
Carl von Ossietzky Universität Oldenburg
Fakultät II - Informatik, Wirtschafts- und Rechtswissenschaften

Department für Informatik

Optimising Timing of Explanations in
Autonomous Vehicles

Von der Fakultät für Informatik, Wirtschafts- und Rechtswissenschaften
der Carl von Ossietzky Universität Oldenburg
zur Erlangung des Grades und Titels eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

angenommene Dissertation
von: Akhila Bairy

geboren am 10.05.1994 in Bengaluru, Indien

Erstgutachter: Prof. Dr. Martin Georg Fränzle
Zweitgutachter: Prof. Dr. Christoph Herrmann

Datum der Einreichung: 28. Feb 2025
Datum der Verteidigung: 23. Jun 2025



कर्मण्येवाधिकारस्ते मा फलेषु कदाचन।

मा कर्मफलहेतरु्भूर्मा ते सङ्गोऽस्त्वकर्मणि॥

–Bhagavad Gita 2.47

You have the right to perform your duties, but not to the fruits thereof. Do not let the fruits of your
actions be your motivation, nor let attachment to inaction.





Abstract

The emergence of Automated Cyber-Physical Systems (ACPS) has firmly established
Autonomous Driving as a prominent application of modern technology. Despite the
significant progress in this field, one of the critical barriers to the widespread adoption of
Autonomous Vehicles (AVs) remains societal acceptance and trust. Public apprehension
often stems from the perceived opacity of autonomous systems, leading to concerns
about safety, reliability, and accountability. Addressing this challenge requires building
transparency and fostering trust. One effective way to achieve this is by enabling AVs
to provide clear, contextually relevant explanations of their decisions and actions.
The design of such explanations involves balancing three key dimensions: content,

frequency, and timing. While prior research has made significant strides in understand-
ing the content dimension, the other two aspects –—particularly timing–— remain less
explored. This dissertation aims to bridge this gap by developing an algorithm that
optimizes the delivery of explanations in AVs, focusing on the granularity of timing.
Existing studies on explanation timing have predominantly classified the delivery into

broad categories –—before, during, or after an action. For AVs, research suggests that
passengers generally prefer explanations to be provided before an autonomous action
is executed, as this approach aligns with their need for predictability and situational
awareness. However, such broad classifications often fail to account for the nuanced
interplay between cognitive load, attention, and the dynamic nature of real-world driving
scenarios.
This dissertation addresses these complexities by modelling the fine-grained timing of

explanations specifically tailored for AVs. The central objective is to design an algorithm
capable of generating optimally timed explanations that reduce passengers’ cognitive
load while enhancing their trust and understanding. To achieve this, the work leverages
the Salience, Effort, Expectancy, Value (SEEV) attention model, which predicts where
a user’s attention is likely to be focused based on the four factors of the model.
A novel aspect of this research is its exploration of multi-step explanations—expla-

nations delivered in sequential parts rather than as a single message. The dissertation
investigates how the use of multi-step explanations influences the optimal timing strat-
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egy and evaluates its impact on cognitive load and user comprehension. Additionally, the
study extends its scope to consider multi-user scenarios, where explanations are provided
to multiple passengers or stakeholders simultaneously. The efficacy of the proposed tim-
ing strategies is evaluated through a real-world experiment conducted in a game-based
setup.
In conclusion, this dissertation makes a significant contribution to the field of ex-

plainability by addressing the underexplored dimension of explanation timing in AVs.
The findings highlight the importance of timing as a critical factor in designing effec-
tive human-machine interactions, demonstrating its potential to enhance transparency
and trust. While the primary focus is on AVs, the insights gained from this research
are broadly applicable to other domains, including healthcare, finance, and human-robot
collaboration, where effective explanations play a vital role in decision-making and trust-
building.
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Zusammenfassung

Das Aufkommen von Automated Cyber-Physical Systems (ACPS) hat das autonome
Fahren als eine herausragende Anwendung moderner Technologie fest etabliert. Trotz
erheblicher Fortschritte auf diesem Gebiet bleibt eine der größten Hürden für die bre-
ite Annahme von Autonomous Vehicles (AVs) die gesellschaftliche Akzeptanz und das
Vertrauen. Öffentliche Vorbehalte resultieren oft aus der wahrgenommenen Opazität
autonomer Systeme, was Bedenken hinsichtlich Sicherheit, Zuverlässigkeit und Verant-
wortlichkeit hervorruft. Um diese Herausforderung zu bewältigen, ist es erforderlich,
Transparenz aufzubauen und Vertrauen zu fördern. Ein wirksamer Ansatz hierfür ist
die Befähigung von AVs, klare und kontextuell relevante Erklärungen für ihre Entschei-
dungen und Handlungen bereitzustellen.
Das Design solcher Erklärungen erfordert die Berücksichtigung von drei zentralen Di-

mensionen: Inhalt, Häufigkeit und Timing. Während frühere Forschungen bedeutende
Fortschritte im Verständnis der Inhaltsdimension gemacht haben, wurden die beiden
anderen Aspekte ––insbesondere das Timing–– weniger intensiv untersucht. Diese Dis-
sertation zielt darauf ab, diese Lücke zu schließen, indem ein Algorithmus entwickelt
wird, der die Bereitstellung von Erklärungen in AVs optimiert, mit besonderem Fokus
auf die Feinheit des Timings.
Bisherige Studien zur zeitlichen Gestaltung von Erklärungen haben die Bereitstellung

in breite Kategorien eingeteilt ––vor, während oder nach einer Aktion. Für AVs zeigen
Forschungsergebnisse, dass Passagiere in der Regel Erklärungen bevorzugen, die vor einer
autonomen Aktion bereitgestellt werden, da dies ihrem Bedürfnis nach Vorhersehbarkeit
und situativem Bewusstsein entspricht. Solche breiten Klassifizierungen berücksichtigen
jedoch oft nicht die nuancierte Wechselwirkung zwischen kognitiver Belastung, Aufmerk-
samkeit und der dynamischen Natur realer Fahrszenarien.
Diese Dissertation geht auf diese Komplexitäten ein, indem sie das fein granulare Tim-

ing von Erklärungen modelliert, das speziell auf AVs zugeschnitten ist. Das Hauptziel
ist es, einen Algorithmus zu entwickeln, der optimal getimte Erklärungen generiert,
um die kognitive Belastung der Insassen zu minimieren und gleichzeitig ihr Vertrauen
und ihr Verständnis zu fördern. Dazu wird das Salience, Effort, Expectancy, Value
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(SEEV)-Aufmerksamkeitsmodell genutzt, das vorhersagt, wo sich die Aufmerksamkeit
eines Nutzers wahrscheinlich konzentriert, basierend auf den vier Faktoren des Modells.
Ein neuartiger Aspekt dieser Forschung ist die Untersuchung von mehrstufigen Erk-

lärungen – Erklärungen, die in aufeinanderfolgenden Teilen statt als einzelne Nachricht
geliefert werden. Die Dissertation untersucht, wie der Einsatz von mehrstufigen Erk-
lärungen die optimale Timing-Strategie beeinflusst und bewertet deren Auswirkungen
auf die kognitive Belastung und das Nutzerverständnis. Darüber hinaus erweitert die
Studie ihren Fokus auf Mehrbenutzerszenarien, in denen Erklärungen gleichzeitig an
mehrere Passagiere oder Interessengruppen gerichtet werden. Die Wirksamkeit der
vorgeschlagenen Timing-Strategien wird durch Experimente in einer realitätsnahen, spiel-
basierten Umgebung evaluiert.
Zusammenfassend leistet diese Dissertation einen bedeutenden Beitrag zum Bereich

der Erklärbarkeit, indem sie sich der wenig erforschten Dimension des Timing von Erk-
lärungen in AVs widmet. Die Ergebnisse unterstreichen die Bedeutung des Timings
als einen kritischen Faktor bei der Gestaltung effektiver Mensch-Maschine-Interaktionen
und zeigen dessen Potenzial zur Förderung von Transparenz und Vertrauen. Obwohl
der Schwerpunkt auf AVs liegt, sind die gewonnenen Erkenntnisse auch auf andere Bere-
iche wie das Gesundheitswesen, die Finanzwelt und die Mensch-Roboter-Kollaboration
übertragbar, in denen effektive Erklärungen eine entscheidende Rolle bei Entscheidungs-
prozessen und dem Aufbau von Vertrauen spielen.
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1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Why use Formal Methods? . . . . . . . . . . . . . . . . . . 2

1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Explanation Models . . . . . . . . . . . . . . . . . . . . . . 4

1.3.2 Cognition in Explanation . . . . . . . . . . . . . . . . . . . 7

1.4 Contributions and Publications . . . . . . . . . . . . . . . . . . 10

1.5 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . 13

1.1 Motivation

In today’s world, where technology is becoming more automated and autonomous, sys-
tems are evolving faster than ever before. These modern systems are not only complex
but often behave in ways that older generations of devices couldn’t achieve. As people
interact more closely with these advanced technologies, especially those that can adapt
and act on their own, understanding and predicting their behaviour becomes challeng-
ing. There’s also an emerging need for systems to clearly explain their actions, as clear
explanations can improve safety, build trust, and increase public acceptance of these
technologies.
This dissertation focuses on finding the best way to provide explanation(s) to user(s)

for actions taken by Autonomous Vehicles (AVs). Specifically, we present algorithms
designed to optimize explanation timing within a game-based framework.
In fig. 1.1, we illustrate our concept of an interaction between an AV and its user

in a game-like setup. In this scenario, the AV observes its environment (referred to
as Env(AV)), which includes not only physical surroundings but also the human user.
Based on its observations, the AV generates an explanation for the human. Meanwhile,
the human receives this explanation, processes it, and observes their own environment

1
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Perceives
Strategic Player (AV)

Random Player
(Human) Env

Env (AV)
React

Env (Human)

Perceives

Expl

Figure 1.1: An overview of the game

(Env(Human), which consists of the surroundings as well as the AV itself) to decide on
their next action.
The AV’s goal in this interaction is to provide explanations at the most effective

moments, aiming to prevent any increase in the human’s mental workload. By delivering
information at the right time, the AV can enhance user understanding without adding
unnecessary cognitive effort.

1.1.1 Why use Formal Methods?

Artificial Intelligence (AI) and Fomal Methods (FM) are both used to solve complex
problems in computer science, but they have different approaches, strengths, and appli-
cations.
Machine Learning (ML), neural networks, and reinforcement learning are some of the

examples of AI. ML uses data-driven methods, learning from examples or experiences
to make predictions, recognize patterns, or make decisions without being explicitly pro-
grammed for every situation. AI works well in unstructured, uncertain environments
where data is abundant. It can adapt to new data and improve over time and is of-
ten more flexible and scalable for real-world problems like image recognition, language
translation, or game playing. However, AI often lacks interpretability (i.e. commonly
referred to as ”black box” systems) and does not provide formal guarantees of correct-
ness or safety. Apart from this, AI requires large datasets for training and may overfit
or fail in outlier cases.
FM use mathematically rigorous techniques for the specification, verification, and

validation of systems, particularly in safety-critical environments. Some of the ways
of doing this are model checking, theorem proving, abstract interpretation, etc. FM
provides strong guarantees of correctness, safety, and security. It is used in high-stakes
domains like avionics, medical devices, and cryptography. It is also known to handle

2



1.2 Research Objectives

edge cases and offers full coverage of possible system states. On the flip side, it is
computationally expensive and not easily scalable for very large or complex systems. It
is also typically less adaptable than AI systems, as it is often challenging to modify formal
specifications. It also requires a deep understanding of the system and its environment
to model accurately.
AI excels in addressing dynamic, uncertain environments where real-time adaptability

is essential, while FM is crucial in safety-critical systems requiring guaranteed correct-
ness. Rather than one being superior, AI and FM complement each other depending
on the application: AI is more suited for open, data-rich systems like natural language
processing or image processing, while FM ensures reliability in closed, safety-critical
domains such as flight control or nuclear reactors. Hybrid approaches combining AI
with formal verification are emerging, offering both adaptability and safety, potentially
leading to more robust and intelligent systems. However, for our approach, FM is the
preferred choice, as our test cases involve safety-critical systems, and we lack the large
datasets necessary to effectively train AI models.

1.2 Research Objectives

As Autonomous Vehicles(AVs) become more prevalent, the ability of these systems to
communicate effectively with human users is critical to ensuring trust, safety, and un-
derstanding. Research has shown that explanations delivered at the wrong time can
overwhelm users or lead to misinterpretation, especially in dynamic environments like
driving [THK24]. To address this challenge, this research focuses on the main question
of how to develop a framework for determining the optimal time to provide explana-
tion(s). To aid the development of this framework following sub-research questions were
generated and have been addressed in this dissertation.

1. Developing a Framework for Optimal Atomic Explanation Timing: The
primary objective of this research is to create a framework that determines the op-
timal timing for delivering atomic (single-step) explanations to human users. This
framework will consider the individual’s attention level, enabling a more effective
and adaptive explanation delivery system.

2. Enhancing the Framework for Multi-Step Explanations: Building on the
initial framework, the second objective is to extend its capability to include multi-
step explanations. This enhancement will allow the system to discern the most

3
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appropriate moments to deliver explanations that require multiple steps, ensuring
that the user’s cognitive load is managed effectively throughout the process.

3. Applying the Framework Across Multiple Users: The final objective is to
apply the refined framework in scenarios involving multiple human users. This
will allow for the identification and validation of optimal timing strategies for both
atomic and multi-step explanations when interacting with diverse individuals. The
goal is to establish generalizable timing strategies that can be adapted for different
users based on their attention profiles.

1.3 Related Work

In this section, we provide an overview of related work relevant to the overall content
of the thesis. For the specific content discussed in the following chapters, we include
dedicated reviews of related work within the respective chapters and sections. This
related work section mainly deals with the following two aspects:

1. Explanation models: A discussion of existing explanation models and their various
dimensions.

2. Cognition in explanation: An exploration of the role cognition plays in shaping
and understanding explanations.

1.3.1 Explanation Models

Lewis defines explanation as “to explain an event is to provide some information about
its causal history” [Lew86, p.217]. According to Walton, a successful explanation oc-
curs when understanding is effectively transferred between the explainer and the ad-
dressee [Wal04]. However, Markus et al. [MKR21] and Ferrario & Loi [FL22] claim
that explanations not only improve comprehension but are also commonly connected to
higher levels of trust in automated systems.
Explanation models provide frameworks for autonomous systems to communicate

their decision-making processes, helping users understand, trust, and interact safely
with these technologies. As autonomous systems –—ranging from AI-driven software to
Autonomous Vehicles (AVs)—– integrate into daily life, effective explanations become
vital for managing user expectations and promoting safe, trusted use. This section re-
views key categories of explanation models, drawing from recent research to illustrate
their core characteristics and applications.

4



1.3 Related Work

Content-Based Models

Content-based models focus on the substance of explanations, addressing fundamental
questions like “What is happening?” and “Why is it happening?” [Mil19]. By deter-
mining the most relevant details to communicate, content-based models aim to balance
informativeness with cognitive simplicity, ensuring that explanations are neither too
complex nor too vague. For instance, Hoffman et al. [Hof+18] suggest that the right
level of detail is critical for maintaining user engagement and trust.
These models are particularly useful in scenarios where users need a basic under-

standing of a system’s actions without overwhelming technical detail, such as in AV
navigation systems where passengers may need quick reassurance about vehicle actions.
Context-based explanations can be expressed in different ways. Following are two of the
ways.

• Causal and Counterfactual Explanation Models: Causal models focus on
explaining cause-and-effect relationships, providing users with insights into the
factors influencing a system’s actions [PM18]. This approach is especially valu-
able in complex decision-making environments where transparency is crucial, such
as healthcare or finance [RSG16]. Counterfactual models, in contrast, explain
what would happen if different choices or actions were taken, effectively answer-
ing “what if” questions [Gui22]. These models help users understand the system’s
flexibility and adaptability by highlighting how it would respond under alterna-
tive scenarios [WMR17]. Both causal and counterfactual explanations have been
shown to increase user confidence by elucidating the underlying logic of a system’s
actions [Sch+20; WKB22; WBK23].

• Transparency and Justification Models: Transparency and justification mod-
els aim to make a system’s processes more visible and justifiable by explaining
decision-making rules, ethical considerations, or compliance with regulations [WS21;
LFV21]. These models are particularly relevant for sensitive applications where
accountability is paramount. For instance, AVs may use justification models
to reassure passengers by explaining safety protocols during high-risk manoeu-
vres [Hof+18]. Justification models also support compliance with emerging ethical
and legal standards, providing stakeholders with the confidence that the system
adheres to accepted practices and guidelines [Bin+18].

5
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Timing and Frequency Models

Timing and frequency models determine when and how often explanations should be
delivered to avoid cognitive overload [DK17; ZYR21]. Research indicates that timing
plays a crucial role in managing users’ mental workload, with pre-action explanations
often being more effective than post-action explanations in high-stakes applications like
AVs [Koo+16; Has+18; Du+19]. Timing is also an important factor in influencing the
trust of humans in autonomous systems [Mar+17; Ros+20]. Frequency control is also
essential; delivering explanations too frequently can lead to redundancy and mental fa-
tigue, especially as users become more familiar with the system [Kul+13a; Sch+19].
Shen et al. also observed that users require explanations primarily in specific scenarios,
particularly when they encounter near-death situations [She+20]. Optimal timing and
frequency help reduce cognitive strain, ensuring explanations support rather than hin-
der user understanding [RTC18]. Körber et al. [KPB18] also found that providing an
explanation at a later point (14 seconds) after asking drivers to take-over improved their
understanding of the situation. Chen et al. investigated how the timing of explanations
(pre, post, both, or none) influences user trust, understanding, and satisfaction with
AI systems [CLS24]. Their findings reveal that pre-explanations are more effective for
biased AI, post-explanations work better for unbiased AI, and providing both enhances
trust calibration. Kim et al. suggest that well-designed explanations delivered at the
right moments can help passengers build appropriate trust in automated vehicles by
providing transparency about the vehicle’s current state and actions [Kim+24].

User-based Models

User-based models modify explanations based on the user’s expertise, preferences, and
context [BCM07]. Using data on users’ past interactions, these models tailor explana-
tions dynamically, providing more comprehensive explanations for new users and brief
updates for experienced users. For example, Hayes and Shah [HS17] highlight that per-
sonalized explanations can improve user satisfaction and decrease the cognitive load by
adjusting to individual needs. By personalizing explanations, user-based models can
significantly enhance user trust and engagement over repeated interactions with the sys-
tem [Gun+21; Pap+23]. Prior work has shown that explanations can enhance users’
mental models of a system [Chi09]. Wiegand et al. [Wie+19] evaluated the information
drivers need explained during unexpected AV behaviour, resulting in a target mental
model that combines key elements of expert and user mental models. Schwammberger
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and Klös, in their work [SK22], propose a process for extracting explanation models from
system specification models and refining them for specific users and situations.

Self-Explaining Models

In the last few years, efforts have been made to develop conceptual frameworks that offer
a structured, process-oriented approach to generating explanations. This need to include
self-explainability in AVs, and autonomous systems in general, arises due to the IEEE
Standard for Transparency of Autonomous Systems, which emphasizes the need for mak-
ing autonomous systems understandable to the stakeholders [22]. In 2019, Blumreiter
et al. [Blu+19] introduced the MAB-EX framework (Manage, Analyze, Build, Explain),
drawing inspiration from the self-adaptive MAPE loop (Monitor, Analyze, Plan, Ex-
ecute) [Sin06]. MAB-EX systematically guides the explanation generation process by
focusing on managing information, analyzing system behaviour, building insights, and
delivering explanations tailored to user needs, thereby enhancing understanding and
supporting decision-making. Similarly, Ziesche et al. [ZKG21] propose a method for
detecting and classifying anomalous behaviour in autonomous systems to enable self-
explainability. This approach allows systems to autonomously explain behaviours that
deviate from anticipated outcomes, improving transparency and trust in autonomous
operations.
Fey et al. [FFD22] present a framework for self-explaining systems that engage in

interactive communication to clarify their operations to an addressee. The framework
uses a generic explanation pattern that supports various explanation types –—causal,
counterfactual, abstract, example-based, and strategy-exposing–— while establishing
shared terminology between the system (E) and the addressee (A). Both parties rely
on local models (ME and MA) and beliefs (BE and BA) about the world, incorporating
state information and dynamics to infer future outcomes. By forming a belief (BE(A))
about the addressee’s understanding, E tailors explanations to bridge the gap between
the addressee’s interpretation and the actual situation, ensuring situational relevance
and alignment with the addressee’s comprehension.

