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To Jan

I can watch and can’t take part

Where I end and where you start

Thom Yorke





Abstract

Process-based models of environmental systems typically are very complex structures. This com-

plexity arises from the attempt to describe the manifold natural processes and intricate biological

interactions of environmental systems in mathematical terms. Because of their high number of state

variables and parameters, the resulting complex models are difficult to calibrate and detailed model

analysis is needed to extract the key governing processes within these complex structures.

Acknowledging these problems, the present thesis aims at finding a method to reduce complex process-

based models. The main objectives for the development of the new method are its general applica-

bility, its automated execution and its ability to construct reduced models which are interpretable in

terms of system-specific mechanisms. The Mapping-based Genetic Reduction technique (MAGER)

proposed in this thesis is a data-adaptive black-box procedure based on Genetic Programming which

can be applied to ordinary differential equation models.

In the course of this thesis, the MAGER scheme is applied to three predator-prey and consumer-

resource models of different dimensionality. It is found that even relatively simple models can be

reduced further and the results show that a formal conformity of physical and biological oscillating

systems exists. In addition, the reduction of the biological systems involves a change in description

level. Instead of traditional density or traits variables, the new models incorporate descriptions of

biological interactions which leads to the notion of Ecological Interaction Models (EIM) for this new

model class. The uniformity of the results further points to the generality of the EIM descriptions.

As the MAGER scheme only depends on time series data and ignores former model structures, it

is suggested that the method can also be applied to measured data or models from other scientific

disciplines which offers many possibilities for further studies.
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Zusammenfassung

Prozessbasierte Modelle von Umweltsystemen sind in der Regel sehr komplex. Diese Komplexität

ensteht durch den Versuch, die mannigfaltigen natürlichen Prozesse und komplizierten biologischen

Wechelwirkungen in mathematischen Beschreibungen abzubilden. Die resultierenden komplexen Mo-

delle sind aufgrund ihrer großen Zahl an Zustandsvariablen und Parametern schwierig zu kalibrieren.

Desweiteren sind detaillierte Modellstudien nötig, um die Schlüsselprozesse innerhalb dieser komple-

xen Strukturen aufzudecken.

Aufgrund dieser Probleme soll in der vorliegenden Arbeit eine Methode zur Reduktion prozessba-

sierter Modelle entwickelt werden. Die zentralen Zielsetzungen der Methodenentwicklung sind dabei

die generelle Anwendbarkeit, die automatisierte Durchführung sowie die Herstellung reduzierter Mo-

delle, die hinsichtlich systemspezifischer Mechanismen interpretiert werden können. In dieser Arbeit

wird dazu die „Mapping-based Genetic Reduction“ Methode (MAGER) entwickelt. MAGER ist ein

auf Genetischer Programmierung basierendes, datenadaptives Blackbox Verfahren zur Reduktion ge-

wöhnlicher Differentialgleichungssysteme.

Die Anwendung des MAGER Verfahrens umfasst drei Räuber-Beute und Konsumenten-Ressourcen

Modelle unterschiedlicher Dimensionalität. Es zeigt sich, dass selbst relativ einfache Modelle wei-

ter reduziert werden können und die Ergebnisse weisen auf eine formale Übereinstimmung physi-

kalischer und biologischer Schwingungssysteme hin. Die Reduktion der biologischen Systeme führt

darüber hinaus zu einem Wechsel der Beschreibungsebene. Anstelle traditioneller Dichte- oder Ei-

genschaftsvariablen beinhalten die neuen Modelle direkte Beschreibungen der biologischen Wech-

selwirkungen. Der Begriff „Ecological Interaction Models“ (EIM) wird eingeführt, um diese neue

Modellklasse zu beschreiben. Die Einheitlichkeit der Ergebnisse weist außerdem auf die Generalität

der EIM Beschreibungen hin.

Da das MAGER Verfahren lediglich auf Zeitreihendaten basiert und ursprüngliche Modellstrukturen

ignoriert werden, ist es naheliegend, dass die Methode auch auf Messdaten oder Modelle anderer wis-

senschaftlicher Disziplinen angewendet werden kann. Hieraus ergeben sich vielfältige Möglichkeiten

für weitergehende Studien.
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Chapter 1
Introduction

1.1 The simplicity/complexity dilemma of process-based models

The computational reproduction and prediction of environmental system behavior can easily be seen

as one of today’s greatest challenges in process-based modeling. The combination of biological,

chemical and physical processes on different space and time scales as well as the manifold, often

nonlinear, interactions between different biological units result in the overall complexity of environ-

mental systems. Given this intertwined structure of natural phenomena and our inability to apprehend

all of the processes involved, modeling accordingly is the attempt to abstract essential features and

reduce the complexity of the real world. In the past, a large emphasis of ecological modeling has

been put on deterministic descriptions in form of ordinary differential equations (ODE) because of

their process-based interpretability. Attempts to incorporate all environmental processes of perceived

importance in ODE descriptions naturally lead to an immense increase of model complexity. This

tendency to "complexification" is continually fuelled by the ongoing gain in more detailed ecological

understanding (see e.g. Anderson, 2005). Examples for complex environmental model systems are

the European Regional Seas Ecosystem Model (ERSEM, Baretta et al., 1995) and the Gypsy Moth

Life System Model (GMLSM, Sharov and Colbert, 1994) with tens or hundreds of state variables and

model parameters.

As a downside, handling models of high complexity is fraught with many difficulties. The large

number of parameters typically leads to overparameterization and underdetermination of the systems.

Anderson (2005) discussed the impact of parameter uncertainties as well as poorly understood eco-

logical processes of plankton functional types on marine biogeochemical modeling. He argued that

these problems among others impede the incorporation of extra complexity beyond simple nutrient-

phytoplankton-zooplankton-detritus (NPZD) models. In fact, relative to the amount of parameters, the

available data for model verification are too sparse to reliably estimate the parameter values in these

cases. Instead, agreement between model output and observations can be obtained with different sets

of parameters. This, however, reduces the explanatory power of complex models as it allows for the

proposition of multiple (often incompatible) theories about the data-generating processes (Matear,

1995; Friedrichs et al., 2006). Furthermore, parameter calibration is not the only aspect of complex

systems which is subject to uncertainty. The notion of non-uniqueness has also been discussed for
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the identification of model structures. This type of identification problem is known as the equifinality

thesis in the context of hydrological modeling (see e.g. Beven, 2006). It states that equally acceptable

fits to observational data are given by multiple complex models which can, thus, not be rejected easily.

Support for this thesis can, for example, be derived from the results of a recent comparative model

study assessing the usefulness of different ecological models to simulate measured biogeochemical

data of the Joint Global Ocean Flux Study (JGOFS) (Friedrichs et al., 2006). All investigated models

of this study showed similar low data fitting capabilities which were, most notably, independent of the

respective model complexity.

Acknowledging the aforementioned problems, it is implied that huge models are expected to serve too

many purposes simultaneously (Lee, 1973) and that approaches covering less process details and dy-

namic situations may be favorable. It is obvious that models of reduced complexity circumvent some

of the problems inherent to complex descriptions. Simplified models with a small number of state

variables and parameters are less prone to parameter uncertainty, overfitting and equifinality (Beven,

2006). In addition, they give a reduced, and hopefully more general, view of observed natural patterns

and are thus more likely to provide insights into the underlying system’s most important governing

processes. The search for and preference of simple scientific explanations is in fact one possible

verbalization of a famous scientific paradigm, known as the parsimony principle or Occam’s razor.

Though this epistemological rule of "not increasing a theory’s complexity beyond need" is often at-

tributed to the famous 14th century logician William of Ockham, its origin can be traced back to other

sources in the Middle Ages and to ideas of Aristotle (Rodríguez-Fernández, 1999). However, simplic-

ity and parsimony of models or theories do not necessarily describe the same concepts. Parsimony

should rather be seen as problem-adapted simplicity and, as pointed out by Simon (2002), striving

for simplicity in its one right eventually leads to theories which are too simple to provide useful sys-

tem information. In fact, as pointed out by Logan (1994), complex systems need complex solutions.

Thus, simplicity in the parsimonious sense could also be described as appropriate or problem-adapted

complexity. Instead of trying to capture as many process details as possible on the one hand and over-

simplification on the other hand, the model complexity should be adjusted according to the problem

at hand, the available data and the purpose of interest (e.g. Sivakumar, 2007). Implications of this

"balancing problem" have been investigated by a number of comparative model studies (Costanza and

Sklar, 1985; Håkanson, 1995; Fulton et al., 2003) with similar results. In (Costanza and Sklar, 1985)

a comparison of different ecosystem models with respect to model performance and complexity was

performed. It was found that the effectiveness or explanatory power was highest for models with

intermediate complexity. Thus, in this thesis, the term "model simplicity" is always used in the parsi-

monious sense which automatically implies a compromise between descriptive or predictive accuracy

and the incorporation of a minimal set of dominant processes.
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1.2 The MAGER approach and previous work

The obvious question arising from the introductory last section is: how can process-based models with

the most appropriate level of complexity be found? In the present thesis, a new methodology of model

building and transformation is developed in order to give a possible answer to this question. Simpli-

fied system descriptions can thereby either be derived in a bottom-up fashion in the course of model

building or by top-down reduction of existing complex models. Because of its usability as a means to

reduce process-based models to simpler structures, the new method is called Mapping-based Genetic

Reduction (MAGER). Although it may also be applied for model building, only the model reduction

(MR) potential of MAGER is presented in the framework of this thesis to simplify its introduction.

The reduction of known model systems thereby facilitates the evaluation of the method’s performance

as it allows for an interpretation of the results in relation to the original system descriptions.

Four central properties of MAGER are responsible for its uniqueness in comparison with other MR

schemes. These properties are (1) its independence on existing system knowledge or dynamic de-

tails, (2) the automated operation, (3) the high reduction potential and (4) the interpretability of the

results in process-based terms. Some of these properties can also be found in earlier approaches but

the main strength of the new method is their combination (see chapters 3 and 5 for detailed reviews

on earlier works). Some well-known reduction approaches like model aggregation based on singular

perturbation rely on the existence of specific dynamic properties of the systems (e.g. Auger and Pog-

giale, 1996b; Nayfeh, 1973). In the absence of these properties, e.g. long-term fixed point dynamics,

these methods may produce reduced models with dynamics deviating from the original ones (Schaf-

fer, 1981). Some black-box model identification approaches are only applicable for linear systems or

need a priori specifications of the type of model nonlinearities (e.g. Young and Garnier, 2006; Phillips,

2000). Other approaches depend on detailed system knowledge and analysis and cannot be automated

easily (e.g. Wirtz and Eckhardt, 1996; Van Nes and Scheffer, 2005; Raick et al., 2006). Finally, with

strictly statistical or data-mining approaches, like neural networks or Krylov subspace methods, we

end up with reduced system descriptions which are not interpretable in process-based terms (Carreira-

Perpiñán, 1997; Fodor, 2002; Antoulas et al., 2001).

MAGER aims at combining the benefits of the aforementioned approaches and at eliminating some

of their shortcomings. It is a black-box aggregation procedure which can be applied to measured

or modeled time series data. The proposed MR scheme is composed of a mapping-based state vari-

able reduction and a subsequent model learning step generating ordinary differential equation (ODE)

models with simple structures. For all applications discussed in the next chapters, the new dynamical

equations are able to reproduce the original time series to a large degree and can be interpreted in

terms of the transformed state variables. This transformation aspect is also seen as the basis for the

high reduction potential of the MAGER scheme. It is well known in scientific philosophy that the
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measuring of simplicity depends on the chosen language (Sober, 2002). This effect can be formulated

by quoting Goodman’s "new riddle of induction" (Goodman, 1983). Consider a simple and a more

complex proposition: (1) all emeralds are green and (2) all emeralds are green up to time t (which

has yet to pass) and blue afterwards. We now define "grue" as green until t and blue afterwards and,

accordingly, "bleen" as blue until t and green afterwards. Thus, the two statements can be rephrased as

(1.1) all emeralds are grue until t and bleen after that and (2.1) all emeralds are grue. We see that the

simpler proposition translates to a more complex one whereas the complex second statement is sim-

plified, which is caused by the transformation of description. The same concept applies for MAGER:

the simplification of models is supported by the adoption of a new "language" which is based on

the transformed state variables. The benefits of a detachment from well-known description concepts

have also been discussed in the context of latent variable models. For example, Malaeb et al. (2000)

note that "thinking only in terms of directly observable variables confines our horizons and limits

our assessment of complex systems". However, the reduction process of MAGER not only produces

simple models but also accounts for parsimony as the tradeoff between simplicity and accuracy is an

integral part of the model learning process. Because of the method being data-driven, the resulting

models are most likely to provide insights into the dominant processes which are only derived from

the information inherent to the available data.

1.3 Structure of the thesis

Chapters 2 to 6 consist of original publications and submitted manuscripts documenting the devel-

opment process of MAGER from first ideas to biological applications. The development and imple-

mentation of the algorithms as well the analysis of the results have been carried out by the author of

this thesis alone. The discussion of the results has been developed in collaboration with the co-author

of chapters 4 to 6 who also provided the alternative EVA reduction in chapter 5 as well as fruitful

additions to the individual introductory sections of the manuscripts. The analytical derivation of the

oscillator equation in chapter 4 was also developed by both authors.

Chapter 2, which was published in the proceedings of the 2nd meeting of the International Environ-

mental Modelling and Software Society (iEMSs), contains a preliminary application of the mapping-

based dimensionality reduction step of MAGER. Starting with a ten-dimensional dataset obtained

by parameter variation of a consumer-resource model, a nonlinear mapping algorithm performing a

nonlinear principal component analysis (NLPCA) is used to reduce the dimensionality of the data.

The results indicate that the first two nonlinear principal components capture the dominant dynamic

aspects of the system, such as the separation of oscillatory states, and can eventually be taken as new

"effective" state variables of reduced-form mechanistic models. In addition, this chapter introduces

the Self-Organizing Map as a means to reduce the amount of data in order to speed up the nonlinear



1.3. Structure of the thesis 5

mapping procedure. As the later studies are based on smaller datasets, this data-mining step is not

used subsequently.

Chapter 3 gives a full account and technical details of the completed MAGER approach. The manuscript

has been accepted by Evolutionary Computation and will be published in volume 16, issue 1 (Spring

2008) of this journal. Apart from the dimensionality reduction it also covers the Genetic Program-

ming (GP) and parameter optimization approaches used for model learning. Extending the first results

given in chapter 2, a comparison of linear and nonlinear mappings for state reduction is performed.

The results show that nonlinear approaches must be used carefully for this task as they are likely to

produce temporal mapping errors. The chapter also gives first indications that the well-known root-

mean-square error (RMSE) is inappropriate for the calculation of data fitting capabilities in case of

transient oscillatory dynamics. In addition to the RMSE, a simple criterion to discover oscillating

systems approaching limit cycle dynamics is introduced. Finally, the MAGER scheme is used to

transform a linear oscillator model (pendulum) and a two-dimensional predator-prey system. The re-

sults show the fundamental analogy between the two oscillatory systems which supports the notion of

biological oscillators (Vandermeer, 2004; Gertsev et al., 2008).

The manuscript in chapter 4 has been submitted to Theoretical Biology. It extends the results of

chapter 3. The oscillator transformation of the two-dimensional predator-prey model is compared

with an approximate analytical derivation which offers an interpretation of the dynamic equations in

terms of biological forces as introduced by Ginzburg (1986). This way, the interaction of biological

populations is found to produce driving and damping forces in analogy to those observed in physical

systems. In addition, the MAGER scheme is used to reduce a food-chain model with three trophic

levels consisting of nutrients, phytoplankton and zooplankton (NPZ). The resulting simplified model

again resembles a nonlinear oscillator. Furthermore, the model’s two new state variables are inter-

preted as feeding limitations governing the phytoplankton/nutrient interactions on the one hand and

the zooplankton/phytoplankton interactions on the other hand. Direct mutual inter-relations of these

interaction variables thus capture indirect interactions between the original state variables which are,

however, not formulated explicitely in the NPZ model.

Chapters 5 and 6 document the MAGER reduction results for an eight-dimensional consumer-resource

(CR) competition model producing transient and limit cycle dynamics. The study has been split up

into two parts discussing the reduction performance of MAGER for this model setup (chapter 5) and

the corresponding biological implications (chapter 6). This two-part study will be submitted to The-

oretical Population Biology. The CR model is reduced to two dimensions using a combination of

the linear and nonlinear mapping approaches. This way, the temporal mapping errors found for the

application of NLPCA in chapter 3 can be avoided. Chapter 5 further describes the reduction of the

given CR model with two other reduction schemes based on the aggregation and omission of state

variables. The study shows that MAGER has a much higher reduction performance compared to
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these methods while its simplified models are comparable or better in terms of data reproduction. The

data-adaptivity of MAGER and the transformation to interaction variables are proposed to be of major

impact for this performance gain. The analysis in chapter 6 shows that the transformed state variables

can be interpreted biologically. It turns out that these "effective consumer variables" describe shifts

in community composition of the dominant interacting species. These shifts are thereby related to

tradeoffs in resource requirements. Thus, the results of chapters 4 and 6 unify the predator-prey and

consumer-resource model formulations in terms of processes leading to oscillatory dynamics. In all

investigated cases, we find meta-level descriptions of biological networks featuring explicit formu-

lations of direct or indirect biological interactions. From the perspective of the simulated datasets,

the observed dynamics are independent from biological details mediating these interactions, such as

shared nutrients or grazing formulations. The new class of Ecological Interaction Models (EIM)

emerging from the application of the MAGER scheme substantiates the unifying notion of process-

independent interactions of biological entities.

Finally, chapter 7 outlines limitations and possible extensions of MAGER. It closes with a discussion

of future work and further applications of the new MR scheme.
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Chapter 2
Reduction of complex models using data-mining and

nonlinear projection techniques

Abstract

Complex models of environmental systems typically depend on a large amount of uncertain pa-

rameters. Therefore, they are often difficult to handle and do not provide an insight into effective

modes of the underlying system’s dynamics. Unlike earlier analytical attempts to find more effec-

tive model representations, we present a new combination of methods that only relies on data gen-

erated by complex, process-based models. These methods are taken from the field of data-mining

and enable the recognition of patterns in measured or modeled data by unsupervised learning

strategies. As these methods do not directly lead to a better understanding of the systems’ driv-

ing processes, we suggest the linkage between pattern recognition and process identification by

a multi-stage approach. In a first step, a large data-base was produced by a mechanistic model

for species competition in a virtual ecosystem for a range of parameter settings. Using Vector

Quantization and nonlinear projection techniques such as Self-Organizing Maps and nonlinear

Principal Component Analysis, typical states of the complex model’s dynamics as well as ma-

jor pathways connecting these states were then identified. The visualization of the results points

to the existence of nonlinear transformations of former model state variables and parameters to

few effective variables. Effective variables built this way preserve most of the model’s dynamic

behavior, while they are nonetheless easier to use and require much less parameterization effort.

2.1 Introduction

Process-based models are widely used for modeling key mechanisms ruling ecosystem dynamics. The

vast number of potentially relevant interactions and adaptations in ecosystems thereby increases the

corresponding model complexity. Secondly, process identification is rarely unique, i.e. data can be

reproduced with a variety of models or parameterizations (see e.g. Beven, 2001). Given this high

complexity and the sparseness of data, parameter uncertainty is difficult to handle in these models.

An alternative way to reproduce and extrapolate data is the use of methods taken from the field of

data-mining, such as Neural Networks (NN), clustering methods or (non-)linear projection techniques

which are able to ’learn’ distinct features of a dataset (Fodor, 2002). No knowledge of the underly-

ing system is required using data-driven methods. New understanding of underlying key mechanisms
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however, can not be gained and generic models with a large domain of applicability are not provided.

The aim of this work is the construction of a new type of deterministic but reduced and efficient

model from a classic complex mechanistic model by only using information contained in the data

generated by the complex model. A nonlinear statistical analysis and reduction of this data should re-

flect the overall dynamics even for uncertain model parameterizations and should yield interpretable

information on dominant internal modes. We propose a multi-step analysis using data-mining and

nonlinear projection techniques to extract these modes or “effective variables” (Wirtz and Eckhardt,

1996). Those variables have been shown to successfully replace complex descriptions of adaptive

processes in biological systems (e.g. Wirtz, 2002). Up to now they had to be built using intuitive

modeling knowledge which is a major impediment for a broader use.

The recombination of the effective variables resulting in a reduced-form deterministic model conse-

quently combines the benefits of the process-oriented as well as data-mining approaches. The exis-

tence of such a reduced representation is supported by the finding that even huge ecosystem models

have a limited number of internal dynamic modes (Ebenhöh, 1996).

In principal, the proposed reduction scheme can be applied to any deterministic process-based model.

In this study, we present the extraction of effective variables using a combination of Vector Quantiza-

tion algorithms such as the Self-Organizing Map (Kohonen, 1997) and nonlinear Principal Component

Analysis (Kramer, 1991).

We have chosen the reduction of a prominent model of species competition with rich dynamics in-

cluding chaotic behavior (Huisman and Weissing, 1999) as a test case.

2.2 A model of species competition

The model analyzed in this study was proposed by Huisman and Weissing (1999). It describes com-

petition for resources like phytoplankton species competing for nitrogen and phosphorus.

Consider nP phytoplankton species and nN nutrients. Let state variables P̂i and N̂j be the popula-

tion abundance of species i and the availability of resource j respectively. The dynamics of species i

follows

dP̂i

dt
= P̂i · (µi − ωi) i = 1, . . . , nP (2.1)

where ωi are model parameters describing the mortality. The growth rate µi is controlled by

the most limiting resource via a minimum of Monod functions with Kji denoting the half-saturation

constant for resource j of species i and gi the maximal growth rate:

µi = min
v

(
giN̂v

Kvi + N̂v

)
v = 1, . . . , nN . (2.2)
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Figure 2.1: Time series of P̂i(i = 1, . . . , 5) created by parameter variation of the test model. Pa-

rameter settings {k21, k25} are {0.2, 0.325} for time series #2, {0.275, 0.4} for time series #12,

{0.325, 0.35} for time series #15 and {0.275, 0.275} for time series #9.

The time evolution of the abiotic resource j is described as

dN̂j

dt
= D ·

(
Sj − N̂j

)
−

∑

i

cij · µi · P̂i j = 1, . . . , nN (2.3)

where D is a constant factor describing the nutrient turnover rate, Sj is the supply concentration

and parameters cij quantify the content of nutrient j in species i.

For different choices of model parameters the system can be driven into attractors with different

topologies containing fixed-point dynamics (no changes in species abundances for one or more species),

limit cycles (fluctuating coexistence of species) or chaotic behavior. For further details on the param-

eter settings see (Huisman and Weissing, 1999, 2001b).

To keep the analysis simple, we numerically integrated (2.1) and (2.3) to produce 16 time series of

2000 points each for a model configuration with five species (nP = 5) and three abiotic resources

(nN = 3) by varying only two of the half-saturation constants (k21 and k25). The other model pa-

rameters (D, Sj , ωi, gi and cij) were kept at the fixed values used by Huisman and Weissing (2001b).
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Time series modeled this way show all sorts of dynamics described above (see Figure 2.1).

