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Abstract
Spatial and Temporal Correlations in Human Cortical Dynamics:

Implications for Cognition and Epilepsy Management

People with epilepsy often suffer from cognitive impairment, reducing their quality
of life. These impairments and their severity are heterogeneous between individuals,
e.g., about 30% retain close to normal cognitive function. Despite established associ-
ations with disease and treatment-related factors, a comprehensive understanding of
the underlying principles for these cognitive impairments is missing.

Brain criticality is the theoretical principle that optimal cognitive function emerges
when cortical dynamics are in the vicinity of a phase transition, e.g., between vanish-
ing and runaway excitation. A balanced network structure is essential to achieving
brain criticality, and long-range spatial and temporal correlations (SCs and TCs) are
maximized at criticality. These correlations are established measures of information
integration, which is essential for cognitive function. However, due to experimental
limitations like short recording durations or coarse spatiotemporal resolution, the link
between criticality, SCs, TCs, and cognitive function remains elusive. Additionally,
cortical network dynamics and cognition-affecting mechanisms, such as antiseizure
medication or slow-wave activity, introduce variability into the measurements.

To address these limitations, this thesis combines neuronal model simulations,
multi-day intracranial electroencephalography (iEEG) recordings from 104 persons
with epilepsy, magnetic resonance imaging (MRI) from 127 persons with epilepsy,
and 16 cognitive measures. Specifically, we investigated the variability of SCs and
TCs in computational and cortical network dynamics, i.e., in iEEG, and gray matter
thickness changes with respect to cognitive performance.

We found that SCs and TCs exhibited substantial co-variability and declined
during slow-wave activity and under antiseizure medication. Interictal epileptiform
discharges led to shorter TCs but increased SCs. Further, TCs increased with the
functional hierarchy, showing their importance for more complex computations. Ul-
timately, we found a correlation between shorter TCs and cognitive impairments.
Additionally, we found that groups with more severe cognitive impairments exhib-
ited broader gray matter changes compared to healthy controls. These changes were
predictive of the risk of cognitive worsening after epilepsy surgery.

In short, our model simulations and experimental findings support brain criticality
as a unifying framework to explain cognitive function. They also suggest that devi-
ations from criticality, potentially induced by network structure changes, could be a
critical factor in understanding the variability in cognitive impairments.
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Zusammenfassung
Spatial and Temporal Correlations in Human Cortical Dynamics:

Implications for Cognition and Epilepsy Management

Menschen mit Epilepsie leiden häufig unter kognitiven Beeinträchtigungen, die ih-
re Lebensqualität mindern. Diese Beeinträchtigungen und ihr Schweregrad sind per-
sonenabhängig, z. B. haben etwa 30 % der Betroffenen nahezu normale kognitive
Fähigkeiten. Ein umfassendes Verständnis der diesen kognitiven Beeinträchtigungen
zugrunde liegenden Prinzipien fehlt trotz etablierter Zusammenhänge mit krankheits-
und behandlungsbedingten Faktoren.

Die Kritikalität des Gehirns ist das theoretische Prinzip, dass optimale kognitive
Funktion auftritt, weil sich die kortikale Dynamik in der Nähe eines Phasenübergangs
befindet, z. B. zwischen verschwindender und übermäßiger Aktivität. Eine ausgewo-
gene Netzwerkstruktur ist für die Kritikalität des Gehirns entscheidend und am kri-
tischen Punkt sind räumliche und zeitliche Korrelationen (SCs und TCs) maximal.
Diese SCs und TCs sind ein bewährtes Maß für Informationsintegration, welche für
kognitive Funktionen wichtig ist. Aufgrund von experimentellen Einschränkungen wie
kurzer Aufzeichnungsdauer oder nicht hinreichender räumlicher und zeitlicher Auflö-
sung ist der Zusammenhang zwischen Kritikalität, SCs, TCs und kognitiver Funktion
jedoch weiterhin unklar. Darüber hinaus führen Mechanismen, die die Dynamik des
kortikalen Netzwerks und die kognitiven Fähigkeiten beeinflussen, wie z. B. Antikon-
vulsiva oder Tiefschlaf, zu erhöhter Variabilität in den Messungen.

Um diese Einschränkungen zu adressieren, kombiniert diese Arbeit neuronale Mo-
dellsimulationen, mehrtägige intrakranielle Elektroenzephalographie (iEEG) Aufzeich-
nungen von 104 Personen mit Epilepsie, Magnetresonanztomographie (MRT) von 127
Personen mit Epilepsie und 16 kognitive Messungen. Insbesondere untersuchten wir
die Variabilität von SCs und TCs in der Dynamik von simulierten und kortikalen
Netzwerken (im iEEG), sowie Dickeveränderungen der grauen Substanz in Bezug auf
die kognitive Leistung.

Wir fanden eine starke Kovariabilität von SCs und TCs sowie die Abnahme von
SCs und TCs während Slow-Wave-Aktivität und unter Antikonvulsiva. Interiktale epi-
leptiforme Entladungen führten zu kürzeren TCs, aber erhöhten SCs. Außerdem nah-
men TCs entlang der funktionellen Hierarchie zu, was ihre Bedeutung für komplexere
Berechnungen verdeutlicht. Schließlich fanden wir eine Korrelation zwischen kürzeren
TCs und kognitiven Beeinträchtigungen. Zudem stellten wir fest, dass Gruppen mit
schwereren kognitiven Beeinträchtigungen im Vergleich zu gesunden Kontrollperso-
nen viele Veränderungen der grauen Gehirnsubstanz aufwiesen. Diese Veränderungen
waren prädiktiv für das Risiko einer kognitiven Verschlechterung nach einer Epilep-
sieoperation.

Zusammenfassend unterstützen unsere Modellsimulationen und experimentellen
Ergebnisse die Kritikalität des Gehirns als vereinheitlichenden Rahmen zur Erklärung
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von Kognition. Sie deuten auch darauf hin, dass Abweichungen von der Kritikalität,
z.B. verursacht durch Netzwerkstrukturveränderungen, ein entscheidender Faktor für
das Verständnis der Variabilität kognitiver Beeinträchtigungen sein könnten.
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Chapter 1

Introduction

The human brain is a highly advanced and flexible information-processing system that
excels at solving complex problems. It analyzes, combines, and contextualizes count-
less inputs and stimuli to interpret its environment and make decisions. Therefore, it
must integrate much information across time and space. At the same time, the brain
remains flexible and is not restricted to well-defined tasks alone. The human brain
can solve a seemingly infinite number of different tasks. In short, the brain solves
complex and specific problems without over-specialization.

Naturally, one wonders how the brain maintains this remarkable capacity for com-
plex computations. Specifically, which general principles allow the brain to integrate
vast amounts of information over time and space? To explore the underlying princi-
ples, researchers have brought forward different hypotheses combining ideas, among
others, from neurology, neuroscience, and branches of physics, like dynamical systems
theory. This interdisciplinary approach offers promising insights into understanding
the brain’s computational abilities.

Consequently, this thesis also sits at the intersection between fields, i.e., neuro-
science, neurology, and physics. It aims to first provide insights into how cortical
dynamics are correlated via space and time. Therefore, it will analyze a neuronal net-
work model and human intracranial EEG data in the context of the brain criticality
hypothesis which makes predictions for cortical dynamics and cognition. Ultimately,
the goal of this thesis is to link theoretically driven measures of cortical networks and
their dynamics to cognitive performance.

Brain Criticality

The brain criticality hypothesis predicts that cortical networks are in the vicinity of
a critical point that optimizes information processing (Beggs, 2022a; Chialvo, 2004;
Shew & Plenz, 2013). Experimental findings of long-ranged correlations and power-law
distributions have been supporting this hypothesis (Beggs & Plenz, 2003; Linkenkaer-
Hansen et al., 2001; Shew et al., 2009, 2011).



2 Chapter 1. Introduction

Optimal Information Processing at Criticality

A delicate balance of the dynamics close to a phase transition, e.g., between static
and chaotic activity, characterizes this critical state. In models, the critical state has
been proven to optimize information capacity and transmission (Beggs & Plenz, 2003;
Langton, 1990; Shew et al., 2011), dynamical range (Kinouchi & Copelli, 2006; Shew
et al., 2009), or the number of metastable states (Haldeman & Beggs, 2005).

In a seminal study, Langton, 1990 analyzed the properties of criticality in a de-
terministic model. Langton, 1990 showed that the model’s dynamics could be tuned
between static and chaotic activity. Albeit static activity was stable and thus could
conserve information well; it was not flexible, and information could not travel through
the network. Conversely, chaotic activity changed quickly so that information could
travel. However, repeated interactions disturbed the information and led to the failure
of information conservation. Between these two extremes Langton, 1990 identified a
critical point, i.e., the phase transition between stasis and chaos. He found that
the trade-off between information conservation, transmission, and interactions at the
critical point could optimize information processing.

Extending upon this deterministic model, researchers explored stochastic models
that yielded similar results. For instance, the branching process also optimizes infor-
mation theoretical measures at the critical point (Beggs, 2022a; Beggs & Plenz, 2003;
Haldeman & Beggs, 2005). In branching-like models, the connection strength between
units and the probability of one unit exciting another determine the dynamics and can
be tuned to criticality (Beggs & Plenz, 2003; Haldeman & Beggs, 2005; Harris, 1964),
(Section 2.1.2). This emphasizes the importance of an adequate neuronal network
structure for critical dynamics.

These models lay the foundation for the hypothesis that cortical networks operates
at or close to the critical point. Criticality could help to understand the remarkable
information-processing capabilities of the human brain. While being close to the
critical point would allow cortical networks to perform complex tasks and stay flexible,
deviations could lead to cognitive deficits (Zimmern, 2020).

Self-Organized Criticality

Even though theory showed that criticality optimizes information processing, the crit-
ical state is a finely balanced state that may be hard to achieve and maintain, partic-
ularly for large and complex systems like the human brain. Adaptive self-organization
provides plausible mechanisms for the emergence of criticality without system-wide
control (Bak et al., 1988; Bornholdt & Röhl, 2003), (Section 2.1.3). Such self-organized
criticality (SOC) can rely only on local rules. For example, a neuron grows a synapse
if its state remains unchanged or loses one if it changes in a specific time (Bornholdt &
Röhl, 2003). Such a system can evolve its structure to the critical point and maintain
it there, making criticality plausible even in large complex systems, like the human
brain (Bornholdt & Röhl, 2003; Hesse & Gross, 2014). Conversely, the failure of SOC
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might be linked to malignant neuronal dynamics, like seizure generation (Meisel et al.,
2012).

Experimental Evidence for Criticality

While the critical point is well-defined in theoretical models, researchers looked for
experimental evidence in the form of specific characteristics in neuronal data. In
particular, power laws are an essential characteristic of criticality, leading to scale-
free behavior and perturbations decaying geometrically instead of exponentially fast
(Goldenfeld, 1992), (Section 2.1.1).

On the one hand, Beggs and Plenz, 2003 found such power laws in the distribu-
tion of cascades of activated electrodes and called these cascades neuronal avalanches
(Section 2.1.4). Since then, many researchers identified power law distributions of
neuronal avalanches in cortical slices (Beggs & Plenz, 2004; Friedman et al., 2012;
Klaus et al., 2011; Shew et al., 2009, 2011; Yang et al., 2012), rats (Ribeiro et al.,
2010; Shew et al., 2011), awake monkeys (Petermann et al., 2009; Shew et al., 2011),
or humans (Priesemann et al., 2013).

On the other hand, perturbations decaying according to a power law lead to long-
range correlation both in time and across network sites (Goldenfeld, 1992; Lang-
ton, 1990). For example, long-range temporal correlations were identified in human
scalp electroencephalography (EEG) (Berthouze et al., 2010; Linkenkaer-Hansen et al.,
2001; Meisel, Bailey, et al., 2017) and intracranial EEG (iEEG) (Worrell et al., 2002),
(Section 2.1.5). Thus, this research proved the importance of long-range correlations
as a hallmark for criticality (Jensen, 2021).

In short, the brain criticality hypothesis suggests that the brain’s proximity to a
critical point can explain its information-processing and thus cognitive capabilities.
The critical point is achieved for balanced network structures, and long-ranged corre-
lations and power-law distributions provide experimental evidence for it.

Cognitive Impairment in Epilepsy

Brain criticality might help to understand cognitive impairments which are a com-
mon comorbidity in neuropsychiatric disorders. Particularly, persons with epilepsy
(PwE) often show cognitive deficits, which can adversely impact their quality of life
(Lin et al., 2012). However, there is considerable variability in the degree of cognitive
impairment between PwE, and up to 30% retain cognition close to the healthy popula-
tion (McDonald et al., 2023). The causes for these impairments can be multifactorial.
Impacting factors include the underlying etiology of the disease, such as mesial tempo-
ral sclerosis, epileptic activity like interictal epileptiform discharges (IEDs), mediated
disturbances, like disrupted sleep patterns, or even treatment-induced influences like
antiseizure medication (ASM) (Elger et al., 2004; Wodeyar et al., 2024). While these
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factors and their impacts on cognition are well established, the neuronal basis for cog-
nitive function and the cognitive heterogeneity in PwE remains largely unexplored.

However, the brain criticality framework offers a unifying explanation for this
cognitive heterogeneity in PwE. If cortical network dynamics are close to a critical
point which optimizes information processing then deviations from the critical point
could result in cognitive impairment. Specifically, both neuronal network structure
and dynamics have been proven crucial components for cognition (Bassett & Sporns,
2017; Friston, 2009; Sporns, 2010) and criticality (Beggs & Plenz, 2003; Haldeman
& Beggs, 2005; Larremore et al., 2011). Thus, deviations of either network structure
or cortical dynamics could induce drifts away from criticality and lead to impaired
cognition. These relationships to cognition will be investigated in this thesis.

Limitations of Previous Research on Brain Criticality

Despite the theoretical arguments and experimental evidence for brain criticality, some
challenges validating brain criticality and its advantages for human cortical network
dynamics remain. For instance, although theory proved the advantages of brain crit-
icality for cognition, experimental evidence remains sparse. Studies investigating this
connection were often limited to single cognitive tests, short recording duration, low
temporal resolution, or coarse spatial coverage (Kardan et al., 2023; Mahjoory et al.,
2019; Palva et al., 2013; Wasmuht et al., 2018). For example, short scalp EEG record-
ings can neither record high-frequency components nor track long-term changes in
cortical dynamics, and they are often more prone to muscle artifacts. Alternatively,
single cognitive tests might not adequately assess general cognitive function.

Particularly, the issue of short recording duration parallels one common critique
when analyzing brain criticality related measures. Short recording durations allow
only the assessment of a snapshot of the cortical state and, consequently, one point
in the parameter space with respect to criticality. However, first, cortical networks
might not always maintain the same spot in this parameter space, and second, tuning
cortical network dynamics through the parameter space is essential to draw more
robust conclusions on its proximity to criticality (Beggs, 2022b; Beggs & Timme,
2012; Mariani et al., 2022).

Variations of Spatial and Temporal Correlations

These limitations also affected research on spatial and temporal correlations (SCs and
TCs) which are measures for information integration and a hallmark of criticality
(Cavagna et al., 2010; Jensen, 2021; Linkenkaer-Hansen et al., 2001). SCs and TCs
can be extracted solely from time series and positional data and do not require the
careful setting of a threshold discerning active from inactive activity as necessary for
neuronal avalanche analysis (Beggs & Plenz, 2003; Touboul & Destexhe, 2010).

While SCs and TCs were mostly studied independently over a short time, some
studies have identified multiple mechanisms altering specifically TCs on longer time
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scales. First, TCs were found to change as a function of the sleep-wake cycle and
were especially hemmed by slow-wave activity (SWA) (Meisel, Bailey, et al., 2017;
Meisel, Klaus, et al., 2017; Xu et al., 2024). Second, external factors, like antiseizure
medication (ASM), were proven to perturb TCs (Meisel, 2020). Nonetheless, how
SCs change under these mechanisms and how SCs and TCs are interlinked remains
unexplored. Other factors could impact SCs and TCs as well. For example, epileptic
activity like interictal epileptiform discharges (IEDs) have been linked to cognitive
deficits (Ciliento et al., 2023; Devulder et al., 2024; Kleen & Kirsch, 2017; Kleen
et al., 2013; Lam et al., 2017), which might be explained by IEDs altering SCs and
TCs. However, the distinct impact of IEDs on SCs and TCs and their relationship to
criticality requires further investigation.

Furthermore, TCs were found to be heterogeneous across the cortex. Notably,
research in non-human primates showed that TCs increase along the functional infor-
mation processing hierarchy, i.e., from single sensory stimulus evaluation over input
integration to complex tasks and decision-making (Murray et al., 2014). Even though
for humans, there is evidence for TCs increasing along the functional hierarchy from
magnetoencephalography (MEG) (Golesorkhi, Gomez-Pilar, Tumati, et al., 2021) and
functional MRI (fMRI)(Raut et al., 2020), definitive evidence in iEEG is still missing
(Golesorkhi, Gomez-Pilar, Zilio, et al., 2021).

1.1 Research Hypothess

To extend previous research and overcome its limitations, like the singular assessment
of SCs or TCs in short recordings, this thesis investigates the co-variability of and per-
turbative impacts on SCs and TCs. Specifically, it evaluates the following hypotheses
in both neuronal network simulations (Chapter 4) and in iEEG data from persons
with drug-resistant epilepsy (PwDRE) (Chapter 5):

1. SCs and TCs co-vary over time.

2. In humans, TCs increase along the functional hierarchy, as proven for non-human
primates (Murray et al., 2014).

3. SCs and TCs are disrupted by the sleep-wake cycle, especially slow-wave activity.

4. Interictal epileptiform discharges perturb SCs and TCs.

5. Antiseizure medications lead to a decline of SCs and TCs.

Verifying these hypotheses could lead to an increased understanding of the interplay
of SCs and TCs with each other and with perturbative mechanisms. This could
provide valuable insights into the brain’s relative proximity to criticality in different
states and consequently help to investigate the link between brain criticality and
cognitive function. To explicitly explore the connection between cortical structure,
network dynamics and cognition this thesis will additionally investigate the following
hypotheses (Chapter 6):
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6. Groups with more severe cognitive impairments show distinct and more wide-
spread cortical thickness abnormalities.

7. Shorter TCs predict cognitive impairment.

Establishing such connections between structure, dynamics, and cognition could help
to understand if brain criticality underlies cortical function as a unifying principle.
Additionally, answering these questions could also help to improve diagnostics and
management in neurological disorders such as epilepsy, for example prediction of the
risk of epilepsy surgery (Chapter 6).

1.2 Research Methodology

To address the experimental limitations of previous studies and the critique concern-
ing brain criticality, we will investigate multi-day high-resolution iEEG recordings
from 104 persons with drug-resistant epilepsy (PwDRE) and cortex-wide structural
magnetic resonance imaging (MRI) from 124 PwDRE, together with a large cognitive
test battery of up to 16 measures from five cognitive domains, e.g., the language or
attention domain.

Our analysis is guided by a neuronal network model (Chapter 4) consisting of
excitatory and inhibitory binary neurons with distance-dependent connectivity. This
model can be tuned with respect to criticality and introduces mechanisms for slow-
wave activity, interictal epileptiform discharges, and antiseizure medication. In this
model SCs and TCs can be extracted directly from the neuronal activity. The model
will be used to justify the predictions of hypotheses 1-5. These predictions are then
tested for SCs and TCs extracted from multi-day iEEG data (Chapter 5). Specifically,
SCs and TCs are derived from the broadband high-γ power, as this has been proven to
be a proxy for the underlying neuronal network activity (Buzsáki et al., 2012; Manning
et al., 2009; Miller, 2010; Whittingstall & Logothetis, 2009). TCs are then analyzed
from regions along the visual pathway as in Murray et al., 2014 (research question
2). Slow-wave activity and interictal epileptiform discharges are scored by validated
algorithms (Reed et al., 2017) & (Quon et al., 2022) and compared to the SCs and TCs
fluctuations (research hypotheses 3 and 4). Further, antiseizure medication (ASMs)
data was gathered from the available patient data and SCs and TCs were analyzed
with respect to the ASM (hypothesis 5).

To test if cortical structure deviations correlate with cognitive impairment (hy-
pothesis 6), cortical gray matter thicknesses are extracted from MRI in PwDRE and
aligned with a large cognitive test battery (Chapter 6). To characterize the severity of
cognitive impairment, the PwDREs are grouped into cognitive phenotypes according
to International Classification of Cognitive Disorders in Epilepsy (IC-CoDE) criteria
(McDonald et al., 2023). This framework provides a comprehensive assessment of the
cognitive impairment going further than single tests by grouping patients into mini-
mal, focal, or multi-domain impaired phenotypes. Then, for each phenotype, cortical
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thickness deviations are analyzed. If the healthy cortical network structure leads to
criticality and thus optimizes cognition, cognitive impairment might show as devia-
tions from this structure. Independently, we will investigate if the cortical thickness
changes of these PwDRE can predict the risk of cognitive deterioration after epilepsy
surgery.

To link cortical dynamics with cognitive performance (hypothesis 7), TCs are
measured in PwDRE and aligned with a large cognitive test battery (Chapter 6).
Particularly, brain criticality predicts that long TCs are a sign of proximity to the
critical point and, hence, good cognitive performance. In contrast, shorter TCs could
indicate deviations from criticality, leading to impaired cognition, e.g., attention im-
pairment.

In short, this thesis has two main goals. The first goal is to provide a comprehen-
sive, model-guided analysis of SCs and TCs in cortical dynamics. The second goal is
to connect both changes in cortical structure and SCs and TCs to cognitive impair-
ment. Brain criticality guides the investigation and provides a unifying framework for
the mechanisms affecting cognition.

This thesis is structured as follows. Chapter 2 summarizes the theoretical and liter-
ature background to brain criticality and epilepsy. Chapter 3 introduces the methods
and data used throughout this thesis. The focus of Chapter 4 is to investigate SCs and
TCs in a neuronal network model. Further, SWA, IEDs, and ASMs are added as per-
turbative mechanisms on the dynamics and, consequently, SCs and TCs. Chapter 5
tests the model’s predictions and characterizes SCs and TCs in human iEEG record-
ings. The investigation focuses on the co-variability of SCs and TCs, the hierarchical
ordering of TCs, and the impact of perturbative mechanisms on them. To test the
predictions from brain criticality about cognition, Chapter 6 investigates cognitive im-
pairment in PwDRE. First, we investigate the association between cortical thickness
variations and the severity of cognitive impairment. Second, TCs are correlated with
cognitive domain impairments. Both Chapter 5 and Chapter 6 end with a section
putting the results into context with existing literature and explaining the limitations
of the respective analyses. The main discussion, particularly in the context of brain
criticality, is in Chapter 7. At the end of Chapter 7, a section provides an outlook on
potential implications for clinical applications and future research.
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Chapter 2

Foundational Concepts and
Literature Review

This chapter introduces the theoretical and experimental environment in which this
thesis is set. The first part covers brain criticality as the underlying theoretical frame-
work. The second part focuses on epilepsy, as the data analyzed later originates from
persons with epilepsy (PwE).

2.1 The Brain Criticality Hypothesis

In order to understand the brain criticality hypothesis, we first need to establish what
a critical point is. First, this is illustrated in a simple but tractable system (Sec-
tion 2.1.1). Second, the critical point’s unique benefits for information processing are
discussed within the branching processes (Section 2.1.2). The branching process will
set the stage for the model simulations in this thesis (Chapter 4). Third follows a
summary of important contributions to the field, i.e., how self-organization could lead
to criticality (Section 2.1.3), the emergence of neuronal avalanches (Section 2.1.4),
and how distant time points become correlated (Section 2.1.5). Then, the critical-
ity discussion ends in Section 2.2 with three specific contributions that inspired the
investigations in this thesis (Chapter 5).

2.1.1 Criticality in a One-Dimensional System

To set the stage, we will investigate a simple non-linear system following the line of
thought by Gross, 2021. The system may be described by only one variable x(t), which
changes over time t. To improve readability, we omit the explicit time dependency
from now on and only write x. In the context of cortical network dynamics, x could
be the average neuronal activity.

In the absence of an external stimulus, x evolves over time, and its rate of change
can be written as

d

dt
x = f(x, p) . (2.1)
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Here, f is a non-linear function describing how the current state of x influences its
change d

dtx. Further, p is a so-called control parameter. In the brain context, p

could be interpreted as the excitation-inhibition balance between the neurons, which
is thought essential for controlling activity propagation in cortical networks (Poil et al.,
2012). For example, if excitation outweighs inhibition, activity will grow. If inhibition
dominates, activity wanes eventually.

