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Abstract

Humans use their sense of vision to perceive their environment and make situation-aware deci-
sions. The eyes naturally coordinate with, for instance, hand movements and speech generation
to focus on relevant visual information for that task. People tend to look at objects when they
aim to grasp or refer to them in a dialogue. Modern eye tracking technology allows developers
to incorporate real-time gaze information as input to multimodal human-computer interfaces.
It can be used as an active or passive input modality in multimodal interfaces: a user can
influence a system via explicit eye movements (active), and a system can implicitly derive in-
formation about the user and their environment by observing the eye movement behavior and
fixated objects in the environment (passive). However, many issues remain underexplored, so
the technology cannot be widely deployed in interactive intelligent systems. This thesis aims to
address related challenges, following the main research question “How can we enable effective and
efficient gaze-based user interfaces and their development?”. This thesis presents new approaches
and methods with the goal of addressing the challenges when using gaze as input in interactive
systems. We contribute by developing two methods for active gaze-based interaction and three
approaches for passively interpreting the human gaze signal. Further, we outline a framework
for gaze-based multimodal interaction, relating to multimodal-multisensor and intelligent user
interfaces, addressing the question of how such systems can be designed and developed.

As the first part of the main research question, I investigate how gaze can be used as an active
input modality. The first techniques for the corresponding active gaze-based interaction date
back to the 1990s. Advances in eye tracking technology and methods for analyzing the gaze signal
have improved ever since, enabling the development of a broad range of interaction techniques.
Many approaches address how absolute eye gaze can be used as a primary input modality in direct
manipulation interfaces. A prominent example is gaze-based object selection using the absolute
gaze position and an additional selection trigger, like a dwell or a button click. However, errors
in gaze estimation can severely hamper the usability and performance of such interfaces because
selection targets can be missed, which leads to no or wrong selections. Calibration-free interaction
techniques exist that circumvent the problem by, e.g., correlating smooth pursuit movements of
the eye with animated on-screen objects or detecting gaze gestures in relative eye movements.
This thesis addresses the problem of gaze estimation errors when using gaze as an active input
modality. The corresponding partial research question concerning active gaze-based interaction
is: “How can the negative impact of gaze-estimation errors on gaze-based interaction be reduced
when gaze is used as an active input modality?” I investigate how the gaze-estimation error can
be modeled and handled in real-time interaction and how interaction can be realized without
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user calibration and accurate gaze estimation.
As the second part of the main research question, I investigate how gaze can be used as a

passive input modality. Corresponding passive gaze-based interaction is based on observing
and interpreting a user’s gaze signal and is closely related to research on human vision in psy-
chology and neuroscience. Research has found that a person’s eye movements depend on their
task and the interaction context, and that eye movements are an important factor for the effi-
ciency of human-human dialogue and collaboration. This inspired researchers to investigate novel
methods for analyzing the gaze signal to enable more efficient, situation-aware human-machine
interfaces. The main challenges include building effective and generalizable models and applying
these models in interactive systems. The partial research question concerning passive gaze-based
interaction is: “How can we build effective machine learning models for interpreting human eye
movements in the context of passive gaze-based interaction?” In this thesis, I investigate novel
approaches for interpreting the human gaze signal using machine learning for three use cases:
inferring the search target of a visual search, estimating the perceived relevance of a text that
has been read by a user, and semi-automatic detection of visual attention to areas or objects of
interest.

As the final part of the main research question, I discuss how individual techniques could
be integrated into gaze-based interfaces, following the research question “How can we effectively
design and develop gaze-based interaction systems?” In this thesis, I outline a framework
for building gaze-based multimodal interaction systems, based on a generic architecture
for intelligent user interfaces (IUI) with a strong relation to multimodal-multisensor interfaces
(MMI). First, I focus on enabling gaze input in multimodal-multisensor interfaces. This thesis
presents the multisensor-pipeline (MSP), a lightweight, flexible, and extensible framework for
prototyping multimodal-multisensor interfaces based on real-time sensor input. Second, I discuss
how the methods and approaches presented in this thesis relate to the main building blocks of a
generic IUI software architecture. Eventually, I provide an outlook on future research directions
and open challenges concerning gaze-based multimodal interaction.



Zusammenfassung

Kurzzusammenfassung in Deutsch

Eye Tracker ermöglichen die Nutzung von Echtzeit-Blickinformationen als Eingabe für Benutzer-
schnittstellen. Sie kann als aktive oder passive Eingabemodalität in multimodalen Systemen
eingesetzt werden: Ein Benutzer kann ein System durch explizite Augenbewegungen beeinflussen,
und ein System kann durch die Analyse von Eye-Tracking-Daten implizit Informationen über
den Benutzer und die Umgebung ableiten. Allerdings sind viele Fragen ungeklärt, sodass die
Einsatzmöglichkeiten eingeschränkt sind. Diese Arbeit befasst sich mit den damit verbunde-
nen Herausforderungen der zentralen Forschungsfrage folgend: „Wie können wir effektive und
effiziente blickbasierte Benutzerschnittstellen und deren Entwicklung ermöglichen?“. Die Arbeit
stellt neue Ansätze und Methoden vor, die Blickinformationen als Eingabe in interaktiven Syste-
men ermöglichen. Darüber hinaus wird ein Framework für blickbasierte multimodale Interaktion
im Kontext multimodaler Multisensor- und intelligenter Benutzerschnittstellen.

Short Summary in English

Modern eye tracking technology allows developers to incorporate real-time gaze information as
input to multimodal human-computer interfaces. It can be used as an active or passive input
modality in multimodal interfaces: a user can influence a system via explicit eye movements,
and a system can implicitly derive information about the user and the environment by analyzing
eye tracking data. However, many issues remain underexplored, so the technology cannot be
widely deployed in interactive intelligent systems. This thesis aims to address related challenges,
following the main research question: “How can we enable effective and efficient gaze-based user
interfaces and their development?”. It presents new approaches and methods with the goal of
addressing the challenges when using gaze as input in interactive systems. It further outlines
a framework for gaze-based multimodal interaction, relating it to multimodal-multisensor and
intelligent user interfaces.
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Chapter 1

Motivation

Developing gaze-based multimodal interaction systems is connected to many challenges, including
handling the error in gaze estimation for active gaze-based interaction, building effective machine
learning models for passive gaze-based interaction, and designing and developing gaze-based
interaction systems. In the following, I introduce essential background on gaze-based multimodal
interaction in section 1.1 and provide an overview of the thesis, detailing the research questions
and contributions, in section 1.2.

1.1 Gaze-based Multimodal Interaction

This thesis presents novel approaches and methods in the field of gaze-based user interfaces.
Hereby, we consider an eye tracker as one sensor or gaze as one modality in multimodal-
multisensor interfaces (Oviatt et al., 2017b). Gaze can be used as an active or passive input
modality in multimodal interfaces: a user can influence a system via explicit eye movements
(active), and a system can implicitly derive information about the user and its environment by
observing the eye movement behavior and fixated objects in the environment (passive). Conse-
quently, gaze-based interfaces are closely related to intelligent user interfaces that “aim to improve
the efficiency, effectiveness, and naturalness of human-machine interaction” by incorporating ben-
efits of, among others, multimodal interaction and artificial intelligence technologies (Maybury
and Wahlster, 1998, pp. 2-3). Qvarfordt (2017) introduced the design space for gaze-informed
multimodal interaction to classify gaze-based, multimodal, and intelligent user interfaces along
two axes. We use this design space to classify the contributions of this thesis into active and
passive gaze-based interfaces (we will refer to this as the awareness level). In the following, we
briefly introduce the concepts of multimodal-multisensor interfaces and intelligent user interfaces.
Further, we describe the design space of gaze-informed multimodal interaction and how it relates
to the two aforementioned concepts.
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4 CHAPTER 1. MOTIVATION

1.1.1 Multimodal-Multisensor Interfaces

A brief definition of multimodal interfaces is provided by Oviatt and Cohen (2015, p. 5): “Mul-
timodal interfaces support input and processing of two or more modalities, such as speech, pen,
touch and multi-touch, gestures, gaze, and virtual keyboard, which may be used simultaneously
or alternately. User input modes can involve recognition-based technologies (e.g., speech) or
discrete input (e.g., keyboard, touch). Some modes may express semantically rich information
(e.g., pen, speech, keyboard), while others are limited to simple selection and manipulation ac-
tions that control the system display (e.g., gestures, touch, sensors).” Gaze, like any other input
modality, can be used in an active or passive input mode: a user can influence a system via
explicit eye movements (active), and a system can implicitly derive information about the user
and its environment by observing the eye movement behavior and fixated objects in the envi-
ronment (passive). “Active input modes are ones that are deployed by the user intentionally as
explicit input to a computer system (e.g., speaking, writing, typing, gesturing, pointing) [and]
passive input modes refer to naturally occurring user behavior or actions that are recognized
and processed by the system (e.g., facial expressions, gaze, physiological or brain wave patterns,
sensor input such as location). They involve user or contextual input that is unobtrusively and
passively monitored, without requiring any explicit user command to a computer” (Oviatt and
Cohen, 2015, p. 5). The class of multimodal-multisensor interfaces extends multimodal inter-
faces by incorporating sensor information as additional contextual cues: “Multimodal-Multisensor
Interfaces combine one or more user input modalities with sensor information that involves pas-
sive input from contextual cues (e.g., location, acceleration, proximity, tilt) that a user does
not need to consciously engage” (Oviatt and Cohen, 2015, p. 6). In this paper, we classify
gaze-based interfaces as multimodal-multisensor interfaces, since data streams from eye trackers
can be counted as passive input and sensor-based cues. However, we use the terms passive in-
put and sensor-based cues interchangeably in many parts. For instance, in foveated rendering
(Duchowski, 2018), i.e., when real-time gaze input is used to determine which parts of a virtual
reality scene should be rendered in great detail, gaze can be counted as a pure sensor-based cue
that serves as an input to optimize the efficiency of the rendering pipeline, but also as a naturally
occurring user behavior used for the same purpose.

Why is it interesting to strive towards multimodal rather than unimodal interaction? A basis
for answering that question can be found in the theoretical foundations of human multisensory
processing. For a detailed introduction to this topic, we refer to Oviatt (2017) and Oviatt and
Cohen (2015, Chapter 4 to 5). In the following, we briefly summarize the main motivations for
and advantages that can be expected when building multimodal-multisensor interfaces (Oviatt
and Cohen, 2015, pp. 17-25):

• User preference and natural interaction patterns: People prefer to interact multimodally
for many tasks and application domains.

• Flexible interaction patterns: Multimodal interfaces can enable users to choose the best
input modality that fits the task at hand and the possibly dynamic interaction context.

• Accommodation of individual differences: Individual differences in ability and preference
can be addressed, making multimodal interaction technology an important building block
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for accessible human-computer interaction.

• Efficiency: Efficiency can be improved, particularly concerning the input of spatial infor-
mation and when counting recovery from errors of, e.g., recognition systems.

• Superior error handling: Multimodal interfaces may be advantageous for error avoidance
and recovery. For instance, through “mutual disambiguation [which] involves disambigua-
tion of signal- or semantic-level information in one error-prone recognition modality by
using partial information supplied by another modality” (Oviatt and Cohen, 2015, p. 106).

• Minimization of cognitive load: User’s cognitive load can be reduced by allowing them to
convey information using the most efficient modality. For instance, pointing with a pen
more efficiently conveys a spatial position than speech. Further, users’ working memory is
limited, but its effective size can be expanded when multiple modalities are used.

• Expressive power and simulation of cognition: Expressively powerful interfaces, including,
e.g., digital pen input, can stimulate cognition and consequently improve users’ performance
in, e.g., idea generation, problem-solving, and inferential reasoning.

The advantages mentioned above cannot be taken for granted. Oviatt and Cohen (2015, Chap-
ter 6) highlights the human-centered design methodologies’ essential role in creating successful
multimodal interfaces. Nowadays, the smartphone is likely the most prominent and widespread
device facilitating multimodal-multisensor interfaces. Modern mobile devices allow users to use,
e.g., touch-based gesturing, handwriting via pens, and speaking in an active input mode, and
carry proximity and geolocation sensors for context-aware features (cf. Oviatt and Cohen (2015,
pp. 12-16)). For a complete guide to and overview of multimodal-multisensor interfaces and
related technologies, we refer to the book series by Oviatt et al. (2017a, 2018, 2019).

1.1.2 Intelligent User Interfaces

Maybury and Wahlster (1998, p. 2) defined Intelligent User Interfaces (IUIs) as “human-machine
interfaces that aim to improve the efficiency, effectiveness, and naturalness of human-machine
interaction by representing, reasoning, and acting on models of the user, domain, task, discourse,
and media.” According to their vision, benefits for users will arise from the support of multimodal
input analysis and multimodal output generation, semi- or fully automated completion of tasks,
and advanced interaction management. They argue that a successful realization of “intelligent
human-computer interaction requires a synergistic integration of” enabling technologies from
fields like artificial intelligence (including text processing, spoken language processing, knowledge
representation, and planning) and human-computer interaction (Maybury and Wahlster, 1998,
pp. 2-3). A similar perspective is adopted in the context of interactive intelligent systems, i.e.,
“interactive systems that incorporate some sort of AI technology (or technology that at one time
was viewed as belonging to AI)” (Jameson et al., 2009, p. 11). Jameson et al. (2009) introduces
the metaphor of a monocular view versus a binocular view when designing such systems. He
proclaims that “when creating algorithms or systems that are supposed to be used by people,
we should adopt a ‘binocular’ view of users’ interaction with intelligent systems: a view that
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Figure 1.1: Architecture of Intelligent User Interfaces adopted from Maybury and Wahlster (1998).
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regards the design of interaction and the design of intelligent algorithms as interrelated parts
of a single design problem“ (Jameson et al., 2009, p. 11). Conversely, the monocular view
refers to researchers’ focus on only one aspect of intelligent interaction, either developing an (AI)
algorithm or designing user interaction. Maybury and Wahlster (1998, p. 7) conclude that the
“principal areas of intelligent interface research include analysis of input (e.g., spoken, typed, and
handwritten language; gestures, including hand, eye, and body states and motion), generation
(planning or realization) or coordinated output, [and] modeling of the user, discourse, task, and
situation and interaction management, including possible tailoring of interaction to the user, task,
and/or situation.” Figure 1.1 shows an adapted version of the long-acknowledged conceptual
architecture by Maybury and Wahlster (1998, p. 3), which indicates the interrelation of these
areas. In this thesis, we consider the functional coherent elements Input Processing & Media
Analysis, Interaction Management, Output Rendering & Media Design, User & Context Models,
and External Services as the main building blocks of an intelligent user interface. We briefly
explain the role of each building block and, in part IV, we relate the methods and approaches
presented in this thesis to them.

1.1.2.1 Input Processing & Media Analysis

One of the building blocks is located on the input side of an IUI, namely Input Processing and
Media Analysis. The focus of related methods is to facilitate human-like signal processing and
interpretation capabilities in human-machine interaction, such as multimodal input interpreta-
tion (Maybury and Wahlster, 1998, p. 8). This shows the strong relation between IUIs and
multimodal-multisensor interfaces (see section 1.1.1). The main goals include increasing the
interaction’s efficiency, effectiveness, and naturalness.

1.1.2.2 Interaction Management

Interaction Management is the center part between Input Processing & Media Analysis and
Output Rendering & Media Design. Components in this building block consume pre-processed
active and passive user inputs, manage the state of the interaction or discourse, and decide on
whether and how to act or respond to a user.

1.1.2.3 Output Rendering & Media Design

Output Rendering and Media Design refers to technologies concerning the “generation of coor-
dinated multimedia output” (Maybury and Wahlster, 1998, p. 9), including multimedia presen-
tation design, automated graphics design, and automated layout. Components in this building
block are triggered by components from the Interaction Management block.

1.1.2.4 User & Context Models

User and context models are key in enabling adaptive and situation-aware interaction in IUIs.
Components in the User & Context Models building block focus on model acquisition, i.e., on
how to build effective user, discourse, or other context models, tracking the state of these models,
and how to use them (Maybury and Wahlster, 1998, pp. 9-10). This can be applied in most parts
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Awareness Level

High Awareness

Users explicitly move 
their eyes to interact 

with the interface.

Low Awareness

The interface takes advantage 
of the user's gaze without the 
user being aware of it.

The interface takes 
advantage of the user's gaze 
and the user is aware of it.

ActivePassive

Figure 1.2: Awareness level dimension of gaze-informed multimodal interfaces.

of an IUI, including Input Processing & Media Analysis, Interaction Management, and Output
Rendering & Media Design.

1.1.2.5 External Services

Via application programming interfaces (APIs), IUIs can use any external service like knowl-
edge bases, crowd-sourcing platforms for human computation systems, and, meanwhile, many
AI-based services like image classification, automatic speech recognition, natural language under-
standing, and language generation. While External Services are mainly connected to Interaction
Management, it can also help in media analysis and design.

1.1.3 Design Space of Gaze-informed Multimodal Interaction

Gaze can be used in many ways in multimodal and intelligent systems. We adopt the term gaze-
informed (or gaze-based) multimodal interaction from Qvarfordt (2017) to refer to such interfaces.
Qvarfordt (2017, pp. 382-383) suggests a differentiation of gaze-based interfaces based on two
dimensions depicting “how actively the users control their gaze, and how stationary the user is
while interacting with the system”. They span the design space of gaze-informed multimodal
interaction: interaction can be rated on a continuum from active to passive and from stationary
to mobile, i.e., according to users’ level of awareness and mobility. We name these dimensions
the awareness level and the mobility level. The awareness level directly relates to the concept
of active vs. passive input modes in multimodal-multisensor interfaces (see section 1.1.1). In
addition, gaze-based interaction is related to intelligent user interfaces on multiple levels (see
section 1.1.2). Active gaze-based interaction technologies can be used in input processing and
media analysis to improve the effectiveness and efficiency of interaction. Further, passive gaze-
based interaction technologies can be used to model the user and context, and to guide the
interaction management.

1.1.3.1 Awareness Level

The distinction between using gaze in an active or passive input mode defines the range of the
awareness level dimension of the design space. Interfaces or interactive systems would be sorted
along this axis depending on how much “the user is consciously deploying their actions with the
intent of providing input to a computer system” (Oviatt and Cohen, 2015, p. 2). As illustrated in
figure 1.2, low awareness refers to using gaze in a passive input mode while the user is not aware of
that fact. High awareness refers to using gaze in an active input mode while the user is fully aware
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Mobility Level

No movement
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Head-mounted

Remote

Mobile

Limited by object Limited to area Unlimited

Figure 1.3: Mobility level dimension of gaze-informed multimodal interfaces.

of that fact. When the gaze is used in an active input mode, a user’s intentional eye movements
directly impact the interaction. We call these active gaze-based interfaces. Examples include
gaze-based selection (Stellmach and Dachselt, 2012b) and text input (Feng et al., 2021). Such
interfaces have an awareness level, i.e., the users know that their gaze impacts the interaction.
Section 3.1 provides a more detailed overview of active gaze-based interfaces. When the gaze is
used in a passive input mode, naturally occurring eye movement behavior is monitored and can
indirectly impact the interaction. We call them passive gaze-based interfaces. Typically, the gaze
signal is used to infer information about the user, such as the ongoing activity (Li et al., 2018a)
or the induced cognitive load of an activity (Klingner, 2010), to tailor the interaction to the user
and its current state. In such cases, the users are less or not aware that their gaze is used to
influence the interaction. Consequently, these interfaces would rank low in terms of awareness
level. A more detailed overview of related approaches can be found in section 3.2. The awareness
level is a continuous scale. For instance, users might be aware that their gaze is used to resolve
deictic references in speech (Elepfandt and Grund, 2012) but may forget about this fact if the
interaction runs smoothly.

1.1.3.2 Mobility Level

The mobility level is defined by the level of freedom a user has when interacting with the system.
Concerning eye tracking, this ranges from settings where the user’s head is fixed using a chin rest,
i.e., no movements are possible, to mobile settings where users can move freely (see figure 1.3).
Some constraints are hereby induced by the eye tracking device (see section 2.2.1). For instance,
table-mounted eye trackers have a fixed perspective and enable eye tracking in a limited area
only, also called the headbox. Head-mounted eye trackers allow users to move around, sometimes
limited by the range of wireless data transmission. Still, the interface might be presented on a
screen with a fixed position. The mobility level is also a continuous scale accounting for various
degrees of mobility as illustrated in figure 1.3. For instance, interaction with a desktop computer
using a remote eye tracker counts as stationary, as movements are limited by the object at which
the eye tracker is mounted. However, interaction with fixed head positions, such as through a
chin rest, restricts mobility more than a headbox. Similarly, interaction based on head-mounted
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eye trackers can vary in mobility. For instance, a user interface shown on a fixed screen requires
the screen to be in the field of view of the eye tracker and the user to be close enough to enable
interaction (movement is limited by an object, i.e., the screen). Also, range limitations of wireless
data transmission can reduce mobility (movement is limited to an area). The interaction would
be fully mobile if no movement restrictions existed in a completely independent setup.
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1.2 Overview of the Thesis and its Contributions

Eye trackers have evolved from pure diagnostic sensors to input devices for real-time interactive
systems (Duchowski, 2018). This was partially driven by advances in eye tracking hardware over
the last decade concerning the devices’ affordability, performance, and form factor. Also, the
characteristics of the human visual system, including the eyes, are essential to this development.
Directing the gaze to a specific spot is very efficient, and the gaze direction implicitly reveals
where a human allocates its limited attentional resources (Holmqvist and Andersson, 2017, p.
26). This visual attention can be attracted by generally appealing, bottom-up factors and goal-
or task-oriented, top-down factors (Borji and Itti, 2013). Modern eye trackers can capture
and stream a user’s gaze in real-time, allowing developers to use the human gaze as input to
interactive systems. The gaze signal can be captured in stationary settings, typically using
remote eye trackers, and in mobile settings, using head-mounted eye trackers. Remote eye
trackers have a fixed position in the world, usually attached to a screen, and allow little to no
movement by a user. Head-mounted eye trackers are worn by the user like glasses and allow
more freedom of movement. Still, head-mounted eye trackers can also be used in a stationary
setting. From stationary to mobile interaction settings, gaze can be employed as an active
input modality or as a passive sensor-based cue, which spans the design space for gaze-based
multimodal interaction (cf. section 1.1). Although the human gaze is considered to be a valuable
input modality for interactive systems, only very specific user interfaces are available, like gaze-
based typing applications for disabled people in the domain of assistive technologies (Feng et al.,
2021) and foveated rendering, which enables fast scene rendering through gaze-based control
of the rendering quality (Duchowski, 2018), commonly used in high-resolution virtual reality
headsets.

Many challenges that hinder a wide deployment of gaze-informed multimodal interfaces re-
main underexplored. A key problem of active gaze-based interaction is the gaze estimation error:
the difference between the estimated and true gaze position can be substantial (Holmqvist et al.,
2012), in particular, if the user moves in front of a display (Cerrolaza et al., 2012; Mardanbegi
and Hansen, 2012). Moreover, the longstanding Midas Touch problem persists, i.e., the problem
of deciding when a gaze should be interpreted as input and when it should not be (Jacob, 1990).
Other prohibitive factors include low user acceptance and privacy issues (Steil, 2019), as well as
the often mandatory and lengthy calibration process (Vidal et al., 2013). In addition, methods
for passive gaze-based interfaces are underexplored and often suffer from low effectiveness and
a low generalizability to other users or application domains (Plopski et al., 2022). This thesis
addresses key challenges of gaze-based interaction concerning active gaze-based interaction in
part II, passive gaze-based interaction in part III, and discusses how to design and develop gaze-
based interaction systems in part IV. The following sections provide a detailed motivation for
each part in sections 1.2.1 to 1.2.3 and a summary of the research questions and contributions
in section 1.2.4.
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1.2.1 Human Gaze as an Active Input Modality

Using eye gaze as an active input modality has received a lot of interest during the last three
decades (Duchowski, 2018). Many approaches have been presented to use human gaze as an active
input modality in multimodal interfaces (Qvarfordt, 2017). Common applications of remote and
mobile eye tracking include gaze-based selection and manipulation of objects and gaze-based
typing.

“When gaze is employed as an active input mode, users can directly impact the system
by explicitly changing their gaze behavior”
– Qvarfordt (2017, p. 383)

Key issues that have to be addressed include the Midas touch problem, i.e., the human gaze is
always active and it has to be decided when to use the signal and when not to use it, errors in
the gaze estimation process, and the usually required and often tedious calibration process of eye
tracking devices. A prominent solution to overcome the Midas touch problem is to combine the
absolute gaze position with an additional selection trigger like a dwell (Jacob, 1991) or a button
click (Zhai et al., 1999). Still, approaches based on the absolute gaze position for selection and
manipulation have to cope with the inevitable gaze estimation error, i.e., the problem that the real
gaze position deviates from the estimated one (Holmqvist et al., 2012). Common countermeasures
include using gaze-to-object mapping algorithms (Špakov, 2011), gaze signal filters (Špakov,
2012), or optimized interface designs (Feit et al., 2017). Other solutions include interacting using
gaze gestures (Drewes and Schmidt, 2007) or smooth pursuit eye movements (Vidal et al., 2013),
which rely on relative eye movement patterns. These calibration-free interaction techniques do
not require accurate gaze estimates and user calibration but introduce other limitations. For
instance, gaze gestures can quickly become complex and difficult to remember, and interaction
based on smooth pursuits requires constantly moving interface elements that the eyes can follow.

In part II of this thesis, I aim to address the problem of gaze estimation errors that can
severely hamper the effectiveness and usability of active gaze-based interaction. I present a
framework for handling the gaze estimation error in head-mounted eye tracking and develop a
calibration-free interaction technique for remote eye trackers that does not rely on accurate gaze
estimates. We present our developments on error-aware gaze-based interfaces in chapter 4 and
on calibration-free interaction in chapter 5.

Error-aware Interaction This thesis presents a new class of gaze-based interfaces in chap-
ter 4, namely error-aware gaze-based interfaces that incorporate the inevitable gaze estimation
error. We implement and evaluate methods for modeling the error via machine learning and use
it for real-time error-adaptive object selection with a monocular head-mounted eye tracker. We
demonstrate the positive effects of incorporating error estimates in an active gaze-based inter-
face. The gaze estimation error can severely hamper the usability and performance of mobile
gaze-based interfaces given that the error constantly varies for different interaction positions
(Barz et al., 2015, 2016a, 2018; Lander et al., 2015; Mardanbegi and Hansen, 2012). We explore
error-aware gaze-based interfaces, i.e., interfaces that estimate and adapt to the gaze estimation
error on-the-fly. We develop a user interface prototype for gaze-based selection and evaluate it
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using three different error compensation methods. First, we implement and evaluate the error
compensation method that increases the size of interface components directly proportional to
absolute error estimates from four different error models (NaïveScaling). Based on our find-
ings, we implement two further compensation methods: one method scales components based
on a two-dimensional error distribution (Feit et al., 2017) (Feit2dDist) and another one shifts
gaze points by a predicted directional error estimate (PredictiveShift). We evaluate these com-
pensation methods in a 12-participant user study and show that our PredictiveShift method
significantly outperforms the others in terms of selection rate, particularly for small gaze tar-
gets. These results underline both the feasibility and potential of next-generation error-aware
gaze-based user interfaces.

Calibration-free Interaction We implement and evaluate an approach for calibration-free
authentication based on saccadic eye movements in chapter 5. Our approach circumvents the
requirement of accurate gaze estimates. Concretely, we demonstrate a PIN entry method for
public displays that is based on saccadic eye movements. The technology is demonstrated with a
remote eye tracking device. We chose this demo usecase because the usage of interactive public
displays has increased, including the number of sensitive applications and, hence, the demand
for user authentication methods. In this context, gaze-based authentication was shown to be
effective and more secure but significantly slower than touch- or gesture-based methods. We
implement a calibration-free and fast authentication method based on saccadic eye movements
for situated displays. In a user study (n=10), we compare our new method with CueAuth from
Khamis et al. (2018b), an authentication method based on smooth pursuit eye movements. The
results show a significant improvement in accuracy from 82.94% to 95.88%. At the same time,
we found that the entry speed can be increased enormously with our method, on average, from
18.28 s down to 5.12 s, which is comparable to touch-based input.

1.2.2 Human Gaze as a Passive Input Modality

Eye tracking was initially used as a diagnostic tool to understand the human visual system
(Duchowski, 2002, 2018). Typically, eye movements were recorded during a user study and
analyzed post-hoc. Research has found that the human gaze can be guided by salient bottom-
up factors and task-related top-down factors in a scene (Borji and Itti, 2013). When humans
perform a task, the number of fixations to irrelevant but salient objects drops, while the fixations
to task-relevant objects, i.e., top-down factors, increase (Yarbus, 1967; Land and Hayhoe, 2001;
Holmqvist and Andersson, 2017; DeAngelus and Pelz, 2009; Rothkopf et al., 2016). Passive
gaze-based interfaces observe and interpret such eye movements and react to them during the
interaction. In contrast to active gaze-based interfaces, the eye movements are not explicitly
controlled by the user to generate a system response. One example can be found in gaze-
contingent displays that render contents with a high level of detail in the foveal region to match
the high visual acuity and with reduced details in the outer regions of the visual field of view
to speed up the rendering (Duchowski, 2018). Other approaches observe eye movements to infer
information about users, such as their preferences and ongoing activities, to adapt the interface to
them (Qvarfordt, 2017). For instance, Buscher (2010) investigated whether gaze can be exploited
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to enhance information retrieval systems. Toyama (2015) presented approaches for analyzing the
visual content viewed by a user for building attention-aware interactive systems.

In part III of this thesis, I introduce novel methods for interpreting the human gaze signal and
depict how they can drive the development of attention-aware user interfaces. I implement and
evaluate approaches for inferring visual search targets, modeling the relevance of text passages
for information retrieval systems, and identifying viewed objects in a scene for attention-aware
computing. This thesis presents developments on inferring search targets during visual search
processes in chapter 6, on inferring the relevance of read paragraphs in chapter 7, and on detecting
visual attention to ambient objects in chapter 8.

Search Target Inference Visual search is a perceptual task in which humans aim at iden-
tifying a search target object, such as a traffic sign, among distractor objects. Search target
inference subsumes computational methods for predicting this target by tracking and analyzing
overt behavioral cues of that person, e.g., the scanpath and fixated visual stimuli. We investigate
whether eye tracking can be used to infer search targets during visual search process in chapter 6.
We develop two novel encodings for scanpaths based on the fixated visual stimuli in a scene and
investigate their impact on the effectiveness of search target inference models in section 6.1. The
Bag of Deep Visual Words encoding is based on an approach from the literature that uses Bag of
Visual Words, a common method to encode a set of images in computer vision. It encodes image
sequences from scanpaths using a pre-trained convolutional neural network to enable search tar-
get inference based on machine learning. We evaluate it using an available dataset that includes
visual search trials for collages of book covers in comparison to a re-implementation of the Bag
of Visual Words method. The results show that our new scanpath encoding outperforms the
baseline from the literature, in particular, when excluding fixations on the search target. We
also present an approach for inferring search targets in natural scenes in section 6.2. We aim
to predict the class of the image segment surrounding the search target determined by SegNet,
a deep learning image segmentation model (Badrinarayanan et al., 2017). We develop a novel
method for encoding scanpaths from a visual search as Histograms of Fixated Image Segments
and compare it to our previous approach. We create a new search target inference dataset for this
purpose. The results show that our segmentation-based sequence encoding outperforms the Bag
of Deep Visual Words method and enables target inference in natural environments in exchange
for less spatial precision.

Implicit Relevance Feedback Eye movements were shown to be an effective source of im-
plicit relevance feedback in constrained search and decision-making tasks. Recent research sug-
gests that gaze-based features, extracted from scanpaths over short news articles, can reveal
the perceived relevance of read text with respect to a known trigger question (Bhattacharya
et al., 2020b,a). We aim to confirm this finding and investigate whether it generalizes to multi-
paragraph Wikipedia documents requiring readers to scroll down to read the whole text in chap-
ter 7. We conduct a user study (n=24) in which participants read single- and multi-paragraph
articles and rate their relevance at the paragraph level with respect to a trigger question. We
model the perceived relevance using machine learning and features from the literature. Our re-
sults confirm that eye movements can be used to effectively model the relevance of short news
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articles, especially when we exclude difficult cases. These documents are on the topic of the
trigger questions but are irrelevant. However, our results do not clearly show that the modeling
approach generalizes to multi-paragraph document settings. We publish our data and code for
feature extraction under an open-source license to enable future research in gaze-based implicit
relevance feedback.

Visual Attention Modeling Processing visual stimuli in a scene is essential for the human
brain to make situation-aware decisions, and mobile eye tracking can track a user’s visual at-
tention during that process. For instance, by tracking which ambient objects are fixated. Such
information can benefit real-time interactive systems for, e.g., reference resolution in conversa-
tional interfaces (Barz et al., 2017; Prasov and Chai, 2008). It can also accelerate the analysis of
human behavior through diagnostic eye tracking studies. Important stimuli are typically encoded
as rectangular areas of interest (AOIs) per video frame, and hypotheses relate to them. This in-
volves tedious manual annotation, as each participant has an individual egocentric video. In this
thesis, we implement two methods for automatically mapping fixations to AOIs using pre-trained
deep learning models for image classification and object detection in chapter 8. We develop an
evaluation framework based on the VISUS dataset (Kurzhals et al., 2014a) and performance met-
rics from activity recognition (Ward et al., 2006, 2011). We evaluate our methods and discuss
their potential and limitations in section 8.1. Further, we address the limited flexibility of this
approach by implementing eyeNotate, a web-based annotation tool that enables semi-automatic
data annotation and learns to improve from corrective user feedback in section 8.2. Users can
manually map fixation events to areas of interest (AOI) in a video-editing-style interface (base-
line version). Further, our tool can generate fixation-to-AOI mapping suggestions based on a
few-shot image classification model (IML-support version). We conduct an expert study with
trained annotators (n=3) to compare the baseline and IML-support versions. We measure the
perceived usability, annotations’ validity and reliability, and efficiency during a data annotation
task. We asked our participants to re-annotate data from a single individual using an existing
dataset (n=48). Further, we conducted a semi-structured interview to understand how partici-
pants used the provided IML features and assess our design decisions. In a post-hoc experiment,
we investigate the performance of three image classification models in annotating the data of the
remaining 47 individuals.

1.2.3 Towards a Gaze-based Multimodal Interaction Framework

In part IV of this thesis, we describe our efforts toward building a framework for gaze-based mul-
timodal interaction. First, we demonstrate how we enable gaze input in multimodal-multisensor
interfaces (Oviatt et al., 2017b, p. 3) by implementing the Multisensor-Pipeline package for
Python. Second, we discuss how the contributions of this thesis can be used in intelligent user
interfaces (Maybury and Wahlster, 1998).

Multisensor-Pipeline (MSP) In chapter 9, we present the multisensor-pipeline (MSP), a
lightweight, flexible, and extensible framework for prototyping multimodal-multisensor interfaces
based on real-time sensor input like gaze from eye trackers. This directly results from our devel-
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opments and is published under an open-source license. It enables the integration of gaze-based
interaction technologies presented in this thesis from active gaze-based input approaches pre-
sented in part II to methods for passive gaze-based interaction presented in part III. We describe
the framework, showcase how it can be used to implement gaze-based multimodal interaction
and discuss its relation to the methods and approaches presented in this thesis.

Eye Tracking in Intelligent User Interfaces In chapter 10, we discuss how gaze can
be used in intelligent user interfaces. We briefly recap the generic architecture introduced by
Maybury and Wahlster (1998) and point out how the eye tracking methods and approaches
presented in this thesis relate to its main building blocks. In addition, we outline how MSP
could be extended toward a framework for implementing gaze-based intelligent user interfaces,
i.e., how it can be extended towards a framework for gaze-based multimodal interaction.
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1.2.4 Overview of the Research Questions & Contributions

This thesis aims to address some of the essential challenges of gaze-based interaction with the
vision of enabling more effective and efficient user interfaces. The main research question of
this thesis is: “How can we enable effective and efficient gaze-based user interfaces and their
development?”

• In part II, I address the problem of gaze estimation errors when using gaze as an active
input modality, following the partial research question “How can the negative impact of
gaze-estimation errors on gaze-based interaction be reduced when gaze is used as an active
input modality?” In chapter 4, I develop a methodology for modeling the gaze estimation
error in head-mounted eye trackers and demonstrate the positive effects of incorporating
error estimates in an error-aware gaze-based interface for object selection. Further, in
chapter 5, I present a method for calibration-free authentication via PIN entry based on
saccadic eye movements, which does not require accurate gaze estimates, using a remote
eye tracker.

• In part III, I address the problem of building effective and generalizable machine learning
models in the context of passive gaze-based interaction. The corresponding partial research
is “How can we build effective machine learning models for interpreting human eye move-
ments in the context of passive gaze-based interaction?” I investigate novel approaches for
interpreting the human gaze signal using machine learning for three use cases: inferring the
search target of a visual search in chapter 6, estimating the perceived relevance of a text
that has been read by a user in chapter 7, and semi-automatic detection of visual attention
to areas or objects of interest in chapter 8.

• In part IV, I discuss how individual techniques could be integrated into gaze-based inter-
faces, following the research question “How can we effectively design and develop gaze-based
interaction systems?” I outline a framework for building gaze-based multimodal interac-
tion systems, based on a generic architecture for intelligent user interfaces (IUI) with a
strong relation to multimodal-multisensor interfaces (MMI). In chapter 9, I present the
multisensor-pipeline (MSP), a lightweight, flexible, and extensible framework for proto-
typing multimodal-multisensor interfaces based on real-time sensor input. In chapter 10, I
discuss how the methods and approaches presented in this thesis relate to the main building
blocks of a generic IUI software architecture.

Eventually, in part V, I conclude by briefly summarizing the results of this thesis, stating the
limitations, and providing an outlook on future research directions. I relate the contributions
of this thesis and corresponding future directions to past and ongoing research projects, namely
the EU project MASTER and the BMBF projects GeAR, SciBot, and No-IDLE. We also report
on dissemination activities related to this thesis and its impact so far.
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Chapter 2

Background

Eye tracking is an important tool in various fields, ranging from psychology and neuroscience
to human-computer interaction and marketing research. Eye tracking provides valuable insights
into human visual perception, attentional processes, and cognitive behavior by analyzing the
movements and gaze patterns of the human eye. This work aims to incorporate eye movements
and their characteristics into gaze-based interfaces and interaction technologies. This section
provides background information on key concepts and technologies for the systems presented
in this work. The section introduces basic information on the human eye, eye movements, and
visual attention. Further, I report on eye tracking hardware, common gaze estimation methods,
and typical applications of eye tracking. Related work on active and passive gaze-based interfaces
is provided in the respective parts II and III.

2.1 The Human Eye, Eye Movements, & Visual Attention

The human eye is a complex sensory organ that allows us to perceive the visual world around
us. Its outer layer consists of the transparent cornea and the sclera, a dense, white, opaque,
fibrous tissue with mainly protective functions (Atchison and Smith, 2023). A horizontal section
illustrating important parts of the human eye is shown in figure 2.1. Holmqvist and Andersson
(2017, pp. 12-13) describe the basic function of the eye as follows: light passes through the
cornea and pupil, is flipped upside down by the lens, and projects an image onto the retina. The
retina, located at the back of the eye, contains specialized photoreceptor cells known as rods
and cones, which convert light stimuli into electrical signals that are transmitted to the brain
via the optic nerve. The rods are sensitive to light and support vision at low brightness. The
cones enable color vision and are very densely arranged in the area of the fovea, which is located
in the back part of the eye and covers only two degrees of the visual field. The cones are less
densely arranged in the periphery of the retina. Therefore, humans have a high-acuity vision in
the area of the fovea only. The line between a viewed object of interest and the fovea is called
the visual axis. It deviates from the optical axis, i.e., “the line joining the centers of curvatures
of the refracting surfaces” including the cornea and the lens (Atchison and Smith, 2023, p. 10).
The iris regulates the pupil diameter (Atchison and Smith, 2023, p. 4).
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Figure 2.1: Horizontal section of the human eye (based on figure 1.1 in Atchison and Smith (2023, p.
4)), adapted from Talos (2008)).

The human eye can perform several movements, also referred to as oculomotor events, with
the aim to, e.g., direct the foveal region to a specific part of a visual scene or maintain high
visual acuity on a specific part of it. Three pairs of muscles enable the horizontal (yaw), vertical
(pitch), and limited torsional (roll) movements for repositioning the eye in three-dimensional
space (Holmqvist and Andersson, 2017, p. 13). We provide an overview of important eye
movements. The most prominent oculomotor event is a fixation. During fixations, the eye
remains (relatively) still to focus the visual axis on an object of interest. Micromovements that
occur during a fixation include tremor, drift, and microsaccades. The duration range of fixations
is typically reported to lie between 200 and 400 ms (Holmqvist and Andersson, 2017, p. 15) or
150 and 600 ms (Duchowski, 2007, p. 44). A common simplification is to assume that, for the
time of a fixation, the human pays attention to the fixated object. This assumption is known
as the eye-mind hypothesis (Just and Carpenter, 1980) and a sufficient approximation for many
applications of eye tracking. However, it neglects that, besides attending to the object hit by the
visual axis (overt attention), a person can attend to another object using their peripheral vision
(covert attention) (Findlay and Gilchrist, 2003, p. 3). An important role of covert attention
and peripheral vision is to collect relevant information for planning re-directions of the visual
axis (Findlay and Gilchrist, 2003, p. 9). These re-directing eye movements are called saccades,
i.e., rapid eye movements between two fixations that take around 30 to 80 ms. With up to
500 degrees per second, saccades are the fastest body movement (Holmqvist and Andersson,
2017, pp. 14-15). Smooth pursuit events or pursuit movements are slower, with a velocity of
around 10 to 30 degrees per second. They occur when a person tracks a moving target with their
eyes. Unlike saccades, the visual scene can be processed during a pursuit movement. Further
eye movements include torsion, which is a rotation around the direction of gaze, and vergence,
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which is the movement of the eyes in opposite directions to adjust the focus to a stimulus at
a different depth (Holmqvist and Andersson, 2017, pp. 14-15). Nystagmus is, in principle, a
series of smooth pursuit movements followed by saccades in the opposite direction (Holmqvist
and Andersson, 2017, p. 216). The closing of the eyelids is commonly referred to as a blink event
(Holmqvist and Andersson, 2017, p. 16). Blinks are typically removed from the raw gaze signal
because pupil tracking might be erroneous before closing and after opening the eye, i.e., when
the eyelid partially occludes the pupil.

2.2 Eye Tracking Technology

Human gaze and eye movements can be captured and analyzed using modern eye tracking tech-
nology. In this section, we provide an overview of common types of eye tracking hardware
and corresponding methods for gaze estimation, algorithms for detecting eye movements, and
methods for visualizing and analyzing these eye movements.

2.2.1 Eye Tracking Devices and Gaze Estimation

Modern hardware and software enable precise and non-intrusive tracking of the gaze direction.
The most common device types include video-based remote and head-mounted eye trackers,
also known as video-oculography systems (see figure 2.2). In such systems, the video cameras
are placed in the environment, e.g., on a table or at the edge of a screen, or on the head of a
participant, respectively. Other types exist but typically suffer from specific drawbacks making
them unsuitable for gaze-based interaction, which is the focus of this thesis. Examples include
eye-mounted systems and electro-oculography. Eye-mounted systems are invasive and suffer from
low comfort and hygiene problems (Holmqvist and Andersson, 2017, p. 95). For instance, scleral
coil systems are based on contact lenses that have to be attached to the eyeball. A coil is mounted
on the lens and influences an electromagnetic field upon eye movements which can be measured
and used to estimate the gaze direction (Duchowski, 2007, p. 51). Electro-oculography is based
on differences in the electrical potential of the skin around the human eye. Electrodes placed
around the eye can be used to measure these differences, which indicate horizontal and vertical
eye movements as well as blinking but cannot be used to estimate the gaze direction (Holmqvist
and Andersson, 2017, p. 70). Nevertheless, wearable electro-oculography systems could have
applications in context-aware mobile interaction (Bulling et al., 2008). In this thesis, we focus
on video-based eye tracking systems in the context of human-machine interaction. Video-based
eye tracking systems include two essential processing steps: eye detection and gaze estimation
(Hansen and Ji, 2010). Eye detection refers to the localization of the eye in the video stream of
one or multiple video cameras. The gaze estimation step determines the gaze direction or point of
regard (PoR) based on the outcome of this process. Typically, a calibration procedure is required
to generate a function that maps the outcome of the eye detection step to a direction or point
in a target space, e.g., a two-dimensional coordinate system of a computer screen. We introduce
concepts and techniques for eye detection and gaze estimation, which are commonly used for
remote and head-mounted eye trackers. We then describe these device types and highlight
important differences.
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2.2.1.1 Eye Detection

Video-based eye trackers capture one or multiple eyes of a human. Their presence and position
must be detected to enable the subsequent gaze estimation step. However, this task remains
challenging due to several aspects that can greatly alter the appearance of the eye region. Oc-
clusions of the eye by the eyelids, the condition of the eye (i.e., whether it is open or closed),
ethnicity, viewing angle, light conditions, and the variability in size, reflectivity, or head pose
are influential factors and lead to a high variance problem domain. A taxonomy for eye detec-
tion techniques by Hansen and Ji (2010) includes shape-based, appearance-based, and hybrid
methods, i.e., methods that combine several approaches, that address this problem.

Shape-based Methods

Shape-based methods leverage the shape characteristics of the face and eye region to locate and
track the position of the eye or the gaze direction in a sequence of eye images. For that, features
or contours extracted from the images are matched to an eye model. The basic building blocks of
shape-based methods include a geometric eye model and a similarity measure for matching the
structures of the image to that model. Models can be classified into simple fixed-shape models,
more complex geometric models such as deformable-template models, and feature-based models
that rely on local image features. A common simple model is the elliptical shape model that aims
at matching a set of image features to an elliptic shape that may represent the elliptic boundary
of the iris (i.e., the limbus) or the pupil. In fact, these shapes are circular, but depending on the
camera position, they appear elliptic. Usually, such approaches are efficient and robust under
various viewing angles but face problems with variations in eye features. More complex models,
like the deformable-template model (Yuille et al., 1992), enable a more detailed representation of
the state of the eye. It models the human eye with two parabolas for the eyelids and a circle for
the limbus. In general, such models are accurate and generic. However, they suffer from several
limitations, including high computational costs, a need for high-contrast images, problems with
model initializations far from the eye position and re-initializations after large head movements
(for remote eye tracking only), and problems in handling eye occlusions. Feature-based models
are based on local image features instead of holistic image features describing the whole eye or
head. These are typically more robust against variations of ambient illumination and camera
viewpoints. Common local features include the limbus, the pupil, and corneal reflections. The
most prominent approaches in current eye tracking hardware include pupil detection based on
local feature-based or holistic shape models and active infrared (IR) illumination. Commonly,
near IR light emitters with a wavelength of around 780 to 880 nm are used, which can be captured
by many default camera modules and are mostly invisible to humans. The light source can be
closely aligned with the optical axis of the camera, which results in a bright appearance of the
pupil. In this case, the camera can capture the IR light that enters the eye through the pupil, is
reflected from the retina, and leaves the eye through the pupil again. The pupil appears brighter
than the rest of the eye and head because it reflects more IR light than the rest of the eye and
head. The most common case is that the light source is not aligned with the optical axis. The
head and the eye reflect more IR light than the pupil because the incident IR light reflected from
the retina cannot leave the pupil toward the camera: the pupil appears darker than the rest.
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Appearance-based Methods

Appearance-based eye detection and tracking methods, also known as image template methods or
holistic methods, rely on the visual appearance of the eye. The appearance is captured using, e.g.,
color distributions or filter responses for the camera image showing the eye region. Approaches
can be based on image templates that take into account spatial and intensity information of the
image, i.e., camera images are matched against image-based templates for eye detection, or on
statistical models that interpret the intensity distribution independent from spatial information.
Modern approaches rely on machine learning methods like convolutional neural networks to
detect and track the eyes (Zhang et al., 2015b). Appearance-based methods are considered to
work well in realistic settings. However, large amounts of template or training data must be
collected to be robust to illumination and facial orientation variations.

2.2.1.2 Gaze Estimation

The gaze estimation step determines the gaze direction or point of regard. A gaze direction is
typically reported as a three-dimensional gaze ray in a reference coordinate system anchored in
the real world. The point of regard can refer to a point in 2D space, e.g., from a computer screen,
or in 3D space, such as the mentioned world coordinate space. In principle, gaze estimation
methods model the relation between the image data of an eye tracker (by using the outcome
of the eye detection step) and the gaze direction or point of regard. One of the challenges is
that users move their heads when interacting with eye tracking devices. For that reason, many
remote eye tracking systems use chin rests, bite bars, or similar structures to fix the user’s head
with the goal of preventing such distorting head movements. Modern approaches for stationary
eye tracking rely on additional head tracking, either in a direct way or implicitly, e.g., as part
of a mapping function. Another option is to mount the eye tracking hardware on the user’s
head: cameras for eye detection move with the head, and no more compensation is required.
Head-mounted devices are considered to be more invasive, but modern tracking devices based on
glasses-like mounts enable comfortable mobile eye tracking (Kassner et al., 2014). One drawback
is that gaze estimates are always relative to the user’s head pose unless additional external head
tracking or surface detection is employed. Typically, the point of regard is determined as a 2D
point in the coordinate system of an egocentric (i.e., front-facing) camera that is also mounted
on the same glasses-like device (Holmqvist and Andersson, 2017, p. 95). Independent of the
device type, all gaze estimation methods require prior calibration. Important parameters that
need to be determined are intrinsic camera parameters (camera calibration), the geometric setup
of the tracking device, including its cameras and light sources (geometric calibration), individual
user characteristics (personal calibration), and parameters of the gaze mapping function (gaze
mapping calibration). In most cases, the related mapping functions are feature-based, i.e., based
on local image features like shape-based eye detection methods. These are either model-based
geometric approaches or interpolation-based/regression-based approaches. Despite significant
advances in eye tracking technology, gaze estimation is erroneous. More details on gaze estimation
errors, their sources, related metrics, and methods for compensation are given in section 3.1.1.1.
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Regression-based

Regression- or interpolation-based methods rely on a function that maps image features to 2D
gaze coordinates or 3D gaze directions. This mapping function can have a parametric form like a
polynomial, or a non-parametric form like neural networks. In this case, the calibration routine
has the goal of finding the best parameters (or weights in the case of neural networks) that
approximate the gaze position or direction.

Model-based

Model-based or geometric methods rely on a computational model that directly infers the gaze
direction from the eye features extracted in the eye detection step. These approaches model the
geometry of the eye tracker and human physiology, which allows them to calculate a 3D gaze
direction. The point of regard can be obtained by intersecting this vector with the closest object
in the scene, such as a computer screen.

2.2.1.3 Remote and Head-mounted Video-based Eye Trackers

The two most prominent types of video-based eye trackers are remote and head-mounted devices
(Duchowski, 2007). Remote eye tracking devices as illustrated in figure 2.2a track the eyes
of a user from a distance (cf. Holmqvist and Andersson (2017, pp. 100-103)). The devices
are placed in the environment, typically close to a stimulus, such as a computer screen. The
gaze directions or points of regard are reported in a fixed, world-anchored coordinate system,
e.g., as points on the computer screen. Remote eye trackers do not require the user to be
instrumented and allow head movements to a certain degree. Device manufacturers typically
report a headbox for that, i.e., a 3D volume relative to the device in which the quality of
eye tracking does not deteriorate. These advantages are traded off against lower data quality
compared to more restricted stationary setups like tower-mounted systems for which the head
of a participant is usually fixed at the tower mount using a forehead and chin rest to prevent
distorting head movements. Still, applications of remote eye trackers are typically restricted
to stationary settings like observing users when interacting with a computer. The range of
commercially available remote eye trackers goes from affordable consumer devices like the Tobii
Eye Tracker 51 for gaming (around 300 e) to professional devices like the Tobii Pro Fusion2,
which costs several thousands of Euros. In addition, several approaches based on usual webcams,
i.e., cameras capturing the visible light spectrum, or depth cameras, are available, for instance,
WebGazer.js3 enables webcam-based eye tracking in a browser. Head-mounted eye trackers
as illustrated in figure 2.2b are wearable devices, i.e., all active parts like cameras and light
sources are mounted on a head-worn frame (cf. Holmqvist and Andersson (2017, pp. 95-99)).
Typically, the gaze estimation process reports points of regard as 2D points in the local coordinate
system of an egocentric, front-facing camera that captures parts of the human field of view. This
coordinate system is relative to the head-mounted device. Head-mounted devices allow users to
move around freely, enabling many applications in mobile interaction settings like observing gaze

1https://gaming.tobii.com/product/eye-tracker-5/ (accessed on 12 Dec 2024)
2https://tobii.com/products/eye-trackers/screen-based/tobii-pro-fusion (accessed on 12 Dec 2024)
3https://webgazer.cs.brown.edu/ (accessed on 12 Dec 2024)

https://gaming.tobii.com/product/eye-tracker-5/
https://tobii.com/products/eye-trackers/screen-based/tobii-pro-fusion
https://webgazer.cs.brown.edu/
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(a) Remote Eye Tracker (b) Head-mounted Eye Tracker

Figure 2.2: Common eye tracking devices include (a) remote eye trackers and (b) head-mounted eye
trackers. The blue circle indicates the point of regard, and the dotted red line is the visual axis.

behavior in a supermarket. Transferring points to another coordinate system, e.g., the one of
a computer screen or a shelf in a supermarket, requires an additional mapping step, like head-
pose tracking or marker tracking (see chapter 4). Head-mounted devices are considered to be
more invasive, but modern devices like Pupil Invisible4 are mostly indistinguishable from usual
glasses and offer a higher wearing comfort than, e.g., meanwhile obsolete helmet-based systems.
Another aspect in favor of head-mounted eye trackers is that recent virtual and augmented reality
headsets incorporate eye tracking technology such as Microsoft’s HoloLens 25.

