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Abstract

Many physical systems of great social and economic importance exhibit chaotic
behaviour that makes it difficult to predict future states of the system, often
already for intermediate prediction times τ . This thesis aims at identifying regions
in state space with extraordinary properties. These properties allow us to make
claims about the state space region probably visited by the trajectory in the
near future or the predictability of the system in a given state. The systems
studied include conservative as well as dissipative systems. The identification of
special regions in state space is done using two different kinds of local exponents,
namely finite time Lyapunov exponents and maximum growth exponents, as well
as ensemble studies.

One of the main parts of this thesis is concerned with identifying regions in
state space where the trajectory gets trapped near islands of regular motion in
conservative systems. This manifests itself in the finite time Lyapunov exponents
approaching zero. These measure the short-time growth of infinitesimal errors, so
one can say that the motion becomes less and less chaotic the closer one is to such
an island. We find multiple maxima in the distribution of finite time Lyapunov
exponents that can be attributed to pieces of the trajectory that stay in the
vicinity of islands of different orders. This finding explains a feature recently
published by a different group.

In the next part we look for a relation between predictability and the distribu-
tion of special points in state space, points of homoclinic tangency. We establish
that the predictability is enhanced around such points. This is only so for one
kind of local exponents, though, the finite time Lyapunov exponents. One can say
that these are closely linked to the dynamics of the system, whereas the “maxi-
mum growth exponents” are not. The latter also measure the short-time growth
of infinitesimal errors, but in a different way. The size of the region of enhan-
ced predictability was studied and found to shrink exponentially with increasing
prediction time τ .

The third major part of this treatise investigates the growth of finite errors,
governed by the full nonlinear system, using an ensemble approach. Compari-
son of the maximum nonlinear error growth with local exponents shows good
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agreement for the maximum growth exponents for small initial errors and short
prediction times, but not for the finite time Lyapunov exponents. We establish a
systematic dependence of worst-case error growth on prediction time τ , which is
exponential for small τ and a power law for large τ . Various measures are used to
study how the ensemble size influences the accuracy of worst-case, average and
best-case error growth. For the especially interesting worst-case we find that the
error due to using a small ensemble (compared to a hypothetical infinite ensem-
ble) grows with decreasing ensemble size according to a power law. Furthermore,
the worst case is the one that can actually be handled most accurately with a
small ensemble.

What is made strikingly clear by the results of the last two parts mentioned
is the fact that the choice of local exponents is very important when trying to
quantify predictability using growth of infinitesimal errors. Depending on one’s
interest, one or the other type of local exponents may be the better choice.
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Zusammenfassung

Viele physikalische Systeme von großer sozialer und ökonomischer Bedeutung
zeigen chaotisches Verhalten, das eine Vorhersage zukünftiger Zustände des Sy-
stems schwierig macht, und zwar oft schon für mittelfristige Vorhersagen. Diese
Dissertation hat zum Ziel, Regionen im Zustandsraum mit außergewöhnlichen Ei-
genschaften zu ermitteln. Diese Eigenschaften ermöglichen zum einen Aussagen
über diejenige Region im Zustandsraum, in der sich die Trajektorie wahrschein-
lich in der näheren Zukunft aufhalten wird. Zum anderen ermöglichen sie Aussa-
gen über die Vorhersagbarkeit des Systems in einem gegebenen Zustand. Unter
den betrachteten Systemen sind sowohl konservative als auch dissipative Systeme
vertreten. Spezielle Regionen im Zustandsraum werden mit Hilfe zweier verschie-
dener Arten von lokalen Exponenten, nämlich finite time Lyapunov-Exponenten
und maximum growth Exponenten, und mit Ensemblerechnungen ermittelt.

Einer der Hauptteile dieser Arbeit befasst sich mit dem Auffinden von Re-
gionen im Zustandsraum konservativer Systeme, in denen die Trajektorie in der
Nähe von Inseln regulärer Bewegung eingefangen wird (trapping). Dies äußert
sich darin, daß sich die Werte der finite time Lyapunov-Exponenten Null nähern.
Diese messen das kurzfristige Anwachsen infinitesimaler Störungen, weshalb man
die Bewegung als umso weniger chaotisch bezeichnen kann, je näher sie einer
solchen Insel ist. Wir haben mehrere Maxima in der Verteilung der finite ti-
me Lyapunov-Exponenten gefunden, die Abschnitten der Trajektorie zugeord-
net werden können, die in der Nähe von Inseln verschiedener Ordnung bleiben.
Diese Erkenntnis erklärt ein Resultat, das kürzlich von einer anderen Gruppe
veröffentlicht wurde.

Im nächsten Teil suchen wir nach einer Beziehung zwischen Vorhersagbarkeit
und der Verteilung besonderer Punkte im Zustandsraum, sogenannter homocli-
nic tangencies. Wir zeigen, daß um solche Punkte herum eine verbesserte Vor-
hersagbarkeit besteht. Dies gilt jedoch nur für eine Art von lokalen Exponenten,
die finite time Lyapunov-Exponenten. Diese sind eng mit der Dynamik des Sy-
stems verknüpft, die maximum growth Exponenten hingegen nicht. Die Größe der
Region verbesserter Vorhersagbarkeit schrumpft exponentiell mit zunehmendem
Vorhersagezeitraum τ .
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Der dritte Hauptteil dieser Abhandlung untersucht das Anwachsen endlicher
Störungen, welches durch das volle nichtlineare System beschrieben wird, mit
Hilfe von Ensembles. Ein Vergleich des maximalen nichtlinearen Fehlerwachs-
tums mit den lokalen Exponenten zeigt eine gute Übereinstimmung für die ma-
ximum growth Exponenten im Falle kleiner Anfangsfehler und kurzer Vorhersa-
gezeiträume. Dies gilt nicht für die finite time Lyapunov-Exponenten. Das An-
wachsen der Fehler im schlimmsten Fall, dem worst case, hängt systematisch vom
Vorhersagezeitraum τ ab, und zwar exponentiell für kleine τ und über ein Po-
tenzgesetz für große τ . Verschiedene Maße werden benutzt, um den Einfluß der
Ensemblegröße auf die Genauigkeit von worst-case-, mittlerem und best-case-
Fehlerwachstum zu untersuchen. Für den besonders interessanten worst case er-
gibt sich, daß der Fehler aufgrund der Benutzung eines kleinen Ensembles (im
Vergleich zu einem hypothetischen unendlich großen Ensemble) von der Ensemb-
legröße über ein Potenzgesetz abhängt. Ferner ist der worst case tatsächlich der-
jenige Fall, der mit einem kleinen Ensemble am besten behandelt werden kann.

Durch die Ergebnisse der letzten beiden Teile wird eines besonders augenfällig:
Die Entscheidung, welche lokalen Exponenten man benutzt, ist sehr wichtig, wenn
die Vorhersagbarkeit durch das Anwachsen infinitesimaler Störungen quantifiziert
werden soll. Je nach Zielsetzung kann die eine oder andere Art lokaler Exponenten
die bessere Wahl sein.
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Chapter 1

Introduction

1.1 Motivation

The study of predictability is of considerable economic and social importance.
Its relevance is obvious from the widespread application of forecasts in fields as
diverse as stock prices (Sornette and Zhou, 2006), risk assessment of epidemics
(Thomson et al., 2006), local precipitation patterns (Moron et al., 2003) and
flood forecasts (Koussis et al., 2003) or sediment transport in rivers (McConchie
et al., 2005). In order to alleviate the consequences of severe weather conditions,
for instance, the reliability of forecasts has to be taken into account. Different
means have been developed to do this by investigating the predictability for given
weather conditions, i. e. a given point in state space of the dynamical system
describing the relevant processes.

Unfortunately, the task of predicting the future behaviour of a system be-
comes difficult if the system under consideration is nonlinear and exhibits chaotic
behaviour. On the other hand, this has lead to a fascinating area of research.

Making a forecast is one thing, judging in advance how good it is is a different
matter. If one cannot easily improve the forecast itself, one would at least like
to have some quantitative estimation of how reliable the forecast is. Due to
the exponential divergence of trajectories in chaotic systems, this becomes even
more important when the time horizon of the forecast is extended. Since it is
an essential issue to judge the quality of forecasts, the main aim of this work is
to identify situations when a forecast can be trusted almost blindly or situations
when a forecast should be considered little more than a not-so-educated guess.
In other words, we would like to identify states of a dynamical system for which
predictability is good and states for which it is bad.
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1.2. Predictability of dynamical systems

Before considering the various influences limiting predictability, let us first
clarify what we are talking about, i. e. define some terms involved.

1.2 Predictability of dynamical systems

The term dynamical system will be used herein to denote a set of rules that
describe how a state ~x of this system at a given time t is carried over to a new
state ~x′ at a future time t′. We restrict our investigations to deterministic systems
without any stochastic elements. Therefore, given the state of the system at a
given time, ~x(t), the future states are completely determined by the rules defining
the dynamical system.

The time variable t can, in general, be either continuous or discrete, i. e.
t ∈ R or t ∈ Z, respectively. In the case of continuous time, the rules describing
how a state of the system evolves with time are typically written in the form
of differential equations. The most simple way is as a set of first-order ordinary
differential equations:

d xj(t)

d t
= Fj(x1(t), . . . , xd(t); p1, . . . , pk), j ∈ {1, . . . , d} , (1.1)

where xj are the components of the system state vector ~x and d is the dimension
of the state space of the system. The values p1, . . . , pk are parameters that do not
depend on time. If we start with a given system (with given parameter values pk)
and change one or more parameter values, what do we get? It would be possible to
consider the resulting system a completely different system altogether, of course.
However, it is more convenient not to do so, since the behaviour of dynamical
systems is often similar over a range of parameter values. With vector notation,
Eq. 1.1 can be simplified to

~̇x(t) = ~F (~x(t); ~p) . (1.2)

In the case of discrete time, the evolution of system states is usually described
by a map M :

xj(t + 1) = Mj(x1(t), . . . , xd(t); p1, . . . , pk), j ∈ {1, . . . , d} , (1.3)

or in short
~x(t + 1) = M(~x(t); ~p) . (1.4)

A trajectory or orbit is the path in the d-dimensional state space that the
system describes as it evolves in time, starting at a given initial state ~x(t0). Tra-
jectories can take very different forms. First of all, one can differentiate between
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Chapter 1. Introduction

“short-term” or transient behaviour and “long-term” or asymptotic behaviour.
Typically the first part of a trajectory shows transient behaviour, producing
markedly different characteristics from the asymptotic part of a trajectory. De-
pending on the initial state ~x(t0) the system may need a shorter or longer time to
finally reach its asymptotic behaviour. In this work we are only interested in the
asymptotic behaviour, so we discard the transient part of trajectories. A notion
related to the asymptotic behaviour of a trajectory is the omega limit set ω(~x)
of ~x. This is the set of all accumulation points of the trajectory starting at ~x.

An invariant set S is a subset of state space such that for each ~x(0) ∈ S the
following holds: For every time t ∈ R, ~x(t) ∈ S. Here ~x(t) is the system state at
time t, evolved from the state ~x(0) at time t = 0. In other words, if the state of
the system is part of an invariant set, the system will never leave this set (neither
for t → ∞ nor for t → −∞). Such a situation can either arise when a trajectory
starts on an invariant set or if a trajectory reaches an invariant set after the
transient. Simple examples for an invariant set are a fixed point or a limit cycle.

A special case of an invariant set is an attractor. There is not one defini-
tion that fits all purposes, because in some situations it is preferable to relax a
constraint in a definition instead of excluding a few special cases. We provide a
quite general definition that was suggested by Milnor (1985): A closed subset A
of state space is an attractor if

• the basin of attraction1 ρ(A) = {~x |ω(~x) ⊂ A} has non-zero measure, i. e.
there is a positive, non-zero probability that a randomly chosen state will
approach A in the limit of infinite time, and

• there is no smaller subset A′ of A such that ρ(A′) is the same as ρ(A) except
for a set of measure zero, i. e. by reducing A to A′ one would miss some
important part of the attractor.

This definition has the advantage that there is always at least one attractor
present in a smooth dynamical system. Attractors are always closed invariant
sets, and there are statements one can make about unions of attractors being
attractors again and about maximal and minimal attractors (the one containing
all others and those not reducible, respectively). These concepts are not part of
the work presented here, however, so we refer to Milnor (1985) for details.

The asymptotic behaviour of trajectories can be classified into four cases. The
simplest is a steady state, also called fixed point, equilibrium point or singular
point of the dynamical system. As these different names try to suggest, such a

1 Milnor (1985) uses “basin of attraction” only for open sets and the term “realm of attrac-
tion” for the general case.
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1.2. Predictability of dynamical systems

0
π

2π

0 π 2π

x 2
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Figure 1.1: Dynamics of a two-dimensional map showing examples of different
types of motion. There are fixed points at (0, 0) and (π, 0), a periodic orbit
(0, π) ↔ (π, π) and chaotic motion in a layer connecting (0, 0) with (2π, 0) and
(2π, 0) with (2π, 2π). Since this map is 2π-periodic in both coordinates, this is
actually one and the same layer. Quasiperiodic motion results in closed curves,
some of which run more or less horizontally from edge to edge, while others form
nested ellipses around the periodic orbits. Details about this map can be found
in Sec. 2.2.2.

state does not change with time but remains the same for all times. In the case
of periodic motion, the trajectory is no longer a single point, but a closed curve
in state space. This curve is also called a limit cycle. Furthermore, there is the
possibility of quasiperiodic motion, which can be thought of as more than one
periodic motion (with incommensurate frequencies) influencing the system state.
The last case is chaotic motion. It differs qualitatively from the types of motion
mentioned so far and is the one we investigate. The reasons for this are firstly
that it is of the highest practical importance and secondly that it is the most
interesting from a theoretical point of view. Examples for these types of motion
can be seen in Fig. 1.1.

In practice one is often faced with the problem of guessing the future state of a
natural, real-word system given the current state. This guess at the future state is
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Chapter 1. Introduction

called a prediction. The “guessing” is done by simulating a mathematical model
of the real-world system on a computer for a desired amount of time. After this
amount of real time has passed one can compare the prediction with the true state
of the real-world system. This comparison will lead one to the conclusion that the
prediction was good or bad or, to put it more scientifically, more or less accurate.
The agreement between prediction and the observed true state of the system is
known in meteorology as accuracy. The term skill (Gringorten, 1958; see also
Ziehmann, 2001), sometimes used in the same sense as accuracy, is normally
used to describe the ability of making better forecasts, i. e. predictions. Better
here means better than a given reference with which the new method or model
is compared. What this reference is depends on the situation at hand. It could
be random chance, the persistence of the latest observation or a climatological
average (Sanders, 1953), to name but a few examples.

When we speak of the predictability of a dynamical system we are talking
about the influence of errors, e. g. measurement errors contained in the initial
state of the model system. To judge the predictability of the system in a given
state, one has to consider how these errors evolve over time. If they increase
over time then the agreement of model system state and real-world state will
deteriorate with time. On the other hand, if the initial errors decrease then the
state of the model system and the state of the real-world system will actually
come into better and better agreement. It is rather obvious that in the second
case the prediction has a relatively high probability of agreeing with the final true
state of the real-world system. In the first case, however, it could be considered a
curious coincidence if the prediction is accurate, especially for a long prediction
time.

In many dynamical systems making predictions is not a problem. If the
system is in a steady state the prediction is trivial. For a system exhibiting
periodic motion it is not difficult to predict the future state either, even for
very long prediction times. The case of quasiperiodic motion is more involved,
because one needs a longer stretch of time to get an idea of the typical behaviour
of the system, but the prediction is not more complicated in principle. The
difficulties arise when the trajectory is not so well-behaved any more. Since we
do not consider stochastic systems this leads us to chaotic systems. These are
of the highest importance because the natural systems that one is interested in
predicting are typically chaotic.

The term chaos was first used in connection with dynamical systems by Li and
Yorke (1975). Since then, various definitions have emerged. A broad consensus
exists that the essential ingredient is sensitive dependence on initial conditions.
One way of putting this more precisely is by requiring the largest global Lyapunov
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1.3. Limitations of predictability

exponent to be positive2. We adopt this notion, which is also the prevailing one,
and consider a system to be chaotic if it has a positive global Lyapunov exponent.

A widely known definition of chaotic maps given by Devaney (1992) also
requires two more characteristics apart from sensitive dependence on initial con-
ditions: The periodic points must form a dense subset and the system must be
transitive. The last requirement is related to the mixing property and means that
every open subset of state space will reach any other open subset given enough
time. Actually the sensitive dependence on initial conditions follows from the
other two requirements, as has been shown by Banks et al. (1992). On the other
hand, none of the other two requirements imply the third (Assaf and Gadbois,
1992): Denseness of periodic points and sensitive dependence on initial condi-
tions do not imply transitivity; transitivity and sensitive dependence on initial
conditions do not imply that the periodic points are dense.

Auslander and Yorke (1980) define chaos as instability of all trajectories
together with the existence of a dense orbit. This definition is compared to
sensitivity to initial conditions in the context of topological dynamics by Akin
and Kolyada (2003). Various concepts of sensitivity and chaos are compared in
Kolyada (2004). There is also the notion of topological chaos with the hallmark
property of a positive topological entropy (Adler et al., 1965). Furthermore, one
can start with two points being mapped and study the statistical properties of
distances between these points, arriving at distributional chaos (Schweizer and
Smı́tal, 1994). This was recently compared to Devaney’s notion of chaos by
Oprocha (2006).

Now that we have clarified the important terms used in this thesis let us move
to the reasons why predictability is limited in chaotic systems and to the concepts
used to describe this limitation.

1.3 Limitations of predictability

The problems arising in the prediction of chaotic systems can result from two
very different underlying causes. The first are deficiencies in the model itself, the
second are uncertainties about the true state of the real-world system at the time
the simulation is started. We will deal with these two in turn.

The first cause, deficiencies in the model, is virtually always present when
modelling a real-world system. It is a well-known fact that good models rely on
a good trade-off between simplicity of the model and accuracy in representing all

2The concept of Lyapunov exponents will be introduced and discussed in detail in Sec. 2.1.1.
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Chapter 1. Introduction

physical processes involved. Without the latter, the effect to be studied will not
show up at all, the results will be unrealistic; without the first, one cannot identify
the cause of the effect and the system may not even be treatable numerically, not
to mention the possibility of analytical results.

The model in general has deficiencies of different kinds. Even in very sim-
ple cases like a pendulum or billiard balls colliding, one has to make simplifying
assumptions in order to arrive at a model that is not too complicated. In the
examples, the inclusion of friction and inelastic processes could in principle in-
crease the accuracy of the model. However, the price for this is a complication
of the model that can make it unsuitable for investigation. Fortunately, many
interesting effects and typical traits of real-worlds systems can already be found
in very simple models, so-called “toy models”.

Perhaps the most basic deficiency of a model is that sometimes the underly-
ing processes of the physical system are not even understood well enough to be
modelled properly. This incomplete knowledge leads to an incomplete or impre-
cise model which may well lack vital components and is therefore of limited use
for the prediction of future states of the real-world system. This deficiency can
range from wrong parameter values to wrong functional relationships to down-
right omission of important processes because they have not been discovered yet.

