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„Suppose that you want to teach the ‘cat’ concept to

a very young child. Do you explain that a cat is a

relatively small, primarily carnivorous mammal with

retractible claws, a distinctive sonic output, etc.?

I’ll bet not. You probably show the kid a lot of

different cats, saying ‘kitty’ each time, until it gets

the idea. To put it more generally, generalizations

are best made by abstraction from experience.“

- Ralph P. Boas Jr.



Abstract

In life insurance, the uncertain long-term development of economic and demographic
factors represents an undiversifiable risk. To address this risk, life insurers use conservative
valuation assumptions, which lead to systematic surplus. By statute, a portion of this
surplus must be refunded to the policyholder, with the compensation rates usually depending
on the source of the surplus. Therefore, a decomposition of the total surplus with respect
to the various risk factors is indispensable. Due to their relevance, several decomposition
formulas have been presented in the actuarial literature. However, all contributions
use heuristic arguments. A comprehensive decomposition principle that allows existing
decomposition formulas to be compared and modern risks (e.g. policyholder behaviour) to
be added is still missing. The thesis closes that gap by introducing a so-called infinitesimal
sequential updating (ISU) decomposition principle.

The ISU decomposition principle enhances the sequential updating (SU) decomposition
principle, which is popular in the economics literature but is subject to order effects.
By forming the limit of SU decompositions with respect to the update frequency, the
ISU decomposition principle eliminates the order effects while retaining the desired
additivity. The thesis shows that this approach is also helpful for other prominent
decomposition principles. Furthermore, the expediency of the ISU decomposition principle
is demonstrated by replicating the various surplus decompositions known from the actuarial
literature. In addition to its relevance for the decomposition of traditional life insurance
surplus, the application of the ISU decomposition principle to martingales reveals its great
potential in risk management. In particular, conditions are presented under which the ISU
decomposition coincides with the recently introduced martingale representation theorem
(MRT) decomposition.

Furthermore, evidence for the numerical feasibility of the ISU decomposition principle
is provided using the example of a fund-linked pension insurance. In a doubly stochastic
Markov setup, integral representations for the individual surplus contributions are obtained.
The latter are further used to derive convergent estimators for the ISU decomposition
by leveraging multilevel Monte Carlo methods to conditional expectations. The thesis
concludes with the presentation of the numerical results, focusing on the impact of the
chosen time grid and the chosen update order.
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Kurzfassung

In der Lebensversicherung stellt die unsichere Entwicklung wirtschaftlicher und demographis-
cher Faktoren ein nicht-diversifizierbares Risiko dar. Diesem Risiko begegnen die Lebensver-
sicherer durch die Verwendung konservativer Bewertungsannahmen, welche zu systema-
tischen Überschüssen führen. Laut Gesetz muss ein Teil dieser Überschüsse an die Ver-
sicherungsnehmer zurückgezahlt werden, dabei hängt die jeweilige Überschussbeteiligung in
der Regel von der Überschussquelle ab. Dies erfordert die Zerlegung des Gesamtüberschusses
nach Quellen. Entsprechend der praktischen Relevanz von Überschusszerlegungen, werden
in der versicherungsmathematischen Literatur bereits verschiedene Zerlegungsformeln
vorgeschlagen. Die Herleitungen der Zerlegungsformeln basieren jedoch auf heuristischen
Argumenten. Ein Zerlegungsprinzip, das es erlaubt, bestehende Zerlegungen miteinander
zu vergleichen und diese um moderne Risiken (z.B. das Verhalten der Versicherungsnehmer)
zu erweitern, fehlt bisher. Die vorliegende Arbeit schließt diese Lücke, indem sie ein
sogenanntes infinitesimal sequential updating (ISU) Zerlegungsprinzip einführt.

Das ISU-Zerlegungsprinzip erweitert das in der wirtschaftswissenschaftlichen Literatur
bekannte sequential updating (SU) Zerlegungsprinzip. Letzteres hat den Nachteil, dass
die resultierende Zerlegung maßgeblich von der gewählten Reihenfolge der Risikofaktoren
abhängt. Die ISU Zerlegung ergibt sich hingegen als Grenzwert von SU Zerlegungen durch
die Verfeinerung des unterliegenden Zeitgitters. Mithilfe dieses infinitesimalen Ansatzes kön-
nen in Anwendungen oftmals Reihenfolgeneffekte eliminiert werden, gleichzeitig bleibt die
wünschenswerte Additivität der SU Zerlegung aber erhalten. Darüberhinaus wird gezeigt,
dass der vorgestellte Ansatz auch für andere bekannte Zerlegungsprinzipien nützlich ist.
Die Adäquatheit des ISU Zerlegungsprinzips wird mittels der Replikation aus der Literatur
bekannter Überschusszerlegungen nachgewiesen. Zusätzlich stellt sich durch die Anwendung
des ISU Zerlegungsprinzips auf Martingale heraus, dass das Risikomanagement ein weiteres
breites Anwendungsfeld des vorgestellten Zerlegungsprinzips darstellt. Insbesondere werden
in dieser Arbeit Bedingungen präsentiert, unter denen die ISU Zerlegung mit der kürzlich
eingeführten martingale representation theorem (MRT) Zerlegung übereinstimmt.

Darüber hinaus wird in dieser Arbeit am Beispiel einer fondsgebundenen Rentenver-
sicherung die numerische Umsetzbarkeit des ISU Zerlegungsprinzips untersucht. Genauer
werden in einem doppelt stochastischen Markov-Setup Integraldarstellungen für die einzel-
nen Überschussbeiträge gewonnen. Auf Basis dieser Integraldarstellungen werden konver-
gente Schätzer für die ISU Zerlegung abgeleitet, indem multilevel Monte Carlo Methoden auf
bedingte Erwartungswerte verallgemeinert werden. Die Arbeit schließt mit der Darstellung
der numerischen Ergebnisse, wobei sich die Analyse auf den Einfluss des Zeitgitters und
der Aktualisierungsreihenfolge fokussiert.
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1 Introduction

A traditional life insurance policy provides benefits in the event of death or survival,
including a guaranteed rate of interest on the premiums paid. Due to the long-term
nature of life insurance contracts, the prediction of economic and demographic factors
(e.g. interest rates, mortality, and morbidity) harbours a high degree of uncertainty
(see Jetses & Christiansen, 2022). To take this non-diversifiable risk into account, conser-
vative assumptions are used for premium calculation. As a consequence, systematic surplus
arises during the course of the contract. By virtue of legal requirements or contractual
terms (‘with-profit life insurance’), a part of this surplus belongs to the policyholder and
is therefore refunded to them. Specifications, whether statutory or contractual, usually
include compensation rates for the individual sources of surplus (investment surplus, risk
surplus, other surplus). For this reason, a decomposition of surplus with respect to the
different risk sources is essential.

It is therefore not surprising that surplus decompositions have been repeatedly ad-
dressed in actuarial literature since the early 20th century. In time-discrete life insurance
setups, the popular contribution formula (Kontributionsformel) decomposes the yearly
surplus into the mortality surplus, interest surplus, lapse surplus and cost surplus (see
e.g. Milbrodt & Helbig, 1999, Section 11.B). In time-continuous life insurance setups,
several decomposition formulas in multistate Markov models have been proposed (see
e.g. Møller & Steffensen, 2007; Norberg, 1999, 2001; Ramlau-Hansen, 1988, 1991). All
these publications derive the individual surplus contribution using heuristic arguments.
Accordingly, the different decompositions are hard to compare. Moreover, the model
frameworks are rigid, meaning that there is no natural way to add further sources of
surplus to the model. However, adding further sources is highly relevant in the age of
big data, where trackable policyholder behaviour (e.g. via smartwatches) allows for more
accurate risk assessment. Thus, a fundamental decomposition principle that encompasses
the existing decompositions on the one hand and allows for flexible expansion of further
risk sources on the other hand is missing.

This thesis closes the outlined gap by presenting a so-called infinitesimal sequential
updating (ISU) decomposition principle that gathers all the existing surplus decompositions
under one common roof. The ISU decomposition principle is an extension of the sequential
updating (SU) decomposition principle, which decomposes the surplus into the changes
resulting from the sequential updating of risk factor information. Though the SU decompo-
sition principle is well-known in economics literature (see e.g. Blinder, 1973; DiNardo et al.,
1996; Oaxaca, 1973) it has the disadvantage of depending on the formal order of surplus
sources (see Biewen, 2014; Fortin et al., 2011). One can address this shortcoming by using
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the averaged sequential updating (ASU) decomposition principle, which is also known as
the Shapley-Shubik decomposition (see Shubik, 1962). This approach is subject to the curse
of dimensionality (see Junike et al., 2024), nonetheless it is frequently used for attributing
the prediction score of a machine learning model to its features (see Sundararajan and
Najmi, 2020). Another idea discussed in the economics literature is the one-at-a-time
(OAT) decomposition principle (see Biewen, 2014). Although the OAT decomposition
principle avoids order effects, it involves interaction effects that cannot be attributed
to a single source of risk. Due to the stated shortcomings of alternative decomposition
principles, the ISU decomposition principle is introduced, which eliminates order effects
by pushing the refinement of the valuation intervals to the limit. It is shown that this
refinement approach also helps with the ASU and OAT decomposition principles, leading
to the averaged infinitesimal SU (AISU) and infinitesimal OAT (IOAT) decomposition
principles. The latter has recently also been discussed by Frei (2020). It turns out that all
decomposition principles, ISU, AISU and IOAT, result in the same surplus decomposition,
whenever the ISU decomposition does not depend on the update order. In particular, this
applies to the traditional decompositions of life insurance surplus referred to above.

Though the traditional surplus decompositions has been the focus so far, it is worth
noting that the scope of the ISU decomposition principle goes far beyond it. Even if
the different surplus sources contribute to the total surplus in a non-linear manner, the
ISU decomposition principle provides individual surplus contributions that add up to the
total surplus. On the one hand, the need for such a decomposition arises from regulatory
requirements for insurance companies (see Flaig & Junike, 2024). For example, Article 123
of the Solvency II Directive (European Parliament and the Council, 2009) requires insurers
to perform an annual profit and loss attribution. Additionally, the revised Market Consistent
Embedded Value (MCEV) reporting principles from 2016 entail the reconciliation of the
opening MCEV and closing MCEV in a change analysis (CFO Forum, 2016). On the other
hand, the ISU decomposition principle might be a very useful tool for risk management.
The additivity of the resulting decomposition allows for an immediate application of the
Euler allocation principle (see Frei, 2020; Karabey et al., 2014).

Taking additivity into account, Schilling et al. (2020) have recently published a compre-
hensive list of desirable properties of a risk decomposition. In addition, Schilling et al. (2020)
have introduced the so-called martingale representation theorem (MRT) decomposition,
which, unlike other risk decompositions in the literature, fulfils all desirable properties. The
MRT decomposition breaks down the total surplus into individual surplus contributions by
attributing the integrals of the martingale representation to the respective risk factors. In
particular, this approach requires the total surplus process to be a martingale. The ISU
decomposition principle is applicable to martingales, which again emphasises the scope

2



of the decomposition principle presented. This immediately raises the question of the
relationship between the MRT decomposition and the ISU decomposition. In this thesis, it
is shown that under certain assumptions both decomposition approaches coincide. This
result further illustrates the plausibility of the ISU decomposition principle.

The ISU decomposition principle is motivated by the various use cases in practice and
its application to well-known examples from the actuarial literature. However, the question
of whether the ISU decomposition principle will find a way into practice also depends on
its numerical feasibility. Therefore, the numerical feasibility of the ISU decomposition
principle is investigated using the example of a fund-linked pension insurance. In a doubly
stochastic Markov setup, the ISU decomposition is computed in two steps. Firstly, the
ISU decomposition is approached by SU decompositions applying the above-mentioned
convergence results for martingale surplus processes. Secondly, the SU decompositions are
approximated with the help of multilevel Monte Carlo (MLMC) methods. To develop a
theoretical foundation for the second step, the MLMC approach by Giles (2008) is extended
to conditional expectations and a systematic notion of (integral) MLMC convergence is
introduced. The implementation of the derived estimators in R 4.4.2 (R Core Team, 2024)
and the presentation of the numerical results then serve as a proof of concept.

This thesis is structured as follows:
In Chapter 2, the ISU decomposition principle is presented as a refinement of the

SU decomposition principle (see e.g. Blinder, 1973). Additionally, further prevalent
decomposition approaches are discussed. Section 2.1 introduces the ISU decomposition
principle in a very general framework that allows for wide range of applications. By taking
up the infinitesimal approach of the ISU decomposition principle, Section 2.2 proposes
infinitesimal versions of the widely used ASU and OAT decomposition principles and
analyses their relationship to the ISU decomposition principle. Section 2.3 concludes the
chapter with an introductory example.

In Chapter 3, traditional surplus decomposition formulas known from the literature are
embedded in the framework of the ISU decomposition principle presented in Chapter 2.
This provides further evidence to the existing formulas, but also opens the door to the
inclusion of further risks. In Section 3.1 the framework of the ISU decomposition principle
is underpinned with the notions of life insurance modelling. In Section 3.2, a general
multistate life insurance setup is introduced, in which rigorous definitions of surplus are
established following Norberg (1999). The application of the ISU decomposition principle
leads to the main theorems in Section 3.3, which provide the basis to deduce the traditional
surplus decomposition formulas in Section 3.4.
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In Chapter 4, the ISU decomposition principle is related to the recently introduced MRT
decomposition of Schilling et al. (2020), and a property of the risk factors is established
under which both decompositions are equivalent. The underlying model framework, which
assumes the surplus process to be a martingale, is introduced in Section 4.1. After defining
the above-mentioned property of the surplus sources, it is shown in Section 4.2, that a
number of commonly used stochastic processes satisfy this property. In Section 4.3, the
ISU decomposition of martingales is derived and its relationship to the MRT decomposition
is discussed.

In Chapter 5, the numerical feasibility of the ISU decomposition principle is investigated
using the example of a fund-linked pension insurance. After introducing an appropriate
model framework in Section 5.1, an analysis of the approximating SU decompositions is
considered in Section 5.2. Furthermore, in Section 5.2 the multilevel Monte Carlo approach
studied by Giles (2008) is generalised to conditional expectations, which helps with the
derivation of convergent estimators for the SU contributions. Section 5.3 contains details
of the implementation and a presententation of the results.

In Chapter 6, the results obtained are reflected upon, and further discussion is given to
the open questions for future research.
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2 A general surplus decomposition principle

This chapter is derived in part from an article published in the Scandinavian Actuarial

Journal in 2022 (copyright Taylor & Francis), available online: http://www.tandfonline.

com/10.1080/03461238.2022.2049636 . More precisely, (parts of) Sections 2, 4 and 7 of

the article Jetses and Christiansen (2022) are included in Sections 2.1 and 2.2 of this

chapter. The Section 2.3 has been prepared specifically for this thesis. In order to improve

readability and standardise the notation in this dissertation, minor changes have been made

compared to the original article.

Insurance companies are subject to an increasing number of regulatory requirements.
The main objectives of regulation are to protect policyholders and to provide greater
transparency of an insurer’s financial position to all stakeholders. The latter necessitates
comprehensive knowledge of the risks to which the insurer is exposed. In that regard,
reconciling the balance sheets from two different valuation dates and linking the changes to
the various sources leads to a better awareness for the relevant risks (see Candland & Lotz,
2014). This aspect is also reflected by the Solvency II Directive (European Parliament
and the Council, 2009), where Article 123 requires insurers to carry out a profit and loss
attribution at least once a year. A similar idea is followed by the analysis of change in
liabilities, which is part of the recently introduced reporting standard IFRS17 (IASB, 2017,
Article 100 ff.). Furthermore, a change analysis is required by the revised MCEV reporting
principles from 2016 (CFO Forum, 2016) in order to reconcile the opening MCEV with the
closing MCEV.

The stated examples from regulation underline the need for a systematic approach to profit
and loss attribution or change analysis, where both terms are often used interchangeably
(see Christiansen, 2022). Allocating a value change between two valuation dates to the
different sources can be a very challenging task, especially if the risk factors contribute
to the respective key figure in a non-linear way. Usually, the value change is caused
by the newly gained information on the risk factors that leads to a reconciliation of
expected and actual values for the past period, as well as to changes in estimates of
future values. Therefore, a straightforward idea is to update the information from
the different risk factors sequentially and assign the resulting change of the total to
the respective risk factor. This approach, which is called the sequential updating (SU)
decomposition principle, leads to additive decompositions and is widely used in various fields
of economics (see Jetses & Christiansen, 2022). Examples are provided by Blinder (1973)
and Oaxaca (1973) (‘Blinder-Oaxaca-Decomposition’) in the field of labour economics,
see also DiNardo et al. (1996). In insurance economics, Candland and Lotz (2014) present
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the Waterfall approach for profit and loss attribution, which follows the idea of the SU
decomposition principle. Further economic applications of the SU decomposition principle
can be found in Fortin et al. (2011).

For the application of the SU decomposition principle, it is necessary to decide on a time
grid in which the risk drivers will be updated. This can lead to different decompositions
depending on the selected time grid. In addition to this drawback, another downside of
the SU decomposition principle has been pointed out by Biewen (2014) and Fortin et al.
(2011), namely its dependence on the updating order of the risk factors. Fortunately, both
disadvantages can be eliminated by refining the time grid of the SU decomposition to the
limit, while retaining the desired additivity. As this leads to infinitesimal valuation periods,
this approach is referred to as the infinitesimal SU (ISU) decomposition principle.

It is worth mentioning that in the existing literature alternative decomposition principles
are discussed that address the drawback of the order dependency. By averaging the SU
decompositions over all possible update orders, the order dependency can be removed.
Nonetheless, this alternative which is called the averaged sequential updating (ASU)
decomposition principle is subject to the curse of dimensionality (see Junike et al., 2024).
In economics literature, this approach is also known as the Shapley-Shubik decomposition,
which was introduced by Shubik (1962) as a generalisation of the Shapley decomposition
(see Shapley, 1953). A further alternative avoiding the ordering problem is the one-at-a-time
(OAT) decomposition principle (see Biewen, 2014). However, this decomposition principle
involves interaction effects, which cannot be assigned to a single risk driver. Additionally,
similar to the SU decomposition principle, the ASU and the OAT decomposition principles
depend on the selected time grid. As an advancement of the ASU and OAT decomposition
principles, both the averaged infinitesimal SU (AISU) and the infinitesimal OAT (IOAT)
decomposition principles are proposed, which are derived by incorporating the above-
mentioned infinitesimal approach. It turns out that all three decomposition principles are
closely related.

After providing the basic notations, Section 2.1 introduces the ISU decomposition
principle. Section 2.2 examines alternative decomposition principles and their relation to
the ISU decomposition principle. This chapter is concluded with an introductory example
in Section 2.3.

2.1 The ISU decomposition principle

We generally assume that we have a complete probability space pΩ, A,Pq with a right-
continuous and complete filtration F � pFtqt¥0. Let the so-called risk basis

X � pX1, . . . , Xmq,
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be given by a multivariate adapted process composed of so-called risk factors X1, . . . , Xm.

Furthermore, let R � pRptqqt¥0 be a stochastic process that rests on the risk basis X,
i.e. R is adapted to the right-continuous and complete filtration generated by X. The
right-continuous and complete filtration generated by X does not necessarily coincide
with F but may be a strict sub-filtration of F in such a way that at least R is adapted.
We interpret Rptq as a proxy in t of a random variable that depends on the risk factors’
future development. For example, one could define Rptq as the conditional expectation
of the (discounted) total cashflow given the available information at time t ¥ 0. In this
sense, R increases or decreases due to revaluation gains or losses. Therefore, we call R the
revaluation surplus process. The information provided by X at time t can be represented
by the stopped process Xt, formally defined by

Xtpsq � 1s¤t Xpsq � 1s¡t Xptq. (2.1)

Thus, at each time t, the proxy Rptq can be interpreted as the value of a mapping

pt, Xtq ÞÑ Rptq

that assigns at each time t to the current information Xt the random variable Rptq. In
this thesis, we assume that there even exists a mapping ϱ such that

ϱpXtq � Rptq, t ¥ 0.

In the latter equation, the time parameter t itself is not an argument of ϱ and only appears
as stopping parameter in Xt. That means that the dynamics of R are solely driven by the
increase of information through Xt.

The central aim of this thesis is to decompose R as

Rptq � Rp0q �D1ptq � � � � �Dmptq, t ¥ 0, (2.2)

where D1, . . . , Dm are adapted processes that start at zero and describe the contributions
of each risk factor X1, . . . , Xm to the dynamics of R. The first addend Rp0q represents
initial surplus, which is not decomposed here.

Suppose that the information updates of the risk factors X1, . . . , Xm are asynchronously
delayed with t1, . . . , tm ¤ t being the current update statuses of each risk factor. Then

Upt1, . . . , tmq :� ϱppXt1
1 , . . . , Xtm

m qq (2.3)

is the value of the delayed revaluation process at time points t1, . . . , tm. Furthermore, we
denote U � pUpt1, . . . , tmqqt1,...,tm¥0 as the revaluation surplus surface with respect to X.
We can recover the revaluation surplus process R from the revaluation surplus surface U as

Rptq � Upt, . . . , tq, t ¥ 0.
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For any partition T ptq � t0 � t0   t1   � � �   tl � tu of the interval r0, ts, we can build
the telescoping series

Rptq �Rp0q � Upt, . . . , tq � Up0, . . . , 0q

�
l�1̧

k�0

�
Uptk�1, tk, . . . , tkq � Uptk, . . . , tkq

	
�

l�1̧

k�0

�
Uptk�1, tk�1, tk, . . . , tkq � Uptk�1, tk, . . . , tkq

	
� � � �

�
l�1̧

k�0

�
Uptk�1, . . . , tk�1q � Uptk�1, . . . , tk�1, tkq

	
.

It is natural to interpret the m different sums on the right hand side as an additive
decomposition Rptq �Rp0q � D1ptq � � � � �Dmptq, since the i-th sum collects exactly the
information updates for the i-th risk factor.

Definition 2.1. The random vector Dptq � pD1ptq, . . . , Dmptqq defined by

D1ptq �
l�1̧

k�0

�
Uptk�1, tk, . . . , tkq � Uptk, . . . , tkq

	
,

� � �

Dmptq �
l�1̧

k�0

�
Uptk�1, . . . , tk�1q � Uptk�1, . . . , tk�1, tkq

	
,

(2.4)

is called the sequential updating (SU) decomposition of Rptq � ϱpXtq with respect to T ptq.

The SU decomposition principle is used in various fields of economics (see e.g. Biewen, 2014;
Fortin et al., 2011). In (2.4) we update the information on X in a specific order, starting
with risk factor X1, then updating X2, and so on. Unfortunately, the decomposition is not
invariant with respect to this update order, which is a major drawback of the SU concept.
We can reduce the impact of the update order by increasing the number of updating steps,
i.e. refining the partition Tnptq. In a next step we push such refinements to the limit.

Let Tnptq � t0 � tn
0   tn

1   � � �   tn
ln
� tu, n P N, be a sequence of partitions of r0, ts

with vanishing step lengths (i.e. limnÑ8 max1¤k¤ln |t
n
k � tn

k�1| � 0). For each n P N let
Dnptq � pDn

1 ptq, . . . , Dn
mptqq be the SU decomposition of Rptq � ϱpXtq with respect to

Tnptq. We are looking for a random vector Dptq that satisfies

Diptq � plim
nÑ8

Dn
i ptq, i P t1, . . . , mu, (2.5)

where plimnÑ8 describes the convergence in probability.
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Definition 2.2. Let pTnptqqnPN be a sequence of partitions of r0, ts with vanishing step
lengths. If Dptq satisfies (2.5), then we call Dptq the infinitesimal sequential updating (ISU)

decomposition of Rptq � ϱpXtq with respect to pTnptqqnPN.

An axiomatic approach to the ISU decomposition can be found in Christiansen (2022).

2.2 Alternative decomposition principles

As we will see in the next chapters, moving forward to the limit of SU decompositions
by pushing the step lengths to zero is an effective way to eliminate order dependencies.
However, this is not the only way to approach this issue. Therefore, we want to elaborate
on this point by discussing two alternative decomposition principles in this section. Instead
of updating the sources of risk sequentially, we could also update only one source of risk at
a time and quantify its impact on total revaluation surplus Rptq �Rp0q, which will lead us
to the OAT decomposition principle.

Recall that Upt1, . . . , tmq � ϱppXt1
1 , . . . , Xtm

m qq is the value of the delayed revaluation
process at time points t1, . . . , tm (see (2.3)). For any partition

T ptq � t0 � t0   t1   � � �   tl � tu

of the interval r0, ts we can decompose

Rptq �Rp0q

� Upt, . . . , tq � Up0, . . . , 0q

�
l�1̧

k�0

�
Uptk�1, tk, . . . , tkq � Uptk, . . . , tkq

	
�

l�1̧

k�0

�
Uptk, tk�1, tk, . . . , tkq � Uptk, . . . , tkq

	
� . . .

�
l�1̧

k�0

�
Uptk, . . . , tk, tk�1q � Uptk, . . . , , tkq

	
�

l�1̧

k�0

�
Uptk�1, . . . , tk�1q � Uptk, . . . , tkq

	
�

l�1̧

k�0

�
Uptk�1, tk, . . . , tkq � Uptk, . . . , tkq � . . .� Uptk, . . . , tk, tk�1q � Uptk, . . . , tkq

	
.

Here, the first m sums quantify the single effect of the corresponding source of risk.
Following Biewen (2014), we call them the ceteris paribus effects. Since the ceteris paribus
effects do not necessarily add up to the total revaluation surplus Rptq �Rp0q, we get an
extra term in the last two lines, which is called the interaction effect (see Biewen, 2014).
Based on this construction, we get a decomposition principle with a joint risk factor.

9



Definition 2.3. The random vector Dptq � pD1ptq, . . . , Dmptq, Dptqq defined by

D1ptq �
l�1̧

k�0

�
Uptk�1, tk, . . . , tkq � Uptk, tk, . . . , tkq

	
,

� � �

Dmptq �
l�1̧

k�0

�
Uptk, . . . , tk, tk�1q � Uptk, . . . , tkq

	
,

Dptq � Rptq �Rp0q �
m̧

j�1
Djptq

(2.6)

is called the one-at-a-time (OAT) decomposition of Rptq � ϱpXtq with respect to T ptq.

The OAT decomposition principle is also known in economics (see Biewen, 2014). In
contrast to the SU decomposition, the OAT decomposition is order-invariant, i.e. it does
not depend on the order of the risk basis (see Schilling et al., 2020). Nevertheless, we
get a joint risk factor that cannot be assigned to any source of risk. In Section 2.1, we
faced the order dependence of the SU decomposition by considering increasing sequences
of partitions of r0, ts. Similarly, we address the unassignable interaction effect in the OAT
decomposition.

Let Tnptq � t0 � tn
0   tn

1   � � �   tn
ln
� tu, n P N, be a sequence of partitions of

r0, ts with vanishing step lengths (i.e. limnÑ8 max1¤k¤ln |t
n
k � tn

k�1| � 0). For each n P N

let Dnptq � pDn
1 ptq, . . . , Dn

mptq, D
n
ptqq be the OAT decomposition of Rptq � ϱpXtq with

respect to Tnptq. We are looking for a random vector Dptq � pD1ptq, . . . , Dmptq, Dptqq that
satisfies

Diptq � plim
nÑ8

Dn
i ptq, i P t1, . . . , mu,

Dptq � plim
nÑ8

D
n
ptq.

(2.7)

Definition 2.4. Let pTnptqqnPN be a sequence of partitions of r0, ts with vanishing step
lengths. If Dptq � pD1ptq, . . . , Dmptq, Dptqq satisfies (2.7), then we call Dptq the infinitesi-

mal one-at-a-time (IOAT) decomposition of Rptq � ϱpXtq with respect to pTnptqqnPN.

The next theorem characterizes the relation between the ISU decomposition and the IOAT
decomposition.

Theorem 2.5. The following statements are equivalent:

a) The ISU decomposition is independent of update order.

b) For each update order, the ISU decomposition is equal to the ceteris paribus effects of

the IOAT decomposition.

In both cases, the interaction effect is zero.
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Proof. The proof follows Biewen (2014). Let us fix a source of risk (i � 1, . . . , m). Choosing
an update order, such that this source of risk is updated first, the corresponding risk factor
of the ISU decomposition coincides per definition with the ceteris paribus effect of the
IOAT decomposition. If the ISU decomposition is independent of update order, the risk
factor, corresponding to the fixed source of risk, equals the ceteris paribus effect of the
IOAT decomposition for each update order.

Apart from that, the statement in b) directly implies, that the ISU decomposition is
independent of update order. Furthermore, if the ISU decomposition equals the IOAT
decomposition, then the ceteris paribus effects sum up to total risk Rptq �Rp0q, therefore
the interaction effect is zero.

By subdividing the interaction effect into different groups of interaction effects (depending
on the number of involved risk factors), Biewen (2014) even shows that the particular
interaction effects are zero if and only if the ISU decomposition is independent of update
order.

If the interaction effect is non-zero, neither the ISU decomposition nor the IOAT decompo-
sition yields an order-invariant decomposition satisfying (2.2). One possible solution for this
problem is to build a decomposition principle based on the ISU decomposition principle that
is symmetric with respect to the sources of risk. For that, let π : t1, . . . , mu Ñ t1, . . . , mu

be a permutation that represents an update order for the ISU decomposition. The set of
all possible permutations on t1, . . . , mu is denoted by σm.

Definition 2.6. Let pTnptqqnPN be an increasing sequence of partitions of r0, ts with
vanishing step lengths and let π P σm. Further, let Dπptq � pDπ

1 ptq, . . . , Dπ
mptqq denote

the ISU decomposition of Rptq � ϱpXtq with respect to π and with respect to pTnqn. The
random vector Dptq � pD1ptq, . . . , Dmptqq defined by

D1ptq �
1

m!
¸

πPσm

Dπ
πp1qptq,

� � �

Dmptq �
1

m!
¸

πPσm

Dπ
πpmqptq,

(2.8)

is called the averaged infinitesimal sequential updating (AISU) decomposition of Rptq � ϱpXtq

with respect to pTnptqqnPN.

In a similar manner, Shorrocks (2013) proposes the averaged SU decomposition (without
taking limits) for the distributional analysis of poverty in economics literature. A re-
cent contribution by Godin et al. (2023) uses averaged SU decompositions for risk
allocation. Axiomatic approaches to the averaged SU decomposition can further be
found in Friedman and Moulin (1999) and Sprumont (1998). By construction, the AISU
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decomposition principle is symmetric with respect to the risk basis and therefore gives
an order-invariant surplus decomposition satisfying (2.2) even if the interaction effect is
non-zero. Furthermore, the averaged ISU decomposition is in line with the previously
proposed decomposition principles as the next theorem shows.

Theorem 2.7. If the ISU decomposition is independent of update order, then ISU (for each

update order), IOAT and averaged ISU yield the same decomposition.

Proof. Assume that the ISU decomposition principle yields a decomposition

Dptq � pD1ptq, . . . , Dmptqq

for each update order. Then, by Theorem 2.5, the ISU decomposition is equal to the IOAT
decomposition for each update order. Furthermore, it holds Dπ

πpiqptq � Diptq, i � 1, . . . , m,

for every permutation π. Since #σm � m!, the averaged ISU decomposition is also given
by pD1ptq, . . . , Dmptqq.

Having introduced the decomposition principles, we can consider a first example.

2.3 An introductory example

Before presenting an introductory example for the previously presented decomposition
principles, we establish some notation that will be used throughout the thesis. If we
calculate a sum across a partition

T ptq � t0 � t0   . . .   tl � tu,

like we do in (2.4) and (2.6), we write
°

tk,tk�1PT ptq instead of
°l�1

k�0. For the grid width of
the partition T ptq, we introduce |T ptq| :� max1¤k¤l |tk � tk�1|. Furthermore, as already
touched in the previous sections, pTnptqqn always refers to a sequence of partitions on r0, ts

with vanishing step lengths, i.e. limnÑ8 |Tnptq| � 0. To achieve a better readability, we
solely write tk, tk�1 P Tnptq instead of tn

k , tn
k�1 P Tnptq. In addition, we will encounter many

integrals in this thesis. Unless otherwise stated, the integrals are understood as stochastic
integrals. With this clarification of the notation, we can now move on to the example.

We suppose that the risk basis

X � pX1, . . . , Xmq, m P N,

consists of F-semimartingales X1, . . . , Xm, such that the quadratic covariation between
the different risk factors is zero, i.e. rXi, Xjs � 0, i � j. Furthermore, let C2

c pRmq denote
the space of twice continuously differentiable, real-valued functions from Rm to R with a
compact support.
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Additionally, we assume that the revaluation surplus process R � pRptqqt¥0 is given by

Rptq � ϱpXtq � fpX1ptq, . . . , Xmptqq

for some f P C2
c pRmq. Thus, the proxy Rptq of the total surplus does not depend on the

whole past of the risk sources but only on the current value Xptq, which equals a Markovian
structure. Applying Itô’s formula (Protter, 2005, Chapter II, Theorem 33) we directly get
the additive representation

Rptq �Rp0q �
m̧

i�1

» t

0
f 1ipXps�qqdXipsq �

1
2

m̧

i�1

» t

0
f2iipXps�qqdrXi, Xis

cpsq

�
¸

0 s¤t

�
fpXpsqq � fpXps�qq �

m̧

i�1
f 1ipXps�qq∆Xipsq

�
,

where Xptq � pX1ptq, . . . , Xmptqq.
As rXi, Xjs � 0, i � j, implies ∆Xi∆Xj � ∆rXi, Xjs � 0 (see e.g. Protter, 2005,

Chapter II, Theorem 23), a natural guess for the i-th surplus contribution, i � 1, . . . , m is

Diptq �

» t

0
f 1ipXps�qqdXipsq �

1
2

» t

0
f2iipXps�qqdrXi, Xis

cpsq

�
¸

0 s¤t
∆Xipsq�0

�
fpXpsqq � fpXps�qq � f 1ipXps�qq∆Xipsq

�
.

(2.9)

The next theorem shows that the ISU decomposition principle results in this decomposition.

Theorem 2.8. Let f P C2
c pRmq. Then ϱpXtq � fpX1ptq, . . . , Xmptqq admits the ISU

decompostion Dptq � pD1ptq, . . . , Dmptqq with Diptq given by (2.9). In particular, the ISU

decomposition does not depend on the update order or the choice of partitions.

Proof. To avoid a cumbersome notation, we assume without loss of generality that the
order of the risk basis to be pX1, . . . , Xmq. For i P t1, . . . , mu, we write

Xiptk, tk�1q � pX1ptk�1q, . . . , Xiptk�1q, Xi�1ptkq, . . . Xmptkqq, tk, tk�1 P Tn,

Xipsq � pX1psq, . . . , Xipsq, Xi�1ps�q, . . . Xmps�qq, s P r0, ts,

and

Xi,t � pX1, . . . , Xi, Xt
i�1, . . . , Xt

mq,

where Xt
j denotes the stopped process (at time t) of Xj . The stopped process is still a

semimartingale, and thus Xi,t is an m-tuple of semimartingales.
Let pTnptqqn be a sequence of partitions on r0, ts with vanishing step lengths. For

tk, tk�1 P Tnptq, Itô’s formula (Protter, 2005, Chapter II, Theorem 33) yields
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fpXiptk, tk�1qq � fpXptkqq

� fpXi,tkptk�1qq � fpXi,tkptkqq

�
i̧

j�1

» tk�1

tk

f 1jpX
i,tkps�qqdXjpsq �

1
2

i̧

j�1

» tk�1

tk

f2jjpX
i,tkps�qqdrXj , Xjs

cpsq

�
¸

tk s¤tk�1

�
fpXi,tkpsqq � fpXi,tkps�qq �

i̧

j�1
f 1jpX

i,tkps�qq∆Xjpsq

�
.

In the following, let Xi,npsq :� Xi,tkpsq, if s P ptk, tk�1s. Then we have¸
tk,tk�1PTnptq

fpXiptk, tk�1qq � fpXptkqq

�
i̧

j�1

» t

0
f 1jpX

i,nps�qqdXjpsq �
1
2

i̧

j�1

» t

0
f2jjpX

i,nps�qqdrXj , Xjs
cpsq

�
¸

0 s¤t

�
fpXi,npsqq � fpXi,nps�qq �

i̧

j�1
f 1jpX

i,nps�qq∆Xjpsq

�
.

(2.10)

Next we want to investigate the limit of the SU decompositions for n Ñ8. Observe that

lim
nÑ8

Xi,nps�q � lim
nÑ8

pX1ps�q, . . . , Xips�q, Xi�1ptkq, . . . , Xmptkqq � Xps�q

and

lim
nÑ8

Xi,npsq � pX1psq, . . . , Xipsq, Xi�1ps�q, . . . , Xmps�qq � Xipsq

for every s P r0, ts. Since f P C2
c pRmq, we also have limnÑ8 fpXi,nps�qq � fpXps�qq,

limnÑ8 fpXi,npsqq � fpXipsqq and limnÑ8 f 1jpX
i,nps�qq � f 1jpXps�qq, j � 1, . . . , m,

almost surely for every s P r0, ts.
For the two integrals in (2.10), we apply the stochastic dominated convergence theorem

(Protter, 2005, Chapter IV, Theorem 32). Exploiting that f P C2
c pRmq, we can define

random variables

Gj � sup
s1,...,smPr0,ts

|f 1jpX1ps1q, . . . , Xmpsmqq|, j � 1, . . . , m

and

Gjj � sup
s1,...,smPr0,ts

|f2jjpX1ps1q, . . . , Xmpsmqq|, j � 1, . . . , m

with values in r0,8q that dominate the integrands in (2.10). Thus, we get

plim
nÑ8

i̧

j�1

» t

0
f 1jpX

i,nps�qqdXjpsq �
i̧

j�1

» t

0
f 1jpXps�qqdXjpsq,

plim
nÑ8

1
2

i̧

j�1

» t

0
f2jjpX

i,nps�qqdrXj , Xjs
cpsq �

1
2

i̧

j�1

» t

0
f2jjpXps�qqdrXj , Xjs

cpsq.
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For the summation in (2.10), the multidimensional Taylor Theorem (Forster, 2017, Section I.7,
Theorem 2) together with the assumption rXi, Xjs � 0, i � j gives us the upper bound����fpXi,npsqq � fpXi,nps�qq �

i̧

j�1
f 1jpX

i,nps�qq∆Xjpsq

���� ¤ C
i̧

j�1
p∆Xjpsqq

2,

where C can be chosen independently of s as f P C2
c pRmq. Thus, the dominator is indeed

summable with¸
0 s¤t

C
i̧

j�1
p∆Xjpsqq

2 � C
i̧

j�1

¸
0 s¤t

p∆Xjpsqq
2 ¤ C

i̧

j�1
rXj , Xjsptq

(see Protter, 2005, Chapter II, proof of Theorem 32). Having found a summable dominator,
we can apply Tannery’s Theorem (e.g. Bromwich, 1926, p. 136) for interchanging limit
and summation to get

lim
nÑ8

¸
0 s¤t

�
fpXi,npsqq � fpXi,nps�qq �

i̧

j�1
f 1jpX

i,nps�qq∆Xjpsq

�

�
i̧

j�1

¸
0 s¤t

�
fpXipsqq � fpXps�qq � f 1jpXps�qq∆Xjpsq

�
�

i̧

j�1

¸
0 s¤t

∆Xjpsq�0

�
fpXpsqq � fpXps�qq � f 1jpXps�qq∆Xjpsq

�
,

where we used rXi, Xjs � 0, i � j, for the last equality. In total, it holds

plim
nÑ8

¸
tk,tk�1PTnptq

pfpXiptk, tk�1qq � fpXptkqqq

�
i̧

j�1

» t

0
f 1jpXps�qqdXjpsq �

1
2

i̧

j�1

» t

0
f2jjpXps�qqdrXj , Xjs

cpsq

�
i̧

j�1

¸
0 s¤t

∆Xjpsq�0

�
fpXpsqq � fpXps�qq � f 1jpXps�qq∆Xjpsq

�
.

(2.11)

The desired result is now deduced from¸
tk,tk�1PTnptq

pfpXiptk, tk�1qq � fpXi�1ptk, tk�1qqq

�
¸

tk,tk�1PTnptq

pfpXiptk, tk�1qq � fpXptkqqq �
¸

tk,tk�1PTnptq

pfpXi�1ptk, tk�1qq � fpXptkqqq

by taking on both sides the limit in probability and using (2.11).

In the previous theorem, we have shown that the ISU decomposition does not depend on
the update order. Therefore, we can also draw a conclusion about the IOAT and AISU
decompositions.
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Corollary 2.9. Let f P C2
c pRmq. For Rptq � fpX1ptq, . . . , Xmptqq the IOAT decomposition

and the averaged ISU decomposition are both equal to the ISU decomposition.

Proof. The result follows immediately with Theorem 2.7 and Theorem 2.8.

Focusing on continuous semimartingales with zero quadratic covariation, Frei (2020,
Proposition 1) derives the IOAT decomposition in a similar framework. With Theorem 2.8
and Corollary 2.9, we generalise his result for functions f P C2

c pRmq by allowing for jumps
of the semimartingales, while keeping the assumption of the zero quadratic covariation.
A further generalisation to semimartingales with non-zero quadratic covariation and twice
differentiable functions f has been carried out by Junike et al. (2024, Theorem 4.7). In
particular, the results by Junike et al. (2024, Theorem 4.7 and Remark 4.12) show, that
Corollary 2.9 does not hold, if the risk factors incorporate a non-zero covariation rXi, Xjs

for some i � j.
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3 Embedding of traditional surplus decompositions
into the ISU concept

This chapter is derived in part from an article published in the Scandinavian Actuarial

Journal in 2022 (copyright Taylor & Francis), available online: http://www.tandfonline.

com/10.1080/03461238.2022.2049636 . More precisely, (parts of) Sections 2, 3, 5 and 6 of

the article Jetses and Christiansen (2022) are included in this chapter. In order to improve

readability and standardise the notation in this dissertation, minor changes have been made

compared to the original article.

In traditional life insurance, the valuation assumptions include safety margins to protect
against adverse economic and demographic developments. As a result of the conservative
assumptions, the actual development of the risk factors is usually favourable to the life
insurer, which leads to systematic surplus. By statute, a part of this surplus belongs to
the policyholder and is therefore refunded (see Norberg, 1999). The refund terms often
require an allocation of the surplus to its individual sources, see e.g. the German national
directive Mindestzuführungsverordnung (BMF, 2016). It is therefore essential to decompose
life insurance surplus into its individual surplus contributions.

