj1,n)} (6.28)

and

D2 = {(d2,1, Idj2,1), . . . , (d2,m, Idj2,m)} (6.29)

be two of Id.

We say D1 is more precise than D2, denoted by D1 ⊑ D2, if and only if for each
1 ≤ i ≤ n there is a 1 ≤ k ≤ m such that Idj1,i

= Idj2,k
and d1,i ⊇ d2,k. ♦

Without proofs we note the following.

Note 6.2.3 (DTR Lattice). The precision order on DTRs of a set of identities Id is a
complete lattice.

The meet-operator on two non-empty DTRs is a two-step set-union, firstly joining
both DTRs and then joining DTRs of the same partition of Id. If one of the operands is
the empty DTR, the result is the empty DTR. The empty DTR is the bottom-element.

The join-operator on two (possibly) empty DTRs is a two-step set-intersection, firstly
joining (sic!) both DTRs and then intersecting the DTRs of the same partition of Id.
The DTR

{(∅, Id1), . . . , (∅, Idn)} (6.30)

considering all fragments of Id is the top-element, the least precise DTR (cf. Figure 6.2).
♦

Note 6.2.4 (DTR Precision and Simulation). Let D1 ⊑ D2 be two DTRs of a set of
identities Id in precision order. Then D1(M) � D2(M) for any ETTS M over Id. ♦

The proof of Note 6.2.4 employs the property that the DTRs per partition of Id in
D2 are subsets of the ones in D1, if they are considered by D1. Recall that if they’re
not considered, there is no identity ∁ added, but the original set of identities is retained.
Thus in both cases, we obtain an embedding of topologies by mapping the identities in
D2 to those in D1, if present, and to ∁ otherwise.
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6.3. Reflected Properties: Local Liveness

From the construction of the DTR’d system it is clear that quantified properties are in
general not reflected. Whenever a logical variable binds to the identity ∁, most terms
turn indefinite because of the abstract local state and modified navigation.

Properties that can be reflected are open formulae with each logical variable bound
to a concrete individual. This is where Query Reduction comes into play. It provides
a finite set of representative assignments for each given universal EvoCTL∗ formula ϕ
in prenex normal form over an ETTS, which is symmetric in identities. Then the open
sub-formula of ϕ together with the fixed assignment (heuristically) defines the DTR and
can (in the good case) be established on the abstract system.

This is one major difference to many other approaches which try to obtain a single
abstract system for the whole property, where in particular quantification is meaningful.
Such as counter abstraction [119, 149, 71, 146] or the variants of shape analysis discussed
in [191, 190] (cf. Section 6.6).

6.3.1. Local Liveness

The experiments reported in Chapter 10 show that the DTR abstraction is also able to
reflect liveness properties (under the fairness assumption that each concrete individual
is globally finally scheduled).

How can this be if we disregard a large part of the system nearly completely? The
point is that DTR reflects local liveness, or local progress, which has also been studied
in the context of compositional verification. This relates to DTR because we’ll be able
to point out in how far DTR can be seen as compositional verification in Chapter 9.

More precisely, DTR reflects computation path fragments where concrete individuals
interact with each other without intervention or dependency of the non-concrete part.

This situation is in particular given when we consider scenarios (cf. Chapter 10): the
property refers to a group of individuals in a certain configuration, which together follow
a protocol to achieve some goal. They may be triggered from the non-concrete part, but
the scenario is between them.

Furthermore, the non-concrete part may interfere. Identifying impossible interference,
that is, interactions which would only be possible in the concrete system from individuals
which are participating in the scenario is one of the major guidelines for refining the
abstraction (cf. Section 6.4 below).

To approach this claim more formally, one would have to introduce a notion of com-
putation paths per individual or per finite groups of individuals, i.e. a projection of
topologies onto individuals. Then local liveness refers to the projection of liveness prop-
erties onto individuals.

In addition, there needs to be an annotation of causes for the transitions, a set of who
interfered with whom to justify the transition. This information cannot be assumed for
every ETTS, but it is reasonable to assume if the ETTS is the semantics of a higher-level
language as in Chapter 9. There, we have a notion of which individual is scheduled and
can access who interferes with whom to annotate it to transitions.
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The aim is then to show that local computation paths present in the original transi-
tion system are found in the same form in the abstract system, that is, that self-loops
introduced by the abstraction correspond to non-concrete behaviour and are eliminated
by a fairness assumption.

From the discussion in Chapter 9, in particular Section 9.3.3, we claim that DTR is
the coarsest abstraction which reflects local liveness under fairness assumptions, together
with graph-properties like transitivity of comparison for equality, and which furthermore
reflects interaction sequences determined by transition programs of a higher-level lan-
guage (cf. Chapter 9). The abstract transition systems defined by syntactical transfor-
mations of the higher-level language descriptions can be even weaker (but still useful).

This seem to be harsh prerequisites to be hardly found in real system. But from the
case studies considered in Chapters 1 and 10, the situation is possibly just the opposite.

First of all, we’re considering scenarios to be completed in hostile environments. In
particular in the Car Platooning case study it’s clear that cars have to be prepared for
unwanted interactions from other cars, such as split requests in the middle of merge
manoeuvres or duplicate merge requests. If the protocols weren’t highly robust, they
wouldn’t complete at all in the real world.

To this end, the protocols also employ a narrow interface and, in particular in case of
the DCS language, only interact via message passing with the environment, instead of
allowing direct read or write access to local states. This naturally further narrows down
the possibilities for interference.

Note that the protocols though cannot be assumed to complete if surrounded with
complete chaos, otherwise we wouldn’t have cases where refinement is necessary.

6.4. Spurious Counter-Examples and Approaches to
Refinement

The DTR abstraction is in general not exact for obvious reasons, but only an over-
approximation. That is, there is behaviour in the abstract system which doesn’t have a
correspondence in the concrete system, and which may well contradict a given AEvoCTL∗

formula, then called spurious counter-example. Yet counter-examples obtained on the
DTR abstraction, spurious or not, are not completely arbitrary but have certain prop-
erties we can derive from the construction principle.

To briefly enter this discussion, we’ll first formally introduce counter-examples. Then
we recall early speculations on the decidability of spuriousness, a complete treatment will
be provided by [167]. Then we discuss certain patterns of reasons for spuriousness, and
existing and new ideas on how to refine the abstraction. They’re partly a generalisation of
the approaches taken in [127], non-interference lemmata, and partly topology invariants
from [10], or the observation that enriching the border will preserve the benefits, also
employed in [166, 167].
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6.4.1. Counter-Examples

In order to define what a counter-example is, we need to extend Def. 2.6.4 from paths to
trees because some branching time logic formulae are disproved by computation trees.

Definition 6.4.1 (Computation Tree in ETTS). Let S be a signature, M = (S, S0 , R,L, F)
be an ETTS, and M a canonical structure of S wrt. M .

Let T be a directed tree1 where vertices are labelled by pairs (s, θ) ∈ S(M)×Assign(V )
of a state and an assignment in that state of a set of logical variables V ⊆ V(S).

The tree T is called infinite (computation) tree or tree in M from state s0 if and only
if s0 is the label of the tree’s root, if labels of directly connected vertices are successive
in the sense of Def. 2.6.4, and if assignments are assignments in all computation paths
π (in the sense of Def. 4.2.11) obtained by taking the state labels of the paths in T
originating at the considered vertex. ♦

An alternative characterisation of computation trees in an ETTS M is that the se-
quence of state labels of each path in the tree is a finite computation path in M in the
sense of Def. 2.6.4.

Given a computation tree T in an ETTS M , we straightforwardly obtain a definition
of MJϕK(T ) that is, the evaluation of EvoCTL∗ formula ϕ in the computation tree T .

The idea is to apply Def. 4.4.6 accordingly to the labels of vertices in T , that is, if ϕ
is a term t, then

MJϕK(T ), :=MJϕK(s, θ), (6.31)

where (s, θ) is the label of the root of T .
Similarly for all other state formulae except for path quantifiers, which are restricted

to range only over the paths and evolution chains present in T starting from its root,
and except for identity or destiny quantifiers, for which the assignment from the root of
T is taken; which is a legitimate choice by definition of computation trees. Here paths
denotes paths in the tree, which are again trees yet linear ones. Thus if ϕ is a path
formula ψ and tree a linear tree, then

MJϕK(T ) (6.32)

is defined by inductively considering suffixes of T .

Definition 6.4.2 (Counter-Example). Let S be a signature, M a compatible ETTS, and
M a canonical structure wrt. M .

Let ϕ be an EvoCTL∗ formula over S. A computation tree T in M whose root is
labelled with an initial state of M and an assignment of the free variables of ϕ is called
counter-example for ϕ in M if and only if

MJϕK(T ) = 0. (6.33)

♦

1 A directed tree is a directed graph, in which, disregarding orientation of edges, any two vertices are
connected by exactly one path [54] and where each vertex is the terminal vertex of at most one edge;
the unique vertex not serving as terminal vertex is called root of the tree.
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6.4.2. Spurious Counter-Example

Recall from Section 5.1 that we call an ETTS M ♯ an abstraction of another ETTS
M if M �H M ♯. In order to define spurious counter-examples, we need a notion of
concretisation, not of whole ETTS, but of computation trees in M ♯.

Definition 6.4.3 (Counter-Example Concretisation). Let S be a signature and M and
M ♯ be S-compatible ETTS such that M �H M ♯.

Let M and M♯ be canonical structures of S wrt. M and M ♯ such that M♯ is an
abstract structure of S in M ♯, i.e. such that M⊑H M♯.

Let T ♯ be a computation tree in M ♯. A computation tree T in M is called concretisa-
tion of T ♯ if and only if there is a function

f : V (T )→ V (T ♯) (6.34)

from the vertices of T onto the vertices of T ♯ such that

• (s, s♯) ∈ H if s is the label of v ∈ V (T ) and s♯ the label of f(v), and

• if v1 and v2 are initial and terminal vertices of a single edge in T , then f(v1) =
f(v2) or f(v1) and f(v2) are initial and terminal vertex of a single edge in T ♯.

A concretisation T is called step-true if and only if f is injective, that is, if T differs
from T ♯ only in the labelling of nodes. ♦

Note 6.4.4. If M ♯ and M are bisimilar, then each counter-example in M ♯ has a step-
true concretisation in M . ♦

Definition 6.4.5 (Spurious Counter-Example). Let S be a signature and M and M ♯ be
S-compatible ETTS such that M �H M ♯.

Let M and M♯ be canonical structures of S wrt. M and M ♯ such that M♯ is an
abstract structure of S in M ♯, i.e. such that M⊑H M♯.

Let ϕ be an EvoCTL∗ formula over S. A counter-example T ♯ for ϕ in M ♯ is called
spurious (or false-negative) wrt. M if and only if there is no counter-example for ϕ in
M which is a concretisation of T ♯. ♦

Note that an abstract counter-example in M ♯ typically has many concretisations. By
definition, it is only spurious if none of these concretisations is a counter-example in M .

For completeness, we call a confirmation of a formula inM ♯ spurious (or false-positive)
if and only if the formula doesn’t hold in M . An abstraction (in the sense of both, the
abstract system and the abstraction function) is called safe (or sound) if there are no
false-positives.

With this definitions, we can observe relations with the definitions of simulation from
Chapter 5. Firstly, if M ♯ simulates M , then there are no false-positives. Secondly, if M ♯

is bisimulation equivalent to M , then there are neither false-positives nor false-negatives.

For example, consider an ETTS representing a system where communication is based
on asynchronous message exchange as in the Car Platooning case-study. Then any other,
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non-concrete car as represented by identity ∁ can send at any time any kind of message
to any other car. Some of these messages sendings are correct; for instance if a concrete
car recognises ∁ in front and asks for a merge, then a positive or negative acknowledge
from ∁ is also possible in the concrete system.

But if ∁ is not the leader of a given concrete car u, then in the concrete system
it will never send a new leader message to u. Sending a new leader message in that
situation would be a spurious behaviour, which could be the origin for violations of a
given property. In this case we (informally) call the sending of the message a source
of spuriousness. Now, given a counter-example computation path witnessing such a
violation, it is desirable not only to exclude this single computation path but at best all
computation paths which comprise the same source of spuriousness.

6.4.3. The Spuriousness Problem of Counter-Examples

If the original transition system is finite, it is decidable whether a counter-example is
spurious. Given an abstract counter-example T ♯, one simply tries to construct a coun-
ter-example T by trying to obtain for each pair of adjacent vertices in T ♯ a pair of
states in M and a connecting path. This is a finite (yet possibly large) set of finite-state
model-checking problems.

Furthermore, if the original transition system is finite, then a counter-example is
necessarily either a finite computation path or of the form for which people came up
with the funny names lasso or pan-handle, that is, a finite prefix and then a finite suffix
repeated ad infinitum. So, in particular the spuriousness of liveness counter-examples
can be decided if the abstract counter-example is given in form of a lasso.

ETTS are infinite state in general, so the procedure given above needn’t terminate. In
addition, the particular abstraction DTR doesn’t reflect the duration of computations of
the shadows, that is, of individuals outside the spotlight. For example, consider a DTR
of the car platooning model with non-empty spotlight. Then a car id1 from the spotlight
may send a request-to-merge message to ∁, that is, to a car not in the spotlight.

In the original system, it may take the addressee of the request a fixed numberN ∈ N
+

of steps to process the request and send an answer, or it may take a number of steps from
an interval [M,N ]. In the abstract transition system, all information about the state of
non-concrete cars is lost, in particular information about how many steps have already
been taken. Thus in the abstract transition system, the answer may appear within any
finite number of steps or even never.

More formally, this can be established by an example; consider only two cars and
assume an answer takes two steps, that is, a transition between two different local
states. Consider the two global states where the requester is waiting while the answer is
produced. The DTR will map both to the same abstract global state s♯ and introduce
a self-loop, that is, a transition from s♯ to s♯ by definition of R♯. This self-loop can be
taken any number of times.

For a given abstract counter-example this means that we cannot conclude from the
number of steps it takes between a request from the spotlight and an answer from the
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shadows to the number of steps a corresponding operation takes in the concrete transition
system. Consequently, we can also not conclude to the number of individuals in the
shadows participating in the operation (as each step may involve a fresh individual).
For instance, the merge protocol may be such that the requested car has to ask one
or more of its followers for their opinion on a merge which takes a certain number of
transitions.

We’ll see in Chapter 9 on implementation issues, that is, on efficient procedures to
obtain D(M) for a given ETTS M in a higher-level description language and a DTR
D, that we can augment M ♯ such that it becomes visible which part of the higher-
level description under what (partial) circumstances justifies a transition in the abstract
transition system.

For example, when the higher-level description language is UML state-machines, which
are basically input/output automata where transitions are triggered by received events
and may update local variables or output events (cf. Chapter 10), then there is a pro-
cedure to obtain a semantically equivalent ETTS M where local variables become local
states of individuals. And in an abstract transition system M ♯, obtained from M by
DTR, the abstraction from the shadows still executes transitions of the state-machine:
each transition inM ♯ can be related to one or more transitions of the UML state-machine
executed by concrete individuals or the abstract representation of the shadows by ∁ indi-
viduals. This gives at least some hints when trying to concretise counter-examples, and
it can be used to exclude spurious ones when they are caused by executing transitions
in M ♯ which relate to UML state-machine transitions in impossible circumstances, like
topologies known to be unreachable from topology analysis (cf. Section 6.4.6 below).

Note that, in general, the situation doesn’t depend on the means of communication.
In the above example, the requesting car has to wait for the answer independent of
whether the communication is synchronous or asynchronous.

For a more formal an in depth treatment of these issues, we refer to [167].

6.4.4. Refining the Abstraction

If M ♯ |= ϕ has a spurious counter-example, one wants to refine the abstraction. That
is, wants to construct M ♯′ and ϕ′ such that M ♯′ |= ϕ′ still implies M |= ϕ but doesn’t
exhibit that counter-example.

One distinguishes counter-example driven and guided refinement. The former is the
simpler one; if a counter-example is found, it just tries a different pair of M ♯′ and ϕ′

satisfying the requirements and being known to be more precise than the former pair.
It doesn’t ensure that the particular counter-example is excluded. The latter is more
informed and tries to construct M ♯′ and ϕ′ such that at least the particular counter-
example is excluded. At best, it excludes not only the single counter-example, but the
whole source of spuriousness (see above).

There are basically two approaches:

• assumption-based, that is, by modifying the formula ϕ to ϕ′ which basically says
“under the assumption that the counter-example doesn’t happen, ϕ is true”, or,
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in other words, “disregarding the paths where counter-example occurs, ϕ holds”.

The abstract model M ♯ is typically left intact or only extended by auxiliary vari-
ables which make certain spuriousness observable, that is, M ♯′ = M ♯ up to auxil-
iary variables.

• model-based, that is, significantly changing M ♯ into M ♯′ such that M � M ♯′ � M ♯.

The formula is basically left unchanged or, in some cases, is only rewritten to a
case-split (cf. Section 4.5.3) which drives the construction of M ♯′ (cf. Chapter 8).

As they are orthogonal, combinations are possible.

In the following, we’ll first discuss the latter approach, in particular why the only
currently known strategy is to extend the spotlight, and then the assumption-based one
because there exist differently elaborate proposals. Note that the refinement topic is
mostly out of the scope of this work, there are promising results by other people, e.g.
[166, 167]. We only present the thoughts we’ve contributed to the discussion of the
refinement topic and indicate in how far our results may support other approaches.

To understand the vagueness of the following sections we have to keep two facts in
mind

• spuriousness is undecidable [167] (cf. Section 6.4.3 above), and

• the model-checking problem of ETTS and EvoCTL∗ is undecidable (cf. Chapter 4),

that is, we inevitably have to rely on heuristics, and incomplete methods to get at least
some results.

6.4.5. Refining the Abstraction: Model-based

Recall that in the model-based refinement, the aim is to obtain an abstract transition
system M ♯′, which is more precise than M ♯ but still a sound over-approximation of M .

When the intention is to apply the DTR abstraction for its benefits, there are few
known options preserving these benefits for the following reasons. When we discuss
in Chapter 9 how to effectively (and efficiently) compute M ♯ from a given higher-level
language system description, we’ll see that the computation procedure is also highly
efficient.

Based on our understanding of the characteristics of the DTR approach, namely “focus
on a finite set of actors, abstract from all the rest”, we also understand that the reason
for efficiency is that the abstract transition relation doesn’t depend on that rest. In more
precise abstractions, one typically either strives to preserve at least some information
about the rest or to keep imprecise information about all individuals (cf. Section 6.6).
There, the abstract transition relation has to soundly update the information about the
rest, or the imprecise information about all individuals.

Computing the abstract transition relation is often computationally expensive. As the
efficiently computable abstract transition relation of DTR is one of the main motivations
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to employ it at all (next to it being able to verify general liveness properties under
fairness), the primary goal in refinement is to preserve it.

For example, tagging abstract nodes with definite information, as done for example
in shape analysis, wouldn’t preserve this efficiency. Then employing DTR can hardly be
justified. Thus any modification of M ♯ into M ♯′ needs to be carefully crafted.

Case-Split

One class of sources for spuriousness (cf. Section 6.4.2) is a too small DTR, that is, a
too limited spotlight.

For example, assume a more elaborate car platooning model which considers a car
to consist of a control and a communication module, that is, there were two different
sorts Id1 and Id2 of identities;. The control module would be responsible for granting or
rejecting merge requests and would employ the communication module to actually send
the answers. Then given a property

ϕ = ∀x1, x2 : T1 . ϕ0 (6.35)

on two control modules, the heuristics of Chapter 8 uses the DTR

D = {({id1,1, id1,2}, Id1), (∅, Id2)} (6.36)

comprising two control modules and no communication modules. That is, there were
no concrete communication modules, thus chances are low that any reasonable property
can be established because there are plenty of possibilities for spurious counter-examples
by the abstracted communication modules.

A modification which is always sound is an enlargement of D, in the example, by
adding communication modules. A practical way to indirectly obtain an enlarged D
proposed already in [127] is to employ the case-split rule from Section 4.5.3

∀x, y . ∗(λ(x)) = y → ϕ

∀x . ϕ
. (6.37)

Recall from Section 4.5.3 that we’ve got to consider whether the link we’re splitting
cases on is actually defined. In the particular example, this is evident because the
communication module is created along with the car and later not changed.

In the example, one would isolate the cases where control module xi employs a certain
communication module yi, i.e.

ϕ′ = ∀x1, x2 : T1, y1, y2 : T2 . (∗(λ(x1)) = y1 ∧ ∗(λ(x2)) = y2)→ ϕ0 (6.38)

The heuristically obtained DTR is then

D′ = {({id1,1, id1,2}, Id1), ({id2,1, id2,2}, Id2)} (6.39)

and the property may succeed. We have M � D′(M) � D(M) by Note 6.2.4 and
ϕ′ =⇒ ϕ by Section 4.5.3.
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Note that the choice of the case-split above is the result of insight into the model, and
possibly an obtained counter-example. There is yet no mechanic procedure to choose a
case-split that is guaranteed to exclude a given spurious counter-example.

On the other hand, if the model is derived from a higher-level description, for instance
UML, and if the translation from UML into ETTS is known to be correct, then the class
diagram could give hints on sensible link-names to split cases on (cf. also the discussion
on crystallisation in Section 7.5).

Auxiliary Variables

In addition, we may always add so-called auxiliary components (or variables, cf. Chap-
ter 9) to the local state of objects, that is, variables which are only written, but never
read. This property ensures that they don’t influence the original behaviour, but only
observe it, and thereby preserve soundness.

Auxiliary variables can be used, for example, we could count how many messages
we’ve sent without obtaining an answer or the kind of message just sent. Similarly, we
may add auxiliary links or link-names, for example, in order to trace whom we last sent
a message, an information which is not necessarily visible in the original system. This
augmentation of an ETTS with auxiliary variables is particularly useful for the second,
assumption-based, way of refining the abstraction as discussed in the following section
and has already been employed in [127].

6.4.6. Refining the Abstraction: Assumption-based

To briefly recall the idea of classical assumption-based counter-example exclusion, let T ♯

be a spurious abstract counterexample. The goal is to obtain a formula ϕ′ such that

• it evaluates to 1 for the spurious counter-example, i.e. MJϕ′K(T ♯) = 1, and

• for every abstract computation tree T ♯
′
which has a concretisation, or: which is

not spurious, its evaluation coincides with ϕ, i.e.

MJϕ′K(T ♯′) =MJϕK(T ♯′). (6.40)

In other words, the spurious trace T ♯ is trivially accepted, as it trivially satisfies ϕ′.2

Then proving M ♯ |= ϕ′ intuitively verifies ϕ under the assumption (in the sense of
[94]) that spurious behaviour doesn’t take place. Successful verification implies M |= ϕ
because only the absence of spurious paths is assumed.

For example, if ϕ is from the linear fragment of AEvoCTL∗, that is of the form A ϕ0,
and if the source for spuriousness of T ♯ is indicated by an auxiliary individual ida whose
local state is a single boolean flag, then a simple example for ϕ′ is

A(ϕa → ϕ0) (6.41)

2in terms of LSCs (cf. Chapter 10), this strategy is related to cold conditions and their legal exit
semantics, and in particular to internal assumption treatment [97], where an LSC’s symbolic Büchi
automaton is modified such that it simply accepts all runs that don’t adhere to the environment
assumption stated within the LSC
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because in the linear fragment, prove under assumption coincides with implication.
The absence of spurious behaviour ϕa could be stated as

G σ(a) = false (6.42)

assuming that the constant ‘a’ denotes ida (when combining with QR, treated as a
singularity, cf. Section 7.4) and that the constant ‘false’ denotes the logical value 0.

In the branching fragment of EvoCTL∗, matters are seriously more complicated. We
refer to [167, 94, 182, 98] for a more elaborated discussion.

The oldest strategy to obtain characterisations of spurious counter-examples are so-
called non-interference lemmata as already proposed in [127]. They can be seen as a dual
characterisation, that is, they actually characterising good behaviour, which in particular
the ∁ individuals have to adhere to. The drawback is that these lemmata have to be
stated in a creative act and that they’ve to be proven separately, where it’s not always
clear that this prove succeeds. In [31], this issue is discussed for their particular case
study. They are even able to establish such lemmata on the abstract system with an
elaborate reasoning addressing the apparent circularity.

In the following Section 6.4.6, in addition to [127], we provide a pattern generalising
the lemmata chosen in [127].

Newer strategies are more sophisticated. On the one hand, they care more about
how to establish the validity of employed invariants. They may rely on orthogonal
techniques, like abstract interpretation, which may yield a characterisation of the legal
topologies, for instance [7]. Then any deviation from the legal topologies is a generic
source of spuriousness. Or they may actually consider the counter-example and try to
identify particular sources of spuriousness. We’ll briefly discuss this in the following
Section 6.4.6.

Non-Interference Lemmata

Firstly, there is the strategy employed in [127], namely to manually analyse obtained
counter-example, understand sources of spuriousness, and, in a creative act, hypotheti-
cally state an invariant of the system.

In [127], these invariants are called non-interference lemma, because it typically char-
acterises in which situations individuals are supposed to interact with others

“In general, such a lemma is needed whenever the state of one system com-
ponent might be corrupted by a spurious message from other components
that have been abstracted away. [125]”

Then try to prove the original property under the assumption that all participants,
including the ∁ individual(s), adhere to the assumption. A serious drawback of this
approach is that the stated invariant is a priori not proven, it is in general not known
whether it actually is an invariant. It has to be verified, too. In [127], this succeeds em-
ploying the same abstraction technique but only together with the ingenious application
of a kind of temporal induction (cf. [127]). It’s not clear to us whether this reasoning can
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be automated; possibly only by casting it into a pattern and requiring an annotation of
the model which maps parts of the model onto the pattern.

In [48, 49], we characterised and generalised the strategy (implicitly) employed in [127]
for finding non-interference lemmata. Namely the strategy is to look for instances of the
pattern

“If somebody sends something to me, then it is allowed to do so.”

The pattern is intentionally stated in a subjective way, that is, from the point of view
of a single individual. Thereby it can be imposed on the abstract system by looking
onto the individuals in the spotlight: they’re supposed to know who else is allowed to
send which message in what situations. Then without changing the information kept for
the shadows, spurious interaction of the shadows with the spotlight can be identified.
Note that individuals don’t necessarily keep track of this information in the original
ETTS but it may need additional auxiliary local state components or auxiliary links (cf.
Section 6.4.5).

For example, consider the Tomasulo algorithm [169] briefly introduced in the intro-
ductory Chapter 1. There, tagged results of functional units are returned on a bus and
reservation stations are waiting for particular tags. After DTR, the functional unit ∁
may put any tag on the bus because it doesn’t keep track on which tag it is working. To
keep the ∁ functional unit from putting spurious tags on the bus, [125] adds the lemma

“[...], at all times, if a result is returning on the pout bus, with a given tag
pout.tag, then the unit returning the result [...] must be the unit that the
indicated reservation station is waiting for [...].”

As mentioned above, the prove succeeds employing the same abstraction technique but
only together with the ingenious application of a kind of temporal induction (cf. [127]).

As another example, consider the arrival/departure procedure for the automated rail
cars system (ARCS) (cf. Chapter 10). If a car already has a link to the car handler it is
guided by, so a useful invariant is that only the guiding car handler sends the permission
to enter the station. The car handlers in the shadows don’t adhere to this invariant in
the abstract transition system, so they may trick the car into entering the station if it is
actually not yet allowed to. Taking the invariant as an assumption disregards the runs
with spurious interactions. In [178], the employed non-interference lemma is manually
established by considering the UML class diagram and assuming that the translation
from UML to ETTS is correct.

As a third example, consider the Car Platooning application. An invariant is that only
the current leader may announce a leader change. The cars in the shadows again freely
send messages, they may in particular trick a car in the spotlight to change its leader
link to any other car. Imposing the invariant as an assumption excludes this source
of spuriousness. This invariant can alternatively be stated as a structural invariant
obtained by static analysis of higher-level language definitions of ETTS as discussed in
the following paragraph.
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Orthogonally Obtained Invariants

One proposal to address the two drawbacks of the non-interference lemmata approach,
namely that there exact proposition has to be created and they’ve got to be proven
separately, is to employ orthogonal (often static) analysis of a higher-level language
definition of ETTS which yield invariant properties of the system.

This solves both problems at once, there is (at best) a set of invariants to choose from
and they’re all valid by properties of the analysis.

One approach is to employ topology invariants in form of so-called abstract clusters.
The abstract interpretation-based procedure of [7] yields for a given graph grammar a
finite, abstract description of all possibly reachable topologies. This links well to ETTS
as their transition relation can alternatively be given as a graph grammar on topologies.
Although it is in general over-approximating, that is, not each described topology need be
reachable in the original system, it still serves to characterise the definitely unreachable
topologies.

In [10], we participated in a demonstration how to employ topology invariants to
refine a DTR abstraction in the context of DCS/METT verification (cf. Chapter 10).
In order to fit into the scheme of Section 6.4.6, we give a logical characterisation of
topologies being legal. Furthermore we use that we can, as discussed in Section 6.4.4
and Chapter 10, augment the abstract transition system with auxiliary variables that
keep track of the corresponding high-level description construct and the assumed partial
concretisation of the current abstract state. If the partial concretisation contradicts the
topology invariant, then this is a possible source of spuriousness which can be excluded.

In [10], a suitable subset of the topology invariant is manually chosen, so in its simplest
form, this approach is similar to non-interference lemmata, with the difference that the
validity of invariants is given. It discusses different ideas to further automatisation.
The weakest one is to vary the precision of the topology analysis and make the whole
procedure counter-example driven. That is, whenever an abstract counter-example T ♯

is obtained, a more precise topology invariant is tried, which may or may not exclude T ♯

. A more elaborate approach would be counter-example guided. It would check whether
T ♯ adheres to the topology invariant and, if not, identify the violated abstract clusters.
Then only these abstract clusters would be employed in the next iteration as indicators
for spuriousness, and ϕ′ (see above) would refer to this spuriousness indicator.

The main criticism on [10] is that disregards temporal aspects. As it employs a collect-
ing semantics, a topology invariant in the sense of [7] is a finite, abstract characterisation
of all possibly reachable topologies, but it yields no information on temporal ordering of
topologies, for example, which ones are reachable from which other ones. Furthermore,
it is as such not driven by a counter-example, but completely separate. To this end,
[166] proposes to analyse the higher-level description for dependencies between message
sendings, in particular orders of messages exchanged between an individual and partic-
ular partners known via links. Then an augmentation in the sense of Section 6.4.5 with
auxiliary, finite counters allows to identify and exclude violations of such communication
invariants. For even more elaborate approaches we refer to [167].
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Figure 6.3.: Abstraction of set-valued links.

6.5. Treating ETTS with Unbounded Link

While studying ETTS with the single-link property is relevant and difficult, an un-
bounded number of links remains a serious issue. For example, when designing the Car
Platooning application, one doesn’t want to think about upper bounds on the size of
platoons, although in the final implementation there will be such a bound.

Recall from Section 4.5.4 the discussion of quantification over links (cf. Figure 6.3(a))
like

G ((∀x : T .⊚(x) ∧ switch(x)→ p(x)) =⇒ X q(y)) (6.43)

(if all switches in the system (not of a particular track) are set, then something happens).
In case the link is not bounded, we again apply abstraction.

Figure 6.3(a) depicts a track with a set of n switches, where switches may arbitrarily
be removed or added. Conceptionally, we can view this set as an unbounded array as
shown in Figure 6.3(b), possibly indicating unused entries by a designated identity id0.
Still, identities of switches may arbitrarily be removed or added. Now we can apply to
the index type of this array another data-type reduction. That is, we can choose any
subset of array indices, add an element ⊤, and define what it means to access the array
at ⊤. By default, this should yield an over-approximation of a switch.

What we obtain is principally a link set with a finite upper bound, that is, we enter
the scope of Section ??.

But this has to be applied with care as it is possibly unsound. Whenever the model
behaviour depends on the number of elements in a link, then this has to be taken into
account. For example, if individuals can count the number of tracks and base their
choices on that number. And one has to be aware that counting may be indirect. One
may send messages to all linked individuals and they may send messages on, and the
recipient may count, etc.. This is possibly treatable by fairness, i.e. iterate as long as
one wants but finally terminate.

For example, there may be iterators in the high-level language (cf. Chapter 9) and a
transition program iterates over all elements in the link and collects the sum of some
component of the local state. If this happens in zero-time, that is, in one step of the
system, then we can treat it, but we explicitly have to treat it. The situation is then
similar to logical “reduce” operations, which have already been treated by [89] and, by
being based on that work, by [127].
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A new example in our setting of Chapters 9 and 10 is given when we send each linked
individual an event. If each receiver keeps his event, it’s fine, if they pass it on to someone
who’s counting, we may be lost. In particular if we do refinement, in particular if that’s
got to do with counting events, we’ve got to take care to only count a “minimum”, we
can’t count exactly then.

In Chapter 9 we also address the case with iteration taking multiple step. Then we’ve
got to take care that iteration may take any number of rounds, but not loop forever.

6.6. Discussion

In this section, we shall discuss the following question. Firstly, how this chapter relates to
[127], whether we possibly gained something. Secondly, how does it classify in the notions
of data and control abstraction, and to some amount also why it is labelled compositional
verification in [127]. And thirdly, how does it compare to other abstractions addressing
dynamic topologies, in particular in terms of precision and reflection.

6.6.1. Relation to the Original Definition

Firstly, our definition of DTR is meant to be exactly the one of [124, 127]. A difference is
the form. The original definition applies to the rather technical level of array programs,
thus is rather comparable to our presentation in Chapter 9.

For this reason, it also doesn’t have explicit notions of topologies, individuals, links,
or evolution. The effects in terms of these concepts are thus only implicitly given by
considering their encoding in array programs. Our choice for the presentation is the
other way round. We firstly discuss DTR in the setting of ETTS, and then discuss an
encoding in array programs.

What we gain from the description in terms of ETTS is that we get a good un-
derstanding of what is preserved and what is lost in the abstraction, and why certain
properties can be proven on the abstract system. One intuition is the spotlight view,
that a set of individuals is kept precise and surrounded by a rather hostile environment.
From this conclusion we understand why the syntactical construction of the abstraction
in Chapter 9 is possible, namely because no state information is kept for the “other”
individual representing all individuals in the shadows. It is not necessary to have an
abstract transition relation based on different abstract states of this representation of
others, like in, for instance the shape analyses (see below).

In a second step, this understanding supports improvements and refinements of the
DTR abstraction, e.g. in [167]. If it is desired to preserve the efficient computability
of the abstract system, then additional information about the non-concrete individuals
has to rest with the concrete ones, that is, added to their local state. The whole system
state is and has to be viewed from the perspective or through the eyes of the concrete
individuals. This has in a form already been employed in [127], now we can tell why this
is the most reasonable choice.

And of course we establish that this abstraction is suitable for a setting of higher level
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M |=? ϕ ✓

Mα |=? ϕα
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(a) Procedure of [96].
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D(M) |=?
M♯ ϕ

✓

✗
(b) DTR.

Figure 6.4.: Data Abstraction and DTR.

concepts like topologies, individuals, life-cycles, and evolution, while the original discus-
sion is targeted at parameterised systems and indexed temporal logic (cf. Chapter 4).

6.6.2. Data and Control Abstraction

In [96], the abstractions employed in formal verification of reactive systems are gener-
alised and separated into two categories, namely data and control abstraction. We’ll
briefly discuss how DTR classifies according to these two categories, a discussion which
is also supported by our different presentation of DTR (see previous section).

According to [96], verification by data abstraction summarises as follows (cf. Fig-
ure 6.4(a)).

1. devise a (finitary) abstraction mapping α to abstract the concrete transition system
M into a (finite) abstract one Mα by an exists/exists abstraction (cf. Chapter 5),

2. abstract the concrete temporal logic property ϕ into a (finitary) abstract temporal
property ϕα,3

3. verify M ♯ |= ψ♯,

4. infer M |= ψ in the affirmative case.

Here, an abstraction mapping is a function

α : S(M)→ Sα (6.44)

mapping concrete states from S(M) to a set of abstract states Sα. Such an abstraction
mapping is called finitary, if Sα is finite. Note that the transformation of the formula
to ϕα is determined by Sα, and thus by α.

Following [96], an implementation of this general strategy, that is, a recipe for defining
the abstract transition system M ♯ and the abstract temporal formula ψ♯, is called a data
abstraction method. A data abstraction method is said to be safe (or sound), if for
every transition system M , temporal property ψ, and abstraction mapping α, Mα |= ϕα

implies M |= ϕ.

3for this general discussion, it is again not relevant, which temporal logic we consider. For a concrete
instance, one may consider Linear Temporal Logic (LTL), which is used in [96].
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Figure 6.5.: Counter Abstraction.

In these terms, DTR can technically be seen as a data abstraction method if we
consider topologies to be data and the application of a DTR to an ETTS as the mapping.

Then only concerning the temporal property our approach seems different than pro-
posed by [96] in that we aim to leave the formula as such unchanged, but change the
interpretation in form of an abstract structure. In Chapter 9 we’ll see that this can
technically be achieved as an (indirect) transformation of the functional terms.

Verification by control abstraction applies to modular system. Single modules are
checked in the context of abstractions of their environment, which includes the other
modules.

As we’ll see much clearer in Chapter 9, the DTR approach fits better into this scheme
because we set the individuals from the spotlight into an abstraction of the environment
consisting of all other individuals. In this view, the structure of topologies is considered.
This alternative view of [124, 127] is also given in [144].

Data abstraction would then rather refer to an abstraction of the local state per
individual. Note that is well covered by our definition of embedding in Chapter 5, which
doesn’t assume that the embedding is either to the precise concrete local state of the
top element. This is a characteristic of DTR only.

6.6.3. Summarising Abstractions

There is a whole group of abstractions for parameterised systems or dynamic topologies
which can be called summarising. The underlying idea is to only keep track of how many
individuals are in a certain state, instead of considering all concrete states. With a finite
cutoff, that is, with a finite number c which indicates that there are more than c such
individuals, one can also represent infinite structures.

In the following, we recall the groups of counter abstraction variants and shape ab-
stractions for data structures, and state how DTR relates to these approaches. The
most prominent difference is the absence of identity blurring in DTR, so identity blur-
ring obtains an own paragraph below. For a more formal and more extensive discussion
we refer to our joint work [174].

Counter Abstraction

The most prominent approach is counter-abstraction [119, 149, 71, 146] known from the
domain of parameterised systems in the sense of Section 3.7.1.

For example, if each process has as local state a label from a finite set, i.e. Σ = {a, b, c},
then Figure 6.5(a) shows a snapshot of a parameterised systems with two processes in
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state a and one in state b. The links of the full interconnection (cf. Section 3.7.1) are
omitted.

Figure 6.5(b) shows an abstract topology with cutoff c = 2, that is, the labels indicate
that this abstract topology represents a concrete one with on process in state b and two
in state a. With cutoff c = 1, the exact number of individuals in state a is already lost
(cf. Figure 6.5(c)). Note that this concretisation relation does not refer to identities,
that is, it doesn’t tell which process is in which state. We’ll get back to this issue under
the name of identity blurring [173] in a dedicated paragraph below.

Translating into our terms, the abstract topologies employ the local states as (finite
set of) identities U ♯ = Σ labelled with

Σ♯ = Σ× {1, . . . , c,> c}. (6.45)

The embedding function is basically f(u) = σ(u) with appropriate counting.

The DTR abstraction can be viewed as a counter abstraction, yet with a very uncom-
mon cutoff counter. Namely, it only considers the two counter values 0, 1 and > 0, the
former ones for the individuals in the spotlight and the latter for the representatives of
the shadows. In difference to counter abstractions, the DTR counting takes into account
the identity, thus a particular combination of local state and identity is either alive or
not (0 or 1) and the extension of the shadows is not traced (always > 0). This is the
reason why DTR is not identity blurring.

An interesting extension of counter abstraction is the environment abstraction of [35],
which in addition keeps track of the relation between a certain set of processes in a
kind of spotlight and their environment. They assume shared variables of continuous
domain and only have operators for comparison of these variables in their description
language so it is sufficient to recall how variables in the focused individuals relate to the
environment.

Canonical Abstraction for Shapes

The idea of the abstractions employed for shape analysis in the sense of Section 3.7.4 is
in a sense similar to counter abstraction. Global states (or: topologies) are represented
by logical structures of finitely many unary and binary predicates. In the canonical
abstraction approach of [155], a subset of the unary predicates on individuals, called
abstraction predicates, define an equivalence relation on individuals. Two individuals
are equivalent if and only if they’re undistinguishable by the abstraction predicates.

The set of individuals in the abstract topology is basically determined by the val-
uations of the abstraction predicates. A notion of counting comes into play as it is
distinguished, technically by an additional “is a summary” predicate, whether an indi-
vidual represents exactly one or strictly more than one individual. Other predicates,
in particular binary ones indicating relations between individuals obtain a most precise
abstract interpretation, which can be 1/2 (unknown) if the summarised concrete indi-
viduals have different valuations. Precision can be gained by employing a second set of
predicates, called instrumentation predicates, which can be expressed in terms of others,
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but get more precise if their value in the abstraction is computed on the concretisation
instead of from the (possibly less precise) values of the defining predicates in the abstract
topology.

In has in particular shown how to state DTR in the framework of canonical abstraction
in the joint work [174], which originates in [173].

Links are encoded as binary predicates in the computational model of [155] (cf. Chap-
ters 3 and 4), and thus they’re naturally abstracted along yielding a notion of “half
edges” corresponding to the binary link predicate evaluating to the third truth value
1/2. Intuitively, presence of a half-edges between summary nodes means “at least one
individual from the source summary has a link to an individual at the destination sum-
mary”, while a one-edge means “all individuals from here have a link to every one at the
other end”, and zero-edges mean absence of any links (of this name) between individuals
represented by both summaries.

In the setting of DTR, summarising of edges takes place only with the links originating
at the shadows. In terms of canonical abstraction, there is a half-edge between each ∁
node and any other node in the topology. So DTR use only a very limited amount of
the capabilities of Chapter 5, which are far less uniform and elegant than in canonical
abstraction. For example in the explicit modification of the link navigation functions
(cf. Def. 3.2.1) which has a good and a bad aspect.

This principle has been primarily applied to all kinds of data-structures on a dynamic
heap [155], like single or doubly-linked lists, or trees, and in more explicit variants using a
tool operating on three-valued logical structures [115], and symbolically [180, 148, 181].
As noted in Section 3.7.4, the aim of these usages are not temporal properties, but
invariants (or safety properties), i.e. the fragment of EvoCTL∗ G t where t is a term,
identity blurring doesn’t hurt in this case.

A particular advantage of the pre-abstraction into predicates is that these predicates
already indicate all possibly relevant parts of the system, while abstraction predicates
choose the relevant aspects for a given property. These predicates furthermore provide
best starting points for refinement of the abstraction. On the other hand, a good choice
of these predicates is said to be kind of a “black art” requiring particular experience.
This choice is not necessary in the QR/DTR approach.

In [192], the technique is applied to establish safety properties of concurrent Java pro-
grams. It tries to overcome the identity blurring problem by principles exactly matching
that of the DTR/QR combination of [124, 127], interestingly without appreciating this
relation. The procedure is to, in a sense, partially re-introducing identities as an aug-
mentation of certain processes. Then the canonical abstraction doesn’t summarise the
augmented processes, if the augmentation is part of the abstraction predicates.

The ideas underlying the refinement language proposed in [192] again exactly match
the DTR/QR refinement approach to the extent it is present in [124, 127]. In addition,
there is few discussion of the applicability and limits of case-splits in comparison to
our Section 6.4 and Chapter 4.

In [191, 190], the technique is finally applied to liveness properties of concurrent Java
programs. Interestingly, it summarises on two levels: individuals per topology and whole
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topologies in abstract traces. The procedure is to compute a finite set of abstract com-
putation paths, in a sense shapes of computation paths, which are in turn sequences of
abstract topologies. Formulae of VTL/ETL, which is clearly an ancestor of EvoCTL∗,
are then evaluated on abstract traces. It explicitly keeps track of evolution similar to
our evolution relation from Chapter 3, which is actually inspired from there as discussed
in Section 3.7. Yet it is not free from the danger of identity blurring as multiple indi-
viduals may evolve into and from a single summary node (cf. Figure 3.6 in Section 3.4).
Furthermore, summarising of states in computation paths is likely to destroy liveness,
in particular local liveness, properties.

The partner abstraction of [7, 12] generalises the canonical abstraction of [155] to
also consider binary predicates as abstraction predicates, also abstracting in two steps,
and explicitly addresses the class of Evolving Topology Systems modelled with labelled
graphs. Although it elaborately introduces a variant of first-order temporal logic, the
discussion is immediately focused on the fragment of invariants to match the capabilities
of the analysis. The analysis computes a finite abstract description of all reachable
topologies in terms of individuals and their direct neighbours, their partners.

In the literature, the capabilities of partner abstraction, in particular wrt. dynamic
creation and destruction is compared to [49, 48], a presentation of early results of this
work concealed in terms of UML and LSC (cf. Chapter 10), as

“[...reminding] only vaguely of the setting in this thesis.” ([7], p. 133)

Actually compared to DTR, there are clearly many connection points that are less vague
than the author of [7] admits. For instance, the DTR/QR approach is of course able to
establish some of the properties obtained via partner abstraction. In our opinion, there is
no need to deny this connection. Partner abstraction keeps far more precise information
on the environment of processes and yields, in form of the abstract cluster far more than
a simple yes/no answer, as, for instance, pointed out in the joint work [8]. On the other
hand, it also suffers from identity blurring and only applies to safety properties.

As outlined in Section 6.4, the procedure is one highly relevant way to add precision
to DTR (cf. the joint work [10]).

Identity Blurring

Identity blur is a name first appearing in [173]. It refers to the property of, for example
counter abstraction, that it doesn’t explicitly keep track of identities. Recall from the
paragraph on counter abstraction above that an abstract state may say that there are
two individuals in state a and one in state b. Now if there is a transition to an abstract
state with two individuals in state b and one in state a, we can in general not tell which
individual took a local transition. It could be that only one of the a’s took a local
transition to b, it could be that each individual took a local transition. So we cannot,
for example, establish properties as shown in Figure 6.6.

That is, the counter abstraction is able to reflect global properties like mutual exclusion
but in general not scenarios (cf. Chapter 10) where one is interested in the fate of
particular individuals.
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a

a a

id1

id2

id3

a

b a

b

b a

a

b a

b

a a

a

a a

a : 3 a : 2 a : 1 a : 2 a : 3
b : 0 b : 1 b : 2 b : 1 b : 0

Figure 6.6.: Identity Blurring with counter abstraction. Counter abstraction is safe, but in
general loses properties like “each individual is for at most two steps in state b”
which is the case in this model but in the abstraction there is a sequence of three
states with b different from 0.

In some cases, this can be implicitly concluded. For example, in a strict interleaving
semantics with one local transition per global system step, one can identify who took
the transition.

Similarly, shape analysis of list programs is not interested in which memory cell leaks;
it doesn’t care if the heap management re-arranges the heap (consistently) in each system
step, it only cares about whether there is a memory leak, which is often reflected by that
abstraction. Notably, [192] is not affected by blurring (as is our encoding of DTR in [174])
because there are discriminating unary predicates, which explicitly denote an identity.

This is a problem of most graph-based approaches and also of the attempts to establish
verification for the π calculus, whose notion of structural equivalence neglects identities
(cf. Chapter 3).

Getting back to the properties, note that global properties like mutual exclusion or
leader election are easily lost with DTR. The latter is clear because it comprises an
existential quantification, the former is typically spoiled by the abstracted others which
simply don’t keep track whether they’re allowed to enter the critical section. Yet with
suitable refinements it may be possible to approximate the property by reducing it to
the local property of two individuals.
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The name Query Reduction (QR) has been coined by [185] for the kind of symmetry
reduction employed in [124, 127]. As discussed in more detail in Chapter 8 on the
combination of QR and DTR, the main difference between the classical approach aiming
at a quotient-model by the equivalence relation induced by symmetry [89, 62] and QR is
that the latter reduces the number of cases. It proves a finite set of representative cases,
which are representative because any other case in the system is symmetric to one of
these.

The benefit of the latter is that there are far less rigid restrictions on the considered
temporal properties. Most quotient-based approaches suffer from the identity blurring
problem discussed in Section 6.6.3, that is, the properties have to be symmetric them-
selves, which is a serious restriction because this is not the case for the scenarios discussed
in Chapter 10. More recent developments are surveyed in [134].

Both approaches share a common theory of symmetry, which we recall minimally in
Section 7.1. In Section 7.2 we define a notion of an ETTS being symmetric in identities,
which is a special case of symmetry in scalarset types [89]. This instantiates [124, 127]
in our context of EvoCTL∗ and ETTS.

In Section 7.4, we revisit the discussion of treating singularities, now from the per-
spective of the property to be verified. Section 7.5 discusses how QR interacts with
a particular optimisation employed in the verification of Dynamic Topology Systems,
namely crystallisation [158, 159].

7.1. Symmetry Theory

7.1.1. Automorphism

An automorphism is in general a structure preserving mapping, in case of transition
systems, it is the following.

Definition 7.1.1 (Automorphism). Let M = (S, S0 , R) be a transition system.
A function a : S → S is called automorphism of M if and only if

1. a is bijective,

2. s ∈ S0 if and only if a(s) ∈ S0, and

3. (s, s′) ∈ R if and only if (a(s), a(s′)) ∈ R. ♦

Note that this definition is not standard, for example the variant of [89] is already
different, fitted for the employed computational model.
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An automorphism can be seen as structural symmetry of M . It points out similar
parts of the transition graph, when viewing states as nodes and transitions as edges, by
mapping them onto each other. It is not (yet) useful as it disregards state labellings.

