—

Carl von Ossietzky
Universitat
Oldenburg

Fakultat Il — Informatik, Wirtschafts- und Rechtswissenschaften
Department fiir Informatik

Environment Design for Learning the Optimal
Power Flow With Reinforcement Learning

Von der Fakultét fiir Informatik, Wirtschafts- und Rechtswissenschaften
der Carl von Ossietzky Universitdat Oldenburg
zur Erlangung des Grades und Titels

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

angenommene Dissertation
von Herrn Thomas Wolgast

geboren am 11.07.1993 in Dannenberg (Elbe)

1. Gutachterin:

2. Gutachter:

Tag der Disputation:

Prof. Dr.-Ing. Astrid Niefle
Department fiir Informatik
Carl von Ossietzky Universitit Oldenburg

Prof. Minghua Chen, Ph.D.
School of Data Science
The Chinese University of Hong Kong (Shenzhen)

23. Juni 2025

Abstract

The Optimal Power Flow (OPF) problem is one of energy research’s most
important constrained optimization problems. In recent years, neural net-
works and deep learning algorithms have emerged as a promising new
approach to approximate the OPF, especially regarding solution speed
and real-time capability. Deep Reinforcement Learning (RL) seems espe-
cially promising, considering that RL does not require ground-truth data
nor domain-knowledge. Instead, the problem-specific domain knowledge
is encapsulated in the RL environment, which serves as problem represen-
tation. However, the existing literature shows a lack of OPF benchmark
environments and established methods to design optimal RL environ-
ments. To lay the foundation for reproducible and comparable RL-OPF
research, this thesis first introduces OPF-Gym,* a Python framework
for OPF environments, including five different OPF benchmark environ-
ments. Second, as a general methodology for RL environment design,
this thesis proposes to consider environment design as an optimization
problem by utilizing the Hyperparameter Optimization (HPO) frame-
work and its existing optimization algorithms. When applied to the five
benchmark environments, the HPO-based approach consistently outper-
forms a manually derived design from a pre-study regarding constraint
satisfaction and optimization performance. Additionally, statistical tests
show that multiple specific environment design decisions consistently
outperform their respective alternatives across the five benchmark prob-
lems, suggesting some generality of the results on how to optimally design
RL-OPF environments. Altogether, the proposed OPF-Gym framework
is the most advanced benchmark for reproducible RL-OPF research, and
the proposed HPO-based environment design methodology is the first

general approach to automated RL environment design.

“https://github.com/Digitalized-Energy-Systems/opfgym

https://github.com/Digitalized-Energy-Systems/opfgym

Zusammenfassung

Das Problem des Optimal Power Flow (OPF) ist eines der wichtigsten
beschréankten Optimierungsprobleme in der Energieforschung. In den let-
zten Jahren haben sich neuronale Netze und Deep-Learning-Algorithmen
als vielversprechender neuer Ansatz zur Anndherung des OPF her-
ausgestellt, insbesondere hinsichtlich der Losungsgeschwindigkeit und
Echtzeitfdhigkeit. Deep Reinforcement Learning (RL) scheint besonders
vielversprechend zu sein, da RL weder Ground-Truth-Daten noch Domé-
nenwissen erfordert. Stattdessen wird das problemspezifische Fachwissen
in der RL- Umgebung gekapselt, die als Problemdarstellung dient. Die
vorhandene Literatur zeigt jedoch einen Mangel an OPF-Benchmark-
Umgebungen und etablierten Methoden zur Gestaltung optimaler RL-
Umgebungen. Um die Grundlage fiir reproduzierbare und vergleich-
bare RL-OPF-Forschung zu schaffen, stellt diese Arbeit zunichst OPF-
Gym*® vor, ein Python-Framework fiir OPF-Umgebungen, das fiinf ver-
schiedene OPF-Benchmark-Umgebungen umfasst. Zweitens schligt diese
Arbeit als allgemeine Methodik fiir das Design von RL-Umgebungen
vor, das Umgebungsdesign als Optimierungsproblem zu betrachten, in-
dem das Hyperparameter-Optimierungs-Framework (HPO) und seine
bestehenden Optimierungsalgorithmen genutzt werden. Bei der Anwen-
dung auf die fiinf Benchmark-Umgebungen iibertrifft der HPO-basierte
Ansatz durchweg ein manuell aus einer Vorstudie abgeleitetes Design
hinsichtlich der Erfiillung von Beschrankungen und der Optimierungsleis-
tung. Dariiber hinaus zeigen statistische Tests, dass mehrere spezifische
Design-Entscheidungen bei den fiinf Benchmark-Problemen durchweg
besser abschneiden als ihre jeweiligen Alternativen, was auf eine gewisse
Allgemeingiiltigkeit der Ergebnisse hinsichtlich des optimal Designs von
RL-OPF-Umgebungen hindeutet. Insgesamt ist das vorgeschlagene OPF-
Gym-Framework der fortschrittlichste Benchmark fiir reproduzierbare
RL-OPF-Forschung, und die vorgeschlagene HPO-basierte Methodik fiir
das Umgebungsdesign ist der erste allgemeine Ansatz fiir das automa-

tisierte RL-Umgebungsdesign.

“https://github.com/Digitalized-Energy-Systems/opfgym

https://github.com/Digitalized-Energy-Systems/opfgym

Acknowledgement

I want to thank everyone who has supported me over the last six years
and helped me to bring this doctoral project to a successful conclusion.
I am especially grateful to Prof. Astrid Niefle for her support and su-
pervision throughout the whole project. She has always been supportive
of new ideas, even allowing me to pursue a topic outside of her primary
research focus, for which I am truly grateful.

Many thanks also to my second examiner, Prof. Minghua Chen, especially
for traveling all the way to participate in my disputation.

Thanks to Prof. Oliver Kramer for chairing the examination board and
for all the fruitful discussions in our office.

So many thanks to all my colleagues at EI/DES and PSI who have
accompanied me over the years in Hannover and Oldenburg. Thank you
for the discussions, your support, and the great time together, especially
to Rico, Stephan F., Paul Hendrik, Emilie, Julia, Jens, Torge, Stephan
B., Lasse, Sasha, Malin, and Nils.

Special thanks to Prof. Richard Hanke-Rauschenbach, who took the time
to discuss the possibility of pursuing a doctorate with me one evening
in Hannover. In the aftermath of that conversation, he introduced me to
Astrid, which started my whole doctoral journey.

Thanks to Nika for her essential role in my disputation.

My biggest thanks go to my partner Verena. She always supported me
with lots of love, but also gentle reminders to get the thing done. I do
not know if I would have made it without you. I love you!

Thank you all so very much!

Contents

Acronyms xiii
List of symbols XV
Related Publications xix
1 Introduction 1
1.1 Motivation 1
1.2 Research Questions L L 2
1.3 Thesis Structure 4
2 Fundamentals 7
2.1 Optimal Power Flow 7
2.2 Machine Learning and Deep Learning 10
2.3 Reinforcement Learning oL 12
2.4 Standard Reinforcement Learning Algorithms 14
2.4.1 Deep Deterministic Policy Gradient (DDPG) 15
2.4.2 Soft Actor-Critic (SAC) 16
2.5 Hyperparameter Optimization 17
3 Related Work 19
3.1 Optimal Power Flow With Reinforcement Learning 19
3.2 Optimal Power Flow With Supervised and Unsupervised Learning 21
3.3 Related Benchmark Environments and Frameworks 22
3.4 Environment Design for Reinforcement Learning 23
3.5 Summary and Research Gaps 26
4 Characteristics of the OPF as RL Problem 29
4.1 Reinforcement Learning in Comparison to Conventional Solvers and Meta-
Heuristics o 29

4.2 Challenges and Chances of the RL-OPF 32

5 OPF-Gym Environment Framework and Benchmarks 35

5.1 Utilized Open-Source Frameworks 36
5.2 The OPF-Gym Framework 37
5.3 Features and Limitations of OPF-Gym 40
5.4 Environment Design Space L. 41
5.4.1 Reward Function oo 42
5.4.2 Training Data Distribution 44
5.4.3 Observation Space e 46
5.4.4 Episode Definition Lo 47
5.4.5 Action Space 48
5.4.6 Overview of the Design Space 49
5.5 Implemented Benchmark OPF Environments 50
5.5.1 Voltage Control (VoltageControl) 52
5.5.2 Economic Dispatch (EcoDispatch) 53
5.5.3 Reactive Power Market (QMarket) 53
5.5.4 Maximize Renewable Feed-in (MaxRenewable) 54
5.5.5 Load Shedding (LoadShedding) 55
5.5.6 Overview of Benchmark Environments 55
6 Automated Design of RL-OPF Environments 57
6.1 Approach 57
6.1.1 Environment Design as a Multi-Objective Hyperparameter-Optimization
Problem 58
6.1.2 Evaluation Metrics L o 58
6.1.3 Experimentation L oo 60
6.1.4 Environment Design Space, 61
6.1.5 Baseline Environment Design 62
6.2 Performance Evaluation 63
6.2.1 Economic Dispatch oo 63
6.2.2 Load Shedding Environment 64
6.2.3 Remaining Environments o000 64
6.3 Environment Design Evaluation 65
6.3.1 General OPF Environment Design 66
6.3.2 Specific Environment Design 68

6.4 Verification of Optimized Designs 70

7 Discussion
7.1 Research Questions and Findings
7.2 Limitations and Outlook

8 Conclusion

A Appendix
A.1 Hyperparameter choices

A.2 Detailed Pareto fronts from the automated design.

A.3 Detailed statistically significant design decisions
List of Figures
List of Tables

Bibliography

75
75
77

81

83
83
83
85

87

89

91

Acronyms

DDPG Deep Deterministic Policy Gradient. 14-17, 19-21, 30, 60, 70, 72, 83, 87, 89
DNN Deep Neural Network. xv, 1, 2, 10-12, 14, 15, 22, 29, 30, 32, 47, 56

DRL Deep Reinforcement Learning. 14-17, 20
EHV Extra-High-Voltage. 37
GNN Graph Neural Network. 20-22

HPO Hyperparameter Optimization. iii, v, xix, 17, 18, 24, 5860, 6365, 71, 76-78, 84, 85,
87, 88

HV High-Voltage. 53, 54, 56

L2RPN Learning to run a power network. 23

LV Low-Voltage. 37

MDP Markov Decision Process. xv, 12, 13, 20, 36

MINLP Mixed Integer Non-Linear Programming. 7

ML Machine Learning. xvi, xx, 1, 3, 4, 10, 17, 21-23, 26, 29-31, 33, 44, 56, 78
MLP Multi-Layer Perceptron. 10, 11, 87

MV Medium-Voltage. 52, 53, 56

OPF Optimal Power Flow. iii, v, xvii, xix—xxi, 1-4, 7-9, 19-23, 26, 27, 29, 31-35, 3744,
47-53, 55-60, 65, 66, 68, 7578, 81, 82, 89

POMDP Partially-Observable MDP. 31

PPO Proximal Policy Optimization. 19-21, 60

ReLU Rectified Linear Unit. 10
RES Renewable Energy Systems. 1, 9, 10, 21, 37, 54

RL Reinforcement Learning. iii, v, xv—xvii, xix—xxi, 2—4, 12-16, 19-27, 29-49, 51, 52, 5560,
62, 64, 66, 69-73, 75-79, 81, 82, 89

RQ Research Question. 2-5, 29, 35, 37, 57, 75-77, 87
SAC Soft Actor-Critic. 14, 16-18, 20, 21, 30, 60, 71, 72, 83, 87, 89

TD Temporal Difference. 15

TD3 Twin-Delayed DDPG. 19-21

List of symbols

€< 3 9 T 3 T > > D2 WO

o)

s

Q

o ST

Temperature parameter in SAC. 16-18

Weight of the penalty in the reward function. 43
Discount factor in RL. 12, 13, 15, 16
Parameters of a DNN. 15-17

One hyperparameter configuration. 17
Hyperparameter search space. 17, 18

Mean of a Normal distribution. 45

The policy of an RL algorithm. 12-18

Initial state distribution in MDPs and RL. 12
Standard deviation of Normal distribution. 45
Soft target update parameter. 15

Weight of the objective function in the invalid case..
43

Share of invalid solutions in test dataset. 59

Action space in RL. 12-14
Action in RL. 12-18, 42-44, 48, 49

Branches (lines and transformers). 51
Bias vector. 11

Bias of a Neuron. 10

Brach index (lines and transformers). 51

Estimated generalization error. 17, 18

Finite dataset. 45
Replay buffer in RL. 16, 18

Generator index. 52-54

H Entropy. 16, 17
h Output of a single Neuron. 10, 11

I Buses. 50
) Bus index. 50

AJ Mean error of valid objective values compared to a
baseline. 59

J Objective function. xvi, 13, 16, 42—44, 52-55, 59

o~

Load index. 55
Loss in ML. 15, 17

~

Number of samples. 59
Noise function. 16
Normal distribution. 45

z =z =

Active power vector. 52-55
Active power. 48, 49, 51-56
Penalty function. 42-44
Transition probabilities in RL. 12
Market price vector. 53-55
Market price. 53, 55

T T wvv@

Reactive power vector. 52-55
Reactive power. 51-54, 56
Action-value or Q-value in RL. 13-17

OO0 O

R Reward Function in RL. 12, 13
r Reward in RL. 12, 13, 15, 16, 18, 42-44

S Apparent power. 51, 52

S State space in RL. 12-14

S Environment state in RL. 12-18, 42-45, 49
s Storage system index. 54, 55

T Episode length in RL. 13, 16, 18
Current step. 13-18, 55

~+

Uu Uniform distribution. 45
Voltage in a power grid. 50
U Control variable in the OPF. 7

a

Vv State-value in RL. 13

Weight matrix of a neural network. 11

=

Weight vector of a neural network layer. 10

Input matrix. 11

Observation space in RL. 52-55
Input vector of a neural network. 10
Observation in RL. 14

System state variable in the OPF. 7

BB X M

Y Target value in RL. 15, 16

E Expectation of a random variable. 13, 15-17
* Indicates optimality. 13, 14, 17, 59

Indicates a target network. 15

Related Publications

WITHIN THE ScoPE OF THIS WORK

The following publications directly contributed to this thesis and are either early results

and findings or peer-reviewed dissemination of the final results of this work.

Learning the Optimal Power Flow: Environment Design Matters, 2024, first
author [1]: This work investigates the importance of environment design for learning
the OPF with RL. Various environment design options from the literature are discussed,
implemented, and compared. The results demonstrate that the environment design can have
a drastic impact on RL training performance. However, the experiments were performed for
only two RL-OPF environments, from which we cannot derive general conclusions. Further,
the approach is not suited to derive general recommendations on how high-performing
environments should be designed. The results of this work mainly served as a pre-study

for the proposed automated environment design in chapter 6 of this thesis.

Environment Design for Reinforcement Learning: A Practical Guide and
Overview, 2024, first author (Whitepaper, not peer-reviewed) [2]: This work
provides an overview of RL environment design, for which the literature is very limited.
In the whitepaper, a first definition of RL environment design is given, the design cate-
gories reward, observation, action, episode, and data are identified, and various practical
guidelines are provided on what to consider during RL environment design. Most of the

recommendations are lessons learned during the work on this thesis.

A General Approach of Automated Environment Design for Learning the
Optimal Power Flow, 2025, first author [3]: This work extends the pre-study in
[1] and proposes automated RL environment design by applying the HPO framework to
the problem. By the example of five different RL-OPF environments, the publication shows
that the HPO-based approach outperforms the manually derived environment design from
[1] and identifies various design decisions as especially relevant for overall performance,
some of which were not discussed in literature before. The methodology and results have

mainly been processed in chapter 6 of this thesis.

OPF-Gym Environment Framework + Software Paper, 2025, first author (ver-
sion 1.0 published, paper submission planned) [4]: This planned software pa-
per intends to present the open-source OPF-Gym benchmark framework that was developed
for this thesis. It demonstrates how OPF-Gym can serve as a RL-OPF performance bench-
mark, allows for almost arbitrary OPF formulations, and enables systematic environment

design studies. This work will disseminate and supplement chapter 5 of this thesis.

RELATED TO THIS WORK

While the previous publications directly contribute to this thesis, multiple related publi-

cations also resulted in valuable insights for this work.

Towards modular composition of agent-based voltage control concepts,
2019, first author [5]: This publication re-implements and combines multiple agent-
based voltage control approaches from the literature to achieve modularity and plug-
and-play capability. Two main lessons were derived from this work: First, instead of
handcrafting voltage control rules, voltage control can be seen as a special case of the
OPF problem, enabling us to utilize various existing algorithms and literature. Second,
the re-implementation of existing strategies from the literature proved very challenging,
emphasizing the importance of reproducibility of research outcomes. This way, the work on
this publication motivated the step to the OPF problem and the creation of open-source

benchmarks to improve reproducibility and comparability of research.

Reactive Power Markets: A Review, 2022, first author [6]: This work provides
a comprehensive literature overview on reactive power markets. Reactive power markets
are relevant for this work since they are commonly modeled as OPF problems. One of the
benchmark RL-OPF problems presented in this work is a reactive power market problem
(see 5.5.3), which was created based on the knowledge gained from the research done for

this review paper.

Design and evaluation of a multi-level reactive power market, 2022, co-
author [7]: This work originated from the supervision of a student’s master’s thesis. We
propose a hierarchical reactive power market that enables multiple grid operators to solve
the required OPF together without exchanging grid information. The general approach is
transferable to non-reactive-power-market OPF problems and compatible with ML-based
OPF approximations, as done in this work. It also demonstrates how conventional OPF

solvers reach their limits for large-scale systems.

Towards reinforcement learning for vulnerability analysis in power-economic
systems, 2021, first author [8]: In this work, an RL agent is trained to maximize
profit on a reactive power market. The main purpose was to show how RL can be used
to find harmful but profitable strategies in energy markets. However, since the market is
modeled with an OPF, this scenario also provided a good example of a use case where an
OPF was required to be solved millions of times. With conventional approaches, this is
computationally very heavy and motivates this thesis in its attempt to create faster OPF

solvers.

Approximating energy market clearing and bidding with model-based re-
inforcement learning, 2024, first author [9]: Building on the previous work,
multi-agent RL was used to train multiple participants for optimal bidding behavior in an
energy market environment. The energy market is represented by an OPF, which would be
computationally heavy with conventional OPF approaches, as discussed before. Following
the same approach as in this thesis, the OPF was solved with RL-trained neural networks.
Further, domain knowledge was used to improve training performance. However, the OPF
solving was not the research priority and was only used as a means to an end to speed up

training of the multi-agent RL approach.

Ten Recommendations for Engineering Research Software in Energy Re-
search, 2025, co-author [10]: This publication focuses on software engineering for
energy research software and provides guidelines for energy research software develop-
ers. The OPF-Gym framework created for this thesis was developed and published with
these guidelines in mind. Further, the lessons learned from the OPF-Gym development

contributed to the writing of the paper, and vice versa.

Introduction

1.1 MoTIVvATION

Due to increasing penetration with Renewable Energy Systems (RES) and slow grid expan-
sion, electric power grids are more and more operated close to their physical capabilities
[11]. To compensate for a lack of grid expansion and save potentially billions of euros
[12], the power system must be operated closer to its mathematical optimum. The general
framework for optimizing power grid states is the Optimal Power Flow (OPF), which aims
to determine the cost-minimal power flows, subject to various constraints. However, espe-
cially for more complex variants of the OPF, conventional solvers are very slow [13], which
becomes a problem if OPF solutions are required in high frequency, for various different
situations [8], or in real-time [14]. In practice, slow OPF solvers become an issue in two
different scenarios: First, when operating a real-world power grid by repeatedly solving the
OPF in real-time [11, 13]. Second, when the OPF needs to be solved in-the-loop over a
long time horizon and/or various use cases [1, 8], for example, when researching long-term
future energy scenarios with the help of large-scale simulations. Consequently, an increasing
share of literature focuses on the development of fast and real-time capable OPF solvers,
which can replace or augment the conventional approaches (see related work section 3).

One emerging approach to speed up the OPF is to use Machine Learning (ML) to
train Deep Neural Networks (DNNs) to solve the OPF. DNNs are promising because,
after successful training, only a series of matrix multiplications are required to map from
the unoptimized grid state to the optimal actuator setpoints. That is computationally
fast, easy to parallelize, and deterministic without any convergence issues, which are good
preconditions for real-time capability. Additionally, large DNNs can deal very well with
local minima [15], which remain a big problem for conventional solvers [11]. That trait
makes it possible that DNN-based approaches may even outperform conventional solvers
in the long-term.

DNNs can be trained to solve the OPF by using any of the three general ML paradigms:
supervised learning, unsupervised learning, or reinforcement learning [16]. Supervised learn-

ing is the most frequently used literature approach for the OPF [17]. However, supervised

2

| INTRODUCTION

learning requires ground-truth data, which is a big disadvantage because it requires mas-
sive usage of conventional solvers for training data generation [13, 18]. Further, Huang
et al. [16] demonstrated that non-globally-optimal training data may deteriorate training
performance disproportionally. However, to generate training data for supervised learning,
conventional solvers are required, which cannot guarantee globally optimal solutions in
most cases [11].

Unsupervised learning usually aims to reveal structure in the training data, which is why
it is not the obvious choice for solving an optimization problem. The existing approaches
[16, 19, 20] utilize lots of domain knowledge, which can improve performance but limits
the generality of the approaches.

Reinforcement Learning (RL) aims to learn an optimal mapping from state represen-
tations to actions by maximizing a reward signal from trial-and-error actions. Since the
actuator setpoints in the power grid can be modeled as actions and the reward signal can
represent the objective function and the constraints of the OPF, RL is a natural choice for
the OPF [14, 21, 22].

The RL framework consists of two components: the agent and the environment. The
environment is a representation of the problem, in this case, the OPF problem. Most
domain knowledge is encapsulated in the environment. The agent, on the other hand, aims
to find the optimal strategy to solve the given problem by interacting with its environment.
Therefore, both components need to be explored to train DNNs to solve OPF problems.
While there are several advanced approaches for the agent side of learning the OPF with RL,
e.g. [23, 24, 25|, the environment representation of the OPF problem remains completely
unexplored. That is not only true for the RL-OPF literature but also for the RL literature in
general [26], although it was shown several times that the environment design significantly
impacts overall training performance [26, 27, 28, 29, 30], indicating an important research
gap. Hence, the focus of this doctoral thesis will be on RL environment design for learning
the OPF.

1.2 RESEARCH QUESTIONS

The goal of this thesis is to explore the importance of environment design for solving the
OPF with RL. Hence the overall guiding Research Question (RQ) is:

General RQ: What is the importance of RL environment design for solving the

OPF with RL, regarding both optimization performance and constraint satisfaction?

1.2 RESEARCH QUESTIONS |

This general research question can be split into three subordinate research questions, as

discussed in the following:

RQ1: OPF as an RL Problem Considering that the environment serves as an OPF
problem representation, the first step is to understand the intricacies of the OPF as an
RL problem. This is also necessary to understand in which use cases RL can, should, and
should not be applied to the OPF problem:

RQ1: What are the characteristics, difficulties, and chances of the OPF as an RL

problem formulation?

Here, it is important to differentiate between different OPF variants and their specific
requirements. Further, a comparison with established OPF solvers is required to understand
where RL can become a useful tool in the toolbox. Finally, it is important to determine
the particularities of the OPF as an RL problem since this is an important requirement

for designing the RL environments and also choosing suitable RL algorithms later on.

RQ2: Benchmark Environments As discussed before, the OPF problem formulation

is completely encapsulated in the RL environment. A common approach in ML research

to make research reusable, reproducible, and comparable is to establish open benchmarks.

For learning the OPF, such benchmarks are still mostly missing [17]. However, considering
that the environment representation of the OPF is the main focus of this thesis, such

benchmarks are strictly required. Hence RQ2:

RQ2: How should a benchmark framework for OPF environments look like that
ensures reproducible and comparable research with fixed benchmarks but also degrees

of freedom for systematic environment design?

Here, it is important to deal with two conflicting goals. On the one hand, we need a
static benchmark so that research publications using that benchmark are comparable with
each other over various use cases and possibly multiple years. On the other hand, it is
unclear in advance what the optimal environment design should look like. In other words,
the benchmark environments are not only a remedy for research but also a research subject
itself. Hence, when creating an OPF benchmark environment, it is important to differentiate
between the OPF problem to solve, which needs to stay unchanged for comparability, and
the specific RL environment design, which is subject to research and a degree of freedom

for environment design, which will be focus of the next RQ.

3

4

| INTRODUCTION

RQ3: Environment Design As discussed before, we need to find an optimal environ-

ment representation of the OPF problem that is beneficial for overall performance.

RQ3: How to formulate OPF problems as RL environments for maximum learning
performance, including constraint satisfaction, optimization performance, and learning

speed?

Considering that environment design is not only an unsolved problem for the OPF
but in RL research in general, it is important to develop a general methodology that is
broadly applicable to all kinds of RL environment design problems. Further, automated
optimization-based approaches should be preferred over manual ones to reduce engineering
effort, but also to achieve better performance and for better integration with existing RL

workflows.

1.3 THESIS STRUCTURE

This thesis is structured as follows. Chapter 2 provides the fundamentals to the OPF
problem and the RL framework. Chapter 3 identifies multiple research gaps in the literature
by discussing related works that apply RL and ML to the OPF, relevant RL environment
frameworks and benchmarks, and general literature on RL environment design. Afterward,
the thesis is structured along the previously presented Research Questions. Chapter 4
investigates RQ1 by discussing the overall characteristics of the OPF as an RL problem.
Chapter 5 tackles RQ2 by presenting the developed RL-OPF framework OPF-Gym, which
contains fixed benchmarks but also degrees of freedom for systematic environment design.
Chapter 6 considers RQ3 by presenting and verifying an automated optimization-based
approach to RL environment design. Finally, chapter 7 provides a discussion of this thesis’
approach, its overall contribution, and the answers to the earlier RQs. Chapter 8 ends the
thesis with an overarching conclusion.