The influence of model errors can be studied by running a complicated, “per-
fect” model, consisting of two parts, and another model that only replicates one
part of the perfect model, the other part is parametrised. One can then compare
results of these two models and study the dependence on the parametrisation. A
good presentation of this can be found in Smith (2000). Recently Knopf et al.
(2005) investigated the difference in dynamics between forced and coupled dy-
namics of a simple atmosphere-ocean system. The forced system consists of an
atmosphere part that is not coupled to the ocean part of this (i. e. the forced)
system, but is driven by the ocean variables from an independent atmosphere-
ocean system initialised in a slightly different state. The authors then determined
mean locking times, that is the fraction of time the systems are synchronised (the
state of the forced system is very close to the state of the forcing system). Upon
varying the strength of the coupling between atmosphere and ocean, it was found
that the forced system has a much more complex bifurcation diagram and phase
space portrait than the forcing system alone, with the possibility of additional
stable periodic orbits occurring. This causes “artificial bistability” in the forced
system in some parameter ranges, making the occurrence of locking dependent on
the initial state. This bistability is called “artificial” because it is not present in
the fully coupled system. What is of considerable importance for forecasts is the
fact that unstable periodic orbits, arising from periodic ones after a bifurcation,
can lead to intermittent locking. In this case the forced system synchronises with
the forcing system for a while, but then there are quite long stretches of time
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1.3. Limitations of predictability

during which the states seem to be unrelated. Such a situation of locking makes
one assume rather good predictability, when in fact the closeness of trajectories
is only caused by using a forced system instead of a fully coupled system.

Deficiencies of the model itself and their consequences are not the object of
this study. Instead, we investigate the problem of predictability from the point
of view of a “perfect model”. This means that we only deal with uncertainties in
the initial conditions.

As we have noted, in chaotic systems trajectories originating from nearby
points will diverge. This causes small initial deviations to grow exponentially
over time, at least for some time. After a while the finite size of the system
prohibits any further growth, the deviation then has the same order of magni-
tude as the size of the system. The averaged effective rate of the divergence of
trajectories in the limit of small deviations and large time is measured by the
Lyapunov exponents of the system (Oseledec, 1968; Eckmann and Ruelle, 1985).
However, these are only of limited use for many applications as the time horizon
of the prediction is usually much smaller than the global time scale of the system
over which Lyapunov exponents are defined. Furthermore, the systems under
investigation are typically very inhomogeneous. The divergence of trajectories
can be fast or slow, depending on the initial state. Therefore local exponents
based on the concept of Lyapunov exponents have been studied which govern
the evolution of uncertainties about a particular initial condition for a finite time
horizon (Grassberger et al., 1988; Abarbanel et al., 1991; Eckhardt and Yao,
1993; Smith et al., 1999). This local exponent is then associated with the initial
system state and used as a measure of predictability. Large exponents represent
fast divergence, hence bad predictability, whereas small values of local exponents
stand for good predictability.

As long as the sign of the local exponent is positive, trajectories starting
close to each other will diverge. They may diverge slowly if the value is close
to zero, but they will diverge. If the local exponent is negative, however, such
trajectories will actually converge, meaning that initial deviations will shrink
with time. States for which all local exponents are negative are therefore very
interesting for forecasting, since any initial uncertainty will become smaller, no
matter which orientation the uncertainty had.

Since local exponents can be computed over times relevant for usual fore-
casts, they can be considered as good candidates for measures of predictability
(Ziehmann et al., 2000). In view of this aim, one has to note that the method
used in this work is more appropriate to describe a hindcast as opposed to a
forecast. After all, the predictability is only determined at a later time, after
the system has already evolved further. Thus, predictability can only be judged
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Chapter 1. Introduction

in this way by examining the past. Keeping this in mind, one goal of this the-
sis is relating the predictability to different properties of the dynamical system.
This can then provide a possibility for insights into predictability by studying
the related property of a given system.

Apart from these local exponents, other measures have been introduced and
studied to get a grasp of “how chaotic”, how unpredictable a given system is.
Nicolis et al. (1983) define a non-uniformity factor (NUF) based on “local diver-
gence rates,” by which they mean finite-time Lyapunov exponents (in the sense
of this work) for short times. They then define the non-uniformity factor as the
standard deviation of the local divergence rates along a trajectory. Perhaps not
surprisingly, when studying the dependence of NUF on system parameters, they
find features that do not correspond with features the Lyapunov exponents show.
Extending this research, Nese (1989) studied the three-dimensional Lorenz sys-
tem (Lorenz, 1963). It was found that in spite of the asymptotic divergence of
trajectories, a substantial number of trajectory pairs did not diverge even after
times as long as 20% of the typical time scale of the system. A coarse division of
the attractor into regions according to their non-uniformity was also given.

In the meantime, regions of very good predictability have been found in var-
ious systems (Ziehmann et al., 2000). By this we mean regions where for every
initial state an uncertainty will actually decrease, at least for short time. The
reason for this is that there exist only some regions on the attractor where the
divergence is large and others where divergence is small or where one can even
find convergence of trajectories. In the long run the large divergence dominates,
leading to a positive value of the largest global Lyapunov exponent.

Local exponents implicitly assume that the uncertainties are infinitesimally
small. This enables one to arrive at analytical results that are valid for whole
classes of systems. It also simplifies calculation, but is not necessarily a good
approximation of the actual situation. Such methods cannot be expected to
yield good results for finite errors of considerable size, a situation often occurring
in practice. To deal with this problem further ideas were proposed that apply
to uncertainties of finite size. One such measure, introduced by Aurell et al.
(1997), is the so-called finite size Lyapunov exponent (FSLE). This is based on
the idea of following an initial perturbation of size δ until it grows to size ∆, where
both of these values can be chosen freely. When this happens the corresponding
time T (δ, ∆) is recorded and the perturbation is rescaled to size δ, leaving the
direction unchanged. After repeating this many times, one calculates the FSLE
as λ(δ, ∆) = 〈T (δ, ∆)−1〉 ln δ

∆
, where 〈·〉 denotes an average over the samples of

T (δ, ∆). This concept is useful in the study of transport processes, for example
mixing processes in the ocean (d’Ovidio et al., 2004).
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1.3. Limitations of predictability

Operational weather forecasting models of today use methods involving the
full nonlinear system. One approach, which we will also investigate in this work,
is the study of ensembles: One chooses a number of states in the proximity of
the current system state and follows the trajectories originating from all these
states. For a given future time one can then not only give a forecast, i. e. the
future state corresponding to the original “true” state of the system; one can also
compare this forecast to the future states of the ensemble members. This allows
one to judge how probable it is that a particular part of the forecast is correct,
for example a hailstorm occurring.

When using ensembles in operational weather forecasting one has to deal with
a high-dimensional system (107 variables is not unusual) and is therefore inter-
ested in minimising the additional computational cost caused by the ensemble.
If the size of the ensemble cannot be increased at will, the choice of initial states
of the ensemble members will become crucial. At the moment there are two
operational weather forecast groups using ensembles.

The European Centre for Medium-Range Weather Forecasts (ECMWF) in
Reading, UK, uses “optimal perturbations” that are chosen along the directions
that grow fastest for short times, i. e. along singular vectors (Buizza et al., 1993;
Palmer et al., 1994). These directions can be changed to arrive at even larger
perturbation growth, using the fact that nonlinear interactions inhibit the growth
of the fastest-growing singular vectors (Barkmeijer, 1997).

The Environmental Modeling Center (EMC) of the National Centers for Envi-
ronmental Prediction (NCEP) in Camp Springs, USA, takes a different approach.
There, one is interested in generating realistic perturbations that resemble the
differences between the model state and the state of the real-world system. This
is done by starting with an arbitrary perturbation to the state of the model sys-
tem, integrating the model for a short time from both initial states (with and
without perturbation), then subtracting the “true” state from the perturbed one
and finally scaling this difference in states to the same size as the original per-
turbation. After a transient of up to a few days, the perturbations lie in the
directions that grow fastest under the nonlinear system. This method is called
“breeding” or “breeding of growing modes” (Toth and Kalnay, 1993).

A comparison of these bred vectors (BVs) and Lyapunov vectors (associated
with global error growth) shows that there are similarities but also significant
differences. In particular, bred vectors derived from different initial perturba-
tions remain different and do not all collapse onto the direction of the leading
Lyapunov vector. When starting with infinitesimal perturbations and continuing
the process for a long time, one arrives at the leading Lyapunov vectors (Kalnay
et al., 2002). In fact, Toth and Kalnay (1997) found the bred vectors to be
superpositions of the leading Lyapunov vectors.

Using the bred vector technique Patil et al. (2001) measured the effective lo-
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Chapter 1. Introduction

cal finite-time dimensionality of the Earth’s atmosphere as an example of a spa-
tiotemporally chaotic system. The effective dimension of the subspace spanned
by the local bred vectors is calculated via the singular values of the covariance
matrix of the bred vectors (interpreted as columns of a matrix). It was found
that spatial regions of a local dimensionality as low as 2.5 exist. This means that
2 to 3 of the local bred vectors alone account for the variability present in all
bred vectors, and indicates that in such a region the local bred vectors effectively
span a space of substantially lower dimension than that of the full space.

Many studies, including the work presented here, involve computer experi-
ments with long trajectories. This is necessary because otherwise the statistics
would not be good enough to draw conclusions. It should be noted that problems
with the validity of long numerical trajectories due to roundoff errors are known
to exist for some systems. The shadowing theorem (Anosov, 1967; Bowen, 1975)
states that for a certain class of dynamical systems, there exists a true trajectory
that stays arbitrarily close to a given numerical trajectory for an arbitrarily long
time. This theorem is only proven to hold for hyperbolic systems, but is believed
to apply to a wider class of systems. However, situations can arise in which the
shadowability of the system under consideration can be drastically limited, mean-
ing that a true trajectory closely follows a numerical one for only a rather short
time. Such situations can occur when a Lyapunov exponent fluctuates around
zero or the system exhibits an unstable dimension variability—effects expected
to be common in high-dimensional systems (Dawson et al., 1994; Sauer et al.,
1997). Thus the connection between predictability and shadowing in nonhyper-
bolic systems is still an intriguing problem which requires further studies to shed
light on the predictability of high-dimensional systems.

1.4 Overview of this thesis

The goal of this work is to find suitable measures to characterise local properties
and predictability of dynamical systems. In particular, we are interested in the
local dynamics of uncertainties or errors, of initial deviations from the “true”
state of the system. Since we assume a perfect model, the “true” state of the
model system is in fact the true state, not an approximation of a real-world state.

Measures suitable for this task come in two fundamentally different kinds:
measures for infinitesimal deviations from the true state and measures applicable
for finite deviations. Both of these approaches were used to study predictability
in chaotic dynamical systems. Furthermore, the measures used to study infinites-
imal deviations proved useful for the characterisation of the dynamics in state
space as well.

11



1.4. Overview of this thesis

In order to study the growth of infinitesimal initial deviations we investigated
two different kinds of local exponents, one of them being local Lyapunov expo-
nents (which we will call “finite time Lyapunov exponents”), the other is based on
singular values (“maximum growth exponents”). A detailed discussion of these
measures is presented in Sec. 2.1.2.

A connection between smaller values of finite time exponents and the geome-
try of the stable direction was found by Tang and Boozer (1996) for conservative
systems in the context of diffusive transport. Our approach yields a connection
between predictability and homoclinic tangencies, which involve stable as well as
unstable directions.

For the study of finite error growth we use ensembles initialised around the
true state of the system. In contrast to the complicated, high-dimensional models
used in operational weather forecasting, our models are rather simple and low-
dimensional. This allows us to systematically study error growth in dependence
of various parameters, including ensemble size.

The remaining part of this thesis is organised as follows:

Chapter 2 lays the foundation by presenting the theoretical concepts and
methods that are common to all studies presented thereafter. Those methods or
concepts that are specific to a particular topic will be introduced later, when it
is appropriate. Also, the model systems studied are introduced in this chapter.

Chapter 3 presents the results published in Harle and Feudel (2007). This
work is not directly related to predictability and could be viewed as an interesting
by-product of developing and investigating the local measures for infinitesimal
initial deviations. In particular, we investigate local exponents for trajectories
inside the chaotic layer of a Hamiltonian system. Such trajectories are related
to transport of passive tracers in a fluid. One very important aspect is the
mixing of these tracers. In nature, it can account for better nutrient supply for
organisms floating on the surface of the sea (Abraham et al., 2000), for example,
or for transitions in reaction-diffusion systems (Neufeld et al., 2002). Motion in
the chaotic layer of a Hamiltonian system is known to show stickiness when the
trajectory comes close to an island of regular motion (Zaslavsky, 1998), spending
a long time in the vicinity of these islands. We set out to characterise the motion
in the chaotic layer by means of local exponents describing infinitesimal error
growth. That is, we want to characterise the “closeness” of the trajectory to
islands of regular motion with certain values of local exponents. By doing so we
can explain the recent findings by Szezech et al. (2005) of a bimodal distribution
of local exponents.

Chapter 4 deals with the question of relating regions of good (or bad) pre-
dictability, in the sense of slow (or fast) growth of infinitesimal errors, to other

12



Chapter 1. Introduction

properties of the dynamical system. This should prove advantageous, since one
can hope to gain further insights by studying these related properties. One pos-
sibility is to identify particular regions in state space that stand out by providing
starting positions for forecasts of either very good or very bad predictability.
This information can then be used by checking whether the current system state
lies within such a region. As a candidate for this kind of property of dynami-
cal systems we investigated homoclinic tangencies, which will be introduced in
this chapter. It can be argued that around a point of homoclinic tangency the
predictability should be enhanced. The results of this work, which builds on
Ziehmann et al. (2000) and Jaeger and Kantz (1997), are published in Harle and
Feudel (2005).

Chapter 5 moves from infinitesimal errors to errors of finite size, whose growth
is studied using ensembles. This is necessary when the initial error size is too
large or the prediction time horizon is too long for the local exponents to yield
an accurate description of error growth. In practice this is the common case, be-
cause even with a perfect model the initial state cannot be determined to infinite
accuracy by measurements. For this reason operational weather forecasting of to-
day, for example, uses methods involving the full nonlinear system (e. g. Buizza,
1996; Toth and Kalnay, 1993). When studying error growth using ensembles we
want to get an idea of the worst-case scenario as well as the most favourable and
the average situation with respect to predictability. The dependence of finite
error growth on the parameters describing the initial ensemble states and on the
prediction time horizon is studied. The intent is to establish systematic rela-
tionships, for example between the worst-case error growth and the prediction
time. Such relationships may then be used to estimate times when predictability
breaks down or sensible ensemble sizes. The results of chap. 5 are published in
Harle et al. (2006).

Finally, in chap. 6 we summarise the results presented in chaps. 3–5 and
comment on possible future extensions of our work.
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Chapter 2

Concepts, methods and systems
under investigation

This chapter introduces the theoretical concepts as well as the methods that are
common to the following chapters. Things specific to a particular topic will be
introduced where appropriate.

Throughout this treatise, vectors are written with an arrow on top, like this:
~x. The time dependence is expressed with parentheses: ~x(t), ~x(n). The case of
discrete time (maps) is treated the same in order to avoid possible confusion with
state variables: x1 is the first component of vector ~x, not the first iterate of some
state x0.

2.1 Exponents as a measure for divergence of

trajectories

2.1.1 Global Lyapunov exponents

The Lyapunov exponents are a measure of divergence of two trajectories that are
originally infinitesimally close to each other (s. Fig. 2.1). One of the hallmarks
of chaos is the fact that such a pair of trajectories diverges exponentially fast,
i. e. the distance d between the trajectories typically grows with time t as

d(t) = d(0) exp (Λt) , (2.1)

where Λ is called a Lyapunov exponent. In fact, this is the very property that is
most commonly used to determine if a system exhibits chaos or not.

To be more precise, we consider a trajectory ~x(t) and a neighbouring trajec-
tory ~y(t) = ~x(t) + ~u(t). The deviation of ~y(t) from ~x(t) is given by the vector
~u(t), the norm ‖~u(t)‖ takes the role of d(t) above. In general, the exponent in
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2.1. Exponents as a measure for divergence of trajectories
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Figure 2.1: Exponential growth of initial deviation d(0) between trajectories ~x(t)
and ~y(t).

Eq. 2.1 can depend on both the initial system state, ~x(0), and on the orientation
of the initial deviation, ~u(0). The Lyapunov exponent for a dynamical system
given by a map as in Eq. 1.3 is then defined by

Λ(~x(0), ~u(0)) = lim
n→∞

1

n
ln

‖~u(n)‖
‖~u(0)‖

. (2.2)

Since the deviations ~u are assumed to be infinitesimal, they evolve according to
the linear system

~u(n + 1) = D M(~x(n)) · ~u(n) , (2.3)

where D M is the Jacobian of the map M . Using this, Eq. 2.2 becomes

Λ(~x(0), ~u(0)) = lim
n→∞

1

n
ln

∣∣∣∣D Mn(~x(0)) · ~u(0)

‖~u(0)‖

∣∣∣∣ , (2.4)

where

D Mn(~x(0)) = D M(~x(n − 1)) · D M(~x(n − 2)) · . . . · D M(~x(0)) (2.5)

is the product of the Jacobians along the trajectory.
In the case of a dynamical system with continuous time (Eq. 1.2, p. 2), the

definitions are analogous, with a matrix P (~x(0), t) replacing D Mn(~x(0)). Thus,
Eq. 2.4 becomes

Λ(~x(0), ~u(0)) = lim
t→∞

1

t
ln

∣∣∣∣P (~x(0), t) · ~u(0)

‖~u(0)‖

∣∣∣∣ , (2.6)

with P (~x(0), t) defined as the solution of the initial value problem

d P (~x(0), t)

d t
= D ~F (~x(t)) · P (~x(0), t) ,

P (~x(0), t = 0) = 1 .
(2.7)
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Chapter 2. Concepts, methods and systems under investigation
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Figure 2.2: Dependence of exponential growth of infinitesimal deviations on di-
rection.

For each ~x(0), the number of Lyapunov exponents is equal to the dimension d
of the system, but their values do not have to be distinct. The actual value found
by applying Eq. 2.4 depends on the orientation of ~u(0). A random orientation
will result in the largest Lyapunov exponent Λ1(~x(0))1, since a randomly cho-
sen orientation will have a component in the direction of maximum growth with
probability 1. One can only encounter a smaller value than Λ1(~x(0)) if the ori-
entation happens to be perpendicular to the right singular vector of D Mn(~x(0)).
A schematic picture of the situation for a two-dimensional system is shown in
Fig. 2.2. This fact has to be taken into account when calculating Lyapunov
exponents in practice. When one is interested in finding not only the leading
Lyapunov exponent, one has to normalise the deviations ~u(t). This ensures that
only one deviation ~u1(t) grows with exponent Λ1(~x(0)), the next with Λ2(~x(0))
and so on.

It is known that under very general circumstances, the limits in Eq. 2.4 ex-
ist (Oseledec, 1968). Furthermore, if the system is ergodic, the set of values
Λi(~x(0), ~u(0)) is the same for almost all initial states ~x(0) with respect to the
ergodic measure (see e. g. Eckmann and Ruelle, 1985). Therefore, we will drop
the dependence on ~x(0) and ~u(0) from now on. The independence of ~x(0), or the
limit of infinite time in Eq. 2.2, is the reason why the Λi are also called global
Lyapunov exponents.

