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Louppose that you want to teach the ‘cat’ concept to
a very young child. Do you explain that a cat is a
relatively small, primarily carnivorous mammal with
retractible claws, a distinctive sonic output, etc.?
I’ll bet not. You probably show the kid a lot of
different cats, saying ‘kitty’ each time, until it gets
the idea. To put it more generally, generalizations

are best made by abstraction from experience.”

- Ralph P. Boas Jr.



Abstract

In life insurance, the uncertain long-term development of economic and demographic
factors represents an undiversifiable risk. To address this risk, life insurers use conservative
valuation assumptions, which lead to systematic surplus. By statute, a portion of this
surplus must be refunded to the policyholder, with the compensation rates usually depending
on the source of the surplus. Therefore, a decomposition of the total surplus with respect
to the various risk factors is indispensable. Due to their relevance, several decomposition
formulas have been presented in the actuarial literature. However, all contributions
use heuristic arguments. A comprehensive decomposition principle that allows existing
decomposition formulas to be compared and modern risks (e.g. policyholder behaviour) to
be added is still missing. The thesis closes that gap by introducing a so-called infinitesimal
sequential updating (ISU) decomposition principle.

The ISU decomposition principle enhances the sequential updating (SU) decomposition
principle, which is popular in the economics literature but is subject to order effects.
By forming the limit of SU decompositions with respect to the update frequency, the
ISU decomposition principle eliminates the order effects while retaining the desired
additivity. The thesis shows that this approach is also helpful for other prominent
decomposition principles. Furthermore, the expediency of the ISU decomposition principle
is demonstrated by replicating the various surplus decompositions known from the actuarial
literature. In addition to its relevance for the decomposition of traditional life insurance
surplus, the application of the ISU decomposition principle to martingales reveals its great
potential in risk management. In particular, conditions are presented under which the ISU
decomposition coincides with the recently introduced martingale representation theorem
(MRT) decomposition.

Furthermore, evidence for the numerical feasibility of the ISU decomposition principle
is provided using the example of a fund-linked pension insurance. In a doubly stochastic
Markov setup, integral representations for the individual surplus contributions are obtained.
The latter are further used to derive convergent estimators for the ISU decomposition
by leveraging multilevel Monte Carlo methods to conditional expectations. The thesis
concludes with the presentation of the numerical results, focusing on the impact of the

chosen time grid and the chosen update order.



Kurzfassung

In der Lebensversicherung stellt die unsichere Entwicklung wirtschaftlicher und demographis-
cher Faktoren ein nicht-diversifizierbares Risiko dar. Diesem Risiko begegnen die Lebensver-
sicherer durch die Verwendung konservativer Bewertungsannahmen, welche zu systema-
tischen Uberschiissen fithren. Laut Gesetz muss ein Teil dieser Uberschiisse an die Ver-
sicherungsnehmer zuriickgezahlt werden, dabei hingt die jeweilige Uberschussbeteiligung in
der Regel von der Uberschussquelle ab. Dies erfordert die Zerlegung des Gesamtiiberschusses
nach Quellen. Entsprechend der praktischen Relevanz von Uberschusszerlegungen, werden
in der versicherungsmathematischen Literatur bereits verschiedene Zerlegungsformeln
vorgeschlagen. Die Herleitungen der Zerlegungsformeln basieren jedoch auf heuristischen
Argumenten. Ein Zerlegungsprinzip, das es erlaubt, bestehende Zerlegungen miteinander
zu vergleichen und diese um moderne Risiken (z.B. das Verhalten der Versicherungsnehmer)
zu erweitern, fehlt bisher. Die vorliegende Arbeit schliefit diese Liicke, indem sie ein
sogenanntes infinitesimal sequential updating (ISU) Zerlegungsprinzip einfiihrt.

Das ISU-Zerlegungsprinzip erweitert das in der wirtschaftswissenschaftlichen Literatur
bekannte sequential updating (SU) Zerlegungsprinzip. Letzteres hat den Nachteil, dass
die resultierende Zerlegung mafigeblich von der gewéhlten Reihenfolge der Risikofaktoren
abhéngt. Die ISU Zerlegung ergibt sich hingegen als Grenzwert von SU Zerlegungen durch
die Verfeinerung des unterliegenden Zeitgitters. Mithilfe dieses infinitesimalen Ansatzes kon-
nen in Anwendungen oftmals Reihenfolgeneffekte eliminiert werden, gleichzeitig bleibt die
wiinschenswerte Additivitdt der SU Zerlegung aber erhalten. Dariiberhinaus wird gezeigt,
dass der vorgestellte Ansatz auch fiir andere bekannte Zerlegungsprinzipien niitzlich ist.
Die Adaquatheit des ISU Zerlegungsprinzips wird mittels der Replikation aus der Literatur
bekannter Uberschusszerlegungen nachgewiesen. Zusétzlich stellt sich durch die Anwendung
des ISU Zerlegungsprinzips auf Martingale heraus, dass das Risikomanagement ein weiteres
breites Anwendungsfeld des vorgestellten Zerlegungsprinzips darstellt. Insbesondere werden
in dieser Arbeit Bedingungen présentiert, unter denen die ISU Zerlegung mit der kiirzlich
eingefithrten martingale representation theorem (MRT) Zerlegung iibereinstimmt.

Dariiber hinaus wird in dieser Arbeit am Beispiel einer fondsgebundenen Rentenver-
sicherung die numerische Umsetzbarkeit des ISU Zerlegungsprinzips untersucht. Genauer
werden in einem doppelt stochastischen Markov-Setup Integraldarstellungen fiir die einzel-
nen Uberschussbeitrige gewonnen. Auf Basis dieser Integraldarstellungen werden konver-
gente Schatzer fir die ISU Zerlegung abgeleitet, indem multilevel Monte Carlo Methoden auf
bedingte Erwartungswerte verallgemeinert werden. Die Arbeit schlieft mit der Darstellung
der numerischen Ergebnisse, wobei sich die Analyse auf den Einfluss des Zeitgitters und

der Aktualisierungsreihenfolge fokussiert.
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1 Introduction

A traditional life insurance policy provides benefits in the event of death or survival,
including a guaranteed rate of interest on the premiums paid. Due to the long-term
nature of life insurance contracts, the prediction of economic and demographic factors
(e.g. interest rates, mortality, and morbidity) harbours a high degree of uncertainty
(see Jetses & Christiansen, 2022). To take this non-diversifiable risk into account, conser-
vative assumptions are used for premium calculation. As a consequence, systematic surplus
arises during the course of the contract. By virtue of legal requirements or contractual
terms (‘with-profit life insurance’), a part of this surplus belongs to the policyholder and
is therefore refunded to them. Specifications, whether statutory or contractual, usually
include compensation rates for the individual sources of surplus (investment surplus, risk
surplus, other surplus). For this reason, a decomposition of surplus with respect to the
different risk sources is essential.

It is therefore not surprising that surplus decompositions have been repeatedly ad-
dressed in actuarial literature since the early 20th century. In time-discrete life insurance
setups, the popular contribution formula (Kontributionsformel) decomposes the yearly
surplus into the mortality surplus, interest surplus, lapse surplus and cost surplus (see
e.g. Milbrodt & Helbig, 1999, Section 11.B). In time-continuous life insurance setups,
several decomposition formulas in multistate Markov models have been proposed (see
e.g. Moller & Steffensen, 2007; Norberg, 1999, 2001; Ramlau-Hansen, 1988, 1991). All
these publications derive the individual surplus contribution using heuristic arguments.
Accordingly, the different decompositions are hard to compare. Moreover, the model
frameworks are rigid, meaning that there is no natural way to add further sources of
surplus to the model. However, adding further sources is highly relevant in the age of
big data, where trackable policyholder behaviour (e.g. via smartwatches) allows for more
accurate risk assessment. Thus, a fundamental decomposition principle that encompasses
the existing decompositions on the one hand and allows for flexible expansion of further
risk sources on the other hand is missing.

This thesis closes the outlined gap by presenting a so-called infinitesimal sequential
updating (ISU) decomposition principle that gathers all the existing surplus decompositions
under one common roof. The ISU decomposition principle is an extension of the sequential
updating (SU) decomposition principle, which decomposes the surplus into the changes
resulting from the sequential updating of risk factor information. Though the SU decompo-
sition principle is well-known in economics literature (see e.g. Blinder, 1973; DiNardo et al.,
1996; Oaxaca, 1973) it has the disadvantage of depending on the formal order of surplus

sources (see Biewen, 2014; Fortin et al., 2011). One can address this shortcoming by using



the averaged sequential updating (ASU) decomposition principle, which is also known as
the Shapley-Shubik decomposition (see Shubik, 1962). This approach is subject to the curse
of dimensionality (see Junike et al., 2024), nonetheless it is frequently used for attributing
the prediction score of a machine learning model to its features (see Sundararajan and
Najmi, 2020). Another idea discussed in the economics literature is the one-at-a-time
(OAT) decomposition principle (see Biewen, 2014). Although the OAT decomposition
principle avoids order effects, it involves interaction effects that cannot be attributed
to a single source of risk. Due to the stated shortcomings of alternative decomposition
principles, the ISU decomposition principle is introduced, which eliminates order effects
by pushing the refinement of the valuation intervals to the limit. It is shown that this
refinement approach also helps with the ASU and OAT decomposition principles, leading
to the averaged infinitesimal SU (AISU) and infinitesimal OAT (IOAT) decomposition
principles. The latter has recently also been discussed by Frei (2020). It turns out that all
decomposition principles, ISU, AISU and IOAT, result in the same surplus decomposition,
whenever the ISU decomposition does not depend on the update order. In particular, this
applies to the traditional decompositions of life insurance surplus referred to above.

Though the traditional surplus decompositions has been the focus so far, it is worth
noting that the scope of the ISU decomposition principle goes far beyond it. Even if
the different surplus sources contribute to the total surplus in a non-linear manner, the
ISU decomposition principle provides individual surplus contributions that add up to the
total surplus. On the one hand, the need for such a decomposition arises from regulatory
requirements for insurance companies (see Flaig & Junike, 2024). For example, Article 123
of the Solvency II Directive (European Parliament and the Council, 2009) requires insurers
to perform an annual profit and loss attribution. Additionally, the revised Market Consistent
Embedded Value (MCEV) reporting principles from 2016 entail the reconciliation of the
opening MCEV and closing MCEV in a change analysis (CFO Forum, 2016). On the other
hand, the ISU decomposition principle might be a very useful tool for risk management.
The additivity of the resulting decomposition allows for an immediate application of the
Euler allocation principle (see Frei, 2020; Karabey et al., 2014).

Taking additivity into account, Schilling et al. (2020) have recently published a compre-
hensive list of desirable properties of a risk decomposition. In addition, Schilling et al. (2020)
have introduced the so-called martingale representation theorem (MRT) decomposition,
which, unlike other risk decompositions in the literature, fulfils all desirable properties. The
MRT decomposition breaks down the total surplus into individual surplus contributions by
attributing the integrals of the martingale representation to the respective risk factors. In
particular, this approach requires the total surplus process to be a martingale. The ISU

decomposition principle is applicable to martingales, which again emphasises the scope



of the decomposition principle presented. This immediately raises the question of the
relationship between the MRT decomposition and the ISU decomposition. In this thesis, it
is shown that under certain assumptions both decomposition approaches coincide. This
result further illustrates the plausibility of the ISU decomposition principle.

The ISU decomposition principle is motivated by the various use cases in practice and
its application to well-known examples from the actuarial literature. However, the question
of whether the ISU decomposition principle will find a way into practice also depends on
its numerical feasibility. Therefore, the numerical feasibility of the ISU decomposition
principle is investigated using the example of a fund-linked pension insurance. In a doubly
stochastic Markov setup, the ISU decomposition is computed in two steps. Firstly, the
ISU decomposition is approached by SU decompositions applying the above-mentioned
convergence results for martingale surplus processes. Secondly, the SU decompositions are
approximated with the help of multilevel Monte Carlo (MLMC) methods. To develop a
theoretical foundation for the second step, the MLMC approach by Giles (2008) is extended
to conditional expectations and a systematic notion of (integral) MLMC convergence is
introduced. The implementation of the derived estimators in R 4.4.2 (R Core Team, 2024)

and the presentation of the numerical results then serve as a proof of concept.

This thesis is structured as follows:

In Chapter 2, the ISU decomposition principle is presented as a refinement of the
SU decomposition principle (see e.g. Blinder, 1973). Additionally, further prevalent
decomposition approaches are discussed. Section 2.1 introduces the ISU decomposition
principle in a very general framework that allows for wide range of applications. By taking
up the infinitesimal approach of the ISU decomposition principle, Section 2.2 proposes
infinitesimal versions of the widely used ASU and OAT decomposition principles and
analyses their relationship to the ISU decomposition principle. Section 2.3 concludes the
chapter with an introductory example.

In Chapter 3, traditional surplus decomposition formulas known from the literature are
embedded in the framework of the ISU decomposition principle presented in Chapter 2.
This provides further evidence to the existing formulas, but also opens the door to the
inclusion of further risks. In Section 3.1 the framework of the ISU decomposition principle
is underpinned with the notions of life insurance modelling. In Section 3.2, a general
multistate life insurance setup is introduced, in which rigorous definitions of surplus are
established following Norberg (1999). The application of the ISU decomposition principle
leads to the main theorems in Section 3.3, which provide the basis to deduce the traditional

surplus decomposition formulas in Section 3.4.



In Chapter 4, the ISU decomposition principle is related to the recently introduced MRT
decomposition of Schilling et al. (2020), and a property of the risk factors is established
under which both decompositions are equivalent. The underlying model framework, which
assumes the surplus process to be a martingale, is introduced in Section 4.1. After defining
the above-mentioned property of the surplus sources, it is shown in Section 4.2, that a
number of commonly used stochastic processes satisfy this property. In Section 4.3, the
ISU decomposition of martingales is derived and its relationship to the MRT decomposition
is discussed.

In Chapter 5, the numerical feasibility of the ISU decomposition principle is investigated
using the example of a fund-linked pension insurance. After introducing an appropriate
model framework in Section 5.1, an analysis of the approximating SU decompositions is
considered in Section 5.2. Furthermore, in Section 5.2 the multilevel Monte Carlo approach
studied by Giles (2008) is generalised to conditional expectations, which helps with the
derivation of convergent estimators for the SU contributions. Section 5.3 contains details
of the implementation and a presententation of the results.

In Chapter 6, the results obtained are reflected upon, and further discussion is given to

the open questions for future research.



2 A general surplus decomposition principle

This chapter is derived in part from an article published in the Scandinavian Actuarial
Journal in 2022 (copyright Taylor & Francis), available online: hitp://www.tandfonline.
com/10.1080/03461238.2022.2049636. More precisely, (parts of) Sections 2, 4 and 7 of
the article Jetses and Christiansen (2022) are included in Sections 2.1 and 2.2 of this
chapter. The Section 2.3 has been prepared specifically for this thesis. In order to improve
readability and standardise the notation in this dissertation, minor changes have been made

compared to the original article.

Insurance companies are subject to an increasing number of regulatory requirements.
The main objectives of regulation are to protect policyholders and to provide greater
transparency of an insurer’s financial position to all stakeholders. The latter necessitates
comprehensive knowledge of the risks to which the insurer is exposed. In that regard,
reconciling the balance sheets from two different valuation dates and linking the changes to
the various sources leads to a better awareness for the relevant risks (see Candland & Lotz,
2014). This aspect is also reflected by the Solvency II Directive (European Parliament
and the Council, 2009), where Article 123 requires insurers to carry out a profit and loss
attribution at least once a year. A similar idea is followed by the analysis of change in
liabilities, which is part of the recently introduced reporting standard IFRS17 (TASB, 2017,
Article 100 ff.). Furthermore, a change analysis is required by the revised MCEV reporting
principles from 2016 (CFO Forum, 2016) in order to reconcile the opening MCEV with the
closing MCEV.

The stated examples from regulation underline the need for a systematic approach to profit
and loss attribution or change analysis, where both terms are often used interchangeably
(see Christiansen, 2022). Allocating a value change between two valuation dates to the
different sources can be a very challenging task, especially if the risk factors contribute
to the respective key figure in a non-linear way. Usually, the value change is caused
by the newly gained information on the risk factors that leads to a reconciliation of
expected and actual values for the past period, as well as to changes in estimates of
future values. Therefore, a straightforward idea is to update the information from
the different risk factors sequentially and assign the resulting change of the total to
the respective risk factor. This approach, which is called the sequential updating (SU)
decomposition principle, leads to additive decompositions and is widely used in various fields
of economics (see Jetses & Christiansen, 2022). Examples are provided by Blinder (1973)
and Oaxaca (1973) (‘Blinder-Oaxaca-Decomposition’) in the field of labour economics,

see also DiNardo et al. (1996). In insurance economics, Candland and Lotz (2014) present
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the Waterfall approach for profit and loss attribution, which follows the idea of the SU
decomposition principle. Further economic applications of the SU decomposition principle
can be found in Fortin et al. (2011).

For the application of the SU decomposition principle, it is necessary to decide on a time
grid in which the risk drivers will be updated. This can lead to different decompositions
depending on the selected time grid. In addition to this drawback, another downside of
the SU decomposition principle has been pointed out by Biewen (2014) and Fortin et al.
(2011), namely its dependence on the updating order of the risk factors. Fortunately, both
disadvantages can be eliminated by refining the time grid of the SU decomposition to the
limit, while retaining the desired additivity. As this leads to infinitesimal valuation periods,
this approach is referred to as the infinitesimal SU (ISU) decomposition principle.

It is worth mentioning that in the existing literature alternative decomposition principles
are discussed that address the drawback of the order dependency. By averaging the SU
decompositions over all possible update orders, the order dependency can be removed.
Nonetheless, this alternative which is called the averaged sequential updating (ASU)
decomposition principle is subject to the curse of dimensionality (see Junike et al., 2024).
In economics literature, this approach is also known as the Shapley-Shubik decomposition,
which was introduced by Shubik (1962) as a generalisation of the Shapley decomposition
(see Shapley, 1953). A further alternative avoiding the ordering problem is the one-at-a-time
(OAT) decomposition principle (see Biewen, 2014). However, this decomposition principle
involves interaction effects, which cannot be assigned to a single risk driver. Additionally,
similar to the SU decomposition principle, the ASU and the OAT decomposition principles
depend on the selected time grid. As an advancement of the ASU and OAT decomposition
principles, both the averaged infinitesimal SU (AISU) and the infinitesimal OAT (IOAT)
decomposition principles are proposed, which are derived by incorporating the above-
mentioned infinitesimal approach. It turns out that all three decomposition principles are
closely related.

After providing the basic notations, Section 2.1 introduces the ISU decomposition
principle. Section 2.2 examines alternative decomposition principles and their relation to
the ISU decomposition principle. This chapter is concluded with an introductory example

in Section 2.3.

2.1 The ISU decomposition principle

We generally assume that we have a complete probability space (€2,.4,P) with a right-

continuous and complete filtration F = (F;);»0. Let the so-called risk basis

X =(X1,....Xm),



be given by a multivariate adapted process composed of so-called risk factors Xq,..., Xm.
Furthermore, let R = (R(t))i=0 be a stochastic process that rests on the risk basis X,
i.e. R is adapted to the right-continuous and complete filtration generated by X. The
right-continuous and complete filtration generated by X does not necessarily coincide
with ' but may be a strict sub-filtration of F in such a way that at least R is adapted.
We interpret R(t) as a proxy in ¢ of a random variable that depends on the risk factors’
future development. For example, one could define R(t) as the conditional expectation
of the (discounted) total cashflow given the available information at time ¢ > 0. In this
sense, R increases or decreases due to revaluation gains or losses. Therefore, we call R the

revaluation surplus process. The information provided by X at time ¢t can be represented

by the stopped process X*, formally defined by
XU(s) = Toey X(8) + Lguy X(2). (2.1)
Thus, at each time ¢, the proxy R(t) can be interpreted as the value of a mapping
(t, X" - R(t)

that assigns at each time ¢ to the current information X! the random variable R(¢). In

this thesis, we assume that there even exists a mapping g such that
Q(Xt) =R(t), t=0.

In the latter equation, the time parameter ¢ itself is not an argument of ¢ and only appears
as stopping parameter in X!, That means that the dynamics of R are solely driven by the
increase of information through X?.

The central aim of this thesis is to decompose R as
R(t) = R(0) + D1(t) + - -+ + Dy (t), t =0, (2.2)

where D1, ..., D,, are adapted processes that start at zero and describe the contributions
of each risk factor Xi,..., X;, to the dynamics of R. The first addend R(0) represents

initial surplus, which is not decomposed here.

Suppose that the information updates of the risk factors Xy, ..., X,, are asynchronously
delayed with t1,...,t, <t being the current update statuses of each risk factor. Then

Uty ..., tm) = Q((Xfl,...,Xﬁ;”)) (2.3)

is the value of the delayed revaluation process at time points t¢1,...,%,,. Furthermore, we

denote U = (U(t1,...,tm))t1,...tm=0 as the revaluation surplus surface with respect to X.

We can recover the revaluation surplus process R from the revaluation surplus surface U as



For any partition 7(t) = {0 = top < t; < --- < t; = t} of the interval [0,¢], we can build

the telescoping series

+

=
+ ) (U(tk+17 s tir1) = Ultes, - 7tk+17tk))-
k=0

It is natural to interpret the m different sums on the right hand side as an additive
decomposition R(t) — R(0) = D1(t) + --- + Dy, (t), since the i-th sum collects exactly the

information updates for the i-th risk factor.

Definition 2.1. The random vector D(t) = (D1(t),..., Dn(t)) defined by

-1
Di(t) = 3, (Ut tho oo sth) = Ultir 1))
k=0

(2.4)
-1
Dunt) = 3, (Ultiss oy tisn) = Ultians o tisns ) )
k=0

is called the sequential updating (SU) decomposition of R(t) = o(X") with respect to T (t).

The SU decomposition principle is used in various fields of economics (see e.g. Biewen, 2014;
Fortin et al., 2011). In (2.4) we update the information on X in a specific order, starting
with risk factor Xy, then updating X, and so on. Unfortunately, the decomposition is not
invariant with respect to this update order, which is a major drawback of the SU concept.
We can reduce the impact of the update order by increasing the number of updating steps,
i.e. refining the partition 7,(t). In a next step we push such refinements to the limit.

Let Ta(t) = {0 =t§ <t! <--- <t} =t}, n €N, be a sequence of partitions of [0,]
with vanishing step lengths (i.e. lim, o maxi<i<y, [t} — t}_;| = 0). For each n € N let
D" (t) = (D\(t),...,D(t)) be the SU decomposition of R(t) = o(X"') with respect to
Tn(t). We are looking for a random vector D(t) that satisfies

D;(t) ZEE%D?(t), ie{l,...,m}, (2.5)

where plim describes the convergence in probability.

n—0



Definition 2.2. Let (7,(t))nen be a sequence of partitions of [0,¢] with vanishing step
lengths. If D(t) satisfies (2.5), then we call D(t) the infinitesimal sequential updating (ISU)
decomposition of R(t) = o(X") with respect to (75 ())nen-

An axiomatic approach to the ISU decomposition can be found in Christiansen (2022).

2.2 Alternative decomposition principles

As we will see in the next chapters, moving forward to the limit of SU decompositions
by pushing the step lengths to zero is an effective way to eliminate order dependencies.
However, this is not the only way to approach this issue. Therefore, we want to elaborate
on this point by discussing two alternative decomposition principles in this section. Instead
of updating the sources of risk sequentially, we could also update only one source of risk at
a time and quantify its impact on total revaluation surplus R(t) — R(0), which will lead us
to the OAT decomposition principle.

Recall that U(ty, ... t,) = o((X,..., X)) is the value of the delayed revaluation

process at time points t1,...,t, (see (2.3)). For any partition
T(t)={0=t0<t1 <'--<tl=t}

of the interval [0,¢] we can decompose

- (U(tk+1,tk,...,tk)—U(tk,...,tk)>

x>
Il
T e

+

(U(tk,tk_,_l,tk,...,tk) — U(tk, - ,tk))

T
(=)

+
T

+ (U(tk7"'atkatk+1) _U(tka"'aatk))

T??‘
LI

+ (U(tk+17--~,tk+1) - U(tkv~--atk))

~
Il
)

- 2 (U(tk-i-l,tk,"'?tk) - U(tkv 7t/€) +...+ U(tkv"'vtlmtk-i-l) - U(tka atk)>
k=0

Here, the first m sums quantify the single effect of the corresponding source of risk.
Following Biewen (2014), we call them the ceteris paribus effects. Since the ceteris paribus
effects do not necessarily add up to the total revaluation surplus R(t) — R(0), we get an
extra term in the last two lines, which is called the interaction effect (see Biewen, 2014).

Based on this construction, we get a decomposition principle with a joint risk factor.



Definition 2.3. The random vector D(t) = (D1(t),..., Dy (t), D(t)) defined by

-1
Dl(t) = 2 (U(tk+17tk7 s 7tk) - U(tkatka ERE 7tk)>7
k=0

-1
D) = 3 (Ulthr sty tin) = Ultes -, t0)),
k=0
D(t) = R(t) = R(0) = ), Dy(1
j=1

is called the one-at-a-time (OAT) decomposition of R(t) = o(X") with respect to T (t).

The OAT decomposition principle is also known in economics (see Biewen, 2014). In
contrast to the SU decomposition, the OAT decomposition is order-invariant, i.e. it does
not depend on the order of the risk basis (see Schilling et al., 2020). Nevertheless, we
get a joint risk factor that cannot be assigned to any source of risk. In Section 2.1, we
faced the order dependence of the SU decomposition by considering increasing sequences
of partitions of [0, ¢]. Similarly, we address the unassignable interaction effect in the OAT
decomposition.

Let To(t) = {0 =t <t < .-- <t =1}, n € N, be a sequence of partitions of
[0,¢] with vanishing step lengths (i.e. lim, 0 maxi<r<y, [t} —t}_1] = 0). For each n € N
let D™(t) = (D}(t),..., D" (t),D"(t)) be the OAT decomposition of R(t) = o(X*) with
respect to 7,,(t). We are looking for a random vector D(t) = (D1(t),. .., Dpy(t), D(t)) that
satisfies

D;(t) = plim D}*(t), ie{l,...,m},
noe (2.7)
D(t) = plim D" (¢).
n—0o0
Definition 2.4. Let (7,(t))nen be a sequence of partitions of [0,¢] with vanishing step
lengths. If D(t) = (D1(t), ..., Dn(t), D(t)) satisfies (2.7), then we call D(t) the infinitesi-
mal one-at-a-time (IOAT) decomposition of R(t) = o(X?) with respect to (75 (t))nen-

The next theorem characterizes the relation between the ISU decomposition and the IOAT

decomposition.

Theorem 2.5. The following statements are equivalent:
a) The ISU decomposition is independent of update order.

b) For each update order, the ISU decomposition is equal to the ceteris paribus effects of
the IOAT decomposition.

In both cases, the interaction effect is zero.

10



Proof. The proof follows Biewen (2014). Let us fix a source of risk (i = 1,...,m). Choosing
an update order, such that this source of risk is updated first, the corresponding risk factor
of the ISU decomposition coincides per definition with the ceteris paribus effect of the
IOAT decomposition. If the ISU decomposition is independent of update order, the risk
factor, corresponding to the fixed source of risk, equals the ceteris paribus effect of the
IOAT decomposition for each update order.

Apart from that, the statement in b) directly implies, that the ISU decomposition is
independent of update order. Furthermore, if the ISU decomposition equals the IOAT
decomposition, then the ceteris paribus effects sum up to total risk R(t) — R(0), therefore

the interaction effect is zero. O

By subdividing the interaction effect into different groups of interaction effects (depending
on the number of involved risk factors), Biewen (2014) even shows that the particular
interaction effects are zero if and only if the ISU decomposition is independent of update
order.

If the interaction effect is non-zero, neither the ISU decomposition nor the IOAT decompo-
sition yields an order-invariant decomposition satisfying (2.2). One possible solution for this
problem is to build a decomposition principle based on the ISU decomposition principle that
is symmetric with respect to the sources of risk. For that, let 7: {1,...,m} — {1,...,m}
be a permutation that represents an update order for the ISU decomposition. The set of

all possible permutations on {1,...,m} is denoted by oy,.

Definition 2.6. Let (7,(t))neny be an increasing sequence of partitions of [0,¢] with
vanishing step lengths and let m € o,,,. Further, let D™(t) = (D] (¢),..., DL (t)) denote
the ISU decomposition of R(t) = o(X?) with respect to 7 and with respect to (7y),. The
random vector D(t) = (D1(t),. .., Dm(t)) defined by

m! Z Dﬂ(l

m: TEC M

Din(t) = 3 Z Dy (0)

m: TEC M
is called the averaged infinitesimal sequential updating (AISU) decomposition of R(t) = o(X")
with respect to (7, (t))nen-

In a similar manner, Shorrocks (2013) proposes the averaged SU decomposition (without
taking limits) for the distributional analysis of poverty in economics literature. A re-
cent contribution by Godin et al. (2023) uses averaged SU decompositions for risk
allocation. Axiomatic approaches to the averaged SU decomposition can further be

found in Friedman and Moulin (1999) and Sprumont (1998). By construction, the AISU
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decomposition principle is symmetric with respect to the risk basis and therefore gives
an order-invariant surplus decomposition satisfying (2.2) even if the interaction effect is
non-zero. Furthermore, the averaged ISU decomposition is in line with the previously

proposed decomposition principles as the next theorem shows.

Theorem 2.7. If the ISU decomposition is independent of update order, then ISU (for each
update order), IOAT and averaged ISU yield the same decomposition.

Proof. Assume that the ISU decomposition principle yields a decomposition
D(t) = (D1(t), ..., Dm(1))

for each update order. Then, by Theorem 2.5, the ISU decomposition is equal to the IOAT
decomposition for each update order. Furthermore, it holds Dg(i)(t) =D;i(t),i=1,...,m,

for every permutation w. Since #0,, = m!, the averaged ISU decomposition is also given

by (Di(t),...,Dp(t)). O

Having introduced the decomposition principles, we can consider a first example.

2.3 An introductory example

Before presenting an introductory example for the previously presented decomposition
principles, we establish some notation that will be used throughout the thesis. If we

calculate a sum across a partition
T(t) = {0=t0<... < 1 Zt},

like we do in (2.4) and (2.6), we write 3, , o7 instead of 22;10. For the grid width of
the partition 7 (t), we introduce |7 (t)| := maxi<k<; [tk — tx—1|. Furthermore, as already
touched in the previous sections, (7,(t)), always refers to a sequence of partitions on [0, ¢]
with vanishing step lengths, i.e. lim, 4 |7,(t)] = 0. To achieve a better readability, we
solely write tg,tx11 € Tn(t) instead of ¢, 1}, | € T,(t). In addition, we will encounter many
integrals in this thesis. Unless otherwise stated, the integrals are understood as stochastic
integrals. With this clarification of the notation, we can now move on to the example.

We suppose that the risk basis
X =(X1,...,Xm), meN,

consists of F-semimartingales X1,..., X,,, such that the quadratic covariation between
the different risk factors is zero, i.e. [X;, X;] =0, i # j. Furthermore, let C2(R™) denote
the space of twice continuously differentiable, real-valued functions from R™ to R with a

compact support.

12



Additionally, we assume that the revaluation surplus process R = (R(t));>0 is given by

R(t) = o(X") = f(X1(t),- ., Xin(t))

for some f € C2(R™). Thus, the proxy R(t) of the total surplus does not depend on the
whole past of the risk sources but only on the current value X (¢), which equals a Markovian
structure. Applying It6’s formula (Protter, 2005, Chapter II, Theorem 33) we directly get

the additive representation

o>=i221jofi<X<s—> 2[ d[X; X]°(s)
+ 3 <f<x<s)>—f<X<s—>>—Zfi'(X(s—))AXi(s)),

0<s<t i=1
where X () = (X1(t),..., Xm(t)).
As [X;,X;] = 0, ¢ # j, implies AX;AX; = A[X;, X;] =0 (see e.g. Protter, 2005,

Chapter II, Theorem 23), a natural guess for the i-th surplus contribution, ¢ = 1,...,m is

- [ sxtspax f ALY, XiJ(s)

Y (F(X(s) = f(X (7)) = fi(X(s=)AXi(s)) -

O<s<t
AX; (S) #0

(2.9)

The next theorem shows that the ISU decomposition principle results in this decomposition.

Theorem 2.8. Let f € C2(R™). Then o(X') = f(X1(t),..., Xm(t)) admits the ISU
decompostion D(t) = (D1(t), ..., Dp(t)) with D;(t) given by (2.9). In particular, the ISU

decomposition does not depend on the update order or the choice of partitions.

Proof. To avoid a cumbersome notation, we assume without loss of generality that the

order of the risk basis to be (Xi,...,X,,). Forie {1,...,m}, we write
X' (teytig1) = (X1 (trr1), - Xiltwsr), Xiv1(8r), - - Xin(tn)), o tis1 € T,

Xl(s) = (Xl(s)a s 7Xi(s)aXi+1(s_)a .- 'Xm(s_))7 S € [Ovt]a
and
X = (X1, X, X, XL,

where X;f denotes the stopped process (at time t) of X;. The stopped process is still a
semimartingale, and thus X% is an m-tuple of semimartingales.

Let (Tn(t))n be a sequence of partitions on [0,¢] with vanishing step lengths. For
ti, tes1 € Tn(t), Itd’s formula (Protter, 2005, Chapter II, Theorem 33) yields

13



FX (s tregn)) — F(X ()
= fIXM (tegr)) — FOXP ()

v ptega Xtk (g (s } i ptpga "X (s s

ZEL fi(X m&”+%PLJMX()N%&H)

"L (f (X (9) = FXH =) = 3 f;-<Xivtk<s—>)ij<s>> ‘
tp<s<tpy1 j=1

In the following, let X®"(s) := X% (s), if s € (t,tr+1]- Then we have

D F(X (s tee)) — F(X (1))

trotk+1€Tn(t)

=2Jmﬂ% ZJ”X” DAL, K1)
j=170
. (2.10)
+ > ( FIXP(s)) = F(X(s Z (X7 (=) AXG(s ))
O<s<t j=1

Next we want to investigate the limit of the SU decompositions for n — oc. Observe that

lim Xi’n(s—) = lim (Xl( ) . 7Xi(5_)7Xi+1(tk)7 e ,Xm(tk)) = X(S—)

and

nhggoxiv"(s) = (X1(5), ..., Xi(5), Xit1(s=), ..., Xmm(s—)) = X'(s)
for every s € [0,t]. Since f € C2(R™), we also have lim, e f(X""(s—)) = f(X(s—)),
limn o0 f(X"(s5)) = f(X'(s)) and limyo fH(X""(s—)) = fI(X(s-)), j = 1,....m,

almost surely for every s € [0, 1].

For the two integrals in (2.10), we apply the stochastic dominated convergence theorem
(Protter, 2005, Chapter IV, Theorem 32). Exploiting that f € C2(R™), we can define
random variables

Gj = sup |fJ'»(X1(51)7...,Xm(sm))|, j=1,....,m
$11essm€[0,1]

and

Gjj = sup |fj'»'j(X1(sl),...,Xm(sm))|, j=1,....,m

$1,---,5m€[0,t]

with values in [0, c0) that dominate the integrands in (2.10). Thus, we get

mmzf@wn m&@=;me#M&m

n—aoo

plim 2f~xw DAL X1°G) = 5 3 | A0 =)L X)),

n—)OO
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For the summation in (2.10), the multidimensional Taylor Theorem (Forster, 2017, Section 1.7,
Theorem 2) together with the assumption [X;, X;] = 0, i # j gives us the upper bound

C ), (AX(5)?
j=1

where C' can be chosen independently of s as f € C2(R™). Thus, the dominator is indeed

() - 1O 2 £ (s

summable with

IR Oy Y (AKX () <O VX X
j=1 j=10<s<t

O<s<t

(see Protter, 2005, Chapter II, proof of Theorem 32). Having found a summable dominator,
we can apply Tannery’s Theorem (e.g. Bromwich, 1926, p. 136) for interchanging limit
and summation to get

i
lim ) (f(XZ’"(S)) — f(X(s=) = 2] fJ/‘(XZ’n(S_))AXj(S)>

n—0o0
O<s<t j=1

where we used [X;, X;| =0, i # j, for the last equality. In total, it holds

plim > (f(X (ks ter1) — F(X (1))

n—0o0
trste+1€Tn(t)

=3 [ e EJ MGG

+ Z D (F(X(5) = F(X(s)) = FH(X(5=)AX(s)) .
ERA
The desired result is now deduced from

Y, FX (ko ter) = FXT (trs trn))

L ti+1€Tn(t)

= D (X (kter) = FX@E)) = ), (FXT k) — F(X (1))

tiotk+1€Tn(t) thotk+1€Tn(t)

by taking on both sides the limit in probability and using (2.11). O

In the previous theorem, we have shown that the ISU decomposition does not depend on
the update order. Therefore, we can also draw a conclusion about the IOAT and AISU

decompositions.
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Corollary 2.9. Let f € C2(R™). For R(t) = f(X1(t),..., Xim(t)) the IOAT decomposition
and the averaged ISU decomposition are both equal to the ISU decomposition.

Proof. The result follows immediately with Theorem 2.7 and Theorem 2.8. O

Focusing on continuous semimartingales with zero quadratic covariation, Frei (2020,
Proposition 1) derives the IOAT decomposition in a similar framework. With Theorem 2.8
and Corollary 2.9, we generalise his result for functions f € C2(R™) by allowing for jumps
of the semimartingales, while keeping the assumption of the zero quadratic covariation.
A further generalisation to semimartingales with non-zero quadratic covariation and twice
differentiable functions f has been carried out by Junike et al. (2024, Theorem 4.7). In
particular, the results by Junike et al. (2024, Theorem 4.7 and Remark 4.12) show, that
Corollary 2.9 does not hold, if the risk factors incorporate a non-zero covariation [X;, X;]

for some i # j.

16



3 Embedding of traditional surplus decompositions
into the ISU concept

This chapter is derived in part from an article published in the Scandinavian Actuarial
Journal in 2022 (copyright Taylor & Francis), available online: http://www.tandfonline.
com/10.1080/03461238.2022.2049636 . More precisely, (parts of) Sections 2, 3, 5 and 6 of
the article Jetses and Christiansen (2022) are included in this chapter. In order to improve
readability and standardise the notation in this dissertation, minor changes have been made

compared to the original article.

In traditional life insurance, the valuation assumptions include safety margins to protect
against adverse economic and demographic developments. As a result of the conservative
assumptions, the actual development of the risk factors is usually favourable to the life
insurer, which leads to systematic surplus. By statute, a part of this surplus belongs to
the policyholder and is therefore refunded (see Norberg, 1999). The refund terms often
require an allocation of the surplus to its individual sources, see e.g. the German national
directive Mindestzufihrungsverordnung (BMF, 2016). It is therefore essential to decompose
life insurance surplus into its individual surplus contributions.