Figure 1.1 shows the resulting thesis structure. It demonstrates how chapters 4 to 6
directly tackle the RQs 1-3, respectively, how chapters 2 to 5 all serve as a foundation to
create the OPF-Gym framework, and how OPF-Gym is used to implement and evaluate

the environment design methodology in chapter 6.

RQs

Chapters

1.3 THESIS STRUCTURE |

Artifacts

1. Introduction

2. Fundamentals

3. Related Work

4. Characteristics

5. Framework &
Benchmarks

6. Environment
Design

7. Discussion

8. Conclusion

RL-OPF
Framework

Benchmark
Problems

Env. Design
Options

Figure 1.1: Overall thesis structure, including RQs, chapter structure, and resulting research

artifacts.

5

2 Fundamentals

2.1 OptimMmAL PoOwER FLOW

The OPF is an umbrella term for optimization problems that include the power system
equations in the constraints. In its general form, the OPF can be represented in the

following way: [11]

min f(u,x)
s.t g(u,x) =0 (2.1)
h(u,z) <0

with the objective function f, the equality constraints g, the inequality constraints h, the
control variables u, and the non-controllable state variables x. In its general form, the
OPF is a large-scale, non-linear, non-convex optimization problem that often contains both
discrete and continuous control variables [11]. Therefore, without simplifying assumptions,
it requires an Mixed Integer Non-Linear Programming (MINLP) formulation. One very
common simplification is the DC-OPF, which is a linearization of the general AC-OPF
case [11]. However, this work will only focus on the general AC-OPF since overly simplified
OPF formulations are considered to be harmful to grid efficiency nowadays [12].

Because of its very general definition, the OPF can be used to model and solve a variety

of problems in power system optimization, for example:

¢ Constrained Economic Dispatch to meet the active power demand at minimal

costs without inducing any constraint violations [11] .

e Optimal Voltage Control to minimize voltage deviations and active power losses

in the system [31]. Usually formulated as an optimal reactive power dispatch [32].

« Reactive Power Markets to find the cost-minimal reactive power procurement,

usually to perform voltage control [6].

e Topology Control to optimize power flows by adjusting the grid topology with

binary switches as actuators [32].

8

| FUNDAMENTALS

¢ Unit Commitment to schedule future generation subject to system constraints

and operating constraints of generators [11].

Additionally, all these problems can also be combined to be solved at the same time.
However, it is more common to treat them as separate problems [33]. Comprehensive lists
of typical objectives, constraints, and control variables can be found in [11].

In addition to the various kinds of possible objective functions, constraints, and control
variables, an increasing amount of requirements is placed upon OPF solvers, which results

in more advanced and difficult-to-solve OPF variants:

¢ Stochastic OPF: The stochastic OPF considers the increasing uncertainty of the
power system state by incorporating random variables, for example, to consider

(potentially erroneous) generation forecasts and stochastic loads. [34]

¢ Security-Constrained OPF': In addition to the standard constraints, the security-
constrained OPF aims to ensure constraint satisfaction in case of contingencies.
That is often done using the n — 1 criterion, which means that all constraints must
be satisfied for all potential single contingencies in addition to the base case. The

objective is still to minimize the objective function of the base case. [32]

o Risk-Based OPF': The strict enforcement of security constraints may lead to signif-
icant additional costs, even though some contingencies are very unlikely to happen.
The risk-based OPF incorporates contingency probabilities to find a trade-off be-
tween system security and efficiency, which is also common practice for transmission

system operators. [32]

e Multi-Stage OPF': Consideration of ramp constraints, line switching, or storage
system actuators often requires the OPF to be solved over multiple time steps. In

that case, the constraints must be satisfied in all time steps. [34]

o Distributed OPF: Usually, the OPF is seen as a centralized planning tool [11].
However, an increasing amount of literature aims to solve the OPF in a distributed
fashion for incorporation of multiple players (e.g. multiple grid operators), for im-

proved resilience, or better computational feasibility in large-scale problems [34].

¢ Real-Time OPF: The real-time OPF aims to ensure real-time capability, which
is required for intraday markets and when the OPF solution is intended to be used
to directly control and optimize the power system. Important requirements for the

real-time OPF are fast convergence and that all intermediate solutions are valid. [11]

2.1 OPTIMAL POWER FLOW |

Again, all these more difficult cases can be combined, which makes the OPF problem
arbitrarily difficult to solve, especially when applied to large-scale systems. Stott and Alsac
[33] even conclude that useful theories of global optimality will likely never happen for
non-trivial and realistic OPF problems.

Solution methods to the OPF can be classified into three general categories:

o Classical (deterministic) optimization like the interior point method, Newton’s
method, or the Simplex Method are used conventionally. They are fast and can
provide optimality guarantees in case of convexity. However, they have difficulties
dealing with discrete variables and non-convex problems, require continuity and

differentiability of the objective function, and are sensitive to initial conditions. [11]

e Meta-heuristics like evolutionary algorithms or particle swarm optimization are
able to deal with most of these problems. They can theoretically converge to globally
optimal solutions (given infinite time), can easily deal with discrete variables, and do
not rely on continuity or differentiability of the objective function. However, they are
significantly slower, often struggle with local optima, and have difficulties enforcing

constraints. [35]

o Data-driven methods are the most recent development for solving the OPF. They
have similar characteristics to meta-heuristics. They are well suited for stochastic
problems and are often able to solve problems where the exact problem definition
is unknown. They require a single computationally heavy training phase before
deployment. After that, they are significantly faster than both previously mentioned
approaches. [36]

Further, different categories can be combined into hybrid approaches, which aim to combine
the advantages of multiple methods [35].

Overall, there is no single solution yet existing to solve the entirety of OPF variants all
at once. Instead, OPF algorithms are usually tailored for specific use cases [33, 11]. Solving
the OPF became even more difficult in recent years for various reasons. The increasing
share of RES results in significantly more degrees of freedom and more stochasticity. The
same is true for the increasing demand response capabilities [36]. Additionally, RES and
demand response require stronger incorporation of the distribution systems, which were
often neglected for OPF research in the past [36]. Further, market clearing happens at
increasingly shorter time scales [11]. Finally, new devices like FACTS devices are more
difficult to incorporate and complicate the OPF application [11].

Additionally, the OPF becomes more and more important for grid operation and sim-

ulation. The OPF is increasingly central to the secure operation of energy markets [33].

9

10

| FUNDAMENTALS

Further, the expansion of RES and other distributed energy resources outpaces the required
grid expansion in most countries, which necessitates more close-to-optimal operation of

the existing infrastructure [11].

2.2 MACHINE LEARNING AND DEEP LEARNING

The following overview on ML is mainly based on the work of Géron [37], except where
explicitly referenced otherwise.

ML is the science of building machines that can learn from data to fulfill some task. ML
is usually classified into three general paradigms [38]: supervised learning, unsupervised
learning, and reinforcement learning. In supervised learning, the training dataset is labeled,
containing inputs and desired outputs. The goal is to find a function that maps from
inputs to outputs so that it generalizes to unseen data. In unsupervised learning, the
dataset consists of only inputs, i.e., it is unlabeled. The goal is usually to uncover structure
and relationships within the data, for example, correlations, outliers, or lower-dimensional
representations of the input data. In contrast to supervised and unsupervised learning,
reinforcement learning does not have a pre-defined dataset but actively collects data by
trial-and-error interaction with an environment that represents the problem to solve. The
goal is to maximize performance regarding the given problem. Reinforcement learning will
be described in more detail in section 2.3.

For complex problems with high-dimensional input and output data, modern ML algo-
rithms often utilize DNNs for function approximation. DNNs are inspired by the human
brain and work as general function approximators [39]. The most basic DNN architecture
is the Multi-Layer Perceptron (MLP), which will be presented in the following.

The MLP consists of multiple sequential layers of so-called Neurons. A Neuron receives
an input vector, performs a non-linear differentiable operation on that input, and outputs
a scalar value. The Neuron computes a weighted sum of the inputs x, adds a bias b, and

applies an activation function to the output.
h (x) = activation (xTw + b) (2.2)

A Neuron can be trained by tweaking the weights w and the bias b to move the output in
the desired direction by using gradient descent. The activation function is required to learn
non-linear functions. It needs to be differentiable. Common activation functions are the
sigmoid function, the hyperbolic tangent function tanh, the Rectified Linear Unit (ReLU),
and variations of it [40].

A full MLP consists of multiple sequential layers of Neurons, as visualized in Figure 2.1.

2.2 MACHINE LEARNING AND DEEP LEARNING |

Hidden Layer

Input Layer Output Layer

\

Weight
Neuron

Figure 2.1: Visualization of an MLP neural network.

The first layer is called the input layer, followed by multiple hidden layers, and a single output
layer. This stacked architecture with potentially billions of weights is fully differentiable
and can serve as a general, continuous, non-linear function approximator. Computing the
output of an MLP works equivalently to that of the Neurons it consists of, only replacing

vector notation with matrix notation:
h (X) = activation (XW + b) (2.3)

This calculation can be performed sequentially layer by layer to compute the output of the
DNN, always using the output of the previous layer as input to the next one. Since every
single operation is differentiable, the whole network is differentiable and can be trained
with gradient descent and backpropagation.

Backpropagation is the algorithm to compute the gradients of a multi-layered DNN. It

consists of a Forward-Pass, a Backward-Pass, and a gradient descent step: [37]

1. Forward-Pass: The output is computed for the given input data and all intermediate

results of all Neurons are stored.

2. Backward-Pass: The error of the output relative to some target output is computed
by using a problem-specific loss function. Then, a derivation is performed to compute
the gradients of the weights with regard to the loss. That happens by going through
the layers backwards using the chain rule of derivatives. In other words, the error is

backpropagated through the network, hence the name backpropagation.

11

12

| FUNDAMENTALS

-~

Environment

Reward r

Observation o Action a

v

Figure 2.2: The Reinforcement Learning framework.

3. Gradient-Descent: Finally, a gradient descent step is performed by using the computed

gradients to optimize all the weights for loss minimization.

These three steps together form one backpropagation training step. Training steps are
usually performed mini-batch-wise by performing all operations for n inputs together and
averaging the loss. This enables the efficient use of matrix operations and parallelization
and also smoothes the training process with regard to outliers. Due to the many matrix

operations, DNN training profits significantly from GPU usage instead of CPUs.

2.3 REINFORCEMENT LEARNING

The following overview on RL is mainly based on the standard work of Sutton and Barto
[41], except where explicitly referenced otherwise.

In RL, an agent observes its environment, manipulates that environment’s state s with
actions a, and receives a scalar reward r that indicates the quality of the action in the
given state. This happens sequentially, and the goal is to learn a policy that maximizes
the total sum of rewards. The interaction process is visualized in Figure 2.2.

The following paragraphs introduce multiple key components of modern RL algorithms

and environments, which will often be referenced later in this thesis.

Markov Decision Process RL problems are usually formalized as incompletely known
Markov Decision Processes (MDPs). MDPs are defined by a tuple (S, A, v, R, P, p), with
the state space S, the action space A, the discount factor 0 <y < 1, the reward function
R, the state transition probabilities P, and the distribution of initial states p. The goal is

to find an optimal policy 7(a|s) that maps from states s to probability distributions over

2.3 REINFORCEMENT LEARNING |

actions a in a way that maximizes the expected sum of discounted rewards, called return.
0
J(ﬂ-) =E Z ’YtR(Stv ag, St+1) (24)
t

where E [-] denotes the expectation of a random variable. The discount factor + is required
here to prioritize short-term rewards over long-term rewards and also to prevent an infinite
expected return for infinite-horizon problems.!

However, in RL, the agent does not have full access to all information in the MDP
definition. Usually, we assume that the agent knows the action space A, the state space
S, and the discount factor v but does not know the environment dynamics or the re-
ward function. Therefore, the agent must collect data about rewards and dynamics by
trial-and-error interaction with the environment. In other words, the agent explores its
environment. Since exploration requires selecting non-optimal actions, RL inherently faces
an exploration-exploitation trade-off. The agent aims to maximize reward (exploitation)
but needs to perform non-optimal actions (exploration) to understand the environment

dynamics required for reward maximization.

Value Function An important concept in RL is the value function, which is used to
estimate the expected return of a given state or action. This way, value functions can be
used for decision-making and learning. The state-value function V is the expected return

when applying policy 7 from state s onwards.
oo
Ve(s)=E [Z Yore et | ;| VseS (2.5)
k=0

Closely related, the action-value function or @Q-value function denotes the expected return

of taking action a in state s and following policy 7 thereafter.
(0.9}
Qr(s,a) =E [Z Yorepat | s,a] VseSandVae A (2.6)
k=0

Both kinds of value functions can be estimated from experience following some existing
policy. The optimal policy 7* is defined such that it results in optimal value functions V*
and Q*.

V*(s) = max Va(s)VseS (2.7)

Tt is common practice to use a discount factor even in episodic problems with finite episode lengths of T

13

14

| FUNDAMENTALS

Q*(s,a) = max Qr(s,a)Vse SandVac A (2.8)

States and Observations A common assumption for RL environments is that the
environment’s state fulfills the Markov property, which means that the current state s;
provides all information required for optimal decision making and value estimation.
Until now, we assumed that the agent receives the environment’s state for decision
making. However, in practice, the agent often only receives an observation x, which is a
non-perfect representation of the environment’s state. For example, the observation can be
redundant, incomplete, or noisy [2]. In the ideal case, the observation fulfills the Markov
property as well to allow for optimal decision-making. If that is not the case, the RL
problem is partially observable and requires special RL algorithms since most standard

RL algorithms assume full observability.

On-Policy vs. Off-Policy In RL, we can differentiate between two different classes
of algorithms: On-policy and off-policy. On-policy algorithms can only be trained with
data that was created by the current policy, which means that data needs to be deleted
as soon as the policy changes. In contrast, off-policy algorithms can be trained with data
resulting from any policy. This way, data can be stored and re-used even if the policy
changes. In general, off-policy algorithms are considered to be more sample-efficient, i.e.,
they require fewer environment interactions [42]. In contrast, on-policy algorithms are
usually computationally cheaper on the algorithm side. Therefore, off-policy algorithms
should be preferred if the environment is computationally heavy, and on-policy algorithms

if vice versa.

Deep Reinforcement Learning Conventional RL algorithms like Q-learning [43]
can deal with discrete observation and action spaces but not with continuous or high-
dimensional spaces. Modern RL algorithms utilize DNNs for function approximation, for
example, of the value function or the policy. These algorithms are then called Deep Rein-
forcement Learning (DRL) algorithms and can deal with high-dimensional and continuous

observation spaces [44] and action spaces [45].

2.4 STANDARD REINFORCEMENT LEARNING ALGORITHMS

The following section will present two standard DRL algorithms used in this work, namely,

the DDPG and the SAC algorithm. Both can learn policies with continuous actions and

2.4 STANDARD REINFORCEMENT LEARNING ALGORITHMS |

are sample-efficient off-policy RL algorithms.

2.4.1 Deep Deterministic Policy Gradient (DDPG)

The Deep Deterministic Policy Gradient (DDPG) algorithm by Lillicrap et al. [45] is the
base DRL off-policy algorithm for continuous action spaces. DDPG utilizes the actor-
critic architecture, where the actor represents the policy and the critic approximates the
Q-function. Both are usually represented by DNNs.

The critic Q(sy,a;) with parameters % serves as a tool to train the actor 7(a). The
critic uses Temporal Difference (TD)-learning to predict the action-value @) by minimizing
the loss [<0Q>:

L(09) =E[(@Q (51, ail6) —)] (2.9)
with the target value y:

yr = r(se, ar) +7Q (8t+1,7T(8t+1) | 9Q) (2.10)

This way, the critic is recursively trained to estimate how good an action is in a given state.
The procedure of using the critic itself for target prediction is called bootstrapping.
The actor training utilizes the estimation capability and the differentiability of the critic

network by maximizing the expected Q)-value with the following loss function:

1(07) = —Q (s, 7(st)) (2.11)

However, this training procedure is only stable when utilizing two ideas from Mnih et
al. [44]. First, note that the targets for @ in (2.10) depend on @ itself, which results in
unstable @) updates. As in [44], DDPG uses target networks @' and 7’ of the critic and
actor for target prediction. The target networks are constrained to move slowly by using

soft updates from the main networks, which stabilizes optimization:
0 10+ (1—1)0 (2.12)

with 7 << 1. Second, since DDPG is an off-policy algorithm, it can utilize a replay buffer to
store and re-use old training samples. Each new environment transition tuple (s¢, at, r¢, S¢41)
gets stored in the buffer. In each training step, a mini-batch gets sampled from the buffer
to perform the previously described training updates. The replay buffer improves hardware
utilization, training stability, and overall performance.

Combining these ideas results in a deterministic policy that maximizes the expected

15

16

| FUNDAMENTALS

return given the states. To achieve exploration despite having a deterministic policy, noise
is added to the actions when interacting with the environment. Lillicrap et al. proposed
an Ornstein-Uhlenbeck process, however, using a normal distribution is more common

nowadays [46]. Algorithm 1 shows the DDPG algorithm in pseudo-code.

Algorithm 1 Deep Deterministic Policy Gradient (DDPG) [45].

Randomly initialize actor and critic networks.
Initialize actor and critic target networks as copies, respectively.
Initialize replay buffer D.
while Training do
Receive initial environment state sg
fort=0,...,7 do
Select noisy action a; = w(s;) + Ny based on state s;.
Perform action a;: Observe reward r; and new state s;11.
Store transition (s¢, at, 7, S¢+1) in the replay buffer D.
Sample a random mini-batch of transitions from D.
Calculate target values with equation (2.10).
Update the critic network by minimizing the mean loss of equation (2.9).
Update the actor network by minimizing the mean loss of equation (2.11).
Update both target networks according to equation (2.12).
end for
end while

2.4.2 Soft Actor-Critic (SAC)

The Soft Actor-Critic (SAC) algorithm by Haarnoja et al. [42, 47] is an off-policy DRL
algorithm that builds upon DDPG. In contrast to DDPG, SAC uses a stochastic policy.
The idea is to change the RL objective to maximize not only the reward but also the

entropy of actions:

J =

T
E [r(st, at) + aH(m(+]s¢))] (2.13)
=0

t

In other words, the goal is to maximize the return while acting as randomly as possible.
The temperature parameter « serves as a weighting of reward maximization vs. entropy
maximization. Adding the entropy term to the objective function affects the training of

both actor and critic. The target value y of the critic changes to:

= (st a) +9(Q (se41,7(s010) | 02) + aH(x(-Jse1) (214)

2.5 HYPERPARAMETER OPTIMIZATION |

The stochastic actor has two output vectors now, which are interpreted as the mean and

standard deviation of a Normal distribution. The loss function changes to:
W07) = =Q (st,m(st)) — oM (7(:|s141)) (2.15)

It turned out that a fixed temperature parameter « results in brittleness regarding the
scaling of the reward function [47]. A relatively high reward magnitude neglects entropy
maximization, while a small reward neglects reward maximization. Additionally, the mean
reward magnitude is expected to increase during training, which complicates the choice of «
even more. Therefore, Haarnoja et al. added a way to update the o parameter consistently

during training to achieve a minimum expected entropy using gradient descent [47]:
(o) = E [—a log my((sifar)) — aH'™] (2.16)

which increases the weighting in function (2.13) if the current expected entropy is too low
and vice versa.

In addition to entropy maximization, SAC uses the double critic idea [48] to prevent a
positive bias of the critic prediction, which is considered harmful for training performance
[49]. SAC trains two critics independently and uses the minimum of both predictions for
actor and critic training (equations (2.14) and (2.15)), as proposed by [48].

Overall, the discussed changes of SAC relative to DDPG result in improved exploration,
more stable training, robustness regarding hyperparameter choices, and overall significantly
better training performance, which makes it one of the state-of-the-art off-policy DRL
algorithms. Algorithm 2 shows the full SAC algorithm.

2.5 HYPERPARAMETER OPTIMIZATION

The following section provides an overview on Hyperparameter Optimization (HPO). It
mainly summarizes the overview of Bischl et al. [50].

Most ML algorithms have various hyperparameters that substantially influence the
resulting performance, convergence, and learning speed. For example, the learning rate
or the batch size are typical hyperparameters. The goal of Hyperparameter Optimization
(HPO) is to find the optimal hyperparameter setting A* that minimizes the estimated

generalization error ~ ¢(\) of the algorithm on unseen data:
A" € argminycy ~ c()) (2.17)

The hyperparameters A can be selected from the hyperparameter search space A, which

17

18

| FUNDAMENTALS

Algorithm 2 Soft Actor-Critic (SAC) [42, 47].

Randomly initialize one actor and two critic networks.
Initialize critic target networks as copies respectively (no actor target network in SAC).

Initialize replay buffer D.
while Training do
Receive initial environment state sg
fort=0,...,7 do
Sample stochastic action a; = 7(s)
Perform action ay: Observe reward r; and new state s;41.
Store transition (s, at, 7, S¢+1) in the replay buffer D.
Sample a random mini-batch of transitions from D.
Calculate target values with equation (2.14).
Update both critic networks by minimizing the mean loss of equation (2.9).
Update the actor network by minimizing the mean loss of equation (2.15).
Update temperature parameter « according to equation (2.16).
Update critic target networks according to equation (2.12).
end for
end while

contains all n hyperparameters and their ranges:
A=A x Ay x...xA, (2.18)

HPO is usually a blackbox optimization problem and is solved by iteratively proposing
a hyperparameter setting, training the algorithm on a training dataset, estimating the
generalization error ~ ¢ on a validation dataset, which gets repeated until convergence.
The estimation of the generalization error is often noisy, which requires sophisticated
resampling methods like cross-validation [50] to prevent a biased performance estimation.

This results in a computationally expensive blackbox optimization problem. However,
it is consensus that automated HPO should be preferred over manual search. Various
algorithms can be utilized for HPO, for example, simple algorithms like grid search and
random search, or more sophisticated optimization algorithms like Bayesian optimization

or evolutionary algorithms.

3 Related Work

The following chapter presents the related work relevant to this thesis. First, we discuss
various publications that apply RL to the OPF problem, focusing on the current state
of the art and the utilization of standardized benchmarks. The second section presents
selected non-RL approaches to the OPF, focusing on aspects that are transferable to RL
and again reviews the usage of benchmarks. The third section discusses multiple open-
source environment frameworks and standardized datasets that are related to the OPF
and are potentially relevant to this work. Finally, we discuss the state of the art in RL

environment design literature.

3.1 OpTiIMAL POWER FLOoW WITH REINFORCEMENT LEARNING

The following section presents an overview of recent approaches to solve the OPF with
RL. Whenever the authors deviate from using a standard RL algorithm and add advanced
or problem-specific features, it is made explicit to depict the development of the RL-OPF
field. Table 3.1 summarizes the discussed RL-OPF literature.

Yan and Xu [21] use DDPG to learn the OPF in the IEEE 118-bus system. They replace
the DDPG critic directly with the OPF cost function plus lagrangian terms to incorporate
constraints in the learning process, utilizing domain knowledge of the underlying problem.

Woo et al. [22] apply Twin-Delayed DDPG (TD3) to solve the same general OPF problem
as in Yan and Xu. They incorporate a more advanced load data sampling by combining
time-series data with random noise to create unique data points.

Zhou et al. [18] combine the Proximal Policy Optimization (PPO) algorithm with super-
vised pre-training to solve a security-constrained OPF problem in the IEEE 14-bus and the
Illinois 200-bus systems. They demonstrate that pre-trained PPO outperforms base PPO
regarding optimization performance and outperforms pure supervised training regarding
constraint satisfaction.

Zhen et al. [51] combine supervised pre-training with the TD3 algorithm and are the
first to model the OPF problem as a one-step RL environment to simplify training.

Nie et al. [52] use extensive time-series data to train a TD3 algorithm to perform voltage

20

| RELATED WORK

control with reactive power in a Microgrid environment, utilizing a modified IEEE 30-bus
system.

Cao et al. [53] apply PPO to a stochastic multi-stage OPF that considers stochastic
wind turbine feed-in and storage systems with time-dependent constraints in a modified
IEEE 33-bus system. Their approach outperforms a particle swarm optimization used for
reference. Further, they demonstrate the effectiveness of reward normalization and reward
clipping to stabilize training.

Zhou et al. [54] use the PPO with supervised pre-training and convolutional neural
networks to solve a stochastic economic dispatch in the Illinois 200-bus system. Additionally,
they consider N-1 topology changes and propose a classifier that predicts the feasibility of
the OPF problem.

Liu et al. [55] apply DDPG to a multi-stage OPF problem in a modified IEEE 33-bus
distribution network, considering storage system constraints over multiple time steps.

Yizhi Wu et al. [24] argue that constraint satisfaction becomes especially challenging in
stochastic OPF problems and propose chance-constrained MDPs to consider constraints
in stochastic use cases. They utilize Bayesian neural networks for function approximation.

Tong Wu et al. [25] developed a constrained version of TD3 and applied it to a stochastic
multi-stage economic dispatch with dynamically changing constraints. For function approx-
imation, they use complex-valued Graph Neural Networks (GNNs). Interestingly, their
DRL approach outperformed the baseline stochastic OPF solver regarding computation
time, even with the training time included.