The value of Λ1 describes the typical growth of a line segment at ~x(0) (except if
the line happens to be perpendicular to the direction of maximum growth). When
starting with two random vectors ~u(1)(0) and ~u(2)(0) defining a parallelogram, the
probability that neither vector has a component in the directions associated with
Λ1 and Λ2 is zero. Therefore, the area of this parallelogram grows as exp((Λ1 +
Λ2)n). In general, the sum of the first k Lyapunov exponents describes the

1By convention, Λ1 ≥ Λ2 ≥ · · · ≥ Λd.
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2.1. Exponents as a measure for divergence of trajectories

typical growth of a k-dimensional volume. When we set k = d, the dimension
of state space, then the sum of all Lyapunov exponents describes the growth of
a d-dimensional volume element. In the case of conservative systems there is
no growth, so the sum of all Lyapunov exponents must be zero2. In the case
of conservative systems and dissipative systems with uniform contraction3 of
volume elements, the values of the Lyapunov exponents have to satisfy constraints
involving the right hand side of the dynamical system. For a time-continuous
system ~F (Eq. 1.2) this is given by

d∑
i=1

Λi = div ~F . (2.8)

For a map M (Eq. 1.4) the volume expands by | det D M | (so for conservative
maps this is always 1). The determinant is the product of the eigenvalues, which
are exp(Λi), so one arrives at

d∑
i=1

Λi = ln | det D M | . (2.9)

These equations have two practical applications. Firstly, one does not need to
calculate all Lyapunov exponents, because one can be determined from the ap-
propriate equation after d − 1 exponents have been calculated. Secondly, after
calculating all d Lyapunov exponents one can use the above relationship to check
the numerical values for consistency.

The global Lyapunov exponents have properties which make them a conve-
nient tool from a theoretical point of view. Apart from the properties already
mentioned, they are invariant under a smooth change of coordinates, for example.
However, they are of limited value for practical purposes. The reason for this is
that one is often not interested in the long-term behaviour of the system, but in
short-term predictions.

One can generalise the idea behind global Lyapunov exponents in various
ways to arrive at a measure of divergence of trajectories for finite times. Two
particular such measures are introduced now and will be used later to quantify
predictability.

2In fact, for Hamiltonian systems the Lyapunov exponents come in pairs with opposite sign
(Benettin et al., 1980a).

3For systems with non-uniform contraction the sum of all Lyapunov exponents gives the
average volume contraction rate along a trajectory.
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Chapter 2. Concepts, methods and systems under investigation

2.1.2 Local exponents

Various local exponents can be defined to measure the divergence of nearby tra-
jectories over a finite time τ . This enables one to associate a simple measure
of predictability with every system state ~x, since a large exponent means fast
divergence of trajectories and, correspondingly, low predictability.

Other possible methods include local uncertainty q-pling times, for example,
which measure the time it takes for neighbouring trajectories to increase their
separation by a factor of q. Common choices are q = 2 and q = e. These times
give information about when a chosen threshold is reached, something that cannot
be extracted from local exponents. One should note that the inverse of such
uncertainty q-pling times need not be related to local exponents, which measure
the effective rate of error growth. A comparison of such times and effective growth
rates was done by Smith et al. (1999). The authors prefer estimated times to
growth rates, in particular since the latter require an a priori selection of a time
scale. In the case of maps, which is the one we are studying here, time is discrete,
leading to results for q-pling times that are difficult to interpret.

A different approach was suggested by Aurell et al. (1997). They focus on
systems with many characteristic time scales as they are present in hydrodynamic
turbulence. For each initial state, initial errors of (finite) size δ are followed
until they reach a size of ∆ after some time T (δ, ∆). The finite-size Lyapunov
exponent (FSLE) is then defined by λ(δ, ∆) = 〈 1

T (δ,∆)
〉 ln (∆/δ), where 〈·〉 denotes

an average over the samples of T (δ, ∆) for different initial error orientations.
Through its dependence on the two parameters δ and ∆ the FSLE allows one
to choose the length scales one is interested in. For example, one can study the
mixing up of fluid elements between these length scales (d’Ovidio et al., 2004).

The first kind of local exponents used herein is a straightforward generalization
of the definition of the (global) Lyapunov exponents Λi in Eq. 2.4. It leads to
the definition of finite time Lyapunov exponents (Grassberger et al., 1988):

λ
(τ)
i (~x) =

1

τ
ln

∥∥∥D M τ (~x) ~li(~x)
∥∥∥ , (2.10)

where D M τ (~x) is the linear propagator over a time τ along the piece of trajectory
from ~x ≡ ~x(0) to ~x(τ − 1) (s. Eq. 2.5). Again, this is the definition for discrete
time, to which we will restrict ourselves from now on (s. Sec. 2.2). The vectors
~li(~x) (often called Lyapunov vectors) denote the orientations corresponding to the
global values Λi at the point ~x, i. e., almost every uncertainty ~ε in the sufficiently
distant past would evolve to lie in the direction ~l1(~x) once the trajectory reaches
~x.
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2.1. Exponents as a measure for divergence of trajectories

It should be noted that the ordering of the global Lyapunov exponents, Λ1 ≥
Λ2 ≥ · · · ≥ Λd, need not carry over to the finite time exponents λi. This is so
because ~l1(~x), for example, is the direction of maximum growth only in the limit
of infinite time.

The other kind of local exponents we investigate is linked to the singular
values σ

(τ)
i (~x) of the product of Jacobians along the trajectory:

ρ
(τ)
i (~x) =

1

τ
ln

∥∥∥D M τ (~x) ~v
(τ)
i (~x)

∥∥∥ =
1

τ
ln σ

(τ)
i (~x) . (2.11)

The ~v
(τ)
i (~x) are the right singular vectors of D M τ (~x) and by convention σ

(τ)
1 (~x) ≥

σ
(τ)
2 (~x) ≥ · · · ≥ σ

(τ)
d (~x), i. e., ~v

(τ)
1 is the direction which will have grown the

most under the linearised dynamics after τ steps. Therefore, we refer to ρ
(τ)
i as

maximum growth exponents.
The main difference between these two kinds of exponents can be formulated

as follows: The λ
(τ)
i (~x) in Eq. 2.10 depend on the history of the system through

the vectors ~li, while the ρ
(τ)
i (~x) are defined by a finite piece of trajectory alone.

The terms used when referring to the various local exponents are not generally
agreed upon yet. Depending on the scientific community or even the research
group, the same name (e. g. finite time exponent) can stand for differently
defined quantities, and the same quantities are sometimes named differently. This
unfortunate state of affairs has to be kept in mind when skimming through the
publications. For example, Lorenz (1965), Abarbanel et al. (1991) and Ziehmann
et al. (1999) used the term “local Lyapunov exponents” for what is here called
“maximum growth exponents”. On the other hand, “local Lyapunov exponents”
was used for our “finite time exponents” by Nese (1989), Eckhardt and Yao (1993)
and Toth and Kalnay (1993).

The finite time exponents are more common than the maximum growth expo-
nents in theoretical studies of dynamical systems, as compared to studies dealing
with practical applications like weather forecasting. As was already mentioned,
their properties allow of analytical treatment leading to mathematical theorems.
Besides, they are connected to the dynamics of the system due to their definition,
which implicitly involves the history of the system in the form of the vectors ~li(~x).

The maximum growth exponents are widely used to quantify predictability
in atmospheric science (Palmer et al., 1994) and to determine low-dimensional
approximations (Farrell and Ioannou, 2001). This practice is justified by the fact
that observational data is repeatedly assimilated into the state of the system,
i. e. the state is changed in order to better agree with the new measurements of
the actual state of the physical system. Therefore, there is not enough time for
perturbations to point along the globally most expanding direction l1(~x), because
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Chapter 2. Concepts, methods and systems under investigation

data assimilation can make the state of the system jump from one trajectory to
another. Furthermore, the main interest lies in the estimation of the worst-case
error, which is encountered when the initial error pointed in the direction of ~v

(τ)
1 .

While the global Lyapunov exponents Λi are the same for almost all system
states ~x, local exponents typically depend strongly on ~x. Different ~x will give rise
to different values of λ

(τ)
i (~x) and ρ

(τ)
i (~x), which enables one to link extreme values

of local exponents to particular regions in state space. This leads to characteristic
distributions of λ

(τ)
i (~x) and ρ

(τ)
i (~x) depending on the time horizon τ used. In the

limit τ → ∞ both kinds of local exponents converge to Λi, the global Lyapunov
exponents (Oseledec, 1968).

Due to the definitions of λ
(τ)
i (~x) and ρ

(τ)
i (~x), there exists a relation for the

largest local exponents that holds for each state ~x:

ρ
(τ)
1 (~x) ≥ λ

(τ)
1 (~x) , (2.12)

because ρ
(τ)
1 (~x) involves the largest singular value, thus describing the maximum

growth possible over time τ .

The mean of λ
(τ)
1 (~x) with respect to the natural measure of the system is

always equal to the corresponding global Lyapunov exponent Λ1, irrespective of
the value of τ . If this is not true for a numerical calculation, it is probably
because the number of points used is too small. In the case of the maximum
growth exponents one can show that

〈ρ(2τ)
1 〉 ≤ 〈ρ(τ)

1 〉 . (2.13)

To see why this is so one can think of the product of 2τ Jacobians involved in
calculating ρ

(2τ)
1 (~x(0)) (s. Eq. 2.11) as composed of two parts, one for the first τ

iterations, and one for the second τ iterations:

D M τ (~x(0)) = D M τ (~x(τ)) · D M τ (~x(0)) . (2.14)

The maximum growth over the first τ iterations is given by the largest singular
value of D M τ (~x(0)), σ

(τ)
1 (~x(0)). For the second τ iterations the maximum growth

is σ
(τ)
1 (~x(τ)). The combined maximum growth over 2τ iterations, σ

(2τ)
1 (~x(0)), can

therefore be at most σ
(τ)
1 (~x(τ)) · σ(τ)

1 (~x(0)). This is only the case, however, if the
first left singular vector of D M τ (~x(0)) (giving the orientation of the error after τ
iterations) is aligned with the first right singular vector of D M τ (~x(τ)). In general

these vectors will not be aligned, leading to σ
(2τ)
1 (~x(0)) < σ

(τ)
1 (~x(τ)) · σ(τ)

1 (~x(0)).
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2.1. Exponents as a measure for divergence of trajectories

This translates to the language of maximum growth exponents ρ as

ρ
(2τ)
1 (~x(0)) =

1

2τ
ln σ

(2τ)
1 (~x(0))

≤ 1

2τ
ln

(
σ

(τ)
1 (~x(τ))σ

(τ)
1 (~x(0))

)
=

1

2

(
ρ

(τ)
1 (~x(τ)) + ρ

(τ)
1 (~x(0))

)
,

(2.15)

the largest maximum growth exponent over 2τ iterations being less than or equal
to the average of the largest exponents of the τ -iteration parts. Since this is true
for all initial states ~x(0), the mean of the largest maximum growth exponent will
not increase when τ is increased by a factor of two and inequality 2.13 follows.
An analogous argument can be made for the smallest maximum growth exponent
showing

〈ρ(2τ)
d 〉 ≥ 〈ρ(τ)

d 〉 . (2.16)

These properties of local exponents we have just discussed can be used to validate
numerical results, as has been done for the results presented in the following
chapters.

An implication of the inequality 2.13 is that the mean of the distribution of ρ
(τ)
1

is not a good estimate of the global Lyapunov exponent Λ1, because 〈ρ(τ)
1 〉 ≥ Λ1

for all τ .

Henceforth, we will simplify notation by omitting the explicit dependence on
~x of the local exponents when it is clear from the context which system state the
local exponent pertains to. It should also be kept in mind that the value of τ
determines the time horizon over which the evolution of a deviation is studied.

2.1.3 Numerical calculation

The analytic calculation of (global) Lyapunov exponents is only possible in very
simple cases like the generalised baker’s map (Farmer et al., 1983; see also Ott,
1993). In practice, one has to determine the Lyapunov exponents – as well as
the local exponents – numerically.

To this end, one starts at a given system state ~x(t = 0) with some random
deviation vector ~u(t = 0) of unit length. While the system evolves according to
the map M , the deviation is mapped with the linear propagator as described by
Eq. 2.3. After some time, ~u(t) will point in the direction ~l1(~x(t)), the direction
of globally fastest growing errors. To avoid numerical overflow, the vector ~u(t)
is renormalised to unit length after some time interval T , storing the amount of
growth up to that point as u1. After the next interval T we get u2 and so forth.
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Chapter 2. Concepts, methods and systems under investigation

In the end, the logarithms of the amounts of growth can be summed and divided
by the evolved time, to arrive at an estimate of Λ1 (cf. Eq. 2.4):

Λ1 ≈
1

nT

n∑
j=1

ln uj . (2.17)

The procedure can be stopped when the result has converged to within a given
tolerance.

In order to calculate more than one Lyapunov exponent, one has to use more
deviation vectors ~u1, ~u2 and so on, possibly up to ~ud. Because of the domination
of the largest Lyapunov exponent, these vectors have to be orthogonalised along
with the normalization to unit length. Instead of storing the length uj of the
vectors ~u before normalization after time jT , one now stores the k-dimensional
volumes V

(k)
j of the parallelepiped spanned by the first k vectors ~u1, . . . , ~uk. Since

this volume grows with an exponent that is the sum of the k largest Lyapunov
exponents (Shimada and Nagashima, 1979), one has

k∑
j=1

Λj ≈
1

nT

n∑
j=1

ln V
(k)
j . (2.18)

The k-th Lyapunov exponent can now be calculated from the volumes in k and
k − 1 dimensions:

Λk =
k∑

j=1

Λj −
k−1∑
j=1

Λj

≈ 1

nT

n∑
j=1

ln V
(k)
j − 1

nT

n∑
j=1

ln V
(k−1)
j

=
1

nT

n∑
j=1

(
ln V

(k)
j − ln V

(k−1)
j

)
=

1

nT

n∑
j=1

ln
V

(k)
j

V
(k−1)
j

.

(2.19)

More on this method can be found in Benettin et al. (1980b), others are described
in Eckmann and Ruelle (1985) and Greene and Kim (1987).

The calculation of finite time Lyapunov exponents exponents is along the same
lines as that of the global Lyapunov exponents. One uses Eq. 2.19 for the chosen
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2.1. Exponents as a measure for divergence of trajectories

time horizon τ , i. e. one sets n and T such that τ = nT and calculates

λ
(τ)
k (~x) =

1

τ

n∑
j=1

ln
V

(k)
j

V
(k−1)
j

(2.20)

for k ≥ 2. The first finite time exponent λ
(τ)
1 is determined by the amounts of

growth of perturbations in direction ~l1, like in Eq. 2.17.

The calculation of the maximum growth exponents ρ
(τ)
i becomes increasingly

difficult when the time horizon τ is large. The reason for this lies in the deter-
mination of the singular values of the product of τ Jacobians. The eigenvalues
of each Jacobian are of the order exp(Λi), resulting in the product of the ma-
trices being ill-conditioned. A way to overcome this problem even for very large
τ is an algorithm presented in Eckmann et al. (1986). It uses a recursive QR-
decomposition of the product of Jacobians and works as follows.

The starting point for the calculation of the maximum growth exponents is
the matrix

O(~x, τ) = D M τ (~x)
(
D M τ (~x)

)T
, (2.21)

that consists of a product of the τ Jacobians along the trajectory followed by
the transpose of this product, so 2τ matrices altogether. It is known from the
multiplicative ergodic theorem (Oseledec, 1968) that

lim
τ→∞

(
D M τ (~x)

(
D M τ (~x)

)T
) 1

2τ
(2.22)

exists and has eigenvalues eΛ1 , eΛ2 , . . . , eΛd for almost all ~x. In the case of a

finite piece of trajectory, the eigenvalues of D M τ (~x)
(
D M τ (~x)

)T
are interpreted

as exp(2ρ
(τ)
1 (~x)τ), exp(2ρ

(τ)
2 (~x)τ), . . . , exp(2ρ

(τ)
d (~x)τ).

The actual recursive QR-decomposition for a trajectory4 from ~x(t = 1) to
~x(τ + 1) defines Q(j), R(j) as

D M(~x(j)) · Q(j − 1) = Q(j) · R(j) , j ∈ {1, . . . , τ} , (2.23)

with the matrix Q(0) set to the identity matrix. How this leads to a simplification
can be seen by considering the first two steps:

D M(~x(1)) = Q(1) · R(1) , (2.24)

D M(~x(2)) · Q(1) = Q(2) · R(2) . (2.25)

4 We let the trajectory start at t = 1 to have corresponding indices for ~x(j), Q(j) and R(j).
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The product of the first two Jacobians now simplifies to

D M(~x(2)) · D M(~x(1)) = D M(~x(2)) · Q(1) · R(1)

= Q(2) · R(2) · R(1) .
(2.26)

Carrying on in this manner, one can express D M τ (~x(1)) as5

D M τ (~x(1)) = D M(~x(τ)) · · ·D M(~x(1)) = Q(τ) ·
τ∏

j=1

R(j) , (2.27)

In the same way one can treat the 2τ Jacobian matrices forming O(~x, τ) in
Eq. 2.21, ending up with one orthogonal matrix Q(2τ) and 2τ upper right trian-
gular matrices R(j), none of which has elements much larger than eΛ1 .

Ideally, if the matrix Q(2τ) were the identity matrix, the eigenvalues of O(~x, τ)
could be calculated easily from the diagonal elements of the matrices R(j). In
general, this is not the case, but there is a way to ensure this by successive
similarity transformations (which are known not to change the eigenvalues). Since
this will be done recursively, we add a subscript k to the matrices Q and R. The
values for the first iteration, k = 1, come from the QR-decomposition of the 2τ
Jacobian matrices forming O(~x, τ). For clarity we repeat Eq. 2.23 with the new
subscript:

D M(~x(j)) · Q1(j − 1) = Q1(j) · R1(j) , j ∈ {1, . . . , 2τ} , (2.28)

with Q1(0) being the identity matrix. The matrix O(~x, τ) can be written analo-
gously to Eq. 2.27 as

O(~x, τ) = Q1(2τ) ·
2τ∏

j=1

R1(j) . (2.29)

To get to the second iteration, the 2τ matrices R1(j) take the role of the Jacobians
D M(~x(j)) in Eq. 2.28, and Q1(2τ) serves as the initial orthogonal matrix Q2(0).
Thus, Eqs. 2.24–2.25 describing the first two steps now become

R1(1) · Q1(2τ) = Q2(1) · R2(1) , (2.30)

R1(2) · Q2(1) = Q2(2) · R2(2) . (2.31)

The general equations for the recursive QR-decomposition are given by

Rk(j + 1) · Qk+1(j) = Qk+1(j + 1) · Rk+1(j + 1) , (2.32)

Qk+1(1) = Qk(2τ) , j ∈ {1, . . . , 2τ} . (2.33)

5 Throughout this thesis products like that of the matrices R(j) are understood to be read
right-to-left as the product index goes from lower to upper bound:

∏τ
j=1 R(j) = R(τ) · · ·R(1).
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2.1. Exponents as a measure for divergence of trajectories

In order to use this recursion we do a similarity transformation of O(~x, τ) in the
form of Eq. 2.29 with Q1(2τ):

Q1(2τ)T · O(~x, τ) · Q1(2τ) = Q1(2τ)T · Q1(2τ) ·
2τ∏

j=1

R1(j) · Q1(2τ)

=
2τ∏

j=1

R1(j) · Q1(2τ) ,

(2.34)

where we have used the fact that Q1(2τ)T·Q1(2τ) = 1. We can use the matrices on
the right hand side of the last equals sign as input for the next QR-decomposition
as described above (Eqs. 2.32–2.33):

2τ∏
j=1

R1(j) · Q1(2τ) =
2τ∏

j=2

R1(j) · R1(1) · Q1(2τ)

=
2τ∏

j=2

R1(j) · Q2(1) · R2(1)

=
2τ∏

j=3

R1(j) · R1(2) · Q2(1) · R2(1)

=
2τ∏

j=3

R1(j) · Q2(2) · R2(2) · R2(1)

= . . .