The decomposititon of surplus is an old actuarial question that has been the focus
of several publications. In a time-discrete life insurance setup, the so-called contribu-
tion formula (Kontributionsformel) is not only frequently used by German life insurers,
but also appears in many standard references (see e.g. Milbrodt and Helbig, 1999,
Section 11.B; Saxer, 1955, Section 9.5). This formula decomposes the yearly surplus
into mortality surplus, interest surplus, lapse surplus and cost surplus. In time-continuous
model frameworks, early attempts to decompose the surplus for traditional life insurance
policies were made by Lidstone (1905) and Berger (1939) (see also Simonsen, 1970;
Sverdrup, 1969 and references therein), who investigated the impact of changing valuation
bases on prospective reserves. In later literature on surplus, the terms ‘first-order basis’
(prudent valuation basis) and ‘second-order basis’ (experience valuation basis) have become
established. Based on the Markov chain setup introduced by Hoem (1969), Ramlau-Hansen
(1988, 1991) investigated surplus in a multistate life insurance framework with deterministic
valuation bases. Extending these contributions, Norberg (1999, 2001) not only allows for a
second-order stochastic basis, but systematically defines surplus as the difference between
a second-order retrospective reserve and a first-order prospective reserve, distinguishing
between individual and portfolio surplus. While the above-mentioned literature focuses
on the investment of surplus in risk-free assets, Mgller and Steffensen (2007) as well as

Asmussen and Steffensen (2020) derived surplus decompositions in a more sophisticated
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model, including a risky asset. Recent papers by Bruhn and Lollike (2020) as well as Falden
and Nyegaard (2021) analyse the dynamics of surplus in terms of management actions
and policyholder behaviour; however, these topics are beyond the scope of this chapter.
Furthermore, it is worth to mention that focus is placed in this work on the decomposition
of surplus (‘bonus’), and not on the distribution of surplus (‘bonus schemes’, ‘dividends’).

The above listed references show that surplus decompositions have been derived in
several frameworks, which differ in terms of time grid (time-discrete vs. time-continuous),
randomness (deterministic vs. stochastic valuation bases), perspective (retrospective vs.
prospective surplus) and information (individual vs. portfolio surplus) (see Steffensen,
2001, Section 3.7). However, all the decomposition formulas and their interpretations rely
on heuristic reasoning, making it challenging to compare the different frameworks and
their formulas. Furthermore, the existing literature does not pave the way for extending
the frameworks by further risk drivers (see Chapter 1). It is shown that the proposed ISU
decomposition principle addresses both shortcomings while providing further legitimacy to
existing surplus decomposition formulas. In a general multistate life insurance setup, the
known decomposition formulas are derived using appropriate choices of the revaluation
surplus process, the risk basis and the link mapping between them. In particular, the
time-discrete contribution formula is represented as an SU decomposition, which can
therefore be interpreted as an approximation of the corresponding time-continuous ISU
decomposition. The embedding of traditional surplus decomposition formulas into the
ISU decomposition principle will allow for a comprehensive comparison of the existing
decomposition formulas. Moreover, the clear idea of the ISU decomposition principle will
open the door to the incorporation of further risk factors.

In Section 3.1, the decomposition of life insurance surplus is embedded into the framework
of the previously presented ISU decomposition principle. The concepts of individual
surplus and portfolio surplus, in line with Norberg (1999), are introduced in Section 3.2.
Furthermore, different choices of the risk basis are discussed. In Section 3.3, general surplus
decomposition formulas are derived by applying the ISU decomposition principle. As
special cases of the main theorem, Section 3.4 contains the derivation of the traditional

surplus decomposition formulas known from the literature.

3.1 The surplus process of an individual insurance contract

We consider an individual insurance policy on a finite contract period [0,7]. For each
t > 0 let B(t) be the aggregated insurance cash flow on [0,¢| between insurer and insured.
We use the convention that premiums have a negative sign and benefits have a positive

sign. Let k be a semimartingale with x(0) = 1 that describes the value process of the
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insurer’s self-financing investment portfolio. Then the value A(t) of the assets accrued at

time ¢ is given by

A(t) = — J[O t] 0 5(s), (3.1)

assuming that B is a finite variation semimartingale and that x is strictly positive. In
the hypothetical case that the insurer knew the future, the liabilities at time ¢ would be

likewise calculated as

v [ RO
0 _LT] SdBe).

The difference between assets and liabilities is the surplus,
Sh(t) = A(t) — L () = k(1)(A(0) — L(0)). (3.2)

In this hypothetical setting, the actual surplus emerges at time zero and any dynamics
after zero just comes from the compounding factor x(t). By defining

_dr(t)

k()

as the return on investment of the insurer’s investment portfolio, the process S” satisfies

d(t)

ds"(t) = S"(t—)dd(t)

for t > 0, which shows again that the dynamics of S" on (0, o) stems solely from investment
gains earned on the existing surplus. Since A(0) — L"(0) depends on the future and is
nowhere adapted to the available information, in real life the insurer has to replace

A(0) — L"(0) at each time ¢ by an F;-measurable proxy R(t). Since the process
R = (R(t))t=0

describes profits and losses that result from the continuous revaluation of A(0) — L"(0) as
the information F; increases with time ¢, we call R the revaluation surplus process (see

Chapter 2). Now the total surplus process is given by
S(t) = k(t)R(t), t =0, (3.3)

and its dynamics is driven by both, the compounding factor x and the revaluation surplus
process R. As described in Chapter 2, we assume that the life insurance model rests on a

risk basis
X = (X17"'7Xm)a

which is a multivariate adapted process composed of the risk factors X, ..., X,, such that
R is adapted to the right-continuous and complete filtration generated by X. The risk

basis is assumed to be fixed, but depending on R, different choices of X are conceivable.
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The goal is to decompose R with help of the introduced ISU decomposition principle (see
Chapter 2) into

R(t) = R(0) + D1(t) +---+ Dy (t), t=0, (3.4)

where D1, ..., D,, are adapted processes that start at zero and describe the contributions
of each risk factor Xi,...,X,, to the dynamics of R. The first addend R(0) represents
initial surplus, which is not decomposed here. Equation (3.4) is equivalent to the additive

decomposition
S(t) = k(t)S(0) + k(t)D1(t) + - - - + k(t) D (t), t =0, (3.5)

for the total surplus process. The first addend (¢)S(0) represents the time-t value of the
initial surplus S(0) = R(0), and the addends k(t)D1(t), ..., k(t)Dy,(t) describe the time-t
values of the contributions that the risk factors Xi, ..., X,, make to the dynamics of S.
The additivity of the decompositions (3.4) and (3.5) allows us to distribute the surplus
among different parties.

The dynamics of the total surplus in (3.3) is driven by investment gains on the surplus
itself and by revaluation gains. In (3.5) the investment gains are subdivided among the
different surplus contribution addends according to their shares in the total investment
earnings. It is not uncommon in the actuarial literature to collect all the investment gains
in a separate term, see for example Norberg (1999, formula (5.3)). The idea is to apply
Itd6’s product rule on S(t) = x(t)R(t) and then to identify each of the resulting addends
either as investment gains or as revaluation gains. However, this approach mixes up the
investment earnings of the carefully separated surplus contribution addends, so it is not

helpful in our opinion and therefore it is not further considered in this chapter.

3.2 The revaluation surplus in multistate models

Let the random pattern Z of the insured be a right-continuous and adapted jump process
on a finite state space Z with starting value Z(0) = a € Z. We define corresponding state

processes (I;); and counting processes (Nj)jk-jzk by 1i(t) == 17— and
Nje(t) = #{s € (0,t] : Z(s—) = j, Z(s) =k}, j, ke Z, j#k, t = 0.

Additionally, we define Nj;; = —> . 2 Njk, 7 € Z, and the vector-valued process
N = (Njk)jh:jh-
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We call a pair (®,A) a valuation basis if the following properties hold:

o @ is semimartingale with ®(0) = 0 and A®(t) > —1 for all t > 0,

|

= (Kjk)jk:#k is a vector-valued, right-continuous finite variation process with

(0) =0,

=

o the processes Aj, j # k are non-decreasing and Zk:,ﬁ&j AN (t) < 1 for every t >0

and every j.

The process ® represents cumulative returns on investment, and the solution & = (%(t))¢>0

=

of the stochastic differential equation
dr(t) = R(t—)d®(t), &(0)=1, (3.6)

is the value process of a self-financing investment portfolio with respect to ®.
Furthermore, given the valuation basis (®, A), let p = (p(t, 5))o<i<s, D(t, 5) = (@)1 (t,8))jk

denote the solution of the stochastic differential equation system
Bi(t.ds) = D pj;(t, s—)dRix(s), Bi(t,t) = Ok, 5> 1. (3.7)
i

Observe that we may pick N itself for A. In this case the solution of (3.7) satisfies
Pa;(0,s) = I;(s), since I;(0) = 6,5 and
dIi(s) = D, (dNk;(s) = dANji(s)) = D Iu(5=)dNi; (). (3.8)
k:k#j k
Throughout this chapter, let the valuation basis (®, A) represent the so-called second order
valuation basis. The process ® describes the real return in investment in the insurer’s
investment portfolio. Let x denote the solution of (3.6) with respect to ®. For the

second-order basis we additionally assume that

(S.1) A is a predictable process,

(S.2) conditional on (®,A) = (E, F), the process Z is a Markov process under P with

cumulative transition intensity matrix F'.

Thus, the process I;(t—)dAjx(t) is a P-compensator of dVj; with respect to the natural
completed filtration of the random vector (Z*, ®, A);~o. Due to the conditional Markov
property, the stochastic differential equation (3.7) with respect to A corresponds to the Kol-
mogorov forward equation of Z conditional on (®, A), and its solution p(t,s) = (p;i(t,s))k

is the transition probability matrix of Z conditional on (®,A).
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Furthermore, let the valuation basis (®*, A*) represent the so-called first order valuation

basis. For this specific valuation basis we additionally assume that

(F.1) ®* and A* are deterministic,

(F.2) Z is a Markov process under a prudent probability measure P* with cumulative

transition intensities A;’fk, Jj #k,
(F.3) (I+ AA%,(s)) ! exists for every s > 0,

where A}, denotes the matrix-valued process Ay, = (A7) ), with A% = =%, A% Let
x* and p* be the solutions of (3.6) and (3.7) with respect to ®* and A*, respectively. Under
the first order valuation, (3.7) is the classical Kolmogorov forward equation and p* is the
classical transition probability matrix of Z under P*. The existence of (I + AA%,(s))~!
for every s > 0 ensures that the matrix p*(t,s) has an inverse for each s > ¢, denoted

as ¢*(t,s), see Lemma A.2.1 in the appendix. In particular, ¢* satisfies the stochastic

differential equation
q*(t,ds) = —(dG(s))q"(t,s—), ¢*(t,1) =1, s > ¢,

where G(s) = A}/(s) = 2ocpes (AAG(u)*(T 4+ AAG,(u) ! (see Lemma A.2.1).
Recall that the insurance policy shall have a finite contract horizon in [0,7"]. We assume

that the insurance cash flow B has the form

B = S L) dBi () + Y] byu(t) ANj(d), (3.9)
J Jk:g#k
where (Bj); are right-continuous finite variation functions that satisfy dB;(t) = 0 for t > T,

and (b;x)jk:jr are bounded and measurable functions with b (t) = 0 for ¢ > T.

We generally assume that
(J) the processes ®*, ® and (N, A*, A, (Bj);) have no simultaneous jumps.

The latter condition implies that the covariation between the investment risk and all other
risk drivers is zero. This fact will help us to build additive decompositions by applying
[t0’s formula, see Lemma 3.7 below.

3.2.1 Individual revaluation surplus

In with-profit life insurance, the remaining future liabilities of the individual insurance

contract at time t are commonly evaluated as

2 LMV (),
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where VJ* (t) shall be the prospective reserve at time ¢ in state j with respect to the
first order valuation basis, see Norberg (1999). According to Milbrodt and Helbig
(1999, Chapter 10.A), it holds that
T
* ‘ K*(t) ,
Vii(t) =E Ut dB(s)‘Z(t) = j:|

K*(s)
Zf( by ::Ei (t,s=)dBi(s) + ) J( - ,’z:((z))pjk(t,3—)bkl(8)d1\§§z(8),
t ke Lk ¥

where E* denotes the expectation with respect to P* (see (F.2)). The accrued assets of the
individual insurance contract at time ¢ equal (3.1), so the total surplus of the individual

policy at time ¢ is

N L F TR,
S(t) = f[ s 57 B0 = SOV 0, (3.10)
see Norberg (1999). The corresponding revaluation process R equals
SO _ [ g =S v
R(t) = ~ 0 JM - (S)dB( ) ;ﬁ D L)V (). (3.11)

Proposition 3.1. For R defined by (3.11) and t € [0,T] it holds that
R(t) = —H((®*, A*) + (& — ®*, N — A*)"), (3.12)

where ()t denotes the corresponding stopped process (see (2.1)) and where for any valuation

basis (®, ) the mapping H is defined by

_ 1 _
(3, 1)) 2 J pa] (0,5-)dB;(s) + Y J L (05— b5 A (5)
jikjk JOT] F(s)
(3.13)
with P,a;(0,0—) = dg;-
Proof. The solution of (3.7) with respect to the cumulative transition intensity vector
A* + (N — A% s
Ij(s)a s <,

ZIl(t)plﬂ_‘](tvS)a s > tv
l

where pj;(, s) is the solution of (3.7) with respect to the first order valuation basis. The
solution of (3.6) with respect to ®* + (& — &*)* is

k(s), s <t,
5)

K(t )H:((t) s >t

where £* is the solution of (3.6) with respect to the first order valuation basis. By plugging

these solutions into (3.13), we obtain the desired result. O

23



Proposition 3.1 allows us to represent R by

for various choices of X and p. For example, we may define the risk basis X and the

mapping ¢ by means of the mapping H (see (3.13)) as follows:
Example 3.2. By setting
X = (X<IHXU7XS) = ((I) - q)*7N - A7 A — A*)7

we distinguish between financial risk, unsystematic biometric risk and systematic biometric

risk, and we may define ¢ by
o(X") = —H((®*, A*) + (Xg, X} + X1)).
Example 3.3. By setting
X = (Xo, (Xjr)jrjzr) = (2 — D, (Njk — AJy)jkjzk)s

we distinguish between financial risk and transition-wise biometric risks, and we may define
o by
o(X") = —H((2*,A") + (Xg, (Xji) jrijirh))-
Example 3.4. Let the processes (®;); and (®}); be defined by d®;(t) = I;(t—)d®(¢),
®;(0) = 0, and d®}(t) = I;(t—)d®*(t), ;(0) = 0, respectively. Further, we denote
Aj = (Aji)kkzj and AT = (A% )gpj- By setting
X = (Xu, (Xj)j) = (Xu, (Xj1, Xj2)j) = (N — A, (@ — @, Aj — AT);),

we distinguish between unsystematic biometric risk and state-wise remaining risks, and we

may define ¢ by
o(X') = -H ((fb*, Tr) + (0, X,) + (Z X1, (X§,2)j>> :
J

3.2.2 Mean portfolio revaluation surplus

In actuarial practice it is not uncommon to focus on mean portfolio values only. We can
replicate this perspective by applying the expectation E[ - |®, A] on the individual values
(3.10) and (3.11). The revaluation surplus takes then the form

1 1 .
;aﬂ::E[_.ﬁaﬂH@ﬂdgpg-égﬁﬁgg(nyg@ﬂ@,A], (3.14)

and the corresponding total surplus still satisfies the equation

S(t) = k(t)R(1). (3.15)



Note that Norberg (1999) applies the expectation E[ - |®!, A'] instead, but his definition is

equivalent since

S(t) = J w(?) Z <paj (0, 5-)dB;(s) + Y bjk(s)paj(o,s—)dAjk(s))

0.4 #(5) kiktj

= > paj (0, )V (2)

r
is o(®!, AY)-measurable. The following corollary is a direct consequence of Proposition 3.1.
Corollary 3.5. For R defined by (3.14) and t € [0,T] it holds that

R(t) = E[ — H((®*, A*) + (@ — ®*, N — A*)")|®, A], (3.16)

where H is given by (3.13).

Because of the latter corollary, in the Examples 3.2 to 3.4 we just need to add the conditional
expectation E[ - |®, A] to the definition of g in order to get to the mean portfolio perspective.

The next example is in particular relevant in German life insurance.

Example 3.6. Consider a life insurance contract with the states active, surrendered and

dead,
Z = {a7 S? d}?

of an z-year old insured. We assume that A* and A are absolutely continuous with densities

A* and A, respectively. Let

k—lp;-i-l = pZa(‘r +lz+ k)v
Tk = Paa(z + k= 1,2+ k),

T;-‘rk—l = sz(x +k—12+ k‘),

and define _;py1i, qrok—1 and 41 likewise for the second-order valuation basis. We
assume that sojourn payments occur only in state active and only as lump sum payments
by at integer times k. Furthermore, we assume that the death benefit function and the

surrender benefit function have the form

r(ltD
K(t)

where d;| and sy, represent the death benefit and surrender benefit in year |t]. This

r(1¢])

baa(t) = k(1) Sl

[t]7 bas (t) =

definition of b,q and b,s discounts death benefits and surrender benefits as if they are paid

out at the end of the year, so that V* has at integer times [ the representation

T T
* (1) K* (1)
Vi) = kzl;rl (k) k=Pt bk + kzl;rl () kmt=1P5 1 (di Gpm1 + 8751 pm1)-
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We define yearly interest rates of first order and second order by
iy —elt“d)*(“)d“—l, o zez+1¢(“)d“—1, k e Ng.

One can show that the yearly increments of the mean portfolio revaluation surplus process

equal
R(k +1) — R(k)
k+1
=e ~Jo" o) du kPz (Va*(k) (1 + i) = Qeak A1 — Totk Sk+1 — Pask (bk+1 + Va,*(k + 1)))

This formula is widely used in German life insurance (see Milbrodt & Helbig, 1999,
Section 11.B). It is common in Germany to decompose the increments R(k + 1) — R(k)
into investment surplus, mortality surplus and lapse surplus. For that purpose, analogously

to Example 3.3 we choose
X = (X<I>; Xada Xas) = ((I) - q)*7Nad - A;da Nas - AZS)

as risk basis.

3.3 ISU decompositions in multistate life insurance

This section contains general technical results that will be needed for the examples in the

next section. For any valuation basis (®, A), we write

|2

(t) = B(t) —[&,@]°(1) — Y} (1+AB(s)) '(A(s))?,

0<s<t
where [®, ®]¢ signifies the continuous part of [®, ®].

Moreover, let R}y, j # k denote the first order sum at risk, i.e.

Rj (1) = bj(t) + V' (1) = Vi (1)

Recalling that

_ ; B
((®,A)) ZJOT Pa] (0, s—)dB;(s) +j,;§¢kf(0T] (s )paJ(O s—)bjr(s)dAji(s),

for any valuation basis (®, A) (see (3.13)), we can pose the following results.

Lemma 3.7. Let (®,A) be a valuation basis such that (®*, ®) and (A*, A, (B;);) have no

stmultaneous jumps. Then it holds that

~

Z s=)d(® — &F + [D, B*])(5)

J

H((®*,A*)+(® — ®*, A — A*)") :f(m

1 —
a 2 J(O’t] Paj (0, s—) R (s)d(Aj, — Ay )(s).

jkj#k i(s)
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Proof. As a shorthand notation, we define multivariate processes C* = (C§¥,...,C*)" and
C=(Cy,...,Cp)" by
dC(s) = dBj(s) + Y. bjr(s)dA%(s), CF(0) =0,
kiktj

dCj(s) = dBj(s) + Y bir(s)dAju(s), C;(0) =
k:k#j

Note that C* and C are column vectors. The vectorial process I = (I;); shall combine all

state processes as a row vector. We further define

W(s) = —H((®*,A") + ( — ©*, A — A*)*),

where H is given by (3.13). Due to the assumptions made on the first-order valuation
basis in Section 3.2 (see (F.3) and the follow-up remarks), p*(0, s) is invertible with inverse
q*(0,5).

Thus, for s € (0,¢], we get

W) == [ 1m0 - = [ L r0)p(0, 5157 (5, w0 ()
[0,5] (s,T] I

r(u) R(s) *(u)
—— [ 10000 - T 100900, )6 (0,9 Y 9,
[0,5] Flu) /@(s)
for Y(s) = S(&T] H%(u)p*((),u—)dC*(u). Analogously to A%, let Ay; denote the matrix-
valued process Ay = (Ajg)jx with Aj; = —Zk,,#j Aji,. By applying It6’s formula and
using the assumption that (®*, ®) and (A*, A, (B;);) have no common jumps, we can show
that
ATV (s) = —H(IS)I(O)p(O, s)d(@ — C*)(s)
~ 10)" 50,5007 0,50V (s )a(@" - B - [0, B))()
= 10)"% 0,5 )R — A3 (6) 70,9V (9
= — = 100, 5-)d(C - ") (o
o 1 (0. 5— ’1*(3_) *(g— u— *(u * _l_ ¥ T s
5 1Op(0.5) ( [, et >) a(@* — & [a*, &)(s)
- 10RO, = A3 ) (f( e <u>) ,
where we used Lemma A.2.2 to get
K*(s) _ .
a(=E 0.0 0.9)
- 0.0 0,9) + 90,5210 0,570 (25 ) | p0.9070.0| 9
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_ ’%*(3_)7 A # ® K*(s_)— O\ % o *_l_ 5

= 0,5 )~ A3)(5) 4" 0,9)+ 0,5 )" (0,5 )(@" - [0 B o)
with %(s) = B(s)—[®, P]°(5) —Dgcpes(1+AD(u)) " (AP(u))?. Component-wise evaluation
and integration on (0, ¢] gives us the assertion. O

Theorem 3.8. Let the processes (®;); and (®%); be defined by d®;(t) = I;(t—)d®(t),
®;(0) =0, and d@;’f(t) = I;(t—)d®*(t), @;’-‘(O) = 0, respectively. For j, ke Z let

Xg, = B; — B,

Xujk = Nji — Njk,

*
Xk = Nje — Ay,

and set X = ((Xoj)j, (Xujk)jkjrzks (Xsjk)jkijzk). Then

t
Q(Xt) =_-H ( (I)* A* <Z X@ja u,jk + XS,]k)Jk]?Ek) >

has the ISU decomposition

1 * T *
Das() = | eIV ) - 9o,

Dujult) = — j 1)1]-(8—) = (8)d(Nj — Aje)(s),
(O,t] K{S

Do ju(t) = — j( . K(ls)fj(s—m;k(s)dmjk —A%)(s).

In particular, the ISU decomposition does not depend on the update order or the choice of

partitions.

Proof. Let Jp € Z and J,,, Js € J = {(j, k) € 22 :j # k}. For r < s, we define

r,5 . XzI;,ja ] ¢ J(Da
®,Jpj T
X(%Ja ] € ‘]fba
as well as
r,s L XQ,jk? (]7 k) ¢ Jm X7 . X§7jk, (j, k’) ¢ Js,
u,Ju,jk ) s,Js,jk " )
X’Z,jk’ (]7k) € Ju, X;yk’ (],k) € Js.

We further set
L 0,7 0,T . 0,7
X<I>7Jq> = Zch Jo,j” Xu,Ju = (Xu Ju,]k)]k7 Xs,Js = (Xs,Js,jk)jk’
J

T 0,7 0,7 0,7 _
where Xu Jurgi = Zk:k;ﬁj Xu,Ju,jk and Xs Jsndi Zk:k;ﬁj Xs,Js,jk' Let &7¢ := X‘i’,J@ +o*
and let k7* denote the solution of dx’®(s) = xk’®(s—)d®’*(s) with x’/#(0) = 1. Similarly,
for J = (Ju, Js) let A7 == Xu, g, + Xs,g, + A3y and let p’ = (pjk)jk denote the solution of
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p?(r,ds) = p’(r,s—)dA’(s) with p’(r,r) being the identity matrix.
Let t € [0, T] and let (7,(t))n be a sequence of partitions of [0, ¢]. For a simpler notation,
we only write ¢ instead of ¢} for the grid points in 7,,. Throughout the proof, let o, (s) be

the left point of s in 7, (t), i.e. ay(s) ==ty if s € (g, tx+1]. For notational convenience, we

write

thsti41

tht thot thot
tets = 00X 05 (X 005k kst (X0 050 ) s e)-

Qg Ju,ds = ®,Jg,j

It is sufficient to show that

tiotk+1 totk+1

i) ELIE% Ztk,tkHETn(t) (qu>u{j0}7]u’]s - QJ¢7JU7JS) = Dg j, (1), jo € Z2\Jo,

Tryth+1 tr,ti+1

i) plim Dty i €T (0) (9J¢,Juu{(jo,ko)},Js - 9J¢,Ju,Js) = Dujoko (t); (Jos ko) € T\Ju,

. bt Lot .
111) 51—1}(2 Ztk’tk+1€7—n(t) (Qf%;z}JsU{(jmko)} o Qt]k@,tk]z;b) - stjoko (t)v (]07 kO) € j\Js

We prove the convergences consecutively.

i) Let jq; =Jp U {jo}, Jo € Z\Jq;. and let

We define stochastic processes

BN B G 0)) J e
&P,Jo,n(s) ZIg(tk)Zpgj(an(5)75 )V] (s )IJO(S )

() rTo(s—) 2
€0 n(5) = W21g<an<s>>2p;j<an<s>,s—)Vf(s—)Ij(s—» je s,
n g F

s))
us,jkn(s) = —Zlg(an(s))mpgj(an(s),s—) k(s), (4,k) € Juu Js,

where s € [0,¢]. Due to (J), we can apply Lemma 3.7, which gives us
trott1 Ltk +1
2 (©Clio Tunds — Cadut.)
tstk+1€Tn(t)
thoolht1 thslhkt1 Uslk+1 thslhkt1

= > (@l — 055 — (n i, — 05 gy))
th,t+1€Tn (L)

DI NEHEITELLTORED il IR SET PR VAIE

jeJp (jak)eJu (O’t]

- j( | k() = AL)(S),

(j,k)er

where ®(s) = ®(s) — [@, ](s) — Y ocucs(l+ AP (w) " (A®(u))?. Here, we used
that

A(@Te — &* + [0Te, &*])(s) = > Lj(s—)d(d — &*)(s),
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ii)

exploiting that ® and ®* have no common jumps (see (J)). Since for every s € [0, ]

we almost surely have

T, g0 (5) = s T 5=V 5.

lim £ jn(s) =0, j € Ja,
A(s—,s)
K(s—)
and since A(s—, s)d(Nj, — Aji)(s) = A(s—, s)d(Ajx — AJ;)(s) = 0 almost surely, the
dominated convergence theorem for stochastic integrals (Protter, 2005, Chapter IV,

Theorem 32) yields

. tr,lk+1 tr,ti41 . )
plim > (s, = €55215.) = D (0.
trotk+1€Tn(t)

nlg{}o gus,jk,n(s) = I;(s—) ;-‘k(s), (Js k) € Ju v Js,

Let j = (Ju ) {jo, ko}, JS), (j(),k(]) € j\Ju and let

A]'k(n 3) = p;’]k(rr? 8) _p;]k(rv 5)7 r<s.

We define stochastic processes

1
k(an(s)) /{J‘P

gé,j,n(s) =

Zf ZAW an(s),s=)VF(s=)Ij(s=), j € Ja,

1 H"“’(Oén(S)) " :
éus,jk,n( )__Zlg(an(s))ﬂ(an(s)) IQJ‘I’(S) Agj(an(3)73_)Rjk(3)7 (j,k) € JuUJS,

1 k7 (an(s)) 7 "
fu,]oko, ZI an n(s)) 1‘1”(7‘1’(8() ))pgjjo(an(s)75 ) ]Oko()

where s € [0,¢]. Again with Lemma 3.7, we have

Z (thytk+1 thﬂfkﬂ )
Jp,Ju{(jo,k0)},Js Jo,JusJs
trotk+1€Tn(t)
_ Ukstk+1 teotk+1 tiotk+1 teotk+1

= > @ ek, — e — (R — 08 5 )
i tk+1€Tn(t)

2 5@]» d((I> %) J gusuk n(s)d(N. Jjk — Ajk)(s)
jedy (0] (] ket
f Eu.joko,n (8)A(Njoky = Njoko ) ( Z J Sus,jkn{s)d(Ajr — A;k)(s)
(4,k)eJs

Since for every s € [0,t] we almost surely have

kle(g—
nlggo&wokm (s) = _K(sl_) jo(s_)ﬁjqf(s)) ;oko(s)
1 1+ Ad(s)

- _ (Y T \TJ
/‘/v'(s) ]O(S )1 + A@Jq) (S) Joko (8)7
lim €<I>,], ( ) = nlgrc}ofus,jk,n(s) =0, je Js, (J7 k) € JyuJs,

n—o0
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iii)

and since %d(Njoko — Njoio)(s) = d(NVjore — Ajoko)(s) almost surely, the

dominated convergence theorem for stochastic integrals (Protter, 2005, Chapter IV,

Theorem 32) yields

i lstht1 thotkt1 _ '
plim D) (QJ«I»Juu{(joﬁko)},Je 9J¢,Ju,J5>—Du,Joko(t)-

N kg1 €T (2)
Let J = (Ju, Js U {jo, ko}), (Jo, ko) € T\Js and let
Aji(rys) = pji(rs) = ph(r.s), 7 < s.
We define stochastic processes

£a,jn(s) = : ZI (s Z Agjlam(s), s—)Vi (s—)Li(s—), j € Jao,

K{an(s)) HJJ‘P -

ke an(s .

us,jkn(5) ZI (an(s i(s)) ,{L(,q)(s() ))Agj(an(s),s—) ;‘k(s), (J, k) € Jy u Js,
k7 (a,(s)) —

fuson(5) = = S lo(ans L2 0nl8) T (4 (s), 5-) R (5),

(an(s)) K72 (s)

where s € [0,¢]. Again with Lemma 3.7, we have

Z (thvtk+1 ‘ _thﬂfkﬂ )
J@vJU7JSU{(J07kO)} Jo,Ju,Js
tr,te+1€Tn (1)
_ Z ( tkotk+1 Ukstk+1 ( teotk+1 tk7tk+1 ))
O Jp JuTso{losko)y — 22.2.0 ~ g duds ~ 02,0
tr,te+1€Tn (L)

Z §<I>,] n d((I) (I) J gus,]k’ n ( jk — A]k)(s)

jeJs (0,] (j,k)eTu

+ 2 0] éuS,jk,n(S)d(AJ’k - A;:k)(s) + J(O q f&jokom(s)d(AJ‘oko - A;Oko)(s)'
(jvk)e‘]S ’ ’

Since for every s € [0,t] we almost surely have

1 Jo (o
nlgjgo fs,joko,n(s) = _ﬁ jo(S_)w ;coko(s)
1 1+ A®(s) .,

T k(%) jo(S—)m Joko (5)5
lim £<I>,j n( ) = Ji_r){}ogus,jk,n(s) =0, je Js, (]7 k) € JyuJs,

n—a0

. 1+Ad
and since #&&gg)d(%‘oko A% e )(8) = d(Ajor, — A%k, )(s) almost surely, the
dominated convergence theorem for stochastic integrals (Protter, 2005, Chapter IV,
Theorem 32) yields

. Ui sth+1 th,tk+1 _ )
plim Z (QJq»Ju,JsU{(jo,ko)} - QJ<1>,Ju,Js> = D joko (t).
tk,tk+1€7;1(t)
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Lemma 3.9. Let X = (Xy,...,X,,) be a given risk basis with
R(t) = o((X1,..., Xn)H

for a suitable mapping o, generating the ISU decomposition D(t) = (D1(t),. .., Dp(t)) with
respect to (T, (t))n, and let G be a sub-o-algebra of A. Suppose that the SU decomposition
D™(t) = (D}(t),..., D (1)) of R(t) — R(0) with respect to T,(t) satisfies |D}'(t)| < Y,
1=1,....,m, n €N, for some integrable random variable Y. Then the ISU decomposition
of

R(t) = (X1, ., Xm)") = E [o((X1, ..., Xpn)")|G]
s given by

D(t) = (E[D1(t)|G], ..., E[Dm(t)[G]).
Proof. Since the revaluation surplus surfaces U and U are linked via the equation
Ulty, . tm) = E[U(t1, ..., tm)|G],

the SU decomposition of R(t) — R(0) is given by D"(t) = (E[D?(t)|G], ..., E[D(¢)|G]).
Using that |D*(t)| <Y, i =1,...,m, for some integrable random variable Y and the fact
that stochastically converging sequences have almost surely converging subsequences, the

dominated convergence theorem for conditional expectations almost surely yields

Di(t) = lim E[D}()|G] = E[Di(#)[g], i = 1,...,m.

Theorem 3.10. Let X be defined as in Theorem 3.8. Then

@,A]

oX") =E [—H ((‘P*,A*) + (Z Xoj, (Xujk + Xs,jk)jk:#k) )
j

has the ISU decomposition
1 ~
Dy ;(t :J ———ai(0,s=)VF*(s—)d(® — D*)(s),
10= ] aype05mV ()@ = 7))

D, ji(t) =0,

Dy jult) = - j( N ﬂ(ls)pajm, SR () d(Asi — A%)(s).

In particular, the ISU decomposition does not depend on the update order or the choice of

partitions.

Proof. The model framework, introduced in Section 3.2, entails that the integrability
assumption in Lemma 3.9 for the SU decomposition (see proof of Theorem 3.8) is satisfied.

Thus, applying Lemma 3.9 with G = o(®, A) to the ISU decomposition in Theorem 3.8
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and using the martingale property of dNji(t) — I;(t—)dA;x(t) with respect to the natural
completed filtration of the random vector (Z*, ®, A);>¢ (see (S.2)) give the desired result. [

Proposition 3.11. Let X = (Xy,...,X,,) be a given risk basis with
R(t) = Q((Xl + X5, X3, ... ,Xm)t)

for a suitable mapping o, generating the ISU decomposition D(t) = (D1(t),..., Dn(t)).
Then the partially aggregated risk basis

X = (X1 + X2,(X3,X4), X5..., Xp)
generates the ISU decomposition

D(t) = (D1(t) + Da(t), D3(t) + Da(t), D5(t) ..., D (t)).

Proof. Since the revaluation surplus surfaces U and U are linked via the equation
Uty,ts,ts ... tm) = Uty t1, b3, b3, 5 . ., tm),
the SU decompositions D" and D™ with respect to Tn(t) satisfy
Br(t) = (DR(t) + D3 (), D) + Dy(t), DE(D), ..., DL (1),

The latter equation carries through the limit (2.5) to the ISU decompositions. O

3.4 Examples

We continue with the examples for the risk basis X and the mapping o from Section 3.2
and present the corresponding ISU decompositions.

3.4.1 Decomposition of the individual revaluation surplus

Let R be the individual revaluation surplus according to (3.11).

Example 3.12. Suppose that we are in the setting of Example 3.2, where we distinguish
between financial risk, unsystematic biometric risk and systematic biometric risk. By

applying Theorem 3.8 and Proposition 3.11 we obtain the ISU decomposition

1 o — ®*)(s
Dat) = j( . K(S_);Ij@—)vj (s—)d(® — B*)(s),

Li(s=) R (s)d(Njk — Aj)(s),

T
e
I
|
]
S

i (s=) Ry (s)d(Agr — AJy ) (s).
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Example 3.13. Suppose that we are in the setting of Example 3.3, where we distinguish
between financial risk and transition-wise biometric risks. By applying Theorem 3.8 and

Proposition 3.11 we obtain the ISU decomposition

1 (L — (s
Dei)= | DGV (6@ = 20,

Dyi(t) = - f( y K@@»(s—) 5 (AN — A5 (), ke 2 j# k.

As a special case this ISU decomposition includes the heuristic approach of Ramlau-Hansen

(1988, formula (4.7)) for subdividing biometric surplus in a transition-wise way.

Example 3.14. Suppose that we are in the setting of Example 3.4, where we distinguish
unsystematic biometric risk and state-wise remaining risks. By applying Theorem 3.8 and

Proposition 3.11 we obtain the ISU decomposition

1
D,(t) = — ——I;i(s—)R5,(s)d(Njr — Ajr)(s),
) j,;ékﬁo,ﬂ RN~ 430(6)
D) = | 1) (Vs W@ - 8)(s) = Y Rl — M), je 2.
(0,4 F(5—) s

As a special case this ISU decomposition includes heuristic approaches of Ramlau-Hansen
(1988, formula before (4.10)) and Norberg (1999, formula (5.4)) for splitting off unsystematic

biometric surplus and then subdividing the remaining surplus in a state-wise way.

In Example 3.12 and Example 3.14 we split off the surplus contribution of the unsystem-
atic biometric risk. Since this unsystematic biometric risk is diversifiable in the insurance
portfolio, its contribution x(t)D,(t) to the total surplus S(t), see (3.5), is typically credited
or debited to the insurer. Mgller and Steffensen (2007, Chapter 6.3) denote the remaining
surplus S(t) — k(t) D, (t) as the 'systematic surplus’ This systematic surplus mainly belongs
to the policyholder.

Asmussen and Steffensen (2020, Chapter VI.4) split also the financial risk into an
unsystematic part and a systematic part and argue that the unsystematic financial risk
surplus contribution should be fully credited or debited to the insurer, similarly to the
unsystematic biometric risk surplus contribution. They distinguish unsystematic and
systematic financial risk by splitting ® into a martingale part and a remaining systematic
part. If we likewise split ® — ®* in the risk basis X into a martingale part and a remaining
systematic part, then the resulting ISU decomposition allows us to distinguish between
systematic and unsystematic surplus contributions. If we collect the systematic biometrical
and systematic financial surplus contributions, then we just end up with the systematic
surplus formula of Asmussen and Steffensen (2020, Chapter VI.4). We do not show the

detailed calculations here but leave them to the reader.
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3.4.2 Decomposition of the mean portfolio revaluation surplus
Let R be the mean portfolio revaluation surplus according to (3.14).

Example 3.15. We choose the setting from Example 3.2 but adopt the mean port-
folio perspective. By applying Theorem 3.10 and Proposition 3.11 we obtain the ISU
decomposition

1 * F *
Daw=ﬁwﬁ®ﬂ%k@@&am@aa@—¢xw

! k(s i — A (s
DWW~}g%LMﬁ@¢MQ&MM(MMm A%)(s).

The conditional expectation in (3.14) and (3.15) completely eliminates the unsystematic

biometric risk, which explains why we have D,,(t) = 0 here.

