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SUMMARY

Remote sensing measurements of wind turbine inflow can be used to understand the inter-
action between the wind in the atmospheric boundary layer and the structural response of
the wind turbine. Recent developments in optical and scanning technologies have enabled
lidar systems capable of non-intrusive measurements of the wind inflow upstream of a
turbine. Integrating this preview information of the inflow into the turbine operation
creates opportunities for optimising power production and alleviating structural loads.
This approach contrasts with traditional feed-back controllers, which can react to changes
in the inflow state only after the impacts have already occurred.

Designing control systems that adequately utilise upstream lidar measurements requires a
comprehensive understanding of the measurement principle and, therefore, the measure-
ments themselves. Previously, simple lidar systems with just a few pointing directions
were utilised to probe the wind field upstream of the turbine. Due to the limitations of
the measurement principle and sparse scanning capabilities, wind field reconstruction
strategies are required so that the measurements can be converted into turbine-relevant pa-
rameters. In addition, the upstream measurements do not represent the inflow experienced
by the wind turbine due to the evolution of turbulent structures between the measurement
location and the rotor plane and the deceleration in the rotor induction zone.

With the development of scanning technologies, lidar systems can now provide quasi-
instantaneous measurements of the spatially distributed fluctuations of the wind with high
resolution. In this thesis, simulations and experiments were conducted to understand the
capabilities and limitations of scanning lidar systems in conducting inflow measurements.
Fully exploiting the high-resolution measurements requires the development of wind field
reconstruction methods that can express the spatio-temporal inflow dynamics relevant to
the wind turbine. As nacelle-based installations are preferred for inflow sensing due to ease
of installation, it is necessary to develop wind field reconstruction methods to reconstruct
measurements lost due to effects such as blade interference to increase data availability.
Finally, field measurements were performed in the scope of thesis with two synchronised
scanning lidars to characterise the wind turbine upstream induction zone and evaluate
engineering models that describe induction slowdown.

Based on simulations of scanning lidar measurements in a controlled high fidelity simula-
tion environment, the ability of lidar systems to accurately capture the inflow dynamics is
investigated. Due to the more extensive rotor area coverage, scanning lidars can capture
the spatio-temporal inflow variations directly driving the turbine response compared to
simpler fixed-beam devices. For example, scanning lidars can capture the vertical wind
speed variation due to wind shear by a rotational sampling of the wind field, which could
be exploited to attenuate the harmonic loading on the blades due to rotation.

A line-of-sight velocity field reconstruction methodology based on Proper Orthogonal
Decomposition (POD) was developed to fully utilize scanning lidar measurements in two
spatial dimensions within the scanning plane upstream of a wind turbine. An analysis
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of LES simulations of varying inflow and stability conditions determined that the spatio-
temporal variations in the wind field could be reconstructed with just ten modes, thereby
providing data compression, which is advantageous for a wind turbine controller. POD
also revealed the coherent motions in the inflow where the modes were highly correlated
with parameters describing the inflow, such as vertical shear and yaw misalignment, even
though the relationship differed on a case-to-case basis. Therefore, a fully 2D wind field
could be reconstructed with very high accuracy by carefully selecting the dominant spatial
modes. To overcome blade interference, a POD extension named Gappy-POD was applied
to reconstruct the line-of-sight measurements from nacelle-mounted scanning lidar sys-
tems. Gappy-POD performs a space-time interpolation at the missing points by exploiting
the correlations from the measurement time series. An evaluation of the method in a
simulation environment indicates that the technique can successfully reconstruct sparse
measurements of undisturbed and fully waked inflow even up to 90 % of missing data. This
increased data availability reduces the uncertainty of estimating inflow parameters from
lidar measurements allowing for more robust control.

To characterise the wind turbine induction zone, experiments were conducted with two
synchronised WindScanner lidars. The highly temporally and spatially resolved induction
zone measurements revealed the interaction of the atmospheric boundary layer, site orog-
raphy and the wind turbine for no wake, partial and fully waked inflow scenarios. Under
full and partial wake scenarios, an interaction between the upstream turbine wake and
the downstream turbine induction zone was visible. Due to the measurement complexity
and the highly dynamic nature of the atmospheric flow, a virtual lidar in wind simulation
methodology to investigate the accuracy of measurements was employed to assess the
impact of the measurement layout and the device uncertainties on the measurements.
The limited capability of the dual-scanning system owing to the assumption of vanishing
vertical velocity for the dual-Doppler reconstruction, especially in the highly turbulent
wake, introduced larger uncertainties in the measurements and presented a challenge to the
interpretation of results. The thesis concludes with recommendations for future research
on the further capabilities of nacelle-lidars for characterising the wind turbine inflow, wind
field reconstruction possibilities for nacelle-based scanning lidars and recommendations
for a more thorough measurement setup with synchronised scanning lidars to measure
turbine-turbine interactions.
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ZUSAMMENFASSUNG

Fernerkundungsmessungen der Anstromung von Windenergieanlage (WEA) konnen ge-
nutzt werden, um die Wechselwirkung zwischen dem Wind in der atmosphérischen Grenz-
schicht und der strukturellen Reaktion der Windturbine zu verstehen. Entwicklungen im
Bereich der optischen und scannenden Technologien erméglichen Lidar-Systeme, die in der
Lage sind, die Windanstromung stromaufwarts einer WEA nicht-intrusiv zu messen. Die
Integration der Informationen tiber die Anstromung in den WEA-Regelung er6ffnet Mog-
lichkeiten zur Optimierung der Stromerzeugung und zur Verringerung der strukturellen
Belastungen. Dieser Ansatz steht im Gegensatz zu herkémmlichen Feedbackreglern, die
auf Anderungen des Anstrémungszustands erst reagieren konnen, wenn die Auswirkungen
bereits eingetreten sind.

Die Entwicklung von Regelungssystemen, die Lidar-Messungen der Anstrémung ange-
messen nutzen, erfordert ein umfassendes Verstidndnis des Messprinzips und damit der
Messungen selbst. Bisher wurden einfache Lidar-Systeme eingesetzt, welche das Windfeld
stromaufwirts der Anlage entlang weniger vordefinierter Richtungen erfassen. Aufgrund
der Einschrinkungen des Messprinzips und der sparlichen Abtastung sind Strategien zur
Rekonstruktion des Windfeldes erforderlich, um die Messungen in turbinenrelevante Pa-
rameter umzurechnen. Dariiber hinaus reprasentieren die stromaufwértigen Messungen
nicht die Anstromung der Windenergieanlage, da sich zwischen dem Messort und der
Rotorebene turbulente Strukturen entwickeln und der wind in der Induktionszone des
Rotors abgebremst wird.

Mit der Entwicklung von Scanning-Technologien konnen Lidar-Systeme nun quasi-instantane
Messungen der rdumlich verteilten Fluktuationen des Windes mit hoher Auflésung liefern.
In dieser Arbeit wurden Simulationen und Experimente durchgefiithrt, um die Moglichkeiten
und Grenzen von scannenden Lidar-Systemen bei der Durchfiihrung von Anstréomungs-
messungen zu verstehen. Die volle Nutzung der hochaufgelosten Messungen erfordert die
Entwicklung von Methoden zur Windfeldrekonstruktion, die die fiir die Windenergieanla-
ge relevante rdumlich-zeitliche Anstromungsdynamik représentieren. Da gondelbasierte
Lidar-Systeme aufgrund der, im Vergleich zu vor dem Rotor in der Nabe installierten
Lidar-Systemen, einfachen Installation fiir die Messung der Anstrémung bevorzugt werden,
miissen Methoden zur Rekonstruktion des Windfelds entwickelt werden, um Datenliicken
auszufillen, welche durch Blattinterferenzen verloren gehen. Schlieilich wurden im Rah-
men dieser Arbeit Freifeldexperimente mit zwei synchronisierten Scanning-Lidar durchge-
fuhrt, um die Induktionszone der Windturbine zu charakterisieren und Induktionsmodelle
zu bewerten.

Auf der Grundlage High-Fidelity-Simulationen wird die Fahigkeit von Lidar-Systemen zur
genauen Erfassung der Anstromdynamik untersucht. Im Vergleich zu einfacheren Geréten
mit festen Strahlrichtungen kénnen Scanning-Lidar aufgrund der grofieren Abdeckung
der Rotoreinstromung die rdumlich-zeitlichen Anstroumngsvariationen, welche das Turbi-
nenverhalten direkt beeinflussen, besser erefassen. Beispielsweise konnen Scanning-Lidar
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Lidar die vertikalen Windgeschwindigkeitsdnderung durch die Rotationsabtastung des
Windfeldes erfassen, was zur Abschwichung der harmonischen Belastung der Rotorblatter
genutzt werden konnte.

Es wurde eine Methode zur Rekonstruktion des Geschwindigkeitsfeldes auf der Grundlage
der Proper Orthogonal Decomposition (POD) entwickelt, um Scanning-Lidar-Messungen in
zwei raumlichen Dimensionen innerhalb der Scanebene stromaufwirts einer Windenergie-
anlage vollstdndig nutzen zu konnen. Eine Analyse von LES-Simulationen unterschiedlicher
Anstromungs- und Stabilititsbedingungen ergab, dass die rdumlich-zeitlichen Variationen
des Windfeldes mit nur zehn Moden rekonstruiert werden konnen, was eine Datenkom-
pression erméglicht, die fiir die Regelung einer WEA von Vorteil ist. POD zeigte auch
die kohdrenten Bewegungen in der Anstrémung auf, wobei die Moden in hohem Mafle
mit Parametern korrelierten, die die Anstromung beschreiben, wie vertikale Scherung
und Gierversatz, auch wenn die Beziehung von Fall zu Fall unterschiedlich war. Mithilfe
der dominanten raumlichen Moden konnte ein vollstdndiges 2D-Windfeld mit sehr hoher
Genauigkeit rekonstruiert werden. Zur Uberwindung von Blattinterferenzen wurde eine
POD-Erweiterung namens Gappy-POD entwickelt, um die Sichtlinienmessungen von auf
der Gondel montierten Scanning-Lidar-Systemen zu rekonstruieren. Gappy-POD fiihrt eine
Raum-Zeit-Interpolation an den fehlenden Punkten durch, indem es die Korrelationen der
Messzeitreihen verwendet. Eine Evaluierung der Methode in einer Simulationsumgebung
zeigt, dass die Technik erfolgreich bei bis zu 90 % fehlender Messdaten rekonstruieren
kann. Dies verringert die Unsicherheit bei der Schitzung von Anstrémungsparametern
aus Lidar-Messungen und erméglicht eine robustere Regelung.

Zur Charakterisierung der Induktionszone von Windenergieanlagen wurden Experimente
mit zwei synchronisierten WindScanner-Lidaren durchgefiihrt. Die zeitlich und raumlich
hoch aufgeldsten Messungen der Induktionszone zeigten die Wechselwirkung zwischen der
atmospharischen Grenzschicht, der Orographie des Standorts und der Windturbine fiir Sze-
narien ohne Nachlauf, mit halb iiberlappendem und mit vollem Nachlauf. Dabei war eine
Wechselwirkung zwischen der stromaufwirts gelegenen Turbinen-Nachlaufstrémung und
der stromabwirts gelegenen Turbinen-Induktionszone erkennbar. Aufgrund der Komplexi-
tat der Messungen und der hochdynamischen Natur der atmospharischen Stromung wurde
ein virtuelles Lidar in der Windsimulation eingesetzt, um die Genauigkeit der Messungen zu
untersuchen und die Auswirkungen der Messanordnung und der Gerateunsicherheiten auf
die Messungen zu bewerten. Die Annahme, dass die vertikale Geschwindigkeitskomponen-
te des Windes Null ist, verursacht insbesondere in der hochturbulenten Nachlaufstréomung
groflere Messunsicherheiten. Die Arbeit schliet mit Empfehlunngen fiir kiinftige For-
schung zum Einsatz von gondelbasierten Scanning-Lidar-Systemen zur Charakterisierung
und Rekonstruktion derr Einstromung. Dariiber hinaus werden Empfehlungen fiir den
Messaufbau von synchronisierten Scanning-Lidar-Systemen zur Messung von Turbinen-
Interaktionen gegeben.
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INTRODUCTION

The transition of energy infrastructure towards sustainable energy sources from fossil fuels
represents one of the most challenging problems of the 21 century. Sustainable energy
brings many economic and environmental benefits, including reduced greenhouse gas
emissions by moving away from fossil fuels and diversifying energy supply while stimulat-
ing growth by increased economic activity. To this effect, many countries worldwide have
set ambitious goals for this transition. The Paris Agreement within the United Nations
Framework Convention on Climate Change is one measure. This agreement outlines a set
of climate change mitigation, adaptation and financial policies to reduce global warming
[Glanemann et al. 2020].

One of the more ambitious goals of the Paris accord is to maintain the global average tem-
perature increase within 2 °C pre-industrial levels and to limit the rise to 1.5 °C preferably.
Wind energy will play a vital role in shifting towards sustainable energy sources. According
to data collected from Frauhofer ISE 2024, in Germany, renewable energy accounted for
approximately 60 % of the net power production in 2023, with onshore and offshore wind
energy accounting for 32% of the net electricity production.

For the successful economic operation of wind farms and to maintain strong growth rates,
it is necessary to accurately predict the energy yield of a wind park and reduce the levelised
cost of energy (LCoE) over its operational period. Reductions in LCoE can be brought
about in many ways, such as optimising energy production and extending operational
lifetime by utilising technological innovations. With rotor diameters exceeding 200 m and
growing, innovative solutions to optimise turbine performance are necessary, requiring
advancements in wind turbine design, development of sensors and control strategies. With
accurate predictions of energy yield during operation, the financial and operational risks
of wind farms could be reduced. However, one of the main challenges of extracting power
from wind is that wind field as an energy resource is unknown until it reaches the rotor.
The turbine only reacts to changes in the inflow after the wind affects the rotor.

1.1 THE NEED FOR REMOTE SENSING IN WIND ENERGY
Wind energy science and engineering requires observations and understanding of the
atmospheric flow, the fuel that drives wind turbines. The variability in the wind resource
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that a turbine would experience during its lifetime directly impacts power production
and creates a wide variety of mechanical responses. While wind observations during
the resource assessment stage are useful for determining the wind energy potential at
a site, wind observations during turbine operation can be used to optimise the turbine
performance [Schlipf 2016].

There is a demand for accurate experimental data measured with high spatial and tem-
poral resolutions for studying fluid flow problems, and wind energy is not different. The
development of high fidelity flow modelling tools requires highly resolved experimental
measurements capable of capturing very small scales with high accuracy to validate these
models.

Wind observation has been performed for centuries since the development of the first
mechanical anemometer by Leon Battista Alberti in Italy in 1450. His design consisted
of a flat plate suspended perpendicular to the wind, which swung proportionally to the
force exerted on it by the wind. The rotational or cup anemometer, first developed by
John Robinson in 1846, works based on the pressure differences between its convex and
concave surfaces. These devices are widely accepted in meteorology as reliable measure-
ment devices. Anemometers based on temperature gradients (hot-wire anemometers) and
sound waves (ultrasonic anemometers) also exist. All of these methods are intrusive: the
measurement device needs to be physically present inside the flow they need to measure
[Kaimal et al. 1968] and therefore can drastically influence the flow at the measurement
location.

Cup anemometers constitute the traditional method of performing accredited measure-
ments for wind energy applications such as resource assessments and power curve mea-
surements. Aside from the device-induced flow perturbation, these devices’ application is
surmounted by many problems. With growing wind turbine sizes, traditional methods for
wind measurements such as anemometers mounted on expensive tall masts are insufficient
to measure the wind speed distribution over the rotor. The diameters of modern rotors
regularly exceed 100 m and is pushing beyond 200 m!. Accurate measurements of the flow
around present-day wind turbines require multi-point and multi-height measurements in
the rotor plane area to characterise the atmospheric flow variations over the rotor. For
measuring vertical wind profiles, expensive tall met masts outfitted with anemometers at
many heights are required. Such tall met masts are quite uneconomical, especially offshore.
Optical methods for flow diagnostics have improved remarkably in the last decades and are
irreplaceable tools for experimental research and routine diagnostics in the industry. Tools
like Particle Image Velocimetery (PIV) [Adrian 2005], Particle Tracking Velocimetery (PTV)
[Maas et al. 1993], Laser Doppler Anemometry (LDA) [Tropea 1995] have been developed
and improved in the last decades and have consistently shown their value in measurement
of fluid flows. PIV and PTV techniques, which use high-speed cameras to record a seeded
flow illuminated by lasers, are indispensable when the size of the flow system is small,
i.e,, a small wind tunnel campaign or the measurements of biological flows. PIV methods
have also been applied exceptionally also in field measurements around large turbines
using snowflakes as tracer particles [Hong et al. 2014], but cannot be relied on as they only
operate under particular atmospheric conditions.

The Mingyang MySE 16-260 offshore turbine with a rotor diameter of 260 m respectively and rated up to 16 MW
is the largest commissioned turbine as of March 2024.
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Remote sensing methods based on Doppler anemometry provide an alternative method for
wind measurements in wind energy applications. Doppler anemometers are non-intrusive:
they can probe the wind remotely from a location far away from the measurement region
of interest, paving a way to overcome flow perturbation due to sensing. The measurement
principle of Doppler anemometry involves sending waves of different natures (radio, sound
and light for Radars, Sodars and Lidars, respectively) into the atmosphere, where a portion
gets scattered by aerosols in the wind. The aerosols impart a Doppler shift proportional to
the velocity, which can be estimated by measuring the incident and the reflected frequencies
of the wave beam through Detection And Ranging (DAR) techniques.

Even though laser anemometry has been used since the 1960s, the rise of high-powered
diode lasers in the 1980s and the development of the modern 1.5 yum wavelength laser by
the telecommunications industry has made laser anemometry with Doppler wind lidars a
desirable proposition for wind energy applications [Hill 2018]. Modern lidars created for
wind energy applications are compact and operate around the 1.5 ym wavelength due to
these advancements.

1.2 A BRIEF INTRODUCTION TO LIDAR ANEMOMETERY

The measurement principle of lidar anemometry involves sending a laser beam of narrow
bandwidth into the atmosphere where a portion is scattered by atmospheric aerosols. The
laser beam illuminates the area around the target point and gets backscattered off the
atmospheric aerosols assumed to be carried by the wind. The backscatter is measured by
the receiver system from which the Doppler shift, and with prior knowledge of the emitted
frequency, the corresponding velocity is estimated along the laser beam direction: the
radial or the line-of-sight velocity vs.

fr:fE(l*'ZZ)lOS) (1.1)

c

where f, f; are the incident and reflected laser beam frequencies and c is the speed of
light. The measurement principle relies on the assumption that aerosols are transported at
the same speed as the wind while the backscattered signal relies on good environmental
conditions to reach the lidar again. Two detection concepts exist: direct and coherent
detection methods.

In direct detection, the Doppler shift is directly estimated from the backscattered light using
suitable optical frequency analysers, which detectors can measure. On the other hand, in
coherent detection systems, the backscattered light from the atmosphere is mixed with a
portion of emitted light to create a beat signal which can be detected by photodetectors
and from which the Doppler shift is estimated. Coherent detection is further classified
into homodyne and heterodyne detection. In homodyne detection, the local oscillator
is unmodified; hence estimating the frequency shift’s sign and thereby the sign of the
line-of-sight wind velocity is impossible. In heterodyne detection, the local oscillator is
shifted by a specific frequency allowing to determine the sign of the frequency shift and
hence the measured velocities.

Wind lidars are subdivided into two major types depending on how the device emits the
laser beam. In the continuous measurement type, referred to as continuous-wave (cw)
lidars, the laser beam is focused at the target measurement point. The continuous operation
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enables a high intensity at the measurement location providing high sampling rates of up
to 500 Hz. However, when focusing the laser beam at more considerable distances, the
peak of the backscatter spectra is less defined as the return signal contains contributions
of the reflected laser light over a large measurement length. Therefore, the length of
the measurement volume limits the maximum range of cw lidars. In the pulsed systems
(referred to as pulsed lidars), the laser beam is emitted in pulses while the pulse propogates
through the atmosphere until its intensity decreases. As the pulse moves through the
atmosphere in the desired direction, light is continuously emitted back by the aerosols. By
carefully controlling the width of the emitted pulse and the accumulation time between
pulses, these lidars can simultaneously estimate the radial wind speeds along the beam
direction at multiple locations. The distances are calculated from the time-of-flight of the
light collected from various range windows. Due to the accumulation time required for the
laser pulses to travel back to the lidar and to provide a high enough signal-to-noise ratio
to provide a reasonable velocity estimate, pulsed lidars sample at a substantially lower
sampling rate, usually in the range of 0.1 Hz to 10 Hz but can measure at distances of tens
of kilometres away.

Vios

Figure 1.1: Generic coherent detection lidar system.

Both cw and pulsed lidar measurements contain wind speed contributions from a volume of
an air pocket in space rather than an infinitesimally small point where the measurement was
intended. Since the dimensions of the measurement volume along the laser beam direction
are much larger than the traverse dimensions, the measurement volume is modelled as an
infinitely thin beam. The measured wind speeds along the infinitesimally narrow beam are
integrated according to a weighting function from the detected line-of-sight wind speeds.
Therefore, the line-of-sight measurement can mathematically represent a convolution of
the projection along the laser beam direction and a weighing function. For cw lidars, the
weighing function is approximated as a Lorentzian distribution as defined in Sonnenschein
and Horrigan 1971, while for pulsed systems, the pulse shape is approximated as a Gaussian
pulse [Sathe and Mann 2012].

Furthermore, any lidar system can only measure the projection of the wind velocity along
the line-of-sight direction, the so-called cyclops dilemma [Schlipf and Kithn 2008]. Therefore,
multiple beams or mechanical systems are required to steer the laser beam to different
directions to obtain information about the wind vector rather than the lidar measured radial
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wind speed component. However, as synchronised scanning strategies are quite complex,
simplified wind profiles are obtained by assuming certain flow field characteristics and
combining measurements over multiple spatial locations. This process is broadly termed
wind field reconstruction, which van Dooren 2023 defines as "combining multiple line-of-
sight measurements from one or multiple lidars to yield a specific wind field description
suitable for a particular application." In this thesis, we focus on developing a spatially
varying line-of-sight velocity field description from scanning lidar measurements. This
differs from earlier, simpler reconstruction methods where lower spatial and temporal
measurement resolutions limited applications to deriving only rotor-averaged quantities
relevant for wind turbine inflow.

1.3 LIDAR SCANNING AND MOUNTING TECHNIQUES FOR
WIND ENERGY APPLICATIONS

Doppler lidars continue to gain widespread acceptance in wind energy research and indus-
trial communities in the last decade as a reliable tool for performing wind measurements
for wind energy applications.

The Velocity Azimuth Display (VAD) and Doppler Beam Swinging (DBS) profiling lidars
(Fig. 1.2 [a]) have applications in measuring vertical wind profiles and have large impor-
tance in the wind industry by replacing traditional and expensive meteorological masts.
They are very robust instruments for site resource assessment due to their relatively cheap
and easy installation. However, as a result of sampling many measurement volumes in
various directions, the measured wind vector could be erroneous, especially during non-
homogeneous flow situations.

Long-range pulsed lidars combined with an optical scanhead offer a spatial resolution of
many kilometres with flexible scan trajectories. Scanning patterns such as Range Height
Indicator (RHI) (Fig. 1.2 [b]) and Plane Position Indicator (PPI) scans are being used ex-
tensively to characterise prominent flow features and interactions between wind farms
[Schneemann et al. 2020; Schneemann et al. 2021]. As a long-range lidar can sense the
wind conditions at large distances in the order of many kilometres, they can also be used
to forecast wind farm power output [Valldecabres et al. 2018; Wiirth et al. 2019]. Similar to
VAD and DBS profilers, assumptions about the wind flow and the wind field models are
required to calculate the wind profile from the radial measurements.

Turbine-mounted installations can also measure the flow directly upstream of a wind
turbine. Such systems are useful for performing power performance measurements and
assisting the turbine control system in corrective actions during unfavourable inflow situa-
tions by lidar-assisted feedforward control [Schlipf and Kithn 2008]. A typical turbine-based
inflow scanning strategy is visualised in Fig. 1.2 [c]. Due to the lidar limitations of vol-
umetric line-of-sight scanning, wind vector estimation requires assumptions about the
incoming flow, such as homogeneity.

A minimum of three independent measurements at the target point are required to retrieve
all three components of a wind vector at a measurement point. Synchronising multiple
lidar systems in space and time allows for full 3D velocity reconstruction in the scan-
ning area, providing unprecedented insights into flow around wind turbines in free field.
By combining scanning and synchronisation strategies, multi-lidar systems are capable
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Figure 1.2: Lidar line-of-sight wind speed measurement strategies: [a] velocity azimuth display (VAD); [b] range
height indicator (RHI) [van Dooren 2021]; [c] nacelle-mounted inflow scanning ; [d] multiple synchronised
scanning

of resolving and characterising complex flow events around wind turbines that can be
subsequently used to validate numerical flow models (Fig. 1.2 [d]). However, these multi-
lidar measurement strategies require careful installation and calibration of the mechanical
systems steering the laser beams to the measurement locations.

1.4 APPLICATIONS OF LIDAR MEASURED DATA IN WIND EN-
ERGY

As a result of their high measurement flexibility, lidars have found use cases in a variety of
commercial and research applications.

1.4.1 WIND RESOURCE ASSESSMENT AND POWER PERFORMANCE TEST-
ING
Lidar systems are now the de-facto source of wind measurements conducted to assess the
wind resource potential for both onshore and offshore areas. For offshore sites, a lidar
system is typically placed inside a buoy and attached to a mooring that is deployed at the
site of interest. These so-called Floating Lidar Systems (FLS), offer an alternative to building
expensive offshore met masts and can provide vertical wind profiles and measurement at
hub heights for very large offshore turbines. Due to these reasons, profiling lidars have
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made their way into the industry accepted standards such as the IEC 61400-50- series and
are considered as bankable measurements. Bankable measurements refers to data that is
considered reliable and accurate enough to be used by financial institutions for making
investment decisions in wind farm projects.

During operational phase, turbine-mounted lidars performing upstream measurements
can be used to assess the wind turbine power curve [Borraccino et al. 2017; Wagner
et al. 2011; Wagner et al. 2014]. The purpose of a power performance test is to verify
that a wind turbine’s actual power output matches the warranted power curve provided
by the manufacturer. In addition to ensuring that contractual obligations between the
turbine provider and operators are fulfilled, these tests enable operators to identify any
potential performance issues with the turbine that might be affecting its efficiency. Power
performance testing with nacelle-mounted lidars is well established in the industry and
accepted as best practise [IEC 61400-50-3 2022].

1.4.2 FLOW CHARACTERISATION

Both short-range and long-range lidar systems with beam scanning capabilities can be
used to understand and characterise the flow around wind turbines in high resolution. The
development of scanning lidar systems capable of synchronised scan trajectories can be
utilised for multi-dimensional flow characterisation of the interaction between the wind
turbine and the atmospheric boundary layer. Such measurements offer an insight into
understanding complex flows around wind turbines, while the recorded data could be
used to evaluate flow models of different complexities. While wind speed measurements
performed by a turbine-mounted lidar can preview the wind inflow to the turbine allowing
for control applications, ground-based scanning lidars can be utilised for characterising
the flow development around wind turbines and wind farms.

For example, scanning lidars have been used to map the development of a wake of a wind
turbine [Bromm et al. 2018; Brugger et al. 2020; Herges et al. 2017b; Iungo et al. 2013; Sma-
likho et al. 2013; Zhan et al. 2020a], wind farms [Krishnamurthy et al. 2013; Schneemann
et al. 2020; Zhan et al. 2020b], wind turbine inflow [Bodini et al. 2017; Held and Mann
2019a; Mikkelsen et al. 2020; Pena et al. 2018; Simley et al. 2016]. In addition, scanning
cw lidar systems can also be used to perform flow characterisation of model turbines and
wind tunnels due to the highly customisable beam scanning strategies [Hulsman et al.
2022b; van Dooren et al. 2017]. In addition, these devices have also been applied to mea-
sure the flow around trees [Angelou et al. 2021] and helicopter downwash [Sj6holm et al.
2014], suspension bridges [Cheynet et al. 2017] and bluff bodies like fences [Pefa et al. 2016].

1.4.3 TURBULENCE ASSESSMENT

In addition to the measurements of mean wind speeds and profiles, the measurement of
turbulent fluctuations by lidar systems is relevant for wind turbines as they contribute
to the structural fatigue of the turbine components. Therefore, accurate wind speed and
turbulence estimations are crucial in designing and developing wind farms. However,
estimating turbulence from lidars is tricky due to the large measurement volumes due to
either focusing the laser beam in cw lidars or the pulse length for pulsed lidar systems.
Turbulence measurements with lidars are still an ongoing research topic, and there is no
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established industry standard for estimating turbulence from lidar systems.

However, an extensive amount of literature is dedicated to extracting turbulence from lidar
systems [Kelberlau et al. 2020; Newman and Clifton 2017; Sathe and Mann 2012]. Sathe
and Mann 2013 presented a review of lidar-based turbulence estimation techniques over 30
years and pointed out that most works relied on combining isotropic turbulence models
with raw lidar measurements. They concluded that the major challenge was estimating
unfiltered turbulence from the volume-averaged lidar measurements. Branlard et al. 2013
experimentally demonstrated that the width of the Doppler spectrum of a cw lidar is pro-
portional to the probability density function of the line-of-sight velocities, which opened
possibilities of using cw lidars to estimate second-order turbulence statistics. Pena et al.
2017, presented two methods to characterise turbulence from nacelle-mounted lidars using
a three-dimensional spectral velocity tensor model combined with a lidar spatial radial
velocity averaging model. The first method provided lidar filtered turbulence estimates,
while the second provided unfiltered turbulent variances and worked on both pulsed and
cw systems. Fu et al. 2022, presented a method to estimate unfiltered Reynolds stress
components from the measurements of a nacelle-mounted SpinnerLidar. The method
considered the turbulence-induced spectral broadening reduced the error in the turbu-
lence estimation compared to a sonic anemometer. Other methods to model the spectral
broadening have been investigated by Angelou et al. 2012, who proposed a direct transfer
function based on the attenuation of the power spectral density using measurements from
a sonic anemometer as reference. van Dooren 2021, presented a theoretical model for the
turbulence spectrum measured by a cw lidar and validated it using hot wire anemometry
in an experimental wind tunnel campaign.

1.4.4 LOAD VALIDATION

Mechanical loads on the different parts of a wind turbine are driven by the stochastic
turbulent fluctuations that occur in the atmosphere. Previously, due to the large rotor
sizes and the sizes of large turbulent structures, it was not possible to fully characterise
the inflow based on field measurements without erecting expensive meteorological masts.
Therefore, in numerical simulations, the wind fields were modelled as a random three-
dimensional Gaussian field while the wind turbulence was modelled through models such
as the Kaimal [Veers 1988] or Mann model [Mann 1994; Mann 1998]. Because of the
stochastic nature of the wind inflow, the generated wind fields do not match the time
series of measurements, even when the statistical properties of the wind fields match well.
Therefore, load validation performed utilising generated wind field models can only match
the measured loads statistics while there can still be a large uncertainty in the inflow.
Consequently, many observations and simulations are required to perform load validation
of wind turbines.

With advancements in lidar technology, high-resolution measurements of the wind turbine
inflow are possible now. Although characterising the wind turbulence is complex, the lidars
still provide sufficient information about the wind inflow compared to other measurement
devices such as anemometers. Dimitrov and Natarajan 2017, demonstrated a numerical
methodology with six different lidar scanning patterns to perform inflow measurements
for load simulations of a 10 MW turbine. They concluded that introducing lidar data
to constrain turbulence fields reduced the statistical uncertainty of load signals such as
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blade flapwise, tower fore-aft and yaw moments. The methodology was applied to field
measurements from two lidar systems (Avent five-beam pulsed and a ZephlIR cw lidar)
in Dimitrov et al. 2019. The results indicated that load validation procedures with lidars
provided load estimation uncertainties compared to the loads derived from mast-mounted
cup anemometers. Conti et al. 2020, extended the study to perform load validation studies
in waked conditions using a nacelle-mounted scanning lidar and highlighted the associated
challenges such as the probe volume averaging effect and the assumptions necessary for
flow modelling.

1.5 INFLOW SENSING LIDARS FOR OPTIMISING TURBINE OP-
ERATION

Turbine-mounted inflow measuring lidar systems can remotely scan the inflow wind fields
upstream of the turbine. Traditionally, turbine control operate on a feedback basis, relying
on wind speed and direction measurements from rotor speeds and to a lesser extent on
nacelle-based measurements to control blade pitch, yaw angles and generator torque. So, in
essence, the turbine only reacts to the wind disturbance already at the turbine. In addition,
the wind measurements from the nacelle are perturbed by the presence of the rotor. Using
lidar to sense the upstream inflow could improve turbine performance remotely. Lidar-
assisted feed-forward control (LAC) has been investigated extensively for more than ten
years beginning with the work of Harris et al. 2007, who placed a lidar on the wind turbine
nacelle and obtained preview information on wind gusts. Since then, a considerable amount
of simulation-based studies have been performed aimed at various control objectives such
as yaw control [Kragh et al. 2013; Mikkelsen et al. 2013; Schlipf et al. 2011], rotor speed
control [Schlipf et al. 2013a; Wang et al. 2013], collective pitch control [Dunne et al. 2010;
Schlipf and Kiithn 2008; Schlipf et al. 2012a], individual pitch control [Dunne et al. 2011;
Dunne et al. 2012; Unguran et al. 2019], cyclic pitch control [Sang et al. 2021; Schlipf et al.
2010], model predictive control [Laks et al. 2011a; Mirzaei et al. 2013a; Sinner and Pao
2018]. Figure 1.3 shows a typical control loop augmented with preview lidar measurements.
In a feedback-only control system, the wind turbine is regulated by reactions of the turbine
only. The analogy of driving a car blindfolded and reacting to how the car feels has been
used to describe this process [Scholbrock et al. 2016]. Adding a lidar to preview the inflow
allows the blindfold to be removed, allowing the controller to look ahead and perform a
control actuation to a disturbance before the disturbance reaches the rotor plane. For a
turbine-mounted lidar measuring a wind speed at a distance upstream of the turbine, a
very simple advection assuming the Taylor’s frozen turbulence hypothesis [Taylor 1938]
would determine the time of impingement of the measured wind field on the wind turbine,
excluding any wind evolution and induction zone effects. This effectively allows time to
process the lidar measurements into control-ready inflow parameters and perform the
necessary actuation to get the turbine ready for the inflow perturbation. However, due to
the stochastic nature of the atmospheric boundary layer, terrain effects and the turbine’s
operation, the advection time between the measurement location and the rotor plane
changes [Schlipf et al. 2015; Simley et al. 2014b]. Moreover, the type of lidar device and
the data processing algorithms to obtain control relevant parameters heavily influence the
effectiveness of any LAC strategy. Even though field testing of lidar-based control is still
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Figure 1.3: Block diagram of a typical combined feedforward-feedback mechanism with inflow sensing lidars.

relatively scarce, promising results in load reduction and increased power production were
observed [Fleming et al. 2014; Schlipf et al. 2014; Scholbrock et al. 2013b].

Most LAC strategies have been investigated for use in the below-rated (region 2) and
above-rated (region 3) conditions. In the below-rated region, LAC can be utilised to correct
for yaw control [Kragh et al. 2013; Mikkelsen et al. 2013; Schlipf et al. 2011] or to increase
the power capture [Bossanyi et al. 2014; Fleming et al. 2014; Schlipf et al. 2013b; Schlipf
and Kiithn 2008]. Field testing in [Fleming et al. 2014; Kragh et al. 2013] indicated that
wind vane bias could be identified and corrected using lidar measurements that could
potentially increase the turbine Annual Energy Production by a few percentage points.
LAC in the below-rated regime has shown a slight increase in power capture. However, the
power gains are potentially mitigated due to the increased torque and power fluctuations
and therefore increased structural loads due to the tracking of the optimal tip speed ratio
[Bossanyi et al. 2014; Schlipf et al. 2013b].

The potential for LAC in regulating rotor speed and reducing structural loads in region
three has been established by collective pitch control (CPC) and individual pitch control
(IPC) strategies. LAC-based CPC uses lidar measurements to estimate the rotor effective
wind speed to regulate the rotor speeds by collectively pitching the blades, thereby reducing
the loads [Bossanyi et al. 2014; Dunne et al. 2011; Schlipf et al. 2010]. IPC strategies can
mitigate individual blade loads, which could be transferred to the non-rotating turbine
components as well [Dunne et al. 2011; Dunne et al. 2012; Laks et al. 2011b]. IPC strategies
can take advantage of the extensive lidar spatial coverage to estimate wind parameters
such as vertical shear that can be utilised to reduce the once-per-revolution (1P) loads
caused due to the horizontal and vertical shear.