1.3.2 Cognition in Explanation

In the previous subsection, we have discussed the various explanation models that ex-
ist and their potential to improve trust in AVs while enhancing the understanding of
the decision-making steps taken by these systems. The recipients of these explanations
can either be other AVs or Human Agents (HAs). This thesis focuses on the latter,
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emphasizing the unique challenges of designing explainability processes for human re-
cipients [Lan+21]. Effective explainability depends significantly on cognitive models,
which describe how humans perceive and interpret information. Despite their com-
plexity, these models are crucial for integrating safety mechanisms grounded in formal
tools and methodologies [Car+24; Xu+21]. The design of these cognitive models varies
greatly, as human behaviour and understanding are influenced by numerous psychologi-
cal and situational factors [Vis06]. These models play a pivotal role in bridging the gap
between the technical logic of AVs and the mental models of HAs.
Cognitive models have played a critical role in understanding human cognition, includ-

ing reasoning, problem-solving, and decision-making processes. Early foundational work
by [SN71] introduced cognitive architectures like the General Problem Solver (GPS),
which formalized the strategies employed by humans in problem-solving scenarios. This
laid the groundwork for further developments in cognitive science, particularly with
models such as ACT-R ([And96]), which integrates various cognitive processes including
memory and learning.
Theories of mental models have greatly enhanced our understanding of cognitive pro-

cesses. Johnson-Laird [Joh86] proposed that individuals create mental representations
of the world, which serve as a foundation for reasoning and inference. These mental
models help explain how people generate conclusions and make judgments, even when
faced with limited information. However, human cognitive resources—such as memory,
attention, and information-processing capacity—are inherently limited, which can im-
pede the ability to comprehend complex explanations [Swe88]. Additionally, individuals
tend to focus selectively on information they deem most relevant. As a result, for an
explanation to be effective, it must align closely with the recipient’s immediate goals
and priorities [Kah73].
Recent advancements in cognitive modelling have emphasized the importance of in-

corporating social and contextual factors into cognitive theories. For instance, research
by [Mil19] highlights how explanations are shaped by social interactions and the cogni-
tive biases that affect human reasoning. This perspective suggests that cognitive models
must consider not only individual cognitive processes but also the broader social dynam-
ics that influence understanding.
Additionally, work by [Pea09] on causal inference has underscored the significance of

causal reasoning in cognition. Causal Bayesian Networks have been employed to model
how individuals draw conclusions based on observed relationships, providing insights
into human reasoning that can inform cognitive models.
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In cognitive science, explanation is seen as a fundamental mental activity that allows
individuals to make sense of the world by organizing knowledge and identifying causal
relationships. Early theories, such as those by Piaget [Pia05], suggested that humans
have an intrinsic drive to seek coherence and balance in their understanding of their
environment, leading to the generation of explanations as a way to resolve cognitive
dissonance. Tversky and Kahneman’s work [TK74] on heuristics and biases further
highlighted the idea that people often use simplified cognitive shortcuts to generate
explanations, even when these are imperfect or incomplete.
More recently, Lombrozo’s work on explanation emphasized the role of explanatory

virtues such as simplicity, generality, and coherence in shaping how people evaluate
explanations [Lom16]. Her research shows that people prefer explanations that are sim-
ple yet powerful, striking a balance between explanatory depth and cognitive economy.
Cognitive models derived from her work have helped clarify how individuals prioritize
certain types of explanations, revealing an interplay between explanatory preferences
and cognitive load.
In decision-making, explanations are vital for justifying choices and actions. Johnson-

Laird’s mental models theory posits that people create mental simulations to reason
about potential outcomes, and explanations help refine these models by focusing atten-
tion on causal mechanisms [Joh86]. Cognitive models of explanation in decision-making
thus emphasize causal reasoning and counterfactual thinking, where individuals consider
”what-if” scenarios to generate explanations that help them navigate uncertainty and
make informed choices.
The growing interest in explainability in AI has led to the development of computa-

tional models inspired by human cognitive processes. Cognitive models of explanation
have informed the design of Explainable AI (XAI) systems, which aim to make machine
reasoning more transparent and understandable to human users. Miller provides a com-
prehensive review of how cognitive science theories, particularly those related to causal
reasoning, have influenced the development of XAI systems [Mil19]. He argues that for
AI explanations to be effective, they must align with human expectations of causality,
coherence, and simplicity.
While cognitive models have provided valuable insights into explanation, several chal-

lenges remain. One key issue is the variability in how different individuals generate and
evaluate explanations. Cognitive models often assume a normative framework for expla-
nation evaluation, but individual differences in cognitive styles, background knowledge,
and cultural factors can lead to divergent preferences for certain types of explanations.
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The Role of Emotion in Explanatory Processing Cognitive models traditionally focus
on the rational aspects of explanation, such as causal reasoning and coherence. However,
emotions also play a significant role in how people seek, generate, and evaluate explana-
tions. For example, explanations that evoke trust or reduce anxiety may be more readily
accepted, even if they are not the most logically sound.
In this work, we incorporate cognitive models to account for the profound impact of

explanations on human cognition. Understanding how cognition influences the inter-
pretation of explanations allows us to design communication strategies that align with
human mental processes. This alignment is particularly critical in determining the op-
timal timing for providing explanations, ensuring they are delivered in a manner that
supports comprehension and minimizes cognitive overload.

1.4 Contributions and Publications

The existing works related to explanation content and timing are summarised in this
section. As we can see in the fig. 1.2, on the explanation content axis, we talk about
who the recipients of the explanations are, papers that ask ”what and why” questions,
and how these explanations are provided. On the explanation timing axis, we talk about
no/generic timing, before an action is performed, during an action, and after an action
is performed.
The existing papers discuss timing in a largely abstract manner, without delving into

the finer nuances of when explanations should be provided. There is little to no research
on predicting the optimal timing for delivering explanations –—either before or during
an action–— particularly in contexts involving consistent content, which could serve as
a baseline for analysing different types of explanations. This dissertation addresses this
gap by focusing specifically on this aspect, supported by the publication of the following
papers by the author.

1. Akhila Bairy. “Modeling Explanations in Autonomous Vehicles.” In: Integrated
Formal Methods - 17th International Conference, IFM 2022, Lugano, Switzerland,
June 7-10, 2022, Proceedings. Ed. by Maurice H. ter Beek and Rosemary Monahan.
Vol. 13274. Lecture Notes in Computer Science. Springer, 2022, pp. 347–351. doi:
10.1007/978-3-031-07727-2\_20. url: https://doi.org/10.1007/978-3-
031-07727-2%5C_20

2. Akhila Bairy, Willem Hagemann, Astrid Rakow, and Maike Schwammberger. “To-
wards Formal Concepts for Explanation Timing and Justifications.” In: 30th IEEE
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Figure 1.2: Existing works related to explainability

International Requirements Engineering Conference Workshops, RE 2022 - Work-
shops, Melbourne, Australia, August 15-19, 2022. IEEE, 2022, pp. 98–102. doi:
10.1109/REW56159.2022.00025. url: https://doi.org/10.1109/REW56159.
2022.00025

3. Akhila Bairy and Martin Fränzle. “Optimal Explanation Generation Using At-
tention Distribution Model.” In: Human Interaction and Emerging Technologies
(IHIET-AI 2023): Artificial Intelligence and Future Applications 70.70 (2023).
doi: 10.54941/ahfe1002928

4. Astrid Rakow, Mehrnoush Hajnorouzi, and Akhila Bairy. “What to tell when? - In-
formation Provision as a Game.” In: Proceedings Fifth International Workshop on
Formal Methods for Autonomous Systems, FMAS@iFM 2023, Leiden, The Nether-
lands, 15th and 16th of November 2023. Ed. by Marie Farrell, Matt Luckcuck,
Mario Gleirscher, and Maike Schwammberger. Vol. 395. EPTCS. 2023, pp. 1–9.
doi: 10.4204/EPTCS.395.1. url: https://doi.org/10.4204/EPTCS.395.1
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5. Akhila Bairy and Martin Fränzle. “Efficiently Explained: Leveraging the SEEV
Cognitive Model for Optimal Explanation Delivery.” In: Applied Human Factors
and Ergonomics (AHFE 2024) 148 (2024). doi: 10.54941/ahfe1005221

6. Akhila Bairy and Martin Fränzle. “What if Autonomous Systems had a Game
Master? Targeted Explaining with the help of a Supervisory Control System.”
In: ExEn ’24. Lisbon, Portugal: Association for Computing Machinery, 2024,
pp. 15–19. isbn: 9798400705960. doi: 10.1145/3648505.3648508. url: https:
//doi.org/10.1145/3648505.3648508

7. Mehrnoush Hajnorouzi, Astrid Rakow, Akhila Bairy, Jan-Patrick Osterloh, and
Martin Fränzle. “What Level of Power Should We Give an Automation?” In:
Dependable Computing – EDCC 2024 Workshops. Ed. by Behrooz Sangchoolie,
Rasmus Adler, Richard Hawkins, Philipp Schleiss, Alessia Arteconi, and Adriano
Mancini. Cham: Springer Nature Switzerland, 2024, pp. 14–21. isbn: 978-3-031-
56776-6. doi: 10.1007/978-3-031-56776-6_2

8. Akhila Bairy and Martin Fränzle. “Enhancing Multi-user Experience: Optimizing
Explanation Timing Through Game Theory.” In: Intelligent Technology for Future
Transportation. Ed. by Abolhassan Razminia and Dinh Hoa Nguyen. Cham:
Springer Nature Switzerland, 2025, pp. 106–117. isbn: 978-3-031-84148-4

9. Maike Schwammberger, Astrid Rakow, Lina Putze, and Akhila Bairy. “Explain
it for Safety: Explanations for Risk Mitigation.” In: Design and Verification of
Cyber-Physical Systems: From Theory to Applications. Ed. by Andreas Rauh,
Bernd Finkbeiner, and Paul Kröger. to be published. 2025

10. Akhila Bairy, Martin Fränzle, and Maike Schwammberger. Optimising Timing of
Multi-Step Explanations for Multiple Users using Reactive Game. Accepted to the
7th International Workshop on EXplainable, Trustworthy, and Responsible AI and
Multi-Agent Systems (EXTRAAMAS 2025). 2025

11. Akhila Bairy, Mehrnoush Hajnorouzi, Astrid Rakow, Martin Fränzle, and Maike
Schwammberger. “Timing Matters - A Study on the Role of Timing in Expla-
nation Delivery.” In: Human Systems Engineering and Design (IHSED2025):
Future Trends and Applications 198 (2025). doi: http://doi.org/10.54941/
ahfe1006782
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1.5 Structure of the Thesis

1.5 Structure of the Thesis

This thesis is structured into several chapters, each building on the foundational concepts
and progressively addressing more complex issues related to explanation optimization for
single and multiple users in real-world scenarios. Here is an overview of each chapter’s
focus and contribution to the thesis as a whole:
In chapter 2, we introduce the fundamental concepts that provide the theoretical basis

for this research. This includes a detailed overview of Game Theory, which is essential
for understanding strategic decision-making processes, as well as cognitive models that
explain how users interpret and process information. Together, these frameworks serve
as the foundation for the subsequent chapters.
Chapter 3 and chapter 4 tackle the optimization problem for explanations directed at

a single user. Chapter 3 focuses on optimizing single-step/atomic explanations, aiming to
maximize clarity and understanding in situations where brief, immediate information is
needed. Chapter 4 extends this by exploring multi-step explanations, which are necessary
when information must be conveyed over a sequence of interactions to build a more
comprehensive understanding.
However, real-world scenarios often involve multiple individuals (passengers) in a car.

This complexity introduces the need for adaptive models that cater to multiple users
simultaneously. Chapter 5 and chapter 6 address this challenge by adapting the single-
user model to multi-user settings. In chapter 5, we develop methods for optimizing the
timing of atomic explanation for multiple users. Chapter 6 extends these strategies to
multi-step explanations for multiple users.
In chapter 7, we present a user study aimed at investigating the timing of explanations

and their impact on users’ understanding. This chapter explores how the timing of
information delivery affects comprehension and user satisfaction, providing empirical
evidence to support our theoretical models.
Finally, the thesis concludes with chapter 8, where we summarize the findings and

contributions of this research. This chapter synthesizes the insights gained from each
preceding chapter, highlighting the advancements made in optimizing explanations for
both single and multi-user scenarios. Additionally, it outlines the limitations of the study
and explores potential directions for future research.
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In this chapter, we introduce the fundamental concepts used in our work. Our work
includes a reactive game, and hence in section 2.1, we introduce game theory and discuss
some of the different forms of games. Followed by an overview of Backward Induction
in section 2.2, which is used in the game. We started the implementation of the reactive
game with PRISM Model Checker and then shifted to MATLAB. Therefore, in sec-
tion 2.3, we talk about the PRISM Model Checker and its drawbacks, and in section 2.4,
we introduce MATLAB and explain why we use it. Another major aspect of this work
is the use of an attention model. In section 2.5, we give a brief overview of differ-
ent cognitive models that exist, followed by a focus on the SEEV attention model in
the section 2.6.
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2.1 Game Theory

Game Theory, pioneered by mathematicians John von Neumann and Oskar Morgenstern
in their seminal work Theory of Games and Economic Behaviour (1944) [NM07], is a
mathematical framework for analyzing strategic interactions among rational agents. It
provides tools to model and study situations where the outcome for each participant
depends not only on their own decisions but also on the decisions of others. Since its
inception, game theory has evolved into a multidisciplinary field, with applications in
economics, political science, biology, computer science, and psychology.
At its core, Game Theory addresses scenarios involving conflict, cooperation, and com-

petition. The participants, referred to as players, make decisions based on their prefer-
ences, strategies, and expectations of others’ behaviour. Each player aims to maximize
their payoff, which reflects their satisfaction or utility from a particular outcome [OR94].
Game Theory distinguishes between different types of games based on the structure

of interaction:

• Players and Strategies: Players are decision-makers, and strategies are their partic-
ular choice of actions. A player’s choice of strategy can depend on their knowledge
of the game and their expectations about others’ choices [FT91].

• Payoffs: Each combination of strategies results in a specific outcome, which corre-
sponds to a payoff for each player. These payoffs can be represented numerically,
capturing the players’ preferences over outcomes.

• Equilibria: A central focus of Game Theory is identifying equilibria, where play-
ers’ strategies are mutually consistent. The most notable is the Nash equilibrium,
where no player can unilaterally improve their payoff by changing their strat-
egy [Nas50].

Apart from the above-mentioned form, Game Theory can be categorised in several
other ways as well. Some of the common ways to categorise is:

• Static and dynamic games - In static games, players make decisions simultaneously
without knowing other players’ choices. In dynamic games, decisions are made
sequentially, allowing players to adjust strategies based on previous moves.

• Cooperative and non-cooperative games - Cooperative games allow players to form
binding agreements and work together for mutual benefit. In non-cooperative
games, players act independently, leading to competitive decision-making.
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• Zero-sum and non-zero-sum games - In zero-sum games, one player’s gain equals
another’s loss. Non-zero-sum games allow mutual benefit or loss, making cooper-
ation possible.

• Symmetric and asymmetric information games - Symmetric games provide all
players with the same information. In asymmetric games, some players have more
knowledge, leading to strategic uncertainty.

• Single-shot and iterated games - Single-shot games involve a one-time interaction
with no future consequences. Iterated games involve repeated interactions, encour-
aging long-term strategies and cooperation.

In Game Theory, there are two fundamental types of games –—single-shot games
and iterated games–— that represent distinct settings in which these interactions occur.
Understanding the distinction between these two types is crucial, as it significantly
influences players’ decision-making processes, strategies, and outcomes.

2.1.1 Single-Shot Games

Single-shot games represent the simplest type of strategic interaction. In these games,
players interact only once, without any opportunity for future encounters or retaliation.
As a result, players typically focus on maximizing their immediate payoff, without regard
to potential future consequences.
A single-shot game is a scenario where:

• Players make decisions simultaneously or sequentially.

• The game ends after one round, with no repetition.

• Players have no knowledge of future interactions, leading them to base decisions
solely on the current situation.

Formally, a single-shot game can be represented by:

• A set of players N = {1, 2, . . . , n},

• A strategy space Si for each player i ∈ N ,

• A payoff function ui(s1, s2, . . . , sn) for each player, where si represents player i’s
strategy.
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One of the well-known examples of a single-shot game is the Prisoner’s Dilemma.
This game consists of two players (prisoners), who must independently decide whether
to cooperate (stay silent) or defect (betray the other). The dominant strategy for each
player is to defect, even though mutual cooperation would lead to a better collective
outcome. Some of the other examples include the Battle of the Sexes and Matching
Pennies.
In single-shot games, the concept of Nash equilibrium is often used to analyze the

outcome. A Nash equilibrium occurs when no player has an incentive to unilaterally
change their strategy, given the strategies chosen by the others. Since players do not
expect future interaction, the strategies tend to be static and focused on immediate gain.

2.1.2 Iterated Games

In contrast to single-shot games, iterated games involve multiple rounds of interaction
between the same players. The repeated nature of the game allows for more complex
strategies, such as retaliation, cooperation, and forgiveness. The potential for future
interactions influences the players’ behaviour, as they may consider both short-term
payoffs and long-term benefits.
An iterated game involves:

• A set of players N = {1, 2, . . . , n},

• A strategy space St
i for each player i ∈ N in each round t,

• A sequence of payoff functions ui(st1, st2, . . . , stn) for each round t,

• Players receive feedback after each round and can adjust their strategies accord-
ingly.

An iterated game can be thought of as a repeated version of a single-shot game, where
the same strategic choices are presented multiple times, allowing players to adapt based
on their experience and expectations of future play.
An iterated game can be classified into two types:

• Finite games: In this, all the players involved know that the game will be played
for a limited number of rounds, after which the interaction ends.

• Infinite games: The players involved have no knowledge of when the game will
end, meaning the interactions can continue indefinitely.
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A prominent example of iterated games is the Iterated Prisoner’s Dilemma. In this
version of the classic game, all the players repeatedly choose whether to cooperate or
defect over many rounds. Strategies such as Tit-for-Tat —where a player mimics their
opponent’s previous move— can emerge, fostering cooperation in the long term. Some
of the other examples include the repeated Battle of the Sexes and repeated coordination
games.
The possibility of repeated interactions introduces new strategic elements such as

reciprocity, punishment, and reputation. Players may cooperate to build trust, knowing
that defection could lead to future punishment or loss of trust. Conversely, players may
defect if they believe the game will end soon, prioritizing short-term gains.
In iterated games, long-term strategies often emerge, and concepts like subgame perfect

equilibrium become relevant. Unlike Nash equilibrium in single-shot games, a subgame
perfect equilibrium ensures that players’ strategies form a Nash equilibrium in every sub-
game (i.e., every round), allowing for more consistent and sustainable strategies across
multiple interactions.

2.1.3 Single-Shot Games vs Iterated Games

In the previous two subsections, we discussed about the two forms of games: Single-
shot game and Iterated game. In this subsection, let us compare the similarities and
differences between single-shot game and iterated game.

