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Zusammenfassung

(German)

Diese Dissertation behandelt optimale Hedging-Strategien unter Kapitalbeschränkungen im
Rahmen einer robusten Marktmodellierung. Die Modellunsicherheit bei der Beschreibung
von Finanzmärkten kann reduziert werden, indem nicht nur ein einzelnes Modellmaß,
sondern eine Menge von Maßen simultan betrachtet wird – ein Ansatz, der unter anderem
als robuste Marktmodellierung bezeichnet wird.

In dieser Arbeit wird gezeigt, dass die Konstruktion optimaler Hedging-Strategien unter
Kapitalbeschränkungen in robusten Marktmodellen zur Entstehung einer Indifferenzkurve
optimaler Strategien führt. Diese Indifferenzkurve veranschaulicht die Kompromisse, die
zwischen verschiedenen Marktannahmen und Modellvarianten eingegangen werden müssen.
Es wird gezeigt, dass alle Hedging-Strategien entlang dieser Indifferenzkurve mithilfe von
worst-case Martingalmaßen hergeleitet werden können. Zudem werden Stetigkeitseigen-
schaften dieser worst-case Maße bewiesen, wodurch sich der numerische Aufwand zur
Bestimmung der optimalen Hedging-Strategien reduziert.

Darüber hinaus werden einige Probleme dargestellt, die bei der Interpretation der mathema-
tischen Lösungen aus praktischer Sicht auftreten, insbesondere bei der Verwendung nicht-
äquivalenter Maße. Es wird gezeigt, dass sich diese Probleme durch einen Modellierungsan-
satz mit Bildmaßen lösen lassen. Darüber hinaus wird untersucht, inwiefern sich die Ergeb-
nisse unter diesem Ansatz von den ursprünglichen Resultaten unterscheiden beziehungsweise
unter welchen Bedingungen die Ergebnisse übereinstimmen.
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Abstract

(English)

This thesis investigates optimal hedging strategies under capital constraints within a robust
market modelling framework. Uncertainty in financial market modelling can be reduced
by considering not just a single model measure but a set of measures simultaneously – an
approach known as robust market modelling.

This thesis shows that constructing optimal hedging strategies under capital constraints in
robust market models leads to an indifference curve of optimal strategies. This indifference
curve illustrates the trade-offs that must be made between different market assumptions
and model variants. It is shown that all hedging strategies along this indifference curve
can be derived using worst-case martingale measures. Furthermore, continuity properties
of these worst-case measures are proven, which helps to reduce the computational effort
required to determine optimal hedging strategies.

Additionally, challenges in interpreting the mathematical solutions from a practical per-
spective are discussed, especially in view of non-equivalent measures. It is shown that these
issues can be addressed through a modelling approach based on pushforward measures.
Moreover, the thesis examines how the results under this approach differ from the original
results and under what conditions they coincide.
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Chapter 1.

Introduction

1.1. Motivation

The choice of a market model plays a central role in the pricing of stock options and
other derivatives. Apart from the stochastic model risk, which consists of the stochastic
behaviour of the underlying, the choice of a market model introduces an additional risk,
also known as uncertainty. There is always a risk that the model chosen is not a good
approximation of reality or does not reflect certain risks well. It is difficult to develop
models that reflect all risks, especially as financial markets become more complex, for
example due to globalisation, digitalisation and climate change. This distinction between
quantifiable and unquantifiable risks was made by Frank Knight as early as 1921, see
Knight [40], which is why unquantifiable risks, including model risk, are also known as
Knightian risks. It can therefore be useful to adopt a robust approach to pricing and
hedging portfolios. In this context, a robust approach means considering not just a single
market model, but a set of market models simultaneously. In this set, an investor can
combine all the market models that seem realistic to him. The resulting set is called P in
this thesis. Approaches to reduce model uncertainty seem necessary, especially after the
increasing frequency of financial crises, such as the dot-com bubble in 2000, the housing
bubble in 2007, the eurozone crisis in 2010, the coronavirus crisis in 2020 or, most recently,
the war in Ukraine.

It is not only modelling that contributes to the security of financial markets, but also the
hedging of financial products. This thesis mainly deals with the hedging of options in the
above mentioned robust market model. Since robust modelling of financial markets usually
leads to an incomplete market, hedging financial products in particular is a challenging
mathematical problem, as there are non-replicable options and thus a difference between
the option and the corresponding hedging strategy, the so called hedging error. One of
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Chapter 1. Introduction

the problems in financial mathematics consist in developing suitable hedging strategies in
order to minimise the risk arising from this error. The hedging error and the resulting risk
are mainly related to the chosen market model. Therefore, in view of the non-quantifiable
model uncertainty, it seems reasonable to consider risk-minimising hedging strategies under
robust market modelling. One of the most important statements in this context is the
pricing-hedging duality, which states that the supremum over all prices of a financial
product in an incomplete market is sufficient to set up a hedging strategy that hedges
the financial product without risk, this strategy is called superhedging strategy. However,
since on the one hand superhedging prices are unrealistic high and on the other hand
participants in the financial market generally have to take on risk in order to earn money,
the more relevant practical question is how risk can be minimised under capital constraints.
In addition, the marginal utility of the capital invested in a hedging strategy decreases,
which further devalues the benefit of a 100% hedging strategy and emphasises the benefits
of hedging strategies under capital constraints.

From a mathematical perspective an option can be modelled as a random variable C
representing a payoff in some future time T . For an adapted cadlag process S, representing
the underlying stock, a hedging strategy H can be described as an S integrable predictable
process. Consequently, the corresponding hedging error in T is the random variable
x+

∫ T
0 HdS − C, whereas x is the initial investment and the integral is the Itô integral,

representing the gains of the hedging strategy. Defining a risk measure ρ, we are facing the
optimisation problem of minimising the risk ρ(x+

∫ T
0 HdS −C) in H under the constraint

x ≤ Ṽ0 simultaneously under all market models that were considered realistic, whereas Ṽ0

represents a capital constraint.

In this thesis we aim to examine how optimal hedging strategies can be constructed in
robust market models under capital constraints and especially with focus on how they
behave under different market models. We will show that there exists an indifference curve
of optimal hedging strategies and how we can determine all optimal solutions to the above
motivated optimisation problem.

Since optimality of hedging strategies strongly depends on the chosen risk measure we will
focus on regulatory important risk measures such as the value at risk and the expected
shortfall, but we also show that the presented theory can be generalised up to general
coherent risk measures.
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1.2. Theoretical background

1.2. Theoretical background

Due to the importance of this topic for the financial world, there is a large amount of
literature examining the problems motivated above. Therefore, we will first give a brief
overview of the most important publications on this topic and results that are particularly
relevant for this thesis.

One of the first publications to introduce the modelling of financial market models using a
geometric Brownian motion is by Samuelson [60], which significantly influenced the seminal
work of Black and Scholes [8] on the Black-Scholes model and laid the foundations of classical
financial market modelling using a single market measure P. The classical Black-Scholes
model was further developed due to its popularity, leading to a comprehensive theory
of complete and later incomplete markets, including the fundamental theorem of asset
pricing in Harrison and Kreps [28] or Delbaen and Schachermayer [17], the introduction
of jump models in Merton [48], closed form solutions in stochastic volatility models in
Heston [30], or contributions to interest rate modelling in Vasicek [66] or Ingersoll and
Ross [13] just to present some of the most notable developments. Despite its great success
and widespread use, financial crises led to increasing criticism of classical modelling for its
failure to address model uncertainty. A natural response to this criticisms has been the
development of robust mathematical frameworks that account for uncertainty in model
parameters and probability measures.

One possible framework that was developed completely omits the physical probability
measures and defines only the set of possible paths for the underlying. This approach is
called a pathwise approach or model free set up and often relies on the fact that many
options, especially European type, are so liquidly traded that prices can be used as an input
for modelling instead of an output. One of the first works using a model free approach
is Hobson [32], where price bounds of lookback options are derived without a specific
probabilistic model. The approach was further generalised in numerous works, e.g. Hobson
[31] with the idea of reconstructing models using option prices observed at the market.
Most importantly, this approach allows for a robust version of the fundamental theorem of
asset pricing, see Accacio et al [1], and a robust version of the pricing-hedging duality, see
Hou and Obłój [33].

For many risk measures, however, a physical market measure is important. Since we
eventually want to describe the optimality of hedging strategies with respect to a risk
measure, this work uses the second approach to address model uncertainty, the quasi sure
approach, which uses a set of measures P, that each defines a possible or realistic market
measure. The mathematical framework for a quasi sure stochastic analysis regarding a set
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Chapter 1. Introduction

of measures, in contrast to almost sure stochastics regarding a single probability measure,
was developed by Laurent and Martini [18], among others. As also shown in this thesis,
this approach allows for a robust fundamental theorem of asset pricing, see e.g. Biagini [5]
using a pathwise continuity assumption, and a robust pricing-hedging duality, see Nutz
[51] for the time continuous case or Bouchard and Nutz [9] for the time discrete case.
While in this set up the extreme case of a singular set P = {P} refers to the classical
modelling, the other extreme case of all possible probability measures refers to the model
free approach.

The pricing-hedging duality shows that the largest of all arbitrage free prices is sufficient to
find an admissible superhedging strategy, i.e. a strategy that always exceeds the financial
product. As already mentioned in the motivation, this approach is not suitable for real-
world applications, because these superhedging prices are excessively large especially in
stochastic volatility models. As a consequence Föllmer and Leukert [23, 22] presented a
solution to the problem of optimal hedging under capital constraints in classical market
modelling regarding shortfall probability and expected shortfall, also called quantile hedging.
This idea was generalised to the class of coherent risk measures in Rudloff [58] and Nakano
[49]. Note here that there are many other suitable risk measures, e.g. the quadratic hedging
error that can be optimally reduced using so-called mean variance hedging strategies, that
are mostly based on the closedness of the space of all attainable claims and orthogonality
arguments, see Schweizer [62] for an overview. This thesis will concentrate on quantile
hedging and thus on risk measures that are of regulatory importance.

Surprisingly, there has been limited research on the combination of optimal hedging
under capital constraints and robust market modelling, which is the main topic of this
thesis. We will examine how optimality with respect to a risk measure can be understood
in robust markets and will show that there is an indifferent curve of optimal hedging
strategies. Furthermore, we will present some problems that arise when comparing the
mathematical results with a practical point of view and how these problems can be
solved.

1.3. Outline

This thesis is divided into 5 chapters. The second chapter establishes the mathemati-
cal framework by introducing the notation used in this thesis, some basic results from
stochastic analysis and some additional mathematical results that will be referred to
later.

4



1.3. Outline

The third chapter introduces the basics for the derivation of optimal hedging strategies.
First, robust modelling, as opposed to classical market modelling, is introduced and
examined for typical properties such as arbitrage freedom or the fundamental theorem of
asset pricing. In addition, the pricing-hedging duality is formulated and proved in a robust
form. Finally, the Neyman-Pearson theory is introduced and extended in a way that is
suitable for financial mathematics and robust markets.

In the fourth chapter, these results are used to derive optimal hedging strategies not only
for single market models, but also in the robust market models introduced. Optimality is
understood here from a regulatory perspective, i.e. with a focus on the shortfall probability
and the expected shortfall, but can also be extended to general coherent risk measures. In
particular, it is shown how optimal strategies can be determined for robust market models,
that an indifference curve of optimal hedging strategies emerges and how these hedging
strategies can be constructed.

In the fifth chapter, some examples of optimal hedging strategies are derived both ana-
lytically for the Black-Scholes model and numerically in more complex models where an
analytical solution does not exist or is too complex to calculate.

The sixth and final chapter describes problems that can arise when interpreting the mathe-
matical solution from a real-world perspective and presents a way in which mathematical
modelling can be adapted to solve these problems. In addition, a summary of the work
and an outlook on further open research questions are presented.
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Chapter 2.

Preliminaries

We first establish the basic mathematical concepts and notations that will be used through-
out, before moving on to the core topics of this thesis, namely the robust modelling of
financial markets and optimal hedging strategies in this framework. In particular, we
introduce key definitions from stochastic analysis that form the basis for modelling financial
markets and formulating hedging strategies.

A precise specification of the underlying probability space and stochastic processes is
crucial, as different conventions exist in the literature. Since our results depend on these
definitions, we explicitly outline the relevant notation, with a focus on stochastic processes,
the measurable spaces they are defined on and the corresponding probability measures.
These concepts are essential for modelling stock price dynamics and play a central role in
our theoretical framework.

This section provides only a brief overview of the mathematical framework used in this
thesis and introduces some results that will be referred to in the thesis. Since most of the
following definitions and constructions are based on the works of Jacod and Shiryaev [36]
and Protter [56], further information can be found in these books, that can be considered
as standard literature in the stochastic analysis.

2.1. Stochastic processes

Definition 2.1.1. Filtration
Let (Ω,F ,P) be a probability space. Let (Ft)t∈R+ be a right continuous family of sub-σ-
algebras of F , i.e Fs ⊆ Ft for every s ≤ t and Ft = ⋂

s>t Fs. Then

F := (Ft)t∈R+

is called a filtration and (Ω,F ,F,P) is called a filtered probability space.

7



Chapter 2. Preliminaries

For the following definitions we assume the filtered complete probability space (Ω,F ,F,P)
to be fixed.

Definition 2.1.2. Adaptation
Let X : Ω ×R+ → R be a stochastic process. If X(·, t) is a Ft-measurable random variable
for every t ∈ R+, X is called an F-adapted process.

Definition 2.1.3. Cadlag
A process (Xt)t≥0 is called a cadlag process if the function of sample paths t 7→ Xt is right
continuous with existing left limits almost surely. Equivalently, a process is called caglad
process if t 7→ Xt is left continuous with existing right limits almost surely.

Definition 2.1.4. Predictability
A stochastic process (Xt)t≥0 is called predictable if it is adapted to the σ-algebra generated
by all caglad processes, the predictable σ-field.

Definition 2.1.5. Process of finite variation
Let X be a cadlag process. The process V b

a (X) = supπ∈P

∑
ti∈π |Xti −Xti+1 |, where P is

the set of all partitions on [a, b], is called the total variation process of X. The set V is the
set of all adapted cadlag processes with finite total variation, i.e. a total variation process
that is finite on each compact interval of [0,∞).

Proposition 2.1.6.
For every continuous process A ∈ V there exists a predictable process θ such that

t∫
0

θdA

is increasing and |θ| = 1.

Proof. The proposition is a direct consequence of the Hahn decomposition theorem, where
the predictability of θ follows from the continuity of A. For a detailed proof, see Lemma 4
in Lowther [44].

8
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2.2. Semimartingales

Definition 2.2.1. Martingales, supermartingales and submartingales
Let M be an adapted process with E[|Mt|] < ∞ and let s ≤ t. M is called martingale with
respect to the filtration F if

E[Mt|Fs] = Ms.

We call M a supermartingale if E[Mt|Fs] ≤ Ms or a submartingale if E[Mt|Fs] ≥ Ms. Note
that these properties depend on the choice of the measure P and the filtration F.

Definition 2.2.2. Localized classes
If C is a class of processes, we define the larger class Cloc as the set of all processes such
that there exists an increasing sequence of stopping times (τn)n∈N with τn → ∞ and such
that for every X ∈ Cloc the stopped process Xτn is in C.

Proposition 2.2.3.
A local martingale bounded from below is a supermartingale.

Proof. Without loss of generality, let the local martingale be non-negative. This can be
assumed since a constant can be added to any lower bounded process until zero is a lower
bound. Then, using Fatou’s lemma and the localizing sequence (τn)n∈N, we get:

E[Xt|Fs] = E[ lim
n→∞

Xτn
t |Fs] ≤ lim inf

n→∞
E[Xτn

t |Fs] = Xs.

Definition 2.2.4. Semimartingale
A process X is called a semimartingale if it can be decomposed into X = X0 + M + A

with X0 a finite valued F0-measurable random variable, M a local martingale with M0 = 0
and A ∈ V.

Remark 2.2.5.
Note that the space of all semimartingales is stable under many transformations, e.g.
stopping, localization and, most importantly for this thesis, under absolutely continuous
changes of measures. This space is one of the most important sets in the stochastic analysis
mainly because it is the largest class of processes that can be used to construct stochastic
integrals, see Jacod and Shiryaev [35].

9
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Remark 2.2.6.
Note that in general one often uses cadlag versions of semimartingales, whose existence can
be guaranteed in complete filtered probability spaces using a right continuous filtration under
mild conditions, see Jacod and Shiryaev [36]. Since we will work on the Skorokhod space
throughout this work, as introduced in Section 2.5, we will assume every semimartingale
to be cadlag if not stated otherwise.

Definition 2.2.7. Special Semimartingale
Let X be a semimartingale with X = X0 +M +A. If there exists a decomposition such
that A is predictable, then X is called a special semimartingale. This decomposition is
unique.

Definition 2.2.8. Quadratic covariation
Let X and Y be cadlag semimartingales. The quadratic covariation [X,Y ] is defined by

[X,Y ] = XY −
∫
X−dY −

∫
Y−dX.

Definition 2.2.9. Predictable quadratic variation
The predictable quadratic variation, or sometimes called conditional quadratic variation,
⟨X,Y ⟩ can be defined as the compensator to the quadratic variation process [X,Y ].

Remark 2.2.10.
A good example to see the difference between quadratic variation and predictable quadratic
variation is a Poisson process N of intensity λ > 0. For this process the quadratic variation
can be described as the process itself:

[N,N ]t =
∑
s≤t

(∆Ns)2 =
∑
s≤t

∆Ns = Nt.

Since the Poisson process is not predictable, it should be clear that the predictable quadratic
variation will differ from [N,N ]. Indeed, the compensator of a Poisson process is known as

⟨N,N⟩t = λt,

which is predictable because it is deterministic and the process Nt − λt is a martingale.

Definition 2.2.11. Compensator
Let X be an adapted cadlag process. The compensator of X, denoted Xp, is the predictable
process of finite variation such that X −Xp is a local martingale.

10



2.2. Semimartingales

Remark 2.2.12.
The existence of a compensator is not generally guaranteed, but by definition the compen-
sator exists for all special semimartingales.

Proposition 2.2.13.
A semimartingale X with bounded jumps, i.e. ∆X ≤ c for a c ∈ R, is a special semimartin-
gale.

Proof. This result is proved as Lemma I.4.24 in Jacod and Shiryaev [36].

Definition 2.2.14. Characteristics of semimartingales
Let S be a Rd-valued semimartingale and let h : Rd → Rd be an arbitrary bounded function
with h(x) = x for x close to zero. We call a triplet (B(h), C, ν) the characteristics of S
relative to the truncation function h if

(a) B(h) is a predictable and adapted cadlag process in Rd of finite variation, such that

S(h) = S0 +M +B(h)

for a martingale M , where S(h) is defined as

S(h)t = St −
∑
u≤t

(∆Su − h(∆Su)),

which can be interpreted as the semimartingale S without large jumps. Since S(h) is
a special semimartingale, by Proposition 2.2.13, B(h) is uniquely defined.

(b) C is a continuous, adapted process of locally finite variation in Rd×d, such that

C = ⟨Sc, Sc⟩,

where Sc is the continuous martingale part of S (as defined in Proposition 4.27 in
Jacod and Shiryaev [36]).

(c) ν is the compensator of the measure

µS(ω; dt, dx) =
∑
u≥0

1{∆Su ̸=0}δ(u,∆Su(ω))(dt, dx),

where δ is the Dirac measure.

Proposition 2.2.15.
Let M be a local martingale. M is constant on an interval if and only if [M,M ] is constant
on the same interval.

11
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Proof. The quadratic variation of a process M can be represented via

[M,M ]t = M2
t − 2

t∫
0

MdM.

Now let [M,M ] be constant on an interval [s, t]. First, Mu∧t − Mu∧s is also a local
martingale with constant quadratic variation on [s, t]. This is true because the properties
of a local martingale transfer to a sum of two local martingales and because the following
equation holds for the quadratic variation:

[Mu∧t −Mu∧s,Mu∧t −Mu∧s] = [Mu∧t,Mu∧t] + [Mu∧s,Mu∧s] − 2[Mu∧s,Mu∧t],

where each of the right-hand summands is constant on [s, t].

Let Xu := Mu∧t −Mu∧s, then using the above representation of the quadratic variation,
we get

E[X2
t |Fs] = E

[X,X]t + 2
t∫

0

XdX

∣∣∣∣∣Fs


= E

[X,X]s + 2
s∫

0

XdX + 2
t∫

s

XdX

∣∣∣∣∣Fs


= [X,X]s + 2

s∫
0

XdX + 2E

 t∫
s

XdX

∣∣∣∣∣Fs


︸ ︷︷ ︸

=0

= X2
s

and thus

0 = E[X2
u −X2

s |Fs] = E[(Mu∧t −Mu∧s)2|Fs],

where Mu∧t = Mu∧s almost surely.

Definition 2.2.16.
Let X be a real-valued cadlag semimartingale. The stochastic exponential of X, denoted
by E(X), is defined as the solution of the stochastic differential equation

dE(X) = E(X)−dX with E(X)0 = 1.

Proposition 2.2.17.
Let X be a cadlag semimartingale. For the stochastic exponential it holds that

E(X)t = exp(Xt −X0 − 1
2⟨Xc, Xc⟩t)

∏
u≤t

(1 + ∆Xu) exp(−∆Xu).

In addition, E(X) is a local martingale if X is a local martingale.

12
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Proof. This statement can be found in Theorem I.4.61 in Jacod and Shiryaev [36].

Proposition 2.2.18.
Let (Ω,F ,P) be a probability space. Let S be an integrable Rd-valued random variable.
Let Z ≥ 0 be a uniformly bounded random variable with P(Z ≥ c) > 0 for a c > 0.
Then for any sub-σ-algebra G ⊆ F there exists a random variable X ≥ 0 and a uniformly
bounded G-measurable random variable Y ≥ c, such that

X ≤ Y, P(X = Y ) > 0 and E[XS|G] = E[ZS|G].

Proof. A proof can be found in [46].

2.3. Stopping times and decompositions

Definition 2.3.1. Totally inaccessible stopping time
A stopping time τ is called totally inaccessible if for any predictable stopping time σ we
have

P(τ = σ < ∞) = 0.

Proposition 2.3.2.
For every semimartingale X there exist countable sequences (τn)n∈N of predictable stopping
times and (σn)n∈N of totally inaccessible, such that the the union of both sequences contains
all jumps of X

{t ∈ R+ : ∆Xt ̸= 0} ⊆
∞⋃

n=1
{τn} ∪

∞⋃
n=1

{σn}.

In particular one can decompose X into

Xt = X0 +Xc
t +

∞∑
n=1

∆Xτn1Jτn,∞J +
∞∑

n=1
∆Xσn1Jσn,∞J.

Proof. Proposition I.2.26 in Jacod and Shiryaev [36] states that the jump times of quasi-
left-continuous semimartingales can be represented by a sequence of totally inaccessible
stopping times. Furthermore, Proposition 3.15 in Cerny and Ruf [11] states that every
semimartingale can be decomposed into a quasi-left-continuous semimartingale and a
process with jumps only at predictable stopping times.

Proposition 2.3.3.
Let X be a process with compensator Xp and let τ be a stopping time.

13
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(a) If τ is predictable, then ∆(Xp)τ = E[∆Xτ |Fτ−].

(b) If τ is totally inaccessible, then ∆(Xp)τ = 0 almost surely.

Proof. The first statement is proved as Theorem I.2.28 in Jacod and Shiryaev [36]. The
second statement follows from Proposition I.2.24 in Jacod and Shiryaev [36], since the
compensator is predictable.

Proposition 2.3.4.
Let M be a cadlag and bounded martingale and let τ be a predictable stopping time. Then

E[1τ<∞∆Mτ ] = 0,

which implies

E[∆Mτ |Fτ−] = 0.

Proof. This is a direct consequence of Proposition 2.3.3.

2.4. Changes of measures

Proposition 2.4.1. Radon-Nikodym theorem
Let (Ω,F) be a measurable space and let P and Q be two σ-finite measures. If P ≪ Q, i.e.
P is absolutely continuous with respect to Q, then there exists a function f : Ω → R such
that

P(A) =
∫

A
fdQ.

We use the notation f = dP
dQ . The function f is unique up to P null sets.

Remark 2.4.2.
For easier notation in the rest of this thesis we want to use an extension of the usual
Radon-Nikodym derivative. For measures µ ≪ ν defined on Ω the corresponding Radon-
Nikodym derivative dµ

dν is usually defined ν-a.s. For the rest of this thesis we define the
Radon-Nikodym derivative to be zero on the complement supp(ν)c when Ω ̸= supp(ν),
where supp denotes the support of measures. In particular this implies that we set 0

0 = 0
in this context.
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Remark 2.4.3.
In view of stochastic processes, i.e. on a complete, filtered probability space, we can define
the uniformly integrable martingale Z ∈ L1(P) as a right continuous version of

Zt = EP
[
dQ

dP

∣∣∣∣Ft

]
.

If Q ∼ P, i.e. Q and P are equivalent, then dQ
dP =

(
dP
dQ

)−1
. We also adopt the notation

dQ

dP

∣∣∣∣
Ft

= EP
[
dQ

dP

∣∣∣∣Ft

]
.

Proposition 2.4.4.
Let Q and P be equivalent probability measures with Zt = EP[dQ

dP
∣∣Ft
]

and let X be an
adapted cadlag process. Then X is a Q-martingale if and only if ZX is a P-martingale.

Proof. See Chapter 6 in Protter [56].

Proposition 2.4.5. Girsanov theorem
Let P and Q be equivalent probability measures with Zt = EP[dQ

dP
∣∣Ft
]

and let X be a
semimartingale with X = X0 +M +A under P, i.e. M is a local martingale under P and
A has finite variation under P. Then X has the decomposition X = X0 + M̃ + Ã with Ã a
finite variation process under Q and

M̃t = M −
∫ t

0

1
Zs
d[Z,M ]s,

which is a Q-local martingale.

Proof. This proposition is proven in Chapter 3 as Theorem 20 in Protter [56].

Proposition 2.4.6.
Let Xt be a Ft-measurabel random variable. For two probability measures Q ∼ P it holds
that

EQ[Xt|Fs] = EP
[
dP
dQ

∣∣∣∣Fs

]
EP
[
dQ

dP

∣∣∣
Ft

Xt

∣∣∣∣Fs

]
.

Proof. This statement is also known as Bayes rule for conditional expectations, see Chapter
7 in Liptser and Shiryaev [43].
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Proposition 2.4.7.
Let A ∈ V be a continuous predictable process and let B ∈ V be a continuous, predictable
and increasing process. If

t∫
0

θdA = 0 a.s.

for every t ∈ [0, T ] and every θ ≥ 0, which satisfies
∫ t

0 θdB = 0, then there exists a
predictable process α such that

At = A0 +
t∫

0

αdB and
t∫

0

|α|dB < ∞.

Proof. The following proof uses the idea of the proof of Lemma 4 in [45], but generalizes
the statement. For clearer notation, let A0 = B0 = 0 and let the processes A and B be of
integrable variation. Let two measures µ and ν be the signed measures on the predictable
σ-algebra on the measure space (R+ × Ω,P) with

µ(D) = E

 T∫
0

1DdA

 and ν(D) = E

 T∫
0

1DdB

 .
The integral

∫∞
0 1DdB is always positive since B is increasing. Let D be a set in the

predictable σ-algebra on Ω × [0, T ] with ν(D) = 0. It follows

E

 T∫
0

1DdB

 = ν(D) = 0 and thus
T∫

0

1DdB = 0 almost sure.

So, by the assumption of the proposition, it holds that
T∫
0
1DdA = 0 and hence µ(D) = 0.

So µ is a measure dominated by ν and the Radon-Nikodym density α := dµ
dν can be defined.

For this density and a predictable process θ it holds

E
[∫

αθdB

]
=
∫
αθdν =

∫
θdµ = E

[∫
θdA

]
,

because as predictable processes A and B are locally bounded and allow the application of
the dominated convergence theorem.
Now we can define a process M :=

∫
αdB −A, for which it holds that

E
[∫

θdM

]
= E

[∫
αθdB −

∫
θdA

]
= 0.

Since the process θ is an arbitrary predictable and positive process, M is a martingale. To
see this, choose θ = 1F1(s,t] for a F ∈ Fs and s ≤ t. Thus, E[1F (Mt −Ms)] = 0. Moreover,
since M is also predictable by construction, M is constant as a predictable martingale of
finite variation, i.e. M = 0 and A =

∫
αdB.
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2.5. Notation and market modelling

Definition 2.5.1. Skorokhod space
The Skorokhod space from R+ to an metric space E is the set of all cadlag paths ω : R+ → E.

Proposition 2.5.2. Skorokhod topology
If E is a Polish space, there exists a metrizable topology on the Skorokhod space, such
that the Skorokhod space from R+ to E is Polish.

Proof. For the case E = R+, which is sufficient for this work, this statement is proven in
Chapter IV, Theorem 1.14 in Jacod and Shiryaev [35]. In Kurtz and Ethier [41] the result
is generalised on arbitrary Polish spaces E.

Throughout this thesis, if not stated otherwise, e.g. in Chapter 6, we assume that the
sample space Ω is the Skorokhod space with E = R+. This choice is consistent with most
of the literature in financial mathematics. Furthermore, we use the Skorokhod topology
and the induced metric such that Ω is a Polish space.

As motivated before, we will work with different probability measures. Therefore, we
need a metric on spaces of measures and some properties that remain preserved from the
measurable space.

Definition 2.5.3. Prokhorov metric
Let (X, d) be a metric space with Borel σ-algebra B(X). The Prokhorov metric on the
space of all probability measures defined on (X,B(X)) is defined as

π(µ, ν) = inf{ϵ > 0 : µ(A) ≤ ν(Aϵ) + ϵ and ν(A) ≤ µ(Aϵ) + ϵ for all A ∈ B(X)},

where Aϵ is the ϵ-neighbourhood of A,

Aϵ = {x ∈ X : ∃x̃ ∈ A with d(x, x̃) < ϵ)}.

Lemma 2.5.4. Prokhorov theorem
Let (X, d) be a metric space. If (X, d) is separable and complete, then the set of all
probability measures on the measurable space (X,B(X)) provided with Prokhorov metric
is again a complete space.

Proof. This lemma is proven as Theorem 9.2 in Van Gaans [65].
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Lemma 2.5.5.
A subset of a complete metric space is complete if and only if it is closed.

Proof. This is a fundamental statement one can find for example in Meise [47].

Definition 2.5.6. Value process
Let H be a left continuous and thus predictable process representing a trading strategy
and let S be a semimartingale. we define the value process of the trading strategy H with
initial investment x, denoted (H,x), as

V H,x
t = x+

∫ t

0
HdS.

Definition 2.5.7. Quasi-sure
Let P be a set of probability measures. The expression P-almost surely is supposed to be
understood as P-almost surely for every P ∈ P.

Definition 2.5.8. Stochastic integral
Throughout this work, for a locally square-integrable and adapted process H and a
semimartingale S, we sometimes shorten the notation of stochastic integrals as follows:

(H · S)t =
∫ t

0
HdS.

Note that throughout this work we define (H · S)0 = 0.

Definition 2.5.9. Superreplicating trading strategy
For a filtered probability space (Ω,F , (Ft)t≥0,P), let C : Ω → R+ be a FT -measurable
claim. We call a trading strategy H with initial investment x a superreplication of C or a
superhedging strategy of C under P if

V H,x
T ≥ C P-a.s.

Definition 2.5.10. Equivalent martingale measures
Throughout this thesis, for a measure P, representing a market model, and a semimartingale
we define QP to be the set of all equivalent local martingale measures. For a robust market,
i.e. a set P, we define Q to be the set of all local martingale measures equivalent to a
P ∈ P, i.e. Q = ⋃

P∈P QP.
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Chapter 3.

Mathematical foundations

3.1. Robust market modelling

In this section we give a general definition of the term "robust market model" used in this
work, which leads to the definition of the set P of market measures on a measurable space
(Ω,F), i.e. the Skorokhod space in this work. The results and definitions in this section
are based on Biagini [5]. We give a definition of arbitrage in the setting of robust market
models P and prove that these robust market models are still arbitrage-free if they contain
only arbitrage-free market models. Furthermore, under some additional assumptions we
show that if the robust model P is free of arbitrage, then we can even conclude that
every single market model P ∈ P is free of arbitrage. In addition, we show that even the
fundamental theorem of asset pricing in a more general form can be applied to robust
modelling.

Definition 3.1.1. Robust market model
Let I be an index set and let Pi be a market measure for every i ∈ I. The set containing
all these markets P = ⋃

i∈I{Pi} is called a robust market model.

