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Abstract

The operating room (OR) is a high-stake workplace, where the personnel must efficiently
operate under time-pressure while being exposed to many distractors. The auditory
environment of the OR consist of a complex soundscape that contributes to the cognitive
strain experienced by surgical personnel. Capturing how the soundscape is perceived
and processed can contribute to our understanding of its detrimental effects. Therefore,
this thesis explores how the brain’s response to realistic soundscapes, as measured by
electroencephalography (EEG), can be utilized to understand perceptual and cognitive
processes in complex environments.

In Study I, we aimed to investigate the processing of complex soundscapes during the
performance of a concurrent task. Therefore, we computed EEG responses to both con-
tinuous soundscapes and transient auditory stimuli, such as alarms, while participants
performed a visual-motor task. We demonstrated that event-related potentials (ERPs) to
discrete sounds could be reliably measured, providing a robust validation of it’s application
during dynamic tasks. Additionally, temporal response functions (TRFs) were computed
for a continuous OR playback, marking an important advancement in assessing neural
responses to naturalistic soundscapes. Notably, the study established that these neural
responses could be measured while participants were engaged in a concurrent task.

In Study II, we extended these findings by examining how cognitive demand influences EEG
responses, subjective workload, and surgical performance during a simulated surgical task
set within a naturalistic OR soundscape. Specifically, the study explored whether ERPs and
TRFs varied with demand. To vary demand, participants were asked to remember either
two or eight letters before the surgical task, silently repeat them during the surgical task,
and retrieve them at the end of the surgical task. To increase the distracting potential of
the irrelevant soundscape, we presented spoken letters during the surgical task. Subjective
measures indicated that participants felt more distracted during the high-demand condition,
yet this increase in perceived distraction was neither reflected in task performance nor
in the ERPs and TRFs. However, ERPs to spoken letters exhibited temporal variations,
suggesting a potential adaptation effect over the course of the experiment. These findings
highlight that a combination of several measurements is beneficial to assess cognitive and
emotional changes in complex environments.

Study III further examined the specific impact of irrelevant speech on auditory processing
under varying task demands using surgical tasks of differing difficulty. For this, we presented
an OR soudscape in combination with speech. We showed that while irrelevant speech did
not impair task performance, it significantly increased perceived workload and distraction.
Furthermore, higher task demand suppressed ERPs to irrelevant sounds and TRFs to
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irrelevant speech, reflecting an allocation of cognitive resources to the task. These findings
underscore the cognitive strain imposed by irrelevant speech, particularly under high task
demand, and highlight the potential of neural measures like ERPs and TRFs to study effects
of auditory processing in demanding environments.

In this thesis, I combined neurophysiological measures, self-reports, and performance
metrics to provide a comprehensive understanding of auditory processing in complex
environments. By leveraging EEG measures such as ERPs and TRFs, we demonstrated the
feasibility of assessing neural responses to realistic soundscapes from controlled laboratory
settings to more realistic environments. Our findings shed light on how OR soundscapes
are perceived and processed, and how the resulting demand affects the individual. These
studies not only inform strategies for managing auditory distractions in the OR but also
highlight the potential of EEG as a tool for investigating the effects of distraction in high-
stake environments like the OR. Future research can build on this work to further explore
the interplay between auditory processing, workload, and performance in real-world
scenarios.
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Zusammenfassung

Die Chirurgie ist eine medizinische Disziplin, die sich dadurch auszeichnet, dass komplexe
motorische Aufgaben oft unter Zeitdruck durchgeführt werden müssen und Fehler schwer-
wiegende Konsequenzen für die Patient*innen haben können. Operationen erfordern daher
ein hohes Maß an Konzentration, was über einen längeren Zeitraum hinweg anstrengend
ist und zu Stress führen kann. Zudem ist das chirurgische Personal einer belastenden
Geräuschkulisse im Operationssaal (OP) ausgesetzt. Die Geräuschkulisse im OP zeichnet
sich durch eine Vielzahl sich überlappender Geräusche aus, wie kontinuierliches Sum-
men von Ventilatoren, das Piepsen eines EKG-Monitors, Alarmgeräusche und Gespräche.
Um die Auswirkungen dieser Geräuschkulisse auf das Personal zu erfassen, wurden in
der Vergangenheit vor allem Fragebögen und Verhaltensmaße eingesetzt. Diese Meth-
oden haben jedoch Einschränkungen. Fragebögen können beispielsweise nur zu einem
bestimmten Zeitpunkt eingesetzt werden, etwa am Ende einer Operation, wodurch eine
direkte Reaktion auf bestimmte Geräusche nicht erfasst werden kann. Verhaltensmaße
haben in der Vergangenheit zu sehr unterschiedlichen Ergebnissen geführt, was unter
anderem an den unterschiedlichen Paradigmen liegt, die unterschiedliche chirurgische
Aufgaben und Verhaltensmaße eingesetzt haben. In dieser Dissertation haben wir daher in
drei Studien die Elektroenzephalographie (EEG) als kontinuierliches und objektives Maß
hinzugezogen, um die Reaktionen auf bestimmte Aspekte der Geräuschkulisse und deren
Zusammenhang mit kognitiven Einflüssen zu ermitteln. Zu diesem Zweck wurden zwei
EEG-Analysemethoden angewendet. Die erste Methode basierte auf ereigniskorrelierten
Potentialen (EKPs), welche die Reaktionen auf spezifische Töne erfassten, und die zweite
auf zeitlichen Antwortfunktionen (eng. temporal response function, kurz TRF), welche die
Reaktionen auf die kontinuierliche Geräuschkulisse erfasst.

In Studie I untersuchten wir die EEG-Reaktionen auf kontinuierliche Geräuschkulissen
und vorübergehende diskrete Töne, wie z. B. Alarme, während die Teilnehmenden eine
visuell-motorische Aufgabe, das Spiel Tetris, ausführten. Wir konnten erfolgreich zeigen,
dass EKPs auf diskrete Töne zuverlässig gemessen werden konnten, was eine robuste Vali-
dierung der neurophysiologischen Methodik ermöglichte. Darüber hinaus haben wir TRFs
für die kontinuierliche OP-nahe Geräuschkulisse berechnet, was einen wichtigen Fortschritt
bei der Auswertung der neuronalen Reaktionen auf natürliche Geräuschkulissen darstellt.
Die Studie hat gezeigt, dass diese neuronalen Reaktionen nicht nur in kontrollierten Umge-
bungen gemessen werden können, sondern auch, während die Teilnehmenden gleichzeitig
mit einer Aufgabe beschäftigt waren.

In der zweiten Studie haben wir untersucht, wie unterschiedliche kognitive Anforderungen
die EEG-Reaktionen, die subjektive Arbeitsbelastung und die chirurgische Leistung während
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einer simulierten chirurgischen Aufgabe mit einer reellen OP-Geräuschkulisse beeinflussen.
Um die Anforderungen zu variieren, wurden die Teilnehmenden gebeten, sich vor der Oper-
ation entweder zwei oder acht Buchstaben zu merken, diese während der Operation still zu
wiederholen und am Ende der Operation wieder abzurufen. Um das Ablenkungspotenzial
der irrelevanten Geräuschkulisse zu erhöhen, präsentierten wir während der Operation
gesprochene Buchstaben. Subjektive Messungen ergaben, dass sich die Teilnehmenden
unter der Bedingung der hohen Anforderung stärker abgelenkt fühlten, doch spiegelte
sich dieser Anstieg der wahrgenommenen Ablenkung weder in der chirurgischen Leistung
noch in den EKPs und TRFs wider. Die EKPs für gesprochene Buchstaben wiesen jedoch
eine zeitliche Veränderung auf, was auf einen möglichen Anpassungseffekt im Verlauf des
Experiments hindeutet. Diese Ergebnisse unterstreichen, dass eine Kombination mehrerer
Messungen notwendig ist, um kognitive und emotionale Veränderungen zu erfassen, wenn
man sich mit komplexen Umgebungen beschäftigt.

In der dritten Studie wurde die Auswirkung von irrelevanter Sprache während chirurgischer
Aufgaben mit unterschiedlichem Schwierigkeitsgrad weiter untersucht. Dafür haben wir
eine OP-Geräuschkulisse zusammen mit Sprache abgespielt. Wir konnten zeigen, dass irrel-
evante Sprache zwar die Aufgabenleistung nicht beeinträchtigte, aber die wahrgenommene
Arbeitsbelastung und Ablenkung signifikant erhöhte. Darüber hinaus verringert eine höhere
Aufgabenanforderung die EKPs auf irrelevante auditorische Reize und die TRFs auf irrele-
vante Sprache, was auf eine Zuweisung kognitiver Ressourcen für die Aufgabe hindeutet.
Diese Ergebnisse unterstreichen das irrelevante Sprache während unterschiedlicher kog-
nitiver Anforderungen unterschiedlich verarbeitet wird, und verdeutlichen das Potenzial
neuronaler Maßen wie EKPs und TRFs zur Untersuchung der Auswirkungen auditiver
Ablenkung in anspruchsvollen Umgebungen.

In dieser Arbeit habe ich neurophysiologische Messungen, Fragebögen und Verhaltensmaße
kombiniert, um ein umfassendes Verständnis der auditorischen Verarbeitung in komplexen
Umgebungen zu gewinnen. Durch den Einsatz von EEG-Korrelaten der auditorischen
Verarbeitung wie EKPs und TRFs konnten wir zeigen, dass es möglich ist, die neuronalen
Reaktionen auf realistische Geräuschkulissen von kontrollierten Laborumgebungen bis
hin zu realistischeren Umgebungen zu erfassen. Unsere Ergebnisse geben Aufschluss
darüber, wie OP-Geräuschkulissen wahrgenommen und verarbeitet werden. Diese Stu-
dien unterstreichen nicht nur das Potenzial des EEG als Instrument zur Untersuchung
der Auswirkungen von Ablenkungen in Umgebungen wie dem OP, sondern geben auch
Aufschluss über Strategien zur Bewältigung auditiver Ablenkungen im OP. Zukünftige
Forschungen können auf dieser Arbeit aufbauen, um das Zusammenspiel zwischen audi-
tiver Verarbeitung, Arbeitsbelastung und Leistung in realen bzw. realistischen Szenarien
weiter zu untersuchen.
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General introduction 1
Some professions demand exceptional skill and precision, where an error can have severe
and even fatal consequences. Surgery is one such profession, characterized by high levels
of concentration to perform challenging tasks under time-pressure. Surgical procedures can
last several hours, thereby physically and mentally straining the surgical team, which usually
includes two or more surgeons, an anesthetist and several assisting nurses. Additionally, the
acoustic environment is highly complex, comprising a multitude of simultaneous sounds
generated by surgical instruments, machinery and verbal communication: Ventilation
systems produce a soft and continuous humming sound; an electrocardiogram (ECG)
produces a rhythmic sound corresponding to the patient’s heartbeat; a surgeon may utilize
an electric cutter, which produces a feedback sound to indicate that electricity is running
through the instrument; the assisting surgeon may request an instrument from the nurse;
two team members situated in the back of the room observe the surgical procedure and
engage in conversation about their recent activities when, unexpectedly, a telephone begins
to ring. Overall, the operating room (OR) is a workplace where both the task and the
environment are complex.

Working in the OR is undeniably demanding. Surgery is characterized by long working
hours, time pressure and frequent work interruptions, all of which contribute to increased
stress and reduced well-being (Bohrer, Koller, Schlitt, Bauer, & on behalf of the German
Society of Surgery, 2011; Kern et al., 2019). Additionally, surgical personnel frequently
face shift work, which has negative effects on both mental and physical health (Vogel,
Braungardt, Meyer, & Schneider, 2012). Organizational stressors, such as hierarchical
structures and high administrative workloads, further impact the working atmosphere and
job satisfaction (Bohrer et al., 2011). Beyond these, the nature of surgical procedures
themselves is highly demanding. Surgeons must rapidly process information from multiple
sensory modalities, including vision, audition, and touch, while making critical decisions
that require high levels of concentration. Given these circumstances, it is unsurprising that
high levels of stress are reported at all stages of surgeons’ careers, which can ultimately
lead to severe mental disorders such as burnout (DeCaporale-Ryan et al., 2017; Etheridge
et al., 2023; Kern et al., 2019; Lebares et al., 2018; Shanafelt et al., 2015). Moreover,
prolonged occupational stress is not only a psychological burden but also a physical one.
For example, high rates of hypertension have been observed among surgeons, increasing
their risk of cardiovascular disease (Marrelli, Gentile, Palmieri, Paduano, & Tatullo, 2014;
Rieger, Stoll, Kreuzfeld, Behrens, & Weippert, 2014).

Among the numerous stressors of surgical personnel, the soundscape of the OR represents
a significant stressor that has been identified and studied for many years (Mentis, Chellali,
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Manser, Cao, & Schwaitzberg, 2016; Shapiro & Berland, 1972). As demonstrated in the
introductory scene, personnel are exposed to a constant stream of auditory information,
some of which is relevant, such as an alarm or case-relevant communication, and some
of which is irrelevant, such as tool clattering and case-irrelevant communication. The
relevance of a sound to an individual depends upon their role within the surgical team. For
example, the feedback sound of a monitoring device may be relevant to the anesthetist
but not for the surgeon. The feedback sound of an instrument may be relevant to the
surgeon but not to the anesthetist. Case-irrelevant communication may be irrelevant to
the surgeon and anesthetist, but may originate from the teaching of students. Thus, an
irrelevant sound to the surgeon may be distracting but cannot be easily avoided as it is
relevant to someone else. Moreover, medical devices may generate false alarms, which can
be a source of irritation for personnel and contribute to an overall increase in noise levels
(Edworthy, 2013). The result of such a soundscape is the presence of numerous potentially
distracting sounds that the personnel must process in order to remain alert to those that
are relevant. Consequently, the issue of distraction caused by the soundscape of the OR has
been a topic of ongoing debate in the literature (Healey, Primus, & Koutantji, 2007; Healey,
Sevdalis, & Vincent, 2006; Keller et al., 2018; Padmakumar et al., 2017; Persoon, Broos,
Witjes, Hendrikx, & Scherpbier, 2011; Sevdalis, Healey, & Vincent, 2007; Sevdalis et al.,
2014; Tsiou, Efthymiatos, & Katostaras, 2008; van Harten, Gooszen, Koksma, Niessen, &
Abma, 2021).

Recognizing the challenges posed by the OR soundscape, some studies have attempted to
implement interventions aimed at mitigating its distracting effects. For instance, Engelmann,
Neis, Kirschbaum, Grote, and Ure (2014) introduced an educational program along with
a visual feedback system that indicated whether the intensity levels of the soundscape
were high. This approach successfully led to a reduction in overall sound intensity levels.
Similarly, Leitsmann et al. (2021) tested a communication device that functioned as
a noise-canceling headset while still allowing team communication. In both studies,
participants reported perceiving the interventions as beneficial. However, these self-
reported improvements were not reflected in objective physiological measures, such as
heart rate, nor in performance-related outcomes, such as postoperative outcome. These
findings highlight the complexity of assessing the impact of the OR soundscape on personnel.
Self-reports only record data from a single point in time, which may result in individuals
failing to recognize when they were distracted (Marsh, Bell, Röer, & Hodgetts, 2024).
Physiological or postoperative outcome measures may not be sensitive enough to detect
the effects of the soundscape due to the many confounding factors in such complex
settings, such as heterogeneity of patients and surgical expertise (Engelmann et al., 2014).
Furthermore, due to the fast pace of surgery, observations may not capture all potentially
distracting events (Ayas, Donmez, Kazlovich, Lombardi, & Jain, 2022). To overcome the
limitations of observational, subjective and performance measures for studying human
behavior in a work context, researchers have turned to the measurement of brain activity at
work. This has led to the emergence of the field of neuroergonomics (Parasuraman, 2003),
which combines the fields of neuroscience and ergonomics. The neuroergonomic approach
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includes the study of the neural basis of perceptual and cognitive function, such as hearing
and attention, in the workplace or in workplace-related situations. The advantage of
studying the brain is that it provides an objective measurement of how personnel react to
task- and environmental demands. The ideal method to study how surgeons react to the
soundscape is one that is continuous, as this provides real-time monitoring of the brain
throughout the surgery and identifies how the brain reacted to sounds. Furthermore, the
method should not interfere with the procedure by distracting the surgeon.

Electroencephalographie (EEG) has the potential to fulfill these requirements. EEG mea-
sures the electric postynaptic potentials generated by pyramidal neurons in the brain at
the scalp of a person. The EEG signals are transmitted to an amplifier, which also digitizes
the analogue signal. The development of small and wireless amplifiers fitted to the back
of the head enhanced the wearer’s mobility and facilitated the acquisition of mobile EEG
data beyond the confines of the laboratory setting (Debener, Minow, Emkes, Gandras, &
de Vos, 2012). Thus, mobile EEG is a promising method for neuroergonomic assessments
(Parasuraman, 2003; Wascher et al., 2021). The high temporal precision of EEG enables
the collection of responses to specific situations and stimuli within the environment. Thus,
EEG has the potential to measure responses to the complex soundscape of the OR.

Collecting EEG data outside traditional laboratory settings presents several challenges.
Participants are embedded in dynamic environments that not only introduce artifacts,
both physiological (e.g. eye movements) and non-physiological (e.g. cable movement)
(Jacobsen, Blum, Witt, & Debener, 2021; Klug & Gramann, 2021), but may also alter
extracted neural parameters (Gramann et al., 2021). Additionally, real-world tasks engage
multiple cognitive processes, in contrast to the controlled isolation of specific processes
(e.g. attention) in laboratory research (Wascher, Heppner, & Hoffmann, 2014). While
theories and models of cognition remain essential, their validation requires replication
in more realistic environments. A gradual transition from highly controlled experiments
to more naturalistic settings, where task and environmental complexity increase while
experimental control decreases, can facilitate the application of laboratory findings to real-
world brain measurements (Gramann et al., 2021). This thesis addresses these challenges by
introducing intermediate steps between traditional lab-based experiments and uncontrolled
environments to investigate auditory distraction in the workplace using EEG.

In the following paragraphs, I will first provide an overview about the different research
angles that have so far been used to study auditory distraction in the OR. This will provide
a framework for the selection of experimental designs and tasks employed in our studies.
Second, I will present the theoretical framework of auditory attention and distraction and
the relationship between these concepts and distraction in the OR. Third, I will introduce
the EEG parameters we utilized to study auditory processing. Finally, I will provide a
summary of the principal aspects of the study of the OR environment and the theoretical
background that motivated each of our studies.
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1.1 Auditory distraction in the operating room

1.1.1 The soundscape

The soundscape of the OR contains many relevant and irrelevant sounds which accumulate
to a constant stream of auditory information. Thus, the sounds vary in many ways, such
as content, loudness and spectro-temporal profile. To objectively capture and describe
the soundscape many studies have investigated a specific acoustic feature, namely sound
intensity. This revealed that the average sound intensity level within and across surgical
specialties is 55 A-weighted decibels (dB(A)) (Baltin et al., 2020; Engelmann et al., 2014;
Güļsen, Aydıngülü, & Arslan, 2021; Healey et al., 2007, 2006; Keller et al., 2018; Kurmann
et al., 2011; Tsiou et al., 2008). The sound intensity level varies between surgical specialties.
For instance, orthopaedic surgeries exhibit higher average levels than non-orthopaedic
surgeries (Giv, Sani, Alizadeh, Valinejadi, & Majdabadi, 2017; Güļsen et al., 2021; Tsiou et
al., 2008). Furthermore, sound intensity levels exhibit variation within surgical specialties.
For instance, splenectomy procedures demonstrate higher intensity levels than inguinal
hernia surgeries among visceral surgical procedures (Baltin et al., 2020). Additionally,
within surgical procedures, sound intensity levels fluctuate between the preparation, main
and closing phases of surgery (Keller et al., 2018; Tsiou et al., 2008). By studying sound
intensity, these studies show the heterogeneity of the OR soundscape, both within and
between surgical procedures. This diversity can be attributed to various factors, including
the specific tools employed, the volume of communication, and the complexity of the
surgical technique.

It has been demonstrated that high sound intensity levels may pose a risk to personnel and
patients. While the World Health Organization (WHO) states that sound intensity levels in
hospitals should not exceed 35 dB(A), as this may cause stress to patients, there are no
specific guidelines for the OR (Berglund, Lindvall, Schwela, & World Health Organization
Occupational and Environmental Health Team, 1999). However, peak sound intensity levels
caused by sudden events, such as the drop of a metal tray, have been observed to exceed 80
dB(A), thereby increasing the risk of hearing impairment (Baltin et al., 2020; Engelmann
et al., 2014; Giv et al., 2017; Güļsen et al., 2021; Healey et al., 2007; Jeyaraman et al.,
2024; Tsiou et al., 2008). Additionally, elevated sound intensity has been associated with
an increased risk of surgical site infections (Kurmann et al., 2011), although the causal
effect of elevated sound intensity on patient risk remains uncertain. It is plausible that
higher sound intensity causes a greater incidence of performance errors, however, it is
also possible that more difficult procedures, which heighten the probability of surgical
site infections, cause higher sound intensity (Kurmann et al., 2011). Alternatively, sound
intensity may exert a direct influence on patients’ post-operative outcome, for example,
noise-canceling headphones for the patient can reduce post-operative pain (You et al., 2024).
Overall, sound intensity provides a descriptive overview of the diversity and dynamics of
the OR soundscape and serves as an indicator of potential risks to both personnel and
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patient health. Establishing clear causal relationships between sound intensity and surgical
outcomes remains challenging due to the multifaceted nature of surgical procedures and
their environments.

1.1.2 Observational studies and subjective reports

Several studies have examined the impact of the OR soundscape on personnel, either
through direct observations or self-reports. The number of auditory and non-auditory
distractions observed in the OR has been found to range between 0.2 and 3 distracting
events per minute (Ayas et al., 2022; Healey et al., 2007, 2006; Persoon et al., 2011; van
Harten et al., 2021). This underscores that surgical staff are regularly exposed to potential
distractions throughout surgical procedures. Despite efforts to standardize the observation
of distracting events (Healey et al., 2006; Sevdalis et al., 2007, 2014), observers may still
fail to identify covert distractions or those that do not elicit a visible behavioral response.
This makes it challenging to assess the impact of such distractions on an individual’s
internal state. Despite this limitation, the majority of studies concur that case-irrelevant
communications, such as teaching discussions or telephone calls, are among the most
disruptive distractions (Ayas et al., 2022; Healey et al., 2007, 2006; Persoon et al., 2011;
Sevdalis et al., 2007, 2014; van Harten et al., 2021). However, some research highlights
potential benefits of case-irrelevant communication (Ayas et al., 2022) and that it may not
be as disruptive as often assumed (Widmer et al., 2018), as it may increase the team moral.

Observations have also shown that the perception of the soundscape interacts with the
workload experienced during surgery. Workload is defined as the amount of cognitive
resources a person must invest to achieve optimal task performance (Wickens, 2008). It is
influenced by both task demands and environmental demands (Hart & Staveland, 1988).
Observational data suggest that while some OR personnel are engaged in high-demand
phases of their tasks, others may be in low-demand phases at the same time. Those in
low-demand phases are more likely to engage in case-irrelevant communication, which can
be distracting to others in a high-demand phase (Ayas et al., 2022; Sevdalis et al., 2007;
van Harten et al., 2021; Wheelock et al., 2015). Therefore, the level of demand associated
with a distraction and the source of the distraction can vary significantly depending on the
specifics of the surgical procedure and the demands placed on a given team member. This
highlights the personal nature of distraction, as each individual’s threshold for distraction
may differ based on their specific circumstances and responsibilities (Keller et al., 2018;
Tsiou et al., 2008).

Subjective reports are aligned with observational findings, indicating that case-irrelevant
conversations are perceived as the most disruptive sounds, followed by the machinery
sounds and ventilation systems (Güļsen et al., 2021; Tsiou et al., 2008; Weigl, Antoniadis,
Chiapponi, Bruns, & Sevdalis, 2015). Personnel further report that the OR soundscape can
reduce attentiveness (Güļsen et al., 2021) and increase perceived workload (Weigl et al.,
2015; Wheelock et al., 2015).
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In summary, both observational and subjective data suggest that sounds in the OR, partic-
ularly case-irrelevant communication, can be highly disruptive. However, the impact of
distractions depends on several factors, including task demand, the roles of team members,
and the nature of the distraction itself, highlighting the complexity of distractions in the
OR.

1.1.3 Experimental studies

To examine the immediate effects of sound distraction on surgeons, several experimental
studies have employed surgical simulators to assess both performance and subjective
responses. A common distractor used in these studies is the playback of an OR soundscape.
Based on the findings from observational studies and subjective reports, it can be expected
that the inclusion of irrelevant speech in the playback is likely to significantly increase the
distractive potential of the soundscape. I therefore differentiated between studies based on
whether or not speech was included in the OR soundscape.

In studies where speech was absent from the playback or not explicitly mentioned in
the description, surgical performance was generally unaffected (Bereuter et al., 2024;
Moorthy, Munz, Dosis, Bann, & Darzi, 2003; Moorthy, Munz, Undre, & Darzi, 2004),
though exceptions exist (Gao et al., 2018). Dichotic listening to two music pieces, which
represents a severe auditory distraction, can decrease performance (Conrad et al., 2010,
2012). This suggests that performance can decrease under severely distracting conditions,
but not necessarily due to the non-verbal noise of an OR playback alone.

When task-irrelevant speech was explicitly included in the soundscape or was the sole
tested stimulus, the results varied. Szafranski, Kahol, Ghaemmaghami, Smith, and Ferrara
(2009) found that an OR soundscape combined with the participant’s name being called led
to more errors compared to a quiet condition. Similarly, Pluyter, Buzink, Rutkowski, and
Jakimowicz (2010) observed increased errors when an OR soundscape with conversation
was presented alongside a visual distractor. Siu, Suh, Mukherjee, Oleynikov, and Stergiou
(2010) reported that exposure to an OR soundscape with conversations, compared to
silence, hindered performance improvement. Czerwiec, Vannier, and Courage (2024) found
that ambient chatter increased task completion time relative to a silent condition. Han et al.
(2022) showed that team performance declined when an OR soundscape with unintelligible
chatter was compared to music. Despite these findings, the available studies allow for
limited conclusions about the specific effects of irrelevant speech on surgical performance.
In most cases, irrelevant speech was not the primary focus of the studies, which examined
noise or distraction effects more broadly. As a result, they often lacked a control condition
with an OR playback excluding speech or other distractors. Additionally, the speech stimuli
varied considerably, from unintelligible chatter to the participant’s name being called out.
One study even found no effect on performance when speech was included (Suh et al.,
2010). The methodological differences, including variations in tasks and performance
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measures, as well as the unspecified amount or audibility of speech, make it difficult to
determine how speech exposure influences the performance.

Studies that involved task-relevant stimuli, where participants had to respond to speech or
sound, consistently demonstrated a decline in surgical performance (Feuerbacher, Funk,
Spight, Diggs, & Hunter, 2012; Suh, LaGrange, Oleynikov, & Siu, 2016). The extent of
this decrease appears to be related to task complexity, with more difficult tasks being
more vulnerable to interference (Yang et al., 2017). Thus, dual-tasking affects surgical
performance.

Relatively few studies have explored subjective reports alongside performance data. Those
indicate that soundscapes including speech lead to increased feelings of irritation and
perceived workload (Gao et al., 2018; Pluyter et al., 2010). When speech was not included,
subjective workload remained unaffected (Bereuter et al., 2024). This highlights the
significant role that speech can play in shaping subjective experiences.

In summary, despite numerous observational studies identifying irrelevant speech as a major
distraction in the OR, experimental evidence on its impact on surgical performance remains
limited. Existing evidence suggests that soundscapes with speech may impair surgical task
performance compared to those without speech. However, methodological differences
across studies, including variations in surgical procedures, performance measures, types
of distractors, and the absence of control conditions, make it difficult to draw definitive
conclusions. Additionally, given that personnel in high-demand phases report greater
distraction from the soundscape, it is notable that the relationship between distraction and
task demand has not been systematically tested. Together, these factors complicate the
interpretation of how the soundscape affects performance.

1.1.4 Physiological measurements

To further quantify the effects of auditory distraction, several studies have employed
objective physiological measures beyond surgical task performance. Electromyography
(EMG), which assesses muscle tension, has been shown to increase when participants
are exposed to OR soundscape playbacks compared to silence, suggesting a heightened
physiological stress response to auditory stimuli (Siu et al., 2010). This increase in EMG
activity is even more pronounced when participants must actively respond to auditory
distractors, indicating that the cognitive demand of processing and reacting to such stimuli
further amplifies the stress response (Suh et al., 2016). However, some motor functions,
such as force exertion and movement precision, appear to remain unaffected by OR
soundscapes (Bereuter et al., 2024). Other physiological indicators of cognitive load, such
as pupil dilation, have also been found to increase significantly in response to OR sound
playback, suggesting heightened mental effort or arousal (Gao et al., 2018).

While these effects have been demonstrated under controlled laboratory conditions, ap-
plying similar measurements in real surgical settings presents methodological challenges.
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For example, the use of noise-canceling headphones in actual surgeries did not result in
measurable changes in heart rate (Leitsmann et al., 2021), and a noise reduction interven-
tion that successfully lowered overall sound intensity in the OR had no significant effect
on physiological stress markers, such as electrodermal activity (EDA) or cortisol levels
(Engelmann et al., 2014). The lack of effect may be due to the fact that heart rate and EDA
measuring general stress responses, thus the individual contribution of the soundscape to
stress is difficult to extract during the performance of a real surgery.

1.1.5 Implications for our studies

The reviewed literature highlights the complexity of studying distraction in real-life settings
like the OR and has motivated several aspects of the current thesis. First, the OR soundscape
has a very heterogeneous sound profile across and within surgeries with fluctuating sound
intensities around 55 dB(A). The relevance, type of sound, and its intensity can influence its
potential to distract and should be considered when constructing an experiment. However,
most sounds that are perceived as distracting are irrelevant to the procedure. Therefore,
we focused especially on the perception of irrelevant soundscapes. Second, the reported
studies imply that the perception of the soundscape is related to the surgical task demand.
Although this aspect recurs across observations and reports, it has been neglected in
most experimental studies. Third, it is beneficial to capture the complexity of the OR
environment using a multi-modal approach (e.g., self-reports, behavioral assessments,
and physiological measurements). Furthermore, when using a physiological measurement
it would be beneficial if it can be directly related to the soundscape when aiming for
real-world recordings, which motivated the use of EEG. Thus, we always collected EEG
data, performance data and self-reports to understand how OR soundscapes are processed
and perceived, interact with task complexity and influence well-being.

1.2 Models of auditory distraction

Auditory distraction is defined as the interference of an irrelevant or unattended sound
with a task being performed. Consequently, the study of auditory distraction can be
considered a study of attention. Early theories of attention aimed to identify at which step
in the stimulus processing hierarchy relevant stimuli are filtered from irrelevant stimuli
(Broadbent, 1958; Treisman, 1969). The critical question was why some stimuli are
filtered out early in the processing hierarchy, while other stimuli still pass through the
filter. Nowadays, attention is understood to have two principal mechanisms, top-down and
bottom-up attention (Corbetta & Shulman, 2002). The former is responsible for regulating
goal-directed behavior in accordance with the demands of a given task, whereas the latter
is driven by external stimuli. For example, a surgeon focusing on the patient represents
a top-down process, whereas an alarm sound engaging attentional resources exemplifies

8 Chapter 1 General introduction



a bottom-up process. Consequently, distraction by an irrelevant stimulus is an interplay
between bottom-up stimulus properties and top-down behavioral goals. While these two
mechanisms interact, theories of distraction differ in their focus on either bottom-up or top-
down processes. Below I will outline the most influential theories of (auditory) distraction
and how they relate to our study.

1.2.1 Duplex-mechanism account of auditory distraction

The duplex-mechanism account of auditory distraction (Hughes, 2014) describes how
irrelevant auditory stimuli capture attention and thereby interfere with a task. Thus, it
focuses especially on bottom-up processes of distraction. It proposes two mechanisms of
auditory distraction, namely interference-by-process and attentional capture. According
to this theory, these two mechanisms involve different aspects of auditory distraction and
should therefore be treated as distinct phenomena.

Interference-by-process refers to the phenomenon whereby an irrelevant sound distracts by
engaging similar cognitive processes as the task being performed. This phenomenon is most
commonly observed in the context of the changing-state effect. This effect describes that a
sequence of irrelevant sounds that vary in a characteristic (e.g. content) - here referred to
as the changing-state sequence - is more disruptive than a sequence of repetitive sounds,
also called a steady-state sequence. This phenomenon is especially prominent during the
performance of a serial recall task. In this task, the participant is required to remember and
store a list of items (e.g. words, letters, numbers) in their working memory. The working
memory is a cognitive system responsible for storing a limited amount of information for a
short period of time. The changing-state sequence (e.g. A D G H) creates a constant change
in auditory input which requires more cognitive resources to process than a steady-state
sequence (e.g. A A A A), resulting in interference with the serially stored items (Hughes,
2014).