2.2.2 Eye Tracking Data Analysis

Data visualization and analysis techniques are important for almost any use case of eye tracking.
For instance, diagnostic applications can be driven by quantitative measures, like completion
times or accuracy rates concerning visual tasks in user experiments, or qualitative assessments
based on visualizations of the raw gaze data that help in understanding human visual behavior
(Blascheck et al., 2017). One prominent example is the experiment by Yarbus (1967), who
investigated the influence of different tasks on the viewing strategy of participants by visually
inspecting the eye tracking data as an overlay to the image-based stimulus. Active and passive
gaze-based interfaces also use techniques for data analysis ranging from eye movement detection
to machine learning-based analysis techniques taking features extracted from the raw gaze signal
as input. In this section, we introduce the term raw gaze, describe common eye movement
detection algorithms and the terms area of interest and scanpath, and provide an overview of
visualization techniques.

2.2.2.1 Raw Gaze

The term raw gaze refers to the real-time signal or the recording of this signal of an eye tracking
device. This signal originates from the gaze estimation module of an eye tracker, which delivers
a series of timestamped 3D gaze directions, 2D points of regard, or both (see section 2.2.1.2).
Most applications use the 2D points of regard that can be represented as a triple (t, x, y) with t

4https://pupil-labs.com/products/invisible/ (accessed on 12 Dec 2024)
5https://www.microsoft.com/en-us/hololens/hardware (accessed on 12 Dec 2024)

https://pupil-labs.com/products/invisible/
https://www.microsoft.com/en-us/hololens/hardware
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indicating the capturing time of this sample and x, y defining the 2D point in a certain coordinate
system, e.g., a corresponding video frame of a head-mounted eye tracker or a coordinate of a
computer screen at which a remote eye tracker is mounted. Simple visualizations of the raw
gaze signal include line graphs plotting x and y against time on the x-axis and plotting x and
y coordinates as an overlay on the visual stimulus in question. The timestamps reveal an eye
tracker’s temporal resolution or sampling rate, typically reported in Hertz. It is computed as
1/t Hz, typically averaged over the whole recording or a certain window size because the time
deltas might slightly differ. The actual sampling rate of an eye tracking setup might also differ
from the sampling rate reported by the manufacturer of the eye tracking device. For video-based
devices, sampling rates range from 30 Hz to 2000 Hz (Holmqvist and Andersson, 2017, p. 91). It
defines the type of eye movements that can be detected: the Nyquist-Shannon sampling theorem
implies that to capture events occurring at a maximum frequency of B, a sampling rate greater
than 2B is sufficient (Shannon, 1949). In practical terms, this means that a 30 Hz eye tracker
should be able to capture all fixations, but might miss quick saccades with a length of around
30 ms. Further characteristics that determine the quality of the eye tracking signal include the
offset of the gaze estimates to the actual points of regard, also known as spatial accuracy, the
dispersion of the signal around the actual points of gaze, also known as spatial precision, and
the ratio of invalid samples, also known as data loss (see section 3.1.1.1).

2.2.2.2 Eye Movement Detection

Several movements of the human eye can be detected in the raw gaze signal of eye tracking
devices (see section 2.1). These events, also called oculomotor events, include fixations, saccades,
smooth pursuits, and blinks. Detecting and characterizing oculomotor events are essential steps
in eye tracking data analysis. For instance, the eye-mind hypothesis by Just and Carpenter
(1980) suggests that fixation times correspond to the time a participant pays attention to the
viewed point of regard, which requires accurate fixation detection methods. However, noise from
imperfect tracking and natural micromovements of the eye, like tremor or microsaccades, can
distort the detection of eye movement events, which makes prior signal pre-processing mandatory
in many cases. Typical compensation approaches, particularly for gaze-based interaction, include
real-time signal filters (Špakov, 2012). A more detailed overview of compensation methods
is provided in section 3.1.1.1. In the following, we describe prominent methods for detecting
fixations. Fixation detection algorithms label each sample of a raw gaze signal as belonging to
a fixation event or not. In many cases, the resulting gaps are considered to be saccadic eye
movements. Gaps due to loss of pupil tracking are usually not considered in this classification or
may be interpreted as blink events: the eyelids occlude the pupil, resulting in a temporary loss of
tracking. Salvucci and Goldberg (2000) introduced a taxonomy that classifies fixation detection
algorithms based on spatial and temporal characteristics. An algorithm can be velocity-based,
dispersion-based, or area-based in terms of spatial characteristics. Velocity-based algorithms
take advantage of saccades’ high velocities compared to fixations during which the eyes remain
relatively still. One example is the velocity-threshold fixation identification method (I-VT). I-
VT computes velocities between successive samples. If the velocity for two samples (si, si+1)

stays below a certain threshold, si is classified as a fixation sample. Otherwise, it is marked
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as a saccade sample. Fixation events are derived by grouping fixation samples. It is reported
as quadruple (t, x, y, d): t is the starting time of the event, i.e., the timestamp of the first
sample of the group, x, y is calculated as the centroid of all samples, and the duration d is the
difference between the last and the first timestamp of a group. Dispersion-based algorithms
rely on low dispersion values of consecutive gaze samples that belong to one fixation in contrast
to high dispersion values during a saccade. A prominent algorithm is the dispersion-threshold
identification method (I-DT). It starts by computing a dispersion measure for a window of a
pre-defined minimum size. If the measure is greater than a certain threshold, no fixation is
found, and the window is moved one sample ahead. A fixation is identified if the measure is
lower or equal to the threshold. Then the window is extended by one sample at a time until the
dispersion threshold is exceeded again. The fixation event is represented by the previous window,
i.e., when the dispersion threshold was not yet exceeded. Area-based algorithms define fixations
based on fixed target regions, i.e., consecutive samples that lie within a given target region are
counted as a single fixation event; samples outside these regions are considered saccade samples.
One example is the area-of-interest identification method (I-AOI), which is based on rectangular
regions of interest that depict relevant parts of a considered visual scene. However, velocity-
based and dispersion-based algorithms are the more common options for fixation detection.
For instance, area-based methods are more suitable for high-level analysis when applied to a
sequence of previously identified fixation events rather than the raw gaze signal (Salvucci and
Goldberg, 2000). Temporal characteristics include the criteria duration sensitive and locally
adaptive. An algorithm is duration sensitive if duration information is used, like the minimum
duration threshold for I-DT. An algorithm is locally adaptive if samples that are close together,
temporally, can influence the detection. For instance, I-DT computes dispersion for a window
of variable size. It is locally adaptive. In contrast, I-VT takes into account pairwise velocity
information only.

2.2.2.3 Areas of Interest (AOIs)

Eye tracking studies often consider visual attention to specific areas of interest (AOIs) to analyze
and understand how people process visual information. AOIs are specific regions in a scene or
interface that are defined by a researcher to collect related gaze data (Holmqvist and Andersson,
2017, pp. 254-301). Visual attention refers to the time a person pays attention to these regions.
By measuring visual attention to and transitions between AOIs during a study, researchers can
gain insights into which elements of a scene are relevant to an activity and how interventions of
an experiment influence the participant’s eye movement behavior. This is usually done based on
fixation events as they are assumed to approximate a person’s allocation of cognitive resources
through the time they spend processing a visual scene (Just and Carpenter, 1980).

AOI Events

Basic events that are commonly extracted include AOI hits, dwells, and transitions. They
correspond to fixations and saccades but are defined over semantically meaningful areas in a
scene, i.e., over AOIs. They can be calculated from the raw gaze signal or based on previously
detected fixation events. For instance, an AOI hit is reported if a sequence of gaze samples or a
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fixation lies within an AOI. It is a simple count-based measure. Extracting AOI hits based on
the raw gaze signal shares similarities with area-based fixation detection. It may also take into
account a minimum time threshold. The AOI dwell is similar to a fixation event: it aggregates a
sequence of consecutive gaze samples that hit the same AOI. AOI transitions refer to gaze shifts
from one AOI to another. They can be seen as saccades between AOI-based fixations (or dwells).
Many other AOI events exist but are typically based on these basic events.

Event Extraction

Extracting AOI events depends on their definition and type. Questions that arise include, what
areas are considered as important, how are they formally defined, and how can gaze samples or
fixations be mapped to them? In remote eye tracking, AOIs typically refer to specific regions
in the targeted visual stimulus and are defined using, e.g., rectangular bounding boxes in the
simplest case. AOIs can be static, for stimuli like static images or text, or dynamic, e.g., for
video-based stimuli in which the relevant area moves over time. The complexity increases for
head-mounted eye trackers. In mobile settings, AOIs are usually defined based on relevant
objects or areas in the scene as captured by the front-facing camera. In remote eye tracking with
static stimuli, an AOI can be defined once and reused for every participant. Dynamic AOIs in
video-based stimuli can be annotated using keyframe-based annotation techniques, i.e., AOIs are
marked via bounding boxes for keyframes, and interpolation is used to annotate intermediate
frames (Kurzhals et al., 2014b). However, these efficient fixation-to-AOI mapping techniques
from remote eye tracking do not scale for mobile eye tracking applications. Accurately annotating
mobile eye tracking data remains a challenging and time-consuming task because scene videos
taken with a head-mounted eye tracking device are unique for every participant. In mobile eye
tracking practice, one or more annotators decide per fixation whether an AOI was hit or not
(Uppal et al., 2022; Kurzhals et al., 2014a).

2.2.2.4 Scanpaths

The term scanpath can be defined as “the route of oculomotor events through space within a
certain timespan” (Holmqvist and Andersson, 2017, p. 327). This definition refers to the sequence
of actual eye movements of a person, i.e., eye trackers can only approximate the scanpath of a
person through their raw gaze signal. Another common definition describes the scanpath as “a
sequence of alternating fixations and saccades” (Blascheck et al., 2017, p. 262). In many cases,
scanpaths are plotted to inspect an eye tracking recording. For instance, to check the quality of
individual scanpaths or to identify differences in viewing patterns of different user groups or for
different conditions of an eye tracking experiment (Holmqvist and Andersson, 2017, p. 330). A
typical visual scanpath representation shows points of gaze or fixation points as dots connected
by edges in the stimulus space.

2.2.3 Applications of Eye Tracking

Duchowski (2007, p. 247) classifies eye tracking applications into two broad categories: diagnostic
and interactive. Diagnostic applications refer to offline data analysis in the context of user studies,
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i.e., eye movements and gaze directions are recorded under specific experimental conditions
and analyzed post-hoc. Each type of application can occur in a range of application domains.
Common domains include neuroscience & psychology, industrial engineering & human factors,
marketing & advertisement, and computer science (Duchowski, 2007, pp. 249-339). All domains,
besides computer science, focus on diagnostic applications. The goal is to understand general
perceptual and cognitive processes and people’s perceptions of user interfaces, such as in aviation
and media. Gaze-based interaction is subsumed under computer science. However, findings from
diagnostic studies can also be used to build interactive eye tracking applications, e.g., passive
ones that react to a user’s cognitive state. More applications of eye tracking in user interfaces
are described in the respective related work sections for active and passive gaze-based interaction
in sections 3.1 and 3.2.
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2.3 Ethics and Privacy

In many cases, eye trackers serve as a tool for conducting experimental research with human par-
ticipants. Common ethical principles from the target domain should be applied. For instance,
in psychology, six aspects are typically named: informed consent, protection from harm, decep-
tion, freedom from coercion, debriefing, and confidentiality & anonymity. These are detailed
in the Ethics Code6 published by the American Psychological Association (APA), but are also
reflected in different contexts, e.g., in a guidance note by the European Commission on ethics
in social science and humanities (Rauhala and Kalokairinou, 2021). Informed consent means
that participants are informed about the purpose of the study and the associated risks before
performing any tasks, and their explicit consent is obtained. Participation should be voluntary,
meaning that the participant can withdraw at any time without giving a reason. Protection from
harm means that physical and psychological harm caused by the study should be minimized. In
some cases, harm must be weighed against an expected benefit. For instance, eye-mounted eye
trackers, like the scleral coil system, are invasive and uncomfortable. Still, they have been used
to capture human eye movements with high spatial accuracy, precision, and temporal resolution.
Also, explicit eye movement can lead to eye strain and fatigue. This should be minimized, e.g.,
by reducing the number of trials per participant, but it can usually not be avoided completely.
Deception should be avoided, i.e., information for participants should not be misleading unless
the expected benefit outweighs the cost. Coercion must be avoided. It means that participants
are pressured, e.g., by threats, to participate in or stay in a study, or perform another activity
against their will. Debriefing refers to a phase after the study is over in which participants are
allowed to ask questions and potential deceptions are revealed. The last principle, confidentiality
& anonymity, concerns data privacy and security. For instance, participants’ identities should
not be revealed and be kept secure. In the case of eye tracking, this may affect the way how raw
gaze data and video data from head-mounted eye trackers are handled.

Privacy and ethical considerations are also important when developing eye tracking technol-
ogy with the goal of deploying it, e.g., as part of a product. Eye trackers record a person’s eye
movements and gaze directions, which contain extensive information about their perceptual and
cognitive processes (Gressel et al., 2023; Bulling and Roggen, 2011). In addition, most head-
mounted eye trackers capture a gaze-synchronized video of the environment. This motivates the
development of gaze-based interfaces enabling efficient and situation-aware interaction based on
that information. However, access to such sensitive information raises several ethical, legal, and
privacy issues that need to be addressed (cf. Gressel et al. (2023)), particularly because eye
trackers are now integrated into more and more end-user devices like head-mounted extended re-
ality headsets and gaming laptops7. Recently, the topic of privacy-aware eye tracking technology
gained more interest in the research community (see, e.g., Steil (2019)). Also, since 2021, the In-
ternational Workshop on Privacy and Ethics in Eye Tracking (PrEThics)8 provides a discussion
platform for related topics.

6https://www.apa.org/ethics/code (accessed on 12 Dec 2024)
7https://www.tobii.com/products/integration (accessed on 12 Dec 2024)
8https://prethics.perceptualui.org/ (accessed on 12 Dec 2024)
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Chapter 3

Related Work

This thesis presents new approaches and methods with the goal of addressing key challenges of
gaze-based interaction concerning active gaze-based interaction, passive gaze-based interaction,
and the design and development of gaze-based interaction systems. It aims to contribute by
developing two methods for active gaze-based interaction and three approaches for passively
interpreting the human gaze signal. In the following, I present related work on using gaze as an
active input modality in section 3.1 and as a passive input modality in section 3.2.

3.1 Human Gaze as an Active Input Modality

This thesis presents novel techniques for active gaze-based interfaces, i.e., interfaces that use
human gaze in an active input mode, in part II. In the following, we provide an overview of
interfaces that use the absolute gaze position as input and background information on the gaze
estimation error that can severely hamper the usability and performance of such interfaces. We
also present calibration-free interaction techniques that do not rely on absolute gaze estimates
and are, therefore, mostly robust to gaze estimation errors.

3.1.1 Absolute Gaze Position as Input

A straightforward way to use eye tracking in multimodal interfaces is to use the absolute gaze
position as a spatial pointer. This enables, for instance, gaze-based object selection and ma-
nipulation based on the principle “what you look at is what you get” (Jacob, 1990). This has
also led to eye tracking becoming an essential tool for people with motor disabilities: absolute
gaze position tracking was used to enable communication via gaze-based text entry and environ-
mental control (Bates et al., 2007). A key problem is that gaze estimation errors directly affect
interaction techniques that rely on absolute gaze positions.

3.1.1.1 Gaze Estimation Error

Gaze estimation error refers to the discrepancy between the intended gaze direction and the
estimated direction of gaze in eye tracking systems. Various factors, including hardware limi-
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tations, software algorithms, and participant-related factors, can cause this error. It can have
implications for the validity and reliability of eye tracking data in diagnostic studies and severely
hamper the usability of gaze-based interaction systems. The importance of errors in gaze estima-
tion has long been recognized. Still, previous work has focused mainly on error source reduction
or post-hoc error compensation for diagnostic eye tracking studies in stationary settings.

Sources of Error

Sources of error are typically found in humans, i.e., participants and operators, in the experimen-
tal setup, including characteristics of the tasks and the recording environment, and in the tracking
device, including its hardware and software (Holmqvist et al., 2012). Human factors include the
presence of visual aids, characteristics of the eye’s physiology, like the direction of eyelashes, eye
color, pupil diameter, and the experience of operators (Nyström et al., 2013; Drewes et al., 2012).
Typical factors concerning the experimental setup include illumination changes and infrared dis-
tortion (Holmqvist et al., 2012; Kassner et al., 2014), the arrangement of visual stimuli (Nyström
et al., 2013), and factors that may deteriorate the calibration like long recording times and tasks
that require participants to move (Nyström et al., 2013; Holmqvist et al., 2012). The latter two
sources, in particular, also apply to head-mounted devices, as they can lead to displacements
of the tracking device (John et al., 2012). An inherent issue with monocular head-mounted eye
trackers is the parallax error: the gaze estimation error increases as the participant moves away
from the calibration position (Mardanbegi and Hansen, 2012). Also, the gaze signal needs to be
mapped to screen coordinates for on-screen interaction with head-mounted eye trackers, which
is another error source. However, it remains largely unexplored what sources of error occur in
head-mounted eye trackers and how they affect gaze-based interaction.

Error Metrics

Several metrics have been used to quantify the gaze estimation error. The most prominent ones
include spatial accuracy and spatial precision, which are typically reported in terms of degrees
of visual angle (Akkil et al., 2014; Blignaut and Beelders, 2012; Holmqvist et al., 2012; Kassner
et al., 2014; Nyström et al., 2013; Hornof and Halverson, 2002; John et al., 2012). We follow
the definitions by Holmqvist and Andersson (2017, pp. 165-189). Spatial accuracy A reflects
the offset between estimated and true gaze estimates. It is a measure of central tendency and is
calculated as the mean angular offset θi between n estimated and true fixation or gaze points.

A =
1

n
·
n∑
i=1

θi (3.1)

Spatial precision P reflects the distortions in the gaze signal. It is a measure of statistical
dispersion and is calculated as the Root Mean Square (RMS) of the angular distance θi between
successive fixation or gaze points. However, other measures of statistical dispersion, like standard
deviation, can also be used.

P =

√√√√ 1

n
·
n∑
i=1

θ2i (3.2)
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Instead of angular differences, the length or distance between two points can be more relevant
regarding gaze-based interaction. In this case, θ would be the Euclidean distance between two
points using a linear measure like centimeters. This can be a distance between two 2-dimensional
points for screen-based interfaces or two 3-dimensional points for 3D interfaces such as in virtual
reality. Another common metric is data loss, also known as robustness (Nyström et al., 2013;
Akkil et al., 2014; Blignaut and Beelders, 2012). It is typically measured as the ratio between the
number of valid estimated gaze points nvalid and the theoretical maximum amount of samples
that could have been captured nmax. Data loss or low robustness is usually caused by loss of
pupil tracking.

nloss =
nvalid
nmax

(3.3)

Low-pass signal filters can improve gaze signals with low spatial precision, i.e., smoothing filters
that reduce noise in the signal (Špakov, 2012). Methods to cope with low spatial accuracy include,
for instance, gaze-to-object snapping algorithms (Špakov, 2011). Data loss can be minimized by
optimizing boundary conditions like illumination and the configuration of the eye tracking setup
Holmqvist and Andersson (2017, p. 167) and by addressing software issues like low robustness
of pupil tracking algorithms for highly off-axis perspectives (Świrski et al., 2012). Other quality
measures concern temporal aspects of the gaze signal. Latency or temporal accuracy indicates
the difference between the time of the eye movement and the time reported by the eye tracker;
the variance in temporal accuracy is called temporal precision (Holmqvist et al., 2012).

Error Compensation

Many approaches have been presented for compensating the gaze estimation error. Common
techniques for coping with low spatial accuracy and precision include gaze-to-object mapping
algorithms and gaze signal filters. Gaze-to-object mapping methods draw gaze points towards
or directly map them on nearby objects, compensating for low accuracy and precision (Špakov,
2011; Zhai et al., 1999; Špakov and Gizatdinova, 2014). Gaze signal filters are filters from the
signal processing domain for noise reduction, mainly addressing low precision (Špakov, 2012).
Other approaches concern calibration and recalibration methods. Hornof and Halverson (2002)
proposed a method for monitoring the spatial accuracy of the gaze signal during remote eye
tracking studies. They introduce the notion of implicit required fixation locations (RFL), i.e.,
locations that participants must look at within a certain time window to accomplish a task.
The difference between the observed fixation position and the RFL is used to track the spatial
accuracy of the signal and to trigger a recalibration of the eye tracking system. A similar method
is to correct a systematic error based on the distances between the centers of fixation clusters and
the respectively nearest objects (Zhang and Hornof, 2011, 2014). Lander et al. (2016) investigated
how the time required for a recalibration can be reduced. Cerrolaza et al. (2012) showed that head
movements perpendicular to the screen cause errors in gaze estimation. They proposed a new
calibration procedure and gaze estimation function to incorporate the eye-to-screen distance that
compensates for this error. Blignaut and Wium (2013) compared different calibration methods
and found that the arrangement and number of calibration targets significantly affect the quality
of gaze estimation. Further, they developed an addition to calibration procedures using a gaze-
based selection task and regression to improve the quality of the gaze estimation (Blignaut
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et al., 2014; Blignaut and Wium, 2013). Feit et al. (2017) investigated the gaze estimation
error for remote tracking devices at a constant interaction distance. They modeled the error
for different positions on a display based on the mean deviation of gaze points to their true on-
screen positions and the corresponding standard deviation (SD). They showed that the SD could
be used to optimize signal filters for the gaze signal and the mean offset to inform gaze-based
interface design. We include their findings in designing our proposed gaze-based interface that
is aware of the error inherent in mobile eye trackers. Many other methods for addressing the
gaze-estimation error are presented as part of an interaction technique.

3.1.1.2 Interaction Techniques

In his seminal work, Jacob (1990) explored how the human gaze can be used as an input to
computer systems. Based on the principle “what you look at is what you get,” he developed
the first techniques for active gaze-based interaction, including approaches to object selection
and manipulation, gaze-controlled information visualization, and text scrolling. A key finding
was that the gaze signal alone is unsuitable as input because it cannot be differentiated whether
the user wants to issue an action at the current point of gaze. This is known as Midas’ Touch
problem. Proposed solutions include using a dwell time, i.e., an action is triggered when the
user fixates an element for longer than a predefined period of time, or using an additional action
trigger, such as pressing a button. All interaction techniques that have been presented later relate
in some way to these basic principles. In the following, we present an overview of active gaze-
based interaction techniques ranging from unimodal approaches using dwell times to multimodal
systems that combine gaze with additional selection triggers like a key or button press.

Unimodal Interaction

Unimodal active gaze-based interfaces are user interfaces that rely solely on the user’s gaze as an
input modality. This technology allows users to interact with digital devices, such as computers
or smartphones, using only their eyes to control the interface. Unimodal gaze-based interfaces
have the potential to offer an accessible and hands-free way for people with disabilities to interact
with technology (Bates et al., 2007). Typically, unimodal gaze-based interfaces are restricted to
object selection with a dwell time as a selection trigger. More complex interactions are possible
but rely on mode-switching, which can be confusing. Nevertheless, interfaces that rely only on
gaze as an input modality are important for accessible user interfaces, especially when users can
only move their eyes. Miniotas et al. (2004) investigated the impact of virtually increasing the
target size on the error rate and the time required for making a dwell-based selection. They found
that larger target sizes reduce the error rate and the selection time. Further, they introduced
a gaze-to-object mapping algorithm that allows the gaze signal to leave the target area without
immediately interrupting the dwell counter. It decreases the error rate but increases the required
time for selection. Istance et al. (2008) developed Snap Clutch, which enables switching between
four gaze-based interaction modes by glancing to one of four sides outside a screen. All modes
rely on dwell times to enable gaze-only interaction for handicapped people. They include a click
mode, a cursor parking mode that allows users to trigger a certain action at the cursor position,
a drag-and-drop mode for object manipulation, and a gaze control off mode. Zhang et al. (2008)
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investigated ways to stabilize the eye cursor when the precision of the gaze signal is low. They
presented three gaze-to-object mapping methods, of which two improve the effectiveness of dwell-
based object selection: Speed Reduction and Force Field, which both drag the gaze point toward
a virtual force field, i.e., the previous gaze point or the center of the selection target, respectively.
Gizatdinova et al. (2018) implemented a text entry system based on gaze or head directions and
a dwell for character selection. In particular, they investigated the impact of the key size on the
speed and error rate of the typing process. They found that the error rate drastically increased
when the key size was lower than 0.8 degrees of visual angle. Isomoto et al. (2018) developed a
method based on Fitts’ law for reducing the dwell time required for successful object selections.
Minakata et al. (2019) compared various dwell-based object selection methods in a virtual reality
setting with a Fitts’ law experiment. They found that gaze-based selection was slower than a
mouse, foot-mouse, and head-based selection. Choi et al. (2020) introduced the bubble gaze
cursor, a circular gaze-based cursor that adapts its size such that it points at a single target only.
They found that using the bubble gaze cursor with a dwell as a selection trigger outperformed
a usual gaze-based cursor in performance, usability, and workload. Also, they showed that
using an additional magnification lens (bubble gaze lens) leads to further performance gains.
Krishna Sharma et al. (2020) implemented a proof-of-concept robot control system based on
gaze input and dwells. It enables users with severe speech and motor impairments to execute
simple pick-and-place and navigation tasks. Ahn et al. (2021) developed the StickyPie marking
menu, a pie menu optimized for unimodal gaze-based input in mixed reality: submenus pop up
at the new fixation position of the user when an option was selected to avoid false activations.
A submenu is typically shown immediately when crossing the border of the outer circle at that
position. However, saccades might also pass the border of that submenu in a single movement.
Similar to that, Kim et al. (2022) introduced the Lattice Menu, which prevents overshoots by
displaying a lattice of visual anchors to align eye movements with menu positions. Choi et al.
(2022) introduced a menu that places items in the Kuiper Belt, i.e., a region in the user’s field
of view that is not frequently hit by fixations, to reduce false activations. Best and Duchowski
(2016) introduced a PIN entry method that relies on a spatial interaction design, similar to the
concept of marking menus: they show digits in a circular design that imitates a rotary dial phone.
A digit is entered by moving the gaze from the center of the screen to a digit-specific area and
back. The average entry time is low, with less than five seconds (M=4.62), but the accuracy is
too low (M=71.16%) for safety-related applications. It would be hard to differentiate between
valid but erroneous inputs and invalid inputs from a brute-force attack.

Multimodal Interaction

Multimodal gaze-based interfaces are user interfaces that combine gaze-based input with other
input modalities, such as touch, voice, or gesture recognition. By integrating multiple input
modalities, such interfaces can provide users with more flexible and efficient ways to interact
with technology (Oviatt and Cohen, 2015). To overcome Midas’ touch problem, the gaze sig-
nal is often used as a spatial pointer and combined with an additional input modality as a
selection or manipulation trigger (Qvarfordt, 2017). Zhai et al. (1999) introduced the MAGIC
pointing method, which positions the mouse cursor on a fixated object or in its proximity. The
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user confirms the selection using the mouse. Monden et al. (2005) implemented the SemiAuto
method combining gaze-based cursor positioning and mouse-based selection confirmation similar
to Zhai et al. (1999) with gaze-to-object mapping, i.e., with a mouse click, the nearest object
is selected. Drewes (2010, pp. 79-86) developed the MAGIC touch system, which extends the
MAGIC pointing approach by Zhai et al. (1999). They use touch events from a touch-sensitive
computer mouse to position the mouse cursor and click events as selection triggers. Stellmach
et al. (2011) designed gaze-based interaction techniques to explore large image collections. They
found that combining gaze with a touch-enabled and tilt-sensitive mobile phone enables versatile
inputs to a multimedia retrieval system, like controlling a fish-eye lens to magnify thumbnails at
a certain position or panning and zooming in to navigate through a 2D multimedia item space.
They also designed and evaluated several input methods for navigating in 2D map applications
(Klamka et al., 2015) and steering in 3D virtual environments based on 2D user interface overlays
(Stellmach and Dachselt, 2012a). Zhang et al. (2019) used a similar approach to control remote
telepresence robots using a virtual reality headset. In another work, Stellmach and Dachselt
(2012b) focused on object selection for distant displays: they extend the MAGIC pointing prin-
ciple using touch input from a mobile device. For instance, their MAGIC tab technique allows
users to select one of the objects close to the current fixation point using sliding gestures on
a mobile device. Further combinations of gaze direction, head direction, and touch input via
handheld devices have been explored for object selection and manipulation on distant displays
(Stellmach and Dachselt, 2013). Zhang et al. (2015a) investigated the effectiveness and efficiency
of using gaze in combination with hand gestures for this purpose. Similarly, Chatterjee et al.
(2015) introduced a gaze-based object selection method using hand gestures as an activation
trigger. Turner et al. (2013) investigated different interaction techniques for cross-device content
transfer using head-mounted eye trackers. They considered content transfer between public dis-
plays and private handheld devices, a concept they coined Eye Pull, Eye Push. They combined
gaze with touch gestures on a mobile device to move contents in a cut-and-paste, drag-and-drop,
or summon-and-cast manner. The latter combines gaze and swipe up or down gestures to push
contents to a distant display or pull it from there. They also considered gaze in combination with
mouse clicks as an activation trigger in another study (Turner et al., 2014). Pfeuffer et al. (2014)
presented the Gaze-touch system. It combines gaze input with multitouch gestures to interact
with multimedia content on a single device. For instance, they combine gaze with multitouch
gestures for indirect rotation, scaling, and translation of an object. Further, they developed the
Gaze-shifting method that enables automatic switching between such indirect and direct input
modes when the human gaze is combined with absolute manual input: Touch or digital pen
input is direct when the user’s gaze is on the input location, or indirect otherwise (Pfeuffer et al.,
2015). With CursorShift, the authors presented an effective method for using gaze with indirect
touch input on handheld tablets (Pfeuffer and Gellersen, 2016). The interaction design is based
on the idea that thumbs typically have a limited interaction range when holding a display but
can be used for indirect touch input in combination with gaze-based pointing. They followed a
similar approach when building the GazeButton system, which accepts indirect touch input via
a separate button only (Rivu et al., 2019). Creed et al. (2020) implemented the Sakura tool that
enables people with physical impairments to create multimedia content. They investigated the
efficiency and usability of their interaction design which is based on gaze and a mechanical switch
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as a selection trigger. With Gaze + Hold, Ramirez Gomez et al. (2021) presented a system that
enables object selection and manipulation by looking at them while performing a blink gesture.
A single blink is used for selection; keeping the eye closed allows a user to choose a target location
with the second eye. Kumar et al. (2020) developed the TAGSwipe interface for gaze-based text
entry. It combines touch input from a mobile device to trim the real-time gaze signal over a
virtual keyboard by setting the start and end times. The trimmed gaze signal is used to infer
the intended word, similar to modern touch-based text entry systems. The Hummer interface
is a direct extension that uses different kinds of humming to trim the gaze signal or to select
special characters (Hedeshy et al., 2021). The same group investigated whether dwell-based gaze
input and gaze with speech commands can be used to correct speech-based text input (Sengupta
et al., 2020). Feng et al. (2021) introduced the HGaze Typing system, which works similarly to
TAGSwipe (Kumar et al., 2020) and Hummer (Hedeshy et al., 2021) but relies on head gestures
to start and stop gaze-based word entry phases. Many approaches have also been implemented
and tested in virtual reality (VR) or augmented reality (AR). For instance, the combination
of gaze and indirect manual input has also been tested in VR settings for object selection and
manipulation tasks. Pfeuffer et al. (2017) presented the Gaze + Pinch interaction technique
that combines gaze for pointing with one-handed and two-handed pinch gestures for selecting,
rotating, scaling, and translating objects in VR. Later, they presented the Look & Turn inter-
action method (Reiter et al., 2022): gaze selects a menu option, and rotating the wrist changes
a continuous parameter like hue, saturation, or value for defining colors. Using the alignment of
gaze and hand directions for object selection (Lystbæk et al., 2022b) and text entry (Lystbæk
et al., 2022a) has been proposed for interaction in AR. Luro and Sundstedt (2019) investigated
the difference in performance and usability between pure controller-based and gaze-based object
selection in an aim-and-shoot task in VR. For the gaze condition, a button click of the controller
was used for confirmations. Yu et al. (2021) investigated the effectiveness and efficiency of an
interaction technique that combines gaze and hand gestures for object rotation, scaling, and
translation, similar to Pfeuffer et al. (2017). Rajanna and Hansen (2018) compared different
keyboard layouts for text entry in VR using gaze with a dwell or button click on a controller as
a selection trigger. He et al. (2022) introduced the TapGazer system for text entry in VR. They
combine touch- or glove-based blind typing with gaze-based word selection to resolve ambiguities.
Sidenmark et al. (2020b) proposed a gaze-based object selection method for VR with error cor-
rection by additional head movements. Their system can automatically switch between a normal
gaze mode and a head-based correction mode, i.e., head movements are used for a fine-grained
correction of the gaze-based pointer. They employ a similar concept in their radial menu for AR,
Radi-Eye: gaze is used for pointing, and a head movement from the center of the radial menu
toward the gaze position triggers a selection of the fixated menu item (Sidenmark et al., 2021).
The gaze signal has also been used in combination with speech input. Elepfandt and Grund
(2012) investigated explicit gaze pointing combined with speech commands for moving objects
on a distant screen. They found that participants preferred short commands over longer ones
when combined with explicit gaze pointing. Mardenbegi and Qvarfordt (2015) implemented a
system for annotating images taken with a head-mounted AR headset. The system allowed users
to take an image with the world camera and annotate parts of it by looking at a certain position
while verbalizing the annotation. A few multimodal gaze-based interfaces have been presented
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in the context of user authentication, which typically boils down to a text entry task. Kumar
et al. (2007) introduced “EyePassword,” a system for authentication by gaze-based password or
PIN entry using a virtual keyboard or number pad via gaze in combination with a dwell or a key
press. The system achieves low error rates comparable to interaction with a physical keyboard.
Still, the entry time is higher, and the method requires prior eye tracker calibration. Abdrabou
et al. (2019) presented three PIN-entry methods that allow users to enter digits using their gaze
plus a dwell, a mid-air gesture, or a combination of both, i.e., the gaze is used for pointing
and an additional hand gesture for confirmation. Besides the efficiency of the digit entry, they
investigated the resistance to shoulder-surfing attacks for each method.

3.1.2 Calibration-free Interaction Techniques

Calibration-free gaze-based interaction methods eliminate the need for users to go through a
time-consuming and tedious calibration procedure before the actual interaction can start. Most
techniques are, by design, robust against gaze estimation errors. They offer a promising direction
for developing user-friendly and efficient interaction techniques and enable spontaneous interac-
tion with pervasive gaze-based interfaces (Bulling, 2016) and public displays (Khamis et al.,
2015). Two prominent directions for calibration-free gaze-based interaction are interfaces based
on gaze gestures (Drewes and Schmidt, 2007) and smooth pursuit eye movements (Vidal et al.,
2013). Other approaches include appearance-based gaze estimation (Zhang et al., 2015b) and
methods based on corneal reflections and pupil detection (Lander et al., 2018).

3.1.2.1 Gaze Gestures

Gaze gestures are sequences of consecutive relative eye movements that can be used to trigger
certain actions upon recognition (Drewes and Schmidt, 2007), similar to touch-, hand-, or pen-
based gestures. Since recognition is based on relative movement patterns, no device calibration
is required. Still, some techniques require prior calibration because, for instance, the gesture
relates to a fixated object (Heikkilä and Räihä, 2012). We report on gesture-based interfaces
demonstrated with calibrated systems if the calibration had not been required for the recognition
part. A disadvantage of gesture-based interaction is that gesture patterns can quickly become
complex to learn and remember (Drewes, 2010, p. 123) and cause fatigue (Bulling et al., 2008).
Several researchers investigated how gaze gestures can be used to build active gaze-based inter-
faces. Drewes and Schmidt (2007) implemented a recognition method for gaze gestures based
on an existing method for mouse-based gesture recognition. They encode a sequence of saccade
directions as a string of characters and recognize a gesture via string matching. They consider
eight directions (horizontal, vertical, and diagonal). Further, only saccades between short fixa-
tions are interpreted based on the assumption that users perform gestures in one piece. Bulling
et al. (2008) implemented a similar gesture recognition system for wearable electrooculography
goggles and evaluated it in a gaming context. Wobbrock et al. (2008) introduced EyeWrite, a
gesture-based text entry system. Characters are entered, one by one, by separate gestures that
approximate the character’s shape. Istance et al. (2010) investigated the effectiveness and effi-
ciency of users performing gaze gestures of different lengths and using different basic directions
in a computer game. They found that gestures based on diagonal eye movements caused more
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false recognitions than vertical and horizontal movements. Also, they compared gesture-based
input with dwell-based input in gaming and found that gestures caused fewer errors but similar
or better completion times than dwells (Hyrskykari et al., 2012). Kangas et al. (2014) presented
an interface for gesture-based interaction on mobile phones. They found that augmenting the
gesture with haptic feedback reduces the completion times. They recently suggested detecting
gaze gestures from gaze patterns when viewing static drawings (Majaranta et al., 2019). The
drawings guide the eye movements following the principle that recognition should be chosen
over recall (Shneiderman et al., 2016). Bâce et al. (2016) developed a system based on a head-
mounted eye tracker and a smartwatch that allows users to attach annotations to viewed objects
in a real-world environment. A gaze gesture triggers the object selection. However, the pointing
requires a calibrated eye tracking device. Zhang et al. (2017) developed the GazeSpeak system
for people with motor impairments. GazeSpeak is a low-cost communication system based on a
mobile phone that shall facilitate communication between patients and caregivers more easily.
The system enables patients to enter text via gaze gestures recorded by the phone’s camera.
Gaze gestures have also been used to realize authentication interfaces that are more robust to
shoulder-surfing attacks than a keyboard- or touch-based approach in public display settings.
De Luca et al. (2009) implemented two methods for gaze-based authentication in stationary set-
tings, EyePIN and EyePassShapes. The EyePIN system enables users to enter 4-digit PINs using
pre-defined gaze gestures similar to Drewes and Schmidt (2007) while pressing an activation key
(De Luca et al., 2007). EyePassShapes allows users to authenticate by performing a predefined
gesture (De Luca et al., 2009).

3.1.2.2 Smooth Pursuits

A special gesture that facilitates calibration-free gaze input is based on smooth pursuit eye
movements, i.e., our eye movements when following a moving object. Vidal et al. (2013) have
been the first to present a user interface based on smooth pursuit eye movements. The interface
triggers an action when eye movements correlate with an element’s trajectory in a dynamic user
interface, which enables spontaneous interaction with ambient displays. Pfeuffer et al. (2013)
investigated the effectiveness of smooth pursuits recognition for eye tracker calibration. They
leveraged the fact that upon recognition of a smooth pursuit eye movement, the gaze position
on the screen is known in terms of the coordinates of the moving object. Esteves et al. (2015)
implemented the Orbits interaction technique for smartwatches. It is based on pupil tracking
from a head-mounted eye tracker and smooth pursuits recognition for dynamic watch faces.
Velloso et al. (2016) presented AmbiGaze for gaze-based control in smart environments. The
AmbiGaze system recognizes if a user follows a moving, windmill-like appliance in a real scene to
trigger an action. A systematic comparison of different recognition algorithms is also presented
by Velloso et al. (2018). Khamis et al. (2018a) showed that smooth pursuits can be effectively
used in virtual reality applications. Mattusch et al. (2018) also showed that recognizing smooth
pursuits is possible if the moving object is hidden for some parts of its trajectory, as it could
happen in games and virtual reality applications. Hassoumi et al. (2019) implemented EyeFlow
as a proof-of-concept for smooth pursuits recognition based on an off-the-shelf RGB camera and
optical flow estimation. Similarly, Bâce et al. (2020) combine appearance-based gaze estimation
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using an RGB camera with optical flow estimation to recognize smooth pursuits. Sidenmark
et al. (2020a) presented Outline Pursuits, an interaction method for virtual reality that allows
users to select an object from a group by following a visual cue that moves along the outline of
this object. Like usual gaze gestures, gaze-based interaction based on smooth pursuits is well-
suited for authentication at public displays. Cymek et al. (2014) implemented a user interface
for calibration-free PIN entry based on a number pad. Each digit moves, following a simple
trajectory to enable smooth pursuits recognition. They achieve a high detection rate of 91.55%,
but the minimum entry time is high (25 s). Liu et al. (2015) presented a similar approach for
mobile phones based on the front-facing camera. Four objects, each assigned to a number between
one and four, are located in the center of the screen. To enter a PIN, the user repeatedly follows
a digit’s trajectory to the screen edge. The input time is low (9.6 s), but also the accuracy
(77.1%). Further, the password space is ten times smaller than for a typical four-digit PIN.
Rajanna et al. (2017) proposed a system where users must follow three pre-defined shapes,
moving along complex trajectories, out of 36 to authenticate. They observed a high accuracy of
96%, but the user can select from 12 shapes only, which yields a smaller password space than a
four-digit PIN. A PIN entry is rather slow, lasting at least 15 s. Khamis et al. (2018b) introduced
CueAuth, which is based on a digital number pad, similar to the approach by Cymek et al. (2014).
However, instead of moving buttons, they use small moving circles within each button that differ
in their trajectory, including linear, circular, and zigzag movements. On average, the entry time
is 26.35 s with minimal entry times around 18 s.

3.1.2.3 Other Approaches

Other approaches enable calibration-free gaze-based interaction as well. One direction can be
found in appearance-based gaze estimation methods that map input features like the head di-
rection and close-up eye images to gaze vectors (Zhang et al., 2015b). Examples include the
SideWays (Zhang et al., 2013) and GazeHorizon (Zhang et al., 2014) systems that enable spon-
taneous interaction with ambient displays based on off-the-shelf webcams. Another approach for
mobile eye tracking is gaze estimation based on corneal reflections and pupil detection. Lander
et al. (2018) introduced the hEYEbrid system that estimates the point of gaze in a scene based
on the reflection of that scene in the user’s corneal limbus. The system extracts a scene video
from the reflections in the user’s eye, and the pupil center depicts the point of gaze. Since the
scene video and the pupil position stem from the same video stream, no calibration is required.

3.1.3 Summary

This section provided an overview of methods and interaction techniques in active gaze-based
interaction. All presented methods address the question of how intentional eye movements can fa-
cilitate interaction with computer systems. However, gaze estimation errors from various sources
can severely hamper the effectiveness and usability of interfaces that rely on the absolute gaze
position as input. Low spatial accuracy and precision can be addressed using compensation
methods like signal filters, gaze-to-object mapping algorithms, or special interface designs. Most
of these methods only alleviate the symptoms but do not incorporate the gaze estimation error in
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the interaction design. We propose the concept of error-aware gaze-based interfaces that incor-
porate real-time estimates of the gaze estimation error in chapter 4. We implement and evaluate
methods for modeling the error via machine learning and use them for real-time error-adaptive
object selection. We demonstrate the positive effects of incorporating error estimates in an ac-
tive gaze-based interface. Another option is to use calibration-free interaction techniques based
on gaze gestures or smooth pursuit eye movements. These are, by design, robust against gaze
estimation errors. However, they typically do not provide high-fidelity interactions due to the
lack of accurate on-screen gaze positions or require dynamic interfaces, which are only suitable
for some applications. One such application can be found in gaze-based authentication at public
displays. We implement a novel calibration-free authentication system that addresses flaws of
existing gaze-based authentication systems in chapter 5. Common flaws include low accuracy
in recognizing the entered PIN, high entry times, or the need for prior calibration. We use a
circular design, similar to the system introduced by Best and Duchowski (2016), but without
needing a prior calibration. Further, we implement CueAuth as a baseline system and compare
the performance in terms of accuracy and entry time with our novel authentication method.

3.2 Human Gaze as a Passive Input Modality

This thesis also presents novel methods for interpreting the human gaze signal in the context
of passive gaze-based interaction. Our contributions in part III relate to work on search target
inference during visual search processes, on implicit relevance feedback from reading behavior and
its applications, and on visual attention modeling with a focus on methods for mapping fixations
to AOIs. We briefly introduce each topic and background information on shared computer
vision topics, including image classification, object detection, few-shot learning, and image patch
encoding based on convolutional neural networks (CNN).

3.2.1 Search Target Inference

Visual search is a perceptual task in which humans aim at identifying a search target object,
such as a traffic sign, among distractor objects. Search target inference subsumes computational
methods for predicting this target by tracking and analyzing overt behavioral cues of that person,
e.g., the scanpath and fixated visual stimuli. In the following, we present related approaches and
findings from the literature. Wolfe (1994) provided an extensive review of visual search processes
and introduced a computational model of the visual search process, the Guided Search 2.0 model,
enabling inference of the search target. Their model distinguishes two visual processing stages:
a preattentive stage that processes basic visual features like color and motion and a follow-up
step that focuses on a higher-level semantic understanding of the scene. They aim to predict the
search target by calculating an activation map from bottom-up features like color and orientation
via feature maps and user-driven, task-related input. Newer approaches to search target inference
are similar in that they model the visual search process using bottom-up features for a given
stimulus in combination with user-driven input. User input is typically implicitly acquired using
eye tracking technology. Zelinsky et al. (2013) showed that objects fixated during a visual search
are likely to share similarities with the target’s appearance. They presented a method that infers
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the search target taking SIFT features (Lowe, 1999) and local color histograms from fixation-
based image patches as input. Borji et al. (2015) presented methods for identifying a 3 × 3

sub-pattern, i.e., a search target, in a QR-code-like image. Their approaches include a simple
distance function and a voting-based ranking algorithm that compares fixated sub-patches with
available sub-patches for the considered stimulus. They showed that increasing the number of
fixations used as input leads to an increase in classification accuracy. Sattar et al. (2015) encoded
scanpaths from visual search trials by applying the Bag of Visual Words (BoVW) method on fixated
image patches. In follow-up work, the authors combine gaze information and CNN-based features
to infer the category of a user’s search target instead of a particular object instance or image
region (Sattar et al., 2017a). Targets have been chosen from the DeepFashion dataset (Liu et al.,
2016). They also present a method to generate visual representations of the user’s search target
using fixated image patches and generative image models (Sattar et al., 2017b).

In chapter 6, we use the concepts introduced in Sattar et al. (2015) to develop our Bag of Deep
Visual Words encoding for scanpaths. Further, we extend the basic idea to support applications
in less constrained settings: we classify an automatically extracted segment class to localize the
search target instead of predicting one out of five defined target classes.

3.2.2 Implicit Relevance Feedback

Previous research on implicit relevance feedback addressed how a user’s eye movements can be
associated with the relevance of a text in relation to a task or a trigger question.

3.2.2.1 Estimating Text Relevance

Several approaches have been proposed for estimating text relevance from reading behavior. Sa-
lojärvi et al. (2003, 2004, 2005a) investigated whether eye tracking can be used to estimate a
user’s perceived relevance of a document. They used machine learning to predict the relevance
using the eye movements from reading the document titles as input. The authors organized a
related research challenge (Salojärvi et al., 2005b). Loboda et al. (2011) presented an approach
for gaze-based estimation of sentence relevance using fixations to sentence-terminal words, i.e.,
words at the end of a sentence, as there is empirical evidence that these words are fixated longer
on average. This is known as the sentence wrap-up effect, a manifestation of the integrative
process in reading. Buscher et al. (2008a) investigated the relation between reading behavior
and document relevance using eye tracking technology. They found that the ratio of skimming
is higher in irrelevant documents, and the ratio of continuous reading behavior is higher for
relevant documents. Further, they introduced the concept of attentive documents that keep
track of the perceived relevance based on eye movements (Buscher et al., 2012; Buscher, 2010).
Gwizdka (2014a,b) modeled the relation between eye movements and perceived document rele-
vance and investigated the cognitive effort involved in the relevance judgment. They introduced
the g-REL corpus, a collection of short news stories and corresponding questions, which they
used to collect ground truth relevance ratings and corresponding gaze data. The authors could
confirm the findings from Buscher et al. (2012) that relevant documents tend to be read contin-
uously, while irrelevant documents are rather skimmed (Gwizdka, 2014a). Akuma et al. (2016)
compared gaze-based relevance feedback with implicit relevance feedback from more common
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sensors such as mouse movements. They found a high correlation between both feedback op-
tions and a relationship between gaze-based features and perceived document relevance. Li et al.
(2018b) investigated the reading behavior for relevant and irrelevant documents for factual and
intellectual tasks. Based on data from a user study, they suggested a two-staged reading model
for explaining the cognitive processes inherent in relevance judgments. Jacob et al. (2018) inves-
tigated whether eye movements can be used to infer the interest of a reader in a currently read
article rather than the perceived relevance. Bhattacharya et al. (2020b) encoded fixations from
participants’ scanpaths over documents from the g-REL corpus and trained a convolutional neu-
ral network (CNN) with the perceived relevance as a prediction target. This approach is limited
to small texts of similar lengths. Further, they suggested novel features based on the convex hull
of scanpath fixations to model the participants’ perceived relevance (Bhattacharya et al., 2020a).
In addition, they simulated the user interaction to investigate whether their approach can be
used in real-time scenarios by cumulatively adding fixations of the scanpath and normalizing
the convex hull features with the elapsed interaction time. Hienert et al. (2019) developed a
generic method for mapping gaze data to HTML documents at the word level. The tool was
used by Davari et al. (2020) to investigate the role of fixations to words in query term prediction.
Feit et al. (2020) modeled the user-perceived relevance of information views in a graphical user
interface for decision-making. They showed room advertisements in a web-based interface via
multiple viewports to users and asked them what information was perceived as relevant to their
decision to book a room.

3.2.2.2 Query Expansion Methods

Other work focused on generating or expanding search queries based on the user’s gaze behavior.
Miller and Agne (2005) presented a system that extracts relevant search keywords from short
texts based on eye movements. Hardoon et al. (2007) and Ajanki et al. (2009) proposed methods
for implicitly generating search queries from eye movements during an information retrieval task.
The system proactively retrieves relevant documents in the background using the generated
query and content-based ranking. Buscher et al. (2008b) proposed a technique for automatic
query expansion and re-ranking for document retrieval. They use relevance estimates to identify
recently read paragraphs relevant to the user and, eventually, reformulate the search query. Chen
et al. (2015) presented a query expansion method based on eye tracking and topic modeling. They
identified fixated terms and modeled the user’s latent intent using the Latent Dirichlet Allocation
(LDA) for topic modeling.