Aspect Single-Shot Game Iterated Game
Interaction Fre-
quency One-time interaction Repeated interactions over

multiple rounds

Strategic Focus Immediate payoff Long-term payoff and future
interactions

Cooperation Less likely due to no future en-
counters

More likely due to potential
for reciprocity

Punishment/Re-
taliation Not applicable Retaliation and punishment

possible over rounds
Equilibrium Con-
cept Nash equilibrium Subgame perfect equilibrium

Table 2.1: Comparison between single-shot game and iterated game

The table 2.1 gives us a brief overview of the major differences between single-shot
and iterated games. The primary difference between single-shot and iterated games lies
in the time horizon of the interaction. Single-shot games are typically analyzed with
static strategies, while iterated games allow for dynamic strategies that adapt based on
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the players’ past behaviour. In single-shot games, players interact only once, focusing
on immediate payoffs without any expectation of future consequences. This often leads
to decisions driven by self-interest, such as defection in the Prisoner’s Dilemma, where
mutual cooperation could have been more beneficial. Strategic behaviour is typically
simpler, as players aim to optimize their payoffs for a single round.
In contrast, iterated games involve repeated interactions, where players recognize that

their actions today influence future outcomes. This creates opportunities for cooperation,
as the possibility of retaliation or reward in subsequent rounds encourages strategies like
Tit-for-Tat (mirroring the opponent’s previous move) or Grim Trigger (maintaining
cooperation unless the opponent defects). These strategies rely on the possibility of
future retaliation or reward, fostering more complex and cooperative equilibria that are
less common in single-shot games.
Single-shot and iterated games offer distinct perspectives on strategic decision-making.

While single-shot games prioritize immediate outcomes, encouraging simpler, self-serving
strategies due to the absence of future consequences, iterated games emphasize the on-
going nature of interactions, where the potential for future rewards or retaliation fosters
the development of more sophisticated strategies and sustained cooperation over time.

2.1.4 Reactive Games

Reactive games form an important subset of game theory, where players continuously
adjust their strategies based on the observed actions of others [MN19]. Unlike static
or sequential games, where strategies are pre-determined or follow a structured order,
reactive games emphasize dynamic decision-making and adaptation.
A defining feature of reactive games is the continuous strategy adjustment, where play-

ers modify their actions in response to the behaviour of their opponents. This ongoing
interaction creates a feedback loop, influencing the strategic decisions of all participants.
For instance, in iterated games, players often employ reactive strategies that depend on
the opponent’s previous moves, leading to complex patterns of cooperation and compe-
tition. These games are commonly modelled using Markov Decision Processes (MDPs)
and reinforcement learning frameworks, where strategies evolve dynamically in response
to new information [Lit94].
Theoretical exploration of reactive games has led to the development of various mod-

els and strategies. One notable approach involves reactive learning strategies, which
gradually adjust a player’s propensity to take certain actions based on past interac-
tions with opponents. These strategies have been shown to effectively restrict the set
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of feasible payoffs in iterated games, highlighting their potential in influencing game
outcomes [MN19].
Another significant concept is the reactive bargaining set, which examines the stability

and dynamics of agreements in cooperative games. This framework has been instrumen-
tal in understanding how players can reach and maintain mutually beneficial agreements
in environments where strategies are continuously evolving [GM97].
In practical applications, reactive game theory has been utilized in the synthesis of

autonomous systems. For example, in scenarios involving information asymmetry, op-
portunistic synthesis methods have been developed to enable autonomous agents to
achieve better outcomes by leveraging incomplete information. This approach allows
for the construction of control systems that can adapt to dynamic and unpredictable
environments [KF19].

2.1.5 Formal Definition of a Game

In game theory, a game is defined as a mathematical structure consisting of several
key components that describe the strategic interaction among rational decision-makers,
called players. A generalised formalisation of a game G can be represented as a tuple:

G = (P,S,A, T,R),

where:

1. Players (P): The finite set P = {1, 2, . . . , n} represents the players in the game.
Each player i ∈ P:

• Is a rational agent that seeks to optimize their individual objective (e.g.,
maximizing rewards or minimizing costs).

• Can interact with the environment (via actions) and observe changes in the
game state.

• May adopt strategies that are influenced by other players’ actions or states,
depending on the game type (e.g., cooperative, competitive, or mixed).

2. States (S): The set S contains all possible configurations or situations in the
game. Each state s ∈ S:

• Encodes the current environment and possibly players’ private information
(in incomplete information games).
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• May include static elements (e.g., board positions, resources) and dynamic
elements (e.g., time, player statuses).

• Can be deterministic or stochastic, depending on the game dynamics and
transitions.

3. Actions (A): For each player i, Ai represents the set of actions they can choose.
The joint action space is:

A = A1 ×A2 × · · · × An,

where:

• ai ∈ Ai is an action chosen by player i.

• a = (a1, a2, . . . , an) ∈ A is the joint action profile, representing the combined
actions of all players.

• Actions may be discrete (e.g., move left or right), continuous (e.g., adjust
speed), or mixed.

4. Transition Function (T ): The transition function T : S ×A → S describes how
the game state evolves:

• Given the current state s ∈ S and joint action a ∈ A, the next state s′ ∈ S is
determined as T (s, a) = s′.

• Transitions may be:

– Deterministic: The next state is uniquely determined by s and a.

– Stochastic: The next state is drawn from a probability distribution P (s′|s, a).

5. Reward Function (R): The reward function R = (R1, R2, . . . , Rn) assigns im-
mediate feedback to players based on the state and actions:

• Each Ri : S × A → R maps a state s ∈ S and joint action a ∈ A to a
real-valued reward Ri(s, a) for player i.

• Rewards can represent:

– Points scored in a game.

– Costs incurred (e.g., penalties or resource usage).

– Progress toward a goal.

• The reward function guides players’ decision-making and may reflect compet-
itive or cooperative objectives.
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2.1.6 Timed Games

Timed games are a subclass of games played on timed automata, which extend finite-state
machines by incorporating clocks that track the passage of time. Timed games are often
employed in various fields such as cognitive psychology, Human-Computer Interaction
(HCI), and behavioural research [ABG10; BIF15; Rie+23; RZG14]. They are designed
to assess how participants perform under time constraints. These games require the
players to complete tasks within a specified time limit or as quickly as possible.
A common objective in timed games is to find a strategy that ensures a player’s

goal is met within specific time constraints, often expressed as reachability, safety, or
optimization problems [AD94].
We can formally define a timed game G as a tuple:

G = (S,A, T, δ, C,R,Φ),

where:

• S: The set of states representing all possible configurations of the game.

• A: The set of actions available to players.

• T : The time domain, typically continuous (R≥0) or discrete (N).

• C : Clocks → R≥0: A set of clock variables tracking elapsed time for transitions
and constraints.

• δ : S×A× (C → R≥0)×T → S: The transition function specifies how the system
evolves based on the current state, the chosen action, the current clock valuations,
and the elapsed time.

• R : S × A → R: A reward function that assigns a numerical value (e.g., cost or
utility) to state-action pairs, representing objectives such as minimizing cost or
maximizing payoff over time.

• Φ: Temporal objectives or winning conditions, often expressed using temporal
logic, such as reachability, safety, or optimization within given time constraints.

2.1.7 Markov Decision Game

Markov Decision Process (MDPs), originated in the 1950s and first studied extensively
in the 1960s, provide a robust framework for solving dynamic decision-making prob-
lems in stochastic environments [Bel57; How60]. These procedures are widely known as
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stochastic dynamic programming, emphasizing their ability to address decisions across
multiple periods under uncertainty.
A Markov Decision Game, also known as 1.5-player game, developed by Lloyd Shapley

in the 1950s [Sha53], is a theoretical framework that is based on Markov Decision Process
(MDP) involving interaction between two distinct types of agents: a fully controllable
player, aka a strategic player, and a partially observable adversary, aka a random player.
This concept is used to model decision-making problems where one of the agents (the
strategic player) has complete control over their actions, while the second ”half” player
represents uncertainties or stochastic elements of the environment, which influence the
outcome but are not directly controlled by any strategic player. The primary goal is for
the strategic player to make optimal decisions under uncertainty, considering both the
controllable actions and the probabilistic nature of the adversarial environment [SV15].
In a 1.5-Player Game, a fully observable agent (strategic player) interacts with a prob-

abilistic system, often modelled as a random player. The random player represents envi-
ronmental randomness or uncontrollable adversarial actions. Unlike two-player games,
the second player in a 1.5-player game is not an active decision-maker but a source of
uncertainty [Put94]. Apart from that, in a Markov Decision Game, the system state tran-
sitions depend only on the current state and the action taken by the strategic player,
following the Markov property. The transition probabilities can be influenced by the
probabilistic nature of the half-player [Put94].
The goal of the strategic player is to optimize a performance criterion, such as expected

reward, over time by accounting for both the deterministic actions they can control and
the stochastic effects introduced by the half-player.

Formal Definition of a Markov Decision Game

Formally, a Markov Decision Game is defined by the tuple (S,A, P,R, γ), where:

• S: represents a finite set of states representing the different configurations of the
game environment.

• A: represents a finite set of actions available to the main/strategic player. Each
action impacts the state transitions within the environment.

• P (s′|s, a): is the state transition probability function, which specifies the proba-
bility of moving from state s to state s′ given that action a is chosen.
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• R(s, a): represents a reward function that assigns a real-valued reward based on
the state-action pair (s, a), representing the utility the player receives for taking
action a in the state s.

• γ ∈ [0, 1]: represents a discount factor that weights future rewards relative to
immediate rewards. The factor controls how much importance is given to long-
term versus short-term gains.

The objective of the strategic player in a Markov Decision Game is to find a policy
π : S → A that maximizes the expected cumulative reward (or value function V π(s))
over time, starting from any given initial state s. The value function under policy π is
defined as:

V π(s) = E

[ ∞∑
t=0

γtR(st, at) | s0 = s, at = π(st)

]
(2.1)

where st represents the state at time t, and at is the action selected by the policy π

in state st.

2.2 Backward Induction

Backward Induction (BI), also called Backward Bellman Induction, is a mathematical
technique, often used in Game Theory, for solving finite extensive-form games. BI
involves working backwards from the end of a sequence of decisions or events to determine
the optimal decision at each step [Hei12]. It is used to derive optimal strategies in
finite games where decisions are made in stages, and where each player prepares for
any reasonable action of others, and deduces the sequence of actions that maximizes
payoffs at each stage. The technique works by iterating backwards from the final stage
of the game to determine the best possible action at every earlier point, assuming that
all participants are rational and seek to maximize their payoffs. The first known usage
of BI was by Arthur Cayley in 1875 where he used this method to try and solve the
secretary problem [Rus16].
The concept of backward induction builds on the principle of subgame perfect equilib-

rium (SPE), which is a refinement of Nash equilibrium for extensive-form games [FT91].
In a game with multiple decision points, BI ensures that each subgame—an independent
part of the overall game—reaches an optimal outcome. This is achieved by first solving
the final subgame and then proceeding to earlier subgames in reverse order.
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At each decision node, BI assumes that the player making the choice will select the
action that maximizes their payoff, given the subsequent moves of other players. By
working backwards from the final outcome, backward induction eliminates non-credible
threats and strategies, focusing only on those actions that players would logically pursue
under rational behaviour. The process results in a strategy profile that constitutes
a subgame perfect equilibrium, ensuring optimal decision-making at each stage of the
game.
Backward Induction is especially useful in the analysis of sequential games with perfect

information, where players make decisions one after another, fully aware of previous ac-
tions. It has been successfully applied in various domains, including economics, political
science, and negotiation theory.
While Backward Induction is a powerful method, its reliance on the assumption of

rationality may limit its applicability in real-world scenarios where agents may exhibit
bounded rationality or irrational behaviour. Additionally, in games with incomplete or
imperfect information, BI may not be as effective, since players may not fully anticipate
the moves of others due to uncertainty or information asymmetry.
Although Backward Induction remains a foundational tool in the analysis of sequential

decision-making processes, offering clear insights into optimal strategies in settings where
future actions can be predicted with a high degree of certainty, its practical utility may
be constrained by the complexity and unpredictability of human behaviour in non-ideal
conditions.

2.3 PRISM Model Checker

The PRISM Model Checker is a formal verification tool used to model and analyze
systems that exhibit probabilistic behaviour [KNP11]. It is widely used in the verification
of complex systems like network protocols, biological systems, and embedded systems
where uncertainty and randomization play a significant role.
PRISM supports various mathematical models tailored to different types of systems.

For instance, Discrete-Time Markov Chains (DTMCs) and Continuous-Time Markov
Chains (CTMCs) are used to represent systems with probabilistic transitions in dis-
crete or continuous time, respectively [KNP07]. Additionally, Markov Decision Processes
(MDPs) extend these models by incorporating nondeterministic choices [For+11], while
Probabilistic Timed Automata (PTAs) combine real-time and probabilistic elements to
capture systems with timing constraints [NPS13].
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PRISM uses probabilistic temporal logic to specify properties for verification. These
include: Probabilistic Computation Tree Logic (PCTL) for DTMCs and MDPs [KNP11];
and Continuous Stochastic Logic (CSL) for CTMCs [KNP02]. Users can define properties
like ”the probability of reaching a failure state within a certain time is less than 0.01”
or ”the expected cost of running the system until termination.”
Models can be built either using PRISM’s input language or importing models created

with external tools. After constructing the model, PRISM performs model checking to
verify whether the given properties hold, and it can compute performance measures like:

• Probabilities of events.

• Expected values (e.g., expected time to a failure).

• Long-run average costs or rewards.

PRISM also enables the analysis of reward-based properties, such as minimizing energy
consumption or maximizing system reliability.

2.3.1 PRISM-Games

PRISM-games is an extension of the PRISM Model Checker, designed to handle the
verification and strategy synthesis for multi-player stochastic games [Kwi+20]. It enables
the modelling, verification, and analysis of systems where multiple entities (or ”players”)
interact, potentially with conflicting goals, and where probabilistic outcomes influence
the system’s behaviour.
PRISM-games builds upon PRISM’s capabilities by introducing game-theoretic as-

pects. It allows for the analysis of competitive and cooperative scenarios where players
can adopt strategies to influence the outcome. The games are modelled using stochas-
tic multi-player games (SMGs), where multiple players can interact in the system, or
in other words: transitions between states depend not only on probabilistic outcomes
but also on the strategies of multiple players. Such models enable the analysis of both
zero-sum and non-zero-sum scenarios. Players can choose actions to influence the sys-
tem’s state transitions and the transitions can have probabilistic outcomes, reflecting
uncertainty in the system.
PRISM-games also supports several types of models, including:

• Turn-based stochastic multi-player games (SMGs or TSGs): These extend the
standard modelling of Markov Decision Processes (MDPs), as they can be viewed
as a broader form of MDPs where each state is managed by an individual player.
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• Concurrent stochastic multi-player games (CSGs): In this players make simulta-
neous decisions for transitions, with each player controlling specific modules and
using actions uniquely tied to them.

• Turn-based probabilistic timed games (TPTGs): This extends PRISM-games by
combining turn-based game features with Probabilistic Timed Automata (PTA)
elements, specifying players with control actions and using clocks, guards, and
invariants similar to PTAs.

PRISM-games extends the PRISM Model Checker to analyze multi-player stochastic
games, enabling the synthesis of optimal strategies for players. These strategies can be
deterministic, where a specific action is chosen in each state, or randomized, where actions
are selected probabilistically. In multi-player scenarios, PRISM-games can compute
Nash equilibria, a key concept in game theory where no player benefits by unilaterally
deviating from their strategy.
PRISM-games enhances traditional probabilistic temporal logics, such as PCTL and

CSL, to express goals specific to game settings. These logics allow users to specify objec-
tives like ensuring a safe state is reached with a high probability, regardless of opponents’
actions. Multi-objective verification further enables users to balance competing goals,
such as maximizing rewards while minimizing risks, which is critical in safety-critical
domains like autonomous systems.
PRISM-games was the first choice for implementing our reactive game approach.

2.3.2 Drawbacks of PRISM

The PRISM Model Checker is widely used for analyzing probabilistic systems, especially
those with stochastic behaviours such as communication protocols, biological systems,
and embedded devices. However, just like any other tool, PRISM and PRISM-games
have limitations that can hinder their applicability.
One of the principal challenges of PRISM is the state space explosion problem, a

frequent issue in model checking where the state space grows exponentially with the
number of system components or variables. PRISM mitigates this with symbolic tech-
niques, such as Binary Decision Diagrams (BDDs) and sparse matrix representations,
but these approaches have limitations when applied to large systems [KNP11].
BI is the method of choice due to our finite horizon, as it enables optimal decision-

making by considering future outcomes step-by-step from the end of the game back to
the starting point. However, a major drawback of PRISM-games for our work is its
inability to support Backward Induction effectively. Due to the size of the game tree,
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Backward Induction can be computationally intense for large-scale games, especially
when there are many decision points. While PRISM-games manages large state spaces
symbolically, the lack of built-in Backward Induction further exacerbates computational
challenges in extensive-form game models.
As described in section 2.2, BI typically requires recursive computation from termi-

nal states, calculating each player’s optimal response step-by-step back to the root of
the game tree. PRISM-games, however, does not inherently support recursive solution
methods tailored to BI, as its core algorithms are based on forward exploration of state
spaces and policy synthesis, aiming to maximize or minimize objectives directly from
initial states. As a result, PRISM-games cannot effectively represent the hierarchical
structure of decisions needed for BI, thus making it less suitable in our approach.

2.4 MATLAB

MATLAB, created by MathWorks [MAT23], is a high-level programming environment
widely used for data analysis, algorithm development, and numerical computation.
MATLAB also offers an intuitive interface and powerful computational capabilities.
MATLAB’s matrix-based language facilitates the processing and visualization of complex
datasets, while extensive toolboxes support specialized tasks, such as image processing,
machine learning, and control systems.
Backward Induction(BI), introduced in section 2.2, is a fundamental method used in

decision-making, game theory, and dynamic programming to solve problems that require
optimizing decisions over multiple stages. MATLAB provides an ideal platform for im-
plementing BI due to its robust computational capabilities, matrix-based computations,
and extensive library of functions.
We can efficiently define and solve dynamic optimization problems using MATLAB

by representing stages, states, and decisions as vectors or matrices. MATLAB’s for
loops and vectorized operations allow for concise implementation of recursive algorithms,
minimizing computational overhead.
A key feature of MATLAB that supports BI is its ability to handle large-scale matrix

operations, which is critical when solving problems with a large number of states or
decision variables.
Overall, MATLAB’s versatility and efficiency make it our preferred choice for imple-

menting backward induction in our research project.
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2.5 Cognitive Models

Cognitive models are theoretical frameworks designed to simulate and explain human
cognition. They can represent processes such as perception, attention, decision-making,
and memory, offering insights into how people process and respond to information. These
models are grounded in cognitive science, psychology, and artificial intelligence, aiming to
delineate how the mind processes information —ranging from perception and attention
to decision-making and memory. They also allow researchers to predict human behaviour
in various contexts, making them indispensable in fields like cognitive science, artificial
intelligence, and human-computer interaction.
There are several types of cognitive models, each capturing different aspects of cogni-

tion. Our focus is on the various computational models that use mathematical notions
to depict the various functions of human cognition. The cognitive models are classified
into different types based on the chapter ’Cognitive Computing’ by Gudivada [Gud16]:

• Symbolic Models: Rooted in classical cognitive science, symbolic models repre-
sent cognition through structured, rule-based systems that manipulate symbols in
ways analogous to human reasoning. Examples include production systems like
ACT-R (Adaptive Control of Thought-Rational) [And96; AL98], which simulates
human thought processes through a series of condition-action rules that govern
behavior; ICON FLUX [Niv07] which is used to simulate attention allocation in
dynamic, complex systems; CASCaS (Cognitive Architecture for Safety-critical
taskS) [WLB13] which simulate human decision-making and attention allocation
in high-risk, high-demand tasks such as air traffic control or medical diagnostics;
and PRIM (Perceptual Representation and Integration Model) [Taa13] focuses on
how perceptual information is integrated and represented in the mind.

• Connectionist Models (Neural Networks): These models emphasize distributed,
parallel processing similar to neural activity that occurs in the brain [FM14].
Rather than relying on predefined rules, connectionist models use networks of in-
terconnected units (akin to neurons) to learn from data, adjusting the strength of
connections between units based on experience. This approach aligns closely with
the brain’s plasticity and adaptability. Some of the examples include Convolu-
tional Neural Networks (CNNs), Artificial neural networks (ANN), Deep Learning
(DL), etc..