When cortical networks are in their resting state activity neither explodes nor is
completely absent. While it is an oversimplification to say the average resting activity
is constant, it is helpful to assume so for illustrative purposes, i.e., the system is at a
fixed point x∗. At the fixed point, no change over time can be observed

d

dt
x∗ = 0 . (2.2)

Consequently, the fixed point can be found by solving

f(x∗, p) = 0 . (2.3)

In an ideal scenario, the system would stay indefinitely at this fixed point if it is not
perturbed. However, the brain is constantly exposed to external stimuli and internal
changes. Therefore, we will investigate how the system behaves if subjugated to a
small perturbation δ from the fixed point. Inserting the perturbation around the
fixed point x∗ + δ into Eq. (2.1) yields

d

dt
(x∗ + δ) = f(x∗ + δ, p) , (2.4)

d

dt
δ = f(x∗ + δ, p) . (2.5)

The time derivative of the fixed point x∗ is zero due to Eq. (2.2).
To analyze this, f(x∗ + δ, p) is Taylor expanded around the fixed point

f(x∗ + δ, p) = f(x∗, p)︸ ︷︷ ︸
=0, Eq. (2.3)

+δf ′(x∗, p) +
1

2
δ2f ′′(x∗, p) +O(δ3) , (2.6)

f(x∗ + δ, p) ≈ δf ′(x∗, p) . (2.7)

Higher than first-order terms have been neglected, as they are comparably small as
long as the perturbation is small.

For example, δ = 0.01 ⇒ δ2 = 0.0001 shows that already the quadratic term is
considerably smaller than the linear. This assumption is the basis for linear stability
analysis in dynamical systems’ theory (see for instance (Strogatz, 2015)). Combining
Eq. (2.5) and Eq. (2.7) yields

d

dt
δ ≈ δf ′(x∗, p) . (2.8)
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This is a linear differential equation in δ, which can be solved using an exponential
ansatz, leading to

δ(t) = δ(0)et·f
′(x∗,p) . (2.9)

Here, δ(0) comes from an integration constant and can be fixed by knowing the initial
condition. To interpret this solution we have to ask how f ′(x∗, p) behaves:

• If f ′(x∗, p) < 0, any small perturbation decays exponentially. The system re-
turns to its fixed point, rapidly losing information about the perturbation. This
could be understood as the brain returning quickly to its resting state.

• If f ′(x∗, p) > 0, the system is unstable. Small perturbations grow exponentially,
pushing the system away from the fixed point. This scenario seems implausible
for a stable brain state as it describes dynamics that do not return to the resting
state and thus are unstable.

Critical Slowing Down

In the previous section, we have learned how the system behaves for f ′(x∗, p∗) ̸= 0.
The system was stable for f ′(x∗, p) < 0 and unstable for f ′(x∗, p) > 0. However, the
dynamics become more complex at the transition point between these two regimes,
i.e., f ′(x∗, p) = 0. This point is also called the critical point and will be the subject
of the following section.

Let us first assume that such a point exists, and we can choose p so that f ′(x∗, p∗) =

0. As f ′(x∗, p∗) = 0, one can no longer neglect the second order term in the Taylor ex-
pansion from Eq. (2.6) because the first order term vanishes. Therefore, with Eq. (2.6)
and Eq. (2.5) it follows

d

dt
δ ≈ 1

2
δ2f ′′(x∗, p) . (2.10)

This differential equation can be solved using separation of variables. However, first,
we recognize the trivial case of δ = 0, which would solve the equation. This case
would not introduce any change to the system around the fixed point and is thus not
interesting. Excluding this case, one can write

dδ

δ2
=

1

2
dtf ′′(x∗, p) , (2.11)

∫
dδ

δ2
=

1

2

∫
dtf ′′(x∗, p) , (2.12)

⇒ −1

δ
+ C =

1

2
t · f ′′(x∗, p) . (2.13)
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Figure 2.1: Dynamics at Criticality: A Power law and exponential
decay of the perturbation δ as in Eq. (2.9) and Eq. (2.14) respectively.
B Slowing of the auto-correlation function (ACF) approaching the

critical point where f ′ vanishes (Eq. (2.23)).

Here, C is an integration constant. Now, this can be solved for δ

δ(t) =
1

C − 1
2 t · f ′′(x∗, p)

. (2.14)

Notably, this solution is no longer an exponential function as Eq. (2.9) but a power
law. For t ≫ 0 it even simplifies to

δ(t) ≈ −2

t · f ′′(x∗, p)
. (2.15)

For large t, this function will always decay considerably slower than Eq. (2.9), illus-
trated in Fig. 2.1 A. Thus, the information about said perturbations, or at least parts
of the information, stays in the system for a longer time. This power law decay at the
critical point is at the root of the phenomenon referred to as “Critical Slowing Down”,
which describes the slow decay of perturbations in the vicinity of the critical point
(M. Scheffer et al., 2009). Furthermore, this power law is the root of many power laws
encountered at the critical point (Gross, 2021). We will see more examples of power
laws at the critical point in Section 2.1.4.

This example gave us an idea of the dynamics at the critical point and how pertur-
bations stay in the system for a longer time, thus leading to long-ranged correlations.
We will revisit the critical point in a more illustrative model in Section 2.1.2, discussing
further properties of the critical point and why it could be beneficial for cortical dy-
namics. Before doing so, we want to have another look at the dynamics, not exactly
at, but close to the critical point.
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Auto-Correlation Close to Criticality

While perturbations persist for a long time at the critical point, one can already
observe if a system approaches the critical point. One method for this is to look at
the signal’s auto-correlation function (ACF). The ACF assesses how similar a signal
is with a time-delayed version of itself. For a stationary process, it is defined as

ACF(τ) = E[x(t) · x(t+ τ)] . (2.16)

Here, τ is a time delay, and E[·] denotes the expectation value concerning time t.
We will now analyze the ACF of the perturbation in the vicinity of the critical

point and assume that the system is stable first, i.e., f ′(x∗, p) < 0. Therefore, we
will plug Eq. (2.9) into the definition of the ACF and later analyze what happens if
f ′(x∗, p) approaches zero.

ACF(τ) = E[δ(t)δ(t+ τ)] . (2.17)

= E
[
δ(0)et·f

′(x∗,p)δ(0)e(t+τ)·f ′(x∗,p)
]
, (2.18)

= E
[
δ(0)2ef

′(x∗,p)(2t+τ)
]
, (2.19)

= E
[
δ(0)2ef

′(x∗,p)2tef
′(x∗,p)τ

]
. (2.20)

The last exponential function term does not explicitly depend on t but only on τ .
Hence, one can pull it out of the expectation value

ACF(τ) = ef
′(x∗,p)τE

[
δ(0)2ef

′(x∗,p)2t
]
, (2.21)

= ef
′(x∗,p)τE

[(
δ(0)ef

′(x∗,p)t
)2

]
, (2.22)

= ef
′(x∗,p)τE

[
δ(t)2

]
. (2.23)

The term E[δ(t)2] does not depend on τ and thus is a constant. As τ only remains in
the exponential, the ACF decays exponentially with the time delay τ . However, the
closer the system gets to the critical point, i.e., the closer f ′(x∗, p) gets to zero, the
slower this decay becomes. This is illustrated in Fig. 2.1 B. Note that the approxima-
tion only to use first-order terms fails at the critical point.

In short, we have established another signature of critical slowing down, i.e., the
auto-correlation function decaying slower near a critical point. M. Scheffer et al., 2009
showed this similarly for a discrete system by showing the auto-correlation after one
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iteration increases as the system approaches the critical point. Another signature for
critical slowing down is an increase in signal variability (M. Scheffer et al., 2009). Such
markers of a system approaching the critical point have been successfully applied in
many fields, e.g., prediction of climate tipping points (Dakos et al., 2008), or markers
for epileptic seizure risk (Maturana et al., 2020; Meisel & Kuehn, 2012).

While this simple model can provide more, we will now be satisfied with having
understood that close to a critical point, perturbations and the ACF decay slowly,
leading to long-ranged correlations. A more thorough discussion, for example, on
which type of transition cortical networks might go through could be found in (Gross,
2021). In the next section, we will transfer these insights onto a more complex model,
which is easier to interpret in the context of cortical dynamics, the branching process.

2.1.2 The Branching Process

While the previous example was simple enough to allow for some formalism, it might
not be the most intuitive model. Describing the human brain with just one variable,
as we did in the previous section, is undoubtedly an oversimplification. Therefore,
we will now introduce a slightly more complex model that has successfully described
cortical dynamics: the branching process. This section will focus on qualitatively
discussing this model’s dynamics and its implications for information processing. This
discussion largely follows the line of thought elegantly presented by John Beggs in the
first chapter of his book The Cortex and the Critical Point (Beggs, 2022a).

The model consists of a set of units representing neurons in the brain’s context.
At each discrete time step, each active neuron can activate a number of connected
neurons in the subsequent step. Consequently, activity can branch out from a neuron,
hence the name branching process. Generally, the activation of the neurons occurs
probabilistically. The probability of activation, pi(t), at step t is determined based on
the sum of inputs a neuron receives

pi(t) =
∑
j

wij · sj(t− 1) . (2.24)

wij is the synaptic connection strength between neuron i and j, and sj(t−1) is neuron
j’s previous state, e.g., one if it was active and zero if it was inactive. Generally, the
probabilistic approach allows the model to capture the stochastic nature of neuronal
firing without exactly needing to model all inputs.

A key parameter in this model is the branching ratio, σ, which represents the
average number of neurons activated by each active neuron at each time step. It can
be formulated as the fraction of the number of offspring, nactive(t+1), to the number
of previously active neurons, nactive(t), averaged over all steps, t, (Haldeman & Beggs,
2005)

σ =

〈
nactive(t+ 1)

nactive(t)

〉
t

. (2.25)
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Figure 2.2: Branching Process: Illustration of the branching pro-
cess in the subcritical, critical, and supercritical regimes. In the sub-
critical regime (σ < 1), activity gradually decreases as it progresses
through the network, leading to a lack of correlation between distant
sites/times. In the supercritical regime (σ > 1), activity rapidly sat-
urates, losing specific information about the initial stimulus. In the
critical regime (σ = 1), activity neither vanishes nor saturates. This al-
lows for distinct activity patterns and, consequently, information flow

through the network.

This ratio fundamentally characterizes the general dynamics of the system. The
branching ratio, in particular, allows us to characterize different regimes of network
behavior, ranging from rapid decay of activity to explosive growth. In the following
sections, we will explore these dynamical regimes in more detail.

The Subcritical Regime

First, we consider the regime where σ < 1. In that regime, each active neuron leads to,
on average, less than one active neuron. In this scenario, the dynamics will eventually
halt as the number of active units progressively decreases until none remain active
(left-hand side of Fig. 2.2).

To understand the implications for information processing, consider the initial
number of active neurons as the input or stimulus to the system. Regardless of the
initial input, the dynamics will converge to zero active neurons which is a problem
for information processing. If all stimuli map to the same output (in this case, no
activity), it becomes impossible to discern different stimuli based on the system’s
response. Consequently, all information about the initial input dissipates over time.

This behavior is analogous to the exponentially fast vanishing perturbation far
from the critical point in our one-dimensional model discussed in Section 2.1.1. In
both cases, the system rapidly loses information about its initial state. This particular
regime of the branching model is called its subcritical regime.

The Supercritical Regime

Second, we examine the opposite extreme: the supercritical regime where σ > 1. In
this scenario, each active neuron produces, on average, more than one active neuron in
the subsequent time step. As a result, neural activity rapidly propagates and amplifies
throughout the network (right-hand side of Fig. 2.2).
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In the supercritical state, the stimuli get quickly amplified until most or all of the
neurons are activated. Thus, the neuronal network effectively saturates.

While this might amplify inputs, it poses a problem for information processing.
Similar to the subcritical case, all stimuli ultimately lead to the same outcome - in
this instance, a fully activated system. Consequently, distinguishing between initial
inputs becomes more difficult as the system saturates.

In the context of the one-dimensional model discussed in Section 2.1.1, this would
be a perturbation that grows uncontrollably, masking any structure in the initial
conditions. Thus, the supercritical regime (σ > 1) represents another extreme which
is unsuitable for information processing. While it does not “forget” like the subcritical
regime, it instead “over-reacts”, losing specific information through chaotic interaction
and excitation of the whole system.

The Critical Regime

Last, the critical regime can be found for σ = 1. In this state, each neuron excites,
on average, one neuron in the subsequent time step (center of Fig. 2.2). This creates
a balance between the two previously discussed extremes.

In an ideal critical system, neural activity neither vanishes completely (subcritical
regime) nor saturates the network (supercritical regime). Instead, the critical state
exhibits ongoing activity with complex activation patterns.

These characteristics can be beneficial for information processing. When a stimu-
lus is introduced into the system, it follows a trajectory distinct from other stimulis’
trajectories. This allows the system to discern various inputs even after many time
steps. Consequently, the system maintains some “memory” of the initial stimuli over
an extended period. Critical systems preserve input characteristics for prolonged
durations, unlike the rapid information loss in subcritical systems or the information-
obscuring saturation in supercritical systems. The system generally remains respon-
sive to new inputs without overreacting.

The critical state closely corresponds to the critical point in our one-dimensional
model discussed in Section 2.1.1. In that context, we can think of a stimulus as a
perturbation to the system. The closer the system is to the critical point, the slower
the information decay from this perturbation.

The critical regime, σ = 1, offers a delicate balance where the system is neither too
“forgetful” nor too “chaotic”. Hence, the critical system is well suited for maintaining
and processing complex information patterns. If the human brain also operates close
to criticality, it could explain the brain’s unique information-processing capabilities.

The Spatial Picture

While we have previously considered the propagation of activations over time, we can
also think of this process from a spatial perspective by asking how activity propagates
across the network. For example, each step could be conceptualized as a new layer in
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a feed-forward architecture. The question could be which is the last activated layer
or which output neurons are activated. This spatial view provides additional insights
into how information traverses the network in the different regimes.

In the subcritical regime (σ < 1), where each neuron in one layer excites on
average less than one neuron in the following layer, activity gradually diminishes as it
progresses through the network (left-hand side in Fig. 2.2). Consequently, information
about the initial stimulus cannot reach distant layers as the activity vanishes before
traversing the entire network. This results in a lack of correlation between distant
sites in the network.

Conversely, in the supercritical regime (σ > 1), each neuron activates more than
one neuron in the subsequent layer on average (right-hand side in Fig. 2.2). In suffi-
ciently deep networks, this leads to a rapid saturation of activity, with all neurons in
later layers becoming excited regardless of the initial input. While activity persists,
the specific information about the initial stimulus is lost due to this saturation. As a
result, the correlation between distant sites remains low, albeit for different reasons
than in the subcritical case.

The critical regime (σ = 1) presents a balanced scenario where each neuron ex-
cites approximately one neuron in the next layer (center of Fig. 2.2). In this state,
activity neither vanishes nor saturates as it propagates through the network. Con-
sequently, different stimuli in the input layer can produce distinct output patterns.
Thus, information is maintained over the network, leading to correlations between
distant sites.

In the critical regime, activity can traverse the entire network. However, it often
remains more localized for finite networks. For example, if an activity ends in a par-
ticular pathway, which particularly can occur in finite-sized systems. The pattern of
such localization is extensively studied when investigating neuronal avalanches - cas-
cades of activity that vary in size and duration. The properties of these avalanches,
including their size distribution and lifetimes, provide crucial insights into the net-
work’s dynamics. We will explore this phenomenon in more detail, along with the
first experimental observations of neuronal avalanches, in Section 2.1.4.

The spatial perspective adds to the picture of the branching processes in neu-
ral networks, particularly how information propagates and is maintained across both
time and space. It underscores the unique properties of the critical regime in main-
taining a delicate balance that allows for complex, sustained patterns of activity and
information flow throughout the network. Extensive research has been performed
for branching networks, which showed that many properties that govern information
processing are optimal at the critical state. This included the maximization of meta-
stable states (Haldeman & Beggs, 2005), transmitted information (Beggs & Plenz,
2003), dynamical range (Shew et al., 2009), and information capacity (Shew et al.,
2011).



18 Chapter 2. Foundational Concepts and Literature Review

These insights into branching processes will be particularly interesting when the
model used in this thesis is discussed in Chapter 4. In particular, spatial and temporal
correlations (SCs and TCs) will be analyzed close to the critical point.

2.1.3 Self-Organized Criticality

In the previous sections, we have discussed simple models and how information pro-
cessing can be optimized at their critical point. However, how cortical networks could
achieve such a finely balanced critical state is not fully understood. One plausible
framework is the concept of self-organized criticality (SOC) on adaptive networks
which requires only local rules to tune a system towards a critical state.

Self-organized criticality, a concept from complex systems theory, was first intro-
duced by Bak et al., 1988. The fundamental idea is that local rules, rather than
global processes, tune a system towards a critical state. This makes SOC a plausi-
ble mechanism for cortical network dynamics, as it requires only unit-level and local
neighborhood-level rules rather than system-wide coordination.

While the original SOC model involved sand piles, more illustrative examples exist
in the context of neural networks. One example is the model proposed by Bornholdt
and Rohlf, 2000, demonstrating self-organized criticality of a neuronal network.

In their model, neurons can be in one of two states, si(t) = ±1. The state of each
neuron is updated based on inputs from other neurons according to the equation

si(t+ 1) = sign

∑
j

cijsj(t)

 . (2.26)

Here, cij represents the connections between neurons, which can be cij = ±1 or cij = 0

(no connection). The network is iterated until it reaches an attractor or a maximum
number of time steps.

After the run is completed and before a new run is started, rewiring rules are
applied to drive the system towards criticality. Hence, the model has dynamics on the
neuronal network in each run and dynamics of the network structure which evolves
through update rules between runs. The key to these rules is that they are local
and consider only the history of individual neurons without requiring global network
information. Specifically for the model by Bornholdt and Rohlf, 2000, they are:

1. A neuron gains a random new link if it was in the same state throughout the
run.

2. A neuron loses a link if its state changed during the run.

3. Random noise occasionally flips the sign of a link, simulating extrinsic pertur-
bations.

Rule 1 and 2 are illustrated in Fig. 2.3 A and B, respectively. This simple algorithm
drives the system to its critical state regardless of its initial configuration. In Fig. 2.3C
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Figure 2.3: Self-Organized Criticality: A Update rule 1: A neuron
with an unchanged state gains a link (bold black). B Update rule 2:
A neuron with changed state loses a link. C Illustration of the average
connectivity K evolution (blue lines) to a critical value Kcrit (dashed
line) irrespective of the initial connectivity being subcritical Kinit sub

or supercritical Kinit sup.

this is illustrated where independent of the average initial connectivity Kinit, the av-
erage connectivity K evolves to the same value. This value has been identified as
the critical value Kcrit by Bornholdt and Rohlf, 2000. Importantly, each neuron only
needs information about its state, making it a plausible model for biological systems.
The model by Bornholdt and Rohlf, 2000 is just one example of self-organizing sys-
tems in neural contexts. For example, other models may incorporate information from
neighboring neurons (Bornholdt & Röhl, 2003) or include integrate-and-fire dynam-
ics (Meisel & Gross, 2009). However, they all share that local rules drive a system
towards a critical state, making it plausible that such processes in the human brain
could govern neuronal network plasticity and guide the system to a critical set point.

Therefore, the framework of self-organized criticality provides a compelling expla-
nation for how complex biological systems like the brain might naturally maintain
themselves near a critical point, optimizing their capacity for information processing
and adaptation.

2.1.4 Neuronal Avalanches

The critical point in neural systems offers significant benefits for information process-
ing, as we have seen in the previous discussion of simple models. To understand how
criticality manifests in neural networks, we need to introduce the concept of “neuronal
avalanches” - distinct patterns of neural activity that vary significantly in size and
duration. Generally, neuronal avalanches consist of subsequent neuronal activations
that are separated to the next avalanche by quiescent periods (Fig. 2.4A). Neuronal
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avalanches are closely linked to the critical dynamics in neural systems and provide a
means to empirically investigate the presence of criticality in the brain.

In particular, the distribution of neuronal avalanches can indicate if a system is
critical because the distribution follows a power law for critical systems (Harris, 1964;
Zapperi et al., 1995). This implies that critical systems can have extensively large
avalanches with a non-zero but decreasing probability. These power law distributions
are scale-free, meaning the avalanches have no characteristic size or length. Formally,
the probability of observing an avalanche of size S scales as

P (S) ∝ S−α . (2.27)

α is the power law exponent. For a critical branching process, theory predicts specific
values for these exponents: α = 1.5 for the avalanche size distribution and α = 2

for the avalanche duration distribution (Harris, 1964; Zapperi et al., 1995). This
power law behavior breaks down as the system deviates from criticality, with long
avalanches being unable to propagate in a subcritical (under-connected) network and
large avalanches becoming more frequent in a supercritical system, as seen in the
previous section on branching processes (Section 2.1.2).

Neuronal avalanches exhibit additional distinctive features that provide further
evidence of criticality. These include the collapse of avalanche temporal profiles onto
a single universal shape when normalized for size and duration and the emergence
of a third scaling exponent that couples the size and duration distribution exponents
(Sethna et al., 2001). These characteristics help identify criticality in neural systems.

Beggs and Plenz, 2003 were the first to find critical avalanche scaling in an ex-
perimental setting. They demonstrated that both size and duration distributions of
neural activity patterns closely matched the theoretical exponents (Fig. 2.4B), (Beggs
& Plenz, 2003). Their work inspired brain criticality research across various experi-
mental paradigms. Subsequent studies have confirmed the presence of avalanches in
vitro (Beggs & Plenz, 2004; Klaus et al., 2011; Shew et al., 2009, 2011; Yang et al.,
2012), in rats (Ribeiro et al., 2010; Shew et al., 2011), cats (Hahn et al., 2010), mon-
keys (Petermann et al., 2009; Shew et al., 2011), and even humans (Priesemann et al.,
2013).

Beggs and Plenz, 2003 also revealed the sensitivity of avalanche distributions to
pharmacological interventions, showing that the power laws break down when chem-
icals perturb neural tissue. This finding underscores the delicate balance required for
critical behavior. It provides a method for perturbing the system away from criti-
cality, an approach we will explore later in this thesis using a different modality to
characterize critical points in human neural activity.

While this thesis does not directly investigate neuronal avalanches, it does in-
vestigate the SCs and TCs both in model simulations (Chapter 4) and then human
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Figure 2.4: Neuronal Avalanches: A Neuronal avalanches, as timely,
closely coordinated neuron firing (black dots), are separated by quies-
cent periods. B First results by Beggs and Plenz showed power law
behavior for the avalanche size distribution irrespective of time bin
size. Panel B adapted from (Beggs & Plenz, 2003) Copyright 2003

Society for Neuroscience.

intracranial EEG data (Chapter 5). Thinking of the potential for avalanches to propa-
gate across extensive portions of a network and persist over extended time periods pro-
vides an intuitive example of which patterns of critical dynamics can lead to stronger
correlations between distant sites and prolonged TCs, which will be the focus of the
following parts.

2.1.5 Temporal Correlations

In the simple model in Section 2.1.1, we observed that perturbations decay according
to a power law at the critical point. This absence of a dominant timescale indicates
scale-free behavior, mirroring the avalanche dynamics where events could occur at
any size up to the system limit, with decreasing but non-zero probability. In the
temporal domain, this scale-free nature implies the potential for long-range temporal
correlations (TCs) without a characteristic scale.

A seminal study by Linkenkaer-Hansen et al., 2001 investigated whether TCs in
human brain signals exhibit power law behavior, as expected in scale-free, critical
systems. Their research used magnetoencephalography (MEG) and scalp electroen-
cephalography (EEG) data, with emphasis on the α-frequency band (8 Hz - 13 Hz).
This frequency range is prominently observed during wakefulness and closed eyes.

At the center of their analysis was the examination of the auto-correlation function
(ACF) of the signal. The ACF quantifies how similar a signal is to itself at different
time lags. Their hypothesis posited that if the system exhibits scale-free critical
dynamics, the ACF should decay following a power law rather than an exponential
decay characteristic of systems with a dominant timescale (see Section 2.1.1).