Attentional capture describes the process by which a stimulus engages attentional resources,
thereby distracting the person from the main task (Hughes, 2014). The stimulus may be
either salient (e.g., one’s own name) or a deviant sound embedded in a series of repetitive
sounds (e.g., A A A C A). Similar to interference-by-process, this effect is prominent during
performance of a serial recall task.

Although the duplex-mechanism account has become the standard model to explain au-
ditory distraction, its critics propose a unitary explanation and suggest that interference-
by-process and attentional capture have a shared underlying mechanism (Körner, Röer,
Buchner, & Bell, 2017; Marsh et al., 2024). Nevertheless, the duplex-mechanism account
has made a significant contribution to our understanding of auditory distraction by pro-
viding an explanation for how different types of irrelevant sounds interfere with cognitive
tasks: Auditory distraction occurs either when the task and distractor engage similar cog-
nitive resources (i.e., interference-by-process) or when the distractor engages attentional
resources (i.e., attentional capture).
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1.2.2 Irrelevant speech effect

Although the changing-state effect has been observed in sounds that vary in one dimension
(e.g. amplitude), the more complex the sounds become, the greater the disruption they
cause (Ellermeier & Zimmer, 2014). This is particularly evident in the case of irrelevant
speech, which has been shown to exhibit the highest level of disruption (Ellermeier &
Zimmer, 2014). As speech comprises a rapid succession of changing phonological elements,
it disrupts the serial storage of elements in working memory (Jones, Madden, & Miles,
1992). Thus, speech must not be understood to be distracting, but speech understanding
increases its distracting potential (Little, Martin, & Thomson, 2010; Ueda, Nakajima,
Kattner, & Ellermeier, 2019). Therefore, natural irrelevant speech is similar to a complex
changing-state sequence. However, it can also act as an attentional capture. For example,
when ones name is presented in the ignored stream (Holtze, Jaeger, Debener, Adiloğlu, &
Mirkovic, 2021; Moray, 1959), or during whispered speech (Kattner, Föcker, Moshona, &
Marsh, 2024), speech results in a shift of attention.

1.2.3 Load Theory

In an attempt to resolve the early/late attentional selection debate, Lavie and Tsal (1994)
proposed that the amount of perceptual load required to process target stimuli determines
the capacities to process irrelevant or distracting stimuli. Perceptual load is determined
by the amount of sensory stimuli that must be processed. When perceptual load is high
(e.g., spotting your friend in a crowd) distractor processing is low because the task at hand
leaves little capacity for such processing. In other words, when load is high, attention
is captured early and distractor processing is reduced, while a low load results in the
late processing of irrelevant stimuli, as cognitive capacities are available. The theory was
expanded to distinguish between perceptual and cognitive load (Lavie, 2005). Cognitive
load is determined by the amount of cognitive resource (e.g. working memory) a task
requires. The theory proposes that during high cognitive load, distraction is more likely
than during low cognitive load. However, there is ongoing debate as to whether high
cognitive load results in high or low susceptibility to distraction (Brockhoff, Schindler,
Bruchmann, & Straube, 2022). The evidence suggests that the relationship between the
target and the distractor influences the extent to which cognitive load affects distractor
processing (SanMiguel, Corral, & Escera, 2008). For example, distractor processing is
increased during high compared to low cognitive load when target and distractor stimuli
belong to the same sensory modality (Lavie, 2005). The opposite is true when target and
distractor stimuli belong to different modalities (Sörqvist, Dahlström, Karlsson, & Rönnberg,
2016).
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1.2.4 Distraction theories in the real world

In recent years, research has shifted from controlled laboratory studies to naturalistic
designs incorporating real-world stimuli, simulations, and beyond-the-lab investigations
(Gramann, Ferris, Gwin, & Makeig, 2014; Hamilton & Huth, 2020; Matusz, Dikker, Huth,
& Perrodin, 2019; Vigliocco et al., 2024). However, regarding the changing-state effect
and irrelevant speech effect, little evidence exists on how sounds and speech interfere with
non-verbal, non-memory tasks (Haapakangas, Hongisto, & Liebl, 2020; Szalma & Hancock,
2011). While working memory is involved in many everyday tasks, including those in
the OR, isolating its role in real-world performance is difficult due to the engagement of
multiple processes (Sörqvist, 2015). Similarly, in the OR, it is challenging to determine
whether irrelevant speech distractions result from the changing-state effect or the deviant
effect. For example, a person may audibly discuss the upcoming procedure, creating
a changing-state sequence that also contains relevant, attention-grabbing information.
Distinguishing between interference-by-process and attention capture may therefore be
impractical in the OR but could explain why irrelevant speech is frequently reported as a
distraction, motivating further investigation in realistic settings.

A key advantage of traditional distraction paradigms is their clear impact on performance,
such as increased errors in serial recall tasks. In contrast, such direct effects may be
harder to detect in the OR, as indicated by the discrepancy between frequent self-reports of
distraction and mixed performance findings in experimental studies. Given this uncertainty,
I will use the term auditory distraction with caution, as it implies a measurable cognitive
effect. Instead, I will refer to auditory processing and its relationship to performance
measures and self-reports to reflect the unknown extent how the OR soundscape affects
the individual.

Cognitive and perceptual load have also been tested in many highly controlled laboratory
tasks. However, in real-life it is difficult to differentiate between the specific load processes
(Murphy, Groeger, & Greene, 2016). For example, laparoscopic surgery may increase
perceptual load compared to open surgery because anatomical landmarks are more difficult
to identify. At the same time, laparoscopic surgery may increase cognitive load as it requires
navigation of instruments in a 3D space, while the surgeon receives visual input from a
2D screen. This also complicates the prediction from the load theory in the real world,
whether load increases or decreases distractor processing. Yet, the load theory provides an
important basis for the study of distraction in real-world situations, namely that distractor
processing depends on the amount of limited resources available to process a task. This is
congruent with reports and observations from the OR, where task demand determines the
distractiveness of the soundscape. At this point, I would like to clarify that load refers to the
individuals cognitive capacities to perform a task, while demand refers to the requirements
a task has on cognitive capacities. For example, a surgical task can have a high demand,
however, a skilled surgeon may experience a lower load compared to an inexperienced
surgeon.
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1.3 Electroencephalography

As note before, auditory distraction is a cognitive process that can be difficult to capture in
the OR as its effects on performance are not always clear. However, a distractor must first be
processed in order to be distracting. By examining auditory processing, we can investigate
how the processing of the OR soundscape relates to its perception and performance during
a task. To achieve this, we used mobile EEG to measure auditory processing during dynamic
and surgical tasks.

The OR soundscape is characterized by a multitude of different, overlapping sounds. These
encompass transient sounds like, alarms, monitor beeps or the clattering of instruments,
and continuous sounds like ventilation and speech. To examine the processing of the
different sounds, we applied two analytic methods, namely event-related-potentials (ERP)
and temporal-response-functions (TRF). In all our studies we used a combination of both,
as each method has advantages and disadvantages, which are outlined below.
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Fig. 1.1: EEG markers of auditory processing. a) An event-related potential (ERP) is the brain’s
time-locked response to a specific event, such as a sound. Due to the low signal-to-noise ratio (SNR)
of single-trial ERPs, multiple trials are averaged to enhance the signal. This results in a time-course
with distinct peaks that reflect different stages of auditory processing. b) A temporal response
function (TRF) describes the relationship between a continuous stimulus, typically expressed as
a feature such as the envelope, and the continuous neural response. TRFs can be computed
using a backward model, which reconstructs the stimulus from the neural response, or a forward
model, which maps the stimulus onto each recorded EEG channel. The backward model optimizes
performance by weighting available information across channels and time points but does not
yield a neurophysiologically interpretable response. In contrast, the forward model provides a
time-course similar to the ERP and offers better physiological interpretability. Model accuracy can
be evaluated by correlating either the reconstructed envelope with the actual envelope (backward
model) or the predicted EEG signal with the recorded EEG signal for each channel (forward model).
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Event-related-potentials (ERP) An ERP is the time-locked EEG response to an event that
occurred externally to a person, such as an auditory or visual stimulus, or internally, such
as a motor response or an eye-blink. EEG activity unrelated to the event, such as artifacts
or spontaneous oscillatory activity, is regarded as noise and will be reduced by averaging
across multiple repetitions of the event (Figure 1.1a; Luck, 2014). The resulting ERP
time-course reflects event processing with respect to the onset of the event. The ERP can be
divided into several peaks which reflect different stages of sensory and cognitive processing.
The differences between these processes are expressed in varying ERP features, such as
amplitude, latency and topography.

The N1 (or N100) response and the P2 (or P200) response reflect early sensory processes.
The N1 is a negative deflection that typically reaches its maximum amplitude around 100
ms after stimulus onset, while the P2 is a positive deflection that peaks around 200 ms
after stimulus onset. Both ERP components have been studied in a variety of context,
for example how we adapt to repeated stimulus presentation (Näätänen & Picton, 1987;
Ross & Tremblay, 2009). The components can also indicate a persons ability to filter out
irrelevant sounds, a process called sensory gating (Lijffijt et al., 2009). Furthermore, the
components are influenced by top-down processes such as attention (Näätänen & Picton,
1987), reflecting differences in attentional engagement with a stimulus.

The N2 (or N200) response and P3 (or P300) response reflect cognitive processes. The N2
is a negative deflection around 200 ms after stimulus onset and occurs after the P2. It is
involved in a variety of processes including stimulus identification and attention (Patel &
Azzam, 2005; Picton, Alain, Otten, Ritter, & Achim, 2000). The P3 is a positive deflection
that typically starts around 300 ms after stimulus onset. The P3 has been used in the study
of attention, as it can reflect goal-directed (top-down) or stimulus-driven (bottom-up)
attention (Patel & Azzam, 2005; Polich, 2007).

An advantage of ERPs is that they have been extensively studied over several decades. Thus,
investigating ERPs outside of traditional lab environments allows a direct comparison to a
large body of literature. The first mobile EEG studies were in fact ERP studies using auditory
stimuli (Debener et al., 2012; De Vos, Gandras, & Debener, 2014). Since then, auditory
ERPs have been employed to examine perceptual and cognitive processes in various applied
settings, including driving (Protzak & Gramann, 2018), aviation (Dehais, Somon, Mullen,
& Callan, 2021), and also surgical simulations (Thomaschewski et al., 2021; Zander et
al., 2017). In studies employing auditory ERPs to examine cognitive processes, artificial
stimuli are commonly used as alterations in stimulus parameters, such as sound intensity,
can impact the ERP peaks (Näätänen & Picton, 1987). However, presenting such stimuli in
a workplace setting, such as an OR, would be unethical as it may introduce an unnecessary
distraction that could negatively impact the patient’s health. The ideal scenario would be
to utilize the natural soundscape as an informative event, thereby revealing the cognitive
and perceptual processes of the personnel. While repetitive artificial stimuli are rarely
encountered in real-life, in the OR environment such repetitions occur, for example the beep
of an ECG monitor. Thus, certain sounds in the OR may in fact be suitable for ERP analysis.
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However, the OR soundscape also has continuous aspects, where many non-repetitive
sounds are embedded in a continuous stream of auditory information.

In conclusion, studying ERPs to artificial sounds has significantly contributed to our un-
derstanding of sensory and cognitive processes within work environments. They are a
valuable tool when transitioning from laboratory to real-world research. However, they
are constrained by the necessary repetition of a stimulus, thus neglecting the continuous
aspects of soundscapes.

Temporal-response-function (TRF) The limitation of ERPs - that a stimulus must be re-
peatedly presented - has been addressed by modeling continuous stimulus-response rela-
tionships, thereby enabling the study of naturalistic stimuli, like speech (Aiken & Picton,
2008; Ding & Simon, 2012b). One such approach applies a linear convolution, the TRF,
either as a forward model, where the stimulus predicts the response, or as a backward
model, where the response predicts the stimulus (Figure 1.1b; Crosse, Di Liberto, Bednar,
& Lalor, 2016; Haufe et al., 2014). In the case of the forward model, the stimulus is
mapped onto every channel of the response. The resulting time-course is similar to an ERP,
containing multiple peaks with varying topographic distributions that are physiologically
interpretable (Jaeger, Mirkovic, Bleichner, & Debener, 2020; Kong, Mullangi, & Ding, 2014;
Petersen, Wöstmann, Obleser, & Lunner, 2017). In contrast to the forward model, the
backward model reconstructs the stimulus using the response. This approach has the
advantage of combining all information from the EEG (i.e. channel and time-points),
with the data weighted according to their relevance. However, the resulting model is not
physiologically interpretable (Haufe et al., 2014). The reliability of a forward or backward
model is evaluated by correlating the actual signal with the signal predicted by the model.
A high correlation value indicates a good prediction accuracy of the model.

In the field of continuous stimulus-response mapping there is a focus on speech as it is
a natural, continuous stimulus that is an essential part of most people’s everyday life,
therefore involved in many cognitive processes (Hamilton & Huth, 2020). For example,
attended speech shows larger prediction accuracies than ignored speech (e.g. Mirkovic,
Debener, Jaeger, & De Vos, 2015; O’Sullivan et al., 2015). Moreover, prediction accuracy is
reduced during dual-tasking (Xie, Brodbeck, & Chandrasekaran, 2023) or when attention
is directed to a non-verbal task, rendering speech irrelevant (Vanthornhout, Decruy, &
Francart, 2019). Therefore, attention influences the mapping of the stimulus-response
relationship of speech.

Using TRFs in work environments enables the study of natural soundscapes without
requiring repeated stimulus presentations. However, as this method is still emerging,
further methodological investigation is needed to ensure its reliability and validity in
applied settings. First, it is unclear whether reliable TRFs can be computed when a task
is being performed simultaneously. While TRFs can be computed in mobile settings, for
example while walking (e.g. Straetmans, Adiloglu, & Debener, 2024; Straetmans, Holtze,
Debener, Jaeger, & Mirkovic, 2021), Vanthornhout et al. (2019) were unable to compute
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meaningful responses to irrelevant speech while participants played the game Tetris. They
argued that movement during the task may have introduced artifacts, thereby reducing the
signal quality to a degree that meaningful responses could not be obtained. Second, TRFs
could reveal the general processing of soundscapes like the OR, where transient sounds are
embedded in a constant stream of auditory information. However, there is currently little
research on how real-world soundscapes apart from speech are processed (e.g. Huang &
Elhilali, 2020; Lorenzi et al., 2023). Third, the computation of TRFs requires the extraction
of a stimulus feature from the raw audio. In speech studies, a common feature is the
envelope of the auditory signal (Crosse et al., 2016). However, for recordings within the
OR, the anonymity of the patient and surgeons plays a crucial role - even more so than in
other studies. Therefore, the optimal stimulus feature must provide a minimal invasion of
privacy while still providing meaningful responses. In conclusion, before TRFs can be used
to improve our understanding of how real-world, continuous soundscapes such as those
found in the OR, are processed, we need to determine whether meaningful responses in
such complex environments can be obtained.

1.4 Thesis objectives

The overarching goal of this thesis was to understand auditory distraction in the OR. To this
end, we investigated whether EEG is suitable to continuously measure a person’s auditory
processing in such work environment. The thesis had three main aims. First, we were
interested in the methods that could be applied to measure responses to natural soundscapes
outside the classical laboratory setting. Second, we were interested how traditional
laboratory-based findings of auditory processing and distraction can be translated to an
OR environment. Third, we investigated how factors such as task demand influence the
processing of naturalistic and complex soundscapes.

In the first study, we investigated the influence of attention on auditory processing during
the performance of an audio-visual-motor task. We designed the experiment to parallel
conditions typically encountered in a surgical environment: The task comprised a visual,
dynamic, and bi-manual component. The soundscape consisted of relevant and irrelevant
speech and sounds, embedded within a continuous OR playback. We evaluated the ERP
N1 and P3 responses to relevant and irrelevant stimuli, providing a comparison with more
controlled studies. We further computed meaningful TRFs to the continuous soundscape,
thereby showing that responses to soundscapes beyond speech can be obtained while a
task is being performed.

Results of the first study indicate that reliable responses to an OR soundscape can be
obtained. Nevertheless, it was unclear whether these responses could provide insight into an
individual’s state. Therefore, in the second study, we examined the impact of task demand
on the processing and perception of a soundscape. To bridge laboratory research and more
naturalistic settings, we combined a simulated surgical task with a cognitive manipulation
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inspired by the duplex-mechanism account of distraction. Participants performed a serial
recall task before the surgical task, and were presented with an OR playback in combination
with a changing-state sequence, which should serve as a potentially distracting stimulus.
We computed ERP N1, P2 and N2 responses, and their equivalents for TRFs to measure
the processing of different aspects of the soundscape, namely transient sounds (i.e. the
changing-state sequence) and the OR playback in general. Additionally, we sought to
determine the amount of information about the OR playback that is required to compute
meaningful responses. To this end, we computed prediction accuracies from different
acoustic features of the OR playback.

While the paradigm of the second study provided a further step towards a realistic OR
environment, the demand manipulation and the changing-state sequence were still artificial.
In the third study, we thus sought to enhance the realism of the paradigm. The aim of this
study was again to investigate the impact of demand on the processing of the soundscape.
This time, we manipulated task demand by using two surgical tasks of varying difficulty to
simulate surgical phases of varying demand. Furthermore, natural speech was presented
within an OR playback, providing a realistic scenario of potentially distracting irrelevant
speech. Again, we computed ERP N1 and P2 responses to distinct events, and calculated
prediction accuracies for the different continuous stimuli of the OR environment, namely
the non-speech soundscape and speech. This way, we could investigate how demand
influences the processing of different aspects of the environment.
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2.1 Abstract

Introduction: In demanding work situations (e.g., during a surgery), the processing of
complex soundscapes varies over time and can be a burden for medical personnel. Here we
study, using mobile electroencephalography (EEG), how humans process workplace-related
soundscapes while performing a complex audio-visual-motor task (3D Tetris). Specifically,
we wanted to know how the attentional focus changes the processing of the soundscape as
a whole.

Method: Participants played a game of 3D Tetris in which they had to use both hands to
control falling blocks. At the same time, participants listened to a complex soundscape,
similar to what is found in an operating room (i.e., the sound of machinery, people talking in
the background, alarm sounds, and instructions). In this within-subject design, participants
had to react to instructions (e.g., “place the next block in the upper left corner”) and
to sounds depending on the experimental condition, either to a specific alarm sound
originating from a fixed location or to a beep sound that originated from varying locations.
Attention to the alarm reflected a narrow attentional focus, as it was easy to detect and
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most of the soundscape could be ignored. Attention to the beep reflected a wide attentional
focus, as it required the participants to monitor multiple different sound streams.

Results and discussion: Results show the robustness of the N1 and P3 event related poten-
tial response during this dynamic task with a complex auditory soundscape. Furthermore,
we used temporal response functions to study auditory processing to the whole soundscape.
This work is a step toward studying workplace-related sound processing in the operating
room using mobile EEG.

2.2 Introduction

Auditory attention, i.e., focusing on relevant sounds and ignoring irrelevant sounds, is a
fundamental skill at workplaces with both, a high level of responsibility and a soundscape
containing a variety of sounds. Surgery staff, for example, performs a highly complex task
while being exposed to conversations, machine and tool sounds, and background music.
This soundscape accumulates to sound pressure levels regularly exceeding 50dB(A) (Baltin
et al., 2020; Engelmann et al., 2014; Hasfeldt, Laerkner, & Birkelund, 2010; Tsiou et al.,
2008). The soundscape can become a burden for the medical staff (Healey et al., 2007;
Jung, Jüni, Lebovic, & Grantcharov, 2020; Maier-Hein et al., 2022; Pleban, Radosz, Kryst,
& Surgiewicz, 2021; Tsiou et al., 2008; van Harten et al., 2021), and increases surgical
complication rates (Engelmann et al., 2014; Kurmann et al., 2011). Interestingly, the focus
of attention to sounds and their interpretation changes throughout a surgery. For example,
conversations of others are sometimes perceived as disturbing when concentration is high,
while other times they are attended to and even encouraged (van Harten et al., 2021). In
the former case auditory attention is focused only on task-relevant sounds (e.g., instructions
or alarm sounds) and suppresses irrelevant sounds (e.g., chatting). In other words, the
attentional focus is narrowed to the task. In the latter case attention switches between
multiple sound sources, such as task-relevant instructions and task-irrelevant chatting. In
other words, the attentional focus is wide and a large extend of the soundscape is processed.
Our goal was to study a narrow compared to a wide focus to better understand auditory
attention in a complex and multi-sensory environment.

Electroencephalography (EEG) can be used to measure auditory attention continuously,
objectively, and without the interruption of a person. Mobile EEG systems allow to study
the brain in a working environment rather than in the lab (Hölle, Meekes, & Bleichner,
2021; Wascher et al., 2014) and has already been used to assess performance during
laparoscopic training and simulation (Maier-Hein et al., 2022; Pugh et al., 2020; Shafiei
et al., 2021; Suárez et al., 2022; Thomaschewski et al., 2021). Thus, with EEG we want
to study auditory attention in the operating room and understand when sounds become a
burden.

When transitioning from the lab to the operating room, we must consider that our expecta-
tion about auditory attention is mainly derived from highly controlled studies (Gramann et
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al., 2021). In order to generalize lab findings to more complex environments we have to
increase the environmental complexity. One approach to increase complexity is naturalistic
laboratory research, which provides a balance between stimulus control and ecological
validity (Matusz et al., 2019). We decided to develop a complex and dynamic, audio-visual-
motor task while maintaining experimental control over stimuli. Thereby, EEG responses
related to auditory attention can be studied in a complex environment.

We first operationalized the soundscape of an operating room into five stimulus categories:
a continuous background stream, as well as, task relevant and irrelevant sounds, and task
relevant and irrelevant speech stimuli (Engelmann et al., 2014; Hasfeldt et al., 2010). The
background stream represents sounds originating from running machines, ventilation, and
people moving around. Task relevant speech represents exchanges about the surgery, as
well as, instructions. Task irrelevant speech represents private conversations. Task relevant
sounds represent, e.g., alarm sounds and feedback from instruments. Task irrelevant sounds
represent, e.g., phone ringing or sounds from monitors.

We then combined our operationalization of the soundscape with a visual-motor task,
namely the computer game Tetris. The game requires the use of both hands to navigate
blocks. For the continuous background stream, we chose a hospital soundscape. For task
relevant speech, participants received instructions within the game. For task irrelevant
speech a conversation unrelated to the game was presented. The task relevant sound
changed between two conditions. For task irrelevant sounds, monitor sounds from a
surgery machine were presented.

Lastly, we manipulated the attentional focus of the participants by changing the task
relevant sound while keeping the complexity of the soundscape constant. In a narrow
attentional focus condition (from here on narrow condition) participants had to attend to
an alarm sound (from here on the alarm). This sound originated from a specific location,
i.e., was easy to detect. The rest of the soundscape (except the task relevant speech)
could be ignored. In a wide attentional focus condition (from here on wide condition) we
implicitly direct the participants attention toward all sound streams. This was approached
by instructing participants to attend to a sound that was embedded in any of the five
streams. We refer to this sound as the beep, as it served the purpose of manipulating
participants attention but was generally unrelated to the operating room soundscape.

Our study addressed two research questions: First, can we investigate well-known EEG
responses, namely event-related potentials (ERPs) and temporal response functions (TRFs)
in a dynamic task with a complex soundscape using a mobile EEG setup? Second, what are
the differences in neural processing when the auditory attentional focus was narrow (i.e.,
most of the soundscape can be ignored) compared to wide (i.e., most of the soundscape
must be attended to)? We used ERPs to study responses to distinct stimuli, i.e., relevant
and irrelevant sounds, and focused on two components, the N1 and P3.: The N1 is an early
negative deflection related to auditory processes and modulated by attention (Hansen &
Hillyard, 1980; Hillyard, Hink, Schwent, & Picton, 1973; Luck, 2014; Picton & Hillyard,
1974). For our first hypothesis, we expected a larger N1 for irrelevant sounds (i.e., non-
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target sounds in both conditions) in the wide condition than in the narrow condition.
Attention to the beep, which was integrated into other sounds, should lead to a stronger
processing of the whole soundscape. Therefore, we expected a stronger processing of the
irrelevant sounds.

The P3 is a late positive deflection in response to target sounds (from here on targets). As
this response is absent in non-targets, it thereby marks attentional processes (Luck, 2014;
Polich, 2007). For our second and third hypotheses we expected a P3 to the target of the
respective conditions. The alarm was the target in the narrow condition, thus, we expected
a larger response in this condition compared to the wide condition. The beep was the target
in the wide condition, thus, we expected a larger response in this condition compared to
the narrow condition.

We used TRFs to investigate processing of the soundscape as a whole. TRFs are the result
of correlating a continuous EEG signal with a continuous audio signal (Crosse et al., 2016).
The correlation (i.e., response) is larger for attended compared to unattended signals
(Mirkovic et al., 2015; O’Sullivan et al., 2015). For our fourth hypothesis, we expected
a larger TRF in the wide compared to the narrow condition, as the beep should direct
attention toward the whole sound environment.

2.3 Methods

This study was registered prior to any human observation of the data (https://osf.io/sgvk6).
Deviations from our preregistration are described in the supplementary material. We
provided the experiment, as well as the code and data to reproduce the statistical analyses
and figures here: Rosenkranz and Bleichner (2022).

2.3.1 Participants

Twenty-two participants (age range: 20-30 years; female: 16) were recruited through an
online announcement on the University board. We based the sample size on previous studies
showing P3 effects in naturalistic settings (e.g., Hölle et al., 2021; Protzak & Gramann,
2018; Scanlon, Townsend, Cormier, Kuziek, & Mathewson, 2019) due to the exploratory
approach of this study. All participants signed prior to the experiment informed consent
approved by the medical ethics committee of the University of Oldenburg and received
monetary reimbursement. Eligibility criteria included: Normal hearing (self reported),
normal or corrected vision, no psychological or neurological condition, right-handedness,
and compliance with current COVID-related hygiene regulations (e.g., this could include
proof of vaccination).
Two participants were excluded from the final analysis. One participant showed high
impedance (>100 kΩ) for 10 channels at the end of the experiment and overall poor data
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quality. One participant had a very low hit rate which indicates that this participant did not
follow task instructions. The final sample consisted of 20 participants (female: 14).

2.3.2 Paradigm

Participants performed a complex audio-visual-motor task - an adapted 3D Tetris game.
The basis for the game was developed by Kalarus (2021) and we changed it to our needs.
Below is a short description of the paradigm. For a detailed description of the game and
generation of the auditory stimulus material see Supplementary material.

Fig. 2.1: A) Experimental Setup: Participants played 3D Tetris (with the left hand participant
controlled the rotation on a block, with the right hand the position of a block). The soundscape
was presented via headphones. EEG was recorded using a 24 channel mobile EEG setup. B)
Soundscape: A continuous background sound was presented throughout the task. Discrete stimuli
were subsequently presented. The alarm was the target in the narrow condition, while the beep
was the target in the wide condition. The alarm was presented from one direction, the beep was
presented from any direction as the other sounds. If participants detected a target, they should
press the space bar.

Participants had to play a 3D Tetris game while reacting to different sounds and instructions
(see Figure 2.1A). In 3D Tetris one is presented with a three-dimensional space in which
differently shaped, three-dimensional blocks are placed. The falling blocks must be placed
in such a way that they form a layer. When a layer is complete, the layer disappears.
Participants controlled the rotation of the blocks with the left hand and position of the
blocks with the right hand. The goal was to place blocks to remove as many layers as
possible to receive points. Unlike the classic Tetris game, participants could not loose when
the blocks were stacked too high. Instead, the game restarted at the bottom layer to allow
for a continuous game-play. When that happened, participants lost points.

Furthermore, participants were listening to a soundscape. The soundscape included one
continuous background sound, and five discrete stimuli (see Figure 2.1B). The background
sound consisted of hospital sounds, e.g., air conditioning and people moving around, and
was presented from both sides. A task irrelevant speech of two people talking in the
background originated to the left behind the participant (-135◦). Two irrelevant sounds
were presented from the left side (-90◦). Participants also received instructions from time
to time from the front (0◦) on where to place the next block. Furthermore, an alarm was
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presented from the right (45◦) and a beep could occur from the same direction as the
other stimuli. All sounds were spatially separated using the Head Related Impulse function
(Kayser et al., 2009).

For the auditory task, participants should have attend to the task relevant speech, which
instructed participants to place the next block in one of the four corners of the Tetris layer.
Furthermore, participants played the game twice (a game lasted approximately 18 min)
and received a different instruction for each condition. Note, that the soundscape was
conceptually the same for both conditions. In the narrow condition, participants were
instructed to additionally attend to the alarm, i.e., participants had to attend to the task
relevant speech and the alarm. The alarm was long, had a high intensity, and was presented
always from the same direction, thus, it was not necessary to attend to the rest of the
soundscape to detect it. In the wide condition, participants were instructed to attend to
the beep, i.e., participants had to attend to the task relevant speech and the beep. The
beep was short, had a low intensity, and was integrated into other stimuli, thus, the whole
soundscape had to be monitored to detect it. To summarize, the difference between the
two conditions were the instruction on which target should be attended to. The target of
the narrow and wide condition were the alarm and the beep, respectively. If participants
detected a target, they should press the space bar. Hitting a target, as well as, following the
speech instructions, granted points, while misses and not following instructions subtracted
points.

All discrete auditory stimuli were initially presented 48 times in a random order. However,
the response to the beep overlapped with the response to the alarm and irrelevant sounds
when it was integrated into them. Therefore, we added all overlapping sounds again to
derive at 48 non-overlapping sounds. Note, that only responses to non-overlapping sounds
were used in the ERP-analyses.

To get acquainted with the game, participants received written instructions for the game.
Then, a general training without auditory stimuli and a training for the relevant speech
instructions was performed. Before each condition, participants also performed a condition
specific training in which they received feedback on whether they correctly detected the
target (see Supplementary material for a detailed description of the training games). EEG
was not recorded during the training games. Before the game of each condition started,
resting EEG was recorded, by instructing participants to first focus on a fixation cross and
then close their eyes for 1 min each. Furthermore, two questionnaires were administered:
At the beginning of the experiment, participants filled out a noise sensitivity questionnaire
(NoiSeQ—results are not part of the current study; Schutte, Marks, Wenning, & Griefahn,
2007) and after each condition a workload questionnaire (NASA-TLX; Hart & Staveland,
1988).
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2.3.3 Data acquisition

Participants were asked to wash their hair on the day of recording. EEG data was recorded
using a wireless 24channel amplifier (SMARTING, mBrainTrain, Belgrade, Serbia) attached
to the back of the EEG cap (EasyCap GmbH, Hersching, Germany) with Ag/AgCl passive
electrodes (see Supplementary Figure S2.2 for the channel layout) and the reference and
ground electrode at position Fz and AFz, respectively. The data was recorded using a
sampling rate of 500 Hz, and transmitted via Bluetooth from the amplifier to a Bluetooth
dongle (BlueSoleil) that was plugged into a computer (Dell Optiplex 5070).

After fitting the cap, the skin was cleaned using 70% alcohol. To increase skin conductance
between the scalp and electrodes abrasive gel (Abralyt HiCl, Easycap GmbH, Germany) was
used. Impedance were kept below 20 kΩ at the beginning and again checked at the end
of the recording using the SMARTING Streamer software (v3.4.3; mBrainTrain, Belgrade,
Serbia). Recording took place in a quite and electrically shielded room. Participants were
seated in front of a screen (Samsung, SyncMaster P2470) and keyboard (Dell, KB 1421).
Auditory stimuli were presented using Psychtoolbox 3 (v3.0.17, Kleiner et al., 2007). For
each stimulus type, a sound marker was generated using the lab streaming layer library1. A
key capture software 2 was used to record which key was pressed on the keyboard and an
audio capture software (this is used as input for the TRF analysis, see below) 3 was used
to record the presented audio with a sampling rate of 44100 Hz. To synchronize all data
streams, the transmitted EEG data, sound marker, keyboard marker, and computer audio
was collected in the Lab Recorder software 4 based on the Lab Streaming Layer and saved
as .xdf files. The same computer was used for data recording and experiment presentation.

2.3.4 Preprocessing

The EEG was analyzed using EEGLAB (v2021.0, Delorme & Makeig, 2004) in MATLAB
R2020b (The MathWorks, Natick, MA, United States).