• Hybrid Models: Some cognitive models integrate both symbolic and connectionist
elements, combining the rule-based precision of symbolic systems with the adapt-
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ability of neural networks. This approach attempts to capture both high-level
abstract reasoning and low-level perceptual or motor functions, offering a more
comprehensive account of cognitive processes. Some of the hybrid models are:
LIDA (Learning Intelligent Distribution Agent) [Fra+14], which models cognitive
processes such as attention, perception, and memory using a symbolic structure,
while connectionist mechanisms handle learning processes. LIDA incorporates at-
tention and goal-directed behaviour with adaptive learning mechanisms to simulate
intelligent behaviour in dynamic environments. IBM Watson [Fer+10], combines
multiple technologies, including symbolic reasoning, machine learning, and natu-
ral language processing (NLP). Sigma (σ) [Ros13], is another hybrid model which
integrates rule-based reasoning with probabilistic and distributed learning.

Cognitive models provide valuable frameworks for understanding and simulating hu-
man cognitive processes, ranging from perception and attention to decision-making
and learning. These models, whether symbolic, connectionist, or hybrid, offer unique
strengths in representing specific aspects of cognition, enabling researchers to analyze
complex interactions and predict behaviour in various contexts. Another way of mod-
elling humans is via their attention. One of the attention allocation models is the SEEV
framework (Salience, Effort, Expectancy, Value). It provides a targeted approach to
understanding how individuals prioritize and focus on information in dynamic environ-
ments. We will see more about this in the next section.

2.6 SEEV Attention Model

The SEEV attention model forms the basis of all our works. SEEV is an acronym
for Salience, Effort, Expectancy, Value. The SEEV attention model [Wic+01], shown
in fig. 2.1, is a comprehensive framework developed to explain how individuals allocate
their attentional resources in dynamic and complex environments. Emerging from the
domain of human factors and cognitive engineering, the SEEV model offers a structured
understanding of attentional dynamics, which has been widely utilized to optimize sys-
tem design and improve human performance across various applied fields.
The SEEV model identifies four key factors that interact to determine how attention

is distributed: salience, effort, expectancy, and value. Each of these components plays a
distinct role in shaping attentional behaviour.

• Salience (S): Salience refers to the extent to which a stimulus stands out from
its surroundings due to its unique physical characteristics. Stimuli with higher
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Figure 2.1: SEEV Model to determine attention by [Wic+01]

salience, such as bright colours, loud noises, or sudden movements, are more likely
to attract attention automatically. This factor relies on the intrinsic properties
of the environment to draw focus. For instance, in an aircraft cockpit, flashing
warning lights or an alarm sound are designed to be salient enough to immediately
capture the pilot’s attention during critical situations [Wic15].

• Effort (Ef): Effort reflects the mental and physical resources required to shift
attention from one location or stimulus to another. High effort costs can discourage
frequent attention shifts, leading individuals to sustain focus on tasks or areas
requiring minimal effort. For example, a driver may be less likely to glance at a
distant road sign if the effort to shift attention away from the immediate roadway
is perceived as too high [HWC06].

• Expectancy (Ex): Expectancy pertains to the likelihood of encountering a partic-
ular stimulus in a specific context based on prior knowledge or experience. This
factor allows individuals to direct their attention more efficiently by predicting
where and when relevant stimuli will appear. For example, a pilot scanning an
instrument panel may prioritize certain gauges based on their relevance to the
current flight phase, informed by training and experience [Wic+01].

• Value (V): Value represents the perceived importance or relevance of a stimulus to
an individual’s goals or objectives. High-value stimuli, deemed critical or beneficial,
prompt greater allocation of attentional resources. For example, in a military
operation, soldiers may prioritize attending to communication devices or mission-
critical alerts over other distractions [Wor14]. Value is a flexible concept, shaped
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by both immediate task demands and broader individual priorities, and is integral
to decision-making in complex environments.

The SEEV model integrates these components into a quantitative framework for pre-
dicting the likelihood of attention (P(A)) being directed to a particular stimulus:

P (A) = S − Ef + Ex · V . (2.2)

The eq. (2.2), demonstrates the interplay of bottom-up factors (Salience and Effort)
and top-down factors (Expectancy and Value) in influencing attention. Bottom-up fac-
tors are driven by the physical properties of the environment, while top-down factors
are rooted in cognitive processes and an individual’s learned expectations and experi-
ences [Wic15].
The SEEV model has become a cornerstone in applied cognitive research, with signif-

icant contributions to fields such as:

• Aviation: In aviation, the SEEV model has been instrumental in studying how
pilots allocate attention to various cockpit instruments and external cues. By un-
derstanding attentional priorities, designers can optimize instrument placement
and display features to reduce errors and enhance situational awareness. For ex-
ample, Wickens et al. [Wic+01] demonstrated how Salience and Value drive pilots’
attention during critical flight operations, such as landing or responding to emer-
gencies.

• Driving: The model has been extended to traffic environments to predict driver be-
haviour under varying conditions. Horrey et al. [HWC06] applied the SEEV model
to explore how drivers allocate attention between the road, traffic signals, and in-
vehicle devices, helping to design safer in-vehicle interfaces. Wortelen [Wor14] fur-
ther refined this application to address driver distractions and improve attention
management in Autonomous Vehicles.

• Military Operations: In military settings, where split-second decisions are critical,
the SEEV model has been used to improve soldier performance by optimizing
the design of command-and-control systems, by tailoring interfaces to align with
natural attentional tendencies.

• Human-Machine Interface Design: Beyond specific domains, the SEEV model in-
forms the design of user-friendly systems and interfaces. For instance, in medi-
cal devices or consumer electronics, aligning interface elements with attentional
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principles ensures critical information is easily accessible, improving usability and
reducing errors.

2.6.1 Modified SEEV Model

The SEEV (Salience, Effort, Expectancy, Value) model, introduced above, is widely used
to predict attentional allocation based on environmental factors and task characteris-
tics. It posits that attention allocation is a function of the Salience of visual stimuli,
the Effort required to process those stimuli, the Expectancy of encountering relevant
information, and the perceived Value of that information. In the modified SEEV model
presented in this section (depicted in fig. 2.2), Salience and Effort are treated as con-
stants, thereby emphasizing the dynamic interplay between Expectancy and Value in
determining attentional focus.

Filter

Expectancy Value

Events
Attention
P(A)

Figure 2.2: Modified SEEV Model

This modification stems from contexts where Salience and Effort are standardized or
do not vary significantly between stimuli. For example, in experimental tasks designed to
control visual and cognitive demands, all stimuli may be equally salient (e.g., standard-
ized brightness, size, and contrast) and require uniform effort (e.g., the same physical
or cognitive steps to engage). These conditions allow for isolating and analyzing the
contributions of Expectancy and Value to attention allocation.

• Salience as a Constant: By keeping Salience uniform across stimuli, any differences
in attentional allocation can be attributed to factors other than visual prominence.

• Effort as a Constant: Effort is held constant to eliminate variability due to task
difficulty, ensuring that cognitive or physical demands do not disproportionately
influence attention.

• Expectancy and Value as Dynamic: Expectancy and Value are treated as variable
components, allowing us to explore how task goals, prior knowledge, or contextual
cues influence attention allocation under controlled conditions.
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P (A) = Ex · V + c . (2.3)

Equation (2.2) is modified to incorporate Salience and Effort as constants (c). This
modified SEEV model is shown in eq. (2.3). Under this modified model, attention
allocation becomes a direct function of Expectancy and Value. We will be using this
modified SEEV model in all the future chapters of this dissertation.
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In this chapter, we introduce our framework for determining the optimal time for an
atomic explanation production for a single user. The contents of this chapter are based
on our work previously published in [Bai+22; BF24a].

3.1 Introduction

Autonomous systems, including vehicles, are becoming increasingly integral to daily life.
However, as mentioned earlier, their complex and adaptive behaviours often surpass hu-
man understanding, presenting challenges in fostering trust and safety in human-machine
interactions. Timely, effective explanations are crucial to addressing these challenges.
While substantial research has explored the content of explanations [Koo+16; Wie+19],
there is a limited understanding of the optimal timing for explanation delivery. This
section focuses on leveraging the SEEV (Salience, Effort, Expectancy, Value) attention
model, introduced in section 2.6, within a reactive game framework to optimize explana-
tion timing in Autonomous Vehicles (AVs). By modelling atomic explanation delivery as
a Markov Decision Game using Markov Decision Process (MDP), we synthesize strategies
that minimize the cognitive workload of the user.
This chapter is divided as follows: In section 3.2, we introduce a running example

for this chapter, which shows the intricate relationship between timing and explanation.
In section 3.3, we provide an overview of the fundamental concept of SEEV, followed by
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the implementation in a reactive game. The results of the reactive game are discussed
in section 3.4, and we finally conclude this chapter by summarizing the key contributions
in section 3.5.

3.2 Example Scenario

To illustrate how the timing of an explanation affects human attention, consider the
following scenario from Bairy et al. [Bai+22], depicted in fig. 3.1:

Example 3.2.1. An Autonomous Vehicle v is approaching an intersection where it plans
to make a left turn. The traffic light is green, signalling that it is safe to proceed without
interruption. However, the vehicle unexpectedly comes to a stop. The reason for the
stop is that an emergency vehicle is approaching, and v is yielding to it. v intends to
explain to its passengers that the stop is due to yielding to an emergency vehicle, but it
must decide when and whether to offer this explanation.

Figure 3.1: AV waiting example: AV waiting at a green traffic light

The timing of this explanation is crucial. If the vehicle delivers the explanation too
early –—for example, before passengers have had a chance to recognize that they are
approaching an intersection and that a left turn is imminent–— the explanation might
be perceived as irrelevant or premature. At this stage, the passengers have not yet
encountered any confusion, so the information might be dismissed, and the cognitive
effort involved in processing it could be wasted.
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On the other hand, if the explanation is provided too late —–or if it is not provided at
all–— the passengers may begin to wonder why the vehicle stopped unexpectedly at a
green light. As a result, they will likely engage in their own search for an explanation, by
scanning the environment and considering possible reasons for the stop. This increased
mental effort can lead to a higher cognitive workload, as passengers try to make sense of
the situation. The delay in receiving the explanation forces them to focus their attention
on their immediate surroundings, which could increase their anxiety or confusion as they
try to find a solution independently.
Providing an explanation too soon may overwhelm the passengers with unnecessary

information when they are not yet focused on the situation at hand. And providing an
explanation too late would result in them starting their own attention strategy. There-
fore, the successful transfer of understanding between the vehicle and the passengers
depends not only on the content of the explanation but also on the precise timing of
when it is delivered.

3.3 SEEV Model in a Reactive Decision Game

As sketched in section 3.1, to optimize the timing of explanations, this study models the
decision-making process as a 1.5-player game—–a Markov Decision Game using Markov
Decision Process (MDP) [How60] involving a strategic player (the AV’s explanation
mechanism) and a random player (the human’s attention modelled by SEEV). The
details of the SEEV modelled can be found in section 2.6.
In this chapter, we are going to use the modified SEEV model from section 2.6.1 as

we are focusing on the example 3.2.1. We will be considering only the top-down factors:
Expectancy (Ex) and Value (V). The Salience (S) and Effort (Ef) are considered to be
constant in this situation as in example 3.2.1, the area of interest in fixed and hence the
Effort factor remains constant. Given the short time span of the scenario, we can also
approximate the salience as being constant throughout the scenario. Thus we use the
modified SEEV formula, given in eq. (2.3), in this chapter.
In the reactive game implemented here, the strategic player determines when to pro-

vide an explanation, aiming to minimize cognitive workload, while the random player’s
behaviour, governed by the SEEV model, influences the dynamics of attention alloca-
tion and workload. The SEEV model’s stochastic nature enables the random player to
probabilistically determine attention levels based on temporal and contextual factors.
The strategic player must decide between three states:
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1. No explanation (no_expl): In this state, the strategic player (AV) withholds an
explanation, assuming it is not immediately required or beneficial. This action
may occur when:

• The AV predicts that providing an explanation at this moment would in-
duce unnecessary cognitive workload because the human’s attention is not
yet focused on the scenario.

• The scenario’s urgency or complexity does not yet justify interrupting the
human’s cognitive process.

However, refraining from delivering an explanation is not without cost. If the
human begins actively scanning the environment to deduce the reason behind
the AV’s behaviour (e.g., stopping unexpectedly), this can significantly increase
cognitive workload. The decision to stay in this state must therefore account for
the risks of workload escalation due to the absence of timely information.

2. Explanation (expl): In this state, the AV provides an explanation to the human.
This action introduces cognitive workload because the occupant must process and
comprehend the explanation. The workload induced depends on factors such as
the timing, complexity, and perceived relevance of the explanation.

• If delivered at the right moment, the explanation preempts the human’s need
to search for environmental cues, reducing the overall workload.

• If delivered too early, the explanation may be disregarded, leading to wasted
cognitive effort and a potential need for repetition.

• If delivered too late, the human may already have engaged in an attention-
intensive search for answers, rendering the explanation less effective or redun-
dant.

3. Explanation unnecessary (no_expl_needed): This state represents situations where
an explanation is deemed redundant or irrelevant. Scenarios that justify this state
include:

• The human has already observed sufficient environmental cues to understand
the AV’s actions without additional clarification. For instance, the sight of
an emergency vehicle approaching may make the reason for the AV’s halt
self-evident.
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• The situation resolves itself naturally, eliminating the need for an explanation.
For example, a delayed start at a green light might become understandable
as traffic begins moving.

• The context or timing indicates that providing an explanation would not
meaningfully enhance the human’s understanding or reduce their workload.

Entering this state is advantageous when the AV can accurately predict that an
explanation would neither prevent cognitive effort nor improve situational clarity.

no_expl

expl
no_expl_
needed

1-P(attn)

P(attn)

P(not_critical)

R:= no_attn_cost 

R:= attn_cost

R:= no_expl_wl

R:= no_expl_wl

1-P(not_critic
al)

R:= C(E)

R:= after_C(E)

Figure 3.2: MDP representing the options for strategic player; to be combined be a
product construction with the SEEV model in order to obtain the actual
game graph

The MDP of the options for strategic player is illustrated in fig. 3.2. This figure
visualizes the state transitions of the AV’s explanation mechanism. It outlines the pos-
sible actions the strategic player can take at each timestep (we consider one timestep
to be equivalent to 1 s), transitioning between the states (discussed above) of providing,
withholding, or identifying unnecessary explanations. Rewards or costs are associated
with these transitions, which are calculated based on attention probabilities derived from
SEEV and scenario-specific conditions.
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Expectancy

R:= exp

Figure 3.3: Expectancy of the random player

The Value (V) of the SEEV model may vary when transitioning to a differently struc-
tured environment (e.g., from urban driving to an expressway). However, in this study,
we treat V as a constant because the game is restricted to the example scenario in ex-
ample 3.2.1 which involves only a single area of interest (the intersection). Hence, as
shown in fig. 3.3, the random player’s Expectancy (Ex) accumulates over time. Ex grows
linearly.This progression reflects the increasing cognitive demand as the human user an-
ticipates an explanation. By examining the expectancy curve, the AV can strategically
time its explanations to preempt the peak cognitive workload, thereby optimizing the
interaction. In the next section, we discuss more about how the rewards are calculated.

3.4 Game Results

The primary objectives of this reactive game model were twofold: to determine the
optimal timing for delivering explanations to achieve the lowest cognitive workload on the
human and to evaluate the minimum expected workload across all possible presentation
strategies. These evaluations required assigning rewards (which mirror workload) to the
transitions between states, as outlined in table 3.1.

S S’ Probability R
no_expl no_expl P(not_critical) ·P(A) 0.4
no_expl no_expl P(not_critical) ·(1 - P(A)) 0.2
no_expl expl P(not_critical) 0.3
no_expl no_expl_needed P(not_critical) 0.0
expl expl 1 0.1

no_expl_needed no_expl_needed 1 0.0

Table 3.1: MDP rewards

The reactive game model is a finite horizon model, and hence for this model, the
minimum workload at any given time was calculated using backward Bellman induction
BI, introduced in section 2.2. This recursive process considered the cost of presenting
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or withholding explanations at each timestep (1 s). The minimum workload (min_wl)
depends on several factors, including the probability of a critical scenario not occurring
(P (not_critical)) and the cost associated with providing or not providing explanations.
The formula used for this computation is given by eq. (3.1):

min_wlkn = P (not_critical) · no_expl_wl + (1− P (not_critical)) · expl_wlkn (3.1)

Here, no_expl_wl is a constant that is employed when no explanation is required.
expl_wlkn represents the cost associated with explanation delivery at time n and k rep-
resents the total duration of the scenario. It factors in whether attention is being paid
or not and incorporates a recursive reduction of the temporal horizon. This value is
calculated as shown in eq. (3.2):

expl_wlkn = min


C(E) + (k − n) · after_C(E),

P (A)n · (min_wlk−n
0 + attn_cost)

+(1− P (A)n) · (min_wlkn+1 + no_attn_cost)

(3.2)

Here C(E) represents the cost of providing the explanation, after_C(E) is the on-
going cognitive cost that is incurred after the explanation is provided, P (A) depicts the
probability of attention that is being paid, attn_cost is the workload cost associated
with the human actively attending to a scenario (by scanning the environment), and
no_attn_cost represents the workload incurred when the human does not actively pay
attention.
Based on these rewards, the optimal time to provide an explanation (t_expl) and

the corresponding minimum workload (min_wl) for various times until the scenario
occurs (t_max), are presented in the table 3.2. Here t_expl is the time to provide the
explanation from the current moment.
The reactive game was built using MATLAB [MAT22]. Simulation results, shown

in table 3.2, reveal that optimal explanation timing is highly scenario-dependent. For
scenarios lasting less than 2 s, no workload reduction can be achieved through early ex-
planations. However, as the time horizon increases, explanation timing becomes critical.
For short scenarios, a single explanation close to the event is optimal. For instance,

when t_max = 5 s, the ideal explanation time is 2 s before the event. When extending
scenario durations further, we make the interesting observation that up to scenario
duration t_max = 15 s, the optimal explanation time is 3 s before the scenario occurs.
Interestingly, as the scenario duration extends, providing multiple explanations becomes
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t_max (s) t_expl (s) min_wl
2 2 0.300
3 2 0.400
4 2 0.500
5 2 0.500
6 3 0.600
7 4 0.600
8 5 0.600
9 6 0.600
10 7 0.600
11 8 0.600
12 9 0.600
13 10 0.600
14 11 0.600
15 12 0.600
16 2, 13 0.600

Table 3.2: Optimal explanation time (t_expl) generating minimum expected workload
(min_wl)

necessary. For scenarios lasting 16 s or more, the optimal strategy involves delivering
an initial explanation early (e.g., at 2 s) and another closer to the event (e.g., 3 s before
occurrence). This will be explored in more detail in the next chapter.
This behaviour underscores the complexity of explanation timing. Contrary to in-

tuition, the earliest possible explanation is not always the most effective. Instead, the
optimal timing aligns with specific scenario dynamics and attention probabilities.
Regarding computational feasibility, the backward induction process proved efficient

for real-time application in shorter scenarios (t_max ≤20 seconds), with computation
times remaining under 1 s. However, for longer scenarios, the recursive nature of the al-
gorithm leads to exponentially increasing computation times. Consequently, such cases
may require offline computation or more efficient execution platforms, rather than MAT-
LAB, for practical implementation.

3.5 Chapter Summary

In this chapter, we introduced our reactive game framework integrated with the SEEV
attention model to optimize explanation timing in AVs. Results demonstrate the nu-
anced interplay between explanation timing and cognitive workload, emphasizing that
neither immediate nor delayed explanations uniformly minimize workload. The results
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presented in the previous section are based on the cost/reward values postulated for the
different transitions shown in table 3.1. These costs currently are just educated guesses
serving the purpose of demonstration of the technology, yet lack empirical psychological
grounding. In the next chapter, we explore the extension of the framework to multi-step
explanations.
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In the results presented in chapter 3, we observed that our model tends to propose
multi-step explanations for scenarios lasting 16 s or longer. However, a key question
arises: in situations where complete information is unavailable at the start, should we
wait to provide a comprehensive explanation, or should we offer partial information
upfront? This chapter explores this dilemma. To address it, we extend the framework
introduced in chapter 3 to include multi-step explanations. Some parts of this chapter
have been published in [BF23].

