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Zusammenfassung
(German)

Diese Arbeit besteht aus vier Abschnitten. Im ersten Abschnitt konstruieren wir eine Klasse
von zeitkontinuierlichen Zerlegungen von pfadunabhängigen Finanzinstrumenten, wie zum
Beispiel dem Preis einer Aktienoption mit den Risikofaktoren Zins oder Wechselkurs. Im
Vergleich zu Zerlegungen, die die Risikofaktoren nur an diskreten Zeitpunkten auswerten,
berücksichtigt diese Klasse die gesamte Information der Pfade und ist konsistent für ver-
schiedene Zeitgitter. Wir zeigen, dass es eine eindeutige Zerlegung gibt, indem wir die drei
Eigenschaften Exaktheit, Symmetrie und Normalisierung fordern. Diese eindeutige Zerle-
gung ist der stochastische Grenzwert einer zeitdiskreten Zerlegung und leidet unter dem
Fluch der Dimensionen. Haben die Risikofaktoren keine gleichzeitigen Sprünge, so zeigen
wir, dass der numerische Aufwand erheblich von exponentiellem zu linearem Wachstum
reduziert werden kann.
Im ersten Abschnitt zeigen wir die stochastische Konvergenz von diskreten zu zeitkon-
tinuierlichen Zerlegungen. In der Praxis können wir nur einen Pfad der Risikofaktoren
beobachten. Um sicherzustellen, dass die Zerlegungen dieses Pfades konvergieren, zeigen
wir im zweiten Abschnitt, dass es ein pfadabhängiges, nicht-äquidistantes Zeitgitter gibt,
das fast sichere Konvergenz gewährleistet. Weiter stellen wir Bedingungen auf, die eine
bestimmte Konvergenzgeschwindigkeit gewährleisten.
Zur Approximation von zeitkontinuierlichen nutzen wir zeitdiskrete Zerlegungen mit einem
feinen Gitter. Zur Zerlegung von Optionen müssen dazu die Preise sehr häufig berechnet
werden. Für eine schnelle Berechnung analysieren wir im dritten Abschnitt die COS Metho-
de, eine Fourier-Approximationstechnik zur Bepreisung von Aktienoptionen. Die Methode
erfordert die Existenz der charakteristischen Funktion des Finanzmodells. Da die klassi-
sche COS Methode für bestimmte Optionen in allgemeinen Dimensionen vergleichsweise
langsam ist, führen wir die gedämpfte COS Methode ein. Wir beweisen die Konvergenz der
Methode und zeigen, dass sie exponentiell konvergiert, wenn die charakteristische Funktion
exponentiell abfällt. Um die COS Methode anzuwenden, müssen zwei Tuning Parameter
festgelegt werden: ein Trunkierungsbereich für die Dichte und die Anzahl von Termen, um
die Dichte durch eine Kosinusreihe zu approximieren. Für eine vordefinierte Fehlertoleranz
leiten wir eine explizite Schranke für den Trunkierungsbereich und eine implizite Formel
für die Anzahl der Terme her.
Die Berechnung der Tuning Parameter von Fourier-Preismethoden wie der COS-Methode
ist für fortgeschrittene Modelle wie das Heston-Modell sehr rechenintensiv. Im vierten
Abschnitt verwenden wir maschinelle Lernverfahren, um diese Tuning Parameter unabhän-
gig von einer vordefinierten Fehlertoleranz vorherzusagen. Dieser Ansatz ermöglicht eine
schnelle Bepreisung bei voller Fehlerkontrolle.
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Abstract
(English)