For each participant and condition, the continuous data was filtered with Hamming win-
dowed FIR filter using the EEGLAB default settings: (1) high-pass: passband edge = 0.1
Hz5; (2) low-pass: passband edge = 30 Hz6. These filter settings are recommended for ERP
analyses (Luck, 2014), as well as TRF analyses (Crosse et al., 2021). The filtered data was
re-sampled to 250 Hz. Channels were visually checked for flat lines and bad data quality
(e.g., if impedance were above 20 kΩ). Bad channels were removed from both conditions.
Afterwards, the data was cleaned from artifacts using infomax independent component
analysis (ICA) and rejected channel were interpolated.

1https://github.com/labstreaminglayer/liblsl-Matlab, v1.14
2https://github.com/labstreaminglayer/App-Input, v1.15
3https://github.com/labstreaminglayer/App-AudioCapture, v1.14
4https://github.com/labstreaminglayer/App-LabRecorder, v1.14
5filter order = 16500, transition bandwidth = 0.1 Hz, cutoff frequency (-6dB) = 0.05 Hz
6filter order = 220, transition bandwidth = 7.5 Hz, cutoff frequency (-6dB) = 33.75 Hz
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For the ICA, a copy of the preprocessed data was high-pass filtered (passband edge = 1
Hz7) and cut into consecutive epochs of one second. Epochs with a global or local threshold
of 2 standard deviations were automatically rejected. ICA decomposition was applied on
the remaining epochs of both conditions. The resulting components were back-projected
on the original preprocessed, but uncleaned data of each condition. Components related to
eye-blinks, eye-movement, heart rate, and muscle movement were identified and removed
using the EEGLAB toolbox ICLabel (Pion-Tonachini, Kreutz-Delgado, & Makeig, 2019)
with a threshold of .9. On average, 2.8 (± 1.32) components were rejected. Afterwards,
previously rejected channels were interpolated using spherical interpolation. Then, channel
were re-referenced to the linked mastoids (TP9/TP10). For all auditory stimuli, a constant
delay of 19 ms between the sound marker and sound presentation was taken into account.

ERP analysis

ERP analyses were performed for the alarm, beep, and the two irrelevant sounds. For each
of the sounds, epochs from -200 to 800 ms with respect to the stimulus onset were generated
and a baseline correction from -200 to 0 ms prior to stimulus onset was performed. Epochs
with a global or local threshold of 3 standard deviations were automatically rejected. For
targets (i.e., the alarm or beep), only hit trials were included in the analysis. A hit was
defined as any space bar press within 3 seconds after a target.

We calculated ERP amplitudes averaged over time based on individual time-windows. Our
ERP analyses focused on the N1 and P3 component. The analyses of the two components
were identical, except for the selection of channel and time-window. For each participant,
an average response was calculated from the two conditions and selected channels. The
ERP N1 is typically associated with a negative frontal polarity around 100 ms after stimulus
presentation (Näätänen & Picton, 1987) and the ERP P3 with a positive parietal polarity
around 300 ms after stimulus presentation (Polich, 2007). For the N1, we selected channel
Fz, FC1, FC2, Cz, C3, and C4; and for the P3, we selected channel Pz, P3, P4, CPz, CP1,
and CP2 (see Supplementary Figure S2.2). The average response was used to find the
component peaks of each participant. For the N1, we searched for a negative deflection
between 50 and 150 ms following stimulus onset. For the P3, we searched for a positive
deflection between 300 and 400 ms following stimulus onset. Following peak detection,
the component time-window was determined. For this, a time-window of ±25 ms and ±50
ms around the N1 and P3 peak was taken, respectively. Lastly, to derive at trial-level data,
for each participant, condition, selected channel, and trial, the mean amplitude over the
individual time-window was calculated.

7filter order = 1650, transition bandwidth = 1 Hz, cutoff frequency (-6dB) = 0.5 Hz
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TRF analysis

For the analysis of the soundscape as a whole, the mTRF toolbox (Crosse et al., 2016) was
used. Therefore, the recorded audio was preprocessed as follows: First, the absolute of
the Hilbert transform of the audio was low-pass filtered at 30 Hz8 and resampled to 250
Hz. Second, we were interested in the response to the whole soundscape irrespective of
the targets, therefore, the alarm and beep were excluded from the EEG and audio data of
both conditions. Data from the onset of the alarm and beep was were excluded up to 1 s
after the onset, creating epochs of unequal length. The total length of data was unequal
between conditions, therefore we excluded epochs until the total length difference between
conditions for each participant was <1 min. Third, EEG data was multiplied by factor
0.0313 for normalization (as suggested in the provided code by (Crosse et al., 2016)).
Finally, a forward model was trained on the epoched EEG data and audio data using the
function mTRFtrain. Time lags were calculated from -200 to 800 ms and a lambda of 0.1
was used.

The TRF usually reveals classic ERP peaks known from the auditory processing literature
(Crosse et al., 2016; Jaeger et al., 2020; Mirkovic et al., 2015). Based on pilot data
from three participants (not included in the final analyses), we expected these peaks at
approximately 100, 200, and 300 ms time lag.

We verified these condition-independent peaks using a permutation-based approach, which
was implemented with the Mass Univariate ERP Toolbox (Groppe, Urbach, & Kutas, 2011).
First, the TRF of each participant, condition, and channel was baseline corrected within
the function sets2GND using time lags from -100 to 0 ms. Second, two-sided t-values were
calculated and corrected for multiple comparisons within the function tmaxGND using a
time-window from 0 to 450 ms time lag. Finally, a time-window was identified as significant
when t-values exceeded a significant threshold of p < 0.05.

Within the significant time-windows, we determined individual TRF peaks. For this, we first
calculated the standard deviation over channels to derive the global field power (GFP) of
the TRF. The GFP indicates the magnitude of a signal across channels. Thereby, it accounts
for individual differences in spatial distribution and avoids channel selection (Murray,
Brunet, & Michel, 2008). The resulting GFP of each condition were averaged. Next, we
searched for the condition-averaged, maximum GFP value in each significant time-window
and for each participant. Then, we calculated for each participant the full width at half
maximum with respect to the peak to determine individual time-windows. Finally, we
averaged over the individual time-windows of the GFP of each condition. This resulted in
an average GFP value for each participant, condition, and significant time-window.

8filter order = 220, transition bandwidth = 7.5 Hz, cutoff frequency (-6dB) = 33.75 Hz
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2.3.5 Statistics

Preregistered Analyses

Condition differences of the auditory task were analyzed using a linear mixed model (LMM).
The analysis was performed in RStudio (version 2021.09.0) using the R package lmer4
(version 1.1-23). For all analyses a categorical fixed factor ’condition’ with two categories
was used, i.e., narrow and wide, which were coded 0 and 1, respectively. For the ERP
analysis, the response amplitude was predicted for each trial. Participant and channel were
included as random factors (Volpert-Esmond, Page-Gould, & Bartholow, 2021):

AMP ∼ condition + (condition|participant) + (1|channel) (2.1)

For the ERP model of the beep, we encountered singularity issues. The random factor
for channel showed a variance of 0 indicating over-specification of this random factor
(Volpert-Esmond et al., 2021). We therefore excluded this factor when computing the
model for the beep.

For the TRF analysis, GFP differences were predicted for individual time averaged peaks.
Participants were included as a random factor:

GFP ∼ condition + (1|participant) (2.2)

LMMs allow the investigation of the random factors participant and channel. For this,
the intraclass correlation coefficient (ICC) was used, which represents the amount of
variance in the predicted variable that is explained by the random factors (Lorah, 2018;
Volpert-Esmond et al., 2021). Variances for each factor were calculated using an intercept
only model for the analysis of ERPs (AMP ∼ 1 + (1|participant) + (1|channel)) and TRFs
(GFP ∼ 1 + (1|participant)). ICCs were calculated by dividing the variance of participant
or channel by the total variance.

Fixed effects were evaluated using Satterthwaite approximations within the R package
lmerTest, which estimates the degrees of freedom to calculate two-tailed p-values. Evidence
for an effect were assumed for p-values below 0.05. We also report standard errors (SE)
and 95

Exploratory Analyses

For a better understanding of the performance on the Tetris and auditory task, we explored
results of the NASA-TLX and several behavioral measures. The NASA-TLX was used to
investigate differences in perceived workload between conditions. The questionnaire has six
subscales, with scores ranging from 0 to 20. A high score is associated with high workload.
We summed the scores of all subscales to receive one workload score per condition and
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participant (i.e., scores can range from 0 to 120; Hart & Staveland, 1988). We checked
task performance on the Tetris task by comparing the number of completed layers. We
also checked performance on the speech instruction task by comparing the number of
instructions that were correctly followed. Workload and behavioral scores were compared
between conditions by computing LMMs for each score (i.e., workload; completed layers;
followed instructions) with condition as a fixed factor, and participant as a random factor
(Score ∼ condition + (1|participant)).

We further explored reaction time and hit rate in response to the targets, i.e., the target in
the narrow condition was the alarm and in the wide condition the beep. For this we used
all trial-level responses, i.e., also those that were not considered in the ERP-analyses.

Individual reaction times between conditions were compared using a generalized linear
mixed model (GLMM) with an inverse Gaussian distribution to account for a positive skew
in reaction time data (Reactiontime ∼ condition + (condition|participant)).

Hit rate followed a binomial distribution, as hits and misses were coded one and zero, re-
spectively. Differences between conditions was therefore compared using a GLMM with a bi-
nomial distribution and logit link function (Hitrate ∼ condition + (condition|partcipant)).

The statistical significance of differences in reaction times or hit rate between the alarm in
the narrow and the beep in the wide condition was evaluated using the Wald Chi-square
test.

2.4 Results

2.4.1 Behavioral results

Fig. 2.2: A) Subjective workload scores measured by the NASA-TLX. B) Trial-averaged reaction
time and C) trial-averaged hit rate in response to the targets of the respective condition, i.e., the
alarm and the beep in the narrow and wide condition, respectively. Each black line represents one
subject. **p<.01 ***p<.001

Figure 2.2A shows the subjective workload of each participant and condition. The average
rating in the narrow condition was 60.6 which significantly increased in the wide condition
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to 71.45 (b=10.85; SE=3.22; p=0.0016; CI=[4.92 16.78]). There were no differences
between conditions in the number of completed layers (Supplementary Figure S2.3A;
b=-1.37; SE 1.09; p=0.222; CI=[-3.55 0.797]) and followed speech instructions (Supple-
mentary Figure S2.3B; b=-0.77; SE 0.92; p=0.458; CI=[-2.55 1.15]). Figure 2.2B and
C shows the performance of the auditory task, i.e., reaction time and hit rate in response
to targets. Here, the response to the alarm in the narrow condition is compared to the
response to the beep in the wide condition. Estimated mean reaction times in response to
the alarm in the narrow condition were 0.814 seconds (b=1.22; SE=0.064) and to the
beep in the wide condition 0.81 seconds. Reaction times did not differ between the two
targets (Figure 2.2A; b=-0.008; SE=0.045; p=0.869). However, the chance of hitting
a target in the narrow condition was 96.2% and in the wide condition 68%. The beep
was significantly less often detected than the alarm (Figure 2.2B; b=-2.478; SE=0.344;
p<0.001).

2.4.2 Event-related potentials

We investigated ERPs in response to task-relevant and irrelevant sounds. The alarm was
relevant in the narrow and the beep relevant in the wide condition. For these sounds we
investigated the P3, and expected that targets show larger P3 amplitudes than non-targets.
The irrelevant sounds were ignored in both conditions. Here we investigated the N1 and
expected a lower amplitude in the wide compared to the narrow condition.

The alarm Figure 2.3A shows the grand average ERP (i.e., averaged over participants
and selected channel) in response to the alarm in the two conditions. We see a clear N1
peak around 100 ms, a P2 peak around 200 ms, and a P3 that starts around 300 ms. The
topographies of the narrow condition shows a typical parietal P3 distribution (Polich, 2007).
The mean amplitude of the P3 for the alarm in the narrow condition was 4.2 µV with a
significant mean amplitude decrease in the wide condition of -2.3 µV (SE=0.53; CI=[-3.39,
-1.27]; p<.001).
Computing the ICC showed that variance between people and channel accounted for 12.2%
and 0.1% of the total variance, respectively (see Supplementary Table S2.2 for the results
of the random effect models).

The beep Figure 2.3B shows the grand average ERP in response to the beep. For the
beep we neither see a clear N1, nor a P2 peak, but a P3 that starts around 300 ms. The
topography also reflects a P3 to the beep in the wide condition. The mean amplitude of the
P3 for the beep in the narrow condition was -.609 µV with a significant mean increase in
the wide condition of 4.1 µV (SE=0.92; CI=[2.58, 6.16]; p<.001). The ICC showed that
the variance between people and channel accounted for 6% and 0% of the total variance,
respectively.
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Fig. 2.3: ERPs of the (A) Alarm, (B) Beep, and (C) Irrelevant sounds for each condition and
averaged over participants and selected channel. The selected channels are marked in white in
the topographies. The narrow and wide condition are marked with orange and green, respectively.
Color shades indicate the 95% confidence interval. The gray area indicates the average time-window
and the topographies show the average amplitudes averaged over this time-window. Note, that
individual time-windows were used for the statistical comparison. Below the topographies, the
fixed effects (thick black lines) and the variability of effect between individuals (i.e., each gray line
corresponds to one participant) are displayed. *** p<.001
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Irrelevant sounds Figure 2.3C shows the grand average ERP in response to the irrelevant
sounds. We see a clear N1 peak around 100 ms and a P2 peak around 200 ms. The
mean amplitude of the N1 for the irrelevant sound in the narrow condition was -7.81
µV which did not differ from the wide condition (b=-0.28; SE=0.48; CI=[-1.02, 0.87];
p=0.558). The topography reflect a frontal N1 in both conditions. The ICC showed that
variance between people and channel accounted for 14.8% and 0.2% of the total variance,
respectively.

Summary of ERP results We found evidence for two of our three hypotheses. The alarm
and beep both showed a P3 when they were the target. This shows that participants
were able to detect the sounds. The P3 subsides after approximately 1.5 seconds (see
Supplementary Figure S2.4). The response to the irrelevant sound did not change. In the
following we look at the processing of the entire soundscape.

2.4.3 Processing of the soundscape as a whole

Figure 2.4A shows the TRF for both conditions (colored) and condition-independent (black).
Condition specific and independent TRFs show a typical shape (Crosse et al., 2016). The
gray areas indicate the three time-windows (0-68 ms; 96-192 ms; 216-448 ms time lag)
that significantly differed from zero. The topographies show TRF values averaged over the
significant time-window. All time-windows show the largest values across the fronto-central
channels. For the first and last time-window the values were negative, while the second
time-window showed positive values. Figure 2.4B illustrates the grand average GFP over
all participants. In each significant time-window, we determined individual time-windows
of the GFP and calculated the average amplitude over the individual time-window. The
results are shown in Figure 2.4C. The individual GFP in the third time-window was on
average 5.57 in the narrow condition, which significantly increased in the wide condition
to 6.43 (b = 0.77; SE = 0.3; CI = [0.15 1.38]; p = 0.0211). We did not find significant
differences for the first (b = -0.26; SE = 0.68; CI = [-1.63 1.1]; p = 0.705) and second (b
= 0.11; SE = 0.59; CI = [-1.07 1.3]; p = 0.853) time-window.

The ICC of the third time-window showed that variance between people accounted for
73.3% of the total variance, indicating a large between-person variance. Note, that the high
between-person variance of the TRF compared to the ERPs is the result of using averaged
compared to trial-level data, respectively.

One participant showed extremely high standard deviations (see Supplementary Figure
S2.8) across all channels, thus, we excluded this participant and ran the analyses again,
however, this did not change the results (First: b = 0.28; SE = 0.43; CI = [-0.58 1.15]; p
= 0.5174; Second: b = 0.44; SE = 0.52; CI = [-0.61 1.48]; p = 0.414; Third: b = 0.84;
SE = 0.31; CI = [0.22 1.47]; p = 0.014).
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the TRFs for each channel, averaged over participants. Orange and green mark the narrow and
wide condition, respectively. Black marks the TRF calculated over both conditions. The significant
time-windows are marked in gray. B) The GFP of the TRF is shown for each condition, averaged over
participants. Color shades mark the 95% confidence interval. For each participant, an individual
time-window within the significant time-window was calculated. The gray area marks the average
individual time-window C) Boxplots show the differences of the individual time-window for each
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From Figure 2.4B and the supplementary figure S2.8, it appears that the time-windows vary
largely between participants, especially with regards to the last time-window. Therefore,
we re-analyzed the data by averaging over the significant time-windows that are seen in
Figure 2.4A. Using the same time-window for each participant, we receive the same results
(First: b = -0.03; SE = 0.46; CI = [-0.96 0.9]; p = 0.95; Second: b = 0.13; SE = 0.48; CI
= [-0.84 1.1]; p = 0.791; Third: b = 0.628; SE = 0.26; CI = [0.106 1.15]; p = 0.026).

2.5 Discussion

We investigated auditory attention using a mobile EEG setup while participants completed
a complex audio-visual-motor task with a rich soundscape. We manipulated auditory
attention while keeping the complexity of the soundscape constant. In both conditions,
participants attended to a target. In one condition, this target was a clearly audible alarm
originating from one direction which required a narrow attentional focus. In the other
condition, this target was a beep originating from different directions which required
attention to the whole soundscape, i.e., a wide attentional focus.

Behaviorally, we found, that the sound that was assumed to be more difficult to detect
(i.e., the beep), was indeed less often detected than the sound that was assumed to be
easy to detect (i.e., the alarm). This is also reflected in perceived workload, which was
higher in the wide condition than the narrow condition, but in contrast to Tetris and speech
instruction performance which was similar across conditions. It appears that a trade-off
between the Tetris task and the auditory task occurred. In other words, if the auditory task
was too difficult, participants rather concentrated on the Tetris task and speech instructions.

Regrading the ERPs, we found a larger P3 if a sound was a target compared to the same
sound if it was not the target, i.e., the response was larger for the alarm in the narrow
compared to wide condition and for the beep in the wide compared to narrow condition. We
observed the difference around 300 ms after stimulus onset. Contrary to our expectation,
we did not find a clear difference in the N1 to stimuli that were irrelevant in both conditions.
We also found that the TRF was larger in the last time-window for the wide compared to
narrow condition.

Processing of relevant stimuli We observed a larger P3 for target compared to non-target
stimuli, which indicates that participants were generally performing the auditory task. The
P3 is related to attentional processed and has two subcomponents, the P3a and P3b (Polich,
2007). The P3a is typically associated with an attention switch to novel or salient stimuli
and shows a central topography, while the P3b response is typically elicited by task-relevant
stimuli and shows a parietal topography (Luck, 2014; Polich, 2007). In this study we
focused on the P3b, as attention to different task-relevant sounds (i.e., the alarm or beep)
should lead to a narrow or wide attentional focus. Our findings show the robustness of the
P3b even in a complex task with visual input, auditory instructions, and motor responses.
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Therefore, it lines up with beyond-the-lab studies that showed the P3b during walking
(Debener et al., 2012), biking (Scanlon et al., 2019) , driving (Protzak & Gramann, 2018),
and office work (Hölle et al., 2021).

Importantly, the P3b morphology was comparable between conditions (also when looking
at the individual participant data in supplementary figures S2.5, S2.6) despite the fact that
the targets differed in their characteristics. The alarm was louder than the beep, it always
came always from the same direction, and was the only sound coming from that direction.
The beep, originated from different directions and was embedded into the other sound
streams. The behavioral results show that the alarm was easier to detect than the beep.
The reaction time for the detected sounds was not significantly different. This shows that
a sound which is hard to detect, i.e., acoustically not salient, can elicit a clear attention
response if it is considered task-relevant.

Processing of irrelevant stimuli Regarding the irrelevant sounds, we did not find a dif-
ference between conditions in the N1. We expected that attention to the beep (i.e., the
wide condition) would draw attention to the whole soundscape and in turn also lead to a
stronger processing of the irrelevant sounds. This manipulation was apparently not strong
enough to produce a difference in the N1 component.

Nevertheless, we can draw a conclusion from the observed ERP morphology. The alarm
and irrelevant sound elicited an N1 with a clear peak and strong deflection (∼7-8 µV),
while the beep elicited an N1 that was smaller (∼2-3 µV) and smeared. We interpret the
clear peak of the alarm and irrelevant sounds as an indication that these sounds were
easily detectable (i.e., acoustically salient) compared to the beep as the N1 is sensitive to
sound intensity (Näätänen, 1982; Näätänen & Picton, 1987). Furthermore, early auditory
responses indicate awareness of a stimulus (Schlossmacher, Dellert, Bruchmann, & Straube,
2021). Thus, the clear peak of the alarm and irrelevant sounds might indicate that these
sounds showed a different early processing compared to the beep.

Processing of the soundscape as a whole We found reliable TRFs in response to the
complex soundscape (including language and non-language stimuli) in this complex task,
with three time-windows which significantly differed from zero. These time-windows
have repeatedly been reported for speech and music stimuli (Hausfeld, Riecke, Valente, &
Formisano, 2018; Horton, D’Zmura, & Srinivasan, 2013; O’Sullivan et al., 2015), however
not for other complex soundscapes.

We further expected a difference in processing of the whole soundscape between the two
conditions. We used the beep in the wide condition to implicitly direct the participants
attention toward the whole soundscape. In the narrow condition most of the soundscape
could be ignored. We found a significant but small increase of processing in the wide
condition after controlling that the effect was not due to the targets. Interestingly, the
difference appeared in the last time-window. When tracking the response to an attended
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and continuous speech stream, an enhanced responses in late time-windows is observed
compared to an ignored stream (Holtze et al., 2021; Horton et al., 2013; Jaeger et al.,
2020; Kong et al., 2014; Mirkovic, Debener, Schmidt, Jaeger, & Neher, 2019; Petersen et
al., 2017). As we expected that participants attend to the whole sound scape more in the
wide compared to narrow condition, it is plausible that we observed a difference in the last
time-window.

There are several reasons why the observed difference was small. On the one hand,
participants did not attend to the whole soundscape much more in the wide than in the
narrow condition. This would also explain the low hit rate for the beep. On the other hand,
there was no incentive to ignore the soundscape in the narrow condition, which might have
increased the response to the soundscape in the narrow condition. We conclude that our
results are an indication that differences in the processing of the whole soundscape are
found in late time-windows.

Random effects of the models We further investigated the random effect structure for a
better understanding of the variance that contributed to our models (Lorah, 2018; Volpert-
Esmond et al., 2021). Interestingly, the between-person ICC of the response to the alarm
was twice as large compared to the beep. This indicates that in naturalistic soundscapes,
reliable sounds (such as the alarm which was presented from the same direction with the
same sound intensity) produce a more reliable trial-level response than unreliable sounds
(such as the beep which was presented from different directions and with different sound
intensities).

The low between-channel variance indicates that we used channels that were related to
the investigated components (i.e., N1 and P3; Volpert-Esmond, Merkle, Levsen, Ito, &
Bartholow, 2018). Furthermore, the selected channels had a close proximity. For the beep
we even had to exclude channel as a factor, as we ran into singularity issues.

Translation to the operating room We designed our study to contain several factors that
characterize the working environment in an operating room, i.e., multiple sound streams
from different locations with relevant and irrelevant sounds, speech and non-speech
sounds, and a visual-motor task. Our results demonstrate that it is feasible to study
auditory attention in such a complex scenario. We observed a clear N1 peak for sounds
that were acoustically salient, a P3b for relevant sounds, and a TRF in response to the
whole soundscape. Thereby, our study is a step toward studying auditory responses in the
operating room using mobile EEG.

We manipulated the attentional focus of participants who were naive to the soundscape
of the operating room, thus the soundscape was rather arbitrary to them. This way, our
results are generalizable to other scenarios with similar complex soundscapes. A limitation
of this approach is that medical staff might react differently to the soundscape, because
they are regularly exposed to it. Eventually, we want to know how the individual perceives
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the soundscape in the operating room and when sounds become a burden. Therefore, one
must be aware of the challenges of studying sound processing in the operating room: First,
the soundscape of an operating room is an uncontrolled setting in which the presentation
of sounds is ethically not viable. Therefore, it is necessary to relate the natural soundscape
to the EEG recording. We showed that meaningful EEG responses can be measured in a
complex soundscape. In a following step, we suggest using smartphone-based technology
that enables the simultaneous recording of EEG and audio features in a data protected
way (Blum, Hölle, Bleichner, & Debener, 2021; Hölle, Blum, Kissner, Debener, & Bleichner,
2022), and applying it to the operating room. This way, responses to naturally occurring
sounds can be measured. Second, surgery staff are exposed to the soundscape for several
hours per day. Investigating changes in sound processing over the day requires long-
term recordings. Here, one could use minimal and unobtrusive EEG set-ups, like the
cEEGrid (Debener, Emkes, De Vos, & Bleichner, 2015), that can be used to study EEG
responses to auditory stimuli (Holtze, Rosenkranz, Jaeger, Debener, & Mirkovic, 2022;
Meiser, Tadel, Debener, & Bleichner, 2020) over more than 6 h (Hölle et al., 2021). Lastly,
the cognitive load (e.g., working memory and attentional capacities) varies during a surgery
over time and between staff members, which likely affects auditory processing. van Harten
et al. (2021) observed that surgery staff with high workload are more often distracted
by irrelevant sounds than surgery staff with low workload. However, this relationship is
simplified as high load can also reduce the processing of irrelevant sounds (Brockhoff et al.,
2022). Studying the relationship between load and auditory processing in the operating
room is therefore necessary to understand the effect that sounds have on surgery staff.

Conclusion We showed that ERPs, as well as TRFs, are useful tools to study different
aspects of sound perception in complex sound environments. To balance between high
control over stimuli and the uncontrolled operating room we developed a laboratory
experiment with a naturalistic soundscape. In this scenario, ERPs are robust to detect
attention responses to specific sounds while TRFs can measure responses to an uncontrolled
soundscape. Our results demonstrate that we can use mobile EEG in a complex acoustic-
visual-motor task to study auditory perception and are therefore an important step toward
understanding auditory attention in uncontrolled settings.
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2.11 Supplementary material

Deviations from our preregistration

General deviations:

1. We originally referred to the beep as the odd tone.

Deviations from planned preprocessing:

1. We did not specify the ICLabel threshold of .9 to reject components.

2. Regarding the P3, we initially searched for a peak between 250 and 400 ms. However,
for some participants this resulted in finding the the P2 and not the P3 time-window.
Therefore, we searched for a peak between 300 and 400 ms.

3. Regarding the data epochs for the TRF, we did not consider that the total length might
significantly vary between conditions. Thus, epoch exclusion until the conditions
have a similar length was added as a preprocessing step.

Deviations from planned analyses:

1. We did not specify during the preregistration how we deal with models that run into
singularity issues, but trimming random factors with zero variance is recommended
(Volpert-Esmond et al., 2021). Thus, we decided to drop the random factor "channel"
for the ERP analyses of the beep.

2. As proposed in the preregistration, we planed post-hoc power analyses. However,
using trial-level data our computational power was not sufficient to calculate a power
analysis (i.e., it would have taken several weeks to conduct such analysis). Besides,
we noticed that the use of post-hoc power analysis might be misleading, as it diverts
from the true power to detect a significant effect (Zhang et al., 2019).

Supplementary Method

Tetris Game Design

The Tetris space consisted of 15 layers and each layer covered a 5x5 area. The layers and
area formed a grid with equally sized cubes, thus forming a space for 15x5x5 cubes (see
Figure 2.1). A block was formed from several cubes, resulting in blocks of ten different
shapes (see Figure 2.1). A block was moved with the arrow keys or rotated cloackwise
with the A,S,and D keys. The blocks dropped at a fixed speed until they were placed at the
bottom of the space or on top of other block(s). While a block dropped, it was transparent
and only its boarders were visible. If a block was placed, it was colored depending on
the layer in which it was placed. Each layer has its own color. Thus, if a block covered
more than one layer, its cubes were colored differently. To the right of the Tetris space, the
current score, the shape of the next block, and the color code of the layers was shown.
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Figure S 2.1: Tetris box (left) and blocks (right)

Within the game, there were three ways how points were granted or subtracted:

First, if a layer was completely covered with cubes, it was deleted and 100 points were
granted. If the blocks stacked too high, i.e., if at least one cube exceeded the 13th
layer, blocks in all layers were deleted and 100 points subtracted. Thereby, participants
had enough time (i.e., 3 layers) to navigate the blocks even if blocks were stacked high.
Furthermore, by deleting all blocks, continuity of the game was guaranteed.

Second, participants received instructions to press the space bar when hearing the targets,
i.e., the alarm or beep in the narrow or wide condition, respectively. Correct presses granted
50 points, missing a target subtracted 50 points.

Third, following the task-relevant speech granted 100 points while not following it sub-
tracted 100 points. The task-relevant speech gave instructions to place the block in the
upper or lower and left or right corner of the 3D space. A corner was defined as a 2x2 area
in any layer. If at least one cube of a block was placed in the correct area, the points were
granted.

Auditory Stimulus Material

Three types of auditory stimuli were integrated: a continuous background sound, distinct
sound events, and speech. The background sound was adapted from an open-access
hospital recording available on youtube 9. The adaptation was manually done in Audacity®

and included the removal of identifiable speech segments and creating chunks of the audio
which could be rearranged and duplicated. This way, two versions of the background sound
were created which were counterbalanced across conditions.

Regarding the distinct sound events, four sounds were included. Two of them were hospital
monitor sounds which served as the irrelevant sounds10 and one a hospital alarm sound11.
As the youtube soundfiles contained multiple presentations, one sample of each sound
lasting approximately 200 ms was manually extracted with Audacity®. The irrelevant
sounds were presented equally often in the experiment. The fourth sound event, the beep,
had a frequency of 800 Hz, was about 60 ms long, and was generated in MATLAB.

9https://www.youtube.com/watch?v=qR9YzVqO9Zg
10https://www.youtube.com/watch?v=4NXe9pwEgN4&list=OLAK5uy_m0wcbXgo3PYKOigdAPPPf0s9y2F7ZXtp0&index=

127
11https://www.youtube.com/watch?v=95siaTtQR-c&list=OLAK5uy_m0wcbXgo3PYKOigdAPPPf0s9y2F7ZXtp0&index=

128
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Two types of speech stimuli were presented. The first type was task-relevant speech. It
was generated using a text-to-speech program12. The speech instructed participants to
place the next block in one of the four corners, thus four instructions were created. Each
of the four instructions were presented equally often and the same instruction was never
presented subsequently. The second type of speech was task-irrelevant speech. It contained
snippets from a German podcast conversation between a male and female speaker. The
snippets were manually extracted using Audacity® and presented in a predefined order.
Each snippet lasted on average 3.5 (+- 1.5) seconds. Two podcasts were used 13 which
were counterbalanced across conditions.

After the initial manual extraction of the sounds, they were further processed in MATLAB.
Therefore, each stimulus was matched to the average root-mean-square value of all sounds.
The sounds were spatially seperated using the Head Related Impulse function (Kayser et
al., 2009), except for the background sound. As the loudness of the sounds varied, they
were multiplied by individual factors (i.e., gain) before the spatial separation algorithm
was applied. As the beep is presented together with other sounds, five versions of the beep
were created. Each version was processed with the same parameters as the respective
stimulus. For the beep in the background, no spatial separation was performed. Table S2.1
provides a detailed overview of the applied parameter for each stimulus.

Stimulus Location Listener Position Speaker Position Gain

Irrelevant Sounds Cafeteria 2 A 10
Alarm Cafeteria 2 E 10

Relevant Speech Cafeteria 2 D 25
Irrelevant Speech Cafeteria 2 B 6

Table S 2.1: HRIR processing parameters of auditory stimuli.

Stimulus Presentation

At the start of the game, the 3D-space was empty. A game started after a countdown
counted from three to one. A Tetris block always started in the middle of the upper most
layer, i.e. the 15th layer. The shape of a block was randomly chosen from one of the ten
shapes.

Within the game, auditory stimuli were presented using Psychtoolbox 3 (Kleiner et al.,
2007). For each presented stimulus a trigger marker was generated using a Lab Streaming
Layer based software 14. The background sound was presented throughout the game. Each
of the four relevant speech instructions were presented 12 times. Each snippet of the
irrelevant instructions was presented once in a predefined order. In total 48 irrelevant
12www.notevibes.com(Notevibes, 2021)
13https://www.ndr.de/wellenord/Allein-unter-Moerdern-Sabine-Thiesler,kunstmichmal166.html and https://

www.ndr.de/wellenord/Beruehren-verboten-Nicht-bei-Julia-Brunner,kunstmichmal150.html
14www.github.com/labstreaminglayer/liblsl-Matlab
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speech snippets were presented. The two irrelevant sounds were presented 24 times each.
The alarm and beep were presented 48 times each. However, the beep could occur together
with other stimuli. At the start of the game the beep was randomly positioned in each
stimulus. The onsets between the irrelevant sounds/alarm and beep were close, potentially
influencing the ERP analysis. Therefore, for each time a sound was presented together with
a beep, the sound and beep were again added to the pool of stimuli. This resulted in a
variation of sound presentations across conditions and participants. For the ERP analyses
only the 48 trials without other interfering sounds were used.