3.2.2.3 Factors that Influence Eye Movements

Some researchers have focused on investigating factors that influence eye movements in the
context of information retrieval and reading. Buchanan et al. (2017) surveyed work in gaze-
based implicit relevance feedback. They identified several factors that might influence gaze
patterns and should be considered when building gaze-enhanced information retrieval systems.
Key factors include the task type, the task complexity, individual differences such as expertise,
and the presentation of the search results. For instance, Cole et al. (2013) showed that “the user’s
level of domain knowledge can be inferred from their interactive search behaviors”. Bhattacharya
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and Gwizdka (2018) modeled the knowledge change while reading using gaze-based features: a
high change in knowledge coincides with significant differences in the scan length and duration of
reading sequences and in the number of reading fixations. Gwizdka (2017) investigated the task-
related differences in reading strategies between a word search and relevance decisions during
an information search. Eickhoff et al. (2015) studied the relationship between the user’s visual
attention to tokens in a search engine result page (SERP) or document and the corresponding
search query: users fixate terms, which are part of their current query more often and longer
than others. Further, they found that the semantic proximity of the search query to the user’s
attention increases for different reformulation strategies such as specialization, generalization,
and reformulation.

In chapter 7 of this thesis, we investigate whether the perceived relevance can be estimated
for paragraphs of long Wikipedia-like documents in contrast to sentences or short articles. This
requires compensating for the scrolling activity, which may distort the gaze signal and fixation
extraction, and developing a method for effectively extracting consecutive gaze sequences to
individual paragraphs.

3.2.3 Visual Attention Modelling

Human gaze from eye trackers can be considered a proxy for human visual attention, i.e., “the
allocation of limited attentional resources to certain information in the visual field, while ignoring
other information” (Holmqvist and Andersson, 2017, p. 26). Hence, tracking human gaze via
eye tracking is a very important tool in research and interaction design. Still, this is connected
to tedious and costly human annotation, particularly in mobile eye tracking. In this thesis, we
investigate whether pre-trained computer vision models and interactive machine learning (IML)
approaches can be used to improve the annotation process. Next, we provide an overview of
existing approaches for the annotation of mobile eye tracking data and video annotation in gen-
eral. Further, we provide a brief overview of methods for real-time interpretation of eye tracking
data that can be used to develop wearable attention-aware user interfaces (Toyama, 2015). Using
unobtrusive modern eye tracking head-gear (see, e.g., Tonsen et al. (2017); Lander et al. (2018))
or augmented reality headsets like Microsoft’s HoloLens 2 that come with integrated eye tracking
sensors, our system for interactive annotation and model training can enable developers to easily
create custom computer vision models for attention-aware mobile interaction.

3.2.3.1 Annotation of Data from Mobile Eye Trackers

Head-mounted eye trackers allow researchers to investigate human behavior in mobile settings.
However, efficient methods for mapping fixations to AOIs from remote eye tracking cannot be
used because the video of the front-facing scene camera differs for each participant. Instrument-
ing the experiment scene with fiducial markers is an option to cope with this issue (Yu and
Eizenman, 2004; Pfeiffer et al., 2016). Software that accompanies modern head-mounted eye
trackers typically integrates marker tracking, like the marker-based surface tracking in Pupil
Capture (Kassner et al., 2014). However, the instrumentation of the experiment area comes with
certain limitations. Marker tracking might be lost due to low camera quality or due to occlusion
through other objects in the scene. In Augmented Reality (AR) settings, which allow learners to
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see digital objects embedded in reality by looking through the camera of smartphones or tablets,
supposedly unique markers might appear twice, causing ambiguity. Consequently, objects can
no longer be distinctly identified by markers. Another disadvantage of marker-based surface
tracking is that the numerous markers needed to reliably recognize objects in information-rich
learning environments might impair the instructional design by claiming cognitive resources for
the marker processing and distracting from learning-relevant visual stimuli. Therefore, this work
focuses on an approach to facilitate and support the time-consuming and challenging procedure
of mapping human gaze or fixations to objects or AOIs in non-instrumented environments. Com-
mercial tools like Tobii Pro Lab1 exist that offer automatic mapping of the gaze signal to AOIs
defined in a reference image. However, the assisted mapping function works for static scenes only,
is error-prone in cases of fast head movements and distorted image frames, and, hence, requires
additional manual effort for correcting wrong assignments or annotating missing samples (Ku-
mari et al., 2021). Further, the software is very expensive and does not support the annotation
of eye tracking data from other devices like Pupil Core head-worn device that we used. Previous
research also addressed this problem in the context of data analysis for diagnostic eye tracking
studies. However, these approaches come with certain limitations.

Most approaches rely on pre-trained computer vision models that do not support an adapta-
tion of the underlying models to the target domain. Sümer et al. (2018) investigated the problem
of automatic attention detection in a teaching scenario. They extract image patches for all stu-
dent faces in the egocentric video feed and cluster them using a ResNet-50 model (He et al., 2016)
trained on VGGFace2 data (Cao et al., 2018). They assign student IDs to each cluster, allowing
them to map the teacher’s gaze to individual students. Chong et al. (2017) developed a system
for measuring eye contact in adult-child social interactions using mobile eye trackers. Callemein
et al. (2019) presented a system for detecting when the participant’s gaze focuses on the head or
hands of another person without the possibility of differentiating between interlocutors. Machado
et al. (2019) matched fixations with bounding boxes from an object detection algorithm. They
used a sliding-window approach with a MobileNet model (Howard et al., 2017), pre-trained on
ImageNet data (Russakovsky et al., 2015). Venuprasad et al. (2020) used unsupervised clus-
tering with gaze and object locations to detect visual attention to an object or a face. They
used a Faster-RCNN model (Ren et al., 2015), pre-trained using the MS COCO dataset (Lin
et al., 2014). Barz and Sonntag (2021) compared two approaches for automatic fixation-to-AOI
mapping using pre-trained deep learning models: two ResNet models pre-trained with ImageNet
data and a Mask R-CNN model pre-trained using MS COCO data. In an evaluation based on
the VISUS dataset (Kurzhals et al., 2014a), they found that pre-trained models have severe
drawbacks in realistic scenarios like AOIs not being represented by the training data. Deane
et al. (2022) also presented an annotation system based on a pre-trained Mask R-CNN model
(He et al., 2020). They found high agreements between manual and automatic annotations for
AOIs that match the MS COCO classes. These can be applied in very constrained settings only,
i.e., if the dataset used for training the machine learning model matches the target domain.

Other approaches suffer from a lack of flexibility. Wolf et al. (2018) developed an algorithm
that maps fixations to object-based AOIs using the Mask R-CNN object detection model (He

1https://connect.tobii.com/s/article/how-to-perform-manual-and-assisted-mapping
(accessed on 12 Dec 2024)

https://connect.tobii.com/s/article/how-to-perform-manual-and-assisted-mapping
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et al., 2020). They conducted a controlled lab study to record data in a healthcare setting with
two AOIs: a bottle and five syringes. An evaluation has shown that using 72 training images
with 264 annotated object masks, their system can closely approximate the AOI-based metrics
compared to manual fixation-wise annotations as a baseline. Batliner et al. (2020) presented
a similar system for simplifying usability research with mobile eye trackers for medical screen-
based devices. Kumari et al. (2021) investigate the effectiveness and efficiency of three object
detection models for annotating mobile eye tracking data from students participating in STEM
lab courses. These methods are based on a single, a priori model training or fine-tuning step
with no possibility of adapting the model during the annotation process.

Some approaches include promising interaction concepts but use outdated computer vision
methods. Pontillo et al. (2010) presented SemantiCode, an interactive tool for post-hoc fixation-
based annotation of egocentric eye tracking videos. It supports semi-automatic labeling using
a distance function over color histograms of manually annotated fixations. Brône et al. (2011)
proposed to use object recognition with mobile eye tracking to enhance the analysis of customer
journeys. In follow-up work, they compared different feature extraction methods (De Beugher
et al., 2012) and evaluated their approach in a museum setting (De Beugher et al., 2014). Evans
et al. (2012) reviewed methods for mobile eye tracking in outdoor scenes ranging from pupil
detection and calibration to data analysis. They presented an early overview of methods for
automating the process of analyzing mobile eye tracking data. Fong et al. (2016) presented
a semi-automatic data annotation approach. An annotator assigns video frames with a gaze
overlay to AOIs, and as the annotation process advances, the system learns to classify AOIs via
instance-based learning. Kurzhals et al. (2017) used bag-of-SIFT features and color histograms
with unsupervised clustering to sort fixation-based image patches by their appearance. They offer
an interactive visualization for manual corrections. Panetta et al. (2019) presented an annotation
method based on bag-of-visual words as features and a support vector classification model (SVC)
that is trained a priori. In follow-up work, they present a system that automatically segments
objects of interest using two state-of-the-art neural segmentation models (Panetta et al., 2020).
They used pre-trained models to showcase and evaluate new data visualization methods, but
they did not assess the performance of their automatic annotation approach.

Recently, Kurzhals et al. (2020) described an interactive approach for annotating and in-
terpreting egocentric eye tracking data for activity and behavior analysis. They implement an
iterative time sequence search based on eye movements and visual features. They aim to anno-
tate high-level activity events instead of AOI-hit events like we do. In follow-up work, Kurzhals
(2021) presented an approach for annotating the objects viewed by study participants wearing
mobile eye trackers. They propose to crop image patches around each point of gaze, segment
the resulting image patches similar to the fixation detection method by Steil et al. (2018a), and
present representative gaze thumbnails to annotators as image clusters in 2D. Annotators inter-
act with this cluster representation to annotate and analyze the mobile eye tracking data. In
contrast, our method is based on interactive few-shot image classification. Our system learns to
recognize the type of fixated objects or regions based on human feedback during the interaction.

This work aims to accelerate and objectify research on visual attention with mobile eye
tracking using technologies from the field of computer vision and interactive machine learning.
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3.2.3.2 Video Annotation in General

The annotation of mobile eye tracking data requires the interpretation of the video feed from the
front-facing scene camera. Hence, systems and methods for video annotation are closely related
to our approach. An important difference is that general tools for video annotation do not take
the gaze signal or fixation events into account. In fact, video annotation based on the definition
of bounding boxes around relevant objects, a respective interpolation for intermediate frames,
and a mapping of gaze or fixation points to these areas is the state-of-the-art for annotating video
stimuli used with remote eye tracking devices (Kurzhals et al., 2014b). Even though these meth-
ods do not scale when it comes to the annotation of mobile eye tracking with individual video
feeds for each participant, we briefly review recent approaches and tools for video annotation,
as they can provide guidance for the design of similar systems. With LabelMovie, Palotai et al.
(2014), presented a tool for collaborative video annotation. They proposed machine learning-
based quality assurance and automation of the annotation process. In more recent work, the
research group presented a method for the semi-automatic annotation of videos for analyzing
the behavior of laboratory animals (Kopácsi et al., 2021). The Multimodal Multisensor Activ-
ity Annotation Tool (MMAAT) offers similar functionalities for multichannel data streams from
multiple sensors, like depth channels from 3D cameras and accelerometers from wrist-worn de-
vices (Barz et al., 2016b). The VGG Image Annotator (VIA)2 is a stand-alone tool that enables
manual annotation of images, audio, and video data in a web browser (Dutta and Zisserman,
2019). The Computer Vision Annotation Tool (CVAT) is an open-source system for interactive
image and video annotation3. It integrates functionalities for scaling video annotation, like au-
tomatic pre-annotation based on computer vision models and keyframe-based interpolation of
manual annotations, in an easily deployable online platform for large-scale projects. A general
overview of interaction methods for video content was presented by Schoeffmann et al. (2015).

3.2.3.3 Methods for Attention-aware Interfaces

Human gaze can be considered a proxy for human visual attention and thus can enhance gaze-
based multimodal interaction (Qvarfordt, 2017). We provide a brief overview of such real-time
interactive systems because they can benefit from our presented approach for interactive anno-
tation of mobile eye tracking data. Related work includes approaches for building user interfaces
that are aware of the current context or situation (Bulling, 2010), including conversational in-
terfaces (André and Chai, 2013). For instance, Bulling et al. (2013) presented an approach for
inferring high-level contextual cues from eye movements to facilitate behavioral monitoring and
life-logging. Similarly, Steil and Bulling (2015) used topic modeling to detect everyday activi-
ties from eye movements in an unsupervised fashion. In a later work, the authors presented an
approach for visual attention forecasting in mobile interaction settings, which takes the visual
scene and device usage data as additional inputs (Steil et al., 2018b). Toyama et al. (2012) im-
plemented the Museum Guide that uses SIFT (scale-invariant feature transform) features (Lowe,
2004) with the nearest neighbor algorithm and a threshold-based event detection to recognize
user attention to one of 12 exhibits. They extended their approach to detecting read texts and

2https://www.robots.ox.ac.uk/~vgg/software/via/ (accessed on 12 Dec 2024)
3https://github.com/opencv/cvat (accessed on 12 Dec 2024)

https://www.robots.ox.ac.uk/~vgg/software/via/
https://github.com/opencv/cvat


48 CHAPTER 3. RELATED WORK

fixated faces with the goal of building artificial episodic memories to support dementia patients
(Toyama and Sonntag, 2015). Other approaches combine visual features of a scene with gaze
information to detect actions recently performed by a user (Fathi et al., 2012; Li et al., 2015,
2018a; Shiga et al., 2014). Prasov and Chai (2008) developed a system that combines speech and
passive gaze input to enhance reference resolution in conversational interfaces. Baur et al. (2015)
implemented NovA, a system for analyzing and interpreting social signals in multimodal inter-
actions with a conversational agent, which integrates eye tracking technology. Thomason et al.
(2016) developed a gaze-based dialog system that enables the grounding of word meanings in
multimodal robot perception. Uppal et al. (2022) presented a method for segmenting the fixated
object using an end-to-end computer vision model. Chang et al. (2021) developed the MemX
system that detects human visual attention based on mobile eye tracking and automatically
extracts important video sequences that can be used for, e.g., lifelogging. Meyer et al. (2022)
proposed to use head- and eye movement in combination with other sensor data to recognize
human activities for building context-aware smart glasses.

3.2.4 Computer Vision

Computer vision is the algorithmic equivalent of human visual perception and subsumes image
classification and object detection methods. Image classification refers to assigning a single
label to an image; object detection refers to localizing and classifying multiple objects in one
image (Russakovsky et al., 2015). Recent methods experienced a performance boost due to
advances in deep learning technology and the availability of large datasets for model training.
Popular examples are the ImageNet dataset for image classification (Russakovsky et al., 2015)
and the MS COCO dataset for object detection (Lin et al., 2014). A good overview of object
detection was presented by Zhao et al. (2019). Research has shown that image representations
from hidden neural network layers of image classification models can be reused for different
tasks, including image clustering and transfer learning. Razavian et al. (2014) developed scene
recognition and object detection methods based on the L2 distance between the vector-based
image representations from pre-trained CNN models. Donahue et al. (2014) showed that using
image representations from a CNN model can be used to build models for a label prediction
task that outperforms previous state-of-the-art approaches. They also showed that CNN-based
image representations create semantically coherent clusters: images with similar content are
located close to each other. Jiang and Canny (2017) presented an intelligent user interface for
fine-tuning models based on a pre-trained AlexNet (Krizhevsky et al., 2012) model.

We use CNN-based image features to model the relation between the fixation history of a
visual search and the visual representation of the target or a target’s segment class in chapter 6.
We include different layers of a pre-trained AlexNet4. In addition, we propose a scanpath encod-
ing method based on the neural image segmentation model SegNet (Badrinarayanan et al., 2017),
which is trained on the SUN RGB-D dataset (Song et al., 2015) with 10,000 images of indoor
scenes annotated for object detection, classification, and segmentation. We encode a scanpath
as the sequence of fixated segment classes.

In chapter 8, we use a residual network model (He et al., 2016) pre-trained on ImageNet

4https://github.com/happynear/caffe-windows/tree/ms/models/bvlc_alexnet (accessed on 12 Dec 2024)

https://github.com/happynear/caffe-windows/tree/ms/models/bvlc_alexnet
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and a Mask R-CNN model for object detection (He et al., 2020) pre-trained on MS COCO for
fixation-to-AOI mapping. Further, we suggest using few-shot image classification for interactive
model training in the context of mobile eye tracking data annotation. Our approach is based on
the idea of reconstruction (Zhang et al., 2020; Lee and Chung, 2021; Li et al., 2023) where the
class membership task is framed as a problem of reconstructing feature maps. We have used a
Feature Map Reconstruction Network (FRN) (Wertheimer et al., 2021), which classifies a target
image by reconstructing class associate feature maps of the image using a set of support features.

Related approaches also include methods for egocentric activity recognition without gaze data.
For example, Ma et al. (2016) use hand segmentations, object localizations, and the optical flow
from egocentric videos to infer ongoing activities. Another example is EgoNet by Bertasius et al.
(2016), which determines the action-object in egocentric videos.
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Chapter 4

Error-aware Gaze-based Interaction

Head-mounted eye trackers are promising for mobile interaction as they provide information
about the user’s intentions. Human gaze conveys the user’s interest (Shell et al., 2003), which is
already used for interaction with one or multiple displays (Lander et al., 2015; Stellmach et al.,
2011; Turner et al., 2014). A key problem of mobile gaze-based interaction is that the gaze
estimation error, i.e., the difference between the estimated and true on-screen gaze position, can
be substantial, particularly if the user moves in front of a display (Lander et al., 2015; Mardanbegi
and Hansen, 2012). Besides user position and orientation, factors specific to the eye tracker
and display, e.g., parameters of the calibration routine and the display detection algorithm,
can significantly impact the gaze estimation error (Barz et al., 2015, 2016a). Some interaction
techniques omit the need for accurate point of gaze (POG) estimates, e.g., by correlating raw
eye movements with animated on-screen targets (Vidal et al., 2013; Esteves et al., 2015), but
introduce the need for dynamic user interfaces. Other methods aim to address this problem by
filtering gaze jitter (Špakov, 2012), snapping gaze to on-screen objects (Špakov and Gizatdinova,
2014) or by optimizing interface layouts for gaze estimation error at the design stage (Feit et al.,
2017). Although such methods can improve user experience, they only alleviate the symptoms
and do not embrace the inevitable gaze estimation error in the interaction design. Also, the gaze
signal from head-mounted eye trackers is provided as a sequence of scene camera coordinates.
Accordingly, it must be mapped to the coordinate system used for interaction (Kassner et al.,
2014). A key challenge for mobile gaze-based interfaces is that the tracker’s pose relative to that
coordinate system needs to be tracked. For this purpose, Bardins et al. (2008) attached infrared
LEDs to an eye tracker and used a stereo camera at the screen to track the 3D pose of the headset.
Several approaches are based on visual markers at the screen to reconstruct the eye tracker pose
and estimate the user’s on-screen gaze position (Breuninger et al., 2011; Hales et al., 2013; Yu
and Eizenman, 2004). Mardanbegi and Hansen (2011) implemented an algorithm that detects
rectangular displays in the eye tracker’s field of view and maps gaze points using a homography
matrix. Kassner et al. (2014) developed an open-source head-mounted eye tracker which, in
its most recent version, supports surface tracking with visual markers1. Lander et al. (2015)

1https://docs.pupil-labs.com/core/software/pupil-capture/#surface-tracking
(accessed on 12 Dec 2024)
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proposed GazeProjector, a system for mobile gaze-based interaction with ambient displays. They
seamlessly integrate multiple displays based on natural feature tracking to estimate the user’s
pose. We use marker tracking similar to Kassner et al. (2014) to map gaze from scene camera
coordinates to display coordinates to enable on-screen interaction with mobile eye trackers.

We present the first ever gaze-based user interface that is “aware” of the ever-changing gaze
estimation error and can adapt to the error on the fly. We implement a prototype for error-aware
gaze-based selection that scales targets proportional to real-time error estimates. In total, we
develop four models, which include two simple models based on a fixed angular error, a pre-
dictive model, and a baseline using a fixed target size (Barz et al., 2015, 2016a). We evaluate
our prototype in a user study with 12 participants. The best selection rates are achieved with
the predictive model on the cost of large target sizes: it is unclear to what extent the advan-
tage in selection rate originates from the target size. Based on our experiences from this first
study, we develop two more advanced error compensation methods and investigate their effect
on selection rates and target sizes using our study corpus (Barz et al., 2018). The results of
our analysis suggest that the selection rate can be improved using directional error estimates
without increasing the average size of targets. However, this advantage vanishes with increasing
target sizes. A great improvement can be achieved by training personalized directional error
models: with this approach, high selection rates can be achieved even with low target sizes. All
in all, our architecture and error models enable a new class of gaze interaction that incorporates
gaze estimation errors and is suitable for many fields of application in mobile and ubiquitous
computing. We contribute as follows:

• Section 4.1: We present a generic software architecture for error-aware gaze-based interac-
tion (see figure 4.1).

• Section 4.2: We implement the first error-aware gaze interface that scales selection tar-
gets proportionately to real-time error estimates (see figure 4.2). We integrate four gaze
estimation error models (Barz et al., 2016a).

• Section 4.3: We systematically evaluate our prototype and the gaze estimation error models
in a mobile interaction user study with 12 participants.

• Section 4.4: Informed by the findings of the first study, we develop and evaluate two
advanced adaptation techniques: a method based on Feit et al. (2017) that scales gaze
selection targets according to the 2D error distribution in the data and a novel method
that combines scaling targets and shifting gaze by directional error estimates.

4.1 Software Architecture

We propose an approach for gaze-based interaction that, in contrast to existing methods, in-
corporates the gaze estimation error of the eye tracker in real-time. This section describes our
proposed software architecture for error-ware gaze-based interfaces (see figure 4.1). It includes
three main components. The Gaze Estimation and Input Data Acquisition component connects
an eye tracker to receive gaze information with respect to any pre-defined display and further



4.1. SOFTWARE ARCHITECTURE 55

User with
Head-mounted

Eye Tracker

Calibration & 
Gaze Estimation

Display Detection 
and Gaze Mapping

Input Data 
Acquisition

Gaze Estimation 
Error Model

GUI Controller
Interface & Marker 

Visualization

Gaze Estimation and Input Data Acquisition

Error-Model Component

Error-Aware Interface Manager

Figure 4.1: Generic architecture of an error-aware gaze-based interface.

inputs required for predicting the gaze estimation error. In most cases, this part will integrate
with the software package accompanying the eye tracking hardware. In principle, this compo-
nent could also connect remote eye tracking devices, but we focus on mobile, head-mounted eye
trackers in this section. All parameters are sent to the Error-Aware Interface Manager that
adjusts the interface by compensating the gaze estimation error based on a real-time estimate
of an interchangeable Error-Model Component and presents it to the user. In the following, we
describe the individual components of our architecture and their interplay.

4.1.1 Gaze Estimation and Input Data Acquisition

This component has three major tasks. First, it connects an eye tracking device to handle calibra-
tion and to receive gaze data. Second – if not fulfilled by the eye tracker’s API – it is responsible
for detecting displays and mapping gaze on these displays. Third, the component acquires all
necessary input parameters for the Error-Model Component. The marker visualization, as well
as executing the error estimation, is part of the Error-Aware Interface Manager.

4.1.2 Error-Aware Interface Manager

The interface manager is the core component of our framework and accomplishes several tasks.
First, it handles the interface elements comprising their properties and events, similar to any
user interface framework. Any module, e.g., containing the application logic, can add elements,
influence its position, and register for events. Second, it handles the presentation of markers
used by the Gaze Estimation and Input Data Acquisition to identify the display and compute
the eye tracker pose. Third, and most importantly, this component interfaces the Error-Model
Component to gather essential data for, e.g., adjusting the size of interface elements and shifting
the input signal. In this work, we implement and evaluate different compensation methods
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Figure 4.2: Study participant interacting with our error-aware gaze-based interface using a mobile eye
tracker and a presenter as selection trigger.

summarized in figures 4.3 and 4.7.

4.1.3 Error-Model Component

The error-model component encapsulates all calculations and algorithms for predicting the gaze
estimation error via a shared interface. It is important that the computation time for the error
inference is suitable for real-time applications: it should be on par with the sampling rate of the
gaze estimation (e.g., between 30 and 200 Hz for mobile devices). The concrete implementation
should allow developers to exchange the error model for testing different approaches or updating
models if newer revisions are available. For instance, when a model can be personalized for each
user. We investigate different error models that serve as input for error-compensation methods
in the Error-Aware Interface Manager.

4.2 Prototype Implementation

We implement an error-aware interface based on the proposed software architecture to show the
feasibility of error-aware gaze-based interfaces and to validate our architecture. Our prototype
allows users to select a button by looking at it while pressing a mobile presenter’s button (see
figure 4.2). Our goal is to increase the selection rate through real-time optimization of the
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Figure 4.3: The NaïveScaling method adapts the interface by scaling selection targets likewise for two
dimensions (horizontal and vertical). Scaling is based on an interchangeable error model that provides
absolute error estimates in real-time.

button size, i.e., to increase the edge size as much as required for successful selections based on
the current gaze estimation error. Next, we describe each component of our prototype in detail.

4.2.1 Gaze Estimation and Input Data Acquisition

Our prototype is based on a monocular Pupil Labs Pro eye tracker, which captures gaze at
30 Hz (Kassner et al., 2014). The resolution of the scene camera is 1280 × 720 pixels and
640× 480 pixels for the eye camera. The device is connected to a laptop inside a backpack worn
by a user (see figure 4.2). This component is based on Pupil Capture, an extensible software
package provided by the eye tracking manufacturer for device calibration and gaze estimation.
We extend Pupil Capture by a marker-based display detection component to map gaze from the
scene camera coordinate system to the coordinate system of any display or interactive surface
in the environment. Further, our plugin collects all data required for other components of our
interface prototype, especially for the Error-Model Component. A detailed description of the
required input data can be found in Barz et al. (2016a).

4.2.2 Error-Aware Interface Manager

Our prototype can visualize a single clickable button with a dynamic edge size at a given position.
Buttons are shown as blue rectangles with a white dot at their center. To select a target, a user
can press a button on a wireless presenter while fixating on it. This additional modality solves
the Midas problem inherent to gaze-based interfaces. When the user has performed a button
click, we check if there was a recent fixation within the area of a button and raise its trigger
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event accordingly. It flashes green upon a successful selection and red otherwise. The edge
size can be bound to real-time error estimates from the Error-Model Component via an error
compensation method. We implement a NaïveScaling approach: the size of the selection target
is calculated as two times the gaze estimation error µ as shown in figure 4.3. We double the
error estimates because they are absolute and, hence, do not contain directional information. It
is possible to change the active model on-the-fly, also during runtime. To prevent jumpy changes
in an element’s shape, we smooth the edge size using the 1-Euro-Filter (Casiez et al., 2012) with
β = 0.01 and fcmin

= 0.3 as parameters. In our demo setup, we use a back-projection screen
with a resolution of 1024× 768 pixels and a pixel density of 8.88 px/cm.

4.2.3 Error-Model Component

A key building block of our error-aware interface is a model that estimates the gaze estimation
error for head-mounted eye trackers. We implement four models, two simple models based on a
fixed angular error, a predictive model, and a baseline using a fixed target size.

4.2.3.1 Simple and Baseline Error Models

We implement two simple models based on Barz et al. (2015, 2016a): the models Best and
Measured calculate the gaze estimation error based on the distance d of the user’s head to the
current on-screen target and a constant angular error ec. This error is either 0.6◦ as stated by
the hardware manufacturer (best-case) or 1.23◦ as measured for the actual setting in (Barz et al.,
2015). The function to approximate the gaze estimation error µ with the distance d and the error
ec ∈ {0.6◦, 1.23◦} as input is µ = d · tan(ec). The baseline model None reports a constant error,
which is computed once with 1.23◦ and a static distance of dcal = 175 cm as input (center of the
interaction space).

4.2.3.2 Predictive Error Model

Monocular head-mounted eye trackers are typically equipped with two cameras: a scene camera
that captures part of the user’s current FOV and an eye camera that records a close-up video of
the user’s eye (Kassner et al., 2014). The problem of gaze estimation can be defined as mapping
2D pupil positions in the eye camera coordinate system to 2D gaze positions in the scene camera
coordinate system (Majaranta and Bulling, 2014). The mapping is usually established in a
calibration process. Pupil positions and corresponding scene camera positions are then typically
mapped to each other using a first or second-order polynomial. Suppose these gaze positions are
meant to be used for interacting with a display placed somewhere in the environment. In that
case, they must be mapped further to the corresponding display coordinate system, e.g., by using
visual markers attached to the display (Yu and Eizenman, 2004) or by detecting the display itself
(Mardanbegi and Hansen, 2011). This indicates two main components where errors can arise
(see figure 4.4): 1) the mapping of 2D pupil positions in eye camera coordinates to 2D scene
camera coordinates (Pupil Position Mapping), as well as 2) detecting interactive displays in the
environment and mapping gaze from scene camera coordinates to display coordinates (Display
Detection and Mapping).
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Figure 4.4: Gaze estimation error model for head-mounted eye trackers comprising two main building
blocks: Pupil Position Mapping and Display Detection and Gaze Mapping. Model inputs include pa-
rameters for Calibration, Eye Tracker, and Display, as well as the real-time gaze, visual marker, and 3D
head pose, some specific to the Eye or Scene camera.

4.3 User Study

The proposed error-aware interface is evaluated for mobile gaze interaction in a public display
setting. The interaction with the interface consists of a gaze-based selection task on a large dis-
play. Hereby, the Error-Aware Interface Manager uses estimates of the Error-Model Component
for scaling selection targets in real-time: The larger the predicted gaze estimation error, the
larger the targets (see figure 4.3). We invited 12 participants (six female) aged between 20 and
53 (M = 28.68, SD = 10.84).

Conditions We investigate the performance of our Naïve target scaling approach using differ-
ent error models for the Error-Model Component. The error models introduced above correspond
to our four conditions (Best, None, Measured, and Predictive).

Tasks For each condition, a calibration is performed at the center of a 3×3 grid with 50×50 cm
cells starting 100 cm in front of the display (approximately 175 cm and orthogonal to the screen).
Then, the selections are performed using six on-screen targets (radially arranged with one at the
display center) from all positions of the 3×3 grid, totaling 216 selections per participant. Stimuli
are shown at the same positions in randomized order.

Design In the user study, we consider four different methods for predicting the gaze estimation
error in our error-aware interface (within-subject design). The order of conditions is counterbal-
anced between participants.
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Procedure Participants are introduced to the experiment and asked to complete a general
questionnaire. Then, per condition, each participant calibrates the eye tracker and performs
all selections for the currently considered error prediction method (counterbalanced order). We
instruct the participants to be as accurate as possible. The grid position is shown to the user
prior to each selection. On average, one run lasted 967 s.

Apparatus We use the gaze-based prototype for button selection described in section 4.1 with
the NaïveScaling error compensation. Our setup uses a back-projection screen with 1024 ×
768 pixels and a pixel density of 8.88 px/cm. We mark a 3 × 3 grid in front of the display
with adhesive tape to coarsely position the participants without restricting their mobility. Also,
we collect the 3D head pose of the user based on the marker tracking component to get more
fine-grained location data (continuous values for distance and angle).

Independent and Dependent Variables Independent variables include the error prediction
method, the user position, and the on-screen target. The models correspond to the conditions
outlined above. The 3× 3 grid enforces the nine different user positions. Additionally, we record
the 3D pose to get the distance between the user and the target as well as the angle of the user
to the display. The dependent variable is the selection rate and the size of the target area.

Hypotheses We hypothesize that the Naïve compensation approach achieves the best selection
results with the Predictive model with respect to the selection rate (H1). This method will
especially outperform the other approaches for varying distances (H2) and orientations (H3) of
the participants in front of the display with reasonable target sizes (H4).

4.3.1 Results

Averaged over all on-screen targets and grid positions, the selection rate is 22.47% (SD = 15.56)
for Best, 48.92% (SD = 29.09) for None, 53.4% (SD = 22.53) for Measured and 81.48% (SD =

17.99) for Predictive (see figure 4.5). A repeated measures ANOVA (N=12) shows that the
differences are significant (F (3, 9) = 56.294, p < 0.001). All pairwise differences (Bonferroni-
corrected) are significant, besides the ones between Measured and None. In addition, all but one
participant judged Predictive as their favorite method.

We further analyze the effect of distance and angle of the user’s head to the corresponding
on-screen target on the selection rate. We cluster the data into three groups for both variables
based on the respective histogram (visually inspected). The resulting intervals are [80, 150] cm
(near), [150, 215] cm (mid), and [215, 290] cm (far) for the distances and [−50,−12.5]◦ (left),
[−12.5, 12.5]◦ (center) and [12.5, 50]◦ (right) for the angles to the selection target. For Measured,
we observe a significant drop in selection rate when moving from the calibration position towards
the display (from mid to near) of 43.18% (F (2, 10) = 14.127, p = 0.001). Results for Best also
decrease by 34.92%, but not significantly (F (2, 10) = 1.448, p = 0.28). For None, we find
an inverse effect, i.e., the selection rate increases by 30.39% (F (2, 10) = 9.988, p = 0.004). The
results for the Predictive model reveal a similar effect as for Measured and Best, but the selection
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Figure 4.5: Mean selection rate of different error estimation models averaged over on-screen targets
and grid positions.

rate only decreases by 20.64% (F (2, 10) = 17.298, p = 0.001). We find no significant differences
in the selection rate considering the intervals for the angles.

Concerning the size of generated targets, we compute the angular error ec = 1.98◦ for Pre-
dictive that would generate, on average, the same target sizes when using the error estimation
function of Best and Measured. The inverse of this function is used with the distance and er-
ror estimation result of each selection as input. Further, we average the selection rate and the
target area over all participants, which maintains the variance for different user positions and
targets for each error model (see figure 4.6). Hereby, the performance of the Predictive model
is measured with reduced and increased edge lengths to see whether it systematically over- or
underestimates the gaze estimation error using {0.8, 0.9, 1.1, 1.2} as factors for scaling the edge
length. Concerning the Predictive method, the selection rate improves with a regressive slope,
whereas the target area grows quadratically. The mean target size for the Predictive model is
168.15 cm² (SD = 84.67) which is larger than 76.15 cm² (SD = 41.2) for Measured, 60.38 cm²
with zero variance for None and 17.09 cm² (SD = 9.27) for Best.

4.3.2 Analysis

The evaluation confirms that our compensation method Naïve performs best with the predictive
model (Barz et al., 2016a), significantly outperforming the two simple models as well as the
baseline method for gaze error estimation (supports H1). On average, the method Best performs
significantly worse, and Measured performs as well as None, which uses no error compensation.
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Figure 4.6: Mean selection rate and mean target area for different error estimation models averaged
over all participants. The error bars indicate the standard deviation (±) of n=54 selections per model.

However, the performance for far user positions significantly increases for Measured whereas it
decreases for None, and the same holds for Predictive and None. This inverse behavior confirms
H2. We could not find a dependency between the selection rate and the angle of the user
to the display and thus could find no evidence for H3. Our evaluation shows that the gaze
estimation error of 0.6◦ (Best), as reported by the manufacturer, is inapplicable for mobile
settings. Measured assumes a more realistic error than Best, which yields better selection rates.
The model-based approach Predictive outperforms all baseline methods regarding the selection
rate but would presume the highest error of 1.98◦ if it was a distance-dependent method.

The distribution of its target areas (M = 168.15 cm²) as shown in figure 4.6 is broader com-
pared to Measured and Best indicating a higher degree of adaptation; accordingly, the variance
of None is zero. Systematically increasing and decreasing the estimated target size shows how
the selection performance can be traded against the target size. Also, it shows that Predictive
seems to be a reasonable compromise. However, we cannot confirm H4 because it is unclear
which portion of the improvement stems from choosing the target sufficiently large and to what
extent from the adaptive behavior of the Predictive model. Another reason might be the high
variance in performance of different participants, which these models cannot explain, i.e., the
Predictive model might predominantly explain the system error of the eye tracking device. Us-
ing the Naïve scaling approach results in undesirable selection rates or relatively high target
sizes, which might be up to the compensation method or the error models. For this reason, we
develop a more sophisticated method that incorporates directional error information, enabling
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Figure 4.7: We implement and evaluate two additional methods for adapting the interface and for
compensating the gaze estimation error: (a) the method Feit2dDist (Feit et al., 2017) that scales targets
based on the 2D error distribution extended for mobile settings and (b) our novel method PredictiveShift
that shifts gaze based on a directional error estimate.

not only naïve scaling of interface controls but also shifting gaze toward the user’s actual point
of regard. Further, we investigate user-specific error modeling to cover personal differences in
tracking quality and interaction style. We evaluate our new compensation method and compare
it to a recent approach by Feit et al. (2017) in a post-hoc analysis with our recorded data.

4.4 Advanced Compensation Methods

Based on our findings from the user study, we develop two additional compensation methods:
Feit2dDist that is based on a recent model by Feit et al. (2017) that is based on the 2D distribution
of the gaze estimation error and a novel model PredictiveShift that shifts gaze by a directional
error estimate. Both methods implement the compensation part of the Error-Aware Interface
Manager and their specific counterpart in the Error-Model Component.

The compensation method Feit2dDist is based on a work by Feit et al. (2017). They introduce
an approach for modeling the eye tracking error using a two-dimensional Gaussian. For each
on-screen position, they compute the spatial accuracy as the mean offset µ and the spatial
precision as the standard deviation σ of the respective gaze samples in x and y direction. µ

and σ which define the 2D Gaussian are used for approximating the gaze error distribution.
The target size for a specific on-screen position in terms of width and height is computed as
Sw/h = 2 · (µw/h+2 ·σw/h). Using the doubled standard deviation to either side includes around
95% of all samples assuming a normal data distribution. By definition, this approach will achieve
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a selection rate of around 95%, assuming that the error distribution does not differ significantly
during the interaction. However, this approach was neither meant nor used for real-time error
estimation in adaptive user interaction. It is limited to a static setting where only the on-screen
targets can vary. We extend their approach for mobile settings: we consider different positions
in front of the display using a look-up table with pre-computed means and standard deviations
for all combinations of grid and screen positions for inference. Further, we add the factor ω to
control the influence of the precision estimate σ, allowing us to investigate the effect of changing
target sizes. Our adapted version computes the target size as Sw/h(ω) = 2 · (µw/h + ω · σw/h)
depending on the grid position where the user is standing and the location of the on-screen target
(see figure 4.7a).

Our novel approach PredictiveShift is based on modeling the directional information of the
gaze estimation error (i.e., the offset), which enables shifting the estimated gaze point to the
actual point of regard, thus reducing the systematic error of the eye tracking setup and personal
characteristics in focusing gaze targets. The error model is a multivariate ElasticNet regression
model implemented in scikit-learn (Pedregosa et al., 2011) using a preceding standard scaler for
standardizing input features by removing the mean and scaling them to unit variance. We use
the following predictor variables from our user study for estimating µ and σ (for x and y): the
coordinates of the on-screen target, the distance to the fixated display region, the horizontal angle
to the display and the estimated gaze position in world camera coordinates. The distance, angle,
and on-screen position are similar to the input of the distribution-based approach by Feit et al.
(2017). We add the gaze estimates in world coordinates to cover potential systematic weaknesses
of the tracking device, e.g., in regions close to the border of the camera’s field of view. In contrast
to all other methods, the spatial accuracy is modeled, including its directional information, which
allows for shifting the measured gaze toward the actual point of regard (see figure 4.7b). Like
the model above, we consider a weight factor ω to scale the estimated spatial precision. The
target size is computed as Sw/h(ω) = 2 · (sc + ω · σw/h) with 2 · sc = dcal · tan (1.23◦) being the
target size as computed for the baseline method None for the Naïve approach. We use this static
base size as a lower bound because we observed a significant plus in selection rates for near-user
positions. The participant’s gaze is corrected as follows: shift(gx/y, µw/h) := gx/y + µw/h.

We hypothesize that compensation with PredictiveShift achieves higher selection rates than
Naïve and Feit et al. (H1.1), particularly enhancing the ratio of target size and selection rate
(H4.1); personalized error models yield a further improvement (H4.2).

4.4.1 Model Training and Evaluation

We use the recorded interaction sessions from our user study to train and evaluate the compen-
sation methods. First, we pre-process the data extracting all relevant information and excluding
outliers. The subsequent steps are based on this cleaned dataset.

4.4.1.1 Pre-Processing

The recorded dataset includes the raw and metadata of all selection trials from our study. We
extract the relevant parts of each selection sequence by cropping the signals starting half a
second before the selection was triggered (presenter click) and stopping at that event. Outliers
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Best None Measured Predictive

Selection Rate [%] 21.37 54.19 52.99 83.76
Target Size [cm²] 16.33 55.24 68.62 170.36

Table 4.1: Mean selection rate and mean target size from the offline simulation using the error com-
pensation methods from the user study.

are removed based on the mean gaze offset to the actual target center and the distribution of the
standard deviations of the gaze signal for the cropped intervals. We drop a selection trial if the
mean offset is greater than five degrees (see Kassner et al. (2014)) and if the standard deviation is
greater than the 95th percentile of all standard deviations. High offsets commonly appear when
the marker tracking fails or when the eye tracking headset is displaced. High variance values can
occur when the user’s pupil cannot be tracked well. We drop 8.80% of the data so that 2364
selections from 12 users remain. On average, the dataset contains 197 selection trials for each
user (SD = 13.93).

4.4.1.2 Model Training

The error estimation of the applied compensation methods is data-driven and requires a training
phase described here. We split the data into a train (75%) and a test set (25%). Concerning the
user-specific models for PredictiveShift(personal), we split the data per user with the same ratio.
For Feit2dDist, we compute the means µ and standard deviations σ on the train-set, as described
above, and store them in a look-up table. For our new predictive model, we conduct a 5 × 5

nested cross-validation (k-fold) on the train set where the inner loop performs a grid search for
optimizing model parameters of the ElasticNet algorithm. The search space includes the degree
of polynomial features ∈ {1, 2}, the factor alpha∈ {10, 1, .1, .001} weighting the penalty terms
and the l1_ratio ∈ {0, .5, 1} trading off the L1 and L2 regularisation.

4.4.1.3 Evaluation Procedure

We use the selection trials from the test set for validating all error compensation methods,
including Naïve with all error models, Feit2dDist, PredictiveShift and PredictiveShift(personal).
For each selection and compensation method, we infer the gaze error using the recorded signals as
input. The error estimate is used for computing the target size and, in the case of PredictiveShift,
for shifting the point of gaze (see figure 4.7). The selection success and the respective target size
are logged. We repeat the evaluation cycle with 20 values of ω, weighting the influence of the
gaze precision estimate on the target size. The interval range and step size are chosen, starting
with ω = 0 (no influence), such that selection rates of models converge to 100%. For all methods,
this results in a maximum target size between 300 and 350 cm² (see figure 4.8). We consider
ω ∈ {0 ≤ i < 3} with step-size 0.15 for Feit2dDist and ω ∈ {0 ≤ i < 20} with step-size 1 for
PredictiveShift and PredictiveShift(personal).
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results for varying ω for the new compensation methods.

4.4.2 Results

We average the selection rate and the target area over all on-screen targets and grid positions.
Figure 4.8 shows the mean selection rates in relation to their mean target size per method.
This allows a direct comparison with our previous results: the four squares represent the offline
simulation results of the Naïve scaling using different error models, confirming our previous
findings (see table 4.1 and figure 4.5). The results of the other compensation methods are
plotted as curves due to the variable parameter ω. Tests for statistical significance are conducted
using McNemar’s test for selection rate and the Wilcoxon signed-rank test for target sizes.

For ω = 0, the compensation method of Feit et al. (2017) achieves a selection rate of 40% with
an average target size of 37.74 cm². When increasing ω by two steps to 0.3, it achieves a similar
selection rate and target size than the baseline method Naïve[None] : 52.65% at 55.27 cm². The
selection rate further improves with greater values for ω, but the ratio to the target area decreases
(i.e., the slope of the curve is regressive). Hereby, this method reaches a similar selection rate
than Naïve[Predictive] at ω = 1.2 with 83.59%, but with significantly smaller target sizes of, on
average, 128 cm² (Z = −14.6,p < .001). In the same way, it outperforms Naïve[Predictive] with
a similar target size (175.7 cm²) in terms of selection rate: 90.6% at ω = 1.65 (p < .001).
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With ω = 0, PredictiveShift generates targets with the same size as the baseline model
Naïve[None], which is used for computing its base size sc (see figure 4.7b). However, shifting
the gaze by the predicted directional gaze estimation error increases the selection rate by 11.45%
to 65.64% (p < .001). Similar to the Feit2dDist method, with increasing ω, our novel method
achieves higher selection rates with a regressive slope. Particularly for small targets, our method
PredictiveShift achieves higher selection rates.

The personalized version PredictiveShift(personal) achieves the best selection rates and tar-
get sizes. For ω = 0, the selection rate is 90.98%, i.e., it significantly improves by 25.34%
compared to its corresponding non-personalized version and is 36.79% better than the baseline
Naïve[None] (p < .001). In addition, it exceeds the selection rate of Naïve[Predictive], despite
significantly smaller target sizes by 67.57% (Z = −20.45,p < .001). Like the other approaches,
the selection rate increases as ω grows with a regressive slope. For ω = 10, the personalized
compensation method achieves a selection rate of 98.01% with target sizes around 165.82 cm²
that are comparable to Naïve[Predictive] (p < .001).

4.5 Discussion

In this work, we show that the performance of mobile gaze interaction can be significantly im-
proved if the interface is aware of and can adapt to the inevitable gaze estimation error. The
error compensation method PredictiveShift consequently achieves better selection rates than our
initial Naïve scaling approach and excels the method based on Feit et al. (2017) (supports H1.1).
The results of our evaluation show that, given a specific selection rate, all new compensation
approaches generate smaller targets (supports H4.1). Especially, the user-specific training with
our shift-based compensation method, PredictiveShift(personal), increases the performance mea-
sures tremendously without increasing the target size (supports H4.1 and H4.2). We conclude
that personalized models better explain the variation between users, e.g., covering differences
in tracking quality and how they interact using gaze. The decreasing slope can be explained
by the fact that the error might be normally distributed. Increasing the selection rate beyond
a certain point comes at the cost of larger selection targets that grow quadratically in their
area. To put our results into context, we approximately measured the area of common controls
of the Windows 10 user interface for the display setting as shown in figure 4.2 with a size of
115.32× 86.49 cm: Selecting taskbar icons (19 cm²) and small tiles in the start menu (32 cm²)
would still be difficult; mid-sized tiles (170 cm²) and larger controls would achieve high selection
rates. Next, we discuss the use cases, advantages, and shortcomings of our approach.

4.5.1 Advantages and Use Cases

The key advantage of our error-aware interface is its application to enhance mobile gaze-based
interfaces. The evaluation shows the benefits of using sophisticated compensation methods with
error models in selection performance and generated target sizes. To the best of our knowledge,
this is the first attempt to apply such a model in error-aware real-time interaction. A direct
application of our methods is the extension of the interaction framework by debugging compo-
nents that visualize the gaze error just in time, and a simulation component that provides a
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priori information on the expected gaze estimation error for early user interface prototypes. We
suggest two data visualization techniques and describe the simulation capability with our error
models similar to Feit et al. (2017), but extend it to mobile interaction settings with varying user
positions. Both visualization methods are implemented and informally tested for the purpose of
real-time interface analysis.

4.5.1.1 Uncertainty Indicator

This approach comprises the augmentation of the gaze pointer by a transparent ellipse indicating
the estimated distribution of the gaze error. The two-dimensional spatial accuracy and spatial
precision estimates of any of the presented error models can be used to span an ellipse around a
recent fixation position.

4.5.1.2 Heatmap Overlay

In this visualization, a regular grid (N ×M) is laid over the display space and mapped back to
the world camera space (with an inverse display gaze mapping). Then, the error of the tracking
device is estimated for each position. A texture with the resolution N ×M is generated where
each pixel corresponds to one point of the grid. For each point, the colors are assigned based on
the error value. Finally, this texture is mapped to the display region on the world camera stream,
enabling immediate feedback for a considered interface from the user’s egocentric perspective.

4.5.1.3 Gaze-interface Design Tool

Simulations have significant potential for interaction designers to optimize interfaces, interaction
techniques, and visualizations without testing each variant through actual human studies. Our
framework enables the assessment of gaze-based interfaces at the design stage, similar to Feit et al.
(2017). For this, each interactive control of an interface can be compared to target sizes generated
by our compensation methods for identifying potential issues. The advantage of our approach is
that different user positions in a mobile interaction setting with given display positions and sizes
can be covered.

4.5.2 Limitations

Despite its novelty in terms of error-awareness, our gaze-based interface has some limitations.
We currently restrict the number and type of interface elements to a single button that can
be triggered. To showcase an error-aware gaze-based interface, this button expands in size
for high-error situations and optionally shifts the gaze to ease selection. Currently, there is
no efficient method for collecting required training data, but our personalized compensation
approach achieves the best selection rate and target size ratio.
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4.6 Conclusion

We introduced an error-aware gaze interaction framework. This framework enables a new class
of gaze-based interfaces that are aware of the gaze estimation error. Driven by real-time error
estimation, this approach has the potential to outperform state-of-the-art gaze selection methods
in terms of selection performance with competing target sizes. We presented a first implemen-
tation of the framework and evaluated a naïve target scaling approach with four methods to
estimate the gaze error in a user study. Elaborating on our findings, we developed and compared
advanced error compensation methods. The results show both the real-time capability as well
as the advantages of an error-aware interface, relying on gaze shifting and personalized training
with a predictive model in terms of selection performance and target sizes.

Some approaches have been transferred to the open source Pupil Capture platform (Kass-
ner et al., 2014), like estimating the 3D position of the user relative to marker-based surfaces
and using the 1-Euro-Filter (Casiez et al., 2012) for smoothing the gaze signal for visualization
purposes2.

We plan to further extend and evaluate the concept of error-aware gaze-based interaction
in future work. As a first step, we want to add and compare further mechanics to adapt the
interface according to the gaze estimation error. One idea would be to move small objects to low-
error regions. This could, for example, help to automatically assign more fine-grained interfaces
with small objects to close-by displays and coarse-grained interfaces with larger objects to more
distant displays. Error models can also help in assessing non-adaptive gaze-based user interfaces
by, e.g., inferring expected miss rates for object selection of all UI elements based on their
on-screen position and potential user positions. Further, exploring techniques for a seamless
collection of training samples for training new error models or fine-tuning them for new users,
e.g., as part of a calibration routine or fully automatic, will be interesting.

2See https://github.com/pupil-labs/pupil/commits?author=MichaelBarz (accessed on 22 Nov 2024)

https://github.com/pupil-labs/pupil/commits?author=MichaelBarz
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Chapter 5

Calibration-free Gaze-based
Interaction

Calibration-free gaze-based interaction techniques like systems based on gaze gestures or smooth
pursuit eye movements can circumvent the issues caused by gaze estimation errors because,
by design, they do not require accurate gaze estimates. We introduce a novel calibration-free
interaction technique based on saccadic eye movements for user authentication at public displays.
An increasing number of use cases require users to be authenticated prior to interaction with a
public display. Typical situations include making purchases, retrieving sensitive information, or
for identification. A common class of authentication methods are knowledge-based approaches,
e.g., PIN, password, or patterns are entered via touch input on the public screen or via an external
keyboard. These methods are prone to residues- or observation-based attacks. Smudges (Aviv
et al., 2010) or thermal residues (Abdelrahman et al., 2017) can reveal partial to full information
of a PIN or password. Attackers might also observe the input by shoulder surfing attacks (Brudy
et al., 2014) or more sophisticated attacks involving cameras (Ye et al., 2017). An alternative to
knowledge-based approaches are biometric authentication methods such as fingerprint and iris
scans. In this work, we concentrate on knowledge-based authentication. Prior research proposed
authentication mechanisms based on different modalities to be more robust against attackers.
E.g., Kim et al. (2010) used the pressure signal of touch-based input to overcome shoulder surfing.
Particularly, gaze-based methods have been found to be more secure than, e.g., touch-based
input (De Luca et al., 2008; Khamis et al., 2018b). Further, it allows hands-free authentication
and interaction, which is more hygienic than touch input. This is important due to the high
contamination of public displays (Gerba et al., 2016). A major drawback of many gaze-based
authentication methods is a mandatory calibration of the eye tracking device (Kumar et al.,
2007; Best and Duchowski, 2016). These approaches are unsuitable for public displays because
it is time-consuming and perceived as cumbersome (Majaranta and Bulling, 2014). However,
interaction methods for public displays shall be designed for immediate usability (Khamis et al.,
2015). Calibration-free methods exist, but tend to be slow (Khamis et al., 2018b; De Luca et al.,
2007; Cymek et al., 2014; Rajanna et al., 2017) or suffer from high error rates (De Luca et al.,
2009; Khamis et al., 2018b).
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We implement a novel gaze-based and calibration-free authentication method, EyeLogin, that
addresses the limitations of prior approaches (Bhatti et al., 2021). Our system uses the direction
of saccadic eye movements in a radial interaction design, similar to the system by Best and
Duchowski (2016), that facilitates accurate and fast PIN entry (see figure 5.1b). We use a low-cost
remote eye tracking sensor that allows broad integration into public displays and spontaneous user
interaction. Our method is calibration-free, unlike the system proposed by Best and Duchowski
(2016). We implement the state-of-the-art method CueAuth as a baseline system, described in
Khamis et al. (2018b). In a user study (n=10), we compare both authentication methods by
their PIN entry accuracy and time and concerning usability and the perceived workload. In this
chapter, we contribute as follows:

• Section 5.1: We implement two methods for calibration-free gaze-based authentication
via PIN-entry: the state-of-the-art method CueAuth as a baseline system (Khamis et al.,
2018b) and a novel approach based on saccadic eye movements, EyeLogin.