4.1 Introduction

Krull and Anderson[KA97] and El-Assady et al. [El-+19] suggest that explanation is not
necessarily a single step process. We had previously proposed that explanation is a dy-
namic process of belief updates and hence would need multi-step explanations [Bai+22].
In the last decade, there has been an increase in research related to dialogue-based ex-
planations [DO22; Xu22; Xu+23; Min+24]. However, before tackling the complex task
of implementing dialogue-based explanations, it is helpful to first determine the appro-
priate timing for presenting multi-step explanations. This chapter explores when it is
most suitable to offer such explanations.
This chapter is divided as follows: In section 4.2, we introduce a running example for

this chapter, which exemplifies the need for multi-step explanations. In section 4.3, we
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provide an overview of the fundamental concept of SEEV, followed by its implementation
in a reactive game. The results of the reactive game are discussed in section 4.4, and we
finally conclude this chapter by summarizing the key contributions in section 4.5.

4.2 Example Scenario

Explanations often consist of multiple pieces of information, and their timing can vary
depending on how much information is available at a specific moment. In scenarios where
information is incomplete or evolving, deciding when and how to communicate details
becomes crucial, as it directly impacts how effectively the explanation serves its purpose.
To illustrate this, consider the following example which is also depicted in the fig. 4.1:

Figure 4.1: Potential hazard example: potential hazard on the road

Example 4.2.1. An Autonomous Vehicle v is navigating a road when it detects a
potential hazard ahead. Based on its sensors and perception algorithms, v recognizes
that something is obstructing its path and initiates a deceleration manoeuvre to maintain
safety. However, at this stage, the system has only partial information about the nature
of the hazard —it could be a cyclist, an animal or an inanimate object, but v ’s perception
components have not yet determined the specific classification.
This scenario highlights a situation where the AV has only partial information about

the nature of the potential hazard at the current time. Based on these incomplete
data, the AV could choose to provide an explanation to the human passenger, detailing
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the detected hazard and the uncertainty surrounding its classification. While such an
explanation may reduce the human’s cognitive workload by offering transparency, it
could also increase their cognitive burden. This increase might occur if the human
passenger begins to actively engage in their own attention and reasoning strategies to
address the incomplete information.
Alternatively, the AV might delay providing an explanation until it has fully identified

the hazard. While this approach ensures that the explanation is more comprehensive
and definitive, it introduces a different challenge: the delay could cause uncertainty or
anxiety for the human, especially if they have already started forming their own attention
strategies. Moreover, if the complete information becomes available too late, the delayed
explanation may fail to mitigate cognitive workload effectively or support the human’s
situational understanding.

4.3 Reactive Game using SEEV Model

This chapter, as outlined in section 4.1, models a decision-making process as a 1.5-player
game to optimise the timings of multi-step explanations. Specifically, it is modelled as a
Markov Decision Process (MDP) [How60], involving two key players: a strategic player,
represented by the AV’s explanation mechanism, and a random player, capturing human
attention as modelled by the SEEV framework.
In this chapter, we employ the modified SEEV model introduced in section 2.6.1 to

focus on the scenario described in example 4.2.1. We apply the modified SEEV formula
presented in eq. (2.3), as we consider Effort and Salience to be constants.
For ease of implementation, we consider the explanation to comprise two distinct

parts of information. In the reactive SEEV game, the process begins n seconds before
the onset of the scenario and concludes upon its completion. The first part of the
information becomes available n seconds prior to the scenario’s occurrence, while the
second part becomes accessible halfway through this period, at n/2 seconds before the
scenario begins.
Building on the SEEV model, we expand the reactive game framework from sec-

tion 3.3. The reactive game considers two key factors: the asynchronous availability of
partial and complete information; and the influence of explanation timing on human cog-
nitive workload, incorporating costs associated with receiving explanations and pursuing
independent attention strategies.
In the reactive game, the strategic player (AV) has four primary actions at each time

step:
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1. No explanation (no_expl): The AV refrains from providing any explanation, pre-
serving cognitive resources but potentially increasing the passenger’s mental work-
load as they attempt to interpret the situation independently.

2. Partial explanation (expl1): The AV provides available partial information, giving
some clarity but potentially leaving the passenger with unanswered questions. We
assume that the AV has access to this partial information at the start of the
scenario.

3. Complete explanation (expl2): The AV delivers a full explanation once all nec-
essary information becomes available, ensuring comprehensive understanding but
potentially inducing a higher workload due to delayed timing. The full explanation
becomes available after half the scenario has been completed.

4. No explanation needed (no_expl_needed): The AV identifies that no explanation
is required, as the situation is either resolved or does not warrant clarification.
This action minimizes unnecessary cognitive load.

The MDP of the strategic player’s decision-making process is shown in fig. 4.2. States
represent the AV’s options: withholding explanations (no_expl), providing partial expla-
nations (expl1), delivering complete explanations (expl2), or determining no explanation
is needed (no_expl_needed). Transitions between states are governed by workload costs
and rewards. Some of the transitions are shown below:

• Transitioning from no_expl to expl1 reflects the workload cost of offering partial
information.

• Moving from expl1 to no_expl and then to expl2 involves updating the explanation
with complete information, which may yield rewards for enhancing clarity.

• Selecting no_expl_needed terminates the need for further action, minimizing un-
necessary cognitive load

The random player —human attention— reacts dynamically based on the SEEV
model. Attention probabilities (P(A)) fluctuate according to the buildup of Expectancy,
shown in fig. 4.3, and the perceived value of information, influencing the strategic player’s
decisions. The probability of attention (P(A)) and the probability of no critical scenario
(P (not_critical)) help in determining the reward values for the strategic player. The
details about the reward structure is discussed more in the next section.

50



4.3 Reactive Game using SEEV Model

no_expl

expl2

no_expl_
needed

1-P(attn)

P(attn)

P(not_critical)

R:= no_attn_cost 

R:= attn_cost

R:= no_expl_wl

R:= no_expl_wl

1-P(not_critic
al)

R:= C(E)

R:= after_C(E)

Is expl2
available?

Yes

No

R:= C(E)/2
expl1

R:= after_C(E)

Figure 4.2: MDP representing the options for strategic player with two explanations; to
be combined be a product construction with the SEEV model in order to
obtain the actual game graph

The game is implemented in MATLAB [MAT22] to simulate the example scenario
from section 4.2 for varying lengths of the time horizon and calculate optimal strategies.
The implementation involves Backward Bellman Recursion and Reward Optimisation.

• Backward Bellman Recursion (BI): To compute the minimum workload (min_wl)
at each state and time step, BI evaluates the costs of immediate versus delayed
explanations.

• Reward Optimisation: The system identifies the optimal strategy by maximizing
rewards tied to workload reduction and passenger comprehension.

By analyzing the reward structure and workload costs, the framework identifies the
optimal timing for explanations, which adapts based on scenario dynamics and the time
horizon until the event.
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Expectancy

R:= exp

Figure 4.3: Expectancy of the random player

4.4 Game Results

Our goals for this reactive SEEV game were to identify whether, given that the AV
determines information contributing to the explanation asynchronously in two parts,
the explanation should indeed be provided in two parts and, if so, to determine the
optimal timing for each part to minimize the cognitive workload of the human. To
achieve this, a cost structure detailing cognitive workload costs was assigned to various
state transitions for computation. This cost structure, as outlined in table 4.1, enabled
the calculation of optimal explanation strategies by associating probabilities and rewards
with different transitions.

S S’ Probability R
no_expl no_expl (1 - P(not_critical)) ·P(A) 0.4
no_expl no_expl (1 - P(not_critical)) ·(1 - P(A)) 0.2
no_expl is expl2 available? (1 - P(not_critical)) 0.3
no_expl no_expl_needed P(not_critical) 0.0
expl1 no_expl 1 0.05
expl2 expl2 1 0.1

no_expl_needed no_expl_needed 1 0.0

Table 4.1: MDP rewards

The evaluation utilized the scenario described in the example section, focusing on vary-
ing lengths of the scenario to simulate different time horizons. By analyzing state tran-
sitions, rewards, and costs, the experiments quantified the impact of explanation timing
on cognitive workload and validated the proposed framework using backward Bellman
induction and dynamic programming methods. The minimum workload (min_wl) is
given by eq. (4.1). The probability of a non-critical scenario (P (not_critical)) accounts
for situations where the user may have already assessed the environment, or where the
critical situation was resolved through the temporal progression of events. A constant
workload value associated with P (not_critical) is represented by no_expl_wl. In cases
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where an explanation is necessary, the workload (expl_wlkn) is calculated through back-
ward induction, with k indicating the time of the scenario and n representing the current
time. This calculation is described in Eq. 4.2.

min_wlkn = P (not_critical) · no_expl_wl + (1− P (not_critical)) · expl_wlkn (4.1)

If the total scenario time is k, expl_wlkn represents the minimum between the costs
incurred by providing an explanation now and the costs incurred by not providing one.
This reflects the strategic decision aimed at minimizing the expected workload. Waiting
for an explanation incurs a cost (waiting_cost), which is determined by the Probability
of Attention (P(A)) derived from the SEEV model in eq. (2.3). This cost is calculated
using backward Bellman recursion.

expl_wlkn = min


expl_cost,

P (A)n · (min_wlk−n
0 + attn_cost)

+(1− P (A)n) · (min_wlkn+1 + no_attn_cost)

(4.2)

When the human is paying attention, waiting_cost is the cost associated with fol-
lowing an attention direction (attn_cost), combined with the minimum workload over
the reduced horizon (k − n). When the human is not paying attention, waiting_cost
represents the cost of not paying attention (no_attn_cost), along with the minimum
workload obtained through backward recursion.

expl_cost =

C(E) + (k − n) · after_C(E) expl2 is available

0.5 · C(E) + (k − n) · after_C(E) otherwise
(4.3)

Providing an explanation incurs a cost (expl_cost) as shown in Eq. 4.3. This cost is
the sum of the cost of receiving an explanation (C(E)) and a constant cost that arises
after an explanation is provided (after_C(E)). In our model, two types of explanations
are available: one with partial information at the start and another with complete
information provided later. The cost/reward of the explanation depends on which type
is given. If the first (partial) explanation is provided, only half of the reward, C(E),
is granted. Table 4.2 summarizes the minimum workload (min_wl) and optimal times
(t_expl1/t_expl2) for providing explanations at different times until the scenario occurs
(t_max), based on the reward structure mentioned above.
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t_max (s) t_expl1 (s) min_wl for
expl1 t_expl2 (s) min_wl for

expl2 CPU time (s)

2 - - 2 0.300 0.0100
3 - - 2 0.400 0.0100
4 - - 2 0.500 0.0200
5 - - 2 0.300 0.0200
6 - - 3 0.500 0.0300
7 - - 4 0.600 0.0400
8 - - 5 0.600 0.0600
9 - - 6 0.600 0.0700
10 2 0.550 7 0.600 0.0800
11 2 0.600 8 0.600 0.1800
12 2 0.650 9 0.600 0.2700
13 2 0.700 10 0.600 0.3500
14 2 0.750 11 0.600 0.6200
15 2 0.800 12 0.600 0.8600

Table 4.2: Optimal explanation times for 2 explanations based on minimum workload

Table 4.2 presents the results of optimizing the timing of explanations for horizons
ranging from 2 s to 15 s. For events that occur within a second or are already happening,
the model suggests that an early explanation does not lead to a reduction in workload.
However, as the time to the event increases, the timing of the explanation becomes
crucial. It is neither optimal to explain as early as possible nor as late as possible;
rather, the timing of the explanation follows a piecewise affine function based on the
duration of the scenario. Contrary to intuition, it is not always best to provide an
explanation immediately. There exists a specific point during the scenario when it is
most beneficial to provide the explanation. For horizons up to 9 s, despite part of the
explanation being available earlier, it is best to provide the explanation closer to the
event —specifically, 3 s before the scenario occurs, when all the information is available.
However, for horizons of 10 s or more, the approach shifts: a partial explanation is useful
when given at 2 s, followed by a complete explanation 3 s before the scenario occurs.
Table 4.2 also reports the computation runtimes for scenarios with varying t_max

values. Due to the backward induction process, the computation time increases expo-
nentially with the horizon length. Despite this, even using MATLAB, which is not the
most efficient execution platform, the computation time remains under 1 s for t_max

values up to 15 s. This ensures that the algorithm can be executed in real-time. For
larger t_max values, however, the algorithm may need to be run offline or on a more
efficient execution platform.
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4.5 Chapter Summary

In this chapter, we presented a novel approach to optimising explanation timing for
multi-step explanations in AVs using the SEEV model integrated into a reactive game
framework. Experimental results emphasize the significance of adapting explanation
timing based on the time horizon and information availability. Both short (≤9 s) and
long horizons (> 9 s) showcased unique strategies to minimize cognitive workload while
enhancing passenger comprehension.
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Until now, we have focused on determining the optimal timing for delivering atomic
or multi-step explanations to a single user. However, in real-world scenarios, it is com-
mon for multiple individuals to be present during a drive. This necessitates extending
our explanation timing framework to accommodate multiple users. In this chapter, we
explore how to adapt the framework for presenting atomic explanations to two users.
The content of this chapter is based on our previously published work in [BF25].

5.1 Introduction

The SAE levels of driving automation (0-5) highlight the progressive transition from
human control to full automation [Int21]. At higher levels (4-5), the timing and deliv-
ery of explanations become critical to maintaining passenger confidence, especially in
complex or unexpected scenarios. Poorly timed explanations —either too frequent or
delayed— can undermine user trust and comprehension. As interactive systems increas-
ingly involve multiple users with varying attention patterns and cognitive states, the
need for precise explanation timing becomes essential. In this chapter, we build on the
SEEV (Salience, Effort, Expectancy, Value) attention model, introduced in section 2.6,
to optimize explanation timing for multiple users.
Previous chapters have explored explanation timing for single users using game-theoretic

approaches. Shen et al. [She+20] emphasized the importance of delivering explana-
tions in critical situations, with pre-action explanations found to enhance trust [Du+19;
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RTC18]. Körber et al. [KPB18] noted that even delayed explanations can improve user
understanding, though pre-action explanations are generally more effective. Despite
these insights, multi-user scenarios remain underexplored.
This chapter extends the prior model (chapter 3) to a multi-user context, utilizing a

Markov Decision Process (MDP) framework to determine optimal explanation timing.
The approach employs backward Bellman induction to calculate strategies that minimize
cognitive strain, offering practical solutions for multi-user systems in AVs and beyond.
In section 5.2, we provide an overview of the fundamental concept of SEEV for two users,
followed by its implementation in a reactive game. The results of the reactive game are
discussed in section 5.3, and we finally conclude this chapter by summarizing the key
contributions in section 5.4.

5.2 Reactive Game Model

The timing optimization of explanation delivery for multiple users in an Autonomous
Vehicle (AV) setting is achieved using a reactive game. For simplicity, this chapter con-
siders two users. The game involves the AV and mental workload models for these users,
acknowledging the link between mental workload and attention. Kantowitz [Kan00] as-
serts that even simple attention models can predict mental workload effectively. In this
work, we use the SEEV attention model [Wic+01], detailed in section 2.6, to measure
user attention.

5.2.1 SEEV Model for Two Users

The general overview of the SEEV model can be found in section 2.6. Here, we have
made some slight modifications to the different attributes of the SEEV model; these
adjustments have been proposed by Wortelen [Wor14]. Below is an explanation of each
attribute, which has been tailored for the current work:

1. Salience (S): This refers to the degree to which new information of a specific type
will attract the attention of an individual if it becomes available. In other words,
it measures how noticeable or attention-grabbing the information is.

2. Effort (Ef): Effort denotes the amount of physical or cognitive energy required
by the individual to process the new information. This could include the mental
effort needed to comprehend or the physical effort required to interact with the
information.
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3. Expectancy (Ex): Expectancy represents the predicted frequency with which
new information will appear. It acts as a dynamic variable, offering an estimate of
how much time will pass before updated information is received.

4. Value (V): Value signifies the anticipated benefit or gain that the individual
expects to derive from the information. It represents the perceived usefulness of
the information and the extent to which the user believes it will provide a return,
whether in the form of knowledge, rewards, or other positive outcomes.

In this chapter, we apply the SEEV model to represent two distinct user profiles.
We achieve this by adjusting the expectancy attribute within the SEEV framework.
These adjustments lead to the development of different emotional states in users, such
as anxious, calm, or bored, which allows for a more detailed and varied analysis of user
experiences.
In our model, we begin by randomly generating initial Expectancy values for each

user. This is meant to model the history preceding the scenario. These initial values are
constrained to be less than 0.5. To determine the final expectancy values, we generate
a uniformly distributed random number r within a specified range shown in 5.1.

r = U(a, b) (5.1)

Using MATLAB, we generate the final expectancy values as follows:

r = a+ (b− a) ∗ rand(N, 1) . (5.2)

Here, r represents the final expectancy value, a and b define the lower and upper
bounds of the interval, respectively, and rand(N,1) generates a column vector of N ran-
dom numbers between 0 and 1. The parameter N represents the number of random
values to be generated, and in our model, N is set to 1 since each user will receive a sin-
gle final expectancy value. The resulting random number will be scaled to fall between
a and b, which allows for a controlled variation of expectancy values.
Once we have determined both the initial and final Expectancy values for each user,

as well as the corresponding initial and final time values, we use the fit function in MAT-
LAB to model the relationship between these variables using an exponential curve. Equa-
tion (5.3) describes the fit function.

f = fit(x, y, `exp1’) (5.3)
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In this equation, x represents the array of initial and final Expectancy values, while
y represents the array of corresponding time values. The initial time value is set to 1,
while the final time value corresponds to the moment when the scenario occurs. This
final time value can be adjusted to generate different Expectancy profiles. The argument
’exp1’ specifies the type of fit function used, which is a single-term exponential curve,
as shown in eq. (5.4).

f(x) = a ∗ exp(b ∗ x) (5.4)

This equation describes an exponential function where a and b are parameters de-
termined by the fitting process, and x represents the input values (Expectancy). The
function models how the Expectancy changes over time, capturing the growth or decay
of Expectancy based on the parameters a and b. This fitting approach allows us to create
a dynamic model that simulates how Expectancy evolves throughout the scenario.

5.2.2 Model Implementation

In safety-critical scenarios, the timing of explanations is vital to balance user comprehen-
sion with avoiding unnecessary distraction or confusion. Consider the following example
(example 3.2.1) adapted from [BF24a] where, at an intersection, an Autonomous Vehicle
(v) intends to make a left turn but comes to a stop, despite the green light permitting
an uninterrupted turn. The vehicle has detected an approaching emergency vehicle and
stops to yield the right of way. Although v can explain its actions to occupants, it must
carefully decide when and how to provide this explanation. This is the same example
from chapter 3. In chapter 3, we assumed that there was only one user in the v. Here,
we consider two users to be present in v.
In this scenario, an explanation given too early —before users recognize the intersec-

tion or the planned left turn— may be ignored, as it does not align with their current
understanding of the situation. This misalignment wastes cognitive effort. Conversely,
delivering the explanation too late, or not at all, may lead users to engage their own
attention strategies, such as scanning the environment to infer why the vehicle stopped.
This increases cognitive workload unnecessarily.
Minimizing cognitive load thus relies on delivering the explanation at the optimal

moment, ensuring it is both timely and relevant. This prevents unnecessary mental
effort while keeping users informed and reassured.
For the example 3.2.1, we can consider Salience and Effort to me constant. Hence we

can use the modified SEEV eq. (2.3) from section 2.6.1.
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5.2 Reactive Game Model

This simplified formula has been integrated into a Markov Decision Process (MDP)
game, where decisions centre on the timing of explanation delivery. Using MATLAB [MAT23],
we calculated reactive strategies for explanation timing. The SEEV-based game begins
k seconds before the scenario starts and concludes when the scenario ends.

no_expl

no_expl_
needed

expl

User1
expl

User2
expl

R:= no_expl_wl

R:= after_C(E)

R:= C(E)

R:= no_attn_cost 

R:= attn_cost

P2(attn)

1-P2(attn)
P(not_critical)

=
P1(not_critical) & P2(not_critical)

1-P
2(
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t_c
riti

ca
l)1-P

1 (not_critical)
1-P1(attn)

P1(attn)

R:= no_attn_cost 

R:= attn_cost

R:= no_expl_wl

Figure 5.1: MDP representing the options for strategic player with parallel processes; to
be combined be a product construction with the SEEV model in order to
obtain the actual game graph

Figure 5.1 illustrates a detailed MDP that represents the various states and transitions
for the strategic player, including parallel processes. At the beginning of the game, the
strategic player starts in the no_expl state, indicating that no explanation is provided to
the users. This initial state reflects a scenario where the player has not yet assessed the
situation or determined the need for an explanation. From this point on, at every discrete
time step (each step representing one second), the strategic player can transition to one
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of the following states, with each transition governed by specific probabilities based on
the users’ assessment of the situation and the strategic player’s decision-making process:

1. no_expl_needed State: The no_expl_needed state is reached when both users in-
dependently judge that the situation is not critical, as indicated by the joint proba-
bility P (not_critical). This means that the users perceive no immediate threat or
need for intervention, and the strategic player, upon receiving this feedback, con-
cludes that no explanation is necessary. Once the strategic player enters this state,
they remain here until the end of the scenario. This state reflects a situation where
both users are sufficiently confident in the current state of the environment, and
there is no need to deviate from the initial plan or provide additional information.