2.3 The Self-Organizing Map

The Self-Organizing Map (SOM) algorithm was introduced by Kohonen (1997). It resembles a neural

network variant consisting of topologically ordered nodes on a grid of predefined dimensionality.

A SOM is able to “learn” structures of high-dimensional input data vectors and to project them onto

a lower-dimensional output space. It is therefore often used for Vector Quantization (VQ) where a

reduced representation of complex datasets is built by replacing the data vectors with a smaller subset

of so-called prototype vectors. Additionally, the existence of the typically two-dimensional output

grid simplifies the visual inspection of the dataset and helps to identify patterns inherent to the data.

The algorithm transforms a dataset consisting of vectors x(t) = (x1(t), x2(t), . . . , xn(t))T ∈ Rn

with discrete-time coordinate t = 0, 1, 2, . . . , e.g. measurements of n variables over time. In this

case, each x(t) is a ten-dimensional vector with entries P̂i, N̂j , k21 and k25 (n = nP + nN + 2).

The SOM-network consists of a z-dimensional array of k nodes associated with prototype-vectors

mk ∈ Rn with orthogonal or hexagonal neighborhood relationships between adjacent nodes.

The data vectors are iteratively compared with all mk by using Euclidean distances to find the best-

matching node denoted by c. The updating procedure for prototype s then follows

ms(t + 1) = ms(t) + hcs · [x(t)−ms(t)] , (2.4)

where hcs is a neighborhood function that asserts the convergence of the algorithm for hcs → 0

when t →∞. Mostly, the Gaussian function in dependence of ‖rc − rs‖ is used, where rc ∈ Rz and

rs ∈ Rz are the location vectors of nodes c and s. Additionally, hcs is multiplied by the learning-rate

factor α(t) ∈ [0, 1] that decreases monotonously over time to prevent the distortion of already ordered

parts of the map at later time steps.

In measuring the quality of the SOM-mapping (see e.g. Bauer and Pawelzik, 1992; Villmann et al.,

1997) a compromise has to be made between an optimized reproduction of the data vectors and the

minimization of the topological distortion by neighborhood violations. In this work the SOM-Toolbox

2.0 package (Vesanto et al., 1999) was used that calculates the average quantization error and the

topographic error (Kiviluoto, 1996). The best network of different map configurations was assumed

to minimize the sum of these two measures. This procedure tends to find solutions overfitting the

dataset but this drawback was accepted as the details of the VQ step were found to be of minor

importance for the following analysis.
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2.3.1 Vector quantization of the dataset

In advance of the analysis the data matrix was standardized by mean and standard deviation of the in-

dividual variables (P̂i → Pi). To incorporate information about control parameters of the competition

model into the learning procedure, the constant time series of k21 and k25 were added as additional

variables to the training dataset.

SOM networks of different map configurations were trained and the best network with 50 x 50 proto-

type vectors was found to explain 96.2% of the data variance.

2.4 Nonlinear projection

Even though the SOM itself represents a kind of nonlinear projection technique it is not very well

suited for the extraction of distinct modes of the underlying dynamics as the vectors spanning the

SOM network can not be interpreted in terms of variable model entities. This limitation also exists

for other unsupervised learning strategies that construct relevant topological constraints directly from

the data (e.g. Martinetz and Schulten, 1991; Baraldi and Alpaydin, 2002). Hence, the need for finding

“directions” along which features of the system vary continuously remains. A promising technique to

extract these effective variables is nonlinear Principal Component Analysis (NLPCA) put forward by

Kramer (1991).

The NLPCA relies on an autoassociative feed-forward neural network as depicted in Figure 2.2.

It projects data vectors x(t) onto a so-called bottleneck layer u and compares the decoded vec-

tors x′(t) = (x′1(t), x
′
2(t), . . . , x

′
n(t))T with the input data to minimize the cost function J =

〈‖x(t)− x′(t)‖2〉.

x1

x2

xn

m1

ml

u

x
′

1

x
′

2

x
′

n

m
′

1

m
′

l

Figure 2.2: Example for an autoassociative neural network with l nodes m1, . . . , ml in the first and

m′
1, . . . ,m

′
l in the second hidden layer.

The mappings x → m and m′ → x′ are typically performed by nonlinear transfer functions (e.g.

the sigmoidal function), whereas mappings from and to the nonlinear principal component u use the
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identity function. The number of nodes in the hidden layers of the network determines the approxi-

mation quality of the data.

Typical problems arising during neural networks training are overfitting and local minima in the cost

function J . In our analysis we employ the NeuMATSA (Neuralnets for Multivariate and Time Se-

ries analysis) package (Hsieh, 2001) where multiple runs and penalty terms for the network weights

smooth the nonlinear responses of the transfer functions to obtain results less sensitive to local min-

ima.

Only by the data reduction of the preceding SOM analysis the NLPCA step is made applicable. Thus,

an immense speed-up of the minimization of the neural networks’ weights is gained and the already

smoothed SOM representation additionally accounts for the avoidance of local minima in the cost

function.

2.4.1 NLPCA of the SOM-filtered data

To prevent the NLPCA from overfitting, 20% of the SOM-filtered dataset were chosen randomly as

test-dataset and ensembles of 25 runs were selected for configurations of nodes in the hidden layers

ranging from one to five. The analysis was terminated when the quality of the mapping as quantified

by the mean squared error (MSE) for the test set decreased subsequently to an initial rise.

After extraction of the first nonlinear PCA, further components were iteratively found by subtract-

ing earlier solutions from the SOM dataset and by repeating the analysis using the residuals.

The first nonlinear mode found this way explained 61%, whereas the second and third mode accounted

for 16.5 and 2.7% of the SOM networks’ variance, respectively. Thus, the dataset can be assumed

to be essentially two-dimensional and the first two nonlinear modes extracted by NLPCA can be in-

terpreted as effective variables (EV) of the underlying model. Figure 2.3 shows the first two modes

in state space {P1, P2}. Clearly, variation of the original model variables is constrained indicating

implicit model trade-offs and the existence of a reduced EV representation.

2.4.2 Interpretation of modes

Figure 2.4 shows successive segments of an example time series projected into the EV space. The

typical cycles with varying periods found in the dataset (see Figure 2.1) are clearly separated from

each other and resemble the form of limit-cycles in the complex model’s phase-space. Successive

changes between these cycles illustrate the ability of the method to separate dynamic states.

To further investigate and interpret the effective nonlinear modes in terms of former model vari-

ables, the projected data was aggregated into bins of equal size with a minimum of five data points

per class. Figure 2.5 shows the class distributions of the first mode.

The smooth course of the distributions together with the relatively small inner class variability even for
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Figure 2.4: Plot of time series examples in EV space (spanned by the first two NLPCA modes). Shown

are the first 750 time steps of series #12. Earlier time steps are drawn in thick dark and later ones in

thin light lines.

densely covered bins (e.g. small positive values of the first nonlinear PCA) may provide a meaningful

interpretation of the nonlinear modes. For example, a comparison of the chaotic transition (from small

negative to small positive values of PCA 1 in Figures 2.4 and 2.5) for Pi provides an insight into the

particular case when species coexist. Thus, this type of coexistence can be imagined as an occupation

of “dynamically separated” niches.
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Figure 2.5: Aggregation of the projected data along the first nonlinear mode together with a histogram

of bin occupancy.

2.5 Discussion

Improvements of the methodical parts of this work, as discussed in section 2.4 for the SOM algorithm,

can be thought of. As outlined by Malthouse (1998), NLPCA solutions for the projection problem are

only suboptimal and alternatives like the Principal Curves approach of Hastie and Stuetzle (1989), for

example, can be tested as well. In this work however, the projection discrepancy does not constrain

the usefulness of NLPCA as smooth solutions following mean features of the dataset are explicitly

requested.

First outcomes of this work show that a combination of Vector Quantization and nonlinear projection

can already provide valuable insights into the dynamics underlying process-oriented models. The

extraction of relevant nonlinear modes describing a model on a higher or aggregated level is a first

step towards effective variable models that are easier to use and better to interpret than their complex

model equivalents.

The results shown here point to the existence of non-linear but nonetheless simple transformations of

former model state variables and parameters to effective variables. The projections of quantized model

data along the first two nonlinear modes, from which only a subset is presented in Figure 2.5, already

support a piecewise linear transformation from the original space of model entities to new aggregated

variables. In future studies, reduced-form models will be formulated using effective variables as

provided by the approach put forward in this study. We will thereby rely on results and techniques

presented here comprising (i) the simultaneous incorporation of model outcomes and varied model

coefficients into the analysis, (ii) internal trade-offs between model variables for different attractors of

the model dynamics and (iii) the smoothness of the projections of a small set of effective variables to

the original model space. The extraction of these nonlinear transformations constitutes an analytical
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means to interpret the nonlinear principal components in terms of simulated processes as an essential

step towards a reduced-form representation of complex, mechanistic models.
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Chapter 3
Finding alternatives and reduced formulations for

process-based models

Abstract

This paper addresses the problem of model complexity commonly arising in constructing and us-

ing process-based models with intricate interactions. Apart from complex process details the dy-

namical behavior of such systems is often limited to a discrete number of typical states. Thus, mod-

els reproducing the system’s processes in all details are often too complex and over-parameterized.

In order to reduce simulation times and to get a better impression of the important mechanisms,

simplified formulations are desirable.

In this work a data-adaptive model reduction scheme automatically building simple models from

complex ones is proposed. The method can be applied to the transformation and reduction of

systems of ordinary differential equations. It consists of a multi-step approach using a low-

dimensional projection of the model data followed by a Genetic Programming/Genetic Algorithm

hybrid to evolve new model systems. As the resulting models again consist of differential equa-

tions, their process-based interpretation in terms of new state variables becomes possible.

Transformations of two simple models with oscillatory dynamics, simulating a mathematical pen-

dulum and predator-prey interactions respectively, serve as introductory examples of the method’s

application. The resulting equations of forces indicate the predator-prey system’s equivalence to

a nonlinear oscillator. In contrast to the simple pendulum it contains driving and damping forces

that produce a stable limit cycle.

3.1 Introduction

Mathematical models are important tools for reproducing, understanding and predicting the behav-

ior of physical and environmental systems. However, by incorporating many processes to reproduce

complex interactions and dynamics, their usefulness is limited by the growing amount of state vari-

ables and adjustable parameters. Datasets from biology or biogeochemistry, for instance, are often

too sparse for a satisfactory verification of complex models. Furthermore, many model parameters

are not measurable directly by existing monitoring techniques. Models often are over-parameterized

and may accurately fit the data with different parameter sets, thereby masking relevant key processes

of the underlying system (Beven, 2001). These aspects of mathematical models are part of the concept
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of model complexity. A major guideline in model building, based on Occam’s razor, is the preference

of a simple model if it is equally well suited to reproduce the data.

The principal aim of this study is the development of a complexity reduction technique for process-

based models. In this context, model complexity is understood as a combination of the number of

state variables and parameters on the one hand and nonlinear interactions of the states on the other

hand. A model’s complexity may be reduced in the course of model building by including essential

processes and states only. This, however, can be a very difficult task as model formulation must be

done on a high level of abstraction and a thorough knowledge of the system’s relevant key processes

is essential. Alternatively, models may be derived from existing complex ones by simplification (see

Van Nes and Scheffer, 2005).

A short overview of current model simplification approaches is given before the method developed

in this study is described. The models concerned here are systems of ordinary differential equations

(ODE) that are widely used to represent dynamical systems in many fields of science.

Two methodically different groups of model reduction methods will be discussed. Approaches of the

first group may be termed heuristic as their application typically requires a certain amount of user in-

teraction. They include a detailed analysis and assessment of the interactions and feedbacks between

model components in order to identify key processes of the system. The reduction implies changes

of the model structure and must typically be done by domain experts. An overview of different ap-

proaches was given by Van Nes and Scheffer (2005).

One possible way of finding key parameters of a system, for instance, is to measure the sensitivity

of the model’s results towards a variation of its parameters. Brooks et al. (2001), for example, used

a sensitivity and structure analysis to simplify a model for wheat yield prediction. The simplifica-

tion of model parts may thereby involve the deletion or replacement of process descriptions and state

variables, e.g. with simplified mathematical terms or constants (Cox et al., 2006). These methods

primarily aim at increasing the scientific knowledge about the underlying system.

Model reduction methods of the second group are solely based on mathematical concepts. They are

applied to shorten the simulation times of high-dimensional ODE systems by reducing their order. The

most prominent approaches are projection-based (de Villemagne and Skelton, 1987). The systems are

projected onto a lower-dimensional subspace and the model equations are solved for the substituted

projected states. Methods of this group may be categorized according to the (non-)linearity of the

model equations and the basis vectors spanning the low-dimensional subspace. The theory is best

established for linear systems, see Antoulas et al. (2001) for an overview. Basis selection methods for

these systems include Krylov subspace methods (Grimme, 1997) and techniques using Singular Value

Decomposition, also known as Principal Component Analysis (PCA) or Proper Orthogonal Decom-

position (Lall et al., 2003; Rowley et al., 2004), among other techniques.

Nonlinear model reduction in this context is rather challenging. There are still only a small number of
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established methods, most of which are extensions of the aforementioned linear techniques. The most

simple ones are based on linearization or reduced-order series expansion of the system’s nonlinear-

ities using Taylor or Volterra series (see Phillips, 2000). These low-order approximations, however,

are only possible for weakly nonlinear systems. Other approaches use multiple linearizations about

selected states along a trajectory (Rewieński, 2003) or nonlinear extensions of the Galerkin method

(Matthies and Meyer, 2003).

The motivation for the development of a new model reduction technique in this study is based on the

benefits and drawbacks of the aforementioned methods. The simplified models of the first group are

interpretable in terms of the original state variables but their derivation can hardly be done automat-

ically as it involves a detailed analysis and knowledge of the system’s processes. Automatic model

reduction is performed by members of the second group. The original interpretation of the states,

however, is typically lost in the course of the reduction process.

The proposed approach is intended to combine the benefits of both groups: it generically produces

alternative model formulations which are open to process-based interpretation. In the course of the

method, new state variables and model structures are produced. The new model states thereby are

transformed versions of the former ones and low-dimensional ODE systems are constructed to de-

scribe the dynamics of these states. The new systems can finally be interpreted in terms of the new

state variables.

Using model simulation data, the approach starts similar to some projection-based reduction schemes

with a transformation of the data to a lower dimensional structure. The projection may be linear or

nonlinear depending on the problem at hand. Some examples of projection methods are discussed in

section 3.2. A Genetic Programming (GP) scheme in combination with a Genetic Algorithm (GA) is

used to build new ODE systems based on the projected data. The reduction potential of the proposed

scheme is given by the dimensionality of the system’s projected state space. The projection preserves

the model dynamics up to a certain error and varies from system to system.

The following sections give an outline of the proposed method. Two simple model examples, con-

sisting of two-dimensional first order differential equations, demonstrate its application. The ex-

amples show two different basic realizations of oscillatory dynamics and are transformed into one-

dimensional ODEs of second order. This conversion of the ODEs in equations of forces is, in fact, no

real model reduction as the dimensionality of the systems is not changed. The resulting formulations,

however, make a comparative interpretation of both systems possible and expose the central terms

responsible for the realization of the dynamics.
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3.2 State reduction

The model reduction approach can be formally stated as follows. Starting from the ODE system

ẋ = f(x, t), x ∈ Rm, (3.1)

with time t and state vector x, the reduction scheme approximates (3.1) with a model of dimension

l < m :

ξ̇ = g(ξ, t), ξ ∈ Rl. (3.2)

Note, that in general g(·) 6= f(·).
As the method should be applicable with only a minor knowledge of the model itself, it is based

solely on model-generated data. Therefore, similar to the method of snapshots (Sirovich, 1987), a

data matrix X = [x(t0), . . . ,x(tn−1)]T ∈ Rn×m was built from a simulation of (3.1) using the state

information x(ti) of n time steps ti, i = 0, . . . n−1. The state reduction was performed by a mapping

X → Ξ onto a low-dimensional representation Ξ = [ξ(t0), . . . , ξ(tn−1)]T ∈ Rn×l of X.

Many variants of dimension reduction techniques have been proposed earlier in different contexts, e.g.

Principal Component Analysis (Fukunaga and Koontz, 1970) with nonlinear variants (Nonlinear PCA

(Kramer, 1991), Principal Curves (PCurve; Hastie and Stuetzle, 1989), and Kernel PCA (Schölkopf

et al., 1998)), Self-organizing Maps (Kohonen, 1997) or Isomap (Tenenbaum et al., 2000) among

others. Conceptually, these methods provide a topology-preserving mapping, i.e. local neighborhood

relationships between data points are maintained by the mapping. A short introduction to the applied

methods, PCA and PCurve, is given in sections 3.2.2 and 3.2.3.

3.2.1 Temporal neighborhood

A major drawback of the methods mentioned above is the neglect of a dataset’s temporal information,

as they are based on the data distribution alone. The mapping learned by a dimension-reduction

technique therefore may contain jumps when points close to each other in time are mapped to different

regions of the reduced structure.

Taking this into account, a measure is proposed which quantifies the temporal continuity of the learned

mapping. This mean smoothness error (MSmE) follows the concept of false nearest neighbors in the

context of attractor reconstruction from time series via embedding (Kennel et al., 1992). The MSmE

penalizes differences between the temporal behavior of the original and mapped datasets using the

normalized distances x̃(ti) and ξ̃(ti) between consecutive elements of the time series. The measure is
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defined as

MSmE =
1

n− 1

∑

i

∣∣∣∣log2

(
1 + x̃(ti)
1 + ξ̃(ti)

)∣∣∣∣ , (3.3)

x̃(ti) =
‖x(ti+1)− x(ti)‖
‖xmax − xmin‖ ,

for i = 0, . . . , n − 2. Here, xmax and xmin denote the maximum and minimum of the state variable

vector for all time steps, ξ̃(ti) is defined in the same manner as x̃(ti).

According to this definition, the worst mapping is realized when all pairs of consecutive points are

separated maximally in one space while being equal in the other. The expression in brackets then

has a value of 2 or 1/2, depending on where the maximal separation occurred, and MSmE = 1.

An optimal mapping with a value of zero for MSmE is reached when the relative changes between

subsequent points in the original and mapped space are the same for all time steps. The performance

of the measure is demonstrated for the nonlinear mapping of model system (3.15) in section 3.8.2.

3.2.2 Principal Component Analysis

The most commonly used method of dimension reduction is PCA. It is applied to find orthogonal

linear combinations of the variables which are optimal linear approximations of the dataset in the

least squares’ sense. These so-called principal components are extracted from X using an orthogonal

decomposition of its covariance matrix Σ = 1
nXTX ∈ Rm×m according to

Σ = UΛUT , (3.4)

where U ∈ Rm×m contains the orthogonal eigenvectors as column vectors and Λ is a diagonal

matrix of the ordered eigenvalues λ1 ≤ . . . ≤ λm, i.e. Λ = diag(λ1, . . . , λm). The principal

components {si}m
i=1 can then be found by mapping the data onto the eigenvectors of the covariance

matrix according to

S = XUT , (3.5)

with S = [s1, . . . , sm] ∈ Rn×m.

A dimension reduction of X can be achieved if only a subset of the si is used for further analysis. The

first principal component with the highest eigenvalue thereby is the linear regression line that explains

the main part of the data variance. For dimension reduction, the first k principal components can be

retained to account for a certain percentage of the total variance (e.g. 95%).

As the mean values of the variables contain no information about a specific data vector they were

removed from the datasets beforehand.
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3.2.3 Principal Curves

The first few linear principal components usually fail to explain the main part of a dataset’s variability

if it is caused by nonlinear dependencies between the system’s variables. In this case, nonlinear ex-

tensions of PCA may provide better dimension reduction capabilities. The Polygonal Line Algorithm

(PLG) of Kégl et al. (2000), which is based on Principal Curves (Hastie and Stuetzle, 1989), was

used in this work. It approximates the dataset with a polygonal line consisting of linearly connected

vertices.

In the PLG a curvature penalty coefficient for the learned structure constrains the length and nonlin-

earity of the curve. As this is the main parameter that controls the shape of the principal curve, it was

varied in a wide range to compare different mappings. The PLG is initialized with the first principal

component and subsequently adds new vertices to the curve that are moved to minimize the mean dis-

tance to the points mapped onto it. The algorithm is stopped when the decrease in error drops below

a certain threshold or a maximum number of vertices has been generated. A sufficiently continuous

curve can be produced with the terminating condition coefficient set to a high value as it controls the

maximum number of vertices used to construct the polygonal line. Additionally, the length penalty

was set to zero to ensure the coverage of the data at the beginning and end points of the curve. Table

3.1 shows the parameter settings used.

curvature penalty coeff. 0.1− 0.9

length penalty coeff. 0.0

terminating cond. coeff. 99.0

optimization threshold 3 · 10−3

Table 3.1: Parameter settings of the PLG.

3.3 Building an alternative model

State space reduction is the basis of the proposed model reduction scheme, but a further step is needed

to arrive at a simple mathematical model of the reduced states’ dynamics. A prominent way of finding

functional descriptions for given datasets was followed here as provided by Genetic Programming

(Koza, 1992). GP is one of many optimization schemes based on the principles of evolution, namely

diversification, inheritance and survival of the fittest. In GP, structures representing functional forms

are randomly initialized from a set of monomial functional terms and transformed using evolutionary

inspired operators to optimize a given fitness measure in the course of the algorithm. Furthermore, as

the models produced may contain adjustable parameters, their values have to be optimized in order to

calculate the fitness of each model. Because of the diversity of the generated models, this is a very
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demanding task for any optimization scheme. In this work a hybrid method combining a Genetic

Algorithm (GA) and a gradient based optimizer was applied, making use of the benefits of both.

3.4 Structure optimization

The basic structure of the GP algorithm used in this study follows the approach put forward by Cao

et al. (2000) with some major differences concerning the fitness calculation and parameter optimiza-

tion (see below). Target systems to evolve are ODEs of the form

ξ̇i = fi(ξ1, . . . , ξl, c1, . . . , cj), (3.6)

with i = 1, . . . , l, where ξi denotes state variable i and {cg}j
g=1 are free parameters. Each system

of differential equations is represented as a set of l GP-trees {Ti}l
i=1 with a maximum tree depth

dm. The GP-trees encode the right-hand sides of (3.6), see Figure 3.6. Starting with a randomly

generated initial population of np,GP members, their structure was evolved using GP to maximize a

certain fitness measure or, respectively, minimize an error measure (see section 3.4.1). Furthermore,

as the fitness value of a given structure naturally depends on the exact values of its free parameters, a

parameter estimation/optimization was carried out for each member once a new generation had been

built (see section 3.5).