Auditory stimuli were presented randomly depending on the layer of a block: The first
auditory stimulus during a block occurred between layer 12 to 6, the second stimulus three
to six layers after the first one, and so on. However, there were some restrictions. Task-
relevant speech could occur consecutively, but the same speech instruction (i.e., placing
the block in the same corner) could not occur consecutively to ensure that the blocks do
not stack too high. The beeps did not occur during the first five stimuli. The position of the
beep within another stimulus was randomly defined at the beginning of each condition.
Thus, it was different for each participant and condition, but fixed for a stimulus. Note, that
the beep could occur at a different position for each of the four instructions, two irrelevant
sounds, and 48 task-irrelevant speech snippets. The participants were not aware of the
presentation frequency or order. They were only informed about the approximate length of
a game.

Training

To get acquainted to the game, participants received written instruction and performed
four training games. During the first training, block rotation and placement was trained
without any auditory stimuli and lasted ten minutes. During the first half, blocks dropped
at a low speed. During the second half, blocks dropped at normal speed.

The second training game introduced the background sound and task-relevant speech, as it
was relevant for both conditions, and lasted approximately one minute. Here, participants
received visual feedback whether they correctly followed the instructions.

The third and fourth training games included all stimuli and were condition specific and
therefore, played before the respective condition. They lasted approximately two minutes
each. In the narrow condition training, participants received visual feedback whether they
correctly detected the alarm. Prior to this training game the alarm was presented to them.
In the wide condition training, participants received visual feedback whether they correctly
detected the beep. Prior to this training game the beep was presented to them once alone
and once included in the other stimuli.

A game ended after all stimuli were presented. For the games of each condition this was
the case after approximately 18 minutes. For the speech training, five instructions were
presented. For the condition specific training, each stimulus was presented twice.
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Channel Layout

N1-channel

P3-channel

Figure S 2.2: A mobile 24-channel setup was used for this study. The colours orange and green
indicate the channels that were used for the N1 and P3 ERP analysis, respectively.
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Figure S 2.3: A) Number of completed layers during the game. A layer was completed (and points
added) if it was fully covered with Tetris blocks. B) Number of instructions (i.e., where to place the
next blook) that were followed. Each line represent one subject. Both measures of task performance
did not significantly differ between conditions.
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Random effect model results

Stimulus Group Variance Std. Dev

Alarm Participant 12.08 3.476
Channel 0.11 0.325
Residual 86.71 9.312

Beep Participant 6.002 2.450
Channel 0 0
Residual 94.028 9.697

Irrelevant sounds Participant 13.44 3.6661
Channel 0.162 0.4026
Residual 76.9825 8.7740

TRF III Participant 3.019 1.737
Residual 1.099 1.049

Table S 2.2: Random effect results of the intercept model for the alarm, beep, irrelevant sounds,
and the third TRF time-window

Long time-window of target ERPs

Figure S 2.4: The ERPs are the same as in figure 2.3. Topographies show time-windows from 300
to 1900 ms over time in steps of 200 ms.

42 Chapter 2 Study I - Investigating the attentional focus to workplace-related
soundscapes in a complex audio-visual-motor task using EEG.



Individual participant ERPs
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Figure S 2.5: Individual participant data in response to the alarm averaged over selected P3-channel
and trials. Gray area marks the individual time-window used for the statistical comparison.
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Figure S 2.6: Individual participant data in response to the beep averaged over selected P3-channel
and trials. Gray area marks the individual time-window used for the statistical comparison.
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Irrelevant Sound
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Figure S 2.7: Individual participant data in response to the irrelevant sounds averaged over
selected N1-channel and trials. Gray area marks the individual time-window used for the statistical
comparison.
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Individual participant TRFs
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Figure S 2.8: Globald field power of the TRF for each participant in response to the whole
soundscape. Gray areas mark the individual time-windows used for the statistical comparison.
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Study II - Using mobile EEG to
study auditory work strain during
simulated surgical procedures.

3
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critical revisions. All authors reviewed the manuscript.

3.1 Abstract

Surgical personnel face various stressors in the workplace, including environmental sounds.
Mobile electroencephalography (EEG) offers a promising approach for objectively measur-
ing how individuals perceive sounds. Because surgical performance does not necessarily
decrease with higher levels of distraction, EEG could help guide noise reduction strategies
that are independent of performance measures. In this study, we utilized mobile EEG to
explore how a realistic soundscape is perceived during simulated laparoscopic surgery. To
examine the varying demands placed on personnel in different situations, we manipulated
the cognitive demand during the surgical task, using a memory task. To assess responses
to the soundscape, we calculated event-related potentials for distinct sound events and
temporal response functions for the ongoing soundscape. Although participants reported
varying degrees of demand under different conditions, no significant effects were observed
on surgical task performance or EEG parameters. However, changes in surgical task per-
formance and EEG parameters over time were noted, while subjective results remained
consistent over time. These findings highlight the importance of using multiple measures to
fully understand the complex relationship between sound processing and cognitive demand.
Furthermore, in the context of combined EEG and audio recordings in real-life scenarios,
a sparse representation of the soundscape has the advantage that it can be recorded in
a data-protected way compared to more detailed representations. However, it is unclear
whether information get lost with sparse representations. Our results indicate that sparse
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and detailed representations are equally effective in eliciting neural responses. Overall,
this study marks a significant step towards objectively investigating sound processing in
applied settings.

3.2 Introduction

Surgical personnel often experience high levels of stress, which can lead to severe health
problems such as burnout (Etheridge et al., 2023) or hypertension (Marrelli et al., 2014;
Rieger et al., 2014). One cause of stress is distractions due to the environment of the
operating room (OR) (Arora et al., 2010; Kern et al., 2019). The soundscape in the OR is
highly complex (Baltin et al., 2020), comprising of sounds that are crucial to the surgery
(e.g, communication, tool usage), as well as sounds that are not crucial to the surgery
(e.g., instrument clattering, phone ringing) and could be minimized to improve the work
environment (Engelmann et al., 2014). The accumulation of the different sounds sources,
leads to high sound levels which are often perceived as distracting and stressful (Güļsen et
al., 2021; Healey et al., 2007; Keller et al., 2018; Padmakumar et al., 2017; Tsiou et al.,
2008; van Harten et al., 2021). To guide interventions that aim at reducing stress induced
by auditory distractions it is important to understand and measure how ongoing sounds in
the OR affect the personnel.
An objective evaluation of the subjectively experienced burden of the OR soundscape is
challenging. Previous studies that have focused on the effect of sound on performance (i.e.,
surgery task performance) have found that only under extreme and unnatural conditions,
such as dichotic listening to two pieces of music (Conrad et al., 2010, 2012), but not under
more natural conditions, such as a single stream of OR sounds (Han et al., 2022; Hodge
& Thompson, 1990; Moorthy, Munz, Dosis, et al., 2003; Moorthy, Munz, Sarker, & Darzi,
2003; Moorthy et al., 2004; Suh et al., 2010), more mistakes in the surgery task were
observable. However, medical personnel may strive to perform at high levels under adverse
working conditions because mistakes can have serious consequences for the patient. Thus,
the work strain surgeons experience can not necessarily be inferred from the surgery task
performance. Therefore, additional measures are required to objectively assess the auditory
strain in the OR.
To measure sound perception in the OR objectively, electroencephalography (EEG) is a
promising method. Given its temporal resolution, it is particularly useful for measuring
responses that are time-locked to sounds. By analyzing event-related potentials (ERPs)
the neural response to individual sound events can be examined, revealing perceptual
and cognitive processes such as whether a sound is considered task-relevant (Polich,
2007). Another approach involves the use of temporal response functions (TRFs) to
study responses to continuous sound streams (Crosse et al., 2016), which expands the
use of EEG to naturalistic soundscapes. ERPs and TRFs can be measured outside of the
laboratory while individuals are freely moving (Debener et al., 2012; Straetmans et al.,
2021) and to complex soundscapes while an audio-visual-motor task is being performed
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(Rosenkranz, Cetin, Uslar, & Bleichner, 2023). The development of head-mounted EEG
systems and wireless data transmission allows for unrestricted mobility for the wearer,
making it applicable in various work environments (Wascher et al., 2021) and enabling
measurements over extended periods of time (Hölle et al., 2021).
How we process distractors depends on contextual factors, including the demands of the
task(Lavie, 2005), and is reflected in the neural responses measured by EEG (Brockhoff
et al., 2022). Thus, EEG signals can provide valuable insights into the cognitive demand
experienced by an individual, independent of their task performance. This makes EEG a
potentially useful tool for continuously monitoring a surgeon’s perceived demand in real
time. Such monitoring could guide the implementation of sound interventions in the OR
by addressing not only the acoustic environment (e.g., loudness Engelmann et al., 2014),
but also the individual’s perceived demand. Furthermore, cognitive demand influences the
ability of a person to shield themselves from auditory distractions (Sörqvist et al., 2016).
Personnel in the OR report to be more vulnerable to distractions from the soundscape
during periods of high compared to low demand (van Harten et al., 2021). It is reasonable
to expect that both neural and subjective responses to the OR soundscape will differ based
on the cognitive demands of the task being performed. By varying the overall cognitive
demand, we can study how it impacts perception and processing of soundscapes, which in
turn helps us to understand auditory distraction.
We investigated demand-dependent changes in EEG responses to the soundscape, as well as
subjective and behavioural measures. We focused on ERP and TRF time-windows typically
found in response to sounds, namely the N1, P2, and N2 time-window (Horton et al., 2013;
Kong et al., 2014; Picton & Hillyard, 1974). Previous studies reported mixed findings
regarding the effect of varying demand on these time-windows (Brockhoff et al., 2022).
Therefore, we investigated the effect of varying demand on each time-window.
Surgeons are frequently required to perform complex procedures for extended periods. This
naturally leads to fluctuations in cognitive demand and how the environment is perceived.
For example, sounds that were once easily ignored can become sources of distraction, or
vice versa (van Harten et al., 2021). This change in sensory processing, compounded by
varying demand, underscores the critical need to consider the temporal dynamics during
the performance of surgical tasks. Therefore, we explored changes over time for the ERP
and TRF time-windows in response to the soundscape, as well as for the subjective and
behavioral measures.
At last, there are practical considerations when opting to use TRFs in an applied context.
Since the derivation of TRFs require information of the soundscape, sound recordings have
to adhere to privacy concerns. To test whether representations of the soundscape void of
personal information, produce similar results as rich representations we derived sound
onset marker (Hölle et al., 2022) in addition to the commonly used acoustic envelope
(Crosse et al., 2016). Sound onsets only indicate sound occurrence, providing a data
protected way of sound recording. Previous research has demonstrated that onsets and
envelopes yield comparable results for computing TRFs (Drennan & Lalor, 2019; Haupt,
Rosenkranz, & Bleichner, 2024). To replicate this finding and strengthen the applicability
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of TRFs in real-life settings we compared the TRFs computed from the onsets and the
envelopes of the soundscape.
The objective of this research was twofold. Firstly, it aimed to examine the influence of a
realistic task under varying levels of cognitive demand on the individual processing of task-
irrelevant auditory stimuli, reflecting an OR soundscape. This investigation integrated both
subjective assessments (i.e., self-reports) and objective metrics (i.e., neural responses to
irrelevant sounds and behavioral performance) to provide a comprehensive understanding
of sound and distractor processing in work environments. Secondly, the study investigated
the processing of continuous versus discrete acoustic features, offering insights into auditory
responses to different aspects of the soundscape.

3.3 Methods

This study involving human participants was approved by the Medizinische Ethikkommis-
sion, Carl von Ossietzky Universität Oldenburg, Oldenburg (2021-031) and performed
in accordance with the Declaration of Helsinki. The participants provided their written
informed consent to participate in this study. This study was preregistered after data
collection https://doi.org/10.17605/OSF.IO/AE3UY. All changes to the preregistration can
be found in the supplementary material.

3.3.1 Participants

23 medical students were recruited through an online announcement on the university
board and word-of-mouth (age range: 19-24; 16 female). One participant was excluded
due to data loss during recording resulting in 22 included participants. We based the
sample size on our previous studies in which we measured reliable ERPs and TRFs during
a complex and dynamic task (Rosenkranz et al., 2023). Four participants had previous
experience with a laparoscopic simulator and 17 attended at least once a surgery as an
observer. All participants received monetary reimbursement. Eligibility criteria included:
enrollment as a medical student and self-reported normal hearing, normal or corrected
vision, no psychological or neurological condition, and right-handedness.

3.3.2 Paradigm

Figure 3.1 illustrates the setup and paradigm. To mimic an actual surgical environment,
participants performed a laparoscopic surgery task while presented with the playback of
a continuous OR soundscape. To vary the cognitive demand during the surgery task, we
adapted a serial recall paradigm: Prior to the surgery task, participants had to remember
two or eight letters, simulating low and high cognitive demand, respectively. They received
the instruction to silently repeat those letters while performing the surgery task. After
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the surgery task, they should recall the letters. The memory task was selected for the
following reasons. First, to simulate a varying general demand of surgeons that might
not be necessarily related to the surgery. Second, the task was chosen as visual working
memory abilities correlate with surgical task performance (Hedman, Klingberg, Enochsson,
Kjellin, & Felländer-Tsai, 2007; Schlickum et al., 2011), i.e., we manipulated the demand
on the surgery task by manipulating the demand on visual memory. Third, the memory
task did not require an overt response and hence did not interrupt the surgical procedure.
Finally, we could increase the distractive potential of the task-irrelevant soundscape,
by presenting spoken letters which are commonly used as distractors in classic serial
recall paradigms (Colle & Welsh, 1976; Jones & Morris, 1992). The spoken letters were
presented in the low- and high-demand condition. Overall this should simulate situations
in which the surgeon must effectively shield themselves from irrelevant and potentially
distracting information. Participants did not receive any instruction on what to do with the
soundscape, and were free to disregard it. After retrieval of the letters, participants rated
their perceived demand during the task and received feedback regarding their memory
performance. Each participant performed a total of 28 experimental blocks, 14 of each
condition, in a randomized order, with the restriction that seven blocks of each condition
were presented during the first and second half of the experiment. During the entire
experiment, participants were standing either in front of the screen for the memory task
(Samsung, SyncMaster P2470) or in front of the surgery simulator. The monitor and
simulator were positioned in 90° to each other. Further details can be found below.

Surgery task For the surgery task, the LabSim® (Surgical Science, Sweden) simulator was
used. This simulator is used to train hand-eye coordination for laparoscopic surgeries and
provides realistic graphics and tactile feedback. The setup includes specialized instruments
for both hands, a foot pedal for additional controls, and a screen that displays the virtual
surgical instruments in action.
The specific task which the participant performed throughout the experiment is called
"cutting". In this task, participants needed to grasp a vessel with the right-hand instrument,
stretch it, and cut it with an electrical cutting device which was handled with the left hand.
To activate the cutter, a foot paddle must be pressed. The vessel must then be placed in a
small bag. The task ends when three parts of the vessel are removed.
Participants were informed that their performance would be evaluated based on the
duration to complete the surgery task, mistakes, and tissue damage. Mistakes included
rupturing the vessel (e.g., by exerting too much pull on the vessel) or dropping the cut
vessel, thus a block could have zero to three mistakes. Touching the tissue with the
instrument caused immediate visual feedback as the screen received a red shade. After
each task, they received visual feedback about their overall performance.

Memory task A serial recall task was adapted to vary the cognitive demand during the
surgery task. Although the serial recall task is a classic working memory task, we refrain
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Figure 3.1: a) Participants were standing throughout the entire experiment either in front of the
surgery simulator or the screen for the memory task which were positioned in 90◦ to each other.
The speaker were positioned at chest height and participants were equipped with a mobile EEG
cap. b) At the start of the block participant were presented with either two (low-demand condition)
or eight (high-demand condition) letters which they had to remember. During the surgery they
were presented with a continuous realistic soundscape of an operation room and with overlayed
spoken letters. They were instructed to silently repeat the memorized letters during the surgery
task. After finishing the surgery task they should enter the memorized letters and fill out a workload
questionnaire. An experimental block ended with feedback regarding their memory performance.

from calling it one, as the retention interval (i.e., the performance of the surgery task)
was too long. Prior to the surgery task, participants were asked to remember the visually
presented letters in the correct order. For the low-demand condition two letters and for the
high-demand condition eight letters had to be remembered. The letters were randomly
selected from a set of twelve letters (B,C,D,F,H,K,L,M,P,Q,S,T) without replacement. Letters
were presented in black on a gray screen for 1000 ms each with an inter-stimulus-interval
of 500 ms. After the surgery task, either two or eight question marks indicated that the
letters should be entered using a keyboard. Participants could enter an "X" for letters they
could not remember and could correct themselves.

Soundscape The OR playback was recorded using a field recorder which was positioned
close to the surgery table during a visceral surgery at the University Hospital Oldenburg
(Rennies et al., 2023). The recording contains a variety of sounds, such as ventilation
noise, beeps from monitoring devices, instrument clatter, and instrument sounds. Intelligi-
ble speech was removed after the recording for privacy reasons, however, unintelligible
muttering and non-vocal sounds such as coughing were preserved. The recording lasts
approximately 1 hour. In the first block, the recording starts at a random time point and
continuous chronologically for every subsequent block. If the recording reached the end,
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it started at the beginning. The soundscape started automatically after the letters of the
memory task were presented. To prevent clicking noise when the audio starts the starting
500 milliseconds were faded in.
In addition to the realistic soundscape we presented a sequence of individual spoken letters
in both conditions. The method of presentation of the spoken letters was consistent across
both conditions: Four letters were drawn from the same set of letters as the memory
task, but never coincided with the to-be-remembered letters of a block. To ensure that
the letters were presented equally often within a block, the four letters were presented
as consecutive groups but were randomized within a group. The same letter was never
presented consecutively. The inter-trial-interval between letters was three seconds. Letters
were generated using a text-to-speech program (Notevibes, accessed 2021) and spoken by
the same female voice. The letters were clearly audible in the soundscape recording and
had an on- and offset ramp of ten milliseconds.
All sounds (i.e., the recording and letters) were sampled at a rate of 48 kHz and presented
to the participant using Psychtoolbox 3 for MATLAB(Kleiner et al., 2007) (v3.0.17), a t.amp
E4-130 amplifier (Thomann GmbH, Burgebrach, Germany) and presented as a stereo signal
using two iLoudMTM loudspeakers (IK Multimedia Production srl, Modena, Italy). The
loudspeakers were vertically tilted upwards (20°) and located in front of the participant to
the right and to the left of the LabSim® at chest height. The distance between loudspeakers
was 0.5 m and the distance between loudspeaker and ear was 1.2 m. The sound pressure
level was 45-55 dB SPL, measured at the place of the participants head.

Subjective workload assessment To assess the subjectively perceived demand during
each block we included three workload related questions. For a good representation of
our research question we chose two items from the NASA-TLX (Hart & Staveland, 1988),
namely effort ("How hard did you have to work to accomplish your level of performance?")
and frustration ("How insecure, discouraged, irritated, stressed, and annoyed were you?").
The effort item was chosen to investigate whether remembering eight compared to two
words was perceived as more effortful, thereby linking it to our investigation of differences
in demand. The frustration item was included to assess the emotional response to the
high-demand task, particularly considering the potential stress induced to remember eight
compared to two letters. Furthermore, one question from the SURG-TLX (Wilson et al.,
2011) was chosen, namely distraction ("How distracting was the operating environment").
This item was selected to investigate how the perception of the soundscape interacts with
task-related demand. Each question was answered on a visual analog scale ranging from 0
to 20 (Hart & Staveland, 1988; Wilson et al., 2011).

Training To familiarize themselves with the tasks, participants engaged in a series of
practice blocks. During these sessions, the experimenter remained nearby, providing
guidance and support to help participants navigate through the tasks. First, they performed
the memory task twice, once with two letters and once with eight letters. Second, they
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performed a basic surgery task (i.e., instrument navigation) without the memory task or
sounds to familiarize themselves with the LabSim®. Third, they performed the cutting task
without the memory task or sounds. Lastly, participants performed two training blocks that
were identical with the blocks of the main experiment, first for the low-demand condition
and then for the high-demand condition. After the training, the experiment started and
participants performed the experimental blocks on their own.

3.3.3 Data acquisition

Participants were asked to wash their hair on the day of the recording and to not use
hair styling products. EEG data were recorded using a wireless 24-channel amplifier
(SMARTING, mBrainTrain, Belgrade, Serbia) attached to the back of the EEG cap (EasyCap
GmbH, Hersching, Germany) with Ag/AgCl passive electrodes at 10-20 layout positions
(Fp1 Fp2 AFz Fz F3 F4 F7 F8 Cz C3 C4 T7 T8 CPz Pz M1 M2 P3 P4 P7 P8 POz O1 O2) with
the reference and ground electrode at position FCz and Fpz, respectively. The data were
recorded using a sampling rate of 500 Hz, and transmitted via Bluetooth from the amplifier
to a Bluetooth dongle (BlueSoleil) that was plugged into a computer.
After fitting the cap, the skin was cleaned using 70% alcohol. Abrasive gel (Abralyt HiCl,
Easycap GmbH, Germany) was used for reducing electrical impedance and ensuring high-
quality signal. Impedances were kept below 20 kΩ at the beginning and again checked at
the end of the recording using the SMARTING Streamer software (v3.4.3; mBrainTrain,
Belgrade, Serbia).
ECG data were also recorded on a laptop but were not part of the current analyses.
Experimental markers (e.g., sound markers) were generated using the lab streaming
layer library (Kothe et al., 2024) (v1.14). The ECG recording laptop and EEG record-
ing computer were connected via Lan. To synchronize all data streams, EEG data,
ECG data, and experiment marker were collected in the Lab Recorder software (v1.14,
https://github.com/labstreaminglayer/App-LabRecorder) and saved as one .xdf file on the
EEG recording computer.

3.3.4 Preprocessing

EEG The EEG data were analyzed using EEGLAB (Delorme & Makeig, 2004) (v2022.0)
in MATLAB R2020b (The MathWorks, Natick, MA, United States). For each participant,
the continuous data were filtered with Hamming windowed FIR filter using the EEGLAB
default settings: (1) high-pass: passband edge = 0.5 Hz (filter order = 3300, transition
bandwidth = 0.5 Hz, cutoff frequency (-6dB) = 0.25 Hz); (2) low-pass: passband edge
= 30 Hz (filter order = 220, transition bandwidth = 7.5 Hz, cutoff frequency (-6dB)
= 33.75 Hz). For further analysis, only the EEG data during sound presentation were
included, i.e., data during memory encoding and retrieval were removed. To minimize
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artifacts from switching between the surgery task screen and the memory task screen
we removed the first and last five seconds of EEG data during sound presentation. Bad
EEG channels were automatically rejected using the EEGLAB function clean_artifacts from
the clean raw data plugin (Mullen et al., 2015) following a procedure described by Klug
& Gramann (2021)(Klug et al., 2022). The function was executed over ten iterations
with the following parameters: ChannelCriterion (0.8); ChannelMaxBrokenTime (0.5).
The remaining parameters were turned off. If a channel was rejected in at least 50% of
iterations, it was removed. A maximum of 5 channels could be removed to ensure that
enough data were available for channel reconstruction. On average 0.72 (± 1.28) channels
were rejected.
After bad channel removal, the data were cleaned from artifacts using infomax independent
component analysis (ICA). For ICA, a copy of the preprocessed data were created and high-
pass filtered (passband edge = 1 Hz, filter order = 825, transition bandwidth = 1 Hz, cutoff
frequency (-6dB) = 0.5 Hz), and cut into consecutive epochs of one second. Improbable
epochs with a global (all channels) or local (single channel) threshold exceeding 5 standard
deviations were automatically rejected using the jointprob function. ICA decomposition
was applied to the remaining epochs. The resulting components were back-projected on
the original preprocessed, but uncleaned data. The components were then classified using
the EEGLAB toolbox ICLabel (Pion-Tonachini et al., 2019) with the ’lite’ classifier which
is better at detecting muscle artifacts than the default classifier (Klug & Gramann, 2021).
Components belonging to the categories eye blink and movement or muscle movement
with 60% confidence were removed. Note, that the ICLabel classifier did not classify all
components correctly because it was trained on stationary data with a larger electrode
setup than ours. Therefore, we manually checked the components and made the following
adjustments: We detected ICs located at the mastoids, probably from muscle movement
(see Supplementary Figure S3.2 for an example). As the mastoids were used for re-
referencing we manually removed these ICs. Furthermore, lateral eye movement also
required manual removal in some cases. Afterwards, previously rejected channels were
interpolated using spherical interpolation. Lastly, channels were re-referenced to the linked
mastoids (M1/M2).

Audio For technical reasons, a constant delay between the marker that indicates a sound
onset and the actual sound presentation was quantified beforehand. To correct for this
constant delay the marker was shifted by 30 ms. Furthermore, the onsets of the auditory
letters were also corrected. The letters were embedded in a constant sound stream which
might lead to an energetic masking effect of the first few milliseconds of a letter. This
affects when a letter becomes audible and therefore, the time when a brain response
occurs. To obtain a better estimate when the participants could hear the letters, we used
the OnsetDetector app (Hölle et al., 2022) implemented in MATLAB which determined
the first energetic peak of the letters. The markers were shifted between 0 to 12.83 ms
(Supplementary Figure S3.1).
In order to relate the ongoing soundscape to the ongoing neural response, acoustic features
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were extracted. For this, we only used the OR playback (i.e., without the letters). From the
OR playback we extracted and compared three feature vectors, namely the envelope of the
raw OR playback, the envelope of the noise-reduced OR playback, and the onsets of the OR
playback.
The envelope of the OR playback was extracted using the mTRFenvelope function (Crosse et
al., 2016, 2021) with default inputs. To reduce the noise in the OR playback from venti-
lation and running machines, we used a Wiener filter implemented in MATLAB (Plapous,
Marro, & Scalart, 2006; Scalart, 2023). For this, we first high-pass filtered the OR playback
at 1 Hz (filter order = 1000, transition bandwidth = 0.5 Hz, cutoff frequency (-6dB) =
0.00004 Hz). We then estimated the power spectral density of the noise using the first sec-
ond of the OR playback, as it was representative of the static noise in the OR playback. The
noise estimate was then subtracted from the remaining signal. Afterwards, we extracted
the envelope from the noise-reduced OR playback using the mTRFenvelope function.
Onsets were calculated using the OnsetDetector App (Hölle et al., 2022) implemented in
MATLAB. As we aim to detect onsets in naturalistic settings the raw audio was used. The
resulting feature vector contained zeros (i.e., no onset) and ones (i.e., onsets).

3.3.5 EEG analysis

We performed two types of analysis. An ERP analysis to study the event-related responses
to the onset of the spoken letters, and a TRF based analysis to study the response to the
ongoing OR playback.

ERP calculation ERP analysis was performed for the spoken letters. For each letter,
epochs from -200 to 600 ms with respect to the stimulus onset were extracted. A baseline
correction from -200 to 0 ms prior to stimulus onset was performed. Improbable epochs
with a global (all channels) or local (single channel) threshold exceeding 3 standard
deviations were automatically rejected using the jointprob function. We then computed the
average response of each participant and block.

TRF calculation A forward modeling approach was used to compute a temporal response
function (TRF) that characterizes the brain’s temporal response to a feature vector repre-
senting the auditory stimulus. To calculate the TRF we used the mTRF toolbox (Crosse et
al., 2016). For the TRF analyses, EEG data were multiplied by factor .0313 for scaling (as
suggested in the provided code by Crosse et al. (2016)(Crosse et al., 2016)).
To evaluate which acoustic features best predicts the neural response we implemented a
forward model based on individual EEG data using a 10-fold cross-validation approach.
For this, we separated the blocks into 10 segments. With 28 blocks in total, each segment
consisted of two to three successive blocks. We split the segments into training and testing
data such that each segment was once test data and iterated through the following proce-
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dure. For the training procedure we determined a shrinkage regularization parameter λ

using the mTRFcrossval function with a time range from 0 to 450 ms time lag and a lambda
range from 10−8 to 108. This resulted in a correlation value for each fold (i.e., number of
TRF training blocks), lambda value, and channel. We averaged over folds and channels and
used the lambda value that maximized the correlation for the subsequent TRF calculation.
We then trained a forward model using the training blocks and the mTRFtrain function
with time lags from 0 to 450 ms and the optimal lambda. The resulting model was used to
predict the response of the test blocks using the mTRFpredict function. This resulted in a
prediction value for each test block, channel, and iteration, which were averaged, leaving
one prediction value per participant and acoustic feature.
Lastly, we computed a forward model for each block using mTRFtrain with time lags from
-220 to 500 ms. For the individual optimal lambda value we chose the most frequently
occurring one during the cross-validation procedure. As the scale of TRFs varied across
participants, biasing statistical comparisons of amplitudes, we z-scored each participant’s
TRF weights across time-points, channel, and blocks.

GED analysis To evaluate amplitude differences of the ERP and TRF and avoid channel
selection, we use generalized eigenvalue decomposition (GED) as a spatial filter following
guidelines by Cohen (2022)(Cohen, 2022). In short, for each ERP and TRF time-window
(i.e., N1/P2/N2) we computed a generic spatial filter across subjects that was then applied
to the data. GED maximizes the contrast between a signal covariance matrix S and a
reference covariance matrix R. For S, we computed N1, P2, and N2 time-windows and
contrasted each time-window separately against the baseline period (i.e., -200 to 0 ms).
In detail, we first average ERPs and TRFs across blocks, resulting in one time-series for each
participant. We then determined the N1/P2/N2 peak of each ERP and TRF. Regarding the
ERPs, and TRFs calculated from the onsets we searched for the N1 peak between 80-150
ms, for the P2 peak between 150-250 ms, and for the N2 peak between 200-300 ms. The
TRF calculated from the envelope showed earlier peaks, therefore we searched for the
N1 peak between 50-120 ms, for the P2 peak between 120-220 ms, and for the N2 peak
between 220-320 ms.
Second, we determined the channel with the largest amplitude for the N1/P2/N2 peak.
Around the peak, we then calculated a time-window of ±25 ms for the N1 and ±50 ms for
the P2/N2 peak.
Third, to obtain the corresponding GED filter weights we contrasted the ERP and TRF
time-windows with the baseline period. Specifically, we mean-centered the data of the
time-windows and baseline period and computed the covariance matrices for either time
periods. For each participant, the covariance matrix of interest (S) was computed for the
time-windows and the reference covariance matrix (R) was computed for the baseline
period.
We cleaned the covariance matrix S and R by first computing the average covariance matrix
S̄/R̄ across participants. We then computed for each participant the Euclidean distance
between the covariance S and S̄, and R and R̄. Covariance matrices which deviated from S̄
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and R̄ with more than 3 standard deviations were removed and S̄ and R̄ were computed
again across the remaining covariance matrices. The R̄ matrix was then regularized using
a shrinkage regularization parameter of λ = 0.01.
The resulting spatial filter maximizes the contrast between the time-windows and baseline
period. For each ERP and TRF time-window, this resulted in a number of eigenvectors
that is equal to the number of channels. The eigenvector with the largest eigenvalue
should best separate the baseline and time-window. However, this does not guarantee
physiological plausibility. We therefore investigated the GED components and reported
when not using the GED component with the strongest eigenvalue. As a result we received
a GED component time-series for each participant, ERP/TRF time-window, and block, and
for the TRF additionally for each acoustic feature. Additionally, we computed a forward
model for each component to investigate the physiological interpretability of the filter.
As eigenvectors are sign uncertain, we set appropriate signs for the GED components
(negative for N1, N2, and positive for P2). Lastly, we averaged the amplitude of the GED
component across the ERP and TRF time-windows to extract one amplitude value per
time-window, participant, and block and for the TRF also per acoustic feature.