2. no_expl State: The no_expl state represents a situation where the users perceive
the scenario as critical (probabilities 1−Pi(not_critical), where i = 1, 2 for the
two users). However, no explanation is provided in this state.

The reward structure in this state is nuanced and depends on whether users are
actively paying attention or not. For instance, if users are engaged and attempting
to deduce the vehicle’s actions, their cognitive workload increases, potentially im-
pacting their experience negatively. On the other hand, if users are not attentive,
the strategic player may avoid penalization but risks leaving them uninformed.
These reward dynamics make the decision to stay in this state a critical one. The
details of these reward mechanisms are further elaborated in section 5.3.

3. expl State: The expl state is activated when the strategic player decides to provide
an explanation, which can occur either proactively (based on the player’s assess-
ment of the scenario) or reactively (in response to user feedback indicating a lack
of understanding). Regardless of whether the explanation is optimally timed, the
decision to enter the expl state ensures that both users are informed. The tim-
ing of the explanation plays a significant role in the reward system, with optimal
explanations leading to higher rewards. Notably, even if only one user expresses
the need for clarification, the explanation is provided to both users. This ensures
that all users are on the same page and prevents confusion from arising between
them. Once the strategic player enters the expl state, they remain there for the
remainder of the scenario, signalling that both users have received the necessary
explanation to understand the vehicle’s actions.
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S S’ Probability R
no_expl no_expl P(not_critical) · P(attn) attn_cost
no_expl no_expl P(not_critical) · (1-P(attn)) no_attn_cost
no_expl expl P(not_critical) C(E)
no_expl no_expl_needed P(not_critical) no_expl_wl
expl expl 1 after_C(E)
no_expl_needed no_expl_needed 1 no_expl_wl

Table 5.1: MDP Reward Structure

Reward in Figure Reward/Cost Value
attn_cost 0.4

no_attn_cost 0.2
C(E) 0.3

after_C(E) 0.1
no_expl_wl 0.0

Table 5.2: Reward/Cost Values

5.3 Results and Discussion

The reactive game introduced in this paper serves two primary objectives: To determine
the optimal timing for delivering an explanation to two users in a manner that mini-
mizes the cognitive workload for both; and to identify the minimum expected cognitive
workload across all potential explanation delivery strategies.
To achieve these goals, a reward structure was established for various state transitions,

as depicted in table 5.1. These rewards and costs are grounded in probabilities and
states derived from the model illustrated in fig. 5.1. The detailed values assigned to
these rewards and costs are listed in table 5.2.
Since the model operates under a finite horizon framework, backward Bellman induc-

tion was utilized to compute the minimum cognitive workload induced by an attention
strategy at any given time. The formula for the minimum workload (min_wl) is pro-
vided in eq. (5.5).

min_wlkn = Pi(not_critical) · no_expl_wl + (1− Pi(not_critical)) · expl_wlkn (5.5)

In this model, some instances may not require an explanation if the user has al-
ready assessed the surroundings or if the situation resolves on its own. The term
Pi(not_critical), where i = 1, 2, accounts for such instances by representing the prob-
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ability of a non-critical situation for each of the two users. If no explanation is necessary,
a constant value no_expl_wl is used. The workload associated with providing an ex-
planation, denoted as expl_wln, depends on the timing of the event, represented by k,
and the current time, n. The formula for expl_wln is provided in Equation 5.6.

expl_wlkn = min


C(E) + (k − n) · after_C(E),

Pi(attn)n · (min_wlk−n
0 + attn_cost)

+(1− Pi(attn)n) · (min_wlkn+1 + no_attn_cost)

(5.6)

The expl_wlkn value represents the minimum between the cost of delivering an expla-
nation and the cost of withholding one at time n, for a total scenario duration of k. This
minimum value indicates the optimal strategy for timing the explanation, designed to
minimize the expected cognitive workload. The cost of delivering an explanation involves
both the immediate cost C(E) and any subsequent costs after the explanation, repre-
sented as after_C(E). On the other hand, the cost of not delivering an explanation
depends on the attention probability, which is determined through backward Bellman
recursion. The attention probability for each user, Pi(attn) where i = 1, 2, is calculated
using the SEEV model.
When attention is being paid, the variable expl_wl represents the workload cost

associated with following an attention direction, denoted as attn_cost, which is then
combined with the backward recursion of the minimum workload. This recursion is
adjusted for the remaining horizon, represented by k − n, to reflect the cumulative
workload across the remaining time in the scenario. In contrast, when no attention is
being paid, expl_wl represents the cost associated with the lack of attention, denoted
as no_attn_cost, which is then combined with the backward recursion value of the min-
imum workload, capturing the potential cognitive workload resulting from not focusing
on the task at hand.
Equation (5.5) and eq. (5.6) are interdependent, forming a set of mutually recursive

relationships. By applying these equations, the optimal timing for delivering an expla-
nation to each user is determined, based on the strategy that minimises the expected
cognitive workload at any given point. Once the optimal times for each user are calcu-
lated, these times are compared, and the explanation is delivered to the user who requires
it the soonest, thereby ensuring the most efficient reduction of cognitive workload for
both users.
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(a)

(b)

Figure 5.2: User/addressee 1 requires an explanation earlier

Figure 5.2, fig. 5.3, and fig. 5.4 present various graphs depicting the timing of expla-
nations based on different scenarios. In these figures, the scenario occurs at 10 s, with
varying expectations for users 1 and 2. Figure 5.2 shows two graphs where user 1 requires
an explanation sooner than user 2. In the two graphs in fig. 5.3, we see the opposite,
i.e. user 2 needs an explanation earlier than user 1. In fig. 5.4, both users require an
explanation at the same time.
As observed from the graphs, the explanation is typically delivered 2 s or 3 s before the

scenario concludes. Repeating the experiment with different scenario end times reveals
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(a)

(b)

Figure 5.3: User/addressee 2 requires an explanation earlier

that when the scenario duration is 2 s or less, providing an early explanation does not
significantly reduce the cognitive workload. This finding is consistent with prior research
on explanation timing for single users that we showed in chapter 3.
Since the model is implemented using MATLAB and relies on Backward Induction,

even a small increase in scenario duration (such as one second) leads to a noticeable
increase in computational demands. For scenarios lasting longer than 25 seconds, the
computation time for determining the optimal explanation timing exceeds 2.5 seconds,
making MATLAB an inefficient platform for implementing this model in such cases.
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5.4 Chapter Summary

(a)

(b)

Figure 5.4: Both users require an explanation at the same time

5.4 Chapter Summary

In this chapter, we aimed to determine the optimal timing for providing an explanation
in autonomous systems involving multiple users, using a game-theoretic approach. Our
findings demonstrate that explanation timing strategies can be effectively adapted to
accommodate the diverse needs of different users. While our models provide valuable
insights, they are constrained by the assumptions made for the SEEV model and the
reward structure and values shown in Tables 5.1 and 5.2. These rewards/costs are
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currently based on educated estimates intended to demonstrate the technology, but they
lack empirical psychological validation.
In the next chapter, we will see how to expand this model to multi-step explanations

for multiple users.
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In chapter 3 and chapter 4, we dealt with providing either an atomic or multi-step
explanation to a single user, and in chapter 5, the optimal time for providing an atomic
explanation for multiple users was addressed. In this chapter, we now focus on combining
the knowledge of the previous chapters and determining the optimal time for providing
multi-step explanations for multiple subjects. The contents of this chapter are based on
our submitted work [BFS25].
Our contributions in this chapter are as follows:

1. we propose a model-based approach to optimizing explanation timings based on
the mental workload and attention of multiple users

2. we implement a game-theoretic framework to simulate the attention and workload
of the users and to optimise the timing of AV

3. we demonstrate the feasibility of multi-step explanation timing for multiple users
in AV settings

This chapter is divided as follows: in section 6.1, we discuss the existing works in
this field. We describe an example scenario to better understand the need for our work
in section 6.2.The implementation of SEEV in a reactive game is explained in section 6.3.
The results of the reactive game are discussed in section 6.4, and we finally conclude
this chapter by summarizing the key contributions in section 6.5.
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6.1 Existing Research

The intersection of multi-step explanations and their delivery to multiple users remains
an underexplored area of research. Stansberry’s dissertation [Sta12] examines the flow
of information in online communities, focusing on the critical role of influencers in multi-
step dissemination processes involving diverse audiences. Similarly, Finzel et al. pro-
pose a user-centric framework for constructing multi-level and multi-modal explana-
tions [Fin+21]. Their process-oriented approach enables users to interactively explore
explanations at various levels of detail, fostering greater comprehension and engage-
ment. Beyond these two studies, we found no other research that explicitly addresses
both multi-step explanations and their application to multiple users.

6.2 Example Scenario

Explanations typically involve several key pieces of information, and the timing of when
these details are shared can fluctuate based on the amount of information available at
any given moment. In situations where the information is either incomplete or still
unfolding, it becomes especially important to carefully consider when to convey the
relevant details. This decision is critical because it significantly influences the clarity,
comprehensiveness, and overall effectiveness of the explanation, ultimately determining
how well it achieves its intended goal.
AVs, for instance, often encounter situations where they need to assess and respond

to dynamic traffic conditions, such as merging onto a highway (see fig. 6.1).

Example 6.2.1. Consider an AV entering a highway via an on-ramp. Initially, its sen-
sors detect fast-moving vehicles in the adjacent lane, but there is uncertainty regarding
their exact speeds and intentions. In this scenario, the AV must decide whether to pro-
vide the partial information it currently has or wait until more data becomes available.

In such cases, if the AV immediately informs the passenger that it is preparing to
merge, but lacks complete information, this premature explanation might lead to in-
creased cognitive load for the passenger, making them anxious or unsure about the
vehicle’s next move. On the other hand, if the AV waits until it has gathered more com-
prehensive data, such as a precise gap analysis and speed matching, it can offer a more
confident, complete explanation of its decision. This approach not only reduces unnec-
essary cognitive strain for the passenger but also helps maintain their situational aware-
ness. However, delaying the explanation for too long could backfire, causing confusion
or anxiety as the passenger remains uncertain about the vehicle’s intentions [Gu+20].
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Figure 6.1: AV lane merging example: AV needs to merge onto a lane with oncoming
traffic

This dilemma highlights a key challenge faced by AVs and other interactive systems:
the need to manage the timing and content of multi-step explanations. The decision to
provide partial versus complete explanations is not merely about the availability of in-
formation but also involves understanding the mental workload and attention demands
placed on users [Kan00; Kul+13b]. In multi-user settings, where attention is often di-
vided, determining the optimal timing of explanations becomes even more complicated,
as the system must account for the cognitive load and attention of all individuals in-
volved.

6.3 Multi-Player Game

This chapter aims to optimise the timings of the provision of multiple explanations for
multiple users. And we do that by using the attention model SEEV to determine the
mental workload of the users. For ease of implementation, we only consider two users in
the AV.
The modified SEEV formula, as presented in eq. (2.3), in conjunction with the SEEV

two-users model outlined in section 5.2.1, is employed to assess and determine the atten-
tional focus of the users in this chapter. This approach enables a comprehensive analysis
of how attention is distributed across multiple users within the given context.
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Figure 6.2: MDP representing the options for strategic player with parallel processes and
multi-step explanation; to be combined be a product construction with the
SEEV model in order to obtain the actual game graph

Since explanations involve multiple pieces of information, their timing delivery depends
on the availability of relevant details. Consider the highway merging scenario from ex-
ample 6.2.1, where an AV must merge into a lane with ongoing traffic. To ensure safety
amid uncertainty, the AV begins decelerating, but it only has partial information—such
as detecting a fast-approaching vehicle.
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This raises a key question: Should the AV share incomplete information immediately
or wait for a full understanding? Early explanations provide context but may increase
cognitive load if users try to fill in gaps. Delayed explanations, meanwhile, risk uncer-
tainty as users form their own assumptions.
The modified SEEVmodel, shown in eq. (2.3), is applied as a dynamic factor impacting

workload within a Markov Decision Process (MDP) game. In this game, decisions are
based on optimal timing for presenting explanations. Using MATLAB [MAT24], we
calculated the reactive strategy for delivering explanations. The SEEV-based game
starts k seconds before the scenario begins and ends when the scenario concludes.
Figure 6.2 presents a MDP illustrating various states and transitions for the strategic

player, which operates in parallel processes. Initially, the player starts in the no_expl

state, indicating no explanation is provided.
At each one-second time step, the strategic player may transition to one of the following

states based on certain probabilities:

1. no_expl_needed: Entered only if both users consider the situation non-critical
(i.e., P (not_critical)). Once here, the player remains in this state until the sce-
nario ends.

2. no_expl: Entered when both users view the situation as critical (1 - Pi(not_critical)

where i = 1, 2). Rewards vary based on whether the user is attentive, as detailed
in section 6.4.

3. Is expl2 available?: Reached when the strategic player decides to deliver an expla-
nation. It is first checked if a complete explanation (expl2) already exists. If so,
and if either user needs an explanation, both receive it, and the player stays in this
state until the scenario ends. If the complete explanation is not yet available, then
only a partial explanation (expl1) is provided and the strategic player returns to
the no_expl state.

6.4 Model Output

The objectives of the multi-user reactive SEEV game presented in this chapter were
expanded to address three main goals:

1. Evaluating Explanation Structure and Timing: Identify whether explanations should
be delivered in two parts, given that the Autonomous Vehicle (AV) determines
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information asynchronously in two segments. If a segmented explanation is neces-
sary, the study aims to identify the optimal timing for each part, minimizing the
cognitive workload of the human users.

2. Optimizing Explanation Timing for Cognitive Workload Reduction: Establish the
optimal timing for delivering explanations to both users to reduce cognitive work-
load.

3. Minimizing Expected Cognitive Workload Across Presentation Strategies: Deter-
mine the minimum cognitive workload for each user across various presentation
strategies (either only a complete explanation or both partial as well as complete
explanations).

To achieve these objectives, several methodological steps were followed:

1. Assigning Rewards to State Transitions: The study utilizes a reward-based struc-
ture to assess different state transitions within the game, as shown in fig. 6.2.
Transition states were assigned specific rewards or costs, outlined in table 6.1,
which served as the basis for assessing optimal explanation strategies.

2. Defining Probability-Based Reward/Cost Values: The reward/cost values applied
to various probabilities are provided in table 6.2. These values are essential for
evaluating transitions where a particular cognitive workload is incurred, depending
on whether a critical explanation is necessary or can be omitted.

3. Application of Backward Bellman Induction: Given the finite horizon model of
this game, backward Bellman induction (BI) was used to calculate the minimal
cognitive workload. This method allows iterative calculation, ensuring that the
minimum workload is achieved through the attention strategy at any given point
in time. The formula for minimum workload, denoted min_wl, is expressed as:

min_wlkn = Pi(not_critical) · no_expl_wl + (1− Pi(not_critical)) · expl_wlkn

(6.1)
Here, Pi(not_critical) represents the probability that no critical situation arises,
eliminating the need for an explanation. When an explanation is unnecessary, a
constant cognitive workload, no_expl_wl, is assigned. Otherwise, the workload for
providing an explanation, expl_wl, depends on the time of the scenario (denoted
k) and the current point in time (denoted n).
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S S’ Probability R
no_expl no_expl (1 - P1(not_critical)) ·P1(attn) attn_cost
no_expl no_expl (1 - P1(not_critical)) ·(1 - P1(attn)) no_attn_cost
no_expl no_expl (1 - P2(not_critical)) ·P2(attn) attn_cost
no_expl no_expl (1 - P2(not_critical)) ·(1 - P2(attn)) no_attn_cost

no_expl
User1 expl →

is expl2 available?
→ expl1

(1 - P1(not_critical)) C(E)/2

no_expl
User2 expl →

is expl2 available?
→ expl1

(1 - P2(not_critical)) C(E)/2

no_expl
User1 expl →

is expl2 available?
→ expl2

(1 - P1(not_critical)) C(E)

no_expl
User2 expl →

is expl2 available?
→ expl2

(1 - P2(not_critical)) C(E)

no_expl no_expl_needed P(not_critical) no_expl_wl
expl1 no_expl 1 after_C(E)
expl2 expl2 1 after_C(E)

no_expl_needed no_expl_needed 1 no_expl_wl

Table 6.1: MDP Reward Structure for multi-users, multi-step explanations

4. Considering the Cost of Explanation versus Non-Explanation: The workload as-
sociated with providing an explanation, expl_wlkn, shown in eq. (6.2), represents
the minimum cost between offering an explanation and refraining from doing so,
given the scenario’s duration. This trade-off is calculated based on:

expl_wlkn = min


expl_cost,

Pi(attn)n · (min_wlk−n
0 + attn_cost)

+(1− Pi(attn)n) · (min_wlkn+1 + no_attn_cost)

(6.2)

expl_cost =

C(E) + (k − n) · after_C(E) expl2 is available

0.5 · C(E) + (k − n) · after_C(E) otherwise

(6.3)

• Explanation Cost: Denoted by expl_cost, it includes the direct cost of the
explanation, C(E), and any additional costs post-explanation (after_C(E)).
This is given by the eq. (6.3) and if expl2 is already available, then the cost of
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Reward in Figure Reward/Cost Value
attn_cost 0.4

no_attn_cost 0.2
C(E) 0.3

C(E)/2 0.15
after_C(E) 0.1
no_expl_wl 0.0

Table 6.2: Reward/Cost Values

(a)

(b)

Figure 6.3: One of the users requires a partial explanation and the other user requires a
complete explanation

providing an explanation is C(E). If only a partial explanation is provided,
then half of C(E) is the cost of the explanation.
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(a)

(b)

Figure 6.4: One of the users requires a partial explanation and both the users require a
complete explanation

• Non-Explanation Cost: Varies based on the probability of user attention,
derived using backward Bellman recursion. This probability, Pi(attn), is in-
fluenced by the SEEV model.

5. Recursive Workload Calculation: Equation (6.1) and eq. (6.2) are mutually recur-
sive, providing a systematic approach to calculating the optimal timing for ex-
planations, both as single and potentially multi-part explanations. By comparing
these values, it becomes possible to determine whether and when each part of an
explanation should be delivered to each user to minimize their cognitive workload.
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(a)

(b)

Figure 6.5: Both users require either a complete explanation or both a partial and a
complete explanation

Based on all the methodological steps mentioned above, we conducted our SEEV
reactive game in MATLAB. Further, we’ll discuss some of the key results we observed
when running the game in a scenario that lasted for 10 s.
Figure 6.3 shows two graphs, which required both partial and complete explanations.