= R1(2τ) · Q2(2τ − 1) · R2(2τ − 1) · · ·R2(1)

= Q2(2τ) · R2(2τ) · R2(2τ − 1) · · ·R2(1)

= Q2(2τ) ·
2τ∏

j=1

R2(j) .

(2.35)

Combining the previous equation with Eq. 2.34 one can see that

Q1(2τ)T · O(~x, τ) · Q1(2τ) = Q2(2τ) ·
2τ∏

j=1

R2(j) , (2.36)

the right hand side of which is almost the same as that of Eq. 2.29, except for
the increase of the indices of Q(2τ) and R(j). The next similarity transform with
Q2(2τ) gives

Q2(2τ)T · Q1(2τ)T · O(~x, τ) · Q1(2τ) · Q2(2τ) =
2τ∏

j=1

R2(j) · Q2(2τ) . (2.37)

26



Chapter 2. Concepts, methods and systems under investigation

Therefore, after k iterations the recursive QR-decomposition yields

(
1∏

j=k

Qj(2τ)

)T

· O(~x, τ) ·
1∏

j=k

Qj(2τ) =
2τ∏

j=1

Rk(j) · Qk(2τ) . (2.38)

With increasing iteration number k, the matrix Qk(2τ) converges quickly
to the identity matrix (Stoer and Burlisch, 1980). Suppose that this has been
achieved within a given tolerance after K iterations. The i-th maximum growth
exponent ρ

(τ)
i can then be computed from the i-th diagonal elements (RK(j))ii

of the upper triangular matrices RK(j):

ρ
(τ)
i =

1

2τ

2τ∑
j=1

ln (RK(j))ii . (2.39)

In practice, no convergence problems with this algorithm were encountered. The
orthogonal matrix Q was considered converged when the sum of the absolute
values of the elements of Q − 1 was < 10−6.

2.2 Model systems studied

The investigations conducted involve simple paradigmatic models exhibiting cha-
otic behaviour. One system is a conservative, Hamiltonian system, the others are
dissipative systems. In all cases we use discrete maps instead of time-continuous
flows. The latter are more common in practice, whereas the former are more eas-
ily manageable. The restriction to discretised time is not severe for the following
reason: d-dimensional maps that are invertible can be understood as Poincaré
sections of d + 1-dimensional flows. Thus, general properties of chaotic systems
can be studied by using the more easily manageable maps. It is emphasized,
however, that calculations regarding local exponents or ensemble statistics can
be done analogously for time-continuous systems.

The example systems used have long served as convenient models to inves-
tigate typical chaotic behaviour in dissipative and conservative systems. This
is one reason for using them in our investigations. Another reason is of a more
practical nature: The dynamical systems to be studied have to be simple enough
to remain feasible even for long prediction times and possibly also for large en-
semble sizes. Based on these premises, we chose the following two-dimensional
chaotic maps.
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2.2.1 Hénon map

One of the standard systems representative of dissipative chaotic motion is the
well-known Hénon map (Hénon, 1976)

x1(n + 1) = a − x1(n)2 + bx2(n) ,

x2(n + 1) = x1(n) .
(2.40)

It was introduced to simplify the numerical exploration of the now famous three-
dimensional model of Lorenz (1963). One can think of this map as being com-
posed of three simple maps, the first folding a given region of the plane, the
second contracting the result of the first map, and the third swapping coordi-
nates. The Hénon map reproduces characteristic features of the Lorenz system,
like the constant negative divergence and the actions of stretching and folding.
Also, the uniqueness of the three-dimensional trajectory is reflected in the fact
that the map is invertible. Therefore, one can say that the Hénon map is “close”
to the Poincaré map of the Lorenz system: It is not exact, but the features should
be qualitatively similar.

The Jacobian of this map, D M = −b, is always constant, the parameter
b can be considered as a dissipation. The usual values for b are 0 < b < 1,
we use b = 0.3. The parameter a is typically varied when studying bifurcation
phenomena, we keep it fixed at a = 1.4. For the parameter values considered
herein, the Hénon system exhibits the well-known chaotic attractor, shown in
Fig. 2.3, with a global Lyapunov exponent of Λ1 ≈ 0.42.

2.2.2 Standard map

The class of conservative chaotic systems is represented by the standard map. It
is well studied in the context of Hamiltonian chaos (Lichtenberg and Lieberman,
1992; Chirikov, 1979; Lichtenberg et al., 1980):

x1(n + 1) = x1(n) + x2(n) (mod 2π) ,

x2(n + 1) = x2(n) + K sin(x1(n) + x2(n)) (mod 2π) .
(2.41)

Here the Jacobian is readily verified to be equal to 1, irrespective of the state
of the system. This map derives from a model where a bar is fastened friction-
lessly at one end and periodically kicked at the other; gravitational forces are
neglected. Due to the resulting rotational motion around the pivot, this map is
also called “kicked rotor map” (Zaslavsky, 1998). The variable x from Eq. 2.41
corresponds to the angle between the bar and some axis, while y denotes the
angular momentum6. The kicks are exerted parallel to the axis determining the

6 The angular momentum is also taken modulo 2π for convenience as plots of system states
are 2π-periodic in both x and y.
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Figure 2.3: Attractor of the Hénon map for parameter values a = 1.4, b = 0.3.

value of x and have a strength of K. In order to arrive at a map, the original
differential equations are integrated between two successive kicks. The values of
the variables are examined immediately after each kick.

The dynamical behaviour of this system for one of the parameter values used
(K = 0.6) is quite intricate (see Fig. 2.4) and consists of complexly intertwined
regions of regular (periodic and quasiperiodic) and chaotic motion. If the initial
condition is on an invariant KAM torus the dynamics traces out a closed curve
corresponding to quasiperiodic motion. In Fig. 2.4, some KAM tori can be clearly
seen running more or less horizontally from edge to edge. Apart from these,
other tori are present, which are nested around periodic orbits like (π, 0) and
(0, π) ↔ (π, π). These are the primary islands, around which there are secondary,
tertiary islands and so on (see e. g. Lichtenberg and Lieberman, 1992). Such a
hierarchical structure is seen in Fig. 2.4. Another possible dynamics is chaotic
motion, wandering around an area and eventually densely filling that area. This
behaviour is indicated by the regions near the corners in Fig. 2.4. These regions
are called chaotic or stochastic layers (Zaslavsky et al., 1993). Overall, motion
in this layer is weakly chaotic for K = 0.6, the global Lyapunov exponent is
Λ1 ≈ 0.07. However, the global Lyapunov exponent calculated from one piece of
trajectory, even a rather long one, need not result in this value due to stickiness
near islands of regular motion. This is investigated in detail in the following
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Figure 2.4: Dynamics of the standard map for K = 0.6 (47 initial positions).

chapter. It is important to note that not only the KAM curves themselves are
invariant under the map, but also the area enclosed by any two of them.

For comparison, Fig 2.5 shows the dynamics at a relatively high value of
K = 4.2. Now the chaotic layer occupies almost the whole state space, only a
few islands are left. The motion is much more chaotic now with Λ1 ≈ 0.85.

For this system, we can restrict our study of local exponents to the larger
one. The reason for this is that for Hamiltonian systems, det J(~x) = 1, so that
the sum over all exponents has to vanish at each point ~x and the largest local
exponent alone already contains all information.

2.2.3 Quasiperiodicity map

The quasiperiodicity map, defined in Grebogi et al. (1985), is more involved than
the standard map and has the form

x1(tn+1) = x1(tn) + c1 + c3p1(x(tn)) (mod 1) ,

x2(tn+1) = x2(tn) + c2 + c3p2(x(tn)) (mod 1) ,
(2.42)
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Figure 2.5: Dynamics of the standard map for K = 4.2 (19 initial positions).

where we used two sets of parameter values: c1 = 0.2, c2 = 0.3, c3 = 0.6 and
c1 = 0.42, c2 = 0.3, c3 = 1.6. The nonlinearities p1 and p2 are

p1(x(tn)) =
1

2π

(
A1 sin(2π(x1(tn) + K1))+

A2 sin(2π(x2(tn) + K2))+

A3 sin(2π(x1(tn) + x2(tn) + K3))+

A4 sin(2π(x1(tn) − x2(tn) + K4))
)

,

p2(x(tn)) =
1

2π

(
B1 sin(2π(x1(tn) + J1))+

B2 sin(2π(x2(tn) + J2))+

B3 sin(2π(x1(tn) + x2(tn) + J3))+

B4 sin(2π(x1(tn) − x2(tn) + J4))
)

,

(2.43)

the values of the constants Ai, Ki, Bi, Ji are shown in Tab. 2.1. Since the
parameter c3 controls the strength of the nonlinear effects, the second set of
parameter values is more chaotic (Λ1 ≈ 0.377) than the first (Λ1 ≈ 0.0011). At
these parameter values, there exists a chaotic layer covering the whole state space
of the system. An overview of the dynamics of the quasiperiodicity map at the
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i Ai Ki

1 -0.2681366365 0.9854608430
2 -0.9106755940 0.5044604561
3 0.3117202638 0.9470747252
4 -0.0400397884 0.2335010550

i Bi Ji

1 0.0881861167 0.9903072286
2 -0.5650288998 0.3363069701
3 0.1629954873 0.2980492123
4 -0.8039888198 0.1550646728

Table 2.1: Parameter values used for the quasiperiodicity map.
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Figure 2.6: Dynamics of the quasiperiodicity map for c1 = 0.2, c2 = 0.3, c3 = 0.6.

parameter values used is given in Figs. 2.6 and 2.7. The fact that there is an
extended chaotic layer, along with the structure of the quasiperiodicity map that
is substantially more complex than the one of the standard map, made us choose
this system for our investigation. Another reason for comparing these systems
is the very different shape of their distributions of local exponents, as will be
shown in Sec. 5.2. Comparing systems that differ so markedly in characteristic
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Figure 2.7: Dynamics of the quasiperiodicity map for c1 = 0.42, c2 = 0.3, c3 =
1.6.

properties allows one to draw more general conclusions than considering only one
possibly special case.
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Chapter 3

Local exponents in chaotic layers
of Hamiltonian systems

In this chapter, we investigate the properties of local exponents for trajectories
inside the chaotic layer of a Hamiltonian system. Such motion is particularly
interesting from the point of view of transport of passive tracers in a fluid. These
are particles that do not interact with the fluid, so the flow remains unperturbed
by adding passive tracer particles. One very important aspect is the mixing of
these tracers. In nature, it can account for better nutrient supply for organisms
floating on the surface of the sea (Abraham et al., 2000), for example, or for
transitions in reaction-diffusion systems (Neufeld et al., 2002). Area-preserving
two-dimensional maps are relevant for the motion of passive tracers in a two-
dimensional time-periodic flow. The reason for this is related to the (also time-
periodic) stream function ψ(x1, x2, t) of the flow. The velocities of passive tracers
in such a flow are given by

v1 =
∂ψ

∂x2

, v2 = − ∂ψ

∂x1

. (3.1)

This is structurally equivalent to a Hamiltonian system, with the stream function
replacing the Hamilton function. If one now takes a Poincaré section by looking at
the system in intervals of the period of the flow, one arrives at a two-dimensional
Hamiltonian map.

Motion around islands in the chaotic layer is characterised by stickiness, i. e.
once the trajectory comes close to an island of regular motion it will stay in its
vicinity1 for some time. This stickiness leads to particular statistical properties
like anomalous diffusion and non-Gaussian transport in fluids (Zaslavsky et al.,

1 More precisely, the trajectory will stay in the vicinity of islands of the same chain. The
structure of islands and island chains will be discussed in the following section.
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(1993); Leoncini and Zaslavsky, (2002)). Diffusion is called anomalous if the
transport of particles is such that the second moment of the particle displacement
R is 〈

R2
〉
∼ tγ , t → ∞ (3.2)

with an exponent that differs from the value of γ = 1 for the case of normal
diffusion. This limits transport (0 ≤ γ < 1, subdiffusion) or enhances it (1 <
γ ≤ 2, superdiffusion).

In the following sections, the dynamics of the system under consideration, the
standard map, is described with the focus on island chains. A trajectory spends
relatively more time near islands if the chaotic layer is rather small. Therefore
we use a parameter value of K = 0.6, which gives us a better chance of finding
stretches of a trajectory close to islands. One initial condition is iterated for a
very long time in order to have acceptable statistics. Comparisons with shorter
trajectories starting from different initial positions (in order to reach all parts of
the chaotic layer) give no qualitatively different results.

As a simple way to get a first impression, the spectrum of local exponents is
investigated in Sec. 3.2. Then, distributions of local exponents are presented in
Sec. 3.3.

Throughout this chapter, we can restrict ourselves to the first of the two local
exponents. The second one is always given by

λ2(x1, x2) = −λ1(x1, x2) and (3.3)

ρ2(x1, x2) = −ρ1(x1, x2) (3.4)

because the standard map is area preserving. Thus, the distributions of λ2 and
ρ2 are simply mirror images of those of the other exponents and contain no new
information.

3.1 Island structure in chaotic layers

As has already been mentioned in Sec. 2.2.2, chaotic Hamiltonian systems can
exhibit chaotic layers with intricate dynamics. If the nonlinearity is large enough
the motion is no longer confined to regular dynamics. Starting from a suitable
initial state, the trajectory can wander around in a part of the state space, but
it is restricted to an area (in the case of two dimensions) between neighbouring
KAM-curves. The reason for this is that the KAM-curves as well as the areas
between any two such curves are invariant under the dynamics of the system.
The area of this chaotic layer that is available for the trajectory increases with
the size of the nonlinearity (s. Fig. 3.1).
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Figure 3.1: Dynamics of the standard map for various nonlinearity parameters:
The area of the chaotic layer increases with K, the bottom right plot is for
K = 4.0. Each plot shows one trajectory initialised at (0.1, 0.1), inside the
chaotic layer, iterated 25000 times.
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Figure 3.2: Dynamics around islands of different order. Left: order 1; middle:
order 2; right: order 3.

It can be seen from the plots for higher values of K that islands exist within
the chaotic layer. Such smaller islands can be found around larger islands of
regular motion which are surrounded by the chaotic layer. Since they are located
near the boundary of the large island, they are forming a so-called boundary
islands chain (BIC) (Zaslavsky, 1998). Such a chain of islands can lie within the
island of regular motion or outside of it, i. e. within the chaotic layer. We are
interested here in the latter since the trajectory is confined to the chaotic layer.
Each island in an island chain is surrounded by another island chain of higher
order (see e. g. Lichtenberg and Lieberman, 1992).

We use a nonlinearity parameter that is rather small, K = 0.6, in order to
have a chaotic layer that does not cover too much of state space. This helps
to find the situation we are concerned with: a trajectory approaching an island
of regular motion, passing through a series of cantori (Schellnhuber et al., 1986;
Schellnhuber and Urbschat, 1988), the remains of destroyed KAM tori. At the
beginning, the state of the system is not restricted within the chaotic layer, the
trajectory moves around the primary, or order 1 island. If it passes through a
cantorus, it will then stay in the vicinity of order 2 islands until it either goes
back to move around the order 1 island again, or passes another cantorus to visit
islands of higher order. An example of this behaviour can be seen in Fig. 3.2.
Henceforth, we will call the surroundings of the order o islands the order o layer.

3.2 Spectrum of local exponents

An interesting feature distinguishing the different kinds of local exponents can
already be seen by plotting the values of the local exponents against time, as in
Fig. 3.3.

One can clearly distinguish different regimes in the case of the maximum
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Figure 3.3: Values of the local exponents λ
(τ=1)
1 (top) and ρ

(τ=1)
1 (bottom) for a

piece of trajectory. Only every third value is plotted.

growth exponent ρ
(τ=1)
1 , whereas the values of λ

(τ=1)
1 take on the same range of

values over the whole time span plotted. As a side note, the plot only shows
the data for every third point along the trajectory. Such simplifications (for
the sake of less crowded plots) have to be done carefully, though. If a piece of
trajectory moves around an island chain of six islands, for example, then a plot
of the trajectory in state space that takes into account only every third point will
produce only two islands.

From Fig. 3.3 on can see that starting at around iteration 815000, for example,
the spectrum of ρ

(τ=1)
1 develops gaps that were previously not there. In order to

understand this, one can look at lines s(ρ) of constant ρ
(τ=1)
1 in state space. In

the present case of the standard map, the simple dependence of the Jacobian
D M on x1 and x2 (through x1 + x2 alone) already hints at the simplicity of the
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lines s(ρ):

D M(x1, x2) =

(
1 1

K cos(x1 + x2) 1 + K cos(x1 + x2)

)
. (3.5)

The value of ρ
(τ=1)
1 is the natural logarithm of the larger singular value σ1 of the

matrix D M(x1, x2), i. e. the larger eigenvalue of the matrix D MT D M . Using
the abbreviation z = K cos(x1 + x2), one finds that

σ1(z) =

√
z2 + z +

3

2
+

√
z4 + 2z3 + 4z2 + 3z +

5

4
. (3.6)

Lines of constant ρ
(τ=1)
1 can be found by first setting σ1 to a constant value of

σ̃ and then determining the relation between x1 and x2. Since σ1 depends on
x1 and x2 only through z, it is easy to see that one possibility is x2 = −x1. To
address this more rigorously, one can define an implicit function S(x1, x2) that
has to vanish:

S(x1, x2) = σ1(K cos(x1 + x2)) − σ̃
!
= 0 . (3.7)

The slope of this implicit function is given by

d x2

d x1

= −
∂S
∂x1

∂S
∂x2

= −
∂S
∂z

∂z
∂x1

∂S
∂z

∂z
∂x2

= −
∂z
∂x1

∂z
∂x2

= −−K sin(x1 + x2)

−K sin(x1 + x2)
= −1 . (3.8)

The lines s(ρ) of constant ρ
(τ=1)
1 are therefore straight lines with a slope of −1.