3.4.1 Fitness calculation

The calculation of a GP population member’s fitness is one of the most time consuming steps, as it

involves the numerical integration of each system. As the type and complexity of the ODE system

to solve are not known beforehand, algorithms applicable here must be fast, precise and robust. To

account for the possibility of stiff differential equations, a fast variable step size/variable order algo-

rithm (CVODE) was used that is part of the SUNDIALS package (Hindmarsh et al., 2005). The error

measure quantifying the goodness-of-fit for an ODE system was the mean of the root mean square

error (RMSE) of the simulated and original time series for all state variables:

RMSE =
1
l

l∑

i=1

√√√√ 1
n

n∑

j=1

(
ξ̂i(tj)− ξi(tj)

)2
, (3.7)

where ξ̂ denotes the simulated states, l being the number of state variables and n the number of time

steps. As the error was averaged over all state variables they should have similar ranges or must be

scaled appropriately before calculating the RMSE.

Additionally, as a minimal mathematical description of the dynamics was desired, the number of nodes

in all trees served as a measure of complexity. To account for the tradeoff between structural simplic-

ity and goodness-of-fit, a simple multi-objective optimization scheme was used: all members were
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ranked according to both measures (RMSE and number of nodes) individually and the population

was sorted according to the sum of ranks. This scheme is a variant of the basic aggregating opti-

mization approach (see Coello Coello, 2000, and references therein). Independence of the objectives’

values was achieved by using the individual ranks .

3.4.2 Genetic Programming

Every GP tree consisted of several linked nodes representing either a basic arithmetical operator, a

numerical constant parameter or one of the state variables ξi (Table 3.2). In every new generation an

elitism strategy was used to prevent the loss of the best nc,GP members found in earlier generations by

copying them to the new population. Additionally, nr,GP of the new members were created randomly

to introduce ’new genetic material’. The remaining members of the new population were created by

crossover and mutation of existing members. The selection of the members to cross or mutate was

carried out using a tournament selection scheme with nt,GP members. Crossover and mutation were

then applied with equal probability and produced one new GP member each. For crossover, the first

two best members of the tournament were used and random switching of subtrees was performed for

each pair of trees Ti of both members. The base trees were thereby chosen randomly from the first or

second member. If a newly generated tree was larger than allowed according to the maximum depth

dm the corresponding base tree was left unaltered. For mutation, the tree and mutation point in this

tree were selected randomly and a new subtree was created at this point. The crossover and mutation

points were thereby selected from the equally weighted levels of the GP tree, similar to the depth-fair

selection scheme of Kessler and Haynes (1999).

Finally, the structure of the newly generated members was compared to all population members built

so far. In order to make this structural comparison possible, the new members were normalized by

moving terminal constant nodes to the left hand side of binary nodes encoding commutable operations

(i.e. + and ∗). When a member’s structure was already present in the population, this member was

deleted and a new one was produced using the selection procedure described above to prevent an

accumulation of members having the same structure.

The GP algorithm was stopped when a maximum number of generations, gm,GP , was reached or

no fitness improvement could be achieved in the last gi,GP generations. Specifications of the GP

algorithm are listed in Table 3.2.

3.5 Parameter optimization

Many different strategies can be used for optimization of parameters, among which are local gradient-

based methods, like quasi-newton algorithms, or random and evolutionary search methods, like Sim-

ulated Annealing, Evolutionary Algorithms or GA (see e.g. Pham and Karaboga, 2000). In this work,
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Binary functions +,−, ∗, /
Terminals const., ξi

np,GP 50 dm 3,4,5

gm,GP 500,1000 gi,GP 250,500

nt,GP 4 nc,GP 2

nr,GP 5

Table 3.2: Specifications of the GP module.

a hybrid of global and local search methods was applied. There are multiple variations of such meth-

ods (see Goldberg and Voessner, 1999). As evolutionary search strategies are able to quickly find

promising regions of the search space, but are slow to reach an optimum, local gradient-based search

strategies can be enacted to improve the overall performance of the search process.

Another alternative for parameter optimization is to constrain the ODE structure to incorporate linear

parameters only. For such a case, numerical estimation can be implemented instead of evolutionary

search strategies. This numerical estimation is outlined in section 3.5.2.

3.5.1 GA and local optimization

For the hybrid optimization of general ODE structures, the global part of the optimization procedure

was carried out with a Genetic Algorithm. A local search strategy was applied to a subset of the best

population members every sloc generation steps (see Table 3.3 for the control parameters).

Initially, a GA population with np,GA members was created for an individual GP members’ npar

parameters by randomly initializing the parameter values in a specified range [pmin; pmax]. Note,

however, that this parameter range was chosen arbitrarily as no constraints for the GP parameters

could be given beforehand. The local optimizer, as well as the crossover and mutation operations of

the GA, may produce values outside this range.

After the calculation of all members’ fitness values according to (3.7) a new population was created.

Similar to the GP module, copies of the best nc,GA members of the last generation and nr,GA ran-

dom members were included in the new population and the remaining GA objects were created by

crossover and mutation using again a tournament selection scheme with nt,GA members. Because

of the hybrid global/local optimization scheme used, crossover and mutation operations of the GA

mainly served to explore the parameter space and were not needed to fine-tune a given parameter

value. Crossover and mutation operators were therefore applied with equal probability to the selected

members. Furthermore, the mutation scheme used by Cao et al. (2000), which is based on the Breeder

Genetic Algorithm (Mühlenbein and Schlierkamp-Voosen, 1993), was altered to produce values with a

higher dispersion about the original parameter value as follows. One of the GA members’ parameters
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vm,m = 1, . . . , np,GA was selected randomly and its value was changed according to

v∗m = vm ± 0.3 · 2−j · (pmax − pmin) (3.8)

where v∗m denotes the new parameter value and the integer j was chosen randomly in the range of

0 to 3. The crossover scheme used was the BLX-crossover with an α-value of 0.5 (Eshelman and

Schaffer, 1992) which produces new parameter values v∗m,1, v
∗
m,2 from parameters vm,1 and vm,2 of

two GA members according to

v∗m,1 = (1− µ) · vm,1 + µ · vm,2 (3.9)

v∗m,2 = µ · vm,1 + (1− µ) · vm,2 (3.10)

with uniform random value µ ∈ [−α, 1 + α].

A local optimization procedure was applied to the best nloc members of the GA population when the

fitness value of the best member could not be improved in the last sloc generations. The scheme used

for local optimization was a limited-memory quasi-Newton method for unconstrained optimization

(L-BFGS-B; Zhu et al., 1997). nloc was thereby set to a value higher than nc,GA to ensure that new

GA objects which had not been copied from the last generation were optimized.

Parameter optimization was terminated when a maximum of gm,GA generations was reached or fitness

values did not improve in the last gi,GA generations.

np,GA 30 gm,GA 50

gi,GA 30 nt,GA 4

nc,GA 2 nr,GA 5

pmin -10 pmax +10

nloc 2·nc,GA sloc 10

Table 3.3: GA and local optimization specifications.

3.5.2 Linear-in-parameter models

If the models to learn are constrained to contain linear parameters only according to

ξ̇i =
j∑

g=1

cg · fg(ξ1, . . . , ξl), i = 1, . . . , l (3.11)

parameters cg can be estimated directly by solving a least-mean-squares problem (LMS; Ando

et al., 2002). A special class of ODE models of this type, namely models with polynomial structure,

have been used often in system identification applications (Smirnov et al., 2002; Aguierre et al., 2001).
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Because of these restrictions, however, the learned model structures may be relatively complex com-

pared to models with nonlinear parameters, as more (higher order) polynomial terms are needed to

approximate more complicated dynamics. For datasets that can be approximated with simple ODE

models, however, this procedure offers a fast alternative to the time-consuming GA/local optimizer

approach for the parameter optimization problem. The example calculations in sections 3.8.1 and

3.8.2 were carried out for linear- and nonlinear-parameter models to compare the different results.

3.6 Reconstruction of model dynamics

The RMSE alone may not be sufficient to decide about the ability of a model to reproduce a given

time series. The simplest approximation for example, the mean value, is also a good model of a

given dataset. The constructed models should rather be able to reproduce the dynamics of the time

series ξ1(t). Focusing on oscillatory regimes we provide a simple way of capturing different types of

dynamics by computing the change in amplitude of the nmax local maxima of the time series:

∆maxi = maxi −maxi−1, (3.12)

with i = 1, . . . , nmax, where maxi indicates a local maximum, i.e. a point of ξ1(t) where the

slope changes its sign from positive to negative. Typical temporal courses of ∆maxi and the associ-

ated time series are shown in Figure 3.1.
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Figure 3.1: Typical examples of the change in amplitude of local maxima ∆maxi over time with

corresponding time series.
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3.7 Model examples

To demonstrate the proposed methodology, the reduction scheme was applied to two simple two-

dimensional models: the model of a mathematical pendulum and a simple predator-prey model. While

these systems have different origins, they share common features of their dynamics. They can be

seen as the most basic model realizations of oscillatory behavior in a physical and biological system

respectively. In analogy to the restoring gravitational force acting on the axis of the pendulum, the

oscillations of the biological system are thereby caused by the predation pressure and prey abundance.

The simple structure of both models and their similar dynamical behavior provide a good basis for the

interpretation of the reduced models as the common principles underlying the oscillatory dynamics

can be made transparent by the reduction process.

Both systems were reduced to one new state. However, as a one-dimensional model is not able to

produce oscillations, the learned ODE models were taken to be of second order,

ξ̇1 = ξ2, ξ̇2 = f(ξ1, ξ2), (3.13)

where ξ1 indicates the newly built state variable and ξ2 its derivative. This in fact means that the

systems still were two-dimensional and the reduction of the models becomes a transformation.

3.7.1 The mathematical pendulum

Consider the idealized mathematical model of a pendulum: a point mass, connected to a rigid massless

axis whose motion is not affected by friction. The temporal dynamics of the angle α between this

pendulum and the vertical axis can be described with a second order differential equation:

α̈ = −g

l
· sin(α), (3.14)

where g denotes the gravitational acceleration and l is the length of the pendulum’s axis. A two-

dimensional system was derived from (3.14) by considering observables of the model, namely its

amplitude in vertical (y) and horizontal (x) direction,

x = l · sin(α), y = l · cos(α).

The length of the pendulum and the starting angle were arbitrarily chosen to be l = 3m, α(t0) =

3 (≈ 172◦) and g was set to 9.81m/s2, resulting in the time series depicted in Figure 3.2. Though

the physical units of the parameters and state variables are given here, the transformed models will be

used in dimensionless forms. This can be justified by the fact that the projected state variables have

other physical meanings than the original ones.
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Figure 3.2: Time series of the pendulum (equations (3.14) and (3.15)).

3.7.2 Simple predator-prey model

The simple predator-prey model chosen was the dimensionless Rosenzweig-McArthur model describ-

ing the dynamics of prey and predator abundances in the following way (Rosenzweig and McArthur,

1963):

ẋ1 = (1− b1 · x1) · x1 − x1

1 + b2 · x1
· x2

ẋ2 = b3 ·
(

x1

1 + b2 · x1
− 1

)
· x2. (3.15)

Here, the interdependency between predator x2 and prey x1 is modeled via Holling-II terms (Holling,

1959) where parameters b1, b2 and b3 determine the temporal course of the system, e.g. the conver-

gence towards a stable limit cycle or fixed point in state space. A snapshot of the model’s limit cycle

dynamics was generated using the parameter settings of Table 3.4 (see Figure 3.3).

[x1, x2]t=0 [2, 1.5]

normalized inverse capacity b1 0.15

normalized inverse half saturation for predation b2 0.5

normalized predator mortality b3 1

Table 3.4: Simulation settings for the simple predator-prey model (3.15).
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Figure 3.3: Time series of model (3.15) using the simulation settings of Table 3.4.

3.8 Results

3.8.1 Mathematical pendulum

State reduction

In order to study the effect of nonlinear versus linear mapping, both the reduction to the first linear

principal component and a nonlinear principal curve were calculated. Settings for the PLG can be

found in Table 3.1. Results for different settings of the curvature penalty coefficient were very similar.

Only for values larger than ρ ≈ 0.65 was the curvature constraint too high to allow the principal

curve to follow the data distribution. For these values, the principal curve resembled the principal

component (the starting condition of the PLG) instead. Figure 3.4 shows the resulting linear and

nonlinear line structures in state space.

Note that a reduction to the first principal component retains only 54% of the data variance. There-

fore, the reduction clearly is not justified as a lot of information about the system contained in the data

matrix is lost. As the example is only used to demonstrate the multi-step method, however, this prob-

lem will be ignored.

The mapping from the dataset X to its low-dimensional counterpart Ξ was achieved by finding the

points on the linear or nonlinear structures which are closest to the data points in the least-squares

sense. Figure 3.5 shows the time series resulting from the linear and nonlinear mappings.

Model learning

The GP-algorithm, using the settings from Table 3.2, was run repeatedly for the reduced data taken

from the PCA (ΞPCA) and PCurve (ΞPcurve) mappings. Two modes of operation were carried out:

for linear-in-parameters (LIP) models to be learned, the maximal depth of the GP-trees dm was varied
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Figure 3.4: Principal curve and first principal component for the time series data of the pendulum in

the original 2-dimensional state space.
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Figure 3.5: Time series of the new state variable ξ1 resulting from mappings onto the line structures

in Figure 3.4.

from 3 to 4, thereby increasing the maximal complexity of the learned ODE structures. For each of

these configurations, 50 runs with gm,GP = 1000 and gi,GP = 500 were carried out. The parameter

values were estimated directly from the time series data using the LMS method (section 3.5.2).

The GP algorithm was also run to evolve models with nonlinear parameters (NLIP). In these cases the

hybrid GA/local scheme was used for parameter optimization. As this kind of optimization is very

time consuming, dm was again varied from 3 to 4 (20 runs each) but the GP was stopped earlier when

the number of generations reached a maximum of gm,GP = 500 or gi,GP = 250.

In order to analyze an ensemble of models showing different tradeoffs between fitness and complexity,

the best 10 members of the final populations for all runs were used. The best model in terms of
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RMSE alone was always found to be part of this collection.

PCA results - The GP-tree of the best model found, with a good compromise between fitness and

size, is depicted in Figure 3.6. Written in mathematical notation it follows

ξ̇1 = ξ2 (3.16)

ξ̇2 = c1ξ
2
1 + c2ξ1 + c3

with

c1 = −3.1434, c2 = 2.0, c3 = 12.4023.

Figure 3.6: GP-tree of model (3.16).

Figure 3.7 shows the resulting simulated time series. This model structure was found in all modes

of operation but the parameter optimization results turned out to be very different. As a rule, the hybrid

optimization scheme gave much better results than the direct numerical estimation in LIP mode. This

can partly be attributed to the strong sensitivity of the LMS optimization to errors in the numerical

estimation of the second derivative. The parameter values of (3.16) were taken from the best NLIP

run with dm = 3.

PCurve results - The reduction of the two-dimensional pendulum using the nonlinear principal

curve is much more viable than the linear reduction as the variance of the original system is explained

completely. Figure 3.8 shows RMS errors and the number of nodes of the resulting systems. As

expected, the mean fitness of the best members increases with higher complexity of the trees (higher

values of dm). Additionally, we can see that the best NLIP models found are significantly less complex

than the LIP models while being comparable or better in terms of RMS error, though this is mainly
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Figure 3.7: Simulated time series of the best model found for the PCA reduction of the pendulum

data.

(3.18)

(3.17)

Figure 3.8: RMS errors and number of nodes of generated ODE systems for ΞPCurve of the pendulum.

Arrows indicate models (3.17) and (3.18).

caused by differences between the parameter optimization schemes (see PCA results). The most

simple NLIP model with dm = 3 and RMSE = can be written as

ξ̇1 = ξ2 (3.17)

ξ̇2 = −c1ξ1 + c2,

with

c1 = 0.5817, c2 = 5.5242.
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The resulting time series is shown in Figure 3.9(a). Models with a structure following (3.17) were also

found in NLIP mode with dm = 4 as well as in LIP mode with dm = 3. For example, the smallest

LIP model in Figure 3.8 is of this structure but its RMSE is much higher than the error of model

(3.17) as the optimization scheme failed to fit the linear parameters.

The more complex model results with even better fits all contained nonlinear terms of ξ1 and ξ2 like

the rather complex best LIP model with dm = 4 (Figure 3.9(b)):

ξ̇1 = ξ2 (3.18)

ξ̇2 = c1ξ
2
2ξ

2
1 + c2

ξ2
2

ξ1
+ c3ξ1 + c4

with
c1 = −0.001, c2 = 0.9603

c3 = −0.2667, c4 = 2.1719.

(a) (b)

Figure 3.9: Time series of two models found for the reduced pendulum: (a) model (3.17), RMSE =

0.89 and (b) model (3.18), RMSE = 0.37.

3.8.2 Predator-prey model

State reduction

Unlike the results of the pendulum, the form of the principal curve for the data distribution of the

predator-prey model strongly depends on the value of the curvature penalty coefficient ρ (Figures

3.10 and 3.11).

We plainly see the effect of the learning algorithm being unaware of the temporal dynamics, as

discussed in section 3.3, in the mapping for ρ = 0.1. On the one hand, this principal curve closely

follows the data distribution as the low value of ρ permits a highly curved structure. On the other hand,

however, the mapping results in a time series showing sharp transitions between subsequent time steps
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Figure 3.10: First principal component and principal curves for the predator-prey model with different

settings of the curvature penalty coefficient ρ.

Figure 3.11: ξ1 for structures in Figure 3.10.

which can not be reproduced by a meaningful model. A quantification of the temporal mapping errors

can be achieved with the MSmE measure from section 3.3 (Figure 3.12). Apart from the lowest

values of ρ, where a pronounced drop in RMSE and an increase in MSmE occurs, the time series

for the principal curves show virtually no temporal distortion and their RMSE and MSmE values

are very similar to those of the PCA. Because of these similarities, the time series of the simplest
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mapping, i.e. the PCA result, was chosen as input data for the model construction step.

Figure 3.12: Mean smoothness (MSmE, ◦) and mean root-mean-square error (RMSE,2) for different

settings of the curvature penalty parameter ρ. PCA results are marked with filled symbols.

Model learning

The GP-algorithm was run repeatedly for the reduced data taken from the PCA mapping (ΞPCA−1).

The modes of operation follow those of the pendulum but additional runs using dm = 5 were carried

out for the LIP models and in the NLIP case dm was set to 3 (10 runs) and 5 (5 runs). Again, the best

10 members of the final populations for all runs were used for further analysis and Figure 3.13 shows

RMS errors and number of nodes of the generated systems. Once more, the differences in tradeoff

between fitness and size for LIP and NLIP mode can be seen: NLIP models are typically smaller and

have a lower error value than the LIP models. As outlined in section 3.6, the RMS error alone is not

able to distinguish qualitatively correct and incorrect models and the course of relative change in local

maxima was used to narrow the selection of best models. The transient dynamics we are interested

in are characterized by a distinct maximum in ∆maxi followed by a decrease towards the end of the

time series. Models showing this temporal characteristics are drawn with filled symbols in Figure

3.13. It can be seen that no simple LIP models with dm = 3 showing the correct transient behavior

could be found. Thus, the advantage of NLIP over LIP models in this case can not be attributed to the

parameter optimization scheme alone but is also based on the optimization of the structure. In fact,

the two NLIP models with dm = 3, which were able to reproduce the desired dynamics, contain a

nonlinear parameter. The difference in size between these two systems is caused by redundant nodes

only, and they can be expressed as

ξ̇1 = ξ2 (3.19)

ξ̇2 =
−c1ξ1 + c2ξ2

c3 − ξ1ξ2
,
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(3.20)

(3.19)

Figure 3.13: RMSE and number of nodes of generated ODE systems for ΞPCA−1. Models that were

able to reproduce the transient dynamics are plotted with filled symbols and arrows indicate models

(3.19) and (3.20).

with

c1 = 2.8296, c2 = 0.2581, c3 = 9.0,

and RMSE = 0.54 (Figure 3.14). As with the results of the pendulum, more complex models with

better fitness values again contain mixtures of higher order nonlinear terms of ξ1 and ξ2. The best LIP

model with dm = 5 follows

ξ̇1 = ξ2 (3.20)

ξ̇2 = −ξ1(c1 − c2ξ
2
1) + ξ2(c3 − c4ξ

2
1) + c5ξ

2
1ξ

2
2 ,

with
c1 = 0.3327, c2 = 0.0174, c3 = 0.0423

c4 = 0.0574, c5 = 0.0461

and RMSE = 0.17 (Figure 3.14).

3.9 Discussion

The control parameters of evolutionary learning schemes must be tuned to the problem at hand in order

to provide optimal results. Parameter tuning of the hybrid GP/GA module, however, is very difficult.

On the one hand, the fitness calculations of the GP members, due to repeated numerical integrations
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(a) (b)

Figure 3.14: Time series of two models found for the reduced predator-prey model: (a) model (3.19),

RMSE = 0.54 and (b) model (3.20) with RMSE = 0.17.

of the models, result in long operation times and inhibit the use of many different parameter settings.

On the other hand, the tuning of GA parameters is also intractable because of the diversity of the

constructed GP models. The choice of GP and GA parameter settings used (Tables 3.2 and 3.3) must

therefore rather be seen as a first guess based on computing time considerations. Concerning the GA

module alone, the incorporation of the local optimizer generally turned out to enhance the optimizer’s

performance most drastically. In comparison, the effect of different control parameter settings on the

method’s performance was negligible.

The simplified models built by the reduction method can typically not be derived from the original

models analytically. One example of this is found in the PCA reduction of the pendulum, equation

(3.16), which describes a simple nonlinear oscillator. This model can not be derived from the original

equations (3.14) and (3.15), e.g. by approximating the principal component with the vertical axis y

and further substitution of α.

In some cases, however, an analytical derivation of the learned models is possible if approximations

of the original model are used. The derivation of model (3.17), the PCurve reduction result of the

pendulum, is a good example. The dynamics of ξ1 for the PCurve mapping of the pendulum resembles

the dynamics of α and the learned model should therefore just be equal to (3.14). However, as no

sin(·) function was used in the GP, the algorithm could only approximate this function with a series

expansion and the result would be a very complicated model with higher-order terms. Alternatively,

equation (3.17) can be interpreted as a small angle approximation of the pendulum equation (3.14)

with sin(x) ≈ x and a linear transformation of the result. In order to match the frequency and

amplitude of the original, the transformed pendulum’s axis l̂ must be longer than l. As the values of

ξ1 were chosen arbitrarily, ξ1 can be written as a linearly transformed version of α,

ξ1 =
α− αo

α̃
(3.21)
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with scale α̃ and offset αo. Using a new pendulum length l̂ and (3.21) to substitute α in the approxi-

mation of (3.14), α̈ ≈ −g/l̂ · α, we get

ξ̈1 ≈ −a · ξ1 + b, (3.22)

with a = c1 = g/l̂ and b = c2 = −(g · αo)/(l̂ · α̃). Thus, with an appropriate new pendulum

length, mathematical viable small angle approximations of (3.14) can be found that match the data

and the constant c2 in (3.17) can be attributed to the linear transformation of α. Using the parameters

of (3.17), this length is l̂ = g/c1 ≈ 5.6 · l and with an initial angle of e.g. ξ1(t0) = 0.1 (≈ 5.7◦), we

get αo = 3.0319 and α̃ = −0.3193.