Remark 3.1.2.
In the following, due to easier notation, we will often consider countable index sets and
write P = {P1,P2, ...}, but note that the results and proofs in this chapter and especially
in Section 3.2 also hold for general robust market models.

This definition can be interpreted as uncertainty of market choices. All of the markets
contained in P are valid models that have to be taken into account, but it is unknown
which one best reflects reality. A good and currently interesting example of this idea is
uncertainty about future interest rates. As long as it is unknown whether future interest
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rates remain high or fall again, market participants want to hedge against both cases. In
this case one can use the robust model P = {P1,P2} which contains a model P1 that reflects
a low interest rate and a model P2 that represents high interest rates.

Definition 3.1.3. Admissible strategies
An investment strategy H is said to be admissible under a market model P if there exists
a lower bound c ∈ R on the stochastic integral (H · S), such that

(H · S)t ≥ c P-a.s. ∀t ∈ R+.

An investment strategy H is said to be admissible under a robust market P if there exists
a lower bound c ∈ R for the stochastic integral (H · S), such that

(H · S)t ≥ c P-a.s. ∀t ∈ R+.

Demanding admissibility of investment strategies prevents doubling strategies and other
arbitrage strategies that require infinitely high capital.

Definition 3.1.4. Arbitrage in robust markets
A robust market model P admits no arbitrage of the first kind if there does not exist a
positive, FT -measurable claim C ≥ 0 with P(C > 0) > 0 for at least one P ∈ P such that
there exists an admissible superhedging-strategy H without initial investment.
Equivalently, this means for every claim C ≥ 0:

V H,0
T ≥ C P-a.s. for an admissible strategy H ⇒ C = 0 P-a.s.

We also say: NA1(P) holds or P satisfies the NA1-condition.

Proposition 3.1.5.
In the case of single market models P = {P} Definition 3.1.4 coincides with the usual
arbitrage definition of single market models, i.e. the existence of an admissible arbitrage
strategy (H, 0) with P(V H,0

T ≥ 0) = 1 and P(V H,0
T > 0) > 0.

Proof. If a market model allows for arbitrage according to Definition 3.1.4, then there
exists a claim C ≥ 0 with P(C > 0) > 0 and an admissible investment strategy (H, 0)
with V H,0

T ≥ C. In this case (H, 0) is an arbitrage strategy with P(V H,0
T ≥ 0) = 1 and

P(V H,0
T > 0) > 0.

On the other hand, if there is an admissible investment strategy (H, 0) with P(V H,0
T ≥ 0) = 1

and P(V H,0
T > 0) > 0, then we can define C := V H,0

T which is a claim not almost surely
zero and superhedgeable with (H, 0).
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It remains to show that as long as we only use arbitrage-free market models the
robust model remains arbitrage-free, which is crucial for working with robust mod-
els.

Theorem 3.1.6.
Let P be a set of market models. If every market model P ∈ P admits no arbitrage of
the first kind, then NA1(P) holds. If the underlying S is continuous P-a.s. and NA1(P)
holds, then there is no arbitrage of the first kind in every single market model P. In short:

• NA1({P}) ∀P ∈ P ⇒ NA1(P).

• NA1(P) ⇒ NA1({P}) ∀P ∈ P, if S is continuous P-a.s.

Proof. This proof follows in large parts ideas of Biagini [5]. It should first be noted that
any P-admissible strategy is also a P-admissible strategy for every P ∈ P , but admissibility
for one P ∈ P does not imply P-admissibility.

Then, the assertion NA1({P}) ∀P ∈ P ⇒ NA1(P) follows directly, since every P-admissible
strategy must also be admissible for every P ∈ P, but by assumption every P-admissible
strategy should be arbitrage-free. So let H be a P-admissible strategy, then it follows
directly that H is also a P-admissible strategy for every P ∈ P and finally that H is not
an arbitrage strategy since P is arbitrage-free.

For the second statement, we show that under the assumption of pathwise continuity of
S, a P-admissible arbitrage strategy can be used to construct a P-admissible arbitrage
strategy.

Let NA1(P) be satisfied and S be continuous P-almost surely. Suppose NA1({P}) does
not hold for a P ∈ P. Then there exists a P-admissible arbitrage strategy H with

(H · S)t ≥ c P-a.s., (H · S)T ≥ 0 P-a.s. and P((H · S)T > 0) > 0.

Moreover, it is even possible to find a sequence of P (but not yet P) arbitrage strategies
(Hn)n∈N, for which it holds that

(Hn · S)t ≥ − 1
n

∀t ∈ [0, T ], P − a.s.,

P((Hn · S)T > 0) > 0 ∀n ∈ N.

For this statement, see the Definition of no free lunch with vanishing risk (NFLVR) in
Debaen and Schachermayer [17] and note that a market that does not satisfy the NA1-
condition also cannot satisfy the NFLVR property. We can define C := limn→∞(Hn · S)T ,
which defines a random variable with C ≥ 0 and P(C > 0) > 0.
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Let ξn := inf{t ∈ R+|V Hn,1/n
t < 0} ∧ T be a stopping time which is predictable due to the

continuity of S. Now we can define trading strategies Gn := Hn1K0,ξnK. Due to continuity
of S it follows that V Gn,1/n

ξn = 0 and hence V Gn,1/n
t ≥ 0 for all t ∈ [0, T ] P-almost surely.

For the FT -measurable claim

C̃ := inf
n∈N

(Gn · S)T

it holds that C̃ ≥ 0 P-almost surely and P(C̃ > 0) > 0, since C̃ ≥ C P-almost surely with
ξn = T P-almost surely. With the trading strategy Gn we can show

V
Gn,1/n

T ≥ C̃ and V
Gn,1/n

t ≥ 0 ∀n ∈ N P-almost surely,

which means that the claim C̃ can be super-replicated P-almost surely without initial
investment, which is a contradiction to NA1(P).

Remark 3.1.7.
In general the property NA1({P}) for all P ∈ P does not follow from NA1(P) without the
assumption of continuity on S, i.e.

NA1(P) ⇏ NA1(P) ∀P ∈ P,

as the following example shows:

Let the interest rate be zero and let P1 and P2 be measures under which S is constant
almost surely with the exception of a jump at a deterministic stopping time t0. At t0 there
is St0− − St0 = 1 P1-a.s. and St0− − St0 = −1 P2-a.s. Both of these market models allow
for an arbitrage strategy as it is possible to buy or sell the underlying before t0 and undo
the trade afterwards, which is sufficient to show that {P1} and {P2} are not arbitrage free
with Proposition 3.1.5. But for the robust market P = {P1,P2} the property NA1(P)
holds as there is no prior knowledge about the direction of the jump at t0.

In addition to absence of arbitrage, the existence of equivalent local martingale measures
follows from the NA1-condition similar to results for single market models, leading to a
robust form of the fundamental theorem of asset pricing. Recall that the set of all local
martingale measures equivalent to a measure P ∈ P is denoted by QP, while Q denotes
the set of all local martingale measures equivalent to a P ∈ P.

Now it remains to show under which additional conditions NA1(P) is strong enough to
conclude the existence of equivalent local martingale measures.
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To do so, we need to sufficiently weaken the definition of equivalent local martingale
measures and introduce a stopping time τ at which the market is absorbed into a final
artificial state, that we call ∆, i.e. we enlarge the image of S to R+ ∪{∆}. This allows us to
define the equivalent martingale measures up to the stopping time τ , which is a sufficiently
weaker property than that of the equivalent local martingale measures. This artificial
market state ∆ is supposed to be a state that cannot be left again but does not occur
under the physical measure, so there is no interpretation from a real-world perspective.
Throughout this section, we will adapt the measurable space (Ω,F) to this setup, but
note that we show at the end of this section that we can drop this somewhat unintuitive
notation for the rest of this thesis.

Definition 3.1.8. Market state ∆ and stopping time τ
For this section let (Ω,F) be the Skorokhod space from R+ to R+ ∪ {∆}, with the
assumption that ωs = ∆ implies ωt = ∆ for every t ≥ s. The stopping time τ is defined as
the timepoint at which the market reaches the state ∆:

τ := inf{t ∈ R+ : St = ∆}.

We further assume that

P(τ < ∞) = 0 ∀P ∈ P.

Remark 3.1.9.
With Lemma 2.5.2, this adaptation of the Skorokhod space remains a Polish space, since
the space R+ ∪ {∆} is Polish, because every countable union of disjoint Polish spaces
remains Polish. One can take the adapted metric

d̃(x, y) =


d(x, y), x, y ̸= ∆

1, x = ∆, y ̸= ∆ or x ̸= ∆, y = ∆

0, x = y = ∆.

Definition 3.1.10. σ-algebras prior τ
For a σ-Algebra Ft on Ω we define the σ-Algebra F̃t on {t ≤ τ} ⊆ Ω to be

F̃t := {A ∩ {t ≤ τ}|A ∈ Ft}.

Definition 3.1.11. Equivalence prior τ
Let P1 and P2 be measures on (Ω,F). These two measures are called equivalent prior τ ,
P1 ∼τ P2, if they are equivalent in the usual sense on the measurable space ({t ≤ τ}, F̃).
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Definition 3.1.12. Equivalent local martingale measures prior τ
Let Q and P be measures on the filtered measurable space (Ω,F ,F = (Ft)t≥0). Q is called
a prior τ equivalent local martingale measure to P, if

Q ∼τ P

and there exists an increasing sequence of stopping times (τn)n∈N with

τn < τ, lim
n→∞

τn = τ Q-a.s.,

(St∧τn)t∈R+ is a (F+, Q)-martingale ∀n ∈ N.

QP
τ is defined as the set of all prior τ equivalent local martingale measures Q to P. Qτ is

defined as the set of all measures Q, that are prior τ equivalent local martingale measures
to a P ∈ P.

Since this definition has weaker assumptions than usual local martingale measures, we
have a larger set of measures QP ⊆ QP

τ for each P ∈ P and consequently Q ⊆ Qτ . Using
these weaker definitions of equivalence allows for a robust fundamental theorem of asset
pricing, very similar to the usual, well-known fundamental theorem of asset pricing in
single market modelling:

Theorem 3.1.13. Robust fundamental theorem of asset pricing
Let P be a set of market measures. If QP

τ ̸= ∅ for every P ∈ P, then the market P is
arbitrage-free. If S is almost surely pathwise continuous for every P ∈ P , then the converse
also holds. That is:

• QP
τ ̸= ∅ ∀P ∈ P ⇒ NA1(P).

• NA1(P) ⇒ QP
τ ̸= ∅ ∀P ∈ P, if S is continuous P-almost sure.

Before proving this theorem, we need two additional auxiliary results. Lemma 3.1.14 shows
that the presented weaker form of the martingale property still implies a supermartingale
property. Lemma 3.1.15 shows that the assumption NA1 implies a relation between
the continuous martingale part M and the finite variation part A of the Doob-Meyer
decomposition of S. In the literature this assumption is sometimes called structure
condition on S and becomes important for many other topics, for example in the context
of mean-variance hedging. While Lemma 3.1.14 can be found as a statement in [5], but
is supplemented here by a proof, Lemma 3.1.15 is already proved in [37], but differs
significantly in the proof.
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Lemma 3.1.14.
Let Q be a prior τ equivalent local martingale measure for P with an increasing sequence
of stopping times (τn) according to Definition 3.1.12, then for any self-financing portfolio
H, the value process V H,x

t∧τn
is a local Q-martingale and V H,x

t 1J0,τJ is a Q-supermartingale.

Proof. The local martingale property of V H,x
t∧τn

follows directly from the definition of the
value process, because St∧τn is a martingale and thus (H · Sτn) is a local martingale for H
locally bounded, see Chapter 3, Theorem 17 in Protter [56]. It holds that

V H,x
t∧τn

= x+
t∧τn∫
0

Ht dSt = x+
t∫

0

Ht dSt∧τn ,

where the right integral is a local martingale due to the martingale property of St∧τn .
The second assertion follows directly from the following calculation. Let s ≤ t, then it
holds that

EQ[V H,x
t 1J0,τJ(t)|Fs] = EQ[V H,x

t∧τ 1J0,τJ(t)|Fs]

= lim
n→∞

EQ[V H,x
t∧τn

1J0,τJ(t)|Fs]

≤ lim
n→∞

EQ[V H,x
t∧τn

1J0,τJ(s)|Fs]

= lim
n→∞

EQ[V H,x
t∧τn

|Fs]1J0,τJ(s)

≤ lim
n→∞

V H,x
s∧τn

1J0,τJ(s)

= V H,x
s 1J0,τJ(s),

where the first inequality follows from the fact that {t < τn} ⊆ {s < τn} for all s ≤ t. The
second inequality follows from the fact that every local martingale that is bounded from
below is a supermartingale, see Proposition 2.2.3.

Lemma 3.1.15.
Let S be a semimartingale under P. That is, there exists a decomposition S = M +A into
a process of local finite variation A and a local martingale M . If the market model P is
free of arbitrage, then there exists a predictable process θ with

At =
t∫

0

θd[M,M ] P-a.s. (3.1.1)

Proof. If we assume that such a θ does not exist, then the conclusion of Proposition 2.4.7
is violated. Thus, by contraposition, there must exist at least one predictable, bounded,
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and positive process θ and a t ∈ [0, T ] such that

t∫
0

θd[M,M ] = 0 a.s. and P

 t∫
0

θdA ̸= 0

 > 0.

So there must be an interval U ⊆ [0, T ] with d[M,M ]t = 0 almost surely for t ∈ U while
dA is not almost surely zero, since the left expression is increasing. Furthermore, by
Proposition 2.1.6, for any process of finite variation, among others, for X := A1U , there
exists a predictable process η with |ηt| = 1 for every t such that

∫
U ηdA is increasing. Thus,

we can define a process α := η1U which suffices:

t∫
0

αd[M,M ] = 0 ∀t ∈ [0, T ],

·∫
0

αdA is increasing,

P

 T∫
0

αdA > 0

 > 0, since P

 t∫
0

αdA ̸= 0

 > 0.

Now it remains to show that
∫

U αdM = 0 holds so that α is an arbitrage strategy. However,
by Proposition 2.2.15, dMt = 0 holds for every t ∈ U , since d[M,M ]t = 0 holds here. Thus,
t∫

0
αdA =

t∫
0
αdS and α is an arbitrage strategy, which is a contradiction to the assumed

freedom of arbitrage.

So there must be a predictable process θ under which it holds that

At =
t∫

0

θd[M,M ] P-a.s.

With these definitions and auxiliary results, it is now possible to prove a fundamental
theorem of asset pricing in a robust setting, closely related to the results in Biagini [5], but
generalised to the context of possible jump models. The proof therefore also follows the
idea in Biagini [5].

Proof of Theorem 3.1.13. Let QP
τ ̸= ∅ ∀P ∈ P. We show that the robust financial market

P is then free of arbitrage. To do this, let C be a positive FT -measurable claim with a
super-replicating portfolio H whose initial value is x = 0. For any arbitrary but fixed
market measure P ∈ P, it now holds that there exists a measure Q and an increasing
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sequence of stopping times (τn)n∈N with τn ↗ τ such that St∧τn is a Q-martingale, see
Definition 3.1.12. As a direct consequence, it is also true that

V H,0
t∧τn

= 0 +
t∧τn∫
0

H dS

is a local Q-martingale for all n ∈ N. By Lemma 3.1.14 it follows that

EQ[C1{T <τn}] ≤ EQ[V H,0
T 1{T <τn}] ≤ EQ[V H,0

0 1{0<τn}︸ ︷︷ ︸
=1

] = 0 ∀n ∈ N,

so EQ[C1{T <τ}] = 0. With the fact C ≥ 0 it also follows Q(C > 0, T < τ) = 0.

It remains to show that the claim C is almost surely zero even under the physical measure
P. But from the equivalence Q ∼τ P and P(T < τ) = 1 we can conclude that

P(C > 0) = P(C > 0, T < τ) = Q(C > 0, T < τ) = 0,

which proves the first assertion: QP
τ ̸= ∅ ∀P ∈ P ⇒ NA1(P).

For the second part let NA1(P) hold and let S be almost surely pathwise continuous
under every P ∈ P . By the previously proved Theorem 3.1.6, due to the continuity of S, it
directly holds that

NA1(P) ∀P ∈ P.

So it remains to show that for every P ∈ P there is

NA1(P) ⇒ QP
τ ̸= ∅.

For this, we first prove the existence of a local martingale Y ≥ 0 with respect to the
predictable filtration (F+,P) with Y0 = 1 and the property that Y S is a local (F,P)-
martingale.

By Lemma 3.1.15, for the decomposition S = M +A there is a predictable process θ with

At =
t∫

0

θd[M,M ] P-a.s.

In view of the Girsanov theorem, the process

Yt := exp

−
t∫

0

θdS + 1
2

t∫
0

θ2d[M,M ]
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is a good candidate to satisfy the required property that Y and Y S are local martingales.
This can be proven directly using Itô’s lemma and the partial integration rule for stochastic
integrals as follows:

Z := ln(Y ) = −
t∫

0

θd(M +A) + 1
2

t∫
0

θ2d[M,M ],

dZ = −θdM − θdA+ 1
2θ

2d[M,M ],

dY = d(eZ) = eZdZ + 1
2e

Z(dZ)2

= Y
(

− θdM −θdA︸ ︷︷ ︸
(3.1.1)

= θ2d[M,M ]

+1
2θ

2d[M,M ]
)

+ 1
2Y θ

2d[M,M ]

= −Y θdM,

where M is the local martingale from the decomposition S = M +A. Thus, Y is indeed a
local martingale.

For the process (Y S), the partial integration rule for stochastic integrals together with
equation (3.1.1) shows:

d(Y S) = Y dS + SdY + d[Y, S]

= Y dS + SdY + dY dS

= Y dM + Y dA− SY θdM − Y θdMdM − Y θdAdM

(3.1.1)= (Y − SY θ − Y θdA)dM + Y θd[M,M ] − Y θd[M,M ]

= (Y − SY θ − Y θdA)dM.

So, by the same argument as before, Y S is a local martingale.

This proves that there exists a local martingale Y such that Y S is a local martingale under
P. The process Y can now be used to construct a measure Q ∼τ P, where Y is the density
of Q prior τ .

As shown in Theorem 3.1 in Perkowski et al. [53], due to the existence of Y there exists a
predictable stopping time ξ and a measure Q0 on (Ω,Fξ−), with properties

P(ξ = ∞) = 1,

Q0(Aρ ∩ {ρ < ξ}) = EP[Yρ1Aρ ] = EP[Yρ1Aρ1{ρ<ξ}], (3.1.2)

for every predictable stopping time ρ and every set Aρ ∈ Fρ+. The last equation follows
from the fact that 1{ρ<ξ} = 1 P-almost sure, since P(ξ < ∞) = 0.
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3.1. Robust market modelling

Next, we show that the stopping time ξ coincides with the given stopping time τ , i.e. is
indistinguishable from it, which means that we already have a local martingale measure
equivalent prior τ .

It holds that Aρ ∩{ρ < ξ∧ τ} ∈ Fρ+ for every Aρ ∈ Fρ+, since τ and ξ and hence also ξ∧ τ
are predictable stopping times. Thus, the equation (3.1.2) also holds for Aρ ∩ {ρ < ξ ∧ τ},
yielding:

Q0(Aρ ∩ {ρ < ξ ∧ τ}) =Q0(Aρ ∩ {ρ < ξ ∧ τ} ∩ {ρ < ξ})

=EP[Yρ1Aρ∩{ρ<ξ∧τ}1{ρ<ξ}]

=EP[Yρ1Aρ1{ρ<ξ∧τ}]

=EP[Yρ1Aρ1{ρ<ξ}]

=Q0(Aρ ∩ {ρ < ξ}),

for every Aρ ∈ Fρ+, where the second last equation holds since ξ = τ = ∞ P-almost surely.
With Aρ = Ω it finally follows:

Q0(ρ < ξ ∧ τ) = Q0(ρ < ξ) and therefore ξ ≤ τ Q0 a.s.

Furthermore, for ρ = 0 and Aρ = Ω:

Q0(ξ > 0) = EP[Y01Ω10<ξ] = EP[Y0] = 1 and thus 0 < ξ ≤ τ Q0 a.s. (3.1.3)

Last, it remains to show that another measure Q can be constructed on (Ω,Fτ−) via the
measure Q0, which still satisfies the above properties and additionally satisfies Q(ξ = τ) = 1.
Under this measure, the stopping time ξ coincides with the time τ at which the financial
market jumps to the fixed final state ∆.

To do this, take the mapping ψ : Ω → Ω with ψt(ω) = ωt1t<ξ(ω) + ∆1t≥ξ(ω) for every
ω ∈ Ω. The mapping thus generates a path under which the financial market already
jumps to the ∆ state at time ξ. On the one hand, this mapping is Fξ−-measurable as a
composition of measurable mappings, on the other hand, under this mapping

τ ◦ ψ = ξ Q0-almost sure,

because ξ ≤ τ is already shown and τ ◦ ψ = inf{t ∈ [0, T ] : ψt(ω) = ∆} ≤ ξ holds by
definition of ψ. Moreover, ψ satisfies the property ψ ◦ ψ = ψ because

(ψ ◦ ψ)(ω) =ψ(ωt1{t<ξ(ω)} + ∆1{t≥ξ(ω)})

=(ωt1{t<ξ(ω)} + ∆1{t≥ξ(ω)})1{t<ξ(ω)} + ∆1{t≥ξ(ω)}

=ωt1{t<ξ(ω)} + ∆1{t≥ξ(ω)}∩{t<ξ(ω)}︸ ︷︷ ︸
=0

+∆1{t≥ξ(ω)} = ψ(ω).
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With this property it follows

τ ◦ ψ = τ ◦ ψ ◦ ψ = ξ ◦ ψ.

Thus Q can be defined as

Q := Q0 ◦ ψ−1.

For this Q it holds that

Q(ξ < τ) = Q0(ψ−1(ξ < τ)) = Q0(ξ ◦ ψ < τ ◦ ψ) = Q0(∅) = 0,

so together with ξ ≤ τ there is Q(ξ = τ) = 1. Q thus satisfies equation (3.1.2) with τ

instead of ξ as a stopping time:

Q(Aρ ∩ {ρ < τ}) = EP[Yρ1Aρ ] = EP[Yρ1Aρ1ρ<τ ]. (3.1.4)

With this equation, the equivalence prior τ follows directly, because it holds that

Q(Aρ ∩ {ρ < τ}) = 0 ⇒ EP[Yρ1Aρ∩{ρ<τ} ] = 0 Y >0⇒ EP[1Aρ∩{ρ<τ}] = P(Aρ ∩ {ρ < τ}) = 0,

P(Aρ ∩ {ρ < τ}) = 0 ⇒ EP[1Aρ∩{ρ<τ}] = 0 ⇒ EP[Yρ1Aρ∩{ρ<τ} ] = Q(Aρ ∩ {ρ < τ}) = 0.

Thus Q is the desired measure with Q ∼τ P and it only remains to show that there exists a
sequence of stopping times (τn)n∈N as required in Definition 3.1.12 with τn ↗ τ Q-almost
surely and under which St∧τn is a (F, Q)-martingale.

Let (τn)n∈N be the localizing sequence of Y , which exists since Y is a local P-martingale.
For the limit of this sequence τ̃ := lim

n→∞
τn it holds that τ̃ = τ = ∞ P-almost surely.

Moreover, it follows directly via equivalence Q ∼τ P that Q(τ̃ < τ) = 0, note here that
{τ̃ < τ} ∈ F̃τ . Thus τ̃ ≥ τ Q-almost sure. Furthermore, due to the martingale property,
either τ̃ ≤ τ or (Y S)t = ∆ for every t ∈ [0, T ]. However, since it has already been shown
in (3.1.3) that τ > 0 Q-almost surely, S0 ̸= ∆ and thus τ̃ = τ Q-almost sure.

So Q satisfies all the required properties:

• Q ∼τ P, according to equation (3.1.4).

• There exists a sequence τn < τ with lim
n→∞

τn = τ Q-almost surely.

• St∧τn is a (F+, Q)-martingale since (Y S) is a local martingale whose localizing
sequence converges to τ and Y is the density of Q with respect to P prior τ .

So there is Q ∈ QP
τ and hence QP

τ ̸= ∅.
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3.1. Robust market modelling

Corollary 3.1.16.
Since the continuity for the second statement in Theorem 3.1.13 is used only for the
application of Theorem 3.1.6, the requirement of continuity of S is omitted for single
market models P = {P}, that is:

NA1({P}) ⇒ QP
τ ̸= ∅.

Corollary 3.1.17.
Since every equivalent local martingale measure is also a prior τ equivalent local martingale
measure, the assumption of the existence of equivalent local martingale measures is sufficient
for freedom of arbitrage.

In conclusion, we have shown that even without the need for continuity assumptions, i.e.
even in the context of jump models, typical results such as the absence of arbitrage and the
fundamental theorem of asset pricing can to some extend be extended to robust market
modelling. On the other hand, there are some statements that cannot be generalized
into the robust context without continuity assumptions. For the rest of this work for the
sake of simplicity in notation, we assume the existence of equivalent martingale measures,
i.e. QP ≠ ∅ for each P ∈ P, which is sufficient to work in an arbitrage-free context, as
discussed in this chapter. Note, however, that the assumption of the existence of equivalent
martingale measures can be weakened.
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Chapter 3. Mathematical foundations

3.2. Pricing-hedging duality for robust market models

In this section we prove a robust form of the well-known superhedging theorem, which
states that for an initial investment x = supQ∈QP EQ[C] there exists an admissible strategy
H with V H,x

T ≥ C P-almost surely, see e.g. Theorem 2.4.2 in Delbaen and Schachermayer
[16]. In other words, one can say that the largest arbitrage-free price for a claim is sufficient
to find a hedging strategy such that there is no risk left. In this section we generalise this
statement to a robust market model P instead of a single market model P. In order to
formulate and prove the robust superhedging theorem, we first need to introduce a robust
form of the optional decomposition theorem, two auxiliary lemmas and some requirements
on the robust market model.

3.2.1. Robust optional decomposition theorem

The following results are mainly based on Nutz [51] and the presented proofs follow
the ideas presented in that paper. The following statements and proves are adapted to
our notation, supplemented with explanations and presented for the sake of complete-
ness.

Definition 3.2.1. Dominating diffusion
Let P be a probability measure and S a d-dimensional semimartingale with characteristics
(B,C, ν) under P. S has dominating diffusion under P if it holds that∫

Rd

(|x|2 ∧ 1)νt(dx, dt) ≪ dCi,i
t , P-a.s. for every i ≤ d,

whereas Ci,i defines the i-th entry on the main diagonal of C. This implies that for a
diffusion of almost surely zero, it is almost surely impossible for there to be a jump.

Theorem 3.2.2. Optional decomposition theorem
Let R be a set of equivalent local martingale measures to a physical measure P and an
adapted cadlag process S. Every process X that is a local supermartingale with respect to
every Q ∈ R has a decomposition of the form

Xt = X0 +
t∫

0

HudSu −Kt,

with an adapted, increasing process K and an S integrable predictable process H.
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3.2. Pricing-hedging duality for robust market models

Proof. A proof to this well known statement is published in Föllmer [21].

In the context of financial mathematics, the integral
∫ t

0 HudSu can be interpreted as the
profit or loss of a trading strategy H and the process K as a consumption process modelling
how much money an investor withdraws from the portfolio. This consumption process
K is increasing, so money can only be withdrawn but not invested. Thus X can be
interpreted as the value process of a self-financing trading strategy with initial investment
X0.

Note that this theorem is limited to a set of equivalent martingale measures R. This fits
well with single market models where QP contains only measures equivalent to P, but
cannot be applied to robust market models. For this purpose, the statement is extended
to robust market models in the following theorem.

Theorem 3.2.3. Robust optional decomposition theorem
Let P be a set of physical measures and Q be the set of all local martingale measures
regarding a semimartingale S equivalent to a P ∈ P. If S has dominating diffusion among
all Q ∈ Q and X is a local supermartingale for every Q ∈ Q, then for each P ∈ P there
exists a decomposition

Xt = X0 +
t∫

0

HudSu −KP
t QP-a.s. for every P ∈ P

where H is a P-independent, S-integrable and predictable process and KP is a P-dependent,
increasing process for every P ∈ P.

In the context of financial mathematics, we can interpret the theorem to mean that there is
always a trading strategy H such that the difference X− (H ·S) is decreasing, which means
that after an initial investment of X0 there can only be a potential profit that is described
as KP. The most interesting part is that only the profit KP depends on the actual market
model, while the trading strategy remains unchanged for all P ∈ P.

Proof. The semimartingale (S,X) is a special semimartingale. Thus, for any Q ∈ Q, one
can find characteristics (BQ, CQ, νQ). According to Neufeld and Nutz [50], there exist
characteristics (BQ, C, νQ) with a Rd+1,d+1-valued process C independent of Q and a
Borel-measurable mapping defining BQ and νQ depending on the measure Q. Furthermore,
let CS := ⟨Sc⟩, which means that CS is the d× d submatrix of C, which represents the
quadratic covariation of S. Also, let CSX := (C1,d+1, ..., Cd,d+1)T , i.e. CSX = ⟨Sc, Xc⟩.
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Now let P ∈ P be arbitrary but fixed. Since X is a supermartingale with respect to
every Q ∈ QP, according to the Optional Decomposition Theorem 3.2.2 there exists a
decomposition

X = X0 + (HP · S) −KP P-almost surely, (3.2.1)

where HP and KP depend on P. It remains to show that there exists a process H such
that H = HP holds for every P ∈ P.

Let the process A be defined as the trace of CS , i.e. A := tr(CS). Since the increments of
the main diagonals of C are always non-negative, dA = 0 implies dC = 0. This means that
dCS ≪ dA and dCSX ≪ dA. According to the Radon-Nikodym Theorem, processes cS

and cSX can be found, such that

dCS = cSdA and dCSX = cSXdA. (3.2.2)

It is known from the proof of the Optional Decomposition Theorem 3.2.2 (see proof of
Theorem 1 in Föllmer [21]), that

H := cSX(cS)+ (3.2.3)

is a suitable candidate for the choice of the investment strategy. (cS)+ denotes the
pseudoinverse of the matrix cS , sometimes called Moore-Penrose inverse. We will first show
that on the one hand (H · Sc) = (HP · Sc) and on the other hand also (H · (S − Sc)) =
(HP · (S − Sc)) QP-almost surely for every P ∈ P.
To show that (H · Sc) = (HP · Sc), the continuous martingale part can be taken on both
sides of the equation (3.2.1), leading to

Xc = (HP · Sc).

For the quadratic variation, we obtain

dCSX = d⟨Sc, Xc⟩ = d⟨Sc, (HP · Sc)⟩ = HPd⟨Sc, Sc⟩ = HPdCS QP-almost surely,

which, with (3.2.2), leads to the equation

cSX = HPcS QP × dA-almost everywhere.

Using dSc ≪ dA it already follows

(H · Sc) = (HP · Sc) QP-almost surely (3.2.4)

and by Itô isometry it follows that H is integrable with respect to Sc. Since cS does not
need to be invertible in general, this is not yet sufficient to show H = HP. Therefore, the
equality (H · (S − Sc)) = (HP · (S − Sc)) must still be shown.
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Let A∗ be defined by dA∗ := mini=1,...,d d(CS)i,i. Then dA∗ ≪ dA holds and it follows

cSX = HPcS QP × dA∗-almost everywhere.

In addition, it holds that

dA∗
t ̸= 0 ⇒ d(CS

t )i,i = (cS
t )i,idAt ̸= 0 dA∗-almost sure ∀i ≤ d.

Thus (cS) is a dA∗-almost surely positive definite matrix and hence dA∗-almost surely
invertible. Since under dA∗ the pseudo inverse of cS becomes the real inverse,

H = HP QP × dA∗ almost everywhere, for all P ∈ P. (3.2.5)

The process S − Sc has the characteristics (BQ, 0, νQ) under a measure Q ∈ Q. Due
to the condition that S has dominating diffusion among all Q ∈ Q, νQ is dominated
by dA∗. Moreover, with the property BQ

t =
∫

(h(x) − x)νQ({t}, dx), which follows by
Theorem II.2.34 in Jacod and Shiryaev [36], together with the local martingale property of
S, dBQ ≪ dA∗ holds. Since dA∗ dominates the characteristics of S − Sc, (3.2.5) is already
sufficient to claim

(H · (S − Sc)) = (HP · (S − Sc)) QP-almost-sure. (3.2.6)

So with the two equations (3.2.4) and (3.2.6), it is proven

(H · S) = (HP · S) QP-almost sure for every P ∈ P,

where H is the trading strategy we are looking for.

