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I 

Summary 

Transcranial alternating current stimulation (tACS) is a non-invasive method of modulating brain activity in a 

frequency-specific manner. Through stimulation, the intrinsic oscillations are entrained by the external one, 

which leads not only to changes that can be measured in the EEG, but also in behavior. The latter indicates 

that tACs has the potential - with appropriate adaptations - to specifically improve performance. So far, 

tACS is used in basic research to investigate the functional role of brain oscillations in cognitive processes or 

in a therapeutic or clinical context to treat diseases with altered oscillation patterns. Since tACS is 

inexpensive, mobile, and relatively easy to apply, this method has great potential for application in complex 

tasks or in realistic context, which was investigated in this thesis. Two contexts were selected that are 

related to each other: older adults, whose proportion of the total population is increasing due to 

demographic change, and driving, which as complex task involves many cognitive functions. For older 

adults, driving represents quality of life, but represents risks due to cognitive decline with increasing age. 

The aim of this thesis was – in a first step - to define a scenario and stimulation protocol in which tACS 

improves behavior, and – in two further steps - to transfer this protocol to the application context.  

To develop the tACS protocol, findings from research were initially combined: In their 2014 study, Helfrich et 

al. showed that 40 Hz gamma tACS on posterior parietal brain areas decreases alpha amplitude. The alpha 

amplitude is known to increase over time under mental load or when sustained attention is required. The 

ability to remain alert for long periods of time and to react to a small number of stimuli is also known as 

vigilance. If the vigilance decreases, not only does the alpha amplitude increase, but the performance also 

decreases, which has been proven in experiments by longer reaction times and a lower detection rate. The 

correlation between the increasing alpha amplitude with decreasing vigilance and the possibility of 

reducing the alpha amplitude with 40 Hz tACS gave rise to the research question of Study I: Can stimulation 

with 40 Hz tACS at posterior brain regions counteract vigilance decrement and the increase of reaction 

times in a visual experiment in the laboratory with young participants? Since this question could be 

answered positively (the increase in reaction times over time was significantly lower in the intervention 

group compared to a placebo-stimulated group), the tACS protocol was repeated with the same task but 

with older adults (Study II) and with a task adapted to the application in a driving simulator (Study III). 

Although vigilance decrement was recorded in both Study II and Study III (Study II: increased reaction times 

with increasing time and a higher alpha amplitude after the test compared to before; Study III: slowing of 

brake reaction times with increasing time), no influence of the stimulation could be demonstrated. Due to 

the high variability of the older participants' characteristics (Study II) and behavior (Study III), it is unclear 

whether the stimulation had no effect or whether it is too small to be detected with the selected sample. 

Possible causes of the variability and its consequences for the experimental data are discussed. For future 
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studies, it is recommended to record and include as many factors as possible (age, medication, anatomy, 

behavioral types, anatomical traits and so on). Personalized stimulation protocols (e.g. adjusted to 

individual models of the electric field, frequencies adapted to physiological parameters or in a close-loop 

application) also appear to be preferable to a "one dose fits all" approach. 

 

  



 

III 

Zusammenfassung 

Transkranieller Wechselstromstimulation (tACS) ist eine nicht invasive Methode Hirnaktivität frequenz-

spezifisch zu modulieren. Durch die Stimulation werden die intrinsischen Oszillationen durch die äußeren 

„mitgenommen“, was nicht nur zu Veränderungen führt, die im EEG gemessen werden können, sondern 

auch im Verhalten. Letzteres indiziert, dass tACS das Potential hat - bei entsprechenden Anpassungen - 

gezielt die Leistung zu verbessern. tACS wird in der Grundlagenforschung eingesetzt, um die funktionelle 

Rolle von Hirnoszillationen bei kognitiven Prozessen zu untersuchen oder im therapeutischen oder 

klinischen Kontext, um Krankheiten mit veränderten Oszillationsmustern zu behandeln. Da tACS 

kostengünstig, mobil und relativ leicht anzuwenden ist, hat diese Methode großes Potential für die 

Anwendung bei komplexen Aufgaben bzw. in realitäts-nahen Kontexten, was in dieser Doktor-Arbeit 

untersucht wurde. Ausgewählt wurden zwei Kontexte, die miteinander verbunden sind: Ältere Menschen, 

deren Anteil aufgrund des demografischen Wandels zunimmt und Autofahren, das als komplexe Aufgabe 

viele kognitive Funktionen betrifft. Für ältere Menschen stellt Autofahren Lebensqualität dar, ist aber 

aufgrund kognitiver Abbauprozesse mit zunehmendem Alter riskant. 

Ziel dieser Doktor-Arbeit war es im ersten Schritt ein Szenario und Stimulations-Protokoll zu definieren, in 

dem tACS Verhalten verbessert, sowie in weiteren Schritten dieses Protokoll in den Anwendungskontext zu 

übertragen.  

Für die Entwicklung des tACS-Protokolls wurden zunächst Erkenntnisse aus der Forschung 

zusammengeführt: In ihrer 2014 erschienenen Studie zeigten Helfrich et al., dass 40 Hz gamma tACS an 

posterioren parietalen Gehirnbereichen die Alpha-Amplitude senkt. Die Alpha-Amplitude ist bekannt dafür, 

dass sie mit zunehmender Zeit unter Beanspruchung oder bei anhaltender Wachsamkeit zunimmt. Die 

Fähigkeit über lange Zeit aufmerksam zu bleiben und auch auf wenige Reize reagieren zu können wird auch 

als Vigilanz bezeichnet. Nimmt die Vigilanz ab, steigt nicht nur die Alpha-Amplitude, sondern auch die 

Performance nimmt ab, was in Versuchen anhand verlängerter Reaktionszeiten und einer geringeren 

Detektionsrate nachgewiesen werden. Aus dem Zusammenhang von steigender Alpha-Amplitude bei 

abnehmender Vigilanz und der Möglichkeit die Alpha-Amplitude mit 40 Hz tACS zu senken, ergab sich die 

Forschungsfrage von Studie I (Study I): Wirkt eine Stimulation mit 40 Hz tACS – gemessen anhand von 

weniger langsamen Reaktionszeiten – am Hinterkopf dem erwarteten Abfall der Vigilanz in einem visuellen 

Versuch im Labor mit jungen Probanden entgegen? Da diese Frage positiv beantwortet werden konnte (der 

Anstieg der Reaktionszeiten über die Zeit war signifikant geringer in der Interventionsgruppe im Vergleich zu 

einer Placebo-stimulierten Gruppe), wurde das tACS-Protokoll mit derselben Aufgabe, aber mit älteren 

Probanden (Study II) und mit einer an den Anwendungsfall angepassten Aufgabe im Fahrsimulator (Study 

III) wiederholt. Zwar wurden sowohl in Studie II als auch Studie III ein Abfall der Vigilanz erfasst (Study II: 
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erhöhte Reaktionszeiten mit zunehmender Zeit und eine höhere Alpha-Amplitude, nachdem Versuch im 

Vergleich zu vorher; Study III: Verlangsamung der Bremsreaktionszeiten mit zunehmender Zeit), es konnte 

aber kein Einfluss der Stimulation nachgewiesen werden. Aufgrund der hohen Variabilität der älteren 

Probanden (Study II) und des Verhaltens der Probanden (Study III), ist es unklar, ob die Stimulation keinen 

Effekt hatte oder ob dieser zu gering war, um ihn anhand der ausgewählten Stichprobe nachweisen zu 

können. Mögliche Ursachen der Variabilität und ihre Konsequenzen werden diskutiert. Für zukünftige 

Studien wird empfohlen weitere und möglichst viele Faktoren (Alter, Medikamenteneinnahme, Anatomie, 

Verhaltenstypen usw.) zu erfassen und mit einzubeziehen. Personalisierte Stimulations-Protokolle (z.B. 

anhand von individuellen Modellen des elektrischen Feldes, an physiologische Parameter angepasste 

Frequenzen oder eine Close-Loop-Anwendung) scheinen außerdem einem „one dose fits all“-Ansatz 

vorzuziehen zu sein.   
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1. General Introduction 

Transcranial alternating current stimulation (tACS) is a relatively recent non-invasive neuromodulation 

technique interfering with ongoing brain oscillations used for neurocognitive research. tACS technology has 

proven safe, with no adverse effects reported so far (Matsumoto & Ugawa, 2017; Sheffield et al., 2022). 

TACS devices are low-cost, easy to apply, and allow mobile use (Henao et al., 2018). TACS contributes to the 

understanding how the brain works and has been shown to improve cognitive performance and influences 

behavioral parameters, making it a potential tool to enhance performance in applied contexts (Klink et al., 

2020). In the last decade, a growing amount of research has addressed the therapeutic application of tACS 

to treat neurological diseases in clinical settings (Strüber & Herrmann, 2020) and at home (Jones et al., 

2022). Although there are comparable studies for stimulation techniques with direct current for applied 

contexts (e.g., Nelson et al., 2014; Sakai et al., 2014), there is a lack of practical research for tACS in this 

area so far. The much-studied ergonomic problem of declining attention in a monotonous scenario, 

associated with decreased behavioral performance over time (Oken et al., 2006; Pattyn et al., 2008), was 

chosen as context. At first, a promising stimulation setup based on recent tACS findings and well-known 

effects was defined and tested in a pilot study (Study I). In the two successive steps, the proven concept was 

transferred to older adults (Study II) and into the context of car driving (Study III).  

Below detailed motivational reasons are given why older adults and car drivers were chosen (1.1), followed 

by a short description of brain oscillations, the working principle of tACS, the concept of vigilance (1.2)and 

the resulting research assumption (1.3). Further, the state of the art of relevant tACS research and drivers´ 

monitoring and interventional systems are described (1.4). The section closes with the aim and outline of 

this thesis (1.5) and an introduction to the three studies, which were conceptualized accordingly (1.6).  

1.1 Motivation 

For Western countries, one of the greatest challenges is dealing with the consequences of demographic 

change. By 2070, 30 % of the population will be 65 years and older (European Commission, 2020). Higher 

life expectancy and burdens on the retirement system require older adults to work longer, making them a 

considerable part of the active workforce. Furthermore, by 2030, 25 % of car drivers will be older than 65 

years (Schlag et al., 2014). Getting old does not come without costs: Increasing restraints in mobility, the 

sensory system, and cognitive functions are inevitable. While restraints in mobility and the sensory system 

can be compensated reasonably well by assistive systems like elevators and hearing aids or substituting 

defective components (e.g., artificial hips, eye lenses) there is still a kind of helplessness regarding cognitive 

decline (Ganesan et al., 2019). Cognitive functions known to decrease with increasing age are speech 
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perception, working memory, processing speed, executive functions, reasoning, and spatial orientation 

(Hedden & Gabrieli, 2004; Salthouse, 2004) – all of which are also relevant for car driving, which is 

considered a complex task (Groeger, 2000, Chapter 10). As cognitive functions have been related to specific 

brain oscillations, tACS has great potential in older adults (e.g., Antonenko et al., 2016) and in the context of 

car driving (Groeger, 2000, Chapter 10).  

However, car driving is not only relevant for older adults, but also essential for numerous jobs, commuting, 

or considered a pleasure. Car driving is a complex task, and individual failures harbor a high accident risk 

(Summala, 1996). In ergonomics, monotonous driving scenarios are a classical research theme as they 

resemble a prominent situation: Monotony leads to drowsiness, fatigue, or boredom, making it challenging 

for the driver to stay alerted and be able to react fast in the situation of a hazardous event – an effect called 

vigilance decrement (van Veen et al., 2020). Especially in the past years - due to increasing automation with 

partly automated driving systems that take the driver outside the loop but still leave her or him in charge 

and responsible, e.g., counteracting hazardous events (Greenlee et al., 2024; Körber et al., 2015) - systems 

to counteract vigilance decrement become essential. As car driving involves many cognitive processes that 

can be linked to specific brain oscillations and performance degeneration (Wascher et al., 2016), 

neurotechnology offers great potential for monitoring driver state and interventions (see 1.4.3) including 

tACS to enhance the driver`s state and behavior - at least for a limited time.  

This thesis wants to investigate the application-oriented use of tACS to enhance cognitive (executive) 

functions expected to decline in age or while driving a car in vigilant situations: Can tACS be utilized to 

counterbalance vigilance decrement, especially addressing an older aged target group and in the context of 

car driving? 

1.2 Background knowledge 

The following knowledge is important for conceptualizing a study paradigm to answer the above question. 

The brain consists of nerve cells that communicate with each other and are organized hierarchically. The 

electric activity of bunches of nerve cells can be measured via potential differences between scalp 

electrodes with an electroencephalogram (EEG) (Fröhlich, 2014). Rhythmic activity in distinct frequency 

bands is referred to as oscillations that are linked to specific cognitive functions. Roughly, delta (0 – 4 Hz) 

e.g., has been associated with deep sleep and memory consolidation, theta (4 – 7 Hz) with working and 

episodic memory, alpha (8 – 13 Hz) with executive functions, visual attention and memory processes, beta 

(13 – 30 Hz) with motor functions and attention, working memory and executive control, gamma (30 – 80 

Hz) with the processing of incoming information, working and episodic memory (Klink et al., 2020). Alpha 

1.2.1 Brain oscillations and tACS  
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oscillations are also supposed to have an inhibitory function and be closely linked to two fundamental 

functions of attention (suppression and selection) (Klimesch et al., 1996). Gamma oscillations emerge e.g., 

when a cat is observing prey (Bouyer et al., 1981) and have been linked to “Eureka!” moments when 

humans experience a burst of unexpected clarity (Santarnecchi et al., 2019).  

Recent research has shown that fast and slow brain oscillations can be nested in and modify each other, an 

effect called cross-frequency-coupling (CFC). CFC is believed to be a mechanism for information transfer 

and may provide information integration across several spatiotemporal scales (Canolty & Knight, 2010). CFC 

CFC can occur between distinct subharmonic frequency bands, e.g., gamma and alpha frequencies. 

Research has shown that interaction occurs during cognitive processes with the strongest coupling over 

occipital areas (Osipova et al., 2008; Palva et al., 2005). Gamma-alpha CFC is supposed to have a functional 

role in visual processing (Helfrich et al., 2016).  

While scalp electrodes of an EEG are passive and only measure activity, electrodes for transcranial electrical 

stimulation (tES) are used to apply current through the scalp to influence brain activity. The intensity of the 

current is selected not to harm the patient or cause unpleasant feelings but still be able to induce an 

electrical field strong enough to potentially reach and influence the membrane potential of pyramid cells 

(and change the probability of the nerve cell generating an action potential) despite the resistance of hair, 

skin, and head bone (Antal & Herrmann, 2016; Fertonani & Miniussi, 2017). In tACS, an alternating current 

is used between two or more electrodes. Applied in the EEG frequency range, tACS is believed to work as an 

external oscillator or driving force on endogenous oscillations (Vosskuhl et al., 2018). The physiological 

principle is not entirely understood, but tACS is believed to modify intrinsic oscillations via entrainment 

(online) and be able to change spike-time-dependent plasticity, which explains aftereffects (offline). For 

example, tACS applied in the alpha range has been shown to enhance alpha power directly after stimulation 

for up to 70 minutes (Kasten et al., 2016). Because of interfering artifacts, it is not easily possible to apply 

tACS and measure EEG and tACS simultaneously (see Vosskuhl et al., 2018). Therefore, changes in 

behavioral parameters are often used as an indicator of stimulation success (e.g. see Lee et al., 2023). 

Stimulation with tACS does not always show effects, and the number of null results papers is increasing 

(Brignani et al., 2013; Lafleur et al., 2021; Lafon et al., 2017; van Schouwenburg et al., 2021). The success of 

tACS depends on carefully selecting stimulation parameters like electrode montage (size, shape, number, 

and stimulation site), stimulation frequency, intensity, and duration. Furthermore, tACS effects have been 

shown to vary by individual (trait differences), be task-specific, and strongly dependent on brain state (see 

Wischnewski et al., 2023, for a review and guideline).  

Due to its nature to be able to modify intrinsic oscillations, tACS has been mainly applied in basic research 

to study cognitive functions (e.g. Cabral-Calderin & Wilke, 2020; Fröhlich et al., 2015) and in clinical and 
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therapeutical settings to treat diseases related to abnormal brain oscillations (Alexander et al., 2019; 

Elyamany et al., 2021; Moussavi et al., 2021; Strüber & Herrmann, 2020).  

tACS is one procedure of tES and belongs with transcranial magnetic stimulation (TMS) to the non-invasive 

brain stimulation (NIBS) methods group. While TMS elicits nerve cells to fire, has safety issues, and has 

higher technical demands, tES has been referred to as easy to apply (Antal et al., 2022). Next to tACS, tES 

includes – among others - stimulation with direct current (transcranial direct current stimulation – tDCS) 

and random noise stimulation (Antal & Herrmann, 2016). Especially in the applied contexts tDCS has shown 

promising results (Nelson et al., 2014), and research in the driving field has been conducted (see section 

1.4.3c). In tDCS a constant low-intensity (comparable to tACS) current between two (or more) electrodes is 

administered to the scalp. tDCS relies on modulating membrane polarization, with the brain tissue exposed 

to the anode becoming depolarized (excitatory effect) and the tissue underneath the cathode becoming 

hyperpolarized (inhibitory effect). Studies have shown that enhancing one brain region and introducing one 

desired behavior can have severe undesired effects on other functions (Iuculano & Cohen Kadosh, 2013). 

This "one wins, one loses"-effect could be explained by looking at the brain as a finite system with a limited 

processing capacity, also called a zero-sum model (Antal et al., 2022). This thesis concentrates on the 

potential of tACS, which interacts with intrinsic brain oscillations and works as an amplifier of what is 

already there and – is known to have less severe adverse until now (Matsumoto & Ugawa, 2017). 

Vigilance is the capability to stay alerted and ready to react over prolonged tasks, e.g. required to detect 

rare and unpredictable stimuli (Pattyn et al., 2008; Warm et al., 2008). Vigilance is also referred to as 

sustained attention during intellectually unchallenging and monotonous tasks (Oken et al., 2006). Vigilance 

is important to maintain task performance against fatigue, distractions, and boredom. As Warm et al. (2008) 

postulate, “Vigilance requires hard mental work and is stressful.” Vigilance is accompanied by a 

performance decrement over prolonged tasks. On a behavioral level, vigilance decrement is reliably related 

to rising reaction times and reduced detection rates with time on task, as many studies have shown (Buck, 

1966; Mackworth, 1948; Pattyn et al., 2008). For example, Pattyn et al. (2008) showed that the target 

detection capability decreases by 15% within 30 minutes of beginning a monotonous task. On a neuronal 

level vigilance decrement has been shown to correspond to rising posterior parietal alpha power (Clayton et 

al., 2015; Craig et al., 2012; Klimesch et al., 1996). Vigilance decrement is thought to be responsible for 

numerous accidents and other safety-critical events. It is therefore a much-studied research theme in 

ergonomics, e.g. in the context of work (operator, surveillance tasks) (Nelson et al., 2014) or considering 

vehicle control (pilots, car drivers) (Borghini et al., 2014). The connection between posterior parietal alpha 

power, more driving errors, and higher lane variability has also been observed with time on task in 

monotonous car driving (Wascher et al., 2016). 

1.2.2 Vigilance 
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1.3 Conceptualization of research question 

As mentioned before (1.2.2), one prominent neurophysiological marker of vigilance decrement over time is 

rising posterior parietal alpha power (Clayton et al., 2015; Craig et al., 2012; Klimesch et al., 1996). Neural 

brain oscillations in the alpha frequency range (8 -13 Hz) are the most dominant oscillations in healthy, 

awake, and resting humans (Klimesch, 2012). They are prepotent in the posterior parietal cortical region 

that involves the visual cortex (Klimesch, 2012; Palva et al., 2005) and have been under investigation in 

much tACS research (Koninck et al., 2023). Vigilance tasks are often used to compare the effects of 

stimulation with alpha tACS on alpha power at posterior parietal regions (Kasten et al., 2016; Stecher & 

Herrmann, 2018; Stecher et al., 2017). Under specific conditions stimulation with 10 Hz or individual alpha 

frequency (IAF) has been shown to enhance alpha power at posterior parietal regions (Helfrich et al., 

2014a, 2014b; Kasten et al., 2016).  

As already mentioned in section 1.2.1, it has been recently shown that tACS not only works when applied in 

the same frequency spectrum as the addressed oscillation but that stimulation can also affect the slow or 

fast partner in the before-mentioned nested oscillations (Helfrich et al. 2014b). Helfrich et al. (2014b) found 

that gamma tACS on posterior brain regions successfully down-regulated alpha power. Alpha and gamma 

oscillations are known to exhibit an antagonistic relationship. They stimulated both hemispheres but found 

the effect mentioned above despite stimulating in phase or with a 180° phase difference. In this thesis 

central regions were stimulated with a small stimulation and a bigger reference electrode to exclude 

hemispheric effects as has been proven beneficial (Kasten et al., 2016; Stecher & Herrmann, 2018). 

From the background knowledge described in 1.2 and the experience mentioned above with tACS, two 

effects were combined: 

1. Vigilance decrement leads to an increase in reaction times and alpha power at posterior parietal 

brain regions. 

2. Alpha power has been shown to be downregulated by gamma tACS at posterior parietal brain 

regions. 

The following research question was formulated:  

  

Does the stimulation with gamma tACS on the posterior parietal regions 

counteract vigilance decrement by downregulating the rise in reaction 

times and alpha power?  
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1.4 State of the Art 

In this section, we will summarize the current research and developments concerning tACS (its usage for 

general performance enhancement, addressing older adults, its application in the context of vigilance and 

driving-like contexts), followed by a summary of cognitive decline in older adults and its treatment options 

and an overview of systems and approaches available for car driving (monitoring and interventional systems 

with focus on vigilance). 

TACS has gained increased attention in recent years, as the growing number of publications indicates (Figure 

1).  

 

 

 

 

 

Figure 1. 

A search on PubMed with the term “transcranial alternating 
current stimulation” shows the occurrence of 838 publications 
referring to this keyword from 1st January 2007 to 20th January 
2024 (PubMed, 2024). 

 

The publications include reviews, statements, and for the most part research papers. With intensifying 

research, the number of null-result papers has grown (Brignani et al., 2013; Lafleur et al., 2021; Lafon et al., 

2017; van Schouwenburg et al., 2021) as papers where replication of stimulation success failed (Veniero et 

al., 2017) and leaving a debate on the effectiveness of tACS interventions and limiting factors (Wischnewski 

et al., 2023; Wu et al., 2021).  

a. Effects in healthy young adults 

A recent review summarizing 56 studies points out a small positive effect size of tACS protocols on cognitive 

performance in healthy young adults (Lee et al., 2023). Stimulation in the theta range seems beneficial for 

several cognitive functions, including working memory, executive functions, and declarative memory (Klink 

et al., 2020). Also, gamma-tACS has been successfully applied: Offline 40 Hz gamma-tACS over the right 

occipital cortex improved the accuracy of face and object perception compared to 5 Hz or sham stimulation 

(Gonzalez-Perez et al., 2019). Findings by Hoy et al. (2015) indicate that gamma-tACS over the 

left dorsolateral prefrontal cortex (DLPFC) may improve working memory performance and parietal 

1.4.1 tACS 
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gamma-tACS significantly increased working memory recall precision (Thompson et al., 2021). Online 

gamma-tACS on the left middle frontal gyrus reduced the time needed to solve complex tasks related to 

fluid intelligence compared to theta and sham stimulation (Santarnecchi et al., 2016).  

Considering motor learning, a couple of studies report positive effects, e.g., beta-tACS has been shown to 

improve the consolidation process after skill acquisition (Yamaguchi et al., 2020), while others, e.g., gamma-

tACS on the left cerebellum (Wessel et al., 2020), showed no effect. Takeuchi & Izumi (2021) give a good 

summary of the application of tACS for motor learning. A recent review by Rostami et al. (2024) concludes 

that online and offline applications of alpha, beta, and gamma tACS over motor cortex improves motor 

function and tACS enhances motor function and cortical excitability but is dependent upon the stimulating 

parameters (i.e., frequency, electrode montage, electrode size, and timing). Takeuchi & Izumi (2021) 

argument that next to different stimulation parameters, task designs, and the great variability among tACS 

responders and non-responders may lead to the heterogeneous effect of uniform tACS over the primary 

motor cortex. 

b. addressing older adults 

In 2016, the first study successfully targeting healthy older adults aged 60 years and above with tACS was 

published (Antonenko et al., 2016). Here, theta-tACS over the temporal parietal cortex improved implicit 

language learning skills. Since then, quite some studies have been published, e.g., showing success in 

improving working memory performance (Reinhart & Nguyen, 2019), multi-tasking (Zanto et al., 2021), 

motor functions (Guerra et al., 2021) and motion learning (Fresnoza et al., 2020). A recent review also 

points out the benefits of tACS for an older target group (Grover et al., 2023). 

Gamma-tACS has been applied to older adults suffering from mild cognitive impairment and dementia with 

promising results (Nissim et al., 2023). Ten minutes of gamma-tACS on frontal or parietal areas seem to be 

sufficient to improve cognitive functioning and modulate brain oscillations for at least 60 minutes after 

stimulation, and 60 minutes of 40 Hz-tACS over the precuneus can improve episodic memory (Manippa et 

al., 2023). 

Some studies compared the same tACS protocol between young and older age groups. Rufener et al. (2016) 

found that 40 Hz tACS on the bilateral auditory cortex diminished task accuracy in young adults, but older 

adults benefitted from this stimulation, resulting in a more precise phonetic categorization. Fresnoza et al. 

(2020) found an age-dependent effect of tACS on motor skill consolidation. A group of young and old 

healthy adults performed a serial reaction time task before and after a tACS session with their individual or 

2 Hz higher than their individual alpha frequency to the left motor cortex. While alpha stimulation at 

individual alpha frequency or plus 2 Hz improved skill consolidation in older adults, the same stimulation 

showed only minimal improvement in younger adults for IAF stimulation and a detrimental effect on 
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consolidation for IAF plus 2 Hz. Guerra et al. (2021) found out, that gamma tACS on the primary motor 

cortex has a greater effect in young that older adults. Zanto et al. (2021) transferred a tACS protocol 

improving multitasking ability in young adults to older adults where they applied theta tACS on the 

prefrontal cortex. They could not repeat stimulation success but found a correlation between an 

individualized tACS-induced electric field that was modeled according to previously obtained magnetic 

resonance imaging data and individual peak theta frequency. 

c. Vigilance decrement 

A few tACS studies try to modify vigilance decrement or investigate its effect on sustained attention (see 

Annarumma et al., 2018; for a review). Clayton et al. (2019) found out that alpha tACS on the 

occipitoparietal cortex prevented deterioration, but only in two of four different sustained attention tasks. 

Martínez-Pérez et al. (2022) stimulated the right dorsolateral prefrontal cortex with theta and alpha tACS 

during two different tasks. The typical vigilance decrement could only be prevented when the arousal level 

was low. For simple button press responses to red stimuli both theta and alpha-tACS succeeded, whereas 

only alpha was successful when digits were presented and the three had to be ignored. Rostami et al. 

(2021) stimulated the medial prefrontal cortex with theta tACS and found a significant impact on task and 

physiological measures. Wei et al. (2021) investigated the effect of theta-tACS over the lateral and medial 

frontal cortices and found a marginal trend that sustained attention was downregulated by tACS. While the 

researchers named so far were more or less interested in understanding brain functions, van Schouwenburg 

et al. (2021) set out to enhance sustained attention on the dorsomedial prefrontal cortex. Contrary to their 

expectations, they were not able to reduce the vigilant decrement using theta tACS. 

d. Car driving 

To the best knowledge, no tACS study explicitly addresses car driving related skills or is performed in a 

driving context (natural or simulated driving).  