Knowing this, the lower part of Fig. 3.3 can be explained as follows. If a gap
between ρ1,min and ρ1,max arises in the spectrum of ρ1, it is because the trajectory
does no longer visit states that would contribute such values. This means that
the trajectory is now restricted to a smaller region in state space, such that no
point lies in between lines s(ρmin) and s(ρmax). The restriction to a smaller region
of state space occurs when the trajectory passes through a cantorus and enters
a layer of higher order, as in Fig. 3.2. In fact, pieces of the trajectory showing
gaps in the values of ρ

(τ=1)
1 do lie in the vicinity of islands of higher order than

other pieces which have no gaps.

The occurrence of gaps in the spectrum of ρ does not alter the extreme values,
so from this point of view it is not possible to speak of enhanced predictability.
On the other hand, the trajectory is confined to a smaller region in state space,
this can be argued for as better predictability. But this is more of an academical
problem for the following reason: This prominent – and easily detectable – feature
of gaps in the spectrum of ρ that are linked to movement in layers of different
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Figure 3.4: Local exponents for a long time horizon τ = 128 along a segment of
trajectory: finite time Lyapunov exponents λ

(τ=128)
1 (left) and maximum growth

exponents ρ
(τ=128)
1 (right).

order can only be seen in simple systems. We do not expect to find anything
similar in models with a medium to large number of variables, simply because
the lines s(ρ) will be much more complicated, and the positions of the islands
cannot be expected to fall nicely into the “right” place.

In contrast to these findings for the maximum growth exponent ρ
(τ=1)
1 , the

finite time Lyapunov exponent λ
(τ=1)
1 does not show such a behaviour, since it

depends not only on the Jacobians along the trajectory, but also on the past of
the system.

To get a better feeling for the variability of local exponents over longer stretches
of time, exemplary plots are shown in Figs. 3.4 and 3.5. As can be seen in
Fig. 3.4, the larger finite time Lyapunov exponent can become negative even for
large time horizons. This is only of limited value regarding predictability, how-
ever, since the other exponent, λ2, is then positive (s. p. 19 about the ordering of
finite time Lyapunov exponents). So there does not necessarily occur a shrinking
of a deviation from the true state. If the deviation has already developed earlier,
then it will reach the initial state associated with a negative λ

(τ)
1 pointing in the

“right” direction, i. e. the one linked to λ
(τ)
1 , and thus shrink over τ time steps.

Judging by eye, one can see no significant differences between the plots for
different local exponents, at least for very long time horizons (Fig. 3.5). This is
actually to be expected if the time horizon τ reaches large values. Since we know
that in the limit τ → ∞ both λ

(τ)
1 and ρ

(τ)
1 have to converge to the same value,

it comes as no surprise that the distributions are almost the same for τ = 16384.
Therefore, we will only show results for both kinds of local exponents in this
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Figure 3.5: Local exponents for very long time horizons τ along a segment of
trajectory: finite time Lyapunov exponents λ

(τ)
1 (left) and maximum growth ex-

ponents ρ
(τ)
1 (right).
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Figure 3.6: Finite time Lyapunov exponent λ
(τ)
1 for very long time horizons along

a segment of trajectory showing a change of the system dynamics.

chapter if there is a significant difference.

The plots in Figs. 3.4 and 3.5 give a good picture of what is going on most
of the time. Sometimes, however, the trajectory passes through a cantorus and
stays in the vicinity of islands of higher order. We expect this behaviour to be
reflected in the values of the local exponents: The higher the order of the islands
the trajectory stays close to, the closer to zero are the local exponents. Fig. 3.6
shows data for a stretch of time where the trajectory clearly changes its behaviour
in some way. This dramatic change in the spectrum of λ

(τ)
1 is indeed linked with

a change of the regions in state space the trajectory visits.
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Figure 3.7: Distributions of finite time Lyapunov exponents λ
(τ)
1 (top) and max-

imum growth exponents ρ
(τ)
1 (bottom) for small to intermediate time horizons τ .

We will now move on to the distributions of local exponents for various values
of the time horizon τ .

3.3 Distributions of local exponents

For small time horizons, Fig. 3.7 shows the histograms of the largest finite time
Lyapunov exponent λ

(τ)
1 and the largest maximum growth exponent ρ

(τ)
1 . It can

already be seen from this that the curves become narrower and more peaked with
increasing time horizon τ . This is expected, since both kinds of local exponents
are known to converge to the values of the global exponents for τ → ∞.

Furthermore, the larger maximum growth exponent is restricted to positive
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Figure 3.8: Distributions of finite time Lyapunov exponents λ
(τ)
1 (top) and max-

imum growth exponents ρ
(τ)
1 (bottom) for long time horizons τ .

values. This is a direct consequence of the definition via singular values (which
are by convention ordered in a descending sequence σ1 ≥ σ2 ≥ · · · ≥ σd) and
the fact that ρ2(x1, x2) = −ρ1(x1, x2). In contrast to this, the largest finite time
Lyapunov exponent can attain negative values. The second finite time Lyapunov
exponent is then positive, but λ

(τ)
1 and λ

(τ)
2 are not interchangeable, because they

are linked to particular vectors ~l1/2 of initial error orientation (s. Sec. 2.1.2). The

fact that λ
(τ)
1 < 0 can be interpreted as enhanced predictability, since a typical

deviation from the true system state will be stretched by λ
(τ)
1 with probability 1. If

one wants to be more demanding, one can also require both finite time Lyapunov
exponents to be negative, meaning that any deviation will actually shrink within
the time for which the exponents are calculated. This more demanding criterion
will be used in the following chapter.
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Figure 3.9: Distributions of finite time Lyapunov exponents λ
(τ)
1 (top) and max-

imum growth exponents ρ
(τ)
1 (bottom) for very long time horizons τ .

The distributions of local exponents within the chaotic layer change signifi-
cantly upon further increasing τ (Fig. 3.8). For both kinds of local exponents, the
distributions for τ = 128 suggest the development of a shoulder towards higher
values, while the mean of the ρ1-distribution shifts closer to zero. In order to test
this hypothesis, we calculated the local exponents for even longer time horizons
τ (Fig. 3.9). One can now clearly see the formation of a second peak at values
greater than 0.1. The same qualitative behaviour is found for the distributions
of maximum growth exponents ρ

(τ)
1 , starting at somewhat higher values of τ .

This behaviour stems from the fact that the trajectory visits different regions
of the chaotic layer. Layers of higher order lead to smaller values of local ex-
ponents. Consequently, the rightmost peak in Fig. 3.9 is due to the dynamics
around the order 1 island.
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Figure 3.10: Values of finite time Lyapunov exponents λ
(τ)
1 , averaged over τ =

10000 iterations, for a piece of trajectory. The thin dotted lines separate stretches
associated with motion in layers of different order, the orders are given by the
numbers (see text for details).

In order to handle the large amount of data efficiently, we did not use the
appearance of gaps in the spectrum of ρ

(τ)
1 to identify the order of the current

layer, or looking at the actual distribution of points in state space. Instead, we use
finite time Lyapunov exponents averaged over a very long time, like τ = 10000.
This allows one to distinguish times with rather high values of λ

(τ=10000)
1 and

times with low values, as can be seen exemplarily in Fig. 3.10. More precisely,
time slices with λ

(τ=10000)
1 > 0.05 are taken to be associated with motion in layer

1, the lower bound for layer 2 is 0.01, and even lower values of λ
(τ=10000)
1 are

labeled layer 3 (see Fig. 3.10). This is, of course, not strictly true, since all

higher order layers contribute to this part of the λ
(τ=10000)
1 spectrum. However,

trying to determine a further bound, separating layer 3 from higher order layers,
is difficult. Furthermore, reasonable choices do not alter the result for layer 3
and do not give sufficient statistics for higher order layers either. Even if the
distinction of different layers by a simple boundary value of λ

(τ)
1 is correct, the

use of long-term average values will lead to errors. Parts of the trajectory will
be categorised as belonging to the wrong layer. On the whole, however, they will
not change the statistics too much.

Taking all time slices belonging to a particular layer, distributions of finite
time Lyapunov exponents for the different orders of layers can be calculated.
The result is shown in Figs. 3.11 and 3.12. As can be seen, the distributions are
shifted towards smaller values for increasing order. What is also indicated is a
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Figure 3.11: Distributions of finite time Lyapunov exponents λ
(τ)
1 for orders 1

(left) and 2 (right).
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Figure 3.12: Distributions of finite time Lyapunov exponents λ
(τ)
1 for order 3.

minute second peak at smaller values for order 1. This is very probably because of
pieces of trajectory that are actually of higher order, but are erroneously classified
as order 1. Similarly, the distributions for orders 2 and 3 extend farther to the
right.

To compare the results for different orders with the distribution for the whole
trajectory, the distribution for each order is scaled by the number of data points
and plotted in Fig. 3.13. The distributions of the different layers, taken together,
explain the shape of the global distribution very well.

Zaslavsky et al. (1993) found anomalous (i. e. non-Gaussian) transport in
chaotic layers, for which the scaling exponent of the mean squared particle dis-
placement is γ 6= 1. They showed that this exponent can be expressed through
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Figure 3.13: Distributions of finite time Lyapunov exponents λ
(τ=2048)
1 . Left:

orders 1 (red), 2 (green) and 3 (blue), weighted sum (black). Right: weighted
sum over orders (thick red line) and global (yellow).

local constants of the dynamics. One of these is a scaling coefficient describing
the dependence of the total size of the islands belonging to one order on their
order. The other is the characteristic time scale for the island of a particular or-
der, which is related to the Lyapunov exponent for motion in the corresponding
chaotic layer. Such studies involve investigations of the topology of state space,
which of course plays an important role, but was beyond the scope of this thesis.
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Chapter 4

Local exponents and homoclinic
tangencies

In this chapter we take a look at the position of regions of extreme predictability in
state space, the most predictable and the least predictable regions. This is done
using one conservative as well as one dissipative system, namely the standard
map and the Hénon map.

It would be advantageous if one were able to relate regions of particularly good
(or bad) predictability to other properties of the dynamical system. Then, one
could hope to gain further insights by studying these related properties. Ideally,
observing an easily calculated variable gives us all the information about the
predictability of the system we are interested in. This ideal cannot be attained in
practice, of course. Nevertheless, one can hope to identify at least some regions in
state space that stand out by providing starting positions for forecasts of either
very good or very bad predictability. This information can then be used by
checking whether the current system state lies within such an identified region.

As a candidate for this kind of property of dynamical systems we investigated
homoclinic tangencies, which will be introduced in the following section.

4.1 Definition of homoclinic tangencies

In a point of homoclinic tangency, stable and unstable manifolds become tangent
to each other. Formulated more mathematically, the definition of homoclinic
tangencies incorporates the stable manifolds W s and the unstable manifolds W u

of a periodic orbit. In the case of a two-dimensional map M , the manifolds of a
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W s ( x )W u( x )

y

Figure 4.1: Schematic situation near a homoclinic tangency: Lines show the
stable and unstable manifolds, the arrows give the direction in which a point
is mapped (i. e. where M(~z) will be in relation to ~z). Note that the point of
homoclinic tangency, ~y, corresponds to some point ~y in Eqs. 4.1–4.2, not to ~x.

point ~x are:

W s(~x) =
{
~y ∈ R2

∣∣ lim
n→∞

‖Mn(~x) − Mn(~y)‖ = 0
}

, (4.1)

W u(~x) =
{
~y ∈ R2

∣∣ lim
n→−∞

‖Mn(~x) − Mn(~y)‖ = 0
}

. (4.2)

This means that the stable manifold of ~x consists of those points ~y whose future
images Mn(~y) under the map M will come arbitrarily close to the corresponding
image Mn(~x) of the reference point ~x. For the unstable manifold, the same is
true for reversed time, i. e. the preimages of ~x and ~y approach each other. A
point where W s(~x) and W u(~x) touch but do not intersect transversally is called
a homoclinic tangency. A sketch of this situation is shown in Fig. 4.1. The fact
that the stable manifold is shown as a straight line and the unstable manifold as
a parabola is not arbitrary, but can be shown to be the general structure of these
manifolds in the vicinity of a homoclinic tangency (Palis and Takens, 1993).

In general, infinitely many unstable periodic orbits are embedded in a chaotic
attractor. Each of these orbits possesses stable and unstable manifolds and, thus,
allows for homoclinic tangencies to occur.

Due to ergodicity, there has to be a dense set of homoclinic tangencies on
the attractor if one point of homoclinic tangency exists on the attractor (Grass-
berger et al., 1988). Some of these points form sequences, they are related in the
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following sense: If ~xHT is a point of homoclinic tangency, so are its predecessor
M−1(~xHT) and its successor M(~xHT), since the stable and unstable manifolds are
invariant sets. Among each such sequence of homoclinic tangencies, one of them
stands out by having a minimal (along this sequence) sum of the curvatures of
stable and unstable manifolds. These are called “primary homoclinic tangen-
cies” and are the easiest to find numerically (see Jaeger and Kantz, 1997, and
references therein): With increasing n, one has to come ever closer to the points
Mn(~xHT) and M−n(~xHT) in order to numerically identify a homoclinic tangency.

Homoclinic tangencies play an important role in bifurcations, in particular in
crises of chaotic attractors (Grebogi et al., 1982, 1983) and so-called metamor-
phoses, sudden changes in basin boundaries (Grebogi et al., 1986, 1987). Crises
occur when varying a system parameter leads to a collision of the attractor with
an unstable periodic orbit. One can differentiate between multiple types of crises
that affect the attractor in different ways. Boundary crises, for example, lead to
the destruction of the attractor. They happen when the attractor collides with an
unstable periodic orbit on the attractor’s basin of attraction boundary. Interior
crises, on the other hand, cause sudden changes of the attractor size and occur
when the attractor collides with an unstable periodic orbit within the basin of
attraction. These phenomena are also studied experimentally, for example with
dripping faucets (Pinto and Sartorelli, 2000). More examples can be found in
Robert et al. (2000).

It is important to note that there is a connection between homoclinic tan-
gencies and the concept of hyperbolicity. Exact results and theorems are mainly
known for Axiom-A systems as they are mathematically more easily manageable.
Hyperbolicity is the primary feature of Axiom-A systems (Abraham and Smale,
1968). It requires that stable and unstable manifolds intersect transversally in
any point. Thus the concept of hyperbolicity and the existence of homoclinic
tangencies are mutually exclusive. Realistic models of the physical world are
almost always nonhyperbolic, implying the presence of homoclinic tangencies.

Furthermore, homoclinic tangencies have the advantageous property of being
invariant under coordinate transformations. Since this is not the case for the
typical local measures of predictability like local exponents, homoclinic tangencies
can help to identify regions of enhanced predictability regardless of the particular
measure of local predictability.

One can now ask for the effect of the approach of the unstable manifold towards
the stable one on the predictability of the dynamics. The following plausibility
argument is the reason for choosing to study homoclinic tangencies.

When a trajectory comes close to a point of homoclinic tangency ~xHT, the
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orientation of a perturbation can no longer point away from the stable direction
at a large angle, since the unstable manifold has to approach the stable one
by definition. Instead, the perturbation has to become nearly aligned with the
direction of the stable manifold, if the trajectory is close enough to ~xHT.

This becomes more important when the unstable manifold stays close to the
stable manifold in a larger surrounding of ~xHT, which can be expressed by the
curvatures of the manifolds in the point ~xHT. The smaller the sum of the curva-
tures, the larger should the effect of the homoclinic tangency be on perturbation
growth. Actually one defines those points of homoclinic tangency ~xHT that have a
minimal sum of these curvatures as primary homoclinic tangencies (Grassberger
and Kantz, 1985).

Fortunately, the homoclinic tangencies with a small sum of curvatures, which
are the ones we are most interested in, are the easiest to find numerically. This is
even more fortunate considering the fact that points of homoclinic tangency are
dense on the attractor. This could lead one to assume that there is no gain in
linking certain properties to homoclinic tangencies. However, there is something
to be gained if we do not consider all homoclinic tangencies, but only those with
a rather small sum of manifold curvatures. These are the homoclinic tangencies
we mean when we talk about connections between homoclinic tangencies and
regions of enhanced predictability in Sec. 4.3.

4.2 Calculation of homoclinic tangencies

The method used to calculate homoclinic tangencies derives directly from the
definition. Along with the system state ~x, a vector (randomly initialised) is iter-
ated with the Jacobians D M(~x) at the point of the trajectory. This vector will
point in the direction of the unstable manifold after a transient time. From then
on, vector and point of the trajectory are stored. By inverting time (i. e., by
using the stored trajectory in reverse order), adopting the same procedure yields
the direction of the stable manifold at each point of the trajectory. Whenever the
angle between the two directions is less than some predetermined small value,
a homoclinic tangency is identified. The application of this method of finding
homoclinic tangencies is restricted to two-dimensional maps, whereas the calcu-
lation of the local exponents described in section 2.1 has no such limitation in
principle.

An alternative method of computing homoclinic tangencies is presented by
Jaeger and Kantz (1997). It is based on the fact that the most expanding direction
in tangent space over n iterations is perpendicular to the tangent of the attractor,
provided that n is large enough.
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Figure 4.2: Points of homoclinic tangency (diamonds) and attractor for the Hénon
map (a = 1.4, b = 0.3). Filled symbols denote primary homoclinic tangencies.

Some of the homoclinic tangencies of the Hénon system are plotted together
with the attractor in Fig. 4.2. The primary homoclinic tangencies are represented
by the four filled diamonds with x2 ≈ 0 or x2 ≈ −0.1. In the case of the standard
map, the homoclinic tangencies for one initial position are shown in Fig. 4.3. The
corresponding trajectory eventually fills the chaotic layer. Near the origin, i. e.,
in the corners of the left part of Fig. 4.3, not so many homoclinic tangencies were
found, whereas the connecting arcs are quite densely covered. Furthermore, one
can see some structure in the region around the origin (s. right part of Fig. 4.3).
This feature will be discussed in greater detail in the following section.

4.3 Connection between homoclinic tangencies

and regions of enhanced predictability

Based on the argument presented in Sec. 4.1, the predictability can be expected to
be better when the system is in a state near a homoclinic tangency. Conversely,
the most deteriorated predictability should occur when the angle between stable
and unstable manifold is largest, i. e., close to a right angle. In the following, we
will compare these hypotheses with the results obtained for the Hénon map and
the standard map.

Overview images of local exponents (and in the following chapter also of error
growth factors, in the case of finite initial errors) are all created by the same
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Figure 4.3: Points of homoclinic tangency for the standard map (K = 0.6). The
left part shows only points of homoclinic tangency inside the chaotic layer. The
right part shows a magnification of the region around the origin, with ordinary
points inside the chaotic layer shown in grey and homoclinic tangencies in black.

procedure. This is explained here lest we interrupt the discussion of results. For
good examples of what such an image looks like the reader is referred to Figs. 4.10
(p. 60) and 4.12 (p. 61).

These images are made up of many small cells, formed by a rectangular grid
laid over the region of interest. For each cell, the number of points of a given
trajectory that fall into this cell is recorded, along with the corresponding values
of λ

(τ=1)
1 or ρ

(τ=1)
1 . In the end each cell is coloured according to the average value

recorded for this cell. If a cell is never visited there are no values associated with
it, so it remains white.