3.2.2. Robust pricing-hedging duality

Having introduced the robust form of the optional decomposition theorem, we can proceed
to prove the pricing-hedging duality in its robust form. One of the main arguments in the
proof of the pricing-hedging duality is the construction of the superhedging strategy that
satisfies the desired equality. The superhedging strategy is constructed using the essential
supremum of conditional expectations, which must first be defined. Note that the main
ideas of the proofs here are again introduced in Nutz [51] and [52].

First, we will introduce some notation, definitions and assumptions needed to formu-
late the proof of the pricing-hedging duality. Let F = (Ft)t∈R be the filtration gener-
ated by (t, ω) 7→ ωt. The following notation corresponds to the notation used in Nutz
[52].
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Note, that the introduced notation and definitions are necessary to introduce a consistent
meaning to conditional expectations on a space of measures (P in this case), which strictly
speaking introduces a sublinear space in view of the mapping

X 7→ sup
P∈P

EP[X].

In the literature of stochastic control theory and quasi-sure modelling it is common to
work with concatenations of paths to define the set of associated martingale measures.
Since we are working in a quasi-sure model approach, we will first introduce the commonly
used set-up, see [5, 51, 52].

Definition 3.2.4.
Let ω, ω̃ ∈ Ω. The concatenation at time t ∈ R+ of two paths ω ⊗t ω̃ is defined as

(ω ⊗t ω̃)s := ωs1[0,t)(s) + (ωt + ω̃s−t)1[t,∞)(s).

Definition 3.2.5.
Let Q ∈ Q and ω ∈ Ω, then, as shown in Theorem 1.1.8 in Stroock and Varadhan [63],
there exists a regular conditional probability distribution {Qω

t }ω∈Ω conditional on Ft under
which it holds that

Qω
t

(
{ω̃ ∈ Ω : ω̃|[0,t] = ω|[0,t]}

)
= 1,

EQω
t [f ] = EQ[f |Ft](ω),

for f : Ω → R bounded and F-measurable. Then, for an event A ∈ F , let the probability
measure Qt,ω be defined as

Qt,ω(A) := Qω
t ({ω ⊗t ω̃ : ω̃ ∈ A}).

Definition 3.2.6.
Let f be a function on Ω, let ω ∈ Ω. The function f t,ω is defined as

f t,ω(ω̃) := f(ω ⊗t ω̃).

Definition 3.2.7.
Let ω ∈ Ω and t ∈ R+ and define a set {Q(t, ω)}(t,ω)∈R+×Ω, such that

Q(t, ω) = Q(t, ω̃) if ω|[0,t] = ω̃|[0,t].

In this notation, Q = Q(0, ω) for all ω ∈ Ω, since ω0 = 0. So instead of choosing Q directly,
a family {Q(t, ω)} can be chosen which induces Q.
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The main idea is that these sets are supposed to represent all conditional probabilites
depending on ω up to time t. Therefore the sets Q(t, ω) are supposed to fulfil the following
assumptions.

Assumption 3.2.8.
Let 0 ≤ s ≤ t, ω̃ ∈ Ω and Q ∈ Q(s, ω̃) and let prob(Ω) denote the set of all probability
measures on Ω. Then let the following conditions on {Q(t, ω)}(t,ω)∈R+×Ω be satisfied:

• Measurability: the set {(Q̃, ω) : ω ∈ Ω, Q̃ ∈ Q(t, ω)} is analytic.
Note that every Borel set is analytic in a Polish space.

• Invariance: Qt−s,ω ∈ Q(t, ω̃ ⊗s ω) for Q almost all ω ∈ Ω.

• Stability: For a Ft−s measurable mapping µ : Ω → prob(Ω) with µ(ω) ∈ Q(t, ω̃ ⊗s ω)
it holds for Q-almost all ω ∈ Ω that

Q̃(A) :=
∫ ∫

1A(ω ⊗t−s ω
′)µω(dω′)Q(dω), A ∈ F

is a measure in Q(s, ω̃).

Definition 3.2.9.
Let f : Ω → R̄ be an upper semianalytic function, ω ∈ Ω and t ∈ R+, then let
E : [0, T ] × Ω → R be defined as the following sublinear expected value:

Et(f)(ω) := sup
Q∈Q(t,ω)

EQ[f t,ω].

Remark 3.2.10.
Definition 3.2.9 does indeed define a conditional expectation, because on the one hand

EQt,ω [f t,ω] = EQω
t [f ] = EQ[f |Ft](ω),

while on the other hand the Assumption 3.2.8 implies that the set Q(t, ω) includes all
conditional probabilities {Qt,ω : Q ∈ Q}.

Assumption 3.2.11.
The underlying S has dominating diffusion among all measures Q ∈ Q, as introduced in
Definition 3.2.1.

Assumption 3.2.12.
The set Q contains all equivalent local martingale measures, i.e. for every local martingale
measure Q with Q ∼ P for at least one P ∈ P it holds that Q ∈ Q.
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Assumption 3.2.12 guarantees that the remaining assumptions are indeed assumptions
on the physical measures P, rather than on an arbitrary selection of equivalent local
martingale measures.

After introducing two additional lemmas and using the previous assumptions and nota-
tion we can finally formulate and prove the robust pricing-hedging duality in Theorem
3.2.15.

Lemma 3.2.13.
Let ω ∈ Ω, 0 ≤ s ≤ t, Q ∈ Q and let C : Ω → R̄. Under the Assumptions 3.2.8, the
sublinear expected value Et(·) from Definition 3.2.9 fulfils

Et(C) = ess sup
Q̃∈Q(t,Q)

EQ̃[C|Ft],

Es(C) = ess sup
Q̃∈Q(s,Q)

EQ̃[Et(C)|Fs],

where Q(s,Q) := {Q̃ ∈ Q : Q̃(A) = Q(A) ∀A ∈ Fs}.

Proof. A proof of this statement can be found in Theorem 2.3 in Nutz and Van Handel
[52]. The property that the space Ω with the chosen topology is a Polish space is necessary
for this result.

Lemma 3.2.14.
The random variable Et(C) is a supermartingale for every Q ∈ Q.

Proof. As shown in the previous lemma, Es(C) = ess supQ̃∈Q(s,Q) E
Q̃[Et(C)|Fs], so the

following inequality holds:

EQ[Et(C)|Fs] ≤ ess sup
Q̃∈Q(s,Q)

EQ̃[Et(C)|Fs] = Es(C) ∀Q ∈ Q.

With this statement, the robust Optional Decomposition Theorem can also be applied
to Es(C), which is crucial for the proof of a robust pricing-hedging duality. This ex-
pression becomes the basis of the superhedging portfolio, that is supposed to be con-
structed.
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Theorem 3.2.15. Robust pricing-hedging duality
Let P be a set of measures with equivalent measures Q such that the sets
{Q(t, ω)}(t,ω)∈R+×Ω satisfy the assumptions 3.2.8 and 3.2.12 and such that P satis-
fies the Assumption 3.2.11. Moreover, let C : Ω → R̄ be an upper analytic, FT -measurable
function with finite expected value with respect to all Q ∈ Q.

Then the robust pricing-hedging duality holds:

sup
Q∈Q

EQ[C] = min{x ∈ R : There exists an admissible hedging strategy H

with x+
∫ T

0
H dS ≥ C, P − a.s.}.

Proof. The direction "≤" follows from the local martingale property of S under all Q ∈ Q,
because (H · S) as a local martingale is also a supermartingale. Assuming that there exists
an admissible investment strategy H and x ∈ R with x+ (H · S)T ≥ C Q-almost surely,
then for all Q ∈ Q it follows:

x = x+ (H · S)0 ≥ EQ[x+ (H · S)T ] ≥ EQ[C]. (3.2.7)

So it remains to prove the direction "≥". This direction is proven by constructing a super-
hedging strategy that satisfies the inequality using Et(C). Given Assumption 3.2.8, with
Lemma 3.2.14 it holds that the expression Et(C) = supQ∈Q(t,ω) E[Ct,ω] is a supermartingal
with respect to all Q ∈ Q. Moreover, with Assumption 3.2.11 and the robust Optional
Decomposition Theorem 3.2.3, any supermartingale X for any Q ∈ Q can be decomposed
into an almost sure representation X = X0 + (H · S) −KQ.

This means that it suffices to show that Et(C) can be used to construct a supermartingale
X satisfying X0 ≤ supQ∈QE

Q[C] and XT ≥ C. To do this, we define the following process:

X̃t := lim sup
t∈Q+, r↘t

Er(C) ∀t ∈ [0, T ) and X̃T := ET (C).

For a countable, dense subset of R+ (Q+ in this case), Föllmer’s Lemma (Theorem 2.44 in
[29]) guarantees for the supermartingale X̃ the existence of a F+-adapted supermartingale
X with the following properties:

a) Xt(ω) = lim
s∈Q+, s↘t

X̃s(ω).

b) Xt−(ω) := lim
s∈Q+, s↗t

Xs(ω) exists and is finite for almost all ω ∈ Ω and

for all t ∈ R+ \ {0}. Moreover, Xt−(ω) = lim
s∈Q+, s↗t

X̃s(ω).

c) X̃t ≥ E[Xt|Ft] for all t ∈ R+.
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This means that X is a cadlag version of X̃. Moreover, under this result, it is not necessary
that F0 must contain all P-zero sets, as it is required in [51].

It remains to show that XT ≥ C P-almost surely and X0 ≤ supQ∈Q EQ[C].

The first inequality is derived directly from Lemma 3.2.13, because with the FT -
measurability of the claim C, it holds Q-almost surely for all Q ∈ Q that

XT = ET (C) = ess sup
Q̃∈Q(s,Q)

EQ̃[C|FT ]︸ ︷︷ ︸
=C

= C.

The second inequality is more challenging to show. It should be noted that X0 is not
F0, but only F0+ measurable. So X0 is not a deterministic quantity, but stochastic. By
definition of the cadlag version X, the following inequality holds via the third property c)
for each Q ∈ Q:

EQ[X0] = EQ[X0|F0] ≤ X̃0 = E0(C). (3.2.8)

Since the superhedging portfolio is itself an upper bound, X0 is a bounded random variable.
Let xQ

0 ∈ R be the smallest upper bound for X0 under Q, such that X0 ≤ xQ
0 Q-almost

surely. It remains to show that xQ
0 = supQ∈Q E[X0] holds, so that we can finally conclude

from (3.2.8) that

X0 ≤ xQ
0 = sup

Q∈Q
EQ[X0] ≤ E0(C) = sup

Q∈Q
EQ[C], (3.2.9)

so X actually satisfies the required properties.

The equality xQ
0 = supQ∈Q E[X0] follows by the following argumentation:

Let Q ∈ Q be arbitrary but fixed. Let RQ be the set of all measures on F0+ that are
equivalent to Q. Now a sequence of measures in RQ can be constructed which converges
to the Dirac measure δ{X0=xQ

0 }. Take for example the following probability measures:

µn := n− 1
n

δ{X0=xQ
0 } + 1

n
Q,

νn,ϵ := n− 1
n

Unif([xQ
0 − ϵ, xQ

0 )) + 1
n
Q.

For the case Q(X0 = xQ
0 ) = 0, νn,ϵ is a measure equivalent to Q for all n ∈ N and

ϵ > 0 small enough, so νn,ϵ is contained in RQ and lim
n→∞,ϵ→0

Eνn,ϵ [X0] = xQ
0 . For the case

Q(X0 = xQ
0 ) > 0 µn is in RQ for all n ∈ N and it holds that lim

n→∞
Eµn [X0] = xQ

0 . We can
conclude

xQ
0 = sup

P∈RQ

EP[X0].
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Moreover, there exists a measure Q′ ∈ Q such that P ∈ RQ is the restriction of Q′ to F0+,
i.e. P = Q′|F0+ . This is shown as follows: For every P ∈ RQ there exists a Radon-Nikodym
derivative Z = dQ

dP , which is also F0+-measurable. Then P = Q′|F0+ for the measure Q′

with dQ′ = ZdQ on FT . For the random variable Z we have

Z = EQ[Z|F0+] = EQ′ [1|F0+] = 1 Q-a.s.

and thus, due to the right-continuity of S, it follows

EQ′ [St|Fs] = EQ′ [St|Fs+] = EQ[ZSt|Fs+] = Z︸︷︷︸
=1

EQ[St|Fs+].

Since Q is a local martingale measure, Q′ is also a local martingale measure to S and since it
was required in Assumption 3.2.12 that Q contains all local martingale measures equivalent
to a Q ∈ Q, there must also be Q′ ∈ Q. Thus the inequality in (3.2.9) is satisfied and
the supermartingale X satisfies the desired properties XT ≥ C and X0 ≤ supQ∈Q EQ[C].
According to Theorem 3.2.3, this supermartingale can be represented as a self-financing
trading strategy

X = X0 + (H · S) +KP

for each P ∈ P. It should be noted that X0 = supQ∈Q EQ[C], since it has already
been shown in (3.2.7) that the superhedging portfolio requires at least the initial capital
supQ∈Q EQ[C].

It remains to examine the admissibility of the trading strategy. The trading strategy is
representable as X0 + (H ·S) = X−K, where K is a decreasing process and Xt is bounded
from below Q-almost surely by EQ[C|Ft] according to the construction and Lemma 3.2.13.
The expected value of C is assumed to be finite, which proves admissibility, and the
constructed H justifies the equation

sup
Q∈Q

EQ[C] = min{x ∈ R : There exists an admissible hedging strategy H

with x+
∫ T

0
H dS ≥ C, P − f.s.}.

The explicit construction of the superhedging portfolio thereby shows that the minimum is
indeed reached.

It is worth noting, which of the commonly used market models satisfy the assumptions 3.2.8,
3.2.11 and 3.2.12 and therefore satisfy the pricing-hedging duality.

Lévy processes are defined to have independent increments, which means that for any Lévy
process the set of conditional equivalent local martingale measures is independent of (t, ω),
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or in other words Q = Q(t, ω) for every (t, ω) ∈ [0, T ] × Ω. This means that Lévy processes
by definition fulfil the invariance and stability assumption in 3.2.8. Measurability can be
seen as a more technical assumption, a proof of the measurability assumption for Lévy
processes can be found in Nutz [51]. For the dominating diffusion (Assumption 3.2.11) we
need to have a look at the characteristics (dBQ, dCQ, νQ) of a semimartingale S under a
measure Q ∈ Q. If we assume that we have increments that include a Brownian motion,
which includes many commonly used models, we get dCt = d⟨Sc, Sc⟩t ≥ σ2dSt > 0, which
means the quadratic variation of Sc is strictly increasing and therefore dCQ ̸= 0 almost
surely. In these cases, dominating diffusion is obviously satisfied. The same argument can
be applied to many other models that are not pure jump models.

In fact, the pricing-hedging duality is satisfied not only by any continuous Lévy
model, but also by the Merton-Jump model and a lot of other jump diffusion mod-
els.
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3.3. Robust Neyman-Pearson lemma

3.3. Robust Neyman-Pearson lemma

One subfield of statistics is test theory. Among other things, this field deals with the
existence and structure of optimal hypothesis tests, i.e. how to optimally decide be-
tween two hypotheses H0 and H1 for the distribution of a random variable X. A test
ϕ : Ω → [0, 1] specifies the probability of accepting the null hypothesis H0. In general,
the probability of a correct decision for H0, i.e. E[ϕ|H0], is to be maximised, while the
probability of a wrong decision for H0 is limited to E[ϕ|H1] ≤ α by a confidence level
α ∈ (0, 1).

It will be shown that the search for optimal hedging strategies can also be put into
the form of a hypothesis test. Therefore, this chapter examines hypothesis testing and
the Neyman-Pearson test as an optimal test, especially with respect to robust forms of
hypothesis testing.

It is generally known that many hypothesis tests are optimally solved by a Neyman-Pearson
test, or 0-1 test, which has many advantages in application.

Definition 3.3.1.
Let P0 and P1 be two probability measures with a dominating measure µ and density
functions f0 = dP0

dµ , f1 = dP1
dµ . A test ϕ : Ω → [0, 1] is called a Neyman-Pearson test if there

exists a constant c ∈ R and r ∈ (0, 1) with

ϕ =


1, f1

f0
> c

r, f1
f0

= c

0, f1
f0
< c.

In other words, a Neyman-Pearson test will, except on the set {f1
f0

= c}, almost surely
accept either the null hypothesis H0, i.e. ϕ = 1, or the counter-hypothesis H1, i.e. ϕ = 0.
Only on the set {f1

f0
= c}, a null set most of the time, the test makes a random decision,

which is very convenient for many applications. It should be noted that in most applications
P0(f1

f0
= c) = 0 = P1(f1

f0
= c), so there is no need to randomise.

The Neyman-Pearson lemma describes the optimality of those tests:

Theorem 3.3.2. Neyman-Pearson lemma
Let P1 and P2 be two probability measures. Let µ be a dominating measure with respect
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to P1 and P2. The optimal test function ϕ : Ω → [0, 1] regarding confidence level α ∈ (0, 1)
between the two measures, i.e. the solution to the optimisation problem

max
ϕ

EP1 [ϕ] (3.3.1)

under the constraint EP2 [ϕ] ≤ α,

is a Neyman-Pearson test ϕ̃ with suitable constants r ∈ (0, 1) and c ∈ R+:

ϕ̃ = 1{ dP1
dµ

>c
dP2
dµ

} + r1{ dP1
dµ

=c
dP2
dµ

}.

3.3.1. Minimax optimisation

The Neyman-Pearson lemma initially describes only the decision between a simple null
hypothesis and a simple alternative. In many applications, such a restriction is not
sufficient, especially with respect to the robust formulation of financial markets, which
consist of multiple physical measures and in the case of incomplete markets, already have
an infinite number of equivalent martingale measures. This motivates the transition to
sets of hypotheses. For this purpose, we define P and Q as two sets of measures to be
tested against each other. We can then rewrite the optimisation problem (3.3.1) as a
maximin problem under constraints that must be satisfied simultaneously by all measures
in Q:

sup
ϕ

(
inf
P∈P

EP[ϕ]
)

(3.3.2)

under the constraint sup
Q∈Q

EQ[ϕ] ≤ α.

Thus, the smallest probability correctly choosing P over all measures in P is to be
maximised.

The following assumptions are needed to formulate a robust form of the Neyman-Pearson
theorem:

Assumption 3.3.3.

Let P, Q and α fulfil the following assumptions:

I. The confidence level is positive:
α > 0.
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II. There exists a measure µ dominating P and Q:

P ≪ µ ∀P ∈ P and Q ≪ µ ∀Q ∈ Q.

III. The intersection of both sets P and Q is the empty set:

P ∩ Q = ∅.

IV. The set of every Radon-Nikodym derivative of P regarding µ{
dP
dµ

: P ∈ P

}
is convex and weakly∗-closed.

With these assumptions one can show a more general formulation of the Neyman-Pearson
lemma.

Theorem 3.3.4. Robust Neyman-Pearson lemma
With Assumption 3.3.3 the maximin problem

sup
ϕ

(
inf
P∈P

EP[ϕ]
)

(3.3.3)

under the constraint sup
Q∈Q

EQ[ϕ] ≤ α

is solved by a test function

ϕ̃ = 1{ dP̃
dµ

>c
∫
Q

dQ
dµ

dλ̃(Q)},

with a worst case pair (P̃, λ̃) ∈ P × prob(Q), where prob(Q) is the set of all probability
measures on the measurable space Q provided with σ-field generated by integrals

∫
Ω fdQ,

where f is a bounded and measurable function on (Ω,FT ) and with a constant c ∈ R.

Proof. This statement was proven in Rudloff [58]. Roughly summarised the idea for the
proof is to solve the corresponding dual problem and prove strong duality. This can be
done by taking the space Λ of all finite, signed measures on (Q, S) (with a σ-algebra S),
as the dual space to the space L of all bounded and measurable functions on (Q, S), see
Example 1.63 in [69]. With the bilinear form ⟨f, λ⟩ =

∫
Q fdλ for f ∈ L, λ ∈ Λ and the

dual problem that is supposed to be optimised in λ one can see why the solution is in the
form of a mixture of measures.
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Remark 3.3.5.
This statement is similar to a theorem in Cvitanic and Karatzas [14], which both have
in common that the set Q does not have to be closed. The solution in [14] is of the form
ϕ̃ = 1{ dP̃

dµ
>c dR̃

dµ
} with a random variable R̃ ∈ R = {R ∈ L1(µ) : Eµ[Rϕ] ≤ α}, which is a

compact set containing the convex hull of Q. In both cases one avoids the issue of lacking
closedness of the set Q either by introducing a new larger set R or by giving a solution
in terms of an integral mixture. Using this larger set R is inconvenient in view of future
applications in financial mathematics, since we want to use Radon-Nikodym derivatives of
physical market measures with respect to corresponding equivalent martingale measures.

3.3.2. Measure-convexity

Since we want to apply Neyman-Pearson theory to financial applications, we also face
the problem that one of the most important sets, the set of all equivalent martingale
measures, is in general not closed (see Proposition 3.3.15). However, we will use a
different approach to overcome this problem by introducing the concept of measure-
convexity.

Note that the formulation in terms of a mixture or an integral over Q, as in Theorem 3.3.4,
is inconvenient since we eventually want to apply this theory to financial markets where
we usually know the Radon-Nikodym derivative dP

dQ of a physical measure P with respect
to corresponding equivalent martingale measures Q. This raises the question of whether
we can simplify the solution to make use of this knowledge. This question leads to the
introduction of the so-called measure-convexity.

Remark 3.3.6.
It should be noted that this is only a problem because in the financial context we consider
probability measures as a subset of the infinite dimensional Hilbert space of signed measures.
In finite dimensional spaces the concept of measure-convexity introduced in this section
coincides with the usual definition of convexity.

Remark 3.3.7. σ-algebras on sets of probability measures
Since we are mixing over a set of probability measures it may be useful to note how
to define the natural σ-algebra on such spaces: Let (Ω,F) be a measurable space with
prob(Ω) the set of all probability measures on (Ω,F). Now for each A ∈ F we can
define a function χA : prob(Ω) → R by χA(P) = P(A). The σ-algebra generated by
{χ−1

A (I) : A ∈ F , I ⊆ R Borel set} defines a σ-algebra on prob(Ω). See Gaudard and
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Hadwin [25] for other constructions of suitable σ-algebras and relations between them,
depending on whether the set Ω is separable or complete.

Definition 3.3.8. Barycenter
Let X be a locally convex space with topological dual space X∗. An element x ∈ X is
called a barycenter of the probability measure µ on X if

(a) each l ∈ X∗ is measurable regarding µ.

(b) l(x) =
∫
X
l(x)dµ for every l ∈ X∗.

Definition 3.3.9. Measure-convexity
A subset Y ⊆ X is called measure-convex if for every probability measure µ on Y the
corresponding barycenter is still an element of Y .

Remark 3.3.10.
Measure-convexity for a set Y implies in particular for every probability measure µ on Y

that ∫
Y

ydµ(y) ∈ Y, (3.3.4)

which is exactly what is needed in Theorem 3.3.4 to simplify the optimal solution. In
general for infinite dimensional spaces one can only say that the mixture

∫
Y ydµ(y) lies in

the closed convex hull co(Y ).

One can think of measure-convexity as a weaker form of completeness and boundedness
for convex spaces. These three properties are sufficient, but not necessary, for measure-
convexity.

Lemma 3.3.11.
Every complete, bounded and convex subspace Y of a locally convex space X is measure-
convex.

Proof. Winkler [67] proves this statement as Corollary 1.2.4.

On the other hand, not every measure-convex space has to satisfy such strong properties.
One can find weaker necessary and sufficient conditions for measure-convexity, which is
known as Fremlin-Pryce Theorem.
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Theorem 3.3.12. Fremlin-Pryce theorem
A subset Y of a locally convex space X is measure-convex if and only if

(a) Y is bounded and

(b) The closed convex hull co(U) for every compact subset U ⊆ Y is a compact subset of
Y .

Proof. In Winkler [67] this statement can be found as Proposition 1.2.5.

Before applying measure-convexity to the already introduced robust Neyman-Pearson
theory and proving that the assumption of measure-convexity is not too strict for financial
applications, it can be shown that the assumption is non-trivial, i.e. that there are indeed
convex sets that are not measure-convex. In Alfsen [2] one can find the following example
which is convex but not measure-convex.

Example 3.3.13.
Let X be the compact set of all probability measures on [0, 1] and let Y be the subset of all
atomic measures in X, i.e. Y = {

∑∞
i=1 ciδxi , xi ∈ [0, 1],∑∞

i=1 ci = 1}. The set Y contains
all Dirac measures E = {δx : x ∈ [0, 1]}, which is also known to be the set of extreme
points of X, see Theorem 2.1 in Winkler [68]. Now Y is convex but not measure-convex,
because from the Choquet Theorem, see e.g. Phelps [54], we know that for any measure
p ∈ X there exists a measure µ supported on the extreme points of X, i.e. on E ⊆ Y , such
that x =

∫
E ydp(y) /∈ Y .

Now we can formulate the main theorem of this chapter, a solution to the optimisation
problem (3.3.2), that is suitable for financial application.

Theorem 3.3.14.
Let Q be a measure-convex set. Let Assumption 3.3.3 hold. The optimisation problem
(3.3.2) is solved by a function

ϕ̃ = 1{ dP̃
dµ

>c dQ̃
dµ

} = 1{ dP̃
dQ̃

>c}

with a worst case pair (P̃, Q̃) ∈ P × Q.
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Proof. From Theorem 3.3.4 we know that there exists an optimal solution of the form

ϕ̃ = 1{ dP̃
dµ

>
∫
Q

dQ
dµ

dλ̃(Q)}

with a worst case measure P̃ ∈ P and a finite measure λ̃ on the set Q.

With normalization of λ̃ we can define λ̃ to be a probability measure and get a constant
c̃ = ||λ̃|| such that there is a solution

ϕ̃ = 1{ dP̃
dµ

>c̃
∫
Q

dQ
dµ

dλ̃(Q)}

with a probability measure λ̃. We define the set

Q′ =
{
dQ

dµ
: Q ∈ Q

}
.

One can show that Q′ is measure-convex if and only if Q is measure-convex, since for any
probability measure λ on Q one can show that∫

Q

dQ

dµ
dλ(Q) = d

∫
QQdλ(Q)
dµ

µ-a.s.,

since for Q̃ :=
∫
QQdλ(Q) and every A ∈ F we have

∫
A

(
d
∫
QQdλ(Q)
dµ

)
dµ =

∫
A

dQ̃

dµ
dµ = Q̃(A) =

(∫
Q

Qdλ(Q)
)

(A) =
∫
Q

Q(A)dλ(Q)

=
∫
Q

∫
A

dQ

dµ︸︷︷︸
≥0

dµdλ(Q) =
∫
A

(∫
Q

dQ

dµ
dλ(Q)

)
dµ.

Finally with measure-convexity of Q one can find Q̃ ∈ Q such that∫
Q

dQ

dµ
dλ(Q) = dQ̃

dµ
.

This leaves us with

ϕ̃ = 1{ dP̃
dµ

>c̃
∫
Q

dQ
dµ

dλ̃(Q)} = 1{ dP̃
dµ

>c̃ dQ̃
dµ

} = 1{ dP̃
dQ̃

>c̃}.
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3.3.3. Financial application

First, the following remark shows, that closedness of Q for the Neyman-Pearson theorem
is a too strict requirement for financial applications, since in Proposition 3.3.15 it is shown
that the set of equivalent martingale measures is never closed in incomplete markets.
However, it can be shown that the requirement for measure-convexity does indeed fit to
the financial settings defined in this work.

Proposition 3.3.15.
The set of all equivalent martingale measures QP regarding a market measure P is either a
singleton (in a complete market model) or not closed (for any incomplete market model).

Proof. First, note that if there exists an absolutely continuous but not equivalent martingale
measure R (i.e. R ≪ P and R ≁ P), then for any Q ∈ QP the sequence 1

nQ+ n−1
n R ⊆ QP

converges to R /∈ QP in L1, i.e. QP is not closed. This means that it only remains to
show existence of such a measure R, which is quite easy in explicit models, but can be
challenging in a general form, as shown in [46], whose proof is reformulated and adjusted
to our notation in the following proof.

Let P be such that QP is not empty and not a singleton. Let Q1 and Q2 be different
measures in QP. In this case we can notice that the processes Zt = dQ2

dQ1

∣∣
Ft

and StZt are
both Q1 martingales, where S is the modelled underlying, that is again a Q1 martingale.
Using integration by parts, one can see that the quadratic covariation [Z, S] is a local
martingale as well:

d[Z, S] = d(SZ) − SdZ − ZdS

These processes can be used to construct the desired measure R. In particular, as we will
show in the following proof, one can construct a non-negative process Z̃t with SZ̃ ≥ 0
being a Q1-martingale and P(Z̃T = 0) > 0. Then dR

dQ1

∣∣
Ft

= Z̃t

EQ1 [Z̃t] defines a measure R,
that is the desired measure.

Since we know from Proposition 2.3.2, that we can characterise all jumptimes with a
sequence of predictable and totally inaccessable stopping times, we can divide the proof
into 3 cases: Either Z has no negative jumps, or there is a positive probability of negative
jumps at a stopping time that is either predictable or totally inaccessible.

1. If ∆Zt ≥ 0 we can use that Z is a non-constant martingale, which means that
there must be a constant 0 < c < 1 such that P(inft∈[0,T ] Zt ≤ c) > 0; note that we
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assume Z0 = 1 almost surely. Using the predictable (since ∆Zt ≥ 0) stopping time
τ = inf{t ∈ [0,∞) : Zt ≤ c} with τ = ∞ if Zt > c for every t ≥ 0, we can define:

Z̃t = Zt∧τ − c,

which is a martingale as a stopped martingale. Z̃S remains a martingale as S and ZS are
martingales and with P(Z̃T = 0) = P(τ < T ) > 0, Z̃ is the desired process, finishing the
first of the three cases.

On the other hand, if P(∆Zt < 0) > 0 for at least one t ≥ 0, then we cannot use
constructions like in the previous case, since Z̃ must be non-negative. In this case, we will
use Proposition 2.2.18 to work around this issue.

Before formulating these two cases, note that, without loss of generality, we can assume
0 ≤ dQ1

dQ2
≤ 2 and thus ∆dQ1

dQ2
≥ −2, because if necessary we can replace Q2 by the equivalent

martingale measure Q1+Q2
2 which leads to

dQ1
1
2(dQ1 + dQ2)

= 1(dQ1+dQ2
2dQ1

) = 1
1
2 + dQ2

2dQ1

≤ 2.

2. If there is a predictable stopping time τ with P(∆Zτ < 0) > 0, we know with Proposition
2.3.4, that EQ1 [∆Zτ |Fτ−] = 0, which means that P(∆Zτ ≥ ϵ) > 0 for ϵ > 0 small enough.
To apply Proposition 2.2.18 we use

1 + ∆Zτ

2 ≥ 0 and P
(

1 + ∆Zτ

2 ≥ 1 + ϵ

)
> 0

with sub-σ-algebra Fτ− and the random variable (1,∆Sτ ). So there exist random variables
X ≥ 0, Fτ -measurable, and Y ≥ 1 + ϵ, Fτ−-measurable, with

X ≤ Y, P(X = Y ) > 0, EQ1 [X∆Sτ |Fτ−] = EQ1

[(
1 + ∆Zτ

2
)
∆Sτ

∣∣∣Fτ−

]
and EQ1 [X|Fτ−] = EQ1

[(
1 + ∆Zτ

2
)∣∣∣Fτ−

]
.

The process Z̃ we are trying to construct can be defined by

Z̃t := 1 − 1{t≥τ}
X − 1
Y − 1 ,

which is a martingale with

EQ1 [1 − Z̃t|Fτ−] =EQ1

[
1{t≥τ}

X − 1
Y − 1

∣∣∣Fτ−

]
=

EQ1 [1{t≥τ}(X − 1)|Fτ−]
Y − 1

=
EQ1 [1{t≥τ}∆Zτ

2 |Fτ−]
Y − 1 = 0,
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and

EQ1
[
[Z̃, S]t

∣∣∣Fτ−
]

=
EQ1 [1{t≥τ}(X − 1)∆Sτ |Fτ−]

Y − 1 =
EQ1 [1{t≥τ}∆Zτ

2 |Fτ−]
Y − 1 = 0,

which results in Z̃ and Z̃S being martingales. With P(Z̃T = 0) = P(X = Y ) > 0 the
process Z̃ is the desired process.

Note that EQ1 [∆Zτ |Fτ−] = 0 does not hold in general for a totally inaccessible τ , which
rules out the above construction if there are no possible negative jumps at predictable
times.