Example 7.1.2. Given a transition system M , the identity function on S(id), i.e.
idS(M), is the trivial automorphism of M . ♦

For completeness, and for better synchronisation with works on the classical, quotient-
based symmetry reduction, we give the following notes. They are strictly speaking not
necessary for our discussion because we don’t employ the quotient-based approach (cf.
comparison in Chapter 8).

Note 7.1.3 (Automorphism Group [89]). If A is a set of automorphisms of a transition
system M , then G(A), the closure of A ∪ {id} under inverse and function composition,
is a group as these operations preserve the automorphism property. ♦

The following note is useful in our later proofs.

Note 7.1.4. Let M be a transition system and A ⊇ {id} be a set of functions a :
S(M)→ S(M) which comprises for each function a its inverse a−1.

Then it is sufficient to show implication in 2 and 3 of Def. 7.1.1 to establish that A
are automorphisms of M , i.e.

∀ a ∈ A : a bijective ∧ (∀ s ∈ S0(M) : a(s) ∈ S0(M))

∧ (∀ (s, s′) ∈ R(M) : (a(s), a(s′)) ∈ R(M))
(7.1)

implies that A is an automorphism group, that is, that each a ∈ A is an automorphism
of M . ♦

Proof. Given a ∈ A, we can use (7.1) for the inverse a−1 to establish the equivalences in
Def. 7.1.1.

7.1.2. Permutation

The name permutation is typically reserved for bijective functions on a finite set. As it
is so common in the context of combinatorics, we widen the notion of permutation to
infinite sets because the set of identities Id, the target of our permutations, is not finite.

Definition 7.1.5 (Permutation). Let M = (S, S0 , R,L, e) be an ETTS over identities
Id = Id1 ∪̇ . . . ∪̇ Idn.

We call a bijection p : Id → Id on Id a (partitioning consistent) permutation of Id if
and only if p|Idi

is a bijection on Idi, 1 ≤ i ≤ n.
The set of all (partitioning consistent) permutations of Id is denoted by perm(Id). ♦

Note that, when writing perm(Id), we don’t indicate with which partitioning of Id the
permutations in perm(Id) are supposed to be consistent.
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id1

id2
id3

G

σ1

σ2
σ3

p
 

p(id1)

p(id2) p(id3)

p(G)

σ1

σ2
σ3

Figure 7.1.: Individuals under permutation. Permutation doesn’t change the extension of
a topology, that is, it doesn’t add or remove individuals, it only changes the set of
identities that are alive.

For the moment, we only consider the partitioning corresponding to types. In later
sections we’ll see that the definitions and results are actually independent from the
partitioning. This observation will allow us to treat singularities in the set of identities
in Section 7.4.

Definition 7.1.6 (p-Permuted Topology). Given a topology G over Id and p a partition-
ing consistent permutation of Id, the p-permuted topology, denoted by p(G), is defined
as

1. eqId(p(G)) = {(u1, u2) 7→ eqId(G)(p−1(u1), p
−1(u2)) | u1, u2 ∈ Id},

2. U⊚(p(G)) := p(U⊚(G)),

3. U 6⊚(p(G)) := p(U 6⊚(G)),

4. σ(p(G)) := {u 7→ σ(G)(p−1(u)) | p−1(u) ∈ dom(σ(G))},

5. L(p(G)) := L(G),

6. λ(p(G)) := λ(G),

7. ψ(p(G)) := {ℓ 7→ (p−1(u1), p
−1(u2)) | L(G)(ℓ) = (u1, u2), ℓ ∈ L(G)},

8. 
p(G)
λ := {u 7→ G

λ (p−1(u)) | u ∈ U},

with point-wise application to multi-set values in case 8., if multi-sets are used for G. ♦

Note that additional cases other than multi-set may occur, in particular due to the
DTR, in the abstraction. But it needn’t be discussed here because the DTR is supposed
to be applied only after QR, in particular because the result of DTR is certainly no
longer symmetric in identities (see below and Chapter 9).

The following note records the observation that permutation doesn’t change the set
of individuals as defined by the local state function (cf. Figure 7.1).

Note 7.1.7. Let G be a topology over Id and p a partitioning consistent permutation of
Id. Then the local state function of p(G) is defined exactly on the permutation of the set
of (alive) individuals according to the local state function of topology G, i.e.

dom(σ(p(G))) = p(dom(σ(G))). (7.2)

♦
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Proof. Def. 7.1.6.4.

Definition 7.1.8 (p-Permutation of Evolution Chains). Let δ be a (finite or infinite)
evolution chain and p a partitioning consistent permutation of Id. Then p(δ), the p-
permutation of δ, is defined point-wise as

p(δ) := p(δ(0)), p(δ(1)), . . . (7.3)

♦

That is, if we consider identities to be additional labels of nodes, instead of being the
nodes itself, then applying a permutation of identities to a topology merely re-labels the
nodes according to the permutation.

7.1.3. Permutation and Terms

Definition 7.1.9 (Symmetric Structure). Let S be a signature and M an ETTS over
Id compatible with S. Let V ⊆ V(S) be a set of logical variables and M a canonical
structure of S wrt. M .

The structure M is called symmetric in identities if and only if the interpretations of
functions do not depend on particular identities, but only work qualitatively on identities,
that is, if for any partitioning consistent permutation p of Id,

p̃(ι(f)(d1, . . . , dk)) = ι(f)(p̃(d1), . . . , p̃(dk)) (7.4)

for each function symbol f of arity k and values di from the corresponding semantical
domain.

For notational convenience, we use p̃ defined as follows

p̃(d) =







p(d) , if d is of identity or evolution chain type

p(d) , if d is of type L

d , otherwise

(7.5)

where the middle case denotes the point-wise application of p to the given multi-set. ♦

Definition 7.1.10 (p-Permutation of Assignments). Let S be a signature and M an
ETTS over Id compatible with S. Let V ⊆ V(S) be a set of logical variables and M a
canonical structure of S wrt. M .

Given an assignment θ of V in M and a partitioning consistent permutation p of Id,
the p-permuted assignment, denoted by p(θ), is defined as

p(θ)(v) :=

{

p(θ(x)) , if v = x ∈ VT

p(θ(xxx))(0), p(θ(xxx))(1), . . . , if v = xxx ∈ VTTT ,
(7.6)

that is, the permutation of evolution chains is defined by point-wise application of p as
above. ♦
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Note 7.1.11. Under the premises of Definition 7.1.10, p(θ) is a type-consistent assign-
ment. ♦

Lemma 7.1.12 (Terms and Symmetry). Let S be a signature, G a S-compatible topology
over Id, and M a structure which is canonical wrt. G and symmetric in identities.

Let t be a term over S. Then for each partitioning consistent permutation p of Id
and each assignment θ ∈ AssignM(Free(t)) of the free variables of t the valuation of t is
compatible with permutation, i.e.

p̃(ιJtK(G, θ)) = ιJtK(p(G), p(θ)). (7.7)

with p̃ as introduced in Def. 7.1.9. ♦

Proof. See Section A.3.

Corollary 7.1.13 (Boolean Terms and Symmetry). Let S be a signature, G a S-
compatible topology over Id, andM a structure which is canonical wrt. G and symmetric
in identities.

Given a boolean term t over S, we have

∀ θ ∈ AssignM(Free(ϕ)) ιJtK(G, θ) = ιJtK(p(G), p(θ)) (7.8)

for each partitioning consistent permuation p of Id.

Proof. By Def. 7.1.9, i.e. by definition of p̃.

7.2. AEvoCTL∗ and Symmetry in Identities

Definition 7.2.1 (Symmetric in Identities). An ETTS M over Id is called symmetric
in identities if and only if

1. labels discriminate states, that is, given two states s1, s2 ∈ S, we have L (s1) =
L (s2) only if s1 = s2,

2. for each partitioning consistent permutation p of Id, the function ap : S → S
induced by p which maps each state s ∈ S to the state s′ ∈ S which is labelled with
the p-permutation of the label of s, i.e. such that

L (s′) = p(L (s)), (7.9)

is well-defined and

a) an automorphism on the transition system core of M and
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b) consistent with evolution, that is,

u
(s,s′)
 e u

′ (7.10)

if and only if

p(u)
(ap(s),ap(s′))

 e p(u
′). (7.11)

♦

Note that the discrimination property is necessary for ap to be well-defined..

The requirement on e is necessary, as an individual may disappear for its particular
identity in one half of the transition system while another individual remains alive in a
different half.

Checking whether an ETTS is symmetric in identities is already hard for finite sys-
tems [33], and expected to be undecidable in the more general case. To this end, we will
focus on ETTS which are symmetric in identities by construction (cf. Chapter 9).

Lemma 7.2.2 (Symmetric Paths in Symmetric ETTS). Let S be a signature, M a S-
compatible ETTS over Id which is symmetric in identities. Let s ∈ S(M) be a state of
M , u ∈ U(s) an individual in s, and p a partitioning consistent permutation of Id.

Then for each path π from s in M and each evolution chain δ of u along π, the
p-permuted path

p(π) := p(π0), p(π1), . . . (7.12)

is a path from p(s) in M and the p-permuted evolution chain

p(δ) := p(δ(0)), p(δ(1)), . . . (7.13)

is an evolution chain of p(u) along p(π), i.e.

∀π ∈ Πs(M), δ ∈ ∆(u, π) : p(π) ∈ Πp(s)(M) ∧ p(δ) ∈ ∆(p(u), p(π)). (7.14)

Proof. Let π ∈ Πs(M) and δ ∈ ∆(u, π). Then p(π) is in Πp(s)(M) because ap is an

automorphism of M by Def. 7.2.1.2a and p(δ) is an evolution chain along p(π) because
ap is consistent with evolution by Def. 7.2.1.2b as M is symmetric in identities.

The previous Lemma states that in any ETTS M which is symmetric in identities, for
each path π in M and each consistent permutation p, the permuted path p(π) is also a
computation path in M . In other words: if there is a path leading to a state where an
invidual u1 is in local state σ, then there is also a path in M leading to a state where
individual u2 is in local state σ.

That is, scenarios, in particular errors, do not depend on the identity; if individual u
satisfies a property, then any other individual does, and if individual u runs into error,
then any other individual does.
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Note 7.2.3 (Symmetric Paths and Assignments). Let S be a signature, M a S-compatible
ETTS over Id, andM a structure canonical wrt. M such that M andM are symmetric
in identities. Let π be a computation path in M and θ an assignment of some logical
variables from S in M along π.

A partitioning consistent permutation p of Id is compatible with finite evolution, i.e.

∀ k ∈ N0 : ε ∈ θ/k ⇐⇒ ε ∈ p(θ)/k. (7.15)

♦

Proof. As M is symmetric in identities, evolution is consistent. That is, permutation of
the assignment θ lets individuals disappear neither earlier nor later.

Lemma 7.2.4 (AEvoCTL∗ and Symmetry). Let S be a signature, M a S-compatible
ETTS over Id, andM a structure canonical wrt. M such that M andM are symmetric
in identities.

Let ϕ be an EvoCTL∗ formula over S in negative normal form. Then

∀ θ ∈ AssignM(Free(ϕ)) :MJϕK(s, θ) =MJϕK(p(s), p(θ)) (7.16)

and

∀ θ ∈ AssignM(Free(ϕ)) :MJϕK(π, θ) =MJϕK(p(π), p(θ)) (7.17)

for states s ∈ S(M) and paths π in M and any partition consistent permutation p. ♦

Proof. See Section A.3.

Theorem 7.2.5 (AEvoCTL∗ and Symmetry). Let S be a signature, M a S-compatible
ETTS over Id, andM a structure canonical wrt. M such that M andM are symmetric
in identities.

Then for every EvoCTL∗ formula ϕ over S, s ∈ S(M) a state of M , θ an assignment
of the free variables of ϕ, and each partitioning consistent permuation p of Id, we have

M,s, θ |= ϕ ⇐⇒ M,s, p(θ) |= ϕ (7.18)

and

M,s, θ 6|= ϕ ⇐⇒ M,s, p(θ) 6|= ϕ. (7.19)

♦

Proof. Lemma 7.2.4.
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7.3. Query Reduction Theorem

Definition 7.3.1 (Assignment Basis). Let S be a signature, G a S-compatible topology
over Id, and M a canonical structure wrt. G.

Let V ⊆ V(S) be a set of logical variables. A (possibly infinite) set

Θ ⊆ AssignM(V ) (7.20)

of assignments of V in M is called assignment basis of V if and only if each possible
assignment of V in M is a p-permutation of an assignment from Θ, that is, if

∀ θ ∈ AssignM(V ) ∃ θ0 ∈ Θ, p ∈ perm(Id) : θ = p(θ0). (7.21)

An assignment basis is called finite if and only if the set Θ is finite. ♦

Lemma 7.3.2 (Finite Assignment Basis (Strict)). Let S be a signature, G a S-compatible
topology over Id = Id1 ∪̇ . . . ∪̇ Idn partitioned according to types in S, and let M be a
canonical structure wrt. G.

Let V ⊆ VT be a finite set of identity variables of the same type. Then there exists a
finite assignment basis of V . ♦

Proof. See Section A.3.

Example 7.3.3. Let V = {x, y} be a set of logical identity variables and assume the
identities are taken from the natural numbers, i.e. Id = N

+.
Then

Θ = {θ1, θ2}, θ1 = {x 7→ 1, y 7→ 1}, θ2 = {x 7→ 1, y 7→ 2} (7.22)

is an assignment basis of V because given any assignment

θ = {x 7→ id1, y 7→ id2} (7.23)

of V , we can distinguish two cases:

• either id1 = id2, then θ = p(θ1) with p = {id1 7→ 1, 1 7→ id1}

• or id1 6= id2, then θ = p(θ2) with p = {id1 7→ 1, id2 7→ 2, 1 7→ id1, 2 7→ id2}. ♦

Note that the assignment basis constructed in the proof of Lemma 7.3.2 is not minimal.
Not all of the assignments are actually used. For example, if identities are natural
numbers, i.e. Id = N

+ and we consider three logical variables, i.e. V = {x1, x2, x3}, then
Θ comprises

{x1 7→ 1, x2 7→ 1, x3 7→ 2} (7.24)

as well as
{x1 7→ 1, x2 7→ 1, x3 7→ 3}. (7.25)

These two are equivalent under the criterion that the first two variables x1 and x2 map
to the same identity and x3 to a different one.
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The source of redundancy is that the usage of identities is not tight in the sense that
a larger identity is used (here “3”) even if there is a smaller identity (here “2”) which
would serve the same purpose. As identities are in general not ordered, we can apply
this argument to the indices of employed identities. We shall not use an identity id0i

if
there is an unused id0j

with j < i available. This gives rise to the following lemma.

Lemma 7.3.4 (Minimal Finite Assignment Basis (Strict)). Let S be a signature, G an
S-compatible topology over Id = Id1 ∪̇ . . . ∪̇ Idn partitioned according to types in S, and
let M be a canonical structure wrt. G.

Let V ⊆ VT be a finite set of n ∈ N0 identity variables of the same type and let
id01

, . . . , id0n be n different identities from the corresponding domain. Then Θ := Θn,
recursively defined by

Θ0 := {∅} (7.26)

Θk+1 := {θ ∪ {xk+1 7→ id01
}, . . . , θ ∪ {xk+1 7→ id0k+1

} | θ ∈ Θk} (7.27)

\ {θ ∪ {xk+1 7→ id0i
} | id0i−1

/∈ ran(θ)},

is a minimal finite assignment basis of V . ♦

Proof. See Section A.3.

The impact of Lemma 7.3.4 is only visible for n > 2. For example, with n = 4, there
are already more than (n − 1)! − 1 redundant cases, namely all but the last row of the
following table:

x1 x2 x3 x4

1 1 1 4
1 2 1 4
1 1 2 4
1 2 2 4
1 1 3 4
1 2 3 4

The exact size of the minimal finite assignment basis is currently unclear, but we con-
jecture that it remains in the order of O(n!). Yet we will see in the following sections
that each removed redundant case saves a (possibly costly) model checking task, thus
removal is worthwhile.

Corollary 7.3.5 (Minimal Finite Assignment Basis of Multiple Types). Let S be a
signature, G a S-compatible topology over Id, and M a canonical structure wrt. G.

Let V ⊆ VT be a finite set of identity variables (of possibly different types). Then
there exists a minimal finite assignment basis of V . ♦

Proof. See Section A.3.

Now we have sufficient instruments to observe that for ETTS which are symmetric in
identities, it is sufficient to prove finitely many representative cases in order to verify a
formula in prenex normal form; as we’ll only use that later, we consider only universal
quantification.
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Theorem 7.3.6 (Query Reduction). Let S be a signature, M a S-compatible ETTS
over Id = Id1 ∪̇ . . . ∪̇ Idn, and M a structure canonical wrt. M such that M and M
are symmetric in identities. Let ϕ be a closed EvoCTL∗ formula over S of the form

∀x1,1, . . . , x1,n1
: T1, . . . , xm,1, . . . , xm,nm : Tm . ϕ0 (7.28)

such that ϕ0 is quantifier-free and T1, . . . , Tm ∈ T (S) are different identity types.

Then M |= ϕ can be verified by verifying

M,θ |= ϕ0. (7.29)

for only finitely many assignments θ ∈ AssignM(Free(ϕ)). ♦

Proof. By definition, M |= ϕ holds if and only if M,θ |= ϕ holds for all assignments
θ ∈ AssignM(Free(ϕ)).

Let Θ be a finite assignemnt basis of Free(ϕ) which exists by Cor. 7.3.5 and assume

M,θ0 |= ϕ0 (7.30)

holds for all θ0 ∈ Θ.
As Θ is an assignment basis, for each assignment θ ∈ AssignM(Free(ϕ)) there is a

permutation p and an assignment θ0 ∈ Θ such that θ = p(θ0). By Theorem 7.2.5, we
have

M,θ |= ϕ0 ⇐⇒ M,p(θ0) |= ϕ0 ⇐⇒ M,p−1(p(θ0)) |= ϕ0 ⇐⇒ M,θ0 |= ϕ0 (7.31)

because p−1 is also a permuation. Thus M |= ϕ.

So Query Reduction is based on two ingredients: firstly, that for each finite set of
logical identity variables there is a finite assignment basis, and secondly that system and
structure are symmetric in identities, that is, we can not only by permutation reach all
possible assignments we’ve got to consider, but also conclude on the evaluation under
this assignment based on the representative case.

7.4. Treating Singularities

The previous paragraphs assumed a “clean” setting in the sense that ETTS and struc-
ture are symmetric in all identities. Yet in object-oriented programming languages,
which we’ll consider as descriptions of ETTS, there is often a notion of a special iden-
tity “NULL” to indicate unused links, that is, links who intentionally point to no other
individual are set to point to NULL. Systems employing NULL are no longer symmetric
in identities: it obviously makes a difference whether a property holds for NULL (for
which there may not even be an individual in the topologies) or for a different identity.
The reason is that NULL obtains special treatment by the semantics of object-oriented
programming languages, interaction with NULL often leads to exceptional program ter-
mination. Thus for the future of an individual it makes a difference whether it has links
to the NULL individual or to individuals with regular identities.

There are basically two ways to treat singularities such as NULL:
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M :
u

id1 s1

λ →
u

id1 s2

λ M ′ :
u

s′1

(λ, 0) →
u

s′2

(λ, 1)

Figure 7.2.: Symmetric encoding. If link λ changes to the singularity id1 in the transition
from s1 to s2 in M , then the bisimilar ETTS M ′ will encode this change by labelling
the link with (λ, 1) in s′2.
More concrete, if id1 is NULL, then u setting its λ link to NULL in M is encoded in
M ′ by marking the link as “pointing to NULL” using the new link name (λ,NULL).

1. symmetric encoding and

2. explicit, semantical treatment.

7.4.1. Symmetric Encoding

More formally, a singularity is an identity which has the effect that definitions Def. 7.1.9
and 7.2.1 are not satisfied. The most prominent source they stem from is the special
identity NULL – individuals behave differently when having a link to NULL than when
having a link to an ordinary individual, thereby breaking 7.2.1.

Furthermore, there may be a constant “NULL” in the signature denoting the spe-
cial identity. Then the interpretation of the term x = NULL depends on the value
assigned to x. we have ιJx = NULLK(G, θ) = 1 if θ maps x to the special identity and
ιJx = NULLK(G, θ) = 0 otherwise, hence we cannot freely permute thereby breaking
7.1.9.

As our aim is to faithfully model object-oriented programs, we’ve got to support such
special identities.

We call symmetric encoding a transformation of an ETTS M over identities Id with
finitely many singularities, i.e. where finitely many identities id1, . . . , idn ∈ Id obtain
a non-symmetric treatment, into a bisimilar1 ETTS M ′ over Id′ := Id \ {id1, . . . , idn}
which is symmetric in identities.

In case of only the single singularity NULL, the idea is to have M ′ use link names
from Λ× B, that is, links are not only labelled by a name but by a pair of name and a
boolean flag indicating whether the link is valid or NULL.

In general, M ′ would employ Λ × {0, 1, . . . , n}, where 0 indicates regular links and
1 ≤ i ≤ n indicates that a given link in M ′ represents a link to idi in M . Independent
from the actual terminal vertex (cf. Figure 7.2).

The resulting M ′ is bisimilar and symmetric in identities if the singular individuals
have a constant local state, outgoing links, and behaviour. Otherwise there had to be
an individual to represent that local state, outgoing links, and behaviour, which would
lead us back into the non-symmetric situation. This is obviously the case with NULL,

1the definition is straightforward, similar to our definition of simulation; we didn’t define bisimilarity
in the section on simulation because it’s only needed here
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so this case can principally be treated by a symmetric encoding following these ideas.
Being symmetric in identities has to be proven for each such transformation. Whenever
the ETTS M is defined by a given program, one possibility to verify this property is to
provide a defining program which yields M ′ and to apply the syntactic criteria of [89].

Yet we’ve only treated the model side. In order to employ this approach for EvoCTL∗

verification, the used structure would also need to be adjusted in order to interpret
the new link labels correctly. For example with NULL, a navigation expression x λ
should evaluate “undefined” if the link is actually pointing to the NULL node. Here we
see that canonical structures of non-symmetric ETTS are typically also not symmetric
in identities.

In case of NULL, obtaining a canonical structure M′ for M ′, given M and M , is
straightforward. Namely, xλ maps to the terminal vertex as seen from the individual
denoted by x if the label is (λ, 0), and is undefined in case the label is (λ, 1). The example
“NULL” has the additional nice property that it is typically not meant to be quantified,
that is, there typically is a constant NULL in the signature and a property of the form

∀x : T . ϕ0 (7.32)

has the further structure

∀x : T . (x 6= NULL)→ ϕ̃0. (7.33)

So, some cases can be treated by what we call symmetric encoding, but is has certain
serious drawbacks

• we have to devise a procedure to obtain M ′ from M ′ which ensures that M ′ is
bisimilar to M and that M ′ is symmetric in identities, and

• we have to devise a procedure to obtain canonical structures M′ wrt. M ′, whose
interpretations are sound wrt.M

We have sketched this for the case of NULL, yet in general it may become arbitrarily
intricate depending on the behaviour exhibited by the singular identities.

7.4.2. Semantical Treatment

The second approach – explicit, semantical treatment – is less awkward. It basically
weakens the definition of symmetry in identities to symmetry in a subset of identities.

For example, in case of systems with a NULL, the behaviour is still symmetric in all
other identities. Based on this observation, we can retain the definition of bases and
obtain a finite basis lemma for partial symmetry.

For example, assume the simple case of NULL as the only singularity; in order to obtain
type consistency, we’ll have one NULL identity per type, that is NULLi ∈ Idi if Id =
Id1 ∪̇ . . . ∪̇ Idn. Then we consider the sub-partitioning Idi = {NULLi} ∪̇ Idi \ {NULLi}
and generalise the definition of symmetry in identities to sub-partitions. In this case,
the system is certainly symmetric in the (singleton) partition {NULLi}, and if it is also
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symmetric in the complement, then we can apply the overall procedure in an unchanged
fashion.

Recall that in order to represent types of individuals, we assumed that the set Id of
identities is partitioned into Id1 ∪̇ . . . ∪̇ Idn. In the following we consider each of these
partitions to be further partitioned into Idi,1 ∪̇ . . . ∪̇ Idi,mi

for 1 ≤ i ≤ n with mi ∈ N
+.

Note that Def. 7.1.5 doesn’t require a particular partitioning of Id, thus it applies
verbatim to the partitioning

Id1,1 ∪̇ . . . ∪̇ Id1,m1
∪̇ . . . Idn,1 ∪̇ . . . ∪̇ Idn,mn (7.34)

Similarly, Def. 7.1.6 is independent from the partitions the permutation operates on.
Also similarly, by Def. 7.1.9 we’ll call a structure symmetric in identities if and only
if interpretations are invariant under permutations which are consistent with the finer
partitioning. Lemma 7.3.2 on finite assignment basis is the first part which explicitly
considers the partitioning corresponding to types. In the following, we extend it to
sub-partitioning.

Lemma 7.4.1 (Finite Assignment Basis (Generic)). Let S be a signature, G a S-
compatible topology over Id = Id1 ∪̇ . . . ∪̇ Idn partitioned according to types in S,
each partition Idi sub-partitioned into Idi,1 ∪̇ . . . ∪̇ Idi,mi

, m ∈ N
+, and let M be a

canonical structure wrt. G.

Let V ⊆ VT be a finite set of identity variables of the same type. Then there exists a
finite assignment basis of V . ♦

Proof. See Section A.3.

Example 7.4.2. Let V = {x, y} be a set of logical identity variables and assume the
identities are taken from the natural numbers with 0, i.e. Id = N0, where 0 is a singu-
larity.

Then

Θ = {θ1, θ2, θ3, θ4, θ5}, θ1 = {x 7→ 0, y 7→ 0}, θ2 = {x 7→ 1, y 7→ 0},

θ3 = {x 7→ 0, y 7→ 1}, θ4 = {x 7→ 1, y 7→ 1},

θ5 = {x 7→ 1, y 7→ 2}

(7.35)

is an assignment basis of V . ♦

Note that the assignment basis given in the proof of Lemma 7.4.1 is again not minimal.
We don’t elaborate on a procedure to obtain a minimal assignment basis here because in
the following, we’ll only consider singularities with only a single element. Then a minimal
assignment basis is straightforwardly obtained from a minimal assignment basis for the
strict case following Lemma 7.3.4.

Further note that Lemma 7.4.1 is tight in the sense that if we admit an infinite
sub-partitioning of identities (or: if the considered structure and ETTS only become
symmetric in identities with an infinite sub-partitioning), then there is in general no
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finite set of representative assignments. In other words: the non-symmetric part of the
considered systems have to be finite in order to apply the query reduction theorem.

Lemma 7.3.2 is a special case of Lemma 7.4.1 by considering the Idi to be sub-
partitioned into only the single partition Idi. Cor. 7.3.5 applies directly: if there are
variables of multiple types whose semantical domains are sub-partitioned, then the cross-
product of given assignment bases is taken. Having extended all prerequisites of the
Query Reduction Theorem (Theorem 7.3.6), we see that the we obtain it similarly with
the relaxed definition of being symmetric in identities.

7.4.3. Sources of Singularities

Remaining questions are where the singularities stem from and how do we obtain good
sub-partitionings.

The common case is simply knowing it, as in the case for NULL. If a high-level
language with ETTS as semantical domain (cf. Chapter 9) has a concept of NULL and
is otherwise independent from identities, then we’re in the setting discussed above.

Furthermore, if the high-level language is checked with the criteria of [89], there may
be constructs to declare parts of the description as symmetry breaking – then the syntac-
tical check succeeds, but the user has to ensure that the parts declared to be symmetry
breaking actually do preserve overall symmetry but are only not covered by the (too
strict) criteria (this is the approach of [127]). Alternatively, affected regions are candi-
dates for singularities.

Note that the syntactic criteria from [89] forbid literals (in the programming language
sense), that is, code which compares identity variables (or pointers) to literal constants.
For example in (the pseudo-code)

if (this == 0x0003) { /* A */ } else { /* B */ };

the constant 0x0003 would be a forbidden literal because the object behaves differently,
depending on its address.

By the discussion of singularities, it seems that this prerequisite is not necessary as
long as the description (the program) is finite. Then it can only comprise finitely many
literals, thus there are always only finitely many singularities which can be treated by
sub-partitioning, yielding symmetry in identities in the more generic sense. But in the
worst case, there may be too many cases to consider to be practically treatable.

It’s not clear whether this reasoning actually applies to the setting of [89]. They
possibly actually need full symmetry in order for their procedure to work. Yet some
things (like NULL) could be encoded with additional boolean variables and would pass
their checks. It does apply to our approach (cf. Chapter 8).

7.5. Crystallisation

Another reason for an ETTS not being symmetric in identities can be crystallisation.
In [158], crystallisation is used to reduce the variability in topologies by the observation
that some links need not be dynamic.
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id1,1 id1,2 id1,3

id2,1 id2,2 id2,3

(a) Individuals id1,1, id1,2, id1,3 ∈
Id1 are wholes with fixed assigned
parts id2,1, id2,2, id2,3 ∈ Id2.

id1,1 id1,2 id2,3 id2,4

id3,1 id3,2 id3,3
id3,4

id3,5
id3,6

(b) Individuals id1,1, id1,2 ∈ Id1 and id2,1, id2,2 ∈ Id2 are
wholes with fixed assigned parts id3,1, . . . , id3,6 ∈ Id3.
Dotted lines indicate local symmetry.

Figure 7.3.: Whole-part relations and crystallisation.

An epitome is the concept of aggregation in UML, a whole-part relation where objects
of one class comprise (or own) different objects of other classes. For instance, for car
platooning a car may be modelled more realistically as having an engine and braking
system and a set of front distance sensors. Then each time a car is created, the part-
objects are created along and interlinked with the car.

In general, the identity of the parts will not depend on the identity of the whole, that
is, for each combination of whole and part identities, there will be system run featuring
that combination . The idea of crystallisation is to remove this variability by establishing
a relation between whole and part identities, such that the identity of the whole uniquely
determines the identities of the parts.

More formally, a crystallisation is a function ❄ : Id → (λ 7→ Id) mapping identities
from a sort Idi, the whole, per link name to the determined part, for simplicity assuming
single-link topologies. Then the crystallised system M❄ only has topologies where the
links affected by ❄ adhere to it, that is, have the individuals denoted by ❄ as terminal
vertex.

A crystallisation is said to be well-formed, if M❄ bisimulates M . Not every ETTS has
a non-trivial crystallised correspondence, for instance, if there is no notion of whole/part
in the ETTS. The intended effect is that links between whole and part need no longer be
variable, but turn into constants, which is highly desirable and beneficial in finite-state
symbolic model-checking. In other words, an encoding of the ETTS needs not store the
links but can instead refer to the (constant) crystallisation function ❄ to look up links.
This approach has been demonstrated in the joint work [159].

Obviously, this approach breaks symmetry in identities. For instance, if the λ-link
of individual id1 is constantly pointing to id2, then any identity id 6= id2 is no longer
representative, there is no trace in the system where id is the part-object of id1 denoted
by λ. Yet the system may remain symmetric in the identities of the wholes – for each
whole there is some part, and if the parts behave the same so do the wholes, independent
from their both identities.

So we conjecture that we can further relax the definition of symmetry to only consider
the partitions of Id related to wholes. Then any property only referring to wholes should
be treatable by the approach presented in Chapter 8, the combination of QR and DTR.

But as soon as parts need to be considered, matters become more complicated. For
example, consider Figure 7.3(a). It depicts some individuals from a topology where
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the wholes id1,1, . . . , id1,3 are predetermined to employ the parts id2,1, . . . , id2,3. The
identities id1,i may still behave symmetric, thus in order to verify a requirement, in form
of an EvoCTL∗ formulae, only referring to individuals of sort Id1, considering individual
id1,1 is representative. Similarly, id2,1 is representative for requirements only referring to
sort Id2. But for requirements referring to a whole/part the combination id1,1 and id2,3

is no longer representative because id2,3 is never the part of id1,1. Thus violations of the
specification would go unnoticed.

In general, individuals of a type are not bound to be parts of individuals of a single
type, there may be multiple whole types. For example in Figure 7.3(b) there are individ-
uals of sorts Id1 and Id2 which both have parts of sort Id3. In this case, id3,1 is even no
longer representative for its sort, we have to consider an individual which is part on an
Id2-sort whole, e.g. id3,3, and possibly even also id3,4 if these parts are treated differently
by the whole.

This approach generalises as follows. We can still identify local symmetries within
sorts, for example, we may be able to establish2 that the system is symmetric in those
individuals from Id3 who are assigned as

• parts to wholes of sort Id1,

• left parts to wholes of sort Id2, and

• right parts to wholes of sort Id2.

Thereby we obtain sub-partitions in the sense of Section 7.4 and with the theory of that
section can treat requirements referring only to sort Id3.

For mixed-sort requirements, Cor. 7.3.5 as such is not adequate because it doesn’t
respect the whole/part assignments from the crystallisation ❄. Thus the cross-product
of assignment bases has to be adjusted such that it yields for two assignment bases a set
of assignments where all cases are respected, the case where the part identities adhere
to ❄, the case where they don’t, and all (finitely many) combinations.

This can be achieved by permuting the affected assignments. The reason is that
specification may also state properties on wholes and parts for the case that the denoted
part is not a part of the denoted whole, e.g. “for any x of the whole-sort and y of the
part-sort, if y is not the part of x, then . . . ”. For example, in case of a property of the
form

∀x : T1y : T2 . ϕ0, (7.36)

for an ETTS with topologies similar to Figure 7.3(a), single bases are

{{x 7→ id1,1}} and {{y 7→ id2,1}}. (7.37)

2Detecting symmetries in a given ETTS is highly complex [62]. It seems like any practical application
depends on “symmetry by design” or analysis on a higher-level language, or both. We discuss in
Chapter 9 both cases for global symmetry. Firstly, the combination DCS/METT is symmetric by
design, each high-level description denotes an ETTS which is symmetric in identities. Secondly, for
the combination UML/LSC, or particularly C++/LSC, the syntactical characteristics of [89] can be
applied to confirm that a given C++ description yields an ETTS which is symmetric in identities.

192



7.6. Discussion

The cross-product has to yield, for example,

{{x 7→ id1,1}, {y 7→ id2,1}}, {{x 7→ id1,1}, {y 7→ id2,2}}, (7.38)

in order to cover all cases.
This generalised cross-product obviously yields larger bases. That is, the price for

crystallisation is that there are more cases to consider. Overall, it may pay off be-
cause, as discussed in Chapter 8, cases can be verified separately, in particular fully
in parallel while there is no generally effective parallelisation of symbolic finite-state
model-checking. That is, the computation time, the sum of seconds spent on all parallel
processors to verify a property on many cases with crystallised systems, may be larger
than without crystallisation, but the wall clock time may be smaller, given sufficiently
many processors to work on the cases in parallel.

We don’t pursue this path further as we don’t employ crystallisation in our case-
studies, yet there is a connection which needs proper elaboration in future work.

7.6. Discussion

The notion of symmetry presented here is taken from [89]. A new concept is symmetry
in identities, although it is a special case of [89].

In comparison to [124, 127] we have a minimal set of representative cases, instead of
only a finite sufficient set.

New is the discussion of the treatment of singularities and crystallisation. Both dis-
cussion are driven by the application domain UML, or, more precise, UML with C++
as action language as supported in the UVE tool [158, 159]. From C++, it inherits
the certainly singular NULL identity, and it is an inherent optimisation to consider
crystallisation.
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8. Data Type and Query Reduction
Combined

8.1. Finitary Abstraction by Heuristics

Recall that by Chapter 6, we have a procedure to obtain an abstract ETTS M ♯ when
given an ETTS M and a DTR in the sense of Def. 6.1.1. If the individuals in M have
finite local states, that is, if Σ is finite, and if there is a finite upper bound on the
out-degree of individuals, then M ♯ is finite by Cor. 6.1.8.

With Chapter 7 we have a procedure to obtain a finite set of representative cases, in
form of a finite assignment basis Θ, given an EvoCTL∗ specification ϕ of the form

∀x1,1, . . . , x1,n1
: T1, . . . , xm,1, . . . , xm,nm : Tm . ϕ0 (8.1)

or an EvoCTL∗ formula that has an equivalent formula in the form of (8.1) (cf. Sec-
tion 4.5).

This leads to the following principal strategy [127] for confirming

M |= ϕ (8.2)

for an M over Id = Id1 ∪̇ . . . ∪̇ Idn which is symmetric in identities (cf. Figure 8.1):1

1. obtain a finite assignment basis Θ, at best a minimal one,

2. for each assignment θ ∈ Θ define the DTR

Dθ = {(ran(θ) ∩ Id1, Id1), . . . , (ran(θ) ∩ Idn, Idn)} (8.3)

that is, covering all partitions of Id, where subsets corresponding to types which
doesn’t occur in ϕ become empty,

3. construct the abstract transition system Dθ(M),

4. for all finitely many θ ∈ Θ, verify

Dθ(M), θ |= ϕ0. (8.4)

If verification does not confirm (8.4) but yields a counter-example, stop with “un-
known”.

1Footnote 2 from page 192 applies similarly. Namely, establishing whether a given ETTS is symmetric
in identities is highly complex [62]. It seems like any practical application depends on “symmetry by
design” or analysis on a higher-level language, or both. We discuss both cases in Chapter 9.
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M |=? ∀x1, . . . , xn : ϕ(x1, . . . , xn)

determine repre-
sentative set U

for each
(u1, . . . , un) ∈ U

check
M |= ϕ(u1, . . . , un)

M |=? ϕ(u1, . . . , un)

guess DTR

check M ♯ |= ϕ

M |= ϕM 6|= ϕrefine DTR

spurious

Figure 8.1.: Overall procedure. An AEvoCTL∗ property ϕ in prenex normal form is checked
for an ETTS M by determining a representative set (which is finite if the system
is sufficiently symmetric) and verifying each representative in isolation.
Each representative is checked by a heuristically obtained initial DTR abstraction
M ♯ of the system. If ϕ holds for M ♯, then it holds for M . If the check yields a
non-spurious counterexample, then the property doesn’t hold for M . Otherwise the
DTR is refined and another iteration started.

Otherwise conclude

M,θ |= ϕ0 (8.5)

by Theorem 6.2.1.

5. If (8.5) can be established for all assignments of an assignment basis, conclude
(8.2) by Theorem 7.3.6, thus stop with “holds”.

Note that the procedure is not deciding (8.2), but only confirms it if step 4 succeeds.
The reason is that it employs the abstraction DTR, which is not guaranteed to reflect
(or preserve) the considered property. Instead, step 4 may fail for two reasons: either
M 6|= ϕ, then the answer is “negative”, or only Dθ(M), θ 6|= ϕ, then an obtained counter-
example (cf. Section 6.4) is spurious, and the best answer we can give is “unknown”.

Recall from Section 6.4 that it remains to identify whether a given counter-example is
spurious or not and that this property is in general undecidable [167]. In Section 6.4.5
and Section 6.4.6, we’ve only briefly discussed possible approaches, model-based and
assumption-based, as this lies out of our scope.

One option is to enlarge the DTR, that is, add additional concrete identities to the
spotlight (cf. Section 6.4.5). Now enlarging the DTR fits into the overall procedure by
adding so-called case-splits to (8.2) (cf. Section 4.5.3). That is, to quantify over more
variables. Then the heuristic procedure above automatically constructs larger DTRs.

An example for a case-split would be that a car depends on its sensors, for example.
Then the sensors wouldn’t necessarily be named right-away in (8.2) thus the heuristic
procedure wouldn’t have any concrete sensor individual, they’d all end up in the shadows.
That verification is bound to fail.
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A case-split would add a logical variable x quantifying over sensor individuals and add
the premise that the car in question has this concrete sensor x as its sensor. There are
cases in [127] where this approach was sufficient to prove formulae of the form of (8.2).

8.2. Discussion

The procedure outline above is the original one from [124, 127]. It’s sometimes considered
a weakness that it is only finitary by heuristics, and that it employs a rather weak
heuristics, cutting off everything not referred to by the property. On the other hand,
given an implementation of the procedure, it’s easy to refine the abstraction by quantifier
introduction via case-splits (cf. Chapter 4).

Note that a similar reasoning based on QR can be applied for falsification by under-
approximation. For example, [114] employs search techniques to find computation paths
to certain configurations of object-oriented programs. It implicitly assumes a symmetry
in identities as it doesn’t try to allocate different identities, but is satisfied with any
identity if the search shows that another individual is needed. Interestingly, there is no
obvious under-approximating dual of DTR. The reason is that it’s not clear with which
local state to label the ∁ individual, as there is no natural ⊥ value which would carry
over to Chapter 9. The only investigated under-approximation is a finite upper bound
on the number of individuals.

197



8. Data Type and Query Reduction Combined

198



Part IV.

Application

199





9. DTR/QR for Higher-Level Languages

Studying DTR and QR in the pure world of ETTS (cf. Chapters 6 and 7) helps under-
stand its principles, but the description of DTR is not constructive because the starting
point is an infinite state system. Furthermore, in order to apply QR we need to know
whether the system is symmetric in identities, which is is computationally hard to es-
tablish on an ETTS [62]. Thus the practical approach is different: have a high-level
language HLL whose semantics is an ETTS such that

1. we know that each ETTS obtained from an HLL description is symmetric in identi-
ties, or have easily checkable syntactic criteria to establish the symmetry property,
and

2. there is a procedure to compute the finite abstraction directly from the HLL de-
scription.

In Section 9.1, we define syntax and semantics of a high-level modelling language we’ll
call HLL. The semantics of an HLL model M is an ETTS M (cf. Figure 9.1).

The main design objectives were that HLL should be as general as possible, at least
generalising both application domains we aim at, namely UML and DCS (cf. Chap-
ter 10), such that we need to discuss symmetry and computation of the abstraction
only once. This goal is achieved by giving an HLL semantics which is parameterised in
all aspects that are orthogonal to topologies, namely the scheduling of individuals, the
communication medium, and object creation. That is, whenever a high-level language
is similar to our HLL, or can be viewed as an instantiation, then we can learn from our
results how to apply DTR and QR. In Chapter 10, we’ll see that HLL is sufficiently gen-
eral to embed both DCS [9] and a significant subset of UML [138, 45] into it, basically
by instantiation; thereby the techniques of this and the previous chapters apply to the
two contexts of UML and DCS (cf. Figure 9.1).

In Section 9.2, we discuss the topic of symmetry for HLL, that is, we discuss under
which premises the ETTS semantics of a given HLL model is symmetric in identities.
Existing applications of the idea to detect symmetry syntactically typically argue within
the limits of a given formalism, that is, in a certain instantiation of HLL. From our
results we can tell which premises these formalism limits (or these instantiations) have
to satisfy to preserve symmetry.

In Section 9.3, we discuss procedures to obtain the DTR abstraction for a given HLL
directly. That is, instead of obtaining the ETTSM = JM K of an HLL model by applying
the HLL semantics and then constructing M ♯ = D(M) from a given DTR D according

to Chapter 6, we have (under certain premises) a procedure to construct M
♯
D, which, by

the standard HLL semantics maps to the ETTS M ♯, or to a mildly coarser abstraction
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•
•

UML
•

DCS

•
M

• •
M

♯
DHLL
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•
M ♯

•
SMV

•
SPIN

•
VIS

J·K
D(·)

J·K

D(·)

ETTS

finite ETTS

Figure 9.1.: Schematic plan for the current and the next chapter. The dashed line indicates
that HLL is not able to describe all ETTS, yet the most relevant (cf. Section 9.1.4).

than M ♯, but in any case without constructing M first (cf. Figure 9.1). In other words,
we want the part of Figure 9.1 connected by dashed arrows – read as a diagram – to
commute.

Section 9.4 briefly discusses how to encode the resulting abstract and finite-state ETTS
M ♯ in common input languages of finite-state model-checkers like VIS [154] or SMV [128]
(cf. bottom of Figure 9.1). And, of most practical interests, we’re discussing procedures

to go with a given DTRD directly from the HLL model M (or from M
♯
D) to a finite-state

encoding in array programs (cf. Figure 9.1). Section 9.5 concludes.

Note that this chapter is to some amount technical and tedious. We have to define
two languages, HLL and array programs, at a sufficient level of detail and we define two
transformations, one into a normal-form and one into a representation of the abstract
DTR’d system.

But the effort is not completely fruitless. We can discuss the approach for the first
time in complete depth, which other works employing the abstraction also in form of a
syntactical transformation get around [28, 29, 31].1 What we obtain are, for instance, a
clearer understanding of the relation between the syntactical transformation and Chap-
ter 6. Certain choices do harm precision, even if they’re semantics preserving in the
original. Furthermore, we understand that a prerequisite is effective interleaving. Inter-
estingly, this is given in all case-studies provided by the literature, but never explicitly
discussed.

1The reasons for getting around it are now quite understandable to us.
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9.1. High-Level Language

9.1.1. Syntax

HLL Model

Let E be a finite (possibly empty) set of events. Each E ∈ E has a number of parameters
p1, . . . , pn, each with either an object or a basic type (see below). We sometimes write
the short form E(~p) for E(p1, . . . , pn).

Let {τ1, . . . , τn}, be a finite (possibly empty) set of basic types, for example integer
or boolean types. Additional types are for each class C (see below) object types τC and
the current state type τC,st, and an events type τE , which is used to denote the type of
event instances, that is, events with concrete parameters. The latter is a super-type of
all event types τE, that is, the domain of the events type τE will simply be the union of
all event type domains.

Let C be a non-empty finite set of classes. Each C ∈ C has

1. a finite set of (local) variables

XC = {x1, . . . , xn} ∪ {xC,st}, i ∈ N0, (9.1)

each x ∈ XC has a type τ(x), which is τC,st for xst and any basic type otherwise,

2. possibly empty and disjoint sets of variables XI,C ( XC and XA,C ( XC denoting
inputs and auxiliary variables,

3. a finite set of links ΛC ⊇ {this}, each λ ∈ ΛC has a type τ(λ), which is τC for this
and any object type otherwise.

Here one can imagine any kind of additional annotations known for example from
UML, like multiplicity, distinguishing association and composition, etc. We don’t
add these because adherence to multiplicity is not syntactically checkable (except
for the single-link and the unrestricted case) and association and composition are
syntactic sugar rather.

4. possibly empty and disjoint sets of link names ΛI,C ( ΛC and ΛA,C ( ΛC denoting
input and auxiliary links, that is, links updated by the open environment, as we
chose not to have local variables of an object type, and temporary links, and

5. a non-empty set of states SC , a non-empty subset of initial states S0C
⊆ SC , a

(possibly empty) set of transitions RC , where a transition rC ∈ RC is a triple
rC = (sC , ℓ, s

′
C) with sC , s

′
C ∈ SC , called source and destination state of rC , and a

label ℓ according to Section 9.1.1.

We use RC to denote the set of local transitions of all classes in C . If the class index is
clear by context, we may omit it.

A condition cond0 (cf. Section 9.1.1) characterises the initial system states. Every
topology satisfying it is a legal initial state; we’ll later actually consider a vastly restricted
variant of initial state characterisations.
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It’s a first-order variant of the conditions from Section 9.1.1, namely

init ::= 〈cond〉 | ∀ p : τ . 〈init〉 | ∃ p : τ . 〈init〉 (9.2)

In contrast to regular conditions, it is not referring to this but only to p at the left-most
position in navigation expressions, that is, without the second production of (9.9). And
it is assumed to be closed, all parameters p occurring in the condition part have to be
bound by an enclosing quantifier.

Given a language (or set) of transition labellings, the tuple

M = (T ,E ,C , cond 0) (9.3)

is called HLL model over this transition labellings if all ℓ are from the given language
and if cond 0 is a condition of the given language.

The rationale behind this approach is that we don’t want to restrict the discussion to a
particular action language, as is common with other approaches. We rather discuss what
has to be required for the action language in order to obtain, for example, symmetry.

HLL Transition Programs

A transition label ℓ over events E is a word of the following grammar

ℓ ::= 〈ev〉 [〈cond 〉]/〈act1〉; . . . ; 〈actn〉 (9.4)

where n ≥ 0 and

ev ::= ε | E(~p), (9.5)

where E ∈ E is an event.

A condition

cond ::= 〈term〉 (9.6)

is a term over purely unprimed expressions of a boolean type, where terms are defined
by the grammar

term ::= 1 | 〈expr〉 | 〈nav1〉 = 〈nav2〉 | ¬〈term〉 | 〈term1〉 ∧ 〈term2〉 (9.7)

that is,

1. 1 and expressions of a boolean type (see below) are boolean terms,

2. if 〈nav1〉 and 〈nav2〉 are navigation expressions of the same type, then 〈nav1〉 =
〈nav2〉 is a boolean term,

3. negation and conjunction of boolean terms yields boolean terms, and

4. nothing else is a boolean term.
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A functional term or expression is defined by the grammar

expr ::= p | 〈nav〉 | 〈nav〉x | 〈nav〉x′

| f(〈expr1〉, . . . , 〈exprn〉)
(9.8)

that is,

1. an event parameter p of type τ is a well-typed expression of type τ ,

2. a (primed or unprimed) navigation expression of type τC is a well-typed expression
of type τC ,

3. if 〈nav〉 is a navigation expression of type τC and x is a variable of class C of type
τ , then 〈nav〉x (unprimed or primed) is a well-typed expression of type τ ,

4. if 〈expri〉 is a well-typed expression of type τi, 1 ≤ i ≤ n, and f is a function
symbol (from a signature!) of type τ1, . . . , τn → τ , then f(〈expr1〉, . . . , 〈exprn〉) is
a well-typed expression of type τ , and

5. nothing else is an expression.