What has been used in tACS studies is the video game called “NeuroRacer” that consists of a driving task, 

i.e. control of a virtual car and keeping it in a specific area, combined with a reaction task to signs at the top 

of the screen, both to be handled via a gamepad controller. The game has been originally developed to 

enhance cognitive control in older adults (Anguera et al., 2013). Hsu et al. (2017, 2019) used “NeuroRacer” 

to test tACS effects on multitasking performance. In a first study, they found out that bilateral prefrontal 

cortex theta-tACS shows a significant enhancement of multitasking performance after a 90-minute session 

(Hsu et al., 2017). In a second study, they re-tested this paradigm and found out that manipulating the 

phase of current polarity does not, but that changing the inter-session interval of the stimulation protocol 

eliminated the previous observed performance improvements (Hsu et al., 2019).  
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As already mentioned in section 1.1, aging is accompanied by cognitive decline. While long-term memory 

and crystalline intelligence stay intact, and this experience even be adventurous compared to younger 

people, there are strong indicators that fluid intelligence (Bugg et al. 2006) and short-term memory are 

going to deteriorate with age (Salthouse, 2004). The likelihood of developing neurodegenerative diseases 

like mild cognitive impairment (MCI) and Alzheimer disease (AD) increases with only rare treatment 

options. As it lacks effective pharmacological interventions for cognitive enhancement in the older 

population, countermeasures to prevent decline are physical exercise, cognitive training, functional 

nutrition and NIBS (Chu et al., 2021; Peters, 2006; Prehn & Flöel, 2015), e.g., anodal tDCS on the left DLPFC 

in combination with cognitive training may be beneficial for several subdomains of cognitive dysfunction in 

patients with MCI or AD (Chu et al., 2021).  

For many people driving constitutes an everyday task and cars and traffic are omnipresent in areas 

populated by humans. As driving is considered a complex task and errors can have severe consequences, 

much research is prompted on this topic (Groeger, 2000, Chapter 9). The phenomenon of driver fatigue or 

drowsiness - which is related to vigilance decrement - has been under investigation, especially (Albadawi et 

al., 2022; van Veen et al., 2020). This section will summarize how driver states related to vigilance 

decrement can be monitored, what vigilance enhancement systems exist so far and how tES has been 

applied in the driving context so far. 

a. Driver drowsiness detection and monitoring systems 

Driver drowsiness detection systems in general use following measures based on (Abbas & Alsheddy, 2020; 

Albadawi et al., 2022; Khan & Lee, 2019; Nasri et al., 2022):  

• Facial Features Analysis / images (eye, mouth, head, face, yawning and so on) 

• Physiological signals analysis (EEG, ECG, EOG, EMG, respiration rate, heart rate variability, skin 

temperature, electro dermal activity and so on) 

• Driving pattern analysis / in-vehicle data (steering wheel, lane deviation, GPS, ultrasonic sensors 

and so on) 

These measures are obtained with cameras and mobile and vehicle in-built sensors (Abbas & Alsheddy, 

2020). Monitoring systems can be distinguished between their focus on the driver, the vehicle, or the 

environment. Assistive systems available in modern cars include in-vehicle sensors and cameras for eye 

tracking and to record head motion (see Khan & Lee, 2019, for an overview).  

1.4.2 Older adults 

1.4.3 Car driving 
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Smart cameras and deep learning techniques are used for image processing and feature extraction to 

estimate the amount of the driver´s tiredness (Kalisetti et al., 2023).  

Neurophysiological measures have been proven to be effective in determining drowsiness while driving but 

are problematic in natural driving: Most studies using EEG recorded signals from occipital regions that are 

hairy and require dry electrodes, movement of drivers shows as artifacts in the EEG record requiring a 

motion sensor (Li & Chung, 2022).  

A recent study used a wearable EEG headset and proposed the frontal theta / parietal alpha ratio as an 

alert-state objective measure for vigilance decrement as it was found to be associated with the magnitude 

of driver´s behavioral changes – namely cumulative slowing and erraticity of the braking reaction times - 

over the course of a 1,5-hour long car-following paradigm. The task was performed during assisted driving 

with adaptive cruise control, and drivers had to perform emergency braking when the leading car braked 

suddenly (Seet et al., 2023).  

Other promising options to detect levels of vigilance are hybrid systems, that integrate driver´s EEG signals 

with driving context data. In a simulated driving task, Guo et al. (2018) showed that the combination of a 

support vector machine with particle swarm optimization methods improved classification accuracy. In their 

experiment participants were as well asked to react to the brake events of a leading car.  

b. Vigilance enhancement systems for monotonous driving scenarios 

The standard vigilance systems in the cars today usually monitor driving performance over time on task and 

alert and encourage the driver to take a brake if performance deteriorates (van Veen et al., 2020) or give 

other signals, e.g. vibrations (Khan & Lee, 2019) to alert the driver for a short time. But suffering from 

vigilance is not only a safety threat but has also a negative effect on well-being. Therefore, it is also of great 

interest for car manufacturers to find intervention systems and create a more pleasurable driving 

experience (van Veen et al., 2020). Conventional vigilance enhancement strategies contain caffeine , 

chewing-gum or fragrance exposure (Al-Shargie et al., 2019). In the context of car driving also talking to a 

passenger, opening a window, or listening to radio are common strategies (Gershon et al., 2011). More 

recent approaches in the context of car driving have shown that micro- or macro-movements (active or 

passive) or thermal stimuli like cooling maybe beneficial (van Veen et al., 2020), e.g. recent research has 

shown that passive fatigue in monotonous driving scenarios can be prevented by a seat-integrated 

mobilization system: Schneider et al. (2021) found a significant impact of the mobilization seat on alpha 

spindle rate after a two-hour ride. Tactile and rhythmic haptics (Bodala et al., 2020) or auditory stimulation 

(Al-Shargie et al., 2021; Al-Shargie et al., 2019) may also be promising vigilance enhancement tools. Also 

integrating challenges have been shown to counteract performance decline e.g. noisy visual stimuli like 
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artificially stimulated rain (Bodala et al., 2016) or integrating secondary, alertness maintaining tasks, while 

driving (Oron-Gilad et al., 2008).  

c. Enhancing of driving with tES 

As of January 2024, only in a couple of papers the effect of tES in a driving context was investigated with 

mixed results. All used tDCS as a stimulation method and applied it to more frontal parts of the head. Two 

papers conducted in a driving simulator found a positive effect of tACS on behavior: Beeli et al. (2008) found 

out that anodal tDCS on the dorsolateral prefrontal cortex evoked less risky driving behavior. Sakai et al. 

(2014) showed that in participants with an upregulation of the right DLPFC both car-following and lane-

keeping performance were improved. Li & Chung (2018) developed a wearable and wireless EEG-

Gyroscope-tDCS brain machine interface system consisting of a headset and smartwatch. They recorded 

EEG and head moving data and applied tDCS in a closed-loop manner. In a simple driving simulator, they 

measured in ten participants with slight drowsiness a prolonged period of wakefulness after 10 minutes of 

tDCS on the forehead, but they could not enhance driver´s alertness in every single tDCS session. No 

positive effects of tDCS on the DLPFC on driving skills were found out by Brunnauer et al. (2018) who used a 

standardized computerized psychomotor test and by Ward et al. (2017) who tested in a simulator behavior 

during distracted scenarios. A recent study successfully applied focal high-definition tDCS on the right 

frontal eye field and found behavioral improvement in brake reaction times and less distractive behavior in 

a secondary task. Interestingly, the enhancing effect was only found between focal high-definition and 

conventional tDCS or sham stimulation, not between conventional tDCS and sham stimulation (Facchin et 

al., 2023). 

1.5 Aim and outline 

This thesis wants to investigate the potential of tACS in applied contexts concerning older adults and in the 

context of car driving. Healthy older adults have been the target of some tACS studies showing promising 

results concerning the enhancement of cognitive performance (e.g., Antonenko et al., 2016; Kraft & 

Hampstead, 2023), but most tACS research focuses on young participants. tES was applied to investigate its 

potential in modifying driving behavior in some studies, but only with direct current (see section Enhancing 

of driving with tES). This thesis is – to the best knowledge - the first approach to utilize stimulation with 

alternating current. Vigilance was selected as an appropriate scenario relevant to older adults and in car 

driving. Recent research hinted a promising stimulation paradigm: Gamma tACS has been shown to down-

regulate alpha power at the visual cortex, while rising alpha power links to vigilance decrement and rising 

reaction times: This thesis wants to investigate if gamma tACS on the visual cortex can counteract vigilance 

decrement and the increment of reaction times in general, in older adults, and in the context of car driving. 

In three successive studies, this question is going to be answered: Stimulation setup and effect of the 
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stimulation were first tested in a pilot study in a laboratory setting with young participants (Study I), 

repeated with older adults (Study II) and tested in a driving simulator with young participants (Study III). For 

the laboratory settings (Study I and Study II), a visual two-alternative-forced-choice reaction time task was 

developed; in the driving simulator, participants (Study III) were asked to follow a lead car in a fixed distance 

and react to spontaneous deceleration of the lead car via braking. Reaction times (Study I and Study II) and 

brake reaction times (Study III) were used to evaluate the occurrence of vigilance decrement and 

stimulation success. It was hypothesized that vigilance decrement occurs with time on task as shown in 

rising reaction or brake reaction times, error rates and alpha power (only Study II) and that this decrement 

is significantly less present in the group that received 40 Hz tACS compared to the SHAM- and control 

condition (only Study II and Study III).  

In all three studies, the same stimulation parameters (electrode size, placement, and stimulation intensity) 

chosen according to successful tACS studies were applied (Kasten et al., 2016; Stecher et al., 2017). The 

duration was selected as the longest possible according to ethical standards to ensure enough time for 

vigilance decrement. The studies used a two-block design, with each 30-minute-long block containing 100 

trials and a self-paced approximately 2-minute-long break in between. The first block served as the 

baseline. The second block served as an intervention, and participants were stimulated according to their 

addressed condition. Although following an in-between design, this study concept allowed the comparison 

of performance on an individual level (baseline vs. intervention) and ensured that the participants were 

already vigilant at the start of the intervention block. In principle, all three studies were accompanied by the 

same procedure: At the beginning of the experiment, exclusion criteria were checked, and participants were 

informed about the experimental procedure. After the experiment, participants were debriefed and asked 

to fill out questionnaires on adverse effects and the course of the experiment.  

The following section will introduce the studies, how they differentiate, and their outcomes in more detail.  

1.6 Introduction to studies I, II and III 

Following three studies are presented in this thesis:  

• Study I:  Löffler et al. 2018 

• Study II:  Löffler et al. 2023 

• Study III: Löffler et al., in review 

 

Study I (Löffler et al., 2018) constituted the pilot study to ensure the effectiveness of the stimulation setup. 

23 participants (11 SHAM, 12 stimulated with 40 Hz tACS) conducted a visual two-alternative-forced-choice 

reaction time task in a laboratory setting. This study showed that the 40 Hz tACS stimulated group has a 

significantly less steep increase in reaction time over time compared to baseline or sham stimulation.  
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Study II was a repetition of Study I, except that older adults (aged 65 or above) participated; a resting EEG 

was recorded before and after the experiment, and a control frequency of 5 Hz was added. The EEG record 

was used to evaluate the individual alpha frequency and investigate the effect of time, task, and stimulation 

on alpha power. 48 participants (15 sham, 15 5 Hz, 18 40 Hz) were analyzed. A vigilance decrement (rising 

reaction times, rising alpha power post the experiment) could be detected, but no positive effect of the 

stimulation could be found.  

Study III was conducted in a driving simulator with a car-following and braking task and was different from 

the visual two-alternative-forced-choice reaction time tasks used in Study I and Study II. The 49 participants 

were at a comparable age to the ones in Study I but were asked to have at least two years of driving 

experience. Study III also applied a control frequency of 5 Hz, and participants were divided into three 

groups (17 sham, 16 5 Hz, 16 40 Hz). Due to complexity, no EEG was recorded. Like in Study II, brake 

reaction times significantly increased with time on task, suggesting that vigilance decreased. However, no 

significant effect of the intervention with 40 Hz tACS could be detected.  

 

Following sections 2, 3, and 4 present the studies in detail. In section 5, general findings will be summarized 

and discussed, and an outlook for future research will be given. 
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Counteracting the Slowdown of Reaction Times in a Vigilance Experiment 
With 40-Hz Transcranial Alternating Current Stimulation 

Abstract: 

Indicators for a decrement in vigilance are a slowdown in reaction times and an increase in alpha power in 

the electroencephalogram in posterior regions of the brain. Transcranial alternating current stimulation 

(tACS) is a neuropsychological technique that has been found to interact with intrinsic brain oscillations and 

is able to enhance cognitive and behavioral performance. Recent studies show that tACS in the gamma 

frequency range (30-80 Hz) is able to downregulate amplitudes in the alpha frequency range (8-12 Hz), in 

accordance to the effect referred to as cross-frequency coupling, where intrinsic alpha and gamma waves 

modulate each other. We applied 40 Hz gamma-tACS to the visual cortex during a vigilance experiment and 

investigated if stimulation improves reaction times and error rates with time-on-task. In our sham 

controlled experiment, participants completed two blocks of 30 minutes duration while performing the 

same visual two-choice task. The first block was used as BASELINE. A statistical analysis with a linear mixed 

model revealed a significantly lower increase of modeled reaction times over time in the INTERVENTION-

block of the tACS-group as compared with their BASELINE-block whereas there was no significant change 

between the BASELINE- and INTERVENTION-block for the SHAM-group. Error rates did not differ between 

groups. This paper indicates that gamma-tACS can enhance performance in vigilance tasks as it significantly 

decreased the slowdown of reaction times in our study. 

Index Terms:  

Alpha power, brain stimulation, enhancement, gamma-tACS, reaction times, vigilance 

 

I. INTRODUCTION 

In order to investigate functional principles of the brain, non-invasive brain stimulation (NIBS) is a widely 

used technique [1], [2]. Researchers over the world try to foster these techniques for applications, 

especially in therapeutic and clinical contexts like e.g. cognitive impairment [2], the treatment of 

neurological diseases [3] or eating disorders [4]. Transcranial electrical stimulation (TES) is a comparatively 

cheap and easy to apply technique working with low electrical fields – making it ideal for private and mobile 

applications [5]. A lot of research focused on the TES-technique called transcranial direct current 

stimulation (tDCS). In tDCS two electrodes are placed on the scalp with a steady current flowing from anode 

to cathode. The exposed tissue is polarized and tDCS modifies spontaneous neuronal excitability and 

activity by a tonic de- or hyperpolarization of resting membrane potential [6]. Potential tDCS applicability 

has been shown in many domains e.g. in the treatment of depression [7], for cognitive training [8] and in 
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driving scenarios [9]. Although researchers reported the successful use of tDCS to modify behavioral and 

cognitive parameters, it has lately been critiqued because cognitive enhancement occurred at the expense 

of other cognitive functions [10] or had opposite effects depending on individual state [11]. A promising 

alternative to tDCS is transcranial alternating brain stimulation (tACS) that is believed to interact with 

ongoing oscillatory cortical activities. 

In tACS an alternating current with a specific frequency is applied to the scalp. There is evidence that tACS 

interferes with ongoing oscillations, although the underlying mechanism has not been solved yet. tACS 

applied in the EEG range is believed to modulate brain oscillations by entrainment, resonance or the 

synchronization of neuronal networks [12]. As brain oscillations can be linked to particular ongoing 

cognitive or sensory-motor processes, it is possible to interfere with tACS and induce a behavioral change 

and to investigate causal associations between brain oscillations and cognitive processes [1], [13]. 

Enhancing effects in behavior have been found by a number of tACS studies in various domains, e.g. 

perception, attention, decision making, motor control, memory/cognition (see [2] or [14] for a review). 

Some researchers proclaim a potential use of tACS for therapeutic implementation e.g. for the treatment of 

cognitive deficits [2]. One research field is the combination of video games and tACS for neuro-cognitive 

optimization [15]. 

Our vision is the application of tACS for enhancing performance while driving a car as an extension of cars’ 

assistive and monitoring facilities. Staying alerted and concentrated is one essential aspect of driving, 

especially in monotonous, non-demanding situations on motorways or when adaptive cruise control 

systems are used. This property is referred to as sustained attention or vigilance, meaning the action or 

state of keeping careful attention for possible danger or difficulties over a prolonged period of time [16]. 

Nine tDCS-studies addressed this effect with mixed results [6]. On a neuronal level electrophysiological 

brain research showed that increasing fatigue or reduced attention corresponds to rising alpha power 

especially in occipital posterior regions and simultaneously increasing reaction times [17]–[20]. Buck [21] 

confirmed in 1966 a positive correlation between rising reaction times and worse detection rates with 

increased time-on-task. This concept has been widely used in vigilance research [22]–[24]. Increase in 

posterior alpha power, more driving errors and higher lane variability have also been observed with timeon-

task in a monotonous car driving scenario in a simulator study [25]. 

Thus, we conclude: Vigilance decrement leads to rising reaction time and alpha power. Therefore, 

downregulating alpha power might lead to stable reaction times. Recently, two studies demonstrated that 

gamma-tACS downmodulates amplitudes in the alpha range [26], [27] - notably, Helfrich et al. [26] observed 

this effect independently of stimulating the two hemispheres in phase or with 180° phase difference. A 

possible reason for the down-modulating effect is the antagonistic relationship between alpha and gamma 

oscillations referred to as cross-frequency coupling (also known for other frequencies) [28]: Brain 
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oscillations of specific different frequencies modulate each other [29]. Neuropsychological brain research 

showed that gamma and alpha frequencies interact with each other during cognitive processes with the 

coupling being strongest over occipital areas [30], [31]. 

Concerning tACS-research, quite some studies report on reaction times, but only a few mention a positive 

influence on reaction times (see [2] and [32] for a review): 10 Hz tACS on the motor cortex, e.g., 

significantly decreased reaction times compared to sham and with time-on-task in a serial reaction time 

task [33]. Polanía et al. [34] considered reaction times in their experiment and found out, that 6 Hz 

stimulation in-phase (0°) between two parietal and one central electrode on the left hemisphere elicited 

faster reaction times during a delayed letter discrimination task (and even deteriorated reaction times when 

stimulating out-of-phase (180°) compared to sham) – showing an influence on performance in both 

directions.  

Influence of tACS on motor control have been shown by Wach et al. [35] that found out that 20 Hz tACS on 

the primary motor cortex resulted in movement slowing of the right hand. In an additional study 

investigating the underlying neurophysiological mechanisms they found out that 10 Hz tACS significantly 

reduced low gamma band corticomuscular coherence [36], suggesting cross-frequency interplay between 

alpha and low gamma band modulating functional interaction between motor cortex and muscle.  

40 Hz tACS is an often used stimulation frequency and was found to enhance cognitive skills by two studies 

[37], [38]. Stimulation sites were frontal parts of the left hemisphere relevant for cognitive processes. 

Interestingly, both studies found enhancing effects only in more complex trials: When addressing working 

memory, tACS induced significant improvement in accuracy during 3-back tasks, but did not affect reaction 

times [37]. In respect to fluid intelligence, 40 Hz tACS accelerated the time needed to solve logical reasoning 

tasks by 15 % to approx. 20 s [38]. 

Two studies showed that gamma-oscillations influence the amplitude of alpha waves [26], [39]. Helfrich et 

al. [39] stimulated the visual cortex with an electrode on Pz and the reference on Cz. Both electrodes were 

of the same size. Recent research has shown modulation effects of alpha amplitudes on stimulation area 

when current intensity per area is enhanced by downsizing the stimulation electrode [40]–[43]. To exclude 

hemispheric effects we decided to stimulate central regions with a small stimulation and a bigger reference 

electrode.  

We set out to investigate the applicability of gamma-tACS to enhance performance in a vigilance 

experiment. To our knowledge, tACS was not applied in this context so far. Our hypothesis is that the 

reaction times increment over time can be reduced by gamma-tACS on the visual cortex.  
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II. MATERIAL AND METHODS  

a. Participants  

Twenty-four healthy subjects between 20 and 30 years old (mean age 25.71, SD 2.73, 50 % were female) 

participated in the experiment after giving written informed consent. Before the start of the experiment, 

participants filled out a questionnaire covering e.g. medication, experiences with TES, coffee and alcohol 

consumption on the day preceding the experiment and hours of sleep during the night before. All subjects 

reported to be right-handed, free of neurological diseases, had no known deficits in color vision and no 

history of drug abuse. One subject reported having had less sleep than normal. Five subjects had already 

participated in one tACS-experiment at least two weeks ago.  

The study was conceptualized in an in-between-subjects design and participants were equally assigned 

either to the tACS-group that received stimulation or to the SHAM-group that received placebo stimulation 

only (see section on tACS for more details). Females and males were balanced between the groups (six in 

each) to avoid gender effects. Despite the aspect of gender, subjects were addressed randomly to each 

group. Participants were not informed about the study design and expected an experimental session of 1 

hour.  

One male participant of the SHAM-group (age 28) had to be excluded from further analysis because more 

than 40 % of his data was not valid (the most prominent error that was not obvious in any other participant: 

Reaction times longer than 1 second and therefore nearly doubled averaged reaction time of the remaining 

group).  

All participants believed to receive tACS-stimulation and were debriefed after the experiment. The 

experimental protocol was approved by “Kommission für Forschungsfolgenabschätzung und Ethik” of the 

University of Oldenburg and was in accordance with the Declaration of Helsinki.  

b. Study Design  

The study was conducted in a laboratory room, where participants were seated on a comfortable office 

chair in front of a 24” computer screen (60 Hz, 1920 × 1800 px resolution, 16 ms flipping rate) in a distance 

of approx. 90 cm (eyes to the middle of the screen) and connected to the tACS-device (see section tACS for 

details). Participants were asked to put their left and right forefingers on the respective buttons of a 

custom-made, software-debounced button box placed on the table before them. For the experiment, 

participants and examiner were separated via a gray screen. 

The study consisted of two 30 minutes long blocks with a baseline block (referred to as BASELINE-block) 

performed by all participants and a stimulation block (referred to as INTERVENTION-block) where 

participants were stimulated according to their addressed group (tACS or SHAM). See Fig. 1a for an 
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overview of the procedure. The order of blocks did not change, INTERVENTION always followed BASELINE. 

The BASELINE-block was needed to analyze individual development of reaction times and was needed to set 

participants into a state of vigilance due to the monotonous task. 

 
Fig. 1. Experimental procedure and electrode setup. (a) After 3 minutes of training all participants performed the 30 minutes long 
BASELINE-block without stimulation. The INTERVENTION-block started after an approx. 3 minutes long, self-paced break. 12 of the 
analyzed participants received tACS-, 11 SHAM-stimulation. (b) A 5 cm × 7 cm electrode was placed on the vertex and a smaller 4.5 
cm × 4.5 cm electrode on the visual cortex (Cz and Oz according to the international EEG 10/10 system). (c) Current simulation using 
SIMNIBS: simulation of the stimulation’s electric field strength, covering the posterior brain areas (reproduced with permission of the 
authors from Stecher & Herrmann 2018 [43]). 

 

To assure participants understood the task, they performed a 3 minutes long training session prior to the 

experiment. The light was then switched off and communication stopped. During the BASELINE-block no 

participant received stimulation. The BASELINE-block stopped after 30 minutes. During an approx. 3 

minutes (mean 163 s, SD 24 s) long break the participants were allowed to drink and rest while the 

examiner activated the stimulation device. In the following 30 minutes long INTERVENTION-block the 

participants were stimulated according to their group.  
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During the blocks, the participants were asked to fixate a white cross (10 × 10 px) displayed on a gray (RGB = 

95 95 95) background. Every 6 – 56 s (median: 17 s) an either red (RGB = 240 55 55) or blue (RGB = 20 100 

255) centered stimulus in the shape of a circle (400 px diameter) appeared for 500 ms. Half of the 

participants of each group were instructed to press the left, when the red stimulus and the right button 

when the blue stimulus appeared (the other half vice versa) as fast and correct as possible. The direction of 

button presses was balanced among genders. All colors (background, red and blue) were selected to be 

isoluminant. For each block, a specific set of 100 stimuli was used (50 red, 50 blue) in pseudo-randomized 

order.  

Stimulus presentation and recording of button presses were handled with the Psychophysics Toolbox 

extension (version 3.0.12) [44]–[46] in Matlab (Release 2012a, The MathWorks Inc., Natick, MA, United 

States).  

After the experiment, participants were asked to fill out a standardized questionnaire on adverse effects 

according to Brunoni et al. [47]. They were asked if they believed to be stimulated or not and if they 

experienced any of the common ten side effects such as a headache, neck pain, itching, tiredness etc. and 

whether they linked it to stimulation or not on a scale of 1 (none) to 4 (severe or definitely, respectively). 

c. tACS  

Two rubber electrodes were positioned with their center at Cz (size: 7 cm × 5 cm) and Oz (size: 4.5 cm × 4.5 

cm) according to the 10-10 EEG-system (Fig. 1b) and fixated with adhesive electrode paste 

(ten20®conductive, Weaver and Company, Aurora, CO, USA). Electrode sizes and positions were in line with 

the effective montage from previous studies, where stimulation was applied to investigate effects on alpha 

bands in the visual cortex [40]–[43]. A battery-driven stimulator was used (neuroConn DC Stimulator with 

Remote-In function, Neuroconn GmbH, Ilmenau, Germany). The examiner ensured that impedance was at 

least below 8 kOhm and that subjects experienced no unpleasant sensations. The stimulation device 

remained turned off while subjects performed the training session and the BASELINE-block and turned on 

again during the break between the BASELINE- and INTERVENTION-block. For the INTERVENTION-block the 

tACS-device was remotely accessed via a Matlab controlled DAQ-module (Ni USB 6229, National 

Instruments, Austin, Texas, USA). Stimulation intensity was set to 1 mA. For the tACS-group current was 

linearly faded in and out for 30 s at the beginning and end of the 30 minutes long stimulation. For the 

SHAM-group current was faded in for 30 s, kept constant at 1 mA for 30 s and faded out for 30 s at the 

beginning (0 to 1.5 min) and end (28.5 to 30 min) of the INTERVENTION-block.  

d. Data Analysis  

Initial pre-processing of the performance data was done in Matlab: Invalid trials (trials when no reaction 

until the next stimuli was recorded), wrong button presses (participant pressing the left instead of the right 
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button or vice versa) and physiologically unreasonable reaction times below 200 or above 1000 ms were 

excluded from reaction time analysis and saved as “errors”.  

Invalid trials (i.e. errors) and valid trials were analyzed separately.  

For data analysis, four groups were used with the SHAM- (n = 11) and tACS-groups (n = 12) consisting of the 

same participants and the indexes base and inter indicating the block (BASELINE or INTERVENTION): 

SHAMbase, tACSbase, SHAMinter, tACSinter.  

We chose LMM for data analysis for three reasons. First of all, they predict reaction times or the occurrence 

of errors as a consequence of a (generalized) linear regression, in our case of the covariates time, group and 

their combination and allow us to see whether these factors make a significant contribution to the model or 

not [50]. Second, time is not seen as a categorical factor like in an ANOVA, but as a metric covariate and 

therefore LMMs are ideal for the interpretation of time series data with time as a continuous variable [51], 

[52]. Variances - due to different individual specific characteristics and conditions - are taken into account 

by the model as random effects, which make LMM perfect for study designs not only with clustered but also 

with repeated-measurement concepts [53].  

Group (indicating the four groups as mentioned before), time and group ∗ time (interaction term) were 

considered as fixed factors. The SHAMbase-group was used as base group to which the other three groups 

(tACSbase, SHAMinter, tACSinter) were compared to. The continuous variable time represents the pseudo-

randomized stimuli onset time point (100 per block) starting from zero in each block. As random 

components, individuals and their individual variation of reaction times over time were used. We also tried 

to include more factors, such as gender or categorization of “slow” or “fast” participants by calculating a 

mean base reaction time of each individual as differentiation point, but these factors showed no effect.  

A stepwise increase of the complexity (simple LMM with random intercepts to broken stick models with 8 

degrees of freedom) and check for improvement testing the difference in the −2 log likelihood, revealed 

that a simple linear model with a continuous autoregressive covariance structure (corCAR 1) and 

differentiating between both blocks served best to describe the observed effects. A two-sided significance 

level of α = 0.05 was used.  

Invalid trials were summarized in total and according to error type. For error analysis, we tried to apply a 

generalized additive mixed model (GAMM) of the add-on-package “mgcv” [54]–[57] with the same 

covariates as for the LMM. We varied complexity and used the Akaike information criterion (AIC) to 

compare models. Random effects improved the fit, but introducing covariates did not. We could not find a 

suitable model (conditional R2 < 0.3) and any linear effect of time. Therefore only a descriptive error 

analysis is presented in the Results section: Error rates of each participant, group- and block-wise means 

and standard deviations (SD) were calculated. 