3. Finally, if there are no jumps at predictable stopping times, i.e. Z is quasi-left continuous
(see Proposition 2.26 in Jacod and Shiryaev [35]). Then there is a totally inaccessible
stopping time σ with P(∆Zσ < 0) > 0, we define τ = inf{σ ∈ [0, T ] : ∆Zσ < 0}. In this case
we can again apply Proposition 2.2.18 to ∆Sτ and −∆Zτ ≥ 0 with P(−∆Zτ > ϵ) > 0 for an
ϵ > 0 to get X ≥ 0 and Y ≥ ϵ with P(X = Y ) > 0 and E[X∆Sτ |Fτ−] = E[−∆Zτ ∆Sτ |Fτ−].

With Proposition 2.3.3 we can replace the jump of Z at τ by −X and add its continuous
compensator,

Mt = Zt∧τ − (X + ∆Zτ )1{t≥τ} +
(

(X + ∆Zτ )1{t≥τ}

)p

t

,

with ∆Mτ = −X and ∆Mt ≥ −ϵ by definition of τ . Since Y is Fτ−-measurable, we can
construct A predictable and thus integrable with A ≥ ϵ and Aτ = Y ≥ ϵ. The process
M̃t =

∫ T
0

1
Au
dMu is a martingale because M is a martingale and the exponential E(M̃) is

a martingale:

E(M̃)t = exp(M̃t − 1
2⟨M̃ c, M̃ c⟩t)

∏
u≤t

(1 + ∆M̃u) exp(−∆M̃u).

Now E(M̃) is indeed the desired process with:

(a) E(M̃) ≥ 0 as ∆M̃t ≥ −1 per definition of A and τ ,

(b) P(E(M̃)T = 0) = P(∆M̃τ = −1) = P(∆Mτ = Aτ ) = P(X = Y ) > 0,

(c) E(M̃)S is a martingale where S, E(M̃) and [E(M̃), S] are martingales. The last
expression is a martingale as

d[E(M̃), S] = E(M̃)d[M̃, S] = E(M̃)d([Zτ , S] + [1{t≥τ}(X + ∆Zτ ), S]),

where the last bracket is a martingale using E[X∆Sτ |Fτ−] = E[−∆Zτ ∆Sτ |Fτ−].
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3.3. Robust Neyman-Pearson lemma

Finally, in every case there is a process Z̃ which can be used to construct an absolutely
continuous but not equivalent martingale measure, so that the set QP cannot be closed.

Remark 3.3.16.
Even the larger set of all absolutely continuous martingale measures, which does not allow
for the above argumentation, is either a singleton or not compact as shown in Corollary
7.2 in Delbaen [15].

In order to show that the property of measure-convexity introduced here is suitable for the
context of financial mathematics, it remains to be shown that most of the sets commonly
used in financial mathematics are measure-convex.

Theorem 3.3.17.
The set of all probability measures on the Skorokhod space is measure-convex.

Proof. First, note that the Skorokhod space endowed with the Skorokhod topology is a
separable and complete space. Now the Prokhorov Theorem, Lemma 2.5.4, states that the
set of all probability measures on the Skorokhod space endowed with the Prokhorov metric
is also complete. Since the set of all probability measures is also bounded and convex,
Lemma 3.3.11 shows that the set is measure-convex.

Corollary 3.3.18.
Every convex and closed set of probability measures on the Skorokhod space is measure-
convex.

Proof. The set of all probability measures on the Skorokhod space endowed with Skorokhod
topology is a complete space using the Prokhorov metric. Every closed subset is again
complete due to Lemma 2.5.5. Theorem 3.3.11 ensures measure-convexity.

Lemma 3.3.19.
Intersections of measure-convex sets are measure-convex.

Proof. Let X1 and X2 be measure-convex sets. From Theorem 3.3.12 we know that for
any subsets Yi ⊆ Xi, i = 1, 2 that are compact we have co(Yi) ⊆ Xi is compact. Now for
any subset Y ⊆ X1 ∩ X2 we obviously have Y ⊆ Xi, where co(Y ) ⊆ Xi is compact for
i = 1, 2, which implies co(Y ) ⊆ X1 ∩X2 compact. The argument still holds for arbitrary
intersections, not just for finite ones.
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Theorem 3.3.20.
The convex hull of finite unions of measure-convex sets is measure-convex.

Proof. Let X1 and X2 be measure-convex sets in a locally convex space X. We can show
directly that any barycenter is an element of co(X1 ∪X2).

Let y be a barycenter of co(X1∪X2) with corresponding measure λ, where λ(co(X1∪X2)) =
1 and y =

∫
co(X1∪X2) xdλ(x). Since we can write every element x ∈ co(X1 ∪X2) as a convex

combination, we can define continuous functions

x1 : co(X1 ∪X2) → X1,

x2 : co(X1 ∪X2) → X2,

a : co(X1 ∪X2) → [0, 1],

with y = a(y)x1(y) + (1 − a(y))x2(y) for every y ∈ co(X1 ∪X2).

Now, for every linear functional f ∈ X∗, it holds that∫
co(X1∪X2)

f(y)dλ(y) =
∫

co(X1∪X2)

a(y)f(x1(y)) + (1 − a(y))f(x2(y))dλ(y)

=
∫

co(X1∪X2)

f(x1(y))a(y)dλ(y) +
∫

co(X1∪X2)

f(x2(y))(1 − a(y))dλ(y)

=
∫

X1

f(x)
∫

x−1
1 (x)

a(y)dydλ(x) +
∫

X2

f(x)
∫

x−1
2 (x)

(1 − a(y))dydλ(x).

We can define new measures λ̃1 and λ̃2 on X1 and X2 respectively by

dλ̃1(x) =
∫

x−1
1 (x)

a(y)dydλ(x),

dλ̃2(x) =
∫

x−1
2 (x)

(1 − a(y))dydλ(x).

Note that λ̃i(x)
λ̃i(Xi)

are probability measures on Xi with λ̃1(X1) + λ̃2(X2) = 1, while X1 and
X2 are measure-convex by assumption, which allows us to conclude

f(y) =
∫

co(X1∪X2)

f(y)dλ(y)

=
∫

X1

f(x)dλ̃1(x) +
∫

X2

f(x)dλ̃2(x)
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= λ̃1(X1)
∫

X1

f(x)d λ̃1(x)
λ̃1(X1)︸ ︷︷ ︸

∈X1

+λ̃2(X2)
∫

X2

f(x)d λ̃2(x)
λ̃2(X2)︸ ︷︷ ︸

∈X2

∈ co(X1 ∪X2).

Finally, we can present sets commonly used in financial mathematics that are measure-
convex and thus suitable for applying robust Neyman-Pearson theory.

Corollary 3.3.21.
The following sets of measures are measure-convex:

(a) Singletons
{Q}.

This case corresponds to complete financial markets or cases where the usually large
set of price measures is reduced to one measure using statistical or other methods.

(b) The convex hull of a finite number of measures

co({Q1 ∪ ... ∪Qn}).

When using a finite set of pricing measures, this is the smallest convex set, that
contains Q1, ..., Qn.

(c) The set of all martingale measures equivalent to a market measure P

QP.

This case corresponds to general incomplete financial markets.

(d) The set of all equivalent martingale measures, such that the claim remains under a
specific price constraint c ∈ R:

{Q ∈ QP : EQ[C] ≤ c}.

For incomplete markets with very high prices, such as stochastic volatility models,
this case can be useful.

(e) In general, any convex and closed set of probability measures, especially any convex
and closed subset of QP.
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(f) The inner convex hull of all equivalent martingale measures in a finite robust market
model P = {P1, ...,Pn}{ n∑

i=1
λiQi : Qi ∈ QPi ,

n∑
i=1

λi = 1 with λi > 0
}
.

Proof.

a) Every singleton is compact and therefore complete, bounded and convex, see Lemma
3.3.11.

b) The convex hull of a finite number of points is compact and therefore complete, bounded
and of course convex, which suffices for measure-convexity with Lemma 3.3.11.

c) Let λ be a finite measure on QP with λ(QP) = 1. First of all, the expression∫
QP

Qdλ(Q)

is again a probability measure, since the set of all probability measures is measure-convex
by Theorem 3.3.17.

Also
∫

QP Qdλ(Q) remains an equivalent measure. If it were not equivalent, there would
either be a measurable set A ∈ F with

P(A) > 0 and
∫

QP

Q(A)dλ(Q) = 0,

which is a contradiction to λ(QP) = 1, since Q(A) > 0 for every Q ∈ Q, or on the other
hand

P(A) = 0 and
∫

QP

Q(A)dλ(Q) > 0,

which again is impossible, since in this case Q(A) = 0 for every Q ∈ QP, because Q ∼ P
for every Q ∈ QP.

And finally the martingale property remains preserved. Let Q̃ :=
∫

QP Qdλ(Q).

EQ̃[St] =
∫
Ω

StdQ̃ =
∫
Ω

Std

∫
QP

Qdλ(Q) =
∫

QP

∫
Ω

StdQdλ(Q)

=
∫

QP

∫
Ω

StdQdλ(Q) =
∫

QP

EQ[St]dλ(Q) =
∫

QP

S0dλ(Q) = S0.

Note that these expressions must be finite by the definition of P and by the fact that∫
QP Qdλ(Q) is already known to be a probability measure.
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d) The space of all probability measures such that the expectation of the claim is below
c ∈ R

{P : EP[C] ≤ c}

is closed. To see this, take a convergent series of measures (Pn) ⊆ A with Pn → P.
Then we have

EPn [C] =
∫
Ω

CdPn →
∫
Ω

CdP = EP[C],

where the left hand side is bounded by c ∈ R, such that EP[C] ≤ c.

As a closed subset of a complete space, the space is again complete and thus measure-
convex as a closed, bounded and convex space with Lemma 3.3.11. The intersection
of measure-convex sets remains measure-convex and thus {P : EP[C] ≤ c} ∩ QP is
measure-convex.

e) This is just a reformulation of Corollary 3.3.18.

f) Note that the set can be rewritten as

co

( n⋃
i=1

QPi

)
∩ QPλ ,

where Pλ = ∑n
i=1 λiPi is a convex mixture of all market measures with ∑n

i=1 λi = 1
and λi > 0 for all i = 1, ..., n. Using Theorem 3.3.20, the set is an intersection of two
measure-convex sets, which remains measure-convex by Lemma 3.3.19.
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Chapter 4.

Optimality of hedging strategies

4.1. Optimal hedging strategies for single market models

If we assume that we are in a complete market, then we can find an exact hedging strategy
for every claim, i.e. we can neutralise any risk. In incomplete markets, the same applies
to superhedging strategies as we introduced in the previous section. Since superhedging
prices are far too high from a practical point of view, it is reasonable that an investor will
usually not be willing to invest the full amount of money needed to superhedge a claim.
On the other hand, it makes sense for an investor to take some risk to make money. In
these cases, we face the problem of finding an investment strategy that does not exceed
a given constraint on investment capital, but also maximises the probability of hedging
successfully or minimises some other risk measure.

To solve this problem, we construct a knockout barrier for the claim that is supposed to
be hedged. With this knockout barrier, we can construct a new modified and cheaper
claim that can be replicated or superhedged without exceeding the investment constraint.
This approach was first introduced in Föllmer and Leukert [23], from which the proofs and
results presented in this section are largely inspired and summarised.

We define Ṽ0 > 0 as a capital constraint that cannot be exceeded by an investor, and we
will try to find the optimal hedging strategy under this constraint regarding different risk
measures.

4.1.1. Value at risk

One of the most widely used risk measures is the value at risk. Despite many disad-
vantages, not only mathematical but also practical, this risk measure is one used by
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regulators in the European Union to determine the solvency capital of banks and insur-
ance companies, see Solvency 2 [20] for insurance regulation and Basel 3 [3] for banking
regulation.

Definition 4.1.1. Value at risk
Let X be a random variable determining a loss and let α ∈ (0, 1) be a security level. The
value at risk of X with respect to level α represents the smallest constant c, such that
X − c is positive with a maximum probability of α. In mathematical terms:

V aRα(X) = inf{c ∈ R+ : P(X − c ≥ 0) ≤ α} = F−1
X (1 − α).

Due to the widespread use of the value at risk in risk management and its application in
regulation, we will first aim to minimise the risk of a hedging strategy in terms of the value
at risk. Mathematically speaking we will try to minimise the value at risk of the random
variable (C − V H,x

T ), which leads to the next definition of a success set that describes all
events where the hedging strategy is successful.

Definition 4.1.2. Success sets
Let C be a FT -measurable claim, let H be an admissible investment strategy and let x > 0
be the initial investment. We define the success set of the hedging strategy H with initial
investment x as

AH,x := {x+
∫ T

0
HdS ≥ C},

which defines the set of all ω ∈ Ω for which the strategy H successfully (super)hedges the
claim C. The probability of not hedging successfully, 1 − P(AH,x), is called the shortfall
probability. If we do not know the corresponding hedging strategy or the initial capital,
we omit the indices.

We define the set A pathwise with the idea that, for a given success set, we can construct
a strategy (H,x) that exactly recreates the success set.

If we define the probability of making a loss according to the physical measure P(Ω \A)
as a risk measure that defines how well an investment strategy hedges a claim, then we
can rewrite our problem of finding the best hedging strategy under a market model P as
follows:

Find a strategy (H,x) that solves

maximise P(AH,x) (4.1.1)

under the constraint x ≤ Ṽ0.
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4.1. Optimal hedging strategies for single market models

The corresponding solution Ã = AH̃,x̃ to this problem defines a new claim C̃ := 1ÃC,
which can be superhedged with only using no more than Ṽ0 initial investment, which is
ensured by the constraint and the pricing-hedging duality for single market models, i.e.
Theorem 3.2.15 with P = {P}.

Theorem 4.1.3. Optimal hedging strategy under value at risk
Let P be a time-continuous market measure and let C be a FT -measurable claim, such
that C is not a modification of α dP

dQ for every α ∈ R and every Q ∈ QP. The optimisation
problem (4.1.1) has a solution, which is given by the superhedging strategy for the knockout
option

C̃ = C1{ dP
dQ̃

>aC},

where the measure Q̃ ∈ QP defines a worst-case equivalent martingale measure and the
constant a is chosen to satisfy the constraint Ṽ0.

Proof. The proof of this result follows from the work of Föllmer and Leukert [23]. We
will prove this theorem in three steps that summarise some statements and proofs in the
said paper. In these steps we will first formulate a dual problem to (4.1.1) and show the
uniqueness and existence of the solution. In the last step the explicit representation follows.

1) For every set A we can construct a knockout option C̃ = C1A. From the pricing hedging
duality, Theorem 3.2.15, we know, that there exists a strategy (H,x) that superhedges
the claim C̃ with x = supQ∈QP EQ[C̃], i.e. V H,x

T ≥ C̃. For a solution (H̃, x̃) of (4.1.1) this
means that P(V H̃,x̃

T ≥ C) ≥ P(V H,x
T ≥ C) for every other admissible strategy (H,x) with

x ≤ Ṽ0 and we can rewrite (4.1.1) as

maximise P(A) (4.1.2)

under the constraint EQ[C1A] ≤ Ṽ0 ∀Q ∈ QP.

2) The next step is to show, for a success set Ã which solves (4.1.2), that the corresponding
superhedging strategy (H̃, x̃) that superhedges C1A generates the same success set, i.e.
Ã = AH̃,x̃ and thus (4.1.2) is indeed equivalent to (4.1.1).

Suppose A is a solution of (4.1.2) and (H,x) is the cheapest superhedging strategy to C1A

that exists according to the pricing-hedging duality. First, note that the stochastic integral
V H,x

t = x+ (H · S)t is a local martingale under every local martingale measure Q ∈ QP.
This means that x+ (H · S)t is a supermartingale and we get the inequality

EQ[C1AH,x
] ≤ EQ[x+ (H · S)T ] ≤ x ∀Q ∈ Q,
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which means that (H,x) satisfies the constraints in (4.1.2). Since A is a solution of (4.1.2),
it is also clear that

P(A) ≥ P(AH,x). (4.1.3)

On the other hand we can see that

A ⊆ {ω ∈ Ω : C1A ≥ C} ⊆ AH,x. (4.1.4)

With (4.1.3) and (4.1.4) it follows that A = AH,x, i.e. the superhedging strategy of a
solution to (4.1.2) indeed solves the optimisation problem (4.1.1).

3) To find a more explicit representation of the set Ã, we introduce a new set of equivalent
measures {R(Q)|Q ∈ Q} via the equation

dR(Q)
dQ

= C

EQ[C] .

With these measures we can rewrite the constraint in (4.1.2) as

EQ[C1A] = ER

[
C1A

EQ[C]
C

]
= EQ[C]ER[1A] = EQ[C]R(A).

This gives us the new optimisation problem

maximise P(A) (4.1.5)

under the constraint R(AH,x) ≤ Ṽ0
EQ[C] =: α ∀Q ∈ Q. (4.1.6)

This optimisation problem is in the form of testing a hypothesis P against hypotheses
{R(Q)|Q ∈ Q} with a given maximum error of the first kind α := Ṽ0

EQ[C] . Note that the
assumption that C is not a modification of α dP

dQ implies that

P /∈ {R(Q) : Q ∈ Q},

which is important, since otherwise dR
dQ = C

EQ[C] = α dP
dQ

EQ[C] implies dR
dP ≡ 1 for a R ∈ {R(Q) :

Q ∈ Q}. This fact allows us to use the robust Neyman-Pearson Theorem 3.3.14 and
Corollary 3.3.21, which means that we know that there exists a worst case equivalent
martingale measure Q̃ and a corresponding measure R̃ = R(Q̃).

With these measures we can construct the solution to Problem (4.1.5) using

ã := inf
{
a : R̃

(
dP
dQ

> aC

)
≤ α

}
, (4.1.7)
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and we can define the optimal success set with

Ã =
{
dP
dQ̃

> ãC

}
.

As already mentioned in the first step, we can find a superhedging strategy (H̃, x̃) for the
option C1Ã. This strategy solves the original optimisation problem (4.1.1) as shown in
step 2.

Remark 4.1.4.
As long as we work with time-continuous, non-deterministic models, it holds that
P({ dP

dQ̃
= ãC}) = 0 and the above optimal solutions exist. Otherwise, the optimal Neyman-

Pearson test could be a randomised test leading to a knockout option that provides a payout
in the cases { dP

dQ̃
= ãC} that depends on an external, independent source of randomness,

such as a coin flip or, more mathematically, a Bernoulli distribution. More precisely, if
{ dP

dQ̃
= ãC} is not a null set, the transformed claim C̃ is generally of the form

C̃ =
(
1{ dP

dQ̃
>ãC} +B1{ dP

dQ̃
=ãC}

)
C,

where B ∼ Ber(p) is a Bernoulli distributed random variable with

p =
Ṽ0 − supQ∈QP EQ[1{ dP

dQ̃
>ãC}C]

1
ãP( dP

dQ̃
= ãC)

.

However, this setup is not only very unusual from a practical point of view, it is also
mathematically unfavourable because without adjustments this claim is not well defined,
since the sample space Ω, i.e. the Skorokhod space in this case, does not allow C : Ω → R+

to be defined by an additional random variable B. Therefore, the pricing-hedging duality
does not ensure the existence of a corresponding superhedging strategy. On the contrary,
there are several simple counterexamples, where the pricing-hedging duality does not hold
for additional random sources.

The issue of a potential non-null set { dP
dQ̃

= ãC} can be solved by using a risk measure
that rewards not only successful hedges, but also scenarios where the shortfall is reduced.
One example of such a risk measure is the success ratio, which also takes into account the
ratio of claim to hedge in cases where the hedging strategy fails.

It should be noted that in the following work we always assume time-continuous market
models and therefore do not need to consider the case of Remark 4.1.4.
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4.1.2. Optimal hedging strategies under different risk measures

The previously used proof techniques in Theorem 4.1.3 can be applied not only to the value
at risk, but also to many other risk measures. On the one hand, the previous risk measure
can be generalised to the success ratio taking into account the shortfall in the event of losses,
which solves the problem of randomisation in discrete-time models. On the other hand one
can use the expected shortfall, another frequently used risk measure in regulation, see for
example the Swiss solvency test [64], the swiss counterpart to European Solvency 2. It is
then shown that even for arbitrary coherent risk measures, the optimal hedging strategy
can be determined using the robust Neyman-Pearson lemma.

4.1.2.1. Success ratio

First, we consider another risk measure that is broadly consistent with the value at risk, but
takes into account the ratio of claim to hedging strategy in cases where a loss is incurred and
penalises large losses. Interestingly, the optimal hedging strategy remains in a 0-1 form, with
the exception of randomisation, which mostly occurs on a null-set.

Definition 4.1.5. Success ratio
For a hedging strategy (H,x) and a claim C : Ω → R+, the success ratio is defined as

φ(H,x) = 1{V
H,x}

T ≥C} + V H,x
T

C
1{V H,x

T <C}.

Theorem 4.1.6. Optimal hedging strategy under success ratio
Let P be a market measure and let C be a FT -measurable claim, such that C is not a
modification of α dP

dQ for every α ∈ R and every Q ∈ QP. The hedging strategy (H,x) that
solves

maximise EP[φ(H,x)]

under the constraint x ≤ Ṽ0

is the superhedging strategy for the claim

C̃ =
(
1{ dP

dQ̃
>aC} + γ1{ dP

dQ̃
=aC}

)
C,

where a is defined as in Equation (4.1.7) and γ =
V0−sup

Q∈QP EQ
[
1{ dP

dQ̃
>aC}C

]
EQ
[
1{ dP

dQ̃
=aC}C

] .
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Proof. The results follow analogously to the previous proof of Theorem 4.1.3.

Remark 4.1.7.
If P( dP

dQ̃
= aC) = 0 for every constant a, which is the case for every time continuous

diffusion model, then the hedging strategy that optimises shortfall probability and the
strategy that optimises the success ratio do coincide.

Since we are working in time-continuous market models, we use the shortfall probability
due to easier notation. On the other hand, using the success ratio has the advantage that
it is much easier to prove concavity of the optimal success ratio as a function of the capital
constraint, see for example Figure 5.2.3.

Corollary 4.1.8.
The optimal expected success ratio and the optimal shortfall probability as a function of
the initial investment are continuous, non-decreasing and concave.

Proof. Using ideas in the proof of Lemma 3.1 in Bayraktar and Wang [4] we define optimal
hedging strategies (H1, x1) and (H2, x2) with x1 < x2 ≤ supQ∈QP EQ[C]. First of all, due
to optimality it holds that

EP[φ(H1, x1)] < EP[φ(H2, x2)],

as H1 is admissible under the initial investment x2 as well, therefore it holds that
V H1,x2

T > V H1,x1
T , which already leads to EP[φ(H2, x2)] ≥ EP[φ(H1, x2)] > EP[φ(H1, x1)].

In addition, it can be seen that a convex combination of success ratios leads to a new
success ratio that can be superhedged with less or the same initial investment:

sup
Q∈QP

EQ[(λφ(H1, x1) + (1 − λ)φ(h2, x2))C] ≤λ sup
Q∈QP

EQ[φ(H1, x1)C]

+(1 − λ) sup
Q∈QP

EQ[φ(H2, x2)C]

=λx1 + (1 − λ)x2.

In a final step, the expected success ratio is additive:

EP[λφ(H1, x1) + (1 − λ)φ(H2, x2)] = λEP[φ(H1, x1)] + (1 − λ)EP[φ(H2, x2)].

Finally, it follows that there exists an optimal strategy H such that

EP[φ(H,λx1 + (1 − λ)x2)] > λEP[φ(H1, x1)] + (1 − λ)EP[φ(H2, x2)],
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where we can use that the superhedging strategy to (λφ(H1, x1) + (1 − λ)φ(h2, x2))C uses
an initial investment of λx1 + (1 − λ)x2 but is not optimal, since it is not of 0-1-form. This
means that the expected optimal success ratio is non-decreasing and concave as a function
of the initial investment. Continuity follows because every non-decreasing concave function
is also continuous. For values larger than supQ∈QP EQ[C] the function is constant 1.

The same arguments hold for the value at risk, since both risk measures coincide in
time-continuous markets.

4.1.2.2. Expected shortfall

Another reasonable and regularly used risk measure is the so called expected shortfall. Like
the value at risk, the expected shortfall is a widely used risk measure in regulation and
risk management. While in the EU, for example, solvency 2 prescribes the value at risk to
determine the risk capital of insurance companies, the Swiss solvency test uses the expected
shortfall, also known as the average value at risk. This setup is also examined in Föllmer
[22] and the problem of finding optimal hedging strategies regarding the expected shortfall
can be solved using the same arguments as before. The solution is different in this case,
but is still in a 0-1 form, which follows from Neyman-Pearson theory.

Definition 4.1.9.
Let C be a FT -measurable claim, let H be an admissible investment strategy and let x ∈ R
be the initial investment. The expected shortfall of (H,x) is defined as

EP[(C − V H,x
T )+].

A major advantage over the shortfall probability is that the expected shortfall also
takes into account the loss that occurs in the cases where the hedging strategy
fails.

Using the same argumentation as in Theorem 4.1.3 one can again find a unique
hedging strategy that minimises the expected shortfall under a capital constraint
x ≤ Ṽ0.

Theorem 4.1.10. Optimal hedging strategy under expected shortfall
Let P be a market model, such that P /∈ QP, and let C be a FT -measurable claim. The
optimisation problem

minimise EP[(C − V H,x
T )+]
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under the constraint x ≤ Ṽ0

has a unique solution, which is given by the superhedging strategy to the option

C̃ = C

(
1{ dP

dQ̃
>a} + γ1{ dP

dQ̃
=a}

)
.

The measure Q̃ ∈ QP defines a worst-case equivalent martingale measure.

Proof. The proof works almost analogously to the proof of Theorem 4.1.3 and therefore
follows ideas in Föllmer [22]. Note that we are looking for a hedging strategy that is
the superhedging strategy for a claim C̃ = φC, where φ : Ω → [0, 1] is a test function.
Using this equation and thinking of φ as a hedging ratio, we can rewrite the minimisation
problem as

minimise EP[(1 − φ)C] (4.1.8)

under the constraint sup
Q∈QP

EQ[φC] ≤ Ṽ0,

which rewrites into the maximization problem

maximise EP[φC]

under the constraint sup
Q∈QP

EQ[φC] ≤ Ṽ0.

With a new set of measures {R : dR
dP = C

EP[C]} and {R̃ : dR̃
dQ = C

EQ[C]} we can formulate the
optimisation problem as follows, so that it is solved by Neyman-Pearson theory as shown
in Theorem 3.3.14.

maximise ER[φ]

under the constraint sup
Q∈QP

ER̃[φ] ≤ Ṽ0
EQ[C] := α.

This gives the optimal solution

φ̃ = 1{ dP
dQ̃

>a} + γ1{ dP
dQ̃

=a}.

Finally, it only remains to show that the superhedging strategy corresponding to a solution
φ̃ of (4.1.8) is indeed the optimal hedging strategy. Let (H̃, x̃) be the superhedging strategy
to φ̃C and let φ(H̃, x̃) be the success ratio of (H̃, x̃). Using the pricing-hedging duality it
is clear that x̃ ≤ Ṽ0, such that the superhedging strategy satisfies the capital constraint.
Then it follows:

EP[(1 − φ(H̃, x̃))C] ≥ EP[(1 − φ̃)C],
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since φ̃ solves (4.1.8) and

φ(H̃, x̃)C = min{V H̃,x̃
T , C} ≥ φ̃C,

because (H̃, x̃) is the superhedging strategy to φ̃C. This finally leads to φ(H̃, x̃)C =
φ̃C.

Even more generally, the l weighted expected shortfall can be defined to model risk aversion
or affinity. The optimisation problem is still solvable, but becomes much more complex in its
general form. This result is not proved here, but is presented as an outlook on how general
the class of risk measures can be chosen using these proof techniques.

Definition 4.1.11.
Let again C be a FT -measurable claim, let H be an admissible investment strategy and
let x ∈ R be the initial investment. In addition, let l : [0,∞) → [0,∞) be an increasing
convex function with l(0) = 0. The l weighted expected shortfall of (H,x) is defined as

EP[l((C − V
(H,x)

T )+)].

Theorem 4.1.12. Optimal hedging strategy regarding expected shortfall
Take again a market model P with P /∈ QP and a FT -measurable claim C and let l be a
strictly convex function with l(0) = 0, l′(0+) = 0 and l′(∞) = ∞. Let furthermore P be a
complete market, i.e. Q = {Q}. The optimisation problem

minimise EP[l((C − V
(H,x)

T )+)]

under the constraint x ≤ Ṽ0

has a unique solution, which is given by the superhedging strategy to the option

C̃ = C

1 −

(l′)−1
(
adQ

dP

)
C

∧ 1

 ,
with a suitable constant a such that the constraint is satisfied.

Proof. The result is a combination of Theorem 5.1 in Föllmer and Leukert [22] and the
pricing-hedging duality 3.2.15.
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4.1.2.3. Coherent risk measures

As shown in Huber [34], coherent risk measures allow for a representation as a supremum
of expectations. With robust Neyman-Pearson theory, or more specifically Theorem 3.3.14,
this allows to find optimal hedging strategies even for general the general class of coherent
risk measures.

Definition 4.1.13. Coherent risk measures
A risk measure ρ : L → R ∪ {∞} is called coherent if for every X1, X2 ∈ L:

(a) ρ(0) = 0, (normalization)

(b) If X1 ≤ X2, then ρ(X1) ≤ ρ(X2), (monotonicity)

(c) ρ(X1 +X2) ≤ ρ(X1) + ρ(X2), (subadditivity)

(d) ρ(αX1) = αρ(X1) for any α ≥ 0, (positive homogeneity)

(e) ρ(X1 + a) = ρ(X1) + a for any a ∈ R or any random variable that equals a almost
surely. (translation invariance)

Lemma 4.1.14.
A risk measure ρ is a lower semi-continuous, coherent risk measure if and only if there is a
dominated set of measures R such that the set {dR

dP |R ∈ R} is weak*-closed, convex and it
holds that

ρ(X) = sup
R∈R

ER[−X].

Proof. This statement is a well known fact in the risk theory. It was first established in
Proposition 10.1 in chapter 10 of Huber [34], whose proof we will adapt to our notation.

It is straightforward to show that for any R the expression supR∈RER[−X] satisfies the
properties of a coherent risk measure. It only remains to show that for any coherent risk
measure ρ there exists a set R representing ρ. It suffices to show that for any random
variable X0 there exists a measure R such that ER[X] ≤ ρ(X) and ER[X0] = ρ(X0). Then
the set of all these measures is the set representing ρ.

In a first step one can show the existence of a suitable function f that can define the
desired measure R, in a second step we need to prove that this f in fact has the properties
to define a probability measure.
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1) Let X0 be a random variable such that without loss of generality ρ(X0) = 1. Otherwise
we can just consider X

ρ(X) . We can define the open and convex set

U := {X|ρ(X) < 1}.

The set is convex because of the subadditivity of ρ and open because for every X ∈ U it
holds ρ(X + ϵ) = ρ(X) + ϵ < 1 for every ϵ < 1 − ρ(X).

Since U is open and convex and X0 /∈ U , the Hahn Banach separation theorem implies the
existence of a linear functional f̃ with

f̃(X) < f̃(X0) (4.1.9)

for every X ∈ U . Using 0 = f̃(0) < f̃(X0) one can, without loss of generality, choose
f(X) = f̃(X)

f̃(X0) , such that f(X0) = 1. This functional will define the desired measure R via
f(X) = ER[X]. It remains that on the one hand we need f(X) < ρ(X) and on the other
hand the measure defined by f must be a probability measure.

2) For any X with ρ(X) < 1 it follows X ∈ U by the definition of U , which implies with
(4.1.9) that f(X) < ρ(X0) = 1 or in short:

ρ(X) < 1 ⇒ f(X) < 1. (4.1.10)

Finally, for any c > 0 and X ≥ 0, it follows from ρ(−cX) ≤ 0 < 1 (which holds due
to monotonicity of ρ with X2 = 0) that cf(X) = −f(−cX) > −1. We can see that
f(X) > −1

c for any c > 0, which implies that f is a positive functional.

Let c < 1: By (4.1.10) it directly follows that cf(1) = f(c) < 1 for every c < 1, implying
f(1) ≤ 1.

Let c > 1: Now we can use ρ(2X0 − c) = 2ρ(X0) − c = 2 − c < 1 to conclude again with
(4.1.10) that 2f(X0) − c = f(2X0 − c) < 1, implying f(1) > 1

c for every c > 1, such that
f(1) ≥ 1. Combined we have

f(1) = 1 (4.1.11)

In a last step, ρ(X) < c implies ρ(X
c ) < 1, which means, using again (4.1.10), that f(X

c ) < 1
and finally f(X) < c, in short

ρ(X) < c ⇒ f(X) < c. (4.1.12)

Now (4.1.12) shows that f(X) < ρ(X). This can be shown by taking an arbitrary c > 1
and using ρ( X

ρ(X)) = 1 < c, which means f( X
ρ(X)) < c. This implies f(X) < cρ(X) for
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every c > 1. In addition (4.1.11), together with the linearity properties ensures that
R(A) = f(1A) is in fact a probability measure. Note that f(1) = 1 provides R(Ω) = 1.
This means for any X0 we can find the desired measure R, which proves the claim.