An expression is called (purely) unprimed if none of the primed variants occurs,
(purely) primed if all variables and link names appear primed, and mixed primed/unprimed
otherwise.

A navigation expression is defined by the grammar

nav ::= p | thisC | 〈nav〉λ | 〈nav〉λ′ (9.9)

that is,

1. an event parameter p of an object type τC is a well-typed navigation expression of
type τC ,

2. thisC is a well-typed navigation expression of type τC ,

3. if 〈nav〉 is a well-typed navigation expression of type τC and λ is a link name of
class C and of type τD, i.e. λ ∈ ΛC , then 〈nav〉 λ (unprimed or primed) is a
well-typed navigation expression of type τD, and

4. nothing else is a well-typed navigation expression

Note that principally, new C can be considered to be a navigation expression of type
τC . We prefer to consider new C only as the right-hand side of an assignment actions
(cf. (9.17) below). Thereby we avoid to treat temporary objects in the semantics, which
is principally possible but not having it isn’t restricting the generality of our discussion
because one can always introduce additional links, assign them a newly created object,
and use the additional link in a particular expression.
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In a compound navigation expression nav of the form λnav0, the sub-expression λ
is called the root of nav. The root of non-compound navigation expressions like p and
thisC is the navigation expression itself,

Actions are defined by the grammar

act ::= skip (9.10)

| 〈nav〉x′ := 〈expr〉 (9.11)

| 〈nav〉λ′ := 〈expr〉 (9.12)

| 〈nav〉λ′ := new C (9.13)

| 〈nav〉!E(〈expr1〉, . . . , 〈exprn〉) (9.14)

| delete 〈nav〉 (9.15)

| if 〈cond〉 then 〈act1〉; else 〈act2〉; fi (9.16)

| 〈nav1〉; 〈nav2〉 (9.17)

where x is a variable but not xst, λ a link name but not this, and E is an event, that is,

1. skip is a well-formed action,

2. if 〈nav〉 is a navigation expression of type τC and x or λ are a variable or a link
name in C of type τ and if 〈expr〉 is an expression or creation of the same type,
then assignment is a well-formed action,

3. if 〈nav〉 is a navigation expression, E is an event with parameters of types τ1, . . . , τn,
and if 〈expri〉, 1 ≤ i ≤ n, are expressions of type τi, then event sending is a well-
formed action,

4. if 〈nav〉 is a navigation expression, then object destruction is a well-formed action,

5. if 〈cond〉 is a condition, then conditional execution of actions is a well-formed
action,

6. sequential composition is a well-formed action, and

7. nothing else is an action.

A transition label is well-formed only

1. if all parameter names occurring in expressions, either in conditions or in actions,
appear in the event part ev of the label, and

2. if each auxiliary variable or link from XA and ΛI is assigned a value before its
first use and always appears primed in expressions, that is, if an auxiliary variable
or link appears in navigation expression nav, then nav appears only as nav′ in
expressions
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fa ld

faf ldf

fl fls

req(p)/flw ′ := p; p!ack()

nack/
car ahead(p)/
p!req(this)

req(p)/p!nack

ack(p)/ldr ′ := p

req(p)/flw!new flw(p); p!ack

car ahead(p)/
p!req(this)

nack/

req(p)/p!nack

ack(p)/ldr ′ := p

new ldr(p)/
ldr ′ := p

req(p)/p!nack

new flw(p)/
flw := p

new ldr(p)/
ldr ′ := p;
flw!new ldr(p)

new flw(p)/flw!new flw(p)

req(p)/p!nack

Figure 9.2.: Platoon Merge. Graphical representation of states and transitions.

We may use the following abbreviations:

[〈cond 〉]/〈act1〉; . . . ; 〈actn〉 for ε [〈cond 〉]/〈act1〉; . . . ; 〈actn〉 (9.18)

〈ev〉/〈act1〉; . . . ; 〈actn〉 for 〈ev〉 [1]/〈act1〉; . . . ; 〈actn〉 (9.19)

/〈act1〉; . . . ; 〈actn〉 for ε [1]/〈act1〉; . . . ; 〈actn〉 (9.20)

Note that terms are principally similar to the logic, but missing, for example, life-cycle
queries. The same applies to Link expressions. In general, we’ve got to consider multi-
set arithmetics (cf. Chapter 4) with a select operator, but we’ll focus on single-link case
shortly.

Example: HLL Model of Car Platoon Merge

Example 9.1.1 (Car Platooning Merge). The merge protocol of the car platooning case
study can be modelled directly as an HLL model as follows.

To represent cars, there is a class C with no local variables in addition to xst and with
link names Λ = {flw , ldr} to refer to the immediate follower and the leader in addition
to this.

The set of states, initial states, and the transitions are given graphically by Figure 9.2.
It reads as follows. States are labelled circles, i.e.

S = {fa, faf, ld, ldf,fl,fls}, (9.21)

of which only fa is initial as indicated by the ingoing unconnected arrow. Transitions are
indicated by labelled arrows between states.

The set of events in the system can be read from Figure 9.2 as

E = {ack, car ahead,nack,new flw,new ldr, req}. (9.22)

In order to create cars and notify them of each other’s existence, we’d add a class E
with only a single state with self-loops to create cars, and a single input link employed
in sending car ahead events. We’ll study this in more detail in Chapter 10. ♦
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Single Link HLL

In the general case below, link navigation is understood as multi-set comprehension, that
is in an expression like

λ1 → λ2 → x := 0 (9.23)

the prefix selects any number of individuals whose local state is then changed to have
x = 0.

To limit it to single objects, there may be a select operator in the considered signature
as discussed in Chapter 4; then

∗(λ1 → λ2)→ x := 0 (9.24)

chooses a single individual to be updated.

In later sections on symmetry and DTR, for simplicity, we’ll assume a single link
setting which very closely resembles typical pointer programs, that is

• links are either assigned the empty set, or another link, or a set of size one (for
example comprehended from an identity received via an event), and

• there is implicit selection such that a navigation over NULL turns the whole thing
into undefined, and leads into the sink state.

This can be checked syntactically by typing rules.

Note that Example 9.1.1 is also an example for a single link HLL model in the sense
of Section 9.1.1.

9.1.2. Semantics

The semantics of an HLL model

M = (T ,E ,C , cond 0) (9.25)

is a typed (or: many-sorted) (Σ,Λ) ETTS over Id, i.e.

ιJM K(E ,S,O) = (S, S0 , R,L, e) (9.26)

where ι is an interpretation of function symbols, (E ,⊕,⊖) an ether, S a scheduler, and O
an input and creation oracle, the latter are formally introduced in Section 9.1.2 below.

We define ιJM K(E ,S,O) stepwise. Firstly, we construct the sets of local states Σ and
link names Λ from the variables and local states and the link names of classes, in addition,
the local state obtains an element of the ether to model event-based communication.

Then choosing sets of identities (with equation) for each class gives rise to the labelling
domain D , the set of many-sorted (Σ,Λ) topologies over Id. We obtain S(ιJM K(E ,S,O))
by simply identifying states with the labelling domain, that is, we set S = D and
L = idS, this is the subject of the paragraph on topologies and states of an HLL model
below.
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In the subsequent paragraph, we define the transition relation R(ιJM K(E ,S,O)) and
the evolution function. The basic idea is to assume a scheduler S, which chooses for each
state a list of pairs of individuals and local transitions that may be executed because
the following requirements are satisfied

• the individual is in the right local state,

• the event required by the transition is ready to be consumed in the individual’s
ether,

• the guarding condition holds.

Then two global (or system) states s and s′ are in transition relation if and only if s′ is
the result of applying the transition programs of the transitions from a scheduled list one
after another to the corresponding individuals from the list. Thereby we can have true
concurrency (yet we’ll see in Section 9.3 on DTR that is makes matters complicated)
without write/write races because the lists provided by the scheduler impose an order.

Topologies and States of an HLL Model

Assume we’re given a domain D(τ) for each basic type τ ∈ T and a domain D(τC) with
an equality function eqId, if not otherwise noted, {C} ×N0 with normal equality.

The domain of the event type τE is

τE =
⋃

E∈E

D(τE) (9.27)

where
τE = {E} × D(τ1)× · · · × D(τn) (9.28)

if E has parameters p1, . . . , pn of types τ1, . . . , τn, n ∈ N0.

Then for each class C ∈ C with non-input and non-auxiliary local variables

XC = {x1, . . . , xn, xC,st}, (9.29)

we set
ΣC := D(τ(x1))× · · · × D(τ(xn))×D(τC,st)× E (9.30)

where the domain of the local state type τC,st ∈ T is D(τC,st) := SC and E is the ether
type (see below).

Let C = {C1, . . . , Cn}, then

Σ := ΣC1
∪̇ . . . ∪̇ ΣCn (9.31)

Λ := ΛC1
∪̇ . . . ∪̇ ΛCn (9.32)

and

Id := IdC1
∪̇ . . . ∪̇ IdCn (9.33)
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where IdCi
= D(τCi

). Then the set of states S(ιJM K(E ,S,O)) is the set of (Σ,Λ)-
topologies over Id plus the designated failure state 0.

We use the following notation. Given a state s ∈ S and an individual u ∈ U⊚(s), we
use

s(u).x (9.34)

to denote the value of the x component of the local state of u in s, that is, of σ(s)(u),
s(u).ǫ to denote the ether component, and s(u).λ to denote the value of the navigation
function λ in s, i.e.

s(u).λ := λ(u). (9.35)

The initial states are those topologies satisfying the initial state condition cond 0 as
defined in the following Section 9.1.2, i.e.

S0(ιJM K(E ,S,O)) = {s ∈ (ιJM K(E ,S,O)) | ιJcond 0K(s, id, ∅) = 1} (9.36)

where id ∈ Id is any identity.2

Transitions and Evolution Function

We’ve briefly sketched the idea of the semantics definition above. To elaborate it a bit,
recall that an HLL transition program has the form

〈ev〉 [〈cond〉]/〈act1〉; . . . ; 〈actn〉 (9.37)

What we’re after is to say that two global states s and s′ are in transition relation iff

1. the scheduler S can choose a finite set of individual/transition program pairs, that
is,

S(s) = u1/r1, . . . , un/rn (9.38)

where ui ∈ U
⊚(s) is an alive object of class C and ri is a transition of C,

2. the (local) state of ui in s corresponds to the source state of ri, that is, to the
value of ui’s variable xst in s, and the (local) state of ui in s′ corresponds to the
destination state of ri, i.e.

(s(ui).xst, ℓ, s
′(ui).xst) ∈ RC , (9.39)

3. there is an event ev in the ether of ui,

4. the conditions cond of the ri hold for ui in s, and

5. the local state of ui in s′ is the result of applying the action list of ri to s.

2 It’s independent from id because this doesn’t occur at the root of navigation expressions by definition.
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To this end, we firstly define ethers and the operations for inserting and removing
events. Intuitively, an ether is an abstract variant of a communication medium which
may be instantiated by a single event queue, but as well by a set, or a collection of lossy
priority queues.

Secondly, we give meaning to expressions, that is, explain how to evaluate an ex-
pression in a given global state wrt. to a particular individual. Correspondingly, we
introduce a notion of applying transition programs to a global state. Together with a
formal definition of a scheduler, everything is prepared to define the transition relation
between global states following the intuition given above.

Ether We use something we call an ether as an abstract model for any kind of (asyn-
chronous) communication. An ether (E ,⊕,⊖) is a set E with two operations

⊕ : E × Id×D(τE )× Id→ E (9.40)

⊖ : E × Id×D(τE )× Id→ E (9.41)

which can be read as “insert” and “consume”.
Given an ether ǫ, an event E ∈ E with parameters p1, . . . , pn of types τ1, . . . , τn,

n ∈ N0 and semantical values di ∈ D(τi), 1 ≤ i ≤ n, we use

ǫ⊕ (u1, E(d1, . . . , dn), u2) (= ⊕(ǫ, u1, (E(d1, . . . , dn), u2))) (9.42)

to denote the insertion of the event E with parameter values d1, . . . , dn into the (end of
the) ether, and

ǫ⊖ (u1, E(d1, . . . , dn), u2) (= ⊖(ǫ, u1, (E(d1, . . . , dn), u2))) (9.43)

to denote the removal of the event E with parameters d1, . . . , dn from the (front of the)
ether, if this event is in front of the ether.

The former can be read as

individual u1 sends event E with parameters ~d to u2 into ether ǫ

and the latter as

individual u2 consumes E with parameters ~d from u1 from ether ǫ.

We write

ǫ = ǫ0.u1
E(d1,...,dn)
−−−−−−−→ u2 (9.44)

to denote that ǫ is in a configuration where we may consume E with parameters di ∈
D(τi), where τi is the type of the i-th parameter, that is, if

ǫ0 = ǫ⊖ (u1, E(d1, . . . , dn), u2). (9.45)

The abbreviation
ǫ = ǫ0.E(d1, . . . , dn) (9.46)
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is used if the receiving individual u2 is clear by context, for instance, because ǫ is local
to it, and if the identity of the sending individual u1 is not relevant, i.e. if

∃u1 ∈ Id : ǫ(u2) = ǫ0.u1
E(d1,...,dn)
−−−−−−−→ u2. (9.47)

Note that the terms “end” and “front” best match if the ether is instantiated with
a single event queue, possibly with priorities. But it may as well be instantiated with
multiple queues, possibly one per sender, then (9.46) may hold true for multiple events
at the same time.

Furthermore, an ether may simply be a set, thus it doesn’t necessarily preserve the
order of insertion, and it may well be lossy. We’ll see that all of these aspects are
orthogonal to our discussion as long as the ether is symmetric in identities, that is, as
long as it doesn’t lose messages depending on identities, or gives priority to events sent
by a certain sender. The reason we’re passing the sender and receiver identity is to leave
open all choices, there could, for instance, be a single ether for the whole system.

Condition Evaluation: Terms and Expressions A condition cond is a boolean term.
The evaluation of a condition for an individual u in system states s0 and s under assign-
ment θ, denoted by

ιJcondK(s0, s, u, θ) ∈ B3 (9.48)

is defined inductively as follows, assuming an interpretation ι of function symbols.
The intuition of having two states s0 and s is that the former is used to evaluate

unprimed expressions and the second one to evaluate primed ones. In case of purely
primed or unprimed expressions, one of the two can be omitted. The definition follows
the same philosophy than the one for EvoCTL∗ in Chapter 4.

1. ιJ1K(s0, s, u, θ) = 1

2. ιJnav1 = nav2K(s0, s, u, θ) = eqId(ιJnav1K(s0, s, u, θ), ιJnav2K(s0, s, u, θ))
if both arguments are defined, 1/2 otherwise

3. ιJ¬termK(s0, s, u, θ) = 1− ιJtermK(s0, s, u, θ)

4. ιJterm1 ∧ term2K(s0, s, u, θ) = min{ιJterm1K(s0, s, u, θ),
ιJterm2K(s0, s, u, θ)}

In addition, we use the common abbreviations for disjunction, implication, etc.

It extends naturally to the first-order extension from (9.2) by

ιJ∀ p : τ . initK(s0, s, u, θ) = min{ιJinitK(s0, s, u, θ[p 7→ id]) | id ∈ Id} (9.49)

ιJ∃ p : τ . initK(s0, s, u, θ) = max{ιJinitK(s0, s, u, θ[p 7→ id]) | id ∈ Id}. (9.50)

The semantics of functional expressions is inductively defined as follows.

1. ιJpK(s0, s, u, θ) = θ(p)
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2. ιJnavK(s0, s, u, θ) = ιJnavK(s0, s, u, θ)

3. ιJnavxK(s0, s, u, θ) = s(ιJnavK(s0, s, u, θ)).x

4. ιJnavx′K(s0, s, u, θ) = s0(ιJnavK(s0, s, u, θ)).x

5. ιJf(expr1, . . . , exprn)K(s0, s, u, θ) = ι(f)(ιJexpr1K(s0, s, u, θ), . . . ,
ιJexprnK(s0, s, u, θ))

if all ιJexpriK(s0, s, u, θ), 1 ≤ i ≤ n, are defined,
otherwise undefined or 1/2, if τ is boolean

The interpretation of navigation expressions operates on only a single system state,
being primed or unprimed in the enclosing (functional) expression determines which
state is used.

1. ιJpK(s0, s, u, θ) = θ(p)

2. ιJthisCK(s0, s, u, θ) = u, if u ∈ U⊚(s) and undefined otherwise

3. ιJnavλK(s0, s, u, θ) = s0(ιJnavK(s0, s, u, θ)).λ,
if ιJnavK(s0, s, u, θ) ∈ U⊚(s0), undefined otherwise;

4. ιJnavλ′K(s0, s, u, θ) = s(ιJnavK(s0, s, u, θ)).λ,
if ιJnavK(s0, s, u, θ) ∈ U⊚(s), undefined otherwise;

Note that this definition does the right thingTM for this in the middle of definitions
because this link is initialised for each individual to point back to itself and then never
changed again. Furthermore, this (intentionally) turns undefined if this is deleted within
a sequence of actions.

The semantics tolerates (to some amount) undefined valuations because the boolean
value finally becomes 1/2. For example, the expression

(thisλ 6= ∅)→ (thisλx = 0) (9.51)

is guaranteed to evaluate definite even if λ points into the void, and thus turns the right
hand side of the implication indefinite.

The comparison for equality in (9.51) is a function from the signature, not the “=”
from the syntax. The latter only operates on links and is tightly connected to the eqId

function on Id.

The semantics of mixed primed/unprimed navigation expressions is a bit tricky but
helpful at least for the definition of syntactic DTR. For example

u2=s(u).λ
︷ ︸︸ ︷

thisλ′µ
︸ ︷︷ ︸

u1=s0(u2).µ

λ′

︸ ︷︷ ︸

u0=s(u1).λ

x

︸ ︷︷ ︸

s0(u0).x

(9.52)
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denotes the pre-value of variable x in the individual denoted by the navigation expression,
which, read out loud, is

• the individual u0 denoted by the λ link of u1 in current state, where

• the individual u1 is denoted by the µ link of u2 in the pre-state, where

• the individual u2 is denoted by the λ link of this in the current state.

To avoid confusion, primed navigation expressions should be used rarely and with care,
at best only at the left-hand side of assignments.

Creation and Input Oracle A creation oracle provides, for each state from a given set
of states S and for each occurrence of a creation expression, a singleton set of identities
to choose from for creation, that is, a function

O : S × 〈act〉 → P(Id) (9.53)

and (admittedly awkwardly overloaded)

O : S → P(Id× (ΛI ∪XI)→ D) (9.54)

That is, for each state s ∈ S, a set of functions mapping alive individuals and input
variables to values, i.e. a set of functions of the form

{(u, x) 7→ d | u ∈ U⊚(s), x ∈ XI,C , d ∈ D(τ)}

∪ {(u, λ) 7→ d | u ∈ U⊚(s), λ ∈ ΛI,C , d ∈ D(τ)}
(9.55)

where C is the class of u and τ denotes the type of x and λ.

Note that inputs of a type with finite domain can be simulated by non-determinism.
If the domain is infinite, which is the general case for links, then HLL with inputs is
strictly more expressive than HLL without.

Transition Program Application The third part in the transition labelling language as
introduced in Section 9.1.1 are meant as actions, or modifications of objects’ states. Se-
mantically, these modifications become applications of transition program P to (global)
system state s for individual u under parameter assignment θ and with input and cre-
ation oracle O, denoted by

ιJP K(s0, u, θ,O) : S → S (9.56)

where s0 is original source state in which, for example, conditions are evaluated, while
s could’ve been updated by previous actions in a sequence.

They’re defined inductively as follows.

• ιJskipK(s0, u, θ,O)(s) = s
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• ιJnavx′ := exprK(s0, u, θ,O)(s) = s′,

where s′ differs from s only in that the x component of the local state of each
individual denoted by nav has the value of expr, i.e.

s′(ιJnavK(s0, s, u, θ)).x = ιJexprK(s0, s, u, θ) (9.57)

if u ∈ U⊚(s) and both, the navigation and the functional expression, are defined,
undefined otherwise,

• ιJnavλ′ := exprK(s0, u, θ,O)(s) = s′,

where

s′(u0).λ = ιJexprK(s0, s, u, θ) (9.58)

with u0 ∈ ιJnavK(s0, s, u, θ), and undefined if the navigation or the functional
expression are undefined,

• ιJnavλ′ := new C
︸ ︷︷ ︸

=:P

K(s0, u, θ,O)(s) = s′,

similar to the previous case yet instead of assigning the value of an expression,
we assign an individual u as chosen by the creation scheduler for this particular
action, that is, from the set O(s, P ) setting σ(u).this = u and σ(u).xst ∈ S0C

;
further initialisation of the local state may take place on the first transition of u
or by the creating individual,

• ιJnav!E(expr1, . . . , exprn)K(s0, u, θ,O)(s) = s′,

where

s′(u0).ǫ = s(u0).ǫ⊕ (u,E(d1, . . . , dn), u0) (9.59)

where u0 := ιJnavK(s0, s, u, θ) and di := ιJexpr1K(s0, s, u, θ), 1 ≤ i ≤ n, and unde-
fined if any of the navigation or the functional expressions are undefined,

• ιJdelete navK(s0, u, θ,O)(s) = s′

such that the only difference between s and s′ is that the individual denoted by
ιJnavK(s0, s, u, θ) is not alive 3 in s′, and undefined if the valuation of the navigation
expressions is undefined,

• ιJif cond then act1 else act2 fiK(s0, u, θ,O)(s) = s′,

where if d := ιJcondK(s0, s, u, θ) = 1, then s′ = ιJact1K(s0, u, θ,O)(s), if d = 0, then
s′ = ιJact2K(s0, u, θ,O)(s), and undefined otherwise,

3This is the easy way, actually requiring that a deleted object is gone for at least one step. The ETTS
model is (intentionally) more powerful. By the evolution relation it can distinguish immediate re-uses
(cf. Chapter 9). It is also possible to incorporate this behaviour into the HLL by keeping track of
who’s deleted and to allow the creation scheduler to also chose from these ones, but it would only
complicate the definitions without contributing anything significant.
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• ιJact1; act2K(s0, u, θ,O)(s) = ιJact2K(s0, u, θ,O)(ιJact1K(s0, u, θ,O)(s))

if the intermediate step ιJact1K(s0, u, θ,O)(s) is defined, and undefined otherwise.

Note that we don’t have loops in transition programs in order to be sure that each
transition program terminates. Further note that transition programs are deterministic,
non-determinism is only on the level of transitions.

Scheduler Given a system state s from a set of states S, a scheduler basically chooses
individuals which are ready to take a transition in s.

Formally, a scheduler is a function mapping system states to a finite, possibly empty
set of finite sequences of pairs of identities and transitions, that is,

S : S → P((Id ×RC )+), (9.60)

yielding sequences of the form

(u1, rC1,1), . . . , (un, rCn,n), n ∈ N0, (9.61)

where identities are pairwise different, i.e. ui 6= uj , 1 ≤ i 6= j ≤ n and if idi is of class C,
then ri is a transition of this class, i.e. ri ∈ RC .

A sequence
(u1, rC1,1), . . . , (un, rCn,n) (9.62)

provided by a scheduler for state s0 is called ready in state s0 if and only if

1. the identity idi is alive in s0, i.e. idi ∈ U
⊚(s0),

2. if ri is of the form
(sCi

, evi [cond i]/acti, s
′
Ci

) (9.63)

then

• ui is in local state sCi
in s0, i.e.

s0(ui).xst = sCi
, (9.64)

• the required event is ready to be consumed in the ether of ui, i.e., either
evi 6= ε or evi = E(p1, . . . , pm) and

s0(ui).ǫ = ǫ0.E(d1, . . . , dm), (9.65)

• the input oracle O provides an input valuation o ∈ O(s0) such that the
guarding conditions hold in o(s0), i.e.

ιJcond iK(o(s0), o(s0), ui, θ) = 1, 1 ≤ i ≤ n, (9.66)

with θ = {p1 7→ d1, . . . , pm 7→ dm} and where o(s0) coincides with s0 outside
the inputs and for the inputs with o, i.e.

{(u, x) 7→ o(s0)(u).x | u ∈ IdC , x ∈ XI,C}

∪ {(u, x) 7→ o(s0)(u).λ | u ∈ IdC , λ ∈ ΛI,C} = o.
(9.67)
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Transition Relation and Evolution Function Given a scheduler S and an input and
creation oracle O. Two system states s, s′ ∈ S(ιJM K(E ,S,O)) are in the transition
relation R(ιJM K(E ,S,O)) if and only if

1. there is a sequence of individuals and transitions in s according to the scheduler,
i.e.

u1/rC1,1, . . . , un/rCn,n ∈ S(s) (9.68)

with

rCi,i = (sCi
, evi [cond i]/Pi, s

′
Ci

), (9.69)

which is ready in s with input oracle element o ∈ O and

2. s′ is the result of subsequently applying the transition programs to o(s) and con-
suming the ready-to-consume events, i.e. s′ is identical to

s′0 := ιJPnK(o(s), un, θn,O)(. . . ιJP1K(o(s), u1, θ1,O)(o(s)) . . . ) (9.70)

where θi maps parameters to parameter values similar to the assignments in the
previous section on schedulers if all applications of transition programs are defined,
with the only exceptions that

s′(ui).ǫ = s′0(ui).ǫ⊖ evi(~d), 1 ≤ i ≤ n (9.71)

and

s′(ui).xst = s′Ci
, 1 ≤ i ≤ n (9.72)

if ui is still alive in s′0,

or if there is no ready sequence of ready-to-execute individuals and transitions in s
according to the scheduler and s′ coincides with s.

In addition, there is a transition from s to the failure state 0 if and only if one of
the condition evaluations or transition program applications are undefined, for instance
navigation via a NULL pointer if such a thing is considered in the HLL instantiation.

The transition relation is denoted by o(s)
{u1/r1,...,un/rn}
−−−−−−−−−−→ s′ when we want to indicate

by which local transitions and which oracle value the global transition is justified.

For each transition as defined above the evolution function is simply the identity on the
set of identities that are alive in both states, i.e. e〈r〉 = idU⊚(s)∩U⊚(s′). It’s that simple
because we’ve taken the easy way with destruction. It’s a consequence of the semantics
of the delete operation that an object is non-alive for at least one step, thus we don’t have
to treat the more complex case of immediate resurrection. Thereby evolution annotation
is also immediately consistent.

This completes the component-wise definition of ιJM K(E ,S,O)) in terms of an ether,
a scheduler, and a creation scheduler.
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9.1.3. Interleaving vs. Concurrent Semantics

We call ιJM K(E ,S,O) an interleaving semantics of M if and only if the scheduler S
selects for each state sequences of at most length one. Otherwise the semantics is called
concurrent.

A simple example for a concurrent scheduler is the one who offers all alive individuals
with all enabled transitions, that is, S(s) is the set of pairs u/r such that u ∈ U⊚(s) and
the event required by r is available in the ether and the condition holds.

9.1.4. Relation to other Formalisms

First of all, note that the expressive power of HLL is not sufficient to cover all ETTS,
that is, there are ETTS M that are not the semantics of a finite HLL model.

For example, if each of the infinitely many individuals in M behaves differently. As
HLL may only have a finite number of classes with finitely many states and transitions,
such a M is not the ETTS of any HLL model (cf. Figure 9.1).

This limitation is not critical for our purposes because, in general, QR doesn’t apply to
these ETTS either because it is then not sufficient to consider a finite set of representative
cases. The class covered by HLL instead is the one, to which QR applies, under premises
we’ll see in Section 9.2.

Parameterised Systems

With some overlap with the discussions from Chapter 3 and 4 note that HLL is similar
to parameterised systems in the sense that a number of processes (here: individuals)
executes one of finitely many finite programs, in most cases independent from the identity
of the process (or individual). Then processes are clearly interchangeable with each other.

The differences are the following. Firstly, parameterised systems (cf. Chapter 3) have
infinitely many finite instances, that is, in each instance there is a finite bound on the
number of processes. In HLL we don’t have this bound, topologies in the resulting ETTS
may grow unboundedly.

Secondly, they typically don’t consider creation and destruction of processes. One
benefit is that first-order temporal logics for classical parameterised systems needn’t
consider premature disappearance (cf. Chapter 4).

Furthermore, classical parameterised systems don’t have notions of links, some variants
don’t even provide means to store identities because the behaviour of processes depends
on iterations over the global shared memory, that is, by considering either none or all of
the other processes; in HLL, there is selective consideration of others via links.

Graph Transformation Systems

An HLL model could also naturally obtain a semantics via a graph transformation
system as the states are topologies, which are graphs. In addition to the point that
we established the theory of DTR and QR on ETTS, there are two issues. One is that
graph transformation systems typically don’t trace the identity of nodes, thus a priori
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we don’t have an equivalent of the evolution function. A second one is that data, like
local states and the ether, require the less elementary attributed graph transformation
systems.

Object-Orientation

The relation from HLL to object oriented programming or modelling languages is differ-
ent than the relation to parameterised systems or graph transformation systems, because
the latter can be seen to belong to a similar conceptual level as HLL while we locate
object oriented languages on a higher level.

In Chapter 10 we’ll see how to embed a significant core of the UML into HLL and
discuss this relation in more detail. In brief, what object oriented languages add are
information hiding, inheritance, and virtual function calls (or: late binding). An example
for the former are attributes like private or public local variables, which is basically
syntactic sugar and could easily be added to HLL.

Concepts of inheritance aid structuring and re-use. They can also be seen as syntactic
sugar as it can be encoded in HLL by splitting an object of a class D, which derives
from C, as two objects with a particular connection (cf. Chapter 10). Virtual function
calls can also be encoded in HLL as discussed in Chapter 10.

9.2. Symmetry for HLL

From Chapter 7, we have a definition of an ETTS being symmetric in identities. As
already noted in Chapter 7, this property is undecidable for infinite ETTS and com-
putationally expensive for finite ones [62]. Thus in order to effectively apply QR, we
need other means to establish whether the ETTS of an HLL model M is symmetric in
identities.

A widely used idea is to introduce in a higher-level language a new kind of type
called scalarset [89] with only a limited set of operations defined for it, such that the
resulting transition system is symmetric in the values of this type. In Section 9.2.1, we
recall this idea and in Section 9.2.2 list a number of cases where it has been applied,
including our own previous work. In Section 9.2.3, we generalise the approach slightly by
drawing attention to additional circumstances that are taken for granted in the discussed
applications. Namely, the scheduling, the communication medium, and the treatment
of inputs and creation.

In Section 9.2.4, we show the generalised property that symmetry of these aspects is
sufficient to conclude that the ETTS of an HLL model is symmetric in identities. In
typical cases, the extended premises to apply QR are still easily established.

9.2.1. Scalarset Types

Ip & Dill [89] proposed an input language for their model-checker Murphi such that
the semantics of each well-formed Murphi program has a symmetric Kripke structure as

219



9. DTR/QR for Higher-Level Languages

semantics. Yet they weren’t after symmetry in identities but, more general, introduced
a new data-type called scalarset.

Symmetry is ensured by limiting the set of operations on scalarset types and the
possible uses. In a maximally restrictive setting, these following rules ensure these
limits.

1. variables (in particular inputs or constants) may be of a scalarset type.

2. Constants obtain an arbitrary value once which is fixed for system execution, (in
other words: multiple initial states).

3. Variables of the same scalarset type may be compared for equality.

4. Variables of the same scalarset type may be assigned to each other.

5. Arrays may have a scalarset index type, and scalarset variables may be used to
access positions of such arrays.

In addition, one may admit the following rule.

6. Loop variables may range over the domain of a scalarset type, if the outcome of the
loop is independent from execution order, a fact for which there are again sufficient
syntactic criteria.

Particular instances of such loops are, for instance, the sum of all array fields of an array
with scalarset index type.

Checking well-formedness for a Murphi program is then a simple type-checking tasks:
check whether only the allowed operations are applied to scalarset variables.

By the following thoughts it is intuitively clear that these operations do not allow to
break symmetry, that is, to treat a particular value of a scalarset type different to other
values.

Firstly, variables only obtain their values by being inputs or constants or by being a
loop variable. Both are symmetric as inputs may assume any legal value and loops are
restricted to be independent from execution order, thus the first iteration may start with
any value.

Secondly, only variables are compared for equality, there are no literals to denote
particular elements of a scalarset type’s domain. So it is not permitted to write

if x = 1 then . . . (9.73)

to treat value “1” specially because x may not be compared to it.
Finally note that the rules above in particular disallow to cast a scalarset variable into

any other type (and then compare it against literals) and they disallow to perform any
kind of arithmetics on scalarset types. A more general and formal discussion follows in
Section 9.2.3.

Note that this connection, or this existence of a type-checking procedure, gives rise to
two slightly different applications.
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The first is the one taken by [89]: Have a language where scalarset types can be
declared, know that well-typed programs give rise to a symmetric Kripke structure, and
apply the type check to verify that the programmer adhered to its declarations, that she
didn’t apply forbidden operations to variables of the scalarset type.

The second is the one taken, e.g., by [28, 29], [31], and by us in [178]. Namely, given a
program in a language which doesn’t have a notion of scalarset types, for each variable
declaration, try to check whether it adheres to the restrictions of scalarset types and
thus could be safely declared to be a scalarset type.

The second approach possibly detects symmetries in a program, while the first appli-
cation only confirms declared symmetry.

Another related approach is Data Independence of [183], later generalised in [113]. It
applies to programs with certain infinite-domain data type. If variables of this type are
only assigned and compared for equality, both in the program and in a requirement,
then it is sufficient to consider only a finite domain.

The typical example is a network buffer carrying certain infinite data. As long as the
buffer doesn’t interpret the data and as long as the only impact on the buffer’s behaviour
is based on equality between two data values. It is sufficient to consider a finite domain
large enough to reach all possible equality/inequality pairs of variables.

For example, with two variables, a domain of size two is sufficient. This is similar to
QR in that the obtained finite domain is sufficient to have representative cases for all
possible cases in the infinite domain. It relates to symmetry detection as the limitation,
namely only assignment and comparison for equality, are sub-criteria of scalarsets, in
other words, satisfying the Wolper criteria is a pre-requisite for scalarsets [134].

We conjecture that Data Independence in the sense that there exists is a finite bisim-
ulation doesn’t extend to scalarsets in general because with scalarset-indexed arrays, the
number of variables is no longer finite. Yet one may still apply [183] to single classes,
for instance, if an HLL class is such a network buffer and buffer values of two differ-
ent instances are never compared directly, then the domain of the buffer values can be
reduced following [183].

9.2.2. Applications of Scalarset Types

This approach, not to detect symmetry in a given Kripke structure or to assume it given,
but to have a programming language with symmetric Kripke structures as semantics,
has been used in other settings than [89]. It is a building block of [127], which we employ
and extend in [49, 48] (cf. [134] for a survey of symmetry detection and declaration in
general).

In this section, we briefly discuss these applications of [89]. We’ll notice that what
they have in common is that the applications are tailored (and formally discussed) in
certain, limited settings, like Murphi or Cadence SMV which, for example, have a certain
fixed scheduling policy.

In Section 9.2.2, we generalise these results to the just introduced HLL with a generic
scheduling and generic communication means.
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In [127], the exact same approach of [89] is also used to ensure symmetry. That
is, in particular checking declared symmetry, not detecting symmetry . It adds to the
model-checker Cadence SMV a new type declarator to declare scalarset types and checks
whether a given Cadence SMV program is well-typed in the above sense.

An original extension in [127] is that they admit scalarset domains to be ordered and to
have some arithmetic operations on scalarset types, namely computing the predecessor
and successor. The semantics of programs in the extended language is then not fully
symmetric, that is, invariant under any permutation of the domain, but only under
permutations which preserve the order, namely circular permutations. Thereby, Cadence
SMV is able to model, for example, ring topologies of systems, for instance, a number
N of network nodes each connected to its left and right neighbour, and to apply QR.
Furthermore there is an example supporting inductive reasoning.

SymmSPIN [19] implements the quotient-based symmetry reduction for SPIN. They
apply [89] for detection of symmetry because SPIN’s input language Promela doesn’t
have means to explicitly declare symmetry. The same applies to TopSPIN [59], which
supersedes SymmSPIN as it is able to exploit more general symmetries.

In [178], we discuss the model-checker input language SMI [24, 179], which is not
tied to a particular model-checker but translates, among others, to VIS and SMV. SMI
doesn’t provide a scalarset type either, so we declare scalarset types in a separate file and
check for adherence. The tools also implements the second application, that is, checks
whether some of the existing types could alternatively be declared scalarset types.

9.2.3. Scalarset Types with Communication and Scheduling

The applications of [89] discussed in Section 9.2.2 have in common that if the crucial
property, that every well-typed program has a symmetric Kripke structure as semantics,
is proven, then the proof is conducted in the limited setting of the considered model-
checker.

That is, in the setting of the particular model-checker’s semantics of its input language.
This approach is natural, and there’s nothing wrong with it with the only small exception
that it doesn’t tell us, what the model-checker’s semantics has to provide in order to
ensure that the proof succeeds. In other words, the criteria listed in Section 9.2.1 don’t
apply universally, to any language, but only in the context of, for instance, the Murphi
model-checker.

This section sets out to answer the question what Murphi provides such that, within
that setting, the criteria of Section 9.2.1 work as intended. Employing the HLL as
introduced above is adequate for this discussion because in the HLL all aspects of the
semantics are parameterised, namely the scheduler and the communication medium. The
bottom line is that inputs of scalarset type shall symmetrically be set, the scheduler shall
treat symmetric states symmetrically, the communication medium shall treat symmetric
situations symmetrically, and only particular operations are allowed.

Once identified, it seems of course evident. Our more general look may have applica-
tions when studying symmetric data types for other languages than the known ones.
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Symmetric Inputs and Creation

An input and creation oracle O is symmetric in identities if and only if the identity
chosen for creation at action act in state p(s) is the permutation of the identity chosen
in state s, i.e.

∀ s ∈ S : O(p(s), act) = p(O(s, act)), (9.74)

and if the possible valuations of inputs in state p(s) are the permutations of the possible
input valuations in s, i.e.

O(p(s)) = p(O(s)). (9.75)

Here, permutation is meant to be applied point-wise, leaving values of non-object types
unchanged, i.e.

p({(u1, x1, d1), (u2, x2, d2), . . . })

= {(p(u1), x1, p(d1)), (p(u2), x2, p(d2)), . . . }).
(9.76)

How do we establish this property? In all of the applications discussed in Section 9.2.2,
symmetry of the input oracle is given. Inputs are completely free, that is, any legal value
can be chosen in any state.

Creation is different. First of all, most of the tools Section 9.2.2 don’t support creation
and destruction natively, thus it has to be encoded. The encoding employed in [178],
for example, is a symmetric modification on the one from [159] whose creation is not
symmetric but employs a round-robin strategy with a fixed starting point. Thereby, the
first created object obtains the same identity in all system runs, thus one cannot apply
Query Reduction. The modification employs inputs to choose identities for creation.

The model-checker SPIN is one exception as it supports process creation natively.
Interestingly, a closer investigation shows that the choice of process identities is not (!)
symmetric but follows a certain algorithm. In [2] there is an example demonstrating
non-symmetry, the consequently employed encoding of [2] is also based on inputs.

Symmetric Communication

The communication in the ETTS semantics M of an HLL model M is symmetric in
identities if and only if whenever an event E from individual u1 with parameters ~d is
ready to be consumed by individual u2 in state s ∈ S(M), i.e. if

s(u2).ǫ = ǫ0.u1
E(d1,...,dn)
−−−−−−−→ u2, (9.77)

then the same event is available in p(s) with permuted identities, i.e. then

p(s)(p(u2)).ǫ = ǫ0.p(u1)
E(p(d1),...,p(dn))
−−−−−−−−−−→ p(u2) (9.78)

Note that full symmetric communication is helpful, but not necessary to establish
symmetry in identities for M . The reason is that M can be symmetric by having the
scheduler to avoid states where communication goes wrong. That is, individuals of a
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certain class may never be scheduled; then it doesn’t play a role whether communication
towards them is symmetric or not because other objects cannot query the ether of a given
other objects. Adding the possibility of such queries in the expression language would
have as consequence a tighter link between symmetric communication and symmetry in
identities in M .

How do we establish this property? There is typically no reason for making com-
munication sensitive to identities, and thus non-symmetric. Yet for example the UML
has rather weak requirements on the communication medium and allows to defer events
and principally allows for priority queues. One could think of giving priority to certain
identities, which would clearly break symmetry.

Symmetric Interpretation for Conditions and Actions

An interpretation ι of function symbols is called symmetric in identities if and only if it
satisfies Def. 7.1.9 correspondingly. It yields the desired property

ιJcondK(s, id, θ) = ιJcondK(p(s), p(id), p(θ)) (9.79)

where the assignment is permuted point-wise, as usual. This property ensures that
conditions guarding transitions can be taken in permuted states if they can be taken in
the original state.

The general case of the syntactic detection given above works as follows. Given a set
of function symbols,

1. if all conditions and actions in the HLL model M are well-typed, and

2. if ι is an interpretation which is symmetric in identities,

then the semantics of HLL, the ETTS M , is symmetric in identities provided communi-
cation and scheduling don’t spoil it.

Note that establishing (1) amounts to a syntactic type check. The reason for re-
striction to assignment, equality, and array access is that a symmetric interpretation
of comparison for equality is easy to obtain: the natural comparison for equality is
symmetric.

Furthermore, constants or literals denoting particular identities are not admitted as
they are by nature not symmetric, arithmetics on identities are not admitted for similar
reasons.

The second desired property is

ιJP K(s0, u, θ,O)(s) = ιJP K(p(s0), p(u), p(θ),O)(p(s)) (9.80)

This property ensures that the application of a transition program to a permuted state
p(s) yields the permutation of the application to the original state s. In our simplified
setting, that is, without arrays and without loops in the action language, it follows di-
rectly by induction over the syntactic structure of transition programs, given a symmetric
interpretation, creation oracle, and communication.

We’ll see in Section 9.2.5 that the theory of singularities from Section 7.4 allows us to
treat HLL models which adhere to significantly weakened requirements.
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Symmetric Scheduling

A scheduler S for an HLL model M is called symmetric in identities if and only if for
each sequence

(u1, rC1,1), . . . , (un, rCn,n), n ∈ N0, (9.81)

scheduled in state s, the same sequence with permuted identities is scheduled in the
permuted state p(s), i.e. if

(p(u1), rC1,1), . . . , (p(un), rCn,n) ∈ S(p(s)) (9.82)

How do we establish this property?. Similarly to the communication medium, there is
in most cases no reason for making the scheduling sensitive to identities, and thus non-
symmetric. The model-checkers considered in the applications from Section 9.2.2 are
either fully concurrent, that is, each identity is scheduled in every step ([127]), explicitly
encode an interleaving [178], or provide interleaving natively, like SPIN as employed in
[2]. In particular explicitly encoded interleaving has to be designed properly to preserve
symmetry.

9.2.4. Symmetric HLL Models

Lemma 9.2.1 (Symmetric HLL Model). Let M be an HLL model with symmetric
conditions and actions in the sense of Section 9.2.3.

If ι, O, S, and E are a symmetric interpretation, oracle, scheduler, and ether in the
sense of Section 9.2.3 to 9.2.3, then

M := ιJM K(E ,S,O) (9.83)

is symmetric in identities. ♦

Proof. See Section A.4.

Note that the premises of Lemma 9.2.1 are sufficient but only in the following weak
sense necessary. If we drop one of the four premises, namely symmetry of interpretation,
oracle, scheduler, and ether, then we can easily construct an HLL model whose ETTS
is not symmetric in identities.

For example, with a non-symmetric interpretation of some operator the result of this
operator applied to the identity can be used to switch between two behaviours depending
on the identity. A non-symmetric oracle would propose inputs depending on identities
or prefer particular identities in case of creation. In both cases, we can construct an HLL
model where individuals use this non-symmetry to show different behaviour depending
on their identities.

A scheduler is non-symmetric if its choices depend on identities, that is, if there are
states where an individual u is scheduled while p(u) is not scheduled in the permuted
state, thus breaking symmetry.
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Finally, a non-symmetric ether would drop or prefer messages based on identities,
then the individual for which messages are dropped clearly behaves different than an
individual whose messages arrive, given the classes are sensitive for that message.

The latter case already indicates why the premises are only necessary in the following
weak sense. Namely, if the non-symmetry doesn’t have a visible effect, then the resulting
ETTS can of course still be symmetric in identities.

For example, non-symmetric inputs may simply be ignored by individuals and cre-
ation may not take place. Similarly, a non-symmetric ether could delay messages non-
symmetrically, resulting in a state where an event is consumable but in the permuted
state not, but if the ether manages to have all messages ready when they actually are
consumed, the delay is not visible.

9.2.5. Less Restricted Syntax:
Singularities and Symmetric Loops

Singularities

For simplicity, we introduced a strict definition of symmetric interpretation in Sec-
tion 9.2.3, which is also considered in [89]. It requires that functions on scalarset types,
in our case on identities, are completely symmetric. According to Section 7.4, where we
discussed how to treat singularities in QR, it is sufficient to know whether a function is
invariant under permutations that are consistent with a finer partitioning.

In other words, we’re interested in what we could call partitioning of a function’s
domain such that partitioning respecting permutations are symmetric.

For example, we could wish for an equivalent of “NULL” pointers in HLL, that is,
have a designated individual u to which links are directed if they are not in use.

To this end, we could have a 0-ary function symbol NULL of a class type τC . If
we choose N0 as domain of τC , and thus as set of identities, an interpretation ι could
map NULL constantly to 0. Then the partitioning of the NULL function in ι would be
{0} ∪̇ Id \ {0} because for each partitioning consistent permutation p we have

ιJNULLK(s, id, θ) = ιJNULLK(p(s), p(id), p(θ)) (9.84)

because if p is consistent with the permutation, then it leaves 0 unchanged, i.e. p(0) = 0,
and only permutes the elements of Id \ {0}.

Given the partitioning of each function symbol occurring in an HLL model, we can
construct a finest partitioning of the set of identities such that if a permutation is con-
sistent with the latter, then it is consistent with all of the original ones.

And if the resulting partitioning is finite, we can still apply QR to obtain finitely many
representative cases by Section 7.4.

Note that this line of thoughts allows to overcome the strict exclusion of literals (like
NULL) in [89]. Instead we can principally allow any number of literals (with a known
interpretation and partitioning) and automatically determine a unified partitioning by
simply identifying the literals occurring in the HLL model.
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s0 s1

s4 s3

s2

•
x : τ

ev1 [cond1]/act1

ev2 [cond2]/act2ev3 [cond3]/act3

ev4 [cond4]/act4

Figure 9.3.: Exemplary Syntax for non-atomic loops. The semantics could be to execute
the loop s2, s3, s4 for each possible binding of x and afterwards reach s1.

Symmetric Loops

If we had arrays in our HLL language as possible types of local variables, there were a
reason to have iteration in the action language, possibly looking like as follows.

forall x : τ do 〈act〉 od (9.85)

where τ is a scalarset type.
The semantics would be the usual one, to execute act on different bindings for x in

an arbitrary order. But we would have to require termination, which is possible for
for-loops with explicit start and end value and defined loop variable update, or if the
domain of τ in the example above is finite. This is the approach taken, for instance, by
tools with simulation and code generation facilities like Statemate.

Alternatively, one can think of loops iterating over links, a topic we were only able to
briefly address in earlier chapters for lack of time.

In both cases, one would be interested in having symmetric updates, that is, a preser-
vation of property (9.80).

The approach of [89] is to have a particular syntax similar to the one given above
and in addition to require that the outcome, that is, the valuation of variables affected
by the loop, is independent from the order in which the domain of the loop variable is
considered.

Natural examples are what are called collective operations or reductions in the parallel
programming community, like

• all commutative logical operations on array elements, e.g., computing the conjunc-
tion or disjunction of all array elements,

• all commutative arithmetical operations on array elements, e.g., computing the
sum of all array elements

This naturally extends to sending a message to all linked individuals when having loops
over links.

Interestingly, we observe that we can extend this pattern from atomic loops, that is,
loops executed atomically during a transition, to loops in the classes’ transition systems
if we invent a certain new syntax, namely a kind of for-all-loop as sketched in Figure 9.3.
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s0 s5 s1

s4 s3

s2

it := c.begin() [it = c.end()]/

[it 6= c.end()]/act1

ev2 [cond2]/act2ev3 [cond3]/act3

/it′ :=++it

Figure 9.4.: Alternative Syntax for symmetric, non-atomic loops. Orienting on pro-
gramming languages like C++.

In order to be symmetry preserving, the final local state should be independent from
the order in which x is bound to the values from the domain of τ . Sufficient, but strong
criteria directly carry over from the atomic case, for example iteratively updating a local
variable to finally carry the sum of array entries. This is an interesting topic in its
own right, but we chose not to elaborate on this here because it wouldn’t contribute
significantly to our overall aim.

But note that, while the ad-hoc syntax in Figure 9.3 can be considered as aesthet-
ically awkward, there is a straightforward implementation if the considered transition
programming language is something like C++ with its notion of iterators in the Standard
Template Library (STL).