This thesis consists of four essays. In the first chapter, we construct a class of time-
continuous decompositions of path-independent instruments, such as the price of a stock
option with the risk factors time decay or stock price. Compared to decompositions that
evaluate the risk factors only at discrete time points, this class takes into account the
whole information of the paths and is consistent across different time grids. We show that
there is a unique decomposition by demanding the three properties exactness, symmetry
and normalization. This unique decomposition is the stochastic limit of a time-discrete
decomposition and it suffers from the curse of dimensionality. If the risk factors do not
have simultaneous jumps, we show that the numerical effort can be significantly reduced
from exponential to linear growth.
In the first essay, we show stochastic convergence of discrete to time-continuous decompo-
sitions. In practice, we can only observe one path of the risk factors. To ensure that the
decompositions of this path converge, we show in the second essay, that there is a path-
dependent, non-equidistant time grid that ensures almost sure convergence. Conditions
that ensure a certain speed of convergence are also provided.
To approximate time-continuous decompositions, we use time-discrete decompositions
with a fine grid. To decompose options, the corresponding prices need to be computed
frequently. For a fast computation, in the third section we analyse the COS method, a
Fourier approximation technique for pricing stock options, given that the characteristic
function of the financial model exists. As the classical COS method is comparatively
slow for certain options in general dimensions, we introduce the damped COS method.
We prove the convergence of the method and show that it converges exponentially when
the characteristic function decays exponentially. To apply the COS method, one must
specify tuning parameters: a truncation range for the density and a number of terms
to approximate the density by a cosine series. Given some error tolerance, we derive an
explicit bound for the truncation range and an implicit formula for the number of terms.
The computation of the tuning parameters of Fourier pricing methods such as the COS
method is computationally expensive for advanced models such as the Heston model. In
the fourth essay, we use machine learning techniques to predict these tuning parameters
independently of a predefined error tolerance. This approach allows for fast pricing with
full error control.
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Chapter 1

Introduction

The analysis of profits and losses (P&L) between two reporting dates is a widespread task
in risk management. Solvency 2, the regulation standard for insurance companies in the
European Union, states that a profit and loss attribution must be performed in sufficient
detail, when an internal model is used, see Article 240 in European Commission (2015).
The total change in the P&L should be explained by the movements of the sources of
risk or risk factors and should therefore be decomposed into the contributions of the risk
factors. For example, consider a European investor who buys a put option on an American
stock. The value of the investment is equal to the product of the option price Y in USD
and the USDEUR exchange rate X. As a decomposition of the P&L at time 1 we look at
two contributions δX and δY of X and Y , such that

X(1)Y (1)−X(0)Y (0) = δX + δY .

A widely used decomposition method is the sequential updating (SU) method, see Oax-
aca (1973) and Blinder (1973). In a one-period setting, the SU decomposition is given
by

δX = X(1)Y (0)−X(0)Y (0), δY = X(1)Y (1)−X(1)Y (0).

In this example, we update X first, followed by Y . Alternatively, Y could be updated
first, so there are multiple SU decompositions, depending on a predefined update order.
The SU decomposition can be generalized to a multi-period setting by applying the
above calculations to multiple subintervals of the time horizon. The multi-period SU
decomposition further depends on the choice of the time grid. To overcome the dependence
of the update order, one can use the averaged SU (ASU) decomposition, which is the
arithmetic mean of all SU decompositions with different update orders. To address the
choice of the time grid, Jetses and Christiansen (2022) and Christiansen (2022) analyze
the SU decomposition when the size of the time steps approaches zero. The corresponding
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Chapter 1 Introduction

infinitesimal sequential updating (ISU) decomposition uses the whole information of the
risk factors and is independent of the choice of the time grid. Jetses and Christiansen (2022)
also define the infinitesimal averaged sequential updating (IASU) decomposition as the
arithmetic mean of the different ISU decompositions.

In Chapter 2, we analyze the case where the P&L of path-independent instruments can
be described by a twice differentiable function and introduce a class of time-continuous
decompositions, based on stochastic integrals and Itô’s formula, called Itô decompositions.
The ISU decompositions and the IASU decomposition are included as special cases. We
prove that there is a unique Itô decomposition that satisfies the three useful axioms of
exactness, symmetry and normalization. We further show that it is indistinguishable from
the IASU decomposition. We also analyze the SU decompositions with an increasingly fine
time grid. As in Jetses and Christiansen (2022), we show that the SU/ASU decomposition
converges in probability to the ISU/IASU decomposition, but we also allow risk factors
with non-zero covariations. In practice, the IASU decomposition is difficult to compute,
because for d risk factors there are d! different SU decompositions. In this work, we show
that the numerical effort can be significantly reduced from exponential to linear growth if
the risk factors do not have simultaneous jumps. Since the ISU/IASU decompositions are
defined by stochastic integrals, we further provide numerical experiments on the actual
computation of the decompositions of call option with stochastic interest rates and a basket
option with up to 30 risk factors, see Section 2.5.