Note that this argumentation is limited to finite Ω but is generalised in Föllmer and Schied
[24].

Using the above property for coherent risk measures ρ with a set of equivalent martingale
measures Q allows to solve the optimal hedging problem

min
(H,x)

ρ
(
(C − V

(H,x)
T )+

)
(4.1.13)

under the constraint x ≤ Ṽ0

by representing it as the optimisation problem

min
φ

sup
R∈R

ER[(1 − φ)C]

under the constraint sup
Q∈Q

EQ[φC].

Again, as in Rudloff [58] without the assumption of measure-convexity, one can show that
the solution to this optimisation problem will be in the typical 0-1 structure and very similar
to the structure we already could see for the other risk measures.

Theorem 4.1.15.
The optimal hedging problem (4.1.13) is solved by the superhedging strategy (H,x) to the
claim

C̃ = 1{ dR̃
dQ̃

>aC}C

with worst-case measures R̃ ∈ R and Q̃ ∈ Q.

Proof. Since the set R is weak*-closed and Q is measure-convex, because it is assumed to
be a set of equivalent martingale measures we can apply Theorem 3.3.14.

4.2. Optimal Hedging Strategies for robust market models

In the preceding section, optimal hedging strategies were determined in relation to a single,
clearly defined market model. Since not only Neyman Pearson theory, which is fundamental
to the construction of optimal hedging strategies, can be extended to sets of measures (see
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Section 3.3), but also the pricing-hedging duality can be extended (see Section 3.2), it is
reasonable that the construction of optimal hedging strategies, more precisely Theorem
4.1.3 and the following corresponding theorems, can be extended to the robust market
models P defined in Section 3.1.

The presented theory of robust modelling allows for two different approaches. First, we
can consider Convex sets, which mostly can describe small deviation from a specific market
model. Second, we can consider a countable set of measures, i.e. explicitly not convex sets
of measures, which is more suitable to describe different scenarios {P1,P2, ...} that can
differ greatly from each other. In that case these different scenarios, that all could occur in
reality, represent another kind of model risk, that cannot be captured by allowing small
deviations from a single market measure.

From the perspective of Theorem 3.3.14 and Assumption 3.3.3 it is useful to take convex and
closed sets of market measures. Indeed, a very common form of robust modelling is allowing
for arbitrary deviation of a model regarding a specific metric.

Example 4.2.1.
Let P̃ be a fixed probability measure on (Ω,F) that resembles the chosen physical measure.
The following sets are regularly used kinds of robustness regarding a measure.

• ϵ-contamination:

P = {P : (1 − ϵ)P̃ + ϵH, H a probability measure on Ω} or

P = {P : (1 − ϵ)P̃ + ϵH, H ∈ H} with H a closed set of measures.

• total variation norm:

P = {P : |P(A) − P̃(A)| ≤ ϵ ∀A ∈ F}.

• Prokhorov-distance:

P = {P : P(A) ≤ P̃(Aδ) + ϵ} with Aδ the closed δ-neighbourhood of A.

Theorem 4.2.2.
The robust market models in Example 4.2.1 are convex and closed, which means they
suffice the Assumption 3.3.3, as long as P ∩ QP̃ = ∅

Proof. Let P1,P2 ∈ P and let (Pn)n∈N ⊆ P be a sequence of measures with existing limit.
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(a) ϵ-contamination:

• Convexity:

λP1 + (1 − λ)P2 = λ((1 − ϵ)P̃ + ϵH1) + (1 − λ)((1 − ϵ)P̃ + ϵH2)

= (1 − ϵ)P̃ + ϵ(λH1 + (1 − λ)H2),

which is sufficient for convexity if H is convex.

• Closedness:

lim
n→∞

Pn = lim
n→∞

(1 − ϵ)P̃ + ϵHn = (1 − ϵ)P̃ + ϵ lim
n→∞

Hn,

which proves closedness if and only if H is closed.

(b) Total Variation distance:

• Convexity:

|λP1(A) + (1 − λ)P2(A) − P̃(A)| = λ(P1(A) − P̃(A)) + (1 − λ)(P2(A) − P̃(A))|

≤ λ|P1(A) − P̃(A)| + (1 − λ)|P2(A) − P̃(A)| ≤ ϵ

• Closedness: The closedness follows directly by using the total variation distance
as metric on P.

(c) Prohorov distance:

• Convexity:

λP1(A) + (1 − λ)P2(A) ≤ λ(P̃(Aδ) + ϵ) + (1 − λ)(P̃(Aδ) + ϵ) = P̃(Aδ) + ϵ

• Closedness: The Prokhorov metric metrizes weak convergence, see Theorem 6.8
in Billingsley [6], which is sufficient to show weak closedness.

These models consist of infinitely many, often uncountably many measures, which only
allows a solution in the minimax form. This minimax optimising approach is a very well
researched with plenty of literature, see for example Kirch [38] for a financial context or
Huber [34] for robust statistics. Therefore, in this thesis we will specifically consider robust
models containing only finitely many market measures.

The assumptions for the robust form of the Neyman Pearson theorem to apply include a
convex set of physical measures P , see Assumption 3.3.3. However, if a finite or discrete set
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of measures is used, the theorem cannot be easily applied. In this section, we show that for
a finite set of measures there is a way to work without this assumption. In addition, using
only finitely many models allows a much more detailed construction of optimal hedging
strategies and, accordingly, allows for additional optimal solutions besides the already
known minimax solution.

In order to construct optimal hedging strategies in this case, we need to give a new
definition for the optimality of a hedging strategy. For this section if not stated otherwise,
let P be a finite set of measures.

P = {P1, ...,Pn}.

4.2.1. Value at risk

As in the previous section on single market models, we also start here with the value
at risk, i.e. shortfall probability, and then generalise the statements to other risk mea-
sures.

Definition 4.2.3. Robust optimal hedging strategies regarding shortfall probability
A hedging strategy H̃ with initial investment x̃ ≤ Ṽ0 on an option C is said to be robust
optimal with respect to the shortfall probability if for every other admissible strategy
(H,x) with x ≤ Ṽ0 and

Pi(V H,x
T ≥ C) > Pi(V H̃,x̃

T ≥ C)

there exists j ̸= i with

Pj(V H̃,x̃
T ≥ C) > Pj(V H,x

T ≥ C).

This means that any strategy that leads to a higher probability of success under Pi must
have a worse success probability under at least one other measure. In the following,
the term "optimal strategy" generally means "robust optimal with respect to shortfall
probability".

If we reduce the set of measures P to just two measures, namely P = {P1,P2}, it follows
directly from the previous chapter that we can obtain optimal strategies and optimal
success sets A1 and A2 that are optimal under P1 and P2 respectively, without considering
the other measure. In general, these sets will not coincide and will not be optimal under
the other measure, i.e. P1(A2) < P1(A1) and P2(A1) < P2(A2). The question is whether
there are optimal solutions between these extremes, and if so, is there a way to find them
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and their probabilities of success? These are the two questions we address in the following
section.

The main idea in this chapter is to define a convex combination of measures for which we
write

Pλ :=
∑
i∈I

λiPi with
∑
i∈I

λi = 1, λi > 0 and Pi ∈ P

and apply the previous theory for single market models to these new market measures. For
a simpler notation, in the proofs of the following main results we reduce the set of market
measures to P = {P1,P2}, which means that Pλ is of the form

Pλ := λP1 + (1 − λ)P2

with λ ∈ (0, 1). It will be seen that we can extend this construction to arbitrary finite sets
of measures, which generalises the following proofs to finite sets for P. In Section 3.3 we
already proved that the convex combination of a countable set of probability measures is
again a probability measure.

The first step in this section is to show in Theorem 4.2.8 that with this idea we can create
optimal solutions according to the previous Definition 4.2.3. The second statement in the
Theorem 4.2.9 shows that not only can we create optimal solutions with this approach but
we can find every optimal solution. Finally, in Theorem 4.2.16 we will examine further
properties of these optimal solutions, which means we will show that the set of all hedging
strategies is strictly convex in terms of success probabilities.

Definition 4.2.4.
For a robust market model P = ⋃

i∈I{Pi}, the set Qλ is defined as

Qλ :=

 ∑
Qi∈QPi

λiQi :
∑
i∈I

λi = 1, λi > 0

 ,
i.e. Qλ is defined as the set of convex combinations of equivalent martingale measures.

Defining this set is necessary because every measure contained in Qλ is equivalent to every
convex combination Pλ of measures in P , which does not necessarily hold for the equivalent
measures in QPi .

Lemma 4.2.5.
Let P be a countable robust market model and I an arbitrary index set on P. Using the
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set Qλ for pricing under Pλ does not change the supremum of all arbitrage free prices.
This means

sup
Q∈Qλ

EQ[1AC] = sup
Q∈
⋃
i∈I

QPi

EQ[1AC]

for every A ∈ F .

Proof. Since the expectation is a linear functional, the lemma follows by

sup
Q∈Qλ

EQ[1AC] = sup
Qi∈QPi

λi∈(0,1)∑
λi=1

E
∑

i∈I
λiQi [1AC]

= sup
Qi∈QPi

λi∈(0,1)∑
λi=1

∑
i∈I

λiEQi [1AC]

= sup
i∈I

Qi∈QPi

EQi [1AC]

= sup
Q∈
⋃
i∈I

QPi

EQ[1AC].

The third equation holds, since the expectations are deterministic values, where the largest
of these values determines the supremum.

This lemma shows that considering Qλ as a new set of equivalent martingale measures
does not produce prices that exceed the previous upper bound, which is important since
we are creating a new option that is supposed to be superhedged in P. However, Qλ only
contains measures that are equivalent to Pλ which is important in the proof of Theorem
4.2.9.

Remark 4.2.6.
As an interesting side note, Qλ does not necessarily include every equivalent martingale
measure of Pλ, and it is possible that Pλ, as a new market measure, would lead to higher
prices than any single market measure in P.

As a simple example, consider two binomial models with

• P1 with u1 = 4 and d1 = 1
4 ,

• P2 with u2 = 2 and d2 = 1
2 ,
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• A claim C : Ω = {u1, u2, d1, d2} → R with C(u1) = 1, C(u2) = 2, C(d1) = C(d2) = 0.

Under P1 we have the equivalent martingale measure Q1(u1) = 1
5 , Q1(d1) = 4

5 which leads
to EQ1 [C] = 1

5 .

Under P2 we have the equivalent martingale measure Q2(u2) = 1
3 , Q2(d2) = 2

3 which leads
to EQ2 [C] = 2

3 .

Finally, under any Pλ = λP1 + (1 − λ)P2 the martingale measure Q(u1) = 0, Q(u2) = 3
7 ,

Q(d1) = 4
7 and Q(d2) = 0 can be approximated by equivalent martingale measures leading

to supQ∈Qλ
EQ[C] = 6

7 >
2
3 .

On the other hand there are cases where every equivalent martingale measure of Pλ is
contained in Qλ, as the following proposition states.

Proposition 4.2.7.
If for every Pi,Pj ∈ P either Pi ∼ Pj or Pi ⊥ Pj , where ⊥ denotes the singularity of
measures, and if supp(Pi) ∈ F0 for every Pi ∈ P , then the set Qλ contains every equivalent
martingale measure of Pλ.

Proof. The above statement is a more general form of Proposition 5.13 in Kirch [38], whose
proof we loosely follow.

It is clear by definition that every measure Q in Qλ is equivalent to Pλ and is a martingale
measure, so we only need to show that every martingale measure equivalent to Pλ can be
written in the form

Q =
∑

Qi∈QPi

i∈I

λiQi.

Let Q be a martingale measure equivalent to Pλ. We can say without loss of generality that
all measures in P are singular, because two equivalent measures have the same equivalent
martingale measures.

Now we can define the support of the measure Pi as Ωi and define new measures

Q̃i(A) := Q(A|Ωi) = Q(A ∩ Ωi)
Q(Ωi)

.

which leads to a representation of Q as

Q(A) =
n∑

i=1
Q̃i(A)Q(Ωi), (4.2.1)
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Since Q ∼ Pλ and thus Pi ≪ Q and Qi(Ωi) = 1, it is clear that Q̃i ∼ Pi, so it only remains
to show that Q̃i is a martingale measure on Ωi.

First, we can represent conditional expectation under Q by conditional expectation under
the new measure Q̃ using Proposition 2.4.6:

EQ[St|Fs] = 1
EPλ [ dQ

dPλ
|Fs]

EPλ

[
dQ

dPλ
St

∣∣∣∣Fs

]

= 1
EPλ [ dQ

dPλ
|Fs]

EPλ

[ ∞∑
i=1

Q(Ωi)
dQ̃i

dPλ
St

∣∣∣∣Fs

]

= 1
EPλ [ dQ

dPλ
|Fs]

∞∑
i=1

Q(Ωi)EPλ

[
dQ̃i

dPλ
St

∣∣∣∣Fs

]

= 1
EPλ [ dQ

dPλ
|Fs]

∞∑
i=1

Q(Ωi)EPλ

[
dQ̃i

dPλ

∣∣∣∣Fs

]
EQ̃i

[
St

∣∣Fs
]
. (4.2.2)

The second equation follows due to Equation (4.2.1), while the third equation holds with
monotone convergence theorem. Now we can make use of the assumption that Ωi ∈ F0.
This allows for

EPλ

[
dQ

dPλ

∣∣∣∣Fs

]
1Ωi = EPλ

[
dQ

dPλ
1Ωi

∣∣∣∣Fs

]
= EPλ

[
Q(Ωi)

dQ̃i

dPλ

∣∣∣∣Fs

]

= Q(Ωi)EPλ

[
dQ̃i

dPλ

∣∣∣∣Fs

]
,

where we can use measurability of Ωi in the first equation and Equation (4.2.1) in the
second equation. Inserting this into Equation (4.2.2) shows that on Ωi it holds that

EQ[St|Fs]1Ωi = EQ̃i [St|Fs]. (4.2.3)

Now we can finally show for any A ∈ Fs and any i ∈ N:

EQ̃i [Ss1A] = EQ̃i [Ss1A∩Ωi ] = 1
Q(Ωi)

EQ[Ss1A∩Ωi ]

= 1
Q(Ωi)

EQ
[
EQ[St|Fs]1A∩Ωi

]
= 1
Q(Ωi)

EQ
[
EQ̃i [St|Fs]1A∩Ωi

]
= EQ̃i

[
EQ̃i [St|Fs]1A

]
,

where the fourth equation follows with Equation (4.2.3). Since A can be chosen arbitrary
this finally shows EQ̃i [St|Fs] = Ss and proves that Q̃i is indeed a martingale measure on
Ωi and Q̃i ∈ QPi .
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After introducing the necessary notation and sets, one of the main results of this sec-
tion is to show that the approach using Pλ as a new single measure leads to optimal
solutions.

Theorem 4.2.8.
Let P be a market that satisfies the assumptions 3.2.8, 3.2.11 and 3.2.12, and let P
be a finite robust market model. For every fixed λ ∈ [0, 1]n with ∑n

i=1 λi = 1 there
exists a superhedging strategy for the claim C̃ = C1AH,x

, where AH,x solves the following
optimisation problem

maximise Pλ(AH,x) (4.2.4)

under the constraint sup
Q∈Qλ

EQ[1AH,x
C] ≤ Ṽ0.

This strategy is optimal regarding P.

Proof. Let Ã be a solution to this optimisation problem. Since the market satisfies the
assumptions 3.2.8, 3.2.11 and 3.2.12, the previous Lemma 4.2.5 ensures that we can apply
Theorem 3.2.15, which means that we can indeed find a hedging portfolio (H̃, x̃) with

P1
(
V H̃,x̃

T ≥ 1ÃC
)

= 1,

P2
(
V H̃,x̃

T ≥ 1ÃC
)

= 1,

sup
Q∈Qλ

EQ[1ÃC] = x̃ ≤ Ṽ0.

It remains to show that this strategy is indeed an optimal strategy in view of Definition
4.2.3. If we assume that Ã does not lead to an optimal strategy, then there exists a set
A ∈ F with supQ∈Qλ

EQ[1AC] ≤ Ṽ0 and

P1(A) > P1(Ã) but P2(A) ≥ P2(Ã)

This means we can get the following inequality:

Pλ(A) = λP1(A) + (1 − λ)P2(A)

> λP1(Ã) + (1 − λ)P2(Ã)

= Pλ(Ã).

This is a contradiction to the assumption, that Ã is a solution to the optimisation problem
(4.2.4).
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This theorem shows us that we can indeed find optimal solutions with this new convex
combination of measures. The subsequent theorem will demonstrate that this procedure
can actually lead to every optimal solution.

Theorem 4.2.9.
Let P be a market that fulfills the assumptions 3.2.8, 3.2.11 and 3.2.12 and let P be a
finite set of measures. Then every optimal strategy according to Definition 4.2.3 is the
solution of a optimisation problem

maximise Pλ(AH,x) (4.2.5)

under the constraint sup
Q∈Qλ

EQ[1AH,x
C] ≤ Ṽ0,

for a weight vector λ ∈ [0, 1]n with ∑n
i=1 λi = 1.

In view of Theorem 4.1.3 this can be rewritten to: Every Optimal Strategy is the super-
hedging strategy to an option

C̃ = C1{ dPλ
dQλ

>kC
},

where Q̃ ∈ Qλ is a worst case measure and k is chosen such that the constraint is fulfilled.

Proof. First, we assume that we have a set P = {P1,P2}. As shown in Theorem 4.1.3, it
is possible to find the optimal strategy for both P1 and P2. Consequently, for λ = 1 and
λ = 0 the optimal sets A1 and A2 can be determined as

A1 =
{
dP1

dQ̃1
> k1 C

}
A2 =

{
dP2

dQ̃2
> k2 C

}
,

where k1, k2 ∈ R+ are constants, that can be determined by the investment constraint, and
Q̃1, Q̃2 ∈ Qλ are worst-case measures, that exist according to Neyman-Pearson theory, see
Theorem 3.3.14.

Now assume λ ∈ (0, 1). With the argumentation in Theorem 4.1.3 we know that the
solution to the optimisation problem (4.2.5) is of the form

Aλ =
{
dPλ

dQ̃λ

> kλC

}
.

Since P1 and P2 are absolutely continuous with respect to Q for any Q ∈ Qλ, i.e. P1 ≪ Q

and P2 ≪ Q, we can rewrite the set Aλ as

Aλ =
{
λ
dP1

dQ̃λ

+ (1 − λ) dP2

dQ̃λ

> kλC

}
.
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To finish the proof we need to show that the functions

pi : [0, 1] → [0, 1], λ 7→ Pi

(
λ
dP1

dQ̃
+ (1 − λ)dP2

dQ̃
> kλC

)
(4.2.6)

are continuous. This function represents the success probability under Pi for the success
set that is optimal under Pλ. Note that p1 always measures the success probability of
optimal solutions, i.e. the measured set in (4.2.6) solves

maximise Pλ(A)

under the constraint sup
Q∈Qλ

E[1AC] ≤ Ṽ0.

First of all we will show that the function

pλ1(λ2) :=Pλ1

(
λ2

dP1

dQ̃λ2

+ (1 − λ2) dP2

dQ̃λ2

> kλ2C

)
(4.2.7)

is continuous in λ1 and λ2. Since λ1 only gives the weights in the convex combination of
Pλ the function is continuous in λ1. This means we have the following properties:

0 ≤ pλ1(λ2) ≤ 1

pλ1(λ2) is continuous in λ1

for a fixed λ1 we have pλ1(λ1) = max
λ2∈[0,1]

pλ1(λ2), (4.2.8)

where property (4.2.8) follows due to Theorem 4.1.3. These properties are sufficient to
show continuity in λ2:

Suppose that pλ1(x) is not continuous in x. Continuity in λ1 together with boundedness
makes clear that if there are any discontinuities those cannot be limited to a single point,
furthermore this set of discontinuities must be parallel to the λ1 axis, due to continuity in
this variable, which means there must be a tupel (λ0, λ0) ∈ (0, 1) × (0, 1) where it holds

pλ0(λ0 + ϵ) ↛ pλ0(λ0).

This means we get the following chain of inequalities:

pλ0(λ0) > pλ0(λ0 + ϵ) = pλ0+ϵ(λ0 + ϵ) + δ(ϵ) ≥ pλ0+ϵ(λ0) + δ(ϵ) = pλ0(λ0) + δ(ϵ) + δ̃(ϵ),
(4.2.9)

for all ϵ > 0 small enough, where δ(ϵ), δ̃(ϵ) → 0 for ϵ → 0. The inequalities are following from
the maximum property (4.2.8) and the δ and δ̃ follow from continuity in λ1. Considering
the limit for ϵ → 0 we get

pλ0(λ0) > lim
ϵ→0

pλ0(λ0 + ϵ) = lim
ϵ→0

pλ0+ϵ(λ0 + ϵ) ≥ pλ0+ϵ(λ0) = pλ0(λ0),
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which is a contradiction and verifies that pλ1(λ2) has to be continuous in both variables.

In the last step it remains to show that not only pλ = λp1 + (1 − λ)p2 is continuous
but also p1 and p2. So let us assume again that p1 is not continuous at position λ0, i.e.
limϵ→0 p1(λ0 + ϵ) ̸= p1(λ0). As we know that pλ0 := λ0p1 + (1 − λ0)p2 is a continuous
function, we conclude that p2 is also discontinuous with

lim
ϵ→0

p1(λ0 + ϵ) − p1(λ0) = lim
ϵ→0

( 1
λ0
pλ0(λ0 + ϵ) − λ0

1 − λ0
p2(λ0 + ϵ)

)
−
( 1
λ0
pλ0(λ0) − λ0

1 − λ0
p2(λ0)

)
= − λ0

1 − λ0

(
lim
ϵ→0

p2(λ0 + ϵ) − p2(λ0)
)
.

The second equality holds with continuity of pλ1(λ2) that we already showed.

On the other hand we also know that pλ is continuous for every fixed λ in the subscript
which leads to

lim
ϵ→0

p1(λ0 + ϵ) − p1(λ0) = − λ

1 − λ

(
lim
ϵ→0

p2(λ0 + ϵ) − p2(λ0)
)

for every λ ∈ (0, 1). The above equation can only hold for every λ if both sides are 0. Thus
we finally conclude that p1 and p2 have to be continuous in λ0, which is a contradiction.

This means we have continuous functions p1 and p2 and see that for every success probability
p̃ ∈ [p1(0), p1(1)], there has to be a weight λ ∈ [0, 1] such that p1(λ) = p̃. The same holds
for p2, which means we can indeed create every optimal success set and find every optimal
success probability. The previous arguments can also be continued recursively to any finite
set P = {P1, ...,Pn}.

Corollary 4.2.10.
For a fixed index i and a capital constraint Ṽ0 let p be the maximal success probability
an optimal strategy can have under Pi and let p be the minimal success probability an
optimal strategy can have under Pi. Theorem 4.2.9 implies that for every p ∈ [p, p] there
exists a weight vector λ such that the optimisation problem

maximise Pλ(AH,x)

under the constraint sup
Q∈Qλ

EQ[1AH,x
C] ≤ Ṽ0,

leads to a strategy (H,x) with Pi(AH,x) = p.

Remark 4.2.11.
Theorem 4.2.9 implies the existence of a solution to the minimax problem we were solving
in the case of convex sets of physical measures.
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4.2.2. Extension to additional risk measures and concavity

In Section 4.1.2.1 we showed that in single market models all results can also be applied in
a very similar way to the expected shortfall or the success ratio as a risk measure. This
leads to the question of whether the results for robust markets can also be generalised to
these risk measures, which will turn out to be correct.

Definition 4.2.12. Robust optimal hedging strategy regarding success ratio
A hedging strategy (H̃, x̃) with initial investment x̃ ≤ Ṽ0 is optimal with respect to the
success ratio, defined in Definition 4.1.5, if for every other hedging strategy (H,x) with
x ≤ Ṽ0 and

EPi [φ(H̃, x̃)] < EPi [φ(H,x)]

there exists j ̸= i with

EPj [φ(H̃, x̃)] > EPj [φ(H,x)]

Definition 4.2.13. Robust optimal hedging strategies regarding expected shortfall
Corresponding to Definition 4.2.3 a hedging strategy H̃ with initial investment x̃ ≤ Ṽ0 to
a claim C is called robust optimal with respect to the expected shortfall if for every other
admissible hedging strategy (H,x) with x ≤ Ṽ0 and

EPi [(C − V H̃,x
T )+] > EPi [(C − V H,x

T )+]

there exists a j ̸= i with

EPj [(C − V H̃,x
T )+] < EPj [(C − V H,x

T )+].

Theorem 4.2.14.
Theorem 4.2.8 and 4.2.9 are also valid under optimality regarding success ratio and expected
shortfall.

Proof. The proof of Theorem 4.2.8 can be applied analogously.

The proof of Theorem 4.2.9 can be applied analogously again. Note that we used the
continuity of P which also holds for EP. This means that the arguments used there also
apply to this definition of optimality.
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Using success ratios instead of success probabilities again has advantages when examining
the remaining risk as a function of initial investment. Considering optimal strategies that
maximise the minimum probability of success (Minimax optimisation) or maximise the
sum of all success probabilities can again be proven to be concave as function of initial
investment.

Corollary 4.2.15.
The optimal expected success ratio that maximises the minimal success ratio or the sum
of success ratios depending on capital constraint is non decreasing and concave.

Proof. Let x1 > x2 and let H1 and H2 be the optimal strategies that maximise∑
P∈P EP[φ(H,x)] depending on x. As in Corollary 4.1.8 one can again set up a hedging

strategy that has a success ratio equal to a convex combination of both previous optimal
success ratios for less or equal capital

sup
Q∈QP

EQ[(λφ(H1, x1) + (1 − λ)φ(h2, x2))C] ≤λ sup
Q∈QP

EQ[φ(H1, x1)C]

+(1 − λ) sup
Q∈QP

EQ[φ(H2, x2)C]

=λx1 + (1 − λ)x2.

On the other hand the linearity of the summed success ratio∑
P∈P

EP[λφ(H1, x1) + (1 − λ)φ(H2, x2)] = λ
∑
P∈P

EP[φ(H1, x1)] + (1 − λ)
∑
P∈P

EP[φ(H2, x2)]

is sufficient to proof the existence of an optimal hedging strategy H̃ with∑
P∈P

EP[φ(H̃, λx1 + (1 − λ)x2)] ≥ λ
∑
P∈P

EP[φ(H1, x1)] + (1 − λ)
∑
P∈P

EP[φ(H2, x2)].

While for the maximisation of the minimal success ratio we have

min
P∈P

(
EP[λφ(H1, x1) + (1 − λ)φ(H2, x2)]

)
≥λmin

P∈P

(
EP[φ(H1, x1)]

)
+ (1 − λ) min

P∈P

(
EP[φ(H2, x2)]

)
,

which again proofs existence of H̃ with

min
P∈P

(
EP[φ(H̃, λx1 + (1 − λ)x2)]

)
≥ λmin

P∈P

(
EP[φ(H1, x1)]

)
+ (1 − λ) min

P∈P

(
EP[φ(H2, x2)]

)
.
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Theorem 4.2.16.
Let pi ̸= pi. The set of all success probabilities of hedging strategies that satisfy the
constraints is strictly convex (see for example Figure 5.5).

If we assume P = {P1,P2} and define pi and pi to largest and smallest possible success
probability an optimal hedging strategy can have under Pi, then the above theorem means
that the optimal solutions we can find according to Theorem 4.2.9 form a strictly concave
curve between (p1, p2) and (p1, p2), which means that these solutions have larger success
probabilities than the straight line between (p1, p2) and (p1, p2).

Proof. We will again use the hedging ratio to prove this statement, but we can use the fact
that the shortfall probability and hedging ratio coincide whenever the optimal solution
for the shortfall probability exists. Fix λ1, λ2 ∈ [0, 1] with λ1 ̸= λ2 and let (H1, Ṽ0) be
the optimal hedging strategy regarding Pλ1 and (H2, Ṽ0) be the optimal hedging strategy
regarding Pλ2 . For any convex combination of these hedging strategies we have

EP1 [φ(λH1 + (1 − λ)H2, Ṽ0)] = EP1 [λφ(H1, Ṽ0) + (1 − λ)φ(H2, Ṽ0)]

= λEP1 [φ(H1, Ṽ0)] + (1 − λ)EP1 [φ(H2, Ṽ0)].

This proves that the optimal success ratio under P1 to λ ∈ (λ1, λ2) is at least linear
between the two optimal solutions generated by λ1 and λ2. If we assume pi ≠ pi the
set {φ(H1, Ṽ0) ̸= φ(H2, Ṽ0)} is not a null set and thus φ(λH1 + (1 − λ)H2, Ṽ0) is not
of 0-1-form. Therefore, there exists a strictly better hedging strategy than the convex
combination λH1 + (1 − λ)H2. The same arguments hold for P2 as well. Since the optimal
strategies for the shortfall probability and the hedging ratio coincide and since we have
already proved the existence of the optimal strategies regarding the shortfall probability
this suffices to prove the statement. Since λ1 and λ2 were chosen arbitrarily the indifferent
curve of all optimal hedging strategies is strictly concave. If pi = pi, then the set of all
optimal strategies is a singleton.

The above Theorem 4.2.16 gives an idea of why the theory of robust superhedging can
find useful applications. Since it is impossible, or at least very difficult, to determine the
model selection risk, it is quite difficult to find an appropriate weight for each model in the
definition of Pλ. Theorem 4.2.16 shows that if there is no preference for any of the models
considered in P , then looking at more than one model can reward an investor with a higher
overall probability of success while reducing model selection risk. For example, one can
aim to maximise the sum of all success probabilities, which, as shown in the previous
corollary, is higher than for optimal strategies in single market models. An example of this
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consideration is shown in Figure 5.6 in the next section, where calculations have been made
for two Black-Scholes models with different drift terms. As another example, one can choose
a minimum probability of success for certain models depending on outside considerations,
while maximising it for other models. One can think of modelling high and low interest
rates, which may require different levels of collateral or one can think of scenario-based
approaches in general, which we often see in practice and as regulatory requirements. As a
third example, one can maximise the minimum success probability across all models, this
approach is explored in Kirch [38] in a more general setting.

4.2.3. Worst-case measures Q̃ for different weightings

The worst-case measure for an incomplete market model P is usually very difficult or almost
impossible to find analytically. This circumstance motivates a grid search over all possible
worst-case measures in QP, which is very expensive in terms of computational time. In the
case of robust market modelling, a new measure Pλ is constructed from the measures in P ,
which is a convex combination of all measures in P with a weight vector λ. Finding the
worst case measure for each possible weights λ via a new grid search each time is therefore
undesirable from a computational point of view.

The question therefore is whether the worst-case measures might have some continuity
properties with respect to the weights λ. Intuitively, a small change in λ should result in
only a small change in the corresponding worst-case measure, which will be mathematically
proven in the following chapter. This means that changing the weights does not require a
completely new global grid search, but only a local search around the previous worst-case
measure.

Definition 4.2.17.
A sequence of probability measures (µn) converges in total variation to a probability
measure µ if for every ϵ there exists a n0 such that for every n ≥ n0 it holds that

||µn − µ||T V < ϵ,

where the total variation norm for probability measures is defined as

||µn − µ||T V := sup
A∈F

|µn(A) − µ(A)|.

Remark 4.2.18.
The total variation norm is generally defined for measures µ, ν on a measurable space
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(X,F) as

||µ− ν||T V = sup
f

∫
X

fdµ−
∫
X

fdν,

where f is a measurable function from X to [−1, 1]. This definition simplifies to the
definition in 4.2.17 in cases of probability measures.

Definition 4.2.19.
A sequence of random variables (Xn) converges in measure regarding µ to a random
variable X if

lim
n→∞

µ({w ∈ Ω : |Xn −X| > ϵ}) = 0 ∀ϵ > 0.

Before proving that worst-case measures behave continuous under changes in the weighting
term we need two auxiliary results. The following lemma is a special case of Scheffe’s theo-
rem, see Scheffe [61]. For the sake of completeness, a proof is given.

Lemma 4.2.20.
Let (Ω,F) be a measurable space with (µn) a sequence of probability measures absolutely
continuous with respect to a probability measure µ. The convergence dµn

dµ → 1 in measure
is equivalent to the convergence µn → µ in total variation.

Proof. Let C ∈ F be an arbitrary event. For this take the sets

An :=
{
ω ∈ C

∣∣∣dµn

dµ
(ω) ≤ 1

}
and

Bn :=
{
ω ∈ C

∣∣∣dµn

dµ
(ω) > 1

}
.