2 Study I 
 

22 

III. RESULTS 

Regarding the questionnaires concerning adverse effects, every side effect was at least mentioned by one 

participant (Table I). Adverse effects mentioned most often were sleepiness (tACS and SHAM: 10) and 

trouble concentrating (tACS 11, SHAM: 10), but in approx. 80 % of the cases not related to stimulation. 

Adverse effects were more or less equally often mentioned by both groups with a slightly higher rate in the 

tACS-group that also had one more member. Due to small numbers, no statistical test was applied.  

Nearly all participants reported that the task was extremely boring and tiring and that they had difficulty to 

concentrate. Five participants reported the application of motivation strategies like counting; two of them 

were tACS-treated. Being asked whether they believed to being stimulated, eleven members of the tACS-

group (91.7 %) and five of the SHAM-group (41.7%) answered with “yes”.  

 

 

 

 

TABLE I  

EXPERIENCED ADVERSE EFFECTS AS MENTIONED BY PARTICIPANTS ACCORDING TO THE 
INTERVENTION-GROUP THEY BELONGED TO AND WHETHER THEY RELATE THE EXPERIENCE TO 
BEING STIMULATED OR NOT. NUMBERS ARE THE FREQUENCY WITH WHICH PARTICIPANTS 
ANSWERED WITH 2 (MILD OR REMOTE), 3 (MODERATE OR PROBABLE) OR 4 (SEVERE OR 
DEFINITE) ON THE RELEVANT QUESTIONNAIRE 

 tACS 

(n = 12) 

Related to 

being 

stimulated? 

SHAM 

(n = 11) 

Related to 

being 

stimulated? 

Headache 3 2 2 2 

Neck pain 4 2 2 1 

Scalp pain 3 1 2 2 

Tingling 8 8 7 6 

Itching 5 4 2 2 

Burning sensation 3 3 2 2 

Skin redness 5 3 1 0 

Sleepiness 10 2 10 1 

Trouble concentrating 11 2 10 2 

Acute mood change 1 0 1 0 
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a. Error Analysis  

All 23 participants performed quite well during the experiment and at least 89% valid trials were recorded 

for each participant per block. As it was not possible to fit any GAMM to the error data, no change in the 

probability of error occurrence could be detected over time.  

Table II summarizes the most relevant data concerning errors and error types. Standard deviations (SD) 

represent the variation among participants and are - for all aspects - quite high; therefore final conclusions 

have to be taken with care. No participant showed reaction times faster than 200 ms. On average 

participants made 4.1 (SD 2.4) errors in the BASELINE-block. Overall more errors were made with the right- 

compared to the left-hand. A comparable amount of errors was made for both stimuli color.  

 

TABLE II  

MEAN ERRORS ACCORDING TO TYPE AND TOTAL AMOUNT OF ERRORS OF THE FOUR GROUPS 
ACCORDING TO BLOCK (BASELINE: SHAMBASE , TACSBASE ; INTERVENTION: SHAMINTER , TACSINTER ). 
THE TWO SHAM- AND TACS-GROUPS CONSISTED OF THE SAME PARTICIPANTS (SHAM: n = 11, 
TACS: n = 12 PARTICIPANTS). LEFT AND RIGHT HAND INDICATES WHICH HAND PRESSED THE 
WRONG BUTTON OR REACTED TOO SLOW. RED AND BLUE INDICATE WHICH COLOR THE STIMULI 
HAD WHEN THE ERROR (WRONG BUTTON PRESS, TOO SLOW OR MISSED STIMULI) WAS MADE. 
STANDARD DEVIATIONS (SD) ARE QUITE HIGH, REPRESENTING THE VARIATION AMONG 
PARTICIPANTS 

 

Errors 
SD 

Wrong 

button 
SD 

rt > 

1 s 
SD 

Missed 

stimuli 
SD 

BASELINE: 

SHAMbase 4.3 2.6 3.7 2.2 0.4 0.7 0 0 

tACSbase 4.0 2.3 2.9 1.8 1.1 2.1 0.2 0.4 

INTERVENTION: 

SHAMinter 4.3 3.2 1.8 1.9 0.7 1.5 0.4 1.2 

tACSinter 3.7 3.0 3.3 3.0 1.5 2.0 0.3 0.6 

 

 Left 

hand 

SD 
Right 

hand 
SD Red SD Blue SD 

BASELINE: 

SHAMbase 1.8 1.4 2.3 1.2 2.1 1.4 2.2 1.5 

tACSbase 1.8 1.1 2.3 1.8 2.1 1.6 1.9 1.4 

INTERVENTION: 

SHAMinter 1.6 1.6 2.4 1.7 2.0 1.4 2.3 2.4 

tACSinter 1.3 1.3 1.9 1.7 1.9 1.4 1.8 1.9 
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b. Reaction Time Analysis  

The final model predicts reaction times from the covariates group (SHAMbase, tACSbase, SHAMinter or tACSinter), 

time and group ∗ time (interaction term) according to the following equation:  

 

rt =   β0 ∗ 𝑆𝐻𝐴𝑀𝑏𝑎𝑠𝑒  +  β1 ∗ 𝑡𝐴𝐶𝑆𝑏𝑎𝑠𝑒  +  β2 ∗ 𝑆𝐻𝐴𝑀𝑖𝑛𝑡𝑒𝑟  +  β3 ∗ 𝑡𝐴𝐶𝑆𝑖𝑛𝑡𝑒𝑟  +  β4 ∗ 𝑆𝐻𝐴𝑀𝑏𝑎𝑠𝑒 ∗ time + β5

∗ 𝑡𝐴𝐶𝑆𝑏𝑎𝑠𝑒 ∗ 𝑡𝑖𝑚𝑒 +  β6 ∗ 𝑆𝐻𝐴𝑀𝑖𝑛𝑡𝑒𝑟 ∗ 𝑡𝑖𝑚𝑒 +  β7 ∗ 𝑡𝐴𝐶𝑆𝑖𝑛𝑡𝑒𝑟

∗ 𝑡𝑖𝑚𝑒                                                                                                 
(1) 

 

β-coefficients represent fixed effects and are listed in Table III. β0 describes the intercept (i.e. baseline 

reaction time) of the SHAMbase-group with the p-value indicating the difference in comparison to zero. The 

coefficients β1, β2 and β3 describe the group specific difference of the intercept compared to the one of the 

SHAMbase-group (β0). Here, p-values indicate the significance of difference not compared to zero, but to the 

intercept of the SHAMbase-group (β0). (β0 + β1) add up to the intercept of the tACSbase-group, (β0+β2) to the 

intercept of the SHAMinter-group and (β0+β3) to the intercept of the tACSinter-group. β4 describes the slope 

(i.e. the increase of reaction time over time) of the SHAMbase-group with the p-value indicating the 

difference in comparison to zero. The coefficients β5, β6 and β7 describe the group specific difference of the 

slope compared to the slope of the SHAMbase-group (β4). Like with the intercepts, (β4 +β5) add up to the 

slope of the tACSbase-, (β3 + β6) to the slope of the SHAMinter- and (β3 + β7) to the slope of the tACSinter-

group. Here, p-values indicate the significance of difference compared to the slope of the SHAMbase-group 

(β4). Fig. 2 visualizes the resulting regression functions.  

Random effects significantly contributed to the model: Individuals had significantly different initial reaction 

times (SD 54.6 ms, 95 % CI: 39.4 – 75.5) as well as different dynamics over time (SD 1.110 ms/min, 95 % CI: 

0.692 - 1.781) and block (SD 26.1 ms, 95 % CI: 18.1 – 39.6). The coefficients of determination indicate that 

the final model explains approx. 30 % of the variance (fixed and random effects: R2 conditional = 0.301).  

At the beginning of the experiment, initial reaction times were approx. 470 ms (β0) in the SHAMbase- and 499 

ms (β0 + β1) in the tACSbase-group. In the BASELINE-block of the experiment, reaction times increased 

significantly with 2.4 ms/min (β4, p < 0.001) as compared to zero for the SHAMbase-group and with 2.7 

ms/min (β4 + β5) for the tACSbase-group. Statistical analysis showed no significant difference in intercepts and 

slopes between both BASELINE-groups.  

After the break, i.e. at the beginning of block 2 (INTERVENTION), initial reaction times were significantly 

higher (approx. 504 ms in the SHAMinter- and 534 ms in the tACSinter-group) as compared to the SHAMbase-

group. During block 2 (INTERVENTION), reaction times of non-stimulated participants (SHAMinter-group) 

were modeled to increase by approx. 1.6 ms/min which is not significantly different from SHAMbase-group 

(i.e. data obtained by the same participants, but in BASELINE-block, p = 0.130). In contrast to this, for 

stimulated participants (tACSinter-group) the model yielded a reduced increase in reaction times of only 1.0 
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ms/min. This is significantly less as compared to the SHAMbase-group (p < 0.05). Over 30 minutes, the LMM 

revealed that reaction times of the tACSinter-group increase only by 28 ms (increase of 5.3 %), whereas the 

ones of the SHAMinter-group increase by 47 ms 9.4 %). Thus, the increase in reaction times is approx. 19 ms 

larger for subjects who did not receive tACS. To make sure the effect also holds true in comparison to the 

tACSbase-group as base, we calculated a second model. In this model, the slope of tACSinter was significantly 

different from tACSbase, whereas the one of SHAMinter did not differ.  

 

 

TABLE III  

LMM RESULTS FOR REACTION TIMES: βS REPRESENT THE REGRESSION COEFFICIENTS, SE β THE 
STANDARD ERRORS OF β. β0 REPRESENTS THE INITIAL REACTION TIME AND β4 THE INCREASE IN 
REACTION TIME OVER TIME OF THE SHAMBASE-GROUP, THEIR P-VALUES ARE MARKED WITH A ◦ 
AND SHOW A SIGNIFICANT DIFFERENCE COMPARED TO ZERO. ALL OTHER COEFFICIENTS ARE 
TESTED AGAINST β0 AND β4. β1 AND β5 DESCRIBE THE DIFFERENCE BETWEEN SHAMBASE- AND 
TACSBASE-GROUP, β2 AND β6 THE DIFFERENCE BETWEEN SHAMBASE- AND SHAMINTER-, β3 AND β7 
THE DIFFERENCE BETWEEN SHAMBASE- AND TACSINTER-GROUP. HERE, P-VALUES BELOW 0.05 
(MARKED WITH A STAR) INDICATE A SIGNIFICANT DIFFERENCE AS COMPARED TO THE 
COEFFICIENTS OF THE SHAMBASE-GROUP. REGRESSION COEFFICIENTS REPRESENTING 
INTERCEPTS OR DIFFERENCE IN INTERCEPTS ARE GIVEN IN MILLISECONDS; REGRESSION 
COEFFICIENTS REPRESENTING SLOPES OR DIFFERENCES IN SLOPES IN MILLISECOND PER 
MINUTE. THE TWO SHAM- AND TACS-GROUPS CONSISTED OF THE SAME PARTICIPANTS (SHAM: 
n = 11, TACS: n = 12 PARTICIPANTS) 

 β SE β t-value p-value 

Intercepts:     

β0 SHAMbase 469.8 17.6 26.71 < 0.001°* 

β1 tACSbase  29.0 24.4 1.19 > 0.05 

β2 SHAMinter 33.9 11.9 2.86 < 0.05* 

β3 tACSinter 64.1 24.7 2.59 < 0.05* 

     

Slopes:     

β4 time x SHAMbase 2.364 0.499 2.66 < 0.001°* 

β5  time x tACSbase 0.270 0.692 0.39 > 0.05 

β6 time x SHAMinter  -0.786 0.530 -1.48 > 0.05 

β7 time x tACSinter  -1.428 0.688 -2.07 < 0.05* 
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Fig. 2. Results of the linear mixed model (LMM): Visualization of the regression functions representing reaction time (in milliseconds) 
against time (in minutes) for the tACS- (black dashed line) and SHAM-group (gray solid line) according to block (BASELINE or 
INTERVENTION). Regression lines represent the four groups (BASELINE: SHAMbase, tACSbase; INTERVENTION: SHAMinter, tACSinter) used 
for statistical analysis. The two SHAM- and tACS-groups consisted of the same participants (SHAM: n = 11, tACS: n = 12 participants). 
β-coefficients next to the lines indicate how intercepts (β0, β1, β2, β3) and slopes (β4, β5, β6, β7) were calculated 

 

IV. DISCUSSION  

Due to its influence on reaction times and error rates, vigilance decrement is a well-known problem in 

monitoring and driving tasks and can be associated with rising alpha power [23]. For counteracting vigilance 

decrement, tACS shows potential due to its interaction with intrinsic oscillations and its modulation of 

behavior [1]. We applied gamma-tACS over the visual cortex and recorded reaction times and errors 

following visual stimuli in a SHAM-controlled experiment. Our results show that reaction times in the 

stimulated group (tACSinter) rose significantly less compared to both BASELINE-groups (SHAMbase, tACSbase), 

whereas SHAMinter did not. With our model we can explain 30 % of variance. As the participants formed a 

very heterogeneous group which can be seen in the random effects, a higher R2-value seems to be very 

unlikely, especially considering the small sample size due to and typical for this kind of experimental setup.  

Overall, mean reaction times of all participants were in a similar range as typical for people between 20 - 30 

years in a visual two-choice task [58]. In respect to vigilance experiments, the reaction time increment and a 

higher level of reaction times at the beginning of the INTERVENTION-block were also as expected [21], [59]. 

Breaks help participants to recover [60] -an effect that explains the predicted slower initial reaction times of 

all participants in the INTERVENTION-block.  

The order between BASELINE- and INTERVENTION-block was not changed; INTERVENTION-blocks always 

followed BASELINE which was necessary for our study design. We therefore cannot exclude the possibility 

of training effects. We asked participants to fill out a questionnaire after the experiment. Next to critics or 

improvement wishes, participants were asked to report on strategies they used. Only six participants 

reported on strategies like counting or moving their limbs to stay focused. Only one participant reported on 

counting stimuli during INTERVENTION-block. This participant was in the SHAM-group. 
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Rising reaction times are thought to correlate with an increasing error rate [21], but we could not find a 

significant effect of any covariates. Errors seemed to have occurred randomly and individually specific with 

participants showing lower or higher rates independent of block or group. The performance was overall 

quite good (min. 89 % valid trials per block) with an average performance of 96 %. This is in line with other 

studies that have shown, that in experiments in which participants exhibit high levels of valid trials (90 – 

100 %) and low levels of errors, reaction times may become the critical measure [59]. Still, there is a 

tendency, that participants of the tACS-group made fewer errors, especially concerning button presses.  

As standardized protocols and guidelines do not exist, it is hard to compare tACS-studies [1]. Precisely 40 Hz 

tACS was found to enhance accuracy but not reaction times in 3-back tasks [37] and fastened the response 

time for logical reasoning tasks by 15 % [38]. In our study, 40 Hz tACS showed an effect on performance by 

decreasing the slope of reaction times by approx. 4 % as compared to a control group (tACSinter vs. SHAMinter) 

and had no effect on error rates, but it is important to consider the differences in paradigms and 

stimulation sites. 

Recent studies have shown, that tACS especially proves to be beneficial for “slow” or less accurate 

participants [61], [62]. We categorized participants as well but could not find any relationship between high 

or low individual level of base reaction time and improved reaction times due to stimulation. What we 

observed was a large variability among individuals: Reasons for that could be differences due to anatomic 

variance [63] or larger mismatches between intrinsic gamma oscillations and the 40 Hz stimulation 

frequency [26]. 

We focused solely on the behavioral outcome and did not record EEG, but it has been shown in other 

studies, that gamma-tACS on the visual cortex down-regulates alpha power [26] and that tACS at alpha 

frequency does not impact reaction times [39]. Our results are in line with their findings and the concept of 

a gamma-alpha antagonism. However – lacking a control group stimulated with a control frequency - we 

cannot make assumptions about our effects being frequency specific. Further, we cannot exclude the 

possibility that effects shown are due to perceiving the sensation of stimulation. A successive study would 

be needed to clarify this aspect. 

On a neurophysiological level, intra-individual faster reaction times have been linked to a specific phase of 

either intrinsic alpha [64] or gamma [65] oscillations during stimulus onset. Concerning alpha oscillations, 

stimuli presented nearest to the amplitude elicited slowest reaction times [64]. In respect to gamma, EEG 

measurements revealed that only in trials in which participants performed a fast reaction, a pronounced 

slow negative potential over central electrodes starting approx. 800 ms before the response and highly 

phase-locked gamma oscillations over central and posterior electrodes shortly after the stimulus occurred 

[65]. We did not consider phase differences of intrinsic oscillations and their relation to stimuli 
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presentation. We conclude, as stimuli were presented randomly and in different intervals, any phase effects 

will be balanced out in the course of the experiment. 

a. Outlook  

Besides deeper investigation of the electrophysiological effects, another interesting question seems the 

application of tACS in a more sophisticated way, e.g. at specific points when individual alpha power 

increases above a certain threshold. Furthermore, the task could outlast the stimulation period to 

investigate if enhancing effects appear only online or if they can be maintained post stimulation. Helfrich et 

al. [26] could only observe a gamma-tACS online-effect on alpha power, but recently Kasten and Herrmann 

[40] demonstrated that the effect of alpha-stimulation on mental rotation persisted at least 50 minutes 

after stimulation. 

There are only a few recent studies investigating tACS effects on elderly [32], [66]. Antonenko et al. [32] 

showed a tACS-induced learning effect especially in elderly – raising hope for the potential use of tACS in 

this age group: Especially in respect to addressing their well-known cognitive deficits, e.g. in car-driving 

[67]. Reaction times could also be a relevant performance parameter, as the slowing of performance is one 

essential aspect of aging [52]. Differences between younger and older participants concerning reaction 

times, but not errors, were observed in complex situations in a driving simulator study [68]. 

 

V. CONCLUSIONS  

In our study, 40 Hz gamma-tACS over the visual cortex showed an improving effect on reactions times as 

compared to a BASELINE-block in a sham-controlled two-alternative-forced-choice experiment. Our results 

are in support of the concept of antagonistic alpha-gamma relationship. Although effects of tACS on time-

on-task are rather weak, we see potential of this technique for application, especially in the context of car 

driving where 19 ms more reaction time is crucial. 
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Attempting to counteract vigilance decrement in older adults with brain 
stimulation 

Abstract 

Introduction: Against the background of demographic change and the need for enhancement 

techniques for an aging society, we set out to repeat a study that utilized 40-Hz transcranial 

alternating current stimulation (tACS) to counteract the slowdown of reaction times in a vigilance 

experiment but with participants aged 65 years and older. On an oscillatory level, vigilance 

decrement is linked to rising occipital alpha power, which has been shown to be downregulated 

using gamma-tACS. 

Method: We applied tACS on the visual cortex and compared reaction times, error rates, and alpha 

power of a group stimulated with 40 Hz to a sham and a 5-Hz-stimulated control group. All groups 

executed two 30-min-long blocks of a visual task and were stimulated according to group in the 

second block. We hypothesized that the expected increase in reaction times and alpha power 

would be reduced in the 40-Hz group compared to the control groups in the second block 

(INTERVENTION). 

Results: Statistical analysis with linear mixed models showed that reaction times increased 

significantly over time in the first block (BASELINE) with approximately 3 ms/min for the SHAM and 

2 ms/min for the 5-Hz and 40-Hz groups, with no difference between the groups. The increase was 

less pronounced in the INTERVENTION block (1 ms/min for SHAM and 5-Hz groups, 3 ms/min for 

the 40-Hz group). Differences among groups in the INTERVENTION block were not significant if the 

5-Hz or the 40-Hz group was used as the base group for the linear mixed model. Statistical analysis 

with a generalized linear mixed model showed that alpha power was significantly higher after the 

experiment (1.37 μV2) compared to before (1 μV2). No influence of stimulation (40 Hz, 5 Hz, or 

sham) could be detected. 

Discussion: Although the literature has shown that tACS offers potential for older adults, our 

results indicate that findings from general studies cannot simply be transferred to an old-aged 

group. We suggest adjusting stimulation parameters to the neurophysiological features expected in 

this group. Next to heterogeneity and cognitive fitness, the influence of motivation and medication 

should be considered. 
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1 Introduction 

In 2018, we found that the application of transcranial alternating current stimulation (tACS) on the 

visual cortex significantly reduced the slowdown of reaction times in a vigilance experiment in a 

group of young adults (Löffler et al., 2018). We set out to repeat the study but with older adults. 

In Europe, as well as other industrialized countries, the demography is changing toward an older 

society: By 2070, the number of people aged 65 years and older will mount up to 30% of the total 

population in Europe (European Commission, 2020). Due to the population aging, more people will 

likely be required to work longer before retirement and therefore make up a huge portion of not 

only car and bicycle drivers but also the active workforce. Getting old does not come without 

costs: In aging, neurobiological, cognitive, and behavioral changes are seen (Hedden and Gabrieli, 

2004; Grady, 2012). Aging may have severe effects on the brain and often leads to a continuous 

and reliable decline in numerous perceptual and cognitive functions (Hedden and Gabrieli, 2004; 

Salthouse, 2010) with only rare treatment options (Abbott, 2012). These effects can be mainly 

observed not only in behavioral and neuropsychological tasks assessing speech perception, 

working memory, processing speed, executive functions, reasoning, and spatial orientation 

(Hedden and Gabrieli, 2004; Salthouse, 2010) but also in rapid mental fatigue when performing a 

long-lasting task (Wascher and Getzmann, 2014)—important functions for activities mentioned by 

older adults as relevant for a good, participative lifestyle (Owsley, 2002). 

Vigilance is the capability to stay alert and ready to react to prolonged tasks (Warm et al., 2008) 

and represents an executive function (Cristofori et al., 2019). Vigilance decrement is the decline in 

performance with time on task, for example, expressed by rising reaction times and reduced 

detection rates (Buck, 1966; Pattyn et al., 2008). Vigilance decrement is thought to be responsible 

for numerous accidents and other safety-critical events. It is becoming more relevant lately due to 

the propagation of automatization and the increasing number of monitoring tasks (Dinges, 1995). 

Therefore, much research focuses on investigating vigilance-decrement detecting systems 

(McWilliams and Ward, 2021; Tamanani et al., 2021) and vigilance-enhancing strategies (see Al-

Shargie et al., 2019, for a review). 

Conventional vigilance-enhancing strategies include caffeine or chewing gum (Al-Shargie et al., 

2019). Recent research has shown that an increase in cognitive load works beneficial: Vigilance is 

enhanced by integrating challenges to monitoring tasks like artificial rain (Bodala et al., 2016), 

adding visual and haptic stimuli (Abbasi et al., 2017) or a pure audio tone at 250 Hz (Al-Shargie et 
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al., 2021). Another promising enhancing strategy is transcranial electrical stimulation (TES), which 

is an easy-to-apply and relatively low-cost technique ideal for private and mobile applications 

(Antal and Paulus, 2013). In TES, two (or more) electrodes are placed on the scalp that are used to 

induce low electrical fields. Successful vigilance enhancement has been shown for transcranial 

direct current stimulation (tDCS; McIntire et al., 2014; Nelson et al., 2014) and tACS (Löffler et al., 

2018; Rostami et al., 2021). In tDCS, stimulation electrodes are used as an anode and a cathode, 

leading to a de- or hyperpolarization of the exposed brain tissue. Negative aspects of this method 

are the enhancement of cognitive functions at the expense of other cognitive functions (Iuculano 

and Cohen Kadosh, 2013) or opposing effects depending on the individual's state (Sarkar et al., 

2014). tACS uses alternating current and allows direct interference with the ongoing oscillatory 

brain activity with no serious adverse events reported as of 2017 (Matsumoto and Ugawa, 2017). 

Applied in the conventional electroencephalogram (EEG) frequency range, tACS is believed to 

modulate brain oscillations by the synchronization of neuronal networks and has been shown to 

induce behavioral and neurophysiological effects that occur immediately (on-line) but have also 

been shown to outlast stimulation (off-line or so-called aftereffects; Kasten et al., 2016). Lately, 

tACS has gained broad interest as a possible therapeutic method in treating neuropsychological 

disorders linked to abnormal brain oscillations, such as Parkinson's disease (Guerra et al., 2020) or 

dementia (Moussavi et al., 2021) and Alzheimer's disease (Sprugnoli et al., 2021). Several studies 

showed that the application of tACS can induce a behavioral change and increase performance (for 

a review, see Klink et al., 2020a), making it a promising tool for neuro-enhancement. In the context 

of vigilance, it has been applied with mixed results. While stimulating the medial prefrontal cortex 

with 6-Hz tACS improved performance in a visual sustained attention task (Rostami et al., 2021), 

stimulating with 4 Hz and 10 Hz did not reduce vigilance decrement (van Schouwenburg et al., 

2021). 

In our study (Löffler et al., 2018), we reduced vigilance decrement by stimulating the visual cortex 

with 40 Hz. We combined two insights to conceptualize the study. First, we combined 

neurophysiological knowledge and then, second, looked for the appropriate stimulation setup. 

First, rising reaction times and worsening detection rates show a positive correlation with time on 

task (Buck, 1966)—a concept widely used in vigilance research (for review, see, e.g., Oken et al., 

2006; Pattyn et al., 2008). Furthermore, on a neurophysiological scale, reaction time slowing and 

vigilance decrement have been linked to rising posterior alpha power with time on task (Klimesch, 

1999; Schmidt et al., 2009; Molina et al., 2013; Clayton et al., 2015). The rise in posterior alpha 
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power is associated with experienced mental fatigue (Craig et al., 2012) and relates to reaction 

time slowing (Klimesch et al., 1996). These relationships led us to the conclusion that reaction time 

slowing can be prevented if alpha power is downregulated. The latter has successfully been 

demonstrated by Helfrich et al. (2014a, 2016) who down-modulated alpha amplitudes with 

gamma tACS. They stimulated the visual cortex with 40 Hz and a high-definition tACS electrode 

montage, where five electrodes were positioned on each hemisphere, allowing stimulation in or 

with 180° phase difference between them. Notably, downregulation of alpha amplitudes was 

observed independently of in- or antiphase stimulation. 

A possible reason for the down-modulating effect derives from a phenomenon called cross-

frequency coupling (CFC), also known for other frequencies: Brain oscillations of specific 

frequencies interact with each other (Jensen and Colgin, 2007). In general, during CFC, specific 

subharmonic sets of faster and slower oscillations are nested in each other and modify each other. 

CFC is believed to be a mechanism for information transfer in nested or coupled neuronal 

networks and may provide information integration across several spatiotemporal scales (Canolty 

and Knight, 2010). CFC can occur in different ways, depending on its function and whether the 

slow or fast oscillation is master or slave (Helfrich et al., 2016). Coupling can occur between 

amplitudes, power, phase, or frequency (Abubaker et al., 2021). It is believed that amplitude 

coupling regulates the activation of distributed neuronal populations, while phase coupling 

mediates specific inter-areal cortical information flow (Engel et al., 2013). In their study, Helfrich et 

al. (2016) showed that gamma-alpha CFC gamma-band entrainment enhanced amplitude–

envelope correlations and reduced alpha power, indicating an antagonistic relationship between 

them. They concluded that coupled alpha and gamma oscillations have a functional role in visual 

processing. Also, other studies showed that gamma and alpha frequencies interact during 

cognitive processes, with the strongest coupling over occipital areas (Palva et al., 2005; Osipova et 

al., 2008). Therefore, we decided to investigate the possibility of gamma tACS to downregulate the 

expected rise in occipital alpha power on the visual cortex, this time addressing older adults. 

In 2016, the first successful tACS study targeting healthy older adults aged 60 years and older 

improving implicit language learning skills was published (Antonenko et al., 2016). Since then, 

most studies have investigated the impact of tACS on the prefrontal cortex (PFC), addressing higher 

cognitive functions like working memory (Reinhart and Nguyen, 2019; Draaisma et al., 2022), 

associative memory encoding (Klink et al., 2020b) and multitasking (Zanto et al., 2021). 