The results from Linkenkaer-Hansen et al., 2001 indeed showed that the ACF of
the α-band amplitude fluctuations was well-fitted by a power law both in MEG and
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Figure 2.5: Temporal Correlations: A Auto-correlation functions
of human α-band power (empty dots and crosses) follow a power law
(solid lines) in MEG and B EEG data. Surrogate data (black dots)
does not show this behavior. Reprinted with from (Linkenkaer-Hansen

et al., 2001) [CC BY 4.0].

scalp EEG data (Fig. 2.5 A and B respectively). This finding provided evidence that
scale-free dynamics might govern human brain dynamics, as one would expect at a
critical point, and that long-range TCs emerge naturally in this state.

Linkenkaer-Hansen et al., 2001 employed detrended fluctuation analysis (DFA) as
a complementary method to further validate their ACF findings. DFA helps identify
long-range correlations in time series data by analyzing the self-similarity parameter,
which characterizes the degree of correlation over different time scales and has been
proven to be more robust if non-stationarities can be found in the data. The study’s
DFA results corroborated the ACF findings, confirming the presence of robust power
law scaling in α oscillations across different subjects and conditions. A more detailed
explanation of DFA can be found in the review by Hardstone et al., 2012.

While Linkenkaer-Hansen et al.’s study provided robust evidence of temporal scal-
ing in brain activity through ACF analysis, they also highlighted the need for more
fine-grained intracranial EEG data to better understand spatial and temporal correla-
tions. They suggested that high-resolution techniques such as intracranial recordings
would be necessary to capture the spatial dynamics and how they interact with tem-
poral structures across different brain regions (Linkenkaer-Hansen et al., 2001).

Building on these results, this thesis will further investigate TCs using ACFs. Our
approach in Chapter 5 will examine the decay of ACFs without assuming a specific
form (power law or exponential), allowing for a more general characterization of the
TCs structure. Furthermore, responding to call of Linkenkaer-Hansen et al., 2001
for spatiotemporally high-resolved data, we will also investigate the decay of spatial
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correlations (SCs) and TCs in human brain dynamics in Chapter 5.

2.2 Foundational Studies on Temporal Correlations

The previous sections introduced the concept of brain criticality and its potential to
explain the human brain’s remarkable information-processing capabilities. We have
identified long-range SCs and TCs as hallmarks of a critical state, providing measur-
able indicators of criticality in neural systems.

In the following sections, we will explore key studies that have employed these
measures to investigate brain criticality. These selected publications have been in-
strumental in shaping our understanding of critical phenomena in neural systems and
have directly inspired the questions addressed in this thesis.

2.2.1 Along the Functional Hierarchy

The previous sections addressed criticality and long-range TCs as general properties
of the brain. However, the brain is not a homogeneous structure. Expecting a single
parameter to fully describe the complexity of cortical dynamics would be an oversim-
plification.

A study by Murray et al., 2014 provided evidence that TCs are distributed het-
erogeneously across the cortex. Their research focused on single-neuron spike trains
in non-human primates, characterizing the timescale at which the ACF of these spike
trains decayed. They call TCs the “intrinsic timescale”, obtained from the decay rate of
fitting an exponential to the ACF (Murray et al., 2014). Notably, Murray et al., 2014
excluded the first few lag values of the ACF to account for neuronal refractoriness,
i.e., the time period a neuron needs to be able to fire again.

In particular, Murray et al., 2014 examined five specific regions along the visual
pathway, arranged in order of increasing functional hierarchy (Fig. 2.6 A and B):

1. Medial-temporal area in visual cortex (MT),

2. Lateral intraparietal area in parietal association cortex (LIP),

3. Lateral prefrontal cortex (LFPC),

4. Orbitofrontal cortex (OFC),

5. Anterior cingulate cortex (ACC).

Their key finding was a systematic increase in TCs along this functional hierarchy
(Fig. 2.6 C and D). This result demonstrated the heterogeneity of TCs but also re-
vealed the functional hierarchy as an underlying organizational principle for TCs.
They also investigated two somatosensory areas with consistent findings (Fig. 2.6).

The authors interpreted their findings in the following way: Lower regions in the
hierarchy, responsible for processing dynamic stimuli, need to adjust to rapidly chang-
ing inputs. Thus, correlations with previous inputs would not be beneficial. However,
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higher regions tasked with integrating diverse inputs and improving signal-to-noise
ratios can leverage longer TCs to integrate information over extended periods. In
short, areas associated with more complex tasks require longer TCs and short TCs
might benefit early processing of fast changing stimuli (Murray et al., 2014).

While Murray et al., 2014 did not explicitly frame their findings in terms of brain
criticality, their results align well with the criticality hypothesis. The increase in
long-range TCs with increased functional complexity suggests optimized information
processing capabilities for complex problems closer to the critical point. In Chap-
ter 5, a similar analysis is performed in human intracranial EEG recordings, and in
Chapter 6 TCs are linked to task performance.

2.2.2 Across Vigilance States

While the previous section demonstrated the spatial heterogeneity of TCs across brain
regions, a natural follow-up question is whether TCs also exhibit temporal variability.
A particularly intriguing aspect of this question concerns the changes in TCs between
wakefulness and sleep.

Meisel, Klaus, et al., 2017 addressed this question by examining TCs across differ-
ent vigilance states in rats. Using multi-unit recordings, they investigated how TCs
are modulated during non-rapid eye movement (NREM) sleep, rapid eye movement
(REM) sleep, and wakefulness. Their findings show a significant disruption of TCs
during NREM sleep compared to wakefulness and REM, but no measurable difference
between wakefulness and REM (Fig. 2.7).

Extending their analysis to sleep deprivation, Meisel, Bailey, et al., 2017 showed
progressively shorter TCs for prolonged wakefulness. This suggested a relationship
between vigilance state and neuronal TCs.

To improve the understanding of the mechanism behind these changes, they in-
vestigated slow wave activity (SWA), a characteristic feature of the NREM slow-wave
sleep (SWS) (Meisel, Klaus, et al., 2017). They found more frequent SWA during pro-
longed wakefulness. Furthermore, excluding these slow waves from the data restored
TCs to the levels observed during wakefulness. These findings were corroborated by
a network model demonstrating TCs collapse when neurons collectively go offline, a
phenomenon proposed to underlie the slow-wave signals observed in EEG (Vyazovskiy
et al., 2011).

The study by (Meisel, Klaus, et al., 2017) highlights that signatures of criticality,
such as long-range TCs, can be disrupted by other neurophysiological mechanisms.
This underscores the need for rigorous analysis accounting for confounding factors on
TCs, like SWA.

Therefore, this thesis will account for different mechanisms affecting neural dynam-
ics, including SWS. For example, SWA will be incorporated into the model (Chap-
ter 4), and the human iEEG data will be analysed in and out of SWS (Chapter 5).
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Figure 2.6: Temporal Correlations Along the Cortical Hierarchy: A
The investigated areas in the non-human primate brain. B Hierar-
chical ordering of these regions. C Auto-correlation functions for each
subject and each area. D Summary of TCs (intrinsic timescales) show-
ing increased TCs with increasing functional hierarchy. Reproduced

with permission from Springer Nature (Murray et al., 2014).
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Figure 2.7: Temporal Correlations Across Vigilance States: A The
ACF during NREM sleep visually decays quicker than during REM
sleep or wakefulness. B This manifests in significantly shorter decay
rates of the ACF during NREM. Reprinted from (Meisel, Klaus, et al.,

2017) [CC BY 4.0].

2.2.3 Impacts of Antiseizure Medication

In their seminal study Beggs and Plenz, 2003 demonstrated that pharmacological in-
terventions can impact cortical dynamics, shifting them away from the critical point
(Section 2.1.4). Shew et al., 2009 later confirmed and extended these findings, showing
that the dynamical range of the network is maximal in the pharmacologically unper-
turbed state. These studies showed that external perturbations could induce shifts
away from criticality.

Meisel, 2020 showed this for the first time to human cortical dynamics. Meisel,
2020 investigated intracranial electroencephalography (iEEG) recordings from persons
with drug-resistant epilepsy (PwDRE) undergoing antiseizure medication (ASM) ta-
pering, which is standard in the presurgical evaluation for PwDRE (see Section 2.3).
This approach allowed Meisel, 2020 to examine the effect of pharmacological changes
on TCs and activity cascades in human cortical dynamics.

Meisel, 2020 defined TCs as the half-width at half-maximum of the ACF in the
high-γ band (50-100 Hz), a frequency range known to correlate strongly with the
underlying neuronal firing (Manning et al., 2009; Miller, 2010; Nir et al., 2007; Whit-
tingstall & Logothetis, 2009). Comparing TCs between days of lowest and highest
ASM load showed that higher ASM loads were associated with shorter TCs (Fig. 2.8).

Furthermore, Meisel, 2020 demonstrated that interictal epileptiform discharge
(IED) cascades (see Section 2.3.2 for details on IEDs) tended to be shorter during
periods of high ASM loads. This suggests that increased ASM levels inhibit activity
spread across the neural network.

Meisel, 2020 concluded that ASMs drive brain dynamics toward a subcritical state,
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Figure 2.8: Temporal Correlations Under Antiseizure Medication: A
ACF for four patients exhibit quicker decline under higher antiseizure
medication load (here AED). B In the population, the ACF decay
rate was significantly lower under higher ASM loads. Reprinted from

(Meisel, 2020) [PNAS license].

and reduce the risk of widespread neuronal excitation. This conclusion was supported
by a neuronal network model presented in the same work, which incorporated ASM-
like mechanisms that reduced the effective connectivity of the network, leading to
dynamics subcritical (Meisel, 2020).

These insights helped to understand how ASMs modulate cortical dynamics and
will be incorporated into our network model as well (Chapter 4). Moreover, Chapter 5
aims to confirm and extend (Meisel, 2020) experimental findings on TCs also to SCs,
utilizing a significantly larger dataset to provide a more comprehensive understanding
of ASM effects on cortical criticality.

2.3 Epilepsy

The following part of the background will focus on epilepsy, as the data used in
this thesis stems from persons with epilepsy (PwE). First, a general introduction to
epilepsy is given; how it is classified, and which comorbidities or signatures are found
in epilepsy. Then, we will turn to the treatment options for epilepsy. The focus will
be on antiseizure medication (ASM) and epilepsy surgery with its presurgical moni-
toring as both will be important to understand the data presented in Chapters 5 and 6.

Epilepsy is a neurological disorder characterized by the tendency of reoccurring,
unprovoked seizures, also called ictal events. The international league against epilepsy
(ILAE) defines an epileptic seizure as “a transient occurrence of signs and/or symptoms
due to abnormal excessive or synchronous neuronal activity in the brain” (Fisher et al.,
2014). The ILAE then defines epilepsy as “[...] a disorder of the brain characterized
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by an enduring predisposition to generate epileptic seizures [...]” (Fisher et al., 2014)
and “[...] requires the occurrence of at least one epileptic seizure [...]” (Fisher et al.,
2014). This definition distinguishes epileptic seizures from those caused by acute brain
perturbations, such as toxin exposure, stroke, or traumatic brain injury (Asadi-Pooya
et al., 2023). These acute seizures are not expected to recur if the underlying causes
are removed.

Epilepsy affects approximately 1% of the global population, indepedent of demo-
graphic and social boundaries (Fiest et al., 2017). The impact of epilepsy extends
beyond seizures, encompassing a range of comorbidities that significantly affect the
quality of life of PwE (Asadi-Pooya et al., 2023):

1. Cognitive impairments, e.g., affecting memory, attention, and executive func-
tions.

2. Psychiatric disorders, e.g., higher prevalence of depression, anxiety, and psy-
chosis.

3. Sleep disturbances, e.g., insomnia and sleep apnea, are common.

4. Social challenges, e.g., stigma, reduced employment opportunities, and limita-
tions on driving.

5. Physical health issues, e.g., increased risk of fractures after seizures, cardiovas-
cular diseases, and metabolic disorders.

In particular, this thesis will discuss cognitive impairments together with TCs (Chap-
ter 6).

In addition to these comorbidities, epilepsy is associated with higher mortality
rates. A notable example is sudden unexpected death in epilepsy (SUDEP), which
occurs at a rate 23 times higher than sudden death in the general population (Saetre
& Abdelnoor, 2018). This shows the importance of properly diagnosing epilepsy and
providing treatment to the PwE.

The following first introduces specific types of epilepsy and their etiological factors.
Second, interictal epileptiform discharges (IEDs) are discussed. IEDs are epileptic
activities distinct from seizures. Finally, treatment options are reviewed, beginning
with a general overview before delving into more detailed discussions of antiseizure
medications and epilepsy surgery. This section aims to provide an overview of epilepsy
in the context of the data and analysis employed in this thesis (Chapters 5 and 6).
It does not aim to be complete. The interested reader can find an overview of the
disease with more detail in Asadi-Pooya et al., 2023 and an extensive view of the
human brain’s electrical signals and epilepsy, for example, in Zschocke and Hansen,
2023.

2.3.1 Epilepsy Classification

The ILAE provides a guideline for epilepsy diagnosis and characterization into epilepsy
syndromes based on seizure types, epilepsy types, and etiology (I. E. Scheffer et al.,
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2017) (Fig. 2.9).

Seizure Types

First, seizures are characterized based on their onset (Fisher et al., 2017):

Focal seizures start in only one brain hemisphere. PwE with focal seizures can
retain awareness or show impaired awareness. While the onset is localized, these
seizures can still develop into seizures affecting both hemispheres.

Generalized seizures involve both hemispheres at seizure detection. The ma-
jority of generalized seizures lead to impaired awareness or loss of consciousness.

Unknown onset seizures are labeled all seizures that can not be classified as
either focal or generalized, for example, if no record of the seizure onset exists
or the onset was obscured by other artifacts

Relation to Brain Criticality: Seizures have been investigated in the context of
brain criticality. For example, previous research demonstrated that signs of criticality
are lost during seizures, potentially suggesting that seizures are a phase transition into
the supercritical regime (Meisel & Kuehn, 2012; Meisel et al., 2012). Additionally, the
epileptic tissue has been shown to show extended TCs in interictal dynamics, hinting
at the tissue being closer to criticality and thus also closer to a phase transition
towards supercritical, potentially seizure, dynamics (Monto et al., 2007).

Epilepsy Types

As the second level, the epilepsy type needs to be classified:

Focal epilepsy: Seizures originate in one or multiple specific brain areas or
only involve one hemisphere. In the interictal EEG, one can typically find focal
discharges (Section 2.3.2), (Fisher et al., 2017).

Generalized epilepsy: Seizures start and engage both hemispheres, resulting
in various seizure types, which mostly include absence, myoclonic, tonic-clonic
seizures (Asadi-Pooya et al., 2023). Generalized epilepsy diagnosis can be sup-
ported by finding typical interictal EEG discharges, e.g., generalized spike-waves
(Fisher et al., 2017).

Combined generalized and focal epilepsy: Both focal and generalized
seizures can be found. This is an infrequent type of epilepsy that can be chal-
lenging to diagnose and treat (Asadi-Pooya et al., 2023).

Unknown: Used as a type if the epilepsy type could not be determined, typi-
cally due to missing information (Asadi-Pooya et al., 2023).
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Figure 2.9: Epilepsy Diagnosis: The ILAE proposed this pathway in
the epilepsy diagnosis. Reprinted with permission from (I. E. Scheffer
et al., 2017) Copywright 2017 International League Against Epilepsy.

At the third level, the patient’s specific epilepsy syndrome is classified. This classifica-
tion is based on the seizure type and epilepsy type but also further etiological factors
(Fig. 2.9), (I. E. Scheffer et al., 2017). The ILAE provides a comprehensive list of
epilepsy syndromes, for example, in I. E. Scheffer et al., 2017.

2.3.2 Interictal Epileptiform Discharges

The interictal, i.e., between seizures, EEG can help identify epilepsy and its type.
For example, if a person is referred to a doctor after their first seizure, an EEG
recording can help to investigate if there is a risk for reoccurring seizures. If the
EEG is abnormal, the risk for reoccurring seizures increases by 40%, and if so-called
interictal epileptiform discharges (IEDs) are found, the risk increases by up to 60%
making the diagnosis of epilepsy more likely (Fisher et al., 2017).

These IEDs are brief, abnormal electrical events, which are characterized as spikes
or sharp waves, which last for (20-70) ms and (70-200) ms respectively (Fig. 2.10),
(Tatum, 2022). In scalp EEG, IEDs are characterized by an abrupt changing elec-
trical potential different from the background activity, which then also disrupts the
background activity, i.e., pre-IED and post-IED EEG activity is qualitatively different
(Kural et al., 2020; Zschocke & Hansen, 2023) (Fig. 2.10 A).

IEDs are found in about a third of the recordings employed for individuals coming
for diagnostics after first seizures, making them an important marker for epilepsy
(Tatum, 2022). While they can indicate the potential origin of seizures, the location
of IEDs does not necessarily coincide with the origin of focal seizures, particularly
those observed in scalp EEG (Tatum, 2022). However, IEDs can help to identify
the type of epilepsy, e.g., generalized spike-waves are a sign of generalized epilepsy
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Figure 2.10: Interictal Epileptiform Discharges (IEDs): A Clinical
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in contrast to focal IEDs, which can be associated with focal epilepsy (Asadi-Pooya
et al., 2023).

In short, IEDs are short abnormal patterns found in PwE, indicative of the dis-
ease. We will later investigate if the disruption of activity through IEDs can impact
markers for criticality, i.e., SCs and TCs, by including IED-like activity in the model
(Chapter 4), and investigating intracranial EEG data showing IEDs (Chapter 5).

2.3.3 Treatment Options

Epilepsy treatment typically focuses on controlling seizures with the main goal of
removing any seizure risk or at least reducing it significantly. The main treatment
options include (Asadi-Pooya et al., 2023):

1. Antiseizure medications

2. Surgical interventions

3. Dietary therapies (e.g., ketogenic diet)

4. Neurostimulation devices (e.g., vagus nerve stimulation, deep-brain stimulation)

The choice of treatment depends on factors such as the type and frequency of seizures,
the underlying cause of epilepsy, and the individual patient’s characteristics. Gener-
ally, the goal is to achieve optimal seizure control, improve quality of life, and reduce
the risk of SUDEP. ASMs are often the first-line and most common treatment for
most epilepsy syndromes as they can achieve seizure control in approximately 70% of
PwE (Brodie et al., 2012).

Antiseizure Medication

Antiseizure medications (ASMs) form the cornerstone of epilepsy management. These
medications aim to control and prevent seizures while minimizing side effects.
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They work through various mechanisms to reduce seizure activity in the brain.
While the precise mechanisms are not fully understood for all ASMs, they generally
are categorized into three main groups:

Ion channel modulators: These medications reduce neuronal excitability by
modulating the function of ion channels in the brain. For example, Carba-
mazepine and Phenytoin primarily target sodium channels, helping to stabilize
neural membranes and prevent the rapid, excessive firing of neurons that occurs
during seizures (Bialer & White, 2010; Sankar & Holmes, 2004).

GABAergic drugs: These medications enhance the inhibitory effects of gamma-
aminobutyric acid (GABA), the primary inhibitory neurotransmitter in the
brain. Drugs like Topiramate and Benzodiazepines fall into this category, damp-
ening excessive neuronal excitation and reducing the likelihood of seizure occur-
rence (Bialer & White, 2010).

Multiple/unique mechanisms: Some ASMs, such as Levetiracetam, work
through multiple or unique mechanisms that do not fit neatly into the above
categories. Levetiracetam, for instance, binds to synaptic vesicle protein 2A
(SV2A), modulating neurotransmitter release (Lynch et al., 2004).

The ASM choice depends on various factors, including seizure type, epilepsy syn-
drome, patient age, comorbidities, and potential drug interactions. Treatment typi-
cally begins with monotherapy, progressing to alternative medications or polytherapy
(Asadi-Pooya et al., 2023).

Besides seizure control, ASMs can impact, for instance, sleep patterns, cognitive
function, and mood. For example, some ASMs may cause insomnia, e.g., Lamotrogin,
or aggressiveness, e.g., Levetiracetam, while others might impair cognitive functions
like memory or language (Aldenkamp & Baker, 2001; Sankar & Holmes, 2004; Strzel-
czyk & Schubert-Bast, 2022). The tolerability varies among ASMs and individuals,
necessitating careful monitoring and potential adjustments to treatment regimens.
For example, Valproic acid is avoided in individuals of childbearing age due to risks
for the development of their children (Asadi-Pooya et al., 2023).

This thesis will investigate the effect of ASMs on cortical dynamics by introducing
them into our model (Chapter 4) and testing their effects on SCs and TCs in human
intracranial EEG (Chapter 5). This investigation aims to provide a more compre-
hensive understanding of how ASMs act in neuronal networks, potentially informing
future treatment strategies.

Epilepsy Surgery

Despite advancements in ASM development, drug-resistant epilepsy (DRE) remains a
significant challenge in epilepsy management, as approximately one-third of patients
with epilepsy continue to experience seizures despite ASM treatment (Brodie et al.,
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2012). This fraction of DRE remained stable over the last years despite the introduc-
tion of new ASMs with new mechanisms of action, thus emphasizing the complexity of
epilepsy and the need for alternative treatment approaches (Asadi-Pooya et al., 2023;
Löscher et al., 2020).

For focal epilepsy, epilepsy surgery is recognized as the most cost-effective treat-
ment option (Jehi et al., 2022; Lamberink et al., 2020; Ryvlin et al., 2014). For these
individuals, the primary goal of surgery is to eliminate seizures by disconnecting or
removing the seizure onset zone (SOZ). However, not all patients with focal epilepsy
are suitable candidates for resective surgery, even when the SOZ can be identified. For
instance, if the affected area overlaps with critical functional regions, such as those
responsible for speech, resection might impair the patient’s quality of life. In such
cases, the risks of surgery can outweigh the potential benefits.

Also, for generalized epilepsy, surgery can be an option. However, the approach is
typically palliative rather than curative, i.e., the aim is to reduce the frequency and
severity of seizures and improve the patient’s quality of life (Ryvlin et al., 2014). An
example of such a surgery is a callosotomy where the corpus callosum, the band of
fibers connecting the brain hemispheres, is severed to prevent the spread of seizures
between the hemispheres (Ryvlin et al., 2014).

A comprehensive evaluation is required to localize the seizure onset zone (SOZ) and
the epileptic network and identify if a PwDRE is a candidate for surgery. Typically,
this evaluation involves a series of diagnostic tests and monitoring procedures, referred
to as presurgical monitoring. This monitoring can include invasive and non-invasive
tests, such as MRI imaging, neuropsychological assessments, and long-term video-
iEEG monitoring (Asadi-Pooya et al., 2023). For example, MRI images are used to
examine if there are lesions in the brain that could cause the seizures, i.e., epileptogenic
lesions. Furthermore, neuropsychological assessments can help to identify cognitive
impairments as comorbidities to epilepsy and can track cognitive changes before and
after the surgery. Moreover, long-term video-iEEG monitoring, while having major
complication rates up to 10% (Jehi et al., 2021), can provide highly resolved data of
the brain activity with excellent signal-to-noise ratio and a precise spatial resolution
(Parvizi & Kastner, 2018). Additionally, the monitoring can be used to provoke
seizures under controlled conditions, for instance, by tapering ASMs, which can give
clinicians a better estimate of the origin of the seizures and their progression through
the brain.

Epilepsy surgery leads to seizure freedom in about half the patients with focal
epilepsy after ten years (De Tisi et al., 2011) and has low mortality rates when per-
formed in specialized centers (Ryvlin et al., 2014). This shows that epilepsy surgery
can be a promising solution for PwDRE. However, it remains underutilized due to
factors like the lack of awareness by the treating physicians and thus missing referral
of the patients to specialized centers (Asadi-Pooya et al., 2022, 2023). Furthermore,
epilepsy surgery still has a considerable rate of failure to control seizures completely,
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partially due to miss-classified SOZs. Thus, the search of markers for the SOZ (Bar-
tolomei et al., 2008; Gunnarsdottir et al., 2021; A. Li et al., 2021; Lundstrom et
al., 2021; Weiss et al., 2015), the success chance of surgery (Fitzgerald et al., 2021;
Frauscher, 2020; Lundstrom et al., 2021; Miron et al., 2023), and cognitive risks of
the surgery (Baxendale & Thompson, 2020; Busch et al., 2021; Miron et al., 2024) is
still in the focus of research.