Example 3.16. We choose the setting from Example 3.3 but adopt the mean port-
folio perspective. By applying Theorem 3.10 and Proposition 3.11 we obtain the ISU

decomposition

Da(t) = | s (0, 50V (s-)A(E — 8°)(s),
(0,4 K(5—) 2P !
1 ‘ .
Dji(t) = —J ——Paj (0, 5=) R (s)d(Aj — Ay )(s), j ke Z,j+#k.
(0,4 K(5)
The next example shows an application of this formula.
Example 3.17. We continue with the previous example but focus on the specific setting
of Example 3.6. One can show that the SU decomposition of R(k + 1) — R(k) with respect
to an integer partition equals
UGk + 1,5, k) = Uk, k) = =50 900 1 vE()A),
- Sk'H o(u)du *
Uk+1,k+1,k)—U(k+1,kk)=e o 1Pz (Vo (k +1=) — di41) A(g),
U+ 1k +1,k+1) —U(k+ 1k +1,k) =e % ¢ b (1 (k 4 1) — 5.1 ) A(r),
(3.17)
where A(i) = ix — i), A(q) = Guk — @hpp and A(r) = 744k — 754, see Section A.1 in
the appendix. This decomposition is the standard surplus decomposition formula used in

German life insurance (see Milbrodt & Helbig, 1999, Section 11.B). We can interpret the
latter SU decomposition as an approximation of the ISU decomposition of R(k + 1) — R(k),
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which equals here

Dq;(]{: + 1) - D@(k}) = J(k - e §5 #(u) du D Va*(s) d((I) — (I)*)(S),
Dyg(k + 1) — Dyg(k) = J(k - e Joo(u)du Pz (Vo (8) = baa(s)) d(Aga — Adg)(s), (3.18)

Das(k 4+ 1) — Do (k) = J e~ Yo o(w) du s (VE(8) = bas(8)) d(Aas — AL (s).
(k,k+1]

The latter decomposition is invariant with respect to a reordering of the components of X,
whereas the SU decomposition changes. Therefore, we recommend to replace the traditional

SU decomposition (3.17) by the ISU decomposition (3.18).

Example 3.18. We choose the setting from Example 3.4 but adopt the mean port-
folio perspective. By applying Theorem 3.10 and Proposition 3.11 we obtain the ISU

decomposition
Dy(t) =0,

1 * 5 * * * .
D;(t) = J( o 7P 05 (7 (ea@—e -3, (AN~ AR)(5)), j € 2.

As a special case this ISU decomposition includes heuristic approaches of Ramlau-Hansen
(1991, formula (3.2)) and Norberg (1999, formula (5.7)) for subdividing mean portfolio

surplus in a state-wise manner.

As shown in Section 3.3, the ISU decompositions in our life insurance model do not
depend on the update order. Thus, together with Theorem 2.7, we directly get the following

result.

Corollary 3.19. For all ezamples in Section 3.4 the IOAT decomposition and the averaged
ISU decomposition are both equal to the ISU decomposition.

The results in this chapter have shown that the ISU decomposition principle is a suitable
tool for deriving invididual surplus contributions in traditional life insurance. Moreover, the
clarity of the decomposition opens up new prospects for future research to take policyholder

behaviour into account.
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4 Relating the ISU concept to the martingale

representation theorem

A company’s surplus is often exposed to a variety of risks, such as financial, legal and
economic risks. To master these risks, companies establish risk management processes
that identify, quantify and control potential risks. In particular, risk quantification entails
the assessment of how an individual risk affects the overall risk. However, individual risk
contributions are usually not directly accessible (see Schilling et al., 2020). Especially if the
different risks contribute to the company’s surplus in a non-linear way, the decomposition
of risk into its individual risk contributions is a very challenging task (see Frei, 2020).
Despite its relevance, risk decompositions have only been addressed by a few authors in the
literature (see Karabey et al., 2014 and references therein). With a focus on an insurer’s
surplus, an explaination is provided about how the ISU decomposition principle can also
serve as a useful tool for decomposing risk. But first of all the term 7isk needs to be
clarified.

According to the ISO 31000:2018 standard on risk management published by the
International Organisation for Standardisation (ISO, 2018), risk is an ‘effect of uncertainty
on objectives’. The wuncertainty is driven by a lack of knowledge about the future
development of factors affecting the surplus (objective). An effect manifests itself as
a ‘deviation from the expected’, which can be positive or negative (see Wuorikoski, 2018).
Translating this definition into mathematical terms requires the taking into account of
both, the different levels of information and the understanding of risk as a deviation from
expected values. To reflect the different levels of information, a filtration G = (G)t=0
describes the information available over time. The expected surplus changes as information

increases, therefore the revaluation surplus process (see Chapter 2) is defined by
R(t) = E[|G:], t =0, (4.1)

where ¢ is a Gpr-measurable random variable that e.g. represents an insurer’s surplus on a
finite time horizon [0, 7']. This time-dynamic approach allows one to interpret R(t) — R(0),
t = 0, as the risk on [0, ¢] that the expectation for the total surplus needs to be adjusted.

In particular, taking the entire time interval [0, 7] into account,
R(T) — R(0) = £ — E[¢]Go] (4.2)

describes the deviation of the actual surplus £ from the initially expected surplus E[£|Go],
and thus corresponds to the definition above.
Having derived a common understanding of risk, it is possible to return to the original

question of how to decompose the total risk R(t) — R(0) into individual risk contributions.
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A systematic approach to this question has been carried out by Schilling et al. (2020), who
introduce axioms of a meaningful risk decomposition for the time-static risk (4.2). On the
basis of these axioms, Schilling et al. (2020) not only compare risk decompositions known
from the literature, but also suggest another risk decomposition fulfilling all axioms. Based
on the martingale representation theorem, Schilling et al. (2020) present the so-called MRT
decomposition that decomposes the total risk into martingales, each of which characterises
an individual risk contribution. In particular, this approach uses the martingale property
of the revaluation surplus process (4.1), which is also conducive to the application of the
ISU decomposition principle. More precisely, if G; describes the information provided by
a risk basis X = (X1, -, X,;,) until time ¢, the ISU decomposition principle is directly
applicable and a natural link mapping ¢ between the risk basis and the revaluation surplus

(4.1) satisfying R(t) = o(X?") is given by
o(XT', .. X)) =E[¢lo(XT, ..., X)), tie[0,T], i=1,...,m. (4.3)

In this chapter, it is shown that the ISU decomposition principle is indeed a useful tool for
the decomposition of risk. In particular, conditions are presented under which the ISU and
MRT decompositions are equivalent.

So far, the motivation to consider ISU decompositions of martingales has been focused
on risk management. Though risk assessment usually refers to a real-world measure (see
Karabey et al., 2014; Schilling et al., 2020), other choices of the probability measure in
(4.1) are conceivable. This raises the prospect of further applications. Under a risk-neutral
probability measure, martingales are closely related to the pricing theory for finance
products in arbitrage-free markets (see e.g. Harrison & Pliska, 1981 for option pricing).
Not only financial mathematics, but also recent actuarial mathematics strive for a market-
consistent valuation of insurance products (see e.g. Biagini, 2013 and references therein).
The relevance of surplus decompositions in modern valuation setups is illustrated by Fischer
(2004), who splits the gains associated with a life insurance contract into a biometric and a
financial part.

Another application of martingale surplus processes relates to the decomposition of life
insurance bonus in the context of Chapter 3. In the literature on traditional life insurance
surplus (see Chapter 3), different valuation bases are used to value the earned surplus
under best-estimate assumptions (‘second-order basis’) on the one hand, and to value
the expected future surplus under conservative assumptions (‘first-order basis’) on the
other hand. This valuation pattern can also be achieved by considering the revaluation
surplus process (4.1) with respect to a conservative probability measure. Whereas in
classical bonus theory, the conservative valuation basis is fixed at the beginning of the

contract, the martingale approach takes full advantage of the available information. More
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precisely, the empirical observations are not only used to evaluate the earned surplus,
but also to involve an adjustment to the expected future surplus. Though understanding
surplus as a martingale is in line with a modern market-consistent valuation of insurance
contracts, only a few authors take up this idea in bonus theory, references are Steffensen
(2001, Section 3.5.1) and Dufresne (2001). Nevertheless, this application provides a further
motivation to study the ISU decomposition of martingales in more detail.

After introducing the underlying model framework, Section 4.1 presents a property of risk
bases that will be crucial from a technical perspective. In Section 4.2, it is shown that this
property is satisfied by a number of stochastic processes commonly used in actuarial and
financial modelling. The chapter concludes with Section 4.3, which contains the derivation
of the ISU decomposition for martingales and a discussion of its relationship to the MRT

decomposition.

4.1 Model framework

We generally assume that we have a complete probability space (€2,.4,P) with a right-
continuous and complete filtration F = (F;);>0. Let the system N contain the subsets of
P-null sets, i.e. N ={N < Q3Ae A: N € A AP(A) = 0}. Moreover, for sub-c-algebras
A; € A, 1 =1,...,n, we define the operator v by

\n/_AZ- =Av...vA, 2=J<O«4¢>,
i=1 i=1

where the right-hand side denotes the smallest o-algebra that contains all 4;, i =1,...,n.
We consider a finite time horizon [0, 7] and suppose that the risk basis X = (X1,..., X,)
is given by a vector of F-semimartingales. In the following, we write G’ = (gf)te[o’T] for the
completed natural filtration of X;, i = 1,...,m, and G = (Gi)se[o,7) With G; = Giv...vgm

for the joint filtration. For a subset J = {j1,...,jr} € {1,...,m}, we further introduce
o the subfiltration G” = (G{)sefo.ry With G/ = Gf* v ... v GI", whereas G = {&, 1},
e the family of sub-c-algebras g;{ . =Gsv G/ for s <t

Moreover, we make the following assumption about the risk basis:

(S) Each X; has a decomposition
Xi(t) = X;(0) + M;(t) + Ai(t), (4.4)

where X;(0) € R, M; is a square integrable G-martingale and A; is a G-predictable
finite variation process with M;(0) = 4;(0) = 0.
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The decomposition in (4.4) is unique (see Protter, 2005, Chapter III, Theorem 34). In
general, (S) holds true for a large class of semimartingales, see also the examples provided in
the next section. In other words, (S) assumes that X; is a so-called special semimartingale
with the addition of stronger integrability conditions for the martingale part M;. The
class of special semimartingales covers all semimartingales with bounded jumps. Further
characterisations of special semimartingales can be found in Protter (2005, Chapter I11.7).

In this chapter, we focus on surplus revaluation processes given as martingales with

respect to the information generated by X. More precisely, let
R(t) = E[¢]G], t =0, (4.5)

where £ is a square-integrable Gp-measurable random variable. We interpret £ as an
discounted insurance claim and R(t) as the Gi-measurable proxy of £ (see Section 2.1). It is
worth noting that, unlike in Chapter 3, we do not assume any particular form of insurance
claim.

Recall that the choice of link mapping o satisfying R(t) = o(X!), t > 0 is essential for the
application of the ISU decomposition principle. As G; describes the information provided

by the risk basis X, a natural link mapping o is given by
o X, . Xty = B[¢lo(XD, ..., XIm)y v N, t;€[0,T], i=1,...,m. (4.6)

Using this link mapping o, we are able to apply the ISU decomposition principle (see
Section 2). Let (7,(t))n be a sequence of partitions on [0, ¢] with vanishing step lengths.
For R(t) = E[¢|G;], the ISU decomposition principle gives the additive decomposition

R(t) = Di(t) + ...+ Dn(2),

where

Di(t)y=plim > (E[ElG T - ElEGl D, i=1, . m.

tr,t
o0 kotk+1 teotk+1
thotk+1€Tn(t)

To further analyse the ISU decomposition, we introduce the following property of a risk

basis, which will be crucial for our main results.

Definition 4.1. Suppose the risk basis X satisfies (S). We say the risk basis X fulfils
(M) if for every sequence of partitions (7,(t)), on [0,¢] with vanishing step lengths and
every subset J € {1,...,m}, it holds

plim Y E[M;(tes1) — M;(t)|G7, 4, 1 =0, ifi¢ J, (4.7)
noe i b+ 1€Tn(t)
plim Y E[M;(tes1) — M;(t)|G7, 4,1 = Mi(t), ifieJ, (4.8)

oo
L tk+1€Tn(t)

for all ¢ € [0,T].
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The convergence (4.7) depicts an infinitesimally forward shifted martingale property of M,
while the convergence (4.8) describes an infinitesimally backward shifted measurability of

M; (i =1,...,m) (cf. Christiansen, 2021).

Remark 4.2. The convergence in (M) is stated for intervals [0,¢], t € [0,T]. However,
this already implies convergences (4.7) and (4.8) on intervals [s,t], s < ¢: Let (7,), be
a sequence of partitions on [s,¢] with vanishing step lengths, let J € {1,...,m} and let
property (M) hold. Suppose (’7~71)n defines a sequence of partitions on [0, s] with vanishing
step lengths. Then (%L)n with %l = 7N71 U T, is a sequence of partitions on [0,¢] with
vanishing step lengths. Therefore, property (M) implies

plim > E[M;(tpe1) — Mi(t)|G1, 4, ]

n—0o0
trotk+1€Tn

=plim > E[M;(ter1) — Mi(tp)|G7, 4, ] - plim >0 E[Mi(trar) — Mi(t)IG] 4, ]

n—00 ~ ~
ti,tk+1€Tn tstkt1€Tn

0, i,
Ml(t) — Mi(s), 1€ J.

In the following section, we provide evidence for the plausibility of property (M). Therefore,
we show that property (M) is satisfied for several examples commonly used in actuarial

and financial modelling.

4.2 Examples

This section contains of five subsections, each of which investigates a class of risk bases
with regard to property (M). The notations introduced in Section 4.1 always refer to the
respective risk basis under consideration. In addition, the following notation is needed.
For a stochastic process Z, we denote by F? = (F7 )te[07T] its natural completed filtration.
Furthermore, let Ly(P) denote the usual Ly space of square-integrable random variables
with norm | - |2. Moreover, for sub-o-algebras A; € A, i = 1,2,3, we say A; and As
are conditionally independent given Ajs, if P(A; n As|As) = P(A;1|A3)P(Az]As) for all
A; € A, in symbols A; 1 As|As. Furthermore, for a set J < {1,...,m}, we write J¢ for

its complement in {1,...,m}.
4.2.1 Independent sources of risk

We start with a simple setup of independent risk factors.

Proposition 4.3. Suppose that the risk basis X = (Xy,...,X,,) consists of inde-
pendent F-semimartingales that satisfy (S). If FMi < G' for all i = 1,...,m, then
X = (X1,...,Xm) fulfils (M).
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Proof. Let T,(t) be a sequence of partitions on [0,¢] with vanishing step lengths, and
let J<{1,...,m}. If i ¢ J, the o-algebras gt{M and o(o(M;(tk+1) — Mi(tk)),g;{:) are
independent. Thus, we can omit the information from X, j € J on (tx, tx11] (see Zitkovic,

2015, Proposition 10.5.9 (9)) and get

2 E[Mi(tk_,_l) — Mi(tk”gi;,tkﬂ] = Z E[Mi(tk—i-l) - Mi(tk)|gtk] = 0.

stk +1€Tn (1) st +1€Tn (1)

If i € J, the assumption FM: € G’ immediately implies

> E[Mi(tka) = Mi(t)|G 1= DL (Mi(tkar) — Mi(tk)) = My(t).
tr,te+1€Tn(t) tr,te+1€Tn(t)
Thus, (M) is fulfilled. O

This leads us to the following examples.

Example 4.4. Let the risk basis X = (X1,..., X,,) consist of independent F-martingales.
Then, by Proposition 4.3, (M) is fulfilled.

Example 4.5. Let W = (W1,...,W,,) be a standard m-dimensional Brownian motion,
and let the risk basis be given by X = (Xi,..., X,,), where X; satisfies the stochastic

differential equation
dXz(t) = ,ul-(t, Xi(t))dt + O’i(t, Xi(t))dWi(t), Xz(O) = xz(O) € R,

for continuous functions p;,0;: [0,7] x R > R (i = 1,...,m). The definition of X implies

that X;, ¢ = 1,...,m are independent. Furthermore, it holds
dM;(t) = o4(t, Xi(2))dWi(t) = dX;(t) — pa(t, Xi(t))dt,

which implies FM: € G?. Thus, by Proposition 4.3, (M) is fulfilled.

4.2.2 Grid-dependent sources of risk

Clearly, independence of risk factors is a strong assumption, which in reality is usually not
satisfied for economic and demographic risk factors. Fortunately, the property (M) can
still be verified, if we allow for dependency on a fixed grid. Let the corresponding grid =

begivenas t ={0=wuy <...<ug =T}, deN.

Definition 4.6. Let Z be a stochastic process and let H = (H;)¢=0 be a subfiltration of F.
Then Z is called H-m-adapted if Z(t) is H,,-measurable for ¢ € (uy, uj1]-

We suppose that the risk basis X consists of F-semimartingales X;, ¢ = 1,...,m, which

satisfy (S). Therefore, each source of risk X; admits a canonical decomposition

Xl(t) = XZ(O) + Ml(t) + Ai(t), te [O,T] (49)
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In this subsection, we focus on martingale parts having an integral representation. More

precisely, we consider martingale parts M;, ¢ = 1,...,m, satisfying
a) M;i(t) = §; ¢i(s)di(s),
where
b) I' = (T'y,...,T),) consists of independent F-martingales I'; with I';(0) = 0,7 = 1,...,m,
c) ; is a caglad FI'-7r-adapted process,
d) ¢; # 0 almost surely
For the compensator A;, i = 1,...,m, we assume
e) A; is F'-m-adapted.

The measurability assumptions c) and e) allow A; and the integrand of M; (and thus X;)
to depend on the common past information (up to the grid point) of I". However, between
the grid points, newly generated information for M; and X; stems only from the newly
generated information of I';. To be precise, let tg,tx1 € T, (t) such that (tg,tx1) N = .

For s € (tg,tx+1], we have

o(M;(u) — M;(tg) : tp <u<s) < .7-}1; vo(Ti(u) = Ti(tg) : tp < u < s). (4.10)
With the canonical decomposition (4.9) and assumption e), this further implies

o(Xi(u) — Xi(tg) s tp <u < s) S ]-"tl; vo(Ti(u) = Titg) : tx <u < s). (4.11)
The latter observation will help us to prove the following lemma.

Lemma 4.7. Let the risk basis X consist of F-semimartingales that fulfil (S), where the
canonical decompositions (A;, M;), i = 1,...,m, satisfy a) —e). Let J < {1,...,m} and

ty < s, such that (tg,s) nm = . Then it holds
Gl =Tt vo(lju) —Tty) it <u<s,jelJ). (4.12)
Furthermore, we have G = FL.
Proof. We prove the result in the reverse order to that stated, i.e. we first show that
G =Fr. (4.13)

Due to our assumptions, we have Gy = ]-"(-1; . Furthermore, assumptions a), ¢) and e) directly
imply
Gs S Fr
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for s € [0,7]. Vice versa, we use an induction argument. Let s € (0,u;]. Then
the associativity for stochastic integrals (Protter, 2005, Chapter II, Theorem 19) and

assumption e) yield
dTy(s) = ¢; H(s)dX;(s). (4.14)

As ¢; (s) is F{-measurable (see d)) on (0,u;], we get FLi € Gi for s € (0,u1]. Since the
argument does not depend on i, we also have FI < G, for s € (0,u1]. Let us now assume

that FI' < G, holds for s € [0,u]. For s € (u;,u;41], we have that
Fr =.7-"51 vo(li(u) —Ti(w):i=1,...,myu <u<s).

Since ]-"51 C Gy, and ;(s) is fi-measurable, thus G,,-measurable, the representation (4.14)
implies I < G, for all s € (u;, u;41]. Hence, we have shown that G = F'.

Together with (4.11), we get the inclusion
gi{c,s s ]:tFk vo(lj(u) =Tj(te) :te <u<s,jeJ).

For the other direction, the equation (4.13) together with the representation (4.14) gives
the desired result. O

We are now in the position to prove property (M).

Proposition 4.8. Let the risk basis X = (X1,...,Xp;) consist of F-semimartingales
that fulfil (S), where the canonical decompositions (A;, M;), i = 1,...,m, satisfy a) —e).
Furthermore, let {M;, M;y, i = 1,...,m be continuous processes. Then X fulfils (M).

Proof. Let (Tn(t))n be a sequence of partitions on [0, ¢] with vanishing step lengths and
let J < {1,...,m}. We have to prove that
tht1 7 .
plim Z E [J wi(s)dl;(s) gtmm] =0, i¢J, (4.15)
T etk 1 €T (t) b

and

plim )’ )EU:M ©i(s)dT;(s) gg{ml] = ﬂ ©i(s)dTy(s), i€ J. (4.16)

n—o0
Ltk +1€Tn(t k

Firstly, for tg,tg.1 € Tn with (tg,tpi1) N7 = & and i ¢ J, we verify
o(Mi(tky1) — Mi(te)) L o(X;(s)  ty < s < tpg1,5 € J) |Gy, (4.17)
Due to (4.10) and (4.11), it suffices to show
FovHS L F vHT |G,

where H7 = o(Di(s) = Ti(tg) ity < s < tpi1,j € J) for any J < {1,...,m}. This, however,
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follows immediately from G;, = ftl; (see Lemma 4.7) and the independence between I';
and I';, j € J.

Without loss of generality we assume that |7,(¢)] < |x| for all n. If w; < ¢ and
u; € (tj,tj41] for an index j, we set t; = t; and #; = t;41 as the neighbouring points of w;
in T,(t). If u; > t, we set t; = §; = t. Moreover, we write 7,0(t) = T,,(t) N [ug,u1] and
THY) = Tn(t) 0 (ug,ugge], L=1,...,d — 1.

For (4.15), i.e. i ¢ J, the conditional independence (4.17) yields

> EIMi(tesr) — Mi(ti)IG7 4, ]
thstlr1€Tn(t)

d—1 d—1
= D ElMiterr) — Mi(th)|G7, 4, ]+ D EIMi(8) — Mz‘(£z)|gg,gl]
1=0 gty 1€TL(2) =1
d—1 d—1
= D E[Mi(tryr) — Mi(t)|Ge ] + D EIMi(T) — Mz’@l)@i@]
=0ty tp41€TE(E) =1
d—1

E[M;(f) — Mi(t)|G;] 7]

tl il

N
Il
—_

Let us recall that || - |2 denotes the norm on Ls(P). With the Jensen’s inequality for
conditional expectations, the It6 isometry and the dominated convergence theorem, we

observe

n—0oo

d—1 d—1
lim | ) E[Mi(E) — My(t))|G] 5115 = lim 3 [E[M;i(E) — Mi(t)|G;] 5 113
=1 =1

d—1 d—1
< lim 2 E[(M;() — My(t)))*] = Jim Z B [(M;, M) (t;) — {M;, M;)(t;)] = 0,
=1

n—o0
=1

where we used that (M;, M;) is assumed to be continuous. As Ls-convergence implies
convergence in probability, we have shown (4.15).
Next, we prove (4.16), i.e. let i € J. By (4.10) and Lemma 4.7, we get
> ElMi(tes) = Mi(tn)IGi, 4., ]

st 1€Tn (L)

d-1 d-1
= M;(t) + Y E[Mi(f) — Mi(w)|G] 7] = D (M;(Th) — Mi(w).
=1 i=1

With similar arguments as above, the last two terms tend again to 0 in Ly (and therefore

also in probability). O

This leads us to the following examples. We start with a risk basis consisting of Ito
processes. With more general assumptions on measurability, this setup is used by Schilling

et al. (2020) to model (systematic) financial and biometric risks.
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Example 4.9. Let W = (Wy,...,W,,) be a standard m-dimensional Brownian motion,
and let the risk basis be given by X = (Xi,...,X,,), where X; satisfies the stochastic

differential equation
dX;(t) = pi(t)dt + o3 (t)dWi(t), X;(0) = 2;(0) € R,

with ; and o; being F-m-adapted processes, such that o; # 0 almost surely for every i

E[(ﬂ ai(s)dVVi(s)>2] <o, te[0,T].

Then, by Proposition 4.8, (M) is fulfilled.

and

Example 4.10. Let W = (Wq,...,W,,) be a standard m-dimensional Brownian motion,
and let the risk basis be given by X = (X1,..., X,,,), where X; is an F"-adapted process

satisfying the stochastic differential equation
dX;(t) = pi(t, X|jo,p)dt + oi(t, X|[o4))dWi(t), Xi(0) = 2;(0) e R

with

IS
IS

1i(ts Xljo,n) = Z (ur, X () Ly 0 (1), 0ilts X)) = Z (ut, X (u) T (g, 00441 (1)

for a partition {0 = ug < ... < ug = T} of [0,T] and functions p;,0;: R? - R, 0; # 0,
i =1,...,m. Then, by Proposition 4.8, (M) is fulfilled.

By applying similar techniques as in this section, we can extend the range of example risk

bases that fulfil (M) to risk factors, that rely on Poisson random measures.

4.2.3 Sources of risk driven by Poisson random measures

In this paragraph we consider risk bases driven by Poisson random measures, which are
widely used in actuarial applications (e.g. in claims modelling). Furthermore, Poisson
random measures are crucial in the Lévy-1t6 decomposition, describing the jumps of a
Lévy process. An introduction to Poisson random measures and stochastic integrals with
respect to Poisson random measures can be found e.g. in Ikeda and Watanabe (1989)
or Jacod and Shiryaev (2003, Chapter II.1). The former reference also serves as the
main reference for this paragraph. The stochastic integrals that appear are interpreted as
pathwise Lebesgue-Stieltjes integrals.

Let p = (p1, ..., pm) consist of independent Poisson random measures pu;, i = 1,...,m,
on F = R, x R,. Here, the assumption of independence is to be understood as the

independence of its natural filtrations Fti = (F/");=( defined by

Fi = Q@) Fl = o(uil(0,5] x B) : s € (0,1], Be B(R,)), t >0,
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We further denote the common filtration of p by F¥ = (F')izo with FF = \/[L, F/i.
The definition of a Poisson random measure entails the independence of increments, i.e.
wi((u, s] x B) is independent of F/i (see Jacod & Shiryaev, 2003, Definition 1.20). For
each p;, let 7i; denote its F-compensator, given by the (deterministic) intensity measure
Ii; = A®n;, where X is the Lebesgue measure and n; is any o-finite measure on (R, B(R)),

1 =1,...,m. That is, the stochastic processes
£ ma((0,4]  B) = pi((0,4] x B) = i,((0,] x B), Be B(Ry),

define F-martingales.

Similar to the previous subsection, we allow again for dependency of the risk factors
on a grid. Therefore, let the grid 7 be given as m = {0 =up < ... <ug =T}, d€ N and
let By,...,Bg € B(Ry) be disjoint Borel sets with n;(B,) < oo, r =1,..., K. We define
a family of o-algebras I' = (I} ,)s<¢ by Z!; = o(pui((s,u] x B;) :s <u <t,r=1,...,K).
Furthermore, let I = (Zy)t=0, Zt = Vi~ I&t denote a subfiltration of F¥.

Let f;: Ry x Ry x Q — R be simple predictable functions, i.e.

d K
Filt:2) = 25 3 ¥ w1 (D15, (2)
I=1r=1
where ¢t € R, r = 1,..., K, and Y}’ are bounded Z,,-measurable random variables with

Y} #0,1=1,...,d. In this paragraph, the risk basis X = (X1,..., X,,) is defined via

d K
X;(t) :J fi(s, 2)pi(ds, dz) = Z 2 Y pi(((uj,uj41] m (0,8]) x By),  (4.18)
(0,t] xR j=1r=1

are F-martingales (i = 1,...,m).
In contrast to the previous subsections, the risk driver y has a further dimension. To
reflect that, we define the available information slighty different compared to Section 4.1.

More precisely, let G* = (G})¢=o describe the information generated by the i-th source of
risk with

gz:U(Xi(S,BT):SgtaT: 1,...,K),

where the random variables X;(t, B,), t >0, r =1,..., K, are given by
X;(t,B,) = J( | fi(s, 2)pi(ds, dz) 2 e Y i (((ug, ujp1] 0 (0,t]) x By).
0,t|x By

As a consequence, the joint filtration G = (Gt)se[o,r] With G = Gl v ... v G also slightly

differs from Section 4.1.

Following ITkeda and Watanebe (1989, Section II.3), X;, i = 1,...,m are special
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semimartingale under F with compensators

d K
Al(t) = J Ji (8 z Mz ds dZ = Z Z c Y;Mz ujvujJrl] N (Oat]) x BT) (419)
(0 t]XR+ j=17”:1

and square-integrable martingale parts

d K
M;(t) = J(o . fi(s, z)m;(ds,dz) = ; g (((uj,uj41] N (0,t]) x By). (4.20)

The measurability assumption on the functions f; allows X; (and thus M;) to depend
on the common past information (up to the grid point) of u. However, between the grid
points, newly generated information for M; and X; stems only from the newly generated
information of p;. To be precise, let ty,t; 1 € Tn(t), such that (tg,tpy1) N7 = . For

s € (tg,tg4+1], we have

o(M;(s) — M;(tg) : tp < s <tpy1) S Ly, v (4.21)

tk,S

and
o(Xi(s) = Xi(te) s te < s <tgsr) S Ty, v I, . (4.22)
The latter observation will help us to prove the following lemma.

Lemma 4.11. Let J € {1,...,m} and let t;, < s, such that (tx,s) nm = &. Then it
holds
gtk S Itk Vv \/ ti,s" (423)
jeJ

Furthermore, we have G = 1.

Proof. The arguments are similar to those in the proof of Lemma 4.7, but adapted to the
setup of Poisson random measures. Again, we prove the result in the reverse order to that

stated, i.e. we first show that

G=L (4.24)
Due to our assumptions, we have Gy = Zg = {2, &}. Furthermore, (4.18) implies

Gs < I
for s € [0,T]. Vice versa, we use an induction argument. Let s € (0,u1] and r € {1,..., K}.

Rearranging (4.18) yields
pi((0, 8] x By) = (,Y{) 7 Xi(s, Br).

As (L Y{)™! is Tg-measurable on (0,u1], we get Zs € G¢ for s € (0,u1]. Since the argument

does not depend on i, we also have Z; € G, for s € (0,u1]. Let us now assume that Zg € G
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holds for s € [0, u;]. For s € (u;, u;4+1] we have that
Zs =Ty vo(ui((u,u] xBy):i=1,...,muy <u<sr=1,... K).
Again with (4.18), we observe that
pi((ur,u] x Br) = (6Y)) H(Xi(u, By) = Xi(ug, By)). (4.25)

Since Z,, € Gy, and since (cLY}))~! is Z,,-measurable, thus G,,-measurable, the representa-
tion (4.25) implies Z; € G5 also for all s € (ug, uj41]. So, via induction we have shown that
G = 1. Together with (4.22), we get the inclusion
ggfws C 1y, v \/I,;LS.
jeJ
For the other direction, the equation (4.24) together with the representation (4.25) gives
the desired result. O

We can conclude from the second part in the previous lemma, that the risk basis X satisfies

(S) with decompositions (A4;, M;), i =1,...,m, given by (4.22) and (4.21).
Proposition 4.12. Let the risk basis be defined by (4.18). Then (M) is fulfilled.

Proof. The arguments are similar to those in the proof of Proposition 4.8, but adapted

to the setup of Poisson random measures. Let i be fixed. Furthermore, let (7,(t)), be a

vanishing sequence of partitions on [0,¢] and let J < {1,...,m}. We have to show that
plim > E[M;(ter1) — Mi(te)|G, 4, 1 =0, i¢J, (4.26)

Ootk,tk+1€7tn(t)

and
plim Y E[M;(tes1) — Mi(t)|G7, 4, = Mi(t), i€, (4.27)
e tie,te+1€Tn(t)

where M;(t) = S(o fxR, fi(s,z)m;(ds,dz). Therefore, we first show that
o(M;(tgy1) — M;(ty)) 1L O'(Xj(S) it < s < tpy1,7€J) |gtk, (4.28)

where u; <t < tr+1 <wpr and J S {1,...,m}\{i}.
Due to (4.21), (4.22) and the fact that G;, = Z;, (see Lemma 4.11), it suffices to show
Ty vV Tty LT v\ Ty |Gt G €T,
jeJ
This, however, follows immediately from G = I (see Lemma 4.11) and the independence
between u; and pj, j € J.
Without loss of generality we assume that |7,(¢)] < |x| for all n. If w; < ¢ and

u; € (tj,tj41] for some index j, we set ¢; = t; and ¢; = tj41 as the neighbouring points of
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uy in T (t). If uy > t, we set t; = t; = t. Moreover, we write T,0(t) = T, (t) N [uo,u1] and
TUE) = Tolt) o (upsa], 1= 0,. ... d — 1.
For (4.26), i.e. i ¢ J, the conditional independence (4.28), yields
D E[Mi(tkar) — Mi(tx)|G5, 4, ]

ti,te+1€Tn(t)

m—1 d—1
= Z ZE[Mi(thrl) - Mi(tk)|g£{wtk+l] + 2 E[M;(t) ~ (tl)|gtl ]
=0 Tl =1
_— d—1
= ZE[Mi(tk+1) — M;(tx)|Ge, ] + Z E[M;(t) — (tl)|gt1 tl]
=0 T =1
d—1

= 2 []MZ(E ( )|gtl,tl]
=1

Let us recall that || - |2 denotes the norm on Ls(P). With the Jensen’s inequality for
conditional expectations, the It6 isometry (see Ikeda & Watanabe, 1989, Section I1.3) and

the dominated convergence theorem, we observe

d—1 9 d-1
lim | SE[M:(B) - Mit)IG] 51|, = lim Y IEM(E) - Mi(t)IG] 113
=1 =1
d—1
< lim Y E[(Mi(@) - Mi(1))’]
=1

d—1
= lim z; B [(Mi, Mip(t) — (M, Mip(t,)] = 0
where we used the continuity of
QLAYO = | (fsv2) PRl d2)
(0,t] xRy

in ¢, see Ikeda and Watanabe (1989). Thus, we have shown (4.26).
Next, we prove (4.27) (i.e. i € J). With (4.21) and Lemma 4.11, we get

Z E[M;(trs1) — Mz‘(tk)|gi£,tk+1]
st 1€Tn (L)

d—1
= My(t) + Y, B[Mi(t) — Mi(w)|G) ;] Z M;(w)).
=1

With similar arguments as above, the last two terms tend again to 0 in Lo, thus in

probability. O

With this proof, we close the third example and move on to the widely used multistate

Markov models.
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4.2.4 Competing risks in life insurance

In this section, we investigate property (M) in a life insurance context with competing
risks, i.e. we model a policyholder whose life insurance contract can be terminated due to
different, exclusive causes (e.g. lapse or death). Our setup follows Milbrodt and Helbig
(1999, Section 3.C).

Let Iy = {1,...,m} denote the set of withdrawal causes. The idea is to model each
cause of withdrawal with its own clock, with the clock that stops first determining the
time of withdrawal and the cause of withdrawal (see Milbrodt & Helbig, 1999, Remark
after Definition 3.22). Therefore, let T}, i € Iy, be independent random variables with
values in [0, 00). We assume that each T; has a continuous intensity, i.e. its distribution

function Fr, fulfils
1— Fr,(t) = e SoNdu ¢ >,

for a continuous function A; : R — R. In the following, the withdrawal time or contract
lifetime is set as
T=N\T.
ielyy
where a Ab = min(a, b), a,b,e R. In particular, T is well-defined, i.e. P(T; = Tj € [0,0)) =
0 (see Milbrodt & Helbig, 1999, Theorem 3.23). We now define the counting processes
Ni = (Ni(t))e=0 by

Ni(t) = Lyp_ry<py, £ 20, (4.29)

which describes if the policyholder terminates his contract due to cause ¢ until time ¢.
Let the risk basis be given as X = (Ny,..., N;,), and we suppose that F = G. Each N;

satisfies (S) with a compensator

¢
Ai(t) = J ]1{T>5})\i(5)d8
0

and a square-integrable martingale part

¢
Ml(t) = Nl(t) — f ]l{Tzs})\i(S)dS’
0
see Milbrodt & Helbig (1999, Theorem 10.37).

For the following lemma, which helps us to prove property (M), we need some further
notation. For a subset J < Iy, we write T/ = /\z’eJTi and N/ = Zie] N;, whereas
T9 = 40 and N9 = 0. Then it holds

1— Fpa(t) = [ (1 - Fr,(t)) = ¢ JoZies M), (4.30)
e

where Fr,(t) denotes the distribution function of 7.
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Lemma 4.13. Let J S {l,...,M} and i ¢ J. For t,tx11 € Tp(t) and s € (tg, tp+1], we
denote U = E[]I{T>S}|ggl’tk+1] and V. = E[N;(tk+1) — Ni(tk)|ggl,tk+1]. Furthermore, let
A={T > t}, B={N'(tyr1) — N'(tx) = 1}, B¢ = {N7(tp41) — N7 (tx) = 0}. Then the

following statements are true:
a) Forwe An B, it holds
U(U.)) = ]1{TJ>S}(W)'

b) For we A n B, it holds

P(T7 >t )P(T7" = 5) + P(T7 €[5, tg11], s < T7° < T7)

U = .
() [P)(T‘] > tk+1)P(T‘7C > tr) + [P(TJ € (tg, tpy1], te < T7° < TJ)

c) Forwe An B, it holds

]P)(T = T‘Z € (tk?atk:-‘rl])

Viw) = :
) = BT > e BT > 1) + B € (i, trsa], b < T < 17)

Proof. Let J < {1,...,M} and let the sets A and B defined as in the Lemma. Then

equality a) follows from

LanBE[L 729107, 1., ] = LAB[LBL 702 1Gh 1, ] = LAB[LBL 021G, ]
= ]1AE[]1B]1{NJ(S—)=O}|g£2,tk+1] = ILAmBIL{NJ(s—)=O}

= Lanplirizg-
For the equality b), we first show that
LanBE[Lr=gG7, 1y ] = LansB[Lirsglo(Lirsyy, N7 (te1) — N7(8:))]. (4.31)
Therefore, we observe that o(Liz~,}, N7 (tg11) — N7 (1)) © gt{mtk+l due to
{T >t} = {Ni(ty) = 0,1 € Iy }.

Furthermore, for any C' € gt{“tm, we find C' € o(Lgpsiyys N7 (tpe1) — N7 (t)), such that

Langenc =1, geg» Which implies

E[lanenclir=g] = E[1,_ geraglir=sl
= E[E[1 . ge clir=s}|o(Mir=ips N7 (tes1) — N7 ()]
= E[LCE[Lanpliroeo(Lirot,y, N (tei) = N7 ()],
thus (4.31) holds. Since 17, and NY(ty 1) — N7 (t) assumes only values in {0, 1}, we
may interpret the conditional expectation on the right-hand side of (4.31) as a conditional

expectation given an event (see Jakubowski & Nieweglowski, 2008, Lemma 3). More

precisely, we have
LanBE[Lrsg o (Mrayy, N (i) = N7 (1)) = LansE[Lr=q|A 0 B,
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The conditional event can be written as a disjoint union of the following two sets
An B ={T7 > tp 1, T > t;} U{T7 € (tp, trga] tr < T < T7}. (4.32)
That gives us, with the independence of T3, j = 1,...,m,

E[l{r>q|A n B
PUT = s} n ({T7 > tjp1, T7° > 13} U{T7 € (tg, tpa1], e < T7° < T7}))
- P{T7 > tje1, T7 > ti.} U {T7 € (tg, tas1], tr < T7° < T7})
P(T7 > tp1)P(T7° = 5) + P(T7 € (s,tp1],s < T7° < TY)
P(T7 >t 1)P(T7° > t) + P(TV € (tg, tp] te < T7° < T7)

so we have shown b).