Ideally, each point along the trajectory would give one point in the image. A
straightforward plotting of the values, however, would lead to one of the following
situations: Either many points will overlap other points, and only the colour of
the topmost point, i. e., the last one drawn and thus the last one along the
trajectory, will be visible. Or the points are small enough not to overlap, but in
this case they are typically too small to give a good impression of the structure
and the distribution of values in state space. This is why we have chosen the
visualisation using averages over a fine rectangular grid.

Not surprisingly, the method we use has its drawbacks, too. Apart from
the finite graining, another possible source for misleading images lies in extreme
values that can change the average. To prevent this, the cells should be made
small enough. In the figures shown herein, the average number of input points
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per cell is in the low hundreds for overview pictures like Figs. 4.10 and 4.11.
For more detailed figures showing magnifications, there are typically a few dozen
points in each cell. One can make the cells even smaller, of course, but this leads
to more cells being empty (white), since no point of the trajectory happens to
lie inside. The final image will then have “holes” where in fact the trajectory
would eventually pass by — it would not only be less pleasant to the eye, but
also more difficult to interpret correctly. Such “holes” in the image can also
arise when comparing different prediction times τ . The number of input points
can be calculated as the number of points along the trajectory divided by τ .
Consequently, taking a given trajectory and region of state space, increasing the
prediction time τ will typically produce white holes inside of the coloured parts.
This has to be kept in mind when comparing images for different τ .

From what has just been said the obvious idea to remove white cells is to
start trajectories in them and then calculate the desired value. More precisely,
one should start the trajectories in a preimage of a point in the cell for the finite
time Lyapunov exponents, since the algorithm needs some iterations to find the
right directions of errors associated with the Lyapunov exponents (s. Sec. 2.1.3).
Alternatively, one can start with a given point and do some n iterations backwards
as well as forwards in time. Then, the information gained on the directions of
error growth can be used to approximate the Lyapunov vectors ~li. This has not
been done in this work, but is possible in principle. The removal of white gaps is
even easier for the maximum growth exponents, since they do not depend on the
past of the trajectory in any way. The same holds for the error growth factors to
be discussed in the next chapter.

4.3.1 Hénon map

The distribution of local exponent values in state space for the Hénon map with
parameter values of a = 1.4 and b = 0.3 can be seen in Fig. 4.4. However, since
the attractor does not cover a large portion of state space, this kind of picture is
only useful as a general overview.

In this section we understand enhanced predictability to mean that both
values of the finite time Lyapunov exponents are negative, λ

(τ)
1,2 < 0, ensuring

that any infinitesimal error will shrink over the time span τ . Regions with such
enhanced predictability can be seen to exist in Figs. 4.5 and 4.6; indeed, they are
related to points of homoclinic tangency. By comparing different values of the
prediction time horizon τ , one can see that around some homoclinic tangencies
the regions of good predictability do not show up for all τ , e. g., at x1 ≈ 0 for
τ = 1.

Some of the homoclinic tangencies cannot be linked with a region of good
predictability for any values of τ studied. This might be due to the statistics
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predictability

Figure 4.4: Hénon map (a = 1.4, b = 0.3): Local averages of λ
(τ=1)
1 (left) and

ρ
(τ=1)
1 (right). See p. 53 for details about how this and similar plots are produced.

-2

-1

0

1

2

-2 -1 0 1 2

x
2

x
1

λ1,2
(τ =1) < 0

HT

Figure 4.5: Hénon map (a = 1.4, b = 0.3): Comparison of regions of enhanced

predictability (λ
(τ=1)
1,2 < 0, filled circles) with points of homoclinic tangency (dia-

monds) for τ = 1 time step.

being not good enough, since the regions of good predictability get smaller upon
increasing τ . This reduces the probability of hitting such a region with a finite
piece of trajectory.

To get more insight into the dependence of the size of the region of enhanced
predictability on τ , we study the region around an arbitrarily chosen homoclinic
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Figure 4.6: Hénon map (a = 1.4, b = 0.3): Comparison of regions of enhanced

predictability (λ
(τ=3)
1,2 < 0, filled circles) with points of homoclinic tangency (dia-

monds) for τ = 3 time steps.
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Figure 4.7: Enlargement of a region of enhanced predictability for the Hénon
attractor (a = 1.4, b = 0.3) for τ = 3 (left) and τ = 5 (right): Points with

λ
(τ)
1 < 0 and λ

(τ)
2 < 0 are shown in grey, other points in black. Diamonds show

homoclinic tangencies, the crosses mark the points used to calculate the length
of the region of enhanced predictability.

tangency. To this end, we examine the region around x1 ≈ 0, x2 ≈ −1.4 with
respect to the length of the segment of the attractor showing enhanced pre-
dictability. Figure 4.7 shows a magnification of this region, with points ~x for
which λ

(τ)
1 (~x) < 0 and λ

(τ)
2 (~x) < 0 shown in grey.
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Figure 4.8: Scaling of the size of a region of enhanced predictability with τ for
the Hénon map (a = 1.4, b = 0.3). The ordinate shows the logarithm of the
length d of the region (see text for a description of how d is calculated). The
dashed line represents a linear least squares fit: ln d(τ) = −0.50τ − 0.21.

The size of the region of enhanced predictability is measured by considering
the “border” values to the left and right of this region (marked with crosses
in Fig. 4.7), i. e. the first points for which at least one finite time Lyapunov
exponent is positive. The Euclidean distance d of these border points is what we
call the size of the region of enhanced predictability. Even though it seems like
there are only two “lines” of points in the region considered, one has to keep in
mind that there are actually infinitely many1. For practical reasons we restrict
the border points to the lower “line” in Fig. 4.7.

The logarithm of the distance of border points is plotted versus τ in Fig. 4.8
and shows that the size of the regions of enhanced predictability shrinks expo-
nentially with increasing prediction time τ .

A possible connection between regions of extraordinarily small values of the
maximum growth exponents ρ(τ) and homoclinic tangencies was investigated, but
could not be established as for the finite time Lyapunov exponents.

The opposite extremes – nearly orthogonal intersections of stable and unstable
manifolds and deteriorated predictability – are found to be not related, regardless
of the kind of local exponents used.

1The transversal structure of the Hénon attractor is a Cantor set (Hénon, 1976).
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Figure 4.9: Regions with enhanced and poor predictability for the standard map
(K = 0.6), according to finite time exponents λ

(τ=1)
1 for a time horizon of one

step. Plotted points have a largest exponent of less than the 0.05-percentile (left
panel) or more than the 0.95-percentile (right panel).

4.3.2 Standard map

Let us now discuss the results in conservative systems. The regions with enhanced
and poor predictability are shown in Fig. 4.9 for the standard map at K = 0.6.
An important fact to note is that the regions for good and bad predictability
occur very close to each other. In fact they are complexly intertwined, which
makes it rather difficult to develop a measure for the prediction of predictability.
Slight changes in the considered region in state space may lead to a dramatic
change in predictability.

To get an idea of the distribution in state space of the local exponent val-
ues, Figs. 4.10 and 4.11 show an overview of the whole 2π × 2π unit cell that
determines all values due to periodicity.

The relation between homoclinic tangencies and points of enhanced pre-
dictability is exemplarily illustrated for the standard map in Fig. 4.12, which
shows a magnification of the region around the origin. The homoclinic tangen-
cies are marked by black dots. The colour shows the local average of the largest
finite time exponent λ

(τ=1)
1 using grid cells of side length 0.005. In the upper

left and lower right branches, the homoclinic tangencies correspond well with the
meandering pattern exhibited by the dark blue parts, which represent states with
good predictability for one time step (τ = 1). Similar curves of black points in
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Figure 4.10: Standard map (K = 0.6): local average of largest finite time Lya-

punov exponent λ
(τ=1)
1 . See p. 53 for details about how this and similar plots are

produced.

Figure 4.11: Standard map (K = 0.6): local average of largest maximum growth

exponent ρ
(τ=1)
1 .

the lower left and upper right parts of Fig. 4.12 correspond to a pattern visible
for τ = 8 (Fig. 4.13). Note that the colour scale is the same as in Fig. 4.12, the

absence of intense colours is due to the smaller width of the distribution of λ
(τ=8)
1

compared to that of λ
(τ=1)
1 .

The structure of these homoclinic tangencies clearly resembles the behaviour
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Chapter 4. Local exponents and homoclinic tangencies

Figure 4.12: Standard map (K = 0.6): points of homoclinic tangency (black)

and local average of λ
(τ=1)
1 (colour) around the origin.

Figure 4.13: Standard map (K = 0.6): points of homoclinic tangency (black)

and local average of λ
(τ=8)
1 (colour). The colour code is the same as in Fig. 4.12,

the smaller width of the distribution of λ
(τ=8)
1 leads to less intense colours.

of the stable and unstable manifolds of a fixed point. In our case, the point (0, 0)
is the fixed point and the local direction of its stable manifold leaves the picture
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predictability

in the lower right and upper left, while the unstable manifold near the origin lies
almost on the diagonal x2 = x1. After going along the arcs visible in Fig. 4.3,
the stable manifold approaches the fixed point from the directions in which the
unstable manifold leaves the fixed point, oscillating more and more wildly. The
pattern of the black dots is reminiscent of these oscillations.

As in the case of the Hénon map, nearly orthogonal intersections of stable and
unstable manifolds and deteriorated predictability are found to be unrelated to
each other either, independent of the kind of local exponents used.
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Chapter 5

Predictability studies using
ensembles

In the two previous chapters we investigated error growth using local exponents,
i. e. we implicitly assumed the errors to remain small enough for the linearisation
to remain valid. In this chapter we drop this assumption and follow the evolution
of finite errors as governed by the full nonlinear system.

Such studies are necessary whenever the initial error size is too large or the
prediction time horizon is too long for the local exponents to yield an accurate
description of error growth. This is the common situation in practice, where
even in the case of a perfect model the initial state cannot be determined to
infinite accuracy by measurements. This is the reason why operational weather
forecasting models of today, for example, use methods involving the full nonlinear
system (e. g. Buizza, 1996; Toth and Kalnay, 1993).

One such method is the study of an ensemble of trajectories. In a nutshell,
this method can be described as follows: initialise a bunch of trajectories ~yj(t0)
around the system state ~x(t0), let all these states evolve for an amount of time τ
and compare these states ~yj(t0 + τ) with the “true” state ~x(t0 + τ). A detailed
description of which quantities are used to describe predictability will be given
in the following section.

Using the nonlinear system for an ensemble of trajectories in order to determine
error growth increases the computational cost. This is the price one has to pay for
the increase in reliability, or for the possibility of estimating the “predictability”
of the forecast.

The larger the ensemble one uses, the more costly the calculations will be.
From this it is obvious that choosing a “good” size of the ensemble is vital for
finding an acceptable trade-off between reliability of results and computational
cost. Therefore, it would be very helpful to have a tool at hand which provides
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5.1. Error growth factors as a measure of divergence of trajectories

an estimate of the minimal ensemble size needed for a certain desired reliability.

This chapter is organised as follows: In Sec. 5.1 we introduce the concept of
ensembles. We also define the quantities that are now used in place of local
exponents to quantify the predictability of the initial state, the error growth
factors. After this technical part we come to the results. In Sec. 5.2 histograms of
error growth factors are presented for the example systems studied, the standard
map and the quasiperiodicity map. A comparison of results for local exponents
and error growth factors is given in Sec. 5.3. Then we turn to the systematics
found in the results for the nonlinear error growth factors in Secs. 5.4 and 5.5. In
particular, we show that the error growth in the worst case depends on prediction
time in a systematic way (Sec. 5.4). Furthermore, the distributions of error
growth factors converge with a characteristic dependence on ensemble size, a
fact that can help to determine the minimal ensemble size needed for a given
error tolerance (Sec. 5.5). In this last section results for the Hénon map are
also presented, in the rest of this chapter we focus on the standard map and the
quasiperiodicity map.

5.1 Error growth factors as a measure of diver-

gence of trajectories

In ensemble studies, not only a single trajectory ~x(t) of the dynamical system
is followed over a certain period of time, but a whole bunch, or ensemble, of
trajectories. These are typically initialised at some time t0 around the current
state ~x(t0) of the reference trajectory (also called the “true” trajectory):

~yj(t0) = ~x(t0) + ~εj, j ∈ {1, . . . , Nens} , (5.1)

where Nens is the size of the ensemble, ~yj denote the states of the ensemble
members and ~εj are the initial separations. All states, the reference as well as
all ensemble members, evolve according to the full nonlinear system dynamics.
After some chosen prediction time τ , for each ensemble member the error growth
factor m

(τ)
j of the distance from the true state with respect to the initial distance

is calculated:

m
(τ)
j (x(t0)) =

‖~yj(t0 + τ) − ~x(t0 + τ)‖
‖~yj(t0) − ~x(t0)‖

. (5.2)

These factors are then used to measure the predictability of the original state
x(t0). In particular, the minimum m

(τ)
min(x(t0)), maximum m

(τ)
max(x(t0)) and av-

erage m
(τ)
avg(x(t0)) of the ensemble are considered. To simplify notation, we will

64



Chapter 5. Predictability studies using ensembles

from now on suppress the explicit dependence of the magnification factors m
(τ)
j

on x(t0).

The maximum error growth factor m
(τ)
max obviously describes the worst case

regarding predictability over the time span τ for the given starting position.
Correspondingly, m

(τ)
min stands for the best case one can encounter, and m

(τ)
avg

can be interpreted as a kind of “average” error growth that is to be expected
when nothing about the initial direction of the error is known in advance. When
comparing such computations to real world situations, the results for “worst-
case error growth”, for example, can only be reliable if the underlying ensemble
reflects the frequency of various initial errors in the real world. Since we are
not concerned with such comparisons in this work, we can choose our ensembles
in the simplest possible way. Due to this no results stemming from a preferred
orientation of initial errors will occur, for example. In general, the actual increase
of the error for a given ensemble member ~yj depends, of course, not only on the
size, but also on the orientation α(t0) of the initial error ~εj.

It should be noted that the modulo operations contained in the equations of
motion of the dynamical systems studied within this chapter are only applied
after the distances of ensemble states from the true state have been calculated,
i. e. after τ iterations. This ensures that no artefacts are produced by shifting
some ensemble members that happened to cross the boundary of the unit cell.

There are a number of free parameters to be set, some of which will be varied
in order to study the dependence of predictability on their values. All results pre-
sented in the following sections were obtained with a particular way of initialising
the distribution of ensemble states. Namely, all initial separations are of the same
size, d0, the direction is uniformly random. Other initial distributions were com-
pared against this choice: Firstly, a uniformly random size ≤ d0 with uniformly
random direction. Secondly, Gaussian distributions with standard deviation d0

in all coordinates. These alternative ways of initialising the ensemble lead to the
same distributions of the magnification factors m. Examples of histograms are
shown in Figs. 5.1 and 5.2. For τ = 1 one can see small differences, but the
distributions are almost identical. For the higher prediction time of τ = 3 the bin
width was increased, because otherwise the distributions turn out to be to ragged
to be easily comparable. In this case, too, the distributions are virtually identi-
cal. This result justifies the procedure of using only one kind of initialisation for
the random initial perturbations.

Especially in the case of high-dimensional models of real-world processes, cer-
tain directions of initial error can be more probable than others and can have
a larger magnitude. For example, if wind velocities are more difficult to deter-
mine than temperatures, then the initial distribution of the ensemble members
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Figure 5.1: Standard map (K = 0.6, Nens = 1000, d0 = 0.001): Distributions of

one-step error growth factors m
(τ=1)
avg (left) and m
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max (right) for different initial

error distributions: fixed size d0 (solid line), Gaussian (dashed) and uniformly
random size (dotted).
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Figure 5.2: Same as Fig. 5.1, but for τ = 3.

should be changed accordingly. In the case of Gaussian distributions of errors in
each direction of state space, this can be accomplished by simply increasing the
standard deviation of the appropriate component.

The value of d0, together with the time horizon τ , are parameters that are
varied to study predictability. It turned out that both of them have a strong
influence on the predictability. In practice, the size Nens of the ensemble is very
important since it is limited by the available computing power. Therefore, results
for different values of Nens are compared with each other to determine a minimal
value of Nens needed to ensure a reasonable estimate of predictability.
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Figure 5.3: Standard map (K = 0.6, Nens = 20000, d0 = 0.001): Distributions

of error growth factors m
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Figure 5.4: Same as Fig. 5.3, but for the standard map at K = 4.2.

5.2 Distributions of error growth factors

We calculate the error growth factors for many initial states x(t0), taken from a
long piece of trajectory. The number of initial states used was typically 105. One
can get a first impression of the occurring values by looking at the distribution of
m

(τ)
min, m

(τ)
avg and m

(τ)
max. The corresponding histograms are shown in Figs. 5.3 and

5.4 for the standard map and in Figs. 5.5 and 5.6 for the quasiperiodicity map.
In the case of the standard map the distribution of m

(τ)
min does not change its

general structure when going from τ = 1 to τ = 2, but the small values become
more frequent. The distributions of m

(τ)
avg and m

(τ)
max generally become broader

and flatter and are shifted towards higher values. For the quasiperiodicity map
the broadening and shifting is much more pronounced for m

(τ)
avg and m

(τ)
max. For
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Figure 5.5: Quasiperiodicity map (c1 = 0.2, c2 = 0.3, c3 = 0.6; Nens = 20000,

d0 = 0.001): Distributions of error growth factors for m
(τ)
max (solid line), m
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(dashed) and m
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avg (dotted), τ = 1 (left) and τ = 2 (right).
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Figure 5.6: Same as Fig. 5.5, but for the quasiperiodicity map with c1 = 0.42,
c2 = 0.3, c3 = 1.6.

m
(τ)
min, the same behaviour can be seen as in the standard map, small values are

found more often.

These figures clearly show an important difference between the two systems:
The distributions for the standard map have very sharp peaks near the ends of
the distributions. On the other hand, the quasiperiodicity map exhibits more
Gaussian-like distributions, cut off at m = 0 in the case of m

(τ)
min. This difference

expresses a fundamental difference of the underlying dynamical systems, lead-
ing us to believe that our results are general, valid for many chaotic dynamical
systems.

One should keep in mind that the system sizes `std for the standard map
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and `qp for the quasiperiodicity map are different. For example, the relative size
of an initial error of d0 = 0.001 is ≈ 0.0159% of `std and 0.1% of `qp. These
are still quite small errors, but considerably higher values of d0 were studied as
well. The different typical sizes of the systems do not facilitate the comparison of
results, but this is not a grave disadvantage since we are interested in the general
behaviour, not so much in the precise numbers for this or that system.

5.3 Comparison of error growth factors and lo-

cal exponents

In this section we compare the error growth factors with the corresponding values
of the local exponents. We do this by looking at the maximum error growth factor
m

(τ)
max and the largest local exponents λ

(τ)
1 and ρ

(τ)
1 . Actually these values cannot

be compared as such, because the latter are defined as exponents (cf. definitions
(2.10), (2.11) and (5.2)). The same values should show up in these quantities (we

omit the analogous expressions for λ
(τ)
1 ):

m(τ)
max ←→ exp(τρ

(τ)
1 ) or

1

τ
ln m(τ)

max ←→ ρ
(τ)
1 .

(5.3)

If they differ significantly, we can conclude that the approximation inherent in
the use of local exponents has broken down.

