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Preface

In this thesis we try to detail some methods of modelling the small scales that appear
in the Navier-Stokes equations (NSE) which are used to describe the formidable
problem of turbulence. This problem dominates the description of the unpredictable
movements of many particles in contrast to the movement of one particle or even
two or three particles which was already solved in Newtonian physics. The NS
equations, which express basic principles of conservation of mass and momentum,
were formulated towards the middle of the nineteenth century, and there is a general
consensus that turbulence is described by these equations.

On the other hand, there are the Fokker-Planck equation and the Langevin
equations which were formulated at the beginning of the twentieth century and they
describe the probabilities of the movements of many particles. In short the later are
a description of the statistics of turbulence.

Finding the long sought exact solution for the Navier-Stokes equations or even
approximations to it means, for example bringing a great improvement in environ-
mental sciences, or faster and more e�cient transportation means, or even better
predictions for the stokes exchange markets to name but a few. Sometimes turbu-
lence should be avoided for the sake of good aerodynamics or for market stability
other times it should be generated arti�cially for the sake of good mixing. For an
exhaustive list see [1].

Examples for the non stationary time series are the global temperature register,
which tends to rise year after year and thus the non-stationarity is due to the rising
trend. Another important example is the �nancial markets which has a trend that is
time dependent, because of in�ation and other con�icting factors. These important
family of series need other analysis tools than the ones used to analyze the stationary
ones.

Chapter 1 lays down the main themes in turbulence namely the Navier-Stokes
equation (NSE), its averaging, and at last �nding a closure hypothesis for the mod-
elling of the Reynolds stress tensor. The handling of turbulence here has more to do
with high Reynolds number �ows which could occur outside boundary layers which
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are usually formed near solid surfaces. Also here the main models in turbulence,
namely Reynolds-averaged Navier-Stoke (RANS) and large eddy simulation (LES),
are analyzed. All the �ows that are discussed in this thesis (except for the last
chapter) are incompressible and stationary.

Chapter 2 discusses a simpli�ed set of equations of a special case of NSE, the
phenomenon underlying these equations is called di�usion. This special case happens
when the convective (advective) forces are negligible which means that the viscous
forces are important. So the �ows take place in the boundary layer and across
and are mainly laminar here. Moreover the pressure forces and buoyancy which
are usually part of the NSE are neglected here. The main theme in this chapter
is examining the connection between the di�erent di�usion equations like Fick's
law, Fokker-Planck equation, Burgers equation, just to name few. A 3dimensional
di�usion should actually give the same results that one gets from the Navier-Stokes
equation.

Some researchers have connected turbulence to Chaos, but while chaos have
few degrees of freedom, turbulence has too many degrees of freedom. Chapter 3
goes through such dynamical systems that exhibit chaotic structures and speci�-
cally �are (burst) attractors. The main tools in analyzing dynamical systems, like
embedding, correlation dimensions and singular spectrum analysis, has been exhib-
ited here in order to develop some measures that would be useful for later analysis
and to understand the role of intermittency in turbulent stationary time series.

Since one is dealing with a huge amount of degrees of freedom in turbulence the
need arises to develop an alternative treatment for turbulence based on statistical
analysis rather than force-mass Newtonian equations. Thus chapter 4 is dedicated to
the mission of examining some of the most important statistical tools for analyzing
turbulence like multifractals, the correlation, the spectrum, the probability density
function, ...etc.

In chapter 5, we analyze why the tools that were already used in analyzing
stationary time series are not useful in analyzing non-stationary time series taking
�nancial time series as the main example for this endeavor. The tools that were
looked at were the time-frequency transforms, the Wigner-Ville spectrum and at
last wavelets.

The last chapter, chapter 6, is a review of the whole work, discussing the most
important results and an outlook at future studies that could be based on the results
of this thesis.
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Abstract

The aim of this work is to give a review on some of the important tools used in ana-
lyzing time series. Since turbulence turned out to be a rather complex phenomenon,
a variety of di�erent models and analysis tools have been devised to simulate, an-
alyze and address the di�erent questions that are raised by the behaviour of these
seemingly very erratic, highly chaotic time series that are gained from the natural
phenomena or the models that are supposed to simulate these processes whether
natural, �nancial, ... etc. The most part of the work was dedicated to the station-
ary time series which are gained from laboratory controlled turbulence experiments,
for example, or the models that simulate them e.g. the direct numerical simulation.
The main models that were dealt with are the large eddy simulation (LES) and
the di�usion equation which is a simpli�ed version of the Navier-Stokes equations
(NSE). Then there are tools that are used to extract di�erent information from the
time series, like the dimensions, e.g. embedding, fractal, correlation, and the statis-
tical tools like the spectrum, autocorrelation, scaling of the structure function. We
have shown that these tools do not say a lot about non-stationary time series and
that there are another set of tools e.g. the spectrogram, Wigner-Ville spectrum,
wavelets, that de�ne more clearly events that have a beginning and an end but the
full interpretation of their results needs more research.
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Zusammenfassung

Das Ziel dieser Arbeit ist es, einen Überblick über einige der wichtigsten Instrumente
zur Analyse von turbulenten Zeitreihen zu geben. Turbulenz erwies sich bisher als ein
recht komplexes Phänomen. Daher sind eine Vielzahl von verschiedenen Modellen
und Analysemethoden entwickelt worden. Mit ihrer Hilfe werden die verschiedenen
Fragen bearbeitet, die sich aus dem Verhalten der scheinbar sehr sprunghaften, hoch
chaotischen Zeitreihen stellen, die von natürlichen Phänomenen oder aus der Mod-
ellsimulation solcher Prozesse (natürliche Prozesse, Finanzdaten, usw.) stammen.
Die vorliegende Arbeit widmet sich vor allem der Analyse stationärer Zeitreihen aus
kontrollierten Turbulenzexperimenten im Labor bzw. den dazugehörigen Modellsim-
ulationen (z.B. direkte numerische Simulation). Die wichtigsten Modelle welche be-
handelt werden sind die Large Eddy Simulation (LES) und die Di�usions-Gleichung,
eine vereinfachte Version der Navier-Stokes-Gleichungen (NSE). Es werden außer-
dem Analysewerkzeuge vorgestellt, mit deren Hilfe man verschiedene Informationen
aus den Zeitreihen extrahieren kann. Beispiele sind die Dimensionen, wie etwa Ein-
bettung, Fraktale, und Korrelation oder statistische Datenanalyse wie Spektrum,
Autokorrelation und Skalierung der Struktur-Funktion. In der Arbeit wird gezeigt,
dass diese Methoden über instationäre Zeitreihen wenig aussagen, dass es jedoch eine
Reihe anderer Methoden wie z.B. das Spektrogramm, das Wigner-Ville-Spektrum
oder Wavelets gibt, welche Ereignisse, die einen Anfang und ein Ende haben, klarer
beschreiben können. Die vollständige Interpretation ihrer Ergebnisse verlangt jedoch
noch weitere Untersuchungen.
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Chapter 1

Introduction to turbulence

Some of the characteristics of turbulence are its randomness, nonlinearity, di�usivity,
and dissipation, just to name few.

Saying that turbulence is a random movement does not mean that its distri-
bution is Gaussian, as we will see in later chapters, but rather it is a description
of the face of hyperchaos that controls the movements of particles. Its nonlinearity
exhibits itself with the eruptions of new motions and structures as long as the move-
ment is sustained and this fact is an indication that the equations that describes
turbulence must contain a nonlinear term. Turbulent di�usivity is much more e�-
cient than molecular di�usivity in mixing the constituents of the turbulent object
be it velocities, temperatures, chemicals, ...etc. All these velocities, temperatures,
chemicals are dissipated as heat or distributed randomly and not any more in big
aggregations, swirls (eddies) or whatever, at the end of the process. This indicates
that the equations must contain di�usive dissipative terms including the viscosity
of the medium.

1.1 Navier-Stokes equations and averaging

The Navier-Stokes equation which are assumed to re�ect the instantaneous state of
a turbulent �ow are usually written as

∂ũi
∂t

+ ũj
∂ũi
∂xj

= −1

ρ

∂p̃

∂xj
+ ν

∂2ũi
∂xj∂xj

, (1.1)

and the continuity equation

∂ρ

∂t
+
∂ρũi
∂xi

= 0 , (1.2)

1
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where ũ is the �uid velocity, xj is its direction, ρ the density, and ν is the viscos-
ity. The First equation represents the sum of all the forces that could in�uence
the movement of a bulk of �uid while the second one describes the compressibility
conditions of the �uid.

The usual practice used to reduce the time and length scales to a number that
could be dealt with with the existing computers consists of two steps:

• Substituting the Reynolds decomposition in our dynamic equations

ϕ̃(xj, t) = ϕ(xj) + ϕ(xj, t) , (1.3)

where ϕ̃(xj, t) is used to represent all possible instantaneous quantities whether
be it velocity, temperature, concentration, stock-market prices and indexes
...etc, ϕ(xj) is the mean in time of ϕ and is de�ned by

ϕ(xj) = lim
T→∞

1

T

∫ T

0

ϕ̃(xj, t)dt. (1.4)

and at last the quantity ϕ(xj, t) represents the �uctuations of the averaged
quantity (for a detailed discussion see [9]).

• Averaging: to obtain the equations

∂ūi
∂t

+
∂(ūiūj)

∂xj
= −1

ρ

∂p̄

∂xi
+ ν

∂2ūi
∂xj ∂xi

− ∂

∂xj
(ui uj) , (1.5)

∂ūi
∂xi

= 0 . (1.6)

So upon using the Reynolds decomposition and time averaging we have now
an extra term in the equations which is the correlation ui uj. This extra term is
called the Reynolds tensor or stress.

1.2 Averaging

An average over the entire volume of �uid gives a space average which is only a
function of time. If, on the other hand, we average over all time only, the resulting
function depends only upon the position coordinates [5].
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In a statistically steady �ow, every variable can be written as the sum of an
average value and a �uctuation about that value [6] as we have seen in eq.(1.3) and
the de�nition eq.(1.4).

If the �ow is unsteady, time averaging cannot be used and must be replaced
by ensemble averaging:

ϕ(xj) = lim
N→∞

1

N

N∑
n=1

ϕ(xj, t) , (1.7)

where N is the number of the members of the ensemble which must be large enough
to eliminate the e�ects of the �uctuations. Whether we use (1.4) or (1.7), it follows
that ϕ(xj) = 0. In the Reynolds-Averaged Navier-Stoke (RANS) models one uses
either the time or the ensemble averaging procedures depending on the �ow.

If f(xi, t) is a function that describes a �ow variable with irregular variations
from point-to-point and from time-to-time then a more general process is the con-
volution (which will be looked at later):

f̄(λ, t) =

∫ ε=+∞

ε=−∞
W (ε, λ)f(t− ε)dε = (W ⊗ f) = (f ⊗W ) (1.8)

where ε is a parameter of integration with units of time and W (ε) is a weighting
function (called also kernel) with parameter λ. The only restrictions on W (ε) are
that it should be a real function which satis�es the normalization condition:

∫ +∞

−∞
W (ε, λ)dε ≡ 1. (1.9)

The parameter λ is de�ned by

λ =

∫ +∞

−∞
[W (ε)]2 dε. (1.10)

One could see that equation (1.4) is only a special case of (1.8). A known kernel
W (ε) = 1/T is called the top hat function:

W (ε) =

{
1
T

, |ε| ≤ T
2

0 , |ε| > T
2

(1.11)

For time smoothing or �ltering (which will be used later) we let ε = t− t′ and
we have:

f̄ =

∫ ∞
−∞

W (t− t′)f(t′)dt′ (1.12)
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1.3 The turbulent kinetic energy equation and the

closure problem

Observing Reynolds tensor ui uj closely we notice that it is the averaged product of
the �uctuations, so it is the averaged turbulent kinetic energy. To get an equation
for that �rst we must subtract eq.(1.5) from eq.(1.1) and then average. We start
with substituting the Reynolds composition in eq.(1.1) and then subtract from it
eq.(1.5) to get

∂ui
∂t

+ uj
∂ui
∂xj

+ uj
∂ui
∂xj

+ uj
∂ui
∂xj
− ∂

∂xj
(uiuj) = −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj ∂xj

. (1.13)

This equation describes the development of the small scales dynamics. Multi-
plying it (eq. (1.13)) by ui and averaging one gets

∂k

∂t
+uj

∂k

∂xj
+uiuj

∂ui
∂xj

+uiuj
∂ui
∂xj
−ui

∂

∂xj
(uiuj) = −ui

1

ρ

∂p

∂xi
+ν ui

∂2ui
∂xj ∂xj

, (1.14)

where k = 1
2
u2
i is the turbulent kinetic energy. After some simpli�cations using eqs.

(1.2) and eq.(1.6), where the �fth term on the LHS vanishes, and also writing the
last term on the RHS as

ν ui
∂2ui

∂xj ∂xj
= 2ν(∂xj(uisij)− sijsij) , (1.15)

where sij = 1
2
( ∂ui
∂xj

+
∂2uj
∂xi

) is the �uctuating strain rate [2]. Implementing the above
in eq.(1.14) we get

∂k

∂t︸︷︷︸
A

+uj
∂k

∂xi︸ ︷︷ ︸
B

= − ∂

∂xj

(
1

ρ
ujp+

1

2
uiuiuj − 2νuisij

)
︸ ︷︷ ︸

C

−uiuj
∂ui
∂xj︸ ︷︷ ︸
D

− 2νsijsij︸ ︷︷ ︸
E

(1.16)

where (see [27]):

A is the rate of change of the turbulent (�uctuating) kinetic energy,

B its convective transport,
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C the divergence of the transport of turbulent kinetic energy, where we could
see here the triple correlation uiuiuj which one gets when one tries to �nd an extra
equation for the Reynolds stresses (closure problem) ,

D the production of Reynolds stresses by shear, since it is negative then it
represents a loss of mean kinetic energy, in addition to that one could see that it is
an interaction term between the Reynolds stress with the mean shear,

E the viscous dissipation [20] [2]. Here too we have a closure problem .

The above procedure will be used again for the di�usion equation.

1.4 Direct numerical simulation (DNS)

The DNS is the most exact approach to turbulence. In this method one solves
the NS equations without averaging or approximation other than the necessary
numerical discretization whose errors can be estimated and controlled. In the DNS
the domain on which the computation is performed must be at least as large as the
largest turbulent eddy and must also capture all of the kinetic energy dissipation.
One can control the external variables in a way that is di�cult or impossible to
implement in the laboratory. There are several cases in which the results of DNS
disagreed with those of experiments and in which the former turned out to be more
correct [6].

Fig. 1.1 shows instants of a passive scalar DNS simulation (the whole simula-
tions are found on [31]) of an NSE with the continuity and a di�usion equation for a
passive scalar (see next chapter) ([30] and [33]) with the size of 2563 grid points. The
simulation was done using the Pencil code [34] and MPI (Message passing interface)
on a parallel cluster.

1.5 Reynolds-Averaged Navier-Stoke (RANS) Mod-

els

Time-averaging any linear term in NS equations gives the identical term for the
averaged quantity. But, one gets 2 terms from the quadratic nonlinear term, the
product of the average and a covariance:

ũjϕ̃ = (uj + uj)(ϕ+ ϕ) = uj ϕ+ ujϕ (1.17)

where ϕ could be the velocity, temperature, enthalpy...etc. The last term is zero
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Figure 1.1: A DNS simulation of the NS eq.(1.1) in addition to a di�usion equation
of a passive scalar. The size of the grid is 2563 and the initial condition is a top
hat [33]. The yellow color here represents the passive scalar (the top hat) and the
blue colour represents the medium where the passive scalar will disperse (see also
appendix B).
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only if the two quantities are uncorrelated; this is rarely the case, and as a result,
the averaged NS equations contain quantities like ρuiuj, called the Reynolds stresses,
ρuiϕ, (the turbulent �uctuation forces).

So we have had one continuity (1.2) equation and three momentum equations
(1.1) or four equations in all.

However, after averaging we get for each point in the �ow �eld the following
unknown �ow variables:

One mean pressure, p;
Three mean velocity components, ui;
Six Reynolds stress components

as we see in eqs.(1.5) (1.6) where the Reynolds stress tensor = −ρui uj, explicitly
written in 3 dimensions as

−ρ

 u2
1 u1u2 u1u3

u1u2 u2
2 u2u3

u1u3 u2u3 u2
3


And this makes a total of 10 unknowns. The di�erence between the total

number of equations and unknowns is 6 and these all come from the above tensor.
Finding additional equations to �ll this shortage is called the closure problem . So
one sees from that, that the closure problem appears upon trying to reduce the
number of scales that already exist in the NS equations i.e. when one uses averaging
techniques to reduce the number of scales. Otherwise, the system of NS equations
(without averaging of any kind) is a closed system (4 variables and 4 equations).
But there is no analytical solution to this system (eqs. (1.1) and (1.2)), and solving
it numerically exceeds the power of the existing computers, as we will detail in one
of the next sections.