These two model results also exemplify the advantage the state reduction using a nonlinear mapping

may have over the reduction based on a linear mapping. The pendulum equation’s nonlinearity was

captured by the principal curve and the resulting model (3.17) is a simple linear oscillator. The lin-

early reduced model (3.16) is slightly more complex due to a nonlinear term. On the other hand it

was shown that a nonlinear state reduction of time series data does not necessarily produce reasonable

results as it may introduce temporal disruptions of the data. The MSmE was introduced as a sensible

measure of these mapping errors and in combination with the RMSE it provides a good means to

compare mappings of different nonlinearity.

Regarding the system identification step alone, the combination of GP with the hybrid parameter

optimization scheme and no restrictions concerning the use of nonlinear parameters turned out to

be superior to the common linear-in-parameter model identification approach. The higher flexibility

of the structure optimization together with the successful parameter optimization scheme resulted in

smaller and better models. This could be seen most clearly for the reduced predator-prey data as no

simple LIP model could be found at all in this case.

As stated above, the model examples can be seen as basic realizations of oscillatory dynamics in

physical and biological contexts, respectively. These examples were chosen to demonstrate that the

reduction scheme as the transformation of both systems to the same structure, namely a second-order

oscillator equation, may reveal common properties and differences of the system’s dynamics. For the

pendulum, on the one hand, the most simple models are composed of polynomial equations incorpo-

rating the reduced state only. It can easily be shown that fixed points of ODE systems having this

structure are only marginally stable, i.e. every starting point in the state space is part of a limit cycle

and no transient behavior can be found. This limitation, however, can be removed by the incorpora-

tion of nonlinear terms in the reduced predator-prey models. Model (3.19) has only one fixed point

at (x∗1, x
∗
2) = (0, 0). A local stability analysis of this point gives the necessary conditions for the

existence of a limit cycle:

c2

c3
> 0 (3.23)

4 · c1c3 > c2
2. (3.24)
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The first condition (3.23) determines the stability of (x∗1, x
∗
2): for a limit cycle to exist the fixed point

has to be unstable and the condition is met when c2 and c3 have the same sign. The conformance

with the second inequality (3.24) is responsible for the oscillatory dynamics. Figure 3.15 shows a

stability diagram of the model. The system shows oscillatory dynamics above the parabola. Below it,
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Figure 3.15: Stability diagram of model (3.19) for two different settings of c1. The solid parabola

indicates the limit curve of the oscillatory regime for c1 = 2.8296 and the parameter regime of the

limit cycle is shaded in gray. The dashed curve shows the oscillatory limit for c1 = 5.

the system’s solutions move towards or away from the fixed point at an exponential rate, depending

on the stability of the fixed point. For negative values of c2 the fixed point is stable and the trajecto-

ries approach it in an oscillatory or exponential manner. Equations (3.23) and (3.24) also show that -

different from c2 and c3 - the stability of the fixed point does not depend on parameter c1. All three

parameters, however, affect the oscillatory behavior of the time series and a higher value of c1 pro-

motes the existence of oscillations (see the dashed line in Figure 3.15). In this respect, the parameters

of the reduced model can also be dynamically linked to the parameters of the original model (3.15).

An analysis of this model reveals that the stability of the system’s non-trivial fixed point solely de-

pends on two of the three parameters, namely b1 and b2. The third parameter, b3, has an influence on

the oscillatory regime only and high values of b3 again promote the existence of a limit cycle. The

parameters of models (3.15) and (3.19) therefore have very similar implications for their system’s

dynamical behavior.

Physically spoken, the second order differential equation can be seen as an equation of forces. Without

the second additive term of (3.19), i.e. for c2 = 0, shown as a vertical line in Figure 3.15, the system

is still able to produce oscillations, but the limit cycle coincides with the marginally stable fixed point.
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The resulting time series show damped oscillations that approach the fixed point asymptotically. The

second term of (3.19), being proportional to the impulse ξ2, can therefore be interpreted as a driving

force that increases the impulse and causes the trajectories to move away from the fixed point. The

negative first term of (3.19) can be seen as a restoring force, as present in the small angle approxima-

tion of the pendulum, ξ̈1 = −a · ξ1, with an additional nonlinear damping term in the denominator.

Without this damping the system’s solutions would explode because of the acting driving force. The

existence of the stable limit cycle therefore is the result of a balance of both forces.

Finally, it should be noted that similar forces are present in the more complex models. The first two

terms in (3.20), for example, can again be seen as nonlinearly corrected restoring and driving forces.

As the corrections are quadratic in ξ1 and therefore positive, however, this results in an additional

damping term proportional to the impulse ξ2 which is governed by c3. Just as the nonlinear denom-

inator of (3.19), this term is responsible for the existence of the stable limit cycle. The last term of

this model is an additional nonlinear driving factor. Thus, equation (3.20) essentially is just a more

complex description of a balance of forces as given by (3.19).

3.10 Conclusion

The interpretable transformation and reduction of model systems is a methodically very demanding

task. In this respect, the proposed method of this work, a combination of dimension reduction and

evolutionary learning algorithms, was found to be a promising step towards an automatic reduction

scheme producing simplified and interpretable model results. As the structure of the resulting trans-

formed or reduced models is independent from the original formulation, alternative and potentially

more general interpretations of a model’s internal interactions are made possible.

This was demonstrated for the transformation of two simple oscillatory systems taken from physical

and biological contexts. The present analysis thereby showed that the dimensionality of the origi-

nal model formulations must not necessarily be high in order to get insights into relevant processes

governing the dynamics. The transformation of the predator-prey model in this study revealed the sys-

tem’s fundamental analogy with a nonlinear oscillator. This result supports the concept of biological

oscillators, originating in consumer-resource interactions, being the basic building blocks of general

food web models (Vandermeer, 2004). In this respect, the nonlinear predator-prey oscillator found

can be seen as a prototype for limit cycle dynamics of more complex biological systems.

For higher-dimensional models, the reduction ability of the presented approach naturally depends on

the system’s dynamics being confined to a low-dimensional subspace. In the biological context, the

existence of such low-dimensional dynamics has for example been reported for lynx and hare limit cy-

cle dynamics in a complex boreal food web (Stenseth et al., 1997). Other studies analyzing the dynam-

ics of the complex European Regional Seas Ecosystem Model (ERSEM) revealed that the dynamics



42 3. Finding alternatives and reduced formulations for process-based models

of this model was confined to a small part of the state space (Wirtz and Wiltshire, 2005) and that some

of the model’s unexpected dynamic effects could be explained with a simple two-dimensional model

(Kohlmeier and Ebenhöh, 1995). In a follow-up paper it will be shown that the limit cycle dynamics

of more complex biological population models can readily be captured by reduced two-dimensional

models (Bernhardt and Wirtz, 2007). The reduction process thereby offers new ways of interpreting

the dynamic picture of biological interactions. Sustained limit cycle oscillations have further been re-

ported for many biological population models as well as measured time series datasets (e.g. Turchin,

2003; Huisman and Weissing, 2001b). It may be proposed that the long-term dynamics in many of

these cases is also intrinsically low-dimensional, offering fields of application for the model reduction

mechanism.
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Chapter 4
Oscillation of structural properties in food web models

Abstract

Simple models of biological food webs with a small number of state variables are, despite their

simplicity, important building blocks of more complicated integrated models. Apart from the clas-

sical formulations using density-based state variables, the importance of trait-related effects on

population dynamics has been pointed out in recent years. However, there still exist ambiguities

about the choice of relevant traits as well as the corresponding dynamic equations. In addition,

the relative importance of mutual direct and indirect effects of density- and trait-based variables

is subject to ongoing research.

In this paper, we show that the dynamics of food webs can be described more efficiently when

the model formulation is based on interaction variables incorporating the interdependencies of

functional groups and resources. We apply a data-adaptive reduction method to build simple

interaction models from time series data of a predator-prey and a NPZ model. In this frame-

work, linear PCA is used to extract the new interaction variables describing structural food web

properties which are not given explicitly in the original formulations. These variables can be

interpreted as feeding limitations within the trophic subsystems of the food webs. Concurrently,

the corresponding indirect interactions between the system’s trophic levels are translated to direct

interactions of the feeding limitations. Analogies with a physical oscillator further help to identify

general biological forces controlling complex food web dynamics.

4.1 Introduction

Simple mathematical models describing the interactions of biological populations with a small num-

ber of state variables have been used and discussed by modelers for a long time and are still widely

in use today. Based on the work of Lotka and Volterra in the 1920s and 1930s, most current model

formulations of aquatic ecosystems are of the NPZ or NPZD type, in which one or two density vari-

ables for nutrients, phytoplankton, zooplankton and detritus form the main model structure (Palmer

and Totterdell, 2001). Despite of their simplicity corresponding to an omission of many processes

affecting food web dynamics, these models are still useful to reproduce bulk system properties and

events such as mean seasonal patterns, phytoplankton blooms or trophic cascades (e.g. Schmitz, 1993;

Franks, 2002). Aiming at improving their accuracy and prediction capabilities, the development of
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much more complex models has progressed in the last decade. This increase in complexity is, for

example, based on a larger number of functional types or additional structural information in the

planktonic compartments (Flynn, 2003; Le Quéré et al., 2005). However, the incorporation of more

state variables and parameters to represent a more detailed population structure leads to a number of

problems. First of all, the scarcity of available process data strongly limits the verification of com-

plex models. The corresponding large number of model functions and parameters, which can often

not be further refined using existing quantitative information on the underlying biological processes,

are typically under-determined (Anderson, 2005). As a consequence, one may conclude that classi-

cal ecosystem modeling is trapped in a simplicity/complexity dilemma and neither of the modeling

strategies appears to give vital benefit. This notion has been substantiated recently in the US-JGOFS

testbed project. In this study, a collection of NPZ-type models was compared with respect to their

ability to simulate observed biogeochemical cycling using data assimilation techniques. It was found

that the overall ability to fit a data set that was not used for calibration before was relatively weak for

all models. More notably, this ability did not depend on model complexity (Friedrichs et al., 2006).

Because of the problems associated with complex descriptions and the fact that increased complexity

not necessarily leads to better models, it is still sensible to use simple models derived from the Lotka-

Volterra (LV) formulation. These models include growth, mortality and feeding terms which directly

determine changes of population density. However, direct physical interaction, i.e. consumption of

biomass, is only one form of predator-prey interaction. Some of the dynamic patterns in real systems

can be related to predation-induced changes in species traits such as diet and habitat selection, feed-

ing time or food quality (e.g. Abrams, 1995; Abrams et al., 1996; Relyea and Yurewicz, 2002). The

notion of behavior- or trait-related aspects of population dynamics has been used in individual-based

models for a long time as so-called i-states (DeAngelis and Rose, 1992) and attempts have been made

to reconcile the population- and individual-based approaches (e.g. Fahse et al., 1998). In this respect,

the density-related state variables of classical population models must be regarded as a description

of the community mean of functionally identical individuals. The indirect effects of species traits on

population composition and dynamics have been found to be of substantial importance (Beckerman

et al., 1997; Preisser et al., 2005) but they are typically masked by measuring the net effect of preda-

tor/prey density changes (Křivan and Schmitz, 2004). Based on these results, it has been proposed in

some studies to consider both, density- and trait-related variables for model-building (e.g. Wirtz and

Eckhardt, 1996; Fussmann et al., 2005). Similar to the procedure of the Adaptive Dynamics approach

(Dieckmann and Law, 1996), the dynamics of traits in these studies have been linked to derivatives

of the growth function with respect to traits. However, the selection of the most important adaptive

traits is fraught with ambiguities which limits the general applicability of trait variables in food web

models. As the relevant net effect of both, direct and indirect density- and trait-based interactions, is

reflected in the overall population dynamics it can be argued that the distinction between density- and
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trait-related aspects of population models is artificial to some extent. If this is the case we may ask

whether it is possible to find alternative, more problem (or data) adapted sets of key state variables.

These new variables would then provide a basis for new types of models explaining the main fea-

tures of the dynamics by minimal means. The concept of minimal complexity in model formulations,

known as Occam’s razor, is one of the major aims of modeling (Turchin, 2003). More importantly,

reduced model structures could point to principles underlying food web dynamics which have been

obscured by the domination of NPZ-type models.

In this study, we introduce a method deriving new biological state variables within the context of

model reduction (MR) techniques. As the oscillatory behavior of Lotka-Volterra models can be seen

as a reference case in ecology, we will focus on two of the most simple food chain models yielding

predator-prey cycles in order to demonstrate the model reduction procedure. Namely, we will use a

predator-prey model consisting of two state variables and a slightly more complicated NPZ chemostat

model with an additional trophic layer.

So far, the spectrum of MR methods ranges from the formal aggregation of state variables (Iwasa

et al., 1989; Auger and Poggiale, 1996a) to approaches where model formulations are restructured

using model analysis and detailed knowledge of the underlying system (Raick et al., 2006). We apply

the Mapping-based Genetic Reduction approach (MAGER), a new MR scheme constructing simpli-

fied mathematical descriptions of biological system dynamics (Bernhardt, 2007). Unlike the methods

mentioned above, the new scheme is a data-adaptive black-box procedure that ignores traditional

model formulations in terms of equation structure and in particular the meaning of state variables.

Furthermore, no expert knowledge is needed for its application. MAGER is composed of a state

variable reduction and a subsequent model learning step generating new differential equations. These

dynamic equations are able to reproduce the original model datasets to a large degree. However, while

the mapping procedure allows for an interpretation of the new state variables, this may not be the case

for the parameters and equations arising from the model learning. In this paper, we use analogies to

an oscillatory physical system in order to relate the generated dynamic equations to first principles.

4.2 Models used

4.2.1 Predator-prey model

Rosenzweig and McArthur (1963) introduced a predator-prey model with capacity limited growth of

prey and a Holling type II grazing function which is used here in a dimensionless form

dx1

dt
=

(
1− k · x1 − x2

1 + s · x1

)
· x1

dx2

dt
= mp ·

(
x1

1 + s · x1
− 1

)
· x2, (4.1)
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with normalized abundance of prey x1 and predator x2 and parameters k, s and mp explained in Table

A.1. The normalized model formulation is chosen to simplify the analysis (see section A.2 for the

derivation of (4.1)). Depending on the parameterization, the model is able to simulate coexistence

of prey and predator populations either in form of a stable equilibrium (fixed point dynamics) or

oscillatory behavior (limit cycle). For the present analysis, only the limit cycle dynamics is considered.

For more details on the bifurcation properties of the system see (Rosenzweig and McArthur, 1963;

Freedman, 1980; Kot, 2001).

We use model simulations with two different settings of k (Table A.1). Both setups result in time

series showing transient oscillatory regimes of different length before a stable limit cycle is reached.

4.2.2 NPZ model

As an extension of the predator-prey system, we use a generic model of food web dynamics on three

trophic levels in a chemostat which contains nutrient, phytoplankton and zooplankton biomass densi-

ties (Yoshida et al., 2003; Fussmann et al., 2000). The fourth state variable of the original formulation,

where the zooplankton biomass was split up into a reproductive and a non-reproductive part, is sim-

plified to reproductive zooplankton with an increased mortality. The system can then be written as

dN

dt
= δ · (N0 −N)− FP · P

dP

dt
= εP · FP · P − FZ · Z − δ · P (4.2)

dZ

dt
= εZ · FZ · Z − (δ + mz) · Z,

with

FP = µmax · N

SP + N
(4.3)

FZ = ξmax · P

SZ + max(P, P ∗)
. (4.4)

See Table A.2 for a description of the parameters and their values used in this study. The starting

values of N , P and Z were arbitrarily set to again produce limit cycle dynamics with transient oscil-

lations.

4.3 Model reduction

The MAGER approach consists of a sequence of operations which lower the number of state variables

of a given model and produce new mathematical descriptions that are able to reproduce the dynamics

of the transformed state variables (Figure 4.1). This chapter gives a short overview of the method

while a full description can be be found in (Bernhardt, 2007).
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Complex model

dx1/dt = f1 (x1, x2, . . . , xm)
dx2/dt = f2 (x1, x2, . . . , xm)

...
dxm/dt = fm (x1, x2, . . . , xm)

Reduced model

dϕ1/dt = g1(ϕ1, ϕ2)
dϕ2/dt = g2(ϕ1, ϕ2)

Interpretation

Time series
data

(Non-)linear
projection

”Effective”
state variables

Simulation

Model learning

State reduction

Genetic
Progr.

Param.
Optim.

Figure 4.1: Schematic diagram of the model reduction procedure. See text for details.

4.3.1 State transformation and model learning

Starting with the m-dimensional ordinary differential equation (ODE) dx/dt = f(x), we produced

time series data X = [x(t1), . . . ,x(tn)]T with n time steps (Appendix A.1). The construction of the

new model is solely based on X and is therefore independent from f(x). In a second step, Singular

Value Decomposition (Golub and Van Loan, 1989) was applied to perform a Principal Component

Analysis (PCA; Fukunaga and Koontz, 1970) of X which provides a mapping to a low-dimensional

representation Φ of the data matrix. The columns of Φ contain the component scores ϕi of the cor-

responding principal components (PC). Typically, only the first l PCs which explain a lower relative

amount of data variance (e.g. 95%) are considered in the analysis, i.e. Φ is l-dimensional. Continu-

ing the concept introduced by Wirtz and Eckhardt (1996), these first l PCs will be called "effective"

variables.

In a third step, we used a modified Genetic Programming (GP) algorithm (Koza, 1992; Cao et al.,

2000; Bernhardt, 2007) to generate new ODEs of the effective variables. In addition, a hybrid pa-

rameter optimization scheme consisting of a Genetic Algorithm and a gradient-based optimizer (Zhu

et al., 1997; Pham and Karaboga, 2000; Goldberg and Voessner, 1999) was applied to adjust the

free parameters of the new model systems. In the GP module, the right-hand sides of the differen-

tial equations are encoded as sets of tree structures. These trees are made up of interlinked nodes

representing the transformed state variables, numerical constants and arithmetical operators of the

new equations. A randomly initialized population of model trees is recombined and transformed by
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evolutionary-inspired operators in the course of the algorithm. Figure 4.2 shows an example for a

GP-tree representation of a simple ODE. The selection of an individual member for reproduction or

transformation in every generation is based on its fitness. The fitness used is a combination of the

root-mean-square error (RMSE) as goodness-of-fit measure and the number of GP nodes as a mea-

sure of model complexity. Both measures are combined using the weighted average ranking method

(Bentley and Wakefield, 1997) with equal weights. The MAGER scheme thus produces new ODE

models
dϕ

dt
= g(ϕ), (4.5)

with numerical solutions ϕi(t) approximating the time series of the l effective variables, i.e. the

columns of Φ.
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Figure 4.2: Example for a GP-tree representing the ODE dϕ1/dt = ϕ2, dϕ2/dt = c1ϕ
2
1 + c2ϕ1 + c3.

4.3.2 Reduction of the model systems

Time series datasets of the predator-prey and NPZ models were generated by numerical integration of

(4.1) and (4.2) using the parameterizations in Tables A.1 and A.2, respectively. As PCA is sensitive

to the scale of variables, the principal components were calculated for the normalized variables x̃1, x̃2

and Ñ , P̃ , Z̃ with zero mean and a standard deviation of one. The dimensionality of the datasets was

reduced by selecting only the first PC score ϕ1(t) for the normalized two-dimensional time series of

the predator-prey model and the first two PC scores ϕ1(t), ϕ2(t) in case of the NPZ dataset. While

the first two PCs of the NPZ model explain more than 99% of the data variance, only 50% of the

variance can be explained with the predator-prey model’s first PC and the reduction must therefore

primarily be seen as an introductory example in this case (Bernhardt, 2007). Furthermore, as a first-

order ODE with a single state variable is not able to produce oscillations, the predator-prey model
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learning scheme was adopted to generate second-order systems

dϕ1

dt
= ϕ2,

dϕ2

dt
= f(ϕ1, ϕ2), (4.6)

where ϕ2 indicates the time derivative of the effective variable ϕ1.

The GP algorithm was run individually for all datasets using five repetitions with different random

initial populations and a maximum tree depth of three. It should be noted that due to the normalization

the fitness of learned models becomes insensitive to the values range of the variables and their initial

values may be chosen arbitrarily. However, as the choice of initial values of the normalized effective

variables ϕ̃i may influence the model dynamics, they were introduced as additional model parameters

subject to optimization.

Different from the reduction of the predator-prey system, it was further made certain that the effective

variables of the NPZ model were positive for all time steps. Without any change of sign of the

variables, the new terms of the model equations then have definite meanings as gain or loss terms and

their biological interpretation is simplified.

4.4 Results and Discussion

4.4.1 Predator-prey model

Dimensionality reduction

Predator-prey oscillations in the two-dimensional state space of the original model together with the

respective first PCs are shown in Figure 4.3. For both settings of the normalized inverse capacity, the

first PC provides a projection of the time series onto one dimension explaining the largest percentage

of variance. The two simulated oscillatory time series differ in main frequency and amplitude. A

lower value of the normalized inverse capacity k permits an increased growth of prey promoting

larger amplitudes and lower frequencies of the predator-prey oscillations and shortens the transient

phase before the limit cycle is reached (Figure 4.4).

As the PC scores result from linear mappings of the data matrix onto a set of eigenvectors, the effective

variables are simple linear combinations of the original variables

ϕ = p · (x̃2 − x̃1), with p = 0.71. (4.7)

ϕ thus incorporates aspects of both, prey and predator population densities, and describes a negative

potential of predation depending on the difference between normalized foragers and food mass. For

positive ϕ, insufficient food availability and a large amount of predators limit trophic interaction

while the biomass flux due to feeding grows with a lowering of ϕ which increases the abundance of

predators. We will therefore use the term feeding limitation for ϕ as an abstract characterization of the
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Figure 4.3: Model data of (4.1) using the simulation settings of Table A.1 together with respective

first PCs in original state space for (a) k = 0.15 and (b) k = 0.09.

predator-prey interaction. In a qualitative sense, the feeding limitation corresponds to the predator-

prey ratio introduced by Ginzburg (1986). It describes the interaction of functional groups, i.e. a

structural property of the food chain rather than a biomass.

The predator-prey system as a linear oscillator

The occurrence of a single effective variable incorporating predator and prey densities in (4.1) gives

rise to a second-order ODE (see below, section 4.3.2) resembling an oscillator equation. Independent

from the black-box MR, an approximation of the latter can be derived analytically from (4.1). The

result is used to analyze the models found with the MAGER scheme in section 4.4.1.

