
Fakultät II – Informatik, Wirtschafts- und Rechtswissenschaften

Department für Informatik

Coupled Model Transformations
for QoS Enabled

Component-Based Software Design

PhD thesis to gain the degree of

”Doktor der Ingenieurwissenschaften”

by

Dipl.-Wirtsch.-Inform. Steffen Becker

Referees:
Prof. Dr. Ralf Reussner

Prof. Dr. Wilhelm Hasselbring

Date of Disputation: March 27th, 2008

http://docserver.bis.uni-oldenburg.de/publikationen/dissertation/2008/beccou08/beccou08.html
http://docserver.bis.uni-oldenburg.de/publikationen/dissertation/2008/beccou08/beccou08.html

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Application Scenario . 6
1.3 Scientific Contributions . 7
1.4 Structure . 10
1.5 Context of this Thesis . 12
1.6 Abstract . 13
1.7 Abstract (in German) . 13

2 Foundations and Related Work 15
2.1 Components, Architecture and Component Models 17

2.1.1 Software Component . 17
2.1.2 CBSE Developer Roles . 19
2.1.3 Software Architecture . 22
2.1.4 Component Models . 23

2.2 Model-Driven Software Development . 31
2.2.1 Model / Meta-Model / MOF . 31
2.2.2 Transformations: MDA / Generative Programming 36
2.2.3 Platforms and Platform Specific Models 41

2.3 Performance Modelling and Prediction . 44
2.3.1 Influence Factors on Software Performance 45
2.3.2 Performance Prediction Process . 46
2.3.3 Performance Prediction Methods . 49
2.3.4 Performance Simulations . 52
2.3.5 Prototyping . 52
2.3.6 CBSE Performance Prediction . 53
2.3.7 Model-Driven Methods . 55
2.3.8 Platform Completions . 57

2.4 Discussion of the Existing Approaches . 58

I

2.4.1 Requirements for Model-Driven, CBSE Predictability 59
2.4.2 Resulting Deficiencies . 62

3 The Palladio Component Model 67
3.1 Palladio Development Process . 69

3.1.1 PCM Development Process . 69
3.1.2 Introducing MDSD into the Palladio Development Process 72

3.2 PCM Core Concepts . 76
3.2.1 Random Variables and Stochastic Expressions 77
3.2.2 Context Model . 79

3.3 Interfaces and Datatypes . 82
3.4 Components and Component Types . 84

3.4.1 Provided and Required Roles . 84
3.4.2 PCM Component Types . 85
3.4.3 Basic Components . 85
3.4.4 Composite Components . 86

3.5 Resource Demanding SEFF . 87
3.5.1 External Calls . 88
3.5.2 Service Parameters . 89
3.5.3 SetVariableAction . 92
3.5.4 Inner Elements of Collections . 92
3.5.5 InternalActions . 93
3.5.6 Parametric Resource Demands . 93
3.5.7 Resource Acquisition and Release . 94
3.5.8 Control Flow . 95
3.5.9 Concluding remarks . 98

3.6 Systems . 98
3.6.1 System QoS Annotations . 99
3.6.2 Component Parameters . 99

3.7 Allocation . 100
3.7.1 Resource Environment . 101
3.7.2 Allocation Contexts . 102

3.8 Usage . 102
3.8.1 Usage Model and Usage Scenarios . 102
3.8.2 UsageBehaviour . 103
3.8.3 Usage Context . 104

3.9 Tool support . 105
3.10 Assumptions and Limitations . 107

II

4 Transformations 109
4.1 Coupled Transformations Method . 110

4.1.1 Motivation . 110
4.1.2 Formalisation of Coupled Transformations 115

4.2 Modular Transformations . 121
4.3 Mapping Overview . 124
4.4 Simulation Mapping . 125

4.4.1 SimuCom Overview . 127
4.4.2 Evaluating Stochastic Expressions . 128
4.4.3 Simulated Resources . 133
4.4.4 Usage Model . 139
4.4.5 Composite Structures . 142
4.4.6 Resource Demanding SEFFs . 144
4.4.7 Allocation . 151
4.4.8 Component Context in SimuCom . 152
4.4.9 Semantics of the Simulation . 153
4.4.10 Assumptions and Limitations . 154
4.4.11 Simulation Time Estimation . 154

4.5 Coupled Transformations . 156
4.5.1 CBSE Platform Transformations . 157
4.5.2 Mark Meta-Models . 158
4.5.3 Methods to Parametrise Analysis Transformations 160

4.6 Technological Java EE Mapping . 165
4.6.1 Components . 168
4.6.2 ComposedStructures . 179
4.6.3 Assembly Connectors . 181
4.6.4 Add-Ons . 193
4.6.5 Limitations and Discussion . 194

4.7 Prototype Mapping . 196
4.7.1 Combining Mappings . 197
4.7.2 Simulation of Load . 198
4.7.3 Assumptions and Limitations . 200

5 Validation 201
5.1 Type I Validation . 202

5.1.1 Mark Model Independent Predictions 202
5.1.2 Mark Model Dependent Predictions 204

5.2 Type II Validation: Controlled Experiment . 212

III

5.2.1 Influence factors . 212
5.2.2 PCM Tool Suite . 213
5.2.3 Study Design . 215
5.2.4 Evaluation . 218
5.2.5 Validity . 223
5.2.6 Summary . 224

6 Conclusions 227
6.1 Summary . 227
6.2 Limitations . 231
6.3 Open Questions and Future Work . 231
6.4 Visions . 235

A Appendix 239
A.1 Contributions and Imported Concepts . 239
A.2 Generated RD-SEFFs for Connector Completions 243
A.3 Detailed QVT Transformations . 244
A.4 Detailed Experiment Results . 244

IV

List of Figures

2.1 Research Areas Involved in this Thesis . 16
2.2 CBSE Developer Roles and their Artefacts . 20
2.3 UML2 Syntaxtical Notations for a Component and its Interfaces 26
2.4 The parts of a meta-model . 33
2.5 The ECORE meta-model . 35
2.6 Example for a Feature Diagram . 38
2.7 Function of a MDSD-Transformation Engine 39
2.8 PIM to PSM Transformations . 42
2.9 Influence Factors on the Performance of CB-Software Systems 45
2.10 Model-based Performance Prediction Process 47
2.11 An example Queuing Network . 49

3.1 The PCM Developer Roles and the Transformation Artefacts 69
3.2 Process Model of the PCM . 71
3.3 MDSD-Refined Specification Workflow . 73
3.4 MDSD-Refined QoS Analysis Workflow . 75
3.5 The same Component in different Assembly Contexts 80
3.6 The same Component in different Allocation Contexts 81
3.7 Interfaces and DataTypes . 83
3.8 Different Component Types in the PCM . 85
3.9 The meta-model of a ComposedStructure . 86
3.10 The RD-SEFF and its Relationship to BasicComponents 88
3.11 ExternalCallAction and passing of Parameter Characterisations 89
3.12 VariableUsages and Characterisations . 89
3.13 InternalActions and their ParametricResourceDemand 93
3.14 Resource Acquisition and Release . 94
3.15 Control Flow concepts in the PCM . 96
3.16 The PCM’s ResourceEnvironment . 101
3.17 UsageModel, UsageScenario and Workloads (Becker et al., 2007) 103

V

3.18 Different UserActions . 104
3.19 PCM Tools - Modelling Perspective . 105
3.20 PCM Tools - Analysis Perspective . 106

4.1 Motivating Example for Coupled Transformations 111
4.2 Model Abstraction and Model Refinement . 112
4.3 Using Transformation Knowledge in Coupled Transformations 113
4.4 Example using Static Decisions . 113
4.5 Example using Parametric Decisions . 114
4.6 Template Methods used to Implement Coupled Transformations 123
4.7 Overview on SimuCom’s Transformation Structure 128
4.8 Overview on SimuCom’s Parts . 128
4.9 An example for a Simulated Stack . 131
4.10 Stackframe with Proxy for Late Evaluation 132
4.11 Queue Events and State Changes . 136
4.12 Mapping of ActiveResources . 139
4.13 Activity diagram showing the generic closed user behaviour 140
4.14 Activity diagram showing the behaviour of the open workload driver . . . 140
4.15 Example for Component Paramter Stack Frames 143
4.16 Example for an ExternalCallAction and its Stack Frames 145
4.17 Example for Conditional Branch Transitions 149
4.18 Activity Diagram for the Generated Fork Simulation Code 151
4.19 An Example for an Allocation Mapping . 152
4.20 An Example for General and Decorator-based Feature Mark Models 160
4.21 Example for Structure Changing Options . 161
4.22 Completions Meta-Model . 164
4.23 Completion Types . 164
4.24 Transformation of a Component using Dependency Injection 170
4.25 Transformation of a Component using the Context Pattern 171
4.26 Sequence Diagram for the Interaction in the Broker Pattern 172
4.27 Feature Diagram for Required Role Resolution 173
4.28 Structural Change to add a Broker . 176
4.29 Example for Adding the Broker Lookup . 176
4.30 Broker Allocation Alternatives . 176
4.31 Mapping of Provided Roles to Ports . 179
4.32 Exemplary Feature Diagram for AssemblyConnectors 182
4.33 Replacing a Connector with a ConnectorCompletion 183
4.34 Inner Structure of the Generated ConnectorCompletion 184

VI

4.35 Example for a Generated RD-SEFF on the Client’s Side 184
4.36 Composed Completions . 190
4.37 Allocated Connector Completion Example 191
4.38 Composed RD-SEFF of the Connector Completion 191
4.39 An Example for the ProtoCom Mapping Strategy 197

5.1 Architectural overview on the Web Audio Store (Becker et al., 2007) 203
5.2 Web Audio Store PCM Model . 204
5.3 Web Audio Store PCM Model . 205
5.4 Prediction and Measurements without Encoder 206
5.5 Prediction and Measurements with Encoder 206
5.6 Architecture of the Media Store (Koziolek et al., 2007) 207
5.7 Prediction Error without Coupled Transformations 208
5.8 RMI Mapping with and without Authentication 209
5.9 Adding Encryption to an RMI Connector . 210
5.10 Different Marshalling Strategies: SOAP vs. RMI 210
5.11 Adding Encryption to the Comparison of SOAP and RMI 211
5.12 Experiment Design . 217
5.13 Durations for the Complete Task (Martens, 2007, p.102) 219
5.14 Breakdown of the Activity’s Durations . 220

A.1 PCM Packages and their Creators . 240
A.2 PCM Transformations and their Creators . 241
A.3 PCM Editor Support and their Creators . 242
A.4 Generated RD-SEFFs in Connector Completions 243
A.5 Adding Broker Calls . 244

VII

VIII

List of Tables

3.1 The PCM’s Context Model . 80

4.1 Overview on the Mappings . 125
4.2 Overview on Mapping Aspects For Mapping PCM Instances to EJB 157
4.3 Examples for Calculating the Type and Amount of Data to be Marshalled . 187

5.1 Mean Value Comparison . 211
5.2 Deviation of the predicted response times . 218
5.3 Subjective advantages and disadvantages of the automated transformation 223

A.1 Relative deviation of the predicted response times for Palladio 245
A.2 Relative deviation of the predicted response times for SPE 245
A.3 Subjective evaluation of the comprehensibility of the Palladio concepts . . . 245
A.4 Relative number of Palladio related problems (p.92) 246

IX

X

List of Listings

4.1 Simulation Loop . 123
4.2 Code Skeleton Loop . 124
4.3 EntryLevelSystemCall: generated simulation code 141
4.4 InternalAction: code generation template . 145
4.5 SetVariableAction: code generation template 146
4.6 Example EJB Code . 157

XI

XII

List of OCL Fragments

4.1 Deriving the Parameter Sets . 187
4.2 Recursively Deriving Instance Formula for DataTypes 188
4.3 Derving the Final Instance Number . 188

XIII

XIV

Acknowledgements

During the development and writing of this thesis, I have had support by numerous
persons. Without their help, this thesis would not have the broad scope it finally got
by looking at different fields of research, i.e., component-based software development,
model-driven software development, and early, design-time performance predictions.

Taking the risk of forgetting important persons, I explicitly want to name the involved
persons. First, I thank Heiko Koziolek and Jens Happe for their intensive discussions on
the topic, their collaboration in the development of the PCM’s meta-model, their help for
formalising things, very intensive proof-reading, and directing me at improvements of
the presented material.

Furthermore, I thank all current and former members of the DFG research group Palla-
dio, the chair for Software Design and Quality (SDQ) at the University of Karlsruhe (TH),
and the members of the associated group at the Forschungszentrum Informatik (FZI) for
their discussions in numerous PhD rounds and private sessions. They are (in chrono-
logical order of them joining the groups) Ralf Reussner, Viktoria Firus, Heiko Koziolek,
Jens Happe, Klaus Krogmann, Michael Kuperberg, Anne Martens, Thomas Goldschmidt,
Henning Grönda, Chris Rathfelder, and Johannes Stammel.

My special thanks also goes to all students who contributed to this PhD thesis in in-
dividual projects, study theses, diploma theses, or master theses. They are Marko Hoyer,
Matthias Ufflacker, Rico Starke, Andreas Kostian, Klaus Krogmann, Niels Streekmann,
Reiner Schaudl, Matthias Biehl, Anne Martens, and Roman Andrej. Additionally, I have
to thank all members of the project group RIDE.NET in Oldenburg for implementing
early editor support for the PCM and discussing the flaws in the meta-model. Finally,
I thank all research students (HiWis) for their support in discussing and implementing
the PCM’s tools. They are Marko Hoyer, Jens Happe, Sascha Olliges, Klaus Krogmann,
Philipp Maier, and Roman Andrej.

The conducted experiment required intensive preparation and planning. It would
not have had its success without the support by Anne Martens, Heiko Koziolek, Ralf
Reussner, Roman Andrej, and last but not least all the participants who took part in the
experiment in their spare time. Also, I would like to thank Walter Tichy and Lutz Prechelt

XV

for their review of the experiment’s design.
I thank my supervisors Ralf Reussner and Willi Hasselbring for their fruitful com-

ments, discussions, and support during my studies. Additionally, I thank the DFG grad-
uate school ”Trustsoft” and its members for their support.

Several people helped my in forming an extensive view on components, model-driven
software development, or design time performance predictions. I especially like to thank
Sven Overhage, Ralf Reussner, Clemens Syzperski, Wolfgang Weck, Frantisek Plasil,
Achim Baier, Karsten Thoms, Rafaella Mirandola, Vincenzo Grassi, and Dorina Petriu
for their inspiring comments and discussions on these topics.

I also like to thank my parents for their personal and financial support during my
studies and while preparing this thesis.

Finally, I thank my girlfriend Sina Schäfer for her support during the time I was work-
ing on this thesis. I specially note her patience during several time-intensive phases in
the course of preparing this thesis. I dedicate this thesis to her.

XVI

Chapter 1

Introduction

1.1 Motivation

Performance-aware Component-based Software-Development A characteristic of an
engineering discipline is the ability to predict the impact of design decisions. For ex-
ample, in civil engineering accurate predictions of the impact of adding an additional
floor on a construction’s statics are available. Having a similar ability in software engi-
neering requires software development processes and methods, in which the impact of
design decisions on the resulting software system is predictable. While this is important
for functional requirements such as developing a web shop, it is even more important
for extra-functional requirements like the ability to serve 10.000 users simultaneously un-
der acceptable response times. Among these extra-functional requirements, the Quality
of Service (QoS) requirements of a system like performance, reliability, or availability are
directly experienced by the end-user of a system explaining their importance.

However, despite this importance, software developers validate whether a software
system fulfils its extra-functional requirements only during late development stages
when the software is available. At these stages, testing teams can install and test the soft-
ware system to detect violated extra-functional requirements. Smith and Williams (2002)
name this practice ’fix-it-later’ approach. This approach can cause significant costs to cor-
rect violated extra-functional requirements, which may even lead to project failure (Glass,
1998), especially in cases, where the cause of not meeting extra-functional requirements
are design flaws in the software architecture.

A solution based on the introduced engineering idea is offered by design-time QoS pre-
diction methods. They predict the impact of design decisions based on design documents
before implementing them. This allows early reasoning on design decisions while in par-
allel not violating the software’s extra-functional requirements. Those methods increase
up-front development costs but save costs in cases where insufficient QoS would other-

1

1.1. MOTIVATION

wise have caused major refactorings of the software’s architecture.
Component-based software engineering (CBSE) is a development paradigm initially de-

veloped to support reuse, but which is also expected to support the engineering approach
to software development. It aims at constructing systems by composing software com-
ponents into larger components and finally into complete systems. In an engineering
approach to CBSE, software architects derive extra-functional characteristics of systems
using compositional reasoning based on the properties of the constituting components
and their assembly (Hissam et al., 2002). Using components produced by independent
developers allows a distribution of development effort for creating a complete system.
In such a scenario, a necessary prerequisite is the existence of extensive specifications of
each component as the software architect relies on component specifications to assess,
select and finally compose components.

For the prediction of extra-functional properties, software architectures built from
composed components offer advantages. The reduced degree of freedom introduced by
limiting the design to composing pre-build components increases the predictability of the
resulting architecture as it can be based on the components and their composition. Addi-
tionally, the already existing extended specifications of components lower the additional
costs to create component specifications suited for QoS predictions. For QoS predictions,
component developers often simply need to extends their existing (functional) compo-
nent specifications with certain QoS annotations.

Despite the wide-spread industrial use of components in component-based middleware
technologies like Java Enterprise Edition (Java EE) with its Enterprise Java Bean (EJB)
component model, the prediction of extra-functional properties of software architectures
in early design phases is performed seldomly. Focusing on performance as an important
QoS attribute, a major issue preventing the wide-spread use of performance predictions
during architectural design is the high effort and expertise needed to create a system’s
performance model using classical performance prediction models like queuing networks
or stochastic petri nets. Even using a more abstract high level approach like Software
Performance Engineering (SPE) by Smith and Williams (2002) is often infeasible as their
design is focused on monolithic systems. For component-based systems however, limited
knowledge on component internals due to the black box nature of components hinders
the construction of input models needed by monolithic approaches. As an additional
problem, assumptions made by these approaches on properties of the behaviour of the
whole system cannot be guaranteed or even checked in a component-based setting. This
is again a consequence of the black-box nature of components: a component’s behaviour
is only visible when interacting with other components but its internals are hidden.

2

1.1. MOTIVATION

Furthermore, the component’s behaviour (including their resource demands needed
for performance predictions) depends on the context in which the component is used. For
example, when connecting a book-keeping component to a small size company database
it will react much faster than when it is connected to the database of a large scale en-
terprise. Factors influencing the performance of a component are its implementation,
performance characteristics of components it calls, the hard- and software environment it
runs on, and the degree of concurrent use and the size and complexity of processed data.
All these factors are unknown to the developer of a component. As a consequence, the de-
veloper can not provide fixed numbers for the performance attributes of his components,
but he has to provide them parameterised by all factors listed besides the implementation
which is under his control. As a final issue, when deriving a complete performance model
for a given component-based system, the set of parameterised component specifications
and their connections have to form a consistent model with all parameterisations being
solvable. This usually requires the use of the same modelling language including a com-
mon understanding of its concepts.

A subset of the existing performance prediction methods directly targets component-
based software systems instead of monolithic systems by approaching the introduced is-
sues. A survey on existing component-based performance prediction methods by Becker
et al. (2006b) revealed that all investigated methods target a certain subset of the identified
influence factors on the performance of software components (component implementa-
tion, external services, hardware platform, component usage), but none of them yet re-
spects a comprehensive set. Either some influence factors are missing like in the CB-SPE
approach by Bertolino and Mirandola (2004) which assumes that the software architect
adds the missing information or the scope of the model is focused resulting in a reduced
information need like in the RoboCop (Bondarev et al., 2004) model which is directed at
embedded systems showing limited hard- and software modelling complexity than for
example web applications.

As a solution approach, this thesis introduces the Palladio Component Model (PCM) as
modelling language to specify component-based software systems. The PCM is a meta-
model for performance-aware component-based software modelling which explicitly
tackles the introduced issues of early design time performance prediction in a component-
based context. It supports parameterised component specifications including support for
parameterisation over the externally connected components, the hardware execution en-
vironment, and usage dependencies including abstractions of the inter-component data
flow. The PCM provides distinct modelling languages for each developer role partici-

3

1.1. MOTIVATION

pating in a component-based development process. It allows performance specifications
with arbitrary distributed stochastic performance annotations thus lowering the risk of
violating model assumptions when composing components from different sources. Its
initial development started in the context of this work, but meanwhile extensions by other
PhD theses, e.g., for parameterisations based on component usage, exist (Koziolek, 2008).

Model-Driven Software Development and Performance Prediction When using mod-
elling languages, it is desirable to gain an advantage of the effort spent on model construc-
tion during later development phases. A paradigm targeting this issue is model-driven soft-
ware development (MDSD). MDSD aims at leveraging the role of models in the software de-
velopment process from documentation- and communication-oriented artefacts to arte-
facts equally important as source code. For reasons of flexibility, MDSD allows developers
to define their own problem-oriented modelling languages using meta-models. Transfor-
mations then take instances of these meta-models and transform them into models of
lower abstraction levels and finally source code. Advantages of the transformation-based
approach are the ability to deal with increased problem complexities because of model ab-
stractions, model-based reasoning on software properties, or improved communication-
and management activities. In addition, the use of models and transformations ensures
a synchronisation between models of a software and its implementation, i.e., the model
reflects the implementation in a consistent way at any time. Especially for architectural
models, MDSD offers a way to transform the system’s abstract architectural model into
an implementation. In this usage scenario, transformations add technical details of an im-
plementation like middleware specific code fragments commonly omitted in architectural
models for reasons of abstraction.

MDSD already demonstrated its advantages in industrial software development practice
(Pietrek et al., 2007) to generate implementations of systems based on models. In research
one application of MDSD is transforming software system models into performance pre-
diction models. The automated execution of such transformations allows using a high
level software system specification for performance predictions without the need for per-
formance experts to construct prediction models. However, while several approaches
exist which realise such transformations, they are based on the abstract system model.
While it is desirable from the viewpoint of the software architect to use this model and
not an additional one, this model intentionally omits details of the implementation like
used design patterns or used features offered by a particular middleware platform like a
Java EE application server. This information is also missing from the prediction model,
however, it contains information which might by relevant for more accurate predictions.

4

1.1. MOTIVATION

Existing model-based performance prediction methods as those surveyed by Balsamo
et al. (2004a) base their predictions solely on abstract architectural models, i.e., models
that do not contain information on the realisation of the software. As a consequence, their
predictions are inaccurate in cases where the implementation diverts from the original ar-
chitectural model. For example, this happens if developers implement the system differ-
ently and do not update the models accordingly or in cases where they add implementa-
tion details intentionally omitted in abstract models. Such information is commonly the
mapping to middleware technologies like Java EE. As a consequence, the performance
impact of such realisation decisions is not part of the prediction model. Some paper deal
with the problem on an ad hoc basis. The work by Verdickt et al. (2005) automatically in-
cludes details of a CORBA middleware platform into the performance prediction model.
Grassi et al. (2006) automatically include details of component connectors into instances
of their KLAPER performance prediction model. Finally, Woodside et al. (2002) already
raised the issue of including details omitted from a system model into a performance
model by manually adding so called completions reflecting performance relevant system
details into the performance prediction model.

A solution approach to this problem presented in this thesis is based on the assumption,
that the abstract system model is not transformed manually into an implementation but
also by using model-driven techniques, i.e., so called platform transformations. If they
are used, there is a defined relationship between the abstract system model and its imple-
mentation which can be exploited to refine the performance prediction model in order to
gain more accurate predictions.

The idea is demonstrated using model transformations in the context of the PCM.
Transformations introduced in this thesis map instances of the PCM either to a newly
developed simulation-based prediction model called SimuCom, architectural prototypes
called ProtoCom (both serving as prediction models) or code skeletons for EJB (serving
as realisation environment). In order to get more accurate prediction models, a method
called Coupled Transformations is introduced, which automatically exploits the fact that
parts of the application code are generated by transformations. As a result, the software
architect can still model on an abstract level but gets a refined performance prediction
model which includes details of the realisation.

The method uses for each code generation transformation an additional, coupled trans-
formation that alters the prediction model in a way which adds the performance impact
of the generated code to the prediction model. The coupled transformations use the afore-
mentioned concept of completions introduced by Woodside et al. (2002) by leveraging the

5

1.2. APPLICATION SCENARIO

general concept of completions to completions based on special components thus fitting
them into the overall CBSE setting.

Additionally, Coupled Transformations support transformations that can be parame-
terised. Parameterised transformations use so-called mark models to make user options
available in the transformation explicit, e.g., the choice between different types of com-
ponent implementations offered by the component middleware (for example stateful vs.
stateless in EJB). The mapping of PCM instances to Java EE applies the Coupled Trans-
formations method for the generation of aspects of component deployment and commu-
nication to demonstrate its application and increase CBSE based performance prediction
accuracy.

This thesis contains a validation of the presented concepts on two levels. The first level
shows the prediction accuracy of the introduced simulation and its increase when us-
ing Coupled Transformations. The second level shows the applicability of the modelling
language for model-driven performance predictions as introduced by the PCM and its
transformations. For this, this thesis presents results of a replicated case study performed
with students using the PCM’s toolsuite.

1.2 Application Scenario

The application scenario targeted in this thesis is a forward engineering process for con-
structing a component-based software system by using model-driven techniques with
early incorporation of the performance impact of design and implementation decisions.
The PCM supports this by design time models which allow early estimates of the perfor-
mance. Especially, it is assumed that different design alternatives for realising the system
or its implementation exist. This thesis supports answering two types of questions: First,
which alternative has the best performance compared to a given performance goal? Sec-
ond, which of these alternatives do not violate given performance requirements?

The PCM and the transformations introduced in this thesis support a development
process where the development tasks may be distributed among several developer
roles. In the forward engineering approach, component developers take requirements
for needed components and create PCM models for them. The PCM supports this com-
ponent refinement task by its component type hierarchy. Finally, the refinement process
yields implementation component types, i.e., a specification of the realisation of a com-
ponent. Component developers can use transformations to generate code skeletons for
this type of components. The transformation may offer parameters. After completing
the generated skeletons, component developers package the implemented components

6

1.3. SCIENTIFIC CONTRIBUTIONS

and the PCM model containing the chosen transformation options and deposit it into a
repository.

Software architects retrieve these components and their models. They use the models
and create alternative designs for their system. The alternatives can vary in the compo-
sition of the components but also in the way the components and their connectors are
mapped to realisations, e.g., setting of middleware features offered for component con-
nectors. Coupled Transformations add the impact of the latter mapping automatically
into the prediction model. Adding PCM sub models of the soft- and hardware environ-
ment and the usage of the system by its users, the software architect analyses the different
design alternatives and finally decides for one. For the selected design alternative model
transformations generate component adapters, middleware configuration files like de-
ployment descriptors and skeleton load test drivers.

For the analysis model, the focus of this thesis lies on performance. However, the Cou-
pled Transformations method also helps when evaluating other properties using different
model transformations with different analysis models as target, i.e., other QoS attributes,
development costs, or functional analysis. Additionally, the PCM may be extended in
future work to support additional QoS attributes like reliability.

1.3 Scientific Contributions

The main contributions of this thesis are twofold:

1. The Palladio Component Model, a meta-model for the specification of component-
based software systems which allows both, the transformation of models into (par-
tial) implementations and the transformation of the same model instance into a per-
formance prediction model. The introduced meta-model deals with requirements
specific to a CBSE development process like separated developer roles.

2. The Coupled Transformations method which aims at exploiting the defined rela-
tionships between an abstract system model and its implementation as defined by
the transformation that maps the model to implementations. This method uses per-
formance relevant decisions encoded into the implementation transformation to re-
fine the performance prediction model and increase its accuracy.

The following gives details on both contributions.

Palladio Component Model and Transformations Each model-driven process has to
define its meta-model. In this thesis, the PCM is introduced and used as meta-model. It

7

1.3. SCIENTIFIC CONTRIBUTIONS

defines a modelling language for a component-based development process which allows
early performance predictions.

In the PCM, each developer role has a domain-specific modelling language (DSL) to
formalise the information available to them (Becker et al., 2007). Component developers
model components and their resource demands with parametric dependencies on influ-
ence factors unknown to them like the behaviour of external service, the hard- and soft-
ware environment, and the usage. Especially the usage dependencies have been added
to the PCM by Koziolek (2008) and is not part of this thesis’ contribution. However, this
thesis’ transformations rely on the added concepts. Other roles supported by the PCM are
the software architect who builds systems by composing components, the deployer who
specifies and maintains the execution environment, and the domain expert who models
the expected behaviour of the system’s users.

The PCM follows a normative approach (Reussner et al., 2007). It defines components
and their properties in terms of its meta-model’s syntax and static semantics via OCL
constraints. Thus, it captures the component concept for automated processing by trans-
formations. As a normative approach, the PCM’s component concept is not based on
existing industrial component platforms, but on properties available in literature like ex-
plicit, contractually specified provided and required interfaces or the ability to compose
components into composite structures like composite components or systems.

A central concept introduced by the PCM is the use of contexts (Becker et al., 2006c).
By using a component in a composition of other components, a developer puts a compo-
nent in a context. The PCM’s meta-model contains these context dependencies explicitly
to capture all component external influence factors on the component’s QoS attributes.
Currently, the PCM supports AssemblyContexts to store connections and differentiate sev-
eral bindings of the same component type, AllocationContexts to model the mapping of
components to execution environments, and UsageContexts to model dependencies on
input parameters of component services.

The PCM’s meta-model contains information from the functional design of systems
like interfaces, data types, components, or connectors as well as non-functional attributes
like performance annotations or resource environment modelling. As such, it can be used
as source for code generation and for performance analysis.

This thesis introduces SimuCom (Becker et al., 2007, 2008b), a transformation of PCM
model instances into a Java based, event-discrete simulation environment for predicting
performance. The simulation approach is necessary, as the PCM’s expressiveness allows
the specification of models with no known analytical solution. The simulation’s hardware
model is based on queuing network theory (Bolch et al., 1998a). For its evaluation of com-
ponent contexts it adapts the idea of stack frames used in compiler construction (Much-

8

1.3. SCIENTIFIC CONTRIBUTIONS

nick, 1997).
Mapping instances of a normative meta-model like the PCM to an implementation

platform like Java Enterprise Edition and EJB requires to bridge mismatches in the under-
lying concepts. For example, as EJB uses classes for components, it has no explicit support
for required interfaces. Several options exist to reflect this concept. This thesis makes the
options for bridging mismatches explicit and allows a selection by the transformation
user. For this, the transformations use feature diagrams (Czarnecki and Eisenecker, 2000)
to parametrise the transformation.

Finally, this thesis introduces a third transformation to generate a prototype whose
behaviour mimics the resource demand of PCM instances (Becker et al., 2008a; Kozi-
olek et al., 2008). Prototyping is an established approach for early testing whether a
system meets extra-functional requirements (Bardram et al., 2005). The generated pro-
totype supports early validation of predictions made by the simulation. It is not bound to
assumptions made by the simulation on the systems’ execution environment. Especially
for complex distributed and highly concurrent systems, the simulation model’s assump-
tions might be unrealistic.

Coupled Transformations The Coupled Transformations method (Becker, 2008) is
based on the observation that code generation reduces the degree of freedom available to
developers. For the prediction of extra-functional properties this reduction in the degree
of freedom can lead to an increased prediction accuracy as it is sufficient for the predic-
tion method to deal with the reduced output that the generator can produce instead of
arbitrary code fragments.

The use of generators becomes popular by the increasing adoption of model-driven
software development techniques in industry. For example, in the OMG’s MDA process,
transformations map an abstract model to different platform specific implementation,
e.g., one transformation can map an UML model to a .NET realisation and another one
maps it to EJB. If it is known how a model is transformed into an implementation, i.e., the
transformation is given, this knowledge can be used to derive a second transformation
that reflects this knowledge in an analysis model, e.g., a performance prediction model.
This second transformation is called a coupled transformation to the first one, as it reflects
the impact of the first transformation. In the example above, coupled transformations
would reflect the different performance properties of a mapping to .NET versus a map-
ping to EJB.

Coupled Transformations also help in cases where a system is modelled using a non-
technical DSL. As in such a process, there may not even exist technical design documents
like UML2 diagrams if transformations generate code directly from instances of the DSL.

9

1.4. STRUCTURE

In such cases the performance of the final implementation depends mainly on the trans-
formation. Coupled Transformations is a method which is not restricted to performance
modelling. Coupled Transformations offers the advantage for developers to model their
systems on higher abstraction level without loosing details of lower abstraction levels
necessary for accurate analyses of system properties. An automated coupled transforma-
tion includes these details into the analysis model making its results more accurate.

This thesis uses Coupled Transformations to include the impact of mapping PCM in-
stances to EJB implementations. The focus in this thesis is on the mapping of components
and connectors. This thesis’ coupled transformations introduce so called completion com-
ponents to include the impact. Completion components leverage the completion concept
introduced by Woodside et al. (2002) to component-based software modelling (Wu and
Woodside, 2004). The Coupled Transformations in this thesis directly modify a PCM
instance with in-place transformations to include the performance impact. This allows
reusing the expressiveness of the PCM and the existing simulation transformation to
solve the modified model.

1.4 Structure

This thesis is structured in six chapters:

Chapter 2 introduces foundations and work related to the concepts presented in this the-
sis. Its basic structure follows the three main areas involved in this thesis: CBSE,
model-driven software development, and performance prediction. Section 2.1 dis-
cusses concepts from the domain of component-based software engineering. Be-
sides introducing the concepts of component, the developer roles involved in a
CBSE process, and software architecture, it also contains a survey on existing com-
ponent models and their capabilities. Section 2.2 gives a brief overview on the con-
cepts available in model-driven software development. It contains definitions for
the terms model, meta-model and transformation, an introduction to the most im-
portant technical concepts, and a brief overview on the platform term as coined
by the OMG’s MDA paradigm. Section 2.3 gives an introduction on early design
time performance prediction methods. It presents a process giving an overview
on performance prediction activities, influence factors on software performance,
and required input models for performance prediction methods. A brief survey
on simulation-based performance prediction methods and performance prototyp-
ing serves as discussion of related work for the analysis methods introduced in this
thesis. The chapter closes in section 2.4 with a list of requirements for a combined

10

1.4. STRUCTURE

CBSE, MDSD, and performance prediction enabled method.

Chapter 3 introduces the Palladio Component Model (PCM). After an introduction to the
development process including the CBSE developer roles envisioned by the PCM
in section 3.1, section 3.2 describes fundamental concepts used in various places in
the PCM’s meta-model like modelling using random variables and component con-
texts. Sections 3.3 to 3.8 give a brief introduction to the different parts of the PCM’s
meta-model. Interfaces and Datatypes introduced in section 3.3 are prerequisites for
the definition of the various component types supported in the PCM (section 3.4).
Resource Demanding SEFFs (section 3.5) describe the behaviour and resource inter-
action of single component services in the PCM. Section 3.6 explains the meta-model
used when describing systems composed from components. Section 3.7 focuses on
the allocation of components in run-time environments. Finally, instances of the
meta-model presented in section 3.8 model the interaction of users with a system.
Section 3.9 gives a brief overview on the current PCM’s tool suite and its status.
Chapter 3 concludes with assumptions and limitations restricting the application of
the PCM in its current state in section 3.10.

Chapter 4 starts with an introduction of Coupled Transformations in section 4.1. It pro-
vides a motivating example and an abstract formalisation of the central idea. Before
using Coupled Transformations, section 4.2 introduces modular transformation, i.e.,
transformations with a common part and output specific parts. After giving an
overview on this thesis’ transformations in section 4.3, section 4.4 elaborates on
SimuCom, which is a transformation of instances of the PCM into a performance
prediction simulation. SimuCom is a native simulation tool for PCM instances and
thus supports the full set of model elements of a PCM instance. It relies on generated
Java code which is embedded into SimuCom’s platform based on Desmo-J. Based
on the PCM as CBSE performance model, section 4.5 introduces the two techniques
used in this thesis to couple transformations, i.e., structural changes and completion
components. The transformation of PCM instances into an EJB- or POJO-based reali-
sation presented in section 4.6 uses Coupled Transformations and the techniques in-
troduces in section 4.5 to modify SimuCom’s transformation to include knowledge
of the code mapping into the simulation model. The presented code mapping fo-
cuses on component assembly and uses identified design options which arise when
mapping PCM components to EJBs as case study for transformation coupling. Fi-
nally, section 4.7 shows how a combination of SimuCom and the code mapping
leads to ProtoCom, a mapping to generate performance prototypes from PCM in-
stances useful in later development stages to validate and refine performance pre-

11

1.5. CONTEXT OF THIS THESIS

diction models.

Chapter 5 shows in case studies the validity of the contributions of this thesis. Section 5.1
demonstrates that predictions made by SimuCom reflect reality in an appropriate
way. For this, it presents two different case studies. In the first case study, SimuCom
produces predictions for a web-based music store. The second case study elabo-
rates on the impact of Coupled Transformations on prediction accuracy. It uses a
mark model to predict different kinds of realisations of a component connector. Sec-
tion 5.2 reports on an experimental setting to validate the PCM’s applicability by
third parties for doing performance analyses.

Chapter 6 concludes this thesis. It gives a summary of the results of this thesis in sec-
tion 6.1 and references the assumptions and limitations in section 6.2. Sections 6.3
and 6.4 discuss opportunities for future work. While section 6.3 lists questions
which remained unanswered in this thesis, section 6.4 points to other application
areas for the PCM and Coupled Transformations.

1.5 Context of this Thesis

Three areas form the context of this thesis. The first area is component-based software
engineering, especially component models. The PCM uses several concepts common in
component-meta models as surveyed by Lau and Wang (2006). Its concept of parame-
terised specifications of context-dependent, extra-functional properties builds on the con-
cept of parametric contracts introduced by Reussner (2001).

The second area is model-based and model-driven performance prediction methods
as surveyed by Balsamo et al. (2004a). The presented simulation relies on queuing net-
work theory (Bolch et al., 1998b), however, the PCM’s semantics is more related to queued
petri nets (Bause and Kritzinger, 1996). The idea to automatically include details on per-
formance relevant parts of a system to the design model is based on the completion idea
introduced by Woodside et al. (2002).

The third area is model-driven software development (Völter and Stahl, 2006) and
generative programming (Czarnecki and Eisenecker, 2000). Especially the use of feature
diagrams to parameterise transformations is based on the domain analysis concept intro-
duced by Czarnecki and Eisenecker (2000).

Additionally, the PhD thesis by Koziolek (2008) is closely related to this thesis. It
extends the PCM’s meta-model with parameteric usage dependencies. This thesis’ trans-
formations already use the extended version of the PCM’s meta-model.

12

1.6. ABSTRACT

1.6 Abstract

Component-based software engineering aims at developing software systems by assem-
bling pre-existing components to build applications. Advantages gained from this in-
clude a distribution of the development effort among various, independent developer
roles, and the predictability of properties, e.g., performance, of the resulting assembly
based on the properties of its constituting components. Especially, during software de-
sign, system models abstract from system implementation details. These abstract mod-
els are the input of automatic, tool supported architecture-based performance evaluation
methods. However, as performance is a run-time attribute, abstracting from implemen-
tation details might remove performance-relevant aspects resulting in a loss of prediction
accuracy. Existing approaches in this area have two drawbacks: First, they insufficiently
support the specifics of a component-based development process like distributed devel-
oper roles and second, they disregard implementation details by focusing on design-time
models only. The solution presented in this thesis introduces the Palladio Component
Model, a meta-model specifically designed to support component-based software devel-
opment with predictable performance attributes. Transformations map instances of this
model into implementations resulting in a deterministic relationship between the model
and its implementation. The introduced Coupled Transformations method uses this re-
lationship to significantly increase prediction accuracy by an automatic inclusion of im-
plementation details in predictions. The approach is validated in several case studies
showing the increased accuracy as well as the applicability of the overall approach by
third parties for making performance-related design decisions.

1.7 Abstract (in German)

Beim Entwurf komponentenbasierter Software-Systeme werden bereits existierende
Software-Komponenten zu neuen Anwendungen kombiniert. Durch dieses Vorgehen
entstehen unter anderem Vorteile durch die effiziente Verteilung der Arbeitslast auf
mehrere Entwicklerrollen oder durch eine erhöhte Vorhersagbarkeit des neu gebilde-
ten Systems. Letzteres basiert auf der Annahme, dass die Eigenschaften der bere-
its existierenden Komponenten bekannt und spezifiziert sind, damit aus ihnen die
Eigenschaften des Gesamtsystems hergeleitet werden können. Hierzu werden zur En-
twurfszeit abstrakte Modelle der Komponenten genutzt, um werkzeuggestützte Vorher-
sagen durchzuführen. Viele der derzeit verwendeten Modelle abstrahieren von Im-
plementierungsdetails, die Laufzeiteigenschaften wie Performance oder Zuverlässigkeit
entscheidend beeinflussen können. Als Konsequenz ergibt sich, dass Vorhersagen über

13

1.7. ABSTRACT (IN GERMAN)

diese Eigenschaften unpräzise werden. Existierende Arbeiten im Bereich der Vorhersage
komponentenbasierter Systeme gehen bisher unzureichend auf die Spezifika des kompo-
nentenbasierten Systementwurfs und seiner Rollenteilung ein. Ferner basieren sie ihre
Vorhersagen bisher alleine auf den abstrakten Modellen und verlieren so die angesproch-
ene Vorhersagepräzision. In dieser Dissertation wird eine Lösung für die geschilderten
Probleme im Rahmen des Palladio Component Models (PCM) präsentiert. Das PCM ist
ein Meta-Modell, das speziell für die modellgetriebene Performance-Vorhersage kompo-
nentenbasierter Software-Systeme entworfen wurde. Durch die Verwendung von Trans-
formationen zur Abbildung der Instanzen des PCM auf Implementierungen wird dabei
ein deterministischer Zusammenhang zwischen dem Entwurfsmodell und der späteren
Implementierung geschaffen. Die Nutzung dieses definierten Zusammenhangs zur
Verbesserung der Vorhersagemodelle im Rahmen der Coupled Transformations-Methode
stellt dabei den zentralen Beitrag dieser Dissertation dar. Das PCM sowie die Coupled
Transformations-Methode wird in verschiedenen Fallstudien validiert, die zeigen, wie
die Vorhersagegenauigkeit durch das Einfügen performance-relevanter Details der Im-
plementierung ins Vorhersagemodell gesteigert werden kann. Da dieser Prozess durch
Transformationen automatisiert ist, können Dritte von der Verbesserung der Vorher-
sagepräzision profitieren, ohne Fachkenntnisse im Gebiet der Performance-Modellierung
besitzen zu müssen.

14

Chapter 2

Foundations and Related Work

Today, software development processes still offer many challenges. They span from man-
agement issues like time and budget estimations, over choosing the right development
processes and selecting the right methods and tools, to managing the quality of the re-
sulting system. Software engineering aims to deal with these problems by leveraging
software development to an engineering discipline. A characteristic of an engineering
discipline is the availability of a catalogue of methods and practices with guidelines for
their systematic selection. Applying these methods leads to products which ideally have
predictable functional and extra-functional properties and processes with determinable
time frames and costs.

Component-based software engineering (CBSE) is a mean for software engineering to be-
come an engineering discipline. In CBSE, developers compose basic building blocks, so
called components, into more complex structures like composed components and finally
complete systems. Basing software development processes on component composition
helps breaking the development process systematically down into smaller parts. Time
and budget management based on components allows more accurate predictions. Ad-
ditionally, reasoning on the extra-functional properties of a composition of components
can rely on the properties of the basic components plus a theory for deriving attributes of
composed structures from their basic constituting parts.

Such an extra-functional attribute, that is often of high importance during software
development, is the performance of the resulting system. If systems offer an insufficient
performance, they are usually not applicable causing projects to fail. Therefore, early
design time performance predictions help to take the right decisions to create systems
which fulfil their performance requirement. This avoids cost intensive redesigns of sys-
tems in late development phases. In a component-based development process estimating
the performance of design alternatives usually involves estimating the performance char-
acteristics of different compositions of components based on the performance of single

15

components.
To reduce the complexity of reasoning on components based on their source code, de-

velopers use models of components and their composition. Models of basic components
specify their basic attributes, and models of component compositions describe their col-
laboration. Using both types of models, methods derive the attributes of composed struc-
tures. Additionally, the created models may serve as basis for code generators reliving
developers from the burden to implement the structures designed in their models man-
ually. A programming paradigm which supports the described transformation steps is
model-driven software development (MDSD) which aims at leveraging the role of models in
the development process by making models the primary development artefacts.

CBSE
Model-based

Performance

Engineering

MDSD

Foundations

Components

CBSE Roles

Software Architecture

Related Work

Component Models

Foundations

Performance Influence Factors

Prediction Process

Formal Prediction Models

Related Work

Perf. Simulations

Perf. Prototyping

Related Work

Component-Based

Performance Prediction

Related Work

Generating Code from

CBSE Models

Related Work

Model-driven

Performance Prediction

Foundations

Models and Meta-Models

Transformations

Platforms

MDSD Standards

Contributions

Palladio Component Model

Coupled Transformations

Related Work

Platform Completions

Figure 2.1: Research Areas Involved in this Thesis

This section is structured based on the three areas introduced above and depicted
in figure 2.1. First, the sections 2.1.1-2.1.3 introduce the necessary foundations of
component-based software development. Based on this, section 2.1.4 surveys existing
component models, their analysis methods, and code generation capabilities to highlight
differences to the component model introduced in this thesis. Second, sections 2.2.1-2.2.3

16

2.1. COMPONENTS, ARCHITECTURE AND COMPONENT MODELS

introduce the foundations of MDSD necessary to understand the concepts presented in
this thesis. Third, sections 2.3.1-2.3.3 introduce the foundations of performance prediction
methods based on software design documents. As this thesis uses simulation and proto-
typing techniques to derive the performance of component compositions, sections 2.3.4
and 2.3.5 briefly give references to other approaches also using the same techniques. Sec-
tion 2.3.6 gives an overview on other approaches doing performance predictions based
on components and their composition while section 2.3.7 focuses on methods using au-
tomatic MDSD transformations to derive performance models. Finally, section 2.3.8 dis-
cusses approached which use transformations to include implementation platform details
into their performance predictions which is closely related to Coupled Transformations.

2.1 Components, Architecture and Component Models

Components are the central build blocks in CBSE. However, the term component is used
in computer science in a wide variety of contexts with different meaning. In order to
clarify the term, the following section gives a definition, which is used for the remainder
of this thesis.

2.1.1 Software Component

The definition used in this thesis is given by Szyperski et al. (2002) in their book on
component-based software engineering.

Definition: Software Component (Szyperski et al., 2002) A software component is a unit
of composition with contractually specified interfaces and explicit context dependencies only. A
software component can be deployed independently and is subject to composition by third parties.

The following paragraphs explain the basic parts of the definition of a software com-
ponent in more detail, i.e., contractually specified interfaces, explicit context dependen-
cies, independent deployment, and third-party composition.

Contractually Specified Interfaces Components solely use interfaces to collaborate
with their environment, i.e., any accessible component service has to be part of an in-
terface provided by the component. These interfaces need to be contractually specified
which refers to the design-by-contract principle introduced by Meyer (1997). This princi-
ple introduces a contractual relationship between some software entity requiring a service
offered by some other entity. If the client fulfils a set of preconditions when requesting

17

2.1. COMPONENTS, ARCHITECTURE AND COMPONENT MODELS

a service, the server guarantees the service’s postconditions. Interface contracts may ex-
ist on different levels of abstraction. For example, Beugnard et al. (1999) lists signatures,
protocols, synchronization constrains, or Quality of Service requirements as abstraction
levels.

Explicit Context Dependencies A component has explicit context dependencies only. As a
consequence the component has to specify what it expects from the environment in which
it is used. Many of the component models (cf. section 2.1.4) use the concept of required
interfaces to enable the specification of services required by a component.

Independent Deployment A component has to be deployable independently of other
components. Note, that this defines the smallest software entity which can be regarded
as a component: A software entity which can not be further divided into smaller entities
that are independently deployable is a basic component.

Third-Party Composition Components are subject to third-party composition, i.e., their
creator is not necessarily the person who composes them. This characteristic is inspired
by an engineering principle of building software applications in a distributed way. On the
one hand, there are creators of software components. They are supposed to be experts for
the functionality a component offers. Hence, they realise the functionality of components,
specify provided and required interfaces, and finally, put them into repositories from
which other developers retrieve them for composition.

The person composing two or more components is often called assembler. The assem-
bler is responsible for connecting required with provided interfaces to fulfil the needs of
the component. In so doing, the composite structure gets functionality based on its con-
stituting components. A major assumption often made in this process is that the creator
of the component and the assembler only communicate using the component’s specifica-
tion. More information on this idea of dividing the development tasks among different
developer roles can be found in section 2.1.2.

Discussion Even if the cited definition of a software component is the one which is cited
commonly, there are still several issues remaining with this definition which are discussed
in the remainder of this section.

Cheesman and Daniels (2000) raised the issue of having no means to differentiate a
component’s development stage. Hence, they suggest to differentiate component specifi-
cation, implementation, deployment, and run-time stages. In the specification stage only
a component specification is available, e.g., a set of interfaces the component should pro-

18

2.1. COMPONENTS, ARCHITECTURE AND COMPONENT MODELS

vide. In the implementation stage, the specification has been implemented using some
programming language, i.e., the component’s code offers the specified interfaces. When
put in an execution environment, such an implemented component becomes a deployed
component which finally gets instantiated and executed at run-time. Szyperski et al.
(2002) require a component to have no (externally) observable state. In the classification
introduced, this puts components on the type or specification level.

Another issue is the usage of the term ”component” in many different computer sci-
ence areas with different semantics. Even Szyperski accepts the fact, that (software) com-
ponent is a term used with various meanings. He comments on this situation by giving
a definition, which only captures the most basic common characteristic of all definitions
and can be derived by the origin of the word component: ”Components are for composi-
tion [...]. Beyond this trivial observation, much is unclear.” (Szyperski et al., 2002).

A final issue stems from the lack of precision of the definition which renders it useless
to decide whether something is a software component or not. For example, a component
has to specify it context explicitly. As context is a term which is unclear without further
explanations, it remains unclear which elements should be contained in such a context
specification. It is commonly accepted to include the set of services required from other
components in the context by the means of required interfaces. However, besides the
required interfaces there can be additional dependencies to the context. For example,
a specific execution environment (e.g., operating system and its services, middleware
platform, virtual machine, etc.) might be needed to execute the component. A context
model respecting these additional factors has been proposed by Becker et al. (2006c) and
is presented in more detail in section 3.2.2.

2.1.2 CBSE Developer Roles

In CBSE literature, there is a division of the whole development task on several executing
roles. However, the roles available and their specific tasks vary depending on the pursued
goals of the respective methods. The following gives a short overview on the common
understanding of the CBSE roles and briefly highlights some differences between them.
The role model used in this thesis is presented in section 3.1.1.

Figure 2.2 shows the common roles involved in CBSE processes and the development
artefacts they produce.

Component Developer Component developers create components which they store in
so called repositories once they are implemented (cf. for example Lau and Wang (2005)).
The repositories serve as database of the components developed and are assumed to be
searchable with the aim of an easy retrieval of components with suited functionality.

19

2.1. COMPONENTS, ARCHITECTURE AND COMPONENT MODELS

<<Component Developer>>

Repository

<<Component Developer>>

Repository

<<uses>>

<<Assembler>>

<<uses>>

<<use
s>

>

System

Execution

Environment

Execution

Environment

<<Deployer>>

<<uses>>

<<End User>>

Figure 2.2: CBSE Developer Roles and their Artefacts

Some processes additionally consider the development of composed components, i.e.,
components whose realisation is based on components itself. For example, (Ritter, 2000,
p. 6) introduces composed components as a mean of building new domain specific com-
ponents from more basic or generic ones. Composed components are produced to be put
into the repository when finished.

Assembler Assemblers retrieve components from a set of available repositories and
combine them with the aim of creating an application. This is done by composing the
components, using the offered functionality to create new functionality. Some processes
differentiate this step further into component composition and component configuration.
Ritter (2000) mentions in the context of business information system components the pos-
sibility of performing so called parameterisations. This often includes using special in-
terfaces of the components introduced for supplying configuration options (Overhage,
2006).

In addition to the introduced tasks, some components utilise frameworks which need
to be provided and configured by the assembler. Configuration options usually deal with
technical aspects of components and their composition. For example, in Java EE the as-
sembler configures component container providing extra-functional features like authen-
tication or component persistency.

20

2.1. COMPONENTS, ARCHITECTURE AND COMPONENT MODELS

Deployer After composing the application, software architects pass the application’s
blueprint to so called deployers who are in charge of installing the components in run-
time execution environments. The execution environment contains run-time services
needed by the components (like frameworks, application servers, etc.), basic layers (like
virtual machines, operation systems, etc.), and finally the hardware needed to execute
the aforementioned. The deployer is also in charge of setting configuration parameters
available at the listed layers. However, this is constrained by the architecture as designed
by the assembler.

End-User Finally, the application is started by the deployer and ready to be used by end-
users. They use the functionality offered by the application, usually without knowing any
of the details on the composition or deployment.

Example: Java EE Roles The Java Platform Enterprise Edition specification V5 (Sun Mi-
crosystems Corp., 2006) defines so called Platform Roles. The specification introduces
seven roles: Java EE product provider, application component provider, application as-
sembler, deployer, system administrator, tool provider, and system component provider.

The Java EE product provider is responsible for implementing the Java EE run-time
environment (i.e., an application server). Application component providers correspond
to the introduced component developers. However, in Java EE the term component is
used in a wider sense as it can also contain the production of artefacts like HTML pages
or document design.

The application assembler corresponds to the introduced assembler. His tasks contain
the assembly of the components provided by the application component providers ”into a
complete Java EE application” (see (Sun Microsystems Corp., 2006, p. 18)). Additionally,
he specifies a set of unresolved dependencies which have to be resolved by the deployer.
This set includes system external calls or database connections just to name some.

The deployer is responsible for resolving unresolved dependencies and physically in-
stalling the binary components on the respective execution environments. In the Java EE
role model there is the additional role of the system administrator how is responsible for
monitoring and maintaining the running application. This also includes providing and
maintaining the hardware infrastructure. In the role model presented in figure 2.2, both
roles are combined into the deployer role.

The Java EE specification does not introduce the role of the end-users, however, it
contains two additional roles. According to the specification, tool providers are in charge
of implementing the tools described in the specification. System component developers
enrich the Java EE platform with additional generic components and services usable by

21

2.1. COMPONENTS, ARCHITECTURE AND COMPONENT MODELS

assemblers or deployer. This includes database connectors, messaging support services,
or authorisation components.

2.1.3 Software Architecture

Software architects compose components into systems by assembling components. Shaw
and Garlan (1996) called the resulting system of components and connectors a software
architecture.

Definition: Software Architecture (Shaw and Garlan, 1996) Software architecture [is a
level of design that] involves the description of elements from which systems are built, interactions
among those elements, patterns that guide their composition, and constraints on these patterns.

Software architectures contain elements from which systems are built. As already
stated, most architectures use components as such elements. Connectors commonly spec-
ify component interaction. They are mediating entities that determine how messages are
exchanged between the components. The patterns and constraints which enforce spe-
cific ways of combining components can either be given as architectural design patterns
(cf. Buschmann et al. (1996)) or as styles (cf. Clements et al. (2003)).

The SEI’s (Software Engineering Institute) website currently favours the following def-
inition of the term software architecture over a large list of alternative definitions, histor-
ical and recent ones.

Definition: Software Architecture (Bass et al., 2003) The software architecture of a
program or computing system is the structure or structures of the system, which comprise
software elements, the externally visible properties of those elements, and the relationships among
them.

Again, the definition contains the comprising software elements and their relation-
ships of a system. Additionally, the definition takes into account explicitly externally vis-
ible properties of these elements. The SEI’s website explains externally visible properties
as follows: ””Externally visible” properties refers to those assumptions other elements
can make of an element, such as its provided services, performance characteristics, fault
handling, shared resource usage, and so on.” (Carnegie Mellon University, 2007). Hence,
this definition takes extra-functional properties explicitly into account.

The SEI website (Carnegie Mellon University, 2007) lists some interesting conse-
quences and interpretations of the definition given. The following gives a selection of
them based on relevance for this thesis. First, a software architecture is an abstraction

22

2.1. COMPONENTS, ARCHITECTURE AND COMPONENT MODELS

of the real system, as it omits the details of the internals of the elements of the archi-
tecture. Only externally observable behaviour or properties are part of the architecture.
This makes components well-suited elements of a software architecture as components
usually only expose externally visible properties. And second, the behaviour of software
elements is part of the architecture if it is observable by other elements in the architecture.
The elements need this information to be written and connected in a way that allows cor-
rect interaction among them.

2.1.4 Component Models

The following section gives a survey on existing component models for later evaluation
against the requirements needed for the model introduced in this thesis. Lau (2006) de-
fines the term component model as follows:

Definition: Component Model (Lau, 2006) ”The cornerstone of any CBD methodology is
its underlying component model, which defines what components are, how they can be constructed
and represented, how they can be composed or assembled, how they can be deployed and how to
reason about all these operations on components.”

A component model specifies all the possible information which can be specified about
a component or a composition of components on different levels of detail. The defini-
tion highlights information about the component, its implementation (representation) or
compositions of components as essential parts of a component model. Additionally, a
component model defines analytical methods using the specified information, e.g., how
to combine components to get new functionality or how to reason about extra-functional
properties of compositions.

However, the term component model is misleading. As a component model speci-
fies models of components (either in source code form or as plain model entities) it is a
meta-model (see also section 2.2.1). However, the term component model is established,
hence, this thesis sticks to it. Nevertheless, it is important to keep in mind that component
models are meta-models in the context of this thesis even when omitting the meta- prefix.

Several component models exist, each designed with specific design criteria to deal
with specific problems. Such a model is a goal-driven abstraction of some entities (see also
section 2.2.1). Often, the abstraction is directed towards specific analysis methods. The
analyses can be focused on functional or extra-functional properties. The first class deals
with the question how to evaluate the functionality of a system built from components in
order to compared it to the requirements. The second class is directed at evaluating extra-
functional properties like performance, reliability, availability, etc. Besides abstractions

23

2.1. COMPONENTS, ARCHITECTURE AND COMPONENT MODELS

for analysis purposes, there are some component models, which serve for communication
and/or documentation purposes.

The remainder of this section provides a survey on existing component models clas-
sified by the aims they have been designed for. First, this section introduces industrial
component models. Developed by industrial companies, these models support the de-
velopment of hierarchical, distributed, and interoperable systems and industrial software
projects commonly apply them when building real-world, executable systems. Documen-
tation oriented-models, like UML, serve as mean to specify component-based architec-
tures. They capture the structure and the behaviour of systems with a focus on functional
analysis and management of the construction process. Finally, analysis oriented models
combine a specification formalism with methods to analyse certain extra-functional prop-
erties based on the specification results. Components used in such models often only exist
as model entities without a specification how to transform the defined components into
implementation entities.

Industrial Component Models Industrial projects commonly apply industrial compo-
nent models when building real-world systems. This category usually contains COM
(Microsoft Corporation, 2007) and .NET (.NET, 2007) from Microsoft, Java EE based com-
ponents (like EJB (EJB, 2007) or Spring (Spring, 2006)) and components following the
CORBA Component Model (CCM) published by the Object Management Group (OMG)
(2006a).

The main concept of these models is to use the existing concept of objects coming
from object-oriented programming paradigm and enrich it with additional concepts com-
ing from the definition of a component. For example, EJB or Spring use so called plain
old Java objects (POJOs) to represent a component. One notable exception is the COM
platform which was introduced in the early 1990ies, when the use of object-oriented lan-
guages was not yet widely adopted. However, the concept of having a virtual function
table (Ellis and Stroustrup, 1990) to map calls on interfaces to implementation code is
the usual way of implementing objects in object-oriented environments. This moves the
ideas of COM close to those of the other models. Hence, the following omits a further
differentiation of COM from the other industrial models.

These models mainly focus on the static (class based) structure of components by
defining concepts like components, provided interfaces and connectors between compo-
nents. Programmers usually do not define required interfaces explicitly. They simply use
other interfaces in their component implementations without explicitly declaring them
as required interfaces. For example, COM and .NET use implicit required interfaces.
Hence, their infrastructure does not check the availability of required components during

24

2.1. COMPONENTS, ARCHITECTURE AND COMPONENT MODELS

deployment. An application fails at run-time if the components try to look up required
components which are unavailable in the respective environment. Additionally, more ad-
vanced layers of interface models like protocol specifications are usually either omitted
at all or only mentioned in the documentation in a human-readable form. Hence, as a re-
sult, automated analyses of component compositions are impossible in these component
models.

However, other than in some research oriented models, well-defined rules how to im-
plement components exist. They range from (binary) coding standards to protocol def-
initions for remote inter-component communication. Additionally, these models specify
the run-time environment to some extend, for example by the specification of applica-
tion servers in Java EE or the object request broker (ORB) in CORBA. Opposed to these
additional elements, industrial models lack support of the analysis of extra-functional
properties as most analysis methods need some behavioural specification.

Besides their limitations from a specification point of view, industrial component mod-
els are important in the context of this thesis as target platforms for transformations of the
later introduced component model (the Palladio Component Model, see section 3) to im-
plementations.

Documentation-oriented Component Models The component model introduced in the
UML2 Superstructure specification (Object Management Group (OMG), 2005c) is the
most important one in the category of documentation oriented models due to the wide-
spread use of UML. It contains components, their inner structure, and provided and re-
quired interfaces. By using assembly connectors, software developers compose compo-
nents and delegation connectors describe how the control flow is routed to inner compo-
nents. The following paragraphs detail on these concepts.

A component in UML2 inherits from a UML2 class. As a consequence, it can be seen as
a special kind of class having all the capabilities of a class, including the ability to inherit
other classes. In addition to the attributes and relations of the UML2 class, a compo-
nent can have provided and required interfaces and a set of realisations. Each realisation
references a single classifier, which contains the realisation. As a realisation can be any
classifier it is possible to have classes or other components as realising entities (both cases
are depicted in the specification). In case of having a class as realisation, the class is the
implementation of the inner part of the component. Opposed to that, components as in-
ner parts of a component introduce another level of hierarchical decomposition. There
are several notations to depict a component in a diagram (figure 2.3). The notations offer
different degrees of detail on the component.

The component meta-class has two references to the UML2 interface meta-class. One

25

2.1. COMPONENTS, ARCHITECTURE AND COMPONENT MODELS

Component C

IA IE1

IE2

<<Component>>
Component C

<<Interface>>
IA

<<Interface>>
IE1

<<Interface>>
IE2

<<depends>>

<<depends>>

<<realize>>

<<Component >>
Component C

<<provided interfaces >>
IA

<<required interfaces >>
IE1
IE2

Abbreviated
Form

Classifier Form

Black-Box-Form

Figure 2.3: UML2 Syntaxtical Notations for a Component and its Interfaces

reference contains the set of interfaces provided by a component, the other set contains
the interfaces required by a component. However, OCL derived functions determine
the sets’ contents. The provided interfaces are the union of the interfaces realised by the
component, by one of the realising classifiers or by any of the ports of the component. The
required interfaces are similarly the union of the required interfaces of the component, of
its realising classifiers and of the required interfaces by its ports. This basically maps the
provided and required interfaces of a UML2 component to the concepts which are already
available to UML2 classes.

For the composition of components, UML2 offers the connector meta-class. This class
has an attribute kind which can turn the connector either into an assembly connector or
into a delegation connector. Assembly connectors link a required interface of one com-
ponent to the provided interface of another component. The UML2 Superstructure spec-
ification defines ”[..] that signals travel along an instance of a connector, originating in a
required port and delivered to a provided port” (see (Object Management Group (OMG),
2005c, p.151)). The UML standard defines the semantics of delegation connectors simi-
larly. However, they deliver signals from ports or interfaces provided by a component to
the realising entities. This results in two types of delegation connectors: one connecting
provided ports or interfaces and one connecting required ports or interfaces. The first
class handles signals reaching a component the second class handles signals leaving a
component.

26

2.1. COMPONENTS, ARCHITECTURE AND COMPONENT MODELS

The component package in the UML2 Superstructure can be combined with other
packages of the UML2 specification. As introduced, a component inherits from class and
classifier. Hence, developers can use them anywhere where the UML2 allows the use of
classes or classifiers. As a consequence, components can contain additional information.
For example, the use of the UML2 behaviour packages enables to specify aspects of the
component behaviour, like interactions with other components, internal activities, or state
changes. Each single component service can refer to a behavioural specification. How-
ever, many UML2 modelling tools have no direct support for this feature and hence most
models do not use it. Additionally, developers may specify the allocation of components
on hard- and software environments in UML2 deployments.

Despite its comprehensive meta-model, the UML2 lacks support for analysing extra-
functional properties. However, profiles like the UML-SPT profile (Object Management
Group (OMG), 2005b) aim at extending the UML2 for this use case. As many performance
prediction methods use UML profiles, the discussion of profiles follows in section 2.3.2.

Architecture Description Languages (ADLs) Research focused on Architecture De-
scription Languages (ADLs) since the 1990s. Their aim was to document and analyse
architectures based on formal descriptions of components, connectors, and their compo-
sition. Despite the fact, that there have been many different ADLs with different abstrac-
tions and aims, research seems to be discontinued in this area.

Medvidovic and Taylor (2000) published the latest available survey on ADLs. This
work contained a classification schema to evaluate the different ADLs with respect to
their achievements in comparison to the aims of the ADL community. However, all ADLs
surveyed in the article failed in several of the requirements listed. As the listed require-
ments are still important requirements for current software architecture research they are
briefly listed in the following. Afterwards, some selected ADLs are presented.

Their classification of ADLs distinguishes requirements for modelling components,
requirements for modelling connectors, requirements for modelling their composition,
and the tool support available for the ADL. Modelling components deals with modelling
the structural and behavioural aspects of components, like interfaces or service descrip-
tions. Modelling connectors deals with the same aspects but for communication entities.
The requirements for the compositions deal with aspects of managing component archi-
tectures during their life-cycle. Finally, the requirement for tool support refers to support
for editing model instances and applying analysis methods.

These requirements have been used by Medvidovic and Taylor (2000) to judge the
ADLs available at the time of their writing. The list includes ACME, Aesop, C2, Darwin,
MetaH, Rapide, SADL, UniCon, Weaves, and Wright. All ADLs support the specification

27

2.1. COMPONENTS, ARCHITECTURE AND COMPONENT MODELS

of components and connectors, seven of them utilise at least partially a graphical syntax.
For the specification of the components semantics (behaviour) all surveyed ADLs offer
either no support or process algebra based languages like CSP or the π-calculus. Sup-
port for non-functional properties is offered by several ADLs. However, many of them
only allow the specification of annotations without giving them a semantics. Hence, they
are not used in architectural analysis. Only MetaH, Rapide, and UniCon offer analysis
support for their non-functional specifications. The focus of their analysis is on real-time
and schedulabilty. However, to the best of our knowledge, none of the mentioned ADLs
was specifically designed with the aim of design-time prediction of Quality of Service
attributes (Balsamo et al., 2004b).

Fractal Fractal is a feature rich component model, including provided interfaces, re-
quired interfaces, at run-time reconfigurable connectors, and composite components. It
was published by Object Web (2006), an open source middleware provider. However,
France Telecom did the initial development. Developers use the ”Fractal ADL” to specify
architectures, which is an XML-based description of the static composition of components
by their connectors.