Finally, we prove c). For i ¢ J, this follows from

LA~BE[N;(tgp1) — Nz‘(tk)|g£2,tk+1]

= L gnpP(Ni(tps1) — Ni(tp) = 1|T > tg, N7 (tpy1) — N7 (1) = 0)
= 1anpP(T = T € (ty, tp1]|T > te, NY (tgs1) — N7 (t),) = 0)
P(T =T, € (tg, trsal, T > tr, N7 (trg1) = N7 (8) = 0)

= ]]_ c
AnB P(T > tg, N7 (trs1) — N7 (1) = 0)
_1 P(T =T, € (tg, th+1])
ANBEP(TT S 4  OP(T7 > t1,) + P(T7 € (b, thar ], te < T < T7)’
where we again used (4.32) and the independence of Tj, j = 1,...,m. O

With the Lemma 4.13, we are now able to prove the property (M) in the framework of

competing risks.

Proposition 4.14. Let the risk basis X = (N1,..., Np,) be defined via (4.29). Then the
property (M) is fulfilled.

Proof. Let (To(t))n be a vanishing sequence of partitions on [0,¢] and let J € {1,...,m}.
We have to show that

plim Y E[M;(ter1) — Mi(t)G 4, 1 =0, i¢J, (4.33)
e i, te+1€Tn(t)
and

plim Y E[M;(tes1) — Mi(t)|G1, 4,1 = Mi(t), i€ J, (4.34)

n—>o0
L ti+1€Tn(t)

where M;(t) = N;(t) — Sé Tyr=gNi(s)ds.
Suppose i € J. We denote A = {T > t;}, B = {N”(tp+1) — N’ (t;) = 1} and
B¢ = {N7(ty4+1) — N7 (tx) = 0} as in Lemma 4.13. It holds A = {3, N;i(tx) = 0}.
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Together with Lemma 4.13, this yields

E[M;(trs1) — Mi(te)|G7, 1, ]
= LAR[M;(t11) — Mi(te)|G;L tein )
= LanBE[(Mi(tes1) — Mi(ti)|GE 1, ]+ LanBE[M;(tgsr) — Mi(tx)|G] 4, . ]

ti+1

te+1
= ]lAmB (Nz'(tk:-i-l) — Nz(tk) — J ﬂ{TJ>S})\i(S)dS) — ]lAch J pn(s)/\i(s)ds,
tr t

k
where

(s) = =T T > b )P(T 2 5) + P(TY € [5,tp1a], s < T < TY)
= S
P T BT > 1 )P(TT > 1) + P(T7 € (bt ] b < T < T7)

€ (trstrs1]-
(4.35)

Furthermore, we observe that

M;(t) = 2 Loy (Mi(try1) — Mi(tk))

i b+ 1€Tn(t)

li+1
D e NN ()N (1)=1) (Ni(thrl)_Ni(tk)_L 11{TJ>S})\i(8)dS>
k

trotk+1€Tn(t)

tht1
- 1{T>tk}]1{NJ(tk+1>NJ(%)—O}L LigoezgpAi(s)ds.
k

st 1€Tn(t)

Thus, we get

2 E[M;(tgr1) — Mi(te)|G, 1,1 — Mi(t)‘
stk +1€Tn (L)
th+1
Y Lrsig L i) M) =0} (Pn(s) = Lygae=gp)A
st +1€Tn(t) b

f [fuls)lds

with
Fn(8) = Lirsty LNt )= N7 (1) =0y (Pr(8) — Lypaes ) Ai(s)

for s € (tx,tx+1]. To apply the dominated convergence theorem, we need to investigate

lim,, o fr(s) for fixed s. Therefore, we first examine p,(s). Since

. te+1
P € stialss <777 <79 = [ [ () froe(0)dud

tk+1
= [ o) Froe () = Froe (o))
S
we can conclude lim,, o P(T7 € [s,t111],s < T7° < T”7) = 0. Having continuous densities,
the same argumentation yields lim,, o P(T” € (ty,tx11],tx < T7° < T7) = 0. Exploiting
the continuity of the distribution function, we end up with
P(T! > s)P(T7" = s
i po(s) = o~ T 20
R P(T7 > s)P(TF > s)
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That gives us

lim fn(S) = ]l{T>s}]l{NJ(s)fNJ(sf):O}(1 - ]l{TJCZS}))‘i(S) = O,

n—ao0

almost surely, since 1 {1725y = 1 00 {T = s}. Finally, the dominated convergence theorem

yields

lim | Y E[M;(tee1) — Mi(te)|G7, 4, 1 — Mi(t)] =0

n—ao0
st 1€Tn(t)

almost surely, thus in probability.

Now, let ¢ ¢ J. With help of Lemma 4.13, we get

E[M;(tp1) — Mi(tkﬂgi,tkﬂ]
= LAE[M;(tr41) — Mi(tk)|gi£,tk+1]
= ]lAmBE[MZ—(t]H_ﬂ — Mi(tk)|gti,tk+1] + ]lAmBCE[Mi(tk—H) - Mi(tk)|gzi,tk+1]

J
gtkatk+1:|

t4+1
+ 1anpE [Ni(tk+1) — Ni(ty) — J Lip=gAi(s)ds
ti

tr+1
= —]lAﬁBE[J ]1{T>5}>\i(3)d5
t

k

J
gtkvtk+1:|

thot+1 tkt1
= _]lAmB J ]l{Tst}/\i(S)dS + ]lAmBCQn — ]lAch J pn(s)/\i(s)ds,
tr t

k
where p,(s) is given by (4.35), and ¢, € [0,1] is given by

P(T" =T € (tg, th+1])
P(T7 >ty )P(T7° > ty) + P(TV € (tg, tpn] te < T7° < T7)

gn =

For ¢, we derive an upper bound by

P(T =T; € (t, try1]) P(T; € (tg,tpr1], T < Ty, 5 #14)

IS BT > e )P(TF > 1) P(T7 > tooa)P(TF > t5)
B SE:H § fr, (W) fro s (v)dodu B Jt’v“ fr. (W) (1 — Fpg.mpi (1) 4
a P(TY >ty 1)P(T® > ty) ) (U= Fpa(tis)) (1 — Froe(te)
_ Jt’““ Ai(w)(1 — Fr, (u))(1 = Fpg,ompgay (1))
tr (1 = Fps(try1))(1 = Froe(ty))

Thus, we have

du.

t

S EIMt) = Milt0)IG ] < [ G709+ 55+ £5(5)ds,

thotk+1€Tn(t) 0

where

J1(8) = —Lirary Ln ot ) NI ) =13 Lirr s A (8),

) = s i A= Fr6)(1 = Fromo(s)
2 =t SNt ) =N D=0 (1 B (130)) (L — Froe(B))

f3(8) = Lipot y LN s (b )= N7 (1) =0y P (8) Ai ()

for s € (tg,tx+1]. With the continuity of the distribution functions and (4.30), we get the
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limiting functions

lim f1'(s) = —Lip=s)Lns(s)-n7(s—)=1} Lipr =5 Ai(8),

n—o

lim f5'(s) = —Lir>g Lin(s)-n7(s—)—0pi(S),

n—a0

lim f5'(s) = Lirosy LN (s)—n7 (s—)=03 i (8)-

n—a0

This leads, with help of dominated convergence theorem, to

t

(fi'(s) + f3(s) + f3(s))ds = —JO Lirs g Lini(s)—n7 (s—)=13 L=y Ai(s)ds = 0

4
lim
n—oo 0

almost surely, where the last equality follows from the fact, that each path of N7 has at

most one jump, which is neglectible for the Lebesgue integral. O

This result will be the basis to derive ISU decompositions for life insurance contracts that
include several withdrawal causes. For multistate Markov processes the situation between
the jump times is quite similar to the setup of multiple withdrawal causes considered in
this section. Therefore, extensions to general multi-state frameworks are conceivable. We

leave this for future research, but focus on the addition of random systematic risks.

4.2.5 Doubly stochastic Markov processes in life insurance

In the previous paragraph, we have regarded unsystematic, competing risks. As a special
case this included the classical life insurance setup, where the policyholder can assume only
two states, alive and dead, so that dying is the only withdrawal cause. In extension to
this setup, we also model systematic risks, including financial risks, with help of diffusion
processes. In particular, the unsystematic risk is linked to the systematic risks via its
mortality intensity. In the following, the risk basis is composed of diffusion processes ©;,
1 =1,...,m, modelling the systematic sources of risk, and a jump process IN, representing
the unsystematic source of risk.

Let W = (Wy,...,W,) be a standard r-dimensional Brownian motion. Furthermore, let
the systematic risk © = (01, ...,0,) consist of risk factors 0;, i = 1,...,r, each of which

satisfies a stochastic differential equation

dO;(t) = wi(t, ©i(t))dt + oi(t, ©:(t))dW;(t), ©:(0) = 6;(0) € R, (4.36)
for continuous functions p;,0;: [0,7] x R > R (i = 1,...,r), such that
t
E [J Ul-(u,@i(u))2du] < oo, te[0,T]. (4.37)
0

The state process of the policyholder is modelled by an F€-conditional Markov process

7 = (Z1)1=0 with state space Z = {a,d} and initial value Z(0) = a. That is, for every path
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Ol[0,r] = 0 there exists a usual Markov process 79 with state space Z = {a,d}, such that
‘C(Z’]P)(|@|[O,T] = 9)) = ‘C(ZH’IP))a

and such that the family of stochastic matrices (P(s,t))s<t = ((Pjr(s,t,©))jk)s<t, Where
((pjk(s,t,0));k)s<t is given by the transition probabilities of Z%, satisfies

a) P(s,t) is FP-measurable,
b) P(s,-) is FO-progressively measurable.

Such a construction has already been used for the stochastic second-order basis in Chapter 3.
A detailed introduction on F€-conditional Markov processes and a proof of existence can be
found in Jetses (2018), see also Jakubowski and Nieweglowski (2010). The corresponding
jump process N = (N (t))¢=0 defined via

N(t) = #{s€[0,1] : Z(s—) = a, Z(s) = d}. (4.38)

Moreover, let I = (I(t)):=0 denote the indicator function I(t) = 1;(;)=q}, which keeps the
value one as long as the policyholder is alive.
We assume that there exists a non-negative, piecewise-continuous jump intensity A =

(A(t))¢=0 such that A(t) = A(t,O(t A uy)), t € (ug, uj41] for a partition
T={0=up<...<uy =T}
of [0,T], and

E t)\(s)ds < oo, te[0,T]. (4.39)
IRC8

In particular, the definition of an intensity process requires A to solve the Kolmogorov
equations with respect to transition probabilities P (see Section 3.2 and Jetses, 2018),
which in our setting yield the survival probability

plsvt) = s = e (= [ As1as).

S

Throughout this section, we consider the risk basis X = (01,...,0,,N), i.e. the number
of risk factors is m = r 4+ 1. The following argumentation shows that X satisfies (5).
With Jakubowski and Nieweglowski (2010, Theorem 4.1), we conclude that the process
My = (M (£))is0 specified by

My(t) = N(t) — A(t) (4.40)

with

defines a G-martingale, where G = (G;);>0 is the filtration given by G; = ]-'}9 v FN.
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In particular, My also defines a G-martingale. As A is a G-predictable finite variation
process, it remains to verify the square integrability of M. This, however, follows from the
Assumption (4.39) and (My, Mn)(t) = A(t) (see Andersen et al., 1993, p. 74; Klebaner,
2005, Theorem 8.2). Thus, N satisfies (S) with decomposition (A, My).

For the systematic risks ©;, ¢ = 1,...,m, the G-martingale parts M;, ¢ = 1,...,r are

given by
¢ ¢
M;(t) = ©;(t) — Jo 1i(s,0;(s))ds = Jo oi(s,0;(s))dW;(s).

Clearly, M; defines a F®-martingale. With Jakubowski and Nieweglowski (2010, Proposi-
tion 3.4) we find, that M; is also a G-martingale. The square integrability of M; results from
assumption (4.37) and (M;, M;)(t) = S(t)(ai(s,@i(s)))st (see Klebaner, 2005, Theorem
8.27). As A;(t) = Sé 1i(s,0;(s))ds is a G-predictable finite variation process, ©; satisfies
(S) with decomposition (M;, A;).

Recall from Section 4.1 that we have introduced filtrations G, G’ and a family of

sub-c-algebras (G/;)s for subsets J < {1,...,m}, which refer to the entire risk basis
X. In the following, we denote by H, H” the filtrations and by (7—[;7 ¢)st the family of

sub-c-algebras with J < {1,...,m — 1} that follow from exluding the unsystematic risk N
in the definitions of Section 4.1. Thus H always refers to the information that is provided
by the systematic risks. For showing evidence of property (M), the following lemma is

needed.

Lemma 4.15. Letu<v<s<tandJ < {l,...,m—1}, such that (u,s) nm = &. Then

it holds Hy AL FN|H; ..

Proof. Let T :=inf{s > 0: N(s) = 1} whereas inf ¢ = +00. With Proposition 13 of Rao
and Swift (2006, Chapter 3), it is sufficient to prove P(A|H;) = P(A|H;] ) for A e FJ.
Neglecting the null sets N, the o-algebra F consists of sets {T' < 2}, {T' > 2}, z € [0,v].
With the grid measurability of A and the martingale property of My, we have

B(T < 2H;) = B(N(2) = 1[Hy) = E[N(2)[He] = E[A(2)[H,] = jo p(0, 5)A(s)ds

= E[A(2)|H;1 ] = EIN(2)[Hy ] = P(N(2) = 1Ky ) = P(T < 2[H; ).

With {T > z} = {T' < z}°, it also follows P(T' > v|H;) = P(T > z|H;] ), which gives us

the assertion. ]

Proposition 4.16. Let the risk basis be given by X = (©1,...,0,,N). Then (M) is
fulfilled.
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Proof. Let J € {1,...,m} with m € J. Without loss of generality we assume that
|Tn(t)| < |m| for all n. If w; <t and u; € (t;,tj41] for some index j, we set t; = t; and
t; = t;41 as the neighbouring points of w; in 7,(t). If u; > t, we set t; = ; = t. With the
martingale property of My (see (4.40)) and the grid measurability of A, it follows

> E[My(trer) — Mu ()97 4, ]

stk +1€Tn(t)
d—1 B
= Mn(t) + Z E[Mn () — MN(ul)|gg,gl] — Y E[My () — My(w)|G] ;]
=0 =0

Thus, it remains to show that the last two addends tend to 0 as n — oo. It holds

d—1
H 2 E[My (@) — My ()G 51| = 2 [E[My (&) — My (w)|F] ;13

=0

j E[(My () — My () :2 E[(M, My)(E) — (My, M),

which tends to 0 as n — o0 with the dominated convergence theorem and the continuity of
(Mpn, My )(t) SO s)ds. Similarly, the third summand tends to 0 as n — 0.

Next, we suppose m g:‘ J. With the martingale property of My with respect to G, we
directly get

2 E[My (tg+1) — MN(tk)|g£L,tk+1]
tr,te+1€Tn(t)

= > E[E[My(trs1) — Mu(t)|Ge]IG, 4,1 = 0.
tr,tr+1€Tn(t)

In the following, we fix i € {1,...,m — 1} and we suppose i € J. Since M; is G'-adapted,
we immediately have
D1 EMitesr) = iG] = D) (Miltisr) — Mi(t)) = Mi(t).

Utk +1€Tn (1) Utk +1€Tn (1)
Last, we consider the case i € {1,...,m — 1}, i ¢ J and write T.2(t) = T.(t) N [uo, u1],
THE) = To(t) A (u,ugeq], 1 = 1,...,d — 1. With Lemma 4.15, the independence of ©;,
1 =1,...,r, and the martingale property of M;, it holds

D1 ElMi(trer) — Mi(t)G1 4, ]

ti tk+1€Tn(t)

d—1 d—1
=> > E[Mi(te) — Mi(t)|Ge ] + D E[Mi(8) — Mi(t )|gtl,tl]
1=0 ty,tx11€TE() =0
d—
= Z E[M;(t) — M(t )|gtl,t1]
i=0
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The remaining term tends to 0 as n — oo: With the It6 isometry and the Jensen inequality

we get
d—1 B Lo d—1 B LR
| Y EIME) = Mi)IG] 5| = Y [EIMiE) — Mie)Ig] 51|
1=0 =0
d—1
< DL E[(Mi(f) — Mi(1))?]
1=0
d—1 7,
= E[J oi(s,0:(s)) ds]
=0 t
which tends to 0 as n — o0 by continuity of the Lebesgue integral. O

This result concludes the Section 4.2, which has supported the plausibility of the property
(M) by several examples known from actuarial modelling. With that in mind, we now turn

our attention back to the ISU decompositions of martingales.

4.3 ISU decompositions of martingales

Recalling that the considered revaluation surplus process R is assumed to be a martingale,

we want to focus on the case that R admits a martingale representation, i.e.
mo ot
R(t) ~ R(0) = BI€I6] ~ Bleldo] = Y [ Hio)dMi(s), te0.7), (1)
i=1+0

for unique G-predictable processes H;. Classical results on the martingale representation
are provided by Protter (2005, Chapter IV, Theorem 43) for Brownian motions, by Kunita
(2004, Theorem 1.1) for Lévy processes and by Jacobsen (2006, Theorem 4.6.1) for marked
point processes. Given that ¢ is square-integrable and the representation (4.41) exists,
a sufficient condition for the uniqueness of the integrands is a zero predictable quadratic
covariation between the martingale parts, i.e. (M;, M;) = 0, i # j. In that case, the

integrands H; are P ® (M;, M;) - almost surely unique and it further holds
t
E U HZ(u)d{M;, M;)(u) | < o0, te[0,T], (4.42)
0

see Lemma A.2.3 in the appendix.
Based on a representation (4.41), Schilling et al. (2020) have recently proposed the
so-called MRT decomposition, which defines the i-th risk contribution as the corresponding

martingale, i.e.
m  nt
Di(t) = ZJ Hi(s)dM;(s), i=1,...,m. (4.43)
i=1+0

The MRT decomposition fulfils a list of desirable properties of a risk decomposition (see
Schilling et al., 2020). The goal of this section is to derive the ISU decomposition for the

martingale R and to investigate its relation to the MRT decomposition.
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Lemma 4.17. Suppose the risk basis X = (X1,...,Xn) fulfils (S) and (M), such that
(M, M;), i =1,...,m are continuous processes. Let (Z;(t))[o,1] be defined by

¢
0
for G-predictable processes H;, i = 1,...,m, that satisfy (4.42). Then it holds

0, i¢J
plim Y E[Zi(tke1) — Zi(tk)|Gi, 1, ] = (4.44)

Tt €Tn(E) Zi(t), i€ J.
Proof. Let (T,(t))n be a sequence of partitions of [0, ¢] with vanishing step lengths and
i€ {l,...,m} fixed. For a better readability, this proof uses the short-hand notation ZTn t)

instead of Ztk,tk+1e7;7. (1) Firstly, we prove the case where H; is a bounded simple process,

defined on a partition 7 = {0 =wuy < ... <wug =T}, deN, ie.

d—1
Hi = Z Hi,l]l(ul,u“rl], = 17 o.M,
=0

and
Ci:= sup |H;(t)|] < o0.
weQ,te[0,T]
Without loss of generality we assume that |7, (t)| < |«| for all n. If w; < ¢t and w; € (¢;,;41]
for some index j, we set t; = t; and t; = t; 1 as the neighbouring points of u; in 7,(t). If
u; = t, we set t; = t; = t. Furthermore, we define partitions ’7~:f on [uj, w1 A t], n €N,
l=0,...,d—1, by

n

,?'_l . (ﬁl(t) M [ulvul-‘rl]) Y {ulaul-i-l N t}v if up < tv
g, ifu =1,

We start by showing (4.7), i.e. let i ¢ J. With the boundedness of H;, the Jensen inequality

for conditional expectations and the It6 isometry, it holds

J
‘ tk+1) i(tk)|gtk,tk+1]

n<t
l+1 d-1 1)
— 2 EE[ H;(u)dM;(u) g;{“w] + > E[ H;(u)dM;(u) ggtl]
1=0 71 th -1 Y v
d—1 u d—1 7
— Z ]E[ Hz(u)dMl(u) Q,;LUZ] — Z E[J Hz(u)dMZ( ) g;{l’tl]
=1 % =1 Uy
d—1 d—1 7
<> G ZE[Mi(tkH) — M;(ty) gg{“tk“] +] ) E[ H;(u)dM;(u) gévtl}
1=0 Fi =1 ] h
d—1 g —
o[ Se] [ mancaler] |+ 32] [ mwanclos|
=1 4] =1
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The first addend tends to 0 in probability by (M) and Remark 4.2. For the second addend,

Jensen’s inequality, It6 isometry and the dominated convergence theorem yield
2
J J
gﬁz »%l :| gﬁl jl :|

.
d—1 tl 2 d 1 %
< lim E[( Hi(u)dMi(u)> ] = lim E[ Hi(u)2d<Mi,Mi>(u)] = 0.

= 4 "Ia 4

i | Y] [ st

2 naoo

‘2 = hm ‘E[ H;(u)dM;(u)

(4.45)

For the last equation, we have used the continuity of § H;(u)*d{M;, M;)(u) that follows
from the continuity of (M;, M;)(-) (see Protter, 2005, Chapter IV, Theorem 8). With
similar arguments, the last two addends tend to 0 in Lo and therefore also in probability.

For i € J, we have

‘ [ (tki1) — Zi(tk)

v, - 2:0)

th+1 U1 AL
< Z(ZE[ H (00670, | - [ Hz-<u>dMi<u>)\
=0 Ny S mnt
d—1 1 — g
+ ZE[ t H;(u) ttl] Z [ H;(u)dM;(u) gt{,ul]
=1 ) =1
d—1 7
S [ oty ]
=1 u '
d—1
<Ye E[M(tkﬂ) M(twgtkw}—(M(quAt) M 2 1)
=0

g
]

The first addend tends to 0 in probability by (M) and Remark 4.2. For the other addends,

we can use similar arguments as above (Jensen’s inequality, 1t6 isometry and the dominated
convergence theorem) to show that they tend to 0 in Ly and therefore in probability.

Next, we consider the general case, where

1) = f H,(u)dM; (u)

for a G-predictable process H;, that fulfils the assumptions. By Kuo (2006, Chapter 6),
there exist simple processes H; . with H; .- M € Mo, such that

c—0

Timy |[((Hie = H;) - M)(#)], = lim (E [ fo t(Hz-,c—Hi>2<u>d<Mi,Mz-><u>] ); = 0. (4.46)

Without loss of generality, we assume that H;., ¢ € N are bounded simple processes.

Otherwise, consider H; . n defined through H; . n(s) := Hi,c(S)]l{H,-,C(s)gN} (see Protter,
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2005, Chapter IV, Theorem 14). Then H; . n(s) tends to H;(s) almost surely as N — oo

for every s € (0,t]. Thus, the dominated convergence theorem gives us

am, (& [ (e = 0200000 3050 ) =0

0

for every c. In particular, we find a subsequence (NNV.). such that

c—0

lim (E UOt(HmNC — Hi)z(u)d<Mi,Mi>(u)] ) =0

using triangle inequality for the Lo-norm.

For J < {1,...,m} with i ¢ J, it holds

> ElZi(tksr) = Ziltw)|G 4, ]

Ta(t)
tk+1 te+1
= Z E[ f (H; — H; 0)(u)dM;(u) g;’k,tk“} + Z E[ H; o(u)dM;(u) g;{c ,tkﬂ}
Ta(t) LYt Ta(t)y Ltk

for every c¢. We consider the two summands separately. For the first summand, similar
arguments like in (4.45) yield

tt1

| %EU (Hi = Hy ) (u)dMi(u)

E <E Ut(Hz‘ — Hjo)?(u)d(M;, Mi>(u)]

0

J
gtk:tk+1:|

for every c. Thus, we get

thot1

lim HTnZ(t)EHk (H: — Hi o) (u)dMy(u)

n—o

E sE [f(HZ — H;0)*(u)d(M;, Mz>(u)] )

0

J
gtkﬂfkﬂ]

Since ¢ was arbitrary, (4.46) yields

tht1

i | ;)E[ [~ ooan

J _
gtk:tk+l:| ‘2 =0.

n—aco

For the second summand, the first part of the proof yields

thot+1

plim Z IE[ H; o(u)dM;(u)
€Tn(t)

n—00 t

J
gt}mtkﬂ] = 0.
In total, we get

plim 37 E[Z;(tes1) — Zi(t)IG ., ] = 0.

63



Now, let J € {1,...,m} and i € J. Then we have

> B[ Zi(tes1) — Zi(t)IG1, 4, ] — Zi(t)
Tn(t)

_ Z(;)E[ Jt S = o) (u)dMi(u) gg{ﬁt,ﬁl] + J:(Hi,c — H;)(w)dM; (u).

k

+(ZE[““mAmew

Tn(t) b

%%J—ﬂmmmmm»

The first part of the proof yields for the last term

plim( 3 IE[ " (u)AMi(u)

n—a0 7—n(t) tk

Qt"k,t,m] —~ Lt Hz-,c(u)dMi(u)> —0, (4.47)

so we focus on the other two terms. With similar arguments as used in the case i € J, it

holds

= [ - movasnnco

J
gtkikﬂ]

2

g1
H T%)E[ L (H; — Hi.o)(u)dM;(u)

k

for every ¢ € N. Thus, we get

lim H
n—o0

Ta(t)

QHJ e = Hi) (u)dMi(u )HQ

[thﬂ H; — H; ) (u)dM;(u) gt{mtk“] - JOt(HLC ~ A H2

Since ¢ was arbitrary, we can conclude with (4.46) that

lim H Z [JtHl H; — H;c)(u)dM;(u)

n—aoo

t
gi{cvtk+1:| + J (Hi,c - Hz)(u)dMl(u)HQ = 0.
Tut) o

In total, we get the desired result

plim < > ElZi(tksr) = Ziltw)IG1 4y, ] — Zi(t)) = 0.

BN

This lemma directly leads us to the main result of this chapter.

Theorem 4.18. Let the risk basis X = (Xu1,...,Xm) fulfil (S) and (M), such that
(M;, M;y, i =1,...,m, are continuous processes. Suppose R has a martingale represen-
tation (4.41) for unique G-predictable processes H;, i = 1,...,m, that fulfil (4.42). Then
o(X") = E[¢|o(XY)] admits the ISU decomposition

/) = JotHi(u)dMi(u), Le[0.T], i=1,....m.

In particular, the ISU decomposition does not depend on the update order or the choice of

partitions.
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Proof. Let t € [0,t] and let (7,(¢))n be a sequence of partitions of [0, t] with |7,(¢)| — 0,
n — o0. For a better readability, this proof uses the short-hand notation 27—” ) instead of

2t thrr€Tn(t)" Observe that it is sufficient to verify

plim 3 (E[€167. .1 — E€G1,]) = f Hi(u)d M (u) (4.48)
nHOOTn(t) e

for all J < {1,...,m}. It holds

D (EIEIG, 1] — EIEIG:,])

Tn(t)
th+ 1 tk+1
Z ZE[ )dM( gtk tk+1:| Z ZE[ )dM( ) gt{mtk+1:|'
Tu(t) i€] b To(t) igJ b
Applying Lemma 4.17, we can conclude that the first summand tends to >, ; So u)dM;(u)

in probability and that the second summand tends to 0 in probability (n — oo), which

gives the assertion. O

The theorem not only states the ISU decomposition of a martingale revaluation process
R, but also immediately reveals its relation to the MRT decomposition, introduced by
Schilling et al. (2020). Furthermore, the ISU decomposition does not depend on the update
order, so the Theorem 2.7 helps us to derive the IOAT and AISU decomposition. The

results are summarized in the following corollary.

Corollary 4.19. Under the assumptions of Theorem 4.18, the ISU decomposition, the
IOAT decomposition, the AISU decomposition and the MRT decomposition are equal.

The fact that the ISU decomposition coincides with the MRT decomposition underlines
the meaningfulness of the decomposition principle presented in this thesis. However,
both decompositions require knowledge of the martingale representation, in particular
its integrands. In its canonical form, the martingale representation theorem is a pure
statement of existence, without an explicit specification of the integrands, see the references
stated at the beginning of this section. Only in certain frameworks, (semi-)explicit forms of
the integrands can be derived (see Cont & Lu, 2016) using the theory on Markov processes,
the Malliavin calculus (see Malliavin, 1978; Nualart, 2006) or the Functional It6 calculus
(see Cont & Fournié, 2013). Examples in the setup of diffusion processes are supplied by
Cont and Lu (2016). Regarding marked point processes, we refer to the constructive proofs
of Davis (1976) and Elliott (1976). In most of the cases, evaluating the integrals of the
martingale represenation is cumbersome and often only possible numerically, even if there
are supposedly explicit forms. With the ISU decomposition principle, a new door is open
to approximate martingale representations via SU decompositions. In the following, we

will investigate its numerical feasibility.
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5 On the numerical feasibility of the ISU concept

In the previous chapters, the practical relevance of the ISU decomposition principle has been
highlighted through its numerous applications inside and outside the life insurance context.
In particular, it has been shown that established decomposition formulas can be obtained
by applying the ISU decomposition principle in suitable models (see Chapter 3 and 4).
However, from a practical point of view, the numerical feasibility of the ISU decomposition
principle has yet to be verified. The present chapter thus examines the numerical feasibility
of the ISU decomposition principle using a pension insurance example.

The numerical complexity of the ISU decomposition principle depends strongly on
the model framework, the choice of the link mapping ¢ and the resulting form of the
contributions. In Chapter 4, an analysis of ISU decompositions in a general martingale
framework has been presented, that allows for applications beyond the life insurance context.
More precisely, we have assumed that the revaluation surplus process R has the form
R(t) = E[¢|o(X?) v N]. This representation intuitively reflects the available information

on the risk basis X until time ¢, and leads to a natural link mapping ¢ given by

o X1, Xy = E[E|o (X, ..., XY v N, (5.1)
with t; € [0,T],7 = 1,...,m. In contrast to the setup of traditional surplus decompositions

considered in Chapter 3, this approach takes full advantage of the observed information,
especially for estimating future values (see Chapter 4). Therefore, the numerical analyses
in this chapter are embedded in the model framework of Chapter 4.

The present study considers a single fund-linked pension insurance that is driven by the
systematic risks interest, fund and mortality, modelled as solutions of stochastic differential
equations. The unknown time of death of the policyholder depicts the unsystematic risk,
which is represented by a doubly stochastic Markov process with two states alive and
dead. Within this setup, the ISU decomposition coincides with the MRT decomposition
under certain conditions (see Section 4.2 and Theorem 4.18). A key assumption is the
existence of the martingale representation, for which reference is made to the publication
of Schilling et al. (2020). In that paper, a proof of the martingale representation theorem
in a general doubly stochastic Markov model is provided. Moreover, (semi-)explicit
representations for the integrands are derived using the Malliavin calculus (Malliavin, 1978)
and the theory of Markov processes. Based on these representations, Schilling et al. (2020)
simulated the various risk components in the example of a Guaranteed Minimum Death
Benefit (GMDB) insurance, assuming affine processes for the systematic interest risk
and the systematic mortality risk. Another example of numerically approximating the

martingale representation in an actuarial framework can be found in Biagini et al. (2016).
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In a doubly stochastic multistate Markov framework with affine intensity processes, Biagini
et al. (2016) computed the martingale factors for an income protection insurance.

The ISU decomposition principle, presented in this thesis, opens up a new possibility to
approach the martingale representation numerically. By definition, the ISU decomposition
is a limit of SU decompositions, which, in the situation of Chapter 4, involve the sum
of conditional expectations like (5.1). To simulate the latter, a multilevel Monte Carlo
(MLMC) approach based on a contribution by Giles (2008) is used. In that paper, Giles
(2008) investigated the computational complexity of the MLMC method for expected values
of random variables that are driven by solutions of stochastic differential equations. In
this thesis, the MLMC approach of Giles (2008) is generalised to conditional expectations
and a systematic notion of MLMC convergence is introduced. A key component to obtain
convergence results is the approximate solution of the stochastic differential equations via
numerical schemes. Relying on the Euler approximation scheme (see Kloeden & Platen,
1992, Section 10.2), convergent MLMC estimators are derived for the SU decompositions
of a single fund-linked pension insurance claim.

The MLMC estimators are implemented using the statistical software R 4.4.2
(R Core Team, 2024). The implementation is designed to allow for an analysis with
a threefold focus. Firstly, the numerical feasibility and the question of whether the
numerical approximation of the ISU decomposition is possible in an acceptable amount of
time is investigated. Secondly, the impact of the chosen SU grid width on the approximation
is reviewed and thirdly, the effect of the update order on the surplus decomposition is
scrutinised. Taken together, these aspects will demonstrate the expediency of the ISU
principle from a numerical point of view.

In Section 5.1, the model framework of the numerical example is introduced. The derived
convergent MLMC estimators obtained by extending the MLMC theory of Giles (2008) to
conditional expectations are presented in Section 5.2. The last part of this chapter, namely
Section 5.3, is focused on the numerical implementation. First, the chosen parameters
and the numerical methodology are described, which is followed by the presentation of the

numerical results.

5.1 Model framework

We consider a single fund-linked pension insurance of an z-year old policyholder and
assume a retirement age of x + 7, while the a maximum age is supposed to be z + T
years, where T' > v and +,T € N. The policy includes a one-off premium p at the start
as well as regular premiums paid until the policyholder retires (or dies). A large part

of the premiums is invested in a capital market fund. In return, the insurance company
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pays a death benefit for the case of the policyholder dying before retirement, otherwise a
regular pension payment is disbursed until the end of the policyholder’s life. If a pension is
paid, it will be paid to the policyholder or the heirs for at least 10 years, no matter if the
policyholder survives this period (‘guaranteed pension period’). The pension level is linked
to the price of the capital market fund.

In the following we introduce the underlying model, which is a special case of the doubly
stochastic Markov setup that we have investigated in Subsection 4.2.5. We consider the
time horizon [0, 7] covering the range from the initial age = to the maximum age = + 7.
The systematic risk factors are represented by a mortality intensity A = (A(t))=0, a interest
intensity r = (r(t))i>0 and a market fund Y = (Y (¢));=0. More precisely, we assume
that the systematic risk drivers, which are composed to © = (A, 7,Y), solve the following

stochastic differential equations
dA(s) = A(s)uads + oxdWi(s), A(0) = Ao,
dr(s) = (8 — r(s)ur)ds + o,dW,.(s), r(0) = ro, (5.2)
dY (s) = Y(s)uyds + Y (s)oydWy (s), Y(0) = yo,

where uy, iy, iy, B, ox, 0r, Oy, T0, Ao, Yo are positive constants and W = (W, W,., Wy) is
a three-dimensional standard Brownian motion. That is, the process A, which will later drive
the underlying mortality intensity, is modelled by an Ornstein-Uhlenbeck process without
mean reversion. Moreover, the interest intensity r is described by an Ornstein-Uhlenbeck
process with mean reversion (see Ahmad et al., 2022), while the market fund Y follows a
geometric Brownian motion with positive drift.

Rather technically motivated, we introduce the functions gy, g, and gy from R to R,
which will provide the necessary regularity of the risk drivers A, » and Y to conclude the

desired convergence. We assume that
e g, gr and gy are Lipschitz continuous,
o gy has values in [0, By| for some B) > 0,
e g, has values in [—B,, B,| for some B, > 0,
o gy has values in [By, +) for some By > 0.

The constraints for gy ensure the non-negativity of the mortality intensity. Apart from
that, g\, g» and gy can be chosen to be close to the identity, with large parameters B)
and B, and a small parameter By, so that these transformations have no practical effect
in applications.

We model the state process of the insured by an F®-conditional Markov chain

Z = (Z(t))e[o,r] With state space Z = {a,d} and a corresponding right-continuous jump
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process N that jumps from 0 to 1 at time of death (see Subsection 4.2.5). Given a grid
™ ={0=uy<...<ug=T},

the jump intensity process A = (A(t))se[o,7] is defined by A(0) = g1(0) and A(t) = ga(A(wr)),
t € (uy,u;1]. In particular, the process My = (Mpn(t))¢>0, specified by

¢

My(t) = N(t) - [ 16R(s)as,

0
is assumed to be a G-martingale, where G = (G );=0 is the filtration given by G; = f? vFN
(see Subsection 4.2.5). We define the indicator process I = (I(t))i=0 by I(t) = Liz()=a}-
Moreover, the survival probability peq(s,t), s < ¢, has the representation

pastsnt) = exp = [ K10,

S
see Subsection 4.2.5.

Let the risk-free bank account K = (K (t));>0 satisfy
dK(t) = K(t)g,(r(t))dt, K(0) = 1.

For the discounting of cashflows, we introduce the discount factors v(s,t), 0 < s < t, by

vlsnt) = 2 e (- | t n(r(w)au).

It is assumed that a deterministic savings rate, given by a bounded Lipschitz continuous

function a = (a(t))se[0,77, is invested into Y. The shares held are described by a stochastic
process @ = (Q(t))se[o,r], defined through
a(s)

dQ(s) = ———

O o)

Here, a(0) € [0,p] is the amount of shares that is bought with a one-off payment at

ds, Q(0) = a(0). (5.3)

the beginning of the contract. In the following, the process V' = (V(t))epo,r] with
V(t) = Q(t)gy (Y (t)) represents the deposit value of the policyholder.

The insurance claim is given by

§=p+& +8&+ &+ &,

where

& = Fv(o,s)u )V (s)dN(s),
0
v+10
G=-10) [ w09V,
- Y
§4 = — f I(s)v(0,s) fV (v)ds.
v¥+10
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The insurance claim includes a one-off premium p, which covers the initial investment a(0).
The addend &; comprises the discounted deposit value at retirement resulting from the
savings process a. If the policyholder dies before retirement, a death benefit f; -V {(s) with
rate fg € (0,1) is paid out, while the residual deposit value remains at the insurer. The
latter cashflow is depicted by &. With f, € (0,1), we denote the pension factor, i.e. the
part of the depository that is yearly disbursed. The cashflow £3 models the guaranteed
pension period of ten years, if the policyholder reaches the retirement age. The fourth part
&, represents the pension payment after the guaranteed pension period. The assumptions
made in this paragraph imply E[¢2] < co.