• Section 5.2: We conduct a user study (n=10) to compare both methods in terms of accuracy,
efficiency, usability, and perceived workload.

5.1 Gaze-based Authentication

Next, we describe the design and implementation of the gaze-based CueAuth method (Khamis
et al., 2018b) and our novel authentication method EyeLogin based on saccadic eye movements.
We implement CueAuth as a baseline system because it is the most recent calibration-free method
that implements the same knowledge-based authentication method, i.e., a four-digit PIN entry for
public displays. Khamis et al. (2018b) implemented and compared three authentication methods
based on touch, gesture, or gaze input. Unless stated otherwise, we refer to the gaze-based
CueAuth version.

5.1.1 CueAuth

We implement the CueAuth PIN entry method introduced by Khamis et al. (2018b). It matches
the smooth pursuit eye movements of a user with the trajectory of moving digits (0-9) in the
interface (see figure 5.1a). The interface shows a virtual number pad. Each digit is presented in
a small circle that moves with a pre-defined unique trajectory. The trajectories are either linear,
circular, or zigzag-shaped. A user must follow the movement of four digits in a row to enter a
PIN. The interface provides visual feedback in a separate text view: an asterisk symbol is added
when an input is detected. Addressing the known limitations of CueAuth, we add a one-second
break after the trajectory-based animation ends to allow the user to re-focus. Further, we provide
feedback when the matching process begins and ends. The matching begins after the animations
of the digits stop (see algorithm 1). We compare the trajectories of the interface controls with
the relative eye movements of the same time frame. We calculate the Pearson correlation for
two axes (x and y) and average the correlation coefficients in the Correlate function. If the
mean correlation c ≥ 0.8, the digit is stored, and the user receives immediate feedback of the
match (asterisk). If more than one trajectory reaches the threshold detection threshold of 0.8, we
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(a) Interface of CueAuth (b) Interface of EyeLogin

Figure 5.1: We compare two gaze-based authentication methods. (a) CueAuth is based on a dial pad
layout and smooth pursuit eye movements. (b) EyeLogin uses a radial digit pattern and saccadic eye
movements for PIN entry.

choose the digit with the higher correlation. We call Correlate with two different time windows:
[2 s-4 s] and [1.5 s-4 s] that start 2 s or 2.5 s before the animation stops. The digit with the
highest correlation coefficient is appended to the stored PIN.

5.1.2 EyeLogin

We propose a novel algorithm for calibration-free authentication based on saccadic eye move-
ments. EyeLogin shows the digits 0 to 9 in a radial design (see figure 5.1b), similar to Best and
Duchowski (2016). At the center, we present feedback on the progress by adding one asterisk per
entered digit. Further, we show miniaturized digits as directional cues for the user to prevent
errors. A dashed line connects the inner and outer digits to guide the user’s gaze. The user starts
the authentication process by pressing the space bar while fixating the center area. This trigger
is required to overcome Midas’ touch problem inherent in gaze-based interaction. It could be
replaced by any trigger in the future, e.g., presence detection in combination with a long fixation
or speech-based hotwords known from digital assistants. When the authentication process is
started (trigger), the initial gaze position is stored as reference point gaze_c and provided as
input to EyeLogin (see algorithm 2). The user enters a digit by fixating on it and returning the
focus to the center position. We leverage the quick saccadic eye movement between two fixations
to determine the relative direction of the eye movement and to detect the digit of choice: we
determine the farthest point max_p from the reference point gaze_c and calculate the direction
vector dir_n with gaze_c as the origin and max_p as the destination point. The angle between
the y-axis and the direction vector allows us to infer the fixated digit: each digit is assigned to
a certain sector. Upon detection, the system gives feedback by displaying an additional asterisk
in the center area. Showing the feedback at the center region ensures that the user returns its
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ALGORITHM 1: CueAuth - PinDetection
Function ObserveInput

while (PIN .size() < 4) do
OnAnimationStop += CalcDigit(gaze, trajectories);

end
end
Function CalcDigit (List gaze, List[] trajectories)

(corr_a, digit_a) = Correlate(gaze, trajectories,2.0);
(corr_b, digit_b) = Correlate(gaze, trajectories,2.5);
if (corr_a > 0.8 OR corr_b > 0.8) then

if (corr_a > corr_b) then
PIN .Add(digit_a);

else
PIN .Add(digit_b);

end
end

focus to this point as the algorithm expects. This process is repeated four times to complete
the PIN entry. One limitation is that users might gaze to the next digit before returning to the
center area. This would cause an erroneous input because the next digits would be recognized
only. This error type rarely occurred in our study.

5.2 Evaluation

We conduct a user study (n=10) to compare our novel authentication method EyeLogin to the
existing CueAuth method. We investigate the effectiveness, efficiency, usability, and perceived
workload of both methods in a public display setting. We adopt the experimental design from
Khamis et al. (2018b) to ensure comparability with their results. Hence, our study has the
same limitation: a consecutive PIN entry is no realistic scenario and might negatively impact
our results. However, this should not cause problems due to our within-subjects design. The
study is designed as a repeated measures experiment with the authentication method as the
independent variable. We recruited 10 students (two females and eight males) with normal or
corrected to normal vision aged between 25 and 31. One participant with weak vision refrained
from wearing eye correction but did not report any problems. Two of the participants had prior
experience with eye tracking.

5.2.1 Conditions & Metrics

We investigate the performance and usability of the authentication methods EyeLogin and
CueAuth. For each method, we ask participants to enter 11 PINs in the training phase and
17 PINs in the main phase, totaling 28 PINs per method and user. The instructor vocalizes
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ALGORITHM 2: EyeLogin - PinDetection

Function ObserveInput (Point gazec)
while (PIN .size() < 4) do

if (Saccadic_Movement_Recognized()) then
CalcDigit(saccade, gazec);

end
end

end
Function CalcDigit (List saccade, Point gazec)

maxp = GetFarthestPoint(saccade,gazec);
dirn = CalculateDirection(gazec, maxp);
angle = CalculateAngle_To_Y_Axis(dirn);
digit = CalculateDigit(angle);
PIN .Add(digit);

end

Figure 5.2: Setup of the user study.
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the randomly selected four-digit PIN before the participant starts the authentication procedure
by pressing the space key. They receive automatic feedback about the progress, as described
above, but not whether a digit or the complete PIN was recognized correctly. To measure the
performance of both methods, we use the following metrics: the PIN entry time, the accuracy in
entering a PIN, the System Usability Scale (SUS) as a usability measure, and the NASA TLX
score as a measure for the perceived workload. The PIN entry time is the time between pressing
the space bar and recognizing the fourth digit. The PIN accuracy is the average number of
correct PIN entries. A PIN is considered correct if all digits are entered correctly. A false entry
is counted if one or more digits are incorrect.

5.2.2 Procedure

First, each participant signs an informed consent form. Then, the instructor introduces the
topic and procedure of the study. The instructor presents one of the considered authentication
methods in a counterbalanced order by demonstrating the interface and explaining how a digit
or password is entered. In the training phase, each participant enters 11 PINs. Participants
can familiarise themselves with the interaction method by entering three simple PINs and eight
random PINs. The instructor provides additional support if major problems are detected. In
the main phase, the participant enters 17 PINs. After completing all PINs, the participant fills
in a NASA TLX form (Hart and Staveland, 1988) for assessing the perceived workload and a
System Usability Scale (SUS) questionnaire (Brooke, 1996) for measuring usability. This cycle is
repeated with the remaining authentication method. At the end of the study, participants fill in
a questionnaire including demographic questions and open-ended questions on their experience
with each authentication method. The order of the authentication methods is counterbalanced
to avoid ordering effects.

5.2.3 Apparatus

A 27-inch widescreen monitor with a resolution of 1920 × 1080 pixels is used to display the
authentication interfaces. We use the binocular Tobii 4C remote eye tracker (Tobii Help, 2016)
with a 60 Hz sampling rate, which is attached below the screen (see figure 5.2). Prior to all
sessions, the eye tracker is calibrated once for the study instructor: we use the same calibration
for all participants. Participants are seated approximately 60 cm in front of the display. A
keyboard is provided to start the authentication trials. For analysis, we store the participant ID,
the timestamped eye movements, and synchronized movements of all smooth pursuits stimuli
(CueAuth only) for every PIN entry attempt. Further, we store the recognized PIN, the correct
PIN, and the answers to the questionnaire and the NASA TLX items.

5.2.4 Hypotheses

We hypothesize that users are more accurate in entering PINs with EyeLogin compared to
CueAuth because directed saccadic movements are seemingly less error-prone than more complex
smooth pursuits (H1). In addition, we expect that authentication is faster using our saccade-
based method EyeLogin than using CueAuth, which is bound to long animation times (H2).
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(a) Incorrect PIN (expected: 1628;
detected: 1629)

(b) Correct PIN (expected: 2487) (c) Incorrect PIN (expected: 2487;
detected: 2485)

Figure 5.3: Visualizations of the raw gaze signal of individual participants from our study, including
three trials using EyeLogin. Trials a) and c) result in a wrong PIN entry. Trial b) shows the sequence of
a successful trial. The colors indicate the input order (green, orange, yellow, pink), the dot size relates
to the order of gaze samples (increasing radius corresponds to increasing timestamps), and the red dot
marks the point maxp from our algorithm.

Further, we expect that the gains in effectiveness (accuracy) and efficiency (time) have no negative
impact on usability and the perceived workload (H3).

5.2.5 Results

For both methods, we observe the accuracy, the entry time, the NASA TLX, and the SUS
score for entering PINs. We report the results of the main phase (17 PINs). We found no
significant differences between our training and main phase measurements. We use the 2-tailed
paired samples t-test with an alpha level of 5% in SPSS to test for statistical significance. The
Shapiro-Wilk test is used to check whether the differences of the paired samples are from a normal
distribution, i.e., to check that no assumption of the dependent t-test is violated. We also checked
whether the order of methods affects our dependent variables. We found no significant differences
using an independent t-test and the order as a between-groups factor (p > .05).

5.2.5.1 Accuracy

Using our implementation of CueAuth, the users achieve a mean accuracy of 82.94% (SD =

11.58). This is close to the results from Khamis et al. (2018b), who reported 82.72% (SD =

38.53). On average, the accuracy is lower during the training phase (M = 71.25%, SD = 21.28),
but not significantly (t(9) = −1.491, p = .17). For our proposed method EyeLogin, we observe
an accuracy of 95.88% (SD = 6.23), which is 12.94% better than the CueAuth-baseline (see
figure 5.4a). This difference is statistically significant with t(9) = 3.18, p = .012. In addition,
our gaze-based method performs better than the best method of Khamis et al. (2018b) based on
touch interaction (M = 93.38%, SD = 26.05).
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Figure 5.4: Results from our user study (n=10) including a box-plot for the accuracy of PIN entry (a)
and for the PIN entry time (b) for the main phases of EyeLogin and CueAuth.

5.2.5.2 Entry Time

On average, we measure entry times of 23.41 s (SD = 2.28) for CueAuth, which is similar to
the result of 26.35 s reported in the literature (Khamis et al., 2018b). Their reported standard
deviation of 22.09 is much higher than ours. Using EyeLogin, we observe average pin entry
times of 5.12 s (SD = 1.09). The absolute time saving of 18.28 s compared to the baseline (see
figure 5.4b) is statistically significant (t(9) = 24.063, p < .001). The touch-based method from
Khamis et al. (2018b) is reported to be the fastest and is, with an average of 3.73 s (SD = 1.07),
slightly faster than our proposed gaze-based approach.

5.2.5.3 Perceived Workload and Usability

We use the NASA TLX questionnaire to evaluate the perceived workload as suggested by Khamis
et al. (2018b). The mean scores for all dimensions of the test are reported in figure 5.5. None of
the differences are significant as determined by a paired samples t-test per dimension (df = 9; p >

.05). Also, we ask the participants to fill in a SUS questionnaire, which results in a subjective
usability score for both methods. We receive an average score of 66.5 (SD = 18.72) for CueAuth
and 75.75 (SD = 15.28) for EyeLogin (higher is better). However, the difference of 9.25 points
is not statistically significant (t(9) = −1.075, p = .31).
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Mental Physical Temporal Performance Effort Frustration

EyeLogin 42.7 31.7 25.4 24.1 38.8 35.5

CueAuth 39.7 28.8 17.3 23.4 48.3 37.4
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Figure 5.5: Bar chart diagram visualizing the NASA TLX results (mean ± SD) for the main phases
of EyeLogin (blue) and CueAuth (yellow, dotted).

5.2.5.4 Qualitative Feedback

We collect qualitative feedback via open-ended questions asking participants to note the pros
and cons of each method and to provide suggestions for improvements. Analyzing the answers,
we find that EyeLogin is perceived as fast (7/10) and easy to use (7/10). Three participants
criticized that blinks are likely to cause errors during pin entry. For CueAuth, participants
stated the advantages that the layout is familiar (4/10) and easy to use (2/10). The participants
perceived CueAuth as slow (7/10) and tiring (4/10). Two participants criticized that the system
was not sensitive enough to recognize their input.

5.3 Discussion

The results of our evaluation show that our authentication method EyeLogin is significantly
more accurate than the baseline system CueAuth. Users succeed in entering a PIN in 95.88%
of all trials, which is 12.94% better than the baseline and confirms H1. In addition, our gaze-
based method achieved a similar accuracy to the touch-based version of CueAuth as reported
in Khamis et al. (2018b). Further, our method performs more accurately than the method by
Best and Duchowski (2016) with 71.16% accuracy, which is also based on a circular design but
requires user calibration. The PIN entry times for EyeLogin are tremendously lower than for
CueAuth (significant). On average, users need 5.12 s to enter a four-digit PIN which is 18.28 s
faster than measured for the baseline CueAuth and confirms H2. The measured PIN entry times
for our implementation of CueAuth are similar to the reported results by Khamis et al. (2018b).
Further, the entry times for EyeLogin are comparable to their touch-based version (3.73 s on
average). We did not assess whether EyeLogin achieves the same level of security as CueAuth.
Only 0.05% of all attacks were successful if the eyes and the display content were visible. We used
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the SUS and the NASA TLX questionnaires to measure the usability and the perceived workload
of both authentication methods. The results do not reveal significant differences between the
two considered methods, suggesting we can confirm H3. We observe a higher average SUS for
EyeLogin (75.75) than for CueAuth (66.5). This might indicate that our authentication method
yields better usability than the baseline system. For comparison, other works using the SUS
questionnaire achieve, on average, a score of 69.5 (n=273) (Bangor et al., 2009).

5.3.1 Limitations and Future Work

EyeLogin enables fast and reliable input for authentication at public displays. It achieves the
same level of performance as more common touch-based methods. However, a few limitations
remain, including a required start trigger to overcome the Midas touch problem, some error types
that cause avoidable authentication fails, and potential vulnerabilities to camera-based attacks.
We address each of these limitations and suggest how they could be solved.

5.3.1.1 Midas Touch Problem

Our system requires users to press the space bar to capture the reference gaze position gazec and
start the authentication. Using an additional modality for disambiguating the gaze-based input is
common practice (Qvarfordt, 2017; Oviatt et al., 2017b). However, this trigger should be replaced
with more suitable alternatives for public displays, like touching a button. An alternative could be
speech-based input: An instruction can be shown at the central area of the user interface, asking
the user to start the authentication by vocalizing a trigger word. A pure gaze-based method
can be realized using a dwell-based trigger to start the authentication. The presence of a user
can be detected by the presence or absence of gaze data from the eye tracking sensor or using
mmWave radar-based presence sensors (Cui and Dahnoun, 2021). Other approaches include
leveraging smooth pursuit eye movements like the CueAuth baseline, which was significantly
slower (Khamis et al., 2018b), or gesture-based authentication using gaze-enabled lock patterns,
similar to the touch-based version known from Android devices, as shown in figure 5.6.

5.3.1.2 Error Types

We observe two common error types for EyeLogin that cause a wrong PIN entry. Figure 5.3a)
shows the raw gaze signal of a user who moved their gaze to the wrong digit (9), corrects the
gaze position (8), and returns to the center. However, EyeLogin detects 9 as input resulting in a
wrong digit sequence. Figure 5.3b shows a similar case, but the correction (for 4 and 8) is done
earlier, and EyeLogin detects the correct sequence. Figure 5.3c shows a trial that failed due to
a blink before the fixation to the last digit: 7. The gaze signal is highly imprecise just before
the blink, causing the algorithm to choose the wrong digit (5). A further limitation is that users
might turn their gaze to the next digit before returning to the center area, which is unsupported.
Future extensions to improve the system should consider a less strict interpretation of users’ gaze
input. Concretely, the system should allow to directly jump from one digit to the next without
fixating the center region in between. Further, the system should be more robust in cases of
data loss due to blinks. A blink detection with a corresponding signal correction before and
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Figure 5.6: Prototype of a gaze-based lock pattern interface for authentication at public displays.

after blink events could reduce false positive detections. Eventually, users should be enabled to
recover from errors more easily. They should be able to proactively clear a partial entry if they
recognize a wrong input themselves.

5.3.1.3 Camera-based Attacks

EyeLogin is robust against traditional shoulder-surfing attacks because an attacker must observe
the display and the eyes of a user during PIN entry. More sophisticated attackers might attach
a camera to the public display and infer the password from a video stream that captures the
user’s face and eye movements. The collected video feeds and display contents from our study
can be used to evaluate the vulnerability of our PIN entry method as suggested by Khamis
et al. (2018b). Randomizing the arrangement of digits for EyeLogin could further increase the
robustness against attackers in case of vulnerabilities. All our participants perceived this as more
secure. Better security through randomly arranged digits probably needs to be traded off against
usability and entry time.
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5.4 Conclusion

We presented a calibration-free and gaze-based authentication method for public displays. In a
user study, we could show that our method EyeLogin, which leverages saccadic eye movements,
performs significantly faster and significantly more accurate than CueAuth, a state-of-the-art
gaze-based authentication system from the literature (Khamis et al., 2018b). With this work,
we presented the first calibration-free authentication method using gaze that is on par with less
secure input modalities such as touch- and gesture-based input in terms of effectiveness and effi-
ciency. To further improve our system, future research should investigate how to avoid erroneous
inputs and ways to recover from errors if they happen. Further, future systems should aim to over-
come the Midas touch problem. We identified gaze-enabled lock patterns as a promising direction.
In addition, it would be interesting to investigate whether the gaze signal from a calibration-free
authentication procedure, which naturally occurs at the beginning of a user-system interaction,
can be used to calibrate an eye tracker for more fine-grained gaze-based interaction, including
selection and manipulation of objects. It could also be investigated whether the input of a cali-
bration routine could be used to calibrate an error model for error-aware gaze-based interaction
as described in chapter 4.
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Chapter 6

Inferring Visual Search Targets

Human gaze behavior depends on the task in which a user is currently engaged (Yarbus, 1967;
DeAngelus and Pelz, 2009) and visual search is a task in which humans aim at identifying a
search target among other objects using their visual perception. Predicting the target of a visual
search with computational models and the overt gaze signal as input is commonly referred to
as search target inference (Borji et al., 2015; Sattar et al., 2015, 2017a). This provides implicit
insight into a user’s intentions and allows external observers or intelligent user interfaces to make
predictions about the ongoing activities (Flanagan and Johansson, 2003; Rotman et al., 2006;
Bader and Beyerer, 2013; Haji-Abolhassani and Clark, 2014; Akkil and Isokoski, 2016; Rothkopf
et al., 2016). The ability to infer visual search targets can help to construct and improve in-
telligent user interfaces in many sub-tasks, e.g., gaze-supported media retrieval (Sattar et al.,
2015), anticipatory user interaction with mobile phones (Steil et al., 2018b), or collaborative
robots (Huang and Mutlu, 2016). Further, it allows for more fine-grained activity recognition
for situation-aware assistance of mentally impaired people (Toyama and Sonntag, 2015), other
applications of cognitive assistance (Sonntag, 2015), and to model users in complex multimodal
communication (Sonntag, 2012; Oviatt et al., 2017a, 2018), to name a few. Recent work inves-
tigates algorithmic principles for search target inference on generated dot-like patterns (Borji
et al., 2015), target class prediction using Bag of Visual Words (Sattar et al., 2015) on image
collages, and target category prediction using a combination of gaze information and CNN-based
features (Sattar et al., 2017a). A common disadvantage is that these approaches are constrained
to artificial data sources with a specific format: dot-like patterns and image collages for which
target regions are clearly defined and which are restricted to a certain amount of classes. Another
problem is that current methods only achieve low accuracy.

We aim to address this issue by implementing a new encoding method for scanpaths, the Bag
of Deep Visual Words encoding. It extends the Bag of Visual Words approach (Sattar et al.,
2015) but uses a pre-trained CNN model’s activations to encode fixations to visual stimuli. An-
other challenge lies in moving towards ubiquitous and mobile interaction settings which comprise
natural scenes for which target classes and respective target regions are not known in advance.
With natural scenes, we refer to naturally occurring everyday scenes in indoor and outdoor en-
vironments, e.g., offices and kitchens as indoor settings and a street view as an outdoor setting.
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visual search

SVM

…

sequence encoding model training target inference

Figure 6.1: Search target inference takes a fixation sequence from a visual search as input for target
prediction. The pipeline we implement encodes sequences using a Bag of Words approach with features
from a CNN for model training and inference.

For this purpose, we propose to infer the image segment class that includes the search target
instead of directly inferring the search target. Our approach is based on a pre-trained model of
the SegNet image segmentation method (Badrinarayanan et al., 2017): we segment each visual
stimulus, encode scanpaths as a Histograms of Fixated Image Segments, and infer the segment
class that includes the visual search target. In this chapter, we contribute as follows:

• Section 6.1: We implement the novel Bag of Deep Visual Words encoding for scanpaths
from visual search trials (Stauden et al., 2018). We compare its performance in inferring
visual search targets from a constrained search target inference task (Amazon book cover
dataset) to the Bag of Visual Words baseline (Sattar et al., 2015).

• Section 6.2: We develop and evaluate a novel method for encoding visual search scanpaths
based on image segments, the Histograms of Fixated Image Segments encoding (Barz et al.,
2020b). We evaluate its performance using the publicly available visual search dataset VIU
that includes natural indoor and outdoor scenes (Koehler et al., 2014).

6.1 Target Inference in Constrained Settings

We extend the idea of using a Bag of Visual Words (BoVW) for classifying search targets (Sattar
et al., 2015): we implement a Bag of Deep Visual Words model (BoDVW ), based on image rep-
resentations from a pre-trained CNN, and investigate its impact on the estimation performance
of search target inference (see figure 6.1). We reproduce the results of Sattar et al. (2015) by
re-implementing their method as a baseline and evaluate our novel feature extraction approach
using their published Amazon book cover dataset (Sattar et al., 2015).

6.1.1 Sequence Encoding Methods

The Bag of Words algorithm is a vectorization method for encoding sequential data to histogram
representations. The encoding is commonly used in natural language processing for, e.g., doc-
ument classification (Goldberg, 2017), and was extended to the Bag of Visual Words method
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Figure 6.2: Image patches from fixation histories are extracted and encoded using a pre-trained CNN
to initialize the Bag of Deep Visual Words encoding. The activations from a certain hidden layer are
used for a k-means clustering that identifies deep codewords (cluster centers) to encode visual search
sequences into a vector x1 with a fixed size for model training.

in the computer vision domain for, e.g., scene classification (Yang et al., 2007). Bag of Word
encodings are initialized with a set of k low-level feature vectors (=codewords) with a fixed size.
The k codewords represent meaningful higher-level features for the underlying data and task.
The algorithm for identifying these codewords is an essential part of the approach and influences
the performance of classifiers that use Bag of Word histograms as input. Each sample is assigned
to the most similar codeword for encoding a sequence, resulting in a codeword histogram of size
k. We implement two methods based on this concept: a BoVW baseline similar to Sattar et al.
(2015) and the CNN-based BoDVW encoding.

6.1.1.1 Bag of Visual Words

Sattar et al. (2015) were the first to use a Bag of Visual Words encoding for search target
inference. They encode scanpaths of visual search trials on image collages, e.g., using their
publicly available Amazon book cover dataset that includes fixation sequences of six participants.
They trained a multi-class SVM that predicts the search target from a set of five alternative covers
using the encoded histories as input. We re-implement their algorithm for search target inference
as a baseline, including the BoVW encoding and the SVM target classification. Following their
descriptions, we implement methods for image patch extraction from fixation sequences, a BoVW
initialization for extracting codewords from these patches, and the histogram generation for a
certain sequence. We test our algorithms using their Amazon book cover dataset.

6.1.1.2 Bag of Deep Visual Words

Our Bag of Deep Visual Words approach extends the Bag of Visual Words method by Sattar
et al. (2015): we encode RGB patches using a CNN before codeword generation and mapping
(see figure 6.2). The BoDVW method includes components for image patch extraction from fixation
sequences, a BoDVW initialization for extracting codewords from these patches, and the codeword
mapping for histogram generation. Figure 6.2 shows the processes involved in codeword initial-
ization and sequence encoding. The image patch extraction & CNN-based encoding is required
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for the initialization and the sequence encoding process. We crop squared image patches from
a static search image centered around each fixation of a sequence. Each patch is split into nine
sub-patches with equal edge length le. The eight outer patches shall balance inaccuracies in-
herent in eye tracking (Sattar et al., 2015). This is particularly important for mobile settings
where the gaze-estimation error can be substantial (see chapter 4). All extracted image patches
of a visual search sequence are fed to the publicly available AlexNet model pre-trained with
the ImageNet dataset (Russakovsky et al., 2015) for image classification. The flattened activa-
tion tensor of a specified hidden layer is used as a low-level feature vector for initialization and
sequence encoding. We consider the layers conv1, pool2, conv4, pool5, fc6 and fc8 which
represent different stages of the network. The codeword initialization is done using a k-means
clustering with the flattened activation tensors of all fixation patches contained in a training set
as input. The resulting k cluster centers (mean of vectors) serve as the deep visual codewords.
For encoding a fixation sequence – a variable number of fixations from a single visual search on a
static scene image – we extract image patches and activation tensors as described above and map
them to our k codewords using the Euclidean distance measure. Each patch is assigned to the
codeword with the smallest distance. Finally, we generate a histogram of length k that encodes
the frequency of matches to each of the k deep visual codewords. The idea of this encoding
is that participants fixate on top-down features related to the target more frequently than on
others. E.g., when searching for a particular pen, humans might predominantly fixate on other
pens, other pen-shaped objects, or common locations like a pen holder. We hypothesize that
the k-means clustering can find deep visual codewords that represent such search strategies and
allow classification of the search target of the user.

6.1.2 Experiment

We conduct a simulation experiment to compare the performance in predicting the search target
of a visual search using our re-implementation of Sattar et al. (2015). We compare the prediction
accuracy using their BoVW encoding to our novel BoDVW encoding. We closely follow the evaluation
procedure of Sattar et al. (2015) for reproducing their original results using the Amazon book
cover dataset. For this, fixations of a visual search trial are encoded for model training and target
inference. This includes fixations on the target after it has been found. However, this conflicts
with the goal of inferring the search target (Zelinsky et al., 2013; Borji et al., 2015). Therefore,
we exclude all fixations at the tail of the signal (target fixations) and repeat the experiment,
keeping all other parameters constant.

6.1.2.1 Dataset

Sattar et al. (2015) published a dataset containing eye tracking data of participants performing
a search task. They arranged 84 (6×14) different book covers from Amazon in collages as visual
stimuli. Six participants were asked to find a specific target cover per collage within 20 seconds
after it was displayed for a maximum of 10 seconds. Fixations were recorded for 100 randomly
generated collages in which the target cover appeared exactly once and was taken from a fixed
set of five covers. Participants were asked to press a key as fast as possible after they found the
target. We manually annotated each collage with a bounding box for the target cover.
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6.1.2.2 Conditions and Procedure

In our experiment, we compare the target prediction accuracy using the BoVW method against
our BoDVW encoding (using different layers). For the BoDVW approaches, we train multiple models,
each using a different neural network layer for image patch encoding as stated in section 6.1.1.2.
First, we use the Amazon book cover dataset with all available fixations for training and inference
as proposed in (Sattar et al., 2015). Second, we repeat the experiment without the target
fixations at the end of the signal. Using a train set, we initialize the respective BoW method for
each condition. We encode the fixation histories (with or without target fixations) and train
a support vector machine to classify the output label. The codeword initialization and model
training are performed separately for each user (within-user condition). This procedure yielded
the best results in Sattar et al. (2015). We extract patches around all fixations in the train
set to initialize the codewords for both approaches. We crop squared fixation patches with an
edge length of 80 px and generate k = 60 codewords. We train a One-vs-All multiclass SVM
with λ = 0.001 for L1-regularization and feature normalization using Microsoft’s Azure Machine
Learning Studio1. We measure the prediction accuracy using a held-out test set, as specified by
Sattar et al. (2015) (balanced 50/50 split per user).

6.1.2.3 Hypotheses

We hypothesize that using our BoVW implementation, we can reproduce the prediction accuracy
of Sattar et al. (2015) (H1.1) and that our BoDVW encoding improves the target prediction accuracy
concerning the Amazon book cover dataset (H1.2). Further, we expect a severe performance drop
when excluding target fixations, i.e., when using the filtered Amazon book cover dataset (H2.1).
In contrast, the BoDVW encoding should still perform better than the BoVW method (H2.2).

6.1.2.4 Results

Averaged over all users, our BoVW re-implementation of the method of Sattar et al. (2015) achieved
a prediction accuracy of 70.67% (20% chance) for search target inference on their Amazon book
cover dataset with target fixations. We could reproduce their findings, even without an exhaus-
tive parameter optimization. Concerning our Bag of Deep Visual Words encoding, applied in
the same setting, we observe higher accuracies for all layers. The fc6 layer performed best with
an accuracy of 85.33% (see figure 6.3), which is 14.66% better compared to the baseline. When
excluding the target fixations at the tail of the visual search history, the prediction accuracy
of both approaches decreases: the BoVW implementation achieves an accuracy of 35.96% and
our novel BoDVW encoding achieves a prediction accuracy of 43.56% using the fc8 layer. In this
setting, the fc8 layer yields better results than the fc6 layer with 38.26% (see figure 6.3).

6.1.3 Discussion

Our implementation of the BoVW-based search target inference algorithm introduced by Sattar
et al. (2015) achieves, with a prediction accuracy of 70.67%, a comparable performance than

1https://azure.microsoft.com/en-US/products/machine-learning (accessed on 12 Dec 2024)

https://azure.microsoft.com/en-US/products/machine-learning
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Figure 6.3: Search target inference accuracy of 5-class SVM models using the BoDVW encoding with
different layers and the BoVW encoding (baseline) on complete fixation sequences and filtered fixation
sequences.

stated by the authors, for the same settings (confirms H1.1). Our novel BoDVW encoding achieves
an improvement of 14.66% with the fc6 layer: an SVM can better distinguish between classes
when using CNN features which suggests that H1.2 is correct. In the second part of our experi-
ment, we observed a severe drop in prediction accuracy for both approaches (confirms H2.1). A
probable reason is that fixation patches at the end of the search history, which show the target
object, greatly impact the prediction performance: the task is simplified to an image compari-
son. The RGB-based codewords still yield a prediction accuracy above the chance level (20%).
Our BoDVW approach performs 7.6% better than this baseline with the fc6 layer (improvement
of 21.13%), which suggests that H2.2 is correct. Excluding the fixations on the target is par-
ticularly important for investigating methods for search target inference due to the introduced
bias. Hence, the procedure and results of the second part of our experiment should be used as a
reference for future investigations.

6.2 Target Inference in Natural Interaction Settings

We present a new approach for search target inference that overcomes the limitation of con-
strained target classes. This enables applications in natural interaction scenarios. We propose
a novel search target inference method based on the neural image segmentation model SegNet
(Badrinarayanan et al., 2017). Instead of estimating the object class of the search target, we
predict the segment class that contains the search target (see figure 6.4). We use the histogram
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Figure 6.4: Search target inference takes a fixation sequence from a visual search as input for target
prediction. We predict the segment class that contains the user’s search target to enable applications in
ubiquitous settings and natural scenes. Our pipeline encodes sequences using a Bag of Words approach
with features from pre-trained CNNs for model training (SVM) and inferencing target segment classes.

of segment classes fixated during a visual search as a novel encoding of fixation sequences. This
enables the localization of search targets in environments covered by the data used for training
SegNet. We evaluate our approach using a subset of the VIU dataset by Koehler et al. (2014):
we manually annotated the static scene images with bounding boxes for the ground truth region
and automatically extracted image segments using SegNet. In total, we compare three differ-
ent methods for encoding scanpaths that serve as input to our inference model: (1) we use the
Bag of Deep Visual Words (BoDVW) algorithm as a baseline, (2) we implement and evaluate the
Histogram of Fixated Image Segments (HoFIS), and (3) we include a combined encoding using
BoDVW and the HoFIS encoding. We assume that the histogram of fixated segment classes encodes
relevant semantic cues of the scene, which can increase the robustness in natural environments.
All methods consider fixation sequences of participants performing a visual search as input and,
opposite to the literature, the target segment class as the output label. The image patches are
cropped from the search image around each fixation of a visual search with a pre-defined size and
get encoded using one of the described methods. The resulting feature vectors are used to train
a machine learning model (SVM) to infer the target segment class, including the search target.

6.2.1 Sequence Encoding Methods

Visual search is a perceptual task in which humans aim to identify a search target among other
objects in a visual scene. A visual search is performed as a series of fixations guided by visual cues
and the user’s experiences. The fixation sequence can be observed with eye tracking technology.
A scene with corresponding search tasks and the resulting fixation sequence are typically used
to investigate how the human brain perceives visual stimuli. Search target inference subsumes
methods and algorithms that aim to forecast the search target of a visual search. The idea is that
the subtle visual cues that guide the human search process can be modeled, e.g., using machine
learning techniques.

Our approach to search target inference includes two major components that need to be
trained and applied subsequently: the visual search encoding (sequence encoding) and the target
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Figure 6.5: The HoFIS encoding is based on image segments: scanpaths are encoded as the sequence
of fixated image segments. We compare it to the BoDVW encoding.

classification module that is based on these encodings (see figure 6.4). We implement three
sequence encodings based on fixated image regions: the Bag of Deep Visual Words method (see
section 6.1.1.2), a novel encoding based on fixated image segments, and a combined version. The
module for target classification uses a support vector machine (SVM) similar to Sattar et al.
(2015) and our approach presented in section 6.1. These approaches are constrained to a fixed
set of target classes which strongly restrict the utility in more realistic settings that comprise
natural scenes. Therefore, we suggest an extension based on the neural image segmentation
model SegNet (Badrinarayanan et al., 2017). The SegNet model2 is trained on the SUN RGB-D
dataset (Song et al., 2015) which includes 10,000 images of indoor scenes annotated for object
detection, classification, and segmentation. Instead of inferring the exact search target, our
segmentation-based approach aims to predict the segment class in which the target object is
located (see figure 6.5). At first sight, this might be a disadvantage because the target area
cannot be inferred with the same spatial precision. But, it comes with the great advantage that
search target inference can be used with various natural scenes. Similar to Sattar et al. (2015)
and our previous approach presented in section 6.1, we train multi-class SVM models using the
sequence encodings as input but the segmentation classes as output labels. Next, we describe
the approaches considered for encoding the visual search sequences. The training procedure we
use for all methods is described in detail in the experiment section.

2https://github.com/alexgkendall/SegNet-Tutorial (accessed on 12 Dec 2024)

https://github.com/alexgkendall/SegNet-Tutorial
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6.2.1.1 Histogram of Fixated Image Segments Encoding (HoFIS)

We implement an encoding of visual search sequences based on fixated image segments (see
figure 6.5). Our algorithm takes a visual scene and the fixation sequence of a user as input. In
the first step, we segment the scene image using SegNet (Badrinarayanan et al., 2017), which
assigns each pixel to exactly one segment class, i.e., one of the 37 semantic classes that were
considered for training SegNet. We applied this as a pre-processing to all images. In the second
step, we extract image patches for each fixation of the visual search process and determine the
most frequent segment class in each patch. The predominant segment classes of a visual search
trial are aggregated into a segment histogram vector that is used as input to our classification
model. We hypothesize that segment encoding can improve the classification accuracy of search
target inference. We assume the model training benefits from the encoding because it conveys
the semantics of fixated segment classes. For instance, tables might be fixated more often than
the floor or walls when searching for a pen. However, it is an open question whether the HoFIS
encoding is beneficial for in- and outdoor scenes contained in the VIU dataset (Koehler et al.,
2014) because SegNet is trained using indoor scenes.

6.2.1.2 Bag of Deep Visual Words Encoding (BoDVW)

An extension to Bag of Deep Visual Words, which showed improved performance in classifying
the search target class, was presented in section 6.1. We use the Bag of Deep Visual Words
encoding in our experiments.

6.2.2 Experiment

We conduct a simulation experiment to compare the performance of three approaches that predict
the target segment class containing the search target of a visual search. We consider inference
models using the BoDVW encoding x1 as a feature, the HoFIS encoding x2 and a combined version
that concatenates x1 and x2 (see figure 6.5). The fixations of a visual search trial are encoded
using one of these methods and serve as input for model training and target inference. The
visual search trials are taken from the VIU dataset by Koehler et al. (2014), which we labeled
with the ground truth region of the search targets. We consider the accuracy in predicting the
correct target class as a performance metric (dependent variable). In the following, we describe
the dataset and the evaluation procedure and report our results.

6.2.2.1 Extending the VIU Dataset

We use the VIU dataset published by Koehler et al. (2014) to test our segmentation-based
approach for search target inference. It includes natural scenes, including indoor and outdoor
environments, other than artificial scenes, such as image collages. The dataset includes 800
natural scene images with recorded gaze data from 19 participants for several tasks—free viewing,
search for highest saliency, and cued object search. We use gaze recordings from the cued object
search task in which the written description of an object was shown to participants, who were
then asked whether the target was present in a scene image presented next for 2000 ms. However,
only 400 of 800 images contained the cued object. Only the 400 images containing the cued object
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are included in our visual search experiment. We filter, pre-process, and additionally annotate
this part of the original VIU dataset to investigate the performance of search target inference
algorithms in ubiquitous computing settings. We manually annotate the 400 remaining images
with bounding boxes for the ground-truth region: one or multiple rectangles that approximate
the region of at least one instance of the target object class, i.e., the cued object. Further, we
process all images using the pre-trained SegNet model, mapping image regions to segment classes
(pixel-based). The target segment class – the segment class that contains the search target –
is chosen by selecting the most frequent segment class within the ground-truth region. This
dominant segment class serves as prediction label y for all 19 search trials per scene image. As
VIU contains natural scenes, the predicted segment classes and, thus, the labels for classification
are highly unbalanced. Many of the 37 segment classes occur rarely or not at all. We compensate
for this by including segment classes that occur at least 21 times: 8 target segment classes and
168 scene images remain. The segment classes include wall, table, chair, window, floor, picture,
box, and door (in order of decreasing frequency with respect to our dataset). This totals 3,192
visual search trials from 19 participants with 168 different scenes. With 21 scenes per target
class, we have a balanced model training and evaluation dataset with a chance level of 12.50%
(8 classes). An additional pre-processing step that we apply is to cut all fixation sequences after
the target object was fixated for the first time, including the initial fixation on the target area,
assuming that the object was found. Subsequent fixations are not driven by the intended task,
i.e., finding the cued object. This step reduces the average number of fixations per visual search
trial from 7.98 (SD = 2.43) to 4.33 (SD = 2.91). Our extensions to the VIU dataset can be
downloaded from our GitHub3.

6.2.2.2 Evaluation Procedure

Our experiment compares three inference approaches based on image segmentation using our
modified version of the VIU dataset (Koehler et al., 2014). Our approaches are based on the
BoDVW and the HoFIS encoding. We initialize multiple instances for the BoDVW encoding, each
using a different neural network layer for image patch encoding. We initialize the BoDVW method
using a train set (we use cross-validation) and encode the fixation sequences into vectors x1. The
HoFIS encoding x2 is generated from the SegNet-based image annotations of our preprocessing
step. We train a support vector machine for all methods that predict the output labels y, i.e.,
the segment classes. Similar to Sattar et al. (2015), we consider a training that includes the data
of all users (cross-user) and a user-specific training. For the latter, the data-driven codeword
initialization of the BoDVW encoding and the model training is performed separately for each
user. In addition, we investigate the performance of our approach for indoor and outdoor scenes
separately. SegNet is trained using indoor scenes only. Hence, it is likely that the segmentation
of outdoor scenes is semantically less meaningful, which might impact the accuracy of search
target inference. We perform this experiment using the user-specific BoDVW+HoFIS-based model.
We select 48 balanced training samples from each participant, including in- and outdoor scenes,
and test separately on 8 held-out indoor or outdoor scenes. On the one hand, it would be better
to include only indoor samples for training. On the other hand, the training and test sets would

3https://github.com/DFKI-Interactive-Machine-Learning/STI-Dataset (accessed on 12 Dec 2024)

https://github.com/DFKI-Interactive-Machine-Learning/STI-Dataset
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be even smaller. This experiment shall provide a first insight into the impact of the scene type
used for training SegNet but is limited due to the low amount of balanced training samples that
can be extracted from the extended VIU dataset.

Codeword Initialization

For initializing the codewords for the BoDVW approach, we extract image patches around all
fixations of the train set. We crop squared fixation patches with an edge length le = 45 px and
generate k = 10 codewords for the k-means clustering. This is less compared to Sattar et al.
(2015) and our previous experiment (see section 6.1) because our considered dataset contains
images with a smaller size and significantly shorter fixation sequences.

Model Training

We train a one-vs-all multi-class SVM for all conditions defined by the sequence encoding and,
in the case of BoDVW, by the considered network layer for image patch encoding. We use a
grid search for parameter optimization. For the cross-user setting, we perform a 2-fold cross-
validation for each condition based on users: we split users into two groups, one for training and
the other for validation, respectively. Concerning the user-specific setting, we conduct a 10-fold
cross-validation for estimating the accuracy per user (n=19). We estimate the overall accuracy
for each condition by averaging the accuracy values over all users.

Conditions

In our evaluation, we consider three feature encoding methods for predicting the target segment
class of a visual search and a corresponding scene image: BoDVW, HoFIS, and their concatenation
BoDVW+HoFIS. For all methods that depend on BoDVW, we report performance values using seven
different layers for the image patch encoding step. Further, we differentiate between models that
are trained across users (cross-user) and specifically for each user (user-specific).

Hypotheses

We hypothesize that our segmentation-based inference approach enables search target inference
for natural interaction scenarios using one of the considered sequence encodings (H1). We expect
that using the HoFIS encoding improves the model performance (H2). The underlying assumption
is that HoFIS captures semantic cues of the scene based on the SegNet segmentation, which
complements the BoDVW feature representation and eventually improves the model performance.
In addition, we investigate the difference in performance when applying our model to indoor and
outdoor scenes separately. The resulting image segments for outdoor scenes might be semantically
less meaningful because SegNet is pre-trained using indoor scenes. As this might deteriorate the
model performance, we hypothesize that our approach works better for indoor scenes (H3).
Similar to Sattar et al. (2015), we expect higher accuracies for the user-specific model training
in all cases (H4). Further, we are interested in identifying the layer of the pre-trained AlexNet
that provides the most suitable image patch encodings for search target inference. We expect
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Figure 6.6: Accuracy in predicting the target segment class of a visual search for the cross-user model
training and all considered sequence encoding methods.

to confirm our previous findings (see section 6.1) that the fc8 layer works best for inferring the
search target (here: target segment class) of users (H5).

6.2.2.3 Results

Figure 6.6 summarizes the results for all sequence encoding methods using the cross-user setting
for model training: data of multiple users are included. The target inference models based on
the BoDVW encoding achieve an average accuracy of 15.53%. The best performance of 17.42%
is achieved using the activations of the pool5 layer. Concatenating the BoDVW and the HoFIS
feature vector for training yields a better average accuracy of 43.70% in classifying the correct
target segment class. With 46.95%, the conv4-based BoDVW feature vector performs best. The
model trained using the HoFIS encoding only achieves the best accuracy for the cross-user set-
ting of 52.13%. The results for the user-specific training setting are shown in figure 6.7. With
the BoDVW encoding, the target inference models achieve an average accuracy of 18.93% (mean
of the accuracy of participants). The best performance of 20.60% is achieved using the fc8
layer activations for codeword generation, closely followed by the pool5 (20.30%) and the conv4
layer (19.77%). Similar to the cross-user setting, the concatenated feature vector BoDVW+HoFIS
achieves a better average accuracy of 41.30%, the best accuracy of 43.96% is observed for the
conv4-based encoding. Overall, the model based on the HoFIS encoding achieved the best accu-
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Figure 6.7: Boxplot of mean accuracy scores of all participants (n=19) in predicting the target segment
class of visual search trials with user-specific model training, including all sequence encoding methods.

racy of 68.81%. A repeated measures ANOVA with Greenhouse-Geisser correction (Mauchly’s
test, χ2(2) = 6.04, p = .049, indicates a violation of sphericity) determined that the accuracy in
classifying the correct target segment differs statistically significantly between the two conv4-
based models and the HoFIS-based model (F (1.54, 27.71) = 891, p = .000). Post hoc tests using
the Bonferroni correction revealed that all pairwise differences are significant with p < .001. We
get similar results for other layers but restrict ourselves to the conv4 layer because it achieved
the best or close to the best results for both methods. We do not test statistical significance for
the cross-user setting because we have only two accuracy values from the 2-fold cross-validation
across all users. Concerning our additional model experiment for comparing the performance
for in- and outdoor scenes, our user-specific BoDVW+HoFIS-based model achieves an accuracy
of 28.95% (SD = 17.70) for outdoor scenes and 36.45% (SD = 8.79) on indoor scenes. Even
though a 2-tailed exact Wilcoxon signed-rank test showed that the difference is not significant
(Z = −1.773, p = .077).

6.2.3 Discussion

The results of our evaluation show that our approach to search target inference, using automated
image segmentation with different sequence encoding methods for visual search, achieves accura-
cies above the chance level when applied to unstructured natural scenes from the extended VIU
dataset. In particular, the HoFIS sequence encoding achieves a good classification accuracy of
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68.81% for user-specific training, which suggests that H1 can be confirmed. Including the His-
togram of Fixated Image Segments in model training is very beneficial for the cross-user and the
user-specific setting. Concatenating it to the BoDVW encoding, the accuracy increases by 28.17%
to 43.70% for the cross-user setting and by 22.37% to 41.30% for the user-specific setting. In
both settings, the HoFIS encoding performs best overall with 52.13% for the cross-user setting
and 68.81% for the user-specific setting. The differences in means for the user-specific setting are
statistically significant, suggesting that H2 can be confirmed. But, the HoFIS encoding achieves
a better performance without the BoDVW encoding. At the same time, we expected that the two
feature encodings complement each other, e.g., through interaction effects or because additional
semantic cues are encoded. This rather indicates that we have to reject H2 and might have several
reasons. One possible explanation is that the increased number of features for BoDVW+HoFIS leads
to an over-fitting to the training data and, hence, a drop in the reported test accuracy. Further,
the model training might not converge to optimal weights due to the relatively small dataset.
Our comparison of indoor and outdoor scenes revealed that our approach performs slightly better
on the given indoor scenes. However, the difference is not significant, which might be related
to the small amount of available training data. We assume this trend (and hence H3) could be
confirmed if sufficient data samples were available for training. A question that remains open is
if HoFIS encodes semantically meaningful cues for in- and outdoor scenes and how this relates to
the observed accuracies. Follow-up experiments should clarify whether the data-driven selection
of segment classes is meaningful for unseen indoor scenes and how they apply in detail to outdoor
scenes: are the indoor segment classes approximating meaningful segments for outdoor scenes?
Further directions include the development of methods including multiple segmentation models
with scene recognition for improving the semantic meaning of segments and similarity-based
approaches that abstract from the pre-defined semantics of SegNet’s segmentation classes.

Our expectation that user-specific models perform better, e.g., due to differences in personal
gaze behavior, can be confirmed in the case of the HoFIS encoding, which performs better when
trained individually for each participant. However, the results for BoDVW only increase slightly,
and we observe a marginal performance drop for BoDVW+HoFIS. One reason for this observation
might be that a model using the HoFIS encoding better generalizes across users and superposes
the effect of user-specific model training when combined with the BoDVW encoding. Another
reason could be that the user-specific training includes fewer trials for training than the cross-
user training and, hence, be related to the potential over-fitting problem mentioned above.
Eventually, our results suggest that H4 can be confirmed for the HoFIS-based model only. We
could reproduce our previous findings (see section 6.1) that using the fc8 layer with the BoDVW
method and user-specific training yields the best classification accuracy. However, this does not
hold for all conditions and training settings. For that reason, but also because our HoFIS-based
model performs better than all BoDVW-based methods, we reject H5.

Replacing object classes with segment classes as the prediction target facilitates search target
inference independent of the target object. Also, the nature of scene images in the VIU dataset
indicates that search target inference in natural interaction scenarios is feasible. However, a
prediction accuracy of 68.81% is too low for robust applications, yet it is comparable to or even
better than results from the literature, which concern more artificial scenarios. Using target
inference for, e.g., pervasive activity tracking and extending artificial episodic memories, requires
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further improvements of algorithms. In particular, our approach must be transferred to real-time
applications involving dynamic scenes. In this direction, future work should be concerned with
developing and evaluating methods for applying search target inference in real-world scenarios
and identifying related challenges. Examples include the detection of visual search patterns
among non-related gaze patterns and the impact of inference methods and their accuracy on the
overall performance of users. Previous works on search target inference are exclusively based on
data from visual search experiments that contain visual search trials by experiment design. One
exception can be found in Dietz et al. (2017): they present a binary classifier for visual search
activities during indoor navigation using features based on human gaze and head motion. Future
experiments should also focus on identifying additional factors that improve prediction accuracy.
Examples include knowledge about the user’s context. For instance, a user’s location, activity,
and cognitive state could be considered.

6.3 Conclusion

We investigated whether eye tracking can be used to infer the target in a visual search process.
We developed two novel encodings for scanpaths based on a sequence of fixated visual stimuli in a
scene and investigated their influence on the effectiveness of models for inferring the search target.
First, we introduced the Bag of Deep Visual Words method for integrating learned features for
image classification in the popular Bag of Words sequence encoding algorithm for the purpose of
search target inference. An evaluation showed that our approach performs better than similar
approaches from the literature Sattar et al. (2015), in particular, when excluding fixations on
the visual search target. Further, we proposed a segmentation-based approach that enables
search target inference in natural interaction scenarios. For this, we infer the image segment
that contains the search target instead of the target itself. We investigated the performance of
three different methods for visual search encoding using this principle: one using the previously
introduced BoDVW encoding as a baseline, the HoFIS encoding that reflects segment classes fixated
during a visual search, and a concatenation of them. An evaluation using our manually extended
dataset showed that our new encoding significantly improves classification accuracy. We conclude
that semantic dependencies in search tasks provide a high potential for future research to improve
the stability and precision of target inference systems.
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Chapter 7

Estimating Document Relevance

Searching for information on the web or in a knowledge base is pervasive. However, search queries
to information retrieval systems seldom represent a user’s information need precisely (Carpineto
and Romano, 2012). At the same time, a growing number of available documents, sources, and
media types further increase the required effort to satisfy an information need. Implicit relevance
feedback, obtained from users’ interaction signals, was proposed to improve information retrieval
systems as an alternative to more accurate but costly explicit feedback (Agichtein et al., 2006).
Behavioral signals that were investigated in this regard include clickthrough data (Joachims et al.,
2017; Agichtein et al., 2006), dwell time of (partial) documents (Buscher et al., 2009), mouse
movements (Akuma et al., 2016; Eickhoff et al., 2015), and eye movements (Buscher et al., 2012).
This data may originate from search logs, which can be used to tune the ranking model of a
search engine offline, or from real-time interaction data to extend search queries during a search
session or to identify relevant text passages. This work aims to identify relevant paragraphs
using real-time eye tracking data as input.