First, it holds that

µ(C) =
∫
C

dµn =
∫
C

dµn

dµ
dµ =

∫
An

dµn

dµ
dµ+

∫
Bn

dµn

dµ
dµ.

This in turn gives∫
Bn

dµn

dµ
dµ =

∫
C

dµ−
∫

An

dµn

dµ
dµ =

∫
Bn

dµ+
∫

An

(1 − dµn

dµ
)dµ

= µ(Bn) +
∫

An

(1 − dµn

dµ
)dµ.
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For any arbitrary set C ∈ F , there is

||µn − µ||T V =|
∫
C

d(µn − µ)| = |
∫
C

(dµn

dµ
− 1)dµ| =

∫
An

(1 − dµn

dµ
)dµ+

∫
Bn

(dµn

dµ
− 1)dµ

=
∫

An

(1 − dµn

dµ
)dµ+

∫
Bn

dµn

dµ
dµ− µ(Bn)

=
∫

An

(1 − dµn

dµ
)dµ+ µ(Bn) +

∫
An

(1 − dµn

dµ
)dµ− µ(Bn)

=2
∫

An

(1 − dµn

dµ
)dµ → 0.

Here, convergence in the last step follows by the dominated convergence theorem, since
(1 − dµn

dµ ) is bounded by 1 and is positive. The convergence in total variation thus follows
from the convergence dµn

dµ → 1 in measure with respect to µ.

The backward direction, on the other hand, follows by Markov inequality

µ({ω ∈ Ω : |dµn

dµ
− 1| > ϵ}) ≤

Eµ[|dµn

dµ − 1|]
ϵ

= 1
ϵ

∫
Ω

|dµn

dµ
− 1|dµ → 0 ∀ϵ > 0.

Note here that the condition of convergence implies dµn

dµ → 1 in L1(µ).

Lemma 4.2.21.
Let (Xn)n∈N be a sequence of random variables with Xn ≥ 0 and E[Xn] = 1 for all n ∈ N.
Let k ∈ R be constant. It holds that

P( lim
n→∞

Y + 1
n
Xn > k) = P(Y > k).

Proof. Assuming that the assertion does not hold, then P({ lim
n→∞

1
nXn > 0}) ̸= 0 or

P(Xn > nk) ↛ 0 holds. Thus

1 = E[Xn] ≥ E[Xn1{Xn>n}] ≥ nP(Xn > n) → ∞.

These two results will be used to proof the main theorem of this sec-
tion:

Theorem 4.2.22.
Let P = {P1, ...,Pn} be a robust market model and λ a weight vector. Let f : (0, 1)n → Q
be a function with f(λ) = Qλ, where Qλ is a worst-case measure regarding Pλ. The
functional f is continuous with respect to the total variation norm.
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Proof. It is to be shown that for any sequence (λn) → λ∗ there is also limn→∞ f(λn) =
f(λ∗). Let without restriction P = {P1,P2}. For a sequence λ+ 1

n the following holds:

f(λ) solves the following optimisation problem in Q:

max
Q∈Q

Pλ

(
dPλ

dQ
> k C

)
(4.2.10)

under the constraint sup
Q∈Q

EQ[1{
dPλ
dQ

>kC

}C] ≤ Ṽ0.

Additionally, for all n ∈ N, f(λ+ 1
n) solves:

max
Q∈Q

Pλ+ 1
n

(
dPλ+ 1

n

dQ
> kC

)
under the constraint sup

Q∈Q
EQ[1{ dP

λ+ 1
n

dQ
>k C

}C] ≤ Ṽ0.

When considering the limits for n → ∞, it can be used that for any sequence (An):

lim
n→∞

1
n
P(An) = 0, (4.2.11)

since the measure P is bounded by 1.

Furthermore, for an increasing or decreasing sequence of sets (A1 ⊆ A2 ⊆ A3...) or
(A1 ⊇ A2 ⊇ A3...), the monotone convergence theorem states

lim
n→∞

P(An) = P( lim
n→∞

An). (4.2.12)

For the optimal success set with respect to λ+ 1
n , by definition.{

dPλ+ 1
n

df(λ+ 1
n)

> k C

}

=
{
λ

dP1

df(λ+ 1
n)

+ (1 − λ) dP2

df(λ+ 1
n)

+ 1
n

dP1

df(λ+ 1
n)

− 1
n

dP2

df(λ+ 1
n)

> k C

}
.

Note that the above sets would be monotonically increasing (decreasing) if the two posterior
terms are both added (subtracted), since the Radon-Nikodym derivative is always non-
negative.

Looking at the limit for n → ∞ it can be seen that

lim
n→∞

Pλ+ 1
n

(
dPλ+ 1

n

df(λ+ 1
n)

> k C

)
= lim

n→∞
Pλ

(
dPλ+ 1

n

df(λ+ 1
n)

> k C

)

≥ lim
n→∞

Pλ

(
λ

dP1

df(λ+ 1
n)

+ (1 − λ) dP2

df(λ+ 1
n)

− 1
n

dP1

df(λ+ 1
n)

− 1
n

dP2

df(λ+ 1
n)

> k C

)
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= Pλ

(
lim

n→∞
λ

dP1

df(λ+ 1
n)

+ (1 − λ) dP2

df(λ+ 1
n)

− 1
n

dP1

df(λ+ 1
n)

− 1
n

dP2

df(λ+ 1
n)

> k C

)

= Pλ

(
λ lim

n→∞
dP1

df(λ+ 1
n)

+ (1 − λ) lim
n→∞

dP2

df(λ+ 1
n)

> k C

)

= Pλ

(
lim

n→∞
dPλ

df(λ+ 1
n)

> k C

)
,

while at the same time

lim
n→∞

Pλ+ 1
n

(
dPλ+ 1

n

df(λ+ 1
n)

> k C

)
= lim

n→∞
Pλ

(
dPλ+ 1

n

df(λ+ 1
n)

> k C

)

≤ lim
n→∞

Pλ

(
λ

dP1

df(λ+ 1
n)

+ (1 − λ) dP2

df(λ+ 1
n)

+ 1
n

dP1

df(λ+ 1
n)

+ 1
n

dP2

df(λ+ 1
n)

> k C

)

= Pλ

(
lim

n→∞
λ

dP1

df(λ+ 1
n)

+ (1 − λ) dP2

df(λ+ 1
n)

+ 1
n

dP1

df(λ+ 1
n)

+ 1
n

dP2

df(λ+ 1
n)

> k C

)

= Pλ

(
λ lim

n→∞
dP1

df(λ+ 1
n)

+ (1 − λ) lim
n→∞

dP2

df(λ+ 1
n)

> k C

)

= Pλ

(
lim

n→∞
dPλ

df(λ+ 1
n)

)
.

The second last equation in each case holds with Lemma 4.2.21. Combining these two
inequalities we get

Pλ

(
lim

n→∞
dPλ

df(λ+ 1
n)

)
≤ lim

n→∞
Pλ+ 1

n

(
dPλ+ 1

n

df(λ+ 1
n)

> k C

)
≤ Pλ

(
lim

n→∞
dPλ

df(λ+ 1
n)

)
.

That is, the set {limn→∞
dPλ

df(λ+ 1
n

) > k C} also solves the first optimisation problem (4.2.10)
with λ instead of λ+ 1

n . The uniqueness of the solution then provides that both sets must
be equal except for null sets, i.e.{

lim
n→∞

dPλ

df(λ+ 1
n)

> k C

}
=
{
dPλ

df(λ) > k C

}
P − a.s.

As f only generates measures equivalent to Pλ, continuity of f now follows by

lim
n→∞

dPλ

df(λ+ 1
n)

= dPλ

df(λ) Pλ-a.s.

⇒ lim
n→∞

df(λ+ 1
n)

df(λ) = 1 Pλ-a.s.

This is sufficient with Lemma 4.2.20 to proof convergence in the total variation norm.
Iteratively we can generalise this theorem to finite sets P.
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As already mentioned above, this continuity property of worst-case measures can sig-
nificantly reduce the computational effort by allowing a local grid search instead of a
global one. By exploiting this property, we can focus on relevant regions of the parameter
space, improving efficiency. The numerical examples in the following chapter illustrate the
computational effort rquierd for a grid search.
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Application and examples

The expression C1{ dP
dQ

>kC} is very unintuitive and not directly applicable for real-world
problems. Therefore, it is interesting to have a more detailed look at this expression and
its application in specific models. Beginning with single market models we will present
an analytic solution in Black-Scholes models to call and put options as well as binary
options. The example of call and put options was already examined in Föllmer [23] but
is reintroduced here to extend it to robust market models. To get an analytic solution,
we need many properties of the Black-Scholes model that usually do not hold for more
complex market models, which leads to the question of a more general applicable way to
treat these problems. Therefore, we will show that one can use Monte Carlo simulations,
that are generally applicable without strong assumptions, to find optimal success sets and
probabilities.

First, we will present a short introduction into Monte-Carlo methods and numerical
solutions of stochastic differential equations. This only serves as a justification that the
following numerical approaches are mathematically correct. After that we will first present
solutions in the single market, i.e. analytic solutions to call and binary options in the
Black-Scholes model and numerical approaches in jump models. Then we will generalise
these examples to robust models.

Note that all numerical calculations were made with the software R.

5.1. Monte-Carlo methods and approximation of SDE-solutions

One of the main problems we are facing when trying to find optimal hedging strategies
for a given market model is to calculate expectations, E[f(ST )], either under a physical
measure to determine the risk or under an equivalent martingale measure to find arbitrage
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free prices. For most commonly used market models, i.e. jump-diffusion models, we have
information about (St)t∈R+ in the form of

dSt = µ(St, t)dt+ σ(St, t)dWt + c(St−, t)dJt, (5.1.1)

where W represents a Brownian motion and Jt = ∑Nt
i=1Xi represents the jump part

with independent and identically distributed random variables Xi and a Poisson process
N .

The problems we are facing can be reduced to finding a solution to the stochastic differ-
ential equation and then calculating expectations depending on the simulated paths of
S.

If we know an explicit solution to the underlying differential equation, like in the Black-
Scholes model or the Merton-Jump model, simulation of paths of S and especially of
marginal distributions St is straightforward. However, we are often not able to determine
the distribution of ST explicitly if it is only described by a stochastic differential equation.
In these cases one can try to approximate ST using a time discrete approximation scheme.
In this section we are describing a simple method to approximate distributions for ST in a
general set-up with corresponding convergence order.

First, most of the time one can guarantee the existence of a solution to the stochastic differ-
ential equation by restricting to lipschitz functionals for µ, σ and c.

Lemma 5.1.1.
A stochastic differential equation of form (5.1.1) has a unique and strong solution if µ, σ
and c are lipschitz. Uniqueness is to be understood in the sense that two solutions of the
stochastic differential equation are indistinguishable.

Proof. Chapter V, Theorem 7 in Protter [56].

As long as there exists a solution we can use a simple stochastic version of the Euler
method.

Definition 5.1.2. Euler-Maruyama approximation
One can approximate the solution of a stochastic differential equation, for example (5.1.1),
using an Euler scheme to simulate realisations according to the stochastic differential
equation.

St+∆t = St + µ(St, t)∆t+ σ(St, t)
√

∆t ·Wt + c(St, t)∆Jt,
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where Wt is standard normally distributed and ∆Jt = ∑Nt
i=Nt−∆t

Xi a compound Poisson
process. This procedure can be used recursively on an equidistant grid [0, T ] using T

∆t

steps. This method is named Euler-Maruyama approximation.

Definition 5.1.3. Weak and strong convergence
Let S be the solution to a stochastic differential equation and let Ŝ∆t be a time discrete
approximation with step size ∆t.

We define that Ŝ∆t converges to S weakly with respect to a class of functions F if

lim
∆t→0

∣∣E[f(St)] − E[f(Ŝ∆t
t )]

∣∣ = 0 for any function f ∈ F.

We say that Ŝ∆t converges to S strongly if

lim
∆t→0

E[|St − Ŝ∆t
t |] = 0.

In general, the more regular the functions in F are, the better is the weak convergence
rate. Using polynomials for F, which is still a comparably weak choice, is sufficient for
convergence of all moments. This is also enough for the purpose of this work. As we
are using the approximation of stochastic processes only for pricing, i.e. for determining
expectations, weak convergence is sufficient, which is why we are only introducing this
kind of convergence.

Definition 5.1.4. Convergence rate
Let Ŝ∆t be a time discrete approximation of S. The approximation Ŝ∆t converges with
convergence rate q if there is a constant C ∈ R such that

∣∣E[f(St)] − E[f(Ŝ∆t
t )]

∣∣ ≤ C(∆t)q.

Theorem 5.1.5.
If µ(x, t) and σ(x, t) in (5.1.1) are four times continuously differentiable functions with
polynomial growth and uniformly bounded derivatives and if the approximation is weakly
consistent, then the Euler-Maruyama approximation converges weakly with order 1

2 .

Proof. Theorem 9.7.4 in Glasserman [26].
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After finding a numerical approximation to the solution of stochastic differential equations
it remains to determine expectations. The concept of Monte-Carlo simulation is well known.
Roughly speaking, one can approximate expectations of random variables by simulating
many independent realisations of this random variable and using the law of large numbers
to get

E[X] ≈ 1
n

n∑
i=1

Xi.

Theorem 5.1.6.
Monte-Carlo simulation with n realisations converges with a rate of

√
n. More precisely if

σ2 denotes the variance of X ∈ L2(Ω) then for the error ϵn = E[X] − 1
n

∑n
i=1Xi it holds

that
√
nϵn is normally distributed with variance σ2.

Proof. This is a direct consequence of the central limit theorem.

These methods, both the monte carlo simulation and the Euler method aswell, are quite
inefficient as there is only a convergence rate of 1

2 . There are way more efficient methods as
the Milstein method with convergence rate 1, see for example Kloeden [39], that requires
stronger assumptions. There is also a huge variety of more efficient variants of Monte-Carlo
methods but as the focus in this work is not on numerical aspects these methods are
sufficient to present applications of the previous results.

5.2. Single market models

5.2.1. Analytic solutions in the Black-Scholes model

First, we present some examples in the Black-Scholes model that can be solved analytically.
The first example is a European call option followed by a binary option. The main feature
of Black-Scholes models that allows us to find analytic solutions is the fact that the
Radon-Nikodym derivative can be written solely in terms of the underlying itself, see
Proposition 5.2.1.
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5.2. Single market models

5.2.1.1. Call options

The following idea of rewriting success sets was first formulated in Föllmer and Leukert [23].
Let P define a Black-Scholes market, i.e. the underlying S solves the stochastic differential
equation

dSt = µStdt+ σStdWt (5.2.1)

with a standard Brownian motion W , µ ∈ R and σ ∈ R>0. In this section we optimally
hedge a vanilla call option with strike K ∈ R:

C(ST ) = (ST −K)+

under capital constraint Ṽ0.

First, we will present some well-known properties that hold in the Black-Scholes
model:

Proposition 5.2.1.
(a) The solution of the stochastic differential equation (5.2.1) is given by

St = S0 exp
(
σWt +

(
µ− 1

2σ
2
)
t

)
. (5.2.2)

(b) The Black-Scholes model is a complete market with a unique equivalent martingale
measure. The change of measure to the equivalent martingale measure can be
described by

dP
dQ

∣∣∣∣
Ft

= exp
(
µ− r

σ
Wt + 1

2

(
µ− r

σ

)2
t

)
. (5.2.3)

Note that throughout this thesis it is assumed that r = 0.

(c) The Radon Nikodym derivative dP
dQ |Ft can be expressed in terms of St:

dP
dQ

∣∣∣∣
Ft

= cS
µ

σ2
t (5.2.4)

with a constant c ∈ R.

(d) The price of call options with strike K and maturity T in the Black-Scholes model
can be calculated using the Black-Scholes pricing formula:

EQ[(ST −K)+)] = S0Φ(d1) −Ke−rT Φ(d2), (5.2.5)
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where

d1 =
ln
(

S0
K

)
+
(
r + σ2

2

)
T

σ
√
T

,

d2 = d1 + σ
√
T ,

and Φ denotes the distribution function of a standard normal distribution.

Proof. Parts (a), (b) and (d) are standard results from financial mathematics, see Black and
Scholes [8] for the pricing formula and Girsanov theory in Björk [7] for the Radon-Nokodym
derivative. Part (c) follows with a straightforward calculation:

dP
dQ

= exp
(
µ

σ
WT + 1

2

(
µ

σ

)2
T

)

= exp
(
µ

σ2 (σWT + µ

2T )
)

= S
µ

σ2
0 exp

(
σWT + (µ− 1

2σ
2)T

) µ

σ2
S

− µ

σ2
0 exp

(
µ2

2σ2T − µ2

σ2T + µT

)

= cS
µ

σ2
T .

Corollary 5.2.2.
The optimal success set in Black-Scholes markets for call options is of the form

A = {ST < c1} ∪ {ST > c2},

with c1 < c2 and c2 = ∞ if µ < σ2. The optimal success probability is

P(A) = Φ

 ln
(

c1
S0

)
+
(

σ2

2 − µ
)
T

σ
√
T

 if µ ≤ σ2,

P(A) = Φ

 ln
(

c1
S0

)
+
(

σ2

2 − µ
)
T

σ
√
T

+ Φ

−
ln
(

c2
S0

)
+
(

σ2

2 − µ
)
T

σ
√
T

 if µ > σ2.

Proof. The main ideas of the following proof are already shown in Föllmer [23]. According
to Theorem 4.1.3 the optimal success set is always of the form

A =
{
dP
dQ

> k̃C

}
.
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Using (5.2.4) the optimal success set is of the form

A =
{
S

µ

σ2
T > k̃(ST −K)+

}
with a constant k̃ ∈ R determined by the capital constraint. Now one can see that the left
term S

µ

σ2
T is monotone in ST . More importantly, this term is strictly convex for µ

σ2 > 1
and concave for µ

σ2 ≤ 1. Since the right term (ST − K)+ is linear for ST > K and zero
otherwise, this means that, with a proper choice of k̃, the equation S

µ

σ2
T = k̃(ST − K)+

has two solutions for µ > σ2 and one solution for µ ≤ σ2. If the capital constraint Ṽ0 is
between zero and the price of the option, k̃ will be determined such that there are solutions
to the equation. If c1 and c2 are solutions for ST to S

µ

σ2
T = k̃(ST −K)+, then the success

set is

A =

{ST > c1} ∩ {ST < c2} for µ < σ2

{ST < c1} ∪ {ST > c2} for µ > σ2,

where c1 = 0 in the first case.

Finding a more explicit representation of the optimal hedging strategy requires to determine
the constants c1 and c2, or just c2 in the case µ ≤ σ2. This can be done using the Black-
Scholes pricing formula (5.2.5) and adjusting it for the knockout option C1A.

First we can see that this option can be rewritten as a sum of call options and a binary
option.

The case µ ≤ σ2:

In the case µ ≤ σ2 with A = {ST < c}, this results in

C1A = (ST −K)+ − (ST − c)+ − (c−K)1{ST >c}.

The first two summands can be priced using the Black-Scholes pricing formula, while the
last summand is easy to price as a binary option. For an easier notation we define

b :=
ln
(

c
S0

)
+ σ2

2 T

σ

and get the following results:

EQ[(ST −K)+] = S0Φ(d1) −KΦ(d2),

99



Chapter 5. Application and examples

EQ[(ST − c)+] = S0Φ

 ln
(

S0
c

)
+ σ2

2 T

σ
√
T

− cΦ

 ln
(

S0
c

)
− σ2

2 T

σ
√
T


= S0Φ

−
ln
(

c
S0

)
+ σ2

2 T

σ
√
T

+ σ
√
T

− cΦ

−
ln
(

c
S0

)
− σ2

2 T

σ
√
T


= S0Φ

(−b+ σT√
T

)
− cΦ

( −b√
T

)
,

EQ[(c−K)1{ST >c}] = (c−K)Q(ST > c)

= (c−K)Q

W ∗
T >

ln
(

c
S0

)
+ σ2

2 T

σ


= (c−K)Φ

(
− b√

T

)
.

Here we set W ∗
t as a Q-Brownian motion. Using these three results we get the following

price for C1A:

EQ[C1A] = S0Φ(d1) −KΦ(d2) − S0Φ
(−b+ σT√

T

)
+KΦ

( −b√
T

)
.

Finally, the constant b can be found solving

Ṽ0 = S0Φ(d1) −KΦ(d2) − S0Φ
(−b+ σT√

T

)
+KΦ

( −b√
T

)
for µ < σ2 for a fixed capital constraint Ṽ0, which requires numerical approaches.

After finding the constant b or c respectively one can find the optimal success probability
using the lognormal distribution of ST or the representation of ST in (5.2.2).

P(A) = P(ST < c) = P

WT <
ln
(

c
S0

)
+
(

σ2

2 − µ
)
T

σ


= Φ

 ln
(

c
S0

)
+
(

σ2

2 − µ
)
T

σ
√
T


= Φ

(
b− µ

σT√
T

)
.

The case µ > σ2:
On the other hand, the case µ > σ2 is more complex, since we need to find two con-
stants b1 and b2 which leads to an additional equation. We can use almost the same
argumentation in this case. To price the corresponding knockout option C1A with
A = {ST < c1} ∪ {ST > c2} we define

b1 :=
ln
(

c1
S0

)
+ σ2

2 T

σ
, b2 :=

ln
(

c2
S0

)
+ σ2

2 T

σ
,
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and rewrite the C1A into

C1A = (ST −K)+ − (ST − c1)+ − (c1 −K)1{ST >c1} + (ST − c2)+ + (c2 −K)1{ST >c2},

which gives the pricing formula

EQ[C1A] =S0Φ(d1) −KΦ(d2) − S0Φ
(−b1 + σT√

T

)
+KΦ

(−b1√
T

)
+ S0Φ

(−b2 + σT√
T

)
−KΦ

(−b2√
T

)
. (5.2.6)

Using the capital constraint we get the first equation to determine b1 and b2

Ṽ0 =S0Φ(d1) −KΦ(d2) − S0Φ
(−b1 + σT√

T

)
+KΦ

(−b1√
T

)
(5.2.7)

+ S0Φ
(−b2 + σT√

T

)
−KΦ

(−b2√
T

)
.

We have the additional condition that S
µ

σ2
T = k̃(ST − K)+, which means that c1 and c2

must solve the equation

x
µ

σ2 = k̃(x−K)+.

Since b1 and b2 are strictly monotone transformations of c1 and c2 these two equations are
sufficient to uniquely determine c1 and c1 or b1 and b2 respectively.

Finally, we can again determine the success probability by using (5.2.2).

P(A) = P(ST ≤ c1, ST ≥ c2)

= Φ

 ln
(

c1
S0

)
+
(

σ2

2 − µ
)
T

σ
√
T

+ Φ

−
ln
(

c2
S0

)
+
(

σ2

2 − µ
)
T

σ
√
T


= Φ

(
b1 − µ

σT√
T

)
+ Φ

(
−
b2 − µ

σT√
T

)
.

Example 5.2.3.
To use some concrete numbers, we will have a look at the following example: Let P denote
a Black-Scholes market with S0 = 100 and a vanilla call option C(ST ) = (ST − 100)+.
Additionally we set µ = 0.1, σ = 0.5 and T = 1.

Using the above formulas we can calculate success probabilities for different capital con-
straints, which gives us the following very typical concave curve for the success probabilities
as a function of the capital constraint:
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Figure 5.1.: Success probabilities of optimal hedging strategies for a call option in a Black-
Scholes market for different capital constraints.

5.2.1.2. Binary option

Binary options, i.e. C = 1{ST ∈B} for a set B ⊆ R+, have the very useful property that
prices can be derived using only the cumulative distribution function. In this case, this leads
to prices and success probabilities that can be calculated analytically.

Corollary 5.2.4.
Let p ∈ R+ and consider a Black-Scholes model P with parameters µ ∈ R and σ > 0.

(a) For a binary option C = 1{ST >p}, the optimal success set is of the form

A = {ST ≤ p} ∪ {ST > k̃}, with k̃ = exp
(√

TσΦ−1(1 − Ṽ0) − σ2

2 T
)
.

The optimal success probability is

P(A) = 1 − Φ
(√

TσΦ−1(1 − Ṽ0) + µT√
Tσ

)
+ Φ

( ln(p) − µT + σ2

2 T√
Tσ

)
.

(b) For a binary options C = 1{ST <p}, the optimal success set is of the form

A = {ST < k̃} with k̃ = exp
(

Φ−1
(
Ṽ0 + Φ

( ln(p) + σ2

2 T√
Tσ

))√
Tσ − σ2

2 T
)
.
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The optimal success probability is

P(A) = Φ
(

Φ−1
(
Ṽ0 + Φ

( ln(p) + σ2

2 T√
T

))
− µ

σ

√
T

)
.

Proof. Let C = 1{ST >p} for a p ∈ R+. In this case we get

EQ[C1{ dP
dQ

>k C}] = EQ[1{ST >p}1
{S

µ

σ2
T >k 1{ST >p}}

]

= EQ[1{ST >p}∩{ST >k̃ 1{ST >p}}]

= EQ[1{ST >p}∩{ST >k̃}]

= Q(ST > k̃),

where we use that, as long as Ṽ0 ≤ EQ[C], it holds that k̃ ≥ p.

Now we can use that we know the distribution of ST
S0

under Q to be a lognormal distribution,
ST
S0

∼ LN(−σ2

2 T, σ
2T ). This leaves us with

Ṽ0 = EQ[C1{ dP
dQ

>k C}] = Q(ST > k̃) = 1 − Φ
( ln(k̃) + σ2

2 T√
Tσ

)
,

and we can determine k̃ as

k̃ = exp
(√

TσΦ−1(1 − Ṽ0) − σ2

2 T
)
.

Finally, the optimal success probability can be determined as

P
(
dP
dQ

> k C

)
= P(S

µ

σ2
T > k1{ST >p}) = P(ST > k̃1{ST >p})

= P({ST > k̃} ∪ {ST ≤ p})

= P
({
ST > exp

(√
TσΦ−1(1 − Ṽ0) − σ2

2 T
)}

∪ {ST ≤ p}
)

= P
(
ST > exp

(√
TσΦ−1(1 − Ṽ0) − σ2

2 T
))

+ P(ST ≤ p),

where again we can use that k̃ ≥ p as long as Ṽ < EQ[C]. Since under P the random
variable ST

S0
is still lognormally distributed, with ST

S0
∼ LN(µT − σ2

2 T, σ
2T ), we can solve

the last expression explicitly:

P
(
dP
dQ

> k C

)
= P

(
ST > exp

(√
TσΦ−1(1 − Ṽ0) − σ2

2 T
))

+ P(ST ≤ p)

= 1 − Φ
(√

TσΦ−1(1 − Ṽ0) + µT√
Tσ

)
+ Φ

( ln(p) − µT + σ2

2 T√
Tσ

)
.
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If instead we define C = 1{ST <p}, then we come to the conclusion that

EQ[C1{ dP
dQ

>k C}] = EQ[1{ST <p}∩{ST >k̃}] = Q(p < ST < k̃)

= Φ
( ln(k̃) + σ2

2 T√
Tσ

)
− Φ

( ln(p) + σ2

2 T√
Tσ

)
,

which leads to

k̃ = exp
(

Φ−1
(
Ṽ0 + Φ

( ln(p) + σ2

2 T√
Tσ

))√
Tσ − σ2

2 T
)

and finally gives an optimal success probability of

P
(
dP
dQ

> k C

)
= P(ST < k̃) = Φ

(
Φ−1

(
Ṽ0 + Φ

( ln(p) + σ2

2 T√
T

))
− µ

σ

√
T

)
.

5.2.2. Numerical approach for jump models

In the previous section we showed that in the simple case of a Black-Scholes model with
path independent options it is possible to find an analytical representation of the optimal
success sets and to determine the success probability analytically. To find these sets we
make use of the very strong properties (5.2.4) and (5.2.5), i.e. an analytic solution to the
stochastic differential equation, an analytic solution to the Radon-Nikodym derivative in
terms of S itself and an analytic pricing formula. These strong properties are not fulfilled
for many models.

This leads to the question of whether the theory presented for finding optimal hedging
strategies in single market models is applicable to models that are more complex than a
Black-Scholes model. In this section, we show how Monte Carlo simulation can be used
to compute optimal success sets and probabilities in models that do not satisfy all of the
above properties. Optimal success sets can also be determined implicitly using the same
method.

The main advantage of the presented theory is that we already know the structure of the
optimal hedging strategy, which means that we do not need to use a complex optimiser
over numerous competing strategies. Instead we only need to find a way to find the worst
case measure Q̃ and the constant k in the set { dP

dQ > kC} and determine the probability of
this set. In complete market models, finding optimal hedging strategies and their success
probabilities can be reduced to the following two tasks:
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5.2. Single market models

(a) Find k ∈ R that solves

EQ
[
C1{ dP

dQ
>kC}

]
= Ṽ0. (5.2.8)

(b) Calculate success probability

P
(
dP
dQ

> kC

)
= EP

[
1{ dP

dQ
>kC}

]
. (5.2.9)

As one can see, we are only interested in expected values of random variables, which
motivates the usage of Monte Carlo simulation.

Note here that dP
dQ and C are random processes, which can be simulated, and note that dP

dQ

already implies dQ
dP .

Lemma 5.2.5.
Let µ and ν be σ-finite measures on a measurable space. If µ ∼ ν, then for the Radon-
Nikodym derivative dµ

dν it holds that

dν

dµ
=
(
dµ

dν

)−1
.

Proof. It follows by the Radon-Nikodym theorem that the expression dν
dµ which is defined

as the solution for f in

ν(A) =
∫
A

fdµ

for every measurable set A is unique ν-almost surely. It follows directly from∫
A

dν = ν(A) =
∫
A

dν

µ
dµ =

∫
A

dν

dµ

dµ

dν
dν for every measurable A,

that dν
dµ

dµ
dν = 1 ν-almost surely.

5.2.2.1. Numerical approach

In Monte Carlo simulation, we define discrete time steps t0, ..., tm and simulate n paths
ω1, ..., ωn of S via its SDE. The Radon-Nikodym derivative can be determined pathwise.
Since the claim C depends only on the simulated paths of S, we apply the law of large
numbers to solve tasks (5.2.8) and (5.2.9).
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Note that if the market is incomplete, the choice of the price measure Q ∈ QP is not clear
a priori. Thus, a worst-case choice can be found using a grid search on the set QP of all
possible choices for Q.

In short:

(a) Simulate n paths ω1, ..., ωn under (Ω,P) using the physical measure P

(b) If the market is incomplete fix a possible measure Q of a grid on QP.

(c) Calculate dQ
dP (ωi) for every ωi.

(d) Find a constant k ∈ R, such that the constraint is fulfilled, using the following
approximation:

Ṽ0 = EQ
[
C1{ dP

dQ
>kC

}]
= EP

[
C1{ dP

dQ
>kC

}dQ
dP

]
≈ 1
n

n∑
i=1

C(ωi)1{ dP
dQ

>kC
}(ωi)

dQ

dP
(ωi).

Numerically one could for instance find the smallest k ∈ R such that

1
n

n∑
i=1

C(ωi)1{ dP
dQ

>kC
}(ωi)

dQ

dP
(ωi) ≥ Ṽ0.

(e) Calculate the success probability via

P
(
dP
dQ

> kC

)
= EP

[
1{ dP

dQ
>kC

}]
≈ 1
n

n∑
i=1
1{

( dQ
dP )−1>kC

}(ωi).

(f) If the market is incomplete, return to step (c) and fix another possible measure Q or
choose the worst case.

Note that the equation in step (e) has a unique solution in k because the sum is increasing
with growing k as C and dQ

dP are positive processes.

Remark 5.2.6.
A major disadvantage of this approach is that we only get success probabilities but not the
exact structure of the knockout option as in the analytic approach for the Black-Scholes
model. But one can implicitly reconstruct the knockout option by plotting the hedged
paths, which sometimes have an observable pattern.
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5.2. Single market models

5.2.2.2. Merton-Jump-Diffusion model

If we consider the Merton-Jump model, we are working with a typical jump diffusion
model. The stochastic differential equation that the underlying is supposed to solve is the
following:

dSt = St(µ− λκ)dt+ σStdWt + St(eJt − 1)dNt.

In this model µ is a drift term, Jt affects the jumpsize at time t and is normally distributed
and N is a poisson point process with rate λ, that defines the times at which a jump occurs.
In addition κ is defined as κ = E[eJt − 1], such that ((eJt − 1)dNt − λκdt) has a mean drift
of zero, or in other words µ is indeed the drift of this process.