More recent work on LAC has looked at the impact of turbulent wind evolution on the lidar
measured wind fields its impact on the wind turbine. Chen et al. 2021 proposed a parame-
terised model for wind evolution following Simley et al. 2014b. The parameterised model
provides information for the longitudinal coherence based on other observed variables.
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Dong et al. 2021 evaluated the effectiveness of LAC under various turbulence characteristics
from models specified in the IEC 61400-1 and determined that the benefits of LAC can
depend on the turbulence models, the turbulence parameters, and the mean wind speed.
In this work.the lidar measurement coherence by the turbulence models is compared,
assuming Taylor’s frozen hypothesis. Guo et al. 2023 extended this study moving away
from Taylors hypothesis and evaluating LAC performance with realistic wind evolution.
This was possible due to improvements in turbulence simulation tools, such as the evoTurb
by Chen et al. 2022 and the 4D Mann Turbulence Generator by Guo et al. 2022a, that have
made it possible to integrate turbulence evolution into aeroelastic simulations. Further
lidar assisted control applications include controller scheduling for reducing structural
loads through turbulence intensity estimation [Schlipf et al. 2020] and lidar assisted wake
control [Dhiman et al. 2020; Guo et al. 2022b; Lio et al. 2021] and lidar-assisted control for
floating wind turbines [Guo and Schlipf 2023; Zalkind et al. 2022].

In a review paper of a joint industry-academia workshop, Simley et al. 2018 summarised the
potential benefits and challenges associated with incorporating LAC strategies into wind
turbines. Due to its direct impact on power production and load mitigation, LAC strategies
have the highest potential of any lidar-based wind energy application in reducing the
LCoE. Despite the challenges in integrating lidar measurements into a control system, LAC
has received component certification, an essential milestone for technology acceptance.
However, specific barriers exist before the full potential of LAC can be realised [Clifton
et al. 2018]. The first identified barrier was the multi-disciplinary nature of LAC. Canet
et al. 2021 approached this problem from a system-level perspective by integrating LAC
concepts into the design phase of the turbine as suggested by Schlipf et al. 2018. Using
literature reported LAC-based load reductions, they identified design drivers that LAC
could relax and concluded that an LCoE improvement was by lifetime extension increasing
AEP of up to 2 %. Similar studies in this direction include the work of Lio et al. 2022
who investigated lidar-assisted wind turbine retrofit control could provide fatigue load
reductions and therefore opens possibilities to extend turbine lifetime. However, the study
considered an ideal lidar system providing a perfect wind preview. In reality, obtaining a
perfect wind preview is quite challenging.

1.6 OPEN QUESTIONS AND CHALLENGES

Looking at literature, a few open questions which would directly impact the effectiveness of
utilising scanning lidar systems for measuring and characterising the wind turbine inflow
can be identified and discussed briefly.

1.6.1 EVOLUTION OF SCANNING LIDAR TECHNOLOGY

The design of a lidar-based application depends on how well the lidar device can measure
the inflow and its variations. Two crucial requirements can therefore be identified. The lidar
system should be enable to accurately measure rotor plane wind variations fast enough
to capture the relevant spatio-temporal dynamics driving the turbine response. Due to
the requirement of a high enough temporal refresh rate, cw lidars are advantageous over
pulsed systems for LAC [Simley et al. 2014a]. However, for wind evolution studies, pulsed
systems are beneficial due to their ability to measure simultaneously along the laser beam
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at several measurement locations. Recent studies indicate that pulsed systems may be
beneficial for measuring flow fields in front of very large turbines [Soto Sagredo et al.
2024]. Due to the spatial limitations in the wind field sampling, the spatially varying
line-of-sight measurements are combined alongside some flow assumptions to reconstruct
wind parameters relevant for any lidar-assisted application. This process is called wind
field reconstruction, and its accuracy is highly dependent on flow assumptions required
for the reconstruction. Inspite of its limitations, simple lidar systems with a few probing
beams have been applied successfully in the field for lidar-assisted control [Fleming et al.
2014; Schlipf et al. 2014; Scholbrock et al. 2013b].
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Figure 1.4: [a] Visualisation of the scanning patterns of the SpinnerLidar along with the scanning trajectory of a
simpler 2 and 4 beam lidar system. [b] The SpinnerLidar at the University of Oldenburg.

The development of lidar systems with active wind scanning, such as the SpinnerLidar
[Herges et al. 2017b; Kidambi Sekar and Kithn 2017; Mikkelsen et al. 2013; Pena et al. 2018]
has opened up new opportunities for measuring the wind inflow at high spatio-temporal
resolutions. These devices contrast the so-called fixed-beam systems consisting of a handful
of laser beams staring consistently at a pre-defined spatial location. The SpinnerLidar is
one such device capable of entire rotor plane scans with a high refresh rate (500 point
measurements every second). Such a device could be installed directly into the turbine
spinner and integrated with the control system to reduce the operational loads, allowing for
lifetime extension. It is noted that the SpinnerLidar itself has been designed and suited only
as a research device and was not intended to be used for LAC in a commercial application.
In Fig.1.4 an illustration of the scanning possibilities afforded by the SpinnerLidar is shown
against two commercially available fixed-beam lidar systems installed on a hypothetical
NREL 5 MW turbine and scanning 126 m (1 D) ahead (scanning parameters obtained from
Fu et al. 2022). The SpinnerLidar, due to its active beam steering (Fig. 1.4 [b]), is capable of
measuring the entire swept area in contrast to relatively simple two and four beam systems.
This allows possibilities to measure inflow in-homogeneities and follow coherent structures
that drive the turbine response. Even though lidars can resolve not all small-scale inflow
features, the large-scale atmospheric structures relevant for describing the turbine response
can be measured.

At this juncture, obvious financial limitations exist, such as the high capital expenses
(CAPEX), low robustness due to moving parts and corresponding high operational costs
(OPEX). Moreover, some systems do not yet have dynamical scanning capabilities, i.e., the
scanning system’s ability to dynamically change scan parameters such as cone opening
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angles in response to changing inflow conditions. Hence, it is imperative first to establish
the advantages and limitations of scanning lidar systems in scanning the wind inflow and
extracting wind parameters relevant to the turbine. Only after the benefits and limitations
are established in detail can system-level investigations quantify the value added by utilis-
ing different lidar devices for lidar-assisted applications.

1.6.2 LIDAR WIND FIELD RECONSTRUCTION

As a single lidar system can only measure the wind velocities along the laser beam direction,
reconstructing three-dimensional wind fields from nacelle-lidar measurements requires
simplifying the incoming wind fields. Therefore, the development of data processing meth-
ods is necessary to convert lidar measurements into parameters useful for a particular use
case, hereby termed wind field reconstruction.

van Dooren 2023 defines wind field reconstruction as "combining multiple line-of-sight
measurements from one or multiple lidars to yield a specific wind field description suitable
for a particular application". This definition is broad as it can be applied to any lidar data
processing methodology such as finite parametrisation to obtain rotor-averaged wind
quantities [Borraccino et al. 2017; Kapp and Kithn 2014], dual-Doppler reconstruction
for resolution of two or three dimensional velocity components [Mikkelsen et al. 2020;
van Dooren et al. 2017], velocity field reconstruction from temporally asynchronous scans
[Beck and Kithn 2019; Towers and Jones 2016; van Dooren et al. 2016]. As LAC applications
depend on a single lidar on the nacelle measuring the inflow, the parametrisation approach
is taken to obtain relevant wind parameters for control. However, the reconstruction pro-
cess is dominated by the limitations of wind field probing that influence the measurements.
If the laser beam is not perfectly orientated with the local wind inflow, the lidar measures
a radial or line-of-sight wind speed component, which is a projection of the actual wind
speed onto the line-of-sight direction. This effect has been investigated in detail, where it
was determined that small opening angles are ideal for estimating the rotor effective wind
speeds. In contrast, large angles are preferred to resolve events such as vertical shear or
yaw misalignment [Bossanyi et al. 2014]. These limitations create ambiguity in interpreting
the extracted wind parameters [Kapp. S 2017; Schlipf 2016].

Figure 1.5: Wind field reconstruction ambiguity between a horizontal shear (left) and a misaligned direction
(right).

Usual wind field assumptions include no vertical wind speed component and horizontally
homogeneous flow. While the zero vertical component might be valid for simple terrain,
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the effect of atmospheric stability, such as the vertical upflow during convective conditions,
renders this assumption invalid. Horizontal homogeneity implies equal wind speeds and
directions at a certain height from the ground. Therefore, the extracted wind parameters
could be ambiguous depending on the assumption taken for the wind field reconstruction.
An example of this ambiguity is sketched in Figure 1.5. The sketch shows a two-beam lidar
system measuring the radial wind speeds at a fixed focal distance. Here w451 and vy 2 are
the line-of-sight velocity at the measurement points. In the first case, the wind field could
be described as having a linear horizontal shear decreasing from right to left. Therefore,
the left beam of the lidar measures a higher line-of-sight component compared to the
right. The lidar would measure the same line-of-sight wind speeds in the second picture
with the horizontal misalignment, even though the inflow situation is completely different.
The argument can also be extended in the vertical direction. Therefore, depending on the
assumptions required for a wind field reconstruction algorithm, it is possible to end up with
widely conflicting information about the same inflow. This ambiguity potentially limits the
application of inflow lidars. For example, lidar cannot be used for cyclic pitch control and
yaw control with the same wind field reconstruction methodology as information about
yaw misalignment and horizontal shear is necessary. To overcome this ambiguity, Kapp. S
2017 proposed combining the upstream measurements at two unique upstream locations
to resolve direction and shear. However, the method assumes that the wind field remains
frozen between the two measurement planes. Even assuming a perfectly flat terrain, due to
the upstream blockage, the wind inflow is subject to deceleration and therefore contradicts
Taylor’s hypothesis.
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Figure 1.6: Wind field reconstruction ambiguity between directional misalignment (left) and a partial wake
scenario (right).

In addition, these methods also have the issue that they cannot differentiate between
undisturbed inflow and a waked inflow, a familiar situation for wind turbines in wind
farms. This is illustrated in Figure 1.6. The horizontally misaligned flow will affect the
line-of-sight measurements of the lidar in a similar way to that of a partially waked inflow.
While other methods can identify the presence of wakes, such as by investigating the
spectral broadening of the lidar backscatter signal [Held and Mann 2019a] or from the
structural response [Bertelé et al. 2021; Bottasso et al. 2018; Schreiber et al. 2020], the
application of wind field reconstruction methods to detect wakes would be biased.

Nacelle-based scanning lidars such as the SpinnerLidar overcome the limited spatio-
temporal resolutions by providing distributed radial velocity measurements in two spatial
dimensions overcoming the spatial scanning limits of simpler lidar systems. Therefore,
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applying classical wind field reconstruction methods would provide some rotor-averaged es-
timates of the wind inflow that do not use the full scanning capabilities of scanning systems.
For scanning lidar-assisted operation of large turbines, there is a need for new wind field
reconstruction models that can effectively capture the spatio-temporal in-homogeneities
in the wind field. Therefore, the objective of the WFR methodology for a scanning nacelle-
lidar should be to provide spatially varying radial velocity measurements in two spatial
dimensions (2D), providing information on instantaneous changes in the wind inflow over
the rotor area. This contrasts with the classical WFR definition for simple nacelle lidars that
focus on extracting spatially averaged wind information. Furthermore, the large amounts
of data collected by scanning lidar systems must be compressed into a few signals that
retain the essential dynamical quantities in the inflow.

1.6.3 LIDAR MEASUREMENT AVAILABILITY

Availability for lidar systems is defined as the ratio of the time the lidar produces high-
quality, usable data for any purpose to the total duration of the measurement campaign. For
a nacelle-mounted lidar system, the availability is influenced by deterministic effects such
as the rotation of the blades and stochastic effects like atmospheric conditions such as rain
or fog, which reduce the available good data that can be processed [Davoust et al. 2014]. The
deterministic data loss is influenced by factors such as lidar geometry, nacelle-mounting
position and orientation, blade rotational speed and blade root geometry. Rotor (or) blade
interference is the primary quantity affecting data availability for nacelle-mounted lidars.
The rotation of the blades prevents the laser beam from focusing at the upstream location
for cw lidars, while measurements of the time-of-flight of the return signal for pulsed
lidar systems are affected. A simple method to eliminate the blade interference would be a
spinner installation of the lidar systems. However, a spinner installation would require
a more complicated and expensive mechanical retrofitting and integration while also in-
creasing the complexity of the data processing and wind field reconstruction methodologies.
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Figure 1.7: [a] A nacelle installation of the SpinnerLidar on the CART3 research turbine at the National Renewable
Energy Laboratory. Photo credit: Marijn Floris van Dooren. [b] Distribution of the measured line-of-sight wind
speeds from the SpinnerLidar for one minute.

Figure 1.7 illustrates a nacelle-installation of SpinnerLidar at the National Renewable Energy
Laboratory. Also illustrated is a one-minute measurement period where the influence of
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the blades on the measurements can be visualised. The low line-of-sight wind speed
measurements are the projection of blade rotational speed along the laser beam direction.
While the data availability could be improved by installing the lidar further back on the
nacelle and scanning with large beam angles, the directional bias limits the maximum
beam scanning angle. In general, 30 %-40 % of data is lost for a nacelle-mounted scanning
lidar system, which greatly impacts the estimated wind parameters. In other words,
the availability of lidar measurements is a key parameter in determining the benefits of
any lidar-based application like lidar-assisted control. Suppose the lidar cannot deliver
confident estimates of the wind parameters. In that case, no benefits could be obtained,
while the worst-case scenario would be that harmful actuation of the turbine control
surfaces would worsen turbine performance over time. While several filtering methods
have been investigated in literature [Alcayaga 2020; Beck and Kithn 2017; Gryning and
Floors 2019; Herges and Keyantuo 2019], there is a lack of reconstruction methods for
data points lost due to deterministic effects. Therefore, there is a need for wind field
reconstruction methods that can reconstruct data points lost due to deterministic and
stochastic effects and increase lidar data availability.

1.6.4 FLOW EVOLUTION IN THE INDUCTION ZONE

The wind deceleration in the wind turbine induction zone is gaining more attention from
researchers and industry alike due to its direct impact on the power production of a
turbine. As the turbine extracts kinetic energy from the wind, the velocities upstream and
downstream of the turbine are reduced compared to the undisturbed wind speed, i.e., the
wind speed if no turbine was present. This effect is wind turbine blockage, while the affected
region is called the induction zone. The flow deceleration is most substantial at the turbine
but reduces in magnitude, moving away from the turbine into the undisturbed flow far
upstream of the turbine. Industrial standards require that for power production assessment,
the freestream wind speed should be at 2 to 4 rotor diameters in front of the rotor [IEC
2022] with 2.5 rotor diameters is normally recommended. Therefore, the wind deceleration
in the induction zone is also a critical parameter to consider for LAC applications as the
knowledge of when the upstream measurements would reach the turbine after considering
the deceleration in the flow [Dunne et al. 2014]. This knowledge is critical for enabling
the turbine to react dynamically and adapt to the incoming wind field. In addition, the
non-zero radial wind speeds at the rotor tips due to the flow expansion around the turbine
would affect the preview measurement quality of turbine-mounted lidar systems [Simley
et al. 2014b].

Experimentally, the induction zone has been mapped using nacelle-based and ground-based
lidars [Asimakopoulos et al. 2014; Mikkelsen et al. 2020; Simley et al. 2016; Slinger C et al.
2013]. The wind turbine induction zone is driven by the rotor induction and the interaction
of the wind turbine with the wind inflow and its surrounding environmental features. In
the former, the wind turbine’s design and operation are influencing factors, while the latter
is influenced by atmospheric conditions, terrain and neighbouring turbines. In wind farms,
cumulative induction effects have been noticed and termed as wind farm blockage [Bleeg
et al. 2018; Schneemann et al. 2021] where wind speed reductions of several percentage
points have been seen through simulations and measurements. Furthermore, short turbine
spacing inside tightly packed wind farms would create complex aerodynamic effects due
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to the interaction of induction zones and wakes from neighbouring turbines. These effects
were not considered by analytical models until the work of Branlard and Meyer Forsting
2020, who coupled vortex models with analytical wake models in FLOw Redirection and
Induction in Steady State (FLORIS) [Gebraad et al. 2016].

More detailed methods for describing the blockage deceleration have been developed
based on vortex theory [Branlard and Meyer Forsting 2020; Branlard et al. 2020; Medici
and Alfredsson 2006; Sarmast et al. 2016; Segalini and Alfredsson 2013]. In these models,
the flow around the wind turbine is modelled by treating the blades as vortex lines with
constant circulation while the blade root and tip vortices are shed from the rotor. Evaluation
and validation of these models is an important step toward implementing them to calculate
the theoretical power output of a wind turbine or a wind farm. In the IEA Task 32 workshop
held in 2019, induction zone models of varying fidelity were compared against nacelle-lidar
measurements [N. G. Nygaard 2019]. While the induction zone deceleration could be
observed in the field, a comparison of the engineering models indicated that the model
outputs could not accurately capture the field data. This raised the possibility that certain
physical phenomena influencing the induction zone deceleration, such as atmospheric
stability, were not considered in the models. This issue is further compounded by complex
aerodynamic interactions such as that of the near wake and induction zone and partial
waked inflow situations which could affect the flow behaviour in the induction zone.
Therefore, there is a need for high-resolution lidar measurements of the induction zone
under various inflow conditions and operational states of the wind turbine that could help
validate the induction models.

1.7 RESEARCH MOTIVATION AND GOALS

The motivation that led to the formulation of this thesis is fourfold. First, there is a fun-
damental question regarding the capability of scanning lidar systems in measuring the
turbulent wind turbine inflow. This question is relevant to identifying the additional value
provided by scanning systems for lidar-augmented turbine applications and leads to the
formulation of the first research question:

1. How accurately can scanning lidars measure inflow wind fields, and what is the added value
provided by continuously scanning devices like the SpinnerLidar compared to fixed-beam
devices?

To fully utilise scanning lidar measurements, it is necessary to enhance or develop
advanced wind field reconstruction methodologies that would exploit the detailed wind
sensing capabilities of the scanning systems. This leads to the formulation of the second
research question:

2. How can we develop dynamic line-of-sight wind field reconstruction methodologies that
are ideally independent of flow assumptions and would take advantage of the high spatio-
temporal resolutions offered by scanning lidar systems?

However, the ability of any wind field reconstruction method to accurately describe
the inflow requires sufficient data availability to estimate the wind conditions with high
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confidence. This issue is particularly relevant for nacelle-mounted lidar systems, as data
gaps due to blade passages is an inevitable result of such an installation.

3. How can we develop wind field reconstruction methods to compensate low-quality or
even substitute missing data points and improve the data availability of scanning lidar systems?

Upstream measurements are performed with short-range continuous-wave lidar sys-
tems located within the turbine induction zone and are subject to flow deceleration and
wind evolution. With the prevalence of wind farms, the interaction of flow between neigh-
bouring turbines results in complex aerodynamic interactions. With the development of
large wind farm arrays and the development of farm-level control strategies such as wake
steering, it is crucial to characterise the behaviour of the induction zone for these highly
complex flow conditions. This leads to the final research question:

4. How does the upstream induction zone of a utility-scale turbine behave during waked
and unwaked inflow scenarios?

1.8 STRUCTURE OF THE THESIS

The thesis consists of an introductory chapter, four chapters dedicated to each research
question and finally, a conclusion chapter.

Chapter 1 introduces the reader to lidar measurement principles, followed by an overview
of different lidar measurement techniques focusing on nacelle-mounted and ground-based
short-range lidars. An overview of state-of-art lidar-based applications is provided while
also identifying the open research questions. Afterwards, the thesis objectives and the
research questions are introduced.

In Chapter 2, the first research question is addressed. As it is quite challenging to investigate
and quantify lidar capabilities based on field measurements due to lack of reference, the
study is conducted inside high-resolution Large Eddy Simulations where lidars of different
complexities are simulated. First, error quantification is performed based on various
limitations of nacelle-based lidar measurements (volume averaging, directional bias, wind
evolution, sampling limitations, measurement of turbulence spectra in different reference
frames). Secondly, the sampling capabilities of the SpinnerLidar are evaluated against its
fixed-beam counterparts by comparing metrics relevant to turbine control.

In Chapter 3, the second research objective is considered. A new dynamic line-of-sight
velocity field reconstruction based on Proper Orthogonal Decomposition is developed and
evaluated inside Large Eddy Simulations. This model is advantageous over normally used
parameterisation-based reconstruction methods as it exploits the correlations within the
measured v}, field to create a reduced order representation of the inflow. In addition, the
method provides a way to extract and model dominant features in the inflow that drive
the turbine dynamics. In this chapter, we test the vy field reconstruction capabilities of a
POD-based inflow model based on scanning lidar measurements in Large Eddy Simulations.
In Chapter 4, a wind field reconstruction methodology is introduced based on a modified
POD technique called Gappy-POD. The method exploits the spatio-temporal correlations in
the inflow to reconstruct missing or erroneous data points. The reconstruction capability is
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tested based on scanning lidar measurements of varying data qualities and inflow scenarios.
Chapter 5 relates to the final research question. A highly instrumented measurement

campaign at a two turbine wind farm with two synchronised short-range lidars is presented.

Due to the very short spacing between the turbines, complex induction zone behaviour for

the downstream turbine was expected for various operational states of the upstream turbine.

Several measurement devices such as long-range lidars, eddy covariance stations, GPS
devices, load measurements and SCADA data are used in conjunction with the short-range
scanners yielding deeper insight into the flow characteristics and turbine reactions.

Chapter 6 wraps up the thesis with conclusions and lays down avenues for future research.
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EVALUATING SCANNING AND
FixEp BEAM LIDAR SYSTEMS
wITH HiGH FIDELITY
SIMULATIONS

2.1 INTRODUCTION

Advancements in optical fibre technology based on telecommunications technology and
remote wind sensing have continuously reduced the cost of lidar systems. However, lidar
systems cannot measure the wind vector at the point of interest like anemometers and
only measure the component of the wind vector projected in a volume of several meters
along the laser beam direction.

Ideally, three linearly independent lidar measurements are required at a single point to
resolve the full wind vector. However, implementing synchronised lidar scanning strategies
is still a cumbersome endeavour. Therefore, to obtain parameters describing the inflow,
wind field reconstruction strategies are employed along with flow simplification assump-
tions such as flow homogeneity, zero up-flow, or uniform wind direction, to name a few.
Therefore, lidar measurement strategies have uncertainty sources inherent to the device
itself, adversely impacting the measurement quality and the choice of the employed wind
field reconstruction methodology. For any inflow-sensing lidar system, the most significant
factors affecting the measurement quality are the directional bias [Schlipf and Kithn 2008],
radial velocity averaging along the measurement volume [Sjoholm et al. 2009; van Dooren
et al. 2022], wind evolution between the upstream measurement location and the rotor
plane [Chen et al. 2021; Mann et al. 2018], upstream blockage deceleration [Schlipf et al.
2015; Simley et al. 2016].

Part of the contents presented in this chapter have been published as: 2 A. P. Kidambi Sekar, M. F. van Dooren, A.
Rott, and M. Kiihn (2020). How much flow information can a turbine-mounted lidar capture?. In Journal of Physics:
Conference Series (Vol. 1618, No. 3, p. 032050). IOP Publishing. DOI: 10.1088/1742-6596/1618/3/032050.

© 2020 by the authors. Reproduced in accordance with the Creative Commons Attribution 3.0 License.



22 2 EVALUATING SCANNING AND FIXED BEAM LIDAR SYsTEMS WITH HIGH FIDELITY SIMULATIONS

In addition, the spatial and temporal coverage of the lidar is also a significant factor in
capturing the relevant inflow dynamics. While large measurement distances are achievable
through pulsed operation, relevant for very large wind turbines [Soto Sagredo et al. 2024],
the continuous-wave (cw) type is advantageous for wind turbine applications due to their
significantly larger sampling rates [Simley et al. 2012]. The spatial coverage is influenced
by the beam-scanning strategy of the lidar device, while the temporal resolution depends
on the lidar operating principle. Modern lidar systems are moving from fixed multi-beam
systems toward steerable beams allowing active wind scanning. The development of the
DTU SpinnerLidar [Mikkelsen et al. 2013] represents a new class of turbine-mounted
scanning lidars that offer significantly higher wind field scanning rates compared to fixed-
beam lidars. The SpinnerLidar is, however, a prototype research device with substantially
higher costs and reduced robustness owing to moving parts compared to a fixed-beam lidar
commonly utilised for Lidar-Assisted-Control (LAC) applications. Hence, it is relevant to
revisit the applicability of these advanced lidar systems against fixed-beam devices: is it
justified to use a scanning lidar over fixed-beam systems for lidar-assisted applications?
Should the SpinnerLidar be considered for only specific applications such as load validation
and turbulence assessment where high spatio-temporal resolutions are critical?

While full-field experiments can capture the spatio-temporal dynamics of the flow, it is not
a trivial task to identify and quantify uncertainties due to the lack of a reliable reference.
Therefore, estimating lidar effects such as directional bias or volume averaging is cumber-
some, depending on the flow and environmental conditions. Lidar simulations provide a
methodology to identify, verify and understand lidar capabilities and limitations. Simulat-
ing lidar systems inside a known wind field provides a reference domain for performance
and quality assessment.

Identification of wind lidar limitations and its impact on measurement quality has been
investigated before using numerical investigations to examine the performance of lidar-
assisted control strategies [Laks et al. 2013; Simley et al. 2018; Simley et al. 2014b]. Similarly,
lidar simulators have been developed for studying the accuracy of wind field reconstruction
algorithms and quantifying the impact of measurement strategies [Lundquist et al. 2015;
Raach et al. 2017; Rahlves et al. 2022a] or to study the limitations of the measurement
principle [Churchfield et al. 2016; Meyer Forsting et al. 2017; Mirocha et al. 2015; Simley
et al. 2012].

Some of these studies used stochastic wind fields commonly applied for aeroelastic load
simulations that lack physics-based wind evolution models. As it is impossible to measure
the flow around a turbine, in reality, accurately, no full-scale reference measurements
from experimental campaigns are available. To bridge this gap, lidar simulations inside
Large Eddy Simulations [Beck and Kithn 2019; Trabucchi 2020; van Dooren et al. 2016] can
be performed as an alternative. Developments in parallel computing and computational
modelling have resulted in LES models capable of accurately resolving the turbulent atmo-
spheric flow [Maronga et al. 2015]. Consequently, these models represent the atmospheric
flow making them an ideal reference for quantifying the lidar uncertainties.

The aim of this chapter is to provide a basis for gaining a deeper understanding of the lidar
measurement technique and for evaluating measurement layout and scanning strategies
for full-field measurements in a highly controllable virtual environment. This chapter
quantitatively investigates capabilities and uncertainties associated with a turbine-mounted
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inflow-scanning lidar system in high-fidelity Large Eddy Simulations based on and extend-
ing the previous work in Kidambi Sekar et al. 2020. To this aim, the chapter addresses two
questions:

1. How do lidar uncertainties influence accurate measurements of inflow wind fields?

2. What are the advantages of using a scanning SpinnerLidar compared to fixed-beam
devices?

To tackle the second question, we choose the characteristics of a few commercially available
fixed-beam devices with different numbers of beams and orientations with a focus on cw
devices. The ability of the different lidar systems to accurately represent the inflow is
tested by applying wind field reconstruction techniques followed by an evaluation against
the reference wind fields.

The chapter first beings with a description of the lidar measurement principle in Section 2.2.
Chapter 2.3 describes methods where the Large Eddy Simulations and the lidar simulator
are described in detail. In Chapter 2.4, the ability of lidar systems to measure the inflow
is evaluated considering the measurement uncertainties. In Chapter 2.5, the performance
of simple fixed-beam inflow scanning systems are evaluated against a suitable scanning
lidar, i.e., the SpinnerLidar. Finally the Chapter is summarised with a short discussion in
Chapter 2.6 and conclusions in Chapter 2.7.

2.2 THE CONTINEOUS-WAVE LIDAR MEASUREMENT PRINCI-
PLES

In this section, an introduction to the measurement principle and associated uncertainties
of cw lidars are discussed. While performing turbine-mounted lidar measurements, the
following uncertainties have to be considered. Directional bias, range weighting and wind
evolution are limitations common amongst all turbine-mounted lidar systems, while the
beam-scanning strategy and the temporal resolution determine how well the lidar device
measures the upstream rotor plane wind variations.

2.2.1 DIRECTIONAL BIAS

A lidar device can only measure the wind speed component projected along the direction
of the laser beam. Hence, while performing turbine-mounted measurements, only a projec-
tion of the wind vector is measured by the lidar. The reconstruction of the longitudinal
wind speed component, which is of most relevance for the wind turbine, can only be
performed by making assumptions about the wind field. For a lidar, the line-of-sight vy,
speed measurement at a point in space is expressed as a combination of the three wind
components as described in Harris et al. 2007 and shown in Eq. (2.1).

Ulos = 0s(y) cos(d)u + sin(y) cos(5)v + sin(y) w. (2.1)

Here, y is the azimuth and & elevation angles of the focused laser beam. The movement of
the turbine during operation will further impact the pointing angles of the laser beams.
As a result, lidars are installed with a tilt to compensate for these changes. The three
quantities u, v and w are the longitudinal, lateral and vertical wind components. For
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turbine-mounted lidars, 4 » v, w and hence it is a reasonable assumption to set the lateral
and vertical velocities to 0 in Eq. (2.1) to obtain the projected longitudinal component.
However, the assumption of zero lateral and vertical velocities might not hold during
conditions such as turbine yaw misalignment or during complex terrain or waked inflow.
Moreover, the longitudinal velocity estimation error scales with the beam deflection angle.
If the laser beam is misaligned with the u component, an error equal to the cosine of beam
deflection is expected, along with the cross-contamination from the crossflow components.
This directional bias introduces a source of error while using wind field reconstruction
algorithms due to wind field assumptions such as flow homogeneity or assuming zero
vertical and lateral velocities. The directional bias also introduces an ambiguity in resolving
shear and directional parameters that could only be solved by performing measurements
at two upstream locations or with two devices from different longitudinal positions [Kapp
and Kithn 2014].

To analytically determine the directional bias on the estimation of the longitudinal wind
speed component, we can utilise Eq. (2.1). By aligning the laser beam into the mean wind
direction and assuming negligible lateral and vertical components (v, w ~ 0 in Eq. (2.1))
and no rotor axis tilt in case of a hub-mounted lidar, we can write:

Ulos

cos(y)cos(8)’ @2

0=
where 4 is the projection estimation of the longitudinal wind speed. Rearranging these
equations by substituting Eq. (2.2) in Eq. (2.1), we obtain the error of the longitudinal
velocity (e,) as:

U-u=e¢, =tan(y)v+ tan(9)
cos(y)

The partial derivative of the error estimation of the longitudinal wind speed as a function
of the azimuth and elevation angles is calculated from Eq. (2.3).

w. (2.3)

12} 2}
% = sec(y)(vsec(y) + wtan(y)tan(d)) and % = wsec(y)sec’(d). (2.4)
X
The partial derivatives describes the change of error of the u component estimation with
respect to the beam scanning angles and the effect of turbine roll and tilt during operation.

2.2.2 THE VOLUME AVERAGING EFFECT

When focused at a given focus point, the wind speed measurement of a cw lidar is not
an accurate point measurement but a weighted average of the line-of-sight wind vector
from projecting the local velocities on the laser beam direction. The radial wind speed vy,
measured by a cw lidar focused at a point f in space can be shown as an integration of the
wind speed projected along the beam direction.

Vlos = [m ¢enros - u((s+ f)nLos)ds (2.5)

where nips is the unit vector along the beam direction and ¢ is the spatial averaging
function represented as a Lorenzian shaped weighing function described by Sonnenschein
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and Horrigan 1971 as,

1 r
¢s=;<m>, (2.6)

Where s is the distance along the laser beam from the focus point f and I' is the half-width
half maximum (HWHM), proportional to the Rayleigh length, which is an optical telescope
property that also depends quadratically in size on the measurement focal distance. The
probe length at a distance f can be expressed as I' = 7%22 with A as the laser wavelength,
and a is the effective radius of the lidar telescope. The velocity contributions along the
laser beam are distributed wider when focusing the laser beam further away from the lidar.
Therefore, the low-pass filtering effect due to measurement volume averaging attenuates
the measured wind turbulence.

This volume averaging property of a cw lidar increases with the square of the focus distance.
It attenuates the turbulence fluctuations along the beam direction correspondingly due
to weighing of the wind speeds along the probe volume [Angelou et al. 2012; Peni et al.
2017; Sjoholm et al. 2009]. Even though this effect is not critical for control and even
advantageous in the estimation of rotor effective speeds due to rotor plane averaging
[Bossanyi 2003], it leads to an under-prediction of turbulence estimates which are essential
for determining turbine structural loads.

2.2.3 WIND EVOLUTION AND BLOCKAGE DECELERATION

An important aspect to consider while performing preview lidar measurements is the
evolution of the wind turbulence and the induction slowdown between the position of
measurement upstream of the turbine and the rotor plane. Wind evolution is the physical
phenomenon of transforming the turbulence eddies over time while the fluid flow transports
them spatially. This is denoted by the magnitude-squared coherence between wind speeds
at two points separated by a distance in space with a certain time lag between them.
To reduce wind evolution uncertainty, increasing the coherence bandwidth between the
upstream measurement location and the rotor plane is desirable, providing more helpful
information about the turbulence spectrum that translates to better controller performance
[Dunne et al. 2014].

The stochastic evolution of the longitudinal component in freestream can be modelled
based on many theories [Davenport 1962; Kristensen 1979; Panofsky and McCormick
1954; Pielke and Panofsky 1970; Ropelewski et al. 1973] based on longitudinal separation,
wave-numbers and parameters related to the decay of coherent eddies. Simley et al. 2014a
presented a simple coherence model dependent on the mean wind speed, turbulent kinetic
energy and the integral length scales present in the flow:

Ou,, Ayl _
VoK oy = exp((—m —= +ay) \/f— + <b1L,/’2Ax>2>>. (2.7)

Equation (2.7) denotes the longitudinal coherence yi Ky K, between two spatially separated
points x; and x; as a function of the freestream wind speed u, standard deviation oy,
the integral length scale L, and the spatial separation Ax distance itself. The constants a,
az, by, by are defined by the wind field by defining an objective function which minimises
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the integrated square error between the calculated coherence curve and the coherence
modelled based on Eq. (2.7) at different longitudinal separation distances.
The presented longitudinal wind evolution model works under free inflow conditions
where no turbine is present and no induction zone. Hence this model is not directly
applicable in the induction zone as the wind speed slowdown is not modelled, leading to
an over-estimation of coherence. Hence, we modify the coherence model derived in Simley
et al. 2014a to include the induction wind speed reduction. In Eq. (2.7), the longitudinal
coherence decreases with a reduced value of u.. A better wind evolution representation
can be obtained by replacing this value of u. with a lower mean value, ideally equal to
a reduced induction zone velocity. The reduced wind velocity in the induction zone u;,q
could be measured either by refocusing the lidar in the induction zone and measuring the
induction slowdown or by modelling the wind deceleration in the induction zone.
The induction zone slowdown as a function of the upstream distance from the rotor can
be modelled as a function of the axial induction factor [Medici et al. 2011]. By applying
the vortex sheet theory to the actuator disk model, the induction zone velocity u;,q of the
rotor can be calculated as:

Hnd g a[1+E(1+£7)F), 2.8)
Where ¢ = x/R, where x is the distance along the symmetry axis (negative upstream), a is
the axial induction factor of the turbine and R is the rotor radius. To model the wind speed
slowdown in the induction zone along with the longitudinal wind evolution, Eq. (2.8) can
be substituted into Eq. (2.7) resulting in:

ind Uind

2
yf,le Ky = exp((—a1 Zuw +ay) \/fo + (blL;bzAx)2)>, (2.9)
This modified expression is one step towards combining the effect of wind evolution with
the 1-D induction zone deceleration in the horizontal direction along the rotor axis. 2-D
estimates of the combined induction and wind evolution could be obtained by combining
2-D induction zone deceleration models [Branlard et al. 2013; Troldborg and Meyer Forsting
2017] with wind evolution models.

2.2.4 SPATIO-TEMPORAL LIMITATIONS

The lidar measurement uncertainty is directly affected by the scanning trajectory and the
number of points measured by a lidar during each scan. A lidar measuring a single point
along the rotor axis will only return a single longitudinal wind speed. At least two points
on a horizontal or vertical line are needed to calculate the shear or directional parameters
[Mirzaei et al. 2013b; Simley et al. 2018]. While a scanning lidar system can measure a large
number of points during every scan, this is a large amount of information for a controller
which operates based on a few inputs and hence requires parameterisation based on wind
field reconstruction models. For calculating turbulence characteristics relevant to loads, it
is necessary to have a high temporal sampling rate. A reduced spatial coverage implies
an incomplete rotor plane scan, thereby unable to sample the wind field in the rotational
reference frames necessary to calculate fluctuating blade loads. Lidar measurements for
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different control strategies require other wind field parameters as input; hence, there is
not one scan pattern to satisfy the all possible control objectives. Here, we focus on the
estimation of the rotor effective wind speed u.¢s, vertical shear s,, yaw misalignment Jj
from the lidar measurements which are standard individual and collective pitch control
(CPC, IPC) inputs. Here, vertical shear refers to the variation of the horizontal wind speed
with height while yaw misalignment refers to the angular difference between the wind
direction and the rotor orientation. The effective wind speed u.y; is calculated by averaging
the velocities over the rotor area. The vertical shear is estimated as the power law exponent
of the wind profile a while the yaw misalignment is calculated from the line-of-sight
velocities assuming homogeneous flow over the rotor area.