Eye movements play an important role in information acquisition (Gwizdka and Dillon, 2020)
and were shown to be an effective source of implicit relevance feedback in search (Buscher et al.,
2008a) and decision-making (Feit et al., 2020). However, eye movements highly depend on user
characteristics, task, and content visualization (Buchanan et al., 2017). Related approaches use
eye tracking to infer the perceived relevance of text documents concerning previously shown
trigger questions (Salojärvi et al., 2003, 2004, 2005a; Loboda et al., 2011; Buscher et al., 2008a;
Gwizdka, 2014a; Bhattacharya et al., 2020b,a), and to extend (Buscher et al., 2008b; Chen
et al., 2015) or generate search queries (Hardoon et al., 2007; Ajanki et al., 2009). A common
disadvantage of approaches for gaze-based relevance estimation is that they are tested using doc-
uments with constrained layouts and topics such as single sentences (Salojärvi et al., 2003, 2004,
2005a) or short news articles that fit on the screen at once (Gwizdka, 2014a; Bhattacharya et al.,
2020b,a; Loboda et al., 2011; Buscher et al., 2008a). Hence, it is unclear whether related findings
generalize to more realistic settings such as those that include Wikipedia-like web documents.

We investigate whether eye tracking can be used to infer the perceived relevance of read
documents concerning previously shown trigger questions in a less constrained setting. We
include multi-paragraph documents that exceed the display size and require scrolling to read
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the whole text. For this, we conducted a user study with n=24 participants. Participants read
single- and multi-paragraph articles and rated their relevance at the paragraph level while their
eye movements were recorded. Single-paragraph documents with corresponding trigger questions
originate from the g-REL corpus (Gwizdka, 2014a). Multi-paragraph documents with related
questions are selected from the Google Natural Questions (GoogleNQ) corpus (Kwiatkowski
et al., 2019). We assemble a corresponding dataset, the gazeRE dataset, which is available to
the research community under an open-source license via GitHub (see section 7.1.5). Using the
gazeRE dataset, we aim to confirm the findings from the literature on short news articles and
investigate whether they can be generalized to multi-paragraph documents from Wikipedia. We
model the perceived relevance using machine learning and the features from Bhattacharya et al.
(2020a) as input. In this chapter, we contribute as follows:

• Section 7.1: We created the gazeRE dataset through a user study with n=24 participants.
Participants read single- and multi-paragraph articles and rated their relevance at the
paragraph level.

• Section 7.2: We investigated whether eye tracking features can be used to model perceived
relevance through a machine learning experiment. We investigated whether findings from
the literature on short news articles generalize to longer multi-paragraph documents (Barz
et al., 2022).

7.1 Data Collection: gazeRE Dataset

We conduct a user study (n=24) to collect eye movement data during relevance estimation tasks.
The participants are asked to read documents of different lengths and judge, per paragraph,
whether it answers a previously shown trigger question. We use this data to model the relation
between the recorded gaze data and the perceived relevance using machine learning in section 7.2.

7.1.1 Participants

For our study, we invited 26 students (15 female) with an average age of 27.19 years (SD = 5.74).
Data from two participants had to be discarded because they withdrew their participation. The
remaining participants reported having normal (11) or corrected to normal (13) vision, of which
11 wore eyeglasses and 2 wore contact lenses. Ten of them participated in an eye tracking study
before. The participants rated their language proficiency in English for reading texts as native
(1), fluent (18), or worse (5). Each participant received e 15 as compensation.

7.1.2 Stimuli

The stimuli data used in our study are pairs of trigger questions and documents with one or
multiple paragraphs (see figure 7.1). We use a subset from the g-REL corpus (Gwizdka, 2014a)
with single-paragraph documents that fit on one page and selected pairs from the Google Nat-
ural Questions (NQ) corpus, which includes multi-paragraph documents that require scrolling
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(a) Example pair of the g-REL corpus
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(b) Example pair of the Google NQ corpus

Figure 7.1: We sample stimuli from 7.1a the g-REL corpus, which includes pairs of questions and
short English news articles, and 7.1b from the Google NQ corpus, which includes pairs of questions and
English Wikipedia articles.

(Kwiatkowski et al., 2019). Both corpora include relevance annotations per paragraph, which we
call system relevance.

7.1.2.1 g-REL Corpus

The g-REL corpus includes a set of 57 trigger questions and 19 short English news texts that
fit on one page. Questions include, for instance, “Where is the headquarters of OPEC located?”
and “What was Camp David originally named?”. The news texts are either irrelevant, topically
relevant, or relevant concerning these questions: the corpus includes three questions per docu-
ment. If a document is irrelevant, it is off-topic and does not contain an answer to the question.
Topically relevant and relevant documents are on topic, but only the relevant texts contain an
answer to the question. The original news texts were selected from the AQUAINT Corpus of
English News Texts (Graff, 2002) as used in the TREC 2005 Question Answering track1. The
questions and judgments (system relevance) from TREC data were further revised and tested by
Michael Cole and Jacek Gwizdka. Prior results for this corpus have been published in work by
Gwizdka (2014a,b, 2017); Bhattacharya et al. (2020b,a). Like Bhattacharya et al. (2020b,a), we
consider a binary relevance classification. Hence, the topically relevant document-question pairs
are counted as irrelevant ones. For our user study, we select a balanced subset of 12 distinct
documents, of which four are relevant, four are topical, and four are irrelevant concerning the
accompanying trigger question. We selected two additional documents for the training phase,
one of which is relevant and one that is topical. We select the news texts such that the length
distribution is similar to the whole corpus. The mean number of tokens of the selected news texts
is 170.500 (SD = 14.211). If all documents were included, the mean number of tokens would
have been 176.404 (SD = 12.346). We used a simple whitespace tokenizer, which segments each

1https://trec.nist.gov/data/qa.html (accessed on 12 Dec 2024)

https://trec.nist.gov/data/qa.html
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document into a list of words to determine the number of tokens in each document.

7.1.2.2 Google Natural Questions Corpus

The Natural Questions (NQ) corpus2 by Google includes 307k pairs of questions and related
English Wikipedia documents (Kwiatkowski et al., 2019). Example questions include “What is
the temperature at bottom of ocean?” and “What sonar device let morse code messages be sent
underwater from a submarine in 1915?”. Each document includes multiple HTML containers,
such as paragraphs, lists, and tables. Each container that answers the accompanying question is
listed as a long answer. We consider this container to be relevant (system relevance). In addition,
the corpus provides a short answer annotation if a short phrase exists within a container that
fully answers the question. The Google NQ questions are longer and more natural than other
question-answering corpora, including TREC 2005. For our user study, we select a subset of
12 pairs of documents and questions (plus one for training) from the NQ training data using
a set of filters followed by a manual selection. Our filter removes all documents with at least
one container different than a paragraph because we focus on continuous texts in this work. It
selects documents with exactly one long and one short answer, i.e., all but one paragraph per
document can be considered irrelevant. Also, it removes all documents that have very short or
very long documents. We drop documents with less than 20 or more than 200 tokens. Finally,
our filter selects all documents with five to seven paragraphs, which results in a set of 355 of
307k question-document pairs. We manually select documents from the remaining ones guided
by two factors: the average number of tokens and the position of the relevant paragraph. The
remaining documents have an average length of 420.083 (SD = 54.468) tokens. This means a
document’s height corresponds to two times the display’s height, and participants must scroll
through the document to read all paragraphs. The position of relevant paragraphs is balanced:
we select two documents with an answer at position i with i ranging from 0 to 5. On average,
each paragraph contains 72.55 tokens.

7.1.3 Tasks & Procedure

At the beginning of the study, each participant is asked to sign an informed consent form and to
fill in a demography questionnaire. The remainder of the study is divided into two blocks, which
follow the same pattern (see figure 7.2). In each block, stimuli from one of the two corpora are
presented (within-subjects design). The starting order is alternating to avoid ordering effects.
At the beginning of each block, the experimenter provides block-specific instructions and asks
the participant to calibrate the eye tracking device. Next, the participant completes a training
phase to get familiar with the task, the user interface, and the characteristics of the stimuli
from the current corpus. We include two training examples for g-REL and one for Google NQ.
The participant is encouraged to ask questions about the system and the task in this phase.
Subsequently, the participant completes the main phase of the block, which includes 12 stimuli
of the respective corpus. After both blocks are finished, participants receive the compensation
payment. The participant’s task is to mark all paragraphs of a document as relevant that contain

2https://ai.google.com/research/NaturalQuestions (accessed on 12 Dec 2024)

https://ai.google.com/research/NaturalQuestions
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Figure 7.2: Procedure of our user study with one block of tasks per corpus of stimuli: g-REL and
Google NQ.

an answer to the previously shown trigger question (query). Participants read the query and
navigate to the corresponding document, either a news article or a wiki article. There is no time
constraint for reading the article. Then, participants move to the rating view, which enables
them to enter a binary relevance estimate (perceived relevance) per paragraph. At this stage,
the query and the text of the paragraph are available to the participant. For stimuli from
the g-REL corpus, participants must provide one relevance estimate for the whole text. For
stimuli from the Google NQ corpus, participants must provide five to seven relevance estimates,
depending on the number of paragraphs.

7.1.4 Apparatus

The study is conducted in a separate room of our lab. We use the Tobii 4C eye tracker3, a
non-intrusive remote eye tracker, which is attached to the lower bezel of a 27-inch screen. This
monitor has a resolution of 2560 × 1440 pixels, and the attached eye tracker collects the gaze
data with a sampling rate of 90 Hz. The monitor and eye tracker are connected to an experi-
menter’s laptop running the study software and a monitoring tool. The participants are seated
approximately 60 cm in front of the connected display. A mouse is provided to scroll through
documents, navigate between views, and rate each paragraph’s relevance. The text-based stim-
uli are displayed in black, 38-points Roboto font4 on a white background. We calibrate the eye
tracker before the user executes the tasks using the built-in 9-point calibration procedure. Dur-
ing the calibration process, the user is asked to look at calibration dots on the connected display
until they vanish. We use the multisensor-pipeline (see chapter 9), our Python-based framework
for building stream processing pipelines, to implement the study software that is responsible for
showing the stimuli and recording the interaction signals according to our experiment procedure.

3https://help.tobii.com/hc/en-us/articles/213414285-Specifications-for-the-Tobii-Eye-Tracker-4C
(accessed on 12 Dec 2024)

4https://fonts.google.com/specimen/Roboto (accessed on 12 Dec 2024)

https://help.tobii.com/hc/en-us/articles/213414285-Specifications-for-the-Tobii-Eye-Tracker-4C
https://fonts.google.com/specimen/Roboto
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Figure 7.3: Setup of our user study: A user is seated approximately 60 cm from a 27-inch display with
the remote eye tracker mounted at its lower bezel.

7.1.5 gazeRE Dataset

We assembled the stimuli and the recorded interaction signals into the gazeRE dataset, a dataset
for gaze-based Relevance Estimation. It includes relevance ratings (perceived relevance) from
24 participants for 12 stimuli from the g-REL corpus and 12 stimuli from the Google NQ corpus.
Also, it includes participants’ eye movements per document in terms of 2D gaze coordinates on
the connected display. We use the gazeRE dataset for modeling the perceived relevance based
on eye tracking in this work. It is publicly available under an open source license on GitHub5.

Processing of Eye Tracking Data

The gaze data included in the gazeRE dataset is pre-processed and cleaned. We correct irregular
timestamps by resampling the signal with a fixed sampling rate of 83 Hz, corresponding to the
ratio of samples per recording length. Further, we use the gap_fill algorithm, which linearly
interpolates the gaze signal to close small gaps between valid gaze points (Olsen, 2012). This
may happen due to a loss of tracking. In addition, we use the Dispersion-Threshold Identification
(I-DT) algorithm to detect fixation events (Salvucci and Goldberg, 2000).

Dataset Format

The gazeRE dataset includes synchronized time-series data per document and user. Each record
includes a column for timestamps, gaze coordinates (x and y), a fixation ID if the gaze point
belongs to a fixation event, the scroll position, and the ID of the paragraph that is hit by the
current point of gaze. The origin of the gaze and fixation coordinates is the lower-left corner of
the display (0, 0) while (2560, 1440) denotes the upper-right corner. The scroll position reflects
the status of the scrollbar and lies between 0 and 1. The position is 1 if the document head
is visible or the document is not scrollable. It is 0 if the end of the document is visible. We

5https://github.com/DFKI-Interactive-Machine-Learning/gazeRE-dataset (accessed on 12 Dec 2024)

https://github.com/DFKI-Interactive-Machine-Learning/gazeRE-dataset
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Corpus Subset Relevant Irrelevant Total

g-REL
agree 86 (48%) 95 (52%) 181 (63%)
topical 20 (20%) 76 (80%) 96 (33%)
all 107 (37%) 181 (63%) 288 (100%)

Google NQ
agree 248 (17%) 1190 (83%) 1438 (86%)
all 450 (27%) 1230 (73%) 1680 (100%)

Table 7.1: Number of samples in our dataset per corpus and subset. The topical subset includes samples
for irrelevant paragraphs that are on the topic of the trigger questions. The agree subset includes samples
for which the participant’s relevance rating matches the system relevance and is not topical. Each trial
corresponds to one paragraph that was either perceived as relevant or irrelevant.

provide the perceived relevance per document and user: True is used for positive ratings, i.e., if
a paragraph was perceived as relevant, False otherwise.

Descriptive Statistics

We report descriptive statistics and agreement statistics of the relevance ratings in our dataset.
We use Fleiss’ κ to determine if there was an agreement in our participants’ judgment on whether
paragraphs are relevant with respect to a trigger question. If the agreement among participants
is low, the rating task might have been too difficult, or participants might have given inadequate
ratings. Further, we compute Cohen’s κ to determine the level of agreement between each partic-
ipant’s relevance rating (perceived relevance) and the ground-truth relevance (system relevance).
We report the mean agreement, averaging over all participants. We expect that the ratings of our
participants moderately differ from the system relevance, similar to the findings in Bhattacharya
et al. (2020a). For the g-REL corpus, we include a total of 288 trials, i.e., eye movements and a
corresponding relevance estimate per paragraph (see table 7.1). The 12 documents, each being
a single paragraph, include 4 relevant paragraphs (system relevance). On average, the partic-
ipants rated 4.46 (SD = 1.04) paragraphs as relevant: they perceived 107 (37%) as relevant
and 181 (63%) as irrelevant. Fleiss’ κ reveals a good agreement for perceived relevance ratings
with κ = 0.641. The mean of Cohen’s κ of 0.769 (SD=0.197) indicates a substantial agreement
between the participant and ground-truth relevance ratings. We obtained a total of 1680 trials
using the Google NQ corpus. The 12 stimuli include 12 relevant paragraphs out of 70. On aver-
age, the participants rated 18.75 (SD = 4.361) paragraphs as relevant: they perceived 450 (27%)
as relevant and 1230 (73%) as irrelevant. Fleiss’ κ reveals a moderate agreement for perceived
relevance ratings with κ = 0.576. Also, the mean of Cohen’s κ of 0.594 (SD = 0.126) indicates
a moderate agreement between the perceived and the system relevance.

7.2 Gaze-based Relevance Estimation

We investigate different methods for predicting the perceived relevance of a read paragraph based
on a user’s eye movements. We consider relevance prediction a binary classification problem
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because paragraphs are either relevant or irrelevant. Each classification model takes a user’s
eye movements from reading a paragraph as input to predict the perceived relevance of this
paragraph. The explicit user ratings are used as ground truth. In the following, we describe our
method for extracting gaze-based features at the paragraph level, depict our model training and
evaluation procedure, and report the results based on the gazeRE dataset.

7.2.1 Extraction of Gaze-based Features

To encode a user’s eye movements for a certain paragraph p, we have to extract coherent gaze
sequences within the paragraph area. A user might visit a paragraph multiple times during the
relevance judgment process. We refer to these gaze sequences as visits vip ∈ Vp where i indicates
the order of visits. We implement an algorithm that extracts all visits to a paragraph with a
minimum length while ignoring short gaps. It identifies consecutive gaze samples within the
given paragraph’s area and groups them into a visit instance each. As long as there is a pair of
two subsequent visits with a gap shorter than 0.2 s, these are merged. All visits with a minimum
length of 3 s are returned as a list. We found that this duration ensures that at least 3 fixations
are contained in each visit, which is required to compute the convex hull features. We use the
longest visit per paragraph v∗p to encode eye movements.

We implement a set of 17 features that were successfully used to model the perceived relevance
of short news articles in Bhattacharya et al. (2020a). This requires selecting one visit or to merge
them. We decided to use the longest visit, assuming that the largest consecutive sequence of
gaze points is most likely to capture indicative eye movements. Our feature extraction function
f returns a vector of size 17 per visit: f(v)→ R17. Four of these features are based on fixation
events, eight are based on saccadic movements, and five are based on the area spanned by all
fixations. Table 7.2 provides an overview of all features and describes how they are computed.
Some features are normalized by a width factor w or a height factor h. In Bhattacharya et al.
(2020a), these correspond to the display width and height, respectively. We set w and h to the
width and height of the current paragraph because the display size does not respect the different
paragraph sizes and the scrolling behavior. The absolute reading time of a visit (scan_time) is
used to compute velocity-based or time-normalized features. The hull_area, i.e., the area of
the convex hull around all fixations, is used to compute two area-based features.

7.2.2 Model Training and Evaluation

We build and compare several machine learning models that take an encoded paragraph visit v∗p
as input and yield a binary relevance estimate as output. The models are implemented using
the scikit-learn machine learning framework (Pedregosa et al., 2011). Model training and testing
are done using our gazeRE dataset, which includes eye movements and relevance estimates for
documents from the g-REL corpus and the Google NQ corpus. We refer to these partitions as
g-REL data and Google NQ data.
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Feature Description

fixation
-based

fixn_n Number of fixations
fixn_dur_sum Sum of fixation durations
fixn_dur_avg Mean of fixation durations
fixn_dur_sd Standard deviation of fixation durations

saccade
-based

scan_dist_h Sum of horizontal amplitudes of all saccades, normalized by a factor w
scan_dist_v Sum of vertical amplitudes of all saccades, normalized by a factor h
scan_dist_euclid Sum of Euclidean distances of normalized amplitudes of all saccades
scan_hv_ratio Ratio of horizontal to vertical amplitudes: scan_dist_h/scan_dist_v
avg_sacc_length Average saccade amplitude: scan_dist_euclid/(fixn_n− 1)

scan_speed_h Horizontal saccade velocity: scan_dist_h/scan_time
scan_speed_v Vertical saccade velocity: scan_dist_v/scan_time
scan_speed Saccade velocity: scan_dist_euclid/scan_time

area
-based

box_area Area spanned by summed saccade amplitudes: scan_dist_h ∗ scan_dist_v
box_area_per_time The box_area normalized by the scan time: box_area/scan_time
fixns_per_box_area Number of fixations per scanned area: fixn_n/box_area
hull_area_per_time The hull_area normalized by the scan time: hull_area/scan_time
fixns_per_hull_area Number of fixations per convex hull area: fixn_n/hull_area

Table 7.2: Overview of the 17 features adapted from Bhattacharya et al. (2020a) based on fixation
events, saccadic eye movements, and the scanned area, which we use to encode paragraph visits.

7.2.2.1 Model Training Conditions

We largely replicate the conditions for model training and evaluation from Bhattacharya et al.
(2020a) because we aim to confirm their findings: we group all visits v ∈ V ∗ by their relevance
rating into three subsets, train each model on 80% of the data of each subset, and evaluate
it on the remaining 20% of the data. The grouping yields an agree subset, a topical subset,
and the complete data denoted as all. Table 7.1 depicts the number of relevant and irrelevant
samples in our dataset per subset. The agree subset includes all visits for which the perceived
relevance rating agrees with the system relevance. All visits to topical articles, i.e., visits to
on-topic articles that are irrelevant, are excluded as well. The topical subset includes visits to
topical articles only, which are expected to be more difficult to classify. This subset is empty for
the Google NQ corpus because its paragraphs are marked as either relevant or irrelevant. We
report the model performance metrics averaged over 10 random train-test splits to estimate the
generalization performance. We use the train_test_split() function of scikit-learn to split
the visits stratified with prior shuffling.

7.2.2.2 Metrics

We include the same metrics as Bhattacharya et al. (2020a): the F1 score, i.e., the harmonic
mean of precision and recall, the area under the curve of the receiver operator characteristic
(ROC AUC), and the balanced accuracy. In addition, we report the true positive rate (TPR)
and the false positive rate (FPR), which allow us to estimate the suitability of our models for
building adaptive user interfaces similar to Feit et al. (2020).
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Model F1 Score ROC AUC Balanced Accuracy TPR FPR

agree
RF 0.674 0.748 0.680 0.694 0.333
RF* 0.677 0.747 0.689 0.688 0.317
SVC* 0.702 0.787 0.683 0.782 0.417

topical
RF 0.119 0.546 0.527 0.100 0.047
RF* 0.247 0.528 0.518 0.250 0.213
SVC* 0.270 0.460 0.509 0.325 0.307

all
RF 0.458 0.650 0.594 0.405 0.217
RF* 0.495 0.652 0.594 0.505 0.317
SVC* 0.506 0.652 0.605 0.510 0.300

Table 7.3: Scores for all relevance prediction models using the g-REL corpus.

7.2.2.3 Model Configurations

We use the random forest classifier of scikit-learn with default parameters (n_estimators = 100)
as our baseline model (RF), which worked well in Bhattacharya et al. (2020a). Further, we
investigate the effect of using two pre-processing steps with a random forest classifier (RF∗) or
a support vector classifier (SVC∗) with default parameters in an estimator pipeline. The default
parameters of the SVC∗ model are kernel = rbf and C = 1. As a pre-processing step, we apply
the oversampling technique SMOTE (Chawla et al., 2002) from the imbalanced-learn package
(Lemaître et al., 2017) because visits to relevant paragraphs are underrepresented in our dataset
(see table 7.1). Also, we apply a standard feature scaling method that removes the mean and
scales features to unit variance. We train separate models for g-REL data and Google NQ data.

7.2.2.4 Hypotheses

We hypothesize that our models can effectively estimate the perceived relevance of short news
articles as shown in Bhattacharya et al. (2020a) but using our newly assembled gazeRE dataset
(H1). Confirming this hypothesis would also serve as a validation of our dataset. Further, we
assume that the visit-based scanpath encoding enables the prediction of a participant’s perceived
relevance for individual paragraphs of long Wikipedia articles, i.e., if the participant must scroll
through the document to read all contents (H2).

7.2.3 Results

We compare the performance of three models in predicting a user’s perceived relevance using
our gazeRE dataset. The performance scores for each model and subset are shown in table 7.3
(g-REL) and table 7.4 (Google NQ). For the g-REL data, we observe the best performance for
the agree subset. Models trained on the topical subset achieve the worst results. Models for
the all subset, which includes both other subsets, rank second. Across all subsets, the SVC*
model performs best, or close to best, for most metrics. For the topical subset, the RF model
without over-sampling and feature scaling achieves better ROC AUC and FPR scores. However,
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Model F1 Score ROC AUC Balanced Accuracy TPR FPR

agree
RF 0.052 0.54 0.502 0.03 0.027
RF* 0.246 0.543 0.543 0.278 0.229
SVC* 0.297 0.563 0.54 0.467 0.388

all
RF 0.189 0.552 0.517 0.129 0.095
RF* 0.331 0.552 0.527 0.343 0.289
SVC* 0.428 0.596 0.57 0.552 0.412

Table 7.4: Scores for all relevance prediction models using the Google NQ corpus.

we observe a very low TPR and F1 score in this case. For the Google NQ data, models trained
on the all subset rank best compared to their counterparts trained on the agree subset. Similar
to our experiment on the g-REL data, the SVC* model performs best, or close to best, for both
subsets. Also, the RF model achieves the best FPR score but the worst TPR and F1 scores.

7.3 Discussion

The results of our machine learning experiment for short news articles (g-REL data) are similar
to those in Bhattacharya et al. (2020a) (see table 7.3). Our results indicate that we can effectively
predict the perceived relevance for the agree subset, i.e., if the user’s relevance rating agrees with
the actual relevance of a paragraph and if irrelevant articles are not on topic. The topical trials
are the most difficult to classify: our models fail in differentiating between relevant and irrelevant
paragraphs if they are on topic. Including all samples for training, our models perform better
than chance with an F1 score greater than 0.5. The best-performing model pipeline, on average,
is SVC*, a support vector classifier with over-sampling and feature scaling. Bhattacharya et al.
(2020a) reported results for the RF model based on the original g-REL corpus using the same
features for training but with data from other participants. For the agree subset, their best
model achieved an F1 score of 0.82, an ROC AUC of 0.92, and a balanced accuracy of 0.84.
For the topical subset, they observed an F1 score of 0.3, an ROC AUC of 0.77, and a balanced
accuracy of 0.59. Using all data samples results in an F1 score of 0.65, an ROC AUC of 0.85, and
a balanced accuracy of 0.73. Even though we observed worse results per subset, we found the
same overall pattern: the best performance is observed for models trained on the agree subset,
followed by models for the all subset, and model for the topical subset rank last. This similarity
is a good indicator of the validity of our gazeRE dataset, and, eventually, it suggests that we
may confirm our hypothesis H1. The differences in model performance may have several reasons.
For instance, it is likely that the higher amount of training data in Bhattacharya et al. (2020a)
yields better models. They used 3355 trials from 48 participants compared to 288 trials from
24 participants in our experiment. Further, our user study was conducted at a university in
Germany with participants being, besides one, non-native English speakers, while the studies
reported in Bhattacharya et al. (2020a) were conducted at two universities in the United States
and predominantly included native English speakers. This may lead to a higher degree of variance
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in eye movements from our study. Another aspect may be that we used another eye tracking
device; hence, the data quality and pre-processing steps likely differ.

For the Google NQ data in our machine learning experiment, we observe better scores when
training on all data than when training on the agree subset (see table 7.4). However, the best-
performing model, which is also the SVC* model, achieves F1 scores less than 0.5 in both cases,
although we have access to a higher number of training samples (see table 7.1). The area under
the ROC curve indicates classification performances better than chance, but we do not see enough
evidence to confirm our hypothesis H2. A potential reason for the low performance might be that
irrelevant paragraphs, in fact, belong to the same Wikipedia article as the relevant ones: the agree
subset is rather a topical subset for which all user ratings agree with the system relevance. This
would explain why models for the agree subset perform worse than models trained on all data.
Also, the individual paragraphs in the Google NQ corpus are smaller than the ones in the g-REL
corpus. This means that we aggregate less information per scanpath, which may deteriorate
the model performance. Further, having multiple paragraphs allows the participants to revisit
paragraphs. As we decided to encode the longest visit to a paragraph, we may miss indicative
gaze patterns from another visit, which would have a negative impact on model training. In
addition, the gaze estimation error inherent in eye tracking (Cerrolaza et al., 2012) may lead to a
higher number of incorrect gaze-to-paragraph mappings: gaze-based interfaces should be aware
of this error and incorporate it in the interaction design (Barz et al., 2018; Feit et al., 2017).

7.3.1 Feature Importance

We use 17 features as input to model the perceived paragraph relevance. In the following, we
assess the importance of individual features to our best-performing model, the SVC* model.
We use the permutation feature importance6 method of the scikit-learn package (Pedregosa
et al., 2011) to estimate feature importance because SVCs with an RBF kernel do not allow
direct feature analysis. This method randomly shuffles the values of one feature at a time and
investigates the impact on the model performance. The loss in model performance reflects the
dependency of the model on this feature. We report the mean loss in the f1 score from 30
repetitions per feature as a measure of importance. We only analyze the feature importance for
the all and agree subsets of the g-REL corpus because we observed f1 scores lower than 0.5 for
all other conditions. The importance is reported on the training and test set of a single train-
test split (80/20 split). We include both because features that are important for the training
data but not for the test data might cause the model to overfit. The f1 test scores are 0.714
for the agree subset and 0.682 for all samples. However, this method might return misleading
values if two features correlate. A model would still have access to nearly the same amount of
information if one feature was permuted but could be represented by another one. Hence, we
perform a hierarchical clustering on the feature’s Spearman rank-order correlations and use one
feature per cluster to asses its importance. For this, we follow the scikit-learn manual for handling
multicollinearity7. The pairwise correlations and a grouping of our features based on correlation-

6https://scikit-learn.org/stable/modules/permutation_importance.html (accessed on 12 Dec 2024)
7https://scikit-learn.org/stable/auto_examples/inspection/plot_permutation_importance_

multicollinear.html (accessed on 12 Dec 2024)

https://scikit-learn.org/stable/modules/permutation_importance.html
https://scikit-learn.org/stable/auto_examples/inspection/plot_permutation_importance_multicollinear.html
https://scikit-learn.org/stable/auto_examples/inspection/plot_permutation_importance_multicollinear.html
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Figure 7.4: The heatmap (right) shows the pairwise Spearman rank-order correlations for our features
using all samples of the g-REL data. The dendrogram (left) shows feature groupings based on their
correlation-based distances. Setting the distance threshold to t = 0.3 yields six feature clusters (see
colored leaves).
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based distances are visualized in figure 7.4 (all samples of the g-REL data). We set the distance
threshold to t = 0.3 for the feature importance analysis, for which we obtain six feature clusters
as indicated by the colored leaves of the dendrogram. We obtain the same feature clusters for the
agree subset and for both subsets of the Google NQ data. Using one feature per cluster to train
and evaluate the SVC* model, we observe a drop in f1 scores of 0.015 for the all subset and no
decline for the agree subset. These representative features include fixn_dur_avg, scan_speed_h,
scan_speed_v, scan_distance_v, scan_distance_h, and hull_area_per_time. We remain at
t = 0.3 because higher thresholds lead to substantially lower f1 scores and to differences in the
resulting feature clusters between subsets and corpora.

The importance of feature clusters is visualized in figure 7.5. For the all subset, we observe
f1 losses ranging from 0.065 for scan_speed_v and 0.142 for scan_distance_h for the test set.
We observe slightly lower losses for the train set but the same importance ranking. Eventually,
the features scan_distance_h and hull_area_per_time are most important when using all
samples. For the agree subset, hull_area_per_time is by far the most important feature with
an f1 loss of 0.162 on the train set and 0.137 of the test set. The features scan_distance_v and
fixn_dur_avg are somewhat important with losses of 0.036 and 0.032. For scan_speed_h, we ob-
serve a higher importance on the train set (0.057) than on the test set (0.01), which may indicate
that this feature causes the model to overfit the training data. Overall, the hull_area_per_time
feature introduced by Bhattacharya et al. (2020a) is of high importance for modeling the per-
ceived paragraph relevance and stable when including topical samples and samples for which the
user rating disagrees with the ground truth. The remaining five features are important when
including all samples, particularly the scan_distance_h. This result suggests that, in the first
stage, these five features could be used to identify topical (irrelevant) samples and, in the sec-
ond stage, the hull_area_per_time can predict paragraphs perceived as relevant among the
remaining, non-topical samples.

7.3.2 Application to Adaptive User Interfaces

Our relevance estimation method can enable the development of adaptive user interfaces (UIs)
that emphasize relevant contents or suppress irrelevant ones similar to Feit et al. (2020). Over
time, their system detects relevant and irrelevant elements of a UI that show different records
of flat advertisements: a certain UI element always shows the same type of information, which
depends on the currently viewed flat record. Our use case differs in that we want to highlight
relevant text passages of a document or hide irrelevant ones. Adaptations may be based on per-
ceived relevance estimates from recent eye movements and could, e.g., ease revisiting of relevant
paragraphs in a document by immediately highlighting them or by hiding irrelevant passages.
Alternatively, collecting relevant and irrelevant text passages in the pass of a search session may
allow an adaptive UI to properly format text passages of documents hitherto unseen by the user.
An adaptation method requires a precise recognition of relevant (true positive) or irrelevant (true
negative) paragraphs to emphasize or suppress them, respectively. Misclassifications would lead
to incorrect adjustments and, subsequently, to usability problems. Emphasizing irrelevant con-
tent (false positive) or suppressing relevant content (false negative) is likely to have a stronger
negative impact on the user interaction than failing to suppress irrelevant content or to highlight
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Figure 7.5: Permutation feature importance in terms of the f1 loss for the all subset 7.5a and the agree
subset 7.5b of the g-REL data. We show the mean loss in f1 scores from 30 permutation iterations ±
the standard deviation. We include the feature importance estimates for the train and test split.
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Figure 7.6: Receiver Operator Characteristic curves for the SVC* relevance prediction models trained
and tested using all samples from the g-REL data 7.6a and the Google NQ data 7.6b. The curves are
averaged over the 10 training and test cycles; the gray area indicates the standard deviation (± 1 SD). The
elliptic areas indicate acceptable regions for true and false positive values for emphasizing or suppressing
contents based on Feit et al. (2020).
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a relevant one (Feit et al., 2020). To avoid strong negative impacts, adjustments by accentuation
require a relevance model with a low false positive rate (FPR), and adjustments by suppression
require a model with a high true positive rate (TPR), i.e., with a low number of false negatives.
Depending on the type of adjustment, the TPR and FPR could be traded against each other by
using different decision thresholds. We show possible trade-offs for our SVC* models using ROC
curves. One model is trained on all g-REL data and one on all Google NQ data (see figure 7.6).
We do not consider other subsets for realistic application scenarios because we would not be
able to determine whether a user agreed with the actual (system) relevance of a paragraph or
whether a text passage was on topic but irrelevant (topical). This differentiation, which is aligned
to the approach by Bhattacharya et al. (2020a), requires prior knowledge about the paragraphs
and was meant to identify topical samples as being the most challenging cases for classification
algorithms. Analogous to Feit et al. (2020), the shaded areas in our ROC plots in figure 7.6
indicate acceptable true and false positive rates for emphasizing or suppressing contents. For
g-REL data, the ROC curve of the SVC* model hits the emphasize area, indicating that it could
be used to emphasize short news articles perceived as relevant if the decision threshold is tuned
accordingly. But, many relevant contents would be missed, indicated by the low true positive
rate (recall). The shaded areas also reveal that our models are unsuitable for other adjustments.

7.3.3 Reading Model Assessment Tool (ReMA)

We develop the interactive Reading Model Assessment tool (ReMA), an interactive tool for
analyzing scanpaths from relevance judgment tasks and for assessing gaze-based relevance esti-
mation models (Valdunciel et al., 2022). Our tool allows experimenters to easily browse recorded
trials from the gazeRE dataset, compare the model output to the ground truth, and visualize
gaze-based features at the token- and paragraph-level that serve as model input. Our goal is
to facilitate an understanding of the relation between eye movements and the human relevance
estimation process and to understand the strengths and weaknesses of our presented model. Our
data exploration tool is related to others in the context of reading behavior analysis. For instance,
GazePlot enables reading performance analysis for children (Špakov et al., 2017). EyeMap allows
researchers to analyze fixations and saccades at the word level (Tang et al., 2012). Both offer a
scanpath visualization as text overlays: eye tracking data is presented as a gaze plot in which
fixations are depicted as circles and saccades as lines. However, “actual scanpath records are
usually quite complex, and can be difficult to interpret and compare” (Goldberg and Helfman,
2010). Other tools implemented more intuitive visualizations which, for example, aggregate the
gaze data at the word level by mapping the gaze data to objects of the Document Object Model
(DOM) of a web page (Reeder et al., 2001; Beymer and Russell, 2005; Hienert et al., 2019).
WebEyeMapper and WebLogger (Reeder et al., 2001) and WebGazeAnalyzer (Beymer and Rus-
sell, 2005) introduced this approach. Hienert et al. (2019) use a similar mapping approach in
the Reading Protocol tool. It allows experimenters to analyze eye movements more effectively
on arbitrary areas of interest. They use this gaze-to-object mapping to generate a heat map
that visualizes the summed fixation durations at the word level. Davari et al. (2020) use this
tool to investigate the role of word fixations in query term prediction. Buscher et al. (2012)
introduced the concept of attentive documents that keep track of a user’s perceived relevance
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Figure 7.7: Screenshot of ReMA, our interactive reading model assessment tool. It shows a Wikipedia
article with the token-level heat map, paragraph-level features, and relevance information per paragraph.

based on its eye movements. Their system may highlight text passages that were previously
read and not skimmed. Eyekit is a recent Python package that supports the analysis of read-
ing behavior (Carr et al., 2021). It provides different visualization techniques like gaze plots
and character-based heat maps, which work similarly to the word-based heat map from Hienert
et al. (2019). Moreover, it offers gaze-based feature extraction from scanpaths originating from
a reading activity.

Our goal was to create a tool for interactively exploring the recorded trials of the gazeRE
dataset and to assess our relevance-judgment models that take a scanpath as input to predict
the perceived relevance. The recorded trials include a text-based stimulus, a user’s scanpath,
and the system relevance and perceived relevance. As it is rarely helpful to visualize the fixation
and saccade sequences to understand and compare scanpaths (Goldberg and Helfman, 2010), we
show the text-based stimulus along with paragraph-level features and a token-level heat map.
Our tool shows the predicted relevance estimate and highlights whether it agrees or disagrees
with the perceived relevance (ground truth), which allows us and other researchers to assess the
model more efficiently and understand its strengths and weaknesses. In the long run, such a
tool may enable researchers to build more effective models for gaze-based relevance estimation.
The user interface shows a single trial with the text-based stimulus as its central element (see
figure 7.7). A trial can be selected via the Data tab by providing a participant’s acronym and
a document ID. The corresponding query is shown below the tab area. In the Token level
and Paragraph level tabs, users can configure the visualization, including the token-level heat
map, the paragraph-level feature display, and the relevance ratings. The size and position of
each token correspond to the original layout from the user study. However, we scale the layout
depending on the resolution of the connected display. The web-based front end is developed
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Figure 7.8: Architectural overview of our interactive model assessment tool. The backend serves all
information to the front end, including the stimuli, the extracted features, and the model predictions.

using AngularJS, HTML, CSS, and Typescript. It is responsive and can adapt its layout to
different screen sizes. All data can be queried from a single backend that connects the example
dataset (see figure 7.8). It offers functions for loading a document, the token-level heat map, and
extracted features per paragraph. Also, it integrates the pre-trained machine learning model to
provide relevance estimates for a selected trial. The backend REST API is implemented using
the Python framework Flask.

7.3.3.1 Token-level Heat Map

We integrate the token-level heat map, which encodes a scanpath by accumulating fixation
durations per token, as proposed in Hienert et al. (2019). We extend the heat map generation by
a configurable perceptual span setting, which allows experimenters to estimate the information
that was actually processed by a reader more accurately. The heat map is generated by coloring
the background of each token based on the duration of all fixations (sum) that hit the token area.
The range of considered fixation durations can be set using two sliders in the Token level tab as
shown in figure 7.7. The resulting color legend is shown above the stimulus and replicates the
coloring in Hienert et al. (2019). Tokens that were fixated shorter than the minimum threshold are
not colored. Fixation durations longer than the maximum threshold result in a red background
color. However, the region from which useful information is acquired during a fixation, also
known as the perceptual span, is wider than a single character (Rayner et al., 2010). Research
using the classical paradigm of the gaze-contingent moving window has shown that in English
and other alphabetic languages read from left to right, the perceptual span extends 3-4 letters
to the left and up to 14-15 letters to the right for a given fixation point (McConkie and Rayner,
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1976). But, the extent of the perceptual span is not constant: its size is influenced by linguistic
parameters such as the readability of the text (Rayner, 1986), the frequency of words (Rayner
et al., 2003), and the linguistic ability of the reader (Choi et al., 2015). We extend the token-
level heat map to account for the perceptual span (see figure 7.7): Our tool allows researchers
to configure a perceptual span by setting a left margin ml and a right margin mr, which defines
how many letters to the left and right of fixation are considered for accumulating the fixation
durations per token. The current fixation duration is added for all tokens which overlap with
this region. Hereby, one letter translates to a fixed number of pixels based on the font size.

7.3.3.2 Paragraph-level Features

Per paragraph, we display a box with features extracted from the longest partial scanpath for
this paragraph to its left. To encode a user’s eye movements for a certain paragraph, we have to
extract coherent gaze sequences within the paragraph area. We refer to these partial scanpaths
as visits. A user might visit a paragraph multiple times during the relevance judgment process.
We extract all visits to a paragraph with a minimum length while ignoring short gaps: As long
as there are two subsequent visits with a gap shorter than 0.2 s, these visits are merged. All
visits that satisfy a minimum length of 3 s are kept. A common way to encode a scanpath in
a meaningful way is to extract handcrafted features like the scan_hv_ratio: the horizontal to
vertical ratio of saccade amplitudes (Holmqvist and Andersson, 2017, p. 442). We extract a
set of 17 features, including the scan_hv_ratio, which have been used to model the perceived
relevance of short news articles in Bhattacharya et al. (2020a). Four features are based on fixation
events, eight are based on saccadic movements, and five are based on the area spanned by all
fixations. The source code for feature extraction is available on GitHub8. In the Paragraph level
tab, researchers can select features that shall be displayed.

7.3.3.3 Relevance Model Assessment

Per paragraph, our ReMA tool shows the system relevance, the perceived relevance collected in
the user study, and the predicted relevance using the pre-trained model. The relevance values
can be either True or False, indicating whether this paragraph is deemed relevant to the corre-
sponding query. We display the model’s certainty in terms of its probability estimate p ∈ [0, 1]

for the True class (relevant): 1 indicates that the model is certain that the trial includes a rele-
vant paragraph, 0 indicates certainty for a non-relevant instance. The certainty is shown in blue
with an opacity proportional to its value, i.e., the closer p is to 0 or 1, the more opaque the
value is shown. We also show circular badges indicating whether the participant’s perceived rele-
vance agrees with the system relevance and whether the model correctly predicted the perceived
relevance. This enables a more efficient assessment of the model performance in context.

8https://github.com/DFKI-Interactive-Machine-Learning/gazeRE-dataset/tree/main/features
(accessed on 12 Dec 2024)

https://github.com/DFKI-Interactive-Machine-Learning/gazeRE-dataset/tree/main/features
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7.4 Conclusion

In this work, we investigated whether we can confirm the findings from Bhattacharya et al.
(2020a) that gaze-based features can be used to estimate the perceived relevance of short news
articles read by a user. Further, we investigated whether the approach can be applied to multi-
paragraph documents that require the user to scroll down to see all text passages. For this,
we conducted a user study with n=24 participants who read documents from two corpora, one
including short news articles and one including longer Wikipedia articles in English, and rated
their relevance at the paragraph-level with respect to a previously shown trigger question. We
used this data to train and evaluate machine learning models that predict the perceived relevance
at the paragraph-level using the user’s eye movements as input. Our results showed that, even
though we achieved lower model performance scores than Bhattacharya et al. (2020a), we could
replicate their findings under the same experiment conditions: eye movements are an effective
source for estimating the perceived relevance of short news articles if we leave out articles that
are on topic but irrelevant. However, we could not clearly show that the approach generalizes
to multi-paragraph documents. In both cases, the best model performance was observed when
using over-sampling and feature scaling on the training data and a support vector classifier
with an RBF kernel for classification. Future investigations should aim to overcome the limited
estimation performances. A potential solution could be to use higher-level features such as the
thorough reading ratio, i.e., the ratio of read and skimmed text lengths (Buscher et al., 2012),
or the refixation count, i.e., the number of re-visits to a certain paragraph (Feit et al., 2020).
Another solution could be found in using scanpath encodings based deep learning (Castner et al.,
2020; Bhattacharya et al., 2020b). We envision the gaze-based relevance detection to be a part of
future adaptive UIs that leverage multiple sensors for behavioral signal processing and analysis
(Oviatt et al., 2018; Barz et al., 2020b,a). We published our new gazeRE dataset and our code for
feature extraction under an open-source license on GitHub to enable other researchers to replicate
our approach and to implement and evaluate novel methods in the domain of gaze-based implicit
relevance feedback.
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Chapter 8

Visual Attention Modelling

Eye tracking studies often consider visual attention to specific areas of interest (AOIs) to analyze
and understand how people process visual information. AOIs are specific regions in a scene or
interface that are defined by researchers (Holmqvist and Andersson, 2017). Visual attention
refers to the time a person pays attention to these regions. By measuring visual attention to
and transitions between AOIs during a study, researchers can gain insights into which elements
of a scene are relevant to an activity and how interventions of an experiment influence the
participant’s eye movement behavior. This is usually done based on fixation events as they
are assumed to approximate a person’s allocation of cognitive resources through the time they
spend processing a visual scene (Just and Carpenter, 1980). Further, advances in modern head-
worn eye tracking technology (Tonsen et al., 2017) can enable attention-aware mobile human-
computer interfaces. In remote eye tracking with static stimuli such as images, an AOI can
be defined once and reused for every participant. Dynamic AOIs in video-based stimuli can
be annotated using keyframe-based annotation techniques, i.e., AOIs are marked via bounding
boxes for keyframes, and interpolation is used to annotate intermediate frames (Kurzhals et al.,
2014b). However, these efficient fixation-to-AOI mapping techniques from remote eye tracking
do not scale for mobile eye tracking applications. Accurately annotating mobile eye tracking data
remains a challenging and time-consuming task because scene videos taken with a head-mounted
eye tracking device are unique for every participant. In mobile eye tracking practice, one or
more annotators decide per fixation whether an AOI was hit or not (Uppal et al., 2022; Kurzhals
et al., 2014a). This fixation-wise annotation approach reduces the annotation effort compared
to a video frame-based annotation because fixations last around 200-400 ms (Holmqvist and
Andersson, 2017), which corresponds to 2-2.5 events per second. Videos are typically recorded
with a sampling rate of at least 30 Hz. Still, it does not remedy the need to annotate AOIs in
every single recording and hinders the development of attention-aware mobile interfaces.

Attaching fiducial markers to target stimuli was proposed as a solution in research (Yu and
Eizenman, 2004; Pfeiffer et al., 2016; Mehlmann et al., 2014) and was adopted in modern com-
mercial software solutions like Pupil Cloud1. However, markers are obtrusive and may impact the
visual scanning behavior. Therefore, the present research aims at a solution for non-instrumented

1https://pupil-labs.com/blog/pupil-cloud-projects-enrichments/ (accessed on 02 Feb 2024)
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environments. Existing approaches for automatic or semi-automatic analysis of head-mounted
eye tracking data use computer vision models to map fixations to AOIs. Most of these approaches
rely on pre-trained computer vision models that do not allow for adapting the underlying model to
a certain target domain (Sümer et al., 2018; Machado et al., 2019; Deane et al., 2022; Venuprasad
et al., 2020; Uppal et al., 2022). These can be applied in very constrained settings only, i.e. if
the dataset used for training the machine learning model matches the target domain. Some ap-
proaches support a single, a priori model training or fine-tuning step for adaptation to a target
domain (Wolf et al., 2018; Kumari et al., 2021; Panetta et al., 2019). These approaches offer no
possibility of adapting the model during the annotation process and, hence, suffer from a lack
of flexibility. Further, not all methods are evaluated quantitatively (Barz and Sonntag, 2016;
Kurzhals et al., 2017; Brône et al., 2011) or evaluation metrics are not properly described (Pon-
tillo et al., 2010; Machado et al., 2019) or inadequate, e.g., ignoring temporal aspects (Panetta
et al., 2019). Some commercial tools offer automatic mapping of the gaze signal in world video
coordinates to a reference frame that defines AOIs, such as the assisted mapping function of
Tobii Pro2. However, this is only possible for a limited number of reference frames.

We aim to develop a method for semi-automatic mapping of fixations to AOIs, which enables
efficient analysis and interpretation of humans’ complex interaction behavior. This bears the po-
tential to boost the efficiency in research based on eye tracking by automating the time-consuming
and expensive data annotation process (Panetta et al., 2019) and to facilitate novel real-time
adaptive human-computer interaction (Huang and Mutlu, 2016; Barz et al., 2021b). In the first
step (see section 8.1), we develop and evaluate two methods for automatically detecting visual
attention to ambient objects based on pre-trained computer vision models (Barz and Sonntag,
2021). Our goal is to systematically assess the ability of pre-trained models to map fixations to
AOIs and, by that, establish a robust baseline for this task. In the second step (see section 8.2),
we aim to break the limitations of using pre-trained models, i.e., the issue of lacking flexibility
and quality assurance through humans-in-the-loop. We implement and evaluate eyeNotate, a
user interface that enables semi-automatic annotation of mobile eye tracking data (Barz et al.,
2025). Our tool allows mobile eye tracking practitioners to manually annotate their recordings
fixation-wise, reflecting the current state-of-the-art and representing our baseline approach. Fur-
ther, we implement an extension offering fixation-to-AOI mapping suggestions using a few-shot
image classification model, which was shown to be successful in another use case (Desmond et al.,
2021). This model can learn from user feedback, i.e., when users accept or reject/correct sugges-
tions, following the interactive machine learning (IML) paradigm. IML combines frequent human
input and feedback with machine learning technologies without requiring background knowledge
in machine learning (Dudley and Kristensson, 2018; Sonntag et al., 2024). Domain knowledge
from end-users, like eye tracking practitioners, can be integrated more effectively into complex
applications. However, it is important to thoroughly design such systems to achieve better user
experiences and more effective learning systems (Amershi et al., 2014). We conduct a case study
with n=3 trained annotators to compare the baseline version and the IML-supported approach.
We measure the perceived usability, annotation validity and reliability, and efficiency during a
data annotation task using an existing mobile eye tracking dataset with ground-truth annota-

2https://connect.tobii.com/s/article/how-to-perform-manual-and-assisted-mapping
(accessed on 12 Dec 2024)

https://connect.tobii.com/s/article/how-to-perform-manual-and-assisted-mapping
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tions (n=48). We ask participants to re-annotate data for one individual in this dataset. After
task completion, we conducted a semi-structured interview (SSI) to understand how participants
used the provided IML features. In addition, we investigate the performance in automatically
annotating the remainder of the dataset using our resulting machine learning models. In this
chapter, we contribute as follows:

• Section 8.1: We develop and evaluate two methods for automatically mapping fixations to
AOIs based on pre-trained computer vision models.

• Section 8.2: We implement and evaluate eyeNotate, a user interface that enables semi-
automatic annotation of mobile eye tracking data.

We develop two methods for automatically detecting visual attention to ambient objects
using head-mounted eye trackers in combination with pre-trained computer vision models in
chapter 8. We investigate their effectiveness for the automatic annotation of mobile eye tracking
data from diagnostic user studies, i.e., for automatic mapping of fixations to areas of interest
of that study. Further, we develop an interactive machine learning interface that enables semi-
automatic annotation of mobile eye tracking data based on few-shot image classification. It
addresses the limited flexibility and accuracy when using pre-trained models.

8.1 Fixation-to-AOI Mapping with Pre-trained Models

We implement two methods for automatically detecting visual attention to a visual stimulus in
a scene. Both take the video feed and the corresponding gaze or fixation signal as input and
predict if the participant paid attention to an AOI for each frame (see figure 8.1). We contribute
by (i) implementing two methods for detecting visual attention using eye tracking data and pre-
trained deep learning models for image classification and object detection; and (ii) evaluating the
performance of our methods using the VISUS dataset (Kurzhals et al., 2014a) and fine-grained
activity recognition metrics in a systematic way (Ward et al., 2011).

8.1.1 Method

The first method, IC, aggregates classifications of image patches cropped around the gaze signal
using a pre-trained image classification model similar to the gaze-guided object classification
system by Barz and Sonntag (2016). The second method, OD, matches fixation events with
the result of a pre-trained object detection model similar to Wolf et al. (2018) and Machado
et al. (2019). In this work, we concentrate on pre-trained computer vision models, similar to
Barz and Sonntag (2016) and Machado et al. (2019), to explore when models without a training
overhead can be applied effectively and when they reach their limits. We leave fine-tuning of the
models as a task for future work because it is outside the scope of this paper. Both methods
are implemented in Python using the multisensor-pipeline3 package for flexible streaming and
processing of signals from one or multiple sources (see chapter 9). It allows us to easily set

3https://github.com/DFKI-Interactive-Machine-Learning/multisensor-pipeline
(accessed on 12 Dec 2024)

https://github.com/DFKI-Interactive-Machine-Learning/multisensor-pipeline
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Figure 8.1: Processing workflow of the two proposed methods for automatic attention detection: IC
is based on image classification and gaze samples, OD uses object detection and fixation events. Both
methods support visual attention detection in real-time.

up real-time applications using source modules for connecting sensor input, processor modules
for manipulating or aggregating incoming data streams and events, and sink modules for, e.g.,
storing and visualizing the output. In the following, we describe the implementation of both
methods and their adjustable parameters.