First of all, we will present some results concerning the Merton-Jump Model:

Lemma 5.2.7.
The stochastic differential equation of the Merton-Jump model has the following solution

St = exp
((
µ− σ2

2 − λκ
)
t+ σWt +

Nt∑
n=1

Jn

)

Proof. The generalized Itô formula for a C2-function f , that can be found in Chapter II,
Theorem 33 in Protter [56], gives us:

df(St) = ∂f(St)
∂St

dSt + 1
2
∂2f(St)
∂2St

d[St, St]c +
(
f(St) − f(St−) − ∂f(St)

∂St
∆St

)
(5.2.10)

We can use the fact that

∂f(St)
∂St

dSt − ∂f(St)
∂St

∆St =∂f(St)
∂St

dSc
t

=∂f(St)
∂St

(St(µ− λκ)dt+ σStdWt)

to get the Itô formula for jump-diffusion processes. If we set f(x) = ln(x) and set Jt = 0
whenever there is not a jump in t, i.e. ∆Nt ≠ 0, (note that there are almost surely not two
jumps at the same time) we get the following equations:

df(St) = ∂f(St)
∂St

dSt + 1
2
∂2f(St)
∂2St

d[St, St]c +
(
f(St) − f(St−) − ∂f(St)

∂St
∆St

)
= 1
St

(St(µ− λκ)dt+ σStdWt) − σ2S2
t

2S2
t

dt+ ln(St) − ln(St−)

= ((µ− λκ)dt+ σdWt) − σ2

2 dt+ ln(eJtSt−) − ln(St−)

107



Chapter 5. Application and examples

= ((µ− λκ)dt+ σdWt) − σ2

2 dt+ ln(eJt) + ln(St−) − ln(St−)

= ((µ− λκ)dt+ σdWt) − σ2

2 dt+ ln(eJt).

Integrating both sides gives us

ln(St) =
t∫

0

(
µ− λκ− σ2

2

)
ds+

t∫
0

σdWs +
Nt∑

n=1
Jn,

where we can apply the exponential function to get

St = exp(ln(St)) = exp
((

µ− λκ− σ2

2

)
t+ σWt +

Nt∑
n=1

Jn

)
.

Remark 5.2.8.
As the Merton-Jump model contains three independent stochastic terms, it is not a complete
model, which means that we can find more than one (even infinitely many) equivalent
martingale measures. In his original publication [48] Merton proposed an equivalent
martingale measure that leaves the jump heights and intensities unchanged. The idea
behind this suggestion is that the risk of jumps might be fully diversifiable, so that there
is no risk premium for jumps. However, it is known nowadays that jump risks are not
purely unsystematic risks, which means we should be aware of every possible equivalent
martingale measure.

To apply a Monte Carlo simulation, we need to find the Radon-Nikodym derivative of the
physical measure P with respect to a worst case equivalent martingale measure Q. The
next lemma gives a solution to the Radon-Nikodym derivative in the Merton-Jump model.
The solution can be found in Cheang and Chiarella [12], but is provided with a more
straightforward proof here. See Appendix A for a more detailed derivation for general
jump diffusion model.

Corollary 5.2.9.
Let P be a physical measure with

dSt = St(µ− λκ)dt+ σStdWt + St(eJt − 1)dNt,

where N is a Poisson process with rate λ and (Jn)n∈N are normally distributed jumps
with EP[eJn − 1] = κ. The Radon-Nikodym Derivative of dP

dQ for an equivalent martingale
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measure Q is of the form

dP
dQ

∣∣∣∣
Ft

= exp
(
θWt + θ2

2 t−
Nt∑

n=1
(γJn + ν) + λκ̃t

)
. (5.2.11)

The terms γ ∈ R and ν ∈ R manipulate the arrival rate and jump sizes for the jump part
under Q while θ = µ−λκ+λQκQ

σ with λQ = λ(1 + κ̃) and κQ = EQ[eJ − 1] changes the drift
of the Wiener process. In addition let κ̃ = eνEP[eγJ ] − 1.

Proof. First, we can determine some of the variables and expressions explicitly. We Assume
Jn to be normally distributed with mean µJ and satndard deviation σJ .

(a) κ = EP[eJ − 1] = exp(µJ + σ2
J/2) − 1,

(b) κ̃ = exp(ν + γµJ + γ2σ2
J/2) − 1,

(c) κQ = EQ[eJ − 1] = exp(µJ + (2γ + 1)σ2
J/2) − 1,

(d) E[exp(aJ + b)] = exp(aµ+ b+ a2σ2/2) for J ∼ N (µ, σ2),

(e) E[exN ] = exp(λt(ex − 1)) for N ∼ Pois(λ).

Wit some calculations we can see that dQ
dP indeed is a martingale:

EP
[
dQ

dP

∣∣∣∣
Ft

]
=EP

[
exp(−θWt) exp

(
−θ2

2 t

)
exp

(
Nt∑

n=0
γJn + ν

)
exp(−λκ̃t)

]

=EP
[

exp (−θWt)
]

exp
(

−θ2

2 t

)
EP
[
exp

(
Nt∑

n=0
γJn + ν

)]
exp(−λκ̃t)

= exp
(
θ2

2 t
)

exp
(

−θ2

2 t
)
EP
[
EP
[
exp

(
Nt∑

n=0
γJn + ν

) ∣∣∣∣Nt = N

]]
exp(−λκ̃t)

4)=EP
[
exp

(
N(γµJ + ν) + 1

2Nσ
2
Jγ

2
)]

exp(−λκ̃t) with N ∼ Pois(λ)

=EP
[
exp

(
Nt

(
γµJ + ν + σ2

Jγ
2

2

))]
exp(−λκ̃t)

5)= exp
(
λt

(
exp

(
γµJ + ν + σ2

Jγ
2

2

)
− 1

))
exp(−λκ̃t) 2)= 1.

Then, with some extensive calculations one can see that dQ
dP defines a martingale measure:

EP
[
dQ

dP
St

]
=EP

[
exp(−θWt) exp

(
−θ2

2 t

)
exp

(
Nt∑

n=0
γJn + ν

)
exp(−λκ̃t)

S0 exp
((

µ− λκ− σ2

2

)
t+ σWt +

Nt∑
n=1

Jn

)]
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=S0EP[(σ − θ)Wt] exp
(

−θ2

2 t

)
exp

((
µ− λκ− σ2

2 − λκ̃

)
t

)

EP
[
EP
[
exp

(
N∑

n=1
(γ + 1)Jn + ν

) ∣∣∣∣Nt = N

]]
4)=S0 exp

((σ − θ)2

2 t

)
exp

(−θ2

2 t

)
exp

(
(µ− λκ− σ2

2 − λκ̃)t
)

EP
[
exp

((
(γ + 1)µJ + ν + (γ + 1)2σ2

J

2

)
N

)]
with N ∼ Pois(λ)

5)=S0 exp
((

σ2

2 − σθ + µ− λκ− σ2

2 − λκ̃

)
t

)

exp
(
λt

(
exp

(
(γ + 1)µJ + ν + (γ + 1)2σ2

J

2

)
− 1

))
3)=S0 exp((−λQκQ − λκ̃)t) exp

(
λt

(
exp

(
(γ + 1)µJ + ν + (γ + 1)2σ2

J

2

)
− 1

))
=S0 exp(−λtκQ) exp(−λtκ̃(1 + κQ))

exp
(
λt

(
exp

(
(γ + 1)µJ + ν + (γ + 1)2σ2

J

2

)
− 1

))

=S0 exp(−λtκQ) exp
[
λt

(
− (exp(ν + γµJ + γ2σ2

J/2) − 1)

exp(µJ + (2γ + 1)σ2
J/2) + exp

(
(γ + 1)µJ + ν + (γ + 1)2σ2

J

2

)
− 1

)]
=S0 exp(−λtκQ) exp

[
λt

(
− exp((γ + 1)µJ + ν + (γ + 1)2σ2

J

2 )

+ exp(µJ + (2γ + 1)σ2
J/2) + exp

(
(γ + 1)µJ + ν + (γ + 1)2σ2

J

2
)

− 1
)]

=S0 exp(−λtκQ) exp(λt(exp(µJ + (2γ + 1)σ2
J/2) − 1︸ ︷︷ ︸

=κQ

) = S0

Example 5.2.10. Success probabilities for a single market Merton-Jump model
In this example we will have a look on a Merton-Jump model with a vanilla put option.

(a) Underlying: dSt = St(µ− λκ)dt+ σStdWt + St(eJt − 1)dNt

(b) Parameter: S0 = 100, µ = 0.1, σ = 0.2, λ = 2

(c) Jump parameter: Jt ∼ N (µJ , σJ) with µJ = −0.05, σJ = 0.02

(d) Option: C(ST ) = (K − ST )+ with K = 100
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First, we face the problem of finding a worst-case measure, since there are infinitely
many equivalent martingale measures. Since there is no analytic solution to this problem,
we will use a grid search. We can see that by varying ν and γ we can construct any
equivalent martingale measure. Thinking of the Neyman-Pearson lemma we are trying
to find the measure that is as difficult to distinguish from the original physical measure
P as possible, i.e. we are not looking for inconveniently large values for ν and γ, which
would be difficult anyway due to the very large variance. Note that the grid in this case is
only two-dimensional, which makes the example computationally solvable in a reasonable
amount of time. The following success probabilities can be calculated for different choices
of ν and γ, i.e. different choices of Q ∈ QP, for a capital constraint of Ṽ0 = 4:

Gamma
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S
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robability

Gamma Nu

S
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robability
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S
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robability

GammaNu

S
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Figure 5.2.: Success probabilities for different values of ν and γ in the Merton-Jump model.

Then we can choose the values ν and γ such that success probability is minimal. Additionally
calculating success probabilities for different capital constraints leaves us with the following
very typical concave graph:
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Figure 5.3.: Success Probabilities depending on the capital constraint in the Merton-Jump
model.

All in all, the above presented way is very computationally intensive, as there needs to
be a sufficiently large amount of simulations, since the variance in a jump model is quite
large, while the grid for the worst-case martingale measure can be theoretically infinitely
large if not restricted by external considerations. But on the other hand the used method
can be easily applied to any market model as long as the Radon-Nikodym derivative for
any measure change to an equivalent martingale measure is known.

5.3. Robust models

After presenting examples and numerical approaches for single markets we will have a look
at robust markets. Again, as in the single market case, we will first present an analytical
approach for the Black-Scholes model with parameter uncertainty. Then, because we again
use a lot of properties that are not generally satisfied for most models, we will again have
a look at possible numerical approaches.

In Theorem 4.2.9 it is already shown that finding optimal strategies and success sets
can be reduced to the problem of constructing the set

{
dPλ
dQ > kC

}
. Before present-

ing an analytic solution as in Lemma 5.2.5 we can make use of some properties of the
Radon-Nikodym derivative to make the construction of Radon-Nikodym derivatives eas-
ier.
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Lemma 5.3.1.
Let µ, ν and ρ be σ-finite measures on a measurable space. The Radon-Nikodym derivative
fulfils the following properties:

(a) If µ ≪ ν and ρ ≪ ν, it holds that d(µ+ρ)
dν = dν

dµ + dρ
dν ν-almost surely,

(b) If µ ≪ ν and λ ∈ R constant, it holds that d(λµ)
dν = λdµ

dν ν-almost surely,

(c) If µ ≪ ρ ≪ ν, it holds that dµ
dν = dµ

dρ
dρ
dν ν-almost surely.

Proof. Note first that the Radon-Nikodym theorem states that Radon-Nikodym derivatives
are uniquely defined, which is why the following equations are sufficient to prove the stated
properties:

The first property follows with∫
A

d(µ+ ρ)
dν

dν = (µ+ ρ)(A) = µ(A) + ρ(A) =
∫
A

(dµ
dν

+ dρ

dν
)dν.

The second property follows directly by∫
A

λ
dµ

dν
dν = λ

∫
A

dµ

dν
dν = λ · µ(A) = (λ · µ)(A) =

∫
A

d(λµ)
dν

dν.

The last property follows by∫
A

dµ

dν
dν = µ(A) =

∫
A

dµ

dρ
dρ =

∫
A

dµ

dρ

dρ

dν
dν.

These results can be used to work with the convex combinations of market measures
Pλ =

n∑
i=1

λiPi with λi > 0 and
n∑

i=1
λi = 1. Since we are only interested in the Radon-

Nikodym derivative dPλ
dQ , the above lemma allows to deal with this new model without the

need of detailed understanding of these mixed measures. We can write

dPλ

dQ
=

n∑
i=1

λi
dPi

dQ
.

For the case of only two models P = {P1,P2}, the Radon-Nikodym derivative is of the
simple form

dPλ

dQ
= λ

dP1
dQ

+ (1 − λ)dP2
dQ

.

In both cases we do get the desired Radon-Nikodym derivative of Pλ with respect to Q
only by adding already known and often simpler terms.
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5.3.1. Analytic solution in Black-Scholes models with parameter uncertainty

In this section we will consider parameter uncertainty in Black-Scholes models, which is
directly related to robust market modelling. We consider a robust market model that
contains two models P = {P1,P2} such that under P1 we have

dSt = µ1Stdt+ σStdWt

and under P2 we have

dSt = µ2Stdt+ σStdWt.

This means that both measures are Black-Scholes models with different drift terms but the
same variance, which has the advantage that both measures are equivalent and have the same
equivalent martingale measure. Note that this is not strictly necessary for our calculations,
but avoids problems we will examine in more detail in Chapter 6.

We already know from Corollary 5.2.2 that the optimal success sets in both cases
are

Ai = {ST < c1} ∪ {ST > c2} for i ∈ {1, 2},

where c2 = ∞ if µi < σ2.

In the case of µi > σ2 for both measures or µi < σ2 for both measures, we will get the
same optimal success sets for both physical measures, because the prices of the options
and the structure of the optimal sets coincide. But in the case µ1 < σ2 < µ2, we are in the
interesting case where the optimal success sets are different depending on the choice of the
physical measure.

Example 5.3.2.
Let P1 and P2 be Black-Scholes measures with µ1 = 0.1, µ2 = 0.5 and variance σ2 = 0.25,
such that we are in case of different success sets. Further let S0 = 100 and C(ST ) =
(ST −K)+ with a strike price of K = 100.

Using the solving strategy already presented in Section 5.2 for a capital constraint of
Ṽ0 = 12 we will get that

A1 = {ST < 199.63},

A2 = {ST < 167.75} ∪ {ST > 247, 59}.

In other words, we can say that in the first case of µ1 = 0.1 we will hedge successfully
whenever the value of the underlying is below 199.63 and in the second case we will hedge
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successfully whenever the value of the underlying is below 167.75 or larger than 247.75.
As expected, these success sets are far from being optimal under the other measure, as we
can see in the following probabilities

P1(A1) = 0.9240, P1(A2) = 0.8922,

P2(A1) = 0.7365, P2(A2) = 0.7559.

These success probabilities can be found using (5.2.2) which leads to

Pi(Aj) = Φ

 ln
(

cj
1

S0

)
+
(

σ2

2 − µi

)
T

σ

+ Φ

−
ln
(

cj
2

S0

)
+
(

σ2

2 − µi

)
T

σ

 .
It remains to find the success sets and success probabilities between these extreme sets,
which can be done using the theory presented in Section 4.2. Due to Theorem 4.2.9 we
only need to find the set Aλ = {dPλ

dQ > const · C}, which does not require further theoretic
work due to Lemma 5.3.1.

For every λ ∈ [0, 1] we get new optimal sets

Aλ =
{
dPλ

dQ
> k(ST −K)+

}
=
{
λ
dP1
dQ

+ (1 − λ)dP2
dQ

> k(ST −K)+
}

=
{
λk1S

µ1
σ2
T + (1 − λ)k2S

µ2
σ2
T > k(ST −K)+

}
,

with suitable constants k1, k2 and k. For these sets we see that the equation dPλ
dQ =

k(ST − K)+ still has two solutions in ST in addition to ST = 0. Note that k is always
determined such that there are indeed two solutions, except for one of the cases λ ∈ {0, 1}.
This means that the set Aλ is still of the form

Aλ =
{
ST < cλ

1

}
∪
{
ST > cλ

2

}
,

where cλ
1 and cλ

2 are constants depending on λ. Continuity as shown in Theorem 4.2.9
shows that cλ

1 and cλ
2 are continuous functions in λ that converge to the constants we have

already determined in the extreme cases for λ → 0 or λ → 1. We can fix the lower constant
cλ

1 and use the pricing formula for the knockout option (5.2.7) to determine cλ
2 . This leads

to the following constants c1 and c2 for different values of λ.
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Figure 5.4.: Barrier c1 and c2 of the optimal knockout options for different weightings λ.

The upper bound represents the value cλ
2 , while the lower bound is cλ

1 . More interesting
is the graph we get when we plot the success probabilities under both measures. In
the following figure we can see, as already stated in Theorem 4.2.16, that the success
probabilities of all hedging portfolios form a strictly convex set.
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Figure 5.5.: Optimal success probabilities under P1 and P2 for different weightings λ.
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As one can see in the previous figure, there are advantages of considering more than one
model. If there is no preference for any model, one could aim to maximise the sum of all
success probabilities which leads to an optimal strategy that never lies in the extreme cases
λ = 0 or λ = 1. The following figure shows the sum of both success probabilities under
different λ.
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Figure 5.6.: Sum of success probabilities for different weightings λ.

5.3.2. Monte Carlo simulation

As we have already mentioned for the single market models, an analytic solution requires
many properties that are lost when constructing models that are more complex than the
Black-Scholes model. However, we can again make use of Monte Carlo simulation to find
optimal success probabilities and optimal success sets. In this case we face the additional
problem of more than one physical measure and more importantly a much larger set of
possible worst case measures.

For every weight vector (λ1, ..., λm) on P = {P1, ...,Pm} we can determine the corresponding
optimal hedging strategy to Pλ as follows:

(a) Fix a possible worst case measure Q ∈ Qλ, i.e. fix a weighting vector µ = (µ1, ..., µm).

(b) Simulate n paths ω1, ..., ωn under measure Q.

(c) Calculate dPj

dQ (ωi) for every ωi and every j.
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(d) Find a constant k ∈ R such that the constraint is fulfilled, e.g. using the approximation

Ṽ0 = EQ

C1{ dPλ
dQ

>kC

}
≈ 1
n

n∑
i=1

C(ωi)1{ m∑
j=1

λj dPj
dQ

>kC

}(ωi).

Numerically one could for instance find the smallest k ∈ R such that

1
n

n∑
i=1

C(ωi)1{ m∑
j=1

λj dPj
dQ

>kC

}(ωi) ≥ Ṽ0.

(e) Calculate the success probabilities via

Pj

(
dPλ

dQ
> kC

)
= EPj

[
1{ dPλ

dQ
>kC}

]
= EPj

[
1{ dPλ

dQ
>kC}1supp(Pj)

]
= EQ

[
1{ dPλ

dQ
>kC}1supp(Pj)

dQ

dPj

]

≈
ñ∑

i=1
1{ dPλ

dQ
>kC}(ωi)

dQ

dPj
(ωi),

where the term dQ
dPj

only exists on the support of Pj and thus the last term only uses
the ñ paths on supp(Pj).

Finally, one can repeat the procedure on a grid of all possible choices for Q ∈ Qλ to deter-
mine the worst case measure Q, which is computationally intensive.

Remark 5.3.3.
The previous pseudo code becomes much simpler when working with equivalent measures
only. In this case the simulation can be done with respect to P1 and the fixing of an
equivalent martingale measure can be done after the simulation of the paths, which allows
to use the same simulation for all choices of Q and drastically reduces the computational
effort. The necessity to restrict to the support of the measures when determining success
probabilities leads to further problems, which we discuss in the next chapter, see Problem
6.1.1 and Problem 6.1.2.

Example 5.3.4.
Looking again at Example 5.3.2 we can validate the procedure of the Monte Carlo simulation.
Again we set S0 = 100, C(ST ) = (ST −K)+ with K = 100 and take Black-Scholes models
P1 and P2 with parameters µ1 = 0.1, µ2 = 0.5 and σ2 = 0.25.
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5.3. Robust models

In this case we can use the fact that in Black-Scholes models the Radon-Nikodym derivative,
which changes the drift term from µ1 under P1 to µ2 under P2 is a well known as

dP2
dP1

= exp
(

−µ1 − µ2
σ

Wt − 1
2

(
µ2 − µ1

σ

)2
t

)
,

and from the drift r under Q to µ1 under P1 as

dQ

dP1
= exp

(
−r − µ2

σ
Wt − 1

2

(
r − µ1
σ

)2
t

)
.

Note that these two Radon-Nikodym derivatives are sufficient to compute every other
necessary Radon-Nikodym derivative and thus we do not need to simulate an additional
Brownian motion W P2 under P2 to find dQ

dP2
, which is extremely useful since we already set

W P1 as a standard Brownian motion.

Following the presented algorithm, we obtain the same success probabilities as in Figure
5.5.
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Figure 5.7.: Optimal success probabilities in robust Black-Scholes model using Monte Carlo
simulation.
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Chapter 6.

Analysis of the Skorokhod framework

As already mentioned in the examples, using the Skorokhod space as a sample space,
while common in the literature, presents significant challenges, particularly in the context
of robust market modeling. These issues become apparent when comparing theoretical
frameworks with a real-world perspective. An alternative modeling approach can address
these inconsistencies, providing a more coherent and reliable foundation for robust financial
market analysis.

6.1. Issues of the Skorokhod space framework

In the previous examples, our focus was on markets that are equivalent. It remains to
examine how we can deal with markets that are not equivalent. In mathematical terms:
For the rest of this section we will assume a set P of singular measures. Let Ωi ⊆ Ω be the
support of Pi for each measure Pi ∈ P. Due to singularity there is

Pi(Ωj) =

1, i = j

0, i ̸= j.

We will see that this setup leads to unexpected results from a real-world perspective, as
the following examples show.

Problem 6.1.1.
A major limitation of considering non-equivalent market measures is that the success
probabilities of optimal hedging strategies under different measures do not align with the
expected outcomes in real-world scenarios. Considering two very similar measures P1 ⊥ P2

(such as two Black-Scholes markets with slightly different volatility σ), the optimal success
set A1 = { dP1

dQ1
> const C} ⊆ Ω1 for P1 does have a success probability of P2(A1) = 0,
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Chapter 6. Analysis of the Skorokhod framework

where we would expect a very similar success probability as the models are almost the
same. These issues are caused by the pathwise construction.

Problem 6.1.2.
A second problem when working with singular market measures occurs when constructing
robust optimal hedging strategies. For many examples of singular sets of market models,
e.g. most uncertain variance models P , where each P ∈ P has a different but deterministic
variance (vt)t∈[0,T ], there is Ωi ∈ F0+ for the respective supports. This leads to the problem
that optimal hedging reduces to simply choosing the "correct" market measure, which is
possible since the assumption Ωi ∈ F0+ allows to almost instantly reject every but one
market measure, and setting up the corresponding simple optimal hedging strategy. In
mathematical terms, we get the optimal hedging strategy

Ht =
n∑

i=1
H i

t1Ωi ,

where H i is the optimal hedging strategy regarding Pi, see Corollary 6.1.3. In other words,
the whole idea of robust modelling is entirely negated in this case.

It remains to prove the assertion of Problem 6.1.2, that optimal hedging strategies can be re-
duced to simply choosing one of the simple optimal hedging strategies.

Corollary 6.1.3.
If the measures in P are singular and for every corresponding support Ωi there is Ωi ∈ F0+,
then the robust optimal hedging strategy reduces to the strategy

Ht =
n∑

i=1
H i

t1Ωi (6.1.1)

with H i
t being the optimal strategy under Pi and QPi corresponding to the capital constraint

Ṽ0 for every i ∈ N.
Note that this is equivalent to the following statement: For any weights λ there exist a
worst case measure Q ∈ Q such that it holds that V H

t = 1AC with

A =
{ n∑

i=1
λi
dPi

dQ
> kC

}
(6.1.2)

and with H of the form (6.1.1).

Proof. We will show the above statement by constructing the worst case measure and
constant of set (6.1.2) explicitly depending on the worst case measures in the single market
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6.1. Issues of the Skorokhod space framework

cases. Optimality in every single market case then ensures optimality of the constructed
set A.

Let λ be an arbitrary but fixed vector that determines the weights of the convex combination
Pλ. For any Q ∈ Q there are weights λ̃ with

Q =
n∑

i=1
λ̃iQi, Qi ∈ QPi .

Due to Theorem 4.1.3, the optimal success set is of the form

A =
{
dPλ

dQ
> kC

}
=
{

n∑
i=1

λidPi

dQ
> kC

}
.

We can use that Pi ⊥ Qj for all i ∈ N with i ̸= j, to observe that

dPλ

dQ
=

n∑
i=1

λidPi

n∑
j=1

λ̃jQj

=
n∑

i=1

λidPi

λ̃idQi

.

For any measure Pi, we get success probabilities

Pi(A) = Pi

(
λi

λ̃i

dPi

dQi
> kC

)
.

Now let ki be the constant in the optimal set { dPi
dQi

> ki C} for any measure Pi. For any
i ∈ N there exists a λ̃i such that{

λi

λ̃i

dPi

dQi
> C

}
=
{
dPi

dQi
> ki C

}
.

Since ki > 0 it also holds that λ̃i > 0. In a final step we can choose the constant as

k = 1
n∑

i=1
λ̃i

.

Now λ∗
i = k · λ̃i are the weights that construct the worst case measure Q∗ = ∑n

i=1 λ
∗
iQi

that leads to the optimal success set presented in the corollary. After all, if there were
any better optimal success sets, this would contradict the optimality under single market
measures. Finally, it remains to remark that Ωi ∈ F0+ for any i ∈ N keeps the hedging
strategy well defined and the price for this claim is exactly Ṽ0 for any Pi.
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Chapter 6. Analysis of the Skorokhod framework

6.2. Push-Forward measures

The above problems 6.1.1 and 6.1.2 arise because of the pathwise construction, i.e. using
the Skorokhod space as the underlying sample space Ω. Modelling the financial market
in a different way could solve these problems. For path-independent options, using push-
forward measures of ST as an alternative way of modelling the financial market has many
advantages. First, this approach solves the problem of non-equivalent measures since the
push-forward measures of most models have support R+ and are therefore equivalent.
Second, this approach does not have the problem of potential F0+-measurability, i.e. the
impossibility of actually modelling robustness in a real-world sense. Third, we can still
use the stochastic differential equation and Radon-Nikodym derivatives known from the
Skorokhod approach, since the push-forward version can be derived analytically or can be
obtained via simulation.

However, for a given market model, it is unclear a priori whether the two approaches lead
to the same results. The following section shows that, for very simple models at least
(models satisfying Assumption 6.2.5), both approaches are consistent. However, there are
simple counter examples as well. Using the Skorokhod space will always lead to a less risky
optimal hedging strategy.

Remark 6.2.1.
Many of the most commonly traded options are path-independent, i.e. they can be written
as C = f(ST ). For the sake of simpler notation, we will assume C to be path independent
for the most of this section. The approach of using the push-forward measures is viable for
a much larger amount of options.

In particular, the following results hold for any option C : Ω → R+, which can be written
as C(ω) = f(X(ω)) with a continuous function X : Ω → R+ and a function f : R+ → R+.
In this case X defines the push-forward measures and f represents the payoff. For example,
one can think of X(ω) = maxt∈[0,T ] St(ω) for lookback options or X(ω) =

∫ T
0 St(ω)dt for

Asian options.

6.2.1. Theoretical results

Before proceeding with the rigorous mathematical notation and argumentation, we begin
with a short heuristic and intuitive introduction to motivate the results from a more
practical perspective.
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6.2. Push-Forward measures

Remark 6.2.2.
From a more practical point of view, the choice of the sample space also describes the
possibilities to define a hedging strategy. If one chooses the Skorokhod space as the sample
space, one can decide on a path-by-path basis whether to hedge or not, i.e. one can react
to jumps or to other characteristics of the path. The less detailed the sample space is
chosen, for example if only the distribution of the final value ST on R+ is modelled, the
less detailed the hedging strategy can be defined.

From a heuristic point of view, it should therefore be clear that the less detailed the sample
space is, the worse the optimal hedging strategy will be. Therefore, even if it is impossible
to actually implement a hedging strategy as detailed as the Skorokhod approach allows,
one still obtains an upper bound on the success probabilities of hedging strategies and can
thus decide whether a more detailed modelling of financial markets might be useful or not.

From a more mathematical point of view, every hedging strategy regarding push-forward
measures is represented as a measurable subset of the positive real numbers. Furthermore
each of these hedging strategies, denoted as B ⊆ R+, can of course be represented in the
Skorohkod approach as S−1

T (B) ⊆ Ω, the set of all paths such that the final value of the
underlying is in B.

The previous remark motivates that there is a close relationship between the optimal
strategies under the original measures and the optimal strategies under the push-forward
measures. In the following part of this section we will examine the connection between the
set B =

{
dPST

dQST
> kCST

}
, where PST , QST and CST are defined according to Definition

6.2.3, which represents the optimal solution under push-forward measures, and the set
A =

{
dP
dQ > kC

}
representing original optimal solutions. If ST (A) = B, i.e. if all

paths ω in A lead to a final value ωT lying in B, then both approaches lead to identical
results.

Definition 6.2.3.
Push-forward measures regarding a random variable X : Ω → R+ are supposed to be
understood in the usual way, i.e. for any B ∈ B(R),

PX(B) = P(X ∈ B) = P(X−1(B)).

Additionally, for any function f : Ω → R+, we define the push-forward function fX : R+ →
R+ such that

fX(X(ω)) = f(ω) ∀ω ∈ Ω.

Note here that if X(Ω) = R+, the function fX is defined uniquely.
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Chapter 6. Analysis of the Skorokhod framework

First, it can be shown that the Radon-Nikodym derivatives of push-forward measures
can be described as a conditional expectation of the original Radon-Nikodym deriva-
tives.

Lemma 6.2.4.
Let (Ω,F) be a measurable space with equivalent measures P and Q. Let X : Ω → R be a
random variable on Ω. For the Radon-Nikodym derivatives of push-forward measures PX

and QX generated by X it holds that∫
X−1(B)

dP
dQ

dQ =
∫

X−1(B)

(
dPX

dQX
◦X

)
dQ.

Furthermore, this implies that
dPX

dQX
= EQ

[ dP
dQ

∣∣∣X].
Proof. Similar to Li and Babu [42], Theorem 1.21, for any Borel set B we have:∫

X−1(B)

dPX

dQX
◦XdQ =

∫
Ω

(1B ◦X)( dP
X

dQX
◦X)dQ =

∫
Ω

(1B
dPX

dQX
) ◦XdQ

=
∫
R+

1B
dPX

dQX
dQX = PX(B) = P(X−1(B))

=
∫

X−1(B)

dP
dQ

dQ.

It is important to note that in general this does not imply dP
dQ(ω) =

dPX

dQX (X(ω)).

It can be shown that, under the rather strict assumption 6.2.5, both approaches lead to
exactly the same optimal hedging strategies and success probabilities.

Assumption 6.2.5.
Let X : Ω → R+ be a random variable defined on Ω and let P be a market measure with
an equivalent martingale measure Q. We assume the implication:

X(ω1) = X(ω2) ⇒ dP
dQ

(ω1) = dP
dQ

(ω2).

In other words, we assume that the random variable X contains enough information to
infer the equality of the change of measure from the equality of X, which depends not only
on the choice of X, but also on the choice of the market measure.
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6.2. Push-Forward measures

Lemma 6.2.6.
If the Assumption 6.2.5 holds, then it holds that

dP
dQ

(ω) = dPX

dQX
(X(ω)).

Proof. With Assumption 6.2.5 and Lemma 6.2.4 we get

dPX

dQX
(X(ω)) = EQ

[
dP
dQ

∣∣∣X = X(ω)
]

= dP
dQ

(ω).

The second equation follows by Assumption 6.2.5, because in this case, conditional on X,
the Radon-Nikodym derivative becomes constant.

Before formulating the main results regarding optimal hedging strategies using push-forward
measures, we should recall the assumptions used for the robust version of the Neyman-
Pearson Lemma 3.3.14. Assumption IV in 3.3.3 requires that the set of physical measures
is closed and convex, while the set of pricing measures is assumed to be measure-convex. It
turns out, as the next two lemmas show, that these properties transfer to the push-forward
measures.

Lemma 6.2.7.
Let P be a closed set, regarding Prokhorov metric, of measures on (Ω,F) and let
X : Ω → R+ be a continuous function on Ω. Then P̃ = {PX : P ∈ P} is again a closed set
of measures with respect to the Prokhorov metric.