Fractal components include so called controllers. Controllers configure various as-
pects involved in a component-based software application. The supported aspects con-
tain, without being complete, support for component life-cycle, connector creation and al-
teration, component meta-data queries, method call interception, or component instance
redeployment/migration.

Mappings exist which map the (descriptive) core standard to implementations in
several programming languages. The set of available languages contains Java, .NET,
Smalltalk, C, C++, and a special language targeted at the development of distributed and
grid-computing based applications. France Telecom applied Fractal in industrial projects
which demonstrates a certain degree of maturity. However, Fractal lacks support for
extra-functional analyses.

SOFA The SOFA (SOFtware Appliances) component model, described by Plasil and
Visnovsky (2002), focuses on checking component interactions. In SOFA, components
consist of a frame and an architecture. The frame determines the provided and required
interfaces of the component and the external behaviour. The architecture specifies the
inner structure of the component, i.e., how a component is composed from other compo-
nents.

The design goal of SOFA is the analysis of component interactions. This is realised by
so-called behaviour protocols, which are specifications of interaction protocols. Interfaces

28

2.1. COMPONENTS, ARCHITECTURE AND COMPONENT MODELS

have protocols which specify the sequence of method calls accepted or emitted by a com-
ponent depending on whether the interface is provided or required. When attached to a
frame, the behaviour protocol establishes a link between the services offered by a com-
ponent and those required. It specifies the emitted calls on any of the required interfaces
as reaction to a service call to one of the provided services. SOFA supports asynchronous
call behaviour by differentiating between the initiation of a call and returning from a pre-
vious call. Developers use a textual syntax to specify behaviour protocols which is similar
to regular expressions or process algebra terms.

A transformation exists which transforms SOFA components into an implementations
based on the Java version of the Fractal implementation. As a consequence, SOFA com-
ponent implementations inherit all capabilities of a Fractal component. SOFA has been
applied in an industrial case study at France Telecom. However, SOFA lacks support for
QoS-annotations.

Embedded Systems Component Models There are several component models de-
signed and applied in embedded systems. These component models often form the
foundation for product line approaches. These approaches enable the construction of
a whole family of similar but unique products with respect to their hard- and software-
configurations in order to serve a larger market.

KOALA Phillips developed the KOALA (C[K]omponent Organizer and Linking Assis-
tent) component model and applied it to support a product line approach for consumer
electronics like TV sets. According to van Ommering et al. (2000), the KOALA model uses
concepts of the ADL Darwin and Microsoft COM. Its components have explicit provided
and required interfaces and are bound independently of their construction, i.e., there is
a strict borderline between the roles of component developer and assembler. It utilises
repositories to store components and interfaces for Phillips.

The model has explicit support for parameterising the components in certain compo-
nent assemblies. The components may use special required interfaces to retrieve their
configuration from attached configuration components. This allows changing a compo-
nent’s configuration by connecting different configuration components. Furthermore, the
model supports component adaptations by the possibility to declare a required interface
as being optional. Such an interface may not be connected in an assembly. The com-
ponent can query the optional interfaces for bound components and behave differently
depending on the query’s result. Finally, KOALA supports partial evaluation of parts of
the code at assembly time to decrease resource demand at run-time.

As KOALA is applied to build the software part of embedded systems, a transforma-

29

2.1. COMPONENTS, ARCHITECTURE AND COMPONENT MODELS

tion exists for mapping models to C code skeletons and header files. The transformation
uses direct C method calls to reflect component bindings.

KOALA does not support the specification of extra-functional properties.

RoboCop The RoboCop component model (Bondarev et al., 2004) is another compo-
nent model with focus on embedded systems. In RoboCop, a component consists of a
set of related models. These include component interface specifications, documentation,
extra-functional models like timing models, reliability, or memory footprint, and the com-
ponent’s source and binary code.

RoboCop also supports a strict distinction of developer roles. Developers in differ-
ent roles develop and assemble components. The allocation to hardware nodes and the
specification of the users behaviour are other tasks necessary for doing analyses with
RoboCop.

A complete RoboCop model consists of RoboCop components connected to each other
by connectors. Connections support synchronous and asynchronous calls. However, the
call’s type depends on the call specification in the component behaviour and not on the
connector (as in most ADLs). In addition to the components and connectors, developers
must specify the hardware units of the embedded system before doing analyses. The be-
haviour model contains resource demands of the actions specified as constant maximum
demand of processing cycles of the executing resource.

Additionally, RoboCop models allow the specification of parameter values used in
method calls. In contrast to many other component models, this allows taking param-
eter influence into account. Before analysing a RoboCop model, analysts must provide
constant values for these parameter values (Bondarev et al., 2005).

RoboCop is accompanied by a simulation tool which focuses on properties of embed-
ded real-time systems such as: mutual exclusions, schedulability, deadline misses, and
synchronization constraints. In addition, simulation runs yield timing and resource con-
sumption data. Timing data covers response time and waiting times.

Recently, Bondarev et al. (2006) extended RoboCop’s analysis methods by a method
which automatically generates alternative architectural models, analyses them, and picks
the most appropriate with respect to certain properties.

Further Reference To conclude this literature survey on component models, there is
a recent comprehensive survey published by Lau and Wang (2005) containing further
component models omitted here.

30

2.2. MODEL-DRIVEN SOFTWARE DEVELOPMENT

2.2 Model-Driven Software Development

Model-driven Software Development (MDSD) aims at leveraging the role of software
models in the software development process. Models become the central artefact of this
process. The ultimate aim is to construct models of higher abstraction levels which can
be translated fully automatically into models of lower abstraction levels (including source
code). In so doing, the development process envisioned replaces code writing by creating
model instances of domain, task, or problem specific high-level models.

The following sections introduce several concepts central to MDSD. The first section
gives definitions of the basic terms like model, meta-model, etc. and discusses them
briefly. The following section summarises model transformation techniques. Genera-
tive programming, as a special kind of transformation methodology is included into this
discussion as one of generative programming’s core contributions, the feature diagrams,
plays a central role in later sections. The final section 2.2.3 discusses MDA’s platform
concept in relation to code generation and model analysis.

2.2.1 Model / Meta-Model / MOF

This section defines the terms model and meta-model and relates them to the MDA ap-
proach defined by the OMG.

Model Models play the central role in MDSD. Despite their importance, no established
definition in the context of MDSD could be found. A definition, which best fits the under-
standing of a model in this thesis, has been published on the ModelWare website. This
definition is used in the remainder of this thesis.

Definition: Model (ModelWare, 2007) ”A formal representation of entities and relationships
in the real world (abstraction) with a certain correspondence (isomorphism) for a certain purpose
(pragmatics).”

Uhl (2007a) gives a similar definition in German in the ”Handbuch der Software-
Architektur” (Reussner and Hasselbring, 2006). He uses classical characteristics of a
model identified by Stachowiak (1973) and transfers these concepts to software models.
As these characteristics are similar to the characteristics in the given definition, the fol-
lowing discusses the three characteristics available in ModelWare’s definition.

According to this definition, models have three main characteristics: abstraction, iso-
morphism, and pragmatism. Abstraction is the property of a model to remove details of
the modelled object. It is a representation of the object which is abstracted with respect

31

2.2. MODEL-DRIVEN SOFTWARE DEVELOPMENT

to certain attributes. The selection of the model’s attributes is guided by the aim of the
model (cf. with the pragmatism aspect).

A model can be seen as the result of a projection (in a mathematical sense). The real
world object is projected onto its model representative by removing the unconsidered
attributes. This projection is an isomorphism if the projection of the real world entities on
the model entities still allows conclusions to be drawn from the model entity onto the real
world entity with respect to the aim of the model. The term refers to the equivalence (iso
= equal, morph = shape) between the model and the real world entity.

A projection is pragmatic if its definition is done based on a well defined aim. Common
aims include easing the understanding of complex structures or deriving properties based
on some reasoning theory.

Example To give an example, the following discusses a software model with respect
to the given characteristics. An interface protocol model based on finite state machines
(FSM) fulfils the characteristics. FSM based interface models allow describing the set of
valid call sequences which can be processed by an interface. Transitions represent service
calls, states the time between service calls. The set of words accepted by this FSM is
equivalent to the call sequences accepted by the interface.

This model is an abstraction of the real world object as it reduces an interface to the
set of accepted call sequences. For example, technical details, concurrency aspects, or
extra-functional properties are disregarded. It is an isomorphism because the set of call
sequences accepted is the same for the model entity as for the real interface. Sometimes,
FSM’s might not be powerful enough to model the set of valid sequences in a way which
can be translated to the real world object (for example, a stack’s protocol can not be mod-
elled by a FSM). This would violate the isomorphism characteristic. The FSM protocol
model is pragmatic if it is combined with protocol interoperability tests for example. In-
teroperability checking can be performed using FSMs in an efficient way. Hence, FSMs
are a pragmatic model for the task of performing protocol interoperability checks (cf.
Becker et al. (2004)).

Meta-Model The website metamodel.com (metamodel.com, 2007), defines a meta-
model as follows:

Definition: Meta-Model (metamodel.com, 2007) A metamodel is a precise definition of the
constructs and rules needed for creating semantic models.

Uhl (2007a) defines meta-model as (translated from German):

32

2.2. MODEL-DRIVEN SOFTWARE DEVELOPMENT

Definition: Meta-Model (Uhl, 2007a) A meta-model is a model defining a set of models
which are called instances of the meta-model.

Common understanding of the definitions is that a meta-model somehow charac-
terises a set of models which are instances of the meta-model. In the context of the first
definition, an instance would be a model which has been built using the constructs de-
fined in the meta-model and is not violating the rules associated with these concepts.

Conforming to the conceptual models introduced by Völter and Stahl (2006), a meta-
model defines at least rules for the concepts depicted in figure 2.4.

Meta-Model

Syntax

Static
Semantics

Dynamic
Semantics

Abstract
Syntax

Concrete
Syntax

*1

*

Semantics

Figure 2.4: The parts of a meta-model

According to figure 2.4, rules describing a meta-model instance are either syntactic
or semantic rules. Syntactical rules can be split further into rules on concrete syntaxes
and rules for the abstract syntax of the model instance. The abstract syntax of a model
represents model instances in the concepts of the meta-model independent of concrete
machine or encoding specifics. Consequently, a concrete syntax is a set of rules which
specifies the encoding of the abstract concepts. These terms are commonly used in com-
piler construction: The concrete syntax of programming languages is often defined as text
files built according to certain structuring rules given as grammar. The abstract syntax of
a programming language is usually represented in abstract syntax trees.

The static and the dynamic semantics form the parts of the semantics of a meta-model.
Static semantic is defined as rules which further constraint the set of syntactical valid
model instances. For example, if the model syntax allows to have an arbitrary amount
of wheels for a car object then a static semantic rule could constrain the amount to five
wheels (4 normal and one spare). The static attribute refers to the fact that the constraints
can be checked without ”executing” the model, i.e., without knowing its intention. Dy-
namic semantics finally specifies the intention of the model concepts, i.e., how to interpret
the model instances in a given context. For programming languages, static semantics con-

33

2.2. MODEL-DRIVEN SOFTWARE DEVELOPMENT

tain for example type checks done by the compiler while dynamic semantics define what
the program does during its execution.

However, the borderline between the different types of rules is not always strict. Con-
sider again the example with the car and its wheels. It would have been also possible
to specify the constraint as part of the syntactical rules by only allowing cars with five
wheels for syntactic valid model instances.

Another major issue is the specification of the dynamic semantics of a meta-model. For
programming languages, formal calculi like the lambda- or pi-calculus are applied. But
for domain specific languages (DSLs), which are of central interest in the OMG’s MDA
approach, the semantics of elements of the DSL have to be described which in many cases
lack a formal definition. For example, in an insurance DSL, terms like insurance contract
are defined by laws and not formal calculi. Hence, natural language based definitions are
used despite their inherent imprecision.

Technical Foundation In the MDA approach published by the Object Management
Group (OMG) (2006c) a set of technical foundations is defined. Specifications are avail-
able for many of the technologies needed to implement a tool chain for specifying meta-
models, modelling, and transforming the resulting model instances. The standardisation
efforts are directed mainly at allowing interoperability on the model level between tools
developed by different vendors. As it is assumed that most of these technologies are
applied in a model-driven development process the essential standards are introduced
briefly and existing implementations are referenced.

The Meta Object Facility (MOF) The Meta Object Facility (MOF) (Object Management
Group (OMG), 2006d) is a meta-meta-model which allows the definition of meta-models
and forms the central element in the OMGs MDA approach. Initially, the MOF emerged
in the context of the Unified Modelling Language (Object Management Group (OMG),
2005c) in which it has been applied to model the UML. Its core concepts are similar to
the concepts available in UML class diagrams, but as they are on different meta-levels the
concepts are different. Based on its roots in UML class diagrams, concepts like classes,
associations, and multiple inheritance are available. MOF also uses a similar concrete
syntax as UML class diagrams, which can sometimes lead to confusion. In order to avoid
this kind of confusion, meta-models are explicitly marked in their figure captions in the
remainder of this thesis.

The following discusses briefly the difference between EMOF and CMOF introduced
in recent MOF versions. This helps to understand the meta-model presented in section 3
which is an EMOF instance. Additionally, the technical concepts used in the context of

34

2.2. MODEL-DRIVEN SOFTWARE DEVELOPMENT

MOF, which are needed for the prototypical realisation of this thesis’ concepts, are intro-
duced, i.e., XMI, JMI, or OCL.

Currently, a new version of the MOF standard is being finalised (MOF 2.0). In MOF
2.0, the MOF is split into two parts: Essential MOF (EMOF) and Complete MOF (CMOF).
EMOF is ”[..] the subset of MOF that closely corresponds to the facilities found in OOPLs
and XML” (see Object Management Group (OMG) (2006d, p. 43)). The idea of EMOF
has been introduced in the MOF specification by IBM based on the experience gained
in implementing the MOF 1.x standard. In the course of implementing MOF, the devel-
oper team in charge realised that implementing the full MOF standard would lead to
performance drawbacks. Hence, the team focused on the concepts they considered as
required frequently. The resulting implementation is the Eclipse Modelling Framework
(EMF) (Eclipse Foundation, 2006) and its meta-model ECORE (see figure 2.5). The subset
of MOF found to be ”essential” for EMF has been proposed for standardisation as EMOF.
As a consequence, the EMF developers announced to deliver a EMOF compatible im-
plementation soon after the final MOF2.0 specification will be available. In contrast, the
CMOF contains the a revision of the model elements available in MOF 1.x. A remarkable
difference between EMOF and CMOF is the availability of first-class associations which
is only true for CMOF.

0..n

EModelElement

ENamedElementEAnnotation EFactory

EClassifierETypedElement EPackage

EClass EDataType

EEnumLiteral
0..n

EOperation EParameter

EEnum
EStructualFeature

EReference EAttribute

1

1
0..n

0..n
0..1

0..n

0..n0..n

0..n

0..n

0..1

0..n

0..n

0..n

Figure 2.5: The ECORE meta-model

There are several standards accompanying the MOF standard. In order to exchange

35

2.2. MODEL-DRIVEN SOFTWARE DEVELOPMENT

models between different tools, a machine readable concrete syntax is needed. For this,
the MOF XML Metadata Interchange (XMI) mapping specification Object Management Group
(OMG) (2006b) defines a mapping of model instances to a XML serialisation and vice
versa.

The Java Metadata Interface (JMI) specification contains a mapping of MOF instances to
Java interfaces which can be used to create and manipulate model instances of a MOF-
based meta-model. MOF-based code-generators generate Java classes based on MOF in-
stances to store model instances as object graphs. The EMF code generator (Eclipse Foun-
dation, 2006) used to implement the meta-model presented in this thesis is an example
for a JMI implementation.

The Object Constraint Language (OCL) (Object Management Group (OMG), 2006e)
serves as a mean to further restrict the set of valid UML as well as MOF model instances.
In the later case the available OCL elements include only a subset of the whole OCL spec-
ification (the one which is based on the common core between UML and MOF). Designers
of meta-models frequently use OCL to define the static semantics of their meta-models.
The expressive power of OCL is that of a three-level Kleene logic with equality according
to Brucker and Wolff (2002). Support for OCL in tool implementations is still immature.
The Eclipse Technology project has developed a plugin (Eclipse Foundation, 2007a) to
add OCL support to the Eclipse UML2 plugin. Support for OCL expressions in EMF can
be added manually by enhancing EMF’s code generator.

2.2.2 Transformations: MDA / Generative Programming

The construction of models helps to understand and analyse complex systems. However,
a central idea in model-driven software development is to create models of software sys-
tems with the final aim of generating the respective system. In a model-driven software
construction process, transformations or generators translate models into binary code au-
tomatically.

This idea is quite old as generative techniques have been applied in compiler con-
struction for a long time (cf. Aho et al. (1986)). Programs written in a programming
language are transformed by compilers into executable binary code which is a generative
process. However, compiler frontends (i.e., lexer and parser) usually process a fixed set
of programming languages and compiler backends generate code for a fixed amount of
processors.

In contrast to this, in model-driven techniques users are allowed to define their own
meta-models (including their concrete syntax) and user-defined transformations. Hence,
only the meta-meta-model and the transformation engines are fixed, but not the meta-
model and the transformations. Both can be defined by the end-user for specific purposes.

36

2.2. MODEL-DRIVEN SOFTWARE DEVELOPMENT

Note, that the fact that meta-models and transformations can be specified, they need
not be specified. As with any other software artefact, third party software developers
can simply reuse them. However, the reuse possibilities depend on how specific a meta-
model and its transformations are designed with respect to a certain domain. Very specific
meta-models can only be reused in very few other cases, where generic meta-models
can be reused in many cases. The same is true for programming languages: general
purpose languages like Java can be used for a wide range of problems while domain
specific languages are specialised for a specific domain.

The following paragraphs give an overview on exiting generation and transformation
techniques. Czarnecki and Eisenecker (2000) have introduced the idea of using generators
to raise the level of abstraction in the software development process in their book on
Generative Programming already in 2000. However, their work on domain modelling
and domain variance analysis using feature diagrams is still applied especially in the
area of software product line engineering (Lee et al., 2002).

More recent approaches are based on MOF or EMF as meta-models and utilise spe-
cialised transformation engines. They can be classified into Model-2-Model transforma-
tions and Model-2-Text transformations.

Finally, the overview concludes with a section on best practices for writing transfor-
mations. This is important as the analysis of transformations should concentrate on the
most common types of transformations.

Generative Programming Czarnecki and Eisenecker (2000) introduced the concept of
Generative Programming. The idea is to use generators to generate program code. An
input specification parameterises the generation process. It defines how the generated
code should look like. In Generative Programming, a domain analysis identifies all vari-
abilities of a given target domain for which the generator generates code.

The identified variabilities in the target domain are formally captured in so called fea-
ture diagrams. A feature represents a certain aspect of the domain which either exists in
an instance of the target domain or not. Additionally, features may also carry additional
attributes which characterise them in more detail. Relationships among the features cap-
ture constrains among them, e.g., features may require other feature as prerequisites or
be mutually exclusive with other features. Feature diagrams support a graphical concrete
syntax which allows to specify them in an easy understandable way. Figure 2.6 shows an
example for a feature diagram.

An instance of a feature diagram, is called a (feature) configuration. Any configura-
tion of the feature diagram in figure 2.6 either has Feature1 or Feature2 selected. If
Feature1 is selected, the optional feature may also be selected. If Feature2 is selected,

37

2.2. MODEL-DRIVEN SOFTWARE DEVELOPMENT

Legend

Feature Configuration

Feature 1 Feature 2

Optional Feature Required Feature Required Feature

XOR-Relation

Optional Feature

Required Feature

Figure 2.6: Example for a Feature Diagram

both required features also have to be selected.
Feature diagrams and their configurations are specialised to parameterise generators.

This thesis uses them to parameterise model transformations as model transformations
are special types of generators.

MDSD Transformations Commonly, transformations in the context of MDSD are clas-
sified into two types: model-2-model (M2M) and model-2-text (M2T) transformations.
The following paragraphs briefly introduce each class.

Model-2-Model Model-2-Model transformations transform an instance of a meta-
model A into an instance of a meta-model B. Usually, meta-model A and B are instances
of the same meta-meta-model in such a transformation. A and B need not necessarily be
different.

The transformation is specified in some special language executable by a specific
transformation engine. The transformation language itself can be an instance of the meta-
meta-model of A and B, but this is no necessary prerequisite. Figure 2.7 gives an overview
on the introduced relationships.

As shown in figure 2.7, transformation rules use concepts of the source and the target
meta-model to specify their effect. Hence, they are specific to the meta-models involved.
A rule for a class in meta-model A is matched to instances of this class found in model-
instance A. The matching objects are then transformed as specified into objects in model-
instance B. These objects are instances of meta-model B.

For example, a model-transformation capable of transforming an instance of UML2
into an instance of a meta-model for Entity-Relationship-Models (ER-Model) may con-
tain the rule to transform any instance of a UML2 class into an entity of the ER-Model.
Additionally, any instance of an UML2 association is transformed into a corresponding

38

2.2. MODEL-DRIVEN SOFTWARE DEVELOPMENT

Model
Instance A

Meta-Model A

InstanceOf

Transformation-
Rules-Meta-

Model

Meta-Model
B

Model
Instance B

InstanceOf

Transformation
Rules

input output

InstanceOf

Figure 2.7: Function of a MDSD-Transformation Engine

relationship in the ER-Model. These rules demonstrate how the transformation maps
concepts of the UML2-Meta-Model (class, association) to concepts of the ER-Meta-Model.

There is a wide range of available transformation engines and languages summarised
and classified in a recent survey by Czarnecki and Helsen (2003). The most impor-
tant types for model-2-model transformations are direct-manipulations, relational, graph-
transformation-based, or hybrid approaches.

Direct-manipulations can be used if equal source and target meta-models are used
and the result of the transformation is stored directly in the same model used as input.
They are applied frequently to add platform specific (see section 2.2.3) information to a
platform independent model.

Relational approaches specify the transformation rules as formal relations. This is
done by defining a relationship between a selected set of source and target objects using
constraints. The transformation engine takes the set of relations and either tests if the
relationships are fulfilled resulting in a boolean value or alters the target model such
that none of the relationships is violated. The importance of relational transformation
languages comes from the OMG’s standardised transformation language QVT (Object
Management Group (OMG), 2007a) whose core (QVT-Core and QVT-Relational) is based
on relational semantics.

Graph-transformation approaches use the theoretical foundations of graph-grammars
and apply them to models which are interpreted as graphs of objects for this. In graph
grammars rules usually consist of a left-hand-side pattern and a right-hand-side pattern.
Whenever any left-hand-side pattern of any rule matches to an object-sub-graph of the
input model that part of the model is replaced by the structure given via the right-hand-
side pattern. The process is repeated as long as matching left-hand-side patterns remain.

Finally, hybrid approaches combine the power of several other approaches. The Atlas

39

2.2. MODEL-DRIVEN SOFTWARE DEVELOPMENT

Transformation Language (ATLAS Group, 2007) developed by INRIA in France is the
most important language in this category. It combines declarative (relation based) rules
with imperative rules. ATL’s importance comes from the fact that ATL is supplemented
by one of the most mature tools for EMF based model-2-model transformations.

Czarnecki and Helsen (2003) also mention the use of transformations which are di-
rectly based on model instances stored in their concrete syntax as defined by XMI. As
XMI is a XML based language, XSLT, a transformation language for transforming XML
files, can be used as transformation language. Some of the model-based performance
prediction methods described in section 2.3.7 take this approach.

Discussion Current model-2-model transformation engines posses the potential to al-
ter the way MDSD is applied in practice. However, the current state of research, tool
development, and industrial case-studies is still immature. Uhl (2007b) lists a bunch of
unresolved issues whose solutions he considers a necessary prerequisite for enterprise-
scale MDSD use. Research is still directed at defining the right level of abstraction and ex-
pressiveness for transformation languages. Additionally, development processes which
are tailored for MDSD need to be researched. Available tools are often restricted to re-
search prototypes, industrial quality tools are still under development. QVT which is
the designated standard in the OMG’s MDA vision is still in the process of finalization
and is considered too complex to be fully implemented. Using XSLT as model-2-model
transformation language should become obsolete if more mature tools for higher level
transformations are available. Also industrial case studies need mature tool support to
become feasible.

Compared to model-2-model transformations, model-2-text transformation engines
and languages are more mature.

Model-2-Text Model-2-text transformations can be seen as a special class of model-2-
model transformations where the target meta-model is simply an arbitrary text file. How-
ever, as most non-MDSD tools use a textual concrete syntax (like compiler for program-
ming languages, XML tools, ...) an efficient generation of textual artefacts is important to
reuse those tools. Hence, special transformation engines generate textual artefacts from
models. According to Czarnecki and Helsen (2003) and Rentschler (2006) visitor and tem-
plate based approaches are used in current tools.

Visitor based approaches traverse the graph of objects in the source model by using the
visitor design pattern (cf. Gamma et al. (1995)). In this pattern, a visitor object traverses a
graph of objects and executes at each node which it traverses code specific to the type of
the node.

40

2.2. MODEL-DRIVEN SOFTWARE DEVELOPMENT

Template based approaches use templates which are text artefacts enriched with small
code snippets. The code snippets are executed at transformation time and their result is
inserted into the surrounding text artefact. The code execution is used to query informa-
tion from the source model.

Model-2-text transformations for the proof-of-concept implementation in this the-
sis have been written using XPand, the template language available in the EMF-based
open-source generator framework openArchitectureWare (openArchitectureWare (oAW),
2007). A recent survey on model-2-text engines can be found in a seminar work by
Rentschler (2006).

Transformation practices There is a close relationship between design or architecture
patterns and MDSD transformations. Patterns are common solutions to reoccurring prob-
lems (Gamma et al., 1995). Transformations are used to capture expert knowledge on how
to transform instances of models in a repeatable, executable way. Often, patterns are part
of the expert knowledge needed in this mapping. This is especially true for model-2-text
transformations which usually respect best-practices. Hence, Quality of Service analyses
of generated code has to cope with patterns frequently. This is especially important as
many patterns alter extra-functional properties.

In particular, patterns are useful if the source model contains concepts of higher ab-
stractions where the abstractions are taken from pattern literature. For example, a com-
munication meta-model for connectors might offer a set of different connectors like call
and block, message passing, reliable unicast, etc. (cf. Hohpe and Woolf (2003)). Each con-
nector in this list corresponds to a pattern. The model-2-code transformation generates
instances of the pattern during connector transformation.

Additionally, patterns are applied if the generated code should be later mixed with
manual written parts. As a separation of generated and manually modified code offers
several advantages, patterns like the template method pattern are applied to mix gener-
ated and manually written code (Völter and Stahl, 2006).

2.2.3 Platforms and Platform Specific Models

In the OMG’s MDA guide (Object Management Group (OMG), 2006c), transformations
are used mainly to transform models of higher abstraction levels into models of lower
abstraction levels. The MDA guide uses the term platform to express the different layers
of abstraction. The guide defines the term as follows.

Definition: Platform (Object Management Group (OMG), 2006c) ”A platform is a set
of subsystems and technologies that provide a coherent set of functionality through interfaces

41

2.2. MODEL-DRIVEN SOFTWARE DEVELOPMENT

and specified usage patterns, which any application supported by that platform can use without
concern for the details of how the functionality provided by the platform is implemented.”

The term’s origin comes from technological platforms like Java EE or .NET offering
supporting services easily accessible by applications. Woodside et al. (2007) state ”the
term platform refers to technological and engineering details that are irrelevant to the
fundamental functionality of the application.”

The platform examples given in the MDA guide cover a wide range of different as-
pects and abstraction levels. The given generic platforms contain object-orient systems,
batch-systems, or dataflow systems which is a very high level of abstraction. Technology
specific platform examples mentioned are CORBA or Java EE which both can be seen as
instances of the generic platform component-based application. The MDA guide even
considers vendor specific platforms for a standardized platform like Java EE which is
implemented by different vendors.

After selecting a specific platform it is possible to differentiate models into such that
contain details of this platforms and those which are free of concepts of this platform.
The later are called platform independent models (PIM) and the former platform specific
models (PSM).

According to the MDA guide, transformations bridge the semantic gap between a PIM
and a PSM. In the generic pattern for this, a transformation takes the PIM and optionally
additional information and generates a PSM. The amount of additional information can
vary to a large extend from not taking any additional information to sets of models pa-
rameterising the transformation process. For a single platform, this process is depicted in
figure 2.8 on the left hand side.

Additional
Information

Transformation

Additional
Information

Transformation

Additional
Information

Transformation

Figure 2.8: PIM to PSM Transformations

42

2.2. MODEL-DRIVEN SOFTWARE DEVELOPMENT

The right hand side of figure 2.8 depicts the case in which several transformations are
used to modularise the transformation into several steps where each step adds certain
aspects of its platform. Consider for example a transformation which generates Java EE
code for the Sun Application Server. In this case, the first transformation generates a Java
EE model which is independent of a specific application server and the second transfor-
mation adds specifics for the Sun Server resulting in a model specific to the combined
platform of Java EE applications on a Sun Server.

Still missing is a discussion on the information which can be supplied additionally.
Transformations transforming PIMs into PSMs encapsulate knowledge on how to trans-
form such a PIM into a PSM. A PIM is an abstraction of a PSM generated from it (by
abstracting the platform specific information). However, the inverse function of an ab-
straction is not unique. Consequently, there is usually a set of possible PSMs which can
be generated from a single PIM.

Without additional information, a transformation has to choose exactly one of the pos-
sible results. This is not preferable, as the possible choices often encapsulate design deci-
sions which impact functional and non-functional properties of the resulting system. As
design decisions can only be taken in the context of a design problem, the creator of the
transformation would need further information to take the right decisions. This results
in transformations being inflexible as they are specific for their decision context. To pro-
vide the necessary flexibility, the creator of a transformation can foresee possible design
decisions and parameterise the transformation. The allows the user of the transformation to
take the respective design decisions.

The MDA guide contains several suggestions for additional information. The most
established one is the use of so called marks. In case of marks, the additional information
is called a mark model. Marks are specific to concepts of a certain platform. They can
be seen as flags which can be attached to objects of the PIM to indicate a specific treat-
ment by the transformation. For example, a transformation of UML components to Java
EE components can respect marks for the type of the Java EE component to generate.
In case of UML source models, stereotypes can be used as marks for model elements.
The Java EE transformation defines for example the stereotypes <<Statefull>> and
<<Stateless>>. When attached to a UML component, the transformation generates
statefull or stateless EJBs respectively.

An other option suggested in the MDA guide is the use of pattern information as
additional information. In this scenario, a platform is frequently applied together with a
set of patterns (as introduced in section 2.2.2). The patterns support common tasks when
working with the platform. The selection of patterns for elements of the PIM is controlled
through additional models.

43

2.3. PERFORMANCE MODELLING AND PREDICTION

Discussion The platform concept of the OMG’s MDA approach is often criticised.
Völter and Stahl (2006) consider its application impractical, at least not with today’s tool
support. Their counter proposal called architecture-centric model-driven software de-
velopment (AC-MDSD) uses only a single transformation which directly transforms a
model into code. The lack of a more precise definition of the term platform in the MDA
guide is another issue with the concept. To conclude, reports of industrial projects which
apply the MDA process with a chain of model-2-model transformations succeeded by a
model-2-text transformation are still lacking. Nevertheless, the central idea of having pa-
rameterisable transformations which transform artefacts of higher abstraction levels into
lower abstraction levels can be applied successfully as for example reported by Völter
and Stahl (2006) and demonstrated in this thesis.

2.3 Performance Modelling and Prediction

Performance prediction of software systems is in the focus of research for a long time.
Two main reasons exist for this. First, unresolved performance issues in software systems
render the system under construction useless in most cases as performance requirements
exist for almost any software system. Despite their crucial role for success, they occur fre-
quently (Glass, 1998). The early evaluation and prediction of the performance of a system
can safe a lot of time and money for late redesigns (Williams and Smith, 2003). Second,
performance evaluation methods are rather simple to validate as taking measurements
and comparing them to predictions is not as difficult as with other quality attributes. One
reasons for this is, that in contrast to many other extra-functional properties, for perfor-
mance several established metrics exist. Common metrics include end-to-end response
time, resource utilisation, and system throughput.

The importance of performance analysis has lead to several approaches for perfor-
mance evaluation. The most important formalism is likely queuing networks (Bolch et al.,
1998a). However, many others exist like stochastic Petri-nets (Bause and Kritzinger, 2002)
or Stochastic Process Algebras (SPAs) (Hermanns et al., 2002). Many of these formalisms
rely on a semantics defined as generalised semi Markov chains as used by M. Bravetti
(1998a). Depending on the kind of analysis and the assumptions met by the system, ana-
lytical, simulation-based, or hybrid solution methods are available.

However, the formalisms referenced above rely on numerous assumptions which of-
ten do not hold in complex software system. In addition, they are usually not part of the
education of software designers or architects who normally know how to specify a soft-
ware system using (subsets of) UML. Hence, necessary specifications for performance
prediction methods should be done in software design models like the UML. For this,

44

2.3. PERFORMANCE MODELLING AND PREDICTION

several approaches exist - mostly UML profiles like the UML-SPT or MARTE profile.
The following sections give an overview on the area of model-based performance

prediction. First, it gives an overview on the influence factors on the performance of a
software component in section 2.3.1. Section 2.3.2 introduces a general process of model-
based performance prediction including a brief summary of existing performance input
models like UML-SPT. Finally, section 2.3.3 gives an overview on existing general pur-
pose performance prediction methods. Related work to the contents of this thesis come
from the area of CBSE-based performance prediction methods (Section 2.3.6) and model-
driven performance prediction methods (Section 2.3.7).

2.3.1 Influence Factors on Software Performance

This paragraph discusses the factors influencing the performance of (component-based)
software systems before the next section gives an overview on current performance pre-
diction approaches. Figure 2.9 gives an overview initially published by Becker et al.
(2006b).

Usage of
External Services

Deployed on
- Hardware
- Middleware
- Networks
- ...

Usage Profile

Implementation

Figure 2.9: Influence Factors on the Performance of Component-Based Software Systems

As depicted in figure 2.9, four factors are important for the performance of a compo-
nent.

1. Implementation: The implementation of a software component has an impact on
its performance. The selection of algorithms and data structures has an impact on
the processing and memory demand. The Big-O notation is commonly used as an
approximation of the demand for processing power as well as for memory con-
sumption.

2. Deployment: The hardware on which a software system executes influences the
performance. The processing rate of the processor, the transfer rate of the mem-
ory bus, etc. correlates to a software system’s response time. As a consequence,

45

2.3. PERFORMANCE MODELLING AND PREDICTION

practitioners use the ”kill it with iron” paradigm to solve performance problems
in software systems by using faster hardware. However, this is either expensive
or infeasible if the amount of hardware needed exceeds a certain limit. On top of
the hardware performance impact comes the performance impact of additional soft-
ware layers like operating systems or middleware software.

3. Usage Profile: The interaction of the users with the software system also has an
impact on its performance. This includes the sheer amount of users but also their
behaviour and the amount and type of data they exchange with the system. The
more users access a system concurrently the more load is put on the underlying
hardware resources which become a bottleneck. Analogously, larger chunks of data
require more processing power from CPU, harddisk, or network resources.

4. External Services: Services required from other components or systems influence
the performance of the system under consideration. If the external services are slow,
the performance of the system under consideration is also slow.

Performance prediction approaches have to cope with all enumerated factors. The fol-
lowing review includes discussions on how the respective methods deal with the factors.
A difference exists for general purpose methods and methods for component-based sys-
tems. In general purpose methods it is usually assumed that all factors and respective
specifications are known to a single developer. In CBSE the information is spread among
the developer roles which adds an additionally level of complexity as discussed further
in section 2.4.1.

2.3.2 Performance Prediction Process

Model-based performance prediction methods work according to a common process
which is depicted in figure 2.10.

The process starts with a software system’s model. The respective system can be an
already existing system, but it needs not necessarily. The system model is expressed in a
design-oriented modelling language like the UML. Hence, it is called the design model. It
is the task of the software designer to create it. Usually, this model exists already as part
of the software engineering process without performance engineering.

Performance prediction needs additional information not present in most design lan-
guages like UML. In such cases, the first step in the process is to annotate the design
model with performance data. For UML models, UML profiles determine the amount of
additional data. The annotations cover resource demands, branching probabilities, input
parameter characterisations, workload specifications, etc.

46

2.3. PERFORMANCE MODELLING AND PREDICTION

Software

Model

Annotated

Software

Model
transformation

Prediction

Results

feedback

QoS Analysis

Model

analyse /
simulation

Software

System models

estimate/

measure

Queuing Networks,

Stochastic Petri Nets,

Stochastic Process

Algebras, Simulation, ...

Hidden in

Tools

Response Time,

Throughput, Failure

Probability, ...

UML Performance Profile,

QML, ...

UML,ADL,

...

Legend

Artefact Activity Relation

Figure 2.10: Model-based Performance Prediction Process (based on (Object Management
Group (OMG), 2005a, p. 9-2))

.

The following three process steps should be executed by tools. First, these tools trans-
form the annotated input model into a performance (QoS) analysis model, e.g., a queue-
ing network model. Second, (standardised) tools solve the prediction model instance,
resulting in metrics on the elements of the prediction model like overall response time or
the queue length of a specific wait queue. The set of available metrics depends on the
modelling formalism and its solver’s capabilities.

Finally, the prediction tool relates the prediction results back to the originating soft-
ware model. It stores the results as annotations on elements of the design model. The
feedback is supposed to answer the evaluation questions, for example, whether a specific
response time maximum can be reached with the given workload and resources. Ad-
ditionally, in cases in which the results indicate insufficient performance, the feedback
should indicate the main sources of these issue.

The final step is crucial for the overall success of the prediction method. However, it
is difficult to realise because of the semantic differences between the analysis model and
the design model. At least, the whole transformation tool chain needs tracing capabilities
to trace back elements of the analysis model into elements of the design model. But even
in the context of fully traceable transformations, the source of a performance issue can be
ambiguous. Imagine the analysis results in a resource being overloaded. The question re-
mains if it is overloaded because of too many requests arriving or because of the requests
being too resource consuming. Even if an answer exists to this question, the questions

47

2.3. PERFORMANCE MODELLING AND PREDICTION

remains which part of the software must be altered.

Input Models The performance prediction process introduced in this section uses an-
notated models for the transformation into analysis models. For many prediction meth-
ods this means UML models annotated using the UML profile for Schedulability, Per-
formance and Timing (UML-SPT, Object Management Group (OMG) (2005b)) designed
for UML 1.4. Other options are the UML Profile for QoS (also designed for UML 1.x,
Object Management Group (OMG) (2005a)), and the UML-MARTE profile (designed for
UML2, currently under construction, Object Management Group (OMG) (2006f)). Other
meta-models explicitly designed for QoS predictions already contain measures to add
performance information to the design model, for example KLAPER (Grassi et al., 2005).
However, the amount of information is similar.

UML-SPT Profile Because of its widespread use in current performance prediction ap-
proaches, the following paragraph briefly introduces the UML-SPT profile. The profile
consists of three main parts: modelling of real-time, modelling of schedulability, and
modelling of performance. A general resource model is available for use in all three parts.
Only the performance and resource model relate to the context of this thesis.

In the performance model, scenarios described as sequence or activity diagrams define
performance critical execution paths. Scenarios consist of a sequence of steps. The first
step caries annotations specifying the workload of the scenario. Workloads can either
be closed or open. In a closed workload, a population of n users execute the scenario
concurrently. After finishing a scenario run, they hold for a short delay called think time
after which they execute the scenario again. In an open workload, users, which enter the
scenario at a specific arrival rate, execute the scenario one time.

Annotations on steps specify performance relevant information like the resource de-
mand of the step in time units, average repetition count, or execution probabilities. Anno-
tations for resources are twofold. The stereotype PAResource marks software resources
having their own thread of control, resources marked with PAHost represent hardware
processors. The later, usually denoted as UML2 nodes, carry annotations on their pro-
cessing rate, scheduling policy, and context switching time. PAResources have tagged
values for the capacity of the resource, time to acquire and release, and scheduling policy.

In addition to the annotations, SPT supports the use of variables and mathematical
expressions in tagged values. In this way, additional expressiveness is available. For
example, the specification of resource demands becomes hardware independent if a con-
version factor is multiplied with each demand expressed in an independent unit, e.g., a
demand of 10 CPU instructions multiplied by 1 ms per instruction results into a demand

48

2.3. PERFORMANCE MODELLING AND PREDICTION

of 10 ms.

2.3.3 Performance Prediction Methods

In figure 2.10, a transformation transforms the annotated design model into a QoS pre-
diction model. In case of performance predictions, several performance modelling for-
malisms exist. The following gives a brief overview on the most important ones, i.e.,
Queuing Networks, Stochastic Process Algebras, and Stochastic Petri-nets.

Queuing Networks The most important formalism for performance prediction is likely
queueing network theory. In fact, most recent performance prediction methods as sur-
veyed by Balsamo et al. (2004a) use queueing networks. In queueing networks, queues
and their service centres represent processing resources which process workpackages or
jobs queuing for service. Jobs travel through a network of service centres using prob-
abilistic routes. The result of a queueing network analysis gives the average response
time of the overall system, waiting times for queues, average queue length, and server
utilisation. An example queuing network is depicted in figure 2.11. The network has
a closed workload. A delay server models the think time of the users (indicated by the
clock at the bottom). After a processing step on the CPU, jobs either use a hard-drive with
a probability of 30% or a network resource with a probability of 70%.

0.3

0.7

CPU

HDD

NET

Figure 2.11: An example Queuing Network

For a certain class of queuing networks (namely product form queuing networks) an-
alytical methods exist, which compute the results precisely in very short time. However,
this class is rather restrictive and does not reflect real computer systems in many cases be-
cause of its strong assumptions. For example, many realistic scheduling disciplines like
priority queues cause a queuing network to be not in product form. For this, the class
of extended queuing networks exists which can be solved by iterative methods like the
Mean-Value-Analysis (MVA) (Bolch et al., 1998a) or by means of simulation (depending
on their assumptions).

49

2.3. PERFORMANCE MODELLING AND PREDICTION

The complexity of a queuing network depends on the characteristics of the service
centres and the assumptions on the jobs. Each service centre has at least a specification
on its service time, the number of servers, and the queuing policy. Service times can be
deterministic (constant), exponentially distributed or arbitrary distributed. The number
of servers is a natural number greater or equal one. The queuing policy determines the
order of job processing. Common in computer systems are First-In, First-Out (FIFO) and
processor sharing queuing policies. A FIFO queue processes jobs in their order of arrival.
A queue with processor sharing processes each job in its queue for a certain amount of
time after which it switches to the next job.

For the jobs processed by the network a specification of their arrival rate and job
classes is needed. The arrival rate can again be deterministic, exponential or arbitrary
distributed. It characterises how many jobs arrive in a given timeframe. Job classes parti-
tion the jobs into different types. Each type may specify a different service time demand
for the servers in the network. Additionally, jobs can have distinct priorities which allow
them to enqueue at a server’s queue in front of jobs having a smaller priority.

For some combinations of queues and jobs analytical solutions exist. Many of these
classes use exponential distributions. Exponential distributions are ”memory-less”, i.e.,
the remaining processing time is independent of the job’s state which ease their analysis.
Nevertheless, the memory less assumption must be tested for when applying this class
of queuing networks. For networks where arrival rates and service times are generally
distributed, no analytical solution is known. The only known methods apply simulation
techniques.

An important tool using queuing networks is the SPEED tool (see also (Smith and
Williams, 1997)) which implements the SPE method as introduced by Smith (1990). It is
used in the experimental setting decribed in section 5.2. Therefore, the following briefly
introduces it.

In SPEED software designers specify two models: a software execution model using
software execution graphs and a hardware model. The software execution model mod-
els a performance critical scenario of the system under consideration. It supports control
flow constructs like forks, branches, backward jumps, and several call types. Actions in
the execution graph can issue demands to the system’s resources in hardware indepen-
dent units. The hardware model gives the processing rate of the resources. The combi-
nation of the software and hardware model finally gives hardware dependent execution
times by multiplying the demands with the processing rates. The SPEED tool transforms
both models into a queuing network automatically. The transformation derives for this
routing probabilities, arrival rates, servers, etc. from the input models. Depending on the
complexity of the result model, SPEED chooses either an analytical method or a simula-

50

2.3. PERFORMANCE MODELLING AND PREDICTION

tion based-approach to get the results. Feedback is given to the software developer by
different colours highlighting spots in the scenario which are performance critical.

Several enhancements for queuing networks exist, because of their popularity. Most
notably for software modelling is the extension of queuing networks by layers. In lay-
ered queuing networks (LQNs) as introduced by Woodside et al. (1995), servers can issue
requests to other servers during the processing of a job for their client. In LQNs software
entities and hardware entities are nodes in an acyclic graph. This graph represents the
dependencies of the nodes during job processing. Arrows going from one node to other
nodes indicate that during the processing of a job on the source node, the target nodes are
used. Consequently, hardware nodes only have incoming arrows as they process their
jobs directly. As for queuing networks, tools exist which solve LQNs either analytical or
by means of simulation depending on the underlying assumptions.

Stochastic Process Algebras Based on general process algebras like CCS developed by
Milner (1980), extensions for performance prediction exist which introduce stochastic
time demands for the actions of the algebra. The advantage of using a process algebra
is the possibility to specify the (possibly concurrent) behaviour of the processes in more
detail. Compared to queuing networks where the routes of the jobs in the network are
usually probabilistic, the processes of a process algebra behave according to the seman-
tics of the algebra. This also allows formal analysis of additional system properties like
deadlock freedom.

Early extensions used annotations on the actions of the algebra to denote exponential
distributed time demands of the actions. Examples for such algebras are TIPP (Götz et al.,
1992), PEPA (Hillston, 1996), or EMPA (Bernardo and Gorrieri, 1998). For an analysis,
the process specifications are transformed into Markov chains exploiting the memoryless
property of the exponential distribution.

More recent process algebras like MoDeST (Bohnenkamp et al., 2006) or SPADES (Har-
rison and Strulo, 2000) also deal with general distributed time consumptions. Again,
models based on general distributions can not be solved analytically resulting in a need
for a simulation based evaluation tool.

Stochastic Petri-Nets Enhancements exist for Petri-nets as introduced by Petri (1962)
which enable performance predictions based on Petri-net models. A Petri-net consists of
a set of places and transitions, which are traversed by tokens. Transitions remove and add
tokens on places whenever they fire. Transitions are active whenever more tokens are on
all places affected by the transition as required by the transition’s specification. Among
all active transitions one is selected to fire resulting in the final change of the Petri-net’s

51

2.3. PERFORMANCE MODELLING AND PREDICTION

state. Petri-nets are well suited to analyse concurrent behaviour and according properties
like deadlock freedom.

Stochastic enhancements (Ajmone Marsan et al., 1989) add exponential distributed
activation times to transitions which specify a minimum time which has to pass at least
for the transition to fire again. Additionally, probabilistic routing of the tokens can be
specified. As with stochastic process algebras, stochastic Petri-nets rely on Markov chains
offering the already discussed capabilities.

2.3.4 Performance Simulations

Simulation techniques are often used to evaluate performance models such as queueing
networks, stochastic Petri nets, stochastic process algebras or specialised models built for
a specific purpose. They offer the advantage of having more realistic and hence more
complex models. However, their disadvantage is the time it takes for the simulation to
come to results which are sufficiently precise.

In the survey on model-based performance predictions techniques by Balsamo et al.
(2004a), simulation models by de Miguel et al. (2000) and Arief and Speirs (2000) are de-
scribed. In addition, the UML-PSI tool by Marzolla Balsamo and Marzolla (2003) derives
an event-driven simulation from UML system models.

In a recent approach, Cortellessa et al. (2007) use UML models annotated using the
UML Real-Time (UML-RT) profile and transform them into a specifically designed simu-
lation.

Additionally, commercial approaches exist. Gorilla UML (Gorilla Logic Inc., 2007) is
a simulation engine for UML models. HyPerformix (HyPerformix Inc., 2007) is a simu-
lation tool to determine performance bottlenecks. However, due to the lack of publicly
available specifications of their engines, a detailed discussion of these tools has to be
omitted.

However, none of the reviewed simulations targets specifically component-based soft-
ware systems.

2.3.5 Prototyping

Prototyping is a method commonly used in engineering disciplines. After initial model
building and evaluation, engineers built prototypes which serve for early quality anal-
yses. According to Bardram et al. (2005) architectural prototypes also serve as an early
mean to evaluate many quality attributes of software architectures.

Especially for performance evaluation, many aspects left out in the software archi-
tecture’s model might have a significant impact. Hence, prototyping is often used to

52

2.3. PERFORMANCE MODELLING AND PREDICTION

predict the performance of the resulting system at early development stages. Compared
to model-based approaches, prototyping mostly offers more accurate results. However,
the costs for developing and testing a prototype are also much higher as it involves pro-
gramming, installing and measuring the prototype.

The high costs of the latter tasks arise due to the effort to build prototypes and setting
up the measurement environment. For example, external applications which are needed
by the prototype have to be installed in a test environment. Workload generators have
to be written and distributed which simulated the estimated workload of the system.
The executing hardware might be needed twice: one time for the prototype testing and
another time to not interfere with still running legacy applications.

2.3.6 CBSE Performance Prediction

Besides having good input models and accurate analysis models, performance prediction
for component-based software systems adds an additional level of complexity by the in-
troduction of the development roles (see section 2.1.2). As the developers acting in these
roles may be different persons most likely belonging to different organisations, the infor-
mation needed for conducting a performance evaluation is spread among the developer
roles. The component developer knows for example how the component is realised while
the software architect knows how the system is assembled of components.

Taking into account the identified influence factors on the performance of a
component-based software system (see section 2.3.1), a relationship between the devel-
oper roles and the influence factors becomes clear:

• Component developers posses the information on the implementation details

• Software architects know about the system’s assembly from which the destination
of external service calls can be derived by following the assembly connectors

• Deployers know about the hard- and software platform and how the components
are allocated on the platforms

• Domain Experts know about the (planned) use of the system

Hence, prediction models specifically designed for the prediction of component-based
software systems have to cope with this distribution of knowledge by using parame-
terized performance models for components. Becker et al. (2006b) surveyed existing
component-based performance prediction methods including a discussion on the sup-
port for parameterized component performance models.

53

2.3. PERFORMANCE MODELLING AND PREDICTION

The following paragraphs highlight only those methods based on models briefly (la-
belled MB1-MB7 in the survey paper). The other methods are partially based on mea-
surements. Hence, they can not be used in a plain model-driven application scenario. For
details on them, directly consult the survey (Becker et al., 2006b).

RESOLVE-P Sitaraman et al. (2001) take the usage of the components into their predic-
tions by using an extended Big-O Notations to specify the time and memory consumption
of software components depending on the input parameters passed to service calls. Addi-
tionally, composing services is supported on an abstract level by composing the specified
Big-O demands.

PACC Hissam et al. (2002) give a conceptual framework for a so called ”Predictable As-
sembly”. Such an assembly consists of certified components whose properties are com-
bined according to a composition theory. The framework takes component properties
(implementation knowledge) and their assembly (architects knowledge) into account.
However, as it is only a conceptual framework it depends on the actual method used
whether further influence factors are respected.

CB-SPE Bertolino and Mirandola (2004) apply the SPE method to component-based
systems by separating component performance models and assembly models. In so do-
ing, external service calls and the execution environment become parameterized. How-
ever, the software architect has to specify a performance critical scenario in analogy to the
SPE method. As he should not posses information on the component internals, this is a
drawback of the method. Furthermore, the method does not take input parameters into
account.

CBML Wu and Woodside (2004) use LQN models of components to build parameter-
ized component models. For each component an LQN model specifying its provided and
required interfaces as well as the control flow and resource usage dependencies. These
single component LQN models are combined according to an assembly model into a sys-
tem LQN model which gets evaluated. Wu and Woodside (2004) also consider inserting
components which they call completions (Woodside et al., 2002) for environmental ser-
vices like middleware services into the system model automatically to increase the pre-
diction accuracy of the environmental influence.

CB-APPEAR Eskenazi et al. (2004) present a method for the performance prediction of
existing components which undergo evolution. A parametric performance model is de-

54

2.3. PERFORMANCE MODELLING AND PREDICTION

rived for these components by putting them into a testbed which figures the dependencies
between method invocations and invocations of environmental services out. Depending
on the complexity of the parametric dependency, the resulting model is either analyti-
cal or simulation based. However, the approach makes strong assumptions which are
necessary to derive the performance models by testing.

ROBOCOP In the prediction method associated to the already introduced ROBOCOP
component model, Bondarev et al. (2005) introduce a prediction method for embedded
systems designed using ROBOCOP. The method can deal with implementation details
specified by the component developer parameterized by external services, the compo-
nent’s hardware environment, and usage. However, due to its focus on embedded sys-
tems, the support for parameterisations of the latter is limited. For example, input pa-
rameters can only be specified as constants or the component’s access to the execution
environment is expected to be precisely given in hardware metrics. Support for software
layers like operating systems or middleware platforms is outside the scope of this work.

Hamlet Hamlet et al. (2004) execute components and measure how the component us-
age propagates requests in order to gain accurate performance predictions. However,
their component model is limited as in their model components are simple functional
transformations having only a single service.

2.3.7 Model-Driven Methods

In the area of software performance engineering, the idea to use model-driven techniques
gained some attention recently. Model-driven techniques aim at a fully automated exe-
cution of the transformations presented in the process overview in section 2.3.2. How-
ever, model-driven performance prediction methods require suitable meta-models due
to their automated execution. These meta-models formalise the syntax and semantics of
the source and target model to a degree necessary for automatic processing. The follow-
ing first reviews three performance meta-models. Based on a survey by Di Marco and
Mirandola (2006), it then introduces a selection of model-driven performance prediction
approaches.

Performance Meta-Models Cortellessa (2005) compares three different performance
meta-models: The performance domain model of the UML-SPT profile (Object Manage-
ment Group (OMG), 2005b), the Core Scenario Model by Woodside et al. (2005), and the
Software Performance Engineering (SPE) meta-model by Smith and Williams (2002).

55

2.3. PERFORMANCE MODELLING AND PREDICTION

All meta-models may serve as annotated software models in the model-based perfor-
mance prediction process (cf. figure 2.10). Cortellessa (2005) classifies their concepts into
three classes: software behaviour, resources, and workload. The software behaviour aims
at describing the software execution at run-time. A common concept among the meta-
models is the description of this behaviour as scenarios which contain a set of linked
steps. Each step can interact with the hardware resources it is deployed on. All meta-
models contain concepts to specify the (probabilistic) control flow during system execu-
tion. However, their support for data flow specifications is very limited.

In the resource area all meta-models differentiate between active resources which ac-
tively process demands and passive resources which represent locks. Other character-
istics of resources deal with describing the resources themselves, e.g., their scheduling
discipline.

In the workload area all meta-models support open and closed workloads. Both types
can have different attributes to characterise them, e.g., arrival rate or think time.

As all meta-models target at the description of monolithic systems, none contains ex-
plicit support for modelling component-based software systems. However, their common
concepts briefly introduced above serve as starting point to create a CBSE-aware perfor-
mance meta-model.

UML-to-LQN Petriu and Wang (2000) present an conceptual approach to convert UML
collaborations automatically into LQN models using graph transformations. The ap-
proach supports a limited set of architectural patterns, namely pipe-and-filter, broker and
client-server. However, for each pattern several variants are discussed. Petriu and Shen
(2002) give an implementation of these concepts as an early model-driven approach to
performance evaluation of UML 1.x models annotated using the UML-SPT profile. Due
to the immaturity of the technological foundation of model-driven approaches in 2002,
the transformation uses the serialised XMI format of the UML model instance. It takes
collaborations, deployment diagrams, and activity diagrams into account.

To become practical the approach restricts the full power of UML and adds additional
semantic constraints, which are specified informally. The activity diagrams have to corre-
spond to the architectural patterns described as collaborations. Furthermore, they have to
be specified in a way which allows a transformation into a AST-like syntax tree for every
object taking part in a collaboration. One constraint opposed on transformable activity
diagrams is that they have to be partitioned among the communication partners by the
use of UML swim-lanes.

56

2.3. PERFORMANCE MODELLING AND PREDICTION

KLAPER An approach to deal with the problem of having many possible design no-
tations (like UML, OWL, etc.) which all need to be transformed into several possible
performance models (like Queuing networks, Petri-nets, etc.) is the Kernel Language for
Performance and Reliability analysis (KLAPER). It is a meta-model designed to serve as
intermediate model for model-transformations. Instead of having a transformation from
every design model into every analysis model, transformations use KLAPER as interme-
diate model. As such, transformations are needed from any design model into KLAPER
and from KLAPER into any analysis model, significantly reducing the overall amount of
transformations.

KLAPER’s core concepts base also on the concept of components which offer services
and which are connected via connectors. A set of connected actions (similar to activity
diagrams) specify the behaviour of the component’s services. Annotations exist directly
in the meta-model to specify resource consumptions and failure rates. As KLAPER is an
intermediate language, KLAPER models are supposed to be complete and not parame-
terised by the influence factors given in section 2.3.1.

SAP Di Marco and Inveradi (2004) present a model-driven, component-based perfor-
mance prediction approach called Software Architecture Performance (SAP). The ap-
proach uses SPT-annotated UML2 instances as input models. It takes UML Use Cases
as workload specifications, UML Component diagrams for the static structure, and UML
sequence charts for component interactions. It transforms these models into a multi-chain
queuing network, i.e., a queuing network in which classes of jobs exist which each may
have individual routes through the network. The mapping maps components to service
centres in the queuing network and use cases to job classes.

The transformation works in a compositional way. It combines the behaviours of dif-
ferent components into a large system behaviour by using the structure of the compo-
nent’s composition. While this allows a parameterisation over external service calls, the
components have to specify their resource demands in time units as the transformation
disregards component deployment and usage.

2.3.8 Platform Completions

Woodside et al. (2002) coined the term ”completions” for aspects of a software system
which are left out from system models due to reasons of abstracting from the real com-
plexity but which have a significant impact on the performance of the system. To give
an example, consider an architectural system model showing simple connections be-
tween components which model the fact, that the components exchange messages to
communicate. In the real system, this communication is causing several activities usu-

57

2.4. DISCUSSION OF THE EXISTING APPROACHES

ally performed by a middleware: Marshalling and demarshalling of service names and
parameters, performing broker lookups, building up TCP frames, transmitting them, etc.
Depending on the performance scenario, these activities might be responsible for perfor-
mance bottlenecks. The enrichment of a design model with specifications relevant for
performance analysis is called (model) completion by the authors.

The OMG’s MDA idea of having a PIM and a PSM conforms to some extend to the
idea of performance completions. A software model without completions can be seen as a
PIM, it does not contain specific performance information of underlying software layers.
Hence, a model containing completions can be seen as PSM. It contains the information
needed to do a performance prediction.

Some authors have aimed at providing automated model-transformations to include
such completions into design models in order to reach a higher prediction accuracy.

Verdickt et al. (2005) present a transformation which includes the performance impact
of a CORBA based middleware into UML models. The UML model’s structure has to
be similar to the one used by Petriu and Shen (2002). UML collaborations specify the
possible communication patterns which the transformation expands. The transformation
takes the timing information of the middleware’s services as parameters according to an
ad-hoc XML schema.

Grassi et al. (2006) present an approach which uses a QVT-Relations transformation to
include the performance overhead caused by communication links into KLAPER models.
For this, the transformation selects links in the model and replaces them by the actions
performed by the middleware which are part of the transformation. Due to the lack of
working QVT engines, the approach has been validated by executing the transformation
manually.

Wu and Woodside (2004) envision the use of components as platform completions as
already mentioned in section 2.3.6 on CBSE prediction methods. They planned a library
of components for example database, middleware, or file system components. Based on
a set of rules, these completions should be added into the models. They also point out,
that this should be done automatically. However, they seemed to have discontinued this
work.

2.4 Discussion of the Existing Approaches

The following sections list requirements for component-based architecture design and
prediction resulting from the introduced foundations. Section 2.4.1 gives an overview
on them classified by the involved research areas (cf. figure 2.1 in the motivation to this
chapter). Section 2.4.2 uses the literature surveys presented at the end of each related

58

2.4. DISCUSSION OF THE EXISTING APPROACHES

research area section as basis to judge the state-of-the-art. Based on this and the require-
ments presented in section 2.4.1, section 2.4.2 presents the resulting deficiencies targeted
in this thesis.

2.4.1 Requirements for Model-Driven, CBSE Predictability

Each introduced area of research offers advantages for a software development process.
Hence, combining these areas is desirable. In detail, three main requirements result from
supporting each of the areas involved:

• Firstly, a CBSE development process should be supported. The CBSE method offers
advantages due to better component specifications and shared workload among the
developer roles.

• Secondly, the envisioned software development process in this thesis should be
based on the inclusion of models and model-transformations in order to benefit
from the advantages of MDSD (cf. section 2.2). Especially, it is an aim to use the
close relationship between a model and the code generated from it to increase per-
formance prediction accuracy.

• Thirdly, model-driven performance predictions of the specified architectures should
be supported to enable architectures whose design decisions are based on predicted
quality attributes. The following paragraphs investigate each requirement in more
detail.

In detail, from the CBSE requirement result the following sub-requirements:

1. Support for the CBSE development roles (cf. section 2.1.2) requires distributed mod-
elling activities: Each role has specify those parts of a complete system model it
possesses information about. This effectively splits the complete system model into
sub-models specific to each of the roles.

2. Support for a Parameterised Component Model: A model of a software component
has to be parameterised by the identified influence factors (see section 2.3.1). Such
parameterisations allow using the same model of a component in different reuse
scenarios. It is part of the responsibilities of the component developer to specify
his components in such a parameterised way. By specifying their sub-models, other
roles finally fix the parameters resulting in a complete model. However, when de-
signing each role’s DSL, it is important to keep the models as small as possible, i.e.,
information derivable from other information is determined automatically.

59

2.4. DISCUSSION OF THE EXISTING APPROACHES

3. Gray-Box Components: The black-box component principle should be preserved
for reasons of information hiding and encapsulation (cf. section 2.1). However,
performance prediction requires at least abstract models of internal component ac-
tivities to estimate their resource demands. Hence, a refined black-box view on
components is favoured: tools gain access to the internals of components, but the
developer still only gets the information on component interfaces. In practice, this
is the way components are distributed today if the bytecode is taken as the speci-
fication of the internal behaviour of the component. The bytecode is only accessed
by tools like virtual machines and not by the developer.

4. Third Party Deployment: In order to support the CBSE development process as pre-
sented in section 2.1, not only component models but also component implemen-
tations must support varying external influence factors after the implementation
phase. However, existing target middleware platforms still have limited build-in
support for a strict distinction of the CBSE roles. As a consequence it is required
to overcome such limitations by appropriate measures encoded in transformations.
Often, existing design or architectural patterns solve these problems. Whenever
they exist, they should be applied.

Model-driven software development aims at increasing the effectiveness of software de-
velopment activities by automating the transitions from more abstract models of the sys-
tem to more concrete ones. Hence, the requirements aim at saving time and money to
effectively automate as much as possible of this process:

1. Meta-Model Foundation: In order to use standard transformation engines, a meta-
model is needed based on a standard meta-meta-model. The required meta-model
should have a clearly defined syntax and its semantics should be as precise as pos-
sible. Model elements should be accessible by standard compliant transformation
engines. A counter-example to this is the tagged-value annotations used in SPT as
they need upfront parsing. Instead of such strings, all relevant information should
be accessible via meta-model classes.

2. Meta-Model Applicability: When designing a meta-model all parts of it (abstract
and concrete syntax, static and dynamic semantics) deserve attention. Especially
the concrete syntax is crucial for the applicability of the meta-model. Without a
well-designed concrete syntax, the meta-model is not applicable. Case studies or
experiments with common software developers offer a measure to evaluate whether
the meta-model is suited.

60

2.4. DISCUSSION OF THE EXISTING APPROACHES

3. Transformations Bridge Abstraction Levels: In MDSD automated transformations
are used to bridge the gap between an abstract model and more concrete models or
code. The transformations should execute automatically and may be parameterised
by mark models to reflect mapping alternatives.

4. Standard Compliance: As much of the technology as possible should be founded on
standards or de-facto standards. The resulting ability to reuse standard compliance
tools leads to a higher efficiency compared to self-developed tools and transforma-
tions. One reason for this is that it allows to use powerful transformation engines
which allow complex operations. Such operations, like matching complex object
structures, need sophisticated knowledge and hence, are hard and error-prone to
implement. Additionally, it eases the exchange of tools and models which enables
to use specific tools for specific tasks.

Detailed requirements resulting from the main requirement to have performance pre-
dictions included in the envisioned software development process are:

1. Integrated Validation: As in other engineering disciplines, the software develop-
ment process favoured in this thesis should support model validation and refine-
ment steps after initial evaluations. They base on measurements performed with
prototypes and (parts of) the final system.

2. Prediction Result Expressiveness: Performance predictions should result in enough
information to make the right design decisions. Sometimes mean response times or
average queue load is sufficient for this. But in many scenarios it is not as trade-offs
are involved. For example, speeding up one class of requests might slow down an-
other making it hard to state which alternative offers the better performance. In or-
der to deal with the problem, this thesis favours distribution functions of stochastic
results over characteristic values like mean or standard deviation. The predictions
have to deal with that.

3. Annotation Inputs: It can be hard to adjust performance annotations like arrival
rate estimates to predefined distribution types. This is even more true in a dis-
tributed development environment where the final prediction model input is calcu-
lated from several specifications done by different developer roles. Hence, support
for arbitrary distribution functions for stochastic input values is needed.

Requirements which result from the combination of CBSE and MDSD are:

1. Support For Distributed Model Transformations: Model transformations can only
take place when the model information needed for a specific transformation is com-

61

2.4. DISCUSSION OF THE EXISTING APPROACHES

plete. Some transformations have to be executable by roles independent from oth-
ers. For example, a transformation deriving code skeletons for component imple-
mentations from component models has to be executable by the component de-
veloper independent from other development roles. Additionally, transformations
which derive prediction models have to produce partial prediction models which
are combined in a finalising step.

Requirements which result from the combination of the model-driven approach and
performance prediction are:

1. Model-Driven Predictions: Performance predictions have to be based on models.
Models offer a cost effective way of doing early analyses and what-if scenario eval-
uations.

2. (Semi-)Automatic Prediction Model Generation: In a model-driven context, model
transformations translate design models into prediction models. To guide the trans-
formation, developers can add manual additions like performance annotations or
completion specifications to the transformation as parameter.

3. Exploit the Generative Nature of the Implementation Generation: Code is gener-
ated by transformations guided by input models. However, transformations add
additional information to intermediate models or final code fragments. This can be
done either fully automated or semi-automated guided by parameters specified by
the user as mark model.

2.4.2 Resulting Deficiencies

Judging existing approaches for each of the three foundation areas against the require-
ments given in section 2.4.1 results in a list of deficiencies in existing approaches.

Component Models Component models offer support for the CBSE processes and com-
positional reasoning. The industrial component models even offer support for imple-
menting components on middleware implementations. However, they still have limited
(if any) support for advanced concepts like composed components or explicit required
interfaces and do not support performance analyses.

Fractal offers advanced component concepts like composed components and run-time
reconfiguration which is also supported in Fractal platform implementations. However,
it misses quality evaluation methods.