Additionally, this provides a check to whether the error growth factors give
sensible values. In the case of small initial deviation d0 and short prediction time
τ , they should describe the same amount of error growth as the local exponents.

In order to compare the local properties in state space, we need to go be-
yond the distributions discussed in the previous section. Instead, we use two-
dimensional plots of state space to visualise the results, coloured according to
the local value of error growth factor or local exponent.

How these plots are obtained has already been explained in detail at the
beginning of chapter 4.3. To recapitulate: For each point along a trajectory
we determine the grid cell to which it belongs and add this point’s value (error
growth factor or local exponent) to this grid cell’s memory. After all points have
been dealt with we calculate the average value for each grid cell and colour the
cell according to this average value. Some grid cells may never be visited, which
results in these grid cells remaining white.
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5.3. Comparison of error growth factors and local exponents

Figure 5.7: Standard map (K = 0.6), τ = 1: Comparison of transformed

maximum error growth factor m
(τ)
max (left; Nens = 10000, d0 = 0.001) and largest

local exponents ρ
(τ)
1 (middle) and λ

(τ)
1 (right).
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Figure 5.8: Same as Fig. 5.7, but for K = 4.2.

Let us first take a look at the standard map for short prediction times τ and
small initial errors d0. We get the results shown in Fig. 5.7 for K = 0.6 and
Fig. 5.8 for K = 4.2. Already here it is obvious (at least for K = 4.2) that
one should only compare the transformed values of the error growth factors with
the maximum growth exponents, since the finite time Lyapunov exponents show
many features that are not present in the m

(τ)
max data. These features are related

to the past of the system via its dynamics, but the past states do not influence
the maximum error growth. Furthermore, it is only reasonable to compare the
error growth factors with the maximum growth exponents, because of their very
definition. They are defined to capture the maximum growth of an infinitesimal
initial error possible over a given period of time.

For the study of the effects of longer prediction times τ and larger initial
errors d0 we focus on the higher parameter value of K = 4.2. The reason for
this is simply that a much larger part of state space is visited and the figures are
therefore much easier to compare.

From Fig. 5.9 it is clear that for small initial errors like d0 = 0.001, the
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Figure 5.9: Standard map (K = 4.2): Comparison of transformed maximum

error growth factor m
(τ)
max (left; Nens = 10000, d0 = 0.001) and largest maximum

growth exponent ρ
(τ)
1 (right). Top row is for τ = 3, bottom row for τ = 5.

maximum growth exponents produce good results up to moderate values of τ .
The approximately constant range of the ρ

(τ)
1 values when varying τ stems from

the fact that the local exponents are defined as an “average” over the number of
time steps considered.

When increasing the initial error size d0 the linearisation becomes less and
less accurate. This results in the plots showing more and more discrepancies. For
τ = 1 this is difficult to see because of the simple spatial structure. Therefore,
Fig. 5.10 shows data for τ = 2. The main difference between these plots is in the
neighbourhood of the diagonal x2 = 2π−x1. This can be understood qualitatively
by considering the mapping involved. A point (x1, 2π−x1) is mapped to (0, 2π−
x1), since the term K sin(x1 + x2) does not contribute. If, however, a small error
is present then the effect of the additional sine term will be maximal when the
derivative is maximal, i. e. when the argument of the sine is zero. In other words,
initial errors are most harmful when the original point is of the form (x1, 2π−x1).
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Figure 5.10: Standard map (K = 4.2), τ = 2: Comparison of the largest

maximum growth exponent ρ
(τ=2)
1 (top left) and transformed maximum error

growth factors m
(τ)
max (Nens = 10000) for d0 = 0.001 (top right), d0 = 0.1 (bottom

left), and d0 = 0.3 (bottom right).

In the case of the quasiperiodicity map we start with the parameter values of
c1 = 0.2, c2 = 0.3, c3 = 0.6, for which the dynamics is less chaotic and fills more
of state space.

The comparison of the transformed maximum error growth factors m
(τ)
max and

the largest local exponents for τ = 1 (Fig. 5.11) is even clearer than the results

for the standard map. There is a very precise correspondence between log m
(τ)
max

and ρ
(τ)
1 , whereas λ

(τ)
1 seems to be completely unrelated to the former two.

Increasing the prediction time τ leads to the results shown in Fig. 5.12. If the
initial error size is small (here d0 = 0.001) there is no significant difference even
at τ = 8. The reason for this is that the nonlinearity is relatively weak (c3 = 0.6);
the other, more chaotic parameter set draws a different picture (s. below).

The effect of increasing the initial error size d0 is shown in Fig. 5.13. Up
to a value of d0 = 0.01 the increase of initial error size does not show at all.
Drastic changes only emerge at higher values of d0 that already constitute a
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Figure 5.11: Quasiperiodicity map (c1 = 0.2, c2 = 0.3, c3 = 0.6), τ = 1:

Comparison of transformed maximum error growth factor m
(τ)
max (left; Nens =

10000, d0 = 0.001) and largest local exponents ρ
(τ)
1 (middle) and λ

(τ)
1 (right).
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Figure 5.12: Quasiperiodicity map (c1 = 0.2, c2 = 0.3, c3 = 0.6), τ = 8:

Comparison of transformed maximum error growth factor m
(τ)
max (left; Nens =

10000, d0 = 0.001) and largest maximum growth exponent ρ
(τ)
1 (right).

considerable fraction of the system size. The absolute value of error growth per
iteration decreases for increasing d0 as can be seen from the colours. This due to
the folding inherent in the mapping (not the modulo operation): Points starting
close together diverge at first because of the stretching, but later they are folded
together again since the attractor is finite.

The more chaotic parameter set for the quasiperiodicity map (c1 = 0.42, c2 =
0.3, c3 = 1.6) yields the following results. Comparing the transformed maximum

error growth factors m
(τ)
max and the largest local exponents for τ = 1 (Fig. 5.14),

one finds that the finite time Lyapunov exponents again show many features that
are not present in the other plots, whereas the maximum growth exponents and
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Figure 5.13: Quasiperiodicity map (c1 = 0.2, c2 = 0.3, c3 = 0.6), τ = 8:

Comparison of transformed maximum error growth factors m
(τ)
max (Nens = 10000)

for d0 = 0.01 (top left), d0 = 0.1 (top right), d0 = 0.2 (bottom left) and d0 = 0.3

(bottom right). The corresponding plots for d0 = 0.001 and ρ
(τ)
1 look exactly like

the one for d0 = 0.01.

the transformed error growth factors give almost identical results.
Increasing the prediction time τ leads to the results shown in Fig. 5.15. For a

small initial error size (here d0 = 0.001) there is no big difference even at τ = 5,
but the resemblance is worse than for the less chaotic parameter set at τ = 8.

Figure 5.16 shows the effect of increasing the initial error size d0 for τ = 2
(as in Fig. 5.10 for the standard map). Deviations from the maximum growth
exponent values become obvious at d0 = 0.01 in this case.

We have shown that the maximum error growth factors m
(τ)
max compare well

with the largest maximum growth exponent ρ
(τ)
1 , but not at all with the largest

finite time Lyapunov exponent λ
(τ)
1 . In both systems, the correspondence between

m
(τ)
max and ρ

(τ)
1 remains close up to moderate values of τ even for the more chaotic

parameter set. Furthermore, an increase in initial error size d0 invalidates the
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Figure 5.14: Quasiperiodicity map (c1 = 0.42, c2 = 0.3, c3 = 1.6), τ = 1:

Comparison of transformed maximum error growth factor m
(τ)
max (left; Nens =

10000, d0 = 0.001) and largest local exponents ρ
(τ)
1 (middle) and λ

(τ)
1 (right).

The actual values of λ
(τ)
1 go as low as −3, but the same colour mapping is used

for ease of comparison.

linear approximation sooner for the more chaotic parameter set.

5.4 Dependence of the worst-case error growth

on prediction time

We now go back to the histograms of m
(τ)
max as seen in Figs. 5.3–5.6 and focus on

their right ends, i. e. the largest error growth factor found when comparing all
initial positions. We will denote this by M (τ):

M (τ) = max
x0

m(τ)
max(x0). (5.4)

This quantity represents the worst case for a prediction of time τ when the initial
state is not known. The dependence of M (τ) on τ is shown in Fig. 5.17 for the
standard map and in Fig. 5.18 for the quasiperiodicity map, both with the more
chaotic parameter values (the number of initial states used is 105/τ). The semi-
logarithmic plots clearly show an exponential increase for small values of τ , in
particular for the standard map. For comparison, the dotted line shows exp(ρτ),
where exp(ρ) is the largest singular value for one time step. This means that for
τ = 1, the error grows at most by a factor of exp(ρ), provided that the implicit
linearisation is valid. If, after one iteration, the error lies in the direction of
maximum error growth of the new state x(t0 +1), the growth over two iterations
will be exp(2ρ). Thus, the fact that the solid lines are below the dotted lines in
Figs. 5.17 and 5.18 is reasonable, because errors will very rarely happen to point
in the “most unpredictable” directions over several iterations.
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Figure 5.15: Quasiperiodicity map (c1 = 0.42, c2 = 0.3, c3 = 1.6): Comparison of

transformed maximum error growth factor m
(τ)
max (left; Nens = 10000, d0 = 0.001)

and largest maximum growth exponent ρ
(τ)
1 (right). Top row is for τ = 3, bottom

row for τ = 5.

Actually it is more appropriate to compare M (τ) with exp(ρ(τ)τ), the corre-
sponding maximum error growth of the linearised system over time τ . This gives
an indication where the linearisation breaks down. For example, in the case of
the quasiperiodicity map this does not happen yet at τ = 5 for d0 = 10−3 but
already at τ = 2 for d0 = 10−1 (s. Fig. 5.19).

These findings compare well with Figs. 5.9–5.10 for the standard map and
Figs. 5.15–5.16 for the quasiperiodicity map: The highest values over the whole
unit cell in these figures are the values shown in Fig. 5.19. As we have noted
before, for d0 = 0.001 the maximum growth exponents produce very good results
up to τ = 5 for both systems (s. Figs. 5.9, 5.15). Comparing different values of
d0 for τ = 2 (s. Figs. 5.10, 5.16), we find that for the standard map a significant

difference of the maximum error growth factors from ρ
(τ)
1 is first seen for d0 = 0.3.

For the quasiperiodicity map, the differing values show up already for d0 = 0.01.

Interestingly, the influence of the nonlinearity does not lead to an increase of
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Figure 5.16: Quasiperiodicity map (c1 = 0.42, c2 = 0.3, c3 = 1.6), τ = 2: Com-

parison of the largest maximum growth exponent ρ
(τ)
1 (top left) and transformed

maximum error growth factors m
(τ)
max (Nens = 10000) for d0 = 0.001 (top right),

d0 = 0.01 (bottom left), and d0 = 0.1 (bottom right).

error growth. In fact the errors do not grow as fast as in the linear system, which
can already be seen by looking at Figs. 5.17 and 5.18. This is due to the folding
in state space that occurs because of the nonlinearity.

The behaviour of M (τ) for large times is qualitatively different. The right,
double-logarithmic plots of Figs. 5.17 and 5.18 suggest a power-law

M (τ) ∼ τα. (5.5)

Values of the exponent α are shown in Fig. 5.20. They were obtained from linear
least squares fits of the interval τ ∈ [10; 20], except for the smallest d0 in the case
of the quasiperiodicity map (cf. Fig. 5.18). A power-law dependence of α on d0

is found to agree well with the data.
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Figure 5.17: Standard map (K = 4.2, Nens = 10000): Dependence of M (τ) on τ .
The curves represent different values of d0, from 10−4 (top) to 3×10−1 (bottom).
The dotted line shows an exponential increase, see text for details. τ is shown
on a linear scale (left) and on a logarithmic scale (right).
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Figure 5.18: Same as Fig. 5.17 for the quasiperiodicity map (c1 = 0.42, c2 = 0.3,
c3 = 1.6; Nens = 10000). The curves represent different values of d0, from 10−4

(top) to 2 × 10−1 (bottom).

We have shown a systematic dependence of M (τ), representing the worst-case
error growth for any initial state, on prediction time horizon τ . For short times
we find an exponential increase of M (τ) consistent with the maximum growth
exponents. For long prediction times M (τ) grows according to a power law,
M (τ) ∼ τα. The scaling exponent α depends systematically on the initial error
size d0, again according to a power law.
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standard map (K = 4.2; left) and the quasiperiodicity map (c1 = 0.42, c2 = 0.3,
c3 = 1.6; right).
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Figure 5.20: Double-logarithmic plot of scaling exponent α of M (τ) for large τ .
Results for the standard map (K = 4.2; left) and the quasiperiodicity map (c1 =
0.42, c2 = 0.3, c3 = 1.6; right), based on the right parts of Figs. 5.17 and 5.18.
Linear least-squares fits were made for τ ≥ 10, except for the quasiperiodicity
map at d0 = 10−4, where only τ ≥ 12 were used; error bars represent one standard
deviation.

5.5 Minimal ensemble size needed

In this section we present results that are useful for finding a minimal ensemble
size. Here, we focus on the more chaotic parameter sets of the standard map (K =
4.2) and the quasiperiodicity map (c1 = 0.42, c2 = 0.3, c3 = 1.6). Additionally,
we also present results for the dissipative Hénon map.

In order to define a minimal size Nmin
ens of an ensemble, one needs a quanti-
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Figure 5.21: 1− r for the standard map (K = 0.6); τ = 1, d0 = 0.001 (left) and
d0 = 0.2 (right): Convergence of data with ensemble size as calculated by linear

correlation r. Points are for m
(τ)
max (squares), m

(τ)
avg (diamonds) and m

(τ)
min (circles).

Lines connecting the points are only guides to the eye.
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Figure 5.22: 1− r for the standard map at K = 4.2; τ = 1, d0 = 0.001 (left) and
d0 = 0.2 (right).

tative measure of how close the results for a given ensemble size Nens are to the
hypothetical results for an infinite ensemble. This number of ensemble members
Nmin

ens will of course depend on the prediction time τ and the size of the initial
error d0. In the following, we will use the largest ensemble (Nens = 20000) as a
reference, because it is our best approximation to an infinite ensemble. Results
for smaller ensembles are judged by how close they are to the reference. Mea-
surement of this closeness or “convergence” of ensembles is done in two ways, one
using the full spatially-resolved data, and one using histograms.
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Figure 5.23: 1 − r for the quasiperiodicity map (c1 = 0.42, c2 = 0.3, c3 = 1.6);
τ = 1, d0 = 0.001 (left) and d0 = 0.2 (right).
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Figure 5.24: 1− r for the Hénon map (a = 1.4, b = 0.3); τ = 1, d0 = 0.001 (left)
and d0 = 0.2 (right).

The first approach looks at each initial state x0 and compares results for, say,
m

(τ),Nens
max (x0) obtained by using different ensemble sizes with the corresponding

value for the reference ensemble, m̂
(τ)
max(x0) = m

(τ),Nens=20000
max (x0).

Measurement of convergence of the ensemble is done by calculating the linear
correlation r between m

(τ),Nens
max (x0) and m̂

(τ)
max(x0) for all x0, giving an ideal value

of r = 1 for identical values and r = 0 for uncorrelated data. Thus, 1 − r is
the error introduced by using a finite ensemble size. Its dependence on Nens is
shown exemplarily in Figs. 5.21 and 5.22 for the standard map at K = 0.6 and
K = 4.2, respectively, in Fig. 5.23 for the quasiperiodicity map and in Fig. 5.24
for the Hénon map. For ensembles that are large enough, a power-law decrease
of 1 − r can be seen in all cases. For m

(τ)
avg, this is valid over the entire range
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Figure 5.25: 1− r for the standard map (K = 4.2); d0 = 0.001, τ = 2 (left) and
τ = 4 (right).

of Nens, but the error is typically orders of magnitude larger than the errors for
m

(τ)
min and m

(τ)
max. The range over which m

(τ)
min and m

(τ)
max obey the power-law seems

to increase with d0. Whether this is a general behaviour and how it could be
interpreted is not clear to us.

If the ensemble is very small, the error of m
(τ)
min can remain almost constant

at a high value, especially in the case of the standard map at K = 4.2 and the
Hénon map. The range of ensemble sizes for which this behaviour occurs extends
towards increasing Nens for larger times τ (s. Figs. 5.25–5.27), whereas it depends
only very weakly on d0. In the quasiperiodicity map, this almost constant error
can only be found for higher values of τ ≥ 4 and for rather large d0 ≥ 0.1. In the
Hénon map this behaviour is most pronounced.

The error of m
(τ)
max shows a kink at intermediate values of Nens for small values

of d0 and τ in both systems. This kink separates two domains with an approxi-
mately linear dependence of 1− r on Nens in the double logarithmic plot. We do
not know where this kink stems from or how it should be interpreted.

The effect of longer prediction times τ can be seen exemplarily by comparing
Figs. 5.22 and 5.25 for the standard map, Figs. 5.23 and 5.26 for the quasiperi-
odicity map and Figs. 5.24 and 5.27 for the Hénon map. When the initial errors
are small (Figs. 5.25 and 5.27), only m

(τ)
min depends considerably on τ . This is

most likely due to the dependence of the error growth factors m on the initial
direction α0. If the smallest value m

(τ)
min is attained only for a narrow interval of

α0, small ensembles can be expected to produce a bad estimate of m
(τ)
min. When

initial errors are not small (Fig. 5.26), m
(τ)
max also shows a strong dependence on τ .

This comes from the fact that longer prediction times together with larger initial
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Figure 5.26: 1 − r for the quasiperiodicity map (c1 = 0.42, c2 = 0.3, c3 = 1.6);
d0 = 0.2, τ = 2 (left) and τ = 4 (right).
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Figure 5.27: 1− r for the Hénon map (a = 1.4, b = 0.3); d0 = 0.001, τ = 2 (left)
and τ = 4 (right).

errors create many more peaks in the distribution of error growth factors m over
direction α0 (not shown). Therefore it becomes more difficult to find the global

maximum, i. e. m
(τ)
max. Preliminary investigations have been done regarding the

distributions of error growth factors over initial error direction α0. These could
not be pursued further, however, for lack of time.

The power-law behaviour mentioned above, obeyed for large Nens, can be
expressed as a scaling exponent γ:

1 − r ∼ Nens
γ. (5.6)

This exponent is extracted from the data shown in Figs. 5.22–5.27, for example,
by applying a linear least squares fit over a suitable interval of Nens. The values
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Figure 5.28: Scaling exponent γ of 1 − r for large Nens. Top left: standard
map (K = 4.2); top right: quasiperiodicity map (c1 = 0.42, c2 = 0.3, c3 = 1.6);

bottom: Hénon map (a = 1.4, b = 0.3). The points show m
(τ)
max (squares) and

m
(τ)
avg (diamonds), solid lines connect points for τ = 1, dotted lines stand for

τ = 5. Error bars give an indication of the validity of the linear fit.

of γ for m
(τ)
avg and m

(τ)
max are plotted in Fig. 5.28 for τ = 1 and τ = 5. We find

that for m
(τ)
avg, the scaling exponent is constant and close to γ = −1 for a wide

range of initial errors d0 and times τ . For m
(τ)
max, however, the behaviour for

larger times is different, showing a possible increase for quite large errors d0.
This can be clearly seen for the standard map, but only guessed for the Hénon
map, whereas the quasiperiodicity map does not show such a clear increase. For
small prediction times, the scaling exponent of m

(τ)
max remains close to γ = −4

for almost the whole range of d0. One has to keep in mind that fitting a straight
line to the data is not always straightforward if d0 and τ are too large. The error
bars in Fig. 5.28 reflect this uncertainty.