The decomposititon of surplus is an old actuarial question that has been the focus
of several publications. In a time-discrete life insurance setup, the so-called contribu-
tion formula (Kontributionsformel) is not only frequently used by German life insurers,
but also appears in many standard references (see e.g. Milbrodt and Helbig, 1999,
Section 11.B; Saxer, 1955, Section 9.5). This formula decomposes the yearly surplus
into mortality surplus, interest surplus, lapse surplus and cost surplus. In time-continuous
model frameworks, early attempts to decompose the surplus for traditional life insurance
policies were made by Lidstone (1905) and Berger (1939) (see also Simonsen, 1970;
Sverdrup, 1969 and references therein), who investigated the impact of changing valuation
bases on prospective reserves. In later literature on surplus, the terms ‘first-order basis’
(prudent valuation basis) and ‘second-order basis’ (experience valuation basis) have become
established. Based on the Markov chain setup introduced by Hoem (1969), Ramlau-Hansen
(1988, 1991) investigated surplus in a multistate life insurance framework with deterministic
valuation bases. Extending these contributions, Norberg (1999, 2001) not only allows for a
second-order stochastic basis, but systematically defines surplus as the difference between
a second-order retrospective reserve and a first-order prospective reserve, distinguishing
between individual and portfolio surplus. While the above-mentioned literature focuses
on the investment of surplus in risk-free assets, Møller and Steffensen (2007) as well as
Asmussen and Steffensen (2020) derived surplus decompositions in a more sophisticated
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model, including a risky asset. Recent papers by Bruhn and Lollike (2020) as well as Falden
and Nyegaard (2021) analyse the dynamics of surplus in terms of management actions
and policyholder behaviour; however, these topics are beyond the scope of this chapter.
Furthermore, it is worth to mention that focus is placed in this work on the decomposition
of surplus (‘bonus’), and not on the distribution of surplus (‘bonus schemes’, ‘dividends’).

The above listed references show that surplus decompositions have been derived in
several frameworks, which differ in terms of time grid (time-discrete vs. time-continuous),
randomness (deterministic vs. stochastic valuation bases), perspective (retrospective vs.
prospective surplus) and information (individual vs. portfolio surplus) (see Steffensen,
2001, Section 3.7). However, all the decomposition formulas and their interpretations rely
on heuristic reasoning, making it challenging to compare the different frameworks and
their formulas. Furthermore, the existing literature does not pave the way for extending
the frameworks by further risk drivers (see Chapter 1). It is shown that the proposed ISU
decomposition principle addresses both shortcomings while providing further legitimacy to
existing surplus decomposition formulas. In a general multistate life insurance setup, the
known decomposition formulas are derived using appropriate choices of the revaluation
surplus process, the risk basis and the link mapping between them. In particular, the
time-discrete contribution formula is represented as an SU decomposition, which can
therefore be interpreted as an approximation of the corresponding time-continuous ISU
decomposition. The embedding of traditional surplus decomposition formulas into the
ISU decomposition principle will allow for a comprehensive comparison of the existing
decomposition formulas. Moreover, the clear idea of the ISU decomposition principle will
open the door to the incorporation of further risk factors.

In Section 3.1, the decomposition of life insurance surplus is embedded into the framework
of the previously presented ISU decomposition principle. The concepts of individual
surplus and portfolio surplus, in line with Norberg (1999), are introduced in Section 3.2.
Furthermore, different choices of the risk basis are discussed. In Section 3.3, general surplus
decomposition formulas are derived by applying the ISU decomposition principle. As
special cases of the main theorem, Section 3.4 contains the derivation of the traditional
surplus decomposition formulas known from the literature.

3.1 The surplus process of an individual insurance contract

We consider an individual insurance policy on a finite contract period r0, T s. For each
t ¥ 0 let Bptq be the aggregated insurance cash flow on r0, ts between insurer and insured.
We use the convention that premiums have a negative sign and benefits have a positive
sign. Let κ be a semimartingale with κp0q � 1 that describes the value process of the
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insurer’s self-financing investment portfolio. Then the value Aptq of the assets accrued at
time t is given by

Aptq � �

»
r0,ts

κptq

κpsq
dBpsq, (3.1)

assuming that B is a finite variation semimartingale and that κ is strictly positive. In
the hypothetical case that the insurer knew the future, the liabilities at time t would be
likewise calculated as

Lhptq �

»
pt,T s

κptq

κpsq
dBpsq.

The difference between assets and liabilities is the surplus,

Shptq � Aptq � Lhptq � κptqpAp0q � Lhp0qq. (3.2)

In this hypothetical setting, the actual surplus emerges at time zero and any dynamics
after zero just comes from the compounding factor κptq. By defining

dΦptq � dκptq

κpt�q

as the return on investment of the insurer’s investment portfolio, the process Sh satisfies

dShptq � Shpt�qdΦptq

for t ¡ 0, which shows again that the dynamics of Sh on p0,8q stems solely from investment
gains earned on the existing surplus. Since Ap0q � Lhp0q depends on the future and is
nowhere adapted to the available information, in real life the insurer has to replace
Ap0q � Lhp0q at each time t by an Ft-measurable proxy Rptq. Since the process

R � pRptqqt¥0

describes profits and losses that result from the continuous revaluation of Ap0q � Lhp0q as
the information Ft increases with time t, we call R the revaluation surplus process (see
Chapter 2). Now the total surplus process is given by

Sptq � κptqRptq, t ¥ 0, (3.3)

and its dynamics is driven by both, the compounding factor κ and the revaluation surplus
process R. As described in Chapter 2, we assume that the life insurance model rests on a
risk basis

X � pX1, . . . , Xmq,

which is a multivariate adapted process composed of the risk factors X1, . . . , Xm such that
R is adapted to the right-continuous and complete filtration generated by X. The risk
basis is assumed to be fixed, but depending on R, different choices of X are conceivable.
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The goal is to decompose R with help of the introduced ISU decomposition principle (see
Chapter 2) into

Rptq � Rp0q �D1ptq � � � � �Dmptq, t ¥ 0, (3.4)

where D1, . . . , Dm are adapted processes that start at zero and describe the contributions
of each risk factor X1, . . . , Xm to the dynamics of R. The first addend Rp0q represents
initial surplus, which is not decomposed here. Equation (3.4) is equivalent to the additive
decomposition

Sptq � κptqSp0q � κptqD1ptq � � � � � κptqDmptq, t ¥ 0, (3.5)

for the total surplus process. The first addend κptqSp0q represents the time-t value of the
initial surplus Sp0q � Rp0q, and the addends κptqD1ptq, . . . , κptqDmptq describe the time-t
values of the contributions that the risk factors X1, . . . , Xm make to the dynamics of S.
The additivity of the decompositions (3.4) and (3.5) allows us to distribute the surplus
among different parties.

The dynamics of the total surplus in (3.3) is driven by investment gains on the surplus
itself and by revaluation gains. In (3.5) the investment gains are subdivided among the
different surplus contribution addends according to their shares in the total investment
earnings. It is not uncommon in the actuarial literature to collect all the investment gains
in a separate term, see for example Norberg (1999, formula (5.3)). The idea is to apply
Itô’s product rule on Sptq � κptqRptq and then to identify each of the resulting addends
either as investment gains or as revaluation gains. However, this approach mixes up the
investment earnings of the carefully separated surplus contribution addends, so it is not
helpful in our opinion and therefore it is not further considered in this chapter.

3.2 The revaluation surplus in multistate models

Let the random pattern Z of the insured be a right-continuous and adapted jump process
on a finite state space Z with starting value Zp0q � a P Z. We define corresponding state
processes pIjqj and counting processes pNjkqjk:j�k by Iiptq :� 1tZptq�iu and

Njkptq � 7ts P p0, ts : Zps�q � j, Zpsq � ku, j, k P Z, j � k, t ¥ 0.

Additionally, we define Njj :� �
°

k:k�j Njk, j P Z, and the vector-valued process
N � pNjkqjk:j�k.
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We call a pair pΦ, Λq a valuation basis if the following properties hold:

• Φ is semimartingale with Φp0q � 0 and ∆Φptq ¡ �1 for all t ¡ 0,

• Λ � pΛjkqjk:j�k is a vector-valued, right-continuous finite variation process with
Λp0q � 0,

• the processes Λjk, j � k are non-decreasing and
°

k:k�j ∆Λjkptq ¤ 1 for every t ¡ 0
and every j.

The process Φ represents cumulative returns on investment, and the solution κ � pκptqqt¥0

of the stochastic differential equation

dκptq � κpt�qdΦptq, κp0q � 1, (3.6)

is the value process of a self-financing investment portfolio with respect to Φ.
Furthermore, given the valuation basis pΦ, Λq, let p � pppt, sqq0¤t¤s, ppt, sq � ppjkpt, sqqjk

denote the solution of the stochastic differential equation system

pjkpt, dsq �
¸

i

pjipt, s�qdΛikpsq, pjkpt, tq � δjk, s ¡ t. (3.7)

Observe that we may pick N itself for Λ. In this case the solution of (3.7) satisfies
pajp0, sq � Ijpsq, since Ijp0q � δaj and

dIjpsq �
¸

k:k�j

pdNkjpsq � dNjkpsqq �
¸
k

Ikps�qdNkjpsq. (3.8)

Throughout this chapter, let the valuation basis pΦ, Λq represent the so-called second order

valuation basis. The process Φ describes the real return in investment in the insurer’s
investment portfolio. Let κ denote the solution of (3.6) with respect to Φ. For the
second-order basis we additionally assume that

(S.1) Λ is a predictable process,

(S.2) conditional on pΦ, Λq � pE, F q, the process Z is a Markov process under P with
cumulative transition intensity matrix F .

Thus, the process Ijpt�qdΛjkptq is a P-compensator of dNjk with respect to the natural
completed filtration of the random vector pZt, Φ, Λqt¥0. Due to the conditional Markov
property, the stochastic differential equation (3.7) with respect to Λ corresponds to the Kol-
mogorov forward equation of Z conditional on pΦ, Λq, and its solution ppt, sq � ppjkpt, sqqjk

is the transition probability matrix of Z conditional on pΦ, Λq.
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Furthermore, let the valuation basis pΦ�, Λ�q represent the so-called first order valuation

basis. For this specific valuation basis we additionally assume that

(F.1) Φ� and Λ� are deterministic,

(F.2) Z is a Markov process under a prudent probability measure P� with cumulative
transition intensities Λ�

jk, j � k,

(F.3) pI�∆Λ�
M psqq�1 exists for every s ¡ 0,

where Λ�
M denotes the matrix-valued process Λ�

M � pΛ�
jkqjk with Λ�

jj :� �
°

k:k�j Λ�
jk. Let

κ� and p� be the solutions of (3.6) and (3.7) with respect to Φ� and Λ�, respectively. Under
the first order valuation, (3.7) is the classical Kolmogorov forward equation and p� is the
classical transition probability matrix of Z under P�. The existence of pI � ∆Λ�

M psqq�1

for every s ¡ 0 ensures that the matrix p�pt, sq has an inverse for each s ¡ t, denoted
as q�pt, sq, see Lemma A.2.1 in the appendix. In particular, q� satisfies the stochastic
differential equation

q�pt, dsq � �pdGpsqqq�pt, s�q, q�pt, tq � I, s ¡ t,

where Gpsq � Λ�
M psq �

°
0 u¤sp∆Λ�

M puqq2pI�∆Λ�
M puqq�1 (see Lemma A.2.1).

Recall that the insurance policy shall have a finite contract horizon in r0, T s. We assume
that the insurance cash flow B has the form

dBptq �
¸
j

Ijpt�q dBjptq �
¸

jk:j�k

bjkptq dNjkptq, (3.9)

where pBjqj are right-continuous finite variation functions that satisfy dBjptq � 0 for t ¡ T ,
and pbjkqjk:j�k are bounded and measurable functions with bjkptq � 0 for t ¡ T .

We generally assume that

(J) the processes Φ�, Φ and pN, Λ�, Λ, pBjqjq have no simultaneous jumps.

The latter condition implies that the covariation between the investment risk and all other
risk drivers is zero. This fact will help us to build additive decompositions by applying
Itô’s formula, see Lemma 3.7 below.

3.2.1 Individual revaluation surplus

In with-profit life insurance, the remaining future liabilities of the individual insurance
contract at time t are commonly evaluated as¸

j

IjptqV
�

j ptq,

22



where V �
j ptq shall be the prospective reserve at time t in state j with respect to the

first order valuation basis, see Norberg (1999). According to Milbrodt and Helbig
(1999, Chapter 10.A), it holds that

V �
j ptq �E�

�» T

t

κ�ptq

κ�psq
dBpsq

����Zptq � j

�
�
¸
k

»
pt,T s

κ�ptq

κ�psq
p�jkpt, s�qdBkpsq �

¸
k,l:k�l

»
pt,T s

κ�ptq

κ�psq
p�jkpt, s�qbklpsqdΛ�

klpsq,

where E� denotes the expectation with respect to P� (see (F.2)). The accrued assets of the
individual insurance contract at time t equal (3.1), so the total surplus of the individual
policy at time t is

Sptq � �

»
r0,ts

κptq

κpsq
dBpsq �

¸
j

IjptqV
�

j ptq, (3.10)

see Norberg (1999). The corresponding revaluation process R equals

Rptq �
Sptq

κptq
� �

»
r0,ts

1
κpsq

dBpsq �
¸
j

1
κptq

IjptqV
�

j ptq. (3.11)

Proposition 3.1. For R defined by (3.11) and t P r0, T s it holds that

Rptq � �HppΦ�, Λ�q � pΦ� Φ�, N � Λ�qtq, (3.12)

where p�qt denotes the corresponding stopped process (see (2.1)) and where for any valuation

basis pΦ, Λq the mapping H is defined by

HppΦ, Λqq :�
¸
j

»
r0,T s

1
κpsq

pajp0, s�qdBjpsq �
¸

j,k:j�k

»
p0,T s

1
κpsq

pajp0, s�qbjkpsqdΛjkpsq

(3.13)

with pajp0, 0�q :� δaj.

Proof. The solution of (3.7) with respect to the cumulative transition intensity vector
Λ� � pN � Λ�qt is $'&'%

Ijpsq, s ¤ t,°
l

Ilptqp
�
ljpt, sq, s ¡ t,

where p�ljpt, sq is the solution of (3.7) with respect to the first order valuation basis. The
solution of (3.6) with respect to Φ� � pΦ� Φ�qt is$'&'%κpsq, s ¤ t,

κptqκ�psq
κ�ptq , s ¡ t,

where κ� is the solution of (3.6) with respect to the first order valuation basis. By plugging
these solutions into (3.13), we obtain the desired result.
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Proposition 3.1 allows us to represent R by

Rptq � ϱpXtq, t ¥ 0,

for various choices of X and ϱ. For example, we may define the risk basis X and the
mapping ϱ by means of the mapping H (see (3.13)) as follows:

Example 3.2. By setting

X � pXΦ, Xu, Xsq � pΦ� Φ�, N � Λ, Λ� Λ�q,

we distinguish between financial risk, unsystematic biometric risk and systematic biometric
risk, and we may define ϱ by

ϱpXtq � �H
�
pΦ�, Λ�q � pXt

Φ, Xt
u �Xt

sq
�
.

Example 3.3. By setting

X � pXΦ, pXjkqjk:j�kq � pΦ� Φ�, pNjk � Λ�
jkqjk:j�kq,

we distinguish between financial risk and transition-wise biometric risks, and we may define
ϱ by

ϱpXtq � �H
�
pΦ�, Λ�q � pXt

Φ, pXt
jkqjk:j�kq

�
.

Example 3.4. Let the processes pΦjqj and pΦ�
j qj be defined by dΦjptq � Ijpt�qdΦptq,

Φjp0q � 0, and dΦ�
j ptq � Ijpt�qdΦ�ptq, Φ�

j p0q � 0, respectively. Further, we denote
Λj � pΛjkqk:k�j and Λ�

j � pΛ�
jkqk:k�j . By setting

X � pXu, pXjqjq � pXu, pXj,1, Xj,2qjq � pN � Λ, pΦj � Φ�
j , Λj � Λ�

j qjq,

we distinguish between unsystematic biometric risk and state-wise remaining risks, and we
may define ϱ by

ϱpXtq � �H

�
pΦ�, Λ�

jkq � p0, Xt
uq �

�¸
j

Xt
j,1, pXt

j,2qj

��
.

3.2.2 Mean portfolio revaluation surplus

In actuarial practice it is not uncommon to focus on mean portfolio values only. We can
replicate this perspective by applying the expectation Er � |Φ, Λs on the individual values
(3.10) and (3.11). The revaluation surplus takes then the form

Rptq � E
�
�

»
r0,ts

1
κpsq

dBpsq �
¸
j

1
κptq

IjptqV
�

j ptq

����Φ, Λ
�
, (3.14)

and the corresponding total surplus still satisfies the equation

Sptq � κptqRptq. (3.15)
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Note that Norberg (1999) applies the expectation Er � |Φt, Λts instead, but his definition is
equivalent since

Sptq � �

»
r0,ts

κptq

κpsq

¸
j

�
pajp0, s�qdBjpsq �

¸
k:k�j

bjkpsqpajp0, s�qdΛjkpsq



�
¸
j

pajp0, tqV �
j ptq

is σpΦt, Λtq-measurable. The following corollary is a direct consequence of Proposition 3.1.

Corollary 3.5. For R defined by (3.14) and t P r0, T s it holds that

Rptq � E
�
�HppΦ�, Λ�q � pΦ� Φ�, N � Λ�qtq

��Φ, Λ
�
, (3.16)

where H is given by (3.13).

Because of the latter corollary, in the Examples 3.2 to 3.4 we just need to add the conditional
expectation Er � |Φ, Λs to the definition of ϱ in order to get to the mean portfolio perspective.

The next example is in particular relevant in German life insurance.

Example 3.6. Consider a life insurance contract with the states active, surrendered and
dead,

Z � ta, s, du,

of an x-year old insured. We assume that Λ� and Λ are absolutely continuous with densities
λ� and λ, respectively. Let

k�lp
�
x�l � p�aapx� l, x� kq,

q�x�k�1 � p�adpx� k � 1, x� kq,

r�x�k�1 � p�aspx� k � 1, x� kq,

and define k�lpx�l, qx�k�1 and rx�k�1 likewise for the second-order valuation basis. We
assume that sojourn payments occur only in state active and only as lump sum payments
bk at integer times k. Furthermore, we assume that the death benefit function and the
surrender benefit function have the form

badptq �
κpttuq

κptq
drts, basptq �

κpttuq

κptq
srts,

where drts and srts represent the death benefit and surrender benefit in year ttu. This
definition of bad and bas discounts death benefits and surrender benefits as if they are paid
out at the end of the year, so that V �

a has at integer times l the representation

V �
a plq �

Ţ

k�l�1

κ�plq

κ�pkq
k�lp

�
x�l bk �

Ţ

k�l�1

κ�plq

κ�pkq
k�l�1p�x�l

�
dk q�x�k�1 � sk r�x�k�1

�
.
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We define yearly interest rates of first order and second order by

i�k � e
³k�1
k ϕ�puq du � 1, ik � e

³k�1
k ϕpuq du � 1, k P N0.

One can show that the yearly increments of the mean portfolio revaluation surplus process
equal

Rpk � 1q �Rpkq

� e�
³k�1
0 ϕpuq du

kpx

�
V �

a pkq p1� ikq � qx�k dk�1 � rx�k sk�1 � px�k

�
bk�1 � V �

a pk � 1q
�	

.

This formula is widely used in German life insurance (see Milbrodt & Helbig, 1999,
Section 11.B). It is common in Germany to decompose the increments Rpk � 1q � Rpkq

into investment surplus, mortality surplus and lapse surplus. For that purpose, analogously
to Example 3.3 we choose

X � pXΦ, Xad, Xasq � pΦ� Φ�, Nad � Λ�
ad, Nas � Λ�

asq

as risk basis.

3.3 ISU decompositions in multistate life insurance

This section contains general technical results that will be needed for the examples in the
next section. For any valuation basis pΦ, Λq, we write

rΦptq � Φptq � rΦ, Φscptq �
¸

0 s¤t

p1�∆Φpsqq�1p∆Φpsqq2,

where rΦ, Φsc signifies the continuous part of rΦ, Φs.
Moreover, let R�

jk, j � k denote the first order sum at risk, i.e.

R�
jkptq � bjkptq � V �

k ptq � V �
j ptq.

Recalling that

HppΦ, Λqq :�
¸
j

»
r0,T s

1
κpsq

pajp0, s�qdBjpsq �
¸

j,k:j�k

»
p0,T s

1
κpsq

pajp0, s�qbjkpsqdΛjkpsq,

for any valuation basis pΦ, Λq (see (3.13)), we can pose the following results.

Lemma 3.7. Let pΦ, Λq be a valuation basis such that pΦ�, Φq and pΛ�, Λ, pBjqjq have no

simultaneous jumps. Then it holds that

H
�
pΦ�, Λ�q�pΦ� Φ�, Λ� Λ�qt

�
�

»
p0,ts

1
κps�q

¸
j

pajp0, s�qV �
j ps�qdprΦ� Φ� � rrΦ, Φ�sqpsq

�
¸

jk:j�k

»
p0,ts

1
κpsq

pajp0, s�qR�
jkpsqdpΛjk � Λ�

jkqpsq.
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Proof. As a shorthand notation, we define multivariate processes C� � pC�
1 , . . . , C�

nq
J and

C � pC1, . . . , Cnq
J by

dC�
j psq � dBjpsq �

¸
k:k�j

bjkpsqdΛ�
jkpsq, C�

j p0q � 0,

dCjpsq � dBjpsq �
¸

k:k�j

bjkpsqdΛjkpsq, Cjp0q � 0.

Note that C� and C are column vectors. The vectorial process I � pIjqj shall combine all
state processes as a row vector. We further define

W psq :� �HppΦ�, Λ�q � pΦ� Φ�, Λ� Λ�qsq,

where H is given by (3.13). Due to the assumptions made on the first-order valuation
basis in Section 3.2 (see (F.3) and the follow-up remarks), p�p0, sq is invertible with inverse
q�p0, sq.
Thus, for s P p0, ts, we get

W psq � �

»
r0,ss

1
κpuq

Ip0qpp0, u�qdCpuq �
1

κpsq

»
ps,T s

κ�psq

κ�puq
Ip0qpp0, sqp�ps, u�qdC�puq

� �

»
r0,ss

1
κpuq

Ip0qpp0, u�qdCpuq �
κ�psq

κpsq
Ip0qpp0, sqq�p0, sqY psq,

for Y psq �
³
ps,T s

1
κ�puqp

�p0, u�qdC�puq. Analogously to Λ�
M , let ΛM denote the matrix-

valued process ΛM � pΛjkqjk with Λjj :� �
°

k:k�j Λjk. By applying Itô’s formula and
using the assumption that pΦ�, Φq and pΛ�, Λ, pBjqjq have no common jumps, we can show
that

dW psq � �
1

κpsq
Ip0qpp0, s�qdpC � C�qpsq

� Ip0qκ
�ps�q

κps�q
pp0, s�qq�p0, s�qY ps�qdpΦ� � rΦ� rΦ�, rΦsqpsq

� Ip0qκ
�ps�q

κps�q
pp0, s�qdpΛM � Λ�

M qpsq q�p0, sqY psq

� �
1

κpsq
Ip0qpp0, s�qdpC � C�qpsq

�
1

κps�q
Ip0qpp0, s�q

�»
rs,T s

κ�ps�q

κ�puq
p�ps�, u�qdC�puq

�
dpΦ� � rΦ� rΦ�, rΦsqpsq

�
1

κpsq
Ip0qpp0, s�qdpΛM � Λ�

M qpsq

�»
ps,T s

κ�psq

κ�puq
p�ps, u�qdC�puq

�
,

where we used Lemma A.2.2 to get

d
�

κ�psq

κpsq
pp0, sqq�p0, sq



�

κ�ps�q

κps�q
d ppp0, sqq�p0, sqq � pp0, s�qq�p0, s�qd

�
κ�psq

κpsq



� d

�
κ�

κ
, pp0, �qq�p0, �q

�
psq
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�
κ�ps�q

κps�q
pp0, s�qdpΛM�Λ�

M qpsq q�p0, sq�
κ�ps�q

κps�q
pp0, s�qq�p0, s�qdpΦ��rΦ�rΦ�, rΦsqpsq

with rΦpsq � Φpsq�rΦ, Φscpsq�
°

0 u¤sp1�∆Φpuqq�1p∆Φpuqq2. Component-wise evaluation
and integration on p0, ts gives us the assertion.

Theorem 3.8. Let the processes pΦjqj and pΦ�
j qj be defined by dΦjptq � Ijpt�qdΦptq,

Φjp0q � 0, and dΦ�
j ptq � Ijpt�qdΦ�ptq, Φ�

j p0q � 0, respectively. For j, k P Z let

XΦ,j � Φj � Φ�
j ,

Xu,jk � Njk � Λjk,

Xs,jk � Λjk � Λ�
jk,

and set X � ppXΦ,jqj , pXu,jkqj,k:j�k, pXs,jkqj,k:j�kq. Then

ϱpXtq � �H

�
pΦ�, Λ�q �

�¸
j

XΦ,j , pXu,jk �Xs,jkqjk:j�k

�t �
has the ISU decomposition

DΦ,jptq �

»
p0,ts

1
κps�q

Ijps�qV
�

j ps�qdprΦ� Φ�qpsq,

Du,jkptq � �

»
p0,ts

1
κpsq

Ijps�qR
�
jkpsqdpNjk � Λjkqpsq,

Ds,jkptq � �

»
p0,ts

1
κpsq

Ijps�qR
�
jkpsqdpΛjk � Λ�

jkqpsq.

In particular, the ISU decomposition does not depend on the update order or the choice of

partitions.

Proof. Let JΦ � Z and Ju, Js � J :� tpj, kq P Z2 : j � ku. For r ¤ s, we define

Xr,s
Φ,JΦ,j :�

$'&'%Xr
Φ,j , j R JΦ,

Xs
Φ,j , j P JΦ,

as well as

Xr,s
u,Ju,jk :�

$'&'%Xr
u,jk, pj, kq R Ju,

Xs
u,jk, pj, kq P Ju,

Xr,s
s,Js,jk :�

$'&'%Xr
s,jk, pj, kq R Js,

Xs
s,jk, pj, kq P Js.

We further set

XΦ,JΦ :�
¸
j

X0,T
Φ,JΦ,j , Xu,Ju

:�
�
X0,T

u,Ju,jk

�
jk

, Xs,Js
:�
�
X0,T

s,Js,jk

�
jk

,

where X0,T
u,Ju,jj � �

°
k:k�j X0,T

u,Ju,jk and X0,T
s,Js,jj � �

°
k:k�j X0,T

s,Js,jk. Let ΦJΦ :� XΦ,JΦ�Φ�

and let κJΦ denote the solution of dκJΦpsq � κJΦps�qdΦJΦpsq with κJΦp0q � 1. Similarly,
for J � pJu, Jsq let ΛJ :� Xu,Ju �Xs,Js � Λ�

M and let pJ � ppjkqj,k denote the solution of
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pJpr, dsq � pJpr, s�qdΛJpsq with pJpr, rq being the identity matrix.
Let t P r0, T s and let pTnptqqn be a sequence of partitions of r0, ts. For a simpler notation,

we only write tk instead of tn
k for the grid points in Tn. Throughout the proof, let αnpsq be

the left point of s in Tnptq, i.e. αnpsq :� tk if s P ptk, tk�1s. For notational convenience, we
write

ϱ
tk,tk�1
JΦ,Ju,Js

� ϱppX
tk,tk�1
Φ,JΦ,j qj , pX

tk,tk�1
u,Ju,jkqjk:j�k, pX

tk,tk�1
s,Js,jk qjk:j�kq.

It is sufficient to show that

i) plim
nÑ8

°
tk,tk�1PTnptq

�
ϱ

tk,tk�1
JΦYtj0u,Ju,Js

� ϱ
tk,tk�1
JΦ,Ju,Js

	
� DΦ,j0ptq, j0 P ZzJΦ,

ii) plim
nÑ8

°
tk,tk�1PTnptq

�
ϱ

tk,tk�1
JΦ,JuYtpj0,k0qu,Js

� ϱ
tk,tk�1
JΦ,Ju,Js

	
� Du,j0k0ptq, pj0, k0q P J zJu,

iii) plim
nÑ8

°
tk,tk�1PTnptq

�
ϱ

tk,tk�1
JΦ,Ju,JsYtpj0,k0qu

� ϱ
tk,tk�1
JΦ,Ju,Js

	
� Ds,j0k0ptq, pj0, k0q P J zJs.

We prove the convergences consecutively.

i) Let JΦ � JΦ Y tj0u, j0 P ZzJΦ and let

∆pr, sq �
κJΦprq

κJΦpsq
�

κJΦprq

κJΦpsq
, r ¤ s.

We define stochastic processes

ξΦ,j0,npsq �
1

κpαnpsqq

κJΦpαnpsqq

κJΦps�q

¸
g

Igptkq
¸
j

pJ
gjpαnpsq, s�qV �

j ps�qIj0ps�q,

ξΦ,j,npsq �
∆pαnpsq, s�q

κpαnpsqq

¸
g

Igpαnpsqq
¸
j

pJ
gjpαnpsq, s�qV �

j ps�qIjps�q, j P JΦ,

ξus,jk,npsq � �
¸
g

Igpαnpsqq
∆pαnpsq, sq

κpαnpsqq
pJ

gjpαnpsq, s�qR�
jkpsq, pj, kq P Ju Y Js,

where s P r0, ts. Due to (J), we can apply Lemma 3.7, which gives us¸
tk,tk�1PTnptq

pϱ
tk,tk�1
JΦYtj0u,Ju,Js

� ϱ
tk,tk�1
JΦ,Ju,Js

q

�
¸

tk,tk�1PTnptq

pϱ
tk,tk�1
JΦYtj0u,Ju,Js

� ϱ
tk,tk�1
H,H,H � pϱ

tk,tk�1
JΦ,Ju,Js

� ϱ
tk,tk�1
H,H,Hqq

�
¸

jPJΦ

»
p0,ts

ξΦ,j,npsqdprΦ� Φ�qpsq �
¸

pj,kqPJu

»
p0,ts

ξus,jk,npsqdpNjk � Λjkqpsq

�
¸

pj,kqPJs

»
p0,ts

ξus,jk,npsqdpΛjk � Λ�
jkqpsq,

where rΦpsq � Φpsq � rΦ, Φscpsq �
°

0 u¤sp1 � ∆Φ1puqq�1p∆Φpuqq2. Here, we used
that

dp�ΦJΦ � Φ� � r�ΦJΦ , Φ�sqpsq �
¸

jPJΦ

Ijps�qdprΦ� Φ�qpsq,
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exploiting that Φ and Φ� have no common jumps (see (J)). Since for every s P r0, ts

we almost surely have

lim
nÑ8

ξΦ,j0,npsq �
1

κps�q
Ij0ps�qV

�
j0ps�q,

lim
nÑ8

ξΦ,j,npsq � 0, j P JΦ,

lim
nÑ8

ξus,jk,npsq � Ijps�q
∆ps�, sq

κps�q
R�

jkpsq, pj, kq P Ju Y Js,

and since ∆ps�, sqdpNjk �Λjkqpsq � ∆ps�, sqdpΛjk �Λ�
jkqpsq � 0 almost surely, the

dominated convergence theorem for stochastic integrals (Protter, 2005, Chapter IV,
Theorem 32) yields

plim
nÑ8

¸
tk,tk�1PTnptq

�
ϱ

tk,tk�1
JΦYtj0u,Ju,Js

� ϱ
tk,tk�1
JΦ,Ju,Js

	
� DΦ,j0ptq.

ii) Let J � pJu Y tj0, k0u, Jsq, pj0, k0q P J zJu and let

∆jkpr, sq :� pJ
jkpr, sq � pJ

jkpr, sq, r ¤ s.

We define stochastic processes

ξΦ,j,npsq�
1

κpαnpsqq

κJΦpαnpsqq

κJΦps�q

¸
g

Igpαnpsqq
¸
j

∆gjpαnpsq, s�qV �
j ps�qIjps�q, j P JΦ,

ξus,jk,npsq��
¸
g

Igpαnpsqq
1

κpαnpsqq

κJΦpαnpsqq

κJΦpsq
∆gjpαnpsq, s�qR�

jkpsq, pj, kq P JuYJs,

ξu,j0k0,npsq � �
¸
g

Igpαnpsqq
1

κpαnpsqq

κJΦpαnpsqq

κJΦpsq
pJ

gj0pαnpsq, s�qR�
j0k0psq,

where s P r0, ts. Again with Lemma 3.7, we have¸
tk,tk�1PTnptq

pϱ
tk,tk�1
JΦ,JuYtpj0,k0qu,Js

� ϱ
tk,tk�1
JΦ,Ju,Js

q

�
¸

tk,tk�1PTnptq

pϱ
tk,tk�1
JΦ,JuYtpj0,k0qu,Js

� ϱ
tk,tk�1
H,H,H � pϱ

tk,tk�1
JΦ,Ju,Js

� ϱ
tk,tk�1
H,H,Hqq

�
¸

jPJΦ

»
p0,ts

ξΦ,j,npsqdprΦ� Φ�qpsq �
¸

pj,kqPJu

»
p0,ts

ξus,jk,npsqdpNjk � Λjkqpsq

�

»
p0,ts

ξu,j0k0,npsqdpNj0k0 � Λj0k0qpsq �
¸

pj,kqPJs

»
p0,ts

ξus,jk,npsqdpΛjk � Λ�
jkqpsq

Since for every s P r0, ts we almost surely have

lim
nÑ8

ξu,j0k0,npsq � �
1

κps�q
Ij0ps�q

κJΦps�q

κJΦpsq
R�

j0k0psq

� �
1

κpsq
Ij0ps�q

1�∆Φpsq
1�∆ΦJΦpsq

R�
j0k0psq,

lim
nÑ8

ξΦ,j,npsq � lim
nÑ8

ξus,jk,npsq � 0, j P JΦ, pj, kq P Ju Y Js,
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and since 1�∆Φpsq
1�∆ΦJΦ psq

dpNj0k0 � Λj0k0qpsq � dpNj0k0 � Λj0k0qpsq almost surely, the
dominated convergence theorem for stochastic integrals (Protter, 2005, Chapter IV,
Theorem 32) yields

plim
nÑ8

¸
tk,tk�1PTnptq

�
ϱ

tk,tk�1
JΦ,JuYtpj0,k0qu,Js

� ϱ
tk,tk�1
JΦ,Ju,Js

	
� Du,j0k0ptq.

iii) Let J � pJu, Js Y tj0, k0uq, pj0, k0q P J zJs and let

∆jkpr, sq :� pJ
jkpr, sq � pJ

jkpr, sq, r ¤ s.

We define stochastic processes

ξΦ,j,npsq �
1

κpαnpsqq

κJΦpαnpsqq

κJΦps�q

¸
g

Igpαnpsqq
¸
j

∆gjpαnpsq, s�qV �
j ps�qIjps�q, j P JΦ,

ξus,jk,npsq � �
¸
g

Igpαnpsqq
1

κpαnpsqq

κJΦpαnpsqq

κJΦpsq
∆gjpαnpsq, s�qR�

jkpsq, pj, kq P Ju Y Js,

ξs,j0k0,npsq � �
¸
g

Igpαnpsqq
1

κpαnpsqq

κJΦpαnpsqq

κJΦpsq
pJ

gj0pαnpsq, s�qR�
j0k0psq,

where s P r0, ts. Again with Lemma 3.7, we have¸
tk,tk�1PTnptq

pϱ
tk,tk�1
JΦ,Ju,JsYtpj0,k0qu

� ϱ
tk,tk�1
JΦ,Ju,Js

q

�
¸

tk,tk�1PTnptq

pϱ
tk,tk�1
JΦ,Ju,JsYtpj0,k0qu

� ϱ
tk,tk�1
H,H,H � pϱ

tk,tk�1
JΦ,Ju,Js

� ϱ
tk,tk�1
H,H,Hqq

�
¸

jPJΦ

»
p0,ts

ξΦ,j,npsqdprΦ� Φ�qpsq �
¸

pj,kqPJu

»
p0,ts

ξus,jk,npsqdpNjk � Λjkqpsq

�
¸

pj,kqPJs

»
p0,ts

ξus,jk,npsqdpΛjk � Λ�
jkqpsq �

»
p0,ts

ξs,j0k0,npsqdpΛj0k0 � Λ�
j0k0qpsq.

Since for every s P r0, ts we almost surely have

lim
nÑ8

ξs,j0k0,npsq � �
1

κps�q
Ij0ps�q

κJΦps�q

κJΦpsq
R�

j0k0psq

� �
1

κpsq
Ij0ps�q

1�∆Φpsq
1�∆ΦJΦpsq

R�
j0k0psq,

lim
nÑ8

ξΦ,j,npsq � lim
nÑ8

ξus,jk,npsq � 0, j P JΦ, pj, kq P Ju Y Js,

and since 1�∆Φpsq
1�∆ΦJΦ psq

dpΛj0k0 � Λ�
j0k0

qpsq � dpΛj0k0 � Λ�
j0k0

qpsq almost surely, the
dominated convergence theorem for stochastic integrals (Protter, 2005, Chapter IV,
Theorem 32) yields

plim
nÑ8

¸
tk,tk�1PTnptq

�
ϱ

tk,tk�1
JΦ,Ju,JsYtpj0,k0qu

� ϱ
tk,tk�1
JΦ,Ju,Js

	
� Ds,j0k0ptq.
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Lemma 3.9. Let X � pX1, . . . , Xmq be a given risk basis with

Rptq � ϱppX1, . . . , Xmq
tq

for a suitable mapping ϱ, generating the ISU decomposition Dptq � pD1ptq, . . . , Dmptqq with

respect to pTnptqqn, and let G be a sub-σ-algebra of A. Suppose that the SU decomposition

Dnptq � pDn
1 ptq, . . . , Dn

mptqq of Rptq � Rp0q with respect to Tnptq satisfies |Dn
i ptq| ¤ Y ,

i � 1, . . . , m, n P N, for some integrable random variable Y . Then the ISU decomposition

of rRptq � rϱppX1, . . . , Xmq
tq :� E

�
ϱppX1, . . . , Xmq

tq|G
�

is given by rDptq � pErD1ptq|Gs, . . . ,ErDmptq|Gsq.

Proof. Since the revaluation surplus surfaces U and rU are linked via the equation

rUpt1, . . . , tmq � ErUpt1, . . . , tmq|Gs,

the SU decomposition of rRptq � rRp0q is given by rDnptq � pErDn
1 ptq|Gs, . . . ,ErDn

mptq|Gsq.
Using that |Dn

i ptq| ¤ Y , i � 1, . . . , m, for some integrable random variable Y and the fact
that stochastically converging sequences have almost surely converging subsequences, the
dominated convergence theorem for conditional expectations almost surely yields

rDiptq � lim
nÑ8

ErDn
i ptq|Gs � ErDiptq|Gs, i � 1, . . . , m.

Theorem 3.10. Let X be defined as in Theorem 3.8. Then

ϱpXtq � E

�
�H

�
pΦ�, Λ�q �

�¸
j

XΦ,j , pXu,jk �Xs,jkqjk:j�k

�t � �����Φ, Λ
�

has the ISU decomposition

DΦ,jptq �

»
p0,ts

1
κps�q

pajp0, s�qV �
j ps�qdprΦ� Φ�qpsq,

Du,jkptq � 0,

Ds,jkptq � �

»
p0,ts

1
κpsq

pajp0, s�qR�
jkpsqdpΛjk � Λ�

jkqpsq.

In particular, the ISU decomposition does not depend on the update order or the choice of

partitions.

Proof. The model framework, introduced in Section 3.2, entails that the integrability
assumption in Lemma 3.9 for the SU decomposition (see proof of Theorem 3.8) is satisfied.
Thus, applying Lemma 3.9 with G � σpΦ, Λq to the ISU decomposition in Theorem 3.8
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and using the martingale property of dNjkptq � Ijpt�qdΛjkptq with respect to the natural
completed filtration of the random vector pZt, Φ, Λqt¥0 (see (S.2)) give the desired result.

Proposition 3.11. Let X � pX1, . . . , Xmq be a given risk basis with

Rptq � ϱppX1 �X2, X3, . . . , Xmq
tq

for a suitable mapping ϱ, generating the ISU decomposition Dptq � pD1ptq, . . . , Dmptqq.

Then the partially aggregated risk basis

rX � pX1 �X2, pX3, X4q, X5 . . . , Xmq

generates the ISU decomposition

rDptq � pD1ptq �D2ptq, D3ptq �D4ptq, D5ptq . . . , Dmptqq.

Proof. Since the revaluation surplus surfaces U and rU are linked via the equation

rUpt1, t3, t5 . . . , tmq � Upt1, t1, t3, t3, t5 . . . , tmq,

the SU decompositions Dn and rDn with respect to Tnptq satisfy

rDnptq � pDn
1 ptq �Dn

2 ptq, Dn
3 ptq �Dn

4 ptq, Dn
5 ptq, . . . , Dn

mptqq.

The latter equation carries through the limit (2.5) to the ISU decompositions.

3.4 Examples

We continue with the examples for the risk basis X and the mapping ϱ from Section 3.2
and present the corresponding ISU decompositions.

3.4.1 Decomposition of the individual revaluation surplus

Let R be the individual revaluation surplus according to (3.11).

Example 3.12. Suppose that we are in the setting of Example 3.2, where we distinguish
between financial risk, unsystematic biometric risk and systematic biometric risk. By
applying Theorem 3.8 and Proposition 3.11 we obtain the ISU decomposition

DΦptq �

»
p0,ts

1
κps�q

¸
j

Ijps�qV
�

j ps�qdprΦ� Φ�qpsq,

Duptq � �
¸

jk:j�k

»
p0,ts

1
κpsq

Ijps�qR
�
jkpsqdpNjk � Λjkqpsq,

Dsptq � �
¸

jk:j�k

»
p0,ts

1
κpsq

Ijps�qR
�
jkpsqdpΛjk � Λ�

jkqpsq.
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Example 3.13. Suppose that we are in the setting of Example 3.3, where we distinguish
between financial risk and transition-wise biometric risks. By applying Theorem 3.8 and
Proposition 3.11 we obtain the ISU decomposition

DΦptq �

»
p0,ts

1
κps�q

¸
j

Ijps�qV
�

j ps�qdprΦ� Φ�qpsq,

Djkptq � �

»
p0,ts

1
κpsq

Ijps�qR
�
jkpsqdpNjk � Λ�

jkqpsq, j, k P Z, j � k.

As a special case this ISU decomposition includes the heuristic approach of Ramlau-Hansen
(1988, formula (4.7)) for subdividing biometric surplus in a transition-wise way.

Example 3.14. Suppose that we are in the setting of Example 3.4, where we distinguish
unsystematic biometric risk and state-wise remaining risks. By applying Theorem 3.8 and
Proposition 3.11 we obtain the ISU decomposition

Duptq � �
¸

jk:j�k

»
p0,ts

1
κpsq

Ijps�qR
�
jkpsqdpNjk � Λjkqpsq,

Djptq �

»
p0,ts

1
κps�q

Ijps�q
�

V �
j ps�qdprΦ� Φ�qpsq �

¸
k:k�j

R�
jkpsqdpΛjk � Λ�

jkqpsq
	

, j P Z.

As a special case this ISU decomposition includes heuristic approaches of Ramlau-Hansen
(1988, formula before (4.10)) and Norberg (1999, formula (5.4)) for splitting off unsystematic
biometric surplus and then subdividing the remaining surplus in a state-wise way.