Documentation-oriented models like the component model of UML2 suffer from im-
precision and ambiguities. Additionally, support for performance annotations is only

62

2.4. DISCUSSION OF THE EXISTING APPROACHES

available as meta-model extension via profiles. However, due to its MOF based meta-
model, UML2 itself has a well-defined abstract syntax which would allow model transfor-
mations using standard transformation engines. However, many UML tools still do not
support exporting standard compliant XMI files which decreases tool interoperability.

Architecture Description Languages have been designed with the aim of analysing
software architectures. However, from the surveyed literature only few ADLs support
quality annotations and analyses namely MetaH, Rapide, and UniCon (cf. section 2.1.4).
Their focus is on real-time and schedulability analysis, which is unsuited for early de-
sign phase performance evaluation. Additionally, they have not been designed for stan-
dardised model transformations as their meta-model is commonly not expressed using a
standard meta-meta-model.

SOFA possesses an explicit meta-model and also supports advanced component con-
cepts like composed components. However, analyses focus on protocol and implementa-
tion conformance checks via model-checking. Performance analysis is not supported.

Embedded component models offer some support for early quality analysis. Espe-
cially the RoboCop component model is related to the component model used in this
thesis as it supports the partitioning of models to describe components and thus could
also be used in a software development process with several involved developer roles.
The extensions introduced by Bondarev et al. (2005) allow the specification of resource
consumptions, behavioural specifications and constant input parameter dependencies.
However, given the focus on embedded systems many models used in their work only
support a limited scope adding several strong assumptions on the system to be modelled.
For example, it is assumed that the time needed to process a job can be derived exactly,
which might be valid for an embedded controller but which is not valid for a business
information system running on several software layers without real-time guarantees.

CBSE Performance Prediction Methods The CBSE prediction methods survey in sec-
tion 2.3.6 all aim at supporting performance prediction for component-based software
systems. However, as the original survey by Becker et al. (2006b) showed, only few of
them support all of the CBSE developer roles involved.

The most comprehensive support has ROBOCOP. It supports all developer roles in-
cluding the impact of different input parameter usages in the usage context. However,
it targets at embedded systems and thus, can make several simplifying assumptions like
exactly available hardware demands or constant input parameters only. Based on these
assumptions, ROBOCOP supports worst-case and schedulability analyses important in
the embedded domain. In this thesis, focus is on probabilistic, average case analyses
more important for business information systems which do not need hard deadlines.

63

2.4. DISCUSSION OF THE EXISTING APPROACHES

Additionally, non of the CBSE prediction methods supports model-driven code gener-
ation from their model instances. However, the close relationship of generated code and
its performance at run-time is in the focus of the Coupled Transformations method pre-
sented in section 4.1. To demonstrate this, this thesis presents a Java EE mapping of PCM
instances in section 4.6 and elaborates on the resulting performance impact.

Model-Driven Performance Prediction In order to do model-driven component-based
performance predictions a meta-model is needed to specify the component-based ar-
chitecture and the performance of single components. In the meta-models surveyed
by Cortellessa (2005), i.e., UML1.x with SPT annotations, the SPEED meta-model, and
CSM, many concepts needed for performance predictions like modelling the control flow,
the workload, the hardware environment, or performance annotations exist. However,
as Cortellessa (2005) concludes, non of them has explicit support for component-based
software development.

The SAP approach by Di Marco and Inveradi (2004) explicitly bases it performance
predictions on component-based development. It already includes compositional reason-
ing on the performance of component-based architectures by combining single character-
istics of single component into a system’s prediction model. The used transformation
can also handle different kinds of workloads by mapping them on different routes in the
used queuing network. However, it also has some drawbacks. First, it misses support for
a parameterised component deployment as each component has to specify its resource
demand in hardware-dependent times. Second, due to its foundation in the UML, it in-
herits the issues with UML’s imprecise component model (see section 2.1.4). Third, it is
unclear how the authors apply the SPT profile which is designed for UML1.x to UML2
model in which the semantics of the profiling mechanism changed significantly. How-
ever, they have to rely on UML2 as they use its improved component and collaboration
models.

Petriu and Wang (2000) transform SPT annotated UML1.x models into LQNs. How-
ever, it is not targeting component-based developments due to its focus on UML collabo-
rations. Additionally, the same issues with the UML meta-model apply as discussed for
SAP.

KLAPER from Grassi et al. (2005) also claims to support component-based software
systems. However, KLAPER is not aligned with the CBSE developer roles and uses a very
broad component term which includes software- and hardware components. Its aim is
to provide an intermediate model for transformations into performance predictions mod-
els. For this, it is based on EMOF instead of using the UML. However, the few available
analysis transformations also make strong assumptions on the KLAPER instance like ex-

64

2.4. DISCUSSION OF THE EXISTING APPROACHES

ponential distributed workloads so that KLAPER is disregarded in this thesis.
This thesis does not use the UML as input model to avoid several issues (Becker et al.,

2008b). The most important are the missing support for creating partial models (to sup-
port the CBSE roles), the unavailability of performance annotation profiles for UML2
(UML2 is needed because of the enhanced component model over UML1.x), the com-
plexity of the meta-model which would require introducing many restrictions to reflect
the component concept favoured in this thesis (like disallowing inheritance for compo-
nents), and the issues with tool interoperability with the XMI produced by different UML
modelling tools (cf. the paragraph on UML in section 2.1.4). Instead, this thesis defines
a EMOF based meta-model which has explicit support for CBSE developer roles (see sec-
tion 3.1) and the required parameterisation by the different influence factors on perfor-
mance (cf. section 2.3.1). Using an EMOF based meta-model also eases to use of standard
model transformation engines.

Platform Completions The introduced platform completions (see section 2.3.8) all aim
at integrating platform specific details into performance prediction models. The methods
by Verdickt et al. (2005) and Grassi et al. (2006) successfully include details on compo-
nent connectors into the prediction models. However, they do so in an all-or-nothing
approach, i.e., they replace all connectors with the same details. They do not use informa-
tion on the transformation of the design model into its realisation which allows a more
flexible control which completions to add in which cases (cf. section 4.1).

The approach by Wu and Woodside (2004) envisions the use of completion compo-
nents to model platform aspects like different software layers (middleware, databases,
filesystems, etc.) or networking. The authors plan to use a library of completion com-
ponent to include them into the prediction model based on a set of rules not explained
further. While the central idea of these completion components gives means to add plat-
form details into prediction models, Wu and Woodside (2004) did not follow up on the
idea in future work. In this thesis, their ideas are reused and extended. Instead of using
CBML, this thesis uses the PCM which offers further advantages over CBML (cf. previ-
ous paragraphs). In this thesis, the rules Wu and Woodside (2004) planned to use for the
inclusion of different completions are derived from the code transformation.

65

2.4. DISCUSSION OF THE EXISTING APPROACHES

66

Chapter 3

The Palladio Component Model

The Palladio Component Model deals with many of the introduced requirements (cf. sec-
tion 2.4.1) like explicit support for CBSE roles, an explicit model for component contexts,
and CBSE performance predictions based on arbitrary distributed random variables. A
brief history of the model and its evolution shows how the requirements have been in-
cluded over time.

The model builds on parametric contracts introduced by Reussner (2001). They de-
scribe the intra-component relationship between the provided and the required interfaces
of components by specifying the invoked required services during the execution of a pro-
vided service. Early versions focused on the execution order of required services which
has been used for automated component protocol adaptations (Reussner, 2001). Para-
metric contracts use so-called service effect specifications (SEFFs) to specify the inner be-
haviour of a component. Reussner (2001) uses finite state machines (FSMs) where states
represent component states and transitions represent calls to required services. Becker
et al. (2003) introduce a first attempt to a meta-model formalisation of the SEFF concept
based on an EBNF grammar.

Reussner et al. (2003) extend the concept of parametric contracts to analyse software
reliability by annotating SEFF transitions with failure probabilities. Reussner et al. (2004)
further enhance the SEFF to enable performance predictions. In this work, states of the
SEFF’s FSM represent component internal computations while transitions still represent
calls to required services. Random variables attached to states are used to specify time
spans. They specify for how long a component remains in the respective state before
issuing the following external call. By this, the model considers already the influence of
component external service calls (cf. section 2.3.1).

The SEFF used for performance prediction has been embedded into a more com-
plex meta-model, which explicitly introduced components, interfaces, and connectors as
model concepts. However, the corresponding implementation to create, serialise, and

67

analyse instances of the model was based on ad-hoc, manual-written code. Editor sup-
port for the concrete graphical syntax of the model was initially implemented by Uflacker
(2005) and later on extended by a student project group (Krogmann and Becker, 2007).

The master thesis by Krogmann (2006) introduced an ECORE instance of the PCM’s
meta-model enabling the use of standardised, model-driven techniques. Additionally,
he extended the model by an explicit component context concept as described by Becker
et al. (2006c) and further types of components. The explicit context allows additional
parameterisations, namely execution environment and usage.

Becker et al. (2007) enhance the model further by introducing a new SEFF concept
called Resource Demanding SEFF (RD-SEFF) reflecting parametric dependencies to in-
put parameters (as developed by Koziolek et al. (2006)) and the execution environment.
For this, an extension to the PCM’s meta-model introduced so called stochastic expres-
sions. Component developers can use them for example to specify resource demands
depending on characterisations of input parameters. The stochastic expressions replaced
the former FSM state annotations.

Additionally, the model has been split to reflect the CBSE developer roles. For each
role a subset of the whole meta-model’s concepts has been defined. Thus, a domain spe-
cific language (DSL) for each developer role is introduced. Furthermore, Becker et al.
(2007) introduce a model-based simulation tool for predictions.

Based on this, Koziolek et al. (2007) have added additional concepts to specify return
value abstractions for external calls and component configuration parameters. Addition-
ally, the authors introduce a model-driven approach to derive an analytical performance
prediction model using model-2-model transformations.

Three additional transformations for PCM instances have been developed and are de-
scribed in section 4. They are an essential part of this thesis’ contribution. The first re-
places the model-based simulation by a model-driven simulation framework which uses
a model-2-code transformation to generate the simulation’s code. The second generates a
prototype and the last code skeletons.

The complexity of the PCM’s meta-model makes it difficult to discuss all concepts in
detail here. A technical report of the University Karlsruhe contains the detailed specifi-
cation (Reussner et al., 2007). Here, the current state of the PCM is briefly introduced to
understand the transformations and validations presented in section 4 and section 5.

The usage and data-flow dependent parts of the PCM have been developed by Kozi-
olek (2008). To allow a distinction, section A.1 gives an overview on the PCM’s packages
and their respective creators. It also contains a comprehensive overview on all transfor-
mations in the context of the PCM including their creators (see figure 3.1 and A.2).

68

3.1. PALLADIO DEVELOPMENT PROCESS

3.1 Palladio Development Process

This section first introduces the component-based development process underlying the
PCM as published by Koziolek and Happe (2006). Afterwards, it refines this process to
reflect the requirements resulting from the integration of MDSD.

3.1.1 PCM Development Process

Overview The PCM distinguishes five developer roles: the component developer, the
software architect, the system deployer, the domain expert, and the QoS analyst. Fig-
ure 3.1 shows all roles including the model artefacts they create.

Usage Model

Component Specifications

<<User>>

Assembly Model

Allocation Model

<<Component

Developer>>

part of

part of

part o
f

pa
rt
 o

f

<<Software

Architect>>

<<System

Deployer>>

<<Domain

Expert>>

PCM

Instance

Model-to-Model

Transformation

Stochastic Process Algebra

P:= (a+b) || c

Q:=P || S

[Happe]

Queueing Network-based Simulation

Performance Prototype

Java Code Skeletons

M
odel-to-C

ode

Transform
ation

M
odel-to-C

ode

T
ransform

ation

M
o
d
e
l-to

-C
o
d
e

T
ra

n
sfo

rm
a
tio

n

<<QoS Analyst>>

Stochastic Regular Expressions

[Firus, Koziolek]

M
odel-t

o-M
odel

Tra
nsfo

rm
atio

n

[Contribution of this thesis]

Layered Queuing Networks

[Koziolek]

Model-to-Model
Transformation

Figure 3.1: The PCM Developer Roles and the Transformation Artefacts

The roles (depicted on the left hand side) correspond to the roles introduced in sec-
tion 2.1.2. In the PCM, each of the roles is responsible for a certain submodel of a sys-
tem specification. Component developers model interfaces, components, and data types.
Software architects take components and their specifications as provided by component
developers and assemble the components into systems. System deployers capture hard-

69

3.1. PALLADIO DEVELOPMENT PROCESS

and software execution environments in so-called resource environment models, e.g.,
physical servers and their operating systems. When given a system model, i.e., an as-
sembly of components from the software architect, they allocate the components on re-
spective hard- and software resources. Finally, domain experts model user behaviour.
For this, they specify the user’s arrival process, their system interaction and performance
relevant characteristics of the input parameters.

On the right hand side of figure 3.1, the output of existing model transformations is
depicted. At the time of writing, six transformations exist. However, the transformation
into a stochastic process algebra called Capra is still under development by Happe (2008).
The first working transformation maps PCM instances into stochastic regular expressions.
Firus et al. (2005) initially developed it and Koziolek (2008) extended and implemented
it in his thesis. It allows only the analysis of single user workloads. The second transfor-
mation maps PCM instances into instances of the Layered Queueing Networks (LQNs)
performance prediction model and is also presented by Koziolek (2008). However, LQNs
support only certain types of random variable distributions and produce only mean val-
ues of the resulting metrics.

One of the contributions of this thesis are the following three transformations. The
first of them derives a simulation in Java based directly on the PCM’s constructs (see sec-
tion 4.4). It is not subject to the restrictions of the afore described transformations. The
second transformation uses simulation concepts and combines them with final applica-
tion code into a prototype implementation which can be used for performance testing on
the final execution environment (see section 4.7). The last transformation derives code
skeletons for Java EE, which bridge semantic gaps between the PCM’s concepts and Java
EE’s concepts (see section 4.6).

Process Model Koziolek and Happe (2006) describe how the existing CBSE develop-
ment process by Cheesman and Daniels (2000) can be enhanced to include QoS analy-
ses. For this, the developer role’s tasks have been identified and the flow of artefacts
has been described in detail. In this thesis, the process is further enriched with tasks
in which model transformations for prototyping and implementation are executed (see
section 3.1.2). Figure 3.2 shows an overview of the process.

The process consists of seven workflow steps: requirements, specification, QoS analy-
sis, provisioning, assembly, test, and deployment. The following briefly describes them.

The requirements phase captures the business requirements for the system under con-
struction. This contains the system’s business domain and business context, the function-
ality it should provide, and the extra-functional requirements it should fulfil. The result
of the requirements phase is a conceptual domain model forming a domain vocabulary

70

3.1. PALLADIO DEVELOPMENT PROCESS

Requirements

Specification QoS-Analysis Provisioning Assembly

Test

Deployment

Business Concept
Model

Use Case
Models

QoS
Results Component Specs &

Architecture

Business
Requirements

Existing Assets
Technical Constraints Components

Use Case
Models

Applications

Tested
Applications

Deployment
Diagrams

Legend
Workflow
Change of Activity
Flow of Artifact

Figure 3.2: Process Model of the PCM (Koziolek and Happe, 2006)

and a set of system use cases. The creation of these models is the task of the domain
expert.

In the specification phase, software architects use the domain model and the use cases
and design a component-based software architecture realising the requirements. They de-
cide how to decompose the system into components resulting in specifications of needed
components and their composition. In later iterations of this phase, decisions on the com-
ponents are influenced by identified QoS issues from the QoS analysis phase and the
availability of pre-existing components acquired in the provisioning phase.

In the QoS analysis phase, the QoS analyst uses the specification of the components,
their composition, and the target soft- and hardware environment to derive performance
metrics. Based on these metrics, the QoS analyst can judge whether the software architec-
ture fulfils its extra-functional requirements. If the architecture fails to fulfil its require-
ments, the QoS analyst may suggest design alternatives to improve the architecture.

During the provisioning phase, the software architect decides whether to buy or imple-
ment components, i.e., either needed components already exist and need to be purchased
or component developers need to implement them based on the software architect’s spec-
ifications.

The components produced or bought in the provisioning phase are used in the as-
sembly phase to create the application’s code. This phase uses the software architecture
designed in the specification phase and connects the components qly. This often involves
configuring middleware containers which connect the components at run-time.

71

3.1. PALLADIO DEVELOPMENT PROCESS

The test phase serves as final functional and extra-functional validation phase to check
if all requirements are met by the system. For this, deployers install the system in a test
environment that should resemble the final target environment.

Finally, the deployer installs the system at the customer’s side, in the deployment phase.
After this step, the system is ready to be used by its end-users.

The following section elaborates on how to refine some of these steps when using
MDSD techniques in a CBSE context. It also provides a more detailed discussion of the
specification and QoS analysis phase.

3.1.2 Introducing MDSD into the Palladio Development Process

Motivation As introduced in the previous section, the PCM supports a role-based soft-
ware development process. In contrast to this, MDSD usually assumes the existence of
fully specified models. Transformations map such complete models to code. Hence, sup-
port for distributed modelling is weak. For example, when using UML input models the
problem arises that most UML tools do not support creating partial models which ref-
erence each other. Additionally, in literature there is still a lack of information on how
to create models when developing in teams where the developers act in different roles.
Völter and Stahl (2006) present initial ideas on this issue. However, these ideas target
at creating a single model in a team. The PCM has explicit support for developer roles
which are usually assumed to be different persons spread among different geographical
locations and organisations. The transformations presented in this thesis deal with this
requirement as there is not a single transformation but a transformation for each of the
developer roles. There is a transformation for component developers, one for software
architects, one for deployers, and one for domain experts as explained in the following.

A second requirement needs to be included in the process. As introduced in sec-
tion 2.2.3, when mapping abstract high level models to lower level realisations, often
mark models add additional information to the transformation to determine how the ab-
stract model elements are mapped to a specific target model. These mapping decisions
have an impact on the generated artefacts and their performance (cf. section 4.1). Hence,
these mark model artefacts have to be included in the data flow in the presented process
model.

The following paragraphs give an overview on the transformations, their artefacts and
their integration in the development process as presented in section 3.1.1.

Specification and Provisioning The specification and provisioning phases require two
refinements. First, the software architect additionally needs to encode decisions taken on
the technical realisation of the architecture by creating mark models. Second, component

72

3.1. PALLADIO DEVELOPMENT PROCESS

Component Repository

Component Requirements

Analysis

Functional Property

Specification

Extra-Functional Property

Specification

Component

Code Transformation

Requirements

Interfaces

Internal Dependencies

QoS Relevant

Information

Component Identification

Component Interaction

Component Specification

Interoperability Check

Initial Component

Specs & Architecture

Service Effect

Specification

Optimised

Component Specs

Business

Type

Model

Business

Concept Model

Use Case

Model

Initial Interfaces

Interface

Signatures

Interface

Protocols

Existing

Interfaces

and Assets

Component

Requirements &

Interface Signatures

Service Effect

Specifications &

Interface

Protocols

S
p

e
c
if
ic

a
ti
o

n

Technical

Constraints

Results of QoS

Metrics

Initial Component

Specs & Architecture

Initial Component

Specs & Architecture

Component Developer Software Architect

Component Internals

Implementation

Code

Skeletons

Implemented

Binary

Components

Component

QoS Models

and / or

Simulation

Components

Prototype

Components

Technical

Mapping

Decisions /

Mark Models

Software

Architecture

Technical

Mapping

Figure 3.3: MDSD-Refined Specification Workflow

developers additionally use code transformations when implementing components. Fig-
ure 3.3 shows details of these steps. Refinements in comparison to the initial publication
by Koziolek and Happe (2006) are presented using an italic font.

The changes for the software architect only involve specifying mapping options for
the technical realisations (depicted as output of the specification phase). For example,
consider the system should be implemented as Java EE application. Then the software
architect can additionally specify the configuration of the EJB component container, e.g.,
authentication requirements, the marshalling protocol to use, etc. (for the Java EE map-
ping in this thesis these options are presented in section 4.6.3). The information specified
for the technical mapping is used in the QoS analysis phase to refine the predictions and
in the assembly phase to create respective middleware configuration files.

The workflow of component developers changes by the use of transformations as they
may use transformations to generate code for component implementations (the last two

73

3.1. PALLADIO DEVELOPMENT PROCESS

steps on the left hand side of figure 3.3). Based on the component specifications in the
PCM, code is generated which reflects the model. As the PCM’s behavioural specifi-
cation is too abstract to fully generate the component’s implementation, the generated
artefacts are code skeletons which have to be completed in a subsequent step. As for the
software architects in the previous paragraph, it is possible to add mark models to specify
mapping options (for the Java EE mapping in this thesis these options are presented in
section 4.6.1).

In contrast to the originally published process, the modified process additionally sup-
ports executing the transformations which transform the component specifications into
their corresponding performance models. In the context of this thesis this means a rep-
resentation of the component specification as simulation component for SimuCom (see
section 4.4) or as performance prototype component for ProtoCom (see section 4.7). This
option was added to the workflow to support use cases in which component develop-
ers may resist to share their component specifications to preserve their business secrets.
In this situation they can distribute the binary code of their components together with
the binary code of the simulation and prototype components. However, whether this
protection is sufficient can be doubted as the binary code of the prototype or simulation
components may be reverse-engineered, but this also applies to the component’s binary
code itself and is illegal in many countries.

QoS analysis The QoS analysis phase has only been modified slightly as it already in-
cluded model-transformations in the original version (see figure 3.4, modifications in ital-
ics font).

The introduced refinements include additional information on the code mapping, i.e.,
the mark model instances, of the PCM elements into the prediction process. As compo-
nent developers and software architects can add mapping annotations via mark models
these mark models need to be respected by the system model transformation. Addi-
tionally, as now information is available on how the application is mapped to code and
deployed on middleware servers for example, it uses a model library of completions (cf.
section 2.3.8 and 4.5.3) to increase prediction accuracy of software layers like middleware,
virtual machines, or operation systems.

The simulation and prototype mappings presented in this thesis are realisations of the
system transformation step. QoS analysts use the generated simulation or prototypes for
performance evaluations.

Assembly In the assembly phase, the software architect uses a code transformation to
generate the code necessary to connect components. This code transformation respects

74

3.1. PALLADIO DEVELOPMENT PROCESS

Allocation

QoS Requirement

Annotation

QoS Information Integration

Q
o

S
 A

n
a

ly
s
is

QoS Analyst

System Model

Transformation

Deployer Domain Expert

System Environment

Specification

(incl. QoS Attributes)

Use Case Analysis

Usage Model Refinement

Use Case Models

Scenarios

(Activity Charts)

Annotated System

Architecture

Fully QoS Annotated

System Architecture

QoS Evaluation

Model

QoS

Metrics

Results for

QoS Metrics

Component Architecture

incl. Technical Mapping

Decisions / Mark Models

Component Specs &

Architecture
Use Case Models

Refined

User

Model

System

Environment

Component

Developer

Business

Requirements

Deployment

Diagrams

Component QoS

Specifications

(Data Dependencies,

Resource Consumption)

and/or

Transformed Component

Performance Models

Annotated

Deployment

Diagrams

QoS Evaluation

Completions

Model

Library

Figure 3.4: MDSD-Refined QoS Analysis Workflow

the additional mapping options specified as mark models. For example, for the Java
EE transformation presented in this thesis, this mainly involves generating configuration
files, which configure the assembly of the components according the the software archi-
tecture and mark model.

Test and Deployment In the test and deployment phases, a transformation for the de-
ployer creates additional helper artefacts like build scripts which pack and deploy the
components as specified in the allocation model. A transformation for the domain expert
derives functional unit tests and extra-functional load drivers from the usage model.

Implications of the Division of Roles

Matching Artefacts: Transformations executed at different locations by different roles
need to make assumptions on the identifiers of the generated artefacts. For example,
when mapping PCM components to Java, the name attribute of the component and its
repository may be used to generate a full qualified name (FQN) for the component’s im-
plementing Java class. However, subsequent transformations have to know this mapping

75

3.2. PCM CORE CONCEPTS

rule, i.e., the ID to generate correct references to the components.
The following briefly discusses alternatives to the ID matching problem which do not

rely on matching FQNs. Design patterns may serve as source for solutions to the men-
tioned problem. First, creation patterns of Gamma et al. (1995) and Buschmann et al.
(1996) help decoupling the components from their instantiation and implementation. Es-
pecially the Broker pattern can help in this setting by providing a central registry for map-
ping component IDs to component instances. Per repository a Broker could be generated
which contains a mapping of the PCM’s globally unique component IDs (GUIDs) to in-
stances of the component. The Broker can use a Prototype factory pattern to create the
respective implementations based on the ID given. By this, the FQNs of the implementa-
tions can be hidden completely inside the repository’s implementation as implementation
detail. For legacy components, a manual implementation of the Broker is needed which
then maps their component IDs on legacy implementations. This solves at least the nam-
ing issue by the use of PCM GUIDs, but it still relies on the (common) knowledge that
the components have to be retrieved from the Broker. This kind of common knowledge
is always needed for distributed automated transformations.

Dependencies: Each transformation has to result in a stand alone artefact, like a JAR
file in Java. These files follow the same dependency rules which also hold for the model
artefacts in the PCM. Repository models of component developers depend on the repos-
itories containing components and interfaces reused for creating the new components.
Accordingly, the code artefact generated by the component developer’s transformation
depends on the code artefacts generated from the referenced models. The system model
depends on an arbitrary number of repositories from with the components are referenced.
Accordingly, the generated artefacts for the system implementation depend on the avail-
ability of the code artefacts of the component developers. For other artefacts according
rules apply.

3.2 PCM Core Concepts

After introducing the PCM’s development process, the following sections introduce the
PCM’s meta-model. The discussion starts with PCM Core meta-classes used multiple
times in the PCM. They are entities carrying a globally unique ID (GUIDs), an abstract
model for entities which provide and require interfaces, an abstract model to describe
entities composed from other entities, a model, called stochastic expressions, to specify
random variables, and an explicit model for the context of components.

Globally unique identifier are used to identify components possibly developed inde-
pendently by component developers in different organizations at different geographical

76

3.2. PCM CORE CONCEPTS

locations. The PCM’s technical report provides (further details in Reussner et al. (2007)).
Interface providing and requiring interfaces are part of the PCM’s role concept described
in section 3.4.1. Section 3.4.4 introduces composed structures in the context of composite
components.

The following subsections deal with the remaining two core concepts, stochastic ex-
pressions and the explicit component context model. Both concepts are important for the
understanding the simulation transformation (see section 4.4).

3.2.1 Random Variables and Stochastic Expressions

In the PCM, all developer roles use random variables to specify performance properties.
Random variables allow them to characterise situations under uncertainty. Highly af-
fected by uncertainty is the domain expert who has to estimate future behaviour of users.
The domain expert uses random variables to explicitly capture the uncertainty of the
specifications.

In the PCM, random variables allow specifications of either stochastic processes or
dependencies between sub-models by using them as variable in one sub-model which
gets assigned in a different sub-model. Examples where developers may use random
variables are:

• Characterisations of Input Parameters: Describes the performance relevant charac-
teristics of parameters of component services.

• Inter-Arrival Time: Describes how much time passes between the arrival of two
subsequent users (in open workload scenarios as introduced in section 3.8.1).

• Think Time: Describes how much time passes between the execution of a user sce-
nario and the start of the next execution of this scenario (in closed workload scenar-
ios as introduced in section 3.8.1).

• Loop Iteration Count: Describes the number of repetitions of a loop.

• Guarded Branch Transitions: Used to determine whether to conditionally execute a
certain behaviour.

Mathematically, a random variable is defined as a measurable functionX from a prob-
ability space to a measurable space. More detailed, a random variable is a function
X : Ω → R with Ω being the set of observable events and R being the set associated
to the measurable space (Trivedi, 2001). Examples for observable events in the context of
software models specified in the PCM have been given in the enumeration in the previous
paragraph.

77

3.2. PCM CORE CONCEPTS

A random variable X is usually characterised by stochastical means. Often statistical
characterisations, like mean or standard deviation, model a certain system aspect with
sufficient accuracy. However, they exist only if the measurable space is of numeric type
(like R) and if they exist, they still might not model the reality with sufficient accuracy
for decision making. For example, to evaluate service level agreements, often the 90%-
percentile of a distribution function is of interest. However, it is only available if more
detailed information is available than mean values or standard deviations.

A more detailed description is the probability distribution. A probability distribution
yields the probability of X taking a value in a set of possible values. For discrete random
variables, it can be specified by a probability mass function (PMF), giving the probabilities
for X taking the value t (P (X = t)), and for continuous random variables, it can be spec-
ified as probability density functions. The event spaces Ω supported by the PCM include
integer values N, real values R, boolean values and enumeration types (like ”sorted” and
”unsorted”) for PMFs and real values for PDFs.

PDFs introduce an additional challenge, as probabilities for X to take a certain value
are only meaningfully available for ranges ofX (P (X ∈ [a; b])). Hence, PDFs either rely on
a closed form, which gives a formula for (P (X ∈ [a; b])), or a discretisised approximation.
Such an approximation gives the probabilities for a certain selected set of intervals [a; b]

without giving details of the distribution of subranges [d; e] ∈ [a; b]. The PCM uses such
discretisised approximations and assumes a uniform distribution for the ranges given.

In addition to specifying single random variables, it is often necessary to build new
random variables using other random variables and mathematical expressions. For exam-
ple, to denote that the response time is 5 times slower, developers would like to simply
multiply a random variable for a response time by 5 and assign the result to a new ran-
dom variable. For this reason, the Stochastic Expressions language supports some basic
arithmetic operations (∗,−,+,/,...) for numeric domains as well as logical operations for
boolean expressions (==,>,<,AND,OR,...).

In contrast to related meta-models like UML-SPT, random variables in the PCM are
based on an explicit ECORE meta-model for so called Stochastic Expressions. The meta-
model has been derived from an EBNF grammar using the Interpreter design pattern
(Gamma et al., 1995, p.243). A parser is supplied which accepts words compliant to the
EBNF grammar and derives an ECORE model instance compliant to the ECORE meta-
model. Stochastic Expressions are available to model transformations in a standardised
way. Details of the grammar and the meta-model can be found in the PCM’s technical
report. Section 4.4.2 gives details on how the presented simulation interprets Stochastic
Expressions.

78

3.2. PCM CORE CONCEPTS

3.2.2 Context Model

The PCM heavily relies on the idea of having an explicit component context model. The
context model of a component captures all information relevant for doing functional and
extra-functional reasoning on a component which becomes available after the compo-
nent’s implementation phase (Becker et al., 2006c). By this, the component context sep-
arates component implementation done by the component developer from component
assembly, allocation, and usage. Note that the following uses the term context in a nar-
row sense. For example, it excludes the business context of the component resulting from
its requirements. The context as used here focuses on functional and extra-functional
analyses of component compositions.

Different deployments of the same component results in different context information.
For example, the component can be connected differently or allocated on different exe-
cution environments. Having an explicit meta-model for the component context allows a
separation of the CBSE developer roles as follows. The component developer creates im-
plementation specifications of components which are parameterised by aspects depend-
ing on the component context, e.g., the binding to other components or the allocation to
hardware resources. Afterwards, the remaining developer roles contribute their context-
dependent information. This information determines the value of the parameters in the
component developer’s implementation specification finally resulting in a complete spec-
ification of the component in its context. Hence, all model transformations based on the
PCM have to deal with the context model and combine the parameterised component
specification and its context into a context-specific component specification.

Currently, the PCM’s context model uses two dimensions to distinguish context infor-
mation. The first separates the information according to the developer role that is able
to specify the information. The second differentiates context information which has to be
specified manually by a developer and context information which analysis methods can
derive automatically. The PCM’s meta-model contains only meta-classes for context in-
formation that has to be specified manually. An explicit model for the computed context
information is not part of the PCM as it may depend on the analysis method. Koziolek
(2008) gives a meta-model for the computed context used in his transformations. The
simulation in this thesis uses no explicit derived context model but encodes it directly in
the simulation’s state (see section 4.4.8 for details).

To give an overview on the context model of a component, table 3.1 lists the sub-
contexts and their classification. The upper row of table 3.1 highlights the parts of the
component context which need manual specification, the lower row gives those proper-
ties which can be derived from the specified information.

The following discusses the entries of table 3.1 in detail. As the context idea is a gen-

79

3.2. PCM CORE CONCEPTS

Assembly Con-
text

Allocation Context Usage Context

Connection, Allocation, System usage:
Manual Containment Environment config: - Call probability
specification - Concurrency, security, ... - Call parameter
necessary - Container properties - Workload

- Component configura-
tion

Automatic Functional Extra-Functional Inner Usages
computation Parametric Allocation dependent
possible Contracts QoS-Characteristics

Table 3.1: The PCM’s Context Model (based on Becker et al. (2006c))

eral principle, it does not depend on an actual realisation. The way it is currently imple-
mented in the PCM’s meta-model is only one alternative which will be extended in future
work. However, to ease understanding, references are given which point to the PCM’s
meta-model realisation where available.

Assembly Context The upper left field shows attributes of the specified assembly con-
text. A component’s position in an assembly of components is determined by (a) its par-
ents composite structure it is part of, e.g., a system or a composite component, and (b)
the connectors attached to its required interfaces (for the implementation of the assembly
context in the PCM’s meta-model see section 3.4.4). As an example for different connec-
tors, figure 3.5 shows two instances of the component SyncCache each of them using a
different component to provide their service.

Figure 3.5: The same Component in different Assembly Contexts (Becker et al., 2006c)

Based on the specified assembly context, Parametric Contracts introduced by Reuss-
ner (2001) allow to derive which services of the provided interfaces of a component are
available depending on the connected required interfaces.

80

3.2. PCM CORE CONCEPTS

In the context of this thesis, connectors available in the assembly contexts are trans-
formed into technical realisations like RPC calls. They realise calls to required component
services at run-time. Generated components have to provide means to establish such
connections after their implementation phase as specified in the assembly context by the
software architect.

Figure 3.6: The same Component in different Allocation Contexts (Becker et al., 2006c)

Allocation Context The specified allocation context (upper row, center column of ta-
ble 3.1) contains information on the allocation of a component onto a soft- and hardware
environment (see section 3.7.2 for the realisation of the allocation context in the PCM).
The software environment may contain all layers of software hosting a component, like
middleware servers, virtual machines, or operating systems. Additionally, it may contain
the configuration options of these layers. Support for software layers is still very limited
in the PCM. Future work can use the allocation context to store information on software
layers hosting a component.

In addition to the executing software layers, the allocation context stores a reference
to the hardware environment which executes a component. The hardware environment
contains information on the physical hardware like CPU, harddisks, memory, etc. Fig-
ure 3.6 depicts a component in different (hardware) allocation context.

Using the information given in the allocation context, analysis methods can derive
execution-environment dependent quality attributes from their respective independent
specifications. For example, the simulation presented in this thesis uses the allocation
context to determine which simulated resource processes a demand issued by a compo-
nent and how long it takes on the given hardware platform to process the demand. Ad-
ditionally, it uses the information in the hardware environment to configure its queuing
network’s service centres.

81

3.3. INTERFACES AND DATATYPES

Usage Context The usage context of a component (right column of table 3.1) gives infor-
mation on how a component is used via its provided interfaces. The information contain
service call frequencies, service call order and probabilities, as well as characterisations of
the input parameters of component calls. The manually specified part of the usage con-
text is limited to the outermost part of an assembly of components which the PCM calls
System. The PCM implements the specified part of the usage context in its UsageModel
(see section 3.8).

Having the usage context of the System, analysis methods can derive the usage con-
texts of the inner components from it. This is done by evaluating how components trans-
form their own usage context into usage contexts of components connected to their re-
quired interfaces.

To give an example for a different usage context, consider figure 3.6 again. Let the
numbers 0.3 and 0.7 attached to the assembly connectors denote the probability of routing
a call to the component in server 1 or in server 2 respectively. Then the usage context of
the component allocated on server 2 contains a higher call frequency to its services than
the component allocated on server 1.

In this thesis, transformations use the specified usage context to generate workload
drivers from it. They simulate the behaviour of users, the request frequency caused by
them, or characterisations of the data they pass to the system.

Section 4.4.8 gives details on the different types of contexts in the simulation based
analysis method SimuCom introduced in this thesis.

3.3 Interfaces and Datatypes

Interfaces are the means which components use to offer services and on the other hand
require services from other components. As such, they serve as software contracts for
the components stating what can be expected from an interface implementer or what is
needed by an entity requiring a certain interface. Common categories for information
available in interfaces are technical and syntactical information (like the supported tech-
nology platform and signature lists), protocol information and semantic information (pre-
and post-conditions, informal/descriptive semantics). The PCM currently covers the syn-
tactic information of the signature lists and can be extended to also support protocols
which is disregarded in this thesis. Interfaces also play a central role in code transforma-
tions as they form the technological basis for component interaction. As such, they are
often explicitly required by middleware platforms to deploy components.

In order to specify Interfaces, the PCM also introduces Datatypes (see figure 3.7).
Datatypes are used to express the data needed by services. The PCM supports different

82

3.3. INTERFACES AND DATATYPES

0..*

+innerDeclaration

0..*+parameters
Parameter

Primitive
DataType

Collection
DataType

Composite
DataType

<<enumeration>>
Primitive

TypeEnum

InnerDeclaration

0..*+signatures

0..*

+ancestorInterfaces

1

+parentInterface

0..*

0..*

INT
STRING
BOOL
CHAR
DOUBLE
LONG
BYTE

+datatype

1

+datatype

1

0..* 0..1

+returnType
DataTypeSignature

serviceName : String

Interface Type ; PrimitiveTypeEnum

+innerType1

Figure 3.7: Interfaces and DataTypes

types of Datatypes: PrimitiveDatatypes, CollectionDatatypes, and CompositeDatatypes. Prim-
itiveTypes cover the basic types available in most programming languages like integer,
string, real, byte, etc. CollectionDatatypes represent collections like arrays, sets, lists, etc.
They specify the type of the collection’s elements as inner type. CompositeDatatypes repre-
sent types which consist of a set of other elements. They are defined as value datatypes,
i.e., by default their content is copied in case of using the type in a method call and the
copy is used in the called service. Types which support inner methods like classes and
reference datatypes are not yet supported as they significantly increase the complexity
when doing performance predictions. Code transformations use the datatype specifi-
cations to generate programming language interfaces, database schemas, or persistency
configurations for object-relational mappers.

Interfaces in the PCM describe the syntactical details of their services by the means of
Signatures. A Signature consists of a return type, a service name, an ordered list of Param-
eters and an unordered list of Exceptions. Each Parameter carries a modifier which states
whether the modifications done to the values of the passed variable are visible when the
call returns. Based on IDL, the available modifiers are IN, OUT, and INOUT. If no explicit
modifier is set, IN is used as default. Interfaces, parameters and modifier deserve special
interest in code transformations. Interfaces often need to follow certain standards in or-
der to be compliant with the middleware and in many programming languages special
code is needed to realise the semantics of the modifiers. The modifiers additionally can
have significant performance impacts, hence, they are also important for transformations
generating performance prediction models.

83

3.4. COMPONENTS AND COMPONENT TYPES

3.4 Components and Component Types

In the PCM, component developers specify and implement components. The specifica-
tions are stored in component repositories and retrieved from there by software architects.
To support different stages in the development cycle of a component, the PCM supports
different types of components which have to be treated differently in model transforma-
tions.

The types are based on the semantics of provided and required roles in the PCM.
Hence, a brief overview introduces the roles and their semantics in order to introduce the
component types afterwards. The PCM’s technical report (Reussner et al., 2007) contains
additional details on the component types.

3.4.1 Provided and Required Roles

According to the definition of a component (cf. section 2.1), its functionality and its com-
munication with its environment is specified by the means of its provided and required
interfaces. As interfaces exist independently of components in the PCM (Reussner et al.,
2007), their relationship to components is given by the concept of roles. Roles associate
interfaces to components and exist in two types: provided roles and required roles. A pro-
vided role specifies that a component offers a certain interface, a required role specifies
that a component requests a certain (implementation of an) interface from its environ-
ment.

A provided role in the PCM indicates that the component is potentially able to offer all
services defined in the interface referenced by the role. This corresponds to the common
understanding of an implemented interface in object-oriented programming languages
like Java. However, for the component to actually offer all its services, it is necessary
that all required roles are bound to other components. A weaker definition of provided
roles is given by Reussner’s parametric contracts (Reussner, 2001) which is potentially
supported by the PCM but outside the scope of this thesis.

In the PCM, a required role indicates that during the execution of a provided compo-
nent service, the component eventually may issue a call to a service listed in the interface
referenced by the required role. Transformations have to map required roles such that
they can be initialised after the component’s implementation phase depending on the As-
semblyContext specified by the software architect. Whether a component is restricted to
only use the set of services available in its required roles depends on the component type
as introduced in the next section.

84

3.4. COMPONENTS AND COMPONENT TYPES

3.4.2 PCM Component Types

The PCM uses different component types to characterise components in different stages
of their design (see figure 3.8).

InterfaceProviding

RequiringEntity

ProvidesComponent

Type
CompleteComponent

Type

Implementation

ComponentType
BasicComponent

Composite

Component

Composed

Structure

Figure 3.8: Component Types in the PCM (Reussner et al., 2007)

Depending on the semantics of the required roles, two types are differentiated. Pro-
videsComponentTypes may use the specified required roles and additionally introduce fur-
ther required roles, i.e., for ProvidedComponentTypes required roles are not mandatory. As
such, they serve as early specification of the services expected from a component. Soft-
ware architects can use them to specify the functionality which component developers
need to implement.

After refining ProvidedComponentTypes in the development process, the set of required
roles becomes mandatory eventually, i.e., the component must not use services not de-
clared in any of its required roles. Such a component is called a CompleteComponentType.

ImplementationComponentTypes finally add an abstract specification of the component’s
implementation. ImplementationComponentTypes exist in two variants: BasicComponents
and CompositeComponents. Both types are detailed in the following sections.

3.4.3 Basic Components

Component developers use BasicComponents to describe components whose implementa-
tion can or should not be further decomposed into components. Usually, BasicComponents
are realised using objects of any object-oriented language. However, their realisation is
not restricted to object-orientation - any programming language is sufficient.

BasicComponents contain an abstract specification for the behaviour of each provided
service implemented by the component called ServiceEffectSpecification (SEFF). In princi-
ple, the PCM supports different types of SEFFs. However, the use of ResourceDemand-
ingServiceEffectSpecifications (RD-SEFF) is currently the established way to specify SEFFs.
Therefore, the transformations presented in this thesis use RD-SEFFs. Refer to section 3.5
for details on RD-SEFFs.

As BasicComponents implement the basic functionality of a component-based software
system, they are main subjects to model-2-text transformations which generate code im-
plementing the components. However, the PCM leaves space for design-decisions how

85

3.4. COMPONENTS AND COMPONENT TYPES

to implement BasicComponents on a given target platform due to its abstract view. On
the other hand, it constraints possible implementations by the semantics associated to the
component roles. Section 4.6 introduces a mapping to Java EE which makes the involved
design decisions explicit.

3.4.4 Composite Components

CompositeComponents are the second type of ImplementationComponentType. A Composite-
Component combines the functionality of other components (its inner or child components)
to offer its own functionality. As such, its implementation is solely done by composing
existing components.

CompositeComponents are specialisations of the more general concept of a Composed-
Structure which describes an entity built by composing components abstractly (see fig-
ure 3.9). A ComposedStructure consists of connectors and AssemblyContexts. The latter
correspond to the specified assembly context introduced in section 3.2.2. AssemblyCon-
texts uniquely specify the use of a component in an assembly of components, i.e., its
connections to other components and its parent ComposedStructure. The link encapsulated-
Component points to the component used in the AssemblyContext.

+innerProvidedRole 1

1+outerProvidedRole

+innerRequiredRole 1

1+outerRequiredRole

+providedDelegationConnectors

0..*

+requiredDelegationConnectors

0..*

Composed

Structure
AssemblyContext

Assembly

Connector

+childContexts

0..*

+assemblyConnectors

0..*

Provides

ComponentType

+encapsulatedComponent

1

0..*

+componentParameterUsage

VariableUsage+requiringChild
1

+providingChild
1

ProvidedRole

RequiredRole
1

+requiredRole

1

+providedRoleProvidedDelegation

Connector

RequiredDelegation

Connector

Figure 3.9: The meta-model of a ComposedStructure

There are three different types of connectors in a ComposedStructure: ProvidedDelega-
tionConnectors, RequiredDelegationConnectors, and AssemblyConnectors. ProvidedDelegation-

86

3.5. RESOURCE DEMANDING SEFF

Connectors connect the roles of the ComposedStructure itself to roles of child components.
Any request for service to the role of the ComposedStructure is routed to the inner com-
ponent which actually serves the request. As a consequence, ComposedStructures are only
logical containers for other components. They do not provide additional functionality
on their own. RequiredDelegationConnectors delegate calls to a required role of an inner
component to a required role of the ComposedStructure.

Finally, AssemblyConnectors connect the child components allowing interaction among
them. For this, a required role is connected to a compatible provided role, i.e., the inter-
face of the provided role has to be a sub-type of the required interface. Whenever the
requiring component issues an external call, the call is delivered to the providing compo-
nent connected to the AssemblyConnector.

The preceding description of the connectors omitted the role of the AssemblyContext.
As there can be multiple uses of the same component in different AssemblyContexts, con-
nectors also need to specify the AssemblyContext of the components they connect. As they
connect the roles of the components, connectors are said to connect roles in contexts.

Coming back to CompositeComponents, an additional constraint compared to arbitrary
ComposedStructures exists. A CompositeComponent serves as alternative to implementing
a BasicComponent. However, it should be hidden from the user of the component how
it is implemented internally, e.g., whether it is implemented directly or by composing
components. Especially, for the component developer it should be possible to exchange
an implementation if it remains compatible to the exchanged component’s roles. For this
to work, the component’s implementation details must not be relevant for the use of the
component. However, this implies that the inner components of a CompositeComponent
form a unit of deployment, i.e., the software architect can not deploy child components
of a CompositeComponent separately. In other words, the child components of a Com-
positeComponent inherit the AllocationContext of their parent component. This semantics
requires special treatment in the simulation transformation as detailed in section 4.4.7.
Additionally, in the Java EE transformation it leads to several issues discussed in sec-
tion 4.6.1.

3.5 Resource Demanding SEFF

As already introduced in section 3.4.3, the ResourceDemandingSEFF (RD-SEFF) is currently
used to model the inner behaviour of component services of BasicComponents (see fig-
ure 3.10). For this, RD-SEFFs follow abstraction rules.

First, they reduce the behaviour of a component to its interaction with its context. The
context consists of external components connected to RequiredRoles and the component’s

87

3.5. RESOURCE DEMANDING SEFF

0..1
0..1

+predecessor

+successor

0..*

BasicComponent ServiceEffect
Specification

Resource
DemandingSEFF

ResourceDemanding
Behaviour

AbstractAction

*

+describedService1

0..*

Signature
serviceName : String

*

Figure 3.10: The RD-SEFF and its Relationship to BasicComponents (Becker et al., 2007)

run-time environment which executes the component’s internal computations and pro-
vides basic services like middleware or operating system services. The latter interaction
is specified using InternalActions in the PCM (cf. section 3.5.5). Additionally, the compo-
nent’s control flow constructs are part of the behavioural model if they have an impact on
the component’s context interaction.

Second, the data flow and its impact on the control flow is captured using abstractions
of service parameters as introduced by Koziolek et al. (2006). Parameters are charac-
terised using performance relevant abstractions of their values or, if no such abstraction
exists, by dividing the possible parameter values into partitions resulting in similar per-
formance and giving a probability for each partition. The abstraction of parameters is
limited to those passed to a component in interactions with its context, e.g., input param-
eter of a component service or results of external service calls (there are some exceptions
to this basic rule introduced later). Further details including examples of variable charac-
terisations are given in section 3.5.1.

The following sections introduce the concepts of the RD-SEFF. Sections 3.5.1 to 3.5.3
describe external calls and the handling of input and output parameters. Section 3.5.4
highlights the special role of characterisations of inner elements of CollectionDatatypes.
Section 3.5.5 introduces InternalActions used to model component internal computations.
ParametricResourceDemands specify the resource demands caused by these computations
as introduced in section 3.5.6. Section 3.5.7 provides means to model software locks.
Finally, section 3.5.8 introduces the control flow elements available in the PCM.

3.5.1 External Calls

Interaction among components is specified using ExternalCallActions. An ExternalCallAc-
tion models a synchronous, blocking call to a service in the interface of the specified re-
quired role. Note, that the component developer only specifies the RequiredRole and not
the component, which should be called. This ensures that the software architect can spec-
ify the bound component later.

To model the data flow, i.e., the data passed to an ExternalCall and returned from it,

88

3.5. RESOURCE DEMANDING SEFF

1
+variableUsage

AbstractResource
DemandingActionExternalCallAction

VariableUsage

SetVariableAction

0..*
+parameterUsage

0..*
+outputVariableUsage

Figure 3.11: ExternalCallAction and passing of Parameter Characterisations (Becker et al.,
2007)

the PCM uses parameter characterisations as described in the next section.

3.5.2 Service Parameters

A service’s parameters may have significant impact on its resource demand. For example,
the resource demand of a sorting service offered by a component depends on the size of
the collection to sort. Thus, parameters have an impact on ParametricResourceDemands (cf.
section 3.5.6). Additionally, the control flow of a service may depend on parameters as
introduced in section 3.5.8.

As introduced in section 3.3, a service signature has n input parameters and m out-
put parameters. To capture their performance impact, component developers can attach
specification on these parameters. For this, they use so called VariableUsages in Exter-
nalCallActions. The PCM’s meta-model supports a set of input VariableUsages and a set
of output VariableUsages for ExternalCalls. The parameter characterisations introduced in
the following are part of the usage context (cf. section 3.2.2) and have been introduced by
Koziolek et al. (2006) for UML-SPT and included into the PCM’s meta-model by Becker
et al. (2007).

+inner
Reference

+variableCharacterisation
0..*

+namedReference1

VariableUsage

AbstractNamed
Reference

Namespace
Reference

Variable
Reference

Variable
Characterisation

<<enumeration>>
VariableCharacteri-

sationType
VALUE
TYPE
NUMBER_OF_ELEMENTS
BYTESIZE
STRUCTURE

type : VariableCharacteri-
sationType

RandomVariable
specification : String

referenceName : String

Figure 3.12: VariableUsages and Characterisations (Becker et al., 2007)

89

3.5. RESOURCE DEMANDING SEFF

For accurate predictions all concrete values of all parameters should be available ide-
ally. However, it is often infeasible to fully specify them - for specification as well as for
analysis reasons. The resulting state space is simply to large to analyse. Additionally, it is
often unnecessary for performance predicitions. In the sorting example, it is sufficient to
know how many array elements should be sorted - the value of each element to sort does
not matter performance-wise.

To deal with this, Koziolek et al. (2006) introduced five abstractions of parame-
ters which allow to specify the performance critical information of parameters (see fig-
ure 3.12). All of them are represented by random variables in the PCM:

1. VALUE: This random variable contains the actual value of the parameter and
should be used only in cases where no other characterisation is sufficient to capture
the performance relevant aspect of the parameter. The type of the random variable
is the same as the parameter’s type. As a consequence, this characterisation is only
available for primitive data type, like integer, string, etc.

2. STRUCTURE: STRUCTURE random variables specify a certain characteristic of the
data’s format. For example, for arrays an important information could be whether
the array is sorted or unsorted, for a tree it might be whether the tree is balanced or
not. Whether a certain structure of a parameter has an impact on the performance of
a component service highly depends on the algorithms used to implement the ser-
vice. Taking the sorting example again, for Quicksort it makes a difference whether
the array is already sorted or not while for Heapsort it makes little difference. The
type of the STRUCTURE random variable is an enumeration defined by the compo-
nent developer.

3. TYPE: The TYPE random variable specifies information about a parameter in cases
where the parameter can be used in a polymorphic manner and where the perfor-
mance depends on its actual type. The type of the TYPE random variable is an
enumeration containing all possible subtypes of the parameter’s type.

4. BYTESIZE: The BYTESIZE random variable is used to describe the memory foot-
print of a parameter. It can be used whenever the amount of data processed makes
a difference performance-wise. For example, analysis tools based on the PCM
should use available BYTESIZE characterisations to determine network loads (see
section 4.6.3 for the realisation in the simulation presented in this thesis). The type
of the BYTESIZE random variable is Integer.

5. NUMBER OF ELEMENTS: The NUMBER OF ELEMENTS random variable is
only applicable to parameters whose type is a CollectionDataType. For those pa-

90

3.5. RESOURCE DEMANDING SEFF

rameters, it describes the element count of the elements in the collection. This
type of characterisation is useful whenever a service iterates over a given set of ele-
ments and the performance depends on the iteration count. The type of the NUM-
BER OF ELEMENTS random variable is Integer.

Using these parameter abstractions, it is possible to characterise service parameters in
the PCM using input VariableUsages. For example, to characterise the number of elements
in a collection passed to a sorting service, the following can be specified

fieldToSort.NUMBER OF ELEMENTS = IntPMF[(10; 0.5)(20; 0.5)]

In this case fieldToSort must be the name of the formal parameter in the sorting ser-
vice’s signature used to pass the collection to the service. The actual number is specified
as random variable (using the stochastic expressions language). In the example, it has the
value 10 in 50% of all cases and 20 in all other cases. Any input parameter having an IN

or INOUT modifier can be characterised in this way.
Output parameters (having modifiers OUT or INOUT) and the return value of a ser-

vice can be characterised using output VariableUsages. An output variable usage takes
the result values or performance relevant characterisations of them and maps them to
random variables in the calling SEFF. For this, the output VariableUsages create new lo-
cal random variables and assign those variables the returned values. In case of mapping
return or OUT parameter abstractions, the output VariableUsages introduce new random
variables which have to be disjoint from those already existing in the calling SEFF. In case
of parameters having INOUT modifiers the output mapping is restricted to characterisa-
tions of the variable actually passed to the call as INOUT parameter. For example, when
calling a service with the signature void m(INOUT a) binding a in the calling state-
ment to b, i.e, m(b), the output mapping can only characterise abstractions of b. If the
respective abstraction of b already exist, they are overwritten. Due to this restriction, the
output mappings for INOUT parameters result automatically from the model. Analysis
transformations should derive the respective mappings automatically, thus, lowering the
specification effort.

For example, if the fieldToSort in the previous sorting example is an INOUT pa-
rameter, the following output VariableUsage specification is derived automatically:

field.STRUCTURE = fieldToSort.STRUCTURE

where the sorting service guarantees that fieldToSort.STRUCTURE = "Sorted" to
specify that it returns the field sorted. The next section explains how result characterisa-
tions and output parameter characterisations are bound to values in the called service.

91

3.5. RESOURCE DEMANDING SEFF

3.5.3 SetVariableAction

The RD-SEFF supports returning characterisations of the output parameters to the calling
RD-SEFF. For this, performance characterisations of return, INOUT and OUT parameters
can be set in coresponding RD-SEFF. In order to specify the characterisations returned
to the calling RD-SEFF, the PCM contains the so called SetVariableAction. This action as-
signs the results of stochastic expressions to random variables representing the return,
INOUT and OUT parameters. Note, in analogy to the policy for input parameters, only
characterisations relevant for the performance should be set.

However, the random variables characterising the output parameters are not available
in subsequent actions of the SEFF in which the SetVariableAction appears. They can solely
be used in output VariableUsages of ExternalCallActions calling the service in which the
SetVariableAction is used. This is a restriction which reduces the possible complexity of
the resulting performance prediction model. Nevertheless, a characterisation may be set
multiple times in different SetVariableActions in a RDSEFF. In this case, the last SetVari-
ableAction determines the returned value.

For example, the sorting service used as example in the previous sections, contains a
SetVariableAction which assigns the value "Sorted" to the fieldToSort.STRUCTURE
random variable.

3.5.4 Inner Elements of Collections

For parameters having a collection data type the special keyword INNER exists, which
allows to characterise the inner elements of collections. For example,

fieldToSort.INNER.BYTESIZE = UniInt(1000, 2000)

specifies the memory footprint in bytes of each element in the collection to be uniformly
distributed in a range between 1000 and 2000 bytes.

INNER characterisations do not describe specific single elements of a collection, i.e., it is
not possible to specify the first element, then the second, and so forth. Additionally, it
is assumed that every time when the characterisation of a collection’s inner element is
used, it refers to a different inner element. In the simulation mapping this means that a
different sample of the random variable is returned every time the variable is accessed
(for details see 4.4.2). Mathematically this means, each use of an INNER characterisation
has to be stochastically independent of its former uses. This may lead to specifications
which do not reflect reality correctly. For example, for a service which processes a specific
element of a collection and returns the processed element the characterisations would not
be independent in reality and the assumption would be violated. For special cases, like

92

3.5. RESOURCE DEMANDING SEFF

processing collections in a loop, special constructs are available in the PCM to get more
realistic specifications (see section 3.5.8 for details). However, the amount of states of the
resulting Markov chain underlying the simulation model grows when using a dependent
specification in contrast to an independent model (cf. section 4.4).

For further details on the semantics and the realisation of INNER characterisations in
SimuCom see section 4.4.2.

3.5.5 InternalActions

InternalActions abstract from computations done by a component internally, i.e., without
interacting with other components. However, during a computation a component utilises
hardware resources. An example for a calculation, whose execution time depends on the
input parameters, is the afore mentioned sorting algorithm. Depending on the chosen
algorithm and the number of collection elements, the component needs different CPU
processing power from the hardware environment on which the component is allocated.

+requiredResource 1

0..*

+resourceDemand

AbstractResource

DemandingAction

InternalAction

AbstractAction
RandomVariable

specification : String

Parametric

ResourceDemand

Processing

ResourceType
unit : String

Figure 3.13: InternalActions and their ParametricResourceDemand

An InternalAction uses ParametricResourceDemands to specify resource demands to
hardware resources (see figure 3.13). The list of ParametricResourceDemands is ordered,
the specified demands are issued sequentially to their respective hardware resource types
(see section 3.5.6 for details).

3.5.6 Parametric Resource Demands

Component developers specify the resources on which the ParametricResourceDemand
should be executed in an abstract way. They use a common repository, the Resource-
TypeRepository, which contains so called ProcessingResourceTypes. ProcessingResourceTypes

93

3.5. RESOURCE DEMANDING SEFF

include resources which process jobs actively until the job is fully processed. Examples for
these are CPUs, disks, etc. The component developer only specifies that a CPU resource
type is needed, however, he does not specify which CPU will be used finally. The indi-
rection of the ProcessingResourceType separates the hardware model from the behaviour
specification of the software model resulting in a software model parameterised for dif-
ferent execution environments.

Additionally, for each ParametricResourceDemand the component developer specifies
the actual demand as a stochastic expression. This expression is the defining formulae of
the resource demand’s random variable. It may depend on other random variables like
characterisations of the input parameters (cf. section 3.5.1). For example, a component
developer uses the specification fieldToSort.NUMBER OF ELEMENTS ˆ 2 to characterise the
CPU demand of a sorting algorithm of complexity class O(n2).

However, the component developer has to ensure that the resulting demand’s unit is
compatible with the resource types’ specification. This is crucial to ensure interoperabil-
ity between the component developer and the deployer. For example, if the component
developer and the deployer agree on specifying CPUs demands in CPU instructions, both
have to stick to this type or provide at least a conversion function from their unit to the
commonly agreed on unit. It remains an assumption of the PCM and its role concept that
this common unit for the resource types exists and can be agreed on.

3.5.7 Resource Acquisition and Release

1

+resourceType+resourceType
1

AbstractResource

DemandingAction
AcquireAction ReleaseAction

Passive

Resource

BasicComponent
+passiveResouces*

Figure 3.14: Resource Acquisition and Release (Becker et al., 2007)

Another type of actions dealing with resources are those which model the acquisition
and release of software locks (see figure 3.14). A software lock in the PCM models a
semaphore (Tanenbaum, 2001) as it is commonly used in operation system construction.
A semaphore is used to protect a certain resource which exists in a limited number n =

NMAX . Any time a resource is acquired, n is reduced by one, every time a resource is
released again, it is incremented by one. By this, n reflects the amount of resources left.
If n drops below zero, any process or thread trying to acquire the resource is blocked
until the resource becomes available again. The order in which a released resource is

94

3.5. RESOURCE DEMANDING SEFF

distributed among waiting processes is assumed to be FIFO in the current PCM version.
The PCM has AcquireActions and ReleaseActions to reflect resource acquisition and re-

lease respectively. Both action refer to a so called PassiveResource which specifies the type
of the limited resource, i.e., threads in a thread pool, database connections, etc. BasicCom-
ponents declare all PassiveResources they use (see figure 3.14). Aquire- and ReleaseActions
can only use PassiveResources of the BasicComponent they belong to.

3.5.8 Control Flow

The RD-SEFF contains concepts to model the control flow of the service’s execution. How-
ever, these constructs should only be used if they have an impact on the interaction of the com-
ponent and its context. This is the same requirement already introduced in the discussion
of parameter characterisations. If it has no impact on the interaction with the context, the
control flow is hidden in the implementation of the component’s service and abstracted
by InternalActions.

The design of the control flow constructs is intentionally different from those in UML
activity charts even if the basic ideas are comparable. However, in contrast to UML ac-
tivity charts, the RD-SEFFs control flow constructs use a similar representation as the
abstract syntax trees of structured programming languages like Java. For example, a loop
is not modelled by a control flow reference pointing at an action already executed earlier.
It is modelled by a loop action which explicitly contains a sequence of actions represent-
ing the loop body. After repeating the inner behaviour n-times, the course of actions
continues at the successor of the loop action. The same is true for branch actions, forks,
etc.

The rationale behind this kind of modelling is the avoidance of ambiguities which
can arise when analysing models with control flows models based on arbitrary graphs
like UML activity diagrams. Additionally, making nested behaviours explicit eases the
handling of model instances in both types of model transformations - transformation into
analysis models as well as transformations into implementations. The reason for this
is that there is no need for the transformations to figure out the start and end of inner
behaviours. Additionally, performance annotations like iteration counts can annotate di-
rectly the corresponding control flow actions. As a consequence of the explicit modelling
of nested behaviours, each behaviour is a chain of actions going directly from the (only)
start action to the (only) stop action.

An overview of the available control flow concepts is given in figure 3.15.

Loops The PCM supports two types of loop actions: LoopActions and CollectionItera-
torActions. LoopActions as introduced by Koziolek and Firus (2006) repeat their loop body

95

3.5. RESOURCE DEMANDING SEFF

+branchCondition1

+branches0..*

1+bodyBehaviour

+iterations1

BranchAction AbstractLoopAction ForkAction

ResourceDemanding

Behaviour

AbstractBranch

Transition

Guarded

BranchTransition

BranchCondition Probabilistic

BranchTransition
branchProbability : Double

1
+branchBehaviour

LoopAction CollectionIterator

Action

IterationCount
1+parameter

Parameter

parameterName : String

RandomVariable

specification : String

AbstractResource

DemandingAction
StartAction StopAction

ForkedBehaviour

*
+asyncBehaviour

Synchronization

Point

0..1 +synchBehaviours

* +synchBehaviour

Figure 3.15: Control Flow concepts in the PCM (Becker et al., 2007)

for the given amount of loop iterations. The number of iterations is determined by a
stochastic expression of type Integer. As a requirement, the PCM assumes all loops to be
bounded. Hence, modelling infinite loops is unsupported. To model the number of loop
repetitions, a stochastic expression defines the iteration count as random variable. Com-
ponent developers specify a probability for each iteration count up to a maximum count
N , e.g., mathematically P (iteration count = n) = pi with P (iteration count = n) = 0

for all n > N .
CollectionIteratorActions repeat their inner behaviour for every element of a parameter

of CollectionDatatype. As a consequence, CollectionIteratorActions execute the loop body
for each element in the collection, i.e., NUMBER OF ELEMENTS times. Additionally, all IN-
NER characterisations of the iterated parameter stay constant during the evaluation of all
actions of the loop body. This allows the specification of stochastical dependent actions.
For example, a component compresses a set of files and stores the result in a database. As
the size of each stored file depends on the size of the uncompressed file, a CollectionIter-
atorAction keeps this size constant, i.e., it does not re-evaluate the corresponding INNER

characterisation on every access.

Alternatives The PCM offers two types of branch actions to specify alternatives in the
control flow of a component’s service: ProbabilisticBranches and GuardedBranches. The
PCM uses so called BranchTransitions to associate the branch’s behaviour to the branch
action (see figure 3.15). Consequently, two types of branch transitions exist which cor-
respond to the two types of branches. The types cannot be mixed. Either all branch
transitions of one BranchAction are probabilistic or guarded. For both types of branches
the PCM demands that exactly one branch is active and the behaviour of this branch is

96

3.5. RESOURCE DEMANDING SEFF

executed. Note, that this might imply specifying a transition with an empty behaviour
in case of modelling an optional control flow part. For example, to specify a behaviour
which only gets executed if its guard is true, an empty branch is needed which is executed
in cases when the guard is false.

ProbabilisticBranchTransitions model behaviour which is random in its nature or which
cannot be specified more precisely by capturing its data dependencies. For each Proba-
bilisticBranchTransition a probability is given for executing the behaviour of that transition.
The probabilities of all branch transitions have to sum up to 1 as a result of the require-
ment that exactly one transition has to be taken.

GuardedBranchTransitions use random variables of boolean type to specify which tran-
sition executes. Each transition contains a random variable called its guard condition.
However, the guard condition can dependent on other random variables from whose
its own distribution can be derived. In order to ensure that exactly one branch condi-
tion evaluates to true, all branch conditions are evaluated using the same values for the
involved random variables, i.e., the conditions are evaluated stochastically dependent.
From this requirement, it follows that it is disallowed to use INNER characterisations in
branch conditions as they are always evaluated independently.

For guarded branch transitions an additional constraint results for the analysis of their
inner behaviour. As the guard condition has evaluated to true, it is known that the con-
dition is true while evaluating its inner behaviour. Hence, the analysis of the inner be-
haviour is done under the stochastic condition that the random variable of the branch’s
guard condition is true. For example, the guard condition

files.BYTESIZE > 200

defines a restriction on the files.BYTESIZE random variable. Hence, in the inner be-
haviour of the corresponding branch transition, all random variables depending on
files.BYTESIZE have to be evaluated conditionally with the condition files.BYTESIZE >

200:
P (f(files.BYTESIZE) = X|files.BYTESIZE > 200)

with f(files.BYTESIZE) being the definition formulae of a random variable depending
on the random variable files.BYTESIZE. Bayes’ law applies (Sachs, 1997, p. 78) for evalu-
ating the resulting formulae. However, in simulation runs, it is much easier to ensure the
respective semantics (see section 4.4 for details on the simulation’s semantics).

Forks In the PCM ForkActions are used to split the control flow into sub control flows.
Each control flow then executes its inner behaviour independent of the other forked be-
haviours. However, if they use the same resources while processing their behaviour,

97

3.6. SYSTEMS

concurrent resource usage leads to resource conflicts which might have significant per-
formance impacts. Each behaviour starts with a copy of the forking behaviour’s variable
characterisations. The ForkAction, which started the ForkedBehaviours, waits for the subset
of synchronous ForkBehaviours to finish their execution before it continuous its own con-
trol. Synchronous fork behaviours are attached to the ForkAction’s SyncronizationPoint.
Asynchronous fork behaviours which are not attached to the SynchronizationPoint execute
until they reach their own stop action - independent of the ForkAction which initiated their
execution.