In Chapter 3, we extend the results from Chapter 2, where we have shown that the SU
decomposition converges in probability to the ISU decomposition if the time steps converge
to zero. Unfortunately, we can only observe one path of the risk factors in practice. To
ensure the convergence of the decompositions of this path, we use path-wise stochastic
integration to show that one can choose a path-dependent, non-equidistant time grid,
such that the SU decomposition converges to the ISU decomposition almost surely. We
further analyze the order of convergence of the SU and ASU decompositions. We provide
theoretical error bounds and perform numerical experiments.

Next, consider the example above of a European investor buying a put option on an
American stock. Before applying the decomposition methods, we have to calculate the
price of the put option, which is equal to

e−rT
∫︂
R

w(x)g(x)dx, (1.0.1)

where g is the density of an appropriate financial model and w describes the payoff of the
option. In many financial models the exact structure of the density g is unknown, but
fortunately its Fourier transform ĝ is given. There are various techniques to solve the

2
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integral (1.0.1), for example Monte Carlo simulation, numerical quadrature and Fourier
techniques based on ĝ, such as the COS method, see Fang and Oosterlee (2009a), the
Carr-Madan formula, see Carr and Madan (1999) and the Lewis formula, see Eberlein
et al. (2010).

Chapter 4 and 5 focus on the COS method, which can often compute prices faster than
other methods. This is particularly important when performing a decomposition on a fine
time grid to approximate time-continuous decompositions, as option prices need to be
calculated frequently for this purpose. We introduce the main idea of the COS method
for a one-dimensional underlying (the d-dimensional case is introduced in Chapter 4):
Given the Fourier transform of the density of the log-returns of the underlying, the density
is truncated on some finite interval [−L, L] for L > 0. Then the truncated density is
approximated by a finite Fourier-cosine series with N terms, i.e.

g(x) ≈ g(x)1[−L,L](x) ≈ c0
2 +

N∑︂
k=1

ck cos
(︃

kπ
x + L

2L

)︃
,

where for k = 0, . . . , N the coefficients ck are defined by

ck = 1
L

∫︂
R

g(x) cos
(︃

kπ
x + L

2L

)︃
dx = 1

L
ℜ
{︃

ĝ

(︃
kπ

2L

)︃
ei kπ

2

}︃
with ℜ(z) denoting the real part of a complex number z. Now we can replace g in (1.0.1)
by its approximation, which leads to∫︂

R
w(x)g(x)dx ≈ c0v0

2 +
N∑︂

k=1
ckvk

with

vk =
∫︂ L

−L
w(x) cos

(︃
kπ

x + L

2L

)︃
dx

for k = 0, . . . , N . The COS method is particularly fast if the coefficients vk can be obtained
analytically.

To apply the COS method one has to specify two tuning parameters: the truncation range
L and the number of terms N . In the one-dimensional case, Junike and Pankrashkin (2022)
and Junike (2024) prove the convergence of the COS method and provide explicit bounds
for both tuning parameters to ensure an error bound ε > 0 on the distance between the
exact solution and the approximation by the COS method. The truncation range of a put
option with strike K can be chosen by

L = n

√︄
1
in

∂n

∂un
ĝ(u)

⃓⃓⃓⃓
u=0
×
(︄

2Ke−rT

ε

)︄ 1
n

, (1.0.2)

3
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where n ∈ N is even. If g is also s + 1 ∈ N times differentiable, then the number of terms
can be chosen by

N = I ×
(︄

2s+ 5
2 Ls+2

sπs+1
12Ke−rT

ε

)︄ 1
s

, (1.0.3)

where

I :=
(︃ 1

2π

∫︂
R
|u|s+1|ĝ(u)|du

)︃ 1
s

,

see Junike (2024) for details.