In Example 3.12 and Example 3.14 we split off the surplus contribution of the unsystem-
atic biometric risk. Since this unsystematic biometric risk is diversifiable in the insurance
portfolio, its contribution κptqDuptq to the total surplus Sptq, see (3.5), is typically credited
or debited to the insurer. Møller and Steffensen (2007, Chapter 6.3) denote the remaining
surplus Sptq�κptqDuptq as the ’systematic surplus’. This systematic surplus mainly belongs
to the policyholder.

Asmussen and Steffensen (2020, Chapter VI.4) split also the financial risk into an
unsystematic part and a systematic part and argue that the unsystematic financial risk
surplus contribution should be fully credited or debited to the insurer, similarly to the
unsystematic biometric risk surplus contribution. They distinguish unsystematic and
systematic financial risk by splitting Φ into a martingale part and a remaining systematic
part. If we likewise split Φ�Φ� in the risk basis X into a martingale part and a remaining
systematic part, then the resulting ISU decomposition allows us to distinguish between
systematic and unsystematic surplus contributions. If we collect the systematic biometrical
and systematic financial surplus contributions, then we just end up with the systematic
surplus formula of Asmussen and Steffensen (2020, Chapter VI.4). We do not show the
detailed calculations here but leave them to the reader.
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3.4.2 Decomposition of the mean portfolio revaluation surplus

Let R be the mean portfolio revaluation surplus according to (3.14).

Example 3.15. We choose the setting from Example 3.2 but adopt the mean port-
folio perspective. By applying Theorem 3.10 and Proposition 3.11 we obtain the ISU
decomposition

DΦptq �

»
p0,ts

1
κps�q

¸
j

pajp0, s�qV �
j ps�qdprΦ� Φ�qpsq,

Duptq � 0,

Dsptq � �
¸

jk:j�k

»
p0,ts

1
κpsq

pajp0, s�qR�
jkpsqdpΛjk � Λ�

jkqpsq.

The conditional expectation in (3.14) and (3.15) completely eliminates the unsystematic
biometric risk, which explains why we have Duptq � 0 here.

Example 3.16. We choose the setting from Example 3.3 but adopt the mean port-
folio perspective. By applying Theorem 3.10 and Proposition 3.11 we obtain the ISU
decomposition

DΦptq �

»
p0,ts

1
κps�q

¸
j

pajp0, s�qV �
j ps�qdprΦ� Φ�qpsq,

Djkptq � �

»
p0,ts

1
κpsq

pajp0, s�qR�
jkpsqdpΛjk � Λ�

jkqpsq, j, k P Z, j � k.

The next example shows an application of this formula.

Example 3.17. We continue with the previous example but focus on the specific setting
of Example 3.6. One can show that the SU decomposition of Rpk � 1q �Rpkq with respect
to an integer partition equals

Upk � 1, k, kq � Upk, k, kq � e�
³k�1
0 ϕpuq du

kpx V �
a pkq∆piq,

Upk � 1, k � 1, kq � Upk � 1, k, kq � e�
³k�1
0 ϕpuq du

kpx

�
V �

a pk � 1�q � dk�1
�
∆pqq,

Upk � 1, k � 1, k � 1q � Upk � 1, k � 1, kq � e�
³k�1
0 ϕpuq du

kpx

�
V �

a pk � 1�q � sk�1
�
∆prq,

(3.17)

where ∆piq � ik � i�k, ∆pqq � qx�k � q�x�k and ∆prq � rx�k � r�x�k, see Section A.1 in
the appendix. This decomposition is the standard surplus decomposition formula used in
German life insurance (see Milbrodt & Helbig, 1999, Section 11.B). We can interpret the
latter SU decomposition as an approximation of the ISU decomposition of Rpk� 1q�Rpkq,
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which equals here

DΦpk � 1q �DΦpkq �

»
pk,k�1s

e�
³s
0 ϕpuq du

spx V �
a psq dpΦ� Φ�qpsq,

Dadpk � 1q �Dadpkq �

»
pk,k�1s

e�
³s
0 ϕpuq du

spx

�
V �

a psq � badpsq
�

dpΛad � Λ�
adqpsq,

Daspk � 1q �Daspkq �

»
pk,k�1s

e�
³s
0 ϕpuq du

spx

�
V �

a psq � baspsq
�

dpΛas � Λ�
asqpsq.

(3.18)

The latter decomposition is invariant with respect to a reordering of the components of X,
whereas the SU decomposition changes. Therefore, we recommend to replace the traditional
SU decomposition (3.17) by the ISU decomposition (3.18).

Example 3.18. We choose the setting from Example 3.4 but adopt the mean port-
folio perspective. By applying Theorem 3.10 and Proposition 3.11 we obtain the ISU
decomposition

Duptq � 0,

Djptq �

»
p0,ts

1
κps�q

pajp0, s�q
�

V �
j ps�qdprΦ�Φ�qpsq�

¸
k:k�j

R�
jkpsqdpΛjk�Λ�

jkqpsq
	

, j P Z.

As a special case this ISU decomposition includes heuristic approaches of Ramlau-Hansen
(1991, formula (3.2)) and Norberg (1999, formula (5.7)) for subdividing mean portfolio
surplus in a state-wise manner.

As shown in Section 3.3, the ISU decompositions in our life insurance model do not
depend on the update order. Thus, together with Theorem 2.7, we directly get the following
result.

Corollary 3.19. For all examples in Section 3.4 the IOAT decomposition and the averaged

ISU decomposition are both equal to the ISU decomposition.

The results in this chapter have shown that the ISU decomposition principle is a suitable
tool for deriving invididual surplus contributions in traditional life insurance. Moreover, the
clarity of the decomposition opens up new prospects for future research to take policyholder
behaviour into account.
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4 Relating the ISU concept to the martingale
representation theorem

A company’s surplus is often exposed to a variety of risks, such as financial, legal and
economic risks. To master these risks, companies establish risk management processes
that identify, quantify and control potential risks. In particular, risk quantification entails
the assessment of how an individual risk affects the overall risk. However, individual risk
contributions are usually not directly accessible (see Schilling et al., 2020). Especially if the
different risks contribute to the company’s surplus in a non-linear way, the decomposition
of risk into its individual risk contributions is a very challenging task (see Frei, 2020).
Despite its relevance, risk decompositions have only been addressed by a few authors in the
literature (see Karabey et al., 2014 and references therein). With a focus on an insurer’s
surplus, an explaination is provided about how the ISU decomposition principle can also
serve as a useful tool for decomposing risk. But first of all the term risk needs to be
clarified.

According to the ISO 31000:2018 standard on risk management published by the
International Organisation for Standardisation (ISO, 2018), risk is an ‘effect of uncertainty
on objectives’. The uncertainty is driven by a lack of knowledge about the future
development of factors affecting the surplus (objective). An effect manifests itself as
a ‘deviation from the expected’, which can be positive or negative (see Wuorikoski, 2018).
Translating this definition into mathematical terms requires the taking into account of
both, the different levels of information and the understanding of risk as a deviation from
expected values. To reflect the different levels of information, a filtration G � pGtqt¥0

describes the information available over time. The expected surplus changes as information
increases, therefore the revaluation surplus process (see Chapter 2) is defined by

Rptq � Erξ|Gts, t ¥ 0, (4.1)

where ξ is a GT -measurable random variable that e.g. represents an insurer’s surplus on a
finite time horizon r0, T s. This time-dynamic approach allows one to interpret Rptq �Rp0q,
t ¥ 0, as the risk on r0, ts that the expectation for the total surplus needs to be adjusted.
In particular, taking the entire time interval r0, T s into account,

RpT q �Rp0q � ξ � Erξ|G0s (4.2)

describes the deviation of the actual surplus ξ from the initially expected surplus Erξ|G0s,
and thus corresponds to the definition above.

Having derived a common understanding of risk, it is possible to return to the original
question of how to decompose the total risk Rptq �Rp0q into individual risk contributions.
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A systematic approach to this question has been carried out by Schilling et al. (2020), who
introduce axioms of a meaningful risk decomposition for the time-static risk (4.2). On the
basis of these axioms, Schilling et al. (2020) not only compare risk decompositions known
from the literature, but also suggest another risk decomposition fulfilling all axioms. Based
on the martingale representation theorem, Schilling et al. (2020) present the so-called MRT
decomposition that decomposes the total risk into martingales, each of which characterises
an individual risk contribution. In particular, this approach uses the martingale property
of the revaluation surplus process (4.1), which is also conducive to the application of the
ISU decomposition principle. More precisely, if Gt describes the information provided by
a risk basis X � pX1, � � � , Xmq until time t, the ISU decomposition principle is directly
applicable and a natural link mapping ϱ between the risk basis and the revaluation surplus
(4.1) satisfying Rptq � ϱpXtq is given by

ϱpXt1
1 , . . . , Xtm

m q � Erξ|σpXt1
1 , . . . , Xtm

m qs, ti P r0, T s, i � 1, . . . , m. (4.3)

In this chapter, it is shown that the ISU decomposition principle is indeed a useful tool for
the decomposition of risk. In particular, conditions are presented under which the ISU and
MRT decompositions are equivalent.

So far, the motivation to consider ISU decompositions of martingales has been focused
on risk management. Though risk assessment usually refers to a real-world measure (see
Karabey et al., 2014; Schilling et al., 2020), other choices of the probability measure in
(4.1) are conceivable. This raises the prospect of further applications. Under a risk-neutral
probability measure, martingales are closely related to the pricing theory for finance
products in arbitrage-free markets (see e.g. Harrison & Pliska, 1981 for option pricing).
Not only financial mathematics, but also recent actuarial mathematics strive for a market-
consistent valuation of insurance products (see e.g. Biagini, 2013 and references therein).
The relevance of surplus decompositions in modern valuation setups is illustrated by Fischer
(2004), who splits the gains associated with a life insurance contract into a biometric and a
financial part.

Another application of martingale surplus processes relates to the decomposition of life
insurance bonus in the context of Chapter 3. In the literature on traditional life insurance
surplus (see Chapter 3), different valuation bases are used to value the earned surplus
under best-estimate assumptions (‘second-order basis’) on the one hand, and to value
the expected future surplus under conservative assumptions (‘first-order basis’) on the
other hand. This valuation pattern can also be achieved by considering the revaluation
surplus process (4.1) with respect to a conservative probability measure. Whereas in
classical bonus theory, the conservative valuation basis is fixed at the beginning of the
contract, the martingale approach takes full advantage of the available information. More
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precisely, the empirical observations are not only used to evaluate the earned surplus,
but also to involve an adjustment to the expected future surplus. Though understanding
surplus as a martingale is in line with a modern market-consistent valuation of insurance
contracts, only a few authors take up this idea in bonus theory, references are Steffensen
(2001, Section 3.5.1) and Dufresne (2001). Nevertheless, this application provides a further
motivation to study the ISU decomposition of martingales in more detail.

After introducing the underlying model framework, Section 4.1 presents a property of risk
bases that will be crucial from a technical perspective. In Section 4.2, it is shown that this
property is satisfied by a number of stochastic processes commonly used in actuarial and
financial modelling. The chapter concludes with Section 4.3, which contains the derivation
of the ISU decomposition for martingales and a discussion of its relationship to the MRT
decomposition.

4.1 Model framework

We generally assume that we have a complete probability space pΩ, A,Pq with a right-
continuous and complete filtration F � pFtqt¥0. Let the system N contain the subsets of
P-null sets, i.e. N � tN � Ω|DA P A : N � A^ PpAq � 0u. Moreover, for sub-σ-algebras
Ai � A, i � 1, . . . , n, we define the operator _ by

nª
i�1

Ai :� A1 _ . . ._An :� σ

�
n¤

i�1
Ai

�
,

where the right-hand side denotes the smallest σ-algebra that contains all Ai, i � 1, . . . , n.
We consider a finite time horizon r0, T s and suppose that the risk basis X � pX1, . . . , Xmq

is given by a vector of F-semimartingales. In the following, we write Gi � pGi
tqtPr0,T s for the

completed natural filtration of Xi, i � 1, . . . , m, and G � pGtqtPr0,T s with Gt � G1
t _ . . ._Gm

t

for the joint filtration. For a subset J � tj1, . . . , jru � t1, . . . , mu, we further introduce

• the subfiltration GJ � pGJ
t qtPr0,T s with GJ

t � Gj1
t _ . . ._ Gjr

t , whereas GHt � tH, Ωu,

• the family of sub-σ-algebras GJ
s,t � Gs _ GJ

t for s ¤ t.

Moreover, we make the following assumption about the risk basis:

(S) Each Xi has a decomposition

Xiptq � Xip0q �Miptq �Aiptq, (4.4)

where Xip0q P R, Mi is a square integrable G-martingale and Ai is a G-predictable
finite variation process with Mip0q � Aip0q � 0.
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The decomposition in (4.4) is unique (see Protter, 2005, Chapter III, Theorem 34). In
general, (S) holds true for a large class of semimartingales, see also the examples provided in
the next section. In other words, (S) assumes that Xi is a so-called special semimartingale

with the addition of stronger integrability conditions for the martingale part Mi. The
class of special semimartingales covers all semimartingales with bounded jumps. Further
characterisations of special semimartingales can be found in Protter (2005, Chapter III.7).

In this chapter, we focus on surplus revaluation processes given as martingales with
respect to the information generated by X. More precisely, let

Rptq � Erξ|Gts, t ¥ 0, (4.5)

where ξ is a square-integrable GT -measurable random variable. We interpret ξ as an
discounted insurance claim and Rptq as the Gt-measurable proxy of ξ (see Section 2.1). It is
worth noting that, unlike in Chapter 3, we do not assume any particular form of insurance
claim.

Recall that the choice of link mapping ϱ satisfying Rptq � ϱpXtq, t ¥ 0 is essential for the
application of the ISU decomposition principle. As Gt describes the information provided
by the risk basis X, a natural link mapping ϱ is given by

ϱpXt1
1 , . . . , Xtm

m q � Erξ|σpXt1
1 , . . . , Xtm

m q _N s, ti P r0, T s, i � 1, . . . , m. (4.6)

Using this link mapping ϱ, we are able to apply the ISU decomposition principle (see
Section 2). Let pTnptqqn be a sequence of partitions on r0, ts with vanishing step lengths.
For Rptq � Erξ|Gts, the ISU decomposition principle gives the additive decomposition

Rptq � D1ptq � . . .�Dmptq,

where

Diptq � plim
nÑ8

¸
tk,tk�1PTnptq

pErξ|Gt1,...,iu
tk,tk�1

s � Erξ|Gt1,...,i�1u
tk,tk�1

sq, i � 1, . . . , m.

To further analyse the ISU decomposition, we introduce the following property of a risk
basis, which will be crucial for our main results.

Definition 4.1. Suppose the risk basis X satisfies (S). We say the risk basis X fulfils
(M) if for every sequence of partitions pTnptqqn on r0, ts with vanishing step lengths and
every subset J � t1, . . . , mu, it holds

plim
nÑ8

¸
tk,tk�1PTnptq

ErMiptk�1q �Miptkq|GJ
tk,tk�1s � 0, if i R J, (4.7)

plim
nÑ8

¸
tk,tk�1PTnptq

ErMiptk�1q �Miptkq|GJ
tk,tk�1s � Miptq, if i P J, (4.8)

for all t P r0, T s.
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The convergence (4.7) depicts an infinitesimally forward shifted martingale property of Mi,
while the convergence (4.8) describes an infinitesimally backward shifted measurability of
Mi (i � 1, . . . , m) (cf. Christiansen, 2021).

Remark 4.2. The convergence in (M) is stated for intervals r0, ts, t P r0, T s. However,
this already implies convergences (4.7) and (4.8) on intervals rs, ts, s ¤ t: Let pTnqn be
a sequence of partitions on rs, ts with vanishing step lengths, let J � t1, . . . , mu and let
property (M) hold. Suppose prTnqn defines a sequence of partitions on r0, ss with vanishing
step lengths. Then p

rrTnqn with rrTn � rTn Y Tn is a sequence of partitions on r0, ts with
vanishing step lengths. Therefore, property (M) implies

plim
nÑ8

¸
tk,tk�1PTn

ErMiptk�1q �Miptkq|GJ
tk,tk�1s

� plim
nÑ8

¸
tk,tk�1P

rrTn

ErMiptk�1q �Miptkq|GJ
tk,tk�1s � plim

nÑ8

¸
tk,tk�1P rTn

ErMiptk�1q �Miptkq|GJ
tk,tk�1s

�

$'&'%0, i R J,

Miptq �Mipsq, i P J.

In the following section, we provide evidence for the plausibility of property (M). Therefore,
we show that property (M) is satisfied for several examples commonly used in actuarial
and financial modelling.

4.2 Examples

This section contains of five subsections, each of which investigates a class of risk bases
with regard to property (M). The notations introduced in Section 4.1 always refer to the
respective risk basis under consideration. In addition, the following notation is needed.
For a stochastic process Z, we denote by FZ � pFZ

t qtPr0,T s its natural completed filtration.
Furthermore, let L2pPq denote the usual L2 space of square-integrable random variables
with norm } � }2. Moreover, for sub-σ-algebras Ai � A, i � 1, 2, 3, we say A1 and A2

are conditionally independent given A3, if PpA1 X A2|A3q � PpA1|A3qPpA2|A3q for all
Ai P Ai, in symbols A1 KK A2|A3. Furthermore, for a set J � t1, . . . , mu, we write Jc for
its complement in t1, . . . , mu.

4.2.1 Independent sources of risk

We start with a simple setup of independent risk factors.

Proposition 4.3. Suppose that the risk basis X � pX1, . . . , Xmq consists of inde-

pendent F-semimartingales that satisfy (S). If FMi � Gi for all i � 1, . . . , m, then

X � pX1, . . . , Xmq fulfils (M).
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Proof. Let Tnptq be a sequence of partitions on r0, ts with vanishing step lengths, and
let J � t1, . . . , mu. If i R J , the σ-algebras GJ

tk�1 and σpσpMiptk�1q � Miptkqq, GJc
tk
q are

independent. Thus, we can omit the information from Xj , j P J on ptk, tk�1s (see Zitkovic,
2015, Proposition 10.5.9 (9)) and get¸

tk,tk�1PTnptq

ErMiptk�1q �Miptkq|GJ
tk,tk�1s �

¸
tk,tk�1PTnptq

ErMiptk�1q �Miptkq|Gtk
s � 0.

If i P J , the assumption FMi � Gi immediately implies¸
tk,tk�1PTnptq

ErMiptk�1q �Miptkq|GJ
tk,tk�1s �

¸
tk,tk�1PTnptq

pMiptk�1q �Miptkqq � Miptq.

Thus, (M) is fulfilled.

This leads us to the following examples.

Example 4.4. Let the risk basis X � pX1, . . . , Xmq consist of independent F-martingales.
Then, by Proposition 4.3, (M) is fulfilled.

Example 4.5. Let W � pW1, . . . , Wmq be a standard m-dimensional Brownian motion,
and let the risk basis be given by X � pX1, . . . , Xmq, where Xi satisfies the stochastic
differential equation

dXiptq � µipt, Xiptqqdt� σipt, XiptqqdWiptq, Xip0q � xip0q P R,

for continuous functions µi, σi : r0, T s � RÑ R (i � 1, . . . , m). The definition of X implies
that Xi, i � 1, . . . , m are independent. Furthermore, it holds

dMiptq � σipt, XiptqqdWiptq � dXiptq � µipt, Xiptqqdt,

which implies FMi � Gi. Thus, by Proposition 4.3, (M) is fulfilled.

4.2.2 Grid-dependent sources of risk

Clearly, independence of risk factors is a strong assumption, which in reality is usually not
satisfied for economic and demographic risk factors. Fortunately, the property (M) can
still be verified, if we allow for dependency on a fixed grid. Let the corresponding grid π

be given as π � t0 � u0   . . .   ud � T u, d P N.

Definition 4.6. Let Z be a stochastic process and let H � pHtqt¥0 be a subfiltration of F.
Then Z is called H-π-adapted if Zptq is Hul

-measurable for t P pul, ul�1s.

We suppose that the risk basis X consists of F-semimartingales Xi, i � 1, . . . , m, which
satisfy (S). Therefore, each source of risk Xi admits a canonical decomposition

Xiptq � Xip0q �Miptq �Aiptq, t P r0, T s. (4.9)
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In this subsection, we focus on martingale parts having an integral representation. More
precisely, we consider martingale parts Mi, i � 1, . . . , m, satisfying

a) Miptq �
³t
0 φipsqdΓipsq,

where

b) Γ � pΓ1, . . . , Γmq consists of independent F-martingales Γi with Γip0q � 0, i � 1, . . . , m,

c) φi is a càglàd FΓ-π-adapted process,

d) φi � 0 almost surely

For the compensator Ai, i � 1, . . . , m, we assume

e) Ai is FΓ-π-adapted.

The measurability assumptions c) and e) allow Ai and the integrand of Mi (and thus Xi)
to depend on the common past information (up to the grid point) of Γ. However, between
the grid points, newly generated information for Mi and Xi stems only from the newly
generated information of Γi. To be precise, let tk, tk�1 P Tnptq such that ptk, tk�1qXπ � H.
For s P ptk, tk�1s, we have

σpMipuq �Miptkq : tk   u ¤ sq � FΓ
tk
_ σpΓipuq � Γiptkq : tk   u ¤ sq. (4.10)

With the canonical decomposition (4.9) and assumption e), this further implies

σpXipuq �Xiptkq : tk   u ¤ sq � FΓ
tk
_ σpΓipuq � Γiptkq : tk   u ¤ sq. (4.11)

The latter observation will help us to prove the following lemma.

Lemma 4.7. Let the risk basis X consist of F-semimartingales that fulfil (S), where the

canonical decompositions pAi, Miq, i � 1, . . . , m, satisfy aq � eq. Let J � t1, . . . , mu and

tk   s, such that ptk, sq X π � H. Then it holds

GJ
tk,s � FΓ

tk
_ σpΓjpuq � Γjptkq : tk   u ¤ s, j P Jq. (4.12)

Furthermore, we have G � FΓ.

Proof. We prove the result in the reverse order to that stated, i.e. we first show that

G � FΓ. (4.13)

Due to our assumptions, we have G0 � FΓ
0 . Furthermore, assumptions a), c) and e) directly

imply

Gs � FΓ
s
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for s P r0, T s. Vice versa, we use an induction argument. Let s P p0, u1s. Then
the associativity for stochastic integrals (Protter, 2005, Chapter II, Theorem 19) and
assumption e) yield

dΓipsq � φ�1
i psqdXipsq. (4.14)

As φ�1
i psq is FΓ

0 -measurable (see d)) on p0, u1s, we get FΓi
s � Gi

s for s P p0, u1s. Since the
argument does not depend on i, we also have FΓ

s � Gs for s P p0, u1s. Let us now assume
that FΓ

s � Gs holds for s P r0, uls. For s P pul, ul�1s, we have that

FΓ
s � FΓ

ul
_ σpΓipuq � Γipulq : i � 1, . . . , m, ul   u ¤ sq.

Since FΓ
ul
� Gul

and φipsq is FΓ
ul

-measurable, thus Gul
-measurable, the representation (4.14)

implies FΓ
s � Gs for all s P pul, ul�1s. Hence, we have shown that G � FΓ.

Together with (4.11), we get the inclusion

GJ
tk,s � FΓ

tk
_ σpΓjpuq � Γjptkq : tk   u ¤ s, j P Jq.

For the other direction, the equation (4.13) together with the representation (4.14) gives
the desired result.

We are now in the position to prove property (M).

Proposition 4.8. Let the risk basis X � pX1, . . . , Xmq consist of F-semimartingales

that fulfil (S), where the canonical decompositions pAi, Miq, i � 1, . . . , m, satisfy aq � eq.

Furthermore, let xMi, Miy, i � 1, . . . , m be continuous processes. Then X fulfils (M).

Proof. Let pTnptqqn be a sequence of partitions on r0, ts with vanishing step lengths and
let J � t1, . . . , mu. We have to prove that

plim
nÑ8

¸
tk,tk�1PTnptq

E
�» tk�1

tk

φipsqdΓipsq

����GJ
tk,tk�1

�
� 0, i R J, (4.15)

and

plim
nÑ8

¸
tk,tk�1PTnptq

E
�» tk�1

tk

φipsqdΓipsq

����GJ
tk,tk�1

�
�

» t

0
φipsqdΓipsq, i P J. (4.16)

Firstly, for tk, tk�1 P Tn with ptk, tk�1q X π � H and i R J , we verify

σpMiptk�1q �Miptkqq KK σpXjpsq : tk   s ¤ tk�1, j P Jq |Gtk
. (4.17)

Due to (4.10) and (4.11), it suffices to show

FΓ
tk
_Htiu KK FΓ

tk
_HJ |Gtk

,

where H rJ � σpΓipsq � Γiptkq : tk   s ¤ tk�1, j P rJq for any rJ � t1, . . . , mu. This, however,
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follows immediately from Gtk
� FΓ

tk
(see Lemma 4.7) and the independence between Γi

and Γj , j P J .
Without loss of generality we assume that |Tnptq|   |π| for all n. If ul   t and

ul P ptj , tj�1s for an index j, we set tl � tj and tl � tj�1 as the neighbouring points of ul

in Tnptq. If ul ¥ t, we set tl � tl � t. Moreover, we write T 0
n ptq � Tnptq X ru0, u1s and

T l
nptq � Tnptq X pul, ul�1s, l � 1, . . . , d� 1.
For (4.15), i.e. i R J , the conditional independence (4.17) yields¸

tk,tk�1PTnptq

ErMiptk�1q �Miptkq|GJ
tk,tk�1s

�
d�1̧

l�0

¸
tk,tk�1PT l

nptq

ErMiptk�1q �Miptkq|GJ
tk,tk�1s �

d�1̧

l�1
ErMiptlq �Miptlq|GJ

tl,tl
s

�
d�1̧

l�0

¸
tk,tk�1PT l

nptq

ErMiptk�1q �Miptkq|Gtk
s �

d�1̧

l�1
ErMiptlq �Miptlq|GJ

tl,tl
s

�
d�1̧

l�1
ErMiptlq �Miptlq|GJ

tl,tl
s.

Let us recall that } � }2 denotes the norm on L2pPq. With the Jensen’s inequality for
conditional expectations, the Itô isometry and the dominated convergence theorem, we
observe

lim
nÑ8

}
d�1̧

l�1
ErMiptlq �Miptlq|GJ

tl,tl
s}2

2 � lim
nÑ8

d�1̧

l�1
}ErMiptlq �Miptlq|GJ

tl,tl
s}2

2

¤ lim
nÑ8

d�1̧

l�1
ErpMiptlq �Miptlqq

2
s � lim

nÑ8

d�1̧

l�1
E rxMi, Miyptlq � xMi, Miyptlqs � 0,

where we used that xMi, Miy is assumed to be continuous. As L2-convergence implies
convergence in probability, we have shown (4.15).

Next, we prove (4.16), i.e. let i P J . By (4.10) and Lemma 4.7, we get¸
tk,tk�1PTnptq

ErMiptk�1q �Miptkq|GJ
tk,tk�1s

� Miptq �
d�1̧

l�1
ErMiptlq �Mipulq|GJ

tl,tl
s �

d�1̧

l�1
pMiptlq �Mipulqq.

With similar arguments as above, the last two terms tend again to 0 in L2 (and therefore
also in probability).

This leads us to the following examples. We start with a risk basis consisting of Itô
processes. With more general assumptions on measurability, this setup is used by Schilling
et al. (2020) to model (systematic) financial and biometric risks.
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Example 4.9. Let W � pW1, . . . , Wmq be a standard m-dimensional Brownian motion,
and let the risk basis be given by X � pX1, . . . , Xmq, where Xi satisfies the stochastic
differential equation

dXiptq � µiptqdt� σiptqdWiptq, Xip0q � xip0q P R,

with µi and σi being FW -π-adapted processes, such that σi � 0 almost surely for every i

and

E
��» t

0
σipsqdWipsq


2�
  8, t P r0, T s.

Then, by Proposition 4.8, (M) is fulfilled.

Example 4.10. Let W � pW1, . . . , Wmq be a standard m-dimensional Brownian motion,
and let the risk basis be given by X � pX1, . . . , Xmq, where Xi is an FW -adapted process
satisfying the stochastic differential equation

dXiptq � µipt, X|r0,tqqdt� σipt, X|r0,tqqdWiptq, Xip0q � xip0q P R

with

µipt, X|r0,tqq �
ḑ

l�1
µipul, Xpulqq1pul,ul�1sptq, σipt, X|r0,tqq �

ḑ

l�1
σipul, Xpulqq1pul,ul�1sptq

for a partition t0 � u0   . . .   ud � T u of r0, T s and functions µi, σi : R2 Ñ R, σi � 0,
i � 1, . . . , m. Then, by Proposition 4.8, (M) is fulfilled.

By applying similar techniques as in this section, we can extend the range of example risk
bases that fulfil (M) to risk factors, that rely on Poisson random measures.

4.2.3 Sources of risk driven by Poisson random measures

In this paragraph we consider risk bases driven by Poisson random measures, which are
widely used in actuarial applications (e.g. in claims modelling). Furthermore, Poisson
random measures are crucial in the Lévy-Itô decomposition, describing the jumps of a
Lévy process. An introduction to Poisson random measures and stochastic integrals with
respect to Poisson random measures can be found e.g. in Ikeda and Watanabe (1989)
or Jacod and Shiryaev (2003, Chapter II.1). The former reference also serves as the
main reference for this paragraph. The stochastic integrals that appear are interpreted as
pathwise Lebesgue-Stieltjes integrals.

Let µ � pµ1, . . . , µmq consist of independent Poisson random measures µi, i � 1, . . . , m,

on E � R� � R�. Here, the assumption of independence is to be understood as the
independence of its natural filtrations Fµi � pFµi

t qt¥0 defined by

Fµi
0 � tΩ,Hu, Fµi

t � σpµipp0, ss �Bq : s P p0, ts, B P BpR�qq, t ¥ 0.
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We further denote the common filtration of µ by Fµ � pFµ
t qt¥0 with Fµ �

�m
i�1 Fµi .

The definition of a Poisson random measure entails the independence of increments, i.e.
µippu, ss � Bq is independent of Fµi

u (see Jacod & Shiryaev, 2003, Definition 1.20). For
each µi, let µi denote its F-compensator, given by the (deterministic) intensity measure
µi � λbni, where λ is the Lebesgue measure and ni is any σ-finite measure on pR�, BpR�qq,
i � 1, . . . , m. That is, the stochastic processes

t ÞÑ mipp0, ts �Bq :� µipp0, ts �Bq � µipp0, ts �Bq, B P BpR�q,

define F-martingales.
Similar to the previous subsection, we allow again for dependency of the risk factors

on a grid. Therefore, let the grid π be given as π � t0 � u0   . . .   ud � T u, d P N and
let B1, . . . , BK P BpR�q be disjoint Borel sets with nipBrq   8, r � 1, . . . , K. We define
a family of σ-algebras Ii � pIi

s,tqs¤t by Ii
s,t � σpµipps, us � Brq : s   u ¤ t, r � 1, . . . , Kq.

Furthermore, let I � pItqt¥0, It �
�m

i�1 Ii
0,t denote a subfiltration of Fµ.

Let fi : R� � R� � Ω Ñ R be simple predictable functions, i.e.

fipt, zq �
ḑ

l�1

Ķ

r�1
ci

rY i
l 1pul,ul�1sptq1Brpzq,

where ci
r P R, r � 1, . . . , K, and Y i

l are bounded Iul
-measurable random variables with

Y i
l � 0, l � 1, . . . , d. In this paragraph, the risk basis X � pX1, . . . , Xmq is defined via

Xiptq �

»
p0,ts�R�

fips, zqµipds, dzq �
ḑ

j�1

Ķ

r�1
ci

rY i
j µipppuj , uj�1s X p0, tsq �Brq, (4.18)

are F-martingales (i � 1, . . . , m).
In contrast to the previous subsections, the risk driver µ has a further dimension. To

reflect that, we define the available information slighty different compared to Section 4.1.
More precisely, let Gi � pGi

tqt¥0 describe the information generated by the i-th source of
risk with

Gi
t � σpXips, Brq : s ¤ t, r � 1, . . . , Kq,

where the random variables Xipt, Brq, t ¥ 0, r � 1, . . . , K, are given by

Xipt, Brq �

»
p0,ts�Br

fips, zqµipds, dzq �
ḑ

j�1
ci

rY i
j µipppuj , uj�1s X p0, tsq �Brq.

As a consequence, the joint filtration G � pGtqtPr0,T s with Gt � G1
t _ . . ._ Gm

t also slightly
differs from Section 4.1.

Following Ikeda and Watanebe (1989, Section II.3), Xi, i � 1, . . . , m are special
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semimartingale under F with compensators

Aiptq �

»
p0,ts�R�

fips, zqµipds, dzq �
ḑ

j�1

Ķ

r�1
ci

rY i
j µipppuj , uj�1s X p0, tsq �Brq (4.19)

and square-integrable martingale parts

Miptq �

»
p0,ts�R�

fips, zqmipds, dzq �
ḑ

j�1

Ķ

r�1
ci

rY i
j mipppuj , uj�1s X p0, tsq �Brq. (4.20)

The measurability assumption on the functions fi allows Xi (and thus Mi) to depend
on the common past information (up to the grid point) of µ. However, between the grid
points, newly generated information for Mi and Xi stems only from the newly generated
information of µi. To be precise, let tk, tk�1 P Tnptq, such that ptk, tk�1q X π � H. For
s P ptk, tk�1s, we have

σpMipsq �Miptkq : tk   s ¤ tk�1q � Itk
_ Ii

tk,s (4.21)

and

σpXipsq �Xiptkq : tk   s ¤ tk�1q � Itk
_ Ii

tk,s. (4.22)

The latter observation will help us to prove the following lemma.

Lemma 4.11. Let J � t1, . . . , mu and let tk   s, such that ptk, sq X π � H. Then it

holds

GJ
tk,s � Itk

_
ª
jPJ

Ij
tk,s. (4.23)

Furthermore, we have G � I.

Proof. The arguments are similar to those in the proof of Lemma 4.7, but adapted to the
setup of Poisson random measures. Again, we prove the result in the reverse order to that
stated, i.e. we first show that

G � I. (4.24)

Due to our assumptions, we have G0 � I0 � tΩ,Hu. Furthermore, (4.18) implies

Gs � Is

for s P r0, T s. Vice versa, we use an induction argument. Let s P p0, u1s and r P t1, . . . , Ku.
Rearranging (4.18) yields

µipp0, ss �Brq � pci
rY i

1 q
�1Xips, Brq.

As pci
rY i

1 q
�1 is I0-measurable on p0, u1s, we get Is � Gi

s for s P p0, u1s. Since the argument
does not depend on i, we also have Is � Gs for s P p0, u1s. Let us now assume that Is � Gs
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holds for s P r0, uls. For s P pul, ul�1s we have that

Is � Iul
_ σpµippul, us �Brq : i � 1, . . . , m, ul   u ¤ s, r � 1, . . . , Kq.

Again with (4.18), we observe that

µippul, us �Brq � pci
rY i

l q
�1pXipu, Brq �Xipul, Brqq. (4.25)

Since Iul
� Gul

and since pci
rY i

l q
�1 is Iul

-measurable, thus Gul
-measurable, the representa-

tion (4.25) implies Is � Gs also for all s P pul, ul�1s. So, via induction we have shown that
G � I. Together with (4.22), we get the inclusion

GJ
tk,s � Itk

_
ª
jPJ

IJ
tk,s.

For the other direction, the equation (4.24) together with the representation (4.25) gives
the desired result.

We can conclude from the second part in the previous lemma, that the risk basis X satisfies
pSq with decompositions pAi, Miq, i � 1, . . . , m, given by (4.22) and (4.21).

Proposition 4.12. Let the risk basis be defined by (4.18). Then (M) is fulfilled.

Proof. The arguments are similar to those in the proof of Proposition 4.8, but adapted
to the setup of Poisson random measures. Let i be fixed. Furthermore, let pTnptqqn be a
vanishing sequence of partitions on r0, ts and let J � t1, . . . , mu. We have to show that

plim
nÑ8

¸
tk,tk�1PTnptq

ErMiptk�1q �Miptkq|GJ
tk,tk�1s � 0, i R J, (4.26)

and

plim
nÑ8

¸
tk,tk�1PTnptq

ErMiptk�1q �Miptkq|GJ
tk,tk�1s � Miptq, i P J, (4.27)

where Miptq �
³
p0,ts�R� fips, zqmipds, dzq. Therefore, we first show that

σpMiptk�1q �Miptkqq KK σpXjpsq : tk   s ¤ tk�1, j P Jq |Gtk
, (4.28)

where ul   tk   tk�1 ¤ ul�1 and J � t1, . . . , muztiu.
Due to (4.21), (4.22) and the fact that Gtk

� Itk
(see Lemma 4.11), it suffices to show

Itk
_ Ii

tk,tk�1 KK Itk
_
ª
jPJ

Ij
tk,tk�1

|Gtk
, j P J.

This, however, follows immediately from G � I (see Lemma 4.11) and the independence
between µi and µj , j P J .

Without loss of generality we assume that |Tnptq|   |π| for all n. If ul   t and
ul P ptj , tj�1s for some index j, we set tl � tj and tl � tj�1 as the neighbouring points of
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ul in Tnptq. If ul ¥ t, we set tl � tl � t. Moreover, we write T 0
n ptq � Tnptq X ru0, u1s and

T l
nptq � Tnptq X pul, ul�1s, l � 0, . . . , d� 1.
For (4.26), i.e. i R J , the conditional independence (4.28), yields¸

tk,tk�1PTnptq

ErMiptk�1q �Miptkq|GJ
tk,tk�1s

�
m�1̧

l�0

¸
T l

n

ErMiptk�1q �Miptkq|GJ
tk,tk�1s �

d�1̧

l�1
ErMiptlq �Miptlq|GJ

tl,tl
s

�
m�1̧

l�0

¸
T l

n

ErMiptk�1q �Miptkq|Gtk
s �

d�1̧

l�1
ErMiptlq �Miptlq|GJ

tl,tl
s

�
d�1̧

l�1
ErMiptlq �Miptlq|GJ

tl,tl
s

Let us recall that } � }2 denotes the norm on L2pPq. With the Jensen’s inequality for
conditional expectations, the Itô isometry (see Ikeda & Watanabe, 1989, Section II.3) and
the dominated convergence theorem, we observe

lim
nÑ8

��� d�1̧

l�1
ErMiptlq �Miptlq|GJ

tl,tl
s
���2

2
� lim

nÑ8

d�1̧

l�1
}ErMiptlq �Miptlq|GJ

tl,tl
s}2

2

¤ lim
nÑ8

d�1̧

l�1
ErpMiptlq �Miptlqq

2
s

� lim
nÑ8

d�1̧

l�1
E rxMi, Miyptlq � xMi, Miyptlqs � 0,

where we used the continuity of

xMi, Miyptq �

»
p0,ts�R�

pfips, zqq2µipds, dzq

in t, see Ikeda and Watanabe (1989). Thus, we have shown (4.26).
Next, we prove (4.27) (i.e. i P J). With (4.21) and Lemma 4.11, we get¸

tk,tk�1PTnptq

ErMiptk�1q �Miptkq|GJ
tk,tk�1s

� Miptq �
d�1̧

l�1
ErMiptlq �Mipulq|GJ

tl,tl
s �

d�1̧

l�1
pMiptlq �Mipulqq.

With similar arguments as above, the last two terms tend again to 0 in L2, thus in
probability.

With this proof, we close the third example and move on to the widely used multistate
Markov models.
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4.2.4 Competing risks in life insurance

In this section, we investigate property (M) in a life insurance context with competing
risks, i.e. we model a policyholder whose life insurance contract can be terminated due to
different, exclusive causes (e.g. lapse or death). Our setup follows Milbrodt and Helbig
(1999, Section 3.C).

Let IW � t1, . . . , mu denote the set of withdrawal causes. The idea is to model each
cause of withdrawal with its own clock, with the clock that stops first determining the
time of withdrawal and the cause of withdrawal (see Milbrodt & Helbig, 1999, Remark
after Definition 3.22). Therefore, let Ti, i P IW , be independent random variables with
values in r0,8q. We assume that each Ti has a continuous intensity, i.e. its distribution
function FTi fulfils

1� FTiptq � e�
³t
0 λipuqdu, t ¥ 0,

for a continuous function λi : R Ñ R. In the following, the withdrawal time or contract

lifetime is set as

T �
©

iPIW

Ti,

where a^b � minpa, bq, a, b, P R. In particular, T is well-defined, i.e. PpTi � Tj P r0,8qq �

0 (see Milbrodt & Helbig, 1999, Theorem 3.23). We now define the counting processes
Ni � pNiptqqt¥0 by

Niptq � 1tT�Ti¤tu, t ¥ 0, (4.29)

which describes if the policyholder terminates his contract due to cause i until time t.
Let the risk basis be given as X � pN1, . . . , Nmq, and we suppose that F � G. Each Ni

satisfies (S) with a compensator

Aiptq �

» t

0
1tT¥suλipsqds

and a square-integrable martingale part

Miptq � Niptq �

» t

0
1tT¥suλipsqds,

see Milbrodt & Helbig (1999, Theorem 10.37).
For the following lemma, which helps us to prove property pMq, we need some further

notation. For a subset J � IW , we write T J �
�

iPJ Ti and NJ �
°

iPJ Ni, whereas
TH � �8 and NH � 0. Then it holds

1� FT J ptq �
¹
iPJ

p1� FTiptqq � e�
³t
0
°

iPJ λipsqds, (4.30)

where FT J ptq denotes the distribution function of T J .
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Lemma 4.13. Let J � t1, . . . , Mu and i R J . For tk, tk�1 P Tnptq and s P ptk, tk�1s, we

denote U � Er1tT¥su|GJ
tk,tk�1s and V � ErNiptk�1q � Niptkq|GJ

tk,tk�1s. Furthermore, let

A � tT ¡ tku, B � tNJptk�1q � NJptkq � 1u, Bc � tNJptk�1q � NJptkq � 0u. Then the

following statements are true:

a) For ω P AXB, it holds

Upωq � 1tT J¥supωq.

b) For ω P AXBc, it holds

Upωq �
PpT J ¡ tk�1qPpT Jc

¥ sq � PpT J P rs, tk�1s, s ¤ T Jc
¤ T Jq

PpT J ¡ tk�1qPpT Jc ¡ tkq � PpT J P ptk, tk�1s, tk   T Jc ¤ T Jq
.

c) For ω P AXBc, it holds

V pωq �
PpT � Ti P ptk, tk�1sq

PpT J ¡ tk�1qPpT Jc ¡ tkq � PpT J P ptk, tk�1s, tk   T Jc ¤ T Jq
.

Proof. Let J � t1, . . . , Mu and let the sets A and B defined as in the Lemma. Then
equality a) follows from

1AXBEr1tT¥su|GJ
tk,tk�1s � 1AEr1B1tT J¥su|GJ

tk,tk�1s � 1AEr1B1tT�T J¥su|GJ
tk,tk�1s

� 1AEr1B1tNJ ps�q�0u|GJ
tk,tk�1s � 1AXB1tNJ ps�q�0u

� 1AXB1tT J¥su.