8.1.1.1 Detect Attention Using Gaze-Guided Image Classification (IC)

Our method based on image classification includes four subsequent steps. First, we re-sample the
gaze signal to 5 Hz and crop an image patch of 200× 200 pixels from the egocentric video feed
(1920×1080 pixels) per remaining sample. We use this crop size because it turned out to perform
well in real-time applications (see Barz and Sonntag (2016); Barz et al. (2021b)), and the size fits
well to the AOIs in the VISUS dataset (manual inspection). Second, each patch is classified using
a pre-trained version of the ResNet image classification model (He et al., 2016), which is trained
on the ImageNet dataset with 1001 object classes (Russakovsky et al., 2015). The prediction
result includes the top-5 class candidates and their probability. In the third step, we aggregate
similar class labels by accumulating their probabilities. We merge similar object classes based on
a manually defined lookup table. For example, if the top-5 output includes the ImageNet classes
passenger car, streetcar and limousine, we replace the probability of passenger car by the
sum of all three probabilities and remove the remaining class labels from the output. In the last
step, we implement a working memory- and threshold-based attention detection algorithm similar
to Barz and Sonntag (2016) and Toyama et al. (2012) using the top-1 predictions of the previous
step as continuous input: An update routine is called for each incoming prediction, i.e., a tuple
including a unique class label and the corresponding probability output of the model: (c, p(c)).
If p(c) exceeds the minimum probability Tp, we increase the duration counter Cdur at the index
c by the number of milliseconds that passed since the last run of the update loop (circa 200 ms).
We increase the noise counter Cnoise by the same amount of time for all other classes with a
non-zero duration count. If the aggregated duration Cdur[c] exceeds the duration threshold Tdur,
we send an attention started event including c, p(c) and the timestamp of the latest prediction.
In addition, we store c as the currently attended class cactive and reset both counters for it: we
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set Cdur[c] and Cnoise[c] to zero. If cactive is not empty and not equal to c, we consider the prior
attention event to be over and send an attention ended event. We send an attention confirmed
event is c is equal to cactive. Finally, we check whether the aggregated noise duration in Cnoise
exceeds the noise threshold Tnoise for all remaining classes. In this case, we reset both counters
for this class, and if this class is equal to cactive, we send an attention ended event. We subtract
Tdur from the event timestamp to match better the actual start and end times of the attention
events. We offer a parameter for setting the image classification model : we include pre-trained
ResNet-504 and ResNet-1525 models via Tensorflow Hub. Any other model from this platform
that was trained using ImageNet can also be used by providing a corresponding link. The default
setting is Tdur = Tnoise = 300 ms, Tp = 40%, and the model is set to ResNet-152. We refer to
this setting as IC-152-300-40 (in general: IC-model -Tdur/noise-Tp).

8.1.1.2 Detect Attention Using Object Detection (OD)

Our second method is based on an object detection model that can detect multiple object in-
stances in an image from a set of candidate classes. To detect visual attention, we match the
position of fixation events from the eye tracker with detected object regions. For each fixation,
we extract an image frame from the video feed that is closest to the start of the fixation event.
The object detection takes longer per image than the image classification algorithm. However,
this method can still be applied in real-time because it is applied once per fixation. During a
fixation, the eye is relatively still and should point to the same location in the world space. How-
ever, fixation detection is imperfect, e.g., in the presence of smooth pursuit movements, which
makes this method dependent on the quality of the applied fixation detection algorithm. Next,
we detect all object instances in the current image frame: we use a Mask R-CNN model (He
et al., 2020) that is pre-trained on the MS COCO dataset (Lin et al., 2014) with the Detectron2
framework (Wu et al., 2019)6. For each instance, it provides a class label with a probability value,
as well as a rectangular bounding box and a pixel-wise segmentation mask depicting the object
area. Finally, we check whether the fixation position lies within the object area, either using the
bounding boxes (bbox ), similar to Machado et al. (2019), or the more fine-grained segmentation
masks (mask), similar to Wolf et al. (2018), as reference. This can be configured via the object
mask parameter that defaults to bbox. If a hit is detected, we send an attention started event
using the start time of the fixation and an attention ended event using its end time. We choose
the one with the highest probability if two object areas are hit. We refer to the two possible
settings as OD-bbox (default) and OD-mask.

8.1.2 Dataset

We use the VISUS dataset for our evaluation (Kurzhals et al., 2014a), which contains eye tracking
data from 25 participants for 11 video stimuli, totaling 275 sessions7. The gaze data was recorded

4https://tfhub.dev/google/imagenet/resnet_v2_50/classification/4 (accessed on 12 Dec 2024)
5https://tfhub.dev/google/imagenet/resnet_v2_152/classification/4 (accessed on 12 Dec 2024)
6Model weights: https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_

101_FPN_3x/138205316/model_final_a3ec72.pkl (accessed on 12 Dec 2024)
7https://www.visus.uni-stuttgart.de/publikationen/benchmark-eyetracking (accessed on 12 Apr 2021)

https://tfhub.dev/google/imagenet/resnet_v2_50/classification/4
https://tfhub.dev/google/imagenet/resnet_v2_152/classification/4
https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x/138205316/model_final_a3ec72.pkl
https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x/138205316/model_final_a3ec72.pkl
https://www.visus.uni-stuttgart.de/publikationen/benchmark-eyetracking
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using a Tobii T60 XL remote eye tracker at 60 Hz. The authors did not report the spatial
accuracy and precision as measured during their recordings. The video stimuli have a resolution
of 1920 × 1080 pixels at 25 frames per second and have an average length of 75.55 s (SD =

59). Each video is manually annotated with axis-aligned rectangular bounding boxes from two
annotators for 1 to 6 AOIs per video (see table 8.1). Bounding boxes were set at keyframes
and interpolated for intermediate frames. The main purpose of the dataset is to serve as a
benchmark for visualization and analysis techniques in the field of eye tracking. We use the
dataset as a benchmark dataset for automatic detection of visual attention to dynamic AOIs.
We treat the fixation events reported in the dataset that hit the manually defined bounding
boxes as ground truth attention events to the respective AOIs. If two AOIs in a single frame
are hit, we select the AOI that yields the longer event. While the VISUS dataset is acquired
with a remote tracking device, we use it to approximate mobile eye tracking recordings: we do
not leverage that the videos are the same for each participant. In the following, we describe
the ground truth extraction, the scenarios (video stimuli) and AOIs, and we describe the related
challenges for gaze to AOI mapping.

8.1.2.1 Scenarios & Challenges

The dataset includes 11 scenarios, each with a different kind and number of AOIs. They pose
multiple challenges to attention detection methods. In the simplest case, a method must map
gaze to AOIs representing distinct concepts (challenge I). This applies to, e.g., 01-turning car in
which a single AOI, a “red car”, is shown, and to 07-kite with two distinct AOIs: a “person” flies
a “kite”. The difficulty increases if two AOIs in a scenario refer to the same concept (challenge II).
For instance, the scenario 01-car pursuit shows a “red car” driving through a turning area, with
a “white car” on the opposing lane and multiple parking cars in the background. The challenge
is not only to detect that a car is fixated but to differentiate between the two prominent cars
(AOIs) and the background cars, which are multiple instances of the same concept. Similarly,
scenarios 03, 08, 09, and 11 require the ability to differentiate between multiple instances of the
concept person, for instance, a “hooded” person, a person wearing a “red shirt and hat”, and
several distractor “persons” in scenario 11-person search. The problem becomes more complex
if two AOIs share a concept and their appearance (challenge III). An example can be found
in scenario 04-thimblerig. It includes three cups with identical appearance. Distinguishing
them requires object tracking for multiple instances and an initial assignment of each instance
to an AOI by hand. The aforementioned cases do not cover the scenario 05-memory. It shows a
memory game: in the beginning, all 16 “cards” look the same, while, until the end of the game,
we see 8 pairs of cards with different visual appearances per pair. Yet, all “cards” count toward
the same AOI. The challenge is if the appearance of an AOI changes over time (challenge IV).

8.1.2.2 Mapping Class Labels to AOIs

Our methods aim to solve the aforementioned challenges using pre-trained computer vision mod-
els. For this, AOIs need to be mapped to class labels of ImageNet for the IC method and of MS
COCO for the OD method. We assume that the performance per scenario depends on the type
of AOIs and whether they are represented in the model’s training data. If no matching class label
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Scenario AOI ImageNet Labels MS COCO Labels

01-car pursuit (25 s)

red car streetcar, sports car, minivan, cab,
minibus, limousine, car mirror, racer,
passenger car

car

white car – –

02-turning car (28 s)
red car streetcar, sports car, minivan, cab,

minibus, limousine, car mirror, racer,
passenger car

car

03-dialog (19 s)
left face ear person
right face – –
shirt sweatshirt –

04-thimblerig (30 s)
cup1 cocktail shaker, coffee mug, cup cup
cup2 – bowl
cup3 – –

05-memory (148 s) cards desk dining table

06-UNO (121 s)

left hand – person
right hand – –
stack covered desk dining table
stack uncovered – –

07-kite (97 s)
person lab coat, poncho, cardigan, cloak,

sweatshirt, trench coat
person

kite balloon, kite, parachute kite

08-case exchange (27 s)

persons sombrero, cowboy hat person
textbox – –
case mailbag, packet, plastic bag, shopping

basket, backpack, bucket, crate
handbag, suitcase

suspects lab coat, poncho, cardigan, cloak,
sweatshirt, trench coat

–

09-ball game (31 s)

ball baseball, basketball, rugby ball, tennis
ball, volleyball, soccer ball

sports ball

player white ballplayer person
player red1 – –
player red2 – –
player red3 – –

10-bag search (133 s)

red bag plastic bag handbag
yellow bag – –
blue bag – –
red-white bag – –
brown bag mailbag –
persons lab coat, poncho, cardigan, cloak,

sweatshirt, trench coat
person

11-person search (172 s)

hooded lab coat, poncho, cardigan, cloak,
sweatshirt, trench coat

person

red shirt and hat sombrero, cowboy hat –
persons – –

Table 8.1: Overview of scenarios and AOIs in the VISUS dataset and the corresponding mappings of
class labels to AOIs. Class labels originate from ImageNet in case of IC methods and from MS COCO
in case of OD methods.
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Figure 8.2: Example of segmented ground truth events and predicted events with annotations for event
error and frame error classes. The vertical bars depict the segment boundaries. The frame error classes
are given per segment.

exists for an AOI, none of the methods can detect respective attention events. If a class label
matches multiple AOIs of a scenario, i.e., if they share a concept, we can only assign the label
to one of them. This probably leads to an increase in false positives. The performance might
also suffer from inadequate matches. This experiment uses a separate mapping from class labels
to AOIs for each method and scenario, as shown in table 8.1. For IC methods, we identified
ImageNet labels for 19 AOIs including adequate matches like passenger car for the AOI “red car”,
but also weak matches like sweatshirt as a proxy for the AOI “person”. Similarly, we found MS
COCO labels for 17 AOIs for the OD methods. For instance, car is an adequate match for the
AOI “red car”, while dining table is a weak match for the “stack covered” in 06-UNO (the stack is
located on a table).

8.1.3 Metrics

To quantify the performance of our methods, we need evaluation metrics that depict how well
our detected attention events match the ground truth events. We reviewed the metrics proposed
in closely related works, but none of them was fully satisfactory: Panetta et al. (2019) compared
their system to manual ground truth annotations by calculating the distance between two his-
tograms that aggregate the duration of fixations from predicted or ground truth AOI regions,
respectively. However, their metric does not punish if detected AOI fixations are shifted in time
or if they occur in the wrong order, which puts the validity of their metric into question. For
instance, the histogram would be equal if the predicted events were reported reversely. Machado
et al. (2019) reported accuracy and precision, but whether they compute the metrics frame-wise
or event-based is unclear. Toyama et al. (2012) reported event-based precision and recall for each
method: precision reflects how many of the detected attention events were classified correctly,
and recall indicates the proportion of detected attention events to all attention events. Similarly,
De Beugher et al. (2014) reported precision and recall, but at the frame-level. Wolf et al. (2018)
and Batliner et al. (2020) reported the recall (true positive rate) and the specificity (true neg-
ative rate) at the frame-level, including one frame per fixation for the analysis. The specificity
reflects the ratio of frames that are correctly classified as not showing human attention to an
AOI (negative class) in relation to all frames with a negative class label. Sümer et al. (2018)
compared the absolute number of predictions for each class, i.e., four individual students, to
the ground truth count. In addition, they use a confusion matrix to show the performance of
their face recognition system that is used to assign fixations to students’ faces. Callemein et al.
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(2019) used measures for inter-rater agreement like Cohen’s κ to show the performance of their
gaze-to-face and gaze-to-hand mapping. Venuprasad et al. (2020) reported precision, recall, and
accuracy for frames and event metrics based on detection events: first looks, extra looks (i.e.,
revisits), false positive and false negative events are counted. Other works reported qualitative
results only or did not evaluate their method. In this work, we report fine-grained frame- and
event metrics per AOI from the field of activity recognition (Ward et al., 2011). They were
shown to be effective for evaluating event detection methods in the field of mobile eye tracking
(Ward et al., 2011; Steil et al., 2018a). The metrics are based on a segmentation of the ground
truth and prediction signal at the frame level per AOI (see figure 8.2). A segment ends if the
ground truth or the prediction changes, i.e., both signals are constant within a segment. Each
segment can now be rated as one of true positive, true negative, false positive, or false negative.
The event and frame metrics are derived from these segments. Prior to feature computation, we
remove events with a duration smaller than the frame time and merge adjacent events.

8.1.3.1 Event Metrics

Ward et al. (2011) define a set of error classes for events that are meant to characterize the
performance of a single-class event detection method. For multi-class problems, each class is
handled separately. Error classes include the insertion (I ′) and deletion (D) errors, which are
commonly used in event detection. An insertion error indicates that a detected event is not
present in the ground truth (false positive), and a deletion error indicates a failure to detect a
ground truth event (false negative). Additional error classes include fragmentation and merge
errors: a ground truth event is fragmented (F ) if multiple fragmenting events (F ′) are detected
in the output. Similarly, multiple ground truth events of the same class can be merged (M) by a
single merging event (M ′) in the output. Both errors can appear together, e.g., if a ground truth
event is fragmented by three event detections of which the third is merging an additional ground
truth event. In this case, the first ground truth event is marked as fragmented and merged (FM),
and the third event detection is marked as fragmenting and merging (FM ′). The apostrophe
indicates whether an error class is assigned to a ground truth event or a predicted event in the
output. If none of the error classes can be assigned, a detected event is counted as correct (C),
i.e., as a true positive. According to Ward et al. (2011), we visualize the metrics by means of an
event analysis diagram (EAD). It shows the number and ratio of error classes in relation to the
number of reference events, i.e., to the number of ground truth events |E| = D+F+FM+M+C,
the number of predicted events (or returns) |R| = M ′ + FM ′ + F ′ + I ′ + C, or both in case of
correct predictions C. Also, we can compute event-based precision and recall as a ratio between
|R| or |E| and the error class counts. We compute a conservative precision as Pr = C

|R| and
recall as Re = C

|E| . Counting F, FM,M and M ′, FM ′, F ′ as correct, similar to Toyama et al.

(2012), we calculate a more progressive precision as Pr∗ = |R|−I′
|R| and recall as Re∗ = |E|−D

|E| .

8.1.3.2 Frame Metrics

For extracting the frame metrics, Ward et al. (2011) project error classes to frames per segment.
Similar to event-based error classes, a frame can be rated as insertion (If ), deletion (Df ), merge
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(Mf ), or fragmentation (Ff ). Merge errors are assigned to false positive frames from merg-
ing events, and fragmentation errors are assigned to false negative frames between fragmenting
events. Further, if a neighboring segment is classified as true positive, frames of a false positive
segment are marked as overfill (Of ) and frames of a false negative segment are marked as under-
fill (Uf ). In other words, an overfill occurs if a detected event starts early or ends late, and an
underfill occurs if a detected event starts late or ends early. A superscript indicates whether an
underfill or overfill occurs at an event’s start (α) or end (ω). Frames of true positive (TP ) and
true negative (TN) segments are classified likewise. Ward et al. (2011) define the frame metrics
as ratios of the error class counts and the total positive frames P or negative frames N in the
ground truth, with P = Df+Ff+U

α
f +Uωf +TP and N = If+Mf+O

α
f +O

ω
f +TN . The result-

ing ratios (lowercase equivalents to error classes) can be used to express the false positive rate as
fpr = ir+mr+ oα + oω, and one minus the true positive rate as (1− tpr) = dr+ fr+ uα + uω.
We use a set of two stacked bar charts to visualize the frame metrics (compared to pie charts in
Ward et al. (2011)).

8.1.4 Evaluation

We evaluate the performance of the two methods described above regarding their ability to detect
time intervals in which a participant fixates a certain AOI. Our evaluation procedure utilizes the
VISUS dataset (Kurzhals et al., 2014a), including eye tracking data from 25 participants for 11
scenarios and manual AOI annotations, which we use for ground truth extraction. To measure
the performance, we use a set of frame- and event-based metrics by Ward et al. (2011) from the
field of activity recognition. We report the metrics per scenario and for each of the 34 AOIs to
identify effective applications and limitations when using state-of-the-art pre-trained computer
vision models.

8.1.4.1 Experiment Conditions & Procedure

We compare two methods for visual attention detection: IC based on gaze-guided image classi-
fication and a threshold-based event detection, and OD based on object detection and fixation
mapping. We generate predictions for the VISUS dataset using each method and analyze their
results. We start with default parameters to identify AOIs that are not supported. We define
cases with a zero recall as failing: this corresponds to a deletion rate of dr = 100% (frame met-
rics) or if all ground truth events are marked as deletions D. By design, we expect AOIs without
a matching class label to fail (see dashes in table 8.1). For the remaining AOIs, we investigate
the impact of different methods and parameters on the performance metrics. We compare two
IC methods using the classification models, ResNet-50 and ResNet-152, and two OD methods
using the object mask options bbox and mask. The other parameters are set to their defaults,
which results in the following set of parameterized methods: IC-152-300-40, IC-50-300-40, OD-
bbox, and OD-mask. For IC, we additionally test different values for Tdur, Tnoise, and Tp using
the ResNet-152 model, with Tdur = Tnoise ∈ {100, 300, 500, 700} ms and Tp ∈ {20%, 40%, 60%}.
Changing these parameters might have an effect on the performance of the IC method. Per
method, we compute the frame and event metrics for each AOI and per participant. We sum
the metrics over participants if we report the performance per AOI and over participants and
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IC-152-300-40 IC-50-300-40 OD-bbox OD-mask

tpr 36.79% 37.32% 46.44% 29.05%

uw 7.72% 9.81% 8.77% 9.99%

ua 10.75% 9.03% 11.25% 11.35%

fr 5.37% 5.98% 11.51% 8.85%

dr 39.37% 37.86% 22.03% 40.77%
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(a) false negative errors

IC-152-300-40 IC-50-300-40 OD-bbox OD-mask

1-fpr 97.38% 97.25% 72.75% 84.82%

ow 0.48% 0.56% 1.45% 0.83%

oa 0.49% 0.51% 0.85% 0.31%

mr 0.89% 1.04% 0.24% 0.10%

ir 0.77% 0.64% 24.71% 13.93%
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Figure 8.3: Frame metrics with respect to positive 8.3a and negative 8.3b ground truth frames across
all AOIs.

AOIs if we report the overall performance of a method. Summing the metrics corresponds to
concatenating the recordings of all participants per AOI because the metrics are based on abso-
lute counts. Ratios are computed using the total number of positive and negative ground truth
frames or events, which we also add up.

8.1.4.2 Results

Using default parameters, we observe a recall of zero for all AOIs without a matching class
label for a method, but also for other AOIs: for the IC method, this includes “left face”, “cup1”,
“cards”, “stack covered”, “case”, “player white”, “red bag”, “brown bag”, and “hooded”. For the OD
method, this includes “cup1”, “cup2”, “cards”, “stack covered”, “case”, “red bag”, and “persons”
(for 10-bag search only). We count one additional AOI for OD (“ball”) and three AOIs for IC
(“suspects”, “ball”, and “persons” in 10-bag search) as failing because they yield a recall close
to zero (dr ≥ 90%). The remaining six AOIs for IC and nine AOIs for OD are analyzed in detail
(AOIs are listed in section 8.1.4.2). The AOIs for IC include |E| = 2438 ground truth events
corresponding to P = 71,911 positive frames and N = 111,467 negative frames. The AOIs for
OD include |E| = 4328 events with P = 154,783 positive and N = 270,750 negative frames.

Overall Performance

We compare the metrics of two IC and two OD methods that vary in terms of the model or object
mask setting (see section 8.1.4.1). The frame metrics for the remaining AOIs are summarized in
figure 8.3. It shows the ratios of false negative errors with respect to P in figure 8.3a and of false
positive errors with respect to N in figure 8.3b. Concerning the false negative errors, deletion is
the most prominent class across all methods: they account for 22.03% (OD-bbox) and 40.77%
(OD-mask) of the errors for OD, and dr is 39.37% for ResNet-152 and 37.86% for ResNet-50 for
the IC methods. On average, the tpr does not differ between OD (37.75%) and IC (37.05%).
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Figure 8.4: EAD diagrams visualizing the event-based error classes with respect to ground truth events
|E| and returned events |R|.

However, OD-bbox yields the best tpr with 46.44%, which is 9.39% better than the average
of both IC methods and 17.39% better than OD-mask. The remaining error classes account
for 30.86% for OD and 24.33% for IC : on average, IC faces 6.53% less false negatives through
fragmenting events and underfills than OD. Concerning the false positive errors (see figure 8.3b),
insertions are most prevalent for OD with ir = 24.71% for OD-bbox and ir = 13.93% for
OD-mask. We observe fewer insertions for IC, averaging to 0.71%. Errors from merging event
detections and overfills account for 1.98% (IC ) and 1.89% (OD). Hence, the fpr adds up to
2.69% for IC and to 21.21% for OD, which means that the OD methods cause 18.53% more false
positive errors at the frame level, on average.

Further, we report event metrics, which are normalized by the number of ground truth events
|E| or the number of retrieved events |R| (see figure 8.4). Both IC methods show a similar
distribution of error classes. For IC-152-300-40, we observe a high fraction of deletions, D

|E| =

66.41%, and a low fraction of insertions, I′

|R| = 5.99%, which is consistent to frame metrics. 371
predictions are correct which corresponds to Re = 15.22% (conservative recall) of the ground
truth and Pr = 46.32% (conservative precision) of all retrieved events. The more progressive
recall and precision are higher with Re∗ = 33.59% and Pr∗ = 94.01%. The distribution of the
remaining error classes shows, e.g., how many fragmenting events F ′ (206→ 25.72%) cause the
fragmentations F (60→ 2.46%) in the ground truth.

The two OD methods have a similar distribution of error classes for retrieved events: the
rate of fragmenting events is F ′

|R| ≈ 22%, the rate of insertions is I′

|R| ≈ 56%, the counts for M ′

and FM ′ are very low, and the conservative precision Pr is similar with C
|R| ≈ 20%. However,

OD-bbox predicts 2749 events more than OD-mask, resulting in a higher absolute number of
correct events for OD-bbox (C = 1769) compared to OD-mask (C = 1173). With |E| being
constant for both OD methods, Re = C

|E| is higher for OD-bbox (40.88%) than for OD-mask
(27.1%). Consequently, the fraction of deletions for OD-bbox (38.94%) is lower than the fraction
for OD-mask (60.63%), which is close to the level of the IC methods. Further, the OD methods
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Method AOI |E| D F FM M M' FM' F' I' |R| Re* Pr*

01-car pursuit ➝ red car 302 43.38% 4.30% 4.64% 34.77% 12.91% 23.35% 20.36% 10.78% 31.74% 13.77% 167 56.62% 86.23%

02-turning car ➝ red car 305 41.31% 4.26% 4.92% 28.52% 20.98% 36.78% 13.79% 13.22% 31.61% 4.60% 174 58.69% 95.40%

03-dialog ➝ shirt 42 71.43% 0.00% 0.00% 4.76% 23.81% 83.33% 8.33% 0.00% 0.00% 8.33% 12 28.57% 91.67%

07-kite ➝ kite 1316 75.53% 1.75% 1.44% 8.89% 12.39% 52.75% 12.62% 7.44% 23.95% 3.24% 309 24.47% 96.76%

08-case exchange ➝ persons 201 68.66% 2.99% 0.50% 7.96% 19.90% 63.49% 11.11% 1.59% 20.63% 3.17% 63 31.34% 96.83%

11-person search ➝ red shirt & hat 272 73.53% 1.84% 0.00% 4.41% 20.22% 72.37% 7.89% 0.00% 14.47% 5.26% 76 26.47% 94.74%

01-car pursuit ➝ red car 304 36.84% 18.42% 4.61% 7.89% 32.24% 23.90% 1.71% 2.44% 53.90% 18.05% 410 63.16% 81.95%

02-turning car ➝ red car 311 15.43% 36.33% 6.11% 7.40% 34.73% 16.67% 0.62% 2.01% 71.14% 9.57% 648 84.57% 90.43%

03-dialog ➝ left face 193 7.77% 16.06% 1.55% 3.63% 70.98% 35.13% 0.51% 0.77% 17.95% 45.64% 390 92.23% 54.36%

06-UNO ➝ left hand 1157 26.71% 15.56% 1.64% 2.16% 53.93% 31.23% 0.35% 0.55% 21.02% 46.85% 1998 73.29% 53.15%

07-kite ➝ kite 1321 68.96% 8.33% 0.45% 2.73% 19.53% 39.21% 2.28% 0.91% 55.62% 1.98% 658 31.04% 98.02%

07-kite ➝ person 290 52.07% 2.07% 0.00% 0.69% 45.17% 89.12% 0.68% 0.00% 8.16% 2.04% 147 47.93% 97.96%

08-case exchange ➝ persons 199 16.08% 20.60% 1.01% 4.02% 58.29% 29.44% 0.25% 1.52% 25.63% 43.15% 394 83.92% 56.85%

09-ball game ➝ player white 338 26.04% 8.28% 1.18% 8.88% 55.62% 24.29% 1.68% 0.26% 8.01% 65.76% 774 73.96% 34.24%

11-person search ➝ hooded 214 8.88% 33.64% 3.27% 3.27% 50.93% 3.26% 0.03% 0.15% 7.31% 89.25% 3339 91.12% 10.75%
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Figure 8.5: EAD table for AOIs with a non-zero recall (dr < 90%; D
|E| � 100%) for IC-152-300-40 and

OD-bbox.

report a higher level of fragmented events F than merged events M . We observe the opposite
for IC. The progressive precision and recall values are Pr∗ = 43.77% and Re∗ = 61.06% for
OD-bbox, and Pr∗ = 42.55% and Re∗ = 39.37% for OD-mask.

AOI Performance Breakdown

For IC-152-300-40 and OD-bbox, we report the event metrics per AOI in a table (see figure 8.5).
For IC, we observe a difference between the two “red car” AOIs and the remaining AOIs. On
average, we see a lower level of deletions for “red car” with D

|E| = 42.34% and an increased level
of merged events with M

|E| = 31.65%, compared to the other AOIs which average to 72.29%
and 6.51%, respectively. Consequently, we observe the best progressive recall for “red car” with
Re∗ = 57.66% on average, compared to Re∗ = 27.71% for the other AOIs. The conservative
precision C

|R| = 30.07% is lower than the average of 67.99% for the other AOIs. For “red car”, M
is higher, and C is lower for 01-car pursuit than for 02-turning car. Hence, the conservative
recall C

|E| = 12.91% for 01-car pursuit is relatively lower by 38.47%, while the Re∗ is lower

by 3.53% only. Further, we observe the highest relative number of insertions with I′

|R| = 13.77%

(others average to 4.92%). The OD methods result in more diverse error class distributions. We
observe a low level of D in relation to ground truth events |E| for “red car” (02-turning car),
“left face”, “persons”, and “hooded”, averaging to 12.04%. The AOIs “kite” and “person” result
in the highest level for deletions D with 68.96% and 52.07%, respectively. For these AOIs, the
low and high levels for D coincide with the highest and lowest Re∗ values. Overall, we see a
high level of fragmented events F with highest values for “hooded” with 33.64% and “red car” in
02-turning car with 36.33%, and lowest values for “person” in 07-kite with 2.07%. The AOI
“left face” results in the best conservative recall, Re = 70.98%, due to the low level of deletions D,
with 7.77%. For insertions I ′, we observe the lowest levels for the AOIs in kite with an average
of 2.01%, followed by “red car” with 9.57% in 02-turning car and 18.05% in 01-car pursuit.
All other AOIs average to 58.13% with a peak for “hooded” with 89.25%. These four AOIs with
the lowest insertion rate I′

|R| have the best progressive precision with, on average, Pr∗ = 92.09%.
The remaining five AOIs average to Pr∗ = 41.87% with the minimum for “hooded” with Pr∗ =
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Figure 8.6: Simplified EAD diagrams for IC methods with varying parameters aggregated over AOIs
with non-zero recall. We vary the probability threshold Tp or the duration and noise threshold Tdur =

Tnoise. We use default values for other parameters. The results for 300 ms and 40% refer to the default
setting IC-152-300-40 as shown in figure 8.4.

10.75%. The highest levels of fragmenting events are observed for “red car” (53.9% and 71.14%)
and “kite” (55.62%). To compare the results of AOIs that remain for IC and OD methods, we
calculate an event-based f1 score as f1 = 2 · Pr

∗·Re∗
Pr∗+Re∗ . For the AOIs “red car” (x2), “kite”, and

“persons” (08-case exchange), we receive f1 scores of 68.36%, 72.67%, 39.06%, 47.36% for IC-
152-300-40 and 71.34%, 87.4%, 47.15%, 67.78% for OD-bbox. For this selection of AOIs, OD-bbox
yields the respectively better performance.

Impact of IC Parameters on Performance

The IC method offers multiple parameters for tuning the outcome, besides the classification
model. We investigate the impact of Tdur & Tnoise and Tp on the frame and event metrics. With
varying Tp, we observe no changes in the distribution of event error classes (see figure 8.6). In
addition, Pr∗ ranges between 32.69% and 33.76%, and Re∗ ranges between 93.58% and 94.39%
for the different settings of Tp. When increasing the duration and noise thresholds, we observe a
monotonic increase in the number of deletions D: the ratio D

|E| ranges from 59.49% for 100 ms
to 70.87% for 700 ms. At the same time, M

|E| increases from 7.23% to 18.1% and Re = C
|E|

decreases from 21.89% to 6.8%. Concerning the error classes of retrieved events, we observe a
monotonic decrease in the number of insertions I ′ ranging from 10.64% for 100 ms to 3.18%
for 700 ms. Similarly, F ′

|R| decreases from 44.99% to 11.74%, as well as the absolute number of
retrieved events |R| which ranges from 1447 to 409. The level of merging events M ′ increases
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from 3.73% to 36.19% which corresponds to the increase of merged events M . In addition, we
see a trend in the progressive precision and recall values: with increasing duration and noise
threshold, Re∗ decreases from 40.51% to 26.13% and Pr∗ increases from 89.36% to 96.82%. The
highest f1 score of 55.74% is reached for 100 ms.

8.1.5 Discussion

Our results show that using our methods with default parameters and the AOI configuration
from table 8.1 does not support all AOIs. In particular, our observations confirm that they fail
to detect visual attention for AOIs without a mapping. This affects 15 AOIs (44.12%) for IC
and 17 AOIs (50%) for OD. Our results reveal 13 additional AOIs for IC and 8 AOIs for OD
with weak matches that result in zero or close to zero recalls (dr ≥ 90%). Effectively, we count
28 AOIs (82.35%) for IC and 25 AOIs (73.53%) for OD as failing. We attribute these fails to
challenge I, because the concepts of the AOIs have no adequate match to any class label of the
underlying computer vision model. And, if there is a matching class label, the instances might
differ from what the model has learned, i.e., from the training samples.

8.1.5.1 Overall Performance

The frame and event metrics for the remaining AOIs show that deletions are the most frequent
false negative error across all methods. The frame-based deletion rates dr are lower than the
respective deletion events level D. For instance, in IC-152-300-40, D

|E| = 66.41% of the ground
truth events correspond to dr = 36.79% of the positive ground truth frames. This may indicate
that our methods delete more short events than long ones. The high level of deleted events might
be caused by false negatives from the computer vision model (related to challenge I). Another
problem could be that our models failed to map the gaze signal, although the prediction was
correct. To investigate this issue further, we generated videos showing the manual annotations,
the gaze and fixation events, and our prediction output. We noticed that the eye tracking signal
frequently suffers from low accuracy and, hence, the gaze point does not hit an AOI object
even though it is obvious that the participant followed that object, e.g., a “kite”. The manual
annotations (bounding boxes) in the VISUS dataset are bloated to include such erroneous gaze
signals, better capturing human behavior than exact annotations. However, assuming that the
gaze signal was accurate, this data annotation style results in many false positive ground truth
events (see figure 8.7a). Our methods are not robust against such cases because they rely on local
image classifications (IC ) or fixation to object mask mapping (OD). Consequently, our methods
report no attention events, which might be a major reason for the high deletions. We investigate
this issue in detail in section 8.1.5.4. This could also explain the difference between OD-bbox,
using bounding boxes, and OD-mask, using exact object masks, i.e., OD-bbox better resamples
the manual annotations and, to some degree, compensates the inaccurate gaze signals. OD-bbox
shows the best progressive recall with Re∗ = 61.06%, while the other methods average around
35.91%. Also, our results show that OD yields more insertion errors than IC in terms of frame
and event metrics: the insertion rate is I′

|R| ≈ 56% for OD methods and 6% for IC methods.
Consequently, with an average of Pr∗ = 94.33%, IC results in better progressive precision than
OD with Pr∗ = 43.16%. This suggests that the IC method may be the better choice for use
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Figure 8.7: Example frames from two scenarios of the VISUS dataset (Kurzhals et al., 2014a) showing
the recent fixation (white circle), ground truth annotations (green), object masks and bounding boxes
for OD (blue), and the cropping area for IC (white rectangle).

cases with a good object-to-class label match and if false negative errors are not severe. In
addition, the relation of FM,F, F ′ to fr and FM ′,M,M ′ to mr can reveal more about the
error characteristics. For instance, if we see many event errors and a low ratio of corresponding
frame errors, the fragmenting or merging predictions approximate the ground truth well (see
figure 8.2). For instance, for IC-152-300-40, merge errors M make up 14% of the event errors
with respect to the ground truth but result in a low frame error rate of mr = 0.89%.

8.1.5.2 Performance per AOI

The results for default parameters at the AOI level show that OD-bbox performs best for the
four overlapping AOIs (see figure 8.5). However, all other AOIs for OD-bbox suffer from high
insertion levels of more than 40%. A reason might be that these AOIs match to “person” (see
table 8.1) and, at least, a second AOI shares this concept (related to challenge II). For instance,
we map the MS COCO class label “person” to the AOI “left face” in 03-dialog, but “person”
would also fit “right face” and “shirt”. The generated debug videos show that both OD methods
detect attention events for “right face” and “shirt” based on the “person” class label. However,
these are wrongly mapped to “left face” which results in many false positives (see figure 8.7b).
This problem of the remaining AOIs is likely to cause the high level of insertion errors and the
low progressive precision for OD overall.

8.1.5.3 Impact of IC Parameters

Our investigation with different parameters for IC reveals that Tp will likely have no impact
on event metrics. Our assumption is that the subsequent aggregation of image classification
results is a harder criterion than a high Tp. For example, an incorrect classification with low
probability might be dropped anyway due to reaching Tnoise because it alternates with other
wrong classifications. The parameters Tdur and Tnoise have a clear impact on the performance:
increasing the threshold results in decreasing values of Re and Re∗. Tdur = Tnoise = 100 ms
yields the best overall performance by means of the f1 score, followed by the default setting,
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which results in a better Pr∗, but worse Re∗.

8.1.5.4 Impact of Re-Annotating the Ground Truth Data on Deletions

In many cases, the gaze recordings from the VISUS dataset suffer from low spatial accuracy, which
resulted in coarse manual annotations. For instance, in figure 8.7a, the manual annotations for
“person” and “kite” (green bounding boxes) are much larger than the actual object to catch the
point of gaze that, when looking at the video, obviously follows the kite. In contrast, the bounding
boxes and exact object masks generated by Mask R-CNN (blue rectangles and polygons) closely
frame the “person” and the “kite”. We hypothesize that this kind of annotation is responsible for
many deletion errors (false negative events) because the ground truth reports a false attention
event that cannot be captured by our detection methods. To verify our assumption, we re-
annotate AOIs without a close to zero recall (see figure 8.5) and repeat our analysis using the
new ground truth annotations, but the same event predictions from IC-152-300-40 and OD-bbox
that we have gathered in our main experiment. The videos are annotated by a single annotator
and reviewed by an eye tracking expert using the Computer Vision Annotation Tool CVAT8. We
use the polygon-based annotation feature: a polygon that closely frames an object at keyframes
with interpolation for intermediate frames is created. The results show that the ratio of deletion
events D

|E| decreases by 16.3% to 50.11% for the IC method and by 10.3% to 28.64% for the
OD method. Consequently, the progressive recall values Re∗ increase by the same amounts to
49.89% for IC and to 71.36% for OD. Thus, we can confirm our hypothesis that coarse AOI
annotations increase the level of deletions. This emphasizes the importance of accurate gaze
estimation methods to avoid such errors. Further, it raises the need for error-aware gaze-to-
object mapping methods to compensate the impact of the gaze estimation error, similar to those
presented chapter 4. For instance, we could detect an AOI hit by checking whether the distance
of a fixation point to the boundary of an AOI is smaller than a defined threshold.

8.1.5.5 Limitations & Future Work

Our evaluation revealed several limitations related to the challenges identified in section 8.1.2.1
and to accuracy issues with the gaze signal in the VISUS dataset. The main limitation of our
methods is related to challenge I: many AOIs are not supported because the concepts are not
included with the pre-trained computer vision models. A promising solution to address it is
to collect new samples for unsupported AOIs and AOIs with weak matches for fine-tuning the
computer vision models (Käding et al., 2017; Sonntag et al., 2017). We want to investigate
the effectiveness of interactive machine learning methods for this purpose (Simard et al., 2017;
Dudley and Kristensson, 2018) compared to randomly annotating a small portion of the data as
suggested in Wolf et al. (2018). Further, our methods offer no solution for challenge II, i.e., when
AOIs share the same concept. This could be solved using similarity models with interactive
training. For instance, we could iteratively train a model to differentiate between “left face”
and “right face”, reducing the number of insertion errors for 03-dialog. Using multiple object
tracking algorithms (Li et al., 2019) with humans-in-the-loop is a promising approach to support

8https://github.com/openvinotoolkit/cvat (accessed on 12 Dec 2024)

https://github.com/openvinotoolkit/cvat
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challenges III and IV, i.e., when AOIs share a concept and have a similar appearance or AOIs
change their appearance over time.

We aim to address these challenges in the next section on interactive fixation-to-AOI mapping
by leveraging interactive model training and humans-in-the-loop (see section 8.2). In addition, we
showcase a real-time application of the IC method in an augmented reality setting with objects
that are well represented in the training data of the image classification model (see section 8.2.4).
Further issues might arise from the fixation detection algorithm used in Kurzhals et al. (2014a).
The authors mentioned that, e.g., smooth pursuit movements are not supported well, which make
up a large portion of the data. This is known from recent work on fixation detection algorithms
for head-mounted eye tracking headset (Steil et al., 2018a).

8.2 Interactive Fixation-to-AOI Mapping

To address the challenges in annotating head-mounted eye tracking data, we implement eye-
Notate, a user interface that enables semi-automatic annotation. Our tool allows mobile eye
tracking practitioners to manually annotate their recordings fixation-wise (baseline) and semi-
automatically using fixation-to-AOI mapping suggestions based on a few-shot image classification
model (IML-support). We contribute by (i) implementing the eyeNotate tool for semi-automatic
annotation of head-mounted eye tracking data based on few-shot image classification, and (ii)
evaluating our eyeNotate in a case study with n=3 trained annotators to compare the baseline
version and the IML-supported approach, measuring the perceived usability, annotation validity
and reliability, and efficiency during a data annotation task.

8.2.1 Method

We implement eyeNotate, a web-based tool for fixation-to-AOI mapping, an essential data pro-
cessing step in research based on mobile eye trackers. Our tool allows practitioners to annotate
recordings manually fixation-wise, reflecting the current state-of-the-art (baseline). We designed
the user interface to enable efficient navigation through videos based on fixation events aligned
to common video-editing interfaces. Further, we integrate an IML component that can provide
AOI label suggestions for fixations and learn from user feedback, i.e., when they accept or re-
ject/correct suggestions, based on a few-shot image classification model (IML-support). User
annotations and model-based suggestions are stored in a database. Figure 8.8 shows the basic
user interface and an overview of the IML-support features.

8.2.1.1 Baseline Annotation Tool

The baseline tool offers a video-editing-like interface for fixation-wise data annotation (see fig-
ure 8.8 a). It includes three main elements: A top bar displays information on the selected
recording and the annotation progress, a list on the left that shows all fixations and their an-
notation state, and a video view on the right with a fixation overlay and buttons for manual
annotation. Selecting a fixation from the list causes the video view to show the respective image
frame with a circular overlay at the fixation position, indicating the currently assigned AOI. An
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Figure 8.8: (a) Screenshot of the user interface of our baseline annotation tool, and (b-e) an overview
of the IML-support features. It extends the baseline by (b) a status bar indicating the number of AOI
suggestions grouped by model certainty and a trust-level slider for adjusting certainty intervals, (c)
indicators for AOI suggestions in the fixation list, (d) adjusted fixation overlays for the video, and (e)
an option to confirm AOI suggestions.

AOI can be assigned to the fixation by clicking one of the AOI buttons or pressing the corre-
sponding shortcut on the keyboard. This is visually confirmed by a green badge that appears
next to the fixation’s list entry, and the overlay in the video view that turns green and shows the
newly assigned AOI label. Navigation through fixations is possible via arrow keys and on-screen
video controls. When multiple fixations hit the same AOI, they can be annotated simultane-
ously by selecting all fixations from the list using shift and arrow keys, consistent with multi-item
selection in common list views.

8.2.1.2 Interactive Machine Learning Support

The IML-support version of our tool integrates an IML component based on a few-shot image
classification model, which is initialized with a small set of images per AOI. This model generates
AOI label suggestions for each fixation by cropping an image patch from the corresponding video
frame around the fixation point. Manual annotations and confirmative or corrective feedback
are used to re-train the image classification model, aiming to improve its performance over time.
The model training and inference run in parallel to enable flexible and quick adaptations of the
model to the target domain. Figure 8.9 shows a high-level overview of the components of our
system and how the inter-relate.

User Interface

The user interface of the IML-support version is extended to display and interact with model-
based label suggestions (see figure 8.8 b-e). A non-filled badge at a fixation’s list item indicates
that a suggestion is available (see figure 8.8c). The outline color of the badge encodes the model’s
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Figure 8.9: Overview of the architecture of our interactive annotation system including a web-based
user interface (frontend), a backend for managing data storage, and an IML service that enables label
suggestions and model retraining for the IML-support version of our tool.

confidence which is either high (green), medium (yellow), or low (red). The color is also reflected
in the fixation overlay in the video view (figure 8.8d). Users can set their perceived trust in the
model using a slider in the top bar (figure 8.8b). Moving the slider towards high trust decreases
the confidence thresholds: more suggestions appear in green. Next to the slider, an overview
displays the distribution of suggestions across confidence levels. A suggestion can be confirmed
or corrected by users. They press the space key to confirm a suggestion for one or multiple
selected fixations (figure 8.8e). To correct it, they assign another class.

Image Classification Model

The IML-support version adopts a few-shot learning strategy based on the Feature Map Recon-
struction Network (FRNet) (Wertheimer et al., 2021) to generate AOI label suggestions. An
overview of the training and inference for this model is illustrated in figure 8.10. The FRNet
is a convolutional neural network (CNN) architecture that performs classification via a class-
agnostic distance function: The image classification task is framed as a reconstruction problem
in latent space, i.e., predicting class membership relies on measuring the distance between a
query point and reference points in latent space representing our target classes (i.e., AOIs). For
any query image x, the convolutional block of the network outputs a feature map Q ∈ Rr×d,
where r is spatial resolution (h×w) and d is the number of channels. The network is trained in
an N-shot-K-way manner to learn support feature maps Sk ∈ RNr×d for each AOI class k ∈ K
from a pool of N training images per class. During inference, the model aims to reconstruct
the best-fit query feature map Qk for each class category as a weighted sum of rows of Sk such
that WSk ≈ Qk, where W is the model weights optimized during model training. By examining
the negative reconstruction error, which represents the disparity between the original feature
map Q and each AOI-wise reconstructed feature map Qk, FRNet assigns a class score. Smaller
reconstruction errors indicate a higher likelihood that the query image belongs to the same class
as the support features. We train our classification model using N=10 images and for K=7 AOIs
(initial labeled data pool). Following Wertheimer et al. (2021), we combine the classification loss
with an auxiliary loss Laux that optimizes support features from different classes to span the
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Figure 8.10: Overview of the FRNet classification workflow for a few-shot classification problem.

latent space to train FRNet:

Laux =
∑
i∈K

∑
j∈K,j 6=i

‖SiSTj ‖2 (8.1)

The annotation tool uses this pre-trained FRNet model to infer AOI labels for each fixation
in the selected dataset. Label suggestions are displayed if the threshold exceeds a minimum
confidence value (0.4) that the user can adjust through the trust level slider. Manual annotations
and confirmed or corrected AOI labels are added to the labeled data pool. For every 10 new
samples, a model re-training is started in the background. The model weights used for inference
are updated upon completion. The models are trained for 30 epochs at each iteration with
weights initialized from the previous steps. On an NVIDIA RTX 3080 GPU (24GB), the model
training takes 2-4 s per epoch.

8.2.2 Evaluation

We evaluate our approach in two ways: we conduct a small case study with n=3 trained an-
notators to quantitatively and qualitatively compare the baseline version of our tool with the
IML-support version. Annotators have been asked to annotate a small portion (ca. 2%) of an
existing dataset with ground-truth annotations. In a post-hoc experiment, we assess the perfor-
mance of three machine learning models in automatically annotating the remaining part of the
dataset. In the following, we describe the usecase and the corresponding dataset, and we report
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AOI
Visibility

exp_1 exp_2

Tablet_Left → T_L X X

Tablet_Right → T_R X

Experiment_Area_Left → E_L X X

Experiment_Area_Right → E_R X

Page6_OneBulb → P_6 X X

Page8_TwoBulbs_Row → P_8 X

Page10_TwoBulbs_Parallel → P_10

Table 8.2: List of AOIs indicating their (intended) visibility per experiment phase.

on the case study and the machine learning experiment.

8.2.2.1 Usecase and Dataset from Educational Research

The evaluation focuses on educational research as an important eye tracking usecase. Most digital
and analogous learning environments are based on visual information. Hence, gaze behavior is an
important indicator of learning processes. Jarodzka et al. (2017) specify three main research aims
for using eye tracking in educational sciences: The first aim is the improvement of instructional
designs by investigating the waste of cognitive resources on ineffective instructional material
(see, e.g., Malone et al. (2020)). Second, eye tracking can be used to investigate visual expertise
leading to superior performance (see, e.g., Reingold and Sheridan (2011)). Third, eye tracking
can be used to model learners’ eye movements to promote visual expertise (see, e.g., Jarodzka
et al. (2013)). Some further educational studies also used eye tracking to investigate learners’
gaze behavior in testing situations before and after learning phases (see, e.g., Thees et al. (2022)).
Recent mobile eye tracking devices are convenient to wear and enable learners to move freely and
naturally in dynamic and interactive real-world learning environments, e.g., classrooms or science
laboratories (Salminen-Saari et al., 2021; Fleischer et al., 2023). This is especially beneficial for
eye tracking recordings with children, as they can easily be distracted by intrusive measurements
and have difficulties sitting still for long periods of time.

The case study (n=3) and machine learning experiment described below use recordings from
an existing mobile eye tracking dataset (n=48). It was recorded and annotated at Saarland
University to investigate the impact of AR-support in a lab work-based learning scenario about
electrical circuits on learning outcomes and learning processes of elementary school children9.
Tablet-based AR was used to visualize measured values of current in different electric circuits in
real-time during several experiment and observation tasks. The tablet-based AR condition was
compared to a separate tablet display presentation format displaying the same values without
using AR. The data to be annotated in the current case study originate from a single individual
(child) who was assigned to the separate display condition. All children wore a Pupil Core
head-mounted eye tracker (version for children with a smaller frame) (Kassner et al., 2014).
The lab work started after a short introduction and the calibration of the mobile eye tracker

9Pre-registered at Open Science Framework: https://osf.io/gwhu5 (accessed on 12 Dec 2024)

https://osf.io/gwhu5
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Figure 8.11: Overview of the experiment setup illustrating considered AOIs.

through physical markers. The Pupil Capture tool was used to record eye tracking data and a
video from the world camera. The experiments aimed at the children learning scientific laws on
current in series and parallel circuits. In the first experiment, children built a simple electrical
circuit with one bulb. While the current at the power supply was manipulated, the children
answered questions on the bulb’s brightness and current measurements. After building up a
series circuit with two bulbs for the second experiment, children again observed the current and
brightness of bulbs while the current at the power supply changed and answered some questions.
Subsequently, the children were asked to compare the brightness and current of the simple circuit
they built up for the first experiment and the series circuit. The children also carried out a third
experiment on parallel circuits, which is not part of the present study. For the current case
study, the comparison process within the simple circuit (experiment phase 1 → exp_1) and the
comparison process between the simple and the series circuit (experiment phase 2 → exp_2)
are examined. An overview of considered AOIs can be found in table 8.2. Figure 8.11 shows an
overview of the scene with overlays for each AOI. Experiment phase 1 includes five AOIs of the
simple circuit setup with one bulb placed on the left side of an experimentation table: left tablet
with measurement values (Tablet_Left → T_L), left voltage source and electric components
(Experiment_Area_Left → E_L), and a double page in a workbook (Page6_OneBulb → P_6).
Experiment phase 2 includes additional AOIs of a series circuit placed on the right side of the
same table: right tablet with measurement values (Tablet_Right → T_R), right voltage source
and electric components (Experiment_Area_Right → E_R), and another double page in a
workbook (Page8_TwoBulbs_Row → P_8). The voltage source and electric components AOIs
per side were merged into a single AOI for analysis. A third double page for phase three was
sometimes visible as children scrolled through the workbook (Page10_TwoBulbs_Parallel →
P_10). This results in a total of seven AOIs: three for experiment phase 1, three for experiment
phase 2, and one additional for the workbook pages of phase 3. However, the AOIs could have
also been visible when not intended because the scene was set up completely, and children might
have looked to non-relevant AOIs. Nevertheless, fixations to these AOIs have been annotated.
It is important to note that the tablets, experiment areas, and workbook AOIs have similar
appearances, which relates to challenge III outlined in the previous section 8.1. Following the
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completion of the data collection, the Pupil Player tool was used for detecting fixation events and
annotating the eye tracking data fixation-wise: it offers an option to jump between successive
fixations and supports hotkey-based annotation. All recordings have been annotated by four
student assistants employed by Saarland University. They received intensive training before the
annotation took place. The manual annotation of the full dataset took many days, which led to
fatigue, frustration, and, eventually, inadvertent errors in the annotations that were difficult to
fix. We recruited three of these student assistants for the present expert study, the fourth did
not reply to our invitation.

8.2.2.2 Case Study

We measured the perceived usability, annotation validity and reliability, and the efficiency of the
annotation process during an annotation task (within-subjects design). Further, we conducted
a semi-structured interview to understand how the IML-support version was used and how that
might impact the efficiency and validity of the annotation process. For this case study, we focused
on the usecase of educational research and the existing dataset described above.

Procedure

We conducted the user study online via video calls, recorded for post-hoc transcription. First,
we introduced the study procedure and obtained a signed informed consent via email. Then,
we asked annotators to complete an annotation task with both eyeNotate versions. For each,
we showed a short instruction video explaining the features. We allowed participants to fa-
miliarize themselves with the tool in a 5-minute training phase and ask clarification questions.
Subsequently, participants performed an annotation task and completed the system usability
scale (SUS) questionnaire (Brooke, 1996). Two participants started with the baseline version,
one with the IML-support version of the tool. After both annotation tasks were completed, we
conducted a semi-structured interview to retrieve further qualitative feedback for our tools, par-
ticularly for the distinct features of the IML-support version. The study took around one hour;
each participant received a 10 EUR compensation payment.