In this thesis, we will utilize data stemming from the presurgical evaluation. In
Chapter 5, we will investigate intracranial EEG data with brain criticality connected
markers, i.e., SCs and TCs, to better understand cortical dynamics. We will leverage
the ASM tapering in the presurgical monitoring as “active” perturbation of cortical
dynamics and additionally investigate how IEDs as epileptic signals affect cortical
dynamics. Bringing our research closer to clinically relevant questions, cortical thick-
nesses detected with MRI will be investigated to identify regions of special interest
for predicting cognitive outcomes after surgery. Additionally, we will integrate our
insights about TCs with the cognitive profiles of the patients to search for an over-
arching link between brain dynamics and cognitive performance (Chapter 6). Before
investigating this data, the next chapter introduces the datsets and methods used
throughout this thesis.
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Chapter 3

Materials and Methods

This chapter aims to introduce the datasets and methods used throughout this thesis.
First, a branching-process-like neuronal network model which can be tuned around
criticality is defined. This model incorporates three mechanisms which in humans can
affect cortical dynamics and are known to be linked to cognition: Slow-wave activity
(SWA), interictal epileptiform discharges (IEDs), and antiseizure medication (ASM)
(Section 3.1.1).

Second, we define spatial and temporal correlations (SCs and TCs) both in the
model and for later calculation in human intracranial EEG (iEEG) dynamics (Sec-
tion 3.3 and Section 3.2).

Third, we describe the two independent iEEG datasets on which the human SCs
and TCs structure will be analyzed (Section 3.4). Additionally, the methods to extract
SWA, IEDs, and ASMs in the human data are introduced.

Lastly, the methods for two studies investigating the relationship between cognitive
performance and cortical data are introduced (Section 3.9) in order to link predictions
from brain criticality with cognitive data. The first study includes cortical thickness
patterns extracted from MRI data together with different levels of cognitive impair-
ment. The second study aims to test if short TCs are linked to cognitive impairment
in patients with epilepsy.

3.1 Model

The model analyzed here is an extension of the model from (Larremore et al., 2014),
incorporates parts from (Meisel, 2020; Meisel, Klaus, et al., 2017; Müller & Meisel,
2023) and was previously reported in (Müller et al., 2024). The model consists of N =

1024 neurons arranged on a 2-dimensional equidistant grid with periodic boundary
conditions (Fig. 3.1 A). The neurons are all-to-all connected, and the initial connection
strengths are drawn from a uniform distribution between 0 and 1. Each connection
strength wij between neuron i and neuron j is then scaled by a distance-dependent
Gaussian profile

exp−
r2ij

2σ2 , (3.1)
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Figure 3.1: Network Topology: A Excitatory (green) and inhibitory
(magenta) neurons are arranged on a 2-d lattice with periodic bound-
ary conditions, i.e., connections leaving on one side come back in on the
opposite side. B Gaussian profile modifying the connection strength

based on the distance between neurons as in Eq. (3.1) for σ = 4.

where rij is the distance between the neurons and σ is the scaling width of the profile,
which was set to σ = 4 as in (Müller & Meisel, 2023; Yger et al., 2011; Yu et al., 2014).
The Gaussian profile for σ = 4 is shown in Fig. 3.1 B, and it is balanced between all
neurons being disconnected and all neurons being almost equally strongly connected.
Furthermore, self-connections are omitted. Lastly, α = 20% of the neurons are ran-
domly set to be inhibitory by multiplying their outgoing connection strengths with
the factor −1. An active inhibitory neuron decreases the firing chance of connected
neurons. The other 80% are kept as excitatory neurons (Fig. 3.1 A). An excitatory
neuron increases the firing chance of neurons to which it is connected. In general,
the network can be tuned from a low to a high connected state by multiplying all
connections by the same factor.

The dynamics of the neurons are probabilistic and governed by the inputs they
receive from other neurons. Each neuron can at time t either be active si(t) = 1 or
inactive si(t) = 0. At the next time step, t+1, a neuron will become active based on
its inputs with probability

si(t+ 1) =


0,

∑
j wijsj(t) < 0 ,

1,
∑

j wijsj(t) > 1 ,∑
j wijsj(t),

∑
j wijsj(t) ∈ [0, 1] .

(3.2)

Additionally, one neuron is set to be active in each of the maxt = 1000 time steps
as background noise. This background noise could be interpreted as external stimuli
or internal brain states that are not explicitly tracked.
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3.1.1 Perturbative Mechanisms

Implementing biologically plausible mechanisms that change the dynamics can be
valuable addition to the model. These mechanisms can help to generate specific hy-
potheses that can be tested in experiments. Therefore, we introduce three perturbative
mechanisms in our simulations:

1. Introducing random off-periods represents slow-wave activity (SWA) found pre-
dominantly in deep sleep stages. In particular, with probability pOff all neurons
remain quiescent at a time step similar to the discussion in (Meisel, Klaus, et al.,
2017; Vyazovskiy et al., 2011).

2. Interictal epileptiform discharges (IEDs) are introduced in the model as local
perturbations by setting a random neuron and its local neighborhood (20% of
the network) to be active. This process happens with probability pIED.

3. Antiseizure medications are modelled by reducing the outgoing connections of
excitatory neurons by the factor fexc. This mechanism is based on the action
mechanism of ion-channel blockers (Meisel, 2020). At the same time, one could
also increase the inhibitory connection strength to model GABAergic drugs.
Meisel, 2020 has shown that both mechanisms lead to quantitatively similar
changes in the dynamics.

All results for a set of parameters are averaged over 1000 simulation runs.

3.2 Quantification of Temporal Correlations

To characterize the models and later the human iEEG dynamics we investigated TCs
as they are measures for information maintenance and closely linked to criticality,
(Jensen, 2021; Linkenkaer-Hansen et al., 2001; Meisel, Klaus, et al., 2017), (Sec-
tion 2.1). Generally, TCs characterize the decay speed of the signal’s auto-correlation
function (ACF). If the ACF decays slowly, information about past states remains for
longer times in the system, and thus, TCs are long. In contrast, for a quick decay of
the ACF, TCs remain short. TCs are defined as in (Müller et al., 2024).

In detail, to extract TCs in the model, first, the ACF of the average neuron fir-
ing in the model is calculated for the entire simulation run (Fig. 3.2A). Second, the
baseline ACF at high lags is extracted, i.e., the median between 1/3 and 1/2 of the
whole ACF length. This accounts for potential offsets in the ACF and discards the
errors at the end of the ACF originating from the finite time estimation of the ACF.
Third, the half maximum between the baseline and the first lag value is calculated,
dashed-doted line in Fig. 3.2 A. The zeroth lag value is excluded from the analysis
as it is one by definition and not changed by random background noise. This will
be particularly important for the iEEG data in Chapter 5 and Chapter 6, which has
inherent noise. Last, TCs are defined as the first lag value when the ACF drops be-
low its half maximum (red dot in Fig. 3.2 A). Essentially, TCs are similar to the half
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Figure 3.2: Definition of Spatial and Temporal Correlations (SCs
and TCs): A TCs (red dot) are defined as the first lag value when the
ACF (gray line) drops between half the value between the first lag and
the median between 1/3 and 1/2 of the whole ACF length (dashed-
doted line). B SCs are defined by the cross-correlation function in
two ways. The first is analog to TCs (SCHWHM, red dot), and the
second is the area under the curve (AUC) in a predefined distance

range (SCAUC, blue shaded area).

width at half maximum of the ACF. Due to the exclusion of the zeroth lag value, the
minimal value of TCs is one lag and not zero.

In contrast to the model, TCs in the iEEG data were extracted from the fluctu-
ations of the high-γ power as this has been shown to serve as a proxy for the spa-
tiotemporal population spike rate variation near an electrode (Manning et al., 2009;
Miller, 2010; Nir et al., 2007; Whittingstall & Logothetis, 2009).

Following previous work, the channel-wise median high-γ power (56-96 Hz) was
calculated every 125 ms using Welch’s method with a Hanning window (Honey et al.,
2012; Meisel, 2020; Müller & Meisel, 2023; Müller et al., 2024). As high-γ power was
approximately log-normally distributed, it was normalized by taking the logarithm
(Fig. 3.3).

Auto-correlation functions were then calculated for each channel in 2-minute seg-
ments with 90 seconds overlap. Multiple ACFs from different times were aggregated
by the median. From these aggregated ACFs, TCs were then extracted similar to
the model (Fig. 3.2 A). The baseline of the ACF was calculated as the average value
between 1/3 and 1/2 of the 2-minute segment, i.e., 40-60 seconds. Estimation of
TCs are qualitatively robust against choosing different baselines as demonstrated in
Suppl. Fig. 4 of (Müller & Meisel, 2023). The time resolution of the high-γ power
time series was 125 ms, so the smallest lag value, and thus the smallest possible TC
value, was also 125 ms.

3.3 Quantification of Spatial Correlations

Similar to sustained information over extended time frames, information needs to
travel between distant regions, and thus, correlation between sites is required. This
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Figure 3.3: Distribution of High-γ Power: A Raw high-γ power of
one exemplary channel with log-normal distribution fitted to the data
and B log10(high-γ power) with normal distribution fitted to the data.

can be characterized by SCs, which characterize how the information decays over
distance. SCs have been linked to criticality and are predicted to be maximal at the
critical point, (Cavagna et al., 2010), (Section 2.1). Generally, SCs characterize the
decay of the cross-correlation function (CCF) between two neurons or channels with
respect to their distance. If the CCF decays slowly, information about the state of
one neuron is maintained for longer distances, and thus, SCs are long and vice versa
for a quick decay of the CCF. SCs are defined as in (Müller & Meisel, 2023).

In the model, the activity was monitored for 100 random neurons to calculate their
cross-correlation. The neuron pair-wise cross-correlation was then averaged for pairs
of similar distances to arrive at a distance-dependent CCF. SCs were determined in
two ways (Fig. 3.2B). First, similar to TCs, the first value at which the CCF drops
below half the value between the first lag and its baseline. This is essentially a half-
width at half maximum; thus, this SC is labeled SCHWHM. Second, SCs are measured
as the area under the CCF (AUC), as the first approach depends on the CCF at
the shortest distances. These short distances are often unavailable in experimental
settings (Chapter 5). Therefore, the mean area under the CCF at a distance between
1 and 10 arbitrary units is assessed and labeled SCAUC. Results were independent of
the number of neurons monitored and the choice of evaluated distance between them.

For the iEEG data, only the second method (SCAUC) could be used to evaluate
the SCs as electrodes distances were too large to track the fast decay at small dis-
tances. The CCF was here calculated from the high-γ power time series in Dataset 2
(Section 3.4) as information on electrode distances was available. Specifically, within
2-minute segments the Pearson cross-correlation was calculated for each pair of elec-
trodes. These correlation values were averaged for pairs with similar distances using
equidistant 1 mm wide bins. This resulted in the distance-dependent cross-correlation
function (CCF). SCs were then defined as the area under the CCF between 7 mm and
79 mm because for these distances most patients had electrodes (Fig. 3.4).
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Figure 3.4: Electrode Distances for PwDRE: Number of patients
which had at least one electrode for each given inter electrode distance.

3.4 Intracranial EEG Datasets

To test the predictions of the model for SCs and TCs we analyzed two independent
datasets of persons with drug-resistant epilepsy (PwDRE) who underwent presurgical
evaluation, including intracranial EEG (iEEG).

Dataset 1 stems from the Epilepsy Center Berlin-Brandenburg and comprises 81
patients (35 females, average age 32± 11 years). All PwDRE had subdural electrodes
implanted (average number of electrodes 57±17). Forty-seven PwDRE had temporal
lobe epilepsy (TLE), and 34 had extratemporal lobe epilepsy. All PwDRE underwent
epilepsy surgery, with 50 achieving a good one-year post-surgical outcome (Engel score
= 1). Dataset 1 was previously described in (Müller et al., 2024).

Dataset 2 stems from the epilepsy center at the University of Freiburg and is part
of the publicly available Epilepsiae database (Ihle et al., 2012). Dataset 2 included
23 PwDRE (12 female, average age 29 ± 13 years) with subdural and stereo EEG
recordings (average number of electrodes 68± 27). TLE was diagnosed in 19 PwDRE
and extratemporal lobe epilepsy in four. Twenty PwDRE underwent resection, with
14 having a good post-surgical outcome.

Complete patient characteristics for both datasets are in Table 3.1.

3.4.1 Ethics Statement

The analysis of this study was approved by the Institutional Review Board of Charité
- Universitätsmedizin Berlin. Due to the study’s retrospective nature, patients’ in-
formed consent for Dataset 1 was waived. The usage of patient data within Dataset 2
(Epilepsiae database) was approved by the Institutional Review Board of the Univer-
sity of Freiburg, and all patients gave written informed consent that the clinical data
might be used and published for research purposes (Ihle et al., 2012).

3.4.2 Antiseizure Medication

Medication information was extracted manually from patient charts for Dataset 1 and
was included in Dataset 2. Antiseizure medication (ASM) dosages were normalized
by their respective defined daily dosages and summed up for each day. PwDRE
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Dataset 1 Dataset 2
Number of patients 81 23
Sex Female/Male 35/46 12/11
Age 32.3 ± 10.7 28.5 ± 13.2
Epilepsy duration (years) 18.1±12.8 19.3±12.5
History of FBTCS 71 8
Total number of ASMs (previ-
ous and current)

5.9±2.6 2.7±1.3

MRI findings
MTS 12 8
Non-lesional 28 5
FCD 10 7
Others (low grade tumor, vas-
cular lesions, lesions of un-
clear significance)

31 3

Epilepsy localization
TLE 47 19
FLE 29 3
OLE/PLE 5 1
Seizure onset side
Left 48 10
Right 33 5
Bilateral 0 8
Surgical outcome
Engel 1 50 14
Engel 2-4 24 6
Neuropsychological testing,
impaired /not impaired
Language 54/27
Verbal Memory 32/49
Attention 17/64
Working Memory 37/44

Table 3.1: Patient Characteristics of the IEEG Datasets. FBTCS
= focal to bilateral tonic–clonic seizures; MTS = mesial temporal
sclerosis; FCD = Focal cortical dysplasia; TLE = temporal lobe
epilepsy; FLE = frontal lobe epilepsy; OLE/PLE = Occipital lobe
epilepsy/parietal lobe epilepsy. Previously described in (Müller et al.,

2024).

routinely underwent ASM tapering during their stay, and days with the lowest and
highest summed dosages were identified for analysis. Days with rescue medications
(Midazolam, Diazepam, and Lorazepam) were excluded from the study due to their
short-term but strong electrophysiological effects. Patients with no dosage change
were excluded from all ASM effect analyses.
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3.4.3 Electrode Position and Seizure Onset Zone

Clinical needs in both datasets determined electrode placement. Dataset 1 contained
only subdural electrodes, while Dataset 2 included subdural and stereo electrodes. For
Dataset 1, only lobular information was available without exact coordinates: temporal,
frontal, or parietal lobe.

Dataset 2 included electrode coordinates in MNI space. These were extracted
by constructing individual brain surfaces from MRI images and warping them into
standard MNI-152 template space (Ihle et al., 2012). Electrodes were then assigned
to one of five regions of interest (ROI) if they fell within 9.5 mm (euclidean distance)
of that ROI using the software AFNI (Cox, 1996). This approach provides a trade-
off between sample size and positional accuracy. Electrodes assigned to multiple
ROIs were excluded. The included ROIs were human equivalents to the regions from
(Murray et al., 2014):

MT Medial temporal areas in visual cortex

LIP Lateral intraparietal area in visual cortex

LPFC Lateral prefrontal cortex

OFC Orbitofrontal cortex

ACC Anterior cingulate cortex

These regions are color-coded as in the original paper by Murray et al., 2014 (Fig. 2.6 A & B).
They were constructed based on the atlas published by Glasser et al., 2016. A com-
plete list of ROIs and their subregions is in Table 3.2.

Area name as in
(Murray et al., 2014)

Zones in humans as in (Glasser
et al., 2016)

MT MST, MT
LIP VIP, MIP, AIP, LIPd

LPFC 8Ad, 8Av, 9p, 8C, p9-46v, 46,
a9-46v, i6-8, s6-8, 8BL, SFL, 44, 45

OFC OFC, pOFC
ACC 33pr, p24pr, a24pr, a24, d32, p24,

a32pr, s32, p32pr

Table 3.2: ROIs Along Functional Hierarchy.

For both datasets, the clinicians annotated each seizure’s origin. The seizure onset
zone (SOZ) is defined as the set of electrodes that were the origin of at least one seizure
during the recording time. All other electrodes were marked as non-seizure onset zone
(nSOZ).
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3.4.4 Intracranial EEG Preprocessing

The preprocessing pipeline differed slightly between the two datasets due to their
distinct characteristics. For Dataset 1, iEEG traces were only available for the first
five minutes of each hour, while recordings in Dataset 2 were mainly continuous.

For both datasets, a notch filter was applied to remove power line noise at 50 and
100 Hz, followed by a bandpass filter from 0.1 to 128 Hz to remove slow drifts and
high-frequency artifacts. The data was then down-sampled from its original frequency
(2048 Hz, 1024 Hz, 512 Hz, or 256 Hz) to a common frequency of 256 Hz. Channels
with constant traces were removed as artifacts.

Generally, Dataset 2 was curated for research purposes (Ihle et al., 2012) while
Dataset 1 was only extracted retrospectively, which might explain why Dataset 1
tended to have more artifacts. In particular, Dataset 1 required additional preprocess-
ing to remove segments with oscillatory artifacts in the high-γ band. This was achieved
by calculating a spectrogram of the high-γ power series and excluding segments with
peaks greater than six times the interquartile range over the median segment during
recording. This process removed less than 2% of the data.

Visual inspection was performed for both datasets to verify the preprocessing and
exclude any additional artifactual channels. Finally, data around seizures, precisely
10 minutes pre- and post-seizure, as well as the seizures themselves, was excluded.

3.5 Slow-Wave Sleep Scoring

To assess the influence of vigilance on SCs and TCs, slow-wave sleep (SWS) was
automatically labeled using a validated algorithm (Reed et al., 2017). First, this
algorithm calculated a vigilance index for a 30-second segment, which was defined as
the band-power ratio (Welch’s method, Hanning window)

θ + δ

α+ βhigh + spindle
.

This ratio was high if there was a lot of slow-wave activity (SWA). Therefore, SWA and
SWS are used interchangeably from here on. Second, on each day, vigilance indices
were z-scored. Third, a segment was defined as SWS if the z-score of its vigilance
index was above one. To align the 30-second SWS segments with the 2-minute SCs
and TCs segments, a 2-minute segment was labeled as SWS if it contained at least
one SWS segment. All other segments were labeled nonSWS.

3.6 Detection of Interictal Epileptic Discharges

Interictal epileptiform discharges (IEDs) are brief abnormal electrical events which
disrupt the background activity and thus could have an impact on SCs and TCs (Sec-
tion 2.3.2). They were identified with a validated algorithm (Quon et al., 2022). The
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algorithm first applied a template-matching filter to find candidate IEDs in each chan-
nel. In the second step, the iEEG signal around the candidate IEDs was transformed
into spectrograms. Last, a pre-trained deep neuronal network rejected or accepted the
candidate IEDs. The identified IED times were then aggregated to IED per minute
counts. Two-minute segments were classified into four bins: [0,0], (0,1], (1,5], (5-30]
IEDs per minute.

3.7 Surrogate Data

In order to test if the results could be explained from the power of the high-γ band
alone or if they required the timely coordination of signals, a surrogate analysis with
time-shuffled data was performed. In each 2-minute segment, each channel’s data
points were randomly permuted. This procedure destroyed the temporal coordination
of the data points but retained the distribution of their amplitudes. SCs and TCs
were then extracted on this surrogate time series and compared to the values from
the original time series.

3.8 Statistical Analysis of SCs and TCs

The relationship between SCs and TCs was evaluated using Spearman rank correlation
within each patient. P-values on the population were derived through Fisher’s method
of combination of p-values.

The variation of TCs along the functional hierarchy was evaluated by calculating
a Spearman rank correlation ρ and a slope per patient. To get the slope, the regions
were assigned numbers from one to five in ascending hierarchical order. We reported
both the average ρ and slope. Their significance against no change was evaluated
using the Wilcoxon-signed rank test.

The effects of SWS, IED, and ASM were evaluated on the population level using
Wilcoxon-signed rank tests. The patient SCs and TCs values were averages of the
individual channel results. The channel SCs and TCs were derived from the median
CCF and ACF of all time segments per state sub-sampled to the smaller group in the
comparison. For example, far fewer segments were classified as SWS than as nonSWS.
Consequently, the nonSWS group was randomly sub-sampled to the same number of
time points as the SWS group. When comparing more than two groups, all groups
were randomly sub-sampled to 50 time points as a trade-off between CCF and ACF
robustness and data inclusion. Groups with less than 50 time points were excluded.

Lastly, the trend of TCs over IEDs in the SOZ and nSOZ was evaluated through
a linear mixed effects model of the form (notation as in R)

TC ∼ IED ∗ SOZ + (1|patID) . (3.3)

In words, TCs were the dependent variable, and both IEDs and SOZ were interacting
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Figure 3.5: Study 1 Setup (Structure and Dynamics): Cortical thick-
nesses distinctively differ for each cognitive phenotype from healthy

controls. Reprinted after (Miron et al., 2024) [CC BY-NC 4.0].

independent variables. The PwDREs were treated as random effects on the inter-
cept, represented by (1| patID). Coefficients were reported as mean [95% confidence
interval] together with their statistical t-value.

Results were reported as mean ± standard deviation if not stated otherwise.

3.9 Cognitive Impairment related Investigations

To link cortical data with cognitive performance in the context of brain criticality we
report two distinct studies. Study 1 investigates distinct cortical thickness pattern in
persons with various degrees of cognitive impairments. Study 2 aims to link decreased
TCs to cognitive impairment in persons with drug-resistant epilepsy (PwDRE).

3.9.1 Study 1: Structure and Cognition

The aim of this study was to identify abnormal structural pattern in patients with
cognitive impairment. Therefore, a new approach to classify cognitive impairment in
a coarse grain level was used, i.e., cognitive phenotyping according to the international
classification of cognitive disorders in epilepsy (IC-CoDE) criteria (McDonald et al.,
2023). For each cognitive phenotype we then aimed to identify the cortical thickness
pattern deviating from healthy controls. Ultimately, the aim of this study was to test
if these patterns could help to identify cognitive worsening after epilepsy surgery. In
Fig. 3.5, an illustration of the outline for this study is provided.

3.9.1.1 Ethics Statement

The institutional review board of Charité - Universitätsmedizin Berlin approved this
study (reference number EA2/084_22). Due to the study’s retrospective nature,
informed patient consent was waived.
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3.9.1.2 Participants

The study included 124 PwDRE who underwent pre-surgical evaluation at the Epilepsy-
Center Berlin-Brandenburg (63 females, mean age (36.0± 12.0) years). The inclusion
criteria were drug-resistant temporal lobe epilepsy (TLE) diagnosis, participation in
the standard neurological assessment, and a uniform epilepsy MRI protocol. Detailed
patient characteristics are provided in Table 3.3.

Additionally, 117 age- and sex-matched healthy controls were acquired from the
Human Connectome Project (HCP) to match every individual PwDRE (63 females,
age (36.0± 12.0) years) (Bookheimer et al., 2019; Van Essen et al., 2013).

3.9.1.3 Cognitive Tests

This study included 16 neuropsychological metrics spanning five distinct cognitive
domains (Fig. 3.6).

Verbal learning and memory evaluation was based on a German adaptation
of the “Rey Auditory Verbal Learning Test”, i.e., the “Verbaler Lern- und Merk-
fähigkeitstest” (Helmstaedter & Durwen, 1990). The test assessed immediate memory
(VLMT1), memory retention at the end of the learning trials (VLMT5), cumulative
learning (total of VLMT1-5), and recall abilities after a delay time (VLMT7).

Visual memory and learning were evaluated using the “Diagnostics for Cerebral
Brain Injuries” and the “Recurring Figures Test” (Rixecker & Hartje, 1980; Weidlich
& Lamberti, 2001). Test scores were the correctly reproduced pattern across trials for
the former and figures for the latter.

The language domain was assessed with the “Regensburger Wortflüssigkeitstest”,
which evaluates both semantic and phonetic fluency, including tests with and without
category switching (Aschenbrenner et al., 2000).