Yi et al. [23] combine the SAC algorithm with various advanced concepts, including a
pre-training based on domain knowledge, a linear safety layer, and automatic updates of
penalty factors for constraint satisfaction. They are also the first to consider real-world
online training instead of simulation-based offline training.

Overall, an increasing amount of literature aims to solve the OPF with RL. The earlier
publications [22, 18, 51, 52] provide proof-of-concepts by applying standard DRL algorithms
to basic OPF problems. More recent research [53, 54, 55, 24, 25, 23| focuses on more
challenging OPF formulations, especially focusing on stochastic and multi-stage OPF.
Regarding performance, the overall consensus is that RL can approximate the optimal
AC-OPF solutions quite well and can outperform the DC-OPF [22], meta-heuristics [53],
or pure supervised learning [18]. Algorithm-wise, mainly off-policy algorithms like DDPG,
TD3, or SAC are used due to their sample efficiency except for the state-of-the-art on-policy
algorithm PPO in [18, 53, 54].

The more recent publications often incorporate domain knowledge into some base RL
algorithm. While this is beneficial for performance, especially regarding constraint satis-

faction, incorporating domain knowledge can also result in additional engineering effort.

3.2 OPTIMAL POWER FLOW WITH SUPERVISED AND UNSUPERVISED LEARNING |

Table 3.1: Overview on RL-OPF literature.

OPF Variant RL Algorithm Benchmark System(s)
[21] Base OPF DDPG + Lagrange IEEE 118-bus
[22] Base OPF TD3 IEEE 118-bus
[18] Security-Constrained Pre-trained PPO IEEE 14-bus, Illinois 200-bus
[51] Base OPF Pre-trained TD3 IEEE 39-bus
[52] Base OPF TD3 Mod. IEEE 30-bus
[63] Stochastic, Multi-Stage PPO + Clipping Mod. IEEE 33-bus
[54] Stochastic Pre-trained CNN-PPO Illinois 200-bus
[65] Multi-Stage DDPG Mod. IEEE 33-bus
[24] Stochastic PPO + BNN IEEE 33-bus
[25] Stochastic, Multi-Stage Constr. GNN-TD3 IEEE 14-bus, IEEE 30-bus
[23] Multi-Stage, Security-Cons. SAC + Various Mod. IEEE 33-bus

The RL algorithm is now fine-tuned for a specific problem, which jeopardizes the modu-
larity of RL that usually allows us to apply a wide range of algorithms to a wide range of
environments. The second drawback of the literature is that the OPF environment design
is usually barely discussed, although there is a wide range of possible design decisions [1].
Finally, although all use benchmark power systems, the actual OPF problem to solve is
not standardized in any way. Further, the benchmark power systems are often modified
to incorporate additional aspects like RES or storages into the problem. This way, the
publications are not comparable with each other, which makes it very difficult to evaluate
the true performance of the approaches. For the same reason, it remains unclear if the

proposed algorithms can perform well on a wider range of OPF problems.

3.2 OpTiIMAL POWER FLow WITH SUPERVISED AND

UNSUPERVISED LEARNING

The previous section focused on the literature on how to apply RL to the OPF problem.
However, many aspects from non-RL-OPF literature are directly transferable to RL, like
the modeling of the OPF, the utilization of shared benchmarks, or advanced neural network
architectures. Hence, the following section presents some selected publications that apply
supervised or unsupervised training to the OPF. For a more comprehensive review of the
topic, refer to recent surveys, focusing mainly on non-RL approaches [17, 56].

Liu et al. [57] train a physics-informed convolutional neural network in a supervised
fashion by utilizing domain knowledge for the loss function and the network architecture.
They argue that utilizing domain knowledge reduces training data demand, which is one
of the main hindrances of solving the OPF with ML.

21

22

| RELATED WORK

In their seminal work, Park et al. [58] observed that for real-world large-scale OPF
problems, the input and output spaces of end-to-end-trained DNN become extremely large,
which requires larger models and impedes training. They propose a principal component
analysis of the input and output spaces for supervised training. Compared to standard
supervised approaches, their approach results in the smallest models that achieve the overall
best performance, especially regarding constraint satisfaction. With 30,000 buses, they also
use the biggest test system in the available literature so far.

Zhou et al. [59] identify the limiting factor of most existing ML-OPF approaches, which is
that they assume a fixed network topology and fixed admittances, which is not transferable
to real-world scenarios. They propose to use the admittance matrix as additional input and
use supervised learning to train a single DNN for a range of possible network topologies
and line admittances.

Huang et al. [16] argue that supervised learning is not suited for learning the OPF
because ground-truth data for advanced problems is usually not available. Instead, they
train a DNN in unsupervised fashion by directly encoding the objective function and
penalties for constraint satisfaction into the loss function.

Similarly, Owerko et al. [19] train a GNN by using the objective function and multiple
penalty functions for constraint satisfaction as a loss function for unsupervised training.

Wang and Srikantha [20] propose a very sophisticated unsupervised combination of
generative adversarial networks and an autoencoder to generate and fine-tune candidate
solutions to the OPF. The overall architecture heavily builds upon OPF domain knowledge
as well.

Overall, the non-RL-OPF literature provides various interesting approaches that are
directly transferable to RL. For example, dimension reduction, GNNs, and using the admit-
tance matrix as an input can be expected to be beneficial for performance, training speed,
and generality of results. However, as in the previous section, we can observe a strong trend
towards utilizing domain knowledge in the training process, especially in the unsupervised
approaches where the objective function and the constraints are often directly encoded into
the loss function of the neural networks or even the network architecture itself. Further, the
overview demonstrates the same lack of benchmarking that was identified in the RL-OPF
literature, which makes a comparison of results very difficult. This way, it remains unclear

what the current state-of-the-art approaches are regarding overall performance.

3.3 RELATED BENCHMARK ENVIRONMENTS AND FRAMEWORKS

In the previous two sections, we identified the problem that most ML-OPF works do not

benchmark their results in a way that they are comparable to other research. Therefore,

3.4 ENVIRONMENT DESIGN FOR REINFORCEMENT LEARNING |

the following section will discuss various open-source frameworks and libraries that are
related to the OPF, focusing on RL but also presenting some selected non-RL libraries.

Closest to the focus of this work, Henry and Ernst [60] present Gym-ANM, an open-
source RL environment framework for active network management tasks in distribution
systems, built on top of OpenAI Gym. Along with the general framework, they present a
single multi-stage OPF toy environment.

Cui and Zhang [61] published Andes_gym, an open-source framework to create environ-
ment representations of control tasks in the energy system. They use OpenAI Gym for the
environment API and ANDES [62] for the dynamic control simulation

Together with the 2020 Learning to run a power network (L2RPN) challenge, Marot et
al. [63] published the Grid20p framework, which enables the representation of sequential
network operation actions as RL OpenAl Gym environments. While they also allow con-
tinuous redispatching actions, they focus mainly on discrete topological actions to satisfy
safety constraints over longer time periods.

Coffrin et al. [64] created the PGLib-OPF benchmark library, which is a collection of
existing OPF problems in the MATPOWER format that were standardized and updated
to newer standards. They discussed measures to artificially make the OPF problems more
difficult to make them more suitable for benchmarking because algorithmic improvements
become more visible with high optimality gaps.

Joswig-Jones et al. [65] argue that many ML-OPF approaches are trained on too limited
datasets. They present OPF-Learn, a framework to generate the broadest feasible dataset
for supervised training. Their approach requires some conventional OPF solver for dataset
creation, which hinders applicability to RL-based approaches.

Additionally, various RL environment frameworks and benchmarks focus on related use
cases like microgrid control [66, 67], storage system dispatch in distribution networks [68],
or sustainability tasks like CO2 reduction [69].

In conclusion, several open-source frameworks enable the creation of datasets or environ-
ments for OPF-related tasks in the power system. Only Henry and Ernst [60] enable the
creation of RL environments for the OPF problem. However, they focus on the multi-stage
OPF, which is a special case, and do not provide fixed benchmark environments that enable
and encourage comparability of ML-OPF research progress. Finally, none of the mentioned

RL environment frameworks discussed their environment design decisions in detail.

3.4 ENVIRONMENT DESIGN FOR REINFORCEMENT LEARNING

After the previous section identified a lack of benchmark environments in the ML-OPF

domain and also the absence of systematic environment design considerations, the following

23

24

| RELATED WORK

section will provide an overview of the RL environment design literature. Refer to [2] for
a more comprehensive overview of the topic.

Environment design in RL aims to find the easiest-to-solve environment representation
for a given problem. More specifically, the environment design should support convergence
to the optimal policy, learning speed, policy robustness, generality, and be compatible with
standard RL algorithms and frameworks. That definition is in stark contrast to how most
open-source RL benchmark environments are designed. They are designed to be difficult
but solvable. That is to support the development and testing of new RL algorithms and
methods from an academic perspective. However, when applying RL to real-world and
practical problems, we aim for environments that support and simplify the learning instead
of challenging it. See [2] for an in-depth discussion.

The following section presents a short list of relevant publications that fit with our
more practical notion of RL environment design. Most of them focus on specific aspects
of environment design like the action space definition [26, 28, 70], the observation space
[26, 27, 71], the reward function [26, 29], the episode definition [26, 30], or the utilized
data and state distributions [26, 72]. These five categories, i.e., action, observation, reward,
episode, and data, also make up the core design decision categories in RL environment
design, apart from problem-specific aspects [2]. In all of them, the literature is quite limited.

Peng and van de Panne [70] compare four different action space representations in
robotics/locomotion tasks. They observe significant performance differences regarding
learning speed, final performance, and robustness. Further, they found advantages of high-
level action representations over low-level representations, e.g., controlling the target angle
of a PD controller instead of controlling torque. Finally, they note that some design decisions
are continuous and require parameter tuning, similar to HPO.

Kanervisto et al. [28] investigate action space shaping! in computer game environments
with a focus on discrete actions and removing unnecessary actions. Most noteworthy,
they found that squashing multi-discrete actions into a single high-dimensional discrete
action space can jeopardize learning success. Further, they point out the great difficulty of
environment design that it is initially unknown if the problem is solvable with RL.

Kim and Ha [27] note the lack of established principles for the observation space definition.
They investigated different observation space variants in robotics, like binary contact
flags, observation histories, and global observations, and found significant performance
differences. They also found that redundant observations usually do not hurt performance.

In an attempt towards automated environment design, they propose a search algorithm to

!The authors assume the existence of some original action space with the goal to shape an improved action
space representation. Note that the assumption of a given action space deviates from our environment
design definition above, which considers environment design from scratch, making it more general.

3.4 ENVIRONMENT DESIGN FOR REINFORCEMENT LEARNING |

automatically select the best-performing observation channels.

Yang and Nachum et al. [71] aim to optimize the observation space representation as well
but with a different approach. They compare multiple unsupervised pretraining objectives
with existing offline data to find lower-dimensional representations. They demonstrate that
such pretraining can be beneficial for subsequent online learning.

Ng et al. [29] investigate reward shaping, i.e., adjusting the reward function to provide
a more useful learning signal. They show multiple examples of how bad reward design can
result in faulty policies that exploit the reward function without solving the underlying
problem. They demonstrate theoretically and empirically how potential-based reward
shaping can increase reward density and improve learning speed.

Pardo et al. [30] focus on the episode definition and its termination. They demonstrate
the importance of differentiating between terminating and truncating the environment,
where termination represents an actual win/lose situation from which zero future reward is
expected onwards, while truncation is an artificial interruption of the episode, for example,
to achieve a better mixing of the training data. Their findings have found their way into
the Gymnasium API [73], which now differentiates termination and truncation, in contrast
to its now outdated predecessor OpenAl Gym. They also show that if time limits are
used to terminate the episode, the remaining time must be part of the observation space.
Otherwise, the problem becomes partially observable.

Zhang et al. [72] demonstrate how overfitting can become a problem in RL if the learning
agent can solve the given problem by memorizing high-performing action sequences. If
that happens, a well-performing policy in the training environment fails to transfer well
to a testing environment. They propose to strictly separate train and test datasets, as it
is common practice in supervised learning but not yet common in RL.

Reda et al. [26] investigate all kinds of environment design decisions in locomotion /robotics
tasks, including the state distribution, the control frequency, episode termination, action
space, reward function, and observation space. For example, they confirm the influence of
the episode termination (see [30]) and the importance of separate test datasets to test for
policy generality (see [72]). On the other hand, they challenge the effectiveness of unsuper-
vised observation representation learning (compare [71]) and the superiority of high-level
action representations (compare [70]). Overall, they conclude that many different environ-
ment design decisions significantly influence training performance and that environment
design is a highly neglected field of research that often remains undocumented.

To summarize, Table 3.2 provides an overview of the previously discussed literature,
including their respective domains and touched design categories. All publications focus on
very specific domains, mostly robotics. No publication considers environment design in the

energy domain. All except Reda et al. [26] investigate only a single design category. None of

25

26

| RELATED WORK

Table 3.2: Overview on RL environment design literature.

Domain Observation Action Reward Data Episode
[70] Robotics! v
[28] Games v
[27] Robotics! v
[71] Robotics! v
[29] Grid-World Nav. v
[30] Robotics? v
[72] Maze Navigation v
[26] Robotics! v v v v v

=

Using MuJoCo benchmark environments or their PyBullet equivalents.

the publications investigated potential interdependencies of design decisions, although Peng
and van de Panne [70] suspect such relationships between action representation and reward.
Some works propose first approaches to automated environment design, e.g., observation
space optimization [27, 71]. However, these are designed specifically for the observation
space and not readily transferable to other aspects of environment design.

Overall, due to the domain-specific and limited literature, it is difficult to draw general
conclusions and best practices about environment design, except the utilization of test
datasets [72] and Pardo et al.’s findings about episode termination [30]. The lack of general
rules may indicate that environment design should happen problem-specific, which suggests

the usage of automated approaches to reduce engineering effort as proposed by [1, 27, 71].

3.5 SuMMARY AND REsearRcH GAPS

The previous sections presented the current state of the art of solving the OPF with ML,
relevant benchmarks and datasets, and an overview of RL environment design literature.
The main discovery and research gap is the absence of rigorous benchmarking in ML-OPF
research, independent of the utilized ML paradigm. This might reduce comparability by
disguising the performance of the approaches, can jeopardize independent evaluation of
new algorithms, and slows down overall research progress this way. Section 3.3 confirms this
by showing that no such benchmark environments are available. This lack of benchmarks
becomes increasingly relevant considering that ML-OPF research shows a strong trend
towards incorporating domain knowledge into the learning process, which may limit the
generality of the approaches. Without benchmarking, it remains unclear if such approaches
generalize to other use cases outside the ones created by the authors for this specific

approach.

3.5 SUMMARY AND RESEARCH GAPS |

The second general research gap is the neglect of environment design aspects in the RL-
OPF literature [1] and also in the general RL literature [26]. The existing literature shows
no clear rules to follow for designing RL environments for a given problem, which suggests
that automated and problem-specific approaches should be used to approach environment
design rigorously. This is especially true for environment design with parameters in the

continuous space, where manual design is not realistically possible.

27

I Characteristics of the OPF as RL Problem

The following chapter aims to answer RQ1 with an in-depth analysis of the OPF as an RL

problem, built on the state-of-the-art presented earlier.

RQ1: What are the characteristics, difficulties, and chances of the OPF as an RL

problem formulation?

First, we analyse the characteristics of the RL-OPF approach in comparison with more
conventional approaches to identify in which situation RL can and should be preferred.
Afterward, we discuss the difficulties and chances of formulating the OPF as an RL problem,
which lays the foundation for designing the environment framework proposed in the next

chapter 5.

4.1 REINFORCEMENT LEARNING IN COMPARISON TO

CONVENTIONAL SOLVERS AND META-HEURISTICS

With conventional solvers, meta-heuristics, and data-driven methods, we discussed three
overall approaches to solving the OPF in section 2.1. In the following, we extend the
analysis of Frank et al. [11, 35], which compares meta-heuristics with conventional solvers
for the OPF, by adding RL as a third category. Note that most RL characteristics apply
to other data-driven methods as well, e.g., supervised learning. However, to limit the
scope of this work, we will focus on RL-trained DNNs in the comparison. Also, note that
the assessments apply to the overall characteristics of the general approaches. There are
exceptions in almost all cases, in particular, to remedy specific weaknesses. That, however,
does not disprove the pros and cons of the three categories on a general level.

The biggest difference of any ML-based approach to conventional solvers or meta-
heuristics is that they require a preliminary training phase. While the other approaches
solve the OPF per instance, ML-based approaches train a model (usually a DNN) that

serves as a solver. This way, lots of computation is required before deployment. However,

30

| CHARACTERISTICS OF THE OPF AS RL PROBLEM

after training, the resulting ML model can produce solutions for a given problem very
quickly. Overall, the computation is shifted from online inference to offline training.

The very fast inference time makes DNNs advantageous regarding real-capability.
While conventional solvers are strongly dependent on starting points and meta-heuristics
on stochastic exploration, trained DNNs only perform a series of matrix multiplications
to map from inputs to outputs. These operations are fast, easy to parallelize, and have
predictable computation times, which provides a strong basis for real-time capability.

However, the big drawback of any ML model is that it is only meaningful for the data
distribution it was trained and tested on. One consequence is the difficulty of making any
guarantees regarding optimality or constraint satisfaction. Especially the lack of
guaranteed constraint satisfaction can become a big problem in critical infrastructure like
power systems where constraint satisfaction is often a strict requirement [33]. However,
there are advances regarding the feasibility of DNN-generated solutions. Some Safe RL
algorithms can guarantee constraint satisfaction if a perfect oracle exists [74]. Further, an
increasing amount of literature aims to provide worst-case guarantees of DNNs’ performance
[75, 76].

While constraint satisfaction guarantees are a problem, RL can deal better with qualita-
tive constraints like non-numeric, categorical, or descriptive conditions than conventional
methods. These often result in non-differentiability and non-continuity, which most con-
ventional solvers have difficulties with, while the RL reward does not strictly require
differentiability or continuity.

In general, similar to meta-heuristics, RL can deal well with non-differentiability and
black-box problems. RL makes only little assumptions about the nature of the problem,
which makes it modular to some extent. In the standard RL framework of agent and
environment, the RL algorithm can easily be exchanged for a given problem if it can deal
with the action/observation space of the environment. For example, the DDPG algorithm
can always be exchanged with the more state-of-the-art SAC algorithm (compare section
2.4).

Further, when using DNNs for function approximation, RL can easily deal with discrete
variables in the state, action, or reward space, similarly to meta-heuristics, which remains
a problem for many conventional solvers [11].

While conventional solvers require special algorithms and significant additional solving
time for sequential actions or stochastic problems, RL algorithms consider both
inherently. Sequential actions are considered by the standard RL objective to maximize
the sum of rewards over the full episode. Stochasticity is represented by the training data
distribution and by maximizing the expected sum of rewards.

Finally, RL provides advantages if the power system model is imperfect and for

4.1 REINFORCEMENT LEARNING IN COMPARISON TO CONVENTIONAL SOLVERS AND META-HEURISTICS |

Table 4.1: Characteristics of solving the OPF with conventional solvers, meta-heuristics,
and RL in comparison.

Conventional Meta-Heuristics Reinforcement Learning

Training Required No No Yes
Solving/Inference Speed Medium Slow [35] Fast (after training)
Optimality Guarantees Partly [11] No* No
Constraint Guarantees Yes No [35] Partly
Qualitative Constraints Partly [35] Yes [35] Yes
Non-Differentiability No [35] Yes [35] Yes
Black-Box Problems No Yes [35] Yes
Discrete Variables Difficult [11] Yes [35] Yes
Sequential Actions Difficult [33] Yes Yes
Stochastic Problems Difficult Yes Yes
Partial Observability No No Yes
Imperfect System Model No No Partly

*Assuming finite computation time [35].

partial observability where the system state is only partly known. If the system model
is expected to be imperfect, the RL agent can be trained on data from real-world measure-
ments instead of simulation data, for example, as proposed by [23]. While conventional
solvers require a preliminary state estimation to deal with partial observability, the RL
problem can be represented as Partially-Observable MDP (POMDP) [41] instead of the

standard MDP framework to consider imperfect observations of the system’s state.

Table 4.1 summarizes the pros and cons of RL for the OPF in comparison to the other
two. Altogether, using RL over conventional solvers trades few disadvantages, like the lack
of guarantees or the expensive training, for various advantages, like the improved real-time

capability or the inherent consideration of sequential actions and stochasticity.

In conclusion, RL — as any ML method — is no generally superior approach to conven-
tional solvers or meta-heuristics. However, it provides specific advantages and can become
an additional tool in the toolbox of OPF researchers and practitioners when specific require-
ments need to be fulfilled. RL seems to be especially well-suited for real-time application of
the multi-stage and the stochastic OPF, both described in section 2.1. RL can be used to
solve the OPF end-to-end [13] or as part of hybrid OPF methods [35, 17], for example, by
providing good starting points for warm-start of conventional methods [36, 17]. Both last
points match well with the discussed RL-OPF literature, where pre-training, stochastic

OPF, and multi-stage OPF are recurring themes (compare section 3.1).

32

| CHARACTERISTICS OF THE OPF AS RL PROBLEM

4.2 CHALLENGES AND CHANCES OF THE RL-OPF

While the previous section discussed the advantages and disadvantages of using RL to
solve the OPF in comparison to conventional solvers and meta-heuristics, the following
section will focus on the challenges and chances when formulating and solving the OPF as

an RL problem. Note that a short variant of this list is already published in [1].

High-dimensional state and action spaces The OPF can become a very large-
scale optimization problem with extremely high-dimensional state and action spaces [36].
While high-dimensional state spaces are less problematic due to the emergence of DNNs
[44], large-scale action spaces remain a challenge in RL due to the curse of dimensionality
[45]. Large-scale OPF problems may contain thousands of generators, switches, shunts, etc.
In RL, such high-dimensional action spaces are very challenging and not often investigated.
For example, the widely used MuJoCo!' RL benchmark environments have only six actions

on average.

Dynamic constraints Many constraints in power system optimization, especially of
the actuators, are state-dependent in their nature. For example, the maximum active power
feed-in of wind turbines or solar systems depends on the current weather situation. The
reactive power range of a generator often depends on its active power feed-in (or vice versa).
The maximum power flow over a transmission line is temperature- and weather-dependent.
Consequently, these dynamic state-dependent constraints need to be considered in the

observation space of the RL agent to make optimal decision-making possible.

Continuous and discrete actuators Large-scale real-world OPF problems usually
consider continuous and discrete actuators as degrees of freedom for optimization [32], for
example, discrete transformer taps and continuous generator setpoints. While there are
standard RL algorithms for discrete and continuous action spaces respectively, considering
both at the same time as hybrid action space usually requires special algorithms [77],

limiting the usage of standard algorithms.

Expensive action evaluation To evaluate the utility of, e.g., generator setpoints, a
power flow calculation needs to be performed to compute voltage levels and power flows.
Since power flow calculations are computationally expensive, especially for large-scale grids,

the number of computations should be kept minimal, which requires sample-efficient RL

"https://gymnasium.farama.org/environments/mujoco/, last access: 2024-06-26

https://gymnasium.farama.org/environments/mujoco/

4.2 CHALLENGES AND CHANCES OF THE RL-OPF |

algorithms. This aligns well with the RL-OPF literature where mostly sample efficient

off-policy algorithms are used (compare section 3.1).

Limited realistic data The existing open datasets of realistic grid states are very
limited. To train an RL agent to solve the OPF in realistic grid states, such datasets
are required for training and testing. A random sampling of states can not be expected
to be useful since most random grid states are very unrealistic [1]. However, most open
datasets contain a maximum of a few 10,000 data points, which is too little for most ML

applications.

Safety-critical system The power grid is a safety-critical system where constraint
satisfaction is non-negotiable and strong performance guarantees are desirable. However,
as discussed in the previous section, standard RL algorithms are not able to provide

performance guarantees and even specialized safe RL algorithms only to some extent.

Models availability Grid operators usually have sufficiently good models and simu-
lators of their power grids available.? Therefore, it is usually possible to train RL agents
in simulation. Further, the model knowledge can be utilized to improve training speed by
providing domain knowledge to the agent instead of learning from scratch, as done, for
example, in [23, 25, 9].

Strong OPF baselines The OPF has been subject to research for multiple decades
now. We have a wide range of existing sophisticated algorithms that have been verified
by scientific literature and put into practice for real-world grid operation. This way, we
have strong baselines available for the evaluation of novel approaches like RL, and it can

be easily evaluated if the resulting performance is competitive or not.

Modular framework As already mentioned in section 3.1, RL results in some modu-
larity regarding the environment (OPF problem) and the agent (RL algorithm). In conse-
quence, the RL agent can be replaced by more advanced algorithms quite easily, and vice
versa, which results in several advantages. It allows us to apply base RL algorithms without
utilizing any domain knowledge. This way, the performance of RL-OPF algorithms will
automatically improve with general RL progress. Further, this modularity makes it possible
to apply the same algorithm to a wide range of OPF problems, for example, stochastic or

multi-stage OPF variants.

2This is mainly true for higher-voltage systems. For low and medium-voltage grids, models are often
uncertain or even completely missing [36]. However, since the OPF is mainly applied to higher-voltage
systems, we can assume the existence of sufficiently good models.

33

34

| CHARACTERISTICS OF THE OPF AS RL PROBLEM

Dense reward function The objective function of the OPF problem is very dense,
which transfers to the RL reward function. We can compute non-zero and information-rich
rewards for every action within the power grid. Dense rewards are not strictly required for
RL but helpful for training speed [29].