For the equality b), we first show that

1AXBcEr1tT¥su|GJ
tk,tk�1s � 1AXBcEr1tT¥su|σp1tT¡tku, NJptk�1q �NJptkqqs. (4.31)

Therefore, we observe that σp1tT¡tku, NJptk�1q �NJptkqq � GJ
tk,tk�1 due to

tT ¡ tku � tNiptkq � 0, i P IW u.

Furthermore, for any C P GJ
tk,tk�1 , we find rC P σp1tT¡tku, NJptk�1q � NJptkqq, such that

1AXBcXC � 1
AXBcX rC , which implies

Er1AXBcXC1tT¥sus � Er1
AXBcX rC1tT¥sus

� ErEr1
AXBcX rC1tT¥su|σp1tT¡tku, NJptk�1q �NJptkqqss

� Er1CEr1AXBc1tT¥su|σp1tT¡tku, NJptk�1q �NJptkqqss,

thus (4.31) holds. Since 1tT¡tku and NJptk�1q �NJptkq assumes only values in t0, 1u, we
may interpret the conditional expectation on the right-hand side of (4.31) as a conditional
expectation given an event (see Jakubowski & Niewęgłowski, 2008, Lemma 3). More
precisely, we have

1AXBcEr1tT¥su|σp1tT¡tku, NJptk�1q �NJptkqqs � 1AXBcEr1tT¥su|AXBcs.
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The conditional event can be written as a disjoint union of the following two sets

AXBc � tT J ¡ tk�1, T Jc
¡ tku Y tT J P ptk, tk�1s, tk   T Jc

¤ T Ju. (4.32)

That gives us, with the independence of Tj , j � 1, . . . , m,

Er1tT¥su|AXBcs

�
PptT ¥ su X ptT J ¡ tk�1, T Jc

¡ tku Y tT J P ptk, tk�1s, tk   T Jc
¤ T Juqq

PptT J ¡ tk�1, T Jc ¡ tku Y tT J P ptk, tk�1s, tk   T Jc ¤ T Juq

�
PpT J ¡ tk�1qPpT Jc

¥ sq � PpT J P ps, tk�1s, s ¤ T Jc
¤ T Jq

PpT J ¡ tk�1qPpT Jc ¡ tkq � PpT J P ptk, tk�1s, tk   T Jc ¤ T Jq
,

so we have shown b).
Finally, we prove c). For i R J , this follows from

1AXBcErNiptk�1q �Niptkq|GJ
tk,tk�1s

� 1AXBcPpNiptk�1q �Niptkq � 1|T ¡ tk, NJptk�1q �NJptkq � 0q

� 1AXBcPpT � Ti P ptk, tk�1s|T ¡ tk, NJptk�1q �NJptkq � 0q

� 1AXBc
PpT � Ti P ptk, tk�1s, T ¡ tk, NJptk�1q �NJptkq � 0q

PpT ¡ tk, NJptk�1q �NJptkq � 0q

� 1AXBc
PpT � Ti P ptk, tk�1sq

PpT J ¡ tk�1qPpT Jc ¡ tkq � PpT J P ptk, tk�1s, tk   T Jc ¤ T Jq
,

where we again used (4.32) and the independence of Tj , j � 1, . . . , m.

With the Lemma 4.13, we are now able to prove the property (M) in the framework of
competing risks.

Proposition 4.14. Let the risk basis X � pN1, . . . , Nmq be defined via (4.29). Then the

property (M) is fulfilled.

Proof. Let pTnptqqn be a vanishing sequence of partitions on r0, ts and let J � t1, . . . , mu.
We have to show that

plim
nÑ8

¸
tk,tk�1PTnptq

ErMiptk�1q �Miptkq|GJ
tk,tk�1s � 0, i R J, (4.33)

and

plim
nÑ8

¸
tk,tk�1PTnptq

ErMiptk�1q �Miptkq|GJ
tk,tk�1s � Miptq, i P J, (4.34)

where Miptq � Niptq �
³t
0 1tT¥suλipsqds.

Suppose i P J . We denote A � tT ¡ tku, B � tNJptk�1q � NJptkq � 1u and
Bc � tNJptk�1q �NJptkq � 0u as in Lemma 4.13. It holds A � t

°m
i�1 Niptkq � 0u.
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Together with Lemma 4.13, this yields

ErMiptk�1q �Miptkq|GJ
tk,tk�1s

� 1AErMiptk�1q �Miptkq|GJ
tk,tk�1s

� 1AXBErpMiptk�1q �Miptkqq|GJ
tk,tk�1s � 1AXBcErMiptk�1q �Miptkq|GJ

tk,tk�1s

� 1AXB

�
Niptk�1q �Niptkq �

» tk�1

tk

1tT J¥suλipsqds



� 1AXBc

» tk�1

tk

pnpsqλipsqds,

where

pnpsq �
PpT J ¡ tk�1qPpT Jc

¥ sq � PpT J P rs, tk�1s, s ¤ T Jc
¤ T Jq

PpT J ¡ tk�1qPpT Jc ¡ tkq � PpT J P ptk, tk�1s, tk   T Jc ¤ T Jq
, s P ptk, tk�1s.

(4.35)

Furthermore, we observe that

Miptq �
¸

tk,tk�1PTnptq

1tT¡tkupMiptk�1q �Miptkqq

�
¸

tk,tk�1PTnptq

1tT¡tku1tNJ ptk�1q�NJ ptkq�1u

�
Niptk�1q�Niptkq�

» tk�1

tk

1tT J¥suλipsqds




�
¸

tk,tk�1PTnptq

1tT¡tku1tNJ ptk�1q�NJ ptkq�0u

» tk�1

tk

1tT Jc¥suλipsqds.

Thus, we get���� ¸
tk,tk�1PTnptq

ErMiptk�1q �Miptkq|GJ
tk,tk�1s �Miptq

����
�

���� ¸
tk,tk�1PTnptq

1tT¡tku1tNJ ptk�1q�NJ ptkq�0u

» tk�1

tk

ppnpsq � 1tT Jc¥suqλipsqds

���� ¤ » t

0
|fnpsq|ds

with

fnpsq � 1tT¡tku1tNJ ptk�1q�NJ ptkq�0uppnpsq � 1tT Jc¥suqλipsq

for s P ptk, tk�1s. To apply the dominated convergence theorem, we need to investigate
limnÑ8 fnpsq for fixed s. Therefore, we first examine pnpsq. Since

PpT J P rs, tk�1s, s ¤ T Jc
¤ T Jq �

» tk�1

s

» u

s
fT J puqfT Jc pvqdvdu

�

» tk�1

s
fT J puqpFT Jc puq � FT Jc psqqdu

we can conclude limnÑ8 PpT J P rs, tk�1s, s ¤ T Jc
¤ T Jq � 0. Having continuous densities,

the same argumentation yields limnÑ8 PpT J P ptk, tk�1s, tk   T Jc
¤ T Jq � 0. Exploiting

the continuity of the distribution function, we end up with

lim
nÑ8

pnpsq �
PpT J ¡ sqPpT Jc

¥ sq

PpT J ¡ sqPpT Jc ¥ sq
� 1.
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That gives us

lim
nÑ8

fnpsq � 1tT¥su1tNJ psq�NJ ps�q�0up1� 1tT Jc¥suqλipsq � 0,

almost surely, since 1tT Jc¥su � 1 on tT ¥ su. Finally, the dominated convergence theorem
yields

lim
nÑ8

|
¸

tk,tk�1PTnptq

ErMiptk�1q �Miptkq|GJ
tk,tk�1s �Miptq| � 0

almost surely, thus in probability.
Now, let i R J . With help of Lemma 4.13, we get

ErMiptk�1q �Miptkq|GJ
tk,tk�1s

� 1AErMiptk�1q �Miptkq|GJ
tk,tk�1s

� 1AXBErMiptk�1q �Miptkq|GJ
tk,tk�1s � 1AXBcErMiptk�1q �Miptkq|GJ

tk,tk�1s

� �1AXBE
� » tk�1

tk

1tT¥suλipsqds

����GJ
tk,tk�1

�
� 1AXBcE

�
Niptk�1q �Niptkq �

» tk�1

tk

1tT¥suλipsqds

����GJ
tk,tk�1

�
� �1AXB

» tk�1

tk

1tT J¥suλipsqds� 1AXBcqn � 1AXBc

» tk�1

tk

pnpsqλipsqds,

where pnpsq is given by (4.35), and qn P r0, 1s is given by

qn �
PpT � Ti P ptk, tk�1sq

PpT J ¡ tk�1qPpT Jc ¡ tkq � PpT J P ptk, tk�1s, tk   T Jc ¤ T Jq
.

For qn, we derive an upper bound by

qn ¤
PpT � Ti P ptk, tk�1sq

PpT J ¡ tk�1qPpT Jc ¡ tkq
�

PpTi P ptk, tk�1s, Ti ¤ Tj , j � iq

PpT J ¡ tk�1qPpT Jc ¡ tkq

�

³tk�1
tk

³8
u fTipuqfT t1,...,muztiupvqdvdu

PpT J ¡ tk�1qPpT Jc ¡ tkq
�

» tk�1

tk

fTipuqp1� FT t1,...,muztiupuqq

p1� FT J ptk�1qqp1� FT Jc ptkqq
du

�

» tk�1

tk

λipuqp1� FTipuqqp1� FT t1,...,muztiupuqq

p1� FT J ptk�1qqp1� FT Jc ptkqq
du.

Thus, we have¸
tk,tk�1PTnptq

ErMiptk�1q �Miptkq|GJ
tk,tk�1s ¤

» t

0
pfn

1 psq � fn
2 psq � fn

3 psqqds,

where

fn
1 psq � �1tT¡tku1tNJ ptk�1q�NJ ptkqq�1u1tT J¥suλipsq,

fn
2 psq � �1tT¡tku1tNJ ptk�1q�NJ ptkq�0u

λipsqp1� FTipsqqp1� FT t1,...,muztiupsqq

p1� FT J ptk�1qqp1� FT Jc ptkqq
,

fn
3 psq � 1tT¡tku1tNJ ptk�1q�NJ ptkq�0upnpsqλipsq

for s P ptk, tk�1s. With the continuity of the distribution functions and (4.30), we get the

55



limiting functions

lim
nÑ8

fn
1 psq � �1tT¥su1tNJ psq�NJ ps�q�1u1tT J¥suλipsq,

lim
nÑ8

fn
2 psq � �1tT¥su1tNJ psq�NJ ps�q�0uλipsq,

lim
nÑ8

fn
3 psq � 1tT¥su1tNJ psq�NJ ps�q�0uλipsq.

This leads, with help of dominated convergence theorem, to

lim
nÑ8

» t

0
pfn

1 psq � fn
2 psq � fn

3 psqqds � �

» t

0
1tT¥su1tNJ psq�NJ ps�q�1u1tT J¥suλipsqds � 0

almost surely, where the last equality follows from the fact, that each path of NJ has at
most one jump, which is neglectible for the Lebesgue integral.

This result will be the basis to derive ISU decompositions for life insurance contracts that
include several withdrawal causes. For multistate Markov processes the situation between
the jump times is quite similar to the setup of multiple withdrawal causes considered in
this section. Therefore, extensions to general multi-state frameworks are conceivable. We
leave this for future research, but focus on the addition of random systematic risks.

4.2.5 Doubly stochastic Markov processes in life insurance

In the previous paragraph, we have regarded unsystematic, competing risks. As a special
case this included the classical life insurance setup, where the policyholder can assume only
two states, alive and dead, so that dying is the only withdrawal cause. In extension to
this setup, we also model systematic risks, including financial risks, with help of diffusion
processes. In particular, the unsystematic risk is linked to the systematic risks via its
mortality intensity. In the following, the risk basis is composed of diffusion processes Θi,
i � 1, . . . , m, modelling the systematic sources of risk, and a jump process N , representing
the unsystematic source of risk.

Let W � pW1, . . . , Wrq be a standard r-dimensional Brownian motion. Furthermore, let
the systematic risk Θ � pΘ1, . . . , Θrq consist of risk factors Θi, i � 1, . . . , r, each of which
satisfies a stochastic differential equation

dΘiptq � µipt, Θiptqqdt� σipt, ΘiptqqdWiptq, Θip0q � θip0q P R, (4.36)

for continuous functions µi, σi : r0, T s � RÑ R (i � 1, . . . , r), such that

E
�» t

0
σipu, Θipuqq

2du

�
  8, t P r0, T s. (4.37)

The state process of the policyholder is modelled by an FΘ-conditional Markov process
Z � pZtqt¥0 with state space Z � ta, du and initial value Zp0q � a. That is, for every path
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Θ|r0,T s � θ there exists a usual Markov process Zθ with state space Z � ta, du, such that

LpZ,Pp�|Θ|r0,T s � θqq � LpZθ,Pq,

and such that the family of stochastic matrices pP ps, tqqs¤t � pppjkps, t, Θqqj,kqs¤t, where
pppjkps, t, θqqj,kqs¤t is given by the transition probabilities of Zθ, satisfies

a) P ps, tq is FΘ
t -measurable,

b) P ps, �q is FΘ-progressively measurable.

Such a construction has already been used for the stochastic second-order basis in Chapter 3.
A detailed introduction on FΘ-conditional Markov processes and a proof of existence can be
found in Jetses (2018), see also Jakubowski and Niewęgłowski (2010). The corresponding
jump process N � pNptqqt¥0 defined via

Nptq � #ts P r0, ts : Zps�q � a, Zpsq � du. (4.38)

Moreover, let I � pIptqqt¥0 denote the indicator function Iptq � 1tZptq�au, which keeps the
value one as long as the policyholder is alive.

We assume that there exists a non-negative, piecewise-continuous jump intensity λ �

pλptqqt¥0 such that λptq � λpt, Θpt^ ulqq, t P pul, ul�1s for a partition

π � t0 � u0 ¤ . . . ¤ ud � T u

of r0, T s, and

E
�» t

0
λpsqds

�
  8, t P r0, T s. (4.39)

In particular, the definition of an intensity process requires λ to solve the Kolmogorov
equations with respect to transition probabilities P (see Section 3.2 and Jetses, 2018),
which in our setting yield the survival probability

pps, tq :� paaps, tq � exp
�
�

» t

s
λpsqds



.

Throughout this section, we consider the risk basis X � pΘ1, . . . , Θr, Nq, i.e. the number
of risk factors is m � r � 1. The following argumentation shows that X satisfies pSq.
With Jakubowski and Niewęgłowski (2010, Theorem 4.1), we conclude that the process
MN � pMN ptqqt¥0 specified by

MN ptq � Nptq � Λptq (4.40)

with

Λptq �
» t

0
Ipsqλpsqds,

defines a G-martingale, where G � pGtqt¥0 is the filtration given by Gt � FΘ
T _ FN

t .

57



In particular, MN also defines a G-martingale. As Λ is a G-predictable finite variation
process, it remains to verify the square integrability of MN . This, however, follows from the
Assumption (4.39) and xMN , MNyptq � Λptq (see Andersen et al., 1993, p. 74; Klebaner,
2005, Theorem 8.2). Thus, N satisfies (S) with decomposition pΛ, MN q.

For the systematic risks Θi, i � 1, . . . , m, the G-martingale parts Mi, i � 1, . . . , r are
given by

Miptq � Θiptq �

» t

0
µips, Θipsqqds �

» t

0
σips, ΘipsqqdWipsq.

Clearly, Mi defines a FΘ-martingale. With Jakubowski and Niewęgłowski (2010, Proposi-
tion 3.4) we find, that Mi is also a G-martingale. The square integrability of Mi results from
assumption (4.37) and xMi, Miyptq �

³t
0pσips, Θipsqqq

2ds (see Klebaner, 2005, Theorem
8.27). As Aiptq �

³t
0 µips, Θipsqqds is a G-predictable finite variation process, Θi satisfies

pSq with decomposition pMi, Aiq.
Recall from Section 4.1 that we have introduced filtrations G, GJ and a family of

sub-σ-algebras pGJ
s,tqs,t for subsets J � t1, . . . , mu, which refer to the entire risk basis

X. In the following, we denote by H, HJ the filtrations and by pHJ
s,tqs,t the family of

sub-σ-algebras with J � t1, . . . , m� 1u that follow from exluding the unsystematic risk N

in the definitions of Section 4.1. Thus H always refers to the information that is provided
by the systematic risks. For showing evidence of property (M), the following lemma is
needed.

Lemma 4.15. Let u ¤ v ¤ s ¤ t and J � t1, . . . , m� 1u, such that pu, sqXπ � H. Then

it holds Ht KK FN
v |HJ

u,s.

Proof. Let T :� infts ¥ 0 : Npsq � 1u whereas inf H � �8. With Proposition 13 of Rao
and Swift (2006, Chapter 3), it is sufficient to prove PpA|Htq � PpA|HJ

u,sq for A P FN
v .

Neglecting the null sets N , the σ-algebra FN
v consists of sets tT ¤ zu, tT ¡ zu, z P r0, vs.

With the grid measurability of λ and the martingale property of MN , we have

PpT ¤ z|Htq � PpNpzq � 1|Htq � ErNpzq|Hts � ErΛpzq|Hts �

» z

0
pp0, sqλpsqds

� ErΛpzq|HJ
u,ss � ErNpzq|HJ

u,ss � PpNpzq � 1|HJ
u,sq � PpT ¤ z|HJ

u,sq.

With tT ¡ zu � tT ¤ zuc, it also follows PpT ¡ v|Htq � PpT ¡ z|HJ
u,sq, which gives us

the assertion.

Proposition 4.16. Let the risk basis be given by X � pΘ1, . . . , Θr, Nq. Then (M) is

fulfilled.
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Proof. Let J � t1, . . . , mu with m P J . Without loss of generality we assume that
|Tnptq|   |π| for all n. If ul   t and ul P ptj , tj�1s for some index j, we set tl � tj and
tl � tj�1 as the neighbouring points of ul in Tnptq. If ul ¥ t, we set tl � tl � t. With the
martingale property of MN (see (4.40)) and the grid measurability of λ, it follows¸

tk,tk�1PTnptq

ErMN ptk�1q �MN ptkq|GJ
tk,tk�1s

� MN ptq �
d�1̧

l�0
ErMN ptlq �MN pulq|GJ

tl,tl
s �

d�1̧

l�0
ErMN ptlq �MN pulq|GJ

ul,tl
s.

Thus, it remains to show that the last two addends tend to 0 as n Ñ8. It holds��� d�1̧

l�0
ErMN ptlq �MN pulq|GJ

tl,tl
s
���2

2
�

d�1̧

l�0
}ErMN ptlq �MN pulq|GJ

tl,tl
s}2

2

¤
d�1̧

l�0
ErpMN ptlq �MN pulqq

2s �
d�1̧

l�0
ErxMN , MNyptlq � xMN , MNypulqs,

which tends to 0 as n Ñ8 with the dominated convergence theorem and the continuity of
xMN , MNyptq �

³t
0 Ipsqλpsqds. Similarly, the third summand tends to 0 as n Ñ8.

Next, we suppose m R J . With the martingale property of MN with respect to G, we
directly get ¸

tk,tk�1PTnptq

ErMN ptk�1q �MN ptkq|GJ
tk,tk�1s

�
¸

tk,tk�1PTnptq

ErErMN ptk�1q �MN ptkq|Gtk
s|GJ

tk,tk�1s � 0.

In the following, we fix i P t1, . . . , m� 1u and we suppose i P J . Since Mi is Gi-adapted,
we immediately have¸

tk,tk�1PTnptq

ErMiptk�1q �Miptkq|GJ
tk,tk�1s �

¸
tk,tk�1PTnptq

pMiptk�1q �Miptkqq � Miptq.

Last, we consider the case i P t1, . . . , m � 1u, i R J and write T 0
n ptq � Tnptq X ru0, u1s,

T l
nptq � Tnptq X pul, ul�1s, l � 1, . . . , d � 1. With Lemma 4.15, the independence of Θi,

i � 1, . . . , r, and the martingale property of Mi, it holds¸
tk,tk�1PTnptq

ErMiptk�1q �Miptkq|GJ
tk,tk�1s

�
d�1̧

l�0

¸
tk,tk�1PT l

nptq

ErMiptk�1q �Miptkq|Gtk
s �

d�1̧

l�0
ErMiptlq �Miptlq|GJ

tl,tl
s

�
d�1̧

l�0
ErMiptlq �Miptlq|GJ

tl,tl
s.
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The remaining term tends to 0 as n Ñ8: With the Itô isometry and the Jensen inequality
we get ��� d�1̧

l�0
ErMiptlq �Miptlq|GJ

tl,tl
s
���2

2
�

d�1̧

l�0

���ErMiptlq �Miptlq|GJ
tl,tl

s
���2

2

¤
d�1̧

l�0
ErpMiptlq �Miptlqq

2s

�
d�1̧

l�0
E
� » tl

tl

σips, Θipsqq
2ds

�
which tends to 0 as n Ñ8 by continuity of the Lebesgue integral.

This result concludes the Section 4.2, which has supported the plausibility of the property
(M) by several examples known from actuarial modelling. With that in mind, we now turn
our attention back to the ISU decompositions of martingales.

4.3 ISU decompositions of martingales

Recalling that the considered revaluation surplus process R is assumed to be a martingale,
we want to focus on the case that R admits a martingale representation, i.e.

Rptq �Rp0q � Erξ|Gts � Erξ|G0s �
m̧

i�1

» t

0
HipsqdMipsq, t P r0, T s, (4.41)

for unique G-predictable processes Hi. Classical results on the martingale representation
are provided by Protter (2005, Chapter IV, Theorem 43) for Brownian motions, by Kunita
(2004, Theorem 1.1) for Lévy processes and by Jacobsen (2006, Theorem 4.6.1) for marked
point processes. Given that ξ is square-integrable and the representation (4.41) exists,
a sufficient condition for the uniqueness of the integrands is a zero predictable quadratic
covariation between the martingale parts, i.e. xMi, Mjy � 0, i � j. In that case, the
integrands Hi are Pb xMi, Miy - almost surely unique and it further holds

E
�» t

0
H2

i puqdxMi, Miypuq

�
  8, t P r0, T s, (4.42)

see Lemma A.2.3 in the appendix.
Based on a representation (4.41), Schilling et al. (2020) have recently proposed the

so-called MRT decomposition, which defines the i-th risk contribution as the corresponding
martingale, i.e.

Diptq �
m̧

i�1

» t

0
HipsqdMipsq, i � 1, . . . , m. (4.43)

The MRT decomposition fulfils a list of desirable properties of a risk decomposition (see
Schilling et al., 2020). The goal of this section is to derive the ISU decomposition for the
martingale R and to investigate its relation to the MRT decomposition.
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Lemma 4.17. Suppose the risk basis X � pX1, . . . , Xmq fulfils (S) and (M), such that

xMi, Miy, i � 1, . . . , m are continuous processes. Let pZiptqqtPr0,T s be defined by

Ziptq �

» t

0
HipuqdMipuq

for G-predictable processes Hi, i � 1, . . . , m, that satisfy (4.42). Then it holds

plim
nÑ8

¸
tk,tk�1PTnptq

ErZiptk�1q � Ziptkq|GJ
tk,tk�1s �

$'&'%0, i R J,

Ziptq, i P J.
(4.44)

Proof. Let pTnptqqn be a sequence of partitions of r0, ts with vanishing step lengths and
i P t1, . . . , mu fixed. For a better readability, this proof uses the short-hand notation

°
Tnptq

instead of
°

tk,tk�1PTnptq
. Firstly, we prove the case where Hi is a bounded simple process,

defined on a partition π � t0 � u0   . . .   ud � T u, d P N, i.e.

Hi �
d�1̧

l�0
Hi,l1pul,ul�1s, i � 1, . . . , m,

and

Ci :� sup
ωPΩ,tPr0,T s

|Hiptq|   8.

Without loss of generality we assume that |Tnptq|   |π| for all n. If ul   t and ul P ptj , tj�1s

for some index j, we set tl � tj and tl � tj�1 as the neighbouring points of ul in Tnptq. If
ul ¥ t, we set tl � tl � t. Furthermore, we define partitions rT l

n on rul, ul�1 ^ ts, n P N,
l � 0, . . . , d� 1, by

rT l
n �

$'&'%pTnptq X rul, ul�1sq Y tul, ul�1 ^ tu, if ul   t,

H, if ul ¥ t,

We start by showing (4.7), i.e. let i R J . With the boundedness of Hi, the Jensen inequality
for conditional expectations and the Itô isometry, it holds���� ¸

Tnptq

ErZiptk�1q � Ziptkq|GJ
tk,tk�1s

����
�

���� d�1̧

l�0

¸
rT l
n

E
� » tk�1

tk

HipuqdMipuq

����GJ
tk,tk�1

�
�

d�1̧

l�1
E
� » tl

tl

HipuqdMipuq

����GJ
tl,tl

�

�
d�1̧

l�1
E
� » ul

tl

HipuqdMipuq

����GJ
tl,ul

�
�

d�1̧

l�1
E
� » tl

ul

HipuqdMipuq

����GJ
ul,tl

�����
¤

d�1̧

l�0
Ci

����¸
rT l
n

E
�
Miptk�1q �Miptkq

����GJ
tk,tk�1

������ ���� d�1̧

l�1
E
� » tl

tl

HipuqdMipuq

����GJ
tl,tl

�����
�

���� d�1̧

l�1
E
� » ul

tl

HipuqdMipuq

����GJ
tl,ul

������ ���� d�1̧

l�1
E
� » tl

ul

HipuqdMipuq

����GJ
ul,tl

�����.
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The first addend tends to 0 in probability by (M) and Remark 4.2. For the second addend,
Jensen’s inequality, Itô isometry and the dominated convergence theorem yield

lim
nÑ8

��� d�1̧

l�1
E
� » tl

tl

HipuqdMipuq

����GJ
tl,tl

����2
2
� lim

nÑ8

d�1̧

l�1

���E� » tl

tl

HipuqdMipuq

����GJ
tl,tl

����2
2

¤ lim
nÑ8

d�1̧

l�1
E
��» tl

tl

HipuqdMipuq


2�
� lim

nÑ8

d�1̧

l�1
E
� » tl

tl

Hipuq
2dxMi, Miypuq

�
� 0.

(4.45)

For the last equation, we have used the continuity of
³�
0 Hipuq

2dxMi, Miypuq that follows
from the continuity of xMi, Miyp�q (see Protter, 2005, Chapter IV, Theorem 8). With
similar arguments, the last two addends tend to 0 in L2 and therefore also in probability.
For i P J , we have���� ¸

Tnptq

E
�
Ziptk�1q � Ziptkq

����GJ
tk,tk�1

�
� Ziptq

����
¤

���� d�1̧

l�0

� ¸
rT l
nplq

E
� » tk�1

tk

HipuqdMipuq

����GJ
tk,tk�1

�
�

» ul�1^t

ul^t
HipuqdMipuq


����
�

���� d�1̧

l�1
E
� » tl

tl

HipuqdMipuq

����GJ
tl,tl

������ ���� d�1̧

l�1
E
� » ul

tl

HipuqdMipuq

����GJ
tl,ul

�����
�

���� d�1̧

l�1
E
� » tl

ul

HipuqdMipuq

����GJ
ul,tl

�����
¤

d�1̧

l�0
Ci

���� ¸
rT l
nplq

E
�
Miptk�1q �Miptkq

����GJ
tk,tk�1

�
� pMipul�1 ^ tq �Mipul ^ tqq

����
�

���� d�1̧

l�1
E
� » tl

tl

HipuqdMipuq

����GJ
tl,tl

������ ���� d�1̧

l�1
E
� » ul

tl

HipuqdMipuq

����GJ
tl,ul

�����
�

���� d�1̧

l�1
E
� » tl

ul

HipuqdMipuq

����GJ
ul,tl

�����
The first addend tends to 0 in probability by (M) and Remark 4.2. For the other addends,
we can use similar arguments as above (Jensen’s inequality, Itô isometry and the dominated
convergence theorem) to show that they tend to 0 in L2 and therefore in probability.

Next, we consider the general case, where

Ziptq �

» t

0
HipuqdMipuq

for a G-predictable process Hi, that fulfils the assumptions. By Kuo (2006, Chapter 6),
there exist simple processes Hi,c with Hi,c �M P M2, such that

lim
cÑ8

��ppHi,c �Hiq �Miqptq
��

2 � lim
cÑ8

�
E
�» t

0
pHi,c �Hiq

2puqdxMi, Miypuq

�
 1
2
� 0. (4.46)

Without loss of generality, we assume that Hi,c, c P N are bounded simple processes.
Otherwise, consider Hi,c,N defined through Hi,c,N psq :� Hi,cpsq1tHi,cpsq¤Nu (see Protter,
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2005, Chapter IV, Theorem 14). Then Hi,c,N psq tends to Hi,cpsq almost surely as N Ñ8

for every s P p0, ts. Thus, the dominated convergence theorem gives us

lim
NÑ8

�
E
�» t

0
pHi,c,N �Hi,cq

2puqdxMi, Miypuq

�
 1
2
� 0

for every c. In particular, we find a subsequence pNcqc such that

lim
cÑ8

�
E
�» t

0
pHi,c,Nc �Hiq

2puqdxMi, Miypuq

�
 1
2
� 0

using triangle inequality for the L2-norm.
For J � t1, . . . , mu with i R J , it holds¸
Tnptq

ErZiptk�1q � Ziptkq|GJ
tk,tk�1s

�
¸

Tnptq

E
� » tk�1

tk

pHi �Hi,cqpuqdMipuq

����GJ
tk,tk�1

�
�
¸

Tnptq

E
� » tk�1

tk

Hi,cpuqdMipuq

����GJ
tk,tk�1

�
for every c. We consider the two summands separately. For the first summand, similar
arguments like in (4.45) yield��� ¸

Tnptq

E
� » tk�1

tk

pHi �Hi,cqpuqdMipuq

����GJ
tk,tk�1

����2
2
¤ E

�» t

0
pHi �Hi,cq

2puqdxMi, Miypuq

�
for every c. Thus, we get

lim
nÑ8

��� ¸
Tnptq

E
� » tk�1

tk

pHi �Hi,cqpuqdMipuq

����GJ
tk,tk�1

����2
2
¤E

�» t

0
pHi �Hi,cq

2puqdxMi, Miypuq

�
.

Since c was arbitrary, (4.46) yields

lim
nÑ8

��� ¸
Tnptq

E
� » tk�1

tk

pHi �Hi,cqpuqdMipuq

����GJ
tk,tk�1

����
2
� 0.

For the second summand, the first part of the proof yields

plim
nÑ8

¸
PTnptq

E
� » tk�1

tk

Hi,cpuqdMipuq

����GJ
tk,tk�1

�
� 0.

In total, we get

plim
nÑ8

¸
Tnptq

ErZiptk�1q � Ziptkq|GJ
tk,tk�1s � 0.
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Now, let J � t1, . . . , mu and i P J . Then we have¸
Tnptq

ErZiptk�1q � Ziptkq|GJ
tk,tk�1s � Ziptq

�
¸

Tnptq

E
� » tk�1

tk

pHi �Hi,cqpuqdMipuq

����GJ
tk,tk�1

�
�

» t

0
pHi,c �HiqpuqdMipuq.

�

� ¸
Tnptq

E
� » tk�1

tk

Hi,cpuqdMipuq

����GJ
tk,tk�1

�
�

» t

0
Hi,cpuqdMipuq



.

The first part of the proof yields for the last term

plim
nÑ8

� ¸
Tnptq

E
� » tk�1

tk

Hi,cpuqdMipuq

����GJ
tk,tk�1

�
�

» t

0
Hi,cpuqdMipuq



� 0, (4.47)

so we focus on the other two terms. With similar arguments as used in the case i P J , it
holds ��� ¸

Tnptq

E
� » tk�1

tk

pHi �Hi,cqpuqdMipuq

����GJ
tk,tk�1

����
2
¤
��� » t

0
pHi,c �HiqpuqdMipuq

���
2

for every c P N. Thus, we get

lim
nÑ8

��� ¸
Tnptq

E
� » tk�1

tk

pHi �Hi,cqpuqdMipuq

����GJ
tk,tk�1

�
�

» t

0
pHi,c �HiqpuqdMipuq

���
2

¤ 2
��� » t

0
pHi,c �HiqpuqdMipuq

���
2
.

Since c was arbitrary, we can conclude with (4.46) that

lim
nÑ8

��� ¸
Tnptq

E
� » tk�1

tk

pHi �Hi,cqpuqdMipuq

����GJ
tk,tk�1

�
�

» t

0
pHi,c �HiqpuqdMipuq

���
2
� 0.

In total, we get the desired result

plim
nÑ8

� ¸
Tnptq

ErZiptk�1q � Ziptkq|GJ
tk,tk�1s � Ziptq



� 0.

This lemma directly leads us to the main result of this chapter.

Theorem 4.18. Let the risk basis X � pX1, . . . , Xmq fulfil (S) and (M), such that

xMi, Miy, i � 1, . . . , m, are continuous processes. Suppose R has a martingale represen-

tation (4.41) for unique G-predictable processes Hi, i � 1, . . . , m, that fulfil (4.42). Then

ϱpXtq � Erξ|σpXtqs admits the ISU decomposition

Diptq �

» t

0
HipuqdMipuq, t P r0, T s, i � 1, . . . , m.

In particular, the ISU decomposition does not depend on the update order or the choice of

partitions.
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Proof. Let t P r0, ts and let pTnptqqn be a sequence of partitions of r0, ts with |Tnptq| Ñ 0,
n Ñ8. For a better readability, this proof uses the short-hand notation

°
Tnptq

instead of°
tk,tk�1PTnptq

. Observe that it is sufficient to verify

plim
nÑ8

¸
Tnptq

pErξ|GJ
tk,tk�1s � Erξ|Gtk

sq �
¸
iPJ

» t

0
HipuqdMipuq (4.48)

for all J � t1, . . . , mu. It holds¸
Tnptq

pErξ|GJ
tk,tk�1s � Erξ|Gtk

sq

�
¸

Tnptq

¸
iPJ

E
� » tk�1

tk

HipuqdMipuq

����GJ
tk,tk�1

�
�
¸

Tnptq

¸
iRJ

E
� » tk�1

tk

HipuqdMipuq

����GJ
tk,tk�1

�
.

Applying Lemma 4.17, we can conclude that the first summand tends to
°

iPJ

³t
0 HipuqdMipuq

in probability and that the second summand tends to 0 in probability (n Ñ 8), which
gives the assertion.

The theorem not only states the ISU decomposition of a martingale revaluation process
R, but also immediately reveals its relation to the MRT decomposition, introduced by
Schilling et al. (2020). Furthermore, the ISU decomposition does not depend on the update
order, so the Theorem 2.7 helps us to derive the IOAT and AISU decomposition. The
results are summarized in the following corollary.

Corollary 4.19. Under the assumptions of Theorem 4.18, the ISU decomposition, the

IOAT decomposition, the AISU decomposition and the MRT decomposition are equal.

The fact that the ISU decomposition coincides with the MRT decomposition underlines
the meaningfulness of the decomposition principle presented in this thesis. However,
both decompositions require knowledge of the martingale representation, in particular
its integrands. In its canonical form, the martingale representation theorem is a pure
statement of existence, without an explicit specification of the integrands, see the references
stated at the beginning of this section. Only in certain frameworks, (semi-)explicit forms of
the integrands can be derived (see Cont & Lu, 2016) using the theory on Markov processes,
the Malliavin calculus (see Malliavin, 1978; Nualart, 2006) or the Functional Itô calculus
(see Cont & Fournié, 2013). Examples in the setup of diffusion processes are supplied by
Cont and Lu (2016). Regarding marked point processes, we refer to the constructive proofs
of Davis (1976) and Elliott (1976). In most of the cases, evaluating the integrals of the
martingale represenation is cumbersome and often only possible numerically, even if there
are supposedly explicit forms. With the ISU decomposition principle, a new door is open
to approximate martingale representations via SU decompositions. In the following, we
will investigate its numerical feasibility.
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5 On the numerical feasibility of the ISU concept

In the previous chapters, the practical relevance of the ISU decomposition principle has been
highlighted through its numerous applications inside and outside the life insurance context.
In particular, it has been shown that established decomposition formulas can be obtained
by applying the ISU decomposition principle in suitable models (see Chapter 3 and 4).
However, from a practical point of view, the numerical feasibility of the ISU decomposition
principle has yet to be verified. The present chapter thus examines the numerical feasibility
of the ISU decomposition principle using a pension insurance example.

The numerical complexity of the ISU decomposition principle depends strongly on
the model framework, the choice of the link mapping ϱ and the resulting form of the
contributions. In Chapter 4, an analysis of ISU decompositions in a general martingale
framework has been presented, that allows for applications beyond the life insurance context.
More precisely, we have assumed that the revaluation surplus process R has the form
Rptq � Erξ|σpXtq _N s. This representation intuitively reflects the available information
on the risk basis X until time t, and leads to a natural link mapping ϱ given by

ϱpXt1
1 , . . . , Xtm

m q � Erξ|σpXt1
1 , . . . , Xtm

m q _N s, (5.1)

with ti P r0, T s, i � 1, . . . , m. In contrast to the setup of traditional surplus decompositions
considered in Chapter 3, this approach takes full advantage of the observed information,
especially for estimating future values (see Chapter 4). Therefore, the numerical analyses
in this chapter are embedded in the model framework of Chapter 4.

The present study considers a single fund-linked pension insurance that is driven by the
systematic risks interest, fund and mortality, modelled as solutions of stochastic differential
equations. The unknown time of death of the policyholder depicts the unsystematic risk,
which is represented by a doubly stochastic Markov process with two states alive and
dead. Within this setup, the ISU decomposition coincides with the MRT decomposition
under certain conditions (see Section 4.2 and Theorem 4.18). A key assumption is the
existence of the martingale representation, for which reference is made to the publication
of Schilling et al. (2020). In that paper, a proof of the martingale representation theorem
in a general doubly stochastic Markov model is provided. Moreover, (semi-)explicit
representations for the integrands are derived using the Malliavin calculus (Malliavin, 1978)
and the theory of Markov processes. Based on these representations, Schilling et al. (2020)
simulated the various risk components in the example of a Guaranteed Minimum Death
Benefit (GMDB) insurance, assuming affine processes for the systematic interest risk
and the systematic mortality risk. Another example of numerically approximating the
martingale representation in an actuarial framework can be found in Biagini et al. (2016).
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In a doubly stochastic multistate Markov framework with affine intensity processes, Biagini
et al. (2016) computed the martingale factors for an income protection insurance.

The ISU decomposition principle, presented in this thesis, opens up a new possibility to
approach the martingale representation numerically. By definition, the ISU decomposition
is a limit of SU decompositions, which, in the situation of Chapter 4, involve the sum
of conditional expectations like (5.1). To simulate the latter, a multilevel Monte Carlo
(MLMC) approach based on a contribution by Giles (2008) is used. In that paper, Giles
(2008) investigated the computational complexity of the MLMC method for expected values
of random variables that are driven by solutions of stochastic differential equations. In
this thesis, the MLMC approach of Giles (2008) is generalised to conditional expectations
and a systematic notion of MLMC convergence is introduced. A key component to obtain
convergence results is the approximate solution of the stochastic differential equations via
numerical schemes. Relying on the Euler approximation scheme (see Kloeden & Platen,
1992, Section 10.2), convergent MLMC estimators are derived for the SU decompositions
of a single fund-linked pension insurance claim.

The MLMC estimators are implemented using the statistical software R 4.4.2
(R Core Team, 2024). The implementation is designed to allow for an analysis with
a threefold focus. Firstly, the numerical feasibility and the question of whether the
numerical approximation of the ISU decomposition is possible in an acceptable amount of
time is investigated. Secondly, the impact of the chosen SU grid width on the approximation
is reviewed and thirdly, the effect of the update order on the surplus decomposition is
scrutinised. Taken together, these aspects will demonstrate the expediency of the ISU
principle from a numerical point of view.

In Section 5.1, the model framework of the numerical example is introduced. The derived
convergent MLMC estimators obtained by extending the MLMC theory of Giles (2008) to
conditional expectations are presented in Section 5.2. The last part of this chapter, namely
Section 5.3, is focused on the numerical implementation. First, the chosen parameters
and the numerical methodology are described, which is followed by the presentation of the
numerical results.

5.1 Model framework

We consider a single fund-linked pension insurance of an x-year old policyholder and
assume a retirement age of x � γ, while the a maximum age is supposed to be x � T

years, where T ¡ γ and γ, T P N. The policy includes a one-off premium p at the start
as well as regular premiums paid until the policyholder retires (or dies). A large part
of the premiums is invested in a capital market fund. In return, the insurance company
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pays a death benefit for the case of the policyholder dying before retirement, otherwise a
regular pension payment is disbursed until the end of the policyholder’s life. If a pension is
paid, it will be paid to the policyholder or the heirs for at least 10 years, no matter if the
policyholder survives this period (‘guaranteed pension period’). The pension level is linked
to the price of the capital market fund.

In the following we introduce the underlying model, which is a special case of the doubly
stochastic Markov setup that we have investigated in Subsection 4.2.5. We consider the
time horizon r0, T s covering the range from the initial age x to the maximum age x� T .
The systematic risk factors are represented by a mortality intensity λ � pλptqqt¥0, a interest
intensity r � prptqqt¥0 and a market fund Y � pY ptqqt¥0. More precisely, we assume
that the systematic risk drivers, which are composed to Θ � pλ, r, Y q, solve the following
stochastic differential equations

dλpsq � λpsqµλds� σλdWλpsq, λp0q � λ0,

drpsq � pβ � rpsqµrqds� σrdWrpsq, rp0q � r0,

dY psq � Y psqµY ds� Y psqσY dWY psq, Y p0q � y0,

(5.2)

where µλ, µr, µY , β, σλ, σr, σY , r0, λ0, y0 are positive constants and W � pWλ, Wr, WY q is
a three-dimensional standard Brownian motion. That is, the process λ, which will later drive
the underlying mortality intensity, is modelled by an Ornstein-Uhlenbeck process without
mean reversion. Moreover, the interest intensity r is described by an Ornstein-Uhlenbeck
process with mean reversion (see Ahmad et al., 2022), while the market fund Y follows a
geometric Brownian motion with positive drift.

Rather technically motivated, we introduce the functions gλ, gr and gY from R to R,
which will provide the necessary regularity of the risk drivers λ, r and Y to conclude the
desired convergence. We assume that

• gλ, gr and gY are Lipschitz continuous,

• gλ has values in r0, Bλs for some Bλ ¡ 0,

• gr has values in r�Br, Brs for some Br ¡ 0,

• gY has values in rBY ,�8q for some BY ¡ 0.

The constraints for gλ ensure the non-negativity of the mortality intensity. Apart from
that, gλ, gr and gY can be chosen to be close to the identity, with large parameters Bλ

and Br and a small parameter BY , so that these transformations have no practical effect
in applications.