Thus models were deviced to overcome the closure problem in the RANS
method (also in the other methods like LES...) , such as:

Name Number of
turbulence
equations

Turbulence quantities

Zero equation models 0 None(Prandtl mixing-length
model)

One equation models 1 k, turbulent kinetic energy
Two equation models 2 k and ε
Stress/�ux models 6 uiuj components

For a review of these models see [12]. Nevertheless we will review some of the
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main ideas encountered in zero and one equation models due to there importance.

1.6 Boussinesq's Eddy-Viscosity concept

The oldest proposal for modelling the turbulent or Reynolds Stresses −ρuiuj turned
out to take the central part of most turbulence models used today. Boussinesq
has assumed that in analogy to the viscous stresses in laminar �ows, the turbu-
lent stresses are proportional to the mean velocity gradients. This concept may be
expressed as

−uiuj = − 2

3
u2
i δij + µt

(
∂ūi
∂xj

+
∂ūj
∂xi

)
(1.18)

where µt is the turbulent viscosity which, in contrast to the molecular viscosity ν,
is not a �uid property but rather it depends strongly on the state of turbulence
(see [27]). So one could close the equations by substituting instead of the Reynolds
tensor, eq.(1.18). But then one should know the �rst term on the RHS, which is
the kinetic energy and then inside the turbulent kinetic energy equation there are
other quantities that need to be modeled as we have shown previously. In addition
to that one should model the turbulent viscosity µt.

1.7 Prandtl's Mixing Length Model

Since the turbulent viscosity dimensions are m2/s (where one could see that from
(1.18)), one could express it, based on dimensional analysis, as a product of velocity
times length

µt = C v∗ [L] , (1.19)

where C is a dimensionless constant, v∗ the velocity and [L] is the length. Most of
the kinetic energy of turbulence is contained in the largest eddies and the turbulence
length scale is therefore characteristic of these eddies which interact with the mean
�ow. Also the characteristic velocity is connected to the mean �ow. Since that the
only signi�cant velocity gradient in a two dimensional �ow is ∂U/∂y, where U is the
velocity scale, then it is dimensionally correct to state that

v∗ = c l

∣∣∣∣∂U∂y
∣∣∣∣ . (1.20)
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Combining eq.(1.19) with eq.(1.20) and absorbing the product of the two di-
mensional constants C and c into a new length scale lm one gets the equation for
the Prandtl mixing length model [14]

µt = l2m

∣∣∣∣∂U∂y
∣∣∣∣ (1.21)

1.8 One Equation Model

Since the velocity scale in the mixing-length model was

v∗ = lm

∣∣∣∣∂ < U >

∂y

∣∣∣∣ (1.22)

The implication is that the velocity scale is locally determined by the mean velocity
gradient; and v∗ equals zero when the gradient is zero. But it was seen that there
are several cases in which the velocity gradient is zero and yet the turbulent velocity
scale is non-zero. Examples are decaying grid turbulence and in the centerline of the
round jet [12]. Independently, Kolmogorov and Prandtl suggested that it is better
to base the velocity scale on the turbulent kinetic energy k, i.e.,

v∗ = c k1/2 , (1.23)

where c is an empirical constant. If the length scale is taken again to be the mixing
length, then the turbulent viscosity becomes (by using eq. (1.19)) [16]

µt = c k1/2 lm . (1.24)

The above formula is called the Kolmogorov -Prandtl law.

1.9 Discretization, Numerical Grids and Nodes

Discretization means the method of approximating the di�erential equations by a
system of algebraic equations for the variables at some set of discrete locations in
space and time. In this way this theme is complementary to the theme of modeling
turbulence since one has to calculate all the quantities in the previous equations.

There are many discretization methods; some of them are:
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• Finite Di�erence Methods (FD): One starts here with the conservation equa-
tion in di�erential form to cover the solution domain with a grid. At each
grid point or node the di�erential conservation equation is approximated by
replacing the partial derivatives by its approximations (using Taylor expansion
or polynomial �tting). In principle this method can be applied to any simple
grid type. Its disadvantage is that one could not use it for complex �ows [6].
(However, see what is stated below in adaptive grid methods).

• Finite Volume Methods (FV): Here one uses the integral form of the conserva-
tion equations. The solution domain is subdivided into control volumes (CV)
and the equations are applied to each. The approximation methods are the
volume and surface integrals. One could use this method for complex geome-
tries. Its disadvantage compared to FD methods is that methods of order
higher than second are di�cult to develop in 3D [14].

• Finite Element Methods (FE): The domain is divided into discrete volumes or
�nite elements that are unstructured. The advantage is that one could use it
for arbitrary geometries.

• Spectral Method: The unknowns are approximated by a truncated Fourier
series or series of Chebyshev polynomials. Unlike the FD, FE, or FV methods,
the approximations here are not local but valid throughout the entire domain
(see [23]).

• Other methods: Like boundary element methods, and cellular automata which
are used for special classes of problems.

The numerical grid is a discrete representation of the geometric domain on
which the problem is to be solved. Some of the used grids are:

• Structured (regular) grids: It consists of families of grid lines (these lines need
not be orthogonal they could be nonorthogonal) with the property that the
lines of a certain family (the i family for example) do not cross each other
but they cross the lines of the other families only once (just like the Cartesian
coordinates). These lines do not have to be straight lines just but they could
be curves too. This allows the nodes to be numbered consecutively and each
position to have a uniquely identi�ed coordinates (i, j, k)

• Block-structured grid: In complex geometries (see ch.8 in [6]) like for example
computing the �ow around a circular cylinder in a narrow channel one such
solution is the block-structured grid. The solution domain is subdivided into
several subdomains in such a way that each subdomain can be �tted with a
grid.
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• Unstructured grids: If one uses the FV or FE method one doesn't need a struc-
tured grid. There are coordinate lines that correspond to a constant x, y, z.
This allows maximum �exibility in matching mesh cells with the boundary
surfaces and for putting cells where one wants them [21]. Finally we should
mention that these grids are generated by specialized programs.

• Adaptive grid: In the unstructured grids method the re�nement is done on
the subdomains. The purpose from adaptive grid method is to accumulate
as much as needed from grid points in those regions of the �ow where large
gradients in the �ow-�eld properties exist [21].

1.10 Estimation of the Needed Number of Nodes

The needed computational power to solve a �ow problem could be estimated from
the Reynolds number and the needed nodes to cover the solution domain. If one
takes tl as the eddy turnover time or eddy circulation time associated with the length
scale l as:

tl ∼
l

vl
(1.25)

then we could estimate the energy �ux by using the above eq. (1.25) as in [101] :

Flux =
kinetic energy

time
∼ v2

l

tl
∼ v3

l

l
. (1.26)

Which means that the rate of energy supply to the small-scale eddies is of the
order of v3l

l
. This energy is dissipated at a rate ε, which should be equal to the

supply rate [1]. Hence

ε ∼ v3
l

l
. (1.27)

Upon taking the eddy turnover time tl ∼ l
vl
we get upon using eq. (1.27)

tl ∼ ε−1/3l2/3. (1.28)

For a steady �ow of an incompressible �uid with constant velocity, the Navier-
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Stokes equations are :

ũj
∂ũi
∂xj

= −1

ρ

∂p̃

∂xj
+ ν

∂2ũj
∂xj ∂xj

. (1.29)

From dimensionality considerations one could take the inertia terms as U2/L
(the left-hand-side of eq. (1.29)), where U being the characteristic velocity and L a
characteristic length, and estimate in the same way the viscous terms as νU/L2 (the
second term on the right-hand-side of eq. (1.29)). At high Reynold numbers the
viscous terms survive by choosing a new length scale l such that the viscous terms
are of the same order of magnitude as the inertia terms. Or

U2/L ∼ νU/l2 (1.30)

which could be reduced to U/L ∼ ν/l2 and the left-hand-side of eq. (1.30) is equal to
t−1
diff , which is the di�usion time. It follows that we get the Kolmogorov dissipation
scale η upon equating the turnover time (1.28) and the di�usion time, and also
exchanging l with η (ε−1/3l2/3 = η2/ν), we obtain

η ∼ (
ν3

ε
)1/4. (1.31)

Substituting (1.27) into (1.31), we obtain [2]

l/η ∼ (vl l/ν)3/4 = Re3/4 (1.32)

where Re is the Reynolds number. This means that the number of nodes needed
to resolve all turbulence scales is Re3/4 which is equal to the ratio of the largest-
to-smallest eddy-length scales in one dimension. In 3-dimensions this will rise to
(Re3/4)3. This grid is called Kolmogorov grid because ∆ = η. Since a minimum
5-6 points is required to resolve a wavelength λ [11], with the computational time
step which accompanies the grid distance, computer-resources requirements rise in
proportion to (Re3/4)4 = Re3. An estimate of computer requirements arising from
this dependence is given in the following table:

Re= 6600 20, 000 100, 000 106

N= 2 ∗ 106 40 ∗ 106 3 ∗ 108 15 ∗ 1012

T at 150MFlops= 37h 740h 6.5y 3000y
T at 1 TFlops= 20s 400s 8.3h 4000h

where N is the number of nodes and T is the time needed for the simulation. To see
the meaning of these �gures, one could consider an airplane with a 50-meter-long
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fuselage and cruising at a speed of 250 meters per second at an altitude of 10,000 me-
ters. One would need (1016) grid points to simulate the turbulence near the surface
with reasonable detail. A rough estimate based on current algorithms and software,
indicates that even with a supercomputer capable of performing (1012) �oating-point
operations per second, it would take several thousand years to compute the �ow for
one second �ight time [13].

1.11 Space-averaging and Filtering

We have previously looked closely at the averaging in time, it remains to take a look
at the other possibility which is averaging in space. One could consider a vicinal
space smoothing or �ltering process by considering the convolution of f(xi) with a
space weighting or �ltering function (kernel), G(xi). So if we take a 3-dimensional
vector, we could write as in equation (1.12) [5]:

f̄(~x, t) =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
G(~x− ~x′) f(~x′, t)d~x′ . (1.33)

The overbar now refers to the spatial, volume-averaged value of f(~x), which
will be called later the resolved part. The requirements for the space �lter G(~x) are
(see also [15]):

•
∫ +∞
−∞

∫ +∞
−∞

∫
G(~x)d~x ≡ 1.

• All moments of G(~x) exist.

• The width of the �lter function G(~x) is comparable to the shortest resolvable
wavelength in the grid on the point xi, i.e. the �lter width in xi is of the order
of ∆xi, where the subscript i indicates that the grid steps does not have to be
equidistant in all directions.

As examples for the volume �lter functions are:

• The top hat or box �lter : it is de�ned as (compare with equation 1.11):

G(xi − x′i) =


1

∆xi
|xi − x′i| ≤ ∆xi/2

0 |xi − x′i| > ∆xi/2
(1.34)

for i = 1, 2, 3.
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• The Gaussian Filter: Its de�nition in the x-direction is:

G(xi − x′i) =

√
γ

π

1

2∆xi
exp [−γ(xi − x′i)2/(2∆xi)

2]. (1.35)

for i = 1, 2, 3 and γ is taken to be equal to 6 [15].

• Spectral or sharp cuto� �lter: see [15].

1.12 Large Eddy Simulation (LES)

We start with eqs. (1.5) and (1.6) which are in this case space averaged (the bar
means in LES space-�ltered with one of the above mentioned �lters, or averaged
quantity). These equations were achieved by decomposing the original velocity ex-
actly as before ũi ≡ ūi + ui where:

• ui is the �ltered, resolvable-scale velocity �eld, and

• ui is the subgrid-scale components which should be modelled.

The nonlinear term is expanded:

ũiũj = (ūi + ui).(ūj + uj) = ūiūj + ūiuj + uiūj + uiuj (1.36)

In contrast to the results obtained in the case of time-averaging (see eq. (1.17)
for instance), all the above four terms must be considered and in general:

ūkul 6= 0 (1.37)

The second, third and fourth terms contain small-scale, non-resolvable com-
ponents ul, and so must be modelled.

De�ning the subgrid-scale stresses (SGS) as:

τij ≡ ūiuj + uiūj + uiuj. (1.38)

The second and the third terms in (1.36) are denoted as Cij and called the
cross-stress tensor because they represent the interactions between large (grid) and
small (subgrid) scales. The term uiuj = Rij is the Reynolds stress that we have seen
in the RANS formulation and re�ects the interactions between the subgrid scales
[15]. Equation (1.38) is also written as:

τij ≡ ũiũj − ūiūj (1.39)



CHAPTER 1. INTRODUCTION TO TURBULENCE 15

The second term in (1.39) poses a di�culty in simulation since it means that
one should apply the �lter two times. The above is called double decomposition in
contrast to the triple decomposition which follows. A number of solutions have been
found to remedy this di�culty, two of them are:

• Deardorf-Schumann: They take ūi as constant within each control volume.
This means that ūiūj = ūi.ūj and ūi ≡ 0. Thus τij = uiuj and the LES
equations are again identical to the RANS equations [15].

• Leonard stress tensor Lij: It represents the interaction between the large scales.
The decomposition that Leonard, also called the triple decomposition as indi-
cated above, has proposed is:

ūiūj = (ūiūj − ūiūj) + ūiūj

= Lij + ūiūj (1.40)

In this case the subgrid stress is obtained by joining eqs. (1.36), (1.38) and
(1.40):

τ̃ij = ũi ũj − ūiūj

= Lij + Cij + Rij , (1.41)

where the Reynolds tensor is now Rij = ui uj and it is just like before, i.e.
the correlation between the �uctuations of two quantities, and which could be
seen as the last term in eq.(1.5). But, the symbol τ̃ij is now used for a di�erent
quantity than τij which has been de�ned in (1.38).

An approximation method to estimate Lij using the Taylor series expansion
and a Gaussian �lter gives, for the isotropic Gaussian �lter with e�ective �lter
width ∆xk (see [5], [7] and [8]):

Lij =
(∆xk)

2

6

∂2(ūiūj)

∂xk∂xk
+H.O.T. (1.42)

It was calculated that for high Reynolds number �ows, the Leonard stress
accounts for about 14 percent of the total computed energy transfer from the
large eddies to the SGS [17].

The cross term could be written as [22]

Cij =
(∆xk)

2ūi
24

∂2ūj
∂xk∂xk

− (∆xk)
2ūj

24

∂2ūi
∂xk∂xk

(1.43)

Accordingly one substitutes instead of the advection terms the term:

∂

∂xj
(ūiūj + Lij) (1.44)

with (1.42) used to calculate Lij.
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• Germano decomposition: which is a generalization of the Leonard decomposi-
tion (see [15]).

1.13 The LES equations

The space-�ltered NS momentum conservation equations with the double decompo-
sition equation (1.39) will be

∂ui
∂t

+
∂(ūiūj)

∂xj
= −1

ρ

∂p̄

∂xi
+ ν

∂2ūi
∂xj ∂xi

− ∂τij
∂xj

. (1.45)

where τij is as in equation (1.38) and the bar means in this case space averaging
and not time or ensemble averaging. Where the cross-terms are calculated using the
approximation (1.43) or these terms are dropped away using the Schumann-Deardorf
previous approximation and we have again τij = Rij. In addition to that we have
on the LHS the �rst term from eq. (1.36).

Considering the Leonard tensor we obtain the other LES equation by using
(1.36), (1.38), and (1.40) (or simply eq. (1.41)) we get [18]:

∂ui
∂t

+
∂(ūiūj)

∂xj
= −1

ρ

∂p̄

∂xi
+ ν

∂2ūi
∂xj ∂xi

− ∂τ̃ij
∂xj

. (1.46)

where τ̃ij is as in (1.41).