Furthermore, tACS stimulation of the PFC has been shown to support cognitive training in cases of 
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dementia (Moussavi et al., 2021). Other successful tACS studies enhanced motor functions (Guerra 

et al., 2021) and motion learning (Rumpf et al., 2019; Fresnoza et al., 2020) or addressed auditory 

functions (Rufener et al., 2016; Baltus et al., 2020). One study found that alpha tACS (but not theta 

or gamma) at parietal regions improved performance in a working memory paradigm (Borghini et 

al., 2018). Only a few studies have compared young and old target groups using the same protocol 

and stimulation setup (Rufener et al., 2016; Reinhart and Nguyen, 2019; Fresnoza et al., 2020; 

Guerra et al., 2021; Zanto et al., 2021). 

We repeated our study (Löffler et al., 2018) but with older adults to analyze the impact of identical 

tACS setup on different age groups and test if the setup is beneficial for older adults as well. In 

order to validate our hypothesis of a vigilance-induced rise of alpha power and its downregulation 

by gamma tACS, we extended the study by recording EEG and an additional 5-Hz control group to 

ensure that any enhancing effects are frequency-specific (Davis et al., 2013). We used the same 

study design consisting of two blocks—a baseline and an intervention—and recorded the EEG 

before and after both blocks. We expected that our experiment would lead to a vigilance 

decrement expressed by rising reaction times over time on task in the baseline block and higher 

alpha power post the experiment for the sham and control group. We hypothesized that our 

intervention with 40-Hz tACS would lead to a significantly flatter slope of increased reaction times 

in the intervention block and a significantly lower level of alpha power after the experiment as 

compared to the sham and 5-Hz control groups. 

To the best of our knowledge, no study has previously applied 40-Hz gamma tACS on the visual 

cortex to address vigilance decrement in older adults. We believe that this research has high 

technical relevance given the changing demographics and increasing number of monitoring tasks 

such as automated driving (Gartenberg et al., 2018), which older adults cite as important for 

participating in society and as part of a good quality of life (Owsley, 2002). As there are few options 

for treating cognitive deficits—inevitable in age—we think investigating performance-enhancing 

techniques, especially for an older age group, is of great practical relevance. 

2 Material and methods 

For comparability, the experimental procedures and behavioral data analysis followed the 

approach of Löffler et al. (2018) except for the extension of EEG and a 5-Hz-stimulation control 

group. The experimental protocol was approved by Medizinische Ethikkommission of the 
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University of Oldenburg. Written informed consent was acquired from all participants prior to the 

experiment in line with the Declaration of Helsinki. 

2.1 Participants 

Forty-nine independent-living people aged 65 or older (mean age 72.4 years, SD 5.5, range 65–89) 

participated in the study. Participants received monetary compensation and were recruited from 

previous studies (not related to stimulation) and via a newspaper advertisement. Due to recording 

problems, one subject had to be excluded entirely from the analysis. Furthermore, reaction time 

recording failed in three subjects and the EEG recording failed in one subject, and they were 

excluded from the respective analysis. Therefore, only 45 (SHAM = 14, 5 Hz = 15, 40 Hz = 16) 

participants could be used for behavioral and 47 (SHAM = 15, 5 Hz = 14, 40 Hz = 18) for EEG 

analysis. Table 1 summarizes the group sizes and the characteristics of the remaining 48 

participants. None of them reported the presence or history of neurological or psychiatric 

disorders. Twenty-eight subjects needed regular cardiovascular medication. Three subjects had 

vision impairment in one eye. Forty-five subjects were right-handed and three both-handed 

according to the Edinburgh handedness scale (Oldfield, 1971). One subject had experience with 

brain stimulation 4 years ago. One subject was remeasured after 18 months because sleep 

deprivation led to exorbitant reaction times (>2 s). Only the remeasurement was entered into the 

analysis. 

Table 1. Group-wise sample size (total n = 48), mean age, and the number of female participants in total and according to the data 

analysis method 

Group SHAM 5 Hz 40 Hz 

TOTAL       

n 15 15 18 

Age 71.7, SD 5.5 70.3, SD 3.6 74.3, SD 6.3 

female 8 (53%) 6 (40%) 9 (50%) 

        

Behavioral data analysis     

n 14 15 16 

Age 71.7, SD 5.7 70.3, SD 3.6 73.2, SD 5.3 

female 7 (50 %) 6 (40%) 8 (50%) 

   

EEG analysis      

n 15 14 18 

Age 71.7, SD 5.5 70.6, SD 3.4 74.3, SD 6.3 

female 8 (53%) 5 (36 %) 9 (50%) 
EEG, electroencephalogram 
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Participants were randomly assigned to one of the three experimental groups receiving 40-Hz, 5-Hz, or 

SHAM stimulation in a single-blind design. The groups were counterbalanced for participants' sex, age, and 

button press conditions. All participants believed they were receiving tACS stimulation and were debriefed 

after the experiment. 

To select an appropriate sample size, we performed an a priori power analysis based on the findings of our 

study (Löffler et al., 2018), which suggested a sufficient power (1 – β = 0.85) at a total sample size of 42 (14 

participants per group). 

2.2 Procedure 

The experiment took place in a laboratory room, where participants were seated on an office chair at a 

distance of approximately 90 cm in front of a 24-in. computer screen (60 Hz, 1,920 × 1,800 px resolution) 

and connected to the EEG and stimulation device. Before the experiment, participants were given an 

introduction and a small training session to avoid confusion. During the experiment, participants and 

examiner were separated via a gray screen, communication stopped, and the light was switched off. 

Participants were not informed about the time of tACS onset. After the experiment, participants were asked 

if they believed to be stimulated or not and were informed about the actual stimulation settings applied to 

them. Furthermore, they were asked to fill out a standardized questionnaire on adverse effects according to 

Brunoni et al. (2011). Questions contained the common 10 side effects as headache, neck pain, itching, 

tiredness, and others and the link to being stimulated or not. Items were on a scale of 1 (none) to 4 (severe 

or definitely, respectively). See Figure 1A for the course of the experiment. 

2.3 Study design 

The experiment consisted of two 30-min-long blocks with a baseline block (referred to as the BASELINE 

block) and a stimulation block (referred to as the INTERVENTION block) in which participants were 

stimulated according to their group (SHAM, 5-Hz, or 40-Hz tACS). To ensure the presence of a vigilance 

decrement, the block order was not randomized, and no participant received stimulation during the 

BASELINE block. Therefore, all participants irrespective of group affiliation should show similar behavioral 

outcomes during the BASELINE block, while differentiation into the stimulation groups should only be 

relevant in the INTERVENTION block. Before the BASELINE and after the INTERVENTION block, a 5-min-long 

resting EEG was recorded, and participants were asked to sit still, relax, and keep their eyes open. This time 

span has been used in similar studies by other researchers investigating EEG in older adults (Babiloni et al., 

2015; Scally et al., 2018; Rumpf et al., 2019; Varastegan et al., 2023). During an approximately 2–3-min-long 

self-paced break (mean 148 s, SD 66 s) between the blocks, the participants were allowed to drink and rest. 
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Figure 1. Design of the experiment: (A) Course of the experiment showing the timing of resting EEG-recording and behavioral 

records. (B) Electrode setup with a 5-cm × 7-cm stimulation electrode placed on the vertex (Cz) and a smaller 4.5-cm × 4.5-cm one on 

the visual cortex (Oz) according to the 10-10 system. Circles represent active electrodes used for EEG recording according to the 

modified 10-10 system. Posterior alpha power was calculated from five EEG electrodes (P7, P3, Pz, P4, P8) highlighted in gray with a 

bold line. (C) Current simulation using SIMNIBS showing the stimulation's electric field strength addressing the visual cortex 

(reproduced with permission of the authors from Stecher and Herrmann, 2018). The color bar represents the normal vector of the 

electric field in V/m. 

 

2.4 Task 

Participants were asked to put their left and right index fingers on the respective buttons of a custom-made, 

software-debounced button box placed on the table before them and asked to fixate a white cross (10 × 10 

px) displayed on a gray (RGB = 95 95 95) background. Every 6–56 s (median: 17 s), either a red (RGB = 240 

55 55), or a blue (RGB = 20 100 255) stimulus in the shape of a circle (400-px diameter) appeared for 500 ms 

at the center of the screen. Half of the participants of each group were instructed to press the left button 

when the red stimulus and the right button when the blue stimulus appeared (the other half vice versa) as 

fast and correctly as possible. A specific set of 100 stimuli was used (50 red, 50 blue) in a pseudo-

randomized order for each block. Stimulus presentation was handled with the Psychophysics Toolbox 

extension (version 3.0.12) and button presses recorded in MATLAB (Release 2012a, The MathWorks Inc., 

Natick, MA, United States). 
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2.5 EEGs 

EEGs were acquired with a rate of 10 kHz from 23 active electrodes using an actiCHamp amplifier (Brain 

Products GmbH, Gilching, Germany) and recorded via Pycorder software (Brain Products GmbH, Gilching, 

Germany). The 10-10 system was used to place the electrodes (see Figure 1B for an overview of recording 

channels), omitting the sites of the stimulation electrodes. The ground electrode was positioned at FPz. An 

electrode attached to the nose was chosen as a reference since it is widely used in neural research 

addressing visual cognition as the electrodes of interest at the visual cortex are far away from the nose (e.g., 

Helfrich et al., 2014a,b; Kasten et al., 2016). A vertical electrooculogram was recorded underneath the right 

eye to monitor eye movements. All impedances were kept below 20 kOhm. 

2.6 tACS 

Two rubber electrodes were positioned with their center at Cz (7 × 5 cm2) and Oz (4.5 × 4.5 cm2) according 

to the 10-10 EEG system and fixated with adhesive electrode paste (ten20®conductive, Weaver and 

Company, Aurora, CO, USA). A battery-driven stimulator was used (neuroConn DC Stimulator with Remote-

In function, Neuroconn GmbH, Ilmenau, Germany), and impedance was kept below 10 kOhm. For the 

STIMULATION block, the tACS device was remotely accessed via a MATLAB-controlled DAQ module (Ni USB 

6229, National Instruments, Austin, Texas, USA). Stimulation intensity was set to 1 mA. For the 5-Hz and 40-

Hz group, the current was linearly faded in and out for 30 s at the beginning and end of the INTERVENTION 

block. Current in the SHAM group was faded in for 30 s, kept constant at 1 mA (at either 40 or 5 Hz) for 30 s, 

and faded out for 30 s at the beginning and end of the INTERVENTION block. Electrode sizes, positions, and 

stimulation intensity were in line with the effective montage used in our study (Löffler et al., 2018) and by 

other studies, in which stimulation affected alpha bands in the visual cortex (Kasten et al., 2016; Stecher et 

al., 2017). The intensity of 1 mA has been proven to induce neurophysiological and behavioral effects 

without causing unpleasant feelings by the same studies and is a widely used stimulation intensity (e.g., 

Klink et al., 2020b). Figure 1C shows a computer simulation of the tACS setup and its induced electric field 

addressing the visual cortex. tACS at 40 Hz has been shown to successfully downregulate alpha power at 

the visual cortex (Helfrich et al., 2014a, 2016). 

2.7 Data processing 

Data processing and analysis were performed using MATLAB (Klink et al., 2020a) and the Fieldtrip toolbox 

(Oostenveld et al., 2011). 

Initial preprocessing of the behavioral data was done in MATLAB. Missed stimuli, wrong button presses, and 

reaction times below 200 or above 2,000 ms were excluded from reaction time analysis and considered 

“errors.” 
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The EEG data was down-sampled to 500 Hz and high-pass filtered at 1 Hz. We used a 48-Hz low-pass filter to 

remove line noise and high frequency (e.g., muscle artifacts). Two 4-min chunks of resting EEG (PRE: before 

and POST: after the experiment) starting 30 s after the beginning of the respective resting EEG 

measurement were cut into trials of 1 s to easily help identify and reject artifactual segments. These trials 

were then used in an independent component analysis approach. The identification of ocular components 

was based on topography (frontal and fronto-lateral bipolar) and time course (strong sigmoid shapes and 

boxcar shapes). Components containing vertical or horizontal eye movements were manually removed. 

Furthermore, we removed trials containing voltage differences >200 μV in the Pz electrode signal. On 

average, 230.23 out of 240 s were left after threshold-based rejection (STD: 16.18, min: 154). 

As occipital electrode positions were covered by the stimulation electrodes, posterior alpha power was 

estimated using all parietal electrodes from both hemispheres (Pz, P3, P4, P7, P8) except for one 

participant, for whom P4 and P7 were excluded due to excessive noise. A fast Fourier transform using a 

Hanning window with 5-s zero padding was computed on the data. The results were 1–48-Hz-long bands of 

236 data points with a resolution of 0.2 Hz. We calculated the mean value of all P-electrodes. We used the 

MATLAB function findpeaks to find the maximum power value between 6.8 and 13 Hz and its respective 

peak frequency, the individual alpha frequency (IAF). We defined alpha power as the mean power value +/– 

1 Hz around peak frequency. 

2.8 Statistical analysis 

The software R 4.0.3 (R Foundation for Statistical Computing, Vienna, Austria) was used for statistical 

analysis. 

For statistical analysis of the behavioral data, a linear mixed model (LMM) with the add-on-package “nlme” 

(Pinheiro et al., 2022) for reaction time and a generalized additive mixed model (GAMM) of the add-on 

package “mgcv” (Wood, 2017) for error analysis were used. In line with the statistical analysis used in our 

previous study (Löffler et al., 2018), data were separated into six groups, with the indexes base and inter 

indicating the block (BASELINE or INTERVENTION): SHAMbase, 5 Hzbase, 40 Hzbase, SHAMinter, 5 Hzinter, 40 Hzinter. 

SHAMbase and SHAMinter, 5 Hzbase and 5 Hzinter, and 40 Hzbase and 40 Hzinter consisted of the same participants, 

respectively. We expected the three base groups (SHAMbase, 5 Hzbase, and 40 Hzbase) to show similar 

outcomes as no participant was stimulated during BASELINE block. Fixed factors were group (indicating the 

six groups as mentioned earlier), time, and the interaction term of both group * time. The SHAMbase group 

served as the base group to which the other five were compared. The continuous variable time represented 

the pseudo-randomized stimuli onset time point (100 per block) starting from zero in each block. As random 

effects, individuals and their variation of reaction times or error probability over time were used. We 

increased complexity stepwise (intercept to broken-stick models with 8 degrees of freedom). We checked 

for models' improvement using likelihood ratio tests of the R package “performance” (Lüdecke et al., 2021) 
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for the LMM and Akaike information criterion (AIC) for the GAMM. A two-sided significance level of α = 0.05 

was used. 

For the LMM, a simple linear model with a continuous autoregressive covariance structure best described 

the observed effects. We also checked the influence of other factors, such as gender as fixed or age and IAF 

as random factors, but these did not improve the model's fit. The literature shows that tACS is often more 

beneficial for a specific subgroup of participants, for example, the influence of baseline performance 

(Santarnecchi et al., 2016; Thompson et al., 2021) or in participants showing a low level of arousal 

(Martínez-Pérez et al., 2022). Therefore, we defined a subset of subgroups (classifying participants into two 

groups by using the median) that we integrated as fixed effects. While slow performance, IAF level, and 

alpha power difference showed no effect, we found a significant contribution to the model for ageclass 

(younger than the median age of all participants of 72 years or equal and older) and medication (yes/no) 

over time and group. While ageclass seemed only to show variation and was not interpretable, medication 

attributed to our model. But, as medication was not part of our hypothesis and not balanced over groups, 

we feared overfitting. A more extensive data set is needed to make reliable statements about this factor. In 

tDCS studies, medication has significantly influenced the stimulation effect (McLaren et al., 2018). 

Concerning errors, we were not able to fit a satisfying mixed model. Random effects improved the fit of the 

GAMM, but introducing covariates did not. We could not find a suitable model (conditional R2 < 0.3) and 

any linear effect of time. 

The EEG data's mean power values PRE and POST were not normally distributed according to Shapiro–Wilk 

test. QQ and density plots of the data showed the uneven distribution of the data, with a concentration of 

small power values at approximately 1 μV2, while some participants showed high power values of 10 μV2 

and more. Due to this huge inter-individual variance but intra-individual-specific voltage level, we decided 

on a statistical analysis with a generalized linear mixed model (GLMM) using the gamma-distribution family 

to describe the data. We used the R package “lme4” (Bates et al., 2015). We applied treatment (SHAM, 5 

Hz, and 40 Hz) and timepoint (PRE and POST) as fixed factors. Increasing the models' complexity stepwise, 

introducing different link functions, and comparing AIC values showed a GLMM with individual random 

effects and a log-link function, but excluding the factor treatment served best to describe the data. 

As not only the absolute power values of each participant but also the difference between POST and PRE 

alpha power were relevant for this study, we calculated a Wilcoxon rank-sum test to show the effect size of 

the differences between POST and PRE alpha power. 

We calculated linear regression models testing different correlations during the BASELINE block to support 

theories about our cohort's behavior and neurophysiological nature. We tested age, mean reaction time, 

mean-variance of reaction times, amount of errors, alpha power differences, IAF, and alpha PRE power 
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(block-wise and in total, where appropriate) against each other. Shapiro–Wilk tests were used for assessing 

normal distributions of the data sets. Kendall r was used as the correlation coefficient for non-normally 

distributed data sets; for normally distributed ones, Pearson's r was used. 

3 Results 

3.1 Debriefing 

One participant (SHAM group) did not answer the questionnaire about side effects and stimulation. The 

side effects mentioned most frequently by the remaining 47 participants (intensities rated higher than 1) 

were tiredness (47%) and trouble concentrating (66%), but only 15% (tiredness) or 13% (concentration) of 

the participants attributed it to being stimulated. Other side effects mentioned by more than three 

participants were tingling and itching both mentioned by 7 out of 47 of the participants (15%). Of the 

subjects, 35% (33% of the SHAM, 21% of the 5-Hz, and 44% of the 40-Hz group) thought they were 

stimulated (n = 46, one participant of the 5-Hz group did not answer this question). 

3.2 Behavioral analysis 

3.2.1 Reaction times analysis 

The LMM predicting reaction times shows a slight increase over time, higher in the BASELINE block. In the 

INTERVENTION block, initial reaction times (intercepts) are higher than in BASELINE, and the slopes for the 

SHAMinter and 5-Hzinter groups show a less steep increase, while the one for the 40-Hz group shows a steady 

one (see Figure 2). 

Reaction times are predicted according to the following Equation 1 from the covariates group (SHAMbase, 5 

Hzbase, 40 Hzbase, SHAMinter, 5 Hzinter, 40 Hzinter), time, and group * time (interaction term): 

 

rt =   𝛃𝟎 ∗ 𝑺𝑯𝑨𝑴𝒃𝒂𝒔𝒆  +  β1 ∗ 5𝐻𝑧𝑏𝑎𝑠𝑒  +  β2 ∗ 40𝐻𝑧𝑏𝑎𝑠𝑒  +  β3 ∗ 𝑆𝐻𝐴𝑀𝑖𝑛𝑡𝑒𝑟  +  β4 ∗ 5𝐻𝑧𝑖𝑛𝑡𝑒𝑟  + β3

∗ 40𝐻𝑧𝑖𝑛𝑡𝑒𝑟  + 𝛃𝟔 ∗ 𝑺𝑯𝑨𝑴𝒃𝒂𝒔𝒆 ∗ 𝐭𝐢𝐦𝐞 + β7 ∗ 5𝐻𝑧𝑏𝑎𝑠𝑒 ∗ 𝑡𝑖𝑚𝑒 + β8 ∗ 40𝐻𝑧𝑏𝑎𝑠𝑒 ∗ 𝑡𝑖𝑚𝑒 

+ β9 ∗ 𝑆𝐻𝐴𝑀𝑖𝑛𝑡𝑒𝑟 ∗ 𝑡𝑖𝑚𝑒 + β10 ∗ 5𝐻𝑧𝑖𝑛𝑡𝑒𝑟 ∗ 𝑡𝑖𝑚𝑒     +  β11 ∗ 40𝐻𝑧𝑖𝑛𝑡𝑒𝑟

∗ 𝑡𝑖𝑚𝑒                                                                                             

(1) 

β coefficients represent fixed effects and are listed in Table 2. β0 describes the intercept of the 

SHAMbase group and β6 its slope (i.e., increase of reaction time over time). p-values for the SHAMbase group 

indicate the difference between zero (bold font). The coefficients β1-β5 describe the group-specific 

difference of intercepts compared to SHAMbase group (β0), and β7-β11 are their slopes. For other groups, 

https://www.frontiersin.org/articles/10.3389/fnrgo.2023.1201702/full#T2
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respective coefficients need to be added to the ones of the SHAMbase group. For example, (β0 + β1) add up to 

the intercept of the 5-Hzbase group, (β0 + β2) to the intercept of the 40-Hzbase, and so on. For coefficients, β1-

β5 and β7-β11, p-values indicate the significance of the difference compared to the SHAMbase group (β0 und 

β6). Figure 2 visualizes the resulting regression functions. The final model, including fixed and random 

effects, explains approximately 47% of the observed variance (R2 conditional = 0.470). 

 

Figure 2. Linear mixed model results for reaction times (n = 45, observations = 8,413): Visualization of the regression functions 
representing reaction time (in ms) against time (in min) for the SHAM (gray solid line), 5-Hz (gray pointed line), and 40-Hz (black 
dashed line) according to block (BASELINE or INTERVENTION). Regression lines represent the six groups (BASELINE: SHAMbase, 
5Hzbase, 40Hzbase; INTERVENTION: SHAMinter, 5-Hzinter, 40-Hzinter). The two SHAM, 5-Hz, and 40-Hz-groups consisted of the same 
participants. β-coefficients (from Table 2) indicate how intercepts—indicated by I (β0-β5) and slopes—indicated by s – (β6-β11) were 
calculated. β0 is the intercept of the SHAMbase group, and β6 is its increase over time—their significance is compared to zero and 
shows a highly significant difference (p < 0.001). All other intercepts and slopes are compared to SHAMbase: Significant differences 
according to the model can be found for the intercept of the SHAMinter group (ISHAM = β0 + β3; p < 0.001) and the slopes of the 
SHAMinter (SSHAM = β6 + β9) and 5-Hzinter (S5Hz = β6 + β10; p < 0.05) groups. Model parameters are R2 marginal = 0.056, R2 conditional = 
0.470, and Akaike information criterion = −9,055.448. 

According to the LMM, initial reaction times were approximately 570 ms (β0) in the SHAMbase, 512 ms in the 

5-Hzbase (β0 + β1), and 577 ms (β0 + β2) in the 40-Hzbase groups at the beginning of the experiment. In the 

BASELINE block, reaction times of the SHAMbase group increased significantly with 3.4 ms/min (β6, p < 0.001) 

compared to zero. The expected reaction time at the end of the BASELINE block and after 30 min added up 

to 672 ms (which results in a difference of Δ102 ms—the Δ symbol marks the value as a difference) for the 

SHAM, 562 ms (Δ50 ms) for the 5-Hz, and 640 ms (Δ63 ms) for the 40-Hz groups. This equalizes to a rise of 

18, 10, and 11%, respectively. There was no statistical difference among the BASE groups (although the 

slope of the 5-Hzbase group nearly touched significance with a p-value of 0.073). 

All participants started the INTERVENTION block higher than their group-specific initial reaction time but 

lower than they finished the BASELINE. Participants of the SHAM group started Δ 68 ms; of the 5-Hz group, 

Δ40 ms; and of the 40-Hz group, Δ31 ms slower than they began in BASELINE. The difference between the 

expected reaction time at the end of BASELINE compared to the start in INTERVENTION was Δ-34 ms for the 

SHAM group, Δ-10 ms for the 5-Hz group, and Δ-32 ms for the 40-Hz group. In comparison to SHAMbase, the 

https://www.frontiersin.org/articles/10.3389/fnrgo.2023.1201702/full#F2
https://www.frontiersin.org/articles/10.3389/fnrgo.2023.1201702/full#T2
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intercept of the SHAMinter group showed a significant difference (p < 0.001). During block 2 

(INTERVENTION), the increase of reaction times slowed down for the SHAMinter group (by Δ2.42 ms/min) 

and the 5-Hzinter group (by Δ0.70 ms/min) to approximately 1 ms/min. The 40-Hzinter group showed a slight 

increase of Δ 0.51 ms/min to 2.5 ms/min. Compared to SHAMbase, the change was significant for the 

SHAMinter and 5-Hzinter groups (p < 0.05) but not for the 40-Hzinter group. The rise during the INTERVENTION 

block equalizes to 5% for the SHAM and 5-Hz groups (~Δ30 ms) and 13% (Δ78 ms) for the 40-Hz group. At 

the end of the INTERVENTION block, the expected reaction times are 667 ms for the SHAM group, 580 ms 

for the 5-Hz group, and 685 ms for the 40-Hz group. 

Table 2. Linear mixed model results for reaction times (n = 45, observations = 8,413): β presents the regression coefficients; SE β, the 
standard error of β. 

  β SE beta t-value p-value   

Intercepts:         

 

 

β0 SHAMbase 569.9 28.9 19.70 0.000  < 0.001°*** 

β1 5Hzbase  -58.2 40.3 -1.45 0.149  > 0.05 

β2 40Hzbase 7.3 39.6 0.18 0.855  > 0.05 

β3 SHAMinter 67.6 11.9 5.67 0.000  < 0.001*** 

β4 5Hzinter -18.7 40.2 -0.47 0.642  > 0.05 

β5 40Hzinter 37.6 39.6 0.95 0.342  > 0.05 

       

Slopes:     
  

 

β6 time x SHAMbase 3.403 0.698 4.88 0.000  < 0.001°*** 

β7  time x 5Hzbase -1.746 0.974 -1.79 0.073  > 0.05 

β8 time x 40Hzbase -1.320 0.955 -1.38 0.166  > 0.05 

β9 time x SHAMinter -2.424 0.700 -3.46 0.001  < 0.01** 

β10 time x 5Hzinter -2.448 0.965 -2.54 0.011  < 0.05* 

β11 time x 40Hzinter -0.810 0.959 -0.85 0.395  > 0.05 

β presents the regression coefficients, SE β the standard error of β. β0 represents the initial reaction time and β6 the increase in 
reaction time over time of the SHAMbase-group (bold font). Their p-values, indexed with a °, show a significant difference compared 
to zero. All other coefficients are tested against β0 and β6. Intercepts are given in ms, slopes in ms/min. *** p-value >0.001, ** p-
value > 0.01 and * p-value > 0.05. 

We also calculated models with 5 Hz and 40 Hz as the base group to test the difference between base and 

inter-conditions. See the Supplementary Material for more details. We confirmed that 5-Hzbase and 5-

Hzinter intercepts and the 40-Hzbase and 40-Hzinter intercepts differ significantly from each other: All groups 

started the INTERVENTION block significantly slower compared to their initial reaction times (5-

Hzbase intercept vs. 5 Hzinter: p < 0.001, 40-Hzbase intercept vs. 40 Hzinter: p < 0.01). No significant difference in 

slopes could be detected for both models. 
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3.2.2 Error analysis 

It was impossible to fit a GAMM explaining a substantial amount of variance (R2 = 0.000898) to the error 

data, so no change in the error occurrence probability could be detected over time. Mean performance was 

93% (SD 5%, range 78–99%). 

3.3 EEG 

Mean IAF was 8.9 Hz (SD 1 Hz). Comparing PRE and POST alpha power, 78% of the participants showed an 

increase in alpha power after the experiment (Figure 3)—irrespective of group (SHAM = 80%, 5 Hz = 71%, 

40 Hz = 82%). The best-fitting GLMM (gamma distribution with log link) predicts alpha power with 

participant ID as a random effect (intercept) and timepoint as the only covariate according to Equation 2: 

alpha power =  exp(  𝛃𝟎 +  𝛃𝟏 ∗ 𝒕𝒊𝒎𝒆𝒑𝒐𝒊𝒏𝒕) 

(2) 

Coefficients are log-scaled (β0 = −0.00113, β1 = 0.313). Back transferred, alpha power PRE is predicted to be 

1 μV2 and POST to be 1.37 μV2. According to the model, the increase in POST was significantly different from 

zero (p < 0.001). The model's AIC is 166.2, with R2 marginal = 0.021 for the fixed and R2 conditional = 0.838 

for the random and fixed effects. 