Summary and Conclusion The previous paragraphs identified multiple challenges
and chances in formulating the OPF as an RL problem. While the availability of models,
strong algorithmic baselines, the dense utility function, and the modular RL framework can
be expected to prove beneficial for solving the problem, the high-dimensional hybrid action
spaces, the dynamic constraints, the limited datasets, and the strict safety requirements
complicate solving the OPF problem with RL. All these points have to be considered when
formulating the OPF as an RL environment, which lays the foundation for the next chapter
of this thesis.

5 OPF-Gym Environment Framework and

Benchmarks

The following sections present OPF-Gym," which is the RL-OPF benchmark environment

framework developed for this thesis to answer RQ2:

RQ2: How should a benchmark framework for OPF environments look like that
ensures reproducible and comparable research with fixed benchmarks but also degrees

of freedom for systematic environment design?

OPF-Gym consists of a general framework to define RL-OPF environments, various
pre-implemented environment design options, and five basic OPF problems for benchmark-
ing. To maximize broad usability and applicability, OPF-Gym focuses on the single-step,
deterministic OPF base case with continuous actuators, in contrast to advanced use cases
like multi-stage OPF or stochastic OPF. However, more advanced OPF cases are still
possible with OPF-Gym, which will be discussed later. Technical details about OPF-Gym

will not be discussed in depth and can be found in its documentation.?

This chapter is structured as follows: OPF-Gym builds upon three open-source frame-
works, which will be presented in the first section. In section 5.2, the core of the framework
is presented, including its approach to handling the dichotomy between fixed benchmark
problems and degrees of freedom for environment design optimization. Section 5.3 summa-
rizes the resulting advantages and capabilities but also the limitations of the framework.
Section 5.4 lists all design decisions implemented in OPF-Gym for environment design
(degrees of freedom), while section 5.5 defines the (fixed) OPF benchmark problems for
this thesis.

"https://github.com/Digitalized-Energy-Systems/opfgym
2https://opf-gym.readthedocs.io/en/latest/

https://github.com/Digitalized-Energy-Systems/opfgym
https://opf-gym.readthedocs.io/en/latest/

36

| OPF-GYM ENVIRONMENT FRAMEWORK AND BENCHMARKS

5.1 UTiLizep OPEN-SOURCE FRAMEWORKS

The OPF-Gym framework builds upon three main open-source frameworks, which are Gym-
nasium for the RL environment API, pandapower for power grid modeling, and SimBench

for power grid benchmark data. All three will be presented in the following.

Environment APl: Gymnasium Gymnasium? [73] is the quasi-standard API to build
single-agent RL environments in python. It defines a simple API standard that can represent
an MDP. Gymnasium’s core is the Env class, from which can be inherited to create custom
environments. To create a custom Gymnasium environment, two core methods need to be
implemented: the reset () and the step() method. The reset () method is called to start
a new episode. It resets the environment to some (usually random) initial state and returns
the respective observation as state representation. Based on the observation, the agent
performs some action, which is given to the environment via the step() method. The
step() method returns the reward signal, two binary flags whether the episode terminated
or truncated,? and the next observation. This observation is used to select the next action,
which results in a sequential loop that ends when the environment terminates or truncates.
In addition to the observations, the environment always also provides an info dictionary
that can be used to communicate non-standard information to the agent. The whole

procedure is shown in Algorithm 3.

Algorithm 3 High-level interaction with a Gymnasium environment.

Initialize environment and agent
while Training do
Call env.reset () method
Receive initial observation and info tuple (obs, info)
Set terminated = truncated = False
while terminated is False & truncated is False do
Select action act = policy(obs)
Call environment.step(act) method
Receive tuple (obs, reward, terminated, truncated, info)
Train the agent with the received data
end while
end while

In addition to the described methods, a custom Gymnasium environment requires defined
action and observation spaces, which define its dimensionalities and whether they are

continuous or discrete.

Shttps://gymnasium.farama.org/index.html, last access: 2024-08-05.

4The difference of terminated vs. truncated is as follows: A termination is the natural end of the episode,
for example, by winning or losing a game or achieving the intended goal. In contrast, truncation describes
a premature ending, for example, to mix up training data or because of a failed simulator. [2, 30]

https://gymnasium.farama.org/index.html

5.2 THE OPF-GYM FRAMEWORK |

Finally, Gymnasium provides so-called Wrappers, which allow to perform general modifi-
cations to environments, for example, truncating observations, re-scaling actions, or similar.
Grid modeling and power flow calculation: pandapower The pandapower®
[78] library is a combination of the data analysis library pandas and the power flow solver
PYPOWER. It models complete power grids and all kinds of grid components like loads, gen-
erators, transformers, lines, etc. Further, various benchmark systems are pre-implemented
as pandapower networks like the CIGRE or IEEE systems. To analyze power systems, pan-
dapower provides computational tools like power flow solvers, an OPF solver, short-circuit
calculation, state estimation, etc. For this thesis, mainly the network modeling, the power
flow calculation, and the OPF calculation are used. Additionally, the import feature of
pandapower allows for easy import from other standards, for example, from the mentioned
PGLib-OPF library, which uses the supported MATPOWER format.

Benchmark power systems and time-series data: SimBench SimBench® [79)
is a dataset of benchmark power grids. Additionally, each grid is equipped with realistic
time-series data of one full year in 15-minute intervals for all generators, loads, and storage
systems. These accompanying datasets of overall 35k steps are the main difference to other
benchmark grids like IEEE or CIGRE and the main reason why SimBench was chosen for
this work. SimBench provides power grids of all voltage levels from Low-Voltage (LV) to
Extra-High-Voltage (EHV) and in three different expansion levels: present, future, and far-
future with increasing expansion levels of RES and storage systems. Further, the SimBench
grids can be combined to create multi-level networks over multiple voltage levels. Finally,
SimBench provides full integration with pandapower, which allows for easy loading and

manipulation of the grids.

5.2 THE OPF-GyM FRAMEWORK

The following section provides an overview of the OPF-Gym framework’ developed for
this thesis and to answer RQ2. The main challenge of RQ2 was the dichotomy between
fixed problem definitions for benchmarking on the one hand and degrees of freedom for
performance optimization in the form of environment design.

We can see an RL environment as a combination of two parts. First, a fixed underlying

problem definition, which defines the goal, the available knowledge, and the actuators of

*https://pandapower.readthedocs.io/en/latest/index.html, last access: 2024-08-05.
Shttps://simbench.de/en/, last access: 2024-08-06.
"https://github.com/Digitalized-Energy-Systems/opfgym

37

https://pandapower.readthedocs.io/en/latest/index.html
https://simbench.de/en/
https://github.com/Digitalized-Energy-Systems/opfgym

38

| OPF-GYM ENVIRONMENT FRAMEWORK AND BENCHMARKS

OPF-Gym: "OpfEnv’ Base Class
(Environment Design Options
+ Interaction Logic)

OPF-Gym: "EnvName' Subclass
(OPF Problem Representation)

Gymnasium: "Env’ Base Class

(Random seed, API)

Figure 5.1: Class structure of the OPF-Gym framework.

the RL agent. It cannot be changed. Second, an open-for-optimization environment design
in the form of the reward function, the observation and action space, the episode definition,
and the data distribution, which serve as a representation of the problem to solve [2]. This
problem /representation-split is explicitly considered by the class structure of OPF-Gym.
We distinguish the parameterizable and customizable OpfEnv base class and its problem-
defining subclasses. The OpfEnv base class inherits from the Gymnasium Env class and

implements its API. The class structure is visualized in Figure 5.1.

The OpfEnv Superclass The underlying OpfEnv class has three purposes. First, it
defines the environment design space in an extensible way. In other words, the user can
define custom variants of the typical environment design decisions, for example, reward
functions, data sampling variants, etc. Additionally, multiple environment design variants
are pre-implemented for easy usage. These pre-implemented design options will be presented
later in section 5.4. Second, the observation and action spaces are automatically generated
for the given OPF problem. Third, the OpfEnv class defines the reset() and step()
methods according to the Gymnasium API, which will be discussed in the following.

The reset () method is called to start a new episode. Its high-level implementation in
the OpfEnv class is shown in Algorithm 4. First, the reset () method of Gymnasium’s Env
superclass is called to handle seeding. Second, a random power grid state is sampled for
which the OPF needs to be solved, usually, the load active and reactive power values. This
way, one episode represents a specific OPF problem, which remains unchanged during the
episode. The exact sampling method is an open environment design decision. Third, for
some environment design variants, an initial power flow calculation (using pandapower) is
performed to compute voltage levels and power flows. If that initial power flow is required,
also an initial action is required (usually power setpoints). Finally, the reset () method
returns the initial observation, which serves as a state representation of the previously
sampled OPF problem. How to transform grid states into observations is another open
design decision discussed later on.

After the RL agent chooses an action based on the initial observation, the step() method

is called repeatedly for the agent-environment interaction. Its procedure is shown in Algo-

5.2 THE OPF-GYM FRAMEWORK |

Algorithm 4 The reset () method of OPF-Gym.

Call superclass Env.reset () method

Randomly sample current grid state (see section 5.4.2)

if Initial power flow required (see Table 5.1) then
Apply some initial action (see section 5.4.3)
Compute power flow calculation

end if

Get initial observation (see section 5.4.3)

Return (observation, info)

rithm 5. First, the agent action is applied to the current grid state, which means translating
the agent’s action to actuator setpoints like generator power setpoints or transformer tap
changer setpoints. The exact action representation is another open design decision. After
the actuators are set, the pandapower power flow is used to calculate the new grid state,
including power flows and voltage values resulting from the agent’s action. Next, a reward
is calculated that represents the goodness of the new grid state, representing the objective
function and the constraint satisfaction, which is again an open design decision. Then,
it is determined whether the episode is terminated or truncated, which is another design
decision. Finally, the next observation is created, and all data is returned to the agent for
learning and further decision-making. Additionally, both reset () and step() return an

info dictionary that provides information about the current state of the environment.

Algorithm 5 The step() method of OPF-Gym.

Receive agent action as input

Apply action to the current grid state (see section 5.4.5)
Perform power calculation to compute new grid state
Calculate reward (see section 5.4.1)

Episode terminated or truncated? (see section 5.4.4)

Get next observation (see section 5.4.3)

Return (observation, reward, terminated, truncated, info)

The Benchmark Subclasses The problem-specific benchmark subclasses inherit
from the OpfEnv class and define a specific OPF problem, for example, an economic dis-
patch in a specific grid. That is done by creating a pandapower grid and defining an OPF
by setting controllable units, prices for active/reactive power, and constraints as it is done
in pandapower.® This way, all OPF variants possible in pandapower can automatically be
transferred to OPF-Gym environments. Each subclass represents one fixed RL-OPF bench-

mark problem. The implemented benchmark problems for this thesis will be presented in

8See https://pandapower.readthedocs.io/en/latest/opf.html, last access 2024-10-28

39

https://pandapower.readthedocs.io/en/latest/opf.html

40

| OPF-GYM ENVIRONMENT FRAMEWORK AND BENCHMARKS

section 5.5.

Further, the observation and action spaces need to be defined in the subclass because
they are problem-specific. That is done by creating a mapping from the pandapower tables
structure to a Gymnasium space. This way, arbitrary parts of a pandapower grid can
be defined as actions and/or observations. The conversion to Gymnasium action and

observation spaces happens automatically.

5.3 FEATURES AND LIMITATIONS OF OPF-GymMm

Various features and limitations result from the previously described framework. OPF-Gym
allows for the creation of almost arbitrary OPF problem representations. As one main
feature, all OPF problems that are solvable with pandapower are also possible with OPF-
Gym. This includes continuous actuators like load, generator, and storage active and/or
reactive setpoints. It also includes linear, quadratic, and piece-wise linear prices for active
and reactive power setpoints. Since all pandapower OPFs can be represented as an RL
environment, this allows for easy evaluation of the RL algorithm’s performance compared
to established conventional solvers.

Additionally, OPF-Gym allows for the creation of more advanced OPF variants that are
not solvable with pandapower.? For example, discrete variables can be used as actuators
without additional effort. From the agent’s perspective, all actions are defined as contin-
uous (compare [2]), which makes special RL algorithms with hybrid discrete/continuous
action spaces unnecessary. Instead, standard RL algorithms are always directly applica-
ble. OPF-Gym also allows for adding arbitrary constraints. This way, for example, the
security-constrained OPF is possible by adding additional constraints for the N-1 case. The
stochastic OPF can be implemented by adding stochastic effects. For example, Gymnasium
wrappers can be used to create noisy observations, which might represent measurement
or prediction errors, without changing the actual grid state. A partially observed OPF is
possible by providing only a subset of observations required for optimal decision-making.
The multi-stage OPF can be implemented by extending the step() method so that the
grid state gets updated to the next state in the SimBench time-series dataset.

In general, most parts of the environment can be customized by the user. For example,
custom power flow and OPF calculations can be provided, if the default pandapower solver
is not sufficient. Further, arbitrary state variables can be introduced by adding columns
to the pandapower tables.

Finally, while focusing on RL, OPF-Gym provides some support for supervised learning

9See https://opf-gym.readthedocs.io/en/latest/advanced_features.html for various example imple-
mentations of advanced OPF problems.

https://opf-gym.readthedocs.io/en/latest/advanced_features.html

5.4 ENVIRONMENT DESIGN SPACE |

as well. To allow for easy performance comparisons with supervised approaches from
literature, a convenience function automatically generates labeled datasets for a given
OPF-Gym environment. This way, RL and supervised learning approaches can be evaluated
on the exact same benchmark problems, which is required to compare performance of the
two paradigms.

However, the design of OPF-Gym also results in some drawbacks, limitations, and re-
quired assumptions. The most important limitation is that OPF-Gym inherits most of
pandapower’s limitations. For example, ground-truth evaluation is only possible if the OPF
is solvable with pandapower. More advanced OPF variants like stochastic or multi-stage
OPFs are not solvable with pandapower and require custom OPF solvers. Additionally, the
power grid and all its units must be modelable in pandapower to be usable. The second
big limitation is the dependency on SimBench time-series data. While non-SimBench
systems are generally possible, time-series data is often required to make the environment
meaningful. For example, completely randomly sampled training data is mostly unrealistic
[1], and the multi-stage OPF is meaningless without underlying time-series data. Another
minor limitation is that the power flow of the current grid state needs to be solvable. Oth-
erwise, the reward function and observation creation will fail. Finally, since all actuators
are represented by continuous action spaces, RL algorithms that only work on discrete

action spaces are not applicable, especially DQN [44] and all its derivatives.

5.4 ENVIRONMENT DESIGN SPACE

While the OPF problem is clearly defined, it remains unclear how to represent it as
RL environment. The following sections will present all the pre-implemented options for
environment design categorized by the choice of the reward function, the data distribution,
the observation space, the episode definition, and the action space. The implemented
design variants were chosen based on two aspects. First, typical design variants from the
literature were implemented as identified in [1]. However, these environment designs from
literature are usually fixed points in a continuous space, often neglecting the space in
between. Therefore, the second aspect is to implement parameterizable design options,
whose parameters can be used as degrees of freedom for environment design optimization
and analysis as shown in [3]. Overall, 22 different environment design variables were
implemented, from which 15 will be presented here in detail since they turned out to be
especially relevant [3].

The content of this section was mainly derived from the existing environment designs
in the RL-OPF literature in [1] and later extended in [3].

41

42

| OPF-GYM ENVIRONMENT FRAMEWORK AND BENCHMARKS

5.4.1 Reward Function

The reward functions for the RL-OPF problem used in literature can be roughly grouped
into two categories: The Summation and the Replacement reward [1]. The Summation
reward used in [9, 14, 22, 52, 55] is very straightforward by simply adding the objective
function and some penalty function to consider optimization and constraint satisfaction

at the same time:
Tsum(S,a) = —J(s,a) — P(s,a) (5.1)

This way, the learning agent always has an incentive to improve its policy regarding both
goals, which makes the reward very dense. However, in practice, constraint satisfaction is
often far more important than optimization, and the Summation method has difficulties
representing that because it is challenging to ensure that rewards for valid states are strictly
higher than those for invalid states. However, if that is not the case, the agent might choose
to sacrifice constraint satisfaction for better optimization performance [1].

The Replacement reward used in [18, 51, 54] tackles that problem with a case distinction
that prioritizes constraint satisfaction over optimization. The idea is to yield strictly
negative penalties for invalid states and to provide positive optimization rewards only for

valid states:

—J(s,a) + ryaiq if valid
Treplace(sa a) = (52)
—P(s,a) else

The constant offset reward r,j;q > 0 is required to ensure that the optimization reward is
always positive. This forces the agent to first ensure constraint satisfaction befor optimiza-
tion regarding the objective function is even possible. However, compared to Summation,
the reward signal becomes less dense by removing the optimization signal in invalid states.
Further, the offset reward is difficult to tune. Using the worst-case objective value would
be a natural choice. However, that might result in overly conservative behavior [1]. Finally,
too strong offsets might result in extreme gradients at the valid/invalid switching point.

In addition to the previously discussed drawbacks, both reward variants require extensive
tuning to balance the magnitudes of the objective function and the penalty function because
both can have arbitrary scales. For example, the costs of high-voltage systems might be
several orders of magnitude higher than those of a low-voltage system, even when using the
exact same cost function. This will inherently create an over-prioritization of one of the
goals. Also, too high or too low reward magnitudes might jeopardize training performance
[80].

5.4 ENVIRONMENT DESIGN SPACE |

Summation and Replacement represent two distinct cases in a continuous range of
potential reward functions. For systematic environment design, the range between these
distinct cases needs to be considered as well. Therefore, the following parameterisable
reward function 7gesign is created that combines these two and also adds some more benefits

for experiment design as discussed in the following;:

A A

Tdesign(sv CL) = (1 - ﬁ)Jnorm(Sa CL) + BPnorm(Sa a) (53)

The function consists of an adapted objective function J norm (8, @) and an adapted penalty
function pnorm(s, a), which represent the optimization and constraint satisfaction goals
respectively, and will be discussed later. To ensure that both functions are in the same order
of magnitude, both are independently normalized.'? The separated normalization allows for
controlled balancing of optimization and constraint satisfaction by using a Penalty Weight
factor 0 < 8 < 1, where high values prioritize constraint satisfaction, and vice versa. The
Penalty Weight parameter is one parameter for automated environment design in chapter

6.

The adapted objective function is defined as follows:

N —Jnorm(s,a) if valid
Jnorm(sa (I) = (54)
—tJnorm(s,a) else

To consider the full range between Summation and Replacement, the Invalid Objective
Share 0 < 1 < 1 is introduced. Here, 1 = 1 represents the Summation method, while
1 = 0 represents the Replacement method. The intermediate range can be used to explore

the space in between and is a parameter for environment design.

Until now, we treated the objective function J for reward calculation as identical to
the objective function of the underlying OPF problem. However, most often, the objective
function consists of two parts, where one can be influenced by the control actions while the
other cannot. For example, the system losses can be influenced to some extent but cannot
be minimized to exactly zero, which results in some fixed offset. As mentioned before, the
reward scale influences RL training performance significantly. Therefore, an uncontrollable
offset in the reward might negatively influence learning performance by superimposing the

useful reward signal. Hence, we investigate two different objective functions for reward

10Gince we do not know the reward distribution and range beforehand, the normalization is done by
sampling sufficient amounts (multiple thousand) of random state-action pairs. The resulting distribution
of objective values and penalties is used to estimate the mean, variance, minimum, and maximum of
both functions, which are used for normalization. In this work, both functions are normalized to zero
mean and a variance of one. However, min-max scaling to the range [-1, 1] is possible as well.

43

44

| OPF-GYM ENVIRONMENT FRAMEWORK AND BENCHMARKS

calculation:

J s,a) — Jinit(s) if Diff-Objective
J(s.a) = oPF(s,a) t(s) 1f-0bj (5.5)
Joprr(s,a) else

In the Diff-Objective variant is used, we subtract the estimated uncontrollable part from
the objective function. It is estimated by calculating Ji,it of the initial state before acting.
The choice between the two options results in another binary parameter for environment
design.

The adjusted penalty function is defined as follows:

. Tvali if valid
Pnorm(37a) = valid (56)
_Pnorm(sa CL) — Tinvalid else

To represent the Summation method, the offset reward Valid Reward 7,9 can be set
to zero, whereas all cases ryaiq > 0 represent the Replacement reward. Additionally, a
constant Invalid Penalty rinvaiq = 0 is introduced to investigate if valid states should be
rewarded, invalid states should be punished, or both. Both offset rewards are parameters
for environment design. As discussed before, choosing the right offset reward is non-trivial.
However, due to the normalization, its optimum can be expected in the low single-digit
range, which is useful for defining the search space later on.

In summary, the parameterized reward function rqesign(s,a) ensures normalization and
contains five parameters for environment design to balance optimization and constraint
satisfaction, to find the optimal middle ground of Summation and Replacement. The five
parameters are the Penalty Weight, the Valid Reward, the Invalid Penalty, the Invalid
Objective Share, and the Diff-Objective flag. All derived degrees of freedom for environment

design are collected and summarized later in Table 5.1.

5.4.2 Training Data Distribution

A core question in ML is the choice of the training data distribution. In RL, the data
distribution is often neglected [2], which can result in policies that are not transferable to
the general case, i.e., over-fitting [72]. In the case of the OPF, to be useful for grid operators
or researchers, it is strictly required that the learned policy performs well in real-world
scenarios. Therefore, the testing dataset should be as close to reality as possible. And the
training dataset should be selected such that it allows for maximal performance on the
test dataset [2].

If possible, the natural choice for the train dataset is to take the same approach as for

5.4 ENVIRONMENT DESIGN SPACE |

the test dataset and sample the environment state s from some realistic dataset D of load

and generator time-series data [9, 14, 52, 55]:
s~D (5.7)

Ideally, the train dataset is a subset of the same dataset as the test data. However, real-world
or at least realistic time-series data of power grid states is still very limited. Therefore, in
an RL setting, we can expect repetition of data at some point. Further, such close-to-reality
time-series datasets will contain very limited numbers of edge cases, like holidays, extreme
weather events, etc. Overall, that might limit the generality of the learned policy. [1]

To counteract the limitedness and the lack of generality of realistic data, data can be

sampled from some random distribution, for example, using a Normal distribution [21]:
s~ N(p, o) (5.8)
with mean p and variance o2, or a Uniform distribution [18, 22, 54]:
s ~ U(Smin, Smax) (5.9)

with the data range [Smin, Smax]- Such random data can be created infinitely to create large
datasets. However, most of these randomly sampled grid states will be highly unrealistic
[1]. Therefore, when training with randomly sampled data, it might happen that the RL
agent learns a policy for situations that will never happen.

As discussed before, using realistic datasets or sampling random data both have their
respective drawbacks and benefits. Realistic datasets are closest to actual real-world scenar-
ios but are limited and barely consider edge cases. Random data can be created infinitely
but will mostly be unrealistic. The straightforward approach is to combine both, to use
some realistic data for transferability and some random artificial data for generality. How-
ever, the balancing of randomness and realism in the dataset is not obvious. Therefore,
for environment design, a parameterized sampling method is introduced that combines all

three approaches:

D with probability x
s~ S N(p,0?) with probability y st.z+y+2=10 (5.10)
U (Smins Smax) With probability z

with the respective probabilities Realistic Data share x, Normal Data share y, and Uniform

Data share z to sample from each distribution respectively. These probabilities are three

45

46

| OPF-GYM ENVIRONMENT FRAMEWORK AND BENCHMARKS

more continuous parameters for environment design.

In summary, we discussed three data sampling methods and how they can be used as
options for environment design. Overall, this results in three parameters for environment
design: the Realistic Data share, the Uniform Data share, and the Uniform Data share for

data sampling. For the Realistic Data, the SimBench time-series datasets are used.

5.4.3 Observation Space

Another important environment design decision is the choice of the observation space.
Regarding the state of the environment, usually, the Markov property is used to describe
whether the state contains all the information required to make optimal decisions [41]. As
argued in [2], the Markov property should be applied to the observation space, too, since
we want to design an environment that enables the agent to learn optimal policies.!!

In power grid calculation, each node in the power system has four state properties:
active power, reactive power, voltage magnitude, and voltage angle. If we assume that the
topology and electrical characteristics of the grid itself stay constant, only two of the four
properties are required for full knowledge about the grid state. For example, if the active
and reactive power of all nodes are known, a power flow calculation can be performed to
calculate all node voltages. And if the node voltages are known, all power flows in the
system can be computed as well. In other words, half of the state properties of electrical
power grids are redundant.

Based on the Markov property and the redundancy of power grid states, we define the
first observation space variant, which we call Markov in the following [1]. For example,
it was used by [9, 18, 21, 51, 52, 55]. The idea is to only provide the bare minimum of
observations that are required to make optimal decisions. Those are all non-controllable
active and reactive power values, all economic variables like active or reactive power prices,
and dynamic constraints that depend on the current state, e.g., maximum wind or solar
feed-in. While the Markov observation variant should theoretically be sufficient to learn
optimal policies, additional observations might improve overall performance or learning
speed. For example, the constraints are mostly related to state variables like voltages, line
loads, etc., which were identified as redundant before. To deal with these constraints in the
Markov variant, the agent needs to learn some kind of implicit power flow calculation to
predict and prevent such constraint violations, which might complicate training. Because

of that, the second observation space variant called Redundant is to provide all state

"Note that we are discussing here which observations should be given to the agent. However, in real-world
grid operation, some data is not available, which might result in a partially-observable RL problem. In
that case, the Markovian observation space can provide information on which measurements would be
important for decision-making and where to place additional sensors.

5.4 ENVIRONMENT DESIGN SPACE |

information to the agent, e.g. voltage magnitudes or line loading, as used by [14, 22, 54].