By modelling τ̃ij the trace terms are removed from the SGS tensor and added
to the pressure because they are normal stresses, so that τ̃ij and p̄ are replaced by
[19]:

Tij = τ̃ij −
1

3

n∑
`=1

τ``δij and P̄ = p̄+
1

3

n∑
`=1

τ``. (1.47)

And the above equation (1.46) after considering (1.47) could be written in dimen-
sionless form as

∂ui
∂t

+
∂(ūiūj)

∂xj
= −∂P̄

∂xi
− ∂Lij

∂xj
− ∂Cij

∂xj
− ∂Rij

∂xj
+

1

Re

∂2ūi
∂xj ∂xi

(1.48)

But using the Deardorf-Schumann criterion we get a third LES equation which
looks like the previous RANS equation (1.5) with the exception that the averaging
is space and not time averaging. This criterion was indeed implemented in the
program FLOWSI which was developed by Dr. Claus Wagner in DLR (Deutsches
Zentrum für Luft- und Raumfahrt).
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1.14 Subgrid Scales (SGS) Models

Now that we know how to model the Leonard stress (see equation (1.42)) we need
to model the cross stress tensor Cij = uiūj + ūiuj and the Reynolds stress tensor
Rij = uiuj. Some of the used models are:

• Smagorinsky model: It is the �rst approach (1963) to model these quantities.
This model is an adaptation of Prandtl's mixing-length theory. He assumed
that the eddy viscosity is proportional to a scale characteristic of turbulence
(mixing length) times a characteristic turbulent velocity. In the same way,
Smagorinsky assumed that the eddy viscosity is proportional to the subgrid-
scale characteristic length scale ∆, and to a characteristic subgrid-scale velocity
[25]:

v∆ = ∆|S̄| (1.49)

where |S̄| =
√

2SijSij and Sij = 1
2

(
∂ūi
∂xj

+
∂ūj
∂xi

)
. Equivalently one could write

[19]
Cij +Rij ' −2νtS̄ij (1.50)

where
νt = (Cs∆)2|S̄| (1.51)

If one assumes that the cut-o� wavenumber kc = π/∆ lies within a k−5/3

Kolmogorov cascade Ek = CKε
2/3k−5/3, then the constant Cs is

CS =
1

π
(
3CK

2
)−3/4 (1.52)

It yields CS ≈ 0.18 for CK = 1.4. The researchers prefer to use CS = 0.1. And
equation (1.46) will look like:

∂ui
∂t

+
∂

∂xj
(ūiūj + Lij) = −1

ρ

∂P̄

∂xi
+

∂

∂xj

[
(ν + νt)

(
∂ūi
∂xj

+
∂ūj
∂xi

)]
. (1.53)

It will look like the following in dimensionless form

∂ui
∂t

+
∂

∂xj
(ūiūj + Lij) = − ∂P̄

∂xi
+

∂

∂xj

[
(

1

Re
+ νt)

(
∂ūi
∂xj

+
∂ūj
∂xi

)]
. (1.54)

• Structure function models: see [25]
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1.15 Detached-Eddy Simulation (DES)

Due to the discrepancy that the LES exhibits near the walls, a hybrid technique
has been �rst proposed by Spalart et al in 1997 [24]. DES reduces to a RANS
treatment with a modi�ed one equation model (Spalart-Almaras model 1992 [12])
near boundaries (in the so to say the attached eddies or region) and LES away from
the wall (in the detached region or eddies) with a seamless transition between the
two regions. DES combines the strengths of RANS and LES in a non-zonal manner
to treat separated �ows (for example �ows over airfoils) at high Reynolds numbers.



Chapter 2

Di�usion and the Master Equation

When large ensembles of particles, molecules, bacteria, defects, dislocations, frac-
tures, ...etc move from one place to another or interact with each other in a way
dependent on their initial concentrations, their velocity �elds and potentials, e.g.
electrical, magnetic, chemical, ...etc, that exist in their environment, it is often pos-
sible to describe the spatio-temporal patterns that these movements produce with
linear and nonlinear di�usion processes. The �nal result of describing the turbulent
mixing with the NS Eq., and with the di�usive mixing with the equations of this
chapter is the same, but the physical mechanisms are very di�erent. In turbulence
the transport of materials through the physical domain is the more dominant part
than the molecular di�usion represented by the second term on the RHS of eq. (1.1).
Indeed if the factor of this term, which is the viscosity ν is small enough then we
get a turbulent �ow but if it is large then we get di�usion and molecular di�usion
and the �ow will be called laminar.

The development of the equations of di�usion in this chapter has the intention
of highlighting the importance of not only using the actual physical conditions in
a problem to model it but also to use more abstract constructions like the master
equations.

2.1 Di�usion

Watching a drop of passive tracer (ink or even heat as long as buoyancy have minor
e�ects) di�using in another solution, one notices that the distribution of the concen-
tration of the passive scalar changes depending on the distance from the center of
the drop. The case described here is called Brownian motion or molecular di�usion
since the di�usion happens due to the molecules movement themselves because of

19
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their thermal energy and not due to the addvection of the �uid. From this simple
observation one could write immediately the following equation [26])

c̃(x+ a)− c̃(x) = lm
∂c̃

∂x
, (2.1)

where c̃ is the concentration of the tracer,and lm is the distance traveled by the
molecules (the mean free path) and x is in the direction of the gradient of the
tracer. This reasoning was used by Prandtl as we have seen before in his mixing
length hypotheses. At this stage we need to de�ne another quantity: the �ux which
is the mass of the substance ∆M passing an area element A during a time interval
∆t, or

F =
∆M

A∆t
.

The net �ux could be written as F = u1c̃1 − u2c̃2 which describes the movement
with two di�erent velocities u1 and u2 between two zones of di�erent concentrations
c̃1 and c̃2. One could check easily that both de�nitions of the �ux and the net �ux
are by dimensional analysis the same and there unit is Kg.s−1.m−2. The velocities
u1 and u2 are taken as equal (hereafter will be written as ũ) since the motion is
Brownian and the movement is isotropic . From the above discussion and eq.(2.1)
we get

F̃ = ũ (c̃(x+ lm)− c̃(x)) = −ũ lm
∂c̃

∂x
. (2.2)

2.2 Fick's law

Equation (2.2) could be written in 3-dimensions as

F = −D ∇c̃ , (2.3)

where D = ũ lm is called the di�usion constant and has the units of [L2/T ] where
L denotes the length and T the time scales. Equation (2.3) is called Fick's law .
This equation is also called the heat equation or Fourier's equation depending on
the nature of the dependent variable.

Using the principle of conservation of mass [27] one could derive another useful
equation from transport considerations. Since the current (or the total �ux) leaving
a control volume is equal to

I(t) =

∫
A

F.n.dA =

∫
V

F.dV ,
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where I(t) is the current, F the �ux, n a vector perpendicular to the control volume
and in the direction of the �ux, A the area of the control volume, and V is the
volume. The second step in the above equation has been obtained upon using the
divergence theorem. In addition to the above de�nition of the current, it is also
de�ned as ∂c̃/∂t (in electricity it is ∂Q/∂t where Q is the electrical charge). From
both de�nitions we get ∫

A

(
∂c̃

∂t
+ ∇F ) dV = 0 ,

which yields

∂c̃

∂t
= −∇F , (2.4)

which is the previous continuity equation (see eq. (1.2)). Substituting (2.3) in (2.4)
we get the di�usion equation (Fickian di�usion)

∂c̃

∂t
= D ∆c̃ . (2.5)

When there is a laminar convection in the �ow, then Fick's law is written as

F = ũc̃−D ∇c̃

and (2.4) will be
∂c̃

∂t
= −∇(ũc̃ − D∆c̃)

and in this shape it is called the di�usion advection equation . Alternatively, it can
be written with the substantive operator D = ∂

∂t
+ ũ.∇ as (where the previously

mentioned di�usion constant D has been changed to κ just to avoid confusion)

Dc̃

Dt
= κ ∆c̃ . (2.6)

A (1+1) dimensional simulation for the Fickian di�usion , as in Eq.(2.5) is
shown in Fig. 2.1. The �gure shows clearly the contours of the di�used zones.

A spectral discretization method with 2048 nodes and periodical boundary
conditions, was used. The spectral method was chosen due to its high accuracy
instead of the �nite di�erence methods (see [30] and [37]). This spectral method
will be used for all the simulations in this chapter unless otherwise is mentioned.
In addition to the above, it should also be mentioned that the dispersion relation,
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x

time

Figure 2.1: 1+1 dimensional Fickian di�usion simulation with a Gaussian initial
condition according to eq.(2.5) (or equivalently according to eq.(2.15) with the pa-
rameter values taken as a = 1 and τ = 6). The interpretation of the colours starting
from this �gure until the end of the thesis is explained in appendix B. It should also
be mentioned that the dependent variable called x in all the �gures of this chapter
could be a concentration, probability density function, height... etc., as it is de�ned
in the context of the simulated equation.

which is gained through the von Neumann Ansatz u = u0 e
i(kx−ωt), has been used

in the simulations instead of the actual di�erential equation. This choice was made
because of the fact that showing the development of the wave numbers k in time is
analogous to showing the development of the dimensions in physical space. In any
case the solution is just substituting the dispersion relation in the above mentioned
Ansatz.
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2.3 Non-Fickian di�usion and the τ approximation

Now, using the Reynold's decomposition (1.4) in (2.4)

∂tc̃ = − u ∇c− u∇c , (2.7)

where c̃ = c+c, c is the mean concentration and c is the �uctuation. Upon averaging
(2.7) we get

∂tc̃ = − u∇c − u∇c (2.8)

and here we are again with the tensor u∇c which is as problematic as the Reynolds
tensor ∂xjuiuj which we met in (1.5) and we will have to search for a closing solution
.

One way to �nd a closing solution is by using the same procedure in section
(1.3) another alternative is to use an improved Eulerian approach [29]. By sub-
tracting (2.8) from (2.7) we will have terms that represent the departure of the
concentration from its average i.e. the �uctuations

∂tc = ∂tc̃− ∂tc̃ = − u ∇c− u∇c+ u∇c+ u∇c . (2.9)

Taking the time derivative of (2.8) we obtain

∂ttc̃ = −∂t (u∇c) = − (∂tu)∇c− u∇(∂tc) . (2.10)

Taking the last term from the above equation (2.10) and substituting (2.9) in
it we then have

− u∇∂tc = uiuj∂i∂jc+ ui∂ivj∂jc+ u∇(u∇)c . (2.11)

Using homogeneity and isotropy simpli�cations with the equation of motion
∂tu = −u.∇u−∇p, the terms either vanish or they are turned to triple correlations .
Combining the triple correlations together and using the double correlation divided
by a relaxation time τ to represent them in the equation is what is called a τ
approximation (for more details see [29] and [33]). The �nal result will be

∂ttc̃ + ∂tc̃/τ −
1

3
u2∆c̃ = 0 . (2.12)
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time

x

(a)

time

x

(b)

Figure 2.2: (a) The non-Fickian di�usion according to eq.(2.12), taking τ = 10 and
u = 1. (b) The wave equation according to eq.(2.13) with c = 1.

The above equation (2.12) is called the non-Fickian di�usion equation (see
[28], [33] and [29]) .

One notices its similarity with the wave equation

∂ttϕ − c2 ∂xxϕ = 0 , (2.13)

where ϕ is the wave amplitude and c is the wave velocity in this case. The di�erence
between the non-Fickian di�usion equation and the wave equation is only the term
∂tc̃/τ which is clearly a damping term of the type kv found in harmonic oscillators.
Indeed eq.(2.12), as a PDE (partial di�erential equation), is similar to the damped
harmonic oscillator equation. That is why one could call the non-Fickian di�usion a
damped wave. Indeed examining Fig.2.2(b) closely will show, �rst the two solutions
of the wave Eq. simulation clearly and second that they don't loose there intensity.
While in Fig.2.2(a) they are blurred and damped and because of that they loose
their intensity after a while until they vanish (dissipate). Moreover, increasing the
order of the expansion to 8th. order in space will cause the complete disappearance
of the wave-like e�ect of the two branches and we retain again the classical di�usion
shape of Fig.2.1. The same parameters have been used in both simulations including
the Gaussian initial condition.
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2.4 The very basic master equation

One of the simplest master equations which describe the movement of a particle to
the left and the right could be written as [39]

P (x, t+ τ) = p ∗ P (x+ a, t) + q ∗ P (x− a, t) , (2.14)

where P (x, t+ τ) is the probability of �nding the particle in position x and at time
t + τ , p ∗ P (x + a, t) is the probability that the particle was in position x + a at
time t multiplied by the transition matrix p, and at last the term q ∗P (x−a, t) says
that the particle comes from the opposite direction with q as its transition matrix.
If p = q = 1/2 then we say that the �ow is isotropic .

2.4.1 The isotropic case

The master equation in this case is as we have stated before

P (x, t+ τ) = 1/2 ∗ P (x+ a, t) + 1/2 ∗ P (x− a, t) . (2.15)

Taylor expanding both sides in 1st order in time and 2nd order in space and
using the convention Pt to mean ∂P/∂t, we obtain

P (x, t) + τPt(x, t) =

[
1

2
P (x, t) +

1

2
aPx(x, t) +

1

4
a2Pxx(x, t)

]
+

[
1

2
P (x, t)− 1

2
aPx(x, t) +

1

4
a2Pxx(x, t)

]
. (2.16)

Canceling similar terms and simplifying we get

Pt(x, t) =
a2

2τ
Pxx(x, t) . (2.17)

We notice that this Eq. (2.17) is the same as Eq. (2.5) and more than that
the term a2/2τ has the units of L2/T and thus it resembles the di�usion constant D
in Eqs. (2.3) and (2.5). One concludes that, indeed an isotropic di�usion, according
to this basic master eq., is a Fickian di�usion .

Now, we expand both sides of Eq. (2.15)in 2st order in time and 2nd order in
space and get
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P (x, t) + τ Pt(x, t) +
τ 2

2
Ptt(x, t) =

[
1

2
P (x, t) +

1

2
aPx(x, t) +

1

4
a2Pxx(x, t)

]
+

[
1

2
P (x, t)− 1

2
aPx(x, t) +

1

4
a2Pxx(x, t)

]
. (2.18)

Upon canceling similar terms and simplifying we get (see also [35] and [36])

Ptt(x, t) +
2

τ
Pt(x, t)−

a2

2τ 2
Pxx(x, t) = 0 . (2.19)

Comparing the above Eq. (2.19) with Eq. (2.12) repeated here for convenience

∂ttc̃ + ∂tc̃/τ −
1

3
u2∆c̃ = 0 (2.12)

We notice the similarity between them, to the extent that even the factor u2

corresponds to the factor a2/τ 2 where both have the same units [L2/T 2].

2.4.2 The nonisotopic case

Keeping the shape of the original master eq. as is, namely

P (x, t+ τ) = p ∗ P (x+ a, t) + q ∗ P (x− a, t) (2.14)

expand it in 1st. order in time and 2nd. order space, cancel similar terms, make
p+ q = 1 to normalize the transition probability and at last divide by τ , we obtain

Pt(x, t) =
a

τ
(−p+ q) Px(x, t) +

1

2τ
a2Pxx(x, t) . (2.20)

We see that if p = q = 1/2 as in the isotrpic case we retrieve the di�usion
eq.(2.5). The above equation (2.20) is the linear Fokker-Planck eq. also called a
forward and backward Kolmogorov Eq. (see [40], [41] or [42]) depending on the sign
of the factor (−p + q), whether it is positive or negative. Indeed one notices that
the coe�cient of the �rst term on the right hand side of the eq. a/τ has the units of
[L/T ] which makes it with the term (−p+ q) a drift coe�cient and the units of the
coe�cient of the second term is [L2/T ] and these are the units that we have seen
before for a di�usion coe�cient.
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Figure 2.3: (a) The nonisotropic Fickian di�usion or simply Fokker-Planck di�usion
according to eq.(2.20) with a = 10 and τ = 10. (b) The nonisotropic non-Fickian
di�usion or a 2nd order in time Fokker-Planck according to eq.(2.21) with a = 10
and τ = 10.

Now expanding Eq.(2.14) in 2nd. order in time and as before 2nd. order in
space we obtain the non-Fickian Fokker-Planck eq. written as

Ptt(x, t) +
2

τ
Pt(x, t)−

2a

τ 2
(−p+ q) Px(x, t)−

a2

τ 2
Pxx(x, t) = 0 . (2.21)

Fig. 2.3 shows a simulation of the two linear Fokker-Planck equations. Fig.
2.3(a) is for Eq.(2.20), and (b) is for Eq.(2.21). In 2.3(a) we notice the typical
di�usion pattern while in 2.3(b) we see that the two typical solutions for the wave
(see Eq.(2.13)) appear again but they are again blurred because of the existence of
the damping term 2

τ
Pt(x, t) as was the case with �g. 2.2(a). Here also the wave-like

e�ect of the two branches disappears completely upon expanding to the 4th. order
in space which means that the newly gained terms simply attenuate the e�ect of the
1st. term in Eq. (2.21).
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2.5 The Kramers equation

The Kramers equation is a motion equation for the phase-space distribution function
P(x, v; t) describing the Brownian motion of particles in an external driving �eld
(see [40], [43], [28], and [44]),

∂P (x, v; t)

∂t
=

[
− ∂

∂x
v +

∂

∂v

(
γv − F (x)

m

)
+
γkT

m

∂2

∂v2

]
P (x, v; t) , (2.22)

where P(x,v;t) is a bivariate joint distribution for the particles position x and its
velocity v, γ is the friction (damping) constant, m is the particle mass, T is the
temperature of the �uid, k Boltzmann's constant, and F (x) = −mx is the external
driving force. The method of integration that was used here is the method of lines
of fourth order [45]. This equation is also called the bivariate quasilinear Fokker-

x, v

time

Figure 2.4: The Krammers eq.(2.22) with a Gaussian initial condition. The param-
eters are taken as γ = 0.2 and γkT

m
= 0.2. The vertical axis represents the magnitude

of either x or v.
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Planck equation (see [41]). The quasi-linearity comes from the nonlinearity of the
term ∂F (X)

∂v
.