The partial explanation was given due to the mental workload of one user, while the
complete explanation was provided based on the workload of the other user. In the
graphs in fig. 6.4, the initial cognitive workload is higher for one of the users, and thus
the explanation timing was based on this user’s workload. However, when a complete
explanation is available, the cognitive workload of both users is high thus both users
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6.4 Model Output

(a)

(b)

Figure 6.6: Only one of the users requires a complete explanation

need the complete explanation. In fig. 6.5, both users require either both explanations
or only the complete one. Lastly, in some cases, as shown in fig. 6.6, neither of the users
needs a partial explanation and only one of the users needs a complete explanation.
An interesting observation from these figures is that when a partial explanation is

needed, it is always provided at 2 s as this timing minimizes the cognitive workload for
users the most. The complete explanation is provided at 8 s if only one user requires it.
In all cases where both users need a complete explanation, it is provided at 9 s.
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6.5 Chapter Summary

In this chapter, we focused on integrating frameworks for multi-step explanations for
a single user and atomic explanations for multiple users. We expanded the previous
SEEV reactive game to determine the optimal times for delivering partial and complete
explanations to two users. The results revealed that even when the partial explanation
is provided based on the cognitive workload of one user (U1), the other user (U2) may
require the complete explanation before U1 does.
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Up to this point, we have explored the implementation of models designed to de-
termine the optimal timing for providing explanations. These models were built on a
set of predefined assumptions (the reward/cost values), which served to streamline the
development process by reducing the complexity of the underlying logic. While these
assumptions helped facilitate the model’s creation, it is essential to rigorously evaluate
the model’s performance in a more practical and user-centred context. To achieve this,
we designed and conducted a user study in the form of an interactive game, allowing
us to assess the model’s effectiveness in real-time, user-driven scenarios. The content of
this chapter is based on our previously published work in [Bai+25]
This chapter is divided as follows: in section 7.1, we give an overview of existing

studies/work on the determination of optimal timing for providing explanations. Then
we discuss the various steps involved in the study design in section 7.2. Section 7.3 talks
about the ethical considerations that were done for this study. We describe the process
of our data collection in section 7.4. In section 7.5, we analyse the results of our study
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in detail. In section 7.6, we discuss the implications and limitations and our work. And
finally, in section 7.7, we give a summary of this chapter.

7.1 Related Work

Our work sits at the intersection of explanation timing and mental workload. In this
section, we provide an overview of both areas, discussing key concepts, relevant theories,
and prior research.

Explanation timing in the domain of autonomous driving. Recent research
highlights the importance of providing explanations in Autonomous Vehicles (AVs) to
enhance the user’s trust and situational awareness. Kim et al. [Kim+24] introduced
TimelyTale, a multimodal dataset that identifies passengers’ needs for explanations in
automated vehicles and predicts when context-aware explanations are most beneficial.
Additionally, another study by Kim et al. demonstrated that visualizing an AV’s per-
ception improves passenger experience without increasing cognitive load. They also
found that timing of explanations based on traffic risks effectively mitigates information
overload [Kim+23].

Explanation timing: Before or after an event? Cognitive science research on
reaction —time tasks—tasks that are repetitive and temporally predictable— has shown
that stimuli presented earlier than expected improve accuracy, whereas those arriving
later than expected increase the likelihood of errors [GRE01].
Beyond reaction-time tasks, Chen et al. [CLS24] examined how explanation timing

(pre-action, post-action, both, or none) affects user trust, comprehension, and satisfac-
tion with AI systems. They found that pre-action explanations help users anticipate
biases in AI, while post-action explanations enhance retrospective understanding. Com-
bining both led to better trust calibration, aligning user expectations with the AI’s
capabilities and limitations.

The impact of explanation timing on other research areas. While explanation
timing intersects with areas like User eXperience (UX) Engineering [AD13], research on
event timing within UX engineering falls outside the scope of this paper. However,
recent studies [Det+24] indicate that well-designed explanations can enhance user expe-
rience, whereas poorly implemented explanations may introduce risks. This highlights
the necessity of studying explanation timing as a foundational aspect of integrating
explanations into UX design.
For example, providing timely explanations for an autonomous system’s actions can

enhance user trust and situational awareness. Elbitar et al. [Elb+21] explored how
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the timing and rationale of runtime permission requests influence user decisions and
their evaluation of those decisions. Their findings offer valuable insights for enhancing
permission request strategies and overall user experience.
While these studies highlight the critical role of explanation timing, none have specif-

ically investigated how to align explanation timing with a user’s cognitive workload. To
address this gap, our research focuses on identifying the optimal timing for explana-
tions by conducting a user study that evaluates the cognitive effort required for users to
process and comprehend explanations.

7.2 Study Design

The study was designed as a two-part game to evaluate the role of timing in explanation
delivery. The game was developed using GDevelop 5 [Riv+21] —an open-source, no-
code game development platform that allows users to create 2D, 3D, and multi-player
games without needing extensive programming knowledge. This choice of engine was
motivated by its flexibility and ease of use, making it suitable for prototyping and rapid
iteration. Additionally, GDevelop supports a wide range of functionalities that are nec-
essary for this study, such as customizable logic events, user interaction tracking, and
data collection features.

Figure 7.1: Initial language selection page for the participants

Although the game is currently designed for offline use, the architecture was built with
future scalability in mind, meaning it could be easily adapted for online deployment. An
online version of the game could enable a broader range of participants to engage in
the study, providing richer and more diverse data. Moreover, an online platform could
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facilitate real-time data collection and remote updates to the game, allowing for more
dynamic adjustments based on user behaviour.
At the start of the study, participants were asked to select their preferred language.

As shown in fig. 7.1, they could choose between Deutsch (German) and English. Once
selected, all subsequent instructions and game details were presented in the chosen lan-
guage, ensuring clarity and accessibility.
Following language selection, participants provided demographic information, which

was linked to a unique codeword assigned to each individual. Ethical considerations
related to the data collection in this step are discussed later in the chapter. Figure 7.2
displays the demographic data entry page in both English and German.

(a) English Version (b) German Version

Figure 7.2: Demographic data entry page where participants provide age, gender, and
their assigned codeword

Our study’s goal is to determine the time taken by users to comprehend a simple
explanation within a gamification setting. In our meaning, a simple explanation refers
to explanations that exert minimal workload on the human. Explanations containing
one to two words would be considered simple explanations. Examples for these could be
“Stop!”, “Turn Left” etc..
To enable the participants’ understanding of these simple explanations, they were

given a detailed explanation of how the game works beforehand. During the game, they
received brief, concise instructions, which were simplified versions of the initial, more
detailed explanation. This two-step approach is based on Krull’s framework [Kru99],
which argues that for a layperson to understand a concept effectively, it should first be
thoroughly explained, followed by specific instructions outlining the next steps.
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By embedding the study in a game format, we created a controlled, yet immersive and
engaging, environment. This approach allowed us to simulate real-world scenarios where
timely explanations are critical, enabling us to observe their impact on user performance,
adaptability, and mental effort in comprehending and responding to explanations in real
time. This was accomplished by measuring participants’ reaction times and decision
accuracy as they responded to instructions under varying cognitive demands.
The study was structured into three parts:

1. Reaction Time Determination: In this introductory task, participants are pre-
sented with a sequence of instructions corresponding to different colour names,
each mapped to specific arrow keys (e.g., pressing the left arrow key for ”red” or
the up arrow key for ”blue”). A colour is displayed on the screen, prompting the
participant to press the associated arrow key as quickly as possible. This task
establishes a baseline for participants’ reaction times and their ability to associate
visual stimuli with motor actions.

2. Reactive Game: The second task builds upon the baseline task, introducing more
dynamic and cognitively demanding gameplay. Participants navigate lanes to col-
lect coins of a specified target colour, adjusting their actions based on dynamically
changing instructions. The game begins with a practice round, allowing partici-
pants to familiarize themselves with the mechanics and the goal of the task. Fol-
lowing this, participants proceed to the experimental round, during which perfor-
mance data is collected. Throughout the game, instructions indicating the target
coin colour are periodically updated, requiring participants to react promptly while
avoiding distractions from non-target coins or irrelevant stimuli. Players need to
use the left and right arrow keys to navigate lanes and collect the correct coins.
This task assesses reaction times, decision accuracy, and participants’ ability to
process changing instructions under conditions of increased cognitive demand.

3. Subjective Evaluation: After completing the gameplay tasks, the participants were
asked to fill out the NASA Task Load Index (NASA-TLX) form. NASA-TLX
is a widely used tool for assessing perceived workload, where participants rate
tasks across six dimensions: mental demand, physical demand, temporal demand,
effort, performance, and frustration. Participants rate their experiences on each
dimension, providing quantitative insights into the difficulty and cognitive burden
of the tasks. These scores are used to gauge user experience and identify specific
aspects of the tasks that participants found challenging or stressful, complementing
the objective performance data collected during the gameplay.
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At the end of each game, we measured how quickly players reacted to the explanations
given on-screen and how effectively they followed the changing instructions. This allows
us to assess the impact of explanation timing on decision-making within a dynamic
environment.
We provide details for these three parts of the study in the next Sects. 7.2.1-7.2.3.

7.2.1 Reaction Time Determination

In the first phase of the study, participants underwent a task designed to measure their
reaction times to different visual instructions. This phase consisted of two rounds: a
test round and the actual experiment round.

Test Round

In the test round, participants were introduced to the game mechanics and instructions.
This round served as a warm-up, allowing users to familiarise themselves with the task
and to understand what to expect in the subsequent rounds. No data from the test
round were used in the final analysis, as it was intended solely to help participants get
comfortable with the task.
This round consisted of instructions (colour name) being displayed on the screen, and

these colour names were mapped to specific arrow keys (up, down, left, and right). The
arrow keys with the colour mapping were shown directly below the instructions. The
colour names (instructions) were displayed for 5 s before it changed, i.e. the participant
had 5 s time to comprehend the instruction and press the correct arrow key direction.
Fig. 7.3a shows an example of this task in the English version, while Fig. 7.3b presents
the corresponding German version. The distinct mapping of each colour to a specific
direction was intended to test participants’ ability to process visual stimuli and translate
them into accurate motor responses, providing a foundational measure of their reaction
and comprehension capabilities.

Experimental Round

The second round served as the experimental phase, during which data were system-
atically collected for analysis. This phase was divided into four distinct sub-rounds,
each corresponding to one of the four arrow key directions: up, down, left, and right.
Similar to the test round, the instruction (colour name) was displayed for 5 s before the
instruction was removed. There was 2 s pause between the sub-rounds.
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(a) English Version (b) German Version

Figure 7.3: A snapshot of an instance in the reaction time determination game

In each sub-round, the colour associated with a specific arrow key was randomised,
ensuring that participants could not rely on memorised colour-direction mappings from
previous rounds. This randomisation was an essential feature, as it prevented learned
behaviours and kept participants actively engaged with the task.
During each trial, when a specific colour appeared on the screen, participants were

required to press the arrow key corresponding to the colour displayed on the screen
as quickly as possible. Upon pressing the correct key, a confirmation message—”key
pressed”—was displayed to provide immediate feedback. To increase the cognitive com-
plexity of the task, an additional challenge was introduced: for e.g., when a colour
associated with the up direction appeared, a shaking arrow pointing in a different direc-
tion (e.g. right) was simultaneously displayed. This visual distraction was meant to add
an extra layer of difficulty, requiring participants to focus more intensely and resist the
misleading cue.
The inclusion of the shaking arrow was designed to simulate heightened cognitive de-

mand, allowing the study to evaluate reaction times under conditions of increased mental
workload. Reaction times and error rates were recorded across all sub-rounds, providing
valuable insights into how explanation timing and distractions influenced participants’
performance and decision-making processes.
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7.2.2 Reactive Game

The second phase of the study involved a more complex, reactive game designed to
test participants’ ability to follow instructions while managing multiple visual elements.
Like the first phase, this phase consisted of two rounds: a test round to help participants
understand the game mechanics and an experimental round in which data were collected.

Test Round

In the test round, participants were introduced to the mechanics of the reactive game
through a practice session. The game involved using an avatar to collect coins of specific
colours displayed on three separate lanes. This practice round ensured that participants
were comfortable with the controls and could accurately interpret the instructions before
advancing to the experimental phase. Importantly, no data were recorded during this
round, as its primary purpose was to prepare participants for the main experiment.
The test round lasted for 45 s, with each instruction (a colour name) displayed for 2 s.

Participants were given a total of 10 s to collect the coin of the correct colour after the
corresponding instruction was shown, providing ample time to navigate and understand
the task mechanics. This setup allowed participants to develop familiarity with the task
flow, reducing potential confusion or errors during the experimental phase.

Experimental Round

In the experimental round, participants collected coins matching the target colour dis-
played at the top of the screen. As they progressed, the target colour changed peri-
odically, requiring them to adjust their strategy and actions dynamically. The game
environment during this phase can be seen in Fig. 7.4a, which shows the English ver-
sion, and in Fig. 7.4b, which shows the German version. They provide a clear view of
the game layout and instructions.
In this phase, the participants controlled an avatar using the left and right arrow keys

to move between the three lanes. Coloured coins appeared randomly in each lane, and
participants were tasked with collecting coins that matched the target colour displayed
prominently at the top of the screen (see Fig. 7.4). As illustrated in the figures, the
target colour (”Red” or ”Rot”) was clearly indicated in the centre, serving as a guide
to help participants focus on the correct coin. The primary objective was to collect as
many coins of the designated colour as possible within the allotted time. This helped us
test their ability to follow instructions and their decision-making under time pressure.
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(a) English Version (b) German Version

Figure 7.4: A snapshot of the reactive game for different language settings

The game was played over a total duration of 85 s. Each instruction, indicating the
target colour, was displayed for 2 s. After each instruction, a 9 s interval followed, during
which participants collected coins matching the previously displayed target colour. This
interval allowed participants to focus on the task without continuous interruptions, while
also testing their ability to remember and apply the most recent instruction.
To increase complexity, the game frequently updated the target colour. This required

the participants to dynamically adapt their actions in response to new instructions. As
the game progressed, coins in various colours (e.g., red, blue, green) appeared in random
lanes, compelling participants to make quick decisions about which lane to move into
based on the updated target colour.
Each time a participant successfully collected a coin of the correct colour, they contin-

ued navigating the game until the next target colour instruction appeared. The scoring
system rewarded participants based on the accuracy of their coin collections, with points
granted for each correct coin gathered. Reaction times, accuracy rates, and total scores
were recorded to provide comprehensive performance data for each participant.
This phase of the study offered valuable insights into how participants responded to

dynamically changing instructions, remembered prior instructions, and managed their
cognitive workload in a fast-paced, decision-intensive environment. The data collected
helped evaluate participants’ ability to process new information quickly, adjust their
actions accordingly, and perform effectively under varying task conditions.
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7.2.3 Subjective Evaluation Using NASA Task Load Index

The final part of the study was user feedback. The participants were asked to fill out the
NASA Task Load Index (NASA-TLX) form [HS88]1. NASA-TLX, developed by Hart
and Staveland, is a widely utilized subjective workload assessment tool that provides
an empirical method for quantifying subjective perceptions of workload in various task
environments. It was designed to evaluate perceived workload across six dimensions.
The six dimensions in the NASA-TLX capture different facets of workload that impact

task performance and cognitive load.

• Mental Demand: Evaluates the level of cognitive effort required to complete the
task. It reflects how mentally challenging participants found the activity and
whether it required sustained focus.

• Physical Demand: Assesses the physical effort exerted during the task. This di-
mension gauges whether participants felt any strain or fatigue from the physical
aspects of the activity.

• Temporal Demand: Measures the time pressure experienced by participants while
performing the task. It considers whether they felt rushed or had adequate time
to respond to game requirements.

• Performance: Captures participants’ satisfaction with how well they believe they
performed. This self-assessment provides insight into their confidence in their
ability to complete the task effectively.

• Effort: Represents the amount of mental or physical work that participants felt
they needed to invest beyond the basic task requirements. It indicates how much
additional energy or focus was required to manage the workload.

• Frustration: Reflects the level of stress, irritation, or annoyance experienced during
the task. This dimension sheds light on the emotional challenges participants
encountered while navigating the game.

7.3 Ethical Considerations

The ethical integrity of the study was of utmost importance and adhered to the guidelines
set by the university’s ethical review board. Prior to participation, all individuals were

1See NASA-TLX form on: https://humansystems.arc.nasa.gov/groups/tlx/downloads/TLXScale.
pdf (last accessed 04/25)
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thoroughly informed about the purpose and structure of the study, as well as the types
of data being collected. Importantly, no personal information, such as names or contact
details, was recorded during the experiment.
To ensure confidentiality, the data collected were pseudonymized using a codelist

method. Each participant was assigned a unique code, and this codelist was kept sepa-
rately in a secure, hardcopy format stored within the department. The only link between
the participants’ identities and their corresponding data was this codelist, which was ac-
cessible exclusively to authorized personnel. This method ensured that even in the event
of a data breach, participants’ identities could not be traced back to their data.
In line with data protection regulations, all personal data will be permanently deleted

by 31st December 2024, at the latest. This includes the destruction of the codelist and
any other identifiers that may connect participants to the study. The pseudonymized
research data, however, may be retained for further analysis and publication, as it no
longer includes personal identifiers and thus respects participant’s privacy.
Each participant was also required to sign a declaration of consent form before taking

part in the study. This form was crafted in accordance with the ethical standards of
the university and outlined the study’s aims, the nature of the tasks involved, and the
participants’ rights, including their right to withdraw from the study at any time without
penalty. This ensured that all participants were aware of their involvement and gave
fully informed consent.
Additionally, only individuals over the age of 18 were allowed to participate in the

study. This criterion was established because the study aims to determine the influence
of timing in an explanation, with potential applications in the design of Autonomous
Vehicles. Understanding how quickly drivers typically respond to stimuli is critical for
this purpose. Since the minimum legal driving age in Germany (where the study was
conducted) is 18, limiting participation to this age group ensures the findings are relevant
to the target demographic.

7.4 Data Collection

In this study, data collection focused on capturing essential metrics related to partici-
pants’ response times and performance, along with basic demographic information. The
following types of data were collected:

1. Reaction Time:

• Phase 1 (Reaction Time Determination): During this phase, reaction times
were recorded as participants responded to colour cues by pressing the corre-

91



7 Case Study: Interactive Explanation Timing Game

sponding arrow key. This initial phase served to establish a baseline reaction
time for each participant.

• Phase 2 (Reactive Game): Reaction times were also recorded as participants
interacted with the game by collecting coins of the target colour. This allowed
for a comparison of reaction times between the controlled settings of Phase 1
and the dynamic, game-based setting of Phase 2.

2. Game Score: In Phase 2, participants’ scores were recorded based on the number of
correctly collected coins that matched the displayed target colour. This score indi-
cated the participant’s ability to accurately follow instructions in a time-sensitive,
changing environment.

3. Demographic Information: Basic demographic data, specifically age and gender,
were collected. This information helped identify any performance patterns related
to these demographic variables.

4. User feedback: After completing the game, the participants were given the NASA-
TLX forms to determine the participants’ subjective workload.

7.5 Results and Analysis

This section presents the results from both phases of the study, focusing on reaction
times, timing of explanations, and participants’ subjective workload assessments. The
study had 17 participants, with an average age of 44.7 years (SD = 16.4). The gender
distribution included 10 female participants, highlighting a fairly balanced sample that
allows for general analysis across genders.

Reaction Time Analysis

In the reaction time determination phase, participants demonstrated varied response
times depending on the direction of the arrow. The slowest response was observed for
the down arrow, with an average reaction time of 3.16 s, indicating that pressing the
down arrow was either more effortful or less intuitive compared to the other directions.
In contrast, the up arrow had the fastest average reaction time of 1.2 s, suggesting
it required less cognitive or physical effort, possibly due to a more intuitive response
mechanism.
During the reactive game phase, across all trials in the experimental round, where

participants responded to explanations while collecting target-coloured coins, the average
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reaction time across all trials was found to be 2.58 s. This value aligns closely with
the predicted 3 s optimal timing predicted by our model in chapter 3, suggesting that
participants were able to process and respond to explanations efficiently within this
timeframe.
In our study setup, both Salience and Effort were controlled to remain consistent:

• Salience: Explanations were displayed in a uniform format each time, ensuring
that participants knew where to look and what to expect visually. This consistency
likely contributed to stable reaction times.