However, similar to the reward function definition, only looking at the Markov and the
Redundant observation space neglects the space in between. Some redundant observations
might prove helpful, while others could even be harmful for learning [27]. In theory, we
could test every single observation channel to determine if it is helpful for training or
not, similar to the approach by Kim and Ha [27]. However, since we are dealing with
potentially thousands of observation channels, we do this on a category basis instead. For
example, does adding all line loads to the observation space improve performance? This
results in five boolean parameters for environment design to define whether to Add Line
Loading, Add Trafo Loading, Add Voltage Magnitude, Add Voltage Angle, and Add Slack
Power values, respectively. The expected advantage is that more information enables the
agent to predict and prevent constraint violations better. However, the significantly bigger
observation space may slow down training. Further, we need to perform an additional
expensive power flow calculation to compute these state variables initially.

In summary, we discussed the Markov property of the observation space and how it
applies to the OPF problem. We discussed five boolean environment design parameters to
add redundant observations to the observation space, which allows us to investigate the
whole space from providing the full Redundant observation space (all five True) to only

providing the Markov observations (all five False).

5.4.4 Episode Definition

Regarding the episode definition, we have the least amount of options. The main question
is whether the OPF should be formulated as a 1-step or n-step environment. Both options
can be found in the literature [1].

In the 1-Step variant used in [9, 14, 51], the OPF problem is formulated in a one-shot
fashion. The agent observes the grid state, acts upon it, and receives its reward. After each
step, the environment terminates and is reset to a new state. Therefore, the agent must
learn a direct mapping from state to optimal action without any possibility of correcting

its action if it turns out to be bad. However, the potential advantage is that the problem

is simpler to learn. Most RL algorithms learn by predicting the value function (see eq.

2.6). In a 1-step environment, learning the value function is reduced to a purely supervised

learning problem, which simplifies training. Note that this 1-Step variant is rather unusual

in RL, where sequential environments are more common.

12Strictly speaking, the 1-step RIL problem is reduced to a contextual bandit problem [81], for which
specialized algorithms can be found in literature. However, since the contextual bandit literature focuses
mostly on non-DNN-based function approximation, discrete actions, and low dimensional observation
spaces, we neglect it for this work.

47

48

| OPF-GYM ENVIRONMENT FRAMEWORK AND BENCHMARKS

The n-Step variant is more common for RL environments and is also more closely related
to how conventional OPF solvers work. The idea is to let the agent sequentially improve
its action by observing the next states. In other words, the agent observes a grid state,
acts upon it, receives its reward, observes the updated state, and so on. The potential
advantage is that the agent can correct mistakes. For example, the initial action might result
in a voltage violation, which the agent can then correct by altering its initial action. The
drawback is that the agent needs to make predictions over multiple steps, which complicates
training, as discussed before. An additional drawback is that the agent interacts with the
same grid state multiple times, which requires additional power flow calculations. It also
results in less variance in the observed states.

Overall, the decision between the 1-Step and the n-Step variant results in a single
parameter for environment design, which are the Steps Per Episode to interact with the
environment. If it is one, it is the 1-Step variant, while all other values result in the n-Step

variant.

5.4.5 Action Space

For the OPF, the actions are usually continuous active or reactive power setpoints of
generators, loads, or storage systems. Discrete actuators like transformer taps or switches
are possible as well. However, due to their ordinal nature, they can be represented as
continuous actions, too, plus a rounding operator [2]. Therefore, in this work, we will
assume continuous actuators. We define the action space in the continuous range [0, 1],
where zero is interpreted as the lowest possible setpoint and one as the maximum setpoint,

demonstrated here by the example of an active power setpoint Pget:
Pgsot = a - (Pmax — Pmin) + Pmin with a € [0, 1] (5.11)

This implies that the action space is bounded, which is common in RL and fits well with
power system actuators, which mostly have clearly defined nominal power ranges.
However, one property of power system actuators is that their setpoint range can be
limited by dynamic constraints. For example, wind turbines and photovoltaic systems
have limited maximum feed-in depending on the weather situation. Storage systems have a
limited power range when they are close to being full or empty. This can become problematic
when the agent can perform impossible actions like setting photovoltaic feed-in to 100% at
night time. Considering this domain knowledge, the RL environment should be designed to
prevent such actions because they might sabotage training or can even be exploited by the
RL agent [2]. To deal with such situations, we introduce the binary variable Autoscaling

to choose between two different action representations for the environment design:

5.4 ENVIRONMENT DESIGN SPACE |

If Autoscaling is True, we use the current state-dependent range:
Pset = a - (Pmax(8) — Pmin($)) + Pnin(s) with a € [0,1] (5.12)

The advantage is that it is impossible for the RL agent to pick an out-of-range action.
However, the disadvantage is that the same agent action is interpreted differently depending
on the environment state [2]. For example, a = 1 for a wind turbine can be interpreted as 3
MW in a strong-wind state, while it is interpreted as 1 MW in a low-wind state. Therefore,
the agent needs to learn how a change in constraints maps to setpoints.

In contrast, without autoscaling, out-of-range actions are prevented by using the fixed
nominal setpoint range [Ppo™ Prom] and clipping invalid actions to the current state-

dependent range.

Pyt = clip(a - (Phos — Prit) + Pront, Pmin(8), Pmax(s)) with a € [0, 1] (5.13)
The advantage is that the same action always represents the same setpoint. However, the
drawback is that many actions are essentially meaningless because they get clipped. This
way, the agent practically utilizes only part of the action space, which might result in
exploration problems. For example, if we consider a wind turbine that can only operate
at a maximum of 50% power due to low wind, all setpoints a >= 0.5 will be interpreted
the same and yield the same reward. This way, the agent does not receive any feedback on
whether, for example, a = 0.6 or a = 0.8 is superior, which might result in wasted agent-
environment interactions. The question of whether to use Autoscaling or not is another
degree of freedom for environment design. Also note that this design decision is relevant
not only for the OPF but for all kinds of dynamically constrained action spaces, e.g.,
dynamically changing maximum motor torque in robotics [26]. However, it has not been

investigated deeper in the literature yet.

5.4.6 Overview of the Design Space

In the previous sections, we discussed the OPF-Gym pre-implemented environment design
options and derived tunable parameters for environment design. All relevant environment
design parameters are summarized in Table 5.1, including the respective potential sampling
space and its unit type. Most degrees of freedom exist in the data sampling, the reward
function, and the observation space definition, while the episode and action space definitions
do not leave much room for optimization. OPF-Gym contains seven more design variables
that were neglected here for brevity since they did not turn out to be relevant in the later

experiments [3].

49

50

| OPF-GYM ENVIRONMENT FRAMEWORK AND BENCHMARKS

Table 5.1: Implemented environment design space.

Design Decision Type Design Space
Reward Valid Reward float [0, oo]
Invalid Penalty float [0, oo]
Invalid Objective Share float [0.0, 1.0]
Penalty Weight float [0.0, 1.0]
Diff-Objective boolean {True, False}
Data Normal Data float [0%, 100%]!
Uniform Data float [0%, 100%)]!
Realistic Data float [0%, 100%)]!
Obs Add Voltage Magnitude boolean {True, False}
Add Voltage Angle boolean {True, False}
Add Line Loading boolean {True, False}
Add Trafo Loading boolean {True, False}
Add Slack Power boolean {True, False}
Episode Steps Per Episode integer {1,2,3,...}
Action Autoscaling boolean {True, False}

1 Constrained to a total of 100%.

5.5 IMPLEMENTED BENCHMARK OPF ENVIRONMENTS

The following section presents the five open-source benchmark environments created for
this thesis. As discussed earlier, they represent the actual fixed OPF problem to solve. The
benchmarks all represent different OPF variants and use different power grid models. All
power grid models and the accompanying time-series data were taken from the SimBench
dataset [79]. Further, all five OPFs are defined to be solvable with the pandapower OPF
solver to enable comparisons with ground-truth results. This implies that we focus on the
base case OPF, without discrete actuators, no multi-stage OPF, no stochastic OPF, and

no security constraints.

All five OPF problems share some characteristics, which we will discuss in the following.
All environments have the same system-level constraints, which are a voltage band of +5 pu
of all buses I

095 pu<U; <1.05pu Vi e I (5.14)

5.5 IMPLEMENTED BENCHMARK OPF ENVIRONMENTS |

and a maximum branch loading of 80% for all branches B (lines and transformers):

Sy

max,b

<80% Vb e B (5.15)

Additionally, some environments have constrained active or reactive power flows from the

external grid,

Pi)ffn < Pext < Piﬁx (516)

which will be specified for each OPF use case separately. If not stated otherwise, the default
values are —oo and oo, respectively (unconstrained). All five used power grids are connected

to one external grid, respectively, which also serves as a slack node.

The SimBench dataset provides time-series profile data of power setpoints of the loads
(active and reactive power), generators (only active power), and storages (active power) in
the system. Since the technical limits of the units are not explicitly provided, we assume
that the maximum setpoints in the time-series data are also the technical limit of the
respective unit. These maximum technical limits are used to define the RL action space, if
the respective unit is an actuator, and for data sampling, if the grid states are not sampled

from the SimBench profiles (see section 5.4.2).

Some SimBench grids have very high numbers of generators, loads, and storage systems,
for example, the 1-MV-semiurb-1-sw grid with 123 generators, 118 loads, and 87 storage
systems. Since most of these units are relatively small and have little influence on the
overall grid state, we focus on the biggest n units as degrees of freedom for the OPF. The

exact numbers for n will be specified separately for each use case in the next sections.

If not explicitly mentioned, the reactive power setpoints of generators and storage systems
are assumed to be zero. In other words, we do not assume any automatic reactive power

control strategy in addition to the OPF.

Note that for consistency with pandapower, we use the pandapower signing system in
the following, which means we use the consumer system for loads and storages and the
generator system for generators and external grids (slack nodes).!3 For example, positive
storage power represents a power flow from the grid to the storage system (load), while
positive external grid power means a flow from the external grid to the considered grid

(generation).

13Compare https://pandapower.readthedocs.io/en/latest/about/units.html, last access 2025-03-14.

51

https://pandapower.readthedocs.io/en/latest/about/units.html

52

| OPF-GYM ENVIRONMENT FRAMEWORK AND BENCHMARKS

5.5.1 Voltage Control (VoltageControl)

The first RL-OPF benchmark environment is a voltage control problem formulated as OPF.

The objective is to minimize system-wide active power losses:

min J = > Peen — ¥ Poad (5.18)

That is subject to voltage band, line load, and slack power flow constraints, which are

especially relevant for this environment (empirically tested).

The environment uses the 1-MV-semiurb-1-sw SimBench system, which is a 122-bus
Medium-Voltage (MV) system. To make the problem more challenging, all generators are
upscaled by factor 1.3 and all loads by factor 1.5. Further, the reactive power flow over
the slack bus is constrained to a maximum of 0.5 Mvar, which prevents the OPF from

exploiting its neighbor grid extensively.

The actuators for control are the reactive power setpoints of ten generators and four
storage systems in the system. We assume that the agent is allowed to control the full
reactive power range [Qmin, @max) that is possible for a given active power setpoint P, of

generator g:

Qmax,g = _Qmin,g = 512113)(79 - P?] (519)

The apparent power Smax,g of generator g is computed from the maximum active power

from the respective SimBench time-series data Py 4 and an assumed cos(¢) = 0.95:

P
Sax.g = —2x9 5.20
== cos(ip) 20

In other words, we assume that all controllable generators are obliged to provide reactive

power for voltage control.

The Markov observation space X (see section 5.4.3) consists of all load active and reactive

power values, generator active power, and storage active power setpoints:

X = {PLoady QLoada PGenu PStorage} (521)

The active power setpoints of the controllable units are required as observations because
they imply the available reactive power range. Alternatively, we could provide Qmax,g as
observations, respectively, which are equivalent by providing the same information about

the environment state.

5.5 IMPLEMENTED BENCHMARK OPF ENVIRONMENTS |

5.5.2 Economic Dispatch (EcoDispatch)

The EcoDispatch environment represents an economic dispatch problem with the objective

of minimizing overall active power generation costs in the system:
min J =Y p - Py + pliaa - Petack (5.22)
g

with the assumption of linear market prices for all generators and the slack bus, which are
sampled randomly for each grid state. The slack bus is considered as another generator in
the system. For that, we constrain the slack active power flow to only positive values to
prevent it from being used as a controllable load. The maximum slack active power is set
identically to the biggest generator in the system.

The EcoDispatch environment uses the 1-HV-urban-0-sw High-Voltage (HV) system
with 372 buses. The loads are upscaled by 1.5 to make the problem more challenging.

The actuators are the active power setpoints in the range [0, Pmax,g] of all 42 generators
in the system. The maximum active power setpoints P,.x of the generators g are taken

from the accompanying SimBench time-series data, respectively:
Prax,g = max(PZimbenCh) (5.23)

The required observations to fulfill the Markov property are the load active and reactive

power values and the active power prices of the generators:

X = {PLoadu QLoad’ pgen} (524)

5.5.3 Reactive Power Market (QMarket)

The reactive power benchmark environment QMarket is very similar to the VoltageControl

environment with the difference that the reactive power is now priced, which makes it a

reactive power market problem, for which market clearing is often formulated as OPF [6].

The objective is to find the optimal trade-off of reactive power market costs and active

power loss costs:
min J = p* (Z Pyen — Z Pload) + Z Qz -ng (5.25)
g

We assume quadratic reactive power prices p@ according to Samimi et al. [82]. The reactive

power prices are sampled randomly for each state to represent different bidding behaviors.

The environment uses the 1-MV-rural-0-sw SimBench MV system with 97 buses.

53

54

| OPF-GYM ENVIRONMENT FRAMEWORK AND BENCHMARKS

The loads are upscaled by 1.5 to make the problem more challenging. Similar to the
VoltageControl environment, the reactive power flow over the slack is constrained to a

maximum of 0.1 Mvar to prevent exploitation of the neighbor grid.

The actuators are the reactive power setpoints of ten generators in the system, which are
modeled as described for the VoltageControl environment in section 5.5.1. To consider

the market context, the reactive prices of all generators are added to the observation space:

X = {PLoada QLoada PGena Pgen} (526)

Note that the utilized SimBench system does not contain storage systems, which is why

there are no storage power setpoints in the observation space definition.

5.5.4 Maximize Renewable Feed-in (MaxRenewable)

The MaxRenewable environment aims to maximize the total renewable active power feed-in

of all renewable generators g the system:

. RES
min J = - Py (5.27)
g
The relevant constraints are the maximum line load, transformer load, and the voltage
band. The MaxRenewable environment uses the 1-HV-mixed-1-sw HV SimBench system

with 355 buses. All loads and generators are downscaled by 0.8.

As actuators, the active power setpoints of 15 generators and three storage systems are
controllable. Since the generators are RES like wind turbines, we assume that the current
feed-in can only be decreased but not increased from a given initial setpoint Piy¢ 4, which

results in the action range Ppax g for generator g:
Pmax,g = Pinit,g (528)

The storage systems are not part of the objective function but can be used as an actuator
by the agent to artificially increase load to allow for more renewable feed-in. For every
storage system s, we assume a fixed setpoint range of [—Prmax,s; Pmax,s]- That also means

we neglect state-of-charge and other limiting factors here.

The Markov observations are the load active and reactive power values, the active power

setpoints of all non-controllable (nc) storage systems, and the initial active power setpoints

5.5 IMPLEMENTED BENCHMARK OPF ENVIRONMENTS |

of all generators:

X = {PLoada QLoady PrSlgoragea PGen} (529)

Note that the active power setpoints of the non-controllable generators are required for es-
timating the overall power flows in the system, while the initial setpoints of the controllable

generators are required to know the agent’s own action range.

5.5.5 Load Shedding (LoadShedding)

The LoadShedding environment aims to find the cost-minimal strategy for load shedding
of controllable loads, where each load is assigned a different linear load shedding price plp ,

which is sampled randomly. The same is true for storage systems with price p’’:
min J =—> p/ P —Y plP; (5.30)
1 s

The LoadShedding env uses the 1-MV-comm-2-sw commercial area medium voltage Sim-
Bench system with 111 buses. To create load shedding situations, the slack active power
feed-in is constrained to 8 MW, the loads are upscaled by 2.2 and the generators by 1.6.
As actuators, 15 controllable loads and one big storage system are available. Similar to
the MaxRenewable environment, we assume that the load can only be decreased from an

initial setpoint, which results in action setpoints of range [0, Pax(t)]:

Pmax,l(t) = Pinit,l(t) (531)

The action space of the storage system is [—Pmax,s; Pmax,s], Where Ppax s is the maximum
value of the simbench time-series again.

The Markov observations are the initial load active and reactive power values, the active
power of the generators, the active power of the non-controllable storage systems, and all

active power prices:
X = {PLoadu QLoad’ ngg{:g& PGenu PP} (532)

5.5.6 Overview of Benchmark Environments

The five RL-OPF benchmark environments are designed to represent a wide variety of

OPF use cases but also to show the capabilities of the OPF-Gym environment framework.

Table 5.2 summarizes some key characteristics of the benchmark problems. Three use cases

consider prices for a market-based optimization, while the two others represent purely

55

56

| OPF-GYM ENVIRONMENT FRAMEWORK AND BENCHMARKS

Table 5.2: Overview of pre-defined benchmark environments in the OPF-Gym framework.

Environment Grid Level Actuators Market Npus Nact Nobs:
VoltageControl MYV Gens, Storages () No 122 14 442
EcoDispatch HV Gens (P) Yes 372 42 201
QMarket MV Gens (Q) Yes 97 10 305
MaxRenewable HV Gens, Storages (P) No 355 18 172
LoadShedding MV Loads, Storages (P) Yes 111 16 386

1Using the the minimal Markov observation space variant.

technical optimizations of the energy system. In three cases, active power is used for
optimization, and two times, an optimal reactive power flow is performed.'* In four cases,
generators are used to optimize the power flows, three times storage systems, and in one
case, controllable loads. Two times, the OPF is performed in a high-voltage system and
three times in a MV system.

The utilized power systems range from 97 to 372 buses in size. The observation spaces
range from length 172 to 442, which is very high-dimensional and shows why usually DNN-
based approaches are preferred over conventional ML approaches. The action spaces range
from length 10 to 42, which is unusually large for RL environments, as already discussed
in section 4.2.

The characteristics of environments, like the utilized SimBench system, the constraints,
the number of actuators, etc., were determined by trial-and-error experiments to create OPF
problems that are neither impossible nor too easy to solve. In theory, all five presented
use cases are highly parameterizable. For example, the power grid can be exchanged,
constraints can be changed or added, actuators can be changed, and so on (compare
section 5.3). However, the environments were presented as is since they are intended as
static benchmark problems for future research. To ensure comparability, they should not

be changed if not strictly required.

! Note that in no case a shared active and reactive power optimization is performed. While the OPF-Gym
framework allows for such shared optimization, there are two reasons why it is not considered in the
benchmark environments. First, a shared active/reactive power optimization is not considered to be
useful because it can result in setpoints that are optimal in theory but not economically reasonable
in practice [33]. Second, the pandapower OPF, which is used for evaluation later on, cannot consider
apparent power constraints, which would be required to solve such shared optimizations in a meaningful
way.

6 Automated Design of RL-OPF Environments

After the previous chapter described the OPF-Gym framework to create RL-OPF environ-

ments of different environment designs, the following chapter will investigate RQ3:

RQ3: How to formulate OPF problems as RL environments for maximum learning
performance, including constraint satisfaction, optimization performance, and learning

speed?

The chapter is structured as follows: Section 6.1 contains the overall approach for au-
tomated environment design, including the utilized class of optimization algorithms, the
design search space, and the OPF-specific metrics. Section 6.2 investigates the performance
of the automated approach compared to a manually derived baseline. Section 6.3 shows
how statistically significant environment design decisions can be derived and which design
decisions are statistically significant over all five benchmark environments. Section 6.4
verifies the earlier results by repeating the training runs with the optimized environment
designs, demonstrating that the performance improvements are reproducible.

The content of the chapter largely corresponds to the content of [3]. It also uses and

expands the results of the pre-study performed in [1].

6.1 APPROACH

Two approach RQ3, two steps are necessary. The first is to develop a methodology to find
high-performing environment representations of OPF problem regarding the above metrics.
For that, we will formulate environment design as a multi-objective optimization problem.
Second, after optimization, the derived RL-OPF environment designs can be analyzed to
determine which environment design decisions are especially important for performance
and how they deviate between different OPF problems.

In the pre-study [1], we demonstrated that environment design has a significant influence
on RL-OPF performance and derived first results on which design variants perform well

and which do not. Further, the study showed a significant trade-off between constraint

58

| AUTOMATED DESIGN OF RL-OPF ENVIRONMENTS

satisfaction and optimization performance. However, in the publication, only two differ-
ent OPF problems were considered, the investigated environment design space was quite
limited, and the performance differences were derived from 1-to-1 comparisons, neglecting
interdependencies and continuous design decisions. In the following sections, we will discuss
a more systematic approach to RL-OPF environment design. For that, we will use [1] as a

baseline for performance evaluation.

6.1.1 Environment Design as a Multi-Objective Hyperparameter-Optimization Problem

To determine the best-performing environment designs and to enable automation of the
process, we will define the RL-OPF environment design process as an optimization problem.
To consider the two main performance metrics of the RL-OPF — constraint satisfaction
and optimization performance — we will utilize the multi-objective optimization framework.
For that, we will utilize an idea first developed in [2]. In section 5.2, we already discussed
the dichotomy of RL environments, which consist of an immutable problem to solve and
tunable environment design options. The idea here is to consider the environment design
options as environment hyperparameters, similar to hyperparameters on the algorithm
side, like the batch size or the learning rate. This allows us to directly apply all algorithms
and techniques from HPO (see section 2.5), which is a well-studied field of research [50],
including approaches for multi-objective HPO.

Figure 6.1 visualizes the general approach, which consists of an inner and an outer loop.
We start with some random initialization of the environment design. In the inner loop, an
RL algorithm learns by interacting with the current environment design. After training,
we can evaluate the performance regarding one or multiple performance metrics. Based
on the performance in the inner loop, some HPO algorithm proposes a new environment
design in the outer loop. This can be repeated till convergence or until some termination
criterion is reached. The RL algorithm and its hyperparameters stay unchanged during
the whole process. Note that this general procedure is compatible with almost arbitrary

combinations of RL algorithm, RL problem, and HPO algorithm.

6.1.2 Evaluation Metrics

To formulate the automated environment design as an optimization problem, we need to
define one or multiple metrics to optimize. In the case of the OPF, we need metrics for
two main objectives: optimization performance and constraint satisfaction. For this, we
assume the existence of a baseline conventional OPF solver for comparison to evaluate the
performance of our approach later on. This is not strictly necessary for evaluation but it

is helpful to put the RL agent’s performance in relation to that of a conventional solver.

6.1 APPROACH |

HPO Step

RL Training

Metric 1

RL Algorithm - Metric 2
Design

Multi-Objective
HPO

Figure 6.1: Inner and outer loop of the multi-objective HPO for the automated environment
design.

For the constraint satisfaction performance, we compute the share of invalid solutions
when testing on the test (or validation) dataset. Here, two things have to be considered.
First, it should not be evaluated negatively when the agent does not find a valid solution
when no valid solution exists. Second, it should be evaluated positively if the agent finds a

valid solution where a conventional OPF solver fails:

N valid

0=1- (6.1)

Nvalid,base
with the number of valid solutions Nyaiiq. The resulting invalid share metric 2 needs to
be minimized and becomes negative if the RL agent outperforms the conventional OPF

solver regarding constraint satisfaction.

The optimization performance, or the ability to find the global cost minimum, can be
represented by the mean error AJ of the objective values of all valid solutions in comparison

with the ground-truth optimal values:

1 Nyalia
AJyatia = > (Ji—Ji) (6.2)
valid i=1

with the objective function J. Only valid solutions are considered here because con-
straint satisfaction is mandatory, and good optimization performance in invalid states is

meaningless. Again, the metric needs to be minimized and becomes negative when the RL

59

60

| AUTOMATED DESIGN OF RL-OPF ENVIRONMENTS

agent outperforms the conventional OPF solver. However, while the invalid share has an
upper bound of one, the mean error metric has no upper limit.

With the two metrics invalid share and mean error, the goal is to minimize both metrics,
with the point [0, 0] representing equal performance of the RL agent and the conventional

solver.

6.1.3 Experimentation

The experiments for this work are performed as follows. For multi-objective HPO in the
outer loop, the open-source framework Optuna [83] is used. As an optimization algorithm,
the NSGAIIISampler [84] with its default parameters is chosen. It was chosen because
it outperformed other optimizers in undocumented pre-studies and is capable of multi-
objective optimization. Overall, 100 outer loop HPO steps are performed, where each
optimization step represents one environment design setting.

Regarding the inner RL loop, one important aspect to consider is the stochasticity of
RL experiments, which might distort evaluation with positive or negative outliers [85]. To
counteract stochasticity, each sample consists of three training runs with different seeds
to achieve a robust performance estimation. The metrics are averaged over the three runs,
respectively. Each single RL training run is performed with the basic RL algorithm DDPG
[86] for 40k training steps. The short training time of 40k steps' was chosen to favor fast-
converging environments and to make the problem computationally tractable. We will later
test the validity of that decision. The off-policy DDPG algorithm was chosen over more
state-of-the-art PPO [87] or SAC [42] because it converged faster than both algorithms in
an undocumented pre-study. That aspect is especially important here considering the short
training times discussed before. The DDPG hyperparameters can be found in Table A.1
in the Appendix. We will test later if the results are transferable to other RL algorithms.