 

 

Figure 3. Plots of the alpha power (n = 47) spectrum in μV2 normalized to individual alpha frequency in Hertz according to group 
(SHAM, 5 Hz, and 40 Hz). The dotted curves show PRE, solid POST alpha power. Bold curves show the median alpha power of all 
participants per group (PRE: gray, POST: black). Individual participants' curves are represented by individual colors. 

 

We also looked at the absolute differences in alpha power (POST–PRE): A one-sided Wilcoxon rank-sum test 

showed a significant difference (p < 0.001) with an effect size of 0.55 (strong; see Figure 4). A Kruskal–Wallis 

Test testing differences in alpha power between the three treatment groups revealed no significance (p = 

0.3). 

https://www.frontiersin.org/articles/10.3389/fnrgo.2023.1201702/full#F3
https://www.frontiersin.org/articles/10.3389/fnrgo.2023.1201702/full#F4
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 Figure 4. Boxplot of differences (POST – PRE) in alpha power 
(n = 47) according to Treatment group (SHAM, 5 Hz, and 40 Hz). 
Filled dots indicate individual measurements; the dashed line 
indicates the zero crossing. 

 

 

3.4 Regression analysis 

A modest significant linear correlation could be obtained for IAF vs. errors (Kendall r = −0.22, p = 0.046) 

and IAF vs. mean variance of reaction times (Kendall r = −0.23, p = 0.034) and a strong one for mean 

reaction time vs. mean variance of reaction times (Kendall r = 0.74, p < 0.001). A positive linear tendency 

(r > 0.2) was detected for mean reaction time vs. age, the mean variance of reaction time vs. age, and 

the mean variance of reaction time vs. errors and a negative tendency (r > −0.2) for alpha 

power vs. age and IAF vs. mean reaction times, but these correlations were not significant. 

4 Discussion 

Aging is accompanied by growing cognitive deficits (Grady, 2012). In the eye of demographic change, 

enhancing the cognitive performance of older adults becomes essential. One aspect of cognitive 

performance is vigilance, which plays a critical role in professional and private settings where tasks can be 

safety-relevant but tiring (Warm et al., 2008). We, therefore, repeated our study (Löffler et al., 2018) in 

which we applied gamma tACS to counteract vigilance decrement but with older adults. We hypothesized 

that participants treated with 40-Hz tACS would exhibit less increase in reaction time increment and have a 

lower alpha power level after the experiment compared to SHAM and 5-Hz control groups. Results of 

reaction time slowing and higher POST alpha power indicate that we succeeded in inducing vigilance 

decrement (Buck, 1966; Molina et al., 2013) but failed to show an effect of our intervention—and if then 

only a trend in reaction time increment but in the opposite direction as expected. In the following, we 

discuss our results and give possible explanations. 

 

https://www.frontiersin.org/articles/10.3389/fnrgo.2023.1201702/full#B39
https://www.frontiersin.org/articles/10.3389/fnrgo.2023.1201702/full#B109
https://www.frontiersin.org/articles/10.3389/fnrgo.2023.1201702/full#B61
https://www.frontiersin.org/articles/10.3389/fnrgo.2023.1201702/full#B22
https://www.frontiersin.org/articles/10.3389/fnrgo.2023.1201702/full#B71
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4.1 Anatomical and functional differences of the aging brain 

There is some debate about the nature of brain aging, it is generally agreed that aging leads to a loss of 

brain volume and further physiological changes especially considering alpha and slow rhythms (Hedden and 

Gabrieli, 2004; Ishii et al., 2017). These changes could be critical for the success of tACS, which strongly 

depends—among others—on internal frequencies and the electrical field strength of the addressed tissue. 

In line with this, one recent tACS study addressing older adults used magnetic resonance imaging (MRI) 

scans to model individual electric fields and correlate them to the success of tACS together with EEG 

measuring the closeness of stimulation frequency (6 Hz) to internal brain waves (theta peak; Zanto et al., 

2021). The researchers found that performance change correlates to the modeled electric fields and 

frequency mismatch. This explained 54–65% of the variance in tACS-related performance improvements. 

Important: On a group level, it was not possible for them to find any significant stimulation effect. 

We did not measure the electrical field strength in our participants and can only speculate. Research has 

shown that brain volume seems to greatly decrease within the anterior regions while neural loss is rarely 

observed in occipital regions (Raz et al., 2005). So we still addressed—on the tissue level—a probable intact 

region. However, in aging, activation seems to shift from posterior to anterior areas (Dennis and Cabeza, 

2011). Regarding alpha oscillations, many studies observed a significant alpha increase in frontal regions 

(Ishii et al., 2017). This activation shift has been associated with a compensatory mechanism (Mattay et al., 

2002) and hyperactivation (Berchicci et al., 2012). Thus, it is conceivable that the visual cortex is not the 

relevant stimulation site for aged brains, as has been shown for stimulus processing and formulated in the 

posterior–anterior shift in aging hypothesis (Dennis and Cabeza, 2011). 

Considering posterior alpha oscillations, it is generally agreed that older adults show a lower IAF, a marked 

reduction in amplitude, and declined reactivity (Babiloni et al., 2006; Ishii et al., 2017; Knyazeva et al., 

2018). Although the general working principle of tACS is not completely understood, it is generally believed 

that tACS works as an external oscillator entraining internal brain oscillations (Vosskuhl et al., 2018). 

Therefore, stimulation success is dependent on selecting the correct stimulation site, electrode size, 

duration, frequency, and intensity according to the intrinsic properties of the addressed brain (Herrmann et 

al., 2013). 

The mean IAF of the older subjects in our study was 8.9 Hz (SD 1 Hz), which is slightly less but still 

comparable to values from the literature (Klimesch, 1999; Barry and de Blasio, 2017). The average IAF 

obtained for a younger target group with the same equipment and measurement in our laboratory group at 

electrode Pz was 10 Hz (SD 0.3 Hz; Stecher et al., 2021). The variance was smaller, and the IAF was closer to 

the optimal 10 Hz, a subharmonic of the 40 Hz stimulation frequency and probably needed to induce CFC. 

We assume that our 40-Hz stimulation frequency was too far a mismatch from the lower IAF in older adults 

to induce any behavioral or physiological effect. 

https://www.frontiersin.org/articles/10.3389/fnrgo.2023.1201702/full#B43
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In physiological aging, alpha sources in posterior regions seem to have significantly less magnitude 

compared to young ones (Babiloni et al., 2006; Ishii et al., 2017). As the power level of the addressed 

intrinsic frequency is important for successful stimulation, lower power could have influenced the 

stimulation outcome. It has been shown that alpha tACS can only enhance IAF amplitude if the initial power 

level is low (Neuling et al., 2013). We observed alpha power of more than 15 μV2 in seven participants; 

others showed only marginal power values of approximately 0.2 μV2. This is in line with the literature 

because alpha power can show a high inter-individual variability due to anatomic and genetic differences 

among people (Bazanova and Vernon, 2014; Haegens et al., 2014). Comparable studies measured 0.8–1 

μV2 for participants with an average age of 69 years (Vaden et al., 2012; Barry and de Blasio, 2017). 

We integrated IAF and power level in our LMM and performed further linear correlation analyses but could 

not detect any effect. 

4.2 Motivation and difference in mindsets 

We did not document the motivation or arousal level in our study, but higher motivation—as compared to 

younger participants—is a well-documented phenomenon in studies with older adults (Tomporowski and 

Tinsley, 1996). We can only speculate, but it may have been possible that at least part of the tested group of 

older adults experienced mental depletion instead of boredom. As mental depletion is associated with 

frontal brain regions in older adults (Arnau et al., 2017), the visual cortex might again not have been the 

correct stimulation area for inducing a performance change. Other tACS studies also show that mindsets are 

critical for stimulation success (Mierau et al., 2017). 

4.3 Heterogeneity 

Due to differences in scalp and skull thickness, hairs, and IAF, it is hard to repeat the effects of stimulation in 

a younger group, which, in general, consists of 20–30-year-old students (Kasten et al., 2019). With growing 

age, heterogeneity increases due to different life experiences and styles, nutrition, education, cognitive 

fitness, agility, medication and illnesses, and probably even more aspects (Light et al., 1996)—digital media 

use to name one more (Taipale et al., 2021). Compared to the repeated study (Löffler et al., 2018), the age 

range of the target group was higher (65–89 years compared to 20–30 years), as well as the educational 

background. 

Next, to the already mentioned IAF and alpha power, this is reflected by reaction times and power 

differences: Fast-performing participants showed mean reaction times of 450 ms and small variance; others 

needed approximately 1 s to make a choice: Reaction times become more variable with age (Hultsch et al., 

2002; Gorus et al., 2008). While alpha power decreased in roughly one-third of the participants (three in 

the SHAM group, four in the 5-Hz group, and three in the 40-Hz group; see Figure 4), seven participants 

showed a substantial increase of 200% and more (two in the SHAM group, three in the 5-Hz group, and two 
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in the 40-Hz group). These inter-individual differences were irrespective of group. Linear regression analysis 

showed a significant interaction between mean reaction time and reaction time variance, as known from 

the literature (Welford, 1971). Inter-individual differences seem consistent: The groups' mean reaction 

times differed, with the 5-Hz group showing the fastest. We nearly observed a significant difference 

between the 5-Hz group and the other groups in the BASELINE block for intercept and slope, which we did 

not expect, because participants were selected to be out of the same basic population. This performance 

gap continues in the INTERVENTION block, with a lower mean reaction time but not in the slope compared 

to the SHAM group. Group differences are also reflected in alpha power, with candidates of the 5-Hz group 

showed no power values of 10 μV2 and more. 

Still, our data show that we were able to induce vigilance decrement as expected by a constant reaction 

time slowing with time on task and a higher alpha power level post the experiment: Reaction times of 

approximately 545 ms are in close range of similar experiments with older adults (Welford, 1988) but 

slower than in the previous study (Löffler et al., 2018), with an average initial reaction time of 

approximately 485 ms. The reason for slower reaction times can be not only physiological (Welford, 1988) 

but also because of a different mindset: Older adults tend to be more careful and do not like to make 

mistakes (Botwinick, 1966). As expected, participants started the INTERVENTION block with a significantly 

higher initial reaction time compared to their initial BASELINE time. The break between blocks led to a slight 

recovery—a well-known effect (Ross et al., 2014) that has been also observed with young participants 

(Löffler et al., 2018). The less steep slope in the INTERVENTION block might be due to a ceiling (Neuling et 

al., 2013) or learning effect (Arnau et al., 2017; Getzmann et al., 2018). 

No pattern of error-making could be detected nor any difference between the blocks: This is consistent with 

previous findings (Löffler et al., 2018), confirming that making mistakes is not critical to good performance 

(Sarter et al., 2001) and fits with the idea mentioned earlier that older adults are slower but also more 

careful. 

Despite not being part of our hypothesis, we want to quickly discuss the factor medication. Of our 48 

participants, 28 needed regular cardiovascular medication known to influence stimulation effects (McLaren 

et al., 2018). In the LMM not considering the factor group, people on medication suffered significantly less 

from reaction time increment. In the LMM with the factor group, people on medication suffered 

significantly less from reaction time increment as well, but this effect was significantly strengthened only in 

the INTERVENTION block for the 40-Hz group. This indicates that 40-Hz tACS was especially beneficial for 

people on cardiovascular treatment (see the Supplementary Material). Due to the small sample size, we can 

only speculate but still want to emphasize the influence of medication on tACS findings. 

The model presented in our Results section shows a significant difference between groups. Although 

alternative versions of the model (see the Supplementary Material) indicate that this significance is only due 
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to the high interindividual variance, we still want to discuss this point as other tACS studies comparing 

young and old participants also found opposing effects of stimulation between age groups. In one study 

(Rufener et al., 2016), stimulating the auditory cortex with 40-Hz tACS to improve performance-diminished 

task accuracy in young adults, whereas older adults benefited from the stimulation. No behavioral 

differences were found in the 6-Hz condition between both age groups. Here, 40-Hz tACS was applied to the 

bilateral auditory cortex to counteract age-dependent changes of gamma oscillations relevant for 

processing temporal features of spoken language. They argue that in young adults, gamma oscillations are 

optimal and that introducing more energy via tACS perturbs the balance, leading to the observed 

inaccuracy. Another study reports a positive effect of IAF tACS on general motor skills and sequence-specific 

skill consolidation in an old target group, while the same stimulation parameters were detrimental for the 

young group (Fresnoza et al., 2020). The researchers argue that this opposing effect might be due to the 

age-related difference in the electrical field of older adults' brains which is in general not as conductive as a 

younger brain. As a consequence, only a comparably low stimulation intensity reaches the relevant brain 

tissue that—as known from studies stimulating with direct current—shows inhibitory effects while high 

intensities act excitatory (Moliadze et al., 2012; Batsikadze et al., 2013). We observed a similar behavior in 

our control groups (SHAM and 5 Hz), which supports the notion that stimulation with 5 Hz on the visual 

cortex shows no effect and works as a control frequency. The opposing behavior of the 40-Hz-stimulated 

group might be due to age-dependent changes in the brain, possibly due to inhibitory effects of the 

stimulation like Fresnoza and colleagues (2020) argue or because of changes or disturbances of internal 

gamma (or other) oscillations like in Rufener et al. (2016)—preventing CFC and the down-modulation of the 

alpha amplitude via 40-Hz tACS and distracting behavioral optimization processes otherwise observed in 

the control groups. 

In general, most studies stimulating older adults with a visible effect of stimulation-applied intensities of 1.5 

mA or higher (Rufener et al., 2016; Borghini et al., 2018; Reinhart and Nguyen, 2019; Fresnoza et al., 

2020; Benussi et al., 2021; Kim et al., 2021; Draaisma et al., 2022). Therefore, we conclude that, next to the 

heterogeneity of our target group and high variance of our data, low intensity and frequency mismatch 

might be possible reasons for our stimulation to show no effect on the level of alpha power, which 

increased from PRE to POST but irrespective of group. 

Our tACS montage has been shown to successfully modify alpha power (Kasten et al., 2016; Stecher et al., 

2017) or behavior (Löffler et al., 2018) at the visual cortex. The conventional tACS electrodes used in these 

studies covered the areas targeted by the stimulation and do not allow EEG recordings; therefore, parietal 

EEG electrodes were used to estimate occipital alpha power. These were positioned on the spots where the 

simulation shows maximal field strength. A more focal stimulation with high-definition tACS may be more 

beneficial for entraining alpha through gamma stimulation—as shown by Helfrich et al. (2014a). 
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Due to the high technical and organizational expenditure source localization and individual MRI scans were 

not included in this study. These methods allow the stimulation setup to be adapted to the individual 

characteristics of each participant. Due to the heterogeneity of the older population, we strongly encourage 

further tACS research addressing older adults to use individual stimulation setups. 

Finally, we can also not exclude the possibility that our EEG analysis masked potential findings. We 

instructed participants to keep their eyes open during the recordings of the rest EEG but had no possibility 

of visually checking if participants followed this instruction. Because alpha power changes fundamentally in 

an eyes-closed or eyes-open condition (Barry and de Blasio, 2017), this is a limitation of the study. Due to 

eye blinks and other muscular artifacts, data chunks needed to be removed that might have contained 

relevant information. 

Due to difficulties in recruiting participants, we included (as already discussed) participants on medication 

(which is, in general, also an exclusion criterion in tACS studies) as well as three participants with visual 

impairment in one eye. Reaction times, amount of errors, and alpha power values were in line with the 

non-impaired participants. Still, visual impairment (especially monocular vision) may affect vigilance. 

Monocular vision leads to reduced sensory input, which may lead to increased cognitive load (Casson and 

Racette, 2000). Furthermore, the field of view is limited, and binocular summation for stereoscopic vision is 

not possible (Cattaneo et al., 2008). Research has shown that people with visual impairment use 

compensatory strategies on a behavioral and a neural level (Steeves et al., 2008; Polat et al., 2012). As we 

used a stimulus positioned centrally in the visual field and tested change of performances on an individual 

basis, we justified integrating these participants into the overall analysis. Nevertheless, one has to keep in 

mind that visual impairment might be another influential factor. 

4.4 Outlook 

Recent research has reported on the success of tACS being a promising tool in therapeutic and neuro-

enhancement contexts with great potential, especially for older adults (Reinhart and Nguyen, 2019). 

Our study suggests that in tACS experiments addressing older adults more factors need to be controlled or 

participants be measured. It also indicates that many factors, for example, medication, cognitive fitness, 

education, and digital media, use should be kept in mind. The combination of medication and tACS for 

treatment success could be beneficial and should be further researched. Paradigms working in young adults 

should be adjusted and tested in multiple configurations. Higher intensities might be especially profitable. 

Where possible, individual anatomical and neurophysiological properties should be considered and 

stimulation frequency mismatch reduced. The altered mechanisms of CFC in aging should be investigated as 

well. 
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In general, we recommend considering age as an important factor and investigating middle-aged cohorts: 

More studies comparing different age groups are needed to utilize this promising technique for everyday 

use. 

5 Conclusion 

In this study, we tried to repeat a successful paradigm and tACS setup with a target group aged 65 years and 

older. We succeeded in inducing a vigilance decrement (rising reaction times with time on task and higher 

POST alpha power) but could not detect any effect of the intervention with 40-Hz tACS. We conclude that it 

is not appropriate to simply transfer a successful tACS protocol to an older target group without adjusting 

stimulation parameters. We observed high variations in all data obtained (reaction times, IAF, and alpha 

power) that could have masked any effect of intervention. Therefore, we recommend reducing the 

heterogeneity of the target group for future studies. Next to this, we cannot not exclude the possibility, that 

older adults differ in their neuro-anatomical characteristics and functioning from a young target group and 

that our protocol might not be useful for them. Reasons could be the different anatomical and 

neurophysiological properties of an aged brain, cognitive compensatory mechanisms and the usage of 

anterior and frontal brain regions or different mindsets and motivations. Therefore, it is necessary to 

continue research—in the hope that, in the future, not only our bodies will stay healthy and live long but 

also our minds. 
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Supplementary Material 

1. Supplementary Tables 

1.1 Reaction times analysis:  

1.1.1 LMM: 5 Hz Base 

Supplementary Table 1. 5 Hz as base-group. LMM results for reaction times (n = 45, observations = 8413): β presents the regression 
coefficients, SE β the standard error of β. β0 represents the initial reaction time and β6 the increase in reaction time over time of the 
5 Hzbase-group (bold font). Their p-values, indexed with a °, show a significant difference compared to zero. All other coefficients are 
tested against β0 and β6. Intercepts are given in ms, slopes in ms/min. Model parameters are: R² marginal = 0.056, R² conditional = 
0.470 and AIC -9055.448 

  β SE beta t-value p-value   

Intercepts:         

  

β0 5 Hzbase 511.7 28.0 18.29 0.000  < 0.001° 

β1 SHAMbase  58.2 40.3 1.45 0.149  > 0.05 

β2 40Hzbase 65.4 38.9 1.68 0.093  > 0.05 

β3 5 Hzinter 39.5 11.6 3.40 0.001  < 0.01 

β4 SHAMinter 125.8 40.2 3.13 0.002  < 0.01 

β5 40Hzinter 95.8 38.9 2.46 0.014  < 0.05 

 

   

   

Slopes:      

 

 

β6 time x 5 Hzbase 1.662 0.679 2.44 0.015  < 0.05° 

β7  time x SHAMbase 1.746 0.974 1.79 0.073  > 0.05 

β8 time x 40Hzbase 0.420 0.941 0.45 0.654  > 0.05 

β9 time x 5 Hzinter -0.702 0.683 -1.03 0.303  > 0.05 

β10 time x SHAMinter -0.678 0.968 -0.70 0.483  > 0.05 

β11 time x 40Hzinter 0.936 0.937 1.00 0.317  > 0.05 
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1.1.2 LMM: 40 Hz Base 

Supplementary Table 2. 40 Hz as base-group. LMM results for reaction times (n = 45, observations = 8413): β presents the 
regression coefficients, SE β the standard error of β. β0 represents the initial reaction time and β6 the increase in reaction time over 
time of the 40 Hzbase-group (bold font). Their p-values, indexed with a °, show a significant difference compared to zero. All other 
coefficients are tested against β0 and β6. Intercepts are given in ms, slopes in ms/min. Model parameters are: R² marginal = 0.056, 
R² conditional = 0.470 and AIC -9055.448 

  β SE beta t-value p-value   

Intercepts:         

  

β0 40 Hzbase 577.1 27.0 21.34 0.000  < 0.001° 

β1 5 Hzbase  -65.4 38.9 -1.68 0.093  > 0.05 

β2 SHAMbase -7.3 39.6 -0.18 0.855  > 0.05 

β3 40 Hzinter 30.4 11.1 2.73 0.006  < 0.01 

β4 5 Hzinter -26.0 38.8 -0.67 0.504  > 0.05 

β5 SHAMinter 60.4 39.5 1.53 0.127  > 0.05 

 

   

   

Slopes:      

 

 

β6 time x 40 Hzbase 2.082 0.652 3.19 0.001  < 0.01° 

β7  time x 5 Hzbase -0.420 0.941 -0.45 0.654  > 0.05 

β8 time x SHAMbase 1.320 0.955 1.38 0.166  > 0.05 

β9 time x 40 Hzinter 0.516 0.655 0.79 0.432  > 0.05 

β10 time x 5 Hzinter -1.128 0.932 -1.21 0.227  > 0.05 

β11 time x SHAMinter -1.104 0.949 -1.16 0.246  > 0.05 
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1.1.3 LMM: Factor medication 

Supplementary Table 3. LMM results for reaction times (n = 45, observations = 8413) with cardiovascular medication (yes/no) as the 
only factor: β presents the regression coefficients, SE β the standard error of β. β0 represents the initial reaction time and β2 the 
increase in reaction time over time for the healthy, i.e. participants without medication (bold font). Their p-values, indexed with a °, 
show a significant difference compared to zero. The other coefficients are tested against β0 and β2. Intercepts are given in ms, 
slopes in ms/min. Model parameters are: R² marginal = 0.021, R² conditional = 0.467 and AIC -9076.73 

 
  β SE beta t-value p-value   

Intercepts:         

  

β0 healthy 586.4 24.4 24.04 0.000°  < 0.001° 

β1 medication  -18.4 32.7 -0.56 0.576  > 0.05 

 

   

   

Slopes:      

 

 

β2 time x healthy 2.796 0.476 5.87 0.000°  < 0.001° 

β3  time x medication -1.584 0.638 -2.48 0.013  < 0.05 
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Supplementary Table 4. LMM results for reaction times (n = 45, observations = 8413) with cardiovascular medication (yes/no), 
group, and their interaction over time as factors: β presents the regression coefficients, SE β the standard error of β. β0 represents 
the initial reaction time and β6 the increase in reaction time over time of the SHAMbase-group without medication (bold font). Their 
p-values, indexed with a °, show a significant difference compared to zero. All other coefficients are tested against β0 and β6. 
Intercepts are given in ms, slopes in ms/min. Model parameters are: R² marginal = 0.152, R² conditional = 0.462 and AIC -8959.546  

  β SE beta t-value p-value   

Intercepts:         

  

β0 SHAMbase 495.0 41.7 11.86 0.000  < 0.001° 

β1 5Hzbase  41.6 55.2 0.75 0.451  > 0.05 

β2 40Hzbase 122.8 589.8 2.08 0.037  < 0.05 

β3 SHAMinter 103.3 18.1 5.72 0.000  < 0.001 

β4 5Hzinter 103.2 55.1 1.87 0.612  > 0.05 

β5 40Hzinter 181.4 58.9 3.08 0.002  < 0.01 

β6 SHAMbase + medication 130.2 55.1 2.36 0.229  > 0.05 

β7 5Hzbase + medication -183.5 76.5 -2.40 0.016  < 0.05 

β8 40Hzbase + medication -195.4 76.3 -2.56 0.011  < 0.05 

β9 SHAMinter + medication -61.7 23.8 -2.59 0.010  < 0.05 

β10 5Hzinter + medication -230.9 76.3 -3.03 0.003  < 0.01 

β11 40Hzinter + medication -240.5 76.2 -3.16 0.002  < 0.01 

 

   

   

Slopes:      

 

 

β12 time x SHAMbase 3.624 0.993 3.65 0.000  < 0.001° 

β13  time x 5Hzbase -1.05 1.315 -0.80 0.425  > 0.05 

β14 time x 40Hzbase 0.264 1.400 0.19 0.850  > 0.05 

β15 time x SHAMinter -2.376 1.059 -2.24 0.025  < 0.05 

β16 time x 5Hzinter -2.28 1.305 -1.75 0.081  > 0.05 

β17 time x 40Hzinter 1.404 1.389 1.01 0.313  > 0.05 

β18 time x SHAMbase x medication -0.354 1.308 -0.27 0.788  > 0.05 

β19  time x 5Hzbase x medication -1.62 1.819 -0.89 0.374  > 0.05 

β20 time x 40Hzbase x medication -2.538 1.808 -1.40 0.161  > 0.05 

β21 time x SHAMinter x medication -0.132 1.399 -0.09 0.926  > 0.05 

β22 time x 5Hzinter x medication -0.486 1.800 -0.27 0.788  > 0.05 

β23 time x 40Hzinter x medication -3.552 1.796 -1.98 0.048  < 0.05 

  

 

 

 



 

Following mistake is in the Supplementary material: 

- p. 100 the last sentence of the caption of Table A7 (“Model 2 is presented in Table A8, model 7 in Table A9 and model 8 in 
Table A10.”) needs to be replaced with: “Model 2 is presented in Table A8 and model 8 in Table A9.” 
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Transcranial alternating current stimulation to reduce the increase in brake 
reaction time in a monotonous simulated driving task 

ABSTRACT 

Non-invasive brain stimulation with 40 Hz alternating current has recently been shown to reduce vigilance 

decrement in a visual task in the laboratory, showing its potential for application in driving contexts to 

enhance driver vigilance states. Electrical brain stimulation is inexpensive, portable, and easy to apply. 

While some studies have investigated stimulation with direct current in driving contexts, this is the first 

study applying stimulation with alternating current. We used the stimulation setup from the laboratory 

study in a monotonous driving task and analyzed the behavior of 49 participants in a car-following task in a 

two-block design. Participants were asked to keep a distance from the leading car at about 20 m and brake 

as fast as possible when the leading car unintentionally reduced speed. We hypothesized that brake 

reaction times and trials with inappropriate behavior (i.e., invalid trials) would increase during the first 

block where no participants were stimulated and that stimulation with 40 Hz in the second block would 

downregulate these increases compared to two control conditions (5 Hz- and sham-stimulation). Analysis 

with linear and generalized additive showed that brake reaction times and the probability of invalid trials 

increased significantly over time but did not show any significant effect of stimulation. Possible reasons like 

too small effect sizes, task difference, and individual brain states are discussed. Although our study could 

not unmask the effect of stimulation, recent technological developments have been reported to increase 

the stimulation effect, which may be needed to apply tACS in closer to real-world contexts. 

KEYWORDS: transcranial alternating current stimulation, monotonous driving task, brain, vigilance, brake 

reaction times, car, driving simulator 

 

I. INTRODUCTION 

This study aimed to investigate the potential of transcranial alternating current stimulation (tACS) for 

application in the context of car driving, here as an intervention in case of vigilance decrement during 

monotonous car rides.  

In a previous study, we demonstrated that transcranial alternating current stimulation at 40 Hz (gamma 

tACS) reduces reaction time increase in a monotonous visual two-alternative-forced-choice task (Löffler et 

al., 2018). Now, we set out to investigate the effect of the same stimulation parameters in an applied 

context: Driving a car. We analyzed brake reaction times in a driving simulator during a monotonous car-
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following scenario. To the best of our knowledge, this is the first study applying tACS to modify behavior in 

an explicit driving context. 

Already for the past two decades, non-invasive transcranial electrical stimulation techniques (tES) have 

been used by neuropsychologists to investigate the functioning of the brain (Beliaeva et al., 2021). Two 

main modalities are distinguished depending on the type of current used for stimulation: Transcranial direct 

current stimulation (tDCS) works by de- or hyperpolarization of cortical brain areas, while tACS is believed 

to entrain brain oscillations. There is strong evidence, that tES leads to a change in cognitive and/or 

behavioral performance (Brunyé et al., 2019; Santarnecchi et al., 2015). Because the equipment needed is 

low cost and mobile, tES is of great interest for practical applications like neuro-enhancement (Antal et al., 

2022) or therapy (Cho et al., 2022; Ganguly et al., 2020; Solomons & Shanmugasundaram, 2019; Strüber & 

Herrmann, 2020). 