Table 2.1: Overview of the scan patterns used to investigate the effects of spatial sampling.

ID Scan Ueft Sy O

single Beam X - -
2-Beam Vertical X
2-Beam Horizontal X
4-Beam X
5-Beam X
Horizontal Line X -
X
X
X

oo

Vertical Line
Circular Scan
SpinnerLidar

O 00 N QN U R W=

Moo
o

Different lidar configurations are simulated to estimate spatial sampling effects by varying
the position and number of beams. For this analysis, only an half opening angle of 30° is
considered aiming at the points on the circumference of the rotor plane. While a shorter
opening angle measuring around 75 % of the blade radius might be more representative
for blade loads and power [Simley et al. 2014a], the objective here is to quantify the
quality of the reconstructed wind parameters between the different investigated scan
types. The SpinnerLidar measurements cover a spherical plane over the total swept rotor
area. Different scan patterns are chosen from these measurements to represent typical
commercially available fixed-beam lidars. These scan patterns are visualised in Figure 2.1
and tabulated in Table 2.1. The point measurement represents the simplest turbine-mounted
lidar measurement without any beam steering mechanism staring along the rotor axis for
spinner-mounted lidars. The two-beam horizontal and vertical scans have a maximum
beam deflection angle of 30° from which the vertical shear s, and the yaw misalignment 8y
can be estimated, respectively. The 4- and 5-beam lidar covers more spatial area than the
two-beam devices and can simultaneously estimate the shear and the yaw misalignment.
ID 8 represents the circular scanning lidar system which measures the circumference of
the measurement circle with a beam deflection angle of 30°. All the fixed-beam scanning
scenarios are performed at the upstream distances, and beam deflection angles are listed
in Table 2.1. ID 9 represents the typical SpinnerLidar spherical plane measurement. To
quantify the error in parameter estimation, we define standard and dynamic errors of the
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Figure 2.1: The investigated lidar scan patterns.
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Here X" js the set of wind field parameters estimated from the lidar scans, and XS
are the results from the reference wind fields. €y4 represents the second norm of the time
series, and the dynamic error is inspired by the idea that the fluctuations from the mean
quantity X(#) - {X); are more critical for fatigue load calculations.

2.3 METHODS

In this section, the scanning SpinnerLidar is introduced, followed by a description of the
LES and the lidar simulator. As the analysis is carried out in a simulation environment, the
results from the lidar simulator can be directly compared to the reference LES. With the
lidar simulator, the lidar parameters can be controlled, providing an opportunity to test
different operational parameters and isolate certain contributions to the total uncertainties.

2.3.1 LARGE-EDDY SIMULATIONS
The LES wind fields were created with the PArallelised Large eddy simulation Model
(PALM) [Maronga et al. 2015], which has been used extensively for studying the atmo-
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spheric boundary layer. The code works based on solving the filtered, incompressible,
non-hydrostatic Navier-Stokes equation using a Schumann volume averaging approach.
The code utilises a central difference scheme to discretise the Boussinesq approximation of
the 3-D Navier—Stokes equations on a structured Cartesian grid. To parameterise the sub-
grid scale turbulence, a 1.5 order closure based suggested by Deardorff 1980 is employed.
All the simulations are performed using the default settings of PALM that include a 5™
order scheme described in Wicker and Skamarock 2002 for solving advection terms and a
3" order Runge-Kutta scheme for time marching. Periodic boundary conditions are used
in the lateral boundaries, and no-slip conditions are applied to the lower boundary.

The wind turbine is modelled based on the Fatigue, Aerodynamics, Structures and Turbu-
lence code (FAST) v8, developed by the National Renewable Energy Laboratory [Jonkman
et al. 2005]. The FAST code, developed for horizontal wind turbines, models them as a com-
bination of rigid and flexible bodies. The aerodynamic forces are calculated in the AeroDyn
module, where the 3D flow around the blades is approximated into local 2D forces at cross-
sections. Each blade is approximated as a line that rotates in time, with each line subdivided
into sections. Both PALM and FAST simultaneously run in a direct loose two-way coupling
[Kriger et al. 2022]. The velocity is sampled at the centre point of each section from the
LES and passed into FAST. The AeroDyn model uses the pre-determined lift and drag tables
to compute the aerodynamic force in each section. The forces are then transferred back into
the structural dynamics module and also back to the LES solver. The LES solver applies the
computed blade forces into the wind field, creating the induction zone and the turbine wake.

200 CBL Case 200 SBL Case
180 10.5 180 +
8
160 10 160 -
140 95 140 7
120 9 120 b .
B E 68
= 100 85 = 100 k3
N N =
80 8 80 5
60 75 60
40 4
7
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Figure 2.2: The mean longitudinal component u at a vertical plan 1 D upstream of the reference turbine for the
CBL and SBL cases at the beginning of the main run. The red circle indicates the area covered by the rotor.

Two stationary and fully turbulent unsteady atmospheric boundary layers of unstable and
stable stratification are generated first in a pre-run simulation without the wind turbine.
For both cases, the large domain size ensures that the inflow of the turbine is not affected
by the boundaries allowing for a homogeneous turbulent atmospheric boundary layer to
develop after a pre-run of 25 hours. The instantaneous fields of the precursor simulation
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are mapped onto the main simulation through turbulence recycling [Lund et al. 1998]. In
the main run, the turbine is introduced into the wind field. The chosen turbine model is
the NREL 5 MW reference turbine [Jonkman et al. 2009a] with a diameter of 126 m and a
hub height of 90 m modelled as an actuator line with 63 blade sections. Essential details of
the two simulations can be found in Table 2.2. Figure 2.2 depicts the averaged longitudinal
component on a vertical plane 1 D upstream of the turbine at the beginning of the main
simulation.

Table 2.2: The key parameters of the two PALM-FAST simulations.

Parameter CBL Case SBL Case

Domain size Ly x Ly x L; 8188 x 4092 x 2048 m°> 2872 x 960 x 480 m>
Grid mesh size Ny x Ny x N, 2047 x 1023 x 512 718 x 240 x 120
Cell mesh resolution 4x4x4m? 4x4x4m’

Wind turbine model ALM ALM

Number of blade elements 63 63

Atmospheric stability Unstable Stable

Geostrophic wind u=11.85ms ' and v=-1.02ms! | u=95ms! and v =-5.17 ms™!
Simulation sampling rate 5Hz 5Hz

Roughness length z, 0.0175 m 0.1m

Longitudinal wind speed at hub height | 10.1 ms™! 7.2 ms™!
Longitudinal TI at hub height 11.91% 7.5%

Shear Exponent (@) 0.09 0.23

Integral length scale (m) 285 34

Wind veer over rotor (°) 0.8 9.3

2.3.2 THE SPINNERLIDAR

The SpinnerLidar [Herges et al. 2017b; Mikkelsen et al. 2013] is a turbine-mounted lidar
capable of being installed on the nacelle or the spinner with the ability to scan the wind
turbine inflow or the wake depending on its orientation. The device is a modified ZephIR-
300 continuous-wave Doppler lidar system. The modification consists of a 2D scan head
developed by the Technical University of Denmark and IPU P/S, Virum, Denmark that
allows deflection of the laser beam in a pre-determined pattern unattainable by fixed-beam
lidar systems. This modified scan pattern enables the measurement of radial wind speeds in
the turbine inflow with an unprecedentedly high amount of spatial and temporal coverage
(a maximum of 500 points per rotor scan and 1 s temporal update). Its scanhead consists of
two rotating prisms capable of deflecting the focused lidar beam, each by a 15° deflection
angle while rotating together with a fixed ratio of 7 to 13. The result is a scan pattern
similar to a rosette figure that covers a large area with a very high spatial resolution. The
maximum inclination of the laser beam found on the edges of the scan pattern is 30°. While
operating the lidar with the full spatio-temporal resolution, it is possible to scan the inflow
wind field with a cone of 60° every second with a scanning trajectory containing 500
points (see Fig 2.4). The lidar also includes a fast voice-coil-based focus motor capable of
continuously re-focusing the laser beam at distances between 10 m to 150 m. The variation
of the measurement probe volume as a function of focus distance for the SpinnerLidar is
visualised in Fig. 2.5. The lidar can be installed in the spinner of a wind turbine, as the
name implies, and on top of the nacelle just behind the rotor plane if a spinner installation
is not feasible (in the latter case, measurements are then subject to blade interference).
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Figure 2.5: The variation of the measurement probe
volume as a function of focus distance for the Spin-
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2.3.3 LIDAR SIMULATOR (L1X1Mm)

For simulating measurements from the LES, the integrated lidar simulation toolbox LiXim
(Lidar Scanner Simulator) developed in Trabucchi 2020 is used. This lidar simulation tool
can reproduce the operation of virtually any lidar system and facilitates its evaluation
for different laser, operational and scanning settings. During the simulations, the yaw
movement of the turbine is constrained, and the rotor axis tilt is not considered. The lidar
simulator performs snapshot measurements of the wind field and interpolates between the
LES grid points. LiXim also assumes no beam pointing uncertainties while no environmental
effects are modelled. The lidar parameters can be modified in LiXim, allowing control over
the laser beam properties and the optical trajectory. Lidar simulations are performed by
modifying the upstream focus distance, opening angle and the sampling rate as tabulated in
Table 2.3 for both the CBL and SBL cases totalling 100 simulations. The lidar’s focal length
varies from 30 m to 150 m, corresponding to 0.23 D to 1.2 D in front of the reference turbine.
The half opening angle of the SpinnerLidar is modified between 0 = 5° to 22.5° equalling
a maximum beam cone angle between 10° and 45°. For all simulations, 312 points are
measured with the Rosette trajectory for every full 2D rotor scan (Fig. 2.4). The simulations
are visualised in Fig. 2.6 (a) for the beam deflection angles and focal distances. The scans
with different opening angles cover varying rotor areas. The SpinnerLidar is placed in the
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Figure 2.6: (a) Visualisation of the different scanning scenarios simulated for the study. The horizontal dotted
lines indicate the width covered by the rotor. The black vertical lines show the different focus distances, and
the coloured lines illustrate the different deflection angles of the SpinnerLidar, respectively. (b) The scatter
plot between the LES u-component 1 D upstream of the turbine along the rotor axis against the corresponding
SpinnerLidar vy, measurement for the CBL and SBL cases.

spinner of the NREL 5 MW reference turbine, shown as the vertical black line at x/D = 0.
For each set-up, LiXim simulates the lidar measurements from the LES with and without
accounting for the volume averaging effect, i.e. normal and perfect point measurement. An
interpolation scheme based on Delaunay triangulation is used to interpolate wind speeds
at locations between two grid points.

For the validation of LiXim, a scatter plot between the v, velocity at the centre of the
rosette scan of the SpinnerLidar focused 1 D upstream of the turbine is plotted along with
the corresponding LES u component taken at the closest point (Fig. 2.6 (b)). The centre
point of the Rosette scan is chosen as the reference to eliminate any directional bias of
line-of-sight velocities. A good fit is obtained for both the CBL and SBL cases indicating
that the coupling between the LES and the LiXim simulations is plausible. The minor
differences between the LES and the lidar can be attributed to the probe averaging effect
(probe length of 19.6 m at a focus distance of 126 m) and LiXim interpolating between the
LES grid points. Similarly, all the scan trajectories listed in Tab. 2.3 are simulated with
LiXim and compared against each other and the reference wind field.

Table 2.3: Settings of the SpinnerLidar scenarios performed with the LiXim. The last row contains the normal
operational parameters of the SpinnerLidar. The focus distance is normalised with the rotor diameter of the NREL
5 MW reference turbine.

Run Focus distance (m)  Beam cone angle (°) f; (Hz)
1 30 (0.23 D) 10, 20, 30, 40, 45 1,5
2 60 (0.47 D) 10, 20, 30, 40, 45 1,5
3 90 (0.71 D) 10, 20, 30, 40, 45 1,5
4 126(1.0 D) 10, 20, 30, 40, 45 1,5
5 150 (1.19 D) 10, 20, 30, 40, 45 1,5

Normal operation  10-150 (0.08 D - 1.19 D) 30 1
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2.4 RESULTS

First, to estimate the accuracy of lidar-based wind field measurements, the temporal
sampling, directional bias and volume averaging limitations are investigated against the
reference wind fields. Henceforth, for consistency, the results of the SpinnerLidar simu-
lations with the volume averaging effect are referred to as a probe measurement and the
simulations without the volume averaging as a point measurement (perfect lidar). Secondly,
the wind field reconstruction capabilities of the SpinnerLidar against the fixed-beam devices
are evaluated by direct comparison against the LES reference.

2.4.1 EFFECT OF TEMPORAL SAMPLING RATE ON THE TIME SERIES MO-
MENTS

To test the reproducibility of the statistical properties of turbulent flow from lidar measure-
ments, we derive the spectral moments of the time series. The mean, variance, skewness
and kurtosis of the SpinnerLidar simulations are plotted and compared against the reference
LES in Figure 2.7. The moments are calculated at points taken from lidar measurements
located on the rotor axis at different focal distances to neglect directional bias sampled at
1 Hz. The resulting v},s velocity, equivalent to the longitudinal wind speed, is compared
against the longitudinal wind speed from the reference LES.
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Figure 2.7: The first four standardised moments of the time series calculated at different upstream positions
relative to the location of the turbine for the CBL and SBL cases. The dotted lines are the result of a lidar
performing measuring with the influence of the probe volume and the circles are the results of the perfect lidar
measurements without probe volume averaging. The solid lines are the results from the u-component velocity
from the LES simulations at the nearest grid point.
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The mean velocity decreases towards the turbine location at x = 0 m due to the induction
zone blockage. Even with a 1 Hz sampling rate and the volume averaging effect, the
mean value is captured with high accuracy compared to the LES. The slight variations
in the wind speed reduction are due to the effect of the interpolation scheme used by
the lidar simulator to integrate between grid points. The variance, which measures the
fluctuations in the flow, behaves differently in comparison to the mean velocity. The
volume averaging effect is visible at more considerable measurement distances attenuating
lidar measured variance compared to the perfect lidar measurements. The lidar measured
variance decreases in comparison to the point measurement at more considerable focal
lengths, while the sampling rate has only a negligible effect. For the skewness and the
kurtosis that define the measurement of the distribution symmetry and the shape, the
sampling rate dominates over the volume averaging effect. The distribution’s skewness
becomes heavy-tailed compared to the LES, while the kurtosis is over-predicted for the
CBL case and matches the SBL case quite well. The third and the fourth-order moments
are affected by the temporal resolution of the scans, consequently affecting the results,
especially at lower sampling rates.

The mean wind speed is independent of the sampling rate and volume averaging, while the
variance is influenced by the larger probe volume at large focus distances, causing an under-
prediction of variance. The skewness and the kurtosis highly depend on the sampling rate
and the total amount of samples but are not statistics required for control or load validation.
A lidar measuring at 1 Hz is a standard setting for commercial devices and can estimate
the mean wind speeds accurately, making it a suitable sampling rate for running lidars for
control applications, as noted by Simley et al. 2018. As the turbulent fluctuations in the
wind contribute most to the fatigue loading on the turbine, it is imperative to understand
the volume averaging effect while using lidars for loads validation.

2.4.2 THE VOLUME AVERAGING EFFECT

The wind speed measurements of a cw lidar can be interpreted as a convolution of the
wind speed time series and the Lorenzian weighing function that scales with the distance
to the measurement point when the lidar beam is aligned with the wind direction.

The Lorenzian function introduces wind speed contributions from positions along the
beam, effectively applying a low-pass filter to the measurements. The effect of the low-pass
filtering can be seen in Fig. 2.8 for the CBL case, where the velocity time series at different

upstream measurement locations are shown along with the reference data. At f = 30 m,
the probe volume is smaller than the resolved grid size leading to no differences in the
time series measured by the SpinnerLidar and the reference. With an increase in focus
distance, the low-pass filtering is more clearly visible and prominent at f = 126 m, with the
lidar unable to capture the small-scale velocity variations present in the LES.

To quantify the amount of Turbulent Kinetic Energy (TKE) attenuated by the lidar due
to the volume-averaging effect, the total signal TKE ratio between the real lidar with the
volume-averaging property and an ideal lidar performing a point measurement is plotted
in Fig. 2.9. Henceforth, the lidar-measured TKE is defined as the kinetic energy of the
line-of-sight measurements rather than the commonly used definition of TKE of the 3D
wind field. The ratio is calculated by integrating the total area under the energy spectra.
The focus distances at which the probe length is smaller than the grid resolution are marked
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Figure 2.8: Time series of the line-of-sight wind velocities measured along the rotor axis for different focus
distances compared against the longitudinal wind speed component from the reference LES at the same location.
Only the CBL case is shown.

in red, while the black line shows a perfect lidar with no kinetic energy attenuation. For
both the CBL and SBL cases, the lidar measured variance reduces at more considerable focal
distances. At f = 126 m, comparable to scanning one turbine diameter ahead of the NREL
5 MW reference turbine, the lidar measures approximately 5% and 15% lower turbulent
kinetic energy due to the volume averaging effect for the CBL and SBL cases, respectively.
For both cases, the lidar’s attenuated TKE along the line-of-sight is highly negatively
correlated to the probe length with a Pearson coefficient p(KEggtio,2I') = —1. Hence, the
amount of kinetic energy attenuated by the lidar shows a dependence on atmospheric
stability.

2.4.3 EFFECT OF DIRECTIONAL BIAS

For turbine-mounted inflow lidars sensing along the rotor axis, the common assumption
that the line-of-sight speed is the longitudinal u-component. This can be reasonable if
the magnitude of the cross-wind components are pretty low, i.e. u > v, w due to the lidar
pointing directly into the wind. However, with a scanning setup, the estimation error of u
depends on the angle between the laser beam and the wind direction.

Figure 2.10 illustrates the analytical error in the estimation of the longitudinal component
€, as a function of the beam angles y and § for unity vertical and lateral speeds based
on Eq. 2.4. When the lidar points into the wind, the beam angles are very small and
the error induced by the lateral and the vertical wind speed components are low as the
longitudinal wind speed component dominates the line-of-sight velocity. As this error
increases with the beam angles, the cross-contamination from the lateral and the vertical
components causes a higher error while back-projecting the line-of-sight wind speeds into
the longitudinal component. The rate of change of the projection error as a function of
the elevation angle § exhibits symmetrical behaviour about the centre. In contrast, the
derivative of the error as a function of y is mirrored around the y = 0° line. Inside the
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Figure 2.9: The ratio of the turbulent kinetic energy along the line-of-sight direction measured at the different
upstream distances along the rotor axis for the lidar measurements with and without probe length averaging.
Here 2I' < dx indicates the region where the probe volume is smaller than the LES grid resolution.

red circle which shows the SpinnerLidar maximum beam deflection angle, the pointing
error reaches a maximum of 0.5 m/s. If the instantaneous yaw misalignment d;, and up-tilt
Bup of the turbine are taken into account, then the pointing error scales with y + J, and
&+ 0yp in Eq. 2.4, which increases the projection error substantially at higher opening angles.
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Figure 2.10: The error in estimation of the longitudinal component (¢,) as a function of the elevation ¢ and
azimuth y angle for unity lateral and vertical wind speed in Eq. 2.4. The red circle indicates the + 30° opening
angle of the SpinnerLidar.

Therefore, for turbine-mounted lidars, directional bias is easily the most significant error
source in longitudinal velocity estimation, which is most relevant for the turbine. It is
evident that for larger opening angles, the directional bias is dominating in comparison to
volume averaging due to the increased cross-contamination from the crosswind compo-
nents. It is estimated from Fig. 2.10 that the longitudinal component error will exceed more
than + 0.5 m/s when the pointing angle exceeds 20° in either the horizontal or the vertical
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directions. This effect is more pronounced during turbine operation, yaw misalignment, or
the typical rotor axis tilt.

2.4.4 SAMPLING THE WIND FIELD IN A STATIONARY AND ROTATING
FRAME OF REFERENCE

To calculate the turbine dynamic loading and the desired reduction through control actua-
tion, it is essential to study the atmospheric turbulence impinging on the turbine. A wind
turbine with a specified rotor speed will experience a wind field that varies spatially due to
the atmospheric shear and turbulence. First, we investigate the spectra of a point taken at
the centre of the SpinnerLidar scan at various distances upstream of the turbine to avoid
directional bias. The fixed point turbulent spectra are calculated by estimating the power
spectral densities (PSD) by splitting the time series into 20 blocks and applying a Hamming
window with 50% overlap.

The results of the non-rotating spectrum for the two inflow cases at variable focus dis-
tances along the rotor axis are shown in Fig. 2.11 where the dotted lines indicate the
real SpinnerLidar measurements with the volume averaging property and the solid lines
indicate the measurements without the volume averaging property of the lidar. For the
perfect lidar measurement, the spectra of both cases follow the inertial sub range part of
the turbulent spectra given by the —% Kolmogorov slope showing very close agreement
with the reference LES spectrum. The distance dependency of the volume averaging effect
is clear where the turbulent spectra of the real lidar measurements (dotted lines) show a
drop-off from the -% slope with the drop-off occurring earlier at larger focus distances.
Hence, in a non-rotating spectrum, the lidar captures less energy at higher frequencies
than the perfect measurements. Measuring upstream at 126 m (1 D), the spectral drop-off
is pronounced at 0.1 Hz and 0.08 Hz for the CBL and SBL cases. The theoretical cut-off
frequency based on Taylor’s hypothesis defined as f.yi—off = 0.5 - tmean/2l, is not a good
prediction indicator of the drop-off location as the volume averaging function of a cw lidar
described by a Lorenzian function extends beyond the definition of the probe volume.

To investigate the directional bias on the measurement of stationary spectra, we calculate
the spectra at a series of measurement points. For this purpose, a set of points are chosen
from the SpinnerLidar trajectory at a fixed focus distance shown in Fig. 2.4 to cover a
combination of beam angles. The analysis is done at a fixed upstream location f = 126 m
to fix the probe volume to a constant value. The azimuth and elevation angles are both
zero at Pt. A and are zero at Pt. D and Pt. B respectively, while Pt. C is located at = 26.1°,
= -15.7°, respectively. In Figure 2.12, the PSD of the vios and uprojected Velocities at each of
the four points is normalised with the corresponding LES spectral density for the CBL and
SBL cases. For Pt. A at the scan centre, free from directional bias, there are no differences
between the projection and the line-of-sight speeds for the two cases. At points B, C and
D, however, the projected velocities contain more energy than the radial speeds, with
points B and C containing more energy than the u LES below the drop-off frequency. This
increased energy content in the projected longitudinal velocity is due to the scaled variance
induced due to multiplying the v}os time series with a scaling factor colecos 5 in Eq. 5.1
while assuming v, w = 0. The presence of wind shear, especially in the SBL case, reduces
the energies measured at Pt. D whose effect is reduced in Pt. B and C.
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Figure 2.11: The non-rotating turbulent spectra of the line-of-sight velocities calculated from the SpinnerLidar
simulations at a point located on the rotor axis at different upstream focus distances (f = 30 m, 60 m, 90 m, 126 m
and 150 m). The solid lines show the results of a "perfect” lidar while the dotted lines show the results including
the volume averaging effect while the dashed vertical line indicated the Nyquist cut-off frequency.
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Figure 2.12: Power spectral density of the v1os and wrojected velocities normalised with the PSD of the LES u
velocity for the CBL and SBL cases. Points A, B, C, D lie are defined in Fig. 2.4.

The rotational spectrum can describe the loads the blades will experience as they rotate
and slice through the wind field. The eddy slicing effect [Kristensen and Frandsen 1982]
induces the accumulation of turbulent kinetic energy at the rotor speed frequency integers,
described as 1P and 2P frequencies and so on. Fig. 2.13 shows the comparison of the
rotationally sampled spectra of the line-of-sight and projected velocities measured by the
SpinnerLidar at upstream distances f = 30 m, 60 m, 90 m and 126 m sampled at 1 Hz. The
spectra are calculated by following a point located at 90% of the SpinnerLidar scan radius
using the turbine’s rotational speed obtained from the coupled aeroelastic simulations
(11.88 rpm and 8.59 rpm, respectively). The reference LES spectrum is generated from the
3D LES wind field by tracing and following the point located at 90% of the blade radius at a
distance of 126 m from the turbine. In the CBL case, the 1P frequency corresponds to 0.198
Hz and 0.145 Hz for the SBL case. Even with a sampling rate of 1 Hz, the SpinnerLidar can
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capture the first two harmonics for the CBL case and the first three harmonics for the SBL
case.

These observations are in strong contrast to the results obtained from the non-rotational
spectra in Fig. 2.11. For both cases, the PSD of longitudinal wind speed component 1 D
upstream is reduced by factors 10 and 100 at 1P and 2P, respectively. The rotational spectra
calculated at different upstream distances f = 30 m, 60 m and 90 m also capture the eddy
slicing effects quite well. For the SBL case, however, the measurements at shorter upstream
distances under-predict the energy at the rotational harmonics as with a shorter focus
distance, the variations due to the wind shear are not captured. Due to the Nyquist sampling
limitation of the SpinnerLidar at % = 0.5 Hz, the higher harmonics of the rotational spectra
seen in the LES curve are not captured. The projected velocities contain higher energy
content in the lower frequencies below 0.1 Hz due to the variance scaling seen in Fig. 2.12.
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Figure 2.13: The rotational spectrum of the line-of-sight (dotted lines) and the projected velocities (solid lines)
calculated by following a point located at 90% of the rotor radius for different upstream measurement distances
following the legend in Fig. 2.11. The rotational speeds were wcpr, = 11.8 rpm and wspy, = 8.59 rpm respectively.
Legend similar to Figure 2.11.

2.4.5 THE WIND EVOLUTION AND INDUCTION ZONE SLOWDOWN

The influence of the volume averaging property on wind evolution is visualised in Fig. 2.14
for the two cases where the longitudinal coherence between lidar measurements taken at
an upstream reference point at f = 150 m and the lidar measurements at f = 60 m, 90 m and
126 m (corresponding Ax= 90 m, 60 m and 24 m) are shown. The longitudinal coherence is
calculated using the Matlab function mscohere with 20 blocks and applying a Hamming
window with 50% overlap for points on the rotor axis to avoid directional bias.

The dotted and the solid lines indicate the measurements without and with the probe length
averaging effect. As expected, at a particular frequency, there is a decrease in coherence
with increasing horizontal separation Ax as the turbulent scales has more time to evolve
between the two measurement points. The coherence drop-off at higher frequencies can be
attributed to the small, turbulent structures evolving faster than the large-scale structures
in the inflow. For the same separation distance, the coherence in the SBL case is higher
than in the CBL case at frequencies below 0.1 Hz, after which there is a sharp drop-off. No
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significant differences are observed between the coherence calculated for the ideal and
the real lidar coherence curves. An analytical solution in Chen et al. 2021 assuming per-
fectly aligned inflow and Taylor’s hypothesis valid within the probe volume also indicates
the independence of the coherence-based wind evolution from the volume averaging. In
other words, the large probe volume at f = 150 m already low-pass filters the smaller tur-
bulent structures moving towards the turbine, reducing the coherence at higher frequencies.
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Figure 2.14: Coherence obtained between the reference upstream point located at f = 150 m in front of the turbine
along the rotor axis from the LES simulations with ideal and real SpinnerLidar measurements at f = 30 m, 60 m
and 90 m corresponding to Ax = 120 m, 60 m and 24 m for the CBL and SBL cases respectively.
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Figure 2.15: Coherence calculated between SpinnerLidar measurements for three different longitudinal separation
distances along the rotor axis from the reference LES wind field and the coherence estimated by the unmodified
longitudinal model and the modified coherence model taking into account the induction slowdown for the CBL
and SBL cases.

The results of the induction-based wind evolution model presented in Eq. (2.9) can be
found in Fig. 2.15 (b) indicated by the solid lines. The coherence curve obtained from the
unmodified wind evolution model using the freestream wind speed in Eq. (2.7) is also seen
along with the results from the actual coherence calculated from the LES wind field. It is
immediately clear that the addition of the induction zone wind speed reduction reduces the
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over-prediction of the coherence across all the frequency ranges while the effect becomes
more pronounced at larger separation distances Ax where the induction zone slow down
is severe close to the rotor. The slight differences in the coherence curves could be due to
the error of lidar estimation bias of the integral length scale L, used in Eq. (2.9) due to the
volume averaging effect [Debnath et al. 2020]. The coherence bandwidth, defined as the
frequency until the coherence remains above 0.5, is tabulated in Table 2.4. The modified
wind evolution model performs much better than the unmodified model, especially at
larger separation distances compared to the reference LES wind field.

Table 2.4: Coherence bandwidth for the modified (f byoq) and the unmodified (f bynmod) coherence models and
the results from the reference LES wind field for the CBL and SBL cases.

Ax(m) CBL SBL
beES (HZ) fbum (HZ) fbm (HZ) beES (HZ) fbum (HZ) fbm (HZ)
24 0.34 0.28 0.35 0.31 0.17 0.30
60 0.11 0.12 0.11 0.23 0.07 0.12
120 0.02 0.08 0.03 0.066 0.04 0.06

2.5 EVALUATING FIXED BEAM AND SCANNING LIDAR SYS-

TEMS

2.5.1 ESTIMATION OF OPTIMUM SCAN LOCATION BASED ON REWS

The rotor effective wind speed from the SpinnerLidar and the fixed-beam scan mea-
surements are compared with the turbine estimated rotor effective wind speed to de-
termine the ideal preview distance, beam opening angle and the corresponding coherence
bandwidth. The rotor effective wind speed for the different devices are calculated as
uete(t) = £ Y1) u(x;, t). The longitudinal velocity is estimated from the cosine projection
with the assumption of zero lateral and vertical components (Eq. 2.2). Note that in this
definition of REWS, there is no correction for the directional bias due to the turbine
misalignment. Finally, a velocity deceleration correction is applied based on the turbine
axial induction factor. The rotor effective wind speeds are calculated from the projected
u-component at the measurement distance and the beam deflection angles. The calculated
REWS are compared against the effective wind speed calculated from the turbine data by

H(ulidar_uturbine)H2
D7ff Zeff I

defining the normalised mean square error as . The rotor effective wind

turbine
speed from the turbine is calculated by means of the power balance estimator method
[Soltani et al. 2013]. The method uses the entire rotor as an anemometer and calculates the
wind speed experienced by the turbine by considering the turbine signals (power, rotational
speed and pitch angle). The u,; is estimated from the pitch angle § and the tip speed ratio A
from a pre-computed Cp(f3, 1) surface created from the output of the aeroelastic simulation.
No blade passage effects are simulated as the lidar was simulated on the spinner of the
reference turbine.

The normalised mean square error calculated between the REWS for different lidar scenarios
and the REWS from the turbine is shown in Fig. 2.16 for the CBL and SBL cases. The impact
of directional bias and wind evolution is visible in the REWS estimates obtained from the
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lidar measurements. For opening angles greater than 30°, the SpinnerLidar measurements
at points in the outer section of the scan trajectory have significant cross-contamination of
the lateral and vertical components. Secondly, the error is dependant on focus distances
and opening angles due to the wind evolution between the measurement and rotor planes.
It is clear in Fig. 2.16 that the location of the optimum upstream measurement distance is
influenced by atmospheric stratification. With a shorter focus distance, the effect of wind
evolution could be reduced, but such a setup will require large beam deflection angles
to capture the entire rotor plane, increasing the directional bias due to the cross-wind
components with the opposite holding as well.
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Figure 2.16: Normalised mean square error between the rotor effective wind speed calculated from the turbine and
the lidar measured rotor effective wind speed as a function of focus distance and opening angle for SpinnerLidar
measurements for the CBL and SBL cases.

In general, at large upstream distances and smaller opening angles (e.g., f = 126 m and 0 =
5°, 10°), the projection error is relatively low, and most of the fluctuations in the rotor plane
are captured leading to more minor errors. For the CBL case, the scan location optimised
for the lowest error is estimated at an opening angle of 30° at a focus distance around 50 m
to 110 m. In contrast, for the SBL case, the optimum scan distance lies between 60 m to
70 m with an opening angle of 30°. This is due to the significant shear present in the SBL
inflow case, which requires large scanning angles to capture the wind variations in the
rotor plane while wind evolution becomes dominant at more considerable focus distances.

To estimate the performance of the SpinnerLidar relative to the fixed-beam devices
in Tables 2.5, 2.6, the optimal scan location is calculated for all scanning strategies by
optimising for the highest coherence bandwidth. The coherence is calculated using the
Matlab function mscohere with 20 blocks and applying a Hamming window with 50%
overlap. The wavenumber is defined as k = eezd—’;y and is the inverse of the smallest detectable

eddy size (ecqdy) With an accuracy of 50% assuming isotropy as defined in Held and Mann
2019b. While the optimum measurement distance and the opening angles for the same
scanning strategy differ between the CBL and SBL cases, the optimal scan location for the
fixed-beam scans is generally further upstream than the SpinnerLidar. Small 6 reduces the
directional bias for the fixed beam scans, but the optimal measurement position is situated
upstream to scan a larger proportion of the rotor area. For the SpinnerLidar, the optimal
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Table 2.5: CBL Case: The optimal focus distance and opening angle for the highest coherence bandwidth and
corresponding measurable wave number for the rotor effective wind speeds calculated for the different scans.

ID Jopt (m) | Oopt () | fbopt (Hz) | kopt (rad/m)
Point 30 - 0.0195 0.0122
2-Beam Vertical 126 20 0.0234 0.0146
2-Beam Horizontal | 126 30 0.0234 0.0146
4-Beam 126 20 0.0313 0.0194
5-Beam 126 30 0.0313 0.0194
Horizontal Line 90 10 0.024 0.0149
Vertical Line 90 30 0.027 0.0168
Circular Scan 90 10 0.0508 0.0316
SpinnerLidar 90 30 0.1426 0.0887

Table 2.6: SBL Case: The optimal focus distance and opening angle for the highest coherence bandwidth and
corresponding measurable wave number for the rotor effective wind speeds calculated for the different scans.

ID fopt (m) eopt O f bopt (Hz) kopt (rad/m)
Point 30 - 0.022 0.0194
2-Beam Vertical 90 30 0.037 0.0327
2-Beam Horizontal | 126 20 0.039 0.0345
4-Beam 126 30 0.046 0.0407
5-Beam 126 30 0.050 0.044
Horizontal Line 30 20 0.032 0.0283
Vertical Line 126 10 0.039 0.0345
Circular Scan 90 45 0.056 0.0495
SpinnerLidar 60 30 0.111 0.0982

scan location is closer to the turbine reducing the wind evolution uncertainty that translates
to a higher coherence bandwidth. The smallest detectable eddy size increases by 34% and
18% for CBL and SBL cases when moving from 2-beam to 4-beam devices, corresponding
to the findings of Held and Mann 2019b. The measurable wave number is smaller for the
horizontal and vertical line scans than for the 4-beam lidar due to the significantly reduced
rotor coverage. In contrast, the circular scan offers better performance than all simple
scanning strategies. The SpinnerLidar performs considerably better than all the fixed-beam
devices, with the smallest measurable eddy size of 70.8 m and 64.9 m for the CBL and SBL
cases, respectively. Only the SpinnerLidar is capable of measuring eddies smaller than 1 D
indicating its potential for fatigue load reduction [Schlipf et al. 2018].

2.5.2 EFFECT OF SPATIAL SAMPLING ON THREE-PARAMETER ESTIMA-

TION
To estimate the performance of the beam scanning in comparison to fixed-beam devices, the
standard and dynamic errors €54 and €4y, defined in Eq. (2.10) and (2.11) are used. Three
wind field parameters uegf, O and s, are calculated for each of the scan patterns described
in Tab. 2.5.2. The results of the different lidar scans are compared against the parameters
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calculated from the LES at 1 D upstream of the turbine location to avoid the effects of wind
evolution. For the various scan patterns performed, the following trends can be observed.
For both cases, the static error associated with the estimation of u.¢s is negligible for even
a point measurement for the CBL case, but 0.06 for the SBL case as the single point cannot
capture the spatial variations due to the strong shear present in the flow. The dynamic
error of usr reduces from 0.28 to 0.03 and from 0.44 to 0.19 for the CBL and SBL cases
moving from Scans 1-9. The estimation of the vertical shear is impossible for scan patterns
3 and 6, while the reconstruction of yaw misalignment is not possible for scan scenarios 2
and 7 as no wind variations in the horizontal and vertical directions are measured by these
scans. For the 2-beam configurations, the static errors of &, and s, are 0.45, 0.15 and 0.06
and 0.36 for the CBL and SBL cases, while a large dynamic error estimation of the yaw
misalignment is noticed. The 4-beam and 5-beam configurations allow instantaneous shear
and yaw estimation, with both configurations performing very similarly for the two cases.
The ur estimation is slightly better for the 5-beam scan due to the presence of a centre
beam. The dynamic shear and direction estimation based on horizontal and vertical line
scans is better than its corresponding two-beam scenario due to higher spatial coverage.
However, for the CBL case, the €gyy, for &, is larger compared to the SBL case, presumably
due to a comparatively large variance in the wind direction during convective conditions
[Vollmer et al. 2016] which could be reduced by considering larger averaging intervals.
The circular scan shows very low €4, €qyn €rrors in ucgr estimation. The standard error
estimation of 8, and s, are 0.18 and 0.56 while the dynamic error remains high at 0.98 and
0.25 respectively for the CBL case while for the SBL case returned values of 0.33, 0.10 and
0.22, 0.96 respectively. As expected, the SpinnerLidar providing more extensive spatial
coverage substantially improves the static and dynamic estimation of the three parameters.
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Figure 2.17: The standard and dynamic errors calculated for the different spatial samples for the CBL case and the
SBL case.