Proof. Let (P̃n)n∈N ⊆ P̃ be an arbitrary Cauchy sequence. It suffices to show that this
sequence is convergent with limit in P̃ to conclude that P̃ is closed. Note that we again
endow the set of probability measures on R+ with the Prokhorov metric equivalent to the
set of probability measures on (Ω,B(Ω)). Since (P̃n)n∈N is supposed to be Cauchy we know
that dP (P̃n, P̃n+1) → 0. Recall that the Prokhorov metric is defined as follows:

dP (P̃n, P̃n+1) = max{ inf{ϵ > 0|∀B ∈ B(R+) : P̃n(B) ≤ P̃n+1(Bϵ) + ϵ},

inf{ϵ > 0|∀B ∈ B(R+) : P̃n+1(B) ≤ P̃n(Bϵ) + ϵ}},

where Bϵ = {x ∈ R+ : d(x, b) < ϵ for a b ∈ B}. Since (P̃n)n∈N ⊆ P̃ there exists a sequence
(Pn)n∈N ⊆ P with P̃n = PX

n . Note that this sequence is not unique and it is not yet clear
whether it is convergent. If we can show that this sequence converges, we can conclude
that P̃ must be closed, because

lim
n→∞

P̃n = ( lim
n→∞

Pn)X ∈ P̃.
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As the functional X is continuous we know that X−1(Bϵ) ⊆ X−1(B)ϵ, and thus
Pn(X−1(Bϵ)) ≤ Pn(X−1(B)ϵ). With

max{ inf{ϵ > 0|∀B ∈ B(R+) : Pn(X−1(B)) ≤ Pn+1(X−1(B)ϵ) + ϵ},

inf{ϵ > 0|∀B ∈ B(R+) : Pn+1(X−1(B)) ≤ Pn(X−1(B)ϵ) + ϵ}}

≤ max{ inf{ϵ > 0|∀B ∈ B(R+) : Pn(X−1(B)) ≤ Pn+1(X−1(Bϵ)) + ϵ},

inf{ϵ > 0|∀B ∈ B(R+) : Pn+1(X−1(B)) ≤ Pn(X−1(Bϵ)) + ϵ}}

= dP (P̃n, P̃n+1) → 0,

at least on the sub-σ-algebra X−1(B(R+)), the sequence (Pn)n∈N is Cauchy as well. Since
the metric space of all probability measures on (Ω,B(Ω)) endowed with the Prokhorov
metric is complete, because the Skorokhod space is complete and separable, this is sufficient
for (Pn)n∈N to be convergent at least for preimages of X. Finally, we can see that each of
the possible sequences (Pn)n∈N converges to the same limit on X−1(B(R+)) and thus for
any measurable set that has an impact on the corresponding push-forward measure PX we
already have convergence. For any other sets A ∈ B(Ω) \X−1(B(R+)), that do not affect
PX , we can find a sequence with dP (Pn,Pn+1) ≤ 2ϵ. Thus, we get a convergent sequence
with limn→∞ Pn ∈ P, as P is assumed to be closed. For any B ∈ B(R+) we have

lim
n→∞

P̃(B) = lim
n→∞

P(X−1(B)),

which means lim P̃n ∈ P̃. So every Cauchy series in P̃ is convergent and P̃ is closed.

The measure-convexity of pricing measures should also be preserved by similar arguments,
as shown in the next Lemma 6.2.8.

Lemma 6.2.8.
Let Q be a measure-convex set of measures on (Ω,F) and let X : Ω → R+ be a function
on Ω. Then Q̃ = {QX : Q ∈ Q} is again a measure-convex set of measures.

Proof. Let Q be a measure-convex set. Let λ̃ be a probability measure on Q̃. We want to
show that

∫
Q̃ Q̃dλ̃ ∈ Q̃. Now, per definition of Q̃, there must be a probability measure λ

on Q with

Q̃∗ :=
∫

Q̃
Q̃dλ̃ =

∫
Q
QXdλ.

Since Q is measure-convex we know that Q∗ :=
∫

QQdλ ∈ Q. Now it remains to show that
Q∗X = Q̃∗.
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For any Borel set B ∈ B(R+) there is

Q∗X(B) =
(∫

Q
Qdλ

)X

(B) =
(∫

Q
Qdλ

)
(X−1(B)) =

∫
Q
Q(X−1(B))dλ

=
∫

Q
QX(B)dλ =

(∫
Q
QXdλ

)
(B) = Q̃∗(B),

which proves that Q∗X = Q̃∗ and thus
∫

Q̃ Q̃dλ̃ ∈ Q̃.

Together, Lemma 6.2.7 and Lemma 6.2.8 show that the assumptions made to apply the
robust Neyman-Pearson Lemma 3.3.4 do indeed carry over to the corresponding set of
push-forward measures.

Theorem 6.2.9.
If P is a robust market model satisfying Assumptions 3.3.3, Q is the convex hull of
corresponding equivalent martingale measures, and X : Ω → R+ is a continuous function,
then the set P̃ = {PX : P ∈ P} satisfies Assumptions 3.3.3 and the set Q̃ = {QX : Q ∈ Q}
is measure-convex. Therefore, the theory of optimal hedging strategies still applies to
corresponding push-forward measures.

Proof. This theorem follows directly from Lemma 6.2.7 and 6.2.8. Note that convexity of
P̃ follows from straightforward construction of the corresponding measures in P , analogous
to the proof of Lemma 6.2.8.

The choice of X depends on the options that is supposed to be hedged. While X = ST

corresponds to the large amount of options, who are path independent, the case X =
max{St : t ∈ (0, T ])} corresponds to lookback options and X = 1

T

∫
Stdt can be used to

model Asian options.

Finally, we can come to the conclusion that if X satisfies the Assumption 6.2.5,
both approaches, i.e. construction with Skorokhod space and push-forward mea-
sures, lead to the same optimal hedging strategies, success sets and success probabil-
ities.

Theorem 6.2.10.
Let (Ω,F) be a probability space with Ω the Skorokhod space and let the market measure
P and the function X : Ω → R+ satisfy Assumption 6.2.5 such that X(Ω) = R+. Let
PX and QX be push-forward measures of market models P ∼ Q. Let C : Ω → R+ be a
FT -measurable claim with CX : R+ → R+ such that C(ω) = CX(X(ω)). Then

129



Chapter 6. Analysis of the Skorokhod framework

a) X
({

dP
dQ > kC

})
=
{

dPX

dQX > kCX
}

b) EQ
[
C1{ dP

dQ
>kC}

]
= EQX

[
CX1{ dPX

dQX >kCX
}]

c) P
(

dP
dQ > kC

)
= PX

(
dPX

dQX > kCX
)

This implies that the constant k ∈ R, that is chosen such that the capital constraint is
satisfied, remains unchanged when using the push-forward approach.

Proof.

a) The first statement follows using the Assumption 6.2.5:

X
({ dP
dQ

> kC
})

=
{
X(ω) : dP

dQ
(ω) > kC(ω)

}
=
{
X(ω) : dP

X

dQX
(X(ω)) > kCX(X(ω))

}
⊇
{
x ∈ R+ : dP

X

dQX
(x) > kCX(x)

}
=
{ dPX

dQX
> kCX

}
,

with equality in the third step if X(Ω) = R+.

b) The second statement is a consequence of statement a).

EQX [CX1{ dPX

dQX >kCX
}] =

∫
R+

CX1{ dPX

dQX >kCX
}dQX

=
∫
Ω

(CX ◦X)(1{ dPX

dQX >kCX
} ◦X)dQ

=
∫
Ω

C1{ dP
dQ

>kC
}dQ

= EQ[C1{ dP
dQ

>kC}].

c) The last statement again follows directly using the statement a). We obtain

PX
( dPX

dQX
> kCX

)
= P

(
X ∈

{ dPX

dQX
> kCX

})
= P

(
X ∈ X

({ dP
dQ

> kC
}))

= P
({ dP
dQ

> kC
})
.
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Corollary 6.2.11.
In the Black-Scholes model the function ST : Ω → R+ satisfies the assumption 6.2.5.

Proof. As shown in Proposition 5.2.1 we can see that dP
dQ depends only on the underlying

itself:

dP
dQ

= exp
(
µ

σ
WT + 1

2

(
µ

σ

)2
T

)

= exp
(
µ

σ2 (σWT + µ

2T )
)

= S
µ

σ2
0 exp

(
σWT + (µ− σ2

2 )T
) µ

σ2

S
− µ

σ2
0 exp

(
µ2

2σ2T − µ2

σ2T + µT

)

= S
µ

σ2
T · c.

Example 6.2.12.
Even in comparably simple complete markets, the Assumption 6.2.5 is not necessarily
fulfilled for the function ST : Consider a symmetric, two period binomial model with
different physical up and down probabilities for each period. Let p1 be the up-probability
for the first period and p2 be the up-probability for the second period. We assume p1 ̸= p2.
The martingale up-probability q for each period is constant due to symmetry. We can then
look at the paths ω1 = (up, down) and ω2 = (down, up) to see that

St2(ω1) = St2(ω2)

and

dP
dQ

(ω1) = p1
q

1 − p2
1 − q

̸= 1 − p1
1 − q

p2
q

= dP
dQ

(ω2)

The previous example also implies that, in general, this assumption should not be satisfied
in all models with non-constant drift. One can even show that the assumption 6.2.5 is
necessary for both approaches to coincide for any capital constraint Ṽ0 (see Corollary
6.2.13).

From a more mathematical point of view, we can show that without Assumption 6.2.5,
there must be a capital constraint Ṽ0 such that there is a set A ⊆ Ω of paths that
are not hedged under optimal hedging in Skorokhod modelling, while A ⊆ S−1

T (B) for
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a set B ⊆ R+ of realisations that are hedged under optimal hedging in push-forward
modelling.

Corollary 6.2.13.
If the Assumption 6.2.5 does not hold, there exists x ∈ R+ and a set A ⊆ S−1

T (x) of
non-null probability with

dP
dQ

(ω) > dPST

dQST
(ST (ω)) ∀ω ∈ A.

Since C(ω) = CST (x) for every ω ∈ A, there will be a capital constraint Ṽ0, i.e. a
corresponding constant k, such that A ⊆ { dP

dQ > kC} but x /∈ { dPST

dQST
> kCST }.

Proof. This is a direct consequence of the representation dPST

dQST
= EQ[ dP

dQ |ST ]. If dP
dQ is not

constant on the set S−1
T (x) there must be a set A ⊆ S−1

T (x) with

EQ
[
dP
dQ

∣∣∣∣A] > EQ
[
dP
dQ

∣∣∣∣ST = x

]
> EQ

[
dP
dQ

∣∣∣∣S−1
T (x) \A

]
.

Since for continuous measures PST and QST the value k depends continuously on Ṽ0, the
second statement holds as well.

The corollary does not imply that there must be a difference between the two approaches
for every capital constraint, but it does imply that there is a specific capital constraint
such that the success sets do not coincide.

In these cases, as already heuristically mentioned in remark 6.2.2, one can still show,
without any additional assumptions, that the Skorokhod approach provides an upper
bound on the optimal success probability under the push-forward measures approach.
More specifically, the following lemma shows that any hedging strategy under push-forward
measures can be represented using the Skorokhod modelling approach with the same
amount of money.

Lemma 6.2.14.
Let C : Ω → R+ be a path independent option with corresponding option CST : R+ → R+

such that C(ω) = CST (x) for every ω with ST (ω) = x and let B ⊆ R+ define the success
set of a hedging strategy. For every probability measure Q on the Skorokhod space (Ω,F)
it holds that

EQST [CST1B] = EQ[C1S−1
T (B)].
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Proof. For every Q ∈ QP it holds that

EQST [CST1B] =
∫
Ω

CST1BdQ
ST =

∫
R+

(CST ◦ ST )(1B ◦ ST )dQ =
∫
R+

C1S−1
T (B)dQ

= EQ[C1S−1
T (B)].

Theorem 6.2.15.
Let P be a market measure defined on the Skorokhod space for an underlying (St)t∈[0,T ].
For P and Q ∈ QP let PST and QST be push-forward measures. Let C : Ω → R+ be a
FT -measurable claim with CST : R+ → R+ such that C(ω) = CST (ST (ω)). Then

P
( dP
dQ̃

> kC
)

≥ PST

( dPST

dQST
> kSTCST

)
where Q̃ ∈ QP is the worst-case measure, while k and kST are chosen such that
supQ∈Q EQ[C1{ dP

dQ̃
>kC}] = Ṽ0 and supQ∈QE

QST [CST1
{ dPST

dQST
>kST CST }

] = Ṽ0.

Proof. For any QST the set S−1
T ({ dPST

dQST
> kSTCST }) ⊆ Ω represents a hedging strategy

under the Skorokhod approach. As shown in Lemma 6.2.14, prices do not change compared
to the push-forward measure approach. This implies that also the suprema of all prices
are equal, i.e.

sup
Q∈Q

EQ[C1
S−1

T ( dPST

dQST
>kST CST )

] = sup
Q∈Q

EQST [CST1
{ dPST

dQST
>kST CST }

].

Finally, success probabilities must coincide due to the definition of push-forward measures,
i.e.

P
(
S−1

T

( dPST

dQST
> kSTCST

))
= PST

(
dPST

dQST
> kSTCST

)
This completes the proof, as there is a set implying a hedging strategy under the Skorokhod
approach that is at least as good as the best hedging strategy under the push-forward
approach.

In summary, we have seen that the Skorokhod approach allows for a very detailed (pathwise)
construction of hedging strategies, which is mostly too detailed for practical purposes.
Nevertheless, the pathwise view can still reveal certain characteristics of the optimal success
sets and hedging strategies.
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6.2.2. Numerical implementation of the push-forward approach

From a numerical point of view, the implementation of the push-forward measure in
the context of optimal hedging strategies is straightforward, using only Monte Carlo
methods and utilising only the stochastic differential equation and the corresponding
Radon-Nikodym derivative:

(a) Simulate n paths of S and dP
dQ under the physical measure P using the defining

stochastic differential equation.

(b) Approximate the CDF of ST under P as the empirical CDF of the simulated paths,
which gives an approximation of PST .

(c) Determine the CDF of ST under Q using

Q(ST ≤ k) = EQ[1{ST ≤k}] = EP
[dQ
dP
1{ST ≤k}

]
,

which gives an approximation of QST .

(d) Determine the density functions fPST
and fQ

ST
, which can be done directly for PST

using kernel density estimation or similar methods. For QST , one can generate a
random sample according to the CDF and then use kernel density estimation again.

(e) The optimal success set under this approach will be

B =
{ dPST

dQST
> kCST

}
=
{fPST

fQ
ST

> kCST

}
⊆ R+,

where CST : R+ → R+ is defined such that C(ω) = CST (ST (ω)) for every ω ∈ Ω.
Remember that this is possible because C is assumed to be path independent.

(f) Find the value k ∈ R+, that ensures that the capital constraint is satisfied, i.e. that

EQST
[
CST1

{ dPST

dQST
>kCST }

]
= Ṽ0.

For numerical approaches it can be useful to see that the constant k to be determined is
bounded from above by 1

Ṽ0
.

Corollary 6.2.16.
The constant k in the set B =

{
dPST

dQST
> kCST

}
is bounded by 1

Ṽ0
.
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Proof. A straightforward calculation shows:

Ṽ0 = EQX [1 fP
fQ >kCX

C] =
∫
1

{ fP
fQ (x)>kCX(x)}

CX(x)fQ(x)dx

=
∫
1{ 1

k
fP(x)>fQ(x)CX(x)}C

X(x)fQ(x)dx

≤ 1
k

∫
1{ 1

k
fP(x)>fQ(x)CX(x)}f

Pdx

≤ 1
k

∫
fPdx = 1

k
.

6.3. Examples

To keep the notation and formulas clear, we again take a Black-Scholes model. In this case
the previous approach proves especially useful for claims that are path dependent, as for
example a fixed strike lookback option C = (maxu∈[0,T ] Su − K)+. Now, the previously
useful property of the Black-Scholes model that we can represent the Radon-Nikodym
derivative in terms of the final value ST does not help find the optimal hedging strategy,
because in the optimal success set dP

dQ
> k

(
max

u∈[0,T ]
Su −K

)+


the right hand side does not depend solely on ST .

However, using the reflection principle it is possible to determine the distribution
of the maximum of a geometric Brownian motion. This allows to solve the problem
of finding an optimal hedging strategy for C analytically, whereas solving the initial
problem in the Skorokhod space is difficult, because we have to find the distribution of ST

conditional on MT .

Lemma 6.3.1.
Let (St)t∈[0,T ] be a geometric Brownian motion with parameter µ ∈ R and σ ∈ R+. Let
Mt be the maximum of S up to time t ∈ [0, T ], i.e. Mt := maxu∈[0,t] Su.

(a) The cumulative distribution of Mt is

FMt(x) = P(Mt ≤ x) =Φ
(−(µ− σ2/2)t+ log( x

S0
)

σ
√
t

)

−
(
S0
x

)1−2µ/σ2

Φ
(−(µ− σ2/2)t− log( x

S0
)

σ
√
t

)
.
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(b) The density function of Mt is

fMt(x) = 1
σx

√
2πT

exp

−

(
−(µ− σ2

2 )T + log
(

x
S0

))2

2σ2T


+ 1
σx

√
2πT

(
S0
x

)1− 2µ

σ2
exp

−

(
(µ− σ2

2 )T + log
(

x
S0

))2

2σ2T


+ 1
x

(
1 − 2µ

σ2

)(
S0
x

)1− 2µ

σ2
Φ

−(µ− σ2

2 )T − log
(

x
S0

)
σ

√
T

 . (6.3.1)

Proof. The distribution of the running maximum of a geometric brownian motion is proved
in Corollary 10.5 in chapter 10 of Privault [55]. The proof uses the reflection principle that
determines the distribution of the running maximum of a standard Brownian motion

P
(

sup
0≤s≤t

Bs ≥ x

)
= 2P(Bt ≥ x).

Representing a geometric Brownian motion S as St = exp
(
σBt + (µ − σ2

2 )t
)

allows to
calculate its distribution, as seen in detail in Privault [55].

Using the density function (6.3.1) it is possible to find the optimal success set analyti-
cally

AMT =
{
x ∈ R+ : fMT

(x;µ)
fMT

(x; 0) > k(x−K)+
}
, (6.3.2)

where k ∈ R is determined such that

EQMT [1A(x−K)+] =
∫ ∞

K
1AMT (x)(x−K)dQMT (x)

=
∫ ∞

K
1AMT (x)(x−K)fMT

(x; 0)dx = Ṽ0

Example 6.3.2.
Even though there is an analytic solution (6.3.2) it does not provide a good visualization,
since the Radon-Nikodym derivative does not simplify. Still, this approach proves to be
much simpler than using the Skorokhod space. Using again the example of a high volatility
stock with S0 = 100, µ = 0.5, σ = 0.5 and T = 1 we can get the following density functions
for MT :

136



6.3. Examples
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Figure 6.1.: Density functions of the maximum of a geometric Brownian motion up to
T = 1 with σ = 0, 5 and µ = 0.5 under P, µ = 0 under Q.

Using a lookback option with fixed strike K = 120, which has a price of 30, calculating
the the corresponding Radon Nikodym derivative, the constant k regarding the capital
constraint Ṽ0 = 20 and the respective transformed payout of the option leaves us with the
following figure.

100 150 200 250 300

0
1

2
3

4
5

6 Radon Nikodym derivative
Transformed payout of lookback option

Figure 6.2.: Radon Nikodym derivative dPMT

dQMT

∣∣∣
FT

of the maximum of a geometric Brownian
motion and the transformed payout kC of a lookback option with strike
K = 120 and capital constraint Ṽ0 = 20.

Thus, an optimal hedge is the superhedging strategy (H, Ṽ0) to the option
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C̃ = 1{MT /∈[181,236]}C, which has a success probability P(V H,Ṽ0
T > C) = 74, 71% in

this case.
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Chapter 7.

Conclusion

In this thesis, we have investigated optimal hedging strategies under capital constraints
in the context of robust market modelling. Our primary focus was on combining hedging
methods, e.g. in Föllmer and Leukert [23], with a quasi-sure approach to account for model
uncertainty, as introduced in Laurent and Martini [18]. Traditional hedging strategies
often rely on assumptions about the market model, including the specification of a single
reference probability measure. However, financial markets exhibit significant uncertainty,
and relying on a single probability measure can result in misleading conclusions, as
discussed in Knight [40]. By using the quasi-sure perspective of multiple valid market
models, we have formulated a hedging strategy that remains valid across a wide range of
market scenarios without being tied to a specific probabilistic assumption. To work in this
quasi-sure set up, we have derived a Neyman-Pearson theorem that is more suitable for
financial application, using the measure-convexity of the most relevant sets in financial
mathematics.

One of the main results is the concept of an indifference curve of optimal hedging strate-
gies, which illustrates the trade-off between different market models or scenarios. This
indifference curve is not only constructed in a general way, but also explicitly determined
for some examples. This perspective provides deeper insights into how different market
assumptions and uncertainty influence optimal hedging decisions.

Another important result concerns continuity properties of the worst-case measure, that
are usually difficult or even impossible to find analytically. We show that the worst-case
measure has certain continuity properties across the indifferent curve of optimal hedging
strategies. This allows to significantly reduce the numerical effort, since a global grid search
across an arbitrarily large grid can be reduced to a local grid search.

In addition to these positive results, we have also presented issues when interpreting the
mathematical results under a real-world perspective, especially when using non-equivalent
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or even singular measures. To overcome these problems, we presented an alternative to
the common approach in the literature of using the Skorokhod space as a sample space.
We have shown that many properties can be transferred to the push-forward measures of
market measures without the problems we have regarding singular measures under the
Skorokhod framework.
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Chapter 8.

Outlook

The problem of optimal hedging can be divided into the representation problem, see
Theorem 3.2.15, and the static optimisation problem, see Theorem 3.3.14. While the static
optimisation problem is highlighted in great detail in this thesis the representation problem
is reduced to an existence result. The field of stochastic analysis known as Malliavin
calculus offers a way to examine the representation problem in more detail. Using these
tools, allows to determine hedging strategies more explicitly, see for example Di Nunno et
al. [19].

In addition, further research is needed to develop systematic methods to identify the worst-
case measure. While we have proved continuity properties in this context, practical methods
for determining the worst-case measure in general remain an open problem. A potential
approach is inspired by mean-variance hedging, where the worst-case measure can be deter-
mined by minimising the relative entropy to the physical measure.

The mean-variance hedging problem, that minimises the expected quadratic hedging error,
is typically solved by determining a minimum-variance measure, which plays a similar role
to the worst-case measure in robust hedging. These very similar approaches motivate the
idea of combining both approaches to optimise the success of hedging against the variance
of the hedging error.

Finally, there is only little empirical research on the success of robust market modelling,
see for example Guidolin [27] for an overview regarding Markov switching models. It may
be of great interest to investigate robust market modelling and robust hedging strategies
under empirical data, especially in view of financial crises.

So there are still many open questions in view of robust market modelling and hedging
strategies under these models. Since financial markets will remain important and may
become even more complex and unstable in future, this topic will continue to be of great
interest.
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Appendix A.

Martingale measures for jump diffusion model

In Corollary 5.2.9 we have presented a general form of the Radon-Nikodym derivative in
the Merton-Jump model with a straightforward proof, for better readability and structure.
Since this proof does not include a derivation of the Radon-Nikodym derivative, but only
justifies the already known solution, a derivation of Radon-Nikodym derivatives with
respect to equivalent martingale measures for jump diffusion models in general follows in
this appendix.

Lemma A.0.1. Novikov condition
Let θ be an square integrable cadlag process such that for each t ≥ 0 it holds that

t∫
0

θ2
sds < ∞,

then

Zt = exp

 t∫
0

θsdWs − 1
2

t∫
0

θ2
sds


defines a positive P martingale with EP[Zt] = 1.

Proof. For the simpler case of a deterministic θ we know that for every t ∈ R+
∫ t

0 θsdWs is
a normally distributed random variable with mean zero and variance

∫ t
0 θ

2
sds. Furthermore∫ s

0 θsdWs is Fs measurable while
∫ t

s θsdWs is independent of Fs. This allows for the
following calculation:

E

exp

 t∫
0

θudWu

 ∣∣∣∣Fs

 =E

exp

 s∫
0

θudWu

 exp

 t∫
s

θudWu

 ∣∣∣∣Fs


= exp

 s∫
0

θudWu

E

exp

 t∫
s

θudWu
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= exp

 s∫
0

θudWu

 exp

1
2

t∫
s

θ2
udu

 .
We can use this equation to conclude

E[Zt|Fs] =E

exp

 t∫
0

θudWu

 exp

−1
2

t∫
0

θ2
udu

 ∣∣∣∣Fs


= exp

 s∫
0

θudWu

 exp

1
2

t∫
s

θ2
udu

 exp

−1
2

t∫
0

θ2
udu


= exp

 s∫
0

θudWu − 1
2

s∫
0

θ2
udu

 = Zs,

which means Z is a martingale. See Revuz [57] for a proof in the general case.

Proposition A.0.2. Girsanov measure transformation for Brownian motion
Let S be a continuous process, that solves the stochastic differential equation

dSt = µtStdt+ σtStdW
P
t

under a measure P, where W P
t is a standard Wiener process under P. If

t∫
0
θ2

sds < ∞, there
exists an equivalent measure Q ∼ P such that the process

WQ
t = W P

t −
t∫

0

θsds

is a standard Brownian motion under Q. This means that under Q the process S solves

dSt = (µt + σtθt)Stdt+ σtdW
Q
t .

In addition we know that the Radon-Nikodym Derivative of P with respect to Q is of the
form

dP
dQ

= exp

 t∫
0

θsdWs + 1
2

t∫
0

θ2
sds

 .
Proof. We denote a new measure Q by dQ = ZtdP with

Zt = exp

 t∫
0

θsdWs − 1
2

t∫
0

θ2
sds

 .
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Since the exponential function is strictly positive, it is clear that Q ∼ P. First, we need
to show that WQ

t = W P
t −

t∫
0
θsds defines a martingale under the measure Q. This means

that it remains to show that WQ has independent normally distributed increments with
WQ

t −WQ
s ∼ N (0, t− s), which can be shown via the moment generating function. The

next equation shows that the moment generating function of WQ
t is equal to the moment

generating function of a normal distribution:

EQ
[
exp(aWQ

t )
]

= EQ
[
exp(a(W P

t −
∫ t

0
θudu))

]
= EP

Zt exp(a(W P
t −

t∫
0

θudu))


= EP

exp

 t∫
0

θsdWs − 1
2

t∫
0

θ2
sds+ aW P

t − a

t∫
0

θudu


= EP

exp

 t∫
0

(a+ θs)dWs − 1
2

t∫
0

(2aθs + θ2
s)ds


= EP

exp

 t∫
0

(a+ θs)dWs − 1
2

t∫
0

(a+ θs)2ds

 exp
(
a2t

2

)

= exp
(
a2t

2

)
.

The Nikov condition shows that the last expectation equals one. This shows that WQ
t is

normally distributed with variance t and it is easy to see that this can be extended to
WQ

t −WQ
s as well. The independency of the increments follows by construction, since W P

is assumed to be a standard Wiener process.

The previous proposition can be extended in a general form for semimartingales. These
results can be found in Chapter 3, Theorem 20 in Protter [56]. Since we only need the simpler
version for a Brownian Motion, we omit this result and its proof here.

As we are trying to find the corresponding Radon-Nikodym derivative for jump diffu-
sion models, we still need to investigate how a change in jump intensities and heights
does affect the Radon-Nikodym derivative, which requires the following definitions and
results.

Definition A.0.3. E-marked point process
Let (Ω,F ,P) be a probability space and (E, E) a measurable space. Let Nt be a point
process, where we define Tn as the time of the n-th jump. Let (Jn) be a sequence of
random variables taking values in E. We call the double sequence (Tn, Jn) an E-marked
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point process. We can define a corresponding counting measure p(dt, dx) from (Ω,F) to
((0,∞) × E, (0,∞) ⊗ E) such that

t∫
0

∫
E

H(s, x)p(ds× dx) =
∞∑

n=1
H(Tn, Jn)1Tn<t.

Definition A.0.4. Local characteristics
Let p(dt, dx) be the measure of an E-marked point process. If Nt(A) admits the Ft-
predictable intensity λt(A) for every A ∈ E for a measure λ from (ω × [0,∞)) to (E, E),
we say that p(dt, dx) has an intensity kernel λt(dx). If there exists a probability transition
kernel Φ(dx) such that λt(dx) = λtΦ(dx) for a predictable process λt, the tupel (λt,Φt(dx))
is called the local characteristics of (Tn, Jn).

Remark A.0.5.
To provide additional understanding of the previous definitions, note that for every non-
negative E-marked process H the integral

t∫
0

∫
E

H(p(ds× dx) − λs(dx))

defines a local martingale, or in other words λ is a predictable compensator of p. In
addition to the intuitive understanding one can find a proof of this statement in Chapter
8, Corollary C4 in Brémaud [10].

Lemma A.0.6.
Let a be an increasing right continuous function with a(0) = 0 and let h be a function
with

∫ t
0 |h(s)|da(s) < ∞. The function f defined as

f(t) = f(0)
∏

0<s≤t

(1 + h(s)∆a(s)) exp

 t∫
0

h(s)dac(s)


with ac(s) = a(s) −

∑
u≤s ∆a(u) solves the integral equation

f(t) = f(0) +
t∫

0

f(s−)h(s)da(s).

Proof. The lemma follows by application of the product formula to

f1(t) = f(0)
∏

0<s≤t

(1 + h(s)∆a(s)),
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f2(t) = exp

 t∫
0

h(s)dac(s)

 .
Using the product formula on f(t) = f1(t)f2(t) results

f(t) = f(0) +
t∫

0

f1(s−)df2(s) +
t∫

0

f2(s)df1(s)

= f(0) +
t∫

0

f1(s−)f2(s)h(s)dac(s) +
∑

0<s≤t

f1(s−)f2(s)h(s)∆a(s)

= f(0) +
t∫

0

f(s−)h(s)da(s).

The uniqueness of the solution follows by standard arguments, see the proof of Theorem
T4 in Chapter A4 in Brémaud [10].

Theorem A.0.7. Girasnov measure for pure jump processes
Let P(dt, dx) be the measure of an E-marked point process with local characteristics
(λt,Φt(dx)). Let h(t, x) be a predictable E-indexed non-negative process and µt be a
predictable non-negative process with

t∫
0

µsλsds < ∞ P-a.s.,

∫
E
h(t, x)Φt(dx) = 1 P-a.s.

The process Lt defined as

Lt =

∏
n≥1

µTnh(Tn, Jn)1Tn≤t

 exp

 t∫
0

∫
E

(1 − µsh(s, x))λsΦs(dx)ds

 (A.1)

is a P local martingale and for a measure Q with dQ
dP
∣∣
Ft

= Lt the process p(dt, dx) has Q
characteristics (µtλt, h(t, x)Φt(dx)).

Proof. The statement can be found as Theorem T10 in Chapter 8 in Brémaud [10].

In summary Theorem A.0.2 shows how to to modify the continuous part of a semi-
martingale while Theorem A.0.7 shows how to modify the pure jump part of a semi-
martingale when changing the measure. These two results can be combined to derive a
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general form for a Radon-Nikodym derivative. This further proves the result in Corollary
5.2.9.

Proof of Corollary 5.2.9. Similar to the proof of Theorem 2.5 in Runggaldier [59], which
presents a more general form, we will first change the pure jump parts of the given
semimartingale via a change of measure defined by dQ̃

dP . Then we will change the continuous
part with dQ

dQ̃
. We will get the desired change of measure with dQ

dP = dQ
dQ̃

dQ̃
dP .

Changing the pure jump parts leaves us with the result of Theorem A.0.7

dQ̃

dP
=

∏
n≥1

µTnh(Tn, J̃n)1{Tn≤t}

 exp

 t∫
0

∫
R+

(1 − µsh(s, x))λsΦs(dx)ds

 ,
where we set Jn to be lognormally distributed and set J̃n = exp(Jn). Additionally we
can set h(t, x) = exp(tx) and µTn = exp(ν), which leads to the desired form in (5.2.11)
without the θ part (note that λs = λ constant is given by the choice of St and Φs(R+) = 1).
For the continuous measure change we have to take care that St is supposed to form a
martingale under the new measure Q, which, according to Theorem A.0.2, leads to the
Radon-Nikodym derivative of the form

dQ

dQ̃
= θWt + 1

2θ
2t,

with a θ that also compensates potential new drift of the measure change to the jump
parts, i.e. θ = µ−λκ+λQκQ

σ , where κQ = EQ[eJ − 1] is the new expected jump height under
Q and λQ = λµTnh(Tn, J̃n) = λκ̃ is the new arrival rate. The value κQ can be calculated
using

EQ[eJt] = MQ,J(t) = MP,J(γ + t)
MP,J(γ)

Multiplication of these two Radon-Nikodym derivatives gives exactly the desired form.
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