Annotation Task

We asked participants to annotate 870 fixations from the dataset described above with ground-
truth annotations. The dataset stems from a mobile eye tracking study in the educational sciences
with the goal of investigating the impact of AR-support in a lab work-based learning scenario
about electrical circuits on learning outcomes and learning processes of elementary school children
(n=48). To reduce the workload in our study, we constrained the annotation task to data from a
single child and two experiment phases (exp_1: 646 fixations; exp_2: 224 fixations). Fixations
could be mapped to one of seven AOIs or a background class (see figure 8.8). The task ended
when the participant annotated all fixations. For the IML-support version, the participants could
stop early if all fixations had highly confident (“green”) label suggestions, while the confidence
level depends on the trust level slider.
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Methods & Measures

We measure the perceived usability, annotation validity and reliability, and efficiency during the
annotation task to assess the two annotation tool versions. We expect the IML-support version
to be more efficient than the baseline, with the perceived usability and annotation validity and
reliability remaining stable.

Validity & Reliability. We measure the validity of the participants’ annotations for each tool
version. We report their accuracy in mapping fixations to AOIs compared to the ground-truth
annotations from the dataset used in this study. Further, we assess the reliability as the level
of agreement among all participants for each version of our tool by calculating Fleiss’ κ (Fleiss,
1971). We consider both measures to be control variables: we expect to observe a high accuracy
for both versions of the tool (≥ 95%) and an almost perfect inter-rater agreement (κ > .8)
(Landis and Koch, 1977).

Efficiency. We measure the time required for completing the annotation tasks in seconds
(task completion time) for each tool version. We expect the IML-support version to be more
efficient than the baseline, according to findings in prior research, i.e., that the availability of
label suggestions leads to easier and faster decision-making (Desmond et al., 2021).

Usability. We assess the usability of both versions of our annotation tool using the System
Usability Scale (SUS) questionnaire (Brooke, 1996). Scores can range between 0 and 100, with
high scores indicating better usability. We interpret the SUS scores according to the adjective
rating by Bangor et al. (2009). We consider this a control variable, i.e., we do not expect a
difference in perceived usability between the two versions of our tool, but we expect a high
SUS score for both versions. Further, we conduct a semi-structured interview (SSI) to gain
further qualitative insights about our annotation tool and specific IML features. The transcribed
interview was analyzed using a reflective thematic analysis (Braun and Clarke, 2012).

Results

In the following, we present the results for each tool version, i.e., the baseline and IML-support
versions. In some cases, we report the individual values per participant because we only consid-
ered three trained annotators for our case study: A1, B1, and B2. Participants started with the
IML-support (A) or the baseline version (B).

Validity & Reliability. We assess the validity of annotations in terms of their accuracy
compared to the ground truth. We report the mean over all three participants for each version
of the annotation tool per phase and combined (see table 8.3). For phase exp_1, we observe an
accuracy of 97.32% for the baseline version and 97.78% for the IML-support version. We observed
slightly lower values for phase exp_2 : the accuracy is 89.58% for the baseline version and 88.24%
for the IML-support version. The weighted average over both phases results in an accuracy of
94.76% for the baseline version and 94.55% for the IML-support version. This weighted average
considers the unbalanced number of fixations in each phase. We calculate Fleiss κ as a measure
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Accuracy Fleiss’ κ
baseline IML-support baseline IML-support

exp_1 97.32% 97.78% 0.954 0.963
exp_2 89.58% 88.24% 0.941 0.920

mean 94.76% 94.55% 0.951 0.952

Table 8.3: Annotations’ validity (Accuracy) and reliability (Fleiss’ κ) per experiment phase and as a
weighted mean.

for the inter-rater agreement. It is calculated per condition and phase based on the ratings
from all three participants. Table 8.3 shows agreement values that range between 0.919 to 0.963
(almost perfect). On average, we observed no deviations in validity or reliability comparing the
two versions of our annotation tool.

Efficiency. We analyze the time required for completing the annotation task per tool and user.
Overall, the slowest participant was A1, who completed the tasks for the baseline condition in
1999 seconds and 2095 seconds for the IML-support condition. Participant B1 was faster, with
1,189 seconds for the baseline condition and 1251 seconds for the IML-support condition. With
980 seconds for the baseline condition and 966 seconds for the IML-support condition, participant
B2 was the fastest annotator. While the individual differences in the task completion times are
large, we found only small differences in the completion times between the two conditions. On
average, our participants required 1389 s to complete the tasks for the baseline condition and
3.44% longer (1437 s) for the IML-support condition. The high rater agreement indicates that
there is no relation between task completion time and the validity of the generated annotations.

Usability. We measured perceived usability using the SUS questionnaire. The baseline version
is consistently rated as “excellent” with values ranging from 87.5 to 95 (91.6 on average). For
the IML-support condition, we observed a high variance in SUS scores: the ratings range from
50 for B1 (“poor”) over 67.5 for B2 (“OK”) to 97.5 for A1 (“excellent”), averaging to 71.6. The
reflexive thematic analysis of the SSI revealed two themes: (a) The tool’s design facilitates
the annotation of mobile eye tracking data, and (b) The constrained model performance limits
IML-based benefits. Details are provided in the discussion section below.

8.2.2.3 Machine Learning Experiment

In a post-hoc experiment, we assess the performance of three machine learning models in auto-
matically annotating the part of the dataset that was not annotated during our study, i.e., all test
data remains unseen. This includes around 230k fixations from 47 individuals. The automatic
fixation-to-AOI mapping includes all 7 classes from our experiment plus a background (BG) class.
However, the models are not trained to directly classify the background class. The background
class BG is assigned if the probability is lower than a threshold tBG = 0.4. This means fixations
are assigned to one of the 7 AOIs if the probability for this classification is greater or equal to



8.2. INTERACTIVE FIXATION-TO-AOI MAPPING 149

162

73

132

7

23

260

32

0

50

100

150

200

250

300

E_L E_R T_L T_R P_06 P_08 P_10

Figure 8.12: Class distribution on the training set for the post-hoc machine learning experiments.
Tablet_Right (T_R) has the lowest and Page8_TwoBulbs_Row (P_08) the highest number of samples.

tBG. The three considered models include the few-shot learning model (FRNet) (Wertheimer
et al., 2021) that was used in our IML-support version, ResNet50 (ResNet) (He et al., 2016), a
well-established foundation model for image classification tasks, and MobileNetV2 (MobileNet)
(Sandler et al., 2018), a lightweight architecture model suitable for resource-constrained environ-
ments. We consider two data settings for model training: base and final. For the base setting, we
use the initial labeled data pool with 10 images per class as the train set, i.e., the 70 images that
were used to pre-train the FRNet model for the IML-support version of our tool. For the final
setting, models are trained using ground truth labels for the 870 fixations from the annotation
task. Figure 8.12 shows the class distribution for the 7 AOIs in the train set. However, by
that, we assume that a participant correctly annotates all fixations, which is not exactly true
but sufficient for our experiment: the average accuracy of our participants in annotating these
870 fixations was 94.55%. In the final setting, we train FRNet in a 100-shot-7-way manner,
upsampling images for classes with less than 100 training images because the model requires
an equal number of samples per class (random oversampling). Instead of upsampling, we use
weighted cross-entropy classification loss to train ResNet and MobileNet, which addresses the
class imbalance. As described in section 8.2.1.2, an additional loss with a scaling faction of 0.03
is used to train FRNet. All models are trained for 30 epochs using an SGD optimizer with a
learning rate of 0.0001. We report the accuracy and f1 scores of all models.

Results

Table 8.4 reports the accuracy for each model and train setting. FRNet outperforms MobileNet
and ResNet: it achieves an accuracy of 57.57% in the base setting and 58.78% in the final setting,
which is 6.64% and 7.39% better than the second-best models, respectively. The model performs
marginally better when taking the annotations of our participants into account for training in
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test samples
base setting final setting

MobileNet ResNet FRNet MobileNet ResNet FRNet

230.3k 50.93% 39.60% 57.57% 49.28% 51.39% 58.78%

Table 8.4: Accuracy for each model and train setting.

class test samples
base setting final setting

MobileNet ResNet FRNet MobileNet ResNet FRNet

E_L 10771 0.207 0.180 0.323 0.153 0.224 0.384
E_R 7780 0.001 0.481 0.556 0.006 0.457 0.463
T_L 26167 0.077 0.002 0.662 0.057 0.001 0.687
T_R 11407 0.183 0.316 0.570 0.144 0.087 0.575
P_6 14725 0.317 0.256 0.334 0.310 0.320 0.375
P_8 10242 0.003 0.198 0.209 0.014 0.120 0.329
P_10 11392 0.151 0.044 0.093 0.133 0.153 0.146
BG 137852 0.676 0.569 0.678 0.663 0.681 0.681

Macro Average 0.202 0.256 0.428 0.185 0.255 0.455
Weighted Average 0.460 0.409 0.579 0.445 0.471 0.593

Table 8.5: Class-wise f1-scores for each model and train setting.

the final setting (+1.21%). MobileNet ranks second for the base setting with an accuracy of
50.93%. The accuracy slightly decreases to 49.28% for the final setting. ResNet performs worst
for the base setting with 39.60% and benefits most from using more training samples in the final
setting. The accuracy increases by 11.78% to 51.39%, now slightly outperforming MobileNet.

Table 8.5 reports the class-wise and averaged f1-scores for each model and train setting. In
both train settings, FRNet performs best in terms of the macro and weighted average of the
f1-score. The best performance is achieved in the final setting with a macro average f1-score of
0.455 and a weighted average of 0.593. In the base setting, the macro average is 0.428, and the
weighted average is 0.579. MobileNet and ResNet achieve considerably worse average f1 scores
in both settings. For the base setting, the macro average is 0.202 for MobileNet and 0.256 for
RestNet, the weighted average is 0.460 for MobileNet and 0.409 for ResNet. MobileNet does not
benefit from taking more training samples into account in the final setting: the macro average f1
score slightly drops to 0.185, and the weighted average f1 score to 0.445. For ResNet, the macro
average f1 score stays similar, while the weighted average f1 score improves by 0.062 to 0.471.
However, this is still 0.122 worse compared to FRNet in the same setting and 0.107 worse than
FRNet in the base setting. It is noteworthy that the difference between FRNet and the other
two models is larger for the macro average f1 score (difference ≥0.172) than for the weighted
average f1 score (difference ≥0.119). Also, the macro average f1 score is always clearly worse
than the weighted average f1 score, indicating that all models perform better for classes with
many samples than for classes with a small number of samples. A class-wise analysis shows that
all models perform best for the background class (BG) with f1-scores starting from 0.569 for
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Figure 8.13: Confusion matrix for the test set for FRNet in final setting (normalized over rows).

ResNet in the base setting and larger than 0.663 for all other conditions. The best performance
for the background class was observed for ResNet and FRNet in the final setting with an f1 score
of 0.681. We only observed a single better f1 score of 0.687 for the tablet class T_L for FRNet in
the final setting. As the background class covers more than half of all samples (137.9k of 230.3k
samples), it has a large impact on the weighted average. For MobileNet and ResNet models, we
observed low f1-scores of less than 0.5 for all seven classes other than BG in both settings. FRNet
shows a more balanced performance. In the base setting, only four out of eight classes achieve
an f1 score below that threshold. Further, for FRNet, we observed the best performance for each
class besides P_10 for which MobileNet was better. In the final setting, FRNet improves for
all classes besides the experiment area E_R (-0.094), which is why five out of eight classes have
an f1 score lower than 0.5. Still, the model performs best for all classes besides P_10. For BG,
ResNet performs equally well in this setting. The best f1-scores for FRNet are observed for the
background class BG and the two tablet classes T_L and T_R.

Figure 8.13 shows the confusion matrix of the best-performing condition: FRNet in the final
setting. It is normalized over the true conditions (i.e., over rows): the values on the diagonal
correspond to the recall of a respective class. Other values in the same row correspond to false-
negative errors and sum up to the miss-rate of that class. For instance, for the background
class BG, the recall is 61.33%, and the false negatives sum up to a miss rate of 38.66%. The
background is often misclassified as one of the experiment area classes (18.19%) or as one of
the tablet classes (12%). The confusion matrix shows that classes with similar appearances are
frequently confused. This can be observed for the two experiment area AOIs, the two tablet
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class Precision Recall

E_L 0.291 0.564
E_R 0.321 0.831
T_L 0.625 0.763
T_R 0.473 0.735
P_6 0.459 0.317
P_8 0.275 0.409
P_10 0.295 0.097
BG 0.765 0.613

Macro Avg. 0.438 0.541
Weighted Avg. 0.633 0.588

Table 8.6: Class-wise precision and recall for the FRNet model in the final setting.

AOIs, and the three workbook AOIs. For instance, for E_L, the recall is 56.43%, and, with
26.53%, the majority of the false negatives were classified as E_R. The recall of T_L is 76.31%
while 12.38% of the false negatives were classified as T_R. A similar pattern was observed for the
workbook AOIs P_*. All AOI classes are frequently misclassified as background. Hereby, the
false negative errors for the experiment area and tablet AOIs range between 10.99% and 16.24%.
The three workbook AOIs are affected more severely: the false negative errors range between
48.86% and 55.58%. This results in a precision of 0.765 for BG, which is the best precision among
all classes. Precision and recall for all classes are reported in table 8.6.

8.2.3 Discussion

Next, we discuss the results of our case study and the post-hoc ML experiment.

8.2.3.1 Validity & Reliability

The validity of users’ annotations is high and alike for both versions of our annotation tool. We
observed an accuracy of 94.76% for the baseline version and 94.55% for the IML-support version
(weighted mean). Further analysis revealed 14 errors (1.6%) in the ground truth. We identified
errors in cases when all three annotators agreed on an AOI that deviated from the ground
truth. With a corrected ground truth, accuracy increases to 96.29% for the baseline version and
96.07% for the IML-support version, respectively. This suggests we met our goal of achieving an
accuracy of at least 95%. However, annotators might have worked particularly conscientiously
during the study. Our results further suggest that the exp_2 was more difficult to annotate
because accuracy values consistently dropped for both versions of the tool from more than 97%
accuracy to less than 90%, and we observed a higher ratio of ground-truth errors. A reason
might be that the second phase included more AOIs and a more complex scene. The inter-rater
agreement was almost perfect with κ ≥ .9 in all cases, i.e., the reliability of annotations from
both versions of our tool is high.
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8.2.3.2 Efficiency

On average, task completion times for both tool versions were similar: annotators were 3.44% (48
seconds) slower when using the IML-support version. Likewise, the difference in task completion
times between versions per participant is small. On the other hand, the differences between
participants are large. A1 required around 2000 seconds to solve the task per tool, while B1
and B2 required around 1200 seconds and below 1000 seconds, respectively. This is almost twice
as fast without compromising accuracy, which indicates that B1 and B2 had a more efficient
strategy in using our tools. During the study, we observed that all participants used shortcuts
for annotation and confirmation, but A1 did not use the multi-select feature, which could explain
the high difference. Given the 870 fixations in our annotation task, our interactive annotation
tool achieves a worst-case annotation rate of 2.41 seconds/fixation (A1, IML-support version)
and a best-case annotation rate of 1.11 seconds/fixation (B2, IML-support version). When using
an ML model to map the remaining 230k fixations, this means the time-saving potential lies
between 70 and 150 hours. Eventually, we could not confirm our hypothesis that providing label
suggestions would accelerate the labeling process. This is likely because all annotators manually
checked and confirmed label suggestions for all fixations in the IML-support version. We observed
corresponding annotation behavior during the study, and theme b of our SSI analysis concerning
the constrained model performance confirms this: annotators did not trust the model sufficiently
and felt highly responsible for doing the job well. Hence, they did not benefit from automatic
label suggestions as found in Desmond et al. (2021). A follow-up study could investigate how
lay users perform in the annotation task. Can lay users achieve the same validity as trained
annotators? Do lay users benefit more from label suggestions in terms of efficiency?

8.2.3.3 Usability

The usability of our tool’s baseline version was consistently rated as excellent: the basic features
and general interaction design of our annotation tool were perceived very positively, which is
supported by theme (a) of our thematic analysis concerning the tool’s interaction design: “the
tool’s design facilitates the annotation of mobile eye tracking data.” However, B1 and B2 rated
the IML-supported version drastically lower, which contradicts our assumption that both tools
achieve a similar usability rating. Looking into individual SUS items, B1 and B2 majorly penal-
ized an increased inconsistency of the IML-support version and that it was more cumbersome
to use. Both felt less confident using the IML-support version and thought it was less easy to
use. This can be attributed to the integration of IML-support features and relates to theme (b)
of our thematic analysis concerning the constrained model performance: “the constrained model
performance limits IML-based benefits.” The two themes originate from a reflexive thematic
analysis of the SSI that was conducted with each participant.

(a) The tool’s design facilitates the annotation of mobile eye tracking data. Our case
study participants liked our tool’s basic functionality and interaction design. In particular, they
highlighted the clean design that allowed them to focus on the annotation task throughout the
study. They reported high usability and learnability. Quick reaction times and visual feedback
were highly appreciated. Particularly, the video overlay immediately displaying updates after



154 CHAPTER 8. VISUAL ATTENTION MODELLING

manual annotation or confirmation was considered very helpful because they had to check the
video frame to decide on the AOI class anyway. All participants reported a high perceived
performance due to the clean, focused interaction design and the ability to use shortcuts for
navigation and annotation. Also, the multi-select feature for annotation and confirmation seems
to impact annotation efficiency positively. The video playback function was not used by our
participants but might have supported understanding the video-editing-like interface metaphor.
Upon asking them, participants reported they understood the trust-level slider but did not use
it often, although it was considered useful. High-certainty suggestions (green highlight) were
also considered helpful. However, certain but wrong label suggestions were frustrating as they
could lead to wrong confirmations. Also, the red color of uncertain suggestions was reported to
interrupt the interaction flow, in case the predictions were correct. In summary, color-coding
of the model certainty for label suggestions might cause frustration in the case of certain but
wrong predictions and can interrupt the interaction flow in the case of uncertain but correct
predictions. An implication could be to restrict label suggestions to highly certain suggestions.
Our participants suggested two interesting features that will be considered in future versions of
our tool. They proposed a feature that enables jumping to non-annotated fixations or uncertain
suggestions. Further, they proposed a feature to batch-accept all certain predictions (depending
on the state of the trust-level slider).

(b) The constrained model performance limits IML-based benefits. All participants
reported a perceived model performance of 30-40% accuracy, although the true value is much
higher (62%). This indicates that our participants had low trust in the underlying model gen-
erating the AOI label suggestions and could explain why they checked all suggestions manually.
This is also in line with their reports on problems with certainty-based color coding. All partic-
ipants specified that the model suffered from a left-right-weakness: Some AOIs with the same
appearance were present on the left and right sides of the experiment scene, but the model
could not properly differentiate between them. We intentionally investigated this challenge by
including experiment phase 2. One example is T_L and T_R, referring to two instances of the
same tablet mounted on the left or right side of the experiment scene. This is evident in the
confusion matrix for FRNet in figure 8.13: T_L is wrongly classified as T_R in 12.38% of the
cases. The false negative errors concerning all other classes besides BG sum up to 0.31%. We
observe similar problems for experiment area and workbook page AOIs. If objects look very much
alike, our IML-support version has limitations. Addressing the left-right weakness is essential
because AOIs with similar appearances are common. Future research should investigate whether
object-tracking or position-aware models can help to address this challenge. Another option
can be found in meta-models that iteratively learn for which classes a model performs well and
activate suggestions for those only.

8.2.3.4 Post-hoc ML Experiment

We observed the best average f1-scores and accuracy scores when using the FRNet model archi-
tecture in the final setting, i.e., when using the 870 annotated fixations for training (see tables 8.4
and 8.5). However, using more training data for the FRNet model only slightly increases the
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performance, e.g., +1.21% in accuracy and +0.015 concerning the weighted average f1-score.
With +11.78% for accuracy and +0.062 for the weighted f1 score, ResNet showed the greatest
improvement when more training samples were added. MobileNet performs slightly worse for all
metrics. Either way, the results show that the models are not good enough for most applications
such as automatic or semi-automatic annotation with humans-in-the-loop. This is in line with
the user’s feedback from the SSI as summarized in theme (b).

The best f1 score of 0.687 was observed for the T_L class for the FRNet model in the final
setting, followed by an f1 score of 0.681 for the BG class. The precision is highest for BG with
0.765 (see table 8.6), so labeling support only for the BG class could have been effective. Since
almost 60% of all labels belong to this class, this could already save a lot of time without raising
usability issues like the ones mentioned in theme (b). The high ratio of BG samples in the test set
also means that summary statistics like accuracy and the weighted f1-score are biased through
the relatively high performance for this class. This is visible in the large deviation between the
weighted and macro average f1-scores for all models. Overall, FRNet shows the most balanced
performance across all classes: it performs best for all classes besides P_10. This also explains
the greater relative difference in the macro-average values and the weighted average values for f1
for MobileNet and ResNet.

The confusion matrix in figure 8.13 shows the strengths and weaknesses of the FRNet model
(final) on the class level in more detail. As counts are normalized over the true condition, i.e.,
over rows, the diagonal shows the recall scores for the true condition or class of that row, while
the remaining values of that row sum up to the corresponding miss rate. For BG, we observed
a recall of 61.33% with a precision of 76.53%. This means that, when limiting suggestions to
the BG class, labels for more than one-third of all instances (61.33% of 59.88% of all 230.3k
instances) could have been provided, of which around three-quarters would have been correct.
Still, one-quarter would have been wrong. So, limiting suggestions to BG alone would likely not
solve the usability issues mentioned in theme (b). These scores were observed for the default
setting when BG is assigned if the model’s classification probability for an AOI class is lower
than tBG = 0.4. Lowering tBG would increase the precision for the BG class but at the cost of
a lower recall. Likewise, increasing the threshold for assigning one of the 7 AOI classes, we call
it tAOI , would increase the precision for these classes. Eventually, a class-specific batch-accept
feature for accepting label suggestions for a certain class with manually tuned tBG and tAOI
could be useful. The user should be able to configure the probability threshold tBG and the
classification thresholds tAOI for each class, which would allow annotators to accept labels based
on their own experiences of how the model performs per class. However, most f1-scores and all
precision scores for AOI classes are lower than the scores for the BG class (see table 8.6), which
indicates that tuning the thresholds for a batch-accept feature might be difficult. We conduct
and report on a follow-up experiment that investigates how changes in tBG and tAOI affect the
classification performance and relate to the number of fixations without a label suggestion. By
that, we aim to estimate the potential of a class-wise batch-accept feature.

The confusion matrix also indicates that a reason for the low f1 scores is the similar appearance
of the AOI classes, including the two experiment areas E_*, the two tablets T_*, and the three
workbook pages P_*. These three groups can be clearly identified along the diagonal as three
squares based on the high number of false negative errors within each group. Further, it shows
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Figure 8.14: ROC curve for the background class BG for the FRNet model in the final setting. The
decision boundary corresponds to the threshold tBG = tAOI .

that many AOI classes are frequently misclassified as belonging to the background class BG,
particularly the three workbook AOIs. Confusion of AOI classes with the BG class could be
reduced by increasing the classification threshold tAOI . This could be realized, e.g., through
a class-based trust-level slider. Confusion of similar-looking AOI classes can only be solved by
using more suitable approaches like multi-object tracking, i.e., once an AOI was manually labeled
or confirmed by a user, the system could track this instance to reveal wrong classifications or
auto-confirm true classification, or graph neural networks that consider the spatial location of
an object for classification (Le et al., 2025). An option to increase the utility of the FRNet
model would be to provide label suggestions at a higher semantic level. For instance, eyeNotate
could identify all tablets and ask the user which instances belong to the left (T_L) or right
(T_R) class. Similarly, this could be done for the two experiment areas and the three workbook
pages. Classification performance would likely be higher for this 4-class problem because it is a
less complex classification problem. We investigate this aspect in another follow-up experiment.
Further, a 2-level decision task (left vs. right) or 3-level decision task in the case of the workbook
pages is less difficult for users than the 8-level decision task, which includes all AOIs and the
separate background class.

Next, we report on the two mentioned follow-up experiments: one for estimating the utility
of a class-wise batch-accept feature and one for investigating how the model would perform for
the 4-class classification problem.
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Estimating the Utility of a Class-wise Batch-accept Feature

To estimate the utility of a class-wise batch-accept feature, we investigate the impact of adjusting
the classification thresholds tBG and tAOI on the model performance in an additional experiment.
In the current setting, eyeNotate suggested BG as a label when the probability was below a
threshold of tBG = 0.4 and the highest-ranked AOI class otherwise. In this post-hoc experiment,
we add a second threshold tAOI that determines the minimum classification probability p before
we assign an AOI class. The higher the gap between these two thresholds, the higher will be
the number of instances without a label suggestion. Hence, there will be a trade-off between the
number of instances with a label suggestion and the precision of those.

In the first step, we assess whether the default threshold for classifying the background class
tBG = 0.4 was a good choice. For this, we plot a ROC curve that illustrates the trade-off
between the true positive rate (recall) and the false positive rate for classifying the BG class
(versus all other AOI classes) depending on tBG (see figure 8.14). Note that in the default
setting, tAOI = tBG. The ROC curve shows that false positive rate for tBG = 0.4 is quite high:
28.07% of non-BG instances are wrongly classified as BG. Reducing tBG to 0.35 or 0.30 improves
the false positive rate: only 10.92% or 3.06% are wrongly classified as background. The recall
would drop to 44.83% and 29.96%, respectively. A recall of 29.96% still corresponds to 17.94%
of all samples (41.3k) because 59.88% of all 230.3k samples belong to the BG class.

However, simultaneously reducing tBG and tAOI optimizes the false positive rate for the
background class but will also lead to an increase in false positive rates for all other classes.
Hence, we investigate the impact of increasing tAOI in 5% steps on accuracy with constant tBG
for tBG ∈ {0.3, 0.35, 0.4}. At the same time, we investigate the impact on the number of samples
that will not be annotated. The results are presented in figure 8.15a. It shows the model accuracy
and the annotation ratio, i.e., the portion of samples that received an annotation suggestion, as
a function of tAOI . Using the default parameters tBG = tAOI = 0.4, we observe an accuracy
of 58.78% as reported in table 8.4 for FRNet in final setting. The annotation ratio is 100%
because tBG = tAOI . For tBG = tAOI = 0.3, the curve starts with an accuracy of 45.15%. For
tBG = tAOI = 0.35, accuracy starts with 52.58%. In all three cases, the accuracy increases
and the annotation ratio decreases with increasing tAOI . Setting tAOI = 1 means, we do not
consider annotations for any class besides BG. For tBG = 0.4, the accuracy reaches 76.53%
and the annotation ratio 57.96% in this setting. We observe that the lower tBG, the lower the
accuracy, and the higher the annotation ratio. Consequently, the maximum accuracy is reached
for tBG = 0.3 with 93.54% as well as the minimum annotation ratio of 18.97%. However, for
tAOI = 1, prediction labels would be limited to BG. This indicates that a batch-accept feature for
BG could be effective. For a batch-accept feature that includes other classes than BG, tAOI must
be smaller than 1. To assess how well the model would perform for AOI classes only, i.e., for all
classes besides the background class BG, we ran the experiment for tBG = 0 and 0 ≤ tAOI ≤ 1.
The corresponding diagram is shown in figure 8.15b. Up to tAOI = 0.15, all samples are classified
as one of the AOI classes. This means that the minimum model certainty lies between 0.15 and
0.2. With increasing tAOI the accuracy also increases until it reaches its maximum for tAOI = 0.9

with 64.75%. However, with these parameters, only 1.24% of all samples would be annotated.
Overall, the results of this additional experiment indicate that a batch-accept feature for the
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AOI # Samples precision recall f1 score

E 18551 0.380 0.842 0.524
T 37574 0.661 0.874 0.753
P 36359 0.598 0.479 0.532
BG 137852 0.765 0.613 0.681

macro avg 0.601 0.702 0.622
weighted avg 0.691 0.653 0.656

Table 8.7: Class-wise precision, recall, and f1-scores for the FRNet model in final setting for a reduced
set of four target classes.

background class BG could add value to eyeNotate. Since the parameters are optimized over the
test set, the results can only serve as an upper bound of the performance. In a realistic scenario,
the performance with a human optimizing the parameters would lie below this upper bound, but
it would, in theory, be reachable for the considered usecase, dataset, and model. However, the
results also show that the classifier is not good enough for providing label suggestions for AOI
classes, even under the assumption that users could tune the decision thresholds. A reason is
likely the high similarity between some of the AOI classes.

Simulating Model Performance in a 4-class Classification Setting

Another option to increase the utility of eyeNotate using the FRNet model is to tread the
classification as a 4-class problem, i.e., to only differentiate between the background class BG
and three further AOI classes: experiment area E, tablet T, and workbook pages P. For our
usecase, the human annotator would still need to decide whether, e.g., the identified tablet is
the left or right version. But this decision is less complex than assigning one out of all eight
classes. Also, this investigation can reveal the potential benefit of eyeNotate for other, more
simple usecases. Hence, we assess the overall accuracy and the precision, recall, and f1-scores
under the assumption that only four target classes exist, i.e., E, T, P, BG, using the FRNet
model in the final setting. For this, we replace the true and predicted class labels with the
corresponding summary class, e.g., E_L and E_R are replaced with E before computing scores.
The BG labels do not change.

In the 4-class setting, FRNet achieves an accuracy of 65.30% which is 6.52% better than in
the original 8-class setting. Table 8.7 shows the corresponding precision, recall, and f1-scores.
As expected, the scores for summary classes are better compared to the original classes. For
instance, for E, we observe an f1 score of 0.524, while the f1 scores for E_L and E_R are 0.384
and 0.463, respectively. This also holds for T and P. The results do not change for BG because
there were no changes concerning the background class. Consequently, the macro average and
weighted average f1 scores are also higher. The macro average f1 score increases by 0.167 and
the weighted average f1 score by 0.063.

In summary, reducing the complexity of the classification problem has a positive effect on all
observed scores. However, to enable effective annotation support we will need to further improve
the model performance. Promising directions that should be investigated include methods like
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Figure 8.16: Architectural overview of our real-time attention-aware interactive prototype system.

multi-object tracking and graph neural network models.

8.2.4 Towards Real-time Attention-aware Interfaces

We showcase that our methods for detecting visual attention can facilitate the development of
real-time attention-aware user interfaces. For this, we develop a prototype that identifies and
visualizes objects fixated by a user in real-time using a head-mounted eye tracker, particularly
using the HoloLens 2 which comes with an integrated eye tracking sensor. We extend our ap-
proach for visual attention detection presented in section 8.1 to implement a real-time prototype
for situation-aware interaction in AR. We use our ARETT toolkit (Kapp et al., 2021) to connect
the HoloLens 2 as an eye tracking and video source and to augment the attended objects. To the
best of our knowledge, we are the first to present an AR system that augments fixated objects
with their class in real-time based on the user’s gaze. This technology can enable cognition-aware
mobile user interaction in AR settings. It bears the potential to provide benefits in several ap-
plication domains, e.g., healthcare, industry 4.0, research & education, and entertainment. This
is also approved by our two ongoing research projects that build up on top of this technology
(see part V).

Our prototype is based on the HoloLens 2, a head-mounted device for AR systems with
integrated eye tracking capabilities, and a GPU-accelerated processing server for visual attention
detection (see figure 8.16). The eye tracking signal and the video stream data of an egocentric
camera are acquired using the ARETT toolkit (Kapp et al., 2021) for HoloLens 2. We implement
an extension that offers both sensor streams to a local network via WiFi using the WebRTC
protocol. On the processing server, we run an instance of the presented fixation-to-AOI mapping
algorithms (see sections 8.1 and 8.2). Our system supports real-time video and gaze streaming via
WebRTC from the HoloLens 2 device. The output of the visual attention detection is visualized
on the processing server using the event timeline monitoring tool and our prototype application
on the HoloLens 2 (see figure 8.17).

8.2.4.1 HoloLens 2 Application

We implement our prototype using the Microsoft HoloLens 2 and the Unity 3D game development
engine (Barz et al., 2021b). It integrates an extension of the Augmented Reality Eye Tracking
Toolkit for Head Mounted Displays (ARETT) (Kapp et al., 2021) for eye tracking data acquisition
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(a) Snapshot from the HoloLens 2 application (b) Timeline monitoring tool

Figure 8.17: Our prototype classifies and augments fixated objects in real-time. It displays classification
labels and the duration of recent attention events as a hologram in HoloLens 2 (a). The classification
and attention detection pipeline runs on a separate server with a real-time monitoring tool (b).

and streaming using the WebRTC protocol. The ARETT toolkit is extended to include mapping
of gaze data to a video feed and real-time streaming of gaze data using the WebRTC protocol.
ARETT utilizes the APIs provided by the device to reliably acquire gaze data in terms of gaze
origin and direction. The raw data is processed to identify the gaze position by casting a gaze
ray into the virtual environment. However, the data from this toolkit does not provide a gaze
mapping to the world camera. Our extension accurately maps the gaze data to the camera
image of the front-facing webcam. For this, we use a virtual camera in the virtual scene that
matches the location, projection and resolution of the real camera. This enables the projection
of the 3D gaze position to the virtual 2D camera image and to the webcam image. The video
and gaze data is streamed to the processing server in real-time using the WebRTC protocol
via the MixedReality-WebRTC library10. Besides video streaming, it provides data channels for
streaming the gaze signal and retrieving classifications and attention events from the processing
server. Our HoloLens 2 demo application offers two options for data visualization that correspond
to the output of the visual attention detection system: real-time image classifications and visual
attention events. The visual attention events view shows the last five attention events (see
figure 8.17a): for each attention start event, we add a tooltip with the class label and the event
duration at the object location which is continuously updated. The real-time image classifications
view shows a tooltip at the latest gaze position, indicating the top-1 classification candidate and
its probability. Both views can be activated and deactivated using a virtual menu attached to
the user’s hand.

8.2.4.2 Visual Attention Detection

Our method for visual attention detection includes three subsequent steps. First, we re-sample
the gaze signal to 5 Hz and crop an image patch of 200×200 pixels from the egocentric video feed
(960 × 540) around the point of gaze for each remaining sample. This re-sampling ensures our

10https://github.com/microsoft/MixedReality-WebRTC/tree/v2.0.1 (accessed on 12 Dec 2024)

https://github.com/microsoft/MixedReality-WebRTC/tree/v2.0.1
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system’s real-time capability. Second, each patch is classified using a pre-trained version of the
ResNet image classification model (He et al., 2016) which is trained on the ImageNet dataset with
1001 object classes (Russakovsky et al., 2015). Third, we use a working memory- and threshold-
based attention detection algorithm that uses the top-1 predictions as continuous input (Barz
and Sonntag, 2016). The top-5 class candidates and the visual attention events are forwarded
to the timeline monitoring tool (see figure 8.17b) and sent to the HoloLens 2 demo applications
for visualization (see figure 8.17a). The visual attention events consist of start, confirmation,
and end events which allow us to display the event with a low delay and to count up the event
duration until it ends. The timeline monitoring tool allows a joint visualization of all outputs
from our visual attention detection. It shows the video stream of the front-facing camera and
the raw gaze signal (green circle) from the HoloLens 2 in the upper left view. The top right view
shows an image patch cropped around the gaze point and the corresponding image classification
output five times per second (see Image Classification module in figure 8.16). Two timelines are
shown at the bottom, one showing the classification output as color-coded bars (corresponds to
the top-1 result of the image classification output) and another showing the reported attention
events. The bars move from right to left.

8.3 Conclusion

In this chapter, we investigated approaches for semi-automatic mapping of fixations to AOIs,
which can enable efficient analysis and interpretation of humans’ complex interaction behavior.

In the first step, we developed and evaluated two methods for automatically detecting visual
attention to ambient objects based on pre-trained computer vision models. We systematically
assessed their ability to map fixations to AOIs and identified several limitations. For this, we
defined an evaluation framework based on the VISUS dataset by Kurzhals et al. (2014a) and
identified four challenges for methods that map gaze to AOIs. We used a set of fine-grained
metrics by Ward et al. (2011) from the field of activity recognition to evaluate our visual attention
to AOI mapping methods. Our methods performed well for AOIs with distinct concepts that
have a strong match to the pre-trained model classes. However, several limitations impede our
goal of accelerating and objectifying AOI annotation in eye tracking research. For instance, our
methods drop in performance when a concept is not supported, when two instances of the same
concept cannot be disambiguated, or when gaze estimation errors occur.

In the second step, we aimed to overcome these limitations, i.e., the lack of flexibility and
quality assurance through humans-in-the-loop. Toward this goal, we presented eyeNotate, an
interactive annotation tool for mobile eye tracking data based on few-shot image classification.
The results of a case study confirmed that eyeNotate effectively enables fixation-to-AOI mapping:
users liked the basic functionality and interaction design, and the validity and reliability of users’
annotations were high. However, we observed that providing AOI label suggestions in the IML-
support version did not increase the efficiency, likely because of performance issues of the model
that led to low trust in the trained annotators. Still, our results suggested that FSL bears great
potential for initiating interactive data annotation. Overall, the task completion times were
low, with 1.11 s per annotation (best-case) to 2.41 s (worst-case). We identified constrained
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model performance as the main hindering factor, especially problems with similar-looking AOIs.
Future research should focus on the development of more sophisticated approaches that can cope
with the dynamic and complex nature of mobile eye tracking data, for instance using multi-object
tracking, 3D reconstruction methods (Kopácsi et al., 2023), and graph neural networks (Le et al.,
2025). Further, it is important to investigate the role of humans in interaction with machine
learning algorithms (cf. section 11.4.4).

Eventually, we demonstrated that our technology can be used in real-time interactive systems.
We presented a real-time AR system that augments the user’s field of view with information on
recently attended objects. We implemented our system using Microsoft’s state-of-the-art head-
mounted display HoloLens 2 with an integrated eye tracking sensor. In the healthcare domain,
the recognized sequence of visual attention events can be used to support patients with mental
diseases such as dementia by complementing missing parts of their episodic memory (Orlosky
et al., 2014; Sonntag, 2015) or to provide AR-based decision support for doctors (Sonntag, 2014).
The education domain can also benefit from this technology, for example it could be used for
eye tracking-based learning support based on multimedia effects (Alemdag and Cagiltay, 2018).
In the context of experiment-based learning augmented reality has recently gained increasing
interest (Thees et al., 2020; Kapp et al., 2020). However, current approaches are limited to sta-
tionary settings and are unable to integrate eye tracking data for real-time feedback and support.
Another usecase in education is Multimodal Learning Analytics (MLA). The goal of MLA is to
track the learning process using multiple sensor streams and interaction modalities as input to
better understand the complex nature of how students learn (Blikstein, 2013; Oviatt, 2018). The
technology can also be used to drive innovation in other domains. Examples include but are
not limited to, gaze-based symbol grounding (Mehlmann et al., 2014; Ijuin et al., 2019; Barz
et al., 2017) and language learning (Matuszek, 2018) in speech-based human-robot interaction
or pervasive attentive user interfaces (Bulling, 2016).
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Chapter 9

The Multisensor-Pipeline (MSP):
A Framework for Prototyping
Multimodal-Multisensor Interfaces

In this chapter, we present the multisensor-pipeline (MSP), a lightweight, flexible, and extensible
framework for prototyping multimodal-multisensor interfaces (see section 1.1.1) based on real-
time sensor input like gaze from eye trackers. We describe the Python-based framework, showcase
how it can be used to implement gaze-based multimodal interaction, and discuss the relation to
methods and approaches presented in this thesis. MSP integrates our experiences from developing
gaze-based multimodal interaction in parts II and III and, as such, is a direct result of this thesis.

For many applications, multimodal interfaces have long been recognized to be more robust,
accurate, and preferred by users than unimodal ones (Oviatt and Cohen, 2015). This is the case
because users can choose the individually most suitable modality or modality combination for
solving the problem at hand. Major challenges in research on multimodal interfaces include in-
tegrating new sensors and the development of effective algorithms for multimodal signal analysis
(Oviatt et al., 2017b; Sebe, 2009). This requires a suitable software infrastructure that allows
researchers to prototype and adapt or extend novel interaction systems effectively and efficiently
(Oviatt et al., 2019; Serrano et al., 2008). We present the MSP as a solution that is published on
GitHub under an open-source license and available via the Python Package Index (PyPI) reposi-
tory. It enables researchers and developers to easily build and adapt stream processing pipelines
by connecting existing or custom modules: it allows them to easily integrate multiple sensors
or other data streams via source modules, to add stream and event processing capabilities via
processor modules, and to connect user interfaces or databases via sink modules in a graph-based
processing pipeline. Our framework introduces a minimal set of concepts and provides conve-
nience functions for building and running processing pipelines. Our framework is implemented
in Python with a low number of dependencies, which enables a quick setup process, execution
across multiple operating systems, and direct access to cutting-edge machine learning libraries
and models. We showcase the functionality and effectiveness of MSP through a sample applica-
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tion. It connects a mobile eye tracker to classify image patches surrounding the user’s fixation
points using a pre-trained deep learning model and visualizes the top-5 classification results in
real-time. Related work and details on the implementation are described in sections 9.1 and 9.2.
In section 9.3, we outline the strengths and limitations of MSP and outline how the methods
and approaches presented in this thesis relate to MSP.

9.1 Related Systems and Frameworks

MSP is related to real-time stream and event processing frameworks. This includes modern
streaming systems for distributed event processing which are used to implement, e.g., mobile
and web-based applications at scale. One example is Apache Flink1, a framework for batch and
stream processing based on dataflow graphs (Katsifodimos and Schelter, 2016). In Apache Flink,
a dataflow graph is represented as a directed acyclic graph that defines operators (nodes) and
data streams (edges). These systems are designed for scalable, high-throughput data analysis
with fault tolerance which introduces overheads for, e.g., the installation and development pro-
cess. Other frameworks support the development of multimodal dialogue systems. For instance,
Advisor is a modular and extensible framework for developing socially engaged dialogue systems
(Li et al., 2020). It can be used to create conversational agents with available modules for,
e.g., social signal processing and speech processing. Likewise, the EEVA framework enables the
development of interactive social agents for the web (Polceanu and Lisetti, 2019). SiAM-dp is a
platform for developing multimodal dialogue systems. It has a focus on integrating distributed in-
put and output devices in cyber-physical environments (Neßelrath, 2016), based on SmartWeb’s
iHub platform (Reithinger and Sonntag, 2005; Reithinger et al., 2005; Sonntag, 2010). With
MSP, we introduce a middleware (Feld et al., 2019) that eases the development of such dialogue
systems or similar applications that require real-time multimodal signal processing.

More closely related frameworks aim for synchronized processing of real-time sensor inputs in
the domain of multimodal user interaction. The Social Signal Interpretation (SSI) framework2

enables real-time recognition of social signals (Wagner et al., 2013). It supports a range of
sensors and provides a set of ready-to-use modules for, e.g., signal filtering, feature extraction,
and machine learning. Developers can add new components written in C++ or Python using
their application programming interface. The framework is actively maintained and licensed as
open source. NOVA is built on top of SSI and enables interactive data annotation using semi-
supervised active learning techniques (Heimerl et al., 2019; Baur et al., 2020). SSJ is an android
port of the SSI framework that enables real-time signal processing on mobile phones in the wild
(Damian et al., 2018). The open source Platform for Situated Intelligence (\psi) aims to support
the rapid development and study of multimodal, integrative AI systems (Bohus et al., 2021).
Similar to SSI, it provides a set of components for capturing and analyzing data streams from
multiple sensors that can be connected to versatile processing pipelines. Also, they offer a set
of tools for debugging, data visualization, annotation, and analysis. \psi is implemented in C#
and licensed as open source3. Unlike SSI and \psi, MSP comes with a concise set of concepts

1https://flink.apache.org/ (accessed on 12 Dec 2024)
2https://hcai.eu/projects/ssi/ (accessed on 12 Dec 2024)
3https://github.com/microsoft/psi (accessed on 12 Dec 2024)

https://flink.apache.org/
https://hcai.eu/projects/ssi/
https://github.com/microsoft/psi
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Figure 9.1: Architectural overview and programming interface of a general pipeline.

and functionalities only that ease the creation and execution of complex processing pipelines.
We leave the integration of sensors and the implementation of algorithms to the researchers and
developers of multimodal interfaces.

9.2 Implementation of the Multisensor-Pipeline

The multisensor-pipeline (MSP) is a framework for prototyping sensor-based user interfaces
based on real-time sensor input (Barz et al., 2021a). It enables researchers and developers
to build complex processing pipelines from existing or custom modules with a low overhead. A
pipeline consists of at least one source module, one sink module, and an arbitrary number of
processor modules which form a weakly connected, directed graph. A generic example is shown
in figure 9.1). Data frames originating from sources or processors flow along the directed edges
to connected processors or sinks. We released MSP as open-source software on GitHub4 which
can be installed from source or the official Python package index (PyPI) using the pip package
manager. Next, we describe the two main concepts of our framework, namely the module and
the pipeline, and a sample application based on MSP.

9.2.1 Modules

The module is a core concept of MSP, which is represented by the BaseModule class. A module
can be a source, processor, or sink by inheriting from the BaseSource, BaseProcessor, or
BaseSink class, respectively, each inheriting from the BaseModule class. The communication
between modules is realized using the observer pattern. As an example, figure 9.2 shows the
general architecture of a processor module, which combines the functionality of a sink and a
source. Source modules integrate sensors or other data sources, such as a camera or an eye
tracking device, and notify registered processors or sinks of new data samples. Processor modules
can subscribe to source modules and other processors. Processors consume and process incoming
real-time signals or events and notify their observers of the result. Sink modules can subscribe
to source modules and processors. Sinks only consume incoming data samples and, for instance,

4https://github.com/DFKI-Interactive-Machine-Learning/multisensor-pipeline
(accessed on 12 Dec 2024)

https://github.com/DFKI-Interactive-Machine-Learning/multisensor-pipeline
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Figure 9.2: Architectural overview and programming interface of a processor module.

visualize or store the received information. Each module offers a start() method, which calls
the on_start() method and starts the processing loop in a separate thread. The loop frequently
calls the on_update() method, which implements the event-handling logic of the module. It may
return None if no further action shall be triggered or an instance of MSPDataFrame to transmit
a data sample or an event. MSPDataFrame adds metadata to each data sample which can be
used by connected processors and sinks down the line: an obligatory timestamp, a unique name
describing the sample, and a data type. Received instances are buffered in a queue. If a sample
becomes obsolete because too many samples arrive or processing takes too long, it is removed
from the queue. Stopping a module can be initiated using its stop() method. It interrupts the
processing loop and triggers a call to on_stop(). The methods on_start() and on_stop() can
be used to manage the resources required at runtime. To avoid unresponsive behavior, large
resources like pre-trained deep learning models should be loaded in the __init__() method of a
module. A call to join() allows the calling thread to wait until the processing loop is stopped and
all resources are released. To implement a custom source, processor, or sink module, developers
must override the abstract methods of the respective base class.

9.2.2 Pipeline

Another core concept of MSP is the pipeline implemented by the GraphPipeline class. A
GraphPipeline instance is a handle to manage a processing pipeline and its modules. The
modules and connections between those are represented as a weakly-connected, directed graph.
The pipeline class offers functions to add modules in this graph as nodes and connections as
edges. This makes it easy to replace, reorder, or add modules to update the functionality of a
pipeline. For instance, a processor module that classifies images using a machine learning model
can be replaced by another module using a more advanced model. Likewise, a processor module
could be replaced during experiments to investigate the corresponding effect on the utility and
usability of a multimodal interface. The pipeline class also offers convenience functions to start,
stop, and join a processing pipeline. A call to the start() method triggers the on_start()
methods of all modules and starts their threaded processing loops. The pipeline runs until its
stop() method is called or until all subscribed sources send an end of stream control message.
In both cases, the main thread can wait until the pipeline stops using its join() method.
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Figure 9.3: Pipeline of our sample application with a source, two processors, and one sink module.

9.2.3 Sample Application

We demo the functionality of MSP by implementing a sample application using a mobile eye
tracker. This worked example is similar to the systems in chapter 8: It classifies objects fixated
by a user and shows the results as a video overlay in real-time. We implement four modules for
this application: an eye tracking source, an image cropping processor, an image classification
processor, and a video visualization sink. The corresponding graph is shown in figure 9.3.

The eye tracking source PupilLabsCore inherits from our BaseSource class to connect a Pupil
Labs Core mobile eye tracker. We use the networking API5 of their recording tool Pupil Capture
(Kassner et al., 2014) which provides real-time access to the eye tracking data. We connect
the video feed of the front-facing camera (30 Hz), the raw gaze signal (200 Hz), and recognized
fixation events. Typically, fixations last around 200 to 400 ms (Holmqvist and Andersson, 2017).
The image cropping processor CropByPointer inherits from the BaseProcessor class. It fuses
two input modalities, a video stream and a 2-dimensional signal that lies within the coordinate
system of the video frames. The processor crops an image patch of a configurable size around
each new point using the latest available image frame. In our example, both signals originate
from the eye tracking source. We crop quadratic image patches with an edge length of 200 pixels
which turned out to work well in a similar scenario (Barz et al., 2021b). The image classification
processor TfHubImageClassifier is a wrapper around TensorFlow Hub6 which provides access
to a range of pre-trained machine learning models. It connects image classification models that
are pre-trained on the ImageNet dataset (Russakovsky et al., 2015). Inference runs on the local
CPU or GPU using a downloaded structure and weights of a model. The model can be set using
the URLs from TensorFlow Hub. We use a pre-trained7 ResNet-50 (He et al., 2016) model in
our example. Eventually, the module annotates image patches with the top-k class labels and
their probabilities (k is configurable and set to 5 in our example). The images originate from
the image cropping processor. The video visualization sink VideoLabelsVisualizer consumes
four input streams: a video stream, a 2D signal for gaze samples and one for fixation events, and
the image classification output, including an image patch and corresponding class labels with
probabilities. For each incoming video frame, we visualize the most recent eye movement data
and classification results as an overlay and render the new image to a window on the screen (see
figure 9.4). The input comes from the eye tracking source and the image classification processor.

5https://docs.pupil-labs.com/core/software/pupil-capture/#network-plugins (accessed on 12 Dec 2024)
6https://www.tensorflow.org/hub (accessed on 12 Dec 2024)
7https://tfhub.dev/google/imagenet/resnet_v2_50/classification/5 (accessed on 12 Dec 2024)

https://docs.pupil-labs.com/core/software/pupil-capture/#network-plugins
https://www.tensorflow.org/hub
https://tfhub.dev/google/imagenet/resnet_v2_50/classification/5
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Figure 9.4: Screenshot of the visualization sink of our sample application. The user’s recent gaze
(red dot) and fixation point (green circle) are on a loudspeaker, which is the top-1 prediction for the
corresponding image patch (upper left).

9.3 Discussion

Our sample application shows that MSP can be used to prototype multimodal-multisensor inter-
faces effectively. Our framework is flexible and extensible due to its module-based architecture
and because it is implemented in Python, which provides cross-platform support and access to
a broad range of data science and machine learning tools maintained by an active community.
A processing pipeline can easily be changed by rearranging existing modules and extended by
adding new ones. For instance, we developed four new modules for the example above: one inte-
grates an eye tracking sensor, and one facilitates access to image classification models from the
tensorflow-hub model zoo. A web-based frontend could easily replace the current visualization
sink. Likewise, other researchers might contribute to the module ecosystem of the open-source
MSP framework. MSP is lightweight because it has only a few dependencies, which enables a
quick installation process and simplifies the integration into other software projects. We limit
MSP to a concise but powerful set of concepts and functionalities: module instances can be
connected to a processing pipeline with convenient functions for starting and stopping them.
Implementing modules and connecting them to a functioning pipeline are left to researchers and
developers. We offer a selection of basic modules, such as a webcam source, a video output sink,
and sample pipelines in our test suite.

The development of MSP incorporates our experience from implementing several real-time
gaze-based interfaces presented in this thesis. For instance, our experience with implementing
error-aware gaze-based interfaces in chapter 4 was a cornerstone for the development of MSP.
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Further systems were based on MSP. For instance, in section 8.1, it was used to implement a
system for automatic detection and annotation of visual attention to areas of interest (Barz and
Sonntag, 2021). In section 8.2.4, we implemented an augmented reality system that classifies
fixated objects and augments the real objects with virtual labels that stick to them in real-time
(Barz et al., 2021b). We integrated Microsoft’s HoloLens 2 with an integrated eye tracking sensor
as an MSP source module using the augmented reality eye tracking framework ARETT (Kapp
et al., 2021). In chapter 7, MSP was used to implement the study software for collecting gaze
data from participants during a stationary reading task (Barz et al., 2022).