In general, we note the following trends. The reconstruction accuracy of the wind parame-
ters increases with increasing number of beams as the sizeable spatial coverage is more
representative of the rotor area. The effective wind speed is captured very well with at
least two beams as the single-beam lidar cannot capture the rotor plane variations such as
sheared inflow. The dynamic error estimation reduces while performing line scans com-
pared to 2-, 4-, 5- beam systems except for the dynamic estimation of &, for the CBL case.
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This behaviour further illustrates the need to consider the effects of atmospheric stability
on the wind field parameterisation. Finally, scanning the inflow with the SpinnerLidar
leads to meagre standard and dynamic estimation errors of the wind field parameters due
to the complete rotor coverage.

2.6 DISCUSSIONS

Performing turbine-mounted lidar measurements to optimise turbine performance requires
knowledge about lidar capabilities and inherent uncertainties influencing the measurement
quality. While a research-oriented prototype, like the SpinnerLidar, can measure the inflow
with high spatio-temporal resolutions, the high costs could be prohibitive for commercial
purposes. Large Eddy Simulations provide a suitable reference for analysing the different
lidar systems’ performance for different stratifications. Before discussing the results, the
extent to which the lidar simulations can be considered appropriate must be addressed. As
noted by Beck and Kithn 2019, the direct transferability of the results to the free field is
not straightforward as the simulator performs step-and-stare measurements that neglect
the volume averaging in the scanning direction. The simulator assumes maximum data
availability as environmental factors such as fog or rain is not modelled. The uncertainty
in beam pointing and the laser beam movement due to turbine or blade interference is also
not modelled.

2.6.1 THE LIMITATIONS AND CAPABILITIES OF TURBINE-MOUNTED LI-
DARS

The capabilities and limitations of using a turbine-mounted SpinnerLidar for wind energy
applications are discussed briefly. A lidar measuring at 1 Hz is a standard setting for
commercial devices and can accurately estimate the mean wind information, making it
suitable for using lidars for LAC. There is a negligible effect of the volume averaging on
the estimation of mean wind parameters and it is even beneficial due to the more extensive
rotor coverage. However, as the volume averaging effect acts as a low-pass filter at more
considerable focus distances for cw lidars attenuating high-frequency fluctuations, it is
essential to consider and model this effect for other lidar-based applications such as load
validation.

Directional bias is the most significant error source while estimating the longitudinal
wind speed that drives turbine response. It is evident that for larger opening angles
typical for scanning lidars, the directional bias is dominant over volume averaging due
to the increased cross-contamination from the crosswind components. The longitudinal
component estimation is sensitive to beam pointing angles and dynamics changes during
turbine operation (Fig. 2.10). The additional beam deflection due to the rotor axis tilt during
operation can be countered by a slightly inclining the lidar during installation. Indeed, the
directional bias effects could be avoided by using multi-lidar synchronised measurements,
however impractical for LAC applications [Simley et al. 2016] or by utilising physics-based
wind field reconstruction methods [Kidambi Sekar et al. 2018].

The spectral analysis in Fig. 2.11 points out the dominant effect of volume averaging
measurements in a non-rotating reference frame, with the drop-off occurring at around
0.1 Hz. For the fixed point spectra at the outer scan edges, directional bias plays the most
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dominant effect in scaling the time series and hence the variance (Fig. 2.12). The higher
energy content in the turbulent spectra could lead to erroneous load predictions due to the
scaled variance. However, the volume averaging effect does not affect the measurement
in the rotating spectra where an accumulation of energy occurs at multiples of the rotor
frequency. Even with a limited sampling rate of 1 Hz, SpinnerLidar captures the rotational
harmonics due to the eddy slicing effect. This was made possible through the high spatial
resolution that allows the lidar to capture the wind shear and spatial inflow variations.
Accordingly, investigations of spatio-temporal characteristics of turbulent wind fields in
a fixed frame of reference, e.g. done with the lidar mounted on the nacelle, should be
executed only at shorter focal lengths. In contrast, the SpinnerLidar performs very well
in the rotating frame of reference, i.e. when mounted in the rotating hub of the wind
turbine while simpler lidar systems are limited due to the comparatively lower spatial scan
resolution.

For modelling the wind evolution and induction slowdown, it is evident that the volume
averaging effect at larger upstream distances already low-pass filters the high-frequency
inflow turbulence. There are no differences in the coherences for various longitudinal
separation distances between ideal lidar systems without and real lidar systems with the
volume averaging effect (Fig. 2.14). Wind evolution is driven by the horizontal separation
distance between the points and the induction factor of the turbine. By combining the
longitudinal wind evolution model [Simley et al. 2014a] with a simple induction zone
model [Medici et al. 2011], a better estimation of the coherence bandwidth is obtained.
By widening the usable frequency range, more data from the turbulence spectrum can
be utilised to filter out uncorrelated frequencies. This can prevent unnecessary control
actions in wind preview-based controllers. The temporal sampling, volume averaging,
directional bias and wind evolution constitute the significant error sources associated with
turbine-mounted cw lidars.

2.6.2 ON THE EVALUATION OF FIXED-BEAM AND SCANNING LIDARS FOR
LIDAR-ASSISTED CONTROL APPLICATIONS

The spatial resolution of the lidar is the deciding factor in the accurate estimation of the
rotor averaged wind field parameters relevant for wind turbine control. For evaluating the
scanning SpinnerLidar against fixed-beam systems, we perform inflow parameterisation
for CPC and IPC strategies. For CPC, the dependence of the rotor effective wind speed
on the upstream measurement distance and the beam angle is visualised in Fig. 2.16 for
the SpinnerLidar. A smaller opening angle implies that the whole rotor area is not cov-
ered. At the same time, the directional bias becomes dominant at larger opening angles,
introducing severe errors in calculating the rotor effective wind speed. Measurements
taken further away from the rotor plane are also erroneous due to the wind evolution
and induction deceleration between the measurement and the rotor plane. The effect of
the directional bias is amplified during stable stratification and the associated stronger
wind shear, which changes the optimum scan location. An optimisation was performed for
the fixed-beam devices and tabulated in Tab. 2.5, 2.6. The optimum scan location of the
SpinnerLidar depends on the atmospheric stability and varies between 70 m and 100 m
(0.55 D to 0.8 D) and 60 m-70 m (0.4 D to 0.5 D) for the CBL and SBL cases respectively.
The coherence bandwidth of the SpinnerLidar and the ability to resolve smaller eddies is
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increased substantially due to the enhanced spatial coverage offered by the SpinnerLidar.
Hence, by using a SpinnerLidar for CPC control, it is practical to scan closer to the rotor
to enable a shorter preview time and associated lower wind evolution uncertainty. This
would allow for a larger bandwidth to be processed for performing control actuation for
which a minimum preview time is required [Dunne et al. 2014]. On a practical note, the
presence of blade passage which reduces the measurement availability for nacelle-mounted
lidars, has not been considered in our analysis. The loss in measurement data can lead to
incorrect estimation of the spatially varying turbulence.

The performance of SpinnerLidar in comparison to fixed beam devices for IPC control
is evaluated by calculating the standard and dynamic reconstruction errors associated
with the effective wind speed, vertical shear and yaw misalignment. Figure 2.17 reveals
that while estimating u.gf, just a few measurement points are needed. The effective wind
speed alone is captured pretty well even by relatively simple scan patterns, while a better
estimation of the wind parameters is achieved while adding more beams. For turbine-
mounted lidars that experience undisturbed wind inflow, it is favourable to perform simple
4-beam scans to estimate the shear and direction simultaneously. The situation changes
supposing dynamic changes in the shear or yaw, for instance, in the case of a turbine
located in the downstream rows of a wind farm where a variety of partial wake situations
are expected. In that case, it is sensible to scan more points to reduce the dynamic error.
The circumferential scan performs similar to the 4-beam and 5-beam configurations but
has the advantage that the rotational spectra useful for fatigue estimation are also captured.
With inflow measurements from a SpinnerLidar, the parameter estimation is comparatively
accurate as the scan covers the whole rotor plane. However, it is effective to scan only a
minimum amount of points to reconstruct wind field parameters or to use model reduction
techniques for dimensional reduction while retaining the necessary wind field information.

2.6.3 ON THE POTENTIAL LCOE REDUCTIONS

While measuring the inflow using the SpinnerLidar shows clear benefits over fixed-beam
counterparts, the high associated capital, operation and maintenance costs are essential
factors to consider when selecting an appropriate lidar system. The SpinnerLidar com-
fortably outperforms the other investigated lidar systems in reconstructing wind inflow
parameters required for all the chosen control concepts. However, such an analysis can-
not give precise answers to the benefits of LAC as this would require many high-fidelity
coupled LES and aeroelastic simulations with and without various LAC concepts with
multiple lidar systems. System engineering studies such as the work of Canet et al. 2021 has
explored the relation between LAC and LCoE reductions. However, the study was limited
as only typical lidar augmented load reductions from literature could be used. However,
the presented analysis was focused on identifying trends and the general applicability of a
lidar system for a particular LAC concept. While prototype devices are usually associated
with high associated capital costs and low reliability, adopting and integrating scanning
lidar systems during the turbine design phase could reduce costs. With increasing turbine
sizes consequently exposing the rotor to more extensive wind regimes in the atmospheric
boundary layer, the large spatial resolution of the SpinnerLidar would be particularly useful
in measuring spatial variations in the inflow allowing for the implementation of advanced
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control concepts such as 2P IPC or even individual flap control [Unguran et al. 2019].

2.7 CONCLUSIONS

Identification of the capabilities and limitations of turbine-mounted lidars for inflow-sensing
is essential for achieving better performance of lidar-based applications like lidar-assisted
control. In this chapter, the capabilities and uncertainties of a turbine-mounted lidar system
were investigated with a focus on the prototype DTU SpinnerLidar using a lidar simulator
inside two Large Eddy Simulations of different stratifications. The SpinnerLidar, a prototype
research turbine-mounted scanning lidar, achieves higher spatio-temporal sampling rates
than the more straightforward, cheaper, but more robust fixed-beam devices mounted on
the nacelle. The performance of the SpinnerLidar against fixed-beam devices in extracting
wind inflow information required for the realisation of lidar-assisted control concepts
was evaluated. The lidar simulations were performed using a lidar simulator, granting an
opportunity to isolate and investigate specific lidar limitations that cannot otherwise be
performed in full-field experiments. The SpinnerLidar captures the rotational harmonics
in a rotational frame of reference due to its high spatial coverage opening up opportunities
for higher harmonic control.

Moreover, the SpinnerLidar also allows quick estimation of the dynamics of the control-
oriented wind inflow parameters such as the rotor effective wind speed, vertical shear and
yaw misalignment compared to fixed-beam devices. However, the 3-parameter modelling
of the inflow wind is limited due to the representation of the wind distribution in the rotor
plane with just 3 parameters and the associated error in wind direction estimations in case
of partially waked flows which were not fully covered in the two undistributed inflow
simulations. While research-oriented scanning lidars such as the SpinnerLidar is may not
be an ideal choice for LAC applications due to high capital, maintenance, and associated
costs, a potential additional value could be to emulate simpler fixed-beam systems during
LAC field tests.
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LOWER ORDER DESCRIPTION
AND RECONSTRUCTION OF
SPARSE SCANNING LIDAR
MEASUREMENTS OF WIND
TURBINE INFLOW USING PROPER
ORTHOGONAL DECOMPOSITION

Preview measurements of the inflow by turbine-mounted lidar systems can be used to optimise
wind turbine performance or alleviate structural loads. However, nacelle-mounted lidars suffer
data losses due to unfavourable environmental conditions and laser beam obstruction by the
rotating blades. Here, we apply proper orthogonal decomposition (POD) to the simulated
line-of-sight wind speed measurements of a turbine-mounted scanning lidar obtained from
two large eddy simulations. This work aimed at identifying the dominant POD modes that can
be used to subsequently derive a reduced-order representation of the turbine inflow. Secondly,
we reconstructed the data points lost due to blade passage by using Gappy-POD. We found that
only a few modes are required to capture the dynamics of the wind field parameters commonly
used for lidar-assisted wind turbine control, such as the effective wind speed, vertical shear and
directional misalignment. By evaluating turbine-relevant metrics in the time and frequency
domain, we found that a ten-mode reconstruction could accurately describe most spatio-
temporal variations in the inflow. Furthermore, a modal interpretation is presented by direct
comparison with these wind field parameters. We found that the Gappy-POD method performs
substantially better than spatial interpolation techniques, accurately reconstructing up to even
50 % of missing data. A POD-based wind field reconstruction offers a trade-off between wind
field reconstruction techniques requiring flow assumptions and more complex physics-based
representations, offers dimensional reduction and can overcome the blade passage limitation
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of nacelle-mounted lidar systems.

3.1 INTRODUCTION

With advances in lidar technology for wind energy applications, scanning the inflow of
wind turbines has attracted greater attention. Turbine-integrated lidar systems can scan
wind fields upstream of the turbine, allowing these measurements to be incorporated
into turbine operation and control. Using preview lidar measurements as input, turbine
performance can be improved in terms of alleviating structural loads, for example, by
reducing blade and tower bending fatigue load damage or extreme loads by feed-forward
lidar-assisted control [Schlipf et al. 2011; Simley et al. 2018]. Turbine-mounted lidar mea-
surements can also be used for load validation [Conti et al. 2021; Dimitrov et al. 2019] and
characterisation of turbulence [Peni et al. 2017].

The quality of wind field data extracted by lidar depends on the quality and beam scanning
strategy of the lidar device itself. To date, commercial turbine-mounted lidar systems are
limited to performing wind field measurements along fixed-beams, owing to their relatively
simplistic but robust design [Borraccino et al. 2017; Held and Mann 2019b]. However,
with the trend towards larger rotors, local wind field variations are affecting the turbine
dynamics more strongly; hence, it is necessary to scan the entire rotor area rather than just
a few fixed spatial locations. Next generation lidar systems with scanning capabilities could
bridge this gap by performing very fast scanning measurements to capture the wind field
in more detail. Such lidars are an improvement over fixed-beam systems commonly found
in commercial applications, as they are instead outfitted with beam-steering mechanisms
capable of moving and refocusing the laser beam to a predefined point or a scanning pattern
in space. With such devices available, highly resolved measurements of the wind turbine
inflow are possible [Herges et al. 2017a; Mikkelsen et al. 2013].

Due to the lidar’s spatial sampling and line-of-sight limitations, wind field reconstruction
(WFR) methods are required to extract even relatively simple parameters, such as rotor
effective wind speed, direction and shear. Two types of WFR models can be found in the
literature, i.e., static and dynamic WFR methods [Borraccino et al. 2017]. In the static
approaches, wind fields are assumed to be stationary for a certain averaging period, and
spatial flow assumptions such as Taylor’s frozen turbulence Taylor 1938 are made to deter-
mine relevant wind field parameters [Borraccino et al. 2017; Kapp. S 2017]. These models
are adequate for power performance measurements, as they well estimate the averaged
wind characteristics but fall short while resolving inflow dynamics. Furthermore, the flow
assumptions required for the reconstruction might not hold in the turbine induction zone
and complex inflow situations.

In the dynamic reconstruction methodologies, both spatial and temporal variations of the
wind fields are considered. A 3D-model based dynamic WFR technique was presented by
Raach et al. 2014, combining the static model presented by Schlipf et al. 2012b with Taylor’s
frozen turbulence hypothesis. Towers et al. [Scholbrock et al. 2013a] introduced a dynamic
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reconstruction methodology to reconstruct two-dimensional horizontal wind fields at hub
height from a pulsed lidar system with two fixed beams using an unscented Kalman filter.
Guillemin et al. 2018 presented a method for extracting real-time wind field parameters,
such as effective wind speeds, wind direction and shear, using a recursive weighted least-
squares algorithm that was validated with simulated pulsed 4-beam lidar measurements.
The performance of a fast Navier—Stokes physics-based solver to instantaneously recon-
struct the local 3D velocity components from line-of-sight measurements of a scanning
lidar upstream of the rotor was investigated in Kidambi Sekar et al. 2018. The performances
of these models in reconstructing the dynamics of the wind inflow were found to be limited
in situations where flow simplification assumptions are considered invalid [Raach et al.
2014], there is an assumption of simultaneous measurements at multiple beam locations
[Scholbrock et al. 2013a] or there is insufficient spatial resolution for covering the total
area swept by the rotor [Guillemin et al. 2018].

An alternative method is to accurately reconstruct the inflow without depending on strong
assumptions concerning the wind field. As using high-resolution data directly as a control
signal is not feasible, a crucial step towards a lidar-based wind field reconstruction is the
reduction of the measurement data to a few key variables which still capture the most
important spatio-temporal inflow variations. In fluid dynamics, proper orthogonal decom-
position (POD) is a well used method for dimensional order reduction. POD describes a
velocity field as a linear combination of modes containing spatial information about the
flow and time-varying weighing functions defining the evolution of the flow field in time
[Berkooz et al. 1993; Holmes et al. 2012; Sirovich 1987]. Mathematically, the POD method
calculates deterministic orthogonal basis functions for representing a spatio-temporal field.
The decomposition is unbiased because it does not look for prior information and the basis
functions are obtained from the dataset itself, in contrast to other techniques. As the modes
themselves are orthogonal, the method is suitable for reduced-order inflow reconstruction
by truncating higher modes and rapidly reconstructing the wind field or using Galerkin
projection to capture the dominant flow physics [Taira et al. 2017]. Therefore, a POD-based
reconstruction would offer quick and reliable retrievals of the lidar-measured inflow simply
by exploiting the redundancies in the data. Moreover, the dominant structures obtained via
POD decomposition are representative of the coherent structures in the wind flow [Holmes
et al. 2012]. For wind energy applications, POD has been used to develop and understand
dynamic wake models [Andersen et al. 2017; Bastankhah and Porte-Agel 2017; Bastine
et al. 2015]. Saranyasoontorn and Manuel 2005 used POD to investigate the wind turbine
inflow based on stochastic wind field simulations.

Nacelle-mounted inflow sensing lidars experience data loss due to adverse atmospheric
conditions, such as rain or fog, and more importantly, due to laser beam blockage by the
rotating blades. The data loss is influenced by the blade root design, lidar mounting position
and blade rotation [Davoust et al. 2014]. The reduced data availability increases the uncer-
tainty while performing modal decomposition, and time and frequency domain analysis,
which is critical for lidar-based wind turbine applications. For example, uncertainties in
the estimated wind parameters could cause unnecessary and even harmful actuation of
a lidar-based feed-forward control system. While spatial interpolation techniques could
reconstruct missing points based on the information from the neighbouring points, these
methods fail to capture localised events, such as partial gusts. As wind field dynamics
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are of interest, ensemble averaging is disadvantageous, as small scale fluctuations are
averaged out. One method for reconstructing spatio-temporal wind field gaps is using
gappy proper orthogonal decomposition (Gappy-POD), first proposed by Everson and
Sirovich 1995 and which has been adapted to solving experimental fluid flow problems with
missing or false points [Gunes et al. 2006; Raben et al. 2012; Saini et al. 2016; Willcox 2006].
Gappy-POD uses a set of POD modes as a basis from which the missing data are estimated
through an iterative process [Venturi and Karniadakis 2004]. However, this method breaks
down while reconstructing empty snapshots or if certain data points are missing at all
times. Reconstructing certain blind regions due to stationary hard targets, such as nacelle
interference, could be potentially overcome with Kriging-based interpolation methods
[Oliver and Webster 1990], but this lies outside of the scope of our work.

Herefore, there is no wind field reconstruction methodology that fully utilises scanning
lidar measurements while accounting for the spatio-temporal inflow dynamics and afford-
ing the data compression necessary for control algorithms. Secondly, a data reconstruction
method is required for accurately reconstructing spatio-temporal inflow variations from
sparse scanning lidar measurements. The objective of this paper is twofold. Firstly, we
introduce a dynamic wind field reconstruction methodology based on POD that requires no
strong assumptions about the reconstructed wind field!. We identify the dominant inflow
spatial modes that can be used to obtain a reduced-order reconstruction of the inflow wind
field measured with a turbine-mounted scanning lidar. We then assess the reconstruction
quality based on metrics concerning the turbine inflow. Secondly, we investigate the per-
formance of the Gappy-POD in reconstructing artificially removed measurement points.
A modified Gappy-POD method is introduced to reduce the long solution times required
for the iterative method. The accuracy of the reconstructed wind fields is evaluated by
investigating inflow metrics and compared against the accuracies of spatial interpolation
techniques.

The article is structured as follows: The methods, including the description of the POD
and Gappy- POD procedures, are described in Section 3.2, along with descriptions of the
reference large eddy simulations and the scanning lidar. The application of the POD method
to simulated lidar measurements, POD-based reconstruction of the original line-of-sight
velocity fields and quantitative analysis of the reconstructions based on wind field metrics
are presented in Section 5.3, along with the results of the Gappy-POD reconstruction.
Section 3.4 discusses the results, and Section 3.5 presents the conclusions.

3.2 METHODS

Tailoring the methods of POD and Gappy-POD towards wind turbine inflow is introduced
in Sections 3.2.1 and 3.2.2. The scanning lidar specifications and working principles are
presented in Section 3.2.3. To obtain a realistic wind field dataset to investigate the inflow
to a wind turbine, we employed virtual lidar data derived from high-fidelity large eddy
simulations which are explained in Section 3.2.4, along with the virtual lidar simulator.

!The Proper Orthogonal Decomposition (POD) method in this chapter reconstructs the spatially varying line-of-
sight velocity field (v}os) directly from scanning lidar measurements. This differs from a full 3D "wind field," as
Ujos represents only the wind component along the lidar beam within the scan plane
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3.2.1 PROPER ORTHOGONAL DEcomposITION (POD)

POD is a powerful numerical technique applicable to identifying turbulent coherent struc-
tures from flow fields [Berkooz et al. 1993; Holmes et al. 2012; Sirovich 1987]. The de-
composition provides a set of time-independent orthogonal spatial modes with respective
time-dependent coefficients. The basic decomposition procedure is to sample the data,
calculate the auto-covariance matrix and solve the corresponding eigenvalue problem,
which can then be used to construct an orthogonal basis. Lidar systems can only sense the
wind speed component along the line-of-sight direction. We perform POD analysis on the
line-of-sight (v105) measurements from a scanning lidar, as projection in the longitudinal
flow direction would introduce geometrical errors in the reconstruction, especially at large
scanning angles [Simley et al. 2014a]. Furthermore, the longitudinal velocity component is
the dominant component in the line-of-sight measurements of a turbine-mounted lidar and
the main driver of the dynamics of the turbine response. Moreover, wind field reconstruc-
tion algorithms [Borraccino et al. 2017; Kapp and Kiihn 2014; Raach et al. 2014] also rely on
the line-of-sight measurements to estimate wind field parameters. The practical application
of this method to scanning lidar measurements is described in the following. The line-of-
sight measurements of a turbine-mounted scanning lidar vi,5(X;, t;), where X; = [x;, 1, z]*
j=1-N,i=1-nsandt=(t,t,..., t,,) and X = [X;,X; --- Xn]7, are organised in a snapshot
matrix V defined as:

>

Vlos (Xl, tl) Vlos (Xl, tZ) Vlos(Xls tns)
Vios(Xo, ¢ Vios(Xo, t: e Vips(Xa, tag
VX, 1) = [Vios (X, 1), Vios (X, £2) + Vios (X, t.)] = 105(22 1) 105(22 2) E Tos( 32 ;)
Vios(Xn, t1)  Vies(Xn,t2) - Vies(Xn, In, )-
(3.1)

where ng is the number of snapshots and N is the total number of grid points in each
snapshot. As our objective is to determine the dominant spatial modes, the application of
the POD method to scanning lidar measurements is done a posteriori. Hence, all snapshots
are available for the subsequent decomposition. It is common to subtract the mean value
to obtain the fluctuating component V/(X,t) = V(X,t)-{V(X, t)). Here, < V(X,t)) denotes
the spatial velocity field averaged over time. POD decomposes the wind field V(X t) into
a linear superposition.

z

V/(X,t) = ' Zi(1)¢i(X), (3:2)

[
I
—_

where ¢;(X) are called the spatial POD modes optimal with respect to the flow turbulent
kinetic energy, and Z;(t) are the time-evolving POD weighing coefficients. This solution is
obtained by solving the eigenvalue problem of the covariance matrix R = V/(X, t)V’(X,)T:

R¢; = 4, (3.3)

resulting in a set of eigenvectors ¢; denoted as POD modes and a set of corresponding
eigenvalues A; which can be ordered as A; = A3 = As.... The flow field can now be denoted
as a linear combination of N uncorrelated spatial modes:

N
VX, 1) =<V DY+ V(X 1) = VX )+ Y Zi(1)g(X), (3.4)
j=1
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where the jth weighing coefficient is obtained as:
Zi(1) = T XV (X, 1). (3.5)

Z;(t) contains the temporal gains determining the development of the POD modes in

time. A reduced-order representation of the flow field V(X, 1) =<V(X, 1))+ v (X, t) can be
obtained by truncating the higher modes and retaining only M < N modes where:

M
VI(X.0) = Y Z{(D)(X). (3.6)
j=1

For such a reduced-order approximation, the POD modes of Equation (3.3) are optimal
with respect to the turbulent kinetic energy in the flow. Hence, they are a set of optimal
modes with the least mean square error given by:

IV (X, 1) - VX, )12 (3.7)

The spatial modes ¢;(X) contain information about coherent structures, as the POD method
can be seen as an energy filter that unravels the large spatial turbulent structures. However,
it must be noted that these structures might not be actual physical structures present in the
flow field, but merely a result of the mathematical operation. An important property of this
method is that the POD modes are orthonormal, so their temporal gains are uncorrelated
Holmes et al. 2012. With large flow matrices being common in fluid flow problems, the
dimensions of the covariance matrix R become quite large, thereby making the application
of classical POD very time-consuming. To avoid this, the method of snapshots [Sirovich
1987] is used, whereby the temporal covariance matrix V7V is solved to obtain the same
dominant spatial POD modes. Due to the reduced computational and memory resources
needed, the snapshot method is a commonly used method for obtaining POD modes from
flow data.

We can now apply the snapshot POD methodology to the line-of-sight velocity field obtained
via scanning lidar measurements, truncating the higher modes and creating a reduced-order
reconstruction of the flow. The order M of the reduced model in Equation (3.6) is crucial.
Improper selection of M might lead to a dimensional reduction that is either very large or
very small, and important flow field data may be lost.

3.2.2 THE GarprY-POD

The Gappy-POD developed by Everson and Sirovich 1995 is an extension of the POD
method that is capable of providing high accuracy approximations of missing or invalid
data points. The method is based on an iterative POD implementation on the incomplete
dataset, where the missing data points are initially replaced by a first guess, usually the
temporal mean of the available data at that point. The output of every POD calculation is
used as the input for the next iteration, where the number of modes is increased until a
predefined convergence level is achieved. In other words, the initial guess is updated based
upon an iterative POD approximation based on an increasing number of POD modes P.
However, the optimum number of modes required to reconstruct the inflow differs based on
the flow condition, i.e., the optimum number of modes required to accurately reconstruct



3.2 METHODS 55

undistributed wind inflow, is lower compared to inflow reconstruction during partial or
full wake conditions due to the higher wind field turbulence. This implies that if a large
number of modes is chosen with a poor initial guess, then the data gaps will be filled with
more details of the poor guess. Conversely, if only a small number of POD modes is chosen,
then the finer details of the wind fields will not be captured.

Here, we follow the iterative Gappy-POD implementation proposed by Venturi and Kar-
niadakis 2004, which has been shown to significantly improve the Gappy-POD accuracy
[Gunes et al. 2006]. The iterative process is started based on an initial guess and a low
number of modes Py = 2 from which a converged Gappy-POD approximation is obtained.
This approximation is subsequently used as the next guess for the subsequent iterations
Py < Py < P, ..., where the number of modes is increased and the process is continued until a
certain convergence criterion is met. This results in a nested-loop implementation whereby
POD convergence is evaluated for a given number of modes in the outer loop and the
used number of modes P in the inner loop. The latter will be described as sub iterations
(denoted by s), and the iterations based on the used number of modes P will be referred to
as main iterations (denoted by n) from here on. The corresponding velocity field at every
main and sub-iteration is denoted by V, 5. The Gappy-POD procedure to reconstruct the
fluctuating component of velocity is as follows:

1. For the first main iteration n = 0, the initial guess for the velocity at the missing
points is the temporal mean of all valid data available at that particular point, i.e.,

V(X,t), if X € Xy,

. (3.8)
(VX)) if X € Xy

Voo(X,t) = {

Here, Xy; and Xj; are the locations of valid and invalid points, respectively. The
mean is subtracted before performing POD, so ( V(X)) is 0. For the n™ main iteration,
the gappy field Vy is filled with an initial guess to obtain an approximate filled field

V0. Therefore, for the subsequent main iterations, this guess is the output from the
previous main iteration Vn,o =Vn1.

2. This is the first sub-iteration step. POD with P, modes is performed on the filled
wind field V', ; to obtain an approximation

Pn

Vas(X.0) = 3" Zi(5(X). (3.9)

Jj=1

This uses a modification proposed by Gunes et al. 2006 which is computationally
efficient and provides similar accuracy as solving the minimisation problem required
for the Eversen—Sirovich method [Raben et al. 2012; Saini et al. 2016].

3. The data gaps are then filled using the POD reconstruction:

V(X,t) if X € Xg1,

. , (3.10)
Vas(X,£), if X € Xy

Vn,s+1(X, t) = {
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4. The iterative process is repeated, whereby steps 2 and 3 are performed by increasing
s until the calculated eigenvalue spectrum in step 2 reaches a predefined convergence
level.

5. This is the final sub-iteration step. The approximated wind field is stored as V, and
then passed on to the next main iteration.

6. For the subsequent main iterations, the number of POD modes used for the recon-
struction is increased until the main iterations converge.

7. The final velocity field is now assembled by summing up the mean wind field and
the iteratively reconstructed fluctuating part.

3.2.3 TURBINE-MOUNTED LIDARS FOR INFLOW SCANNING
For efficient optimisation of turbine performance, an advanced turbine-mounted lidar
should be capable of measuring the total area swept by the rotor very regularly to sufficiently
resolve the spatio-temporal dynamics. While the spatial resolution of a lidar depends on
the beam-scanning strategy employed, the temporal resolution of a lidar system is given
by the underlying measurement technique, i.e., pulsed or continuous operation. Although
large measurement distances are achievable through pulsed operation, the continuous type
is advantageous for the presented applications due to their significantly higher sampling
rates achieved through continuous scanning [Simley et al. 2018].
Any lidar system can only provide wind speed measurements along the beam direction
(so-called line-of-sight (v1,5) wind speed): usually referred to as the “cyclops dilemma”
in the literature [Schlipf et al. 2011]. The line-of-sight wind speed 1,5 is expressed as a
projection of the three wind speed components along the line-of-sight, as described by
Equation (5.1):

Vs = cos(y) cos(d)u + sin(y) cos(5)v + sin(5) w. (3.11)

where y and § are the azimuth and elevation angles of the horizontal and vertical directions
of the focused laser beam, respectively. The quantities u, v and w are the longitudinal,
lateral and vertical wind components, respectively.

Another important property of continuous-wave lidar measurements is the probe length
averaging effect. The line-of-sight measurements of the lidar are not collected at a single
point in space, but are a weighted averages over a thin cylindrical volume along the beam
approximated as a Lorentzian function [Sjoholm et al. 2009], as the laser beam cannot
be perfectly focused at an infinitesimally small point in space. The line-of-sight speed
measured by the lidar can be expressed following Mann et al. 2009 as:

Vos(X) = [W 1 (ﬁ) n~u(sn+x)ds (3.12)

I/

where x is the centre of the measurement volume; u(x) is the velocity field; and the unit
vector in the emission direction of the laser beam is denoted as:

n = [cos(y) cos(8),sin(x) cos(8), sin(8)]". (3.13)



3.2 METHODS 57

The probe length is considered to be twice the half-width at half maximum, which is the
distance from the focal point at which the backscatter spectrum is reduced to half its
peak power and depends quadratically on the focal distance. The probe length depends
on the laser wavelength A and the effective radius of the lidar’s telescope a, which are
fixed parameters [van Dooren 2021]. Most of the laser signal is reflected near the focal
distance, but contributions from the vicinity of the focal point also exist. This results in an
attenuation of measured turbulence.

Figure 3.1: The SpinnerLidar with its mounting platform mounted on the nacelle of the research turbine CART3 at
the National Renewable Energy Laboratory (NREL), Colorado, USA. Photo courtesy of Marijn Floris van Dooren.

The SpinnerLidar [Herges et al. 2017a; Mikkelsen et al. 2013] is one high-resolution lidar
device that satisfies the requirement of fast scanning of the rotor area. This research-based
prototype lidar can perform 2D measurements of the radial line-of-sight wind speed on a
spherical surface with very high spatial and temporal resolution. The lidar consists of a
modified ZephIR-300 continuous-wave Doppler lidar with a 2D scan head developed by
the Technical University of Denmark (Figure 3.1). The scan head consists of two rotating
prisms deviating the lidar’s focused beam by an angle of 15° while rotating at a fixed ratio of
7 to 13. The resulting scanning pattern movement creates a fast rosette trajectory covering
a large area with a quasi-homogeneous spatial resolution. The lidar can sample up to a
maximum of 500 radial line-of-sight measurement points distributed over each completed
scan trajectory (Figure 3.2). The lidar is capable of providing 2D wind field scans at a
temporal sampling rate of 1 Hz with a variable focal distance from 10 to 150 m (albeit with
a constant opening angle of 30°). The probe length is 0.13 or 28.3 mat f =10 mand f =
150 m, respectively.
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Figure 3.2: The rosette scanning pattern of the SpinnerLidar shown from two perpendicular perspectives.

3.2.4 LARGE-EDDY SIMULATIONS (LES) AND THE LIDAR SIMULATOR
(L1X1m)

Wind turbines operate in the atmospheric boundary layer, which exhibits continuously
varying flow characteristics. LES models can accurately resolve the turbulent kinetic energy
in the atmosphere, making them suitable candidates for simulating realistic inflow condi-
tions. Therefore, performing virtual lidar simulations inside the LES wind field provides a
complete 3D reference wind field for comparison and quality assessment.

The LES data were obtained from simulations with the Parallelised Large Eddy Simulation
Model (PALM) revision 3151. The PALM code is widely used for atmospheric boundary
layer studies and works by solving the filtered, in-compressible, non-hydrostatic Navier-
Stokes equations [Maronga et al. 2015]. PALM employs the Schumann volume averaging
approach and uses central differences to discretize the non-hydrostatic and incompressible
Boussinesq approximation of the 3D Navier—Stokes equations on a structured Cartesian
grid. The simulations presented in this paper were performed using the PALM code in
its default settings. The advection terms are solved by a fifth-order Wicker—Skamarock
scheme. A third-order Runge-Kutta scheme is applied for the time integration. For cyclic
horizontal boundary conditions, an FFT solver of the Poisson equation is used to ensure
incompressibility. To model the effects of sub-grid scale turbulence on the resolved scale
turbulence, a 1.5th order closure is employed [Deardorff 1980]. Monin-Obhukov similarity
theory is used to obtain the turbulent fluxes between the surface and the first computational
point on the model domain.

The turbine aeroelastic simulation was performed using the Fatigue, Aerodynamics, Struc-
tures and Turbulence code (FAST) v8, developed by the National Renewable Energy Labo-
ratory (NREL) [Jonkman et al. 2005]. The code simulates the wind turbine as a combination
of rigid and flexible bodies, and the aerodynamic forces are calculated via the AeroDyn
module. Both PALM and FAST run simultaneously in an explicit loose two-way coupling
[Kriiger et al. 2022. The velocities from the LES field are transferred to FAST, which subse-
quently calculates the lift and drag on the blade segments based on look-up tables of the
airfoil characteristics. Next, the relative velocities of the blades and their new positions are
determined. This information is transferred back to PALM, where the forces are distributed
back into the flow field, where the induction zone and the wake are generated, as visualised
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in Figure 3.3b.
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Figure 3.3: (a) Vertical profiles of the potential temperature, wind speed and wind veer at the end of the precursor
run and (b) the averaged u-component at hub height extracted from the unstable LES wind field for the main run.
The black vertical line indicates the position and size of the turbine rotor, and the red curve is the SpinnerLidar’s
measurement trajectory.