For ForkedBehaviours attached to the SynchronizationPoint, it will be possible to return
results of their computations to the initiating ForkAction in future versions of the PCM.
Happe (2008) currently defines the necessary meta-model changes.

3.5.9 Concluding remarks

Using the introduced concepts, RD-SEFFs allows to specify the behaviour of a compo-
nent service in an abstract way. The abstraction is directed towards the interaction of the
component with its context. It allows using a component in different contexts while still
being able to predict the performance properties of the component. The parameterisation
on the context respects the assembly, allocation and usage context (cf. section 3.2.2).

3.6 Systems

The system model is the domain specific language of software architects in the PCM.
In a System, components are composed into a fully functional application, ready to be
deployed and used. The system model corresponds to the classical view of a software
architecture as described by the components and connectors viewpoint introduced by
Clements et al. (2003). Like CompositeComponents, Systems inherit from ComposedStructure
in the PCM (cf. section 3.4.4). As such, they can contain inner components embedded in
assembly contexts and may have provided or required roles.

Systems contain a set of AssemblyContexts for inner components, a set of provided and
required delegation connectors each and a set of assembly connectors connecting its inner
components. Additionally, they may have ProvidedRoles (sometimes called SystemProvid-
edRoles) and RequiredRoles (sometimes called SystemRequiredRoles). As these concepts
have been discussed already when introducing ComposedStructures in section 3.4.4, they
are omitted here.

98

3.6. SYSTEMS

Discussion In contrast to other component models, in the PCM, a System is not a special
CompositeComponent. However, Systems and CompositeComponents share the common con-
cept of a ComposedStructure. The rationale behind this design decision is that the compo-
sition of systems is usually done in a different ways than the composition of components,
e.g., by using service-oriented technologies.

Additionally, in the PCM there is the afore mentioned visibility difference between
a System and a CompositeComponent. Deployers only have access to the inner structure
of a System, but are not allowed to access the inner structure of CompositeComponents
used in this System. The inner structure of CompositeComponents is only available to the
component developer who actually created the CompositeComponent. For everybody else,
there is no difference between a BasicComponent and a CompositeComponent.

The following sections deal with additional concepts specific for Systems: System QoS
annotations and component parameters.

3.6.1 System QoS Annotations

Software architects have to provide performance annotations for system RequiredRoles as
they cannot be derived from other information. Additionally, inner components of a Sys-
tem may contain Complete- or ProvidesComponentTypes. In order to perform performance
predictions, the software architect also has to add performance annotations to these enti-
ties. For this task, QoSAnnotations exist which associate stochastic expressions to system
RequiredRoles and inner Provides- and CompleteComponentTypes adding the missing infor-
mation. For system RequiredRoles a random variable for the time needed for the external
system call depending on the service’s parameters can be specified. Additionally, the
return value’s characterisations may be specified.

For ProvidedRoles of ProvidesComponentTypes or CompleteComponentTypes in their re-
spective AssemblyContexts the same basically holds. The software architect or the QoS
analyst may attach a random variable to such roles to allow performance predictions
already in early stages of the development phases of components. However, these an-
notations have been used rarely. Hence, their support in transformations is limited and
subject to future work.

3.6.2 Component Parameters

The performance relevant behaviour of components can depend on the internal state of
these components, e.g., the response time of a database depends on the amount of data
stored in it. However, including a full specification of the component state and the way it
changes over time into the PCM’s meta-model might confront creators of analysis meth-

99

3.7. ALLOCATION

ods with a state space problem. In order to avoid such issues on the one hand but offer
the flexibility of parametrisation, the PCM contains the concept of component parameters
which characterise the state of components in an abstract and static way.

To model component parameters, component developers can attach a set of
VariableUsages including default values to ImplementationComponentTypes. For ex-
ample, a component developer of a database component can declare that the
component supports a characterisation of the number of entries in the database
(data.NUMBER OF ELEMENTS). The component developer can use this parameter in the
database component’s RD-SEFFs to specify state dependent behaviour, e.g., a larger re-
source demand for query operations if more data is stored in the database. Software ar-
chitects can attach VariableUsages to AssemblyContexts, in which they put the components,
having the same variable name as the VariableUsages provided by the component devel-
opers. If they provide such a VariableUsage, the provided value overrides the component
developer’s default value. Additionally, domain experts may also provide UserData an-
notations in their UsageModels which also refer to an AssemblyContext and override any
value specified there. For example, in the database example above, the domain expert
would use a UserData to specify the number of entries in the database for a specific usage
scenario.

However, component parameters still remain restricted to specifying the internal state
of components as they cannot be changed. They hold the same value during a perfor-
mance analysis, i.e., they do not allow to specify performance relevant dynamic compo-
nent state changes. This limitation remains to keep analysis models solvable.

3.7 Allocation

After a System has been modelled by the software architect, the deployer allocates the sys-
tem’s inner components to hardware units and middleware entities. For this, the deployer
models the hardware environment in a so called ResourceEnvironment. Using the created
ResourceEnvironment model, the deployer creates an Allocation which establishes the link
between the system’s AssemblyContexts containing the system’s inner components and the
ResourceEnvironment. The respective information is stored in so called AllocationContexts.

The following sections briefly introduce the ResourceEnvironment and Allocation mod-
els.

100

3.7. ALLOCATION

3.7.1 Resource Environment

The PCM uses the ResourceEnvironment model to specify the hardware environment on
which the component-based software system runs. This information is crucial for perfor-
mance predictions. The simulation presented in section 4.4 uses it to simulate job pro-
cessing.

<<AllocationContext>>

<<LinkingResource>>

processingRate = 100 Mbit/s

<<ResourceContainer>>

Server1

<<ResourceContainer>>

Server2

<<Processing

Resource

Specification>>

CPU

processingRate =

3*10^9 cycles/s

<<Processing

Resource

Specification>>

Hard Disk

processingRate =

15.5 MB/s

<<Processing

Resource

Specification>>

CPU

processingRate =

2.2*10^9 cycles/s

Figure 3.16: The PCM’s ResourceEnvironment (Becker et al., 2007)

A ResourceEnvironment (see figure 3.16) basically contains two types of elements:

1. ResourceContainer: Resource container correspond to physical machines like server
or PCs. They contain an arbitrary number of ProcessingResources. ProcessingRe-
sources model resources which actively process jobs like CPUs, harddisks, etc. Each
ProcessingResource conforms to one of the ProcessingResourceTypes introduced in sec-
tion 3.5.6. Each ProcessingResource is described using a so called ProcessingResource-
Specification which specifies the rate in which the resource processes resource de-
mands. For this, an abstract unit is used and it is specified how many abstract units
the resource can process per second, i.e., CPU cycles per second or bytes read per
second.

2. LinkingResource: Linking resources connect ResourceContainer allowing components
to communicate which are not located on the same ResourceContainer. As such, Link-
ingResources abstract from networking infrastructures like LAN or WANs. For Link-
ingResources the PCM uses a throughput (bytes per second) and a latency specifica-
tions to characterise its performance.

The resources modelled in the ResourceEnvironment are comparable to service centres
in queueing networks and the processing rate corresponds to the reciprocal service time.

101

3.8. USAGE

Section 4.4.3 contains details how the simulation mapping uses the ResourceEnvironment’s
resources to create service centres and their respective queues.

3.7.2 Allocation Contexts

The PCM’s Allocation model links a System model to a ResourceEnvironment model. It
describes the allocation of the system’s components onto available hardware resources.
In order to specify the needed information, the deployer creates an AllocationContext for
every AssemblyContext within the System. Thus, every AllocationContext refers to exactly
one AssemblyContext. Additionally, it refers to a resource container which is supposed to
execute the component at run-time. The deployer has to ensure that all resource types (cf.
section 3.5.6) needed in any of the SEFF’s InternalActions of all components deployed on
a container are available in the container.

The PCM’s technical report contains further examples and more sophisticated use
cases of the Allocation model (Reussner et al., 2007, p. 60ff).

3.8 Usage

As introduced in the section on the PCM’s roles (see section 2.1.2), the domain expert
is responsible to model the behaviour of the system’s users. This includes the course
of the user’s interaction with the system as well as the data the users exchange with it.
The PCM uses the so called UsageModel for this task, which is described in the following
subsections. The usage package has been added to the PCM by Koziolek (2008). Hence,
a detailed discussion of this extension is given by Koziolek (2008). The following gives a
brief summary of the usage package.

3.8.1 Usage Model and Usage Scenarios

A UsageModel serves as container for all interactions with the system. As such it contains
a set of UsageScenarios. A UsageScenario is a typical interaction with the system performed
by a particular group of users. The semantics of the UsageModel defines that the system’s
performance is evaluated under all the scenarios running concurrently. For example, in a
web shop, one group of users are customers browsing for and buying products. Another
group contains administrative users which maintain product prices, generate reports, or-
der supply on low stocks, etc. Administrators access the system not as frequent as cus-
tomers do. Hence, the amount of users and thus the frequency of jobs generated by users
depends on the usage scenario.

102

3.8. USAGE

+interArrivalTime
1

1..* +usageScenario

+workload
1

+scenarioBehaviour1

UsageModel

UsageScenario Workload

OpenWorkload

ClosedWorkload ThinkTime

InterArrivalTime

1
+thinkTime

Scenario
Behaviour

RandomVariable
specification : String

population : Integer

Figure 3.17: UsageModel, UsageScenario and Workloads (Becker et al., 2007)

To specify the interaction frequency, each UsageScenario contains a WorkloadSpecifica-
tion (see figure 3.17). There are two types of WorkloadSpecifications: OpenWorkloads and
ClosedWorkloads. Both workload types have their origins in queueing network theory.
However, there are PCM specific adjustments.

OpenWorkloads describe a job arrival process in which users arrive at the system, exe-
cute their usage scenario and leave again. The frequency of their arrival is given by the
time that passes between two users arriving at the system. This time span is described
as random variable in the PCM characterised by an arbitrary stochastic expression. This
allows for classical InterArrivalTime distributions like the Poisson distribution as well as
arbitrary distribution functions. Note, that OpenWorkloads allow to specify infeasible ar-
rival rates, e.g., arrival rates larger than the resulting departure rate.

ClosedWorkloads use a constant number of users which execute usage scenarios, delay
their execution to think in order to prepare their next steps and start again. The think time
is a random variable described by a stochastic expression which again allows classical
distributions as well as arbitrary ones.

Contained in each UsageScenario there is a UsageBehaviour described in the next section.

3.8.2 UsageBehaviour

A UsageBehaviour models the steps executed by a single user in a UsageScenario. Its struc-
ture is similar to the SEFF’s structure. However, compared to the SEFF is offers a reduced
set of modelling concepts, i.e., it disallows parameter dependencies in control flow an-
notations, has no resource demands, no forks, and no acquire or release actions. The
reduced complexity is expected to help domain experts in learning the concepts, thus,
enabling them to create usage models themselves.

A UsageBehaviour consists of a sequence of UserActions which in analogy to the SEFF’s
AbstractActions always form a chain going from a Start to a Stop (notice, the missing Ac-

103

3.8. USAGE

+actions
0..* 0..1

+predecessor
0..1

+successor

+branchedBehaviour
1

0..* +branchTransitions

+actualParameterUsage
0..*

Scenario
Behaviour

Abstract
UserAction Loop

EntryLevel
SystemCall

VariableUsage

Start Stop

Branch

BranchTransition
branchProbability : EDouble

1

+bodyBehaviour

Signature

+signature1

ProvidedRole

+providedRole 1

Figure 3.18: Different UserActions (Becker et al., 2007)

tion postfix compared to the SEFF’s action names).
The most important action a user can perform is to interact with the system by calling

a method in one of the system’s provided roles. This so called SystemEntryLevelCall is the
equivalent of an ExternalCallAction in the SEFF indicating a user’s request for service. As
in the SEFF the call is blocking until a it returns with a result.

SystemEntryLevelCalls can have input VariableUsages having the same meaning as in
ExternalCallActions. However, the random variables characterising the input parameters
like NUMBER OF ELEMENTS can not depend on other variables in the usage model. They
have to be composed from literals only including literals describing random variables
having a certain fixed distribution.

Besides SystemLevelEntryCalls, UserBehaviours can contain control flow constructs.
Supported are probabilistic branches in Branch actions and Loops with a random amount
of loop iterations. As there are no random variables depending on other variables in the
usage model, there are no equivalent actions to GuardedBranchTransitions or CollectionIter-
atorActions.

3.8.3 Usage Context

Using the information available in the UsageModel the usage context of the system calls
can be derived. Based on this information, the usage context of the system’s inner com-
ponents is determined. An analytical approach to this is presented in the PhD thesis by

104

3.9. TOOL SUPPORT

Koziolek (2008).

3.9 Tool support

The PCM has mature tool support. Figures 3.19 and 3.20 give screenshots of the version
used in the experiment described in section 5.2, figure 3.1 at the beginning of this section
gives an overview on the analysis methods, and figures A.2 and A.3 in the appendix give
an overview on all transformations currently available and the editor support for creating
PCM instances.

Tool support is a prerequisite to specify larger models due to the rather complex meta-
model (but still not as complex as UML2’s meta-model, for example). The tools have been
maintained and matured during a six month lasting effort for the experiment described in
section 5.2. In the following, the tool version described is 2.0, which has been the version
used during the experiment described in section 5.2.

Figure 3.19: Screenshots of Version 2.0 of the PCM’s Eclipse Tools - Modelling Perspective

105

3.9. TOOL SUPPORT

Figure 3.20: Screenshots of Version 2.0 of the PCM’s Eclipse Tools - Analysis Perspecitve

The tools build upon the Eclipse Modelling Framework (version 2.3, Budinsky et al.
(2003)). The PCM uses EMF’s ECORE as meta-meta-model. For the concrete syntax of the
PCM, graphical editors exist generated to a large extend using the Graphical Modelling
Framework (GMF, version 2.0, Eclipse Foundation (2007c)) which itself uses the Graphical
Editing Framework (GEF, version 3.3, Eclipse Foundation (2007b)).

The static semantics of the model is implemented using OCL constraints in the meta-
model which are checkable at modelling time. For performance annotations custom edi-
tors have been developed which support syntax highlighting and context sensitive code
completions for specifying stochastic expressions. The editing support is based on an
EBNF based grammar for the concrete syntax. The abstract syntax is again realised as
EMF meta-model making it available for model transformations. A type system imple-
mented for the stochastic expressions checks the entered expressions for correctness of
their static semantics. This is an advantage over the UML profile based modelling lan-
guages like UML-SPT where unsupported editing of strings has to be done.

106

3.10. ASSUMPTIONS AND LIMITATIONS

For model-to-model transformations mainly Java is used. The reason for not using
standard transformation languages and transformation engines is rooted in the immatu-
rity of the current implementations of these tools. However, as the tools mature, most
transformations should be expressible using OMG’s QVT. However, no execution engine
mature enough to deal with the PCM’s meta-model has been available at the time of cre-
ating the tools.

For model-to-text transformations, openArchitectureWare (oAW) and its XPand tem-
plate language is used. It provided a stable model-2-text transformation language (given
the fact that the OMG is still working on an model-2-text standard).

The visualisation of measurement and prediction results utilises JFreeChart which is
a powerful charting engine. For in depth statistical analyses like distribution function
comparisons, R, an open source statistics package, is made available using R’s Java bridge
in an Eclipse plugin.

3.10 Assumptions and Limitations

There are several assumptions and limitations in the current version of the PCM and the
accompanying tools. A list of the most important ones is given in the following.

• Static Architecture: The modelled architecture is assumed to be static. This means
that neither the connectors change nor that the components can move like agents to
different hardware resources.

• Abstraction from State: It is assumed that the behaviour of the system is deter-
mined by the parameters of the service calls only. No internal state of components
or the run-time environment is regarded. The PCM does not consider components
at run-time, which may adapt their behaviour to change their QoS properties dy-
namically. These QoS-aware components are beyond the current scope of the PCM.

• No Memory Allocation Effects: Components might allocate and free memory dur-
ing request processing. In multi-user cases, components may additionally struggle
to get access to the memory bus which is often granted mutually exclusive. Both ef-
fects can have a significant impact on the resulting performance (for measurements,
see Happe et al. (2006)). However, the PCM still disregards them.

• No Support for Streamed Data: The PCM’s support for datatypes is limited to
primitive types, collections and records. For larger amounts of data, streaming is
used. Streaming causes a continuous load on the CPU and the network. This type
of data handling is currently not supported.

107

3.10. ASSUMPTIONS AND LIMITATIONS

• No Support for Exceptions: The PCM’s model concepts do not yet contain concepts
for modelling exceptional conditions and aborts resulting from them. It is assumed
that no exceptions occur in the analysed usage scenario. Related to the missing
exceptions are concepts like timeouts, retries, etc.

• Limited Support for Event-Based Systems: The PCM’s initial design assumed syn-
chronous, blocking calls. Hence, the PCM does not support event-based systems
which usually rely on asynchronous message passing.

• Information Availability: It is assumed that the necessary model information like
service effect specifications and parametric dependencies are available and have
been specified by the component developer, software architect, system deployer
and domain expert. The PCM also assumes that different component developers are
able to agree on common parameter abstractions. Future work is directed to retrieve
as much information as possible from the automated analysis of component code.

• Limited Support for Concurrency: Quality properties of concurrent systems are
still hard to predict. Especially on multi-core processor systems several effects like
the CPU caches and scheduling strategies lead to differences between the observed
system timing behaviour and corresponding predictions. Existing prediction meth-
ods like SPE or LQNs also neglect these effects. This is an area of open research in
the performance prediction community.

• Limited Support for Modelling the Execution Environment: The PCM’s resource
model assumes that processing resources can be described by a processing rate only.
But often more than a single influence factor is important. For example, to charac-
terize modern CPUs solely by the clock frequency is often not sufficient any more.
The CPU architecture, pipelining strategy, or the cache sizes as well as the run-time
and middleware platform and their configurations can have a significant influence
on the execution time (Liu et al., 2005). The performance prototype (see section 4.7)
is a countermeasure against this limitation as the need to have a precise resource
environment model available is dropped by using the real one.

• Mathematical Assumptions: Mathematical assumptions and limitations reduce the
models’ complexity. For example, for the simulation they reduce simulation run
length and memory consumption. Current versions of the PCM assume for exam-
ple stochastical independent resource demands. The only exception to this is the
CollectionIteratorAction which allows a dependency on parameter charac-
terisations of the current iteration element.

108

Chapter 4

Transformations

The following sections describe the transformations of PCM instances into different arte-
facts based on different platforms. This embeds the PCM into a MDSD process and in-
tegrates model-driven software development, component-based software development,
and performance predictions.

The available targets are

1. SimuCom (Simulation for Component-Based Systems): A simulation environment
which allows to predict performance metrics of component-based systems mod-
elled in the PCM. It simulates resources based on the modelled ResourceEnvironment.
The simulation is based on queuing network theory.

2. ProtoCom (Prototype for Component-Based Systems): A prototype which mimics
the modelled resource demands of the system using different resource consump-
tion strategies. These strategies replace the abstracted code of internal actions, i.e.,
it does not contain the application logic but code which is performance-equivalent
to the missing logic. The prototype is executed on the actual target execution envi-
ronment. The prototype’s implementation is directly compileable, in the sense that
it is fully generated and can be run without additional code. While running, Proto-
Com measures execution times from which it computes performance metrics. This
allows the evaluation of the system’s performance under more realistic conditions.

3. POJO or EJB Code: This target generates code skeletons to be completed by the
developers to implement the application for JAVA or Java EE platforms. The code
is incomplete for InternalActions and hence for data processing. As a consequence,
manual coding is needed to finish the implementation. However, as much informa-
tion as possible is preserved from the PCM instance.

This thesis investigates model transformations having close relationships to each
other. For this reason, the results of the transformations share a common part while other

109

4.1. COUPLED TRANSFORMATIONS METHOD

parts are different (see section 4.2 for details). As a consequence, the transformations
have similar results based on the transformation of PCM concepts into Java. A differ-
ent approach, by Koziolek (2008) and Happe (2008) presented in their PhD theses, is a
transformation of the PCM into a stochastic process algebra. However, compared to the
code transformation, there is a larger semantic gap when transforming into the process
algebras.

This section is structured as follows. First, the Coupled Transformations method is
introduced in section 4.1. It is applied in this thesis’ application context of model-driven,
component-based software engineering. After some basic techniques in section 4.2, which
are used in all transformations, the transformations are described in sections 4.3 to 4.7.
Section 4.4 elaborates on the transformation into SimuCom. Section 4.5 describes basic
methods for the realisation of Coupled Transformations in this thesis. Section 4.6 gives
mappings of some of the PCM’s concepts to Java EE code. Existing design alternatives
are captured in feature diagrams and a parameterisation of SimuCom, which reflects the
impact of decisions made, is discussed. Section 4.7 finally shows how SimuCom’s and
the code mapping can be used to quickly build ProtoCom protoypes.

4.1 Coupled Transformations Method

In this section, the Coupled Transformations method is first introduced informally. After-
wards, a formalisation is given in section 4.1.2.

4.1.1 Motivation

When doing model-based or model-driven performance prediction with current methods
(Balsamo et al., 2004a), the method relies on the information available in the source model,
e.g., UML models annotated with the UML-SPT profile. However, the performance of a
software system is a run-time property, i.e., a property of the deployed and executed
implementation of the system. Hence, one problem is to ensure that the implementation
corresponds to the model. However, if the model has been used as blue print by a team of
developers to implement the corresponding system manually, it often can not be ensured
that the code corresponds to the model. Implementation rules used by the developer
team help to reduce the variability, but even with strict rules and code reviews, trying to
ensure compliance between the model and the code, there are design decisions involved
in implementing abstract model concepts which may lead to different implementations
of the same concept by different developers as in the following example.

As a running example, consider the structural view of an simple architectural model in

110

4.1. COUPLED TRANSFORMATIONS METHOD

C1 C2

IAIA

Figure 4.1: Motivating Example for Coupled Transformations

figure 4.1. It shows two components C1 and C2 communicating using a connector. Now,
consider two teams of developers which have to implement a corresponding system us-
ing a middleware platform like Java EE. The first team uses remote method invocations
(RMI) to realise the connection, the other team uses SOAP. Both teams’ implementation is
valid as it is consistent with the given model (assuming no additional information or im-
plementation rules existed). However, being functional equivalent, the performance im-
pact of both implementations is different because of the larger protocol overhead caused
by SOAP. Hence, model-driven performance predictions have to rely on correct imple-
mentation assumptions on the connector for their predictions to become accurate.

A solution to the presented consistency problem between model and code is provided
by a model-driven development process. Using deterministic transformations to trans-
form a model into an implementation eliminates the non-determinism assumed for man-
ual implementation, i.e., the result of a transformation solely depends on the input model.
In addition, transformations restrict the degree of freedom for mapping model instances
to implementations to the degree of freedom available in the model as the mapping to im-
plementations is fixed in the transformations and cannot be changed. However, in cases
with multiple mapping options, this raises the question which option to use in the trans-
formation. Considering the example again, the question would be whether to generate a
RMI or a SOAP based implementation in the transformation.

One approach could be to include the design alternatives in the source model, i.e., by
introducing different types of connectors in the model. However, this idea undermines
the abstraction property of a model as defined by Stachowiak (1973). Due to the goal-
driven abstraction of a model, unimportant details of the modelled objects are omitted. As
a consequence, there can be different objects having an equal model. Looking at figure 4.2,
this is depicted on the left hand side. There, three different objects have the same model
as they only differ in attributes abstracted away by the model’s abstraction rule. The
omitted information is irrelevant for the model’s aim. In our example, this means that a
RMI based implementation and a SOAP-based implementation have the same model as
given in figure 4.1 when aiming at presenting the conceptual structure of the system by
removing its realisation details. Abstracting from the concrete connector implementation
keeps the model comprehensible and does not overload it with information. Additionally,
it may even be infeasible to add all possible types of connector implementations that exist

111

4.1. COUPLED TRANSFORMATIONS METHOD

to the model’s constructs as it would imply to include all connector types of all existing
and also all future implementations. As a way out, the OMG introduced PIM and PSM
models (c.f. section 2.2.3) to separate implementation (platform) dependent aspects from
implementation (platform) independent ones.

Model

„Real“

World

Entity

„Real“

World

Entity

„Real“

World

Entity

Abstraction

Model

„Real“

World

Entity

„Real“

World

Entity

„Real“

World

Entity

Transformation

Param1 Param2 Param3

Figure 4.2: Model Abstraction and Model Refinement

If the additional information can not be part of the source model as argued above,
two options remain. Either it is part of a transformation parameter (mark model) or is
encoded as fixed design decision in the transformation. Consider again the three mod-
elled objects on the left hand side in figure 4.2. As they have the same model, either a
parameterised transformation or three different transformations are needed, if the orig-
inal modelled objects shall be generated as shown on the right hand side of figure 4.2.
In the connector example, either a RMI and a SOAP based transformation is needed to
generate both alternatives or a transformation which makes this decision explicit as a
transformation parameter.

Taking these considerations of model-to-code transformation into account, the aim is
to improve the prediction model. Performance predictions deal with the performance of
the implemented and deployed system, i.e., the system which contains all information added
by transformations and their mark models. However, current performance prediction
methods only use the information available in the design model omitting the information
added by transforming the model into an implementation. Hence, the solution presented
here is to automatically include the information available in implementation transforma-
tions into the prediction transformation (see figure 4.3).

For transformations without a mark model (see figure 4.4), then their result is solely
determined by their input model. In this case, the transformation’s creator has encoded
his implementation or platform dependent decisions into the transformation. In the con-
nector example, this would mean choosing from two transformations: one for RMI and
one for SOAP. Assume the software architect choses the RMI transformation as indicated

112

4.1. COUPLED TRANSFORMATIONS METHOD

Model

Implementation
Prediction

Model
predicts performance of

generated fromgenerated from

uses knowledge on

Model

Implementation
Prediction

Model

generated from

manually derived/

generated from

predicts performance of

Current model-driven

performance prediction

Model-driven performance

prediction using the

adavantages of MDSD

Param

Figure 4.3: Using Transformation Knowledge in Coupled Transformations

by the black dot in figure 4.4, then a transformation has to be used to automatically en-
rich the performance prediction model with RMI specifics like the RMI specific protocol
overhead. As this transformation is related to its respective code transformation, it is
called coupled transformation, given the whole approach its name: Coupled Transforma-
tions method. Analogously, if the SOAP based transformation was used, a transformation
for enriching the prediction model with SOAP specifics (like SOAP’s protocol overhead)
would be used.

Architectural Model (+Annotations)

Measured Time Predicted Time
Wanted:

correspondence

correspondence

re
q

u
ir
e

s

Code

Transformation

Execution/

Measurement

Prediction

Transformation

Prediction

Static Decision: RMI

C1 C2

IAIA

<<RMI>> <<RMISim>>

Implementation Prediction Model

Figure 4.4: Example using Static Decisions

If instead a parameterised transformation is used (see figure 4.5), i.e., one that offers
the choice between RMI and SOAP as a parameter, then also a corresponding (coupled)
transformation is needed which is able to consume the same parameter. In the example, if

113

4.1. COUPLED TRANSFORMATIONS METHOD

the software architect choses SOAP as parameter for the code transformation, he also has
to use SOAP in a parameterised prediction model refinement transformation as depicted
in figure 4.5.

Measured Time Predicted Time
Wanted:

correspondence

Code
Transformation

Execution/
Measurement

Prediction
Transformation

Prediction

Protocol

RMI SOAP<<SOAP>> <<SOAPSim>>

Implementation Prediction Model

Architectural Model (+Annotations)

C1 C2
IAIA

Figure 4.5: Example using Parametric Decisions

Discussion The following discusses the application of the presented idea to other parts
of this thesis and alternative approaches which might work to include the implementation
decisions into the prediction model.

Captured Performance Influence Factor: Based on the influence factors on the per-
formance of a component in section 2.3.1, i.e., external services, execution environment,
usage profile, and implementation, the factor which can be captured more accurately by
including knowledge on the transformations into the prediction process is the implemen-
tation. It is possible to capture the design and implementation decisions encoded into the
transformations in more detail.

Application in this Thesis: In section 4.6 a transformation of PCM instances into Java
EE code skeletons is given. In order to include the performance impact of the design al-
ternatives available in this mapping, Coupled Transformations are used. For example,
choosing a protocol when mapping connectors as used in this motivation is picked up
again in section 4.6.3. The presented transformations encode design alternatives in trans-
formation parameters as presented in the example in figure 4.5. For each mapping, the
respective coupled transformation, which automatically enriches the prediction model
making it more accurate, is described.

114

4.1. COUPLED TRANSFORMATIONS METHOD

Reverse Engineering as Alternative: An alternative approach to Coupled Transfor-
mations is conceivable: Generate the prediction model directly based on the code and
ignore the design model completely. However, this implies reverse engineering the code
into a performance prediction model which, in general, is a difficult task. The difficulty
lies in the fact that the code usually does not contain all information available in abstract
models any more. For example, performance annotations are not part of the code, this
kind of information can not be reverse engineered and hence is lost. In particular, recov-
ering the behaviour of InternalActions to derive their resource demands parameterised by
their dependencies on contextual influence factors is a challenging task. One approach
working towards (semi-automatic) recovery of performance models for components by
analysing their implementation is followed by Krogmann (2007).

4.1.2 Formalisation of Coupled Transformations

This section captures the idea of Coupled Transformations formally. First, it defines
model transformations and chains of transformations. Based on this, it introduces a
formalisation of Coupled Transformations. Finally, it elaborates on the use of Coupled
Transformations in the context of the PCM.

Models and Meta-Models LetMM denote a meta-model expressed as instance of some
meta-meta-model MMM , e.g., the PCM is an EMOF instance as introduced in section 3.
Then the set of all valid model instances of the meta-model MM is defined as

inst(MM) = {M |M is a valid instance of MM} (4.1)

Note, that an instance is valid only if it conforms to MM’s abstract syntax and (static
and dynamic) semantics where MMM defines the semantics of the term conformance.
For example, using EMOF as meta-meta-model, i.e., MMM = EMOF , then the MOF
specification’s semi-formal definition of conformance applies (Object Management Group
(OMG), 2006d, p.53 cont.). Using the introduced notation, the following holds for exam-
ple: inst(PCM) is the set of all valid component-based system-models expressible in the
PCM. PCM ∈ inst(EMOF) expresses the fact that EMOF is the meta-model used to de-
fine the PCM. EMOF ∈ inst(EMOF) formalises the fact that EMOF is an instance of
itself (cf. section 2.2.1). As already introduced in section 2.2.1, inst() is analogue to the set
of words accepted by a language where the language definition, e.g., as EBNF grammar,
replaces the meta-model.

Transformations This paragraph introduces transformations. Let t be a computable
function which maps an instance of a source meta-model MMsrc and an instance of a

115

4.1. COUPLED TRANSFORMATIONS METHOD

mark meta-model MMmark to an instance of a target meta-model MMdest:

t : inst(MMsrc)× inst(MMmark)→ inst(MMdest) (4.2)

The function t represents a parameterised transformation. For example, consider a trans-
formation:

tPCM×EJBMARK→EJB : inst(PCM)× inst(EJBMARK)→ inst(EJB)

mapping instances of the PCM (inst(PCM)) to instances of a meta-model to define EJB
based applications. The latter serve as basis for the generation of an EJB based im-
plementation. The transformation takes EJB specific parameters, e.g., which kind of
Java EE communication the connectors use, as instances of an EJB mark meta-model
(inst(EJBMARK)). Another transformation mapping PCM instances to Fractal (cf. sec-
tion 2.1.4) implementations has the following definition

tPCM×FRACTMARK→FRACT : inst(PCM)× inst(FRACTMARK)→ inst(FRACT)

where FRACT is a meta-model to describe instances of the Fractal component model
and FRACTMARK a mark model used to define Fractal specific implementation details.
Notice, the role of the mark models in the two examples given as parameter set specific
to the destination meta-model.

The previous discussion did not cover the case in which a transformation has no
mark model, i.e., takes no parameters other than the input model instance. For this, let
EMPTY denote the emtpy meta-model, for which inst(EMPTY) = ε holds. This is ana-
logue to the empty word used in grammar definitions. A parameterless transformation t
is then

t : inst(MMsrc)× inst(EMPTY)→ inst(MMdest) (4.3)

In this case, t takes the empty set as second parameter t(m, ε) with m ∈ inst(MMsrc).

Chains of Transformations Next, this paragraph introduces composed transforma-
tions, which represent an ordered chain of transformations as introduced in section 2.2.2.
Let T = {ti|i ∈ [1 . . . N − 1]} be an ordered set of transformations ti which are executed
sequentially with t1 being the first transformation and tN−1 being the last one. Each trans-
formation ti maps instances of meta-model MMi and instances of mark model MMmarki

to instances of meta-model MMi+1:

ti : inst(MMi)× inst(MMmarki
)→ inst(MMi+1) (4.4)

116

4.1. COUPLED TRANSFORMATIONS METHOD

The following shows that a chain of transformations is itself a transformation tcomp

fitting the definition in equation 4.2, that transforms instances of MM1 directly into in-
stances of MMN using mark model MMmarkcomp , where MMmarkcomp is a meta-model
which is derived by combining the meta-models MMmark1 . . .MMmarkN−1

. More precise

MMmarkcomp = MMmark1 ×MMmark2 · · · ×MMmarkN−1
(4.5)

inst(MMmarkcomp) = {(ma1,ma2, . . . ,maN−1)|mai ∈ inst(MMmarki
)} (4.6)

An element ~macomp = (ma1,ma2, . . . ,maN−1) of inst(MMmarkcomp) characterises a full set
of parameters or mark model instances of all transformations ti contained in a transfor-
mation chain, i.e., mai is a valid parameter for transformation ti.

A transformation tcomp : inst(MM1) × inst(MMmarkcomp) → inst(MMN) is the com-
posed transformation of a chain of transformations ti if

t(m1, ~macomp) = tN(tN−1(. . . t1(m1,macomp1) . . .),macompN−2,macompN−1) = mN (4.7)

where m1 ∈ inst(MM1), mN ∈ inst(MMN), and ~macomp ∈ inst(MMmarkcomp).

Writing mi
ti(mai)−−−−→ mi+1 as abbreviation if mi+1 = ti(mi,mai) holds, a chain of trans-

formations t1 . . . tN can be written as follows

m1
t1(ma1)−−−−→ m2

t2(ma2)−−−−→ . . .
tN−1(maN−1)−−−−−−−−→︸ ︷︷ ︸mN

⇔ m1
tcomp((ma1,ma2,...,maN−1))−−−−−−−−−−−−−−−−→ mN

The following extends the previous PCM to EJB example into a chained transforma-
tion by appending a second transformation. This transformation adds details specific
for the Sun Application Server, i.e., special configuration setting only available in this
server. If both transformations are executed in a chain, a transformation results, which
transforms PCM instances into EJB applications for the Sun Application Server.

Let the additional transformation be:

tEJB×SUNAPPMARK→EJBSUN : inst(EJB)× inst(EJBSUNMARK)→ inst(EJBSUN)

where SUNAPPMARK denotes a mark model defining parameters specific the Sun’s
application server and EJBSUN denotes an extended EJB meta-model containing Sun
Application Server specific settings. Then, the transformation chain is

mPCM

tPCM×EJBMARK→EJB(maEJBMARK)
−−−−−−−−−−−−−−−−−−−→ mEJB

tEJB×SUNMARK→EJBSUN(maSUNAPPMARK)
−−−−−−−−−−−−−−−−−−−−−−−→ mEJBSUN

The equivalent composed transformation is then

mPCM
tcomp(maEJBMARK ,maSUNAPPMARK)−−−−−−−−−−−−−−−−−−−−−−−→ mEJBSUN

The example shows how transformation chains can separate several aspects of a transfor-
mation into separate transformation steps.

117

4.1. COUPLED TRANSFORMATIONS METHOD

Coupled Transformations The following uses the introduced chained transformations
to formalise Coupled Transformations as introduced in section 4.1.1. For this, consider
a chained transformation tc with tc1 . . . tcN−1 as sub-transformations. Note, that this in-
cludes the special case of a single transformation if N = 2. tc maps a high level input
model mc1 ∈ inst(MMc1) into a low level output model mcN ∈ inst(MMcN) (e.g., the
left transformation depicted in figure 4.5). For the following, it is assumed that tcN−1

is a
model-2-text transformation and mcN is an implementation (code representation) of mc1.
The transformation uses the mark model instances mac1 . . .macN−1.

Additionally, consider a transformation tq which derives an analysis model mqN ∈
inst(MMqN) for some quality property q of an input model mq1 ∈ inst(MMq1). The aim
of Coupled Transformations is to reuse the information added by tc in tq. Hence, the first
step is to use the same input model for tq

mq1 = mc1 = m1 and MMc1 = MMq1 = MM1 (4.8)

For example, if tperf is a transformation which derives a performance analysis model
(q = perf) from a PCM instance, the same input model is used to derive the performance
model as the one which was used to derive the implementation.

Second, in order to include the information added by tc, tq is structured in a way that
it reflects tc. For this, let tq be a chained transformation with tq1, tq2, . . . tqN−1 where N is
the same N as in tc. Now, every tqi adds information relevant for analysing the quality
property q to the analysis model which corresponds to the information added by tci.

As such, tqi depends on its respective tci. tqi includes the information relevant to prop-
erty q into the analysis model. For example, for performance as quality property, resource
demands caused by behaviour added by tci to the model are included by tqi. To continue
the example, if tci maps PCM’s assembly connectors to SOAP calls, tqi adds resource de-
mands for marshalling using SOAP, transmitting a SOAP message, and unmarshalling
the SOAP call. Note, in the case where tci always maps the assembly connectors to SOAP
calls, no mark model exists, i.e., tci takes ε as second parameter. However, even in this
case, tqi depends on tci: it also always considers the SOAP’s resource demand in its anal-
ysis transformation.

Formally, the transformation tqi depends on the transformation tci, i.e., it can be de-
rived by some functional dependency from tci. The dependency itself is influenced by
the quality property p. For example, if the quality property is performance, the resource
demands generated by the output of tci are important. If the quality property is reliability,
the failure probability of the output of tci is important.

As the output of tci depends on the parameter or mark model maci, the same parame-
ter has to be considered as well in tqi. Hence

maqi = maci = mai (4.9)

118

4.1. COUPLED TRANSFORMATIONS METHOD

For example, consider the mapping of PCM assembly connectors to Java EE com-
munication protocols again. If the transformation developer changes transformation tci

responsible for generating the communication aspect in a way which allows the trans-
formation’s user to choose between SOAP or RMI as communication protocols using a
mark model instance, the transformation output uses RMI or SOAP accordingly offering
different quality. For example, SOAP causes a higher resource demand as it marshals the
data to transmit more verbose by using XML than RMI which uses a binary data repre-
sentation. As a consequence, tqi needs to know whether the RMI or the SOAP option has
been chosen in tci. For this reason, it is necessary to pass the same mark model instance
to tqi as it has been passed to tci before.

To give the full picture, consider a transformation chain tc which derives the applica-
tion’s implementation and its parameters ma1, . . .maN−1:

m1
tc1(ma1)−−−−−→ m2

tc2(ma2)−−−−−→ . . .
tcN−1(maN−1)−−−−−−−−→︸ ︷︷ ︸mcN

⇔ m1
tc((ma1,ma2,...,maN−1))−−−−−−−−−−−−−−→ mcN

The resulting transformation chain tq which derives an analysis model for quality prop-
erty q depends on the same set of parametersma1, . . .maN and transforms the same input
model m1:

m1
tq1(ma1)−−−−−→ mq2

tq2(ma2)−−−−−→ . . .
tqN−1(maN−1)
−−−−−−−−→︸ ︷︷ ︸mqN

⇔ m1
tq((ma1,ma2,...,maN−1))−−−−−−−−−−−−−−→ mqN

To summarise, tq is a transformation, which not only includes the information available
in the source model m1 but also the information encoded in the transformations tci which
refine the source model into the application’s realisation.

Application in this Thesis After introducing the general idea, the following discuses
the application of Coupled Transformations in the remaining parts of this thesis.

1. Focus on Performance Properties: The quality property is restricted to the domain
of performance analysis, i.e., q = p. However, this is only to narrow the focus of this
work. The idea can be applied to other quality properties as well.

2. Code Output: For the transformation tc it is assumed that the meta-model MMcN

is an appropriate model for source code like the abstract syntax generated from a
EBNF grammar. With this, tc(m1, ~ma) is the application’s source code. It is usually
generated by tcN−1 which is a model-2-text transformation in practice.

119

4.1. COUPLED TRANSFORMATIONS METHOD

3. No Manual Interactions: In cases where the source code transformation tc is in-
complete, i.e., results in code skeletons, the final code completion is done manually
by developers. However, this is non-formal process, whose outcome usually highly
depends on the developer. It is even very likely that the same code skeletons will
be completed differently by the same developer, if it is done repeatedly with some
time in between. For these reasons, manual transformations are disregarded in tq.
Hence,the following only reasons on automated and computed transformations.

4. Chained Analysis Model Transformation: The current practice is to derive an anal-
ysis model without taking implementation refinement transformations tci into ac-
count, i.e., mqN = tq(m1, ε) with N = 2. That is, the analysis model mqN is derived
directly from the design model m1. As elaborated in the foundations on perfor-
mance annotations (see section 2.3.2) sometimes m1 is not used directly but rather
m′1 with m′1 being the design model annotated manually with performance annota-
tions. For example, for prediction methods based on UML and UML-SPT annota-
tions,m1 would be the design model without annotations andm′1 the annotated SPT
model. In such cases it is assumed that m1 denotes the initial model for both trans-
formations, i.e., for modelling languages which need annotations, it is the annotated
model.

5. Availability of the Analysis Transformations: To put this theoretical model into
practice, it is necessary to have tqi which reflect the impact of the output of tci on
the quality property q. It is the burden of an expert for quality attribute q to analyse
tci and to derive the transformation tqi. Additionally, tqi depends on the life- and
maintenance cycle of tci and has to be adapted whenever tci is changed. However,
as transformations can be reused the extra-effort pays off in cases where the trans-
formation is used frequently because both transformations have to be written once
but can be used multiple times.

6. Feature Models as Mark Models: The transformations in this thesis are based on
feature models as mark models. The meta-model MMmarki

of the i-th mark model
is a meta-model describing all configurations of the i-th feature model. However,
this does not cause a limit in general applicability of the method for other common
types of mark models like stereotypes and tagged values or arbitrary complex MOF
decorator models because basically they all add parameters to the transformation.
However, the different types of mark models offer different degrees of freedom on
the parameterisation (see section 4.5.2).

In the following, a transformation of the PCM into code and into a simulation-based
prediction model is introduced, which uses the idea of Coupled Transformations. The

120

4.2. MODULAR TRANSFORMATIONS

transformations require a mark model based on feature diagrams, allowing limited pa-
rameterisations. This applies Coupled Transformations to this thesis’ application scenario
which aims at an integrated model-driven process for component-based, predictable soft-
ware development. However, this is due to the focus of this thesis on component-based
software development. The idea of Coupled Transformations can be applied to any
model-driven software development approach if some preconditions are met:

• Depending models: A model depending on the implementation model is needed
in order to couple the transformations. For example, for the prediction of perfor-
mance or other QoS attributes, the prediction model depends on the implementa-
tion model.

• Generation of code: The implementation is partially or fully generated by transfor-
mations resulting in deterministic code blocks.

• Availability of QoS annotations: QoS annotations attached to the source are of-
ten necessary to cover parts of the system not handled by code transformations.
However, for transformations which generate the complete code, they might not be
needed.

4.2 Modular Transformations

Before presenting the actual transformations, this sections introduces some basic ideas
used to realise the transformations which support the following requirements (introduced
in section 2.4.1). First, transformations for the PCM need to be split among the developer
roles. How to accomplish this has already been introduced in section 3.1.2. Second, struc-
turing the transformations in a special way eases support of Coupled Transformations
and allows reuse among common transformation parts. In order to support the special
structuring, the Template Method design pattern (Gamma et al., 1995, p.325) is ported to
the used template engine. The following gives details on this.

The transformations developed in this thesis are model-2-text transformations map-
ping PCM instances to code. The decision to favour model-2-text transformations over
model-2-model transformations is grounded on the unavailability of working model-2-
model transformation engines, e.g., a QVT engine, at the time of writing. Nevertheless,
most of the time this thesis describes the transformations on a conceptual level. It only
presents model-2-text transformation templates occasionally to illustrate special issues.

Conceptually, a migration to model-2-model transformations when mature model-2-
model transformation engines become available should be no problem. These engines

121

4.2. MODULAR TRANSFORMATIONS

can be used to shift parts of the transformation logic on the model level removing it from
the model-2-text transformations.

There are at least two possible options to realize transformations where one transfor-
mation depends on the other as it is the case for Coupled Transformations. One option
which is always available is to implement the code and prediction transformations inde-
pendently from scratch. To link both transformations, the transformations read the same
parameter set (mark model). This offers the advantage to focus on the target platform of
the respective transformation both in its implementation and in its generated output. For
example, the simulation transformation could use all features of the underlying simula-
tion framework, producing a highly optimized simulation code. However, when looking
at the generated output, the difference between a specialized simulation implementation
and a specialized code skeleton implementation is potentially high, making it difficult
to include the same parameterisations in both transformations in order to validate the
Coupled Transformations ideas.

Hence, a different approach is used in this thesis. The idea originates from the Tem-
plate Method design pattern Gamma et al. (1995) used in object-oriented languages. The
pattern is applied in cases where a base algorithm exists which forms a common skeleton
for a whole set of algorithms. Each instance of the algorithm only changes the behaviour
at certain predefined spots in the total algorithm. The base algorithm is the template
which contains the so called template methods, which defer their actual implementation
to implementations in subclasses.

Some transformation languages support inheritance which is needed to use the Tem-
plate Method pattern (e.g., in the upcoming OMG Model-2-Text standard (Object Man-
agement Group (OMG), 2007b)). However, these engines are still immature. Because of
this, the transformations presented in this thesis use the template-based model-2-text en-
gine of openArchitectureWare, version 4.2 (oAW) (openArchitectureWare (oAW), 2007).
The idea is to use oAW to simulate the Template Method pattern. OpenArchitectureWare
offers a template override facility which can be used to simulate inheritance, the exact
technical details are omitted here as they are highly dependent on the actual transforma-
tion engine and subject to change as the transformation engines - including oAW - further
mature.

However, conceptually, the Template Method pattern allows to define transforma-
tions which share a common part, based on common templates. However, certain parts
of the transformation output change based on the selected set of template methods (see
figure 4.6). The transformations presented in sections 4.4-4.7 utilize the template method
based approach. Depending on the actual target (SimuCom, ProtoCom, or code skele-
tons) certain parts of the output change while others remain constant. This allows the

122

4.2. MODULAR TRANSFORMATIONS

transformations to support multiple targets which share a common transformation core.
This common core also eases the inclusion of the same mark model in all transformations
which is needed for Coupled Transformations.

Basis-

Transformation-

Template T
e

m
p

la
te

-

M
e

th
o

d
s

S
im

u
la

ti
o

n
-

T
e

m
p

la
te

-M
e

th
o

d
s

C
o

d
e

-S
k
e

le
to

n
s
-

T
e

m
p

la
te

-M
e

th
o

d
s

Figure 4.6: Template Methods used to Implement Coupled Transformations

Consider the following example to understand transformations based on template
methods. To generate code from a RDSEFF, a transformation has to visit all AbstractAc-
tions in a behaviour sequentially from the StartAction to the StopAction and generate code
for each type of action visited. Now consider a LoopAction in this chain of actions for
which code should be generated. Having SimuCom as target, the code has to determine
the value of the random variable describing the number of loop iterations and then iterate
over the loop body for this amount of times (see listing 4.1). The transformation gener-
ating a code skeleton generates a loop control flow statement like for, but in contrast to
the simulation transformation, the loop iteration count is not known. Hence, a comment
is generated from the loop iteration count specification (see listing 4.2). This information
informs the programmer about the assumptions in the model from which the code has
been generated. This allows him to give feedback in case the assumptions prove wrong
during implementation. In such a case, the model can be adjusted accordingly.

Listing 4.1 Simulation Loop

int max_count = evaluate("IntPMF[(10;0.4)(20;0.6)]");

for (int i=0; i < max_count; i++) {

// generated loop body

}

123

4.3. MAPPING OVERVIEW

Listing 4.2 Code Skeleton Loop

for (int i=0;

i < 0 /*To do, loop IntPMF[(10;0.4)(20;0.6)]*/;

i++) {

// generated loop body

}

In this example, common behaviour in both transformations is to iterate on the actions
of a RDSEFF. The different code fragments generated for the LoopAction is specialized
behaviour in a template method.

For the SimuCom transformation all PCM concepts related to random variables are
part of special template methods like the loop action shown in the example. This espe-
cially includes the interaction with simulated hardware resources loaded with resource
demands in InternalActions. On the other hand, the transformation rules for components
and composed structures is common and hence, part of the core transformation. The
following sections give more details.

The template method based transformations also enable to easily create the ProtoCom
mapping, which uses a mixture of the template methods for the simulation mapping and
the code-skeleton mapping. For this, missing behaviour in the PCM model instance is
replaced with simulated behaviour. Only a small amount of the template methods is
specifically dedicated to the prototype mapping while all others are simply reused. Sim-
ulating resource demands on real hardware resources is the only part specific for Proto-
Com. It replaces SimuCom’s resource demand processing based on simulated hardware
resources.

4.3 Mapping Overview

Before presenting SimuCom, ProtoCom, and the Java EE mapping in detail, this section
gives an overview on the different mappings and how the deal with the various concepts
available in the PCM (see table 4.1).

All transformations map elements of the PCM’s Repository to Java interfaces, data
types and classes. They represent component implementations and are the result of the
component developer’s transformation. Important to notice is that data types are not
supported in SimuCom and ProtoCom as they only use parameter characterisations. In
all mappings, a component is always reflected by a least one Java class. All transforma-
tions map CompositeComponents by generating façades for its provided interfaces which

124

4.4. SIMULATION MAPPING

PCM Concept SimuCom ProtoCom JavaEE / EJB

Interfaces Java Interface Java Interface Java Interface

Data types N/A N/A Java Data types

Provided Roles Port Classes Port Classes Port Classes

Required Roles Feature Dep. Feature Dep. Feature Dep.

Provides-, CompleteComponentTypes Classes w/ fixed Delays N/A N/A

BasicComponents Classes w/ simulated SEFF Classes w/ simulated SEFF Classes with Code Skeletons

CompositeComponents Facade Class Facade Class Facade Class

ComletionComponent Facade Class N/A N/A

AssemblyContext Instance of Comp. Class Instance of Comp. Class Instance of Comp. Class

AssemblyConnector ConnectorCompletion Feature Dep. RPC Call Feature Dep. RPC Call

AllocationContext Mapping to Sim. Resources Deployment Script Deployment Script

Resources Simulated Resources N/A N/A

UsageModel Workload Driver Workload Driver Load Tests

Table 4.1: Overview on the Mappings

then delegate the calls to instances of the inner components.
All mappings generate code that instantiates for each AssemblyContext in the PCM an

object of the class (or the classes) associated to the component contained in that particular
context. The AllocationContexts and the resources are important only for SimuCom which
uses them to simulate resource demands.

The UsageModel is used in all mappings to generate code which simulates the be-
haviour of users. For each UsageScenario the generated code contains a workload driver
which spawns threads that simulate single users with the frequency given in the respec-
tive workload description. SimuCom and ProtoCom use these workload drivers to take
measurements of the overall response times while the Java EE mapping uses it as load
test driver.

Notice that some mappings depend on feature configurations (RequiredRoles, Assem-
blyConnectors). They are subject to closer investigation and their impact is modelled using
Coupled Transformations. Section 4.6 gives details on the mapping options and how their
different performance impact is reflected.

The following discusses all mappings in detail.

4.4 Simulation Mapping

The PCM is a meta-model designed to describe component-based software architectures
in order to analyse performance properties. The design is specifically targeted at model-
driven analysis, i.e., automated model transformations map instances of the PCM into
analysis models.

In this thesis, SimuCom is introduced. SimuCom is a simulation model and corre-
sponding tool for PCM instances, whose concepts are closely bound to the PCM’s con-

125

4.4. SIMULATION MAPPING

cepts to ease its realisation. Implementing a simulation for the PCM offers several advan-
tages and disadvantes, which the following paragraphs discuss.

Arguments for using a simulation instead of analytical methods to analyse PCM in-
stances are

1. Model Capabilities and Complexity: Due to its requirement to deal with arbitrary
distributed random variables – especially for resource demands – a queuing net-
work for PCM instances would have G/G/1 or G/G/m service centres, i.e., service
centres that have an arbitrary distributed service time and arrival rate. It is com-
mon in literature to solve this class of queuing networks using simulation engines,
e.g. in (Kounev, 2006; Kounev and Buchmann, 2006). Nevertheless, for special
instances and result metrics of these networks there are also analytical solutions
available (Bolch et al., 1998a). However, as the PCM aims at general applicabil-
ity, following the simulation based approach is a reasonable choice. Furthermore,
using simulation allows to generalise the produced simulation result to the distribu-
tion of the system’s response time in contrast to the mean-value based analysis done
by most analytical methods. Additionally, a simulation-based approach allows to
analyse complex service centres with complex scheduling strategies under concur-
rent load in order to reflect complex hardware resources and real operating system
scheduling behaviour.

2. Meta-Model Evolution: The PCM’s meta-model is continuously evolving to reflect
the upcoming requirements when modelling real systems or validating the predic-
tion accuracy. The simulation can be adjusted to deal with a lot of these require-
ments more easily than defining a mapping into a formal analytical model. Because
of this, it is much easier to evolve the meta-model in a trial-and-error process by
testing new features in the simulation. Only for features, which demonstrated their
usefulness, more complex, possibly analytical transformation should be derived.

3. Availability of Computation Power: The recent trend in hardware design is to in-
clude multiple cores into one CPU. Simulation based methods gain an special ad-
vantage from this trend as not only more complex and realistic simulation become
executable but also the concurrent execution of the same simulation model with
different initial parameters. This results in multiple models simulating at the same
time making simulation-based ”what-if” scenarios being more feasible.

Disadvantages of using a simulation-based analysis method are

1. Time and Memory Consumption: Simulation takes a significant amount of run-
time to get accurate results comparable to analytical predictions and usually con-
sumes large amounts of memory to record the required data.

126

4.4. SIMULATION MAPPING

2. Case-Based Analysis: A single simulation run always reflects a single outcome of a
random experiment. As a consequence, for example questions asking for amount of
users necessary to cause a resource overflow require several simulation runs to ap-
proximate this number. Analytical models often provide such information directly.
Only iterative methods need repetitions, but usually much less than simulation-
based methods.

3. Unlikely Situations Hard to Find: Situations whose occurrence is very unlikely but
whose impact on the analysis result is rather large are hard to analyse in simulation-
based methods. For example, in a component-based architecture exists a control
flow path whose occurrence probability is very low but whose response time is a
magnitude of all other control flow paths. In such a case, the simulation run might
miss this case, resulting in a misleading result.

4. Long Control Flow Paths: A problem specific to simulating the behaviour of soft-
ware is the existence of loops with large iteration counts (infinite loop iterations
are forbidden in the PCM). As each iteration has to be simulated in a precise sim-
ulation run, simulation run-time becomes a significant factor. However, heuristic
approaches might help to cut down the run-time in case of large iteration numbers,
e.g., by replacing them with normal distributed approximations.

Especially the easy support for meta-model evolution which allows fast testing of
meta-model changes makes the simulation-based approach the first choice for getting
feedback on the meta-model and its concepts which has been important during the PCM’s
design.

4.4.1 SimuCom Overview

This section gives a brief overview on SimuCom’s transformation structure and the sim-
ulation parts. SimuCom is based on a model-2-text transformation which transforms in-
stances of the PCM into Java code (see figure 4.7). The generated code uses the so called
SimuCom platform which provides a framework or platform for the simulation. It exe-
cutes the generated code and the generated code uses functions offered by the platform.
This separation between generated code and platform code is based on the architecture
centric MDSD development process introduced by Völter and Stahl (2006). The platform
itself is based on the Java discrete-event simulation framework Desmo-J (DESMO-J, 2007).
The descriptions in the following section explain how the transformation maps the ele-
ments of the PCM’s meta-model to simulation code. Occasionally, it present fragments of
the used code generation templates to ease understanding (cf. figure 4.7).

127

4.4. SIMULATION MAPPING

PCM Instance

M2T-

Templates

Generated

Simulation Code
SimuCom

PlatformM2T Transformation use

Figure 4.7: Overview on SimuCom’s Transformation Structure

This paragraph gives an overview on the parts of the simulation before subsequent
sections discuss details of each part.

Simulated

Resources

Simulated

RD-SEFFs

Simulated

Components

Simulated

Workload

Figure 4.8: Overview on SimuCom’s Parts

The simulation is based on a simulation of resources (see figure 4.8). For this, Simu-
Com simulates G/G/1 queues as described in section 4.4.3. Load for the simulated re-
sources is generated by a simulated workload (see section 4.4.4). For each user a thread
is started which traverses the (simulated) system. The thread passes through simulated
components (see section 4.4.5) and their (simulated) RD-SEFFs (see section 4.4.6). While
passing RD-SEFFs, the simulation threads evaluate the contained stochastic expressions
(see section 4.4.2) and generate respective resource demands or pass on to external com-
ponents. The following gives the details on each of the elements.

4.4.2 Evaluating Stochastic Expressions

As introduced in section 3.2.1, the PCM uses so called stochastic expressions to charac-
terise random variables. This section describes how the simulation deals with stochastic

128

4.4. SIMULATION MAPPING

expressions as this is used in all other parts of the simulation.
Basically, at any location where stochastic expressions are used in the PCM, the simu-

lation transformation simply copies the stochastic expression’s string representation into
the generated code and leaves it to SimuCom’s platform to parse and evaluate the expres-
sions. As an enhancement, the simulation’s transformation can be improved in future
work to generate code which represents the stochastic expressions semantics directly and
hence, makes the additional parsing superfluous. However, the basic concepts stay the
same.

In the current implementation, the SimuCom platform generates the stochastic ex-
pression’s abstract syntax tree and uses a visitor to evaluate the expression thus acting
the same as an interpreter. The following differentiates five basic classes of nodes where
nodes of the same class are realised similar. The five classes are: Literals, probability
function literals, functions, operators, and variable nodes. For each class the following
paragraphs introduce how the visitor evaluates the respective nodes.

Literals Literals are the most basic type of node and their evaluation is easy as the value
of the node is simply the literal’s value. For example, the value of the stochastic expres-
sion ”5” is simply 5.

Probability Function Literals Probability function literals are used to characterise ran-
dom variables, i.e., their value is determined by drawing samples in the simulation. The
simulation uses the so called inversion method to evaluate probability function literals
(Law and Kelton, 2000). The basic idea of this method is to derive the inverse function of
the cumulative distribution function of the probability function literal F−1(p) : [0..1]→ D

which maps probabilities to values of the sample space D. D depends on the type of
the random variable, e.g., BYTESIZE characterisations yield Integers while STRUCTURE
characterisations yield enumeration types. A uniform distributed random variable is gen-
erated by a pseudo-random number generator u ∼ U(0, 1) and X = min{x|F (x) ≥ u} is
returned as result. It can be shown, that X’s distribution follows the given probability
function literal (Law and Kelton, 2000).

The evaluation differentiates two cases: Discrete and continuous probability function
literals. For discrete random variables, F−1 is a stepwise function which can be computed
efficiently by comparing the drawn uniform value u to the upper limits of the steps.

For BoxedPDFs, which approximate continuous random variables in the PCM, F−1 is
defined in intervals, where each interval represents a box. As the PCM assumes a uniform
distribution inside each box, the inverse of each section is a linear function. This allows
efficient calculation of random samples of BoxedPDFs.

129

4.4. SIMULATION MAPPING

For example, consider a probability function literal DoublePDF[(4;0.3)(8;0.7)].
This specification defines a continuous random variable whose values fall in the interval
[0..4) with probability 0.3 and in the interval [4..8) with probability 0.7. The cumulative
distribution function is F (x) = x ∗ 0.3/4 for x ∈ [0, 4) and F (x) = 0.3 + (x− 4) ∗ 0.7/4 for
x ∈ [4, 8). The inverse cumulative distribution function F−1(y) is F−1(y) = y ∗ 4/0.3 for
y ∈ [0, 0.3) and F−1(y) = (y − 0.3) ∗ 4/0.7 + 4 for y ∈ [0.3, 1).

Functions The SimuCom platform is able to deal with a set of standard functions devel-
opers can use in stochastic expressions. Currently, the SimuCom platform supports two
types of functions; mathematical functions and random number generators for standard
distributions. A visitor evaluates mathematical functions, like Truncate or Round, by
applying the respective Java methods to the function’s parameters. For random number
generators, like Norm for normal distributed samples or Exp for exponential distributed
samples it uses the SSJ Java library (L’Ecuyer and Buist, 2005). The result of visiting the
stochastic expression’s AST nodes corresponds to the result of the respective SSJ function
(see (L’Ecuyer and Buist, 2005) for details).

Operators For operators, such as +,-,*,/,<,>,==, etc., the visitor again uses the
standard operators provided by Java. Their precedence order is respected when con-
structing the stochastic expression’s AST. As random variable evaluation is always based
on drawing samples of the random variable, the results of visiting stochastic expression
AST nodes are always primitive values, which can be used in operations directly.

Variables In stochastic expressions, variables are used to express parameterisations of
random variables. They allow to characterise the usage profile in a parametric way (cf.
section 3.5.1). From the viewpoint of simulating PCM instances, variables normally (i.e.,
besides INNER variables) contain a sample of a random variable because when the vari-
able is first used, the stochastic expression defining the variable is evaluated and the re-
sulting sample is stored in the variable. The case-based analysis performed in the simu-
lation leads to the use of samples for all random variables.

The simulation uses a process oriented view for users, i.e., users and their requests
are simulated using threads. This lets a simulation run look similar to the execution of
the real application (however, based on abstract models instead of real application logic).
Because of this, an adjusted variant of the concept how variables are organised in real
programs can be used to realise variables in SimuCom.

When a compiler generates code for a program, it uses stack frames to implement
variable scopes in the program (Muchnick, 1997). A scope is a range in the program in

130

4.4. SIMULATION MAPPING

which a certain variable can be accessed. For example, a method is a scope for method lo-
cal variables, a loop declaration forms a scope for the loop’s body, etc. Whenever a scope
is entered by the control flow, a new stack frame is put on the stack. Such a stack frame
can optionally have a parent frame depending on whether variables of the surrounding
scope should be visible. The semantics of a stack frame when looking for the value of
a variable is to first look in the topmost stack frame. If the variable is contained in this
frame its value is returned. If not, the parent frame is searched for the variable and so on.

The SimuCom platform uses this concept for managing variables in stochastic expres-
sions. Each simulated thread representing a simulated user or one of its requests has a
simulated stack on which stack frames can be pushed or popped. When pushing a new
stack frame to the stack, the simulated thread additionally has to specify whether the
stack frame currently on the top of the stack becomes a parent stack frame or not. When
looking for a variable, the semantics as described above is applied: If the variable is in
the topmost frame its value is returned, if not, the parent stack frame is queried, and so
on. If none of the searched stack frames contains the variable, an exception is raised. By
this, the parent relationship defines the scope of the search for variables. It is important
for different types of scopes: When executing a call to another component a new stack
frame is pushed on the stack without a parent frame. This prevents the access to variables
defined in the stack frame of the calling service.

param1.BYTESIZE 25 kB

param2.VALUE 5

param3.NUMBER_OF_ELEMENTS 100

param4.BYTESIZE 300 Byte

Stackframe 1

Stackframe 2

Stackframe 3

p
a

re
n

t

... ...

Figure 4.9: An example for a Simulated Stack

For example, consider the simulated stack in figure 4.9 (Notice, that the stacks
in this section grow downwards as usual in compiler construction literature). The
stack’s topmost frame is stack frame 1. It contains two variables, param1.BYTESIZE
and param2.VALUE. Its parent stack frame is stack frame 2 which contains
param3.NUMBER OF ELEMENTS and has no parent frame. On top of stack frame 2 is
stack frame 3 which contains the variable param4.BYTESIZE. However, this stack frame
is currently unavailable. It becomes available again if stack frame 1 and stack frame 2 get
popped from the stack.

131

4.4. SIMULATION MAPPING

In this context, the stochastic expression ”param1.BYTESIZE” evaluates to 25 kilo-
byte. The expression ”param3.NUMBER OF ELEMENTS” is also allowed as it is contained
in the parent stackframe and results in 100. The expression ”param4.BYTESIZE” is not
allowed in this context and would lead to an exception if evaluated against this simu-
lated stack as it can not be reached when following the parent stack frame relationship.
Finally, to give an example of a more complex stochastic expression ”param1.BYTESIZE

* param3.NUMBER OF ELEMENTS” evaluates to 2500 kilobytes. The latter expression
could be an example for a random variable specifying a parametric resource demand for
an InternalAction.

Late Evaluation Some variables need a so called late evaluation. This means, their value
is not determined when they are initially added to their stack frame but later because the
evaluation of these variables may result in different samples of their underlying random
variable on every access to their value. An example of such a variable is the INNER char-
acterisation of collections (cf. section 3.5.4). This characterisation describes the elements
contained in a collection. For them, it is assumed that every time when they are used, a
different element of the collection is used (cf. Koziolek (2008)). Consequently, the value
of the variable is re-evaluated on every access.

For variables with late evaluation, the simulated stack frame contains a so called eval-
uation proxy. This proxy encapsulates all information needed to re-evaluate the variable.
This is the defining stochastic expression and a copy of the state of the topmost stack
frame and its parents.

param1.BYTESIZE 25 kB

param2.VALUE 5

param3.INNER.BYTESIZE
Proxy(IntPMF[(1;0.5)(2;0.5)]*

 param1.BYTESIZE)

param1.BYTESIZE 5 kB

Stackcopy

Current Stack

Figure 4.10: Stackframe with Proxy for Late Evaluation

Consider the (artificial) example given in figure 4.10. In this example, the current
stack frame contains the variables param3.INNER.BYTESIZE and param1.BYTESIZE

where param3.INNER.BYTESIZE is a late evaluating variable. According to the intro-
duced semantics, the stochastic expression ”param3.INNER.BYTESIZE” evaluates to
25 kByte with a probability of 0.5 and to 50 kByte with a probability of 0.5. Notice, that
every evaluation of this stochastic expression can result in a new result with the given

132

4.4. SIMULATION MAPPING

probability distribution.
The sections on mapping user (section 4.4.4) and component behaviour (section 4.4.6)

contain the initialisation and use of the simulated stack and its stack frames. Before pre-
senting them, simulated resources are introduced as foundation of the SimuCom plat-
form.

4.4.3 Simulated Resources

The simulation is based on simulated resources which simulate the behaviour of instances
of the PCM’s resource environment. Simulated resources build the foundation of the
simulation.

A PCM’s resource environment defines two types of resources which are both impor-
tant for the simulation: ProcessingResources and CommunicationLinkResources. Basically,
both types of resources act the same: Jobs arrive - possibly concurrently - at the resource
and demand for their processing. If the resource is already busy with processing another
job, the jobs are put in a waiting queue, in which they remain until the resource becomes
available. This behaviour is best reflected by queues as defined in queuing network the-
ory (Bolch et al., 1998a). Hence, the simulation uses queues and their service centres to
reflect simulated resources.