In Chapter 4, we analyze the COS method for a multidimensional underlying to price
basket options. For many options, such as an arithmetic basket put option, w is not
integrable and the coefficients vk are not given analytically. In this case, the classical COS
method is relatively slow because the coefficients vk have to be calculated numerically. To
price such options fast, we introduce the damped COS method. The idea of damping,
going back at least to Carr and Madan (1999), is to multiply the payoff function w by an
exponential function to make it integrable.
We prove the convergence of the (damped) COS method in the multidimensional case and,
similar to Junike and Pankrashkin (2022), we derive an explicit formula for the truncation
range. We also provide an implicit formula for the number of terms, which is a completely
new approach compared to the one-dimensional case. We further analyze the order of
convergence of the multidimensional COS method.

For the COS method, the formulas for the truncation range and the number of terms in
Eqs. (1.0.2) and (1.0.3) depend on a higher derivative of the characteristic function and
an integral, which are very time consuming to compute for advanced financial models.
In Chapter 5, we propose a prediction of the derivative and the integral using machine
learning methods to speed up the computation. Fortunately, the predicted values do
not depend on the error tolerance. Therefore, we can use the predicted values and the
error tolerance to compute the tuning parameters L and N . Then we use the COS
method for a fast pricing of the options, resulting in a fast pricing approach with full error
control.

In summary, we analyze time-continuous profit and loss decompositions and their approxima-
tions. We prove stochastic and almost sure convergence of time-discrete to time-continuous
decompositions and provide conditions to reduce the numerical complexity. For a fast
and exact computation of decompositions of stock options on a fine time grid, we analyze
the COS method. We derive formulas for the tuning parameters of the COS method in
the multidimensional case and use machine learning to speed up the computation of the

4



Chapter 1 Introduction

tuning parameters in one dimension. The structure of the thesis is visualized in Figure
1.1.

Chapter 6 presents ideas for future research. Chapters 2 to 5 each have an appropriate
introduction with literature review and conclusion. The thesis is based on journal articles
submitted during the doctoral studies, see the list of papers.

Figure 1.1: Structure of the thesis.
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Chapter 2

Profit and loss decomposition in continuous
time and approximations

Abstract

Financial institutions and insurance companies that analyze the evolution and
sources of profits and losses often look at risk factors only at discrete reporting
dates, ignoring the detailed paths. Continuous-time decompositions avoid this
weakness and also make decompositions consistent across different reporting
grids. We construct a large class of continuous-time decompositions from
a new extended version of Itô’s formula and uniquely identify a preferred
decomposition from the axioms of exactness, symmetry and normalization. This
unique decomposition turns out to be a stochastic limit of recursive Shapley
values, but it suffers from a curse of dimensionality as the number of risk factors
increases. We develop an approximation that breaks this curse when the risk
factors almost surely have no simultaneous jumps.

Keywords: profit and loss attribution; sequential decompositions; change analysis; risk
decomposition; Itô’s formula

2.1 Introduction

Profit and loss (P&L) attribution, also known as change analysis, has a long history in
risk management. P&L attribution is the process of analyzing the change between two
valuation dates and explaining the evolution of the P&L by the movement of the sources
(risk factors) between the two dates, see Candland and Latz (2014). In other words, the
change in the P&L over time is decomposed in terms of the different risk factors to explain
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Chapter 2 Profit and loss decomposition in continuous time and approximations

how each factor contributes to the P&L. In the literature, there are many ways to obtain a
P&L attribution. For example, consider a portfolio in EUR consisting of a long position in
the S&P 500, Y for short. The P&L of such a portfolio is driven by two risk factors: Y

and the USDEUR exchange rate, X for short. To decompose the P&L over one year, we
look for two real numbers DX and DY , such that

X(1)Y (1)−X(0)Y (0) != DX + DY .