Two turbulent atmospheric boundary layers (ABL) of unstable and stable stratification,
respectively, with a single turbine, were simulated using this framework. The wind turbine
model was the actuator line implementation of the NREL 5 MW reference turbine [Jonkman
et al. 2009b] with a rotor diameter of 126 m, a hub height of 90 m and 63 blade sections.
To obtain a convective boundary layer (CBL), we performed a pre-run of 25 h to allow the
boundary layer to develop and reach stationary flow. A roughness length z, = 0.0175 m
was specified with a friction velocity u. = 0.52 m/s, and the kinematic sensible heat flux at
the surface was fixed at 0.023 K ms™!. The surface potential temperature was 290 K. The
instantaneous fields of the precursor simulation were mapped onto the main simulation
via turbulence recycling Lund et al. 1998, where the turbine was introduced into the wind
field. For simulating stable atmospheric conditions (SBL), a pre-run of 25 h was carried
out, where the lowest grid cells were constantly cooled at a rate of 0.25 K/h. A roughness
length of z, = 0.1 m was specified, and a temperature gradient of 1 K/100 m was specified.
Similarly to the CBL case, the turbine was introduced in the main run, where the precursor
simulation was mapped onto the main simulation. Important details of the precursor and
the main run are summarised in Table 3.1. The dimensions of the simulation domain
Ly, Ly and L, were normalised with the rotor diameter of the NREL 5 MW turbine. The
mean longitudinal wind speed and turbulence intensity were defined as up,p, and TIyyp,
respectively. The wind veer  was calculated between the top and bottom rotor tips, and
a was the vertical shear exponent. z, was the roughness length, and the stability was
characterised by the Obhukov length L.

Table 3.1: Setup of the two LES simulations and the results at the end of the precursor run.

Case Ly, Ly,L:(D) Unup (/) Thup (%) B(-) @ () 2z (m) L(m)
CBL  64.9x324x162 10.1 11.9 0.8 009 00175 -452
SBL  228x7.6x38 7.2 7.5 93 023 0.1 114.3
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To extract the SpinnerLidar measurements from the two LES wind fields, we used the inte-
grated lidar simulation toolbox LiXim [Trabucchi 2020]. The SpinnerLidar was simulated
in the LES using the LiXim simulator measuring at a focal distance of 126 m (1D) with a
temporal resolution of 1 Hz for a total duration of 3700 s. The lidar simulator emulates
the lidar measurements inside the LES wind field while considering the volume averaging
effect and producing 312 measurement points distributed along the rosette scan pattern.
The lidar simulator freezes the wind field for every measurement point and performs
linear interpolation to obtain the projection in the direction of the laser beam. From the
lidar properties and the focus distance, the length of the measurement volume is defined.
The wind field is then interpolated over this volume, and the wind velocities along the
line-of-sight are weighted based on the Lorentzian function. The lidar spatial averaging
is described as a Lorentzian function for continuous-wave lidars [Sjéholm et al. 2009].
The effective probe length in terms of the FWHM of the SpinnerLidar when focused at
a measurement range of 126 m (1D) is approximately 19 m. The simulated lidar device
was assumed to have a horizontal orientation, and the rotor tilt was not considered. The
measurements are then interpolated onto a uniform grid with a 3 m spacing resulting in
1261 grid points.

3.3 REsuLTS

The performances of the POD-based reduced-order reconstructions were tested for virtual
scanning lidar in the LES data. The simulations were used as a benchmark for comparing
and quantifying the accuracy of the inflow based on various reconstruction metrics, such
as the energy distributions, velocity field reconstruction, wind field parameterisation
and turbulent spectra in the fixed and rotational frames of reference. Finally, the ability
of the Gappy-POD method to reconstruct artificially removed measurement points was
investigated for a range of data availabilities.

3.3.1 APPLICATION OF THE POD METHODOLOGY TO SCANNING LIDAR

MEASUREMENTS
The eigenvalues and eigenvectors associated with the covariance matrix for the line-of-
sight velocity fields of the two simulations were calculated based on Equation (3.3). The
normalised magnitudes of the eigenvalues A; and the fraction of energy associated with
each mode of the v},s measurements are shown in Figure 3.4. As expected, the eigenvalue
magnitudes of the CBL modes contain more energy in general compared to the SBL modes
due to the higher turbulence in the CBL. For the unstable case, the first POD mode contains
57.7% of the total measured energy; and the second, third, and fourth modes contribute
17.3%, 11.8% and 4.3%. For the stable case, the energy contributions of the first modes are
48.01%, 12.91%, 6.07% and 5.38%, respectively. It is clear from Figure 3.4b that the first ten
modes contribute 96.6% and 87.7% of the measured turbulent kinetic energy (TKE); and the
first 100 modes account for 99.95% and 99.99% for the CBL and SBL cases, respectively. 2
Note that the total TKE measured by the lidar is not equivalent to that in the wind field due
to volume averaging induced turbulence attenuation of the line-of-sight measurements.

2The lidar measured TKE is defined as the turbulent kinetic energy related only to the lidar measured line-of-sight
velocities rather than the commonly used definition of the TKE for the whole 3D wind field.
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This may be surprising since, in a turbulent flow, energy is distributed over the different
scales and its representation might usually require a large number of modes [Bauweraerts
and Meyers 2020]. However, a lidar system acts as a low-pass filter for small scale turbulence
due to its volume averaging property. Hence, the small scale turbulence is filtered out, and
an accurate representation of the remaining lidar measured total TKE can be recovered
with very few modes.
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Figure 3.4: Eigen value distributions (a) and the energy contribution of each mode (b) for the unstable and stable
cases.
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Figure 3.5: POD modes 1 to 4 of the line-of-sight (v1,5) measurements for the CBL case.
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Figure 3.6: POD modes 1 to 4 of the line-of-sight (v},s) measurements for the SBL case.

The first four POD modes ¢;(X) for the CBL and SBL cases are illustrated in Figures 3.5
and 3.6, where well defined modes for both cases were obtained. For both cases, the modes
exhibit clear structures that trend towards smaller scales with increasing mode number as
the modes are sorted based on the energy content, and the kinetic energy decreases with
scale. For the CBL case, modes 1 and 2 have similar mode shapes with different gradients,
resulting from the variation in the line-of-sight velocities decreasing toward the edges of
the scan pattern. The first two modes do not exhibit clear symmetry around the rotor axis
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due to the slight wind shear present in the ABL. Modes 3 and 4 display variations in the
horizontal and vertical directions, respectively. For the SBL case, the first mode shows a
strong spatially localised shape related to the line-of-sight velocity distribution, and the
second mode resembles a large gradient in the vertical direction, probably due to the strong
vertical shear. The third mode displays variations in the horizontal direction, and the fourth
mode shows a slightly more complex distribution. The asymmetry of the SBL modes could
be explained by the larger surface roughness of the simulation (z, = 0.1 m) leading to a
large effect of the ground on the inflow. Comparatively, the CBL was generated with less
surface roughness (z, = 0.0175 m), thereby preserving weak statistical isotropy commonly
observed in turbulent flows. As expected, the higher mode patterns became increasingly
complex compared with the first few modes.

3.3.2 RECONSTRUCTION OF THE REDUCED VELOCITY FIELD
The extracted POD modes were used to reconstruct the velocity field based on Equation (3.6)
by choosing increasing values of M (the number of modes used for reconstruction).
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Figure 3.7: CBL case: Reconstruction of the line-of-sight (v1,s) velocity snapshot at an arbitrary time instant ¢ =
256 s with different numbers of modes (M = 1,5,7 and 10) and their corresponding errors with respect to full lidar
measurements (bottom right-hand plot captioned as lidar).

A snapshot of the velocity field at an arbitrary time t = 256 s of the CBL inflow case
was reconstructed and illustrated in Figure 3.7 for a different number of modes, along
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with its corresponding planar velocity reconstruction error in comparison to full lidar
measurements. A more detailed wind field reconstruction was achieved while considering
more modes for the reconstruction. For the reconstruction with M = 1 (first mode alone),
only the spatial variations in the line-of-sight measurements were obtained, as indicated
by a constant velocity distribution over the whole measurement plane, which is also
supported by the M = 1 error plot with respect to the full lidar measurements. The addition
of more modes into Equation (3.6) adds more localised wind field information, as the
smaller wind field fluctuations which are contributed by the higher modes are taken into
account. The velocity field reconstruction with ten modes shows close agreement with the
untruncated full lidar measurements; reconstruction error is effectively reduced to almost
zero throughout the measurement plane. The high recovery of kinetic energy in the first
few modes, as discussed in Section 3.3.1, indicates that only a few modes are required to
create a meaningful reduced-order model capturing all spatial variations in the wind field.
For brevity, we only show the results of the CBL case, as the SBL also exhibited the same
behaviour: the addition of more modes improving the spatial velocity reconstruction.

3.3.3 RECONSTRUCTION EVALUATION USING THE THREE-PARAMETER
WIND FIELD MODEL

The main objective of any inflow sensing lidar is to capture the inflow, along with its
variations that significantly impact the wind turbine. Thus, the quality of reconstruction
should be evaluated with respect to wind field parameters that directly affect the turbine
itself. For example, parameters such as the rotor effective longitudinal wind speed g,
horizontal misalignment 8}, and vertical shear s, are necessary to implement a standard
individual pitch controller. The rotor effective wind speed quantity uc; is related directly
to the turbine’s dynamic response and power output. This is the primary variable for
selecting the operational condition of the turbine and input for collective pitch control.
The horizontal misalignment &, and vertical shear s, are essential for for determining
the turbine’s yaw setting and individual pitch control algorithms, whereby the controller
compensates for asymmetric loading by pitching the blades individually. To extract the wind
field parameters from the scanning lidar line-of-sight measurements, we used the three-
parameter methodology from Kapp. S 2017. While the three-parameter methodology can be
directly applied to the lidar data to obtain the relevant wind parameters, we calculated them
from the reconstructed velocity fields to assess the reconstructed wind field’s accuracy and
provide a physical interpretation for the modes.

The three-parameter method proposes a parameterisation of the inflow wind field using
three parameters to achieve the smallest possible deviation from the actual inflow field.
At every ith measurement point, the lidar measures the line-of-sight speed vo5(yi, 2:) as a
projection of the 3D wind components, following Equation (5.1). The measured line-of-
sight speeds vys(yi, z;) in the spherical SpinnerLidar measurement plane could be fitted as
a set of three parameters that is constant over the whole plane as:

cos(Sn)
lA)los(Yi, zj) = (ueff +8,z;) | sin(ép) | - n. (3-14)
0
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whereas n is the unit vector of the laser beam at point i, and y; and z; are the Cartesian
coordinates of the point in the scanning plane. Grouping every point in the measurement
plane results in a set of equations for every measurement point that could be solved in a
least-square sense to determine the unknown parameters Y = (uegr, Sy, sV)T:

N 2
min( 3" (o052~ Bs(1.2)) ) (3.15)

i=1

TIME SERIES RECONSTRUCTION OF THE THREE-PARAMETER MODEL

To quantify the reconstruction accuracy, inflow wind field parameters were extracted from
the line-of-sight velocity distribution defined in Section 3.3.3. The results of the extracted
wind field parameters from different reconstructions are compared with each other and
with the full lidar measurements for the CBL and the SBL inflow cases. The three-parameter
wind field model was applied to the SpinnerLidar simulations, which will henceforth be
referred to as direct determination. Various reconstructions were created by truncation
with M =1, 2, 3, 5 and 10 modes, and the associated wind field parameters (uess, o and sy)
were calculated and compared with direct determination. For all the cases and parameters,
there were negligible differences between the reconstructions with M =5 and M = 10, and
hence, only the reconstruction with M =5 is shown for brevity.

Figure 3.8 contains part of the time series of the three wind field parameters for different
reconstructions with M =1, 2, 3, 5 and 10 for the CBL and SBL cases, respectively. For
the rotor effective wind speed u.gs, the time series of the different reconstructions overlap
with each other well, even for reconstructions with few modes for the CBL and the SBL
cases. The dynamic aspects of the rotor effective velocities calculated with different mode
numbers are similar, there being only small variations between the reconstructions with
M =1 and M = 10 modes. The low-frequency characteristics of the us time series were
reproduced with reasonable accuracy with just one mode. The addition of more modes to
the reconstruction introduced a few high-frequency variations to the time series. However,
this was not the case for vertical shear or yaw misalignment. The reconstruction of s, with
one mode for the CBL case showed an average value of zero, whereas for the SBL case
a value of 0.025 s™! was obtained, indicating that the first mode contained some vertical
shear information. With the addition of the second and third modes to the reconstruction,
we observed that the dynamics of the vertical shear were captured, albeit a little over-
predicted for the CBL case. The horizontal misalighment reconstruction for CBL and SBL
showed very similar behaviour. With the first mode alone, the basic dynamics of the time
series were not captured. The addition of more modes to the reconstruction improved
the estimation of both s, and &,. For M =5 or higher, good agreement between the direct
determination and the truncated reconstructions was obtained for all three parameters for
both cases.
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Figure 3.8: The time series of the wind field parameters uy, sy and &, extracted at a sampling rate of 1 Hz for a
duration of 300 seconds for different POD reconstructions for the CBL and SBL cases.

ACCURACY OF THE THREE-PARAMETER WIND FIELD RECONSTRUCTION AND AN
INTERPRETATION OF THE POD MODES
To quantify the reconstruction error associated with these wind field parameters, we write

Y0 - ¥( 01s(X.0). (3.16)

where Y(t) = [efr, On, Sy is the set of rotor-averaged wind field parameters calculated by
applying a three-parameter methodology Y to the line-of-sight velocities. Similarly, the
wind field parameters determined from the reduced-order reconstruction with M modes
can be represented as: R

YM (1) = Yo (X, ). (3.17)

The quality of the reconstructed wind field v{‘é‘s (X, t) and the corresponding wind field
parameter YM(t) with M modes can be assessed by comparison to the original wind field
parameters Y(t). To evaluate the reconstruction efficiency, two different error parameters
are introduced. The errors associated with the reconstruction of the ith wind field parameter
Y; are defined as:

YM(1)y = <Yi(0))

M
Y;) = 3.18
000 = [\ (1) - min(Y,(0) (3.18)
\/Z (YM(t) YM(1)))? TS (Y()—Y(1)))? 2
ns
eqn(Yi) = (3.19)

max YM( ) - mln(YM( 1)) - mtax(Yi(t)) —mtin(Y,»(t))

where €54 and €gy, represent the standard and dynamic error, respectively. These values
quantify the respective mean error and the error associated with the fluctuations in the
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wind field. The definition of the dynamic error was motivated by the fluctuation of wind
field parameters having the largest effect on the loading and the fatigue of the turbine in
contrast to the mean wind field parameters. To investigate the relationship between the
POD temporal gains Z;(t) and the wind field parameter time series, the Pearson correlation
coefficient p is used.

The standard and dynamic errors €54 and €4y, Were used to quantify the reconstruction
quality for the CBL and SBL cases, as depicted in Figure 3.9a,b. The standard and dynamic
errors exhibited similar trends for the CBL and SBL inflow cases. The standard error of
reconstructed rotor effective wind speed u,¢r remained less than 0.016 and 0.005 for the
CBL and SBL cases for the reconstruction based on the first mode, indicating the first
mode is highly correlated with the rotor averaged wind speed. For both cases, the standard
reconstruction errors with one mode for s, and 8, were comparatively large but dropped
when more modes were used. The standard errors for all the three wind field parameters
decreased below 0.001 when considering the first five modes for the reconstruction. The
standard error exhibited discontinuous behaviour for certain wind field parameters when
certain modes were considered. The steep fall in the standard error magnitude with the
addition of certain modes indicates that these modes are strongly correlated with these
wind field parameters. The dynamic error for u.¢r dropped below 0.002 for both cases
when at least the first three modes were considered for the reconstruction. For both cases,
the dynamic error of the three-parameter reconstruction also reduced below 0.001 while
considering the first ten modes for reconstruction. Similar discontinuous behaviour was
observed while considering specific modes. The discontinuous behaviour shown by the
standard and dynamic errors occurring at identical mode numbers indicates a relationship
between the particular mode and the corresponding wind field parameter.
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Figure 3.9: The standard (€sq) and dynamic (€gyn) errors of the three-parameters calculated for reconstructions
with various numbers of modes; correlations (p) between the time series of the reconstructed three-parameter
wind field parameters; and the time evolution of the different POD modes Zj(t)A

The huge reductions in the standard and dynamic errors can be explained by the plots
of correlation between the time series of the POD time coefficients Z;(t) and the wind
field parameters Y(t), as visualised in Figure 3.9c. Confirming the hypothesis for the
CBL case based on the time series reconstruction of the rotor effective velocity (Figure
3.8), the first mode is highly anti-correlated with spatial fluctuations in the wind field
with p(Z1, uegr) = —0.99. The yaw misalignment (&) is related to the third mode with
p(Z3,0n) = 0.99. The vertical shear (sy) is related to the second and the fourth modes
p(Z2,sv) = -0.72 and p(Zy, sy) = -0.91. The argument of the relationship between the wind
field parameters and the modes is also strengthened by the shapes of the POD modes
(Figure 3.5): the third and fourth modes exhibit horizontal and vertical structures, whereas
the first mode resembles the v}y variations. Similar arguments could be made for the SBL
case, as the first mode is highly correlated with the spatial fluctuations in the effective
wind speed: p(Z1, uesr) = 0.98. The vertical shear is highly correlated with the second mode,
p(Zy, sy) = 0.88, and weakly anti-correlated with the fourth mode, p(Zy, sy) = —0.36. The yaw
misalignment has the highest correlation with the third mode, p(Z3, 8,) = —0.63, and also
exhibits correlations with the first (p(Z1, 8) = —0.36) and second modes (p(Z;, &) = -0.59).
The second POD mode in Figure 3.6 exhibits a vertical distribution, and the third POD
mode shows a horizontal distribution, further strengthening the argument that the POD
modes are related to the properties of the inflow itself.
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3.3.4 RECONSTRUCTION EVALUATION IN THE FREQUENCY DOMAIN
The dynamic loading induced on the turbine blades is determined by the wind fluctua-
tions impinging on the blades and how quickly they rotate. As the blades move through
the turbulent wind field, they perform a so-called “rotational sampling” of the turbulent
structures, which differs from the velocities observed at a stationary point [Kristensen and
Frandsen 1982]. To investigate this effect, we calculated the auto-spectral density of the
longitudinal wind speed of the reduced-order reconstruction for the stationary hub centre
and rotating reference frames for a radial position of 90% on the first blade only for the
CBL case. The reconstructed spectra are evaluated with respect to the turbulent spectra
directly determined by the lidar measurements and the reference LES (Figure 3.10).
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Figure 3.10: (a) Fixed point spectra of the vjos velocity on the rotor axis at an upstream measurement distance
of 126 m with M = 1, 3, 5 and 10 modes. (b) Rotational spectra of the jected Velocities of the reduced-order
reconstruction with M = 1, 3, 5 and 10 modes. The results are shown only for the CBL case.

The spectra were calculated via Welch’s modified periodogram method with a Hanning
window, 300 s data segments and a 50% overlap between segments. For the hub centre point
visualised in Figure 3.10a, the spectra of the different reconstructions exhibit very similar
behaviour. LES in the figure refers to the spectrum calculated from the reference wind field
sampled at 5 Hz, and the Kolmogorov slope is illustrated as a black line. The spectrum
directly determined from the full lidar measurements is illustrated by the green line. The
lidar measurements for all cases show a drop-off from the —5/3 Kolmogorov slope at 0.03 Hz,
evident of the low-pass filtering effect of the lidar. The reconstructed spectrum with the
first mode underpredicts the energy content by one order of magnitude, and the addition
of more modes moves the spectrum upwards toward the full lidar measurements. The
reconstructed spectra with ten modes and the full lidar measurements show no differences,
indicating that with the first ten modes, almost all energy is recovered in comparison to
the full lidar measurements.

However, completely different behaviour is observed when examining the rotationally
sampled spectra of the projected longitudinal wind speed at an upstream measurement
distance of 126 m sampled at 90% of the outer blade radius moving at 11.88 rpm, as
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shown in Figure 3.10b. The rotational spectra is calculated from the uyrojected velocities
(by setting v = w = 0 in Equation (5.1), leading to uyrojected = Vlos/(c0os(x) cos(6)). The light
blue line shows the spectrum of the reference LES simulations sampled at 5 Hz. The 1P
frequency (0.198 Hz) and the next five peaks of the higher harmonics are clearly visible.
The reconstruction with M = 1 underpredicts and cannot capture the magnitude of the 1P
and 2P peak, as the first mode only reconstructs the relatively weak radial asymmetry of
the wind speeds over the wind field. With the addition of the second and third modes, the
magnitudes of the 1P and 2P peaks are accurately reconstructed; adding more modes leads
to marginally better predictions of these rotational harmonics. The higher harmonics seen
in the rotational spectrum of the LES curve are not captured by the lidar due to the limited
1 Hz sampling rate yielding a corresponding Nyquist frequency of 0.5 Hz. The superior
reconstructions in the rotational spectra in comparison to the fixed point spectra, even
for M = 3 modes, can be attributed to the high spatial coverage of the lidar. Moreover, the
fact that the dominating POD modes have clear relationships with the wind speed changes
in the horizontal and vertical directions allows for better calculation of the rotational
spectrum compared to the fixed frame. Note that the lidar measures more energy than
the LES field at lower frequencies due to cross-contamination of the lateral and vertical
components contributing to increased variance in the line-of-sight velocity.

3.3.5 GAPPY-POD RECONSTRUCTION OF MISSING DATA POINTS

Here, we present the results of using the Gappy-POD algorithm to reconstruct missing
data points. We define total data availability over the entire dataset as the percentage of
the average available wind field view allowed by the rotor. Gappiness is defined as:

[ Xl

- (3.20)
|Xd|t UXg‘t|

where |.| denotes cardinality. The removal of points was based on defining a set of uniformly
distributed pseudo-random integers consistent with the total number of measurement
points using the Mersenne-Twister algorithm [Matsumoto and Nishimura 1998]. Different
gappiness scenarios were created by randomly removing 10%, 20%, 30%, 40% and 50% of the
data points from the CBL and SBL cases. Gappy-POD was applied to the gappy datasets,
and the ability of the method to reconstruct missing points was evaluated. While removing
measurement points, it was made sure that there were no data points with no data and
no snapshot that was missing all measurements. Determining the convergence, i.e., the
termination point of the iterative process, is necessary to achieve high accuracy. For this
purpose, a convergence criterion based on the root mean square error (RMSE) was utilised
only at the locations of the missing points; i.e., valid data points were ignored.

ng)t
RMSE = \/zk=1(vlos,gappy,k - Z)los,ref,k)z (3'21)

ng,t

where Vo5 gappy represents the reconstructed data, vy et represents the reference data
with 100% availability and ng; = |Xg;| is the number of missing points. The sub-iteration
convergence was investigated by inspecting the absolute normalised difference between
the eigenvalue spectra between consecutive iterations. In this work, the value was chosen
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as 0.05. If the convergence criteria was not satisfied, the guess for the missing data was
updated using Equation (3.10) and the next sub-iteration was started. The variations in
RMSE with the number of main iterations and for different gappiness G are plotted in
Figure 3.11 for the CBL and SBL cases. The RMSE was normalised by the hub height wind
speed to facilitate comparison between the two cases.
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Figure 3.11: RMSE normalised with the hub height wind speed uy,}, as a function of main iterations for the CBL
case (solid lines) and the SBL case (dotted lines) for different gappiness percentages.

For all the cases, the normalised RMSE initially decreases, reaches a minimum and starts
increasing again, a result of over-fitting. For both cases and all gappiness, the number of
main iterations required to reach the minimum RMSE varies, but the optimum is found
below 100 iterations. In general, the RMSE drops below 0.01 after 50 iterations for both
cases and all availabilities. The SBL case converges slightly earlier and shows slightly
reduced RMSE compared to the CBL case, presumably due to the lower turbulence. The
motivation for performing the iterative implementation was that the optimum number of
iterations for minimum RMSE was unknown. However, if the optimum number is known,
the nested-loop algorithm can be modified by just repeating the sub-iterations alone (steps
2 to 4) in Section 3.2.2, drastically decreasing the required solution time. In the following,
we also present the results of the henceforth named "direct Gappy" method, wherein the
gappy procedure is performed by using the optimum number of modes obtained from
Figure 3.11.

Figure 3.12a shows the optimum normalised RMSE of the three methods as functions of
G. Here, natural interpolation refers to the C1 continuous triangulation-based natural
neighbour interpolation method. As expected, both the direct and iterative gappy methods
performed better than natural interpolation; a slight increase in RMSE was noticed with
increasing G. The normalised RMSE of the natural interpolation on the CBL case ranged
from 0.019 to 0.023; and the normalised RMSE ranged from 0.0008 to 0.0009 and 0.005
to 0.011 for the iterative and direct gappy implementations, respectively. For G = 30%,
commonly observed in full-field measurements, the iterative and direct gappy procedures
performed substantially better than spatial interpolation in reconstructing the missing
points. In Figure 3.12b, the time required for the three methods is shown for reconstructing
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the whole dataset. The spatial interpolation method is the most robust, given solution
times of less than 10 s; the solution time for the iterative solver increased with increasing
G.

The computations were performed based on an un-optimised MATLAB code on a laptop
running an Intel i7-4610M processor @ 3 GHz and 16 GB RAM. The iterative gappy solution
requires the most processing time due to the time consuming nested loop implementation,
whereas the direct gappy procedure is faster by 6 to 14 times depending on the availability.
The reduced solution time for the direct gappy procedure is because only sub-iterations
need to be performed until eigenvalue convergence, as the optimum number of modes is
known.
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Figure 3.12: (a) Error comparison for the three methods. Solid and dotted lines indicate the CBL and SBL cases,
respectively. (b) Comparison of the computational time taken for the three methods to reconstruct missing points.

RECONSTRUCTION OF SPATIAL WIND FIELD PARAMETERS
To quantify the accuracy of the reconstructed points, we calculated the wind field parame-
ters (Section 3.3.3) from the filled wind field for the three methods and compared them
against the reference dataset with 100% availability. As the reconstruction of the rotor
effective wind speed is trivial for scanning lidars with high spatial resolution, we introduce
a spatial turbulence intensity parameter to evaluate the reconstruction. The spatial TI is
defined as:

o (v10s(X. 1))

<Ulos(X’ t)>

where o(v)os) and  vyos ) are the spatial standard deviation and the mean of the line-of-sight
velocities calculated for each snapshot, respectively. The results of the reconstruction are
plotted for the CBL case in Figure 3.13 and the SBL case in Figure 3.14.

For both cases, similar behaviour for the iterative and direct Gappy-POD methods can be
observed: both methods perfectly reconstructed the wind parameters s, and &,. Spatial
interpolation of missing points led to very similar but slightly lower performance for s, and
O in comparison to the two Gappy-POD methods. This was expected, as the vertical shear
and directional misalignment’s were averaged over the entire measurement plane, and
hence small spatial fluctuations are averaged out. The reconstruction was comparatively
poorer for the SBL case: the regression line is characterised by a larger slope in comparison

TISpatial( t) = (3.22)
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Figure 3.13: Comparison of sy, & and Tlgpaa calculated from the reconstructed data for the CBL case with
G =30%.

to the reference. However, the spatial TI estimated by interpolation has more scatter
and offset in comparison to the reference: R? = 0.942 and 0.934, respectively, for the CBL
and SBL cases. The estimated spatial TI of the two gappy methods agree better with the
reference. There was almost no difference between the two methods (R? = 0.99 for both
cases).
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Figure 3.14: Comparison of sy, o, and Tlspatial calculated from the reconstructed data for the SBL case with
G =30%.

3.4 D1scuUsSION

We applied the POD methodology to reconstruct scanning lidar measured inflow data
from two large eddy simulations of different inflow conditions. The first goal of this work
was to apply POD to turbine-mounted scanning lidar measurements of the inflow and to
identify the most energetic and dominating modes which can be used to create a reduced-
order inflow reconstruction. Secondly, we tackled the problem of blade interference for
nacelle-mounted lidars by using two Gappy-POD techniques to fill in missing data points
and performed a comparison against spatial interpolation to quantify the reconstruction
accuracy.

3.4.1 TowARDS POD-BASED REDUCED-ORDER INFLOW MODELLING

The first goal of our work was to identify dominant modes that could yield strong di-
mensional reduction of the inflow while preserving the spatio-temporal dynamics. After
such a dimensional reduction, the application of reduced-order modelling methods to
scanning lidar measurements can be performed. Previously, analysis of the reduced-order
descriptions of wind turbine inflows and wakes [Bastine et al. 2015; Saranyasoontorn and
Manuel 2005] focused on the longitudinal velocity component due to its direct impact
on the dynamical turbine response. While nacelle-lidar estimations of the longitudinal
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velocity rely on the dominance of the longitudinal component over the lateral and vertical
wind components (4 > v, w) in the line-of-sight direction, this is only an approximation
with a certain error that depends on the orientation of the inflow in regard to the turbine
and the beam direction itself, alongside effects of terrain, atmospheric stability, wind veer
and turbine yaw setting. In accordance with our methodology, we did not impose strong
wind field assumptions prior to the wind field reconstruction. Therefore, the methodol-
ogy was applied directly to the line-of-sight measurements rather than projections in the
longitudinal direction. Wind field reconstruction methods could be subsequently applied
on the reduced line-of-sight wind field to extract wind parameters describing the turbine
inflow. While estimating three-component velocity fields from line-of-sight measurements
is a challenge in itself [Kidambi Sekar et al. 2018], a more detailed lower order inflow
description could be potentially obtained by including all three velocity components. For
quantifying the performance of a reduced-order reconstruction of the inflow, metrics re-
lated to the entire wind field were chosen. We see that with the first ten modes, most of
the total lidar measured kinetic energy was recovered for both cases characterised by a
sharp slope of the eigenvalue distributions (Figure 3.4). The majority of the lidar measured
energy was concentrated in the first few modes, as the energy associated with the small
scale turbulence was low-pass filtered due to the lidar volume averaging property. This
lidar effect also nullifies the disadvantage of POD, whereby a large number of modes are
generally required to capture small turbulent structures.

We observed that the dynamical behaviour of inflow characteristics relevant for turbine-
based lidar applications was captured with high accuracy with just a few modes. The
reconstruction accuracy further was quantified by calculating wind field parameters com-
monly used for turbine IPC control. The low-frequency characteristics of the rotor effective
wind speed, vertical shear and horizontal misalignment can be captured by the first few
modes alone (Figure 3.8); and the high-frequency fluctuations in the wind field parameters
were reconstructed with high accuracy by taking the first ten POD modes. This indicates
that simplified reduced-order dynamic models could be developed based on considering
these dominant modes alone. Interestingly, the addition of certain modes to the recon-
struction reduces the reconstruction errors substantially, suggesting that certain wind field
parameters could be related to specific POD modes. From the high correlations between the
modal time evolution and the wind parameters (Figure 3.9), it is clear that certain modes are
related to certain wind field characteristics, providing a physical mode interpretation. We
acknowledge that the modal interpretations with inflow parameters cannot be generalised
and would vary depending on the inflow conditions, as seen from the varying correlation
between the two considered LES fields. In addition, the reconstruction of turbulent spectra
in fixed and rotating reference frames was investigated (Figure 3.10). For the stationary
hub height spectra, 10-mode reconstruction offers good agreement with the lidar measured
spectra. While reconstructing the rotational spectra necessary for modelling periodic blade
loads, the eddy slicing effect (1P, 2P harmonics) is captured remarkably accurately with
three or more modes.

Creating an inflow reconstruction with POD offers certain advantages over existing WFR
methods. This method does not require strong assumptions about the wind field, unlike
other WFR methods [Kapp. S 2017; Raach et al. 2014]. A POD-based inflow model also
provides spatial wind information on a reduced basis, whereas parameterisation models
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only provide spatially constant wind parameters over the whole measurement plane. Hence,
these models do not utilise the high spatial resolutions offered by scanning lidar systems
such as SpinnerLidar, and events such as partial wakes and gusts are misinterpreted. Since
the typical wind field characteristics for lidar-assisted 1P IPC are based on three parameters
only, the effects of local flow details (partial wakes, gusts) are averaged out and are poorly
represented in the wind field model. A POD reconstruction can represent significantly
more wind field details, and hence can be used even for higher harmonics (e.g., 2P) in IPC
or trailing edge flap control [Ungurén et al. 2019]. This would make a POD-based inflow
model attractive for wind turbine control, as the dynamics of the non-homogeneous inflow
can be described with a few modes and their weighing coefficients.

Creating a reduced-order dynamic inflow model can be achieved by Galerkin projection
of the dominant POD modes onto the underlying Navier—Stokes equations governing the
flow [Taira et al. 2017] or modelling the temporal dynamics of the weighing coefficients as
a stochastic process Bastine et al. 2018], or by linearising the temporal dynamics of the
weighing coefficients [Debnath et al. 2017; Iungo et al. 2015]. As wind turbines operate
under conditions characterised by continuously changing states, special considerations
must be given to dynamically adapt the ROM to changes in inflow states. This can be
achieved either by determining the POD modes from a large dataset covering the majority
of the inflow states, or by dynamically adapting the reduced-order model with state changes
[Bergmann et al. 2005; Guo and Hesthaven 2019; Peherstorfer and Willcox 2015; Tadmor
et al. 2011; Tallet et al. 2016].

To date, we have only investigated the quality of the reduced-order descriptions of the
inflow dynamics based on two LES simulations. A general statement on the factors influenc-
ing our results cannot be derived without analysing a large enough dataset that considers
variations in wind, atmospheric conditions and rotor sizes covering a variety of inflow
and stability conditions that a turbine might experience during its lifetime. However, our
simulations of two cases of typical atmospheric stratifications indicate that the majority of
the energy was concentrated in the first ten dominant POD modes, and similar results were
seen in free-field data as well. As most of the spectral energy in the flow are concentrated
in the larger scales [Vollmer et al. 2016], the spatio-temporal flow variations would be
captured in the first dominant POD modes, and the smaller scale structures would be
filtered out due to the low-pass filtering of the measurements themselves. The effects
of the larger scanning areas required for larger turbines and the representation of large
atmospheric structures should be further analysed. However, for such an analysis, the
optical parameters of the scanning lidar need to be modified to increase the measurement
range and decrease the probe volume at large focal distances. As previously mentioned, the
quality of the wind field reconstruction depends directly upon the lidar data quality and is
thus subject to inaccuracies caused by the device’s limitations. These shortcomings which
are inherent device properties must be investigated in detail concerning their potential
lidar-based relevance. In this study, the metrics for quantifying the accuracy of the model
were chosen based on the inflow wind field itself. To further investigate the relationship
between lidar measured wind fields and turbine dynamics, a detailed evaluation of the POD
model could be performed by choosing quantities that describe the turbine’s response.
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3.4.2 RECONSTRUCTION OF MISSING DATA POINTS USING GAapPpPY-POD
We used Gappy-POD to reconstruct missing data points removed artificially to simulate
blade interference. Gappy-POD utilises POD modes as a basis for the reconstruction of
missing data points. The convergence of Gappy-POD was quantified using the root mean
square error at the reconstructed points at every main iteration. Even up to a randomised
gappiness of 50%, the RMSE dropped below 0.1% between 50 and 100 iterations. The
Gappy-POD reconstruction algorithm was capable of reconstructing up to 50% missing data
considerably better than spatial interpolation. This is because the spatio-temporal variations
in the wind field are considered by Gappy-POD, whereas interpolation only uses the spatial
information at neighbouring valid points. The reconstructed parameters with Gappy-POD
agree better with the reference compared to spatial interpolation (Figures 3.13 and 3.14).
To reduce solution times, a modified version of the Gappy-POD algorithm was presented
where the iterative algorithm is replaced by direct solving using the optimum number
of iterations (Figure 3.12). The direct Gappy implementation was able to achieve similar
performance in reconstructing wind field parameters, with a 6 to 14 times reduction in
solution times, depending on availability. However, the optimal number of modes required
for reconstruction should be known in advance. Performing the direct calculations in a
high-level programming language could reduce solution times to a few seconds, thereby
making real-time reconstruction of missing points from wind fields possible. As the
proposed method requires the time series of lidar measurements to estimate POD modes
and iteratively reconstruct data points, a real-time implementation could be challenging.
However, real-time reconstruction can be performed by estimating POD modes in an offline
stage, which can be then subsequently used to reconstruct sparse data [Tong and Li 2020].
In [Venturi and Karniadakis 2004], it is shown that Gappy-POD would succeed even with
random initial guesses but would require more iterations before arriving at a converged
solution.

Before performing Gappy-POD, it is necessary that a robust outlier filter is applied to the
dataset to detect blade interference and bad quality data due to environmental factors. As
Gappy-POD is a data-driven method, the presence of invalid data points would introduce
reconstruction errors which would propagate with every main or sub-iteration. It is also
important to consider that by performing reconstruction based on lidar measured data,
the missing point estimate would be optimised using the measured values. Hence, the
reconstructed points will acquire at least the experimental uncertainty of the measurement
data themselves [Murray and Seiner 2008]. For evaluating convergence in real experimental
data, artificial convergence checking gaps can be introduced to the gappy data, over which
the reconstruction error can be evaluated [Gunes et al. 2006].