Throughout this chapter, the risk basis is given by X = (N, \,r,Y) and, as usual, its
information flow is denoted by G = (G;)¢>0. The goal is to numerically approximate the

ISU decomposition of the revaluation process R = (R(t))i=0 given by
R(t) = E[¢]|G:], t =0,
with the link mapping o defined through
o( X1, ..., X = E[¢lo(XT ..., XY v N, (5.4)

for t; € [0,T], i« = 1,...,m (see Chapter 4). Since ¢ is square-integrable, and since
© and W generate the same information, Proposition 1 in Schilling et al. (2020) ensures
the existence of a martingale representation. Furthermore, by Lemma 4.16, the risk basis
X fulfils property (M), which has been crucial in Chapter 4 for the derivation of ISU
decompositions. Thus, we know from Theorem 4.18 that the ISU decomposition exists. In
particular, it coincides with the MRT decomposition.

The idea of this chapter is to approximate the ISU decomposition by means of SU
decompositions. Therefore, let 7 = {0 =ty < ... < t,, = t} be a partition of [0,t]. We
assume that the grid 7 of the mortality intensity is included in 7, i.e. let 7* < 7. Recall
from Chapter 4, that G’ describes the complete natural filtration generated by the subset
J € {N,\,r,Y} of risk sources, and g; . = Gs v G/. For better readability, we omit the
curly brackets in J. The SU decomposition with respect to 7 is given by

Dy (1) =:§<E[agz§¢k+l] —E[£G2 ... ]);
Di\(t) =:§;<E[s|gz:;?k+1] —E[§1G]) 4., ]
Dy (t) =§<E[§|gi§;?,;;] —E[§G,%,.]);
Dy (t) =§1(E[§|g£:?;i’f 1 —E[EIGY M 1),

k=0
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see Chapter 2. In general, conditional expectations cannot necessarily be computed
analytically. In that case, a method to numerically approximate conditional expectations
is needed. Inspired by Giles (2008), this chapter presents a general MLMC approach
to approximate the conditional expectations of the SU decompostion. Since the SU
decomposition itself is already an approximation of the ISU decomposition, the multilevel
Monte Carlo approach represents a further level of approximation. The convergence of the
SU decompositions towards the ISU decomposition has been established in Chapter 4. For
the approach of the conditional expectations with the MLMC methods, the theoretical

basis still has to be laid out. This is therefore the focus of the next section.

5.2 Numerical method

The goal of this section is to derive convergent estimators for the contributions of the SU
decomposition. Before introducing the multilevel Monte Carlo methods, we study the SU
decomposition in more detail.

5.2.1 Analysis of the SU decomposition

Let H = (H¢)i=0 denote the completed natural filtration generated by the systematic

risks ©. For t € (u;, uj41], we define u(t) = uj1. Furthermore, for s > u(ty), k =0,...,n,
we set
pIE(tkv s) = E[paa(ulty), s) |Htk]7 (5.5)
Pu(ts 8) = E[paa(ulty), s)X(s)[Hs], (5.6)
as well as
v (ty, s) = Elv(ty, s)|[He, ], (5.7)
Y (tr, 5) = Elgy (Y (s))[Hy,], (5.8)
Y5 (t 5) = E[(Q(s) — Q(tx)) gy (Y (5))[H, ] (5.9)

for s > t;. This leads us to the following short-hand notations

P (e, 8) = pltr, u(te))py (e, 5),
p]E(tkv 5) = p(tkv u(tk))pIEA(tk’ S)’

VE(tk’S) = Q(tk)YE(tk’78) + Yg(tk78)7
for s > tx, k=0,...,n, and

pI—Ei- (tk’ S) = p(tk-i-l’ u(tk))pls(tkv S)v

Px 1 (trs 8) = p(trss, u(tr))pux (te, s)
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for s > tpy1, k=0,...,n — 1. In the following, we provide compact formulas for the SU
contributions. For the different claim components ¢, the SU contributions assume the
following form

n—1

Di(t) = > (E[&IG) 4., 1 - EL&1G2 ... D,
k=0
n—1

Di(t) = D (Bl&|Gh a1 — BIGIGH 4,0, D),
k=0
n—1

Dit) = > (El&IG0 " 1 - El&IG D,
k=0
n—1

Dy (t) = Y (B[&IGN M = EI&1G 0 -

Ukotk+1
k=0

Clearly, we have
4 .
= >, Dj(t), j e (N.ArY}.

After some tedious calculations (see Appendix A.3), one derives the following representations

for the SU contributions.

Unsystematic biometric risk
The SU contributions with respect to N are given by

Dy(t) = D1 Lipamyv(0,tr) ATP (g by, V0" (b, 1)V E (s ),

tistk+1€T
L <y

DR = T w00 [ ) )V 0,9V () — 10,9
totes1€T tk

.
+ S w0,h) f Fts $)(1 = fVE(ths )AL (1, 111, 5)ds,
tht1

Lotk +1€T
<y
v+10 -
DY) =— ) U(O,tk)AI”(tk,tkHﬁ)J U (th, 8) f,VE (tr, 7)ds,
tk,tk+1€T v
te<7y
T
DY) =— > v(0t) j AL (b, tosr, )0% (b, 8) f,VE (8, ) ds
tk,tk+1€7— ~7+10
t<v+10
et E E
=Y w0t [ )~ e ) s) £V (0)ds
tk,tk+1€7- 23
tp=y+10
T
— DT w(0t) | AIP(tk trer, S0t 5) f,V (7)ds
thotis1€T tht1
tp=v+10

72



where

AIP(tg, try, 8) = I(teg1)pY (trs 8) — I(te)p™ (te, 8),

AL (g tryr, 8) = I(te1)py 4 (ks s) — T(tR)PX (ks 5).

Systematic biometric risk

The SU contributions with respect to A are given by

D%\(t) = Z I(tk+1)v(07tk)Ap(tk7tk—i—laf)/)vE(tk)f)/)V]E(tkaf}/L
teotk+1€T
<7y

Y
Di(t) = 2 I(tk+1)1}(0, tk‘) f U]E(tk‘v S)(]- - fd)VE(tka S)Apk(tka tk:-l—la S)dS,
tk,tk+1€T tet1
<7y
v+10
D3O =— 3 Tt 1) Aplte 1,00, 1) f VE(th, ),V (11 7)ds,
ti,tk+1€T v
<7y
T
Dy(t)=— > I(tkﬂ)v(o,tk)f Ap(tey trst, 8)0™(tr, 8)) fVE (b, y)ds
tk,tk+1€7— y+10
tr<v+10
T
— > I(tre1)v(0, ) Ap(ty, tey1, $)0E (tg, 8) £,V (7)ds

teoti+1€T tr+1
k=7+10

where

Ap(tkv tk+17 S) = pE(thrh 8) - pI—E‘,- (tka 8)7

Apx(th, ter1,8) = Pa(thgt, 8) — Dy 4 (t, 5)-

Systematic interest risk

The SU contributions with respect to r are given by

D;(t) = Z I(tk+1)pE(tk+lvV)Av(tkathrlaﬁY)VE(tkv’y)v
tit+1€T
te <7y
2 bt E E
DHO = 3 w0t) [ (wlthes) = 0%tk 5) (1~ )Vt AN )
tiotk+1€T te
<7y
Y
+ D I(tke) Av(ty, tre1, 8) (1 = f2)VE(t, $)P5 (trgr, s)ds,
thothr1€T th+1
te<7vy
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v+10
Dg(t) = - 2 I(thrl)pE(thrl,’Y)J A’U(tk,tk+1, )fp (tk7 )d
thotet1€T v
<7y

te+1
— Z I(’y)fpV('y)J (v(0, ) — v(0, t;)vE (L, 5))ds
tk,tk+1€7— 23
k=Y
v+10
- Z I(’)’)fpV(’)/) J A’U(tk, tk‘+l7 8)d37
ti,t+1€T tht1
tr=y
T
DO == ¥ Tlte) [ 55t ) B0ltnstier, )1Vt ) ds
tk,tk+1€7- y+10
tk<’}/+10
ti+1 -
- > I(s)(v(0, 8) = v(0, tx)v"(tx, 8)) fpV (v)ds
ti,tk+1€T tk
k=7v+10

T

- Z I(tk-l-l) J p]E(tk_;,_l’S)AU(tk,tk_;'_l’S)fpV(’}/)dS
ti,tk+1€T tet1
t=v+10

where

Av(tg, tpi1,8) = 'U(O,tk+1)'UIE(tk+17 s) — v(O,tk)vE(tk, s).

Systematic fund risk

The SU contributions with respect to Y are given by

D)l/(t) = Z I(tk+1)p]E(tk+1,'}/)UE(tk+1,’Y)AV(tk,tk_t,_l,'Y),

trotk+1€T
b <7y
2 P E
Dy = Y [ o080 f)(V() - Vit )N ()
ti,tk+1€T t
te <y
.
+ > I(tk+1)v(07tk+1)J 0 (teg1, ) (1= fO)AV (e, test, $)P5 (i1, 8)ds,
tk,tkHeT tk+1
t<vy
E v+10 .
Dy (t) = - Z I(tp41)v(0, tg1)p (tk+1,’7)f 0" (tkt1, 8) [pAV (tks trg1, 7)ds,
ti,te+1€T vy
tk<’\{
T
Dy(t)y=— ) I(tm)v(o,ml)j PP (thst, 9V (bt ) FpAV (b, trs, ) ds,
teoti+1€T 7+10
L <7y

where
Av(tka tk+17 8) = V]E(tk+17 8) - VE(tka 8)'

The formulas above reveal that each SU addend can be represented by pathwise Lebesgue
integrals, where the randomness of the integrands stems from the risk factors and conditional

expectations thereof like (5.5) - (5.9). Thus, our idea is as follows. We consider a fixed
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path for the risk factors and approximate the integrals pathwise by finite sums. The
appearing conditional expectations, given the observed paths of the risk factors, are then
approximated with MLMC methods. In the following, we develop a theoretical fundament
to this approach.

5.2.2 Multilevel Monte Carlo estimators

In this section, we take a step back and introduce MLMC estimators in a general framework.
The MLMC approach can be traced back to various papers by Heinrich (1998, 2000, 2001)
and Heinrich and Sindambiwe (1999) on parametric integration and the solution of integral
equations. A good overview about the MLMC approach and its applications can be
found in Giles (2015). The definition of MLMC estimators and the basic notation follows
the theory of Giles (2008), who laid the cornerstone for an application of the MLMC
approach to estimate the expectation of random variables driven by stochastic differential
equations. In extension to Giles (2008), we study MLMC estimators for conditional
expectations and establish a systematic notion of (integral) MLMC convergence. For this
thesis, focus is placed on convergence results, but not on the computational complexity of
the approximation. Nevertheless, the basic notation and the convergence result is oriented
towards Giles (2008).

Let (2, A,F,P) be a filtered probability space with a filtration F = (F})>0 that satisfies
the usual conditions. Furthermore, let W denote a standard m-dimensional Brownian
motion that is independent from Fp, and let S be the solution to the m-dimensional

stochastic differential equation
dS(t) = p(t, S(t))dt + o(t, S(t))dW (¢), S(0) = So,

where g2 [0, T]xR™ — R™, o: [0,T]xR™ — R™*™ are functions and Sp is Fy-measurable.
The goal of this section is to find an appropriate estimator for

¢ =E[f(S(t1),...S(tr))|Fol, 0<t1 <...<t, <T,

where f is any appropriate function. In the following, the abbreviation P = f(S(t1), .., S(t,))
is used.
Let L € N, K € R, and let S; denote the Euler approximation of S with timestep'
hy=2"'"T/K,1=0,...,L, ie.
S1(0) = So,

Si{ujv1) = Silug) + pluy, Si{u;)) (w1 — ug) + 0wy, Si(u)(Wwjcr) = Wiy)),

where u; = jh;, j =0,... , 2/ . For a better readability, the index [ in u; is omitted.

'The definition of the step width slightly differs from Giles (2008), who uses h; = M™'T for MeN, M > 2.
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In line with Giles (2008), we set P, = f(S;(t1), ..., Si(t,)) and
12}7 P, l=1,...,L, (5.10)

where N is the number of independent samples and ]311 = f(gli(tl), 7§Z(tr)) with gl’
denoting a sample Euler approximation path. Following Giles (2008), the difference
ISZi — ]3li_1 is based on two Euler approximations with different step lengths but with the
same Brownian motion path. Furthermore, let 630 be the usual Monte Carlo estimator for
E[f(S(t1), .., S(t,))|Fo] using Ny samples for the Euler approximation with step width hy,

i.e.
No
~ A
%—M>Z%
=1

The combined estimator € is given by

~ L ~
=) ¢, (5.11)
=0

see Giles (2008). Let us now introduce the notion of MLMC convergence.

Definition 5.1. A family of random variables H= ﬁI(L, (N1)1),1=0,...,L, Le Ny is
called a MLMC' estimator for a random variable H, if for any £ > 0, there exist L and N,
[ =0,...,L such that,

MSE =E[(H — H)?] < &% (5.12)

We write briefly a My, Furthermore, if the following two conditions are fulfilled,

namely
(i) for every L > L, there exist (Nl)l=0,...,i such that it still holds (5.12),

(i) for every tupel (N})j—o,... with N; = N;, [ =0,...,L, it still holds (5.12),

-----

we call the convergence monotonic.

By extending the ideas of Giles (2008) to our framework, we can state assumptions, under

which ¢ converges to € in terms of Definition 5.1.

Theorem 5.2. If there exist constants o = ﬁ > 0, and positive functions cy, ce, such

that E|c1(So)] < 0, E[c2(So)] < oo and
(i) B[P, — P|Fo] < e1(So)h,
(ii) Var[€|Fo] < ca(So)N h!,

then it holds & "53¢ E[f(S(t1), .., S(tr))|Fo] monotonically.
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Proof. The proof follows the lines from Giles (2008, Theorem 3.1), adapted to our case.

Let € > 0. We decompose the MSE into bias and variance, i.e.
E[(€ — €)%|Fo] = E[€ — €| Fo]? + Var[€|Fo],

and investigate both addends separately. We set

. {mg( 2]E[c1(So)](T/K)%_1)}

alog(2)
where [-] is the ceiling function. Using that = < [z] <z + 1, x € R, we immediately get

I
2E[c1(So)]

/N

h €.

That gives us, together with the definition of ¢ and assumption (),

E[@—cﬂfo]?:E[ ZP0+Z 2 B =B = P7o
= E[P, — P|Fo]* < (a1(So)ht)” < 2@14:0[1(:%)0)]82

For the variance, we consider different cases for 5 (see assumption (i7)). If assumption (i7)
holds for 8 = 1, let N; = [2e 2(L + 1)E[ca(S0)]l] yielding

L
Var[€|Fo] = Y Var[€|Fo] < N7ty < =22 e
[ | 0] IZO [ l| 0 ; S 2E[C2(SO)]

If B> 1, let Ny = [26=2E[ca(So)|(T/K)B-D/2(1 — 2-(B=1/2)=1 S+ " That gives

L
Var[€|F] = ZVar [/ Fo] < ZCQ So)N; *hY
1=0 =0

¢2(So) B—1)/2 L
< 2(S0) (1-2" B—1)/2 2 pB-1/2
QE CQ SU =0

Using the formula for the geometric series, we can estimate the last term by

/2 L

B-
Zhﬁlw <K>( K IERGREY

1=0
(B-1)/2 1 _ (2—(/3—1)/2)L+1
-3

1 —92-(B-1)/2
7\ B-1)/2 1
“\x = o=(-12’
which in total leads to
c2(50) 2
Var (’3 F — ¢
[€]Fo] < 2E[c2(S0)]
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If 8 < 1, let N; = [2e2E[ca(So)]hy P2 (1 — 2-0=8)2)=13P* D/ With that, we have

L L
Var[€]Fo] = ) Var[&)]|Fo] < Z (So)N; *h?
=0 =0

c2(S0) o, (1-8)/2 ey N, (1 BY/2.
< —=2 22 1—2
EeaSo)] E 20

Using the formula for a geometric series, we derive the following upper bound for the last

term

L L
Z hlf(lfﬁ)ﬂ — hz(lfﬁ)ﬂ 2(27(176)/2)1
1=0 1=0

_peopl o (IR
(1 —2-(1-8)/2)
Bl 1

(1 —2-0-8)/zy
which in total gives us again

C2(50) £2
QE[CQ (So)] '

Thus, we found L and N;, [ = 0,..., L, such that

c1(So) 2 c2(50) &2
2E[¢1(S0)] 2E[c2(S0)]

Var[€|Fo] <

E[(€ — €)’|F] <
Taking the expectation on both sides and using the monotonicity of expected values yields
s 2 Lo, 1, 2
E[(€ - €&)7] < ze“ 4 e =¢".
2 2
It remains to show the monotonicity of the MLMC convergence. Firstly, for L> L, we

clearly have

c1(So) o

(Cl(SO)h ) = (Cl(SO)ha) m??

Setting Ny=0forl=L+1,..., E, we still have

ic (So)N7 Uy < 250 2
= T SR e (So)]
so that the MSE E[(@ — ¢)?] stays below 2. Secondly, the estimates are still true for
N, >N, 1=0,...,L, since we have Zl:() CQ(SO)NZ* h; < Zl:(] CQ(SO)NZ* h;. Thus, the

convergence is indeed monotonic. O

In this thesis, we focus on the convergence of the approximation. However, it is worth noting
that the complexity theorem in Giles (2008) includes results on the numerical complexity
of the MLMC approach. Moreover, the application of the theorem above requires the
verification of the two assumptions (7) and (4¢). While assumption (¢) closely relates to

the well-studied weak convergence of numerical schemes (see Kloeden & Platen, 1992),
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assumption (77) might be difficult to prove (see Giles, 2008). Nevertheless, by applying the
arguments of Giles (2008) to our setup, we derive sufficient conditions that imply (7) and

(77). In the following, || - | denotes the Euclidean norm.

Lemma 5.3. Suppose that f is Lipschitz continuous and that for every t € [0,T], there

exists a positive function ¢ with E[c(So)] < w0, such that
E[|Si(t) = S(#)|*1Fo] < e(So)hu-
Then both conditions of Theorem 5.2, (i) and (ii), are satisfied.

Proof. The proof follows the lines from Giles (2008, Section 2), but adapted to our case.
The second part of the assumptions describes the strong convergence of the Euler scheme

with order 1/2 for every t. The equality

r

[(or = sz — )P = ) (i — )
i=1
also implies the strong convergence of the Euler scheme for the vector (S;(t1),...,S;(t,))

to (S(t1),...,S(t;)). In particular, we find a positive function ¢ such that

E[[(Si(t1) = S(t1), ..., Si(t;) — St)) || Fo] < &(So)h

with E[¢(Sp)] < 0. The Lipschitz continuity of f with Lipschitz constant 7 > 0 and the

Jensen inequality for conditional expectations yield

E[|P; — P||Fo] < TE[|(Si(t1) — S(t1), ..., Si(tr) — S(t:)) 1 Fo]
<TE[(Si(t1) = S(t1), -+, Siltr) — S(E))PI1Fo) 2 < er (So)hy”?

for a positive function ¢; satisfying E[c1(Sp)] < co. This gives us condition (i) with a = 1/2.

Furthermore, we can write (see Giles, 2008, p. 608)
P —P_1=(P—-P)—(P-1-P),

which implies together with the Minkowski inequality for conditional expectation (Doob,

1994, Section XI.3)
Var[P, — P_1|Fo] < (Var[P, — P|Fo]2 + Var[P,_, — P|Fo]2)%
Exploiting again the Lipschitz continuity we get
Var[Pi—P|Fy] < B[(Pi—P)*|Fo] < 7B[|(Si(t1)—S(t1), . Siltr) S [P1Fo] < XS0l

which in total gives

Var[Ey| Fo] = Var[ 12 - P )

] = NflVar[]?’l — ]3l,1|]:o] c2(So) NN, “hy,
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for some positive function co with E[ca(sg)] < oo, i.e. condition (ii) is fulfilled with

B =1 o

The following lemma provides helpful results on the multiplicity and additivity of mono-

tonically convergent MLMC estimators.

Lemma 5.4. Let &1, & € Lyo(P) and let B be a bounded random variable. Furthermore,

MLM

~ o~ ) . ~ c .
let &1, €y denote the corresponding estimators such that € = ~ &; monotonically and

@2 ML:A>/[C &y monotonically. Then it holds

(i) @1 + @2 ML:];/[C &1 + & monotonically,

(i) B¢, MLYC B¢&; monotonically.

If (&4, (?31) and (€, @2) are independent, it further holds
(iii) @1 632 ML:A>40 &1 &5 monotonically.

Proof. (i) By Definition 5.1, we find L7, Nlj, j=1,2,1=0,...,L7, such that
2

€ .
E[(¢; — &;)?] < T i=12

Setting L = max{L!, L?}, the monotonicity ensures that there exist ]\N/l], l=0,...,L,

such that we still have
2

E[(¢; — ;)] < %, j=1,2.
Now, again monotonicity reveals that this inequality also holds in both cases (j = 1, 2)
for L and N; = max{]\Nfll,]\Nle}, I =0,...,L. Since 2ab < a® + b%, a,b € R, we also

have
E[(@l + @2 — ¢ — @2)2] < 2E[(é\31 — @1)2] + QE[(@Q — @2)2]
g2 g2 9
=2— 42— =¢°.
TR

In particular, the monotonicity follows from individual monotonicities.

(ii) Suppose |B| < M for some M > 0. Since ¢ MLyrC ¢,wefind L, N, 1 =0,...,L,

such that
Thus, we directly get
2
~ ~ ~ €
E[(B€¢, — B&;)?| = E[B*(¢, — ¢)?] < B’E[(¢; — ¢1)?] < MQW =2,

The convergence is monotonic as €; converges monotonically to ;.
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(iii) Let € > 0. Following the argumentation on monotonicity in (i), we find L, Ny,

Il =0,...,L such that
E[(€; - )] <,
where n = min{e/(||€;|2 + |€2]2 + 1), 1}. This choice of n originates from standard

proofs on convergent product sequences (see e.g. Hortmann, 2006). Since
@1@2 — E1¢y = (@2 — @2)(@1 — @1) + @2(@1 — @1) + @1(@2 — @2),
we can apply triangle inequality and exploit the assumed independence to get

H@1@2 — &1&;|2
<€ — Eofa] €1 — E1fa + [ €2 €1 — €1l + | €12 € — o

2

<7+ €2 €2 < (1 + [|E]2 + [ &E2f2) < e

In particular, the monotonicity follows from individual monotonicities.

O
As our insurance cash flow includes continuous payments, we are interested in objects like

b
v :f E(s)dg(s), 0<a<b< T,

a
where ¢ is a finite variation process like g(s) = s or g(s) = N(s), that is bounded on [a, b],
and where for every s € [a, b], €(s) can be approximated by a MLMC simulation. Thus,
a natural idea is to approximate this integral via finite sums. Therefore, let (ng)d be a
sequence of partitions on [a,b] with |7y | — 0, d — o0. We define
Tg= > €(s;)(g(s511) — g(s))).
Sj,5j+16ﬂ';llj
Assuming that there exists MLMC estimator &(s) for €(s), we can define the integral
estimator
Ug= D €(s)(g(s541) — g(s57))- (5.13)
sj,sj+167r3’
Definition 5.5. Let (7} )4 be a sequence of partitions on [a,b] with |7} | — 0, d — .

We call (\f/d)d an integral MLMC' estimator for ¥ = SZ ¢(s)dg(s), 0 < a < b<T,if for any

€ > 0, there exists dy € N such that for every d > dg, there are values L, N;, 1 =0,...,L,
such that

MSE =E [(@d - \IJ)Q] <2 (5.14)
We briefly write (\ild)d [HAMEMC (w.r.t. (m)a). We call the convergence monotonic if

(\/I\/d)d MLYTC W, monotonically for every d.

81



Theorem 5.6. Let (1] )a be a sequence of partitions on [a,b] with |7]| — 0. If for every
s € [a,b], there exists a MLMC estimator @(s) such that af(s) MLLtCe &(s) monotonically

and if |¥ —Wy4lla = 0, d — oo, then it holds (\’I\fd)d [MENMC g monotonically (w.r.t. (73 )a).

Proof. Following the construction of the estimator (see the remarks before Definition 5.5)
we have to show that for each € > 0, there exist dg € N, such that for every d = dg, there
are L, N;, 1 =0,...,L such that

for all d = dg. For this purpose, we proceed in two steps. First, we apply the triangle

Jb e(s)dgls) = D) Esi)lglsi) —g(s))|, <<

a

Sj,S]'_'.lET(';I}

inequality to get

JbG(S)dg(S)_ Z @(Sj)(g(sjﬂ)—g(sj)))Hz

a

Sj,Sj+1€7Tg

[Cetnagr— 37 et o)

<|
a

2
v
8j,8j+1€ET

DN CO RO Ei

for every d. Since we assumed |¥U — W,4|2 — 0, d = o0, we find dy such that

b €
[[etastr— % ettt -atl, <

a

5]'78.7'4-1671—31
for all d = dp.
For the second part, the combination of (i) and (i¢) in Lemma 5.4 tells us (g is bounded in

both cases), that for every d > dy we find L and N;, [ =0, ..., L, such that

~ €
DM CEHECENOMEIEn) R (5.15)
Sj,5j+167r§'
. . ~ MLMC . . . .
In particular, since €(s) = = &(s) monotonically, the convergence in (5.15) is monotonic

I-MLM

(see Lemma 5.4). In total, we have (\i’d)d LMC g monotonically. O

Lemma 5.7. Let0<a; <b; <T, andlet (ﬂg’i)d be a sequence of partitions on [a;, b;] with
|7T§Iﬂ'| —0,d— w0, 1=1,2. We consider integrals ¥; = SZZ €;(s)dg(s) with corresponding
estimators @ivd defined as in (5.13). Suppose that (I}i,d I=MLM

Then it holds

C . .
WU, monotonically, i = 1, 2.
I-MLMC

(‘/l\’l,d + @Q’d)d = Uy + Uy

monotonically.
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Proof. Let € > 0. Since (‘/l}i,d)d [=MLMC U,, we find d; € N, such that for every d > d;

there are values L, Nli, 1=0,...,L" such that

~ 5
[Pia = Til2 < 5. (5.16)
In particular, for d > dy = max{d;,da}, there are values L', N}, I = 0,...,L" such

that (5.16) holds. Setting L = max{L!, L?}, the monotonicity ensures that we find N,
l=0,...,L, such that (5.16) holds, which implies

g g
9 —+ - =¢.

[T1 + Wo — (Tr g+ Uag)e < |1 — Ty gl )

2 + || W — @2,d|

With Lemma 5.4, we conclude that the convergence is monotonic. O

Now that we have extended MLMC theory to conditional expectations, we can return to

our original model and apply the results there.

5.2.3 Convergence results

Building on the previously discussed MLMC methods, this section derives convergent
MLMC estimators for the SU contributions introduced in Section 5.1. At the beginning,
we focus on estimating conditional expectations like (5.5) - (5.9), which are part of the SU
integral representations (see Section 5.2.1).

First we need a few preparations. In the following, we fix a SU grid point ¢ € 7. Let

(X, T, P, }N/, @) denote the solution to the shifted system of stochastic differential equations

AX(t) = XE)padt + oxdWi(t), Atr) = A(tr) (5.17)

dF(t) = (ﬁ - ?(t)ur)dt + O'rdWr(t)7 F(tk) = 7,(tk)a (518)

dd(t) = g, (F(t))dt, ®(tx) =0, (5.19)

AY (t) = Y(&)pydt + Y (H)oydWy (t), Y (t:) = Y (tr), (5.20)
o a(t) ~ _

dQ(t) = gyt Q) = Qlt), (5.21)

for t > ti. Let s € (tx, T] and suppose that s € (t,, tx, +1] for some index ki. Recall from
Subsection 5.2.1 that u(t) = w1, if t € (u, uj41]. Assume u(ty) = ty, > ti for some k.

We define for s > u(ty),

k1
Fo(tig), - Altr,)) = exp (— DM t) (a1 — m) , (5.22)
Jj=ko
k1
For(Atro)» - - Altr,)) = exp (- Do) (1 — tj)) oA (A(tk,)) (5.23)
J=ko
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as well as for s > tg,

fu(®(s)) = exp(—2(s)), (5.24)
Y ), (5.25)
Fa(Qtr), Q(s), Y (5)) = (Qs) — Q(tx))gv (Y (5)).- (5.26)

Using this notation, we can write

Prlte, 5) = E[fo(Mtr ). -, Mte,) e, (5.27)
Pia(trr ) = ELfpa(N(tho), -+, Alta, )| He ], (5.28)
VE(tg, 8) = E[fo(D(5)) M), (5.29)
YE(t, s) = B[ fy (V(s))[Hy,], (5.30)
Y5 (tr, 5) = E[fo(Q(tr), Q(s), Y (5))[ My, ] (5.31)

These representations allow us to apply the results from the previous section. Let
(Xf’“,?fk, <I>'lf’“, EN/lt’“, Nf’“) denote the Euler approximation of (X, T, ®, §~/, @) with respect to a
step width h;. With help of Theorem 10.2.2 in Kloeden and Platen (1992), we can conclude
the strong convergence of the Euler scheme for the shifted system of stochastic differential

equations.

Lemma 5.8. The Euler approrimation X; = ()\f’“, b @tk Yt’C t’“) with step width
h; converges strongly to X = (X,?,@,EN/, @) with order 1/2, i.e. there exists a positive
function ¢ with E[e(X (tr))] < o, such that

E[| Xi(s) = X ()" He] < (X (1)
Proof. Firstly, we rewrite the system of stochastic differential equations (5.17) - (5.21) as
AX (1) = (s, X(1)dt + o (s, XB)AW (1), X(tx) = Ko(tr),
with the (extended) standard Brownian motion W= (W, W, We, Wy, Wg), and

Xo(ty) = (A(tr), 7(tx), 0, Y (1), Q(tr)),

pu(t, ) = (x1p7, (B — ©2) ftr, — g (T2), Tapry, a(t) /gy (x4)) "
and
U(tv %‘) = (UY7 Or, Oa T40Yvy, 0)T7

where x = (1,...,75) € R%, t € [t1, s]. Recall that g, is assumed to be Lipschitz continuous.
Furthermore, since gy is Lipschitz continuous with values in [¢, +o0), also 1/gy defines a

Lipschitz continuous function. Having this in mind, one easily shows that
lu(t,z) = p(t, )| + lo(t.x) = o(t,y)| < Kilz —yl, t € [t,s], 2,y e R,
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for some constant K7 > 0. Moreover, with the boundedness of g,(x2) in x2 and a(t)/gy (z4)

in (t,x4), it holds
lutt, @) + llo(t, 2)| < Ks(1 + [l]), te [ty s], 2 € R,
for some constant Ko > 0. With the Lipschitz continuity of a(t), one immediately verifies
Ity 2) = plu, )| + o(t,2) = o(u, 2)| < Ks(1+ Je])[t —ul?, u,t € [ty s], @ € R,
for some K3 > 0. Furthermore, our assumptions made in Section 4.1 imply
E[| X (t) ] < o (5.32)

Thus, all assumptions of Theorem 10.2.2 in Kloeden and Platen (1992) are fulfilled. A

closer look into their proof reveals that there exists a constant C' > 0 such that
E[supy, <u<s [ X (1) W 2|FV] < OO+ X (t)|2)h = e(X ().
With H;, S ft?, the monotonicity of conditional expectations and (5.32), we get
E[| X (s) — Xi(5)[*[He,] < (X (t))u,
where E[c(X (t;))] < o0, which concludes the proof. O

Following the construction (5.10) - (5.11), we derive MLMC estimators Dy, (t, s), Pur(tk, S)
for s > u(ty), and d(ty, s), Y (s) and ?Q(s) for s > t;. Applying the previous lemma and

Theorem 5.2, we get the following convergence results.

Lemma 5.9. It holds

~ MLMC ~ MLMC
a) p“(tk’s) = p%(tk’s)’ b) pu/\(tkvs) = p%)\(tkvs)a
¢) Bty ) "B Bty 9), d) V() MEIC yE (g,

5 MLMC’
e) Yq(s) Y5 (s).

Proof. The idea is to apply Theorem 5.2. To verify the assumptions of (i) and (ii) of
Theorem 5.2, we use the Lemma 5.3. The latter requires both, the strong convergence of
the Euler scheme and the Lipschitz continuity of the functions (5.22) - (5.26). The strong
convergence of the Euler scheme follows from Lemma 5.8. Thus, it remains to prove the

Lipschitz continuity.
a) First, we consider the functions

fpi(x) = exp(—ga(2)(tit1 — i), @ = ko, ..., k1. (5.33)

The function = +— exp(—x(t;+1 — t;)), * = 0 is a bounded Lipschitz continuous
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function. Since gy is assumed to be Lipschitz continuous with values in [0, B, ]

(see Section 5.1), the functions f,;, i = ko, ..., k1 are Lipschitz continuous as well.

Thus, the product function f), = Hf;ko fips fo(Thos s Thy) = fro(Tho) ++* iy (@he,) 18

Lipschitz continuous.

b) Observe that f,\ = (]_[f;ko Ip.i)9xr, where f,; are defined by (5.33). With a) and the

Lipschitz continuity of gy, we conclude the Lipschitz continuity of fp,.

c¢) Since ® is bounded (since g, is bounded), we can consider f,(z) = exp(—z) on a

compact interval, which is a Lipschitz continuous function.
d) The Lipschitz continuity of fy = gy follows from our assumptions on gy in Section 5.1.

e) Since @ is bounded, it is sufficient to consider fg on D x R, for a compact set

D < R2. Together with the Lipschitz continuity of gy, we have

|fo(@1, 22, 3) — foly1, vz, y3)|

= |(z2 — z1)gy (x3) — (y2 — y1)gv (y3)|

= |(z2 —y2 + y1 — 21)gv (x3) + (y2 — y1)(9v (23) — gy (y3))]
< (lz2 = y2l + ly1 — z1Dlgy (@3)] + |y2 — yallgy (z3) — gv (y3)]
< Clz = yli(lgv (@3)] + [y2 — 1))

< Clz =y,

for z,y € D x Ry and some C > 0. Thus, fq is Lipschitz continuous on D x R..

With Lemma 5.3, Lemma 5.8 and Theorem 5.2, we can therefore conclude the asserted

convergences a) to e).

O]

Based on this lemma, we derive estimators for the SU risk factors. As presented in
Section 5.2.1, each SU addend is a sum of integrals ¥ = Ss ¢(s)dg(s) with g € {id, N}. We
approximate the integrals by finite sums ¥V, = 25j,5j+1e7r§’ €(s;)(g(sj41) — 9(s;)), where
7y is a sequence of partitions on [a,b] with |r]| — 0, n — 00. As &(s;) still includes
conditional expectations, we substitute &(s;) by @(sj), which results from replacing the
conditional expectations (5.5) - (5.9) in &(s;) by the corresponding MLMC estimators
Dus Pur, U, Y and EA/Q. The corresponding MLMC estimators for the different contract
components & are denoted by ﬁ;(t), je{N,\nrY}, i =1,...,4. Consequently, the

MLMC estimators for the total insurance cashflow £ are given by
4
Dj(t) =Y. Di(t), je {N,\r Y}
i=1
The next theorem verifies the desired convergence of the constructed estimators.
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I-MLMC

Theorem 5.10. It holds D;(t) D;(t), j € {N,\,r, Y}, te[0,T].

Proof. With help of Lemma 5.7, it is sufficient to show

~i  I-MLMC
Di(t)" = D) (5.34)
monotonically, for each i = 1,...,4 and j € {N,\,r, Y}.

As described in the previous paragraph, each ﬁ;(t) is the sum of estimators

Vo= D) E(si)(glsi+1) — 9(sy)), g€ {id, N}.

sj78j+1€7r;1l

As usual, we write

for the original integral and
Vo= > €(s)9(s541) — 9(57)
85,8 +1ETY
for its finite sum approximation. According to Theorem 5.6, we have to check that
&(s) MLYIe ¢(s) monotonically, and |¥ — Wy[2 — 0, d — oo.

Clearly, each €(s) is a product of bounded factors like I(s), v(0, s), V(s) and conditional
expectations like (5.5) - (5.9). Though the conditional expectations always refer to
the information H; , the independence of A, r and Y and the construction of the
MLMC estimators imply the independence of (p, p, | pu, Punr), (v%, ) and (YE, YCIQE, }A/, }A/'Q)
Therefore, we can apply Lemma 5.4 and Lemma 5.9, which proves @(s) MLyTC &(s)
monotonically.

Regarding the integral approximation, we start with ¢ = ¢d. As the appearing conditional
expectations (see (5.5) - (5.9)) can be bounded by a constant and are continuous in s, and
as I has at most one jump, the dominated convergence theorem implies |¥ — 4|2 — 0,
d — c0.

In the second case, i.e. g = N, the It6 isometry and d{N, N)(s) = A(s)ds yield

b
|W—%@=EUXa@—@@WM@®] (5.35)

a
where €;4(s) = €(s;) for s € (s, sj41]. With similar arguments as in the first case and the
piecewise continuity and boundedness of ), this tends to 0 as d — o0 by the dominated
convergence theorem. Thus, with Theorem 5.6, we can conclude the convergence (5.34),

which proves the theorem. O

The derived MLMC estimators will be the basis of the numerical implementation, which is

the subject of the next section.
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5.3 Numerical example

In the previous section, we have laid the theoretical basis for the numerical approximation
of the SU decomposition. This section presents the numerical implementation and starts
with stating the utilized parameters and explaining the methodology. This section and

thus this chapter concludes with analysing the numerical results.

5.3.1 Parameters

We consider a policyholder of age x = 45 with retirement age 67 (i.e. v = 22), where a
maximum age of 100 (i.e. T' = 55) is assumed. The systematic risks are modelled by the

stochastic differential equations (5.2) with parameters

Ao = 0.00329542, py = 0.07731571, oy = 0.00012212,
ro = 0.025, B = 0.000199, u, = 0.01, o, = 0.0035,
Yy = 100, py = 0.06, oy = 0.2.

The parameters are based on calibrations under the real-world measure P that have been
carried out in the actuarial literature. For the mortality intensity A, we refer to Chen and
Vigna (2017), who calibrated the parameters in an unisex mortality model. The parameters
for the interest intensity are provided by Spangler (2018, Section 5.2), who obtained the
Vasicek dynamics by means of six-month Euribor observations. For the market index Y,
the parameters have been suggested by Bernard and Kwak (2016).

It is assumed that the one-off premium p covers the purchase of Q(0) = 100 shares of
Y in ¢t = 0. As the initial surplus is not decomposed (see Chapter 2), we do not need to
further specify the one-off premium p. In addition to the one-off premium, the policyholder
pays a savings rate a = a(s) = 3600 until retirement, which is invested in Y. For the death
benefit factor and the pension factor we suppose fq = 0.9 and f, = 0.032.