The numbers DX and DY are interpreted as the contribution of X and Y to the P&L.
In the literature we can find many desirable properties that a decomposition should
possess, see Shubik (1962), Friedman and Moulin (1999) and Shorrocks (2013) among
many others. The authors argue that a decomposition should be symmetric, i.e., the
contributions of the risk factors should be independent of the way in which the risk factors
are labeled or ordered. These authors also require that the sum of all contributions equals
the P&L, such decompositions are called exact. Further, Christiansen (2022) argues that a
decomposition should be normalized, i.e., if a risk factor remains constant, its contribution
to the P&L should be zero. It is also desirable for a decomposition to consider the full
path of each risk factor, i.e., to use all available information, see Mai (2023) and Flaig and
Junike (2024).

Common decomposition principles

A common method for creating decompositions is to sequentially update the risk factors one
by one while ‘freezing’ all other risk factors. This idea dates back at least to Oaxaca (1973)
and Blinder (1973), who developed a sequential updating (SU) decomposition technique
in a one-period setting. The SU decomposition works as follows when we update the risk
factor X first:

DX = X(1)Y (0)−X(0)Y (0), DY = X(1)Y (1)−X(1)Y (0).

Alternatively, one may update Y first to obtain

DX = X(1)Y (1)−X(0)Y (1), DY = X(0)Y (1)−X(0)Y (0).

Each SU decomposition is exact, but if there are d risk factors, there are d! different
updating orders and therefore d! different SU decompositions. Candland and Latz (2014)
call the one-period SU decomposition waterfall and apply it to P&L attribution. See
Fortin et al. (2011) for an overview on how the SU decomposition is used in various fields
of economics.
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2.1 Introduction

The SU decomposition can also be defined in a multi-period setting by dividing the time
horizon into sub-intervals and applying the SU decomposition recursively on each sub-
interval. Jetses and Christiansen (2022) and Christiansen (2022) analyzed the limit of
the SU decomposition when the mesh size of the time grid converges to zero. In the
limit, the decomposition takes the whole path into account and the limiting SU decom-
position is called the infinitesimal sequential updating (ISU) decomposition. The ISU
decomposition is independent of any time grid, which is helpful “to prevent inconsisten-
cies when using conflicting sub-intervals for different purposes”, see p. 2 in Flaig and
Junike (2024).

The averaged sequential updating (ASU) decomposition, also known as the Shapley value, is
simply the arithmetic average of the d! possible SU decompositions. It has many desirable
properties, in particular: it is exact and symmetric. Shapley (1953) introduces the ASU
decomposition for cooperative games. Shubik (1962) defines the ASU decomposition for cost
functions. Sprumont (1998) and Friedman and Moulin (1999) provide an axiomatization
of the ASU decomposition for cost functions. Jetses and Christiansen (2022) define the
infinitesimal averaged sequential updating (IASU) decomposition as the average of the d!
possible ISU decompositions.

Main contributions

In this paper, we start directly in a time-continuous setting: If the portfolio is a twice
differentiable function of the risk factors and the risk factors have continuous paths, Itô’s
formula provides a natural additive decomposition of the portfolio. Our main contributions
are as follows: In order to treat risk factors with jumps, we prove an expanded version
of Itô’s formula and use it to define a large class of reasonable decompositions, which
we call Itô decompositions and which include all d! ISU and the IASU decompositions as
special cases. We prove that there is a unique Itô decomposition (up to indistinguishability)
that satisfies the three axioms of exactness, symmetry and normalization. We show that
it is indistinguishable from the IASU decomposition. We further show that the IASU
decomposition can be interpreted as the limiting case of the ASU decomposition: compared
to Jetses and Christiansen (2022), who assume that the covariations between the risk
factors are zero, we use much weaker assumptions to prove the convergence of the SU/
ASU decompositions to the ISU/ IASU decompositions.

In summary, we propose to use the IASU decomposition to obtain a P&L attribution
because it considers the whole paths of the risk factors and satisfies the axioms of exactness,
symmetry and normalization. However, in practical applications, the IASU decomposition
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Chapter 2 Profit and loss decomposition in continuous time and approximations

has two drawbacks: a) similar to the ASU decomposition, it suffers from the curse of
dimensionality; b) the IASU decomposition is defined by stochastic integrals, which somehow
must be approximated in practice. Naively approximating these integrals can lead to
decompositions that are no longer exact. As another important contribution of this paper,
we show that the IASU decomposition does not suffer from the curse of dimensionality if
the risk factors do not have simultaneous jumps. In this case, the IASU decomposition is
indistinguishable from the average of two (suitably selected) ISU decompositions. To avoid
point b), we suggest approximating ISU/ IASU by SU/ ASU.