3.5 CONCLUSIONS

Turbine-mounted lidar measurements can be used to derive information about the inflow
to the wind turbine, which can subsequently be used for turbine control, load validation
or turbulence characterisation. As lidar capabilities improve due to enhanced hardware
and larger datasets, it is crucial to reduce the measurement data to a few variables that
can still capture the spatio-temporal dynamics of the wind field. Here, we suggested a
wind field reconstruction methodology for inflow measurements by a turbine-mounted
scanning lidar, based on proper orthogonal decomposition (POD). It was tested in two LES
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wind fields with different stratifications. Well defined inflow modes were obtained, and the
majority of the lidar measured turbulent kinetic energy was captured with just the first ten
POD modes for both cases. The data reduction was possible due to the volume averaging
effect of the lidar filtering out smaller turbulent structures, thereby taking advantage of one
of the lidar’s limitations. The reconstructed velocity fields with the dominant modes agree
well with the full lidar measurements and provide a method for extracting local spatial
structures in the inflow.

The strong dimensional reduction and relationships between wind inflow parameters
indicate that the development of simplified inflow models is possible. POD-based wind field
reconstruction provides more information than classical methods; for instance, it captures
the rotationally sampled wind field and the associated first and second harmonics, which
dominate the dynamic blade loading. Furthermore, we used two Gappy-POD methods
to fill in measurements lost due to blade passage and other factors that influence data
availability, a significant problem for all nacelle-mounted lidars. Gappy-POD provides very
good approximations with which to reconstruct data points lost to blade interference and
other factors. Both Gappy-POD methods were found to reconstruct the missing data (up to
50%) with high accuracy in comparison to spatial interpolation, as spatio-temporal flow
variations are taken into account. The wind field reconstruction method introduced applies
to other scanning lidar systems with sufficiently high spatio-temporal resolution.
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OVERCOMING BLADE
INTERFERENCE: A GArPY-POD
DATA RECONSTRUCTION
METHOD FOR
NACELLE-MOUNTED LIDAR
MEASUREMENTS

Nacelle-mounted lidar systems suffer data loss due to unfavourable atmospheric conditions
such as rain or fog and most importantly the rotation of the blades that obstruct the laser beam
from measuring upstream of the turbine. In this paper, we apply Gappy Proper Orthogonal
Decomposition (Gappy-POD) to reconstruct incomplete flow fields from nacelle-mounted lidar
measurements. For this purpose, two scanning nacelle-based SpinnerLidar simulations are
performed inside a Large Eddy Simulation, one measuring the undisturbed wind inflow and
the other in the wake of a reference turbine. Data loss of up to 90 % is simulated by artificially
removing measurement points. The performance of Gappy-POD in reconstructing the wind
fields is evaluated by comparing metrics such as effective wind speeds, vertical shear, yaw
misalignment, wake deficit, wake meandering and the turbulent spectra in fixed and rotating
frames of reference. We see that Gappy-POD is capable of accurately reconstructing missing
data in comparison to normally used spatial interpolation techniques even in cases where 90 %
of the data was missing. As a result, the dynamics of the reconstructed wind fields can be
investigated based on highly accurate lidar-based wind field retrievals. The methodology can
be used as a tool to develop effective wind field reconstruction techniques from sparse data.

The contents presented in this chapter have been published as: 3 A. P. Kidambi Sekar, M. F. van Dooren, and
M. Kiihn. "Overcoming Blade Interference: A Gappy-POD Data Reconstruction Method for Nacelle-Mounted Lidar
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4.1 INTRODUCTION

Flow measurements around wind turbines with lidar systems have gained more prominence
in the last decade. Turbine-mounted lidar systems are capable of performing upstream
measurements of the wind approaching the turbine, allowing for optimisation of turbine
performance, i.e., reducing loads and extending the turbine lifetime [Simley et al. 2018]. Due
to the increasing turbine size, it is meaningful to measure the whole rotor area to capture
the spatio-temporal wind variations that drive the turbine response. For this purpose,
scanning lidar systems have proven to be a reliable alternative to simple fixed-beam lidars
due to their ability to steer and scan with the laser beam, providing a way to capture the
entire rotor area. However, the performance of lidar-assisted wind turbine applications
relies entirely on the measured data quality. The data quality from nacelle-mounted lidar
measurements is negatively affected by the rotation of the blades during turbine operation
which obstructs the laser beam from focusing on the pre-defined upstream measurement
locations. In addition, this data loss is amplified by environmental factors such as the
presence of rain or fog that reduce the quality of the backscattered signal. These effects
result in local blind spots in the lidar measured wind fields. If these gaps are filled by
ensemble averaging of scans, the fluctuations in the wind fields, which are highly relevant
for the turbine dynamics are partially lost. An alternate approach would be to use the
complete time series of lidar measured wind field snapshots obtained at high sampling rates
to reconstruct the spatio-temporal data gaps. Gappy-POD is an extension of POD [Sirovich
1987] which is capable of providing accurate approximations for incomplete datasets.
The objective of this paper is to introduce a data reconstruction method based on Gappy
Proper Orthogonal Decomposition (Gappy-POD) [Willcox 2006] to reconstruct the incom-
plete measurements of a nacelle-mounted lidar following our work in [Kidambi Sekar et al.
2022. In this contribution, the Gappy-POD is tested in reconstructing missing data points in
two inflow conditions (one in undisturbed inflow and the other in the wake) with a range
of data availabilities in a high-resolution wind field obtained from a Large Eddy Simulation
(LES) that is used as reference. To quantify the model performance, several metrics relevant
for the turbine in the time and frequency domains are defined and evaluated.

4.2 METHODOLOGY

In this section, the LES simulation environment is described along with the lidar simulator
used to simulate the lidar measurements. In addition, the POD and the Gappy-POD methods
are explained.

4.2.1 LARGE-EDDY SIMULATIONS AND SCANNING LIDAR SIMULATIONS
The atmospheric boundary layer (ABL) is simulated using the Large Eddy Simulation
model PArallelised Large eddy simulation Model (PALM) [Maronga et al. 2015]. A turbulent
unstable ABL is simulated inside which an NREL 5 MW turbine is simulated with the
actuator line coupled directly with the wind field [Kriiger et al. 2022]. The coupling creates
the turbine perturbation of the wind field, i.e., the induction zone and the wake. The

Measurements." Journal of Physics: Conference Series. Vol. 2265. No. 2. IOP Publishing, 2022. DOL: 10.1088/1742-
6596/2265/2/022078.
© 2022 by the authors. Reproduced in accordance with the Creative Commons Attribution 3.0 License.
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unsteady ABL is generated with a roughness length zy = 0.0175 m, friction velocity of 0.52
m/s with a mean longitudinal speed of 10.1 m/s at hub height and corresponding turbulence
intensity (TI) of 11.91% for a total duration of 3700 s which is sampled at 1 Hz. A more
comprehensive description of the set-up and the statistics of the LES wind field is available
in [Kidambi Sekar et al. 2020].
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Figure 4.1: (a) The mean longitudinal wind velocity component (u) at a horizontal plane at hub height. The
SpinnerLidar (red curve) is simulated at the hub height of the upstream turbine WT1 and the virtual downstream
turbine WT2. (b) Exemplary instantaneous snapshot of the simulated SpinnerLidar measurement from WT1.
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The SpinnerLidar, developed by DTU Wind Energy, is a scanning lidar capable of measuring
a 2D wind field with a very high spatial and temporal resolution with a maximum value of
up to 500 points distributed on a spherical measurement plane every second [Mikkelsen
et al. 2013]. The SpinnerLidar measurements are simulated using the lidar simulator LiXim
[Trabucchi 2020] which is capable of simulating the kinematic and optical properties of the
SpinnerLidar. The SpinnerLidar measurements are simulated at two locations inside the
LES wind field as visualised in Fig. 4.1. In the undisturbed inflow case, the SpinnerLidar
is mounted on the nacelle of the simulated turbine (WT1) and is focused at an upstream
distance of one turbine diameter 1 D corrosponding to 126 m. For the full wake scenario,
the SpinnerLidar is mounted on a virtual turbine WT2 placed 3.5 D behind the first turbine
and focused at an upstream distance of 1 D (and a corresponding 2.5 D downstream of
the first turbine). For both cases, LiXim simulates the SpinnerLidar measurements with
312 points distributed on a rosette scanning pattern every second for the total simulation
duration. The lidar simulator was programmed to perform snapshots of the wind field
every second.

4.2.2 SPINNERLIDAR VELOCITY SNAPSHOTS WITH GAPS

Consider a line-of-sight velocity matrix measured by the SpinnerLidar denoted as V(X t)
where X is a vector containing the x, y, z positions of the N measurement points at the time
instant . The snapshots are arranged in a matrix V(X, t) = [Vies(X, t1)Vios(X, t2) -+ Vies(X, )]
where each of the ng columns denotes a snapshot with N line-of-sight velocities per
snapshot. To simulate missing measurements, data was randomly removed from the
velocity matrix. The points to be removed were chosen based on defining a set of uniformly
distributed pseudo-random integers consistent with the total number of measurement
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points using the Mersenne-Twister algorithm [Matsumoto and Nishimura 1998]. The
percentage of missing data calculated over the number of snapshots can be expressed as:

n
1 & MosGappy,i

G=—
ns N

(4.1)
Here, G describes the gappiness in the wind field, njosGappy,i denotes the total number of
missing data points in snapshot t;. For the analysis, 10 % to 90 % of the data is removed
for each case resulting in average data availabilities of 90 % to 10 % for the whole datasets,
respectively. The gaps are added such that no measurement point is missing on all snapshots
and no single snapshot is missing all the measurement points as otherwise Gappy-POD
would fail.

4.2.3 PROPER ORTHOGONAL DECOMPOSITION

Proper Orthogonal Decomposition (POD) is a data-based methodology that can provide
lower order approximations of high-dimensional processes by exploiting the spatial corre-
lations in the data. A detailed explanation of the theoretical framework behind the method
can be found in [Berkooz et al. 1993; Holmes et al. 2012; Sirovich 1987] and in Chapter 3.2.1.
In brief, POD decomposes a velocity flow field into a linear combination of modes and their
temporal evolution which are calculated directly from the data in a certain least-squares
optimal sense. The most dominant modes of the POD decomposition can then be chosen
and used to build a reduced-order representation consisting of M modes V(X 1) of the
lidar measured line-of-sight velocity fields V(X, ), i.e.,

M
VX = VX 1) = Z(H)¢,(X), where M« N. (4.2)
j=1

Here, ¢,(X) and Z(t) are the spatial POD modes and their corresponding temporal evo-
lutions which are obtained by solving the eigenvalue problem of the covariance matrix
R=VX)TV(X1).

4.2.4 GAPPY PROPER ORTHOGONAL DEcomPoOsITION (GAPPY-POD)

Everson and Sirovich [Everson and Sirovich 1995] first proposed using POD modes to
reconstruct missing data. The Gappy-POD methodology provides high accuracy approxi-
mations of missing data points which starts from a certain initial guess and improves the
guess in an iterative process. The core of the method consists of a minimisation problem
of a function defined in the spatio-temporal domain where the velocity field is known.
Modifications have been proposed to the Everson-Sirovich method which have proven to
increase the accuracy of the guesses and reduce solution times [Gunes et al. 2006; Saini et al.
2016; Venturi and Karniadakis 2004]. Here, we follow the Gappy-POD algorithm proposed
by [Gunes et al. 2006 and applied for scanning lidars [Kidambi Sekar et al. 2022]. The
process begins with an initial simple guess of the missing points and a low number of POD
modes (usually 2) used to obtain an approximation of the missing data. This approximation
is passed on to the next iteration where the number of modes used for the reconstruction
is increased and this process is repeated until a pre-defined convergence criteria is satis-
fied. This procedure results in a nested-loop implementation where the convergence is
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evaluated for a given number of POD modes and the number of POD modes used for the
reconstruction. As it is typical to remove the mean, Gappy-POD would reconstruct the
velocity fluctuations at the locations of the missing points which is subsequently summed
up with the mean to obtain the reconstructed wind field.

1. The velocity field with gaps is first written in a matrix form and a mask matrix:
ViX,t) = [m(Xa h1)Vies(X, 1) m(X, tZ)Vlos(X, ta)- m(X, tns)Vlos(X’ Ing )] (4.3)

Here m(X, t;) is the mask applied to the i snapshot in the form of a diagonal matrix
that tracks the missing data and can be expressed as:

m Vios,1,t; M1 Vlos,1,t;
myp Vlos,2,t; M2 Vios,2,t;

m(X> ti)VIOS(Xa tl) = . . "= : ' (44)
MmN | [Vios,N,t; MNVios,N,t;

The diagonal element corresponding to each of the measurement points j€ 1,--,N
are:

{ 1, if measurement at spatial location j is available at the snapshot t;,
m; =
i

0, if measurement at spatial location j is unavailable at the snapshot t;.
(4.5)

2. The velocity field at any point on the Gappy-POD process is denoted as V,, s where V'
is the guess of the filled velocity field where n, s denote the main and sub iterations
respectively.

3. M is the the number of modes which will be used for the reconstruction. Following
Gunes et al. 2006 two modes (M = 2) are chosen for the first main iteration and is
increased by 1 for every subsequent main iteration.

4. Let V(X,t) be the filled-in wind field based on an guess at the locations of the
missing points alone. For the first main iteration (n = 0), the guess is usually the
temporal mean ( V(X)) of all the available values at that location. For subsequent
main iterations, the guess is the filled wind field from the previous main iteration.
The POD method is applied to V(X, t) resulting in a guess of the spatial modes #;(X)
and their associated temporal evolution Z;(t):

M
Vis(Xo 1) = ) Zi(1)h;(X). (4.6)
Jj=1

5. According to the Everson - Sirovich method, a new set of temporal coefficients is
calculated by minimising the error between the data at known locations and the POD
approximation [Everson and Sirovich 1995], the following function is minimised to
obtain an estimate of Zj/(t):

1’1’111’1 ” ZZ (t)¢ ) ns X t "Gappy (4~7)

ACN=
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Here, the "Gappy" norm indicates that the minimisation is performed only on the
spatio-temporal domain where V(X,t) is known. While solving this minimisation
problem would provide accurate estimates, it requires the inversion of large matrices
which increases the required computational time. To avoid solving this computation-
ally expensive minimisation problem (Eq. (4.7)), the approach described in [Gunes
et al. 2006] is applied where V,, (X, t) is used directly to estimate the missing data
point, i.e., Zj/(t) = Zj(t). Since no minimisation problem is necessary to obtain ZJ/ (1),
this method is computationally less expensive than the Everson-Sirovich method
but at the cost of slightly lower accuracy. In [Gunes et al. 2006], an average error of
0.2 % was reported for both the methods while reconstructing up to 50 % of missing
data while similar results were obtained in [Raben et al. 2012; Saini et al. 2016].

6. The gaps in the data are then replaced by the guess, i.e.,

Vn,s(xs 1), if m(X,t)=0,

Vasn (1) = {V(X, 1), ifm(Xt)=1. (“.8)

7. For M modes, steps (iv) to (vi) are iteratively performed and stopped based on conver-
gence. The iteration with M modes constitutes the sub-iterations (s) and is continued
until the obtained POD eigenspectrum does not change significantly anymore. The
convergence criterion for the sub-iterations is defined on the eigenvalue convergence
of the dominant modes between two sub-iterations:

|/1n,s,j - An,sfl,j |

< 0.05. (4.9)
An,s,j

Here, A,; is the eigenvalue associated with the j POD mode and n and s are
the main and sub-iteration numbers respectively. Now, the converged result of the
current sub-iteration is used as an initial guess for the next iteration where the
number of modes M used for reconstruction is increased by one and the next main
iteration is started. The main iterative process is stopped when the optimum number
of modes to accurately reconstruct the missing points is found.

4.3 RESULTS AND DISCUSSION

The performance of the Gappy-POD in reconstructing missing data for the two considered
cases is tested and the results are discussed.

4.3.1 CONVERGENCE OF GAPPY-POD

As the Gappy-POD is an iterative process, it is important to know how many main iterations
are necessary to obtain a high accuracy approximation of the missing data points. To quan-
tify the convergence, the RMSE is calculated between the reference and the reconstructed
wind fields at the locations of the missing points:

RMSE =

Nlos,
Osippy (vlos,Gappy,i - Ulos,reference,i)z (4 10)

i=1 Mos,Gappy
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Figure 4.2: (a) The main iteration convergence for the undisturbed inflow and the full wake inflow cases for
different gappiness percentages G. The solid and dotted lines denote the undisturbed inflow and the full wake
case respectively. (b) The RMS error calculated for the Gappy-POD with optimum number of main iterations and
the spatial interpolation estimation at the missing points for different gappiness percentages.

where njos Gappy denotes the total number of missing points over the entire time series. The
RMSE is normalised by the mean hub height wind speed at the location of the lidar scan
obtained from the LES for inter-comparison between the two cases.

Figure 4.2 (a) illustrates the error defined in Eq. (4.10) for the two inflow cases as a function
of the number of main iterations and the gappiness percentage. All the curves exhibit the
same trend: increasing the number of main iterations reduces the error. For the undisturbed
inflow case, the normalised RMSE drops from 0.069 after the first iteration to below 0.001
and reaches an optimum minimum after 50 to 100 iterations depending on the gappiness
percentages after which it slightly increases again. While it is expected that the error
should decrease while more modes are added to the reconstruction, the monotonic error
decrease is dependent on factors of the flow itself such as turbulence and noise. [Gunes
et al. 2006; Saini et al. 2016] also reported non-monotonic behaviour of the reconstruction
error where the error starts to diverge after a certain number of modes are used for the
reconstruction. The wake case shows similar behaviour, with the error reducing from 0.16
to below 0.001 and reaching a minimum after approximately 50 to 100 iterations. The
similar behaviour of the error curves for varying gappiness values is due to the identical
temporal mean values used to fill the gaps during the first iteration. Due to the volume
averaging property of the lidar whereby a few modes dominate the reconstruction and the
first guess itself being the mean of the whole dataset, a very good approximation of the
wind field is already obtained with the first sub-iteration itself.

It is remarkable that the Gappy-POD is capable of reconstructing even up to 90 % of missing
points with a very low reconstruction error. Even though datasets with 90 % unavailability
are quite extreme occurrences and were simulated solely to find the upper limit of the
method itself, the method still provides reasonable approximations to missing points. For
comparison, the RMSE is calculated for the Gappy-POD at its optimal minimum and shown
against the RMSE obtained by performing triangulation-based natural-neighbour spatial
interpolation to estimate the missing points in Fig. 4.2 (b). The Gappy-POD RMSE varies
from 0.0005 to 0.0015 and 0.0008 to 0.004 for the inflow and wake cases respectively with
increasing gappiness percentages. In contrast, the RMSE of the spatially interpolated wind
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field is much higher and ranges from 0.02 and 0.09. We note that the optimum number of
iterations that are required to obtain an accurate reconstruction would differ with different
turbine operational states. Therefore, the optimum number of iterations required for Gappy-
POD can be chosen based on the reconstruction accuracy required for a particular lidar
based application. Looking at Fig. 4.2 (b), the RMSE of the Gappy-POD reconstruction drops
below 0.02 and 0.08 for the undisturbed inflow and wake cases and already performs better
than spatial interpolation after 25 iterations. Hence, if outperforming spatial interpolation
is the goal, the Gappy-POD procedure can be stopped before reaching optimum minimum
thus saving computational time.

4.3.2 VELOCITY FIELD RECONSTRUCTION

To visualise the Gappy-POD performance in reconstructing missing data, we plot the
reconstructed line-of-sight velocity field in Fig. 4.3. A SpinnerLidar measurement at
t = 2266 s with a low snapshot data availability of 34 % makes it an ideal case to visually
quantify Gappy-POD reconstruction and to provide a comparison against the natural
interpolation method. The Gappy-POD reconstructed velocity field is shown after the
optimum number of iterations with the lowest RMSE based on the minimum error definition
in Fig. 4.2 (a).
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Figure 4.3: A snapshot of (a) the true reference wind field and (b) a gappy wind field with 66% gappiness at
an arbitrary time ¢ = 2266 s obtained from the undisturbed inflow case. The result of spatial interpolation of
the gappy field is seen in (c) while (d) illustrates the reconstructed wind field obtained from the Gappy-POD
algorithm after the optimum number of iterations.

A more accurate visual reconstruction of the missing data points is obtained from the
Gappy-POD reconstruction in comparison to the spatial interpolation method. The high
accuracy is achieved as spatio-temporal velocity variations are accounted for in the Gappy-
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POD through the POD modes while natural interpolation only uses the spatial velocity
information in the nearby points. Hence, the velocity magnitudes and the locations of
localised structures in the wind field are captured better by Gappy-POD as compared to
spatial interpolation. However, pure visualisation does not offer any insights into the wind
parameters that are relevant for turbine operation and hence we define quantitative metrics
to investigate the reconstruction performance.

4.3.3 RECONSTRUCTION OF WIND PARAMETERS FOR THE UNDISTURBED
INFLOW CASE
We extract parameters relevant for the undisturbed turbine inflow from the reconstructed
wind fields. For the sake of brevity, only the results of the two inflow cases with 30 %
gappiness are shown as this value is the typical unavailability value for nacelle-mounted
SpinnerLidar measurements based on experience from previous full-field experimental
campaigns. We estimate the effective wind speed uc¢s, horizontal misalignment &, and
the vertical shear s, from the reference SpinnerLidar measurements without any data
gaps and the interpolated and the Gappy-POD reconstructions of the missing data. This
parameterisation is performed based on the three-parameter model defined in Kapp. S 2017,
which characterises the mean behaviour of the wind inflow in the 2-D lidar measurement
plane based on the line-of-sight measurements. The effective wind speed is defined as the
rotor equivalent wind speed in the measurement plane while the vertical shear is defined as
the slope of the linearly increasing wind speed in the vertical direction. The horizontal mis-
alignment &, is an important parameter for determining the turbine’s yaw setting. For the
G =30 % case, a 200 s section of the 1 Hz time series of the three parameters is seen in Fig. 4.4.
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Figure 4.4: Time series of the three wind field parameters u.g, sy and &, at 1 Hz for a duration of 200 seconds.
The three parameters extracted from the Gappy-POD reconstructed wind fields show excel-

lent agreement with the reference with almost no deviation. The parameters extracted from
the interpolated wind field show a reasonable but not perfect agreement with the reference.
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Table 4.1, contains the RMS error of the reconstructed three wind parameters through
interpolation and Gappy-POD against the reference data. The Gappy-POD reconstruction
exhibits a significantly lower RMS compared to the interpolated results.

Table 4.1: Root Mean Square Error (RMSE) for the calculated three inflow and wake parameters parameters for
the Interpolated and gappy cases.

| RMSE | Inflow | Wake
Uegr (m/s) | sy (1/s) O () | Uetfwake (M/S) | ye (m) | 2z (m)
Interpolated | 0.093 8.5x10° | 6.16 | 0.1588 0.64 0.39
Gappy-POD | 3.9x 107 | 4.03x10°® | 0.97 | 6.05x107* 0.0042 | 0.2366

4.3.4 RECONSTRUCTION OF TURBULENT SPECTRA IN FIXED AND ROTAT-

ING REFERENCE FRAMES
We calculated the turbulent spectra of the reconstructed wind fields in the fixed and rotating
frames of reference (for the G = 30 % undisturbed inflow case). For the calculation of the
fixed spectrum, the measurement point with the lowest availability over the total time
series is chosen. The point is defined by the coordinates (-44.71 m, 38.18 m) situated in the
upper left corner of the scan trajectory and is marked in Fig. 4.1 (b) with a red asterisk. The
spectra is then calculated for the reference, interpolation and gappy schemes and visualised

in Fig. 4.5 (a).
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Figure 4.5: (a) Fixed point spectrum at the spatial point with lowest availability. Reference indicates the full
lidar data with the volume averaging effect and Perfect refers to ideal lidar measurements without the volume
averaging effect. Interpolated and Gappy refers to the spectra calculated from the missing point estimates through
the Gappy-POD and spatial interpolation methods and -5/3 Kolmogorov slope is also indicated. (b) The rotational
spectrum measured by following at point at 90% of the blade radius with a rotational speed of 0.19 Hz.

The spectra are calculated using the Welch’s modified periodogram method with a Hanning
window, 300 s segments and 50 % overlap between the segments. The spectra denoted
by perfect lidar indicates the measurements of an ideal perfect lidar exactly focused at
the measurement point. The black dotted line denotes the %5 Kolmogorov slope that
indicates the decay of turbulence in the inertial sub-range. As expected, the reference lidar
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measurement shows a drop-off from the perfect measurements around 0.03 Hz indicative of
the lidar low-pass filtering effect. The spectra estimated for the interpolated and the Gappy-
POD show a very good agreement with the reference except at very high frequencies.
Both the methods deviate from the reference and exhibit constant power spectral density
amplitudes at higher frequencies, resembling white noise. However, these deviations occur
at f > 0.3 Hz much higher than the drop-off frequency. As spatial interpolation only uses
wind information at the available spatial locations to guess the missing points, smaller
structures where no data points are available are not resolved.

The Gappy-POD is capable of accurately reconstructing the localised wind fluctuations
as the dynamics of the local wind variations are captured in the dominant POD modes
used for the reconstruction. For the calculation of the rotational vjos spectrum in Fig. 4.5
(b), a point is chosen and followed at 90 % of the radius of the blade rotating at a constant
rotational speed of 0.19 Hz. Due to the eddy slicing effect, turbulent energy is accumulated
at multiples of the rotor RPM. The 1P and 2P harmonic peaks are estimated very well for
both the interpolation and gappy methods. The SpinnerLidar can estimate the rotationally
sampled wind fields more accurately than the fixed spectra as the large spatial coverage
offered by the SpinnerLidar thereby capturing the wind shear and spatial wind variations
that contribute to the periodic loading on the blades as it cuts through the atmospheric
boundary layer [Kidambi Sekar et al. 2020].

4.3.5 RECONSTRUCTION OF WIND PARAMETERS FOR THE FULL WAKE

CASE
Following the spirit of subsection 4.3.3, we parameterise the fully waked inflow into
quantities relevant for the turbine. The first metric is defined as the effective wake velocity
Ueff wake that is defined as the average projected longitudinal velocity over the measurement
area. The projected longitudinal velocity at every measurement point is defined as:

leS

cos(y)cos(8) (*11)

Uprojected =
Here, y and § are the azimuth and elevation angles of the focussed laser beam at the
measurement point. To assess the dynamic behaviour of the wake and for wake tracking,
we choose the dynamic meandering of the velocity deficit defined as the centre of energy
of the deficit [Bastine et al. 2015], i.e.,

z.(1) fufmjected(y,z, tydydz (412)
Here y. and z. are denoting the lateral and vertical location of the wake centre are chosen
as the second and third metrics. The square of the projection of the line-of-sight velocity
in the longitudinal direction is integrated over the scanning plane of the lidar. The wake
deficit is an important parameter for determining the operating set point of the downstream
turbine while tracking the wake center is important for implementing wake steering control
algorithms. For the G = 30 % case, a short 200 s reconstructed time series of the three
metrics is shown in Fig. 4.6.
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Figure 4.6: Time series of the three wind field parameters ueff wake, Y and z. at 1 Hz for a duration of 200 seconds.

The time series of the reconstructed wake metrics exhibits similar behaviour as that of
the inflow case. The Gappy-POD reconstructed metrics show very good agreement with
the reference while the results from the interpolated scans exhibit deviations from the
reference. The deviations from the reference are further quantified based on the RMS error
(Tab. 4.1). Similar to the undisturbed inflow case, the Gappy-POD is capable of highly
accurate reconstructions of missing data points.

4.4 CONCLUSIONS

This paper evaluates the performance of the Gappy-POD methodology for filling in missing
measurement points lost due to blade interference and other factors that occur when using
nacelle-mounted inflow measuring lidar systems. The methodology was tested inside a
high resolution Large Eddy Simulation within which two SpinnerLidar measurements
are emulated using a lidar simulator. Artificial data gaps were imposed by removing
measurement points to consider data loss due to blade interference and other factors. The
results indicate that the Gappy-POD method is capable of more accurately filling in missing
points compared to triangulation-based natural-neighbour spatial interpolation methods.
The method shows very good performance for both the undistributed inflow case and
the full wake case even for extreme situations with 90 % missing data. The wind inflow
metrics estimated from the reconstructed wind fields show very good agreement with the
reference case even at a high SpinnerLidar sampling rate of 1 Hz. By reconstructing the
gaps in the velocity fields, the dynamics of the wind field and their interaction with the
turbine can be studied. This would not be possible to a similar extent while performing
ensemble averaging of the snapshots whereby the highly fluctuating wind field information
is averaged out. As the method requires the time series of the velocity measurements to
build the POD modes and iteratively reconstruct missing points, a real-time implementation
could be challenging. However, the iterative implementation could be skipped by directly
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using the optimal number of modes to reconstruct the missing data points. This could
significantly reduce solution times, provided that the optimal number of modes are known
in advance [Kidambi Sekar et al. 2022].

It should be noted that the method first assumes that an appropriate outlier detection scheme
is available which has accurately identified the erroneous data points. As the Gappy-POD
is a data-based method, any erroneous data points that were missed during filtering could
lead to larger estimation errors. Also, any uncertainties in the lidar measurements such as
the volume averaging effect and directional bias would be propagated to the reconstructed
wind fields. Future work includes extending the methodology to full-field measurements
from different lidar systems.
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SYNCHRONISED WINDSCANNER
FIELD MEASUREMENTS OF THE
INDUCTION ZONE BETWEEN Two
CLOSELY SPACED WIND
TURBINES

Field measurements of the flow interaction between the near-wake of an upstream wind turbine
and the induction zone of a downstream turbine are scarce. Measuring and characterising these
flow features in wind farms at various operational states can be used to evaluate numerical flow
models and design of control systems. In this paper, we present induction zone measurements
of a utility-scale 3.5 MW turbine with a rotor diameter of 126 m in a two-turbine wind
farm operating under waked and un-waked conditions. The measurements were acquired
by two synchronised continuous-wave WindScanner lidars that could resolve longitudinal
and lateral velocities by dual-Doppler reconstruction. An error analysis was performed to
quantify the uncertainty in measuring complex flow situations with two WindScanners.
This is done by performing a Large Eddy Simulation while using the same measurement
layout, modelling the WindScanners sensing characteristics, and simulating similar inflow
conditions observed in the field. The flow evolution in the induction zone of the downstream
turbine was characterised by performing horizontal planar dual-Doppler scans at hub height.
The measurements were conducted for undisturbed, fully waked and partially waked flows.
Evaluation of the engineering models of the undisturbed induction zone showed good agreement
along the rotor axis. In the full wake case, the measurements indicated a deceleration of the
upstream turbine wake due to the downstream turbine induction zone as a result of the very
short turbine spacing. During a wake steering experiment, the interaction between the laterally
deflected wake of the upstream turbine and the induction zone of the downstream turbine
could be measured for the first time in the field. Additionally, the analyses highlight the
affiliated challenges while conducting field measurements with synchronized lidars.




5 SYNCHRONISED WINDSCANNER FIELD MEASUREMENTS OF THE INDUCTION ZONE BETWEEN Two CLOSELY
94 SPACED WIND TURBINES

5.1 INTRODUCTION

During operation, wind turbines create a reduced velocity region upstream due to rotor
thrust, i.e. the induction zone. To account for the induction zone, the IEC 61400-12-1 [IEC
2022] standard recommends performing freestream velocity measurements more than 2 to
4 rotor diameters (D) upstream of the turbine. Wind turbines also create wakes, the main
driver of unfavourable aerodynamic interactions in a wind farm where the downstream
turbine extracts less power and is subject to higher structural loads due to reduced wind
speeds and high wake turbulence. The near wake of a turbine extends 2.0 D to 4.0 D down-
stream and is highly influenced by rotor aerodynamics [Go¢men et al. 2016]. Therefore,
for tightly packed wind farms, the induction zone of a downstream turbine can overlap
with the near wake of an upstream turbine.

The upstream induction zone of a wind turbine has consequences for many wind power
applications. The velocity deficit upstream of the turbine is responsible for the estimation
bias in power curve measurements for isolated turbines [Slinger et al. 2020] and global
blockage at the wind farm level [Schneemann et al. 2021]. Moreover, the flow slowdown
and expansion around the turbine also affect lidar-based feedforward controllers, which
require precise information on the velocity magnitudes and arrival times at the rotor
[Dunne et al. 2014]. Several approaches have been previously followed to numerically
[Branlard and Gaunaa 2015; Medici et al. 2011; Troldborg and Meyer Forsting 2017] and
experimentally [Asimakopoulos et al. 2014; Mikkelsen et al. 2020; Simley et al. 2016] inves-
tigate the induction zone in free inflow conditions. The most detailed three-dimensional
triple-synchronised lidar characterisation of the induction zone by [Simley et al. 2016] was
performed around a Vestas V27 turbine with a diameter of 27 m, which is not representative
of modern utility-scale multi-MW turbines.

Wind turbines operating in the downstream rows of wind farms are not always exposed to
undisturbed inflow. Depending on the farm layout, wind direction, and wake effects such
as meandering [Trujillo et al. 2011] and wake deflection strategies [Jiménez et al. 2009],
the downstream turbines operate under partial or fully waked inflow. High-resolution
measurements of the induction zone in partial and fully waked inflows are still limited.
Engineering models of the induction zone have been developed to accurately estimate the
annual energy yield and implement flow control strategies. Medici et al. 2011 presented a
1-D model for the induction zone using a vortex sheet method. [Branlard and Gaunaa 2015]
developed a 2-D induction zone model based on a vortex cylinder implementation. Trold-
borg and Meyer Forsting 2017 presented a self-similar analytical 2-D induction zone model.
Branlard and Meyer Forsting 2020 coupled these models with the wind farm simulation
tool FLOw Redirection and Induction in Steady State (FLORIS) [NREL 2023] to provide flow
estimations for wind farm control purposes. Although the coupling was evaluated against
actuator disk simulations, a comparison with full-field data has not yet been performed
because of the lack of high-quality field measurements.

Lidars are capable of measuring the velocity through the Doppler shift remotely and pro-
vide a way to measure the flow around wind turbines in the field [Werner and Streicher

The contents presented in this chapter have been published as: B A. P. Kidambi Sekar, P. Hulsman, M. F. van
Dooren, and M. Kiihn. Synchronised WindScanner Field Measurements of the Induction Zone Between Two Closely
Spaced Wind Turbines. Wind Energy Science, 2024, DOI: 10.5194/WES-9-1483-2024.
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2005]. Field measurement campaigns using scanning lidars provide valuable data which
can be used to characterise the induction zone behaviour for highly dynamic inflow con-
ditions, atmospheric stabilities, and turbine interactions. However, conducting full-field
measurements is challenging because of the complicated installation, highly dynamic inflow
conditions, finite number of measurement sensors, and their associated limitations and
uncertainties, which add complexity during post-processing. Multi-lidar systems such as
WindScanners [Simley et al. 2016] can perform user-defined trajectories, whereby the laser
beams are synchronised in space and time, enabling the resolution of two or three wind
velocity components depending on the number of devices used. These devices have been
used previously to map the induction zone [Simley et al. 2016], measure the flow around
trees [Angelou et al. 2021], helicopter downwash [Sj6holm et al. 2014] and in the wind
tunnel [Hulsman et al. 2022b; van Dooren et al. 2017; van Dooren et al. 2022]. Depending
on the orientation and scan pattern, detailed two- or three-dimensional flow retrievals
are possible. However, a thorough error and uncertainty assessment is required before
interpreting the measurements, owing to the lidar measurement principle and scanning
limitations, such as the volume averaging effect, assumptions on the vertical velocity for
dual-Doppler reconstruction, scanning speeds, beam pointing, and intersection accuracies.
Several studies have been conducted to estimate the measurement accuracy of scanning
lidar retrievals. [van Dooren et al. 2017; van Dooren et al. 2022] presented an uncer-
tainty analysis considering the lidar measurement uncertainty and the artificially added
uncertainty of the dual-Doppler reconstruction for a two-lidar configuration. Giyanani
et al. 2022 presented an uncertainty model to reconstruct a 3D wind vector considering
the probe volume and the pointing accuracy for a three-lidar configuration. Emulating
lidar measurement properties in high-fidelity CFD simulations provides a high-quality
reference for error assessment and uncertainty quantification. Such approaches have been
extensively utilised to understand long-range, pulsed scanning lidar measurements and
their limitations [Bromm et al. 2018; Lundquist et al. 2015; Rahlves et al. 2022b; Robey and
Lundquist 2022]. For continuous-wave systems, [Debnath et al. 2019; Kelley et al. 2018]
used virtual-lidar in Large-Eddy Simulations (LES) approach to evaluate the accuracy of
retrieving horizontal wind speeds for turbine-mounted wake scanning lidars considering
effects such as probe volume averaging, assumption of zero vertical velocity and atmo-
spheric effects such as stability. Meyer Forsting et al. 2017 utilised a virtual lidar technique
to understand the influence of measurement averaging on wake measurements. They
reported that the differences between lidar and point measurements are greatest at wake
edges where the probe volume extends from the wake into the freestream reaching up to
30 % at 1 D downstream up to 60 % at 3 D downstream.

In this study, two synchronised ground-based continuous-wave WindScanner lidars were
used to characterise the flow region between two 3.5 MW turbines, which were spaced
2.7 D apart. The very short spacing creates an interaction between the near wake of the
upstream turbine and the induction zone of the downstream turbine. During the mea-
surement campaign, we implemented an active wake steering control on the upstream
turbine. The near wake-induction zone interaction is of interest for wake steering control.
Therefore, cases such as partial and full wake impingement with the induction zone are
examined.