Consider a small deviation x
′
i from the fixed point x∗i of prey and predator. A Taylor series expansion

of system (4.1) around x∗i and subsequent introduction of the feeding limitation ϕ yields an oscillator

equation (Appendix A.3)
d2ϕ

′

dt2
≈ −ω2 · ϕ′ − ρ · dϕ

′

dt
, (4.8)

with the damping/excitation factor ρ = (2 · k)/(1 − s) − k − s and frequency of the undamped

oscillator ω =
√

mp · (1− k − s). Given the apparent analogy to physical systems, for example a

damped/driven pendulum or a spring, the terms on the right hand side can be interpreted as mass nor-

malized forces acting on trophic interactions.

Indeed, equation (4.8) is compatible with the "law of balance of biological momentum" (Vadasz and

Vadasz, 2002; Ginzburg, 1986) which states that the "rate of change of biological momentum is bal-

anced by the biological forces impressed on the population". The approximation in the present case

yields two biological forces, namely the restoring force −ω2 · ϕ′ and a driving or damping force pro-

portional to the rate of change of feeding limitation. It should be noted that for strictly negative ρ
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the oscillator dynamics explodes and the Taylor approximation looses validity. We can nevertheless

interpret the original biological parameters in a physical context if we neglect the excitation term by

setting ρ = 0. The resulting conservative oscillatory system then is completely determined by the

frequency or period T , respectively, which follows

T = 2π ·
√

s/(k ·mp), (4.9)

In terms of the original model parameters, s/(k ·mp) equals the product of capacity and maximum

growth rate of prey divided by the product of predator mortality and half-saturation constant (see sec-

tion A.2). The variability of the feeding regulation is thus given by the ratio of the growth potential

of prey and the predators’ growth inhibition. In case of a driving force present and large values of the

half-saturation, i.e. ρ < 0 and s < 1, we can further see that excitation is low for small values of the

capacity, i.e. when the environmental limits dominate the growth of prey. In conclusion, we find that

the biological interactions of different populations produce driving and damping forces in analogy to

those observed in physical systems. Working with physical analogies in this context offers a way of

understanding the dynamics of the new state variable ϕ.

However, the validity of the analytical model transformation is limited by the first-order approxima-

tion as mentioned above. In particular, the deviation between the calculated and measured period of

the oscillations increases for lower values of k, i.e. stronger excitation of the system. In the present

case this yields period values of 11.5 vs. 14.8 for k = 0.15 and 11.1 vs. 17.1 for k = 0.09. The

period was calculated according to (4.9) and measured using fast Fourier transform, respectively.

Algorithmic learning of reduced models

Without the shortcomings of the analytical method, the MAGER scheme independently found similar

reduced model formulations of the predator-prey system. The best models found, i.e. the least com-

plex sets of equations able to reproduce the limit cycle and transient behavior of (4.1) for k = 0.15

and k = 0.09, are equal in structure and can be written as

dϕ1

dt
= ϕ2,

dϕ2

dt
=
−c1ϕ1 + c2ϕ2

c3 − ϕ1 − c4ϕ2
(4.10)

with parameter values ci listed in Table A.3.

While this model is very well able to reproduce the frequency of the respective oscillations and also

the major characteristics of the transients, the irregularity of the oscillations for k = 0.09 could not

be captured in detail (Figure 4.4). Nevertheless, given the overall accuracy of data reproduction for

(4.10), we propose an interpretation which is based on the results of the analytical reduction procedure.

It is evident that model (4.10) describes a simple nonlinear oscillator analogous to (4.8). If we set

c2 = 0 in (4.10), the ratio c1/(c3 − ϕ1 − c4ϕ2) in this model is equivalent to ω2 in (4.8). The ratio of

predator growth inhibition and the growth potential of prey is no longer a constant term but depends
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Figure 4.4: Time series produced by the best reduced model (Red.) found for the first principal

components (PC #1) of the 2D predator-prey model data with (a) k = 0.15 and (b) k = 0.09. The

RMSE values of the reduced model are 0.32 for (a) and 0.51 for (b).

on ϕ1 and ϕ2. More generally, the damping effect exerted by the nonlinear dependency of dϕ2/dt on

ϕ1 and ϕ2 plays a central role in balancing the driving force and facilitates the limit cycle dynamics.

Thus, the algorithmic reduction is able to reveal a more complex picture of the acting forces compared

to the analytical derivation.

4.4.2 NPZ model

Dimensionality reduction and model learning

In case of the chemostat model (4.2) the best reduced two-dimensional system found with the MAGER

scheme reads
dϕ1

dt
= −ϕ2

I

(c1 + c2ϕ2) . (4.11)

dϕ2

dt
=

II

ϕ1/ϕ2 +
III

c3ϕ2 +
IV
c4 (4.12)

See Table A.3 for parameter values of (4.11) and (4.12). Apart from small deviations between the

transients as well as the amplitudes of the oscillations, the reduced model (4.11)-(4.12) is very well

able to reproduce the original model dynamics and in particular the cycle frequency (Figure 4.5).

Following the discussion in section 4.4.1 we write the effective variables of the NPZ model as

linear combinations of the original variables. Without much loss of accuracy we further ignore terms

with small coefficients and change the sign of ϕ2 to simplify the interpretation which results in

ϕ1 ≈ a3Z̃ − a2P̃ , (4.13)

ϕ2 ≈ b2P̃ − b1Ñ (4.14)
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Figure 4.5: Reconstruction of the chemostat time series using model (4.11)-(4.12) in comparison with

the normalized simulation data produced by the original NPZ model. The RMSE value of the reduced

model is 0.53.

with
a3 = 0.85, a2 = 0.46

b2 = 0.66, b1 = 0.74.

We again interpret ϕ1 and ϕ2 in (4.13) and (4.14) as interaction variables, namely feeding limitations

acting as growth inhibitors for predator Z and consumer P in the two oscillatory subsystems, re-

spectively. The formal representation of the dynamics accordingly changes from density-based direct

predator-prey and consumer-resource interactions to functions including indirect interactions by the

incorporation of structural aspects of the food chain.

Combined interaction- and density-related interpretation

The right hand sides of equations (4.11) and (4.12) directly describe indirect interactions of trophic

subsystems. As the learning process (section 4.2.2) was constrained to produce positive effective
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variables ϕ1 and ϕ2 only, the change of sign (section 4.4.2) results in negative ϕ2. Thus, term I in

(4.11) is a threshold dependent gain or loss term for zooplankton grazing. As long as c1 > |c2ϕ2|,
a lowering of the phytoplankton density increases the feeding limitation of zooplankton. When ϕ2

is too low, however, the reduced supply of food is not sufficient to maintain the zooplankton popu-

lation and the subsequent death of individuals causes the feeding limitation of the second subsystem

to drop. Term II in (4.11) is a loss term attributed to the mass distribution between the two trophic

subsystems. A strong feeding limitation in the second subsystem, i.e. high values of ϕ1, indicates

a biomass transfer from phyto- to zooplankton and an accompanied reduced competition for nutri-

ents on the phytoplankton level. In combination with a high resource availability, i.e. low ϕ2, this

leads to good growth conditions for phytoplankton. The negative term III then denotes an excitation

term induced by nutrient supply. An increasing supply of nutrients in the chemostat system causes

favorable growth conditions of phytoplankton and lower values of the feeding limitation but at the

same time induces strong density fluctuations eventually leading to extinction, an effect which is also

known from the paradox of enrichment. Term IV finally antagonizes these loss terms as it describes

a feeding-induced constant biomass flow from nutrients to phytoplankton which increases the growth

limitation of phytoplankton.

The mechanistic interpretation of the terms substantiates our notion of interaction variables. Direct

relationships between the interaction variables in terms I and II can be translated to indirect interac-

tions of the density-based original formulations.

In addition to the biological interpretation, the structure of (4.11) and (4.12) again allows for a phys-

ical interpretation via a comparison with (4.10) and (4.8). If we understand term I as a nonlinear

extension of the relation between dϕ1/dt and ϕ2 in (4.10) we find that the negative term II cor-

responds to the repelling term −ω2ϕ in (4.8) and the dependency on ϕ2 is similar to the nonlinear

damping effect discussed in section 4.4.1. In the same manner, term III corresponds to the physical

damping/excitation term −ρ2dϕ/dt. We can identify another indication for a similarity between this

model and a simple linear oscillator by approximately calculating the period of the oscillations (sec-

tion 4.4.1). In the present case this yields a period of 4.4 which is close to 5.3, the value obtained

using fast Fourier transform. It is again obvious, however, that the simple first-order approximation

only partially explains the more complex dynamic interactions of the biological system.

4.4.3 Ecological Interaction Models

The reduced models produced by MAGER may be seen as a new model type for simulating species

assemblages in biology. For simplicity, the term "species" is used substitutionally for the constituents

of food webs, i.e. functional groups as well as nutrients and other resources, in the following discus-

sion. The new approach of describing species dynamics can best be understood by comparison with

the traditional approaches of density- and trait-based models (Table 4.1). Density models, e.g. NPZ
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or consumer-resource systems, formalize the direct (physical) effects of interactions on the masses or

densities of the interacting species/populations. Indirect effects are not described explicitely in these

models and emerge from the specific food web structure. Behavioral aspects in the form of species

traits, e.g. prey search rates and handling times of predators, are then partially encoded in the model

parameters (Real, 1977). The criticism on the treatment of these species traits as constants in the

model equations led to model variants where traits variables, such as the diet choice of generalist

predators or food qualities, were introduced as dynamic quantities (see e.g. Abrams, 1995; Abrams

et al., 1996; Relyea and Yurewicz, 2002; Yamauchi and Yamamura, 2005). In addition to the formu-

lations used in density models, the functional relationships of the state variables in these trait models

also account for behavioral adaptations caused by direct species interactions.

The state variables of the reduced models derived with MAGER are combinations of the original

densities. Because of their interpretation as feeding limitations, i.e. quantities describing predator-

prey and consumer-resource interactions, we call this new model type Ecological Interactions Models

(EIM) in the following. While density and trait models only incorporate direct interactions, the func-

tional relationships between the interaction variables of EIMs explicitly capture indirect effects as well

(see e.g. terms I and II in (4.11) and (4.12)). The state variables of the EIMs found in this study are

directly connected to the density-based formulations. However, the observed dynamics of measured

data and model simulations may also be caused by a combination of density- and trait-related effects

(Křivan and Schmitz, 2004). As the construction of EIM is only based on time series data, we propose

that the functionals of the EIM equations may also incorporate the impacts of changing traits. In order

to show that it is possible to incorporate trait-density interactions in EIMs, the MAGER approach

should be applied to datasets consisting of both, trait and density variables. It should finally be noted

that the EIM parameters are functions of the original model variables and parameters which compli-

cates a process-based interpretation. For small reduced systems, however, analogies to known process

descriptions suggest a specific meaning of the parameters (see for example the oscillator discussion

in section 4.4.1).

4.4.4 Generality of the reduced models

It may be argued that the reduction potential of the MAGER approach is diminished by its adaptation

to simulated data. An application of the method to different datasets obtained by parameter variation

of the same model in fact produces different reduced models. A collection of simplified models is

then needed to reproduce all dynamic regimes of a complex system which may be seen as a drawback

of the approach.

However, complex models often serve too many purposes simultaneously (e.g. Lee, 1973). As a

result, the complete set of dynamic situations which can be produced with these models, such as limit

cycles or chaos, must not necessarily be observable in measured data. Thus, the usefulness of the



56 4. Oscillation of structural properties in food web models

Table 4.1: Comparison of density-, trait-based and Ecological Interaction Models.

Density models Trait models EIM

State variables Mass/density of

individual species

Species densities,

traits explicitely given

Species interactions

(e.g. feeding

limitation),

combinations of

density variables

Parameters Species- and

trait-related factors.

E.g. consumption and

search rates, handling

times

See density models Functions of density

model parameters and

variables.

Interpretation by

analogies

Functional

relationships

Direct predator-prey

or consumer-resource

interactions

Direct interactions

and trait adaptations

Direct and indirect

species interactions

reproduction of a model’s complete bifurcation behavior is questionable. An example is the ongoing

discussion of whether or not the paradox of enrichment resulting from studies of simple models is

present in experimental data (e.g. Persson et al., 2001; Roy and Chattopadhyay, 2007).

Furthermore, even if the reduced models are typically not able to reproduce the complete spectrum

of the original system’s dynamic responses, they can nevertheless be fairly general in reproducing

different time series within a specific dynamic regime and thus represent prototypes for a broader class

of models showing similar dynamics. In order to assess the validity and generalism of the reduced

models, we analyze the reproduction capabilities of model (4.10) for different parameterizations of

(4.1) with time series showing limit cycle dynamics. This regime contains oscillatory dynamics of

the trajectories as well as the existence of an unstable positive fixed-point which is determined by

the values of the normalized inverse capacity k and the normalized inverse half saturation s. The

corresponding regime boundaries are given by

max(p−
√

p2 + q, 0) < k < s · r, (4.15)

with

p = r(s− 2 ·mp · r), q = r2(4 ·mp(1− s)− s2) and r =
1− s

1 + s
.

See (Rosenzweig and McArthur, 1963; Freedman, 1980; Kot, 2001) for details of the stability analysis.

While mp = 1 was unchanged, we sampled random parameter sets for s between 0 and 1 and k
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between the respective critical values given in (4.15). PCA was then used to produce the reduced

datasets from the corresponding time series of (4.1).

Subsequent individual fits of model (4.10) to these datasets using the hybrid parameter optimization

scheme of section 4.3.1 show that the single reduced model is able to reproduce most of the new time

series to a high degree (Figure 4.6). In most cases, the RMSE values are similar to those obtained

for the parameterizations used for model reduction (Table A.1) or lower, i.e. RMSE < 0.5. A value

of RMSE ≈ 1 thereby corresponds to the approximation of the mean value of the normalized time

series, whereas model fits with RMSE ≈ 0.7 already reproduce the frequency of the oscillations to a

large degree. RMSE values below 0.5 finally indicate close approximations of the transient as well as

the oscillatory regime. It should be noted that the larger errors occur for time series approaching the

original system’s fixed point at the origin. The reduced model, which has only one fixed point, is not

able to reproduce the corresponding asymmetric oscillations.

In conclusion, the analysis confirms that the simple reduced formulations found with MAGER are

fairly general models for distinct dynamic regimes.

4.5 Conclusion

In this paper we used MR of simple food web models to identify structural explanations for the oc-

currence of predator-prey and consumer-resource cycles. It should be noted that "clean" oscillations

of population densities are rarely observed in measured time series, eventually due to irregularities in

the external influences. For some of the more prominent exceptions of regular population cycles in

nature see (Turchin, 2003). In controlled systems, the oscillations occur under rather artificial condi-

tions (e.g. Fussmann et al., 2000). However, as the primary interest of our study lay in the search for

alternative explanations of model dynamics, the problem of data and measurement uncertainties was

ignored in this paper.

Despite the simplicity of the underlying PZ or NPZ formulations, the new scheme was able to find

models with an even simpler structure concerning the number of state variables and parameters. The

dimensionality of a predator-prey system (section 4.2.1) was reduced from 2(6), where the six in

brackets denotes the number of parameters and two is the number of state variables, to 1(4). How-

ever, as a normalized model variant was used with a dimensionality of 2(3) the reduction in this case

must rather be seen as a model transformation. The NPZ model’s complexity (section 4.2.2) could be

reduced from 3(11) to 2(4). Even if the optimized initial values of the state variables are taken into

account as further model parameters, this shows the remarkable reduction potential of MAGER even

for simple models. The reduction of the models was made possible by the emergence of interaction-

related state variables describing the dynamics of the biological systems more efficiently. In all cases

the new variables describe the combined consumer-resource interactions of the oscillatory subsystems
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Figure 4.6: RMSE values of (4.10) for the approximation of reduced datasets derived from randomly

sampled parameterizations of model (4.1) which all produce limit cycles (+). The parameterizations

used for model reduction in section 4.3.2 are marked with circles. Solid lines indicate the bound-

aries of the system’s different stability regions. (I) The fixed point is unstable, trajectories leave its

vicinity exponentially, (II) unstable fixed point with oscillatory trajectories reaching a stable limit cy-

cle, (III) stable fixed point and oscillatory trajectories, (IV) stable fixed point which is approached

exponentially, (V) no equilibrium exists where predator and prey populations are able to coexist.

in form of feeding limitations of the respective consumer populations. They are explicitly related to

the original variables and represented structural food web properties which are determined by the

respective trophic interdependencies. The definition of the effective variables further combines the

effects of direct and indirect interactions. Terms describing direct interactions between the structural

property variables of the reduced chemostat model could be interpreted as indirect interactions of the

original density-based variables. In addition, for two and three trophic levels, the comparison with a

simple physical oscillator led to the notion of biological driving forces as negative functions of these

feeding limitations.

As the model learning was based on pure density variables, there is no formal connection between

the effective interaction variables generated by the MAGER scheme and dynamically regulated traits

used in population models such as edibility or defense (e.g. Abrams, 1995; Wirtz and Eckhardt, 1996;

Yamauchi and Yamamura, 2005). However, the incorporation of such "classical traits" as unobserved

quantities in the model learning process is possible and a subject of future work.
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It may further be objected in this context that the linear relationships between interaction variables

and original state variables resulting from linear PCA restrict the general applicability of the MAGER

scheme. For example, traditional traits are often defined as nonlinear functions of density variables

which could not be extracted by PCA (e.g. Bruggeman and Kooijman, 2007). However, the use of

PCA is not mandatory for the proposed approach. The reduction method has in fact been extended to

use nonlinear schemes (Bernhardt, 2007) which may account for apparent limitations of the present

approach. Most importantly, we have also shown that even linear combinations of biomasses may re-

sult in effective variables which carry a higher information content concerning biological interactions

than pure densities.

It was finally demonstrated that the MAGER models represent general formulations of the processes

governing a broader dynamic regime even though the learning scheme was trained on single time se-

ries. This indicates the potential of the method to search for general principles underlying population

dynamics. We propose that the use of structural interaction variables linking density- and trait-related

effects can effectively reduce more complicated biological models and may therefore represent a ra-

tionale of a new generation of ecosystem models. Applications of the method to data obtained from

either measurements or more complex models will be subject to further work.
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Chapter 5
Explicit formulation of indirect interactions

in a reduced consumer-resource competition model. Part I:
Reducing model complexity

Abstract

Theoretical biology has always been concerned with the complexity of biological systems and the

appropriate level of detail of their mathematical descriptions. The incorporation of multi-layered

interactions and feedbacks between members of a food web, for example, quickly leads to a com-

plicated superposition of direct and indirect effects governing model dynamics. However, it has

long been proposed that the main governing processes of a system can be deduced from the most

simple model able to reproduce its dynamics.

In this paper, we introduce the first steps to extract, in a condensed form, the constitutive inter-

action pathways generating the dynamics of a complex array of species competing for essential

resources. We use the recently developed Mapping-based Genetic Reduction method (MAGER)

to significantly reduce a complex consumer-resource model while preserving the main aspects of

its dynamics. A comparison with two other reduction methods, which are based on the omission

and aggregation of state variables, respectively, demonstrates the high reduction efficiency of the

MAGER approach and the reproduction quality of the simplified models. The biological inter-

pretation of the reduced models given in a companion paper leads to the notion of Ecological

Interaction Models which constitute a new class of simply structured models for multi-level and

multi-species consumer-resource interactions.

5.1 Introduction

The question of appropriate complexity is essential for model building in biology and environmen-

tal sciences. It arises particularly in the research on natural systems as these are characterized by

a highly complex interaction network of biological species and environmental forcing. A principal

guideline for model building, known as the parsimony principle or Occam’s razor, which addresses

the problem of complexity may be traced back to sources in the Middle Ages and to ideas of Aristotle

(Rodríguez-Fernández, 1999). It states that a simple theory should be used in preference to a more

complex one if it is equally well suited to reproduce a given dataset or explain a certain problem.

In the present context, we define model complexity as the number of state variables and parameters.
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Given a fixed amount of data, lower model complexity leads to lower parameter uncertainty. In ad-

dition, it is assumed that the simplest description of a system incorporates only the most important

processes and may, in some cases, even point to general underlying principles. However, these prin-

ciples are often not known or may even not exist so that model development for biological systems

typically is a bottom-up approach which starts with simple conceptual models incorporating the pro-

cesses which are assumed to be most relevant. Further constituents, such as additional functional

groups, interactions paths and functional dependencies, are then added in a phenomenological way to

increase the model’s realism and to provide better data approximations. The resulting models often

are very complex with tens or hundreds of state variables and parameters and are, thus, difficult to

use and understand. Examples are the European Regional Seas Ecosystem Model (ERSEM, Baretta

et al., 1995; Köhler and Wirtz, 2002) and the Gypsy Moth Life System Model (GMLSM, Sharov and

Colbert, 1994).

Starting with a complex model, the search for a minimal description able to reproduce the system dy-

namics now translates to a model reduction problem. Different reduction approaches exist which may

be classified in a priori and a posteriori techniques. In a priori model reduction, the simplification

takes place in the course of model building. In the context of population ecology, this encompasses

e.g. the aggregation of individuals into populations, the distinction of functional groups and the se-

lection of relevant interaction pathways (e.g. Fulton et al., 2003). However, the decision on which

processes to simplify remains arbitrary and modeling must be performed on a relatively high level of

abstraction. Thus, good knowledge of the system and a principal idea of the most relevant processes

are needed beforehand. However, as synergies, adaptations and feedbacks in bio-systems obscure the

optimal level of model complexity, this knowledge is often lacking. It has, for example, been shown

experimentally for a structured predator-prey system, that three predator species with differing hunt-

ing strategies and habitat uses may be aggregated into a single functional unit due to their average

effect on a shared prey (Sokol-Hessner and Schmitz, 2002). In general, it is easier to increase model

complexity than to identify the appropriate level of complexity in advance.

This directly leads to the top-down a posteriori reduction methods which are used to simplify complex

models while approximately preserving their dynamic behavior. The different approaches in this class

will further be categorized in methods based on "educated" simplification, omission of state variables

and aggregation.

Educated simplification is similar to a priori reduction as far as it is based on the reformulation

of existing model processes (see e.g. Van Nes and Scheffer, 2005, for an overview). Brooks et al.

(2001), for example, used sensitivity and structure analysis of a wheat yield prediction model to iden-

tify the most sensitive parameters and variables. The model was then reduced using, for example,

mean values instead of dynamic variables as well as simplified functional relationships and tradeoff

terms. Because of the similarity to a priori reduction, this method also inherits the former method’s
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drawbacks. The simplification can only be performed with a thorough knowledge of the system’s

processes. In addition, it also depends on the knowledge of the complete model formulation which is

often not documented in detail.

Another a posteriori reduction method is the omission or replacement of state variables. For example,

Pahl-Wostl (1997) derived simplified versions of a pelagic food web model by omitting a number

of species on each trophic level. The main advantage of this method is that it can be automated.

Cox et al. (2006) randomly replaced state variables of a model with their respective mean values. In

a subsequent model selection step the most appropriate model was then chosen on the basis of the

tradeoff in fitting capabilities and model complexity. For the approximate simulation of steady states,

the omission of state variables by replacement with their respective equilibrium constants was already

used earlier (McArthur, 1972). However, the use of simple constants instead of variables is typically

not possible for dynamic systems which are not in steady state.