2.6 Nonlinear Di�usion Equations

All the equations that were investigated in this chapter were linear (except the quasi-
linear Fokker-Planck namely the Kramers eq.). To model turbulence we must have
other nonlinear terms (like dispersion, reaction, ... terms) as well as the di�usion
term as we have seen in the NSE in the �rst chapter.

2.6.1 Burgers' equation

u

time

Figure 2.5: (1+1)dimensional Burgers equation (2.23) with a Gaussian initial con-
dition and c = 0.1.

A simple equation that combines nonlinearity and di�usion without having to
go into the details of the body forces and pressure term, as in the case of NSE, is
the Burgers equation .

ut + uux = cuxx . (2.23)

It looks like a nonlinear Fokker-Planck equation [43]. But it is actually the same
as the previous di�usion equation with drift (2.6). In Fig.2.5 one notes the expected
nonlinear development of a Gaussian initial condition, but nevertheless it is still a
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di�usion process. The Burgers equation has been integrated using the ETD4RK
method (exponential time di�erencing with fourth order Runge-Kutta)(see [37] and
[38]). It is worth mentioning that eq. (2.23) is integrable (by using the Hopf-Cole
transformation) and so it does not show any chaos or even any signi�cant deviation
from the known di�usive pattern, even if a random forcing is added to it [74].

2.6.2 Kardar-Parisi-Zhang equation (KPZ)

Another variation on the theme of nonlinear di�usion equations and particularly on
Burgers equation is the Kardar-Parisi-Zhang equation (KPZ) which is written as

ht(x, t) = νhxx(x, t) +
λ

2
(hx(x, t))

2 + η(x, t) , (2.24)

where it describes the �uctuation of the height h(x, t) of an interface from its mean
value. One gets the KPZ equation by linearizing Burgers eq. (2.23) with the Hopf-
Cole transformation to get the di�usion equation (eq.2.5), by substituting u = −∇h
in the resulting di�usion equation, integrating for x, and at last adding the forcing
random term. In the KPZ, the �rst term on the RHS describes interfacial smoothing
by a surface tension ν in a direction lateral to the main growth, the second term
is for growth in a direction normal to the interface, where λ is the growth velocity,
and at last the third term is Gaussian noise. This third term makes the equation
a Langevin-like equation . The KPZ eq. has been used to describe a variety of
physical processes, like ballistic deposition, the formation of cell colonies in bacteria
or tissue cultures (Eden model) just to name few (see [64] and the references therein).
A �ame propagation version of the equation [65] is written as

ht(x, t) + v.hxx(x, t) = λ(1 + (hx(x, t))
2)1/2 + u , (2.25)

where h(x, t) is the interface height, x is transverse to the direction of overall prop-
agation, u and v are the longitudinal and transverse components of the �ow �eld,
respectively.

The linear stochastic equation that comprise the building block for the KPZ
is a noisy di�usion equation called Edwards-Wilkinson equation (EWE) [71] (simply
the di�usion eq. plus noise)

ht(x, t) − Dhxx(x, t) = η(x, t) , (2.26)

where its constituents are de�ned as before. The implications of Edwards equation
is that the deposition of surfaces on each other is a stochastic process.
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h

time

Figure 2.6: (1+1)dimensional Kuramoto-Sivashinsky equation (2.27) with a Gaus-
sian initial condition and ν = µ = λ = 1.

And here we go again, of course, there must be an Edwards-Wilkinson equation
with a drift term (see [72] and compare it with eq.(2.6)). Since this section was about
describing the stochasticity of surfaces one should also mention the linear Fokker-
Planck analysis presented in [73].

At last, the KPZ eq. becomes unstable at an instability called Benjamin-Feir-
Newell instability (see [74] and the references therein), when ν becomes negative.
One has to to add a fourth order stabilizing term to KPZ (2.24) and the new equation
is written as

ht(x, t) = −|ν|hxx(x, t)− µhxxxx + λ(hx(x, t))
2 . (2.27)

The above eq. (2.27) is called the Kuramoto-Sivashinsky equation (KSE) [74] .
Fig. 2.6 is a simulation of the KSE. One notices here that there are chaotic surface
structures even without having to add a random forcing.
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2.6.3 Gravity Waves equation

Another example that shows the e�ect of other terms that could make a di�usion
process not only nonlinear but also exhibit other natural phenomena like dispersion
in addition to branching, as we have seen in the wave equation, is the gravity waves
equation (see for example [46] [47] and the references therein)(Fig.2.7). The equation
in general looks like:

uxt =
3g(1− 3θ)

2vh
u− 1

2
uxxu−

1

4
u2
x +

3h2

4v
uxxu

2
x , (2.28)

u

time

Figure 2.7: Nonlinear and dispersive propagation of surface waves according to
Eq.(2.28) with a Gaussian initial condition. All the parameters were taken equal
to one.

where g is the gravity, h the depth, θ the Bond number, v a constant that is deter-
mined via the surface tension, and u is the surface velocity of the waves.
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2.7 Testing the programs for conservation

We have dealt with di�erent quantities ,i.e. di�erent in nature, in the previous
equations, e.g. concentrations, probabilities, velocities, wavefront heights, etc... .
To show that they all follow the same conservation laws during there dynamical de-
velopment within the time range speci�ed in the integration algorithm it is su�cient
to test that the subject quantity has not changed from the beginning till the end
of the process. Said in another way that there should be no sinks or sources in the
equation itself nor due to numerical dissipation or augmentation [108]. In �g. (2.8)
the �rst number represents the area of the initial condition (which in all the cases
happens to be Gaussian) and the rest of the numbers represent the areas for the
slices at the later times. We notice that there are slight changes in the areas which
could be attributed to the nature of the used boundary conditions in the integration
algorithm, which were simply periodic.

2.8 Physical signi�cance and applications

So far the equations were without a source term that resembles a production of parti-
cles (energy or whatever) to replenish the di�used ones (except for KPZ and EWE).
The linear di�usion equations become nonlinear with the addition of the production
term. For example Fisher's equation is simply the linear di�usion equation added
to it a nonlinear production term

∂c̃

∂t
= D ∆c̃+ ac̃(1− δc̃) , (2.29)

where c̃ stands for a population density of a species, and the last term ac̃(1− δc̃) is
the driving term (also called forcing term, or as above production term) and is in
this case the logistic equation which represents a birth-death process. This equation
(2.29) was used to model the spread of an advantageous gene in a population [48].
We see in this eq. (2.29) the term which resembles a reaction process c̃2 that is
why the Fischer equation is one in a family of equations called the reaction-di�usion
equations, e.g. the oregonator [49], the brusselator [51], the Gierer-Meinhardt model
[50] in chemistry, FitzHugh-Nagumo in a nerve conduction [52] and in semiconductor
optical ampli�ers models [53].

Since the classical Fick's law (2.3) is a parabolic equation (see [10] and [9])
and these types of equations violate causality , a hyperbolic equation was needed to
overcome this aspect. This made many researchers go to the hyperbolic non-Fickian
di�usion equation ((2.12) or equivalently (2.20))to model their applications. This is
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(a)
181.4107, 181.4105, 181.4051,

181.3922

(b)
90.7053, 90.6913, 90.6862,

90.6843, 90.6836

(c)
286.8354, 286.8196, 286.7706,

286.7367

(d)
28.5460, 28.5460, 28.5460,

28.5460, 28.5460

(e)
56.0499, 55.0336, 55.6761,

54.9838, 56.5664

(f)
20.1567, 20.1567, 20.1567,

20.1567, 20.1567, 20.1565

Figure 2.8: Testing the conservation of the di�erent previous di�usion processes, by
calculating the area of the di�erent sections shown on the top of each �gure: (a) Fick-
ian di�usion (eq.(2.5)). (b) Non-Fickian di�usion (eq.(2.12)). (c) Fokker-Planck
(eq.(2.12)). (d) Nonlinear Fokker-Planck or Burger's (eq.(2.23)). (e) Kuramoto-
Sivashinsky (eq.(2.27)). (f) Gravity waves (eq.(2.28)).

one of the reasons why this hyperbolic equation (the non-Fickian di�usion eq.) has
from time to time surfaced in the scienti�c literature under other names like Maxwell-
Cattaneo's eq. [54] [55] or the telegrapher's eq. [59] [60] [61] [62]. The equation
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applications range from solving heat conduction problems in semiconductors [57] to
relativistic nuclear problems [58], just to name few of its applications.

An equation, that is used in the analysis of the plasma waves in long Josephson
junction in the superconducting physics �eld, is an oscillator equation called the
perturbed sine-Gordon eq. (see [67], [68], [69] and the references therein)

ϕxx − ϕtt = sinϕ+ αϕt − βϕxxt + γ , (2.30)

where ϕ(x, t) is the superconducting phase di�erence between the electrodes of the
Josephson junction, α and β are dissipation coe�cient, and γ is a bias current den-
sity. We notice on the LHS of (2.30) the wave operator or the relativistic schrödinger
operator also called d'Alembert operator �2 = 1

c2
∂2

∂t2
− ∇2. But then there is also

a sin term, which adds more structures to the Klein-Gordon equation , a perturb-
ing term and a driving term. Here again we see the non-Fickian di�usion equation
resembled by the RHS of (2.30) plus the second term on the LHS.



Chapter 3

Dynamical Systems

It is worth noting that at the time that Reynolds was experimenting with �uids
to investigate the transition from laminar to turbulent �ows, Poincaré was �nding
out that simple nonlinear dynamical systems were capable of showing a chaotic-
and random-in-appearance behaviour are in fact deterministic. It was not until the
meteorologist Lorenz who has shown that there is a possible link between chaotic
dynamics and turbulence [76].

3.1 Time series and Intermittency

Measured one dimensional data, whether be it velocity, temperature, stokes and
shares,... etc are called time series. These time series could be natural or measured
in a laboratory or produced through a model (continuous di�erential equations or
di�erence equations).

In �g.3.1 we show some of the time series that we will be dealing with or some
other similar ones. In (a) a random signal produced from a Pareto distribution .
It is a heavy tailed distribution meaning that a random variable following a Pareto
distribution can have extreme values. The Pareto distribution is written as

f(x) =
a

xa+1
for x ≥ 1 , (3.1)

where x is a random variable and a is called a shape parameter. One notices that this
series is intermittent or shows intermittency . When a motion alternates abruptly
between approximately laminar silent phases interrupted by irregular bursts we say
that the motion (and hence its time series) is intermittent and that there is inter-
mittency. We see that the other series in the �gure are more or less intermittent.

36
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Figure 3.1: Time series of di�erent signals: (a)Random time series produced from
Pareto distribution as in eq. (3.1) (a = 4.9). (b)Flare from eq.(3.6) taking a = 4,
b = 1, c = .4 and d = 0.6. (c) Flare from eq.(3.7) taking a = 1.5, b = 1.8, c = .9
and d = 0.3. (d)Iran Earthquake. (e)Oldenburg's air-tank free-jet experiment. (f)
The pulsar GRO. In the inset we show a blowup for a shorter range for the same
signal as in the main �gure.

In the same �gure we notice that the signal in (a) is produced with eq. (3.1), (b)
with eq. (3.7), and (c) with eq. (3.6) (more details in [70]) while the signals shown
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Figure 3.2: The time series and the phase space for (a) and (b) Lorenz attractor
eq.(3.2) taking Pr = 10, Ra = 28 and b = 8/3 , and (c) and (d) for Rössler
attractor eq.(3.3), taking a = 0.2, b = 0.2 and c = 10, respectively.

in (d), (e), and (f) are natural signals. (d) shows part of an Earthquake signal
that happened in Iran [117], (e) is an experimental signal from Oldenburg's air-tank
free-jet experiment and it is totally turbulent [118], and at last (f) is a signal for a
pulsar star catalogued as GRO J1744-28 [120].

3.2 Lorenz and Rössler Models

The equations of the Lorenz model, which is a simpli�ed weather model derived
from the NS equations (1.1) plus an extra equation to account for the buoyancy
e�ects due to the heat (called also the Saltzman convection equations [78]), are

xt = Pr(y − x)

yt = Ra x− y − xz
zt = −bz + xy , (3.2)
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where x(t) is amplitude of the convective �ow, y(t) and z(t) are the horizontal and
vertical temperature distribution (variations) respectively, Pr is the Prandtl number
which is the ratio of viscosity to thermal conductivity, Ra is the Rayleigh number
which is the ratio of the temperature di�erence between the uper and lower surface
of the �uid, b is a geometrical factor and is the ratio of the width to the height of
the slab [78]. They represent a situation where a �uid slab is heated from below and
a �xed temperature di�erence is maintained between the top surface which is kept
cold and the bottom heated surface.

Yet another simpler set of equations introduced by Ott Rössler and consists of
two linear and one nonlinear equations and shows chaotic behaviour, is written as

xt = −y − z
yt = x+ a y

zt = b+ z(x− c) . (3.3)

A number of things could be inferred from �g.3.2. Most importantly is that
the irregular aperiodic transitions from positive to negative values (in the case of
the Lorenz model) corresponding to the system orbiting around one or the other
�xed point. As for the Rössler system, the movement of the attractor is either in
xy-plane or in the z-axis this is why one observes that the time series for the z-axis
is only positive.

The main features in dynamical systems (that we want here to emphasize) are

• Sensitivity dependence on the initial conditions, and from this emerges the un-
predictability associated with such systems. This sensitivity is clearly evident
from �g. 3.3. This property is o�set by another property called shadowing
which insures the boundedness and validity of the numerical simulations [88]
or [89].

• The second main feature, is that these systems (whether maps or �ows) could
produce chaos if they have nonlinear terms and if the sensitivity factors in
these equations are adjusted to that purpose [76].

• The third main feature is that the attractors are self-similar (self-a�ne).
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Figure 3.3: Changing the initial condition from 1 to 1.0001 produces another orbit
for the Lorenz attractor. One notices that a change in the initial condition of only
0.0001, makes the second orbit diverge from the �rst between 25-30. Using the same
parameters as in �g.3.2

3.3 Flare maps and Intermittency

The understanding of the route to chaos has been paved by the logistic map (LM)
(with or without drift term see [79]) , written as

xn+1 = r xn(1− xn) , (3.4)

where r is an adjustable parameter (sensitivity parameter). This equation has been
the building block for probably most of the �are (burst) equations. The importance
of the study of these equations lies in the fact that in addition to the mechanism of
bifurcation as a route to chaos, i.e. to produce chaos, there is another mechanism
for that called intermittency (see [82]), also on-o� intermittency [83], or the in-out
intermittency [85].

Intermittency is essentially de�ned as events of large amplitude separated by
long periods of low amplitude events (laminar or periodic movement). The impor-
tance for equations to describe and quantify intermittency lies in the diversity of
natural phenomena that needs to be described and eventually predicted by these
class of equations. Examples of these natural phenomena and the signi�cance of
studying intermittency for each case are: sunspots and there connection to sun
�ares and the disruptions caused by it in the electrical and communication net-
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works, wind bursts (gusts) and the damages to wind electricity mills, explaining the
attitude of Pulsars (PULSating stARS), the spatial intermittent patterns of distri-
bution of galaxies in astrophysics, or the distributions of mountains and bacteria, or
even the intermittent shape of earthquake signals and trying to forecast them, just
to name few.

The three �are equations that will be examined here are

xn+1 = rn xn(1 − xn)

rn+1 = a wn + b

wn+1 = 4 wn(1 − wn) . (3.5)

xn+1 = a xn(b − xn)

wn+1 = wn + wn(xn − c) − d w2
n . (3.6)

xn+1 = xn exp
a(1−x2

n) + wn

wn+1 = wn(1 + b(c − xn) + d . (3.7)
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Figure 3.4: Intermittency route to chaos for eq.(3.7).

In the �rst equation (3.5) (see [87]), the sensitivity factor r in the LM is
de�ned through another LM, which in its turn behaves like a tent map because of
the factor (4) which appears in calculating w [76]. Its time series (�g. 3.6a) shows
an intermittent signal in the sense de�ned above.



CHAPTER 3. DYNAMICAL SYSTEMS 42

(a) (b)

(c) (d)

Figure 3.5: Some of the bifurcation diagrams for eq.(3.7) (�gures (a) and (b)).
Figures (�gures (c) and (d)) are for eq. (3.6).

The next two equations (3.6 and 3.7) exhibit also a �are behaviour (or inter-
mittent as is in �g. 3.1a-c and also(f)). Figures 3.5 show the bifurcation diagrams
which help in �nding the values of the parameters a, b, c, and d which control the
behavior of these equations. For instance to see at which ranges of a certain param-
eter (whether a, or b, ...etc.) the bifurcation process starts and goes on until the
process exhibits chaos through the route of bifurcation , or at these values the pro-
cess returns back from chaos to periodic oscillations and then jumps again into chaos
after showing a third period oscillation (which happens for instance after the x-axis
value of 0.95 until ∼ 0.97 in �g. 3.5(d)). Choosing values for the parameters at
such periods, i.e. where the process relaxes from chaos to periodic and then directly
becomes chaotic again, is called intermittency route to chaos . Such a behaviour is
evident in �gure 3.4 which shows the behaviour of the time series in such a region.