The accompanying environment’s time-series datasets with 35k data points are split into
training, validation, and testing datasets using randomized nested resampling as described
by Bischl et al. [50]. First, the data is split deterministically into 80% training data and
20% testing data. The testing data is neither used for training nor for environment design
evaluation during optimization. That is to prevent a positive bias by picking environment
designs that perform best on the test dataset by chance [50]. Instead, they will only be used
for the verification of results later on. After the test split, the remaining 80% are randomly
split into training and validation datasets. For this work, we use 7k samples for training.
This small amount is explicitly chosen to create an artificial shortage of Realistic Data to

determine if randomly sampled data can compensate for that lack of data, as discussed

!For comparison, in the pre-study [1], the training times were 1-2 million steps for very similar environments.

6.1 APPROACH |

in section 5.4.2. This allows us to evaluate if random data sampling method can replace

realistic data without a performance drop.

The performance evaluation during environment design happens on the validation data.

Again, we have to consider stochasticity. To achieve a robust performance estimation, four
separate evaluations on the validation data are performed, after 25k, 30k, 35k, and 40k
training steps, respectively. This procedure dampens outliers and prefers quick learning

over slow learning.

6.1.4 Environment Design Space

Table 6.1: Utilized environment design search and sampling space.

Design Decision Type Design Space
Reward Valid Reward float [0, 2.0]
Invalid Penalty float [0, 2.0]
Invalid Objective Share float [0.0, 1.0]
Penalty Weight float [0.01, 0.99]
Diff-Objective boolean {True, False}
Data Normal Data float [0%, 100%)]!
Uniform Data float [0%, 100%)]!
Realistic Data float [0%, 100%)]!
Obs Add Voltage Magnitude boolean {True, False}
Add Voltage Angle boolean {True, False}
Add Line Loading boolean {True, False}
Add Trafo Loading boolean {True, False}
Add Slack Power boolean {True, False}
Episode Steps Per Episode integer 35+ — {1}
Action Autoscaling boolean {True, False}

I Constrained to a total of 100%.
2 Subsequently modified after early experiments.

The environment design search space implemented in Optuna is summarized in Table
6.1. For some cases, the search space was restricted compared to the full design space
shown in Table 5.1. The Valid Reward and Invalid Penalty ranges are defined as [0.0,
2.0], where 2.0 can be interpreted as two times the standard deviation of the normalized
penalties (compare section 5.4.1). The Penalty Weight range is slightly restricted to [0.01,
0.99] to prevent complete neglect of one of the two objectives. The three data shares are

constrained to 100% by sampling them in the range [0%, 100%] and then dividing each

61

62

| AUTOMATED DESIGN OF RL-OPF ENVIRONMENTS

data share by the sum of shares, which approximates a Dirichlet distribution.

The Steps Per Episode space was originally chosen as {1,3,5} to represent the 1-Step
variant (N = 1), the n-Step variant with few steps (N = 3), and the n-Step variant with
more steps (N = 5) to also investigate the influence of different episode lengths. However,
early experiments showed that the 1-Step variant statistically significantly outperformed
the other two options so dramatically that they had to be removed from the search space
to prevent that 2/3 of the search space becomes meaningless. This was true for all five
environments and aligns well with the same general result in [1]. Hence, only the 1-Step

variant was used for the automated environment design experiments.

6.1.5 Baseline Environment Design

The previously described approach of multi-objective optimization yields a Pareto front of
non-dominated environment designs. To determine if the optimized environment designs
result in higher performance than a manual design, we consider a manually derived envi-
ronment design as a baseline for comparison. For that, we use the environment design that
was derived manually in the pre-study [1] by A/B-testing different design options. The
exact baseline environment design can be found in Table 6.2. It uses no offset rewards, no
random training data, no redundant observations, 1-step episodes, and action autoscaling.
However, the baseline design deviates for one aspect from that environment design by
using a normalized reward instead of an unscaled reward to ensure comparability (compare
section 5.4.1). Further, [1] does not provide any information regarding the Penalty Weight,
which is why we consider multiple values, i.e., the values {0.1,0.3,0.5,0.7,0.9}. The training
runs with the manual design are performed the same as was described in the previous

section, except using ten different seeds to be more robust against outliers.

To compare the performances of the baseline environment designs with the designs
from multi-objective optimization, the performance metrics of the baseline designs can
be placed in relation to the Pareto front. If they are left below the Pareto front, the
baseline outperforms the optimized designs; if they are right above the Pareto front, they
get outperformed; and if they are directly on the front, the overall performance is roughly
identical. However, considering that the performance of RL experiments is always stochastic
to some extent, we have to consider the variance of results in the process, as will be shown

later.

6.2 PERFORMANCE EVALUATION |

Table 6.2: Manually derived baseline environment design from the pre-study [1].

Design Decision Type Search Space
Reward Valid Reward float 0.0

Invalid Penalty float 0.0

Invalid Objective Share float 1.0

Penalty Weight float {0.1, 0.3, 0.5, 0.7, 0.9}
Data Normal Data float 0%

Uniform Data float 0%

Realistic Data float 100%
Obs Add Voltage Magnitude boolean False

Add Voltage Angle boolean False

Add Line Loading boolean False

Add Trafo Loading boolean False

Add Slack Power boolean False
Episode Steps Per Episode integer 1
Action Autoscaling boolean True

6.2 PERFORMANCE EVALUATION

The following sections compare the resulting performance of the proposed HPO-based
automated design with the manually derived baseline design from [1]. The results for the
EcoDispatch and LoadShedding environments are especially noteworthy and are discussed

in detail, while the other results get summarized.

6.2.1 Economic Dispatch

Figure 6.2 shows the results for the EcoDispatch environment. The figure contains all
non-dominated and dominated solutions from the multi-objective optimization in red and
blue, respectively. Additionally, we added the baseline runs with the manual design in
green. The cross in the upper Figure shows the mean standard deviation calculated over
all 100 samples of the HPO.

We can observe a strong tradeoff between the two metrics, which results in the typical
curved Pareto front. All points from the manual design are placed right above the Pareto
front with a distance of multiple standard deviations. That shows that the manual designs
get strictly dominated by the solutions from automated design. This is especially true for
the samples with less focus on constraint satisfaction (lower Penalty Weight). Altogether,

the solutions from the automated design significantly outperform the manual design.

63

64

| AUTOMATED DESIGN OF RL-OPF ENVIRONMENTS

201 o ® Dominated
@ ® Non-dominated
18 1 ® Manual Design
[Mean std deviation
:é 16 A °
@ °
141 @
r_>c)
c []
© 12 A () ° [] ®
s f 4 0
o [) ° o0 []
107 < ¢ (] ° ° ° i
‘Q [e® 4 o o
8 A (X] o™
® 04 ® [Q ® Y
0.0 0.2 0.4 0.6 0.8 1.0
Invalid share

Figure 6.2: EcoDispatch: Dominated and non-dominated samples from the HPO in com-
parison with the baseline solutions. Note: Singular extreme outliers were clipped
for the plot.

6.2.2 Load Shedding Environment

Figure 6.3 shows the resulting distribution of training performances for the LoadShedding
environment. Again, the non-dominated solutions of the automated design result in a curved
Pareto front that visualizes the trade-off between constraint satisfaction and optimization
performance. However, in this case, the automated designs do not strictly outperform
the manual design. Instead, all manual designs are located on the far right end of the
Pareto front, almost independent of the chosen penalty weight. Therefore, the baseline
design is generally competitive here. However, it also shows that even with varying penalty
weights, only a very small part of the search space was considered. While the manual
design consistently failed to achieve constraint satisfaction, the left-most solutions from the
automated design demonstrate that the RL agent can even outperform the conventional
solver by 7% regarding constraint satisfaction, which means that it can find valid solutions
where the conventional solver fails. Without the explorative character of the multi-objective

environment design, that would not have been possible.

6.2.3 Remaining Environments

For conciseness and to prevent repetitions, this section summarizes the results for the

remaining three environments, VoltageControl, MaxRenewable, and QMarket. Their re-

6.3 ENVIRONMENT DESIGN EVALUATION |

° ® Dominated
8 * ® Non-dominated
® Manual Design
[.
° [® Mean std deviation
5 6 - [] [
= (X 4
e []
P B
< o ®e °
g ® e,) ®
= * ° ® o
@
27 °® ® °)
®% o % b.go % ° -
® No oo
0 ﬁ.’ ©0 0, o utne

—-0.075 -0.050 -0.025 0.000 0.025 0.050 0.075 0.100 0.125
Invalid share

Figure 6.3: LoadShedding: Dominated and non-dominated samples from the HPO in com-
parison with the baseline solutions. Note: Singular extreme outliers were clipped
for the plot.

spective Pareto fronts can be found in Appendix A.2. For all three, the non-dominated
solutions from the automated design either outperform the solutions from the manual
design or achieve the same performance. In the VoltageControl environment, the auto-
mated design even outperforms the manual one by multiple standard deviations. For the
MaxRenewable environment, we can observe again that the manual design achieves consis-
tently good optimization performance but fails regarding constraint satisfaction, similar
to the LoadShedding environment discussed before.

In summary, the automated design consistently outperforms the manual design. Over
all five OPF environments, there is not a single case where the manual design resulted in

a solution left-below the Pareto front of the automated design.

6.3 ENVIRONMENT DESIGN EVALUATION

One characteristic of the performed multi-objective optimization is that we cannot extract
a single best environment design from the previous results. Instead, we receive a set of
non-dominated solutions as shown before. However, we can draw general conclusions about
which environment design decisions are relevant for which metric and potentially also which
environment design decisions are generally better than others.

To do this, we can split the generated solutions into two groups — dominated and non-

65

66

| AUTOMATED DESIGN OF RL-OPF ENVIRONMENTS

dominated solutions — and then test if there are statistically significant differences regarding
the environment design. For example, if all non-dominated solutions contain the voltage
magnitude in the observation space, while the distribution in the dominated set is 50/50,
there is a high probability that voltage magnitude observations are required for generating
non-dominated environment designs.

While splitting regarding dominated /non-dominated is natural for multi-objective opti-
mization, other criteria are possible as well. In the following, we will split the generated

solutions regarding four criteria:
1. Pareto: Non-dominated vs. dominated
2. Validity: Good invalid share vs. bad invalid share
3. Optimization: Good mean error vs. bad mean error
4. Utopia: Sum of both normalized metrics.

Regarding the latter three, we will perform the split by putting the top 20% solutions
into one group and the bottom 80% into the other group.? Then, we determine the p-
value by using Welch’s t-test [88] for the continuous parameters and the chi-squared test
[89] for the discrete ones. We reject the null hypothesis that a design decision does not
impact performance if p < 0.05. This way, we can test the performance differences of
all environment design decisions for statistical significance regarding the four evaluation
criteria.

This general procedure can be performed for individual environments but also for all
environments together. The following section 6.3.1 shows the results over all five OPF
problems to yield general insights for RL-OPF environment design, while section 6.3.2

discusses specific individual environments and their results.

6.3.1 General OPF Environment Design

In this section, we will test if there are design decisions that have a statistically significant
influence over all 500 samples. For that, we extract the top 20% designs from all five
environments, respectively, as described before. Additionally, for the Pareto criterion, we
have to consider that the environments have different numbers of non-dominated solutions.
We use Fisher’s method [90] to combine the respective p-values without favoring the

environments with more non-dominated solutions.

2The 20/80-split was chosen based on an undocumented sensitivity analysis. The analysis showed that
the choice of the cut-off point influences the general results only marginally.

6.3 ENVIRONMENT DESIGN EVALUATION |

Figure 6.4 shows the environment design decisions with statistically significant influence
on the performance regarding the four evaluation criteria over all five environments. For
the discrete design decisions, the figure shows which discrete variant is prevalent in the
high-performing group. For the continuous variables, the mean of the top group is shown,
with a comment if it is high or low relative to the search space. Note that the actual data
points were removed for a better overview. The dotted lines hint at the respective areas of

the evaluation criteria in a stylized manner.

1.0
Validity:
Pen. Weight: 0.71 (high) Pareto:
0.8 - Add Line Load: True Penalty Weight: 0.41 (low)
: Add Volt. Mag.: True Realistic Data: 0.31 (low)
Diff. Obj.: True Add Line Load: True
Autoscale Act: True
§ Diff-Objective: True
£ 0.6 A
)
=4
©
>
& 0.4 1) Optimization:
g : : Utopia: Invalid Penalty: 0.78 (low)
AILIDSEES (5 1L Invalid Obj. Share: 0.64 (high)
: Diff-Objective: True Penalty Weight: 0.32 (low)
S S Autoscale Act: True
0.2 A i : Diff-Objective: True
0.0 ~ T T

0.0 0.2 0.4 0.6 0.8 1.0
Invalid share

Figure 6.4: Statistically significant environment design decisions over all five environments
for all four evaluation criteria, respectively.

The first noteworthy result is that while we investigated 15 different design decisions,
only 2-5 of them resulted in statistically significant performance impacts over all five
environments. In conclusion, while the earlier results demonstrated that environment design
impacts performance on a general level, the same is not true for each individual design
decision. Some are far more important than others.

Over all five environments and all evaluation criteria, only some design decisions are
noteworthy to discuss. A high Penalty Weight benefits constraint satisfaction but harms
optimization performance. However, we cannot derive novel insights from that observation
because the general trade-off is already known [1, 74, 17]. Instead, this observation can be

seen as a confirmation that the results align with the existing knowledge.

Using the Diff-Objective and Autoscaling options seems to consistently benefit perfor-

67

68

| AUTOMATED DESIGN OF RL-OPF ENVIRONMENTS

mance, almost independent of the evaluation criterion. Considering that these results were
generated over five different environments and 1500 training runs, we can conclude that
both should be considered for designing OPF environments.

Also noteworthy is that a relatively low Realistic Data share resulted in significantly more
non-dominated Pareto front solutions, while the Normal Data and Uniform Data shares
have not resulted in any statistically significant results. This confirms that time-series
data can indeed be supplemented by randomly sampled data to some extent. That is in
contrast to the results from the pre-study [1], which suggested that randomly sampled data
cannot result in competitive performance. Instead, the results show that adding randomly
generated data can improve performance if the Realistic Data is limited. However, the
results do not provide information if a uniform or a normal distribution is better for random
sampling.

Again in contrast to [1], the results indicate that adding redundant observations can
improve performance, especially regarding constraint satisfaction. That is the case for the
line loading observations and the voltage magnitudes. However, considering that in different
OPF variants, different constraints are more important than others, we can assume again
that it is use-case-specific.

Altogether, this section demonstrated how statistical tests can be used to determine
design decisions that impact performance in statistically significant ways. However, note
that while we could not find statistical significance for some other design decisions, that
does not mean that they do not influence performance at all. It is also possible that more

samples would have been required to show the statistical significance of their influence.

6.3.2 Specific Environment Design

While the previous section discussed design decisions that yield statistically significant
results over all five benchmark environments, this section discusses the specifics of singular
environments by the example of the EcoDispatch and the LoadShedding environments.
To prevent redundancy, we will focus on the design decisions that deviate from Figure
6.4. Figure 6.5 visualizes the statistically significant environment design decisions in the
EcoDispatch environment for the four evaluation criteria.

Most EcoDispatch-specific results align well with Figure 6.4. For example, to achieve
good Validity, a high Penalty Weight and a low Diff-Objective seem to be advantageous,
while the opposite is true for good Optimization performance. However, there are also some
deviations. Especially noteworthy is that for good Pareto and Optimization performance,
a high Uniform Data data share is advantageous in this environment. Further, the results

regarding Add Line Loading and Diff-Objective are not as consistent as in the general case,

6.3 ENVIRONMENT DESIGN EVALUATION |

Optimization:
Penalty Weight: 0.39 (low)
Invalid Obj.: 0.89 (high)

T
201 o i Validity: ® Dominated
!l Pen. Weight: 0.62 (high) El ® Non-dominated
18 4 1| Invalid Obj.: 0.39 (low) .
1| Diff-Objective: True ® Manual Design
| [® Mean std deviation
!
1
1

Invalid Obj.: 0.72 (high)
Add Line Load: True
Diff-Objective: True

Utopia: |

Mean valid error

Pareto: Uniform Data: 0.39 (high)
Realistic Data: 0.27 (low) Add Line Load: False
Uniform Data: 0.42 (high) Diff-Objective: False
——'--i. Add Line Load: True
1
1) ™Y []
______ l.__"____-JI,.._!_-_.___._-___.._-,_____--____._--______-_______-_____-_______-__
1
8 | LA o
: * L [] [] ® ‘ o .
H H
0.0 0.2 0.4 0.6 0.8 1.0

Invalid share

Figure 6.5: EcoDispatch: Statistically significant environment design decisions for all four
evaluation criteria, respectively. Note: Singular extreme outliers were clipped
for the plot.

resulting in better or worse performance depending on the evaluation criterion.

Figure 6.6 shows the statistically significant design decisions for the LoadShedding en-
vironment. Again, the results align well with Figure 6.4 on a general level but with some
exceptions. In this case, it is especially noteworthy that a very small share of Realistic
Data data is helpful for performance (Validity and Pareto), which means higher shares
of randomly sampled data. Further, additional observations seem to be useful for perfor-
mance in this environment, i.e., Add Voltage Angle for Pareto and Add Slack Power for

Optimization performance.

For brevity, the results for the VoltageControl, QMarket, and MaxRenewable environ-
ments are not discussed further here. They can be found in the Appendix A.3. Overall,
they all show the same general message that they align well with the general results from
the previous section, with always some exceptions or deviations. Altogether, this indicates
that the RL environments should be designed problem-specific for maximum performance.
However, considering that some design decisions are very consistent over all five environ-
ments, e.g., Autoscaling or Diff-Objective, the general results from the previous section can
be expected to provide good results if a problem-specific environment optimization is too

computationally expensive.

69

70

| AUTOMATED DESIGN OF RL-OPF ENVIRONMENTS

T
U [Validity: ® Dominated
8 1 E Pen. Weight: 0.85 (high) f L { [Non-dominated
1 | Realistic Data: 0.21 (low) .
Ib Uniform Data: 0.45 (high) ® Manual DeSIQ'n .
R —— +-{ Autoscale Act: False {# Mean std deviation
5 6 - o @@ : ; Pareto:
1 icti .
2 'Y R i Realistic Data: 0.23 glow) Optimization:
() s H Normal Data: 0.4 (high) Penalty Weight: 0.32 (low)
S i Add Voltage Ang.: True y welgnt: 9.
=) o : - Invalid Obj.: 0.69 (high)
© 1 0 | Autoscale Act: True . :
Z 4 4 ° () ! oo : Valid Reward: 0.67 (low)
o o! ! [J Add Slack Power: True
2 ° | ® ! | Utopia: L L Autoscale Act: True
i @ 1| Pen.Weight: 0.76 (high)
2 6. ! | Uniform Data: 0.44 (high) .. ‘
o ’. # (J @ .. []
LY TS % A e
------------- 4-----,.----------------_--___---------_ﬁot.-- Q-p-——-———==—————-
0 ! i 0% s anide
1

—-0.075 -0.050 -0.025 0.000 0.025 0.050 0.075 0.100 0.125
Invalid share

Figure 6.6: LoadShedding: Statistically significant environment design decisions for all four
evaluation criteria, respectively. Note: Singular extreme outliers were clipped
for the plot.

6.4 VERIFICATION OF OPTIMIZED DESIGNS

In the previous experiments, we made multiple decisions that might have resulted in a
positive bias. To make the automated design computationally tractable, we chose short
training times of 40k steps, which implicitly assumes that the resulting environment designs
also work for longer training times. We chose DDPG for environment design because it
performed well in trial runs, but it remains unclear if the environments that were optimized
for DDPG also perform well with other RL algorithms. Further, we have not yet extracted
specific environment designs from the samples. Can we extract environment designs from
the results that reproducibly dominate the baseline?

To verify the performance gains from the automated environment design, we will per-
form verification training runs. For that, we will focus on the two environments where
the automated design clearly outperformed the baseline design regarding both metrics:
EcoDispatch and VoltageControl. The hypothesis is that we can extract environment de-
signs from the previous optimization that will result in reproducibly superior performance

compared to the baseline design.

1. We increase the training time from 40k steps to 500k. Further, we now use the full

available training set instead of the reduced dataset used before.

2. We perform the experiments for DDPG, which was used for the optimization, and

6.4 VERIFICATION OF OPTIMIZED DESIGNS |

SAC [42], which is considered to be the state-of-the-art off-policy RL algorithm.

3. For both environments, we pick a combination of the best five samples regarding the
Utopia criterion to prevent outliers. For the continuous variables, we use the mean; for
the discrete ones, we take the most-used setting. We do that for all design decisions,
regardless of statistical significance. The resulting exact environment designs can be
found in Table 6.3.

Table 6.3: The two verification environment designs in comparison to the manual design.

Design Decision Manual Best Eco Best Voltage

Reward Valid Reward 0.0 0.88 0.97
Invalid Penalty 0.0 1.11 0.57
Invalid Obj. Share 1.0 0.8 0.47
Penalty Weight 0.1/0.5 0.54 0.16
Diff-Objective False True True
Data Normal Data 0% 23.79% 35.51%
Uniform Data 0% 41.24% 28.69%
Realistic Data 100% 34.97% 35.8%
Obs Add Voltage Mag. False False False
Add Voltage Angle False True False
Add Line Loading False True True
Add Trafo Loading False True True
Add Slack Power False False False
Episode Steps Per Episode 1 1 1
Action Autoscaling True True True

Further, we now compute the performance metrics on the test datasets instead of the
validation datasets. They were not used for automated design before, as it is good practice
in HPO [50]. For the baseline design, we picked the penalty weight that resulted in the
best Utopia performance in the previous training runs. That is a penalty weight of 0.5
for EcoDispatch and 0.1 for VoltageControl. All metrics are calculated as the mean of
10 different random seeds to consider the stochasticity of results [85, 91]. The resulting
training curves are shown in Figure 6.7. The 2x2 subfigures show the performance regarding
the two metrics mean error and invalid share for the two environments, respectively.
Regarding the mean error metric in the VoltageControl environment, the automated
design outperforms the manual design for both RL algorithms. Regarding the invalid

share metric, again, the automated design generally outperforms the baseline for both

71

72 | AUTOMATED DESIGN OF RL-OPF ENVIRONMENTS

—— Auto Design SAC 0.20 4 —— Auto Design SAC
Manual Design SAC Manual Design SAC

—— Auto Design DDPG —— Auto Design DDPG
—— Manual Design DDPG —— Manual Design DDPG
=37 K’—_ \—/—\/

—101 ¥\—’_\
0.00 +

—~154

T T T T T T T T T T

100000 200000 300000 400000 500000 100000 200000 300000 400000 500000
Training Steps Training Steps

Mean valid error
o
|
Invalid share
=} =} =3
1=} = =
w o w
| ! |

(a) VoltageControl with the mean error metric. (b) VoltageControl with the invalid share met-

T1C.
54 —_ |/\-\/Iuto D‘ezlgﬂ SA(S:AC 0.304 —— Auto Design SAC
anua IESIQH /\ Manual Design SAC
5 7 — Auto Design DDPG 0.25 —— Auto Design DDPG
£ o —— Manual Design DDPG v —— Manual Design DDPG
g 50201
2 i
g, 2 0.15 A
z <
s 5 0.10
= 4 — ’
0.05 1
34
0.00 1

T T T T T T T T T T
100000 200000 300000 400000 500000 100000 200000 300000 400000 500000
Training Steps Training Steps

(c) EcoDispatch with the mean error metric. (d) EcoDispatch with the invalid share metric.

Figure 6.7: Learning curves for the two verification environments, EcoDispatch and
VoltageControl, for both considered performance metrics and for both the
DDPG and the SAC algorithm. The colored areas mark one standard deviation.
All plots are created with a rolling average over two steps.

algorithms. However, the combination of automated design plus SAC resulted in multiple

outliers, which can be deduced from the high standard deviation.

For the EcoDispatch environment, again, the automated design outperforms the manual
design, however, with one exception. While the automated design plus SAC resulted in
almost perfect constraint satisfaction, the optimization performance was the worst out
of the four combinations. Hence, this is the only case where the automated design does
not dominate the manual design regarding both metrics. However, it also does not get
dominated by the baseline. The switch from DDPG to SAC resulted in a stronger focus
on constraint satisfaction for the EcoDispatch environment. The exact reason for this
behavior is out-of-scope for this work. Therefore, for this combination, we cannot draw a

general conclusion that one environment design is superior to the other.

Altogether, we can conclude that the optimized environment designs from the multi-
objective optimization reproducibly outperform and dominate the baseline design, if we use
the same RL algorithm. However, the results also suggest that the optimized environment

design is not fully transferable from one RL algorithm to the other, which indicates some

6.4 VERIFICATION OF OPTIMIZED DESIGNS | 73

kind of overadjustment of the environment to the RL algorithm, similar to overfitting [72].

; Discussion

This doctoral thesis investigated the importance of environment design for learning the
OPF with RL. The following section will summarize this thesis’ main findings, provide

answers to its research questions, and discuss its contributions and limitations.

7.1 RESeARCH QUESTIONS AND FINDINGS

In section 1.2, we derived a general RQ regarding the overall importance of RL environment
design for learning the OPF and subdivided it into three sub-RQs, which were used to
structure this thesis. In the following, we will first discuss the three sub-RQs to then answer
the general RQ of this thesis:

RQ1: What are the characteristics, difficulties, and chances of the OPF as an RL

problem formulation?