The working/short-term memory domain was tested through “Block Tapping”
and “Mottier” tests (Kessels et al., 2000; Welte, 1981).

The attention domain was evaluated via the Test Battery for Attentional Per-
formance (TAP; “Testbatterie für Aufmerksamkeitsprüfung”), specifically through its
go-no-go and alertness tasks (Zimmermann & Fimm, 1992).

All test outcomes were adjusted for age and sex according to the test manuals to
match normative percentiles. If patients missed single tests, the test scores were im-
puted using scikit-learn’s iterative imputer (Pedregosa et al., 2011). The test battery
was identical at the one-year follow-up for patients undergoing epilepsy surgery.
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All
patients

MDI FI MI P- value

Number of pa-
tients

124 66 37 21

Sex F(M) 63(61) 30(36) 19(18) 14(7) 0.2
Age 36.0±12.0 34.6±11.6 39.4±12.1 34.3±12.3 0.1
Epilepsy duration
(years)

18.0±13.2 18.4±14.0 18.4±13.2 14.2±10.5 0.8

Education 0.01*
≤ 12 years 47 31 12 4
Post-secondary
non-tertiary
education

41 25 10 6

Completion of
secondary educa-
tion

12 3 4 5

Academic educa-
tion

24 7 11 6

Presence of
FBTCS

96 52(14) 31(6) 13(8) 0.1

Total number of
ASMs

5.0±2.2 5.3±2.2 5.1±2.1 4.2±1.6 0.2

MRI findings 0.5
MTS 46 28 11 7
Non-lesional 55 25 19 11
Others 23 13 7 3
Seizure onset side 0.6
Left 65 37 20 8
Right 49 25 14 10
Bilateral 10 4 3 3
Resected, yes (no) 77 (47) 45 (21) 18 (19) 14 (7) 0.1
Surgical outcome 0.8
Engel 1 59 33 15 11
Engel 2-4 17 12 2 3

Table 3.3: Patient Characteristics of the MRI Dataset. FBTCS = fo-
cal to bilateral tonic–clonic seizures; MTS = mesial temporal sclerosis;
Others = (focal cortical dysplasia, low grade tumor, vascular lesions,
lesions of unclear significance). Previously described in (Miron et al.,

2024).
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3.9.1.4 Cognitive Phenotyping

Based on the pre-surgical cognitive scores, TLE patients were phenotyped according
to the IC-CoDE criteria (McDonald et al., 2023). First, a cognitive impairment on the
domain level was diagnosed if at least two tests had scores one standard deviation be-
low the normative average. Second, patients with no impaired domain were classified
as minimally impaired (MI). Patients with exactly one impaired domain were classi-
fied as focal impaired (FI), and patients with more impaired domains were classified
as multi-domain impaired (MDI) (Fig. 3.6).

3.9.1.5 MRI Data

Participants were subjected to 3-Tesla structural MRI scans at Charité – Univer-
sitätsmedizin Berlin, Campus Benjamin Franklin, using a Magnetom Skyra (Siemens,
Erlangen, Germany) scanner. The protocol included a cerebral 3D T1-weighted se-
quence optimized for brain imaging (TR/TE = 1900 ms/2.41 ms, TI = 900 ms, flip
angle = 9°, voxel size = 0.875/0.875 mm). For comparison, 3D T1-weighted MRIs
of healthy controls were sourced from the Human Connectome Project (HCP) S1200
young adult release and the HCP aging and development cohort, employing sequence
parameters aligned with established imaging protocols (Bookheimer et al., 2019; Van
Essen et al., 2013).

The T1-weighted MRIs from epilepsy patients were converted to NIFTI format us-
ing dcm2niix, spatially aligned to the MNI-152 template via fslreorient2std, corrected
for intensity non-uniformity using ANTs N4-bias correction, and finally cropped using
FSL robustfov (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Fslutils) (Jenkinson et al., 2012;
X. Li et al., 2016; Tustison et al., 2010). The HCP dataset was already in NIFTI for-
mat; however, we performed the same preprocessing and cropping as for the epilepsy
dataset to improve comparability. Then, cortical thickness and subregional volumes
were parcellated using the CAT12 toolbox, with specific cortical regions delineated
according to the HCP Multi-Modal Parcellation atlas (Glasser et al., 2016). This
parcellation yielded 360 cortical areas and total intracranial volume, gray matter, and
white matter volumes (Dahnke et al., 2013; Glasser et al., 2016).

ANOVA-Based Cortical Thickness Analysis

Type-III ANOVA models were employed to compare MRI regions of interest (ROIs) in
the populations of the different cognitive phenotypes to the matched healthy controls.
Additional covariates were age, sex, total intracranial volume, and MRI scanner ID to
mitigate the impact of technical cofounders. Further clinical covariates included were
epilepsy duration (years), total lifetime number of antiseizure medications (ASMs),
presence of focal to bilateral tonic-clonic seizures (FBTCS), and seizure onset side.

P-values were corrected for multiple comparisons using Bonferroni correction with
n=363 (total number of ROIs and intracranial volume, gray matter, and white matter
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Figure 3.6: Cognitive Phenotyping: Phenotyping was performed ac-
cording to the IC-CoDE criteria (McDonald et al., 2023). First, cog-
nitive tests are clustered into cognitive domains. Second, a domain
is counted as impaired if at least two tests in that domain fall one
standard deviation below the norm. Third, the cognitive phenotype
is derived from the number of impaired domains. PhoFl. = phonetic
word fluency; PhoSw. = phonetic category switching; SemFl. = se-
mantic word fluency; SemSw. = semantic category switching; WOC
= TAP Alertness subtest without auditory warning cue; TAP = Test-
batterie für Aufmerksamkeitsprüfung; WC = TAP Alertness subtest
with auditory warning cue; GNG = TAP Go/No-Go subtest; Mott =
Mottier test; BT(6) = Block Tapping; VLMT = Verbaler Lern- und
Merkfähigkeitstest; RFT = Recurring Figures Test; DCS = Diagnos-

ticum für Cerebralschädigung test.

volume). Only significant (95% F-distribution) differences in cortical thickness be-
tween healthy controls and cognitive phenotype were considered for further analysis.
The inverse of the F-statistic divided by the average F-statistic was then calculated
and labeled as the distance

∆i =

∑363
j=1 Fj

363 · Fi
. (3.4)

Shorter distances reflected a more robust difference between healthy controls and
epilepsy patients. Lastly, all ROIs closely associated with MRI scanner ID (distance
< 2) were excluded from further analysis.

An additional robustness test was performed by shuffling the labels to the cortical
thicknesses on a patient basis and rerunning the ANOVA models. This procedure was
repeated 100 times, which provided a baseline p-value-distribution. The empirical
p-values needed to fall into the 5th percentile of this permutation-p-value-distribution
to be considered significant.
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Post-Surgical Cognitive Outcome Prediction

To predict the 1-year post-surgical outcome in each domain, logistic regression models
were used to fit the data. Cognitive worsening was defined as a five percent decrease
compared to pre-surgical levels. This threshold is a trade-off between robust iden-
tification of worsening and keeping group sizes balanced enough to train meaningful
predictive models.

The input features were the n = 13 ROIs most robustly connected to cognitive
phenotypes (distance < 1, Table 6.1) and the clinical features. Different cognitive
impairment groups had to be combined; otherwise, the sample size for this approach
would have been too small. The patient characteristics for each domain are in Ta-
ble 3.4.

First, descriptive logistic regression models were fit to the whole dataset. Sec-
ond, the predictive power of the ROIs’ cortical thicknesses was evaluated in a cross-
validation scheme (100 times repeated 5-fold nested cross-validation with recursive
feature elimination and l2 regularization). Models were built for ROI features, clini-
cal features, and a combination of both. All models were compared by area under the
receiver operating curve (ROC-AUC) in the hold-out data within the cross-validation
scheme.

Furthermore, all models were tested against two random classifiers. The first
random classifier used randomly shuffled worsening labels as predictions. This kept
the prevalence constant but destroyed the relationship between variables and labels.
The second random classifier drew n = 13 random ROIs and used these instead of the
13 ROIs found in the ANOVA cortical thickness analysis.

3.9.2 Study 2: Dynamics and Cognition

The goal of the second study was to investigate the relationship between TCs and
cognitive impairment in PwDRE. Therefore, TCs were scored similar as discribed
above (Section 3.2). The dataset used for this study is identical to the Dataset 1
(Section 3.4) with detailed patient information in Table 3.1.

Cognitive Data

Cognitive testing was performed before the pre-surgical evaluation, so iEEG recordings
parallel to the testing were unavailable. This emphasizes the need to evaluate a
broad spectrum of baseline cognitive performance, i.e., many tests spanning many
cognitive domains. For this cohort, sufficient cognitive testing was available only for
four domains compared to the five domains in Study 1: Verbal learning and memory,
language, working/short-term memory, and attention. However, the tests in these
domains were identical and are described in Section 3.9.1.3. If single tests were missing
for a patient, they were extrapolated with scikit-learn’s iterative imputer (Pedregosa
et al., 2011). Cognitive impairment was also similarly defined, i.e., if at least two
tests in a domain were one standard deviation below the norm. The reduced domain
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Table 3.4: Patient Characteristic for the Post-Surgical Testing:
FBTCS = Focal to bilateral tonic clonic seizures; MTS = mesial tem-

poral sclerosis. Previously described in (Miron et al., 2024).
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count made cognitive phenotyping less robust. Thus, the analysis for Study 2 remains
restricted to the domain impairment level (Fig. 3.6).

3.9.2.1 List of Measures

The main goal of this study was to test if TCs can predict cognition as proposed by
brain criticality. However, multiple other measures were evaluated to strengthen the
analysis and, thus, the link of TCs to cognitive impairment in the domains.

TCs are defined as in Section 3.2 and characterize the decay of the auto-correlation
function of the high-γ band fluctuations (55-95 Hz).

Surrogate TCs are defined as TCs; however, they are extracted from a time-
shuffled version of the high-γ band time series as described in Section 3.7.

Band powers are extracted for the standard EEG frequency bands δ (0.5-4 Hz), θ
(4-8 Hz), α (8-12 Hz), β (12-30 Hz), γ (30-45 Hz) and high-γ (55-95 Hz) using Welch’s
method (Hanning window). These measures give information about the power at a
given time; however, they neglect the timely coordination of these power fluctuations.

IEDs were found to have a negative effect on TCs (Chapter 5) and have been
previously associated with worse cognitive performance (Aldenkamp & Arends, 2004;
Ebus et al., 2012; Meekes & Jennekens-Schinkel, 2018). Therefore, they were included
as another control measure. IEDs were extracted as described in Section 3.6.

SWS showed a disruption of TCs (Chapter 5). While the data analyzed here was
cleaned of SWS segments, the general percentage of SWS during the day was included
as a control measure. SWS was extracted as discussed in Section 3.5.

ASMs had a negative effect on TCs (Chapter 5). Thus, the day with the lowest
ASM load was analyzed separately. Furthermore, the total ASM load for each day
was added as a control measure.

All measures, except SWS and ASM, were extracted in 2-minute windows to align
with TCs. SWS and ASM were, by definition, day-wise values. Then, all measures
were aggregated per electrode over a day by taking the median measure value during
all nonSWS segments. Because patients had different recording lengths, only three
distinct days were analyzed: the first, last, and lowest ASM days. The first and last
days were the first and last days, which had more than 18 hours of data, respectively.

Statistical Analysis of Cognitive Impairments and TCs

Statistical significance of the association between cognitive impairment and measures
was established through Brunner-Munzel tests. Only comparisons with at least n = 5

PwDRE group were included as otherwise statistical significance at p < 0.05 could not
be achieved by definition. The advantage of this non-parametric test is that it does
assume neither normality nor homoscadisity, both conditions one would not expect
for TCs. P-values were corrected for multiple comparisons through the Benjamini-
Hochberg method (α = 0.05). To further emphasize that results are unlikely to arise
by chance, the distribution of p-values for each measure was compared to a uniform
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distribution, which could be expected under the null hypothesis that the groups are
equal. The comparison between the groups was then quantified using the Kolmogorov-
Smirnov test.

The non-parametric relative effect size was reported to quantify further the dif-
ference between the cognitively impaired and not-impaired groups. This effect size
describes the probability that if one picks a sample out of each group, the sample of
one group would be larger than the other.

3.10 Code Availability

Code for the model simulations is available under https://gitlab.com/computati
onal-neurologie/stc_model_2024. The code for analysis of Dataset 1 is available
under https://gitlab.com/computational-neurologie/ieegCD and for Dataset 2 under
https://gitlab.com/computational-neurologie/sde_n_cog. The code for analysis of
the MRI and cognitive data is available under https://gitlab.com/computational-neu
rologie/structural_cognitive_TLE.
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Chapter 4

Neuronal Network Model

Chapter 2 introduced the brain criticality hypothesis and the branching processes.
This review showed that at the critical point, many information theoretical proper-
ties are optimized (Shew & Plenz, 2013). Previous work has shown this in models,
for example, for the dynamical range (Shew et al., 2009), information capacity and
transmission (Langton, 1990; Shew et al., 2011), or the number of metastable states
(Haldeman & Beggs, 2005).

This chapter will investigate how spatial and temporal correlations (SCs and TCs)
behave around the critical point. Therefore, we analyze the branching-process-like
neuronal network model introduced in Section 3.1 and investigate how SCs and TCs
change with respect to the connection strength between the neurons. After estab-
lishing SCs and TCs around the critical point, we will test how SCs and TCs change
under three perturbative mechanisms: slow-wave activity (SWA), interictal epilepti-
form discharges (IEDs), and antiseizure medications (ASMs). The model results for
TCs were previously reported in (Müller & Meisel, 2023; Müller et al., 2024) and the
SCs results were partially reported in (Müller & Meisel, 2023).

The aim of simulating these conditions is to provide testable predictions of the in-
terplay between network structure and perturbative mechanism with dynamical mea-
sures of brain criticality and, thus, cognitive performance. These predictions will later
be tested in data from persons with epilepsy.

4.1 Results

4.1.1 The Connection Strength Governs the Dynamics

Generally, the model studied here is an extension of the model by Larremore et al.,
2014. Similarly, it has a parameter regime with ceaseless dynamics due to the inclusion
of inhibitory neurons (Fig. 4.1 A). To evaluate this further, we will investigate how
the strength of the connection between neurons influences their dynamics. Therefore,
the whole connectivity matrix is multiplied by a constant factor. For the original
model by Larremore, they showed that the long-term dynamics are dependent on the
largest absolute eigenvalue of the connectivity matrix, λ, which scales likewise under
multiplication with a constant factor (Larremore et al., 2011, 2014). Therefore, λ

is the control parameter for the connection strength. Generally, this discussion is
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Figure 4.1: Connectivity Shapes Network Dynamics, SCs and TCs:
A Average network activity traces for three regimes of network simu-
lations: subcritical (green), critical (blue), and supercritical (purple).
While the integrated network activity (black lines) monotonously in-
creases as function of the largest absolute eigenvalue of the connectivity
matrix λ, B TCs, C SCAUC, and D SCHWHM (gray lines) peak at the

critical point, λ ≈ 1 (blue arrow).

analogous to the discussion of the branching process (Section 2.1.2).
For very weakly connected networks, λ ≪ 1, the activity does not spread, only

a small amount of nodes get engaged, and the dynamics hover around the baseline
background activity (green trajectory in Fig. 4.1 A). Generally, the activity stays low,
and no excursions can be observed (black line at in Fig. 4.1 B). Because the background
noise mainly drives the activity, activities are not correlated in time, and thus, TCs
remain low (green arrow in Fig. 4.1 B). Furthermore, as the activity can not spread
over the network, SCs measured in both ways are low (green arrows in Fig. 4.1 C, D).
In short, the dynamics are subcritical.

For the other extreme case, where the network is very strongly connected, λ ≫ 1,
the activity hovers around a higher saturation value as the neurons are generally over-
saturated by inputs (purple trajectory in Fig. 4.1 A). Each new noise input quickly
travels through the whole network, and thus, the memory of previous inputs is lost
quickly, also leading to short TCs (purple arrow in Fig. 4.1 B). While activity can travel
quickly through the network, one could think that SCs are high. However, neurons are
already oversaturated by the inputs from their closest neighbors. Consequently, even
the summed inputs from neurons farther away matter less, and thus, SCs are small
too (purple arrows in Fig. 4.1 C, D). In a nutshell, the dynamics are supercritical.

For well-balanced network connectivity, λ ≈ 1, dynamics evolve non trivially (blue
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Figure 4.2: Correlation of SCs and TCs. Correlation of SCAUC and
TC for simulations with different λ in the range as in Fig. 4.1.

trajectory in Fig. 4.1 A). The average activity of the network starts to exhibit larger
excursions, and dynamics appear less uniform. These excursions evolve as transients
in the network, thus conserving some memory of the initial input over time, leading to
long TCs (blue arrow in Fig. 4.1 B). Additionally, these transients engage larger parts
of the network, manifesting in cascades, and therefore correlate the activity of distant
neurons with each other, which is reflected in longer SCs (blue arrows in Fig. 4.1C, D).
In summary, the system is close to its critical point where a wide range of sustained
activity can be observed, and information can travel through network space and time.

Taken together, this shows that under variation of the network’s connectivity, SCs
and TCs behave similarly, thus leading to a strong co-variation of SCs and TCs for
a system whose proximity to criticality changes. This covariation under variation of
λ is shown for TCs and SCAUC in Fig. 4.2 (Spearmanr rank correlation: ρ = 0.77,
p < machine precision). In general, the model results aligns well with the theory on
the branching process and the brain criticality hypothesis (Section 2.1.2) and unify
previous studies which at the critical point separately showed maximal SCs (Cavagna
et al., 2010) and TCs (Jensen, 2021; Meisel, Klaus, et al., 2017).

4.1.2 Perturbations of the Dynamics

While the model can be investigated in different regimes by scaling the connection
strength, this approach is less plausible and difficult to achieve in experimental set-
tings, particularly for retrospective data analysis. Rather than actively changing the
connectivity, it is more feasible to investigate biological mechanisms that might alter
the dynamics, proximity to criticality, and, consequently, SCs and TCs.

Therefore, we introduce three perturbative mechanisms into the model, which
will be investigated in the experimental data (Chapter 5). Specifically, the effect of
slow-wave activity (SWA) typical for slow-wave sleep (SWS), interictal epileptiform
discharges (IEDs), and antiseizure medications (ASMs) on SCs and TCs are evaluated.
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Results for TCs and all three perturbations were previously reported in (Müller et al.,
2024), and results for SCs with respect to SWS and ASMs were previously reported
in (Müller & Meisel, 2023).

4.1.2.1 Slow-Wave Activity

First, off-periods modeling SWA are introduced as the probability pOff that neurons
synchronously go offline. In Fig. 4.3A, two trajectories for a network with λ = 1 are
shown: one with an off period (teal) and one without (gray).

Generally, each off-period disrupts the background activity by setting all neuron
states to zero, thus interrupting the dynamics and destroying memory between pre-
and post-off-period segments. This explains why TCs gradually decrease with increas-
ing pOff for subcritical and critical networks (Fig. 4.3 B). In the supercritical state,
however, the dynamics are already around an upper saturation threshold and inher-
ently have lower memory of past states. Here, an introduced off-period leads to small
activity, which then builds up again, thus introducing a transient from zero activation
to the saturation boundary. This explains why, for small pOff , TCs are increased in the
supercritical state (Fig. 4.3B). For larger pOff , these transients get disrupted again,
leading to decreased TCs. While the off-periods occur randomly and are thus tempo-
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Figure 4.3: Slow-Wave Activity in the Model: A One trajectory
with an off-period, where all neurons are deactivated, (teal) and one
trajectory without (gray) for a critical connected network B TCs tend
to gradually decrease with increasing probability for off-periods pOff .
C SCAUC and D SCHWHM increase with small pOff , however, for larger

pOff they decrease again.

rally uncorrelated, they set all neurons into the same state. This can artificially create
stronger cross-correlations between neurons. In particular, in the supercritical state,
each off-period is priming a new transient with stronger correlations between neurons
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Figure 4.4: Interictal Epileptiform Discharges in the Model: A One
trajectory with an IED (orange) and one without (gray) for a network
initiated at critical connectivity. B As IEDs are temporally uncor-
related, TCs gradually decrease with increasing probability for IEDs,
pIED. C SCAUC and D SCHWHM increase with increasing pIED due to

the spatially localized activation of neurons through each IED.

than during the dynamics around the saturation boundary. Hence, SCs are increased
for small pOff (Fig. 4.3 C and D). With rising pOff , even the transients get disrupted,
leading to weaker correlations between distant sites and, thus, SCs eventually decrease
(Fig. 4.3 C and D).

In summary, SWA disrupts the network dynamics in a temporally uncorrelated
manner, which decreases TCs for critical networks. This aligns with the findings by
Meisel, Klaus, et al., 2017, where off-periods simulating SWA were introduced in a
similar model. However, introducing off-periods is a global pattern that can lead to
an increase in SCs. If the off-periods become too frequent, the network dynamics are
disrupted, and both SCs and TCs decrease compared to the unperturbed state.

4.1.2.2 Interictal Epileptiform Discharges

Second, IEDs are introduced as activations of local cohorts of neurons with probability
pIED at random places and times. In Fig. 4.4 A, a trajectory with (orange) and without
(gray) an IED is shown for a system initiated with λ = 1. The IED can be observed
as a large spike in the average activity.

These abnormal, uncorrelated events disrupt not only the information from a
neuron’s past but also from the past of its neighbors, which are most influential for the
neuron’s future. Consequently, TCs progressively decline with increasing probability
for IEDs, irrespective of the dynamical regime (Fig. 4.4 B).
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Figure 4.5: Antiseizure Medication in the Model: A Two trajectories
for initially critical networks, one with by fexc = 0.9 reduced excitatory
connections (blue) and one unaltered (gray). B TCs tend to decrease
with a stronger reduction of the excitatory connection strength, par-
ticularly for initially critical and subcritical systems (λinit ≤ 1). C
SCAUC and D SCHWHM exhibit a similar trend as TCs, i.e., SCs be-

come smaller with reduced excitatory connection strength.

However, the joint activation of local neuron cohorts introduces significant corre-
lations between the neurons, leading to a general increase in SCs with increasing pIED

(Fig. 4.4 C & D). Thus, while the IEDs are uncorrelated in time, they are strongly
localized spatially correlated patterns.

In summary, IEDs introduce localized, sudden increases in neural activity that
disrupt temporal continuity, resulting in decreased TCs across all dynamical regimes.
However, simultaneously, the synchronous activation of local neuron groups strength-
ens SCs.

4.1.2.3 Antiseizure Medication

Third, ASMs are introduced by altering the excitation-inhibition balance. Here, the
focus is on the effect of reduced excitability, which can be associated with ion-channel
blockers like Phenytoin or Carbamazepine (Sankar & Holmes, 2004). In the model
this has been achieved by decreasing the outgoing connection strength of excitatory
neurons by a factor fexc. In Fig. 4.5A, two trajectories are shown. Both are initially
set with λinit = 1, but for one of them (blue), the excitatory connection strength
is decreased by a factor of fexc = 0.9. It has been shown that increased inhibitory
connection strength, as associated with GABAergic drugs, can lead to similar changes
in the model dynamics (Meisel, 2020).
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Generally, a smaller fexc leads to a decrease in the effective connectivity, reducing
activity propagation. Fluctuations remain smaller, and the external noise driving
the system starts to outweigh the internal dynamics. Consequently, a system with
initially critical or subcritical connectivity (λinit ≤ 1) behaves more subcritical, and
TCs decline (Fig. 4.5 B). Similarly, the reduced connectivity between neurons makes
them less correlated, causing SCs to decline (Fig. 4.5 C & D). Note that fexc scales the
effective connectivity, and if one recalculates λ after applying fexc, it is also reduced
(Fig. 4.6).
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Figure 4.6: Network λ After Scaling With fexc: Networks were in-
tialized with λinit. After scaling with the ASM effect, fexc < 1, λpost

was reduced.

In the supercritical regime, a small reduction in effective connectivity can push the
system closer to the critical point, leading to increased TCs and SCs for moderately
small fexc (Fig. 4.5 B - D). However, a stronger reduction of fexc shifts the system
beyond the critical point, causing both TCs and SCs to decline again (Fig. 4.5 B - D).
This can be explained by fexc scaling the effective connectivity and thus reducing λ

(Fig. 4.6).
In summary, ASMs modeled as a reduction in excitatory connection strength gen-

erally lead to more subcritical behavior. This results in decreased TCs and SCs for
systems at or below criticality. These findings for TCs align with the findings by
Meisel, 2020, where the effects of ASMs were investigated in a similar model. In su-
percritical systems, a mild reduction in excitatory strength can paradoxically increase
both measures by bringing the system closer to criticality before eventually causing
decreases with further reductions.