In �gures 3.6(a) the time series of eq. 3.5 and in (b)its phase space or state
space. In (c) and (e) the time series of eq. (3.6) is shown for two di�erent values of
the parameter a (3.96 and 4.0 respectively). While in (d) and (f) the state space for
these two di�erent values. The time series for eq.(3.6) with its state space is shown
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again to emphasize at this early stage the importance of the shape of the state
space and how drasticly it sometimes changes with a small change in the equations
parameters. The importance of the state space will be met again in connection with
the embedding dimension .

3.4 Fractals, multifractals and dimensions

Fractals are geometrical objects that are self-similar or scale-invariant, i.e. subsets
of a fractal have essentially the same form as the whole. Another de�nition from
Mandelbrot to fractals is that they are objects with noninteger Hausdorf dimension
[84]. The most intuitive de�nition for dimension comes from trying to cover objects
with balls or squares (or cubes). To cover a piece of line with squares one needs
N(r) ∝ 1/r where N(r) is the number of boxes needed to cover a line of length
r. So if r = 1 then N equals one too but if we choose r = 1/2 then we will need
N = 2 to cover the line and so one. For covering a square with an r = 1/2 we need
N = 4 which is 1/(1/2)2 = r−2, here we should be able to notice that the exponent
2 is actually the dimension of the square. If we choose the length r = 1/3 then we
need N = (1/3)−2 = 9 boxes and so one. The same logic is applied to 3-dimensional
objects to �nd out that we need r−3 to cover a cube. So for Euclidean objects there
is no problem with this intuitive de�nition, namely

N(r) ∝ r−d , (3.8)

where d is the dimension of the object. So, Euclidean objects have an integer
dimension.

With some algebra one could write the power law eq.(3.8) as

K =
logN(r)

log1/r
, (3.9)

where K is the dimension (in (3.8) we called ir d) which is Kolmogorov's dimension
in this case. Other names for it are the box-counting dimension or the capacity
dimension . The similarity is evident between eq. (3.8)and an equation from the
next chapter (4.23), which actually implies an equivalence between the box-counting
technique and the structure function which will be the theme of the next chapter.

Now taking a Koch curve (see �g. 3.7(a)) which is constructed by taking a
stage one curve (which is on the top LHS) and using it as a motif to replace each
line segment of the later stages and calculating the K dimension according to eq.
(3.9) we �nd that it gives log(4)/log(3) = 1.2619. This process of using an object
as a motif to construct a new self-similar one is called an iterated function system
(IFS) another name is (i.e. it has fractional dimension).
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Figure 3.6: The time series and phase space of eq. (3.5) and eq. (3.6). In (a) and
(b) the time series and the 3D phase space of eq. (3.5) are shown. As for (c), (d),
(e), and (f) the time series and the 2D phase space of eq. (3.6) are shown, where in
the �rst two �gures the parameter a in the equation was chosen as 3.95 and in the
last two �gures (e and f) the parameter was equal to 4. The other parameters are of
O(1).
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Figure 3.7: (a) Koch curve with four stages. Where the �rst frame on the top LHS
represents stage one and the last one on the bottom RHS represents stage four. (b)
The development of a multifractal in a random way. Were we start with a rectangular
mass with mass 10x1 and redistribute it according to nstage. On the top LHS we start
with stage zero and end on the RHS with stage 8 where n=2.

Comparing �gs. 3.7(a) with �gs. 3.7(b) it is evident that there are two di�erent
procedures here. In (a) the motif was a geometrical �gure used for an ever reduced
scale to achieve the self-similarity. In (b) one starts with a square with a certain
area and starts in cutting it in a random way and sticking the new pieces beside
each other on the condition that the area (mass or the probability density function
(PDF)) of the whole is kept constant (the normalization condition) (see [90] and
[91]). So in other words one could also build a Koch multifractal by using a PDF
or mass for the segments other than the fractal one which is 1/3 (the one in �g.
3.7(a)).

Calculating the box-counting or the fractal dimension is a process limited by
the resolution of the graphics, because at some point the boxes will be too small to
include a piece of the object inside it. So one should estimate the object dimension
with few points (probably as high as 10) which is mostly not enough.

Another similar dimension to the box-counting is the correlation dimension
(CD) , which is often used to estimate dimensions in experimental physics (see [92]
and [95]) and is written as

CD = limr→0
logC(r)

logr
, (3.10)

where C(r) is the correlation integral and is equal to the number of points which
have a smaller distance than a given distance r. That is to say one uses each of the
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points as reference and counts how many of the other points are within distance r
from it [94].
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Figure 3.8: (a) Henon attractor and (b) its correlation dimension. (c) and (d)
are the correlation dimension for Lorenz attractor (see eq. (3.2) and �g. 3.2b) for
20, 000 points and 60, 000 points respectively.

As a check for the algorithm, the Henon attractor (which is shown �g. 3.8(a))
the CD was calculated as in �g. 3.8(b). The calculated value is approximately equal
to the value found in [92]. In �gs. 3.8(c) and 3.8(d) we notice a number of things.
First, that upon increasing r we get three distinct regions, the �rst one where there
are no points and the correlation dimension has a constant value. In the second
region the number of points begins to increase and stabilize according to the power
law eq. (3.10) and in the third region it stabilizes again as the number of points
does not change. The second thing that is noted, is that increasing the number of
points used to calculate the CD will increase the accuracy of the results. One could
�nd nearly the same values for the CD of Henon attractor and Lorenz attractor in
the literature ([76], [93] and [77]).
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Figure 3.9: The correlation dimension of (a) Gaussian distributed data (60k points),
(b) Pareto distributed data 60k points (ED=1), (c) Pareto distributed data 60k
points(ED=3), (d) Blamforth attractor (3.5) 20k points on the r-axis (ED=3),
(e)Blamforth attractor 20k points on the w-axis (ED=3), (f)Blamforth attractor
200k points on the x-axis (ED=3), (g) Flare eq. (3.6) 60k points on the x-axis
(ED=3), (h) Flare eq.(3.6) 60k points this time on the w-axis (ED=3).
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If the time-series is a random process, the CD increases with the embedding
dimension (ED) linearly, as is seen in �g. 3.9(a) were the CD is approximately equal
to the ED = 1, 2, 3. If the time-series is a deterministic signal, the CD does not
increase further when the ED exceeds the CD. Thus a plot of the CD as a function
of the ED may show whether a signal is random noise or deterministic chaos [94].

In 3.9(b) and (c) the CD for the intermittant signal of Pareto distribution is
calculated for ED = 1 and ED = 3 respectively. It seems that we need more points
for such highly intermittant signals to calculate the CD reliably.

In 3.9(d), (e) and (f) one observes the di�erence of the value of the CD when
it is calculated on the di�erent axes, which happens to be the r, w and x axes (see
the Blamforth map (3.5) in �g. 3.6(b)). In �g. 3.9(g) and (h) we see that the CD
value calculated on di�erent axes of the �are attractor eq.(3.6) changes with the
axes which con�rms what we have seen above with the Blamforth map eq.(3.5).

3.5 Embedding dimension (ED)

Phase space constructions have an important role in describing the developement
of a system of equations in time. But usually, in an experiment one registers in
his instruments a time series for one variable (whether space variable or tempera-
ture ...etc.). By �nding the ED one could reconstruct some of the main features
of the state space by using this time series of the measured variable. So ,if our
time series is the vector X = x1, x2, ..., xN we could construct a matrix by using
time delay construction to get again the 2 or 3 (or more) vectors we need to re-
construct the original state space e.g.if we take for example one variable from the
Henon map or the �are map eq.(3.6) then the ED = 2. So our new vectors will
look like XN , XN−h, XN−2h, ..., XN−(m−1)h...etc., where h is the time lag used in the
embedding, and m is the embedding dimension. The ED should be larger than the
correlation dimension (or the box-counting fractal dimension) to ensure the replica-
tion of our original attractor [95]. This geometrical replicating of the dynamics is
due to Takens [96].

We show some examples in �g. 3.10 where in (a) a replication of Rössler
attractor was made, and in (b) the previous Blamforth attractor (compare these
with �gs. 3.2(d) and 3.6(b)). In �g. 3.10 (c) and (d) an embedding for Oldenburg's
free jet data was tried in two di�erent EDs, 3 and 10. We observe that due to the
high degrees of freedom (dimensions) possessed by the particles and the intersection
of the trajectories one could not see any structures (one would assume that one
could see a Kármán street or even a simple eddy for example), while in (a) and (b)
there where some of the original geometrical features because the trajectories do
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Figure 3.10: The embedding of (a) Rössler system eq.(3.3), (b) Blamforth eq.(3.5),
(c) and (d) are for Oldenburg's airtank data [118] with the embedding dimensions
equal to 3 and 10 respectively. There are no dramatic changes upon increasing the
embedding dimension to more than 10.

not intersect. So one has to use di�erent lags and higher embedding dimensions to
disentangle the trajectories.

3.6 Dimensions reduction

Following the same line of thought which we started from the beginning and in order
to minimize the processed quantities of data, the next method principal component
analysis (PCA) combined with embedding and lagging could do the purpose. There
are various names for the PCA method depending on the context, like for example
Karhunen-Lòve transform used for second order stochastic processes, independent
component analysis (ICA) used in multivariate data analysis (see [97], and [98]),
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and singular spectrum analysis (SSA) in the context of dynamical systems [99]).
The technique has to do with working with the time series represented by its main
components i.e. the singular values, (gained from a singular value decomposition
(SVD) ) in a delay embedding space [95].

First one should calculate the covariance matrix

Cij =< xixj >=
1

N −m+ 1

N−m+1∑
n=1

xn−m+ixn−m+j , (3.11)

(a)true image rank = 588 (b)rank = 100

(c)rank = 25 (d)rank = 10

Figure 3.11: PCA for Oldenburg university foto (2-d matrix) showing from (a)-(c)
the rank of the matrix used in the approximation.

where Cij is the covariance matrix (which is actually the non-normalized Reynolds
tensor ), x the time series, m the embedding dimension, and N is the length of the
time series.
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Second decompose the embedded covariance matrix by using a singular value
decomposition (SVD) .

Generally, a matrix Am∗n could be decomposed to A = USV T , where Umxm
is an orthogonal matrix and its columns are the eigenvectors of AAT , while the
columns of Vn∗n are the eigenvectors of ATA. The matrix S is diagonal and contains
the singular values of matrix A (see for example [100]). Upon performing the de-
composition of the embedded covariance matrix (3.11) one could get the principal
components by multiplying the singular values S by the eigenvectors U .

In �g. 3.11 the original photo was read as a matrix and then analyzed into its
components using SVD and at last we have picked some of the ranks to manifest
the usability of SVD as a dimension reduction method.

In �g, 3.12 a time series (one dimensional) was used (the Oldenburg airtank
data [118]) in �nding the PCA components (in this case it is called SSA). One notices
how the other two components follow the original signal in its ups and downs.

Figure 3.12: Singular spectrum analysis (SSA) for the incremented turbulence data
produced in Oldenburg's university airtank.



Chapter 4

Statistical Turbulence

One of the basic concepts in turbulence has been introduced by Richardson [63]
namely the energy cascade in turbulent �ows. The idea is that the energy that is
fed into a system produces large eddies (swirls) with large Reynolds numbers, and
they are unstable. They break up and transfer their energy to smaller eddies. This
process of eddy splitting and energy cascading is continued until stable eddies are
produced, this is when the e�ect of the viscosity term in eq. (1.1) becomes larger
than the e�ect of the nonlinear term. After that the kinetic energy is dissipated
(thermalised or randomised) by viscosity.

This idea of energy cascading is quanti�ed and measured by the structure
functions.

4.1 Increments and structure functions

A structure function is the di�erence between the kinetic energies between two points
in a �ow. So the main element in the structure function is the velocity. This notion
gives us another de�nition, namely, the increment , which is the di�erence in the
velocity between two points. We could view the increment as a �rst order Taylor
expansion for the velocity

u(x+ r)− u(x) = r
∂u

∂x
, (4.1)

where u(x) is the velocity at point x, u(x + r) is the velocity at a later point in
the time series and the distance between both points is r. From this we deduce
that when we use increments and structure functions then we are talking about the
velocity �uctuations since the mean of the velocity gets canceled out from the LHS

52



CHAPTER 4. STATISTICAL TURBULENCE 53

of (4.1).

Figure 4.1: A temperature time series showing in (a) a global warming trend. In
(b) the time series has been detrended and in (c) the structure function of the same
time series in (a) is shown.

In �g. 4.1(a) the temperature time series shows seasonal trends in addition to
the global warming trend , so the time series is non-stationary due to the dependence
of the mean on time. Trying to get rid of the mean by subtracting it from the time
series, it stays non-stationary as in �g. 4.1(b). In �g. 4.1(c) the structure function
was used for the same time series and obviously the time series is rendered stationary
(or at least weak stationary).

Another important issue is Taylor's Hypothesis of frozen turbulence which
simply states that measuring the wind speed in one station at two di�erent times is
identical to taking measurements in two stations near each other at the same time,
if the �ow is stationary and homogeneous in the �ow direction. This supplies the
simple transformation between space and time which states x = ut [75].

4.2 The scaling of the structure functions

From the following considerations one could infer the scaling law for the structure
functions:

• We de�ne �rst the �uctuation between two points which are a distance r apart
from each other (or we say a �uctuation of a scale size r) and a time scale
t = r/δu by Su(r) =: δu = |u(x+ r)− u(x)|.

• We notice, as stated before, that the energy per mass unit is proportional to
∝ (Su(r))

2.

• The energy fed to the system and dissipated as heat per mass unit and time
is ε ∝ (Su(r))

2/t = (Su(r))
3/r.
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From the above we see immediately that the structure function scales as

S2
u(r) = C.(ε.r)2/3 , (4.2)

where Su(r) is the increment C is the proportionality constatnt and is called Kol-
mogorov's constant. We could generalize the above by taking not only the 2nd
exponent but by taking p-exponents

Spu(r) ≡ 〈|u(x+ r)− u(x)|p〉 , (4.3)

where the brackets 〈.〉 means averaging. Since we are talking here about stationary
processes (the mean or the drift does not depend on the position or time) and it is
assumed that these processes are ergodic then this averaging could be time averaging
or ensemble averaging due to the equivalence between them. A stochastic variable
is self-similar if it posses a unique exponent p, such that

u(x+ λr)− u(x) = λp(u(x+ r)− u(x)) , (4.4)

otherwise (as we shall see later in this chapter) the structure is called a multifractal,
which means that we have an exponent (or a dimension if we wanted to use the
ideas of the last chapter) for every scale.

4.3 The Kolmogorov 1941 paper (K41)

In 1941 Kolmogorov [66] has shown that in a 3-dimensional fully developed turbu-
lence, the spectrum in the inertial subrange of energy follows a power law scaling of
the form

〈|u(x+ r)− u(x)|p〉 = Cp(〈ε〉 r)p/3 . (4.5)

It is evident that the above equation is in physical space, but transforming it
to Fourier space is as follows. First we write the equation in parameters suitable for
the Fourier space with unknown exponents to be found later:

E(k) = Cεαkβ ,

where E(k) is the energy spectrum and is the Fourier transformation of the struc-
ture function (the second power of the increment) this is because the second order
increment S2

u(r) is itself the kinetic energy in physical space, C is a constant. Now,
to �nd the values of α and β we use dimensional analysis. Since the spectrum in-
dicates the amount of turbulent kinetic energy contained in a speci�c length scale,
then it is energy times length, written as L2

T 2L. While on the RHS we have the
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dissipation ε which has the units of energy per time L2/T 2

T
and the wave number unit

is 1
L
. Substituting these dimensions in the above equation we obtain

[
L3

T 2

]
=

[
L2

T 3

]α [
1

L

]β
.

Equating the exponents of both sides to get 2α − β = 3 and 3α = 2 which
gives α = 2/3 and β = −5/3 and the spectrum is

E(k) = Cε2/3k−5/3 . (4.6)
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Figure 4.2: The spectrum of experimental data (the Oldenburg airtank). In the main
�gure a simple averaging �lter was used to �lter the original signal (in blue). The
�ltered signal is in red. Whereas in the inset a convolution was used for the same
purpose i.e. �ltering and also to show that both �ltering techniques give the same
result in the inertial range. In both �gures the parallel line to the spectrum has -5/3
slope. The �gure shows also four distinct regions.
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In �g. 4.2 the spectrum of a data set, which was produced in a free jet �ow
experiment in an air-tank in Oldenburg university laboratory, is shown. Two �ltering
methods were used in the �gure. A simple averaging method (moving average) was
used in the main �gure and in the inset a convolution kernel (see chapter one in this
thesis). We notice that the distribution of the energy on the di�erent frequencies
follows indeed eq.(4.6). Namely it is a power law of (−5/3) slope and this means
that the process is scale invariant and the structure under study is self-similar [101]
(see chapter 3 also).