The second approach adopted to measure “convergence” of ensembles does not
use the spatial information contained in the data, i. e. values of m

(τ)
max, for exam-

ple, are not associated with the state to which they originally belong. Instead,
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Figure 5.29: Relative entropy srel for the standard map (K = 0.6); τ = 1,

d0 = 0.001 (left) and d0 = 0.2 (right). Points are for m
(τ)
max (squares), m

(τ)
avg

(diamonds) and m
(τ)
min (circles).
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Figure 5.30: Relative entropy srel for the quasiperiodicity map (c1 = 0.42, c2 =
0.3, c3 = 1.6); τ = 1, d0 = 0.001 (left) and d0 = 0.2 (right).

the data is stored in histograms. These can then be compared for different en-
semble sizes Nens, where the largest ensemble is again used as a reference. In
order to determine the convergence of the ensemble, we calculate the relative
entropy srel of the histograms. This measure can be interpreted as the amount of
information lost due to the finiteness of the ensemble. It is widely used and has
a sound theoretical basis (Honerkamp, 1994). For identical distributions a value
of srel = 0 is obtained, for differing distributions srel < 0.

The results for the standard map are shown in Fig. 5.29 (cf. Fig. 5.21 for the
corresponding linear correlation data). The analogous graphs for the quasiperi-
odicity map are plotted in Fig. 5.30 (cf. Fig 5.23) and for the Hénon map in
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Figure 5.31: Relative entropy srel for the Hénon map (a = 1.4, b = 0.3); τ = 1,

d0 = 0.001 (left) and d0 = 0.2 (right). The sudden drop for m
(τ)
max in the left

plot is explained by the distributions for Nens = 5000 and Nens = 20000 (the
reference) being almost equal already.

Fig. 5.31 (cf. Fig. 5.24). Overall, the behaviour of srel is less systematic than
that of the linear correlation coefficient. The power law-behaviour found for the
latter can be seen here, too, but not as clearly (especially for small errors in the
standard map, Fig. 5.29). This fact can be attributed to the loss of information
that occurs when one puts all data in one histogram and forgets about the spatial
information. For the relative entropy, the convergence of m

(τ)
min is almost as good

as the one of m
(τ)
max, but this holds only for sufficiently small d0 and τ .

In addition, χ2-statistics were computed from the histograms. These turned
out to behave in the same qualitative way as the relative entropy. Therefore,
they are considered no more useful for our purpose than the measures already
introduced.

For practical purposes, the asymptotic behaviour of the error growth factors
with respect to ensemble size may not be very helpful. What is helpful, however,
is the actual ensemble size needed for the error 1 − r to drop below a predefined
tolerance, say, ε = 10−3. Defining this error again as the deviation from the case
Nens = 20000, we arrive at the values shown in Figs. 5.32 and 5.33 for m

(τ)
max.

For the standard map, one finds indication of yet another power law,

Nmin
ens ∼ d0

β, (5.7)

for larger initial errors d0 and small to intermediate prediction times τ . The result
for the quasiperiodicity map also shows such an increase, whereas the Hénon map
shows almost no change for higher values of d0 and no clear dependence on τ .
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Figure 5.32: Minimal ensemble size Nmin
ens needed for the error in m

(τ)
max to drop

below a given tolerance ε, calculated using linear interpolation in the double-
logarithmic plots like Figs. 5.21–5.26. Left: standard map at K = 4.2 with
ε = 10−6; right: quasiperiodicity map (c1 = 0.42, c2 = 0.3, c3 = 1.6) with
ε = 10−3.
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Figure 5.33: As Fig. 5.32, but for the Hénon map (a = 1.4, b = 0.3) with
ε = 10−3.

Even smaller error tolerances, like ε = 10−9, were also considered, but these
eventually lead to a levelling off at the largest ensemble size used. In all cases
considered we found a region of d0-values indicative of the power law in Eq. 5.7.
From the investigations done, a simple dependence of β on τ or ε could not be
established.

We have used various statistics to compare error growth factors for different
ensemble sizes. The linear correlation coefficient r produced the best results,
enabling us to obtain a power law behaviour for the “convergence” of m

(τ)
max and
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m
(τ)
avg for larger ensemble sizes. The scaling exponent γ remains almost constant

at γ ≈ −1 for m
(τ)
avg, γ ≈ −4 for m

(τ)
max, as long as the prediction time τ and the

initial error size d0 are not too large. Results have also been shown for a direct
calculation of the minimal ensemble size needed for convergence up to a given
tolerance ε, with a significant dependence on prediction time only present for
large initial errors.
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Chapter 6

Summary

We would like to end this treatise with a summary of the main results, together
with suggestions for possible future extensions of this work.

We have introduced local measures to characterise heterogeneity in state space
of the dynamics of conservative and dissipative chaotic systems. Our aim was
twofold: We want to quantify the heterogeneity in state space and we want to
assess the predictability of the system in a given state.

In chapter 3 we have investigated the distribution of finite time Lyapunov ex-
ponents of a trajectory in a chaotic layer of a conservative map. The distributions
of finite time Lyapunov exponents exhibit multiple maxima when the finite piece
of trajectory is long enough. We have shown that this multimodality is a result of
the particular structure of the dynamics in state space. There exists a hierarchy
of islands embedded in the chaotic sea, or, more specifically, in the chaotic layer
under consideration. This hierarchy of islands is reflected in the distribution of
finite time Lyapunov exponents. While the motion of the trajectories around
the primary islands is highly chaotic, it becomes less chaotic as the order of the
island in the hierarchy increases. The higher the order of the island, the closer is
the largest Lyapunov exponent to zero. Using a simple but easily implementable
method, we have separated pieces of the trajectory moving in layers of differ-
ent orders. The individual distributions of finite time Lyapunov exponents for
layers of different orders show clearly separated peaks. The overall motion is
characterised by jumps between the layers of different orders, which leads to an
overlap of all individual distributions of finite time Lyapunov exponents. As a
result we find multimodality where each extremum corresponds to the motion in
a particular chaotic layer.

Recently, Szezech et al. (2005) have reported their finding of a bimodal dis-
tribution of “finite time Lyapunov exponents” (FTLEs). It has to be stressed
that their FTLEs are what we call maximum growth exponents. It can be argued
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that one of their figures indicates that there are not only two peaks in the FTLE
distribution. One of the peaks, the one closer to zero, could in fact consist of
multiple peaks as a result of motion in layers of higher order. We think that our
study and the work of Szezech et al. (2005) complement each other in the follow-
ing sense: Their focus was on distinguishing regions with and without stickiness
by means of the distribution of (their) FTLE. We, on the other hand, set out to
explain the in fact multimodal distribution as stemming from islands of different
orders, using finite time Lyapunov exponents for a high number of steps.

Future research on this topic could investigate how the distributions of finite
time Lyapunov exponents in layers of different orders are affected by parameters
like: strength of the nonlinearity, length of the finite pieces of trajectory, and
possibly also the actual island structure (number of islands at the various orders).
The statistics will of course be of particular importance for such studies, especially
in order to establish quantitative results.

The results of chapter 4 relate the predictability (quantified via local expo-
nents) of dissipative and conservative dynamical systems, to the orientation of
its stable and unstable manifolds. An interrelation of points of homoclinic tan-
gency and regions of enhanced predictability corresponding to low values of the
finite time exponents λ(τ) was found for the dissipative Hénon map and for the
conservative standard map, even though it is more difficult to identify in the
latter case.

When the trajectory comes close to a point of homoclinic tangency ~xHT, the
orientation of a perturbation can no longer point away from the stable direction
at a large angle. The reason for this is that the unstable manifold has to ap-
proach the stable one due to the definition of a homoclinic tangency. Instead of
pointing away from it, the perturbation has to become nearly aligned with the
direction of the stable manifold, if the trajectory is close enough to ~xHT. This
argument in favour of a connection between homoclinic tangencies and regions of
enhanced predictability applies, in principle, to heteroclinic tangencies as well as
to homoclinic ones. Since the calculation of the former is much more demanding,
we restricted our investigation to the latter. The size of a region of enhanced
predictability around a homoclinic tangency was found to shrink exponentially
with increasing time horizon of prediction.

In both systems under investigation, there was no connection with extraordi-
narily small values of the maximum growth exponents ρ(τ). This finding suggests
that maximum growth exponents are not an ideal measure to quantify predictabil-
ity, at least when comparing with other properties of the dynamical system that
depend on past states. Still, they are widely used to quantify predictability in
atmospheric science and to determine low-dimensional approximations (Farrell

90



Chapter 6. Summary

and Ioannou, 2001). This practice is justified by the fact that observational data
is repeatedly assimilated into the state of the system, i. e., the state is changed
in order to better agree with the new measurements of the actual state of the
physical system. Therefore, there is not enough time for perturbations to point
along the globally most expanding direction ~l1(~x), because data assimilation can
make the state of the system jump from one trajectory to another. The finite
time Lyapunov exponents are not an adequate measure of predictability in this
case, but the maximum growth exponents are. The latter are completely defined
by a finite piece of trajectory that one can choose to be as short as is desirable.
Furthermore, the largest maximum growth exponents ρ

(τ)
1 compare very well with

the maximum growth factors m
(τ)
max of finite errors for small initial errors and short

prediction times.

As an important point we note again that the characterisation of regions of
enhanced predictability by homoclinic tangencies is independent of the particular
coordinate system used. While homoclinic tangencies are invariant under coor-
dinate transformations, finite time Lyapunov exponents and maximum growth
exponents are not. The relation between homoclinic tangencies and regions of
enhanced predictability can be used to identify those regions as invariants of
the corresponding dynamical system. However, it has to be kept in mind that
homoclinic tangencies are not the reason for the appearance of regions of en-
hanced predictability. The latter can also appear in hyperbolic systems, where
no homoclinic tangencies are present.

A connection between regions of enhanced predictability and homoclinic tan-
gencies was examined, but could not be established for the maximum growth
exponents ρ. The opposite extremes – nearly orthogonal intersections of stable
and unstable manifolds and deteriorated predictability – are found to be not re-
lated to each other either, regardless of the system under consideration and the
kind of local exponents used.

In the case of the conservative system, there is no clear large-scale distinction
between regions of extremely high and extremely low values of the finite time
exponents. This means that good or bad predictability can occur for points in
state space that are very close to each other. Therefore, a simple quantification
of predictability relying on local exponents in state space cannot be expected to
be feasible. However, there seem to be regions with better predictability than
their surroundings. Homoclinic tangencies were found in such regions, following
the same pattern.

Another point to consider is the following: The attractor of the system can
be considerably altered by perturbations like numerical errors occurring near
homoclinic tangencies, as the trajectory can be driven away from the attractor
(Jaeger and Kantz, 1997). This raises the question why enhanced predictability
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is nevertheless found near homoclinic tangencies. It might be due to the fact
that the effect of noise was studied using the full nonlinear system, while the
local exponents are defined using the linear approximation. Further studies like
an examination of the behaviour of perturbations governed by the nonlinear
system could be conducted in the future to better understand the relation between
perturbations, homoclinic tangencies and predictability.

The linear approximation inherent in using local exponents to measure tra-
jectory divergence must break down in practice sooner or later, i. e. once the
error reaches a certain size. Then one has to calculate the error growth using the
nonlinear system.

In chapter 5 we studied the growth of non-infinitesimal errors in three ex-
emplary chaotic systems, the standard map, the quasiperiodicity map and the
Hénon map. Non-infinitesimal, finite errors cannot be treated with local expo-
nents. Therefore we followed ensembles of size Nens for a time τ , with all ensemble
members initialised with a fixed error magnitude of d0 and uniformly random di-
rection. Each ensemble member evolves according to the full nonlinear system.
The final error sizes divided by d0 yield the error growth factors m(τ) for each
ensemble member, from which one can compute quantities like the worst-case
error growth m

(τ)
max, for example.

Comparing the maximum error growth factor m
(τ)
max with local exponents, we

have found that the data of the largest maximum growth exponents ρ
(τ)
1 compares

very well with m
(τ)
max for small initial errors d0 and short prediction times τ . The

reason for this is that the maximum growth exponents are a purely local quantity,
in the sense that they depend only on the system states visited during the time
span τ . Since they are defined through the singular values, there is a clear
correspondence between m

(τ)
max and the largest maximum growth exponent ρ1 for

the same initial state. The finite time Lyapunov exponents, however, show many
features not present in the m

(τ)
max data, since they indirectly rely on the past of

the system via the Lyapunov vectors ~li. This striking difference makes it clear
that the choice of local exponents is very important, especially considering the
results of chapter 4. Depending on one’s interest, one or the other type of local
exponents may be the better choice.

For the error growth of the worst case, i. e. the largest error growth factor
M (τ) for all initial conditions, we have demonstrated a systematic dependence on
the prediction time τ . For small times, there is an exponential increase according
to the largest maximum growth exponent ρ

(τ)
1,max. This does no longer hold if

the prediction time is too long. Then one observes a crossover to a regime of
power-law growth, M (τ) ∼ τα. The scaling exponent α of this power law has
been found to depend on the size d0 of initial errors, presumably according to a
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power law as well.
In practice, it is desirable to keep the computational cost as low as possible. In

the context of ensemble studies, doing so requires one to use a minimal ensemble,
one that extracts the required information with the fewest members. To find such
a minimal ensemble size Nmin

ens needed for reliable statements about predictability,
we have studied various measures, namely the linear correlation coefficient r, the
relative entropy srel and the χ2-statistics. Here, r was computed using spatially
resolved data, comparing results for different ensemble sizes at each initial point
separately. The other two measures, however, were using histograms for each
ensemble size. This means that only the overall frequency of a certain range of
error growth factor values is used; to which initial point these values are connected
is not used. With these measures, the difference between a given ensemble size
and the largest ensemble (used as a reference) is quantified to understand how
good the approximation of the given, possibly small ensemble is.

For the linear correlation coefficient, a power-law has been shown to exist for
large ensemble sizes, 1 − r ∼ Nens

γ. The scaling exponent γ is constant over a
wide range of initial error sizes d0 and prediction times τ , at values of γ ≈ −1 for
the mean error growth m

(τ)
avg and γ ≈ −4 for the maximum error growth m

(τ)
max.

In the latter case a dependence of γ on d0 only arises for τ and d0 large enough.
These results for γ deal with the asymptotic behaviour of error growth factors

for increasing ensemble size. However, the absolute value of the error, the error
made by using a rather small ensemble, need not directly relate to the value
of γ. For the cases studied herein, the maximum error growth m

(τ)
max is the one

converging most quickly. We have shown that it can reach very small values even
for intermediate ensemble sizes. Or, conversely, for a given error tolerance ε, the
minimal ensemble size Nmin

ens is not very large. This minimal ensemble size was
calculated from the double-logarithmic plots of 1 − r vs. Nens as the value of
Nens where 1 − r drops below ε. When trying to use this procedure in practice,
a difficulty will probably be the determination of the reference data, which we
produced using a very large ensemble. It may be possible, though, to “guess”
the general form of the reference histogram used with the relative entropy. To
validate or invalidate the guess one can use a few runs with large ensembles
that are only followed for a short period of time. In any case, the fact that the
maximum error growth m

(τ)
max converges most quickly remains encouraging, since

one can expect the worst case to be handled better than the average or minimal
error growth.

It is quite obvious that a method using the full spatially resolved data is
superior to others based on histograms. However, while using binned data in a
histogram involves a loss of information, it has its advantage as well: One does
not need to store the same (possibly huge) amount of data as in the first case. So,
from a practical point of view, it may be preferable – or even unavoidable – to use
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binned data. Even if one is forced to do an analysis without spatially resolved
data, one can find the same general variation of error growth with ensemble
size as in the theoretically preferable case, as we have shown using the relative
entropy. Conclusions regarding a systematic behaviour are much more difficult
to draw on the basis of histograms alone, however.

We stress that the determination of a minimal ensemble size for a given pur-
pose and, consequently, for a given acceptable error tolerance is always system-
dependent. In practice, the choice of ensemble size is often based on feasibility
and experience. There does not seem to be any hard and fast rule about this.
Still, the behaviour of the scaling exponent γ is a general one that can be ex-
pected to be found in other systems as well. Furthermore, minimal ensemble
sizes needed for a given error tolerance can be estimated using a few ensembles
at small prediction times τ and typical error values d0. These findings can be of
help in deciding on the usefulness of increasing the ensemble size.

The dependence of error growth on the initial direction α0 of the error was
studied briefly in a qualitative way. The main conclusion that can be drawn is
that things get very involved as d0 and τ increase. Many maxima of m(τ) (as a
function of α0) can appear for each initial point x0, making it difficult to find

the global maximum, i. e. m
(τ)
max(x0). A possible direction of future work could

be to study the dependence of α
(τ)
max(x0), the direction leading to m

(τ)
max(x0), on

Nens. Another possibility is to quantify the “ruggedness” of the curve m
(τ)
max(α0)

in a suitable way, like simply calculating what proportion of initial angles α0 lead
to a value of m(τ) ≥ 0.9m

(τ)
max. Of course such studies will become infeasible for

medium dimensional systems since huge ensembles would be needed to more or
less cover the hypersphere that was just a circle in our simple, two-dimensional
case.

In conclusion, one has to face the fact that it is not possible to characterise the
predictability of a complex, chaotic system by a simple number, or even a few
numbers. It is possible, however, to approach this goal in a certain sense.

Firstly, one has to be aware of the huge difference that the choice of the
quantity or method used to quantify predictability makes. Finite time Lyapunov
exponents can be the method of choice when trying to link predictability with
dynamical properties of the system, since the past states of the system play a
role. Maximum growth exponents are better when one is concerned with the
growth of small errors that are unrelated to the past. What makes this kind of
exponents particularly appealing is that they approximate the growth of (small)
finite size errors very well. Ensembles of finite size errors should be used when
the initial errors are too large to be adequately handled by local exponents.

Secondly, one has to consider the scale (in state space) on which changes
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in predictability (as quantified by the method chosen) take place. As one ex-
pects from the continuous stretching and folding, the structures get smaller and
smaller as the prediction time τ increases. Therefore it may be possible to detect
some regions in state space that exhibit enhanced predictability for short pre-
diction times and accordingly divide the state space into regions with a certain
predictability. We think that even this will be difficult, however, in the case of
high-dimensional systems.

Thirdly, if one chooses to use ensembles one should consider spending some
time and effort on studying the dependence of the results on ensemble size. One
can then set the number of ensemble members to the smallest possible value that
one can expect to yield reliable results. In this context, an encouraging result of
this thesis is the fact that for the worst-case error growth a smaller ensemble is
needed than for the average error growth, for example.

We hope that our work is contributing to highlighting the importance of the
choice of the adopted method, helping to determine a reasonable ensemble size
and motivating future research in this area.
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