4.2 Model Conclusion

This chapter extended on previous investigations and analyzed a model that allowed
for the investigation of SCs and TCs around criticality and under the impact of per-
turbative mechanisms (SWA, IEDs, and ASMs).
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The Connectivity Determines SCs and TCs

Similar to previous studies, we showed that the model exhibits a phase transition be-
tween ceasing and saturating activity when changing the overall connection strength
(Larremore et al., 2014). Specifically, the critical point emerged as the largest absolute
eigenvalue of the connectivity matrix approached λ = 1. At the critical point, both
SCs and TCs were maximized, aligning with previous studies showing the maximiza-
tion of other information theoretical properties at the critical point (Shew & Plenz,
2013), e.g., dynamical range (Shew et al., 2009), or information capacity (Shew et al.,
2011). Varying the connection strength, SCs and TCs covaried similarly. This empha-
sizes the importance of the underlying network structure for the system’s dynamics,
SCs, TCs, and the proximity to the critical point. While here only the effect of the
overall connection strength was investigated, it has been shown that factors like the
degree correlation can impact the critical point, too (Larremore et al., 2011).

Impacts of Perturbative Mechanisms

While changing connectivity in the model is achieved straightforwardly, this is much
more difficult in an experimental setting. To address this, we introduced three bio-
logically inspired mechanisms that can alter the dynamics of cortical networks and
showed how they impact SCs and TCs in the model. The specific results are summa-
rized in Table 4.1. Generally, at the critical point, TCs were disrupted by all three
perturbations: SWA, IEDs, and ASMs. While SCs followed this trend for SWA and
ASMs, they showed an increase under higher IED pressure.

These results suggest that if SCs and TCs gradually increase, the system is pushed
further towards criticality. While decreasing SCs and TCs are a sign of a drift away
from criticality, it is not possible to argue if this happened toward supercritical or
subcritical dynamics.

Effect on TCs Effect on SCs
λ < 1 λ ≈ 1 λ > 1 λ < 1 λ ≈ 1 λ > 1

Baseline SC & TCs Low Maximal Low Low Maximal Low
SWA ↘ ↘ ↗↘ ↘ ↘ ↗↘
IEDs ↘ ↘ ↘ ↗ ↗ ↗
ASM ↘ ↘ ↗↘ ↘ ↘ ↗↘

Table 4.1: Effect of Perturbations on SCs and TCs: SCs and TCs
change under perturbation across different dynamical regimes (sub-
critical: λ ≤ 1, critical λ ≈, supercritial λ ≥ 1). ↘ = decrease, ↗ =
increase, ↗↘ increased followed by a decrease when effect is stronger.

Predictions for Human Cortical Data

This model provides a framework for understanding how various perturbations af-
fect SCs, TCs, and criticality in human cortical dynamics. Together with the brain
criticality hypothesis, it allows for the formulation of testable predictions. While the
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following predictions are not exhaustive, they remain testable in the experimental
boundaries of this study:

(a) SCs and TCs are interconnected.

(b) SWA typical for SWS disrupts SCs and TCs.

(c) TCs decline and SCs increase with increasing IED load.

(d) SCs and TCs decline with increased ASM load.

These predictions will be tested in the following Chapter 5 where human intracra-
nial EEG recordings are combined with automatically extracted SWS and IED mark-
ers and ASM charts.
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Chapter 5

Spatial and Temporal Correlations
in Intracranial EEG

The previous chapter showed neuronal network model simulations, and analyzed how
spatial correlations (SCs) and temporal correlations (TCs) varied under parameter
changes and perturbations in these simulations. The model exhibited a critical point
at which SCs and TCs became maximal, aligning with the brain criticality framework
(Beggs, 2022a; Beggs & Plenz, 2003; Chialvo, 2004).

The criticality framework and model simulations in the previous chapter predicted
SCs’ and TCs’ behavior for cortical network dynamics. This chapter aims to verify
these predictions in human EEG data. Specifically, the model predicted that SCs and
TCs co-vary and decline when subjected to antiseizure medication (ASM) or slow-
wave activity (SWA). Under increased interictal epileptiform discharge (IED) rates,
TCs decreased while SCs increased. While some previous research investigated such
changes, e.g., the decline of TCs during SWS (Meisel, Klaus, et al., 2017) and ASM
(Meisel, 2020), experimental evidence on the interconnection between SCs and TCs
remains sparse. This may be attributed to several limitations in previous studies,
like short recording duration, sparse spatial coverage, coarse temporal resolution, and
small patient cohort size.

Addressing these limitations, this chapter analyzes multiday intracranial EEG
(iEEG) recordings from 104 persons with drug-resistant epilepsy (PwDRE) undergoing
pre-surgical evaluation from two independent datasets. The iEEG data has a high
temporal and spatial resolution (up to 118 electrodes per patient). The length and
sampling of the datasets allow for a nuanced analysis of SCs and TCs, their co-
variation, and changes under perturbative mechanisms. The spatial placement of
electrodes was clinically decided, leading to variation in the cortical coverage. While
this introduced additional variance, it allowed for spatial analysis of cortical network
dynamics. We address two additional questions arising from this:

1. Electrodes placed in different brain regions might exhibit distinct TC charac-
teristics, potentially aligning with the functional hierarchy shown in non-human
primates (Murray et al., 2014). To investigate this, TC variations will be ana-
lyzed in analogous human regions along the hierarchical hierarchy.
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2. Electrodes are placed to cover the likely seizure onset zone (SOZ), which might
not accurately represent typical cortical network dynamics. Within the brain
criticality, the SOZ has even been hypothesized to be closer to the critical point
(Meisel et al., 2012). We will compare TCs from SOZ electrodes against non-
SOZ (nSOZ) electrodes to account for this.

This chapter is structured as follows:

1. Qualitative examination of SCs and TCs over multiple days and their co-variability
(Section 5.1.1).

2. Investigation of TCs along the functional hierarchy (Section 5.1.2).

3. Changes of SCs and TCs corresponding to SWS, IEDs, and ASM (Section 5.1.3).

4. Nuanced comparison of perturbative mechanisms in SOZ versus nSOZ (Sec-
tion 5.1.3.4).

5. Summary of findings and brief discussion (Section 5.2).

The main discussion in the context of brain criticality will be presented at the end of
this thesis (Chapter 7). Some of these results have been previously published: Points:
1. - 3. in (Müller & Meisel, 2023) and points: 3. & 4. (Müller et al., 2024).

5.1 Results

Long-range SCs and TCs have been proposed to measure information processing
(Jensen, 2021; Linkenkaer-Hansen et al., 2001; Meisel, Klaus, et al., 2017). How-
ever, previous investigations were mainly task-related and thus limited in duration.
Consequently, the variance of SCs and TCs over time, their interdependence, and
their relationship with external and internal mechanisms remains mostly unexplored.
While for Dataset 1 (Section 3.4), no exact electrode positions were available, Dataset
2 (Section 3.4) had standard MNI coordinates for all intracranial electrodes, allowing
the calculation of SCs. The feature extraction is illustrated in Fig. 5.1A. For one
example patient, the time course of SCs and TCs is shown for two days in Fig. 5.1B
and C. Both SCs and TCs varied over one day and between days. Most prominent
was this for TCs, which exhibited larger fluctuation on the second day (Fig. 5.1C)
compared to generally lower values on the first day (Fig. 5.1 B).

5.1.1 Spatial and Temporal Correlations Co-Vary

The model from the previous chapter predicted maximal SCs and TCs at the critical
point and a joint decline induced by the dynamics drifting away from the critical
point.

Indeed, the variations of SCs and TCs over time were strongly correlated, i.e.,
an increase in SCs aligned with an increase in TCs and vice versa. This is shown
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Figure 5.1: Processing Pipeline and Time Course: A Intracranial
EEG recordings are filtered, and the features are extracted. SCs and
TCs are extracted from the high-γ band of the signal only, whereas
SWS and IED markers used the raw time series. B Day with the high-
est ASM load. From top to bottom: ASM loads, interictal epileptiform
discharges (IEDs), SCs, and TCs. SWS episodes are marked with teal

vertical lines. C Same for the day with the lowest ASM load.

for four randomly selected patients in Fig. 5.2. This correlation was quantified by
calculating a Spearman rank correlation for each patient, which was a significantly
positive correlation in 22 of 23 PwDRE from Dataset 2 (average Spearman rank
correlation ρ = 0.50±0.25, Fisher’s combined p-value below machine precision). Time-
shuffling the high-γ band power series in each segment destroyed this co-variation
(average Spearman rank correlation ρ = 0.01± 0.01). This underlines the importance
of the temporal and spatial coordination of the signal and shows that the mere power
within the signal can not explain the results.

5.1.2 Temporal Correlations Follow a Hierarchical Gradient

Murray et al., 2014 demonstrated an organization of TCs across different cortical
areas in non-human primates. They identified increasing TCs along the functional
hierarchy in the visual pathway.

To investigate a similar ordering of TCs in humans, we evaluated five regions that
functionally correspond to the non-human primate areas studied by Murray et al., 2014
(Table 3.2). These regions are depicted in Fig. 5.3 A and B, along with all electrodes
from Dataset 2 mapped onto a standard cortical surface. This mapping demonstrates
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Figure 5.2: Co-Variation of Spatial and Temporal Correlation: SCs
and TCs are shown for four randomly selected patients. All exhibited

a significantly robust correlation between SCs and TCs.

wide cortical coverage across patients. However, clinical needs alone determined elec-
trode placement, explaining the variation of which PwDRE had electrodes in each
region (Fig. 5.3C).

In Fig. 5.3 D, the TCs from these five areas are shown during the low ASM day and
in nonSWS periods. With the hierarchy increasing from left (MT) to right (ACC),
TCs also showed an increasing trend, thus extending Murray et al., 2014’s results to
human PwDRE. The average increase from area to area was (0.4 ± 0.2) sec./area,
and statistically significantly different from zero on the population level (p < 0.05;
Wilcoxon signed-rank test).

To validate these findings, we created surrogate TCs from time-shuffled data.
These showed no such trend and were generally small (gray bars in Fig. 5.3 D).

The electrode coverage allowed for the assessment of TCs, but a finer-grained
coverage would be necessary to explore SCs along the functional hierarchy.

5.1.3 Perturbations of SCs and TCs

The previous sections discussed the temporal and spatial patterns of SCs and TCs. In
particular, the emergence of the temporal changes of SCs and TCs might be linked to
other biological mechanisms. The model presented in Chapter 4 incorporated three
such mechanisms: slow-wave activity (SWA), interictal epileptiform discharges (IEDs),
and antiseizure medication (ASM). Further, the model simulations lead to precise
predictions for the changes of SCs and TCs under these mechanisms. The following
paragraphs will discuss these mechanisms and predictions one after the other.
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Figure 5.3: Temporal Correlations Along the Cortical Hierarchy: A
Lateral and B Medial view of a template brain surface with electrodes
of all PwDRE from Dataset 2. Cortical regions along the visual path-
way similar to (Murray et al., 2014) are colored (Table 3.2). C Number
of patients with electrodes in each region. D Mean TCs in the cor-
tical region are ordered according to their functional hierarchy from
left to right. Dashed lines show the median, and whiskers extend to
the 95% confidence interval. Gray bars represent surrogate TCs from
time-shuffled time series. The gray lines show individuals’ data. MT:
Medial temporal areas in visual cortex, LIP: Lateral intraparietal area
in visual cortex, LPFC: Lateral prefrontal cortex, OFC: Orbitofrontal
cortex ACC: Anterior cingulate cortex. Adapted from previously pub-

lished results (Müller & Meisel, 2023) [CC BY 4.0].

5.1.3.1 Slow-Wave Sleep

To explore the impact SWA typical for slow-wave sleep (SWS) on SCs and TCs, SWS
was first scored using a validated algorithm (Reed et al., 2017). Overall, the algorithm
classified (18± 7)% of the segments in Dataset 1 and (19± 6)% in Dataset 2 as SWS.
All patients could be analyzed here.

Then, we compared SCs and TCs during SWS to nonSWS across PwDREs. As
predicted by the model simulations, SCs (Fig. 5.4A) and TCs (Fig. 5.5A & D) were
significantly smaller during SWS. In Dataset 1, TCs decreased on average from (0.6±
0.2) seconds during nonSWS to an average of (0.4 ± 0.1) seconds during SWS (p <

0.001, Fig. 5.5 A). Similarly, in Dataset 2, TCs decreased on average from (0.9± 0.4)
to (0.7 ± 0.4) seconds (nonSWS to SWS, p < 0.05, Fig. 5.5 D). Additionally, SCs
in Dataset 2 decreased significantly from 0.30 ± 0.18 during nonSWS to 0.27 ± 0.17

during nonSWS (p < 0.05, Fig. 5.4 A).
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Figure 5.4: SCs Under Perturbations: A SCs decline in SWS com-
pared to nonSWS. B SCs increase with more IEDs. IED count per
minute is the average over all channels. C Increased ASM loads lead
to decreased SCs. All results are from Dataset 2. Bars cover the middle
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extend to 1.5 times the interquartile range. White crosses mark the
mean. Single PwDRE results are shown as circles and are connected
by thin lines. Surrogate SCs are shown as right-displaced gray bars
and are close to zero. P-values are obtained through Wilcoxon-signed

rank tests.

Surrogate SCs and TCs support these findings as they showed no trend between
SWS and nonSWS (gray bars in Fig. 5.4 A and Fig. 5.5 A & D).

Thus, the consistent decrease of SCs and TCs in both datasets aligned with the
model predictions (Section 4.2).

5.1.3.2 Interictal Epileptiform Discharges

To explore how IEDs influence SCs and TCs, a validated algorithm was used to
measure IED frequency (Quon et al., 2022). The PwDRE in Dataset 1 experienced
an average of (2.6± 2.4) IEDs per channel and minute, while the PwDRE in Dataset
2 had (3.1± 1.7) IEDs per channel and minute. The analysis already excluded SWS
segments.

SCs and TCs were compared for segments with no IEDs to segments with 5 to
30 IEDs per minute. In Dataset 1, nine PwDRE were excluded as they did not
have enough data points with sufficient IEDs for this comparison, i.e., less than 50
segments with 5 to 30 IEDs per minute. In Dataset 2, across channels, only ten
patients reached this threshold, so SCs were only extracted for these. However, all
PwDRE had at least one channel reaching more than 50 segments for both categories,
allowing TCs estimation for all 23 PwDRE.

Across both datasets, TCs were shorter when IEDs were present (Fig. 5.5 B & E).
In Dataset 1, the absence of IEDs was associated with longer TCs (0.6 ± 0.4) sec.
compared to periods with IED counts between 5 and 30 per minute (0.5±0.2) sec. (p <
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Figure 5.5: TCs Under Perturbations: TCs decline in SWS com-
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Wilcoxon-signed rank tests.

0.001, Fig. 5.5 B). Similarly, in Dataset 2, TCs were longer without IEDs (0.9±0.5) sec.
versus during higher IED activity (0.7± 0.3) sec. (p < 0.05,Fig. 5.5 E). Furthermore,
in Dataset 2, SCs could be evaluated for n = 10 PwDRE which had more than 50
segments with low and high IED load. They showed a significant increase from 0.3±0.2

for no IEDs to 0.6± 0.2 for higher IED counts (p < 0.01, Fig. 5.4 B).
Surrogate SCs and TCs showed no trend between different IED loads, suggesting

that our findings did not arise by chance (gray bars in Fig. 5.4 B and Fig. 5.5B & E).
Generally, the changes of SCs and TCs under increased IED load are consistent

between datasets and align with the model predictions (Chapter 4).
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5.1.3.3 Antiseizure Medication

The high ASM compared to the low ASM day in the example PwDRE showed already
stronger fluctuations of SCs and TCs during the low ASM day (Fig. 5.1 B & C). To
quantify the impact of antiseizure medication (ASM), we analyzed SCs and TCs on
days with varying ASM dosages among 60 PwDRE from Dataset 1 and 23 PwDRE
from Dataset 2 who underwent ASM tapering during monitoring. In Dataset 1, ASMs
were reduced by an average of (50± 30)%, while in Dataset 2, the reduction averaged
(70±30)% from high to low ASM days. The analysis already excluded SWS segments.

In both datasets, TCs were consistently larger during low ASM days compared to
high ASM days (Dataset 1: TClowASM = (0.6± 0.2) sec. vs. TChighASM = (0.5± 0.1)

sec., p < 0.001, Fig. 5.5 C; Dataset 2: TClowASM = (1.0± 0.5) sec. vs. TChighASM =

(0.8±0.4) sec., p < 0.001, Fig. 5.5 F). Further, the analysis of SCs in Dataset 2 revealed
a significant reduction of SCs under increased ASM dosage (SCAUC,lowASM = 0.4±0.2

vs. SCAUC,highASM = 0.3± 0.2, p < 0.05, Fig. 5.4 C).
These changes were not present in time-shuffled surrogate data (gray bars in

Fig. 5.4 C and Fig. 5.5 C & F).
In conclusion, ASMs led to a robust decline of SCs and TCs, which aligns with

the model predictions (Chapter 4) and previous studies (Meisel, 2020).

5.1.3.4 Seizure Onset Zone

Both datasets stemmed from PwDRE in the pre-surgical monitoring unit. Hence,
clinical needs determined the electrode placement alone and coverage of the likely
seizure onset zone (SOZ) was an essential factor. To verify that the TC results were
not an artifact of the epileptic tissue, we performed a sub-analysis by splitting the
electrodes into SOZ and their complement the nSOZ. Furthermore, as IED counts can
vary between SOZ and nSOZ, only segments without IEDs were included, naturally
excluding the case when IED count was of interest for the analysis.

The effect that SWS disrupted TCs was observable in both the SOZ and the
nSOZ for Dataset 1 (p < 0.001, Fig. 5.6 A). In Dataset 2, the SWS disrupted TCs
trend was also observable in SOZ and nSOZ. However, it was only significant in the
nSOZ (p < 0.05, Fig. 5.6 D).

To provide a detailed analysis of the impact of IEDs on TCs, TCs from nonSWS
segments were grouped into four categories based on their IED rate (Fig. 5.6B and
E). The rate of TC change was then quantified using a linear mixed effects model. For
Dataset 1, the mixed effects model had both negative linear (coefficient: -0.13 [-0.20,-
0.07], t = −3.9) and quadratic coefficients (coefficient: -0.069 [-0.136,-0.02], t = −2.0).
This indicates that while TCs generally decline with more IEDs, this decline slows as
IEDs become more frequent (Fig. 5.6B). Furthermore, the mixed effects model showed
smaller TCs in the nSOZ compared to the SOZ if one corrects for the IEDs (coefficient:
-0.052 [-0.997, -0.02], t = −2.1). The results for Dataset 2 were less robust. Here,
only the linear decrease of TCs with more frequent IEDs remained robust (coefficient:
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-0.24 [-0.35 to -0.13], t = −4.1, Fig. 5.6 E). The combined results from both datasets
suggest a general reduction of TCs through IEDs. The predictions from the linear
mixed effects model illustrate this finding (Fig. 5.7).

Lastly, the reduction of TCs under higher ASM load remained robust in both SOZ
and nSOZ for both datasets (Fig. 5.6 C and F). However, no difference between SOZ
and nSOZ was observed when investigating the effect of ASM, even after correcting
for IEDs and SWS.

5.2 Summary of SCs and TCs in Human iEEG

This chapter systematically explored spatial and temporal correlations (SCs and TCs)
within the human cortex. The primary aim was to test the predictions about SCs and
TCs derived from the model in human cortical dynamics (Chapter 4, prediction (a)-
(d)). Therefore, two independent datasets from PwDRE in pre-surgical monitoring
were studied. For each PwDRE in the cohort, multiple days of intracranial EEG
recordings were analyzed concerning their variations of SCs and TCs. Notably, all
predictions of the model could be verified, i.e., (a) SCs and TCs co-varied, (b) SWS
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Dataset 1 (n=50) Dataset 2 (n=23)

Figure 5.7: Linear Mixed Effects Model for TCs Under IEDs: A
Prediction of the linear mixed effects model for TCs as formulated in
Eq. (3.3) in Dataset 1 and B Dataset 2. Reprinted from (Müller et al.,

2024).

disrupted SCs and TCs, (c) IEDs increased SCs but decreased TCs, and (d) ASMs
led to the decline of SCs and TCs. Importantly, these findings were similar inside
and outside the SOZ. Furthermore, TCs were not spatially homogenous but showed a
posterior to frontal gradient that aligned with the functional hierarchy of the cortex.

The following contextualizes these results, and a joint discussion of all results of
this thesis is provided in Chapter 7.

Co-variation of SCs and TCs

The variation of SCs and TCs over time was studied across multiple days. This
revealed a strong co-variation of SCs and TCs, i.e., when SCs increased, TCs tended
to increase too, and vice versa.

This analysis did not account for perturbative effects like SWS, IEDs, or ASMs.
SWS and ASM exerted the same effect on SCs and TCs, i.e., reduction of SCs and
TCs under SWS and higher ASM load. However, IEDs had opposite effects on SCs
and TCs, i.e., more IEDs lead to increased SCs but decreased TCs. While ASMs and
SWS add positive correlation between SCs and TCs, IEDs add negative correlation.
Thus, accounting for the pathological IEDs would lead to even stronger correlation
between SCs and TCs.

The model simulations predicted such a behavior (prediction (a), Section 4.2) for
systems that vary in their proximity to a critical point. Generally, when the system
is further away from the critical point, it exhibits lower SCs and TCs, while when
it is closer to the critical point, it shows extended SCs and TCs. Thus, the model
and experimental results suggest that cortical network dynamics might vary in their
proximity to criticality over time.
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TCs Increase Along the Functional Hierarchy

TCs were mapped along the visual pathway, specifically along the five regions corre-
sponding to the regions investigated in (Murray et al., 2014). Extending the results
from Murray et al., 2014, TCs in the human cortex increased along the functional
hierarchy.

The medial temporal area in the visual cortex exhibited the lowest TCs and was
also the lowest in the functional hierarchy. From there, TCs showed a trend of progres-
sive increments that aligned with their hierarchical order. This could be interpreted
as regions low in the hierarchy needing to adapt to quickly changing stimuli and to
“forget” about the previous stimuli (Murray et al., 2014). Thus, short TCs are more
beneficial in this scenario as less memory over time is preserved. However, regions
higher in the hierarchy must process multiple inputs and more complex information
integrations, requiring extended memory over the different inputs, marked by long
TCs (Murray et al., 2014).

SWS Disrupts SCs and TCs

SCs and TCs were significantly shorter during SWS, as also predicted by the model
simulations (prediction (b), Section 4.2). These results extend previous TCs inves-
tigations in rats (Meisel, Bailey, et al., 2017; Meisel, Klaus, et al., 2017; Xu et al.,
2024). Intermittent pauses of neuronal firing are suggested to explain this decline
of TCs during SWS (Meisel, Klaus, et al., 2017). This interruption of the neuron
firing could disrupt information transmission between neurons, marked by short SCs
and TCs. This aligns with theories arguing that during sleep, the brain’s informa-
tion integration abilities become less effective (Tononi, 2008). Similarly, SWA seen in
sleep-deprived individuals showed similar effects on TCs (Meisel, Bailey, et al., 2017)
and was linked to the deterioration of cognitive performance if timed precisly to the
cognitive testing (Alhola & Polo-Kantola, 2007).