3.3.6 Statistical analysis

All statistical analyses were performed in RStudio (v. 2021.09.0).
Prediction values of the acoustic feature were compared using a Wilcoxon signed rank test.
We computed regression models for the subjective workload questions, behavioral responses,
and GED component mean amplitudes for the ERP and TRF time-windows (i.e., N1/P2/N2).
For these analyses, we started with a model including ’participant’ as a random intercept
and ’condition’ as a fixed effect. ’Condition’ contained two categories, i.e., low- and high-
demand which were coded 0 and 1, respectively. We explored time-on-task effects (i.e.,
they were not part of the preregistration) by adding the block number as a continuous
predictor ’time’ in a second model. In the third and most complex model an interaction
term between condition and time was added:

ŷ ∼ condition + (1|participant) (3.1)

ŷ ∼ condition + time + (1|participant) (3.2)

ŷ ∼ condition ∗ time + (1|participant) (3.3)

To test whether the models improved by adding predictors we used likelihood ratio testing.
If the model fit did not improve by adding the predictor ’time’, results from the first model
were reported.
A linear mixed model (LMM) was estimated for the ERP and TRF amplitudes, for each
subjective workload question, and for the time to complete the surgery task. As the number
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of mistakes during the surgery task (zero to three mistakes) and the number of times the
tissue was damaged provided count data, a generalized linear model (GLM) with a poisson
distribution was estimated. The LMM and GLM were estimated using the R package lmer4
(v. 1.1-30). Fixed effects were evaluated using Satterthwaite approximations within the R
package lmerTest, which estimates the degrees of freedom to calculate p-values.
For the memory task, memory scores were first calculated using edit distance scoring
(Gonthier, 2022) (i.e., scores range from 0 to 1). Then, the scores received ordinal values
which were fit using a cumulative link mixed model using the clmm function of the ordinal
package (v. 12-4).
Evidence for an effect was assumed for α =.05. We corrected for multiple comparisons
using α =.05/3 = 0.017 for the ERP/TRF amplitudes (i.e., N1, P2, N2), the comparison
between prediction values of the acoustic features (i.e., envelope, noise-reduced envelope,
onsets), subjective workload questions (i.e., effort, frustration and distraction), and surgery
task performance (i.e., duration, mistakes, and tissue damage).

3.4 Results

For each response we evaluated a condition difference using regression models. We
explored whether adding time as a predictor improved the model fit. Table 3.1 shows
the selected model for each response and whether the corresponding beta values were
significant.

3.4.1 Subjective measures of demand

After each block, we asked participants how effortful, frustrating, and distracting they
perceived the task. There was a significant increase in scores from the low- to high-demand
condition for all three measures (Fig. 3.2a-c; effort: b = 3.73, SE = 0.22, p < .001;
frustration: b = 2.71, SE = 0.28, p < .001; distraction: b = 1.31, SE = 0.19, p < .001).
There was no significant change in theses measures over time, i.e., for all three questions
the model fit did not improve by adding time as a predictor (Supplementary Table S3.2).

3.4.2 Objective measures of performance

The memory score, which could range between 0 to 1, was in the low-demand condition
on average 0.97 (SD=0.13) and in the high-demand condition 0.75 (SD=0.24). The
first model, which included only condition as a predictor, was used (Supplementary Table
S3.3) and revealed a significant decrease in memory score from the low- to high-demand
condition (Fig. 3.2d, b = −4.63, SE = 0.39, p < .001).
To evaluate the performance during the surgery task we used three measures: task duration
(i.e., time to finish the surgery task), the number of mistakes (i.e., dropping or rupturing
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a vessel), and the number of times the tissue was damaged (i.e., tissue that was touched
with either of the tools). Figure 3.2e-g illustrates the results of the behavioral performance.
The performance was already high at the beginning of the experiment, which is evident in
the low number of mistakes in most of the blocks. The average number of mistakes is 0.33
(SD=0.48) in the first block and 0.18 (SD=0.39) in the last block. The number of times
tissue was damaged changed from 6.2 (SD=3.96) in the first block to 5.4 (SD=4.88) in
the last block. Furthermore, task duration appeared to improve, particularly in the first ten
blocks, after which it remained relatively stable. For neither of these measures, we found a
significant difference between conditions (task duration: b = −1.842, SE = 1.57, p = .228;
mistakes: b = 0.14, SE = 0.19, p = .445; tissue damage: b = −0.02, SE = 0.034, p = .556).
However, for all measures adding time as a predictor significantly improved the model fit
(Supplementary Table S3.3) and revealed a significant decrease over time (task duration:
b = −0.91, SE = 0.1, p < .001; mistakes: b = −0.03, SE = 0.01, p = .0046; tissue damage:
b = −0.01, SE = 0.02, p < .001), in other words, participants became faster and made
fewer mistakes.
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Figure 3.2: (a-c) Subjective responses. (d) Memory task performance. (e-f) Surgery task perfor-
mance. Dotted lines show averaged data over participants for each condition and block. Solid lines
represent predicted responses that were calculated using the second model. Predicted responses for
the memory task were not computed as a cummulative link model was used.

3.4.3 Demand and time-on-task effects for ERPs in response to
the spoken letters.

The response to the task-irrelevant spoken letters was evaluated by averaging GED com-
ponent amplitudes for the N1 (Fig. 3.4a), P2 (Fig. 3.4b), and N2 (Supplementary Figure
S3.4a) over their respective time-window. Both the morphology as well as the topographies
of the GED components with the strongest eigenvalues (Supplementary Figure S3.4a) are
physiologically plausible.
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Contrary to our expectation, we observed no significant effect of demand on the N1
(b = 0.4, SE = 1.84, p = .827), the P2 (b = 0.21, SE = 1.91, p = .256), or the N2 (b =
0.169; SE = 2.05; p = .411) amplitude. Exploring time as a predictor significantly improved
the models for the N1 and P2 amplitudes but not for the N2 amplitude (Supplementary Ta-
ble S3.3) and revealed a significant N1 amplitude decrease (b = 0.3, SE = 0.11, p = .0012)
and a P2 amplitude increase (b = 0.38, SE = 0.11, p = .0014) over time.

3.4.4 Prediction accuracies for the TRFs in response to the OR
playback.

The TRFs were calculated by relating the continuous OR playback to the EEG signal. We
used three acoustic features to calculate the TRF, namely the envelope extracted from
the raw audio, the envelope extracted from the noise-reduced audio, and the onsets
extracted from the raw audio (Fig. 3.3a). To compare these features, we calculated the
prediction accuracy for unseen neural data. Overall, the prediction values were small (Fig.
3.3b) which is common for this measure. Importantly, the envelope of the noise-reduced
audio as well as the onsets showed significantly higher prediction accuracies compared
to the envelope from the raw audio (noise-reduced envelope: W = 3, p < .001; onsets:
W = 1, p < .001). The noise-reduced envelope and onsets did not significantly differ from
each other (W = 118, p = .799).

Figure 3.3: a) The acoustic features used for TRF model estimation. The same stimulus snippet
is shown as the raw audio, envelope of the raw audio, envelope of the noise-reduced audio, and
onsets of the raw audio. b) Prediction values of each acoustic feature. Each line represents the
change in prediction value between acoustic features for each participant. *** p < .001
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3.4.5 Demand and time-on-task effects for TRFs computed from
the noise-reduced envelope and onsets.

We computed the TRF in response to the noise-reduced envelope (hereafter TRFenvelope)
and in response to the onsets (hereafter TRFonsets). Although there was no difference be-
tween prediction accuracies between these two acoustic features, they might still represent
different aspects of the soundscape and, therefore, different responses. To enhance the
signal-to-noise ratio and to spatially filter the data GED components were extracted. The
mean amplitudes over the N1, P2, and N2 time-windows were used for evaluation. Figure
3.4c and d shows the distinct time-series and topographies for the N1 TRFenvelope and the
N1 TRFonsets, respectively. The remaining GED time-series, as well as GED eigenvalues can
be found in supplementary figure S3.3 and S3.4. Visually there are considerable differences
in the temporal evolution between the TRFenvelope and the TRFonsets. While the TRFenvelope

follows a trajectory similar to the ERPs its response peaks occur earlier than that of the
ERPs and the TRFonsets.
Regarding the N2 TRFenvelope, the GED component with the second strongest eigenvalue
showed more plausible trajectories and topographies than the first GED component (Sup-
plementary Figure S3.4).
As TRFenvelope and TRFonset showed similar prediction values, we evaluated amplitudes of
both TRFs, and corrected for additional multiple comparisons using α =.05/3 (responses)
/ 2 (acoustic feature) = 0.0083. For all TRFenvelope amplitudes, we found no condition
difference (N1: b = −0.94, SE = 0.57, p = .102; P2: b = −0.37, SE = 0.49, p = .449; N2:
b = 0.75, SE = 0.45, p = .095) and adding time as a predictor did not lead to a better
model fit compared to the first model (Supplementary Table S3.3).
Regarding the TRFonsets amplitudes we found no condition differences (N1: b = 0.49, SE =
0.41, p = .23; P2: b = 0.025, SE = 0.39, p = .948; P2: b = −0.12, SE = 0.35, p = .716).
Adding time as a predictor yielded a better model fit for the N1 amplitude, but not for the
other amplitudes. This revealed a trend towards significance for the predictor time for the
N1 TRFonsets (b = 0.07, SE = 0.02, p = .011).

3.5 Discussion

In this study, we examined the impact of varying demand and time-on-task on subjective
responses, task performance, and EEG responses within a naturalistic setting, utilizing a
laparoscopic simulator and an operating room soundscape. We found divergent subjective
and objective behavioral responses. Participants perceived the high-demand condition as
more demanding than the low-demand condition, which remained stable over time. How-
ever, surgery task performance did not differ between demand conditions but demonstrated
improvement over time.
The overall perceived demand of the two conditions was evaluated with subjective work-
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Figure 3.4: The first GED components of the (a) N1 ERP (demand: n.s., time: p = .0012), (b)
P2 ERP (demand: n.s., time: p = .0014), (c) N1 TRFenvelope (demand: n.s., time: n.s.), and (d)
N1 TRFonsets (demand: n.s., time: n.s.). The morphology shows the GED time-series for each
condition, averaged over participants. The shaded area represents the confidence interval across
participants. The grey bar shows the time-window that was used to derive the amplitudes. The
topographies depict the forward model of the GED weights and shows which channels contributed
most to the GED component. The graph to the right, shows the change in amplitude across time
and conditions. Dotted lines show averaged data over participants for each condition and block.
Solid lines represent predicted responses that were calculated using the second model.

load questions. The observed effect that high demand compared to low demand increases
subjective workload ratings during a surgery task aligns with prior research (Gao et al.,
2019; Modi, Singh, Darzi, & Leff, 2020; Zander et al., 2017). A possible explanation for
the perceived differences in demand across conditions, despite consistent performance
levels across conditions, is that participants may have prioritized their performance of the
surgery task. By putting more cognitive effort into the surgery task in the high-demand
condition, they were able to achieve similar surgery task performance across both con-
ditions. Likewise, a surgeon would prioritize performance during an actual surgery for
the benefit of the patient, even if it means an increase in perceived demand. This implies
that task performance and subjective experience are not necessarily related and may also
explain the contradictory findings reported in the literature. Some studies report a negative
impact of increased demand on performance (Gao et al., 2019; Moorthy, Munz, Dosis,
et al., 2003), while others show no effect (Hsu, Man, Gizicki, Feldman, & Fried, 2008),
or suggest that the effect depends on the investigated performance measure (Modi et al.,
2020; Poolton et al., 2016). Most studies, did not assess the subjective demand, and only
concentrate on task performance. However, this limits our understanding how perceived
demand and surgical task performance relate and should be addressed in future research
by incorporating subjective demand measures.
Regarding the impact of time-on-task on performance, previous research has also demon-
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Response Model Condition Time
subjective tlx-effort 1 3.73*
workload tlx-frustration 1 2.71*
questions tlx-distraction 1 1.31*
behavioral memory score 1 -4.63*
performance duration 2 -1.842 -0.91*

mistakes 2 0.14 -0.03*
tissue damage 2 -0.02 -0.01*

ERPs N1 2 0.4 0.3*
P2 2 0.21 0.38*
N2 1 0.169

TRFenvelope N1 1 -0.94
P2 1 -0.37
N2 1 0.75

TRFonsets N1 2 0.49 0.07 .
P2 1 0.025
N2 1 -0.12

Table 3.1: The table shows the selected model for each subjective, behavioral, and neural response.
’Model’ lists the chosen model for each response. Model 1 included ’condition’ as a predictor and
model 2 ’condition’ and ’time’ as predictors. Beta values are listed below each predictor. The stars
indicate predictors below the Bonferroni-corrected p-value. A trend is marked with a dot.

strated that task performance improves over time (Hu, Lu, Tan, & Lomanto, 2016; Maimon
et al., 2022; Suárez et al., 2022; Zakeri, Mansfield, Sunderland, & Omurtag, 2020), high-
lighting visible training effects within a short amount of practice when using the same
surgery task. We did not find a change in perceived demand over time, similar to Suárez et
al. (2022) who found that training did not reduce demand for the same NASA-TLX items
as used in this study (i.e., effort and frustration) or the total score. Others reported that
surgical training lowers the NASA-TLX total score (Hu et al., 2016; Zakeri et al., 2020). This
once again demonstrates that the relationship between task performance and perceived
demand is not straightforward. The use of various methods to vary demand and surgical
tasks, each with different performance parameters and subjective and objective measures,
also complicates the generalization of findings across studies (Georgiou, Larentzakis, &
Papavassiliou, 2017). To improve generalization, it would be useful to evaluate how the de-
mand experienced during actual surgeries reflects the demand experienced during surgical
simulations. Our results suggest that situational demand, rather than actual surgical skill,
influences the perceived demand in inexperienced participants. This suggests that surgical
training programs should integrate high-demand simulations to more effectively prepare
novice surgeons, who are particularly susceptible to changes in task demand (Arora et al.,
2010; Hsu et al., 2008), for the cognitive and emotional demand they will encounter in real
surgeries. By systematically exposing novice surgeons to challenging scenarios, training
programs can enhance their ability to manage stress and maintain performance under
pressure, potentially reducing errors and improving patient outcomes. Furthermore, novice
surgeons may benefit from training to reflect on their individual susceptibility to noise.
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This is because noise reduction interventions are especially beneficial for surgeons who
perceive the soundscape as disturbing (Engelmann et al., 2014). Such training could also
incorporate communication strategies to reduce avoidable noise sources in the operating
room, especially at the start of critical and high-demand phases of the surgery. This would
help to reduce the overall experienced demand for the surgeons.
As an alternative objective measure to capture the perceived task demand, we investigated
two neural response measures to the task-irrelevant soundscape. Specifically, we analyzed
ERPs in response to spoken letters and TRFs in response to the OR playback. In general, we
find a clear neural response to the letters as well as for the naturalistic OR playback, which
is in line with our previous study showing significant responses for naturalistic soundscapes
(Rosenkranz et al., 2023). This further expands the use of mobile EEG in applied settings
(Wascher et al., 2021), as both measures can be used to study the neural response to a
complex natural soundscape in a work-like environment. Contrary to our hypothesis, we
found no significant effect of task demand on the neural measure of sound processing,
neither in response to the letters nor to the OR playback. Participants’ subjective ratings
indicate that our intended manipulation — to increase the scenario’s challenge — had an
effect, with participants perceiving the soundscape as more distracting in the high-demand
condition. However, this perceptual shift is not reflected in our neural measurements. Our
exploratory analyses revealed time-on-task effects, for the N1 and P2, and a trend for the
TRFonsets N1. This was apparently unrelated to the subjectively perceived distraction, which
remained stable over time.
Our results should be considered in light of the neural measures used to investigate different
aspects of the soundscape, i.e., the ERPs and TRFs. The ERPs captured responses to the reg-
ularly occurring letters associated with the memory task. To increase the distracting nature
of the task-irrelevant soundscape and simulate demanding internal cognitive processes we
adapted a serial-recall paradigm. We observed no effect on any ERP time-window, however,
previous studies using a serial-recall paradigm have shown that an increase in distraction
leads to an increase in N1 ERP amplitude (Campbell, Winkler, Kujala, & Näätänen, 2003).
In contrast to a classic serial-recall paradigm, we used the serial-recall task as a secondary
task with a long retention interval (more than 60 seconds), and presented distractors at a
rate of 3 seconds. Furthermore, we presented the letters in the presence of background
noise, which may have reduced distraction effects in our paradigm (Haapakangas et al.,
2020). Our choice of distractor presentation (long inter-trial-intervals and in the presence
of noise), in combination with an engaging surgery task, may have enabled participants to
easily ignore the letters over time, independent of the number of items to recall, resulting in
similar responses across conditions. Notably, the results showed a decrease in N1 amplitude
and an increase in P2 amplitude, indicating neural adaptation due to repeated stimulus
presentation. This may be similar to the adaptation observed for brief repetitive tones
(Hari, Sams, & Järvilehto, 1979; Wong, Huo, & Maurer, 2023). The decrease in ERP N1
amplitude could indicate that distraction due to the letters decreased (Campbell et al.,
2003), independent of the conditions. Participants may have initially attended to the letters,
e.g., due to their deviation from the continuous soundscape, and learned that the letters
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are task-irrelevant and can be ignored as such (Schröger, 1997). The P2 amplitude increase
is more difficult to interpret, as only few studies investigated it in the context of distraction.
One study showed an amplitude increase with increased distraction (Regenbogen et al.,
2012), which would contradict our interpretation, while another study found no effect
of distraction on P2 amplitude (Mahajan, Kim, & Davis, 2020). In summary, the results
suggest that the task-irrelevant spoken letters did not sufficiently distract participants to
elicit distinct neural responses under varying demands. However, the changes in amplitude
across time indicate that the responses can capture some form of modulation. As this
was an exploratory finding, further investigation is necessary to reveal how responses to
task-irrelevant acoustic events change over time when presented in a realistic work-like
setting. This information could shed light on how the brain adapts to such events in real
life.
The TRFs captured responses to the realistic OR playback. To the best of our knowledge
this is the first study investigating demand effects on responses to task-irrelevant ongoing
soundscapes. Despite the fact that we measured a clear TRF to the soundscape, we did not
find a difference between conditions. One explanation for this null-finding is that TRFs
calculated from the entire soundscape are not sensitive enough to detect demand effects.
A small portion of sounds may have elicited demand effects similar to ERPs (Brockhoff et
al., 2022). However, these effects may have been reduced by mostly demand-unrelated
responses. Support for this explanation comes from our previous study (Rosenkranz et al.,
2023), where we found attention-dependent responses for specific highly salient sounds,
but only marginal differences in the TRF to the background soundscape. This might also
explain why we found no time-on-task effects for the TRF, except for the trend of a decrease
for the TRF N1 calculated from the onsets (TRFonsets), despite the effect for the ERPs. While
the ERPs captured responses to similar sounds, the TRFs captured responses to the OR
playback which was much more diverse than the letters. This might have decreased a
potential time-on-task effect for the TRFs compared to ERPs, as different and overlapping
responses are less sensitive to detect effects compared to similar and isolated responses
(Haupt et al., 2024). For example, an audio signal, that contains a constant high level
of noise, would result in an essentially flat envelope, for which no reliable TRF could
be computed. Any acoustic event, that is embedded in this background sound, though
perceivable to the human ear, would not be reflected in the envelope. This is evident in
our finding that TRFs computed from the raw envelope, which captured little variation of
the soundscape, provided low prediction values. The individual acoustic events, such as
the beeps of machinery or the clatter of tools, were only adequately captured by reducing
the noise in the raw envelope. By highlighting the individual acoustic events, the envelope
became more similar to the computation of the onsets. The similarity between these two
features is expressed in similar prediction values. This suggests that the brain’s processing
of sounds goes beyond simply following the acoustic envelope (Di Liberto, O’Sullivan,
& Lalor, 2015; Drennan & Lalor, 2019). Instead, it actively distinguishes and monitors
individual acoustic events in the presence of background noise, similar to how speech
is perceived in noisy environments (Khalighinejad, Herrero, Mehta, & Mesgarani, 2019).
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Note, that similar prediction values, do not necessarily imply a similar neural representation
of the soundscape (Haupt et al., 2024). This is hinted by the trend in the TRFonsets N1
which was not observed in the TRFenvelope. However, the similar prediction accuracies
indicate that onset information about acoustic events is enough to estimate the neural
response to complex soundscapes. This can have practical implications when privacy is
important (e.g., in an actual OR context where medical information about a person are
discussed). It would be sufficient to extract acoustic onsets automatically, without the
need to record the raw audio (Hölle & Bleichner, 2023b; Hölle et al., 2022). Overall, we
have demonstrated that it is possible to obtain responses from continuous task-irrelevant
soundscapes. However, future studies may benefit from describing the soundscape not only
in the form of an envelope or by extracting onsets, but to differentiate between different
sound sources to obtain a more fine grained picture.
An alternative explanation for the discrepancy between our objective measures (i.e., task
performance and neural measures) and the subjective reports is that the subjective reports
did not accurately reflect participants’ perceived demand throughout an entire block. As
the subjective responses were collected at the end of a block, they may reflect the perceived
demand of the memory task during encoding. In other words, participants found it difficult
to remember two compared to eight letters, but experienced the surgery task as similar
demanding across conditions. It is important to note that although performance on the
memory task differed between conditions, the difference was generally small. This may be
attributed to the homogeneity of the participant pool and their high cognitive capacities,
comprising medical students of a similar young age. Although participants still rated
the high-demand condition to be more demanding, the high-demand condition has not
depleted their cognitive resources enough, which could explain the absence of differences
in our objective measures. Furthermore, given the complexity of the task, accurately
pinpointing the source and amount of demand — whether it’s remembering the letters, the
surgery task, or a combination of both — may have been difficult for participants. Indeed,
the NASA-TLX has been criticized that different participants might rate different aspects of
the task (McKendricka & Cherry, 2018). Collecting separate subjective responses for each
task may have improved interpretation. However, in natural environments, the source of
demand, whether it is the environment or the task, can rapidly change, making subjective
responses at a single point in time difficult to interpret. This once again emphasizes the
importance of continuously and objectively monitoring sources of demands, such as the
soundscape, to understand how they affect the individual.
In order to improve the understanding of varying demands on responses to ongoing, task-
irrelevant soundscapes, we offer three suggestions for future work. Firstly, a different
manipulation of demand could clarify whether neural responses to irrelevant sounds are
indeed insensitive to detect demand effects in complex settings. The measurement of EEG
during a standing, bi-manual task presents a greater challenge than in traditional stationary
setups. Such complex scenarios also engage a variety of cognitive processes. These two
aspects likely increase individual variability in EEG responses and reduce sensitivity to
isolated demand effects. Furthermore, it is possible that the demand manipulation may
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have not been strong enough to elicit differences in the neural response. For these reasons,
it might be necessary to implement manipulations with larger differences in cognitive
demand. Secondly, we used a general representation of the soundscape, by computing
the envelope and onsets of the playback. A more detailed description of the soundscape,
for example, by differentiating between specific sounds may lead to a better estimate of
the neural response (Haupt et al., 2024). Finally, our study involved a small sample of
young medical students with limited OR experience. This offers valuable insights into
the feasibility of using EEG in complex settings. However, the generalizability to the
clinical personal is limited. Future studies would benefit from increasing heterogeneity
and sample size. Tailoring the sample to the target population by including experienced
surgeons would provide deeper understanding of how personnel accustomed to complex
environments process and perceive the soundscape under varying demand. Implementing
these suggestions will advance the application of EEG in work environments and enhance
our understanding of whether and how cognitive states can be inferred from responses to
natural, task-irrelevant soundscapes.
Our ultimate goal is to study neural responses in real-world settings and workplaces, such
as the OR. These settings are characterized by a complex and varying soundscape, while
individuals engage in tasks of varying complexity, which the researchers have limited
control over. In order to learn from our results for other studies that are interested in
real-world recordings, it is important to discuss some properties of the soundscape we have
used here. We used the playback of a natural soundscape that was recorded in an OR using
a static microphone positioned at the center of the room. We presented this soundscape
via two loudspeakers to a stationary participant. This setup ensured that the soundscape
maintained realistic spatial properties from the listener’s perspective, reflecting the acoustic
environment of an operating room. Despite the naturalness of this soundscape, there are
important differences between the OR playback we used and an actual OR soundscape
experienced in real-life situations. One key difference is sound expectancy. For instance, in
an OR setting, there is an expectation that specific actions one can see, such as laying down
a tool, will produce a particular sound. In other words, there is a congruence between
visual and auditory information. In our study, this audio-visual congruence is absent;
all the sounds our participants hear are not congruent with the actual situation they are
in. One might expect these differences to affect the neural response we have measured,
although the direction of this effect is difficult to predict. Some speech tracking studies have
shown an enhanced tracking of the speech envelope when congruent visual information
is provided (Crosse, Butler, & Lalor, 2015). On the other hand, a mismatch of visual and
auditory information could also lead to a larger neural response (Ullsperger, Erdmann,
Freude, & Dehoff, 2006). A second difference between the soundscape experienced in
the OR and our OR playback is the relevance of the sounds for the participant. In an OR
setting, many sounds carry contextual information, for example, the sound of an alarm,
the feedback sound of a tool that is in use, or relevant communication between personnel,
that are critical to the surgery and sometimes require task-related actions. In contrast,
the soundscape we presented was entirely task-irrelevant for our participants, essentially
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transforming all sounds into a meaningless noise background. One can expect that for
personally relevant or salient information within a soundscape influences its processing
and thereby the neural response (Holtze et al., 2021; Roye, Jacobsen, & Schröger, 2013;
Straetmans et al., 2021). Taken together, these factors may significantly change the neural
response to the naturalistic soundscape we have presented, compared to when this natural-
istic soundscape would have been experienced in its actual context. Moving forward, future
studies should be aware of these important factors when studying naturalistic soundscapes.
To conclude, our results demonstrated the feasibility and potential of combining mobile
EEG and audio recordings to study cognitive processes in complex, real-world environ-
ments. Our findings showed a temporal change in neural responses to specific sounds,
but not to the entire soundscape. This suggests that responses to isolated sounds may be
more sensitive indicators of alterations in auditory processing than responses to the entire
soundscape. Furthermore, we observed that increased task demand resulted in a higher
perceived demand and distraction, but these changes were not reflected in the neural
responses or objective task performance measures. This discrepancy indicates that a high
performance can be maintained even in demanding environments, but potentially at a cost
to a person’s wellbeing. These insights have important implication for the surgical field
and other workplaces. They highlight the need to consider both subjective experiences and
objective measures when evaluating cognitive demand in high-stakes environments. Our
approach contributed to methodological advancements in neurophysiological research and
opens new avenues for optimizing auditory environments in surgical workplaces, ultimately
contributing to both performance and the wellbeing of personnel.
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3.9 Supplementary material

Deviations from preregistration

TRF analyses

• Initially we ran the cross-validation procedure 100 times and randomly chose 90% of
the blocks as test data and the remaining 10% of the blocks as training data. However,
we realized that this is computationally expensive while resulting in very similar
prediction values as with the approach in the manuscript.

• During the last step of TRF calculation we computed the window from -220 to 500
ms. In the preregistration the window ranged from -200 to 500 ms, however, due to
an early artefact common to TRF calculations (Crosse et al., 2021) we had to increase
the window.

• Due to an oversight we did not detail in the preregistration how we determined the
individual optimal lambda value.

• We z-standardized the TRF values before GED analyses. This was necessary as the in-
dividual lambda range was large, thus resulting in individual TRFs on different scales
which lead to violations of the normality assumption for the statistical comparison.

GED analyses Our initial idea was to individualize the analyzes pipeline, especially the
GED computation and compute a spatial filter per participant. However, it turned out that
this worked well for our pilot data but to a much lesser degree for the entire dataset. The
GED analyses led to component time-series and maps that were hard to interpret or not
meaningful making component selection difficult. Therefore, we used a grand average GED
model and made the following adaptations:

• We used the GED weights calculated from all subjects and applied them to each
subject and block. The initial idea was to calculate GED weights for each participant
calculated from the grand average over blocks and apply the weights to all blocks of
of this participant.

• We calculated fixed time-windows to determine the component time-windows. Ini-
tially, the full width at half maxmimum/minimum with respect to the peak was used,
but this lead to time-windows that extended over the response of interest.

• We calculated the S and R covariance matrix for each participant and cleaned the
matrix before averaging. This is a step included in Cohen (2022)(Cohen, 2022).
Initially, we used the grand average ERP of a participant to compute one S and one R
matrix, thereby making the cleaning step unnecessary.

Further adaptions to the GED analyses were made:
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• Initially the peak of all ERP and TRF components were searched for in the same
time-window. However, it turned out that the envelope response peaks earlier than
the ERPs and TRFs calculated from the onsets due to temporal smearing. To account
for this, we searched for the envelope peaks in an earlier time-window, as stated in
the manuscript.

• In the preregistration the lambda value to regularize the R matrix was defined as
λ = 0.1 which was a typo. The initial analyses was set up with λ = 0.01 as stated in
the manuscript and which was also used in Cohen (2022) (Cohen, 2022).

Statistical analyse

• The initial idea was to calculate the maximum LMM (i.e., ŷ ∼ condition+(condition|participant)).
However, in most cases this model did not converge, especially when adding time
as a predictor. We decided to start with model 1, then successively add fixed effects,
and finally evaluate the change in model fit.

• For the memory scores, we initially wanted to calculate a beta regression model, but
realized that these are not applicable when responses are bound to 0 or 1, which was
the case for our data.

72 Chapter 3 Study II - Using mobile EEG to study auditory work strain during
simulated surgical procedures.



Shift of letter onset

Figure S 3.1: Time-representation of each letter. The red line indiactes the shift of the letter onset.

Removed IC containing muscle movement

Figure S 3.2: This is an example of an independent component of one participant that was manually
removed, as it contained noise at the mastoid electrode.
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GED covariance matrices

(a) ERP components in response to the letters.

(b) TRF components calculated from the noise reduced envelope.

(c) TRF components calculated from the osets.

Figure S 3.3: GED covariance matrices and eigenvalues for (a) ERPs, and TRFs calculated from the
(b) noise reduced envelope and (c) onsets. Upper left and right plot depict the S̄ and R̄ covariance
matrix, respectively. The lower plot depicts the eigenvalues of each component.
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GED components

(a) ERP N2: First GED component.

(b) (left top) First GED component of P2 TRF envelope (noise-reduced). (right top) First GED component
of N2 TRF envelope (noise-reduced) and (left bottom) second GED component of N2 TRF envelope (noise-
reduced). The second component was chose for the N2 analyses, as the map and topographies look more
plausible.

(c) (left) First GED component of P2 TRF onset. (middle) First GED component of N2 TRF onset.

Figure S 3.4: This figure shows GED components that were analyzed but not shown in the
manuscript. The GED time-course displays averaged data (line) and standard error (shaded area)
across participants. The grey area shows the time-window that was used to compute the average
amplitude. The topographies depict the forward model of the GED component.
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Statistical model compairsons

Behavioral and subjective Results

response predictor AIC BIC logLik Chisq Df Pr(>Chisq)

tlx-effort condition 3164.4 3182.1 -1578.2
condition+time 3166.0 3188.2 -1578.0 0.3593 1 0.5489
condition*time 3166.7 3193.3 -1577.3 1.3156 1 0.2514

tlx-effort condition 3440.7 3458.5 -1716.4
condition+time 3442.5 3464.7 -1716.2 0.2661 1 0.6059
condition*time 3444.4 3471.0 -1716.2 0.0961 1 0.7565

tlx-distraction condition 3006.0 3023.7 -1499.0
condition+time 3006.4 3028.7 -1498.2 1.5193 1 0.2177
condition*time 3007.8 3034.5 -1497.9 0.6005 1 0.4384

Performance time condition 5656.2 5674.0 -2824.1
condition+time 5576.4 5598.6 -2783.2 81.8695 1 <2e-16 ***
condition*time 5577.7 5604.3 -2782.8 0.6821 1 0.4089

Mistakes condition 619.97 633.29 -306.98
condition+time 613.99 631.74 -302.99 7.9818 1 0.004725 **
condition*time 614.66 636.86 -302.33 1.3249 1 0.249721

Tissue damage condition 3807.9 3821.2 -1901.0
condition+time 3778.8 3796.6 -1885.4 31.0797 1 2.476e-08 ***
condition*time 3778.8 3801.0 -1884.4 1.9995 1 0.1573

Table S 3.2: The table shows model performance of the statistical models. The simplest model
contained condition as a predictor. There is no model comparison for the memory condition, as the
models did not converge when adding time as a predictor. Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’
0.05 ‘.’ 0.1 ‘ ’ 1
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EEG data

response predictor AIC BIC logLik Chisq Df Pr(>Chisq)

ERP - N1 condition 5484.0 5501.5 -2738.0
condition+time 5475.5 5497.4 -2732.7 10.4946 1 0.001197 **
condition*time 5476.2 5502.6 -2732.1 1.2575 1 0.262118

ERP - P2 condition 5549.9 5567.5 -2770.9 5541.9
condition+time 5541.7 5563.7 -2765.9 10.1876 1 0.001414 **
condition*time 5543.3 5569.6 -2765.6 0.4539 1 0.500484

ERP - N2 condition 5622.4 5639.9 -2807.2
condition+time 5623.6 5645.6 -2806.8 0.7320 1 0.3922
condition*time 5625.5 5651.9 -2806.8 0.0959 1 0.7568

TRFenv - N1 condition 4067.9 4085.5 -2030
condition+time 4066.6 4088.6 -2028.3 3.2459 1 0.0716 .
condition*time 4068.2 4094.6 -2028.1 0.4148 1 0.5196

TRFenv - P2 condition 3887.3 3904.9 -1939.4
condition+time 3889.2 3911.2 -1939.6 0.0451 1 0.8318
condition*time 3891.2 3917.6 -1938.6 0.0131 1 0.9090

TRFenv - N2 condition 3778.3 3795.9 -1885.2
condition+time 3780.3 3802.3 -1885.1 0.0175 1 0.8946
condition*time 3782.3 3808.6 -1885.1 0.0258 1 0.8723

TRFons - N1 condition 3663.6 3681.2 -1827.8
condition+time 3659.2 3681.2 -1824.6 6.3816 1 0.01153 *
condition*time 3661.2 3681.5 -1824.6 0.0408 1 0.83994

TRFons - P2 condition 3610.4 3628.0 -1801.2
condition+time 3610.1 3632.1 -1800.1 2.2199 1 0.1362
condition*time 3610.6 3637.0 1799.3 1.5038 1 0.2201

TRFons - N2 condition 3440.1 3457.7 -1716.0
condition+time 3439.8 3461.8 -1714.9 2.2371 1 0.1347
condition*time 3441.8 3468.2 -1714.9 0.0232 1 0.8790

Table S 3.3: The table shows model performance of the statistical models. The simplest model
contained condition as a predictor. TRFenv: TRFs were calculated using the noise reduced envelope.
TRFons: TRFs were calculated using the onsets of the raw audio. Signif. codes: 0 ‘***’ 0.001 ‘**’
0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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4.1 Abstract

Complex soundscapes in high-stakes environments, such as the operating room (OR), are
characterized by a variety of overlapping auditory stimuli and present significant challenges
for personnel, particularly during periods of high demand. This study investigates how task
demand and an OR soundscape including irrelevant speech, influence perceived workload,
surgical performance, and auditory processing in a simulated surgical environment, using
mobile electroencephalography (EEG). Participants performed two simulated surgical tasks,
namely peg transfer and suturing, representing a low-demand and high-demand task,
respectively. The tasks were performed under two sound conditions: An OR soundscape
was presented with irrelevant speech or alone. Neural responses to transient and continuous
auditory stimuli were analyzed using event-related potentials (ERPs) and temporal response
functions (TRFs), respectively. Results showed that irrelevant speech increased self-reported
workload and distraction. EEG analyses revealed reduced neural responses to transient
sounds and irrelevant speech under high task demand, reflecting early-stage sensory
filtering of auditory distractions. Notably, an inverse relationship was observed between
neural responses to speech and self-reported workload, indicating that the speech responses
may serve as a marker for perceived workload. Overall, this study demonstrates the
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potential of EEG to assess irrelevant sound processing in realistic work-like settings and
highlights the critical role of task demand in modulating neural responses and self-reported
workload to soundscapes.