Chapter 4 discussed the general characteristics, difficulties, and chances of the RL-OPF
problem. The main findings are twofold: First, while RL has some drawbacks compared
to conventional solvers, like a lack of guarantees regarding constraint satisfaction or con-
vergence, it holds noteworthy advantages regarding real-time capability, non-differentiable
problems, sequential problems, stochastic problems, and others. Altogether, that makes
RL another promising tool in the toolbox for solving future OPF problems in research or
the real world. Second, when formulating the OPF as an RL problem, we have to consider
multiple noteworthy special characteristics. For example, the high-dimensional state and
action spaces, the strict constraints, and the lack of large-scale realistic datasets make
the OPF challenging to solve. On the other hand, the dense feedback signal for RL, the
availability of power system models, and the existing OPF baselines can prove helpful when
solving the OPF with RL. These general findings provide an important basis for building

OPF environments but also for solving the OPF with RL on a general level.

76

| DISCUSSION

RQ2: How should a benchmark framework for OPF environments look like that
ensures reproducible and comparable research with fixed benchmarks but also degrees

of freedom for systematic environment design?

Chapter 5 presents the OPF-Gym framework and benchmarks developed for this thesis.
To ensure reproducible and comparable research, OPF-Gym is open-source and provides
five different fixed OPF benchmark problems for multiple common OPF use cases like
the economic dispatch or voltage control. To enable the usage of the benchmarks and still
allow for RL environment design, the developed framework strictly distinguishes between
the fixed underlying OPF problem and its environment representation, which has various
degrees of freedom for systematic environment design. By strictly separating the two parts
of the RL environments, OPF-Gym makes it possible to modularly test new environment
design representations without changing the underlying OPF problem to solve. To also
provide a basis for extensive environment design analyses, OPF-Gym contains ready-to-use
implementations of various environment design options, like different reward functions and
data sampling methods. For example, multiple data sampling methods are implemented to
investigate how to deal with the lack of realistic time-series data or the Autoscaling option

to deal with dynamic constraints (compare section 4).

RQ3: How to formulate OPF problems as RL environments for maximum learning
performance, including constraint satisfaction, optimization performance, and learning

speed?

Considering that no systematic environment design methods exist in the RL literature
(see section 3.4), chapter 6 proposes a general methodology for RL environment design,
which is applicable to the OPF but also for the general case of RL environment design. Con-
sidering the large amount of potential OPF environment design options (see section 5.4),
an automated optimization-based approach is preferred over manual environment design.
Hence, the RL-OPF environment design problem is formulated as a multi-objective HPO
problem. Utilizing the HPO framework allows for reusing the vast existing HPO algorithm
and knowledge base, which results in simplicity and generality of the methodology. The
utilization of multi-objective optimization allows for considering both constraint satisfac-
tion and optimization performance explicitly. Learning speed was given lower priority by
implicitly considering it with short training times.

To verify the proposed environment design methodology, the HPO-based optimization

was applied to the five benchmark problems and the 22-dimensional environment design

7.2 LIMITATIONS AND OUTLOOK |

space of OPF-Gym, in comparison to a manually derived design from the pre-study to this
thesis in [1]. The experiments demonstrated that the HPO-derived environment designs
outperform the manual design. Further, it is shown how statistical analyses can be used
to derive general findings on which RL-OPF environment design decisions are statistically
significant for these performance differences. For example, the results indicate that Au-
toscaling actions and the Diff-Objective reward consistently improve performance. Finally,
the derived environment designs, their performance gains, and their reproducibility were
verified by separate training runs and testing on the unseen test dataset.

In conclusion, chapter 6.1 approached RQ3 by successfully developing a general method-
ology for RL environment design, verifying its performance, and providing statistically

significant findings on how OPF environments should look like.

General RQ: What is the importance of RL environment design for solving the

OPF with RL, regarding both optimization performance and constraint satisfaction?

On a general level, this thesis’ results clearly indicate that environment design plays a
significant role when solving the OPF as an RL problem, as it was already shown for other
domains like locomotion [26]. Using the same RL algorithm with the same hyperparameters,
the HPO-designed environments strictly outperform the manual baseline design. This is true
for both constraint satisfaction and optimization performance by achieving non-dominated
solutions. The results also suggest that only a few design variables are mainly responsible
for the performance differences, which aligns well with similar observations in the HPO
literature where usually few hyperparameters influence performance significantly, too [92].
In conclusion, while environment design is important for RL training performance on a
general level, singular design variables can potentially be neglected when creating RL

environments.

7.2 LIMITATIONS AND OQUTLOOK

While this thesis resulted in important finding on RL environment design and solving the
OPF with RL, it also left multiple questions unanswered and open for future work.
OPF-Gym was developed for this thesis to establish benchmark RL-OPF environments
for comparability and reproducibility and as a general framework for other researchers to
create their own OPF environments. While OPF-Gym allows for almost arbitrary OPF
formulations, this thesis focused completely on standard OPF cases and neglected advanced

problems like the stochastic OPF or the security-constrained OPF'. In future work, to enable

77

78

| DISCUSSION

real-world application in the future, these more advanced problems need to be considered
explicitly, which can be expected to result in further research problems to be solved. Hence,
the set of benchmark environments should be extended with examples of advanced OPF
problems to provide a universal set of RL-OPF environments.

Chapter 6 proposed to use HPO as a general framework for RL environment design. While
utilizing the HPO framework and algorithms results in reusability of existing algorithms
and methods, it also inherits the drawbacks of HPO. The most relevant one is the required
computational effort [50]. Overall, 300 RL training runs per environment were performed
for the automated environment design. That is especially problematic considering that
RL in itself is considered to be computationally costly [42]. To reduce computation times,
there are three noteworthy options: First, the OPF use case required multi-objective
optimization. However, in most practical cases, we care about a single performance metric
and can use single-objective optimization, which simplifies the problem. Second, while this
work considered overall 22 different design variables, we found that only a few of them
impact performance in significant ways. That suggests that the computation times can
be reduced by using a smaller search space with only the most relevant design decisions.
Third, since we utilized the HPO framework, we can perform the optimization of the
agent’s hyperparameters together with the environment design variables. That can be
expected to be more efficient than performing both subsequently. In summary, while the
HPO-based environment design is computationally expensive, there are multiple potential
countermeasures, which can be investigated in future work.

The verification results in section 6.4 suggest that an optimized environment design
for one RL algorithm is not necessarily transferable to other algorithms. One important
advantage of the RL framework is its modularity, which comes from the agent/environment
split. If the performance drops by switching to another RL algorithm, as the results indicate,
that advantage no longer exists. Therefore, making the environment design robust to
subsequent algorithm changes is an important step for future work.

The main goal of this thesis was to investigate the importance of environment design for
learning the OPF with RL, which inherently restricts the scope and significance of the results
to RL as the OPF solver. However, as discussed in chapter 4, RL is not strictly superior to
other approaches like conventional solvers, meta-heuristics, or other ML approaches (see
section 3.2). Hence, this thesis provided important results on how to apply the potential
tool RL for solving the OPF, but discussed only theoretically when to apply it. A large-scale
empirical comparison of conventional solvers vs. meta-heuristics vs. ML-based approaches
is still missing in the OPF literature and would be an important basis to make justified
decisions on when to use which algorithmic tool.

Similarly, the focus of this thesis was mainly on the energy domain. While the automated

7.2 LIMITATIONS AND OUTLOOK |

environment design methodology was designed to be generally applicable to all kinds of
RL problems, this was not further verified. The same is true for the specific environment
design decisions investigated in this thesis. For example, it was shown that the action
Autoscaling achieves significantly better performance than simply clipping invalid actions
(see section 6.3). Do these results transfer to the general case of dynamic constraints and,
therefore, to other domains? The same is true for the other results. Should we generally use
Diff-Objective when solving an optimization problem with RL? Should we generally add
some share of randomly sampled environment states to our training, when the available
dataset of realistic states is limited? To answer these questions on a general level, large-scale
experiments over multiple domains and various RL problems are required. Potentially, this

can yield general findings on how to design RL environments.

79

Conclusion

The OPF is an important optimization problem to enable more efficient and stable power
grid operation and planning. Training deep neural networks with RL is a promising ap-
proach to solving even advanced and large-scale OPF problems in real-time. However, the
design of the OPF problem representation as an RL environment has not been investigated
in the literature yet. Hence, this thesis explores the importance of RL environment design
for learning the OPF with RL.

The main contributions are as follows:

e This thesis provides theoretical insights on when to apply RL to the OPF, what
its advantages and disadvantages are compared to conventional approaches, and what

to consider when formulating the OPF problem as an RL environment.

o It provides a research software foundation for the RL-OPF by presenting the open-
source OPF-Gym benchmark framework. OPF-Gym allows for easy creation of RL-
OPF environments, offers five fixed benchmark environments for better comparability
and reproducibility of research, and offers various implementations of environment

design options to choose from.

e It proposes a general RL environment design methodology and applies it to
the five benchmark problems. The results show the superiority of the automated
design vs. a manually derived baseline environment, demonstrate the importance of
environment design for overall performance, and identify multiple design decisions
that are especially important for the RL-OPF problem, thus providing important

insights on OPF environment design.

Considering that the proposed methodology is generally applicable to all kinds of envi-
ronment design problems, this work also has implications for RL research outside the
energy domain, e.g., locomotion [26]. The same is true for the identified significant design
decisions in this work, which might be transferable to similar problems in other domains,
hence motivating further research.

In conclusion, this thesis establishes a foundation for reproducible and comparable
RL-based OPF research by introducing OPF-Gym, the first benchmark framework for RL-

82

| CONCLUSION

OPF environments. Furthermore, the proposed environment design methodology presents
the first general approach to automated RL environment design and optimization. By
demonstrating its effectiveness across multiple benchmark problems, this work paves the
way for more efficient, scalable, and systematically designed RL environments in energy

system optimization and for RL research in general.

A Appendix

A.1 HYPERPARAMETER CHOICES

Table A.1: DDPG and SAC hyperparameter choices for chapter 6.

Hyperparameter DDPG SAC

Actor layers/neurons (256, 256, 256) (256, 256, 256)
Critic layers/neurons (256, 256, 256) (256, 256, 256)
Actor Learning rate 0.0001 0.0001

Critic Learning rate 0.0005 0.0005

Batch size 256 256

Gamma 0.9 0.9

Memory size 1000000 1000000

Noise standard deviation 0.1 N.A.

Start train at step 2000 2000

Tau 0.001 0.001

Entropy learning rate N.A. 0.0001

A.2 DETAILED PARETO FRONTS FROM THE AUTOMATED DESIGN

The following Figures A.1, A.2, and A.3 show the Pareto front plots of the three environ-

ments that have not been explicitly discussed in section 6.2.

84 | APPENDIX

0.08 A ® Dominated
(] ® Non-dominated
0077 ® Manual Design
0.06 - [® Mean std deviation
S e °
@ 0.05 4)
el
= °
© 0.04 4
>
[. . .
© 0.03 A °
= [} °
0.02 A °
0.01 - ' °*
' om L XA
0.00 - ‘!.}" o oo e 0o o o °

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Invalid share

Figure A.1: QMarket: Dominated and non-dominated samples from the HPO in comparison
with the baseline solutions. Note: Singular extreme outliers were clipped for
the plot.

° ° ® Dominated
0.004 A ® Non-dominated
® @ Manual Design
° [Mean std deviation
5 0.003 - L A ° °
] ® 9)
o o
P &
© o
£ 0.002 - ..‘~ ° %
c
S ’o ° . ® e
Sl & g
i o o
00011 oo . o o ©
[_J o
0.000 - ® ° °
0.0 0.2 0.4 0.6 0.8 1.0
Invalid share

Figure A.2: VoltageControl: Dominated and non-dominated samples from the HPO in
comparison with the baseline solutions.

A.3 DETAILED STATISTICALLY SIGNIFICANT DESIGN DECISIONS |

251 % ® Dominated
P HH ® Non-dominated
® Manual Design
2.0 n
[Mean std deviation
§ []
@ 1.5 (]
©
= o
> []
S 1.0 ®
[0
= ’ o
[]
0.5 A s
o
® ° > ®
0.0 - bl o o
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure A.3: MaxRenewable: Dominated and non-dominated samples from the HPO in com-

Invalid share

parison with the baseline solutions.

A.3 DETAILED STATISTICALLY SIGNIFICANT DESIGN DECISIONS

The following Figures A.4, A.5, and A.6 show the annotated Pareto front plots of the three

environments that have not been explicitly discussed in section 6.3.2.

T
0.08 U [validity: ® Dominated
I | Pen. Weight: 0.68 (high) | ‘® ® Non-dominated
0.07 ~ ! Add Line Load: True ® Manual Design
i | Add Volt. Mag.: True i Mean std deviation
. 0.06 - E Diff. Obj.: True
e : i Pareto:
o 0.05 A ! ° o . .
° : No sign. design decisions
© 0.04- i®
- : ® (ytopia:
3 0.03 A i Uniform Data: 0.27 (low) Optimization:
= L i Add Line Load: True Pen. Weight: 0.22 (low)
0.02 - ! ° Add Voltage Mag.: True Invalid Penalty: 0.66 (low)
® i o ® Realistic Data: 0.29 (low)
0.0197 o !
B DT TR
0.00 """ “Te R g™ -—--- *-@----—- ® 09 @---@-------oo--- . --
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Figure A.4: QMarket: Statistically significant environment design decisions for all four
evaluation criteria, respectively. Note: Singular extreme outliers were clipped

for the plot.

Invalid share

85

86 | APPENDIX
1
1 .
o ® Validity: ® Domlnate.!d
0.004 1 : Pen. Weight: 0.74 (high) { ® Non-dominated
i o Invalid Pen.: 0.54 (low) ® Manual Design
I Invalid Obj.: 0.66 (high) [Mean std deviation
5 0.003 1 R g Autoscale Act: False S °
_ 1 .
] ® e)
o [)
=2 :‘ Utopia:
€ 0.002 - 1§ Pen. Weight: 0.26 (low) ° %
= 2 Autoscale Act: True S
9] b @ Diff-Objective: True o ']
s Pen. Weight: 0.22 (low)
0.001 1 ; ° [] ° 4 Uniform Data: 0.24 (low) °®
@ ° Autoscale Act: True
L0q° @ Pareto: Diff-Objective: True
:::*v ______________ Pen. Weight: 0.17 (low) [_~—0 7 __
00001 "o ° °
0.0 0.2 0.4 0.6 0.8 1.0

Invalid share

Figure A.5: VoltageControl: Statistically significant environment design decisions for all
four evaluation criteria, respectively.

2.5 4 i ° .
E () Validity: (] Domlnate.d
| ® | Pen. Weight: 0.66 (high) ® Non-dominated
204 ! Valid Reward: 1.22 (high) ® Manual Design
i Autoscale Act: True [® Mean std deviation
1
5 ¥
& 1.5 i J Optimization:
°© ! Utopia: Add Line Load: False
T>u E: Autoscale Act: True Autoscale Act: True
c ' ® Diff-Objective: True
© 1.0 A
g Pareto: °
Diff-Objective: True L4
0.5 A s
[}
m— ‘_T:________.____'.._ __________________________ _.‘ _________________________ .___
00{ T ¢ o © ° ° o
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Invalid share

Figure A.6: MaxRenewable: Statistically significant environment design decisions for all

four evaluation criteria, respectively.

List of Figures

1.1

2.1
2.2

5.1

6.1

6.2

6.3

6.4

6.5

6.6

6.7

Al

Overall thesis structure, including RQs, chapter structure, and resulting

research artifacts. 5
Visualization of an MLP neural network. 11
The Reinforcement Learning framework. 12
Class structure of the OPF-Gym framework. 38

Inner and outer loop of the multi-objective HPO for the automated envi-
ronment design. Lo Lo 59
EcoDispatch: Dominated and non-dominated samples from the HPO in
comparison with the baseline solutions. Note: Singular extreme outliers
were clipped for the plot. 64
LoadShedding: Dominated and non-dominated samples from the HPO in
comparison with the baseline solutions. Note: Singular extreme outliers were
clipped for the plot. 65
Statistically significant environment design decisions over all five environ-
ments for all four evaluation criteria, respectively. 67
EcoDispatch: Statistically significant environment design decisions for all
four evaluation criteria, respectively. Note: Singular extreme outliers were
clipped for the plot. 69
LoadShedding: Statistically significant environment design decisions for all
four evaluation criteria, respectively. Note: Singular extreme outliers were
clipped for the plot. 70
Learning curves for the two verification environments, EcoDispatch and
VoltageControl, for both considered performance metrics and for both
the DDPG and the SAC algorithm. The colored areas mark one standard

deviation. All plots are created with a rolling average over two steps. 72

QMarket: Dominated and non-dominated samples from the HPO in com-
parison with the baseline solutions. Note: Singular extreme outliers were
clipped for the plot. 84

88

LisT oF FIGURES

A2

A3

A4

A5

A6

VoltageControl: Dominated and non-dominated samples from the HPO in
comparison with the baseline solutions.
MaxRenewable: Dominated and non-dominated samples from the HPO in
comparison with the baseline solutions.
QMarket: Statistically significant environment design decisions for all four
evaluation criteria, respectively. Note: Singular extreme outliers were clipped
for the plot. e
VoltageControl: Statistically significant environment design decisions for
all four evaluation criteria, respectively.
MaxRenewable: Statistically significant environment design decisions for all

four evaluation criteria, respectively.

List of Tables

3.1 Overview on RL-OPF literature.

3.2 Overview on RL environment design literature.

4.1 Characteristics of solving the OPF with conventional solvers, meta-heuristics,

and RL in comparison. o Lo o

5.1 Implemented environment design space.

5.2 Overview of pre-defined benchmark environments in the OPF-Gym framework.

6.1 Utilized environment design search and sampling space.
6.2 Manually derived baseline environment design from the pre-study [1].. . . .

6.3 The two verification environment designs in comparison to the manual design.

A.1 DDPG and SAC hyperparameter choices for chapter 6.

Bibliography

1]

[10]

Wolgast, T., Niele, A.: Learning the optimal power flow: Environment design matters.

Energy and AL 100410 (2024). doi:10.1016/].egyai.2024.100410

Wolgast, T.: Whitepaper: Environment Design for Reinforcement Learning: A Practi-
cal Guide and Overview (2024). doi:10.13140/RG.2.2.28673.77925

Wolgast, T., Niefle, A.: A general approach of automated environment design for learn-
ing the optimal power flow. In: Proceedings of the 16th ACM International Conference
on Future and Sustainable Energy Systems. E-Energy ’25, pp. 108-121. Association
for Computing Machinery, New York, NY, USA (2025). doi:10.1145/3679240.3734626

Wolgast, T.: OPF-Gym: A benchmark environment framework for learning the optimal

power flow (2025). https://github.com/Digitalized-Energy-Systems/opfgym

Wolgast, T., Niele, A.: Towards modular composition of agent-based voltage control
concepts. Energy Informatics 2(S1), 26 (2019). doi:10.1186/s42162-019-0079-x

Wolgast, T., Ferenz, S., Niefle, A.: Reactive Power Markets: A Review. IEEE Access
10, 2839728410 (2022). doi:10.1109/ACCESS.2022.3141235

Bozionek, J., Wolgast, T., Niefle, A.: Design and evaluation of a multi-level reactive
power market. Energy Informatics 5(1), 6 (2022). doi:10.1186/s42162-022-00191-x

Wolgast, T., Veith, E.M., Niele, A.: Towards reinforcement learning for vulner-
ability analysis in power-economic systems. Energy Informatics 4(3), 21 (2021).
doi:10.1186/s42162-021-00181-5

Wolgast, T., Niele, A.: Approximating Energy Market Clearing and Bidding With
Model-Based Reinforcement Learning. IEEE Access 12, 145106-145117 (2024).
doi:10.1109/ACCESS.2024.3472480

Ferenz, S., Frost, E., Schrage, R., Wolgast, T., Beyers, 1., Karras, O., Werth, O., Niefle,
A.: Ten recommendations for engineering research software in energy research. In:

Proceedings of the 16th ACM International Conference on Future and Sustainable

http://doi.org/10.1016/j.egyai.2024.100410
http://doi.org/10.13140/RG.2.2.28673.77925
http://doi.org/10.1145/3679240.3734626
https://github.com/Digitalized-Energy-Systems/opfgym
http://doi.org/10.1186/s42162-019-0079-x
http://doi.org/10.1109/ACCESS.2022.3141235
http://doi.org/10.1186/s42162-022-00191-x
http://doi.org/10.1186/s42162-021-00181-5
http://doi.org/10.1109/ACCESS.2024.3472480

92

BIBLIOGRAPHY

[11]

[12]

[14]

[15]

[16]

[17]

[19]

Energy Systems. E-Energy ’25, pp. 446-459. Association for Computing Machinery,
New York, NY, USA (2025). doi:10.1145/3679240.3734606

Frank, S., Steponavice, I., Rebennack, S.: Optimal power flow: A bibliographic survey
I. Energy Systems 3(3), 221-258 (2012). doi:10.1007/s12667-012-0056-y

Cain, M.B., O’neill, R.P., Castillo, A.: History of optimal power flow and formulations.
Federal Energy Regulatory Commission 1, 1-36 (2012)

Kotary, J., Fioretto, F., Van Hentenryck, P., Wilder, B.: End-to-End Con-
strained Optimization Learning: A Survey. arXiv (2021). 2103.16378.
d0i:10.48550/arXiv.2103.16378

Nie, H., Chen, Y., Song, Y., Huang, S.: A General Real-time OPF Algorithm Us-
ing DDPG with Multiple Simulation Platforms. In: 2019 IEEE Innovative Smart
Grid Technologies - Asia (ISGT Asia), pp. 3713-3718 (2019). doi:10.1109/ISGT-
Asia.2019.8881174

Kawaguchi, K., Huang, J., Kaelbling, L.P.: Effect of Depth and Width on Lo-
cal Minima in Deep Learning. Neural Computation 31(7), 1462-1498 (2019).
doi:10.1162/neco_a_ 01195

Huang, W., Chen, M., Low, S.H.: Unsupervised Learning for Solving AC Optimal Power
Flows: Design, Analysis, and Experiment. IEEE Transactions on Power Systems, 1-13
(2024). doi:10.1109/TPWRS.2024.3373399

Khaloie, H., Dolanyi, M., Toubeau, J.-F.; Vallée, F.: Review of machine learn-
ing techniques for optimal power flow. Applied Energy 388, 125637 (2025).
doi:10.1016/j.apenergy.2025.125637

Zhou, Y., Zhang, B., Xu, C., Lan, T., Diao, R., Shi, D., Wang, Z., Lee, W.-J.: A Data-
driven Method for Fast AC Optimal Power Flow Solutions via Deep Reinforcement
Learning. Journal of Modern Power Systems and Clean Energy 8(6), 1128-1139 (2020).
d0i:10.35833/MPCE.2020.000522

Owerko, D., Gama, F., Ribeiro, A.: Unsupervised Optimal Power Flow Using
Graph Neural Networks. In: ICASSP 2024 - 2024 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), pp. 6885-6889 (2024).
doi:10.1109/ICASSP48485.2024.10446827

http://doi.org/10.1145/3679240.3734606
http://doi.org/10.1007/s12667-012-0056-y
http://doi.org/10.48550/arXiv.2103.16378
http://doi.org/10.1109/ISGT-Asia.2019.8881174
http://doi.org/10.1109/ISGT-Asia.2019.8881174
http://doi.org/10.1162/neco_a_01195
http://doi.org/10.1109/TPWRS.2024.3373399
http://doi.org/10.1016/j.apenergy.2025.125637
http://doi.org/10.35833/MPCE.2020.000522
http://doi.org/10.1109/ICASSP48485.2024.10446827

[20]

[21]

[24]

[25]

BIBLIOGRAPHY |

Wang, J., Srikantha, P.: Fast Optimal Power Flow With Guarantees via an Unsu-
pervised Generative Model. IEEE Transactions on Power Systems 38(5), 4593-4604
(2023). doi:10.1109/TPWRS.2022.3212925

Yan, Z., Xu, Y.: Real-Time Optimal Power Flow: A Lagrangian Based Deep Reinforce-
ment Learning Approach. IEEE Transactions on Power Systems 35(4), 3270-3273
(2020). doi:10.1109/TPWRS.2020.2987292

Woo, J.H., Wu, L., Park, J.-B., Roh, J.H.: Real-Time Optimal Power Flow Using
Twin Delayed Deep Deterministic Policy Gradient Algorithm. IEEE Access 8, 213611
213618 (2020). doi:10.1109/ACCESS.2020.3041007

Yi, Z., Wang, X., Yang, C., Yang, C., Niu, M., Yin, W.: Real-Time Sequential Security-
Constrained Optimal Power Flow: A Hybrid Knowledge-Data-Driven Reinforcement
Learning Approach. IEEE Transactions on Power Systems 39(1), 1664-1680 (2024).
doi:10.1109/TPWRS.2023.3262843

Wu, Y., Ye, Y., Hu, J., Zhao, P., Liu, L., Strbac, G., Kang, C.: Chance Constrained MDP
Formulation and Bayesian Advantage Policy Optimization for Stochastic Dynamic
Optimal Power Flow. IEEE Transactions on Power Systems 39(5), 6788-6791 (2024).
d0i:10.1109/ TPWRS.2024.3430650

Wu, T., Scaglione, A., Arnold, D.: Constrained Reinforcement Learning for Predictive
Control in Real-Time Stochastic Dynamic Optimal Power Flow. IEEE Transactions
on Power Systems 39(3), 5077-5090 (2024). doi:10.1109/TPWRS.2023.3326121

Reda, D., Tao, T., van de Panne, M.: Learning to Locomote: Understanding How
Environment Design Matters for Deep Reinforcement Learning. In: Proceedings of
the 13th ACM SIGGRAPH Conference on Motion, Interaction and Games. MIG
’20, pp. 1-10. Association for Computing Machinery, New York, NY, USA (2020).
doi:10.1145/3424636.3426907. https://dl.acm.org/doi/10.1145/3424636.3426907