The general case of iteration over the elements of a container instance c of container
class C, that is, C is a list or a vector or a set, is of the form

for (C::iterator it = c.begin(); it != c.end(); ++it)

. . . use iterator it . . . ;

where C :: iterator denotes an iterator type of container class C. The it is a new,
local iterator object, which is initialised with c.begin() which denotes the first element
in container c (where “first” is certainly understood differently for vectors (arrays) or
sets). Before executing the loop body, the condition it = c.end() is checked, that is,
whether the end of container c is reached. After executing the loop body, the iterator
is advanced to the next element (which is again understood differently for vectors and
sets).

In HLL such an action would spread over multiple transitions forming a non-atomic
loop (cf. Figure 9.4). Now in particular C++ allows to overload all participating classes
and methods, so we could have a class of symmetric iterators where the begin method
yields any element and the advancing operation ensures that all elements are visited in
any order. Then we had declared in a common programming language setting that this
loop is intended to be independent from iteration order, and could check whether the
employed operations are sufficiently commutative to establish that the outcome actually
is independent from order of iteration and conclude that symmetry is not broken.

An alternative syntax, for example considered in [9], could be the introduction of
a pick operation on links which chooses one link with the given name randomly and
removes that link from the considered individual until there are no links remaining. By
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s0 s5 s1

s3

s2

n := 0 [λ = ∅]/

[λ 6= ∅]/thisµ′ := pick(thisλ)

/thisλ′ := (thisλ) \ µ

/thisλ!E;n := n+ 1

Figure 9.5.: Alternative Syntax for symmetric, non-atomic loops. A “random pick”
function in combination with emptyness check for links.

︸ ︷︷ ︸

poss. infin.
︸ ︷︷ ︸

finite

M M
♯
D

M M ♯ M ♯
D

DD

J·K
D

� �

J·KJ·K♯

Figure 9.6.: Commuting Diagram Revisited (1). The parts of Figure 9.1 relevant for Sec-
tion 9.3. The shaded regions indicate the subject of Section 9.3.3, namely obtaining
a DTR abstraction by a syntactic transformation of the HLL model and the regular
HLL semantics.

the random choice, there is also no defined order in which the loop is executed. The
example in Figure 9.5 sends a message E to all individuals known via λ and counts the
number of messages in n.

9.3. DTR for HLL

By Section 9.2, we can see by looking at the syntax and semantics of an HLL model
whether the resulting ETTS is symmetric in identities, we don’t need to examine the
ETTS itself. For the DTR abstraction we want to have something similar.

If M is the ETTS of an HLL model M , and M ♯ its DTR abstraction under a certain
DTR D, then we want to construct M ♯ directly by modifying M into M

♯
D, such that

the regular HLL semantics yields the finite ETTS M ♯ (cf. Figure 9.6).

After introducing a normal form of navigation expressions in Section 9.3.1 and con-
ditional expressions Section 9.3.2 as technical aids, Section 9.3.3 is dedicated to define
the mapping called DD in Figure 9.6 and to establish the shaded simulation relation
from Figure 9.6 for the case of an interleaving semantics of HLL. In Section 9.3.4 we’ll
see that matters become significantly harder with a truly concurrent semantics, and are
only able to sketch some possible approaches.
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9.3.1. Navigation Expression Normal Form

The presentation of the following sections becomes significantly easier if we assume a
certain normal form of navigation expressions. The whole section can be done in the
original, rather natural syntax but would become extremely cluttered and unreadable
(cf. Example 9.3.5 where we transform (9.147) once directly in the original syntax and
once via the normal form).

General Idea

We want to consider the grammar

nav ::= p | this | thish | thishλ, (9.86)

where h ∈ ΛA is an auxiliary link, to define navigation expressions instead of (9.9).

This is not restricting generality because in the following we give a procedure to trans-
form any given transition program into this normal form by adding auxiliary variables
that are assigned before being used.

Definition 9.3.1 (Navigation Expression Normal Form). Let M be an HLL model. We
say M is navigation expression normal form if and only if all navigation expressions
appearing are particular instances of the form given by grammar (9.86), namely

1. navigation expressions on the right-hand side of assignments or in conditions are
of the form

thish′

thish′x

thish′x′.

(9.87)

In particular, parameters p don’t occur outside the right-hand side of assignments.

2. assignments are either of the forms

thish′ := this thish∁ ′ := this∁

thish′ := p thish∁ ′ := p∁ (9.88)

thish′ := thish′λ thish∁ ′ := thish′λ∁

or of the forms

thish′λ′ := nav

thish′x′ := expr,
(9.89)

where h is an auxiliary link and nav adheres to (9.87). ♦
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The general idea of the transformation procedure is to transform actions of the form

thisλµx := 0; (9.90)

into

thish′1 := thisλ;

thish′2 := thish′1µ′;

thish′2x′ := 0;

(9.91)

That is, a prefix of auxiliary variable assignments follows by the assignment in terms of
previously set up auxiliary variables. If the original program is well-formed, then the
transformation result is well-formed, too, because all auxiliary variables are assigned
before use.

Let-Expressions for Guarding Conditions

The transformation sketched above is defined rather straight-forward for actions, be-
cause we can employ assignments, but for guarding conditions we’ll extend the syntax
and semantics because conditions as defined above don’t have the possibility to update
auxiliary variables.

The new syntax of guarding conditions is

cond ::= let 〈act〉 in 〈term〉 (9.92)

instead of (9.92) with the following semantics.

ιJlet act in termK(s0, s, u, θ)
= ιJtermK(s0, ιJactK(s0, u, θ,O)(s), u, θ)

(9.93)

That is, the term term, which refers to auxiliary variables, is evaluated in the (temporary)
state obtained by applying the transition program act, which only updates auxiliary
variables, to state s.

Recall that this is just to ease the presentation, even the modification of syntax and
semantics doesn’t restrict generality.

Transformation: Terms and Expressions

The transformation of guarding conditions into normal form is defined as

termNF = let termL in termE (9.94)

where termL denotes a sequence of assignments of the form

thish′ := this or thish′2 := thish′1λ′ (9.95)

and termE the expression obtained from term by replacing all navigation expressions
with auxiliary links.

The helper transformations (·)L and (·)E are inductively defined over the syntax of
terms, expressions, and navigation expressions as follows.
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9. DTR/QR for Higher-Level Languages

1. 1L = ǫ, 1E = 1

2. (nav1λ1 = nav2λ2)
L = nav1

L;nav2
L,

(nav1λ1 = nav2λ2)
E

= (this last(nav1
L)λ1 = this last(nav2

L)λ2)

3. ¬termL = termL, ¬termE = ¬termE

4. (term1 ∧ term2)
L = term1

L; term2
L,

(term1 ∧ term2)
E = term1

E ∧ term2
E

5. pL = ǫ, pE = p
if p is of basic type, otherwise by 11. below

6. (navx)L = navL, (navx)E = this last(navL)x

7. (navx′)L = navL, (navx′)E = this last(navL)x′

8. (navλ)L = navL, (navλ)E = this last(navL)λ

9. (navλ′)L = navL, (navλ′)E = this last(navL)λ′

10. (f(expr1, . . . , exprn))
L = expr1

L; . . . ; exprn
L,

(f(expr1, . . . , exprn))
E = f(expr1

E, . . . , exprn
E)

11. pL = (thish′ := p), pE = last(pL)

12. thisL = (thish′ := this), thisE = last(thisL)

13. navλL = navL, (navλ)E = this last(navL)λ

Here, h denotes a fresh auxiliary link and. last(·L) denotes the last auxiliary link of
an expression, for example,

last(thish′1 := nav1; . . . ; thish′n := navn) = hn (9.96)

Well-definedness is ensured because this operator is never applied to an empty sequence
of auxiliary assignments.

When concatenating let expressions, we assume that conflicts with names of auxiliary
variables are solved by renaming.

Example 9.3.2 (Example: Navigation Expression Normal Form). The navigation ex-
pression normal form of the condition

term = ¬(thisλµx > 0) (9.97)
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is

termNF = let termL in termE = let thish′3 := this;

thish′2 := thish′3λ;

thish′1 := thish′2µ;

in ¬(thish′1x > 0)

(9.98)

because

termL = (¬(thisλµx > 0))L

(3.)
= (thisλµx > 0)L

(10.)
= thisλµxL; 0L;

(6.)
= (thisλµ)L;

(13.)
= (thisλ)L; thish′1 := this last((thisλ)L)µ;

(13.)
= thisL; thish′2 := this last(thisL)λ;

thish′1 := this last((thisλ)L)µ

(13.)
= thish′3 := this; thish′2 := thish′3λ;

thish′1 := thish′2µ

termE = (¬(thisλµx > 0))E

(3.)
= ¬((thisλµx > 0))E

(10.)
= ¬((thisλµx)E > 0)

(6.)
= ¬(this last((thisλµ)L)x > 0)

= ¬(thish′1x > 0)

(9.99)

assuming that “>” is a binary function symbol from the signature.

Similarly, the navigation expression normal form of the action

act = thisλµx := 0; (9.100)

is

actNF = actL; actE = thish′3 := this;

thish′2 := thish′3λ;

thish′1 := thish′2µ;

thish′1x′ := 0

(9.101)

♦
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Transformation: Actions

Based on the definitions for terms and expressions, the procedure can analogously be
extended to actions as follows.

1. (navx′ := expr)NF = navL; exprL; this last(navL)x′ := exprE

2. navλ′ := new CNF = navL; this last(navL)λ′ := new C

3. nav!E(expr1, . . . , exprn)
NF

= navL; expr1
L; . . . expr2

L; this last(navL)!E(expr1
E , . . . , exprn

E)

4. delete navNF = navL; delete this last(navL)

5. if cond then act1; else act2; fiNF

= condL; if condE then act1
NF; else act2

NF; fi
NF

Assignments of links are treated similar to assignments to local variables, the remaining
cases are trivial.

A given HLL model M is brought into normal form by applying the above transfor-
mations to all guarding conditions and all transition programs, plus adding the required
fresh auxiliary variables to the corresponding classes.

Preservation of Semantics

The main and general property of the transformations is that they’re semantics preserv-
ing.

Lemma 9.3.3. Let M = (S, S0 , R,L, e) be the semantics of an HLL model M , s, s0 ∈ S
system states, u an individual of M and θ an assignment of event parameters. Then
normal-form transformation as introduced above is semantics preserving for each expres-
sion term and each action act of M , i.e.

ιJtermNFK(s0, s, u, θ) = ιJtermK(s0, s, u, θ) (9.102)

and
ιJactNFK(s0, u, θ,O)(s) = ιJactK(s0, u, θ,O)(s) (9.103)

♦

Proof. By induction over the structure of terms and actions.

Now we can assume, without loss of generality, that all conditions and actions are in
the normal form of Def. 9.3.1.

Note that this straightforward transformation is in general far from minimal, that is,
there will be many duplicate definitions of auxiliary variables. Classical static analyses
employed in optimising compilers can be employed to eliminate these duplicates, basi-
cally doing a expression analysis . We’ll see later that minimality indeed plays a role in
the precision of the obtained abstract transition system; the more redundant auxiliary
variables, the less precise the obtained abstraction.
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9.3.2. Conditional Expressions

In the following transformations, we’ll make extensive use of conditional execution in
the style

“if we have a link to a non-concrete object, then behave like this, otherwise
behave like that”

This is certainly expressible with the if-then-else-fi action from Section 9.1. The
action in particular doesn’t require that all expressions in the else-branch are defined
when the then-branch is taken, which will be the case in many of the added conditional
executions.

For convenience, we’ll use a similar construct in the expression language, namely we
extend (9.8) to

expr ::= · · · | (〈expr1〉 ? 〈expr2〉 : 〈expr3〉) (9.104)

with the semantics

ιJ(expr1 ? expr2 : expr3)K(s, u, θ)

=







ιJexpr2K(s, u, θ) , if ιJexpr1K(s, u, θ) = 1

and ιJexpr2K(s, u, θ) defined

ιJexpr3K(s, u, θ) , if ιJexpr1K(s, u, θ) = 0

and ιJexpr3K(s, u, θ) defined

undefined , otherwise

(9.105)

We can use this construct without loss of generality because the extended language
can be expressed with the if-then-else-fi action, but this will typically be less concise
and less readable.

9.3.3. Syntactical DTR: Interleaving

By Section 9.1.3, we distinguish interleaving and concurrent schedulers. In this section,
we’ll concentrate on interleaving semantics of HLL before we turn to the concurrent case
in Section 9.3.4.

Common Requirements

In order to transform an HLL model M into an HLL model M
♯
D according to a given

DTR D such that M ♯, the ETTS of M
♯
D (bi)simulates D(M), we’ll employ the following

features.

Firstly, we require support for inputs, both for local variables and for links (which
is, cf. Section 9.1, somehow uncommon, and may be neglected by HLL variants and
instantiations).

Secondly, we’ll use the ability to choose a finite upper limit on the number of individ-
uals per class, that is, we need to be able to modify the creation oracle, which may not
always be possible in concrete HLL instantiations.
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We’ll assume to be notified by the new operation if the limit is reached; most naturally
by new C yielding ∅, then we can write an HLL transition program corresponding to

thish′λ′ := new C;

thish′λ∁′ := (thish′λ′ = ∅);
(9.106)

which sets the other-flag (see below) whenever creation fails. In addition, we’ll employ
an input which controls whether we try the new operation or directly employ another
identity. The reason is that the identity used in the first creation needn’t always be a
concrete individual, even if creation could still succeed.

Furthermore, there has to be a boolean basic type τB.

Note that the requirements named here are only sufficient to provide a syntactic
transformation of HLL models, we don’t address the question whether they’re necessary.

Possibly one or the other is expressible in terms of other HLL features, like having
inputs vs. having non-determinism. For example, being able to modify the creation oracle
could be circumvented by creating the finite number of individuals in advance and adding
a “manual” management of aliveness, but thereby one would lose any, possibly given,
native support for querying aliveness in HLL models.

Transformation: Types, Events, Classes

If we consider an HLL variant which is symmetric by nature (cf. Section 9.2), there
we hit an obvious problem. Namely, we then cannot consider ∁C from Chapter 6 to
be an identity of class C, because this identity is obviously not symmetric to the other
identities of class C.

In this section, we demonstrate how to solve this problem by adding new classes
and local variables to M

♯
D. In Section 9.4.3, where we demonstrate the syntactical

transformation on less strictly, and in particular not natively symmetric, array programs,
matters become slightly easier.

Given the premises of the preceding Section 9.3.3, that is, having support for basic
and object type inputs, let M be an HLL model with navigation expressions in normal
form according to Section 9.3.1.

Let

D = {(dC1
, IdC1

), . . . , (dCm , IdCm)} (9.107)

be a DTR in the sense of Chapter 6 where C1, . . . , Cm are disjoint classes from M . Then
M

♯
D = (T ♯,E ♯,C ♯, cond 0

♯) is obtained from M as follows.

Types The set of types T ♯ is obtained from T by adding object types for the new
classes (see below).

Events The set of events E ♯ is obtained from E by changing the events’ parameters as
follows. Let E ∈ E be an event in M with parameters p1,1, . . . , p1,n of types τ1,1, . . . , τ1,n.
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Then E ∈ E ♯ has parameters p2,1, . . . , p2,m of types τ2,1, . . . , τ2,m such that the first
parameters correspond, i.e.

p2,1 = p1,1, τ2,1 = τ1,1 (9.108)

and the i-th parameter, i > 1, is boolean if the parameter p1,j corresponding to it is of
object type, i.e.

τ2,i = τB. (9.109)

If τ1,j = τC , for some class C ∈ C , and the corresponding parameter otherwise, i.e.

p2,i = p1,j, τ2,i = τ1,j (9.110)

Example 9.3.4. Let E ∈ E be an event in M with parameters p1,1, p1,2, p1,3 of types
τ1,1, τ1,2, τ1,3, such that only τ1,2 is a basic type and the other two are object types.

Then E has parameter p2,1, . . . , p2,5 of types

τ2,1 = τ1,1, τ2,2 = τB, τ2,3 = τ1,2, τ2,4 = τ1,3, τ2,5 = τB (9.111)

in E ♯. ♦

Original Classes The sets of states and initial states of class C remains untouched.
Expressions and actions of transition labels are modified according to Section 9.3.3 below,
that is,

RC = {(s, ℓ∼, s′) | (s, ℓ, s′) ∈ RC}, (9.112)

where
ℓ∼ = ev [term∼]/act∼1 ; . . . ; act∼n (9.113)

following Section 9.3.3 below if

ℓ = ev [term]/act1; . . . ; actn. (9.114)

To support that translation, the set of local variables is extended as follows

1. For each link name λ pointing to a DTR’ed class, that is, a class covered by D, a
local, non-input variable λ∁ of boolean type is added to XC , keeping track whether
λ is pointing to a regular individual or to another one. That is, to ∁C in terms of
Chapter 6.

We call the boolean variable λ∁ the other-flag of λ (cf. Figure 9.7).

2. For each occurrence of a term of the form

nav1 = nav2, (9.115)

where both sides are either a parameter of an auxiliary variable as we consider M

to be in normal form, there is a fresh4 input variable i in XI,C
♯.

4not occurring in XI,C
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3. For each occurrence of an expression (in the sense of (9.8)) of the form

navx, (9.116)

where nav is either a parameter p or an auxiliary variable h because M is in
normal form, a fresh input i of the type of x is added to XI,C

♯; in particular in the
definition part of let-expressions.5

4. Similarly, input links are added to ΛI,C
♯ for each occurrence of an expression of

the form
navλ. (9.117)

5. For each occurrence of an action of the form

thish′λ′ := new C (9.118)

there is a fresh boolean input variable i in XI,C
♯.

In Section 9.3.3 we’ll assume that can access the input variables and links introduced
for particular occurrences of expressions.

Additional Classes For each variant of a class C in C ♯ as defined in previous paragraph,
if C occurs in the DTR D, we add an additional class C∁ to C ♯ (cf. Figure 9.7).

The set of states S∁ of C∁ comprises only a single state s0, which is also initial.
The local variables and links of C, with the only exceptions of this and xst, become

inputs in C∁, i.e.
X∁
I = XC \ {xst},Λ

∁
I = ΛC \ {this}, (9.119)

including the fresh inputs added in the treatment of C in the paragraph above, plus
fresh inputs added by the following transformation of transitions’ events.

Then for each transition (s, ℓ∼, s′) of C in M
♯
D, we have a transition (s0, ℓ

∼
0 , s0) in C∁

where ℓ∼0 differs from ℓ∼ only in that the event component is always ev and parameter p
(including the other-flag parameters p∁ where applicable) is replaced by a fresh input i
of the same type. In addition, there is a stutter transition (s0, /skip, s0) for idle steps.

The intuition is that any of these transitions is always enabled, assuming to have
received any event with any combination of parameters, independent from the state of
the ether.

Initial State Condition Adjusting the initial state condition such that it meets the
DTR’d initial states can turn arbitrarily complicated. For example, if the initial state
condition cond of M describes states where a particular number of individuals is alive
and connected in a certain topology, then the initial states of M

♯
D have to comprise

all combinations of concrete and other (in the sense of ∁ from Chapter 6) individuals
satisfying cond .

5we discuss the issue of precision and optimality in Section 9.3.3, the definition here only aims at
convenient definitions later in this section
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ldr

flwflw

(a) Illustrated abstract state. The light gray, left car is the individual with identity ∁ in the
sense of Chapter 6, the two white cars are concrete with regular identities. This abstract state
represents a platoon of size at least two, because the flw link from the middle to ∁ may be
dangling.

u0 : C∁ ldr •

ldr∁
2

flw •

flw∁
2

u1 : C ldr •

ldr∁
2

flw •

flw∁
2

• ldr u2 : C

2 ldr∁

• flw

2 flw∁×

(b) Representation in M
♯
D. The identity ∁ is represented by an instance of a dedicated class

C∁ . It is shown light gray because it doesn’t have local state, all variables and links are inputs.
The two instances of C show the additional boolean other-flag, which is set for the middle
individual indicating that its flw link points to ∁, independent from the actual destination,
the link may even be absent.

Figure 9.7.: Syntactical DTR. Figure 9.7(b) illustrates how an abstract state as shown in

Figure 9.7(a) is represented in a state of M
♯
D.

To stay focused, we don’t discuss this in general, but assume that the initial state is
the empty topology, that is, cond is of the form

∧

C∈C (M )

∀ p : τC . 0. (9.120)

Then cond ♯ is

cond ∧
∧

C∈C (M )

∃ p0 : τC∁ . ∀ p : τC∁ . p = p0. (9.121)

That is, we require that there is exactly one instance of each C∁ alive in the initial state.6

A solution for the general case may follow the ideas underlying the above transforma-
tions, yet the difference is that there is no “this” in cond to start from.

Transformation: Transitions

The intuition is as follows. In each transition modify the actions such that if a link
is not concrete (somewhere in a link expression), then “guess” the outcome employing
a fresh input, skip sending messages and deletion, and when creating, firstly decide

6note that this is actually more restrictive than necessary; in fact we only need that there is at least
one instance per C∁ class, having multiple instances doesn’t hurt
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1. 2. 3. 4.

this u1 u0

h1 u2 u0 u2 u0

h∁
1 0 1 0 1

this.ǫ′ ⊕ E( J ~exprK ) n/a ⊕ E( J~i K ) n/a

Table 9.1.: Effect of Send Action (9.122). In all four combinations of concrete and non-
concrete individuals. We use J ~exprK to denote the valuations of expr1, . . . , exprn in
the current state and J~i K to denote the values of the corresponding inputs.

1. 2. 3. 4.

this, h0 u1 u0

h∁
0 0 1

h1 u2 u0 u2 u0

h∁
1 0 1 0 1

h0x′ Jh1yK J i K n/a n/a

Table 9.2.: Effect of Local Variable Update (9.123). In all four combinations of concrete
and non-concrete individuals. We use Jh1  yK to denote the valuations of the
navigation expression in the current state, and similarly the corresponding input.

whether to set the link to non-concrete anyway, otherwise try creation, and set the link
to non-concrete if creation fails because the finite limit is hit.

Treat events similarly, that is, guard each link parameter with a boolean flag indication
whether it’s concrete or shadowy, and leave the rest alone.

The effect of this transformation is best understood on an example. From Chapter 6
we can distinguish four cases

1. action executed in a concrete individual, depending on or affecting another concrete
individual,

2. action executed in a concrete individual, depending on or affecting a non-concrete
individual,

3. action executed in a non-concrete individual, depending on or affecting another
concrete individual, and

4. action executed in a non-concrete individual, depending on or affecting a non-
concrete individual.

We’ll consider each case for the following actions

• sending an event, i.e. a transition program of the form

act = thish′1!E(expr1, . . . , exprn), (9.122)
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1. 2. 3. 4.

this, h0 u1 u0

h∁
0 0 1

h1 u2 u0 u2 u0

h∁
1 0 1 0 1

h0λ′ Jh1µK J i K n/a n/a

h1λ∁′ Jh1µ∁K J i∁ K n/a n/a

Table 9.3.: Effect of Link Update (9.124). In all four combinations of concrete and non-
concrete individuals. We use Jh1 µK to denote the valuations of the navigation
expression in the current state, and similarly the corresponding input.

• reading a local variable, i.e.

act = thish′0x′ := thish′1y (9.123)

• writing a local variable, i.e.

act = thish′0λ′ := thish′1µ (9.124)

where h1 may denote a concrete or non-concrete individual.

For simplicity we assume in the following discussion that h0 denotes this, that is, we
don’t distinguish the case where the individual for which the action is executed, always
this, is different from the modified one, here h0.

The effects of these actions in the four different situations are given by Tables 9.1 –
9.3, where we omit the “this” prefix in front of auxiliary links.

First of all, we can observe that neither sending events to the non-concrete individual
u0 nor modifying its local state or links have actually change the local state of u0 (cases
2. and 4. in Table 9.1 and cases 3. and 4. in Tables 9.2 and 9.3).

The technical reason is, that the flag h∁
1 (in case of sending) and h∁

0 (in case of assign-
ments) is set, which leads us into the skip-branch of (9.137), (9.134), and (9.135).

The intuitive reason is that there is no sense in sending to u0 because all transitions
in C∁ are guarded by ε. Similarly, there is no sense in writing any local variable of u0,
because they’re all inputs and whenever they’re accessed later by any other individual,
a local input of the accessing individual will be considered, not the local state of u0.

Four cases remain, two for sending and two for manipulation of variables and links.
When sending to a concrete individual (cases 1. and 3. in Table 9.1), a message is
sent even if the sender is non-concrete. The difference is only in the parameters. In
a concrete sender, the parameters are taken from the sender’s local state7 while the

7assuming for the moment that navigation to other individuals is not involved, the case with further
navigation is similar to the modification of variables and links as discussed below
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parameter values are determined by the corresponding inputs in a non-concrete sender
(cf. (9.137)).

When updating a local variable or link of a concrete individual (cases 1. and 2. in
Tables 9.2 and 9.2), the variable or link is indeed modified, yet the assigned value can
be different.

If the value for the right-hand side of the assignment is provided by a concrete indi-
vidual, than it is assigned as it is.

If a non-concrete individual is navigated, that is, if h∁
2 is set in the example, then

the corresponding input is considered. The intuitive reason is that link and other-flag
together encode a link to the ∁ identity (in terms of Chapter 6), which has local state

⊤, thus the upper bound of all possible values. In M
♯
D, this is represented by the

non-determinism of the considered corresponding input, thus in M
♯
D, we simply try all

possible values (cf. (9.134) and (9.135).

Auxiliary Links and Let-Expressions In addition to the auxiliary links from Section 9.3.1,
we’ll now employ boolean auxiliary variables to track whether the auxiliary links refer
to something sensible.

That is, we transform each assignment of an auxiliary link of the form thish′ := p
to

thish′ := p; thish∁′ := p∁, (9.125)

each assignment of the form thish′ := this to

thish′ := this; thish∁′ := 1, (9.126)

and each assignment of the form thish′ := thish′λ to

thish′ := (thish∁′ ? i : thish′λ);

thish∁ ′ := (thish∁′ ? i∁ : thish′λ∁)
(9.127)

where i and i∁ are the inputs corresponding to this occurrence of the navigation expres-
sion. Similarly for the primed case.

By Section 9.3.1, i.e. by navigation expression normal form, there are only these three
cases to consider. This applies to both, assignments in let-expressions and assignments
in regular action sequences. The intuition is again that, when navigating via a link to
another individuals, we may reach any regular individual of this type and even again
another individual, while when navigating via a legal link, we have to consider the local
state of that regular individual. The other-flag has to be updated accordingly in both
cases.
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Terms A term term of the form nav1 = nav2 is transformed as follows. By Def. 9.3.1,
the navigation expressions navi are of the forms thish′i, i = 1, 2, and we set

(thish′1 = thish′2)
∼

=
(

thish∁
1

′
∧ thish∁

2

′
? iterm

:
(
¬thish∁

1

′
∧ ¬thish∁

2

′
? thish′1 = thish′2 : 0

))
(9.128)

where iterm is the input from XI responsible for this occurrence of term. Similarly for
parameters, where we assume a pair of p and p∁ for parameters of object type. If term
is of any other form, then term∼ = term.

Expressions The transformation of expressions is defined inductively following the
grammar given in (9.8).

1. p∼ = p, note that p is of basic type by Def. 9.3.1.

2. Navigation expression are in normal form by assumption, thus navigation expres-
sions of object type are of the form thish′ (primed or unprimed) and left alone,
that is, we set

(thish′)∼ = thish′. (9.129)

3. For the same reason, navigation expressions of basic type are of the form this
h′x (primed and unprimed) and we set

(thish′x)∼ =
(

thish∁′ ? ih,x : thish′x
)

(9.130)

where ih,x is the input responsible for this occurrence of navigation to x via h.

4. A function symbol evaluates to an input whenever at least one of the arguments
is a link to another individual, that is,

f(expr1, . . . , exprn)
∼ = (

∨

1≤i≤n

expr∁
i ? i : f(expr∼1 , . . . , expr

∼
n )) (9.131)

where expr∁
i is this h∁′ if expri is of an object type, that is, by Def. 9.3.1 a

navigation expression of the form thish′, otherwise it is 0.

Note that the transformation of function symbols also affects the precision of the
ETTS resulting from M

♯
D compared with DTR applied to the ETTS of M .

The definition above is rather coarse, in particular if singularities and functions op-
erating on identities are permitted. For example, checking whether a given navigation
expression denotes a particular identity can distinguish between ∁ and regular identities,
so there shouldn’t be an input involved in (9.131), instead we could provide a particular
transformation per function symbol.

We’ll get back to this issue when discussing precision in more general in Section 9.3.3.
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Actions Navigation expressions are in normal form (9.86) also in actions, we exemplary
show the case h, the case p is defined similarly. The transformation of actions is defined
inductively following the grammar given in (9.17).

1. skip∼ = skip

2. By Def. 9.3.1 we only have to consider the cases of assignments given by (9.88)
and (9.89). Assignments to auxiliary links of the form (9.88) are left unchanged
except for the following two cases, where only the right-hand side changes.

(thish′ := thish′λ)∼

= thish′ :=
(

thish∁ ′ ? ih,λ : thish′λ
)

(9.132)

3. (thish∁′ := thish′λ∁)∼

= thish∁′ :=
(

thish∁ ′ ? ih,λ∁ : thish′λ∁
)

(9.133)

4. In assignments to variables and links via auxiliary links of the form (9.89), the
left-hand side changes as well; namely if the modified objects is a non-concrete
one, a skip statement is executed instead.

(thish′x′ := expr)∼

= if thish∁′ then skip; else thish′x′ := expr∼; fi (9.134)

5. (thish′λ′ := thish0)
∼

=if thish∁′ then skip;

else thish′λ′ := thish′0; thish′λ∁′ := thish∁
0

′
; fi

(9.135)

This is the only form we need to consider by Def. 9.3.1.

6. (thish′λ′ := new C)∼

= if i then thish∁
0

′
:= 1;

else thish′0 := new C; thish∁
0

′
:= (thish′λ′ = ∅); fi;

if thish∁′ then skip;

else thish′λ′ := thish′0; thish′λ∁′ := thish∁
0

′
; fi

(9.136)

where i is the boolean input and h0 and h∁
0 form an auxiliary link corresponding

to this occurrence of the creation action.
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7. (thish′!E(expr1, . . . , exprn))
∼

= if thish∁′ then skip;

else thish′!E(expr∁
1 , . . . , expr

∁
m); fi

(9.137)

where the parameter values di are determined as follows.

Let 1 ≤ i ≤ n denote a parameter of E in M and let 1 ≤ j ≤ m denote the
corresponding parameter of E in M

♯
D. Then

expr∁
j = expr∼i (9.138)

and, if the i-th parameter of E in M is of an object type, then

expr∁
j+1 = thish∁′. (9.139)

This is the only possible form of exprj according to Def. 9.3.1.

8. (delete thish′)∼

= if thish∁′ then skip; else delete thish′; fi (9.140)

9. (if cond then act1 else act2 fi)∼

= if cond∼ then act∼1 else act∼2 fi (9.141)

10. (nav1;nav2)
∼ = nav∼1 ;nav∼2

Abbreviations Note that the combination of, for instance, h and h∁ keeps track whether
h points to ∁ (in the sense of Chapter 6) or to a concrete individual.

We can introduce the following syntactical (!) abbreviations (or macros) to ease the
consistent writing of transformed HLL models.8

We write thish′ = ∁ and thish′ 6= ∁ as an abbreviation for

thish∁ ′ = 1 and thish∁′ = 0. (9.142)

Furthermore, we write thish′1 := thish′2 as an abbreviation for the sequence

thish′1 := thish′2; thish∁
1

′
:= thish∁

2

′
; (9.143)

and similarly for the other possible combinations of object type expressions on the left
and right-hand side of the assignment (cf. Def. 9.3.1).

We write
navλ′ := (thish′ = ∁ ? (iµ, i

∁
µ) : thish′µ) (9.144)

8And, of course, to further the reader’s confusion.
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for

navλ′ := (thish′ = ∁ ? iµ : thish′µ)

navλ∁′ := (thish′ = ∁ ? i∁µ : thish′µ∁)
(9.145)

And we use the common abbreviation if expr then act; fi for

if expr then act; else skip; fi. (9.146)

Example 9.3.5 (Artificial). The transformation of the term

thisλµx > 0 (9.147)

is

(
thisλ∁ ? (i∁µ ? ix : iµx)

: (thisλµ∁ ? ix : thisλµx)
)
> 0

(9.148)

where iµ, i
∁
µ is a pair of input link and boolean input variable corresponding to µ and ix

is an input corresponding to x.

Equation (9.147) reads out loud roughly as follows. If thisλ points to a non-concrete
individual, as indicated by thisλ∁ being set, then navigating µ from there on may yield
anything, because a non-concrete individual doesn’t have concrete information. Thus we
consider the input pair iµ, i

∁
µ as providing the result of the navigation.

The result may again be a non-concrete individual, as indicated by i∁µ, then we’re
using any value x could possibly have, provided by the input ix. Only the last branch
does regular navigation as it guarantees that both λ and µ point to concrete individuals.

In navigation expression normal form this becomes

let thish′3 := this; thish∁
3

′
:= 0;

thish′2 := (thish∁
3

′
? iλ : thish′3λ; );

thish∁
2

′
:= (thish∁

3

′
? i∁λ : thish′3λ∁);

thish′1 := (thish∁
2

′
? iµ : thish′2µ);

thish∁
1

′
:= (thish∁

2

′
? i∁µ : thish′2µ∁);

in ¬(thish∁
1

′
? ix : thish∁

1x > 0)

(9.149)

which significantly longer than (9.147), but we consider it to be more readable because
each input occurs exactly once and each pair of lines conducts only a single navigation
step. In addition, independent from the readability of the result, we consider it signifi-
cantly easier to define the transformation for the normal form.
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With the just introduced abbreviations, it turns into the slightly more readable form

let thish′3 := this; thish∁
3

′
:= 0;

thish′2 := (thish3
′ = ∁ ? (iλ, i

∁
λ) : thish′3λ; );

thish′1 := (thish2
′ = ∁ ? (iµ, i

∁
µ) : thish′2µ);

in ¬(thish∁
1

′
? ix : thish∁

1x > 0)

(9.150)

♦

Example 9.3.6. DTR for Car Platooning Merge For example consider the label

req(p)/flw ′ := p; p!ack() (9.151)

of the transition from local state fa to ld (cf. Figure 9.2).
Its navigation expression normal form is

req(p)/thish′1 := p; thish′2 := this;

thish′2flw ′ := thish′1; thish′1!ack()
(9.152)

according to Sections 9.3.1 and 9.3.1.
The DTR transformation turns it into

req(p, p∁)/thish′1 := p; thish∁
1

′
:= p∁;

thish′2 := this; thish∁
2

′
:= 0;

if thish∁
2

′
then skip; else

thish′2flw ′ := thish′1; thish′2flw∁′ := thish∁
1

′
;

fi;

if thish∁
1

′
then skip; else thish′1!ack(); fi

(9.153)

because all navigation expressions of object type, in particular event parameters, obtain
a companion p∁. The assignment is modified according to (9.135).

With the just introduced abbreviations, it turns into the slightly more readable form

req(p, p∁)/thish′1 := p;

thish′2 := this;

if thish2 6= ∁ then thish′2flw ′ := thish′1; fi;

if thish1 6= ∁ then thish′1!ack(); fi

(9.154)

♦

Note that, as we’ll see in Chapter 10, the Car Platooning protocol of Figure 9.2 is
a typical example for the DCS language, which chooses a very closed view on class
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instances in the sense that class instances are not allowed to read or modify each other’s
local variables or links. This is achieved by exchanging identities exclusively via event
parameters and having updates only for own local states and links.

That is, DCS doesn’t make use of assignments like this one

thisλx′1 := thisµx2, (9.155)

which sets local variable x1 of the individual denoted by this λ, which may well be
different from this, to the value of x2 in thisµ.

For this reason, there is enormous potential for optimisation in the transformation,
for example, the first condition in (9.154) always evaluates to 1 in C and to 0 in C∁.
We’ll discuss this briefly in Section 9.3.3.

Technical Optimisations

Note that the there’s large room for optimisation in the above transformation. The first
aim here is to support the presentation and the discussion of soundness in Section 9.3.3,
instead of being optimal in any way. Although this comes for the price of precision as
discussed in Section 9.3.3.

The most obvious issue is the inflation of duplicate auxiliary variables and inputs.
For example, we have for simplicity a dedicated auxiliary variable per appearance of a
navigation expression and we have the redundant rewriting of

this to thish′ := this; thish′ (9.156)

in order to have fewer cases to distinguish.

The latter can easily be removed by re-substituting this for h after the transformation.
The former can be addressed by a more sophisticated normalisation scheme taking care
of common sub-expressions and sharing auxiliary variables between multiple different
occurrences of expressions, which would also improve precision (cf. Section 9.3.3).

Similarly, if it’s beneficial to minimise the number of employed inputs, they can often
be shared between different transition programs, and even within the same one if they’re
independent. For example, the transition program

if expr then thisx′ := thish′0x;

else thisy′ := thish′1y; fi
(9.157)

is transformed into

if expr then thisx′ :=
(

thish∁
0

′
? i0 : thish′0x;

)

;

else thisy′ :=
(

thish∁
1

′
? i1 : thish′1y;

)

; fi
(9.158)

Now if x and y are of the same type τ , then a single input i of type τ can be employed
replacing both, i0 and i1, because they’re read in independent branches of the conditional
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∁ ∈ IdC

id1 ∈ IdC
s♯

id0 ∈ IdC∁

id1 ∈ IdC
sD

f

f

Figure 9.8.: Simulation Relation. State (and topology) s♯ is in simulation relation with sD.
The differences are that ∁ in s♯ is labelled with local state ⊤ by Chapter 6 while
id0 has a regular local state and that ∁ is an identity from sort IdC while id0 is
an identity from the sort corresponding to class C∁ as added in the transformation
procedure. Note that the this links are omitted in the pictures.

statement. This independence is necessary for soundness, otherwise we may lack abstract
transitions in MD that are actually possible in the concrete M .

An even more sophisticated optimisation would consider as few inputs as possible and
of as limited domain as possible. For example, instead of turning

thish′x > 0 (9.159)

into (

thish∁′ ? i0 : thish′x
)

> 0 (9.160)

with i0 of the same integer type as x, it can be turned into

thish∁′ ? i1 : (thish′x > 0) (9.161)

with a boolean i1.

The general principle is to shift consideration of inputs outwards in the parameters of
function symbols or logical expressions .

Soundness

Lemma 9.3.7 (Soundness of Syntactic DTR). Let M be an HLL model in navigation
expression normal form and let E be an ether, S an interleaving scheduler, O an input
and creation scheduler, and ι an interpretation of function symbols.

Let D be a DTR and M
♯
D the HLL model obtained by the transformation from Sec-

tions 9.3.3 and 9.3.3. Then

D(ιJM K(E ,S,O)) � ιJM ♯
DK(E ,S,O♯)) (9.162)

where the latter uses the identities provided by D as the domain D(τC) of classes C and
where O♯ corresponds to O except that it, in each state, permits to create any individual
at any time and provides any value for the inputs introduced in the transformation to
M

♯
D. ♦

Proof. See Section A.4.
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Note that Lemma 9.3.7 doesn’t require the scheduler, oracle, etc. and HLL model to
be symmetric. Recall from Chapter 8 that DTR can well be applied independent from
QR. But only in combination do we reach a finite set of representative cases for which
we have finite abstractions.

Thus, the workflow from Chapter 8 remains unchanged:

1. Verify that the HLL model M is symmetric.

2. Choose (finitely many) representative cases depending on considered property or
by other heuristics.

3. For each case, verify a DTR abstraction M
♯
D.

Finiteness

Recall from Chapters 6 and 8 that the DTR abstraction of an ETTS is finite if there
is an upper bound on the number of outgoing links and if the set of local states per
individual is finite.

The first requirement is satisfied as we consider single link HLL models since Sec-
tion 9.1.1. But the second requirement is a bit intricate because the local state of an
individual is with HLL not only determined by the local variables, but also by the ether.
We’ll briefly re-consider this issue in Section 9.4.3 below.

The basic conclusion is that we have to require that the ether is somehow bounded,
that is, either we know that the HLL model doesn’t “flood” queues or we assume a finite
ether which dismisses events after the queue is filled. Or that we have to apply another,
orthogonal, abstraction to treat unbounded ethers, for example in case the ether behaves
like ordinary FIFO message queues, there are numerous proposals of abstractions, for
instance, representing queue content by regular expressions.

The bottom line is to note (again) that the QR/DTR approach only treats the un-
boundedness stemming from the topology structure, that is, from unbounded creation
and destruction of individuals, but not other sources of unboundedness like infinite-
domain local variables, or hybrid behaviour, or real-time.

Levels of Precision

By Lemma 9.3.7, we have that the ETTS MD of the syntactically transformed HLL
model M

♯
D simulates the DTR abstraction D(M) of the ETTS of the original M . The

immediate next question is the other direction, that is, whether D(M) simulates MD,
which would tell us that we obtain exactly D(M) by our syntactical transformations
from this section.

Given exactly the introduced syntactical transformations, the answer is negative. We’ll
see why this is the case and in how far we can improve the transformation in the following
paragraphs.

The last paragraph of this section discusses further possible improvements of the
transformation, which don’t directly affect the precision but may lead to more compact
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sC
0 sC

1

E/thisλ′ := thisµ′;
thisx′ := (thisλ′ = thisµ′)

Figure 9.9.: One Transition of C.

encodings in Section 9.4. Some of the countermeasures have already been identified in
[178], yet at that time only under the aspect of reducing complexity in the employed
array program encoding (cf. Section 9.4).

We can understand why, in general, we don’t have MD ≃ D(M) = M ♯, i.e. bisim-
ulation, by considering what we would need to prove this relation. Namely given the
simulation relation H from Lemma 9.3.7 and a pair of states (s♯, sD) ∈ H, we have to
show that if there is a transition from sD to s′D in MD, then there is a transition from

s♯ to a H-related state s♯
′
in M ♯.

This is in general not the case for two reasons

1. M ♯ reflects aliasing in action sequences, that is basically reachability of the same
individual by different navigation expressions established by a single local transi-
tion.

2. M ♯ reflects properties of graphs, like transitivity, because topologies in M ♯ are
graphs with regular links, while there is the artificial encoding with other-flags in
M

♯
D.

In the following, we’ll have examples for both cases and discuss countermeasures in
the transformation.

Aliasing Aliasing in action sequences is probably best understood by way of an example.
Assume an HLL model M with a class C having two links λ and µ, both of object type
τC , that is, pointing to instances of class C, and a local variable x of a boolean type.
Further assume that there are at least two states sC0 , sC1 ∈ SC and we have at least the
transition shown in Figure 9.9, that is, when receiving an event E, we change state to s1
and assign to x whether λ points to the same individual as µ. As λ is updated first, and
because the primed variants are compared, the outcome is actually fixed: x necessarily
obtains value 1, independent from the remaining local state of the individual for which
the transition is executed and independent from the global state in which it executes.

This is depicted in Figure 9.10(a). Let M be the ETTS of M . Then s0 is a (global)
state (or topology) of M with individual u in a state where the local state is sC0 (not
shown in the picture), x is 0, µ points to a different individual, and λ is not set.

Assuming an event E ready in the ether (also not shown in the picture), there is a
M -transition to state s1 by the (local) transition from Figure 9.9 following Section 9.1.2.

The first of the local micro-steps is shown in parentheses as s′0: the link λ is updated
to point to the individual denoted by µ.
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u : x=0
µ

s0

(

−→RC

u : x=0

λ

µ

s′0

)

−→R(M)

u : x=1

λ

µ
s1

(a) In the concrete ETTS M , there is a transition between topologies s0 and s1 by applying the
action sequence from Figure 9.9 to s0. State s′0 is the intermediate state obtained from s0 by applying
the first assignment (cf. Section 9.1.2).

∁
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(b) In the DTR abstraction of M following Chapter 6, there is a transition to the abstraction of s1

above, but not to a variant where x evaluates to 0.
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(c) In the abstraction of M obtained via M
♯
D, the transition to the variant of sD,1 where x evaluates

to 0 exists. The identity id0 belongs to the class C∁ introduced by the transformation process.

Figure 9.10.: Aliasing in action sequences.

Then the assignment of x yields 1 because the comparison between λ and µ is carried
out in s′0 where they’re equal. This outcome is, as said above, obviously independent
from the individual and from its relation to others.

By Chapter 6, the state set of the DTR abstraction is defined as the DTR’d topologies
of the original systems and transitions are introduced by an exists/exists pattern. That
is, there is certainly a transition between the abstract states D(s0) and D(s1) in D(M)
because s0 and s1 are concretisations of these two states and in transition relation (cf.
Figure 9.10(b)).

But there is no transition from s♯0 to the abstract state s♯2, which differs from s♯1 only
in x having value 0 for u, because in M there is no transition between any concretisation
of s♯0 and s♯2.

In the ETTS of M
♯
D, the corresponding transition does exist (cf. Figure 9.10(c)) for

the following reason. Consider the action sequence of the transition in Figure 9.9. In
normal form, the second assignment becomes

thish0x′ := (thish′1 = thish′2) (9.163)

which, by (9.128) becomes

thish0x′ :=
(

thish∁
1

′
∧ thish∁

2

′
?

i :
(
¬thish∁

1

′
∧ ¬thish∁

2

′
? thish′1 = thish′2 : 0

)) (9.164)
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where i is the boolean input introduced for this term.
When executing (9.164) on sD,0, both h1 and h2 have the other-flag set, thus the

outcome of the comparison is given by i, which may well not hold, thus assigning 0 to x
and leading to the global state sD,2.

The point is that the DTR of Chapter 6 operates on the ETTS where certain aspects
of the HLL model are already lost, or have become atomic. For example, the kind
of aliasing just discussed above. The syntactically obtained abstraction has access to
each HLL action, it has a non-atomic view, which may give rise to additional spurious
behaviour.

A similar, but slightly different example would be the sequence of actions

thisx′ := thish′x′;

thisy′ := thish′x′
(9.165)

by which the local variables x and y obtain the same value in the concrete HLL.
After a DTR transformation, we have something like

thisx′ := (thish∁′ ? i1 : thish′x′);

thisy′ := (thish∁′ ? i2 : thish′x′)
(9.166)

where i1 and i2 are different inputs corresponding to the different occurrences of navi-
gation expressions. Thus in MD there will be spurious transitions leading to all combi-
nations of different values in x and y.

Instances of the latter example can be solved by a more restrictive normal form.
Namely, one has to ensure that for a common expression, always the same input is
considered.

This can be achieved by extending the normal form such that auxiliary variables are
used for common expressions, for example, (9.165) would turn into

thish′0 := thish′x′;

thisx′ := thish′0;

thisy′ := thish′0

(9.167)

Then the unchanged transformation procedure yields

thish′0 := (thish∁′ ? i1 : thish′x′);

thisx′ := thish′0;

thisy′ := thish′0

(9.168)

which preserves that property that x and y obtain the same value. Thus the ETTS of
this M

♯
D won’t have the spurious transition to states with different values of x and y.

The former example can be treated similarly but in addition requires a modification
of the transformation procedure. Firstly, one would require to have the second action
from Figure 9.9 in a normal form like

thisx′ := (thish′ = thish′), (9.169)
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sC
0 sC

1

E/thisx′ := 0;
thisy′ := (λ = µ ∧ µ = ν);
if thisy′ then thisx′ := (λ = ν); fi

Figure 9.11.: One Transition of C.

that is, identify that the same value is compared for equality.
Then a modified transformation could directly yield

thisx′ := 1. (9.170)

This is basically a simplification of expressions based on a static analysis of the transi-
tion program, a general topic of compiler theory with differently expensive and precise
solutions which can also be applied to HLL transition programs.

What the classes of reasons for spurious behaviour defined by the two examples intu-
itively have in common, is that MD is the more precise, the more the transition programs
define common expressions only once and avoid aliasing within one and the same tran-
sition program.

Consequently we conjecture, that in the extreme case, that is, for an HLL with only
a single action per transition and without impacts of graph properties as discussed in
the following, the abstract transition system MD will bisimulate the DTR abstraction
D(M) obtained by Chapter 6.

Yet HLL of this form cannot be recommended because splitting all actions into atoms
typically first of all yields a significantly increased number of local states which multipli-
cate up when forming the global state space. Secondly, it is desirable to leave as much
actions as possible together at a transition because these combinations are preserved
(or reflected) by the syntactical DTR. This is discussed in more detail in Section 9.3.3
below.

Graph Properties A second difference between the abstract ETTS M ♯ obtained via
Chapter 6 and MD obtained via M

♯
D is that in MD, when considering links to ∁ (encoded

by other-flags) the worst case is assumed in form of inputs. This doesn’t preserve some
properties of graphs, which do propagate to M ♯ similar to the first example for aliasing
above.

The following example shows how this difference can lead to spurious transitions in
MD. Assume an HLL model M with a class C having three links λ, µ, and ν, all of
object type τC , that is, pointing to instances of class C, and two local variables x and y
of a boolean type.

Further assume that there are at least two states sC0 , sC1 ∈ SC and we have at least
the transition shown in Figure 9.11, that is, when receiving an event E, we change state
to s1 and assign to x whether λ points to the same individual as ν.

In M , the ETTS of M , the only possible valuations of x and y in local state sC1 are
x = y = 0 and x = y = 1 because equality in topologies is transitive, the truth of the
expression assigned to x is implied by the expression assigned to y.
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(a) In the DTR abstraction of M following Chapter 6, there is no transition to a topology where x
and y have different values in local state sC

1 .
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sD,2
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(b) In the abstraction of M obtained M
♯
D, the transition to the topology where x and y evaluate

differently exists.The identity id0 belongs to the class C∁ introduced by the transformation process.