We model the state process of the insured by an FΘ-conditional Markov chain
Z � pZptqqtPr0,T s with state space Z � ta, du and a corresponding right-continuous jump
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process N that jumps from 0 to 1 at time of death (see Subsection 4.2.5). Given a grid

πλ � t0 � u0   . . .   ud � T u,

the jump intensity process λ � pλptqqtPr0,T s is defined by λp0q � gλp0q and λptq � gλpλpulqq,
t P pul, ul�1s. In particular, the process MN � pMN ptqqt¥0, specified by

MN ptq � Nptq �

» t

0
Ipsqλpsqds,

is assumed to be a G-martingale, where G � pGtqt¥0 is the filtration given by Gt � FΘ
T _FN

t

(see Subsection 4.2.5). We define the indicator process I � pIptqqt¥0 by Iptq � 1tZptq�au.
Moreover, the survival probability paaps, tq, s ¤ t, has the representation

paaps, tq � exp
�
�

» t

s
λpsqds



,

see Subsection 4.2.5.
Let the risk-free bank account K � pKptqqt¥0 satisfy

dKptq � Kptqgrprptqqdt, Kp0q � 1.

For the discounting of cashflows, we introduce the discount factors vps, tq, 0 ¤ s ¤ t, by

vps, tq �
Kpsq

Kptq
� exp

�
�

» t

s
grprpuqqdu



.

It is assumed that a deterministic savings rate, given by a bounded Lipschitz continuous
function a � paptqqtPr0,T s, is invested into Y . The shares held are described by a stochastic
process Q � pQptqqtPr0,T s, defined through

dQpsq �
apsq

gY pY psqq
ds, Qp0q � ap0q. (5.3)

Here, ap0q P r0, ps is the amount of shares that is bought with a one-off payment at
the beginning of the contract. In the following, the process V � pV ptqqtPr0,T s with
V ptq � QptqgY pY ptqq represents the deposit value of the policyholder.

The insurance claim is given by

ξ � p� ξ1 � ξ2 � ξ3 � ξ4,

where

ξ1 � Ipγqvp0, γqV pγq,

ξ2 �

» γ

0
vp0, sqp1� fdqV psqdNpsq,

ξ3 � �Ipγq

» γ�10

γ
vp0, sqfpV pγqds,

ξ4 � �

» T

γ�10
Ipsqvp0, sqfpV pγqds.
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The insurance claim includes a one-off premium p, which covers the initial investment ap0q.
The addend ξ1 comprises the discounted deposit value at retirement resulting from the
savings process a. If the policyholder dies before retirement, a death benefit fd � V psq with
rate fd P p0, 1q is paid out, while the residual deposit value remains at the insurer. The
latter cashflow is depicted by ξ2. With fp P p0, 1q, we denote the pension factor, i.e. the
part of the depository that is yearly disbursed. The cashflow ξ3 models the guaranteed
pension period of ten years, if the policyholder reaches the retirement age. The fourth part
ξ4 represents the pension payment after the guaranteed pension period. The assumptions
made in this paragraph imply Erξ2s   8.

Throughout this chapter, the risk basis is given by X � pN, λ, r, Y q and, as usual, its
information flow is denoted by G � pGtqt¥0. The goal is to numerically approximate the
ISU decomposition of the revaluation process R � pRptqqt¥0 given by

Rptq � Erξ|Gts, t ¥ 0,

with the link mapping ϱ defined through

ϱpXt1
1 , . . . , Xtm

m q � Erξ|σpXt1
1 , . . . , Xtm

m q _N s, (5.4)

for ti P r0, T s, i � 1, . . . , m (see Chapter 4). Since ξ is square-integrable, and since
Θ and W generate the same information, Proposition 1 in Schilling et al. (2020) ensures
the existence of a martingale representation. Furthermore, by Lemma 4.16, the risk basis
X fulfils property (M), which has been crucial in Chapter 4 for the derivation of ISU
decompositions. Thus, we know from Theorem 4.18 that the ISU decomposition exists. In
particular, it coincides with the MRT decomposition.

The idea of this chapter is to approximate the ISU decomposition by means of SU
decompositions. Therefore, let T � t0 � t0   . . .   tn � tu be a partition of r0, ts. We
assume that the grid πλ of the mortality intensity is included in T , i.e. let πλ � T . Recall
from Chapter 4, that GJ describes the complete natural filtration generated by the subset
J � tN, λ, r, Y u of risk sources, and GJ

s,t � Gs _ GJ
t . For better readability, we omit the

curly brackets in J . The SU decomposition with respect to T is given by

DN ptq �
n�1̧

k�0
pErξ|GN

tk,tk�1s � Erξ|GHtk,tk�1
sq,

Dλptq �
n�1̧

k�0
pErξ|GN,λ

tk,tk�1
s � Erξ|GN

tk,tk�1sq,

Drptq �
n�1̧

k�0
pErξ|GN,λ,r

tk,tk�1
s � Erξ|GN,λ

tk,tk�1
sq,

DY ptq �
n�1̧

k�0
pErξ|GN,λ,r,Y

tk,tk�1
s � Erξ|GN,λ,r

tk,tk�1
sq,
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see Chapter 2. In general, conditional expectations cannot necessarily be computed
analytically. In that case, a method to numerically approximate conditional expectations
is needed. Inspired by Giles (2008), this chapter presents a general MLMC approach
to approximate the conditional expectations of the SU decompostion. Since the SU
decomposition itself is already an approximation of the ISU decomposition, the multilevel
Monte Carlo approach represents a further level of approximation. The convergence of the
SU decompositions towards the ISU decomposition has been established in Chapter 4. For
the approach of the conditional expectations with the MLMC methods, the theoretical
basis still has to be laid out. This is therefore the focus of the next section.

5.2 Numerical method

The goal of this section is to derive convergent estimators for the contributions of the SU
decomposition. Before introducing the multilevel Monte Carlo methods, we study the SU
decomposition in more detail.

5.2.1 Analysis of the SU decomposition

Let H � pHtqt¥0 denote the completed natural filtration generated by the systematic
risks Θ. For t P pul, ul�1s, we define uptq � ul�1. Furthermore, for s ¡ uptkq, k � 0, . . . , n,

we set

pEuptk, sq � Erpaapuptkq, sq|Htk
s, (5.5)

pEuλptk, sq � Erpaapuptkq, sqλpsq|Htk
s, (5.6)

as well as

vEptk, sq � Ervptk, sq|Htk
s, (5.7)

Y Eptk, sq � ErgY pY psqq|Htk
s, (5.8)

Y E
Q ptk, sq � ErpQpsq �QptkqqgY pY psqq|Htk

s (5.9)

for s ¡ tk. This leads us to the following short-hand notations

pEptk, sq � pptk, uptkqqp
E
uptk, sq,

pEλptk, sq � pptk, uptkqqp
E
uλptk, sq,

V Eptk, sq � QptkqY
Eptk, sq � Y E

Q ptk, sq,

for s ¡ tk, k � 0, . . . , n, and

pE�ptk, sq � pptk�1, uptkqqp
E
uptk, sq,

pEλ,�ptk, sq � pptk�1, uptkqqp
E
uλptk, sq
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for s ¡ tk�1, k � 0, . . . , n� 1. In the following, we provide compact formulas for the SU
contributions. For the different claim components i, the SU contributions assume the
following form

Di
N ptq �

n�1̧

k�0
pErξi|GN

tk,tk�1s � Erξi|GHtk,tk�1
sq,

Di
λptq �

n�1̧

k�0
pErξi|GN,λ

tk,tk�1
s � Erξi|GN

tk,tk�1sq,

Di
rptq �

n�1̧

k�0
pErξi|GN,λ,r

tk,tk�1
s � Erξi|GN,λ

tk,tk�1
sq,

Di
Y ptq �

n�1̧

k�0
pErξi|GN,λ,r,Y

tk,tk�1
s � Erξi|GN,λ,r

tk,tk�1
sq.

Clearly, we have

Djptq �
4̧

i�1
Di

jptq, j P tN, λ, r, Y u.

After some tedious calculations (see Appendix A.3), one derives the following representations
for the SU contributions.

Unsystematic biometric risk
The SU contributions with respect to N are given by

D1
N ptq �

¸
tk,tk�1PT

tk γ

1ttk γuvp0, tkq∆Ipptk, tk�1, γqvEptk, γqV Eptk, γq,

D2
N ptq �

¸
tk,tk�1PT

tk γ

vp0, tkq

» tk�1

tk

vEptk, sqp1� fdqV
Eptk, sqpdNpsq � Iptkqp

E
λptk, sqdsq

�
¸

tk,tk�1PT
tk γ

vp0, tkq

» γ

tk�1

vEptk, sqp1� fdqV
Eptk, sq∆Ip

λptk, tk�1, sqds,

D3
N ptq � �

¸
tk,tk�1PT

tk γ

vp0, tkq∆Ipptk, tk�1, γq

» γ�10

γ
vEptk, sqfpV Eptk, γqds,

D4
N ptq � �

¸
tk,tk�1PT
tk γ�10

vp0, tkq

» T

γ�10
∆Ipptk, tk�1, sqvEptk, sqfpV Eptk, γqds

�
¸

tk,tk�1PT
tk¥γ�10

vp0, tkq

» tk�1

tk

pIpsq � Iptkqp
Eptk, sqqvEptk, sqfpV pγqds

�
¸

tk,tk�1PT
tk¥γ�10

vp0, tkq

» T

tk�1

∆Ipptk, tk�1, sqvEptk, sqfpV pγqds,
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where

∆Ipptk, tk�1, sq � Iptk�1qp
E
�ptk, sq � Iptkqp

Eptk, sq,

∆Ip
λptk, tk�1, sq � Iptk�1qp

E
λ,�ptk, sq � Iptkqp

E
λptk, sq.

Systematic biometric risk
The SU contributions with respect to λ are given by

D1
λptq �

¸
tk,tk�1PT

tk γ

Iptk�1qvp0, tkq∆pptk, tk�1, γqvEptk, γqV Eptk, γq,

D2
λptq �

¸
tk,tk�1PT

tk γ

Iptk�1qvp0, tkq

» γ

tk�1

vEptk, sqp1� fdqV
Eptk, sq∆pλptk, tk�1, sqds,

D3
λptq � �

¸
tk,tk�1PT

tk γ

Iptk�1q∆pptk, tk�1, γqvp0, tkq

» γ�10

γ
vEptk, sqfpV Eptk, γqds,

D4
λptq � �

¸
tk,tk�1PT
tk γ�10

Iptk�1qvp0, tkq

» T

γ�10
∆pptk, tk�1, sqvEptk, sqqfpV Eptk, γqds

�
¸

tk,tk�1PT
tk¥γ�10

Iptk�1qvp0, tkq

» T

tk�1

∆pptk, tk�1, sqvEptk, sqfpV pγqds,

where

∆pptk, tk�1, sq � pEptk�1, sq � pE�ptk, sq,

∆pλptk, tk�1, sq � pEλptk�1, sq � pEλ,�ptk, sq.

Systematic interest risk
The SU contributions with respect to r are given by

D1
rptq �

¸
tk,tk�1PT

tk γ

Iptk�1qp
Eptk�1, γq∆vptk, tk�1, γqV Eptk, γq,

D2
rptq �

¸
tk,tk�1PT

tk γ

vp0, tkq

» tk�1

tk

pvptk, sq � vEptk, sqqp1� fdqV
Eptk, sqdNpsq

�
¸

tk,tk�1PT
tk γ

Iptk�1q

» γ

tk�1

∆vptk, tk�1, sqp1� fdqV
Eptk, sqpEλptk�1, sqds,
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D3
rptq � �

¸
tk,tk�1PT

tk γ

Iptk�1qp
Eptk�1, γq

» γ�10

γ
∆vptk, tk�1, sqfpV Eptk, γqds

�
¸

tk,tk�1PT
tk¥γ

IpγqfpV pγq

» tk�1

tk

pvp0, sq � vp0, tkqv
Eptk, sqqds

�
¸

tk,tk�1PT
tk¥γ

IpγqfpV pγq

» γ�10

tk�1

∆vptk, tk�1, sqds,

D4
rptq � �

¸
tk,tk�1PT
tk γ�10

Iptk�1q

» T

γ�10
pEptk�1, sq∆vptk, tk�1, sqfpV Eptk, γqds

�
¸

tk,tk�1PT
tk¥γ�10

» tk�1

tk

Ipsqpvp0, sq � vp0, tkqv
Eptk, sqqfpV pγqds

�
¸

tk,tk�1PT
tk¥γ�10

Iptk�1q

» T

tk�1

pEptk�1, sq∆vptk, tk�1, sqfpV pγqds,

where

∆vptk, tk�1, sq � vp0, tk�1qv
Eptk�1, sq � vp0, tkqv

Eptk, sq.

Systematic fund risk
The SU contributions with respect to Y are given by

D1
Y ptq �

¸
tk,tk�1PT

tk γ

Iptk�1qp
Eptk�1, γqvEptk�1, γq∆V ptk, tk�1, γq,

D2
Y ptq �

¸
tk,tk�1PT

tk γ

» tk�1

tk

vp0, sqp1� fdqpV psq � V Eptk, sqqdNpsq

�
¸

tk,tk�1PT
tk γ

Iptk�1qvp0, tk�1q

» γ

tk�1

vEptk�1, sqp1� fdq∆V ptk, tk�1, sqpEλptk�1, sqds,

D3
Y ptq � �

¸
tk,tk�1PT

tk γ

Iptk�1qvp0, tk�1qp
Eptk�1, γq

» γ�10

γ
vEptk�1, sqfp∆V ptk, tk�1, γqds,

D4
Y ptq � �

¸
tk,tk�1PT

tk γ

Iptk�1qvp0, tk�1q

» T

γ�10
pEptk�1, sqvEptk�1, sqfp∆V ptk, tk�1, γqds,

where

∆V ptk, tk�1, sq � V Eptk�1, sq � V Eptk, sq.

The formulas above reveal that each SU addend can be represented by pathwise Lebesgue
integrals, where the randomness of the integrands stems from the risk factors and conditional
expectations thereof like (5.5) - (5.9). Thus, our idea is as follows. We consider a fixed
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path for the risk factors and approximate the integrals pathwise by finite sums. The
appearing conditional expectations, given the observed paths of the risk factors, are then
approximated with MLMC methods. In the following, we develop a theoretical fundament
to this approach.

5.2.2 Multilevel Monte Carlo estimators

In this section, we take a step back and introduce MLMC estimators in a general framework.
The MLMC approach can be traced back to various papers by Heinrich (1998, 2000, 2001)
and Heinrich and Sindambiwe (1999) on parametric integration and the solution of integral
equations. A good overview about the MLMC approach and its applications can be
found in Giles (2015). The definition of MLMC estimators and the basic notation follows
the theory of Giles (2008), who laid the cornerstone for an application of the MLMC
approach to estimate the expectation of random variables driven by stochastic differential
equations. In extension to Giles (2008), we study MLMC estimators for conditional

expectations and establish a systematic notion of (integral) MLMC convergence. For this
thesis, focus is placed on convergence results, but not on the computational complexity of
the approximation. Nevertheless, the basic notation and the convergence result is oriented
towards Giles (2008).

Let pΩ, A,F,Pq be a filtered probability space with a filtration F � pFtqt¥0 that satisfies
the usual conditions. Furthermore, let W denote a standard m-dimensional Brownian
motion that is independent from F0, and let S be the solution to the m-dimensional
stochastic differential equation

dSptq � µpt, Sptqqdt� σpt, SptqqdW ptq, Sp0q � S0,

where µ : r0, T s�Rm Ñ Rm, σ : r0, T s�Rm Ñ Rm�m are functions and S0 is F0-measurable.
The goal of this section is to find an appropriate estimator for

E � ErfpSpt1q, .., Sptrqq|F0s, 0 ¤ t1   . . .   tr ¤ T,

where f is any appropriate function. In the following, the abbreviation P � fpSpt1q, .., Sptrqq

is used.
Let L P N, K P R� and let Sl denote the Euler approximation of S with timestep1

hl � 2�lT {K, l � 0, . . . , L, i.e.

Slp0q � S0,

Slpuj�1q � Slpujq � µpuj , Slpujqqpuj�1 � ujq � σpuj , SlpujqqpW puj�1q �W pujqq,

where uj � jhl, j � 0, . . . , 2lK. For a better readability, the index l in uj is omitted.
1The definition of the step width slightly differs from Giles (2008), who uses hl � M�lT for M P N, M ¥ 2.

75



In line with Giles (2008), we set Pl � fpSlpt1q, . . . , Slptrqq and

pEl � N�1
l

Nļ

i�1
p pP i

l � pP i
l�1q, l � 1, . . . , L, (5.10)

where Nl is the number of independent samples and pP i
l � fppSi

l pt1q, .., pSi
l ptrqq with pSi

l

denoting a sample Euler approximation path. Following Giles (2008), the differencepP i
l �

pP i
l�1 is based on two Euler approximations with different step lengths but with the

same Brownian motion path. Furthermore, let pE0 be the usual Monte Carlo estimator for
ErfpSpt1q, .., Sptrqq|F0s using N0 samples for the Euler approximation with step width h0,
i.e.

pE0 � N�1
0

N0̧

i�1

pP i
0.

The combined estimator pE is given by

pE �
Ļ

l�0

pEl, (5.11)

see Giles (2008). Let us now introduce the notion of MLMC convergence.

Definition 5.1. A family of random variables pH � pHpL, pNlqlq, l � 0, . . . , L, L P N0 is
called a MLMC estimator for a random variable H, if for any ε ¡ 0, there exist L and Nl,
l � 0, . . . , L such that,

MSE � Erp pH �Hq2s   ε2. (5.12)

We write briefly pH MLMC
ñ H. Furthermore, if the following two conditions are fulfilled,

namely

(i) for every rL ¡ L, there exist p rNlql�0,...,rL such that it still holds (5.12),

(ii) for every tupel p rNlql�0,...,L with rNl ¥ Nl, l � 0, . . . , L, it still holds (5.12),

we call the convergence monotonic.

By extending the ideas of Giles (2008) to our framework, we can state assumptions, under
which pE converges to E in terms of Definition 5.1.

Theorem 5.2. If there exist constants α ¥ 1
2 , β ¡ 0, and positive functions c1, c2, such

that Erc1pS0qs   8, Erc2pS0qs   8 and

(i) Er pPl � P |F0s ¤ c1pS0qh
α
l ,

(ii) VarrpEl|F0s ¤ c2pS0qN
�1
l hβ

l ,

then it holds pE MLMC
ñ ErfpSpt1q, .., Sptrqq|F0s monotonically.
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Proof. The proof follows the lines from Giles (2008, Theorem 3.1), adapted to our case.
Let ε ¡ 0. We decompose the MSE into bias and variance, i.e.

ErppE� Eq2|F0s � ErpE� E|F0s
2 �VarrpE|F0s,

and investigate both addends separately. We set

L �

S
logp

a
2Erc1pS0qspT {Kqαε�1q

α logp2q

W
,

where r�s is the ceiling function. Using that x ¤ rxs   x� 1, x P R, we immediately get

hα
L ¤

1a
2Erc1pS0qs

ε.

That gives us, together with the definition of pE and assumption piq,

ErpE� E|F0s
2 � E

�
1

N0

N0̧

i�1

pP i
0 �

Ļ

l�1

1
Nl

Nļ

i�1
p pP i

l � pP i
l�1q � P

�����F0

�2

� E rPL � P |F0s
2 ¤ pc1pS0qh

α
Lq

2 ¤
c1pS0q

2Erc1pS0qs
ε2.

For the variance, we consider different cases for β (see assumption piiq). If assumption piiq

holds for β � 1, let Nl � r2ε�2pL� 1qErc2pS0qshls yielding

VarrpE|F0s �
Ļ

l�0
VarrpEl|F0s ¤

Ļ

l�0
c2pS0qN

�1
l hl ¤

c2pS0q

2Erc2pS0qs
ε2.

If β ¡ 1, let Nl � r2ε�2Erc2pS0qspT {Kqpβ�1q{2p1� 2�pβ�1q{2q�1h
pβ�1q{2
l s. That gives

VarrpE|F0s �
Ļ

l�0
VarrpEl|F0s ¤

Ļ

l�0
c2pS0qN

�1
l hβ

l

¤
c2pS0q

2Erc2pS0qs
ε2
�

T

K


�pβ�1q{2
p1� 2�pβ�1q{2q

Ļ

l�0
h
pβ�1q{2
l .

Using the formula for the geometric series, we can estimate the last term by
Ļ

l�0
h
pβ�1q{2
l �

�
T

K


pβ�1q{2 Ļ

l�0
p2�pβ�1q{2ql

�

�
T

K


pβ�1q{2 1� p2�pβ�1q{2qL�1

1� 2�pβ�1q{2

 

�
T

K


pβ�1q{2 1
1� 2�pβ�1q{2 ,

which in total leads to

VarrpE|F0s ¤
c2pS0q

2Erc2pS0qs
ε2.
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If β   1, let Nl � r2ε�2Erc2pS0qsh
�p1�βq{2
L p1� 2�p1�βq{2q�1h

pβ�1q{2
l s. With that, we have

VarrpE|F0s �
Ļ

l�0
VarrpEl|F0s ¤

Ļ

l�0
c2pS0qN

�1
l hβ

l

¤
c2pS0q

2Erc2pS0qs
ε2h

p1�βq{2
L p1� 2�pβ�1q{2q

Ļ

l�0
h
�p1�βq{2
l .

Using the formula for a geometric series, we derive the following upper bound for the last
term

Ļ

l�0
h
�p1�βq{2
l � h

�p1�βq{2
L

Ļ

l�0
p2�p1�βq{2ql

� h
�p1�βq{2
L

1� p2�p1�βq{2qL�1

p1� 2�p1�βq{2q

  h
�p1�βq{2
L

1
p1� 2�p1�βq{2q

,

which in total gives us again

VarrpE|F0s ¤
c2pS0q

2Erc2pS0qs
ε2.

Thus, we found L and Nl, l � 0, . . . , L, such that

ErppE� Eq2|F0s ¤
c1pS0q

2Erc1pS0qs
ε2 �

c2pS0q

2Erc2pS0qs
ε2.

Taking the expectation on both sides and using the monotonicity of expected values yields

ErppE� Eq2s ¤
1
2ε2 �

1
2ε2 � ε2.

It remains to show the monotonicity of the MLMC convergence. Firstly, for rL ¡ L, we
clearly have

pc1pS0qh
αrLq

2 ¤ pc1pS0qh
α
Lq

2 ¤
c1pS0q

2Erc1pS0qs
ε2.

Setting Nl � 0 for l � L� 1, . . . , rL, we still have
rĻ

l�0
c2pS0qN

�1
l hl ¤

c2pS0q

2Erc2pS0qs
ε2,

so that the MSE ErppE � Eq2s stays below ε2. Secondly, the estimates are still true forrNl ¥ Nl, l � 0, . . . , L, since we have
°L

l�0 c2pS0q rN�1
l hl ¤

°L
l�0 c2pS0qN

�1
l hl. Thus, the

convergence is indeed monotonic.

In this thesis, we focus on the convergence of the approximation. However, it is worth noting
that the complexity theorem in Giles (2008) includes results on the numerical complexity
of the MLMC approach. Moreover, the application of the theorem above requires the
verification of the two assumptions piq and piiq. While assumption piq closely relates to
the well-studied weak convergence of numerical schemes (see Kloeden & Platen, 1992),
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assumption piiq might be difficult to prove (see Giles, 2008). Nevertheless, by applying the
arguments of Giles (2008) to our setup, we derive sufficient conditions that imply piq and
piiq. In the following, } � } denotes the Euclidean norm.

Lemma 5.3. Suppose that f is Lipschitz continuous and that for every t P r0, T s, there

exists a positive function c with ErcpS0qs   8, such that

Er}Slptq � Sptq}2|F0s ¤ cpS0qhl.

Then both conditions of Theorem 5.2, piq and piiq, are satisfied.

Proof. The proof follows the lines from Giles (2008, Section 2), but adapted to our case.
The second part of the assumptions describes the strong convergence of the Euler scheme
with order 1{2 for every t. The equality

}px1 � x11, . . . , xr � x1rq}
2 �

ŗ

i�1
pxi � x1iq

2

also implies the strong convergence of the Euler scheme for the vector pSlpt1q, . . . , Slptrqq

to pSpt1q, . . . , Sptrqq. In particular, we find a positive function rc such that

Er}pSlpt1q � Spt1q, . . . , Slptrq � Sptrqq}
2|F0s ¤ rcpS0qhl

with ErrcpS0qs   8. The Lipschitz continuity of f with Lipschitz constant τ ¥ 0 and the
Jensen inequality for conditional expectations yield

Er|Pl � P ||F0s ¤ τEr}pSlpt1q � Spt1q, . . . , Slptrq � Sptrqq}|F0s

¤ τEr}pSlpt1q � Spt1q, . . . , Slptrq � Sptrqq}
2|F0s

1{2 ¤ c1pS0qh
1{2
l

for a positive function c1 satisfying Erc1pS0qs   8. This gives us condition piq with α � 1{2.
Furthermore, we can write (see Giles, 2008, p. 608)

Pl � Pl�1 � pPl � P q � pPl�1 � P q,

which implies together with the Minkowski inequality for conditional expectation (Doob,
1994, Section XI.3)

VarrPl � Pl�1|F0s ¤ pVarrPl � P |F0s
1
2 �VarrPl�1 � P |F0s

1
2 q2.

Exploiting again the Lipschitz continuity we get

VarrPl�P |F0s ¤ ErpPl�P q2|F0s ¤ τ2Er}pSlpt1q�Spt1q, . . . , Slptrq�Sptrqq}
2|F0s ¤ rrcpS0qhl,

which in total gives

VarrEl|F0s � Var
�

N�1
l

Nļ

i�1
p pP i

l � pP i
l�1q

����F0

�
� N�1

l Varr pPl � pPl�1|F0s ¤ c2pS0qN
�1
l hl,
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for some positive function c2 with Erc2ps0qs   8, i.e. condition piiq is fulfilled with
β � 1.

The following lemma provides helpful results on the multiplicity and additivity of mono-
tonically convergent MLMC estimators.

Lemma 5.4. Let E1, E2 P L2pPq and let B be a bounded random variable. Furthermore,

let pE1, pE2 denote the corresponding estimators such that pE1
MLMC
ñ E1 monotonically andpE2

MLMC
ñ E2 monotonically. Then it holds

(i) pE1 � pE2
MLMC
ñ E1 � E2 monotonically,

(ii) BpE1
MLMC
ñ BE1 monotonically.

If pE1, pE1q and pE2, pE2q are independent, it further holds

(iii) pE1pE2
MLMC
ñ E1E2 monotonically.

Proof. (i) By Definition 5.1, we find Lj , N j
l , j � 1, 2, l � 0, . . . , Lj , such that

ErppEj � Ejq
2s  

ε2

4 , j � 1, 2.

Setting L � maxtL1, L2u, the monotonicity ensures that there exist rN j
l , l � 0, . . . , L,

such that we still have

ErppEj � Ejq
2s  

ε2

4 , j � 1, 2.

Now, again monotonicity reveals that this inequality also holds in both cases (j � 1, 2)
for L and Nl � maxt rN1

l , rN2
l u, l � 0, . . . , L. Since 2ab ¤ a2 � b2, a, b P R, we also

have

ErppE1 � pE2 � E1 � E2q
2s ¤ 2ErppE1 � E1q

2s � 2ErppE2 � E2q
2s

� 2ε2

4 � 2ε2

4 � ε2.

In particular, the monotonicity follows from individual monotonicities.

(ii) Suppose |B| ¤ M for some M ¡ 0. Since pE1
MLMC
ñ E1, we find L, Nl, l � 0, . . . , L,

such that

ErppE1 � E1q
2s  

ε2

M2 .

Thus, we directly get

ErpBpE1 �BE1q
2s � ErB2ppE1 � E1q

2s ¤ B2ErppE1 � E1q
2s   M2 ε2

M2 � ε2.

The convergence is monotonic as pE1 converges monotonically to E1.
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(iii) Let ε ¡ 0. Following the argumentation on monotonicity in piq, we find L, Nl,
l � 0, . . . , L such that

ErppEj � Ejq
2s   η2,

where η � mintε{p}E1}2 � }E2}2 � 1q, 1u. This choice of η originates from standard
proofs on convergent product sequences (see e.g. Hortmann, 2006). Since

pE1pE2 � E1E2 � ppE2 � E2qppE1 � E1q � E2ppE1 � E1q � E1ppE2 � E2q,

we can apply triangle inequality and exploit the assumed independence to get

}pE1pE2 � E1E2}2

¤ }pE2 � E2}2}pE1 � E1}2 � }E2}2}pE1 � E1}2 � }E1}2}pE2 � E2}2

¤ η2 � η}E1}2 � η}E2}2 ¤ ηp1� }E1}2 � }E2}2q ¤ ε.

In particular, the monotonicity follows from individual monotonicities.

As our insurance cash flow includes continuous payments, we are interested in objects like

Ψ �

» b

a
Epsqdgpsq, 0 ¤ a   b ¤ T,

where g is a finite variation process like gpsq � s or gpsq � Npsq, that is bounded on ra, bs,
and where for every s P ra, bs, Epsq can be approximated by a MLMC simulation. Thus,
a natural idea is to approximate this integral via finite sums. Therefore, let pπΨ

d qd be a
sequence of partitions on ra, bs with |πΨ

d | Ñ 0, d Ñ8. We define

Ψd �
¸

sj ,sj�1PπΨ
d

Epsjqpgpsj�1q � gpsjqq.

Assuming that there exists MLMC estimator pEpsq for Epsq, we can define the integral
estimator

pΨd �
¸

sj ,sj�1PπΨ
d

pEpsjqpgpsj�1q � gpsjqq. (5.13)

Definition 5.5. Let pπΨ
d qd be a sequence of partitions on ra, bs with |πΨ

d | Ñ 0, d Ñ 8.
We call ppΨdqd an integral MLMC estimator for Ψ �

³b
a Epsqdgpsq, 0 ¤ a   b ¤ T , if for any

ε ¡ 0, there exists d0 P N such that for every d ¥ d0, there are values L, Nl, l � 0, . . . , L,

such that

MSE � E
�
ppΨd �Ψq2

�
  ε2. (5.14)

We briefly write ppΨdqd
I�MLMC

ñ Ψ (w.r.t. pπΨ
d qd). We call the convergence monotonic if

ppΨdqd
MLMC
ñ Ψd monotonically for every d.
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Theorem 5.6. Let pπΨ
d qd be a sequence of partitions on ra, bs with |πΨ

d | Ñ 0. If for every

s P ra, bs, there exists a MLMC estimator pEpsq such that pEpsq MLMC
ñ Epsq monotonically

and if }Ψ�Ψd}2 Ñ 0, d Ñ8, then it holds ppΨdqd
I�MLMC

ñ Ψ monotonically (w.r.t. pπΨ
d qd).

Proof. Following the construction of the estimator (see the remarks before Definition 5.5)
we have to show that for each ε ¡ 0, there exist d0 P N, such that for every d ¥ d0, there
are L, Nl, l � 0, . . . , L such that��� » b

a
Epsqdgpsq �

¸
sj ,sj�1PπΨ

d

pEpsjqpgpsj�1q � gpsjqq
���

2
  ε

for all d ¥ d0. For this purpose, we proceed in two steps. First, we apply the triangle
inequality to get ��� » b

a
Epsqdgpsq �

¸
sj ,sj�1PπΨ

d

pEpsjqpgpsj�1q � gpsjqqq
���

2

¤
��� » b

a
Epsqdgpsq �

¸
sj ,sj�1PπΨ

d

Epsjqpgpsj�1q � gpsjqq
���

2

�
��� ¸

sj ,sj�1PπΨ
d

pEpsjq � pEpsjqqpgpsj�1q � gpsjqq
���

2
.

for every d. Since we assumed }Ψ�Ψd}2 Ñ 0, d Ñ8, we find d0 such that��� » b

a
Epsqdgpsq �

¸
sj ,sj�1PπΨ

d

Epsjqpgpsj�1q � gpsjqq
���

2
 

ε

2

for all d ¥ d0.
For the second part, the combination of piq and piiq in Lemma 5.4 tells us (g is bounded in
both cases), that for every d ¥ d0 we find L and Nl, l � 0, . . . , L, such that��� ¸

sj ,sj�1PπΨ
d

pEpsjq � pEpsjqqpgpsj�1q � gpsjqq
���

2
 

ε

2 . (5.15)

In particular, since pEpsq MLMC
ñ Epsq monotonically, the convergence in (5.15) is monotonic

(see Lemma 5.4). In total, we have ppΨdqd
I�MLMC

ñ Ψ monotonically.

Lemma 5.7. Let 0 ¤ ai   bi ¤ T , and let pπΨ,i
d qd be a sequence of partitions on rai, bis with

|πΨ,i
d | Ñ 0, d Ñ8, i � 1, 2. We consider integrals Ψi �

³bi

ai
Eipsqdgpsq with corresponding

estimators pΨi,d defined as in (5.13). Suppose that pΨi,d
I�MLMC

ñ Ψi monotonically, i � 1, 2.

Then it holds

ppΨ1,d � pΨ2,dqd
I�MLMC

ñ Ψ1 �Ψ2

monotonically.
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Proof. Let ε ¡ 0. Since ppΨi,dqd
I�MLMC

ñ Ψi, we find di P N, such that for every d ¥ di

there are values Li, N i
l , l � 0, . . . , Li, such that

}pΨi,d �Ψi}2  
ε

2 . (5.16)

In particular, for d ¥ d0 :� maxtd1, d2u, there are values Li, N i
l , l � 0, . . . , Li such

that (5.16) holds. Setting L � maxtL1, L2u, the monotonicity ensures that we find Nl,
l � 0, . . . , L, such that (5.16) holds, which implies

}Ψ1 �Ψ2 � ppΨ1,d � pΨ2,dq}2 ¤ }Ψ1 � pΨ1,d}2 � }Ψ2 � pΨ2,d}2  
ε

2 �
ε

2 � ε.

With Lemma 5.4, we conclude that the convergence is monotonic.

Now that we have extended MLMC theory to conditional expectations, we can return to
our original model and apply the results there.

5.2.3 Convergence results

Building on the previously discussed MLMC methods, this section derives convergent
MLMC estimators for the SU contributions introduced in Section 5.1. At the beginning,
we focus on estimating conditional expectations like (5.5) - (5.9), which are part of the SU
integral representations (see Section 5.2.1).

First we need a few preparations. In the following, we fix a SU grid point tk P T . Let
prλ, rr, Φ, rY , rQq denote the solution to the shifted system of stochastic differential equations

drλptq � rλptqµλdt� σλdWλptq, rλptkq � λptkq (5.17)

drrptq � pβ � rrptqµrqdt� σrdWrptq, rrptkq � rptkq, (5.18)

dΦptq � grprrptqqdt, Φptkq � 0, (5.19)

drY ptq � rY ptqµY dt� rY ptqσY dWY ptq, rY ptkq � Y ptkq, (5.20)

d rQptq � aptq

gY pY ptqq
dt, rQptkq � Qptkq, (5.21)

for t ¥ tk. Let s P ptk, T s and suppose that s P ptk1 , tk1�1s for some index k1. Recall from
Subsection 5.2.1 that uptq � ul�1, if t P pul, ul�1s. Assume uptkq � tk0 ¥ tk for some k0.
We define for s ¡ uptkq,

fpprλptk0q, . . . , rλptk1qq � exp
�
�

k1̧

j�k0

gλprλptjqqptj�1 � tjq

�
, (5.22)

fpλprλptk0q, . . . , rλptk1qq � exp
�
�

k1̧

j�k0

gλprλptjqqptj�1 � tjq

�
gλprλptk1qq (5.23)
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as well as for s ¡ tk,

fvpΦpsqq � expp�Φpsqq, (5.24)

fY prY psqq � gY prY psqq, (5.25)

fQp rQptkq, rQpsq, rY psqq � p rQpsq � rQptkqqgY prY psqq. (5.26)

Using this notation, we can write

pEuptk, sq � Erfpprλptk0q, . . . , rλptk1qq|Htk
s, (5.27)

pEuλptk, sq � Erfpλprλptk0q, . . . , rλptk1qq|Htk
s, (5.28)

vEptk, sq � ErfvpΦpsqq|Htk
s, (5.29)

Y Eptk, sq � ErfY prY psqq|Htk
s, (5.30)

Y E
Q ptk, sq � ErfQp rQptkq, rQpsq, rY psqq|Htk

s. (5.31)

These representations allow us to apply the results from the previous section. Let
prλtk

l , rrtk
l , Φtk

l , rY tk
l , rQtk

l q denote the Euler approximation of prλ, rr, Φ, rY , rQq with respect to a
step width hl. With help of Theorem 10.2.2 in Kloeden and Platen (1992), we can conclude
the strong convergence of the Euler scheme for the shifted system of stochastic differential
equations.

Lemma 5.8. The Euler approximation Xl � pλtk
l , rtk

l , Φtk
l , Y tk

l , Qtk
l q with step width

hl converges strongly to rX � prλ, rr, Φ, rY , rQq with order 1{2, i.e. there exists a positive

function c with ErcpXptkqqs   8, such that

Er}Xlpsq � rXpsq}2|Htk
s ¤ cpXptkqqhl.

Proof. Firstly, we rewrite the system of stochastic differential equations (5.17) - (5.21) as

d rXptq � µps, rXptqqdt� σps, rXptqqd�W ptq, rXptkq � rX0ptkq,

with the (extended) standard Brownian motion �W � pWλ, Wr, WΦ, WY , WQq, and

rX0ptkq � pλptkq, rptkq, 0, Y ptkq, Qptkqq,

µpt, xq � px1µλ, pβ � x2qµr,�grpx2q, x4µY , aptq{gY px4qq
J

and

σpt, xq � pσY , σr, 0, x4σY , 0qJ,

where x � px1, . . . , x5q P R5, t P rtk, ss. Recall that gr is assumed to be Lipschitz continuous.
Furthermore, since gY is Lipschitz continuous with values in rc,�8q, also 1{gY defines a
Lipschitz continuous function. Having this in mind, one easily shows that

}µpt, xq � µpt, yq} � }σpt, xq � σpt, yq} ¤ K1}x� y}, t P rtk, ss, x, y P R5,

84



for some constant K1 ¡ 0. Moreover, with the boundedness of grpx2q in x2 and aptq{gY px4q

in pt, x4q, it holds

}µpt, xq} � }σpt, xq} ¤ K3p1� }x}q, t P rtk, ss, x P R5,

for some constant K2 ¡ 0. With the Lipschitz continuity of aptq, one immediately verifies

}µpt, xq � µpu, xq} � }σpt, xq � σpu, xq} ¤ K3p1� }x}q|t� u|1{2, u, t P rtk, ss, x P R5,

for some K3 ¡ 0. Furthermore, our assumptions made in Section 4.1 imply

Er} rXptkq}
2s   8. (5.32)

Thus, all assumptions of Theorem 10.2.2 in Kloeden and Platen (1992) are fulfilled. A
closer look into their proof reveals that there exists a constant C ¡ 0 such that

Ersuptk¤u¤s } rXpuq �Xlpuq}
2��F�W

tk
s ¤ Cp1� }Xptkq}

2qhl �: cpXptkqqhl.

With Htk
� F�W

tk
, the monotonicity of conditional expectations and (5.32), we get

Er} rXpsq �Xlpsq}
2|Htk

s ¤ cpXptkqqhl,

where ErcpXptkqqs   8, which concludes the proof.

Following the construction (5.10) - (5.11), we derive MLMC estimators ppuptk, sq, ppuλptk, sq

for s ¡ uptkq, and pvptk, sq, pY psq and pYQpsq for s ¡ tk. Applying the previous lemma and
Theorem 5.2, we get the following convergence results.

Lemma 5.9. It holds

a) ppuptk, sq
MLMC
ñ pEuptk, sq,

c) pvptk, sq
MLMC
ñ vEptk, sq,

e) pYQpsq
MLMC
ñ Y E

Q psq.

b) ppuλptk, sq
MLMC
ñ pEuλptk, sq,

d) pY psq MLMC
ñ Y Epsq,

Proof. The idea is to apply Theorem 5.2. To verify the assumptions of piq and piiq of
Theorem 5.2, we use the Lemma 5.3. The latter requires both, the strong convergence of
the Euler scheme and the Lipschitz continuity of the functions (5.22) - (5.26). The strong
convergence of the Euler scheme follows from Lemma 5.8. Thus, it remains to prove the
Lipschitz continuity.

a) First, we consider the functions

fp,ipxq � expp�gλpxqpti�1 � tiqq, i � k0, . . . , k1. (5.33)

The function x ÞÑ expp�xpti�1 � tiqq, x ¥ 0 is a bounded Lipschitz continuous
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function. Since gλ is assumed to be Lipschitz continuous with values in r0, Bλs

(see Section 5.1), the functions fp,i, i � k0, . . . , k1 are Lipschitz continuous as well.
Thus, the product function fp �

±k1
i�k0

fi,p, fppxk0 , . . . , xk1q � fk0pxk0q � � � fk1pxk1) is
Lipschitz continuous.

b) Observe that fpλ � p
±k1

i�k0
fp,iqgλ, where fp,i are defined by (5.33). With a) and the

Lipschitz continuity of gλ, we conclude the Lipschitz continuity of fpλ.

c) Since Φ is bounded (since gr is bounded), we can consider fvpxq � expp�xq on a
compact interval, which is a Lipschitz continuous function.

d) The Lipschitz continuity of fY � gY follows from our assumptions on gY in Section 5.1.

e) Since Q is bounded, it is sufficient to consider fQ on D � R� for a compact set
D � R2. Together with the Lipschitz continuity of gY , we have

|fQpx1, x2, x3q � fQpy1, y2, y3q|

� |px2 � x1qgY px3q � py2 � y1qgY py3q|

� |px2 � y2 � y1 � x1qgY px3q � py2 � y1qpgY px3q � gY py3qq|

¤ p|x2 � y2| � |y1 � x1|q|gY px3q| � |y2 � y1||gY px3q � gY py3q|

¤ rC}x� y}1p|gY px3q| � |y2 � y1|q

¤ C}x� y}2,

for x, y P D � R� and some C ¡ 0. Thus, fQ is Lipschitz continuous on D � R�.

With Lemma 5.3, Lemma 5.8 and Theorem 5.2, we can therefore conclude the asserted
convergences a) to e).

Based on this lemma, we derive estimators for the SU risk factors. As presented in
Section 5.2.1, each SU addend is a sum of integrals Ψ �

³b
a Epsqdgpsq with g P tid, Nu. We

approximate the integrals by finite sums Ψd �
°

sj ,sj�1PπΨ
d
Epsjqpgpsj�1q � gpsjqq, where

πΨ
d is a sequence of partitions on ra, bs with |πΨ

d | Ñ 0, n Ñ 8. As Epsjq still includes
conditional expectations, we substitute Epsjq by pEpsjq, which results from replacing the
conditional expectations (5.5) - (5.9) in Epsjq by the corresponding MLMC estimatorsppu, ppuλ, pv, pY and pYQ. The corresponding MLMC estimators for the different contract
components ξi are denoted by pDi

jptq, j P tN, λ, r, Y u, i � 1, . . . , 4. Consequently, the
MLMC estimators for the total insurance cashflow ξ are given by

pDjptq �
4̧

i�1

pDi
jptq, j P tN, λ, r, Y u.