In �g.(4.3) the spectrum of di�erent signals were shown for comparison with
�g. 4.2. In all of these �gures one notices a deviation from the scaling of −5/3
in the inertial subrange . In (a) one notices a �at spectrum E(k) ∼ 1/k0 which
means that the energy is distributed equally on all wave lengths and this is why it
is called white noise. In (c), (d) and (e) we have signals with an energy spectrum
of E(k) = f−2, such an energy distribution is called brown or red noise. Two lines
are drawn on the �gure to try to �gure out which scaling does the energy spectrum
has a −2 or a −5/3 = −1.667 which is typical for turbulent signals as we have seen
from eq. (4.6).

4.4 The autocorrelation and the structure function

An important tool that is used extensively in experimental physics and speci�cally
in signal analysis is the autocorrelation. The autocorrelation is de�ned as: the
expected value of the product of a random variable or signal realization with a
time-shifted version of itself. In this way the autocorrelation provides a measure of
dependence among the random variables of our signal. Thus a spatial correlation
between two signals (measured with two hot wires for instance) is written as

Rij(x, r, t) = ui(x, t)uj(x+ r, t) , (4.7)

while the temporal correlation with itself for a stationary process, or simply auto-
correlation (measured with one hot wire for instance) is

R(τ) = u(t)u(t+ τ) , (4.8)

where Rij is the correlation (the correlation coe�cient is found by normalizing the
correlation) , x and r are the position and the shift (increment) series, and ui and
uj are the two shifted velocities. While R(τ) is the autocorrelation and τ is the used
lag whether it has time or spacial units since the two are equivalent because of the
Taylor frozen turbulence hypothesis.
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Figure 4.3: Spectra of di�erent signals. The red represents the �ltered signal: (a)
Random signal from a Pareto distribution as in eq. (3.1). (b) Flare from eq.(3.7).
(c) Flare from eq.(3.6). (d) Iran Earthquake. (e) Wiener process signal. (f) The
pulsar GRO. In �gures (c, d, e) there are two lines to approximate the spectrum.
The upper has a −5/3 slope and the one under the spectrum has a slope of −2. The
y-axes in these �gures is the energy spectrum E(f) and the x-axis is the frequency
f .

It is important to mention here that we have already used the convolution to
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�lter a signal (see Fig. 4.2). The convolution is generally de�ned as

C(t) ≡ (f ∗ g)(t) =

∫ +∞

−∞
f(x).g(t− x)dx . (4.9)

On the other hand the correlation general de�nition is

R(t) ≡ (f ◦ g)(t) =

∫ +∞

−∞
f(x).g(t+ x)dx (4.10)

where f and g are any functions, C the convolution, and R the correlation. While
this may appear to be similar, unlike the convolution where the series is reversed,
in the correlation this is not the case. The integral thus no longer represents the
output of a �lter driven by an input signal as in �g.4.2. Rather it is a tool used to
measure the similarity between two signals as it was pointed out earlier. As we will
see later, a large correlation value (positive or negative if we are talking about the
correlation and not the correlation coe�cient) represents a strong similarity between
the two signals, while a value near zero represents little similarity.

Another quantity which is mostly used in the literature is the autocorrelation
coe�cient (also called autocorrelation function (ACF) ). It is simply the normalized
autocorrelation

ACF (τ) =
u(t)u(t+ τ)

u2
, (4.11)

where u2 is the mean square value. In general one could prove the Schwarz inequality
[106]

u(t1)u(t2) ≤ [u2(t1)]1/2[u2(t2)]1/2 , (4.12)

for a stationary process the mean square value is independent of time, so that the
RHS of eq.(4.12) is equal to u2. From eq.(4.12) and eq.(4.11) we see that

ACF (τ) ≤ 1 , (4.13)

this result is observed in �g.4.4.

We have mentioned earlier that the ACF does not depend on the absolute time
if the �ow is stationary. In addition to that it is easy to show that the autocorrelation
does not depend on the absolute position in a homogeneous �ow (space stationary
�ow) [27].
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Describing a �ow with the ACF is equivalent to its description with the struc-
ture function, due to the following

S2(r) =
〈
(u(x+ r)− u(x))2

〉
=

〈
(u(x+ r))2

〉
− 2 〈u(x+ r)u(x)〉+

〈
(u(x))2

〉
= 2

〈
(u(x))2

〉
− 2Rij(x, r) (4.14)

where we have used again the assumption that the �ow is homogeneous and thus the
ensemble averaging of the quantities 〈u(x+ r)〉 and 〈u(x)〉 are equal to a constant.
At last if we take the Fourier transformation of the ACF

E(ω) =

∫ +∞

−∞
e−iωτR(τ)dτ , (4.15)

the other Fourier transform pair is

R(τ) =

∫ +∞

−∞
eiωτE(ω)dω , (4.16)

and the above two relations are general for any function. Now substituting τ = 0 in
eq.(4.16) we get

R(0) = u(t)u(t+ τ) = u2 =

∫ +∞

−∞
E(ω)dω , (4.17)

and this shows that the integration of the spectrum E(ω)dω in a bandwidth of dω
is equal to the energy contained in the integrated frequencies. And in this way the
link between the energy, the spectrum, the structure function, and the ACF is �rmly
established (at least for the second order increment).

4.5 The spectrum regions and the length scales

In �g. 4.2 we can distinguish four regions (subranges):

• Region I: This is the region were the system is forced (where the energy is fed
into it). The phenomenological picture is, that one �nds here the biggest eddies
that the system could sustain. They are unstable and break up (cascade) to
give smaller more stable eddies. The scales here are usually referred to as
being the large scales L. Supposedly it resembles the physical size of the
system where the �ow is being forced, because this is the largest size L that
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the eddies could take. Taking a look at the second term on the LHS equation
(1.1) (because we are talking here about steady �ow, we don't need to consider
the �rst term) and at the viscous term on the RHS, we see that we could form
a ratio between the convective forces (which scales as U2/L) and the viscous
forces (scales as νU/L2). This ratio happens to be the Reynolds number at
these scales [2]

ReL =
U2/L

νU/L2
=
UL

ν
(4.18)

Furthermore, comparing the rates at which the turbulent structures are moved
around by taking the di�usive time scale td derived from the kinematic viscosity
units [L2/T ] and convective time scales tL = L/U , we obtain again the same
Reynolds number td/tL = L2/ν

L/U
= ReL. Thus if Re is large, which means that

the di�usive time is very large compared to the convection time, means that
the inertial forces are larger than the viscous di�usive forces.

• Region II: This region is called the inertial subrange . In this region the
energy is transfered from lower to higher wavenumbers. In this region there
is no energy production and the of energy is still negligible as we have seen
in the above discussion about Reynolds number. Hence the spectrum at this
region is "independent of the viscosity of the �uid". The scaling of (-5/3) for
the wavenumbers holds only in this region .

• Region III: The dissipation range . In this region the viscosity is more e�ective
than it was in the previous range (region II).

• Region IV: The random region . In this region the energy is totally random
and the kinetic energy which was fed into the system becomes merely thermal
energy at these large wavenumbers, which has no more momentum to move
the particles in currents as was the case in the region I.

The above distinction of regions leads to three di�rent length scales which
separate these regions.

4.5.1 The integral length scale (L)

Also called the outer scale in the Russian papers [2], is the �rst one on the LHS
when one takes a look at the spectrum 4.2. It separates the large scales where the
energy is fed on one side and the region where the energy is merely convected on the
other side. It can be calculated by integrating the area under the autocorrelation
coe�cient curve until the �rst zero crossing for the x-axis

T (τ) =

∫ ∞
0

R(τ) dτ (4.19)
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where T (τ) is the integral time scale, and the upper limit of in�nity is formal
because usually the autocorrelation crosses the zero before that (if the process has
�nite memory). The T (τ) is usually taken as a number with a single unit and not a
double unit (area under the integral) and this is done by taking a rectangle with the
height one, which is the heighest value of the ACF, and the width of this rectangle
is the result from eq.(4.19). The integral length scale L is obtained from the integral
time scale T (τ) by multiplying the later with ũ2 = u2. Thus, T (τ) is a measure
of how long the turbulent �uctuations remain correlated and is used to estimate L.
In Fig(4.4) the T (τ) is shown for two datasets: dataset (a) has Re = 27, 000 while
for dataset (b) Re = 750, 000. We notice that the correlation time is longer when
Re is higher or one would say that the process has longer memory. If one tries to
simulate the autocorrelation for a random process produced from an algorithm for
a random number generator then one will notice that the process has no memory at
all, i.e. the T (τ) has the value one at the beginning (because the random variable is
100 percent correlated with itself) and then falls immediately to zero (see also the
Schwarz inequality eq.(4.12)).
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Figure 4.4: The autocorrelation function (ACF) (in blue color) of two data sets are
shown: (a)the Oldenburg University wind canal dataset [118], and (b) the Grenoble
dataset [105]. The inset shows the parabola intersection (the red line) with the x-
axis which de�nes the Taylor microscale. The units of the lags are the tact of the
measurements and the ACF is normalized.

4.5.2 The Taylor microscale (λ)

The Taylor microscale [104] which is supposedly the scale at which the viscosity
begins to be e�ective. This microscale is calculated by Taylor expanding the ACF
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Figure 4.5: Scatter plots showing how the correlation deteriorates until the data
becomes zero correlated (random, heat) when the ACF crosses the zero. In �g. (a)
the crossing happens at 619 and shows the Oldenburg data [118] and for the RHS
�g.(b) the crossing happens at 5542 and it shows Grenoble data [105]. Here the joint
PDFs was used instead of the scatter plot and to the same e�ect.

around the origin

R(τ) = R(0) + τR′(0) +
1

2
τ 2R′′(0) + ... , (4.20)

We know that R(0) = 1 and R′(0) = 0 (see eq.(11) in [103]). We round o� until
the term which contains τ 2. When the Taylor microscale is de�ned as λ2 = − 2

R′′(0)

we have a parabola equation [103] and [102]

R(τ) = 1− τ 2

λ2
. (4.21)

Simply it is at the point where the ACF deviates from its parabolic behaviour
one extends a parabola which should meet the x-axis at the point that is called λ.
This microscale is the radius of curvature of the spatial correlation at y=0. Based on
the presentation above, it can be said that Taylor's microscale is just an intermediate
length scale associated with the energy dissipated by turbulent eddies. In �g. 4.4
we show the ACF crossing the x-axis for two data sets. In �g. 4.4a the data set
that was analysed was produced in the wind tunnel of Oldenburg university, while
�g. 4.4b shows the same for Grenoble data [105]. In both λ was found by �tting a
second order polynomial to the curvature of ACF.
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4.5.3 The Kolmogorov scale (η)

The Kolmogorov scale (also called the inner scale [2]): where the energy is dissipated
as heat.

η =

(
ν3

ε

)1/2

, (4.22)

where η represents the smallest length scale the eddies could have.

4.6 The K62 and the intermittency

Since in general the structure functions scales to the di�erence between two mea-
surements r, as we have seen in eq. (4.3), then one could generalize and write the
following

Sp(r) ∼ rζp , (4.23)

where ζp is an exponent to be determined.
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Figure 4.6: The scaling of the structure functions of the Oldenburg data. In (a) the
y-axis represents the the structure functions from S1 until S15 and the x-axis are the
increments r as in eq. (4.3). (b) Shows the exponents ζp vs. the orders p = 15.

It is evident from �g.4.6b that the structure functions do not scale according to
K41 as in eq.(4.5). Now, rewriting eq.(4.5) in another shape as in eq.(4.23) has the
advantage of seeing the exponents as the slopes for the structure functions scaling
as in the red slopes in �g.4.6a.
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The exponents ζp were given by the Kolmogorov-Oboukov lognormal model as

ζp =
1

3
p− 1

18
µ p(p− 3) , (4.24)

where p is as before the order of the structure function and µ is the intermittency
[107].

The lognormal model has the defect that as p→∞, dζp/dp < 0 and this is a
decreasing function which gives supersonic speeds and the �ow is not incompressible
any more [101] which mean that the Navier-stokes equations are not valid anymore
which is actually not the case.

Other models for the ζp are the β-model and the log-Poisson model which gives
for the exponent

ζp =
1

3
p− 1

3
µ(p− 3) , (4.25)

and in the case of the log-Poisson model [101]

ζp =
p

9
+ 2− 2

(
2

3

)p/3
, (4.26)

where p and µ are de�ned as before.

The generalized equation of the scaling of the exponents of the structure func-
tions i.e. eq. (4.23) is motivated by the fact that the scaling diverges from the K41
(as it is clear from �gure 4.6 and this deviation from K41 is explained by noticing
that the self-similarity of the structures are broken [101] but also by the suggestion
the the dissipation ε scales as r (see 4.5 and one of the next sections on dissipation
) and that the two could be joined together as in eq.(4.23).

We notice from eqs.(4.24) and (4.25) that when p = 3 then they both give
ζ3 = 1 which is the same value of the exponent as in K41. Moreover, when p = 6
both eqs.(4.24) and (4.25) give us again the same exponent namely ζ6 = 2−µ which
is lower than the K41 by the amount µ. As for the log-Poisson model eq. (4.26) the
story is di�erent: we still get ζ3 = 1 but ζ6 = 16/9 and there is no mention of the
adjustable parameter µ which is the intermittency .

4.7 Extended self-similarity (ESS)

Kolmogorov's four-�fth law (see [113]) is written as

S3(r) = −4

5
εr + 6ν

d

dr
S2(r) , (4.27)
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Figure 4.7: (a) Shows the ESS for 15 structure functions exponents (for Oldenburg
data 125, 000 points) with a least square �tted slope (in red color) on a logarithmic
scale. (b) The scaling of the structure functions for the ESS case. Shown also the
linear K41 (red) and the lognormal (continuous blue).

see [114] ([111] and the references therein). For small r values we can neglect the
second term on the RHS. This means that the 3rd order structure function is of the
order of r. This was the reason behind writting eq. (4.23) as

Sp(r) ∼ S3(r)ζp , (4.28)

which means that instead of taking the scaling of the structure functions as log(r)
one takes log(S3). This was called extended self-similarity (ESS) because in this
way the self-similar structures which exist in the inertial subrange of the spectrum
is extended deep into the dissipative region, this is the reason behind noticing longer
straight structure functions in �g.4.7a than the ones in �g.4.6a. In �g.4.8 the order
of exponents was taken till 20 following [116]. Due to the limited number of data
used in these analysis (8 million points) the exponents that make sense are until the
p = 6− 8 (see for example [112]).

4.8 Dissipation

Kolmogorov's universal equilibrium theory assumes that the rate of energy supply
to a system equals the dissipation rate . Hence, an estimation to the dissipation
rate could be immediately established by multiplying the kinetic energy of the large
scales u2 by the rate at which this energy is delivered to the small scales u/L. So
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the energy that is dissipated is proportional to [102]

ε ∼ u2.
u

L
=
u3

L
, (4.29)

where L is the integral scale. The above equation means that one could estimate
the dissipation rate without involving the viscosity. Written in another way, as (see
[115])

〈
|u(x+ r)− u(x)|3

〉
∼< ε > r , (4.30)

which is the four-�fth law eq.(4.27)

Upon transforming the dynamic equation of homogeneous turbulence [106]
(which is actually eq.(1.16)) into Fourier space

∂Rjl(r, t)

∂t
− Tjl(0, r, t) = 2ν∇2Rjl(r, t) + Pjl , (4.31)
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Figure 4.9: The spectrum of (a)the Oldenburg data [118] and (b) Grenoble data
[105]. On both one could see the energy spectrum (compare with �g. 4.2) in blue
dashed line, which scales as −5/3, and the dissipation spectrum gained from the
energy spectrum multiplied by k2 in dark green dotted line and its scaling is 1/3. For
each �gure there are two y-axis the left one belongs to the energy spectrum and the
right one to the dissipation spectrum. The x-axis in both �gures is the wave number.

we get

∂E

∂t
= T (k, t)− 2νk2E(k, t) , (4.32)

where Rjl is the ACF, P are the pressure terms multiplied by the velocity and this
correlation is zero, E is the energy, T is a triple tensor which integrates to zero∫ 0

∞ T (k, t)dk = 0 (because in the inertial subrange this term only transfer the eddies
so it is a conservative term), ν is the viscosity, and k is the wave number. Integrating
eq. (4.32)

∂

∂t

∫ 0

−∞
E = −2ν

∫ 0

−∞
k2E(k, t) , (4.33)

and the RHS of eq. (4.33) integrates to dK/dt which is the kinetic energy during
the process (as could be seen from the RHS), and this equals

D(k) = 2νk2E(k) , (4.34)

the dissipation spectrum D(k) = −dK/dt according to the theory of universal equi-
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librium . Now this dissipation spectrum could be simpli�ed to

D(k) ∼ 2νk2 k−5/3 ∼ k1/3 , (4.35)

upon using eq.(4.6). The fact that the dissipation spectrum scales as 1/3 is evident
from �g.4.9(a) and (b), where in (a) it seems that the number of used points were
not enough (125,000 points).