Figure 9.12.: Graph properties in action sequences.

Similarly to the examples in the previous section (cf. Figure 9.10), there is no tran-
sition to a situation where u is in local state sC1 and x and y have different values
(cf. Figure 9.12(a)). In MD, this transition is present (cf. Figure 9.12(b)). The reason
looks similar to the second example of aliasing above, namely the action sequence from
Figure 9.11 is turned into

thish′0 := thisλ; thish′1 := thisµ; thish′2 := thisν;

thisy′ :=
(

h∁
0

′
∧ h∁

1

′
? i0 :

(
¬h∁

0

′
∧ ¬h∁

1

′
? h′0 = h′1 : 0

))

∧
(

h∁
1

′
∧ h∁

2

′
? i1 :

(
¬h∁

1

′
∧ ¬h∁

2

′
? h′1 = h′2 : 0

))

;

if thisy′ then

thisx′ :=
(

h∁
0

′
∧ h∁

2

′
? i2 :

(
¬h∁

0

′
∧ ¬h∁

2

′
? h′0 = h′2 : 0

))

; fi

(9.171)

in M
♯
D by the syntactical transformation (9.128) where i0, i1, i2 are inputs corresponding

to the particular occurrences of expressions.

With i0 = i1 = 1 and i2 = 0 we can justify the spurious transition to sD,2 in Fig-
ure 9.12(b).

The reason only looks similar to the second example of aliasing above because it cannot
be treated by ensuring that common expressions are accessed via the same auxiliary vari-
able. This is already the case for (9.171), there are no duplicate expressions. The reason
for the spuriousness is that the uninformed usage of inputs doesn’t respect properties of
graphs as, for instance, transitivity of the comparison for equality.

This issue of the example can be addressed by grouping all comparisons of links and
considering (by external assumptions, as in Section 6.4 on approaches to refinement)
only those adhering to the rules in graphs.
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In the example, we’d have

thisx′ := 0; thish′0 := (λ = µ);

thish′1 := (µ = ν); thish′2 := (λ = ν);

thisy′ := (thish′0 ∧ thish′1);

if thisy′ then thisx′ := thish′2; fi

(9.172)

with boolean auxiliary variables h0, h1, h2. The external assumption would comprise

h0 ∧ h1 =⇒ h2. (9.173)

We conjecture that the approach generalises to single link HLL but will benefit from a
normal form addressing aliasing as discussed in the previous section. Together with this
treatment, we further conjecture that we find MD to simulate D(M).

Another, far more drastic approach, would be to only consider HLL without compari-
son for equality – or, in other words, the fewer comparisons for equality in HLL the less
spurious is MD compared to D(M).

Towards Bisimulation Given the absence of aliasing and the preservation of graph
properties, we conjecture that the bisimulation proof as outlined above is possible and
yields that MD ≃ D(M) basically is M ♯.

Then given states sD, s
′
D in the transition relation of MD, we can consider the valua-

tions of inputs and the branches of conditional expressions which justify this transition
and can re-construct a topology of M ♯, because absence of aliasing and preservation of
graph properties is supposed to ensure that such a topology exists. Subsequently, we
show that applying the scheduled transition program actually leads to a topology, which
is in simulation relation with s′D.

Reflection Properties

From the construction it is obvious that C∁ is far from complete chaos. Instead, it
adheres to the sequence of actions given by transition programs.

For example, if an event E1 is sent only on the same transition as an E2 event, then
there will never be an alone E1 in the abstract system.

And if some events are not sent at all by instances of a particular class, then they’ll
also not sent in the abstract transition system. Thereby, the environment of the con-
crete individuals provided by the non-concrete instances automatically adhere to some
ordering invariants of the system.

9.3.4. Full Concurrency

In Section 9.3.3 we’ve discussed the interleaving case with the outcome that it’s prin-
cipally possible to obtain D(M) (or something arbitrarily close to it) by syntactical
modification of the HLL model and the regular ETTS semantics of HLL. The intuition
is, that if only one “thing” can happen at a time, then this thing is either happening
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sC
0 E [thisx 6= 0]/thisx′ := 0

sD
0 F [thisλx = 0]/thisλx′ := 1; thisλ!E()

Figure 9.13.: Transitions of C and D.

u2: x=0 u3: x=0

u0 u1

λ λ

s0

−→R(M)
u2: x=1 u3: x=1

u0 u1

λ λ

s1

(a) Two instances u0 and u1 of class D and two
instances u2 and u3 of class C.

u2: x=0 u3: x=0

u0 u1

λ λ

(b) Putting a spotlight on
only the instances of class C.

Figure 9.14.: Full concurrency example.

driven by a concrete individual or by another one. That is, the overall behaviour is an
arbitrarily sequence of concrete and non-concrete transitions, and all non-concrete tran-
sitions with an effect to the concrete part can be mimicked by scheduling the instance
of the additional class C∁. With full concurrency, the situation is significantly harder.

General HLL Example

As an example, assume an HLL model M with at least two classes C and D. Class C
has a local boolean variable x and D a link λ pointing to C objects. Both classes have
a single state with a single transition as shown in Figure 9.13.

Further assume a topology comprising s0 shown in Figure 9.14(a) and concurrency,
that is, multiple individuals may take local transitions simultaneously in each global
state.

Now if there is one F -event ready to consume for each of the two shown D instances
in s0, and if u0 and u1 in Figure 9.14(a) consume the event simultaneously, then they
simultaneously update the x variable of their C-object to 0 and send an E-event, leading
to global state s1 Figure 9.14(a) where the local variables of both C-objects have value
1.

Turning to a syntactically obtained abstraction, assume the DTR isD = {({u3, u4}, IdC)},
that is, considers only class C (cf. Figure 9.14(b)).

Then we obtain a topology like sD,0 in Figure 9.15 if we näıvely apply the transfor-
mation of Section 9.3.3, note that there is only a single instance of the additional class

u2: x=0 u3: x=0

id0
λ λ

sD,0

−→R(MD)
u2: x=1 u3: x=0

id0
λ λ

sD,1

−→
u2: x=0 u3: x=1

id0
λ λ

sD,2

Figure 9.15.: DTR. id0 is the instance of class D∁ .
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sC
0 [thisx 6= 0]/thisx′ := 0E/thisx′ := 1

sD
0 F/thisλ!E()

Figure 9.16.: Transitions of C and D without direct manipulation.

D∁. Thus with concurrent execution, at most one of the C-instances is modified at a
time, and at the same time receives an E-event, for example leading to sD,1.

Hence before changing the second one, the first one will have changed back its local
state by its transition (cf. Figure 9.13), for example leading to sD,2 in Figure 9.15.
That is, the abstract representation of s0 from Figure 9.14(a) is not reachable at all in
MD in this case, thus the syntactical abstraction is in general not sound for concurrent
schedulings. The abstract transition system D(M) obtained by Chapter 6 in contrast
is sound, it has by definition the transition between the DTR abstractions of the two
topologies from Figure 9.14(a).9

HLL Without Direct Manipulation

A nasty aspect of the example in Section 9.3.4 is that the objects of class D manipulate
the local state of C objects directly via links. On the one hand, this is not completely
uncommon, as the C’s may be subsidiaries of the D’s and thus naturally be manipulated
by their “owners”. On the other hand, it’s against the well-known information hiding
paradigm, so one could instead require D-objects to only interact with C-objects via a
certain interfaces, maybe even restricted to message communication.

Unfortunately, such a restriction is not strong enough. We still only observe at most
one event sending in sD,0 while two simultaneous events are possible in s, thus we still
lose a transition in the abstract and are unsound. As an example consider the modified
local behaviour of C and D as given by Figure 9.16. Now the C objects act completely
local, but still a single D∁ instance is not sufficient to reach the abstraction of s1 from
sD,0.

Syntactic Transformation and Concurrency

From the understanding we gained in the previous chapters, we are able to analyse the
underlying problem as sketched in this section’s introduction. The point is that there is
only one control flow of ∁.

This is fine with interleaving because there is always only one point in time where the
environment can interact with a single individual, and we can schedule the ∁ as often as
we like to serve all individuals. With true concurrency we’ve got to preserve the possible
simultaneous interactions.

9As pointed out by one of the referees, this problem seems to be connected to the ordering of choice
and branching in the IO and OI hierarchies.
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An easy criterion to ensure this is to require that the inhabitants of the shadows, i.e.,
the non-concrete objects, are passive, that is, only read and written by the concrete ones
but don’t take own transitions. It’s clear that if there is no interaction originating from
any non-concrete object, then nothing is lost in the syntactically obtained abstraction.

A more complex criterion would be to identify, or to analyse for, dependencies. In the
examples of Sections 9.3.4 and 9.3.4, we can see that each C is influenced by exactly one
D. Consequently, when reducing C to {u1, u2} by DTR, there need to be two “instances”
of D∁ executing simultaneously. This is in general non-trivial because principally, a
system can, by exchanging identities, arrange that any individual in the system has a
link to the ones in the spotlight and interacts with them.

On the other hand, the relevant perspective is that of concrete individuals, and the
number of their thread, i.e. which of them are executing concurrently. For example, if
each concrete individual has an own thread and if sending messages were limited to a
single sender per system step, then it would be sufficient to have as many non-concrete
threads as concrete ones. This seems related to the active-object concept of [79], though
they allow to receive events from any other individual in a step. Yet there is possibly a
still useful subclass with sufficiently restricted communication model.

Another different case where the approach remains sound is if the interaction with
multiple other instances cannot be distinguished. For example if there is a common bus
or (boolean) signal which can be raised by one or more other instances but from the
perspective within an instance the number of issuers can’t be determined, but from the
inside, there is only the distinction between “none” or “at least one”.

Identifying whether a given HLL model (or a model in any other formalism) belongs
to this system class is in general difficult. A possible approach would be to try to devise
a particular sub-language in which all models have this property (cf. general discussion
of symmetry detection in Section 9.2).

Concurrency in the Literature

The insights of Section 9.3.4, that a syntactically obtained DTR abstraction is safe for
strict interleaving semantics but in general not for truly concurrent systems, is new to
the best of our knowledge. So let us briefly discuss whether this issue has effects on the
already published experiences with DTR abstraction.

Tomasulo and FLASH in the Cadence SMV The first application of DTR is by McMil-
lan [124, 129, 127] who verifies an implementation of the Tomasulo algorithm [169] in
Cadence SMV [125, 126]. The Cadence SMV modelling language has a fully concurrent
semantics, it is able to model fully concurrent components, which is also reasonable for
the case study: registers, reservation stations, and functional unit should in general do
not run interleaved.

Does this mean a conflict with the findings of the previous sections?. Not necessarily.
First of all, the named publications don’t tell how the abstract transition system is
obtained; maybe it’s done exactly, then there’s no problem because Chapter 6 ensures
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soundness. And even if it employed the syntactical way introduced for HLL above and
elaborated for array programs below, it’s on the safe side because the reservation stations
and functional units communicate via a bus which serialises communication.

That is, at most one functional unit speaks to at most one reservation station. So in a
sense, the architecture of the case-study already provides some of the countermeasures
we proposed, yet it may not be sufficient to support all kinds of properties and choices
of spotlights.

The same applies to the later work [130], a verification of the FLASH cache coherency
protocol. It’s on the safe side because of the system structure. Each cache line has
a hosts and a number of clients where communication is between host and client (one
communication at a time) or between two clients. The host is not abstracted and from
the perspective of a client, there is only interaction with the host or one other client,
thus it is not visible whether other clients execute concurrently.

German and FLASH Protocol in Murphi Chou and others [31] employ a syntactical
transformation similar to ours in order to verify the German [145] and the FLASH cache
coherency protocol [130] with the Murphi model-checker [56].

First of all, their syntactical transformation is carefully designed, not as general as
our presentation for HLL, and they outline the discussion of soundness. On the other
hand, the same argument given for the previous case applies, as the German protocol is
also following a home/slave architecture.

Telecommunication Features in SPIN Calder and Miller [28, 29] apply a syntactical
transformation to a Promela [83] description of a telecommunication system. They are
on the safe side because Promela has a strict interleaving semantics in the targeted SPIN
model-checker [83].

UML and DCS with VIS Similarly, our case studies on UML and DCS models from
Chapter 10, which have partially been published in [178] (UML) and [9, 10] (DCS), are
fine because we also use a strict interleaving semantics.

9.3.5. Conclusion

A possible bottom line of Sections 9.3.3 and 9.3.3 is the following. Strict interleaving is
good as it allows to obtain (or at least closely approximate) the DTR of an HLL model’s
ETTS by a syntactical transformation.

It is common to employ interleaving semantics to analyse concurrent systems, yet
it naturally doesn’t preserve simultaneity, and there is in general no direct use of the
“next” modality (“X”), which could be considered a good effect given the discussion of
Chapter 4 where the “next” modality was one of the main hindrances in obtaining a
definite fragment of EvoCTL∗.

With full concurrency, syntactical transformation have to be treated with great care.
As some of the case-studies from Section 9.3.4 don’t discuss this issue, one could (dras-
tically speaking) suspect that they only happen to be sound but aren’t robustly so.
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Figure 9.17.: Commuting Diagram Revisited (2). The parts of Figure 9.1 relevant for Sec-
tion 9.4 (cf. Figure 9.6). The shaded region indicates the subject of Section 9.4.3,
namely obtaining an array program encoding of a DTR abstraction by a modified
encoding of the HLL model, bypassing the regular HLL semantics.

9.4. Encoding in Array Programs

The current section serves two purposes. Up to now we’ve discussed an HLL syntax
with a parameterised semantics which translates to ETTS on a very elementary level.
But in order to actually apply model-checking to HLL models, it is desirable to employ
existing tools, in our case preferably finite-state model-checkers for their maturity and
wide accessibility.

Model-checkers, like VIS [154] and SMV [128], typically support a higher-level input
language providing a rich expression language and typing, either natively (SMV) or as
an add-on with compilers (VIS). So first of all, this section provides an encoding of HLL
in array programs, which, in a sense, closes the circle from Chapter 3 where we briefly
compared ETTS to array programs.

Then in case of HLL models with finite ETTS, for instance with finite ethers and a
maximum number on alive individuals encoded in the creation oracle, we can use the
CTL∗ or LTL checking capabilities of common of-the-shelf model-checkers as the basis
to treat EvoCTL∗ properties. Figure 9.17 shows this third layer in addition to the two
already present in Figure 9.6.

Secondly, we’ll address the mapping marked gray in Figure 9.6. In Section 9.3, the
rationale was to implement the DTR abstraction while staying within the HLL syntax
and semantics. Now if we’re encoding HLL models in a lower level modelling language,
namely that of common finite-state model-checkers, then the encoding function is giving
the semantics and we are free to change it in a way such that the (modified) encoding
yields the DTR abstraction of the original HLL model.

9.4.1. Array Programs: Abstract Syntax and Intuitive Semantics

Basic Types. We assume the following basic types. Booleans (bool ), finite enumer-
ations ({E1, ..., En}, Ei identifiers), finite integer intervals ([N,M ], N,M ∈ Z), and
infinite integers (int ).
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We assume that type definitions of the form

typedef type1 : type0, (9.174)

allow us to refer to type type0 by the name of type1. This is in a sense redundant, but
will be useful as abbreviations and may be useful when desiring type-checking.

Record and Array Declarations. Record types shall be declared in the form

record : {name : type}, (9.175)

array types with elements of type type1 indexed by type0, which is either an integer
interval or the general integer type, by

array type0 of type1 (9.176)

Variable Declarations. We further assume

mode x : type

mode x : type := expr
(9.177)

to introduce a new variable x of a previously declared type type. The mode mode ∈
{input , aux , local , const } denotes whether the variable is treated as an input, an
auxiliary, a regular variable, or as a constant10, where a distinction between the latter
two cases may or may not be provided by the employed model-checker.

An initial value can be provided via the optional expression expr. If it is not given, the
initial value is the left-most value of the type’s domain or 0, which recursively defines
the initial value of records and arrays.

Expressions. Considering the expression language, we firstly define a variable reference
to be an word of the following grammar

nav ::= 〈var〉 | 〈nav〉[〈expr〉] | 〈nav〉.〈comp〉 (9.178)

where var is a previously declared variable and cond a record component.

Common well-formedness rules apply, for example, the array access is well-formed if
the type of nav is an array type and expr is of the array’s index type. Similarly for
record access.

Then both nav an nav′ are expressions, the former denoting the value in the last stable
state, the latter denoting the value in the current intermediate step (see semantics of
programs below).

We assume that the features and semantics of the expression language, including
function symbols, coincide with the signature and structure employed by the HLL model.

10somehow stretching the concept of “variable”

262



9.4. Encoding in Array Programs

Actions. As actions act, we assume the following.

A skip statement skip doing nothing.

An assignment

nav′ := expr (9.179)

updating a valuation of variables such that the expression nav′ yields the value expr had
in the original valuation and the rest remains unchanged.

Guarded conditions

if

2 cond1 : act1;

...

2 condn : actn;

fi

(9.180)

executing non-deterministically one of the acti for which condi holds, 1 ≤ i ≤ n, if none
of the condition holds, no action is executed.

For simplicity, we assume support for sending events, querying the ether, and consum-
ing events: these facilities are, for example, provided by the SPIN model-checker.

In others environments, it can be mimicked with the means we’ve introduced, for
instance by implementing a FIFO queue by arrays. Yet it becomes somewhat tedious
if events have vastly different signatures, that is, sets of parameters. This is one reason
why the DCS language discussed in Chapter 10 restricts events to only two signatures,
namely ones comprising a single parameter of object type and ones without parameters.

We use indv.ǫ.E to denote the query operation, which yields true if and only if the
ether of individual indv has a ready to consume E-event, we use

p1, . . . , pn := consume(indv), n ∈ N0 (9.181)

to denote that the next event is consumed with a simultaneous assignment of the carried
parameters to the local names p1, . . . , pn, and we use

indv1 -> send(indv0, E, (expr1, . . . , exprn)) (9.182)

to denote the sending operation, that is, individual indv0 sends an E-event with param-
eter values given by expressions expri to individual indv1.

We assume that the provided (or implemented) ether is initially empty

We don’t assume native support for creation and destruction, because it’s not present
in VIS and SMV and not directly usable in the plain SPIN (cf. [2]).

Instead, we’ll encode begin alive by a boolean flag in the record structure representing
object’s state. The (pseudo-code) operation

delete(thisλ) (9.183)
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in Section 9.4.2 below will then basically correspond to

Ds[Cs[this C].λ].alive := 0 (9.184)

if λ points to instances of class D, depending on whether duplicate deletion is considered
to be a fatal error or not.

The (pseudo-code) create operation

thisλ := new(C) (9.185)

will correspond to choosing any unused identity, choosing an initial state, and setting
up the local state, i.e.

Cs[i0].alive := 1;Cs[i0].this := i0;Cs[i0].st := i1;

Cs[i0].x0 := 0; . . .Cs[i0].xn := 0;
(9.186)

where i0 denotes an input providing a non-alive identity and i1 denotes an input pro-
viding an initial state of class C. The last row exemplifies how a local boolean variable
would be updated to the left-most value, alternatively it could be chosen arbitrarily.

Alternatively, the reset to initial values can be done together with the destruction
instead of with the creation, this has been discussed and partly experimentally evaluated,
for instance, in [150], [95], and [2].

Program. A program in this language shall have the following structure.

〈decl〉;
do

〈act〉;
od

That is, there is a sequence of type and variable declaration and then a sequence of
actions enclosed in a loop, called loop-body.

The semantics is a Kripke structure where states are all possible valuations of the
declared variables and where there is a transition between two states s and s′ if and only
if the variable valuation s′ is a possible result of applying the loop-body to s stepwise,
basically similar to HLL.

9.4.2. From HLL to Array Programs

The purpose of this section is to sketch an encoding in as much detail as necessary to
enable straightforward actual implementations it in any model-checker input language
reasonably resembling imperative programs, and thus to make plausible how we con-
ducted our experiments in Chapter 10.

It is chosen minimal for this purpose and partly has to remain sketchy. It is not trying
to define a good input language, and abstracts from practical requirements like some
model-checkers having the restriction of only one assignment per variable in addition to
a default assignment.
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For instance, we consider only single link case (as in Section 9.3), and don’t give a
formal semantics, but only point out the principles. If in doubt, assume we have SMI in
mind, or, less directly, SMV or SPIN.

The whole encoding is not novel but resembling the standard encoding of state ma-
chines in imperative languages as demonstrated, for example, for Statecharts [78] in [24],
or numerous other works. For UML, for instance, the literature ranges from [111, 108, 65]
over [118, 117] to [187, 184] ordered by sophistication. Ideas for the particular non-DTR
encoding occur, for example, in [45, 46] and [159], the implementation of DTR has al-
ready been outlined in [48, 49], there assuming symbolic transition systems (STS) [120].

The novel point will be a general presentation of syntactical DTR for array programs
in Section 9.4.3, of which this section is a prerequisite.

For more elaborate versions of this encoding, in particular including a discussion
of issues with non-native but implemented communication facilities and object cre-
ation/destruction we refer to the works [150] and [2], which provide an encoding of
the DCS language (cf. Chapter 10).

Basic Types, Events, Initial State Condition

Let M = (T ,E ,C , cond 0) be an HLL model. As said above, we assume that the basic
types in T coincide with the basic types supported by our array programming language.

Let C = {C1, . . . , Cn} be set of classes. Then we use 〈〈C 〉〉 to denote the type decla-
rations

typedef C1id : int ; . . . typedef Cnid : int ; (9.187)

which introduce Cid as identity type of class C.

Let E = {E1, . . . , Em} be the set of events. Then we use 〈〈E 〉〉 to denote the declaration
of the enumeration

typedef Evs enum : enum {E1, . . . , Em} (9.188)

and for each event E ∈ E with parameters p1, . . . , pk the record

typedef E rec : record {p1 : τ(p1); . . . pk : τ(pk); } (9.189)

of parameters where we use τ as in the definition of class state below.

Class State

Let C be a class with typed local variables XC = {x1, . . . , xn} ∪̇ {xC,st}, typed links
ΛC = {λ1, . . . , λm} ∪̇ {this}, a non-empty set of states SC , some of them initial S0C

⊆
SC , and a (possibly empty) set of transitions RC .

Then we use 〈〈C〉〉 to denote the following sequence of one enumeration, three record
type, and three array-typed variable declarations. Firstly,

typedef C enum : enum {sC1 , . . . , s
C
N}; (9.190)

provides the range for the “current state” variable.
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It’s followed by the three records

typedef C reclocal : record { alive : bool ;

this : Cid;

st : C enum;

xlocal
1 : τ(xlocal

1 ); . . . xlocal
j : τ(xlocal

j ); };

(9.191)

if X \ (XI ∪XA) = {xst, x
local
1 , . . . , xlocal

j },

typedef C recaux : record {xaux
1 : τ(xaux

1 ); . . . xaux
k : τ(xaux

k ); }; (9.192)

if XA = {xaux
1 , . . . , xaux

k }, and

typedef C recin : record {xin
1 : τ(xin

1 ); . . . xin
ℓ : τ(xin

ℓ ); }; (9.193)

if XI = {xin
1 , . . . , x

in
ℓ }. Together they provide the type of single instances of class C,

split into the three aspects of local, auxiliary, and input variables.
We use τ(x) denotes the array program basic type corresponding to the type τ of

variable x and τ(λ) yields Cid if λ is of type τC .
Then the three array-typed variables

Cslocal : local array Cid of C reclocal;

Csaux : aux array Cid of C recaux;

Csin : input array Cid of C recin;

(9.194)

keep the states of the instances of class C, split into the three modes.
For simplicity, we assume cond 0 to denote the empty topology as in Section 9.3.3.

Then the initial values of variables directly provide an encoding of the initial state as
we’ll see below.

Transition Programs

The encoding of a transition r = (sC , ℓ, s
′
C) ∈ RC is

〈〈r〉〉 = Cs[this C].st = sC ∧ Cs[this C].ǫ.E ∧ cond :

p1, . . . , pn := consume(this C);

〈〈act〉〉;

Cs′[this C].st := s′C ;

(9.195)

if the labelling is ℓ = E(p1, . . . , pn) [cond ]/act.
If the event part is empty, then the middle condition in the guard and the assignment of

parameters are omitted. Note that the navigation expression normal form of Section 9.3.1
permits let-expressions in guarding conditions, in order to set up the auxiliary variables
and links used in the guarding condition. The encoding naturally extends to this case
by moving this setting up of auxiliary variables right before the large condition ranging
over all transitions (cf. Section 9.4.2).

The encoding of actions is inductively defined as follows.
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1. The skip statement is encoded by the skip statements of array programs, i.e.
〈〈skip〉〉 = skip.

2. By Def. 9.3.1, we only have to consider assignments of the following forms

• 〈〈thish′ := this〉〉 = 〈〈thish′〉〉 := this C

• 〈〈thish′ := p〉〉 = 〈〈thish′〉〉 := p

• 〈〈thish′ := thish′λ〉〉 = 〈〈thish′〉〉 := 〈〈thish′λ〉〉

or

• 〈〈thish′λ′ := nav〉〉 = 〈〈thish′λ′〉〉 := 〈〈nav〉〉

• 〈〈thish′x′ := expr〉〉 = 〈〈thish′x′〉〉 := 〈〈expr〉〉

(See below for encoding of expressions.)

3. Creation and deletion are encoded by the creation and deletion primitives of array
programs or corresponding implementation, i.e.

• 〈〈navλ′ := new C〉〉 = 〈〈navλ′〉〉 := new(C)

• 〈〈delete nav〉〉 = delete(〈〈nav〉〉)

4. Event sending is encoded by the event sending primitive of array programs or a
corresponding implementation, i.e.

• 〈〈nav!E(expr1, . . . , exprn)〉〉
= 〈〈nav〉〉 -> send(this C, E, (〈〈expr1〉〉, . . . , 〈〈exprn〉〉))

5. The conditional statement of transitions is naturally encoded as the conditional
statement, i.e.

• 〈〈if cond then act1; else act2; fi〉〉
= if 2〈〈cond〉〉 : 〈〈act1〉〉;2¬〈〈cond〉〉 : 〈〈act2〉〉; fi

6. Sequential composition similarly becomes sequential composition, i.e.

• 〈〈nav1;nav2〉〉 = nav1;nav2

Here, the encoding 〈〈expr〉〉 of HLL expressions expr is assumed to be clear by the
shared signature, except for navigation expressions (in normal form following Def. 9.3.1)
whose encoding is defined as

• 〈〈thish′〉〉 = Cs′[this C].h

• 〈〈thish′λ〉〉 = Ds[〈〈thish′〉〉].λ

• 〈〈thish′λ′〉〉 = Ds′[〈〈thish′〉〉].λ

• 〈〈thish′x〉〉 = Ds[〈〈thish′〉〉].x
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• 〈〈thish′x′〉〉 = Ds′[〈〈thish′〉〉].x

if h is of object type τD.

Note that, for readability, we don’t distinguish between the three arrays Dslocal, Dsaux,
and Dsin because the accessed record component uniquely determines which one is de-
noted by Ds.

Putting It All Together

Given interpretation ι, assuming it coincides with the semantics of expressions, a defi-
nition of ethers E , assuming it coincides with the query, send and consume primitives of
our array programs or is implemented accordingly, a strict interleaving scheduler S, and
an input and creation oracle O, we obtain the following program.

〈〈C 〉〉; // identity types of classes
〈〈E 〉〉; // types for events
〈〈C1〉〉; . . . ; 〈〈Cn〉〉; // class arrays
do

〈〈S〉〉; // scheduler, select sched Ci and this Ci
if

2 sched C1 : 2r∈RC1
〈〈r〉〉

...
2 sched Cn : 2r∈RCn

〈〈r〉〉
fi

od

Alternatively, there may be a native scheduler like in SPIN.

Example 9.4.1 (Car Platooning Encoded). The following array program is the encoding
of the example HLL model from Figure 9.2, omitting details like the scheduling, and the
assumed additional class(es) which model an environment that creates cars and cares for
their mutual recognition.

typedef Cid : int ;

typedef Evs enum : {ack, car ahead,nack,new flw,new ldr, req};
typedef car ahead rec : record {p : Cid; };
typedef new flw rec,new ldr rec : car ahead rec;
typedef req rec : car ahead rec;

typedef C enum : enum {fa, ld, faf, ldf,fl,fls};
typedef C reclocal : record {

alive : bool ; this : Cid; st : C enum; ldr : Cid; flw : Cid;
};
Cslocal : local array Cid of C reclocal;
do
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〈〈S〉〉; // scheduler, select sched Ci and this Ci

if 2 sched C : if
2Cs[this C].st = fa ∧ this C.ǫ.req : p := consume(this C);

Cs′[this C].flw := p; p -> send(this C, ack, ());
Cs′[this C].st := ld;

2Cs[this C].st = fa ∧ this C.ǫ.nack : consume(this C);
Cs′[this C].st := faf;

2Cs[this C].st = faf ∧ this C.ǫ.car ahead : p := consume(this C);
p -> send(this C, req, (this));Cs′[this C].st := fa;

2Cs[this C].st = faf ∧ this C.ǫ.req : p := consume(this C);
p -> send(this C,nack, ());Cs′[this C].st := faf;

2Cs[this C].st = faf ∧ this C.ǫ.req : p := consume(this C);
p -> send(this C,nack, ());Cs′[this C].st := faf;

2Cs[this C].st = faf ∧ this C.ǫ.ack : p := consume(this C);
Cs′[this C].ldr := p;Cs′[this C].st := fl;

2Cs[this C].st = ld ∧ this C.ǫ.req : p := consume(this C);
flw -> send(this C,new flw, (p)); p -> send(this C, ack, ());
Cs′[this C].st := ld;

2Cs[this C].st = ld ∧ this C.ǫ.car ahead : p := consume(this C);
p -> send(this C, req, (this));Cs′[this C].st := ldf;

2Cs[this C].st = ldf ∧ this C.ǫ.nack : consume(this C);
Cs′[this C].st := ld;

2Cs[this C].st = ldf ∧ this C.ǫ.req : p := consume(this C);
p -> send(this C,nack, ());Cs′[this C].st := ldf;

2Cs[this C].st = ldf ∧ this C.ǫ.ack : p := consume(this C);
Cs′[this C].ldr := p;Cs′[this C].st := fls;

2Cs[this C].st = fl ∧ this C.ǫ.new ldr : p := consume(this C);
Cs′[this C].ldr := p;Cs′[this C].st := fl;

2Cs[this C].st = fl ∧ this C.ǫ.req : p := consume(this C);
p -> send(this C,nack, ());Cs′[this C].st := fl;

2Cs[this C].st = fl ∧ this C.ǫ.new flw : p := consume(this C);
Cs′[this C].flw := p;Cs′[this C].st := fls;

2Cs[this C].st = fls ∧ this C.ǫ.new ldr : p := consume(this C);
Cs′[this C].ldr := p;flw -> send(this C,new ldr, (p));
Cs′[this C].st := fls;

2Cs[this C].st = fls ∧ this C.ǫ.new flw : p := consume(this C);
flw -> send(this C,new flw, (p));Cs′[this C].st := fls;

2Cs[this C].st = fls ∧ this C.ǫ.req : p := consume(this C);
p -> send(this C,nack, ());Cs′[this C].st := fls;

fi; fi;
od

♦
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9.4.3. Syntactical DTR for Array Program Encodings

The adaptation of the procedure from Section 9.3 to our array programs is rather
straightforward because the action language of the array programs introduced above
closely resembles the one of HLL, notably without sacrificing a close relation to common
model-checker input languages.

The less strict typing in array programs, namely the lack of native support for classes,
makes the construction even easier. We namely don’t have to add a class similar to C∁

and we don’t have to encode links to non-concrete individuals by additional flags. If the
targeted model-checker input language provides a native concept of process identities
conflicting with the following transformation, an encoding similar to Section 9.3 is still
an option.

We’ll discuss the transformation in an order following Section 9.4.2 such that Sec-
tion 9.4.2 applies without major changes.

Transformation: Classes, Events, Initial State Condition

Let D = {(dj1 , Idj1), . . . , (djm , Idjm)} be a DTR. For each class C with a set d =
{1, . . . , N}, N ∈ N0, in D, the definition of 〈〈C 〉〉 changes to

typedef Cid : [1,N + 1];

const ∁C :=N + 1;
(9.196)

That is, the finite set given by d plus one additional number is used as identities of C
objects instead of unbounded integers.

The additional number N + 1 corresponds to the identity ∁ in Chapter 6, so for
convenience we introduce this name as a constant . The declarations in 〈〈E 〉〉 remain
unchanged.

Transformation: Class State

The definition of the encoding of a class 〈〈C〉〉 remains unaltered, we only add, for each
occurrence of a navigation expression in the encoding of transition programs a fresh input
of the corresponding type, exactly similar to the procedure in Section 9.3.3. The array
declarations remain the same, only the index range changes implicitly by the altered
definitions of the Cid types.

Transformation: Transition Programs

The encoding of transition programs changes analogously to Section 9.3.3. That is, for
each navigation via ∁, an input is considered, and each assignment to the ∁C-th field
of Cs and message sending to ∁ is replaced by a skip statement. The main difference
to Section 9.3.3 is that we don’t need an additional class C∁, but that we modify the
encoding of transitions such that the array program code behaves regularly when this C
is from the range [1, N ] and that they behave over-approximating when this C is N+1 =
∁C .
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More technically, navigation expressions are firstly changed as follows.

Access of Auxiliary Variables remains unchanged because they’re assigned before first
use. When executing the loop for ∁C , the right-hand sides will be determined by inputs

〈〈thish′〉〉
♯
D = Cs′[this C].h (9.197)

Navigation changes similar to Section 9.3.3. When navigation to a variable or link
value via ∁C is requested, then a free input value is considered instead, that is,

〈〈thish′λ〉〉
♯
D = (〈〈thish′〉〉 = ∁C ? i : Ds[〈〈thish′〉〉].λ) (9.198)

where we assume the conditional expression syntax from Section 9.3.2 and where i is
the input dedicated to this occurrence of the navigation expression introduced in the
previous section.

In this case, i will have the same type as λ. Thus in case of C and the DTR given
above, it may yield any value from [1, N+1], including the identity ∁C of the non-concrete
individuals.

The encodings of variable access and the primed cases change similarly.

The encoding of assignments remains unchanged, except for

〈〈thish′λ′ := nav〉〉
♯
D = if

2〈〈thish′〉〉 = ∁C : skip;

2〈〈thish′〉〉 6= ∁C :

〈〈thish′λ′〉〉 := 〈〈nav〉〉♯D;

fi

(9.199)

or, equivalent but shorter,

〈〈thish′λ′ := nav〉〉
♯
D

= if 2〈〈thish′〉〉 6= ∁C : 〈〈thish′λ′〉〉 := 〈〈nav〉〉♯D; fi
(9.200)

and similarly for assignments to variables.

Creation and destruction are treated similarly to Section 9.3.3. There is a choice
to directly consider ∁C to be created, otherwise it is tried whether there is an unused
concrete identity. If not, ∁C is chosen. Here it is also important, that the outcome is
completely deterministic in order to ensure that all identities can be used in all situations,
such that the symmetry argument can be applied.

Sending is treated similarly to assignment, namely

〈〈nav!E(expr1, . . . , exprn)〉〉
♯
D

= if 2 〈〈nav〉〉♯D 6= ∁C : 〈〈nav!E(expr1, . . . , exprn)〉〉; fi
(9.201)
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Control Structures. The encoding of conditional statements and sequential composition
remains unchanged.

Transition. The modified encoding of a transition caters for the case where this C
denotes ∁C . in that case, the current state is guessed, and the content of the queue such
that the non-concrete individuals can take any transition whenever they’re scheduled.
That is, we obtain

〈〈r〉〉♯D = this C = ∁hlcl ∨ (Cs[this C].st = sC ∧ Cs[this C].ǫ.E ∧ cond) :

if 2 this C = ∁C : p1, . . . , pn := i1, . . . , in;

2 this C 6= ∁C : p1, . . . , pn := consume(this C);

fi

〈〈act〉〉♯D;

if 2 this C 6= ∁C : Cs′[this C].st := s′C ; fi

(9.202)

Alternatively, all encodings of transitions could be changed to refer to an additional
auxiliary variable hst keeping the state of the currently scheduled object, like in

〈〈r〉〉♯D = (hst = sC) ∧ Cs[this C].ǫ.E ∧ cond : . . . (9.203)

Then the initialisation of hst before the transition branches would regularly employ the
modified transformation and read the current state from an input, leaving the array
program closer to the original one. The query of the ether would have to be treated
similarly, of course.

In case the ether is explicitly implemented, and not assumed to be native as we do
here, correct treatment of the ether often follows by simply applying the regular rules
for navigation and assignment given above.

Note that, in order to establish true liveness properties, including “U” or “F” operators
as discussed in Chapter 10, one will need to add fairness constraints if the scheduling
is not native. Otherwise, the ∁ process can be scheduled forever and let the concrete
individuals suffer from starvation.

Optimisations and Precision

The issues discussed in Section 9.3.3 apply directly to the array program case. For
example, the transformation presented above is sound but looses precision as it may use
different input for common expressions. Furthermore, the number of used inputs is far
from optimal, there is large potential for sharing as in the HLL case.

An additional optimisation with array programs is based on recognising that the
(N + 1)-th entry of the array Cs is actually never accessed. Write access by assign-
ment is re-directed to skip statements and read access in expressions is re-directed to
the corresponding inputs. Thus, if the array program is sufficiently weakly typed, the
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declaration for class C can change to

typedef Cid : [1,N + 1];

Cs : local array [1,N ] of C rec;
(9.204)

On the other hand, it is a common built-in optimisation of model-checkers like VIS
or SMV to identify effective constants automatically, so in some cases, the results of the
change may not be visible in the overall checking time.

Finiteness

Given an HLL model with structure and oracle as assumed above, the question is whether
〈〈M 〉〉♯D is finite, because then it can directly be treated with the named finite-state
model-checking tools as SMV, VIS, and SPIN.

As in the HLL case, the transition system defined by the encoding 〈〈M 〉〉 is finite iff
the ETTS of HLL is finite, which could be the case if the creation oracle considers only
finitely many identities, which can alternatively be seen as an under-approximation of
the full HLL, possibly useful for debugging purposes.

Furthermore, the communication medium may only keep a bounded number of mes-
sages at a time. This can be a model property or be imposed by choosing a finite ether
E which, for instance, discards events once the finite limit is reached. Also imaginable is
blocking the sender until the receiver is ready to enqueue a message, yet this approach
doesn’t directly blend well with the current design of HLL.

Consequently, as in the HLL case, the transition system defined by the abstract array
program encoding 〈〈M 〉〉♯D is finite if the DTR D is finite and considers all classes in C

and the communication medium is finite as named above.

Treating Unbounded Sets of Links

Recall that from Section 9.1.1 on, we assumed a single-link property for most of this chap-
ter, that is, each individual has at most one link of a given link-name. This assumption
makes in particular the syntactical transformation easier as we needn’t consider the case
where an individual has a link to multiple (different) non-concrete individuals.

One solution of Chapters 5 and 6 is to leave links non-abstracted, that is, possibly
having an unbounded number of links to the non-concrete identity ∁, a case for which
we don’t have a straightforward treatment in the syntactical transformation. In the
following, we’ll briefly discuss a special case in which we are actually able to also soundly
treat an unbounded number of links in the syntactical transformation.

A possible encoding of link sets in the array program is to employ an array with index
type Cid and boolean range as the type of link name λ instead of a value of type Cid,
that is, a characteristic function of the unary “this-has-a-λ-link-to” relation,

λlocal : array Cid of B; (9.205)

One possible concrete syntax to work with link sets is the one shown in Figure 9.5 of
Section 9.2.5 comprising a “pick” operation. If we apply the syntactical transformation
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from this section näıvely, we obtain something which needn’t be sound as the declaration
effectively changes to (cf. Section 9.4.3)

λlocal : array [1,N + 1] of B; (9.206)

If the pick operation keeps its semantics, then it iterates the cycle at most N + 1 times,
and the counter n doesn’t grow larger than N + 1, which are to few iterations because
we can easily have N + 2 links to non-concrete objects alone.

Furthermore, if we have a situation like the one above where a pick-operation takes
a transition and thus a global system step, properties employing the “next” modality
(“X”) are easily lost (but cf. Section 9.3.4 for a discussion of the “next” modality in
interleaving semantics).

What may go wrong in a näıve application of the syntactic transformation is that the
definition of set is not respected. If the set was implemented as usual, that is, adding
an element id to the set only if there is no id′ with id = id′, then we could add the
summary node many times to the set if comparison for equality is treated as usual, i.e.
the outcome is determined by an input.

In the bit-representation, in contrast, we simply cut off the index, so we have to
adjust iteration, too. In principle, the “pick” operation should be able to do any (finite)
number of iterations, or even infinite if sets are that general. In some variants of the
DCS language (cf. Chapter 10), we even know that sets comprises only finitely many
links, because in DCS we can add at most one link per step so after finitely many steps,
we have only finitely many links.

Note that the transformation is not generally unsound. For example, if we remove
the counter n from Figure 9.5, then only event sending remains as action. This action
is transformed to a skip statement by Section 9.4.3, thus all iterations where the pick-
statement yields ∁C actually don’t have any effect, thus iteration over the N + 1 entries
has the desired effect: if there is a relation to a concrete individual, it will receive an
event, and if a relation to ∁C is indicated, a skip instead of event sending will be executed.

This fits into the overall picture because at the next execution of ∁C it can, as all its
transitions are always enabled, act as if it obtained the event from the loop. In some
variants of DCS though, we can ensure that we’re in the safe case because it employs
broadcasting instead of a loop, and it doesn’t count with the broadcast, that is, for these
DCS the generic transformation procedure also yields an approach to treat unbounded
links.

9.4.4. Encoding EvoCTL∗ in CTL or LTL

Finite-state model-checkers typically support CTL or LTL, but not EvoCTL∗, which we
recommend as adequate for ETTS and thus for HLL models. The main differences being
that EvoCTL∗ is a first-order logic, that we propose primitives to query aliveness, and
to employ a three-valued in order to treat pre-mature disappearance.

Hence obtaining an array program encoding which further translates to the input
languages of such model checkers as presented in the previous section is only a part of
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support for ETTS verification. The second difficulty lies in the assumption of an abstract
structure in Chapter 5 which provides a semantics for function symbols in abstract states,
while in the syntactically transformed HLL or array program, there is a priori no such
counterpart.

In Section 9.4.4, we begin with a brief discussion how to support at least fragments
of EvoCTL∗ given CTL or LTL facilities in a finite, not abstracted model. Partly antic-
ipating the discussion of case-studies in Chapter 10, note that the proposal of EvoCTL∗

is rather new and meant to support the results of Chapter 5, how such particular speci-
fication logics behave under abstractions like DTR.

The case-studies presented in Chapter 10 mainly focus on the aspect of obtaining DTR
by syntactical encodings and the principal applicability of DTR to the class of ETTS
defined by languages like HLL. For this reason, it is to be understood that the following
discussion only gives preliminary answers in particular on how to reduce the three-valued
semantics of EvoCTL∗ to classical temporal logics. In the case-studies, properties have
been carefully chosen to remain in the definite fragment of EvoCTL∗ and to be biased
towards the safe side, considerations which are only enabled by having such issues clearly
prepared in form of EvoCTL∗.

Section 9.4.4 provides a procedure to interpret terms in the abstract system, the idea
is basically to effectively also apply the syntactical transformations of Sections 9.3.3 and
9.4.3 by turning terms in the formula to propositional observers in the model.

Finally, Section 9.4.4 points out an alternative which is particularly suitable if the
property to verify is given in form of a Live Sequence Chart (cf. Chapter 10), namely to
employ what is known under so various names as test automaton, observer, or monitor.

First-Order and Life-Cycle Queries in LTL or CTL

In Chapter 4, we’ve defined the LTL 11 fragment of EvoCTL∗, which is basically terms
over modalities for “next”, “globally”, “finally”, and “until”. That is, in a common
model-checker like VIS or SMV we don’t find support of quantification and typically only
terms over the variables in the array program, but no explicit primitives for querying an
object’s life-cycle or refer to message send and consume actions, which we’ll consider for
DCS/METT in Chapter 10.

First of all, we have to assume an HLL with a finite ETTS semantics in order to
apply the named model-checkers at all without abstractions. In that case, outermost
quantification can be spelled out, just like practiced with parameterised systems.

Unless we’re able to argue with Query Reduction (cf. Chapter 7), all possible valuations
of logical variables have to be considered. With nested quantification, we inherit the
problems discussed in Chapter 4 in the context of prenex normal forms.

Life-cycle queries, that is, operators⊙, ⊚, and⊗ can directly or indirectly be expressed
in terms of the alive flag introduced in the encoding Section 9.4.2. Aliveness is directly
equivalent to the valuation of the boolean aliveness flag. Being new or doomed are path
or state properties as they intuitively relate to rising or falling edges of the aliveness

11for brevity, we’ll only discuss LTL in the following
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flag, yet in corner cases, a deletion directly followed by a creation may leave the alive
flag constantly set.

This can be overcome by adding additional variables to the array program with the
purpose to observe creation and destruction, a common technique in practical formal
verification. They’re then updated whenever a create or destroy operation is executed,
we only have to take care of the pathological situation where an individual is undergoing
multiple creations and destructions in a single transition program. These cases can be
syntactically excluded, for example by allowing at most one creation and destruction
per transition program, or traced to indicate that the named observers may not be
interpreted literally.

In case object creation is supported natively by the employed model-checker, one may
assume that there is also support for querying the state in objects’ life-cycle.

Three-Valuedness in LTL or CTL

In Chapter 4, we proposed a three-valued semantics for EvoCTL∗ in order to adequately
treat pre-mature disappearance of individuals referred to in formulae. There is typically
no native support for three-valued outcomes in the model-checkers named above, so we
see basically three choices.

Firstly, with the precise EvoCTL∗ semantics of Chapter 4, we can in some cases mimic
it with means of LTL and CTL employing life-cycle queries. Particularly interesting are
formulae known to evaluate definite. Recall from Section 4.3.4 that we demonstrated
how to express some (definite) evolution chain quantifications by identity quantification
and additional life-cycle queries. This applies, for instance, to the large and relevant
class of EvoCTL∗ properties equivalent to Live Sequence Charts where life-lines indicate
how to add life-cycle queries (cf. Chapter 10).

A second option, as long as we’re lacking automatic support, is to carefully craft
EvoCTL∗ formulae such that they’re biased in a safe way, that is, that all indefinite
outcomes in the three-valued semantics map to a negative answer in the two-valued
semantics of LTL and CTL model-checkers. Note that, in a sense EvoCTL∗ vs. plain LTL
or CTL with life-cycle queries provides a separation of concerns between two cognitive
levels of abstraction. With EvoCTL∗, we can write specifications firstly without caring
about life-cycle queries. With the EvoCTL∗ semantics, we can then identity whether
the formula can safely be checked in a biased environment.

Thirdly, we can extend the procedure of Section 9.4.4 below, namely to move propo-
sitional terms from a formula into fresh observer variables in the array program, from
the case of non-concrete individuals to the case of non-alive individuals.

Then (at least for some) indefinite formulae, the result is that both, the formula itself
and its negation don’t hold, a valid representation of an indefinite outcome.12

For example, a proposition observer

h′ := f(〈〈µx〉〉) > 0 (9.207)

12in the sense that 1/2 can alternatively be read as the set {0, 1}
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turned into

h′ := (f((Cs[µ].alive ? i : Cs[µ].x) > 0 (9.208)

(see Section 9.4.4 for the declaration of µ) which employs the fresh input i in case the
identity µ doesn’t denote an alive individual.

Note that this procedure works best if we know the binding of logical variables in
advance, which is the case with QR or with the procedures of Section 9.4.4.

EvoCTL∗ and Syntactically Obtained DTR

Recall from Chapter 5 that we assumed an abstract structure together with the abstract
topologies. The reason is the local state of the abstract individual with identity ∁.

Its local state is top element of the set of abstract local states, i.e. ⊤ ∈ Σ♯. Evaluation
of function symbols in Σ♯ is provided by the assumed abstract structure, for instance
when considering formulae like

∀x : C . G f(σ(x).x) > 0 (9.209)

When syntactically transforming an HLL model M into M
♯
D or directly into the array

program 〈〈M 〉〉D
♯, there is a priori not such thing as an abstract structure.

Note that even when employing DTR in combination with QR, that is, when logical
variables obtain a fixed binding to concrete individuals, the problem remains because
navigation expressions may occur in EvoCTL∗ formulae and may navigate via links
pointing to ∁, for instance

ϕ = G f(σ(xλ).x) > 0. (9.210)

If xλ denotes ∁, then the valuation of σ(xλ) shall also be ⊤ ∈ Σ♯.

One straightforward idea to treat this issue technically is to apply the same transfor-
mation discussed in Section 9.3.3 for HLL or in Section 9.4.3 for array programs. To this
end, the transformed model M

♯
D or the array program 〈〈M 〉〉♯D has to provide additional

inputs with the sole purpose to be referred to in the transformed formula. For example,
(9.210) turned into

ϕD = G f((xλ = ∁ ? i : σ(xλx))) > 0 (9.211)

where i is a fresh input and we need the constant ∁ in the signature, which con-
stantly yields the identity ∁, and where we assume conditional expressions similar to
Section 9.3.2.