4.2 Introduction

Certain professions require a high degree of skill and precision but must be performed in
environments where distractions are inevitable and mistakes can have fatal consequences.
Surgery, for example, is inherently demanding, requiring precise handling of instruments,
advanced technological skills, and high levels of concentration over a long duration. In such
professions, cognitive resources must be allocated to incoming information across multiple
sensory modalities (Wickens, 2008). The environment is characterized by a complex
soundscape, comprising a multitude of concurrent sounds, including communication,
alarms, monitoring sounds, and instrument usage. The individual team member must
distinguish between relevant and irrelevant, potentially distracting, information within this
complex soundscape. Thus, distraction represents a cognitive challenge in the operating
room (OR), with a notable impact on personnel well-being (Kern et al., 2019) and has been
linked to elevated stress levels and an increased likelihood of errors (Mentis et al., 2016).

Although a variety of sounds can be perceived as distracting (Güļsen et al., 2021; Tsiou et
al., 2008; Weigl et al., 2015), irrelevant speech, that is, speech unrelated to the procedure,
is particularly perceived as distracting (Healey et al., 2007; Tsiou et al., 2008; van Harten
et al., 2021) and increases perceived workload (Weigl et al., 2015; Wheelock et al., 2015).
Although speech is frequently identified as a distractor in the OR, there is mixed evidence
regarding the impact of the OR soundscape, including speech, on surgical performance.
Some studies showed performance reductions when the soundscape was compared with
silence (e.g., Pluyter et al., 2010; Siu et al., 2010) or when irrelevant speech is the sole
distractor (Czerwiec et al., 2024). Yet, a realistic OR environment includes multiple
overlapping sounds, with silence being a rare condition and irrelevant speech only one
of several potential auditory distractors (Güļsen et al., 2021). This highlights the need
to study how the combination of irrelevant speech and other overlapping sounds in the
OR soundscape influence the individual and affect surgical performance under realistic
conditions.

Instead of comparing an OR soundscape or speech with silence, auditory distraction should
be investigated in the context of varying task demands. Subjective reports from medical
personnel indicate that irrelevant speech is perceived as particularly distracting during
phases of high task demand compared to phases of low task demand (Persoon et al.,
2011; van Harten et al., 2021). This suggests that surgical task demand modulates the
impact of irrelevant speech distractions. Understanding the contribution of distractors like
irrelevant speech and their interaction with task demands is therefore crucial for optimizing
performance and improving the work environment.
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A comprehensive assessment of the interaction between task demand and distraction in
complex environments like the OR requires a combination of objective and subjective
measures. Using only subjective measures (e.g., self-reports), it can be challenging to
separate the specific contribution of speech from the overall impact of the task demand,
and other sounds in the OR environment (Dias, Ngo-Howard, Boskovski, Zenati, & Yule,
2018). Similarly, measures of performance may not capture situations where individuals
find the soundscape distracting, even if their performance is unaffected (Rosenkranz,
Haupt, Jaeger, Uslar, & Bleichner, 2024). For example, surgeons may experience increased
workload in order to maintain a high level of performance within a distracting environment.
To complement self-reports and performance measures, electroencephalography (EEG)
provides another measurement. Mobile EEG is increasingly employed in the study of
work environments (Wascher et al., 2021) and provides reliable responses to complex
soundscapes and speech while a task is being performed (Herrmann, 2024; Rosenkranz
et al., 2023, 2024; Xie et al., 2023). Thus, EEG can be related to the different potential
auditory distractors like irrelevant speech and the OR soundscape and assess how the
processing of each distractor varies with task demand.

To investigate the neural processing of distinct auditory stimuli within the OR soundscape,
we employed two complementary EEG analysis approaches. First, we computed event-
related potentials (ERPs) which are well-established for studying the processing of transient
sounds in relation to task demands (e.g., Wascher et al., 2021). This makes ERPs particularly
well-suited to examine how surgical task demand influences the processing of task-irrelevant
auditory stimuli. To account for the continuous aspects of the OR soundscape, we also
computed temporal response functions (TRFs), a robust tool for capturing neural responses
to continuous auditory stimuli, including speech and concurrent sounds (Crosse et al.,
2016; Rosenkranz et al., 2023, 2024) By using both ERPs and TRFs, we aim to gain a
more comprehensive understanding of how discrete and continuous auditory stimuli are
processed and how task demand shapes the neural responses in a complex work-like
environment.

The ability to filter out irrelevant auditory information is essential for maintaining focus
on a task. Sensory gating, a neural mechanism thought to help suppress responses to
repetitive, irrelevant stimuli, may play a key role in this process (Lijffijt et al., 2009). To
investigate sensory gating without interfering with the surgical task, we employed the
paired-click paradigm. This approach contrasts the neural response to an initial click to a
repeated second click. The reduction in response from the first to the second click reflects
the strength of sensory gating. Studies suggest that greater cognitive engagement in a task
increases the response reduction in the paired-click paradigm, indicating more effective
inhibition of irrelevant stimuli (Lijffijt et al., 2009). Similarly, an increase in task demand
can suppress the processing of irrelevant auditory stimuli when the relevant stimuli are of
a different sensory modality (Molloy, Lavie, & Chait, 2019; Sörqvist et al., 2016; Sörqvist,
Stenfelt, & Rönnberg, 2012). Sensory gating effects have been shown to remain robust even
when individuals are engaged in cognitive tasks or exposed to background noise (Hölle &
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Bleichner, 2023b; Major et al., 2020), making this method interesting for studying auditory
filtering under real-world conditions. Based on these findings, we hypothesized that high
task demand would enhance sensory gating, resulting in a larger difference between ERPs
in responses to the first and second clicks, compared to low task demand.

Besides examining ERPs in response to the paired-click paradigm, we investigated whether
the reduction in ERP amplitudes under high compared to low task demand (Molloy et
al., 2019; SanMiguel et al., 2008; Sörqvist et al., 2016) extends to neural responses to
the entire soundscape. Unlike the repetitive stimuli typically used in ERP studies, natural
soundscapes consist of distinct and concurrent, as well as, overlapping auditory events.
To better capture how such soundscapes are processed, we computed a general neural
response using TRFs. This approach allowed us to assess whether the reduction in ERP
responses under high task demand could also be observed when analyzing the continuous
OR soundscape.

For speech processing, we expected it to be modulated by task demand as well, though the
direction of this effect is uncertain. While prior studies indicate that processing of irrelevant
non-speech sounds decreases with increasing task demand (SanMiguel et al., 2008; Sörqvist
et al., 2016), speech has a higher potential to distract than non-speech sounds (Szalma &
Hancock, 2011). This makes speech particularly disruptive for OR personnel, especially
during phases of high task demand (van Harten et al., 2021; Weigl et al., 2015; Widmer et
al., 2018). Given that distracting non-speech sounds enhance the neural response (Huang
& Elhilali, 2020), we considered the possibility that the neural response to speech could be
enhanced during high-demand phases, even as non-speech sounds are filtered out.

In summary, this study examined how an OR soundscape including irrelevant speech
and varying task demands interact to influence self-reports, surgical task performance,
and auditory processing, as measured by EEG. We hypothesized that higher task demand
will lead to an increase in perceived workload, while the presence of irrelevant speech
will increase distraction ratings. Additionally, we explored the interaction between task
demand and speech presence to assess their combined influence on self-reported workload
and distraction. As workload is a rather general measure of surgical task demand, we
also explored how the tasks and speech affect specific aspects of self-reported demand
(Wilson et al., 2011). We further explored the effect of irrelevant speech on surgical
task performance. Regarding neural responses, we expected that higher task demand
will result in an increased sensory gating, as measured by ERPs. For TRF responses, we
hypothesized that increased task demand will lead to a lower neural response to an OR
playback. Furthermore, we explored the relationship between task demand and speech
processing, as well as the association between neural responses to the OR playback and
speech with self-reported workload.
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4.3 Method

This study involving human participants was reviewed and approved by Medizinische
Ethikkommission, Carl von Ossietzky Universität Oldenburg, Oldenburg (2021-031). The
participants provided their written informed consent prior to participating in this study. All
participants received monetary reimbursement.

4.3.1 Participants

25 participants were recruited through an online announcement on the University board
(age range: 19-34; mean age = 24.84; 14 female; 10 medical students). Eligibility criteria
included: self-reported normal hearing, normal or corrected vision, no psychological or
neurological condition, right-handedness, and no experience with surgery or surgical
simulations. In total five participant were excluded from all analyses involving EEG, due
to the following reasons: no data were present due to a recording error (N=1); package
loss during recording resulted in timing problems (N=2); connector problems resulted
in artifactual data (N=2). Those participants were still included in the self-report and
performance analyses.

4.3.2 Paradigm

We employed a within-subject design, featuring a 2 (task: easy vs difficult) x 2 (sound:
speech present vs speech absent) factorial structure, where each condition was repeated
over three blocks, resulting in a total of 12 blocks (Figure 4.1). The participants were
required to complete the surgical tasks peg transfer and suturing. These tasks were selected
as they have been demonstrated to elicit either low or high workload, respectively (Lim et
al., 2023; Scerbo, Britt, & Stefanidis, 2017). During all blocks, participants were presented
with a task-irrelevant soundscape. In all blocks the soundscape consisted of sounds from an
actual OR (i.e., OR playback), and click sounds. Additionally, in half of all blocks, speech
was presented. Each block lasted up to six minutes, with the end of the block signaled
by the soundscape fading out, indicating that participants should stop the surgical task.
Participants were instructed that all auditory stimuli were irrelevant and could be ignored.

Auditory stimuli

We generated nine auditory stimulus versions, each lasting six minutes, which were
consistent across all participants (Figure 4.1b). Of these, three versions featured each a
different OR playback with click pairs distributed throughout the playback duration and
were used for the speech-absent conditions. The remaining six versions were used for
the speech-present conditions, created by pairing each speech-absent version with one of
three speakers, with each speaker narrating two different stories. The OR playback and
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Figure 4.1: a) Participants performed surgical training tasks while standing in front of a surgical
simulator, equipped with a 24-channel mobile EEG cap. A soundscape was presented through a
loudspeaker array positioned around them. From five loudspeakers, marked in blue, an OR playback
and paired clicks were presented. From one loudspeaker, marked in black, speech was presented. b)
All sound conditions (i.e., speech-absent and speech-present) included the OR playback and paired
clicks. Additionally, stories from three speaker (two stories per speaker) were presented, with each
speaker paired with one of the three OR playbacks. This resulted in six stimuli for the speech-present
condition. c) Participants completed two tasks of varying difficulty: peg transfer (easy) and suturing
(difficult). The peg transfer task was performed until the end of a block (after six minutes). The
suturing task was performed until it was finished (which was on average after 5.4 min), but no
longer than six minutes. d) Example block progression for one participant. Each task was presented
in two consecutive blocks, alternating between speech-present and speech-absent conditions. The
starting task and sound condition was counterbalanced across participants. Additionally, while
the overall order of sound conditions was fixed, the starting sound condition was rotated between
participants.

paired clicks were presented through five loudspeakers positioned around the participant
(0°, 60°, 120°, -120°, -60°), while speech was presented through a single loudspeaker
positioned behind the participant (180°, Figure 4.1a). Auditory stimuli were presented
using Psychtoolbox 3 (v3.0.17, Kleiner et al., 2007). For each stimulus type, a sound marker
was generated using the lab streaming layer library (v1.14, Kothe et al., 2024).

OR playback The three OR playbacks were extracted from a recording during a visceral
surgery using a field recorder which was positioned close to the surgery table at the
University Hospital Oldenburg (Rennies et al., 2023). The recording contains a variety of
sounds, such as ventilation noise, beeps from monitoring devices, instrument clatter, and
instrument sounds. Intelligible speech was removed after the recording for privacy reasons,
however, unintelligible muttering and non-vocal sounds such as coughing were preserved.
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Paired clicks We presented pairs of clicks, with an interval of 500 ms between clicks and
an interval of 9-11 sec between click pairs. Each click pair consisted of two identical clicks
(1000 Hz, 4 ms duration, 1 ms onset and offset ramps). In total, 35 pairs were presented
per block. To ensure that energetic masking influences of the clicks was similar across
participants, all pairs were presented at fixed moments in the OR playback.

Speech stimuli The speech stimuli were chosen from a database containing German
speakers, who were telling stories about self-selected content (Daeglau et al., 2023), and
have been shown to provide measurable EEG responses (Daeglau et al., 2025; Wiedenmann
et al., 2023). The natural speech included speech pauses and filler words which increased
the ecological validity of our approach. Three speakers were chosen, each telling two
stories. To control for differences in loudness, the speech stimuli were matched to have the
same root-mean-square (RMS) value.

Surgical tasks

For the surgical task, the LabSim® (Surgical Science, Sweden) simulator was used. The
simulator includes the surgical training tasks peg transfer and suturing which were chosen
as they differ in difficulty (Figure 4.1c; Lim et al., 2023; Scerbo et al., 2017), required
bi-manual control, and lasted at least three minutes for inexperienced individuals, ensuring
that sufficient data could be collected. This minimum duration was an approximation
based on observations from pilot data. As the tasks varied in their goal and procedural
steps, the performance measures were different between tasks. Peg transfer included
the performance measures ’number of transfers’ and ’number of drops’, while suturing
included the performance measures ’duration’ and ’damage’. Although participants were
not provided with any feedback regarding their performance during the task, they were
instructed as to the performance measures that we investigated. Participants always
completed two consecutive blocks of one task (e.g., peg transfer) and then switched to two
consecutive blocks of the other task (e.g., suturing).

Peg Transfer In the peg transfer task, participants were required to transfer rings between
two pairs of pegs, including a switch between grasping instruments for each transfer. This
task was defined as easy, as it involved only few and repetitive procedural steps. Participants
were instructed to complete as many transfers as possible within a block with minimal ring
drops. The task automatically ended after six minutes. The number of transfers and drops
were used as the performance measures; these values were not directly provided by the
LabSim software but could be compute based on the number of grasps, average drops, and
average transfers.

Suturing In the suturing task, participants were required to drive a needle through tissue
and tie two knots in the suture thread using the provided instruments. This task was more
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difficult than the peg transfer, as it included several procedural steps, and required a higher
degree of dexterity. Once the second knot was tied, the task ended and the soundscape
stopped. The performance measure were task duration and damage. Damage was defined
as the number of times the tissue was touched and the amount of pressure applied to the
needle after it was driven through the tissue. This resulted in a damage score from 0 to
100, with a higher score indicating less damage.

Counterbalancing of blocks

To counterbalance the order of tasks, half of the participants started with peg transfer, while
the other half started with suturing. The experiment followed a fixed order of stimulus
conditions where speech absence and presence alternated with each block (Figure 4.1d).
To counterbalance the sequence of stimulus conditions across participants, participants
began at a different starting point within this fixed order and then continued sequentially.
Consequently, the order was repeated after the 12th and 24th participant. We further
ensured that one story of each speaker was presented during peg transfer and the other
story of each speaker during suturing.

Procedure

After arrival, participants practiced the use of the lab simulator for 45 min with the
following procedure. To get acquainted to the simulator and the instruments, two simple
training tasks (i.e., instrument navigation and grasping) were repeated twice each. This
was followed by two blocks of peg transfer and two blocks of suturing. During the first block
of each task, the experimenter provided instructions and guidance. During the second block
of each task, the experimenter left the room and an OR playback was presented. The OR
playback was not used during the experimental blocks. Participants were always allowed
to ask questions and watch short instruction videos, provided by the manufacturer of the
simulator. After the training, the EEG cap was fitted and participants performed resting
measurements (i.e., two minutes of eyes open, two minutes of eyes closed, and listening
to a sequence of 20 beeps). After these, participants performed the 12 experimental
blocks. After each block participants completed the SURG-TLX (Wilson et al., 2011) thereby
providing a self-reported workload measurement. The SURG-TLX contains six items related
to the different aspects of surgical demand (mental demand, physical demand, temporal
demand, complexity of procedure, stress, and distraction). The items were rated on a visual
analogue scale with scores ranging from 0 (low) to 20 (high). At the end of the experiments,
participants answered 12 questions regarding the content of the speech stimuli (e.g., Was
the topic of one of the stories a bike?). Six questions were related to the content of the
stimuli - one question per stimulus - while six questions were unrelated. The participants
had to indicate whether they perceived the content or not. An inspection of the speech
content questions showed that 86,67% of the questions were answered correctly. Thus,
participants could discriminate between speech-related and speech-unrelated questions.
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4.3.3 EEG data acquisition

Participants were asked to wash their hair at the day of recording prior to the experiment.
EEG data were recorded using a wireless amplifier (SMARTING, mBrainTrain, Belgrade,
Serbia) attached to the back of a 24-channel EEG cap (EasyCap GmbH, Hersching, Germany)
with Ag/AgCl passive electrodes and the reference and ground electrode at position FCz
and AFz, respectively. The data were recorded using a sampling rate of 500 Hz, and
transmitted via Bluetooth from the amplifier to a Bluetooth dongle (BlueSoleil) that was
plugged into a computer (DELL Precision 3630).
After fitting the cap, the skin at each electrode site was cleaned using 70% alcohol. Skin
conductance between the scalp and electrodes was increased using abrasive gel (Abralyt
HiCl, Easycap GmbH, Germany). Impedance were kept below 10 kΩ at the beginning of
the recording.

The transmitted EEG data and sound marker were recorded in the Lab Recorder software
1 and saved as .xdf files. The same computer was used for data recording and sound
presentation. Due to technical reasons, a constant delay between the marker indicating
sound onset and the actual sound presentation was measured in advance. To account for
this delay, the marker was adjusted offline by shifting it 40 ms.

4.3.4 EEG preprocessing

The EEG data were analyzed using EEGLAB (v2022.1, Delorme & Makeig, 2004) in MATLAB
R2020b (The MathWorks, Natick, MA, United States). As a first step, bad channels that
were recognized during recording were removed, resulting in the removal of one channel
for two participants. After bad channel removal, the data were cleaned from artifacts
using infomax independent component analysis (ICA). To improve ICA, the data were
first high-pass filtered (passband edge = 1 Hz1), low-pass filtered (passband edge = 40
Hz2), and resampled to 250 Hz. Then, the resting data and data of each block during
which audio was presented, were cut into consecutive epochs of one second. To minimize
artifacts from the start and end of the task the first and last five seconds of each block were
excluded. Improbable epochs with a global (all channels) or local (single channel) threshold
exceeding 5 standard deviations were automatically rejected using the jointprob function.
ICA decomposition was applied to the remaining epochs. The resulting components were
back-projected on the raw data. The raw data were then high-pass filtered (passband
edge = 1 Hz1) and low-pass filtered (passband edge = 25 Hz3). The back-projected
components were then classified using the EEGLAB toolbox ICLabel (Pion-Tonachini et al.,
2019) with the ’lite’ classifier which is better at detecting muscle artifacts than the default
classifier (Klug & Gramann, 2021). Components belonging to the categories eye blink and

1https://github.com/labstreaminglayer/App-LabRecorder, v1.14
1filter order = 825, transition bandwidth = 1 Hz, cutoff frequency (-6dB) = 0.5 Hz
2filter order = 83.5, transition bandwidth = 10 Hz, cutoff frequency (-6dB) = 45 Hz
3filter order = 132.5, transition bandwidth = 6.25 Hz, cutoff frequency (-6dB) = 28.125 Hz
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movement or muscle movement with 70% confidence or heart with 80% confidence were
removed. Note, that the ICLabel classifier did not classify all components correctly because
it was trained on stationary data with a larger electrode setup than ours. Therefore, we
manually checked the components and made the following adjustments: Components
indicating lateral eye-movement were not always correctly classified and individually
removed. Furthermore, channel Tp9 and Tp10 contained noise from muscle movement.
We observed this already in a previous experiment, where a surgical simulator was used
(Rosenkranz et al., 2024). We assume that the bi-manual control of the simulator activates
neck muscles, resulting in artifacts in electrodes that are close to the neck. As channel Tp9
and Tp10 are used for re-referencing, we removed components showing muscle activity in
Tp9 and Tp10. Afterwards, previously rejected channels were interpolated using spherical
interpolation. Lastly, channels were re-referenced to the linked mastoids (Tp9 and Tp10).

4.3.5 ERP analysis

We analyzed the neural response to the irrelevant soundscape using two different ap-
proaches. Event-related potentials (ERPs) were computed in response to the paired clicks,
while a temporal response function (TRF) was used to analyze the neural response to the
OR playback and speech. Since the irrelevant speech was presented separately to the OR
playback, we computed separate TRFs for these.

We quantified ERP amplitudes using the following procedure: For each block we extracted
epochs from -200 to 1000 ms relative to the onset of the first click and baseline-corrected the
epochs from -200 to 0 ms. Epochs exceeding a threshold of 3 standard deviations globally
(across all channels) or locally (within a single channel) were automatically rejected using
the jointprob function. Data from channel FC1, FC2, Fz, and Cz were then averaged, as
the auditory N1 and P2 ERP components are prominent at these channels (Crowley &
Colrain, 2004; Näätänen & Picton, 1987). To extract the N1 and P2 components for both
the first and second clicks, we first computed an average ERP across participants for each
sound condition. It should be noted that the extraction of time windows was conducted for
the two sound conditions separately to account for the acoustic differences between the
two conditions. For each sound condition, we identified the N1 peak within the range of
80 to 140 ms. Amplitudes were then averaged within a ± 25 ms range around the peak,
resulting in one N1 amplitude value per participant and task for the first click. The P2
component was identified similarly, with a peak search window of 150 to 250 ms and a
± 25 ms range around the peak. For the second click, we added 500 ms to the N1 and
P2 time-window of the first click, and averaged across this time-window. We performed
a peak-to-peak analysis by subtracting the N1 amplitude from the P2 amplitude for each
click. The resulting difference score defined the response amplitude for each click, sound
condition, task, and participant. The difference between the first and second click defined
the gating value.
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4.3.6 TRF analysis

Audio preprocessing

To relate the ongoing soundscape to the ongoing neural response, we extracted the envelope
of the OR playback and speech. The OR playback included noise from running machines
and ventilation, which produced an envelope with little variation. Such low variability
in the envelope can lead to poor TRF estimation (Rosenkranz et al., 2023). To address
this, we applied a Wiener filter implemented in MATLAB (Plapous et al., 2006; Scalart,
2023). For this, we first high-pass filtered each OR playback at 1 Hz4. We then estimated
the power spectral density of the noise using the first second of each OR playback, as it
was representative of the static noise in the OR playback. The noise estimate was then
subtracted from the remaining signal. Afterwards, we extracted the envelope from the
noise-reduced OR playbacks and raw speech using the mTRFenvelope function (Crosse et
al., 2016, 2021). We resample all envelopes to 125 Hz.

Backward modeling

A backward modeling approach was utilized to analyze the response to each stimulus
envelope separately using the mTRF toolbox (Crosse et al., 2016, 2021). In backward
modeling, the neural response is used to reconstruct features of the stimulus. The procedure
involved a nested cross-validation for each task and stimulus. As a first step, the EEG
data were resampled to 125 Hz to match the sampling rate of the envelopes. The first
and last five seconds of the EEG data and envelope of each block was removed. Each
block was split in half, resulting in six segments per task. The mean duration of each
segment was 175 and 162 seconds for the peg transfer and suturing task, respectively. Each
segment served once as a test set while the remaining segments served as training sets,
resulting in six folds. For each fold, the following procedure was employed: The training
segments were cross-validated to determine the optimal regularization parameter (i.e.,
lambda) using the function mTRFcrossval. The optimal lambda was searched for in the
range of 10.̂[−3 : 1 : 7]. A time-window from 0-300 ms was chosen, as irrelevant stimulus
processing typically takes place in earlier time-windows (Hausfeld, Riecke, & Formisano,
2018; Hausfeld, Shiell, Formisano, & Riecke, 2021). The lambda corresponding to the
maximum correlation coefficient was selected for model training. The model was then
trained using the mTRFtrain function and the optimal lambda. The trained model was then
applied to the test set using the mTRFpredict function, which correlated the actual and
predicted stimulus envelope. This resulted in one Pearson correlation value (i.e., prediction
accuracy) per fold which were averaged across folds, resulting in one correlation value per
participant, task, and stimulus. In all conditions, we analyzed the neural response to the
OR playback. Additionally, in the speech-present condition, we applied the same analysis
procedure to the speech stimuli. For this, we computed TRFs using the combined speech

4filter order = 1000, transition bandwidth = 0.5 Hz, cutoff frequency (-6dB) = 0.00004 Hz
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material, disregarding differences in content, speaker sex, and speech characteristics, such
as word frequency.

We also investigated whether the correlation between the actual and reconstructed stim-
ulus envelope was above chance. For this, a permutation test was conducted using the
mTRFpermute function. This involved shuffling the response data and recalculating the
correlation to generate a distribution of correlation coefficients under the null hypothesis,
representing chance-level performance. In total 17 permutations were performed per fold,
resulting in 102 permutations per participant, task, and stimulus. The permutation test of
each fold used the optimal lambda of the respective fold. The chance-level was defined as
the 95th percentile across all permutations of a stimulus.

4.3.7 Statistical analyses

All statistical analyses were performed in R Studio (v4.2.1). For most outcome measures,
we fitted a series of linear mixed models using the R packages lmer4 (v1.1-30) (Bates,
Mächler, Bolker, & Walker, 2015). We subsequently added fixed then random effects and
evaluated the improvement in models fit. The baseline model always included the random
intercept of the participant. For most models, the predictors of task and/or sound were
added. Task contained two categories, peg transfer and suturing, which were coded 0
and 1, respectively. Sound contained two categories, speech absent and speech present,
which were coded 0 and 1, respectively. The best fitting model was determined using
likelihood-ratio testing. We report results from the likelihood-ratio test comparing a model
with a fixed or random effect to a model without the effect. We further report for the
fixed effects the b value and standard error (SE) of the best fitting model. The model
comparisons for all computed models can be found in the supplementary materials (section
’Model comparisons’).

Self-reported workload

For self-reported workload and distraction we used two outcome measures from the SURG-
TLX. First, the total SURG-TLX score defined the workload and was calculated by averaging
the scores for all items. For each task and sound condition, the mean score was calculated
across blocks. Secondly, the score for the item distraction was calculated by averaging
across blocks. This resulted in 2 (task: peg transfer vs suturing) x 2 (sound: speech present
vs. speech absent) workload and distraction scores for each participant. We expected the
total score to change between the tasks, and explored the effect of the sound condition.
Therefore, we iteratively added first task, second sound, and then their interaction as fixed
effects. After fitting the fixed effects, we fitted the random effects by adding task and sound
as random slopes.
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For the distraction item we expected it to differ mainly between sound conditions, thus we
first added sound, second task, and then their interaction. After fitting the fixed effects, we
fitted the random effects by adding sound and task as random slopes.

While the total score and distraction item were our main outcome measure, we also
explored how task and sound affect the different aspects of surgical demand. Therefore, we
followed the same procedure as for the total score also for the other items of the SURG-TLX
(i.e., mental demand, physical demand, temporal demand, complexity, and stress).

Surgical task performance

We computed separate linear mixed models for the outcome measures of the peg transfer
and suturing tasks. As the outcome parameters were different for each task, we did not
investigate whether performance differed across tasks. Instead, we focused on whether
the presence of speech influenced task performance. For each outcome parameter, we
investigated the effect of adding the fixed and random slope of sound. For the outcome
measure ’duration’ the data were skewed, as most participants did not complete the task
within the 6 minutes. Therefore, we computed a beta mixed model (Verkuilen & Smithson,
2012) using the R package glmmTMB (v.1.1.7). For this, we normalized all values between
0 and 1 with 1 indicating that the entire duration was used. As beta models do not allow
values to be exactly 1 we transformed boundary values by subtracting 0.002. Otherwise,
the same method as with the other outcome parameters was applied.

Sensory gating

We use the paired-click paradigm to assess the amount of sensory gating for each task.
We first evaluated whether a gating effect was present. We did this separately for the
sound conditions, as they were acoustically different, thus different responses could be
expected. For each sound condition we evaluated whether the response to the first and
second click were different, in other words, whether gating was present. We computed a
linear mixed model for each sound condition using the response amplitudes to the clicks
as an outcome measure. The baseline model included participant as a random intercept
and position (coded 0 and 1 for the response to the first and second click, respectively) was
subsequently added as a fixed effect and random slope.

We then checked, whether gating differed between tasks. The gating value was obtained by
subtracting the amplitude of the first click from that of the second click. This gating value,
calculated for each participant and task, reflects the strength of the sensory gating, with a
larger value indicating a larger gating, in other words, better suppression of the second
click after hearing the first one. For each sound condition, we computed the baseline model
including participant as a random intercept and subsequently added task as a fixed effect
and random slope.
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Continuous stimuli

For the response to the continuous stimuli, three prediction accuracies were computed.
For the speech-absent condition, only the playback stimulus was modeled, resulting in
one prediction accuracy. For the speech-present condition, the playback and speech were
modeled individually, resulting in two prediction accuracies. Each prediction accuracy was
modeled using the baseline model participant as a random intercept and subsequently
adding task as a fixed effect and random slope.

Exploratory analyses

We investigated the relationship between self-report and neural measurements. To do this,
we used the prediction accuracies (i.e., r) as continuous predictors for the total workload
score. We calculated the average workload score for both the blocks where speech was
absent or present. In both the speech-absent and speech-present conditions, the prediction
accuracy of the OR playback was used to predict the total workload for each respective
condition. In addition, in the speech-present condition, the prediction accuracy of the
speech stimulus was also used to predict the total workload for that condition. To receive
meaningful b estimates we centered the prediction accuracies for each stimulus. To account
for the effect of task, task was also included as a predictor. Thus, the baseline model
included the random effect participant and fixed effect task. We subsequently added the
fixed effect r and the interaction between r and task. This was done for each stimulus
separately.

4.4 Results

4.4.1 Self-reported workload

Total score Most participants reported a higher overall workload during the suturing
compared to peg transfer task (Figure 4.2a). The best fitting model included the main
effects task (χ2(1) = 85.86, p < .001, b = 4.58, SE = 0.5) and sound (χ2(1) = 12.01, p <

.001, b = 1.2, SE = 0.27), but no interaction (χ2(1) = 0.0001, p = .993). When allowing
the effect of task and sound to vary across participants, the model fit further improved (task:
χ2(1) = 24.68, p < .001; sound: χ2(1) = 10.26, p = .016). This indicates that participants
experienced higher self-reported workload during the suturing task compared to the peg
transfer task, a higher workload when speech was present compared to when speech was
absent, and that the strength of both effects varied between participants.