The convergence proofs have required a certain regularity in the risk drivers, which has

been ensured by the auxiliary functions g,, gx and gy. In our example, we use

ga(s) = s Ljo,10007(8) + 1000 - L1000, 400) (),

gr(s) = —1000 - L (e, —1000)(8) + 8 * L[_1000,1000] (5) + 1000 - L(1900,+00)($),

gy (8) = 0.0001 - T (_e 0.0001)(8) + 5 * L0.0001,+00) ()
As pointed out in Section 5.1, the function gy ensures the non-negativity of the mortality
intensity. Apart from that, the practical effect of these transformations is neglectable due

to the chosen boundaries. Now that the parameters have been established, we can present

the implementation approach.
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5.3.2 Methodology

The numerical implementation is carried out with the help of the statistical software R 4.4.2
(R Core Team, 2024). The goal is to approximate the ISU decomposition by means of SU
decompositions. To simulate the latter, we focus on a fixed path and apply the presented
MLMC methods. As described in the introduction of this chapter, the undertaken studies

are focused on the following aspects:
e Numerical feasibility of calculating SU decompositions with a MLMC approach
e Impact of the grid width on the SU decomposition
e Impact of the update order on the SU decomposition

The first aspect addresses the question of whether the SU decomposition can be computed
numerically in a reasonable time using the presented MLMC approach. In addition to
feasibility, the stability of the decomposition is also of great importance, which is reflected in
aspects two and three. In the previous chapters, we have promoted the ISU decomposition,
because of its independence from the chosen grid and the chosen order of the risk basis. In
order to investigate the stability with regard to the grid, we calculate the SU decompositions
on a yearly, a quarterly and a 4-weekly grid. Afterwards, the resulting decompositions are
compared with each other. The stability with respect to the order of risk factors can be
verified by calculating SU decompositions for different orders. Therefore, we do not only
compute the SU decomposition with respect to the presented risk basis (N, A, r,Y), but
also with respect to the vice-versa risk basis (Y,r, A\, N). The integral representations of
the SU contributions for both orders are derived in the appendix (see Section A.3).
Before getting into the details of the numerical simulation, we would like to raise the

awareness for the involved approximation steps:

1) We approximate the ISU decomposition with the help of SU decompositions. The

convergence has been shown in Chapter 4 (see Section 4.2.5 and Theorem 4.18).

2) The contributions of the SU decomposition are approximated by integral MLMC
estimators. The convergence has been shown in this chapter (see Theorem 5.10). In

particular, this approximation encompasses two steps.

2.1) The integrals, which amount to the SU contributions, are approximated by finite

sums (Riemann sums).

2.2) For each summand in the integral approximation 2.1), the appearing conditional

expectations are approximated with the help of MLMC estimators.
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Recall from the previous subsection that the total projection horizon amounts to 55 years.
To approximate the ISU decomposition via SU decompositions (approximation step 1), we

consider the following SU grids

TYeorly = {k: k =0,...,55},
k

quarterly _ )
T {3
k

TS .

:k::(),...,55-4},

7—4weekly:{ k:0775513}

We calculate the corresponding SU estimators ﬁ?e“rly (1), ﬁ?“arterly(t), ﬁ;‘fweekly (1),
Jje{N,\ 1, Y}, for all t in the respective SU grid. This enables us to analyse not only the
surplus contributions at the contract end, but also its development over time.

For the approximation of the appearing integrals via finite sums (approximation step 2.1),

we use a weekly grid, namely
minT = {k/52:k=0...,55-52},

which contains the various SU grids by definition. Each summand in the integral
approximation includes conditional expectations (see (5.5) - (5.9)), which are approached
with the help of MLMC methods (approximation step 2.2). The latter step entails the
computation of the MLMC estimators py(tx, s), Dur(tk, ), 0(tg, s), )A/(tk, s) and ?Q(tk, s)
for all combinations of SU grid points ¢;, and integral grid points s. Most of the numerical
effort associated with approximating the ISU decomposition is required in this step.

The procedure for the computation of the MLMC estimators is as follows. At the
beginning, we calculate a fixed path for the risk factors, which represents the actual
observed trend. For every SU grid point ¢, the observed trends up to t; determine the
starting points of the MLMC simulations. For every level [ = 0, ..., L, we simulate IV,
paths of the risk factors using the Euler scheme with the given starting points and the step
width h;. For the latter, we use h; = 27/52, i.e. for [ = 0 we start with the integration grid
mrNT, Which is then refined by the factor two with every level [. For the MLMC simulation,
we use L = 4 levels with N = (100000, 50000, 20000, 10000, 5000) describing the simulations
per level. After evaluating the functions f,, fy, fo and fg with respect to the simulated
paths, we follow the construction in (5.10) and (5.11) to achieve the MLMC estimators
Du(ts 8), Dur(ti, s), V(tg, s), }A/(tk, s) and }A/Q(tk, s). The computed MLMC estimators then
feed, together with the fixed path of the risk factors and the integral approximation step 2.1,
into the calculation of the SU contributions (see the integral representations in Subsection

5.2.1) for different the SU grids and the different update orders.
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5.3.3 Results

In this section, we present the numerical results for decomposing the surplus related to
a fund-linked pension insurance (see Section 5.1) by means of the ISU decomposition
principle. The underlying R script can be found in the appendix (see Section A.4).

In our numerical example, we focus on a fixed path of the SU decompositons. Therefore,
we first sampled a path for each systematic risk factor (mortality, interest, fund). With
help of the sampled mortality intensity, we then simulated a path for the policyholder’s
state process. The example paths depict an observed trend on [0,7]. In particular, the

realisations form the starting values for the MLMC simulations. Figure 1 shows the sampled

paths.
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Figure 1: The sampled trend of the risk factors

The policyholder reaches the age of 77 years and has therefore been able to draw pension
benefits from the insurance for 10 years. The mortality intensity A shows an exponential
increase with a maximum value of approx. 0.22 at the age 100. After a decreasing period
of ten years, the interest intensity r shows a fluctuating trend for the next two decades. In
the second half of the time horizon, the interest intensity increases significantly to up to
5%. The market index Y displays a steady growth with ordinary fluctuations in the first
two decades. Afterwards volatility increases, although the market index continues to grow
strongly. Fortunately for the policyholder, the index is growing particularly strongly in
the 22nd year, which gives an average yield of 10.55% p.a. in the accumulation phase (for
comparison: the average yield in the first 20 years is 7.2% p.a.).

In the following, our analysis focuses on the aspects stated in Subsection 5.3.2.
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Numerical feasibility of the MLMC approach

With help of the introduced MLMC approach, we were able to calculate the SU decom-
positions for a single path in a resonable time. Using a personal computer with average
random access memory (16 GB), the runtime was approximately 4 hours for the yearly, 12
hours for the quarterly and 48 hours for the 4-weekly SU grid. The results presented below
clearly demonstrate the numerical feasibility of the ISU decomposition principle. However,
to calculate the distribution of the SU contributions, further computational power would

be needed.

Different SU grid widths

One motivation to introduce the ISU decomposition in this thesis was the dependence of
the SU decomposition on the considered time grid. The ISU decomposition overcomes
this drawback by refining the SU grids. However, if the ISU decomposition is not readily
available, one needs to use SU decompositions as an approximation. Therefore, a natural
question is how fine the grid needs to be in order to observe a stable decomposition with

respect to the SU grid width.
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Figure 2: The SU decomposition for different time grids
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To answer this question, we compare the SU decompositions for three different SU grids,
namely the yearly, the quarterly and the 4-weekly grid, and analyse their impact on the
surplus decomposition. The resulting risk factors for the risk basis (IV, A,r,Y") are shown
in the Figure 2.

In particular, for the systematic risk factors, we observe that the finer the grid, the
more sensitive the SU factors are to the ups and downs of the risk factors. However, it is
clearly visible that the underlying time grid does not change the overall shape of the SU
contributions. As the total surplus is given as the sum of the individual surpluses, these
observations stay true when we look at the insurer’s total surplus (see Figure 3). We note

that the total surplus does not depend on the order of the risk basis.
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Figure 3: The total surplus for different time grids
To gain further insight into the effect of the SU grid on surplus decomposition, we focus

on the surplus left when the contract ends. Figure 4 shows the contributed surplus of the

different risk factors at the contract end.
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Figure 4: Impact of the time grid on the SU decomposition
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The figure lets us surmise a certain stability of the SU decomposition with respect to the SU
grid. A closer look at the numbers shows that the unsystematic biometric surplus decreases
by 1.6%, while the systematic interest surplus increases by 7.9% and the systematic fund
surplus decreases by 0.01% when moving from an annual to a 4-weekly updating frequency.
The biggest change was in the systematic biometric surplus, which has been reduced by

15.7% due to the refinement of the SU grid.

Different orders of the risk basis

Not only the dependence of SU decompositions on the chosen time grid, but also the
dependence of SU decompositions on the chosen update order of risk factors was a pivotal
motivation for the introduction of the ISU decomposition principle. The applications
in this thesis demonstrated that the ISU decomposition principle can help to overcome
this drawback. However, if SU decompositions are used for approximating the ISU
decomposition, the order dependence has to be taken into account. Therefore, one should
aim for a SU grid that leads to neglectable order effects. In that regard, we have compared
the order impact for the two update orders (N, \,r,Y) and (Y, r, A\, N) with respect to
the different SU grids (yearly, quarterly, 4-weekly). The relative deviations between the

different orders are presented in Figure 5.
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Figure 5: Impact of the update order on the SU decomposition
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For the systematic biometric surplus and the fund surplus, we observe a huge harmonisation
of the SU contributions for the different orders when the time grid is refined. In contrast,
the unsystematic biometric surplus and the systematic risk surplus still show volatility
during the refinement process. Nevertheless, it can be stated that the refinement of the grid
already shows positive effects. For the practical implementation of the ISU decomposition,
it is therefore recommended to first test different grids for the approximation in order to

get a better insight into the volatility of the decomposition.
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6 Conclusion and outlook

At the beginning of the thesis, the relevance of surplus decomposition in traditional life
insurance has been highlighted. Especially, it has been pointed out that although several
surplus decompositions exist in the literature, they are based on heuristic arguments.
The lack of a general decomposition principle has made it difficult to compare and to
extend the existing surplus decompositions. The thesis has remedied this deficiency by
the introduction of the ISU decomposition principle (see Chapter 2). In particular, it
was shown that all existing surplus decomposition formulas can be recovered from the
ISU decomposition principle (see Chapter 3). This not only provides further evidence
for the existing decomposition formulas, but also allows for a systematic comparison of
decomposition formulas derived in separate model frameworks.

Moreover, the clarity and generality of the ISU decomposition principle paves the way
to the inclusion of further risk factors. In an increasingly digital world, the available data,
e.g. collected by wearables, allows for a more accurate risk profile of the policyholder.
To benefit from this, modern life insurance products offer rewards to policyholders who
provide their data and demonstrate a healthy lifestyle. The challenge for the life insurer
is to find a fair reward, that is, to quantify the contribution of a particular policyholder
behaviour to the total surplus. The ISU decomposition principle could also help here, so
the study of ISU decompositions in life modelling frameworks that incorporate behavioural
risks is an appealing task for future research.

In the pursuit of a suitable additive decomposition principle to help with the traditional
surplus decompositions, the idea of SU stood out for its simplicity. Though the SU
decomposition principle is highly regarded in economics literature, it strongly depends on
the chosen update order and the chosen time grid. By pushing the update frequency to
the limit, the ISU decomposition principle presented in this thesis helps to redress these
shortcomings. Furthermore, the infinitesimal approach has also proven to be useful for
the alternative OAT and ASU decomposition principles. For this reason, the thesis has
not only proposed the ISU, IOAT and IASU decomposition principles, but also derived
fundamental results on their relationship. While the underlying decomposition principles
have their roots in economic science, the developed examples have been focused on actuarial
modelling. Therefore, the application of the infinitesimal decomposition principles to the
use cases of the SU, ASU and OAT decompositions principles (see Chapter 2) may be the
subject of future studies (see Jetses & Christiansen, 2022).

Throughout the thesis, it has been stressed that the scope of the ISU decomposition
principle goes far beyond the decomposition of traditional life insurance surplus. This claim

has been supported by the application of the ISU decomposition principle to martingales,
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which has undergirded the great potential of the introduced decomposition approach in risk
management. In particular, the main result in Chapter 4 has shown that the ISU and MRT
decompositions match if the martingale representation exists and the risk basis satisfies
a certain property (M). The verification of the property (M) for a number of examples
that are common in actuarial modelling has provided evidence of its plausibility. However,
the examples only allow for a limited dependency between risk factors. Generalising and
extending the examples provided could be the focus of future research. Especially, the
analysis of competing risks in life insurance has laid the foundation for exploring general
multistate life insurance models.

As already briefly touched in Chapter 4, the underlying probability measure can be
freely selected, which opens up new possibilities. In particular, the proposed switch to
a conservative probability measure raises the question of whether and how martingale
decompositions and traditional surplus decompositions are related to each other. This
question could be likewise the subject of future work. Furthermore, instead of varying the
probability measure, one might consider replacing the expectation operator with another
appropriate risk measure. Follow-up research on the resulting ISU decompositions might
give a valuable contribution in view of risk management.

Despite the many possible applications of the ISU decomposition principle, the actual
use is also a question of numerical feasibility. Using the example of a fund-linked life
insurance, this question has therefore been investigated in Chapter 5 of the thesis. There,
not only integral representations for the SU contributions have been obtained but also a
theoretical framework for approximating conditional expectations and their integrals has
been developed, leveraging from MLMC methods. For both, the approximation of the ISU
decomposition with SU decompositions as well as the approximation of SU contributions
with MLMC methods, convergence results have been derived. However, future research is
needed to analyse the numerical complexity of the approximation and to find error bounds.

The implementation with the statistical software R 4.4.2 (R Core Team, 2024) and the
presentation of the numerical results have demonstrated the numerical feasibility of the
ISU decomposition principle. While the expounded numerical analysis has fixated a single
path, future studies might take the distribution of the SU contributions into account. In
particular, this will shift the research focus more towards the efficiency of the approximation.
Furthermore, the numerical example could be extended to more sophisticated multistate
models, but this first requires a proof of the property (M) to obtain the convergence of the
ISU decomposition (see above).

This thesis has introduced the ISU decomposition principle in such a general manner
that its application is conceivable whenever an output needs to be decomposed additively

and time-dynamically with respect to its input factors. The derived ISU decompositions of
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life insurance surplus processes have already proven its added value, but the wide range of

applications remains to be explored.
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Appendix

A.1 Proof of the SU decomposition in the time-discrete case

In the setting of Example 3.6, the functional H in (3.13) takes the form
_ — — r [y r L=
H(®,Rg, as) = Y e 00w 5 by N e Sodde 5 (g, d) +Tpris)
=0 =1

Furthermore, for the risk basis X = (® — ®*, Ayqg — A¥;, Ags — A%,), the mapping g is given
by o(X") = —H((®*, Ak, A¥,) + X"). We prove the three equations consecutively.

i) We have that

Uk + 1,k k) — Uk, k, k)
= Q((I)k+la Algdv AI;S) - Q((I)kv Alafdu A’;S)
L g0 du

=e o kP (1 + i)V (k) = Dyp bit1 — Qe A1 — Tk Skt1)

e SR p(u) du kpepy ViE(k + 1)
Since
— Ptk Okl = Qo Dkt 1 — Toigy Skl — Pagg Vg (B + 1) = —(L+4p) V' (k),
we get the first equation.

ii) With similar calculations as in i) we get

Uk +1,k+1,k) — Uk, k, k)

k+1 k+1 Ak k AK k
= Q(Cb - 7Aa:’l_ ’Aas) - Q((I) 7Aad7Aas)
fSIH'l o(u)du * *
= —e Yo kPe (1 = Qugie — 75y 1)kt + Quoik i1 + T Skt 1)
k+1

— e DN (1 g — R )V (k1) + e o V()

k+1
e Yo ey (Vi +1=) = di 1) (o — @ k)

k+1

e do A Vi () (i — i)

The second equality follows then by substracting U(k + 1,k, k) — U(k, k, k) (see i))
from U(k+1,k+1,k) —U(k, k, k).
iii) For the third equality, we can use the results from i) and ii) to obtain
Uk+1L,k+1,k+1)-Uk+1,k+1,k)
=R(k+1)— R(k)
—(Uk+1,k+1,k)—U(k+1,k, k) — (Uk+ 1,k k) —U(k,k,k))

k+1

— e Yo ¢w)du Pz (Va* (k+1—)— Sk+1) (Tm+k - T;Hc)‘
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A.2 Technical results

Analogously to A%, let Aps denote the matrix-valued process Ay = (Aji)jx with

Ajj = — Dkt Ak, and define A, likewise.
Lemma A.2.1. Let (®,A) be a valuation basis.

a) Let % be the solution of the stochastic differential dr(t) = R(t—)d®(t) with ®(0) = 1.
Then it holds that

1 1 =~
(@) = ~may
where %(t) = &(t) — [D, D]°(t) — Doy (1 + AD(5)) H(AD(s))2.

b) Letp(s,t) be the solution of the matriz-valued stochastic differential equation p(s, dt) =
p(s,t—)dAy (t) with p(s,s) = 1. Assume that (I + ANy (t))~! exists for all t > 0.
Then D(s,t) is invertible, and the inverse q(s,t) solves the SDE

(s, dt) = —(dG(6)q(s, t—) = —(dAn(t))q(s, 1),
where G(t) = A (t) — Xoooey (DA (5))*(1 + Ahp(s)) "

Proof.  a) Due to the properties of a valuation basis, ® is a well-defined semimartingale.

Thus, with Theorem V.10.63 of Protter (2005), the assertion follows.

b) For applying Theorem V.10.63 of Protter (2005) later again, we firstly have to show
that G is a well-defined semimartingale. Since A is a cadlag finite variation process,
it suffices to show (Y-, (AA(5))2(I + AArr(s)) 1)k < oo for all ¢ > 0 and j, k.
Let || - ||, defined by |A| = n - max;j |a;;| for a matrix A = (a;i) i € R"*", denote

the maximum norm on R™*™. If |AAy(¢)| < 1/2, then it holds

— 1
17+ AAm (1) 7! < H <2

1 — [|AAN ()
see for example Werner (2018, Theorem I1.1.12). Using this upper bound, the
subadditity and the submultiplicity of the norm, we get

D, (AR () + Aku(s) !

O<s<t
< Z ‘(AAM(S))2(I + AAy(s) 7 + Z ‘(AAM(s))Q(I + AAp(s)) !
O<s<t O0<s<t
IAnr(s)]>1/2 [Anr(s)l<1/2
< ¥ H(AAM<s>>2<I AR+ Y \AAM@ .
_ O<s<t _ O<s<t
[Anr(s)>1/2 [Aar(s)l<1/2

The first sum in the latter expression is finite, since |AAyz(s)| > 1/2 occurs only for
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finitely many s € [0, ¢]. For the second term, observe that

D IRl <) D) 1AKK(s)] < o0,

O<s<t 7,k 0<s<t

on account of the fact that A is a finite variation process. Thus, G is a well-defined

semimartingale.

For a matrix-valued semimartingale Z, let £(Z) denote the (matrix-valued) exponen-
tial of Z and let E(Z) denote the (matrix-valued) right-stochastic exponential of Z
(see Protter, 2005, Chapter V). By applying Theorem V.10.63 of Protter (2005), we
get

EENERBy)(1) =T
for F(t) = —Ap(t) + Yoesei(T + ARy (s) "1 (AR ()2 Because of ER(Z) =
E(ZN)T and FT = —G, the latter equation is equivalent to

EM)(MET(-G)(t) = L,

which proves the first equation of the assertion. In particular, we verified that
q(s,t) —q(s,t—) = —(AG(t))q(s, t—), which implies that
—(ARar(#)a(s, 1) = —(AKpr(£)a(s, t=) + (ARar () (AG(H)(s, t-)
= —AAu ()T - AG(1))q(s, t-)
= —(AG(t))q(s,t-).

Thus, the second equation of the assertion is also true.

Lemma A.2.2. Let (9, (A})jk:j-k), (@, (Aji)jk:j2k) be valuation bases.

a) Let dr'(t) = K'(t—)d®'(t) with '(0) = 1 and dr(t) = K(t—)d®(t) with x'(0) = 1.
Then it holds that

d (“I(t)) _ ’Z/ ((tt__)) (d<1>’ _ dB(t) — [, D (t)),

where B(t) = B(t) — [B,BI(t) — Ygeper (1 + AB(5)) " (AB(s))2,

b) Let p'(s, dt) = p/(s,t—)dN),(t) with p'(s,s) =1 and B(s, dt) = p(s,t—)dAr(t) with
p(s,s) = 1. Suppose that p(s,t) is invertible with inverse q(s,t). Then it holds that

dt (p/(s, t)a(sa t)) = p'(s, t_)d(ASW - KM)(t)Q(Sa t)'
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Proof.  a) Integration by parts (Protter, 2005, Corollary I11.6.2) and Lemma A.2.1a) yield

d (ifff) — W (t—)d (/{(1t)) + K(tl_)d/i'(t) +d [i m'] )

_ () = K(t=) o K (=) =
=~ B0 + T () = T A, B0

b) Integration by parts (Protter, 2005, Corollary 11.6.2) and Lemma A.2.1b) yield

dy (pl(sv t)g(sv t)) = p/(S, t—)Q(S, dt) + p/(S, dt)a(sv t_) +d [pl(sv ')76(57 )] (t)
— (s, =) (dRr (6))a(s, 1) + B (5, 1) (AN (1), 1)
= p/(s, t=)d(Ay — Au) (1)d(s, 1)

O]

Lemma A.2.3. Let £ be a Gr-measurable, square-integrable random wvariable and let

(M;, M;) =0, i # j. Suppose there exists a martingale representation

CEEG) = Y fg Hi(s)dM;(s)
=1

for G-predictable integrands H;, i = 1,...,m. Then the integrands H; are almost surely

unique with respect to P ® (M;, M;y. Furthermore, it holds

E Uot HE(u)d(Mi,Mi>(u)] <o, te[0,T].

Proof. The proof follows the ideas from Schilling et al. (2020, Proposition 3.5). Suppose
there exist G-predictable integrands H;, f[i, i1 =1,...,m, such that

£ —E[£]Go] = ZJ H;(s)dM;(s ZJ H;(s)dM;(s (A1)
With the It6 isometry, we get

(i [ - ﬁ»(s)dMi(s)) |- iE [[[ = mraas, |

This implies H; = fNIZ almost surely with respect to PQ{M;, M;). Again, with It6’s isometry

and the square-integrability of £, we also have

E[(¢ - E[£|Go])? ZEU Hi (6P (o) | <
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A.3 Numerical example - analysis of SU contributions

In the following, we calculate the conditional expectations

E[5i|gi7tk+1]7 i = 15"'>47 (A2)

for grid points tx, tx+1 € T and subsets J € {1,...,m}. The increments then lead us to
the contributions of the SU decomposition. Recall from Section 4.1 the definition of the
filtrations G, G’ and the family of sub-o-algebras (g;’ ¢)s,t, which refer to the entire risk
basis X = (N, \,r,Y). Furthermore, for a subset J S {\,r, Y}, the filtrations H, H” and
the family of sub-o-algebras (HJ,)s refer to the systematic risks © = (X, 7,Y). To derive
the integral representations for the SU decompositions, we need to separate the different

risk factors from each other. Therefore, we need the following two lemmas.

Lemma A.3.1. Let J S {N,\,r,Y} and tg,tx1 € T. For an integrable random variable
Z € Hr, it holds

E[Z1G7, t11] = EIZIH;, 1),

where J = J\{N}.

Proof. The result follows from Lemma 4.15, the fact that 7* < 7 and Proposition 13 (iv)
of Rao and Swift (2006, Chapter 3). O

The previous lemma enables us to separate the unsystematic risk from the systematic risk

drivers. The next next lemma will allow us to divide the systematic risks.

Lemma A.3.2. Let J < {\ Y} and ty,tpi1 € T, then it holds
(Fp AL Fp AL FR)|HY 40

In particular, if Z1 € .7:7)‘1, Zy € Fr and Z3 € ]:%/ and their product are integrable random

variables, then the equality
E[2125Z3\M;, 4,..,] = ELZ1 (M 0, JE[Z2|Mi, 0, JELZ8[H ]
1s true.

Proof. First, we show that ’H% A %;YYH%];CMH' Without loss of generality, we assume
that A € J, otherwise the arguments are the same with ft);H substituted by ]-})I‘C. With
Rao and Swift (2006, Chapter 3, Proposition 13), it is sufficient to demonstrate

rY
P(BAM] 4. v HY ) =P(BIHY 4,..), Bre Fp (A.3)

Now, together with the independence of A,  and Y, the Proposition 10.5.9 (9) of Zitkovic
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(2015) helps us to derive
Y
]P)(B|H2]kvtk+l v /H; ) = P(B|‘7:{>c+1) = P(Bngkikﬂ)’

which proves (A.3). Following the same steps, one can also show H%. AL HY |%7f]k,tk+ .-

In total, we get

P(BA N Brn BY|H%]k7tk+1) = P(B)‘|H;f]k7tk+1)P(Br a BY|HZ]}wtk+1)

= IP)(B)‘ |H%]k7tk+1 )P(BT |7_[£]k tet+1 )]P)(BY |/H;5]k ,tk+1)’

which yields the assertion. The second part follows from standard arguments like the
approximation of non-negative random variables with increasing simple random variables,
the application of the monotone convergence theorem and the representation of general
random variables as the difference of non-negative random variables (see e.g. Klenke, 2020,

Proof of Theorem 5.4). O

Lemma A.3.3. Let J € {\r,Y}, J = J U {N} and tg,txs1 € T. Suppose Z is a
continuous F-adapted process with
sup |Z(s)] < o0.
wEQ,SE[tk,tk+1]

Then it holds

tr 41

E [ f Z(s)dN(s)
t

k

tr+1
QJ} - [ BlZ(6, . V)

k

Proof. Since N is a finite variation process and Z has continuous paths, we can interpret
the integral in the Riemann-Stieltjes sense (see Ter Horst, 1984, Theorem C). Thus, let
(P,)n denote a vanishing sequence of partitions on [tg,tx1], such that it almost surely
holds

tht1

lim N 2Ny =N = [ 26N (s)

S]‘,Sj+1EPn k

Let m := max [ 11Z(s)] < o0, then we almost surely have

teotk+1

D Z(sj)(N(sj+1)—N(sj))‘<m > IN(sj41) — N(sj)| < m.

Sj,8j+1€Pn Sj,8j+1€Pn

Consequently, we can apply the dominated convergence theorem to get

te+1 ]
B[ [ 200N G | =B [ fin 2605500 = V)|,
23 Sj,Sj+1€Pn |
=lmE| D Z(s)(N(sjr1) = N(sj)[G7 0
Sj,Sj+1€Pn |
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=lim > E[Z(5))|90 4, /(N(sj+1) = N(s7)
sj,Sj+1€Pn

tet1
_ Jt E[Z(s)|G} 4., JAN(s),

k

where the latter equality uses supueq sefty tr.1] |2 (8)] < 2 to derive the continuity of

S = E[Z(S)|g£{€,tk+1]’ D

For both orders, (N, \,r,Y) and (Y, r, A\, N), we simplify the conditional expectations (A.2)
by investigating the different claim components one after the other. The main tools will be
Lemma A.3.1, Lemma A.3.2 and the martingale property of My with respect to G, where
G = (Gt)i=0 is the filtration given by G, = FR v F{¥ (see Subsection 4.2.5). The death
cover claim will further require the application of Lemma A.3.3. For a better readability

we avoid repeating the arguments in every line.

A.3.1 Analysis of conditional expectations for the order {N, A, r, Y}

Savings account (i = 1):

For J = J and t; < v, it holds

E|1()0 0,0V G, 1., | = 1000 8 [paaltns Dot 1)V ()]G,
= 1(tx)0(0, t4)E [paat, 7)ot 1)V () My, ]
= I(tx)v(0, t1)p™ (e V0™ (b, VIVt 7).
For J = {N} and t}, < ~, it holds
E| 1)V G, 10, | = 11000, 1B [Paatiss Dol DV (DG, |
— I(tx1)0(0, ) [paa(tiss, Molte NV (DIH 4,
= I(tr11)0(0, te)p (b, 7)™ (ts 1)V (1, 7).
For J = {N, A} and t; < v, it holds
E|10)0(0, )V DIG 1., | = Tt11)0(0, ) [paaltioss, ot NV (e DIG |
= 1(tx41)0(0, 80 |Paaltis1s 10t DV ()[H, 1,
= I(tr41)0(0, t1)p" (trar, 10" (b )V (1, 7).
For J = {N,\,r} and ¢ < v, it holds
E| 1)V G, 10, | = 11000 10)E [Paatiss Dol DV (DG, |
= 1(t41)0(0, 4)E [Paaltis, 1)o(thsns DV H, 1,

= I(tp41)0(0, tr )P (b1, V)V (ter1, V) VE (e, ).
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Death cover (i=2):
For J = J and t;, < v, it holds

Y
E UO v(0,5)(1 = fa)V(s)dN(s)

J
gtk:tk+1:|
Y

= J ' v(0,s)(1 — fa)V(s)dN(s) + v(0, tx)E [ﬁ v(tr, 8)(1 — f2)V(s)I(s)A(s)ds

0 k
G,

gtk:|

gtk:| .

The second term can be further simplied via

Y _
0(0, 40)E U 0(t 8)(1 = Fa)V(5)paalti ) N(s)dls

— (0, t))E [ [ ot = Fv©puatin MAs)as

= U(O, tk) f: UE(tk, S)(l - fd)V]E(tk, S)pl)[%(tk, S)dS.

Thus, we get
Y
— S S J
E UO 0(0, $)(1 = )V ()AN( >9]
- jo 0(0,5)(1 — F)V (s)AN(s) + 00, 1) f Bt $)(1 = Fa)VE (b, $)PE (b 5)ds,
For J = {N} and ¢} < , it holds
! — S S J
E UO 0(0, $)(1 = )V ()AN( >g]
_ L "0, 8)(1 = £)V(s)AN(s) + v(0, 1) £ kHIE[U(tk,S)(l — FV ) H, 4y, | AN ()
+v(0,t)E [Jj 0(tr, 8)(1 = fa)V($)Paa(trr1, $)A(s)ds|GE, ;. |
th tht1
= [T o090 = favEaNe o0 [ 00 - Ve SaN
+ U(O, tk)I(tk) f: UE(tk, S)(l — fd)VE(S)pEJr(tk, S)dS
For J = {N, A} and t; <+, one shows analogously
! — S S J
E UO 0(0, $)(1 = )V ()AN( )g]
- jo 0(0,8)(1 — fa)V(5)AN(s) + 0(0, 1) f Bt $)(1 — F)VE(t, 5)AN(s)
Fo(0,t0)1(0) [ Bt s) (L~ f)VE(5)E (b, 5)ds

112



For J = {N,\,r} and t; < =, it follows

Y
— S S J
B[ 00,90 - 1V )N )0, |
= |00 = FVEING) + [ 00,90 = f)VE AN ()

+v(0, try1) I (tr) fy 0 (thi1,8)(1 = fO)VE(8)DX(ths1, 8)ds

tet1
Guaranteed pension period (i=3):
We need to distinguish between t; < v and t; = ~.
For J = J and t; < ~, it holds
y+10
B[ [ .00 (e

v

J
gtkvtk+1:|

y-+10
= v(0, ) I (ty)E [—paa(tk,’y) f v(te, s) fpV (7)ds

~

th}

v+10

(0, 1) I (1)t ) f b 8) fyVE(t1, ) ds.

¥
For J = ¢ and t; = v, it holds

10
E [—f@) [ v0smveus

Y

- —v<o,tk>f<v>j

Y

J
gtk:tk+1:|
v+10

0(0,8) £,V (7)ds — I()u(0, 1) f Bt )£,V (7)ds

tg

7%

For J = {N} and t;, < v, it holds

Bl [ 00V

Y

J
gtk:tk+1:|

v+10
= v(0,t5) I (tg+1)E [_paa(tk-i-la ) f v(t, s) fpV (v)ds
5

J
gtk:tk+1:|

v+10

= 00, ) I (b )P (t1s ) f (b, 8) f,VE(t 1) ds.

For J = {N} and t; > +, it holds

B[ [ 0.V

Y

gt{mtk+1:|
tk '7+10
- 1(y) f 00, )£,V (7)ds — I(7)0(0, 1) f Ety, 5) oV (7)ds
Y ty

For J = {N, A} and t; < 7, one shows analogously

J
gtkatk+1:|

v+10

(0, ) T (t s )P (E 41, 7) f (b, 8) f,VE (b1, 7)ds.
Y

B[-10) [ " 0,9,V (s

v
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For J = {N, A} and t; > ~, one shows analogously

gJ
teotk+1
v+10

— —I(~) f " 0(0,9) £,V (1) ds — I(3)0(0, 1) j Bt ) f,V (7)ds

vy i

For J = {N,\,r} and t; <, it follows

B[00 [ 0V

Y

E [—I (") FHO v(0,5) fpV (7)ds gi{wml}

v

v+10

= (0, b ) (o)D"t 1, 7) f E(tor 1, 8) FVE (b )ds.
Y

For J = {N,\,r} and t; >, it follows

B|-16) | T 0.9 V(s

Y

J
gtk th+1 ]
v+10

41

= —I(’Y)J v(0,5) fpV(v)ds — I{(7)v(0, th41) f VE(trr, 8) [V (7)ds
Y trt1

Pension cover (i=4):

We need to distinguish between ¢, < v + 10 and ¢, > v + 10.

For J = ¢ and t; <~ + 10, it holds

E {— JT I(s)v(0,s) fV (v)ds gii,t,m]

v+10

T
= I(tx)v(0,tx)E [—J wpaa(tk,s)v(tk,s)fpV(’y)ds th]
v+
T
— I(t)(0, 1) f P50t )V 0,2
v+

For J = & and t; = v + 10, it holds
J
gt}mtkﬂ]
T

T f ilo I(s)v(0, s) f,V(v)ds — I(t;)v(0, t)E [_L Paa(tk, $)v(te, s)fpV (v)ds

k

T
E [— I(s)v(0,s)fpV(v)ds

~v+10

N

173 T
= —J I(s)v(0, ) fV (v)ds — I(tk)v(oatk)J P (e, )0 (e, 8) £,V (7)ds
~+10 th
For J = {N} and t; <~ + 10, it holds
T
E [—J I(s)v(0,s)fV(v)ds gt{wtm]
y+10
T
= I(ty41)v(0, ) E {—J Paa(tr1, s)v(te, 8) fpV (v)ds gii,tkﬂ]
~v+10
T
~Htre)o0 ) | Bt 90 )V () s,
¥+10
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For J = {N} and t;, > v + 10, it holds

T
B[ [ 1en0.0mvel.,]
y+10
tr th+1 J
= —J N I(s)v(0,5) fV(v)ds — v(0, %) E U I(s)v(ty, s) frV (v)ds gtk,tk_H]
v+ tk
T
— I(try1)v(0, %) E [J Paa(tret, $)v(te, ),V (7)ds|GL 4,
Tyt
ti : l+1
—— | 1609 Vs~ (0.6 | 1610 0, ) £,V (2)ds
y+10 tr
T
~ It )o0,) [ 58 5050w, 5) V()
tet1
For J = {N, A} and t; < + 10, it holds
T
I IR CIOSTATCIE
~v+10
T
= —I(tk+1)@(0,tk) J pE(thrl’ S)Q}E(tkv )fp (tk7 )dS
~v+10
For J = {N, A} and t; > v + 10, it holds
T
B[ 1en0.0mved.,]
¥+10
tr lk+1 E
—— | 1609 V) = o0t [T 1615 0 £,V (2)ds
v+10 tr
T
Tt )00, [ 55 (b, )P b, )V ()
tkt1
For J = {N,\,r} and t; <~ + 10, it holds
T
B[ 1600095,V (0150, |
v+10
T
Hte)oO, ) | b, )0 b9V t,) s,
v+10
For J = {N,\,r} and t; > v + 10, it holds
T
B|- [ ren0.0mve.,|
v+10
Tht1 T
= _J 0 I(S)U(Oa s)fpV(’y)ds - I(tkﬂ)v(oa tk+1) J pE(tkHa S)UE(tkHa s)fpV(’y)ds
v+ (23
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A.3.2 Analysis of conditional expectations for the order {Y,r, A\, N}

Savings account (i = 1):

For J = ¢J and t; < 7, it holds (see Section A.3.1)

B[ 1000,V DG a0, | = T8I0, 805 by 10 (b1 1)V E(t1 )

For J = {Y'} and t; < v, it holds

E[1(0)0(0, VG 1., | = 1000, ) [paaltis ot NV (DG 1,
= I(t)0(0 )E [paa(ti 7)ot DV () [Hi ., |
= I(tk)v(0, t)p"™ (b, V0" (tks V)V (11, 7)-

For J = {Y,r} and t;, <, it holds

E |10V )G 10, | = T8I0, s 1)E |Daaties D01, DV (s )|GH |
= 1(#)0(0, th1)E [Paa(ti Mo ltrss DV (0)[Hi o, |
= I(tx)v(0, try1)p" (b )0 (s 1,V (trr1,7)-
For J = {Y,r, A} and t), < v, it holds
E [ 10001V 40, | = L0000, 60E [paalti 1ol DV (G 1,
= 1(t)0(0, e 1)E [aalti, 10t DV ()M |
= I(t1)v(0, th1)Paa(te, trs)D™ (g1, VO™ (trs 1, NV (Ers1,7)-

Death cover (i=2):
For J = ¢J and t;, < 7, it holds (see Section A.3.1)

B[ [ 0.0 - 1V aN 6|6, |
_ L " (0, 8)(1 — f)V(5)AN(S) + 00, 1)1 (1) L : E (b, ) (1 — £)VE(tg, $)p% (ta, 5)ds.
For J = {Y} and ) < 7, it holds
B[ [ 00,90 - 1V aN 6|0, |
- [" 090 - favenant)
#0108 [ [ (090 = )V Ot 0)15i0
(0, ) (1) [ [/ vt0 00 Vot (o gJ]
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tht1

- j " 0(0,5)(1 — f)V(s)AN(s) + 0(0, )T (1) j Bt 8) (L — F)V ()5 (tr )ds

T o0, )1 (1) f Bty $)(1 — F)VE (s, )pE(tx, 5)ds

trt1

For J = {Y,r} and t; < -, one shows analogously

.
— S S J
B[ [ 00,90 - 1VEaN 6|0, |
_ Lk 0(0, $)(1 — £)V(s)AN(s) + I(t) Jt T 0(0,)(1 = £V (8)PE(tr, 5)ds
+v(0, tg 1)1 (tr) J: VP (g1, ) (1 = f))V (b, 5)D5 (t, 5)ds.

For J = {Y,r,A\} and t; < =, it follows

Y
— S S J
B[ [ 00,90 - 1V eV 6|0, |
_ Lk 0(0,8)(1 = fa)V(s)dAN(s) + I(t) Jt T 0(0,8)(1 = £V (5)paa (e, s)A(s)ds
+v(0, ty 1)1 (tk)Paa(tes trr1) J: 0 (g1, $)(1 = fo)VE(tre1, )X (tegr, 5)ds.

Guaranteed pension period (i=3):
We need to distinguish between ¢ < v and t; = 7.
For J = ¢ and ), < 7, it holds (see Section A.3.1)

gJ
teotk+1
v+10

= —U(O,tk)f(tk)pE(tk,’y)f UE(tk, s)fpV (tk, ~v)ds.