However, the queues needed for simulating PCM instances have to deal with the fol-
lowing requirements. Some of them make it difficult to reuse existing tools.

1. Generally Distributed Service Times: As the resource demands in the PCM are
characterised by random variables which can have arbitrary distributions, e.g.
BoxedPDFs as introduced in section 3.2.1, service centres have to deal with arbi-
trary distributed service times.

2. Generally Distributed Arrival Times: The arrival time of a job at a queue depends
on how the control flow runs through a component-based architecture as this in-
fluences when an InternalAction in a RD-SEFF is reached. Additionally, it also de-
pends on the previous resource demand processed - if there is one. As the previous
demand is generally distributed, its departure rate which is the arrival rate of the
following demand is also generally distributed. Hence, in general the arrival rate at
a PCM resource is arbitrary distributed.

3. No Replication: In the current PCM version, replication of ProcessingResources is im-
possible as the modelling of scheduling of multiple resources, e.g., multicore CPUs,
is still subject to research. Together with the previous requirements, this makes PCM
queues currently G/G/1 queues using the common queuing network classification
scheme for queues.

133

4.4. SIMULATION MAPPING

4. Multiple Job Classes: As each resource demand is characterised by a possibly dif-
ferent random variable, each demand coming from a specific InternalAction falls into
a job class specific for this action, i.e., a job class exists for each InternalAction which
uses a specific ProcessingResource.

5. Support for Different Scheduling Policies: The current PCM version supports
three types of (common) scheduling strategies for ProcessingResources: processor
sharing, FCFS (First-Come, First-Serve), and delay. They represent a set of com-
mon scheduling strategies in queuing network theory (Bolch et al., 1998a). Each
service centre in SimuCom has to support these scheduling strategies.

6. Support for Response-Time Distributions: For each queue, at least the distribu-
tion of the overall processing time and waiting time for the jobs as well as its service
centre’s utilisation has to be recordable in order to give feedback on the simula-
tion results to the software architect. In queuing network tools, frequently only the
average times are available, e.g., (Bertoli et al., 2007; Bolch and Kirschnick, 1993).

As a consequence of the given requirements, a special resource implementation, which
encapsulates a queue and the job processing, has been implemented in the SimuCom plat-
form without the use of external libraries. The following describes details of the resource’s
realisation.

A simulated resource offers a method to its client called process. It takes a simulated
thread and a demand as arguments. The demand is a double value which is a sample of
the random variable characterising an hardware-independent resource demand. This de-
mand is divided by the processing rate of the resource to make it hardware-dependent.
The processing rate is set during the resource’s initialisation. The resulting value is the
resource demand of the resource in standard time units (seconds), i.e., the time the re-
source would need to process the demand if no concurrency and hence no waiting time
existed. For example, an InternalAction’s demand evaluates to 100 CPU instructions. If
this demand has to be processed by a simulated CPU resource having a processing rate
of 109 CPU instructions per second, the time demand added to the resource’s queue is
100/109 = 10−7 seconds. For simulated network links, the hardware-dependent demand
is the bytes to transmit divided by the network’s throughput plus the network’s latency.

The following formalises a resource queue’s behaviour as time passes. SimuCom uses
this for its event processing described afterwards. Each queue has a state which contains
a list of demands currently processed and the point in time of the last event processed.
Disregard the latter for the moment as it is only important for event processing.

134

4.4. SIMULATION MAPPING

Queue State and Time Passing Let Demand be the set UUID × R+
0 . An element

d ∈ Demand describes a demand as a tuple with an unique identifier and its remain-
ing processing time at the resource currently processing it. In the following, time(d) is a
shorthand notation for the remaining time part of the vector, i.e., for a vector d = (id, dr),
time(d) = dr. To explicitly refer to the ID of a demand, the following uses id(d) = id.

Let
~dn = (d1, . . . , dn) ∈ Dn = Demandn

be a vector describing the state of a queue. Each element di of a vector ~d describes the
remaining processing time for this demand at the resource to which the queue belongs to.
The vector is ordered, i.e., for all i < j di arrived before dj at the resource. The set of all
possible vectors of demands is

D =
⋃
i∈N0

Di

with D0 = Demand0 denoting an empty vector, i.e., the vector (). As a consequence, any
vector of demands of an arbitrary length i is in D. Hence, the state of a queue ~d is an
element of D. The following uses ~d ∈ D to denote a queue state of arbitrary length. If
length is important, ~dn ∈ DN is used. Initially, the state of all queues is (), i.e., the queue
is empty.

Let the function process : D×R+
0 → D characterises the change of the state of a queue

when time passes. The formula process(~d, t4) = ~d
′ holds if the queue’s state is ~d ′ after

a timespan of t4 given the initial queue state was ~d and no new demands arrived in the
timespan t4. The definition of process depends on the queue’s scheduling policy. For
SimuCom’s scheduling disciplines, process is given in a succeeding paragraph.

Assuming process is given, let the function nextDone : D → R be

nextDone(~d) = max{t4|t4 ∈ R+
0 ∧ process(~d, t4) = ~d}

That is, nextDone gives the time which has to pass since the initial queue’s state until
finishing the next demand in the queue under the condition that the queue’s state is not
changed by newly arriving demands.

Note, it is only necessary to define process explicitly for t4 ∈ [0..nextDone(~d)]. The
remaining values can be determined inductively. process(~d, t4) is equal to

process(process(~d, nextDone(~d)), t4 − nextDone(~d))

if
nextDone(~d) < t4

holds.

135

4.4. SIMULATION MAPPING

Simulation Event Processing The behaviour of simulation queues depends on
process and nextDone but also on simulation events. SimuCom simulates queues
based on events occurring at specific points in simulation time. Two types of events are in-
volved in simulating a queue depicted as arrows in figure 4.11 (Note, that figure 4.11 only
shows the changing queue elements and omits the last event time tl). The JobArrival
event occurs in the simulation when adding a new demand to a queue. The JobDone

event occurs whenever the processing of a job in a queue finishes. Each simulation event
contains the current simulation time te. As already indicated, in SimuCom the state of a
queue is a tuple (~d, tl) ∈ D×R+

0 with ~d being the queue’s state as introduced and tl being
the last point in simulation time at which the queue has changed its state. The initial state
for all queues is ((), 0), i.e., their queue is empty and the last state change happened at
simulation start.

JobArrival JobArrival

JobDone

JobDone
...

(d1)

() (d’1,d’2)

(d’’1)
JobDone

Figure 4.11: Queue Events and Corresponding Queue State Changes as Stochastic Timed
Automata

Arrival of a new demand is indicated by a raising JobArrival event in the respective
simulated resource, which notifies the queue about the new job. SimuCom suspends the
issuing thread until processing is done. The queue reacts to the JobArrival according
to its scheduling strategy. For this, each queue has to provide a formulae for the process
function which reflects its scheduling policy.

When a JobArrival event is processed at event time te by a resource, first it updates
its state to reflect the current time using the last event time tl from (~d, tl) to

(process(~d, te − tl), te)

Then it adds the new demand dn+1 to the process queue by changing its state from
(~dn, te) = ((d1, . . . , dn), te) to (~d

′
n+1, te) = ((d

′
1, . . . , d

′
n, d

′
n+1), te).

Then it computes
tnext = nextDone(~d

′
)

Now, SimuCom deletes all JobDone events which might exist for the resource. The sim-
ulation schedules a new JobDone event at simulation time te + tnext.

136

4.4. SIMULATION MAPPING

If a JobDone event, which signals the end of processing a job in a resource’s queue,
is processed at simulation time te the following state changes occur. First, the state is
updated from (~d, tl) to

(~d
′
, te) = (process(~d, te − tl), te)

to reflect the current time. Then, for all i with time(di) = 0, the corresponding demand
di is removed from the queue, hence, the queue’s state changes from ((d1, . . . , dn), tl) to
((d1, . . . , di−1, di+1, . . . , dn), tl). As a consequence, all threads waiting for their demand di

to be processed by the queue resume their control flow. Finally, the next JobDone event
is scheduled as specified in the JobArrival event.

Finally, let rt : ProcessingResource × Demand → R+
0 be a function characterising

the total time (response time, rt) spent in the queue of a ProcessingResource to process a
given demand, i.e., rt is the processing time plus the time spent waiting in the queue.
Let rtdstart be the simulation’s event time for the JobArrival event of the given demand
d (uniquely identified by its ID) at processing resource pr and rtdend be the simulation’s
event time for the JobDone event for demand d, then rt(pr, d) = rtdend − rtdstart. Note,
rtdend depends on the simulation’s random progress making the result of rt also random.
It depends on the initial, random state of the queue and all random JobArrival events
occurring during the processing of the demand associated to rtend’s JobDone event. Sec-
tion 4.6 uses rt to describe the performance impact of the presented code mapping deci-
sions.

Scheduling Strategies The behaviour of the scheduling is controlled by the process

function which is introduced for the three scheduling algorithms supported by the PCM
in the following. As introduced above, it is sufficient to specify process for nextDone(~d) ≤
t4, which is assumed to hold in the following paragraphs.

Processor Sharing Processor sharing is an idealised approximation of the Round Robin
scheduling strategy (Lazowska et al., 1984). The processor sharing scheduling strategy
assumes that switching from one job to the next does not consume any time. Additionally,
the time quantum diverted to each job is assumed to be arbitrary close to zero. This makes
the resource look as if it processes the demands simultaneously.

For this type of scheduling, the function process is defined as

process((d1, . . . , dn), t4) = (d
′

1, . . . , d
′

n) with id(d
′

i) = id(di) ∧ time(d
′

i) = time(di)−
t4
n

For example, for three demands (denoted without their IDs) ~d3 = (5, 10, 20) sec-
onds and a passed time of t4 = 15 seconds, subtract 15/3 = 5 from each demand
process((5, 10, 20), 15) = (0, 5, 15), i.e., the first job in the queue has been fully processed.

137

4.4. SIMULATION MAPPING

This triggers a JobDone event which changes the state of the resource to ((5, 15), tl + 15)

by removing the finished job. The processing of the demand 5 seconds took rt(pr, 5) = 15

seconds.

FCFS First-Come, First-Serve scheduling first fully processes the first arrived job, than
the second, and so on. The function process for FCFS scheduling is

process((d1, . . . , dn), t4) = (d
′

1, . . . , d
′

n)

with

id(d
′

i) = id(di) ∧ time(d
′

i) =

{
time(d1)− t4 i = 1

time(di) i 6= 1

Delay Delay scheduling is a scheduling strategy in which the processing of the jobs is
independent of the amount of jobs at a resource, i.e., the resource exists in an unlimited
number. The process function is

process((d1, . . . , dn), t4) = (d
′

1, . . . , d
′

n) with id(d
′

i) = id(di) ∧ time(d
′

i) = time(di)− t4

After explaining how the SimuCom platform implements simulated active resources
using queues, the following introduces the transformation which maps PCM ActiveRe-
sources and LinkingResources to simulated resources.

For each ResourceContainer, a simulated resource container is created which maps de-
mands issued by components on simulated queues according to the requested Resource-
Type. A simulated resource container is a simple container object containing all simulated
active resources. The transformation instantiates a simulated resource in the simulated
resource container’s constructor for each ActiveResource in the corresponding PCM in-
stance’s ResourceContainer (see figure 4.12).

The LinkingResources require minor changes in their treatment by the transformation.
They have an additional specification for their latency, but they don’t have a scheduling
policy specification as the PCM currently always assumes FIFO processing for them. In
the SimuCom platform, there exists a class SimulatedLinkResource which shares a com-
mon abstract class with SimulatedActiveResource. The current realisation of this class
always uses a FCFS scheduling strategy as demanded by the PCM’s specification. The
FCFS scheduling discipline is an initial approximation to the behaviour of a network
which usually can transmit only one package at a given point in time. The latency is
added to the time demand of the transmission in the current implementation. This de-
mand is derived by multiplying the amount of data to be transmitted with the specified
throughput of the network. As the mapping of LinkingResources is as straight forward as
the mapping of ProcessingResources it is omitted here.

138

4.4. SIMULATION MAPPING

C E

pcm:PCM uml:UML

:ResourceContainer

name = resName

id = resID

schedulingPolicy = policy

processingRate = rate

:ActiveResource

:SimuatedResourceContainer

name = resName

id = resID

schedulingPolicy = policy

processingRate = rate

:SimulatedActiveResource

Figure 4.12: Mapping of ActiveResources

In SimuCom, demands to LinkingResources are derived automatically in a so called
performance completion. As for an explanation of this idea several additional concepts
are needed, its explanation is deferred until section 4.6.3.

The behavioural model for network resources is a strong abstraction of the real be-
haviour of a network neglecting issues like collisions, the used protocol, or the network’s
routing mechanisms. However, to make it more realistic, the example requires more so-
phisticated models like network simulations as used by Verdickt et al. (2007), which is out
of the scope of this thesis.

The next section discusses the mapping of the usage model into a workload driver for
the simulation.

4.4.4 Usage Model

The UsageModel consists of a set of UsageScenarios running in parallel. Each scenario has
its own workload and user behaviour specification (cf. section 3.8.1). The SimuCom
transformation uses the models to transform them into workload drivers. A workload
driver spawns threads in the simulation according to the specified workload - each thread
represents a simulated user and its behaviour.

Closed Workload Driver In the generated simulation, a closed workload driver is in-
stantiated and started for each UsageScenario having a ClosedWorkload specification This
closed workload driver evaluates the population specification, which is copied from the
PCM instance. Then, it instantiates a number of so called closed workload user objects
equal to the population. The closed workload user class is defined in the SimuCom plat-
form and contains the common behaviour loop of a closed workload user: execute sce-
nario, draw a sample of the think time random variable, wait for the evaluated time, and,

139

4.4. SIMULATION MAPPING

finally, restart the whole process (see figure 4.13).

Exec.

Behaviour

Evaluate

ThinkTime

ThinkTime

Think

Figure 4.13: Activity diagram showing the generic closed user behaviour

The executed behaviour (as indicated by the opaque behaviour action in figure 4.13)
is generated from the UserBehaviour as explained after the open workload driver below.

Open Workload Driver For OpenWorkloads, the transformation instantiates an open
workload driver, also part of the SimuCom platform. The open workload driver is used
to generate an open workload in the simulation. In an open workload, users arrive at the
system, execute their behaviour, and leave again. To simulate this, the open workload
driver spawns a thread when a user arrives, which starts executing its behaviour. Af-
terwards, the workload driver draws a sample of the inter-arrival time random variable,
waits for this time span, and restarts again (see figure 4.14).

Exec.

Behaviour

Evaluate

InterarrivalTime

Interarrival

Time

Wait

SpawnUser

S
im

u
la

te
d

U
s
e

r

O
p

e
n

 W
o

rk
lo

a
d

D
ri
v
e

r

Figure 4.14: Activity diagram showing the behaviour of the open workload driver

User Behaviour The opaque behaviour actions in figures 4.13 and 4.14 represent the
user’s behaviour as specified in the UserBehaviour part of a UsageScenario. In order to
generate code which behaves as specified in the model, a visitor-based approach is used
in the generator templates. A visitor begins at the Start action of the UserBehaviour and
traverses the behaviour following the successor reference until it reaches a Stop action.
For each action it executes a different transformation depending on the type of the action
visited. The following presents the different code templates for the different action types.

140

4.4. SIMULATION MAPPING

Start The generated code for the start node initialises a new simulated stack (cf. sec-
tion 4.4.2). Additionally, a sensor is initialised which records the total time demand for
executing the UserBehaviour.

Stop The generated code for the stop action stops the time sensor and records the
result. It additionally removes the simulated stack.

Loop Code generated for a loop evaluates the stochastic expression for the loop itera-
tion count and loops the inner behaviour the evaluated times.

Branch The code generated for a branch draws a uniform distributed random number
in the interval [0,1]. With this number it applies the inverse cumulative distribution func-
tion method (see section 4.4.2) with the probabilities for the respective branch transitions
as discrete probability distribution. The result is the number of the branch transition to
execute.

EntryLevelSystemCall The most complex code is generated for entry level system
calls. The logic is given in pseudo-code in the following. The <<..>> expressions in
the listing indicate that this is replaced by the respective PCM instance’s data. As shown

Listing 4.3 EntryLevelSystemCall: generated simulation code

Stackframe newFrame = stack.createNewFrame();

// for all input variable usages vu

newFrame.addValue(<<vu.name>>, "<<vu.specification>>");

// call the system provided role

system.getRole<<calledRole>>().<<calledService>>(stack);

stack.pop();

in listing 4.3, first a new stack frame is created and put on the stack. This will be the
stack frame for the called service’s execution. Then, for all input variables VariableUsages,
which are the input parameter characterisations, their value is evaluated and stored using
their name in the new stack frame. Finally, the called system role is retrieved from the
system variable which is initialised in the constructor of the usage scenario with the global
instance of the system created at simulation start. Using this role, the call is executed
passing the prepared stack. After the call, the stack frame is removed from the top of the
stack.

141

4.4. SIMULATION MAPPING

4.4.5 Composite Structures

The EntryLevelSystemCalls issued in the code of the workload drivers are directed to a Sys-
tem. A System is a special CompositeStructure to which also CompositeComponents belong.
As there are only small semantic differences between these structures, in the following
they are treated uniformly.

SimuCom’s transformation uses the same mapping that is used for mapping PCM
instances to POJOs. As this is a complex mapping, its presentation needs additional
space. Hence, the discussion of the exact mapping is deferred until section 4.6.2. For
the following, it is sufficient to get an informal idea of the basic concepts important to the
simulation.

The CompositeStructure’s mapping creates an instance of the Java classes generated for
each ImplementationComponentType for each component in an inner AssemblyContext (for
CompositeStructures a façade class is created which creates the CompositeComponents inner
structure, cf. section 4.6.2). Afterwards, each POJO instance is connected to its required
POJOs as specified in the AssemblyConnectors of the CompositeStructure. For the details of
how the connection is established see again section 4.6.2.

More important in particular to the SimuCom transformation are component parameters
(cf. section 3.6.2). Component parameters specify performance relevant component con-
figurations, which can be described by a random variable, but, which can not be changed
at component run-time. Component developers declare component parameters in their
specifications and suply a default value for them. Software architects may override the
default with their own values. Domain experts may finally override the specification
again, however, the values set by the domain experts and the software architect should
be disjoint.

The POJOs generated by the mapping of PCM components to code support call in-
terception in the ports generated for their provided roles. For details, see section 4.6.1.
Call interception allows to add additional behaviour before or after executing the com-
ponent’s behaviour. SimuCom’s transformation uses this interception mechanism to im-
plement component parameters. The mapping idea is based on features provided by the
simulated stack frames. When a service call is executed by a component, the interceptor
first intercepts the call and adds three new stack frames to the stack.

First, it adds a stack frame containing the component parameters as defined by the
component developer having the topmost stack frame as parent frame. On top of this
frame, it adds a stack frame containing the component parameter overrides specified by
the software architect in their AssemblyContext. This stack frame has the component de-
veloper’s frame as parent frame. Afterwards, a frame containing the usage parameter
values taken from the UserData specified by the domain expert is added having the soft-

142

4.4. SIMULATION MAPPING

ware architect’s frame as parent.
Due to the semantics of the stack frames, the variable specification of the domain ex-

pert and the software architect override those of the the component developer. However,
for all variables which are not specified by the domain expert or the software architect,
the semantics of the parent relation for stack frames guarantees that the specification pro-
vided by the component developer is used.

a.VALUE 50

log.VALUE true

log.VALUE false

b.BYTESIZE 20

ComponentDeveloperFrame

DomainExpertFrame

SoftwareArchitectFrame

p
a

re
n

t

Client Server

ParameterDefaults:

a.VALUE = 5

b.BYTESIZE = 20

log.VALUE=false

SoftwareArchitect:

log.VALUE=true

DomainExpert:

a.VALUE = 50

a.VALUE 5

Figure 4.15: Example for Component Paramter Stack Frames

To illustrate the mapping of component parameters to simulated stack frames, con-
sider the example given in figure 4.15. In this example, two components called Client and
Server communicate. The component developer has specified three component parame-
ters for all instances of the Server component: a.VALUE, b.BYTESIZE, and log.VALUE.
For each of the parameters, default specifications exist. The software architect has over-
ruled the log.VALUE and set its value to true which, in this example, turns on the Server
component’s logging mechanisms. The domain expert has overridden the parameter
a.VALUE setting it to a larger value. Note, that b.BYTESIZE remains unchanged, i.e.,
when accessing it in a stochastic expression its value is 20 as indicated by the component
developer.

To complete the description of the realisation of component parameters in SimuCom,
it remains to be said that the generated interceptor code removes the added stack frames
when the call is done.

143

4.4. SIMULATION MAPPING

4.4.6 Resource Demanding SEFFs

The mapping of RD-SEFFs is similar to the mapping of UserBehaviour. The RD-SEFF
consists of a sequence of AbstractActions which start with a StartAction and end with
a StopAction. There is only a single chain of actions going from the StartAction to the
StopAction as defined by the successor relation of AbstractActions. In analogy to the map-
ping of UserBehaviours, SimuCom’s transformation iterates over the actions and for each
action type an action specific code-generator template is used to generate the code.

The following gives for each action type an informal mapping description and pseudo
code for the transformation as appropriate for better illustration.

StartAction The code generated for a StartAction of a RD-SEFF creates a stack frame
for the return parameter characterisations of the simulated service call. This frame is not
put on the stack, but used in SetVariableActions and returned when the service’s execution
terminates. For other types of ResourceDemandingBehaviours like inner behaviours of loops
or branches no code is generated for their StartActions.

StopAction For StopActions of RD-SEFFs a return statement is generated which returns
the result stack frame created in the StartAction to the calling SEFF. For other types of
StopActions no code is generated.

InternalAction InternalActions abstract from computations done inside in a component
without interaction with other components. The PCM’s abstraction for InternalActions
uses a set of resource demands specified by random variables instead of the actual code
of the internal computations. The resource demands consume their resources in the order
in which they are attached to the InternalAction.

In order to issue the demand to the targeted simulated processing resource (cf. sec-
tion 4.4.3) the generated code has to retrieve this resource. For this to work, the POJO
representing the current component contains its AssemblyContext ID, which is set on ini-
tialisation. Using this ID, the code generated for an InternalAction looks up the needed
simulated active resource via a hashmap generated from the allocation model (cf. sec-
tion 4.4.7). Notice, that the reference to the respective resource is not hard-coded into the
component’s code. This enables the component developer’s code transformation to be
executed independent from other transformations like transformations for the System or
Allocation.

The generated code performs two actions for each ParametricResourceDemand. First,
the simulated active resource is retrieved as described in the previous paragraph. After
retrieving the respective resource, the generated code evaluates the resource demand’s

144

4.4. SIMULATION MAPPING

stochastic expression as described in section 4.4.2 and asks the resource to process this
demand. The actual processing which finally consumes simulation time, has already been
described in section 4.4.3.

A template in pseudo code, used to generate the described code, is given in listing 4.4.

Listing 4.4 InternalAction: code generation template

<<FOREACH parametricResourceDemand AS demand>>

SimulatedResource res = context.getResource(myAssemblyID,

"<<demand.activeResource.id>>");

double demand = evaluate("demand.specification");

res.load(demand);

<<ENDFOREACH>>

ExternalCallAction For ExternalCallActions code is generated which performs the call in
three steps. First, the stack frame for the called service is prepared. For this, the generated
code contains an evaluation of the input VariableUsage for every input parameter charac-
terisation. This is analogue to the template in listing 4.3 for SystemLevelEntryCalls. In the
second step, the generated code retrieves the required role of the call and a reference to
the component bound to this role via an assembly connector as introduced in section 3.4.4.
A generated call passes the prepared stack containing the prepared method’s stack frame
to the called service. The result stack frame returned by the service call is stored tem-
porary. In the third step, the generated code evaluates the output VariableUsages against
the returned stack frame stored in the previous step. The variables declared in the output
VariablesUsages and their evaluated values are stored in the calling method’s current stack
frame. In so doing, they become available to all actions following the ExternalCallAction.

<<ExternalCallAction>>

sortingRole.sort(fieldToSort)

...InputVariableUsages:

fieldToSort.NUMBER_OF_ELEMENTS=100

OutputVariableUsages:

myField.SORTED=fieldToSort.SORTED

Called

RD-SEFF

fieldToSort.NUMBER_OF_ELEMENTS 100

Input Stack Frame

fieldToSort.SORTED true

Output Stack Frame

...

Figure 4.16: Example for an ExternalCallAction and its Stack Frames

To illustrate the mapping, consider the example given in figure 4.16. This example is
similar to the one introduced in section 3.5.1 where input and output VariableUsages have

145

4.4. SIMULATION MAPPING

been explained. A component is called to sort an array. As the sorting’s resource demand
depends on the number of elements in the field to sort, this information is passed to the
called service. An respective input stack frame is created and passed to the called service
as indicated by the stack frame over the arrow going to the called service in figure 4.16.
The called sorting service returns the field which is now sorted as indicated by the output
stack frame on the return arrow going from the called service back to the ExternalCallAc-
tion in figure 4.16. The output VariableUsage maps the random variable myField.SORTED
to the value of the random variable fieldToSort.SORTED which has been set to true
by the sorting service.

SetVariableAction The PCM uses SetVariableActions to specify the result of the com-
putations of a service called on a component. The semantics is that the values set by this
action are only available in output VariableUsages of the ExternalCallAction which initiated
the execution of the current service. Note, this implies that the values are also unavail-
able in the current RD-SEFF. Additionally, the last executed SetVariableAction on a specific
random variable determines the returned value.

As already introduced in the Start- and StopAction mapping, the SimuCom mapping
uses a dedicated result stack frame to realise this semantic. The result stack frame is un-
available when evaluating stochastic expressions of the current RD-SEFF. Additionally,
the stack frame also supports the semantics that store actions on already existing random
variables overwrite the previous values. Because of this, the mapping of SetVariableAc-
tions simply inserts the evaluated specified VariableUsages of the SetVariableAction into the
result stack frame.

Special attention has to be paid if the random variable to set is an INNER characteri-
sation. In this case, a late evaluating random variable has to be stored with the current
stack frame as evaluation context (cf. section 4.4.2).

The template for generating the respective code is given in listing 4.5.

Listing 4.5 SetVariableAction: code generation template

<<FOREACH setVariableUsage AS vu>>

<<IF vu.isInnerCharacterisation()>>

resultFrame.add("<<vu.name>>",evaluate("<<vu.specification>>"));

<<ELSE>>

resultFrame.addProxy("<<vu.name>>","<<vu.specification>>",

currentFrame);

<<ENDIF>>

<<ENDFOREACH>>

146

4.4. SIMULATION MAPPING

LoopAction For LoopActions the generated code evaluates the iteration count random
variable using the current method stack frame. The resulting integer value serves as up-
per bound for a loop statement iterating for the evaluated amount of times. The inner
behaviour’s code of the loop results from applying the templates described here recur-
sively. As LoopActions execute their body behaviour stochastically independent, no new
stack frame is needed for the loop’s scope in the code.

CollectionIteratorAction CollectionIteratorActions form a special case of a loop action
where the loop iterates over the elements of a parameter having a CollectionDataType. The
special semantics for CollectionIteratorActions is that their loop body is executed with a
specific element of the collection which impacts INNER characterisations of the parameter.

To illustrate the difference between the semantics of a LoopAction and a CollectionIter-
atorAction, consider the following example. A loop has two InternalActions in a sequence
and its surrounding service has a parameter col of CollectionDataType. The elements of
the parameter col have a characterisation

col.INNER.BYTESIZE = IntPMF[(10; 0.5)(1000; 0.5)]

Both InternalActions have a resource demand of col.INNER.BYTESIZE. For a LoopAction
the independence assumption during the execution of the loop body implies that the
first col.INNER.BYTESIZE can evaluate to 10 while the second may evaluate to 1000.
However, this case will never happen in the real program as either the current element is
small, i.e., its size is 10, or it is large, i.e., its size is 1000. Regardless of its actual size, the
size stays the same in all InternalActions, hence, the options for the total resource demand
of the loop are either 2∗10 = 20 or 2∗1000 = 2000 if evaluated in a CollectionIteratorAction.

The SimuCom code transformation maps the semantics of the CollectionIteratorAction
to stack frames. First, the generated code evaluates the NUMBER OF ELEMENTS character-
isation of the parameter which is iterated in the loop. Then it loops as often as the result
of this evaluation. However, at the start of the loop body it creates a new stack frame
using the current topmost stack frame of the stack as parent. This frame is pushed to the
stack to form a new topmost element. To fill this stack frame it collects all available INNER
characterisations of the parameter being iterated over in the loop. For each characterisa-
tion found, it draws a sample of the random variable associated to this characterisation.
The result is stored in the created loop body stack frame. Then code for the inner loop be-
haviour is generated recursively. After this code block has been executed, an additionally
generated call removes the loop stack frame from the stack.

Branches The mapping of BranchActions to simulation code distinguishes two cases de-
pending on the branch transition type. If all transitions are ProbabilisticBranchTransitions

147

4.4. SIMULATION MAPPING

then a probability for executing each branch’s behaviour is given and all probabilities
have to sum up to 1. This is analogue to the Branch in a user behaviour and its mapping
has been explained already in section 4.4.4. Hence, it is omitted here.

Only available in RD-SEFFs, there is a second type of branch transitions called Guard-
edBranchTransition. Each GuardedBranchTransition contains a boolean random variable
which represents the condition for executing the transition’s behaviour.

GuardedBranchTransitions have semantical implications on the evaluation of their tran-
sition’s behaviours. First, the conditions of the branches form random variables whose
value is fixed after a transitions has been chosen. The chosen condition has to be true and
all others have to be false. Hence, the evaluation of the behaviour has to be done stochas-
tically dependent. Second, when evaluating the guard conditions, a variable which occurs
in at least two conditions should evaluate to the same value in both cases. The following
paragraphs discuss both cases in more detail.

To explain the first case, consider a branch having two branch transitions and addi-
tionally a boolean random variable A. The first branch transition has the guard A = true,
the second has the inverse guard of the first one which is A = false. When executing
the behaviour of the first branch transition, it is already known that A is true. Hence,
all actions in the behaviour of this branch have to be evaluated under the stochastic con-
dition that random variable A = true. The same holds for the second transition, only
that in this transition the condition is A = false. In general, the semantics of evaluating
the inner behaviour of a GuardedBranchTransition is defined as the evaluation under the
stochastical condition that the random variable defining the transition’s guard is true (cf.
section 3.5.8).

In the simulation this semantics is obeyed without any further actions if the condition
only refers to variables whose values in the current stack frame are not variables with late
evaluation. In this case, the evaluation of the condition is deterministic and not stochastic
any more as it depends on constant samples stored in the actual stack frame. Hence, it
is always the same and because of this it is always an stochastical dependent evaluation.
For example, a stack frame for the previous example could contain A with value true.
Then every evaluation of A results in true, hence, the value cannot change and this re-
sults in a dependent evaluation. The other case in which conditions uses variables with
late binding is more complex and discussed after discussing the second case as this case
already introduces restriction which ease the following discussion.

The second case is about fulfilling the user’s expectations that all conditions are eval-
uated with the same value for the variables in the conditions. This differs from the normal
independent evaluation of random variables in the PCM. Consider the above example
again where the branch’s conditions have been A = true and A = false. If A is a

148

4.4. SIMULATION MAPPING

stochastic variable, for example A = BoolPMF[(true; 0.3)(false; 0.7)], then it makes a dif-
ference if a sample of A is drawn once and used to evaluate both conditions or whether a
sample of A is drawn on every occurrence of A. In the latter case, there is a probability
of both branch conditions to become false and also one for both branch conditions to
become true. This is unwanted as it makes it impossible for the component developer to
ensure that exactly one branch evaluates to true. Hence, the PCM defines to evaluate the
conditions stochastical dependent for all variables in guard conditions.

However, this causes a problem with INNER random variables, as their evaluation is
independent by definition, because potentially two different elements of the collection
could be meant. As it is unclear for INNER variables in branch conditions if different or
if the same collection element is meant by the component developer, the current PCM
version forbids the use of INNER characterisations in branch conditions.

In the simulation the dependent evaluation of conditions is again unproblematic if
only variables are used in the conditions which have basic values in the current stack
frame. Then, as argued above, the required semantics is already realised because of the
stack frame. As the PCM forbids INNER characterisations, the only random variables left
which can be used in conditions and which use late evaluation, are the usage component
parameters (cf. section 3.6.2) stored in UserDatas. However, constructing a stack frame,
which contains evaluated usage component parameters (i.e., by resolving the late evalua-
tion), and pushing it on the stack before evaluating the conditions of the branches, solves
the problem.

<<BranchAction>>
...

files.BYTESIZE 1000

...

<<BasicComponent>>

C1

ComponentUsageParameter

files.BYTESIZE=IntPMF

 [(1000;0.5)(2000;0.5)]

Comp. Usage Parameter Stack Frame

<<ResourceDemandingBehaviour>>

<<ConditionalBranchTransition>>

[files.BYTESIZE <= 1000]

<<InternalAction>>

<<ParametricResourceDemand>>

files.BYTESIZE * 100

<<ConditionalBranchTransition>>

[files.BYTESIZE > 1000]

...

Figure 4.17: Example for Conditional Branch Transitions

To illustrate the introduced concepts consider the example in figure 4.17. In this exam-
ple, there is a BasicComponent C1 which has been annotated by the domain expert with

149

4.4. SIMULATION MAPPING

a component usage parameter describing for example the size of files managed by the
component in its usage context. Additionally, figure 4.17 depicts a part of a RD-SEFF of
any of C1’s services which contains a BranchAction with GuardedBranchTranstions. The
guards check whether the filesize is below or above 1000, for example because small files
use a different caching strategy. For the case that the filesize is less or equal to 1000, the
branch’s behaviour is shown. In the behaviour, there is an InternalAction with a Parametri-
cResourceDemand of files.BYTESIZE * 100. The conditional evaluation ensures that
this demand is never larger than 1000 ∗ 100 = 105. In the given example, it is always
1000 ∗ 100 = 105 as the only filesize which is less or equal 1000 in the set of possible file-
sizes is 1000. A stack frame which is pushed on the stack before evaluating the branch is
shown above the branch action. In this case the current sample for the random variable
files.BYTESIZE is 1000.

ForkAction For the ForkAction, the generated simulation code uses Java threads to sim-
ulate the concurrent behaviours. For this, it generates an inner class containing the code
for each forked behaviour - regardless of whether the behaviour should be executed syn-
chronously or asynchronously. Two classes of the SimuCom platform then each execute
an instance of these inner classes. One class executes all synchronous behaviours and the
other one all asynchronous behaviours.

The class executing the asynchronous fork behaviour creates a copy of the current
stack for each forked behaviour to let them access the random variable values available.
However, as they own a copy, the forked behaviours cannot change the characterisations
of the initiating ForkBehaviour and hence, they cannot use their stackframe to return com-
putation results. On the other hand, no synchronisation is needed and no race conditions
can happen. This eases analyses as it avoids the need to calculate all interleavings of the
fork behaviours in order to derive all possible values in the stack. With the copy of the
stack, the class executing the fork behaviours creates a new thread, which then each ex-
ecutes a forked behaviour. Afterwards, it returns as it does not not need to wait for the
threads to terminate.

The class executing synchronous fork behaviours is similar to the asynchronous.
However, after starting the behaviours it uses the Barrier pattern (Douglass, 2002) to wait
for all threads to terminate before returning.

Figure 4.18 depicts both types of behaviours.

Acquire- and ReleaseAction Resource acquire and release actions model the handling
of resources of a limited number. As long as resources are available acquire retrieves them
and execution continues. If all resources are occupied, further acquire calls are blocked

150

4.4. SIMULATION MAPPING

Prepare Forks

Sync.

Fork Behaviour

Sync.

Fork Behaviour
Async.

Fork Behaviour

Async.

Fork Behaviour

{joinSpec = S1 and … and Sn}

S1 Sn-1

Synchronous Asynchronous

... ...

...

...

Sn

Figure 4.18: Activity Diagram for the Generated Fork Simulation Code

until the resource becomes available again. The SimuCom framework contains simulated
passive resources, manually realising the described semantics based on Desmo-J queues.
The reason for manual realisation of the semaphores is simply the instrumentation with
sensors which measure the waiting time needed to acquire the resource.

Simulated passive resources are instantiated in the constructor of the POJOs repre-
senting the components, i.e., each AssemblyContext uses its own passive resource. They
offer acquire() methods decreasing the amount of available resource instances and
release() methods increasing the amount of available resource instances. The map-
ping of Acquire- and ReleaseActions is therefore straight-forward by calling the respective
method on the simulated passive resource matching the one specified in the PCM actions.

4.4.7 Allocation

The PCM’s Allocation model contains a set of AllocationContexts. Each AllocationContext
links an AssemblyContext part of a System to a ResourceContainer. This link indicates that
the component embedded in the AssemblyContext is deployed on the referenced Resource-
Container (cf. section 3.7). The simulation requires this information to determine the sim-
ulated resource which is responsible for processing demands issued by the component
embedded in the AssemblyContext.

In SimuCom, each simulated component instance stores its AssemblyContext ID which
is passed to it when it is initialised by its parent CompositeStructure (cf. section 4.4.5). It
uses this ID to retrieve its simulated resource container whenever it evaluates the resource
demands of InternalActions in any of its RD-SEFFs.

To allow an efficient retrieval of the resource container, the code generated by Simu-
Com instantiates a hashmap before the simulation starts and fills it with the allocation
information. The hashmap is initialised by code generated from the Allocation model in

151

4.4. SIMULATION MAPPING

the PCM instance. For each AllocationContext in this Allocation the generated code adds
an entry to the hashmap which links the ID of the AssemblyContext referenced by the
current AllocationContext to the corresponding instance of a simulated resource container
retrieved from the simulated resource environment by the ID of the ResourceContainer
referenced by the current AllocationContext (see figure 4.19 for an example).

Special care has to be taken for the inner components of CompositeComponents as only
AssemblyContexts inside a System have their own AllocationContexts, while AssemblyCon-
texts nested inside CompositeComponents inherit the AllocationContext of their parent com-
ponent. The code generated by SimuCom realises this behaviour by using the parent’s
AssemblyContext ID whenever components nested inside a CompositeComponent need to
retrieve their AllocationContext.

<<ResourceContainer>>

RC1

<<Basic>>

<<Composite>>

<<Basic>>

AssCtxID:1

AssCtxID:2

AssCtxID:3

RC1:SimulatedResourceContainer

Allocation Hashmap

AssCtxID:1

AssCtxID:2

PCM Allocation Instance Generated SimuCom Instance

hashmap keys

hashmap value(s)

Figure 4.19: An Example for an Allocation Mapping

For example, consider the Allocation in figure 4.19. There is an allocation of a Bas-
icComponent and a CompositeComponent in their respective AssemblyContexts. Inside the
CompositeComponent there is another BasicComponent. For all AssemblyContexts their ID is
given. On the right hand side in figure 4.19, the generated hashmap instance is shown.
As described above, the BasicComponent inside the CompositeComponent uses the Assem-
blyContext ID of its parent to retrieve its resource container. As this ID is 2, it gets the
resource container its parent is allocated on.

4.4.8 Component Context in SimuCom

As introduced in section 3.2.2, components in the PCM have a component context which
is either specified or computed in analysis tools. Furthermore, the context is split among
the developer roles into the assembly context, the allocation context, and the usage con-
text. The following illustrates how SimuCom delas with each of the contexts.

152

4.4. SIMULATION MAPPING

AssemblyContext The manually specified assembly context holds the information on a
component’s parent ComposedStructure and the bindings of its required interfaces. This
information is used in SimuCom’s mapping to instantiate simulated components as de-
scribed in section 4.4.5. As the computed assembly context is only of interest for func-
tional analyses, SimuCom disregards it.

AllocationContext The manually specified allocation context stores the information on
the allocation of components to resource containers. As described in section 4.4.7, Simu-
Com uses this information to retrieve the simulated resources which have to process re-
source demands of simulated components. The computed part of the allocation context
contains the hardware-dependent resource demands. SimuCom calculates them on the
fly by dividing hardware-independent demands by the resource’s processing rate before
putting the demand into the resource’s queue (see section 4.4.3).

UsageContext The manually specified usage context is reflected by the UsageModel in
the PCM. SimuCom uses this model to derive its workload drivers from it (see sec-
tion 4.4.4). Additionally, the UsageModel contains the initial values of input parameter
characterisations which are used in SimuCom to initialise the stack frame used in En-
tryLevelSystemCalls. The computed usage context is part of the simulations state. Each
thread stores a sample of the current parameter characterisations in its simulated stack
frame and changes the state of this stack while it traverses the simulated system (see
section 4.4.2). The arrival rate of jobs at each component, which is also part of the com-
puted usage context, results implicitly from the ongoing simulation time. As the threads
traverse the system, they arrive at components with an arrival rate which reflects the
system’s control and data flow.

4.4.9 Semantics of the Simulation

The simulation semantics is given by the introduced semantics of SimuCom’s queues and
their realisation in Java, i.e., SimuCom’s execution environment, and the given transfor-
mation of PCM instances into Java code which uses the queues. The handling of param-
eter characterisations is realised by the semantics given for the simulated stack frame.

A specification of PCM semantics to which the simulation sticks using coloured Petri-
Nets is given by Koziolek (2008).

153

4.4. SIMULATION MAPPING

4.4.10 Assumptions and Limitations

Three basic types of assumptions and limitations exist: those already present in the PCM,
those being of conceptual character for SimuCom, and those which are current imple-
mentation limitations. The first type has already been discussed in section 3.10. Hence,
the following discusses briefly the other two types.

A general limitation of a simulation based approach is its case-based analysis (see
section 4.4). There is no way to ensure that all relevant cases for a design decision will
be reached at least once, i.e., a complete coverage of the state space of the analysis model
cannot be guaranteed. However, it can be argued that for early performance estimations
it is sufficient to have a sufficiently large coverage of the state space. Nevertheless, for
other quality attributes such as reliability, which focuses on very unlikely failure events,
the simulation based approach might not be applicable.

A limitation of the current implementation is the missing support to specify which
parts of the code should be instrumented with sensors. The current realisation generates
a response time sensor for each service offered by a component. However, it might be
useful to instrument different sequences in the control flow to analyse a particular design
decision.

The use of a single model-2-text transformation to translate PCM model instances into
the simulation code is cumbersome as the abstraction gap bridged by the transformation
is high. A model-2-model transformation should be used to generate an intermediate
simulation model, which forms the basis of the simulation code generation. Especially
for model manipulations as needed in Coupled Transformations this would ease the task.
However, for this, tool support for model-2-model transformation languages and engines
have to mature further.

4.4.11 Simulation Time Estimation

The following derives an estimate of the time complexity of a simulation run. It iden-
tifies the factors which influence the length of simulation runs. An important aspect in
this context is the accuracy needed by the software architect. As the PCM’s aim is to
support selecting between competing design alternatives, the software architect needs a
prediction sufficiently accurate for this.

How long it takes to reach a sufficient accuracy, depends on several factors. First, the
differences in the results for the respective design alternatives are important. If the alter-
natives show large differences in their performance, this is usually visible in simulation
results after short simulation times. Second, the complexity of the input model is impor-
tant. More components having more SEFFs or workloads with larger numbers of users

154

4.4. SIMULATION MAPPING

extend the state space of the simulation model significantly. Third, the simulation’s stop
condition makes a difference. If stop conditions based on confidence intervals and point
estimators are used, it may take a long time to reach that confidence level. Opposed to
that, using an upper simulation time limit or a predefined number of samples of the re-
sulting distribution function, may yield faster results which are not as accurate. Fourth,
the complexity of the result distribution function has an impact. The larger the range
of this function is, the longer it takes to simulate a given single case at least once. The
following elaborates on the second and third factor as they are under the control of the
software architect.

For SimuCom the most expensive basic operations are to draw samples for random
variables and to generate and process events in the underlying event-based simulation
framework. The number of random variables to draw depends on the upper bound of the
number of probability function literals npfl in all stochastic expressions and the number of
probabilistic branches npb for a single UsageScenario. The complexity class for the number
of random variables rv needed in a single simulated control flow thread when neglecting
the time needed for the scheduling algorithm in the simulated resources is Orv(npfl +npb).

Note, that npfl and npb may depend on other structures, especially loops or external
service calls in loops. As loops are simulated, the amount of iterations in the simulation
is equal to the amount of iterations specified in the input model. As a consequence, the
amount of probability function literals to evaluate or probabilistic branches needs to be
multiplied by the loop iteration count for all occurrences of these objects in loop bodies.
However, due to the PCM’s abstraction many loops in the software are not part of the RD-
SEFF as loops which are part of the modelled component become a single InternalAction
in the RD-SEFF. For example, a bubble sort algorithm which usually consists of two loops
can be replaced by an InternalAction having a resource demand which reflects bubble
sort’s complexity of approx. n2

2
. However, the precondition for this is that there is no

external service call in the modelled loop body. Nevertheless, in general, arbitrary control
flow structures can be modelled using the RD-SEFF. Potentially, any number of loops
can be nested in a PCM instance, leading to large polynomes for the number of random
variables to draw.

For every ParametricResourceDemand in every control flow thread two events are gen-
erated (cf. section 4.4.3): one for rescheduling the next finished job and one if the job
has been processed finally. Let nprd be the upper bound of ParametricResourceDemands
caused by executing a single UsageScenario and u be an upper bound on the number of
concurrent users in the simulated system. Again, nprd also depends on the loop struc-
ture of the model as explained in the previous paragraph. Then the number of events
needed for this scenario falls in the complexity class Oev(nprd ∗ u). Taking the number of

155

4.5. COUPLED TRANSFORMATIONS

users into account the complexity class for the number of random variables rv to draw is
Orv((npfl + npb + nprd) ∗ u).

Finally, the number of repetitions for the stochastic experiment where each user ex-
ecutes his scenario once is determined by the simulation stop condition. Let m be the
number of repetitions, then the overall simulation run time is of complexity class

O(m ∗ (u ∗ (npfl + npb + nprd)))

The stop condition is in many simulations the factor which can be modified easily.
SimuCom currently contains two stop conditions: a basic condition which is independent
from the input model and which stops the simulation as soon as a given maximum sim-
ulation time is reached by the simulation and second a more advanced condition which
stops depending on the confidence interval of the mean value estimator of the overall
passage time sensor. Additional stop conditions, for example those given by Page and
Kreutzer (2005), may be supported in future implementations.

The experiences gained in modelling and simulating the examples given in section 5
showed that the simulation time is not a major issue for small to medium sized system
models. They take approx. 5 minutes with up to 200 simulated users on a recent computer
to get a distribution function which does not change any more significantly, i.e., sufficient
for choosing a design alternative, compared to running the simulation for a longer time.
Even a larger model like the PCM model of CoCoME (Krogmann and Reussner, 2008) re-
turns a result in 5-10 minutes which is sufficient for early design time analyses. However,
a case study with larger industry style models is still missing (cf. section 6.3).

4.5 Coupled Transformations

The previous section 4.4 introduced the mapping of PCM instances to the SimuCom plat-
form. However, the presented mapping corresponds to the approach of conventional
prediction methods, as it transforms the source model without taking the code transfor-
mation into account. According to the Coupled Transformations method introduced in
section 4.1, the knowledge about the code transformation has to be included into the pre-
diction transformation.

For this, model-2-model transformations are added to the transformation chain which
generates the prediction model, i.e., the SimuCom instance. Note, that in this case model-
2-model transformations are applied despite the technical issues involved due to their
immatureness (cf. Uhl (2007b)). However, they have been realised as ad-hoc transforma-
tions in Java instead of using a standard transformation engine.

As the Coupled Transformations method is applicable to arbitrary types of platform

156

4.5. COUPLED TRANSFORMATIONS

transformations with arbitrary meta-models for their mark models, the following focuses
them to the context of this thesis. It only investigates transformations of the PCM as
meta-model for component-based software development. In this setting, several types of
platform transformations and different types of mark meta-models can be considered. In
the following they are discussed in detail.

4.5.1 CBSE Platform Transformations

As introduced in section 2.1.4, several component models exist that may serve as target
platform for realising components and architectures in an MDA sense. Especially, compo-
nent models with a supporting implementation framework (Java EE, COM, ...) or frame-
works built for industry projects (Fractal) are well suited as platform for realising a PCM
model in code. Note, that for the code transformation mainly the structural elements and
behaviour specifications (ImplementationComponentTypes, Systems, and RD-SEFFs) are of
interest as they can be used as source models for code generation. Especially the hard-
ware model (i.e., ResourceEnvironment) is not of interest in code transformations.

When using transformations to realise technology-indifferent components like those
available in the PCM on a technological platform, three aspects are of main interest (see
table 4.2).

PCM J2EE/EJB

Structure BasicComponents, CompositeComponents Annotated Java Classes

Behaviour RD-SEFFs Method Implementations

Life-Cycle N/A Container Services

Table 4.2: Overview on Mapping Aspects For Mapping PCM Instances to EJB

The first aspect is how to map components structurally. This means using the plat-
form’s concept of a component to realise the component, its inner structure (for composite
components), its provided and required interfaces, the data types used, etc. For example,
when using EJB3, classes with special annotations realise components structurally and
annotated Java interfaces serve as component interfaces as shown in listing 4.6 (Java uses
the ”@” character to mark annotations). This example declares a stateless EJB with a re-
mote interface called IMyComponent.

Listing 4.6 Example EJB Code
@Remote public interface IMyComponent {...}

@Stateless public class MyComponent implements IMyComponent {...}

157

4.5. COUPLED TRANSFORMATIONS

Second, mapping component behaviour defines how the component acts at run-time.
In case of the PCM, this means mapping RD-SEFFs into adequate source code. Due to the
PCM’s abstraction in the RD-SEFF, this mapping is either incomplete and the resulting
code needs additional manual adjustment, or the mark model of the transformation has
to specify additional information on the components internal behaviour, e.g., by using
UML Action Semantics to specify the behaviour of internal actions (Völter and Stahl,
2006).

Third, the transformation has to respect the component’s life-cycle and run-time ser-
vices provided by the platform. For example, in Java EE/EJB the application server uses
so-called containers which host components and offer services like component instanti-
ation, service call interception, dependency injection, communication services, security
(authentication and authorisation), etc. Many of these services can be configured either
via source code or via configuration files.

In the mapping presented in section 4.6 the main focus is on the first and the third
aspect. The second is neglected because of the high abstraction of the PCM’s RD-SEFFs,
which only allows to generate initial code skeletons but not a complete implementation.

The reason for introducing the classification of these implementation aspects is that for
different classes different methods to include the performance impact into the prediction
model work best. However, before introducing the methods in section 4.5.3, the following
section investigates the mark model options.

4.5.2 Mark Meta-Models

As already mentioned, for mapping abstract models into more concrete models at least
two alternatives exist. Either, by using constant default values for alternatives in the
mapping or by making them explicit in mark models. The use of mark models offers
additionally flexibility for the transformation’s user and makes the transformation more
reusable in several application scenarios. The following discusses UML profiles, configu-
ration models, and full-featured models as candidates for mark meta-models.

• UML Profiles: If a transformation uses UML models as input, often a UML profile is
used to mark model elements with stereotypes and tagged values (cf. section 2.2.3).
The transformation interprets the stereotypes and tagged values and transforms the
model elements accordingly. For example, AndroMDA (AndroMDA.org, 2007) uses
stereotypes to parametrise the transformation’s output, i.e., which classes should be
transformed to what type of EJB, e.g., stateful or stateless session bean, or entities.
A drawback of profiles is their unavailability for non-UML models like the PCM.

• Configuration Models: Configuration models are generalisations of configuration

158

4.5. COUPLED TRANSFORMATIONS

files. Their elements refer to specific model elements in the model they configure
(e.g., using MOF references) and contribute additional attributes in a structured
way to these elements. Examples for configuration models are configuration files
or feature diagrams (cf. section 2.2.2). MDSD transformations use them as so called
decorator models where a configuration information has a reference to the element
it contains details for. For example, a feature configuration referencing an Assembly-
Connector can contain details on the technical realisation of this connector, e.g., by
specifying that the connector should be implemented using SOAP.

Configuration models are well suited to describe transformation options because of
their clear structure. Developers understand them quickly due to their usually lim-
ited set of options. Additionally, they often support expressing constraints which
ensures correctness and consistency. However, they are not suited in situations
where the set of options is rather large.

• Full-featured Models: Full-featured models refer to arbitrary models following for
example a MOF meta-model. In contrast to configuration models, which usually
only represent a small number of options, full-featured model may be arbitrarily
complex. Usually they are also attached to model elements as decorator models.
They offer the most flexibility which can make them difficult to understand.

For the transformations presented in this thesis, feature diagrams were chosen be-
cause of the mentioned advantages. Especially the rather small set of options eases the
creation of transformations which include the selected options into the prediction model.
Full-featured models might require complex transformations to reflect all options in the
prediction model, however, theoretically, they can be used as well.

For reasons of convenience the transformation supports two types of feature config-
urations. First, a global configuration for all model elements of a specific type which
defines the default settings for transforming the respective elements. Second, configu-
rations can be attached to model elements as decorator models to override the global
defaults with element specific values.

Consider the example in figure 4.20, where a transformation offers two options for the
communication protocol in the mapping of AssemblyConnectors. The user of the transfor-
mation has specified that AssemblyConnectors should be mapped on a RMI based com-
munication in general. As the depicted connector named Con2 connecting component
Comp2 and Comp3 is not referenced by a decoration, the transformation generates an
RMI-based implementation for it. For Con1 the transformation’s user attached a decora-
tion which overrides the general chosen option and parametrises the transformation to
realise the connector using SOAP.

159

4.5. COUPLED TRANSFORMATIONS

Comp1 Comp2 Comp3
Con1 Con2

Protocol

RMI SOAP

Configuration Override

Protocol

RMI SOAP

Global Default

Legend

XOR option

Selected option

Rejected option

Figure 4.20: An Example for General and Decorator-based Feature Mark Models

4.5.3 Methods to Parametrise Analysis Transformations

The following presents two methods to reflect feature-based decisions (as introduced in
section 4.5.2) for typical CBSE platform decisions (as introduced in section 4.5.1) in pre-
diction models. The first method handles structure changing design decisions while the
second method deals with including middleware/container services decisions.

Structural Changes Modular transformations (as introduced in section 4.2) allow to re-
flect design decisions encoded in mark model options that affect the structure of the gen-
erated code in the prediction model. Remember that this thesis uses modular transfor-
mations to generate the implementation’s code as well as the simulation-based prediction
model. If a feature affects the generated code’s structure, e.g., by introducing additional
classes, both the implementation and the simulation code is affected. The execution of
code inside such an additional class depends on this class’ existence. Hence, only if the
class exists in the generated implementation code, its corresponding simulation class ex-
ists in the simulation.

To clarify this, consider mapping components to classes. A first design alternative
maps a single component to a single class. Furthermore it maps component services to
public methods of this class. As modular transformations use this design alternative in
both the code and the simulation transformation for both output types the generated code
has the same structure. However, the modular transformation generates different imple-
mentations for the code and for the simulation output (cf. section 4.2). The simulated
loop consumes simulation time while the code loop is part of the applications logic.

As a second design alternative consider a mapping which creates specific classes
called ports for each provided interface similar to the Façade pattern (this mapping op-
tion is discussed in detail in section 4.6.1). Then these ports delegate calls to the actual

160

4.5. COUPLED TRANSFORMATIONS

component implementation. The modular transformation generates ports for both output
types, the code as well as the simulation. This allows adding an additional simulated time
consumption to capture the performance impact of the call delegation in the simulation
model.

ProvIF

JavaIF Port

Legend

XOR option

Selected option

Rejected option

C1
IProv

<<tra
nsfo

rm
>> <<transform>>

ProvIF

JavaIF Port

C1

<<Interface>>
IProv

PortC1

<<Interface>>
IProv

C1<<delegate>>

If (platform == SimuCom)
ConsumeTime(delegationDemand)

Figure 4.21: Example for Structure Changing Options

Figure 4.21 depicts an example. Next to the transformation arrows the chosen feature
configuration for the transformation is shown. Depending on this selection a different
structure of classes and interfaces is generated. However, this does not depend on the
actual platform (simulation or code) but only on the selected features. The only change
which depends on the selected platform is indicated in figure 4.21 by an UML note. The
code in this node is part of the transformation rule generating the port class. It generates
an additional time consumption if the transformation’s target is simulation. This is done
as described in section 4.2 by using template methods.

Discussion Further examples for structure changing transformation options can be
found in section 4.6.1, especially in the context of mapping required roles. In general,
if transformation options are derived from design patterns (as in the example above by
using the façade design pattern) the design pattern’s structural description can be used
to derive the structural options. The performance impact of the different structural alter-
natives need to be analysed by performance experts.

Additionally, note that using modular transformations is not always an option. It
fits in this case, as the generated simulation’s code is very similar to the generated code
skeletons. However, if a specification language for the performance prediction model
like stochastic process algebras is used, then the structure of the generated code is not
reflected any longer in this language. Hence, it can not be used directly.

161

4.5. COUPLED TRANSFORMATIONS

Completions For the performance of a software system, middleware services or run-
time container services are often an important factor. Hence, having detailed information
on the use and configuration of these services can increase the accuracy of a performance
prediction significantly. An example has already been given in figure 4.20. There, the
choice between SOAP or RMI for the communication protocol for mapping an Assembly-
Connector has an impact on the performance (as SOAP has a larger protocol overhead it
makes its processing more resource demanding, thus, slowing it down).

When looking at a middleware or a component run-time-container, one might con-
sider it to be a (potentially large) composite component, which offers services to its clients,
i.e., the components deployed on it. However, if they were modelled as components then
there would be two types of components: application components that realise the busi-
ness logic of the application and framework components which offer additional run-time
services to the application components. The PCM itself only targets composing applica-
tion components in its Assembly model.

In the PCM, assembly refers to composing application components to create the busi-
ness logic while allocation refers to deploying components in run-time environments. As
a consequence, allocation deals with putting components in their software run-time en-
vironments which are framework components using the afore introduced classification.
The allocation relationship between application components and framework components
is usually described in a separate deployment viewpoint.

However, for more accurate performance predictions, the allocation on framework
components needs to be taken into account because of its performance impact. Coupled
Transformations offers a possibility to do this in a parameterised way for those com-
ponents which can be influenced by generated artefacts like code or configuration files.
Additionally, it can be used to include platform details that are not influenced by mark
model options but only by the knowledge about the platform the code transformation
generates for. For example, when generating for Java EE, the prediction transformation
adds Java EE specific resource demands to the prediction model.

Section 2.3.3 describes completions introduced by Woodside et al. (2002) which serve
for the purpose of enriching a prediction model by details of vertical application layers
in order to improve prediction accuracy. In the context of this thesis, the idea of comple-
tions is applied. However, as the PCM is a component model, in contrast to Woodside
et al. (2002) the introduced transformations use special, generated components as comple-
tions. In addition, they generate the specification of these completion components. The
transformations utilise the advantages of component composition to generate and com-
pose them in a flexible way based on a feature configuration model. Furthermore, they
customize the generated completion component depending on the feature configuration

162

4.5. COUPLED TRANSFORMATIONS

of the respective code generation transformation. The following gives details on each of
these capabilities.

Completion Components The following requirements lead to the idea of using compo-
nents as completions.

• Reuse Existing PCM Model Concepts: Modelling software parts of lower abstrac-
tion layers as components allows to reuse the existing modelling elements of the
PCM, including components and their composition theory, interfaces, parameter
dependencies, and the RD-SEFF abstraction. All these concepts prove useful in
modelling middleware platforms.

• Compositionality: The middleware layer uses other layers such as the virtual ma-
chine or operating system layer to fulfil its work. By using composite components,
the hierarchy of layers can be mapped to a hierarchy of components.

• Reuse Existing PCM Transformations: Using components as completions allows
reusing of existing transformations. In this case, especially the reuse of SimuCom’s
simulation code transformation is interesting to get middleware aware performance
predictions with little adjustments to the existing method.

• Exchangeable Middleware Implementation: Middleware implementations often
implement a specific set of standardised interfaces like those defined in the Java EE
standard in order to keep them exchangeable by customers. Having a mechanism
to keep the middleware implementation exchangeable allows analysing the perfor-
mance of the application under different middleware implementation models and
hence, determining the performance-wise best suited implementation.

• Revision of PCM Concepts: Using completion components for modelling the mid-
dleware interaction may give additional insights about missing requirements to the
PCM for modelling real-world systems and hence, highlights further research direc-
tions for the meta-model.

In order to differentiate completion components from components of the application
architecture layer the decision was made to extend the PCM’s meta-model to introduce
them. In order to have flexible completion components, they inherit from Implementation-
ComponentType, which allows to use them everywhere where other implemented compo-
nents can be used, from ComposedStructure, which allows to construct their implementa-
tion by composing components, and from InterfaceProvidingRequiringEntity, which allows
them to offer services and to require other services to fulfil their own. The resulting meta-
model is depicted in figure 4.22, where the stereotype <<pcm>>marks PCM meta-classes.

163

4.5. COUPLED TRANSFORMATIONS

<<pcm>>

InterfaceProviding

RequiringEntity

<<pcm>>

ComposedProviding

RequiringEntity

<<pcm>>

Composed

Structure

Completion

<<pcm>>

Implementation

ComponentType

ConnectorCompletion

ContainerCompletions

Figure 4.22: Completions Meta-Model

The resulting meta-model is called extended PCM (ePCM) in the following. Note, that
the extended PCM is only available to model transformations and not to developers, who
specify PCM instances. Also note, that Completion is an abstract class and that there are
two concrete classes sub-classes of it in figure 4.22: one for connector completions which is
used to model communication aspects and one for container completions used to model
the impact of the component’s run-time container. Note, that it might be necessary for
future transformations to extend the list of heirs depending on the aspects to be included
into the performance prediction model. Currently, the two completion types given reflect
the mapping design decisions given at the beginning of section 4.5.1.

In figure 4.23 both types of completions introduced here are depicted. ConnectorCom-
pletions replace AssemblyConnectors. Their inner components model the performance im-
pact of communicating components, e.g., for remote communication the demand of net-
working resources needed to transmit the service call and its parameter values. Container-
Completions wrap components and by adding decorator components (Gamma et al., 1995,
p.175) can be used to model the impact of container services like transaction management,
security, or component pooling.

<<ConnectorCompletion>>

Con1
IA IA

BC1 BC2

Con1
IA IA

BC1 BC2

BC3

<<ContainerCompletion>>
IA IB IA IB

BC3

IA IB

Transformed into

Figure 4.23: Completion Types

164

4.6. TECHNOLOGICAL JAVA EE MAPPING

Completions inherit the advantages of components, e.g., the capability to compose
them with other components. Hence, they allow to apply the completion idea recur-
sively by using Completions inside completions. For example, for ConnectorCompletions
the stack of message filters processing the message for transmission can be modelled by
ConnectorCompletions composed hierarchically. For additional details how this is realised
see section 4.6.3.

Discussion The preceding paragraphs introduced the idea to use special types of com-
ponents to realise completions. In order to combine completions with Coupled Transfor-
mations all that remains to be done is to let the feature configuration control the selection
and parametrisation of transformations which generate the completions. For example, if
the feature configuration specifies that the realisation of an AssemblyConnector should use
encryption then a transformation is added to the chain of transformations which adds a
completion for the encryption. If the feature configuration specifies not to use encryption,
this transformation is omitted from the chain of transformations. For other configuration
options, for example the number of component replicas in a component pool, the trans-
formation copies the parameter and uses it in the generated completion components.

4.6 Technological Java EE Mapping

Mapping PCM instances to an implementation in an industrial component model like
EJB, CCM, or COM (cf. section 2.1.4) aims at preserving as many information in an PCM
instance as possible for the implementation phase. Hence, transformations take PCM
instances and generate conforming implementations. This helps embedding the PCM in
a development process.

Mapping abstract design models to code always requires expert knowledge on the
source and target model. The use of transformations allows transformation users to reuse
this knowledge - ideally without the need to gain it themselves. Additionally, as the
target model usually is on a lower abstraction level the transformation contains strategies
to represent abstract concepts of the source model by single or multiple concepts in the
target model. For example, when mapping PCM instances to Java EE implementations,
Java EE representations of concepts such as component RequiredRoles, INOUT or OUT
parameters, AssemblyConnectors, or composite components are needed. In many cases,
design patterns exist, which already solve the mapping problems. Regardless whether
the mapping is based on patterns or not, the elements introduced by the transformation
into the target model may cause a performance overhead which has not been part of the
abstract system model.

165

4.6. TECHNOLOGICAL JAVA EE MAPPING

However, as the transformation generates a deterministic output solely depending on
the input and mark model instances, the performance impact of the mapping can be fore-
seen and hence used to increase the prediction accuracy of performance predictions. To
illustrate how this can be done, this thesis presents such a transformation of PCM in-
stances to POJOs or Java EE code. It uses this transformation to demonstrate how the
additional mapping knowledge can be used to improve performance prediction accuracy
using Coupled Transformations . The transformation has been implemented prototypi-
cally as oAW model-2-text transformation (discussed in detail in sections 4.6.1-4.6.4). It is
based on an initial mapping researched in a master thesis by Schaudel (2007).

As target platform, Plain Old Java Objects (POJOs) and Java EE/EJB3 have been cho-
sen. In this selection, EJB3 is a representative of an industrial component model used
in many projects. It uses classes to realise components. As such, it is a representative
for COM or CCM, which also base on classes. Supporting two output types, POJOs and
EJB3, is simple as EJB3 heavily relies on POJOs as realisation entities. However, for the
plain POJO mapping several services offered by an EJB container like component cre-
ation, dependency injection, and communication infrastructure support, had to be added
to the transformation. Where component creation and dependency injection can be eas-
ily added to the generated code based on plain Java constructs, the communication in-
frastructure relies on external libraries like Axis (Apache Software Foundation, 2008) for
webservice/SOAP support. Nevertheless, as measuring application response times and
debugging the generated code is often much easier without the need for the complex ap-
plication server and its configuration, experiences showed that the POJO mapping paid
off its extra effort. Additionally, the POJO mapping is used in SimuCom to generate the
architecture of the simulated system.

When designing a transformation that maps PCM instances to an industrial compo-
nent model, several requirements affect the design. The following list discusses the most
important.

• Bridge Missing Concepts in the Target Platform: The PCM has been designed
without targeting a specific industrial component model. Hence, it is independent
from EJB, CCM, or COM. As a result of this independence, not all concepts available
in the PCM have exact counterparts in a particular industrial platform. For example,
EJB has no support for OUT parameter mappings (see section 3.3). In cases of miss-
ing support for PCM concepts, the transformation is responsible for generating code
which emulates the missing concept. For example, an OUT parameter can be em-
ulated in EJB by using the TransferObject design pattern (Marinescu, 2002) which
encapsulates the return and OUT parameter in an object that is then returned by the
service call.

166

4.6. TECHNOLOGICAL JAVA EE MAPPING

• Preserve Semantics: The PCM’s concepts have associated semantics as described in
section 3 and further detailed in Reussner et al. (2007). Even if the semantics are not
defined formally but in natural language, the transformation has to generate code
which complies to the PCM’s semantics. Otherwise, the transformation’s output
might not fit the model designer’s expectations. For example, when mapping IN
parameters, it has to be ensured that the passed parameter is not modified by the
called method. As EJB uses call-by-reference for complex data types in local calls,
mapping IN parameters of Composite- or CollectionDataType requires to pass a copy
to the called method. As an alternative, the transformation could ignore the seman-
tics. In the example, this would mean to pass the original object instead of a copy
and rely on the called method not to change the passed object. For practical reasons,
the second alternative is often used in practice. Nevertheless, in this thesis this is
considered to be incorrect as the developer gets an implementation which might not
correspond to his or her expectations.