The next theorem verifies the desired convergence of the constructed estimators.
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Theorem 5.10. It holds pDjptq
I�MLMC

ñ Djptq, j P tN, λ, r, Y u, t P r0, T s.

Proof. With help of Lemma 5.7, it is sufficient to show

pDi
jptq

I�MLMC
ñ Di

jptq (5.34)

monotonically, for each i � 1, . . . , 4 and j P tN, λ, r, Y u.
As described in the previous paragraph, each pDi

jptq is the sum of estimators

pΨd �
¸

sj ,sj�1PπΨ
d

pEpsjqpgpsj�1q � gpsjqq, g P tid, Nu.

As usual, we write

Ψ �

» b

a
Epsqdgpsq

for the original integral and

Ψd �
¸

sj ,sj�1PπΨ
d

Epsjqpgpsj�1q � gpsjqq

for its finite sum approximation. According to Theorem 5.6, we have to check thatpEpsq MLMC
ñ Epsq monotonically, and }Ψ�Ψd}2 Ñ 0, d Ñ8.

Clearly, each Epsq is a product of bounded factors like Ipsq, vp0, sq, V psq and conditional
expectations like (5.5) - (5.9). Though the conditional expectations always refer to
the information Htk

, the independence of λ, r and Y and the construction of the
MLMC estimators imply the independence of ppEu, pEuλ, ppu, ppuλq, pvE, pvq and pY E, Y E

Q , pY , pYQq.
Therefore, we can apply Lemma 5.4 and Lemma 5.9, which proves pEpsq MLMC

ñ Epsq

monotonically.
Regarding the integral approximation, we start with g � id. As the appearing conditional

expectations (see (5.5) - (5.9)) can be bounded by a constant and are continuous in s, and
as I has at most one jump, the dominated convergence theorem implies }Ψ�Ψd}2 Ñ 0,
d Ñ8.

In the second case, i.e. g � N , the Itô isometry and dxN, Nypsq � λpsqds yield

}Ψ�Ψd}
2
2 � E

�» b

a
pEpsq � Edpsqq

2λpsqds

�
, (5.35)

where Edpsq � Epsjq for s P psj , sj�1s. With similar arguments as in the first case and the
piecewise continuity and boundedness of λ, this tends to 0 as d Ñ 8 by the dominated
convergence theorem. Thus, with Theorem 5.6, we can conclude the convergence (5.34),
which proves the theorem.

The derived MLMC estimators will be the basis of the numerical implementation, which is
the subject of the next section.
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5.3 Numerical example

In the previous section, we have laid the theoretical basis for the numerical approximation
of the SU decomposition. This section presents the numerical implementation and starts
with stating the utilized parameters and explaining the methodology. This section and
thus this chapter concludes with analysing the numerical results.

5.3.1 Parameters

We consider a policyholder of age x � 45 with retirement age 67 (i.e. γ � 22), where a
maximum age of 100 (i.e. T � 55) is assumed. The systematic risks are modelled by the
stochastic differential equations (5.2) with parameters

λ0 � 0.00329542, µλ � 0.07731571, σλ � 0.00012212,

r0 � 0.025, β � 0.000199, µr � 0.01, σr � 0.0035,

Y0 � 100, µY � 0.06, σY � 0.2.

The parameters are based on calibrations under the real-world measure P that have been
carried out in the actuarial literature. For the mortality intensity λ, we refer to Chen and
Vigna (2017), who calibrated the parameters in an unisex mortality model. The parameters
for the interest intensity are provided by Spangler (2018, Section 5.2), who obtained the
Vasicek dynamics by means of six-month Euribor observations. For the market index Y ,
the parameters have been suggested by Bernard and Kwak (2016).

It is assumed that the one-off premium p covers the purchase of Qp0q � 100 shares of
Y in t � 0. As the initial surplus is not decomposed (see Chapter 2), we do not need to
further specify the one-off premium p. In addition to the one-off premium, the policyholder
pays a savings rate a � apsq � 3600 until retirement, which is invested in Y . For the death
benefit factor and the pension factor we suppose fd � 0.9 and fp � 0.032.

The convergence proofs have required a certain regularity in the risk drivers, which has
been ensured by the auxiliary functions gr, gλ and gY . In our example, we use

gλpsq � s � 1r0,1000spsq � 1000 � 1p1000,�8qpsq,

grpsq � �1000 � 1p�8,�1000qpsq � s � 1r�1000,1000spsq � 1000 � 1p1000,�8qpsq,

gY psq � 0.0001 � 1p�8,0.0001qpsq � s � 1r0.0001,�8qpsq.

As pointed out in Section 5.1, the function gλ ensures the non-negativity of the mortality
intensity. Apart from that, the practical effect of these transformations is neglectable due
to the chosen boundaries. Now that the parameters have been established, we can present
the implementation approach.
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5.3.2 Methodology

The numerical implementation is carried out with the help of the statistical software R 4.4.2
(R Core Team, 2024). The goal is to approximate the ISU decomposition by means of SU
decompositions. To simulate the latter, we focus on a fixed path and apply the presented
MLMC methods. As described in the introduction of this chapter, the undertaken studies
are focused on the following aspects:

• Numerical feasibility of calculating SU decompositions with a MLMC approach

• Impact of the grid width on the SU decomposition

• Impact of the update order on the SU decomposition

The first aspect addresses the question of whether the SU decomposition can be computed
numerically in a reasonable time using the presented MLMC approach. In addition to
feasibility, the stability of the decomposition is also of great importance, which is reflected in
aspects two and three. In the previous chapters, we have promoted the ISU decomposition,
because of its independence from the chosen grid and the chosen order of the risk basis. In
order to investigate the stability with regard to the grid, we calculate the SU decompositions
on a yearly, a quarterly and a 4-weekly grid. Afterwards, the resulting decompositions are
compared with each other. The stability with respect to the order of risk factors can be
verified by calculating SU decompositions for different orders. Therefore, we do not only
compute the SU decomposition with respect to the presented risk basis pN, λ, r, Y q, but
also with respect to the vice-versa risk basis pY, r, λ, Nq. The integral representations of
the SU contributions for both orders are derived in the appendix (see Section A.3).

Before getting into the details of the numerical simulation, we would like to raise the
awareness for the involved approximation steps:

1) We approximate the ISU decomposition with the help of SU decompositions. The
convergence has been shown in Chapter 4 (see Section 4.2.5 and Theorem 4.18).

2) The contributions of the SU decomposition are approximated by integral MLMC
estimators. The convergence has been shown in this chapter (see Theorem 5.10). In
particular, this approximation encompasses two steps.

2.1) The integrals, which amount to the SU contributions, are approximated by finite
sums (Riemann sums).

2.2) For each summand in the integral approximation 2.1), the appearing conditional
expectations are approximated with the help of MLMC estimators.
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Recall from the previous subsection that the total projection horizon amounts to 55 years.
To approximate the ISU decomposition via SU decompositions (approximation step 1), we
consider the following SU grids

T yearly � tk : k � 0, . . . , 55u,

T quarterly �

"
k

4 : k � 0, . . . , 55 � 4
*

,

T 4�weekly �

"
k

13 : k � 0, . . . , 55 � 13
*

.

We calculate the corresponding SU estimators pDyearly
j ptq, pDquarterly

j ptq, pD4�weekly
j ptq,

j P tN, λ, r, Y u, for all t in the respective SU grid. This enables us to analyse not only the
surplus contributions at the contract end, but also its development over time.

For the approximation of the appearing integrals via finite sums (approximation step 2.1),
we use a weekly grid, namely

πINT � tk{52 : k � 0 . . . , 55 � 52u,

which contains the various SU grids by definition. Each summand in the integral
approximation includes conditional expectations (see (5.5) - (5.9)), which are approached
with the help of MLMC methods (approximation step 2.2). The latter step entails the
computation of the MLMC estimators ppuptk, sq, ppuλptk, sq, pvptk, sq, pY ptk, sq and pYQptk, sq

for all combinations of SU grid points tk and integral grid points s. Most of the numerical
effort associated with approximating the ISU decomposition is required in this step.

The procedure for the computation of the MLMC estimators is as follows. At the
beginning, we calculate a fixed path for the risk factors, which represents the actual
observed trend. For every SU grid point tk, the observed trends up to tk determine the
starting points of the MLMC simulations. For every level l � 0, . . . , L, we simulate Nl

paths of the risk factors using the Euler scheme with the given starting points and the step
width hl. For the latter, we use hl � 2�l{52, i.e. for l � 0 we start with the integration grid
πINT , which is then refined by the factor two with every level l. For the MLMC simulation,
we use L � 4 levels with N � p100000, 50000, 20000, 10000, 5000q describing the simulations
per level. After evaluating the functions fp, fpλ, fv and fQ with respect to the simulated
paths, we follow the construction in (5.10) and (5.11) to achieve the MLMC estimatorsppuptk, sq, ppuλptk, sq, pvptk, sq, pY ptk, sq and pY Qptk, sq. The computed MLMC estimators then
feed, together with the fixed path of the risk factors and the integral approximation step 2.1,
into the calculation of the SU contributions (see the integral representations in Subsection
5.2.1) for different the SU grids and the different update orders.
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5.3.3 Results

In this section, we present the numerical results for decomposing the surplus related to
a fund-linked pension insurance (see Section 5.1) by means of the ISU decomposition
principle. The underlying R script can be found in the appendix (see Section A.4).

In our numerical example, we focus on a fixed path of the SU decompositons. Therefore,
we first sampled a path for each systematic risk factor (mortality, interest, fund). With
help of the sampled mortality intensity, we then simulated a path for the policyholder’s
state process. The example paths depict an observed trend on r0, T s. In particular, the
realisations form the starting values for the MLMC simulations. Figure 1 shows the sampled
paths.

Figure 1: The sampled trend of the risk factors

The policyholder reaches the age of 77 years and has therefore been able to draw pension
benefits from the insurance for 10 years. The mortality intensity λ shows an exponential
increase with a maximum value of approx. 0.22 at the age 100. After a decreasing period
of ten years, the interest intensity r shows a fluctuating trend for the next two decades. In
the second half of the time horizon, the interest intensity increases significantly to up to
5%. The market index Y displays a steady growth with ordinary fluctuations in the first
two decades. Afterwards volatility increases, although the market index continues to grow
strongly. Fortunately for the policyholder, the index is growing particularly strongly in
the 22nd year, which gives an average yield of 10.55% p.a. in the accumulation phase (for
comparison: the average yield in the first 20 years is 7.2% p.a.).

In the following, our analysis focuses on the aspects stated in Subsection 5.3.2.
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Numerical feasibility of the MLMC approach
With help of the introduced MLMC approach, we were able to calculate the SU decom-
positions for a single path in a resonable time. Using a personal computer with average
random access memory (16 GB), the runtime was approximately 4 hours for the yearly, 12
hours for the quarterly and 48 hours for the 4-weekly SU grid. The results presented below
clearly demonstrate the numerical feasibility of the ISU decomposition principle. However,
to calculate the distribution of the SU contributions, further computational power would
be needed.

Different SU grid widths
One motivation to introduce the ISU decomposition in this thesis was the dependence of
the SU decomposition on the considered time grid. The ISU decomposition overcomes
this drawback by refining the SU grids. However, if the ISU decomposition is not readily
available, one needs to use SU decompositions as an approximation. Therefore, a natural
question is how fine the grid needs to be in order to observe a stable decomposition with
respect to the SU grid width.

Figure 2: The SU decomposition for different time grids
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To answer this question, we compare the SU decompositions for three different SU grids,
namely the yearly, the quarterly and the 4-weekly grid, and analyse their impact on the
surplus decomposition. The resulting risk factors for the risk basis pN, λ, r, Y q are shown
in the Figure 2.

In particular, for the systematic risk factors, we observe that the finer the grid, the
more sensitive the SU factors are to the ups and downs of the risk factors. However, it is
clearly visible that the underlying time grid does not change the overall shape of the SU
contributions. As the total surplus is given as the sum of the individual surpluses, these
observations stay true when we look at the insurer’s total surplus (see Figure 3). We note
that the total surplus does not depend on the order of the risk basis.

Figure 3: The total surplus for different time grids

To gain further insight into the effect of the SU grid on surplus decomposition, we focus
on the surplus left when the contract ends. Figure 4 shows the contributed surplus of the
different risk factors at the contract end.

Figure 4: Impact of the time grid on the SU decomposition
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The figure lets us surmise a certain stability of the SU decomposition with respect to the SU
grid. A closer look at the numbers shows that the unsystematic biometric surplus decreases
by 1.6%, while the systematic interest surplus increases by 7.9% and the systematic fund
surplus decreases by 0.01% when moving from an annual to a 4-weekly updating frequency.
The biggest change was in the systematic biometric surplus, which has been reduced by
15.7% due to the refinement of the SU grid.

Different orders of the risk basis
Not only the dependence of SU decompositions on the chosen time grid, but also the
dependence of SU decompositions on the chosen update order of risk factors was a pivotal
motivation for the introduction of the ISU decomposition principle. The applications
in this thesis demonstrated that the ISU decomposition principle can help to overcome
this drawback. However, if SU decompositions are used for approximating the ISU
decomposition, the order dependence has to be taken into account. Therefore, one should
aim for a SU grid that leads to neglectable order effects. In that regard, we have compared
the order impact for the two update orders pN, λ, r, Y q and pY, r, λ, Nq with respect to
the different SU grids (yearly, quarterly, 4-weekly). The relative deviations between the
different orders are presented in Figure 5.

Figure 5: Impact of the update order on the SU decomposition
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For the systematic biometric surplus and the fund surplus, we observe a huge harmonisation
of the SU contributions for the different orders when the time grid is refined. In contrast,
the unsystematic biometric surplus and the systematic risk surplus still show volatility
during the refinement process. Nevertheless, it can be stated that the refinement of the grid
already shows positive effects. For the practical implementation of the ISU decomposition,
it is therefore recommended to first test different grids for the approximation in order to
get a better insight into the volatility of the decomposition.
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6 Conclusion and outlook

At the beginning of the thesis, the relevance of surplus decomposition in traditional life
insurance has been highlighted. Especially, it has been pointed out that although several
surplus decompositions exist in the literature, they are based on heuristic arguments.
The lack of a general decomposition principle has made it difficult to compare and to
extend the existing surplus decompositions. The thesis has remedied this deficiency by
the introduction of the ISU decomposition principle (see Chapter 2). In particular, it
was shown that all existing surplus decomposition formulas can be recovered from the
ISU decomposition principle (see Chapter 3). This not only provides further evidence
for the existing decomposition formulas, but also allows for a systematic comparison of
decomposition formulas derived in separate model frameworks.

Moreover, the clarity and generality of the ISU decomposition principle paves the way
to the inclusion of further risk factors. In an increasingly digital world, the available data,
e.g. collected by wearables, allows for a more accurate risk profile of the policyholder.
To benefit from this, modern life insurance products offer rewards to policyholders who
provide their data and demonstrate a healthy lifestyle. The challenge for the life insurer
is to find a fair reward, that is, to quantify the contribution of a particular policyholder
behaviour to the total surplus. The ISU decomposition principle could also help here, so
the study of ISU decompositions in life modelling frameworks that incorporate behavioural
risks is an appealing task for future research.

In the pursuit of a suitable additive decomposition principle to help with the traditional
surplus decompositions, the idea of SU stood out for its simplicity. Though the SU
decomposition principle is highly regarded in economics literature, it strongly depends on
the chosen update order and the chosen time grid. By pushing the update frequency to
the limit, the ISU decomposition principle presented in this thesis helps to redress these
shortcomings. Furthermore, the infinitesimal approach has also proven to be useful for
the alternative OAT and ASU decomposition principles. For this reason, the thesis has
not only proposed the ISU, IOAT and IASU decomposition principles, but also derived
fundamental results on their relationship. While the underlying decomposition principles
have their roots in economic science, the developed examples have been focused on actuarial
modelling. Therefore, the application of the infinitesimal decomposition principles to the
use cases of the SU, ASU and OAT decompositions principles (see Chapter 2) may be the
subject of future studies (see Jetses & Christiansen, 2022).

Throughout the thesis, it has been stressed that the scope of the ISU decomposition
principle goes far beyond the decomposition of traditional life insurance surplus. This claim
has been supported by the application of the ISU decomposition principle to martingales,
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which has undergirded the great potential of the introduced decomposition approach in risk
management. In particular, the main result in Chapter 4 has shown that the ISU and MRT
decompositions match if the martingale representation exists and the risk basis satisfies
a certain property (M). The verification of the property (M) for a number of examples
that are common in actuarial modelling has provided evidence of its plausibility. However,
the examples only allow for a limited dependency between risk factors. Generalising and
extending the examples provided could be the focus of future research. Especially, the
analysis of competing risks in life insurance has laid the foundation for exploring general
multistate life insurance models.

As already briefly touched in Chapter 4, the underlying probability measure can be
freely selected, which opens up new possibilities. In particular, the proposed switch to
a conservative probability measure raises the question of whether and how martingale
decompositions and traditional surplus decompositions are related to each other. This
question could be likewise the subject of future work. Furthermore, instead of varying the
probability measure, one might consider replacing the expectation operator with another
appropriate risk measure. Follow-up research on the resulting ISU decompositions might
give a valuable contribution in view of risk management.

Despite the many possible applications of the ISU decomposition principle, the actual
use is also a question of numerical feasibility. Using the example of a fund-linked life
insurance, this question has therefore been investigated in Chapter 5 of the thesis. There,
not only integral representations for the SU contributions have been obtained but also a
theoretical framework for approximating conditional expectations and their integrals has
been developed, leveraging from MLMC methods. For both, the approximation of the ISU
decomposition with SU decompositions as well as the approximation of SU contributions
with MLMC methods, convergence results have been derived. However, future research is
needed to analyse the numerical complexity of the approximation and to find error bounds.

The implementation with the statistical software R 4.4.2 (R Core Team, 2024) and the
presentation of the numerical results have demonstrated the numerical feasibility of the
ISU decomposition principle. While the expounded numerical analysis has fixated a single
path, future studies might take the distribution of the SU contributions into account. In
particular, this will shift the research focus more towards the efficiency of the approximation.
Furthermore, the numerical example could be extended to more sophisticated multistate
models, but this first requires a proof of the property (M) to obtain the convergence of the
ISU decomposition (see above).

This thesis has introduced the ISU decomposition principle in such a general manner
that its application is conceivable whenever an output needs to be decomposed additively
and time-dynamically with respect to its input factors. The derived ISU decompositions of
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life insurance surplus processes have already proven its added value, but the wide range of
applications remains to be explored.
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Appendix

A.1 Proof of the SU decomposition in the time-discrete case

In the setting of Example 3.6, the functional H in (3.13) takes the form

HpΦ, Λad, Λasq �
Ţ

l�0
e�

³l
0 ϕpuqdu

lpxbl �
Ţ

l�1
e�

³l
0 ϕpuqdu

l�1pxpqx�ldl � rx�lslq

Furthermore, for the risk basis X � pΦ�Φ�, Λad �Λ�
ad, Λas �Λ�

asq, the mapping ϱ is given
by ϱpXtq � �HppΦ�, Λ�

ad, Λ�
asq �Xtq. We prove the three equations consecutively.

i) We have that

Upk � 1, k, kq � Upk, k, kq

� ϱpΦk�1, Λk
ad, Λk

asq � ϱpΦk, Λk
ad, Λk

asq

� e�
³k�1
0 ϕpuq du

kpxpp1� ikqV
�

a pkq � p�x�k bk�1 � q�x�k dk�1 � r�x�k sk�1q

� e�
³k�1
0 ϕpuq du

kpxp�x�k V �
a pk � 1q

Since

� p�x�k bk�1 � q�x�k dk�1 � r�x�k sk�1 � p�x�k V �
a pk � 1q � �p1� i�kqV

�
a pkq,

we get the first equation.

ii) With similar calculations as in i) we get

Upk � 1, k � 1, kq � Upk, k, kq

� ϱpΦk�1, Λk�1
ad , Λk

asq � ϱpΦk, Λk
ad, Λk

asq

� �e�
³k�1
0 ϕpuq du

kpxpp1� qx�k � r�x�kqbk�1 � qx�k dk�1 � r�x�k sk�1q

� e�
³k�1
0 ϕpuq du

kpxp1� qx�k � r�x�kqV
�

a pk � 1q � e�
³k
0 ϕpuqdu

kpx V �
a pkq

� e�
³k�1
0 ϕpuqdu

kpxpVapk � 1�q � dk�1qpqx�k � q�x�kq

� e�
³k�1
0 ϕpuq du

kpx V �
a pkq

�
ik � i�k

�
The second equality follows then by substracting Upk � 1, k, kq � Upk, k, kq (see i))
from Upk � 1, k � 1, kq � Upk, k, kq.

iii) For the third equality, we can use the results from i) and ii) to obtain

Upk � 1, k � 1, k � 1q � Upk � 1, k � 1, kq

� Rpk � 1q �Rpkq

� pUpk � 1, k � 1, kq � Upk � 1, k, kqq � pUpk � 1, k, kq � Upk, k, kqq

� e�
³k�1
0 ϕpuq du

kpx

�
V �

a pk � 1�q � sk�1
� �

rx�k � r�x�k

�
.
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A.2 Technical results

Analogously to Λ�
M , let ΛM denote the matrix-valued process ΛM � pΛjkqjk with

Λjj :� �
°

k:k�j Λjk, and define Λ1
M likewise.

Lemma A.2.1. Let pΦ, Λq be a valuation basis.

a) Let κ be the solution of the stochastic differential dκptq � κpt�qdΦptq with κp0q � 1.

Then it holds that

d
�

1
κptq



� �

1
κpt�q

drΦptq,
where rΦptq � Φptq � rΦ, Φscptq �

°
0 s¤tp1�∆Φpsqq�1p∆Φpsqq2.

b) Let pps, tq be the solution of the matrix-valued stochastic differential equation pps, dtq �

pps, t�qdΛM ptq with pps, sq � I. Assume that pI � ∆ΛM ptqq�1 exists for all t ¡ 0.

Then pps, tq is invertible, and the inverse qps, tq solves the SDE

qps, dtq � �pdGptqqqps, t�q � �pdΛM ptqqqps, tq,

where Gptq � ΛM ptq �
°

0 s¤tp∆ΛM psqq2pI �∆ΛM psqq�1.

Proof. a) Due to the properties of a valuation basis, rΦ is a well-defined semimartingale.
Thus, with Theorem V.10.63 of Protter (2005), the assertion follows.

b) For applying Theorem V.10.63 of Protter (2005) later again, we firstly have to show
that G is a well-defined semimartingale. Since Λ is a càdlàg finite variation process,
it suffices to show p

°
0 s¤tp∆ΛM psqq2pI �∆ΛM psqq�1qjk   8 for all t ¡ 0 and j, k.

Let } � }, defined by }A} � n � maxj,k |ajk| for a matrix A � pajkqjk P Rn�n, denote
the maximum norm on Rn�n. If }∆ΛM ptq} ¤ 1{2, then it holds

}pI �∆ΛM ptqq�1} ¤
1

1� }∆ΛM ptq}
¤ 2,

see for example Werner (2018, Theorem II.1.12). Using this upper bound, the
subadditity and the submultiplicity of the norm, we get���� ¸

0 s¤t

p∆ΛM psqq2pI �∆ΛM psqq�1
����

¤
¸

0 s¤t
}ΛM psq}¡1{2

����p∆ΛM psqq2pI �∆ΛM psqq�1
����� ¸

0 s¤t
}ΛM psq}¤1{2

����p∆ΛM psqq2pI �∆ΛM psqq�1
����

¤
¸

0 s¤t
}ΛM psq}¡1{2

����p∆ΛM psqq2pI �∆ΛM psqq�1
����� ¸

0 s¤t
}ΛM psq}¤1{2

����∆ΛM psq

����.
The first sum in the latter expression is finite, since }∆ΛM psq} ¡ 1{2 occurs only for
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finitely many s P r0, ts. For the second term, observe that¸
0 s¤t

}ΛM psq} ¤
¸
j,k

¸
0 s¤t

|∆Λjkpsq|   8,

on account of the fact that Λ is a finite variation process. Thus, G is a well-defined
semimartingale.

For a matrix-valued semimartingale Z, let EpZq denote the (matrix-valued) exponen-
tial of Z and let ERpZq denote the (matrix-valued) right-stochastic exponential of Z

(see Protter, 2005, Chapter V). By applying Theorem V.10.63 of Protter (2005), we
get

EpF qptqERpΛJ
M qptq � I

for F ptq � �ΛJ
M ptq �

°
0 s¤tpI � ∆ΛJ

M psqq�1p∆ΛJ
M psqq2. Because of ERpZq �

EpZJqJ and FJ � �G, the latter equation is equivalent to

EpΛM qptqERp�Gqptq � I,

which proves the first equation of the assertion. In particular, we verified that
qps, tq � qps, t�q � �p∆Gptqqqps, t�q, which implies that

�p∆ΛM ptqqqps, tq � �p∆ΛM ptqqqps, t�q � p∆ΛM ptqqp∆Gptqqqps, t�q

� �∆ΛM ptqqpI�∆Gptqqqps, t�q

� �p∆Gptqqqps, t�q.

Thus, the second equation of the assertion is also true.

Lemma A.2.2. Let pΦ1, pΛ1
jkqjk:j�kq, pΦ, pΛjkqjk:j�kq be valuation bases.

a) Let dκ1ptq � κ1pt�qdΦ1ptq with κ1p0q � 1 and dκptq � κpt�qdΦptq with κ1p0q � 1.

Then it holds that

d
�

κ1ptq

κptq



�

κ1pt�q

κpt�q

�
dΦ1 � drΦptq � drΦ1, rΦsptq	,

where rΦptq � Φptq � rΦ, Φscptq �
°

0 s¤tp1�∆Φpsqq�1p∆Φpsqq2.

b) Let p1ps, dtq � p1ps, t�qdΛ1
M ptq with p1ps, sq � I and pps, dtq � pps, t�qdΛM ptq with

pps, sq � I. Suppose that pps, tq is invertible with inverse qps, tq. Then it holds that

dt

�
p1ps, tqqps, tq

�
� p1ps, t�qdpΛ1

M � ΛM qptqqps, tq.
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Proof. a) Integration by parts (Protter, 2005, Corollary II.6.2) and Lemma A.2.1a) yield

d
�

κ1ptq

κptq



� κ1pt�qd

�
1

κptq



�

1
κpt�q

dκ1ptq � d
�

1
κ

, κ1
�
ptq

� �
κ1pt�q

κpt�q
drΦptq � κ1pt�q

κpt�q
dΦ1ptq �

κ1pt�q

κpt�q
drrΦ, Φ1sptq.

b) Integration by parts (Protter, 2005, Corollary II.6.2) and Lemma A.2.1b) yield

dt

�
p1ps, tqqps, tq

�
� p1ps, t�qqps, dtq � p1ps, dtqqps, t�q � d

�
p1ps, �q, qps, �q

�
ptq

� �p1ps, t�qpdΛM ptqqqps, tq � p1ps, t�qpdΛ1
M ptqqqps, tq

� p1ps, t�qdpΛ1
M � ΛM qptqqps, tq.

Lemma A.2.3. Let ξ be a GT -measurable, square-integrable random variable and let

xMi, Mjy � 0, i � j. Suppose there exists a martingale representation

ξ � Erξ|G0s �
m̧

i�1

» t

0
HipsqdMipsq

for G-predictable integrands Hi, i � 1, . . . , m. Then the integrands Hi are almost surely

unique with respect to Pb xMi, Miy. Furthermore, it holds

E
�» t

0
H2

i puqdxMi, Miypuq

�
  8, t P r0, T s.

Proof. The proof follows the ideas from Schilling et al. (2020, Proposition 3.5). Suppose
there exist G-predictable integrands Hi, rHi, i � 1, . . . , m, such that

ξ � Erξ|G0s �
m̧

i�1

» t

0
HipsqdMipsq �

m̧

i�1

» t

0
rHipsqdMipsq. (A.1)

With the Itô isometry, we get

0 � E

��� m̧

i�1

» t

0
pHi � rHiqpsqdMipsq

�2
�� �

m̧

i�1
E
�» t

0
ppHi � rHiqpsqq

2dxMi, Miypsq

�
.

This implies Hi � rHi almost surely with respect to PbxMi, Miy. Again, with Itô’s isometry
and the square-integrability of ξ, we also have

Erpξ � Erξ|G0sq
2s �

m̧

i�1
E
�» t

0
Hipsq

2dxMi, Miypsq

�
  8.
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A.3 Numerical example - analysis of SU contributions

In the following, we calculate the conditional expectations

Erξi|GJ
tk,tk�1s, i � 1, . . . , 4, (A.2)

for grid points tk, tk�1 P T and subsets J � t1, . . . , mu. The increments then lead us to
the contributions of the SU decomposition. Recall from Section 4.1 the definition of the
filtrations G, GJ and the family of sub-σ-algebras pGJ

s,tqs,t, which refer to the entire risk
basis X � pN, λ, r, Y q. Furthermore, for a subset J � tλ, r, Y u, the filtrations H, HJ and
the family of sub-σ-algebras pHJ

s,tqs,t refer to the systematic risks Θ � pλ, r, Y q. To derive
the integral representations for the SU decompositions, we need to separate the different
risk factors from each other. Therefore, we need the following two lemmas.

Lemma A.3.1. Let J � tN, λ, r, Y u and tk, tk�1 P T . For an integrable random variable

Z P HT , it holds

ErZ|GJ
tk,tk�1s � ErZ|H rJ

tk,tk�1s,

where rJ � JztNu.

Proof. The result follows from Lemma 4.15, the fact that πλ � T and Proposition 13 pivq
of Rao and Swift (2006, Chapter 3).

The previous lemma enables us to separate the unsystematic risk from the systematic risk
drivers. The next next lemma will allow us to divide the systematic risks.

Lemma A.3.2. Let J � tλ, r, Y u and tk, tk�1 P T , then it holds

pFλ
T KK Fr

T KK FY
T q|HJ

tk,tk�1 .

In particular, if Z1 P Fλ
T , Z2 P Fr

T and Z3 P FY
T and their product are integrable random

variables, then the equality

ErZ1Z2Z3|HJ
tk,tk�1s � ErZ1|HJ

tk,tk�1sErZ2|HJ
tk,tk�1sErZ3|HJ

tk,tk�1s

is true.

Proof. First, we show that Hλ
T KK Hr,Y

T |HJ
tk,tk�1 . Without loss of generality, we assume

that λ P J , otherwise the arguments are the same with Fλ
tk�1 substituted by Fλ

tk
. With

Rao and Swift (2006, Chapter 3, Proposition 13), it is sufficient to demonstrate

PpBλ|HJ
tk,tk�1 _Hr,Y

T q � PpB|HJ
tk,tk�1q, Bλ P Fλ

T . (A.3)

Now, together with the independence of λ, r and Y , the Proposition 10.5.9 (9) of Zitkovic
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(2015) helps us to derive

PpB|HJ
tk,tk�1 _Hr,Y

T q � PpB|Fλ
tk�1q � PpB|HJ

tk,tk�1q,

which proves (A.3). Following the same steps, one can also show Hr
T KK HY

T |HJ
tk,tk�1 .

In total, we get

PpBλ XBr XBY |HJ
tk,tk�1q � PpBλ|HJ

tk,tk�1qPpBr XBY |HJ
tk,tk�1q

� PpBλ|HJ
tk,tk�1qPpBr|HJ

tk,tk�1qPpBY |HJ
tk,tk�1q,

which yields the assertion. The second part follows from standard arguments like the
approximation of non-negative random variables with increasing simple random variables,
the application of the monotone convergence theorem and the representation of general
random variables as the difference of non-negative random variables (see e.g. Klenke, 2020,
Proof of Theorem 5.4).

Lemma A.3.3. Let J � tλ, r, Y u, J � J Y tNu and tk, tk�1 P T . Suppose Z is a

continuous F-adapted process with

sup
ωPΩ,sPrtk,tk�1s

|Zpsq|   8.

Then it holds

E
�» tk�1

tk

ZpsqdNpsq

����GJ
tk,tk�1

�
�

» tk�1

tk

ErZpsq|GJ
tk,tk�1sdNpsq.

Proof. Since N is a finite variation process and Z has continuous paths, we can interpret
the integral in the Riemann-Stieltjes sense (see Ter Horst, 1984, Theorem C). Thus, let
pPnqn denote a vanishing sequence of partitions on rtk, tk�1s, such that it almost surely
holds

lim
nÑ8

¸
sj ,sj�1PPn

ZpsjqpNpsj�1q �Npsjqq �

» tk�1

tk

ZpsqdNpsq

Let m :� maxsPrtk,tk�1s |Zpsq|   8, then we almost surely have���� ¸
sj ,sj�1PPn

ZpsjqpNpsj�1q �Npsjqq

���� ¤ m
¸

sj ,sj�1PPn

|Npsj�1q �Npsjq| ¤ m.

Consequently, we can apply the dominated convergence theorem to get

E
�» tk�1

tk

ZpsqdNpsq

����GJ
tk,tk�1

�
� E

�� lim
nÑ8

¸
sj ,sj�1PPn

ZpsjqpNpsj�1q �Npsjqq

����GJ
tk,tk�1

��
� lim

nÑ8
E

�� ¸
sj ,sj�1PPn

ZpsjqpNpsj�1q �Npsjqq

����GJ
tk,tk�1

��
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� lim
nÑ8

¸
sj ,sj�1PPn

ErZpsjq|GJ
tk,tk�1spNpsj�1q �Npsjqq

�

» tk�1

tk

ErZpsq|GJ
tk,tk�1sdNpsq,

where the latter equality uses supωPΩ,sPrtk,tk�1s |Zpsq|   8 to derive the continuity of
s ÞÑ ErZpsq|GJ

tk,tk�1s.

For both orders, pN, λ, r, Y q and pY, r, λ, Nq, we simplify the conditional expectations (A.2)
by investigating the different claim components one after the other. The main tools will be
Lemma A.3.1, Lemma A.3.2 and the martingale property of MN with respect to G, where
G � pGtqt¥0 is the filtration given by Gt � FΘ

T _ FN
t (see Subsection 4.2.5). The death

cover claim will further require the application of Lemma A.3.3. For a better readability
we avoid repeating the arguments in every line.

A.3.1 Analysis of conditional expectations for the order tN, λ, r, Y u

Savings account (i � 1):
For J � H and tk   γ, it holds

E
�
Ipγqvp0, γqV pγq

��GJ
tk,tk�1

�
� Iptkqvp0, tkqE

�
paaptk, γqvptk, γqV pγq

��Gtk

�
� Iptkqvp0, tkqE

�
paaptk, γqvptk, γqV pγq

��Htk

�
� Iptkqvp0, tkqp

Eptk, γqvEptk, γqV Eptk, γq.

For J � tNu and tk   γ, it holds

E
�
Ipγqvp0, γqV pγq

��GJ
tk,tk�1

�
� Iptk�1qvp0, tkqE

�
paaptk�1, γqvptk, γqV pγq

��GJ
tk,tk�1

�
� Iptk�1qvp0, tkqE

�
paaptk�1, γqvptk, γqV pγq

��HJ
tk,tk�1

�
� Iptk�1qvp0, tkqp

E
�ptk, γqvEptk, γqV Eptk, γq.

For J � tN, λu and tk   γ, it holds

E
�
Ipγqvp0, γqV pγq

��GJ
tk,tk�1

�
� Iptk�1qvp0, tkqE

�
paaptk�1, γqvptk, γqV ptk, γq

��GJ
tk,tk�1

�
� Iptk�1qvp0, tkqE

�
paaptk�1, γqvptk, γqV pγq

��HJ
tk,tk�1

�
� Iptk�1qvp0, tkqp

Eptk�1, γqvEptk, γqV Eptk, γq.

For J � tN, λ, ru and tk   γ, it holds

E
�
Ipγqvp0, γqV pγq

��GJ
tk,tk�1

�
� Iptk�1qvp0, tkqE

�
paaptk�1, γqvptk, γqV pγq

��GJ
tk,tk�1

�
� Iptk�1qvp0, tkqE

�
paaptk�1, γqvptk�1, γqV pγq

��HJ
tk,tk�1

�
� Iptk�1qvp0, tk�1qp

Eptk�1, γqvEptk�1, γqV Eptk, γq.
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Death cover (i=2):
For J � H and tk   γ, it holds

E
�» γ

0
vp0, sqp1� fdqV psqdNpsq

����GJ
tk,tk�1

�
�

» tk

0
vp0, sqp1� fdqV psqdNpsq � vp0, tkqE

�» γ

tk

vptk, sqp1� fdqV psqIpsqλpsqds

����Gtk

�
.

The second term can be further simplied via

vp0, tkqE
�» γ

tk

vptk, sqp1� fdqV psqpaaptk, sqλpsqds

����Gtk

�
� vp0, tkqE

�» γ

tk

vptk, sqp1� fdqV psqpaaptk, sqλpsqds

����Gtk

�
� vp0, tkq

» γ

tk

vEptk, sqp1� fdqV
Eptk, sqpEλptk, sqds.

Thus, we get

E
�» γ

0
vp0, sqp1� fdqV psqdNpsq

����GJ
tk,tk�1

�
�

» tk

0
vp0, sqp1� fdqV psqdNpsq � vp0, tkq

» γ

tk

vEptk, sqp1� fdqV
Eptk, sqpEλptk, sqds.

For J � tNu and tk   γ, it holds

E
�» γ

0
vp0, sqp1� fdqV psqdNpsq

����GJ
tk,tk�1

�
�

» tk

0
vp0, sqp1� fdqV psqdNpsq � vp0, tkq

» tk�1

tk

E
�
vptk, sqp1� fdqV psq

��HJ
tk,tk�1

�
dNpsq

� vp0, tkqE

�» γ

tk�1

vptk, sqp1� fdqV psqpaaptk�1, sqλpsqds

����GJ
tk,tk�1

�

�

» tk

0
vp0, sqp1� fdqV psqdNpsq � vp0, tkq

» tk�1

tk

vEptk, sqp1� fdqV
Eptk, sqdNpsq

� vp0, tkqIptkq

» γ

tk�1

vEptk, sqp1� fdqV
EpsqpEλ,�ptk, sqds

For J � tN, λu and tk   γ, one shows analogously

E
�» γ

0
vp0, sqp1� fdqV psqdNpsq

����GJ
tk,tk�1

�
�

» tk

0
vp0, sqp1� fdqV psqdNpsq � vp0, tkq

» tk�1

tk

vEptk, sqp1� fdqV
Eptk, sqdNpsq

� vp0, tkqIptkq

» γ

tk�1

vEptk, sqp1� fdqV
EpsqpEλptk�1, sqds
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For J � tN, λ, ru and tk   γ, it follows

E
�» γ

0
vp0, sqp1� fdqV psqdNpsq

����GJ
tk,tk�1

�
�

» tk

0
vp0, sqp1� fdqV psqdNpsq �

» tk�1

tk

vp0, sqp1� fdqV
Eptk, sqdNpsq

� vp0, tk�1qIptkq

» γ

tk�1

vEptk�1, sqp1� fdqV
EpsqpEλptk�1, sqds

Guaranteed pension period (i=3):
We need to distinguish between tk   γ and tk ¥ γ.
For J � H and tk   γ, it holds

E
�
�Ipγq

» γ�10

γ
vp0, sqfpV pγqds

����GJ
tk,tk�1

�
� vp0, tkqIptkqE

�
�paaptk, γq

» γ�10

γ
vptk, sqfpV pγqds

����Gtk

�
� �vp0, tkqIptkqp

Eptk, γq

» γ�10

γ
vEptk, sqfpV Eptk, γqds.

For J � H and tk ¥ γ, it holds

E
�
�Ipγq

» γ�10

γ
vp0, sqfpV pγqds

����GJ
tk,tk�1

�
� �vp0, tkqIpγq

» tk

γ
vp0, sqfpV pγqds� Ipγqvp0, tkq

» γ�10

tk

vEptk, sqfpV pγqds.

For J � tNu and tk   γ, it holds

E
�
�Ipγq

» γ�10

γ
vp0, sqfpV pγqds

����GJ
tk,tk�1

�
� vp0, tkqIptk�1qE

�
�paaptk�1, γq

» γ�10

γ
vptk, sqfpV pγqds

����GJ
tk,tk�1

�
� �vp0, tkqIptk�1qp

E
�ptk, γq

» γ�10

γ
vEptk, sqfpV Eptk, γqds.

For J � tNu and tk ¥ γ, it holds

E
�
�Ipγq

» γ�10

γ
vp0, sqfpV pγqds

����GJ
tk,tk�1

�
� �Ipγq

» tk

γ
vp0, sqfpV pγqds� Ipγqvp0, tkq

» γ�10

tk

vEptk, sqfpV pγqds

For J � tN, λu and tk   γ, one shows analogously

E
�
�Ipγq

» γ�10

γ
vp0, sqfpV pγqds

����GJ
tk,tk�1

�
� �vp0, tkqIptk�1qp

Eptk�1, γq

» γ�10

γ
vEptk, sqfpV Eptk, γqds.

113



For J � tN, λu and tk ¥ γ, one shows analogously

E
�
�Ipγq

» γ�10

γ
vp0, sqfpV pγqds

����GJ
tk,tk�1

�
� �Ipγq

» tk

γ
vp0, sqfpV pγqds� Ipγqvp0, tkq

» γ�10

tk

vEptk, sqfpV pγqds

For J � tN, λ, ru and tk   γ, it follows

E
�
�Ipγq

» γ�10

γ
vp0, sqfpV pγqds

����GJ
tk,tk�1

�
� �vp0, tk�1qIptk�1qp

Eptk�1, γq

» γ�10

γ
vEptk�1, sqfpV Eptk, γqds.

For J � tN, λ, ru and tk ¥ γ, it follows

E
�
�Ipγq

» γ�10

γ
vp0, sqfpV pγqds

����GJ
tk,tk�1

�
� �Ipγq

» tk�1

γ
vp0, sqfpV pγqds� Ipγqvp0, tk�1q

» γ�10

tk�1

vEptk�1, sqfpV pγqds.

Pension cover (i=4):
We need to distinguish between tk   γ � 10 and tk ¥ γ � 10.
For J � H and tk   γ � 10, it holds

E
�
�

» T

γ�10
Ipsqvp0, sqfpV pγqds

����GJ
tk,tk�1

�
� Iptkqvp0, tkqE

�
�

» T

γ�10
paaptk, sqvptk, sqfpV pγqds

����Gtk

�
� �Iptkqvp0, tkq

» T

γ�10
pEptk, sqvEptk, sqfpV Eptk, γqds.

For J � H and tk ¥ γ � 10, it holds

E
�
�

» T

γ�10
Ipsqvp0, sqfpV pγqds

����GJ
tk,tk�1

�
� �

» tk

γ�10
Ipsqvp0, sqfpV pγqds� Iptkqvp0, tkqE

�
�

» T

tk

paaptk, sqvptk, sqfpV pγqds

����Gtk

�
� �

» tk

γ�10
Ipsqvp0, sqfpV pγqds� Iptkqvp0, tkq

» T

tk

pEptk, sqvEptk, sqfpV pγqds.