Distraction score The best fitting model included the main effects sound (χ2(1) =
60.30, p < .001, b = 4.79, SE = 0.69) and task (χ2(1) = 6.78, p = .009, b = 1.27, SE =
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0.33), but no interaction (χ2(1) = 0.66, p = .415). Allowing the effect of sound, but not of
task, to vary across participants further improved the model fit (sound: χ2(2) = 19.37, p <

.001, task: χ2(3) = 2.30, p = .513). This indicates that participants experienced higher
levels of distraction during the suturing task compared to the peg transfer task, more
distraction in the presence of speech compared to its absence, and that the effect of sound
varied between participants.

Exploratory analyses of individual SURG-TLX items We investigated the remaining SURG-
TLX items individually (see supplementary figure S4.1) and listed the results in the supple-
mentary table S4.1. To summarize, we subsequently added the fixed effects, task, sound,
and their interaction, and the random slopes. Adding task as fixed effect as well as random
slope significantly improved model fit for the items mental demands, physical demands,
temporal demands, and complexity of procedure. For the same items, adding sound or the
interaction between task and sound did not improve the model fit significantly. For the item
situational stress, the best fitting model included the main effects for task and sound and
random slopes for both effects. To summarize, while all items showed higher scores for the
suturing compared to peg transfer task, only the distraction and stress item showed also
higher scores for the speech-present compared to speech-absent condition.

4.4.2 Surgical task performance

For the peg transfer task, the outcome parameters were the number of transfers and the
number of drops. For the suturing task, the outcome parameters were the time required
to complete the task and the extent of damage. As shown in Figure 4.2 c)-f), adding
sound as predictor did not change model performance for any outcome measure (Transfers:
χ2(1) = 0.021, p = 0.886; Drops: χ2(1) = 0.127, p = 0.7215; Time: χ2(1) = 0.22, p = 0.64;
Damage: χ2(1) = 2.267, p = 0.132). This indicates that the presence of speech did not
change the measured task performance during either surgical task. Furthermore, there was
a high variability in performance between participant. This was probably the result of our
participant pool, that had little laparoscopic experience.

4.4.3 Sensory gating

To investigate the presence of sensory gating, we computed whether the ERP amplitude
changed from the first to the second click. We observed a gating effect in the speech-
present and speech-absent condition. For both sound conditions, the model fit improved
when adding position as a predictor (Figure 4.3b & e; speech-absent condition: χ2(1) =
29.07, p < .001, b = −1.1, SE = 0.21; speech-present condition: χ2(1) = 7.81, p = .005, b =
−0.6, SE = 0.21). Allowing position to vary across participants improved the model fit
for the speech-absent condition (χ2(1) = 11.02, p = .004) but not for the speech-present
condition (χ2(1) = 2.67, p = .263). Figure 4.3a) and d) shows that the ERP morphologies
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Figure 4.2: Self-report and performance measures for each task and sound condition. The tasks
had two difficulty levels, the easy peg transfer task and the difficult suturing task. Self-reports
were derived from the SURG-TLX. a) The total workload score (task & sound: p < .001). b) The
score on the distraction item (task & sound: p < .01). Thin lines represent individual data for
each sound condition, thick lines the average across participants. To evaluate the effect of speech
on surgical task performance we used for the peg transfer task c) the number of transferred ring,
and d) the number of dropped rings. For the suturing task we used e) the amount of the total
time that was required (i.e., 0-6 min, Mean = 5.4 min), and f) the efficacy of handling the tissue.
For all performance plots, a high y-axis value indicates good performance, and a low value bad
performance. The gray lines show individual participants. None of the performance measures was
significantly affected by the sound condition.

between the sound conditions are different, likely due to the different acoustics in each
sound condition (i.e. the presence or absence of speech).

We then investigated whether the sensory gating strength changed between tasks. For the
speech-absent condition, adding task as a predictor significantly improved model fit (Figure
4.3c; χ2(1) = 6.75, p = .009, b = 0.791, SE = 0.287), but adding task as random slope led
to an unidentifiable model. For the speech-present condition, adding task as a predictor did
not improve model fit, compared to the baseline model (Figure 4.3f; χ2(1) = 2.4, p = .13).
To summarize, sensory gating was stronger in the suturing compared to peg transfer task
in the speech-absent condition.
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Figure 4.3: ERPs in response to the paired-click paradigm. The top and bottom row show data
for the speech-absent and speech-present condition, respectively. The first column (a&d) shows
the ERP time-course and topographies in response to the clicks, which were presented at 0 and
500 ms. The time-course shows the averaged data across participants and channels FC1, FC2, Fz,
and Cz (solid line), along with the confidence interval (shaded area) for each task. The gray areas
highlight the N1 and P2 time windows. The topographies show the peak-to-peak difference from
the averaged amplitudes in the N1 and P2 time-window for the first and second click. The second
column (b&e) shows the averaged amplitude for the first and second click. The thick line shows the
average across participants and thin lines individual participants. The third column (c&f) shows the
strength of gating, that is the difference between the response to the first and second click for each
task (±1SE).

4.4.4 Responses to continuous stimuli

Figure 4.4 (top row) shows that all models performed above chance. For the OR playback,
adding task as a predictor neither increased model performance when speech was absent
(χ2(1) = 1.56, p = 0.135) nor when speech was present (χ2(1) = 0.625, p = 0.54). For
the speech stimulus, adding task as a predictor improved model performance (χ2(1) =
11.723, p < 0.001, b = −0.015, SE = 0.004), but adding task as random slope led to an
unidentifiable model. This indicates that the prediction accuracy for speech was higher for
the peg transfer than for the suturing task.
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4.4.5 Relationship between self-report and neural responses

We explored the relationship between the self-report workload measures and neural re-
sponses to the continuous stimuli (Figure 4.4 bottom row). Adding r as predictor did
not change model performance for the OR playback when speech was absent (χ2(1) =
0.803, p = 0.37) nor when speech was present (χ2(1) = 0.738, p = 0.39). However, adding r
as predictor significantly improved model performance for speech (χ2(1) = 4.687, p = 0.03,
b = −1.39, SE = 0.64), indicating that a lower neural response to speech was associated
with larger perceived workload. Adding the interaction of task and r did not improve the
model further (χ2(1) = 0.041, p = 0.84), and adding task or r as a random factor lead to
unidentifiable models.
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Figure 4.4: The plots show the effect of task on the correlation between the predicted and
reconstructed stimulus (top row) and the effect of task and centered correlation on the total
workload score (bottom row). Each column represents reconstruction accuracies for one of the
three stimuli (i.e., Stim). Grey lines show data for individual participants. For the top row, the
chance level is represented by the black dotted line. For the bottom row, we predicted the workload
score using the centered correlation, but plotted the workload score on the x-axis and centered
correlation on the y-axis, to visually match the top row.
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4.5 Discussion

While speech distraction in the OR is an often reported problem, only few studies in-
vestigated this experimentally. Therefore, we studied how a soundscape, consisting of
an OR playback, paired clicks, and irrelevant speech is perceived and processed during
the performance of an easy and difficult surgical task, namely peg transfer and suturing,
respectively. To understand how the soundscape is processed and influences the individual,
we employed self-report, performance, and neurophysiological measurements.

As expected participants reported higher workload for the suturing task compared to the
peg transfer task. This aligns with previous research showing that suturing (i.e., the difficult
task) to be more demanding than peg transfer (i.e., the easy task), thus resulting in higher
workload (Lim et al., 2023; Scerbo et al., 2017). The presence of speech increased the
perceived workload as reflected in SURG-TLX items distraction and stress. Speech likely
introduced a salient distraction that was difficult to ignore. This parallels findings from
the actual OR where disturbance due to irrelevant speech correlates most strongly with
these two items (Weigl et al., 2015). This consistency highlights the realism of our setup in
simulating speech distraction within the OR environment, and shows that irrelevant speech
increases the overall perceived workload by increasing distraction and stress.

Participants reported feeling more distracted by their environment during the difficult
task. This replicates a finding from our previous study where participants perceived the
soundscape as distracting primarily when task demand was high (Rosenkranz et al., 2024).
This effect is also consistent with reports from OR personnel, who often cite noise as
particularly distracting during high-workload phases (van Harten et al., 2021). To address
this, noise interventions should prioritize reducing unnecessary noise, especially during
periods identified by surgeons as highly demanding. As potential solutions, one could
consider either implementing a system to signal that the room should remain quiet, such
as a traffic light system (e.g., Engelmann et al., 2014) or enabling surgeons to reduce
potentially unavoidable, task-irrelevant sounds, by using hearing devices (e.g., Leitsmann
et al., 2021; Rennies et al., 2023).

While participants’ self-reports indicate more distraction when speech was present, their
surgical task performance remained unaffected by speech. Similarly, noise reduction in-
terventions in the OR may increase subjective well-being, without necessarily impacting
patient outcomes (Engelmann et al., 2014; Leitsmann et al., 2021). We propose two poten-
tial explanations for this discrepancy. First, the maintenance of performance in the presence
of task-irrelevant speech comes at the cost of increased workload. This compensatory
workload may have long-term implications for surgeons’ well-being, even if patients are
not immediately affected (Ayas et al., 2022). Second, performance measurements may
not be sensitive enough to detect subtle differences in behavior. For instance, expert and
novice surgeons can achieve similar performance on simple surgical tasks, even when
distracted (Hsu et al., 2008). Furthermore, the evidence regarding the effects of noise on
surgical performance are rather mixed (Mentis et al., 2016), which may be caused by the
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heterogeneity in performance measures across studies. This highlights the limitations of
current performance metrics which may only decline under severely distracting conditions,
for instance when several distractors are combined (Szafranski et al., 2009). Overall, our
results suggest that while the measured performance may not suffer, irrelevant speech
adds a mental strain that is reflected in self-reports rather than in surgical performance.
This suggests that improving the acoustic environment can benefit surgeons by reducing
perceived distraction and workload, contributing to their overall well-being.

As the recording of self-reports is limited to a single point in time, and performance may not
accurately reflect changes in the processing of the soundscape, we utilized EEG to objectively
examine responses to the soundscape. We employed two approaches, namely ERPs and
TRFs to study responses to the transient clicks and continuous stimuli, respectively. With
regard to ERPs, a gating effect was observed in both sound conditions, with participants
showing reduced neural responses to the second click compared to the first. This replicates
previous findings of sensory gating in complex environments (Hölle & Bleichner, 2023b;
Major et al., 2020). Sensory gating is a neural mechanism that reflects early processing,
specifically the filtering of irrelevant information (Lijffijt et al., 2009). Thus, our results
show that participants were generally able to effectively filter out repetitive, irrelevant
sounds.

While sensory gating was present in both sound conditions, we found that gating strength
was affected by task demand when speech was absent, but found no effect when speech
was present. In the speech-absent condition, the strength of gating was stronger during
the more difficult task, suggesting enhanced suppression of irrelevant auditory stimuli
under high task demands. Our findings align with research showing enhanced filtering of
irrelevant stimuli at an early stage of processing when task demand was high (Bidet-Caulet,
Bottemanne, Fonteneau, Giard, & Bertrand, 2015; Miller, Rietschel, McDonald, & Hatfield,
2011; Sörqvist et al., 2016, 2012). The increased demands of the more difficult task appear
to have strengthened sensory filtering, thereby protecting cognitive functioning from the
irrelevant stimuli (Lijffijt et al., 2009). Importantly, the paired-click paradigm does not rely
on attention markers, such as the P3, which are commonly used in beyond-the-lab studies
(Grasso-Cladera, Bremer, Ladouce, & Parada, 2024). Thus, exploring this mechanism across
different tasks provides a promising opportunity to investigate how irrelevant sounds are
processed without interfering with concurrent tasks (Hölle & Bleichner, 2023b).

When speech was present, we found no effect of task demand on gating strength. One
possible explanation is that the speech may have masked the click sounds through energetic
masking, where the loudness of the speech obscured the clicks (Brungart, Simpson, Ericson,
& Scott, 2001; Hölle & Bleichner, 2023b; Shinn-Cunningham, 2008). This masking likely
made the clicks less perceptible, reducing their processing and leading to a lower signal-to-
noise ratio (SNR) for the ERPs. This is evident in the descriptively lower ERP amplitudes
for each click in the speech-present condition compared to the speech-absent condition.
Consequently, the reduced SNR may have decreased the likelihood of finding an effect, as
reflected in the weaker gating effect observed in the speech-present compared to speech-
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absent condition. Alternatively, the speech may have engaged more perceptual resources
than the clicks. Stimuli, that are perceived as separate auditory objects, characterized by
variations in spatial location or specto-temporal content (Griffiths & Warren, 2004), are also
processes separately (Hausfeld, Riecke, Valente, & Formisano, 2018). The separation may
lead to a preference to process speech, thereby allocating less resources to the processing
of the clicks (Shinn-Cunningham, 2008). This in turn limited the gating effect. Future
research could explore these explanations by investigating the influence of irrelevant speech
on the processing of other irrelevant sounds.

Utilizing the paired-click paradigm, we investigated how the processing of auditory stimuli
was affected by task demand. However, reliance on artificially induced stimuli remains a
limitation when transitioning to real-world research (Grasso-Cladera et al., 2024; Matusz
et al., 2019). Therefore, we also investigated the processing of the more realistic parts of
the soundscape, incorporating the OR playback and speech. Neural responses to irrelevant
speech were reduced during high task demand, suggesting that increased workload leave
fewer resources available to process speech. Our findings align with previous studies that
demonstrated diminished processing of irrelevant stimuli when task demand increased
(SanMiguel et al., 2008; Sörqvist et al., 2016, 2012). These studies were conceptually
similar to our, as they investigated irrelevant stimuli with a different modality than the
task-stimuli. However, these studies used simple tasks and discrete stimuli, such as single
tones. Our study extended this work by demonstrating similar effects with continuous and
naturalistic stimuli, namely spoken stories. This provides evidence that such mechanisms
persist in realistic scenarios. Furthermore, the prolonged allocation of limited cognitive
resources to a demanding task while simultaneously suppressing distracting stimuli can
be exhausting (Esterman & Rothlein, 2019). This effort is likely to increase when the
target and distractor stimuli share the same sensory modality, as competition for cognitive
resources increases (Wickens, 2008). For instance, task-relevant speech becomes more
difficult to comprehend when presented alongside an OR playback (Way et al., 2013).
Investigating how relevant and irrelevant speech compete for cognitive resources while
performing another non-auditory task represents a critical step towards understanding
distraction in realistic OR scenarios. Previous research has shown larger neural responses
to relevant compared to irrelevant speech during a walking task (Straetmans et al., 2024,
2021). Extending such investigations to surgical tasks of varying difficulty would provide
insights into the interplay between dual-tasking (i.e., performing a task while processing
speech) and speech distraction in high-demand environments like the OR.

The speech suppression effect emerged at an early stage of processing, as indicated by the
time-lag of 0 to 300 ms used in the analysis of continuous stimuli. This is similar to the
speech literature that usually employ dual- or multi-talker paradigms, showing that ignored
speech processing occurs early (Hausfeld, Riecke, Valente, & Formisano, 2018; Hausfeld et
al., 2021). This also aligns with the impact of task difficulty on the early ERP components
of the paired-click paradigm and suggests that irrelevant speech filtering starts at an early
processing stage.
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Our exploratory analyses further revealed an inverse relationship between neural responses
to speech and self-reported workload, even when accounting for task difficulty. In other
words, the strength of the neural response to speech reflected the amount of workload
participants experienced. While neurophysiological measures are increasingly used to assess
workload, they often rely on ERPs elicited by artificial and repetitive sounds, which are
rarely encountered in real-world environments (Wascher et al., 2021). We demonstrated
that neural responses to naturalistic stimuli, such as speech, can also serve as markers of
perceived workload. This finding could encourage future studies investigating complex
work environments to use natural stimuli.

For the OR playback, we found above chance correlations for most participants, showing
that stimuli such as an OR playback can be reconstructed from neural data. Contrary to our
hypothesis, we found no task modulation for responses to the irrelevant OR playback. While
we found a modulated ERP to transient, irrelevant sounds, this did not generalize to all
irrelevant sounds. We cannot rule out the possibility that certain sounds within the playback
received modulations that were not captured in the computation of a general response
to the OR playback. One explanation for this is a discrepancy between our definition of
the stimulus categories in our analyses and the actual perception of the OR playback. We
defined the clicks, irrelevant speech, and OR playback as separate auditory objects (Griffiths
& Warren, 2004). This definition may be applicable to both clicks and speech, as each
stimulus exhibited comparable sound characteristics, including amplitude and frequency,
over time (Shinn-Cunningham, 2008). However, the OR playback may have been perceived
as containing many different auditory objects where each object may have resulted in a
different response and task modulation (Huang & Elhilali, 2020). By conceptualizing the
entire OR playback as a single auditory object, we may have overlooked sounds within
the OR playback that exhibited comparable top-down modulations as observed with the
clicks and speech. An alternative explanation is that our analyses may have been biased
to enhance speech responses. To have comparable results between the OR playback and
speech, we employed the envelope as a feature for both stimuli. This feature is commonly
used to maximize speech responses (Crosse et al., 2016). While the envelope is also
suitable for describing continuous stimuli beyond speech (e.g., Di Liberto, Pelofi, Shamma,
& de Cheveigné, 2020; Hausfeld, Riecke, Valente, & Formisano, 2018; Rosenkranz et
al., 2023, 2024), alternative representations, such as the mel-spectogram, explain more
variance of the neural data (Di Liberto et al., 2015; Haupt, Rosenkranz, & Bleichner, 2025).
Such representations may therefore be more sensitive to detect attention modulations.
Either way, when dealing with soundscapes that contain multiple overlapping sounds, a
more detailed description, for example by classifying sounds according to their content or
acoustic features, may further improve the analyses of responses to the soundscape.

Whilst the present study systematically examined the processing of irrelevant speech and
its effect on task performance, certain limitations should be noted. The short duration of
the tasks, the performance metrics used, and the relatively high variability of performance
in the sample of inexperienced participants may have limited the ability to detect subtle
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performance impacts (Mentis et al., 2016). Furthermore, the ability to react to distractors
is likely to change with experience (Hsu et al., 2008). As the present study focused on
participants with no prior experience of the OR, the results may reflect more general
demand modulations on auditory processing that are susceptible to change with experience.
Hence, future studies utilizing longer tasks and experienced personnel could offer further
insights into the impact of speech distraction on surgical personnel.

In the strive to understand auditory distraction in a real-world setting, we combined self-
reports, performance, and neurophysiological measures. We investigated how a complex
soundscape, consisting of an OR playback, paired clicks, and irrelevant speech is perceived
and processed during the performance of surgical tasks that varied in difficulty. Our study
demonstrates that while irrelevant speech may not immediately impact performance, it
increases perceived workload and distraction during the performance of difficult tasks. This
finding could be generalized to other high-stakes settings where a control of the auditory
environment is necessary to support the well-being of personnel. Furthermore, our study
adds to the growing body of literature that utilizes EEG beyond the lab and at workplaces
(e.g., Dehais, Karwowski, & Ayaz, 2020; Grasso-Cladera et al., 2024; Wascher et al., 2021).
Using mobile EEG we could investigate the underlying neurophysiological mechanisms of
processing the irrelevant aspects of the soundscape, thereby avoiding a direct interference
with the surgical task. This showed that irrelevant speech responses were reduced at an
early stage of stimulus processing when performing a difficult task. Furthermore, the
response was inversely related to workload. This highlights the potential of using mobile
EEG to investigate workload in complex, real-world settings with naturalistic stimuli,
paving the way for more effective strategies to monitor and mitigate auditory distraction in
high-stakes environments.
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4.8 Supplementary Material

4.8.1 SURG-TLX items

Figure S 4.1: Score for each item of the SURG-TLX for each task and sound condition. The tasks
were selected to represent two difficulty levels, with the peg transfer task representing the easy task
and suturing representing the difficult task. Score for each item of the SURG-TLX for each task and
sound condition. a)-d) showed a significant effect of task, nut not effect of sound condition or an
interaction effect. e)-f) showed a significant effect of task and sound condition, but no interaction
effect. The thin lines show the participants’ data for each sound condition, the thick line the average
across participants.
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4.8.2 Model comparisons

Outcome Model AIC Chisq p-value Fixed Effects of final model
Comparison (Estimate ± SE)

Model Descriptions:
M0: ŷ ∼ 1 + (1|participant)
M1: ŷ ∼ task + (1|participant)
M2: ŷ ∼ task + sound(1|participant)
M3: ŷ ∼ task ∗ sound + (1|participant)
M4: ŷ ∼ task + (task|participant)
M5: ŷ ∼ task + sound + (task|participant)
M6: ŷ ∼ task + sound + (task + sound|participant)

Total

M1 vs M0 473.01 85.86 < 2.2e − 16 *** Intercept: 6.69 ± 0.70 ***
M2 vs M1 462.99 12.01 0.0005 *** Task (SU): 4.58 ± 0.50 ***
M3 vs M2 464.99 0.0001 0.9934 Sound (Sp): 1.20 ± 0.27 ***
M5 vs M2 442.31 24.68 4.37e-06 ***
M6 vs M5 438.05 10.26 0.016 *

Mental
M1 vs M0 515.32 75.04 < 2.2e − 16 *** Intercept: 8.13 ± 0.77 ***
M2 vs M1 514.92 2.39 0.1219 Task (SU): 5.30 ± 0.66 ***
M4 vs M1 504.79 14.52 0.0007 ***

Physical
M1 vs M0 503.28 47.41 5.75e-12 *** Intercept: 8.11 ± 0.82 ***
M2 vs M1 505.26 0.02 0.8965 Task (SU): 3.33 ± 0.64 ***
M4 vs M1 471.30 35.98 1.54e-08 ***

Time
M1 vs M0 508.78 52.86 3.58e-13 *** Intercept: 6.38 ± 0.77 ***
M2 vs M1 510.09 0.69 0.4054 Task (SU): 3.80 ± 0.68 ***
M4 vs M1 478.05 34.73 2.87e-08 ***

Complexity
M1 vs M0 495.29 143.07 < 2.2e − 16 *** Intercept: 6.59 ± 0.75 ***
M2 vs M1 497.27 0.02 0.9025 Task (SU): 9.03 ± 0.74 ***
M4 vs M1 419.71 79.58 < 2.2e − 16 ***

Stress

M1 vs M0 517.15 65.43 6.04e-16 *** Intercept: 6.25 ± 0.79 ***
M2 vs M1 511.49 7.66 0.0056 ** Task (SU): 4.75 ± 0.62 ***
M3 vs M2 513.35 0.131 0.716 Sound (Sp): 1.25 ± 0.43 **
M5 vs M2 501.91 13.57 0.0011 **
M6 vs M5 493.67 14.25 0.0026 **

Table S 4.1: Self-reports (except distraction): Model comparisons for the SURG-TLX total and
individual scores. The distraction item can be found in the next table, as the model computation
differed for this item from that of the other items. The fixed effects are estimated from the final
model, marked in bold. Model descriptions provided at the top of the table. Note that M4 was only
tested, if M2 was not significant. SU: Suturing, Sp: Speech present. Significance levels: * p < .05,
** p < .01, *** p < .001.
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Outcome Model AIC Chisq p-value Fixed Effects of final model
Comparison (Estimate ± SE)

Model Descriptions:
M0: ŷ ∼ 1 + (1|participant)
M1: ŷ ∼ sound + (1|participant)
M2: ŷ ∼ sound + task + (1|participant)
M3: ŷ ∼ sound ∗ task + (1|participant)
M4: ŷ ∼ sound + task + (sound|participant)
M5: ŷ ∼ sound + task + (sound + task|participant)

Distraction

M1 vs M0 534.64 60.30 8.15e-15 *** Intercept: 5.30 ± 0.92 ***
M2 vs M1 529.86 6.78 0.0092 ** Sound (Sp): 4.79 ± 0.48 ***
M3 vs M2 531.20 0.66 0.4151 Task (SU): 1.27 ± 0.33 ***
M4 vs M2 514.49 19.37 6.24e-05 ***
M5 vs M4 518.20 2.30 0.513

Table S 4.2: Self-report (distraction item): Model comparisons for the SURG-TLX item distraction.
Model descriptions provided at the top of the table. The fixed effects are estimated from the final
model, marked in bold. SU: Suturing, Sp: Speech present. Significance levels: * p < .05, ** p < .01,
*** p < .001.

Outcome Model AIC Chisq p-value Fixed Effects of final model
Comparison (Estimate ± SE)

Model Descriptions:
M0: ŷ ∼ 1 + (1|participant)
M1: ŷ ∼ sound + (1|participant)
PT-Transfers M1 vs M0 281.80 0.0207 0.886 Intercept: 23.013 ± 1.026 ***
PT-Drops M1 vs M0 248.69 0.1271 0.721 Intercept: 7.1 ± 0.6 ***
SU-Duration M1 vs M0 -166.98 0.2195 0.64 Intercept: 2.35 ± 0.26 ***
SU-Damage M1 vs M0 456.49 2.2687 0.132 Intercept: 52.673 ± 5.016 ***

Table S 4.3: Surgical task performance: Model comparisons for the surgical task performance.
Model descriptions provided at the top of the table. The fixed effects are estimated from the final
model, marked in bold. PT: Peg transfer. SU: Suturing. Significance levels: * p < .05, ** p < .01,
*** p < .001.

Outcome Model AIC Chisq p-value Fixed Effects of final model
Comparison (Estimate ± SE)

Model Descriptions:
M0: ŷ ∼ 1 + (1|participant)
M1: ŷ ∼ position + (1|participant)
M2: ŷ ∼ position + (click|participant)

amp (Sa)
M1 vs M0 248.89 29.066 6.995e-08 *** Intercept: 2.97 ± 0.346 ***
M2 vs M1 241.87 11.017 0.004 ** position (2nd): -1.16 ± 0.23 ***

amp (Sp)
M1 vs M0 248.35 7.8145 0.005 ** Intercept: 1.74 ± 0.227 ***
M2 vs M1 249.68 2.665 0.263 position (2nd): -0.598 ± 0.21 **

Table S 4.4: ERP: Presence of gating: Model comparisons to check whether a gating effect is
present. The N1-P2 peak-to-peak amplitude was estimated seperately for the ’speech present’ and
’speech absent’ condition. Model descriptions provided at the top of the table. The fixed effects
are estimated from the final model, marked in bold. Sa: Speech absent, Sp: Speech present.
Significance levels: * p < .05, ** p < .01, *** p < .001.
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Outcome Model AIC Chisq p-value Fixed Effects of final model
Comparison (Estimate ± SE)

Model Descriptions:
M0: ŷ ∼ 1 + (1|participant)
M1: ŷ ∼ task + (1|participant)
M2: ŷ ∼ task + (task|participant)

gating (Sa)
M1 vs M0 130.24 6.752 0.0093 ** Intercept: 0.764 ± 0.27 **
M2 vs M1 Task (SU): 0.79 ± 0.29 *
(did not converge)

gating (Sp) M1 vs M0 140.40 2.48 0.115 Intercept: 0.6 ± 0.2537 *

Table S 4.5: ERP: Gating difference between tasks: Model comparisons to investigate whether
the strength of gating differed between tasks. Model descriptions provided at the top of the table.
The fixed effects are estimated from the final model, marked in bold. PT: Peg transfer, SU: Suturing,
Sa: Speech absent, Sp: Speech present. Significance levels: * p < .05, ** p < .01, *** p < .001.

Outcome Model AIC Chisq p-value Fixed Effects of final model
Comparison (Estimate ± SE)

Model Descriptions:
M0: ŷ ∼ 1 + (1|participant)
M1: ŷ ∼ task + (1|participant)
M2: ŷ ∼ task + (task|participant)
playback response
(Sa)

M1 vs M0 -183.96 2.41 0.121 Intercept: 0.062 ± 0.006 ***

playback response
(Sp)

M1 vs M0 -189.77 0.41 0.524 Intercept: 0.045 ± 0.004 ***

speech response
(Sp)

M1 vs M0 -181.39 11.72 0.001 *** Intercept: 0.11 ± 0.01 ***
M2 vs M1 Task (SU): -0.02 ± 0.004 ***
(did not converge)

Table S 4.6: TRF: Difference between tasks: Model comparisons to investigate whether the tasks
influenced the processing of the different continuous stimuli. Model descriptions provided at the
top of the table. The fixed effects are estimated from the final model, marked in bold. SU: Suturing,
Sa: Speech absent, Sp: Speech present. Significance levels: * p < .05, ** p < .01, *** p < .001.
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Outcome rc Model AIC Chisq p-value Fixed Effects of final model
Comparison (Estimate ± SE)

Model Descriptions:
M0: ŷ ∼ task + (1|participant)
M1: ŷ ∼ task + rc + (1|participant)
M2: ŷ ∼ task ∗ rc + (1|participant)

TLX
total

Playback response M1 vs M0 212.49 0.803 0.370 Intercept: 7.02 ± 0.81 ***
(Sa) M2 vs M1 213.96 1.337 0.513 Task (SU): 4.8 ± 0.68 ***

TLX
total

Playback response M1 vs M0 210.20 0.738 0.390 Intercept: 8.35 ± 0.83 ***
(Sp) M2 vs M1 212.20 0.742 0.690 Task (SU): 4.63 ± 0.61 ***

TLX
total

speech response M1 vs M0 206.25 4.687 0.030 * Intercept: 8.67 ± 0.78 ***
(Sp) M2 vs M1 208.21 0.041 0.840 Task (SU): 3.98 ± 0.63 ***

rc: -1.389 ± 0.637 *

Table S 4.7: TRF: prediction of workload: Model comparisons to investigate whether the centered
correlation (rc) between the actual and reconstructed stimulus envelope predict self-reported
workload. Model descriptions provided at the top of the table. The fixed effects are estimated from
the final model, marked in bold. SU: Suturing, Sa: Speech absent, Sp: Speech present. Significance
levels: * p < .05, ** p < .01, *** p < .001.
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General Discussion 5
5.1 Summary

5.1.1 Study I

In Study I, we investigated how a change in attentional focus influences the processing
of auditory stimuli within complex environments. To simulate the complexity of an OR
soundscape, we integrated relevant and irrelevant sounds and speech within a Tetris
task. Participants were instructed to respond to relevant sounds and speech in order to
receive points. The task was also selected due to its requirement for the use of both
hands to navigate the blocks, providing a further parallel to surgical tasks. The resulting
audio-visual-motor task represented a complex task within a complex soundscape.

The experiment helped to advance the field of auditory stimulus processing, extending
beyond the confines of highly controlled laboratory experiments. If a clearly audible alarm
and a less audible beep were relevant, we identified a P3 response, indicating an attention
shift for both the salient and non-salient sound. Furthermore, we established TRFs as a
measure of continuous soundscape processing. The TRF time-course revealed significant
time-windows, highlighting the feasibility of measuring TRFs in response to a soundscape
comprising relevant and irrelevant speech and sound information while a visual-motor
task is being performed. Hence, our study extends the application of TRFs in the study of
natural sound processing beyond speech, providing a step towards measurements of audio
and EEG beyond the laboratory setting.

5.1.2 Study II

In Study II, we examined how a manipulation of demand during the performance of a
surgical task affects the processing of the soundscape. To create a more realistic paradigm
in comparison to Study I, we employed a laparoscopic simulator. To manipulate demand,
participants performed a serial recall task with two levels of difficulty prior to the surgical
task. Additionally, participants were presented with an irrelevant soundscape comprising an
OR playback and a changing-state sequence consisting of spoken letters. A further objective
of the study was to understand the relationship between the informational content of our
stimulus and the neural response. To this end, we computed two stimulus features that
carry varying amount of information about the content of the OR playback, namely the
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envelope and the onsets. We investigated whether they differ in their ability to predict the
EEG response.

Participants reported higher workload and distraction for the high demand condition
compared to low demand condition. However, an increase in demand in the serial recall
task did not result in a decline in performance of the surgical task, suggesting that an
increase in secondary task demand and perceived distraction may not necessarily be evident
in surgical task performance. Furthermore, ERPs in response to the changing-state sequence,
as well as TRFs in response to the OR playback, remained unaltered by demand. However,
ERP amplitudes exhibited an effect over time: the N1 amplitude became smaller and the P2
amplitude increased. The null finding for demand may be ascribed to our modification of
the serial recall task (i.e. long retention interval and large inter stimulus intervals between
spoken letters). The effect of time suggests that responses to varying stimuli, as presented
in the changing-state sequence, are subject to modulation. Furthermore, we demonstrated
that prediction accuracies of the TRF are similar for the playback envelope and the onsets
extracted from the playback. As onsets carry very little information about the content of
the OR playback, they could be recorded in the OR without the risk of recording sensitive
information. This further increases the applicability of EEG to capture responses to a
natural soundscape.