Due to an increasing number of computers and automation systems in our daily and work life, several tasks 

that were previously done manually by humans now require the human to monitor or supervise the 

automation systems. Performance of monitoring and supervision tasks can be negatively impacted by a lack 

of active involvement in the task itself. Different effects have been observed, e.g. boredom, fatigue, or 

mind-wandering (Körber et al., 2015; McWilliams & Ward, 2021). Experiments conducted in the 1950s 

showed that time on task vigilance decrements lead to prolonged reaction times and worse signal detection 

rates (Buck, 1966; Mackworth, 1948) and correlate with brain functioning (Oken et al., 2006; Pattyn et al., 

2008). Therefore, it is an important factor in the design of such automation systems to increase the human’s 

ability to stay engaged and increase the vigilance or sustained attention (Oken et al., 2006). As vigilance 

plays a viable role in everyday life and work contexts, a lot of research focuses on enhancement strategies 

(Al-Shargie et al., 2019), including tES techniques.  

Vigilance decrement is a key safety concern when driving. Prolonged monotonous driving elevates the risk 

of driving errors and accidents (Klauer et al., 2006). Although partially automated vehicle technology 

provides safety benefits to the driver, recent research shows that it introduces new concerns about driver 

attention with vigilance decrement being more severe (Greenlee et al., 2018; Körber et al., 2015; 

McWilliams & Ward, 2021). Therefore, maintaining vigilance is important for accident prevention and a lot 

of effort has been made to monitor drivers’ states (Albadawi et al., 2022; Tamanani et al., 2021). Prolonged 

brake reaction times (BRT) are a consequence of vigilance decrement and a critical component in safe 

driving (Greenlee et al., 2018). As Warshawsky-Livne & Shinar (2002) state: “Impact on Industry: At 90 

km/h, a car travels 0.25 m in 0.01 s. Consequently, even such small effects multiplied by millions of vehicle 

kilometers can significantly contribute to save lives and damages.”  

The effect of tDCS on driving performance has been investigated in a few studies with contrary results. Beeli 

et al. (2008) tested the influence of tDCS over the left or right dorsolateral prefrontal cortex (DLPFC) and 
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found that excitation of the DLPFC by anodal tDCS evoked less risky driving behavior as compared to 

cathodal stimulation. Sakai et al. (2014) demonstrated that up-regulation of the right DLPFC improved both 

car-following and lane-keeping performance when participants were asked to maintain an inter-vehicle 

distance from a leading car traveling a winding road at a constant speed. In 2018, Li & Chung (2018) 

presented an EEG-Gyroscope-tDCS Brain Machine Interface System for early management of driver 

drowsiness. The wearable and wireless system measures EEG and gyroscope-based head movement 

simultaneously allows to detect early signs of driver drowsiness. tDCS applied on the non-hairy forehead 

and simultaneous EEG are used in a closed-loop system to enhance the driver’s state. In their pilot study, 

they showed that 10 minutes of closed-loop tDCS helped to prolong the period of wakefulness in ten 

participants under the condition of slight drowsiness, however, it was not possible to effectively enhance 

the driver´s alertness in every single tDCS session. Brunnauer et al. (2018) investigated the effect of tDCS on 

driving skills via standardized computerized psychomotor tests and stimulated the DLPFC as well. They did 

not find significant improvements and concluded, that left prefrontal tDCS may not alter driving skills 

affording more automated action patterns but -as shown in previous studies- may have an influence on 

driving behavior requiring executive control processes. The same holds true for a study by Ward et al. 

(2017) who also stimulated the left DLPFC and found no evidence that stimulation changed driving behavior 

during distracting scenarios. Facchin et al. (2023) report on successful focal high-definition tDCS on the right 

frontal eye field to improve reaction time to the braking lights of a preceding car and performance in a 

second distracting task. Their focus was driver distraction, not vigilance, and they collected 216 trials in the 

25 minutes long experimental procedure. They found a significant difference between sham and focal high-

definition tDCS and between conventional and focal high-definition tDCS, but not between sham and 

conventional tDCS.  

Despite successful improvements in performance or behavior, tDCS has been under critique because the 

enhancement of cognitive functions comes at the expense of other cognitive functions being impaired 

(Colzato et al., 2017; Iuculano & Cohen Kadosh, 2013) or showing opposing effects depending on the 

individual state (Sarkar et al., 2014). An alternative method to tDCS is tACS. During tACS alternating current 

is used which allows direct and subtle interference with the ongoing oscillatory brain activity. Through 

alternation of the direction of the current, the membrane potential is not affected and therefore tACS is 

probably not so well suited to de- or hyperpolarize the cortex over a long period as tDCS (Antal & 

Herrmann, 2016). Applied in the conventional EEG frequency range, tACS is believed to target and entrain 

specific frequencies thereby modulating brain oscillations (Tavakoli & Yun, 2017) with no serious adverse 

events and can be applied safely for duration up to 30 minutes in healthy adults (Matsumoto & Ugawa, 

2017). Although this might be a shorter duration than many car rides, it should provide sufficient time to 

get to a resting place. tACS has been shown to induce behavioral and neurophysiological effects during 

(online) and outlasting stimulation (offline) (Kasten et al., 2016). tACS has been widely used to enhance 
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cognitive performance (for a review, see Klink et al., 2020). Considering its effect on vigilance, results are 

mixed: While Rostami et al. (2021) successfully improved sustained attention by 6 Hz tACS on the mPFC, van 

Schouwenburg et al. (2021) found no effect of stimulation when stimulating the same brain region with 4 

Hz. Currently, a lot of applied tACS research concentrates on its application in treating psychological 

diseases, especially relating to aging (Kim et al., 2021; Strüber & Herrmann, 2020). Hsu et al. (2019, 2017) 

applied theta-tACS on the bilateral PFC to enhance multitasking performance in a simulated environment 

driving game.  

In this study, we want to investigate if the stimulation setup from our previous study (Löffler et al., 2018) 

works beneficial also in an applied context. In 2018, we were able to reduce the vigilance decrement during 

a monotonous reaction time task in the laboratory setup by tACS. After 30 minutes of stimulation - 

participants of the stimulation group showed significantly reduced reaction time increment than a sham 

control group. After 1-hour experimental session, their reaction time was 19 ms faster on average. This 

would equal to a travelled distance of 0.5 m at a speed of 90 km/h. We combined two insights when we 

conceptualized our study: 1. Vigilance decrement and rising reaction times have been associated with a rise 

in posterior alpha power (Clayton et al., 2015; Klimesch, 1999; Klimesch et al., 1996; Molina et al., 2013). 2. 

Recent research has shown that gamma stimulation with 40 Hz can down-regulate alpha power (Helfrich et 

al., 2016; Helfrich et al., 2014). A possible explanation for this effect comes from a mechanism called cross-

frequency coupling (CFC). During CFC brain oscillations of specific slower and faster frequencies are nested 

in and modify each other (Jensen & Colgin, 2007).  

In the context of car driving, rising alpha power with time on task has also been linked to vigilance 

decrement. In monotonous scenarios, this is explained by passive fatigue and the decrease in the level of 

alertness and attention (Gahragozlou et al., 2015; Schier, 2000) and mind-wandering (Körber et al., 2015). 

Rising posterior alpha power has been linked to increased driving errors and driving lane variability, but not 

crosswind compensation, stressing that alpha power reflects boredom or attentional withdrawal rather 

than the decline of processing abilities (Wascher et al., 2016). During a monotonous 3-hour long drive, a 

linear degradation of drivers´ subjective state, long average reaction times, and parietal alpha with 

increasing time on task was observed (Schmidt et al., 2007).  

Our vision is the use of tACS as a car assistive system that helps to maintain the vigilance level of drivers or 

make them more alert, especially for user groups like older adults and drivers with limitations due to 

neurological diseases, e.g. Parkinson’s disease. Due to the increase in car automatization, we see a large 

potential for tACS applications in the context of car driving. Therefore, we transferred the setup and 

experimental design of the study by Löffler et al. (2018) to the context of car-driving extending it with an 

additional 5 Hz control group to ensure that any enhancing effects are frequency-specific (Davis et al., 

2013). We designed a scenario where participants are asked to keep a constant distance from a preceding 
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car on a rural road with no other distractions. Every 13 – 22 seconds the preceding car unexpectedly 

reduces its speed indicated by its flashing brake lights. Participants were asked to react as fast as possible by 

braking. The experiment consisted of two blocks of 30 minutes with 100 brake events in each block. The 

first block served as BASELINE and none of the participants were stimulated. In the second block, referred 

to as INTERVENTION, one-third of the participants were stimulated with 40 Hz, another third with 5 Hz 

control frequency and one-third received only sham stimulation. We hypothesized, that participants would 

slow down with time on task due to the monotonous nature of the task (vigilance decrement) and exhibit 

longer brake reaction times (BRT). The 40 Hz stimulation group was hypothesized to show a less steep 

increase in BRT than the two control groups (5 Hz stimulation and sham).  

II. MATERIALS AND METHODS 

The experimental protocol was approved by medical ethics board (Medizinische Ethikkommission) of the 

University of Oldenburg. Written informed consent was acquired from all participants before the 

experiment in line with the Declaration of Helsinki. Participants received monetary compensation for taking 

part in the study. 

a. Participants 

54 participants completed the experiment, of which 49 entered analysis (5 had to be deleted, reasons see 

below). All participants were university students aged between 20 and 30 years and were obliged to have at 

least 2 years of active driving experience. None of them reported the presence or history of neurological or 

psychiatric disorders.  

In a single-blind design, participants were randomly assigned to one of the three experimental groups 

receiving 40 Hz-, 5 Hz- or SHAM-stimulation. Females and males were balanced between the groups to 

avoid gender effects. All participants were believed to receive tACS-stimulation and were debriefed after 

the experiment.  

Due to battery issues with the stimulation device and an operator error, two participants had to be excluded 

from the data analysis. For statistical analysis, three more participants needed to be excluded because they 

did not follow experimental instructions. One participant pressed the gas and brake pedal simultaneously, 

one mainly used the brake pedal, and another regulated the distance with just the gas pedal, making 

computation of brake reaction time impossible. From the remaining 49 participants 17 belonged to the 

SHAM- (8 female, age = 23.3 years SD 2.22), 16 to the 5 Hz- (9 female, age = 22.8 years SD 2.33), and 16 to 

the 40 Hz-group (9 female, age = 23.9 years SD 3.15). 9 of these participants had previous experience with 

tACS, which was longer than 2 months ago (SHAM: 4, 5 Hz: 2, 40 Hz: 3). 
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An a priori power analysis based on the findings of Löffler et al. (2018) suggests a sufficient power (1- β = 

0.85) at a total sample size of 42 (14 per group). 

b. Driving simulator  

The experiment took place in a full-scale fixed-based right-hand traffic driving simulator at OFFIS - Institute 

for Information Technology (Oldenburg, Germany). The driving simulator consisted of an original car cabin 

used as a mock-up with an automatic transmission. Three projectors offered a maximum field of view of 

150 degrees. The participants controlled the mock-up car with pedals (gas and brake) and a steering wheel. 

The driving scenario was simulated using the driving simulator software SILAB (Version 5, Krueger et al., 

2005). Behavioral data, such as velocity, steering wheel angle, relative lane position, and pressure on the 

gas or brake pedal were recorded in SILAB, as well as environmental data, which was measured by external 

sensors such as light onset time and distance to the leading car. Data was recorded at a rate of 120 Hz. The 

room was dimmed, and the instructor sat in the back of the driving simulator. 

c. Study design 

The experiment consisted of two days: A training and an experimental day (Fig. 1a). On the training day, 

participants were informed about the procedure, asked to fill out a questionnaire on medication and tACS 

experience, and completed one 30 minutes long experimental block in the driving simulator. The 

experimental day was at least one day after the training day. After a short status update on sleep quality 

and caffeine consumption, the tACS device was attached to the participants, and impedances and comfort 

with the stimulation were checked. Participants performed a test drive of approx. 3 minutes and were 

reminded of the task. During the experiment communication stopped. The experiment consisted of two 

blocks of 30 minutes. The first block served as a baseline block (referred to as BASELINE-block) in which 

none of the participants was stimulated. In the second block (referred to as INTERVENTION-block) 

participants were stimulated according to their assigned group (SHAM, 5 Hz- or 40 Hz-tACS). Block order 

was not randomized. During the approximately two minutes long break between the blocks, the stimulation 

device was switched on and impedance checked again. Participants were offered a glass of water but told 

not to leave the stimulator. After the experiment, participants were asked whether they believed to be 

stimulated or not and were informed about their actual stimulation condition. To evaluate the presence of 

adverse effects (e.g. headache, neck pain, itching, tiredness) and its linkage to stimulation, participants were 

asked to fill out a standardized questionnaire according to Brunoni et al. (2011) with items on a scale of 1 

(none) to 4 (severe or definitely).  

d. Task 

In a monotonous rural landscape with a slightly winding road, participants were asked to keep a distance to 

a leading car moving at a varying speed between 65 and 90 km/h at an optimum of about 20 m. The  
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Fig. 1 

Experimental Design: (a) Procedure of the experiment. At least one day prior to the actual experiment (Day +1), participants trained 
in the driving simulator (Day 1). The actual experiment consisted of two 30 minutes long blocks each containing 100 brake events. 
(b) Driving simulator and scenario. Participants were asked to follow a leading car and keep the distance at 20 m – indicated by a 
green moving bar projected on the road before them (black arrow). At brake events, the leading car spontaneously decelerated, and 
its brake lights turned red. (c) Electrode setup and current simulation using SIMNIBS. A 5 cm x 7 cm electrode was placed on the 
vertex and a smaller 4.5 cm x 4.5 cm electrode was on the visual cortex (Cz and Oz as corresponding positions of the 10-10 EEG 
system). The simulation shows the electric field strength, covering the posterior brain areas. The color bar represents the normal 
vector of the electric field in V/m (reproduced with permission of the authors from Stecher & Herrmann 2018). (d) Brake event. 
Timepoint 0 indicates the turning red of the brake lights of the leading car (brake light onset). The blue line corresponds to force on 
the gas, the red on the brake pedal. Reaction time (RT) indicates the time from brake light onset to release of the gas pedal. The 
brake-movement time (MT) is the time needed to switch from gas to brake pedal. The brake reaction time (BRT) constitutes the sum 
of RT + MT. The yellow window shows the time the brake lights of the leading car are lit. 

optimum distance was marked on the street as a half transparent green moving bar. After specific driven 

meters, the leading car unexpectedly reduced speed and its brake lights turned red (see Fig. 1b). To avoid 

collision, the car reduced speed by approx. 10 km/h for the first 400 ms and then more abruptly by approx. 

8 km/h in the next 100 ms. At such events – referred to as brake events - participants were asked to hit the 

brake pedal as fast as possible and to return to the optimum distance. Brake lights were lit for 
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approximately 2 s, before the leading car began to accelerate again. The gap between brake events varied 

between 13 – 22 s. Except for the leading car, no traffic occurred. To avoid distraction or entertainment, the 

rural scenery only showed small variations.  

e. tACS 

Adhesive electrode paste (ten20®conductive, Weaver and Company, Aurora, CO, USA) was used to fixate 

two rubber electrodes with their center at Cz (7 x 5 cm2) and Oz (4,5 x 4,5 cm2) according to the 10-10 EEG 

system. Stimulation was applied via a battery-driven stimulator (neuroConn DC Stimulator with Remote-In 

function, Neuroconn GmbH, Ilmenau, Germany). For the STIMULATION-block, the tACS-device was remotely 

accessed via a Matlab controlled digital-to-analog-converter (Ni USB 6229, National Instruments, Austin, 

Texas, USA). Stimulation intensity was set to 1 mA and impedance was kept below 10 kOhm. Fig. 1c shows a 

computer simulation of the proposed electric field. For both tACS-groups, the current linearly faded in and 

out for 30 s at the beginning and end of the INTERVENTION-block, respectively. Current in the SHAM-group 

was faded in for 30 s, kept constant at 1 mA (at either 40 or 5 Hz) for 30 s and faded out for 30 s at the 

beginning and end and end of the block. We chose electrode sizes, positions, and stimulation intensity in 

line with other studies that showed effective stimulation of posterior alpha bands (Kasten et al., 2016; 

Löffler et al., 2018; Stecher et al., 2017). The intensity of 1 mA is a widely used stimulation intensity that 

induces neurophysiological and behavioral effects without causing unpleasant sensations (e.g., Klink et al., 

2020). Application of a frequency of 40 Hz with this setup has been shown to reduce reaction time 

increment in a laboratory setting (Löffler et al., 2018).  

f. Data analysis & Statistics 

Data analysis was performed using Matlab (Release 2023a, The MathWorks Inc., Natick, MA, United States). 

Driving behavior (pressure on gas or brake pedal, steering wheel angle, lane keeping variability, distance to 

leading car) was analyzed and visually inspected around brake events and across the experiment.  

For analysis, we differentiated between valid and invalid trials. We considered trials as valid only, if the 

presses on the brake pedal occurred within reasonable reaction times (RT), which we defined as the time 

needed to release the foot from the gas pedal within 100 – 1500 ms. Additionally, we defined a brake-

movement time (MT) – the time needed to switch the foot from gas to brake pedal – of at least 50 ms. The 

brake reaction time (BRT) constitutes the sum of RT + MT (see Fig. 1d). Trials where participants had no 

contact with the gas pedal at brake light onset, did not use the brake pedal, or showed MTs, RTs or BRTs 

longer than 2000 ms were saved as invalid trials. We analyzed RT and MT in separated LMMs but could not 

find any trend that could not be explained by BRT analysis. Same accounts for the classification of 

participants – analog to BRT (see next section g.) - with a MT or RT lower the median as slow. Therefore, we 

only describe mean values for MT and RT in the discussion section.  
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g. Statistics 

For statistical analysis, we used the software R (Version 4.3.1, R Core Team, 2023) and the packages “nlme” 

(Pinheiro et al., 2023), “MuMin” (Bartoń, 2023), and “mgcv” (Wood, 2017).  

In line with our previous study (Löffler et al. 2018) a linear mixed model (LMM) was used for BRT analysis 

and a generalized additive mixed model (GAMM) for analysis of invalid trials. Following our hypothesis, we 

tested the factor group with six levels (SHAMbase, SHAMinter, 5 Hzbase, 5 Hzinter, 40 Hzbase, 40 Hzinter). We added 

participants' identity and their behavior over time as random effects to account for participants being part 

of the respected base and inter-group. To ensure the goodness-of-fit of our model we started with simple 

models without random effects and increased complexity stepwise. We added an auto-correlated 

covariance structure of order 1 per participant and block for the random effects. As further factors we 

tested gender and whether participants experienced the problem of concentration or/and tiredness (true, if 

participants answered on the adverse effects questionnaire with the respective questions with 3 or higher). 

As literature shows that tACS is often more beneficial for a specific subgroup of participants, e.g. high-

baseline (Thompson et al., 2021) or slower performers at baseline receiving greater benefits (Santarnecchi 

et al., 2016), we classified participants with a BRT lower than the median as slow. The loglikelihood-ratio 

was used to compare LMMs, and the Akaike Information Criterion (AIC) to compare GAMMs. A two-sided 

significance level of α = 0.05 was used. 

To check the overall differences in errors between blocks and groups, we used Shapiro-Wilk-Tests and QQ-

Plots to check for normality. We compared the number of errors between blocks with a paired t-test and 

differences between groups with Kruskal-Wallis-tests.  

Further, we inspected general driving behavior along the track over time. We visualized the mean and 

median change in variability for distance to the leading car, steering wheel angle, and variance in lane 

position with sliding windows per participant and group. Through visual inspection around brake events and 

cluster analysis (K-means), we could classify driver types with either relaxed or strong braking actions (brake 

pedal value below or higher than 0.5 – with 1 being the maximum - after 1 s of light onset) and range of 

distance to the leading car (smaller and wider than 10 m). We added the factor driver type with four levels 

(a) 1: “low pressing” & “small range”, b) 2: “low pressing” & “wide range”, c) 3: “high pressing” & “small 

range” and d) 4: “high pressing” & “wide range”) to our mixed models as a further factor. These types are 

similar to the ones identified by Yang et al. (2019) (1: unaggressive – stable, 2: unaggressive – unstable, 3: 

aggressive – stable, 4: aggressive – unstable) except that we have no normal state. As we classified driver 

types post the experiment, the four identified types were not balanced between groups. See Fig. 2 for an 

abstracted overview or SUPPLEMENTARY MATERIAL Fig. 1A for plots including single trials.  
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Fig. 2 

Exemplary plots of behavioral data of valid trials (BASELINE-block) of four participants were used to illustrate the four different 
driver types. Origin of X-Axis (in seconds), marked by a black vertical line, indicates the brake light onset of the leading car. Blue 
marks the pressing of the gas, red the pressing of the brake pedal. Both measures represent the linear way and have a maximum of 
one and refer to the primary Y-axis. Green marks the distance to the leading car (secondary Y-Axis, in meter, with a cut off at 10 m). 
Bold lines indicate the average, shaded areas along the average line represent the corresponding standard deviation. a) Driver type 
1: “unaggressive – stable”, b) Driver type 2: “unaggressive – unstable”, c) Driver type 3: “aggressive – stable””, d) Driver type 4: 
“aggressive - unstable”. 

III. RESULTS 

a. Debriefing 

63 % of the participants in total (n = 49) mentioned problems with concentration or/and tiredness along the 

experiment (n = 31, 59 % SHAM, 69 % 5 Hz, 63 % 40 Hz). 10 % of them link it to being stimulated (n = 5). 14 

% of the participants experienced severe tingling or itching (n = 7, 6 % SHAM, 13 % 5 Hz, 25 % 40 Hz), 100 % 

of them linked it to stimulation.   67 % of participants (n = 33) believed to be stimulated (53 % SHAM, 75 % 

5 Hz, 75 % 40 Hz). 
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b. General behavioral analysis 

No rear-end collisions occurred. 61 % of the trials (n = 5956) were considered valid and entered the LMM. 

5.7 % of trials (n = 219) counted as invalid due to the exclusion criteria for minimal and maximal durations 

of BRTs or RTs as defined in section II.f. In the remaining trials, mostly the brake (93.7 %, n = 3602) and only 

a few times the gas pedal (0.6 %, n = 23) was used to regulate distance. The number of invalid trials was 

approximately equivalent between both blocks (BASELINE: 38.7 % SD 17.57, INTERVENTION: 39.7 % SD 

15.43) and showed no significant difference (t = -0.60175, df = 48, p-value = 0.5502). No significant 

difference in errors could be detected between groups (BASELINE: Kruskal-Wallis chi-squared = 2.4127, df = 

2, p-value = 0.2993; INTERVENTION: Kruskal-Wallis chi-squared = 1.5926, df = 2, p-value = 0.451). 

Average BRT overall participants was approx. 750.0 ms (SD 206.7), MT 280.4 ms (SD 123.6) and RT 469.6 ms 

(SD 139.6). The median BRT was 708.3 ms. 

Block- and group wise moving medians of leading car distance, variance in lateral position or steering wheel 

angle showed no changes over time. Variance of lateral position showed a linear trend (r > 0.3) in 22.4 % of 

the participants, but only in either BASELINE- (SHAM: n = 3, 5 Hz: n = 2, 40 Hz: n = 2) or INTERVENTION-

block (SHAM: n = 2, 5 Hz: n = 0, 40 Hz: n = 2). 

57 % of the participants (n = 28, 29 % SHAM, 69 % 5 Hz, 75 % 40 Hz) mentioned the use of a strategy during 

the experiment. Common strategies were concentrating on a fixation-point (n =7), looking for a pattern (n = 

5), counting (seconds ore brake events, n = 4) and conscious mind-wandering (n = 2).  

c. Analysis of BRT and invalid trials with time on task (LMM and GAMM) 

Stepwise increase in model complexity and valuation of models´ goodness-of-fit showed that the best 

model predicts BRT from time + group with participant over time as random effect and a continuous 

autoregressive covariance structure (corCAR 1) (see SUPPLEMENTARY MATERIAL Table A1 for a comparison 

of different model configurations and Table A2 for the best fitting model): Despite our hypothesis, the 

interaction of the factor time * group did not improve the model. The factors gender, strategy, 

concentration or/and tiredness did not contribute to the model. Adding a classifier characterizing 

participants as slow improves the model’s fit more than adding the factor driver type or a combination of 

both but did not reveal any group effect and showed no effect over time (see SUPPLEMENTARY MATERIAL 

Table A3 for the LMMslow and Table A4 for the LMMdrivertype). To still show the effect of the factor group * 

time, we decided to present the following model, that predicts BRT from the covariate group (SHAMbase, 5 

Hzbase, 40 Hzbase, SHAMinter, 5 Hzinter, 40 Hzinter) and its interaction over time according to the following 

equation 1: 
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rt =   𝛃𝟎 ∗ 𝑺𝑯𝑨𝑴𝒃𝒂𝒔𝒆  +  β1 ∗ 5𝐻𝑧𝑏𝑎𝑠𝑒  +  β2 ∗ 40𝐻𝑧𝑏𝑎𝑠𝑒  +  β3 ∗ 𝑆𝐻𝐴𝑀𝑖𝑛𝑡𝑒𝑟  +  β4 ∗ 5𝐻𝑧𝑖𝑛𝑡𝑒𝑟  + β3

∗ 40𝐻𝑧𝑖𝑛𝑡𝑒𝑟  + 𝛃𝟔 ∗ 𝑺𝑯𝑨𝑴𝒃𝒂𝒔𝒆 ∗ 𝐭𝐢𝐦𝐞 +  β7 ∗ 5𝐻𝑧𝑏𝑎𝑠𝑒 ∗ 𝑡𝑖𝑚𝑒 +  β8 ∗ 40𝐻𝑧𝑏𝑎𝑠𝑒 ∗ 𝑡𝑖𝑚𝑒 
+  β9 ∗ 𝑆𝐻𝐴𝑀𝑖𝑛𝑡𝑒𝑟 ∗ 𝑡𝑖𝑚𝑒 +  β10 ∗ 5𝐻𝑧𝑖𝑛𝑡𝑒𝑟 ∗ 𝑡𝑖𝑚𝑒     + β11 ∗ 40𝐻𝑧𝑖𝑛𝑡𝑒𝑟

∗ 𝑡𝑖𝑚𝑒                                                                                             
(1) 

β-coefficients represent fixed effects and are listed in Table 1. β0 describes the intercept, β6 describes the 

slope (i.e. increase of BRT over time) of the SHAMbase-group. The p-value of β0 and β6 indicate the difference 

in comparison to zero (bold font). The coefficients β1 - β5 describe the group-specific difference of intercepts 

compared to SHAMbase-group (β0). To calculate the predictor for the specific group, coefficients need to be 

added up to the ones of the SHAMbase-group. For example (β0 + β1) add up to the intercept of the 5Hzbase-

group, (β0 + β2) to the intercept of the 40Hzbase, and so on. The Same accounts for the coefficients of the 

slopes (β6 - β11). The final model including fixed and random effects explains approx. 60 % of the observed 

variance (R2 conditional = 0.587). 

Table 1 

LMM results for BRT (n = 49, observations = 5956, R² marginal = 0.0380, R² conditional = 0.590): β presents the regression 
coefficients, SE β the standard error of β. β0 represents the initial BRT and β6 the increase in BRT of the SHAMbase-group over time 
(bold font). Their p-values, indexed with a °, show a significant difference compared to zero. All other coefficients of intercepts are 
tested against β0, slopes against β6. Intercepts are given in ms, slope β6 in ms/min. 