Up to now, most practitioners have applied an arbitrary SU decomposition in a one-period
setting to obtain an annual P&L attribution, see Candland and Latz (2014). Working with
real market data, Flaig and Junike (2024) empirically show that the SU decomposition
depends significantly on the order or labeling of the risk factors, and that some SU
decompositions may even ignore relevant risk factors, which may “lead to wrong trading
and hedging decisions”, see p. 2 in Flaig and Junike (2024).

Our theoretical analysis suggests using the average of only two SU decompositions1 with
a sufficiently fine time grid to obtain a P&L attribution, since such a decomposition is
arbitrarily close to the IASU decomposition when the risk factors do not have simultaneous
jumps. Thus, our analysis is highly relevant for practitioners: we recommend computing
two SU decompositions instead of one and using a finer grid than just annual data to
obtain a decomposition that is much closer to the IASU decomposition than a single SU
decomposition. While the choice of the decomposition (the average of two SU decomposi-
tions) is theoretically justified, we have only numerical experiments available to estimate
the time grid and we recommend using monthly or weekly data.

Further literature review

Is there any other way to break the curse of dimensionality? Christiansen (2022) proves
that the ISU decomposition is symmetric if it is stable with respect to small perturbations
in the empirical observation of the risk factors. In Appendix 2.A.4, we show that the ISU
decomposition of a simple product of two correlated Brownian motions is not stable. This
shows that stability is a rather strong assumption.

There are other decomposition principles as well: There is the so-called one-at-a-time (OAT)
decomposition, which is also known as bump and reset, see Candland and Latz (2014).
The OAT decomposition is closely related to the SU decomposition. It is symmetric, but

1Define one SU decomposition in any order, e.g., alphabetically ascending, and the other SU decomposition
by the reverse order, e.g., alphabetically descending, see Theorem 2.3.10 for details.
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generally not exact. Frei (2020) analyzes the limit of the OAT decomposition when the
mesh size of the time grid converges to zero.

There are also completely different approaches: Fischer (2004) uses a conditional expecta-
tions approach. Rosen and Saunders (2010) use the Hoeffding method for a decomposition
of credit risk portfolios. Frei (2020) uses the Euler principle for risk attribution. Ramlau-
Hansen (1991) and Norberg (1999) decompose surplus in life insurance by heuristic integral
representations, where the integrators are interpreted as the driving forces of change and
determine the attribution. A similar idea is used in Schilling et al. (2020) based on the
martingale representation theorem.

Contents

In Section 2.2, we establish some notation. In Section 2.3, we develop an extended version
of Itô’s formula and introduce the family of Itô decompositions. We show that the IASU
decomposition is the only exact and symmetric Itô decomposition, and we break the curse
of dimensionality of the IASU decomposition in Theorem 2.3.10. In Section 2.4, we prove
that the IASU decomposition can be approximated by the ASU decomposition. In Section
2.5, we provide some numerical applications. Section 2.6 concludes.

2.2 Notation

Let
(︁
Ω,F ,F = (Ft)t≥0, P

)︁
be a filtered probability space satisfying the usual conditions, i.e.,

F0 contains all null sets and F is right-continuous. Let X be the set of all F-semimartingales.
A so-called risk basis or information basis is a d-dimensional semimartingale X ∈ X d, and
its d components are denoted as risk factors or sources of risk. For a stopping time s, we
define the stopped semimartingale by Xs = (Xs

1 , ..., Xs
d). Equality of random variables is

understood in the almost sure sense and equality of stochastic processes is understood
up to indistinguishability. Let C2 be the set of twice differentiable functions from Rd to
R. For f ∈ C2 and i, j = 1, ..., d, we write fi and fij for the partial derivatives ∂if and
∂i∂jf . We call a map F : X d → X non-anticipative if for any stopping time s it holds
that