Now, the scaling of the dissipated energy could be looked at through eq. (4.23).
We start with by writing the structure function scaling of the energy by using the
log-normal model eq.(4.24)

Sp(r) ∼ r
1
3
p− 1

18
µ p(p−3) , (4.36)

which transforms to

Sp(r)

r
1
3
p
∼ r−

1
18
µ p(p−3) , (4.37)

which means that the scaling of the structure functions in the dissipative �eld should
behave like the RHS of the proportionality (4.37) (which should be written on the
light of the last statement as < |δεr|p >). If p = 3 then (4.37) is the same as eqs.
(4.29) and (4.30) or the four-�fths law (see [101]).

In �g. 4.10 the scaling of the dissipation is shown and according to eq.(4.37)
but also by using the extended self-similarity (ESS) . In (a) the lognormal model eq.
(4.24) coincides exactly on the dissipation structure function when taking µ equal
to 0.24 (compare this value with the value mentioned in [121] which is 0.25 for high
Reynolds numbers). In (b) it is evident how di�cult it is with the β model eq.
(4.25) to achieve the same success as the lognormal model.

Now, taking K62 into consideration the spectrum should be corrected accord-
ingly (see eq.(4.37) for instance), were it should be written as

E(k) ∼ k−
5
3
−µ

9 , (4.38)

were we have used the lognormal model (eq. (4.24)) with p = 2 (see for instance
[119]). Accordingly eq. (4.35) could now be written as

D(k) ∼ 2νk2 k−
5
3
−µ

9 ∼ k
1
3
−µ

9 , (4.39)

which is a value too small to be seen or measured from a curve like �g.4.9. Especially,
when one considers that using a moving average or a convolution to smooth the
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Figure 4.10: The scaling of the dissipative structure functions of the Grenoble data
(8 million points) [105]. In (a) the scaling was compared with the lognormal model
eq. (4.24) and taking µ = 0.24. In (b) the dissipation was compared with the β
model eq. (4.25) and taking µ = 0.35.

spectrum curves has a big impact on de�ning the large scale (L) if one tries to use
a least square estimation to �t a slope to the curve between Taylor's scale λ and L.

4.9 Probability density functions (PDF's)

Yet another tool for describing turbulence is the probability density function . A
turbulent variable like the velocity ũ(x, t) is given by the PDF and its moments
de�ned as [2]

< ũn >=

∫ +∞

−∞
ũn P (ũ)dũ , (4.40)

where the brackets < . > means ensemble averaging, and P (ũ) is the PDF or the
histogram of ũ and it is usually normalised∫ +∞

−∞
P (ũ)dũ = 1 . (4.41)

In the above equations (4.40) and (4.41) we have used the whole velocity ũ
but we could instead write these equations by using only the �uctuations u because
we are still dealing with statistically steady (i.e. stationary) �ows.
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Figure 4.11: The PDF's of (a)the Oldenburg data [118] and (b) Grenoble data [105].

There is also the joint PDF (Pj) which tells whether a processes described
by many varibles show dependency between these variables. For two variables it is
usually written as (see �g.4.5b) [2] [101]

∫ +∞

0

∫ +∞

−∞
Pj(u, v)dudv = 1 . (4.42)

The various exponents of our measured variable are called the moments . The
�rst moment is the mean as in eq. (1.4) or alternatively

< u >=

∫ +∞

−∞
u P (u)du , (4.43)

and this quantity is usually made equal to zero, i.e. that is to say the time series is
detrended. One should note here that detrending has to be done with carefulness. If
for example we are analyzing temperatures one should deal with the di�erent trends
(daily trend, seasonal trend and there is also the global warming trend) separately.

The departure from the mean value is called the variance

< u2 >=

∫ +∞

−∞
u2 P (u)du , (4.44)

and as we have seen before this happens to be the turbulent kinetic energy (see for
instance eq.(1.14)).
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Other important moments are the skewness and kurtosis (�atness) . Which
describe the symmetry around the y-axis and how far the tails of the PDF go
parallel to x-axis (i.e. how long the memory of the process is), respectively. And
this is how Gaussian (random) processes di�er from turbulent processes, the last
have long-tailed (also called thick- or enhanced- tail) PDF's. This divergence from
Gaussianity (which have the characteristic values of skewness = 0 and kurtosis = 3)
is due to intermittency.

F (r) =
S4(r)

S2(r)2
=

< |u(x+ r)− u(x)|4 >
< |u(x+ r)− u(x)|2 >2

. (4.45)

In �g. 4.11 two data sets were taken and they were incremented. We notice
that only upon reaching the increment where the ACF crosses the x-axis (see also
�g. 4.5) the PDFs of the incremented data becomes Gaussian. In addition to that
we see in �g. 4.12 that upon reaching the Gaussian distribution of the data it will
stay Gaussian and increasing the number of the used increments will not change
anything.

−8 −6 −4 −2 0 2 4 6 8
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

4197
5699
7739
10508

0 2000 4000 6000 8000 10000 12000

0

0.2

0.4

0.6

0.8

1

↓ r
1
=4197

↑ r
2
=6871

↓ r
3
=10508

(a) (b)
Figure 4.12: PDF's of the Grenoble data [105] and its correlation. The �rst PDF
was taken at the �rst zero crossing i.e. r1 = 4197, and the other PDF's are taken at
each further crossing. This shows that the PDF's keep its Gaussian distribution (the
fact that they fall on each other) as long as the �rst zero-crossing has been passed.

Not all PDFs tend to end in a Gaussian distribution after incrementing till
the zero crossing of the autocorrelation. In �g.4.13(a) the PDF of Blamforth at-
tractor eq. (3.5) seems to tend towards a uniform distribution otherwise one notices
skewness in the data. One notices skewness too in the PDF of the data of the �are
attractor eq. (3.6) which is not Gaussian either.
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Figure 4.13: The PDF's of (a) Blamforth's attractor eq.(3.5) which seems that it
has a uniform distribution after incrementing. (b) is the PDF of eq. (3.6).



Chapter 5

Financial Di�usion

The main objective of analyzing �nancial time series is to understand how prices
and other �nancial instruments behave. The variance (volatility) of these series is
the most important parameter. So foreseeing the prices of stocks of tomorrow could
be described theoretically with a statistical model. But then also, and actually as
an immediate goal, one needs theses predictions about the prices to reduce risk and
have successful insurance policies and regulations.

Since in the �nancial context one does not speak of a movement of a price
either to the left or to the right as we have seen with the basic master equation
(2.14), but rather the prices go either up or down, one could depict here again a
(1 + 1) dimensional lattice with the prices following a random walk path on it. This
is why the term �nancial di�usion is convenient to use, of course, in addition to
other considerations that will be elaborated later.

5.1 The DAX index data analysis

The main purpose of the previous analysis tools is to take the order of the observa-
tions (the measured points of the time series) into account and try to learn something
about the data set such as periodicities, trends, repeating patterns, and use such
characteristics to infer something about the process being observed (calculate the
volatility for instance). One such tool is the autocorrelation as previously de�ned
in eqs. (4.7 or 4.11). If the time-series is non-stationary (the trend and volatility
change with time), then the ACF will not come down to zero except for very large
values of the lag. When the variance of the random process is constant (as is with
the previous turbulence data), we speak of homoscedastic process . One could see
that by simply taking pieces of di�erent sizes of the turbulent data and check its

73
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PDF. Its opposite is called heteroscedastic process , i.e. the variance changes with
the amplitude of the signal (often it is simply proportional to it). We will return to
the subject of non-stationarity later on.

ACF

Figure 5.1: (a) Time series of the DAX 16.02-31.12 of the year 2001 [122]. (b) the
autocorrelation function (ACF) of the DAX data. (c) Its spectrum and dissipation
spectrum. (d) Its PDFs.

The tools of the previous chapters were used to analyze the DAX data (Deutsche
Aktien Xchange 30 or the German stock market index) as in �g.5.1 . From �g.5.1(a)
we notice from the time series that the data are not stationary (at least one could
see from the �gure that its mean is a function of time). In �g.5.1(b) we see that the
ACF is indeed very long due to the above e�ect (the mean is a function of time).
As for the spectrum in �g.5.1(c) it has the usual −2 slope for a Wiener Process
(will be discussed later). The spectrum does not show any changes of frequencies
in the elapsed time of the process which is indeed a very poor tool in this respect
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for the same above reasons (i.e. the dependence of statistics on time). As for the
PDFs in �g.5.1(d) it shows the usual non-Gaussian behaviour as a signature for the
dependency (correlatedness) of the data.

Solving the problem of non-stationarity by using the structure function (the
return in the �nancial context ) instead of the values of the index themselves, is
no solution (like it was before in �g.4.1). Using the return instead of the values
of the DAX index makes the autocorrelation drop immediately to zero and the
spectrum becomes �at which are the signatures of white noise . The reason for that
is, that processes like the DAX index and the models that simulate it are Markovian
processes (which will be de�ned in the following).

5.2 The Wiener process as a model for �nancial

Data

A Wiener process is also called standard Brownian motion . A Wiener process Wt,
which is random and time dependent i.e. non-stationary, must satisfy the following
conditions [125]:

• Its increments
∆Wt = η

√
∆t , (5.1)

where η is a normally distributed random variable with zero mean and unit
variance.

• The increments ∆t are independent from each other. So the process is Marko-
vian which means that any past information is irrelevant to the future or put
more exactly the next realization depends on the present value [124].

Using the above two conditions in addition to taking W (0) = 0, one could
write an algorithm for a Wiener process upon using eq. (5.1) as:

Wt = Wt−1 + ∆Wt , (5.2)

Now, we could generalize this process by giving the white noise η (in eq. (5.1))
any value for its mean (or drift) and variance (or volatility), µ and σ respectively.
So the new Gaussian noise now becomes x = µ + σ ∗ η and the expectation value
of the new stochastic variable x is E[x] = µ + σ ∗ E[η] = µ, while its variance is
V [x] = σ2 ∗ V [η] = σ2. So, the new generalized Wiener process is now written as:

xt = xt−1 + µ t + σ η
√
t , (5.3)
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A continuous version for the above eq.(5.3) is written as [123]

dxt = µ dt + σ dWt . (5.4)

Fig. 5.2(a) is for a Wiener time series, which is clearly non-stationary, in
5.2(b) its autocorrelation is shown, which again disintegrates after a long time. In
�g.5.2(c) the spectrum of the process is shown with two slopes, the one underneath
is the −2 slope and the above is −5/3 slope, which is typical for turbulence. While
in �g.5.2(d) the PDFs resemble again the same behaviour which we have met in the
above section with the DAX analysis.

ACF

Figure 5.2: (a) Time series of a Wiener process (see eq.(5.2)) (b) the autocorrelation
function (ACF) of the Wiener time series. (c) Its spectrum. (d) Its PDFs.
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5.3 The Karhunen-Lòve decomposition or PCA

In the case of a centered stochastic process Xt ∈ [a, b] (where centered means that
the expectations E(Xt) are de�ned and equal to 0 for all t, i.e. detrended), admits
a decomposition Xt =

∑∞
k=1 ηkek(t), where ηk are uncorrelated random variables

(white noise) and the functions are continuous real-valued functions on [a, b] which
are orthogonal (this is why in meteorology the term empirical orthogonal functions
EOF is used more than PCA). The general case of a process which is not centered
can be represented by expanding the expectation function.

Moreover, if the process is Gaussian, then the random variables ηk are Gaus-
sian and stochastically independent. This result generalizes the Karhunen-Lòve
transform . An important example of a centered real stochastic process on [0, 1] is
the previous Wiener process and the Karhunen-Lòve theorem can be used to provide
a canonical orthogonal representation for it. We have met a manifestation of this
theory previously in the context of principal component analysis (see �g. 3.12) [98].

In �g.5.3 an SSA or EOF analysis is shown for part of the return for the DAX
index data with only two components.

5.4 Itô's process

A more generalized way to write eq. (5.3) is

dxt = µ(xt, t) dt + σ(xt, t) dWt . (5.5)

where we have taken into consideration the dependency of the trend or the drift
µ and the volatility σ on time and the local variables, in the above case xt. This
generalized equation (5.5) and its solution xt is called Itô's process . This process is
a generalization for the di�usion processes discussed previously in Chapter 2.

Eq.(5.5) is not suitable as an equation for stocks because it permits negative
stocks prices (if one interprets xt as the stocks price). To avoid that, one takes the
stock price as St = ext and with this substitution the process is now called a geomet-
rical Brownian motion (GBM) . Now, if xt = ln(St) have a Gaussian distribution
the new variable St has a lognormal distribution , taking this into consideration we
could �nally write eq.(5.5) as

dSt = µ(xt, t) St dt + σ(xt, t) St dWt , (5.6)

which is the equation of the geometrical Brownian motion (GBM). Using the
above equation with Itô's lemma one gets the Black-Scholes equation [123].
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Figure 5.3: Singular spectrum analysis (SSA) for the DAX returns data showing the
return data and two components.

5.5 Stationarity and non-stationarity

A general Gaussian stationary process is called autoregressive moving average process
(ARMA) , and is written as

Xn = aXn−1 + ηn − bηn−1 , (5.7)

where the constants |a| < 1 and b < 1 give a stationary process, otherwise if a = 1
and b = 0 we get the above non-stationary Wiener process and η is white noise.

Working with structure functions, i.e. the return , whether be it stock return
etc... , seems to guarantee the stationarity (or probably just weak stationarity
according to the intrinsic hypothesis by Matheron [127]) of the time series under
study (see �g.4.1). In some studies, interest rates, foreign exchange rates, or even the
price series of a stock or assets are of interest. These series and they tend to be non-
stationary. Other important examples for non-stationary signals are earthquakes,
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speech signals, Doppler acoustical signals, music, brain storms (EEG), in addition
to the �nancial time series, just to name few.

5.6 Tools for non-stationary time series

Looking at a Fourier transform of a non-stationary signal, it is impossible to tell
when a particular frequency took place, as we could see clearly from �g. 5.1 were
during the attacks on New York the DAX index tumbled down but the spectrum
still shows −2 slope. If the signal properties do not change much over time (a
stationary signal), then the spectra that we so far calculated (see for instance �g.
4.3) give us what we need. However, the most interesting signals are those which
contain numerous non-stationary or transitory characteristics: drift, trends, abrupt
changes, and beginnings and ends of events. These characteristics are often the most
important part of the signal, and Fourier analysis is not suited to detecting them
[129].

5.7 Short-Time Fourier Transform (STFT)

In an e�ort to correct this de�ciency in classical Fourier analysis, Gabor adapted
the Fourier transform to analyze only a small section of the signal at a time, a
technique called windowing the signal. Gabor's adaptation, called the Short-Time
Fourier Transform (STFT) , maps a signal into a two-dimensional function of time
and frequency. The STFT represents a sort of compromise between the time- and
frequency-based views of a signal. It provides some information about both when
and at what frequencies a signal event occurs. However, one can only obtain this
information with limited precision, and that precision is determined by the size of the
window. While the STFT compromise between time and frequency information can
be useful, the drawback is that once one choose a particular size for the time window,
that window is the same for all frequencies. Many signals require a more �exible
approach, one where one can vary the window size to determine more accurately
either time or frequency [130].

Since one should have a signal and a window (or a kernel see eq. (1.8)) for the
STFT, this transform is written as [132]

St(ω) =
1√
2π

∫ ∞
−∞

s(t) W (t− τ)eiωtdt , (5.8)
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(d)

freq.

time

(e) (f)

Figure 5.4: (a) This �gure shows an intermittent detrended signal showing random
activity in the middle of a sinusoid signal of two frequencies 50 and 100 Hz. (b) The
logarithmic Fourier spectrum of the signal (just like in �gs. 4.3) and in the inset
the normal spectrum showing two peaks at 50 and 100 HZ. (c) The contour of the
STFT of the signal. The x-axis represents the time and the y-axis the frequency. (d)
3-Dimensional STFT spectrum. Here again the horizontal-axis represents the time
and the axis going into the page the frequency, while the vertical axis represents the
amplitude. (e) The logarithmic STFT of the DAX (�g.5.1(a)). The axes are just
like in �gure (d) above. (f ) The STFT of the Wiener process (�g.5.2(a)) and the
axis are again just like in �gs. (d) and (e).
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where s(t) is the signal and W (t − τ) is the window. If one chooses the Gaussian
function as a window then the transform is called Gabor transform. The above
equation is to analyze the frequency at the time t conversely we could multiply the
signal with a frequency window to study the frequency and then it is called short
frequency Fourier transform (SFFT).

In �g.5.4(a) a sinusoid with two frequencies 50 and 100 Hz interrupted by
periods of random �uctuations is shown, it is a simple intermittent signal. In (b)
we have shown its logarithmic spectrum and in the inset without the logarithm. In
both one cannot see where the random interruptions has occurred. In (c) and (d)
which represents the STFT for this signal, one sees the two frequencies in addition
to the interruption positions. In (e) and (f) the logarithmic STFT for the DAX
index and the Wiener process are shown respectively.