  β SE beta t-value p-value   

Intercepts:         

 

 

β0 SHAMbase 
673.4 37.18 18.12 0.0000 

 
< 0.001°* 

β1 5Hzbase  
71.9 53.47 1.34 0.1790 

 
> 0.05 

β2 40Hzbase 
8.1 53.36 0.15 0.8792 

 
> 0.05 

β3 SHAMinter 
59.7 12.50 4.78 0.0000 

 
< 0.001* 

β4 5Hzinter 
100.2 53.50 1.87 0.0611 

 
> 0.05 

β5 40Hzinter 
35.8 53.34 0.67 0.5022 

 
> 0.05 

Slopes:        

β6 time * SHAMbase 2.490 0.6504 3.83 0.0001 
 

< 0.001°* 

β7 time * 5Hzbase 0.738 0.9468 0.78 0.4366 
 

> 0.05 

β8 time * 40Hzbase -0.756 0.9258 -0.81 0.4159 
 

> 0.05 

β9 time * SHAMinter -1.152 0.7224 -1.60 0.1105 
 

> 0.05 

β10 time * 5Hzinter -0.660 0.9522 -0.69 0.4879 
 

> 0.05 

β11 time * 40 Hzinter -1.296 0.9258 -1.40 0.1610 
 

> 0.05 
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The model shows a significant effect of time for the SHAMbase-group (β6 time p < 0.001): BRT are predicted 

to increase by 2.5 ms/min. The coefficient of the slope for the 5 Hzbase-group is predicted to be slightly 

higher (β7), while the slopes for all other groups (β8 – β11) are predicted to be less, but none of these 

differences is significant. The only significant coefficient is the intercept of the SHAMinter-group: Participants 

belonging to this group are predicted to start the INTERVENTION-time with a 59.7 ms (β3) higher initial BRT 

(β0 + β3 = 733.4 ms). The 5 Hzbase-group has a higher (β0 + β1 = 774.0 ms) and 40 Hzbase-group a slightly higher 

(β0 + β2 = 709.5 ms) initial BRT, but they do not significantly differ from SHAMbase. Same accounts for the 

difference between the intercepts of the 5 Hzinter- and 40 Hzinter-group and the SHAMbase-group. As the 

model tests coefficients against SHAMbase, we also calculated version of the model with 5 Hz and 40 Hz base 

groups (see SUPPLEMENTARY MATERIAL Table A5 and Table A6). We can confirm that after the BASELINE-

block all groups start with a significantly higher initial BRT into the INTERVENTION-Block compared to their 

respected base group: The 5 Hz base group model shows a significant difference in intercepts between 5 

Hzbase and 5 Hzinter, as well as the 40 Hz base model between 40 Hzbase and 40 Hzinter. The break between the 

blocks leads to a recovery of BRT (SHAM: Δ 15.0 ms, 5 Hz: Δ 68.5 ms, 40 Hz: Δ 24.3 ms). The 5 Hz-group has 

the steepest slope in BASELINE and the best recovery time between the blocks. See Fig. 3 for an illustration. 

 
Fig. 3 

LMM results for BRT (n = 49, observations = 5956, R² marginal = 0.040, R² conditional = 0.576): Visualization of the regression 
functions representing BRT (in ms) against time (in minutes) for the SHAM- (gray solid line), 5 Hz- (grey pointed line) and 40 Hz- 
(black dashed line) according to block (BASELINE or INTERVENTION). Regression lines represent the six groups (BASELINE: SHAMbase, 
5Hzbase, 40Hzbase; INTERVENTION: SHAMinter, 5Hzinter, 40Hzinter) used for statistical analysis. The two SHAM-, 5 Hz and 40 Hz-groups 
consisted of the same participants. β-coefficients (from Table 1) indicate how intercepts (β0 – β5) -marked with an I- and slopes (β6 – 
β11) were calculated. β0 is the intercept and β6 the increase over time of the SHAM-group. Their significance is compared to zero.  β0 

and β6 are significantly different from zero with p < 0.001. The intercept of the SHAMinter-group (ISHAM = β0 + β3) is significantly 
different from SHAMbase (ISHAM = β0, p < 0.001).  

 

The change of probability over time for invalid trials was tested with a GAMM (logit model). As with the 

LMM, the factors gender, strategy, concentration or/and tiredness did not contribute to the GAMM. The 

best-fitting model predicted the probability from time only and only participant ID was used as a random 
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effect (AIC = 43204.12, see SUPLLEMENTARY MATERIAL Table A7 for model comparison and Table A8 for 

best fitting model). To nevertheless show the influence of the factor group, we show the model following 

equation 2: For odd ratio (OR) and coefficients of the GAMM, see Table 2. When testing different model 

configuration, the factor driver type performed better than group (AIC = 43206.14). Here, driver type 2 and 

4 are predicted to have a highly significant approx. 315 % higher probability for invalid trials compared to 

driver type 1 (see SUPPLEMENTARY MATERIAL Table A9). 

probability for invalid trial
=   exp (β0 ∗ 𝑺𝑯𝑨𝑴𝒃𝒂𝒔𝒆  + β1 ∗ 5𝐻𝑧𝑏𝑎𝑠𝑒  + β2 ∗ 40𝐻𝑧𝑏𝑎𝑠𝑒  + β3 ∗ 𝑆𝐻𝐴𝑀𝑖𝑛𝑡𝑒𝑟  +  β4

∗ 5𝐻𝑧𝑖𝑛𝑡𝑒𝑟  + β5 ∗ 40𝐻𝑧𝑖𝑛𝑡𝑒𝑟  + 𝛃𝟔 ∗ 𝐭𝐢𝐦𝐞)   
(2) 

Table 2 

GAMM (AIC 43210.85) for the probability for invalid trials (n = 49, observations = 9800, R² marginal = 0.041, R² conditional = 0.372): 
OR represents the odd ratio calculated by exponentiating the regression coefficients β, SE β is the standard error of β. β0 represents 
the initial probability for an invalid trial of the SHAMbase-group and β6 the increase in probability for invalid trials over time (bold 
font). Their p-values, indexed with a °, show a significant difference compared to zero. All other coefficients are tested against β0. 
Intercepts indicate the 6 groups, the slope β6 represents the probability of an invalid trial/min. β coefficients and their standard error 
are on a logit scale. 

   OR β SE beta t-value p-value   

Intercepts: 

 

        

 

 

β0 SHAMbase 
 

0.383 -0.960 0.1896 -5.1 0.000  < 0.001°* 

β1 5Hzbase  1.566 0.448 0.2651 1.69 0.091  > 0.05 

β2 40Hzbase 1.033 0.032 0.2655 0.12 0.903  > 0.05 

β3 SHAMinter 
 

1.033 0.032 0.0784 0.41 0.680  > 0.05 

β4 5Hzinter 1.623 0.484 0.2650 1.83 0.068  > 0.05 

β5 40Hzinter 1.107 0.101 0.2653 0.38 0.703  > 0.05 
        

Slope:  

 

      

β6 time 1.0181 0.0179 0.00253 7.08 0.000  < 0.001°* 
 

The probability of invalid trials significantly rises by 1.81 % with time on task (OR = 1.0181, p < 0.001), but 

irrespective of BASELINE- or INTERVENTION-block. The initial probability for an invalid trial in the SHAMbase-

group is 38 % (OR = 0.383), for the 5 Hzbase-group 60 % (OR = exp(β0 + β1) = 0.600) and for the 40 Hzbase-

group 40 % (OR = exp(β0 + β2) = 0.400). At the beginning of the INTERVENTION-block the probability is 

predicted to be higher compared to the initial OR of the corresponding base-group in the BASELINE-block for 

all groups, but none of these differences is significant (p > 0.05, SHAM:3.2, 5 Hz:  5.7 %, 40 Hz: 7.4 %). In 

general, there is only a slight difference between members of the SHAM- and 40 Hz-group, while members 
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of the 5 Hz-group show a tendency for more invalid trials in both BASELINE- (57 %, p = 0.091) and 

INTERVENTION-block (62 %, p = 0.068) compared to SHAMbase. 

In summary, the LMM and GAMM show, that BRT and the probability of invalid trials rise with time on task, 

but despite our hypothesis, they show no difference between groups as expected for the INTERVENTION-

block only.  

For BRT-analysis (LMM), participants categorized as slow (i.e. on average slower than the median BRT) or 

having a calm driving style (driver type 1 and 2), for the invalid-trials (GAMM) a variable distance to the 

leading car (driver type 2 and 4), explained variance (higher R² marginal: LMMslow = 0.396, LMMdriver type = 

0.209, GAMMdriver type = 0.146) that otherwise would have been explained by the random effects. Neither 

the factor slow nor driver type showed any effect on time on task and did not unmask stimulation effects 

(see SUPPLEMENTARY MATERIAL Table A5 and Table A6). 

IV. DISCUSSION 

This study investigated the influence of 40 Hz tACS on brake reaction times (BRT) in a monotonous, rural 

car-following scenario. The hypothesis was, that BRT will increase significantly less with time on task in the 

gamma tACS stimulated group during the INTERVENTION-block compared to two control groups (5 Hz- and 

sham stimulated). Improving vigilance during monotonous rides is relevant to safety - especially nowadays, 

as the increasing automation of cars turns the human driver into a supervisor for a large part of the journey 

(Klauer et al., 2006; McWilliams & Ward, 2021). This study is -to the best of our knowledge- the first study 

to apply tACS in a driving simulator investigating behavioral improvements relevant to driving.  

Analysis of BRT and invalid trials shows that BRT and the probability for invalid trials rise significantly over 

time on task, but that this rise is stable during the BASELINE and INTERVENTION-block irrespective of group. 

Therefore, this study is in line with studies showing vigilance decrement by prolonging BRT (Cisler et al., 

2019; Schrauf et al., 2011; Seet et al., 2023) and increasing error rates over time (Greenlee et al., 2018, 

2022), but fails in showing any effects of stimulation. In the next paragraphs, we will discuss potential 

reasons. 

a. Difference between the laboratory and driving simulator task 

Löffler et al. (2018) successfully downregulated the increase in reaction times with 40 Hz tACS on posterior 

brain regions, but in a laboratory where participants were only confronted with a grey screen and either a 

red or blue stimuli and asked to press a button, accordingly. We transferred their visual task and tACS setup 

to a similar scenario but in the applied context of driving a car. Although research has shown that increased 

posterior alpha power is an indicator of vigilance decrement while driving a car (Li & Chung, 2018; Wascher 

et al., 2016), its down-regulation may not be relevant for improving behavior and counteracting BRT 
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slowing. In fact, Li & Chung (2018) used posterior electrodes to detect an increase in alpha power but 

stimulated the frontal cortex to counteract driver drowsiness by tDCS. While Sakai et al. (2014) and Beeli et 

al. (2008) successfully enhanced behavior at the DLPFC with tDCS in a driving simulator scenario, Brunnauer 

et al. (2018) could not show positive effects of a similar stimulation during standardized computerized 

psychomotor tests. This might indicate that stimulation setups cannot be simply transferred from applied to 

laboratory setups because they are task sensitive. As also discussed by Brunnauer et al. (2018), driving 

processes can be grouped into three interacting hierarchical levels from 1: strategical, affording more 

executive control processes, to 2: operational, with predominantly automatic action patterns, and 3: 

perceptual processing (Michon, 1985). Each level is associated with activations in specific brain regions 

(Spiers & Maguire, 2007). Further, the experiment of Löffler et al. (2018) required the participants to 

distinguish between two colors, while participants in our driving scenario needed to react to the flashing 

light and reduced speed of the leading car without a choice – so although the environment in the driving 

simulator is more complex and requires more coordination, the task itself may involve fewer executive 

processes. This is supported by a recent study by Seet et al. (2023) who found out that the neurometric, 

frontal theta / parietal alpha ratio (and not alpha) was associated with the magnitude of drivers’ behavioral 

changes (cumulative slowing and erraticity of their brake reaction times) throughout the assisted driving 

tour. Guo et al. (2018) recently developed a driver vigilance detection system that not only uses diver’s EEG 

signals but also driving context inputs. They found out that introducing the driving context factor “road 

curves” improved the prediction accuracy by 2 – 5 % with 30 – 80 ms smaller errors – highlighting the 

relevance of context to the experience and neuro-correlates of vigilance decrement in monotonous 

scenarios.  

This effect may be enhanced because the interval between brake events in this study has a smaller range 

than in Löffler et al. (2018), making brake events expectable and therefore promoting solving the braking 

task in a uniform operationalization pattern. On the other hand, winding roads require continuous 

correction of the lane-position which has been shown to reduce vigilance (Eoh et al., 2005). The review by 

Cabrall et al. (2016) summarizes the difference between classical vigilance tasks and their corresponding 

tasks in driving simulators and on road, stressing the little overlap between the vigilance decrement 

phenomenon and experimental tasks of driving vigilance.  

Clayton et al. (2019) investigated the influence of alpha tACS on four visual attention tasks in a laboratory 

setup with a stimulation electrode configuration like ours. Despite his hypothesis that alpha tACS will 

additionally worsen performance, he found out that alpha tACS prevented deteriorations. The control 

frequency of 50 Hz showed no effect. This highlights the task-specificity of stimulation success in healthy 

populations.  
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b. State of mind difference 

The state of mind is essential for stimulation success (Mierau et al., 2017). Other studies investigating the 

effects of monotony while driving found that participants developed different strategies to counteract 

boredom, e.g. mind-wandering or performing secondary tasks (Steinberger et al., 2016). Although the 

factor strategy showed no influence, mindsets may vary across participants according to their way of coping 

with their vigilance decrement and boredom. Internal processes may have led to the engagement of 

different brain regions not being addressed or influenced by our stimulation setup. Highly motivated or 

internally distracted participants might have experienced mental fatigue due to cognitive overload rather 

than underload or boredom (Pattyn et al., 2008).  

We needed to exclude 3 participants due to mis- or changing behavior across the experiment. For the rest 

of the participants, we did not observe different behavior: Lane-Keeping, steering wheel angle, etc. stayed 

more or less constant across time, participant, and block. Still, analysis around brake events allowed the 

classification of 4 driver types. Differentiating drivers into behavioral classes is a widely used concept in 

driving research (Lin et al., 2014; Zheng et al., 2019). tACS research on the other hand has shown, that 

performance gains are often only established in a specific subset of participants, e.g. low-performing 

(Santarnecchi et al., 2016; Thompson et al., 2021) or low arousal (Martínez-Pérez et al., 2022). Although the 

integration of the factor driver type into our mixed models did not unmask any effects of intervention, it 

shows that the experimental setup allowed the expression of personality traits which increases variability. 

As driver types were not part of our hypothesis and not balanced over groups a bigger sample size might be 

needed to analyze the concrete influence of this factor.  

c. Heterogeneity and small effect size 

The investigated group exhibited heterogeneous behavior, and the effect sizes of tACS are known to be 

small (Salfi et al., 2020); therefore, it might not have been possible to measure an effect. The driving task 

had many degrees of freedom, which led to a variability in behavior and the possibility to apply strategies. 

Further factors we will discuss also below. Although we only included drivers with at least two years of 

experience, driving habits, practice and frequency are other qualities we did not assess. Experienced drivers 

tend to automatically steer a car, while novices need to put a lot of afford in controlling a car, e.g. in a 

secondary task inexperienced driver had an approximately 250 ms longer reaction time to a peripheral 

stimulus compared to experienced drivers (Patten et al., 2006). The study of (Löffler et al., 2018) showed 

that a 40 Hz stimulated group exhibited 19 ms faster reaction times after one hour experiment and 30 

minutes of stimulation. The average reaction times in their experiment were around 500 ms long and as 

expected - due to missing MT – faster than the BRT observed here. Performance in their study was 

enhanced by approximately 4 %, but not for all, as their LMM shows a R² conditional of 0.3. In a recent 

review Lee et al. (2023) computed effect sizes for tACS studies and concluded that tACS has a positive, small 
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effect. As the effect was also small in Löffler et al. (2018), it might be possible that the effect of tACS is too 

small to show up in complex, real-world tasks.  

d. Influence of further factors 

As behavioral characteristics are known to have a substantial influence on success of tACS (Martínez-Pérez 

et al., 2022; Santarnecchi et al., 2016), we also tested other factors. While gender, the experience of 

tiredness, application of a strategy did not improve the model, driver type and slow performance did. 

Following the literature, aggressive driving behavior would have 2.5 times more driving errors than the 

behavior in a control group (Su et al., 2023). Slow performance could be characterized by adding a constant 

and improving the marginal R². Both factors showed no effect with time on task and did not mask any effect 

of the factor group.  

Lane-keeping is another parameter used in driving research to evaluate performance (Larue et al., 2011). 

We could not identify any pattern of changes across groups or participants over both blocks over time. As 

we used a windy road and lane-keeping was not a special task the participants were asked for, it might not 

be a relevant parameter in our scenario.  

e. Minor results 

Overall, our results imply the task worked: 

• We can confirm that after a 30-minute car ride in a monotonous environment, vigilance decrement 

occurs, as has been shown by Saxby et al. (2008).  

• As BRT should have risen due to the vigilance decrement onset during the BASELINE-block, we 

expected a significantly higher initial BRT at the beginning of the INTERVENTION-block which we 

could confirm in the model presented in Table 2. 

• As expected, the break between both blocks led to a recovery as shown by the lower initial BRT in 

the INTERVENTION-block compared to the end BRT of the BASELINE-block (Ross et al., 2014). 

• Levels of BRT have been found to correlate the expectation of the brake event (Green, 2000). The 

average BRT of approx. 750 ms (SD 206.7) measured in our study is in line with the literature for 

expected events (Green, 2000) as well as the average RT and MT (Warshawsky-Livne & Shinar, 

2002). 

• In opposite to the laboratory study by Löffler et al. (2018), where participants showed a 

performance of 98 %, we had to exclude 40 % of the brake events as invalid trials. We analyzed the 

probability of invalid trials and found a significant increase over time, but irrespective of block (i.e. 

concerning the probability of invalid trials, the initial probability in the INTERVENTION-block was 
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not higher than in BASELINE). This fits well with Mackworth’s investigations on vigilance, where 

both reaction times and errors rise with time on task (Mackworth, 1964). 

Our classification of four different driver types differentiated behavior according to soft or hard presses on 

the brake pedal and keeping the range of distance to the leading car small or not: Participants pressing hard 

on the brake pedal showed faster reaction times, participants with a high range of distance exhibited more 

invalid trials. This fits well with other studies who classified drivers in four classes with attributed to 

aggressive, cautious, experienced, and professional behavior (Hassan et al., 2023; Zheng et al., 2019) or as 

cited above unaggressive-aggressive and stable-unstable (Yang et al., 2019). In our case driver types may 

reflect character traits of conscientiousness – risky behavior and mental state of motivation – boredom.  

Participants were divided into three groups, but participants of the 5 Hz group exhibited different behaviors 

in BASELINE and INTERVENTION: The 5 Hz control group had, on average, higher BRTs than the SHAM- and 

40 Hz-group. In the INTERVENTION-block, the slope of the 5 Hz group increases less steeply; a possible 

explanation might be the reaching of a ceiling effect from which reaction times stop worsening (Neuling et 

al., 2013). The trend of group difference is also present in the GAMM, where the 5-Hz group tends to 

exhibit more invalid trials. Both can be explained by the composition of the 5-Hz group, which had a high 

number of driver type 2 participants (n = 9). 

f. Limitations 

One major concern it that our analysis is based on behavioral data. As no EEG was recorded, we cannot 

access neuropsychological parameters and can only speculate about the neuronal effect of our 40 Hz 

stimulation.  

Further, participants were instructed before the experiment to keep their foot on the gas pedal, brake as 

fast as possible if needed, and otherwise keep the distance constant. This is a forced and not natural 

behavior, and it was difficult to address participants to perform right. During the experiment, participants 

were not controlled, and communication stopped as any kind of interaction might have stopped the 

vigilance decrement. In the end, we needed to exclude participants who did not behave appropriately and 

therefore limited our sample size.  

Other research concerning vigilance decrement and driving implement questionnaires on driving style, 

workload, stress or level of arousal and mind-wandering (e.g. NASA TLX, Dundee Stress State 

Questionnaire). Although this wouldn’t have been too difficult to add, our study lacks this information that 

might have been useful to further explain behavior or variance or even unmask stimulation effects.  
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As the limit for tACS application is 30 minutes, our experiment is relatively short. A longer experiment with 

more variable time differences between brake events might be more beneficial to gain surprise moments 

and prevent operationalized behavior.  

Last, we found out that participants could be classified into 4 classes of driver types. Although the factor did 

not unmask stimulation effects, it significantly improved our mixed models and explained the variability of 

our data. The presence of influential factors unbalanced among groups is a weakness of this study.  

g. Outlook 

Although we were not able to enhance behavior in our experimental setup, we see potential for the 

application of tACS in an applied context. A recent study by Facchin et al. (2023) showed that focal high-

definition tDCS improved reaction time in a car-following task in a secondary distracting task. Therefore, it 

should be tested if the effect of tACS can also be enhanced by more sophisticated stimulation setups and if 

the performance gain shows in secondary tasks, that are less sensitive for individual behavior and driving 

styles and involve less motoric movement patterns. 

In general, future tACS studies in driving simulators should consider character traits and level of arousal. 

Training drives and questionnaires could be analyzed before the experimental day and participants be 

balanced among groups accordingly. To ensure participants follow the task, test drives with tracking of 

driving performance and feedback could be beneficial. A bigger sample size and longer time on task might 

help to unmask stimulation effects and the use of EEG to understand the neuro-correlates of vigilance 

decrement and the effect of stimulation. Stimulating the frontal cortex might be beneficial for sustaining 

attention in car driving as well (Klink et al., 2020). Recent research has also shown that focal stimulation has 

a higher impact on behavioral outcomes (Vacchi et al., 2023) as well as closed-loop (Li & Chung, 2018) or 

individualized stimulation settings (Zanto et al., 2021) and should be considered in future study designs.  

V. CONCLUSIONS 

Although posterior alpha power seems to be an indicator for vigilance decrement while driving in a 

monotonous scenario (Li & Chung, 2018; Wascher et al., 2016), its down-regulation may not be relevant for 

improving performance because driving is a complex task involving different brain regions. Further, as the 

task did not involve a decision like in Löffler et al. (2018), participants might have applied strategies e.g. 

mind-wandering that changed their brain state in a way, that gamma tACS was not beneficial for counter-

acting the slowdown of BRTs. Another reason might be that the effect of stimulation was masked by the 

heterogeneity of our driver population as variation in behavior and the classification of driver types 

showed. 
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Supplementary Material 

 

 

 

Fig. A1 

Exemplary plots of behavioral data of valid trials (BASELINE-block) of four participants were used to illustrate the four different 
driver types. Origin of X-Axis (in seconds), marked by a black vertical line, indicates the brake light onset of the leading car. Blue 
traces mark the pressing of the gas, red ones on the brake pedal. Both measures represent the linear way and have a maximum of 
one and refer to the primary Y-axis. Green traces mark the distance to the leading car (secondary Y-Axis, in meter, with a cut off at 
10 m). Bold lines indicate the average. a) Driver type 1: “unaggressive – stable”, b) Driver type 2: “unaggressive – unstable”, c) Driver 
type 3: “aggressive – stable””, d) Driver type 4: “aggressive - unstable”. 
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Table A1 

LMM selection: The table shows a selection of different linear mixed models predicting brake reaction times to find the best fitting 
one. First column represents the model number, followed by the formula for the fixed effects that show which further factors and 
interactions were tested. The third column shows the random effects structure, the fourth is the employed autocorrelation (if any). 
The fifth column shows the Akaike information criterion (AIC), followed by the marginal R² (R²m) for the fixed and conditional R² 
(R²c) also including the random effects. Models good-fit were tested and compared via the loglikelihood ratio whose test conditions 
(which model versus which) and resulting p-value are represented in the last column. Here, p-values < 0.05 indicate, that the second 
model is superior to the first one and a p-value > 0.05, that the extended (second) model does not improve the first model´s fit. 
Models in bold font are the best fitting models. Model 5 is presented in the manuscript expect that a Restricted Maximum Likelihood 
(REML) instead of maximum likelihood (ML) was used to fit the model. Model 4 is the best fitting model and presented in the 
SUPPLEMENTARY MATERIAL (Table A2), as well as Model 9 (Table A3) and model 11 (Table A4). 

 

 Model Random  Correlation AIC R² m R²c loglik 

1 ~ time = ~ 1 | ID - 75594.5 
 

0.007 0.569  

2 ~ time = time | ID - 75563.8 
 

0.007 0.575 1 vs 2: 
p < 0.001 

3 ~ time + group = time | ID - 75506.1 0.029 0.576 2 vs 3: 
p < 0.001 

4 ~ time + group = time | ID corCAR1(form=~ 
1|ID/Block)) 

75454.9 
 

0.030 0.572 3 vs 4: 
P < 0.001 

5 ~ time * group = time | ID corCAR1(form=~ 
1|ID/Block)) 

75456.6 0.040 0.576 4 vs 5: 
P = 0.141 

        

6 ~ time + group + 
slow 

= time | ID corCAR1(form=~ 
1|ID/Block)) 

75403.3 
 

0.392 

 

0.570 

 

4 vs 6: 
P < 0.001 

7 ~ time * group + 
slow 

= time | ID corCAR1(form=~ 
1|ID/Block)) 

75404.9 
 

0.394 0.571 6 vs 7: 
P = 0.136 

8 ~ time * slow + 
group  

= time | ID corCAR1(form=~ 
1|ID/Block)) 

75403.1 
 

0.403 0.577 6 vs 8: 
P = 0.141 

9 ~ time + group * 
slow 

= time | ID corCAR1(form=~ 
1|ID/Block)) 

75382.4 
 

0.396 0.573 6 vs 9: 
P < 0.001 

10 ~ time * group * 
slow 

= time | ID corCAR1(form=~ 
1|ID/Block)) 

75385.4 0.411 0.582 9 vs 10: 
P = 0.062 

        

11 ~ time + group + 
driver type 

= time | ID corCAR1(form=~ 
1|ID/Block)) 

75440.9 
 

0.209 0.568 4 vs 11: 
P < 0.001 
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Table A2 

LM Model 4: Best fitting model 

Coefficients of the linear mixed model 4 from table A1 (n = 49, observations = 5956, R² marginal = 0.029, R² conditional = 0.587) 
except that REML was used to fit the data: β presents the regression coefficients, SE β the standard error of β. β0 represents the 
initial BRT of the SHAMbase-group and β6 the increase in BRT over time (bold font). Their p-values, indexed with a °, show a significant 
difference compared to zero. All other coefficients are tested against β0. Intercepts are given in ms, slope β6 in ms/min. 

 

  β SE beta t-value p-value   

Intercepts:         

 

 

β0 SHAMbase 682.3 36.49 18.70 0.000  < 0.001°* 

β1 5Hzbase  73.7 52.46 1.40 0.160  > 0.05 

β2 40Hzbase 4.8 51.57 0.09 0.925  > 0.05 

β3 SHAMinter 42.6 6.41 6.64 0.000  < 0.001* 

β4 5Hzinter 81.3 52.47 1.55 0.121  > 0.05 

β5 40Hzinter 26.0 51.56 0.50 0.614  > 0.05 

       

Slope:        

β6 time 1.974 0.3132 6.30 0.000  < 0.001°* 
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Table A3 

LM Model 9: further factor class slow 

Coefficients of the linear mixed model 9 from table A1 (n = 49, observations = 5956, R² marginal = 0.396, R² conditional = 0.573, fit 
by ML): β presents the regression coefficients, SE β the standard error of β. β0 represents the initial BRT of the SHAMbase-group and 
β12 the increase in BRT over time (bold font). Their p-values, indexed with a °, show a significant difference compared to zero. All 
other coefficients are tested against β0. β6 – β11 need to be added to participants being classified as slow according to their 
respective group. Intercepts β0 – β11 are given in ms, slope β12 in ms/min. 