F (Xs) (t) = F (X)(min(t, s)), t ≥ 0. (2.2.1)

Such a non-anticipative mapping depends only on the information up to time t, i.e., on
Xt. By M we denote some sub-space of all non-anticipative mappings. By M(C2) we
denote the space of functionals F : X d → X such that F (X) = (f(X(t)))t≥0, X ∈ X d,
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Chapter 2 Profit and loss decomposition in continuous time and approximations

for some f ∈ C2, which are clearly non-anticipative. By σd we denote the set of all d!
permutations of {1, ..., d}. Let id ∈ σd be the identity. In a slight abuse of notation, we
define for π ∈ σd

π(x1, ..., xd) =
(︂
xπ(1), ..., xπ(d)

)︂
, x ∈ Rd,

and

π(X1, ..., Xd) =
(︂
Xπ(1), ..., Xπ(d)

)︂
, X ∈ X d.

For two one-dimensional semimartingales Z and Y and a càglàd process H, we denote by∫︁ t
0 H(s)dZ(s) :=

∫︁ t
0+ H(s)dZ(s) the stochastic integral. In particular

∫︁ 0
0 H(s)dZ(s) = 0 by

convention. We further set Z(0−) = 0,

Z(t−) = lim
ε↘0

Z(t− ε), t > 0, ∆Z(t) = Z(t)− Z(t−), t ≥ 0,

[Z, Y ] = ZY − Z(0)Y (0)−
∫︂ ·

0
Z(u−)dY −

∫︂ ·

0
Y (u−)dZ

and
[Z, Y ]c = [Z, Y ]−

∑︂
0<s≤ ·

∆Z(s)∆Y (s).

By “ p→” we denote the convergence in probability of a sequence of random variables. For
A ⊂ {1, ..., d} we define the projection

pA : Rd → Rd

x ↦→
(︁
x11A(1), ..., xd1A(d)

)︁
,

where the function 1A(h) is one if h ∈ A and zero otherwise.

2.3 Family of Itô decompositions

Similar to Shorrocks (2013) and Christiansen (2022), we define a decomposition as fol-
lows:

Definition 2.3.1.
A map

δ :M×X d → X d

(F, X) ↦→ (δ1(F, X), ..., δd(F, X))

is called a decomposition.
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We interpret δi(F, X)(t) as the contribution of Xi to the profit and loss F (X)(t)−F (X)(0)
in (0, t]. We recall the following three axioms from the literature:

i) A decomposition is called exact if for all F ∈M and all X ∈ X d the following equation
holds:

F (X)− F (X)(0) = δ1(F, X) + ... + δd(F, X).

ii) A decomposition is called symmetric if for all π ∈ σd, all F ∈M and all X ∈ X d the
following implication holds:

F (X) = F (π(X)) =⇒ δi(F, X) = δπ−1(i)(F, π(X)).

iii) A decomposition is called normalized if for all 0 ≤ r < s < ∞, all i = 1, ..., d, all
F ∈M and all X ∈ X d the following implication holds:

Xi is indistinguishable from a constant process on (r, s]

=⇒ δi(F, X) is indistinguishable from a constant process on (r, s].

Axiom i) ensures that a decomposition is able to fully explain the P&L, see Shorrocks (2013)
and Christiansen (2022). Axiom ii) considers symmetric maps F and states that if F

does not depend on the order or labeling of the risk factors, then the decomposition shall
also be independent of the order or labeling of the risk factors. The symmetry axiom is
motivated by the fact that δi(F, X) represents the contribution of Xi and that the term
δπ−1(i)(F, π(X)) also describes the contribution of

π(X)π−1(i) = (Xπ(1), ..., Xπ(d))π−1(i) = Xi.

The symmetry axiom has already been mentioned in similar form in Friedman and
Moulin (1999) and Shorrocks (2013). If the risk factor Xi remains constant during
some time interval (r, s], it does not contribute to F (X)(s)− F (X)(r), so the contribution
of Xi in (r, s] should also be zero. This is exactly reflected by the normalization axiom,
taken from Christiansen (2022).