The third approach in this context is reduction by aggregation of state variables according to either

time scale separation or functional relationships. Time scale separation is also known as singular per-

turbation (Nayfeh, 1973; May, 1977). This method relies on the existence of different time scales and

a stable manifold, e.g. a fixed point or a limit cycle, which is quickly reached by a subset of the vari-

ables. Aggregated macro variables, which are constants of motion of these so-called fast variables,

are then introduced and the system is rewritten in terms of the aggregated states. The method has been

used in spatially structured population models (Auger and Poggiale, 1996b, 1998) and simple food

chain models (Kooi et al., 1998; Rinaldi and Scheffer, 2000). Macro variables used in (Auger and

Poggiale, 1996b), for example, are the total population densities of different spatial patches which are

made up of sets of subpopulations.

Aggregation according to functional relationships is the basis of the Effective Variable Approximation

method (EVA) (Wirtz and Eckhardt, 1996). This approach introduces mean functional traits as aggre-

gated variables with corresponding differential equations derived from the original model formulation.

The reduction potential of EVA is based on the quantification of tradeoffs in parameter space which

are used to reduce the number of the new functional traits.

The major drawback of the aggregation approaches discussed so far is their dependency on specific

properties of the complex models. In the case of singular perturbation, this relates to the existence

of separate temporal scales of the model dynamics which may not be present. Similarly, the appli-

cability of the EVA approach is limited if the tradeoffs in parameter space which uniquely relate the

functional traits to each other are missing. Furthermore, the ecological models reduced by aggregation

may, in principle, deviate dynamically from the originals (Schaffer, 1981). In the singular perturbation

based approach, for example, a limit cycle of the fast variables is approximated with the respective

temporal mean value. Additionally, all reduction methods discussed have the common disadvantage

of a high analytical effort and, apart from the random replacement of model parts with constant val-
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ues, an automation of the methods is impossible as the details of reduction are specific for each model.

In this paper, we demonstrate the application of the Mapping-based Genetic Reduction method

(MAGER, Bernhardt, 2007), a recently developed model reduction technique which eliminates some

of the shortcomings of the aforementioned approaches. It proceeds automatically, directly aims at re-

producing the original dynamics, has a high reduction performance and produces process-based mod-

els which may be interpretable in system-specific terms. MAGER is a black-box procedure which

can be applied to ordinary differential equation (ODE) models. The method’s ability to reproduce

irregular data results from its data-adaptive nature. It only depends on model-generated or measured

data and no knowledge or analysis of the original equations is needed. The reduction performance and

general applicability of the method derives from its independence from the former model structure.

The reduced systems are not based on traditional formulations and can typically not be derived ana-

lytically (Bernhardt and Wirtz, 2007). The new structures may thus give new insights into alternative

process formulations.

We use the MAGER scheme to reduce a prominent consumer-resource (CR) model with a number of

phytoplankton species competing for essential resources. CR models play a central role in environ-

mental modeling as important building blocks of complex ecosystem models. In the context of the

parsimony principle, CR models are good candidates for testing data-driven model reduction as their

dynamics is the result of a complex mixture of direct and indirect interactions between the species.

This first part of the paper introduces the technical aspects and demonstrates the performance of the

reduction procedure. The process-oriented biological interpretation of the reduced models and the

associated identification of the system’s key processes will be given in the second part of the paper.

5.2 Model system and data

Starting point of the study is a well-established consumer-resource competition model (Léon and

Tumpson, 1975; Tilman, 1982; Huisman and Weissing, 2001b) with nP phytoplankton species and nN

nutrients. Let Pi and Nj be the abundance of species i and the availability of resource j, respectively.

Net growth of species i is given by

dPi

dt
= Pi · (µi − ωi) i = 1, . . . , nP (5.1)

with mortality ωi and gross production µi which is determined by the most limiting resource according

to

µi = min
j

(
giNj

kji + Nj

)
j = 1, . . . , nN (5.2)

with kji denoting the half-saturation constant for resource j of species i and gi the maximal growth

rate. The time evolution of the abiotic resource j is controlled by a supply term and resource con-
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sumption,

dNj

dt
= D · (Sj −Nj)−

∑

i

cij · µi · Pi j = 1, . . . , nN (5.3)

where D describes the nutrient turnover rate, Sj is the supply concentration and cij quantifies the

content of nutrient j in species i.

With the parameterizations used in (Huisman and Weissing, 2001b) for nP = 5 and nN = 3 the model

is able to generate oscillatory dynamics of the coexisting species with transient regimes of different

length. Depending on the initial conditions, two different sets of dominant species emerge charac-

terizing two distinct oscillatory. We generate two eight-dimensional time series (n = nP + nN ),

each corresponding to one of the oscillatory states (Figure 5.1) using a common set of parame-

ters but different initial values (Appendix B.1). The matrix Xa, with time series of the n vari-

ables xj(th) (j = 1, . . . , n; x1(th) = P1(th), . . . , x8(th) = N3(th)) in columns and m time steps

(th = 0, 0.1, . . . , 200), denotes the resulting dataset showing a dominance of P1, P4 and P5 and Xb

is characterized by the dominance of P1, P2 and P3. The data matrices serve as individual inputs for

the model reduction procedure. The time course of the correlation dimension DC (8.13) shows that

the dimensionality of the time series changes in time and two different regimes can be found (Figure

5.1(b)). For Xa, the dimensionality of the time series drops from a value near 3 for the mixture of

transient and limit cycle regime to DC ≈ 2 for the limit cycle alone starting at t ≈ 80. The same sepa-

ration of transient and limit cycle regime according to dimensionality is found for Xb (not shown). In

order to study how the complexity of the dynamics affects the model reduction results, the subsequent

analysis is performed for the complete as well as the transient-free datasets. The complete datasets

will be denoted by the corresponding lower case letters (Xa,Xb) whereas upper case letters will be

used for the transient-free datasets (XA,XB). Figure 5.2 shows the individual steps of the reduction

scheme.

5.3 Data preparation

We employ Principal Component Analysis (PCA) for dimensionality reduction of the competition

model. As the values of the different state variables strongly vary in scale, we normalize the transient-

free datasets to zero mean and unit variance before PCA is applied (case S in Figure 5.2). Without

normalization, the dominant species have an exceeding impact on the PCA results in comparison with

the inferior species and resources. In case of the complete datasets, the variables drop to values close

to zero after a short transient regime (Figure 5.1), so that normalization of the variables artificially

enhances the importance of the transient compared to the limit cycle dynamics (case s in Figure 5.2).

Therefore, the variables are only centered by subtracting the mean values in this case.
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Figure 5.1: Datasets (a) Xa and (b) Xb showing the CR model’s two different oscillatory regimes.

The dominant species in (a) are P1, P4 and P5, whereas P1, P2 and P3 dominate in (b). The time

course of the correlation dimension (Appendix B.3) for Xa is given in (c). The transient regime is

marked with "t" whereas "p" indicates the periodic oscillatory regime.
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5.4 Linear dimensionality reduction

A PCA extracts principal components (PC) which are used to reconstruct a part of the variability

inherent to the data (Pearson, 1901; Golub and Van Loan, 1989). The number of retained PCs de-

termines the quality of approximation. We use a critical value of the fraction of explained variance

(FEVc ≈ 90%) that is accounted for by a subset of all principal components to determine this number

(Appendix B.3).

The separation of transient and limit cycle regimes according to the DC values (section 5.2) is sup-

ported by the PCA results: the FEVc criterion is met by the first three PCs in cases a and b. A further

linear reduction to two dimensions is not possible as it causes overlaps of the trajectories in phase

space. However, if only the long-term dynamics of the limit cycles is considered, i.e. by dropping the

transient regimes, the first two PCs are sufficient to comply with FEVc in both cases. In conclusion,

the limit cycle dynamics of the system is essentially two-dimensional and the analysis is performed

for the PCA reduced data matrices of the complete (Φs ∈ Rm×3 with s = a, b) as well as the transient-

free (ΦS ∈ Rm×2 with S = A,B) datasets. The individual PCs, with time series given in the columns

of the reduced datasets, are denoted by the respective lowercase letters, i.e. ϕs
i with i = 1, 2, 3 as well

as ϕS
j with j = 1, 2. Following Bernhardt (2007), the principal components will be called "effective

variables".

5.5 Nonlinear dimensionality reduction

The higher the dimensionality of the dataset, the more difficult is the learning of an appropriate model

structure. In fact, no simple models incorporating the three effective state variables extracted with

PCA for the two datasets could be found with the MAGER scheme. However, if the PCA reduction

results are plotted against the corresponding two-dimensional projections of the time series (Figure

5.3) we can see that the two-dimensional data of PCs #1 and #2 of Φa and PCs #2 and #3 of Φb can

be approximated with a one-dimensional curve. Thus, the dimensionality of the PCA transformed

datasets can further be reduced by one with a nonlinear extension of PCA. We apply a nonlinear

Principal Component Analysis (NLPCA) scheme based on an auto-associative neural network (Hsieh,

2001; Kramer, 1991) which facilitates the reconstruction of the dataset by inverse mapping from the

NLPCs. The combination of the reconstructed linear and nonlinear PCs is then compared with the

original time series data. See Appendix B.3 for the definition of FEV in the nonlinear case.

Thus, the first two PCs of Φa are replaced by the resulting nonlinear principal component, ϕa
nl. The

combination of this nonlinear effective variable and the third linear PC still complies with the FEVc

criterion. For Φb, the NLPC is constructed from the second and third PC.
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Figure 5.3: (a)-(c) The three different projections of the lasso-shaped reduced time series data Φa

onto pairs of the principal components ϕi. (d)-(f) The same depictions for Φb. The transient (denoted

by "t" in Figure 5.1) is drawn with dashed lines whereas the oscillatory regime ("p" in Figure 5.1) is

indicated by solid lines. Figures (a) and (f) also show the learned nonlinear principal components as

bold gray lines (see text for details).

5.6 Model learning and reconstruction

In the following, we give a short summary of the genetic model learning steps of MAGER while fur-

ther details can be found in (Bernhardt, 2007). After the identification of effective variables (sections

5.4 and 5.5), a modified Genetic Programming (GP) algorithm in combination with a hybrid param-

eter optimization scheme consisting of a Genetic Algorithm (GA) and a gradient-based optimizer is

used to generate new model structures. The right-hand sides of the new differential equations are

thereby encoded as sets of tree structures in the GP module. These trees are made up of interlinked

nodes representing the effective state variables, numerical constants and arithmetical operators of the

new equations. A random initial population of the model trees is recombined and transformed by

evolutionary-inspired operators in the course of the algorithm. The GA module is used to optimize

the parameters of the new models and the initial values of the effective state variables. The selection

and transformation of the best members is then based on their fitness, i.e. their ability to reproduce

the reduced time series. Here, we use a combined measure which is sensitive to the course of the
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transient as well as the amplitude of the oscillations of the limit cycle regime (Appendix B.3). The

root-mean-square error (RMSE) is used for the transient-free datasets ΦA and ΦB . As the scale in-

formation of the original state variables is lost by normalization and (non-)linear mapping, the scale

of the effective variables is irrelevant for the interpretation of the new models and the comparison

between the variables of the reduced models and the effective states is based on normalized values ϕ̃i

with zero mean and unit standard deviation. As the model learning step is based on random initializa-

tions, the GP module is run ten times and the normalized time series data of the resulting best models,

i.e. the smallest models able to reproduce the dynamics, are finally mapped back into the original

eight-dimensional state space in order to compare between reduced and original model formulations.

5.7 Model results and discussion

5.7.1 Results for the transient-free time series

The simplest models of ΦA and ΦB produced by the reduction procedure follow

dϕS
1

dt
= p1 · ϕS

2 + p2,
dϕS

2

dt
= −p3 · ϕS

1 + p4, (5.4)

with S = A,B (Table B.1). Equation (5.4) can be rewritten as ϕ̈S
1 = −p1p3ϕ

S
1 + p1p4 which is

the equation of a linear oscillator with constant external force p1p4. Detailed characteristics of the

time series, such as asymmetries of the oscillations, cannot be captured by (5.4) as it produces only

harmonic oscillations. Instead, the slightly more complicated models follow

dϕB
1

dt
= ϕB

2 − p1,
dϕB

2

dt
= −ϕB

1 − p2

ϕB
2

(5.5)

for ΦB and
dϕA

1

dt
= − p1

ϕA
2

− p2,
dϕA

2

dt
= −ϕA

1 · (ϕA
1 − p3) (5.6)

for ΦA (Figure 5.4). These models are capable of reproducing the original datasets to a very high

degree (FEV = 0.98 for ΦA and ΦB). System (5.5) is a simple nonlinear extension of model (5.4)

with a modified repelling term for dϕA
2 /dt. Similar reduced models have already been found and

discussed for simple (i.e. mono-species) food web models (Bernhardt and Wirtz, 2007).

The analogy of (5.5) with a linear oscillator supports the notion of biological forces in population

models (Ginzburg, 1986). This analogy also leads to a fundamental similarity between biological

and physical oscillatory systems (Bernhardt and Wirtz, 2007). The linear oscillator, as a general

description of an undamped oscillating system, is the simplest model for this kind of dynamics. Thus,

due to the structural flexibility of the MAGER scheme in combination with its data-adaptivity, the

method is indeed able to find the minimal model in this case. MAGER is further able to reproduce the
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Figure 5.4: Time series and state space plots produced by the best reduced models (5.5) and (5.6) for

ΦA and ΦB in comparison with the simple linear oscillator (5.4).

irregularities of the oscillations. However, this requires additional complexity of the resulting models

which includes the incorporation of nonlinear terms in equations (5.5) and (5.6). Further biological

interpretations of the learned models are given in the second part of this paper.

5.7.2 Results for the complete time series

The best reduced model found for the reconstruction of the transient and oscillatory regimes of Φa

requires five parameters:

dϕa
3

dt
= − p1

ϕa
nl

− ϕa
nl − p2 (5.7)

dϕa
nl

dt
= − 1

ϕa
3

· p3ϕ
a
nl(1 + p4ϕ

a
nl)− p5ϕ

a
3.



5.7. Model results and discussion 71

For Φb, the best model found has a more complex structure,

dϕb
1

dt
= p1ϕ

b
nl − p2 (5.8)

dϕb
nl

dt
=

(
p3ϕ

b
nl

p4 + ϕb
nl

− ϕb
nl − ϕb

1

)
·
(

p5ϕ
b
nl

p6 + ϕb
nl

− ϕb
1

)
.

See Table B.1 for parameter values of both models. Figure 5.5 shows the reconstructions of Xa and

Xb using (5.7) and (5.8). We can see that the reduced models are very well able to reproduce not only

the transient regime of the consumer-resource time series but also the onset and amplitude of the limit

cycle dynamics as well as the asymmetries of the oscillations. The original and approximated time

series only differ with respect to the frequencies of the oscillations. However, as the combined error

measure does not penalize deviations from the original frequency, this kind of approximation error

was expected. Additionally, the inferior species of the original model are only reproduced to a lesser

degree which can be attributed to the centering of the datasets (see section 5.3). Note that, in compari-

son with the results for X̂a, the nonlinear state reduction of X̂b was affected by a larger approximation

error (section 5.5). Nevertheless, the main course of the transient dynamics and the amplitude of the

oscillatory regime of the dominant species as well as the nutrients can again be reproduced very well.

This application of the MAGER scheme shows that the approach is also appropriate to reduce mod-

els showing more irregular dynamics than limit cycle oscillations. The increased complexity of the

dynamics thereby requires a higher number of nonlinear terms. Nevertheless, general concepts like

the notion of biological forces may still be found in these systems. Model (5.8), for example, is a

nonlinear extension of the linear oscillator. Finally, although the learning scheme is based on single

model parameterizations and is in general not able to reproduce the complete dynamic behavior of a

system, the reduced models learned from more irregular dynamics may nevertheless be fairly general

in reproducing different time series in a specific dynamic regime (Bernhardt and Wirtz, 2007). They

may thus represent prototypes for a broader class of models showing similar dynamics.

5.7.3 Performance of the reduction procedure

The efficiency of the MAGER reduction can be assessed by a comparison with two analytical MR

approaches, namely the EVA approach (Wirtz and Eckhardt, 1996) and the simple omission of state

variables (see e.g. Pahl-Wostl, 1997). The complete centered dataset X̂a serves as the data basis for

all methods.

The application of the EVA method to the consumer-resource model (5.1)-(5.3) results in a reduced

formulation incorporating functional descriptions of the tradeoffs in resource requirements and nutri-

ent quotas (Wirtz and Bernhardt, 2008). The simplified model (EVA1) has a dimensionality of 3(13),

where the 13 in brackets denotes the number of parameters and three is the number of state variables,

whereas the original model’s dimensionality is 8(44). The other reduced formulations are produced
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Figure 5.5: Reconstruction of the original datasets using (a) the learned reduced model (5.7) for Xa

and (b) model (5.8) for Xb.

by a stepwise omission of (O1) the inferior species P2 and P3, (O2) the inferior species as well as

P5 and (O3) all species except for P1. The nutrients are left unaltered. The dimensionalities of these

models are 6(28) for O1, 5(20) for O2 and 4(12) for O3. The parameters of EVA1 and O1-3 are

optimized using the hybrid GA optimization scheme and the combined error measure consisting of

RMSE and Ep (8.15).

Figure 5.6 shows the negative correlation between the number of parameters and the deviation from

the original model EC = (RMSE+Ep)/2. The comparison includes the best 20 systems found with

the MAGER approach. The best MAGER model (5.7) is of complexity 2(5). The accuracy/complexity

tradeoffs of the data-adaptive and analytical reduction approaches are indicated with gray lines in Fig-

ure 5.6. While the reduction efficiencies, i.e. the slopes of these lines which represent the error

reduction per number of added parameters, are comparable for the methods, there is a significant

displacement of the tradeoff. Models reduced with the MAGER scheme have much less degrees of

freedom compared to the simplified systems obtained with the other two reduction techniques while

being comparable or better in terms of error values. In fact, in addition to the number of free param-

eters, the state dimensionality of the GP reduced systems is also lower than that of O1-3 and EVA1.
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with the GP algorithm (n) and the original model (l) without P2 and P3 (O1, J), without P2, P3

and P4 (O2, N) and with P1 only (O3, I). Also shown is the EVA model (EVA1, ⊕). The gray bold

lines indicate the displacement of the accuracy/complexity tradeoff for MAGER in comparison with

the analytical MR approaches (see text for details).

The smallest models found with MAGER have only two or three parameters and coincide with linear

oscillators similar to (5.4) (not shown). However, it should be noted that models with EC values of

around 0.5 or worse can in general not reproduce all details of the time series, i.e. the transient and/or

limit cycle. In comparison with O1-O3, the EVA model gives a better approximation of the transient

regime which explains the corresponding low error value. However, only the relatively complex O1

model is able to concurrently reproduce the limit cycle and transient similar to the best reduced sys-

tems of the MAGER approach.

The better performance of the MAGER scheme is a consequence of its independence from the former

model structure and its adaptivity to data. The data-driven fitness assignment of the learning scheme

thereby facilitates the generation of good models with high fitting capabilities whereas the structural

reformulation leads to simpler system descriptions. We suggest that the limitations of reduction effi-

ciency for the analytical approaches arise from the lack of one or both of these properties. The method

of state variable omission is not data-adaptive and does not alter the model structures either which re-
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sults in larger models and a higher probability that the dynamics of the learned time series cannot be

reproduced. The same applies for the EVA approach as well as the other aggregation methods dis-

cussed in section 5.1. These approaches are not based on model results or depend on the existence of

specific dynamic regimes such as steady states. Furthermore, the model structure is only changed to

a small degree by aggregation or, in the case of the EVA approach, only as far as the incorporation of

tradeoff functions is concerned. In addition, the concurrent reproduction of transient and oscillatory

regimes in most cases could not be accomplished by these methods.

5.8 Conclusion

In this paper, we used the new Mapping-based Genetic Reduction method to simplify a complex

consumer-resource model. The method was applied to reconstruct the transient and limit cycle dy-

namics for two parameter sets. We demonstrated that the combination of state variable aggregation

and evolutionary learning of new model structures reduced the parameter and state dimensionality

very effectively. More specifically, the number of state variables could be reduced by 75% in com-

parison with the original model (5.1)-(5.3) whereas the number of parameters was reduced by over

90% for the complete dataset and by over 95% for the transient-free time series. A comparison of the

MAGER results with reduced models obtained with the Effective Variable Aggregation method (EVA)

as well as by omission of state variables further showed that the genetic reduction was able to produce

much smaller models while being comparable or better in terms of reduction error. If the number of

parameters is considered as the sole measure of complexity, the MAGER approach was able to reduce

the original model by over 50% more than the omission of state variables. Traditional aggregation

methods typically are not able to reproduce any detail of irregular dynamics. The associated dynamic

mismatch has been described as "dynamic emergence" (Auger and Poggiale, 1998) but it is under-

stood as a kind of reduction error in the present context. The improved reduction performance of

MAGER can thereby be attributed to the combination of data-adaptive learning and reformulation of

model structure. Finally, different from other aggregation procedures, no restrictions concerning the

complexity of the original models, such as linearity of the differential equations, apply for the new

scheme.

So far, the model systems have only been interpreted in structural or mathematical terms, i.e. by a

qualitative comparison with (non-)linear oscillators. This result, however, already is a fundamental

finding which supports the picture of biological oscillators and the notion of biological forces in these

systems (Ginzburg, 1986; Vadasz and Vadasz, 2002; Vandermeer, 2004; Bernhardt, 2007; Bernhardt

and Wirtz, 2007). Similar to physical oscillatory systems, the reduced models incorporate repelling

forces which are proportional to the deviation of the effective states from their mean. The new states

can thereby be related to indirect interactions between the species leading to the notion of Ecologi-
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cal Interaction Models, as shown in the second part of the paper. Consequently, the reduced models

indicate that the interaction intensities between coexisting species tend to be self-stabilizing in envi-

ronmental systems. In order to substantiate this proposition, the MAGER approach has to be utilized

for the reduction and transformation of more complex models as well as measured environmental

datasets in future applications.
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Chapter 6
Explicit formulation of indirect interactions

in a reduced consumer-resource competition model. Part II:
Biological implications

Abstract

The identification of the principles underlying the competitive coexistence of species is one of the

major challenges in theoretical biology. A number of model studies analyzing the influences of

different aspects of species networks on coexistence, such as the role of direct and indirect inter-

actions, have been performed in this context. The analyses in these studies are mainly based on

simple formulations, for example Lotka-Volterra competition models, and the resulting proposed

prerequisites for coexistence differ depending on the specific model used.