As a consequence, a detailed analysis of the semantics of the platform concepts is
needed in order to get a full list of semantic mismatches between PCM concepts
and existing platform concepts. For each of the mismatches, a concept is needed to
bridge the differences. As with the missing concepts, existing design- or architec-
tural patterns deal with some of these problems.

• Missing Information in the Source Model: The PCM’s central aim is to allow the
creation of architectural models for QoS analysis. To reach this aim, the PCM uses
abstractions of middleware specific architectures. Especially, the technical realisa-
tion of an architecture is omitted intentionally from PCM model instances. For
example, the PCM only contains the information that two components communi-
cate but not which communication technology is used to realise it, e.g., SOAP or
RMI. In the sense of the OMG’s MDA standard, this kind of information is platform-
dependent and hence, has to be added by the respective platform transformation.
For this transformation, platform-specific mapping options may exist which config-
ure how to map elements in the source model. Either the transformations contains
a set of hard-coded options or the software architect can specify them using mark
models. In the communication technology example, a mark model could specify
which protocol to use on each of the AssemblyConnectors. Depending on the selec-
tion of options different extra-functional properties emerge, which will be included
into the analysis model by the Coupled Transformations method.

The actual impact of all items in the list depends on the particular transformation’s
target platform. For example, a missing concept in EJB like OUT parameters is available

167

4.6. TECHNOLOGICAL JAVA EE MAPPING

in the CCM. Because of this, one can argue that dealing with mismatches is only needed
in cases where the platform is not an exact match to the model’s abstraction and taking
a different platform which supports all concepts would be the solution. As this is true in
general, it is impractical as it implies writing a complete platform, which is cost intensive.
Reusing existing platforms and bridging semantic gaps in transformations is preferable.

The following sections present the concepts of the prototypical implementation of a
mapping of PCM concepts to POJOs and EJBs. Special focus is given to concepts which
fall into one of the classes listed before and how the problem is dealt with. For each
mismatch, the impact of the problem’s solution on the performance is discussed. Finally,
it is shown how to include the solution’s performance impact into the simulation.

4.6.1 Components

In the mapping presented here, component implementations use Java classes for their
realisations (cf. section 4.3). In case of Java EE, the classes use additional annotations to
declare their EJB specific metadata. Mapping components requires to map RequiredRoles,
ProvidedRoles, and the internal realisation of components. The following sub-sections dis-
cuss these aspects in details. However, a discussion on how to map RD-SEFFs, which
model the internal realisation of BasicComponents, is deferred until section 4.6.4. This is
due to the fact, that the transformation only generates code skeletons for RD-SEFFs which
have to be finalised by component developers. Hence, they cannot be analysed for their
performance impact in advance.

4.6.1.1 Required Roles

This paragraph focuses on required roles as they often cause problems in class-based
component technologies as classes usually do not have explicit required interfaces. In-
stead, classes often use implicit required interfaces whose binding is unchangeable with-
out changing the class’ source code. They instantiate an object of the required type in
their constructor and offer no possibility to change this behaviour. In contrast, in the
PCM, component developers create ImplementationComponentTypes, i.e, BasicComponents
or CompositeComponents. Software architects retrieve the components and assemble them
into systems. For this role-based task sharing to work, components need a mechanism
that decouples their required interfaces from the component implementation so that they
can be connected to other components by the software architect. In component models
based on classes, this causes problems because of the missing support for explicit required
interfaces in object-oriented programming. Because of this, some class-based component
platforms do not support explicit required interfaces. In such platforms, components

168

4.6. TECHNOLOGICAL JAVA EE MAPPING

requiring services of other components contain code to retrieve the required reference
themselves. As it is usually impossible for the software architect to change the source
code of components, fixed encoded component references makes it impossible to alter
the component bindings after the component’s implementation.

However, EJB has a mechanism to decouple required interfaces and their binding
based on dependency injection. Dependency injection is a pattern described in several
variants by Fowler (2004). It is based on the Inversion of Control (IoC) principle, which is
also known as Holywood principle: ”Do not call us, we call you”. This principle demands
- in our context - the main control flow to run from the middleware to the components
and not from the components to the middleware. As a consequence, the middleware
which has the initial control flow thread gets control on the component creation allowing
it to create and configure components before they actually are used.

The following describes how the prototypical transformation implemented for this
thesis maps components to POJOs or EJBs. To illustrate how the model-2-text transfor-
mation generates code without showing generator templates, the following uses UML
diagrams to give the structure of the generated code. As transformation language, QVT
relations are used (Object Management Group (OMG), 2007a) which show the relation-
ship between the PCM instance and the generated code as represented by UML diagrams.
Notice, this only serves illustration purposes, the implementation does not use the QVT
model-2-model transformations shown but generates the code directly. Furthermore, the
depicted relations use the concrete syntax of both the PCM and the UML to ease un-
derstanding. The relationships have to be interpreted in a way that such that the target
pattern on the left hand side is matched as many times as possible. For every match, the
target pattern is emitted by the transformation. The names in the figures represent place
holders. The place holder are set according to the matched values in the source pattern
and can be used in the target pattern. For more details see the QVT standard (Object
Management Group (OMG), 2007a).

Figure 4.24 depicts such a QVT relation for transforming the required roles of any
PCM component type into a class-based realisation. It shows a class generated from the
component on the left hand side having the same name as the component. The generated
class uses the dependency injection pattern to resolve the required role IRequired. In
the shown variant of this pattern, the class has a public method setIRequired which
is used by a manager class (in case of EJB this is part of the middleware implementation)
to set the dependencies. The manager class is responsible for creating and initialising the
component and its required roles as indicated by the setup method’s implementation
given in the UML note.

If dependency injection is used to resolve required roles in a middleware offering de-

169

4.6. TECHNOLOGICAL JAVA EE MAPPING

<<ProvidesComponentType>>

ComponentA

IRequired
iReq:IRequired

setIRequired(IRequired)

ComponentA

setup()

DependencyMgr

setup(){

 ComponentA cA = …;

…

 ca.setIRequired(iReq);

…

}

C E

pcm:PCM uml:UML

IRequired

Figure 4.24: Simplified QVT Transformation of a Component using Dependency Injection

pendency injection, the middleware sets the bindings of the component’s required roles.
It is done whenever a new instance of the component is created. For this, the middle-
ware needs a specification of the required roles of a component created by the component
developer. In case of EJB this information is delivered in XML configuration files called
deployment descriptors or, in recent EJB versions, as Java annotations, which are part of
the class’ metadata.

For a transformation based on POJOs without middleware support, there is no such
mechanism. The POJO transformation introduced here generates code that realises com-
ponent creation and dependency injection as part of the code generated for composed
structures (for details see section 4.6.2).

To further decouple a component and its required services, the component context
pattern introduced by Völter and Stahl (2006) can be applied. This pattern decouples a
component’s implementation from resolving its dependencies (see figure 4.25). This of-
fers increased flexibility and maintainability. For this, the component uses an extra class,
in which it holds all required interfaces. The strategy to get references to the components
providing the respective interfaces is encapsulated in the component context class and
can be exchanged easily. The POJO transformation now uses a different strategy to get
the references than the EJB transformation.

For EJB, the dependency injection service offered by the middleware is applied. The
transformation generates a deployment descriptor that first injects the references to the
needed interfaces into the fields in the context object. Afterwards, it injects the context
object into the component it belongs to. In the POJO based transformation, the context

170

4.6. TECHNOLOGICAL JAVA EE MAPPING

<<ProvidesComponentType>>

ComponentA

IRequired1

ctx: ComponentAContext

setContext

 (ctx:ComponentAContext)

ComponentA

setup()

DependencyMgr

setup(){

 ComponentA cA = …;

 ComponentAContext ctxA = …;

…

 ca.setContext(ctxA);

…

}

C E

pcm:PCM uml:UML

IRequiredN

iReq1:IRequired1

...

iReqN:IRequiredN

getIRequired1()

...

getIRequiredN()

ComponentAContext
IRequired1

IRequiredN

...

...

Figure 4.25: Component Transformation using Dependency Injection and the Context
Pattern

class offers a constructor which takes instances of references to all interfaces and sets
them accordingly. The constructor is used in the surrounding ComposedStructure to create
the contexts of all inner components, which is then injected into them (cf. section 4.6.2).
Thus, the dependencies can be passed to the component from the outside as instantiated
context object.

Applying dependency injection either with or without the context pattern is a com-
mon solution to decouple component implementation and usage. However, other
common alternatives exist. One such option, is the Broker pattern as introduced by
Buschmann et al. (1996). Besides decoupling a client from its server, the pattern addi-
tionally introduces location transparency. Location transparency (Coulouris et al., 2000)
allows a component to change its physical location, i.e., its hosting environment, without
the need for the client to be aware of the location change. Figure 4.26 shows the Broker
pattern’s basic interaction idea.

A component offering services to its environment registers itself at the broker using a
name that the deployer can configure. In addition, it passes its location data to the broker.
This is the information needed to communicate with the server component, e.g., an IP
address and a port. Whenever a client wants to communicate with the server component,
it looks up the server by asking the broker using the servers published name. The broker
answers with the current reference to the server component. The client uses this reference
to communicate with the server.

To demonstrate how the broker pattern realises the location transparency, in fig-
ure 4.26 the server gets a request to relocate itself, indicated by the timed relocate signal.
After its physical relocation, the server registers itself again at the broker passing its new
location details. The clients can follow two strategies in this context. Either they look

171

4.6. TECHNOLOGICAL JAVA EE MAPPING

:Client :Server:Broker

register(„server“,location)

lookup(name = „server“)

server = lookup(name = „server“)

server.doSth()

relocate()

register(„server“,new_location)

Figure 4.26: Sequence Diagram for the Interaction in the Broker Pattern

up the server once, reusing the reference as long as they can reach the server under the
given location. If they fail to contact the server, they re-request a server reference from
the broker assuming a server relocation. Another option is to always look up the server
before communication.

Using a broker to map required roles is easy in combination with the context pattern.
As the context class encapsulates the lookup of required interfaces, the client’s server
lookup can be done in the context class resulting in the same structural mapping as in
figure 4.25. Only the behaviour in the context class changes depending on the two options
for the client’s strategy.

Feature Model for Required Role Mapping The previous paragraph has introduced
several options for mapping required roles and depending on this, methods how to ac-
tually set the dependencies. If the transformation of PCM components to class based
component models shall support all alternatives, it can be parameterised by the desired
mapping option. Figure 4.27 shows the feature diagram for the component lookup op-
tions presented in the previous paragraph.

As figure 4.27 shows, the transformation can map required roles using dependency
injection or using the broker pattern for looking up components. If dependency injection
is used, optionally the context pattern can be used as well. If it is used, context classes
will be generated. Otherwise, the class representing the component contains methods to
set it’s required dependencies itself. In case of the broker pattern, the additional choice
whether to use a component reference until a failure occurs or whether to always query

172

4.6. TECHNOLOGICAL JAVA EE MAPPING

Required Role

Resolution

Dependency

Injection
Broker Lookup

Context Pattern
Client Strategy:

Always Lookup
Client Strategy:

Lookup on Failure

Legend

XOR-Relation

Optional Feature

Figure 4.27: Feature Diagram for Required Role Resolution

for a reference is available.
Reflect again the close relationship between the design patterns and the alternatives

available in figure 4.27. It is the aim of different patterns in object-oriented languages
to solve the problem of making the dependencies of software components technically
explicit and configurable. While checking the available patterns, variants, and combina-
tions of the patterns with other patters showed up as possible solutions to the problem
at hand. The pattern’s description is often a source for these variants and combination
possibilities. A feature diagram has been created making the alternatives explicit. Finally,
a parametrisable transformation offers the possible options to the transformation user.

Performance Impact of the Required Role Resolution Features Figure 4.27 offers four
possible solutions to map required roles. They all solve the functional requirement of
decoupling the artefacts produced by the component developer and software architect
by enabling to set the required roles after the component’s implementation phase.

However, as they offer different extra-functional properties, the following focuses on
the different performance impacts. Making the alternatives explicit using the feature di-
agram allows to include their performance impact into transformations deriving the per-
formance model. First, the following describes the reasons for the different alternative’s
performance impacts informally.

Using dependency injection without the context pattern has the lowest performance
impact as it increases the costs when creating a component instance for doing the in-
jection, but afterwards has no additional impact. When adding the context class of the
component context pattern, an additional call for retrieving the current reference bound
to a certain component required role, is needed every time when issuing an external call
to an other component.

173

4.6. TECHNOLOGICAL JAVA EE MAPPING

As measurements by Kostian (2005) show, the performance impact of the delegation
is small (approx. 0.01ms in his setting). Nevertheless, depending on the usage context,
i.e., the frequency of calling services on the adapted interface, the response time of the
adapted method, and the congestion in the system, it still may have an impact. For exam-
ple, in the scenario used in section 5.1.2 a database query used takes 0.2ms. In this case,
the delegation impact would be already 5%.

For the broker based solution, issuing an external call needs a call to the context ob-
ject which itself queries the broker - depending on the client strategy. Depending on the
broker’s allocation, each lookup might involve network communication (if the broker is
located on a different machine than the client). And even if no network communication
is involved, usually inter-process communication is needed to look up the server as bro-
kers commonly execute in different processes. Additionally, a large number of queries
can turn the broker’s hosting environment into the system’s bottleneck further reducing
the performance. Hence, the performance impact of retrieving a component reference is
further increased compared to the dependency injection based solutions.

It is arguable, that only dependency injection without a context object is a valid choice
as all other options are more expensive. This is true performance-wise, but as the other
options increase other extra-functional properties, developer possibly choose them. The
flexibility is increased in the broker-based solution as there is a central point in the archi-
tecture controlling the component’s bindings. The context pattern also introduces more
flexibility as it encapsulates the required role’s resolution strategy. Due to difficulties in
finding good metrics for the flexibility and maintainability, the trade-off analysis is out of
the scope of this work.

The choice whether to use dependency injection or the Broker pattern also selects the
type of method to use for including the performance impact of that choice into the Simu-
Com simulation. If dependency injection is used, this can be realised using a structural
change (cf. section 4.5.3) which is performed in both the generated code skeletons as well
as in the generated simulation code. If the use of the Context pattern is not selected, no
performance impact has to be modelled and the dependencies become injected directly
into the class generated for the component.

If it is selected, a context class is generated in the simulation code and the generated
code skeletons. In the simulation case, a template method in the modular transformation
inserts the resource demand for retrieving the interface reference from the context class.
For this, the transformation adds an InternalAction before the code actually retrieving
and calling the bound component’s service. This internal action contains a CPU demand
which corresponds to the one of bytecode for calling an internal method and returning a
reference.

174

4.6. TECHNOLOGICAL JAVA EE MAPPING

When using the Broker pattern for looking up the remote reference, the transformation
uses a structural change to add an ExternalCallAction to a broker middleware component.
This includes the resource demand resulting from this lookup into the SimuCom simula-
tion.

The two options for the Broker lookup can be realised by generating different RD-
SEFFs. The option of always looking up the communication partner can be included
using a RD-SEFF which unconditionally includes the performance impact by always ex-
ecuting the Broker ExternalCallAction. The other option of looking the client up only in
case of failure, can be realised by a ProbabilisticBranchAction.

Resulting Performance Model Impact Adding an InternalAction for the delegation in
cases of the Context pattern option causes an additional CPU demand to be processed by
the hardware resource on which the respective component is allocated. Let CPU denote
the simulated CPU resource used for this, i.e., the simulated resource on which the com-
ponent is allocated. Additionally, let ddelegate ∈ Demand denote the demand caused by
the call delegation (see section 4.4.3 for the description of Demand), i.e., time(ddelegate) is a
sample of the random variable which describes the demand caused by call delegation in
(simulated) hardware dependent units, i.e., it is the hardware independent demand di-
vided by the CPU’s processing rate or a measured value. Using the introduced function
rt : ProcessingResource × Demand → R+

0 , which describes the time needed including
waiting times to process a demand on a simulated resource (see section 4.4.3), the result-
ing additional time is simply rt(CPU, ddelegate).

The broker interaction is a bit more complicated. First, a model-2-model transforma-
tion adds an additional required role to each component which has at least one required
role using broker lookups. The additional introduced role is connected to a broker compo-
nent which is assumed to already exist in the architecture. If the software architect forgets
to add it to the architecture, the transformation fails with an error message. Figure 4.28
depicts this transformation rule.

The additional relation called AddBroker in figure 4.28 adds an additional call for
the broker interaction in front of each ExternalCallAction using the given RequiredRole. It
is given in the appendix (see figure A.5 in section A.3). Figure 4.29 shows an example for
the transformation.

The performance impact of the additional ExternalCallAction depends on the alloca-
tion of the broker component. Two alternatives exist. First, the broker is allocated on a
different server than the component using it (see figure 4.30, left hand side). Second, the
broker is allocated on the same server than the component using it (see figure 4.30, right
hand side)

175

4.6. TECHNOLOGICAL JAVA EE MAPPING

<<BasicComponent>>

ComponentA

IRequired

C E

pcm:PCM pcm:PCM
<<BasicComponent>>

ComponentA

IRequired

IBroker

when isFeatureSet(Broker,IRequired)

where AddBroker(ComponetA,IRequired)

<<ImplementationComponentType>>

Broker

<<ImplementationComponentType>>

Broker

IBroker

Figure 4.28: Structural Change to add a Broker

<<ExternalCallAction>>

IRequired.aService
... ... <<ExternalCallAction>>

IBroker.query
... <<ExternalCallAction>>

IRequired.aService
...C E

pcm:PCM pcm:PCM

Figure 4.29: Example for Adding the Broker Lookup

Using dquery ∈ Demand, time(dquery) is a sample of the random variable which de-
scribes the hardware-dependent CPU demand of the broker’s lookup service. The addi-
tional time demand caused by the inclusion of the broker into the prediction model is then
the communication time plus the broker’s response time. The communication time de-
pends on the allocation alternative and the technical realisation of the AssemblyConnector
(cf. section 4.6.3). For the sake of simplicity, the following assumes communication only
causes resource demands on the network. Thus, it neglects the impact of marshalling,
encryption, etc. However, the latter can be included using the more sophisticated model
presented in section 4.6.3.

Let query.BS denote the size in bytes of a broker lookup request. Additionally, the
variable query.RESULT.BS denotes the response’s size in bytes. Both variables depend
on the used middleware and have to be measured and afterwards encoded into the trans-
formation. Also, let lnet denote the latency and tpnet the throughput of the network in the
distributed case as specified in the PCM’s linking resource. Finally, let SCPU denote the
CPU of the server on which the broker is allocated.

net
ComponentA Broker

Server1 Server2
<<LinkingResource>>

LAN, 100MBit/s

Latency 1ms
Server3

ComponentA Broker

Figure 4.30: Broker Allocation Alternatives

176

4.6. TECHNOLOGICAL JAVA EE MAPPING

Additionally, as the time needed to process demands depends on the simulated re-
source’s queue state in SimuCom and the resource’s scheduling discipline, the order in
which they occur is important. To indicate this, the operator ⊕ is used in the following
to sum up times. It is not commutative, i.e., the demands added with ⊕ have to occur in
order from left to right.

Then, the additional time demand in the distributed allocation given on the left hand
side of figure 4.30 is

rt(net, query.BS/tpnet + lnet)⊕ rt(SCPU , dquery)⊕ rt(net, query.RETURN.BS/tpnet + lnet)

The demand consists of the demand for transmitting the lookup request, the time to pro-
cess the lookup, and the time needed to transmit the answer. Note, as the function rt

is used in all cases the time also includes the waiting time at the respective simulated
resources.

For the non-distributed case depicted on the right hand side in figure 4.30, let copy :

R+
0 → R+

0 describe the CPU demand to copy the given amount of bytes to another process
space. Also let MCPU denote the CPU resource of the shared physical machine M . With
this, the additional time demand for the broker lookup including hardware contention is

rt(MCPU , copy(query.BS))⊕ rt(MCPU , d
′
query)⊕ rt(MCPU , copy(query.RETURN.BS))

4.6.1.2 Provided Roles

Provided roles define interfaces offered by a component. In the PCM, interfaces define a
list of signatures based on CORBA IDL (cf. section 3.3). In EJB, object-oriented interfaces
implemented by the classes which represent components, serve as component interfaces.
Often, component interfaces need special markings in these languages, e.g., EJB and COM
with .NET use annotations to mark component interfaces.

When focusing on Java POJOs or EJB, two problems arise when mapping PCM in-
terfaces to Java interfaces. First, Java interfaces do not support parameter modifiers
and second, there is a problem with having the same signature in different interfaces
(c.f. Schaudel (2007)).

The PCM’s parameter modifiers define how to pass parameters when making a service
call. IN parameters can be read and modified in the called service, however, this does not
affect the original contents of the variable passed in the call. INOUT parameter can be
read and modified by the called service, the effect of any modifications is also available
in the calling service after the call. OUT parameters have to be set by the called service
and become available in the calling service as INOUT parameter do (cf. section 3.3).

Basically, mapping parameters with different modifiers is not a PCM specific problem.
It is common when mapping CORBA IDL to Java. The Java IDL mapping deals with

177

4.6. TECHNOLOGICAL JAVA EE MAPPING

the problem (Object Management Group (OMG), 2002). The solution is to appropriately
copy the contents of the different types as required by the semantics of the respective
modifier. Java itself has a call-by-value semantics, i.e., passing a copy, for Java primitive
types. For classes, it uses call-by-reference. This means, mapping PrimitiveTypes with a
corresponding primitive Java type is no problem for IN parameters. For INOUT and OUT,
wrapper classes are needed that encapsulate the value making it modifiable. This is also
known as boxing. For Collection- and CompositeDatatypes, which have to be mapped to
Java classes, INOUT and OUT need no special treatment, but for IN parameters a copy of
the datastructure is needed first. However, it has no impact on the Java signature as does
the wrapper in case of primitive types. Performance-wise, only the code generated for
actually calling the services has an impact as the interface itself is only a static declaration.

The second issue is based on the possibility to have the same signature, i.e., the same
name, parameter list, and return value in different provided roles. The naive approach of
mapping the interfaces to Java interfaces does not work any more, because the Java class
representing the component can only contain a single implementation of a given method
signature. However, in the PCM, the behaviour of a service depends on the role and the
signature, i.e., there may exist several equal signatures in different roles having a different
behaviour.

One option to deal with this issue is to use port classes. The idea of a port class stems
from UML where ports can be used to model a communication channel associated to
interfaces. However, UML allows multiple required and provided interfaces per port
while in this mapping for each provided interface a separate port class exists. Every
communication has to pass this port before it triggers a behaviour in the component. Port
classes accept the communication, check it, and forward it, if it is valid.

Each PCM provided role uses a single port class for every provided role (see fig-
ure 4.31). This class realizes the Proxy pattern (Gamma et al., 1995, p.207). It directly
implements the interface of the role. For every signature in the interface, it delegates to
an implementation that is part of the main component class. However, the name of the
method to which the port delegates is made unique by prefixing it with the port’s name
(cf. figure 4.31).

Using this mapping, it is possible to have multiple services with equal signatures in
different roles. Each service can have its own implementation according to its RD-SEFF.
Besides solving the equal signature problem of Java, ports introduce additional advan-
tages. First, they ensure that a client only uses the role it is actually bound to, as casting
the port to any other interface besides to one it implements is impossible. Furthermore,
as it also is a proxy in the sense of the Proxy pattern, it can be used to implement user
access control, fail over mechanisms, session control, etc. Because of this, it is preferable

178

4.6. TECHNOLOGICAL JAVA EE MAPPING

<<ProvidesComponentType>>

ComponentA

IProvided_aService()

ComponentA

IProvided

aService()

IProvided

C E

pcm:PCM uml:UML

myComp: ComponentA

+ aService()

setComponent

 (ComponentA comp)

IProvidedPort

<<delegation>>

Figure 4.31: Mapping of Provided Roles to Ports

to always generate a component port even if no signature naming problem exists.

Performance Impact of the Provided Port Mapping The performance impact of the
port based mapping for provided interfaces is on the one hand for creating and initializ-
ing the port class which adds to the costs of initialising the component. During run-time
the port adds the cost for delegating an incoming call to the component’s implementa-
tion class. The performance simulation can incorporate the performance impact of the
port class as a structural change. In analogy to the required role’s context class, where
also an additional InternalAction is needed, a template method for the simulation trans-
formation can add the InternalAction for the additional resource demand caused by the
delegation.

4.6.2 ComposedStructures

In the current version of the POJO or Java EE transformation, ComposedStructures, i.e.,
Systems and CompositeComponents, are being regarded as logical entities only because both
do not support hierarchical component structures. As a consequence, the mapping of
ComposedStructures contains no special treatment for inner components. The mapping
simply maps inner components recursively until it reaches BasicComponents.

For ComposedStructures the mapping generates required roles and provided port
classes as described in sections 4.6.1.1 and 4.6.1.2. Provided port classes use the informa-
tion in the ProvidedDelegationConnectors to forward incoming calls to the respective inner
components. By this, the mapping corresponds to the Facade pattern (Gamma et al., 1995,
p.185).

For the Java EE mapping the transformation generates deployment descriptors which
connect the inner components of the ComposedStructure according to its AssemblyConnec-
tors. It uses the IDs of the AssemblyContexts of the inner components to generate unique

179

4.6. TECHNOLOGICAL JAVA EE MAPPING

IDs to identify the components in the deployment descriptors.
For the POJO mapping, the ComposedStructure’s constructor instantiates for each con-

tained AssemblyContext an object of the embedded component’s class. After instantiating
all components, it retrieves the provided port classes of the components and injects them
in the requiring components by calling their dependency injection methods or registers
them in a broker - depending on the selected required role mapping.

If the POJO mapping is used in SimuCom, it additionally passes the AssemblyContext
ID to the instances of the (simulated) component classes. These components store this ID
to retrieve the simulated resources which they use to simulate their resource demands (cf.
section 4.4.5).

Discussion The mapping presented here for ComposedStructures is insufficient to reflect
the semantics of CompositeComponents as it does not enforce the constraint that inner com-
ponents of a CompositeComponent are only visible for other inner components of the Com-
positeComponent. Every other component can retrieve a reference to such an inner compo-
nent registered in the middleware and call its services. However, some options beyond
the currently implemented mapping rule exist to protect the components. For example,
the inner component’s ports can be used to enforce an authorisation protocol. For any
component willing to call the service of such a component a login call is needed first.
This call checks the credentials and allows subsequent calls if and only if the credentials
match. The only remaining thing needed is to add a login call to all required service calls
of the inner components of a CompositeComponent, in which the correct credentials are
added. However, this solution requires the ports to be stateful in order to remember the
login state.

An idea for a stateless solution is to use a wrapper on the provided port which pro-
vides all methods in the port but requires an additional parameter for the credentials.
Its semantics is to check the credentials and if they are correct, then delegate the call to
the implementation otherwise reject the call. Only this wrapper is made visible in the
middleware. This disallows calling services of the component when not knowing the
credentials. For every required role requiring such an adapted provided role via an As-
semblyConnector, a second wrapper is generated, which adds the correct credentials to
every call transparently.

Performance Impact of Mapping ComposedStructures Currently, only the performance
impacts of the delegation in the provided port class and the required role resolution are
included into the prediction model as discussed before (see sections 4.6.1.1 and 4.6.1.2).
For the discussed improved mapping options for CompositeComponents the following only

180

4.6. TECHNOLOGICAL JAVA EE MAPPING

outlines their performance impact. For the stateful port based solution, the simulation
transformation could include the performance impact by using a structural change tem-
plate method in the transformation. This template method adds an additional External-
CallAction and its demand for the discussed login call. For the second choice of wrapping
the ports and automatically provide credentials on the required side and checking them
on the provided side, a ConnectorCompletion can be used which models the resource de-
mands for adding, checking, and removing the credentials. However, as it is future work
to implement the additional options in the transformations, this paragraph only demon-
strates that a more complex mapping would have a performance impact which could be
captured by Coupled Transformations.

4.6.3 Assembly Connectors

Class-based component models commonly realise connectors using direct object-oriented
method calls. The following actions are needed for connectors. First, a call to an external
service needs to retrieve a reference to the provided interface of the required component.
This includes resolving the port as described in the context of mapping required roles
in section 4.6.1. Using the reference, the component initiating the communication hands
a message over to its middleware for transmission. The middleware is the Java EE ap-
plication server in the Java EE mapping or additional libraries like the RMI-package or
Axis in the POJO mapping. The middleware processes the message in a chain of actions.
For remote calls, the called method’s ID and the parameters have to be marshalled on
the client’s side. The resulting byte stream may be processed by additional processors
for encryption, compression, etc. Finally, the message is handed over to the operating
system, which uses the available networking hardware for the final transmission. On the
server’s side, the byte stream is processed in reverse order, e.g., it is uncompressed and
decrypted, and the service’s ID and parameter values are extracted again. With them, the
server’s middleware initiates the execution of the requested service. When the initiated
service has performed its calculations, the middleware sends the resulting values back
to the waiting caller. For the resulting values the same process applies as for the service
call. The server’s middleware marshals, encrypts, compresses, etc. them and transmits
the result to the client. The client’s middleware retrieves the results and passes them to
the waiting caller.

For the transmission aspect of the technological mapping, middleware systems of-
fer different marshalling protocols and different processing filters. Many of them can be
configured via configuration files, which can be generated. However, which options are
available depends on the particular middleware and its configuration options. In addi-
tion, it also depends on the particular code transformation and the options supported by

181

4.6. TECHNOLOGICAL JAVA EE MAPPING

it. An exemplary feature diagram for a connector mapping is given in figure 4.32.

AssemblyConnector

Protocol
Additional

Processing

RMI SOAP

Encryption Compression Authorisation

RemoteCall

LocalCall

...

Legend

XOR-Relation

Optional Feature

Required Feature

Figure 4.32: Exemplary Feature Diagram for AssemblyConnectors

Modelling the Performance Impact of AssemblyConnector Realisations To include the
performance impact caused by the middleware aspects of the component’s communica-
tion, a model based on ConnectorCompletions suits well. As introduced in the previous
paragraphs, components communicate by sending a message from one component to
the other. This causes resource demands on the sender’s side for message processing,
a demand on the networking resource for transmitting the message, and a demand on
the receiver’s side for extracting the message and initiating the service call. The same
demands occur in reverse order for returning the computed result to the caller.

Hence, the aim is to model the process for sending a service request and receiving the
response using ConnectorCompletions. A transformation generates and inserts these com-
pletions into a PCM model instance. Additionally, this transformation has to respect the
feature configuration used in the code transformation of a feature diagram like the one
given in figure 4.32. Note, that even for transformations not having a mark model, the
knowledge on the code transformation and hence, the coupling of the transformations,
is important. Knowing that the generated code is based on Java EE allows to analyse
and include Java EE specifics on how Java EE does its communication. To include the
performance impact of connectors, first the AssemblyConnector is replaced with a Con-
nectorCompletion as visualised in figure 4.33. The completion includes the performance
relevant middleware aspects of the interaction.

Figure 4.33 depicts a QVT relation (again using the simplified form in concrete syn-

182

4.6. TECHNOLOGICAL JAVA EE MAPPING

Comp1

IA

Comp2

IA

Con1

C E

pcm:PCM pcm2:ePCM

Comp1

Comp2

<<ConnectorCompletion>>

Con1

IA

IA

Middleware
IMiddleware-Sender

MiddlewareIMiddleware-Reciever

Figure 4.33: Replacing a Connector with a ConnectorCompletion

tax), which shows an in-place transformation of a PCM instance into an extended PCM
instance. The transformation adds a ConnectorCompletion that replaces the AssemblyCon-
nector of the source model. In order to fit into the architecture the ConnectorCompletion
needs to have roles complying to those used in the AssemblyConnector (the roles having
the interface name IA in the example in figure 4.33). Additionally, it uses two compo-
nents called Middleware to which it forwards all actions needed to process the message.
For example, IMiddleware offers services to marshal and demarshal a given set of pa-
rameters, to encrypt/decrypt a byte stream, etc. Note, that with this kind of modelling
all resource demands are located inside the middleware component. By exchanging the
middleware component in the model, the software architect can analyse the performance
impact of different middleware implementations.

There are two required roles for middleware services to support distributed commu-
nication in which the participating middleware components are allocated on different
machines. In case of local communication both roles can be bound to the same compo-
nent. For an existing middleware, a PCM component modelling its performance impact is
needed. Models which rely on measurements of the middleware’s services parameterised
by their input parameter characterisations can be derived for example by applying meth-
ods developed by Krogmann (2007).

The inner structure of the ConnectorCompletion is generated by a chain of transforma-
tions which corresponds to the middleware services that should be considered. As a first
example for such a service, consider marshalling, which is needed for all remote com-
munication. Figure 4.34 shows the inner components of a ConnectorCompletion for the

183

4.6. TECHNOLOGICAL JAVA EE MAPPING

inclusion of the marshaller’s performance impact.

<<ConnectorCompletion>>

Con1

Marshal Demarshal

IMiddleware-Sender IMiddleware-Receiver

IA IA
IA IA’IA’ Con1'

Figure 4.34: Inner Structure of the Generated ConnectorCompletion

The generated ConnectorCompletion contains two inner components. The first compo-
nent (Marshal) is responsible for modelling actions performed by the middleware on the
calling component’s side. The second component (Demarshal) is responsible for actions
of the receiving component’s middleware. Note that regardless of the component’s name
both components contain marshal and demarshal external calls for sending the return
values. The names are given from the viewpoint of the service request by the client.

Depending on whether the components act in behalf of the client or the server, the
components use the respective required roles for accessing middleware services. Note,
that the components within the connector completion do not contain InternalActions for
the middleware’s resource demand. Instead, they only call the middleware services using
their required roles.

In order to fulfil the necessary provided role, RD-SEFFs need to be generated for each
method in the provided interface of the added components. The generated RD-SEFFs
for the Marshal component are all identical besides the called service which changes
according to the provided service which the RD-SEFF represents (see figure 4.35 for the
SEFF without data flow annotations, see appendix A.2 for detailed RD-SEFFs).

<<ExternalCall>>

IMiddleware.marshal

RD-SEFF Marshal.aService(p1,..,pn)

<<ExternalCall>>

IA’.aService

<<ExternalCall>>

IMiddleware.demarshal
SetVariableAction

Figure 4.35: Example for a Generated RD-SEFF on the Client’s Side

All RD-SEFFs generated for inner components of connector completions follow the

184

4.6. TECHNOLOGICAL JAVA EE MAPPING

same idea. First, they insert a call to the middleware pre-processing chain (in this exam-
ple, the marshalling external call) into the control flow by calling it in an ExternalCallAc-
tion. Then, they delegate the call to the respective component on the other side of the
communication channel as indicated by the newly introduced AssemblyConnector. For
the other side, a RD-SEFF in reverse order of the RD-SEFF in figure 4.35 is executed (see
appendix A.2 for detailed RD-SEFFs). Hence, in these components, first a call to the mid-
dleware’s demarshall function is executed. Then the call is passed on to the application
logic containing the business code. When the call returns, it executes the remainder of
the generated RD-SEFFs, i.e., the result is marshalled on the server’s side, passed on, and
demarshalled on the client’s side. The additional SetVariableAction in figure 4.35 is needed
to transfer the characterisations of the result and OUT parameters to the caller (see also
the next paragraph on parameter dependencies). Note, that for all these calls only their
performance impact is considered and not their real functionality as the aim is to only
enhance the performance prediction model here.

Parameter Dependencies A remaining problem is how to deal with the parameter and
return value characterisations which can be part of a call. They need to be transmitted to
the called service and returned to the calling service. However, as introduced, connector
completions represent a component from a lower level of abstraction in the architecture.
This means, that in a strict modelling approach (i.e., one that follows strictly the imple-
mentation) connector completions should not know about interfaces of the application
level layer, e.g., IA in figure 4.34. Hence, the completions should not use characterisations
carrying semantic knowledge like TYPE characterisations. However, they have access to
BYTESIZE and NUMBER OF ELEMENTS which is needed to estimate the amount of bytes
which are transmitted over the network.

In the here presented ConnectorCompletions, the marshalling step models the perfor-
mance relevant aspect of the conversion of the service’s parameters into a stream of bytes.
These aspects are the processing time needed for the conversion and the size of the result-
ing stream of bytes. As the size of the resulting bytestream is needed in any of the follow-
ing processing steps (e.g., encryption or network transmission), the following assumes
that marshalling is always the first step in the chain of actions needed for communica-
tion. With this assumption, all subsequent SEFFs can solely rely on characterisations of
the bytestream. However, to use characterisations on the bytestream in the PCM, it has
to be part of the parameters in the formal signature of a service (cf. section 3.5.2). Hence,
the following uses a workaround to allow characterisations on the bytestream. It intro-
duces the bytestream as additional parameter to all formal signatures of the interfaces
used inside the ConnectorCompletion.

185

4.6. TECHNOLOGICAL JAVA EE MAPPING

For this, the transformation derives an extended interface IA’ from the original in-
terface IA and uses it inside the completion (see figure 4.34). Note, IA’ is only available
during the transformation into the performance prediction model and not to component
developers or software architects. The signatures of IA’ are equal to the signatures of
the interface IA of the connector’s required role plus the needed additional parameter
bytestream required to pass a characterisation of the processed bytestream’s length and
they way it is changed by processing actions. For example, a signature void m(int

a) in IA is transformed into void m(int a, INOUT byte[] bytestream) in IA’.
This allows the use of bytestream.BY TESIZE characterisations in RD-SEFFs of inner
components which provide IA’. The parameter is INOUT which allows to use it also to
characterise the bytestream for the service’s response. For detailed examples, see the set
of generated RD-SEFFs given in appendix A.2. To summarize, it is important to under-
stand, that the marshalling component derives an initial characterisation of the size of the
bytestream resulting from marshalling the service’s parameters (details follow) and that
subsequent processing steps use these bytestream characterisations to derive their own
processing demands and the size of the bytestream after their completion.

To give an example, consider a service call having an array of integers as input and
result parameters. A client component calls this service with an array of 10 integers. First,
the marshalling component derives the initial size of the bytestream. Using RMI, each in-
teger is encoded in 4 bytes resulting in a bytestream of 40 bytes plus some RMI overhead.
Assume additionally encryption takes places, causing the bytestream to grow in average
1.5-times. The bytestream characterisation changes from 40 bytes to 60 bytes. These 60
bytes cause an corresponding network demand. On the server’s side the bytestream is
decrypted again, hence, it size becomes again 40 bytes. Finally, it is demarshalled and
the bytestream characterisation is removed. After executing the call, the same processing
is performed for the resulting array of integers. The following describes how the mar-
shalling component derives the initial bytesize.

A marshalling service’s signature reflecting the middleware implementation would
be to take a set of objects and a marshalling strategy and return the objects in a mar-
shalled format, i.e., byte[] marshal(Strategy s, object[] param). The mar-
shal service uses polymorphism on the elements of the param collection to serialise
the collection’s elements according to the given strategy, e.g., use 4 bytes for an in-
teger and 8 bytes for a double value in a binary serialisation protocol like RMI. This
polymorphism makes it hard to describe this behaviour with the current PCM’s pa-
rameter characterisation. Given the fact, that only performance aspects of this service
are relevant, a better model is to use arrays of the PCM’s PrimitiveDatatypes as param-
eters, e.g., byte[] marshal(Strategy s, int[] ints, double[] doubles,

186

4.6. TECHNOLOGICAL JAVA EE MAPPING

String[] strings, ...). With such a signature, the NUMBER OF ELEMENTS char-
acterisation for the single parameters can be used to specify how much integers, dou-
bles, strings, etc. have to be marshalled. The transformation can automatically derive
stochastic expressions for the actual number from the current service’s formal signa-
ture. Table 4.3 gives examples for this (in table 4.3, NoE is used as abbreviation for
NUMBER OF ELEMENTS and BS for BYTESIZE).

Formal signature Resulting characterisations

m(int a, int b) ints.NoE = 2

m(int[] a, double b) ints.NoE = a.NoE, doubles.NoE = 1

m(String s) strings.NoE = 1, strings.INNER.BS = s.BS

Table 4.3: Examples for Calculating the Type and Amount of Data to be Marshalled

The general algorithm to derive stochastic expressions for the number of Primitive-
Datatypes is given in the following. Assume the Signature currently investigated is stored
in the OCL variable sig. Then, two sets are derived pin and pout characterising the set of
datatypes which need serialisation when calling the service (in) and when returning the
result (out). They are defined by the OCL expressions given in fragment 4.1.

OCL Fragment 4.1 Deriving the Parameter Sets

p_in = sig.parameters->select(p|p.modifier=ParameterModifier.IN or

p.modifier=ParameterModifier.NONE

or p.modifier=ParameterModifier.INOUT)

p_out = sig.parameters->select(p|p.modifier=ParameterModifier.OUT or

p.modifier=ParameterModifier.INOUT)

A polymorphic overloaded OCL helper function count derives partial stochastic ex-
pressions for the three different DataTypes, i.e., PrimitiveDataTypes, CollectionDataTypes,
and CompositeDataTypes, as given in fragment 4.2.

Using the count helper, it is easy to define a function which derives the number of
instances for each PrimitiveDatatype in a marshalling step. Let t be the PrimitiveDatatype
and direction be either IN or OUT depending on whether the call’s parameters or its
result should be marshalled. Then the OCL function given in fragment 4.3 results in the
required stochastic expression to describe the number of occurrences.

An iteration over all PrimitiveDatatype instances in the PCM yields the needed
stochastic expressions to characterise all parameters of the marshal function. Note, that
the formula generated for CollectionDataTypes is an approximation. The exact formula for

187

4.6. TECHNOLOGICAL JAVA EE MAPPING

OCL Fragment 4.2 Recursively Deriving Instance Formula for DataTypes

def: count(t:PrimitiveDatatype, t2:PrimitiveDatatype,

prefix:String) : String

= if t = t2 then ’1’ else ’0’

def: count(t:PrimitiveDatatype, t2:CollectionDataType,

prefix:String) : String

= if t = t2.innerDataType then

’(’ + prefix + ’.NoE*’ + count(t,t2.innerDataType,prefix+’.INNER’)

+ ’)’

else ’0’

def: count(t:PrimitiveDatatype, t2:CompositeDataType,

prefix:String) : String

= t2.innerDataTypes->iterate(innerDT; result = ’0’|

if t = innerDT.dataType then

result + ’+’ + count(t,innerDT.dataType,prefix+’.’+innerDT.name)

else result)

OCL Fragment 4.3 Derving the Final Instance Number

def: number(sig:Signature, direction:ParameterModifier,

t:PrimitiveDataType) : String

= if direction = IN then

p_in->iterate(p; result = ’0’|

result + ’+’ + count(t,p.dataType,p.name))

else

p_out->iterate(p; result = ’0’;

result + ’+’ + count(t,p.dataType,p.name)) +

if sig.returnType <> null then

-- Treat the return type as special OUT parameter

count(t,sig.returnType,’RETURN’)

else

’’

188

4.6. TECHNOLOGICAL JAVA EE MAPPING

a parameter named p would be

p.NoE∑
i=1

count(t, t2.innerDataType, p.name+′ .INNER′)

which is not equal to p.NoE ∗ count(t, t2.innerDataType, p.name +′ .INNER′) as the ex-
pression returned by count may contain random variables, e.g., when describing an array
of arrays. These random variables require drawing a new sample each time they are eval-
uated and hence, their sum does not equal to their multiplication. However, the exact
formula might require drawing a lot of random samples which is expensive to compute
and lengthens simulation runs which is why the approximation is used currently.

The component modelling the middleware can now contain a RD-SEFF which in-
cludes the resource demand caused by serialising the given amount of data and can return
a characterisation for the number of bytes in the resulting stream depending on the cho-
sen strategy. For example, serialising 10 integer values using SOAP implies creating 10
nodes in a SOAP XML document which each contains the human-readable form of each
integer. Hence, the overall resource demand for serialising the 10 integer is 10 times the
resource demand for creating a node and formatting an integer. The resulting byte stream
contains the SOAP call overhead and 10 times the average size of a SOAP XML node for
an integer value.

After the marshalling action, the generated component calls the next component us-
ing the generated extended interface IA’. Thus, it delegates the processing of the call to
the next component. The derived bytesize resulting from the marshalling step is used
to characterise the additional parameter bytestream as introduced above. All other pa-
rameter characterisations are simply copied so that they do not get lost and become finally
available in the RD-SEFF of the called service. Note, that once the parameters have been
converted into a bytestream the processing takes place on this stream only. This implies
that the transformation needs no additional extended interfaces.

Completion Composition In figure 4.34, an AssemblyConnector named Con1’ remains
which further transformations replace recursively with ConnectorCompletions in order to
model further processing of the message. For example, to include the performance im-
pact of an encryption applied to the communication of the two components according
to the features selected in the code transformation’s feature configuration the transfor-
mation recursively applies the idea of the ConnectorCompletion as introduced before. For
this, another in-place transformation replaces the AssemblyConnector Con1’ with another
ConnectorCompletion that deals with encryption/decryption as shown in figure 4.36.

The newly added completion has access to the bytestream’s size as produced by the
marshalling step. It can use this information to derive the demand for its own processing.

189

4.6. TECHNOLOGICAL JAVA EE MAPPING

<<ConnectorCompletion>>

Con1

Marshal Demarshal

IMiddleware-Sender IMiddleware-Receiver

IA IA
IA IA’

<<ConnectorCompletion>>

Con1'

Encrypt Decrypt

IMiddleware-Sender IMiddleware-Receiver

IA’ IA’
IA’ IA’Con1'’

<<Connector

Completion>>

Con1'

IA’

Figure 4.36: Composed Completions

For the encryption case, the completion assumes the existence of a middleware service
encrypt taking a bytestream as input and resulting in a new, encrypted stream. The RD-
SEFF of this service contains a size dependent CPU resource demand for the encryption
and returns a new bytesize depending on the encryption algorithm. Both can depend on
the encryption strength and algorithm used which has been omitted from the feature di-
agram in figure 4.32, but whose inclusion is easy to integrate in the presented completion
method (in analogy to the used protocol in the marshalling case).

Using completion composition the model can be extended with an arbitrary amount
of middleware features. For example, adding compression or authentification is similar
to the encryption case, authorisation simply adds another post-processor component on
the receiver’s side. This establishes a direct relationship between the selected features and
the composed completion components. If the transformation’s user chooses a feature, the
respective completion component is added to the performance model.

190

4.6. TECHNOLOGICAL JAVA EE MAPPING

Network Demand The process of adding completions to the model terminates when
all middleware features which should be included into the model have been included. A
final transformation replaces the last remaining AssemblyConnector with a ConnectorCom-
pletion having a single BasicComponent which adds the network transmission. This is done
by a RD-SEFF having a similar structure as the one in figure 4.35. In its pre-processing
step it adds a resource demand on the network for the initial message. The bytesize used
is the one derived by all the surrounding ConnectorCompletions. Then, it delegates the call
which is necessary for the simulation to continue. Finally, when the call returns, it adds a
network demand with the size of the result on the network.

Resulting Performance Model Impact To illustrate the impact of the connector comple-
tion on the performance model, consider figure 4.37 which presents an example connec-
tor completion and its deployment. All composite structures have been removed from
the figure for reasons of clarity.

Client Marshal

IA

Encrypt

IA’ IA’

Decrypt Demarshal

IA’

Server
IAIA’

NetComp

IA’ IA’

<<ConnectorCompletion>>

ClientRC ServerRC

Net

Client

Middleware

Server

Middleware

Figure 4.37: Allocated Connector Completion Example

The example depicts a connector with encryption, however, the following discussion
regards the general case in which an arbitrary number of processing steps like authen-
tication, compression, etc. may exist. The connector completion’s RD-SEFF results from
composing the RD-SEFFs of its inner components given in the appendix (see section A.2).
Figure 4.38 shows the composed RD-SEFF. Data flow annotations have been omitted from
the figure to keep it simple.

<<ExternalCall>>

IMiddleware.marshal

<<ExternalCall>>

IMiddleware.encrypt

<<InternalAction>>

transmit

<<ExternalCall>>

IMiddleware.decrypt

<<ExternalCall>>

IMiddleware.demarshal

<<ExternalCall>>

IA.aService
<<ExternalCall>>

IMiddleware.demarshal

<<ExternalCall>>

IMiddleware.decrypt

<<InternalAction>>

transmit

<<ExternalCall>>

IMiddleware.encrypt

<<ExternalCall>>

IMiddleware.marshal

Figure 4.38: Composed RD-SEFF of the Connector Completion

191

4.6. TECHNOLOGICAL JAVA EE MAPPING

The presented RD-SEFF illustrates how the generated RD-SEFFs of the connector com-
pletion’s inner components form a processing chain which resembles the processing of an
external call on the network. First, the client middleware marshals the parameters, then
it processes them (in this case by encrypting them), and hands them to the network for
transmission. On the server’s side the server’s middleware executes the same process in
reverse order. After processing the call, the results are returned using the same mech-
anism. The dashed boxes in figure 4.38 indicate that the contained actions are feature
dependent, additional processing steps.

The following aims at deriving a single formulae which represents the time demand
for the whole processing chain. For this, several helper functions are introduced. For
each of the middleware functions of middleware m, a function dm

function describes the
(hardware-dependent) CPU demand of function and bsfunction describes the bytesize of
the resulting stream. Only the CPU demands depend on the way an actual middleware
componentm does its processing. For example, the client may use a different middleware
than the server or a slower CPU resulting in different processing times. For the bytesizes,
solely the interaction protocol determines the resulting bytesize. Hence, bs needs not be
annotated with the middleware m performing the action.

The CPU demand of the marshalling function depends on the number of primi-
tive data types to serialise and the serialisation protocol. Let P = {RMI, SOAP} be
the set of available protocols. Then dm

marshal(p, ints.NoE, double.NoE, . . .) with dm
marshal :

P × N× . . .N→ Demand describes the CPU demand needed to serialise the given num-
bers of primitive types using protocol p. Analogue, bsmarshal(p, ints.NoE, double.NoE, . . .)

with bsmarshal : P × N × . . .N → N describes the resulting bytesize when serialising
the given number of primitive types. For example, as integers use 4 bytes in RMI,
bsmarshal(RMI, 1, 0, . . .) = 4.

For other processing functions pf ∈ {encryption, authentication, ..}, dpf : N →
Demand is the demand caused by processing a bytestream of the given length and
bspf : N → N gives the size of the stream after processing. Additionally, pf denotes
the complementary function of pf , i.e., the operation which reverts the operation on the re-
ciever’s side. For example, for the function pf = encryption the complementary function
pf is decryption.

To model the data flow available in the PCM, causing variables to change their value,
the following introduces a notation to model state changes. [X ← Y] denotes that vari-
able X changes its value to Y in all expressions following the [X ← Y]. For example,
[stream.BS ← bsencrypt(stream.BS)] models the change of the bytestream’s size caused
by encryption.

Let p ∈ P be the selected marshalling protocol in the connectors feature config-

192

4.6. TECHNOLOGICAL JAVA EE MAPPING

uration. Additionally, let pf1, . . . , pfn be the selected additional processing functions,
pfi ∈ {encryption, authentication, ...} and pfi 6= pfj for i 6= j. Using the introduced
helper functions and the function rt (see section 4.4.3), which models the time demand
for processing resource demands including resource congestion, and the operator⊕ intro-
duced in section 4.6.1.1 to indicate that demands modelled using the rt function have to
be evaluated sequentially, the time needed to transmit a call from the client to the server
is:

rt(ClientCPU , d
Client
marshal(p, ints.NoE, doubles.NoE, ...))

[stream.BS ← bsmarshal(p, ints.NoE, doubles.NoE, ...)]

⊕ rt(ClientCPU , d
Client
pf1

(stream.BS))

[stream.BS ← bspf1(stream.BS)]

⊕ . . .

⊕ rt(ClientCPU , d
Client
pfn

(stream.BS))

[stream.BS ← bspfn(stream.BS)]

⊕ rt(net, stream.BS/tpnet + lnet)

⊕ rt(ServerCPU , d
Server
pfn

(stream.BS))

[stream.BS ← bspfn
(stream.BS)]

⊕ . . .

⊕ rt(ServerCPU , d
Server
pf1

(stream.BS))

[stream.BS ← bspf1
(stream.BS)]

⊕ rt(ServerCPU , d
Server
demarshal(p, ints.NoE, doubles.NoE, ...))

The demand for processing the result is analogous and omitted here. Note, how the
feature configuration changes the resource demand. The set of selected additional pro-
cessing functions pf1, . . . , pfn has an impact on the number of processing steps in the
given formulae. Additional processing functions add an demand on the client and on
the server’s side. The chosen serialisation protocol has an impact on the marshalling and
demarshalling demands. Additionally, it generates different bytesizes for the processed
messages causing a different resource demand on subsequent processing steps and the
network.

4.6.4 Add-Ons

The implementation of the transformation of PCM instances to Java EE/EJB realisations
supports additional features to make it complete. However, as they have no direct per-
formance impact or do not belong to the application’s implementation but to its environ-
ment, they are only described briefly here. However, they have an impact on the overall
development time when using the model to generate a realisation. It is assumed, that the

193

4.6. TECHNOLOGICAL JAVA EE MAPPING

more code is generated the faster developers can finalise the implementation.

• Control Flow: For BasicComponents code is generated for their RD-SEFFs. However,
due to the abstraction of the RD-SEFF, the generated code is incomplete and has
to be completed by the developer. For this, the code is only generated once and
not altered on subsequent generator runs. It contains comments for all InternalAc-
tions giving the developer hints via the name of the action and also via the resource
demands from the model. The transformation handles all control flow constructs
and generates the respective Java control flow statements, i.e., loops, if-branches,
thread starts, etc. Again, parts which depend on variable characterisations like loop
iteration counts, or branch conditions are only preserved as comments helping the
developer in finally implementing the code.

• System External Services: The software architect or the QoS analyst have to add
timing information for services which are outside the scope of the system under
study. For the generated code to be quickly usable, a mock implementation of the
system external services is generated. It can be combined with a mock framework
such as EasyMock (Freese, 2002) to build stubs for the external services in order to
get a testbed for module testing.

• Usage Testdriver: The transformation derives single test scenarios and load test
drivers from the usage model. Each UsageScenario is transformed into a JUnit (Hunt
and Thomas, 2003) test for single execution. Additionally, the transformation gen-
erates a workload driver simulating the workload as specified in the UsageModel
(cf. section 4.4.4 for the workload mapping in SimuCom). The generated code is in-
complete in general because parameter values for EntryLevelSystemCalls can only be
derived from the model if VALUE characterisations exist. In other cases, generated
comments help the developer to fill in the missing code fragments.

4.6.5 Limitations and Discussion

Some limitations of the transformation of PCM instances and their coupled transforma-
tions remain. The following discusses them briefly.

• Completeness of the Generated Code: As already mentioned in the previous sec-
tion, code generation based on the PCM is always incomplete due to the abstraction
of the model. As a consequence, the focus has been on mapping the component
concepts of the PCM and to use it as demonstration how to realise abstract model

194

4.6. TECHNOLOGICAL JAVA EE MAPPING

concepts (called PIM in OMG’s MDA strategy) on a selected implementation plat-
form (called PSM in OMG’s MDA strategy). This mapping has been used to demon-
strate the inclusion of the performance impact of code mapping decisions. It is out
of the scope of this work to create an industry-style Java EE code generator like An-
droMDA which for example also considers generating a Web-GUI. For the PCM the
GUI is out of scope, but the database layer can be supported by deriving persistable
entities from CompositeDatatype. The current implementation does not support this.
Nevertheless, the generator served as foundation for some case studies in the PCM’s
context for fast code generation of Java EE applications from PCM instances whose
measured performance could be compared to the predictions done with SimuCom
for example.

• Completeness of the Feature Diagrams: The given feature diagrams are not com-
plete. For any of the given design decisions there are likely a lot more possible
solutions, e.g., further patterns. That’s the reason why the code and the prediction
transformation are closely coupled. Only features available in the code transforma-
tion need to be regarded in the prediction transformation. Additionally, there may
be features in the code transformation which do not have a significant performance
impact. The prediction transformation can simply ignore such features.

• Using Resource Types in Transformations: Whenever a coupled transformation
generates an InternalAction having ParametricResourceDemands, the generated de-
mand specification has to rely on a common understanding of the used Resource-
Types and their units between the transformation and the deployer who created the
ResourceEnvironment. This assumption corresponds to the PCM’s assumption that
component developer and deployer agree on the used ResourceTypes.

• Inclusion of Non-generated Components The mapping is distributed among the
component developers and the other roles. However, the generated code assumes
that the components it uses have been derived by a transformation by the compo-
nent developer. It is not capable of including manually written components which
do not follow the same rules. In order to include these components adapters or
wrappers are needed which comply with the naming schema of the transforma-
tion. It might be possible to generate these adapters and include their performance
impact as well as described in former work (Becker et al. (2006a), Streekmann and
Becker (2006)) and realised in a prototypical legacy tool by Krogmann (2004).

195

4.7. PROTOTYPE MAPPING

4.7 Prototype Mapping

The use of prototypes is common practice in engineering disciplines during the develop-
ment process of new products. In software engineering, the construction of prototypes is
also a recommended practice. It offers early feedback on functional and extra-functional
aspects of the software. Especially for the user interface prototypes allow early feedback
from customers. But also for performance evaluation prototypes are useeful as Bardram
et al. (2005) points out.

The problem with performance prediction models like SimuCom is that they usually
rely on assumptions and model abstractions, which are necessary to keep the complexity
under control. However, the real software system and its environment is usually much
more complex. Because of this, model-based evaluation can help in finding infeasible
designs quickly and cost-effective. But they can not assure that a design is feasible given
todays complexity of the systems. Having a prototype that can be tested in the destination
environment helps to understand system properties under realistic conditions.

However, this comes at the additional cost for setting up this environment which may
involve buying hardware, installing operation systems and middleware platforms, set-
ting up networking connections, and finally deploying, executing, and measuring the
prototype. As the measurements have to be performed in real-time (compared to simu-
lation time in SimuCom) this consumes additional time and money. In an engineering
process, it is desired to combine early model-based predictions and prototyping. First,
prototypes can yield important information on the application’s environmental charac-
teristics like measured response times of system external calls, middleware delays, etc.
Second, models that satisfy the requirements according to the simulation model can be
used to validate the results gained in the destination environment. Deriving prototypes
automatically from models lowers the cost of prototyping.

This section introduces a mapping of PCM instances to executable prototypes called
ProtoCom. It is based on the introduced mappings for SimuCom (described in section 4.4)
and the technology mapping to Java EE or POJO components (described in section 4.6).
ProtoCom’s mapping uses a mixture of the concepts of SimuCom and the code trans-
formation plus a small set of ProtoCom specific mappings. It’s realisation is simple by
exploiting the modular transformation technique described in section 4.2.

This section is structured as follows. First, section 4.7.1 gives details on ProtoCom’s
transformation implementation by combining the simulation and the code transforma-
tion. Section 4.7.2 describes how ProtoCom mimics resource demands by generating
a workload performance equivalent to the PCM’s model instance specification. Sec-
tion 4.7.3 concludes with a list of ProtoCom’s assumptions and limitations.

196

4.7. PROTOTYPE MAPPING

4.7.1 Combining Mappings

As already introduced briefly in section 4.2, ProtoCom uses the code transformation to
generate its components and deployment information. For transforming the behaviour
part of a PCM instance, i.e., component service implementations or the implementations
of workload drivers, it uses the templates of SimuCom. The only exception to this rule
is for InternalActions and their resource demands. Instead of using SimuCom’s resource
demand templates, which control SimuCom’s queuing network, ProtoCom uses work-
load generators, which try to mimic realistic resource demands. They are described in
section 4.7.2.

<<ExternalCall>>

IExternal.service

<<Loop>>

<<BasicComp>>

BC1

<<InternalAction>>

iterationCount=IntPMF[(2;0.4)(3;0.6)]

cpuDemand=a.BYTESIZE*100

Legend

 Node Generated By

ProtoCom Template

SimuCom Template

J2EE/POJO Template

Input/output Variable Usages

[..]

Figure 4.39: An Example for the ProtoCom Mapping Strategy

An example for the combination of the different transformation templates is depicted
in figure 4.39. The colouring indicates the origin of the template which is responsible
for generating the respective code element: white elements are generated by ProtoCom’s
own templates, light grey elements are generated by SimuCom templates and dark grey
elements are generated by the code transformation. Applying this schema, figure 4.39
shows that the component is generated by the code transformation. Note, that this in-
cludes the provided and required ports as well as the communication links between them.
This allows deploying the generated components on a Java EE middleware server. For the
behaviour of components, SimuCom templates generate most of the control flow logic.

The example contains an ExternalCall- and a LoopAction. SimuCom templates also gen-
erate the code for the variable characterisation handling and the evaluation of stochastic
expressions for loop iterations or branch conditions. Note, that due to the fact that Simu-
Com’s transformation generates ExternalCallActions, the passing of realistic parameter
values is not part of the prototype. Instead it passes simulated stacks, which may have
different bytesizes (cf. the corresponding discussion in section 4.7.3).

Finally, a mixture of SimuCom and ProtoCom templates generate the code for In-
ternalActions. SimuCom templates generate code for evaluating the resource demand’s

197

4.7. PROTOTYPE MAPPING

stochastic expressions. ProtoCom’s templates generate code that takes the derived de-
mand and tries to simulate load according to this demand.

Relationship to Coupled Transformations The prototype mapping also has a close
relationship to Coupled Transformations. ProtoCom can be seen as prediction transfor-
mation which generates a prediction by running a prototype. As such it has to be param-
eterised by the code transformation as SimuCom had to. However, as it uses the code
transformation templates to generate components, ports, and communication as well as
deployment aspects, parameterisations of these transformations are respected by con-
struction - given, that the same mark model instance is used for the prototype as for the
code transformation.

4.7.2 Simulation of Load

The main difficulty for the ProtoCom mapping is to generate resource demands on the
underlying execution environment, which shall be a close approximation of the load gen-
erated by the final application. The generated load has to rely on the resource demands
defined in the PCM instance and execution environment model only.

The following discusses two issues involved in generating such a resource demand.

Calculation of Hardware-dependent Demands First, the demand as specified in the
InternalAction is hardware independent, e.g., it is specified in abstract CPU work units.
Hence, it has to be transformed into a hardware dependent demand. For example, a
demand of 100 abstract CPU work units requires a translation into a certain amount of it-
erations of a CPU intense algorithm like computing Fibonacci numbers which is expected
to cause a performance equivalent CPU load. Two options have been considered for map-
ping hardware-independent resource demands to hardware-dependent demands. First,
support for a number of predefined hardware-independent demand types, e.g., CPU
work units, or second, automatic adjusting of ProtoCom to its target environment.

For this option, a constant translation factor for each element of a set of known units to
parameters of load simulators would be needed. For example, it could simply be defined
that in order to simulate the equivalent of a single work unit, 100.000 Fibonacci numbers
need to be calculated. Being rather simple to realise, this approach has some drawbacks.
First, it only works for units foreseen by ProtoComs mapping. Second, there is no guar-
antee, that the selected translation factor matches the assumptions of the developer who
specified the PCM instance.

The second option tries to remedy this by attempting to automatically determine the
translation factors by executing a small benchmark when starting ProtoCom. The PCM’s

198

4.7. PROTOTYPE MAPPING

ProcessingResourceSpecification can then be used to estimate translation factors. For ex-
ample, for a CPU whose processing rate is specified as 1000 work units per second in
its ProcessingResourceSpecification a translation factor t has to be found for which given a
demand of d it takes d ∗ t/1000 seconds to compute the respective demand simulation
algorithm. Assume a CPU benchmark on the target system yields a response time for
a single run of 1 second for calculating 100.000 Fibonacci numbers. Then the factor t is
100.000 FibonacciNo/sec ∗ 1

1000
sec/work unit = 100 FibonacciNo/work unit. In order to

get more reliable factors t, the benchmark is executed several times, outliers are ruled out
and an average of all fs is finally used. This option has the advantage that its measure-
ment results can be compared to simulation results. However, as it tries to eliminate the
hardware’s real processing rate, the physical hardware processing rate is not any longer
part of ProtoCom results as it would be for the first option where a twice as fast machine
would result in twice as fast results. On the other hand, remaining factors like the op-
erating system’s scheduler, cache impact, middleware overhead, etc. are still reflected
realistically.

The current implementation supports the second option as ProtoCom mainly served
to validate SimuCom’s predictions. Nevertheless, adding the first option is easy and part
of future improvements.

Selection of the Demand Simulation Strategy The algorithm used to simulate the de-
mand leads to the next issue: the selection of the right algorithm. It is important to select
an algorithm which causes a similar resource demand as the final application code. How-
ever, the PCM’s simplified resource model does not yet contain enough information for
this decision. In the PCM, a demand is simply multiplied with the respective processing
rate of the corresponding resource to get the demand in time units.

However, in reality, it is not that simple. For example, for a CPU demand it makes a
difference whether memory access is involved or not, and if it is involved how the CPU
cache is involved in this. For hard-disk accesses it is similar. It makes a difference if data
is read in large, continuous chunks or if the disk has to seek a lot and only reads small
amounts of data at each location. In order to deal with these issues, ProtoCom supports
the selection of a strategy which is used to simulate the resource demand. It contains a
central registry for all resource demand strategies which can be used to simulate the de-
mand of a specific resource type like CPU or hard-disk. By varying the resource demand
strategies, the software architect can analyse their performance impact. Future versions
of the PCM may support additional model elements giving information on memory or
disk access which can be used to automatically decide for the most appropriate strategy.

199

4.7. PROTOTYPE MAPPING

4.7.3 Assumptions and Limitations

There are also assumptions and limitations which have to be made for the transformation
of PCM instances to ProtoCom prototypes. The following list summarizes them.

• Validity of the PCM model Instance: As the ProtoCom mapping relies on its par-
ticular PCM input model, the model has to be valid with respect to the resource
demands. The prototype only provides the means to execute a PCM instance in a
more realistic execution environment but it cannot provide insights for the question
whether the PCM instance’s resource demands are valid with respect to the final
application.

• Choosing the Right Load Generation Strategy: Picking the right resource demand
simulation strategy is crucial for the results to be realistic as explained in the pre-
vious section. However, currently, there is no guidance for the user helping him
to choose the right one. Additionally, ProtoCom’s implementation is limited to a
global selection of a strategy per ProcessingResourceType. However, different Para-
metricResourceDemands in different InternalActions may be better reflected by differ-
ent strategies. These improvements are subject to future work.

• System External Calls: The code mapping generates only mock stubs for system
external services. It is desirable for a prototype to exchange the stub with code call-
ing the real service. However, this also implies specifying parameter values when
needed in these calls (see next list item).

• No Realistic Parameter Passing ProtoCom relies on PCM’s abstraction from the real
data and uses parameter characterisations and SimuCom’s simulated stack. How-
ever, this has several drawbacks.

First, the network load is not realistic any more as ProtoCom transmits simulated
stacks instead of the parameters of the real application. In cases where both differ
significantly, ProtoCom’s results may be worthless. As a remedy, in future versions
of ProtoCom the network load bytesize estimation introduced for AssemblyConnec-
tors (cf. section 4.6.3) can help. If the estimation results in a larger bytesize than the
size of the serialised simulated stack an additional random payload could be added
to the transmitted packages. However, this does not help if the estimated bytesize
is smaller than the serialised simulated stack.