  

  β SE beta t-value p-value   

Intercepts:         

 

 

β0 SHAMbase 579.2 28.60 20.25 0.000  < 0.001°* 

β1 5Hzbase  15.3 47.85 0.32 0.749  > 0.05 

β2 40Hzbase -8.9 40.33 -0.22 0.826  > 0.05 

β3 SHAMinter 15.3 8.58 1.79 0.074  > 0.05 

β4 5Hzinter 44.0 47.96 0.92 0.359  > 0.05 

β5 40Hzinter -1.7 40.31 -0.04 0.966  > 0.05 

β6 SHAMbase*slow 218.5 41.60 5.25 0.000  < 0.001* 

β7 5Hzbase *slow 22.4 62.28 0.36 0.719  > 0.05 

β8 40Hzbase*slow 38.0 59.86 0.64 0.525  > 0.05 

β9 SHAMinter*slow 60.3 12.76 4.73 0.000  < 0.001* 

β10 5Hzinter*slow -7.4 62.36 -0.12 0.906  > 0.05 

β11 40Hzinter*slow 65.6 59.86 1.10 0.273  > 0.05 

       

Slope:        

β12 time 1.956 0.3120 6.27 0.000  < 0.001°* 
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Table A4 

LM Model 9: further factor class driver type 

Coefficients of the linear mixed model 11 from table A1 (n = 49, observations = 5956, R² marginal = 0.209, R² conditional = 0.568, fit 
by ML): β presents the regression coefficients, SE β the standard error of β. β0 represents the initial BRT of the SHAMbase-group of 
driver type A and β12 the increase in BRT over time (bold font). Their p-values, indexed with a °, show a significant difference 
compared to zero. All other coefficients are tested against β0. Intercepts β0 – β8 are given in ms, slope β9 in ms/min. 

 

  β SE beta t-value p-value   

Intercepts:         

 

 

β0 SHAMbase* Driver Type A 
727.8 45.24 16.09 0.000 

 < 0.001°* 

β1 5Hzbase * Driver Type A 
76.3 42.82 1.78 0.075 

 > 0.05 

β2 40Hzbase * Driver Type A 
11.2 42.37 0.26 0.791 

 > 0.05 

β3 SHAMinter * Driver Type A 
42.5 6.40 6.64 0.000 

 < 0.001* 

β4 5Hzinter * Driver Type A 
83.9 42.83 1.96 0.050 

 = 0.05 

β5 40Hzinter * Driver Type A 
31.0 42.36 0.73 0.464 

 > 0.05 

β6 * Driver Type B 24.9 49.16 0.51 0.615 
 > 0.05 

β7 Driver Type C 
-207.4 67.65 -3.07 0.004 

 < 0.01* 

β8 Driver Type D 
-133.9 51.59 -2.60 0.013 

 < 0.05* 
       

Slope:        

β9 time 1.956 0.3156 6.20 0.000  < 0.001°* 
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Table A5 

LM Model 5: 5 Hz base-group. 

LMM results for BRT (n = 49, observations = 5956, R² marginal = 0.0380, R² conditional = 0.590): β presents the regression 
coefficients, SE β the standard error of β. β0 represents the initial BRT and β6 the increase in BRT of the 5 Hzbase-group over time (bold 
font). Their p-values, indexed with a °, show a significant difference compared to zero. All other coefficients of intercepts are tested 
against β0, slopes against β6. Intercepts (β0 - β5) are given in ms, slopes (β6 – β11) in ms/min. 

 

 

  β SE beta t-value p-value   

Intercepts:         

 

 

β0 5 Hzbase 
745.5 37.32 19.98 0.0000 

 
< 0.001°* 

β1 SHAMbase  
-71.7 51.91 -1.38 0.1675 

 
> 0.05 

β2 40Hzbase 
-63.6 52.66 -1.21 0.2270 

 
> 0.05 

β3 5 Hzinter 
28.5 13.58 2.10 0.0359 

 
< 0.05* 

β4 SHAMinter 
-12.0 51.93 -0.23 0.8175 

 
> 0.05 

β5 40Hzinter 
-36.0 52.64 -0.68 0.4944 

 
> 0.05 

       

Slopes:        

β6 time * 5 Hzbase 3.234 0.6744 4.79 0.0000  < 0.001°* 

β7 time * SHAMbase -0.750 0.9270 -0.81 0.4194  > 0.05 

β8 time * 40Hzbase -1.494 0.9330 -1.60 0.1089  > 0.05 

β9 time * 5 Hzinter -1.404 0.7842 -1.79 0.0734  > 0.05 

β10 time * SHAMinter -1.902 0.9282 -2.05 0.0406  < 0.05* 

β11 time * 40 Hzinter -2.040 0.9324 -2.19 0.0289  < 0.05* 
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Table A6 

LM Model 5: 40 Hz base-group. 

LMM results for BRT (n = 49, observations = 5956, R² marginal = 0.0380, R² conditional = 0.590): β presents the regression 
coefficients, SE β the standard error of β. β0 represents the initial BRT and β6 the increase in BRT of the 40 Hzbase-group over time 
(bold font). Their p-values, indexed with a °, show a significant difference compared to zero. All other coefficients of intercepts are 
tested against β0, slopes against β6. Intercepts (β0 - β5) are given in ms, slopes (β6 – β11) in ms/min. 

 

  β SE beta t-value p-value   

Intercepts:         

 

 

β0 40 Hzbase 
681.9 37.16 18.35 0.0000 

 
< 0.001°* 

β1 5Hzbase  
63.6 52.66 1.21 0.2270 

 
> 0.05 

β2 SHAMbase 
-8.0 51.80 -0.15 0.8768 

 
> 0.05 

β3 40 Hzinter 
27.7 12.54 2.21 0.0275 

 
< 0.05* 

β4 5Hzinter 
92.1 52.69 1.75 0.0804 

 
> 0.05 

β5 SHAMinter 
51.6 51.82 1.00 0.3190 

 
> 0.05 

       

Slopes:        

β6 time * 40 Hzbase 1.734 0.6450 2.69 0.0071 
 

< 0.01°* 

β7 time * 5Hzbase 1.494 0.9330 1.60 0.1089 
 

> 0.05 

β8 time * SHAMbase 0.750 0.9060 0.82 0.4096 
 

> 0.05 

β9 time * 40 Hzinter -0.540 0.7284 -0.74 0.4563 
 

> 0.05 

β10 time * 5Hzinter 0.090 0.9384 0.10 0.9219 
 

> 0.05 

β11 time * SHAMinter -0.402 0.9072 -0.45 0.6555 
 

> 0.05 
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Table A7 

GAMM selection: The table shows a selection of different generalized additive mixed models predicting predicting the probability for 
invalid trials to find the model with best-fit. The first column represents the model number, followed by the formula for the fixed 
effects including further factors and interactions were tested. The third column shows the random effects structure, the fourth the 
employed autocorrelation (if any). The fifth column shows the Akaike information criterion (AIC). The GAMM with lowest AIC has the 
best fit. Marginal R² (R²m) for the fixed and conditional R² (R²c) also including the random effects are only given for the best models. 
Models in bold font are the best fitting models. Model 6 is presented in the manuscript. Model 2 is presented in Table A8, model 7 in 
Table A9 and model 8 in Table A10.  

 Model Random  Correlation AIC R² m R²c 

1 ~ time ID = ~ 1  - 43225.7 
 

  

2 ~ time ID = ~ 1  corCAR1(form=~ 
1|ID/Block) 

43204.1 
 

0.016 0.372 

 ~ time ID = ~ time  corCAR1(form=~ 
1|ID/Block) 

43208.11   

3 ~ time + group ID = ~ 1 - 43232.1 
 

  

4 ~ time * group ID = ~ 1 - 43245.9 
 

  

5 ~ time + group ID = ~ time - 43236.1 
 

  

6 ~ time + group ID = ~ 1 corCAR1(form=~ 
1|ID/Block) 

43210.9 
 

0.041 0.372 

7 ~ time * group ID = ~ 1 corCAR1(form=~ 
1|ID/Block) 

43224.94 

 

0.043 0.373 

 
       

8 ~ time + Driver Type ID = ~ 1 corCAR1(form=~ 
1|ID/Block) 

43206.14 
 

0.146 0.373 

9 ~ time +Driver Type 
+ group 

ID = ~ 1 corCAR1(form=~ 
1|ID/Block) 

43213.04 
 

  

 
 
Table A8 

GAM Model 2: Best fitting model 

GAMM (AIC 43204.1) for the probability for invalid trials with the best fit according to comparison via lowest AIC (n = 49, 
observations = 9800, R² marginal = 0.016, R² conditional = 0.372): OR represents the odd ratio calculated by exponentiating the 
regression coefficients β, SE β is the standard error of β. β0 represents the initial probability for an invalid trial, β1 the increase 
(slope) in probability for invalid trials per minute (time). Their p-values show a significant difference compared to zero. β coefficients 
and their standard error are on a logit scale. 

  OR β SE beta t-value p-value   

β0 intercept 
 

0.458 -0.790 0.11686 -6.7 0.000  < 0.001°* 
        

β1 slope (time) 1.0180  0.0179 0.00253 7.08 0.000  < 0.001°* 
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Table A9 

GAM Model 8: with further factor driver type 

GAMM (AIC 43206.14) for the probability for invalid trials with factor driver type (n = 49, observations = 9800, R² marginal = 0.016, 
R² conditional = 0.372): OR represents the odd ratio calculated by exponentiating the regression coefficients β, SE β is the standard 
error of β. β0 represents the initial probability for an invalid trial of the SHAMbase-group of driver type 1 and β6 the increase in 
probability for invalid trials over time (bold font). Their p-values, indexed with a °, show a significant difference compared to zero. All 
other coefficients are tested against β0. Intercepts β0 - β3 indicate the 4 driver type classes, the slope β6 represents the probability of 
an invalid trial/min. β coefficients and their standard error are on a logit scale. 

  OR β SE beta t-value p-value   

Intercepts: 

 

        

 

 

β0 SHAMbase + Driver 
Type 1 

 
0.189 -1.670 0.2159 -7.74 0.0000  < 0.001°* 

β1 5Hzbase + Driver 
Type 2 

 
3.130 1.141 0.2517 4.53 0.0000  < 0.001* 

β2 40Hzbase + Driver 
Type 3 

 
1.797 0.586 0.3505 1.67 0.1015  > 0.05 

β3 SHAMinter+ Driver 
Type 4 

 
3.284 1.189 0.2694 4.41 0.0001  < 0.001* 

Slope:  

 

      

β6 time 1.018 0.0179 0.00253 7.08 0.000  < 0.001°* 
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5. General Discussion 

This thesis investigated the potential of tACS to counteract vigilance decrement and to transfer possible 

findings to the applied contexts of addressing older adults and car driving. It was hypothesized that gamma 

tACS on posterior parietal regions reduces vigilance decrement represented by rising reaction times over 

time. Therefore, a stimulation setup was configured and tested in a pilot study, repeated with older adults, 

and – in a modified version – tested in a monotonous driving scenario. While gamma tACS successfully 

slowed down reaction time increment in a pilot study (Study I), the analyzed data failed to show a similar 

effect when repeating the study with older adults (Study II) or in a monotonous driving scenario in a 

simulator (Study III) although in both cases a significant vigilance decrement – expressed by an increase of 

reaction time with time on task - was observed which was substantial in the baseline block in both studies 

and for the driving simulator study also during the intervention block. Concerning the study addressing 

older adults, the reaction time increment significantly continued to increase – contrary to the hypothesis – 

in the intervention block for the 40 Hz stimulated group only. However, alpha power was significantly higher 

after the experiment, irrespective of group. Concerning Study III a significant increase in the probability of 

invalid trials was also observed, which is an indicator of vigilant decrement as well. 

In conclusion, it can be said: It could be shown that gamma tACS can reduce reaction time increment in a 

relatively homogenous group of young participants (mostly students) in a laboratory setting, but no 

significant effect of this stimulation setup could be shown in the more complex group of older adults or 

during the complex task of car driving. The question remains whether the effect of stimulation is not there 

or is too small for practical application – at least in the generalized approach that has been applied in this 

thesis. In the following paragraphs, possible reasons will be discussed, this research related to other 

findings, the limitations discussed, and implications for future studies given. 

Although the number of tACS research papers has substantially increased in recent years (see section 1.4.1), 

little is known about the working principles for successful stimulation protocols, and standards are missing 

(Wischnewski et al., 2023). The research of this thesis fits in there as it fills a gap: Up to 2023, tACS was not 

applied in a driving simulator task, and only a few studies compare the same tACS protocol in different age 

groups (Fresnoza et al., 2020; Guerra et al., 2021; Rufener et al., 2016; Zanto et al., 2021) or for different 

task demands (e.g., Clayton et al., 2019). Furthermore, it also fits in with other research that failed to show 

- despite careful planning – the proposed effect of stimulation (Brignani et al., 2013; Lafleur et al., 2021; 

Lafon et al., 2017; van Schouwenburg et al., 2021) or failed to replicate a successful study (Veniero et al., 

2017).  
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The following subsections discuss possible reasons why the transfer of the successful tACS setup in the pilot 

study (Study I) to more complex tasks (Study II, Study III) was unsuccessful.  

a. The influence of covariates 

In the tACS community, much-discussed issues are further influencing factors that either prevent successful 

stimulation, increase the sample size variability, or make tACS exhibit only weak effect sizes.   

Next to individual differences in traits (anatomic or genetic differences, hair), recent research has also 

shown that covariates significantly influence stimulation success, and that subgroup analysis is worth a try. 

Also, environmental factors - e.g., ambient illumination (Stecher et al., 2017) may impact stimulation 

success. Considering performance, two studies identified the influence of baseline performance on 

stimulation success: While Thompson et al. (2021) showed that parietal gamma tACS significantly 

modulated working memory recall precision with the effect being stronger in high-baseline performers, 

gamma tACS in a study by Santarnecchi et al. (2016) especially improved performance of slow baseline 

performers. Santarnecchi et al. (2016) stimulated prefrontal brain regions and tested improvements in fluid 

intelligence. Also, age has been shown to be an influential factor for stimulation success: In a study with 

participants aged between 18 and 65 years. Zhu et al. (2023) found an effect of age in a subgroup analysis 

with older participants experiencing significant benefits from tACS. They targeted the forehead and both 

mastoids for 40 minutes at 77.5 Hz with 15 mA in 20 sessions over four weeks to treat chronic insomnia. 

Krebs et al. (2023) investigated the moderating effects of sex, age, and education on the outcome of 

combined cognitive training and transcranial electrical stimulation in older adults (mean age 71.7 years, SD 

6.1). They stimulated the left dorsolateral prefrontal cortex for 20 minutes with 5 Hz tACS at 1 mA during 10 

sessions of computerized cognitive training and performed a neuropsychological assessment before and 

after the intervention. Their results indicate that the youngest participants with fewer years of education 

benefit more from the tACS stimulation compared to older and more educated participants. Also, circadian 

rhythm and chronotype seem to influence stimulation success: Martínez-Pérez et al. (2022) found a task-

specific significant effect of alpha- or/and theta-tACS when applied to the right DLPFC on vigilance when 

arousal was low. They measured arousal according to participants ´chronotypes with low arousal, meaning 

that evening-types performed the task at their non-optimal time of day. 

In the studies presented in this thesis, further factors were – where possible- included in the analysis. In all 

studies, no influence of the factors of gender or baseline performance on stimulation could be detected. 

Study III had a different task design and allowed individual behavior. Participants classified with the 

behavioral pattern “unstable” showed a higher probability for invalid trials, and “slow” or “passive” 

participants exhibited, on average, 200 ms longer brake reaction times. However, these classifications did 

not unmask any stimulation effect. However, in Study II – although not part of the initial hypothesis and 
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therefore unbalanced over groups - a significant effect of the factor medication could be found, giving 

another hint for an influential covariate worth investigating in further studies. 

Further, it has been shown that stimulation works detrimental among different age groups: What works in 

an enhancing way in young participants inhibits or even deteriorates performance in older or vice versa 

(Fresnoza et al., 2020; Rufener et al., 2016). Although insignificant, the results in Study II point in this 

direction: While in the intervention block, the increase in reaction time gets less in the sham and 5 Hz 

stimulated group, reaction times continued to rise in a steep slope in the 40 Hz stimulated group. 

b. Age- and task-specificity of stimulation 

Oscillations are known to change with age (Ishii et al., 2017). Further, it has been shown that stimulation 

works detrimental among different age groups: What works in an enhancing way in young participants 

inhibits or even deteriorates performance in older or vice versa (Fresnoza et al., 2020; Rufener et al., 2016). 

Although insignificant, the results of Study II point in this direction: While in the intervention block, the 

increase in reaction time gets less in the sham and 5 Hz stimulated group, reaction times continued to rise 

in a steep slope in the 40 Hz stimulated group.  

Online improvement in performance is not always reflected in changed endogenous oscillations recorded 

after the experiment: Clayton et al. (2019) investigated the influence of alpha tACS on the visual cortex in 

four visual tasks. They proposed that alpha tACS will enhance the alpha amplitude and thereby deteriorate 

the performance in sustained attention tasks – kind of the opposite to the approach in this thesis- but in 

two of four experiments, they observed a performance stabilizing effect of tACS: On a behavioral scale, the 

administration of alpha-tACS reduced the slope of deteriorations in reaction times from the start of the 

stimulation onwards, while in the other tasks – as expected – reaction times rose. They also recorded an 

EEG before and after the experiments: In all visual experiments, alpha power increased reliably from the 

start to the end of each task, regardless of stimulation condition. 

Although vigilance decrement was measured by rising reaction times across all studies with time on task 

and rising alpha power (only Study II) after the experiment, these are mere behavioral or neurophysiological 

correlates. Speculation remains open over the exact cause of this decrement. In literature, vigilance 

decrement is often referred to as two kinds of fatigue: 1.) Active fatigue occurs due to the mental depletion 

of cognitive resources and is related to high arousal, workload, and task demands. 2.) Passive fatigue occurs 

in monotonous tasks due to low arousal, workload, and task demands and is related to boredom. Both have 

been postulated in the “overload vs. underload theory.” Recent research has shown that this theory only 

insufficiently explains vigilance decrement and that a combination of underload and overload probably 

results in vigilance decrement. Monotonous tasks invite participants to start mind-wandering, which 

consumes attentional resources. Depending on motivation, executive control is required to focus on the 
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task (attention resource theory) (Bodala et al., 2020). In all studies, passive fatigue was expected, but it 

remains unclear if this was the case. In Study II, the older participants were highly motivated and eager to 

compete with the younger group. Although they exhibited lower reaction times, performance was equal to 

the younger participants in Study I. Motivation may have led to the recruitment of frontal brain regions as a 

compensatory mechanism and, therefore, to active fatigue. Considering driving – although being a complex 

task – Wascher et al. (2016) found that vigilance decrement and rising alpha amplitude probably occurred 

due to boredom. To ensure boredom, driving behavior was not commented on during the experiment, or 

rewards for good behavior were promised (gamification element). Still, the possibility cannot be excluded 

that the predictable task led to an automatic behavioral pattern that invited participants to perform mind-

wandering, thereby leading to cognitive depletions, i.e., inducing active fatigue. Further research is needed 

to clarify this question. 

c. Variability and small effect size 

In general, and across 56 studies, effect sizes for successful tACS studies on cognitive performance are 

positive but small (Lee et al., 2023). In Study I, the model had a conditional r² of 0.3 (i.e., it explains 30 % of 

the variance), which is relatively small. However, already back then, it was argued that it was hard to obtain 

higher effects due to anatomical differences. The a priori power analysis indicated that 42 participants (14 

per group) were sufficient, and more participants were analyzed (Study II: 48, Study III: 49). Still, in Study II 

and Study III more variability was introduced: The older-aged participants of Study II were not as 

homogenous as the participants of Study I due to the selection process (all education levels, cardiovascular 

medication, visual impairment in one eye allowed), Study III had more degrees of freedom for individual 

behavior that is also reflected by the data.  

d. Nonoptimal stimulation parameters 

1 mA was used as stimulation intensity because it has been shown to influence behavioral parameters and 

endogenous brain oscillations by numerous studies (e.g., see for a review Lee et al., 2023). In contrast, 

stimulation intensities of higher than 2mA with a duration longer than 10 minutes have been shown to lead 

to blinding problems (Antal et al., 2022) and intensities higher than 1.5 mA at the visual cortex to promote 

phosphenes (Kanai et al., 2008). However, other recent studies applied tACS with intensities of 2 mA 

(Clayton et al., 2019), especially the ones addressing older adults (Zanto et al., 2021). Wischnewski et al. 

(2023) even recommend intensities of up to 4 mA in general. Zhu et al. (2023) used 15 mA to improve sleep 

quality and efficiency in older adults with diagnosed chronic insomnia. With higher intensities it is possible 

to entrain a broader range of frequencies – an effect referred to as Arnold tongue (Vosskuhl et al., 2018). 

Higher stimulation frequencies might be helpful, especially concerning older adults who generally have a 

lower electric field (Antonenko et al., 2016).  
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Next to intensity, recent research also highlights the importance of focality and stimulation frequency 

adjusted to the personal peak frequency of the addressed spectrum: Spooner & Wilson (2023) showed that 

individualized tACS to the peak movement-related gamma frequency over the primary motor cortex leads 

to enhanced motor performance/learning (i.e., the greatest reduction in time to complete motor 

sequences) compared to nonspecific gamma-tACS in humans. They used a 4x1 high-definition tES device 

and concluded that personalized neuromodulation may be advantageous to optimize behavioral outcomes. 

Covariates and the variability of participants' characteristics might have masked an effect of the 

intervention in this thesis. Nonoptimal stimulation parameters and wrong task-specificity may have left the 

stimulation effectless. Hints for further research can be given, but the question of the effect being too 

small, and the stimulation effect being covered by variability OR if tACS has no effect remains for now. 

In general, these aspects show why applying tACS in practical contexts is hard. In conclusion, it might be 

possible that the "one dose fits all" approach to simply transfer a tACS protocol among two different classes 

of participants (age groups) or tasks (choice reaction task vs. driving simulator) does not work. First, this 

thesis's limitations will be summarized before implications for further research and applications are given. 

5.1 Limitations 

As already mentioned in this thesis, a successful tACS protocol was transferred without adjustments to a 

different age group who are known to have different brain properties and to a different task that allowed 

individual behavior. Although more participants were measured, the increase in variability might have 

masked the effects of stimulation. The number of participants in Study II and Study III is comparable to 

other studies (Lee et al., 2023) but still a limitation as there are other studies with more participants and 

more exclusion criteria (e.g., no medication). Further, standardized questionnaires on cognitive impairment 

(e.g., Mini-mental State Examination, see Reinhart & Nguyen, 2019), workload (e.g., NASA TLX, see Dillard 

et al., 2019), that are used in comparable studies might have helped to reduce variability, give information 

on brain states, and helped to clarify influential factors and are missing in the studies. 

It might have been helpful to adapt the frequency and intensity of the stimulation to the needs of an older 

age group and to gradually develop a task in Study III (e.g., via a secondary task) that shows clear reaction 

times and excludes individual behaviors. The preference for a realistic scenario probably came at the 

expense of certainty about the stimulation effect and the reason behind the prolonged brake reaction 

times. In Study II, he resting EEG recorded before the baseline block could have been used to estimate the 

individual alpha frequency of each participant, and gamma stimulation could have been adjusted as its 

appropriate harmonic partner oscillation (although one has to keep in mind that the individual alpha 

frequency may change during cognitive tasks with time on task as well, see Haegens et al., 2014). As the 

stimulation effect on behavior was more important for the investigation, no EEG was recorded during Study 



5 General Discussion 
 

106 

III, which is a limitation. Therefore, it remains unknown if alpha amplitudes at posterior regions rose during 

the driving task - as known for Study II – and if 40 Hz as a harmonic partner mismatched the individual 

alpha frequency.  

To establish a tACS protocol, a simulation of the electrical field of a standard computerized head model was 

used (Stecher & Herrmann, 2018). It is too cost-intensive and inappropriate for the studies here. fMRI scans 

allowing an individualized simulation of current flow for each participant´s head, as used by Zanto et al. 

(2021), might have highlighted stimulation effects but are cost-intensive. Antonenko et al. (2021) simulated 

electric fields across age groups for six conventional tACS montages, further highlighting age dependency 

and inter-individual variability. 

All three studies of this thesis were conducted as single-blind experiments. Research has shown that 

operators might unintentionally give different instructions during the real than the sham session, leading to 

manipulation or influence of the participants (Antal et al., 2022). 

Due to technical, operational, or other problems, participants needed to be excluded (Study I: 1; Study II: 4 

for EEG, 2 for behavior; Study III: 5) which weakened the power of the studies.  

5.2 Implications for future research 

In general, the studies in this thesis highlight the importance of more precise and individualized tACS 

protocols, the importance of reducing internal and external factors, and careful task design. Although tACS 

is a promising and easy-to-apply tool to modify behavior, more needs to be understood, and more research 

is needed. Frequency, electrode size, number and position, stimulation duration, and stimulation are 

parameters that can be adjusted and need further investigation.  

Increasing the focality of stimulation with high-definition tACS by using more than two electrodes and a 

ring—like montage seems promising (Spooner & Wilson, 2023), as well as personalization of stimulation 

protocols according to current flow modeling (Antonenko et al., 2021) or via adjusting stimulation 

parameters constantly according to actual brain state via a close-loop stimulation with EEG.  

Active machine-learning techniques have also been shown to be good tools to personalize brain stimulation 

frequency and intensity based on cognitive ability (van Bueren et al., 2021). Vosskuhl et al. (2018) also point 

out the potential of stimulating with complex waveforms (e.g., sawtooth waves) and the importance of 

artifact reduction to measure and analyze EEG and stimulate simultaneously. Further tACS optimization 

approaches are also under investigation, like phase-shifted or amplitude-modulated stimulation (Wu et al., 

2021) or cross-frequency coupled tACS (Kim et al., 2022).  
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Further, the control and reduction of further factors are recommended: Questionnaires before and after the 

experiment could help define the subjective brain state, EEG for the objective. Neuroimaging tools could be 

used to define brain traits. It might also be helpful to consider circadian rhythms (see Martínez-Pérez et al., 

2022) and perform cognitive and driving tests before the experiment to further classify participants. Next to 

medication (Study II, or see McLaren et al., 2018, for a reference) and characteristics like slow and fast 

performance (Santarnecchi et al., 2016; Thompson et al., 2021), motivation could be an important factor to 

be considered, especially concerning research on vigilance decrement.  

5.3 Outlook / Possible application 

Although this thesis could not prove the potential of tACS for application in complex tasks, contexts could 

be identified, and recent research further highlights potential applicational scenarios. Especially concerning 

older adults with neurodegenerative diseases, e.g., the first in-home trials are under investigation, showing 

that theta tACS in combination with cognitive control training can improve attentional abilities and that 

tACS devices can be used by patients themselves at home without direct researcher assistance (Jones et al., 

2023). 

The personalization of stimulation features seems promising, although further investigation is needed. 

Technical devices (e.g., smartwatches, smartphones) that can be used as wearable sensors for tracking 

physiological parameters (e.g., heart rate) are widely in use; cars track all kinds of information on driver´s 

status and could be integrated into other required technology that is partially ready to be included (e.g., 

portable EEG headsets, stimulation headbands) for on-demand personal stimulation, e.g., enhancing 

vigilance esp. in safety-critical moments. Although acceptance of the use of headsets is questionable while 

car-driving by healthy populations and technology might need to advance first further here, it might be a 

help for pathological populations whose sickness affects driving abilities, e.g., people who have Parkinson´s 

disease (Buhmann & Gerloff, 2014). In an advanced stage of this disease, the implementation of deep brain 

tissue stimulation devices is a treatment option. Thereby, locally attached, and removable electrodes might 

be an acceptable option at the beginning of the disease and are already under investigation for therapy (Del 

Felice et al., 2019).  

5.4 Conclusion 

In this thesis, the potential of tACS to enhance vigilance was first tested in a pilot study. The successful tACS 

protocol was then tested with older adults and in the context of car driving. Although vigilance decrement 

could be shown in all three scenarios, 40 Hz tACS on the visual cortex only showed a counteracting effect in 

a pilot study with young participants in a laboratory setting. Following literature research and thorough 

discussion, the following conclusions can be made:  
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The positive effect of the tACS protocol on counteracting vigilance decrement could not be shown in 

complex contexts, i.e., when addressing older adults or in a driving scenario. Due to the higher variability of 

the older participants and their data, whether there is no effect, or the effect is too small remained 

unknown. More factors need to be controlled to reduce variability. 

The potential of tACS in practical applications is there, but a "one-dose-fits-all" approach as investigated in 

this thesis is not recommended. Instead, the investigation of personalized stimulation protocols seems 

promising. In general, more research is needed, especially concerning different age groups. 
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