Recall that we may (non-symmetrically) refer to particular identities after a possibly
applied QR. Optimisations as discussed in Section 9.3.3 apply correspondingly.

Considering (9.211) a bit closer shows that this simple example actually doesn’t carry
any information: the input value can be freely chosen from Σ thus, unless f is constant,
the formula (9.211) doesn’t hold, neither does it’s negation. This indicates that, when
choosing a DTR for a given property, one should also consider the amount of navigation
taking place, in addition to the bare number of quantified variables (cf. Chapter 8); a

277



9. DTR/QR for Higher-Level Languages

natural aim is to ensure, by case-splits, that the navigated objects are also concrete
whenever they’re navigated and contribute to the truth value of the property.

Still, the transformation is necessary for soundness; even if one aims at navigating only
concrete objects, the model is free to have errors which spoil such aims. Recall from
Chapter 8 that case-splits can only control certain points in time, for example ensure
concrete objects at the time of activation of parts of the formula but not necessarily for
all points in time.

By soundness, the transformed formula (and its negation) will fail in case navigation
via a non-concrete object which means errors are biased towards the safe side.

Technically, a transformation of formulae can be implemented by turning all terms,
that is, all non-temporal sub-formulae into predicates or boolean propositions that are
driven by the model.

For example, assume we’re considering formula (9.211) with the fixed representative
assignment θ = {x 7→ 1} (cf. Chapters 8 and 7). Then we’d introduce a fresh constant
link name

const µ : Cid = 1; (9.212)

in the declaration part of 〈〈M 〉〉 and introduce a boolean variable h which are updated
as

h′ := f(〈〈µλx〉〉) > 0 (9.213)

at an appropriate point in time, then (9.211) turns into

ϕ = G h′ (9.214)

Then applying Section 9.4.3 to the array program including (9.213) changes (9.213)
to

h′ := (f(〈〈µλx〉〉♯D) > 0

= h′ := (f((Cs[µ].λ = ∁C ? i : Ds[Cs[µ].λ].x) > 0
(9.215)

assuming λ denotes instances of class D.
Thereby we achieve that formula (9.214) needn’t be touched but we concentrate all

modifications in the model description, which less theoretical than technical advantage.
Then there’s only a single place to implement and support more intricate syntactical
transformation, namely the array program, treatment of formulae consists only of the
simple splitting into propositions.

Observers (or Test Automata ( or Monitors))

A consequent continuation of the introduction of observer variables for propositions in
the formula is to employ observers [182] (also known under the names of test automata
or monitors) also for temporal parts.

In [98], we lay out how the procedure in particular applies to the visual formalism
Live Sequence Charts (LSC), which we consider in Chapter 10. The basic idea is to
add a transition system implementation of an automaton to the array program which
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observes the model by having transitions that depend on program variables and which
thereby tracks the state of the model. Checking whether the HLL (or its array program
encoding) satisfies an LSC then in some cases reduces to checking whether a designated
error state of the observer is reachable.

More expressive subclasses of LSCs reduce to checking certain small and fixed formu-
lae, thus in particular all treatment of propositions (or EvoCTL∗ terms) is part of the
model transformation as discussed in Section 9.4.4. It applies particularly well after QR
because we can then encode the fixed assignment of logical variables as demonstrated
with the example in Section 9.4.4.

9.5. Discussion

As HLL is intended to generalise DCS [9] as well as the core fragment of UML [45, 46], it
is certainly related to both. It borrows its syntax mostly from UML with a C-like action
language. The difference to DCS and any approach to UML verification and semantics
we’re aware of, is that we explicate scheduling and non-determinism in creation and
inputs.

Abstracting from the communication means has already been done in the earlier UML
specifications. It basically only requires that the order of messages from the same sender
is preserved but allows to generalise to priority queues. Our usage of an ether is just
taking the step to a completely parameterised setting. We discuss the relation to DCS
and UML in more detail in Chapter 10.

The rich literature on the syntactical declaration and detection of symmetry is dis-
cussed in Section 9.2, a good survey is provided by [134]. The main difference to our
approach is that the works surveyed [134] typically remain within a given, limited seman-
tical setting, for example, the most recent [59] operates in the context of the Promela
language, which obtains its semantics from the SPIN model-checker, thus there is in
particular a fixed scheduling and a fixed treatment of inputs. That the symmetry of the
creation oracle has to be taken into account has lately been discussed in [2], who found
that the process creation in SPIN is highly non-symmetric13

Given any abstraction procedure, it is a natural desire to obtain the abstract transition
system by an easy syntactical transformation for reasons discussed in the introduction
of this section, a good reason among them being the enabled re-use of existing model-
checking tools. For the quotient structure-oriented branch of symmetry reduction (cf.
Section 9.3), this has for example been proposed by [63].

The DTR implementation of Sections 9.3 and 9.4.3 is, as discussed in Sections 9.3,
related to [28, 29] and [31] and of course to [127]. The main difference to the former
is that they remain on a rather technical level, that is, compare to Section 9.4.3 rather
than to Section 9.3, similar to our earlier works [48, 49]. Furthermore, [28, 29] and [31]
propose syntactical procedures only for particular examples, which are less general than

13this doesn’t pose a problem for [59], as they seem to consider only systems with fixed extension, that
is, where all participating processes are created at once in the initial step and don’t disappear at
runtime
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ours in [48, 49], and far from the wide generalisation as presented here. In particular the
insights of Section 9.3.4 are new and highly relevant as they tell us that the procedures
of [28, 29] and [31] don’t generalise as easily as one would imagine, but obtain their
soundness partially from the structure of the model.

Also new is our discussion of levels of precision in Section 9.3.3, that is, the exact rela-
tion between the abstraction obtained by Chapter 6 for the ETTS of an HLL model and
the transformed HLL model obtained by Section 9.3; the discussion in [178] only argued
in terms of efficiency (using less auxiliary variables, using fewer inputs), but didn’t go as
far as identifying the relation to precision. The difference to [127] and related publica-
tions is that it is unknown how the abstract transition system is actually obtained, that
is, whether it employs a procedure similar to the syntactical transformations of [28, 29],
[31], and ours, or a completely different procedure, possibly also treating concurrency.

The procedure of 9.3 also gives a hint why the procedure is named “Compositional
Model-Checking” in the original work [127]. A classical understanding of compositional
verification is that parts or components of a system are checked in isolation in an en-
vironment which over-approximates the behaviour of the remaining components. Then
the overall reasoning for two components is than is that if component A satisfies its re-
quirements under the assumption of B’s requirements, and if B satisfies its requirements
under the assumption of A’s requirements, then the composition of A and B together
satisfies certain requirements.

The DTR approach has in common with this reasoning that certain parts, or compo-
nents of the system, namely those named in the DTR (in the sense of Def. 6.1.1), are
put into a hostile environment which resembles chaos on first sight but preserves certain
properties, in particular of the HLL description, thus is a very coarse abstraction of the
real, concrete environment of these components.
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With this chapter, and in particular Section 10.2, we can finally close the circle to
the problem, which originally raised our interest in this particular abstraction for this
particular class of systems: the formal verification of scenarios (given as LSCs) against
UML models, of which [177] can be seen as a pre-study.

With Section 10.2, we confirm the findings of [177] on solid grounds. We have by
Chapter 3 a rigid formal model of computation, while, for instance, dynamic creation
and destruction and evolution played a far less clearer role in [177]. And we have by
Chapter 4 a comprehensive temporal logic, which is aware of pre-mature disappearance
of individuals and can confirm that the dynamic LSC extension proposed in [177] lies in
the definite fragment of EvoCTL∗.

For completeness, Section 10.1 discusses a more focused, less baroque setting than
UML. The DCS language emerged in a project with the dedicated aim to analyse systems
of systems and in a sense only comprises the essence of means that are necessary to
formally model, for instance, the Car Platooning application [9]. One difference to UML
is that individuals are more encapsulated and accept stimuli only in form of messages,
but not via direct read or write access to local variables, which is possible in UML
models.

Both sections are organised similarly. For instance, Sections 10.1.1 and 10.1.2 recall
syntax and intuitive semantics of DCS and METT and discuss the relation to HLL
from Chapter 9 and EvoCTL∗ from Chapter 4. Section 10.1.3 introduces a case-study,
in this case the Car Platooning application, and reports results. As we’ve got the
extensive discussion of encodings and implementations of the QR/DTR approach, we
won’t elaborate much on the details here. All results have been obtained based on an
array program encoding in the SMI language and tools implementing the syntactical
transformations of Section 9.4.3.

Note that this chapter is about case-studies in two senses. Firstly, the languages
DCS/METT and UML/LSC are cases challenging HLL from Chapter 9 and EvoCTL∗

from Chapter 4, and secondly, the applications Car Platooning and Automated Rail
Cars System indicate whether the QR/DTR approach is useful in these two settings.

10.1. DCS and METT

The Dynamic Communication System description language [9] (DCS) has been designed
(under our participation) to provide a minimal language to capture the topological as-
pects of applications like Car Platooning.
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This application class can be characterised as a system of systems. Each of the sub-
systems has a finite-state control part and may interact with other sub-systems via
asynchronous message communication. This choice was based on the observation that
systems like Car Platooning or the European Train Control System (ETCS) Level 3,
where trains negotiate moving authorities with roadside equipment, employ wireless
communication that shouldn’t be represented by synchronous communication.

It is inspired by Communicating Finite State Machines [21] (CFSM), and its relation
to parameterised systems is similar to UML or our HLL: there is a single, finite-state
description of behaviour which is executed by a number of processes, but this number
of processes and their interconnection is completely unrestricted.

The DCS language has, for instance, fostered the development of the partner abstrac-
tion [7, 12] and has been subject of (partly joint) works on refinement for the DTR
abstraction [10, 166].

10.1.1. DCS

Formally (quoting from [10]), a DCS protocol is a seven-tuple

P = (Q,A,Ω, χ,Σ, Emsg, succ) (10.1)

with a finite set Q of states a process may assume, a set of initial states A ⊆ Q assumed
by newly appeared processes and a set of fragile states Ω ⊆ Q, in which processes may
disappear, A finite set χ of channels, each providing potential links to other processes,
A finite set Σ of messages and environment messages Emsg ⊆ Σ, that is, messages that
may non-deterministically be sent by the environment, and a transition relation ‘succ’,
determining each processes’ behaviour.

The transition relation succ comprises four different kinds of labelled transitions be-
tween two states from Q, namely send, receive, modify, and conditional transitions.

A transition (q, c,m, c′, q′) ∈ Snd sends, if in state q, a m-message carrying one of the
identities stored in channel c′ or the own identity to c and changes state to q′.

A receive transition (q,m, c, op, q′) ∈ Rec consumes an m event and execute opera-
tion op on channel c in the current local state. Such operations are typically channel
assignment or adding an identity to a channel.

Other transitions are the trigger-less (q, c1, op, c2, q
′) ∈ Mod to set the content of

channel c1 to the result of applying op to channel c2, and (q, em, c, q′) ∈ Cnd which tests
channel c for emptiness.

Less minimal variants of DCS have been proposed in [9, 150, 95, 2], which differ in
details but agree in fundamental concepts.

There are, for instance, variants with multiple such DCS protocols, which are consid-
ered to be compiled into a single one above. Others include explicit create and destroy
operations, in addition to environment-driven creation.
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DCS and HLL

The relation to HLL is rather straightforward. Assuming the setting of multiple DCS
protocols, there is one HLL class per protocol. DCS protocol states become HLL states
and transitions translate directly into transition programs assuming a corresponding
signature with function symbols for link manipulation.

Specialties of DCS protocols are fragile states. Instances of DCS protocols are nonde-
terministically created by the environment and they may be destroyed by the environ-
ment whenever they’re in a fragile state.

This can be modelled by an explicit HLL class playing the environment. As HLL allows
to query the local states of other processes, the destruction transitions can have guards
which check whether the destination is fragile. Candidates would be determined by link
inputs. Similarly, events carrying identities can be sent by the explicit environment to
individuals.

For readability, we’ll right-away use the HLL action syntax to label DCS models in
Section 10.1.3, instead of the tuple notation from Section 10.1.1.

One particular property of DCS is that its inherently symmetric in identities. This
can easily be checked with the Ip/Dill criteria. The reason is that DCS doesn’t have
data, which could be mixed with identities. Furthermore, neither the logic nor the
requirements specification logic support singularities.

10.1.2. METT

The DCS language is complemented by a first-order variant of LTL which, in addi-
tion to life-cycle queries, has primitives to refer to communication, namely sending and
consumption of events, and whether an event is pending.

It is, like EvoCTL∗, a direct descendent of VTL/ETL [191, 190] without transitive
closure (cf. Chapter 4) but with the just named communication primitives. It shares
with VTL/ETL the biased semantics.

The syntax of Mett is given by the following grammar.

φ ::= p1 = p2 | instate[q](p) | conn[c](p1, p2)

| pend[m](p1, p2, p) | send[m](p1, p2, p) | recv[m](p1, p2, p)

| ⊙ p |⊗p | ¬φ | φ1 ∨ φ2 | ∀ p.φ | X φ | φ1 U φ2

(10.2)

Here, c denotes a channel and m a message, p is a logical variable.

The instate[q](p) predicate holds if the individual denoted by p is in the given local
state, conn[c](p1, p2) holds if there is a link from p1 to p2.

The predicates send[m](p1, p2, p), recv[m](p1, p2, p) and pend[m](p1, p2, p) indicate whether
p1 has send a message m to p2, or whether such a message has just been consumed, or
is currently pending.

Both, ⊙ p and⊗p are known from ETL/VTL and EvoCTL∗.
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fa ld

fl

req(p)/flws := {p};

car ahead(p)/
ldr:={p}; ldr!req(this);

car ahead(p)/
ldr := {p}; ldr!req(this);

flws!newld(p);
flws := flws \ flws;

req(p)/flws := flws ∪ {p};

newfl(p)/
flws:=flws∪{p};

newld(p)/ ldr := {p}; ldr!newfl(this);

Figure 10.1.: Platoon merge. Simplest implementation. The action language syntax is bor-
rowed from HLL.

METT and EvoCTL∗

The relation between METT and EvoCTL∗ is quite obvious as both have common an-
cestors. The only new aspects are communication queries. To support these, we’ve got
to provide access to the current state of the ether, which is part of an individual’s local
state.

10.1.3. Case-Study: Car Platooning

The QR/DTR combination has been applied to certain variants of our running example,
the Car Platooning case-study. The focus was on the merge protocol, for instance
in [9, 10], the complementing split procedure has been considered in [166].

In [9], a certain strategy to approach this class of systems is proposed. Firstly, a given
requirement should be checked on a finite instantiation of the system, that is, with a
finite upper bound. This may already reveal errors, and can benefit from fast under-
approximating tools. Only in case no errors are found, the step to the abstraction should
be taken.

The experiments we cite in the following have been carried out on different hosts,
employing the automated translation from an XML representation of DCS protocols
to the SMI model-checker input language from [150]. This result, stated as an infinite
array program, has then been post-processed with our implementation of the procedure
of Section 9.4.3. Similar to the UML case below, the precision issues have not been
known back then.

Model

Figure 10.1 shows a minimal implementation of the merge procedure. Each car starts
out as a free agent when entering the highway, thus the initial state is fa. Then there are
two options. Either the car detects via some sensors another car in front, as modelled
by reception of an environment event car ahead, or it is approached by some other car
from the back and receives a merge request req.

In the former case, the car in front is assumed as new leader, the identity of the front
car is part of the car ahead message, a request is sent with the own identity as parameter,
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fa ann fl

clr

hnd

ld req

request(p)/
flws:=flws∪{p}

car ahead(p)/ldr := p

car ahead/ldr := p
/ldr!request(this)

/flws!new ldr(ldr)

/flws := flws \ flws
new ldr(p)/ldr := p

/new flw!ldr(this)

request(p)/flws := flws ∪ p

new flw(p)/flws := flws ∪ p

Figure 10.2.: DCS Protocol for merge [9].

fa faf

fl

ld ldf

request(p)/
flws := flws ∪
{p}; flws!ack;

ack(p)/ldr := p

ack(p)/ldr := p;
flws!new ldr(ldr);
flws := flws \
flws;

nack/

car ahead(p)/tmp :=

{p}; tmp!request(id)

car ahead(p)/tmp :=

{p}; tmp!request(id);

nack/

request(p)/tmp :=

{p};
flws := flws ∪ tmp;
tmp!ack;

request(p)/tmp := {p};
tmp!nack;

request(p)/tmp := {p};
tmp!nack;

new ldr(p)/ldr := {p};
ldr!new flw(id);

new flw/flws := flws ∪ {p};

Figure 10.3.: Fixed DCS Protocol for merge [9].

and the car changes state to fl, thereby becoming a follower.
In the latter case, the request is accepted, the sender is assumed as (only) follower,

and the car changes state to ld. In the leader state, further cars can join the platoon by
sending requests.

A critical operation is the merge of two platoons. In that case, the leader approaching
from behind receives a car ahead notification, this time with the identity of the front
leader. The back leader assumes the front leader as new leader, informs all of its followers
by a newld message of the new leader, dismisses all its followers, and becomes itself a
follower. The followers of the former back leader react on the newld message by assuming
the received identity as new leader and announcing themselves by a newfl message. The
front-leader consumes these messages and extends its follower links.

Note that Figure 10.1 employs sequences of actions per transition, which is not pro-
vided by the formal definition of Section 10.1.1, thus they’re read as abbreviations for a
variant with correspondingly many intermediate states. Figure 10.2 shows a completely
unfolded variant. In [150], the variant with action sequences is considered.

Analysing this implementation with the under-approximation approach (see above) in
a setting with at most three cars already reveals problems (see below). These problems
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req(p)/flw := {p};
flw!ack(this);

newfl(p)/aux := {p};
aux!ack(this);
flw := flw ∪ {aux};

ack/

req(p)/aux := {p};
aux!ack(this);
flw := flw ∪ aux;

car ahead(p)/
ldr := {p};
ldr!req(this);

ack/

/aux := pick(flw);
aux!newld(ldr);

ack/flw := flw \ {aux};

[flw 6= ∅]/;

[flw = ∅]/

/ldr!ack(this);
newld(p)/aux := {p};
aux!newfl(this);

ack(p)/ldr := {p};
ldr!ack(this);

car ahead(p)/
ldr := {p};
ld!req(this);

ack/
ld!ack(this);

Figure 10.4.: The strengthened merge protocol [10].

are fixed by introducing the possibility to positively or negatively answer a request. This
is shown in Figure 10.3, again in abbreviated form.

For the combination of Partner Abstraction [7, 12], as demonstrated in the joint
work [10], a further strengthened variant had to be employed in order to have both
techniques succeed, the static analysis and the QR/DTR model-checking.

This variant is shown in Figure 10.4. Note that it employs the pick operation as
discussed in Section 9.2.5. In this case, we convinced ourselves manually of the symmetry
of this loop, the automatic analysis is not yet this sophisticated. Further note that this
variant is not a single link model. The number of followers per car is not limited at
all. Thus with the results named below, we have successfully approached a setting with
principally unbounded links, which is possible because the case-study meets the criteria
discussed in Section 9.4.3.

10.1.4. Results

As a first demonstration of the feasibility to analyse DCS, the following property has
been considered for the DCS protocol shown in Figure 10.2.

G ∀ p1, p2.instate[fl](p1) ∧ instate[fl](p2)∧

p1 6= p2 → ¬(conn[ldr](p1, p2) ∧ conn[ldr](p2, p1))
(10.3)

It requires the absence of a pathological topology, namely that two followers mutually
consider each other to be the leader.

Following the proposed methodology, an analysis restricted to a concrete system of
at most three cars already revealed that the lack of interlocking in the merge protocol
allows overlapping merges which lead to the undesired situation.
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This can be overcome by modifying the model to Figure 10.3. On this model, the
under-approximation didn’t reveal a violation of (10.3). Applying QR/DTR yields a
counter-example for the initial spotlight. Its spuriousness has been identified by close
examination. The source of spuriousness is that the abstracted cars may send newld
messages at times where they’re not supposed to, that is, in abstract topologies which
don’t concretise to a concrete topology where one of the other cars would send this
message.

We effectively refine the abstraction by explicitly excluding the spurious behaviour
using the following assumption.

G ∀ p1, p2, p3.send[new ldr](p1, p2, p3)→ conn[flws](p3, p1) (10.4)

It basically says that cars only send newld messages if they’re supposed to do so, namely
if the recipient is currently a follower. With this assumption added, verification suc-
ceeds. The message queue has to be restricted to a finite length though, as discussed in
Chapter 9.

Note that property (10.3) above is a rather simple topology invariant which can alter-
natively (and faster) be established by Partner Abstraction. In [10], the following more
involved property is considered.

∀ cb, c, cf .G (send[newld](cb, c, cf )→ (conn[ldr](c, cb) U conn[ldr](c, cf ))). (10.5)

It states that, if a platoon led by car cb merges with a platoon in front led by car cf ,
then during the merge cb hands over its followers to cf .

Note that this is, by the employed U operator, a true liveness property, which cannot
be established with Partner Abstraction.

Without refinement, this property fails for the model shown in Figure 10.4 with a
spurious counter-example similar to the one of the previous property. In this case,
refinement employs Topology Invariants obtained via Partner Abstraction based analysis.
Restricting the model to adhere to the legal topologies allowed us to verify this property
under the fairness assumption that each concrete car is always finally scheduled, and
with a finite queue-length as discussed in Chapter 9.

10.2. UML and LSCs

As discussed in Chapter 3, the Unified Modelling Language [138, 141, 140] (UML) gains
popularity for the model driven development of safety or mission critical system, thus
there is a clear need for formal verification.

There are two primary obstacles. Firstly, UML still lacks a complete formal seman-
tics. Secondly, an aim of the UML is to support all stages of software development, from
the capturing of use cases and scenarios as requirements, to fully executable models
of the system behaviour in terms of class diagrams, state machine diagrams and activ-
ity diagrams, to the deployment of tasks to a distributed infrastructure in deployment
diagrams.1

1And these are only half of the diagram names provided by UML 2.0.
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The underlying idea is to have orthogonal views. For example, a class diagram de-
clares the (data) types of objects in the system while state machines give their temporal
behaviour. Together they define traces of object diagrams. An object diagram is basi-
cally a graph whose nodes are class instances, called objects, interconnected via named
links, thus resembling our topologies. Two object diagrams are in transition relation if
the destination is just the effect of applying a state-machine to the source, resembling
our HLL from Chapter 9. Given the set of traces of a UML model, a main applica-
tion for formal verification is to ask whether it adheres to the required scenarios given
by sequence diagrams (or the equivalent collaboration diagrams, or the related timing
diagrams).

For the sheer number of different diagrams, with differently clear interrelation, we
follow the typical approach in this area. Namely, to identify a relevant set of diagrams
and of these a relevant core for which one can give a formal semantics. A first criterion for
relevance is basically that the expressive power of the chosen cores is sufficient to describe
executable models, that is, which are sufficiently restrictive to enable code generation.
A second, and weaker criterion is that a reasonable subset of models is covered, that is,
that interesting case studies with the aspects which make UML difficult are possible.

This section is structured as follows. In Section 10.2.1, we introduce the executable
UML core we consider, which roughly follows [45, 46].

As property specification language, we don’t consider UML’s sequence diagrams, but
Live Sequence Charts [42, 43]. Both visual languages have a common ancestor, the Mes-
sage Sequence Charts of the ITU [91, 90, 92], but SDs inherited from MSCs serious issues
concerning expressive power and formal semantics [80]. For example, they directly don’t
have means to distinguish necessary progress (liveness) from possible, non-necessary
progress.

Section 10.2.2 briefly recalls syntax and semantics of LSCs, for the relation to EvoCTL∗

we’ll refer to a publication we co-authored. We’ll only discuss one issue in more detail
which has already been sketched in [178], namely how to fit the observation of creation
in the LSC sense into the QR/DTR framework. This issue would fit into Section 4.5,
but is very particular to LSCs.

10.2.1. UML

Following [46], a UML model is a quadruple U = (E,C,L,M) comprising a finite set E
of events, a finite set C of classes, all active, and functions L and M providing classes
with associations and state-machines. Events from E are typed, just like HLL events, in
addition we distinguish whether an event may be sent by the environment or whether it
is only used internally in the system.

Given a class c ∈ C, its set of associations L(c) = {l1, . . . , ln}, n ∈ N0, is finite and
may be empty. A class has finitely many local variables X = {x1, . . . , xm} of basic types
in the sense of Chapter 9.

The state machine M(c) of a class is a quadruple (S, S0, R,A) comprising a finite set
of states S, sets of initial states S0 ⊆ S, a transition relation R ⊆ S×S, and a transition
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labelling A assigning each transition r ∈ R a trigger, a trigger/action pair, or only an
action, where a trigger is an event from E, possibly also guarded by a condition similar
to HLL.

An action manipulates associations and local variables and may refer to event pa-
rameters, and that plain actions at least comprise association manipulation and event
sending.

As discussed in more detail in [46], this simplistic notion of UML models is not a severe
restriction of generality of our proposal as it already captures many essential features
by appropriate encodings.

For instance, hierarchical state machines unfold into the flat ones considered here fol-
lowing well-known procedures. Methods, unless recursive, can be encoded by “inlining”
them into transition annotations. Finally, inheritance can be translated into one class
per feature added in a specialisation and a new one-to-one association pointing to the
superclass (cf. [176, 46]).

UML and HLL

The encoding of core UML models as introduced above in HLL is completely straight-
forward.

UML classes become HLL classes, UML associations become link names, and state-
machines correspond directly to HLL transitions with transition programs.

The only specialty is the optional environment, which may non-deterministically send
events marked accordingly (see above). This environment would be introduced by an
additional class with always enabled transitions.

The semantics is a strict interleaving semantics, inputs and creation are not restricted
and symmetric. The ether is instantiated by one FIFO queue per object.

In the UVE tool-chain [159, 158], symmetry in identities is not given for granted be-
cause the action language of the employed UML tool Rhapsody [87] is C++. This action
language allows all forms of pointer arithmetics and conversion into data, so symmetry
has to be established separately. For the case-studies, we employ an implementation
of the Ip/Dill criteria check which operates on the SMI [24, 179] model-checker input
language and is aware of the NULL singularity. The check typically succeeds because
there are development guidelines for UVE which encourage symmetric designs.

10.2.2. LSC

Scenario-based approaches, and LSCs in particular, are highly relevant for the formal
specification of requirements in model based development [175, 3, 102, 36, 26, 18, 17].
They’re in particular of first choice because many model based development models
propose to capture early requirements in form of use-cases and scenarios, which are later
refined. In the joint work [22, 23], an elaborated refinement procedure is proposed.
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Figure 10.5.: Live Sequence Chart for a system of level-crossing controllers.

Static Binding LSCs

For our purposes, it’s sufficient to introduce the visual formalism LSC by an example.
For a more formal and complete treatment, we refer to [42, 43, 97].2

As an example, think about a requirements specification for a level crossing in form
of an LSC. The level crossing shall be driven in a decentralised fashion by a group of
controllers, a central crossing controller and separate controllers for the traffic lights as
well as for the barriers.

Whenever the environment, typically a train, request that the level crossing shall
be secured, we expect a certain sequence of communication and behaviour, unless the
system is not operational.

In form of an LSC, such requirements can be captured as shown in Figure 10.5. Each
controller and the environment are represented by vertical life lines (or instance lines).
The implication between the request and the following behaviour is captured by showing
the initial communication in dashed hexagon, the so-called pre-chart, and showing the
following behaviour in the main chart. Its solid outline indicates that whenever the
pre-chart is observed, the remainder shall follow.

The particular communication begins with the crossing controller simultaneously start-
ing both sub-controllers. The small dashed hexagon is a condition. It queries the state
of the lights controller when lights on is received and exits the chart if the controller is
not operational. Then another chart is in charge, this chart is successfully exited.

On the side of the barrier controller, the solid hexagon is a local invariant which re-
quires the barrier to move downwards until completion is reported to the main controller.
The reports from the sub-controllers may occur in any order as indicated by the dashed

2For completeness, note that two LSC dialects spawned from the original [42, 43]. The branch defined
by [97], which we consider, has a more classical view on LSCs. In a sense they’re simply viewed as a
more readable variant of temporal logics in formal methods based development, which complement
an implementation. The implementation can then be checked for satisfying the LSC requirements
specifications.

The branch defined by [81], views LSCs as the programming language itself. A so-called play engine
animates a set of LSCs, it plays out the scenarios according to environmental stimuli.
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lines in parallel to the life line.
After both sub-controllers reported, the main controller may send back an (asyn-

chronous) acknowledge to the requester. In contrast to this, the report of the barrier
controller must occur finally. This difference is graphically indicated by the solid line
segment between both messages on the barrier controller’s life line and the dashed life
line before the acknowledgments.

That is, LSCs are a conservative extension of MSCs. Each element obtains an addi-
tional modality, graphically indicated by dashed or solid lines. Intuitively, a solid outline
denotes mandatory requirements: in order to satisfy the chart, a system must make the
local invariant hold, the barrier controller report must finally be observed, and the whole
chart must be completed whenever the pre-chart has been observed. A dashed outline
denotes possible requirements: for example, in order to satisfy the chart, a system needs
at least one run adhering to the chart. Mandatory elements are often called hot, possible
ones cold.

The semantics of an LSCs is a Timed Symbolic Büchi Automaton [97] whose states
are the cuts of the chart. The gray step-line in Figure 10.5 is a cut, which records how
far the LSC has been traversed. The legal sequence of cuts is determined by

1. the order of elements along the instance line, elements closer to an instance line’s
head are required to occur strictly before strictly farer ones, and

2. the principle that asynchronous messages, as indicated by sloped lines with open
arrows, are received strictly after sending.

Occurrences can in addition be grouped in simultaneous regions, as indicated by black
circles on the life lines, and explicitly relaxed in coregions, as indicated by the dashed
line in parallel to the life line.

Dynamic Binding LSCs

Note that we’ve implicitly assumed Section 10.2.2 that the relation between instance
lines and controllers is fixed. This is the setting of [97]: they consider a model of a single
level crossing and expect a given (fixed) mapping between the components in the model
and the instance lines.

In [177, 99], we’ve proposed to take a more dynamic view on LSCs.3 That is, we
view instance lines as logical variables and the whole chart as existential or universal
quantification over components in the model.

Viewing the LSC from 10.5 as dynamic binding, it would read out loud as

“for all combinations of crossing, lights, and barrier controller, whenever
there is a request. . . ”

which would in practice need to be supported by an activation condition (cf. [97]) that
restricts it to all combinations of associated controllers in the system.

3The play-in/play-out correspondence is [121].
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Environment x : D

y : C

E

F

Figure 10.6.: Creation in a Live Sequence Chart.

In our proposal, we already have UML with (possibly premature) disappearance in
mind. To this end, we read life lines as implicit local invariant requiring continuous
aliveness throughout activation of the LSC, that is, ¬⊗x in terms of EvoCTL∗.

Thereby, the EvoCTL∗ formulae corresponding to LSCs (see below) are definite. Pre-
mature disappearance is clearly a violation of the LSC, by intention, and not accidentally
by being biased (cf. Chapter 4).

LSCs and EvoCTL∗

In the joint work [168, 47], we’ve outlined how LSCs relate to temporal logic. Our
findings are that each universal LSC (solid outline main chart) is equivalent to an LTL
formula, and there is a syntactically characterisable strict fragment of LTL, which can
be translated back into LSCs. Existential LSCs (dashed outline main chart) map into
CTL.

In the joint work [98], we discuss sub-classes of LSCs which can be checked with differ-
ently powerful approaches. The classes range from the bonded, time bounded fragment,
whose LSCs are equivalent to safety properties, to non-bonded, general liveness LSCs,
which cannot be checked by the observer (or monitor (or test automaton)) approach
of [182]. The discussion of Section 9.4.4 applies accordingly.

Treating Creation

With [177, 99], we also considered the notation for object creation from UML SDs in
LSCs as shown in Figure 10.6 (cf. Chapter 10). It says that after object x (of class D)
has received an event E from the environment, it (finally) creates a new object of class
C, which shall from now on be known under the name y in this chart.

It is in particular this object of class C which is supposed to (finally) reply to x
with an F event, not any other object of this class, and the semantics of the LSC from
Figure 10.6 requires the F answer for all created C, shall there be more than one. This
is something different from case-split, and different from treating links (cf. Chapter 4).

We can treat this case if we can assume the two predicates, which can be defined by
auxiliary variables (or observers) as discussed in Chapter 9. Namely,

1. newC(·), holding for an identity id iff id has just created a new object of class C,
and
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Terminal

EntryExit

CarHandler

Car

Figure 10.7.: Automated Rail Cars System. Closed variant with eight cars and four termi-
nals (cf. Section 1.1.1).

2. thenewC(·), yielding for an identity id the identity id′ which denotes a new object
of class C and has just been created by id.

Then the EvoCTL∗ formula4

∀x : T1, y : T2 . rcvE(x)→ X F(newC(x) ∧ (⊙ y ∧ y = thenewC(x)→ . . . )) (10.6)

(with some omitted requirements on x staying alive) states that finally, x creates a new
C, this then happens to either not be y, or to be y, and in this case it continues as
required. Which coincides with the requirement stated by the LSC.

We conjecture that the auxiliary predicates new and thenew (or something equivalent)
are necessary. It seems not to be sufficient to know the destination link, that is, the link
name under which the D instance keeps the newly created C instance.

10.2.3. Automated Rail Cars System

Recall the Automated Rail Cars System [79] from the introduction in Chapter 1. In
its original definition, it’s a parameterised system with a fixed number N ∈ N

+ of
rail cars shuttling on opposite direction one-way tracks between a fixed number of M
terminals, each with a fixed number of platforms. Cars autonomously plan their route
and automatically keep a safety distance to the car in front.

Dynamic topologies come into play with the arrival and departure procedure. Cars
announce themselves at the terminal and are assigned a newly created car handler, which
reserves a platform and sets up the ingoing switches accordingly. Only afterwards, the
car is notified that it may enter the terminal, if this notification doesn’t arrive in time,
the car waits. If the car wants to leave a terminal, its handler sets up the outgoing
switches and clears the platform reservation afterwards, before it is destroyed.

4the relation between LSCs and temporal logic is briefly discussed in a paragraph above
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model inst. model-gen. model-checking errorpath prep.

ARCSystem DTR 0:02:18 4:45:50 (prop. holds)

Witness 0:02:12 0:00:06 0:00:05

Table 10.1.: Verification times. Model-generation, -checking, and translation of the counter-
example back to UML terms (hours:minutes:seconds).

So the link topology clearly changes over time, as does the extension because car
handlers are created and destroyed. If the system is implemented without programming
errors, then the number of cars induces a finite upper bound on the number of car
handlers, thus the system is then finite-state.

But this premise, absence of programming errors cannot easily be made in the domain
of critical system. This has to be properly established, which is admittedly possible in
some cases.

More interestingly, the case study easily extends to an open system where rail cars
dynamically enter and exit the scope of a terminal. Then there may still be a finite
upper bound on the number of handlers, but it will depend in a non-trivial way on the
safety distance between cars, possibly the strategy of platform management, etc..

The benefit of the QR/DTR approach is that we needn’t establish these premises but
can analyse the system even if it is suspected to have an unbounded extension.

Model

In [178], we’ve presented the verification of a simplified version of the ARCS, which
focuses on the arrival departure procedure at a single terminal. This is the interesting
case as outlined above, because this is where topology dynamics are observed.

The relevant parts of the model, the class diagram and the state machines of car
handlers, rail cars, and terminals, are shown in Figure 10.8. We’ve modelled it with
the UML schematic entry tool Rhapsody and employed the UVE tool-chain [159, 158]
with integrated QR/DTR transformations to obtain an array program encoding in the
model-checker input language SMI [24, 179] (cf. [178]). It is basically implementing
the less sophisticated encoding presented in Section 9.4.3, the precision problems (cf.
Section 9.3.3) were not understood back then.

A notable aspect of the integration into UVE is that it was already prepared to exploit
that the different representative cases yielded by QR are completely independent, thus
can be verified completely independently on concurrent hosts. The implementation of
the integration took care to interpret the result and to stop running tasks if the first
task completed with a negative result.
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(b) CarHandler state machine.
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(c) Car state machine.

operational

arrivReq/CarHandler∗
h := new CarHandler;
h→setHandledCar

(params→car);
h→startBehaviour()

(d) Terminal state machine.

Figure 10.8.: Automated Rail Cars System class and state chart diagram.[178]

LSC: approach
AC: true
AM: invariant I: strict

c:Car

[1, 1]

h == c→ itsCarHandler

t:Terminal h:CarHandler

c == h→ handledCar

arrivReq(c)

arrivAck(h)

Figure 10.9.: Live Sequence Chart. If c contacts terminal t, then it is granted access by the
h responsible for it and establishes the link itsCarHandler.
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10.2.4. Requirements and Results

Table 10.1 shows verification times5 for the LSC requirement given in Figure 10.9. The
first line includes determining and executing the single representative verification task.
The second line, for comparison, refers to the verification that there exists a run of the
(not abstracted) ARCS which satisfies the LSC. The property already holds in the initial
abstraction, refinement was not necessary.

The reason for the long verification times (nearly five hours) is not completely under-
stood. We conjecture that the main source are the FIFO queues used for communication
even when restricted to small lengths.

10.2.5. Discussion

Formal verification for UML already has a long history, as we’ve seen in Chapter 3 when
discussion their computational model. The main difference to our approach is that, up
to now, there is as far as we know no approach which supports true liveness properties
(like the finally modality) in a truly dynamic topology setting, that is, with unbounded
creation and destruction.

The earliest works, [111, 108, 65] basically considered single state machines in isolation,
which is easy as formal verification for Harel’s Statecharts [78] have been established
then, e.g. [44, 25, 24].

Similarly, in [52, 51] the focus is on timed state-machines in UML, not in topologies
in their Uppaal-based tool UML RT/Uppaal.

In [118, 117], multiple state-machines are considered in the tool vUML, which is based
on the SPIN model-checker [83]. The topology is not dynamic in any sense, each state
machine may communicate with all others. Object creation and destruction is also not
considered in the ASM-based tool VeriUML [37, 38, 161, 162, 163].

In [157, 100, 101], verification of collaboration diagrams is considered which are largely
equivalent to sequence diagrams. Thus they’re principally closely related. The differ-
ence is that collaboration diagrams suffer from the same issues as sequence diagrams
(see above), so they’re strictly weaker than LSCs, and they exploit the capability of
collaboration diagrams to also give a topology. Verification is then conducted in the
fixed topology.

The most sophisticated approach next to UVE, the tool ObjectCheck [187, 185, 188,
186, 160, 184, 189] also employs Query Reduction, but didn’t make the step to the DTR
abstraction. Thus they rely on a completely concrete model with dynamic topology but
with a fixed finite upper bound on the number of objects concurrently alive. The same
holds for plain UVE without our extension [159, 158].

Graph-oriented approaches like UMLAUT/CADP [74, 73, 93], USE [153], or [8] fully
support dynamic topologies, but address only safety properties.

5Sun Blade 2000, 900 MHz UltraSparc III+, 2 GByte.
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11. Conclusion
and Further Work

11.1. Summary

In the pre-study [177], we set out to verify scenario properties given in form of Life
Sequence Charts [42, 43] (LSC) against UML models in the sense of [79] by a particular
abstraction following the spotlight principle. With this work, we can now confirm the
expectations and have gained a good understanding of how and why the abstraction
works, in particular in the context of Dynamic Topology Systems (DTS). This has been
far from clear with the original proposals and provides valuable starting points for further
investigations, in particular concerning refinement.

It took us a long way to achieve this. First of all, there is currently no agreed fully
adequate formal computational model of DTS in the literature, so we propose evolving
topology transition systems (ETTS) in Chapter 3. It serves, in comparison to existing
proposals, the purpose to in particular represent nasty effects like dangling links and is
prepared to cover also other approaches for formal comparison in a unified framework.
The definition proves useful in the subsequent chapters.

Secondly, we widened the scope from scenarios to complete temporal logic. From the
literature it is known that the scenario language of LSCs is equivalent to only a strict
fragment of temporal logic, while the overall approach promises to apply to a wider range
of properties. Employing any alternative representation of LSC properties than temporal
logic, for instance Büchi automata, doesn’t ease the proofs in the affected chapters.

To this end, we introduce EvoCTL∗ in Chapter 4 as a first-order variant of CTL∗

quantifying over identities or individual destinies. Again, the reason is that there is no
agreed formalism as we lay out in Section 4.6. The proposals seem to converge in syntax,
but have vastly different semantics, that are in our opinion in most cases not adequate
to the DTS domain.

Our proposal is basically the union of the syntax of existing proposals, one exception
is transitive closure which is present in some of the underlying proposals and which we
omit because it would add an additional level of complexity. We intentionally refrained
from adding new constructs, which are certainly imaginable, to keep the presentation
focused. A first investigation of monotonicity and definiteness properties shows that our
proposal is adequate.

Our discussion of prenex normal forms gains a better understanding of the fragment
of EvoCTL∗ amenable to the overall approach. We understand that it depends on a
quantification over identities (instead of destinies), that it clearly covers the fragment
equivalent to LSCs, but interestingly also properties with normal form and the fragment
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of destiny quantification properties with equivalent identity form. We also see properties
not amenable to the overall approach and can explain the reasons.

In Chapter 5, we establish a new simulation relation on ETTS and discuss how
EvoCTL∗ properties on simulating systems are related. This is the basis for the (re-stated
pre-existing) soundness proof of the Data-Type Reduction abstraction in Chapter 6.

The value of Chapter 6 lies in its new, closed definition of DTR, while existing approach
are rather inductive, or implementation oriented. The intuitive statement of DTR in the
graph-based setting of ETTS allows us to discuss reflection properties and give guidelines
on possible refinements if the unique properties of DTR shall be preserved.

Chapters 7 and 8 basically re-state the methodology from [124, 127] in our context.
A difference is that Chapter 7 introduces a notion of symmetry in identities, which is a
special case of the existing approaches but of major concern with ETTS. Furthermore,
it discusses how to treat singularities, which even furthers the range of applicability.

Having discussed the QR/DTR approach in full breadth theoretically in Part III, we
address more practical issues in Part IV in full depth because a theoretical definition of
an abstraction is close to useless if it is not clear how to obtain the abstract transition
system in practice, or if it is prohibitively expensive. On the other hand, a theoretically
non-understood implementation is far from satisfactory.

To this end, we introduce a higher-level description language (HLL) for DTS in Chap-
ter 9. It is intended to cover the more concrete formalism DCS and UML as addressed
in Chapter 10. With HLL, we discuss for the first time the impact of side-conditions for
symmetry in identities. We find that it depends on the communication means, the treat-
ment of inputs and creation, and the scheduling. In existing applications of QR/DTR, it
is typically discussed only in the context of a particular model-checker, without reflecting
in how far means provided by these tools are necessary.

Furthermore, we find that QR/DTR is best suited for interleaving semantics, full
concurrency makes matters more complicated. Interestingly, the existing applications
fall into this class but seldom reflect that they depend on it.

Finally, we demonstrate how to obtain an HLL model whose ETTS semantics simulates
the theoretically described DTR’d ETTS and we can even discuss new issues of precision.
With Section 9.4, we get back to array programs, the domain in which QR/DTR has
originally been introduced. With a sufficiently detailed procedure to obtain, for a given
general HLL model, a finite-state array program which simulates the DTR’d model we’re
ready to employ any readily available symbolic model-checker.

Chapter 10 closes the circle by reporting properties that have been established for
the examples from the introduction with the QR/DTR approach employing an own
implementation.

This breadth and width is in our opinion necessary because leaving out a discussion
of any one of them would endanger the justifications of all other parts. As in particular
the formal description languages are new proposals, their intuition has to be discussed
in some detail.

This comes at the price that the discussion has to be somehow shallow and preliminary
in some places. For example, we only have preliminary results on properties of EvoCTL∗
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and the comparison of QR/DTR to other approaches is far from complete, for instance,
given the amount of recently proposed approaches for the certainly related analysis of
pointer programs.

On the other hand, while isolated and clearly focused investigations are typically to
be preferred, sometimes somebody has to take a step back to see the whole picture, in
particular in order to see whether all simplifying assumptions are still in scope. With
this work, we have undertaken such a step.1

11.2. Discussion

The QR/DTR approach is suitable for proving scenario properties on Dynamic Topology
Systems. The main benefits compared to other approaches are that it preserves liveness
properties (under fairness assumptions), while the vast majority of other approaches
only addresses reachability or safety properties.

Secondly, it doesn’t suffer from identity blurring (cf. Section 6.6) which is inevitable
when considering scenarios that refer to the behaviour of certain particular individuals
over time.

And thirdly, obtaining the abstract transition system is computationally cheap, in
contrast to, for instance, approaches based on predicate abstraction.

The analysis of Dynamic Topology Systems is a field which clearly gained momentum
in last few years, for instance, think of the Partner Abstraction of [7, 12], approaches
to model-checking for the π-calculus like [132], or Hoare-style verification of graph pro-
grams [76], not to speak of the above mentioned approaches to the analysis of pointer
programs, and ongoing efforts to extend Craig interpolation to array programs.

For this reasons, we will see how QR/DTR proves over time, whether it remains. What
we expect to remain is the characterisation of Dynamic Topology Systems (partly rooted
in the joint work [9]))))) and the issues raised for a complementing property specification
logic. Later approaches should be measured on the range of covered properties, in
particular scenarios comprising liveness aspects.

11.3. Further Work

It is possibly a good sign, if one can conclude that we’re left with more open than
answered questions. This is clearly the case.

Concerning the modelling, the questions are whether ETTS and EvoCTL∗ are already
completely adequate, and whether there is an interrelation as between CTL∗ and Kripke
structures.

The EvoCTL∗ as such raises numerous questions in its own right, which we only could
address briefly. Namely exact criteria for monotonicity and definiteness, or the exact re-
lation between identity and destiny quantification, or whether we can tighten the findings

1And in our next undertakings, we will clearly aim to limit the scope substantially for a change.
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on normal forms. Furthermore, the impact of different modeling means or restriction of
links on the decidability of the model-checking problem should be investigated.

For DTR, the topic of refinement is most prominent, we were only able to scratch
the surface and prepare the setting for further investigation. Interestingly, this work
has already inspired independent work on this topic, for instance [166]. Such work in
particular addresses the issue of automation. Currently, refinement takes a significant
amount of expertise in both, the considered model and property, and the procedure as
such.

For the syntactic transformations of Chapter 9, we have identified the impact of con-
currency vs. interleaving which has to be further investigated, as well as adding precision
by ensuring sharing of common expressions. Last but not least, more case-studies are in
order to get a better feeling for the class of properties that can be established in practice,
in addition to the ones reported in Chapter 10.

❧fin. ❧
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[22] Matthias Brill, Ralf Buschermöhle, Werner Damm, Jochen Klose, Bernd Westphal,
and Hartmut Wittke. Formal verification of LSCs in the development process. In
Ehrig et al. [61], pages 494–516. 10.2.2

[23] Matthias Brill, Werner Damm, Jochen Klose, Bernd Westphal, and Hartmut Wit-
tke. Live sequence charts. In Ehrig et al. [61], pages 374–399. 10.2.2

[24] Udo Brockmeyer. Verifikation von Statemate Designs. PhD thesis, Carl von Ossi-
etzky Universität Oldenburg, 1999. 9.2.2, 9.4.2, 10.2.1, 10.2.3, 10.2.5

[25] Udo Brockmeyer and Gunnar Wittich. Tamagotchis need not die. In Bernhard
Steffen, editor, TACAS, number 1384 in Lecture Notes in Computer Science, pages
217–231. Springer-Verlag, 1998. 10.2.5

[26] Annette Bunker, Ganesh Gopalakrishnan, and Konrad Slind. Live Sequence Charts
applied to hardware requirements specification and verification: A VCI bus inter-
face model. Software Tools for Technology Transfer, 7(4):341–350, August 2004.
10.2.2

[27] J. R. Burch and D. L. Dill. Automatic verification of pipelined microprocessors
control. In Dill [55], pages 68–80. 3

[28] Muffy Calder and Alice Miller. Automatic verification of any number of concurrent,
communicating processes. In Emmerich and Wile [64], pages 227–230. 1, 9, 9.2.1,
9.3.4, 9.5

[29] Muffy Calder and Alice Miller. Feature validation for any number of processes.
Technical Report TR-2002-10, Glasgow University Department of Computer Sci-
ence, May 2002. 9, 9.2.1, 9.3.4, 9.5
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Ésik and Zoltán Fülöp, editors, Developments in Language Theory, number 2710
in Lecture Notes in Computer Science, page 21. Springer-Verlag, 2003. 1

308



Bibliography

[67] Ansgar Fehnker, Ralf Huuck, Patrick Jayet, Michel Lussenburg, and Felix Rauch.
Goanna - a static model checker. In FMICS, 2006. 3.7.4

[68] Melvin Fitting and Richard L. Mendelsohn. First Order Modal Logic. Kluwer,
1998. 4.6

[69] Stephan Flake and Wolfgang Müller. Formal semantics of static and temporal
state-oriented OCL constraints. Software and Systems Modeling, 2(3):164–186,
October 2003. 4.6

[70] Stephan Flake and Wolfgang Müller. Past- and future-oriented time-bounded tem-
poral properties with OCL. In SEFM, pages 154–163. IEEE, IEEE Computer
Society, 2004. 4.6

[71] Steven M. German and A. Prasad Sistla. Reasoning about systems with many
processes. J. ACM, 39(3):675–735, 1992. 6.3, 6.6.3

[72] Orna Grumberg, editor. Computer Aided Verification, 9th International Con-
ference, CAV ’97, Haifa, Israel, June 22-25, 1997, Proceedings, volume 1254 of
Lecture Notes in Computer Science. Springer-Verlag, 1997. 110, 123
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[143] A. Pataricza, D. Varró, I. Majzik, Zs. Pap, and G. Huszerl. VIATRA - visual
automated transformation based frameword for UML based dependability evalu-
ation, 2002. Submitted (but not accepted?) to DSN 2002: Dependable Systems
and Networks Washington, USA, 2002. 3.7.6

[144] Amir Pnueli. Compositional model checking is not what it appears to be, Septem-
ber 2000. Talk at IFIP 2.2 meeting in Oldenburg. 1.4.1, 6.6.2

[145] Amir Pnueli, Sitvanit Ruah, and Lenore D. Zuck. Automatic deductive verification
with invisible invariants. In Margaria and Yi [122], pages 82–97. 9.3.4

[146] Amir Pnueli, Jessie Xu, and Lenore Zuck. Liveness with (0,1,infty)-counter ab-
straction. In Warren A. Hunt Jr. and Fabio Somenzi, editors, CAV, volume 2725
of Lecture Notes in Computer Science, pages 107–133. Springer-Verlag, 2003. 6.3,
6.6.3

[147] Andreas Podelski and Thomas Wies. Personal communication. 3.7.4

[148] Andreas Podelski and Thomas Wies. Boolean heaps. In Chris Hankin and Igor
Siveroni, editors, SAS, volume 3672 of Lecture Notes in Computer Science, pages
268–283. Springer-Verlag, 2005. 3.7.4, 6.6.3

[149] Fong Pong and Michel Dubois. Formal verification of complex coherence protocols
using symbolic state models. J. ACM, 45(4):557–587, 1998. 6.3, 6.6.3

[150] Jan Rakow. Verification of dynamic communication systems. Master’s thesis, Carl
von Ossietzky Universität Oldenburg, April 2006. 9.4.1, 9.4.2, 10.1.1, 10.1.3, 10.1.3

[151] Gianna Reggio, Egidio Astesiano, Christine Choppy, and Heinrich Hussmann. A
CASL formal definition of UML active classes and associated state machines. Tech-
nical Report DISI-TR-99-16, DISI - Università di Genova, Italy, 1999. Revised
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mann, Gerard Tel, Jaroslav Pokorný, Mária Bieliková, and Július Štuller, editors,
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A. Proofs

A.1. Proofs of Chapter 4: Property Specification Logic

Proof of Lemma 4.3.6, page 91. Let S = (T,V,F,Λ) be a signature, G1 ⊑ G2 topologies
over Id compatible with S, andM a canonical structure wrt. G1 and G2.