5.8 The Wigner-Ville spectrum

The Wigner-distribution and the Wigner-Ville spectrum (WV) are written respec-
tively as

WVt =
1

2π

∫ ∞
−∞

s∗(t− 1

2
τ) s(t+

1

2
τ) e−iωtdτ ,

=
1

2π

∫ ∞
−∞

S∗(ω − 1

2
θ) S(ω +

1

2
θ) e−iωθdθ , (5.9)

where s∗(t− 1
2
τ) is the conjugate of the signal in the past and s(t+ 1

2
τ) is the signal

in the future, ω is the frequency, and multiplying these two signals gives the the
Wigner distribution. On the second line of eq.(5.9) we have a multiplication of the
spectra S of the signal. Both expressions give the same result but on the �rst line
one calls it Wigner distribution while on the second it is WV spectrum [126].

In �g.5.5(a) and (b) the distribution is shown in 3 dimensions and as a contour
respectively. One notices that in addition to the noisy 300 Hz signal which crosses the
�gure from left to right (shown at the 600 Hz instead of 300 because of duplicating
the signal for computational purposes), one sees the random noise again. In addition
to the random noise, which has been added in the same places as in the last signal of
�g.5.8, one notices that there are other patches of noise which have to do with what
is called the cross terms. These cross terms are a combination of real and complex
numbers that arise due to the multiplication in eq.(5.9) [133].
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Figure 5.5: (a) The Wigner-Ville spectrum for a noisy sinusoid of 300 Hz frequency.
The vertical axis is the amplitude of the signal and f is the frequency. (b) The con-
tour of the Wigner-Ville spectrum for the same signal. Here too f is the frequency.

5.9 Wavelets

Wavelet analysis represents the next logical step: a windowing technique with
variable-sized windows. Wavelet analysis allows the use of long time intervals where
we want more precise low-frequency information, and shorter regions where we want
high-frequency information [126]. The wavelet transform for a continuous signal is
[133]

wx(a, b) = |a|−
1
2

∫ ∞
−∞

s(t) W ∗
(
t− b
a

)
dt , (5.10)

where W ∗ ( t−b
a

)
is the wavelet (compare with eqs.(1.8), (1.10), and (1.33)) which is

shifted in time and scaled in frequency domains by the factors a and b respectively.

Since the kernel in wavelets is scaled and not modulated by an exponential
factor as before in STFT and WV, the produced diagrams are called scalograms
instead of spectrograms as in the case of the STFT analysis. The wavelets that has
been developed since Morlet has used it to analyze seismic data [131] are numerous,
and vary from analytic to real wavelets.

In �g.5.10 we manifest how wavelets could be used to analyze again the fre-
quency content of a signal. In addition to that wavelets are used to denoise noisy
signals and reconstruct them again [126].
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Figure 5.6: (a) and (b) An intermittent signal of 30 Hz frequency and its scalogram.
(c) and (d) An intermittent signal with 2 frequencies 30 and 300 and its scalogram.
(e) and (f ) The previous non-stationary signal of the temperature (�g.4.1) and
its scalogram. (g) and (h) The DAX index signal and its scalogram. In all the
scalograms the x-axis represents time and the y-axis the scaling of the frequency.



Chapter 6

Backlook and Outlook

In Chapter one the basic concepts for modelling turbulence has been reviewed.
Complex nonlinear systems which are far away from equilibrium need other methods
than the thermodynamic statistics to be analyzed. We have seen that starting with
the Navier-Stokes equation (NSE), which are Newton's equations for motion, did
not help because of the huge number of degrees of freedom (the DNS simulation of
1.1 with 2563 grid points takes many days on a cluster of computers). Reducing the
quantity of data by averaging with tools like RANS and LES enables the industry
to use these models in spite of the use of the huge computational capacities that
are needed for such computations. Even when we treat the �ow as di�usion under
certain conditions then one needs big computational resources capacity. We noticed
how the time averaging in the RANS di�ers from the space averaging in the LES,
were we have extra terms in the case of LES to be simulated which makes the LES
more expensive than the RANS but still less expensive than the DNS.

Choosing only the di�usion and advection terms from the NSE, one gets what
is called a di�usion equation as detailed in Chapter two. The (1+1)-dimensional sim-
ulations that were conducted for the di�erent equations were done on a laptop. The
emphasize was on showing that the Fickian and non-Fickian di�usion regimes could
be derived from a basic master equation. There are many variations that could be
achieved by using the di�usion equation, in order to describe a variety of phenomena
ranging from biology (Edwards-Wilkinson equation (2.26), Fisher's equation (2.29))
to �nance (Black-Scholes equation). Some of these achievable variations are, were
the following is by noway a conclusive list:

• Using the substantive derivative as in eq. (2.6) to give a non-stationarity
feature for the equation.

• Using a drift function (could be a polynomial for example), so that the drift

84
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will be a function of the dependent variable, as in eq. (2.23) to give the
equation a nonlinearity feature.

• A volatility function is used with the di�usion term as in Black-Scholes equa-
tion , which is used in studying the options markets.

• A driving (forcing) term is added to one or all the above variations to replenish
the lost energy and have enduring structures (see the Fisher eq. for example
(2.29)), but also to make the equations nonlinear. As we have seen before
these driving terms are either a random term or the logistic equation as in
the case of the Fisher eq., but it could be anything else, periodical terms for
example.

• Using the non-Fickian instead of the Fickian di�usion would add a wave-like
branching (polarization) feature to the equation and most important make it
hyperbolic (instead of parabolic in the case of the Fickian di�usion) and thus
the causality is conserved, i.e. the speed of propagation must be �nite, (see
section 2.8 and also [134]).

• Adding a dispersion term to the equation gives nondissipative di�usion solitons
[135].

• In addition to variations that produce features like the ones seen in Kuramoto-
Sivashinsky eq. (2.27) (�g. 2.6) and the gravity waves eq. (2.28) (�g. 2.7).

Going to 3-dimensions in the simulations of the di�usion equations would in-
deed have its computational costs (if one uses spectral methods as in the case of the
simulations of chapter two), but still it would be interesting to see if one gets the
−5/3 signature of turbulence (or probably we should say the signature of stationary
turbulence).

Reducing the system variables in the way Lorenz [78] did with the NSE would
exhibit other qualities of these systems. A dynamical systems analysis has been laid
out in Chapter three for some systems. Some of these systems like the �air (inter-
mittent) systems, which use the logistic equation as its main building block, have
been analyzed. These bursting systems produce highly intermittent signals, if its
parameters are tuned correctly, and could be used to further analyze some properties
of the models used to describe chaotic or even assumingly turbulent phenomena e.g.
bifurcation, principal components (Lyapunov exponents), ... etc. From the tests
that has been carried out it seems that the correlation dimension which was used to
determine whether the data are random or stochastic (i.e. chaotic, turbulent, sta-
tionary and non-stationary) is not a reliable tool. The assumption that, it becomes
reliable if one uses a high number of data points, is questionable and needs more
tests because of the computationally intensive algorithms used to calculate it.
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A tool used to reconstruct the original phase space by using one dependent
variable from the many variables that build an attractor, is the embedding dimen-
sion. Upon experimenting with the embedding dimension we have noticed that using
the time series of one variable only reproduces some of the features of the original
phase space as long as the trajectories do not intersect (see �g. 3.10). With in-
tersecting trajectories one cannot see any features of the original phase space, even
with using lagged (incremented) time series. Probably one should experiment with
embedding techniques that makes use of more dependent variables than only just
one of them (see for example [136]), but then one is back to using more quantities
of data contrary to what this work was aiming at, namely, how to average data and
still get a picture of the event. One could use the embedding dimension in conjunc-
tion with the covariance matrix and decompose the later by using singular value
decomposition to arrive at the principal components, as was previously explained.
This method needs more testing since one is using a linear method in analyzing, in
most cases, nonlinear data. Regardless of that, one sees that the method furnishes
a way to reduce the dimensions and probably also to reconstruct the original struc-
ture functions of the time series. Working directly on the time series, the method
fails to show a gradual decline in the singular values, i.e. the �rst singular value is
widely separated from the rest of the values. That is why we have used the structure
functions in �gs. 3.12 and 5.3. At last, this method is computationally intensive. It
is also worth mentioning here that the photos in �g. 3.11 where originally coloured
photos. To reduce their data amount they were rendered into black and white, and
then a histogram equalization (a technique used in image processing) was done in
order to redistribute the intensity .

Tools like the spectrum and the autocorrelation are very important. In the case
of the spectrum, it is important to look at the di�erent regimes of the frequencies
that the system exhibits. Here one sees very clearly that the energy is fed at the
large scales and cascades down through the inertial range until it dissipates at the
small scales and according to a power law. One of the surprises here is the �at
spectrum of the Pareto distribution (see eq. (3.1) and �g. 4.3(a)) and at the same
time its correlation dimension shows a non-random behaviour as in �g. 3.9(b) and
(c). The autocorrelation, as we have also seen, con�rms the picture that one sees in
the spectrum. In addition to that, the probability density functions (PDF) also give
the same message as we have seen. We have seen also that the structure function
is an important tool to describe turbulence. These results, i.e. when do the data
become random, are again visualized by the scatter plots, which are actually phase
plots, of �g. 4.5. If one assumes that the structures of turbulence are fractal then one
should get a 1/3 power law (as in K41) but in a multifractal analysis procedure the
exponents of the structure functions deviate from this power law by an intermittency
factor shown to be µ = 0.24 as in �g. 4.10 which is nearly equal to the reported
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value in the literature for incompressible steady homogeneous turbulence.

But, here too one should ask some basic questions about the relation between
the spectrum and the autocorrelation. We have noticed that the x-axis of the energy
spectrum is the wavenumbers or frequency but the x-axis of the autocorrelation is
the lag which is, for instance r2− r1 and looking at it in the Fourier space it should
be k2 − k1 and not simply k as is always done, in this work too.

In Chapter Five an analysis for the DAX index �nancial data was carried out
and an important result is the one showing a spectrum of −2. This result does
not say a lot about the process, even the plunge of the 11th of September events
does not show on the spectrum, and this is a good reason to look for other methods
other than the ones that have been used so far to analyze non-stationary data. This
kind of data, the non-stationary, is an important category of data since most of the
signals are of this type, like voices, signals on a radar screen, images, ... etc. in short
signals which have a beginning and an end. Indeed, the literature is full with such
methods like the Short-Time Fourier Transform (STFT) or simply spectrograms,
Wigner-Ville spectrum and Wavelets. The results that are produced by the later
methods needs more sophisticated �ltering techniques to be understood adequately.
Another important result in this chapter is that the class of �nancial data resembled
by the DAX index is Markovian, and that using the structure function or the return
to analyze these data produces simply random data, as is clearly seen from eq. 5.7,
with a �at spectrum and an autocorrelation that drops immediately to zero, and
this, the random data, should be dealt with within the framework of thermody-
namics. It is worthwhile mentioning that there is still signi�cant scienti�c literature
considering �nancial time series as a non-Markovian multifractal process (see for
instance [137] and [138] but also [140] and the references therein). It is worthwhile
checking whether the �nancial time series is constituted of partly fractal patches
and partly multifractal patches. Also more e�orts should be invested in exploring
wavelets (real and complex) and explore convenient methods to data-mine it. But
also use wavelet as a �ltering tool and compare its results with the other tools. The
same applies for the Wigner-Ville spectrogram.

On the light of chapter �ve one could also investigate the following

• The statement that the correlation of nonstationary data is long should be
scrutinized because the autocorrelation is a tool for stationary and not for
nonstationary data.

• The hypothesis of Taylor's frozen turbulence could not be used for nonstation-
ary data.

• The basic cornerstone of the CFD, the Reynolds decomposition, should not
be used when the data is nonstationary, which is the actual case in weather



CHAPTER 6. BACKLOOK AND OUTLOOK 88

systems, and probably a new formulation based on eqs. (5.5) or (5.6) should
be used calculating the trend and the volatility with Markovian analysis.

• Probably one should investigate the possibility of using a higher order structure
function and not simply the �rst order Taylor expansion as in eq. (4.1).

A next stage in this line of research is to answer the question of classifying
the modelled and experimental intermittent signals. Most certainly they should be
classi�ed according to their dimensions, energy distributions, and indeed how much
determinism is embedded into them or are they just random; noticing that in the
case of LES the small scales contains some determinism into them and they are not
random. It is possible to produce signals with a certain tailor-designed distribution
and spectrum using �ltering, but it is questionable whether that is enough to get
the desired signal for the next step.

Once these questions have been answered we could start experimenting by
adding these �ary signals to a variety of large scale signals, whether meteorological
or �nancial, and which are a result of either RANS, LES, PCA, or wavelet �ltering, or
simply signals sampled with low resolution, or probably even to the Lorenz attractor
data, and see what do we get. These mixing experiments of gusting signals with
large scale signals should continue until one gets signals that are similar to the ones
actually registered from the real events, be it turbulence, earthquakes, etc. Probably
one would �nd, that for each type of a large scale one needs a speci�c type of a �are
signal as a seed to reproduce the desired type of a phenomenon. To borrow an
analogy from biology probably one would �nd that to produce a large scale human-
being one needs a certain type of seeds, of DNA, to build on it the larger scales
and according to the dynamics that are programmed in these gusts (seeds). So a
hurricane needs a certain type of a �are signal to reproduce it which is di�erent
than the one needed for an earthquake or a brainstorm EEG analysis. A crash in
the �nancial markets needs a certain type of �are signal to reproduce its: dynamics,
Markovity or non-Markovity, randomness, self- similarity and multifractality, ... etc
or probably just bits and pieces of all lumped together in one time series. So, a
deeper look into the mechanisms producing these signals in order to model them is
needed. After all, and according to Lorenz, the �ap of the wings of a butter�y which
produce a bursty small scale signal could cause a Tornado somewhere else [139], or
even according to the Arabian proverb the straw that broke the camel's back (which
brings in the whole �eld of avalanches and self-organized criticality (SOC) and the
talk about analyzing the mechanisms and modelling them and not only analyzing
the signals). This search for this intermittent signal should not stop upon �nding
the piece of straw that breaks the back or in which place of the back, and brings an
Avalanche, where the system goes into the state of equilibrium, but rather should go
on for the hyper-intermittent signals (if one could use such a term) which brings the
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system back from equilibrium to non-equilibrium, from causality to non-causality,
from stationarity to non-stationarity, from Markovity to non-Markovity, ... etc.



Appendix A

Exponential Time Di�erencing

These methods are used for solving partial di�erential equations (PDEs) by spectral
methods. Many PDEs contain linear and nonlinear terms as we have seen with
the NSE, Burgers eq., KSE ...etc. added to that the resulting ordinary di�erential
equations (ODEs) upon discretization are sti�. Thus these methods have been
recently developed to get accurate solutions (since they are spectral) for mixed
linear and nonlinear sti� equations. [109] and [110].

A discretised general form for such equations looks like

ut = L u+N(u, t) , (A.1)

where L and N are the linear and nonlinear terms. An integrating factor (IF) for
the above eq. is v = u exp(−L t), di�erentiating the IF we get

vt = −L ue−L t + ut e
−L t . (A.2)

Multiplying eq.(A.1) by the IF we obtain

−L ue−L t + ut e
−L t = e−L tN(u) . (A.3)

Substituting the LHS of eq.(A.3) with eq.(A.2)

vt = e−L tN(veL t) . (A.4)

The last step is di�erentiating the last equation by the forth order Runge-Kutta
method.
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Appendix B

Various declarations

The necessity for this extra appendix has arisen to shed some light on the used
programms, datasets and other essential matters for declaring the responsibilities:

• The Pencil code [32] which was used to produce the graphics of the paper [33]
was completely developed by Prof. Dr. Axel Brandenburg from Nordita Insti-
tute and Dr. Wolfgang Dobler from Kiepenheuer Institute for Solar Physics.
All the programming work for this �gure was done by Prof. Dr. Brandenburg.
The code itself is written in Fortran and is a high-order �nite di�erence code
for compressible hydrodynamic �ows with magnetic �elds (MHD). Working
on this code has inspired the programs that were used for chapter 2 which one
should be able to develop them for higher dimensions.

• All the graphics that exist in chapters 2-5 have been programmed by the
author of this thesis in Matlab v.7 (installed on the Oldenburg University
computers) except for one program in chapter 2 which is slightly modi�ed and
is in Mathematica v.5.1 (students addition) [44]. The toolbox Wavelab v.850
was partially used after modifying it in the last chapter.

• The experimental data, that were used in �g.3.1 and later on are a possession
Of the following persons and their a�liated working groups: Prof. Dr. M.
Reza Rahimi Tabar [117], Dr. Christoph Renner [118], Prof. Dr. Joachim
Peinke ([105] and [122]), and the pulsar GRO see [120].

• In all the used �gures starting from chapter 2-5 the colours distribution con-
vention that has been used is the same and is the RGB colourspace. The
colours are used such that red is given to the highest amplitudes and blue for
the lowest.
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