Considering the measurement campaign, the main objectives of the paper include:
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» Demonstration of two-dimensional scanning of wind fields around utility-scale
turbines with two synchronised WindScanner lidars.

« Identification and investigation of errors associated with performing ground-based
synchronised scanning lidar measurements with two WindScanner in a controlled
simulation environment.

« Characterisation of the two-dimensional induction zone behaviour and interaction
between two closely spaced turbines for unwaked, waked and partial wake scenarios
and evaluation of induction zone models.

The remainder of this paper is organised as follows. Section 5.2 describes the measurement
and LES simulation setup. The results from the LES simulations and the full field measure-
ments in Section 5.3. A discussion of the results and conclusions are presented in Section
5.4 and 5.5 respectively.

5.2 METHODS

A description of the wind farm layout and the measurement setup is provided in Subsection
5.2.1. Subsection 5.2.2 contains information on the WindScanners, the programmed scan
trajectories, and the data processing methods. The collected datasets are presented in
Subsection 5.2.4. The setup of the Large-Eddy Simulation including the lidar simulator is
explained in Subsection 5.2.5.

5.2.1 TEST SITE DESCRIPTION AND INFLOW CHARACTERISATION

The measurement campaign was conducted from November 2020 to June 2021 at a wind
farm close to Kirch Mulsow in Northern Germany. The site has two eno126 turbines from
eno energy systems GmbH with a rated wind speed of 11.4 m/s and power of 3.5 MW with
a diameter D = 126 m. The upstream and downstream turbines are abbreviated as WT1
and WT?2 respectively.
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Figure 5.1: The wind park and measurement layout at Kirch Mulsow overlayed with elevation contours. A
zoomed-out image of the site is shown in the top right corner illustrating the hills present upstream of the wind
park. MM and VAD refer to the met mast and the inflow lidar while WS1 and WS2 refer to the two WindScanners.
© Microsoft.

The layout of the site is illustrated in Fig. 5.1. The hub height of the downstream turbine
at 137 m is 20 m higher than that of the upstream turbine at 117 m. The site itself is
characterised as farmland with moderately rolling hills. The elevation data presented in
Fig. 5.1 was obtained with a resolution of 200 m maintained by the German Ministry of
Cartography and Geodesy. While the elevations at the turbine locations are approximately
52 m, abrupt changes in elevation are seen upstream notably the presence of a small hill
with an elevation of 105 m, 22 D upstream of WT1 along the predominant wind direction
of 228°. This creates a slope of 1.09° towards the two turbines. The village Garvensdorf
was approximately 1200 m (9.5 D) upstream of WT1 along Oqi; = 228°. Furthermore, a
treeline exists between WT1 and WT2 extending towards the met mast with a height of
approximately 15 m to 20 m that can act as a windbreak and can cause perturbation to the
wind flow [Counihan et al. 1974]. Other tree lines and clumps of forested areas are present
at various upstream positions along Oyqir = 228°. During the measurement campaign, wake
steering tests were performed on WT1 leading to partial wake scenarios at WT2. Additional
information on the wake steering campaign is available in Hulsman et al. 2022a.

Inflow conditions were measured by a met mast placed 2.6 D north of WT1, equipped with
two anemometers, Thies First Class Wind Transmitter anemometer of type 4.3352.00.400
at the lower tip of 54 m and close to the WT1 hub height of 116 m. A wind vane of
type Thies First Class Wind Direction Transmitter of type 4.3151.00.212 is also installed
at 112 m. All the instruments stored the data at a sampling rate of 50 Hz. To measure
the atmospheric stability, an integrated CO,/H;O open-path gas analyser and 3D sonic
anemometer (Irgason, Campbell Scientific) were also installed on the mast at a height of 6m
on a boom oriented towards 136°. More details on the derivation of the Obhukhov length




5 SYNCHRONISED WINDSCANNER FIELD MEASUREMENTS OF THE INDUCTION ZONE BETWEEN Two CLOSELY
98 SpACED WIND TURBINES

from the Irgason are detailed in Bromm et al. 2018. The inflow measurements were further
supported by a WindCube 200S lidar placed 1.9 D upstream of the WT1. The ground-based
lidar was performing VAD scans with an elevation angle of 75° and with range gates set
from 50 m to 840 m with a spacing of 5 m and a pulse length of 25 m. The accumulation
times and angular speeds were 0.5 s and 30° s}, respectively. The data from the VAD
scans were binned into 10-minute averages from which the wind shear and veer profiles
were estimated. The turbine heading of WT1 and WT2 during operation was precisely
measured using a differential GPS System of the type 3 Trimble Zephyr™ model. All the
measurement devices were synchronised to the UTC time.

5.2.2 WINDSCANNERS

The WindScanners are continuous-wave (cw) scanning lidars with a steerable scanner head
that users can program to perform any user-defined scan trajectory [Mikkelsen et al. 2017].
The steerable scanner head consists of two prisms connected to individual drives, which
can be rotated independently, while a third motor is used to control the focal distance
of the lidar. Each of the two prisms deflects the focused laser beam by +30° to achieve a
maximum measurement cone angle of 120°. In the present setup, the lidar can continuously
sample line-of-sight speeds at a maximum sampling rate of 451.7 Hz. Two WindScanners
were installed in the field in the region between the two turbines inside offshore containers
for weather protection (Fig. 5.2 (a)).

Figure 5.2: (a) View of WS2 installed in a weatherproof container with WT1 in the background. The WindScanners
were lifted through a hatch on the roof during operation using a hydraulic table. (b) The two laser beams from
WS1 and WS2 simultaneously focused over a distance of approximately 200 m at WT2 onto a 5.3 cm by 8.6 cm
laser beam detector card (white dots) after performing a steering calibration.

Both WindScanners synchronously provide a Doppler velocity spectrum for every mea-
surement sample calculated from a discrete Fourier transform of the backscattered light



5.2 METHODS 99

sampled at 120 MHz. The individual Doppler spectra are averaged to reduce noise, and
the shot-noise-based mean background spectrum is removed to obtain the peak of the
Doppler spectra. The line-of-sight velocity is estimated by determining the spectral peak
through the median peak-finding method for continuous-wave lidars, as it is less sensitive
to spurious noise than the centroid and maximum methods [Angelou et al. 2012].

A single lidar can only estimate the line-of-sight (v}os) speed along the laser beam direction
that contains contributions from all three velocity components:

Vlos = c0s(y) cos(d)u + sin(y) cos(5)v + sin(5) w, (5.1)

where u,v and w are the longitudinal, lateral, and vertical wind velocity components,
respectively, and y and § are the azimuth and elevation of the laser beam, respectively. By
synchronising the two WindScanners in time and space, the WindScanners can estimate in
the intersection point, the two dimensional wind speed component projected on the plane
defined by the beams.

Uos,1| _ [cos(y1)cos(dy) sin(y;)cos(éy) sin(dy) Z 652
Uosz2|  |cos(xz)cos(S2) sin(yz)cos(Sz) sin(8z) " .

The u, v velocity components can be resolved by an additional assumption of the vertical
flow component and combining the two v},s measurements by dual-Doppler wind field
reconstruction by solving Eq. (5.2). Equation 5.2 can now be rewritten as:

. sin(yz) cos(82)(Vos.1 — sin(d;)w) — sin(y1) cos(d; )(Vies 2 — sin( ) w)
- cos(dy) cos(8,) sin(yz - x1)

- cos(y1) cos(81)(Vios,2 — sin(z)w) — cos(yz) cos(d2)(vies 1 — sin(dy)w)
- cos(8y) cos(8,) sin(yz — x1)

(5.3)

(5.4)

In our measurements, the actual local value of the w component is unknown. Without
generalisation, we assume that the vertical flow component to vanish in our case. The un-
certainty associated with measuring three-dimensional flow events with two synchronous
lidars is discussed in Section 5.2.3. Another important lidar measurement property is
volume averaging, that is, the v, measurements contain weighted contributions along
a volume extending on either side of the focus point along the laser beam direction. The
measured line-of-sight velocities of a cw lidar at the position x = (x,y, z), vjps(x) can be
mathematically expressed as the convolution of the wind vector u(x) projected along the
laser beam direction and the volume averaging function:

Upos (%) = [m ¢(s)n-u(sn+x)ds. (5.5)

Here, n is the unit vector along the line-of-sight direction and ¢(s) is the spatial volume
averaging function following Sonnenschein and Horrigan 1971 for cw lidars approximated
as a Lorentzian function where s is the distance from the focal point along the laser beam.
For cw lidars, the range weighting of line-of-sight speeds that occur along the laser beam
direction at a point located at a distance f away from the lidar can be expressed as the Full
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Width at Half Maximum (FWHM) of the focused laser beam I = 2%. Here, A = 1.56 pym and
a =56 mm are the laser wavelength and effective radius of the lidar’s 6" aperture telescope,
respectively. As the length of the measurement volume is related to f2, the measurement
volume is quite large at large distances, and hence turbulent structures smaller than the
measurement volume will be low-pass filtered by the lidar.

SCANNING PATTERNS

The region of interest within this work is the inflow of WT2. The WindScanners are
programmed to perform spatially and temporally synchronised horizontal plane scans
upstream of WT2. The measurement plane is at hub height and centred around the align-
ment of WT1 and WT2 at 228°. The WindScanners were not perfectly symmetrical to WT2
because of a tree line which prohibited symmetrical placement of WS1 with WS2 and WT?2.

x/D (-)

Figure 5.3: lllustration of the horizontal scanning pattern performed by the WindScanners, indicating the relative
position of the two turbines and the two WindScanner with and without an intentional misalignment. The
coordinate system is centred at the bottom of WT2.

The measurements are visualised in a global fixed reference frame centred at the bottom of
WT2, where the x-axis is the connecting line between the two turbines, and the y- and z-
axes are positive to the right looking towards WT2 and in an upward direction. The scan
pattern was composed of a sinusoidal variation of the x—, y— coordinates of the focal point:

2t 20-2mt
x(t) = Ay sin (%) + Xo ¥(t) = Aysin <Tﬂ> + Yo z(t) = zp. (5.6)

Here Ay = 0.60 D, Ay = 0.59 D are the amplitudes while xy = -0.20 D, yy =0 D, zy =137.0 m
are the offsets and T is the time period to complete each trajectory with each scan taking
29.6 s to complete. The horizontal scan plane at the hub height of WT2 extends from 0.8 D

upstream of the turbine to 0.4 D downstream, with a width of 1.18 D as shown in Fig.
5.3. The offsets due to the terrain-induced height differences and the vertical offset of the
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WindScanners inside the container mounting are included in Eq. (5.6), and are tabulated in
Table 5.1.

Table 5.1: Relative and normalised distances from the bottom of WT2 and WS1, WS2 and WT1. The height offsets
for WS1 and WS2 are calculated from the middle of the outer prism at the highest jacked-up position of the
hydraulic table (Fig. 5.2 (a)).

X (m) y (m) z (m)
WS1 | -157.82 (1.25 D) | -112.37 (0.89 D) | -1.25
WS2 | -54.04 (0.43 D) | -199.76 (1.59 D) | -0.60
WT1 | -240.98 (1.91 D) | -234.04 (1.86 D) | -2.06
WT2 | 0 0 0

With a temporal sampling rate set at 451.7 Hz, each complete scan had approximately
13079 measurement points. In this sector, active wake steering was performed by tog-
gling between two unique wake steering controllers and one greedy controller where no
wake steering is performed, each operational for 35 minutes. The measurement campaign
regarding the active wake steering is described in detail in Hulsman et al. 2022a. The
WindScanner measurements are then subdivided into 35 min blocks, each representing a
different operating state of the upstream turbine. All horizontal plane scans are grouped
and averaged to obtain averaged profiles of the measured longitudinal and lateral velocities.
For visualisation, the longitudinal and lateral velocities are interpolated using a cubic inter-
polation scheme onto a uniform grid with a spacing of 10 m. We rotated all measurements
in the global reference frame into the main wind direction measured at the met mast at
1 m below WT1 hub height.

5.2.3 WINDSCANNER MEASUREMENT ERRORS AND UNCERTAINTIES
While performing synchronised WindScanner measurements, several errors affecting the
measurement accuracy can be broadly divided into single- and dual-lidar errors. For this
particular site and measurement setup, the various lidar errors, their impact and their
analysis methodology are tabulated in Table 5.2.

Table 5.2: Summary of Dual-Doppler lidar measurement errors. Here, LES and SUP refers to Large Eddy Simulations
and Standard Uncertainty Propagation methods that are described in the following sections.

Error Source Impact LES | SUP
Single-Lidar

Vjps ACCUracy Inaccuracy in estimation of radial wind speeds Low v
Probe volume averaging Measurement volume variation during scanning Medium | v
Dual-Lidar

Pointing accuracy Imprecise pointing angles inherent to the lidar systems Low v
Dual-Doppler reconstruction error | Amplification of single-Doppler uncertainty due to dual-Doppler reconstruction | High v v
Statistical uncertainty Flow turbulence combined with slow scanning times requires multiple scans Medium | v
Assumption of w =0 m/s Assumption for a dual-lidar setup High v v

SINGLE-LIDAR ERRORS AND UNCERTAINTIES
First, we discuss the sources of the errors associated with single-lidar systems. For Wind-
Scanners, the absolute measurement uncertainty of the lidar radial velocity estimation
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was experimentally determined by Pedersen and Courtney 2021 to be less than 0.1% under
nearly ideal conditions.
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Figure 5.4: (a) The variation of the lidar measurement volume with focus distance. The dashed lines indicate the
minimum and maximum measurement ranges, and (b) the variation in the effective lidar measurement volume
within the scanning area.

While performing scanning cw lidar measurements, a variable measurement volume exists
throughout the scan area. For the horizontal scans, the WindScanners measured at distances
from 145 m to 296 m, corresponding to a probe volume ranging from 6.65 m (0.05 D) to
27.75 m (0.21 D), as shown in Fig. 5.4 (a, b). The WindScanners with their larger 6" aperture
and shorter focus rods enabled the probe volume to remain below 30 m (0.24D) even at the
maximum 300 m range in comparison to the previously used 3" WindScanners with smaller
aperture [van Dooren et al. 2017]. The probe volume averaging effect is a significant source
of uncertainty, especially at considerable focus distances, as it can lead to a measured
wind speed bias in a sheared flow. This effect concerns our study as it is most severe
for measurements at the wake edges, as the measurement volume extends from inside
the wake to the freestream, and for measurements very close to the downstream turbine
WT2, as the measurement volume would extend partially into the turbine wake. Due to
range weighting, velocity measurements are subject to spatial filtering that attenuates
the high-frequency wind information, which makes estimates of small-scale turbulence
challenging at large focal distances.

DUAL-LIDAR ERRORS AND UNCERTAINTIES

Next, we discuss dual-Doppler pointing accuracy, which concerns the ability to steer the
focused laser beam to a predefined point in space. To enable dual-Doppler wind field
reconstruction, the laser beams from the two WindScanners must focus and be spatially
and temporally synchronised with each other. The scanner orientation and levelling were
thoroughly checked in a controlled laboratory. The final calibration of the steering motors
was performed using the turbine tower and a rotating setup as hard targets, and by locating
the laser beams using an infrared sensor card (Fig. 5.2 (b)). A pointing accuracy of 0.1° was
determined in the field from the commanded and actual positions of the motors steering
the prism. The temporal synchronisation of WindScanners was validated in a previous
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wind tunnel campaign by van Dooren et al. 2022 and in the field by Giyanani et al. 2022.
Giyanani et al. 2022 also estimated similar ranges for the pointing accuracy and calculated
the effective intersection diameter at the intersection volume of laser beams to be in the
order of 2 m to 5 m.

Due to the spatial and temporal variation in turbulence and the scanning strategy that
requires a finite amount of time to complete each scan, the dominant flow features in
the induction zone would not be revealed until multiple scans are collected and averaged.
The chosen averaging period must allow the mean velocity measurements to converge
while maintaining similar flow conditions throughout the scan duration. Simley et al. 2016
showed that for their measurements where each longitudinal scan took 10 seconds to
complete, the dominant flow features were revealed after averaging for at least 3 minutes
(18 scans) while the results were presented as 10-minute (60 scans) averages. In our setup,
owing to the active toggling of the yaw controller on WT1, the inflow into WT2 changed
every 35 minutes; hence, a maximum of only 71 complete scans were available for ensemble
averaging over 35 minutes. The ability of WindScanners to capture salient flow features in
the induction zone is further investigated in Section 5.3.1 through statistical uncertainty

analysis.
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Figure 5.5: The variation of the beam intersection angle Riy: (a) and the elevation angles, dws; (b), dws; (c) in the
scanning area. WT2 is represented by a black vertical line at x/D = 0.

The error in the dual-Doppler reconstruction is dependent on the relative alignment R,
of the laser beams to each other, which depends on the lidar position and measurement
trajectory [Pefia and Mann 2019; Stawiarski et al. 2013]. If the two laser beams are aligned
with each other and with the main wind direction, the longitudinal wind component can be
estimated accurately, whereas the orthogonal wind speed component cannot be accurately
reconstructed. In other words, when the intersection angle tends towards 0° or 180°, the
lateral component cannot be resolved. Figure 5.5 (a) illustrates the variation of Rjy; in the
scan plane which decreases from 68° at x/D = -0.8 to 34° at x/D = 0.2.

The rotation in the wake of the upstream turbine induces a non-negligible vertical compo-
nent in the flow. Therefore, the w = 0 m/s assumption to obtain Eq. (5.2) contributes to an
error in dual-Doppler reconstruction. As the WindScanners are programmed to scan at
the WT2 hub height (137 m), the corresponding elevation angles for WS1 (28° to 55°) and
WS2 (25° to 56°) introduce a directional bias (Fig. 5.5 b, ¢). Hence in Eq. (5.1), the spatial
variation of the non-zero vertical component and the corresponding sin(d) terms are a
major error source, especially at measurement points with large elevation angles. While
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installing the lidars closer to WT1 would reduce the required elevation angles, the lidar
position was dictated and limited by the maximum achievable 300 m of range and available
installation area.

Furthermore, we calculate the total uncertainty in the estimation of the longitudinal (e,)
and lateral (e,) wind components by applying the Standard Uncertainty Propagation (SUP)
method [Stawiarski et al. 2013; van Dooren et al. 2017] on Eqns. 5.3 and 5.4. Assuming
small errors and zero correlation between them, the method considers the total propagated
uncertainty in the dual-Doppler reconstruction due to beam intersection angles, pointing
errors, and line-of-sight estimation errors due to neglecting the vertical flow component,
and is described by the following equations:

2 2 2 2 Z Z Z 2
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ey = \/( Tooe: eVlos,l) + (avm1 51n(51)ew) + (3%5‘2 "’wos,z) + (a%syz sm(éz)ew) + (6)(1 e)a) + (d)(2 eXz) + ((951 ‘351) + (352 952)

(5.7)
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(5.8)
where V10515 EVios 2 ATE line-of-sight errors, ey, is the error due to assumption of zero vertical
velocity, i.e., the true value of w and €y, €y, €5, and es, are lidar pointing errors. All the
uncertainty terms in the paper are the 1.96 o values of the corresponding error distributions;
i.e. they are expected to include 95 % of all values. While SUP can be used to understand
the influence of different aspects concerning measurement accuracy, not all errors can
be studied in detail due to lack of references. Therefore, we also used additional lidar
simulations to understand and quantify the different errors affecting the dual-Doppler
reconstruction. The impact of the measurement volume, averaging times, lidar placement,
and trajectory on the measurements is qualitatively investigated in Section 5.3.1 using a
virtual lidar within LES.

5.2.4 MEASUREMENTS

As the region of interest was the zone between the two turbines, measurements were only
performed when the turbines were aligned, i.e. when the wind direction was approximately
228°. We noticed that many measurements were also affected by unfavourable conditions
such as rainfall and lower availability of aerosols to backscatter the laser beam. For
operational safety reasons, the WindScanners were operated only with on-site personnel
supervision. The measurements were further influenced due to the presence of the wind
turbine nacelle and the rotating blades that would systematically reduce data availabilites in
the scan region. We present exemplary measurements of four cases made during February
2021, which are summarised and tabulated in Table 5.3.

In Case 1, WT1 was switched off while WT2 was operational; hence, an undisturbed
induction zone upstream of the turbine WT2 was expected. In Case 2, the two turbines
were active and aligned, creating a full-wake inflow scenario for WT2. Cases 3 and 4 are
measurements conducted while the wake steering control was active on the upstream
turbine with averaged measured yaw offsets of 12.8° and -8.9°, respectively, creating a
partial wake scenario at WT2.
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Table 5.3: Overview of the measurement cases acquired in the field. Each case is characterised by its freestream
wind speed uc, turbulence intensity (TI), integral length scale (T;), mean 6yq;; and its standard deviation within
the measurement period, stability parameter (z/L), stability, wind veer (y), dshear and the yaw offset of the turbines
(ywr)- Here the following abbreviations are used: Strong Stable (SS), Weakly Stable (WS) and Near Neutral (NN)

Case | Duration | U TI T; Owdir * Owdir | Z/L | 4 | Oshear | Status | ywti | Ywt2
(min) (m/s) | (%) | (s ©) ©) 0 10O WT1/WT2 | () ©)

1 53 8.51 9.30 | 9.4 2253 +9.1 0.040 (WS) 2.1 0.21 Off /On 3.7 0.9

2 35 9.60 7.68 | 10.5 | 2253+ 7.1 0.003 (NN) 19.8 | 0.38 On /On -1.3 0.6

3 32 8.11 7.80 | 11.1 | 217.1 £ 9.8 -0.034 (NN) | 13.3 | 0.23 On /On 12.8 2.2

4 26 8.68 5.39 | 9.1 2272 +44 1.307 (SS) 19.4 | 0.49 On /On -8.9 -1.1

LES 35 mins 7.77 6.7 4.5 228 + 4.4 - (SS) 20.7 | 0.44 On /On 0 0

The freestream wind speed u, turbulence intensity TI, wind direction 6,,4;; and its standard
deviation were calculated using the anemometer and wind vane at the hub height of WT1
placed on the met mast. The integral time scales T; are calculated following Cheynet et al.
2016 by integrating the auto-correlation function till the first zero crossing. The atmospheric
stability of the boundary layer can be characterised well by the Monin-Obhukov similarity
theory [Barthelmie 1999; Monin and Obukhov 1954]. The Obhukov parameter (z/L) was
measured by the eddy covariance station at a height of 6 m above the ground. The Monin-
Obhukov length was calculated as:

_u? 0s

L
kg(w' 6;)

(5.9)

where u. denotes the friction velocity, k = 0.4 denotes the von Karman constant, g denotes
the acceleration due to gravity, 6; denotes the sonic temperature, and w’ 6, denotes the

buoyancy flux. The friction velocity is estimated as w. = (¢’ w’2 +u v’z)%. The stability
classification of the Obhukov parameter z/L is performed for 30-minute averages based
on Wyngaard 2010, January and further used in [Simley et al. 2016], where negative val-
ues indicate the presence of unstable conditions (z/L < —0.04), positive values (z/L = 0.4)
correspond to stable conditions, and values close to zero (-0.04 < z/L < 0.04) are related to
neutral conditions.

The wind shear profile was also estimated from the VAD lidar by fitting a shear exponent
Qshear Dased on the power law between the top and bottom blade tips. The test site experi-
enced larger than expected values of wind shear with an average value of 0.3 throughout
the measurement campaign [Sengers et al. 2023]. The wind veer y was calculated from the
VAD lidar as the difference in wind direction between the top and bottom blade tips, and
was clockwise positive. The actual yaw offset ywr was calculated by subtracting the GPS
measured WT1 heading from the wind direction at the hub height measured from the met
mast as follows:

ywTt1 = Ocps,1 — Owdir and ywt2 = ops 2 — Owdir- (5.10)

A positive yaw misalignment was identified when the turbine was rotated clockwise looking
from the top (Fig. 5.3). Data filtering for the field measurements was performed using a
kernel density-based filter based on Beck and Kithn 2017 to identify and remove low-quality
measurements. The method filters for the line-of-sight velocity and the Signal-Noise-Ratio
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(SNR) in a bi-variate manner based upon the assumption of self-similarity of valid data. The
method is applied on all the collected vy1os measurements on the measurement plane and
is capable of identifying hard targets such as the nacelle and blades through the clusters in
the vyos- SNR space. The measurements are discretized and grouped into bins based on
their vy1os- SNR values. The frequency distribution of data points within each bin was then
determined. Bins with frequencies exceeding 20 % of the most populated bin were retained
for further analysis.

5.2.5 NUMERICAL SIMULATIONS OF THE EXPERIMENTAL SITE

Before interpreting results, it is necessary to quantify the effect of lidar measurement
error and uncertainties discussed in Section 5.2.3. To this end, we modelled the wind farm
and inflow conditions in a simulation environment. The wind data are obtained from
high-fidelity LES runs where the performance of two virtual WindScanners was assessed.
The wind field was created using high-resolution LES performed with the Parallelised
Large-Eddy Simulation Model (PALM). The PALM code is widely used for atmospheric
boundary layer studies and works by solving the filtered, incompressible, non-hydrostatic
Navier-Stokes equations. Further details of the model are available in Maronga et al.
2015. A single stably stratified LES run was performed and the two eno126 turbines are
simulated with the actuator sector method using the Fatigue, Aerodynamics, Structures
and Turbulence code (FAST) v8 [Jonkman et al. 2005], by the National Renewable Energy
Laboratory (NREL) that is directly coupled with the LES [Kriiger et al. 2022] allowing
for the transfer of forces and velocities between the two simulations. The turbine FAST
model was built using the aerodynamic properties, tower properties, and turbine controller
provided by the farm operator. The eigenfrequencies of the FAST model of the two turbines
are further tuned based on load data measured during the experiments. The WindScanners
were simulated using the integrated lidar simulator (LiXim) developed by Trabucchi 2020
which can simulate lidar kinematic and optical properties. LiXim simulates the volume
averaging property by discretising Eq. (5.5) in the LES while the uncertainty in beam
pointing and environmental factors are not modelled.

An atmospheric boundary layer of stable stratification was simulated in a domain of
dimensions 81 D x 20 D x 3.8 D with a uniform grid spacing of 5 m. Turbulence recycling
[Lund et al. 1998] was applied at a distance of 15 D from the inlet, where the instantaneous
wind fields of the precursor simulation are introduced into the main simulation. The
potential temperature at the ground was set to 280 K. A potential temperature gradient of
1 K/100 m was prescribed from 100 m above the ground while the simulation was performed
for 4800 s sampled at 5 Hz. For the analysis, the first 600 s of the simulation were removed to
avoid transient effects, and only the final 35 simulation minutes were utilised to correspond
with the field measurements. The terrain was modelled by prescribing a ground roughness
length of 0.1 m. The simulated wind field has a mean wind speed at hub height u. =
7.77 m/s and a TI = 6.7%. The stable atmospheric boundary layer (ABL) is characterised by
a strong shear exponent aghear = 0.44 and a wind veer of 20.7° between the top and bottom
rotor tips. The virtual WindScanners are programmed to perform horizontal plane scans
similar to the experimental setup following Eq. (5.6). The two operational turbines aligned
in the prevailing wind direction in the LES resembled a full-wake scenario at WT2.
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5.3 REsuULTS

This section is divided into two parts. In the first section, we show the results of the virtual
WindScanner simulations in the LES and estimate the uncertainty associated with the
dual-Doppler reconstruction. The results from the field measurements are presented in the
second section. As the measurement plane extends 0.4 D downstream of WT2, laser beam
blockage due to blade rotation was expected. During post-processing, it was discovered
that the data quality for the measurements at 0.2 < x/D < 0.4 was poor and hence was
discarded for both LES and field measurements. A comparison against engineering models
of the induction zone is shown only for the undisturbed induction case.

5.3.1 VIRTUAL WINDSCANNER EVALUATION IN LES

Line-of-sight simulations of the two WindScanners are performed using LiXim and the LES
flowfield, after which a dual-Doppler reconstruction is applied to resolve the longitudinal
and lateral wind fields.
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Figure 5.6: Longitudinal (u), lateral (v) and vertical (w) velocities on the horizontal plane from the LES (1% row)
and the results of 2D WindScanner reconstruction inside the LES (2 row) both averaged for the last 35 minutes
of the simulation. The black vertical line at x/D = 0 is the rotor of WT2.

In Fig. 5.6, reconstructions of the WindScanner estimated 35-minute averaged longitu-
dinal, lateral wind profiles are presented alongside the reference LES. A good qualitative
agreement between the LES and the virtual WindScanner resolved u, v profiles is noted
at most parts of the scanning area. The simulations reveal that the WindScanners can
capture the spatial features in the flow such as the wake rotation and flow expansion at the
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rotor tips. For the u profiles, the velocity profiles show deviations from the LES reference,
presumably because of the directional bias induced by the large elevation angles and the
probe volume extending through the shear layer and from the wake into the freestream.
The lateral velocity profiles illustrating the wake rotation and flow expansion are captured
well by the WindScanners. The profiles also indicate that the dominant flow structures in
the induction zone are captured well for an average duration of 35 minutes when similar
wind conditions are maintained for the scan duration.

STATISTICAL UNCERTAINTY

First, we discuss statistical uncertainty denoting the standard error of the mean. While
the total propagated uncertainty regards the propagation of uncertainty of single variables
through the dual-Doppler reconstruction, the statistical uncertainty quantifies the precision
of the results from different scans with a higher number of scans typically reducing
measurement noise from the statistical error. To quantify the statistical uncertainty, we
use the margin of error estimated in the scanning area. It was calculated as ey gtat =
ZYJ%‘ and ey gtat = %. Here z,, the confidence level, is set to 1.96, denoting the 95 %
confidence interval, oy, oy are the standard deviations of the longitudinal and lateral velocity
components in the scan plane obtained from the WindScanner simulations and N is the
number of samples.

Application of these equations to calculate the statistical error requires a large number
of uncorrelated samples. Therefore, the independence of the measurement samples is
analysed by checking if the scanning time is long enough to ensure that the samples are
separated by several multiples of integral length scales (Tab. 5.3). Tennekes and Lumley
2018 describe that, for statistical independence, sampling the wind once every two integral
time scales is adequate. For our investigated cases, the scan time multiples of the integral
length scale vary from 2.6 to 6.5. Therefore, while the measurements may not be entirely
independent due to the relatively short integral time scale compared to the scanning time,
they may still be treated as approximately independent.

We now calculate the statistical uncertainty using the lgﬁ to estimate the statistical

uncertainty where N; is the number of independent samples. This effective sample size
accounts for correlations in the turbulent flow, leading to a more accurate estimate of the
error of the mean. The effective sample size is calculated based on Wilks 2019 as:

1_
Ny = N¢—», (5.11)
1+r

where r is the lag-1 auto correlation. Figure 5.7 shows the variation of the margin of error
in the scanning area for the two reconstructed components. The margin of error for the
longitudinal component varies in the scan area between 0.2 m/s to 0.4 m/s depending on
the turbulence intensity in the wake. Similarly, for the v- component, the margin of error
varies up to 0.21 m/s. The higher errors at scan edges could be attributed to the low amount
of data points in these locations as a consequence of the scanning patterns. In the field, we
expect that the margin of error would be slightly higher than in the idealised LES due to
the filtering procedure reducing data availability in each scan.
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Figure 5.7: Statistical uncertainty estimated through the margin of error for the (a) u and (b) v components for
the evaluated LES flow field.
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Figure 5.8: Dual-Doppler reconstruction error for (a) the longitudinal (e,) and (b) the lateral (e,) components for
the evaluated LES flow field. The markers P1 - P6 indicate regions of interest.

DUAL-DOPPLER PROPAGATED UNCERTAINTY IN LES

Secondly, we discuss the total propagated uncertainties estimated through the SUP method.

The total propagated errors in the estimation of the longitudinal and lateral wind speed
components are performed based on Egs. 5.7 and 5.8 and illustrated in Fig. 5.8. To study

the influence of spatial velocity variation in the wake, the actual LES w component in Fig.

5.6 is used. The u component estimation error e, varied between 0.2 m/s and 1 m/s. As

expected, e, is large at the WT2 rotor plane for the locations exhibiting higher w velocities.

ey is highest at the scan location closest to WS1 with the highest elevation angles whereby
the lidars could only measure a small projection of the longitudinal wind speed. Similar
behaviour is seen for the e, as well ranging from 0.4 m/s to 1.1 m/s in the scanning area
with the highest values seen where larger w velocities are present and at the scan area
where the beam intersection angles are the lowest (Fig. 5.5).

Figure 5.9 illustrates the quadratic contributions of the different error terms in Eq. 5.7 and
Eq. 5.8 and the total error for the respective flow component visualised for six locations
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(P1, P2,... P6) as marked in Fig. 5.8. To analyse the contribution of certain measurement
errors, the standard uncertainty propagation is evaluated for an error in vjos of 0.1 %, a
pointing accuracy of 0.1° while the error introduced due to neglecting the vertical flow
component is obtained from the local LES w component. The magnitude of the individual
error contributions is normalised by the total error (e, e,) to obtain the contribution of
each term to the total error. For ey, the following trends are noticed. The line-of-sight error
evlosi contribution is almost negligible for all 6 points. The error due to the w component
assumption ey ; has a significant contribution to e, especially at P4, P5 and P6 due to the
large local w at these locations.
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Figure 5.9: Quadratic contributions of the different error terms in the Standard Uncertainty Propagation (SUP) to
the [a]] longitudinal (e,) and [b] lateral (e,) components at the marker

At P1, P2 and P3, e has a large contribution due to the severe elevation angles required to
scan at these points and the positive correlation between % and 6. The varying contri-
butions of ey; at the points of interest can be explained by the relative alignment of the
lidar with the wind direction. For a non-zero w component, an aligned lidar will contain a
larger contribution of the w component projected onto its line-of-sight compared to the
un-aligned case. At P1 and P4, the contribution of ey ; is the largest as WS2 is more aligned
with the longitudinal wind component in comparison to WS1. Similarly, at P3, P5 and P6,
WS1 is approximately aligned with the longitudinal wind speed component. So the errors
at these points are dominated by the ey 1, which is highest at P5 due to the large local w
velocity in the LES field. For ey, it is clear that the errors are preliminarily driven by the
ey while e, is almost negligible. However, the contributions of e, ; and es; are larger
compared to that of e, highlighting the sensitivity of the pointing angles for the lateral
component reconstruction.

To visualise the reconstruction accuracy, horizontal velocity profiles are extracted at six
upstream streamwise cross sections and compared against LES in Fig. 5.10. The shaded
region illustrates the total measurement uncertainty where the statistical uncertainty and
the propagated uncertainty are summed in quadrature assuming a perfectly calibrated
lidar with no measurement bias and uncorrelated errors. This total combined uncertainty



5.3 RESULTS 111

accounts for the statistical variability in the measured flow in addition to the variability
due to the lidar limitations. The longitudinal velocity profiles measured by the virtual
WindScanners at x/D < -0.63 exhibit deviations from the LES due to the large elevation
angles required for scanning, while the estimation errors reduce towards WT2. Similarly,
very close to the downstream turbine at x/D = —0.08, the WindScanner measured u profile
is lower compared to the LES close to the rotor axis as the measurement volume extends
behind the rotor while scanning very close to the rotor plane. At x/D = -0.8, the maximum
u error is 11.6 %, while the error reduces in the downstream direction with a maximum
error of 9.7 % at x/D = —0.63. The WindScanner-measured u velocity profiles at x/D = —0.56,
x/D = -0.48, and x/D = -0.32 agree well with the LES. Moving further downstream, the
difference in the intersection angles of the two lidars decreases. Therefore, the u compo-
nent is estimated better on the scan’s downstream side as the laser beams align with the
prevailing wind direction with reducing elevation angles. While the intersection angle
reduces towards WT2, the velocity profile at x/D = -0.08 shows slightly larger error bars
due to a large vertical wind speed component resulting from local aerodynamic effects close
to the rotor plane of WT2. The lateral velocity component profiles show a good agreement
with the LES, with minor differences seen at the scan edges. The error bars around the v
component profiles are larger than the differences in the LES and WindScanner resolved
profiles due to the inclusion of multiple error terms in the SUP. This indicates that the
WindScanners can resolve the 2D velocity profiles with the current setup. While using the
local w component in the SUP, it is seen that the observed velocity reconstruction errors
are dependent on both the scanning strategy and the flow dynamics.
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Figure 5.10: WindScanner estimated velocity profiles (red) of longitudinal (a) and lateral (b) velocities at six
upstream cross sections compared against the reference LES (blue). The red shaded area indicate the total combined
measurement uncertainty estimated through Eqn. 5.7 and Eqn. 5.8 using the local w velocity component.

5.3.2 MEASUREMENT RESULTS

This section illustrates and discusses the field measurements for the four measurement
cases covering scenarios from undisturbed inflow to full and partial wake scenarios as
described in Table 5.3. To calculate the propagated uncertainties using field data it is
required to assume a constant w. For the full wake and partial wake cases, a value of
w =1 m/s is applied, similar to van Dooren et al. 2017. However, assuming a constant w
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on the scanning area masks the velocity reconstruction error that is dependent on the flow
dynamics, especially close to the rotor. Furthermore, this leads to a larger magnitude of e,
and e, compared to the error when using the local w velocities directly.