In the present paper, the question of general biological principles is investigated using a data-

adaptive point of view. We use simulation data of a complex consumer-resource (CR) model and

apply the new Mapping-based Genetic Reduction method (MAGER) to derive simplified system

descriptions. Following the parsimony principle, the simplest possible model able to explain the

data is proposed to be the best abstraction of coexistence in CR networks. The method is based

on time-series data and does not use any knowledge about the system-specific interactions of the

biological state variables. The resulting Ecological Interaction Models (EIM) incorporate the

indirect density-mediated effects of the dominant species and the interactions between the new ef-

fective consumer variables can be traced back to tradeoffs in the community level descriptions of

resource requirements and nutrient quotas. Thus, this work presents a new simple representation

of competitive coexistence in the CR network. This meta level description explicitely formulates

the original model dynamics in terms of oscillations between different states of community re-

source usage characteristics. Furthermore, the analysis of the reduced models shows that the

transient regime of the time series can be explained by competition-free logistic growth.

6.1 Introduction

The effect of competition among species on coexistence in biological networks has repeatedly been in-

vestigated since the formulation of the famous competitive exclusion principle (Volterra, 1928; Gause,

1934). In particular, the violation of this principle and the mechanisms governing the coexistence of

species assemblages based on a small number of essential resources have been addressed in many
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studies (e.g. Hutchinson, 1961). Apart from spatially explicit or behavior-based approaches where

species competition is weakened by the existence of ecological niches, recent model studies also em-

phasize the role of asynchronous oscillatory dynamics for species coexistence (Abrams, 2006; Van-

dermeer, 2006). While competition for living resources is usually described by competition models of

the Lotka-Volterra type (Volterra, 1928; Lotka, 1932; Chesson, 2000; Vandermeer and Pascual, 2006),

competition for abiotic resources is formulated using consumer-resource (CR) models (Tilman, 1982;

Huisman and Weissing, 2001a; Abrams, 2006). Both groups of models incorporate implicit formula-

tions of indirect species interactions by means of shared resources or prey pools. Depending on the

specific model used, different prerequisites for oscillatory coexistence have been pointed out, such as

the nonlinearity of the functional response of consumers to resource density (Abrams, 2006), trade-

offs in resource requirements and the accompanied relation between requirements and consumption

(Huisman and Weissing, 2001a) as well as the degree of diet specialization (Vandermeer and Pas-

cual, 2006). The model study of Vandermeer and Pascual (2006) on specialization revealed a crucial

dependency of coexistence on a dominance of indirect (mutualism) over direct trophic interactions

(feeding).

The importance of trait- (TMII) and density-mediated indirect interactions (DMII) for coexistence in

food webs has also been demonstrated in many studies. Quite a number of different indirect interac-

tions with both positive and negative effects on species abundances and traits have been documented

(see e.g. Wootton, 1994; Strauss, 1991, for an overview). Among others, these interactions include

trophic cascades, apparent competition and indirect mutualism. By measuring the net or effective

interaction of species, Lawlor (1979) as well as Roberts and Stone (2004) showed that the multitude

of DMIIs may in fact reverse the negative direct competitive effects in LV models with varying com-

petition parameters. In a combined model and experimental study, van Veen et al. (2005) analyzed

the contribution of indirect effects to the stability of insect communities and found that the concur-

rence of DMIIs and TMIIs stabilized the investigated three-species system. Further experimental

demonstrations of the outstanding role of indirect effects for coexistence were accomplished e.g. for

parasite-host communities (Krasnov et al., 2005) and marine intertidal food webs (Menge, 1995).

In former model-based studies, the intensity of competition and the degree of coexistence were ex-

clusively determined by the setting of specific growth and consumption parameters. In particular,

coexistence emerged from implicit descriptions of indirect interactions. While the degree of coexis-

tence may be quantified using, for example, a common index of species diversity, no explicit variables

describing the competitive interactions have been proposed so far. The missing direct representation

of interactions makes it difficult to qualitatively assess the dependency of DMII- or TMII-based co-

existence on internal or external factors. Furthermore, without an explicit description of competitive

dynamics, the understanding of the mechanisms facilitating coexistence remains phenomenological.

In the present study, we follow a model building strategy based on functional relationships which leads



6.2. Method overview 79

to an explicit formulation of DMIIs. We analyze alternative descriptions of a classical CR model in-

corporating competition among different consumer species (Huisman and Weissing, 2001a). These

new representations, which were obtained with the Mapping-based Genetic Reduction (MAGER) pro-

cedure in the first part of this paper, approximate the original model dynamics on the basis of newly

constructed minimized model structures. The use of MAGER as a means to explicitely formulate the

CR model’s inherent indirect effects was motivated by earlier findings on interactions of predator-

prey systems using this approach (Bernhardt and Wirtz, 2007). We further suggest that the simplest

model able to reproduce the model-generated datasets provides insights into the system’s most rele-

vant processes. Thus, the application of the MAGER scheme to the CR model helps to extract the key

variables and their mutual dynamic inter-dependencies which effectively represent important indirect

interaction pathways. In addition, it helps to assess the conditions for the occurrence of competitive

coexistence. In the context of CR models, this coexistence is given in the form of sustained species

cycles.

The analysis will be related to the tradeoffs in resource requirements and the accompanied relation

between requirements and consumptions formulated in the original CR model. We investigate how

these tradeoffs, which are implicitly formulated by the parameterizations of CR models, re-emerge in

the reduced model formulations.

6.2 Method overview

Details of the simplification procedure as well as the original model are given in the first part of the

paper. The eight-dimensional CR model was run with two different initial conditions which resulted

in time series with different sets of dominant species. The simulated and centered datasets X̂a and

X̂b as well as their transient-free subsets X̂A and X̂B were used as inputs for a (non-)linear Principal

Component Analysis (PCA/NLPCA) to reduce their dimensionality. The choice of the number of

retained components in the PCA procedure was based on the fraction of explained variance (FEV) for

the subsets of components. All datasets could be reduced to two (non-)linear principal components

(PC/NLPC) which served as new state variables for the reduced model systems. These effective con-

sumer variables (ECV) will be denoted by ϕs
i and ϕS

i with s = a, b for the complete datasets and

S = A,B for the transient-free cases, respectively. A numeric subscript indicates the ith linear PC

whereas nonlinear components are denoted by ϕs
nl. A Genetic Programming (GP)/Genetic Algorithm

(GA) hybrid was then used to construct new models as dynamical systems of ϕs
i and ϕS

i . During

model learning, the initial values of the state variables were subject to optimization and the method

was restricted to only produce time series with positive variables in order to simplify the process-

based interpretation.

The simulated time series of the best models fit the corresponding datasets very well (see Figure 6.1
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which depicts the simulation results for the best models approximating the complete datasets (section

6.4.2)). The slight deviations in the frequency of the oscillations were not captured by the GP/GA

model optimization as the applied fitness measure ignores the frequency and phase information of the

limit cycle regime.
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Figure 6.1: Simulated time series of the best reduced models found with the MAGER approach in

comparison with the original CR model data projected onto the corresponding principal components.

The figure shows the two setups a and b which are characterized by different assemblages of coexisting

consumer species.

6.3 Limit cycle dynamics

6.3.1 Effective consumer variables

The ECVs obtained with PCA are linear combinations of the centered phytoplankton abundances and

nutrient concentrations. For the transient-free datasets, the first two PCs of X̂A can be written as

ϕA
1 = u1P̂1 − u2P̂4, (6.1)

ϕA
2 = v1P̂5 − (v2P̂4 + v3P̂1)
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and the first two PCs of X̂B follow

ϕB
1 = u1P̂3 − (u2P̂1 + u3P̂2), (6.2)

ϕB
2 = v1P̂2 − (v2P̂1 + v3P̂3).

See Table C.1 for parameter values. Note that the sign of ϕA
2 has been changed to simplify the process-

based interpretation. Without much loss of accuracy, terms with small parameters have been ignored

in (6.1) and (6.2) as the remaining terms explain the main part of the data variance, i.e. FEV > 0.95.

It is obvious that the PCs primarily incorporate the dominant and most abundant species of the mul-

tivariate time series whereas the influences of the other species and nutrients are ignored. This effect

can be attributed to the data preparation where no scaling of the variables was used (Bernhardt and

Wirtz, 2008). However, the calculation of the correlation coefficients between the individual species

of X̂A as well as ϕA
1 and ϕA

2 shows that this approximation error affects the inferior phytoplankton

species only as each of the nutrients negatively correlates with one of the dominant species (Figure

6.2). In a similar manner, the nutrients of X̂B are negatively correlated to P1, P2 and P3 (not shown).

P1

P4

P5

PC 1 PC 2 P1 P2 P3 P4 P5 N1 N2 N3

0.2 0.4 0.6 0.8

Correlation coefficient ρ

Figure 6.2: Correlation coefficients for the dominant species P1, P4 and P5 in X̂A with all species

and resources as well as the first two principal components (PC1 and PC2). Hatched patterns indicate

negative values.

The negative correlations further indicate that each nutrient acts as a main limiting resource for one of

the dominant phytoplankton species.

These growth limitations are determined by the nutrient quotas of the individual species. As out-

lined by Huisman and Weissing (2001a), the competitive strength of each individual species can be

calculated using the respective resource requirements R∗
j (i) according to

R∗
j (i) =

ωi · kji

gi − ωi
, (6.3)

where ωi denotes the mortality, gi is the maximal growth rate of species Pi and kji denotes the half

saturation constant for nutrient Nj of this species. Figure 6.3 shows the occupation of different niches
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in the three-dimensional resource requirement space by the individual consumer species. The species
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Figure 6.3: Tradeoffs in resource requirements R∗
j (i) of species Pi for resource Nj . The fitted surface

illustrates the form of the two-dimensional tradeoff in resource requirement. The community resource

requirements 〈R∗
j 〉 (see equation (6.4)) for the oscillatory part of the datasets are shown as gray and

black solid lines. The system oscillates between the species resource requirements as extremal points

with clearly separated limit cycles for the two different initial conditions.

with the lowest requirement for resource j has the highest competitive ability for this resource com-

pared to the other consumers. Species are clearly separated from each other in this picture which

indicates different diet preferences. For example, P1 is a typical generalist which can be displaced by

P4 or P2 as it gets limited by N1 (Table C.2). The same applies for the other species and the observed

limit cycle dynamics critically depends on these tradeoffs of species-specific values of resource re-

quirements R∗
j (i) and resource consumptions/quotas cji (Huisman and Weissing, 2001a). Figure 6.3

further shows that the existence of the two oscillatory states, i.e. the coexistence of either P1, P4 and

P5 or P1, P2 and P3, may be attributed to differences in the resource competition setup.

Given these well-known findings, the definition of the ECVs in equations (6.1) and (6.2) indicates that

the single species description of competition in the CR model has been changed to a new formulation

which incorporates community level information. This link between the effective consumer variables

and the community level of the biological system can be illustrated by a comparison of the ECVs with

the community resource requirements 〈R∗
j 〉 and community resource quotas 〈C∗

j 〉 as analytical means
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of up-scaling by aggregation,

〈R∗
j 〉 =

∑
i Rj(i)∗ · Pi∑

i Pi
, 〈C∗

j 〉 =
∑

i cji · Pi∑
i Pi

. (6.4)

These community properties are in part strongly correlated with the ECVs (Figure 6.4) which again

supports the finding that the dynamics of the reduced system is governed by tradeoffs in resource

requirements and quotas similar to the ones present in the original system. According to the informa-
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Figure 6.4: Community resource requirements 〈R∗
j 〉 and community resource quotas 〈C∗

j 〉 versus

normalized ECVs ϕ̃B
1 and ϕ̃B

2 for the limit cycle regime in X̂B . Similar correlations are found for ϕ̃A
1

and ϕ̃A
2 of X̂A (not shown).

tion inherent to Figures 6.3 and 6.4, the new ECVs describe weighted community compositions which

serve as indicators for the system’s adaptation to resource-specific internal tradeoffs in resource re-

quirement and quota configurations. In addition, the effective consumer variables also capture the

configuration changes which are mediated by the indirect inter-dependencies between the dominant

species in the CR network (Figures 6.5 and 6.6). We will simplify the following discussion by con-

centrating on the resource requirement tradeoffs but it should be noted that the situation is similar for

the tradeoffs in resource quotas.

According to Figure 6.5(a), ϕA
1 describes a shift in community composition (P4 → P1) resulting

from an adaptation to a shortage in the second resource and the accompanied limitations. In addition,

this ECV captures the indirect interaction between the two species, namely the competitive growth
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Figure 6.5: Resource requirement tradeoffs effecting the competition between the dominant species

in X̂A. (a) ϕA
1 captures relations between P1 and P4 and (b) ϕA

2 describes the difference between

the high requirement for resource 1 of P5 on the one hand and the low R∗
1 values of P4 as well as

P1 on the other hand (see equation (6.1)). Positions of the dominant species in the two-dimensional

requirement space follow Figure 6.3. Dashed arrows indicate negative indirect interactions of one

species on another due to utilization of shared resources which results from the parameterizations of

half-saturation constants kji and nutrient quotas cji for species Pi and nutrients Nj (Table C.2). Gray

areas indicate the connection of the individual ECVs to abundance changes of the original species

which, in turn, reflect the existence of DMIIs.

limitation of P4 induced by P1 which is a strong competitor for N3, the limiting resource of P4 (Table

C.2). The analogous community shift resulting from an adaptation to the affinity for resource 1 is de-

scribed by the second ECV in form of a biomass distribution between P5 as well as the first and fourth

species (Figure 6.5(b)). As these species are all linked together via their indirect interactions, ϕA
2 also

incorporates the impact of P5 on the CR food web. This impact is more complicated as, in addition to

the competitive growth limitation of P4 due to consumption of N3 by P5, a change in P5 abundance

also indirectly affects P1 via the nutrient utilization of P4 (Table C.2). Along this interaction chain,

the affinity for resource 1 changes from a low value for P5 to high values for P4 and P1.

The basic meaning of the ECVs is similar for X̂B even though the competitive situation is different.

Here, the mutual limitations between the dominant species are arranged in a cyclic fashion (Figure

6.6). Similar to ϕA
2 of X̂A, the new variables reveal the requirement tradeoffs of resources 3 and

1 which are again mediated by active food web interactions. P3 is a strong competitor for N2, the

limiting nutrient for P2, and P2 itself affects P1 via the consumption of N1. In a similar manner, from

the perspective of P2, we find a DMII of P2 on P3 via the growth limitation of P1.

Summing up the preceding discussion, the effective consumer variables of both setups, X̂A and X̂B ,

represent biomass distributions between the dominant species in relation to community resource re-

quirements and quotas. The ECVs can further be understood as condensed descriptions of density-
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Figure 6.6: Same as Figure 6.5 for the competition of the dominant species in X̂b.

mediated indirect interactions within the CR network. Based on their integrative role, the ECVs will

be called "community resource usage characteristics" in the following discussion. The term "usage"

thereby relates to the combination of requirement and consumption of specific nutrients. By ex-

plicitely incorporating these resource usage characteristics in new ODE models (sections 6.3.2 and

6.4.2), the aggregation scheme of MAGER further translates the indirect species interactions mediat-

ing the internal tradeoffs in resource usage to direct interactions of ECVs as new competition factors.

Because of this transformation, we will use the term Ecological Interaction Models (EIM) as a de-

scription of the new model class (Bernhardt and Wirtz, 2007).

6.3.2 Ecological Interaction Models

The best reduced models of the transient-free datasets follow the equations of simple oscillators (not

shown). The slightly more complicated learned models able to reproduce the asymmetries of the

oscillations follow
dϕB

1

dt
= ϕB

2 − p1,
dϕB

2

dt
= −ϕB

1 − p2

ϕB
2

(6.5)

for X̂B and
dϕA

1

dt
= − p1

ϕA
2

− p2,
dϕA

2

dt
= −ϕA

1 · (ϕA
1 − p3) (6.6)

for X̂A. Note again that the sign of ϕA
2 has been changed. See Table C.3 for parameter values.

Model (6.5) is a simple nonlinear extension of the linear oscillator model with a modified repelling

term for dϕB
2 /dt. Similar reduced models have already been discussed for other food web models by

Bernhardt and Wirtz (2007). In equation (6.5), the direct interactions of the resource usage charac-

teristics differ for the two variables which may be qualitatively attributed to the cyclic dependencies

of the dominant species in the food web. ϕB
2 is related to the community resource requirement for

nutrient 3 (Figure 6.6). Thus, a decreasing competitive pressure caused by an abundance of N3 per-

mits a community structure with higher requirement for this resource and concurrent higher values of
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ϕB
2 . As the resource usage characteristic ϕB

1 is correlated to the community quotas/consumption of

N3, the subsequent higher usage of this nutrient is described by the positive effect of ϕB
2 on dϕB

1 /dt

in equation (6.5). On the species level, this corresponds to a biomass shift from the second to the

third consumer species along the network’s indirect interaction pathway (Figure 6.6(b)). The result-

ing community composition is characterized by a higher requirement for resource 1. Subsequently,

the indirect species interactions support the invasion of the first consumer which strongly consumes

this nutrient (Figure 6.6(a)). The accompanied change in resource usage characteristics is expressed

by the negative influence of ϕB
1 on the temporal change of ϕB

2 as the resulting community is in a state

of low requirement for the third resource.

The reduced model (6.6) of X̂A incorporates the main changes in resource usage characteristics of

the competitive system in an analogous way. In this case, the characteristics are related to the first

and second nutrient. At first, in a situation of abundant N1, the community is characterized by high

requirements for this resource. It then shifts to a state of strong N1 consumption (P5 → P1) along

the indirect interactions. This shift is expressed by the reciprocal influence of ϕA
2 on dϕA

1 /dt as the

first resource usage characteristic is correlated with 〈C∗
1 〉. The negative impact of ϕA

1 on dϕA
2 /dt may

further be explained by the shared usage of N3 by P1 and P5 (Table C.2).

However, both reduced models lack important direct interactions of the resource usage characteristics

which are able to restore the starting points of the oscillations. In model (6.5) on the one hand, this

relates to a community shift from a state of high N1 quotas back to high requirements for the third

resource and consumption of N2. Alternatively, in terms of species interactions, we may also say that

no state variable capturing the indirect positive effect of P1 on P2 in X̂B is present (Figure 6.6). On

the other hand, in model (6.6), no direct ECV interaction leading to a decrease of the first resource

usage characteristic can be found.

Instead, this "rewinding" is achieved by the constant terms in both equations which act as external

driving factors. p1 in (6.5) and p2 in (6.6) support the indirect interactions leading to a decrease of

ϕB
1 and ϕA

1 , respectively. Furthermore, p2 in (6.5) and p3 in (6.6) are responsible for the concurrent

increase of the second ECVs which reverses the interactions between P1 and P2 as well as P4 and P5,

respectively. Strictly speaking, these positive driving factors are different from the two other external

driving factors as they are connected to the resource usage characteristics ϕB
2 and ϕA

1 . However, these

constants have a special meaning as they are necessary for the occurrence of positive oscillations.

Finally, these "interaction support" and "interaction reversal" factors must be in balance in order to

allow for sustained positive (or negative in case of ϕA
2 ) oscillations between the respective states of

community resource requirements and quotas (Figure 6.7). These terms thus extend the set of direct

ECV inter-dependencies and replace additional state variables or more complicated terms which could

alternatively close the gap of the missing interactions.
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Figure 6.7: Results of a parameter variation of the interaction support p1 and the interaction reversal

factor p2 showing the effects of these factors on the dynamics of model (6.6). The resource usage

characteristics coexist in the region shaded in dark gray. Light gray indicates numerical truncations of

the simulations and unrealistic zero crossings of the variables occurred in the white region. The initial

values of ϕB
1 and ϕB

2 were left unaltered (Table C.3).

6.4 Modification by transients

6.4.1 Effective consumer variables

As outlined in section 6.2, NLPCA was used in addition to linear Principal Component Analysis to

further reduce the dimensionality of the complete datasets including the transients to the limit cycle

regimes. Unlike PCA, however, the neural network-based NLPCA does not provide simple algebraic

interpretations of the principal components. Therefore, we use a modification of the MAGER scheme

to find functional relationships between the linear and the nonlinear principal components. As shown

in the first part of the paper, single nonlinear components could be used to replace the first and second

PC of X̂a and ϕb
2 and ϕb

3 of X̂b, respectively. Thus, the PCs served as input variables for the MAGER

scheme and the GP part of MAGER was changed to produce nonlinear functions, instead of ordinary

differential equations, which approximate the nonlinear components.

For X̂a the linear principal components follow

ϕa
1 = u1P̂5 + u2P̂4 + u3P̂1, (6.7)

ϕa
2 = v1P̂5 − (v2P̂4 + v3P̂1), (6.8)

ϕa
3 = w1P̂1 − w2P̂4. (6.9)
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For a better interpretability, the signs in (6.8) and (6.9) have been changed. A comparison with the

ECVs of the limit cycle regime (equation (6.1)) shows the similarity between the resource usage

characteristics ϕa
2 and ϕA

2 as well as ϕa
3 and ϕA

1 . Finally, the first component may be seen as a

weighted sum of the dominant species’ biomass. Based on these findings, we can easily interpret the

simplest functional form of the NLPC found with MAGER which reads

ϕa
nl = a1ϕ

a
2 − a2ϕ

a
1. (6.10)

Note that ϕa
nl has also been changed to negative values. Thus, the nonlinear component is similar to

the second linear ECV in the transient-free case, the only difference being the additional weighted

biomass sum ϕa
1 in (6.10). This additional term is responsible for the reproduction of the transient

phase whereas ϕa
2 mainly reproduces the limit cycle dynamics. In fact, FEV drops from 97.7% to

3.3% if we neglect ϕa
1 in the transient phase. The dynamics of the limit cycle regime, however, can

approximately be explained by ϕa
2 alone (FEV=81%). The analogy of the resource usage character-

istics for the transient-free and complete dataset is not changed by this additional weighted biomass

sum. Similar to ϕA
2 , ϕa

nl is related to the community requirements for the first resource and commu-

nity quotas of N2 (not shown).

In case b with the complete dataset X̂b, the linear relationship for ϕb
1 follows

ϕb
1 = u1P̂2 − u2P̂1. (6.11)

The competitive situation is more complicated than in case a and no simple functional form relating

the second and third linear PCs to the nonlinear component could be produced with MAGER. How-

ever, when the learning of the functional description was based on the centered species instead of the

PCs, a simple algebraic interpretation of the NLPC could be found,

ϕb
nl = v1P̂3 − P̂1 · (v2P̂3 + v3). (6.12)

The signs of ϕb
1 and ϕb

nl have also been changed so that both variables are negative. Similar to ϕB
2 ,

the linear PC ϕb
1 is related to 〈R∗

3〉 and the community quotas of the second resource 〈C∗
2 〉. For ϕb

nl,

the interpretation in terms of a simple biomass distribution between the dominant species is partially

lost because of the more complex structure of equation (6.12). However, ϕb
nl is similar to ϕB

1 in terms

of tradeoffs in resource usage (not shown) and may still be interpreted as a nonlinear resource usage

characteristic. Thus, the new variables in case b again capture the community tradeoff between R∗
1

and R∗
3 as well as the tradeoff between the quotas of the second and third nutrient.