Second, it is difficult to call system external services if this involves parameter pass-
ing. In this case, the stub generated for system external services needs manual ad-
justment and test data has to be used instead of realistic parameter values.

200

Chapter 5

Validation

The validation of the results presented in sections 3 and 4 is split into several aspects. The
overall aim of the approach has been to combine the areas of component-based software
development, model-driven software development, and performance prediction. In or-
der to achieve this goal, a meta-model for component-based architectural modelling and
performance prediction has been introduced in section 3. Transformations presented in
section 4 map instances of this model into a performance simulation, prototype imple-
mentation, or code skeletons. The presented Coupled Transformations method exploits
the close relationship of the applied transformations to enhance the performance predic-
tions.

These results of prediction methods can be validated on various levels according
to Freiling et al. (2008) which introduces three types of validation. As a prerequisite for
applying the different validation types, the correctness of the methods realisation and
accompanying tool implementations has to be ensured. This step has been incorporated
into the method and tool development process and is therefore omitted here. Type I
validations demonstrate that predictions made by a prediction method conform to the
observed reality given that the method and its tools are applied without making any mis-
takes. Type II validations show that methods, which depend on human interaction, can
be applied by trained users successfully. This is in line with the typical model-driven
evaluation criteria that the users for whom a specific DSL (meta-model) has been created
should be able to use the modelling language. Type III validations finally seek to validate
that the overall approach has benefits over other competing approaches. The last type
is extremely hard to show and cost-intensive in larger contexts as it requires to perform
projects at least twice - one time using the method under validation and the other time by
using competing approaches.

In the context of this thesis and the results given above, Type I validations of the pre-
diction results of the presented simulation. They can be classified in two classes. The

201

5.1. TYPE I VALIDATION

first class contains predictions based on the original model instance without respecting
Coupled Transformations in order to show that the simulation predicts correctly. Sec-
ond, Coupled Transformations for the introduced Java EE code mapping should increase
prediction accuracy.

A Type II validation should show the appropriateness of the PCM as modelling lan-
guage, its understandability and the applicability of the developed tool suite accompany-
ing the PCM. For Coupled Transformations it can be quantitatively validated how much
it speeds up the construction of accurate prediction models. Additionally, qualitatively
questionnaires can yield information on the realisation of Coupled Transformations in the
tool suite and whether it meets the user’s expectations on its applicability.

Several case studies presented in the following have been performed as joint work
with Heiko Koziolek who introduced the usage profile dependent modelling into the
PCM’s meta-model. The focus of his work has been on the usage profile dependent parts
of the PCM, whereas this work focuses on the model-driven aspects especially the trans-
formations and their outputs.

This section is structured as follows. Section 5.1 contains case studies conducted with
the PCM to show Type I validity. In the context of this thesis, this means that the PCM’s
modelling constructs as realised in SimuCom work as expected. Section 5.1.1 shows a
successful application of SimuCom without using Coupled Transformations to show its
prediction capabilities. Section 5.1.2 shows in a case study how Coupled Transformations
significantly increase the prediction accuracy for different AssemblyConnector mappings.
Section 5.2 presents the results of the Type II validation by presenting the experiment
conduced by Martens (2007).

5.1 Type I Validation

This section introduces case studies performed with the PCM and its transformations.
First, case studies which did not include mark models are given, second, those which use
the additional mark model information as presented for Coupled Transformations.

5.1.1 Mark Model Independent Predictions

Web Audio Store The Web Audio Store has been initially published by Koziolek et al.
(2006). Its model was used to integrate initial usage profile modelling concepts into UML
and UML-SPT. It has been reused by Becker et al. (2007) and Becker et al. (2008b) to
demonstrate the modelling capabilities of the PCM and its performance simulation.

The Web Audio Store is a component-based software system for sharing music like

202

5.1. TYPE I VALIDATION

iTunes serving as a representative component-based web application. Users can upload
music files to the server and retrieve the files stored later. It is implemented in .NET and
based on Microsoft’s ASP.NET. The database connected to the system was MySQL. User
interaction has been simulated by a manually written HTTP client. An overview on the
architecture of the system is given in figure 5.1.

AudioStoreWebForm UserManagement

EncodingAdapterOggEncoder DBAdapter

Web-Browser

MySqlClient MySqlDB

<<ResourceContainer>>
Application Server

<<ResourceContainer>>
Database Server

<<ResourceContainer>>
Client

<<LinkingResource>>
throughput = 128
unit = KBit/s

<<LinkingResource>>
throughput = 512
unit = KBit/s

<<Interface>>
HTTP

<<Interface>>
IEncoder

<<Interface>>
IAudioDB

<<Interface>>
IAudioStore

<<Interface>>
IUserManagement

<<Interface>>
IUserDB

<<Interface>>
ICommand
IConnection
IDataReader

Figure 5.1: Architectural overview on the Web Audio Store (Becker et al., 2007)

The file upload service has been selected as performance critical use case. As a cen-
tral aim of the PCM is early design time support for design decisions, an alternative has
been introduced into the architecture. For uploaded files there is the option to recode the
uploaded file using an OGG encoder before storing it in the database as indicated by the
dashed box in figure 5.1. The encoder is able to reduce the size of the music files by a
factor of approx. 62%. The reduction in the filesize of the uploaded file causes less load
on the network connection to the database but needs an additional CPU demand on the
upload server. In the investigated use case, a single user uploads music files in varying
numbers according to a given distribution between 8 and 12. Each file’s size is either 3.5,
4, or 4.5 MByte. The corresponding usage model is shown in figure 5.2(a) using a syntax
close to the PCM tool’s concrete graphical syntax.

The Web Audio Store’s PCM instance models the middle-tier of the application, i.e.,
the components WebUI, AudioStore, EncodingAdapter, and Encoder. The database
interface is modelled as SystemExternalCall. Figure 5.2(b) shows the important RD-SEFFs
of the WebUI component and figure 5.3(a) that of the EncodingAdapter component. In
contrast to the model published by Koziolek et al. (2006) the model used in Becker et al.
(2008b) uses a parametric CPU demand for the encoder (see figure 5.3(b)) and for the
time needed to transmit the file over the network. Both dependencies have been roughly
estimated based on measured response times in dependence of the filesize.

Becker et al. (2007) used a deprecated version of SimuCom which did not use a model
transformation but interpreted it. Becker et al. (2008b) use SimuCom as introduced in
section 4.4. The following presents the results as gained by the transformation based

203

5.1. TYPE I VALIDATION

<<SystemCallAction>>

IHTTP.UploadFiles

InputParameterUsage

files.NUMBER_OF_ELEMENTS

 =IntPMF[(8;0.1)(9;0.1)(10;0.2)(11;0.4)(12;0.2)]

files.INNER.BYTESIZE

 =IntPMF[(3500000;0.1)(4000000;0.6)(4500000;0.3)]

<<ClosedWorkload>>

Population: 1

(a) UsageModel

<<CollectionIteratorAction>>

UploadLoop

Parameter: files

<<ExternalCallAction>>

HandleUpload

InputParameterUsage

files.BYTESIZE

 = files.INNER.BYTESIZE

OutputParameterUsage

<<ExternalCallAction>>

HandleUpload

InputParameterUsage

OutputParameterUsage

<<RDSEFF>>

WebUI.UploadFiles

(b) RD-SEFF WebUI.UploadFiles

Figure 5.2: Web Audio Store PCM Model

realisation. Figure 5.4 shows the predicted probability density function and the resulting
CDFs as well as the measured values for the architecture alternative without using the
encoder component.

Due to the use of measured basic hardware demands, the prediction is close to the
measurements. The Kolmogoroff-Smirnov (KS-)statistic (Sachs, 1997) is below 10%, i.e.,
the maximum difference between the CDFs in figure 5.4(b).

Figure 5.5 shows the predicted and measured response times for the design alternative
containing the OGG encoder. As in the other design alternative, prediction and measure-
ments fit well. The KS-statistic is again below 10%. From the predictions, it can be seen,
that using the encoder alternative would be the faster alternative under the given us-
age profile. As measurements and predictions do not deviate much, SimuCom is able to
predict the response time correctly.

5.1.2 Mark Model Dependent Predictions

Media Store The Media Store as published by Koziolek et al. (2007) initially served as
case study for component parameters and SetVariableActions. However, it has been also
used as a case study for the Java EE mapping and SimuCom. The Media Store’s idea is
similar to the Web Audio Store. It represents a multimedia shop suited for MP3 or video
files. It supports two use cases, the download of files and their upload. The case study
analysed two usage profiles. One for a music web shop and another one for video files.
However, these usage dependencies are not of primary interest here. They are covered
by Koziolek (2008).

The Media Store’s architecture has been modelled directly as PCM instance. The archi-
tecture as depicted in figure 5.6 consists of several components from which the case study
uses five, i.e., WebUI, MediaStore, DBAdapter, AudioDB, and DigitalWatermark.

204

5.1. TYPE I VALIDATION

<<ExternalCallAction>>

IAudioDB.InsertAudioFile

<<ExternalCallAction>>

IEncoder.EncodeFile

InputParameterUsage

OutputParameterUsage

<<RDSEFF>>

EncodingAdapter.UploadFile

file.BYTESIZE=

 file.BYTESIZE

encodedFile.BYTESIZE=

 RETURN.BYTESIZE

InputParameterUsage

OutputParameterUsage

file.BYTESIZE=

 encodedFile.BYTESIZE

(a) RD-SEFF EncodingAdapter.UploadFile

<<InternalAction>>

EncodeFile

<<SetVariableAction>>

ResultSetter

ResourceDemand

<<RDSEFF>>

OggEncoder.EncodeFile

file.BYTESIZE/50000 [CPU]

VariableSetter

RETURN.BYTESIZE=

 file.BYTESIZE * 0.62

(b) RD-SEFF OggEncoder.EncodeFile

Figure 5.3: Web Audio Store PCM Model

The first two components handle client communication, the next two the database inter-
action and the last one is responsible for adding a digital watermark to the delivered files
in order to identify the user if the file should appear illegally somewhere on the Internet.

The Java EE transformation introduced in section 4.6 generated from the Media Store’s
PCM instance code skeletons. The skeletons lacked the database interaction and an algo-
rithm to do the watermarking. Adding the missing code fragments took about 3-4 person
hours. It involved writing classes for the Java Persistence API (JPA) for the database in-
teraction and adding a watermarking algorithm. However, all code additions only dealt
with the applications business logic. All infrastructure code including build and deploy-
ment scripts could be generated by the Java EE mapping demonstrating that the mapping
worked. Additionally, to complete the generated test driver (c.f., section 4.6.4) took half
an hour for finalising the missing business logic. It downloads randomly selected files
from the server and conducts response time measurements.

The Media Store case study as published by Koziolek et al. (2007) forms a solid foun-

205

5.1. TYPE I VALIDATION

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,1

520 540 560 580 600 620 640 660 680 700 720 740 760 780 800 820 840 860 880

P
ro

b
ab

ili
ty

Response Time (Seconds)

Simulation Measurement

(a) Probability Density

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

520 540 560 580 600 620 640 660 680 700 720 740 760 780 800 820 840 860 880

P
ro

b
ab

il
it

y

Response Time (Seconds)

Simulation Measurement

(b) Cumulative Distribution Function (CDF)

Figure 5.4: Prediction and Measurements without Encoder (Becker et al., 2008b)

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

3
8
0

3
9
0

4
0
0

4
1
0

4
2
0

4
3
0

4
4
0

4
5
0

4
6
0

4
7
0

4
8
0

4
9
0

5
0
0

5
1
0

5
2
0

5
3
0

5
4
0

5
5
0

5
6
0

5
7
0

5
8
0

5
9
0

6
0
0

6
1
0

6
2
0

6
3
0

6
4
0

P
ro

b
ab

il
it

y

Response Time (Seconds)

Simulation Measurement

(a) Probability Density

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1
3
8
0

3
9
0

4
0
0

4
1
0

4
2
0

4
3
0

4
4
0

4
5
0

4
6
0

4
7
0

4
8
0

4
9
0

5
0
0

5
1
0

5
2
0

5
3
0

5
4
0

5
5
0

5
6
0

5
7
0

5
8
0

5
9
0

6
0
0

6
1
0

6
2
0

6
3
0

6
4
0

P
ro

b
ab

ili
ty

Response Time (Seconds)

Simulation Measurement

(b) Cumulative Distribution Function (CDF)

Figure 5.5: Prediction and Measurements with Encoder (Becker et al., 2008b)

dation for an extended case study performed in the context of this thesis as the neces-
sary infrastructure’s setup is already available. To demonstrate the validity of Coupled
Transformations, a case study in the context of the mapping of AssemblyConnectors as
introduced in section 4.6.3 has been performed. Focusing on the AssemblyConnector link-
ing the client with the server, an investigation of mapping options and their respective
performance impact demonstrates how Coupled Transformations link the generated im-
plementation and the respective prediction model.

For the AssemblyConnector linking client and the server, the options which marshalling
protocol to use (SOAP vs. RMI, c.f. section 4.6.3) and whether to use authentication
and/or encryption have been selected to validate the automatic inclusion of the respec-
tive completions. Note, that the combination of using SOAP and authentication was ruled
out due to its unclear configuration in the Glassfish server. For the study, a new method

206

5.1. TYPE I VALIDATION

WebBrowser MediaStoreWebGUI

User
ManagementSoundProcessing

Billing

Encoding

Digital
Watermarking

AudioDB

Community
Services

PodcastInternetRadio

Equalizer

Accounting UserDB

DBAdapter

<<ResourceContainer>>
Client

<<ResourceContainer>>
Application Server

<<ResourceContainer>>
DBServer1

<<ResourceContainer>>
DBServer2

<<LinkingResource>>
throughput = 1000
unit = MBit/s

<<LinkingResource>>
throughput = 1
unit = MBit/s

<<VariableUsage>>
StoredFiles.NUMBER_OF_ELEMENTS
StoredFiles.INNER.BYTESIZE

<<VariableUsage>>
probIncludeID.VALUE
probIncludeText.VALUE

Figure 5.6: Architecture of the Media Store (Koziolek et al., 2007)

queryID3 has been added to the interface of the MediaStore. The method takes a list of
IDs with the datatype integer and queries the connected database for each of the ID3 tags
matching the MP3 file with the respective ID. After collecting the complete set of tags,
the server sends the tags back to the client. For all measurements, the client, the Glass-
fish server, and MySQL run on the same host under Ubuntu Linux 7.10. The host was
a laptop with a Core2Duo T7100 CPU and 2GB RAM. During the experiments, only one
of the CPU’s cores was active. By placing all components on the same host, the network
interaction used the local TCP/IP stack instead of using a physical link. The workload
was a close workload with a single user and no think time. Altogether, deactivation of
a CPU core, not using a physical network, and only using a single user workload, cir-
cumvents limitations of the current PCM concurrency modelling (see section 3.10) which
would make a comparison of predicted and measured metrics difficult. The measure-
ments used a warmup phase of 20.000 measurements. Afterwards, they collected 20.000
measurements of the overall response time.

To make predictions in the following, measurements taken of the basic functions of
the Glassfish server served as basis to create simplified RD-SEFFs for the actions taken
by the server. The basic functions include RMI and SOAP marshalling, performing au-
thentication, or performing encryption. The created PCM Glassfish component uses the
measured distribution functions directly in its ParametricResourceDemands. Using mea-
sured data for the basic functions is not a thread to the validity of Coupled Transfor-
mations. Measurements mainly capture the execution environment influence factor on
performance, however, for Coupled Transformations the important influence factor is the

207

5.1. TYPE I VALIDATION

implementation. Thus, fixing the execution environment indeed removes a factor from
the prediction which might otherwise make it hard to draw conclusions on the validity
of Coupled Transformations.

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0
5

10
15

20

Prediction vs Reality

Time [ms]

D
en

si
ty

basic pred
meas RMI

(a) Probability Density

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Prediction vs Reality

Time [ms]

P
ro

ba
bi

lit
y

basic pred
meas RMI

(b) Cumulative Distribution Function (CDF)

Figure 5.7: Prediction Error without Coupled Transformations

Figure 5.7 shows a comparison between a prediction done with the PCM without re-
specting the details of the connector’s implementation and an actual realisation of the
connector using RMI. The figure shows that the prediction deviates from the measure-
ments by around 400%. Also notı́ce the right peek of the measurement’s density function.
This peek is observable in all subsequent measurements. A possible explanation of these
outliers is Java’s garbage collection mechnismn which recycles the memory used by the
marshaller.

The following demonstrates how Coupled Transformations increase the prediction
accuracy using knowledge on the connector’s realisation.

Figure 5.8 shows two pairs of measurements and predictions. The first pair shows the
measured and the predicted response time distribution of using RMI without authenti-
cation or encryption. The figure shows that prediction and measurement do not deviate
any longer as they did in figure 5.7, i.e., Coupled Transformations significantly increased
prediction accuracy. Using the mean value as point estimator for the distributions (cf.
table 5.1 at the end of this section), the difference between the mean of the measurements
and the predicted mean is 0.017ms or approx. 1.7%. The good prediction accuracy is

208

5.1. TYPE I VALIDATION

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
5

10
15

20

Authentication Impact

Time [ms]

D
en

si
ty

pred RMI wo/Auth wo/Enc
pred RMI w/Auth wo/Enc
meas RMI wo/Auth wo/Enc
meas RMI w/Auth wo/Enc

(a) Probability Density

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Authentication Impact

Time [ms]

P
ro

ba
bi

lit
y

pred RMI wo/Auth wo/Enc
pred RMI w/Auth wo/Enc
meas RMI wo/Auth wo/Enc
meas RMI w/Auth wo/Enc

(b) Cumulative Distribution Function (CDF)

Figure 5.8: RMI Mapping with and without Authentication

expected due to that fact that the predictions rely on measured data. The second pair of
measurements and predictions in figure 5.8 shows the impact of activating RMI authen-
tication in the connector. In this scenario, the measured response time is approx. twice as
long. As figure 5.8 shows, Coupled Transformations adjust the predictions to reflect this
fact. The difference in the mean values is 0.070ms or approx. 3.6%.

Figure 5.9 shows the same use case as in figure 5.8. However, this time both pairs
additionally use Glassfish’s SSL encryption to encrypt the transmitted data. As figure 5.9
shows, the distribution functions match again closely. They are shifted by approximately
0,2ms to the right in comparison to the functions in figure 5.8. This shift is the additional
overhead caused by the encryption algorithm. For the use case without authentication
the difference between the measured and the predicted mean value is 0.002ms or approx.
0.2%. For the use case with authentication the difference is 0.049ms or approx. 2.4%.

Figure 5.10 shows the impact of using a different marshalling protocol for realising
the connector, e.g., a comparison between SOAP and RMI. Both use cases neither use
authentication nor encryption. The distribution functions are again close, where SOAP
shows a higher response time in the measurements than in the prediction. This is most
likely due to the memory overhead of the XML documents created by SOAP not reflected
in the PCM. However, the predicted mean value in the SOAP use case is only 0.046ms
lower than the measured mean value leading to a relative difference of approx. 3.5%.

209

5.1. TYPE I VALIDATION

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
5

10
15

20

Adding Encryption

Time [ms]

D
en

si
ty

pred RMI wo/Auth w/Enc
pred RMI w/Auth w/Enc
meas RMI wo/Auth w/Enc
meas RMI w/Auth w/Enc

(a) Probability Density

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Adding Encryption

Time [ms]

P
ro

ba
bi

lit
y

pred RMI wo/Auth w/Enc
pred RMI w/Auth w/Enc
meas RMI wo/Auth w/Enc
meas RMI w/Auth w/Enc

(b) Cumulative Distribution Function (CDF)

Figure 5.9: Adding Encryption to an RMI Connector

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

0
5

10
15

20

RMI vs SOAP

Time [ms]

D
en

si
ty

pred RMI
pred SOAP
meas RMI
meas SOAP

(a) Probability Density

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RMI vs SOAP

Time [ms]

P
ro

ba
bi

lit
y

pred RMI
pred SOAP
meas RMI
meas SOAP

(b) Cumulative Distribution Function (CDF)

Figure 5.10: Different Marshalling Strategies: SOAP vs. RMI

Figure 5.11 show the same use case as figure 5.10, however, with both cases using SSL
encryption. Again, the distribution functions reflect this use case closely. The difference

210

5.1. TYPE I VALIDATION

1.0 1.2 1.4 1.6 1.8 2.0

0
5

10
15

20

Encrypted RMI vs Encrypted SOAP

Time [ms]

D
en

si
ty

pred RMI
pred SOAP
meas RMI
meas SOAP

(a) Probability Density

1.0 1.2 1.4 1.6 1.8 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Encrypted RMI vs Encrypted SOAP

Time [ms]

P
ro

ba
bi

lit
y

pred RMI
pred SOAP
meas RMI
meas SOAP

(b) Cumulative Distribution Function (CDF)

Figure 5.11: Adding Encryption to the Comparison of SOAP and RMI

in the measured and predicted mean values for using encrypted SOAP is 0.035ms or
approx. 2.3%.

Finally, table 5.1 summarizes the presented mean value results, which show the accu-
racy gained by using Coupled Transformations as the largest relative difference is around
3.6% while the predicted mean values change according to the set of selected connector
features.

Protocol Auth Enc E(Meas) [ms] E(Pred) [ms] Diff. [ms] Diff. [%]

none X X n/a 0.215 n/a n/a
RMI X X 0.988 0.971 0.017 1.7
RMI 4 X 1.941 1.871 0.070 3.6
RMI X 4 1.113 1.111 0.002 0.2
RMI 4 4 2.060 2.011 0.049 2.4
SOAP X X 1.329 1.283 0.046 3.5
SOAP X 4 1.498 1.463 0.035 2.3

Table 5.1: Mean Value Comparison

211

5.2. TYPE II VALIDATION: CONTROLLED EXPERIMENT

5.2 Type II Validation: Controlled Experiment

The applicability of the PCM and its transformations is subject to a Type II validation.
Applicability is subjective and depends on the person using the PCM. Hence, in order to
perform a Type II validation an experimental setting involving typical users is needed.

Martens (2007) performed such a study in her master thesis as a controlled experiment.
The study investigated the applicability of PCM core concepts, SimuCom, interpretability
of simulation results, and the basic applicability of Coupled Transformations.

This section is structured as follows. Section 5.2.1 lists influence factors to the PCM’s
applicability. Section 5.2.2 gives a description of the PCM’s tools from a users point of
view. This is important for judging the tools’ impact on the results. Section 5.2.3 presents
the experimental setting. The results in section 5.2.4 show that the validation was success-
ful. After discussing the experiment’s validity in section 5.2.5, a short summary concludes
the Type II validation.

5.2.1 Influence factors

When performing a study on the applicability of a model-driven method, several influ-
ence factors have an impact on the study’s outcome:

• Meta-Model Complexity: A major issue in using a modelling language is the meta-
model’s complexity. The more language concepts and semantic constraints the user
has to learn the more likely it is that the modelling language is overly complex.
While more complex models usually produce more accurate prediction results, a
high complexity can lead to more mistakes made by the users resulting in models
which do not adequately reflect the modelled entity.

• Concrete Syntax: Up to this point, this thesis did not discuss the issue of a con-
crete PCM syntax and used either UML-like diagrams with stereotypes or figures
exported from the PCM’s graphical modelling tool. However, the concrete syntax
has a high impact on the applicability of a modelling language. For example, a good
concrete syntax can hide meta-model complexity by presenting model information
in a compact form like the graphical editor for ComposedStructures which hides sev-
eral meta-model attributes in simple arrows.

• Tool Support: Another major influence factor is the tool support for editing, val-
idating, and analysing model instances. Editors for concrete graphical syntaxes
have to present the model instance in a comprehensible way. Features like auto-
matic arranging of diagram elements, tool tips, or modelling suggestions help to

212

5.2. TYPE II VALIDATION: CONTROLLED EXPERIMENT

use the editor in an effective way. For concrete textual syntaxes established features
in programming language editors, such as code highlighting, code completion, and
incremental syntax and semantics checks, help in the same way. Tool supported
validation of model instances helps to find modelling mistakes. Ideally, suggestions
how to fix the issue are already presented. In case of the PCM, which separates the
model into sub-models, the validation also ensures that these sub-models form a
consistent model when put together. Finally, the configuration and execution of an
analysis should be as easy as possible requiring a minimum amount of user interac-
tion.

As a consequence of these influence factors any observations made in an experiment
result from a combination of the skills of the participants and the features and quality
properties of the tool’s implementation. This complicates interpreting the results. It is
difficult to judge whether the meta-model is incomprehensible or whether only its imple-
mentation is insufficient.

A more detailed description of the PCM’s tool suite from a usability perspective com-
pared to the overview given in section 3.9 is needed to help interpreting the case study’s
results. Therefore, the next section gives details on the tools.

5.2.2 PCM Tool Suite

From a user’s point of view, the PCM tools offer three main features: creating and editing
model instances, executing analyses, and visualising results for interpretation purposes.
In contrast to the prototypical implementation of the concepts sufficient for Type I vali-
dations, a Type II validation needs a more sophisticated support as explained in the third
bullet point of the enumeration in section 5.2.1. Because of this, the PCM tools have been
improved with respect to robustness, usability, and completeness in a five month lasting
effort. The following characterises the state of the tools during the experiment.

Editors Graphical editors for the PCM’s concepts were available for the Repository
model, RD-SEFFs, CompositeStructures, Allocation model, and UsageScenarios (cf. fig-
ure A.3 in the appendix). The editors have been generated to a large extend using the
Graphical Modelling Framework 2.0 (GMF), a framework for the definition of concrete
graphical syntaxes including the generation of graphical editors for the defined syntax.
The diagram elements have a close relationship to UML2’s graphical elements. It is ex-
pected that this lowers the learning curve for new users. However, it might also lead to
confusion between the UML and the PCM’s meaning.

Several enhancements have been added to the generated editors. For example, dialogs

213

5.2. TYPE II VALIDATION: CONTROLLED EXPERIMENT

and property sheets to define Interfaces or automatic creation of dependent elements, e.g.,
start and stop elements for behaviours. For editing stochastic expressions a specialised
textual editor has been implemented supporting syntax highlighting, code completion,
and on-the-fly error checking for syntactical as well as type system correctness.

There was no specialized editor for instances of the ResourceEnvironment. However, it
was omitted intentionally because EMF generates basic editors for any EMF based meta-
model. This default editor has been considered to be sufficient for the not so complex
ResourceEnviroment. Additionally, specialised editor support was missing for the specifi-
cation of component parameters which also had to be done in the generated EMF default
editor.

Simulation Execution Andrej (2007) realised a close integration of SimuCom into the
model editing environment as a result of his study thesis. It automates checking the
model instances for violations of the OCL constraints, the execution of SimuCom’s trans-
formation, and running the simulation. The configuration of the simulation including the
stop condition and basic feature configuration settings for Coupled Transformations can
be edited in a robust configuration dialog.

The automated check of model instances finds violations of the PCM’s OCL con-
straints and additionally SimuCom’s generator preconditions. It shows a summarizing
dialogue containing all detected constraint violations. It has been introduced after the
first experiment session, because many participants had problems with manually execut-
ing the model validation. This introduction might have had an impact on the results of
the second experiment session as it improved the tool’s error reporting. On the other
hand, during the first session students also had the possibility to ask the supervisors in
case of tool problems. It is arguable that the introduction only automated this process.
Furthermore, there were no direct evidence of an influence in the experiment’s observa-
tions.

Presentation of Simulation Results For the analysis of the simulation results, Andrej
(2007) added a visualising GUI for the so called SensorFramework used in SimuCom to
collect the results (a screenshot is available in figure 3.20). The SensorFramework of-
fers different types of sensors which can be used to instrument code to measure passage
times and state changes. The sensors can be either used to record simulation results, e.g.,
in SimuCom, or to store measured data, e.g., in ProtoCom or when analysing existing ap-
plications. SimuCom’s transformation instruments the generated simulation code with
sensors which record passage time of UsageScenarios and external method calls. For exter-
nal method calls, it distinguishes the measured passage times using the AssemblyContext’s

214

5.2. TYPE II VALIDATION: CONTROLLED EXPERIMENT

unique identifier which is important if the same component type is used several times in
an architecture. That is because the same component might shows different performance
measures in different contexts.

Simulated active resources are instrumented with state sensors measuring queue
lengths and their changes over time. Additionally, they use passage time sensors to mea-
sure wait times of the jobs in the queues.

The developed SensorFramework-GUI can visualise measurements of passage time
sensors as histograms and cumulative distribution functions. Using an interface to the
statistics package R (R Development Core Team, 2007), users can derive basic point es-
timators like mean value or standard deviation of measurements. Furthermore, the tool
displays queue lengths and the probability distribution of queue lengths as pie charts.

In the Palladio development process, the software architect - supported by the QoS an-
alyst - uses this information to judge design alternatives and choose the alternative best
fitting his requirements. As he gets probability density functions as results, it is possible
to analyse more sophisticated requirements compared to only mean values. However,
additional skills, like deriving distribution quantiles or comparing distributions with in-
tersections, may be needed to interpret the distribution functions correctly. In the exper-
iment presented here, the experiment participants had to perform this task. Evaluating
their results and their answers to corresponding questions in the questionnaire helps to
gain insights into the interpretation of the results.

5.2.3 Study Design

To perform the Type II validation, Martens (2007) developed a training course for the par-
ticipants and an experimental setting described in the following. The experiment com-
pares the PCM and its tool to the mature SPE method and its SPEED tool (cf. section 2.3.3).
This comparison helps in judging the strength and weaknesses of the approaches and
their tools. Additionally, it allows to judge the complexity of the experiment tasks in
cases of overly complex tasks.

Preparation The participants in the experiment were trained in applying SPE and Pal-
ladio during a course in the summer term covering both theory and practical labs (cf.
figure 5.12). For the theory part, there was a total of ten lectures, each of them took
1.5h. The first three lectures were dedicated to foundations of performance prediction
and CBSE. Then, two lectures introduced SPE followed by five lectures on the PCM. The
three additional lectures on the PCM in comparison to SPE were due to its more complex
meta-model which needs more views and different editors to edit its model instances.
In parallel to the lectures, eight practical labs took place, again, each taking 1.5h. During

215

5.2. TYPE II VALIDATION: CONTROLLED EXPERIMENT

these sessions, solutions to the accompanying ten exercises were presented and discussed.
Five of these exercises practised the SPE approach and five the Palladio approach.

The exercises had to be solved by the participants between the practical labs. Martens
assigned pairs of students to each exercise and shuffled the pairs frequently in order to get
different combinations of students working together and exchanging their knowledge.
Each exercise took the students 4.75 h in average to complete.

Together, knowledge tests and preparatory exercises were intended to ensure a cer-
tain level of familiarity with the tools and concepts, because participants who failed two
preparatory exercises or a short tests would have been excluded from the experiment.

Experiment Design To compare Palladio and SPE, Martens (2007) designed modelling
tasks for the participants. Each modelling task was executed by a group of participants
in which each participant used Palladio and simultaneously by a group of participants
in which each participant used SPE. The modelling tasks contained the translation of the
design of an example system given as plain text supported by UML diagrams into the in-
put models of the respective method, the execution of the analysis, and the interpretation
of the results returned by the respective method’s tool. For each system under study, the
modelling task involved creating a model for the system’s initial design. Additionally,
each system had five possible design alternatives. The goal for the participants was to
find the alternative that best improved the overall system response time. As such, the
modelling task can be considered a typical application scenario for both methods during
software design.

Martens (2007) developed a goal-question-metric (GQM (Basili, 1990)) plan to system-
atically define the evaluation goals, derived questions, and metrics. The overall goal was
to judge the applicability of Palladio and SPE. For this, the focus was on two questions.
The first question was about the quality of the created models. Note, that quality in this
context refers to a correct translation of the given system specifications to input models
needed by both methods. The second question asked about the time consumption neces-
sary to create these input models. For both questions, Martens also tried to systematically
judge the reasons for the observed results including a questionnaire filled out by the par-
ticipants after the experiment capturing their subjective impression of both methods.

Martens collected the models created by the participants and analysed them after the
experiment. For this analysis, Martens decided to compare the predictions made by the
created models to predictions of a so called reference model (Martens, 2007, p.38). The
reference model is the solution of the experiment tasks as created by Martens. She used
all available information in the task’s descriptions to create these models and ensured
that they were correctly specified in the experiment’s pre-tests.

216

5.2. TYPE II VALIDATION: CONTROLLED EXPERIMENT

During the experiment, the participants had to hand in solutions for the system and
each design alternative. The experimenters checked the solutions for obvious mistakes.
Only when passing this test, the participants were allowed to continue with the experi-
ment task. Martens introduced this so called acceptance test to ensure a minimum quality
of the created models. In order to still judge the results later, the experimenters docu-
mented the outcome of the acceptance test.

To judge the durations of the activities needed for performing a prediction with both
methods, the participants took timestamps whenever they finished an activity from a set
of predefined activities. The initial experiment design allocated a maximum of four hours
to complete the experiment tasks. However, many participants needed additional time,
so the time was extended to six hours during the experiment.

For the experiment, Martens (2007) divided the group of participants into two sub
groups and designed two experiment tasks for them. The participants worked on the
tasks in a cross-over experiment design. The first group used Palladio for the first task
and SPE for the second, the second group did so vice versa (see figure 5.12). The systems
under study were the so called MediaStore (MS) in the first experiment session and the
WebServer (WS) in the second. The MediaStore is a variant of the system used for Type I
validations already introduced in section 5.1.2. The WebServer task deals with a model of
a component-based web server.

SPE

Media Store

9 students

Palladio

Media Store

10 students

SPE

Web Server

10 students

Palladio

Web Server

8 students

Session 1:

30.06.2007

Session 2:

07.07.2007

P
re

p
a

ra
ti
o

n
E

x
p

e
ri
m

e
n

t

Lectures

10 sessions

Practical lab

8 sessions

10 Preparatory

exercises

Figure 5.12: Experiment Design (Martens, 2007)

For each system, typical design alternatives exist. For the MediaStore, the design al-
ternatives are adding a cache for frequently requested music files, the use of a database

217

5.2. TYPE II VALIDATION: CONTROLLED EXPERIMENT

connection pool, allocating some components of the system on a second server, and re-
encoding the uploaded files to reduce their size. The WebServer’s design alternatives
are adding a cache, introducing a thread pool, allocating some components on a second
server, and executing the server’s logging activities concurrently. Both systems also con-
tain a fifth design alternative specifically designed to test the applicability of Coupled
Transformations. This design alternative changes the realisation of looking up required
components from dependency injection to broker lookup (cf. section 4.6.1). They ques-
tion during the experiment was whether all participants would use the automatic model-
transformation instead of explicitly modelling the broker interaction and how much time
they would save in comparison with SPE which does not offer this automatism.

Additionally, for each system there are two different usage profiles specified. The first
usage profile (UP1) is a closed workload with a single user entering the system repeat-
edly. The second usage profile (UP2) is an open workload with an arrival rate such that
multiple users use the systems concurrently. Additionally, UP2 also had different input
parameter characterisations than UP1.

5.2.4 Evaluation

First, this section presents the overall results of the study. Afterwards, it discusses in
more detail the questions important in the context of this thesis. That is first whether the
model-driven approach of Palladio including its meta-model, concrete syntaxes, and the
SimuCom transformation were applicable. Second, whether Palladio’s SensorFramework
sufficiently supported the interpretation of the results. And finally, the answers to the
questions specific to Coupled Transformations.

Overall Results The two main questions of Marten’s GQM plan are whether the partici-
pants can create models which would be of acceptable quality to judge design alternatives
and how much time they would need to do so. Martens (2007) gives detailed results in
chapter 5 of her thesis. This section only gives a summary of the main results.

Media Store Web Server Average
UP1 UP2 UP1 UP2

Palladio 4.69% 6.79% 5.47% 10.67% 6.9%
SPE 11.35% 10.21% 2.42% 9.21% 8.3%

Table 5.2: Deviation of the predicted response times (Martens, 2007, p.83 cont.)

Table 5.2 shows the average deviation of the response time as predicted by the mod-
els created by the participants and the reference model for both systems and both usage

218

5.2. TYPE II VALIDATION: CONTROLLED EXPERIMENT

profiles averaged over all design alternatives. In average, prediction results of Palladio
models deviated 6.9% and SPE predictions by 8.3%. However, for different design al-
ternatives higher deviations could be found. The maximum deviation of the average of
predicting a single design alternative was 20.35% for Palladio and 21.22% for SPE (cf.
table A.1 and A.2). Nevertheless, (Martens, 2007, p.109) argues that the participants pro-
duced good results with both methods which is a resonable interpretation as most results
deviated significantly less than the presented maximum values.

The box-and-whisker diagram in figure 5.13 depicts the duration for completing the
experiment tasks, i.e., modelling the system and all design alternatives.

M
S

 P
al

M
S

 S
P

E
W

S
 P

al
W

S
 S

P
E

250 300 350 400

Time in minutes

Figure 5.13: Durations for the Complete Task (Martens, 2007, p.102)

Each box in the diagram shows the minimum and maximum value as whiskers, the
25% and 75% quartile (borders of the boxes) and the median value (bold line in the box).
Using Palladio it takes longer to complete the experiment tasks. This observation holds
for both systems under study. Averaged over both tasks, Palladio took 1.25 times longer
to complete than SPE.

Figure 5.14 gives a detailed break down of the durations for completing the modelling
and prediction of the initial system model. Figure 5.14 contains at least two important
results. First, the accumulated duration of the activities needed to create an initial model,
i.e., from reading to UP2 modelling, is larger for Palladio than for SPE. This result is
explainable as Palladio models component performance in a reuseable way, i.e., the com-
ponent models can be used in different assembly, allocation, and usage contexts without
the need for adjustment. Creating parameterised models required extra effort for the pa-
rameterisation which pays off when reusing the models which was not part of the initial

219

5.2. TYPE II VALIDATION: CONTROLLED EXPERIMENT

� � �� � �� � � �� � �� � 	
 � � ��� �� � 	
 � � ��� � �� �� � � �� ��� �� �� � � �� �
� � � � �� � �� � �� �

�� �� � �
� � � � � � �� �� � � 	 	 � � � � �� � �� �� � � � � 	 	 � � � � � � � � � � �� �� �� � �� � �� �� � � �� �

�� � � � �� 	 	 �� ��� � � �� 	 	 �� ��� �� � �� � � � � � �� � � � � � � � � � 	 	 �� ��� �� � �� � �� � �� � � � �� 	 	 �� � � � � �� 	 ! 	 � " � � �� 	 	 �� ��� � � �� �
Figure 5.14: Breakdown of the Activity’s Durations (Martens, 2007, p.107)

system modelling. Second, the duration for correcting errors is also higher for Palladio
than for SPE. The question remains whether the results indicate problems with the more
complex meta-model, its concrete syntax, or insufficient tool support for creating and
debugging Palladio models.

Discussion of the Model-Driven Aspects To judge the question raised at the end of
the previous paragraph, this paragraph uses a selection of additional metrics measured
by Martens (Martens, 2007, p.89 cont.). These metrics also include the subjective eval-
uation of Palladio and SPE by the participants in the questionnaire filled out after the
experiment.

To evaluate the source of problems, table A.4 gives the average number of problems
detected during or after the experiment per participant classified into the most frequent
problem classes. The table shows that in average most problems with Palladio had their
cause either in a wrong usage of the PCM’s tool, or due to bad error messages or bugs
of the tool (in average 2.27 per participant). This indicates that for Palladio the tool even
after its five month of development still was a major source of problems.

Looking at the detailed problem descriptions (Martens, 2007, p.CCLXII cont.) almost
all of these problems relate to insufficient support for entering values on the GUI of the
PCM’s tool or its insufficient robustness against model instances containing errors. An
analysis of the latter reveals a set of missing OCL constraints in the PCM meta-model’s
static semantics. Additionally, also the preconditions of the SimuCom transformation

220

5.2. TYPE II VALIDATION: CONTROLLED EXPERIMENT

were incomplete causing additional problems. Therefore, it is expected that spending
more time for making the meta-model, the transformation, and the tool more robust will
significantly reduce the class of tool related problems.

Problems that occurred second most were related to parameterisations of the compo-
nents. For method parameters, in average 1.1 problem per participant occurred and 0.69
for component parameters. From the collected metrics, it is hard to derive the cause for
these problems. One aspect might be the concrete syntax of the stochastic expression lan-
guage as it is mainly used to specify parametrisations. The hypothesis, that the concrete
textual syntax of the stochastic expressions and its corresponding editing dialog, caused
the problems, cannot be invalidated based on the experiment results. However, a lack of
understanding and training in the use of parameters is also possible. As Koziolek (2008)
introduced the parameterisation into the PCM, his PhD thesis discusses possible expla-
nations and ideas for further studies to learn more about the parameter related problems.

As a comparison, SPE had a comparable amount of problems per participant like Pal-
ladio. However, the amount of problems directly related to SPE’s methodology was sig-
nificantly larger (in average 4.21) than the amount of tool related problems (in average
0.24) (Martens, 2007, p.93).

The subjective evaluation of the questionnaire further supports the impression that
more problems related to the PCM’s tool than to its meta-model. Note, that the following
needs careful interpretation due to the subjectiveness of the results. 17 of 18 participants
stated that Palladio’s process- and meta-model was comprehensible. Only a single par-
ticipant found it overly complex. Additionally, the grades the participants gave to single
concepts of the meta-model show a good acceptance. The grades ranged from -2 to +2.
Besides the parameterisation (also matching the previous discussion) all other PCM con-
cepts got an average grade above 1.0 (see table A.3). Overall, taking the subjective eval-
uation of the PCM’s concepts, there is no indication for the hypothesis that the PCM’s
meta-model is hard to comprehend. Also in the comparison to SPE, the evaluation of
the PCM by the participants showed a significant trend towards the PCM as 12 partic-
ipants claimed that Palladio was easier to understand and only 4 participants favoured
SPE. The result of a comparison of the SPE and the PCM’s tools yielded similar results.
10 participants favoured the PCM’s tool and 4 favoured SPEED.

A final question focused on the appropriateness of the concrete graphical syntax of the
PCM and whether using a textual syntax would be preferable for some parts of the model.
Only 5 participants found a textual syntax more useful with no significant preference
for a certain part of the meta-model. However, it may remain questionable whether all

221

5.2. TYPE II VALIDATION: CONTROLLED EXPERIMENT

participants understood the meaning of the respective question in the questionnaire.

Prediction Results Interpretation For Palladio, the SensorFramework supported the in-
terpretation of SimuCom’s results as introduced in section 5.2.2. After the experiment, the
participants were asked whether it was harder to interpret the distribution functions than
using mean values as given by SPE. Only 4 participants ranked interpreting distribution
functions harder than mean values, 15 participants denied this. 18 participants judged
distribution functions to be a more reliable foundation for making a design decision.

Additionally, among the answers to the question what should be improved in the
PCM’s tool, only one participant named the SensorFramework and requested a specific
presentation of the results to compare the results.

Despite the fact, that this amount of available data might not be sufficient to draw
conclusions, at least it does not indicate that the SensorFramework causes problems in its
application.

Coupled Transformations Part of the experiment was a design alternative (broker
lookup) explicitly designed to learn about the applicability of Coupled Transformations.
The first question was whether all participants would use the automatic transformation
instead of explicitly modelling the broker lookup. The result was that all participants
realised it and used the transformation. However, the Coupled Transformation in the ex-
periment only supported this design alternative, so it might have been too easy for the
participants to detect it (see section 6.3 for further experiment ideas).

The second question was about the time savable by the automatic transformation. The
duration for analysing this alternative was approximately equal to the duration it took
for SimuCom to simulate the model and produce the result which was approximately 5
minutes in the experiment. For SPE it took approximately the same time, however, in
SPE the participants spent the 5 minutes to model the alternative. Overall, in the case
studied in the experiment, the automatic transformation saved the modelling time which
otherwise had to be spent by the participants. As the broker design option was quite
simple compared to more complex cases presented in section 4.6.3 it is expected that even
more time can be saved in these cases.

In the questionnaire filled out by the participants after the experiment, a question dealt
with the subjective evaluation of the possibility to use Coupled Transformations to solve
the broker design alternative using Palladio. Table 5.3 shows a summary of the answers
given by the participants.

As expected, the named number of advantages was higher than the named number of
disadvantages. The two main advantages named were the ease of modelling and the fast

222

5.2. TYPE II VALIDATION: CONTROLLED EXPERIMENT

Advantages (No. of participants) Disadvantages (No. of participants)
Easy to model (5) Not so precise (1)
Fast (5) Loss of control (1)
Transparency during modelling (2) Less flexible (3)
Elegant (1) Not applicable for complex cases (1)
Not manually (1) Unclear what happens (1)

Less practical relevance (1)

Table 5.3: Subjective advantages and disadvantages of the automated transforma-
tion (Martens, 2007, p.108)

modelling. The answers for the advantages do not contain any unexpected results.
The most important named disadvantages are a reduction in flexibility and the loss of

control on how the transformation changes the model. The latter was rather unexpected
and thus more interesting. Not knowing what happens inside an automatic transforma-
tion seems to lower the trust the participants had in the final result. They wanted to
know, how the transformation alters the model. The same was partially true for Simu-
Com’s transformation for which several participants claimed in the questionnaire that
their trust in the transformation was higher due to the fact that they were able to look
inside the generated Java simulation code. A hypothesis is that access to a good doc-
umentation of transformations and the output of (immediate) transformations increases
the trust in the transformation.

The second most named disadvantage was the reduced flexibility which was indeed
an issue with the implementation of Coupled Transformations in the experiment tools
where only the option was available to use the broker lookup or dependency injection for
all connectors, i.e., the global setting. Adding the ability to adjust the feature settings on a
more fine granular level as described in section 4.5.2 to the PCM tool’s GUI might resolve
this issue as it increases the flexibility by offering more options than the simple coupled
transformation used in the experiment.

5.2.5 Validity

After presenting the experiment’s results in the previous section, this section summarizes
important threats to validity of the experiment’s results and the interpretations based on
it. The complete list is given by (Martens, 2007, p.117 cont.).

Internal Validity The internal validity is the degree to which changes in the depen-
dent variables of an experiment are indeed results of changing the independent variables

223

5.2. TYPE II VALIDATION: CONTROLLED EXPERIMENT

(Wohlin et al., 2000, p.68). The independent variable in the experiment described here
was the method (Palladio or SPE) and the dependent variables the quality of the models
and the duration for finishing the experiment’s tasks.

• Different Capabilities of the Students: Martens controlled this influence factor by
using the cross-over experiment design and by forming the two groups of partici-
pants based on their performance in the preparatory exercises.

• Biased Opinion of the Participants: The participants might have favoured the Pal-
ladio approach because of the influence of the experimenters which were the devel-
opers of the Palladio approach. Especially, for the subjective answers to the ques-
tions in the questionnaire, participants might have reproduced an opinion told them
before during the theoretical lectures. However, (Martens, 2007, p.118) found no
strong evidence for the assumption that the participants were biased.

• Influence of the Experimenters Help: As the experimenters helped the participants
during the acceptance test and also when they had problems with the tools or the
experiment task, they might have had an impact on the observed results. Martens
used protocols for all activities of the experimenters to make this influence trans-
parent as good as possible.

External validity The external validity is the degree to which the results of an experi-
ment can be generalised to other, in particular practical, situations (Wohlin et al., 2000,
p.72). Mainly the size and complexity of the experiment’s systems is a thread to external
validity as real industrial systems usually are larger. Whether the results are valid in such
a setting is unknown.

However, both systems are representatives of typical industrial applications as tar-
geted by the Palladio approach. Looking at such systems on an architectural level might
also lead to a rather low number of components. The architecture of business information
systems often consists of components for database interaction and components contain-
ing the business logic. Both types of components were also present in the systems under
study.

5.2.6 Summary

The experiment results showed no major problems threatening the applicability of Palla-
dio. Conceptionally, only the parametric component specifications introduced by Kozi-
olek (2008) caused some problems. The contributions of this thesis, e.g., the model-driven
approach followed by Palladio, the concrete syntaxes as implemented in the PCM’s tool,

224

5.2. TYPE II VALIDATION: CONTROLLED EXPERIMENT

and the application of Coupled Transformations revealed only minor problems. Here,
the robustness of the PCM’s tool and the transformations caused the most problems.
However, this is acceptable given the fact that the tool is a scientific prototype and not
industrially developed and tested.

225

5.2. TYPE II VALIDATION: CONTROLLED EXPERIMENT

226

Chapter 6

Conclusions

This section first gives a summary of the contributions presented in this thesis. After-
wards, it discusses open questions in section 6.3 and points to application scenarios of
the PCM and Coupled Transformations in areas different to performance prediction of
component-based systems (Section 6.4) like additional quality attributes or other options
to couple transformations.

6.1 Summary

In this thesis, I present two contributions to model-driven component-based software
engineering. First, the PCM, which is a meta-model specifically designed to support
model-driven component-based software development including early design-time per-
formance prediction. Second, I introduce Coupled Transformation in this thesis, which
allows using knowledge on a parametrisable transformation A in another transformation
B that depends on the output of A. In this thesis, I apply Coupled Transformations in
transformations based on the PCM to increase performance prediction accuracy.

The Palladio Component Model The PCM is a meta-model for component-based soft-
ware development. It respects the developer roles taking part in a component-based
software development process. It especially supports a strict separation between com-
ponent developers and software architects, deployers, and domain experts. To enable
this separation, the PCM clearly separates components on the type level, i.e., component
implementations, and component usages. To enable this separation it uses its context con-
cept where the context stores all usage dependent information while the type stores all
implementation dependent information. This explicitly introduced component context
allows to derive context dependent component properties like performance. The con-
texts available in the PCM are AssemblyContext to characterise component bindings via

227

6.1. SUMMARY

connectors, AllocationContext to characterise component allocation on different soft- and
hardware execution environments, and the UsageContext to characterise the influence of
different call frequencies or service parameters on component properties. To describe the
behaviour parameterised by these contexts, the PCM uses the ResourceDemandingSEFFs.
RD-SEFFs allow the specification of context dependent resource demands, loop iteration
counts, branch conditions, etc. The usage parameterisation is part of an extension of the
PCM’s meta-model in collaboration with Koziolek (2008).

The PCM’s meta-model explicitly supports model-driven transformations. The avoid-
ance of ambiguities in the control flow of its RD-SEFF is an example for this. This makes it
easier to query and transform PCM instances than for example instances of UML2 activi-
ties. Another example is the availability of the stochastic expressions language as EMOF
model which allows easier access to performance annotations compared to string-based
tagged values as used in UML2 profiles.

The PCM supports general distributed random variables for its performance and data
flow annotations. While restricting analytical solutions of PCM instances, this avoids
making assumptions on components and their composition. Such assumptions like ex-
ponential distributed resource demands can not be checked or guaranteed by any of the
roles participating in the CBSE development process. Component developers can not
check them as they do not know how their components will behave in different contexts,
e.g., if a branch condition depends on the result of an external call, and software architects
do also not know how the system behaves in detail as they should not need to know inter-
nal details of components due to their black-box nature. Despite the former issues, even
if software architects could detect violations of assumptions, they could not correct such
problems, as they can not change components or their specifications. Only component
developers can do this.

The PCM helps component developers and software architects.

• Component developers: Component developers can specify their components pa-
rameterised by the context of the components allowing the specifications to be used
in different contexts and thus, making them more reusable. Additionally, they can
use the PCM’s component type hierarchy to derive their components by refining
them from ProvidesComponentTypes to ImplementationComponentTypes.

• Software architects: Software architects can assemble components into systems and
evaluate the performance of the composition. They can systematically experiment
with different design alternatives each having different components or connectors.
The results of these experiments can be used for checking whether the system’s per-
formance requirements are fulfilled. For design alternatives not violating these re-
quirements the predicted performance differences help in making cost-benefit anal-

228

6.1. SUMMARY

yses.

Coupled Transformations The second major contribution of this thesis is a method that
allows to exploit situations where model transformations map an abstract model to an im-
plementation and where analyses should be performed on the abstract model to predict
properties of the resulting system. An important application scenario for this situation is
model-driven prediction of Quality of Service properties such as performance or reliabil-
ity at system design time. In this case, a transformation can generate code skeletons from
architectural models while another generates prediction models for the aforementioned
extra-functional properties.

The method I developed exploits the strong relationship between the model and the
generated implementation, which is defined by the transformations that map the model
to an implementation. In contrast to a manual translation of the abstract model into an
implementation, for automated transformations the result is deterministic and hence, can
be foreseen. Knowing the result of the implementation transformation allows the creation
of a second transformation which alters the prediction model such that it reflects the gen-
erated implementation more accurately. As this second transformation is coupled to the
implementation transformation it is called a coupled transformation.

I included an abstract, formal description of coupled transformations to capture the
central idea of Coupled Transformation independent of the application scenario. Coupled
Transformations also deal with parameterisable transformations using mark models as pa-
rameters as envisioned in the OMG’s MDA guide (Object Management Group (OMG),
2006c). Coupled Transformations use the same mark models as the transformations they
are coupled to, i.e., they are parameterised with the same set of parameters. This allows
using the selected parameters also in the coupled transformation.

In this thesis, I apply the method to component-based software development where
the PCM serves as abstract software and performance prediction model. To predict the
performance of instances of the PCM, I developed a transformation, which maps PCM
instances to an event-driven Java simulation code based on Desmo-J. The transformation
and its accompanying PCM simulation framework are called SimuCom. Because Simu-
Com is a simulation, it is able to deal with the full complexity of PCM instances, i.e.,
general distributed random variables, stochastic dependent variables as needed for Col-
lectionIteratorActions, or arbitrary stochastic expressions. As such, it is currently the only
solver for PCM instances which deals with all concepts of the PCM’s meta-model. How-
ever, this flexibility comes at the price of longer execution times and huge amounts of
measured data during simulation runs.

Furthermore, I developed a mapping of PCM instances to Java EE/EJBs or optionally

229

6.1. SUMMARY

plain old Java objects (POJOs). This mapping preserves the semantics of the respective
PCM entities by applying patterns like the component context pattern. The transforma-
tion accepts parameters via a mark model based on feature diagrams. The mark model
allows fine grained control of the available mapping options. For each option, I discuss
the performance impact and define the necessary coupled transformation which changes
the prediction model to reflect the selected options. The main issues bridged by the map-
ping is the realisation of required roles and assembly connectors.

To reflect the impact of different connector mapping options, I adapted the comple-
tion concept presented by Woodside et al. (2002) and by Wu and Woodside (2004) to
component-based performance prediction in the PCM by introducing completion compo-
nents. Completion components are special components in the PCM which reflect the per-
formance of the application’s interaction with lower application layers like the middle-
ware. I present a transformation that replaces assembly connectors in PCM instances by
these completion components which then add the impact of using the middleware for
call processing. The inner structure of the generated completions depends on the features
selected in the mark model instance of the implementation transformation.

As an additional transformation, I developed ProtoCom as a combination of Simu-
Com and PCM2EJB. It generates prototypes from PCM instances which generate perfor-
mance equivalent resource demands. These prototypes can serve as a further validation
for the predictions made under more realistic conditions as they are not restricted by as-
sumptions on the execution environment, e.g., the scheduling discipline of the CPU, the
behaviour of hard-disks, or network links. The prototype transformation is also coupled
to the implementation transformation as it uses the same target environment (EJBs) and
the same mark model.

In this specific application of Coupled Transformations they help the software archi-
tect to include his implementation mapping into the prediction model. Thus, the predic-
tion model becomes more accurate allowing better estimates of design decisions.

Validation I validated the contributions on two levels. A Type I validation shows that
using Coupled Transformations increased prediction accuracy by comparing measure-
ments made on a generated implementation with the corresponding predictions. The
results show that in the investigated cases a significant increase in prediction accuracy is
reached. A Type II validation shows that the model-driven approach of the PCM is ap-
plicable by third parties. In this thesis the main focus of the Type II validation lied on the
evaluation of the PCM’s concrete syntaxes, their realisation in tools, and the applicability
of Coupled Transformations when they are embedded in the prediction process.

230

6.2. LIMITATIONS

6.2 Limitations

Limitations have been discussed already in sections at the end of each contribution of this
thesis. Hence, this section only gives references to the respective sections. Section 3.10
discusses various PCM limitations and assumptions. Besides the overall PCM limita-
tions, each of the presented transformations has its own assumptions and limitations.
Section 4.4.10 presents the limitations of SimuCom, section 4.6.5 discusses limitations of
the mapping of PCM instances to an implementation, and section 4.7.3 presents Proto-
Com’s assumptions and limitations.

6.3 Open Questions and Future Work

The following gives an overview on open questions and opportunities for future work.

Extending the PCM Section 3.10 lists the assumptions and limitations of the version of
the PCM as introduced in this thesis. The list contains two main classes of limitations.
First, limitations with close relationship to CBSE, like the missing support for dynamic
architecture, i.e., architectures in which connectors change at run-time, or the missing
support for stateful components. The other class of limitations are general issues for
performance prediction approaches, i.e., they also apply to performance predictions of
other types of systems, e.g., monolithic systems. This class contains issues like dealing
with missing support for predicting the performance impact of memory consumption,
more accurate models for the execution environment, or limited support for exception
handling.

For both classes there is always the trade-off between model accuracy and model
analysability. The more accurate a model reflects reality the larger becomes the analysis
model’s state space. For such models, analytical as well as simulation solvers might fail.
The former fail due to extremely large state-spaces the latter fail or become impractical
because of their time and memory consumption.

Despite the complexity issue, the class of issues related to CBSE may be supportable
by extending the PCM’s context concept to run-time contexts. A run-time context then
stores the state of the component, including the bindings of the required roles. A specifi-
cation based on state-machines attached to the run-time context defines how the compo-
nent changes it state. These state changes may be based on random variables or on events
occurring at the component like calling component services. However, for stateful com-
ponents it is also important to specify the visibility of the state, i.e., whether all clients of
the component modify a single state (singleton semantics) or whether each client has its

231

6.3. OPEN QUESTIONS AND FUTURE WORK

own state associated to its communication with a server component (session based state).
The second class of limitations requires additional research in performance prediction

methods on how to specify and analyse these factors in a way which keeps the analysis
models both accurate and solvable. The completion components introduced in this thesis
can help in modelling lower layers of software systems more accurately, thus, improving
the software execution environment model. They are especially useful when transfor-
mations add them to the analysis model automatically. Model libraries of completion
components can help to reflect different implementations of the same functionality, e.g.,
different middleware completions based on different implementation of an application
server by different vendors. The parameterised specification of components in the PCM
is extremely useful for completion components in model libraries as they are reused in a
broad range of different contexts.

Extending the PCM’s Tools The controlled experiment revealed several issues with the
robustness of the PCM’s tool and parts of the used concrete syntax. However, as these fac-
tors do not influence the Type I validity of the Palladio method, they are usually ignored
when creating new prediction approaches. But, as the controlled experiment showed,
these factors are important for the applicability and acceptance of a method by third
parties. For future experiments with the PCM tools it is advisable to deal with these
factors early during experiment design. An interesting question is whether making the
tool more robust and changing the concrete syntax will lead to a different outcome of the
experiment.

In analogy, a remaining question is whether a more comprehensive support for Cou-
pled Transformations in the PCM tool will lead to different results of the questions deal-
ing with Coupled Transformations in the experiment. A hypothesis is that having more
Coupled Transformations available makes them harder to identify in the experiment task.
Additionally, choosing the right transformation among a larger set of choices might also
be more difficult. However, for more complex Coupled Transformations the difference in
modelling speed with and without them is also expected to increase in favour of using
Coupled Transformations.

Systematic Discovery of the Simulation’s Limits All case studies which used Simu-
Com had no problems with long simulation runs. However, some had problems with
memory consumption for collecting data. The memory consumption issue is primarily a
technical issue because using the hard-drive as background storage device allows to store
much more data than using memory. Additionally, adding the ability to aggregate data
already during simulation runs will also help resolving these issues.

232

6.3. OPEN QUESTIONS AND FUTURE WORK

After sorting them out, the question remains, how large a PCM instance can get for
SimuCom to produce useful results in acceptable time spans. To systematically investi-
gate this, a generator should create random PCM instances with a configurable amount
of components, RD-SEFFs, or stochastic expressions. Additionally, the envisioned inves-
tigation should deal with different types of stop conditions for the simulation, containing
confidence intervals of point estimators like the mean value, or on characteristics of the
distribution like the KS-statistic. The latter needs adoption, as its corresponding test (the
KS-test (Sachs, 1997)) is sensitive to the number of observations. The higher the number
of observations, the more likely it is, that the test rejects the hypothesis. This is a bad
property, as the simulation produces a high number of observations. If the simulation
would use a stop condition based on an unmodified KS-test, it is likely that it never ends.

Heuristically Determine the Necessary Completions Adding completions or using
coupled transformations to enrich the prediction model with additional model elements,
increases on the one hand the accuracy of predictions but on the other hand it comes at the
cost of longer simulation runs. However, an observation is that the increase in accuracy
highly depends on the context of the additional model elements.

Consider for example the additional InternalAction added to the model to reflect
querying a broker to look up a component’s required role (cf. section 4.6.1). Let the
time needed for this lookup be around 20 microsecond which is a realistic value for a
LAN if there is no contention on the network. Assume that the called service computes a
complex mathematical operation which takes several minutes. In this setting the increase
in accuracy gained is marginal and can be neglected. But when assuming that the called
service only performs a quick memory lookup which takes less than a microsecond then
the increase in accuracy gained by adding the broker lookup is significant. The issue is
that with arbitrary composed black-box components you do not know in advance which
parts of the system have a significant impact on the performance.

An idea to deal with this issue is to apply a heuristic which tries to estimate at simu-
lation run time which completions increase the accuracy significantly. For example, one
approach might be to simulate for a short time without using any completions or coupled
transformations. Based on this simulation run, a heuristic determines the bottlenecks of
the system and decides based on rules which completions to add or which coupled trans-
formations to execute.

Taking the idea a step further, it could also help reducing the specification needs for
the software architect. Imagine that it is not a binary decision of adding a completion or
a coupled transformation, but that they exist in different variants with different accura-
cies and specification needs. For example, instead of deciding whether to use an accurate

233

6.3. OPEN QUESTIONS AND FUTURE WORK

completion for the middleware, there is a set of middleware completions requiring differ-
ent amounts of specifications. One completion might not be able to distinguish between
different marshalling protocols and only take a single scale factor to do a rough estimate
of the transmitted bytes while another completion is able to model the difference between
protocol like SOAP or RMI more accurately (like to one presented in section 4.6.3). In this
case the simulation can start with the simple model and ask the software architect for
a more accurate completion only if the utilisation on the network indicates a possible
performance bottleneck. In case of coupled transformations, the simulation starts by not
using all information available in a mark model and successively adds more informa-
tion if the heuristic indicates problems with elements added by the respective coupled
transformation.

Experiment with a Component Scenario The PCM explicitly supports different CBSE
developer roles including the fact that they might be physically distributed. The experi-
mental setting in section 5.2.3 had to assign all developer roles to a single student in or-
der to fulfil SPE’s preconditions. However, having distributed roles, the workload which
needs to be handled by a single role is significantly smaller. Hence, the interesting ques-
tion here is to empirically evaluate how much time each developer role spends for creat-
ing its part of a PCM instance. This distribution of workload makes it more realistic that
the extra time needed for creating PCM models is feasible.

An additional question in the distributed setting is also to learn whether software ar-
chitects can compose the component models produced by different people and still anal-
yse the performance. A situation which might cause a mismatch arises if the different
roles do not agree on common ResourceTypes or parametric usage annotations, i.e., a com-
ponent requires a characterisation of a variable not being provided by the component
connected to it.

Broad Scale Industrial Applicability The performed validations only demonstrate that
the PCM makes correct predictions in cases where its assumptions fit the regarded case.
Additionally, they show that third parties are able to apply the PCM. However, this does
not validate whether the PCM will prevail in a large scale industrial context. In such
contexts, a larger group of developers works on a large system. In order to investigate the
industrial applicability, different companies in Karlsruhe apply the PCM in case studies
in their projects. The results gained will improve the PCM and direct it to additional
issues.

234

6.4. VISIONS

Type III Validation Besides the validations done in this thesis and the ones missing as
described in the previous paragraphs, the Type III validity (Freiling et al., 2008) remains
an open question. Type III validity investigates whether a newly introduced method
improves the whole software development process. A way to show this would be to
execute a single software development project in an industrial setting twice - one time
with applying the method, the other time without applying the method. In the end, the
durations and costs occurred show whether the method helped. However, this kind of
validation is expensive and hard to perform in practice.

Instead of showing the Type III validity in a controlled experiment, Williams and
Smith (2003) simply argued on the benefit of using SPE based on their project experiences.
While this approach is questionable because of the missing controlled conditions and the
hypothesis that their experiences might be biased towards SPE, the study at least gives
an estimation of the advantage of using the SPE method. A same approach would be fea-
sible for the PCM. Based on the experiences gained in industrial case studies, evidences
can be collected for the hypothesis that applying the PCM during software design lowers
development costs caused by performance issues in the developed system.

(Semi-)Automatic Recovery of Coupled Transformations In the current state of the
Coupled Transformations method, an expert has to create a coupled transformation based
on a thorough analysis of the code transformation. If the transformation is executed fre-
quently, the extra effort pays off. However, the manual creation of the coupled trans-
formation limits the applicability of Coupled Transformations. An idea to improve the
situation is to automatically analyse the rules encoded in the code transformation. Based
on such an analysis it might be possible to create parts of a coupled transformation auto-
matically.

In this context, there is also a close relation to transformation traceability. Traces
store the information which parts of a source model generated which parts of a target
model (Object Management Group (OMG), 2007a, p.5). As modern model transforma-
tion languages and their engines, e.g., QVT, generate such traces automatically, they are
available at no additional cost. Combining the information on the rules of a transforma-
tion and a set of example traces might result in enough information to derive a coupled
transformation for a specific QoS attribute at least semi-automaticly.

6.4 Visions

The following lists further application areas for both, the PCM and Coupled Transforma-
tions.

235

6.4. VISIONS

Applying the PCM to other QoS Attributes The PCM with its current state of the RD-
SEFF focuses on performance prediction and code generation. However, the PCM’s core
concepts like interfaces, protocols, component types, composite structures, different types
of component contexts, or the stochastic expressions package are independent of perfor-
mance prediction. Thus, applying them to other application areas is possible.

Reussner’s parameterised contracts for protocol adaptation can serve as an example
for a functional component property. Hence, including them into the PCM and storing
the adapted protocols in a derived assembly context should be not difficult. The PCM
could support interoperability checking for AssemblyConnectors. Additionally, if these
checks detect mismatches in component interactions, component adapter generators with
predictable QoS impact (Becker et al., 2006a) can also be included in the PCM.

For extra-functional properties PCM extensions for reliability and maintainability are
planned. For reliability, the aim is to reuse many concepts also used for performance like
the RD-SEFF and its annotations. However, reliability might involve the development of
a new set of analysis methods. This is due to the fact that reliability is difficult to evaluate
with simulation-based approaches as the rate of failure occurrences is usually very low,
i.e., the desired events happen seldomly causing long simulation runs to observe a sig-
nificant amount of them. The latter might be especially true, if Performability (Haverkort
et al., 2001), i.e., a combination of performance and reliability models, is of interest. In
this case, the simulation has to simulate the performance for a long time until a failure
occurs. As a consequence, abstractions of such detailed analysis methods are needed for
the analysis to remain feasible.