THE UNDISTURBED INDUCTION ZONE

Figure 5.11 shows the averaged longitudinal and lateral wind velocities extracted from the
WindScanner measurements of Case 1 in Tab. 5.3 with a mean wind speed of 8.51 m/s and
a weakly stable stratification. The non-operating upstream turbine had an average yaw
misalignment of 3.7°, whereas the downstream turbine had an average misalignment of
0.9° during the measurement period. The extent of the induction zone can be visualised
by the u-component deceleration and is very strong within -0.6 < x/D < 0 upstream of
WT2. This strong velocity deficit can be attributed to high axial induction and weakly
stable stratification during the measurement period inhibiting vertical displacement of air
particles further enhancing the blockage. The induction effect is strongest at the inboard
blade stations and decreases towards the blade tips. The induction zone also exhibits a
slightly asymmetrical distribution between the left (y/D > 0) and right sides (y/D < 0) of
the rotor.
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Figure 5.11: Case 1: Longitudinal (a) and lateral (b) velocities measured while WT1 was not operating and WT2
was operational. In (c), the quiver plot is based on the measured horizontal velocities.

Looking downwind, this slight asymmetry could be attributed to the presence of a tall
treeline in-between WT1 and WT2 perturbing the flow by acting as a windbreak [Couni-
han et al. 1974; Tobin et al. 2017] and the strong vertical shear agheor = 0.21 that causes a
vertical wind speed gradient varying the relative wind speed and the angle of attack of
the blades during a rotation. Additionally, the induced velocities at the rotor plane are
influenced by the counter-rotating wake creating a momentum transfer between the lower
and upper rotor regions leading to a difference in flow magnitude between y/D > 0 and
y/D < 0 [Madsen et al. 2012]. Hence, the blade sections would experience varying blade
forces that vary the local thrust coefficient, and the corresponding deceleration. The lateral
velocity component is non-zero close to the blade tips, indicating a flow expansion around
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the rotor. The large lateral velocities present close to the rotor plane can be attributed to
the lower data availability due to blade passage, improper tracking of wind direction by
WT?2 influencing the induced velocities and neglecting vertical velocity in the dual-Doppler
reconstruction. In Figure 5.11 (c), the u, v wind components within the scanning plane
are combined to illustrate the wind direction behaviour in the scan plane, exhibiting an
induction zone asymmetry and flow expansion around the WT2 rotor.
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Figure 5.12: Case 1: Inflow longitudinal (a) and lateral (b) profiles extracted at various positions upstream of
WT2. The shaded area represents the total combined measurement uncertainty calculated from the standard
uncertainty propagation method (e,) with w = 0.2 m/s, as WT1 was not operational.

In Fig. 5.12, horizontal inflow profiles at five upstream distances moving towards WT2 are
plotted. The shaded regions indicate the total measurement uncertainty bounds calculated
for the dual-Doppler reconstruction using Eq. (5.7), and Eq. (5.8). Here, a constant vertical
component w = 0.2 m/s is assumed, as no wakes are propagating from the non-operational
upstream turbine and no direct measurements of the w component were available in the
scanned area. The u component uncertainty due to the dual-Doppler reconstruction de-
creases moving toward the rotor. The horizontal profiles at 0.8 < x/D < -0.31 exhibit
asymmetrical behaviour between the left (y/D > 0) and right (y/D < 0) blade tips, whereas
at x/D = -0.16, the asymmetry disappears. The magnitude of the velocity deviations lies
within the calculated uncertainty bounds. The lateral velocity profiles show a large magni-
tude very close to the rotor tips due to the flow expansion.
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Figure 5.13: Case 1: Comparison of the velocity deceleration along the rotor axis against the predictions from
different induction zone models. The green shaded area represents the upper and lower bounds of the total
measurement uncertainty.

We compared the different induction zone models against the measurements along the
rotor axis, as illustrated in Fig. 5.13. The upper and lower bounds of the WindScanner
represent the propagated uncertainty bounds. Data availability between 0 < x/D < 0.2 is
reduced due to the presence of the nacelle and therefore excluded. Also plotted is the
velocity deceleration predicted by the 1D vortex sheet theory [Medici et al. 2011] using the
freestream velocity measured at the met mast extrapolated to WT2 hub height using the
shear exponent and the axial induction factor of 0.23 estimated from the turbine thrust
curve. The model-predicted velocity deceleration falls within the WindScanner bounds
till x/D < -0.4 while the slowdown is under-predicted close to the rotor plane. Simley
et al. 2016 also noted similar bias, the reasons for which were the model does not consider
atmospheric stability nor the presence of the tower and nacelle-induced deceleration.

The velocity deceleration predicted by the Vortex Cylinder model (VC model) [Branlard and
Gaunaa 2015], FLORIS coupled with the Induction model (FLORIS+Induction) [Branlard
and Meyer Forsting 2020] and the self-similar model [Troldborg and Meyer Forsting 2017]
is also illustrated in Fig. 5.13 using the inflow conditions in Table. 5.3 as input parameters.
Although these models can predict the upstream velocity deceleration in the horizontal
plane, they do not consider the vertical shear. Therefore, only the deceleration along the
rotor axis is displayed. The FLORIS+Induction model also utilises said VC method to predict
the induction deceleration coupled with the Gaussian wake model in FLORIS accessed
from Branlard 2019. As expected, the VC model shows excellent agreement with the 1D
vortex sheet results but exhibits an under-prediction of the velocity decrease compared to
the measurements. A similar under-prediction of the velocity decrease by the VC model
was noted in Meyer Forsting et al. 2021 as no wake expansion is considered to affect the
momentum balance between upstream and downstream of the rotor, which increases with
increasing thrust coefficients, is included. Also shown in Fig. 5.13 are the results of the
self-similar model proposed by Troldborg and Meyer Forsting 2017. Along the rotor axis,
the model is similar to the VC model but contains an additional thrust-dependant scaling
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term to correct for the systematically underestimated axial induction. Applying their thrust
correction factor, a better agreement with the WindScanner measurements is obtained until
x/D < -0.4. The FLORIS+Induction model consistently under-predicts the magnitude of
the velocity decrease along the centre line, with the effect becoming more severe towards
the rotor. The axial induction and, therefore, the deceleration obtained from the FLORIS
model were lower compared to the field measurements.

THE FULLY WAKED INDUCTION ZONE

This section presents the results of Case 2, with e = 9.60 m/s, Oygir = 225.3° +7.1° and
wind veer y = 19.8° in a near-neutral stratification. During the measurement period, the
upstream turbine was operated by a greedy controller that introduced an average yaw mis-
alignment of -1.3°, while WT2 was misaligned with an average of 0.6° with the prevailing
wind direction. Hence, a full-wake scenario at WT2 is occurring. The WindScanners were
programmed to perform horizontal scans at the hub height of WT2. This resulted in scans
capturing the WT1 wake on a horizontal plane 0.16 D above the hub height of WT1 owing
to the hub height difference.

Due to the downstream turbine operation, an induction zone deceleration is observed
inside the wake between —0.5 < x/D < 0 upstream of the rotor, as shown in Fig. 5.14. The
lateral velocity component is dominated by a lateral flow towards the left side (y/D > 0) of
the rotor looking downstream. The flow expansion around the downstream turbine can
be observed with stronger lateral velocities on the left side of the rotor (y/D > 0) looking
downwind.
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Figure 5.14: Case 2: Longitudinal (a) and lateral (b) velocities measured for the full wake case. The contour of the
magnitude of the horizontal velocity and its vector field is plotted in (c).

In the region, -0.8 < x/D < 0 and -0.1 < y/D < 0.3, a strong cross-wind component is intro-
duced to the wake that rotates in the opposite direction to that of the clockwise rotating
rotor. By combining the u and v velocities, the local wind vector in the horizontal scan
plane can be estimated. Plotted in Fig. 5.14 (c) is the total horizontal velocity magnitude U
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superimposed with streamlines. A clear induction zone is visible centred around the rotor
axis in the region -0.5 < x/D < 0 while the wake is expanded around the strong induction.
Due to the proximity between the two turbines, an interaction between the induction zone
of the downstream turbine with the wake of the upstream turbine is observed, while the
wake deficit is further increased as the induction zone blocks and expands the flow around it.
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Figure 5.15: Case 2: Longitudinal and lateral velocities measured for the full wake case. The shaded area represents
the total combined uncertainty calculated from the standard uncertainty propagation method (e,) with w = 1 m/s,
as WT1 was operational.

The horizontal flow profiles were plotted at five locations upstream of WT2, as shown in Fig.
5.15, to investigate the effect of WT2 induction on the wake profiles. As no measurements
of the w component were available, a conservative value of 1 m/s has been utilised to
estimate the upper and lower uncertainty bounds of the profiles. Instead of recovering, the
longitudinal velocity profiles show a deceleration towards WT2. The effect of induction is
strongest close to the rotor axis between -0.2 < y/D < 0.2 where a velocity reduction of 27 %
is observed between x/D = -0.8 and x/D = —0.15. The lateral velocity component shows a
non-zero component between -0.2 < y/D < 0.2, indicating that the flow is pushed towards
the blade tips and around the induction zone. The lateral velocity variations at the blade
tips are due to the reduced data availability close to the blades (x/D = -0.15) due to blade
passage and the yaw error of the downstream turbine. The turbine does not follow the
wind direction perfectly; hence, time-varying yaw errors can be introduced, which would
induce movement of the rotor within the scan area leading to erroneous estimates in the
measurements. The lateral velocity profiles at different upstream positions exhibit a slight
asymmetry. While terrain heterogeneity could explain some of the measured features,
further differences with the undisturbed inflow case is expected due to the WT1 wake and
differences in inflow conditions. For Case 2, the inflow is characterised by high shear and
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veer between the top and bottom rotor blade tips, in contrast to Case 1. This interaction of
vertical shear with the wake can lead to an asymmetric velocity distribution as the wake
rotation mixes the different layers of fluid in the vertically sheared flow [Abkar et al. 2018;
Sezer-Uzol and Uzol 2013; Xie and Archer 2017]. At all five upstream positions, the wake
at y/D < 0 exhibited stronger velocity reductions than the wake at y/D > 0, however, the
magnitude of the velocity deviations are within the calculated uncertainty bounds.

THE PARTIALLY WAKED INDUCTION ZONE

Finally, we present the measurements of the induction zone upstream of WT2 during a
partially waked condition shown in Fig. 5.16. The results for both positive and negative
yaw offsets of WT1 are illustrated in Fig. 5.16. For a positive offset (Case 3: ywr1 = 12.8°),
a wake deflection towards the left of the rotor (y/D > 0) is observed in the u component
looking downstream, while the wake deflects to the right of the rotor (y/D < 0) for the
negative offset (Case 4: yy 1 = —8.9°). For both cases, the partially waked inflow into WT2
is caused due to a combination of the yaw offset applied on WT1 and the misalignment
of the wind direction with the orientation of the WT1-WT2 axis. For Case 3, the lateral
velocity component is characterised by a flow towards the left side of the rotor (y/D > 0)
due to a combination of the counter-clockwise wake rotation and the lateral force applied
on the flow due to the intentional yawing of the turbine. The opposite effect is observed for
Case 4, where a lateral flow towards the right side of the rotor plane is seen. The findings
correspond to Fleming et al. 2018, where a stronger wake deflection for the positive yaw
case is seen due to the aggregated effect of the wake rotation and counter-rotating vortices
in comparison to the negative deflection case.
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Figure 5.16: Cases 3 and 4: Longitudinal and lateral velocities measured for positive yaw offset (Case 3, 1% row)
and negative yaw offset (Case 4, 2™ row). The red dashed line represents the average wind direction during the
measurement period.

In both cases, the maximum magnitude of the lateral velocity inside the deflected wake
is approximately 0.2 uo to 0.25 Us. The positive yaw offset case exhibits a comparatively
more substantial lateral flow component compared to the negative yaw offset due to the 10°
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misalignment between the turbine orientation and the wind direction as the lateral velocity
would be increased by the projection of misaligned inflow into the defined coordinate
system. As the measurements are in the near wake region of WT1, the lateral velocity
would be additionally influenced by the aerodynamic effects of the rotor while the effect
of yaw steering on the lateral component would be dominant further downstream. In
both cases, the lateral component increases towards the blade tips to account for the flow
expansion close to the downstream turbine. It is noted that for the positive offset case,
the spatial distribution of the u component seems to move near the rotor axis instead of
deflecting towards y/D > 0. This could be potentially attributed to the 10° misalignment
between the wind direction and the turbine orientation direction in addition to the large
variability of the wind direction from 208° to 223° which was the highest of all investigated
cases.
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Figure 5.17: Cases 3 and 4: Wake profiles of the normalised longitudinal component (upper row) and the lateral
velocity (lower row) extracted at various positions upstream of WT2 during active wake steering at WT1. The
dots correspond to the wake centre at each location. The shaded area represents the total combined uncertainty
calculated using the SUP method with w = 1 m/s.

Figure 5.17 illustrates the horizontal wake profiles of the longitudinal and lateral velocities
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at five distances upstream of WT2 for the two wake deflection cases. The dots correspond
to the wake centre position determined by fitting a Gaussian through the measured wake
profiles [Hulsman et al. 2022b]. For the positive offset yy 11 = 12.8°, the wake centre deflects
further to the left of the rotor to approximately y/D = 0.32. Similarly, the wake centre
is deflected to the right to approximately y/D = -0.2 for negative offset yy 71 = -8.9°. In
both cases, the wake centre in the horizontal profiles does not exhibit significant lateral
movement evidenced by the clustered wake centre locations in Fig 5.17. In both cases, a
yaw-induced lateral flow is observed inside the deflected wake with a magnitude depending
on the yaw offset and is present at the location of the maximum velocity deficit.

5.4 DISCUSSION

We characterise the interaction of the near-wake and the induction zone between two
closely spaced turbines with two synchronised scanning lidars. During the measurement
campaign, yaw control is implemented on the upstream turbine. Hence, 2D characterisation
of the induction zone of the downstream turbine is achieved for unwaked, waked and
partial wake conditions.

Measurement campaigns require a comprehensive description of the measurement setup
and appropriate uncertainty quantification to interpret results. As only two lidars were
available for the experiment, an assumption on the vertical flow component, e.g. w =0 m/s
for the dual-Doppler reconstruction is necessary to extract two-dimensional horizontal
flow fields. The location of the lidar and scanning trajectory have a significant impact on
the measured velocity profiles. Therefore, to quantify the effect of the measurement setup
and WindScanner limitations, we simulate the measurement scenario using a high-fidelity
LES and a lidar simulator. Although such simulations might not completely capture the
spatio-temporal dynamics observed in the field, they provide a complementary methodol-
ogy for performance and quality assessment.

A comparison between the LES and the virtually simulated WindScanner indicates that the
WindScanners can capture the main flow structures within a horizontal plane despite the
used assumption (w = 0 m/s) and the inherent measurement principle limitations, such as
directional bias and probe volume averaging. Analysis of the statistical and propagated
uncertainties revealed that the former had in comparison a smaller uncertainty. For the
longitudinal component, a maximum statistical uncertainty of 5 % and a maximum propa-
gated uncertainty of 15 % relative to the mean wind speed was observed. A deeper analysis
of the propagated uncertainties indicated that the main contribution to the uncertainty
to estimate the u, v component was the w = 0 m/s assumption. Other important sources
of the uncertainty were the probe volume averaging effect, the inaccuracy of the beam-
intersection angles and the beam-pointing errors.

The simulations highlight that spatial error variation also depends on the local vertical
velocity distribution in the scanning area. This means that the reconstruction accuracy
is not only lidar-dependent but also flow field dependent. Furthermore, the combination
of the lidar-dependent errors and the vertical velocity increases the error, especially for a
large elevation angle §. Because no local vertical velocity measurements were available in
the scanning area, a local vertical assumption was required to conduct the SUP. Therefore,
the approach of van Dooren et al. 2016 was followed by assuming a conservative vertical
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velocity of either 0.2 m/s (un-waked) or 1 m/s (waked) over the scanning area. This assump-
tion masks the influence of the flow dynamics on the propagated errors and significantly
increases the magnitude of the propagated errors. This complicates the analyses to deter-
mine significant flow features from field measurements, especially in waked cases. Further
measurements with a third synchronised lidar are suggested to avoid the assumption of
neglecting the vertical velocity and provide measurements with a lower uncertainty of the
flow within the induction zone.

In the second part of this study, the full-scale experimental measurements using syn-
chronised scanning lidar systems are analysed. Although accurate spatial and temporal
synchronisation was achieved after careful calibration in the field, inherent uncertainties
of the scanning lidar measurements need to be evaluated. The applied error of 0.1 % for
Ulos might be low for this measurement campaign. The work of Pedersen and Courtney
2021 suggested a 0.1% error in a highly controlled environment. van Dooren et al. 2022,
used the same WindScanner lidars in a wind tunnel study and quantified the error against
a hot wire anemometer with a mean average error metric less than 2 %. However, the
probe lengths in their study were in the order of 13 cm. In the current field measurements,
probe lengths in the order of 6.75 m to 27.75 m are measured increasing the expected error.
Further measurements are required to obtain a representative eyjos. This can be achieved by
focusing the lidar next to a sonic anemometer to determine the impact of the probe volume
effect on the line-of-sight measurements. Further WindScanner simulations indicated that
the total propagated error was insensitive to a higher and more realistic 2 % line-of-sight
error. An important aspect to consider during cw scanning measurements is the trade-off
between spatial and temporal resolution. With a slower scan speed, the measurements
cannot capture the fluctuating behaviour of the flow but only a fingerprint of the highly
turbulent near wake. Moreover, the variable probe length during the scan causes a focal
distance-dependent bias and therefore a variable low-pass filtering effect throughout the
scan. Correcting for this effect is a challenging task and requires precise knowledge of the
filtered and unfiltered spectra to either construct a transfer function or model [Angelou
et al. 2012; van Dooren et al. 2022]. This was not performed in the current measurements.
As expected, the measurements reveal the influences of the wake of WT1 on the induction
zone of WT2. A longitudinal speed reduction towards the rotor plane is observed in the
free inflow case. The lateral component shows a non-zero speed component towards the
edges of the rotor, which indicates a flow expansion. An asymmetrical induction zone at
hub height was also recorded and can be caused by multiple effects. This asymmetry can
potentially be attributed to the dynamic interaction between the vertical shear and the
rotating blades, which was noted by Bastankhah and Porte-Agel 2017 using wind tunnel
measurements. Madsen et al. 2012 suggested that the induction zone at the rotor plane
could be influenced by the counter-rotating wake creating a momentum transfer between
the different rotor areas. Another possible effect of the observed asymmetry is the presence
of a long and staggered treeline between the two turbines, which acts as a windbreak to
the flow perturbing in the region between the two turbines [Counihan et al. 1974; Tobin
et al. 2017]. Previous studies at the site (Hulsman et al. 2022a) have indicated the influence
of a treeline on the met-mast measurements at 100 m elevation by comparing it against
the ground-based lidar. A possible flow diversion by the treeline would indicate a larger
vertical velocity component. This will lead to a larger uncertainty due to the necessary
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assumption of w = 0 m/s to apply the dual-Doppler reconstruction. The magnitude of
these terrain effects on the flow and the lidar measurements could not be quantified as no
measurements were available when both turbines were non-operational. A high-resolution
LES study incorporating the terrain and the treeline could be used to provide insights into
the flow behaviour. However, the LES runs were intended to study the lidar measurement
accuracy and therefore were only initialised with a similar roughness length to the terrain.
An evaluation of various induction zone models is conducted, highlighting that the velocity
deceleration modelled by the self-similar model [Troldborg and Meyer Forsting 2017] is in
good agreement with the measurement data. More measurements covering more extensive
operating and stability regimes would provide more insight. When both turbines were
operational and aligned with the prevailing 0,q4;; (fully waked), a clear overlap of the wake
of WT1 and the induction zone of WT2 was observed. While vertical plane scans would
have revealed the vertical shear and veer interaction with the wake, this was not inves-
tigated in the current study. The measurements during yaw steering show partial wake
conditions impinging on either side of the rotor. It was expected that due to the partial
wake inflow into WT2, the aerodynamic induction between the waked and unwaked parts
of the rotor would differ impacting the distribution of induction zone deceleration over
the rotor. However, these effects were not quantified in our study as the measured effects
were within the uncertainty bounds of the measurements and therefore not significant
enough. Additional measurements during partial wake conditions would be beneficial,
especially with a third synchronised lidar, to study these interactions. While the hub height
difference of 20 m between the two turbines would influence the measured induction zone
and wake interaction, the effect could not be characterised as the presented study is specific
to this two-turbine layout. The results of this study are based on four measurement cases
containing 2-D flow within a horizontal scan performed at the hub height of the down-
stream turbine. However, future investigations should include measurements conducted
with turbines at the same hub height and measure vertical planes or full rotor planes. This
will aid in investigating the influence of atmospheric effects such as wind shear and veer.
Multiple vertical plane measurements can also be performed to study the evolution of the
flow field between the two turbines. A longer measurement campaign covering a range of
shear and veer conditions including negligible veer and shear is suggested to investigate
any possible correlations between atmospheric effects and the behaviour of the induction
zone.

5.5 CONCLUSIONS

In this paper, results of a measurement campaign using two synchronised WindScanner
lidars are presented which were used to capture the flow between two 3.5 MW utility-size
turbines spaced 2.7 diameters (D = 126 m) apart. The lidar measurements were further
supported by a ground-based lidar, a met mast and an eddy covariance station to accu-
rately characterise the inflow. A detailed error analysis is performed by recreating the
measurement procedure in a Large-Eddy Simulation where two virtual WindScanners
were simulated to evaluate the dual-Doppler reconstruction accuracy. The reconstruction
accuracy is influenced by the limitations of the measurement device, the reconstruction
principle and the spatial variability of the vertical flow. The narrow turbine spacing and
active wake steering on the upstream turbine allowed the characterisation of the induction
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zone flow behaviour for free inflow, fully waked and partially wake scenarios. To the
authors’ knowledge capturing the 2-D flow both within the near wake and the induction
zone during an intentional yaw misalignment in the field is measured for the first time.
For a fully waked inflow, the impact of the induction zone on the wake was observed. This
increased the wake deficit close to the rotor.

The study further highlights the challenges in conducting field measurements, and the
additional considerations needed to characterise the induction zone behaviour. As field
data is accepted as the ground truth and demanded for validating numerical models, a
thorough characterisation of the site, the lidars, the measurements and their associated
uncertainties are provided to ensure comprehensive traceability of the measurements.
Further measurements, covering a larger range of inflow scenarios, preferably with a third
synchronised lidar to avoid neglecting the vertical velocity in the dual-Doppler reconstruc-
tion, in conjunction with high-resolution simulations are suggested for further work to
obtain a deeper understanding of the induction zone behaviour for various operational
states of the turbine.
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CoNCLUSIONS AND OUTLOOK

High-resolution lidar measurements of the wind turbine inflow can be used to optimise
turbine performance and reduce the levelised cost through load reduction, lifetime ex-
tension and enhanced power capture. This thesis’s objective was to further understand
the effectiveness of scanning lidars in measuring the inflow and develop novel wind field
reconstruction algorithms capable of reconstructing spatio-temporal inflow dynamics from
sparse data. Furthermore, the thesis also aimed at characterising the flow deceleration and
evolution in the induction zone with synchronised scanning lidar systems, a critical aspect
to consider while modelling the turbine inflow.

6.1 CONCLUSIONS

In the following the important outcomes of the identified research questions in Section 1.7
are summarised.

6.1.1 LIDAR MEASUREMENTS OF WIND TURBINE INFLOW

The temporal and spatial averaging of measurements as a consequence of the technological
limitations is a concerning aspect while measuring the inflow with lidars. Therefore, the
first part of the research (Chapter 2) was dedicated to understanding the lidar measurement
principles and investigating the capability of lidars with fixed-beam and beam-scanning
systems in accurately measuring the inflow. To this end, a virtual environment was used
with high-fidelity physics-based wind field simulations based on Large Eddy Simulations.
A lidar simulator to understand lidar measurement capabilities and uncertainties were
utilised to simulate virtual lidars of different configurations. The highly customisable lidar
setup combined with physics-based flow models allows investigating lidar performance
for varying flow conditions. The results indicated that the ability of a lidar system to
measure the inflow accurately depends on the measurement principle’s limitations and the
employed scanning strategy.

Directional bias is the most critical limitation affecting measurements due to the increased
influence of the cross-wind components at large scanning angles. Combined with the
larger effect of wind direction-turbine orientation alignment and the comparatively smaller
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effect of the turbine operational tilt dynamics, this limitation would increase the angle
between wind inflow and the laser beam, contributing to an even higher directional bias.
Therefore, the estimation of longitudinal wind speed component through simple projection
is sensitive to changes in the orientation of beam angles to the flow. While measurements
of the stationary turbulent spectra are affected by the low-pass filtering due to the lidar
volume averaging effect, modern scanning lidar systems like the SpinnerLidar can estimate
the rotational spectra very well due to the extensive spatial coverage. This rotor area
spatial coverage allows the lidar to capture effects such as vertical wind shear or partial
gusts. In the rotating frame of reference of the blades such spatial inhomogeneties in
the inflow lead to an accumulation of energy at multiples of the rotational frequency, ie.,
rotational sampling and eddy slicing effects. This extensive spatial coverage allows for
advanced control strategies like correctional higher harmonics individual pitch control or
trailing-edge flap control.

For cw lidar systems, the volume averaging effect does not significantly impact the estima-
tion of wind evolution and is dominated by the upstream measurement distance and the
atmospheric stability. A better estimate of the commonly used wind evolution coherence
metric can be obtained by combining the upstream lidar measurements with a simple
induction zone model to account for the flow deceleration. This allows the controller to
utilise more information from the turbulent spectra, remove uncorrelated frequencies and
avoid harmful actuation of the turbine control system.

The spatial resolution of the lidar is the deciding factor in the accurate estimation of the
rotor averaged inflow parameters relevant for wind turbine control. For CPC and IPC
strategies, scanning lidar systems can accurately estimate the rotor averaged wind quan-
tities like rotor effective wind speeds and vertical shear. The coherence bandwidth and
the smallest detectable eddy size are increased substantially due to the enhanced spatial
coverage. However, the optimal upstream scan location is a variable quantity that also
depends on atmospheric quantities like stability which can amplify the directional bias
effects.

In general, with scanning lidar systems, the optimum scan location for scanning lidars
for CPC control was much closer to the turbine than for fixed-beam devices, reducing
the wind evolution uncertainty. Scanning systems are still comparatively expensive and
unreliable as beam deflection mechanisms are required to steer the laser beam. In addition
to the wind sensing capabilities, it is essential to include capital and operational expenses
to estimate the value of integrating lidar systems into wind turbines for applications like
control. However, as turbine loads scale over-proportionately with rotor size, the choice of
scanning lidar systems could be attractive for larger turbines justifying the increased costs
and being more economically viable.

6.1.2 DEVELOPMENT OF WIND FIELD RECONSTRUCTION METHODS FOR
SCANNING LIDARS

A line-of-sight velocity field reconstruction methodology based on Proper Orthogonal
Decomposition was introduced in Chapter 3. The reconstruction performance was tested in
two Large Eddy Simulations of different inflow conditions. In Chapter 4, the performance
of the Gappy-POD was evaluated in reconstructing artificially removed measurement
points simulating blade interference and non-ideal measurement conditions. To exploit the
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capabilities of inflow measurements with scanning lidars, it was imperative that line-of-
sight velocity field reconstruction methods fully utilise the provided high spatio-temporal
resolutions.

With sufficiently high wind sensing rates, modal decomposition techniques such as POD
could be applied to inflow lidar measurements. The application of POD to virtual Spin-
nerLidar measurements revealed the prospects of a reduced order description of the lidar
measured inflow v} fields with distinct spatial modes. The majority of the total energy
was captured by a few dominant modes implying that reduced order models could be
created just by considering these dominant modes alone. This data reduction is possible
because of the probe length averaging property of the lidar that filters out the smaller
turbulent structures. While the accurate representation of turbulent flows requires many
modes, the measurements and the method appear synergistic. The entire two-dimensional
spatially varying v,s wind field can be reconstructed with a very high level of accuracy
in comparison to the existing wind field reconstruction models. An excellent agreement
with the reference v, wind fields is obtained while evaluating reconstruction accuracy
based on various inflow metrics. This could be potentially advantageous while developing
reduced order flow control strategies as the spatio-temporal dynamics of the measured
wind field are effectively reduced to just a few signals. The spatial modes could be related
to certain features in the wind inflow. However, the investigated LES cases are just two
points in a vast parameter space. Therefore for the development of reduced order inflow
models, changes in wind speeds, turbulence intensities, atmospheric conditions and the
scenarios such as partial or full wakes or gusts must be considered along with the transition
between these states. The reconstruction process is general because it can be applied to
any lidar system with a high enough spatio-temporal resolution. Hence this method can be
scaled with developments in scanning lidar systems’ optical and mechanical capabilities.

The Gappy-POD provided an efficient method to reconstruct missing or false data points
providing a way to reconstruct low-quality measurements. The method overcomes a crucial
problem with nacelle-mounted inflow lidars whose measurements are partially obstructed
by the blades. A computationally efficient modification to the method allowed for reduced
solution times to increase the feasibility of real-time implementation. By filling in missing
measurement locations, the wind parameter estimation uncertainty due to data availabil-
ity could be reduced, allowing for more confidence during actuating control surfaces for
improving turbine performance. The method’s effectiveness depends on the robust iden-
tification of the measurement locations with low quality/insufficient data. However, the
reconstructed measurements with Gappy-POD would at least acquire the uncertainty of
the measurements themselves.

6.1.3 CHARACTERISING THE INDUCTION ZONE WITH SYNCHRONISED
LIDARS

A field measurement campaign was conducted where two synchronised scanning lidars
were employed in a highly instrumented two turbine wind farm to characterise the inflow
and the induction zone for waked and un-waked inflow scenarios.

With multiple synchronised lidar systems, it is possible to overcome the directional limita-
tions and extract 2D or the whole 3D wind vector depending on the number of devices used.
As only two synchronised scanners were available for this experiment, a lidar simulator in
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LES based approach in a virtual environment was chosen to investigate the effectiveness
of measuring the inflow with two scanners. Scanning lidar measurement campaigns re-
quire attention to tiny details such as effective steering calibration, scan head velocity and
accelerations but provide valuable data to understand flow development around wind tur-
bines. By methodically recreating the wind farm and the lidars and the employed scanning
strategy within a simulation environment, it was possible to understand the effect of lidar
limitations on the measurements. Therefore, virtual lidar simulations in LES was used to
verify the methodology (measurement setup, scanning strategy, wind field reconstruction)
and quantify the errors associated with the chosen methodology. Therefore, simulations
and experiments can be complementary and should be used together during all phases of
an experimental campaign.

Due to the large uncertainty in the measurements due to the limitations of the lidar and
the wind farm layout, a detailed error analysis was conducted before the measurements
could be interpreted. The measurements revealed that the induction zone of a wind turbine
in undisturbed inflow, the induction zone is highly influenced by the terrain orography
and wind shear. In the full-wake case, the measurements revealed a deceleration of the
upstream turbine wake due to the downstream turbine induction zone due to short turbine
spacing. During a wake steering experiment, the interaction between the laterally deflected
wake of the upstream turbine and the induction zone of the downstream turbine could
be measured for the first time in the field. While evaluating engineering models against
measurements, it was noted that the models could not capture the asymmetrical induction
zone deceleration as they do not consider vertical shear and did not model the terrain
effects.

It was demonstrated that for wind parks with tight spacing, there was an interaction be-
tween the upstream turbine wake and the downstream turbine induction zone that blocked
wake development and recovery. The measurements revealed an interaction between the
partial wake and the induction zone for partial wake scenarios. A partial wake impinging
on the weaker induction side of the rotor would decelerate slower than the stronger induc-
tion side of the rotor. However, this effect could not be clearly seen on the measurements
due to the large uncertainty associated with the dual-Doppler reconstruction. If validated
with future measurements, preferably with a third WindScanner to overcome the issue of
the vanishing vertical velocity component in the dual-Doppler reconstruction, this could
be potentially interesting for active wake steering, whereby deflecting the wake into the
weaker induction area of the rotor would increase the rotor’s effective wind speed, thus
increasing the power output but presumably at the expense of higher asymmetrical rotor
loads. Conversely, deflecting the wake into the stronger induction area of the rotor could
reduce the asymmetrical rotor loads.

6.2 OUTLOOK

This thesis focused on measurements of the wind turbine inflow with scanning lidar sys-
tems. A wind field reconstruction method based on Proper Orthogonal Decomposition for
scanning lidars was developed and verified in a simulation environment. The wind field re-
construction methodology was further extended to reconstruct poor quality measurements
and points lost due to blade rotation and interference for nacelle-mounted inflow sensing
lidars. In addition, the induction zone was characterised using synchronised scanning lidar
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systems for undisturbed and waked inflows. Some next steps to extend the work are listed
here.

In Chapter 2, the capabilities and advantages of utilising scanning lidar inflow measure-
ments were discussed. As a next step, it could be advantageous to consider reconstructing
turbulence parameters, such as Reynolds stresses, in the optimisation process, as explored
in the study by Fu et al. 2023 to understand the capability of nacelle-mounted lidars to
reconstruct both mean wind parameters and turbulence, simultaneously. As a next step, it
would be beneficial to develop a simulation environment where system-level studies of
integrating lidar systems into the turbine design phase could be performed. This would
require, for example, an controller implementation into the virtual lidar, wind field and
turbine framework. A thorough analysis could be performed where the actual value of
implementing lidar systems could be determined. The results of such a study could be used
to extend system engineering studies such as the work of Canet et al. 2021 who only could
use typical lidar augmented load reductions from literature due to the lack of such a study.
The results of such a study could be used to make informed decisions on the potential of
scanning lidar technology in reducing the levelised cost of energy.

In Chapter 3, a lower order description of the wind turbine inflow was presented, and it
was shown that a highly accurate representation of the inflow wind field could be obtained
by choosing the most dominant spatial modes. As POD provides a systematic dimensional
reduction by careful selection of modes, it should be possible to build very simple to highly
complex inflow models by modelling the weighting coefficients of the selected modes.
However, the selection of modes is highly dependent on the inflow quantities and the
quantities relevant to the turbines. Therefore, it would be interesting to investigate if
the modes chosen to represent the inflow could also be related to the turbine’s response.
Once this is established, truly dynamic inflow models with predictive capabilities could be
developed through Galerkin projection to the underlying Navier-Stokes equations [Taira
et al. 2017] or stochastic modelling [Bastine et al. 2018] or linearising [Debnath et al. 2017;
Iungo et al. 2015] of the temporal dynamics of the weighing coefficients. Finally, applying
the method to field data measured by scanning lidars would be very interesting. As more
turbine operational states could be covered with long-term measurement data from field
measurements, more detailed inflow models could be developed as higher order modes
could be estimated more accurately. These combined reduced-order modelling approaches
could be highly beneficial for developing new strategies in wind farm flow modelling,
advanced control algorithms, and load prediction, exploiting the systematic dimensional
reduction and dynamic inflow models built from carefully selected modes [Andersen and
Murcia Leon 2022]. Due to the continuous improvements in the computational times and
accuracy of machine-learning approaches, it may be beneficial to explore lidar wind field
reconstruction methodologies utilising machine learning techniques [Wang et al. 2024].
Finally, it will be interesting to assess the performance of the developed reduced order
model against the field data by using them in aeroelastic simulations to estimate the turbine
response. Field validation of the Gappy-POD methodology described in Chapter 4 could not
be performed due to a lack of reliable data. Therefore, field validation of the method could
be beneficial in estimating the reconstruction accuracy, and the possibility of real-time
implementation could also be evaluated.

More field measurement campaigns could be performed to understand the inflow behaviour
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and the induction zone. The measurement campaign presented in Chapter 5 could not
cover a large dataset covering a range of wind speeds, stabilities, and turbine operational
states due to specific issues such as failure of measurement equipment, low measurement
quality due to environmental conditions to name a few. Future measurements covering a
more extensive range of inflow conditions will be precious in understanding the induction
zone behaviour in wind farms. The virtual lidar in LES approach to model the wind park
and the lidars provided a complementary methodology to investigate the errors and op-
timise trajectories for scanning lidar measurements. While the presented study focused
on the characteristics of the mean wind fields, approaches to characterise the evolution of
turbulence from scanning lidars similar to Puccioni et al. 2023 can be used to characterise
the turbulent flow evolution in the induction zone.

The methodology can be extended, and digitisation of scanning lidar campaigns such as the
work of Vasiljevi¢ et al. 2020 should be adopted in the campaign planning and the workflow.
By creating Geographical Information System (GIS) layers, measurement constraints such
as exclusion zones, laser beam blockage, and lidar range constraint maps could be utilised
while determining optimal lidar placements for a particular envisaged measurement ob-
jective. The measurement campaign focused on the time-averaged wind fields, while the
inflow dynamics were not the objective of the measurements. In future measurement
campaigns, it would be interesting to measure the dynamical inflow behaviour in the
induction zone due to abrupt changes in the inflow conditions such as wind direction
change or partial gusts.
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