IEDs Increase SCs but Decrease TCs

Interictal epileptiform discharges (IEDs), an abnormal pattern found in PwDRE’s
cortical dynamics, were shown to impact SCs and TCs in distinct ways. While in-
creasing loads of IEDs progressively disrupted TCs, they did increase the strength of
SCs. The model simulations precisely predicted both of these trends (prediction (c),
Section 4.2). In the temporal plain, IEDs disrupt the flow of information by overwrit-
ing the current signal with the IEDs. While SCs were increased, this may arise as
IEDs are spatially coordinated activation-patterns, increasing SCs but not necessar-
ily carrying information about previous activities. This interpretation could explain
phenomena like “transient cognitive impairment”, i.e., the observation of impaired cog-
nitive performance when IEDs are present during the cognitive testing (Kleen et al.,
2013; Lam et al., 2017).
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ASMs Reduce SCs and TCs

SCs, and TCs declined during days of increased ASM dosage as predicted by the
model simulations (prediction (d), Section 4.2). These results align with previous
findings of decreased TCs during increased ASM loads (Meisel, 2020). The disruption
of SCs and TCs could be explained by ASMs changing the effective connectivity by
affecting the excitation/inhibition balance (Lang et al., 2013; Ossemann et al., 2016),
which has been proposed as necessary for establishing long-range correlation (Poil
et al., 2011). Furthermore, the disruption of SCs and TCs by ASMs could explain the
adverse cognitive side effects of many of these ASMs (Eddy et al., 2011).

The Potential for Longer TCs in the SOZ

The data stems from PwDREs, and electrodes were placed to cover the likely seizure
onset zone (SOZ). We analyzed all perturbative effects in the SOZ and nSOZ sepa-
rately to investigate the impact that the epileptic tissue could have.

All results of TC variations were observed similiarly in the SOZ and nSOZ. Ac-
counting for IEDs revealed a trend that the SOZ might exhibit longer TCs than the
nSOZ. Long TCs are markers for criticality and are also markers for the proximity
to the boundary of instability of the system. Thus, long TCs in the SOZ could indi-
cate that the SOZ is closer to a phase transition towards a seizure, associated with
supercritical dynamics (Meisel & Kuehn, 2012; Meisel et al., 2012). SCs could not be
analzed on a channel basis.

Limitations

While the comparison for IEDs and SWS happened on the same day, the comparison
for ASM was across multiple days. These days were a different duration away from
the electrode implantation surgery, and mostly, the high ASM day was closer to the
surgery. The proximity to surgery could confound the ASM results. However, a sub-
analysis of patients with low ASM days closer to surgery could not reveal such an
effect as previously reported in (Müller & Meisel, 2023).

Dataset 2 recorded only 5 minutes per hour. However, segments over multiple
days and from 81 patients were included, making this a relatively large sample set
compared to similar datasets, e.g., Dataset 1. Moreover, results are similar between
the continuously sampled Dataset 1 and Dataset 2.

Due to the large sample size, expert annotation of IEDs was not feasible. Instead, a
state-of-the-art algorithm was employed for IED detection (Quon et al., 2022). While
the algorithm might still misclassify individual IEDs, the general count per minute
estimation was less prone to timing errors of individual IEDs.

Standardized polysomnographic vigilance assessment was impossible in the datasets
as neither EMG nor scalp EEG recordings were continuously available. Therefore, an
automated classification scheme to identify SWS was utilized, which, however, was
less accurate than expert annotation and did not resolve the other sleep stages (Reed
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et al., 2017). Future research could address this issue by using other algorithms, e.g.,
(von Ellenrieder et al., 2022)

Chapter Conclusion

These results showed that SCs and TCs are intimately linked and are predictably
perturbed by mechanisms also known to affect cognition. Further, we found that
TCs increase along the functional hierarchy underlining their importance for complex
computation. However, a direct link between TCs cognitive performance remains
elusive. The next chapter will address this question and investigate the correlation of
the cortical structure and TCs to cognitive impairment.
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Chapter 6

Structure, Dynamics, and
Cognition

The previous chapter investigated SCs and TCs in human intracranial EEG dynam-
ics. Interestingly, TCs were the longest in regions high in the functional hierarchy,
supporting that long TCs could be beneficial for complex information processing. Fur-
thermore, SCs and TCs changed predictably under mechanisms that also adversely
affect cognition, i.e., SWA (Alhola & Polo-Kantola, 2007), IEDs (Kleen et al., 2013;
Lam et al., 2017), and ASM load (Eddy et al., 2011).

These results align with previous research proposing a connection of TCs and even
more general brain criticality to cognitive performance (Jensen, 2021; Linkenkaer-
Hansen et al., 2001; Shew & Plenz, 2013). However, previous research on the direct
experimental link between brain criticality measures like TCs and cognitive perfor-
mance was mostly limited to short recordings and single cognitive tasks (Kardan
et al., 2023; Mahjoory et al., 2019). Thus, a broader connection between cognitive
performance and brain criticality measures is still missing.

To bridge this gap, this chapter will consist of two parts, which compare structural
changes and TCs to a broad range of cognitive tests.

The first part is labeled “Structure & Cognition”. It investigates structural MRI
data to link cortical thickness changes in PwDRE with cognitive impairment. The
PwDRE were categorized into impairment severity groups based on a new taxonomy,
i.e., the International Classification of Cognitive Disorders in Epilepsy (IC-CoDE)
McDonald et al., 2023. This approach unifies many cognitive tests, allows for better
comparison between different centers and languages, and provides a more general
assessment of cognitive impairment apart from single tests (McDonald et al., 2023).

The goal of this study was to investigate which regions in the brain were associated
with cognitive impairment. Furthermore, the study then aimed to use these regions to
evaluate the risks for increasing impairment after epilepsy surgery. This part follows
the analysis previously reported in (Miron et al., 2024).

The second part, labeled “Dynamics & Cognition”, then investigates the link of
TCs. Here, PwDRE with and without impairment in four cognitive domains will
be compared with respect to their TCs. Both the dataset, and the TCs evaluation
methods have been already used in Chapter 5. In general, shorter TCs could be a
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sign of a deviation from brain criticality which consequently could lead to deterio-
rated cognitive performance. These results were previously reported in (Müller et al.,
2024). To support that our findings are not found by chance or can be explained by
simpler measures, for instance α-band power variations, we show a wide range of other
measures as controls, e.g, ASM load, IED frequency, standard EEG band powers.

6.1 Results

6.1.1 Study 1: Structure and Cognition

6.1.1.1 Cognitive Phenotyping

In order to test how cortical thickness changes as a function of cognitive impairment,
PwDRE are first clustered into three cognitive phenotypes following the IC-CoDE
criteria (Fig. 3.6) (McDonald et al., 2023). Out of 124 PwDRE, 66 (53.2%) were multi-
domain impaired (MDI), 37 (29.8%) were focal impaired (FI), and 21 (16.9%) were
minimal impaired (MI). The MDI group showed the lowest cognitive scores across all
domains, while the MI group showed the highest scores (Fig. 6.1). The MI group’s test
scores spread around the norm (50. percentile rank). While there was no difference
in age and sex between the three groups, the MDI cohort showed a significantly lower
education level than the other cohorts (p < 0.01 chi-squared test, Table 3.3).

6.1.1.2 Cortical Thickness Changes in Cognitive Phenotypes

Each group was evaluated against age- and sex-matched healthy controls to inves-
tigate the cortical thickness changes across cognitive phenotypes. The full results
for the ANOVA-based analysis can be found in Supplement Table 1 of our previous
publication (Miron et al., 2024).

Fig. 6.2 shows the ROIs for each cognitive phenotype significantly different from
the healthy controls after conservative Bonferroni correction, comparison to the surro-
gate p-value distribution, and exclusion of ROIs closely connected to the MRI scanner
variable. Supplement Table 2 of our previous publication (Miron et al., 2024) reported
the complete regions list. In general, the more severely impaired cognitive phenotypes
also exhibited the most cortical regions with changes in thickness compared to healthy
controls.

The MDI group showed the most prominent cortical changes with 28 significantly
different ROIs. Affected regions were mainly in the bilateral anterior cingulate and
medial prefrontal cortex (7 ROIs) and bilateral early auditory cortex (4 ROIs).

The FI group had the second-most changed ROIs, with 12 affected ROIs. These
regions were primarily located in the bilateral anterior cingulate and medial prefrontal
cortex (3 ROIs). Furthermore, 7 of the affected ROIs in the FI group were also affected
in the MDI group.

The MI group had the least affected regions, with only 3 ROIs. These ROIs were
in the bilateral early auditory (2 ROIs) and left primary visual left (1 ROI) cortical
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Figure 6.1: Cognitive Scores per Phenotype: A Domain average
cognitive score for each cognitive phenotype. B Test scores split by
cognitive phenotype. Boxes show median and interquartile range.
Whiskers extend to 1.5 times the interquartile range. Diamonds de-
note datapoints outside of this range. PhoFl. = phonetic word flu-
ency; PhoSw. = phonetic category switching; SemFl. = semantic
word fluency; SemSw. = semantic category switching; WOC = TAP
Alertness subtest without auditory warning cue; TAP = Testbatterie
für Aufmerksamkeitsprüfung; WC = TAP Alertness subtest with au-
ditory warning cue; GNG = TAP Go/No-Go subtest; Mott = Mottier
test; BT(6) = Block Tapping; VLMT = Verbaler Lern- und Merk-
fähigkeitstest; RFT = Recurring Figures Test; DCS = Diagnosticum
für Cerebralschädigung test. Adapted from (Miron et al., 2024) [CC

BY-NC 4.0].

regions. The left early auditory ROI was also affected in the MDI group.
Generally, all cortical thicknesses were lower in the epilepsy cohort compared to

the healthy controls, except the left somatosensory and motor cortex in the FI group
(Fig. 6.3). Of the clinical variables, only age was associated with 7 of the above ROIs
(see Supplement Table 2 of our previous publication (Miron et al., 2024)).

6.1.1.3 Post-Surgical Outcome Prediction

A sub-group of 69 patients underwent epilepsy surgery and repeated cognitive eval-
uation after one year (patient characteristics in Table 3.4). For this sub-group, an
analysis of cognitive decline after surgery was possible, which could help to evaluate
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controls robustly changed cortical thicknesses for each cognitive phe-
notype. ∆i is defined in Eq. (3.4). Adapted from (Miron et al., 2024)
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Figure 6.3: ROI Thickness Changes in Cognitive Phenotypes: Per-
centage change of ROI thickness with respect to healthy controls for
each cognitive phenotype and the robustly changed ROIs (Fig. 6.2).
Reprinted from Supplement Material of (Miron et al., 2024) [CC BY-

NC 4.0].

the risks of epilepsy surgery better. A domain was post-surgically worse if the av-
erage score had decreased by five percentile ranks. Otherwise, it was labeled stable.
The analysis excluded the attention domain because post-surgical testing was not
sufficiently available.

The cognitive phenotype was not directly associated with the worsening. To test if
the cortical changes in the specific ROIs provide information about cognitive outcome,
logistic regression models were fit using the most robust ROIs as input features. In
particular, all ROIs with ∆i < 1 were included resulting in n = 13 ROIs (Table 6.1).
Data from all cognitive phenotypes had to be joined; otherwise, the sample size would
have been too small.

First, an exploratory logistic regression model was fit to the whole dataset (Fig. 6.4).
Input features were the thicknesses in the 13 above-identified ROIs and age. Age was
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Name Description Side Lobe Group ∆i

l9m Anterior cingulate and medial
prefrontal

Left Frontal MDI 0.72

l1 Somatosensory and motor Left Parietal FI 0.92
lTA2 Auditory association Left Temporal FI 0.99
lA1 Early auditory Left Temporal MDI 0.92
lTGd Lateral temporal Left Temporal FI 0.97
lPreS Medial temporal Left Temporal MDI 0.89
r10v Anterior cingulate and medial

prefrontal
Right Frontal MDI 0.74

r8BM Anterior cingulate and medial
prefrontal

Right Frontal FI 0.75

rSCEF Paracentral lobular and mid
cingulate

Right Frontal MDI 0.73

rV1 Primary visual Right Occipital MDI 0.86
rTGd Lateral temporal Right Temporal MDI 0.82
rEC Medial temporal Right Temporal MDI 0.74
rPreS Medial temporal Right Temporal MDI 0.98

Table 6.1: ROIs with ∆i < 1: ROIs with ∆i < 1 for all cognitive
phenotypes.

included as it showed associations with some of these ROIs itself. The target was
the cognitive worsening in the domains. The models revealed a significant connec-
tion between l9m, rSCEF, rV1, and l1 and verbal learning and memory worsening
(Fig. 6.4 A). Strong associations were also found for lA1 and l1 with visual learning
and memory worsening (Fig. 6.4 B), and for r10v and rSCEF with language worsening
(Fig. 6.4 C). No region was associated with working memory worsening (Fig. 6.4D).

While this analysis described how ROI thicknesses were associated with cognitive
worsening, it is not suitable to claim the predictive power of these ROIs concerning
post-surgical outcome predictions. Therefore, logistic regression models were tested
in a 5-fold repeated cross-validation scheme to address this issue (Fig. 6.5). For
predicting post-surgical verbal worsening and learning, they achieved an ROC-AUC
of 0.70±0.15 (mean± standard deviation) and an accuracy of 0.65±0.13 (Fig. 6.5A).
This performance was significantly better than chance and outperformed the model
based only on the clinical variables (ROC-AUC 0.66±0.14). Combining ROI features
and clinical variables further boosted the performance to ROC-AUC 0.75± 0.14 and
accuracy 0.69 ± 0.12 (Fig. 6.5 A). This showed that the ROIs provided additional
information to clinical information alone.

For the other domains, models built with ROI features only reached ROC-AUCs
close to the chance level (Fig. 6.5 B - D). Furthermore, they performed worse than
the models based on clinical variables alone. Thus, the ROI thicknesses provided no
additional information to the post-surgical outcome prediction for visual learning and
memory, language, and working memory.
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Figure 6.4: Connections Between ROI Thicknesses and Domain
Worsening: The odds ratios of descriptive logistic regression models
show associations between the strongest ROIs connected to cognitive
phenotypes. ROI names are defined in Table 6.1. Odds ratios are
listed with their 95% confidence interval and the corresponding p-
value. A Verbal learning and memory domain, B visual learning and
memory domain, C language domain, and D working memory domain.

Adapted from (Miron et al., 2024) [CC BY-NC 4.0].

6.1.2 Study 2: Dynamics and Cognition

While Study 1 investigated the structural changes linked to cognitive worsening, the
aim of Study 2 was to investigate the correlations between cortical dynamics, par-
ticularly TCs, and cognitive performance. Therefore, Dataset 1 from Chapter 5 was
utilized again. For the 81 PwDRE, 14 cognitive tests spanning four domains were
available. Cognitive phenotyping was not performed as the data had only four cogni-
tive domains, i.e., one fewer than Study 1 and the IC-CoDE publication (McDonald
et al., 2023).

In Chapter 5, TCs have been introduced to evaluate cortical dynamics and their
information maintenance. From the investigations in Chapter 5, we have learned that
TCs change through many factors, e.g., SWS or ASMs. Furthermore, the clinical needs
decided about the length of the pre-surgical monitoring, ASM loads, and electrode
positions. In order to minimize the effect of different recording lengths and ASM
changes, only three distinct days were analyzed: The first, last, and lowest ASM load
days. Further, only nonSWS episodes were analyzed to account for the disruptive
effect of SWS on TCs. Additionally, sub-analyses for different hemispheres and lobes
were performed to reduce the effect of variability in the electrode placement. Lastly,
all SOZ electrodes were excluded, which reduced the effect of IEDs and SOZ. In total,
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108 sub-analyses were performed (three days, two lobes plus all, two hemispheres
plus both, and four cognitive domains). Of these, six did not reach the minimum
requirement of n ≥ 5 per group, which was necessary to achieve statistical significance
for the Brunner-Munzel test. Hence, 102 comparisons were performed for all measures
except SWS and ASM. SWS and ASM were cortex-wide measures, resulting in twelve
comparisons (three days and four domains).

The results for all measures and sub-analyses are presented in Fig. 6.6A. No-
tably, 19 of the comparisons for TCs reached significance before multiple comparison
correction (p < 0.05). Of these, 12 remained significant after multiple comparisons
correction with the Benjamini-Hochberg method at an α = 0.05 (circles with trian-
gles in Fig. 6.6A). The strongest associations between cognitive impairment and TCs
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were found in the attention and language domain, particularly during the first full
day of recording. These associations showed that PwDRE with impaired language or
attention had shorter TCs as the effect size was above 0.5. In other words, it was
more likely that if one randomly drew an impaired and a not impaired PwDRE, the
impaired would likely have lower TCs (blue shaded in Fig. 6.6 A). This result is in line
with the prediction of long TCs and optimal computation in the vicinity of brain crit-
icality. For the working memory domain, shorter TCs in the temporal lobe electrodes
were also aligned with impaired working memory during the first day. However, the
right-sided and, in particular, the temporal lobe electrodes showed longer TCs during
the last day of the recording in the working memory impaired PwDRE. Thus, further
research is needed to disentangle the complex interplay of TCs with working memory.

No test for the other iEEG features was significant after multiple comparison
corrections (Fig. 6.6 A). Notably, for neither surrogate TCs nor high-γ power, signifi-
cant associations with cognitive impairment were found, suggesting that the temporal
alignment of the data is crucial. Neither were known lesions associated with cog-
nitive impairment. Only for SWS, one sub-analysis for the last day in the working
memory domain was significant after multiple comparison correction. However, for
SWS only 12 comparisons were performed. To further evaluate if the results could
arise by chance, the distribution of p-values was compared to a uniform distribution
(Fig. 6.6 B). The uniform distribution could be expected if the null hypothesis that
impaired and not impaired groups come from the same distribution was true. This
analysis showed that only the p-value distribution for TCs was significantly differ-
ent from the uniform distribution (p < 0.01 Kolmogorov-Smirnov test). Notably, the
distribution for SWS remained insignificant in this test.

6.2 Chapter Summary

We observed that both cortical structure and dynamics were related to cognitive im-
pairment. Analyzing structural MRI data from PwDRE showed that more severely
cognitively impaired PwDRE also had more cortical thickness changes. Analyzing
TCs in iEEG showed that shorter TCs were associated with cognitive impairment,
particularly in the language and attention domain. Together, these results suggest
that structure and dynamics are essential for cognition and that some structures and
dynamics might be more optimal than others, e.g., the structure of healthy individ-
uals and dynamics with maximal TCs. The following sections will contextualize the
studies, and the next chapter will discuss all results in context with brain criticality.

Structure and Cognition

Study 1 focussed on the link between structural MRI changes and cognitive impair-
ment severity in PwDRE. It was the first application of cognitive phenotyping in a
German-speaking TLE cohort using the International Classification of Cognitive Dis-
orders in Epilepsy (IC-CoDE) criteria (McDonald et al., 2023). Previous studies have
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established the approach in a large American, English-speaking cohort (McDonald
et al., 2023) and an American, Spanish-speaking cohort (Reyes et al., 2023). In our
cohort, 53.2% showed MDI, followed by 29.8% FI, and finally 16.9% MI. The percent-
age of MDI patients was higher compared to previous studies (B. P. Hermann et al.,
2021). Potentially, this could be attributed to the entire cohort consisting of PwDRE
with long average epilepsy duration (18 ± 13 years). However, PwDRE were inves-
tigated because one of the aims of Study 1 was to specifically identify MRI patterns
that could help in the surgical risk assessment.

Comparing cortical thicknesses for each cognitive phenotype (MI, FI, MDI) to age-
and sex-matched healthy controls revealed that more severely impaired PwDRE had
more affected ROIs. Specifically, 3 ROIs were affected for MI, 12 for FI, and 28 for
MDI. This aligns with previous studies showing that MDI compared to MI had more
diffusion and functional MIR abnormalities (Kaestner et al., 2019; Reyes et al., 2019;
Rodríguez-Cruces et al., 2018) and more prominent changes in functional network
measures (Garcia-Ramos et al., 2022; Larivière et al., 2020). Of the few studies that
also investigated cortical thickness corresponding to cognitive phenotype, two showed
only small associations between phenotype and cortical thickness (Dabbs et al., 2009;
B. Hermann et al., 2020). However, these studies investigated patients with relatively
benign TLE, and a third study with more severe epilepsy showed results closer to
ours (Kaestner et al., 2019). This emphasizes the need to differentiate cohorts based
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on the severity of the disease and suggests that there might be structural differences
between PwDRE and responsive PwE.

In total, 43 regions (18 temporal and 25 extratemporal) across phenotypes showed
significant differences from healthy controls despite Bonferroni correction. Some ROIs
were found for multiple phenotypes; for example, FI and MDI had seven overlapping
ROIs. For instance, the FI and MDI groups showed reduced cortical thickness in
the lateral and medial temporal regions. These ROIs are known to be related to
cognitive functions, including memory, learning, and language (Bell et al., 2011).
The most widespread bilateral differences to healthy controls were identified in the
anterior cingulate and medial prefrontal cortical regions (7 in MDI and 3 in FI). This
finding aligns with previous studies in TLE identifying associations of these ROIs with
impaired memory, cognitive slowing, and attention (Bell et al., 2011; Hwang et al.,
2019; Keller et al., 2009).

To test if these findings could have direct clinical use, cortical thickness changes
were used to predict the risk of cognitive worsening after epilepsy surgery. Therefore,
logistic regression models were trained with the cortical thicknesses from the 13 ROIs
most robustly associated with the phenotypes. Notably, for the verbal learning and
memory domain, these thicknesses were better at predicting cognitive worsening than
clinical features (ROC-AUC 0.70 ± 0.15 and 0.66 ± 0.14, respectively). Combining
clinical features and ROI thicknesses further improved the performance to a ROC-
AUC of 0.74± 0.14. This underscored that cortical thicknesses in these ROIs contain
more information than clinical information alone. Previous studies identified corre-
lations between cognitive phenotypes and imaging abnormalities but did not apply
their findings to surgery risk assessment (Bell et al., 2011; Hwang et al., 2019; Pardoe
et al., 2017). One study used MRI measures to predict post-surgical outcome but
required four imaging measures compared to only one needed in our study (Lee et al.,
2022).

Limitations

This work has several limitations. The structural data analysis relied on healthy age-
and sex-matched controls from an external source, which may not perfectly represent
the characteristics of the PwDRE in this study. For instance, education levels could
not be matched due to differences in educational systems between countries. However,
the effect of education on cortical thickness is not well-established in PwE and is
relatively small in healthy individuals (Steffener, 2021).

Moreover, the MRI protocols of healthy controls differed from those for the Pw-
DRE. However, we took several precautions to mitigate this effect. First, the MRI
scanner and, thus, the protocol were included as additional variables in the ANOVA
model to account for protocol differences. ROIs closely connected to this variable
were excluded. Second, the ANOVA was repeated for permuted ROI labels in each
patient. This could have revealed systematic differences and provided further valida-
tion against chance. Third, the MI group and controls were similar, which suggests
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comparability despite the different MRI protocols.
The definition of cognitive worsening in this study deviates from standard clinical

definitions. However, other definitions for cognitive worsening based on test-retest-
reliability and population standard deviations showed similar results as shown in the
Supplement to our publication (Miron et al., 2024).

Last, the post-surgical cognitive evaluation was limited to a single testing session
one year after surgery. However, previous research has shown that cognitive results
remain relatively stable after one year (Helmstaedter et al., 2018).

The content of Study 1 followed our previously reported results in (Miron et al.,
2024).

Dynamics and Cognition

The focus of Study 2 was to understand the link between cortical network dynamics
and cognitive function. The analysis included TCs as established in Chapter 5 and
other more standard EEG measures, e.g., α-power. Notably, only TCs showed a
widespread association with cognitive impairment. In particular, TCs were shorter
for PwDRE with language and attention impairment.

The results for attention align with a previous study which reported that longer
TCs correlated with shorter response times in a visual oddball task, requiring sustained
attention (Irrmischer et al., 2018). Similarly, another study showed that longer TCs
enable higher cognitive flexibility (Simola et al., 2017). TCs correlating robustly
with language impairment could be explained by electrode locations. Electrodes were
preferentially sampled in left lateral temporal and frontal brain regions. These regions
have an established association to the function of language networks. Furthermore,
TCs during the first recording day correlated strongest with cognitive impairments.
On this day, the PwDRE’s ASM levels were mainly at their therapeutic levels, likely
aligning with the levels during the cognitive testing.

Moreover, TCs in the right hemisphere during the last day were longer for PwDRE
with memory impairment compared to PwDRE without impairments. While this
might seem counterintuitive as long TCs are thought to be beneficial for information
processing, it aligns with findings that working memory tasks require short and long
TCs (Wasmuht et al., 2018). Regions with short TCs in these tasks could be associated
with the fast encoding of stimuli, and regions with long TCs might need to carry
information over a delay period (Wasmuht et al., 2018). As exact electrode placement
was unknown, it is impossible to rule out that regions required for fast encoding were
sampled.