1. In the statement of the lemma, we use the information order “⊑” on B3 as in-
troduced in Chapter 2. In the following, we prove the more general case not only
for B3 but for any semantical domain D assuming the natural completion of a set
with a top element ⊤ and the information order

⊑= {(d1, d2) ∈ D ×D | d1 = d2 ∨ d2 = ⊤}. (A.1)

We then use ⊤ of D(τ) if a functional term of result type τ is undefined.

Let a be a boolean functional term and θ1 ⊑ θ2 assignments of the free variables
of a.

Induction base:

• a is of the form x:
The semantics of these terms is independent from the employed topology,
thus

ιJxK(G2, θ2) = θ(v) = ιJxK(G1, θ1). (A.2)

• a is of the form xxx:
If θ2(xxx) = ε, then the evaluation is independent from the topology. If
θ2(xxx) is not the empty sequence in G2 then by definition of information
order on topologies and assignments, θ1(xxx) is also alive in G1, and the
evaluation is identical in both topologies.

Induction step:

• a is of the form ⊚ a1:
This case is explicitly excluded by premises.

• a is of the form σ(a1):
By induction hypothesis, ιJa1K(G1, θ1) ⊑ ιJa1K(G2, θ2), that is, either
both yield the same identity id or the valuation of a1 in G2 yields ⊤, i.e.
is not defined, and in G1 any identity or also ⊤.
In the former case, the identity id is either an individual in both topolo-
gies, than the local state is identical because G1 ⊑ G2. If id is not an
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individual in G2, or in the latter case where the whole term yields ⊤, we
have

ιJσ(a1)K(G2, θ2) = 1/2 ⊒ ιJσ(a1)K(G1, θ1) (A.3)

independent from the situation inG1 by definition of the local state access
operator.

• a is of the form λ(a1):
Similar to the case above using that information order of topologies re-
quires that links in G2 are also present in G1 and navigation functions
are identical.

• a is of the form f(a1, . . . , ak):
If one of the parameters evaluates to ⊤ in G2, then the valuation of the
whole term is immediately undefined or 1/2, depending on the return type,
thus ⊤ in the extended definition.
If none of the parameter terms evaluates to ⊤ in G2, we obtain the same
valuations in G1 by induction hypothesis. If the interpretation of f is not
defined at that point, the valuation in both topologies is ⊤, otherwise it
is the same value, thus

ιJf(a1, . . . , ak)K(G, θ1) ⊑ ιJf(a1, . . . , ak)K(G, θ2). (A.4)

• a is of the form a1 = a2:
Similar to the previous case because the valuation of comparison for
equality also turns indefinite as soon as one side doesn’t have a valu-
ation.

2. Let t be a logical term over S and let θ1 and θ2 be two assignments of (a subset
of) the free variables of t.

Induction base:

• t is of the form 0, 1, or a:
In the former two cases, monotonicity is obvious as the interpretation is
independent from the valuation. In the latter case, monotonicity follows
from the first part of this lemma.

Induction step:

• t is of the form ¬(t1):
If t1 evaluates to 1/2 under θ2, then the whole term by definition evaluates
to 1/2, thus

ιJ¬(a1)K(G, θ2) = 1/2 ⊒ ιJ¬(a1)K(G, θ1). (A.5)

independent from θ1. If t1 evaluates to a definite value under θ2, then
the same value is obtained for θ1 by induction hypothesis.

• t is of the form (t1 ∨ t2):
It is sufficient to consider three cases. If t1 or t2 evaluate to 1 under θ2,
then they also evaluates to 1 under θ1 correspondingly. The whole term
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becomes 1 under both assignments. If t1 evaluates to 1/2 and t2 evaluates
to 0 or 1/2 under θ2, then

ιJ¬(a1)K(G, θ2) = 1/2 ⊒ ιJ¬(a1)K(G, θ1) (A.6)

independent from the outcome under θ1. If both sub-terms evaluate to 0
under θ2, then they also do so under θ1 and the overall outcome for t is
identical.

• t is of the form (t1 ∧ t2):
If one of the sub-terms evaluates to 1/2 under θ2, then the whole term
evaluates to 1/2. If both evaluate definite, then they obtain the same
value under θ1 and the outcome is identical.

• t is of the form ∀xxx : T . t1 or ∃xxx : T . t1:
This case is explicitly excluded by premises.

• t is of the form ∀x : T . t1 or ∃x : T . t1:
By induction hypothesis, we have

ιJa1K(G, θ1) ⊑ ιJa1K(G, θ2) (A.7)

for any assignments θ1 ⊑ θ2, thus in particular for each θ1[x 7→ id] ⊑
θ2[x 7→ id], id ∈ Id, because modifying variables of an identity type
doesn’t affect the information order relation between the two assignments.
That is, each evaluation changes from 0 or 1 on the left-hand side to 1/2
on the right hand side or remains unchanged. The resulting maximum
(or minimum) then changes to 1/2 or remains unchanged.

3. Follows directly from the first two parts of the Lemma.

Proof of Lemma 4.3.8, page 93. Let S be a signature, G a compatible topology over
identities Id, and M = (ι,D) a canonical structure of S wrt. G.

Note that in the following we show definiteness in an extended sense for a functional
or logical term t. For logical terms, definiteness means values different from 1/2 and for
functional terms it means being defined at all, and, when evaluating to an identity type
T or to L, that all employed identities denote individuals, that is, are alive. Furthermore,
we use an assignment θ which assigns each free logical variable of type TTT in a term a non-
empty evolution chain of identities denoting alive individuals. The claim then follows
directly.

Induction base:

• t is of the form 0 or 1:

Trivially definite because the evaluation is independent from topology and
structure.
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• t is of the form x:

This case is explicitly excluded by premises.

• t is of the form xxx:

By premises, xxx appears bound, that is, in a sub-term of the form ∀xxx : T . t1
(or ∃xxx : T . t1). Thus if this term is evaluated as such, it is ensured that it
is evaluated under an assignment θ which doesn’t assign the empty sequence,
that is, θ(xxx) 6= ε. Thus xxx evaluates definite to an alive individual.

Induction step:

• t is of the form ⊚ t1 or σ(t1):

By induction hypothesis, t1 evaluates definite, i.e. has a valuation. The whole
term then obtains a definite value by definition.

• t is of the form λ(t1):

This case is explicitly excluded.

• t is of the form f(t1, . . . , tk) or p(t1, . . . , tk):

By induction hypothesis, ti, 1 ≤ i ≤ n, evaluate definite. By premise, function
and predicate symbols appearing in t are total, hence t has a valuation under
M, i.e. evaluates definite in the extended sense.

• t is of the form t1 = t2:

Similar to the previous case.

• t is of the form ¬t1, t1 ∨ t2, t1 ∧ t2:

By induction hypotheses, t1 and t2 evaluate definite, thus by definition the
valuation of t is also definite.

• t is of the form ∀x : T . t1 or ∃x : T . t1:

These cases are implicitly excluded by the premises, which require that all
variables occurring in term t are of type TTT .

• t is of the form ∀xxx : T . t1 or ∃xxx : T . t1:

By induction hypothesis, we have

ιJt1K(G, θ) 6= 1/2 (A.8)

for all assignments θ assigning non-empty evolution chains to free variables
of type TTT in t. To evaluate the overall term, the definition modifies θ at xxx to
non-empty evolution chains if there are any. Thus all values over which the
minimum or maximum is computed, are definite and hence also the result.

Proof of Lemma 4.4.17, page 107. (by induction over the structure of ϕ)
Let S be a signature, M1 ⊑ M2 two compatible evolving topology transition systems,

and M = (ι,D) a canonical structure of S wrt. M1 and M2. By Cor. 4.4.16, we can
without loss of generality assume that ϕ is a normal EvoCTL∗ formula.
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Let s ∈ S(M1) = S(M2) be a state of M1 and M2 and π a path in M1 and M2, and
let θ1 ⊑ θ2 be assignments.

Induction base:

• ϕ is of the form t:

Lemma 4.3.6.

• ϕ is of the form ⊙a or ⊗ a:

These cases are explicitly excluded by premises.

Induction step:

• ϕ is of the form ¬φ1 or φ1 ∧ φ2, or ¬ψ1 or ψ1 ∧ ψ2:

By induction hypothesis, similar to Lemma 4.3.6.

• ϕ is of the form ∀x : T . φ1

By induction hypothesis, we have

MM1
Jφ1K(s, θ1) ⊑ MM2

Jφ1K(s, θ2) (A.9)

for any assignments θ1 ⊑ θ2, thus in particular for each θ1[x 7→ id] ⊑ θ2[x 7→
id], id ∈ Id, because modifying variables of an identity type T doesn’t affect
the relation between the two assignments. That is, each evaluation changes
from 0 or 1 on the left-hand side to 1/2 on the right hand side or remains un-
changed. The resulting maximum then changes to 1/2 or remains unchanged.

• ϕ is of the form ∀x : T . ψ1

Similar to the previous case.

• ϕ is of the form ∀xxx : T . ϕ1

This case is explicitly excluded by premises since variables of type TTT are
assumed to appear free in ϕ.

• ϕ is of the form A ψ:

By induction hypothesis, the evaluation is monotone for each path and each
assignment, thus in particular for the paths starting at s and the modifications
of θ1 and θ2 considering all evolution chains. The relation between the two
assignments is preserved because the resulting evolution chains depend on
the evolution relation e, which is smaller for M2, thus yields shorter evolution
chains. The claim follows similar to quantification over identities.

• ϕ is of the form φ:

In order to apply the induction hypothesis, we aim for a sub-formula of φ
which is syntactically shorter, i.e. has fewer nodes in the parse tree. Follow-
ing [34], we can view the right hand side as path(φ), that is, as comprising
the otherwise invisible operator ‘path’, which casts path formulae into state
formulae. Then the claim follows directly by induction hypothesis.
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• ϕ is of the form X ψ1:

Distinguish whether evolution chains shorter than 2 are employed by the
assignments for TTT -variables in Freeψ1. As θ1 ⊑ θ2, there are only three cases.
The evolution chains employed by θ1 for these variables aren’t strictly shorter
than the ones in θ2.

If both assignments employ at least one shorter evolution chain, then ϕ eval-
uates to 1/2 in M1 and M2. If only θ2 employs one, than ϕ evaluates to 1/2 in
M2, thus

MM1
JϕK(π, θ2) = 1/2 ⊒ MM2

JϕK(π, θ1). (A.10)

If none employs too short evolution chains, consider that by induction hy-
pothesis, we have

MM1
Jψ1K(π, θ1) ⊑ MM2

Jψ1K(π, θ2). (A.11)

These values directly provide the evaluation of X ψ1 by definition.

• ϕ is of the form ψ1 U ψ2:

Distinguish the possible evaluations. If ϕ evaluates to 0 or 1 in M1, then there
is a (shortest) positive or negative witness along π. By induction hypothesis,
ψ1 and ψ2 either have the same values or 1/2 on this section of π. In the latter
case, ϕ evaluates to 1/2 in M2 and otherwise to the same value as in M1.

If ϕ evaluates to 1/2 in M1, then by definition either ψ1 or ψ2 evaluate to 1/2
prematurely. By induction hypothesis, they (at least) then also evaluate to
1/2 in M2, thus ϕ also evaluates to 1/2 in M2.

Proof of Note 4.4.18, page 107.

1. Consider the ETTS M1 and M2 shown in Figure 4.6 on page 108. We have M1 ⊑
M2 because both are identical up to evolution relation. Assuming θ assigns id to
v, as sequence of length one in case v is of an evolution chain type TTT and plainly
otherwise, we obtain

MM1
J⊙ vK(s2, θ) = 1 6⊑ 0 =MM2

J⊙ vK(s2, θ). (A.12)

2. In the same ETTS as in the previous case, we obtain

MM1
J⊗ vK(s1, θ) = 1 6⊑ 0 =MM2

J⊗ vK(s1, θ). (A.13)

3. Note 4.3.7.

4. Note 4.3.7.
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5. To discharge this case, it is sufficient to consider the formula F⊚xxx, i.e. we set
ψ1 := 1 and ψ2 := ⊚xxx. With θ1 := {xxx 7→ ε} and θ2 := {xxx 7→ id} we have θ1 ⊑ θ2,
but

MM1
JF⊚xxxK(s, θ1) = 0 6⊑ 1 =MM2

JF⊚xxxK(s, θ2). (A.14)

because in the former case, there is no positive witness for xxx being alive. In the
second case there is.

Proof of Lemma 4.4.19, page 108. Let S be a signature, M a compatible ETTS, and
M = (ι,D) a canonical structure of S wrt. M .

Let ϕ be an EvoCTL∗ state formula over S satisfying prerequisites (1)–(4) and let
s ∈ S(M) be a state of M and π a path in M . By Cor. 4.4.16, we can without loss of
generality assume that ϕ is a normal EvoCTL∗ formula.

Similar to the proof of Lemma 4.3.8, we assume (without loss of generality) that the
assignment θ maps free variables of an evolution chain type TTT to non-empty evolution
chains of alive individuals.

Induction base:

• ϕ is of the form t:

Lemma 4.3.8.

• ϕ is of the form ⊙a or ⊗ a:

By Lemma 4.3.8, the functional term a is defined, that is, evaluates to an
alive (cf. Lemma 4.3.8) identity. Then the formula yields a definite valuation
by definition.

Induction step:

• ϕ is of the form ¬φ1, φ1 ∧ φ2, ¬ψ1, or ψ1 ∧ ψ2:

By induction hypothesis.

• ϕ is of the form ∀x : T . ϕ1:

This case is explicitly excluded by the premises.

• ϕ is of the form ∀xxx : T . ϕ1:

By definition, the considered assignment θ is modified at xxx to an evolution
chain of alive individuals (if ϕ is a state formula, then the chain has length 1).
Thus each of the considered cases evaluate definite, and so the whole formula.

• ϕ is of the form A ψ:

By definition, the considered assignment θ is possibly modified at variables
of an evolution chain type TTT , branching the existing evolution chains. As
these modifications preserve the property of θ to only employ chains of alive
individuals, the claim follows by induction hypothesis.

• ϕ is of the form φ:

Similar to the proof of Lemma 4.4.17.
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• ϕ is of the form X ψ:

This case is explicitly excluded by the premises.

• ϕ is of the form ψ1 U ψ2:

By definition, the minimum length of evolution chains assigned by θ to the
variables from Freeψ2, which are by premise all of an evolution chain type TTT ,
determines the prefix of π where ψ1 and ψ2 are evaluated.

By induction hypothesis, both sub-formulae ψ1 and ψ2 evaluate definite,
where the subset-requirement from the premises ensures applicability of the
induction hypothesis. The whole formula then evaluates definite by definition.

Proof of Note 4.4.20, page 109.

1. By assigning the empty evolution chain to xxx the evaluation of ϕ immediately turns
indefinite in the former cases. In the latter case, an evolution chain of length 1 has
the same effect, independent from the sub-formula.

2. For example, choose ⊗x for ψ1 and ψ2. Then choose the ETTS M such that the
identity id ∈ Id doesn’t denote an alive individual in the initial state s ∈ S0(M)
and all of its successors (for example by having s as the only successor of s).

Then setting θ(x) := id has the desired effect independent from the canonical
structure.

3. For example, choose ⊙x for ψ2 and the ETTS from the previous case. Then the
whole formula evaluates indefinite independent from the form of ψ1 because the
ψ2 turns indefinite before a positive or negative witness could’ve been obtained.

Proof of Lemma 4.5.1, page 112. Let S be a signature, M a compatible evolving topol-
ogy transition system, M = (ι,D) a canonical structure of S wrt. M , and θ an assign-
ment.

1. Cases 1 and 2 follow by computation rules on minima and maxima and Def. 4.4.6.

3. By case 2.

4. Consider the three possible evaluations, firstly

MJX ∀x : T . ϕ1K(π, θ) = 1. (A.15)

This is the case iff

∀ id ∈ Id :MJϕ1K(π/1, θ/1[x/id]) = 1 (A.16)
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which is equivalent to

∀ id ∈ Id :MJϕ1K(π/1, θ[x/id]/1) = 1 (A.17)

because the quantification is over an identity, not an evolution chain. The latter
holds iff ∀x : T .X ϕ1 evaluates to 1. The case 0 is similar, the remaining cases for
both sides are 1/2.

5. Similar to the previous case. The difference is, that not the single next step is
considered but all steps k ∈ N0, that is,

∀ k ∈ N0 ∀ id ∈ Id :MJϕ1K(π/k, θ/k[x/id]) = 1 (A.18)

and the universal quantification in (A.18) is commutative.

6. Also by distinction of cases. If the left hand side holds, then there is a smallest
step k ∈ N0 where ϕ2 finally holds. In addition, ϕ1 holds for all id ∈ Id for steps
j < k. This implies that, for id ∈ Id considered in isolation, ϕ1 holds until ϕ2,
which is the right hand side.

The other direction follows because the right hand side states that there is one
k ∈ N0 for each individual. These k have a minimum in N0, for which the left
hand side holds.

7. Similar to the previous case.

8. If the left hand side holds, then given a path π, there is a step k such that all
identities satisfy ϕ1 globally from k on. This k serves as a witness for the right
hand side, although there may be cases there ϕ1 is already satisfied at steps smaller
than k.

In the other direction, there is one such k for each of the (by premise) finitely many
identities in Id. The maximum of these k satisfies the right hand side.

The negative and indefinite cases are similar.

Proof of Lemma 4.5.5, page 116. We only consider case 1. as the remaining cases follow
by definition of (restricted) equivalence. Then we have to show that both sides evaluate
to the same value for a given state and assignment under the assumption that a is valid
in s under θ.

So assume ϕ1 is a state formula and let s ∈ S be a state and θ an assignment. By
premises, a is valid in s under θ, thus it has a certain valuation in this state,

ιJaK(s, θ) =: ida ∈ Id. (A.19)
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Then

MJ∀x : T . a = x→ ϕ1K(s, θ)
= min{MJa = x→ ϕ1K(s, θ[x 7→ id]) | id ∈ Id}

= min(MJa = x→ ϕ1K(s, θ[x 7→ ida]),

min{MJa = x→ ϕ1K(s, θ[x 7→ id]) | id ∈ Id \ {ida}
︸ ︷︷ ︸

=1

)

=MJa = x→ ϕ1K(s, θ[x 7→ ida]),

= max(1−MJa = xK(s, θ[x 7→ ida])
︸ ︷︷ ︸

=0

,MJϕ1K(s, θ[x 7→ ida]))

=MJϕ1K(s, θ[x 7→ ida]) =MJϕ1K(s, θ)

(A.20)

The last equation holds because x /∈ Free(ϕ1) by premises.

A.2. Proofs of Chapter 5: Abstraction

Note that the inductive invariant of the following proof is apparently complicated because
it has to cater for two things:

1. from the side of the assignment, we may encounter id0, which has certain properties
(being unlabelled)

2. from the side of the formula, we may hit ⊤D♯(T ), which possibly propagates through

Proof of Lemma 5.3.5, page 135. By induction over the structure of general terms, not
only logical terms. That is, we’re actually going to prove an inductive property which is
stronger than (5.32) by also considering functional terms. Namely, we’ll show that for
each term we have

α(ιJtK(G, θ)) ⊑ ι♯JtK(G♯, θ♯), (A.21)

where we consider an undefined valuation of the right hand side to be in ⊑ relation to
any right hand side if it is of type S or an additional type, or, in case t is of an identity
type T , the additional possibility

ιJtK(G, θ) /∈ U(G)

∧ ι♯JtK(G♯, θ♯) ∈ U(G) \ U⊚(G♯)

∧ ι♯Jσ(t)K(G♯, θ♯) = ⊤∧ ι♯Jλ(t)K(G♯, θ♯) = ⊤.

(A.22)

The original claim is implied by (A.21). Extending the meaning of “⊑” in (A.21) doesn’t
break the reasoning because, by definition, functions propagate undefined values up to
the level of boolean terms and boolean terms turn indefinite if any subterm is undefined.

Induction base:

• t is of the form x or xxx: Def. 5.3.3.
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• t is of the form 1: Trivial.

Induction step:

• t is of the form ⊚ a1:

By induction hypothesis, either (A.21) or (A.22). In the former case, either
f(ιJa1K(G, θ)) = ι♯Ja1K(G♯, θ♯), then the claim follows because the embedding
of individuals respects aliveness according to Def. 5.2.1, or ⊤ = ι♯Ja1K(G♯, θ♯),
then the claim follows by Def. 4.4.6.

In the latter case, (A.22) entails that both ιJa1K(G, θ) and ι♯Ja1K(G♯, θ♯) exist
but both are not in U⊚(G), thus t evaluates to 0 in both structures.

• t is of the form σ(a1):

By induction hypothesis, either (A.21) or (A.22). In the former case, either

f(ιJa1K(G, θ)
︸ ︷︷ ︸

=:id1

) ⊑ ι♯Ja1K(G♯, θ♯) =: id♯1, (A.23)

then the embedding of individuals assures that the local state of id♯1 is a safe

over-approximation of the local state of id1 by Def. 5.2.1, or id♯1 = ⊤, then

(A.21) follows because ⊤ is not in Id♯ and thus σ♯ and  ♯
λ are not defined

for ⊤.

In the latter case we have ιJa1K(G, θ) /∈ U⊚(G), and (A.22), which entails the
claim.

• t is of the form λ(a1):

Similar to the previous case set id1 := ιJa1K(G, θ) and id♯1 =: ι♯Ja1K(G♯, θ♯).
The induction hypothesis provides either (A.21) or (A.22).

In the former case, either

f(id1) ⊑ id♯1, (A.24)

then the embedding of links assures that navigating link λ from id♯1 in G♯ is
a safe over-approximation of the result of navigating it from id1 in G, that is
we obtain (A.21). Otherwise we have id♯1 = ⊤, then navigation of links is not
defined, that is, we also obtain (A.21) with the extended definition of “⊑”.

In the latter case, (A.21) directly follows.

• t is of the form a1 = a2:

In case both functional terms evaluate to identities in U(G) and U(G♯),
the claim is a consequence of preservation of equality by the embedding, cf.
Def. 5.2.1.2b.

Otherwise if they evaluate to identities outside of U(G) in G, then they do
so in G♯ or become ⊤ ∈ D(T ) by the definition of corresponding assignments,
cf. Def. 5.3.3. Then the whole term turns indefinite inM♯, which entails the
claim.
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• t is of the form f(a1, . . . , ak):

In case τ is T or TTT we have to show

ι♯Jf(a1, . . . , ak)K(G, θ♯) = f(ιJf(a1, . . . , ak)K(G, θ)) (A.25)

or (A.22) and otherwise

ι♯Jf(a1, . . . , ak)K(G, f(θ)) ⊒ α(ιJf(a1, . . . , ak)K(G, θ)). (A.26)

Let

di := ιJaiK(G, θ) (A.27)

d♯i := ι♯JaiK(G, θ♯) (A.28)

By induction hypothesis,

d♯i = f(di) or d♯i ⊒ α(di) (A.29)

or (A.22) depending on the type of the i-th argument. With these premises,
Def. 5.3.2 of canonical structure wrt. G, G♯, and (f, g) yields the claim.

• t is of the form ¬(t1), t1 ∨ t2, t1 ∧ t2:

By induction hypothesis and the three-valued definition of term semantics,
similar to the proof of Lemma 4.3.6.

Proof of Lemma 5.5.5, page 142. Let M1 �H M2 be two evolving topology transition
systems compatible with signature S.

1. Direct consequence of Def. 5.5.4.

2. The evolution of identity variables is constant for all k ∈ N0, thus preserves corre-
spondence. The evolution chains assigned to destiny variables already correspond
pointwise by Def. 5.3.3, thus any pair of k-suffixes of evolution chains for a given
destiny variable also corresponds.

The second claim follows similarly from Def. 5.3.3. If an evolution chain in θ ends
with step k−1, then it is directly supposed to end in θ♯, too. In the other direction,
if evolution ended only in θ♯ and not in θ, then the assignments didn’t correspond.

Proof of Lemma 5.5.6, page 142. Let s ∼H s♯ be two corresponding states and π ∈
Πs(M) a path starting at s. For Def. 5.5.4, it is sufficient to show by induction that

for each n ∈ N0 there is a finite sequence s♯0 s
♯
1 . . . s

♯
n of states from S(M ♯) such that

consecutive states are in transition relation, states with the same index correspond, i.e.
πj ∼H s♯j, and individuals evolve and disappear correspondingly along the transitions

(πj , πj+1) ∈ R(M) and (s♯j , s
♯
j+1) ∈ R(M ♯), i.e. (πj , πj+1) ∼e (s♯j, s

♯
j+1), for 0 ≤ j ≤ n.

332



A.2. Proofs of Chapter 5

Induction base: Set s♯0 := s♯, then s ∼H s♯ by premises, consecutive states are trivially in
transition relation, and individuals trivially evolve and disappear correspondingly.

Induction step: Assume a state sequence s♯0s
♯
1 . . . s

♯
n such that πi ∼H s♯i for each 0 ≤ i ≤

n. Then in particular πn ∼H s♯n.

By premises, (πn, πn+1) ∈ R(M). Thus by Def. 5.4.2.2, there is a state s♯n′ ∈ S(M ♯)

such that πn+1 ∼H s♯n′, (s♯n, s
♯
n
′) ∈ R(M ♯), and (πn, πn+1) ∼e (s♯n, s

♯
n
′).

Proof of Lemma 5.5.9, page 143. Assume M and M ♯, and θ♯ as in the premises.

1. Let x ∈ V ∩ VT and (s, s♯) ∈ H such that

∀ id♯ ∈ Id♯ ∀ (θ, s) ∼H (θ♯[x 7→ id♯], s♯) :MJφK(s, θ) = 1. (A.30)

We prove (5.53) pointwise. To this end, let θ ∈ AssignM♯(V ) be an assignment of
V such that (θ, s) ∼H (θ♯, s♯) and let id ∈ Id be an identity of M . Then we set

θ♯
′
:= θ♯[x 7→ f(id)] (A.31)

if id ∈ U(s) and

θ♯
′
:= θ♯[x 7→ id♯0] (A.32)

otherwise, where id♯0 ∈ Id♯ is the designated identity in Id♯ which exists by Def. 5.4.2
and which either lies outside of U(s♯) or is labelled with ⊤ ∈ D♯(T ) and ⊤ ∈ D♯(L),
cf. Def. 5.3.3. Then we have

(θ[x 7→ id], s) ∼H (θ♯
′
, s♯) (A.33)

by Def. 5.3.3. Together with (5.52) we obtain

MJφK(s, θ[x 7→ id]) = 1 (A.34)

as required.

2. Assume (5.54). Let θ ∈ Assign(s) be an assignment corresponding to θ♯ wrt. (s, s♯)
and let π be a path in M starting at s. Assume, xxx1, . . . ,xxxn are the destiny variables
in the domain of θ (and θ♯, as they correspond). Let θ′ = θ[xxx1 7→ δ1] . . . [xxxn 7→ δn]
be a modification of θ such that each destiny variable xxxi is assigned an evolution
chain δi along path, more precisely, δi = ∆(θ(xxxi)(0), π) 1 ≤ i ≤ n.

By the Corresponding Path Lemma, Lemma 5.5.6, there is a path π♯ in M ♯ which
starts at s♯ and corresponds to π, i.e. π ∼H π♯. By the Corrresponding Evolu-
tion Chain Lemma, Lemma 5.5.8, there is an evolution chain δ♯i along π♯ which
corresponds to δi for each 1 ≤ i ≤ n. Then we have

(θ′, π) ∼H (θ♯[xxx1 7→ δ♯1] . . . [xxxn 7→ δ♯n], π
♯) (A.35)
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by Def. 5.3.3. Thus by (5.54), we have

MJφK(π, θ′) = 1 (A.36)

as required.

Proof of Lemma 5.5.10, page 144. Let ϕ be an AEvoCTL∗ formula over signature S♯.

Let s ∈ S(M) and s♯ ∈ S(M ♯) be corresponding states, i.e. s ∼H s♯, and let π ∈ Π(M)
and π♯ ∈ Π(M ♯) be corresponding paths, i.e. π ∼H π♯. By θ♯ we denote an assignment
of the free variables of ϕ in s♯ or in π♯.

We show by induction over the structure of ϕ that, in case ϕ is a state formula, we
have

M♯JϕK(s♯, θ♯) = 1 =⇒ MJϕK(s, θ) = 1 (A.37)

for each pair of corresponding assignments (θ, s) ∼H (θ♯, s♯) and, in case ϕ is a path
formula, we have

M♯JϕK(π♯, θ♯) = 1 =⇒ MJϕK(π, θ) = 1 (A.38)

for each pair of corresponding assignments (θ, π) ∼H (θ♯, π♯). The claim follows directly
by definition of the satisfaction relation (cf. Section 4.4.2).

The proof doesn’t assume that ϕ is ⊙-free. The necessity of this premise in case we
only have M � M ♯ but not M �⊙ M ♯ becomes obvious when considering the ⊙ operator
in the induction. This is the only place where this premise is needed.

Induction base: ϕ is of the form t, i.e., a boolean term:

Then

M♯JtK(s♯, θ♯) = 1

⇐⇒

ι♯JtK(L ♯(s♯), θ♯) = 1

=⇒ (Cor. 5.3.6)

∀ θ ∈ Assign(s), (θ, s) ∼H (θ♯, s♯) : ιJtK(L (s), θ) = 1

⇐⇒

∀ θ ∈ Assign(s), (θ, s) ∼H (θ♯, s♯) :MJtK(s, θ) = 1

Induction step:

• ϕ is a state formula of the form ⊙φ:

If ⊙ appears in ϕ, we assume M �⊙ M ♯. Then the claim follows by Def. 5.4.3.

• ϕ is a state formula of the form ¬φ:

As we consider AEvoCTL∗, ϕ is in negative normal form, thus φ is in fact a
boolean term t ∈ TermB(S).
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M♯J¬tK(s♯, θ♯) = 1

⇐⇒ (Def. 4.4.6)

1− ι♯JtK(L ♯(s♯), θ♯) = 1

⇐⇒

ι♯JtK(L ♯(s♯), θ♯) = 0

=⇒ (Cor. 5.3.6)

∀ θ ∈ Assign(s), (θ, s) ∼H (θ♯, s♯) : ιJtK(L (s), θ) = 0

⇐⇒ (Def. 4.4.6)

∀ θ ∈ Assign(s), (θ, s) ∼H (θ♯, s♯) :MJtK(s, θ) = 0

• ϕ is a state formula of the form φ1 ∨ φ2:

M♯Jφ1 ∨ φ2K(s♯, θ♯) = 1

⇐⇒ (Def. 4.4.6)

max(M♯Jφ1K(s♯, θ♯),M♯Jφ2K(s♯, θ♯)) = 1

⇐⇒

M♯Jφ1K(s♯, θ♯) = 1 ∨M♯Jφ2K(s♯, θ♯) = 1

=⇒ (premise s ∼H s♯, induction hypothesis)

(∀ θ ∈ Assign(s), (θ, s) ∼H (θ♯, s♯) :MJφ1K(s, θ) = 1)

∨(∀ θ ∈ Assign(s), (θ, s) ∼H (θ♯, s♯) :MJφ2K(s, θ) = 1)

⇐⇒

∀ θ ∈ Assign(s), (θ, s) ∼H (θ♯, s♯) :

MJφ1K(s, θ) = 1 ∨MJφ2K(s, θ) = 1

⇐⇒

∀ θ ∈ Assign(s), (θ, s) ∼H (θ♯, s♯) :

max(MJφ1K(s, θ),MJφ2K(s, θ)) = 1

⇐⇒ (Def. 4.4.6)

∀ θ ∈ Assign(s), (θ, s) ∼H (θ♯, s♯) :MJφ1 ∨ φ2K(s, θ) = 1

• ϕ is a state formula of the form φ1 ∧ φ2:

Similar to the previous case.

• ϕ is a state formula of the form ∀x : T . φ:

M ♯J∀x : T . φK(s♯, θ♯) = 1

⇐⇒ (Def. 4.4.6)

min{M ♯JφK(s♯, θ♯[x 7→ id♯]) | id♯ ∈ Id♯ ∩ D♯(T )} = 1

⇐⇒

∀ id♯ ∈ Id♯ ∩ D♯(T ) : M ♯JφK(s♯, θ♯[x 7→ id♯]) = 1

=⇒ (premise s ∼H s♯, induction hypothesis)

∀ id♯ ∈ Id♯ ∩ D♯(T ) ∀ θ ∈ Assign(s), (θ, s) ∼H (θ♯, s♯) : MJφK(s, θ) = 1
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=⇒ (Lemma 5.5.9.1)

∀ θ ∈ Assign(s), (θ, s) ∼H (θ♯, s♯) ∀ id ∈ Id ∩ D(T ) :

MJφK(s, θ[x 7→ id]) = 1

⇐⇒

∀ θ ∈ Assign(s), (θ, s) ∼H (θ♯, s♯) :

min{MJφK(s, θ[x 7→ id]) | id ∈ Id ∩ D(T )} = 1

⇐⇒

∀ θ ∈ Assign(s), (θ, s) ∼H (θ♯, s♯) : MJ∀x : T . φK(s, θ) = 1

• ϕ is a state formula of the form ∀xxx : TTT . φ:

M ♯J∀xxx : TTT . φK(s♯, θ♯) = 1

⇐⇒ (Def. 4.4.6)

min{M ♯JφK(s♯, θ♯[xxx 7→ id♯]) | id♯ ∈ U⊚(s♯) ∩ D♯(T )} = 1

⇐⇒

∀ id♯ ∈ U⊚(Id♯) ∩ D♯(T ) : M ♯JφK(s♯, θ♯[xxx 7→ id♯]) = 1

=⇒ (premise s ∼H s♯, induction hypothesis)

∀ id♯ ∈ U⊚(Id♯) ∩ D♯(T ) ∀ θ ∈ Assign(s), (θ, s) ∼H (θ♯, s♯) : MJφK(s, θ) = 1

=⇒ (∗)

∀ θ ∈ Assign(s), (θ, s) ∼H (θ♯, s♯) ∀ id ∈ U⊚(s) ∩ D(T ) :

MJφK(s, θ[xxx 7→ id]) = 1

⇐⇒

∀ θ ∈ Assign(s), (θ, s) ∼H (θ♯, s♯) :

min{MJφK(s, θ[xxx 7→ id]) | id ∈ U⊚(s) ∩D(T )} = 1

⇐⇒

∀ θ ∈ Assign(s), (θ, s) ∼H (θ♯, s♯) : MJ∀xxx : TTT . φK(s, θ) = 1

The justification for (∗) is similar to the reasoning in the proof of Lemma 5.5.9.1.
Consider the embedding provided by the simulation relation. By Def. 5.2.1,
it has the property that each identity alive in state s is mapped to an alive
identity in s♯, that is, f(id) ∈ U⊚(s♯) if id ∈ U⊚(s). Thus the premise of (∗)
covers in particular the cases in the conclusion.

• ϕ is a state formula of the form ∃ v . φ:

Explicitly excluded by the premise that ϕ is in AEvoCTL∗.

• ϕ is a state formula of the form A ψ:

M♯JA ψK(π♯, θ♯)
⇐⇒ (Def. 4.4.6)

min{M♯JψK(π♯, θ♯′) | π♯ ∈ Π
s♯(M

♯),

θ♯
′
= θ♯[xxx1 7→ δ1] . . . [xxxn 7→ δn], δi ∈ ∆(θ♯(xxxi)(0), π

♯), 1 ≤ i ≤ n}
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⇐⇒

∀π♯ ∈ Π
s♯(M

♯) ∀ θ♯
′
= θ♯[xxx1 7→ δ1] . . . [xxxn 7→ δn] :

M♯JψK(π♯, θ♯′) = 1

=⇒ (induction hypothesis)

∀π♯ ∈ Π
s♯(M

♯) ∀ θ♯
′
= θ♯[xxx1 7→ δ1] . . . [xxxn 7→ δn]

∀π ∈ Πs(M), π ∼H π♯ ∀ θ′ ∈ Assign(π), (θ′, π) ∼H (θ♯
′
, π♯) :

MJψK(π, θ′) = 1

=⇒ (Lemma 5.5.9.2)

∀ θ ∈ Assign(s), (θ, s) ∼H (θ♯, s♯)

∀π ∈ Πs(M) ∀ θ′ = θ[xxx1 7→ δ1] . . . [xxxn 7→ δn] :MJψK(π, θ′) = 1

=⇒

∀ θ ∈ Assign(s), (θ, s) ∼H (θ♯, s♯) :

min{M♯JψK(π♯, θ♯′) | π♯ ∈ Π
s♯(M

♯),

θ♯
′
= θ♯[xxx1 7→ δ1] . . . [xxxn 7→ δn], δi ∈ ∆(θ♯(xxxi)(0), π

♯), 1 ≤ i ≤ n}

⇐⇒ (Def. 4.4.6)

∀ θ ∈ Assign(s), (θ, s) ∼H (θ♯, s♯) :MJA ψK(π, θ)
• ϕ is a state formula of the form E ψ:

Explicitly excluded by the premise that ϕ is in AEvoCTL∗.

• ϕ = ψ, a path formula where φ is a state formula.

In order to apply the induction hypothesis, we aim for a syntactically shorter
sub-formula of ϕ, i.e. which has fewer nodes in the parse tree. Following [34],
we can view the right hand side as path(φ), that is, comprising the otherwise
invisible operator ‘path’, which casts path formulae into state formulae. Then

M ♯Jpath(φ)K(π♯, θ♯) = 1

⇐⇒ (Definition)

M ♯JφK(π♯0, θ♯) = 1

=⇒ (premise π ∼H π♯, induction hypothesis)

∀ θ ∼H θ♯ : MJφK(π0, θ) = 1

⇐⇒ (Definition)

∀ θ ∼H θ♯ : MJpath(φ)K(π, θ) = 1

• ϕ is a path formula of the form ⊗ a:

M♯J⊗aK(π♯, θ♯) = 1

⇐⇒

id♯ ∈ U⊚(s♯), and id♯ /∈ dom(e〈(s♯, s♯′)〉) or e〈(s♯, s♯′)〉(id♯) ∈ U 6⊚(s♯) \

U⊚(s♯), where s♯ := π♯
0
, s♯′ := π♯

1
, and id♯ := ι♯JaK(L (s♯), θ♯)

=⇒ (π ∼H π♯, Def. 5.4.1, (∗))
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∀ θ ∈ Assign(π), (θ, π) ∼H (θ♯, π♯),
id ∈ U⊚(s), and id /∈ dom(e〈(s, s′)〉) or e〈(s, s′)〉(id) ∈
U 6⊚(s) \ U⊚(s), where s := π0, s′ := π1, and id := ιJaK(L (s), θ)

⇐⇒

∀ θ ∈ Assign(π), (θ, π) ∼H (θ♯, π♯) :MJ⊗aK(π, θ) = 1

where (∗) refers to the fact that f(id) = id♯ by Lemma 5.3.5, the Embedding
Lemma.

• ϕ is a path formula of the form ¬ψ:

By premises, ϕ is in negative normal form, that is ψ is of the form ⊗ a. The
reasoning is then similar to the previous case.

• ϕ is a path formula of the form ψ1 ∨ ψ2 or ψ1 ∧ ψ2:

Similar to the logical connectives for state formulae above.

• ϕ is a path formula of the form ∀x : T . ψ:

Similar to state formulae above.

• ϕ is a path formula of the form ∀xxx : TTT . ψ:

Similar to state formulae above using the Corresponding Evolution Chain
Lemma, Lemma 5.5.8, to obtain corresponding evolution chains along π for
the ones considered in π♯.

• ϕ is a path formula of the form ∃x : T . ψ or ∃xxx : TTT . ψ:

Explicitly excluded by the premise that ϕ is in AEvoCTL∗.

• ϕ is a path formula of the form X ψ:

M♯JX ψK(π♯, θ♯) = 1

⇐⇒ (Def. 4.4.6)

ε /∈ (θ♯/1)(Free(ψ)) ∧M♯JψK(π♯/1, θ♯/1) = 1

=⇒ (premise π ∼H π♯, induction hypothesis, Lemma 5.5.5)

∀ θ ∈ Assign(π), (θ, π) ∼H (θ♯, π♯) : ε /∈ (θ/1)(Free(ψ)) and
∀ θ′ ∈ Assign(π/1), (θ′, π/1) ∼H (θ♯/1, π♯/1) :MJψK(π/1, θ′) = 1

=⇒ (similar to proof of Lemma 5.5.9)

∀ θ ∈ Assign(π), (θ, π) ∼H (θ♯, π♯) :

ε /∈ (θ/1)(Free(ψ)) ∧MJψK(π/1, θ/1) = 1

⇐⇒ (Def. 4.4.6)

∀ θ ∈ Assign(π), (θ, π) ∼H (θ♯, π♯) :MJX ψK(π, θ) = 1

• ϕ is a path formula of the form F ψ, G ψ, ψ1 U ψ2, or ψ1 R ψ2:

Similar to the previous case using Lemma 5.5.5.
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A.3. Proofs of Chapter 7: Query Reduction

Proof of Lemma 7.1.12, page 181. Let S be a signature, G be a S-compatible topology
over Id andM a structure which is canonical wrt. G and symmetric in identities.

Let t ∈ Term(S), p a permutation of Id, and θ ∈ AssignM(Free(t)). We only have to
consider occurrences of functional terms because p̃ is the identity on B, that is, boolean
terms have the same value on the left and right hand side of (7.7) thus completely
boolean terms satisfy the requirement immediately.

Induction base:

• t is of the form x or xxx:

ιJxK(p(G), p(θ)) = p(θ(x)) = p̃(θ(x)) = p̃(xJG, θK()). (A.39)

Similarly for destiny variables by definition of permutation of evolution chains.

• t is of the form 1: Trivial.

Induction step:

• t is of the form ⊚ a1:

ιJ⊚ a1K(p(G), p(θ)) = 1

⇐⇒ (Def. 4.3.3)

ιJa1K(p(G), p(θ)) ∈ U⊚(p(G)) \ U 6⊚(p(G))

⇐⇒ (induction hypothesis)

p̃(ιJa1K(G, θ)) ∈ U⊚(p(G)) \ U 6⊚(p(G))

⇐⇒ (Def. 7.1.6.2 and 3, i.e. permutation respects aliveness)

p̃(ιJa1K(G, θ)) ∈ p(U⊚(G)) \ p(U 6⊚(G))

⇐⇒ (Def. 7.1.9, i.e. definition of p̃)

ιJa1K(G, θ) ∈ U⊚(G) \ U 6⊚(G)

⇐⇒ (Def. 4.3.3)

ιJ⊚ a1K(G, θ) = 1

⇐⇒ (Def. 7.1.9, i.e. definition of p̃)

p̃(ιJ⊚ a1K(G, θ)) = 1

Similarly for the negative case, the remaining cases yield 1/2.

• t is of the form σ(a1):

ιJσ(a1)K(p(G), p(θ))

= (Def. 4.3.3)

σ(p(G))(ιJa1K(p(G), p(θ)))

= (induction hypothesis)

σ(p(G))(p̃(ιJa1K(G, θ)))
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= (Def. 7.1.9, i.e. definition of p̃)

σ(p(G))(p(ιJa1K(G, θ)))
= (Def. 7.1.6.4)

σ(G)(p−1(p(ιJa1K(G, θ))))
=

σ(G)(ιJa1K(G, θ)),
where Note 7.1.7 assures that σ(G) and σ(t(G)) are either both applied to
values of their domain, or none of them.

• t is of the form λ(a1):

Induction hypothesis and Def. 7.1.6.8.

• t is of the form a1 = a2:

Induction hypothesis and Def. 7.1.6.1.

• t is of the form f(a1, . . . , ak):

Induction hypothesis and premise that M is a symmetric structure.

Proof of Lemma 7.2.4, page 183. Let S be a signature, M a S-compatible ETTS over
Id, andM a structure canonical wrt. M such that M andM are symmetric in identities.
Let state s ∈ S(M) be a state of M and π a path in M .

Let ϕ be an EvoCTL∗ formula over S, θ ∈ AssignM(Free(ϕ)) an assignment of the
free variables of ϕ, and p a permutation of Id.

The proof is by induction over the structure of ϕ.

Induction base: ϕ is of the form t, i.e., a boolean term:

Then

MJtK(s, θ) = ιJtK(L (s), θ)

= (Def. 7.2.1, Cor. 7.1.13)

ιJtK(p(L (s)), p(θ)) =MJtK(p(s), p(θ))

Induction step:

• ϕ is a state formula of the form ⊙φ:

For the positive case, we have

MJ⊙φK(s, θ) = 1

⇐⇒ (Def. 4.4.6)

id := ιJaK(L (s), θ) exists, is in U⊚(s), and ∀ r = (′s, s) ∈ R(M) :
r
 e id ∧ ∀ ′id ∈ Id :′ id

r
 e id =⇒ ′id /∈ U⊚(′s)

⇐⇒ (Def. 7.2.1.2b, Def. 7.1.6.2, i.e. the permutation respects evolution
and aliveness)

340



A.3. Proofs of Chapter 7

id := ιJaK(p(L (s)), p(θ)) exists, is in U⊚(p(s)), and ∀ r = (′s, p(s)) ∈
R(M) :

r
 e id ∧ ∀ ′id ∈ Id :′ id

r
 e id =⇒ ′id /∈ U⊚(′s)

⇐⇒ (Def. 4.4.6)

MJ⊙φK(p(s), p(θ)) = 1.

The negative case follows similarly, the remaining cases are indefinite for both
sides.

• ϕ is a state formula of the form ¬φ, φ1 ∨ φ2, or φ1 ∧ φ2:

Induction hypothesis.

• ϕ is a state formula of the form ∀x : T . φ or ∃x : T . φ:

By the following property of the sets over which the minimum and maximum
is formed according to Def. 4.4.6.

{MJφK(s, θ[x 7→ id]) | id ∈ Id ∩ D(T )}

= (induction hypothesis)

{MJφK(p(s), p(θ[x 7→ id])) | id ∈ Id ∩ D(T )}

=

{MJφK(p(s), (p(θ))[x 7→ p(id)]) | id ∈ Id ∩ D(T )}

= (Def. 7.1.5, i.e. p bijective and compatible with partitions)

{MJφK(p(s), (p(θ))[x 7→ id]) | id ∈ Id ∩ D(T )}

• ϕ is a state formula of the form ∀xxx : TTT . φ or ∃xxx : TTT . φ:

Similar to the previous case, in addition using property Def. 7.1.6.2, i.e. that
permutation respects aliveness.

• ϕ is a state formula of the form A ψ or E ψ:

Similar to previous cases with the following property of the set over which
the minimum and maximum is formed according to Def. 4.4.6.