• Effort: The explanations appeared in the same location on the screen each time,
minimizing any additional cognitive load from seeking out the explanation.

These findings support the model’s assumption that a consistent 3 s window allows
sufficient time for processing and acting on explanations, particularly when Salience and
Effort are kept constant.

User Feedback Analysis

The NASA-TLX data, obtained from the user feedback form, was analysed to assess the
perceived workload experienced by participants during the game. Figure 7.5 shows the
distribution of NASA-TLX scores across various dimensions: Mental Demand, Physical
Demand, Temporal Demand, Performance, Effort, and Frustration.

Men
tal

_D
em

an
d

Ph
ysi

cal
_D

em
an

d

Tem
po

ral
_D

em
an

d

Per
for

man
ce

Eff
ort

Fru
str

ati
on

TLX Dimensions

5

10

15

20

25

Av
er

ag
e 

Sc
or

e

Distribution of NASA TLX Scores

Figure 7.5: Boxplot of NASA-TLX scores across six dimensions, showing medians, and
outliers
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• Physical Demand: Rated the lowest among dimensions, reflecting the minimal
physical effort required for the task, consistent with the simple arrow-key interac-
tions.

• Mental Demand: Scored slightly higher, indicating that participants found the
task cognitively engaging, likely due to the need to focus on colour-matching and
directional responses.

• Temporal Demand and Effort: Temporal demand and effort dimensions showed
moderate scores, reflecting the time-sensitive nature of the task and the sustained
attention, which may have contributed to increased cognitive workload.

• Performance and Frustration: Scores in these categories varied. While some partic-
ipants reported satisfaction with their performance, others expressed frustration,
often tied to difficulties in achieving target outcomes. Frustration was notably
higher than physical demand, highlighting the cognitive challenges associated with
meeting the task objectives.

The correlation matrix in fig. 7.6 provides insights into relationships between demo-
graphic data and their perceived workload, obtained from NASA-TLX variables. The
results can be categorised into significant and marginally significant correlations.
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Significant correlations:

• Mental Demand and Effort (r = 0.49, p = 0.0076): This strong positive correlation
suggests that as mental demand increases, effort also increases. This indicates that
participants who found the task mentally demanding also perceived it as requiring
greater effort.

• Mental Demand and Performance (r = 0.39, p = 0.0169): A moderate positive
correlation indicates that higher mental demand is associated with higher perfor-
mance scores. This may indicate that participants exerted more cognitive effort to
maintain performance levels when the mental demand was high.

• Mental Demand and Frustration (r = 0.45, p = 0.0145): A strong correlation
between mental demand and frustration suggests that when tasks require greater
mental effort, they also lead to higher levels of frustration.

Marginally Significant Correlations:

• Age and Temporal Demand (r = -0.37, p = 0.0797): A negative correlation sug-
gests that older participants experience lower temporal demand, but the p-value
(0.0797) is slightly above the significance threshold. This could indicate that older
individuals take a more measured approach to task completion, potentially due to
greater experience in managing cognitive load.

• Age and Frustration (r = -0.36, p = 0.0795): Similar to the above, this negative
correlation suggests that older participants report lower frustration levels, but the
result is not statistically strong. This could be because older individuals may have
better emotional regulation or are less concerned about task performance.

• Effort and Frustration (r = 0.47, p = 0.0935): A moderately strong correla-
tion suggests that higher effort may lead to increased frustration, but the p-value
(0.0935) is slightly above the acceptable threshold. This makes sense from a cogni-
tive workload perspective: tasks requiring more effort are often perceived as more
frustrating.

While these correlations are not fully significant, they still indicate potential relationships
worth exploring in future studies with larger participant groups. These findings offer
a detailed view of participant performance and experiences across both study phases.
Although the game had low physical demands across all ages, the mental workload and
pressure to perform at pace induced a moderate level of cognitive demand.
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7.6 Discussion

The results of this study highlight that even a simple, single-word instruction (abbre-
viated explanation) can serve as a valuable baseline for understanding how early an
explanation must be delivered for users to comprehend and act on it in time. This
minimalist approach was deliberately chosen not as a solution in itself, but rather as a
foundational reference point. In time-critical systems like autonomous vehicles (AVs),
knowing the minimal timing window required for comprehension is essential before intro-
ducing more complex, context-rich explanations that may require additional cognitive
effort to process. This baseline is particularly useful in aligning with the prior chapter
result (chapter 3), where explanation timing is emphasised as a key factor in AV user
interaction. While this study used simple, uniform instructions to control cognitive load
and ensure comparability, future research must investigate richer, more adaptive expla-
nations. These will likely vary in effectiveness across users since individual differences in
processing capacity, familiarity with automation, or even situational stress can influence
comprehension. Importantly, more context often means more complexity, and striking
the right balance between informativeness and mental load will be crucial.
The data collected—reaction times, game scores, and demographic details (age and

gender)—were selected to measure task performance and cognitive workload without
overwhelming the participants. Reaction time data proved especially informative. For
example, the average reaction time of 3.16 s for less intuitive actions (like pressing the
down arrow) revealed the relative difficulty in processing certain commands. In con-
trast, the average reaction time of 2.58 s during explanation trials closely matched the
model’s predicted optimal timing in chapter 3, reinforcing the relationship between ex-
planation delivery and mental workload. Age was found to correlate moderately with
several NASA-TLX dimensions—particularly temporal demand and frustration—though
not always at statistically significant levels. Interestingly, mental demand showed strong
and statistically significant correlations with both effort (p = 0.0076) and frustration
(p = 0.0145). This suggests that increased cognitive demands reliably lead to greater
perceived effort and emotional strain, confirming that explanation complexity has mea-
surable impacts on user workload. These findings underline the importance of carefully
managing cognitive load when introducing contextual explanations in real-time AV sys-
tems.
Although the sample was relatively diverse in age (mean = 44.7 years, SD = 16.4),

and included 10 female participants, the overall sample size of 17 remains a limitation,
reducing statistical power and the generalizability of the results. Future studies with
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larger and more balanced participant groups are needed to validate these patterns more
robustly.
The study was conducted in a university shop situated in a city centre. This setting

offered access to a broad participant pool, avoiding the homogeneity often found in lab-
based studies. However, the natural distractions in the environment—such as ambient
noise and foot traffic—may have introduced variability in performance. Nevertheless,
the realistic nature of the environment improved the ecological validity of the findings
and demonstrated that participants could still meaningfully engage with explanations
despite background disturbances.
A few key limitations should be acknowledged. The gamified setup, while useful for

maintaining engagement and controlling conditions, does not fully capture the stakes or
distractions of real-world AV scenarios. Furthermore, the use of abbreviated explana-
tions, i.e. one-word instructions—while useful for establishing a baseline—offers limited
insight into how users respond to contextual or adaptive explanations, which are criti-
cal for more nuanced real-world decision-making. Additionally, relying on self-reported
NASA-TLX measures introduces potential bias and subjectivity into workload assess-
ment. The simplicity of both the tasks and the explanations may have underestimated
the real cognitive demands of dynamic environments like driving. However, this simplic-
ity also enabled a clearer view of baseline cognitive load and timing thresholds, which
future systems can build upon.
Future research should explore how context-aware explanations affect cognitive work-

load and reaction times. This includes integrating adaptive models that tailor expla-
nation timing and content to the individual user’s needs and mental state. Studies in
driving simulators or real-world AV settings could provide a more comprehensive under-
standing of user behaviour under more realistic conditions. Moreover, further research
should aim to identify the tipping point at which more context begins to hinder rather
than help, particularly in time-critical scenarios. Balancing informativeness with cogni-
tive simplicity will be essential in designing effective human-AI interaction strategies for
AVs and beyond.

7.7 Chapter Summary

This study demonstrates that the timing of explanations plays a critical role in user
performance and comprehension in interactive environments. Through a game-based
user study, we observed that explanation timing significantly impacts both reaction
time and cognitive workload. These findings have important implications for the design
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of interactive systems, where timing should be considered as a key factor in enhancing
user experience and task efficiency.
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The conclusion of this thesis is divided into four parts: Summary, limitations, next
steps, and directions for future work. In section 8.1, we provide an overview of the key
contributions and findings from each chapter of the thesis, followed by the limitations
of our work in section 8.2. We discuss the possible research directions that have been
partially explored in section 8.3. In section 8.4, we explore potential directions for
extending this research in the future.

8.1 Summary

The work of this research stemmed from the lack of research into the precise determi-
nation of explanation timing for humans based on their cognitive workload. To address
this gap, three key research questions were developed:

1. Developing a Framework for Optimal Atomic Explanation Timing

2. Enhancing the Framework for Multi-Step Explanations

3. Applying the Framework Across Multiple User

These questions guided the iterative design and evaluation of the study, with each chapter
of this dissertation addressing a specific aspect of the framework. The following sections
outline the progression of this research, showcasing how these questions were explored
and answered systematically.
Chapter 3 addressed the first research question by establishing the foundational frame-

work for the timing and delivery of atomic explanations to a single user. This chapter
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explored strategies to determine the optimal timing for explanations, considering the
user’s cognitive workload, as modeled by the SEEV model. The findings of this chapter
laid the groundwork for subsequent chapters.
In chapter 4, the framework from chapter 3 was extended to accommodate multi-step

explanations, addressing the second research question. This chapter investigated how
delivering explanations in multiple steps might influence cognitive workload and explored
scenarios where users might request partial explanations versus situations where a sin-
gle, comprehensive explanation would suffice. These findings highlighted the flexibility
required in explanation delivery based on user needs.
Building on these foundations, chapter 5 applied the framework to multi-user contexts,

expanding on the concepts introduced in chapter 3. This chapter explored how the timing
of atomic explanations could adapt to accommodate the diverse needs of multiple users.
It demonstrated the adaptability of the SEEV-reactive game in tailoring explanations
based on individual user preferences and attention.
In chapter 6, the frameworks from chapter 4 and chapter 5 were combined to inves-

tigate multi-step explanations in multi-user environments. This chapter revealed that
variations in user attention could result in some users requesting partial explanations
while others required complete ones. These findings underscored the importance of dy-
namic and context-sensitive explanation strategies for effectively addressing the needs of
multiple users simultaneously.
Finally, chapter 7 synthesized the insights from the earlier chapters through a user

study conducted in a gamified environment. In this study, participants played a coin-
collection game where instructions about the target coin colour were displayed. The
results showed that users generally took about 3 s to collect the correct coin after the
instruction was presented. These findings validated the results from chapter 3, confirm-
ing that the optimal timing for providing explanations is approximately 3 s before the
corresponding action is required.

8.2 What’s Missing and What Can Be Better?

Every research endeavour, no matter how comprehensive, comes with its limitations,
and our work is no exception. Identifying these limitations is crucial for guiding future
improvements and extending the applicability of the findings. The major limitations of
our work are as follows:

• Subjectivity in Reward/Cost Values of the SEEV Model: A significant limitation
lies in the reward and cost values used in the SEEV (Salience, Effort, Expectancy,
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Value) model, which are central to our research. These values are based on edu-
cated guesses, obtained via a trial-and-error method, rather than empirical vali-
dation or rigorous parameter estimation. This reliance introduces potential biases
and reduces the generalizability of the results across different contexts.

• Limited Validation in Real-world Scenarios: The experiment conducted (in chap-
ter 7) primarily relied on controlled conditions. While this setup was essential for
isolating variables and testing hypotheses, it may not fully capture the complex-
ity and unpredictability of real-world applications, particularly in dynamic and
high-stakes environments.

• Simplistic Representation of Human Cognition and Behaviour: Although the SEEV
model incorporates key cognitive factors, it simplifies the nuanced interplay be-
tween attention, trust, emotions, and decision-making in humans. Real-world cog-
nition often involves factors like fatigue, stress, or social influences, which were not
accounted for in our work.

• Assumptions of Homogeneity Across Users: The work assumes that all users have
similar cognitive abilities and react uniformly to explanations and decision-making
scenarios. This assumption may overlook individual differences, such as cognitive
load tolerance, prior knowledge, or cultural backgrounds, which can significantly
impact the model’s effectiveness.

• Static Parameters in Dynamic Systems: The SEEV model parameters were treated
as static throughout the study. However, real-world scenarios are highly dynamic,
with constantly changing conditions and user states. Adapting the model to ac-
commodate such variability remains an unexplored area in this work.

• Focus on Isolated Scenarios: The scenarios studied were often isolated and task-
specific, rather than interconnected, as they would be in a multi-tasking environ-
ment. This limitation may restrict the model’s applicability in situations where
users must divide attention among several competing tasks.

• Exclusion of Long-term Effects: The research primarily focused on short-term
outcomes, such as immediate reactions and decision-making. Long-term effects,
such as the evolution of trust, attention patterns, or user learning over extended
periods, were not addressed.

By acknowledging these limitations, we aim to provide a clearer perspective on the
boundaries of our research and encourage future work to address these challenges.
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8.3 Next Steps

The work presented in this thesis offers numerous opportunities for further exploration
in various directions. Some potential directions, which have been discussed in our prior
research, are outlined below:

1. Dialogue-based explanations: In our paper [Bai+22], we introduced the idea that
explanations are a dynamic process of updating beliefs. We explored the impor-
tance of convincing explanations in Autonomous Vehicles and proposed a formal
approach for generating justified explanations that take into consideration the ad-
dressee’s trust and attention. We also discussed how a single explanation might not
be sufficient to fully clarify something, emphasizing that explanation is a commu-
nication process where the recipient/addressee’s beliefs are updated step by step,
by the explainer, through the provided explanations.

2. Correlation between content and timing of explanations: In this thesis, as outlined
in section 1.4, we explored the optimal timing for providing explanations with
constant or no content. However, in real-world situations, content plays a crucial
role in understanding. Our paper [RHB23] proposes a game-theoretic approach
to develop a Constantly Informing System (CIS) that accounts for human factors.
Using psychological models of human emotions and cognition, we create a formal
Human Model (HM) that interacts with the CIS. Our aim is to optimize the
effectiveness of the CIS by determining what content should be communicated
to the user and when, based on the user’s evolving information base, mood, and
abilities.

CIS HM Envinfos

percepts percepts

actions

env(HM)
env(CIS)

Figure 8.1: Information provision as a game

Figure 8.1 shows how CIS observes its environment and provides information (ex-
planation) to HM. As shown in Figure 8.2, we highlight the importance of inte-
grating emotion generation and cognitive processes in the development of CIS. We
propose utilizing psychological models and cognitive architectures to create a HM
that interacts with the CIS.
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environment(HM) 

perceptions action
choices

having modes based on 
information base, 
emotions and resources

HM

Figure 8.2: HM perceives its environment and chooses actions. During a scenario HM
changes its mode, reflecting a change in its cognitive resources, emotions,
and information

3. Conflict resolution using explanations: Another avenue for further research is
leveraging explanations for conflict resolution. This is discussed in our vision pa-
per [BF24b], where we explain how providing (timely) explanations in autonomous
systems can enhance trust and reduce frustration in humans.

Figure 8.3: Game structure of a game with a moderator, frustration models and an
explanation model

In this paper, we propose a framework for an explanation game that involves a
moderator to deliver meaningful explanations to humans and reduce frustration
by improving their understanding of decision-making. We also suggest a game-
theoretic framework, which includes a self-explaining system [FFD22], that pro-
vides contextually relevant explanations to humans, with the moderator facilitating
explanation delivery to various Human Models (HMs). Figure 8.3 shows the game
structure of this explanation game.
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4. Risk mitigation using explanations: In [Sch+25], we propose the use of explana-
tions in high-risk conflict situations for risk mitigation. Through game-theoretic
analysis, we demonstrate how tailored explanations for different participants (Au-
tonomous Traffic Agents (ATAs) and humans) can effectively reduce risks. We
advocate for incorporating these explanations into real-time explainability frame-
works, particularly when explaining to human users.

In fig. 8.4 and fig. 8.5, we present two example situations that highlight the im-
portance of explanations as safety measures in various conflict situations.

Figure 8.4: Lane merging: A bicyclist wants to drive onto the main road from a ramp
road.

A conflict scenario involving a vulnerable road user (VRU) is shown in fig. 8.4.
In this situation, a bicyclist on a ramp road intends to merge onto the main road
ahead of the ego vehicle. The ego vehicle has two high-risk options: (a) maintain
its lane and brake, or (b) execute an evasive maneuver into oncoming traffic. Both
choices pose significant risks of injury due to potential collisions with the bicyclist
or oncoming vehicles, highlighting the need for safety measures.

These risks can be mitigated through explanatory measures, such as discouraging
the bicyclist from merging or warning other traffic participants about possible
evasive actions.
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Figure 8.5: Emergency vehicle: AV A needs to either reverse or drive forward to let the
emergency vehicle pass

Figure 8.5 illustrates a scenario where the ego vehicle is stopped at a traffic light,
obstructing an emergency vehicle attempting to enter the intersection and turn left.
This situation creates a serious risk of fatal harm due to the blocked path. With
vehicles positioned both in front of and behind the ego vehicle, it is impossible for
the ego vehicle to yield to the emergency vehicle, leading to a conflict involving
multiple agents.

To mitigate this risk, the ego vehicle’s manufacturer has two main options: either
prevent such scenarios from occurring altogether or equip the ego vehicle with
mechanisms to prompt the surrounding vehicles to create space through targeted
explanations.

8.4 Directions for Future Work

While we have already presented several ideas that are currently works in progress, there
remain numerous opportunities to extend the research introduced in this thesis. Below,
we outline some promising directions for future work:

• Unifying Step-Wise Explanation Frameworks: Several works focus on step-wise ex-
planations, such as gradual or just-in-time explanations [Bog+20; Ble+23]. A key
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challenge is integrating these approaches into a unified framework that accounts
for different decision-making contexts and user needs. Future work could inves-
tigate models that generalize across different domains, balancing the trade-offs
between immediate and delayed explanations while considering long-term learning
and trust-building.

• Multi-Modal and Context-Aware Timing: In addition to physiological signals, other
contextual factors —such as task difficulty, environmental distractions, or social
interactions— can influence when an explanation is most effective [Kim+24; MJ13].
Research could explore multi-modal approaches that combine physiological, con-
textual, and behavioural signals to create more sophisticated, context-aware ex-
planation timing models.

• Longitudinal Effects of Explanation Timing: Most existing studies focus on short-
term outcomes, such as immediate task performance or user satisfaction [Du+19;
KPB18]. However, the long-term impact of explanation timing on trust, learning
retention, and mental model development remains underexplored. Future work
should investigate how different timing strategies influence user behaviour over
extended periods and whether adaptive timing approaches improve cumulative
understanding and system acceptance.

• Emotionally Aware Explanations: Emotions play a critical role in human decision-
making and learning [AP05]. Optimizing the timing of explanations based on a
user’s emotional state—such as frustration, confidence, or curiosity—could enhance
their effectiveness. Emotion-aware systems could leverage sentiment analysis, facial
expressions, or tone of voice to adjust explanation delivery dynamically [DMe+05;
Gra+13]. Future work could explore emotionally adaptive explanation strategies
that provide reassurance during moments of frustration or reduce interruptions
when a user is deeply engaged.

• Ethical and Fairness-Aware Explanation Timing: The timing of explanations can
impact fairness and ethical considerations, particularly in high-stakes applications
such as hiring, automotive, healthcare, and finance [Dod+19; SKM22]. Delayed
or strategically timed explanations could be misused to manipulate decisions or
obscure biases [ZJ23; JZK16]. Future research should focus on developing frame-
works that ensure explanation timing promotes fairness, transparency, and in-
formed decision-making while preventing potential manipulation or undue cogni-
tive burden.
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Advancing these research directions could lead to more intuitive and human-centred
autonomous systems that provide explanations at the right time, ultimately enhancing
user trust, learning, and decision-making efficiency.
In conclusion, while the content of an explanation is critical, its timing is equally

important. As this thesis has demonstrated, the timing of an explanation significantly
influences its effectiveness—reinforcing the principle that when an explanation is pro-
vided matters just as much as what is explained.
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