Y

B[00 [ 0.V

Y

For J = & and ¢ > 7, it holds (see Section A.3.1)

J
gtkvtk+1:|

y+10

(0, 61 It )P (1) j Bt 8) f,VE (b, 7)ds.

B[-10) [ 0,9,V (s

v

For J = {Y'} and ¢} < , it holds

B|-16) | T 0.9 V(s

v

J
gtk th+1 ]
v+10

(0, ) I(t) PPt ) f V(b ) foVE (b 41, 7)ds.

g
For J = {Y'} and t;, = v, it holds

v+10

E [—I(’Y)J v(0,5)fpV (v)ds gii,ml]
ty +10

= —I(’Y)f v(0,5) f,V(v)ds — I(7)v(0, tx) F VE(tk, 8) fpV (7)ds
¥ b
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For J = {Y,r} and t; < -, one shows analogously

J
gtk:tk+1:|

v+10

= —0(0, tp1) I (tr)p" (tk, ) f V5 (trs1, 8) fpVE (tgr, v)ds.
Y

e[~ [ 0,5 V(s

For J = {Y,r} and t; > ~, one shows analogously

B[-16) [ 0,9,V (s

J
gtkvtk+1:|

ths +10
= —16) [ 0.9V (0~ 10)e(0.011) f Bltir1,5) f,V (7)ds

Y tet1

For J = {Y,r, A} and t;, < ~, it follows

~Y+10
E [—Iw) f 0(0, )£,V (7)ds

J
gtk:tk+1:|

v+10

= —U(O»tkﬂ)f(tk)paa(%tk+1)PE(75k:+177)J V5 (thg1, 8) fVE (tesr, ) ds.
Y

For J = {Y,r, A} and t; > =, it follows

B|-16) [ 0,95V (s

gJ
teotk+1
y-+10

- —1(7) f 00,8 £,V (1) ds — 1(3)0(0,ty1) f Bt $) f,V (7)ds.

v tht1
Pension cover (i=4):
We need to distinguish between t; < v + 10 and t; = v + 10.
For J = ¢ and t; <~ + 10, it holds (see Section A.3.1)
T
E [— J I(s)v(0,s)fV(v)ds

v+10

J
gtkutk+1:|

T

= —I(tg)v(0,tx) erlO pE(tk, s)vE(tk, S)fpVE(tk, ~v)ds.
¥

For J = ¢ and t;, = v + 10, it holds (see Section A.3.1)

T
B[ ren0.0mvesl.,]
v+10
th T
= —J I(s)v(0,s) fV(v)ds — I(tk)v(oatk)J P (th, $)0™ (e, $) £,V (7)ds.
v+10 tr
For J = {Y'} and t;, < v + 10, it holds
T
B[ 1600095, 015\, |
~v+10
T
= I(tx)v(0,tx)E [—J Paalti, $)v(te, s) [V (7)ds Qg{wtkﬁ]
v+10
T
= —I(tk)U(O, tk) f pE(tk7 S)UE(tkv S)fpVE(tk-i-l) V)ds
v+10

118



For J = {Y'} and t;, > v + 10, it holds

E [— JT 1(s)0(0, 8) £,V (7)ds

y+10

J
gt}mtkﬂ]
T

= J ;O I(s)v(0,s)fpV (v)ds — I(ty)v(0,t,)E [Jt Paalti, $)v(tr, s) [V (v)ds

J
gtkztk+1:|
T

. j " H(8)0(0,9) £,V (7)ds — I(t)o(0, 1) j PE (5, )0t )£,V () s,
v+10 tr

For J = {Y,r} and ¢, <y + 10, it holds

E [— JT I(s)v(0,s)fpV(v)ds

v+10

J
gtk th+1 ]
T

— I(t)0(0, ts) f PPt )0 (b1, ),V (ts 1, 7)ds,
v+10

For J = {Y,r} and ¢, > v + 10, it holds

E [— JT 1(s)0(0, 8) £,V (7)ds

v+10

J
gtzmtkﬂ]

th+1

—— | o0 Vs~ 1) [ 50009 £,V (1)ds
~v+10 ty
T

o0, i) [ (00 B )Y ().

tr41

For J = {Y,r,A\} and t; <y + 10, it holds

E [_ JT I(s)0(0, ) £,V ()ds

v+10

J
gtiwtkﬂ]
T

= —1(tx)v(0, try1)Paa(th, ter1) J P (1, 8)0% (ter1, 8) oV E(thg1, ) ds.
v+10

For J = {Y,r,\} and t; > v + 10, it holds

E [— JT I(s)v(0,s)fpV(v)ds

y+10

J
gt}mtkﬂ]

ti41

= - J ' 1(s)v(0, 5) fpvw)ds—l(tk)f Paa(ti, $)v(0, 8) frV (7)ds
v+10 tr
T

—v(0, tp1)I (te)Paa(te, ths1) J P (thr1, 8)0™ (tig1, 8) oV (7)ds.

tet1
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A.3.3 SU decomposition with respect to the order {Y,r,\, N}

This leads us to the following SU contributions for the order {Y,r, A\, N}, categorised
according to the different risks.

Unsystematic biometric risk

The SU contributions with respect to N are given by

Dfl\f(t) = 2 ]l{tk<’y}v(07tk+1)AIp(tk‘7tk+17V)UE(tk-&-lvV)VE(tk-i-la/y)a

t,tk+1€T
<7y
9 41 .
Dy = 3 | 00501 — V(AN () - H0p b, 5)ds)
ti b1 €T Vik
<7y
Y —~
+ Z U(O,tkH)J V5 (1, 8) (1 — f)VE(tgar, $)ATR (tg, try1, s)ds,
teotk+1€T te+1
tr <7y
— v+10 - E
D?V(t) = - Z U(O>tk+l)AIp(tkatk+177)J (% (tk’JrlaS)fpV (tk+177)d57
tr,tk+1€T vy
tp <7y
4 N E E
D?V(t) = - Z v(ovtk‘-i-l)f A-[p(tkvtk-‘rlvs)v (tk‘-i-las)fpv (tk-‘rla’Y)dS
tk,tk+1€T ’Y+10
t<v+10
tht1 .
=S w0, te) f (I(s) = I(t)p(tr, 5)0% (b1, ),V ()dls
ti,tk+1€T tg
tp=y+10
T T~
— > (0, tgr) AIP(ty, trer, $)0™(tey1, 8) f,V (7)ds,
tk,tk+1€7— tet1
tp=v+10

where

ATP (g, i1, 8) = Tt )P™ (trr1s 8) — T(tk)Paa (e trer )P (trr 1, ),

AL (tey thi1,8) = Tt 1)PX(tkr158) — T(tk)Paa (ths tes 1) DX (1, S)-

Systematic biometric risk

The SU contributions with respect to A are given by

Di(t) = > I(tr)v(0, ter1) Ap(ti, terr, VO™ (ters, M)V (ber1, ),
t,tk+1€T
<7y

D2ty = Y I(t)u(0, te) f

Lotk +1€T tht1
te<y

Y —~—
V" (1, 8) (1 — f)VE(ti1, ) Apa(te, thy1, $)ds,

~ ~v+10
D¥(t)y=— > I(tk)Ap(tk,tk-ﬁ-l)’Y)U(O)tk—i-l)f 0" (g1, 8) oV (tre1, ) ds,

tiotk+1€T v
b <7y
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T

Di(t) = — Z I(tk)U(O,tkH)J Ap(t, tirts $)V™ (teg1, 8)) foVE (g1, 7)ds
titk41€T v+10
tp<y+10
T ~
- Z I(tk)v(ovthrl) Ap(tkvtk+17S)UE(thrl’S)fpV(FY)dS?
Lotk 1€T trt1
tp=v+10
where

Ap(thytis1, 8) = Paa(th tha1) D™ (tea, 8) — D5 (tr, ),

Apx(th, 1, 8) = Paalti, tee1) DX (ths 8) — D5 (1, 8).

Systematic interest risk

The SU contributions with respect to r are given by

D;(t) = 2 I(tk)pE(tlm'V)Av(tk?thrl?fY)V]E(tk‘Jrh7)7
ti,tk+1€T
<7y
2 Kas E E E
Dz(t) = Z I(tk)v((),tk)f (v(tg,s) — v (tg, s))(1 — fa) V= (tks1, s)py(te, s)ds
tk,tk+1€7' 123
te<7vy
Y
+ Z I(tk) Av(tkytk+173)(1 - fd)VE(tk’Jrl?S)pI)E:‘(tkvs)dsa
tit+1€T tk+1
t <7y
v+10
DO == ¥ T | Avlthtin )V, )ds
tkvthrleT Y
<7y
tr+1 E
= N IRV [ 00,5 = o0, s))ds
tk,tk+1€T tk
tp =y
v+10
- Z I(V)fpV(V)J Av(tkvtk+178)ds7
tetka1 €T tet1
tr=7y
T
Dﬁ(t) = - Z I(tk‘) J pE(tk‘a S)Av(tk7 tk+17 S)fpVE(tk+17 7)d$
ti,tk+1€T 7+10
te<v+10
lht1 -
- BT 9009 o0, F ) £V (s
thstiy1€T Vik
tp=v+10

T
- Z I(tk) J pE(tk78)AU(tk’7tk+l7S)fpv(’y)d‘%
tetkt1€T bt
tp=v+10

where

Av(tg, tpr1,s) = v(O,tkH)vE(tkH, s) — v(Ojtk)v]E(tk, s).
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Systematic fund risk

The SU contributions with respect to Y are given by

Dy(t) = > I(te)p™(te YV (te, VAV (b, trs1, 7).

ti,tk+1€T
tp<vy
to+1
Dyt = ), I(tk)v(ovtk)J VP (b, 8) (1 = fa)(V(5) = VE(t, 5))pX (b, s)ds
ti,tk+1€T tk
t<7vy
7 E 1)
+ Z I(tk)v(o,tk) f v (tk,S)(l — fd)AV(tk,tk+1,S)pk(tk,s)ds,
tk,tk+1€7— tet1
<y
y+10
DY == N IG5 ) [ B AV (1t
ti,tk+1€T v
t<vy
T
Dy(t)y=— ), I(tk)v(O,tk)f P (e, $)0" (thy 8) oAV (L, trr1, 7)ds,
tk,tk+1€7— y+10
t<y+10

where

AV(tk7tk+173) = VE(tk+17$) - VE(tkas)
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A.4 Numerical example - R code

Within the R code, A represents @ and j depicts .

set.seed (50)

#INITIALIZATION PARAMETERS
T<-55

gamma<-22;

f_p=0.032;

f_d=0.9;
lambda_0<-0.00329542;
mu_lambda<-0.07731571;
sigma_lambda<-0.00012212;
r_0<-0.025;
beta<-0.000199;
mu_r<-0.01;
sigma_r<-0.0035;
Y_0<-100;

mu_Y<-0.06;

sigma_Y<-0.2;

A _0<-100;

a<-3600;

#INITIALIZATION FUNCTIONS
g_lambda <- function(x){
if (x<0){
u<-0
return (u)
} else if(0<= x & x<=1000)A
u<- x
return (u)
} else if (1000<x){
u<- 1000

return (u)

g_r <- function(x){
if (x< -1000){
u<- -1000
return (u)

} else if(-1000<=x & x<=1000){
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u<-x
return (u)

} else if(1000<x){
u<- 1000

return (u)

g_Y <- function(x){
if (x<0.0001){
u<-0.0001
return (u)
} else if(0.0001<=x){
u<-x

return (u)

#AUXILIARY FUNCTION

#v is a vector, x is a real number

#returns the position of an entry in an increasing vector,
the closest smaller or equal to x
#helps us to relate the integration grid to the grid of mu

nextsmaller <- function(x,v){

o=max (which (v-x<=0));
return (o) ;

}

#CALCULATION MAIN PATH lambda,

#GRID MU
h_mu=1;
M_mu=T/h_mu;
I mu=0:M_mu;

partition_mu=I_mu*h_mu;

#GRID INTEGRAL APPROXIMATION

h_INT=1/52;
M<-T/h_INT;

INT=0:M;
partitionINT=INT*T/M;

r, Y
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gamma_INT=which(partitionINT==gamma); #GRID index_MLMC FOR
RETIREMENT
gamma _INT10=which(partitionINT==gamma+10) ;

#MAIN PATH - MORTALITY INTENSITY DRIVER lambda AND MORTALITY
INTENSITY mu
increments_lambda=rnorm(M,mean=0,sd=sqrt (T/M));
lambda<-rep (0,M+1);
lambda[1]=1ambda_0;
for (i in 2:(M+1)){
lambda[i]l=1lambda[i-1]+mu_lambda*lambda[i-1]*T/M+sigma_lambdax*

increments _lambdal[i-1];

mu<-rep(0,M+1);

mul[l1]l=lambdal[1];

x<-rep(0,M+1)

for (i in 2:M){
k_mu=min(which(partitionINT[i]-partition_mu<0))-1;
1 _mu=min(which(partitionINT==partition_mulk_mul]))
mul[il=g_lambda(lambda[l_mul);

}

mu[M+1]=1ambda [M+1];

mu_help=mu[INT %% (h_mu/h_INT)==0]; #MU ON GRID MU

#MAIN PATH - INTEREST INTENSITY r AND DISCOUNT FACTOR v(0,-)
increments_r=rnorm(M,mean=0,sd=sqrt (T/M));

r<-rep(0,M+1);

r{1]l=r_0;

for (i in 2:(M+1)){
rlil=r[i-1]+(beta-mu_r*r[i-1])*T/M+sigma_r*increments_r[i-1];
}

v<-rep(0,M+1);

v[1il=1;

g_r_val<- unlist(lapply(r,g_r), use.names=FALSE)

v[2:(M+1)]<-exp(-T/M*cumsum(g_r_val[1:M]));

#MAIN PATH - MARKET INDEX Y, SHARES HELD A AND DEPOSIT VALUE V
increments_Y=rnorm(M,mean=0,sd=sqrt (T/M)) ;
Y<- Y_O*exp((mu_Y-sigma_Y~2/2)*partitionINT+sigma_Y*c (0, cumsum (

increments_Y)));
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g_Y_val<- unlist(lapply(Y,g_Y), use.names=FALSE)
A<- c(A_O0, A_O+cumsum(a/g_Y_val[1:MI*T/M));
V<-Axg_Y_val;

#MAIN PATH - SURVIVAL PROBABILITIES
p<-matrix(0,M+1,M+1);

for(k in 1:M){

plk,k1=1;

plk, (k+1): (M+1)]=exp(-cumsum (mu[k:M]I*T/M));
}

plM+1,M+1]=1;

#MAIN PATH - INDICATOR FUNCTION
Ind<-rep(0,M+1);
Ind[1]=1;
rn<-runif (M) ;
run<-1;
while(run<(M+1)& O <= rn[run] & rn[run]<= exp(-mulrun]*T/M) & Ind[
run]==1){
run=run+1;
Ind[run]l=1;
}

#INTRODUCTION MLMC ESTIMATORS
#MLMC estimator p and p_mu
mlmc_p<-function(n,j,start_val){
I=0:n;
partitionSU=I*T/n;
start _INT=vwhich(partitionINT==partitionSU[j]);
exp_p=0
exp_pm=0
for (1 in 1:(L+1)){
exp_p_1lvl=0
exp_pm_1v1l=0
h10=2"(-1+2)*h_MLMC; #step width MLMC previous level
h11=2"(-1+1)*h_MLMC; #step width MLMC this level
intO=round ((T-partitionSU[j])/hl0,1);
I_MLMCO=1:(intO0+1);
intl=round ((T-partitionSU[j])/hl1,1);
I_MLMC1=1:(int1+1);
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partitionMLMCO=partitionSU[j]+hl10*(I_MLMCO-1); #MLMC grid
previous level
partitionMLMCl=partitionSU[j]+hl11*(I_MLMC1-1); #MLMC grid next

level

I_MLMC_muO=I_MLMCO[round(partitionMLMCO0,6) %% h_mu 0]; #

relate MLMC grid to mu grid

I_MLMC_mul=I_MLMC1[round(partitionMLMC1,6) %% h_mu 0];#relate
MLMC grid to mu grid
if (partitionSU[jl%%h_mu==0){ #if starting point is on mu grid,
we omit the first index_MLMC
index MLMC=I_MLMC_mui[2]
I_MLMC_muO=I_MLMC_muO[2:length(I_MLMC_muO)]
I_MLMC_mul=I_MLMC_mul[2:length(I_MLMC_mul)]
}elsed{
index MLMC=I_ MLMC mui[1]
I_MLMC_muO=I_MLMC_muO[1l:length(I_MLMC_muO)]
I_MLMC_mul=I_MLMC_mul[l:length(I_MLMC_mul)]
}
mu_grid_INT=unlist(lapply(partitionINT ,nextsmaller ,v=partition_
mu)); #helps to duplicate values for mu on integration grid
index_INT=which(partitionINT==partitionMLMC1[index_MLMC])
numpck=N[1] #number of packages in level 1
for (i in (1:numpck)){
lambda_estO0<-matrix(0,pck,int0+1)
lambda_estO[,1]<-rep(start_val,pck)
lambda_est1l<-matrix(0,pck,int1+1)
lambda_estl[,1]<-rep(start_val,pck)
mu_shiftO=matrix (0,pck,M_mu+1);
mu_shiftl=matrix(0,pck,M_mu+1);
if (1==1) {
MLMC_incr_lambda=matrix (rnorm(intl*pck,mean=0,sd=sqrt(hl1l
)) ,nrow=pck, byrow=TRUE)
for (k in 2:(int1+1)){
lambda_estl[,k]=lambda_estl1[,k-1]+mu_lambda*lambda_estil[,
k-1]*hlil+sigma_lambda*MLMC_incr_lambdal[,k-1]
}
lambda_est_helpl=lambda_estl1[,I_MLMC_mul];#estimated
lambda on grid mu
mu_estl<- matrix(sapply(lambda_est_helpl,g_lambda), nrow=
pck)
mu_shiftl1[,(M_mu-length(I_MLMC_mul)+2):(M_mu+1)]=mu_estl;
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if (index INT<(M+1)){
p_aa_estl<-cbind (matrix(rep(pl[start_INT,start_INT:index_
INT],pck) ,nrow=pck,byrow=TRUE) ,p[start_INT, index_INT
I*exp(-t(apply (h_INT*mu_shiftl[,mu_grid_INT[index _INT
:M]],1,cumsum))));
p_aa_estlp<-cbind(matrix(rep(plstart_INT,start_INT:index
_INT]#mu[start_INT:index_INT],pck) ,nrow=pck, byrow=
TRUE) ,p[start_INT,index_INT]*exp(-t(apply(h_INT*mu_
shifti1[,mu_grid_INT[index_INT:M]],1,cumsum)))*mu_
shiftl[,mu_grid_INT[(index_INT+1):(M+1)1]);
}elsed{
p_aa_estl<-matrix(rep(plstart_INT,start_INT:index_INT],
pck) ,nrow=pck,byrow=TRUE) ;
p_aa_estlp<-matrix(rep(plstart_INT,start_INT:index_ INT]x*
mul[start_INT:index_INT],pck) ,nrow=pck,byrow=TRUE) ;
}
exp_p_lvl=exp_p_1lvl+(1/(numpck*pck))*colSums(p_aa_estl);
exp_pm_lvl=exp_pm_lvl+(1/(numpck*pck))*colSums(p_aa_estlp
)
} else {
MLMC_incr_lambda=matrix (rnorm(intl*pck,mean=0,sd=sqrt(hl1l
)) ,nrow=pck, byrow=TRUE)
for (k in 2:(int1+1)){
lambda_estl[,k]=lambda_estl1[,k-1]+mu_lambda*lambda_estl
[,k-1]*hll+sigma_lambda*MLMC_incr_lambdal[,k-1]
}
lambda_est_helpl=lambda_estl1[,I_MLMC_mull;
mu_estl<- matrix(sapply(lambda_est_helpl,g_lambda), nrow=
pck)
mu_shiftl[,(M_mu-length(I_MLMC_mul)+2):(M_mu+1)]=mu_estl;
if (index _INT<(M+1)){
p_aa_estl<-cbind(matrix(rep(pl[start_INT,start_INT:index_
INT],pck) ,nrow=pck,byrow=TRUE) ,p[start _INT, index_INT
I*xexp(-t(apply(h_INT*mu_shiftl[,mu_grid_INT [index_INT
:M11,1,cumsum))));
p_aa_estlp<-cbind(matrix(rep(plstart_INT,start_INT:index
_INT]*mu[start_INT:index_INT],pck),nrow=pck, byrow=
TRUE) ,p[start_INT, index_INT]*exp(-t(apply(h_INT*mu_
shiftl[,mu_grid_INT[index_INT:M]],1,cumsum)))*mu_
shiftl[,mu_grid_INT[(index _INT+1):(M+1)]11);
}elsed{
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p_aa_estl<-matrix(rep(pl[start_INT,start_INT:index_INT],
pck) ,nrow=pck ,byrow=TRUE) ;
p_aa_estlp<-matrix(rep(plstart_INT,start_INT:index_INT]*
mu[start_INT:index_INT],pck) ,nrow=pck,byrow=TRUE) ;
}
for (k in 2:(int0+1)){
lambda_estO[,k]=1lambda_estO[,k-1]+mu_lambda*lambda_estO
[,k-1]*hlO+sigma_lambda*(rowSums (MLMC_incr_lambdal, (2
x(k-2)+1) : (2x(k-1))1));
}
lambda_est_helpO=lambda_estO[,I_MLMC_muO];
mu_est0<- matrix(sapply(lambda_est_helpO,g_lambda), nrow=
pck)
mu_shiftO[,(M_mu-length(I_MLMC_muO)+2):(M_mu+1)]=mu_estO;
if (index _INT<(M+1)){
p_aa_estO0<-cbind(matrix(rep(pl[start_INT,start_INT:index_
INT],pck) ,nrow=pck,byrow=TRUE) ,p[start _INT, index_INT
I*xexp(-t(apply(h_INT*mu_shiftO[,mu_grid_INT [index_INT
:M11,1,cumsum))));
p_aa_estOp<-cbind(matrix(rep(plstart_INT,start_INT:index
_INT]*mul[start_INT:index_INT],pck) ,nrow=pck,byrow=
TRUE) ,p[start_INT, index_INT]*exp(-t(apply(h_INT*mu_
shiftO[,mu_grid_INT[index_INT:M]],1,cumsum)))*mu_
shiftO[,mu_grid_INT[(index_INT+1):(M+1)11);
}elsed{
p_aa_estO<-matrix(rep(p[start_INT,start_INT:index_INT],
pck) ,nrow=pck ,byrow=TRUE) ;
p_aa_estOp<-matrix(rep(pl[start_INT,start_INT:index_INT]*
mu[start _INT:index_INT],pck) ,nrow=pck,byrow=TRUE) ;
}
exp_p_lvl=exp_p_lvl+1l/(numpck*pck)*colSums(p_aa_estl-p_aa
_est0)
exp_pm_1lvl=exp_pm_lvl+1/(numpck*pck)*colSums(p_aa_estlp-p
_aa_estOp)

exp_p=exp_p+texp_p_1lvl

exp_pm=exp_pm+exp_pm_1vl

List <- list("exp_p" = exp_p, "exp_pm"=exp_pm);

return(List) ;
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#MLMC estimator v
mlmc_v<-function(n,j,start_val){
exp_v=0
I=0:n;
partitionSU=I*T/n;
start_INT=which(partitionINT==partitionSU[j]);
for (1 in 1:(L+1)){
exp_v_1lvl=0
h10=2"(-1+2)*h_MLMC; #step width MLMC previous level
h11=2"(-1+1)*h_MLMC; #step width MLMC this level
intO=round ((T-partitionSU[j])/hl0,1);
I_helpO=1:(int0+1);
intl=round ((T-partitionSU[j])/hl1,1);
I_helpl=1:(intil+1);
partitionMLMCO=partitionSU[j]+hl10*(I_helpO-1);
partitionMLMCl=partitionSU[j]+hl1*(I_helpl-1);
z=N[1];
I_MLMC_INTO= (I_helpO0-1) %% (h_INT/hl0)==0
I_MLMC_INT1= (I_helpi1-1) %% (h_INT/hl1)==0
for(i in (1:z)){

r_estO<-matrix (0,pck,int0+1)
r_estO[,1]<-rep(start_val,pck)
r_estl<-matrix(0,pck,intl1+1)
r_estl[,1]<-rep(start_val,pck)
if (1==1) {
MC_incr_r=matrix(rnorm(intl*pck,mean=0,sd=sqrt(hll)) ,nrow=pck,
byrow=TRUE)
for (k in 2:(int1+1)){
r_estl[,k]l=r_estl[,k-1]+(beta-mu_r*r_estl[,k-1])*hll+sigma
_r*MC_incr_r[,k-1]
}
r_estl_help<-r_est1[,I_MLMC_INT1];
booll<- (r_estl_help>-995 & r_estl_help<995)
if (sum(booll)<length(r_estl_help)){
g_r_estl<- matrix(sapply(r_estl_help,g_r), nrow=pck)
} else {
g_r_estl<-r_estl_help
}
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v_estl<-exp(-t(apply(h_INT*g_r_estl[,1:(M-start_INT+1)],1,
cumsum) ) ) ;
exp_v_1lvl=exp_v_1lvl+(1/(z*pck))*colSums (v_estl);
} else {
MC_incr_r=matrix(rnorm(intl*pck,mean=0,sd=sqrt(hll)) ,nrow=
pck, byrow=TRUE)
for (k in 2:(int1+1)){
r_estl[,k]l=r_estli[,k-1]+(beta-mu_r*r_estl[,k-1])*hll+sigma
_r*MC_incr_r[,k-1]
}
r_estl_help<-r_est1[,I_MLMC_INT1];
boolil<- (r_estl_help>-995 & r_estl_help<995)
if (sum(booll)<length(r_estl_help)){
g_r_estl<- matrix(sapply(r_estl_help,g_r), nrow=pck)
} else {
g_r_estl<-r_estl_help
}
v_estl<-exp(-t(apply(h_INT*g r_estl[,1:(M-start_INT+1)],1,
cumsum) ) ) ;
for (k in 2:(int0+1)){
r_estO[,k]=r_estO[,k-1]+(beta-mu_r*r_estO[,k-1])*hl0+
sigma_r*(rowSums (MC_incr_r[,(2%(k-2)+1):(2*(k-1))1));
}
r_estO_help<-r_estO[,I_MLMC_INTO];
b0o0ol0<- (r_estO_help>-995 & r_est0_help<995)
if (sum(bool0)<length(r_estO_help)){
g_r_est0<- matrix(sapply(r_estO_help,g_r), nrow=pck)
} else {
g_r_estO0<-r_estO_help
}
v_estO0<-exp(-t(apply(h_INT*g_ r_estO[,1:(M-start_INT+1)],1,
cumsum) ) ) ;
exp_v_lvl=exp_v_1lvl+1/(z*xpck)*colSums(v_estl-v_estO0)
}
}
exp_v=exp_v+exp_v_1vl
}
List <- list("exp_v" = exp_v);

return(List) ;
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#MLMC estimator Y
mlmc_Y<-function(n,j,start_val){
exp_Y=0
exp_AY=0
I=0:n;
partitionSU=I*T/n;
start _INT=vwhich(partitionINT==partitionSU[j]);
for (1 in 1:(L+1)){
exp_Y_1v1=0
exp_AY_1v1l=0
h10=2"(-1+2)*h_ MLMC;
h11=2"(-1+1)*h_MLMC;
intO=round ((gamma-partitionSU[j])/hl0,1);
I_helpO=1:(int0+1);
intl=round ((gamma-partitionSU[j])/hll,1);
I_helpl=1:(intil+1);
partitionMLMCO=partitionSU[j]+hl10*(I_helpO-1);
partitionMLMCl=partitionSU[j]+hl1*(I_helpl-1);
z=N[1];
for (i in (1:z)){
Y_estO<-matrix (0,pck,int0+1)
Y_estO[,1]<-rep(start_val,pck)
Y_estl<-matrix (0,pck,inti1+1)
Y estl[,1]<-rep(start_val,pck)
if (1==1) {
MC_incr_Y=matrix (rnorm(intl*pck,mean=0,sd=sqrt(hll)) ,nrow=pck,
byrow=TRUE) ;
for (k in 2:(int1+1)){
Y_est1[,k]=Y_est1[,k-1]+mu_Y*Y_estl1[,k-1]*xhll+sigma_Y*Y_
estl[,k-1]*MC_incr_Y[,k-1]
}
Y_est1_INT=Y_estl1[,(I_help1-1) %% (h_INT/hl1)==0];
bool1<- (Y_est1_INT>0.01)
if (sum(booll)<length(Y_estl_INT)){
g_Y_estl_INT<- matrix(sapply(Y_estl1_INT,g_Y), nrow=pck);
} else {
g_Y_estl_INT<- Y_estl_INT
}
A_estl_INT=ax*t(apply(1/g_Y_estl1_INT[,1:(gamma_INT-start_INT
YI*T/M,1,cumsum) ) ;
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exp_Y_lvl=exp_Y_1lvl+(1/(z*pck))*colSums(Y_estl_INT[,2:(
gamma _INT-start_INT+1)]);
exp_AY_1lvl=exp_AY_1vl+(1/(z*pck))*colSums(A_estl_INT*Y_estl
_INT[,2:(gamma_INT-start_INT+1)]);
} else {
MC_incr_Y=matrix (rnorm(intl*pck,mean=0,sd=sqrt(hll)) ,nrow=
pck, byrow=TRUE) ;
for (k in 2:(int1+1)){
Y estl[,k]=Y_estl[,k-1]+mu_Y*Y_estl[,k-1]*hll+sigma_Y*Y_
est1[,k-1]1*MC_dincr _YI[,k-1]
}
Y_est1_INT=Y_est1[,(I_help1-1) %% (h_INT/hl1)==0];
booll<- (Y_estl1_INT>0.01)
if (sum(booll)<length(Y_est1_INT)){
g_Y_estl_INT<- matrix(sapply(Y_estl_INT,g_Y), nrow=pck);
} else {
g_Y_estl_INT<- Y_estl1_INT
}
A_estl_INT=ax*t(apply(1/g_Y_estl_INT[,1:(gamma_INT-start_INT
)I*T/M,1,cumsum))
for (k in 2:(int0+1)){
Y_estO[,k]=Y_estO[,k-1]+mu_Y*Y_estO[,k-1]*hl0O+sigma_Y*Y_
estO[,k-1]*(rowSums (MC_incr Y[, (2*x(k-2)+1) :(2*x(k-1))1))
}
Y_estO_INT=Y_estO[,(I_help0-1) %% (h_INT/h10)==0];
bool0<- (Y_estO_INT>0.01)
if (sum(bool0)<length(Y_estO_INT)){
g_Y_estO_INT<- matrix(sapply(Y_estO_INT,g_Y), nrow=pck);
} else {
g_Y_estO_INT<- Y_estO_INT
}
A_estO_INT=ax*t(apply(1/g_Y_estO_INT[,1:(gamma_INT-start_INT
)1*T/M,1,cumsum))
exp_Y_lvl=exp_Y_1lvl+1/(z*pck)*colSums(g_Y_estl_INT[,2:(
gamma_INT-start_INT+1)]-g_Y_estO_INT[,2:(gamma_INT-start
_INT+1)1);
exp_AY_lvl=exp_AY_1lvl+1/(z*pck)*colSums (A_estl_INT*xg_Y_estl
_INT[,2:(gamma_INT-start_INT+1)]-A_estO_INT*g_Y_estO_INT
[,2:(gamma_INT-start_INT+1)]);
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}

exp_Y=exp_Y+exp_Y_1vl

exp_AY=exp_AY+exp_AY_1vl
}
List <- list("exp_Y" = exp_Y, "exp_AY" = exp_AY);

return(List) ;

#INTRODUCTION MLMC FUNCTION
#calculates MLMC estimators for a given SU step width
incr _N=Ind[1:(M)]-Ind[2:(M+1)]; #increments indicator function

Njump=1-Ind; #counting process

MLMC <- function(h_SU)A{
n=T/h_SU;
I=0:n; #partition initialization SU Decomposition
partitionSU=I*T/n; #initialization partition SU Decomposition
Ind_SU=Ind [INT %% (h_SU/h_INT)==0] #indicator function on SU grid
gamma _SU=which(partitionSU==gamma) ;
gamma_SU10=which(partitionSU==gamma+10) ;
time_of _death=min(which(Ind_SU==0));
max=max (time_of_death+1,gamma+10)
exp_p=matrix(0,n,M+1);
exp_pm=matrix(0,n,M+1);
exp_forward_p=matrix(0,n,M+1);
exp_forward_pm=matrix (0,n,M+1);
exp_v=matrix(0,n,M+1);
exp_Y=matrix(0,n, gamma_INT);
exp_AY=matrix(0,n, gamma_INT);
for(j in 1:max){
print (paste ("SU,grid,point", j))
print (Sys.time ())
start _INT=which(partitionINT==partitionSU[j]);
start_INT_forward=which(partitionINT==partitionSU[j+1]);
exp_p_help=mlmc_p(n,j, lambdalstart_INT]);
exp_plj,start_INT:(M+1)]=exp_p_help$exp_p;
exp_pm[j,start _INT:(M+1)]=exp_p_help$exp_pmn;
if (start _INT_forward<(M+1)){
exp_forward_pl[j,start _INT_forward:(M+1)]=1/p[start_INT,start_INT
_forward]*exp_p_help$exp_pl[(start_INT_forward-start_INT+1) :(M
+2-start_INT)];
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exp_forward_pm[j,start _INT_forward:(M+1)]=1/pl[start_INT,start_
INT _forward]*exp_p_help$exp_pm[(start_INT_forward-start_INT+1
): (M+2-start _INT)];
}elsed{
exp_forward_pl[j,start_INT_forward]=1;
exp_forward_pm[j,start _INT_forward]l=mulstart_INT_forward];
}
exp_v[j,start_INT]=1;
exp_v_help=mlmc_v(n,j, rlstart_INT]);
exp_v[j,(start _INT+1):(M+1)]=exp_v_help$exp_v;
if (j<gamma_SU){
exp_Y[j,start_INT]=Y[start_INT];
exp_AY[j,start_INT]=0;
exp_Y_help=mlmc_Y(n,j, Y[start_INT]);
exp_Y[j,(start_INT+1):gamma_INT]=exp_Y_help$exp_VY;
exp_AY[j,(start _INT+1):gamma_INT]=exp_Y_help$exp_AY;
} else if(j==gamma_SU){
exp_Y[j,start_INT]=Y[gamma_INT];
}
}
List <- list("exp_p" = exp_p, "exp_forward_p"=exp_forward_p, "exp_
pm"=exp_pm, "exp_forward_pm"=exp_forward_pm, "exp_v'"=exp_v, "
exp_AY"=exp_AY, "exp_Y"=exp_Y);

return(List) ;

#INTRODUCTION SU FUNCTIONS
#calculate SU decompositions for different orders in the risk basis
SUl<-function(h_SU,Exp){

n=T/h_SU;

I=0:n; #partition initialization ISU Decomposition
partitionSU=I%*T/n;

D=matrix (0,16 ,n+1);

gamma _SU=which(partitionSU==gamma) ;
gamma_SU10=which(partitionSU==gamma+10) ;
exp_p=unlist (Exp$exp_p)

exp_pm=unlist (Exp$exp_pm)

exp_forward_p=unlist (Exp$exp_forward_p)
exp_forward_pm=unlist (Exp$exp_forward_pm)
exp_v=unlist (Exp$exp_v)

exp_AY=unlist (Exp$exp_AY)
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exp_Y=unlist (Exp$exp_Y)
for (j in 2:gamma_SU){
print (j)
b=which(partitionINT==partitionSU[j-1]);
b_f=which(partitionINT==partitionSU[j]);
D[1,j]=D[1,j-11+v[bl*(Ind[b_fl*exp_forward_pl[j-1,gamma_INT]-Ind[Db
I*xexp_pl[j-1,gamma_INT])*exp_v[j-1,gamma_INT]*(exp_AY[j-1,gamma
_INT]+A[bl*exp_Y[j-1,gamma_INT]);
D[2,j]=D[2,j-11+v[bl*Ind[b_fl*(exp_plj,gamma_INT]-exp_forward_pl[j
-1,gamma_INT])*exp_v[j-1,gamma_INT]*(exp_AY[j-1,gamma_INT]+A[b
J*xexp_Y[j-1,gamma_INT]);
D[3,j]=D[3,j-1]1+Ind[b_fl*xexp_pl[j,gamma_INT]*x(v[b_fl*exp_v[j,gamma
_INT]-v[bl*exp_v[j-1,gamma_INT])*(exp_AY[j-1,gamma_INT]+A[b]*
exp_Y[j-1,gamma_INT]);
D[4,j]=D[4,j-1]1+Ind[b_fl*xexp_pl[j,gamma_INT]*v[b_fl*exp_v[j,gamma_
INT]*((exp_AY[j,gamma_INT]+A[b_fl*exp_Y[j,gamma_INT])-(exp_AYI[
j-1,gamma_INT]+A[bl*exp_Y[j-1,gamma_INT]));
D[5,j]=D[5,j-1]1+sum(v[bl*exp_v[j-1,b:(b_£f-1)]1*(1-f_d)=*(exp_AY[j-1
,b:(b_f-1)]1+A[bl*xexp_Y[j-1,b:(b_£f-1)1)*(incr _N[b:(b_£f-1)]-Ind[
bl*plb,b:(b_f-1)]*mulb:(b_£f-1)]1*T/M))+(j<gamma_SU)*sum(v[b]*(
Ind[b_fl*exp_forward_pm[j-1,b_f:(gamma_INT-1)]-Ind[bl*exp_pml[j
-1,b_f:(gamma_INT-1)])*exp_v[j-1,b_f:(gamma_INT-1)]*(1-£f_d)*(
exp_AY[j-1,b_f:(gamma_INT-1)]+A[bl*exp_Y[j-1,b_f:(gamma_INT-1)
1)*T/M);
D[6,j]l=D[6,j-1]1+(j<gamma_SU)*sum(v[bl*Ind[b_£fl*(exp_pm[j,b_=£:(
gamma_INT-1)]-exp_forward_pm([j-1,b_f:(gamma_INT-1)])*exp_v[j-1
,b_f:(gamma_INT-1)]*(1-f_d)*(exp_AY[j-1,b_£f:(gamma_INT-1)]+A[Db
l*exp_Y[j-1,b_f:(gamma_INT-1)]1)*T/M);
D[7,j1=D[7,j-11+sum((v[b:(b_£f-1)]-v[bl*exp_v[j-1,b:(b_£f-1)]1)*(1-£
_d)*(exp_AY[j-1,b:(b_£f-1)]+A[bl*exp_Y[j-1,b:(b_£f-1)]1)*incr_N[b
:(b_f-1)1)+(j<gamma_SU) *sum(Ind[b_fl*exp_pm[j,b_f:(gamma_ INT-1
Y1x(v[b_fl*xexp_v[j,b_f:(gamma_INT-1)]-v[bl*exp_v[j-1,b_£f:(
gamma _INT-1)]1)*(1-f_d)*(exp_AY[j-1,b_f:(gamma_INT-1)]+A[blxexp
_Y[j-1,b_f:(gamma_INT-1)]1)*T/M);
D[8,j1=D[8,j-11+sum (v b: (b_f-1)1*(1-f_d)*(V[b:(b_f-1)]1-(exp_AY[j-
1,b:(b_£f-1)]+A[bl*exp_Y[j-1,b:(b_£f-1)]1))*incr_N[b:(b_£f-1)1)+(j
<gamma_SU) *sum(Ind[b_fl*xexp_pm[j,b_f:(gamma_INT-1)]x*xv[b_fl*exp
_vlj,b_f:(gamma_INT-1)]*(1-f_d)*((exp_AY[j,b_f:(gamma_INT-1)]+
Alb_fl*exp_YI[j,b_f:(gamma_INT-1)])-(exp_AY[j-1,b_f:(gamma_INT-
1)]+A[bl*exp_Y[j-1,b_f:(gamma_INT-1)]))*T/M);
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D[9,j1=D[9,j-1]-sum(v[bl*(Ind[b_fl*exp_forward_p[j-1,gamma_INT]-
Ind[bl*exp_plj-1,gamma_INT])*exp_v[j-1,gamma_INT:(gamma_INT10-
1)]*f_p*x(exp_AY[j-1,gamma_INT]+A[bl*exp_Y[j-1,gamma_INT])=*T/M)