5.1.3 Study III

In Study III, we investigated the impact and processing of irrelevant speech and an OR
playback and how it interacts with task demand in a simulated OR environment. To enhance
the realism of our approach in comparison with Study II, we varied the task demand using
an easy and a difficult surgical task. This mirrors a scenario in the OR where the demand is
defined by the surgical task. The experiment incorporated a soundscape consisting of an
OR playback, soft clicks, and continuous irrelevant speech. Speech was presented from the
back of the participant, mimicking the background speech often encountered in an OR.

The participants self-reported an increase in workload and distraction when engaged
in a high demand task compared to a low demand task and when speech was present
compared to absent. This finding aligns with the frequently reported distracting effect
of irrelevant speech in the OR. As observed in Study II, an increase in distraction ratings
did not necessarily result in a decline in performance. Furthermore, we showed that high
task demand led to a reduction in the processing of the clicks and irrelevant speech, as
measured by ERPs and TRFs, respectively. We found no such effect for the processing of
the OR playback. Thus, we replicated that irrelevant sounds (i.e. the clicks) are processed
less when task-demand is high compared to low and extended this finding to continuous
irrelevant speech.
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5.2 Measures of auditory processing and distraction

The distracting nature of the OR soundscape has already been described several decades
ago (Shapiro & Berland, 1972). The fact that this is a pressing and unresolved issue is
evident from the number of articles that have been published on the topic since we started
working on it (e.g. Ayas et al., 2022; Bereuter et al., 2024; Han et al., 2022; Pleban et al.,
2021). Our studies contribute to the broader question of how distractors in the OR affect
the personnel. Given the limitations of self-reports and performance measures, we were
interested whether the processing of auditory distractors could be measured continuously
and objectively. Therefore, we focused on the potential of EEG to derive markers of auditory
processing by computing ERPs in response to transient sounds and TRFs in response to the
soundscapes. In all three studies, we combined EEG with self-reports and performance
measurements to receive a comprehensive picture how the soundscape is processed and
affects the individual.

5.2.1 ERPs

In all our studies we used ERPs to study responses to transient sounds embedded in con-
tinuous soundscapes. The use of established EEG parameters facilitates the interpretation
of results when transitioning from controlled laboratory findings to everyday life and
workplaces (Gramann et al., 2021; Grasso-Cladera et al., 2024). Our ERP results there-
fore fit into the neuroergonomic and mobile research field, as we demonstrated that EEG
responses to auditory stimuli can be computed in complex environments and situations,
providing insights into perceptual and cognitive processes (e.g. Debener et al., 2012;
Dehais et al., 2021; Hölle et al., 2021; Protzak & Gramann, 2018; Straetmans et al., 2021;
Thomaschewski et al., 2021).

The results of Study I demonstrated that both a relevant and salient alarm, as well as a
relevant and soft beep, elicited an attentional response as indicated by the P3 component.
Thus, our results are consistent with neuroergonomic and mobile EEG studies, showing
that the P3 is a robust marker of attentional processing across various contexts (e.g. Dehais
et al., 2021; Grasso-Cladera et al., 2024; Protzak & Gramann, 2018; Suárez et al., 2022).
Unlike most studies, we presented relevant sounds sporadically and as part of the task,
rather than within the oddball paradigm where a constant auditory stream of irrelevant
and relevant stimuli is presented. The constant processing of repetitive sounds provides a
rather artificial experimental setting (Grasso-Cladera et al., 2024). Thus, our results could
encourage using the P3 component in more realistic setups, for example to investigate
attentional trade-offs associated with alarms in the OR. Given that alarms are a significant
source of distraction in the OR (Güļsen et al., 2021), largely due to the frequent occurrence
of false alarms (Edworthy, 2013), understanding their cognitive impact is crucial. Surgeons
may not exhibit overt behavioral responses to false alarms because they recognize that
these alarms do not indicate an actual issue (Bliss & Dunn, 2000). However, this reduced
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behavioral response does not necessarily mean that false alarms do not impose a cognitive
burden. Using the P3 in the context of alarm fatigue may shed light on its impact on
cognitive resources in high-stakes environments such as the OR.

Interestingly, the P3 showed a rather long drift (see Study I supplementary Figure 2.4),
which we did not expect. Similarly, Holtze et al. (2021) observed a late P3 latency when
participants heard their own name embedded in an irrelevant speech stream, Protzak
and Gramann (2018) found a late P3 latency to an auditory task while participants
were driving, and Korte, Jaeger, Rosenkranz, and Bleichner (2024) reported a late P3
latency to natural sounds during task performance. These collective findings suggest that as
experimental complexity increases, late cognitive responses can be expected, potentially due
to delayed processing of stimuli (Polich, 2007). This highlights the importance of employing
established measures, such as ERPs, when transitioning from controlled laboratory settings
to real-world research. It provides a basis for ensuring neurophysiological plausibility
while also revealing how neural processes may differ in complex, naturalistic environments
compared to controlled experimental settings (Grasso-Cladera et al., 2024).

In Study II, we investigated how a changing-state sequence was processed under varying
demand. While we found no modulation of demand, we revealed a time-on-task effect in
an exploratory analysis. Especially for the N1, adaptation effects, i.e. smaller amplitudes
over time, have long been noted (May & Tiitinen, 2010; Näätänen & Picton, 1987). Our
results hint to an effect of predictive coding (Friston, 2005), where participants became
better at anticipating the occurrence of letters as the experiment progressed. This effect
likely arose because the temporal structure of the letters remained consistent across trials,
even as their content varied. This would indicate that participants adapted to predictable
aspects of the soundscape over time. Translating this to the OR, such findings suggest that
experience with the OR environment could allow surgical personnel to adapt to and filter
predictable components of the auditory environment, such as ECG monitoring devices,
potentially reducing cognitive demand during tasks.

In Study III, we studied ERPs within the framework of sensory gating, a neural mechanism
to suppress responses to repetitive and irrelevant stimuli. Our findings align with research
demonstrating that the sensory gating effect is robust over long durations, a variety of tasks,
and even in the presence of background noise (Hölle & Bleichner, 2023b; Major et al.,
2020). Furthermore, we found that high task demand can reduce sensory gating strength,
consistent with research linking sensory gating to an individual’s ability to shield cognitive
functioning from interfering stimuli (Lijffijt et al., 2009). The higher task investment may
have reduced the processing of irrelevant and potentially distracting stimuli (Molloy et
al., 2019; Sörqvist et al., 2016). While some studies have shown that sensory gating is
influenced by cognitive processes such as attention and working memory (e.g., Rosburg,
Trautner, Elger, & Kurthen, 2009; Sörqvist et al., 2012), it has not been widely explored in
the context of varying task demands. Exploring this effect in other task settings would help
to determine whether our results represent a robust and generalizable finding. As such, it
is an interesting alternative to the classic oddball paradigm. If the research focus involves

110 Chapter 5 General Discussion



studying responses to naturalistic soundscapes, investigating sensory gating may interfere
less with the actual soundscape than a continuous oddball paradigm (Hölle & Bleichner,
2023b).

In all our studies, we were mainly interested in the analyses of the irrelevant aspects of a
soundscape. Therefore, we focused on early ERP peaks because they are reliably evoked in
response to relevant and irrelevant sounds (Näätänen & Picton, 1987). Indeed, we found
early responses to all transient stimuli that were the subject of investigation in our studies.
Across the studies, I observed a pattern regarding acoustic masking, which describes the
effect where the perception of a sound is affected by another sound that is simultaneously
presented (Kidd, Mason, Best, & Marrone, 2010; Shinn-Cunningham, 2008): In Study
I, the non-salient beep showed a different N1 morphology with a descriptively smaller
amplitude than the salient alarm and irrelevant sound. This is partly due to differences
in sound intensity, which are known to affect N1 amplitudes (Kaya, Huang, & Elhilali,
2020; Näätänen & Picton, 1987). Additionally, the beep was likely masked by other sounds
to an extend that participants often failed to notice the beep, as indicated by the lower
hit-rates for the beep. Furthermore, in Study II, the OR playback masked the acoustic
onset of most spoken letters, in other words, participants noticed the letter only after a few
milliseconds. Likewise, when continuous speech is masked it is processed with a short delay
(Brodbeck, Jiao, Hong, & Simon, 2020). To resolve the difference between acoustic and
perceptual onset, we shifted the letter onsets to receive time-synchronized responses across
different letters. In Study III, the responses to the clicks showed a different morphology
and a descriptively smaller gating effect when speech was present compared to when
it was absent. This may be due to energetic or informational masking from the speech
(Kidd et al., 2010; Shinn-Cunningham, 2008). Overall, when recording EEG responses
beyond the presentation of simple stimuli, one must be aware that auditory masking will
affect the responses of interest. While this may be desired, for example, to investigate
speech processing in noise (Brodbeck et al., 2020), it can also introduce confounds in real-
world studies. For example, shifted neural responses due to masking may be mistakenly
interpreted as experimental effects rather than as a consequence of overlapping sounds in
the environment.

To conclude, our studies contribute to the understanding of how auditory processing oper-
ates in complex work environments. By using ERPs to investigate responses to transient
sounds embedded in continuous soundscapes, we demonstrated effects of attention (Study
I), across time (Study II), and of task-demand (Study III) in dynamic and work-like envi-
ronments. Thereby, our findings support the potential of ERPs in neuroergonomic research
for assessing attentional and perceptual processes (Dehais et al., 2021; Thomaschewski et
al., 2021; Wascher et al., 2021).
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5.2.2 TRFs

While our ERP findings were indicative that we could compute neurophysiologically plau-
sible responses within the soundscapes, we were also interested in how responses to the
entire soundscape can be captured and whether these were affected by the state of a person.
In our studies, we computed significant TRF peaks (Study I), and significant prediction
accuracies using a forward model (Study II) and backward model (Study III). Thus, our re-
sults highlight the potential of TRFs to capture responses to soundscapes in which multiple
overlapping sounds are embedded in a continuous stream of auditory information. There
are three notable differences from the majority of studies using TRFs that highlight our
contribution to the study of continuous stimulus processing:

First, the majority of studies have focused on computing only responses to speech. Utilizing
forward models, we computed response to the OR playbacks and found an N1-P2-N2
complex that closely resembled speech responses reported in previous studies (Ding &
Simon, 2012a; Fiedler, Wöstmann, Herbst, & Obleser, 2019; Jaeger et al., 2020; Kong et
al., 2014). Despite the fundamental difference in content between the OR playbacks and
speech, the brain’s estimated response to these stimuli may share similarities, especially
when using the envelope as a stimulus feature. This is likely because the envelope not
only follows the slow amplitude modulations in continuous speech, but also emphasizes its
onsets (Crosse et al., 2021; Petersen et al., 2017), a characteristic that is also prominent
in OR soundscapes, where many sounds with sharp onsets occur (e.g. alarms and tool
clattering). Consequently, the estimated responses to both OR playback and speech are
primarily responses of the sensory system to stimulus onsets. Furthermore, sound and
speech processing share similar anatomical and functional brain regions, although speech
has higher processing demands than non-speech sounds (Price, Thierry, & Griffiths, 2005).
This may be reflected in our findings from Study III, where the reconstruction of the OR
playback showed descriptively lower correlations compared to the reconstruction of speech.
This finding may indicate enhanced speech processing when both stimuli are deemed
irrelevant. Since irrelevant speech processing is enhanced when presented alongside
babble noise (Herrmann, 2024) or music (Zuk, Murphy, Reilly, & Lalor, 2021), it would
be interesting to explore whether this effect extends to other background soundscapes,
such as the OR soundscape. Thus, our results not only extend the application of TRFs to
continuous stimuli beyond speech, but also demonstrate their ability to differentiate how
different aspects of continuous soundscapes are processed.

Second, we investigated soundscapes while participants performed a concurrent non-
auditory task. Most studies employing TRFs focus on purely auditory tasks, typically
comparing attended and unattended speech (e.g. Brodbeck et al., 2020; Fiedler et al.,
2019; Mirkovic et al., 2015; O’Sullivan et al., 2015; Petersen et al., 2017) with few exploring
speech during concurrent non-auditory tasks. When participants were engaged in simple
visual tasks, such as a visual n-back, TRFs to both relevant and irrelevant speech were
successfully recorded (Herrmann, 2024; Xie et al., 2023). In contrast, Vanthornhout
et al. (2019) presented irrelevant speech while participants played Tetris. They were
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unable to compute meaningful responses, which they attributed to artifacts, as meaningful
TRFs were obtained in another condition where participants merely watched a movie.
Our studies demonstrate that TRFs to irrelevant soundscapes and speech can be reliably
computed even when tasks such as Tetris or surgical tasks are performed while sitting or
standing. This highlights the utility of TRFs as a measure of auditory processing for complex
soundscapes where tasks are concurrently performed. Furthermore, other studies have
shown that speech responses can be captured while participants are walking (Straetmans et
al., 2024, 2021). Collectively, these findings show that TRFs can capture neural responses
to continuous speech and soundscapes across diverse tasks and mobile settings, validating
their use as a method that can be applied outside of the lab.

Third, we focused primarily on the processing of the irrelevant aspects of the soundscape.
Previous studies have shown that responses to irrelevant speech are typically reduced
when attention is directed towards another speech stream (e.g. Mirkovic et al., 2015;
O’Sullivan et al., 2015) or a competing task (Vanthornhout et al., 2019). In our studies, we
observed that the processing of irrelevant speech varied with task demand, suggesting that
speech outside the focus of attention is processed differently depending on task demand.
Importantly, while ERP studies with simple stimuli have shown that task demand modulates
the processing of irrelevant sounds (Brockhoff et al., 2022), our findings demonstrate a
similar effect with natural, continuous stimuli, extending this evidence to a more realistic
setting. While we found a modulation of speech, we did not observe similar effects for
the OR playbacks, indicating that this modulation may not extend to the soundscape
as a whole. Previous studies have shown that stimuli outside the focus of attention are
processed separately when their spectro-temporal content differs (Hausfeld, Riecke, Valente,
& Formisano, 2018). Consequently, it can be hypothesized that modulations in processing
may differ between auditory streams. Investigating how different irrelevant and continuous
auditory streams are processed would further increase our understanding of distractor
processing. For instance, in the OR, it would be valuable to examine the processing of
music. Despite the existence of studies that have reported beneficial effects of music
in the OR, the evidence regarding its influence on performance is mixed (Conrad et al.,
2012; Han et al., 2022; Kounidas, Kastora, & Maini, 2022; Moorthy et al., 2004). Thus,
computing TRFs in response to music (Di Liberto, Pelofi, Bianco, et al., 2020; Di Liberto,
Pelofi, Shamma, & de Cheveigné, 2020; Hausfeld, Riecke, Valente, & Formisano, 2018)
and the OR soundscape may reveal how music changes the processing of the remaining
soundscape. Our results highlight the potential of TRFs to objectively investigated such
relationships, thereby providing further insights how irrelevant aspects of the soundscape
are processes.

As a further note to this section, I would like to highlight a methodological consideration
when computing responses to natural soundscapes, which applies to the OR but also to
soundscapes in general: the audio material influences the computation of the TRFs. While
this may appear trivial, it is important when recording responses in situations with limited
access to a clean, i.e. noise-free, sound source. In Study I, we presented participants with
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an OR playback from YouTube and could extract the envelope directly from the audio file.
In Study II and III, however, we had to apply a noise reduction algorithm before meaningful
responses to the envelope could be computed. In these studies we used an OR-recording
from the University Hospital Oldenburg (Rennies et al., 2023). We assume that the constant
humming sound from ventilation, which was captured in the recording, resulted in an
envelope with little variance and an inaccurate estimation of the TRF. Interestingly, using
an onset detector algorithm already implemented in a smartphone app (Hölle et al., 2022),
we captured onsets directly from the noisy soundscape. The onsets were found to be as
predictive of the neural response as the noise-free envelope, underscoring the efficacy of
such algorithms even in noisy environments. Since the envelope and onset detector both
highlight sound onsets, they are valuable features in an environment like the OR, which
is characterized by the presence of numerous transient sounds from machinery and tools.
However, it is important to note that they may not be as suitable for soundscapes with a
limited number of clear sound onsets. Consequently, while TRFs can be a powerful tool to
compute responses, it is crucial to be aware of the characteristics of the soundscape under
investigation.

To summarize, our findings demonstrate that TRFs can reliably capture neural responses to
complex, naturalistic soundscapes during task performance, extending their application
beyond speech research. We also showed that task demand affects the processing of
irrelevant speech but not necessarily the broader OR soundscape. Additionally, our results
highlight methodological considerations, such as the influence of soundscape characteristics
on TRF computation. Together, these findings advance our understanding of auditory
processing in complex environments and underscore the potential of TRFs for studying
cognitive processes in real-world settings like the OR.

5.2.3 Self-reports and performance

While our primary focus was on EEG measures, we also incorporated subjective and perfor-
mance measures to gain a comprehensive understanding of the effects of the soundscape.
In Studies II and III, we found that perceived distraction did not necessarily impair perfor-
mance in a surgical task. Previous research has also failed to identify whether performance
is affected by the soundscape (Mentis et al., 2016). This underscores the complexity of
identifying potentially subtle impacts of auditory distraction on surgical performance. Our
results suggest that distraction may elicit a negative emotional response without leading to
severe, observable errors. This aligns with the notion that disruptions in the OR might not
always translate into immediate negative outcomes for the patient but could still impose
cognitive and emotional strain to the personnel (Ayas et al., 2022). Over time, such strain
could accumulate as the personnel are required to cope with the auditory environment
daily. As prolonged exposure to noise contribute to increased stress (Oiamo, Luginaah, &
Baxter, 2015), the soundscape can ultimately pose a risk to the personnel’s health.
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We further showed that self-reported distraction depends on surgical demand, aligning
with observations from the OR (e.g. van Harten et al., 2021). Thus, noise-reduction
interventions should be targeted to high-demand phases of a procedure. This finding is also
relevant for the training of novice surgeons, as the amount of cognitive resources required
by a surgical procedure is dependent on the surgeon’s experience level (Hsu et al., 2008;
Marrelli et al., 2014; Thomaschewski et al., 2021). For instance, experienced personnel may
perceive a procedure as straightforward and therefore the environment as less distracting.
Conversely, the same procedure may be highly demanding for an inexperienced person, and
thus the environment is perceived as highly distracting (Hsu et al., 2008). Consequently,
while assessing the expected demand of a procedure, the level of experience of the surgeons
should also be taken into account when planning noise reduction interventions.

In Study III we observed a relationship between task demands, self-reported distraction
and neural responses to speech. Speech was perceived as particularly distracting which
reinforces its role as a major source of distraction in the OR (Ayas et al., 2022; Healey
et al., 2007, 2006; Persoon et al., 2011; Sevdalis et al., 2007, 2014; van Harten et al.,
2021). Interestingly, while task demand reduced neural responses to speech, it had no
such effect on the overall soundscape. Additionally, speech responses were negatively
correlated with self-reported workload, suggesting that participants may have suppressed
speech processing by focusing on the task. These findings appear to contradict predictions
from load theory (see section 1.2.3), which suggests that higher cognitive load due to a
demanding task increases distractor processing (Lavie, 2005). However, this theory has
been challenged, as cross-modal distractors, such as those in our study, are more likely to be
suppressed under high cognitive load (Brockhoff et al., 2022, 2023; SanMiguel et al., 2008;
Sörqvist et al., 2016). Our results support this alternative explanation and demonstrate
that such effects can be studied in realistic settings.

Overall, our findings highlight the complex relationship between auditory distraction,
neural processing, self-reports, and performance in the OR. While self-reported distraction
does not always lead to measurable performance impairments, its cognitive and emotional
impact should not be overlooked. The observed reduction in speech processing during
high-demand tasks suggests a shielding mechanism to maintain cognitive resources for task
performance.

5.3 Limitations

While our studies have contributed to the understanding of auditory processing in complex
environments such as the OR, there are certain limitations that occur across all studies that
I would like to address in more detail.

In all our studies, the majority of participants were unacquainted with the OR environment
and soundscape. While Study I and III included students from various disciplines, the
medical students in Study II also had limited experience. It can be expected, that experience
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shapes the perception and processing of an OR soundscape and therefore our results may
not be reflect the processing of an experienced surgeon. As our studies provided initial
steps to study auditory processing in the OR, the sample selection was advantageous in
terms of accessibility. A sample of experienced surgeons was impractical, given the duration
of the studies (three to four hours). However, future studies could use more complex
and longer procedures than those used in our studies, which already exist for simulators.
For example, based on our experience and research from the speech tracking literature, a
15-minute procedure per condition would be sufficient to obtain reliable responses to an
OR soundscape and speech (Crosse et al., 2021; Mesik & Wojtczak, 2023). Consequently,
with two conditions and the preparation of EEG, an experiment may last no longer than one
hour, which should increase the acceptability of more experienced surgeons to participate
in a study.

The soundscapes used in our studies were complex and designed to mimic an actual OR,
however, the real OR soundscape is even more complex. A real OR soundscape consists of
overlapping relevant and irrelevant sound and speech information. This was considered
in Study I, where we computed responses to all sounds in the soundscape, i.e. relevant
and irrelevant. However, our studies of auditory processing mostly relate to the irrelevant
aspects of the soundscape. As many sounds in the OR are indeed irrelevant for the task and
could be avoided (Engelmann et al., 2014), our study contributed to the understanding of
these sounds. Nevertheless, to fully capture the complexity of the OR environment, relevant
sounds must also be considered. Thus, alarm sounds or speech that must be attended to
and reacted to would further increase the representation of a complex environment where
multi-tasking is often required.

Throughout the studies, I analyzed responses to the OR playback using the same approach
as for speech, which maps features of a continuous auditory stream (e.g. the envelope) onto
the neural response, or vice versa (Crosse et al., 2016). Speech is likely processed as a single
auditory object, meaning that the same speech stream forms a continuous perceptual unit
over time (Ding & Simon, 2012a; Griffiths & Warren, 2004). Auditory attention operates on
these objects, enabling suppression of unattended stimuli, as demonstrated in attended and
unattended speaker scenarios (Ding & Simon, 2012a; Shinn-Cunningham, 2008; Shinn-
Cunningham, Mehraei, Bressler, & Masud, 2013). However, it is debatable whether the OR
playback is processed as a single continuous object or as a collection of distinct auditory
objects, each eliciting different neural responses. For example, salient events within the
OR soundscape, such as the drop of a metal tray or the feedback sound of an electric
cutter, likely evoke stronger neural responses compared to less salient background sounds
(Huang & Elhilali, 2017, 2020). Treating the OR playback as a continuous object provided
a practical and efficient method for capturing neural responses to naturalistic soundscapes.
However, this approach may miss the unique contributions of individual sounds within the
soundscape.
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5.4 Future directions

In order to gain further understanding of how the soundscape affects the personnel in the
actual OR and OR-like situations, several aspects could be investigated in future studies.

First, to implement EEG in workplace environments requires technological advances to
improve acceptance among personnel. Traditional cap-EEG setups can be uncomfortable to
wear over extended periods, limiting their practicality in settings like the OR. To address
this, reduced EEG setups that maintain high data quality are essential. For example,
ear-EEG which involves small electrode layouts positioned around the ears (Bleichner &
Debener, 2017; Debener et al., 2015), has been shown to record high-quality EEG data
for several hours (Hölle et al., 2021). Ear-EEG is also sensitive to auditory processing and
attention (Bleichner, Mirkovic, & Debener, 2016; Holtze et al., 2022; Meiser & Bleichner,
2022; Meiser et al., 2020). This makes ear-EEG a promising alternative to traditional
cap-EEG by offering improved comfort without sacrificing sensitivity to auditory processes.
Nevertheless, further comparison of ear-EEG with cap-EEG in challenging, artifact-prone
settings is required. For example, during my studies using cap-EEG in a surgical simulation,
I encountered muscle artifacts at the mastoid electrodes that had to be removed using
ICA. Interestingly, these artifacts were task-specific, as they did not appear during the
Tetris task. Such artifact removal may become even more complex with ear-EEG due to
its proximity to facial and jaw muscles (Mirkovic, Bleichner, De Vos, & Debener, 2016).
Overall, small electrode set-ups like ear-EEG provide an important step for mobile and
neuroergonomic assessments but currently require even higher expertise than cap-EEG for
both data acquisition (Hölle & Bleichner, 2023a) and processing.

Second, to increase our understanding how different aspects of a soundscape are processed,
future studies should combine EEG measurement with acoustic scene analysis to identify
and categorize distinct sounds within these environments (e.g. Mesaros, Heittola, Eronen,
& Virtanen, 2010; Rennies et al., 2023). A reanalysis of the dataset from Study I revealed
that the alarm, irrelevant sounds, and beep accounted for only a small proportion of the
overall soundscape, but produced high prediction accuracies (Haupt et al., 2025). Identify-
ing such sounds within a soundscape is essential for understanding their contribution to
neural responses. For example, salience detection algorithms could help identify sounds
that capture attention (Huang & Elhilali, 2017; Straetmans et al., 2021). However, such
algorithms may not be suitable to detect low-salience sounds (Kaya & Elhilali, 2017), like
the soft beep in Study I. Alternatively, sounds could be categorized by their content, for
example, speech detection algorithms could identify phases of communication in recordings
(e.g. Mesaros et al., 2010; Rennies et al., 2023), which could then be related to EEG
responses. This would allow the investigation of speech in natural environments. Ideally,
such algorithms do not record the raw audio, but features of the audio that guarantee data
protection, for example by recording speech features that do not reveal the identity of the
speaker (Pohlhausen, Nespoli, & Bitzer, 2024). Combining acoustic scene analysis with
EEG will allow researchers to capture neural responses to specific sounds in real-world
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soundscapes and explore how these are modulated by internal (e.g. cognitive) and external
(e.g. acoustic) factors.

Third, our focus was to transition EEG research from laboratory-based studies to more
realistic environments. However, this transition is not a straightforward process but rather a
dynamic back-and-forth along a continuum between controlled laboratory settings and real-
world scenarios (Matusz et al., 2019). Thus, several aspects of this thesis could be further
investigated in more controlled settings. For instance, the effect of cognitive load on the
processing of a changing-state sequence in a serial-recall task has not been systematically
tested (Marois & Vachon, 2024). While Study II addressed this question, our approach
deviated from the traditional application of this paradigm, limiting our ability to interpret
the findings within the duplex-mechanism account (see section 1.2.1). Investigating how
cognitive load interacts with this theory would help determine its applicability across
different contexts. Similarly, the reduced processing of irrelevant speech under high
task demand observed in our studies could be further examined in controlled settings.
Xie et al. (2023) found that relevant speech responses were reduced when participants
performed a working memory task (n-back) compared to a no-task condition, though
no difference emerged between easy and difficult n-back tasks. A similar study could
assess how irrelevant speech is processed under varying cognitive load, providing a more
controlled replication of our findings. Additionally, the irrelevant speech effect has primarily
been studied using ERPs in response to changing-state sequences (Marois & Vachon, 2024).
Applying TRFs to investigate responses to continuous irrelevant speech during a serial-recall
task could offer further insights into the neurophysiological processes underlying speech
distraction. By integrating theories from controlled experiments with findings and methods
from naturalistic designs and vice versa, future research can refine our understanding of
auditory distraction, cognitive load, and their neural mechanisms.

Lastly, similarly to the EEG response to objectively measure processing of the OR soundscape,
there is also a need for an objective, continuous, and reliable measure of surgical task
performance. Given that surgical procedures largely determine task demand, incorporating
such measures would enhance the study of distraction in the OR. In Studies II and III, we
used performance measures derived from the simulator to objectively assess performance
of the surgical task. However, as previously discussed, performance parameters may not be
sensitive enough to detect subtle behavioral changes caused by environmental demands.
Moreover, capturing performance in a real OR setting poses additional challenges: Direct
assessment through surgical outcomes is challenging due to the heterogeneity of surgical
procedures (Engelmann et al., 2014). Furthermore, performance assessment through
expert evaluations, such as video annotations, are time-consuming, resource-intensive,
and introduces privacy concerns. Hence, there is a need for unobtrusive methods that
circumvent these issues. One potential solution is to capture movement patterns of the
hands, as dexterity may decrease under distraction (Lopus, 2012). This could be achieved
by using inertial measurement units (IMUs) positioned on the hands. Similarly, EMG could
measure differences in muscle activity, which has been shown to vary between noisy and
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quiet conditions during surgical tasks (Gao et al., 2018). Identifying a performance measure
that minimally disturbs personnel while effectively capturing surgical task performance
would be a critical step toward understanding how auditory distractions affect surgical
personnel.

5.5 Application

Using EEG to continuously monitor responses to natural soundscapes could provide valu-
able insights into various work environments and work-like situations. Our findings are
particularly relevant for settings characterized by frequent, transient sounds, such as the
OR, where numerous auditory events occur that can be linked to EEG. Another setting can,
for example, involve aviation personnel who are regularly exposed to beeps, alarms, and
speech. The soundscape has been reported to negatively affect performance and well-being
(Dehais et al., 2014; Peryer, Noyes, Pleydell-Pearce, & Lieven, 2005). Our studies show that
EEG can be used to investigate the processing of auditory stimuli in such situations. Thus,
in such workplaces, transient sounds can serve as natural events that provide information
about cognitive processes (Wascher et al., 2021).

Computing EEG responses to the continuous OR soundscape could also be useful to evaluate
the effectiveness of training programs that incorporate realistic auditory environments.
Suárez et al. (2022) and Thomaschewski et al. (2021) have shown that laparoscopic
training alters brain activity, with EEG indicating reduced demands as proficiency increases.
Since our results suggest that task demand influences the processing of specific aspects of
the soundscape, such as speech, TRF responses could reveal how experience-driven changes
in task demand affect the neural processing of both speech and the OR soundscape. This
approach could provide insight into how well training prepares personnel for the auditory
and cognitive demands of the OR.

Furthermore, EEG could be a valuable tool for assessing intervention strategies aimed at
reducing distraction. Leitsmann et al. (2021) showed that a communication device designed
to suppress irrelevant noise while enhancing relevant speech had self-reported benefits but
no effect on performance. Our findings are promising to evaluate the cognitive impact of
such interventions. For example, examining how irrelevant speech that is suppressed by
such a device is processed under varying task demands could help determine whether these
interventions effectively reduce cognitive load. Additionally, any noise reduction strategy
must ensure that critical auditory signals, such as alarms, remain perceptible. Measuring
ERPs to alarms could indicate whether they are processed or whether personnel fail to
respond, possibly due perceptual failure (Dehais et al., 2014). This approach could guide
improvements in OR sound design, leading to alarms that effectively capture attention
while minimizing disruption to surgical personnel (Anderson, Sreetharan, Elizondo López,
Schlesinger, & Schutz, 2023).
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Finally, this thesis not only advanced the use of EEG in work-like settings but also provides
insights into strategies for reducing distraction in the OR. Noise reduction training (e.g.,
Engelmann et al., 2014) should emphasize the importance of minimizing unnecessary noise,
particularly during high demand phases of surgery. Our findings align with observations
that higher task demand is associated with increased perceived distraction (van Harten
et al., 2021), underscoring the need to limit irrelevant sounds during these periods. In
particular, case-irrelevant speech, such as teaching, phone calls or private conversation,
should be avoided when task demand is high. However, during phases of low demand,
such speech may be less disruptive and could even help alleviate tension and improve team
morale (Ayas et al., 2022; Widmer et al., 2018). Managing when and how case-irrelevant
communication occurs could support both noise reduction and team dynamics in the OR.

5.6 Conclusion

In this thesis I investigated how the brain processes complex soundscapes in demanding
work environments, with a focus on OR soundscapes. Using EEG, we examined how
soundscapes, including a variety of overlapping sounds such as alarms and irrelevant
speech, are processed and how they relate to perceived workload and performance during
complex tasks. Across three studies, we demonstrated that ERPs reliably capture transient
auditory responses, while TRFs provide a valuable tool for assessing neural responses
to continuous soundscapes. Importantly, we showed that TRFs can capture responses to
irrelevant soundscapes beyond speech, even while a task is being performed. Additionally,
we demonstrated that neural responses in such complex settings evolve over time and that
processing of irrelevant speech is modulated by surgical task demand. Our findings further
revealed that self-reported distraction and surgical performance are not necessarily related,
reinforcing the need for measures beyond task performance to accurately assess distraction
in the OR. By extending EEG research beyond highly controlled laboratory settings, we
successfully recorded reliable neural responses to sound, thereby investigating traditional
laboratory findings in more naturalistic environments. I encourage future research to
continue to bridge the gap between controlled experiments and real-world studies. By
advancing along this continuum, we helped to drive methodological developments, iden-
tify potential theoretical limitations, and ultimately improved our understanding of the
interaction between auditory and cognitive processes in high-stakes environments.
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