For J � tNu and tk   γ � 10, it holds

E
�
�

» T

γ�10
Ipsqvp0, sqfpV pγqds

����GJ
tk,tk�1

�
� Iptk�1qvp0, tkqE

�
�

» T

γ�10
paaptk�1, sqvptk, sqfpV pγqds

����GJ
tk,tk�1

�
� �Iptk�1qvp0, tkq

» T

γ�10
pE�ptk, sqvEptk, sqfpV Eptk, γqds.
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For J � tNu and tk ¥ γ � 10, it holds

E
�
�

» T

γ�10
Ipsqvp0, sqfpV pγqds

����GJ
tk,tk�1

�
� �

» tk

γ�10
Ipsqvp0, sqfpV pγqds� vp0, tkqE

�» tk�1

tk

Ipsqvptk, sqfpV pγqds

����GJ
tk,tk�1

�
� Iptk�1qvp0, tkqE

�» T

tk�1

paaptk�1, sqvptk, sqfpV pγqds

����GJ
tk,tk�1

�

� �

» tk

γ�10
Ipsqvp0, sqfpV pγqds� vp0, tkq

» tk�1

tk

IpsqvEptk, sqfpV pγqds

� Iptk�1qvp0, tkq

» T

tk�1

pE�ptk, sqvEptk, sqfpV pγqds.

For J � tN, λu and tk   γ � 10, it holds

E
�
�

» T

γ�10
Ipsqvp0, sqfpV pγqds

����GJ
tk,tk�1

�
� �Iptk�1qvp0, tkq

» T

γ�10
pEptk�1, sqvEptk, sqfpV Eptk, γqds.

For J � tN, λu and tk ¥ γ � 10, it holds

E
�
�

» T

γ�10
Ipsqvp0, sqfpV pγqds

����GJ
tk,tk�1

�
� �

» tk

γ�10
Ipsqvp0, sqfpV pγqds� vp0, tkq

» tk�1

tk

IpsqvEptk, sqfpV pγqds

� Iptk�1qvp0, tkq

» T

tk�1

pEptk�1, sqvEptk, sqfpV pγqds.

For J � tN, λ, ru and tk   γ � 10, it holds

E
�
�

» T

γ�10
Ipsqvp0, sqfpV pγqds

����GJ
tk,tk�1

�
� �Iptk�1qvp0, tk�1q

» T

γ�10
pEptk�1, sqvEptk�1, sqfpV Eptk, γqds.

For J � tN, λ, ru and tk ¥ γ � 10, it holds

E
�
�

» T

γ�10
Ipsqvp0, sqfpV pγqds

����GJ
tk,tk�1

�
� �

» tk�1

γ�10
Ipsqvp0, sqfpV pγqds� Iptk�1qvp0, tk�1q

» T

tk�1

pEptk�1, sqvEptk�1, sqfpV pγqds.
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A.3.2 Analysis of conditional expectations for the order tY, r, λ, Nu

Savings account (i � 1):
For J � H and tk   γ, it holds (see Section A.3.1)

E
�
Ipγqvp0, γqV pγq

��GJ
tk,tk�1

�
� Iptkqvp0, tkqp

Eptk, γqvEptk, γqV Eptk, γq.

For J � tY u and tk   γ, it holds

E
�
Ipγqvp0, γqV pγq

��GJ
tk,tk�1

�
� Iptkqvp0, tkqE

�
paaptk, γqvptk, γqV pγq

��GJ
tk,tk�1

�
� Iptk�1qvp0, tkqE

�
paaptk, γqvptk, γqV pγq

��HJ
tk,tk�1

�
� Iptkqvp0, tkqp

Eptk, γqvEptk, γqV Eptk�1, γq.

For J � tY, ru and tk   γ, it holds

E
�
Ipγqvp0, γqV pγq

��GJ
tk,tk�1

�
� Iptkqvp0, tk�1qE

�
paaptk, γqvptk�1, γqV ptk, γq

��GJ
tk,tk�1

�
� Iptkqvp0, tk�1qE

�
paaptk, γqvptk�1, γqV pγq

��HJ
tk,tk�1

�
� Iptkqvp0, tk�1qp

Eptk, γqvEptk�1, γqV Eptk�1, γq.

For J � tY, r, λu and tk   γ, it holds

E
�
Ipγqvp0, γqV pγq

��GJ
tk,tk�1

�
� Iptkqvp0, tkqE

�
paaptk, γqvptk, γqV pγq

��GJ
tk,tk�1

�
� Iptkqvp0, tk�1qE

�
paaptk, γqvptk�1, γqV pγq

��HJ
tk,tk�1

�
� Iptkqvp0, tk�1qpaaptk, tk�1qp

Eptk�1, γqvEptk�1, γqV Eptk�1, γq.

Death cover (i=2):
For J � H and tk   γ, it holds (see Section A.3.1)

E
�» γ

0
vp0, sqp1� fdqV psqdNpsq

����GJ
tk,tk�1

�
�

» tk

0
vp0, sqp1� fdqV psqdNpsq � vp0, tkqIptkq

» γ

tk

vEptk, sqp1� fdqV
Eptk, sqpEλptk, sqds.

For J � tY u and tk   γ, it holds

E
�» γ

0
vp0, sqp1� fdqV psqdNpsq

����GJ
tk,tk�1

�
�

» tk

0
vp0, sqp1� fdqV psqdNpsq

� vp0, tkqIptkqE
�» tk�1

tk

vptk, sqp1� fdqV psqpaaptk, sqλpsqds

����GJ
tk,tk�1

�
� vp0, tkqIptkqE

�» γ

tk�1

vptk, sqp1� fdqV psqpaaptk, sqλpsqds

����GJ
tk,tk�1

�
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�

» tk

0
vp0, sqp1� fdqV psqdNpsq � vp0, tkqIptkq

» tk�1

tk

vEptk, sqp1� fdqV psqp
E
λptk, sqds

� vp0, tkqIptkq

» γ

tk�1

vEptk, sqp1� fdqV
Eptk�1, sqpEλptk, sqds

For J � tY, ru and tk   γ, one shows analogously

E
�» γ

0
vp0, sqp1� fdqV psqdNpsq

����GJ
tk,tk�1

�
�

» tk

0
vp0, sqp1� fdqV psqdNpsq � Iptkq

» tk�1

tk

vp0, sqp1� fdqV psqp
E
λptk, sqds

� vp0, tk�1qIptkq

» γ

tk�1

vEptk�1, sqp1� fdqV
Eptk�1, sqpEλptk, sqds.

For J � tY, r, λu and tk   γ, it follows

E
�» γ

0
vp0, sqp1� fdqV psqdNpsq

����GJ
tk,tk�1

�
�

» tk

0
vp0, sqp1� fdqV psqdNpsq � Iptkq

» tk�1

tk

vp0, sqp1� fdqV psqpaaptk, sqλpsqds

� vp0, tk�1qIptkqpaaptk, tk�1q

» γ

tk�1

vEptk�1, sqp1� fdqV
Eptk�1, sqpEλptk�1, sqds.

Guaranteed pension period (i=3):
We need to distinguish between tk   γ and tk ¥ γ.
For J � H and tk   γ, it holds (see Section A.3.1)

E
�
�Ipγq

» γ�10

γ
vp0, sqfpV pγqds

����GJ
tk,tk�1

�
� �vp0, tkqIptkqp

Eptk, γq

» γ�10

γ
vEptk, sqfpV Eptk, γqds.

For J � H and tk ¥ γ, it holds (see Section A.3.1)

E
�
�Ipγq

» γ�10

γ
vp0, sqfpV pγqds

����GJ
tk,tk�1

�
� �vp0, tkqIptk�1qp

E
�ptk, γq

» γ�10

γ
vEptk, sqfpV Eptk, γqds.

For J � tY u and tk   γ, it holds

E
�
�Ipγq

» γ�10

γ
vp0, sqfpV pγqds

����GJ
tk,tk�1

�
� �vp0, tkqIptkqp

Eptk, γq

» γ�10

γ
vEptk, sqfpV Eptk�1, γqds.

For J � tY u and tk ¥ γ, it holds

E
�
�Ipγq

» γ�10

γ
vp0, sqfpV pγqds

����GJ
tk,tk�1

�
� �Ipγq

» tk

γ
vp0, sqfpV pγqds� Ipγqvp0, tkq

» γ�10

tk

vEptk, sqfpV pγqds
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For J � tY, ru and tk   γ, one shows analogously

E
�
�Ipγq

» γ�10

γ
vp0, sqfpV pγqds

����GJ
tk,tk�1

�
� �vp0, tk�1qIptkqp

Eptk, γq

» γ�10

γ
vEptk�1, sqfpV Eptk�1, γqds.

For J � tY, ru and tk ¥ γ, one shows analogously

E
�
�Ipγq

» γ�10

γ
vp0, sqfpV pγqds

����GJ
tk,tk�1

�
� �Ipγq

» tk�1

γ
vp0, sqfpV pγqds� Ipγqvp0, tk�1q

» γ�10

tk�1

vEptk�1, sqfpV pγqds

For J � tY, r, λu and tk   γ, it follows

E
�
�Ipγq

» γ�10

γ
vp0, sqfpV pγqds

����GJ
tk,tk�1

�
� �vp0, tk�1qIptkqpaaptk, tk�1qp

Eptk�1, γq

» γ�10

γ
vEptk�1, sqfpV Eptk�1, γqds.

For J � tY, r, λu and tk ¥ γ, it follows

E
�
�Ipγq

» γ�10

γ
vp0, sqfpV pγqds

����GJ
tk,tk�1

�
� �Ipγq

» tk�1

γ
vp0, sqfpV pγqds� Ipγqvp0, tk�1q

» γ�10

tk�1

vEptk�1, sqfpV pγqds.

Pension cover (i=4):
We need to distinguish between tk   γ � 10 and tk ¥ γ � 10.
For J � H and tk   γ � 10, it holds (see Section A.3.1)

E
�
�

» T

γ�10
Ipsqvp0, sqfpV pγqds

����GJ
tk,tk�1

�
� �Iptkqvp0, tkq

» T

γ�10
pEptk, sqvEptk, sqfpV Eptk, γqds.

For J � H and tk ¥ γ � 10, it holds (see Section A.3.1)

E
�
�

» T

γ�10
Ipsqvp0, sqfpV pγqds

����GJ
tk,tk�1

�
� �

» tk

γ�10
Ipsqvp0, sqfpV pγqds� Iptkqvp0, tkq

» T

tk

pEptk, sqvEptk, sqfpV pγqds.

For J � tY u and tk   γ � 10, it holds

E
�
�

» T

γ�10
Ipsqvp0, sqfpV pγqds

����GJ
tk,tk�1

�
� Iptkqvp0, tkqE

�
�

» T

γ�10
paaptk, sqvptk, sqfpV pγqds

����GJ
tk,tk�1

�
� �Iptkqvp0, tkq

» T

γ�10
pEptk, sqvEptk, sqfpV Eptk�1, γqds.
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For J � tY u and tk ¥ γ � 10, it holds

E
�
�

» T

γ�10
Ipsqvp0, sqfpV pγqds

����GJ
tk,tk�1

�
� �

» tk

γ�10
Ipsqvp0, sqfpV pγqds� Iptkqvp0, tkqE

�» T

tk

paaptk, sqvptk, sqfpV pγqds

����GJ
tk,tk�1

�
� �

» tk

γ�10
Ipsqvp0, sqfpV pγqds� Iptkqvp0, tkq

» T

tk

pEptk, sqvEptk, sqfpV pγqds.

For J � tY, ru and tk   γ � 10, it holds

E
�
�

» T

γ�10
Ipsqvp0, sqfpV pγqds

����GJ
tk,tk�1

�
� �Iptkqvp0, tk�1q

» T

γ�10
pEptk, sqvEptk�1, sqfpV Eptk�1, γqds.

For J � tY, ru and tk ¥ γ � 10, it holds

E
�
�

» T

γ�10
Ipsqvp0, sqfpV pγqds

����GJ
tk,tk�1

�
� �

» tk

γ�10
Ipsqvp0, sqfpV pγqds� Iptkq

» tk�1

tk

pEptk, sqvp0, sqfpV pγqds

� Iptkqvp0, tk�1q

» T

tk�1

pEptk, sqvEptk�1, sqfpV pγqds.

For J � tY, r, λu and tk   γ � 10, it holds

E
�
�

» T

γ�10
Ipsqvp0, sqfpV pγqds

����GJ
tk,tk�1

�
� �Iptkqvp0, tk�1qpaaptk, tk�1q

» T

γ�10
pEptk�1, sqvEptk�1, sqfpV Eptk�1, γqds.

For J � tY, r, λu and tk ¥ γ � 10, it holds

E
�
�

» T

γ�10
Ipsqvp0, sqfpV pγqds

����GJ
tk,tk�1

�
� �

» tk

γ�10
Ipsqvp0, sqfpV pγqds� Iptkq

» tk�1

tk

paaptk, sqvp0, sqfpV pγqds

� vp0, tk�1qIptkqpaaptk, tk�1q

» T

tk�1

pEptk�1, sqvEptk�1, sqfpV pγqds.

119



A.3.3 SU decomposition with respect to the order tY, r, λ, Nu

This leads us to the following SU contributions for the order tY, r, λ, Nu, categorised
according to the different risks.

Unsystematic biometric risk

The SU contributions with respect to N are given by

D1
N ptq �

¸
tk,tk�1PT

tk γ

1ttk γuvp0, tk�1q�∆Ipptk, tk�1, γqvEptk�1, γqV Eptk�1, γq,

D2
N ptq �

¸
tk,tk�1PT

tk γ

» tk�1

tk

vp0, sqp1� fdqV psqpdNpsq � Iptkqp
E
λptk, sqdsq

�
¸

tk,tk�1PT
tk γ

vp0, tk�1q

» γ

tk�1

vEptk�1, sqp1� fdqV
Eptk�1, sq�∆Ip

λptk, tk�1, sqds,

D3
N ptq � �

¸
tk,tk�1PT

tk γ

vp0, tk�1q�∆Ipptk, tk�1, γq

» γ�10

γ
vEptk�1, sqfpV Eptk�1, γqds,

D4
N ptq � �

¸
tk,tk�1PT
tk γ�10

vp0, tk�1q

» T

γ�10
�∆Ipptk, tk�1, sqvEptk�1, sqfpV Eptk�1, γqds

�
¸

tk,tk�1PT
tk¥γ�10

vp0, tk�1q

» tk�1

tk

pIpsq � Iptkqpptk, sqqvEptk�1, sqfpV pγqds

�
¸

tk,tk�1PT
tk¥γ�10

vp0, tk�1q

» T

tk�1

�∆Ipptk, tk�1, sqvEptk�1, sqfpV pγqds,

where �∆Ipptk, tk�1, sq � Iptk�1qp
Eptk�1, sq � Iptkqpaaptk, tk�1qp

Eptk�1, sq,

�∆Ip
λptk, tk�1, sq � Iptk�1qp

E
λptk�1, sq � Iptkqpaaptk, tk�1qp

E
λptk�1, sq.

Systematic biometric risk

The SU contributions with respect to λ are given by

D1
λptq �

¸
tk,tk�1PT

tk γ

Iptkqvp0, tk�1q�∆pptk, tk�1, γqvEptk�1, γqV Eptk�1, γq,

D2
λptq �

¸
tk,tk�1PT

tk γ

Iptkqvp0, tk�1q

» γ

tk�1

vEptk�1, sqp1� fdqV
Eptk�1, sq�∆pλptk, tk�1, sqds,

D3
λptq � �

¸
tk,tk�1PT

tk γ

Iptkq�∆pptk, tk�1, γqvp0, tk�1q

» γ�10

γ
vEptk�1, sqfpV Eptk�1, γqds,
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D4
λptq � �

¸
tk,tk�1PT
tk γ�10

Iptkqvp0, tk�1q

» T

γ�10
�∆pptk, tk�1, sqvEptk�1, sqqfpV Eptk�1, γqds

�
¸

tk,tk�1PT
tk¥γ�10

Iptkqvp0, tk�1q

» T

tk�1

�∆pptk, tk�1, sqvEptk�1, sqfpV pγqds,

where �∆pptk, tk�1, sq � paaptk, tk�1qp
Eptk�1, sq � pEptk, sq,

�∆pλptk, tk�1, sq � paaptk, tk�1qp
E
λptk, sq � pEλptk, sq.

Systematic interest risk

The SU contributions with respect to r are given by

D1
rptq �

¸
tk,tk�1PT

tk γ

Iptkqp
Eptk, γq∆vptk, tk�1, γqV Eptk�1, γq,

D2
rptq �

¸
tk,tk�1PT

tk γ

Iptkqvp0, tkq

» tk�1

tk

pvptk, sq � vEptk, sqqp1� fdqV
Eptk�1, sqpEλptk, sqds

�
¸

tk,tk�1PT
tk γ

Iptkq

» γ

tk�1

∆vptk, tk�1, sqp1� fdqV
Eptk�1, sqpEλptk, sqds,

D3
rptq � �

¸
tk,tk�1PT

tk γ

Iptkqp
Eptk, γq

» γ�10

γ
∆vptk, tk�1, sqfpV Eptk�1, γqds

�
¸

tk,tk�1PT
tk¥γ

IpγqfpV pγq

» tk�1

tk

pvp0, sq � vp0, tkqv
Eptk, sqqds

�
¸

tk,tk�1PT
tk¥γ

IpγqfpV pγq

» γ�10

tk�1

∆vptk, tk�1, sqds,

D4
rptq � �

¸
tk,tk�1PT
tk γ�10

Iptkq

» T

γ�10
pEptk, sq∆vptk, tk�1, sqfpV Eptk�1, γqds

�
¸

tk,tk�1PT
tk¥γ�10

» tk�1

tk

Ipsqpvp0, sq � vp0, tkqv
Eptk, sqqfpV pγqds

�
¸

tk,tk�1PT
tk¥γ�10

Iptkq

» T

tk�1

pEptk, sq∆vptk, tk�1, sqfpV pγqds,

where

∆vptk, tk�1, sq � vp0, tk�1qv
Eptk�1, sq � vp0, tkqv

Eptk, sq.
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Systematic fund risk

The SU contributions with respect to Y are given by

D1
Y ptq �

¸
tk,tk�1PT

tk γ

Iptkqp
Eptk, γqvEptk, γq∆V ptk, tk�1, γq,

D2
Y ptq �

¸
tk,tk�1PT

tk γ

Iptkqvp0, tkq

» tk�1

tk

vEptk, sqp1� fdqpV psq � V Eptk, sqqpEλptk, sqds

�
¸

tk,tk�1PT
tk γ

Iptkqvp0, tkq

» γ

tk�1

vEptk, sqp1� fdq∆V ptk, tk�1, sqpEλptk, sqds,

D3
Y ptq � �

¸
tk,tk�1PT

tk γ

Iptkqvp0, tkqp
Eptk, γq

» γ�10

γ
vEptk, sqfp∆V ptk, tk�1, γqds,

D4
Y ptq � �

¸
tk,tk�1PT
tk γ�10

Iptkqvp0, tkq

» T

γ�10
pEptk, sqvEptk, sqfp∆V ptk, tk�1, γqds,

where

∆V ptk, tk�1, sq � V Eptk�1, sq � V Eptk, sq.
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A.4 Numerical example - R code

Within the R code, A represents Q and µ depicts λ.

set.seed(50)

#INITIALIZATION PARAMETERS

T<-55

gamma <-22;

f_p=0.032;

f_d=0.9;

lambda_0<-0.00329542;

mu_lambda <-0.07731571;

sigma_lambda <-0.00012212;

r_0<-0.025;

beta <-0.000199;

mu_r<-0.01;

sigma_r<-0.0035;

Y_0<-100;

mu_Y<-0.06;

sigma_Y<-0.2;

A_0<-100;

a<-3600;

#INITIALIZATION FUNCTIONS

g_lambda <- function(x){

if(x<0){

u<-0

return(u)

} else if(0 <= x & x<=1000){

u<- x

return(u)

} else if(1000<x){

u<- 1000

return(u)

}

}

g_r <- function(x){

if(x< -1000){

u<- -1000

return(u)

} else if(-1000 <=x & x<=1000){
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u<-x

return(u)

} else if(1000<x){

u<- 1000

return(u)

}

}

g_Y <- function(x){

if(x<0.0001){

u<-0.0001

return(u)

} else if(0.0001 <=x){

u<-x

return(u)

}

}

#AUXILIARY FUNCTION

#v is a vector , x is a real number

#returns the position of an entry in an increasing vector , that is

the closest smaller or equal to x

#helps us to relate the integration grid to the grid of mu

nextsmaller <- function(x,v){

o=max(which(v-x<=0));

return(o);

}

#CALCULATION MAIN PATH lambda , r, Y

#GRID MU

h_mu=1;

M_mu=T/h_mu;

I_mu=0:M_mu;

partition_mu=I_mu*h_mu;

#GRID INTEGRAL APPROXIMATION

h_INT=1/52;

M<-T/h_INT;

INT=0:M;

partitionINT=INT*T/M;
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gamma_INT=which(partitionINT ==gamma); #GRID index_MLMC FOR

RETIREMENT

gamma_INT10=which(partitionINT ==gamma+10);

#MAIN PATH - MORTALITY INTENSITY DRIVER lambda AND MORTALITY

INTENSITY mu

increments_lambda=rnorm(M,mean=0,sd=sqrt(T/M));

lambda <-rep(0,M+1);

lambda[1]= lambda_0;

for (i in 2:(M+1)){

lambda[i]= lambda[i-1]+mu_lambda*lambda[i-1]*T/M+sigma_lambda*

increments_lambda[i-1];

}

mu<-rep(0,M+1);

mu[1]= lambda[1];

x<-rep(0,M+1)

for (i in 2:M){

k_mu=min(which(partitionINT[i]-partition_mu<0))-1;

l_mu=min(which(partitionINT == partition_mu[k_mu]))

mu[i]=g_lambda(lambda[l_mu]);

}

mu[M+1]= lambda[M+1];

mu_help=mu[INT %% (h_mu/h_INT)==0]; #MU ON GRID MU

#MAIN PATH - INTEREST INTENSITY r AND DISCOUNT FACTOR v(0,-)

increments_r=rnorm(M,mean=0,sd=sqrt(T/M));

r<-rep(0,M+1);

r[1]=r_0;

for (i in 2:(M+1)){

r[i]=r[i-1]+(beta -mu_r*r[i-1])*T/M+sigma_r*increments_r[i-1];

}

v<-rep(0,M+1);

v[1]=1;

g_r_val <- unlist(lapply(r,g_r), use.names=FALSE)

v[2:(M+1)]<-exp(-T/M*cumsum(g_r_val[1:M]));

#MAIN PATH - MARKET INDEX Y, SHARES HELD A AND DEPOSIT VALUE V

increments_Y=rnorm(M,mean=0,sd=sqrt(T/M));

Y<- Y_0*exp((mu_Y-sigma_Y^2/2)*partitionINT+sigma_Y*c(0,cumsum(

increments_Y)));
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g_Y_val <- unlist(lapply(Y,g_Y), use.names=FALSE)

A<- c(A_0, A_0+cumsum(a/g_Y_val[1:M]*T/M));

V<-A*g_Y_val;

#MAIN PATH - SURVIVAL PROBABILITIES

p<-matrix(0,M+1,M+1);

for(k in 1:M){

p[k,k]=1;

p[k,(k+1):(M+1)]=exp(-cumsum(mu[k:M]*T/M));

}

p[M+1,M+1]=1;

#MAIN PATH - INDICATOR FUNCTION

Ind <-rep(0,M+1);

Ind[1]=1;

rn<-runif(M);

run <-1;

while(run <(M+1)& 0 <= rn[run] & rn[run]<= exp(-mu[run]*T/M) & Ind[

run]==1){

run=run+1;

Ind[run]=1;

}

#INTRODUCTION MLMC ESTIMATORS

#MLMC estimator p and p_mu

mlmc_p<-function(n,j,start_val){

I=0:n;

partitionSU=I*T/n;

start_INT=which(partitionINT == partitionSU[j]);

exp_p=0

exp_pm=0

for (l in 1:(L+1)){

exp_p_lvl=0

exp_pm_lvl=0

hl0=2^(-l+2)*h_MLMC; #step width MLMC previous level

hl1=2^(-l+1)*h_MLMC; #step width MLMC this level

int0=round((T-partitionSU[j])/hl0,1);

I_MLMC0=1:(int0+1);

int1=round((T-partitionSU[j])/hl1,1);

I_MLMC1=1:(int1+1);
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partitionMLMC0=partitionSU[j]+hl0*(I_MLMC0-1); #MLMC grid

previous level

partitionMLMC1=partitionSU[j]+hl1*(I_MLMC1-1); #MLMC grid next

level

I_MLMC_mu0=I_MLMC0[round(partitionMLMC0,6) %% h_mu == 0]; #

relate MLMC grid to mu grid

I_MLMC_mu1=I_MLMC1[round(partitionMLMC1,6) %% h_mu == 0];#relate

MLMC grid to mu grid

if(partitionSU[j]%%h_mu==0){ #if starting point is on mu grid ,

we omit the first index_MLMC

index_MLMC=I_MLMC_mu1[2]

I_MLMC_mu0=I_MLMC_mu0[2:length(I_MLMC_mu0)]

I_MLMC_mu1=I_MLMC_mu1[2:length(I_MLMC_mu1)]

}else{

index_MLMC=I_MLMC_mu1[1]

I_MLMC_mu0=I_MLMC_mu0[1:length(I_MLMC_mu0)]

I_MLMC_mu1=I_MLMC_mu1[1:length(I_MLMC_mu1)]

}

mu_grid_INT=unlist(lapply(partitionINT ,nextsmaller ,v=partition_

mu)); #helps to duplicate values for mu on integration grid

index_INT=which(partitionINT == partitionMLMC1[index_MLMC])

numpck=N[l] #number of packages in level l

for (i in (1:numpck)){

lambda_est0<-matrix(0,pck ,int0+1)

lambda_est0[,1]<-rep(start_val ,pck)

lambda_est1<-matrix(0,pck ,int1+1)

lambda_est1[,1]<-rep(start_val ,pck)

mu_shift0=matrix(0,pck ,M_mu+1);

mu_shift1=matrix(0,pck ,M_mu+1);

if (l==1) {

MLMC_incr_lambda=matrix(rnorm(int1*pck ,mean=0,sd=sqrt(hl1

)),nrow=pck , byrow=TRUE)

for (k in 2:(int1+1)){

lambda_est1[,k]= lambda_est1[,k-1]+mu_lambda*lambda_est1[,

k-1]*hl1+sigma_lambda*MLMC_incr_lambda[,k-1]

}

lambda_est_help1=lambda_est1[,I_MLMC_mu1];#estimated

lambda on grid mu

mu_est1<- matrix(sapply(lambda_est_help1,g_lambda), nrow=

pck)

mu_shift1[,(M_mu -length(I_MLMC_mu1)+2):(M_mu+1)]=mu_est1;
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if(index_INT <(M+1)){

p_aa_est1<-cbind(matrix(rep(p[start_INT ,start_INT:index_

INT],pck),nrow=pck ,byrow=TRUE),p[start_INT ,index_INT

]*exp(-t(apply(h_INT*mu_shift1[,mu_grid_INT[index_INT

:M]],1,cumsum))));

p_aa_est1p<-cbind(matrix(rep(p[start_INT ,start_INT:index

_INT]*mu[start_INT:index_INT],pck),nrow=pck , byrow=

TRUE),p[start_INT ,index_INT]*exp(-t(apply(h_INT*mu_

shift1[,mu_grid_INT[index_INT:M]],1,cumsum)))*mu_

shift1[,mu_grid_INT[(index_INT+1):(M+1)]]);

}else{

p_aa_est1<-matrix(rep(p[start_INT ,start_INT:index_INT],

pck),nrow=pck ,byrow=TRUE);

p_aa_est1p<-matrix(rep(p[start_INT ,start_INT:index_INT]*

mu[start_INT:index_INT],pck),nrow=pck ,byrow=TRUE);

}

exp_p_lvl=exp_p_lvl+(1/( numpck*pck))*colSums(p_aa_est1);

exp_pm_lvl=exp_pm_lvl+(1/( numpck*pck))*colSums(p_aa_est1p

);

} else {

MLMC_incr_lambda=matrix(rnorm(int1*pck ,mean=0,sd=sqrt(hl1

)),nrow=pck , byrow=TRUE)

for (k in 2:(int1+1)){

lambda_est1[,k]= lambda_est1[,k-1]+mu_lambda*lambda_est1

[,k-1]*hl1+sigma_lambda*MLMC_incr_lambda[,k-1]

}

lambda_est_help1=lambda_est1[,I_MLMC_mu1];

mu_est1<- matrix(sapply(lambda_est_help1,g_lambda), nrow=

pck)

mu_shift1[,(M_mu -length(I_MLMC_mu1)+2):(M_mu+1)]=mu_est1;

if(index_INT <(M+1)){

p_aa_est1<-cbind(matrix(rep(p[start_INT ,start_INT:index_

INT],pck),nrow=pck ,byrow=TRUE),p[start_INT ,index_INT

]*exp(-t(apply(h_INT*mu_shift1[,mu_grid_INT[index_INT

:M]],1,cumsum))));

p_aa_est1p<-cbind(matrix(rep(p[start_INT ,start_INT:index

_INT]*mu[start_INT:index_INT],pck),nrow=pck , byrow=

TRUE),p[start_INT ,index_INT]*exp(-t(apply(h_INT*mu_

shift1[,mu_grid_INT[index_INT:M]],1,cumsum)))*mu_

shift1[,mu_grid_INT[(index_INT+1):(M+1)]]);

}else{
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p_aa_est1<-matrix(rep(p[start_INT ,start_INT:index_INT],

pck),nrow=pck ,byrow=TRUE);

p_aa_est1p<-matrix(rep(p[start_INT ,start_INT:index_INT]*

mu[start_INT:index_INT],pck),nrow=pck ,byrow=TRUE);

}

for (k in 2:(int0+1)){

lambda_est0[,k]= lambda_est0[,k-1]+mu_lambda*lambda_est0

[,k-1]*hl0+sigma_lambda *( rowSums(MLMC_incr_lambda[,(2

*(k-2)+1):(2*(k-1))]));

}

lambda_est_help0=lambda_est0[,I_MLMC_mu0];

mu_est0<- matrix(sapply(lambda_est_help0,g_lambda), nrow=

pck)

mu_shift0[,(M_mu -length(I_MLMC_mu0)+2):(M_mu+1)]=mu_est0;

if(index_INT <(M+1)){

p_aa_est0<-cbind(matrix(rep(p[start_INT ,start_INT:index_

INT],pck),nrow=pck ,byrow=TRUE),p[start_INT ,index_INT

]*exp(-t(apply(h_INT*mu_shift0[,mu_grid_INT[index_INT

:M]],1,cumsum))));

p_aa_est0p<-cbind(matrix(rep(p[start_INT ,start_INT:index

_INT]*mu[start_INT:index_INT],pck),nrow=pck ,byrow=

TRUE),p[start_INT ,index_INT]*exp(-t(apply(h_INT*mu_

shift0[,mu_grid_INT[index_INT:M]],1,cumsum)))*mu_

shift0[,mu_grid_INT[(index_INT+1):(M+1)]]);

}else{

p_aa_est0<-matrix(rep(p[start_INT ,start_INT:index_INT],

pck),nrow=pck ,byrow=TRUE);

p_aa_est0p<-matrix(rep(p[start_INT ,start_INT:index_INT]*

mu[start_INT:index_INT],pck),nrow=pck ,byrow=TRUE);

}

exp_p_lvl=exp_p_lvl+1/( numpck*pck)*colSums(p_aa_est1-p_aa

_est0)

exp_pm_lvl=exp_pm_lvl+1/( numpck*pck)*colSums(p_aa_est1p-p

_aa_est0p)

}

}

exp_p=exp_p+exp_p_lvl

exp_pm=exp_pm+exp_pm_lvl

}

List <- list("exp_p" = exp_p, "exp_pm"=exp_pm);

return(List);
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}

#MLMC estimator v

mlmc_v<-function(n,j,start_val){

exp_v=0

I=0:n;

partitionSU=I*T/n;

start_INT=which(partitionINT == partitionSU[j]);

for (l in 1:(L+1)){

exp_v_lvl=0

hl0=2^(-l+2)*h_MLMC; #step width MLMC previous level

hl1=2^(-l+1)*h_MLMC; #step width MLMC this level

int0=round((T-partitionSU[j])/hl0,1);

I_help0=1:(int0+1);

int1=round((T-partitionSU[j])/hl1,1);

I_help1=1:(int1+1);

partitionMLMC0=partitionSU[j]+hl0*(I_help0-1);

partitionMLMC1=partitionSU[j]+hl1*(I_help1-1);

z=N[l];

I_MLMC_INT0= (I_help0-1) %% (h_INT/hl0)==0

I_MLMC_INT1= (I_help1-1) %% (h_INT/hl1)==0

for(i in (1:z)){

r_est0<-matrix(0,pck ,int0+1)

r_est0[,1]<-rep(start_val ,pck)

r_est1<-matrix(0,pck ,int1+1)

r_est1[,1]<-rep(start_val ,pck)

if (l==1) {

MC_incr_r=matrix(rnorm(int1*pck ,mean=0,sd=sqrt(hl1)),nrow=pck ,

byrow=TRUE)

for (k in 2:(int1+1)){

r_est1[,k]=r_est1[,k-1]+(beta -mu_r*r_est1[,k-1])*hl1+sigma

_r*MC_incr_r[,k-1]

}

r_est1_help <-r_est1[,I_MLMC_INT1];

bool1<- (r_est1_help >-995 & r_est1_help <995)

if(sum(bool1)<length(r_est1_help)){

g_r_est1<- matrix(sapply(r_est1_help ,g_r), nrow=pck)

} else {

g_r_est1<-r_est1_help

}
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v_est1<-exp(-t(apply(h_INT*g_r_est1[,1:(M-start_INT+1)],1,

cumsum)));

exp_v_lvl=exp_v_lvl+(1/(z*pck))*colSums(v_est1);

} else {

MC_incr_r=matrix(rnorm(int1*pck ,mean=0,sd=sqrt(hl1)),nrow=

pck , byrow=TRUE)

for (k in 2:(int1+1)){

r_est1[,k]=r_est1[,k-1]+(beta -mu_r*r_est1[,k-1])*hl1+sigma

_r*MC_incr_r[,k-1]

}

r_est1_help <-r_est1[,I_MLMC_INT1];

bool1<- (r_est1_help >-995 & r_est1_help <995)

if(sum(bool1)<length(r_est1_help)){

g_r_est1<- matrix(sapply(r_est1_help ,g_r), nrow=pck)

} else {

g_r_est1<-r_est1_help

}

v_est1<-exp(-t(apply(h_INT*g_r_est1[,1:(M-start_INT+1)],1,

cumsum)));

for (k in 2:(int0+1)){

r_est0[,k]=r_est0[,k-1]+(beta -mu_r*r_est0[,k-1])*hl0+

sigma_r*( rowSums(MC_incr_r[,(2*(k-2)+1):(2*(k-1))]));

}

r_est0_help <-r_est0[,I_MLMC_INT0];

bool0<- (r_est0_help >-995 & r_est0_help <995)

if(sum(bool0)<length(r_est0_help)){

g_r_est0<- matrix(sapply(r_est0_help ,g_r), nrow=pck)

} else {

g_r_est0<-r_est0_help

}

v_est0<-exp(-t(apply(h_INT*g_r_est0[,1:(M-start_INT+1)],1,

cumsum)));

exp_v_lvl=exp_v_lvl+1/(z*pck)*colSums(v_est1-v_est0)

}

}

exp_v=exp_v+exp_v_lvl

}

List <- list("exp_v" = exp_v);

return(List);

}
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#MLMC estimator Y

mlmc_Y<-function(n,j,start_val){

exp_Y=0

exp_AY=0

I=0:n;

partitionSU=I*T/n;

start_INT=which(partitionINT == partitionSU[j]);

for (l in 1:(L+1)){

exp_Y_lvl=0

exp_AY_lvl=0

hl0=2^(-l+2)*h_MLMC;

hl1=2^(-l+1)*h_MLMC;

int0=round((gamma -partitionSU[j])/hl0,1);

I_help0=1:(int0+1);

int1=round((gamma -partitionSU[j])/hl1,1);

I_help1=1:(int1+1);

partitionMLMC0=partitionSU[j]+hl0*(I_help0-1);

partitionMLMC1=partitionSU[j]+hl1*(I_help1-1);

z=N[l];

for (i in (1:z)){

Y_est0<-matrix(0,pck ,int0+1)

Y_est0[,1]<-rep(start_val ,pck)

Y_est1<-matrix(0,pck ,int1+1)

Y_est1[,1]<-rep(start_val ,pck)

if (l==1) {

MC_incr_Y=matrix(rnorm(int1*pck ,mean=0,sd=sqrt(hl1)),nrow=pck ,

byrow=TRUE);

for (k in 2:(int1+1)){

Y_est1[,k]=Y_est1[,k-1]+mu_Y*Y_est1[,k-1]*hl1+sigma_Y*Y_

est1[,k-1]*MC_incr_Y[,k-1]

}

Y_est1_INT=Y_est1[,(I_help1-1) %% (h_INT/hl1)==0];

bool1<- (Y_est1_INT >0.01)

if(sum(bool1)<length(Y_est1_INT)){

g_Y_est1_INT <- matrix(sapply(Y_est1_INT ,g_Y), nrow=pck);

} else {

g_Y_est1_INT <- Y_est1_INT

}

A_est1_INT=a*t(apply(1/g_Y_est1_INT[,1:(gamma_INT -start_INT

)]*T/M,1,cumsum));
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exp_Y_lvl=exp_Y_lvl+(1/(z*pck))*colSums(Y_est1_INT[,2:(

gamma_INT -start_INT+1)]);

exp_AY_lvl=exp_AY_lvl+(1/(z*pck))*colSums(A_est1_INT*Y_est1

_INT[,2:(gamma_INT -start_INT+1)]);

} else {

MC_incr_Y=matrix(rnorm(int1*pck ,mean=0,sd=sqrt(hl1)),nrow=

pck , byrow=TRUE);

for (k in 2:(int1+1)){

Y_est1[,k]=Y_est1[,k-1]+mu_Y*Y_est1[,k-1]*hl1+sigma_Y*Y_

est1[,k-1]*MC_incr_Y[,k-1]

}

Y_est1_INT=Y_est1[,(I_help1-1) %% (h_INT/hl1)==0];

bool1<- (Y_est1_INT >0.01)

if(sum(bool1)<length(Y_est1_INT)){

g_Y_est1_INT <- matrix(sapply(Y_est1_INT ,g_Y), nrow=pck);

} else {

g_Y_est1_INT <- Y_est1_INT

}

A_est1_INT=a*t(apply(1/g_Y_est1_INT[,1:(gamma_INT -start_INT

)]*T/M,1,cumsum))

for (k in 2:(int0+1)){

Y_est0[,k]=Y_est0[,k-1]+mu_Y*Y_est0[,k-1]*hl0+sigma_Y*Y_

est0[,k-1]*( rowSums(MC_incr_Y[,(2*(k-2)+1):(2*(k-1))]))

;

}

Y_est0_INT=Y_est0[,(I_help0-1) %% (h_INT/hl0)==0];

bool0<- (Y_est0_INT >0.01)

if(sum(bool0)<length(Y_est0_INT)){

g_Y_est0_INT <- matrix(sapply(Y_est0_INT ,g_Y), nrow=pck);

} else {

g_Y_est0_INT <- Y_est0_INT

}

A_est0_INT=a*t(apply(1/g_Y_est0_INT[,1:(gamma_INT -start_INT

)]*T/M,1,cumsum))

exp_Y_lvl=exp_Y_lvl+1/(z*pck)*colSums(g_Y_est1_INT[,2:(

gamma_INT -start_INT+1)]-g_Y_est0_INT[,2:(gamma_INT -start

_INT+1)]);

exp_AY_lvl=exp_AY_lvl+1/(z*pck)*colSums(A_est1_INT*g_Y_est1

_INT[,2:(gamma_INT -start_INT+1)]-A_est0_INT*g_Y_est0_INT

[,2:(gamma_INT -start_INT+1)]);

}

133



}

exp_Y=exp_Y+exp_Y_lvl

exp_AY=exp_AY+exp_AY_lvl

}

List <- list("exp_Y" = exp_Y, "exp_AY" = exp_AY);

return(List);

}

#INTRODUCTION MLMC FUNCTION

#calculates MLMC estimators for a given SU step width

incr_N=Ind[1:(M)]-Ind[2:(M+1)]; #increments indicator function

Njump=1-Ind; #counting process

MLMC <- function(h_SU){

n=T/h_SU;

I=0:n; #partition initialization SU Decomposition

partitionSU=I*T/n; #initialization partition SU Decomposition

Ind_SU=Ind[INT %% (h_SU/h_INT)==0] #indicator function on SU grid

gamma_SU=which(partitionSU ==gamma);

gamma_SU10=which(partitionSU ==gamma+10);

time_of_death=min(which(Ind_SU==0));

max=max(time_of_death+1,gamma+10)

exp_p=matrix(0,n,M+1);

exp_pm=matrix(0,n,M+1);

exp_forward_p=matrix(0,n,M+1);

exp_forward_pm=matrix(0,n,M+1);

exp_v=matrix(0,n,M+1);

exp_Y=matrix(0,n,gamma_INT);

exp_AY=matrix(0,n,gamma_INT);

for(j in 1:max){

print(paste("SU␣grid␣point", j))

print(Sys.time())

start_INT=which(partitionINT == partitionSU[j]);

start_INT_forward=which(partitionINT == partitionSU[j+1]);

exp_p_help=mlmc_p(n,j, lambda[start_INT]);

exp_p[j,start_INT:(M+1)]=exp_p_help$exp_p;

exp_pm[j,start_INT:(M+1)]=exp_p_help$exp_pm;

if(start_INT_forward <(M+1)){

exp_forward_p[j,start_INT_forward :(M+1)]=1/p[start_INT ,start_INT

_forward ]*exp_p_help$exp_p[(start_INT_forward -start_INT+1):(M

+2-start_INT)];
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exp_forward_pm[j,start_INT_forward :(M+1)]=1/p[start_INT ,start_

INT_forward ]*exp_p_help$exp_pm[( start_INT_forward -start_INT+1

):(M+2-start_INT)];

}else{

exp_forward_p[j,start_INT_forward ]=1;

exp_forward_pm[j,start_INT_forward ]=mu[start_INT_forward ];

}

exp_v[j,start_INT]=1;

exp_v_help=mlmc_v(n,j, r[start_INT]);

exp_v[j,( start_INT+1):(M+1)]=exp_v_help$exp_v;

if(j<gamma_SU){

exp_Y[j,start_INT]=Y[start_INT];

exp_AY[j,start_INT]=0;

exp_Y_help=mlmc_Y(n,j, Y[start_INT]);

exp_Y[j,( start_INT+1):gamma_INT]=exp_Y_help$exp_Y;

exp_AY[j,( start_INT+1):gamma_INT]=exp_Y_help$exp_AY;