Nevertheless, some limitations remain, mainly related to multiprocessing, networking capa-
bilities, and data synchronization. For instance, MSP offers a wrapper that starts a module
in a separate process, enabling the execution of a processing pipeline across multiple physical
CPU cores. However, the current method for inter-process communication is not efficient and is
limited to transferring basic datatypes and numpy arrays (Harris et al., 2020). Another limita-
tion arises from MSP’s networking support: dataframes can be streamed via a network using its
networking sink and source modules. However, each pipeline must be started separately to run
a processing pipeline across multiple computers in a local network. Like multiprocessing, the
transfer of dataframes via a network suffers from the inefficient serialization approach. Another
limitation is the simplistic approach to data stream synchronization. Currently, modules drop
outdated samples to avoid the propagation of delayed messages. We plan to address these limita-
tions in future MSP releases. For instance, we plan to enable better support for multiprocessing
by integrating efficient and fast inter-process communication for dataframes. Further, we aim to
integrate more advanced data synchronization methods and multimodal data fusion approaches.
This could be realized through custom processor modules or by extending the BaseSink class
accordingly. Eventually, we aim to extend MSP so developers can effectively develop intelligent
user interfaces as outlined in section 10.2.
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Chapter 10

Towards a Framework
for Eye Tracking
in Intelligent User Interfaces

Intelligent user interfaces (IUIs) (see section 1.1.2) are “human-machine interfaces that aim to im-
prove the efficiency, effectiveness, and naturalness of human-machine interaction by representing,
reasoning, and acting on models of the user, domain, task, discourse, and media” (Maybury and
Wahlster, 1998, p. 2). Building an IUI means not only making use of technologies and methods
from human-computer interaction, multimodal-multisensor interfaces, and artificial intelligence
to reach that goal, but also considering “the design of interaction and the design of intelligent
algorithms as interrelated parts of a single design problem” (Jameson et al., 2009, p. 11), also
known as the binocular view. In this section, we relate the contributions of this thesis, i.e., the
developed eye tracking methods and technologies, to the main building blocks of an IUI. We
briefly explain the role of each building block and discuss how our contributions relate to them.
In addition, we outline how MSP could be extended toward a framework for implementing gaze-
based intelligent user interfaces, i.e., how it can be extended towards a framework for gaze-based
multimodal interaction.

10.1 Relation of the Presented Methods to IUIs

All methods and approaches presented in this thesis can be used in at least one of the main
building blocks of an IUI. The main building blocks include Input Processing & Media Analy-
sis, Interaction Management, Output Rendering & Media Design, User & Context Models, and
External Services (see figure 1.1, (Maybury and Wahlster, 1998; Zacharias et al., 2018)). In
the following, we discuss how the contributions from this thesis relate to these main building
blocks. We developed two methods for active gaze-based interaction and three approaches for
passively interpreting the human gaze signal. In this section, we briefly recap our contributions
and explain how the resulting methods and approaches can be used in IUIs. This includes two
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contributions concerning gaze being used as an active input modality presented in part II and
three contributions concerning gaze being used as a passive input modality presented in part III.

10.1.1 Human Gaze as an Active Input Modality

We addressed the problem of gaze estimation errors that can severely hamper the effectiveness
and usability of active gaze-based interaction in part II.

• We presented a new class of gaze-based interfaces in chapter 4, namely error-aware gaze-
based interfaces that incorporate the inevitable gaze estimation error. We implemented
and evaluated methods for modeling the error via machine learning and used it for real-
time error-adaptive object selection with a monocular head-mounted eye tracker. The gaze
estimation error models relate to the User & Context Models block. They provide real-time
information about how precise and accurate the gaze signal is. This was used to adjust
the gaze signal based on the predicted offset in our PredictiveShift method and relates to
the Input Processing & Media Analyis block. Using a presenter to trigger the selection
of a fixated button counts as a modality fusion and can also be assigned to this block.
Further, we used the error information to scale buttons in a user interface in real-time
to improve the selection rate related to the presentation design part of the Interaction
Management block and the Output Rendering & Media Design block. Accordingly, the
software architecture for error-aware gaze-based interfaces presented in section 4.1 can be
seen as an implementation of the generic IUI architecture introduced in figure 1.1.

• We implemented and evaluated an approach for calibration-free authentication (PIN entry)
based on saccadic eye movements, called EyeLogin, in chapter 5 using a remote eye tracker.
Using relative eye movements is less dependent on accurate and precise gaze estimation
and enables spontaneous interaction with situated displays. In this case, the intelligence
lies on the input side and, hence, can be assigned to the Input Processing & Media Analyis
block. However, it also requires a specific interface design and layout, which counts towards
Output Rendering & Media Design.

10.1.2 Human Gaze as a Passive Input Modality

We presented several techniques for interpreting eye movements in the context of passive gaze-
based interaction in part III. We investigated approaches for three scenarios: visual search,
information retrieval by reading texts, and general scene perception.

• We investigated whether eye tracking can infer the target in a visual search process in
chapter 6. We developed novel encoding methods for scanpaths based on a sequence of
fixated visual stimuli in a scene and investigated their influence on the effectiveness of
models for inferring the search target. Our work mainly relates to the User and Context
Models block because we focused on the modeling aspect, i.e., we aimed to create a model
that keeps track of which object a user was looking for. It also connects to the Input
Processing & Media Analyis block because it analyzes the gaze signal of users for that
purpose. However, we did not address the utilization of this model. This requires further
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investigations, including detecting when a visual search occurs to activate search target
inference. Further, how knowledge about the search target can improve the interaction
should be investigated. This would affect the blocks Interaction Management and Output
Rendering & Media Design.

• We investigated whether the perceived relevance of a paragraph can be inferred using a
user’s eye movements when reading it as input in chapter 7. We conducted a user study
(n=24) in which participants read single- and multi-paragraph articles and rated their
relevance at the paragraph level concerning a trigger question. Our models were trained
using data from this study. This work also focused on the modeling aspect and, hence,
mainly relates to the User and Context Models block and the Input Processing & Media
Analyis block because the gaze signal is analyzed. Similar to our approaches for search
target inference, we did not focus on the utilization aspect, which leaves investigations on
how to use the relevance signal in Interaction Management and Output Rendering & Media
Design as tasks for future work.

• We developed two methods for automatically detecting visual attention to ambient objects
using head-mounted eye trackers in combination with pre-trained computer vision models
in chapter 8. We investigated their effectiveness for the automatic annotation of mobile eye
tracking data from diagnostic user studies, i.e., for automatic mapping of fixations to areas
of interest of that study. Further, we developed an interactive machine learning interface
called EyeNotate that enables semi-automatic annotation of mobile eye tracking data based
on few-shot image classification in section 8.2. It addresses the limited flexibility and accu-
racy when using pre-trained models. First of all, EyeNotate is an IUI that supports users
in annotating eye tracking data. It interprets user annotations through the web frontend
as a supervision signal and uses it to train an image classification model. This model is
then applied to provide annotation suggestions to the user. The architecture of the Eye-
Notate system is shown in figure 8.9. EyeNotate uses a web-based frontend in the Input
Processing & Media Analyis block to collect initial training data for an AI-based support
system. Model training and inference can be seen as part of the User and Context Mod-
els or the External Services block. Interpreting the human input as a supervisory signal,
managing when re-training of models is triggered, and when inference is applied belongs
to the Interaction Management block. The data and annotation visualization aspects of
the frontend count towards the Output Rendering & Media Design. The fixation to object
mapping models that result from interacting with the EyeNotate system can also be used in
other contexts, such as attention-aware interfaces. One example is shown in section 8.2.4:
we display which objects have been fixated for how long in an augmented reality setting.
This example shows how to use the models in real-time for input processing (Input Pro-
cessing & Media Analyis) with immediate feedback (Output Rendering & Media Design).
However, it is still an open question how the information can facilitate an attention-aware
user interface that increases the efficiency, usability, or utility for users.
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10.2 Using MSP for Gaze-based Multimodal Interaction

In this section, we describe how MSP can be extended towards a framework for gaze-based mul-
timodal interaction. The contributions of this thesis revolve around the concept of gaze-based
multimodal interaction, which has been introduced in section 1.1. It draws inspiration from
the design space for gaze-informed multimodal interfaces introduced by Qvarfordt (2017). It
uses two dimensions for classifying gaze-based interactive systems: interaction can be rated on
a continuum from active to passive and from stationary to mobile. We named these dimensions
the awareness level and the mobility level, respectively (see section 1.1.3). We concretized that
the awareness level is strongly related to the concept of multimodal-multisensor interfaces be-
cause it rates whether gaze is used in an active or passive input mode (see section 1.1.1). The
mobility level rates the level of freedom during the interaction, which also depends on the type
of eye tracker used. It can be either remote or head-mounted (see section 2.2.1). Gaze-based
interaction technologies can also be used in the context of intelligent user interfaces, which have
been introduced in section 1.1.2. In the previous section, we outlined how the methods and ap-
proaches presented in this thesis relate to IUIs. This shows that the generic architecture of IUIs
is also a suitable tool for planning and implementing gaze-based multimodal interfaces. How-
ever, this architecture is an abstract and theoretic framework that leaves many open questions
about how to implement a concrete system. With MSP, we presented a lightweight, flexible,
and extensible framework for prototyping multimodal-multisensor interfaces based on real-time
sensor input like gaze from eye trackers (see chapter 9). It enables researchers and developers to
easily build and adapt stream processing pipelines by connecting existing or custom modules: it
allows them to easily integrate multiple sensors or other data streams via source modules, to add
stream and event processing capabilities via processor modules, and to connect user interfaces
or databases via sink modules in a graph-based processing pipeline. However, it does not fulfill
all the requirements for implementing an IUI.

Next, we describe how MSP can be used as is to implement an IUI and identify the current
shortcomings. We then outline how these can be overcome to extend MSP to a framework for
implementing IUIs and gaze-based multimodal interfaces. Hereby, we refer to the main building
blocks of an IUI, including Input Processing & Media Analysis, Interaction Management, Output
Rendering & Media Design, User & Context Models, and External Services (see figure 1.1).

10.2.1 Input Processing & Media Analysis

MSP is optimized for the real-time acquisition and processing of sensor data. MSP offers the
tools for integrating any input device or sensor via source modules and options for pre-processing,
fusing, and analyzing data streams using custom processor modules in its directed graph-like
pipeline structure (see section 9.2). Some standard input devices and sensors are supported
by default, including a keyboard, mouse, microphone, and camera. Further devices or sensors
can be integrated by inheriting from the base class for source modules BaseSource. Data pro-
cessing functionality and signal interpretation logic must be implemented in custom processor
modules, which can be achieved by inheriting from the corresponding base class for processors
BaseProcessor. These modules can then be composed into a pipeline that manages the life-
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cycle of each module during runtime and the order in which data from source modules passes
through processing modules. In summary, MSP provides a good basis for implementing the
Input Processing & Media Analysis block of an IUI. Specific functionalities like connecting new
sensors or integrating specific modality fusion algorithms must be implemented. However, this
was the intention behind MSP, which is an open-source middleware for prototyping multimodal-
multisensor interfaces that allow the research community and practitioners to contribute addi-
tional functionality by implementing and sharing new modules. Examples of such new modules
are described in the sample application in section 9.2. These include the PupilLabsCore source
module that connects a head-worn eye tracker, providing real-time gaze and camera streams, and
the CropByPoint processor module that crops small image patches from the video stream around
the most recent point of gaze. Known limitations that affect this building block are the simplistic
approach to datastream synchronization and the unavailability of ready-to-use modality fusion
algorithms. To ease the implementation of multimodal data processing in IUIs, we aim to add
this functionality in future revisions of MSP.

10.2.2 Interaction Management

MSP has no dedicated concept to implement the Interaction Management block. Currently,
interaction management can be implemented through custom processor or sink modules that
retrieve all required input and sensor information to control the visualization and, by that,
interaction options. MSP is also decoupled from established UI frameworks such that direct
manipulation of traditional UIs would be difficult. Future versions of MSP should offer better
integration with established UI frameworks like Qt for Python1 for desktop-based interfaces or
Unity2 for 3D and mixed reality interfaces.

10.2.3 Output Rendering & Media Design

MSP modules are connected in a directed graph-like structure, which allows developers to add
an arbitrary number of sink modules for various presentation purposes. Each sink module is
implemented by inheriting the corresponding base class BaseSink. Processor modules that are
connected upstream of sink modules allow the output to be prepared and scheduled according
to the demands of the interactive system. With this basic functionality, MSP enables versatile
options for output rendering and media design. However, these would be hardwired once a
pipeline is started, limiting flexibility. Currently, MSP does not support hot-swap options, i.e.,
it does not allow the exchange of modules during execution. Further, there is no global timer
that would enable a global synchronization of presentations. However, this would be essential for
multimodal output generation. Future work should investigate how global synchronization could
be realized, which could also facilitate better data stream synchronization on the input side.
An example sink module for the Output Rendering & Media Design block can be found in the
VideoLabelsVisualizer in section 9.2 which renders the video stream of the head-mounted eye
tracker and overlays it with a pointer for the gaze signal and the output of an image classification
model that predicts what the user is looking at.

1https://doc.qt.io/qtforpython-6/ (accessed on 21 Nov 2024)
2https://unity.com/ (accessed on 21 Nov 2024)

https://doc.qt.io/qtforpython-6/
https://unity.com/
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10.2.4 User & Context Models

MSP enables real-time processing of sensor and input device data streams. Individual modules
that analyze and interpret data streams can build up local histories about, e.g., identified events
in the data, and further processing can depend on this history. Modules can also save and
load such histories. However, each module is responsible for its own local history, and there is
no good option to share histories with other processors in a pipeline. To realize effective user
and context models, a global option for creating, storing, and sharing models is required but
is currently not supported by MSP. This is an important requirement for the next version of
MSP because all building blocks besides External Services might benefit from or even require
additional context information. An option to realize global user and context models would be to
hand over a reference to a central context component to every module when starting a pipeline.
This component would then be responsible for model acquisition, tracking, and utilization. It
should offer a corresponding programming interface such that each module in a pipeline can
provide data for creating or improving models, and make use of available models. This would,
for instance, allow the implicit creation of user preference models from sensor data on the input
side and their application for individualized visualizations on the output side.

10.2.5 External Services

External services can be integrated into any kind of module, including source, processor, and
sink modules. One example is the TfHubImageClassifier processor module that integrates
image classification models from the tensorflow-hub platform (see section 9.2). In this case, the
connected library downloads and caches a model locally. This comes with the advantage that
model inference runs locally, which causes no issues with network delays or data synchronization.
On the other hand, this option requires GPU hardware for fast inference on the client side. Cloud-
based execution of the inference step would not require local GPU hardware but might come
with delays because image data must be passed to the server. In a similar way, almost every
web service could be connected to an MSP module. Examples include knowledge graphs like
ConceptNet3. Meanwhile, there is also a broad range of AI-powered APIs to consider, including,
e.g., recently launched services based on large language models like OpenAI’s ChatGPT4 and
Google’s Gemini5.

3https://conceptnet.io/ (accessed on 21 Nov 2024)
4https://openai.com/index/introducing-chatgpt-and-whisper-apis/ (accessed on 21 Nov 2024)
5https://ai.google.dev/ (accessed on 21 Nov 2024)

https://conceptnet.io/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://ai.google.dev/
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Chapter 11

Contributions & Outlook

In this thesis, I developed new methods to enable effective and efficient gaze-based multimodal
interfaces. In part I chapter 1, I motivated the use of gaze as active and passive input modality for
intelligent user interfaces, outlined the related challenges, and presented the considered research
questions around the main research question “How can we enable effective and efficient gaze-
based user interfaces and their development?” In section 1.1, I drew the connection between eye
tracking, gaze-based interaction, multimodal-multisensor interfaces (MMI), and intelligent user
interfaces (IUI): I introduced gaze-based multimodal interaction as a superclass of all presented
interaction techniques in this thesis. It is based on the design space for gaze-informed multi-
modal interfaces by Qvarfordt (2017), which declares two dimensions for classifying gaze-based
interfaces. Interaction can be rated on a continuum from active to passive and from stationary to
mobile. I named these dimensions the awareness level and the mobility level (see section 1.1.3). I
concretized that the awareness level is strongly related to the concept of multimodal-multisensor
interfaces because it rates whether gaze is used in an active or passive input mode (see sec-
tion 1.1.1). The mobility level rates the level of freedom during the interaction, which also
depends on the type of eye tracker used. It can be either remote or head-mounted (see sec-
tion 2.2.1). I also drew the connection to IUIs, which, by definition, can incorporate multimodal
and gaze-based interaction techniques, to improve human-machine interaction. In chapter 2,
I introduced the relevant background, including important details on the human eye and eye
movements and their relation to human visual attention processes. Further, I introduced how
eye trackers work and basic information on related data analysis techniques, including signal pre-
processing and eye movement detection. I also raised awareness for ethics and privacy issues that
come with processing data from eye trackers in section 2.3. I reported about our contributions
in parts II to IV. I contributed by developing two methods for active gaze-based interaction and
three approaches for passively interpreting the human gaze signal. Next, I summarize the main
contributions and our efforts towards creating a framework for gaze-based multimodal interaction,
i.e., towards enabling effective and efficient gaze-based user interfaces and their development.
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11.1 Human Gaze as an Active Input Modality

In part II, I investigated the research question “How can the negative impact of gaze-estimation
errors on gaze-based interaction be reduced when gaze is used as an active input modality?”.
I addressed the problem of gaze estimation errors that can severely hamper the effectiveness
and usability of active gaze-based interaction. I presented a framework for handling the
gaze estimation error in head-mounted eye tracking and developed a calibration-free interaction
technique for remote eye trackers that does not rely on accurate gaze estimates:

11.1.1 Error-aware Gaze-based Interaction

We presented a new class of gaze-based interfaces in chapter 4, namely error-aware gaze-based
interfaces that incorporate the inevitable gaze estimation error. We implemented and evaluated
methods for modeling the error via machine learning and used it for real-time error-adaptive
object selection with a monocular head-mounted eye tracker. This approach has the potential
to outperform state-of-the-art gaze selection methods in terms of selection performance with
competing target sizes. The results of our experiments show the advantages of an error-aware
gaze-based interface, relying on gaze shifting and personalized training with a predictive model
in terms of selection performance and target sizes.

We plan to further develop the concept of error-aware gaze-based interaction in future work,
because our findings are currently limited to a single eye tracking device and an adaptive user
interface with a single button. We plan to develop and evaluate new adaptive user interfaces that
dynamically distribute interface elements based on their size and on the error to be expected in
each area of the interface. For instance, small buttons could be located in low-error regions, while
large buttons could be located in more distant regions. This could be particularly effective for
mixed reality interfaces that allow more dynamic interfaces that settings with a single display.
In addition, we want to investigate to what extent error models can help to evaluate static
gaze-based interfaces without involving users. Pre-trained error models could be used to infer
potential success rates for object selection and manipulation based on the respective interface
layout for all possible user positions. Such simulation-based interface assessments are quick and
cheap and would allow front-end developers to improve gaze-based interfaces before going into
expensive user testing. This also requires effective and efficient training of error models for new
eye trackers. We aim to automate the model training based on data from standard calibration
routines and from gaze-based interaction. For instance, selection and manipulation via gaze and
detection of smooth pursuits caused by moving on-screen objects could be used for this purpose.

11.1.2 Calibration-free Gaze-based Interaction

We implemented and evaluated EyeLogin, an approach for calibration-free authentication (PIN
entry) at public displays based on saccadic eye movements from a remote eye tracker in chapter 5.
It is less affected by gaze estimation errors because it is based on the interpretation of relative
eye movements similar to gesture recognition. In a user study, we could show that our method
EyeLogin performs significantly faster and significantly more accurate than CueAuth, a state-
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of-the-art gaze-based authentication method based on smooth pursuit eye movements (Khamis
et al., 2018b). EyeLogin is the first calibration-free authentication method using gaze that is
on par with less secure input modalities such as touch- and gesture-based input in terms of
effectiveness and efficiency.

However, EyeLogin still has limitations that would affect usability and utility in real appli-
cations. To avoid Midas’ touch problem, users must press a key to start the interaction. While
this is possible in many scenarios, such as withdrawing money from ATMs, some advantages, like
better hygiene, vanish. Future research should investigate which additional input modalities can
help to overcome this problem. Another limitation is the lack of options to recover from errors
such as entering a wrong PIN. We identified gaze-enabled lock patterns as a promising direction.
In addition, it would be interesting to investigate whether the gaze signal from a calibration-free
authentication procedure, which naturally occurs at the beginning of a user-system interaction,
can be used to calibrate an eye tracker for more fine-grained gaze-based interaction, including
selection and manipulation of objects. It could also be investigated whether the input of a cali-
bration routine could be used to calibrate an error model for error-aware gaze-based interaction
as described in chapter 4.

11.2 Human Gaze as a Passive Input Modality

In part III, I investigated the research question “How can we build effective machine learning
models for interpreting human eye movements in the context of passive gaze-based interaction?”
to address the challenge of building effective and generalizable machine learning models in the
context of passive gaze-based interaction. I presented several techniques for interpreting
the human gaze signal using machine learning for three use cases: inferring the search target of
a visual search, estimating the perceived relevance of a text that has been read by a user, and
semi-automatic detection of visual attention to areas or objects of interest.

11.2.1 Inferring Visual Search Targets

We investigated whether eye tracking can be used to infer the target in a visual search process
in chapter 6. We developed two novel encoding methods for scanpaths based on a sequence of
fixated visual stimuli in a scene and investigated their influence on the effectiveness of mod-
els for inferring the search target. Our experiments were based on two datasets, including eye
movements from visual search tasks captured using remote eye trackers and video stimuli in
constrained and natural interaction settings. First, we introduced the Bag of Deep Visual Words
method for integrating learned features for image classification in the popular Bag of Words se-
quence encoding algorithm for the purpose of search target inference. An evaluation showed that
our approach performs better than similar approaches from the literature (Sattar et al., 2015),
in particular, when excluding fixations on the visual search target, which would be essential for
real applications. The findings of this experiment are limited to the domain of the dataset, which
includes collages of book covers similar to online shopping scenarios. In a second experiment,
we investigated whether search target inference could be used in less constrained settings. We
proposed a segmentation-based approach that infers the image segment that contains the search
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target instead of the target itself. We compared the performance of three different methods
for visual search encoding using this principle: one based on the previously introduced BoDVW
encoding as a baseline, the HoFIS encoding that reflects segment classes fixated during a visual
search, and a concatenation of them. Our evaluation showed that our new encoding achieves a
significantly better classification accuracy than the compared methods.

Our research confirmed that the inference of visual search targets using machine learning
approaches works better than random guessing in constrained settings. With our segmentation-
based approach, we showed that spatial accuracy can be traded against inference performance.
However, there are still several limitations that require further development and investigation
until search target inference can be applied in real applications. The scenarios considered are still
limited: We used pictures with gaze recordings from a lab study rather than videos with gaze
recordings from real use cases. Further, our approaches take visual search sequences as input,
i.e., they assume that the start time and duration of a visual search process are known, which
is not the case in realistic interaction scenarios. Hence, future research should investigate how
the onset of visual search processes could be detected. Lastly, the prediction performance is too
low to enable effective end-user applications. Future work should also focus on building more
effective models. This likely includes collecting more and more diverse data for model training
to improve prediction performance and generalizability.

11.2.2 Estimating Document Relevance

We investigated whether the perceived relevance of a paragraph can be inferred using a user’s eye
movements when reading it as input in chapter 7. We investigated whether we can confirm the
findings from Bhattacharya et al. (2020a) that gaze-based features can be used to estimate the
perceived relevance of short news articles read by a user. Further, we investigated whether the
approach can be applied to multi-paragraph documents that require the user to scroll down to see
all text passages. For this, we conducted a user study with n=24 participants who read documents
from two corpora, one including short news articles and one including longer Wikipedia articles
in English, and rated their relevance at the paragraph level with respect to a previously shown
trigger question. We used this data to train and evaluate machine learning models that predict
the perceived relevance at the paragraph level using the user’s eye movements as input. Our
results showed that even though we achieved lower model performance scores than Bhattacharya
et al. (2020a), we could replicate their findings under the same experiment conditions: eye
movements are an effective source for estimating the perceived relevance of short news articles if
we leave out articles that are on the topic but irrelevant. However, we could not show that the
approach generalizes to multi-paragraph documents. For both document types, the best model
performance was observed when using over-sampling and feature scaling on the training data and
a support vector classifier with an RBF kernel for classification, in particular for cases where the
users’ perceived relevance matched the ground truth from the document corpora. We published
our new gazeRE dataset and our code for feature extraction under an open-source license on
GitHub1 to enable other researchers to replicate our approach and to implement and evaluate
novel methods in the domain of gaze-based implicit relevance feedback.

1https://github.com/DFKI-Interactive-Machine-Learning/gazeRE-dataset (accessed on 25 Nov 2024)

https://github.com/DFKI-Interactive-Machine-Learning/gazeRE-dataset


11.2. HUMAN GAZE AS A PASSIVE INPUT MODALITY 187

Future research should aim to overcome the low estimation performance and the restriction
to a single text layout to enable intelligent user interfaces that take into account whether a
read text was perceived as relevant or not. Researchers could investigate the effectiveness of
scanpath encodings based on graph neural networks (GNNs) (Mohamed Selim et al., 2024) or
CNNs (Castner et al., 2020; Bhattacharya et al., 2020b).

11.2.3 Visual Attention Modelling

In this thesis, we investigated approaches for semi-automatic mapping of fixations to AOIs,
which can enable efficient analysis and interpretation of humans’ complex interaction behavior in
chapter 8. In the first step, we developed and evaluated two methods for automatically detecting
visual attention to ambient objects based on pre-trained computer vision models in section 8.1.
We investigated their effectiveness for the automatic annotation of mobile eye tracking data from
diagnostic user studies, i.e., for automatic mapping of fixations to areas of interest of that study.
For this, we defined an evaluation framework based on the VISUS dataset by Kurzhals et al.
(2014a) and identified four challenges for methods that map gaze to AOIs. Overall, our methods
performed well for AOIs that directly matched a class of the pre-trained model. However, we also
identified limitations that prevent accelerating and objectifying AOI annotation in eye tracking
research: mapping performance decreases when AOIs have no direct match with a class of the
pre-trained model, when two instances of the same concept cannot be disambiguated, or when
gaze estimation errors occur. Further, we developed the interactive machine learning interface
eyeNotate that enables semi-automatic annotation of mobile eye tracking data based on few-shot
image classification with the goal of addressing the limited flexibility and accuracy when using
pre-trained models. The results of a case study confirmed that eyeNotate effectively enables
fixation-to-AOI mapping: users liked the basic functionality and interaction design, and the
validity and reliability of users’ annotations were high. However, we observed that providing
AOI label suggestions in the IML-support version did not increase the efficiency, likely because
of performance issues of the model that led to low trust in our target users. Still, our results
suggested that FSL bears great potential for initiating interactive data annotation. We identified
constrained model performance as the main hindering factor, especially problems with similar-
looking AOIs. We also demonstrated that our technology can be used in real-time interactive
systems: We developed a real-time AR system that augments the user’s field of view with
information on recently attended objects using Microsoft HoloLens 2.

The main limitation of our fixation-to-AOI mapping systems is that the object classification
and image classification models at the basis cannot differentiate two instances of the same con-
cept. Hence, future research should focus on the development of more sophisticated approaches
that can cope with the dynamic and complex nature of mobile eye tracking data, for instance,
using multi-object tracking, 3D reconstruction methods (Kopácsi et al., 2023), and graph neural
networks (Le et al., 2025), that allow for better disambiguation of object instances. Further, it is
important to investigate and better understand the role of humans in interaction with machine
learning algorithms (see section 11.4.4). The interaction design will differ and, hence, should be
optimized depending on the individual preferences and the use case at hand. Another focus on
future research should lie on applications of fixation-to-AOI mapping algorithms. In the health-
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care domain, the recognized sequence of visual attention events can be used to support patients
with mental diseases such as dementia by complementing missing parts of their episodic mem-
ory (Orlosky et al., 2014; Sonntag, 2015) or to provide AR-based decision support for doctors
(Sonntag, 2014). The education domain can also benefit from this technology. For example, it
could be used for eye-tracking-based learning support leveraging multimedia effects (Alemdag
and Cagiltay, 2018). In the context of experiment-based learning, augmented reality has recently
gained increasing interest (Thees et al., 2020; Kapp et al., 2020), but current approaches are lim-
ited to stationary settings and are unable to integrate eye tracking data in real-time feedback
and support. Another use case in education is Multimodal Learning Analytics (MLA). The goal
of MLA is to track the learning process using multiple sensor streams and interaction modali-
ties as input to better understand the complex nature of how students learn (Blikstein, 2013;
Oviatt, 2018). The technology can also be used to drive innovation in other domains. Examples
include but are not limited to, gaze-based symbol grounding (Mehlmann et al., 2014; Ijuin et al.,
2019; Barz et al., 2017) and language learning (Matuszek, 2018) in speech-based human-robot
interaction or pervasive attentive user interfaces (Bulling, 2016).

11.3 Gaze-based Multimodal Interaction Framework

In part IV, I described our efforts toward building a framework for gaze-based multimodal inter-
action, corresponding to the partial research question “How can we effectively design and develop
gaze-based interaction systems?” The methods presented in parts II and III play a vital role be-
cause every contribution adds more knowledge to the field of gaze-based interaction and, hence,
gaze-based interfaces closer to the consumer market. With the multisensor-pipeline (MSP), I in-
troduced a practical framework for prototyping related multimodal-multisensor interfaces based
on eye trackers (see chapter 9). Further, I discussed how eye tracking can be used in intelligent
user interfaces and proposed to extend MSP towards a framework for gaze-based multimodal
interaction that also supports features from intelligent user interfaces (see chapter 10).

11.3.1 Multisensor-Pipeline (MSP)

In chapter 9, we presented the multisensor-pipeline (MSP), a lightweight, flexible, and extensible
framework for prototyping multimodal-multisensor interfaces based on real-time sensor input like
gaze from eye trackers. Its modular and graph-based architecture allows researchers and develop-
ers to intuitively build, adapt, and extend stream and event processing pipelines in Python. We
demonstrated the effectiveness of MSP by implementing a sample application that crops image
patches around a user’s fixation point, classifies these patches using a pre-trained deep learning
model, and visualizes the results as a real-time video overlay. Our framework can be used to
drive future research in multimodal-multisensor user interaction. We plan to enhance the utility
of our framework by finalizing the networking and multiprocessing modules, integrating more
advanced data synchronization techniques, and adding a dashboard for intuitive debugging and
monitoring of processing pipelines. We further discussed the relation to methods and approaches
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presented in this thesis. MSP was published under an open-source license on GitHub2. We
described the framework, showcased how it can be used to implement gaze-based multimodal
interaction and discussed the relation to methods and approaches presented in this thesis.

11.3.2 Eye Tracking in Intelligent User Interfaces

In chapter 10, we discussed how the human gaze could be used in intelligent user interfaces by
relating the eye tracking methods and approaches presented in this thesis to its main building
blocks, including Input Processing & Media Analysis, Interaction Management, Output Rendering
& Media Design, User & Context Models, and External Services (see section 1.1.2). Further, we
outlined how MSP can be extended toward a framework for implementing gaze-based intelligent
user interfaces, i.e., how it can be extended towards a framework for gaze-based multimodal
interaction. We discussed, for each of the building blocks, how MSP can be used in its current
form or how MSP would need to be extended to fulfill the corresponding requirements.

11.4 Relation to Research Projects

This thesis is related to past and ongoing research projects of the Interactive Machine Learning
department3 at the German Research Center for Artificial Intelligence (DFKI) supported by
national or European funding agencies. These include two completed projects sponsored by
the German Federal Ministry of Education and Research, the Bundesministerium für Bildung
und Forschung (BMBF): The projects GeAR4 (Oct 2018 to Sep 2022) and SciBot (Jan 2019 to
Dec 2020). Another related project that is currently sponsored by BMBF is No-IDLE (Sonntag
et al., 2024) (Apr 2023 to Mar 2026). One ongoing related project, which is sponsored by the
European Union (Jan 2023 to Jun 2026), is MASTER5 (Barz et al., 2024b). In the following, I
briefly introduce each project and describe how the contributions of this thesis are related.

11.4.1 GeAR

GeAR was a joint research project on empirical educational research with three partners: Saar-
land University, Kaiserslautern University of Technology, and DFKI. The aim was to analyze
how using AR changes the receptive and productive learning behavior of students. This included
identifying requirements for a successful application of AR technology in schools. Studies took
place in student laboratories where learners of different ages (primary, lower, and upper sec-
ondary education) were performing experiments in the area of electricity. Tablets and smart
glasses were applied to realize AR from a technical point of view: the goal was to augment the
learners’ visual reality with supplementary digital information (e.g., symbols, measuring data)
based on AR technology. Multimodal assessments of learning processes and products, as well
as multisensory assessments of cognitive load, were used to compare AR learning conditions to

2https://github.com/DFKI-Interactive-Machine-Learning/multisensor-pipeline
(accessed on 22 Nov 2024)

3https://www.dfki.de/iml (accessed on 16 Dec 2024)
4https://digi-ebf.de/gear (accessed on 16 Dec 2024)
5https://cordis.europa.eu/project/id/101093079 (accessed on 27 Nov 2024)

https://github.com/DFKI-Interactive-Machine-Learning/multisensor-pipeline
https://www.dfki.de/iml
https://digi-ebf.de/gear
https://cordis.europa.eu/project/id/101093079
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control groups. Finally, proven experts were invited to assess the overall results of the research
project regarding the opportunities to implement AR in future school learning.

Our role in the project was to develop novel technologies for multimodal learning analytics
based on eye tracking and digital pens. In this context, we developed (interactive) fixation-
to-AOI mapping algorithms that can help in analyzing and understanding data from studies
based on head-mounted eye trackers. These technologies were presented in this thesis in part III,
chapter 8 on visual attention modeling. We further investigated how visual search targets could
be inferred with the goal of supporting learners in lab-based learning environments when they
are searching for learning materials. This work was presented in part III, chapter 6 on inferring
visual search targets. We also developed the novel calibration-free active gaze-based interaction
method EyeLogion based on saccadic eye movements that could reduce the extraneous cognitive
load of interactive learning environments. However, we only tested its effectiveness and efficiency
for the use case of authentication and did not transfer it to the educational context (see part II,
chapter 5). Eventually, our developments in this project laid the ground for the multisensor-
pipeline presented in part IV, chapter 9.

11.4.2 SciBot

The SciBot project was funded as a part of the Software Campus program6, which is a quali-
fication program for doctoral candidates in computer science with the goal of enhancing their
leadership skills. In this two-year program, participants lead their own projects in collaboration
with a company to get hands-on leadership experience. In addition, participants can participate
in advanced training for executives offered by the partner companies. I successfully graduated
from the Software Campus program7 by completing the SciBot project with DATEV eG8 as an
industry partner. The goal of my project was the development of efficient methods for analyzing
and learning to analyze user behavior during interactions with an expert system. The considered
scenario included one or more expert users that interact with a multimodal-multisensor inter-
face. In particular, the project focused on applications of eye tracking and speech-based input
modalities for semantic search applications.

The result of the project was a method for estimating whether a text was perceived as relevant
by a reader or not given a search query. I developed this idea together with my collaborators
at DATEV eG with the goal of supporting tax accountants searching for information in the
LEXinform knowledge base9. Our vision was to implicitly collect feedback on the relevance of
retrieved documents based on eye tracking to automatically build or adjust search queries. The
resulting approach for passive gaze-based interaction was presented as a part of this thesis in
part III chapter 7 on estimating document relevance.

6https://softwarecampus.de/en/program/ (accessed on 28 Nov 2024)
7https://softwarecampus.de/certificates/17736/ (accessed 28 Nov 2024)
8https://www.datev.de/ (accessed on 28 Nov 2024)
9https://lexinform.apps.datev.de/ (accessed on 28 Nov 2024)

https://softwarecampus.de/en/program/
https://softwarecampus.de/certificates/17736/
https://www.datev.de/
https://lexinform.apps.datev.de/
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Figure 11.1: Architecture of the MASTER-XR platform.

11.4.3 MASTER

Many industries adopt robots and Extended Reality (XR) technologies to realize Industry 4.0
production models. This requires industrial workers to understand both technologies, particu-
larly in flexible and collaborative manufacturing settings that require frequent programming of
robots and safe shared workspaces. For instance, high awareness of robot actions and intentions
can help mitigate stress and potential dangers. Consequently, vocational school students and pro-
fessionals must learn how to program robots and collaborate with them safely. XR technologies
can support the learning process (Thees et al., 2022) and may become a key technology of future
manufacturing processes. According to data published in 2021, XR will create 1.2-2.4 million
new jobs in the EU by 2025, and European XR markets are expected to grow between e 35 bil-
lion and e 65 billion by 2025 (Vigkos et al., 2021). Specific education and training programs
will be essential for successfully transitioning to XR-based robotic workspaces. The ongoing EU
project, MASTER, aims to provide an open XR platform for worker training in robotics and
XR-enhanced human-robot collaboration. It is an ongoing HORIZON Innovation Action, which
has a focus on technology transfer. We work together with six partners, including companies
and other research facilities from Greece, Spain, and Germany, to build a mixed-reality learning
platform for advancing the training of workers in robotics. A description of the project and our
objectives was published as a chapter in a recently appeared Springer book (Barz et al., 2024b).

The main key exploitable result of our project will be the MASTER-XR platform. It will
facilitate the creation of XR-based training scenarios and materials and provide key functional-
ities according to the three main technological objectives of the project via separate modules:
creating safe robotic environments, programming flexible robotic applications, and integrating
advanced interaction techniques based on eye tracking. The implementation requires consolidat-
ing, maturing, and unifying existing technologies from respective partners. For that purpose,
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Figure 11.2: User roles of the MASTER-XR platform include content creators, trainers, and trainees.

the VIROO® platform10 will be extended by our project partner Virtualware 2007 S.A., a
virtual reality (VR) platform with a focus on industrial applications. It includes tools and ser-
vices for easy creation, management, and deployment of immersive content for single-user and
remote collaborative multi-user settings. For instance, VIROO® Studio enables low-code VR
content creation based on the Unity 3D engine11, also empowering users without programming
experience to create VR content. In addition, it maintains simplicity in certification processes
required for industrial applications. VR contents are hosted in a cloud to enable quick and
easy deployment and are managed using the Portal service. The XR Platform is composed of
four core components: Create, Execute, Services, and Learn (see figure 11.1). Create includes
an XR development environment for content creators to integrate the developed modules, like
the User-friendly HRI Methods, which will include gaze-based interaction technologies from this
thesis. Execute serves the resulting Educational XR Scenes to trainees. Services manages the
realized educational scenes and integrates our data processing backend, which is an external
processing server that is connected via networking. It serves as an external processing unit for
the used machine learning and IML systems. Finally, Learn provides an Educational Dashboard
for trainers to configure the IML-based components of XR scenes and for data visualization and
analysis purposes. It will enable trainers to easily configure gaze-based interaction and analysis
techniques and to gain insights from tracked trainee behavior.

Integrating effective and efficient means to interact with the educational system will be es-
sential for its success. Hence, the fourth technological objective of the MASTER project aims
to improve the interaction with XR systems using multimodal interaction (TO4). We integrate
gaze-based interaction techniques in virtual and augmented reality settings tailored to educa-

10https://www.virtualwareco.com/viroo/ (accessed on 14 Dec 2024)
11https://unity.com (accessed 14 Dec 2024)

https://www.virtualwareco.com/viroo/
https://unity.com
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Figure 11.3: Screenshots of the menu of our module for the MASTER-XR platform enabling object
highlighting, information displays, and object selection.

tional use cases. We aim to integrate active gaze-based interaction for the manipulation of, e.g.,
robots, their digital twins, or digital menus. In addition, we plan to integrate methods for real-
time analysis of the human gaze behavior for assessing the learning progress of users. This project
offers a unique opportunity to transfer the majority of the results of this work to the market. Our
module targets three user groups: content creators, trainers, and trainees. Figure 11.2 illustrates
the user groups in an example scenario. The content creator would use the XR platform to create
XR learning scenarios. They would use our module to set up and configure gaze-based interac-
tion technologies as part of an XR scene. This comprises IML components to, e.g., interactively
adapt machine learning models to a new use case. Trainers could use the module for learning
analytics purposes, i.e., to analyze learners’ visual attention when learning/interacting in XR.
Our module will not require any prior knowledge of eye tracking or machine learning. Trainees
(or learners) are vocational students or workers in further training in the domain of robotics and
make up the third user group. They are the users of XR lessons developed by content creators
and provided by their trainers. They wear the XR headset and, if configured, they can interact
with the XR scene using their eyes. The trainee’s eye movements and visual attention to objects
in the scene (also real ones) can be monitored. Visualizations and aggregations of the data can
be retrieved by trainers for manual assessment of interaction strategies in robotics training. Our
module particularly focuses on gaze-based menus that incorporate findings from parts II and III.
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Our module will enable active gaze-based interaction (cf. part II), which is when a user (i.e., a
trainee) consciously uses their eyes to interact with a system. Our module will enable content
creators to add active gaze-based interaction techniques to their XR scenes, including gaze-based
object highlighting, gaze-contingent information displays, gaze-based object selection, and gaze-
based radial context menus which combine object highlighting and selection. Figure 11.3 shows
how the object highlighting, information displays, and object selection features are realized via
a menu integrated into the Unity development platform and how the result looks in VR. This
part of the module builds on top of our experience on error-aware interaction presented in chap-
ter 4 and takes advantage of our findings on calibration-free interaction presented in chapter 5.
Our module will also enable passive gaze-based interaction (cf. part III), i.e., the trainee’s gaze
signal is monitored and can be used to implicitly affect the XR scene. The module will enable
content creators to integrate visual attention monitoring to virtual and real objects at the same
time. A potential extension is to enable content creators to create adaptive user interfaces, i.e.,
interfaces that automatically adjust themselves based on observed gaze patterns. Trainers will
be enabled to explore the collected data to gain insights into the way they interact in XR and
learn about robotics. Content creators or robotics trainers might need to adapt computer vision
models for visual attention monitoring to their use cases, i.e., to new XR scenes and training
content. However, typically these people are domain experts, i.e., experts in XR content creation
or robotics, but not in machine learning. Hence, our module will integrate our technology for
interactive fixation-to-AOI mapping for learning analytics purposes presented in chapter 8.

11.4.4 No-IDLE

In recent years, machines have surpassed humans in the performance of specific and narrow
tasks, such as some aspects of image recognition or decision-making along clinical pathways in
the medical domain (weak AI). Although it is very unlikely that machines will exhibit broadly
applicable intelligence comparable to or exceeding that of humans in the next 30 years (strong AI),
it is to be expected that machines will reach and exceed human performance on more and more
applied tasks. To develop the positive aspects of AI, manage its risks and challenges, and ensure
that everyone has the opportunity to help in building an AI-enhanced society and to participate in
its benefits, in the No-IDLE project, human intelligence and ML take the center stage: Interactive
Machine Learning (IML) is the design and implementation of algorithms and intelligent user
interface frameworks that facilitate ML with the help of human interaction (Amershi et al.,
2014; Simard et al., 2017; Dudley and Kristensson, 2018; Zacharias et al., 2018). The project’s
focus is to improve the interaction between humans and machines, by leveraging state-of-the-art
HCI approaches, as well as solutions that involve state-of-the-art ML techniques. The No-IDLE
project focuses on Interactive Deep Learning (IDL): DL approaches for IML (Sonntag et al.,
2024). Computers shall learn from humans by interacting with them in natural language, for
example, and by observing them. Basic and fundamental research in this corridor project should
also reveal deeper insights into users’ behaviors, needs, and goals. ML and, particularly, DL
should become accessible to millions of end users, and be functionally more advanced than current
recommender systems in online shops that provide suggestions for items that are most pertinent
to a particular user. In addition, the project emphasizes the role of multimodal interaction and
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mixed-initiative interaction in this context.
No-IDLE’s goals and scientific challenges center around the desire to increase the reach of

DL solutions (and ML solutions in general): DL for non-experts in ML and improving DL mod-
els when not enough data is available (e.g., due to highly individualized tasks like photo book
creation) or data quality is not sufficient. In addition, fully automating tasks in practical appli-
cations, such as interactive photo book creation, can be extremely difficult and even undesirable.
As a consequence, the goals of No-IDLE are to find a computational and design methodology
to gracefully combine automated services with direct user input or manipulation. The scientific
goals of the project are investigated in the context of a specific usecase: interactive photo book
creation (see figure 11.4). However, the technologies developed shall be beneficial for other do-
mains as well such as healthcare or smart manufacturing. All methods and approaches developed
in this thesis in parts II and III will be used and matured in the context of one of the four main
scientific goals: Active and passive user input needs to be interpreted carefully to establish an
efficient and effective interaction between humans and an AI system. The challenge includes
interpreting signals from multiple input modalities (e.g., gaze and spoken instructions). It may
be required to interpret the input signals according to a user or context model (e.g., reflecting
a user’s preferences or the interaction context). In No-IDLE, multimodal interaction techniques
for incremental photo book creation will be developed with the goal of improving model training
through rich multimodal user feedback and improving the user experience through robust and
intuitive interfaces. Also, the limitations of human cognitive abilities shall be respected by using
multimodal interaction technologies.

The example usecase, interactive photobook creation, serves as a testbed in the No-IDLE
project. The task is highly individual because user preferences and occasions for creating a
photobook can vary significantly, and it requires interaction with multimedia content like images,
image captions, and visual stories such as event descriptions. To make an example, consider
family Smith creating a photobook about their last joint trip to Vancouver, Canada, where they
visited Aunt Mary. The tools and technologies to be developed in the No-IDLE project would
enable them to create a photobook by sequentially describing the occasion in natural language.
The vision is that the family can describe to the system how they perceived their vacation just
like they would describe it to another human: “On the first day, we took the bus from the airport
to Vancouver”. As a response, the system creates a single page with suitable photos, i.e., from
getting on the bus at the airport, a photo of the skyline of Vancouver from inside the bus, and
one with Aunt Mary, who was waiting for them at the bus stop. Since this is the first time
the family is using this tool, the automatic caption generation module is uncertain whether its
output is suitable and, hence, actively asks for feedback. Being happy with this partial result,
the family continues to describe the events, saying, “The incident with the bears was extremely
funny, and the woods were so impressive.”. The newly generated pages of the photo include
pictures of the bear and the woods from their hiking trip, but none with Aunt Mary, so they
complain about this. “Please add a picture with Mary here”. As the system does not know yet
how Mary looks, it shows extracted faces from the provided photos and asks to select a picture
of Mary. Mrs. Smith looks at a picture and says “that’s my sister Mary”. The system uses the
gaze signal to identify the face that was referred to and learns to recognize Mary. Eventually,
family Smith reports how their vacation ended: “It was also something how Aunt Mary had to
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Use corrective feedback to improve underlying DL models

…

This is Sarah, not Mary

Image 
Retrieval

Image 
Captioning

Person
Recognition

+

(a) Gaze-based Multimodal Interaction in No-IDLE

This is Sarah, not Mary

(b) Example Scenario: Interactive Photobook Creation

Figure 11.4: Example of multimodal user input to the photo book application planned in No-IDLE.
The user provides corrective feedback in natural language by saying "This is Sarah, not Mary". The
system shall use the gaze signal to resolve the face that was referred to and, based on the new information,
update the underlying deep learning models.
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take us to the airport on short notice because our car broke down and we almost thought we
wouldn’t make it and how they welcomed us back at the airport after we landed.”. One of the
images shows Sarah in front of Aunt Mary’s car, but the caption states, “This is Aunt Mary after
carrying us to the airport.”. Mr. Smith corrects the system by saying “this is Sarah, not Mary”
(see figure 11.4). The system automatically corrects the caption and corrects the label for the
detected face. From now on, the system will be better at differentiating between Sarah (Mrs
Smith) and her sister Mary. Alternatively, Mr. Smith could edit the caption to “This is Sarah
in front of her car after carrying us to the airport last minute.” and the feedback contained in
this post-edit would be used to update the image captioning model.

In summary, a goal of No-IDLE is to facilitate model updates in DL-based components
like image retrieval, image captioning, and person recognition through gaze-based multimodal
interaction of non-ML experts (see figure 11.4a). With the No-IDLE project, the BMBF funds
the Interactive Deep Learning Enterprise of our Interactive Machine Learning research group at
DFKI as well as the continuation of the research presented in this thesis. It enables us to follow
many of the proposed future research directions: The goals of No-IDLE include realizing our
future plans to extend interactive fixation-to-AOI mapping (cf. section 8.2) and extending MSP
towards a framework for gaze-based multimodal and intelligent user interfaces (cf. section 10.2).
The focus of these extensions will be on the integration of deep learning technologies and large
language models such as on the interplay between humans and AI-driven systems.



198 CHAPTER 11. CONTRIBUTIONS & OUTLOOK

11.5 Dissemination & Impact

The results of this work were mainly disseminated through peer-reviewed publications in relevant
conference proceedings or journals also including demo and video formats. This led to a total
of 11 peer-reviewed publications (Barz et al., 2016a, 2018, 2020b, 2021a,b, 2022, 2023; Barz and
Sonntag, 2021; Stauden et al., 2018; Bhatti et al., 2021; Valdunciel et al., 2022), for which three
awards were presented. This includes two full papers, three short papers, and four demo, video,
or late-breaking results papers at conferences. Hereby, the ACM Symposium on Eye Tracking
Research & Applications (ETRA) was the most frequent outlet, with a total of five publications
(two full papers, two short papers, and one demonstration paper). The ETRA full paper on error-
aware gaze-based interaction, presented in chapter 4, retrieved the Best Paper Award in 2018
(Barz et al., 2018). The ETRA short paper on calibration-free gaze-based interaction, presented
in chapter 5, retrieved the Honorable Mention Award in 2021 (Bhatti et al., 2021). For our demo
on eyeNotate, we received the Best Demo Honorable Mention Award at the ACM Conference on
Intelligent User Interfaces (IUI) in 2023 (Barz et al., 2023). Another two peer-reviewed full papers
have been published in journals. This includes one publication on automatic visual attention
detection, presented in section 8.1, in the Sensors journal (Barz and Sonntag, 2021), and one on
implicit relevance detection, presented in chapter 7, in the Frontiers in Computer Science journal
(Barz et al., 2022). Two further publications on semi-automatic fixation-to-AOI mapping, related
to section 8.2, are currently under review in the ACM Transactions on Interactive Intelligent
Systems journal (Barz et al., 2025) and the Nature Scientific Reports journal (Le et al., 2025).

Another activity to disseminate and promote our research was the organization of the Hu-
manEYEze workshop on Eye Tracking for Multimodal Human-Centric Computing (Barz et al.,
2024a) together with renowned experts in the field, including Roman Bednarik, Andreas Bulling,
Cristina Conati, and Daniel Sonntag. The workshop was a part of the ACM International Con-
ference on Multimodal Interaction 2024 in San José, Costa Rica. It brought together researchers
and practitioners from various fields, including eye tracking, artificial intelligence, robotics, affec-
tive computing, multimodal interaction, and human-computer interaction, to identify and discuss
promising applications and key challenges related to gaze-based multimodal interaction.

The impact of this thesis is, up to now, mainly scientific. It can be measured by the number of
citations related to this thesis: Based on Google Scholar, related publications had been cited 181
times12. It is also evident that the research results presented in this thesis have led to successful
project acquisition. All four projects introduced in section 11.4 build on top of parts of this
thesis. Until now, there has been little economic impact, such as through contributions to the
open-source eye tracking platform by Pupil Labs13. However, the ongoing EU project MASTER
offers a good starting point for future economic impact. As a HORIZON innovation action, it
focuses on technology transfer from research to the market. In this case, the research outcomes
include the active and passive gaze-based interaction technologies from this thesis.

12https://scholar.google.de/citations?hl=en&user=GDTNjuMAAAAJ (accessed on 12 Dec 2024)
13https://pupil-labs.com/ (accessed on 29 Nov 2024)

https://scholar.google.de/citations?hl=en&user=GDTNjuMAAAAJ
https://pupil-labs.com/
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