Kim, J.T., Ha, S.: Observation Space Matters: Benchmark and Optimization Algorithm.
In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp.
1527-1534 (2021). doi:10.1109/ICRA48506.2021.9561019

Kanervisto, A., Scheller, C., Hautamaéki, V.: Action Space Shaping in Deep Reinforce-
ment Learning. In: 2020 IEEE Conference on Games (CoG), pp. 479-486 (2020).
doi:10.1109/CoG47356.2020.9231687

93

http://doi.org/10.1109/TPWRS.2022.3212925
http://doi.org/10.1109/TPWRS.2020.2987292
http://doi.org/10.1109/ACCESS.2020.3041007
http://doi.org/10.1109/TPWRS.2023.3262843
http://doi.org/10.1109/TPWRS.2024.3430650
http://doi.org/10.1109/TPWRS.2023.3326121
http://doi.org/10.1145/3424636.3426907
http://doi.org/10.1109/ICRA48506.2021.9561019
http://doi.org/10.1109/CoG47356.2020.9231687

94

BIBLIOGRAPHY

[29]

[32]

[37]

Ng, A.Y., Harada, D., Russell, S.J.: Policy Invariance Under Reward Transformations:
Theory and Application to Reward Shaping. In: Proceedings of the Sixteenth Interna-
tional Conference on Machine Learning. ICML 99, pp. 278-287. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA (1999)

Pardo, F., Tavakoli, A., Levdik, V., Kormushev, P.: Time Limits in Reinforcement
Learning. In: Proceedings of the 35th International Conference on Machine Learning,
pp. 4045-4054. PMLR, (2018). https://proceedings.mlr.press/v80/pardo18a.html

Sun, H., Guo, Q., Qi, J., Ajjarapu, V., Bravo, R., Chow, J., Li, Z., Moghe, R.,
Nasr-Azadani, E., Tamrakar, U., Taranto, G.N., Tonkoski, R., Valverde, G., Wu, Q.,
Yang, G.: Review of Challenges and Research Opportunities for Voltage Control
in Smart Grids. IEEE Transactions on Power Systems 34(4), 2790-2801 (2019).
doi:10.1109/TPWRS.2019.2897948

Capitanescu, F.: Critical review of recent advances and further developments needed
in AC optimal power flow. Electric Power Systems Research 136, 57-68 (2016).
doi:10.1016/j.epsr.2016.02.008

Stott, B., Alsac, O.: Optimal Power Flow - Basic Requirements for Real-Life Problems
and Their Solutions. In: SEPOPE XII Symposium, Rio de Janeiro, Brazil (2012).
https://www.ieee.hr/_download/repository/Stott-Alsac-OPF-White-Paper.pdf

Faulwasser, T., Engelmann, A., Miihlpfordt, T., Hagenmeyer, V.: Optimal power flow:
an introduction to predictive, distributed and stochastic control challenges. at - Au-
tomatisierungstechnik 66(7), 573-589 (2018). doi:10.1515/auto-2018-0040

Frank, S., Steponavice, 1., Rebennack, S.: Optimal power flow: A bibliographic survey
II. Energy Systems 3(3), 259-289 (2012). doi:10.1007/s12667-012-0057-x

Pandey, A., Almassalkhi, M.R., Chevalier, S.: Large-Scale Grid Optimization: The
Workhorse of Future Grid Computations. Current Sustainable/Renewable Energy
Reports 10(3), 139-153 (2023). doi:10.1007/s40518-023-00213-6

Géron, A.: Hands-on Machine Learning with Scikit-Learn, Keras,
and TensorFlow, 2. edition edn. " O’Reilly Media, Inc.", (2019).
https://www.oreilly.com/library /view/hands-on-machine-learning /9781492032632 /

Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and
prospects. Science 349(6245), 255-260 (2015). doi:10.1126/science.aaa8415.
https://www.science.org/doi/pdf/10.1126 /science.aaa8415

http://doi.org/10.1109/TPWRS.2019.2897948
http://doi.org/10.1016/j.epsr.2016.02.008
http://doi.org/10.1515/auto-2018-0040
http://doi.org/10.1007/s12667-012-0057-x
http://doi.org/10.1007/s40518-023-00213-6
http://doi.org/10.1126/science.aaa8415

[39]

[40]

[42]

[43]

[44]

[45]

[46]

[48]

BIBLIOGRAPHY |

Cybenko, G.: Approximation by superpositions of a sigmoidal function. Mathematics
of Control, Signals, and Systems 2(4), 303-314 (1989). doi:10.1007/BF02551274

Goodfellow, 1., Bengio, Y., Courville, A.: Deep Learning. MIT Press, (2016). http:

//www.deeplearningbook.org

Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, Second edition
edn. Adaptive Computation and Machine Learning Series. The MIT Press, Cambridge,
Massachusetts (2018)

Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft Actor-Critic: Off-Policy Maximum
Entropy Deep Reinforcement Learning with a Stochastic Actor. In: Proceedings of the
35th International Conference on Machine Learning, pp. 1861-1870. PMLR, (2018).
https://proceedings.mlr.press/v80/haarnojal8b.html

Watkins, C.J.C.H., Dayan, P.: Q-learning. Machine Learning 8(3-4), 279-292 (1992).
doi:10.1007/BF00992698

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, 1., Wierstra, D., Ried-
miller, M.: Playing Atari with Deep Reinforcement Learning. arXiv (2013). 1312.5602.
doi:10.48550/arXiv.1312.5602

Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra,
D.: Continuous Control with Deep Reinforcement Learning. arXiv (2016). 1509.02971.
doi:10.48550/arXiv.1509.02971. http://arxiv.org/abs/1509.02971

OpenAl: Spinning Up in Deep RL - Deep Deterministic Policy Gradient. https://
spinningup.openai.com/en/latest/algorithms/ddpg.html. [Online; accessed 2024-
06-20]

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu,
H., Gupta, A., Abbeel, P., Levine, S.: Soft Actor-Critic Algorithms and Applications.
arXiv (2019). 1812.05905. doi:10.48550/arXiv.1812.05905

Fujimoto, S., Hoof, H., Meger, D.: Addressing Function Approximation
Error in Actor-Critic Methods. 1In: Proceedings of the 35th Interna-
tional Conference on Machine Learning, pp. 1587-1596. PMLR, (2018).
https://proceedings.mlr.press/v80 /fujimoto18a.html

Hasselt, H.: Double Q-learning. In: Advances in Neural Informa-

tion Processing Systems, vol. 23. Curran Associates, Inc., (2010).

95

http://doi.org/10.1007/BF02551274
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://doi.org/10.1007/BF00992698
http://doi.org/10.48550/arXiv.1312.5602
http://doi.org/10.48550/arXiv.1509.02971
http://arxiv.org/abs/1509.02971
https://spinningup.openai.com/en/latest/algorithms/ddpg.html
https://spinningup.openai.com/en/latest/algorithms/ddpg.html
http://doi.org/10.48550/arXiv.1812.05905

96

BIBLIOGRAPHY

[51]

[53]

[54]

https://proceedings.neurips.cc/paper/2010/hash /091d584fced301b442654dd8c23b3fc9-
Abstract.html

Bischl, B., Binder, M., Lang, M., Pielok, T., Richter, J., Coors, S., Thomas, J., Ull-
mann, T., Becker, M., Boulesteix, A.-L., Deng, D., Lindauer, M.: Hyperparameter
optimization: Foundations, algorithms, best practices, and open challenges. WIREs
Data Mining and Knowledge Discovery 13(2), 1484 (2023). doi:10.1002/widm.1484

Zhen, H., Hefeng, 7., Weizhe, M., Zhao, L., Yixuan, W., Yuan, X., Jun, S., Xiaofeng, H.:
Design and tests of reinforcement-learning-based optimal power flow solution generator.
Energy Reports (2021). doi:10.1016/j.egyr.2021.11.126

Nie, J., Liu, Y., Zhou, L., Jiang, X., Preindl, M.: Deep Reinforcement Learning Based
Approach for Optimal Power Flow of Microgrid with Grid Services Implementation. In:
2022 IEEE Transportation Electrification Conference & Expo (ITEC), pp. 1148-1153.
IEEE, Anaheim, CA, USA (2022). doi:10.1109/ITEC53557.2022.9813862

Cao, D., Hu, W., Xu, X., Wu, Q., Huang, Q., Chen, Z., Blaabjerg, F.: Deep Reinforce-
ment Learning Based Approach for Optimal Power Flow of Distribution Networks
Embedded with Renewable Energy and Storage Devices. Journal of Modern Power
Systems and Clean Energy 9(5), 1101-1110 (2021). doi:10.35833/MPCE.2020.000557

Zhou, Y., Lee, W.-J., Diao, R., Shi, D.: Deep Reinforcement Learning Based Real-time
AC Optimal Power Flow Considering Uncertainties. Journal of Modern Power Systems
and Clean Energy 10(5), 1098-1109 (2022). doi:10.35833/MPCE.2020.000885

Liu, X., Fan, B., Tian, J.: Deep Reinforcement Learning Based Approach for Dynamic
Optimal Power Flow in Active Distribution Network. In: 2022 41st Chinese Control
Conference (CCC), pp. 1951-1956 (2022). d0i:10.23919/CCC55666.2022.9902611

Jiang, B., Wang, Q., Wu, S., Wang, Y., Lu, G.: Advancements and Future Directions in
the Application of Machine Learning to AC Optimal Power Flow: A Critical Review.
Energies 17(6), 1381 (2024). doi:10.3390/en17061381

Liu, C.,Li, Y., Xu, T.: A Neural Network Approach to Physical Information Embedding
for Optimal Power Flow. Sustainability 16(17), 7498 (2024). doi:10.3390/sul6177498

Park, S., Chen, W., Mak, T.W.K., Van Hentenryck, P.: Compact Optimization Learning
for AC Optimal Power Flow. IEEE Transactions on Power Systems 39(2), 43504359
(2024). doi:10.1109/TPWRS.2023.3313438

http://doi.org/10.1002/widm.1484
http://doi.org/10.1016/j.egyr.2021.11.126
http://doi.org/10.1109/ITEC53557.2022.9813862
http://doi.org/10.35833/MPCE.2020.000557
http://doi.org/10.35833/MPCE.2020.000885
http://doi.org/10.23919/CCC55666.2022.9902611
http://doi.org/10.3390/en17061381
http://doi.org/10.3390/su16177498
http://doi.org/10.1109/TPWRS.2023.3313438

[59]

[62]

[63]

BIBLIOGRAPHY |

Zhou, M., Chen, M., Low, S.H.: DeepOPF-FT: One Deep Neural Network for Multiple
AC-OPF Problems With Flexible Topology. IEEE Transactions on Power Systems
38(1), 964-967 (2023). doi:10.1109/TPWRS.2022.3217407

Henry, R., Ernst, D.: Gym-ANM: Reinforcement learning environments for active
network management tasks in electricity distribution systems. Energy and Al 5, 100092
(2021). doi:10.1016/j.egyai.2021.100092

Cui, H., Zhang, Y.: Andes_ gym: A Versatile Environment for Deep Reinforcement
Learning in Power Systems. In: 2022 IEEE Power & Energy Society General Meeting
(PESGM), pp. 01-05 (2022). doi:10.1109/PESGM48719.2022.9916967

Cui, H., Li, F., Tomsovic, K.: Hybrid Symbolic-Numeric Framework for Power System
Modeling and Analysis. IEEE Transactions on Power Systems 36(2), 1373-1384 (2021).
doi:10.1109/TPWRS.2020.3017019

Marot, A., Donnot, B., Dulac-Arnold, G., Kelly, A., O’Sullivan, A., Viebahn, J.,
Awad, M., Guyon, I., Panciatici, P., Romero, C.: Learning to run a Power Net-
work Challenge: A Retrospective Analysis. In: Proceedings of the NeurIPS
2020 Competition and Demonstration Track, pp. 112-132. PMLR, (2021).
https://proceedings.mlr.press/v133/marot21la.html

Babaeinejadsarookolaee, S., Birchfield, A., Christie, R.D., Coffrin, C., DeMarco, C.,
Diao, R., Ferris, M., Fliscounakis, S., Greene, S., Huang, R., Josz, C., Korab, R.,
Lesieutre, B., Maeght, J., Mak, T.W.K., Molzahn, D.K., Overbye, T.J., Panciatici,
P., Park, B., Snodgrass, J., Thaileh, A., Van Hentenryck, P., Zimmerman, R.: The
Power Grid Library for Benchmarking AC Optimal Power Flow Algorithms. arXiv
(2021). 1908.02788. d0i:10.48550/arXiv.1908.02788

Joswig-Jones, T., Baker, K., Zamzam, A.S.: OPF-learn: An open-source framework
for creating representative AC optimal power flow datasets. In: 2022 IEEE Power
& Energy Society Innovative Smart Grid Technologies Conference (ISGT), pp. 1-5.
IEEE, (2022)

Heid, S., Weber, D., Bode, H., Hiillermeier, E., Wallscheid, O.: OMG: A Scalable
and Flexible Simulation and Testing Environment Toolbox for Intelligent Microgrid
Control. Journal of Open Source Software 5(54), 2435 (2020). doi:10.21105/joss.02435

Henri, G., Levent, T., Halev, A., Alami, R., Cordier, P.: Pymgrid: An Open-Source
Python Microgrid Simulator for Applied Artificial Intelligence Research. arXiv (2020).
2011.08004. doi:10.48550/arXiv.2011.08004

97

http://doi.org/10.1109/TPWRS.2022.3217407
http://doi.org/10.1016/j.egyai.2021.100092
http://doi.org/10.1109/PESGM48719.2022.9916967
http://doi.org/10.1109/TPWRS.2020.3017019
http://doi.org/10.48550/arXiv.1908.02788
http://doi.org/10.21105/joss.02435
http://doi.org/10.48550/arXiv.2011.08004

98

BIBLIOGRAPHY

[68]

[69]

[71]

[73]

[74]

[75]

Hou, S., Gao, S., Xia, W., Duque, E.M.S., Palensky, P., Vergara, P.P.: RL-ADN: A
High-Performance Deep Reinforcement Learning Environment for Optimal Energy
Storage Systems Dispatch in Active Distribution Networks. arXiv (2024). 2408.03685.
d0i:10.48550/arXiv.2408.03685

Yeh, C., Li, V., Datta, R., Arroyo, J., Christianson, N., Zhang, C., Chen, Y., Hosseini,
M.M., Golmohammadi, A., Shi, Y., Yue, Y., Wierman, A.: SustainGym: Reinforce-
ment Learning Environments for Sustainable Energy Systems. Advances in Neural
Information Processing Systems 36, 59464-59476 (2023)

Peng, X.B., van de Panne, M.: Learning locomotion skills using DeepRL: Does the
choice of action space matter? In: Proceedings of the ACM SIGGRAPH / Eurographics
Symposium on Computer Animation. SCA ’17, pp. 1-13. Association for Computing
Machinery, New York, NY, USA (2017). do0i:10.1145/3099564.3099567

Yang, M., Nachum, O.: Representation Matters: Offline Pretraining for
Sequential Decision Making. In: Proceedings of the 38th International
Conference on Machine Learning, pp. 11784-11794. PMLR, (2021).
https://proceedings.mlr.press/v139 /yang21h.html

Zhang, C., Vinyals, O., Munos, R., Bengio, S.: A Study on Overfitting in Deep
Reinforcement Learning. arXiv (2018). 1804.06893. doi:10.48550/arXiv.1804.06893.
http://arxiv.org/abs/1804.06893

Towers, M., Terry, J.K., Kwiatkowski, A., Balis, J.U., Cola, G., Deleu, T., Gouléo,
M., Kallinteris, A., KG, A., Krimmel, M., Perez-Vicente, R., Pierré, A., Schul-
hoff, S., Tai, J.J., Tan, A.J.S., Younis, O.G.: Gymnasium. Zenodo (2024).
d0i:10.5281 /zenodo.10655021

Zhang, L., Zhang, Q., Shen, L., Yuan, B., Wang, X., Tao, D.: Evaluating Model-
Free Reinforcement Learning toward Safety-Critical Tasks. Proceedings of
the AAAI Conference on Artificial Intelligence 37(12), 15313-15321 (2023).
doi:10.1609/aaai.v37i12.26786

Venzke, A., Qu, G., Low, S., Chatzivasileiadis, S.: Learning Optimal Power Flow: Worst-
Case Guarantees for Neural Networks. In: 2020 IEEE International Conference on
Communications, Control, and Computing Technologies for Smart Grids (SmartGrid-
Comm), pp. 1-7 (2020). doi:10.1109/SmartGridComm47815.2020.9302963

http://doi.org/10.48550/arXiv.2408.03685
http://doi.org/10.1145/3099564.3099567
http://doi.org/10.48550/arXiv.1804.06893
http://arxiv.org/abs/1804.06893
http://doi.org/10.5281/zenodo.10655021
http://doi.org/10.1609/aaai.v37i12.26786
http://doi.org/10.1109/SmartGridComm47815.2020.9302963

[76]

[78]

[79]

[83]

BIBLIOGRAPHY |

Nellikkath, R., Tanneau, M., Hentenryck, P.V., Chatzivasileiadis, S.: Scalable Exact
Verification of Optimization Proxies for Large-Scale Optimal Power Flow. arXiv (2024).
2405.06109. doi:10.48550/arXiv.2405.06109

Li, B., Tang, H., Zheng, Y., Hao, J., Li, P., Wang, Z., Meng, Z., Wang, L.I.: HyAR:
Addressing Discrete-Continuous Action Reinforcement Learning via Hybrid Action
Representation. In: International Conference on Learning Representations (2021).
https://openreview.net/forum?id=64trBbOhdGU

Thurner, L., Scheidler, A., Schéifer, F., Menke, J.-H., Dollichon, J., Meier, F., Meinecke,
S., Braun, M.: Pandapower—An Open-Source Python Tool for Convenient Modeling,
Analysis, and Optimization of Electric Power Systems. IEEE Transactions on Power
Systems 33(6), 6510-6521 (2018). doi:10.1109/TPWRS.2018.2829021

Meinecke, S., Sarajli¢, D., Drauz, S.R., Klettke, A., Lauven, L.-P., Rehtanz, C., Moser,
A., Braun, M.: SimBench—A Benchmark Dataset of Electric Power Systems to Com-
pare Innovative Solutions Based on Power Flow Analysis. Energies 13(12), 3290 (2020).
d0i:10.3390/en13123290

van Hasselt, H.P., Guez, A., Guez, A., Hessel, M., Mnih, V., Silver, D.: Learn-
ing values across many orders of magnitude. In: Advances in Neural In-
formation Processing Systems, vol. 29. Curran Associates, Inc., (2016).
https://proceedings.neurips.cc/paper/2016 /hash /5227b6aaf294f5f027273aebf16015f2-
Abstract.html

Bietti, A., Agarwal, A., Langford, J.: A Contextual Bandit Bake-off. Journal of Machine
Learning Research 22(133), 1-49 (2021)

Samimi, A., Kazemi, A., Siano, P.: Economic-environmental active and reactive power
scheduling of modern distribution systems in presence of wind generations: A distri-
bution market-based approach. Energy Conversion and Management 106, 495-509
(2015). doi:10.1016/j.enconman.2015.09.070

Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A Next-generation Hy-
perparameter Optimization Framework. In: Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. KDD 19, pp.
2623-2631. Association for Computing Machinery, New York, NY, USA (2019).
doi:10.1145/3292500.3330701

Deb, K., Jain, H.: An Evolutionary Many-Objective Optimization Algorithm Using
Reference-Point-Based Nondominated Sorting Approach, Part 1: Solving Problems

99

http://doi.org/10.48550/arXiv.2405.06109
http://doi.org/10.1109/TPWRS.2018.2829021
http://doi.org/10.3390/en13123290
http://doi.org/10.1016/j.enconman.2015.09.070
http://doi.org/10.1145/3292500.3330701

100

BIBLIOGRAPHY

[85]

[36]

With Box Constraints. IEEE Transactions on Evolutionary Computation 18(4), 577—
601 (2014). doi:10.1109/TEVC.2013.2281535

Eimer, T., Lindauer, M., Raileanu, R.: Hyperparameters in Reinforcement
Learning and How To Tune Them. In: Proceedings of the 40th Inter-
national Conference on Machine Learning, pp. 9104-9149. PMLR, (2023).
https://proceedings.mlr.press/v202/eimer23a.html

Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra,
D.: Continuous Control with Deep Reinforcement Learning. arXiv (2016). 1509.02971.
d0i:10.48550/arXiv.1509.02971

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal Policy
Optimization Algorithms. arXiv (2017). 1707.06347. doi:10.48550/arXiv.1707.06347

Welch, B.L.: The generalization of ‘STUDENT’S’problem when several different pop-
ulation varlances are involved. Biometrika 34(1-2), 28-35 (1947)

Pearson, K.: X. On the criterion that a given system of deviations from the prob-
able in the case of a correlated system of variables is such that it can be reason-
ably supposed to have arisen from random sampling. The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science 50(302), 157-175 (1900).
doi:10.1080,/14786440009463897

Fisher, R.A.: Statistical Methods for Research Workers. In: Kotz, S., Johnson, N.L.
(eds.) Breakthroughs in Statistics: Methodology and Distribution, pp. 66-70. Springer,
New York, NY (1992). doi:10.1007/978-1-4612-4380-9_ 6

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., Meger, D.: Deep reinforce-
ment learning that matters. In: Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelli-
gence Conference and Fighth AAAT Symposium on Educational Advances in Artificial
Intelligence. AAAT'18/TAAT'18/EAAT’18, pp. 3207-3214. AAAI Press, New Orleans,
Louisiana, USA (2018)

Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. Journal

of machine learning research 13(2) (2012)

http://doi.org/10.1109/TEVC.2013.2281535
http://doi.org/10.48550/arXiv.1509.02971
http://doi.org/10.48550/arXiv.1707.06347
http://doi.org/10.1080/14786440009463897
http://doi.org/10.1007/978-1-4612-4380-9_6

Statement of Originality

I hereby confirm in lieu of oath, that I have written the accompanying thesis by myself,
without contributions from any sources other than those cited in the text and acknowl-
edgments. Furthermore, the work was not carried out using unrecognisable generative Al
I certify that I have followed the general principles of scientific work and publications as
written in the guidelines of good research of the Carl von Ossietzky Universitit Oldenburg.

This work has not yet been submitted to any examination office in the same or similar form.

On the usage of Al: To some extent, the work on this thesis was supported by Al tools
like ChatGPT, GitHub Copilot, and Grammarly. Mainly, Al was used during programming
to autocomplete and to create first drafts of new implementations. For the writing of this
document, Al tools were used to propose the structuring of chapters and for grammar

checking.

Oldenburg (Germany), 10.09.2025 Thomas Wolgast

https://orcid.org/0000-0002-9042-9964

	Contents
	Acronyms
	List of symbols
	Related Publications
	1 Introduction
	1.1 Motivation
	1.2 Research Questions
	1.3 Thesis Structure

	2 Fundamentals
	2.1 Optimal Power Flow
	2.2 Machine Learning and Deep Learning
	2.3 Reinforcement Learning
	2.4 Standard Reinforcement Learning Algorithms
	2.4.1 Deep Deterministic Policy Gradient (DDPG)
	2.4.2 Soft Actor-Critic (SAC)

	2.5 Hyperparameter Optimization

	3 Related Work
	3.1 Optimal Power Flow With Reinforcement Learning
	3.2 Optimal Power Flow With Supervised and Unsupervised Learning
	3.3 Related Benchmark Environments and Frameworks
	3.4 Environment Design for Reinforcement Learning
	3.5 Summary and Research Gaps

	4 Characteristics of the OPF as RL Problem
	4.1 Reinforcement Learning in Comparison to Conventional Solvers and Meta-Heuristics
	4.2 Challenges and Chances of the RL-OPF

	5 OPF-Gym Environment Framework and Benchmarks
	5.1 Utilized Open-Source Frameworks
	5.2 The OPF-Gym Framework
	5.3 Features and Limitations of OPF-Gym
	5.4 Environment Design Space
	5.4.1 Reward Function
	5.4.2 Training Data Distribution
	5.4.3 Observation Space
	5.4.4 Episode Definition
	5.4.5 Action Space
	5.4.6 Overview of the Design Space

	5.5 Implemented Benchmark OPF Environments
	5.5.1 Voltage Control (VoltageControl)
	5.5.2 Economic Dispatch (EcoDispatch)
	5.5.3 Reactive Power Market (QMarket)
	5.5.4 Maximize Renewable Feed-in (MaxRenewable)
	5.5.5 Load Shedding (LoadShedding)
	5.5.6 Overview of Benchmark Environments

	6 Automated Design of RL-OPF Environments
	6.1 Approach
	6.1.1 Environment Design as a Multi-Objective Hyperparameter-Optimization Problem
	6.1.2 Evaluation Metrics
	6.1.3 Experimentation
	6.1.4 Environment Design Space
	6.1.5 Baseline Environment Design

	6.2 Performance Evaluation
	6.2.1 Economic Dispatch
	6.2.2 Load Shedding Environment
	6.2.3 Remaining Environments

	6.3 Environment Design Evaluation
	6.3.1 General OPF Environment Design
	6.3.2 Specific Environment Design

	6.4 Verification of Optimized Designs

	7 Discussion
	7.1 Research Questions and Findings
	7.2 Limitations and Outlook

	8 Conclusion
	A Appendix
	A.1 Hyperparameter choices
	A.2 Detailed Pareto fronts from the automated design
	A.3 Detailed statistically significant design decisions

	List of Figures
	List of Tables
	Bibliography