Maintainability is an extra-functional property which is not a QoS attribute. As such,
it might indeed need different concepts like those already present in the PCM’s core con-
cepts. For example, it is questionable whether the concept of component contexts helps
in evaluating the maintainability of component assemblies.

Using Coupled Transformations in other Application Scenarios The central idea of
Coupled Transformations is independent of the prediction of performance properties. It
may be applied to any situation where additional coupled transformations may benefit
from information on the generated realisation.

As for the PCM, applying Coupled Transformation to other QoS attributes like re-
liability is a reasonable extension. For example, as discussed in section 4.6.1 mapping
component required roles using the Broker pattern also has an impact on the reliability of
the system. While the Broker allows switching to a different component if a component
fails thus increasing reliability, it is also a single point of failure, i.e., if it fails the whole
system is unable to provide its services any longer.

236

6.4. VISIONS

Besides extra-functional properties Coupled Transformations can also help in other
areas. Recent ideas include but are not limited to run-time performance monitoring, doc-
umentation generation, or generated test cases. For model-driven run-time performance
monitoring, a transformation adds probes into the generated code which monitors the be-
haviour of the system at run-time (Duzbayev and Poernomo, 2006). Based on this infor-
mation a prediction is made on the performance behaviour in the near future. Currently,
the probes are defined on the model level, however, the transformation into code might
violate assumptions made on the model level. In this situation, a coupled transformation
can adjust values measured by the generated probe based on the architectural model and
the generated code.

For documentation generation, Coupled Transformations can include specific details
of a particular implementation in a documentation which is otherwise generated from the
architectural model. For example, it can include the implementation detail that a specific
connector uses RMI in a concrete realisation. The generated documentation would con-
tain the architectural information and implementation details in contrast to the usual way
of extracting Javadoc from the generated code which usually lacks the abstract structure
available at the architectural level.

A last example is model-based generation of test drivers. As coupled transformations
can include details on the realisation, using them for test case generation might help to
generate test drivers which explicitly test details of particular realisation. For example,
such a transformation can generate a test driver to test a Broker interaction only if the
Broker interaction has been selected as realisation.

Domain Specific Languages As already mentioned, the more abstract the initial source
model is, the more information is encoded into the transformation. Domain specific lan-
guages commonly fulfil this criteria as they aim at abstracting from realisation details by
specifying software systems on abstract, conceptual levels.

When MDSD matures in the near future, the use of DSLs will increase. With an in-
creasing use of DSLs the relationship between the requirements (expressed in a DSL in-
stance) and the code resulting from this instance becomes more and more explicit (by
the transformation rules) increasing the predictability of the resulting system. Coupled
Transformations can help to exploit the increased determinism in the created software
artefacts for prediction methods.

237

6.4. VISIONS

238

Appendix A

A.1 Contributions and Imported Concepts

Figure A.1 shows the PCM’s package structure and denotes for each package, who mainly
created the package and its contents. Becker refers to this thesis, Koziolek to Koziolek’s
PhD thesis (Koziolek, 2008) and Krogmann to Krogmann’s master thesis (Krogmann,
2006).

Figure A.2 shows the transformations available in the context of the PCM. Stereotypes
indicate which elements represent meta-models, transformations, or conceptual ideas.
Additionally, the indicate which parts are results of master theses. Additionally, they
indicate the input and output meta-model of each transformation. The larger boxes give
the borderline of the PhD thesis of Krogmann, Koziolek, and myself.

Figure A.3 gives an overview on the PCM’s editor support. Stereotypes indicate
whether the editor uses a graphical or a textual concrete syntax. Additionally, they show
whether the editors have been generated by a MDSD framework like GMF or whether
they have been created manually.

239

A.1. CONTRIBUTIONS AND IMPORTED CONCEPTS

p
c

m
::re

p
o

s
ito

ry

[B
e

c
k

e
r]

p
c

m
::c

o
re

::c
o

n
n

e
c

to
r

[B
e

c
k

e
r]

p
c

m
::c

o
re

::c
o

m
p

o
s

itio
n

[B
e

c
k

e
r]

p
c

m
::p

ro
to

c
o

l

[B
e

c
k

e
r, K

ro
g

m
a

n
n

]

p
c

m
::S

E
F

F

[B
e

c
k

e
r, K

ro
g

m
a

n
n

]

p
c

m
::R

D
S

E
F

F

[K
o

z
io

le
k
, B

e
c

k
e

r]

p
c

m
::p

a
ra

m
e

te
r

[K
o

z
io

le
k

]

<
<

e
x
te

n
d

s
>

>

<
<

im
p

o
rt>

>

<
<

im
p

o
rt>

>
<

<
im

p
o

rt>
>

p
c

m
::s

y
s

te
m

[B
e

c
k

e
r]

<
<

im
p

o
rt>

>

p
c

m
::a

llo
c

a
tio

n

[B
e

c
k

e
r]

p
c

m
::re

s
o

u
rc

e
e

n
v

iro
n

m
e

n
t

[B
e

c
k

e
r, K

o
z
io

le
k

]

p
c

m
::re

s
o

u
rc

e
ty

p
e

[B
e

c
k

e
r, K

o
z
io

le
k

]

p
c

m
::u

s
a

g
e

m
o

d
e

l

[K
o

z
io

le
k

]

p
c

m
::q

o
s

a
n

n
o

ta
tio

n
s

[K
o

z
io

le
k

, B
e

c
k

e
r]

s
to

e
x

[K
o

z
io

le
k
, B

e
c

k
e

r]

Figure A.1: PCM Packages and their Creators

240

A.1. CONTRIBUTIONS AND IMPORTED CONCEPTS

<
<

u
s
e

s
>

>

<
<

m
e

ta
m

o
d

e
l>

>

P
C

M

[B
e

c
k

e
r, K

o
z
io

le
k

]

<
<

m
e

ta
m

o
d

e
ll>

>

S
R

E

[K
o

z
io

le
k
]

<
<

tra
n

s
fo

rm
a

tio
n

>
>

P
C

M
2

S
to

R
e

g

[K
o

z
io

le
k
]

<
<

m
e

ta
m

o
d

e
l>

>

C
o

n
te

x
t

[K
o

z
io

le
k
]

<
<

in
p

u
t>

>

<
<

in
p

u
t>

>
<

<
o

u
tp

u
t>

>
<

<
c

o
n

c
e

p
t>

>

S
R

E

[F
iru

s
, H

a
p

p
e

, B
e

c
k

e
r]

<
<

b
a

s
e

d
 o

n
>

>

<
<

tra
n

s
fo

rm
a

tio
n

>
>

D
S

o
lv

e
r

[K
o

z
io

le
k
]

<
<

in
p

u
t>

>

<
<

o
u

tp
u

t>
>

<
<

tra
n

s
fo

rm
a

tio
n

>
>

S
im

u
C

o
m

[B
e

c
k

e
r]

<
<

m
e

ta
m

o
d

e
l>

>

P
C

M
+

C
o

m
p

le
tio

n
s

[B
e

c
k

e
r]

<
<

in
p

u
t>

>
<

<
c

o
d

e
>

>

S
im

u
C

o
m

In
s

ta
n

c
e

[B
e

c
k

e
r]

<
<

o
u

tp
u

t>
>

<
<

tra
n

s
fo

rm
a

tio
n

>
>

C
o

u
p

le
d

T
ra

n
s

fo
rm

a
tio

n

[B
e

c
k

e
r]

<
<

in
p

u
t>

>

<
<

o
u

tp
u

t>
>

<
<

m
a

s
te

rth
e

s
is

>
>

<
<

c
o

n
c

e
p

t>
>

V
a

lid
a

tio
n

 o
f C

T
s

[B
ie

h
l (u

n
fin

is
h

e
d

)]

<
<

b
a

s
e

d
 o

n
>

>
<

<
tra

n
s

fo
rm

a
tio

n
>

>

P
ro

tC
o

m

[B
e

c
k

e
r]

<
<

c
o

d
e
>

>

P
ro

to
ty

p
e

[B
e

c
k

e
r]

<
<

o
u

tp
u

t>
>

<
<

tra
n

s
fo

rm
a

tio
n

>
>

P
C

M
2
E

J
B

[B
e

c
k

e
r]

<
<

c
o

d
e
>

>

E
J

B
 C

o
d

e
 S

k
e

le
to

n

[B
e

c
k

e
r]

<
<

o
u

tp
u

t>
>

<
<

m
a

s
te

rth
e

s
is

>
>

M
a

p
p

in
g

 P
C

M
2
E

J
B

[S
c

h
a

u
d

e
l]

<
<

b
a

s
e

d
 o

n
>

>

<
<

in
p

u
t>

>

<
<

in
p

u
t>

>

<
<

tra
n

s
fo

rm
a

tio
n

>
>

P
C

M
2

L
Q

N

[K
o

z
io

le
k

]

<
<

in
p

u
t>

>

<
<

m
e

ta
m

o
d

e
ll>

>

L
Q

N

[W
o

o
d

s
id

e
]

<
<

o
u

tp
u

t>
>

<
<

tra
n

s
fo

rm
a

tio
n

>
>

P
C

M
2

L
Q

N

[K
o

z
io

le
k

]

<
<

m
e

ta
m

o
d

e
ll>

>

Q
P

N

[B
a

u
s

e
]

<
<

o
u

tp
u

t>
>

<
<

c
o

d
e
>

>

J
a

v
a

 1
.4

 S
o

u
rc

e

<
<

tra
n

s
fo

rm
a

tio
n

>
>

<
<

m
a

s
te

rth
e

s
is

>
>

J
a

v
a

2
P

C
M

[K
a

p
p

le
r]

<
<

in
p

u
t>

>

<
<

o
u

tp
u

t>
>

<
<

c
o

d
e

>
>

J
a

v
a

 1
.4

 S
o

u
rc

e

<
<

tra
n

s
fo

rm
a

tio
n

>
>

<
<

m
a

s
te

rth
e

s
is

>
>

A
rc

h
iR

e
c

[C
h

o
u

a
m

b
e

]

<
<

in
p

u
t>

>

P
h

D
 th

e
s
is

 K
o

z
io

le
k

P
h

D
 th

e
s
is

 B
e

c
k
e

r

P
h

D
 th

e
s
is

 K
ro

g
m

a
n

n

<
<

m
a

s
te

rth
e

s
is

>
>

P
C

M
 E

c
o

re
 M

o
d

e
l

[K
ro

g
m

a
n

n
]

<
<

b
a

s
e

d
 o

n
>

>

<
<

m
a

s
te

rth
e

s
is

>
>

T
y

p
e

 II V
a

lid
a

tio
n

[M
a

rte
n

s
]

<
<

e
m

p
iric

a
l v

a
lid

a
tio

n
>

>

<
<

lib
ra

ry
>

>

C
o

m
m

o
n

 M
2

T
 C

o
re

[B
e

c
k

e
r]

Figure A.2: PCM Transformations and their Creators

241

A.1. CONTRIBUTIONS AND IMPORTED CONCEPTS

p
c

m
::re

p
o

s
ito

ry

[B
e

c
k

e
r]

p
c

m
::c

o
re

::c
o

m
p

o
s

itio
n

[B
e

c
k

e
r]

p
c

m
::R

D
S

E
F

F

[K
o

z
io

le
k
, B

e
c

k
e

r]

p
c

m
::a

llo
c

a
tio

n

[B
e

c
k

e
r]

p
c

m
::re

s
o

u
rc

e
e

n
v

iro
n

m
e

n
t

[B
e

c
k

e
r, K

o
z
io

le
k

]

p
c

m
::u

s
a

g
e

m
o

d
e

l

[K
o

z
io

le
k
]

s
to

e
x

[K
o

z
io

le
k
, B

e
c

k
e

r]

<
<

g
ra

p
h

ic
a

l, g
e

n
e

ra
te

d
>

>

R
e

p
o

s
ito

ry
 E

d
ito

r

[B
e

c
k

e
r]

<
<

g
e

n
e

ra
te

d
 F

ro
m

>
>

<
<

g
ra

p
h

ic
a

l, g
e

n
e

ra
te

d
>

>

R
D

-S
E

F
F

 E
d

ito
r

[B
e

c
k

e
r]

<
<

te
x

tu
a

l, m
a

n
u

a
l>

>

S
to

c
h

a
s

tic
 E

x
p

re
s

s
io

n
s

 D
ia

lo
g

[B
e

c
k

e
r, K

o
z
io

le
k

]

<
<

g
ra

p
h

ic
a

l, g
e

n
e

ra
te

d
>

>

S
y

s
te

m
 / C

o
m

p
o

s
ite

C
o

m
p

o
n

e
n

t E
d

ito
r

[B
e

c
k

e
r]

<
<

g
e

n
e

ra
te

d
 F

ro
m

>
>

<
<

re
fle

c
ts

>
>

<
<

g
e

n
e

ra
te

d
 F

ro
m

>
>

<
<

g
ra

p
h

ic
a

l, g
e

n
e

ra
te

d
>

>

A
llo

c
a

tio
n

 E
d

ito
r

[B
e

c
k

e
r]

<
<

g
e

n
e

ra
te

d
 F

ro
m

>
>

<
<

tre
e

v
ie

w
, g

e
n

e
ra

te
d

>
>

R
e

s
o

u
rc

e
E

n
v

iro
n

m
e

n
t E

d
ito

r
<

<
g

e
n

e
ra

te
d

 F
ro

m
>

>

<
<

g
ra

p
h

ic
a

l, g
e

n
e

ra
te

d
>

>

U
s

a
g

e
 M

o
d

e
l E

d
ito

r

[B
e

c
k

e
r]

<
<

g
e

n
e

ra
te

d
 F

ro
m

>
>

Figure A.3: PCM Editor Support and their Creators

242

A.2. GENERATED RD-SEFFS FOR CONNECTOR COMPLETIONS

A.2 Generated RD-SEFFs for Connector Completions

<<ExternalCall>>

IMiddleware.marshal

RD-SEFF Marshal.aService(p1,..,pn)

<<ExternalCall>>

IA’.aService

<<ExternalCall>>

IMiddleware.demarshal
SetVariableAction

<<InputVariableUsage>>

int.NoE = number(aService,IN,int)

double.NoE = number(aService,IN,double)

[..]

Protocol.VALUE=[RMI|SOAP]

<<OutputVariableUsage>>

stream.BYTESIZE = RETURN.BYTESIZE

<<InputVariableUsage>>

p1.Characterisation = p1.Characterisation

[..]

stream.BYTESIZE = stream.BYTESIZE

<<OutputVariableUsage>>

RESULT.Characterisation = RESULT.Characterisation

[..]

stream.BYTESIZE = stream.BYTESIZE

<<InputVariableUsage>>

int.NoE = number(aService,IN,int)

double.NoE = number(aService,IN,double)

Protocol.VALUE=[RMI|SOAP]

[..]

stream.BYTESIZE = stream.BYTESIZE

<<VariableUsage>>

RESULT.Characterisation =

RESULT.Characterisation

[..]

<<ExternalCall>>

IMiddleware.encrypt

RD-SEFF Encrypt.aService(p1,..,pn,stream)

<<ExternalCall>>

IA’.aService

<<ExternalCall>>

IMiddleware.derypt
SetVariableAction

<<InputVariableUsage>>

stream.BYTESIZE = stream.BYTESIZE

<<OutputVariableUsage>>

stream.BYTESIZE = stream.BYTESIZE

<<InputVariableUsage>>

p1.Characterisation = p1.Characterisation

[..]

stream.BYTESIZE = stream.BYTESIZE

<<OutputVariableUsage>>

RESULT.Characterisation = RESULT.Characterisation

[..]

stream.BYTESIZE = stream.BYTESIZE

<<InputVariableUsage>>

stream.BYTESIZE = stream.BYTESIZE

<<OutputVariableUsage>>

stream.BYTESIZE = stream.BYTESIZE

<<VariableUsage>>

RESULT.Characterisation =

RESULT.Characterisation

[..]

stream.BYTESIZE =

stream.BYTESIZE

<<ExternalCall>>

IMiddleware.decrypt

RD-SEFF Decrypt.aService(p1,..,pn,stream)

<<ExternalCall>>

IA’.aService

<<ExternalCall>>

IMiddleware.encrypt
SetVariableAction

<<InputVariableUsage>>

stream.BYTESIZE = stream.BYTESIZE

<<OutputVariableUsage>>

stream.BYTESIZE = stream.BYTESIZE

<<InputVariableUsage>>

p1.Characterisation = p1.Characterisation

[..]

stream.BYTESIZE = stream.BYTESIZE

<<OutputVariableUsage>>

RESULT.Characterisation = RESULT.Characterisation

[..]

stream.BYTESIZE = stream.BYTESIZE

<<InputVariableUsage>>

stream.BYTESIZE = stream.BYTESIZE

<<OutputVariableUsage>>

stream.BYTESIZE = stream.BYTESIZE

<<VariableUsage>>

RESULT.Characterisation =

RESULT.Characterisation

[..]

stream.BYTESIZE =

stream.BYTESIZE

<<ExternalCall>>

IMiddleware.demarshal

RD-SEFF Demarshal.aService(p1,..,pn,stream)

<<ExternalCall>>

IA.aService

<<ExternalCall>>

IMiddleware.demarshal
SetVariableAction

<<InputVariableUsage>>

int.NoE = number(aService,OUT,int)

double.NoE = number(aService,OUT,double)

[..]

Protocol.VALUE=[RMI|SOAP]

<<OutputVariableUsage>>

stream.BYTESIZE = RETURN.BYTESIZE

<<InputVariableUsage>>

p1.Characterisation = p1.Characterisation

[..]

<<OutputVariableUsage>>

RESULT.Characterisation = RESULT.Characterisation

[..]

<<InputVariableUsage>>

int.NoE = number(aService,IN,int)

double.NoE = number(aService,IN,double)

[..]

stream.BYTESIZE = stream.BYTESIZE

Protocol.VALUE=[RMI|SOAP]

<<VariableUsage>>

RESULT.Characterisation =

RESULT.Characterisation

[..]

stream.BYTESIZE =

stream.BYTESIZE

<<InternalAction>>

transmit

RD-SEFF Net.aService(p1,..,pn,stream)

<<ExternalCall>>

IA’.aService

<<InternalAction>>

transmit
SetVariableAction

<<InputVariableUsage>>

stream.BYTESIZE = stream.BYTESIZE

<<Resource>>

ResourceType = net

<<InputVariableUsage>>

p1.Characterisation = p1.Characterisation

[..]

stream.BYTESIZE = stream.BYTESIZE

<<OutputVariableUsage>>

RESULT.Characterisation = RESULT.Characterisation

[..]

stream.BYTESIZE = stream.BYTESIZE

<<InputVariableUsage>>

stream.BYTESIZE = stream.BYTESIZE

<<Resource>>

ResourceType = net

<<VariableUsage>>

RESULT.Characterisation =

RESULT.Characterisation

[..]

stream.BYTESIZE =

stream.BYTESIZE

Figure A.4: Generated RD-SEFFs in Connector Completions

243

A.3. DETAILED QVT TRANSFORMATIONS

A.3 Detailed QVT Transformations

not (c.predecessor.oclIsTypeOf(ExternalCallAction) and

 ((ExternalCallAction)c.predecessor).ReqRole = „IBroker")

comp.serviceEffectSpecifications->contains(seff)

id = seffID

seff: RD-SEFF
<<domain>>

C E

pcm:PCM pcm:PCM

pre:AbstractAction

ReqRole = r

c:ExternalCall

Action

post:Abstract

Action

succ

succ

id = seffID

seff: RD-SEFF
<<domain>>

pre:AbstractAction

c:ExternalCall

Action

post:Abstract

Action

succ

succ

ReqRole=IBroker

Service=“query“

b:ExternalCall

Action

succ

when

AddBroker(BasicComponent comp, RequiredRole r)

Figure A.5: Adding Broker Calls

A.4 Detailed Experiment Results

All tables presented in the following are taken from the master thesis by Martens (2007).
Therefore, the tables captions give the page number of the originating page in Marten’s
thesis instead of repeating the full reference each time.

244

A.4. DETAILED EXPERIMENT RESULTS

vs
0 vs

1 vs
2 vs

3 vs
4 vs

5 Avg
Media Store UP1 1.93% 0.90% 0.49% 20.08% 3.02% 1.69% 4.69%

UP2 13.21% 2.20% 4.15% 13.23% 4.42% 3.51% 6.79%
Web Server UP1 1.00% 11.07% 1.94% 4.23% 4.55% 9.40% 5.47%

UP2 15.92% 20.35% 10.87% 10.67% 2.57% 3.64% 10.67%
Overall propDevMeanRespPal 6.90%

Table A.1: Relative deviation of the predicted response times for Palladio (p.83)

vs
0 vs

1 vs
2 vs

3 vs
4 vs

5 Avg
Media Store UP1 8.31% 9.58% 13.18% 11.59% 15.49% 9.95% 11.35%

UP2 4.10% 9.49% 5.74% 21.22% 12.54% 8.17% 10.21%
Web Server UP1 0.34% 1.28% 2.83% 2.15% 6.33% 1.56% 2.42%

UP2 1.01% 1.22% 8.29% 4.47% 37.92% 2.33% 9.21%
Overall propDevMeanRespSPE 8.3%

Table A.2: Relative deviation of the predicted response times for SPE (p.84)

Concept Average grade Standard deviation
Repository model 1.84 0.37
SEFF specification 1.74 0.45
System 1.61 0.50
Allocation 1.53 0.61
Resource environment 1.21 1.13
Usage Model 1.58 0.51
Parametrisation 0.58 1.02
Visualisation of the results 1.32 0.58
Distributions 1.32 0.48

Table A.3: Subjective evaluation of the comprehensibility of the Palladio concepts (p.96)

245

A.4. DETAILED EXPERIMENT RESULTS

Tool Methodology

U
sa

ge

Er
ro

r

Bu
g

Su
m

Pa
ra

m
et

er
s

C
om

po
ne

nt
pa

ra
m

et
er

s

Ty
pe

s
an

d
un

it
s

A
ss

em
bl

y

U
sa

ge
m

od
el

Su
m

Su
m

Media Store
minor 0.00 0.00 0.00 0.00 0.00 0.43 0.14 0.00 0.00 0.57 0.57
intermediate 0.43 0.43 0.14 1.00 1.00 0.29 0.57 0.00 0.00 1.86 2.86
major 0.14 0.00 0.14 0.29 0.57 0.29 0.00 0.00 0.00 0.86 1.14
Sum 0.57 0.43 0.29 1.29 1.57 1.00 0.71 0.00 0.00 3.29 4.57
Web Server
minor 0.25 0.00 0.25 0.50 0.00 0.25 0.00 0.00 0.00 0.25 0.75
intermediate 0.88 0.38 0.13 1.38 0.63 0.13 0.38 0.00 0.00 1.13 2.50
major 1.13 0.00 0.25 1.38 0.00 0.00 0.25 0.13 0.13 0.50 1.88
Sum 2.25 0.38 0.63 3.25 0.63 0.38 0.63 0.13 0.13 1.88 5.13
Both systems
minor 0.13 0.00 0.13 0.25 0.00 0.34 0.07 0.00 0.00 0.41 0.66
intermediate 0.65 0.40 0.13 1.19 0.81 0.21 0.47 0.00 0.00 1.49 2.68
major 0.63 0.00 0.20 0.83 0.29 0.14 0.13 0.06 0.06 0.68 1.51
Sum 1.41 0.40 0.46 2.27 1.10 0.69 0.67 0.06 0.06 2.58 4.85

Table A.4: Relative number of Palladio related problems (p.92)

246

Bibliography

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers & Principles, Techniques, and Tools. Addi-
son-Wesley, Reading, MA (1986).

M. Ajmone Marsan, G. Balbo, A. Bobbio, G. Chiola, G. Conte, and A. Cumani. The Effect of
Execution Policies on the Semantics and Analysis of Stochastic Petri Nets. IEEE Transactions
on Software Engineering, 15(7):832–846 (1989).

R. Andrej. Entwurf und Implementierung eines GUI-Simulationsframeworks für das Palladio
Komponentenmodell auf Basis der Eclipse Rich Client Platform. Study thesis, University of
Karlsruhe (2007).

AndroMDA.org. AndroMDA Homepage (2007). Last retrieved 2008-01-06.
URL http://galaxy.andromda.org

Apache Software Foundation. Apache Axis 2 (2008). Last retrieved 2008-01-06.
URL http://ws.apache.org/axis2/

L. B. Arief and N. A. Speirs. A UML Tool for an Automatic Generation of Simulation Programs.
In Proceedings of the Second International Workshop on Software and Performance, pages 71–
76. ACM Press (2000).

ATLAS Group. Atlas Transformation Language (ATL) Homepage (2007). Last retrieved 2008-
01-06.
URL http://www.eclipse.org/m2m/atl/

S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni. Model-Based Performance Predic-
tion in Software Development: A Survey. IEEE Transactions on Software Engineering,
30(5):295–310 (2004a).

S. Balsamo and M. Marzolla. A Simulation-Based Approach to Software Performance Model-
ing. In Proceedings of the 9th European Software Engineering Conference held jointly with 11th
ACM SIGSOFT international symposium on Foundations of Software Engineering, pages
363–366. ACM Press (2003).

247

http://galaxy.andromda.org
http://ws.apache.org/axis2/
http://www.eclipse.org/m2m/atl/

S. Balsamo, M. Marzolla, A. Di Marco, and P. Inverardi. Experimenting different software
architectures performance techniques: a case study. In Proceedings of the fourth international
workshop on Software and performance, pages 115–119. ACM Press (2004b).

J. E. Bardram, H. B. Christensen, A. V. Corry, K. M. Hansen, and M. Ingstrup. Explor-
ing Quality Attributes Using Architectural Prototyping. In R. Reussner, J. Mayer, J. A.
Stafford, S. Overhage, S. Becker, and P. J. Schroeder, editors, Quality of Software Ar-
chitectures and Software Quality, First International Conference on the Quality of Software
Architectures, QoSA 2005 and Second International Workshop on Software Quality, SOQUA
2005, Erfurt, Germany, September 20-22, 2005, Proceedings, volume 3712 of Lecture Notes
in Computer Science, pages 155–170. Springer-Verlag, Berlin, Germany (2005).

V. R. Basili. Viewing Maintenance as Reuse-Oriented Software Development. IEEE Software,
7:19–25 (1990).

L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice, Second Edition. Ad-
dison-Wesley, Reading, MA, USA (2003).

F. Bause and P. S. Kritzinger. Stochastic Petri Nets: An Introduction to the Theory. Vieweg-
Verlag (1996).

F. Bause and P. S. Kritzinger. Stochastic Petri Nets. Vieweg, 2nd edition (2002).

S. Becker. Coupled Model Transformations. In Proceedings of the 7th International Workshop on
Software and Performance (WOSP2008). ACM Sigsoft (2008). To Appear.

S. Becker, A. Brogi, I. Gorton, S. Overhage, A. Romanovsky, and M. Tivoli. Towards an
Engineering Approach to Component Adaptation. In Architecting Systems with Trustworthy
Components, volume 3938 of Lecture Notes in Computer Science, pages 193–215. Springer
(2006a).

S. Becker, T. Dencker, and J. Happe. Model-Driven Generation of Performance Prototypes. In
Proceedings of the SPEC International Performance Evaluation Workshop 2008 (2008a). To
Appear.

S. Becker, L. Grunske, R. Mirandola, and S. Overhage. Performance Prediction of Component-
Based Systems: A Survey from an Engineering Perspective. In R. Reussner, J. Stafford, and
C. Szyperski, editors, Architecting Systems with Trustworthy Components, volume 3938 of
LNCS, pages 169–192. Springer (2006b).

248

Bibliography

S. Becker, J. Happe, and H. Koziolek. Putting Components into Context - Supporting QoS-
Predictions with an explicit Context Model. In R. Reussner, C. Szyperski, and W. Weck, ed-
itors, Proceedings of the Eleventh International Workshop on Component-Oriented Program-
ming (WCOP’06) (2006c).

S. Becker, H. Koziolek, and R. Reussner. Model-based Performance Prediction with the Pal-
ladio Component Model. In Proceedings of the 6th International Workshop on Software and
Performance (WOSP2007). ACM Sigsoft (2007).

S. Becker, H. Koziolek, and R. Reussner. The Palladio Component Model for Model-Driven
Performance Prediction. Journal of Systems and Software (2008b). Accepted for publica-
tion, To Appear.

S. Becker, S. Overhage, and R. Reussner. Classifying Software Component Interoperability
Errors to Support Component Adaption. In I. Crnkovic, J. A. Stafford, H. W. Schmidt, and
K. C. Wallnau, editors, Component-Based Software Engineering, 7th International Sympo-
sium, CBSE 2004, Edinburgh, UK, May 24-25, 2004, Proceedings, volume 3054 of Lecture
Notes in Computer Science, pages 68–83. Springer, Berlin, Heidelberg (2004).

S. Becker, R. H. Reussner, and V. Firus. Specifying Contractual Use, Protocols and Quality
Attributes for Software Components. In K. Turowski and S. Overhage, editors, Proceedings
of the First International Workshop on Component Engineering Methodology (2003).

M. Bernardo and R. Gorrieri. A tutorial on EMPA: A theory of concurrent processes with
nondeterminism, priorities, probabilities and time. Theoretical Computer Science, 202(1–
2):1–54 (1998).
URL http://www.cs.unibo.it/˜gorrieri/Papers/tcs202.ps.gz

M. Bertoli, G. Casale, and G. Serazzi. The JMT Simulator for Performance Evaluation of Non-
Product-Form Queueing Networks. In Annual Simulation Symposium, pages 3–10. IEEE
Computer Society, Norfolk,VA, US (2007).

A. Bertolino and R. Mirandola. CB-SPE Tool: Putting Component-Based Performance Engi-
neering into Practice. In I. Crnkovic, J. A. Stafford, H. W. Schmidt, and K. C. Wallnau, ed-
itors, Proc. 7th International Symposium on Component-Based Software Engineering (CBSE
2004), Edinburgh, UK, volume 3054 of Lecture Notes in Computer Science, pages 233–248.
Springer-Verlag, Berlin, Germany (2004).

A. Beugnard, J.-M. Jézéquel, N. Plouzeau, and D. Watkins. Making Components Contract
Aware. Computer, 32(7):38–45 (1999).

249

http://www.cs.unibo.it/~gorrieri/Papers/tcs202.ps.gz

H. C. Bohnenkamp, P. R. D’Argenio, H. Hermanns, and J.-P. Katoen. MODEST: A Com-
positional Modeling Formalism for Hard and Softly Timed Systems. IEEE Transactions on
Software Engineering, 32(10):812–830 (2006).

G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi. Queueing Networks and Markov Chains.
John Wiley & Sons Inc. (1998a).

G. Bolch, S. Greiner, K. S. Trivedi, and H. de Meer. Queueing Networks and Markov Chains:
Modeling and Performance Evaluation With Computer Science Applications. Wiley & Sons,
New York, NY, USA (1998b).

G. Bolch and M. Kirschnick. PEPSY-QNS - Ein Programmsystem zur Leistungsanalyse
von Warteschlangennetzwerken. In Messung, Modellierung und Bewertung von Rechen-
und Kommunikationssystemen ; Kurzberichte und Werkzeugvorstellungen zur 7.ITG/GI-
Fachtagung Aachen, 21.-23. Sep. 1993; Aachener Beiträge zur Informatik (Bd. 2), pages 216–
220. Verlag der Augustinus Buchhandlung, Aachen (1993).

E. Bondarev, M. Chaudron, and P. de With. A Process for Resolving Performance Trade-
Offs in Component-Based Architectures. In Proceedings of the 9th International Symposium
on Component-based Software Engineering (CBSE2006), volume 4063 of Lecture Notes in
Computer Science, pages 254–269 (2006).

E. Bondarev, P. de With, M. Chaudron, and J. Musken. Modelling of Input-Parameter Depen-
dency for Performance Predictions of Component-Based Embedded Systems. In Proceedings of
the 31th EUROMICRO Conference (EUROMICRO’05) (2005).

E. Bondarev, P. H. N. de With, and M. Chaudron. Predicting Real-Time Properties of
Component-Based Applications. In Proc. of RTCSA (2004).

A. D. Brucker and B. Wolff. HOL-OCL: Experiences, Consequences and Design Choices. In
J.-M. Jézéquel, H. Hussmann, and S. Cook, editors, UML 2002: Model Engineering,
Concepts and Tools, number 2460 in Lecture Notes in Computer Science, pages 196–211.
Springer-Verlag, Dresden (2002).
URL http://www.brucker.ch/bibliography/abstract/brucker.

ea-hol-ocl-2002

F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T. J. Grose. Eclipse Modeling Frame-
work. Eclipse Series. Prentice Hall (2003).

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented Soft-
ware Architecture – A System of Patterns. Wiley & Sons, New York, NY, USA (1996).

250

http://www.brucker.ch/bibliography/abstract/brucker.ea-hol-ocl-2002
http://www.brucker.ch/bibliography/abstract/brucker.ea-hol-ocl-2002

Bibliography

Carnegie Mellon University. Website on Published Software Architecture Definitions (2007).
Last retrieved 2008-01-06.
URL http://www.sei.cmu.edu/architecture/published_definitions.

html

J. Cheesman and J. Daniels. UML Components: A Simple Process for Specifying Component-
based Software. Addison-Wesley, Reading, MA, USA (2000).

P. C. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord, and J. Stafford.
Documenting Software Architectures. SEI Series in Software Engineering. Addison-
Wesley (2003).

V. Cortellessa. How far are we from the definition of a common software performance ontology?
In WOSP ’05: Proceedings of the 5th International Workshop on Software and Performance,
pages 195–204. ACM Press, New York, NY, USA (2005).

V. Cortellessa, P. Pierini, and D. Rossi. Integrating Software Models and Platform Models for
Performance Analysis. IEEE Transactions on Software Engineering, 33(6):385–401 (2007).

G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems - Concepts and Design, 3rd
Ed. Addison Wesley (2000).

K. Czarnecki and U. W. Eisenecker. Generative Programming. Addison-Wesley, Reading,
MA, USA (2000).

K. Czarnecki and S. Helsen. Classification of Model Transformation Approaches. In OOPSLA
2003 Workshop on Generative Techniques in the context of Model Driven Architecture (2003).
Last retrieved 2008-01-06.
URL http://www.softmetaware.com/oopsla2003/czarnecki.pdf

M. de Miguel, T. Lambolais, M. Hannouz, S. Betge-Brezetz, and S. Piekarec. UML exten-
sions for the specification and evaluation of latency constraints in architectural models. In
WOSP ’00: Proceedings of the 2nd International Workshop on Software and Performance,
pages 83–88. ACM Press, New York, NY, USA (2000).

DESMO-J. The DESMO-J Homepage (2007). Last retrieved 2008-01-06.
URL http://asi-www.informatik.uni-hamburg.de/desmoj/

A. Di Marco and P. Inveradi. Compositional Generation of Software Architecture Performance
QN Models. In Proceedings of WICSA 2004, pages 37–46 (2004).

251

http://www.sei.cmu.edu/architecture/published_definitions.html
http://www.sei.cmu.edu/architecture/published_definitions.html
http://www.softmetaware.com/oopsla2003/czarnecki.pdf
http://asi-www.informatik.uni-hamburg.de/desmoj/

A. Di Marco and R. Mirandola. Model Transformations in Software Performance Engineering.
In C. Hofmeister, I. Crnkovic, R. Reussner, and S. Becker, editors, Quality of Software
Architectures, 2nd International Conference, QoSA 2006, Västerås, Sweden, June 27 - 29,
2006, Proceedings, volume 4214 of Lecture Notes in Computer Science, pages 95–110 (2006).

B. P. Douglass. Real-Time Design Patterns. Object Technology Series. Addison-Wesley
Professional (2002).

N. Duzbayev and I. Poernomo. Runtime Prediction of Queued Behaviour. In C. Hofmeister,
I. Crnkovic, and R. Reussner, editors, Quality of Software Architectures, Second Interna-
tional Conference on Quality of Software Architectures, QoSA 2006, Västerås, Sweden, June
27-29, 2006 Revised Papers, volume 4214 of Lecture Notes in Computer Science, pages 78–
94. Springer (2006).

Eclipse Foundation. The Eclipse Modelling Project (2006). Last retrieved 2008-01-06.
URL http://www.eclipse.org/modeling/

Eclipse Foundation. EMF-based OCL Implementation (2007a). Last retrieved 2008-01-06.
URL http://www.eclipse.org/modeling/mdt/?project=ocl

Eclipse Foundation. Graphical Editing Framework Homepage (2007b). Last retrieved 2008-
01-06.
URL http://www.eclipse.org/gef/

Eclipse Foundation. Graphical Modeling Framework Homepage (2007c). Last retrieved 2008-
01-06.
URL http://www.eclipse.org/gmf/

EJB. Sun Microsystems Corp., The Enterprise Java Beans homepage (2007). Last retrieved 2008-
01-06.
URL http://java.sun.com/products/ejb/

M. A. Ellis and B. Stroustrup. The Annotated C++ Rerenence Manual. Addison–Wesley,
Reading, MA (1990).

E. Eskenazi, A. Fioukov, and D. Hammer. Performance Prediction for Component Compo-
sitions. In Proceedings of the 7th International Symposium on Component-based Software
Engineering (CBSE7), volume 3054 of Lecture Notes in Computer Science, pages 280–293.
Springer-Verlag, Berlin, Germany (2004).

252

http://www.eclipse.org/modeling/
http://www.eclipse.org/modeling/mdt/?project=ocl
http://www.eclipse.org/gef/
http://www.eclipse.org/gmf/
http://java.sun.com/products/ejb/

Bibliography

V. Firus, S. Becker, and J. Happe. Parametric Performance Contracts for QML-specified Soft-
ware Components. In Formal Foundations of Embedded Software and Component-based Soft-
ware Architectures (FESCA), volume 141 of Electronic Notes in Theoretical Computer Sci-
ence, pages 73–90. ETAPS 2005 (2005).

M. Fowler. Inversion of Control Containers and the Dependency Injection pattern (2004). Last
retrieved 2008-01-06.
URL http://martinfowler.com/articles/injection.html

T. Freese. EasyMock - Dynamic Mock Objects for JUnit. In M. Marchesi, editor, Proceedings
of the 3rd International Conference on Extreme Programming and Agile Processes in Software
Engineering, pages 1–5 (2002).

F. Freiling, I. Eusgeld, and R. Reussner, editors. Dependability Metrics. Lecture Notes in
Computer Science. Springer-Verlag, Berlin, Germany (2008). To appear.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, MA, USA (1995).

R. L. Glass. Software Runaways: Monumental Software Disasters. Prentice Hall, Englewood
Cliffs, NJ, USA (1998).

Gorilla Logic Inc. Gorilla Logic Homepage (2007). Last retrieved 2008-01-06.
URL http://www.gorillalogic.com/

N. Götz, U. Herzog, and M. Rettelbach. TIPP - Introduction and Application to Protocol
Performance Analysis. In H. König, editor, Formale Methoden für verteilte Systeme, GI/ITG-
Fachgespräch, Magdeburg, 10.-11. Juni 1992, pages 105–125. K. G. Saur Verlag (1992).

V. Grassi, R. Mirandola, and A. Sabetta. From Design to Analysis Models: a Kernel Language
for Performance and Reliability Analysis of Component-based Systems. In WOSP ’05: Pro-
ceedings of the 5th international workshop on Software and performance, pages 25–36. ACM
Press, New York, NY, USA (2005).

V. Grassi, R. Mirandola, and A. Sabetta. A Model Transformation Approach for the Early Per-
formance and Reliability Analysis of Component-Based Systems. In I. Gorton, G. T. Heine-
man, I. Crnkovic, H. W. Schmidt, J. A. Stafford, C. A. Szyperski, and K. C. Wallnau,
editors, Component-Based Software Engineering, 9th International Symposium, CBSE 2006,
Västerås, Sweden, June 29 - July 1, 2006, Proceedings, volume 4063 of Lecture Notes in Com-
puter Science, pages 270–284. Springer (2006).

253

http://martinfowler.com/articles/injection.html
http://www.gorillalogic.com/

D. Hamlet, D. Mason, and D. Woit. Component-Based Software Development: Case Stud-
ies, volume 1 of Series on Component-Based Software Development, chapter Properties of
Software Systems Synthesized from Components, pages 129–159. World Scientific Pub-
lishing Company (2004).

J. Happe. Concurrency Modelling for Performance and Reliability Prediction of Component-
Based Software Architectures. Ph.D. thesis, University of Oldenburg (2008). To appear.

J. Happe, H. Koziolek, and R. Reussner. Parametric Performance Contracts for Software Com-
ponents with Concurrent Behaviour. In F. S. de Boer and V. Mencl, editors, Proceedings of
the 3rd International Workshop on Formal Aspects of Component Software (FACS06), Prague,
Czech Republic, Electronical Notes in Computer Science (2006).

P. G. Harrison and B. Strulo. SPADES - a Process Algebra for Discrete Event Simulation.
Journal of Logic and Computation, 10(1):3–42 (2000).
URL http://pubs.doc.ic.ac.uk/spades/

B. R. Haverkort, R. Marie, G. Rubino, and K. S. Trivedi. Performability Modelling : Tech-
niques and Tools. Wiley & Sons, New York, NY, USA (2001).

H. Hermanns, U. Herzog, and J.-P. Katoen. Process Algebra for Performance Evaluation.
Theoretical Computer Science, 274(1–2):43–87 (2002).

J. Hillston. A Compositional Approach to Performance Modelling. Cambridge University
Press, New York, NY, USA (1996).

S. A. Hissam, G. A. Moreno, J. A. Stafford, and K. C. Wallnau. Packaging Predictable As-
sembly. In J. M. Bishop, editor, Component Deployment, IFIP/ACM Working Conference,
CD 2002, Berlin, Germany, June 20-21, 2002, Proceedings, volume 2370 of Lecture Notes in
Computer Science, pages 108–124. Springer (2002).

G. Hohpe and B. Woolf. Enterprise Integration Patterns: Designing, Building, and Deploying
Messaging Solutions. Addison-Wesley Longman, Amsterdam (2003).

A. Hunt and D. Thomas. Pragmatic Unit Testing in Java with JUnit. The Pragmatic Pro-
grammers (2003).

HyPerformix Inc. Hyperformix Homepage (2007). Last retrieved 2008-01-06.
URL http://www.hyperformix.com

A. Kostian. Vergleich der Performance-Auswirkungen generierter Adaptoren. Diplomarbeit,
University of Oldenburg (2005).

254

http://pubs.doc.ic.ac.uk/spades/
http://www.hyperformix.com

Bibliography

S. Kounev. Performance Modeling and Evaluation of Distributed Component-Based Systems
Using Queueing Petri Nets. IEEE Transactions on Software Engineering, 32(7):486–502
(2006).

S. Kounev and A. Buchmann. SimQPN: a tool and methodology for analyzing queueing Petri
net models by means of simulation. Performormance Evaluation, 63(4):364–394 (2006).

H. Koziolek. Parameter Dependencies for Reusable Performance Specifications of Software Com-
ponents. Ph.D. thesis, University of Oldenburg (2008).

H. Koziolek, S. Becker, and J. Happe. Predicting the Performance of Component-based Software
Architectures with different Usage Profiles. In Proc. 3rd International Conference on the Qual-
ity of Software Architectures (QoSA’07), volume 4880 of LNCS, pages 145–163. Springer
(2007).

H. Koziolek, S. Becker, J. Happe, and R. Reussner. Model-Driven Software Development: In-
tegrating Quality Assurance, chapter Evaluating Performance and Reliability of Software
Architecture with the Palladio Component Model, page To appear. IDEA Group Inc.
(2008).

H. Koziolek and V. Firus. Parametric Performance Contracts: Non-Markovian Loop Modelling
and an Experimental Evaluation. In Proceedings of FESCA2006, Electronical Notes in Com-
puter Science (ENTCS) (2006).

H. Koziolek and J. Happe. A Quality of Service Driven Development Process Model for
Component-based Software Systems. In I. Gorton, G. T. Heineman, I. Crnkovic, H. W.
Schmidt, J. A. Stafford, C. A. Szyperski, and K. C. Wallnau, editors, Component-Based
Software Engineering, volume 4063 of Lecture Notes in Computer Science, pages 336–343.
Springer-Verlag, Berlin, Germany (2006).
URL http://dx.doi.org/10.1007/11783565_25

H. Koziolek, J. Happe, and S. Becker. Parameter Dependent Performance Specification of Soft-
ware Components. In Proceedings of the Second International Conference on Quality of Soft-
ware Architectures (QoSA2006), volume 4214 of Lecture Notes in Computer Science, pages
163–179. Springer-Verlag, Berlin, Germany (2006).

K. Krogmann. Generierung von Adaptoren. Individual project, University of Oldenburg,
Germany (2004).

K. Krogmann. Entwicklung und Transformation eines EMF-Modells des Palladio Komponenten-
Meta-Modells. Master’s thesis, University of Oldenburg, Germany (2006). Last retrieved
2008-01-06.

255

http://dx.doi.org/10.1007/11783565_25

URL http://www.kelsaka.de/kelsaka/extra/content/Diplomarbeit%

20Entwicklung%20und%20Transformation%20eine%20EMF-Modells%

20des%20Palladio%20Komponenten-Meta-Modells.pdf

K. Krogmann. Reengineering of Software Component Models to Enable Architectural Quality of
Service Predictions. In R. Reussner, C. Szyperski, and W. Weck, editors, Proceedings of the
12th International Workshop on Component Oriented Programming (WCOP 2007) (2007).

K. Krogmann and S. Becker. A Case Study on Model-Driven and Conventional Software Devel-
opment: The Palladio Editor. In W.-G. Bleek, H. Schwentner, and H. Züllighoven, editors,
Software Engineering 2007 - Beiträge zu den Workshops, volume 106 of Lecture Notes in
Informatics (LNI) - Proceedings, pages 169–176. Series of the Gesellschaft für Informatik
(GI) (2007).

K. Krogmann and R. Reussner. Palladio - Prediction of Performance Properties. In The Common
Component Modelling Example: Comparing Software Component Models, volume To Appear
of To Appear in LNCS. Springer-Verlag, Berlin, Germany (2008).

K.-K. Lau. Software Component Models. In Proceedings of the 6th International Conference on
Software Engineering (ICSE06), pages 1081–1082. ACM Press (2006).

K.-K. Lau and Z. Wang. A Taxonomy of Software Component Models. In Proceedings of the
31st EUROMICRO Conference, pages 88–95. IEEE Computer Society Press (2005).

K.-K. Lau and Z. Wang. A Survey of Software Component Models. Technical report, School
of Computer Science, The University of Manchester (2006). Second edition, Pre-print
CSPP-38, Last retrieved 2008-01-06.
URL http://www.cs.man.ac.uk/cspreprints/PrePrints/cspp38.pdf

A. M. Law and W. D. Kelton. Simulation, Modelling and Analysis. McGraw-Hill, New York,
3rd edition (2000).

E. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik. Quantitative System Performance
- Computer System Analysis Using Queueing Network Models. Prentice-Hall (1984).

P. L’Ecuyer and E. Buist. Simulation in Java with SSJ. In WSC ’05: Proceedings of the 37th
conference on Winter simulation, pages 611–620. Winter Simulation Conference (2005).

K. Lee, K. C. Kang, and J. Lee. Concepts and Guidelines of Feature Modeling for Product Line
Software Engineering. In C. Gacek, editor, Software Reuse: Methods, Techniques, and Tools,
7th International Conference, ICSR-7, Austin, TX, USA, April 15-19, 2002, Proceedings, vol-
ume 2319 of Lecture Notes in Computer Science, pages 62–77. Springer (2002).

256

http://www.kelsaka.de/kelsaka/extra/content/Diplomarbeit%20Entwicklung%20und%20Transformation%20eine%20EMF-Modells%20des%20Palladio%20Komponenten-Meta-Modells.pdf
http://www.kelsaka.de/kelsaka/extra/content/Diplomarbeit%20Entwicklung%20und%20Transformation%20eine%20EMF-Modells%20des%20Palladio%20Komponenten-Meta-Modells.pdf
http://www.kelsaka.de/kelsaka/extra/content/Diplomarbeit%20Entwicklung%20und%20Transformation%20eine%20EMF-Modells%20des%20Palladio%20Komponenten-Meta-Modells.pdf
http://www.cs.man.ac.uk/cspreprints/PrePrints/cspp38.pdf

Bibliography

Y. Liu, A. Fekete, and I. Gorton. Design-Level Performance Prediction of Component-Based
Applications. IEEE Transactions on Software Engineering, 31(11):928–941 (2005).

R. G. M. Bravetti, M. Bernardo. Towards Performance Evaluation with General Distributions
in Process Algebras. In D. Sangiorgi and R. de Simone, editors, Proceedings of the 9th
International Conference on Concurrency Theory (CONCUR ’98), volume 1466 of LNCS,
pages 405–422 (1998a).

F. Marinescu. EJB Design Patterns. John Wiley & Sons (2002).

A. Martens. Empirical Validation of the Model-driven Performance Prediction Approach
Palladio. Master’s thesis, Universität Oldenburg (2007).
URL http://sdq.ipd.uka.de/diploma_theses_study_theses/

completed_theses

N. Medvidovic and R. N. Taylor. A classification and comparison framework for software
architecture description languages. IEEE Transactions on Software Engineering, 26(1):70–
93 (2000).

metamodel.com. metamodel.com, Community site for meta-modeling and semantic modeling:
What is metamodeling, and what is it good for? (2007). Last retrieved 2008-01-06.
URL http://www.metamodel.com/staticpages/index.php?page=

20021010231056977

B. Meyer. Object-Oriented Software Construction. Prentice Hall, Englewood Cliffs, NJ, USA,
2nd edition (1997).

Microsoft Corporation. The DCOM homepage (2007). Last retrieved 2008-01-06.
URL http://www.microsoft.com/com/default.mspx

R. Milner. A calculus of communicating systems. Lecture Notes in Computer Science, 92
(1980).

ModelWare. ModelWare Information Society Technologies (IST) Sixth Framework Programme:
Glossary (2007). Last retrieved 2008-01-06.
URL http://www.modelware-ist.org/index.php?option=com_rd_

glossary\&Itemid=55

S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann Pub-
lishers, San Mateo, CA, USA (1997).

.NET. Microsoft Corp., The .NET homepage (2007). Last retrieved 2008-01-06.
URL http://www.microsoft.com/net/default.aspx

257

http://sdq.ipd.uka.de/diploma_theses_study_theses/completed_theses
http://sdq.ipd.uka.de/diploma_theses_study_theses/completed_theses
http://www.metamodel.com/staticpages/index.php?page=20021010231056977
http://www.metamodel.com/staticpages/index.php?page=20021010231056977
http://www.microsoft.com/com/default.mspx
http://www.modelware-ist.org/index.php?option=com_rd_glossary\&Itemid=55
http://www.modelware-ist.org/index.php?option=com_rd_glossary\&Itemid=55
http://www.microsoft.com/net/default.aspx

Object Management Group (OMG). IDL to Java Language Mapping Specification (formal/02-
08-05) (2002).
URL http://www.omg.org/docs/formal/02-08-05.pdf

Object Management Group (OMG). UML Profile for Modeling Quality of Service and Fault
Tolerance Characteristics and Mechanisms (2005a).
URL http://www.omg.org/cgi-bin/doc?ptc/2005-05-02

Object Management Group (OMG). UML Profile for Schedulability, Performance and Time
(2005b).
URL http://www.omg.org/cgi-bin/doc?formal/2005-01-02

Object Management Group (OMG). Unified Modeling Language Specification: Version 2,
Revised Final Adopted Specification (ptc/05-07-04) (2005c).
URL http://www.uml.org/#UML2.0

Object Management Group (OMG). CORBA Component Model, v4.0 (formal/2006-04-01)
(2006a).
URL http://www.omg.org/technology/documents/formal/components.

htm

Object Management Group (OMG). Meta Object Facility (MOF) 2.0 XMI Mapping Specifi-
cation, v2.1 (formal/05-09-01) (2006b).
URL http://www.omg.org/cgi-bin/apps/doc?formal/05-09-01.pdf

Object Management Group (OMG). Model Driven Architecture - Specifications (2006c).
URL http://www.omg.org/mda/specs.htm

Object Management Group (OMG). MOF 2.0 Core Specification (formal/2006-01-01) (2006d).
URL http://www.omg.org/cgi-bin/doc?formal/2006-01-01

Object Management Group (OMG). Object Constraint Language, v2.0 (formal/06-05-01)
(2006e).
URL http://www.omg.org/cgi-bin/doc?formal/2006-05-01

Object Management Group (OMG). UML Profile for Modeling and Analysis of Real-Time and
Embedded systems (MARTE) RFP (realtime/05-02-06) (2006f).
URL http://www.omg.org/cgi-bin/doc?realtime/2005-2-6

Object Management Group (OMG). Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification (ptc/07-07-07) (2007a).
URL http://www.omg.org/docs/ptc/07-07-07.pdf

258

http://www.omg.org/docs/formal/02-08-05.pdf
http://www.omg.org/cgi-bin/doc?ptc/2005-05-02
http://www.omg.org/cgi-bin/doc?formal/2005-01-02
http://www.uml.org/#UML2.0
http://www.omg.org/technology/documents/formal/components.htm
http://www.omg.org/technology/documents/formal/components.htm
http://www.omg.org/cgi-bin/apps/doc?formal/05-09-01.pdf
http://www.omg.org/mda/specs.htm
http://www.omg.org/cgi-bin/doc?formal/2006-01-01
http://www.omg.org/cgi-bin/doc?formal/2006-05-01
http://www.omg.org/cgi-bin/doc?realtime/2005-2-6
http://www.omg.org/docs/ptc/07-07-07.pdf

Bibliography

Object Management Group (OMG). MOF Models to Text Transformation Language, Beta 2
(2007b).
URL http://www.omg.org/docs/ptc/07-08-16.pdf

Object Web. The Fractal Project Homepage (2006). Last retrieved 2008-01-06.
URL http://fractal.objectweb.org/

openArchitectureWare (oAW). openArchitectureWare (oAW) Generator Framework (2007).
Last retrieved 2008-01-06.
URL http://www.openarchitectureware.org

S. Overhage. Vereinheitlichte Spezifikation von Komponenten: Grundlagen, UnSCom Spezifika-
tionsrahmen und Anwendung. Ph.D. thesis, Augsburg University (2006).

B. Page and W. Kreutzer. The Java Simulation Handbook. Simulating Discrete Event Systems
with UML and Java. Shaker Verlag GmbH, Germany (2005).

C. A. Petri. Kommunikation mit Automation. Schriften des Rheinisch-Westfälischen Insti-
tutes für Instrumentelle Mathematik an der Universität Bonn, Bonn FRG (1962).

D. C. Petriu and H. Shen. Applying the UML Performance Profile: Graph Grammar-based
Derivation of LQN Models from UML Specifications. In Computer Performance Evaluation –
Modelling Techniques and Tools, volume 2324 of Lecture Notes in Computer Science, pages
159 – 177. Springer (2002).

D. C. Petriu and X. Wang. From UML Description of High-level Software Architecture to LQN
Performance Models. In M. Nagl, A. Schürr, and M. Münch, editors, Proc. of AGTIVE’99
Kerkrade, volume 1779. Springer (2000).

G. Pietrek, J. Trompeter, J. C. F. Beltran, B. Holzer, T. Kamann, M. Kloss, S. A. Mork,
B. Niehues, and K. Thoms. Modellgetriebene Softwareentwicklung - MDA und MDSD in
der Praxis. entwickler.press (2007).

F. Plasil and S. Visnovsky. Behavior Protocols for Software Components. IEEE Transactions
on Software Engineering, 28(11):1056–1076 (2002).

R Development Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria (2007). ISBN 3-900051-07-0, Last
retrieved 2008-01-06.
URL http://www.R-project.org

259

http://www.omg.org/docs/ptc/07-08-16.pdf
http://fractal.objectweb.org/
http://www.openarchitectureware.org
http://www.R-project.org

A. Rentschler. Model-To-Text Transformation Languages. In Seminar: Modellgetriebene
Software-Entwicklung Architekturen, Muster und Eclipse-basierte MDA. Fakultät für Infor-
matik, Universität Karlsruhe (TH), Germany (2006).

R. H. Reussner. Parametrisierte Verträge zur Protokolladaption bei Software-Komponenten. Lo-
gos Verlag, Berlin (2001).

R. H. Reussner, S. Becker, and V. Firus. Component Composition with Parametric Contracts.
In Tagungsband der Net.ObjectDays 2004, pages 155–169 (2004).

R. H. Reussner, S. Becker, H. Koziolek, J. Happe, M. Kuperberg, and K. Krogmann. The
Palladio Component Model. Interner Bericht 2007-21, Universität Karlsruhe (TH), Faculty
for Informatics, Karlsruhe, Germany (2007).

R. H. Reussner and W. Hasselbring. Handbuch der Software-Architektur. dPunkt.verlag,
Heidelberg (2006).

R. H. Reussner, H. W. Schmidt, and I. Poernomo. Reliability Prediction for Component-
Based Software Architectures. Journal of Systems and Software – Special Issue of Software
Architecture – Engineering Quality Attributes, 66(3):241–252 (2003).

J. Ritter. Prozessorientierte Konfiguration komponentenbasierter Anwendungssysteme. Ph.D.
thesis, Universität Oldenburg, Universität Oldenburg (2000). Dissertation, Universität
Oldenburg, Fachbereich Informatik.
URL http://docserver.bis.uni-oldenburg.de/publikationen/

dissertation/2000/ritpro00/ritpro00.html

L. Sachs. Angewandte Statistik: Anwendung statistischer Methoden. Springer-Verlag, Berlin,
Germany, 8th edition (1997).

R. Schaudel. Modellgetriebene Transformation von Instanzen des Palladio Komponentenmod-
ells in eine ablauffähige J2EE Realisierung. Master’s thesis, University of Karlsruhe (TH)
(2007).

M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Discipline. Pren-
tice Hall, Englewood Cliffs, NJ, USA (1996).

M. Sitaraman, G. Kuczycki, J. Krone, W. F. Ogden, and A. Reddy. Performance Specifica-
tion of Software Components. In Proceedings of the 2001 symposium on Software reusability:
putting software reuse in context, pages 3–10. ACM Press (2001).

C. U. Smith. Performance Engineering of Software Systems. Addison-Wesley, Reading, MA,
USA (1990).

260

http://docserver.bis.uni-oldenburg.de/publikationen/dissertation/2000/ritpro00/ritpro00.html
http://docserver.bis.uni-oldenburg.de/publikationen/dissertation/2000/ritpro00/ritpro00.html

Bibliography

C. U. Smith and L. G. Williams. Performance Engineering Evaluation of Object-Oriented
Systems with SPEED. In R. Marie, editor, Computer Performance Evaluation: Modelling
Techniques and Tools, volume 1245 of Lecture Notes in Computer Science. Springer-Verlag,
Berlin, Germany (1997).

C. U. Smith and L. G. Williams. Performance Solutions: A Practical Guide to Creating Respon-
sive, Scalable Software. Addison-Wesley (2002).

Spring. The Spring Framework Homepage (2006).
URL http://www.springframework.org/

H. Stachowiak. Allgemeine Modelltheorie. Springer Verlag, Wien (1973).

N. Streekmann and S. Becker. A Case Study for Using Generator Configuration to Support
Performance Prediction of Software Component Adaptation. In C. Hofmeister, I. Crnkovic,
R. Reussner, and S. Becker, editors, Short Paper Proceedings of the Second International
Conference on Quality of Software Architectures (QoSA2006), Västerås, Sweden, June 27 - 29,
2006, TR 2006-10, University of Karlsruhe (TH) (2006).

Sun Microsystems Corp. Java Platform, Enterprise Edition (Java EE) Specification, v5 (2006).
Last retrieved 2008-01-06.
URL http://jcp.org/aboutJava/communityprocess/final/jsr244/

index.html

C. Szyperski, D. Gruntz, and S. Murer. Component Software: Beyond Object-Oriented Pro-
gramming. ACM Press and Addison-Wesley, New York, NY, 2nd edition (2002).

A. S. Tanenbaum. Modern Operating Systems. Prentice Hall, Englewood Cliffs, NJ, USA,
2nd edition (2001).

K. S. Trivedi. Probability and Statistics with Reliability, Queuing and Computer Science Appli-
cations. Wiley & Sons, New York, NY, USA, 2nd edition (2001).

M. Uflacker. Design of an Editor for the model-driven Construction of Component Based Software
Architectures. Master’s thesis, University of Oldenburg, Germany (2005).

A. Uhl. Model-Driven Architecture, MDA. In Handbuch der Software-Architektur, chapter 6,
pages 106–123. dPunkt.verlag, Heidelberg (2007a).

A. Uhl. Model-Driven Development in the Enterprise (2007b). Last retrieved 2008-01-06.
URL https://www.sdn.sap.com/irj/sdn/weblogs?blog=/pub/wlg/7237

261

http://www.springframework.org/
http://jcp.org/aboutJava/communityprocess/final/jsr244/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr244/index.html
https://www.sdn.sap.com/irj/sdn/weblogs?blog=/pub/wlg/7237

R. van Ommering, F. van der Linden, J. Kramer, and J. Magee. The Koala Component Model
for Consumer Electronics Software. Computer, 33(3):78–85 (2000).

T. Verdickt, B. Dhoedt, F. Gielen, and P. Demeester. Automatic Inclusion of Middleware
Performance Attributes into Architectural UML Software Models. IEEE Transactions on
Software Engineering, 31(8):695–711 (2005).

T. Verdickt, B. Dhoedt, F. D. Turck, and P. Demeester. Hybrid Performance Modeling Ap-
proach for Network Intensive Distributed Software. In Proceedings of the 6th International
Workshop on Software and Performance (WOSP2007), ACM Sigsoft Notes, pages 189–200
(2007).

M. Völter and T. Stahl. Model-Driven Software Development. Wiley & Sons, New York, NY,
USA (2006).

L. G. Williams and C. U. Smith. Making the Business Case for Software Performance Engi-
neering. In Proceedings of the 29th International Computer Measurement Group Conference,
December 7-12, 2003, Dallas, Texas, USA, pages 349–358. Computer Measurement Group
(2003).

C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén. Experimen-
tation in Software Engineering: an Introduction. Kluwer Academic Publishers, Norwell,
MA, USA (2000).

C. M. Woodside, J. E. Neilson, D. C. Petriu, and S. Majumdar. The Stochastic Rendezvous
Network Model for Performance of Synchronous Client-Server-like Distributed Software. IEEE
Transactions on Computers, 44(1):20–34 (1995).

M. Woodside, G. Franks, and D. C. Petriu. The Future of Software Performance Engineer-
ing. In Proceedings of ICSE 2007, Future of SE, pages 171–187. IEEE Computer Society,
Washington, DC, USA (2007).

M. Woodside, D. C. Petriu, H. Shen, T. Israr, and J. Merseguer. Performance by unified model
analysis (PUMA). In WOSP ’05: Proceedings of the 5th International Workshop on Software
and Performance, pages 1–12. ACM Press, New York, NY, USA (2005).

M. Woodside, D. C. Petriu, and K. H. Siddiqui. Performance-related Completions for Software
Specifications. In Proceedings of the 22rd International Conference on Software Engineering,
ICSE 2002, 19-25 May 2002, Orlando, Florida, USA, pages 22–32. ACM (2002).

X. Wu and M. Woodside. Performance Modeling from Software Components. SIGSOFT Softw.
Eng. Notes, 29(1):290–301 (2004).

262

Curriculum Vitae

Personal Information

Name: Steffen Becker
Address: Rote-Tor-Str. 30, 76661 Philippsburg, Germany
Place of Birth: 35781 Weilburg, Germany
Date of Birth: January 17th, 1977

Studies

02/2006-12/2007 PhD student, University of Karlsruhe (TH)
03/2003-01/2006 PhD student, University of Oldenburg
06/2003 Diplom Wirtschaftsinformatik
10/1999 Vordiplom Wirtschaftsinformatik
10/1997-06/2003 Student of Wirtschaftsinformatik, Technical University of Darmstadt

Work Experience

08/2000-01/2001 Internship, Azisa (Pty) Ltd., Johannesburg, ZA
09/1999-06/2000 Software Engineering Course, Danet GmbH, Weiterstadt

Civil Service and School

11/1996-09/1997 Military Service, Rennerod
06/1987-06/1996 Gymnasium Philippinum, Weilburg, Graduated with Abitur
07/1983-06/1987 Grundschule, Weinbach

	Title
	Contents
	List of Figures
	List of Tables
	List of Listings
	List of OCL Fragments
	Acknowledgements
	Introduction
	Motivation
	Application Scenario
	Scientific Contributions
	Structure
	Context of this Thesis
	Abstract
	Abstract (in German)

	Foundations and Related Work
	Components, Architecture and Component Models
	Software Component
	CBSE Developer Roles
	Software Architecture
	Component Models

	Model-Driven Software Development
	Model / Meta-Model / MOF
	Transformations: MDA / Generative Programming
	Platforms and Platform Specific Models

	Performance Modelling and Prediction
	Influence Factors on Software Performance
	Performance Prediction Process
	Performance Prediction Methods
	Performance Simulations
	Prototyping
	CBSE Performance Prediction
	Model-Driven Methods
	Platform Completions

	Discussion of the Existing Approaches
	Requirements for Model-Driven, CBSE Predictability
	Resulting Deficiencies

	The Palladio Component Model
	Palladio Development Process
	PCM Development Process
	Introducing MDSD into the Palladio Development Process

	PCM Core Concepts
	Random Variables and Stochastic Expressions
	Context Model

	Interfaces and Datatypes
	Components and Component Types
	Provided and Required Roles
	PCM Component Types
	Basic Components
	Composite Components

	Resource Demanding SEFF
	External Calls
	Service Parameters
	SetVariableAction
	Inner Elements of Collections
	InternalActions
	Parametric Resource Demands
	Resource Acquisition and Release
	Control Flow
	Concluding remarks

	Systems
	System QoS Annotations
	Component Parameters

	Allocation
	Resource Environment
	Allocation Contexts

	Usage
	Usage Model and Usage Scenarios
	UsageBehaviour
	Usage Context

	Tool support
	Assumptions and Limitations

	Transformations
	Coupled Transformations Method
	Motivation
	Formalisation of Coupled Transformations

	Modular Transformations
	Mapping Overview
	Simulation Mapping
	SimuCom Overview
	Evaluating Stochastic Expressions
	Simulated Resources
	Usage Model
	Composite Structures
	Resource Demanding SEFFs
	Allocation
	Component Context in SimuCom
	Semantics of the Simulation
	Assumptions and Limitations
	Simulation Time Estimation

	Coupled Transformations
	CBSE Platform Transformations
	Mark Meta-Models
	Methods to Parametrise Analysis Transformations

	Technological Java EE Mapping
	Components
	ComposedStructures
	Assembly Connectors
	Add-Ons
	Limitations and Discussion

	Prototype Mapping
	Combining Mappings
	Simulation of Load
	Assumptions and Limitations

	Validation
	Type I Validation
	Mark Model Independent Predictions
	Mark Model Dependent Predictions

	Type II Validation: Controlled Experiment
	Influence factors
	PCM Tool Suite
	Study Design
	Evaluation
	Validity
	Summary

	Conclusions
	Summary
	Limitations
	Open Questions and Future Work
	Visions

	Appendix
	Contributions and Imported Concepts
	Generated RD-SEFFs for Connector Completions
	Detailed QVT Transformations
	Detailed Experiment Results

	Bibliography
	Curriculum Vitae

	link: Zur Homepage der Dissertation