D[10,j]1=D[10,j-1]-sum(v[b]l*Ind[b_£fl*(exp_pl[j,gamma_INT]-exp_
forward_pl[j-1,gamma_INT])*exp_v[j-1,gamma_INT:(gamma_INT10-1)
Ixf_px(exp_AY[j-1,gamma_INT]+A[bl*exp_Y[j-1,gamma_INT])*T/M);

D[11,j]1=D[11,j-1]-sum(Ind[b_£fl*xexp_pl[j,gamma_INT]*(v[b_£fl*exp_vl[j
,gamma_INT: (gamma_INT10-1)]-v[bl*xexp_v[j-1,gamma_INT: (gamma_
INT10-1)]1)*f _p*(exp_AY[j-1,gamma_INT]+A[bl*exp_Y[j-1,gamma_INT
1)*T/M);

D[12,j]=D[12,j-1]-sum(Ind[b_fl*xexp_pl[j,gamma_INT]*v[b_fl*exp_vl[j,
gamma_INT: (gamma_INT10-1)]1*f_p*((exp_AY[j,gamma_INT]+A[b_=£f]x*
exp_Y[j,gamma_INT])-(exp_AY[j-1,gamma_INT]+A[bl*exp_Y[j-1,
gamma _INT]))*T/M);

D[13,j]1=D[13,j-1]-sum(v[b]l*(Ind[b_fl*exp_forward_pl[j-1,gamma_INT1
0:M]-Ind[bl*exp_pl[j-1,gamma_INT10:M])*exp_v[j-1,gamma_INT10:M
Ixf_p*(exp_AY[j-1,gamma_INT]+A[bl*exp_Y[j-1,gamma_INT])*T/M);

D[14,j]1=D[14,j-1]-sum(v[b]l*Ind[b_£fl*(exp_pl[j,gamma_INT10:M]-exp_
forward_p[j-1,gamma_INT10:M])*exp_v[j-1,gamma_INT10:M]*f_p*(
exp_AY[j-1,gamma_INT]+A[bl*exp_Y[j-1,gamma_INT])*T/M);

D[15,j]1=D[15,j-1]-sum(Ind[b_fl*exp_pl[j,gamma_INT10:M]I*x(v[b_=£f]l*exp
_v[j,gamma_INT10:M]-v[bl*exp_v[j-1,gamma_INT10:M])*f_px*(exp_AY
[j-1,gamma_INT]+A[bl*exp_Y[j-1,gamma_INT])*T/M);

D[16,j]1=D[16,j-1]-sum(Ind[b_fl*exp_pl[j,gamma_INT10:MI*v[b_£fl*exp_
v[j,gamma_INT10:M]*f_p*((exp_AY[j,gamma_INT]+A[b_=fl*exp_YI[j,
gamma _INT])-(exp_AY[j-1,gamma_INT]+A[b]l*exp_Y[j-1,gamma_INT]))
*xT/M) ;

}
D[1:8,(gamma_SU+1) :(n+1)]=rep(D[1:8,gamma_SU] ,n-gamma_SU+1) ;
for (j in (gamma_SU+1) :gamma_SU10){

print (j)

b=which(partitionINT==partitionSU[j-1]);

b_f=which(partitionINT==partitionSU[j]);

D[9,j1=D[9,j-11;

D[10,j]l=D[10,j-11;

D[11,j]1=D[11,j-1]-sum(Ind [gamma_INT]*f_p*V[gamma_INT]x*(v[b:(b_£f-1
Y1-vIbl*exp_v[j-1,b:(b_£f-1)1)*T/M)-(j<gamma_SU10)*sum(Ind[
gamma_INT]*f_p*V[gamma_INT]*(v[b_fl*exp_v[j,b_f:(gamma_INT10-1
Y1-v[bl*exp_v[j-1,b_f:(gamma_INT10-1)]1)*T/M);

D[12,j]=D[12,j-1]1;
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D[13,j]1=D[13,j-1]1-sum(v[b]*(Ind[b_fl*exp_forward_p[j-1,gamma_INT1
0:M]-Ind[bl*exp_pl[j-1,gamma_INT10:M])*exp_v[j-1,gamma_INT10:M
Ixf_p*V[gamma_INT]*T/M);

D[14,j]1=D[14,j-1]-sum(v[b]l*Ind[b_£fl*(exp_p[j,gamma_ INT10:M]-exp_
forward_pl[j-1,gamma_INT10:M])*exp_v[j-1,gamma_INT10:M]x*f_px*V[
gamma _INTI*T/M) ;

D[15,j]1=D[15,j-1]-sum(Ind[b_fl*exp_pl[j,gamma_ INT10:M]*(v[b_£fl*exp
_v[j,gamma_ INT10:M]-v[bl*exp_v[j-1,gamma_INT10:M])*f_p*V[gamma
_INTI*T/M);

D[16,j]1=D[16,j-11;

}

D[9:12,(gamma_SU10+1) : (n+1)]=rep(D[9:12,gamma_SU10] ,n-gamma_SU10+1
)

for (j in (gamma_SU10+1):n){

print (j)

b=which(partitionINT==partitionSU[j-1]);

b_f=which(partitionINT==partitionSU[j]);

D[13,j]1=D[13,j-11-sum(v[b]*(Ind[b:(b_f-1)]-Ind[bl*plb,b:(b_£-1)1)
xexp_v[j-1,b:(b_£f-1)]*f_p*V[gamma_INT]*T/M)-sum(v[b]l*(Ind[b_f
I*exp_forward_p[j-1,b_f:M]-Ind[bl*exp_pl[j-1,b_£f:M])*exp_v[j-1,
b_f:M]*f_pxV[gamma_ INT]*T/M);

D[14,j]1=D[14,j-1]-sum(v[bl*Ind[b_£fl*(exp_pl[j,b_f:M]-exp_forward_p

[j-1,b_f:M])*exp_v[j-1,b_£f:M]I*f_p*V[gamma_INT]*T/M);

D[15,j]1=D[15,j-1]-sum ((v[b:(b_f-1)]-v[bl*exp_v[j-1,b:(b_£f-1)]1)=*
Ind[b:(b_£f-1)]xf_p*V[gamma_INT]*T/M)-sum(Ind[b_fl*exp_pl[j,b_=I:
MI*x(v[b_fl*xexp_v[j,b_f:M]-v[bl*exp_v[j-1,b_f:M])*f_p*V[gamma_
INTI*T/M);

D[16,j]l=D[16,j-11;

}

b=which(partitionINT==partitionSU[n]);

b_f=which(partitionINT==partitionSU[n+1]);

D[13,n+1]1=D[13,n]-sum(v[b]l*(Ind[b:(b_£f-1)]1-Ind[bl*p[b,b:(b_£f-1)])*
exp_v[n,b:(b_f-1)]*f_p*V[gamma_INT]*T/M);

D[14,n+1]1=D[14,n];

D[15,n+1]=D[15,n]-sum ((v[b:(b_f-1)]-v[bl*exp_vIn,b:(b_£f-1)])*Ind[b
:(b_f-1)]1*f_px*V[gamma_INT]I*T/M);

D[16,n+1]1=D[16,n];

return (D) ;

3

SU2<-function (h_SU,Exp)A{
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n=T/h_SU;
I=0:n; #partition initialization ISU Decomposition
partitionSU=I*T/n;
D=matrix (0,16 ,n+1);
gamma _SU=which(partitionSU==gamma) ;
gamma_SU10=which(partitionSU==gamma+10) ;
exp_p=unlist (Exp$exp_p)
exp_pm=unlist (Exp$exp_pm)
exp_forward_p=unlist (Exp$exp_forward_p)
exp_forward_pm=unlist (Exp$exp_=forward_pm)
exp_v=unlist (Exp$exp_v)
exp_AY=unlist (Exp$exp_AY)
exp_Y=unlist (Exp$exp_Y)
for (j in 2:gamma_SU){
print (j)
b=which(partitionINT==partitionSU[j-1]);
b_f=which(partitionINT==partitionSU[j]);
D[1,j]=D[1,j-1]1+Ind[bl*exp_pl[j-1,gamma_INT]*v[bl*exp_v[j-1,gamma_
INT]*((exp_AY[j,gamma_INT]+A[b_fl*exp_Y[j,gamma_INT])-(exp_AYI[
j-1,gamma_INT]+A[bl*exp_Y[j-1,gamma_INT]));
D[2,j]=D[2,j-1]1+Ind[bl*exp_pl[j-1,gamma_INT]*(v[b_fl*exp_v[j,gamma
_INT]-v[bl*exp_v[j-1,gamma_INT])*(exp_AY[j,gamma_INT]+A[b_=£]x*
exp_Y[j,gamma_INT]);
D[3,j]=D[3,j-11+Ind[bl*v[b_£fl*(p[b,b_fl*exp_plj,gamma_INT]-exp_pl
j-1,gamma_INT])*exp_v[j,gamma_INT]*(exp_AY[j,gamma_ INT]+A[b_f
I*exp_Y[j,gamma_INT]);
D[4,j]1=D[4,j-11+(Ind[b_£f]l1-Ind[bl*p[b,b_£fl)*v[b_fl*xexp_pl[j,gamma_
INT]*exp_v[j,gamma_INT]*(exp_AY[j,gamma_INT]+A[b_fl*exp_YI[j,
gamma_INT]) ;
D[5,j1=D[5,j-1]1+sum(Ind[bl*v[b]l*p[b,b:(b_f-1)]*mulb:(b_£f-1)]*exp_
vij-1,b:(b_f-1)1*%(1-f_d)*(V[b:(b_f-1)]1-(exp_AY[j-1,b:(b_£f-1)1+
Albl*exp_Y[j-1,b:(b_£f-1)]1))*T/M)+(j<gamma_SU)*sum(v[b]l*Ind[b]*
exp_pm[j-1,b_f:(gamma_INT-1)]l*exp_v[j-1,b_f:(gamma_INT-1)]1=*(1-
f_d)*x((exp_AY[j,b_f:(gamma_ INT-1)]+A[b_fl*exp_Y[j,b_f:(gamma_
INT-1)1) -(exp_AY[j-1,b_f:(gamma_INT-1)]+A[bl*exp_Y[j-1,b_=f:(
gamma_INT-1)]1))*T/M);
D[6,j]=D[6,j-1]1+sum(Ind[bl*p[b,b:(b_f-1)]*mulb:(b_£f-1)]1*(v[b:(b_=£
1)1 -vibl*exp_v[j-1,b:(b_f-1)1)*x(1-f_d)*V[b:(b_f-1)I*T/M)+(j<
gamma_SU) *sum (Ind [bl*exp_pm[j-1,b_f:(gamma_INT-1)]*(v[b_£flx*exp
_v[j,b_f:(gamma_INT-1)]-v[bl*exp_v[j-1,b_f:(gamma_INT-1)])=*(1-
f_d)*(exp_AY[j,b_f:(gamma_INT-1)]+A[b_fl*exp_Y[j,b_£f:(gamma_
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INT-1) 1) *T/M);

D[7,j]1=D[7,j-1]1+(j<gamma_SU)*sum(Ind [b]l*(p[b,b_fl*exp_pm[j,b_=£:(
gamma _INT-1)]-exp_pm[j-1,b_f:(gamma_INT-1)])*v[b_fl*exp_v[j,b_
f:(gamma_INT-1)]*(1-f_d)*(exp_AY[j,b_£f:(gamma_INT-1)]+A[b_£f]*
exp_Y[j,b_£f:(gamma_INT-1)])*T/M);

D[8,j1=D[8,j-11+sum(v[b:(b_f-1)1*(1-f_d)*V[b:(b_f-1)]1*(incr_N[b:(
b_f-1)]-Ind[bl*p[b,b:(b_f-1)]*mulb:(b_£f-1)1*T/M))+(j<gamma_SU)
xsum ((Ind[b_£f]-Ind[bl*p[b,b_£f])*exp_pm[j,b_£f:(gamma_INT-1)]1x*v[
b_flxexp_v[j,b_f:(gamma_INT-1)]1*(1-f_d)*(exp_AY[j,b_f:(gamma_
INT-1)]+A[b_fl*exp_Y[j,b_£f:(gamma_INT-1)]1)*T/M);

D[9,j]=D[9,j-1]-sum(v[b]l*Ind[bl*exp_pl[j-1,gamma_INT]*exp_v[j-1,
gamma _INT: (gamma_INT10-1)]*f_p*x((exp_AY[j,gamma_ INT]+A[b_=£f]=*
exp_Y[j,gamma_INT])-(exp_AY[j-1,gamma_INT]+A[bl*exp_YI[j-1,
gamma _INT]))*T/M);

D[10,j]=D[10,j-1]-sum(Ind[bl*exp_pl[j-1,gamma_INT]*(v[b_£fl*exp_vl[j
,gamma_INT: (gamma_INT10-1)]-v[bl*exp_v[j-1,gamma_INT: (gamma_
INT10-1)]1)*f_p*(exp_AY[j,gamma_INT]+A[b_fl*exp_Y[j,gamma_INT])
*T/M) ;

D[11,j]1=D[11,j-1]-sum(Ind[b]l*(plb,b_fl*exp_plj,gamma_INT]-exp_plj
-1,gamma_INT])*v[b_fl*exp_v[j,gamma_INT:(gamma_INT10-1)]*f_px*(
exp_AY[j,gamma_ INT]+A[b_fl*exp_Y[j,gamma_INT])*T/M);

D[12,j]1=D[12,j-1]-sum((Ind[b_£f]l-Ind[bl*p[b,b_£fl)*exp_pl[j,gamma_
INT]*v[b_fl*xexp_v[j,gamma_INT:(gamma_INT10-1)]*f_p*(exp_AY[j,
gamma _INT]+A[b_fl*exp_Y[j,gamma_ INT])=*T/M);

D[13,j]1=D[13,j-1]-sum(v[b]l*Ind[bl*exp_pl[j-1,gamma_INT10:M]*exp_vl[
j-1,gamma_INT10:M]*f _p*((exp_AY[j,gamma_ INT]+A[b_fl*xexp_YI[j,
gamma _INT])-(exp_AY[j-1,gamma_INT]+A[bl*exp_Y[j-1,gamma_INT]))
*xT/M) ;

D[14,j]1=D[14,j-1]1-sum((v[b_fl*exp_v[j,gamma_INT10:M]-v[bl*exp_v[j
-1,gamma_INT10:M]) *Ind[bl*exp_p[j-1,gamma_INT10:M]*f_px*(exp_AY
[j,gamma_INT]+A[b_fl*exp_Y[j,gamma_ INT])*T/M);

D[15,j]1=D[15,j-1]-sum(Ind[bl*(p[b,b_fl*exp_pl[j,gamma_INT10:M]-exp
_plj-1,gamma_INT10:M])*v[b_fl*exp_v[j,gamma_INT10:M]*f_px*(exp_
AY[j,gamma_ INT]+A[b_flxexp_Y[j,gamma_INT])*T/M);

D[16,j]1=D[16,j-1]1-sum((Ind[b_£f]l-Ind[bl*p[b,b_£f]l)*exp_pl[j,gamma_
INT10:M]*v[b_fl*exp_v[j,gamma_INT10:M]*f_p=*(exp_AY[j,gamma_INT
J+A[b_fl*exp_Y[j,gamma_INT])=*T/M);

}
D[1:8,(gamma_SU+1) :(n+1)]=rep(D[1:8,gamma_SU] ,n-gamma_SU+1);
for (j in (gamma_SU+1) :gamma_SU10){

print (j)
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b=which(partitionINT==partitionSU[j-1]);

b_f=which(partitionINT==partitionSU[j]);

D[9,j1=D[9,j-11;

D[10,j]=D[10,j-1]1-sum(Ind [gamma_INT]*f_p*V[gamma_INT]*(v([b:(b_£f-1
Y1-v[bl*exp_v[j-1,b:(b_£-1)1)*T/M)-(j<gamma_SU10)*sum(Ind[
gamma _INT]*f_p*V[gamma_INT]*(v[b_fl*exp_v[j,b_f:(gamma_INT10-1
Yl-v[bl*exp_v[j-1,b_f:(gamma_INT10-1)]1)*T/M);

D[11,j]1=D[11,j-11;

D[12,j]=D[12,j-1]1;

D[13,j]1=D[13,j-11;

D[14,j]1=D[14,j-1]-sum((v[b_fl*exp_v[j,gamma_INT10:M]-v[bl*exp_v[j
-1,gamma_INT10:M])*Ind[bl*exp_pl[j-1,gamma_INT10:M]*f_p*V[gamma
CINT]*T/M);

D[15,j]1=D[15,j-1]1-sum(Ind [b]*(p[b,b_fl*xexp_p[j,gamma_INT10:M]-exp
_plj-1,gamma_INT10:M])*v[b_fl*xexp_v[j,gamma_INT10:M]*f_px*V[
gamma _INT]*T/M) ;

D[16,j1=D[16,j-1]-sum((Ind[b_£f]-Ind[bl*p[b,b_fl)*exp_pl[j, gamma_
INT10:M]*v[b_fl*exp_v[j,gamma_INT10:M]*f_p+*V[gamma_ INT]*T/M);

}

D[9:12, (gamma_SU10+1) : (n+1)]=rep(D[9:12,gamma_SU10] ,n-gamma_SU10+1
)

for (j in (gamma_SU10+1):n){

print (j)

b=which(partitionINT==partitionSU[j-1]);

b_f=which(partitionINT==partitionSU[j]);

D[13,j1=D[13,j-11;

D[14,j]1=D[14,j-1]-sun(Ind[bl*(v[b:(b_f-1)]-v[bl*exp_v[j-1,b:(b_£f-
1)1)*plb,b:(b_f-1)1*f_p*V[gamma_INT]*T/M)-sum(Ind[bl*exp_p[j-1
,b_f:Ml*(v[b_fl*exp_v[j,b_f:Ml-v[bl*xexp_v[j-1,b_£f:MI)*f_px*V[
gamma _INT]*T/M) ;

D[15,j]1=D[15,j-1]-sum(Ind[bl*v[b_£fl*(p[b,b_fl*exp_plj,b_£f:M]l-exp_
plj-1,b_f:M])*exp_v[j,b_f:M]*f_pxV[gamma_ INT]*T/M);

D[16,j]1=D[16,j-1]1-sum(v[b:(b_£f-1)1*(Ind[b:(b_£f-1)]1-Ind[bl*p[b,b:(
b_f-1)]1)*f_p*V[gamma_ INT]*T/M)-sum(v[b_£fl*(Ind[b_£f]-Ind[bl*pl[b
,b_fl)*xexp_plj,b_f:Ml*xexp_v[j,b_f:M]*f_p*V[gamma_INT]*T/M);

}

b=which(partitionINT==partitionSU[n]);

b_f=which(partitionINT==partitionSU[n+1]);

D[13,n+1]1=D[13,n];

D[14,n+1]1=D[14,n]-sum(Ind[b]l*(v[b:(b_f-1)]1-v[bl*exp_v[j-1,b:(b_£f-1
Y1) *plb,b:(b_£f-1)1*f_p*V[gamma_INT]*T/M);
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D[15,n+1]1=D[15,n];
D[16,n+1]=D[16,n]-sum(v[b:(b_£f-1)]1*(Ind[b:(b_£f-1)]1-Ind[bl*p[b,b: (b
_f-1)1)*f_pxV[gamma_ INT]I*T/M);

return (D) ;

### MLMC estimation ###

# MLMC parameters

L=4; #number of MLMC levels

k_MLMC<-1;

h_MLMC=(1/2)"(k_MLMC-1)+*h_INT; #MLMC starting step width
pck=1000 #simulation package

N=c¢(100,50,20,10,5); #number of packages per level
#MLMC calculation

Exp_yearly=MLMC(1);

Exp_quarterly=MLMC(1/4);

Exp_4weekly=MLMC(1/13);

#SU decompositions for both orders
D_yearly1=SU1(1,Exp_yearly);
D_yearly2=SU2(1,Exp_yearly);
D_quarterly1=SU1(1/4,Exp_quarterly);
D_quarterly2=SU2(1/4,Exp_quarterly);
D_4weekly1=SU1(1/13,Exp_4weekly);
D_4weekly2=SU2(1/13,Exp_4weekly);

#Add up SU addends for the different claim components and form the
differences between the two orders
D_yearlyl_total<- matrix(0,4,ncol(D_yearlyl))
D_yearly2_total<- matrix(0,4,ncol(D_yearly2))
D_quarterlyl_total<- matrix(0,4,ncol(D_quarterlyl))
D_quarterly2_total<- matrix(0,4,ncol(D_quarterly2))
D_4weeklyl_total<- matrix(0,4,ncol(D_4weeklyl))
D_4weekly2_total<- matrix(0,4,ncol(D_4weekly2))
D_yearly_diff<- matrix(0,4,ncol(D_yearlyl))
D_quarterly_diff<- matrix(0,4,ncol(D_quarterlyl))
D_4weekly_diff<- matrix(0,4,ncol(D_4weeklyl))

D_yearlyl_total[1,]=D_yearlyi1[1,]+D_yearly1[5,]1+D_yearly1[9,]+D_
yearly1[13,]
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D_yearlyl_total[2,]=D_yearly1[2,]+D_yearly1[6,]+D_yearly1[10,]+D_
yearly1[14,]
D_yearlyl_total[3,]=D_yearly1[3,]+D_yearly1[7,]+D_yearly1[11,]1+D_
yearly1[15,]
D_yearlyl_total[4,]=D_yearly1[4,]+D_yearly1[8,]+D_yearly1[12,]1+D_
yearly1l[16,]
D_quarterlyl_total[1,]=D_quarterly1[1,]+D_quarterly1[5,]+D_
quarterly1[9,]+D_quarterly1[13,]
D_quarterlyl_total[2,]=D_quarterly1[2,]+D_quarterlyl1[6,]+D_
quarterly1[10,]+D_quarterly1[14,]
D_quarterlyl_total[3,]=D_quarterly1[3,]+D_quarterly1[7,]1+D_
quarterly1[11,]+D_quarterly1[15,]
D_quarterlyl_total[4,]=D_quarterly1[4,]+D_quarterly1[8,]+D_
quarterly1[12,]+D_quarterly1[16,]
D_4weeklyl totall[1,]=D_4weekly1[1,]1+D_4weekly1[5,]1+D_4weekly1[9,]1+D
_4weekly1[13,]
D_4weeklyl_total[2,]=D_4weekly1[2,]1+D_4weekly1[6,]1+D_4weekly1[10,]+
D_4weekly1[14,]
D_4weeklyl_total[3,]=D_4weeklyl1[3,]+D_4weeklyl1[7,]+D_4weeklyl1[11,]+
D_4weekly1[15,]
D_4weeklyl_total[4,]=D_4weeklyl1[4,]+D_4weeklyl1[8,]+D_4weeklyl[12,]+
D_4weekly1[16,]
D_yearly2_total[4,]=D_yearly2[1,]+D_yearly2[5,]1+D_yearly2[9,]+D_
yearly2[13,]
D_yearly2_total[3,]=D_yearly2[2,]+D_yearly2[6,]1+D_yearly2[10,]1+D_
yearly2[14,]
D_yearly2_total[2,]=D_yearly2[3,]+D_yearly2[7,]+D_yearly2[11,]1+D_
yearly2[15,]
D_yearly2_total[1,]=D_yearly2([4,]+D_yearly2[8,]1+D_yearly2[12,]+D_
yearly2[16,]
D_quarterly2_total[4,]=D_quarterly2[1,]+D_quarterly2[5,]+D_
quarterly2[9,]+D_quarterly2[13,]
D_quarterly2_total[3,]=D_quarterly2[2,]+D_quarterly2[6,]+D_
quarterly2[10,]+D_quarterly2[14,]
D_quarterly2_total[2,]=D_quarterly2[3,]+D_quarterly2[7,]1+D_
quarterly2[11,]+D_quarterly2[15,]
D_quarterly2_total[1,]=D_quarterly2[4,]+D_quarterly2([8,]+D_
quarterly2[12,]+D_quarterly2[16,]
D_4weekly2_total[4,]=D_4weekly2[1,]+D_4weekly2[5,]1+D_4weekly2[9,]1+D
_4weekly2[13,]
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D_4weekly2_total[3,]=D_4weekly2[2,]1+D_4weekly2[6,]1+D_4weekly2[10,]+
D_4weekly2[14,]

D_4weekly2_total[2,]=D_4weekly2[3,]+D_4weekly2[7,]+D_4weekly2[11,]+
D_4weekly2[15,]

D_4weekly2_total[l,]=D_4weekly2[4,]+D_4weekly2[8,]+D_4weekly2[12,]+
D_4weekly2[16,]

D_yearly_diff=D_yearlyl_total-D_yearly2_total

D_quarterly_diff=D_quarterlyl_total-D_quarterly2_total

D_4weekly_diff=D_4weeklyl_total-D_4weekly2_total

#H##PLOTS ###
x_INT=seq(O0,T,h_INT);
x_yearly=seq(0,T,1);
x_quarterly=seq(0,T,1/4);
x_4weekly=seq(0,T,1/13);

#PLOT RISK DRIVERS

par (mfrow=c(2, 2), oma=c(0,0,3,0))

plot(x_INT, Njump, type="1", xlab = "Timeyin,years", ylab= "Jump,
processyN", cex.lab=1.1, ylim=c(0,1), yaxt=’n’)

axis(side = 2, at = seq(0,1,0.25))

plot(x_INT, lambda, type="1", xlab = "Timeyin,years", ylab= "
Mortality,intensity,\u0O3BB", cex.lab=1.2)

plot(x_INT, r, type="1", xlab = "Time,ing,years", ylab= "Interest,
intensityyr", cex.lab=1.2)

plot(x_INT, Y, type="1", xlab "Timeyin,years", ylab= "Market
index,,Y", yaxt=’n’,cex.lab=1.2, ylim=c(0,2000))
seq(0,2000,1000))

seq(0,2000,500) ,labels=NA)

axis (side 2, at

axis (side 2, at

options(scipen=999)

#PLOT SU ADDENDS FOR DIFFERENT SU GRID WIDTHS
par (mfrow=c(4, 3), oma=c(0,0,3,0))

plot(x_yearly, D_yearlyl_total[l,], type="1", xlab = "", ylab= "",
main="\nyearly", ylim=c(-30000,100000),cex.lab=1.1, col="corall"
, font.main = 2)

title(xlab="Time in,years", line=2.5, cex.lab=1.2)

title(ylab="Surplus", line=2.5, cex.lab=1.2)
plot (x_quarterly, D_quarterlyl_total[1,], type="1",xlab="", ylab=""
, main= "\nquarterly", ylim=c(-30000,100000),cex.lab=1.1, col="

darkslategray4", font.main = 2)
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title(xlab="Time,in,years", line=2.5, cex.lab=1.2)

title(ylab="Surplus", line=2.5, cex.lab=1.2)

plot(x_4weekly, D_4weeklyl_totall[1l,], type="1", xlab = "", ylab= ""
, main= "\n4-weekly", ylim=c(-30000,100000),cex.lab=1.1, col="
darkseagreen3", font.main = 2)

title(xlab="Time_ in,years", line=2.5, cex.lab=1.2)

title(ylab="Surplus", line=2.5, cex.lab=1.2)

nn nn
B

plot(x_yearly ,D_yearlyl_total[2,], type="1", xlab = ,ylab=
main="\nyearly",cex.lab=1.1, ylim=c(-2500,2200),col="corall",
font.main = 2)

title(xlab="Time in,years", line=2.5, cex.lab=1.2)

title(ylab="Surplus", line=2.5, cex.lab=1.2)

plot (x_quarterly, D_quarterlyl_total[2,], type="1", xlab = "", ylab
= """ main= "\nquarterly", ylim=c(-2500,2200),cex.lab=1.1, col=
"darkslategray4", font.main = 2)

title(xlab="Time_ in,years", line=2.5, cex.lab=1.2)

title(ylab="Surplus", line=2.5, cex.lab=1.2)

plot (x_4weekly, D_4weeklyl_total[2,], type="1", xlab = "", ylab= ""
, main= "\n4-weekly", ylim=c(-2500,2200),cex.lab=1.1, col="
darkseagreen3", font.main = 2)

title(xlab="Time in,years", line=2.5, cex.lab=1.2)

title(ylab="Surplus", line=2.5, cex.lab=1.2)

plot (x_yearly, D_yearlyl_total[3,], type="1", xlab = "", ylab= "",
main="\nyearly", ylim=c(-8500,30000),cex.lab=1.1,col="corall",
font.main = 2)

title(xlab="Time_ in,years", line=2.5, cex.lab=1.2)

title(ylab="Surplus", line=2.5, cex.lab=1.2)

plot(x_quarterly, D_quarterlyl_total[3,], type="1", xlab = "", ylab
= "" main="\nquarterly", ylim=c(-8500,30000),cex.lab=1.1, col="
darkslategray4", font.main = 2)

title(xlab="Time_ in,years", line=2.5, cex.lab=1.2)

title(ylab="Surplus", line=2.5, cex.lab=1.2)

plot (x_4weekly, D_4weeklyl_total[3,], type="1", xlab = "", ylab= ""
,main="\n4-weekly", ylim=c(-8500,30000),cex.lab=1.1, col="
darkseagreen3", font.main = 2)

title(xlab="Time,in,years", line=2.5, cex.lab=1.2)

title(ylab="Surplus", line=2.5, cex.lab=1.2)

plot(x_yearly, D_yearlyl_total[4,], type="1", xlab = "", ylab= "",
main="\nyearly", ylim=c(-7000,100000),cex.lab=1.1,col="corall",
font.main = 2)

title(xlab="Time_ in,years", line=2.5, cex.lab=1.2)
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title(ylab="Surplus", line=2.5, cex.lab=1.2)

plot(x_quarterly, D_quarterlyl_total[4,], type="1", xlab = "", ylab
= "" main="\nquarterly", ylim=c(-7000,100000),cex.lab=1.1, col="
darkslategray4", font.main = 2)

title(xlab="Time in,years", line=2.5, cex.lab=1.2)

title(ylab="Surplus", line=2.5, cex.lab=1.2)

plot (x_4weekly, D_4weeklyl_total[4,], type="1", xlab = "", ylab= ""
, main="\n4-weekly", ylim=c(-7000,100000),cex.lab=1.1, col="
darkseagreen3", font.main = 2)

title(xlab="Timey,inyyears", line=2.5, cex.lab=1.2)

title(ylab="Surplus", line=2.5, cex.lab=1.2)

mtext ("Unsystematic biometricsurplus, (N)", side = 3, line = -1.4,
outer = TRUE, font = 2)

mtext ("Systematic biometric,surplus,(\u03BB)", side = 3, line = -17
.5, outer = TRUE, font = 2)

mtext ("Systematicinterestsurplus,(r)", side = 3, line = -34,
outer = TRUE, font = 2)

mtext ("Systematic,fund, surplus,(Y)", side = 3, line = -50.3, outer
= TRUE, font = 2)

options (scipen=999)

#PLOT TOTAL SURPLUS

par (mfrow=c(1, 3), oma=c(0,0,3,0))

plot(x_yearly, D_yearlyl_total[1l,]+D_yearlyl_total[2,]+D_yearlyl_
total[3,]+D_yearlyl_total[4,], type="1", xlab = "", ylab= "",
main="Yearly time,grid", ylim=c(0,200000),col="corall")

title(xlab="Time in,years", line=2.5, cex.lab=1.2)

title(ylab="Surplus", line=2.5, cex.lab=1.2)

plot (x_quarterly, D_quarterlyl_total[1,]+D_quarterlyil_total[2,]+D_
quarterlyl_total[3,]+D_quarterlyl_total([4,], type="1", xlab = ""
, ylab= "", main="Quarterly,time,grid", ylim=c(0,200000), col="
darkslategray4")

title(xlab="Timeyinyyears", line=2.5, cex.lab=1.2)

title(ylab="Surplus", line=2.5, cex.lab=1.2)

plot(x_4weekly, D_4weeklyl_total[1l,]+D_4weeklyl_total[2,]+D_4weekly
1_total[3,]+D_4weeklyl_total[4,], type="1", xlab = "", ylab= "",
main="4-weekly, time,grid", ylim=c(0,200000), col="darkseagreen3
")

title(xlab="Timeyinyyears", line=2.5, cex.lab=1.2)

title(ylab="Surplus", line=2.5, cex.lab=1.2)
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#Barplot - Impact of the time grid on the SU decomposition

par (mfrow=c(1, 1), oma=c(0,0,3,0))

ml<- matrix(c(D_yearlyl_total[l,ncol(D_yearlyl)],D_yearlyl_totall2,
ncol(D_yearly1)],D_yearlyl_total[3,ncol(D_yearly1)],D_yearlyl_
total[4,ncol(D_yearlyl1)],D_quarterlyl_total[1l,ncol(D_quarterlyl)
],D_quarterlyl_total[2,ncol(D_quarterlyl1)],D_quarterlyl_totall[3,
ncol (D_quarterly1l)],D_quarterlyl_total[4,ncol(D_quarterlyl)],D_4
weeklyl_total[1l,ncol(D_4weeklyl)],D_4weeklyl_total[2,ncol(D_4
weekly1)],D_4weeklyl_total[3,ncol(D_4weeklyl1)],D_4weeklyl_totall
4,ncol(D_4weekly1)]), byrow=TRUE, nrow=3)

sources<- c("N","\u0O3BB","r","Y")

time <- c("yearly", "quarterly", "4-weekly")

colnames (ml) <- sources

rownames (m1l) <- time

colours=c("corall", "darkslategray4", "darkseagreen3")

#colours=c("corall", "cyan4", "darkgoldenrod3")

barplot(ml,ylab=’’, xlab=’’,beside = TRUE, col=colours, ylim=c(0,11
0000))

title(xlab="Risk,_ factors", line=2.5, cex.lab=1.2)
title(ylab="Surplus", line=2.5, cex.lab=1.2)
options(scipen=999)

box ()

legend (’topright’,fill=colours,legend=time)

#Barplot - Impact of the update order on the SU decomposition Part
I

m2<- matrix(c(D_yearly_diff[1,ncol(D_yearlyl1)]/D_yearlyl_totalll,
ncol(D_yearly1)],D_yearly_diff[2,ncol(D_yearly1)]/D_yearlyl_
total[2,ncol(D_yearly1)],D_yearly_diff[3,ncol(D_yearly1)]/D_
yearlyl_total[1,ncol(D_yearlyl1)],D_yearly_diff[4,ncol(D_yearlyl)
1/D_yearlyl_total[1l,ncol(D_yearly1)],D_quarterly_diff[1,ncol(D_
quarterly1)]/D_quarterlyl_total[l,ncol(D_quarterlyl)],D_
quarterly_diff [2,ncol(D_quarterly1)]/D_quarterlyl_total[1l,ncol(D
_quarterlyl1)],D_quarterly_diff[3,ncol(D_quarterlyl1)]/D_quarterly
1_total[1l,ncol(D_quarterlyl)],D_quarterly_diff[4,ncol(D_
quarterly1)]/D_quarterlyl_total[1l,ncol(D_quarterlyl1)],D_4weekly_
diff[1,ncol(D_4weeklyl1)]/D_4weeklyl_total[l,ncol(D_4weeklyl)],D_
4weekly _diff[2,ncol(D_4weeklyl1)]/D_4weeklyl_total[l,ncol(D_4
weekly1)],D_4weekly_diff [3,ncol(D_4weeklyl)]/D_4weeklyl_totalll,
ncol (D_4weekly1l)],D_4weekly_ diff[4,ncol(D_4weeklyl)]/D_4weeklyl_
total[1l,ncol(D_4weeklyl1)]), byrow=TRUE, nrow=3)
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sources<- c("N","\uO3BB","r","Y")
time <- c("yearly", "quarterly", "4-weekly")
colnames (m2) <- sources

rownames (m2) <- time

colours=c("corall", "darkslategray4", "darkseagreen3")
barplot (m2,ylab="’, xlab=’’,beside = TRUE, col=colours, ylim=c(-0.0
4,0.05))

title(xlab="Risk_ factors", line=2.5, cex.lab=1.2)
title(ylab="Relative deviation", line=2.5, cex.lab=1.2)
options (scipen=999)

box ()

#Barplot - Impact of the update order on the SU decomposition Part
II

barplot (m2,beside = TRUE, col=colours, ylim=c(0.38,0.5),xaxt="n’,
yaxt=’n’)

options(scipen=999)

box ()

legend (’topright’,fill=colours,legend=time)

axis(side = 2, at = seq(0.4,0.5,0.05), labels=c(0.4,0.45,0.5))

#Further information in the results paragraph

#Time of death

time_death=min(which(Ind==0));

partitionINT [time_death]

#Maximum mortality intensity

max (lambda)

#Maximum interest intensity

max (r)

#Market fund average yield

((Y[1145]1-Y[11)/Y[1]1)~(1/22)

((v[1041]-Y[1])/Y[1])~(1/20)

#Changes between yearly and weekly grid for the contract-end
surplus

(D_4weeklyl_total[1,716]-D_yearlyl_total[1,56])/D_yearlyl_totall[1,5
6]

(D_4weeklyl_total[3,716]-D_yearlyl_total[3,56])/D_yearlyl_totall[3,5
6]

(D_4weeklyl_total[2,716]-D_yearlyl_total[2,56])/D_yearlyl_total[2,5
6]
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(D_4weeklyl_total[4,716]1-D_yearlyl_total[4,56])/D_yearlyl_totall4,5
6]
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