{MJψK(π, θ′) | π ∈ Πs(M),

θ′ = θ[xxx1 7→ δ1] . . . [xxxn 7→ δn], δi ∈ ∆(θ(xxxi)(0), π), 1 ≤ i ≤ n}

= (induction hypothesis)

{MJψK(p(π), p(θ′)) | π ∈ Πs(M),

θ′ = θ[xxx1 7→ δ1] . . . [xxxn 7→ δn], δi ∈ ∆(θ(xxxi)(0), π), 1 ≤ i ≤ n}

=

{MJψK(p(π), θ′) | π ∈ Πs(M),

θ′ = p(θ[xxx1 7→ δ1] . . . [xxxn 7→ δn]), δi ∈ ∆(θ(xxxi)(0), π), 1 ≤ i ≤ n}

= (Lemma 7.2.2)

{MJψK(π, θ′) | π ∈ Πp(s)(M),

θ′ = θ[xxx1 7→ δ1] . . . [xxxn 7→ δn], δi ∈ ∆(p(θ)(xxxi)(0), π), 1 ≤ i ≤ n}
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• ϕ is a path formula of the form φ, i.e. a state formula:

In order to apply the induction hypothesis, we aim for a syntactically shorter
sub-formula of ϕ, i.e. which has fewer nodes in the parse tree. Following [34],
we can view the right hand side as path(φ), that is, comprising the otherwise
invisible operator ‘path’, which casts path formulae into state formulae. Then

MJpath(φ)K(π, θ)
= (Definition)

MJφK(π, θ)
= (induction hypothesis)

MJφK(p(π), p(θ))

= (Definition)

MJpath(φ)K(p(π), p(θ))

• ϕ is a path formula of the form ⊗ a:

Similar to the ⊙ a case above, by preservation of aliveness and non-aliveness,
consistent evolution in symmetric ETTS, and the induction hypothesis.

• ϕ is a path formula of the form ¬ψ:

By premises, ϕ is in negative normal form, that is ψ is of the form ⊗ a. The
reasoning is then similar to the previous case.

• ϕ is a path formula of the form ψ1 ∨ ψ2 or ψ1 ∧ ψ2:

Similar to the logical connectives for state formulae above.

• ϕ is a path formula of the form ∀x : T . ψ or ∃x : T . ψ:

Similar to state formulae above.

• ϕ is a path formula of the form ∀xxx : TTT . ψ or ∃xxx : TTT . ψ:

Similar to state formulae above.

• ϕ is a path formula of the form X ψ:

MJX ψK(π, θ) = 1

⇐⇒ (Def. 4.4.6)

ε /∈ (θ/1)(Free(ψ)) ∧MJψK(π/1, θ/1) = 1

⇐⇒ (Note 7.2.3, induction hypothesis)

ε /∈ (p(θ)/1)(Free(ψ)) ∧MJψK(p(π)/1, p(θ)/1) = 1

⇐⇒ (Def. 4.4.6)

MJX ψK(p(π), p(θ)) = 1

The negative case follows similarly, the remaining cases are indefinite for both
sides.

• ϕ is a path formula of the form F ψ, G ψ, ψ1 U ψ2, or ψ1 R ψ2:

Similar to the previous case using Note 7.2.3 for general k ∈ N0.
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Proof of Lemma 7.3.2, page 184. Let V = {x1, . . . , xn} ⊆ V
T , n ∈ N0, be a finite set of

identity variables of the same type T and let Id0 denote the partition used as D(T ).
Then Θ := Θn, recursively defined by

Θ0 := {∅} (A.40)

Θk+1 := {θ ∪ {xk+1 7→ id01
}, . . . , θ ∪ {xk+1 7→ id0k+1

} | θ ∈ Θk}, (A.41)

where the id01
, . . . , id0k

are pairwise different as long as |Id0| ≥ k and id0k+1
= id0k

if
k ≥ |Id0|, is a finite assignment basis of V as demonstrated in the following. It comprises
N ! ·NN−n different assignments where N = min(n, |Id0|), that is, n! if |Id0| ≥ n.

Let θ ∈ AssignM(V,) be an assignment of V in M. Then it is of the form

θ = {x1 7→ θ(x1), . . . , xn 7→ θ(xn)}. (A.42)

Let m ∈ {1, . . . , n} denote the number of different identities {id1, . . . , idm} employed by
θ. Note that, as θ ranges over Id0, it cannot use more identities than present in Id0, i.e.
we have m ≤ |Id0|.

Define [idi] := {xj | θ(xj) = idi, 1 ≤ j ≤ n} to denote the (non-empty) set of variables
mapped to identity idi, 1 ≤ i ≤ m.

Without loss of generality we may assume that the variables sets are ordered by size,
i.e. that

|[id1]| ≥ |[id2]| ≥ · · · ≥ |[idm]|. (A.43)

Set
p := {id01

7→ id1, . . . , id0m 7→ idm} (A.44)

and choose

θ0 := {xj 7→ id0i
| xj ∈ [idi], 1 ≤ i ≤ m, 1 ≤ j ≤ n} (A.45)

from Θ. Then
p(θ0)(xj) = p(θ0(xj)

︸ ︷︷ ︸

=id0i

) = idi = θ(xj), (A.46)

where i ∈ {1, . . . ,m} such that xj ∈ [idi], thus p(θ0) = θ.

Proof of Lemma 7.3.4, page 185. Let V ⊆ VT be a finite set of n ∈ N0 identity variables
of the same type and Θ constructed as defined above.

If Θ were not minimal, there would be an assignment θ ∈ Θ such that Θ \ {θ} is still
an assignment basis. In other words, there were a permutation p of Id such that there
is an θ 6= θ0 ∈ Θ such that θ = p(θ0)

Assume, θ were such a redundant assignment. Then it were of the form

θ = {x1 7→ id1, . . . , xn 7→ idn} (A.47)

with idi ∈ {id01
, . . . , id0n}. Consider the minimal permutation p, that is, the permuta-

tion which coincides with the identity function on as many points as possible, and the
assignment θ0 with p(θ0) = θ. If there were an 1 ≤ i ≤ n such that p(idi) = p(id0j

) = id0k
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with k < j, then p(θ0) would map two logical variables to the same value which obtain
different values in θ, thus they would not be equivalent. If there were an 1 ≤ i ≤ n such
that p(idi) = p(id0j

) = id0k
with j < k, then id0j

would be missing in the range as p is
assumed minimal, thus p(θ0) would not be in Θ, in particular not equal to θ. Thus p is
the identity function and θ = p(θ0) = θ0 in contradiction to the assumption.

Proof of Cor. 7.3.5, page 185. Partition V into non-empty sets V1 ∪̇ . . . ∪̇ Vn such that
Vi comprises all identity variables from V of type Ti ∈ T (S).

Let Θi be a minimal assignment basis of Vi, which exists by Lemma 7.3.4, 1 ≤ i ≤ n.
Then Θ = Θ1×· · ·×Θn is minimal finite assignment basis of V , where the cross-product
of assigment bases is defined as

Θ1 × · · · ×Θn := {θ1 ∪̇ . . . ∪̇ θn | θ1 ∈ Θ1, . . . , θn ∈ Θn}, (A.48)

that is, all possible unions of one assignment from each base.
It is a basis because all assignments of V are reachable by considering the occurring

types independently and minimal because removal of one assignment from Θ can’t be
type-consistently compensated by one of the other bases.

Proof of Lemma 7.4.1, page 189. Let V = {x1, . . . , xn} ⊆ V
T , n ∈ N0, be a finite set of

identity variables of the same type T and let Id0,1, . . . , Id0,m be the sub-partitioning of
the partition D(T ).

Then Θ := Θn, recursively defined by

Θ0 := {∅} (A.49)

Θk+1 := {θ ∪ {xk+1 7→ id1,1}, . . . , θ ∪ {xk+1 7→ id1,k+1},

. . . ,

θ ∪ {xk+1 7→ idm,1}, . . . , θ ∪ {xk+1 7→ idm,k+1} | θ ∈ Θk}, (A.50)

where the idi,1, . . . , idi,k ∈ Id0,i are pairwise different as long as |Id0,i| ≥ k and id0k+1
=

id0k
if k ≥ |Id0,i|, is a finite assignment basis of V . The proof is similar to the one of

Lemma 7.4.1.

A.4. Proofs of Chapter 9: DTR/QR for Higher-Level

Languages

Proof of Lemma 9.2.1, page 225. According to Def. 7.2.1, we have to show that labels
discriminate states, and that each partitioning consistent permutation p of Id has a well-
defined automorphism function, which is an automorphism of M and consistent with
evolution.

The first requirements is trivially satisfied as the set of states is identified with the
labelling domain.

So let p : Id → Id be a partitioning consistent permutation of Id, i.e. respect the
partitioning by classes. Its permutation function is ap = {s 7→ p(s)} where p(s) denotes
the p-permutation of topology s, thus well-defined and bijective.
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Following Note 7.1.4, it is sufficient to show only one direction for the automorphism
property.

• Let s ∈ S0(M) be an initial state ofM . That is, s satisfies cond 0, or ιJcond0K(s, id, ∅) =
1. By premises, the interpretation ι is symmetric in the sense of Section 9.2.3, that
is, ιJcond0K(p(s), p(id), p(∅)) = 1. Thus p(s) ∈ S0(M).

• Let (s, s′) ∈ R(M) be a transition in M . By Section 9.1.2, there is necessarily a
scheduled sequence

u1/rC1,1, . . . , un/rCn,n ∈ S(s) (A.51)

with

– idi ∈ U
⊚(s),

– if ri is of the form

(sCi
, evi [cond i]/acti, s

′
Ci

) (A.52)

then

∗ s(ui).xst = sCi

∗ either evi 6= ε or evi = E(p1, . . . , pm) and

s(ui).ǫ = ǫ0.E(d1, . . . , dm) (A.53)

, and

∗ ιJcond iK(s, ui, θ) = 1 with θ = {p1 7→ d1, . . . , pm 7→ dm}

and s′ is the result of

– subsequently applying the transition programs to s,

– consuming the ready-to-consume events, and

– setting the input valuations in s to values from the input oracle O.

By premises, the scheduler is symmetric, thus according to Section 9.2.3,

p(u1)/rC1,1, . . . , p(un)/rCn,n ∈ S(p(s)). (A.54)

We have

– p(idi) ∈ U
⊚(p(s)). because permutation of topologies preserves aliveness,

– (p(s))(ui).xst = s(ui).xst = sCi
because permutation of topologies preserves

the local state,

– either evi 6= ε or evi = E(p1, . . . , pm) and

(p(s))(ui).ǫ = ǫ0.E(p(d1), . . . , p(dm)) (A.55)

, by symmetry of the ether, and
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– ιJcond iK(p(s), p(ui), p(θ)) = 1 by symmetry of the ether and the interpreta-
tion.

With (9.70) to (9.72) we can construct p(s)′. As, by premises, interpretation and
creation oracle are also symmetric, p(s)′ exists and is equal to p(s′) according to
Section 9.2.3. Thus (p(s), p(s′)) ∈ R(M).

The permutation p is consistent with evolution because

u
r
 e u

′ ⇐⇒ u′ = e〈r〉(u) ⇐⇒ u′ = idU⊚(s)∩U⊚ (s′)(u) (A.56)

which is equivalent to the application of the chosen local transitions to s leaving u
alive. By Section 9.2.3, this is the case if and only if the application of the chosen local
transitions to p(s) leaves the individual p(u) alive, thus to

p(u)
r
 e p(u

′). (A.57)

Proof of Lemma 9.3.7, page 249. Let M , ι, E , S, and O as required above and let

D = {(dj1 , Idj1), . . . , (djm , Idjm)} (A.58)

be a DTR. Let M = ιJM K(E ,S,O) be the ETTS of M and M ♯ = D(M) the DTR

abstraction according to Chapter 6. Furthermore, let MD = ιJM ♯
DK(E ,S,O♯)) be the

ETTS of the syntactically transformed HLL model M
♯
D.

The claim is M ♯ � MD, that is, that MD simulates M ♯ in the sense of Def. 5.4.2. To
verify this claim, we’ve got to provide a relation H between the state sets S(M ♯) and
S(MD) such that:

1. a pair from H determines an embedding between the two topologies,

2. initial states in S(M ♯) have a correspondence in S(MD), and

3. given a pair of corresponding states, if S(M ♯) can take a transition to a destination
state, then S(MD) can make a transition to a corresponding destination.

We define the embedding relation based on the embedding of individuals

f : Id(M ♯)→ Id(MD)

id 7→

{

∁C ∈ D(τC∁ ) , if id = ∁C ∈ D(τC)

id , otherwise

(A.59)

This is principally the identity function on identities, but with the particularity that it
maps ∁C , which is added to the domain D(τC) of class C in M ♯ to the identity ∁C from
D(τC∁ ), that is, to the identity of a newly introduced class which is present in every
state of MD.
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Then the simulation relation is then

H = {(s♯, sD) ∈ S(M ♯)× S(MD) |

U(sD) = f(U(s♯)),

∀ id ∈ D, id 6= ∁C : σ(M ♯)(id) = σ(MD)(f(id)),

∃ g : L(M ♯) L(MD) :

∀ ℓ ∈ L(M ♯) : ψ(ℓ) = f(ψ(g(ℓ))), λ(ℓ) = λ(g(ℓ))}

(A.60)

that is, it relates states comprising the same identities with identical local state (exclud-
ing ∁C) and the same links, in particular the self-links of ∁C .

The simulation relation is not empty, but rather a one-to-one mapping, because for
each state s♯ ∈ S(M ♯), it is possibly to construct a state sD in S(MD) considering the

topologies obtained for M
♯
D by the ETTS semantics of HLL models (cf. Figure 9.8). Item

1 requires a topology embedding for a pair (s♯, sD). This is f from (A.59) restricted to
s♯ and the link embedding from (A.60).

Item 2 is trivial because we only consider the empty topology as initial state by
Section 9.3.3. In general, given an initial state s♯, one would get hold of a concrete
s which is, by the ETTS semantics of HLL known to satisfy cond0 with a particular
binding of free variables and would transfer this binding to a binding for the simulating
sD, choosing inputs accordingly.

For item 3, consider (s♯, sD) ∈ H and let (s♯, s♯
′
) ∈ R(M ♯). Then by definition ofM ♯ as

DTR of M , there are states s, s′ in M that are concretisations of the two abstract states,
i.e. D(s) = s♯ and D(s′) = s♯

′
, and that are in transition relation, i.e. (s, s′) ∈ R(M).

By the definition of the ETTS semantics of HLL and because S is an interleaving
scheduler, there is a single scheduled individual/transition program pair

S(s) = u/r (A.61)

which is ready in s and s′ is the result of applying the transition program of r to s, i.e.
s′ is obtained from

s′0 = ιJactK(s, u, θ,O)(s) (A.62)

by the procedure of Section 9.1.2. To complete the proof, we’ll argue that

f(u)/rD, (A.63)

where rD is the syntactical transformation from Sections 9.3.3 and 9.3.3, is scheduled
in MD and show by induction over actions that applying the actions of rD to sD with
a suitable choice of inputs yields a state s′D which is in simulation relation with s♯

′
.

In addition, corresponding evolution is established because, for instance, creation and
destruction are controlled by the transition program of transition r.

If u/r causes the transition, with u denoting an object of class C, is scheduled in s but
not ready, then either there is no event to consume or the guarding condition doesn’t
hold. Distinguish two cases:
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• If u ∈ D or of a sort not considered by D, then u has the same local state in M ♯

and in MD thus there is no event both, so u/r is also not ready in MD. Similarly
for the guarding condition.

• Otherwise uD = f(u) ∈ IdC∁ . The individual u still has an event to be consumed
and a local state (including input valuation) which causes the guarding condition
to hold.

As all local states turn into inputs in MD and as O♯ allows all possible values in
any state for all newly introduced inputs, we can choose o ∈ O♯ such that each
x ∈ XC∁ , which is an input in M

♯
D, obtains exactly the value s(u).x, i.e. such that

o ⊆ {(uD, x) 7→ s(u).x | x ∈ XC} ∪ {(uD, λ) 7→ s(u).λ | λ ∈ ΛC} (A.64)

Then rD is ready in sD because it has ε as event part and the guarding condition
holds by construction of o and the transformation of the guarding condition into
a let-expression in Section 9.3.3. The proof is by induction over the structure of
the guarding condition in normal form, that is, as a let-expression, and the DTR
transformation similar to the case of actions below.

Knowing that fu/rD is ready in sD if u/r is in s, we now show by induction over the
structure of actions and expressions, that

∀ s ∈ S(M), sD ∈ S(MD) : (D(s), sD) ∈ H

=⇒ ιJactK(s, u, θ,O)(s) = ιJactDK(sD, f(u), θ,O♯)(sD)
(A.65)

for all actions act.
So let act be the action part of the label of the ready transition r.

Induction base:

• act is of the form skip: Trivial.

• act is of the form (thish′ := this):

Then actD = thish′ := this. This action preserves (A.65).

• act is of the form (thish′ := p):

Then actD = thish′ := p in class C and i instead of p in class C∁. In the
former case, the event carries the same parameters in s and sD, in the latter
case, we can choose i accordingly in the oracle value o, thus (A.65).

• act is of the form (thish′ := thish′λ):

Then

actD = thish′ :=
(

thish∁′ ? ih,λ : thish′λ
)

. (A.66)

Similar to the previous case, o can be chosen from the oracle to establish
(A.65).
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• act is of the form (thish∁′ := thish′λ∁):

Similar to previous case.

• act is of the form thish′x′ := expr:

Then

actD = if thish∁′ then skip; else thish′x′ := expr∼; fi. (A.67)

If the individual u denoted by thish is in D or of a sort not considered by
D, then the else-branch is taken in actD and f(u) = u is updated preserving
(A.65) given the transformation of expressions.

Otherwise, f(u) ∈ IdC∁ is not updated, which preserves (A.65), too.

• act is of the form thish′λ′ := thish0, which is the only form we need
to consider by Def. 9.3.1:

Then

actD =if thish∁′ then skip; else

thish′λ′ := thish′0;

thish′λ∁′ := thish∁
0

′
;

fi

(A.68)

It preserves (A.65) analogously to the previous case.

• act is of the form thish′λ′ := new C:

Let u be the newly created individual in M . If u is in D or of a sort not
considered by D, then u can also be created in MD by choice of the oracle.
Otherwise, i in (9.136) can be chosen to take the first branch and leave the
concrete individuals in MD untouched.

Update of the left-hand side is analogous to the two previous cases, thus
(A.65) is preserved.

• act is of the form thish′!E(expr1, . . . , exprn):

If the destination individual u as denoted by thish is in D or of a sort not
considered by D, then (A.65) is preserved by (9.137) and the treatment of
expressions. Otherwise, (A.65) is also preserved because local states remain
unchanged.

• act is of the form delete thish′:

Then

actD = if thish∁′ then skip; else delete thish′; fi (A.69)

If the destination individual u as denoted by thish is in D or of a sort not
considered by D, then (9.140) deletes u. Otherwise, (A.65) is also preserved
because local states remain unchanged.
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Induction step:

• act is of the form if cond then act1 else act2 fi:

Then
navD = if cond∼ then act∼1 else act∼2 fi. (A.70)

By treatment of expressions and induction hypothesis, (A.65) is preserved.

• act is of the form (nav1;nav2):

Directly by induction hypothesis.
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B.1. Additional Figures for Chapter 4: Property Specification

Logic

A variant of timing diagrams is used to visualise the evaluation of temporal oper-
ators in terms of the evaluations of the sub-formulae. The timing diagram given
below shows the evaluations of three path formulae ψ1, . . . , ψ3 over five steps of a
computation path, without explicitly denoting at which step the evaluation starts.
In the first step, ψ1 evaluates to 0, in the second step to 1/2, in the third step to 0,
etc. The dots in the fifth step in the row of ψ2 indicate that the diagram continues
as before. In the particular case values of 0 or 1/2.
Note that the hatch-filled box indicates don’t care values, that is, the evaluation of
ψ1 at the fifth step is not relevant for the case illustrated by this diagram. It may
even include the end of (formally) relevant evolution chains. An evolution chain is
relevant if it is bound to a free TTT -typed variable of the formula. For example, the
third row in the timing diagram below indicates that an evolution chain bound to
a variable from Free(ψ3) ∩ V

TTT ended after the first step.

logical values 0, 1/2, and 1
don’t care, including

end of evolution

ψ1: ..
.

..

.
..
.

..

.
..
.

ψ2: ..
.

..

.
..
.

..

.
..
.

ψ3: ..
.

..

.
..
.

..

.
..
.

at least one relevant
evolution chain ended

diagram continues
as before

B.1.1. Semantics of “X ψ1”.

The evaluation indicates to which value ψ1 evaluates in the next step. In contrast to
the other operators, indefinite evaluation of ψ1 now does not force the whole formula to
indefinite evaluation; only the next step is considered.

• Positive: ψ1 holds in the next step and no relevant evolution chain ended before-
hand.
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ψ1: ..
.

..

.
..
.

..

.
..
.

ψ1: ..
.

..

.
..
.

..

.
..
.

ψ1: ..
.

..

.
..
.

..

.
..
.

• Negative: ψ1 evaluates to 0 in the next step and no relevant evolution chain
ended beforehand.

ψ1: ..
.

..

.
..
.

..

.
..
.

ψ1: ..
.

..

.
..
.

..

.
..
.

ψ1: ..
.

..

.
..
.

..

.
..
.

• Indefinite (by disappearance): A relevant evolution chain ends before or in
the next step.

ψ1: ..
.

..

.
..
.

..

.
..
.

ψ1: ..
.

..

.
..
.

..

.
..
.

• Indefinite (by indefiniteness): ψ1 evaluates to 1/2 in the next step and no
relevant evolution chain ended beforehand.

ψ1: ..
.

..

.
..
.

..

.
..
.

ψ1: ..
.

..

.
..
.

..

.
..
.

ψ1: ..
.

..

.
..
.

..

.
..
.

B.1.2. Semantics of “F ψ1”.

The evaluation indicates whether there is a witness for the classical positive or negative
interpretation. That is, as long as ψ1 didn’t hold once, it evaluates to 0. In the negative
case, variables of kind TTT may shorten the considered length of the path. Otherwise, the
outcome is indefinite.

• Positive: ψ1 finally holds and evaluates to 0 beforehand.

ψ1: ..
.

..

.
..
.

..

.
..
.

• Negative: ψ1 evaluates to 0 forever or for the length of the shortest relevant
evolution chain.

ψ1: ..
.

..

.
..
.

..

.
..
.

ψ1: ..
.

..

.
..
.

..

.
..
.

• Indefinite: ψ1 evaluates indefinite before it held once.

ψ1: ..
.

..

.
..
.

..

.
..
.
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B.1.3. Semantics of “G ψ1”.

The evaluation indicates whether ψ1 holds globally. Disappearance of relevant individ-
uals shortens the considered path to finite length. If sub-formula ψ1 evaluates to 0 and
held beforehand, the outcome is negative. Otherwise, the outcome is indefinite.

• Positive: ψ1 globally holds as long as no relevant evolution chain ends.

ψ1: ..
.

..

.
..
.

..

.
..
.

ψ1: ..
.

..

.
..
.

..

.
..
.

• Negative: ψ1 evaluates to 0 before any relevant evolution chain ends.

ψ1: ..
.

..

.
..
.

..

.
..
.

• Indefinite: ψ1 evaluates to 1/2 before any relevant evolution chain ends.

ψ1: ..
.

..

.
..
.

..

.
..
.

B.1.4. Semantics of “ψ1 U ψ2”.

The following table gives the semantics of “ψ1 U ψ2” by consideration of the first state.
Subsequently we give the semantics grouped by outcome as exercised previously for the
other temporal operators.

a b c d

1

ψ1: ..
.

..

.
..
.

..

.
..
.

ψ2: ..
.

..

.
..
.

..

.
..
.

0

ψ1: ..
.

..

.
..
.

..

.
..
.

ψ2: ..
.

..

.
..
.

..

.
..
.

1/2

ψ1: ..
.

..

.
..
.

..

.
..
.

ψ2: ..
.

..

.
..
.

..

.
..
.

→

ψ1: ..
.

..

.
..
.

..

.
..
.

ψ2: ..
.

..

.
..
.

..

.
..
.

1/2

2

ψ1: ..
.

..

.
..
.

..

.
..
.

ψ2: ..
.

..

.
..
.

..

.
..
.

1/2

ψ1: ..
.

..

.
..
.

..

.
..
.

ψ2: ..
.

..

.
..
.

..

.
..
.

1/2

ψ1: ..
.

..

.
..
.

..

.
..
.

ψ2: ..
.

..

.
..
.

..

.
..
.

1/2

ψ1: ..
.

..

.
..
.

..

.
..
.

ψ2: ..
.

..

.
..
.

..

.
..
.

1/2

3

ψ1: ..
.

..

.
..
.

..

.
..
.

ψ2: ..
.

..

.
..
.

..

.
..
.

1

ψ1: ..
.

..

.
..
.

..

.
..
.

ψ2: ..
.

..

.
..
.

..

.
..
.

1

ψ1: ..
.

..

.
..
.

..

.
..
.

ψ2: ..
.

..

.
..
.

..

.
..
.

1

ψ1: ..
.

..

.
..
.

..

.
..
.

ψ2: ..
.

..

.
..
.

..

.
..
.

1

4

ψ1: ..
.

..

.
..
.

..

.
..
.

ψ2: ..
.

..

.
..
.

..

.
..
.

0

ψ1: ..
.

..

.
..
.

..

.
..
.

ψ2: ..
.

..

.
..
.

..

.
..
.

0

ψ1: ..
.

..

.
..
.

..

.
..
.

ψ2: ..
.

..

.
..
.

..

.
..
.

0

ψ1: ..
.

..

.
..
.

..

.
..
.

ψ2: ..
.

..

.
..
.

..

.
..
.

0

The whole formula holds immediately if ψ2 evaluates to 1, independent from the first
one (cf. row 3 ). It evaluates indefinite if ψ1 or ψ2 become indefinite pre-maturely (cf. 1.b
and 1.d as well as row 2 ). If ψ1 still holds, and ψ2 not yet, we’re supposed to observe
further (cf. 1.c). Otherwise, it evaluates to 0.

• Positive: ψ2 finally holds, ψ1 constantly holds
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ψ1: ..
.

..

.
..
.

..

.
..
.

ψ2: ..
.

..

.
..
.

..

.
..
.

until right before that point in time, and nobody is lost on-route.

• Negative: Either ψ2 never holds before a relevant individual

ψ1: ..
.

..

.
..
.

..

.
..
.

ψ2: ..
.

..

.
..
.

..

.
..
.

ψ1: ..
.

..

.
..
.

..

.
..
.

ψ2: ..
.

..

.
..
.

..

.
..
.

ψ1: ..
.

..

.
..
.

..

.
..
.

ψ2: ..
.

..

.
..
.

..

.
..
.

disappears while ψ1 constantly holds, or there is a state where both don’t hold and
ψ2 didn’t hold earlier, and none of the relevant evolution chains ended beforehand.

• Indefinite (by disappearance): Individuals relevant for the first sub-formula
disappear before a definite

ψ1: ..
.

..

.
..
.

..

.
..
.

ψ2: ..
.

..

.
..
.

..

.
..
.

evaluation could’ve been obtained.

• Indefinite (by indefiniteness): Otherwise.

ψ1: ..
.

..

.
..
.

..

.
..
.

ψ2: ..
.

..

.
..
.

..

.
..
.

ψ1: ..
.

..

.
..
.

..

.
..
.
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(d) Other node.

Figure B.1.: An intuition of Data-type reduction within a transition system where predicates
do not distinguish states. (Or: illustration of the effect of different states with the
same label. Over-approximation is preserved, but information lost. Fortunately,
generated systems are good, states are distinguishable.)
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(d) Other node.

Figure B.2.: An intuition of Data-type reduction within a transition system where the evolu-
tion of individuals not only depends on the local state. (Or: illustration of another
not-so-nice effect, namely that the focused individual depends on another individ-
ual which it doesn’t know by links. Here’s the question, whether this is actually
a problem – maybe it’s hard to capture by case-split, but in the end Y would be
abstracted anyway, even if we had a link.)
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List of Symbols

⊥ bottom element, page 30

∪̇ disjoint union, page 23

⊒ partial order, page 27

⊓ greatest lower bound, page 28

= strict partial order, page 27

⊑ partial order, page 27

< strict partial order, page 27

⊔ least upper bound, page 28

⊤ top element, page 30

{|, |} multi-set comprehension, page 25

∅ function symbol, empty multi-set, page 81

⊙ p Mett, newly created, page 283

⊙ a state formula newly created, page 96

⊚ a1 functional term aliveness, page 87

⊗p Mett, disappearing, page 283

⊗ a path formula disappearing, page 96

❄ crystallisation function, page 191

∗ function symbol navigation, page 82

≪ binding priority, page 89

= function symbol comparison for equality, page 81

idλ application of link navigation, page 46


♯
λ abstract link navigation, page 129

λ link navigation, page 46
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G
λ link navigation of topology G, page 46

1/2 uncertain, indefinite, page 27

a automorphism of transition system, page 177

A DCS initial states, page 282

a functional term, page 87

A UML state machine action labelling, page 288

A∗ finite sequences over A including ε, page 25

A+ finite sequences over A, page 25

act HLL action, page 206

actNF HLL action normal form, page 234

(α, γ) Galois connection (short), page 31

Aω infinite sequences over A, page 25

AP♯ abstract atomic propositions, page 127

AP atomic propositions, page 33

A ψ universal path quantification, page 96

AssignM(V ) assignments of variables V in structureM, page 84

AssignM(V, π) assignments of V in path π, page 85

AssignM(V, s) assignments of V in state s, page 85

∀x : T . ψ1 path formula universal identity quantification, page 96

∀x : T . φ1 state formula universal identity quantification, page 96

∀x : T . t1 logical term universal identity quantification, page 87

∀xxx : T . ψ1 path formula universal destiny quantification, page 96

∀xxx : T . φ1 state formula universal destiny quantification, page 96

∀xxx : T . t1 logical term universal destiny quantification, page 87

B basic type booleans, page 80

B boolean truth values, page 27

B3 Kleene truth values, page 27
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bool array program booleans, page 261

〈〈C〉〉 encoding of HLL class C in array programs, page 265

c Mett channel, page 283

c UML class, page 288

C UML classes, page 288

C HLL classes, page 203

χ DCS channels, page 282

cond HLL condition, page 204

cond0 HLL model initial system state, page 203

conn[c](p1, p2) Mett, link query, page 283

D DTR, page 148

D domains, page 83

D(G) DTR D applied to G, page 149

D(M) DTR D applied to ETTS M , page 151

D(τ) domain of type τ , page 83

D1 ⊑ D2 precision order on DTRs, page 155

D state labelling domain, page 33

delete(thisλ) array program destruction, page 263

delete 〈nav〉 HLL destroy action, page 206

δ♯ evolution chain in abstract system, page 142

∆(id, π) set of maximal finite and infinite evolution chains of id along π,
page 52

(δ, π) ∼H (δ♯, π♯) corresponding evolution chain, page 142

dom(λ) domain of link navigation, page 46

e edge, page 26

E edges of a graph, page 26

E HLL event, page 203
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E UML events, page 288

E(G) edges of graph G, page 26

ǫ⊕ (u1, E, u2) ether insert, page 211

(E ,⊕,⊖) HLL ether, page 211

ǫ⊖ (u1, E, u2) ether remove, page 211

ǫ0.E abbreviation for ether query, page 211

ǫ0.u1
E
−→ u2 consumption of E from ether ǫ possible, page 211

e〈r〉 evolution relation of transition r, page 51

e evolution annotation, page 52

E HLL events, page 203

Emsg DCS environment messages, page 282

E ψ existential path quantification, page 96

ε empty sequence, page 25

eqId equality function, page 45

Ev outgoing edges at v, page 26

∃x : T . ψ1 path formula existential identity quantification, page 96

∃x : T . φ1 state formula existential identity quantification, page 96

∃x : T . t1 logical term existential identity quantification, page 87

expr HLL functional term, page 205

∃xxx : T . ψ1 path formula existential destiny quantification, page 96

∃xxx : T . φ1 state formula existential destiny quantification, page 96

∃xxx : T . t1 logical term existential destiny quantification, page 87

F fairness constraints, page 32

f function symbol, page 80

F function symbols, page 79

f identity embedding, page 129

f vertex labelling function, page 26
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f(G) vertex labelling of graph G, page 26

F (M) fairness constraints of LTS M , page 33

F(S) function symbols of signature S, page 80

(f, g) embedding, page 129

f−1(b) set of pre-images, page 24

f1 ⊑ f2 information order on functions, page 29

f : A→ B total function, page 24

(fG,G♯ , gG,G♯) embedding, topologies explicated, page 130

F ψ1 path formula finally, page 96

Free(ϕ) free variables in formula ϕ, page 97

Free(t) free variables in t, page 88

G♯ abstract topology, page 129

g edge labelling function, page 26

g link embedding, page 130

g(G) edge labelling of graph G, page 26

G1 ⊑ G2 information order on topologies, page 86

G ⊑(f,g) G♯ (f, g) embeds topology G into G♯, page 130

G graph, page 26

G topology, page 45

G ψ1 path formula globally, page 96

H simulation relation, page 138

ιJM K(E ,S,O) ETTS semantics of HLL model M , page 208

id♯ abstract identity, page 129

Id♯ abstract identities, page 129

Idi ∈ D partition Idi is considered by D, page 148

id, id1, id2 identity, page 46

idA identity function, page 25
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Idi sort, typing of identities, page 49

inf(π) states occurring infinitely often in path π, page 34

instate[q](p) Mett, in given local state, page 283

int array program infinite integers, page 261

ι♯ abstract interpretation, page 135

ι HLL interpretation, page 208

ι interpretation, page 83

ιJcondK(s0, s, u, θ) HLL evaluation of condition, page 212

ιJP K(s0, u, θ,O) HLL transition program application, page 214

ιJtK(G, θ) valuation of term t, page 89

k arity, page 80

ℓ HLL transition label, page 204

ℓ link, page 46

L links, page 46

L basic type link sets, page 80

L UML associations, page 288

L(c) UML associations of a class, page 288

L(G) links of topology G, page 46

(L,⊑,⊥) meet semi-lattice, page 30

(L,⊑,⊤) join semi-lattice, page 30

(L,⊑,⊤,⊥) complete lattice, page 30

(L,⊑L) partially ordered set, page 27

(L,α, γ,M) Galois connection, page 31

λ HLL link name, page 203

Λ link names, page 45

Λ link names, page 79

λ(a1) functional term link navigation, page 87
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λ(G) link name function of topology G, page 46

λ(ℓ) link name of link ℓ, page 46

Λ(S) link names of signature S, page 80

ΛA,C auxiliary links of HLL class C, page 203

ΛC links of HLL class C, page 203

ΛI,C input links of HLL class C, page 203

last(termL) last auxiliary link in HLL expression, page 232

L ♯ state labelling of abstract system, page 130

L state labelling function, page 32

L (M) state labelling of LTS M , page 33

M ♯ abstract transition system, page 136

m Mett message, page 283

M structure, page 83

M UML state-machines, page 288

M(A) multi-sets over A, page 25

M(c) UML state machine of class c, page 288

MJϕK(π, θ) valuation of formula ϕ on path π under θ, page 99

MJϕK(s, θ) valuation of formula ϕ in state s under θ, page 99

MJϕK(T ) evaluation of formula ϕ in tree T , page 158

M1 ⊑ M2 information order on ETTS, page 86

M �⊙ M ♯ M ♯ simulates M with corresponding appearance, page 138

M �F M ♯ fair simulation, page 139

M �H M ♯ M ♯ simulates M by simulation relation H, page 138

M � M ♯ M ♯ simulates M , page 138

M labelled transition system, page 32

max(a, b) maximum in B3, page 32

maxA maximum of set A, page 32
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MJϕKF (s, θ) fair valuation, page 103

min(a, b) minimum in B3, page 32

minA minimum of set A, page 32

〈〈M 〉〉♯D encoding of DTR D on HLL model M in array programs, page 273

M HLL model, page 204

mode x : type array program variable declaration, page 262

N
+ postive natural numbers, page 23

[N,M ] array program integer interval, page 261

N0 natural numbers including 0, page 23

nav′ := expr array program assignment, page 263

nav HLL navigation expression, page 205

nav array program expression, page 262

new C HLL creation expression, page 205

.ni function symbol attribute access, page 82

O HLL creation oracle (overloaded), page 214

O HLL input oracle (overloaded), page 214

o(s)
{ui/ri}
−−−−→ s′ HLL transition via scheduling sequence, page 217

Ω DCS fragile states, page 282

P DCS protocol, page 282

p Mett logical variable, page 283

p permutation, page 178

P predicate symbols, page 80

P(A) power-set of A, page 25

p(δ) p-permutation of evolution chain δ, page 180

p(G) p-permutation of topology, page 179

p(O(s)) permutation of HLL oracle, page 223

P(S) predicate symbols of signature S, page 80
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p(θ) p-permuted assignment, page 180

pend[m](p1, p2, p) Mett, pending query, page 283

ϕ EvoCTL∗ formula, page 96

φ state formula, page 96

ϕ1 ≡ ϕ2 semantical equivalence, page 103

ϕ1 ≡prop ϕ2 semantical equivalence under property, page 104

ψ1 R ψ2 path formula release, page 96

ψ1 U ψ2 path formula until, page 96

π♯ path in abstract system, page 139

π computation path, page 33

πk k-th state of path π, page 33

π(k) k-th element of sequence π, page 25

Π(M) set of paths in LTS M from an initial state, page 34

π/k suffix of path π starting at k, page 33

π/k suffix of sequence π from k, page 25

ΠF (M) set of fair paths in LTS M from an initial state, page 34

Πs(M) set of paths from state s in LTS M , page 34

ΠF
s (M) set of fair paths from state s in LTS M , page 34

Πs,s′(M) finite paths in LTS M from state s to state s′, page 34

π ∼H π♯ corresponding paths, page 141

Pk predicate symbols of arity k, page 80

ψ path formula, page 96

ψ incidence function, page 26

ψ(G) incidence function of graph G, page 26

ψ(G) incidence function of topology G, page 46

Q DCS states, page 282

r♯ transition of abstract system, page 136
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List of Symbols

R♯ transition relation of abstract system, page 138

R real numbers, page 23

R transition relation, page 32

R UML state machine transition relation, page 288

R(ιJM K(E ,S,O)) transition relation of HLL model, page 217

R(M) transition relation of LTS M , page 33

R
+
0 positive real numbers including 0, page 23

(R, e) transition relation with evolution annotation, page 57

r−1 inversion of r, page 24

RC transitions of HLL class, page 203

recv[m](p1, p2, p) Mett, receive query, page 283

r ∼e r
♯ corresponding evolution and disappearance, page 137

s♯ state of abstract transition system, page 130

M♯ abstract structure, page 133

S HLL scheduler, page 216

S signature, page 79

S states, page 32

S basic type local states, page 80

S UML state machine states, page 288

S(ιJM K(E ,S,O)) topologies of HLL model, page 210

S(M) states of LTS M , page 33

S(s) schedulings for state s, page 210

s(u).ǫ ether-component of u in state s, page 210

s(u).λ navigation of u via λ in state s, page 210

s(u).x x-component of u’s local state in state s, page 210

S0 initial states, page 32

S0 UML state machine initial states, page 288
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List of Symbols

S0(M) initial states of LTS M , page 33

S0C
initial states of HLL class, page 203

S1 ⊆ S2 subset-relation for signatures, page 80

SC states of HLL class, page 203

send[m](p1, p2, p) Mett, send query, page 283

Σ♯ abstract local states, page 129

Σ DCS messages, page 282

Σ local states, page 45

σ(a1) functional term local state, page 87

σ(G) local state function of topology G, page 46

σ(id) local state of identity id, page 46

ΣC HLL local state domain, page 209

ΣE edge labels, page 26

Σi typed local states, page 49

ΣV vertex labels, page 26

succ DCS transition relation, page 282

s ∼H s♯ corresponding states, page 141

t logical term, page 87

T computation tree, page 158

T types, page 79

T (S) types of signature S, page 80

t.λ abbreviation for λ(t), page 88

t.λ. · · · .λ.σ abbreviation for σ(∗(λ(. . . ∗ (λ(t)) . . . ))), page 88

t.σ abbreviation for σ(t), page 88

(t1 ↔ t2) abbreviation for equivalence, page 88

t1 ≡ t2 semantical equivalence, page 90

(t1 → t2) abbreviation for implication, page 88

367



List of Symbols

(t1 ∨̇ t2) abbreviation for exclusive-or, page 88

〈〈r〉〉 encoding of HLL transition r in array program, page 266

τ HLL basic type, page 203

τE HLL domain of event types, page 209

τE HLL events type, page 203

term HLL term, page 204

TermB(S) boolean terms, page 88

termL HLL let-expression, page 231

termNF HLL guard normal form, page 231

Termτ (S) terms of type τ over signature S, page 88

θ♯ assignment in abstract structure, page 133

θ assignment, page 84

Θ assignment basis, page 184

(θ,G) ∼(f,g) (θ♯, G♯) corresponding assignment wrt. topologies, page 133

(θ, π) ∼H (θ♯, π♯) corresponding assignment, page 140

θ/k k-step evolution of θ, page 84

θ1 ⊑ θ2 information order on assignments, page 84

this HLL self link, page 203

thisλ := new(C) array program creation, page 264

Ti basic type identities, page 80

TTT i basic type evolution chains, page 80

u ∈ D individual u is in one of D’s subsets, page 148

U UML model, page 288

U(G) identities of topology G, page 46

U⊚ individuals (or alive), page 45

U⊚(G) alives of topology G, page 46

U⊚(s) abbreviation for U⊚(L (s)), page 50
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(ui, rCi,i) element of HLL scheduling sequence, page 216

u
π
 e u

′ individual u evolves into u′ along path π, page 52

u
r
 e u

′ individual u evolves into u′ along transition r, page 51

u
r
 e individual u disappears along transition r, page 51

u
(s,s′)
 e u’ individual u evolves into u′ along transition (s, s′), page 51

u
(s,s′)
 e individual u disappears along transition (s, s′), page 51

U 6⊚ non-alive, page 46

U 6⊚(G) non-alives of topology G, page 46

r
 e u individual u appears along transition r, page 51

(s,s′)
 e u individual u appears along transition (s, s′), page 51

V logical variables, page 79

V set of logical variables, page 84

v, v1, v2 vertex, page 26

V vertices of a graph, page 26

V (G) vertices of graph G, page 26

V(S) logical variables of signature S, page 80

v,w logical variable, page 80

VT (S) identity variables of signature S, page 80

VTTT (S) destiny variables of signature S, page 80

X UML attributes, page 288

x, y identity variable, page 80

XA,C auxiliary variables of HLL class C, page 203

XC local variables of HLL class C, page 203

XI,C input variables of HLL class C, page 203

X ψ1 path formula next, page 96

xxx,yyy destiny variable, page 80
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Z integers, page 23

Z
+ positive integers, page 23

Z
−
0 negative integers including 0, page 23

Z
− negative integers, page 23

Z
+
0 positive integers including 0, page 23
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(Σ,Λ)-topology transition system, 50

π calculus
verification, 175

AEvoCTL∗, 98

CTL∗, 98

EvoCTL∗, 96

EEvoCTL∗, 98
Mett, 283

abstract clusters, 167

abstract local states, 145

abstract structure

wrt. embedding, 133
wrt. simulation, 140

abstraction, 31, 159

control, 170

data, 170

abstraction function, 31
abstraction predicates, 172

abstraction refinement, 161, 286

assumption-based, 161

counter-example driven, 161

counter-example guided, 161
model-based, 162

action

HLL, 206

action sequences, 285

additional type, 80
additional types

HLL, 203

adjunction, 32

aggregation

in UML, 190
aliasing

syntactical DTR, 251

alive, 42, 43, 45

Allocational Temporal Logic, 120
Ammann, Ch., 223
anonymous, 75

appear-relation, 51
ARCS, 5
argument type, 80

arity, 80
array programs, 62, 261

actions, 263
basic type, 261
expression language, 262

initial value, 262
loop-body, 264
mode, 262

program, 264
record types, 262
syntactical DTR, 270

type definitions, 261
variable declarations, 262

assignment, 84

in a path, 85
in a state, 85
in a topology, 85

assignment basis, 184
finite, 184

ATL, 120
atomic loop, 227
atomic proposition, 33

Automated Rail Cars System, 5, 293
car, 293
car handler, 293

LSC requirement, 295
platform, 293
terminal, 293

automorphism, 177
auxiliary components, 164

371



Index

auxiliary link

HLL, 203
auxiliary variable

HLL, 203

Bandera Specification Logic, 120

Barcan, R.C., 120

basic type, 80
HLL, 203

Bauer, J., 174

biased, 93
binary relation, 24

binding priorities, 88

boolean term, 88

bottom element, 30
bound occurrence, 88, 97

BSL, 120

C++, 228

c-link property, 48

Cadence SMV, 259
California PATH project, 6

can be embedded, 130

canonical Id-lattice structure, 132
canonical abstraction

for shapes, 172

canonical structure wrt. topology, 83

Car Platooning, 6, 284
merge in HLL, 207

Case-Split, 163

case-split, 115, 116, 196
case-study, 284

Charon, 68

class

HLL, 203
class diagram, 287

collective operations, 227

communicating finite state systems, 61
communication invariants, 167

communication medium, 211

compatibility

topology with signature, 80
TTS with signature, 80

complete DTR, 148

complete join semi-lattice, 30
complete lattice, 30

complete meet semi-lattice, 30
compositional verification, 169

computation time, 193
computation tree, 158
concrete structure, 133, 140

concretisation, 31
of counter-example, 159

step-true, 159
concretisation function, 31

concurrent semantics, 218
condition

HLL, 204

considered
by DTR, 148

consistent evolution annotation, 55
control abstraction, 170
corresponding

assignment, 133
assignment wrt. simulation, 140

disappearance, 137
evolution, 137

evolution chains, 142
path, 141
state, 141

corresponding type, 80
counter abstraction, 171

counter-example, 158
creation oracle

HLL, 208, 214

crystallisation, 190
CTL, 98

dangling, 49

data abstraction, 170
data independence, 221

Data-Type Reduction, 147, 148
data-type reduction, 12
DCS protocol, 282

channel, 282
environment message, 282

fragile state, 282
initial state, 282
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message, 282
state, 282

transition relation, 282
deferred events, 224

definiteness, 91
degree, 26
destination state, 33

destiny
property, 98

variable, 80
destiny of an individual, 52

directed tree, 158
disappear along transition-relation, 51
disappearing, 42, 43, 96

disjoint union, 23
disjoint-universe, 50

domain, 24, 83
DTR, 148

complete, 148

finite, 149
for HLL, 229

more precise, 155
of ETTS, 151

precision order, 154
DTR’ed topology, 149
dynamic topology system, 4

edge label, 26

edge labelling function, 26
edges, 26

embedding, 129
tight, 130

embeds, 130

ether, 211
consume, 211

HLL, 208, 211
insert, 211

ETL, 120
verification, 145, 174

ETTS, 57

evaluation
of formula in tree, 158

event
HLL, 203

event queue, 211
EvoCTL∗

vs. CTL, LTL, 274
evolution, 40

identity-preserving, 51
linear, 51
over time, 41

summarising, 51
Evolution CTL∗, 96

evolution annotation, 52
consistent, 55

evolution chain, 52
evolution chain-based interpretation, 74
evolution function

HLL, 210
evolution property, 98

evolution relation, 42, 51
evolves into-relation, 51, 52
evolving topology transition system, 57

existential path quantification, 96
existential path quantifier, 97

fair EvoCTL∗ semantics, 103

fair path, 34
fairness constraints, 33
false-negative, 159

false-positive, 159
fate, 96

finally, 97
finitary

abstraction mapping, 170
finitary abstraction

by heuristics, 195

finite computation path, 33
finite DTR, 149

finite graph, 26
finite-state LTS, 33

FLASH cache coherency protocol, 260
FO-CTL, 98
FO-LTL, 98

for-all loop, 227
for-all-loop, 227

formula
path, 96
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state, 96

free occurrence, 88, 97
full concurrency

syntactical DTR, 256

function
partial, 24

function symbol, 79

functional term, 87

HLL, 205
functional unit, 14

Galois connection, 31

German protocol, 260

global symmetry, 192

globally, 97
graph, 26

graph transformation system, 218

greatest element, 30
greatest lower bound, 28

Hasse diagram, 31
high-level language, 201

HLL

action, 206
additional types, 203

auxiliary link, 203

auxiliary variable, 203

basic type, 203
class, 203

condition, 204

condition evaluation, 212
creation oracle, 208, 214

symmetry, 223

DTR, 229

ether, 208, 211
event, 203

events type, 203

evolution function, 210
expression

mixed primed/unprimed, 205

purely primed, 205

purely unprimed, 205
functional term, 205

guarding conditions, 231

initial system state, 203
input link, 203

input oracle, 208
symmetry, 223

input variable, 203
interpretation, 208
let-expression, 231

link, 203
navigation expression, 205

normal form, 230
root, 206

oracle, 208
other-flag, 238
parameter, 203

scheduler, 208, 216
ready, 216

symmetric, 225
state, 203
states, 209

symmetric interpretation, 224
symmetric model, 225

topologies, 209
transition, 203

transition label, 204, 206
transition program application, 214
transitions, 210

true concurrency, 209
variable, 203

HLL, 201
model, 204

semantics, 208

to array programs, 264
hybrid systems, 68

identities, 45

identity, 39, 40
identity blurring, 172, 174

identity function, 25
identity property, 98
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