In conclusion, the ECVs of the full datasets describe community resource usage characteristics similar

to those in the transient-free case. However, details of the definitions of the ECVs have changed in

order to account for the increased complexity introduced by the system’s transient dynamics.
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6.4.2 Ecological Interaction Models for the complete dynamics

The best reduced models reproducing the dynamics of the complete datasets follow

dϕa
3

dt
=

I︷ ︸︸ ︷
− p1

ϕa
nl

−
II︷︸︸︷
ϕa

nl −p2 (6.13)

dϕa
nl

dt
= −1/ϕa

3︸ ︷︷ ︸
III

· p3ϕ
a
nl · (1 + p4ϕ

a
nl)︸ ︷︷ ︸

IV

−p5ϕ
a
3︸ ︷︷ ︸

V

. (6.14)

for X̂a and

dϕb
1

dt
= p1ϕ

b
nl − p2 (6.15)

dϕb
nl

dt
=

(
p3ϕ

b
nl

p4 + ϕb
nl

− ϕb
nl − ϕb

1

)
·
(

p5ϕ
b
nl

p6 + ϕb
nl

− ϕb
1

)
(6.16)

for X̂b. See Table C.3 for parameter values.

The interactions of the ECVs in equations (6.13) and (6.14) can again be interpreted using the dom-

inant competitive relationships within the CR network outlined in section 6.3.1. As discussed in the

last section, the interpretation of the ECVs for the transient-free and complete datasets is qualitatively

similar. The same applies for the dynamic impact of the second on the first competition factor in

(6.13). We again find positive effects of (negative) ϕa
nl on ϕa

3 which corresponds to a shift in com-

munity composition to a state of high N1 quotas in case of N1 abundance. These interactions are

expressed by terms I and II in (6.13) which represent two different ways of positive influences be-

tween the characteristics. Here, term I describes the shift in community composition based on the

DMIIs of the network (see section 6.3.2). As the endpoints of this interaction chain, i.e. P5 and P1,

also compete for the shared resource N1 and concurrently limit P4 (Table C.2), we can also understand

the increase of the positive effect for smaller values of ϕa
nl which reduces the competitive pressure for

P1 (term II). Furthermore, p2 can again be interpreted as an "interaction support" factor responsible

for the reconstruction of the starting point of the oscillations in analogy to p1 in (6.6).

Similarities with the transient-free case can also be found for the dynamic equation of the nonlinear

resource usage characteristic dϕa
nl/dt. First, term V again describes the positive influence between

the usage characteristics which was similarly captured by p3ϕ
A
1 in equation (6.6). Thus, p5 in term

V may also be seen as an "interaction reversal" factor in analogy to p3 in (6.6). Second, term IV

formally corresponds to a logistic growth term for negative state variables with growth rate p3 and

capacity 1/p4. An analysis of the time evolution of this term shows that it has a high positive value

during the transient phase in comparison with term III . The logistic growth factor then drops to a

small negative constant value in the oscillatory regime. Because of this constant, equation (6.14) re-

duces to a formulation which is very similar to the transient-free form in the limit cycle regime. This
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dynamic change can easily be explained by the initial abundance of nutrients. At the beginning of the

simulation, the community biomass is low and the resources supply exceeds the demand which leads

to a reduced competitive pressure and an initial competition-free growth phase. Subsequently, the

increase in community biomass and the concurrent short supply of nutrients causes the competitive

dynamics and the cyclic shifts in community resource usages.

It was not possible to find a simple biological interpretation of the best model for Φb in equations

(6.15) and (6.16). In physical terms, however, this model corresponds to the ordinary differential

equation of a nonlinear oscillator describing the cyclic shifts in community resource usage similar to

(6.6) in section 6.3. Thus, in comparison with the transient-free case, we find a stronger dependency

of the detailed model structures on the initial conditions for the complete datasets. While the differ-

ent initial conditions of the transient-free cases A and B lead to very similar models, the increased

complexity of the complete dynamics reduces the similarity between the EIMs.

6.5 Conclusion

In this paper, we discussed the simplified formulations of an eight-dimensional consumer-resource

model obtained with the new MAGER technique. The model reduction and analysis was performed

for two time series with different initial values. An additional distinction was made between the

complete datasets including the transient dynamics and the periodic oscillating regimes alone. The

dynamics of the original system could be reproduced to a high degree using two state variables only.

Because of the method’s use of low-dimensional mappings, it was further possible to reconstruct the

original biological variables from the simplified descriptions.

The new effective consumer variables of the reduced models incorporated community-level descrip-

tions of the competitive DMIIs. Instead of single species, they described community resource usage

characteristics which were related to tradeoffs in resource requirements and resource quotas. Accord-

ingly, the oscillatory species dynamics of the CR model was translated to cyclic shifts in community

composition representing different states of resource usage in the new Ecological Interaction Models

(EIM).

The best EIMs could be interpreted as nonlinear oscillators. This formal correspondence between

physical and biological systems has already been discussed earlier (Ginzburg, 1986; Vandermeer,

1993, 2004; Gertsev et al., 2008) as well as in our recent studies (Bernhardt, 2007; Bernhardt and

Wirtz, 2007) and in the first part of the paper. In one of the investigated cases, the separate analysis

of oscillatory and transient dynamics further revealed different underlying principles governing the

two dynamic regimes. According to the reduced EIM, the CR dynamics could be described by an ini-

tial competition-free growth phase and the subsequent dynamic switching between different states of

resource usage due to mutual limitations. Furthermore, some of the reduced models incorporated ad-
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ditional external factors which were responsible for the reconstruction of the initial oscillatory states.

Thus, these factors bypassed the use of additional state variables capturing the missing usage charac-

teristic of the third resource.

The relative importance of direct and indirect interactions for the occurrence of species coexistence

cannot be deduced from this model study as no direct interactions, for example predator-prey rela-

tions, are present in the CR model. However, the application of MAGER to a simple predator-prey

model showed that the dynamics could similarly be described by interaction-related variables. We

therefore propose that the EIM formulation is a very general and effective description of biological

coexistence.

The discussion of the reduction results of the complete dataset X̂b also indicated some limitations of

the MAGER approach. In particular, it may be expected that more complicated dynamics can only be

captured with more complex learned models which may be difficult to interpret in simple biological

terms. The evaluation of the maximum model complexity limiting the suitable application of MAGER

has still to be done. In further studies, we will also investigate the relative importance of direct and in-

direct interactions as well as the interplay of trait- and density-mediated effects. This will include the

reduction of models incorporating species traits as additional state variables as well as direct species

interactions. Aiming at the derivation of suitable data-generating processes, the MAGER approach

will further be applied to measured datasets.
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Conclusion and outlook

Summing up the discussions of the last chapters, the MAGER scheme developed in this thesis has

been shown to be a promising automatic model reduction method which also offers new possibili-

ties to examine and understand complex (biological) systems in process-based terms. Regarding the

model reduction performance of MAGER, I just highlight its good reproduction capabilities (e.g. of

transient dynamics) and high reduction potential in comparison with other methods. The data-based

change to a higher-level descriptive "language" and new model structures is a central property of

MAGER in this context. Apart from these technical benefits, the application to biological networks

further indicated that new information on important system properties can be gained with MAGER.

For example, the explicit incorporation of species inter-relations in the reduced systems of chapter 6

can be seen as an emergence of dominant processes as these interactions were not given explicitely in

the original model.

However, the method has its own drawbacks, some of which have been addressed in the last chapters,

and a number of extensions and improvements of MAGER can be pointed out. The first point of

criticism addresses the general applicability of MAGER. As the method is based on low-dimensional

model dynamics/attractors embedded in high-dimensional variable spaces, its reduction potential is

confined to the existence and dimensionality of such structures. It should also be noticed that an in-

crease of the number of state variables drastically increases the size of the search space for model

learning. Thus, the reducibility of model datasets using the proposed combination of linear and non-

linear mappings must be re-evaluated for any new application. However, as outlined in section 3.10,

there is some evidence that many models produce low-dimensional dynamics despite their own com-

plexity. As shown in chapter 5, the check for reducibility should thereby also be extended to parts

of the dynamics and submodels within the complex over-all structure. It is, in fact, improbable that

reduced models found with MAGER will be able to replace large ecosystem models like ERSEM.

Instead, the method should be seen as an analysis tool for large-scale models which can help to give

alternative explanations for occurring (sub-)dynamics.

It may also be criticized that the method produces no single "universal" model which completely re-

produces the bifurcation behavior of the original system (see section 4.4.4). However, remembering

the equifinality discussion in chapter 1, we could state that the aim of finding a single "optimal" model

is ill-posed and that the comparative use of multiple "minimum-realistic" models should be recom-
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mended (Fulton et al., 2003). Nevertheless, the argument could further be weakened by refining the

structure optimization scheme of the MAGER approach. In order to account for different dynamic

situations, a multi-objective extension of the GA optimization could be applied to find optimized

parameter sets for multiple time series. However, the successful use of such a technique requires

solutions for a number of new problems which are, for example, related to the normalization and

(non-)linear state reduction of multiple time series.

It has further been discussed in chapter 3 that parameter tuning of the hybrid GP/GA module is very

difficult to perform because of the long operation times of MAGER and the diversity of the GP mod-

els. Nevertheless, the optimization procedures can eventually be improved by investigating the effects

of these control parameters on the over-all reduction performance in more detail. In addition, the use

of more sophisticated versions of the genetic procedures could enhance the model learning capabil-

ities of MAGER. This includes, for example, Pareto-optimal GA (Coello Coello, 2000) or modified

global/local search hybrids (e.g. Goldberg and Voessner, 1999).

Extensions of MAGER should also include other quality measures to account for a variety of dynamic

situations. As shown in the preceding chapters, the appropriate type of fitness measure depends on

the desired focus on dynamic details and ranges from unspecific, e.g. the RMSE, to very specific for a

given situation, e.g. the combination of transient and limit cycle dynamics (chapter 5). Further exam-

ples for unspecific fitness measures derive from information theory, such as the Akaike or Bayesian

Information Criterion (AIC,BIC) which have been used in model selection applications (Cox et al.,

2006). The selection of appropriate fitness measures is certainly a major crucial aspect of successful

applications of the new reduction method.

Apart from more complex model reduction studies, MAGER can also be used for data-based model

building. Future applications will, for example, be based on measured data from chemostat experi-

ments (e.g. Kooijman, 2000; Fussmann et al., 2000; Becks et al., 2005). In this respect, the model

learning capabilities of MAGER can be improved by incorporating new state variable components of

the GP trees. Two extensions of this kind, which are connected to unobserved variables and exter-

nal forcing, have already been implemented in MAGER but have not been used in applications yet.

I suppose that the addition of unobserved state variables to the new ODE formulations allows for a

treatment of classic traits in biological systems. The incorporation of external forcing, i.e. variables

which are only used as input for the learned dynamic systems, is another important aspect for model

building.

It is obvious that the mapping-based reduction step of MAGER is of minor importance for model

building applications. Even without this step, however, some of these new features, such as the incor-

poration of unobserved (trait-)variables in combination with automatic functional interpretations, still

offer new fields of application in comparison with related GP-based model building studies (e.g. Cao

et al., 2000).
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Appendix

A Appendix of Chapter 4

A.1 Tables

Table A.1: Simulation settings for the predator-prey model (3.15).

[x1, x2]t=0 [2, 1.5]

Time t [0, 0.5, . . . , 200]

Normalized inverse capacity of prey growth k 0.15, 0.09

Normalized inverse half saturation for predation s 0.5

Normalized predator mortality mp 1

A.2 Normalization of the Rosenzweig-McArthur model

Rosenzweig and McArthur (1963) introduced a predator-prey model with capacity limited growth and

Holling type II grazing term:

dP

dt
= r ·

(
1− P

K

)
· P − µ · P

P + S
· Z

dZ

dt
= εµ · P

P + S
· Z −M · Z, (8.1)

where N and P denote prey and predator abundance, respectively (see Table A.4 for parameter

descriptions).

Three of the six model parameters of (8.1) can be eliminated by normalization of N , P and time,

resulting in an equivalent dimensionless system. Using inverse values of the capacity β = 1/K and

half saturation constant κ = 1/S and introducing normalization constants

tn =
1
r
, Nn =

M

εµκ
, Pn =

r

µκ
, (8.2)
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Table A.2: Simulation settings of model (4.2)-(4.3). The parameter values slightly differ from the

ones used by Yoshida et al. (2003) to account for the change in model formulation (section 4.2.2).

Note that the dimensions of phytoplankton and zooplankton for the NPZ model are individual cells

counted and phytoplankton values relate to 109 cells.

Parameter Description Value

[N, P,Z]t=0 Initial values of state variables [0.45, 3.2, 3]

t Time steps of the simulation [days] [0, 0.1, . . . , 200]

δ Dilution rate [1/d] 0.25

N0 Nutrient concentration of the inflow [µmol/l] 242.4

εP Conversion efficiency of primary producers [109cells/µmol] 0.05

µmax Max. nutrient growth rate of algae [µmol/(d · 109cells)] 66.0

SP Half saturation constant of nutrient uptake [µmol/l] 13

ξmax Maximum clearance rate of Z [1/d] 3.3 · 10−4

SZ Half saturation constant of grazing [109cells/l] 0.88

εZ Conversion efficiency of grazers 5400

P ∗ Critical phytoplankton concentration [109cells/l] 1.324

mz Mortality of zooplankton [1/d] 0.455

Table A.3: Parameter values and RMSE of the reduced models learned. ϕi(0) denote optimized initial

values of the effective variables.

Model c1 c2 c3 c4 ϕ1(0) ϕ2(0) RMSE

(3.19) with k = 0.15 2.627 0.288 7.779 0.192 -1.885 − 0.32

(3.19) with k = 0.09 1.266 0.662 8.401 1 1.853 − 0.51

(4.11)(4.12) 9.274 2 3.296 29.15 0.355 3.85 0.53

system (8.1) can be rewritten in the form of (3.15) for normalized abundances of prey x1 = N/Nn

and predator x2 = P/Pn using the normalized parameters

k = βNn =
MS

εµK
, (8.3)

s = κNn =
M

εµ
and (8.4)

mp = Mtn =
M

r
. (8.5)
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Table A.4: Description of parameters of the original Rosenzweig-McArthur model (8.1).

r Maximal growth rate of prey P

K Carrying capacity

µ Maximal ingestion rate of predator Z

S Half saturation constant for predation

ε Assimilation efficiency of predation

M Predator mortality

A.3 Derivation of the pendulum equation for (3.15)

In the vicinity of the non-trivial fixed point {x∗1, x∗2} of (3.15), an approximate transformation into a

pendulum equation can be reached analytically. For

dx1

dt
= F1(x1, x2),

dx2

dt
= F2(x1, x2), (8.6)

with F1 and F2 given in (3.15) and the steady-state values x∗1 and x∗2 of predator and prey densities,

x∗1 =
1

1− s
, x∗2 =

1− k − s

(1− s)2
, (8.7)

we follow the temporal evolution of a small perturbation around the equilibrium, i.e. xi = x∗i +

x
′
i, i = 1, 2. A first-order Taylor approximation of (3.15) leads to

d

dt
x
′
1 ≈

[
∂

∂x1
F1

]

x∗1,x∗2

· x′1 +
[

∂

∂x2
F1

]

x∗1,x∗2

· x′2

= f1 · x′1 − x
′
2, (8.8)

with f1 = k + s− (2 · k)/(1− s) and

d

dt
x
′
2 ≈

[
∂

∂x1
F2

]

x∗1,x∗2

· x′1 +
[

∂

∂x2
F2

]

x∗1,x∗2

· x′2

= f2 · x′1, (8.9)

with f2 = mp · (1− k − s).

Note that f1 and f2 are not altered by normalization of x1 and x2. We obtain the oscillator equation

for a small deviation ϕ
′

of the effective variable ϕ = p1x̃1 + p2x̃2 by differentiation of ϕ
′

using (8.8)

and (8.9):
d2ϕ

′

dt2
≈ −f2 · ϕ′ + f1 · dϕ

′

dt
. (8.10)
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B Appendix of Chapter 5

B.1 Parameter settings of the competition model

The parameter setting of the competition model follows the setup for five species and three resources

of Huisman and Weissing (2001b). The matrix of half-saturation constants follows

K =




0.2 0.05 1.0 0.05 1.2

0.2 0.1 0.05 1.0 0.4

0.15 0.95 0.35 0.1 0.05


 . (8.11)

The entries of K are individual half saturation constants kji of species i (in columns) and nutri-

ents j (in rows). The initial values of the species and nutrients used are Nj(0) = {10, 10, 10} and

Pi(0) = {0.1, 0.1, 0.1} resulting in a dominance of species 1,4 and 5 and Pi(0) = {0.1, 0.5, 0.1}
for a dominance of species 1,2 and 3. All other parameter values are left unaltered, i.e. growth rate

µi = 1 and mortality ωi = 0.25 of species i as well as nutrient turnover rate D = 0.25 and supply

concentration of nutrient j, Sj = 10. The matrix of nutrient quotas C with entries cji denoting the

content of nutrient j in species i is given by

C =




0.2 0.1 0.1 0.1 0.1

0.1 0.2 0.1 0.1 0.2

0.1 0.1 0.2 0.2 0.1


 . (8.12)

B.2 Tables

Table B.1: Parameter values of the reduced models learned. ϕx(0) and ϕy(0) denote the optimized

initial values of the first and second or linear and nonlinear effective variables, respectively.

Model p1 p2 p3 p4 p5 p6 ϕx(0) ϕy(0)

(5.4), ΦA 1 -8.01 0.25 1.6 - - 5.23 6.99

(5.4), ΦB 0.34 -1.42 1 6.03 - - 3.85 6.04

(5.5) 10 1 3.1 - - - 1.58 -9.86

(5.6) 3.12 5.9 - - - - 3.6 3.97

(5.7) 9.19 6.54 0.46 0.24 0.04 - -9.62 -8.25

(5.8) 0.05 0.11 9.76 4.88 5.03 2.35 -1.5 -2.66
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B.3 Quality measures

Dimensionality reduction

We use two measures to quantify the appropriate dimensionality of the reduced datasets. First, the

dimensionality of different temporal regimes can be determined by calculating the time course of the

correlation dimension DC (Baker and Gollub, 1990; Theiler, 1986). DC(Xs(t)) is calculated for a

section Xs with length ns starting at t according to

DC(Xs(t)) = lim
ε→0

log(C(ε))
log(ε)

, with C(ε) =
nε

n2
s

. (8.13)

Here, C(ε) denotes the correlation integral, ns = 1000 and nε is the number of points with distance

smaller than ε from each other. DC is calculated for subsequent values of t by fitting a straight line to

the slope of the double logarithmic plot of C(ε) versus ε obtained for varied small values of ε.

As a second measure, the fraction of explained variance (FEV) is used to select the number of retained

principal components which can be linear or non-linear for dimensionality reduction. The FEV for

the linear PCA is given by the ratio of individual eigenvalues of the data covariance matrix to the

sum of all eigenvalues or the ratio of the squared singular values if singular value decomposition is

used to calculate the PCs, respectively (Cattell, 1966). For NLPCA, the FEV (FEV nl) is calculated

according to

FEV nl = 1−
∑∥∥∥Ŷs − X̂s

∥∥∥
2

∑∥∥∥X̂s
∥∥∥

2 , (8.14)

where s = a, b and Ŷs denotes the centered reconstructed datasets (Hsieh, 2004). A critical value

of FEVc ≈ 90% is used to select the appropriate number of principal components. As outlined in

sections 3.7.2 and 5.4, the FEV values of the linear PCA confirm the results on data dimensionality

obtained by calculating the correlation dimension.

Model learning

In (Bernhardt, 2007), the reproduction error of the individual learned models was measured using a

combination of the mean root-mean-square error (RMSE) of the normalized reduced time series as

goodness-of-fit measure and the number of GP nodes as a measure of model complexity. However, for

time series showing oscillatory regimes with different frequencies, see for example the transient and

limit cycle dynamics of Xa and Xb (Figure 5.1), the RMSE may not be the most appropriate choice.

Due to the relatively large errors which may arise even from small phase shifts between the data and

simulated time series we hence propose a combined measure which is sensitive to the course of the

transient and the amplitude of the oscillations but is insensitive to the frequency and phase of the limit
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cycle regime. In this measure, the RMSE is used to quantify the approximation error of the transient

phase, while the error of the oscillatory regime (Ep) is calculated as

Ep =
1

l · no

l∑

i=1

no∑

j=1

∣∣∣φopt
ij − ϕopt

i

∣∣∣ . (8.15)

Here, l is the number of reduced state variables, no denotes the number of local optima of the sim-

ulated oscillations, φopt
ij is the jth maximum or minimum of the effective variable approximation for

ϕi, respectively, and ϕopt
i is the mean amplitude of all local maxima or minima of ϕi. For fitness cal-

culations, the average of Ep for the maxima and minima of the time series is used. The measure thus

captures the mean deviation from the lower and upper bounds of the data oscillations. If the number

of maxima and minima is less than two, Ep is set to 9999 as a model which shows no oscillations is

considered as a bad approximation of the original system.

The separation of transient and limit cycle phase is thereby set at ts = 80 for both datasets, i.e. Φa

and Φb. The RMSE is calculated up to this threshold and Ep is used beyond. The results of the

two regimes are then combined using the weighted average ranking method (Bentley and Wakefield,

1997) with equal weights which is also used in the GP module (Bernhardt, 2007). For the transient-

free datasets ΦA and ΦB , the RMSE is used for the whole time series as no frequency and phase

changes occur in these cases.

C Appendix of Chapter 6

C.1 Tables

Table C.1: Parameter values for the algebraic interpretations of the effective model variables.

Equation u1 u2 u3 v1 v2 v3 w1 w2

(6.1) 0.77 0.62 - 0.84 0.46 0.27 - -

(6.2) 0.8 0.54 0.22 0.76 0.61 0.21 - -

(6.7)-(6.9) 0.7 0.55 0.3 0.66 0.59 0.42 0.8 0.55

(6.10) 0.05 0.12 - - - - - -

(6.11)-(6.12) 0.8 0.54 - 0.11 0.004 0.03 - -
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Table C.2: Species-specific nutrient usages resulting from the settings of half saturation constants and

nutrient quotas in the original CR model (Bernhardt and Wirtz, 2008). For P1, the brackets indicate

that this species is a weak competitor for N3 compared to P5 but also to P4.

Species P1 P2 P3 P4 P5

competes for (N3) N1 N2 N1 N3

gets limited by N1 N2 N3 N3 N2

Table C.3: Parameter values of the reduced models learned. ϕx(0) and ϕy(0) denote the optimized

initial values of the effective consumer variables. For equations (6.13)-(6.16), ϕx(0) refers to the

linear and ϕy(0) to the nonlinear ECV.

Model p1 p2 p3 p4 p5 p6 ϕx(0) ϕy(0)

(6.6) 3.12 5.9 - - - - 3.6 3.97

(6.5) 10 1 3.1 - - - 1.58 -9.86

(6.13)(6.14) 9.19 6.54 0.46 0.24 0.04 - -9.62 -8.25

(6.15)(6.16) 0.05 0.11 9.76 4.88 5.03 2.35 -1.5 -2.66
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