} else if(j==gamma_SU){

exp_Y[j,start_INT]=Y[gamma_INT];

}

}

List <- list("exp_p" = exp_p, "exp_forward_p"=exp_forward_p, "exp_

pm"=exp_pm , "exp_forward_pm"=exp_forward_pm , "exp_v"=exp_v, "

exp_AY"=exp_AY , "exp_Y"=exp_Y);

return(List);

}

#INTRODUCTION SU FUNCTIONS

#calculate SU decompositions for different orders in the risk basis

SU1<-function(h_SU ,Exp){

n=T/h_SU;

I=0:n; #partition initialization ISU Decomposition

partitionSU=I*T/n;

D=matrix(0,16,n+1);

gamma_SU=which(partitionSU ==gamma);

gamma_SU10=which(partitionSU ==gamma+10);

exp_p=unlist(Exp$exp_p)

exp_pm=unlist(Exp$exp_pm)

exp_forward_p=unlist(Exp$exp_forward_p)

exp_forward_pm=unlist(Exp$exp_forward_pm)

exp_v=unlist(Exp$exp_v)

exp_AY=unlist(Exp$exp_AY)
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exp_Y=unlist(Exp$exp_Y)

for (j in 2:gamma_SU){

print(j)

b=which(partitionINT == partitionSU[j-1]);

b_f=which(partitionINT == partitionSU[j]);

D[1,j]=D[1,j-1]+v[b]*(Ind[b_f]*exp_forward_p[j-1,gamma_INT]-Ind[b

]*exp_p[j-1,gamma_INT])*exp_v[j-1,gamma_INT]*(exp_AY[j-1,gamma

_INT]+A[b]*exp_Y[j-1,gamma_INT]);

D[2,j]=D[2,j-1]+v[b]*Ind[b_f]*( exp_p[j,gamma_INT]-exp_forward_p[j

-1,gamma_INT])*exp_v[j-1,gamma_INT ]*( exp_AY[j-1,gamma_INT]+A[b

]*exp_Y[j-1,gamma_INT]);

D[3,j]=D[3,j-1]+Ind[b_f]*exp_p[j,gamma_INT ]*(v[b_f]*exp_v[j,gamma

_INT]-v[b]*exp_v[j-1,gamma_INT])*(exp_AY[j-1,gamma_INT]+A[b]*

exp_Y[j-1,gamma_INT]);

D[4,j]=D[4,j-1]+Ind[b_f]*exp_p[j,gamma_INT]*v[b_f]*exp_v[j,gamma_

INT ]*(( exp_AY[j,gamma_INT]+A[b_f]*exp_Y[j,gamma_INT]) -(exp_AY[

j-1,gamma_INT]+A[b]*exp_Y[j-1,gamma_INT]));

D[5,j]=D[5,j-1]+sum(v[b]*exp_v[j-1,b:(b_f-1)]*(1-f_d)*(exp_AY[j-1

,b:(b_f-1)]+A[b]*exp_Y[j-1,b:(b_f-1)])*(incr_N[b:(b_f-1)]-Ind[

b]*p[b,b:(b_f-1)]*mu[b:(b_f-1)]*T/M))+(j<gamma_SU)*sum(v[b]*(

Ind[b_f]*exp_forward_pm[j-1,b_f:(gamma_INT -1)]-Ind[b]*exp_pm[j

-1,b_f:(gamma_INT -1)])*exp_v[j-1,b_f:(gamma_INT -1)]*(1-f_d)*(

exp_AY[j-1,b_f:( gamma_INT -1)]+A[b]*exp_Y[j-1,b_f:(gamma_INT -1)

])*T/M);

D[6,j]=D[6,j-1]+(j<gamma_SU)*sum(v[b]*Ind[b_f]*( exp_pm[j,b_f:(

gamma_INT -1)]-exp_forward_pm[j-1,b_f:(gamma_INT -1)])*exp_v[j-1

,b_f:( gamma_INT -1)]*(1-f_d)*(exp_AY[j-1,b_f:( gamma_INT -1)]+A[b

]*exp_Y[j-1,b_f:( gamma_INT -1)])*T/M);

D[7,j]=D[7,j-1]+sum((v[b:(b_f-1)]-v[b]*exp_v[j-1,b:(b_f-1)])*(1-f

_d)*(exp_AY[j-1,b:(b_f-1)]+A[b]*exp_Y[j-1,b:(b_f-1)])*incr_N[b

:(b_f-1)])+(j<gamma_SU)*sum(Ind[b_f]*exp_pm[j,b_f:( gamma_INT -1

)]*(v[b_f]*exp_v[j,b_f:(gamma_INT -1)]-v[b]*exp_v[j-1,b_f:(

gamma_INT -1)])*(1-f_d)*(exp_AY[j-1,b_f:(gamma_INT -1)]+A[b]*exp

_Y[j-1,b_f:(gamma_INT -1)])*T/M);

D[8,j]=D[8,j-1]+sum(v[b:(b_f-1)]*(1-f_d)*(V[b:(b_f-1)]-(exp_AY[j-

1,b:(b_f-1)]+A[b]*exp_Y[j-1,b:(b_f-1)]))*incr_N[b:(b_f-1)])+(j

<gamma_SU)*sum(Ind[b_f]*exp_pm[j,b_f:(gamma_INT -1)]*v[b_f]*exp

_v[j,b_f:(gamma_INT -1)]*(1-f_d)*((exp_AY[j,b_f:(gamma_INT -1)]+

A[b_f]*exp_Y[j,b_f:(gamma_INT -1)]) -(exp_AY[j-1,b_f:(gamma_INT -

1)]+A[b]*exp_Y[j-1,b_f:(gamma_INT -1)]))*T/M);
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D[9,j]=D[9,j-1]-sum(v[b]*( Ind[b_f]*exp_forward_p[j-1,gamma_INT]-

Ind[b]*exp_p[j-1,gamma_INT])*exp_v[j-1,gamma_INT:(gamma_INT10-

1)]*f_p*(exp_AY[j-1,gamma_INT]+A[b]*exp_Y[j-1,gamma_INT])*T/M)

;

D[10,j]=D[10,j-1]-sum(v[b]*Ind[b_f]*( exp_p[j,gamma_INT]-exp_

forward_p[j-1,gamma_INT])*exp_v[j-1,gamma_INT:(gamma_INT10-1)

]*f_p*(exp_AY[j-1,gamma_INT]+A[b]*exp_Y[j-1,gamma_INT])*T/M);

D[11,j]=D[11,j-1]-sum(Ind[b_f]*exp_p[j,gamma_INT ]*(v[b_f]*exp_v[j

,gamma_INT:(gamma_INT10-1)]-v[b]*exp_v[j-1,gamma_INT:(gamma_

INT10-1)])*f_p*(exp_AY[j-1,gamma_INT]+A[b]*exp_Y[j-1,gamma_INT

])*T/M);

D[12,j]=D[12,j-1]-sum(Ind[b_f]*exp_p[j,gamma_INT]*v[b_f]*exp_v[j,

gamma_INT:(gamma_INT10-1)]*f_p*(( exp_AY[j,gamma_INT]+A[b_f]*

exp_Y[j,gamma_INT]) -(exp_AY[j-1,gamma_INT]+A[b]*exp_Y[j-1,

gamma_INT]))*T/M);

D[13,j]=D[13,j-1]-sum(v[b]*( Ind[b_f]*exp_forward_p[j-1,gamma_INT1

0:M]-Ind[b]*exp_p[j-1,gamma_INT10:M])*exp_v[j-1,gamma_INT10:M

]*f_p*(exp_AY[j-1,gamma_INT]+A[b]*exp_Y[j-1,gamma_INT])*T/M);

D[14,j]=D[14,j-1]-sum(v[b]*Ind[b_f]*( exp_p[j,gamma_INT10:M]-exp_

forward_p[j-1,gamma_INT10:M])*exp_v[j-1,gamma_INT10:M]*f_p*(

exp_AY[j-1,gamma_INT]+A[b]*exp_Y[j-1,gamma_INT])*T/M);

D[15,j]=D[15,j-1]-sum(Ind[b_f]*exp_p[j,gamma_INT10:M]*(v[b_f]*exp

_v[j,gamma_INT10:M]-v[b]*exp_v[j-1,gamma_INT10:M])*f_p*(exp_AY

[j-1,gamma_INT]+A[b]*exp_Y[j-1,gamma_INT])*T/M);

D[16,j]=D[16,j-1]-sum(Ind[b_f]*exp_p[j,gamma_INT10:M]*v[b_f]*exp_

v[j,gamma_INT10:M]*f_p*((exp_AY[j,gamma_INT]+A[b_f]*exp_Y[j,

gamma_INT]) -(exp_AY[j-1,gamma_INT]+A[b]*exp_Y[j-1,gamma_INT]))

*T/M);

}

D[1:8 ,(gamma_SU+1):(n+1)]=rep(D[1:8,gamma_SU],n-gamma_SU+1);

for (j in (gamma_SU+1):gamma_SU10){

print(j)

b=which(partitionINT == partitionSU[j-1]);

b_f=which(partitionINT == partitionSU[j]);

D[9,j]=D[9,j-1];

D[10,j]=D[10,j-1];

D[11,j]=D[11,j-1]-sum(Ind[gamma_INT]*f_p*V[gamma_INT ]*(v[b:(b_f-1

)]-v[b]*exp_v[j-1,b:(b_f-1)])*T/M) -(j<gamma_SU10)*sum(Ind[

gamma_INT]*f_p*V[gamma_INT]*(v[b_f]*exp_v[j,b_f:(gamma_INT10-1

)]-v[b]*exp_v[j-1,b_f:(gamma_INT10-1)])*T/M);

D[12,j]=D[12,j-1];
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D[13,j]=D[13,j-1]-sum(v[b]*( Ind[b_f]*exp_forward_p[j-1,gamma_INT1

0:M]-Ind[b]*exp_p[j-1,gamma_INT10:M])*exp_v[j-1,gamma_INT10:M

]*f_p*V[gamma_INT]*T/M);

D[14,j]=D[14,j-1]-sum(v[b]*Ind[b_f]*( exp_p[j,gamma_INT10:M]-exp_

forward_p[j-1,gamma_INT10:M])*exp_v[j-1,gamma_INT10:M]*f_p*V[

gamma_INT]*T/M);

D[15,j]=D[15,j-1]-sum(Ind[b_f]*exp_p[j,gamma_INT10:M]*(v[b_f]*exp

_v[j,gamma_INT10:M]-v[b]*exp_v[j-1,gamma_INT10:M])*f_p*V[gamma

_INT]*T/M);

D[16,j]=D[16,j-1];

}

D[9:12 ,(gamma_SU10+1):(n+1)]=rep(D[9:12,gamma_SU10],n-gamma_SU10+1

);

for (j in (gamma_SU10+1):n){

print(j)

b=which(partitionINT == partitionSU[j-1]);

b_f=which(partitionINT == partitionSU[j]);

D[13,j]=D[13,j-1]-sum(v[b]*( Ind[b:(b_f-1)]-Ind[b]*p[b,b:(b_f-1)])

*exp_v[j-1,b:(b_f-1)]*f_p*V[gamma_INT]*T/M)-sum(v[b]*( Ind[b_f

]*exp_forward_p[j-1,b_f:M]-Ind[b]*exp_p[j-1,b_f:M])*exp_v[j-1,

b_f:M]*f_p*V[gamma_INT]*T/M);

D[14,j]=D[14,j-1]-sum(v[b]*Ind[b_f]*( exp_p[j,b_f:M]-exp_forward_p

[j-1,b_f:M])*exp_v[j-1,b_f:M]*f_p*V[gamma_INT]*T/M);

D[15,j]=D[15,j-1]-sum((v[b:(b_f-1)]-v[b]*exp_v[j-1,b:(b_f-1)])*

Ind[b:(b_f-1)]*f_p*V[gamma_INT]*T/M)-sum(Ind[b_f]*exp_p[j,b_f:

M]*(v[b_f]*exp_v[j,b_f:M]-v[b]*exp_v[j-1,b_f:M])*f_p*V[gamma_

INT]*T/M);

D[16,j]=D[16,j-1];

}

b=which(partitionINT == partitionSU[n]);

b_f=which(partitionINT == partitionSU[n+1]);

D[13,n+1]=D[13,n]-sum(v[b]*(Ind[b:(b_f-1)]-Ind[b]*p[b,b:(b_f-1)])*

exp_v[n,b:(b_f-1)]*f_p*V[gamma_INT]*T/M);

D[14,n+1]=D[14,n];

D[15,n+1]=D[15,n]-sum((v[b:(b_f-1)]-v[b]*exp_v[n,b:(b_f-1)])*Ind[b

:(b_f-1)]*f_p*V[gamma_INT]*T/M);

D[16,n+1]=D[16,n];

return(D);

}

SU2<-function(h_SU ,Exp){
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n=T/h_SU;

I=0:n; #partition initialization ISU Decomposition

partitionSU=I*T/n;

D=matrix(0,16,n+1);

gamma_SU=which(partitionSU ==gamma);

gamma_SU10=which(partitionSU ==gamma+10);

exp_p=unlist(Exp$exp_p)

exp_pm=unlist(Exp$exp_pm)

exp_forward_p=unlist(Exp$exp_forward_p)

exp_forward_pm=unlist(Exp$exp_forward_pm)

exp_v=unlist(Exp$exp_v)

exp_AY=unlist(Exp$exp_AY)

exp_Y=unlist(Exp$exp_Y)

for (j in 2:gamma_SU){

print(j)

b=which(partitionINT == partitionSU[j-1]);

b_f=which(partitionINT == partitionSU[j]);

D[1,j]=D[1,j-1]+Ind[b]*exp_p[j-1,gamma_INT]*v[b]*exp_v[j-1,gamma_

INT ]*(( exp_AY[j,gamma_INT]+A[b_f]*exp_Y[j,gamma_INT]) -(exp_AY[

j-1,gamma_INT]+A[b]*exp_Y[j-1,gamma_INT]));

D[2,j]=D[2,j-1]+Ind[b]*exp_p[j-1,gamma_INT ]*(v[b_f]*exp_v[j,gamma

_INT]-v[b]*exp_v[j-1,gamma_INT])*(exp_AY[j,gamma_INT]+A[b_f]*

exp_Y[j,gamma_INT]);

D[3,j]=D[3,j-1]+Ind[b]*v[b_f]*(p[b,b_f]*exp_p[j,gamma_INT]-exp_p[

j-1,gamma_INT])*exp_v[j,gamma_INT]*(exp_AY[j,gamma_INT]+A[b_f

]*exp_Y[j,gamma_INT]);

D[4,j]=D[4,j-1]+(Ind[b_f]-Ind[b]*p[b,b_f])*v[b_f]*exp_p[j,gamma_

INT]*exp_v[j,gamma_INT]*(exp_AY[j,gamma_INT]+A[b_f]*exp_Y[j,

gamma_INT]);

D[5,j]=D[5,j-1]+sum(Ind[b]*v[b]*p[b,b:(b_f-1)]*mu[b:(b_f-1)]*exp_

v[j-1,b:(b_f-1)]*(1-f_d)*(V[b:(b_f-1)]-(exp_AY[j-1,b:(b_f-1)]+

A[b]*exp_Y[j-1,b:(b_f-1)]))*T/M)+(j<gamma_SU)*sum(v[b]*Ind[b]*

exp_pm[j-1,b_f:( gamma_INT -1)]*exp_v[j-1,b_f:(gamma_INT -1)]*(1-

f_d)*((exp_AY[j,b_f:(gamma_INT -1)]+A[b_f]*exp_Y[j,b_f:(gamma_

INT -1)]) -(exp_AY[j-1,b_f:( gamma_INT -1)]+A[b]*exp_Y[j-1,b_f:(

gamma_INT -1)]))*T/M);

D[6,j]=D[6,j-1]+sum(Ind[b]*p[b,b:(b_f-1)]*mu[b:(b_f-1)]*(v[b:(b_f

-1)]-v[b]*exp_v[j-1,b:(b_f-1)])*(1-f_d)*V[b:(b_f-1)]*T/M)+(j<

gamma_SU)*sum(Ind[b]*exp_pm[j-1,b_f:(gamma_INT -1)]*(v[b_f]*exp

_v[j,b_f:(gamma_INT -1)]-v[b]*exp_v[j-1,b_f:(gamma_INT -1)])*(1-

f_d)*(exp_AY[j,b_f:(gamma_INT -1)]+A[b_f]*exp_Y[j,b_f:(gamma_
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INT -1)])*T/M);

D[7,j]=D[7,j-1]+(j<gamma_SU)*sum(Ind[b]*(p[b,b_f]*exp_pm[j,b_f:(

gamma_INT -1)]-exp_pm[j-1,b_f:(gamma_INT -1)])*v[b_f]*exp_v[j,b_

f:( gamma_INT -1)]*(1-f_d)*(exp_AY[j,b_f:(gamma_INT -1)]+A[b_f]*

exp_Y[j,b_f:( gamma_INT -1)])*T/M);

D[8,j]=D[8,j-1]+sum(v[b:(b_f-1)]*(1-f_d)*V[b:(b_f-1)]*( incr_N[b:(

b_f-1)]-Ind[b]*p[b,b:(b_f-1)]*mu[b:(b_f-1)]*T/M))+(j<gamma_SU)

*sum((Ind[b_f]-Ind[b]*p[b,b_f])*exp_pm[j,b_f:(gamma_INT -1)]*v[

b_f]*exp_v[j,b_f:(gamma_INT -1)]*(1-f_d)*(exp_AY[j,b_f:(gamma_

INT -1)]+A[b_f]*exp_Y[j,b_f:( gamma_INT -1)])*T/M);

D[9,j]=D[9,j-1]-sum(v[b]*Ind[b]*exp_p[j-1,gamma_INT]*exp_v[j-1,

gamma_INT:(gamma_INT10-1)]*f_p*(( exp_AY[j,gamma_INT]+A[b_f]*

exp_Y[j,gamma_INT]) -(exp_AY[j-1,gamma_INT]+A[b]*exp_Y[j-1,

gamma_INT]))*T/M);

D[10,j]=D[10,j-1]-sum(Ind[b]*exp_p[j-1,gamma_INT ]*(v[b_f]*exp_v[j

,gamma_INT:(gamma_INT10-1)]-v[b]*exp_v[j-1,gamma_INT:(gamma_

INT10-1)])*f_p*(exp_AY[j,gamma_INT]+A[b_f]*exp_Y[j,gamma_INT])

*T/M);

D[11,j]=D[11,j-1]-sum(Ind[b]*(p[b,b_f]*exp_p[j,gamma_INT]-exp_p[j

-1,gamma_INT])*v[b_f]*exp_v[j,gamma_INT:(gamma_INT10-1)]*f_p*(

exp_AY[j,gamma_INT]+A[b_f]*exp_Y[j,gamma_INT])*T/M);

D[12,j]=D[12,j-1]-sum((Ind[b_f]-Ind[b]*p[b,b_f])*exp_p[j,gamma_

INT]*v[b_f]*exp_v[j,gamma_INT:(gamma_INT10-1)]*f_p*(exp_AY[j,

gamma_INT]+A[b_f]*exp_Y[j,gamma_INT])*T/M);

D[13,j]=D[13,j-1]-sum(v[b]*Ind[b]*exp_p[j-1,gamma_INT10:M]*exp_v[

j-1,gamma_INT10:M]*f_p*(( exp_AY[j,gamma_INT]+A[b_f]*exp_Y[j,

gamma_INT]) -(exp_AY[j-1,gamma_INT]+A[b]*exp_Y[j-1,gamma_INT]))

*T/M);

D[14,j]=D[14,j-1]-sum((v[b_f]*exp_v[j,gamma_INT10:M]-v[b]*exp_v[j

-1,gamma_INT10:M])*Ind[b]*exp_p[j-1,gamma_INT10:M]*f_p*(exp_AY

[j,gamma_INT]+A[b_f]*exp_Y[j,gamma_INT])*T/M);

D[15,j]=D[15,j-1]-sum(Ind[b]*(p[b,b_f]*exp_p[j,gamma_INT10:M]-exp

_p[j-1,gamma_INT10:M])*v[b_f]*exp_v[j,gamma_INT10:M]*f_p*(exp_

AY[j,gamma_INT]+A[b_f]*exp_Y[j,gamma_INT])*T/M);

D[16,j]=D[16,j-1]-sum((Ind[b_f]-Ind[b]*p[b,b_f])*exp_p[j,gamma_

INT10:M]*v[b_f]*exp_v[j,gamma_INT10:M]*f_p*(exp_AY[j,gamma_INT

]+A[b_f]*exp_Y[j,gamma_INT])*T/M);

}

D[1:8 ,(gamma_SU+1):(n+1)]=rep(D[1:8,gamma_SU],n-gamma_SU+1);

for (j in (gamma_SU+1):gamma_SU10){

print(j)
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b=which(partitionINT == partitionSU[j-1]);

b_f=which(partitionINT == partitionSU[j]);

D[9,j]=D[9,j-1];

D[10,j]=D[10,j-1]-sum(Ind[gamma_INT]*f_p*V[gamma_INT ]*(v[b:(b_f-1

)]-v[b]*exp_v[j-1,b:(b_f-1)])*T/M) -(j<gamma_SU10)*sum(Ind[

gamma_INT]*f_p*V[gamma_INT ]*(v[b_f]*exp_v[j,b_f:(gamma_INT10-1

)]-v[b]*exp_v[j-1,b_f:(gamma_INT10-1)])*T/M);

D[11,j]=D[11,j-1];

D[12,j]=D[12,j-1];

D[13,j]=D[13,j-1];

D[14,j]=D[14,j-1]-sum((v[b_f]*exp_v[j,gamma_INT10:M]-v[b]*exp_v[j

-1,gamma_INT10:M])*Ind[b]*exp_p[j-1,gamma_INT10:M]*f_p*V[gamma

_INT]*T/M);

D[15,j]=D[15,j-1]-sum(Ind[b]*(p[b,b_f]*exp_p[j,gamma_INT10:M]-exp

_p[j-1,gamma_INT10:M])*v[b_f]*exp_v[j,gamma_INT10:M]*f_p*V[

gamma_INT]*T/M);

D[16,j]=D[16,j-1]-sum((Ind[b_f]-Ind[b]*p[b,b_f])*exp_p[j,gamma_

INT10:M]*v[b_f]*exp_v[j,gamma_INT10:M]*f_p*V[gamma_INT]*T/M);

}

D[9:12 ,(gamma_SU10+1):(n+1)]=rep(D[9:12,gamma_SU10],n-gamma_SU10+1

);

for (j in (gamma_SU10+1):n){

print(j)

b=which(partitionINT == partitionSU[j-1]);

b_f=which(partitionINT == partitionSU[j]);

D[13,j]=D[13,j-1];

D[14,j]=D[14,j-1]-sum(Ind[b]*(v[b:(b_f-1)]-v[b]*exp_v[j-1,b:(b_f-

1)])*p[b,b:(b_f-1)]*f_p*V[gamma_INT]*T/M)-sum(Ind[b]*exp_p[j-1

,b_f:M]*(v[b_f]*exp_v[j,b_f:M]-v[b]*exp_v[j-1,b_f:M])*f_p*V[

gamma_INT]*T/M);

D[15,j]=D[15,j-1]-sum(Ind[b]*v[b_f]*(p[b,b_f]*exp_p[j,b_f:M]-exp_

p[j-1,b_f:M])*exp_v[j,b_f:M]*f_p*V[gamma_INT]*T/M);

D[16,j]=D[16,j-1]-sum(v[b:(b_f-1)]*( Ind[b:(b_f-1)]-Ind[b]*p[b,b:(

b_f-1)])*f_p*V[gamma_INT]*T/M)-sum(v[b_f]*( Ind[b_f]-Ind[b]*p[b

,b_f])*exp_p[j,b_f:M]*exp_v[j,b_f:M]*f_p*V[gamma_INT]*T/M);

}

b=which(partitionINT == partitionSU[n]);

b_f=which(partitionINT == partitionSU[n+1]);

D[13,n+1]=D[13,n];

D[14,n+1]=D[14,n]-sum(Ind[b]*(v[b:(b_f-1)]-v[b]*exp_v[j-1,b:(b_f-1

)])*p[b,b:(b_f-1)]*f_p*V[gamma_INT]*T/M);
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D[15,n+1]=D[15,n];

D[16,n+1]=D[16,n]-sum(v[b:(b_f-1)]*( Ind[b:(b_f-1)]-Ind[b]*p[b,b:(b

_f-1)])*f_p*V[gamma_INT]*T/M);

return(D);

}

### MLMC estimation ###

# MLMC parameters

L=4; #number of MLMC levels

k_MLMC <-1;

h_MLMC=(1/2)^(k_MLMC -1)*h_INT; #MLMC starting step width

pck=1000 #simulation package

N=c(100,50,20,10,5); #number of packages per level

#MLMC calculation

Exp_yearly=MLMC(1);

Exp_quarterly=MLMC(1/4);

Exp_4weekly=MLMC(1/13);

#SU decompositions for both orders

D_yearly1=SU1(1,Exp_yearly);

D_yearly2=SU2(1,Exp_yearly);

D_quarterly1=SU1(1/4,Exp_quarterly);

D_quarterly2=SU2(1/4,Exp_quarterly);

D_4weekly1=SU1(1/13,Exp_4weekly);

D_4weekly2=SU2(1/13,Exp_4weekly);

#Add up SU addends for the different claim components and form the

differences between the two orders

D_yearly1_total <- matrix(0,4,ncol(D_yearly1))

D_yearly2_total <- matrix(0,4,ncol(D_yearly2))

D_quarterly1_total <- matrix(0,4,ncol(D_quarterly1))

D_quarterly2_total <- matrix(0,4,ncol(D_quarterly2))

D_4weekly1_total <- matrix(0,4,ncol(D_4weekly1))

D_4weekly2_total <- matrix(0,4,ncol(D_4weekly2))

D_yearly_diff <- matrix(0,4,ncol(D_yearly1))

D_quarterly_diff <- matrix(0,4,ncol(D_quarterly1))

D_4weekly_diff <- matrix(0,4,ncol(D_4weekly1))

D_yearly1_total[1 ,]=D_yearly1[1 ,]+D_yearly1[5 ,]+D_yearly1[9 ,]+D_

yearly1[13,]
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D_yearly1_total[2 ,]=D_yearly1[2 ,]+D_yearly1[6 ,]+D_yearly1[10 ,]+D_

yearly1[14,]

D_yearly1_total[3 ,]=D_yearly1[3 ,]+D_yearly1[7 ,]+D_yearly1[11 ,]+D_

yearly1[15,]

D_yearly1_total[4 ,]=D_yearly1[4 ,]+D_yearly1[8 ,]+D_yearly1[12 ,]+D_

yearly1[16,]

D_quarterly1_total[1 ,]=D_quarterly1[1 ,]+D_quarterly1[5 ,]+D_

quarterly1[9 ,]+D_quarterly1[13 ,]

D_quarterly1_total[2 ,]=D_quarterly1[2 ,]+D_quarterly1[6 ,]+D_

quarterly1[10 ,]+D_quarterly1[14 ,]

D_quarterly1_total[3 ,]=D_quarterly1[3 ,]+D_quarterly1[7 ,]+D_

quarterly1[11 ,]+D_quarterly1[15 ,]

D_quarterly1_total[4 ,]=D_quarterly1[4 ,]+D_quarterly1[8 ,]+D_

quarterly1[12 ,]+D_quarterly1[16 ,]

D_4weekly1_total[1 ,]=D_4weekly1[1 ,]+D_4weekly1[5 ,]+D_4weekly1[9 ,]+D

_4weekly1[13 ,]

D_4weekly1_total[2 ,]=D_4weekly1[2 ,]+D_4weekly1[6 ,]+D_4weekly1[10 ,]+

D_4weekly1[14 ,]

D_4weekly1_total[3 ,]=D_4weekly1[3 ,]+D_4weekly1[7 ,]+D_4weekly1[11 ,]+

D_4weekly1[15 ,]

D_4weekly1_total[4 ,]=D_4weekly1[4 ,]+D_4weekly1[8 ,]+D_4weekly1[12 ,]+

D_4weekly1[16 ,]

D_yearly2_total[4 ,]=D_yearly2[1 ,]+D_yearly2[5 ,]+D_yearly2[9 ,]+D_

yearly2[13,]

D_yearly2_total[3 ,]=D_yearly2[2 ,]+D_yearly2[6 ,]+D_yearly2[10 ,]+D_

yearly2[14,]

D_yearly2_total[2 ,]=D_yearly2[3 ,]+D_yearly2[7 ,]+D_yearly2[11 ,]+D_

yearly2[15,]

D_yearly2_total[1 ,]=D_yearly2[4 ,]+D_yearly2[8 ,]+D_yearly2[12 ,]+D_

yearly2[16,]

D_quarterly2_total[4 ,]=D_quarterly2[1 ,]+D_quarterly2[5 ,]+D_

quarterly2[9 ,]+D_quarterly2[13 ,]

D_quarterly2_total[3 ,]=D_quarterly2[2 ,]+D_quarterly2[6 ,]+D_

quarterly2[10 ,]+D_quarterly2[14 ,]

D_quarterly2_total[2 ,]=D_quarterly2[3 ,]+D_quarterly2[7 ,]+D_

quarterly2[11 ,]+D_quarterly2[15 ,]

D_quarterly2_total[1 ,]=D_quarterly2[4 ,]+D_quarterly2[8 ,]+D_

quarterly2[12 ,]+D_quarterly2[16 ,]

D_4weekly2_total[4 ,]=D_4weekly2[1 ,]+D_4weekly2[5 ,]+D_4weekly2[9 ,]+D

_4weekly2[13 ,]
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D_4weekly2_total[3 ,]=D_4weekly2[2 ,]+D_4weekly2[6 ,]+D_4weekly2[10 ,]+

D_4weekly2[14 ,]

D_4weekly2_total[2 ,]=D_4weekly2[3 ,]+D_4weekly2[7 ,]+D_4weekly2[11 ,]+

D_4weekly2[15 ,]

D_4weekly2_total[1 ,]=D_4weekly2[4 ,]+D_4weekly2[8 ,]+D_4weekly2[12 ,]+

D_4weekly2[16 ,]

D_yearly_diff=D_yearly1_total -D_yearly2_total

D_quarterly_diff=D_quarterly1_total -D_quarterly2_total

D_4weekly_diff=D_4weekly1_total -D_4weekly2_total

###PLOTS ###

x_INT=seq(0,T,h_INT);

x_yearly=seq(0,T,1);

x_quarterly=seq(0,T,1/4);

x_4weekly=seq(0,T,1/13);

#PLOT RISK DRIVERS

par(mfrow=c(2, 2), oma=c(0,0,3,0))

plot(x_INT , Njump , type="l", xlab = "Time␣in␣years", ylab= "Jump␣

process␣N", cex.lab=1.1, ylim=c(0,1), yaxt=’n’)

axis(side = 2, at = seq(0,1,0.25))

plot(x_INT , lambda , type="l", xlab = "Time␣in␣years", ylab= "

Mortality␣intensity␣\u03BB", cex.lab=1.2)

plot(x_INT , r, type="l", xlab = "Time␣in␣years", ylab= "Interest␣

intensity␣r", cex.lab=1.2)

plot(x_INT , Y, type="l", xlab = "Time␣in␣years", ylab= "Market␣

index␣Y", yaxt=’n’,cex.lab=1.2, ylim=c(0,2000))

axis(side = 2, at = seq(0,2000,1000))

axis(side = 2, at = seq(0,2000,500),labels=NA)

options(scipen=999)

#PLOT SU ADDENDS FOR DIFFERENT SU GRID WIDTHS

par(mfrow=c(4, 3), oma=c(0,0,3,0))

plot(x_yearly , D_yearly1_total[1,], type="l", xlab = "", ylab= "",

main="\nyearly", ylim=c(-30000,100000),cex.lab=1.1, col="coral1"

, font.main = 2)

title(xlab="Time␣in␣years", line=2.5, cex.lab=1.2)

title(ylab="Surplus", line=2.5, cex.lab=1.2)

plot(x_quarterly , D_quarterly1_total[1,], type="l",xlab="", ylab=""

, main= "\nquarterly", ylim=c(-30000,100000),cex.lab=1.1, col="

darkslategray4", font.main = 2)
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title(xlab="Time␣in␣years", line=2.5, cex.lab=1.2)

title(ylab="Surplus", line=2.5, cex.lab=1.2)

plot(x_4weekly , D_4weekly1_total[1,], type="l", xlab = "", ylab= ""

, main= "\n4-weekly", ylim=c(-30000,100000),cex.lab=1.1, col="

darkseagreen3", font.main = 2)

title(xlab="Time␣in␣years", line=2.5, cex.lab=1.2)

title(ylab="Surplus", line=2.5, cex.lab=1.2)

plot(x_yearly ,D_yearly1_total[2,], type="l", xlab = "",ylab= "",

main="\nyearly",cex.lab=1.1, ylim=c(-2500,2200),col="coral1",

font.main = 2)

title(xlab="Time␣in␣years", line=2.5, cex.lab=1.2)

title(ylab="Surplus", line=2.5, cex.lab=1.2)

plot(x_quarterly , D_quarterly1_total[2,], type="l", xlab = "", ylab

= "", main= "\nquarterly", ylim=c(-2500,2200),cex.lab=1.1, col=

"darkslategray4", font.main = 2)

title(xlab="Time␣in␣years", line=2.5, cex.lab=1.2)

title(ylab="Surplus", line=2.5, cex.lab=1.2)

plot(x_4weekly , D_4weekly1_total[2,], type="l", xlab = "", ylab= ""

, main= "\n4-weekly", ylim=c(-2500,2200),cex.lab=1.1, col="

darkseagreen3", font.main = 2)

title(xlab="Time␣in␣years", line=2.5, cex.lab=1.2)

title(ylab="Surplus", line=2.5, cex.lab=1.2)

plot(x_yearly , D_yearly1_total[3,], type="l", xlab = "", ylab= "",

main="\nyearly", ylim=c(-8500,30000),cex.lab=1.1,col="coral1",

font.main = 2)

title(xlab="Time␣in␣years", line=2.5, cex.lab=1.2)

title(ylab="Surplus", line=2.5, cex.lab=1.2)

plot(x_quarterly , D_quarterly1_total[3,], type="l", xlab = "", ylab

= "",main="\nquarterly", ylim=c(-8500,30000),cex.lab=1.1, col="

darkslategray4", font.main = 2)

title(xlab="Time␣in␣years", line=2.5, cex.lab=1.2)

title(ylab="Surplus", line=2.5, cex.lab=1.2)

plot(x_4weekly , D_4weekly1_total[3,], type="l", xlab = "", ylab= ""

,main="\n4-weekly", ylim=c(-8500,30000),cex.lab=1.1, col="

darkseagreen3", font.main = 2)

title(xlab="Time␣in␣years", line=2.5, cex.lab=1.2)

title(ylab="Surplus", line=2.5, cex.lab=1.2)

plot(x_yearly , D_yearly1_total[4,], type="l", xlab = "", ylab= "",

main="\nyearly", ylim=c(-7000,100000),cex.lab=1.1,col="coral1",

font.main = 2)

title(xlab="Time␣in␣years", line=2.5, cex.lab=1.2)
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title(ylab="Surplus", line=2.5, cex.lab=1.2)

plot(x_quarterly , D_quarterly1_total[4,], type="l", xlab = "", ylab

= "",main="\nquarterly", ylim=c(-7000,100000),cex.lab=1.1, col="

darkslategray4", font.main = 2)

title(xlab="Time␣in␣years", line=2.5, cex.lab=1.2)

title(ylab="Surplus", line=2.5, cex.lab=1.2)

plot(x_4weekly , D_4weekly1_total[4,], type="l", xlab = "", ylab= ""

, main="\n4-weekly", ylim=c(-7000,100000),cex.lab=1.1, col="

darkseagreen3", font.main = 2)

title(xlab="Time␣in␣years", line=2.5, cex.lab=1.2)

title(ylab="Surplus", line=2.5, cex.lab=1.2)

mtext("Unsystematic␣biometric␣surplus␣(N)", side = 3, line = -1.4,

outer = TRUE , font = 2)

mtext("Systematic␣biometric␣surplus␣(\u03BB)", side = 3, line = -17

.5, outer = TRUE , font = 2)

mtext("Systematic␣interest␣surplus␣(r)", side = 3, line = -34,

outer = TRUE , font = 2)

mtext("Systematic␣fund␣surplus␣(Y)", side = 3, line = -50.3, outer

= TRUE , font = 2)

options(scipen=999)

#PLOT TOTAL SURPLUS

par(mfrow=c(1, 3), oma=c(0,0,3,0))

plot(x_yearly , D_yearly1_total[1 ,]+D_yearly1_total[2 ,]+D_yearly1_

total[3 ,]+D_yearly1_total[4 ,], type="l", xlab = "", ylab= "",

main="Yearly␣time␣grid", ylim=c(0,200000),col="coral1")

title(xlab="Time␣in␣years", line=2.5, cex.lab=1.2)

title(ylab="Surplus", line=2.5, cex.lab=1.2)

plot(x_quarterly , D_quarterly1_total[1 ,]+D_quarterly1_total[2 ,]+D_

quarterly1_total[3 ,]+D_quarterly1_total[4 ,], type="l", xlab = ""

, ylab= "", main="Quarterly␣time␣grid", ylim=c(0,200000), col="

darkslategray4")

title(xlab="Time␣in␣years", line=2.5, cex.lab=1.2)

title(ylab="Surplus", line=2.5, cex.lab=1.2)

plot(x_4weekly , D_4weekly1_total[1 ,]+D_4weekly1_total[2 ,]+D_4weekly

1_total[3 ,]+D_4weekly1_total[4 ,], type="l", xlab = "", ylab= "",

main="4-weekly␣time␣grid", ylim=c(0,200000), col="darkseagreen3

")

title(xlab="Time␣in␣years", line=2.5, cex.lab=1.2)

title(ylab="Surplus", line=2.5, cex.lab=1.2)
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#Barplot - Impact of the time grid on the SU decomposition

par(mfrow=c(1, 1), oma=c(0,0,3,0))

m1<- matrix(c(D_yearly1_total[1,ncol(D_yearly1)],D_yearly1_total[2,

ncol(D_yearly1)],D_yearly1_total[3,ncol(D_yearly1)],D_yearly1_

total[4,ncol(D_yearly1)],D_quarterly1_total[1,ncol(D_quarterly1)

],D_quarterly1_total[2,ncol(D_quarterly1)],D_quarterly1_total[3,

ncol(D_quarterly1)],D_quarterly1_total[4,ncol(D_quarterly1)],D_4

weekly1_total[1,ncol(D_4weekly1)],D_4weekly1_total[2,ncol(D_4

weekly1)],D_4weekly1_total[3,ncol(D_4weekly1)],D_4weekly1_total[

4,ncol(D_4weekly1)]), byrow=TRUE , nrow=3)

sources <- c("N","\u03BB","r","Y")

time <- c("yearly", "quarterly", "4-weekly")

colnames(m1) <- sources

rownames(m1) <- time

colours=c("coral1", "darkslategray4", "darkseagreen3")

#colours=c("coral1", "cyan4", "darkgoldenrod3")

barplot(m1,ylab=’’, xlab=’’,beside = TRUE , col=colours , ylim=c(0,11

0000))

title(xlab="Risk␣factors", line=2.5, cex.lab=1.2)

title(ylab="Surplus", line=2.5, cex.lab=1.2)

options(scipen=999)

box()

legend(’topright ’,fill=colours ,legend=time)

#Barplot - Impact of the update order on the SU decomposition Part

I

m2<- matrix(c(D_yearly_diff[1,ncol(D_yearly1)]/D_yearly1_total[1,

ncol(D_yearly1)],D_yearly_diff[2,ncol(D_yearly1)]/D_yearly1_

total[2,ncol(D_yearly1)],D_yearly_diff[3,ncol(D_yearly1)]/D_

yearly1_total[1,ncol(D_yearly1)],D_yearly_diff[4,ncol(D_yearly1)

]/D_yearly1_total[1,ncol(D_yearly1)],D_quarterly_diff[1,ncol(D_

quarterly1)]/D_quarterly1_total[1,ncol(D_quarterly1)],D_

quarterly_diff[2,ncol(D_quarterly1)]/D_quarterly1_total[1,ncol(D

_quarterly1)],D_quarterly_diff[3,ncol(D_quarterly1)]/D_quarterly

1_total[1,ncol(D_quarterly1)],D_quarterly_diff[4,ncol(D_

quarterly1)]/D_quarterly1_total[1,ncol(D_quarterly1)],D_4weekly_

diff[1,ncol(D_4weekly1)]/D_4weekly1_total[1,ncol(D_4weekly1)],D_

4weekly_diff[2,ncol(D_4weekly1)]/D_4weekly1_total[1,ncol(D_4

weekly1)],D_4weekly_diff[3,ncol(D_4weekly1)]/D_4weekly1_total[1,

ncol(D_4weekly1)],D_4weekly_diff[4,ncol(D_4weekly1)]/D_4weekly1_

total[1,ncol(D_4weekly1)]), byrow=TRUE , nrow=3)
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sources <- c("N","\u03BB","r","Y")

time <- c("yearly", "quarterly", "4-weekly")

colnames(m2) <- sources

rownames(m2) <- time

colours=c("coral1", "darkslategray4", "darkseagreen3")

barplot(m2,ylab=’’, xlab=’’,beside = TRUE , col=colours , ylim=c(-0.0

4,0.05))

title(xlab="Risk␣factors", line=2.5, cex.lab=1.2)

title(ylab="Relative␣deviation", line=2.5, cex.lab=1.2)

options(scipen=999)

box()

#Barplot - Impact of the update order on the SU decomposition Part

II

barplot(m2,beside = TRUE , col=colours , ylim=c(0.38,0.5),xaxt=’n’,

yaxt=’n’)

options(scipen=999)

box()

legend(’topright ’,fill=colours ,legend=time)

axis(side = 2, at = seq(0.4,0.5,0.05), labels=c(0.4,0.45,0.5))

#Further information in the results paragraph

#Time of death

time_death=min(which(Ind==0));

partitionINT[time_death]

#Maximum mortality intensity

max(lambda)

#Maximum interest intensity

max(r)

#Market fund average yield

((Y[1145]-Y[1])/Y[1])^(1/22)

((Y[1041]-Y[1])/Y[1])^(1/20)

#Changes between yearly and weekly grid for the contract -end

surplus

(D_4weekly1_total[1,716]-D_yearly1_total[1,56])/D_yearly1_total[1,5

6]

(D_4weekly1_total[3,716]-D_yearly1_total[3,56])/D_yearly1_total[3,5

6]

(D_4weekly1_total[2,716]-D_yearly1_total[2,56])/D_yearly1_total[2,5

6]
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(D_4weekly1_total[4,716]-D_yearly1_total[4,56])/D_yearly1_total[4,5

6]
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