None of the other EEG features showed a statistically robust correlation. Notably,
even the high-γ power did not show a correlation to cognitive impairment, even though
it was the basis for TCs calculation. Only the SWS count during the last recording
day was higher in the PwDRE with memory impairment. However, a second analysis
of the p-value distribution against a uniform distribution was not significant for SWS
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in contrast to the distribution for TCs. This underscores that TCs could be a valuable
marker for cognitive impairment.

Limitations

While cognitive testing was done according to clinical standards, it was performed be-
fore the intracranial EEG recordings. This temporal mismatch and potential changes
in ASM loads and sleep patterns could be a cofounder in the analysis. Several steps
were taken to address this. First, averaging cognitive tests into domain scores reduced
the variability from single tests. Second, surrogate TCs from time-shuffled high-γ-
power time series showed no correlations to cognitive impairment. Third, IEDs, ASM
levels, and IED counts were included as additional control measures. In particular, the
fact that neither IEDs nor ASM were associated with cognitive impairment showed
that the results can not be explained by disease severity or treatment path. Fourth, all
statistical testing was corrected for multiple comparisons, and the p-value distribution
was compared to the chance level.

The content of Study 2 followed our previously reported results in (Müller et al.,
2024).

Chapter Conclusion

This chapter analyzed how cortical thickness changes and TCs correlated with cogni-
tive impairment. Notably, the stronger the cognitive impairment was, the more ROIs
were affected. Furthermore, shorter TCs were associated with cognitive impairment,
particularly in the language and attention domain. The next chapter will discuss the
results of this thesis in context with each other and the brain criticality framework.
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Chapter 7

Discussion

In this thesis, we have investigated the connection between cortical structure, cortical
dynamics, and cognitive function. Therefore, we analyzed a neuronal network model,
intracranial EEG data, and MRI images from PwDRE. Tuning the network structure
of the model to criticality led to maximal spatial and temporal correlations (SCs and
TCs, Chapter 4). Both in the model simulations and iEEG recordings, SCs and TCs
were found to be interconnected and distinctively shaped by slow-wave activity (SWA),
interictal epileptic discharges (IEDs), and antiseizure medication (ASM) (Chapters 4
and 5). Ultimately, we showed that cognitive impairment correlated with short TCs
and increasing numbers of MRI-extracted cortical thickness abnormalities (Chapter 6).
Brain criticality could be a unifying framework for interpreting these results, which
will be discussed in the following (Fig. 7.1).

Balanced Networks Exhibit Critical Dynamics

For the model in this thesis, we identified a phase transition between vanishing (sub-
critical) and exploding (supercritical) activity, similar to the model’s foundational
predecessors (Haldeman & Beggs, 2005; Larremore et al., 2011, 2014; Meisel, 2020)
(Chapter 4). Critical dynamics emerged when the largest absolute eigenvalue of the
connectivity matrix approached λ = 1, aligning with previous results for a similar
degree-uncorrelated network model (Larremore et al., 2011). SCs and TCs reached
their maximum for this critical network structure. In contrast, for very weakly con-
nected networks, i.e., λ ≪ 1, the network activity was driven mainly by the back-
ground noise, and SCs and TCs remained short. Strongly connected networks, i.e.,
λ ≫ 1, led to dense dynamics and short SCs and TCs.

Similar to our model, earlier research showed that the correlation length maximizes
at the critical point (Langton, 1990). Hence, long SCs and TCs have been proposed as
measures for information integration and as hallmarks for criticality (Cavagna et al.,
2010; Goldenfeld, 1992; Jensen, 2021; Linkenkaer-Hansen et al., 2001; Meisel et al.,
2015). Additionally, researchers have found that many other information theoretical
measures were optimized at the critical point, e.g., dynamical range (Gautam et al.,
2015; Kinouchi & Copelli, 2006; Larremore et al., 2011; Shew et al., 2009), information
capacity and transmission (Langton, 1990; Shew et al., 2011), or phase variability
(Yang et al., 2012). Following these theoretical arguments, cortical networks have
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been hypothesized to achieve optimal information processing by tuning to a critical
point (Fig. 7.1).

Variation of SCs and TCs

Despite many theoretical arguments linking criticality to cognition (Beggs & Plenz,
2003; Chialvo, 2004; Gautam et al., 2015; Kinouchi & Copelli, 2006; Larremore et al.,
2011, 2014; Meisel & Gross, 2009; Ribeiro et al., 2010; Shew et al., 2009; Shew &
Plenz, 2013; Shew et al., 2015; Tagliazucchi et al., 2012), experimental evidence in
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humans remained limited. Constraining factors include limited temporal duration and
resolution, coarse spatial coverage, and assessment of only single cognitive tests.

To address these limitations, we investigated SCs and TCs in multi-day intracranial
EEG data from two independent datasets (Dataset 1: 81 PwDRE and Dataset 2: 23
PwDRE, Chapter 5).

SCs and TCs Co-Vary

Dataset 2 in this thesis listed exact electrode positions, which allowed for the inves-
tigation of SCs in addition to TCs. SCs and TCs co-varried during the recording
duration, i.e., high SCs were associated with long TCs and vice versa.

These co-variations could be explained by the system’s proximity to criticality
changing over time. Our model simulations showed that systems closer to criticality
had longer SCs and TCs. In humans, stimuli and inputs could cause changes of the
cortical networks’ proximity to criticality. For instance, systems have been shown to
tune closer to criticality when presented with structured inputs (Habibollahi et al.,
2023) or while performing tasks (Gao et al., 2020). Furthermore, Kashyap et al.,
2024 showed that many criticality-related measures, including SCs and TCs, vary
as a function of the circadian cycle. The perturbative mechanisms discussed in the
following could also add to this co-variability of SCs and TCs.

Slow-Wave Activity Disrupts SCs and TCs

We introduced SWA in the model as neuronal off-periods following previous research
(Meisel, Klaus, et al., 2017). These off-periods disrupted SCs and TCs. Similarly,
SCs and TCs in human iEEG declined during slow-wave sleep (SWS), a sleep stage
associated with SWA (mechanisms in Fig. 7.1).

Disrupted SCs and TCs during SWS align with theories suggesting that during
sleep, the effectiveness of the brain’s information integration abilities across cortical
areas and time declines (Tononi, 2008). Additionally, decreased SCs and TCs during
SWS suggest that the system might be further away from the critical point. For
instance, SWA has been associated with drift away from criticality in sleeping rats
(Meisel, Klaus, et al., 2017). Removing SWA segments from sleep data led to the
recovery of critical dynamics similar to wake (Meisel, Klaus, et al., 2017).

Furthermore, previous studies demonstrated that intermittent local SWA during
extended wakefulness might lead to dynamics further away from criticality (Meisel,
Bailey, et al., 2017; Meisel, Klaus, et al., 2017) and impaired cognition (Alhola & Polo-
Kantola, 2007). This aligns with findings associating attention lapses with coocurring
SWA (Andrillon et al., 2021). Although cortical networks dynamics are potentially
farther away from criticality while SWA is present, evidence was shown that overall,
SWS might be essential to reestablish critical dynamics (Meisel, Klaus, et al., 2017;
Xu et al., 2024).

In the context of epilepsy, these findings take on an additional dimension. Epilepsy
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disturbs sleep by influencing sleep structure, architecture, continuity, and oscillations
(Sudbrack-Oliveira et al., 2019). Thus, PwE are more prone to sleep disturbances,
potentially contributing to cognitive impairments.

Interictal Epileptiform Discharges Decrease TCs and Increase SCs

IEDs are a typical EEG pattern in epilepsy. Their introduction in the model as
synchronous activation of local neuron populations decreased TCs and increased SCs.
The analysis of SCs and TCs in iEEG from PwDRE closely matched the model.
While SCs were higher with more IEDs, TCs decreased progressively with more IEDs
(mechanisms in Fig. 7.1).

In the model, IEDs occurred randomly and disrupted the background activity.
Consequently, they masked the ongoing activity and, thus, the correlation within it,
explaining the shorter TCs. In contrast, the distinct IED pattern occurs in many
neurons and channels simultaneously, which could explain the high SCs under IEDs.

Therefore, drawing conclusions on SCs is difficult due to the synchrony of neurons
induced by IEDs. In contrast, TCs suffer less from caveats; thus, reduced TCs could
suggest disrupted information flow over time and potentially a drift away from critical
dynamics. While the decreased TCs might suggest a drift away from criticality with
increased IEDs, the exact direction of this deviation—whether towards sub- or su-
percritical dynamics—remains an open question. However, one prior study suggested
that IEDs are supercritical phenomena (Arviv et al., 2016).

The disruption of TCs could also explain the “transient cognitive impairment” phe-
nomenon, which describes impaired cognitive performance due to concurrent epileptic
activity during cognitive testing (Kleen & Kirsch, 2017; Kleen et al., 2013), or cogni-
tive deficits associated with IED-like activity in Alzheimer’s disease (Ciliento et al.,
2023; Devulder et al., 2024; Lam et al., 2017).”

Antiseizure Medication Shortens SCs and TCs

As the data stemmed from PwDRE undergoing presurgical monitoring, ASMs were
routinely tapered down to provoke seizures. The ASM tapering provided a unique
opportunity to examine how an external perturbation can affect cortical dynamics
and markers of criticality, i.e., SCs and TCs.

ASMs led to declining SCs and TCs in iEEG data from PwDRE, extending pre-
vious research on ASM effects on TCs (Meisel, 2020). These results closely matched
the observations in the network model, where the effect of ASM was modeled by re-
ducing the strength of excitatory connections between neurons and thus changing the
excitation-inhibition (E/I) balance (mechanisms in Fig. 7.1).

Changes in the E/I balance are commonly attributed to ASM action in cortical
dynamics (Lang et al., 2013; Ossemann et al., 2016; Premoli et al., 2017; Ziemann et
al., 1996). For example, some ASMs change the E/I balance by blocking ion channels
and thus reduce the efficacy of excitatory connection (Sankar & Holmes, 2004). The
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E/I balance has also been proven as a control parameter for the proximity to criticality
(Poil et al., 2012).

Hence, ASMs changing the E/I balance and effective connectivity might shift cor-
tical network dynamics away from the critical point. This could lead to a decline
of SCs and TCs, which might explain the adverse effect of ASMs on cognition in
PwE (Eddy et al., 2011). In particular, ASMs inducing a shift away from criticality
might unify the effects of over 20 different ASMs with various mechanisms of action
on cognition (Kwan et al., 2001).

TCs Varies Similar in the SOZ and nSOZ

The analysis excluded seizures but did not generally exclude electrodes that partici-
pated in seizures. We conducted a separate analysis of the seizure onset zone (SOZ)
and the non-seizure onset zone (nSOZ) to test how the epileptogenic tissue impacted
the results.

TCs changed similarly in the SOZ and nSOZ under SWS, IEDs, and ASMs. This
suggested that the effects of SWS, IEDs, and ASMs on TCs were not just a conse-
quence of seizure-generating tissue but occur cortex-wide. An analysis accounting for
IEDs revealed a trend for shorter TCs in the nSOZ than in the SOZ (Dataset 1).

The trend of longer TCs in the SOZ supports the hypothesis that the SOZ might be
closer to criticality and thus more likely to shift into the supercritical regime, a process
linked to seizure initiation (Maturana et al., 2020; Meisel & Kuehn, 2012; Meisel et al.,
2012). This observation could also explain the success of the neural fragility index as
a marker for the SOZ, as the index assesses the instability associated with the SOZ
(A. Li et al., 2021).

TCs Increase along the Functional Hierarchy

To further investigate how TCs change depending on the electrode location, we ana-
lyzed TCs in five regions along the visual pathway. TCs increased with the functional
hierarchy of these regions, with short TCs early in the functional hierarchy and long
TCs high in the hierarchy.

This showed the hierarchical gradient of TCs known from non-human primates
(Honey et al., 2012; Murray et al., 2014; Wasmuht et al., 2018) (Section 2.2.1), human
fMRI (Raut et al., 2020) and MEG (Golesorkhi, Gomez-Pilar, Tumati, et al., 2021;
Sorrentino et al., 2023) for the first time in iEEG.

Specifically, regions high in the functional hierarchy might leverage long TCs to
integrate information over time and from different sources (Murray et al., 2014). In
contrast, regions early in the hierarchy might benefit from short TCs to adapt quickly
to variable stimuli and reduce interference with previous stimuli (Murray et al., 2014).
The increase of TCs along the functional hierarchy could indicate that these regions
are closer to criticality, making regions high in the functional hierarchy more flexible
and adjusted for complex computation.
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Short TCs Predict Cognitive Impairment

Ultimately, to test if TCs directly correlate with cognitive performance, we analyzed
iEEG data from 81 PwDRE for which cognitive testing was available (Section 6.1.2).
Under the brain criticality hypothesis, short TCs could lead to a deterioration of
cognitive performance.

Indeed, language and attention impairmed PwDRE showed shorter TCs than their
non-impaired counterparts. In contrast, none of the control measures, including high-
γ band power and surrogate TCs, were connected to cognitive impairment. Notably,
neither lesion, IED rate, nor ASM load were related to cognitive impairment. This
suggests that epileptic activity and disease severity are only minor factors. For exam-
ple, while IEDs disrupted TCs, they were only one factor of many affecting TCs and,
thus, cognitive function.

As clinical needs decided about the electrode location, sampling was preferentially
in the left hemispheric lateral temporal and frontal brain region due to the large
portion of temporal and frontal lobe epilepsy in the cohort. These regions are inte-
gral to language processing networks, which may have contributed to the observed
relationship of short TCs for language impairmed PwDRE.

Regarding the attention domain, previous research reported similar results. For in-
stance, one study observed that extended TCs, even in scalp EEG, corresponded with
shorter response times in a visual oddball task, indicating enhanced attentional per-
formance (Irrmischer et al., 2018). Similarly, another investigation linked prolonged
TCs to increased cognitive flexibility (Simola et al., 2017).

Other criticality measures have been explored in the context of various cognitive
states. Research has suggested that during rest periods, cortical network dynamics
tends towards a critical state, potentially optimizing its receptivity to external and
internal stimuli (Fagerholm et al., 2015; Hahn et al., 2017). Furthermore, the con-
cept of criticality has been extended to investigations of more general alterations in
consciousness. Studies examining the effects of anesthesia and sleep have provided
insights into how criticality may be linked to different levels of awareness (Maschke
et al., 2024; Priesemann et al., 2013).

Alternative Perspectives on SCs and TCs

While the previous sections interpreted the SCs and TCs changes within the brain
criticality framework, other explanations are possible.

The interpretation within the criticality framework suggested that perturbative
mechanisms push the system further from the critical point. Thus, the interpretation
talked about relative changes and did not need to claim that cortical dynamics are
exactly at criticality. Some researchers have argued that cortical dynamics are slightly
subcritical (Wilting & Priesemann, 2019; Wilting et al., 2018). There, cortical network
dynamics would be able to retain computational flexibility while also keeping a safety
margin to supercritical dynamics and, thus, instability. This perspective could align
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with the finding that the SOZ had a trend for longer TCs, thus positioning it closer
to this instability boundary. However, the general claim that longer TCs benefit
information processing remains untouched by this slightly different hypothesis about
the cortical state.

Another perspective suggests that cortical network dynamics are always at criti-
cality, albeit with distinct characteristics and scaling exponents. For instance, regions
with different TCs would all be critical but have different critical exponents and scal-
ing functions for auto- and cross-correlation coefficients. Similarly, the perturbative
mechanisms, which led to the variation of SCs and TCs, could induce drifts on a
critical hyperplane rather than a shift away from criticality. Such a drift on a critical
surface was shown to be plausible in a recent model (Sormunen et al., 2023). Further,
it could be interpreted in the context of quasi-criticality, which argues that cortical
dynamics are in a broader regime with critical scaling, for example, a Griffiths phase
(Fuscà et al., 2023; Muñoz et al., 2010). Further research is necessary to evaluate
whether the results in this thesis are better explained by drifts on a critical manifold
or deviations from it. However, the interpretation of SCs and TCs about cognition
remains similar in both cases, i.e., long TCs are beneficial for complex computation.
Specifically, the results showed that longer TCs correlated with intact cognition and
shorter TCs with impaired cognition. Hence, long TCs and SCs could be interpreted
as an additional constraint for the critical manifold to achieve optimal cognitive per-
formance.

A completely different explanation could be that non-critical processes lead to
changes in SCs and TCs. For example, external drives, inducing non-stationary in the
time series, could artificially lengthen the correlations. Smaller and larger external
drives would then explain the variation of SCs and TCs. While this is a valid critique
if only short segments are analyzed, this scenario seems unlikely for this thesis’s re-
sults as multiple days were analyzed. The external drives would have to change in a
coordinated way over days, hours, and minutes to explain the effects of ASMs, SWS,
and IEDs, respectively.

Summary: SCs and TCs

In summary, we investigated SCs and TCs, markers for information maintenance,
using model simulations and iEEG from PwDRE. In the model, SCs and TCs were
maximal at criticality. Mechanisms related to cognition, SWS, IEDs, and ASMs
perturbed the dynamics and shaped SCs and TCs. In the model and iEEG data,
all mechanisms reduced SCs and TCs except IEDs, which increased SCs. Ultimately,
short TCs correlated with language and attention impairment in PwDRE.

These results show that different factors can influence SCs and TCs, potentially
impacting the cortical network’s proximity to criticality (Fig. 7.1). Notably, by inves-
tigating perturbations of SCs, TCs, and thus criticality, a common critique in brain
criticality research was addressed, namely that often only point estimates are used to
characterize the brain’s proximity to criticality (Beggs, 2022b; Mariani et al., 2022).
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In conclusion, our results support brain criticality, measured through SCs and TCs,
as a unifying framework to explain cognitive impairments in epilepsy and potentially
other neurological disorders.

Cortical Thickness Changes with Cognitive Impairment

To also investigate how cortical structure changes could impact cognitive impairment,
we investigated 16 cognitive measures and gray matter thicknesses in 360 regions of
interest (ROI). First, the PwDRE were assigned cognitive impairment phenotypes
using the IC-CoDE criteria (McDonald et al., 2023). This approach, applied in a
German-speaking cohort for the first time, was designed to improve the comparability
of cognitive impairment between different language, cultural, and cognitive test set-
tings. With 53% MDI, 30% FI, and 17% MI, results were comparable to distributions
in non-Germam speaking cohorts (B. Hermann et al., 2020; Reyes et al., 2023).

Notably, the groups with more severe cognitive impairment had more cortical
thickness abnormalities (MDI: 28 ROIs, FI: 12 ROIs, MI: 3 ROIs). While only few
studies have identified similar trends in PwDRE (Dabbs et al., 2009; B. Hermann
et al., 2020), in other cohorts, MDI PwE compared to MI showed more diffusion and
functional MRI abnormalities (Kaestner et al., 2019; Reyes et al., 2019; Rodríguez-
Cruces et al., 2018) and changes in functional network measures (Garcia-Ramos et al.,
2022; Larivière et al., 2020).

The brain criticality hypothesis could explain the decreased cognitive performance
associated with more cortical thickness abnormalities. Our model simulations showed
that a balanced network structure is necessary for critical dynamics to emerge. Devi-
ations from the critical structure hindering the emergence of critical dynamics could
negatively impact cognitive performance. Although this connection is theoretically
plausible, our data and analysis do not allow for a conclusion. Hence, further research
is needed to investigate the relationship between structural changes and critical dy-
namics.

7.1 General Limitations

This thesis has some general limitations besides the study-specific limitations (see
Chapters 5 and 6).

First, all data stemmed from persons with drug-resistant epilepsy, which could
hinder the transferability of the results to a healthy population. However, iEEG
recordings of healthy individuals do not exist because electrode implantation is a
risky procedure that is only a last resort in severe neurological diseases like epilepsy.
Nonetheless, future research might be able to confirm these results in less invasive
measures like MEG.

Second, seizure foci and disease etiology are patient-specific. For instance, most
patients had temporal lobe epilepsy, but some had seizure foci in other brain areas,
like the frontal lobe. Generally, this led to variability in the cohort, for example, the
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cortical coverage of the iEEG. Future studies could address this by investigating more
specific cohorts and increasing the cohort size to analyze how heterogeneities in the
disease affect SCs and TCs.

Third, the data stemmed from German-speaking individuals. While cognitive
phenotyping and domain average scores were used as general cognitive evaluations,
future research should test our results in other cohorts.

Fourth, despite the iEEG already including multiple days, we could not account for
longer-term fluctuations that might impact cortical dynamics. For example, previous
studies used implanted devices to identify cycles spanning weeks to month for IEDs,
auto-correlation decay rates, and variance in implanted devices (Karoly et al., 2016;
Maturana et al., 2020). To resolve this, SCs and TCs should be analyzed in longer
time series, for instance, in data from implanted devices.

7.2 Outlook

This thesis aimed to help understand the connection between structural changes, SCs,
TCs, and cognition and interpreted the results within the brain criticality framework.
Despite being extensive, our analysis leaves many questions open and points to new
directions for future research. While some open questions have been discussed within
the limitations sections, some future directions are presented below.

Alignment of Structural with Dynamical Measures

A natural extension of this work would be to align the structural changes in the cortex
with the dynamical variations, i.e., SCs and TCs, and potentially even cognitive func-
tion. On the one hand, this could experimentally confirm the theoretically predicted
link between structure and dynamics. On the other hand, if strong correlations to
cognitive testing are found, the cognitive results could indicate abnormalities in the
cortex and its dynamics. Such insights might help identify lesions or epileptogenic
tissue without requiring invasive or specialized measurements, like MRI or iEEG.

Delineate Effects of Different ASMs

This thesis investigated the general effect of ASMs on SCs and TCs. Therefore,
different ASMs were aggregated based on their recommended levels. However, the
action mechanisms between ASMs differ; thus, their effect on cortical dynamics could
differ too. Future research in larger datasets could help to delineate the different ASMs
based on their impact on SCs, TCs, and cognition. Specifically, if ASM effects were
spatially heterogeneous, this might help identify the best choice of ASM for specific
seizure foci.
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Prediction of Surgery Success and Risk

In this thesis, we have shown that cortical thickness changes can predict cognitive
worsening after epilepsy surgery. Furthermore, our previous work showed that markers
for dynamics in the foramen ovale EEG could predict seizure freedom after surgery
(Miron et al., 2023). Similarly, SCs and TCs could help to predict seizure freedom
and cognitive risks after epilepsy surgery. If they provide predictive value, this could
directly impact clinical decision-making by identifying suitable candidates for epilepsy
surgery. Moreover, it might help patients better understand the risks and benefits of
the treatment options and thus aid them in their decision-making.

Prediction of Seizure Risk

The analyses in this thesis excluded epileptic seizures and focused on the interictal
EEG. However, epileptic seizures have been hypothesized to be related to the insta-
bility close to phase transition and potentially emerging supercritical dynamics (A. Li
et al., 2021; Maturana et al., 2020; Meisel & Kuehn, 2012; Meisel et al., 2012). The
insights about SCs and TCs could add to this line of research to find markers for such
a phase transition toward a seizure state.

7.3 Concluding Remarks

This thesis explored the interplay between structural changes, network dynamics, and
cognitive function in PwDRE. Therefore, we utilized computational modeling and
analyzed intracranial EEG and MRI data. We found that in iEEG dynamics, SCs, and
TCs, markers for information integration, co-varied and were distinctively perturbed
by slow-wave activity, interictal epileptiform discharges, and antiseizure medication,
as predicted by our model simulations. Further, TCs followed a hierarchical gradient,
with the longest TCs in high cortical regions, i.e., regions associated with complex
functions like decision-making. Ultimately, we found that shorter TCs and gray matter
thickness abnormalities were associated with cognitive impairment.

These results align with the predictions of the brain criticality hypothesis, which
states that the human brain’s structure is poised close to a phase transition. This
proximity to criticality then maximizes SCs and TCs and, consequently, optimizes
information processing. The perturbative mechanisms, i.e., SWA, IEDs, and ASM,
which have been proven to affect cognitive function, changed SCs and TCs. This
change could indicate a drift away from the critical point and thus explain reduced
cognitive performances. In general, our findings support criticality as the set point
for optimal network function and cognition (Fig. 7.1).

Measuring deviations from criticality could allow future researchers and clinicians
to better understand cognitive impairment and neurological disorders such as epilepsy.
Thus, markers for proximity to criticality, like SCs and TCs, might become helpful in
identifying, personalizing, and evaluating the risks of treatment options.
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