Next, we indicate how Itô’s formula helps to define decomposition principles: Let f : Rd → R
be twice continuously differentiable. For i, j = 1, ..., d let

Ii :=
∫︂ ·

0
fi(X(s−))dXi(s), Iij :=

∫︂ ·

0
fij(X(s−))d[Xi, Xj ]c(s), (2.3.1)

S :=
∑︂

0<s≤·

{︃
f(X(s))− f(X(s−))−

d∑︂
i=1

fi(X(s−))∆Xi(s)
}︃

. (2.3.2)
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Itô’s formula states that for t ≥ 0 it holds for any semimartingale X

that

f(X(t))− f(X(0)) =
d∑︂

i=1
Ii(t) + 1

2

d∑︂
i=1

Iii(t) + 1
2

d∑︂
i,j=1
i̸=j

Iij(t) + S(t). (2.3.3)

Assume that X has continuous paths without interaction effects, i.e., S = 0 and Iij = 0,
i ≠ j. Then, Eq. (2.3.3) provides a natural way to additively decompose the P&L
f(X(t))− f(X(0)):

By the normalization axiom, Ii and Iii should be assigned to δi, which is interpreted as the
contribution of Xi. To see this, assume that some δj would depend on Ii or Iii for i ≠ j.
Assume that Xj is constant everywhere. According to the normalization axiom, we would
then have δj = 0. So, δj must not depend on Ii or on Iii.

However, how to handle the interaction effects Iij , i ≠ j and the jump part S is not so
obvious. Therefore, in Proposition 2.3.3 we provide an extended version of Itô’s formula.
Based on Proposition 2.3.3, we define the large family of Itô decompositions in Definition
2.3.4 and show in Section 2.3 that the family of Itô decompositions contains many well-
known decomposition principles as special cases. Within the family of Itô decompositions,
we will identify a single decomposition that satisfies the axioms of exactness, symmetry and
normalization. For A ⊆ {1, . . . , d}, i ∈ {1, ..., d} and s > 0 define

Y A
i (s) :=f

(︃
X(s−) + pA

(︁
∆X(s)

)︁)︃
− f

(︃
X(s−) + pA\{i}

(︁
∆X(s)

)︁)︃
− fi

(︁
X(s−)

)︁
∆Xi(s)

and
SA

i (X) :=
∑︂

0<s≤·
Y A

i (s).

For π ∈ σd define
Sπ

i (X) := S
{j |π(j)≤π(i)}
i (X). (2.3.4)

To obtain Sπ
i (X), all time points s where Xi jumps are considered. All risk factors except

Xi are fixed at s or s−, depending on the choice of π, and only Xi varies between s− and
s.

Lemma 2.3.2.
Let i ∈ {1, ..., d}, X ∈ X d and A ⊂ {1, ..., d}. If i ∈ A, then SA

i (X) is a semimartingale
with a.s. paths of finite variation on compacts.
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Proof. Fix X ∈ X d. Let N be a null set such that u ↦→ |Xi(u)(ω)|, i = 1, ..., d, is càdlàg
for ω ∈ Ω \N and

d∑︂
h,j=1

∑︂
0<s≤t

|∆Xh(s)(ω)∆Xj(s)(ω)| <∞, ω ∈ Ω \N, t ≥ 0. (2.3.5)

Such N exists since X is a semimartingale. Let ω ∈ Ω \ N and t ≥ 0. Let Mω ⊂ Rd

be the closure of the set {X(u)(ω), u ∈ [0, t]}, which is compact. The function f and its
derivatives are continuous and reach a maximum and minimum on the convex hull of Mω,
which is compact by Carathéodory’s theorem, see Section 2.3 in Grünbaum (2013). Hence,
f and its derivatives are bounded on the convex hull of Mω. Let s ∈ (0, t]. Let us develop
f around X(s−)(ω) using a Taylor expansion. We have that

f

(︃
X(s−)(ω) + pA

(︁
∆X(s)(ω)

)︁)︃
= f

(︁
X(s−)(ω)

)︁
+
∑︂
h∈A

fh

(︁
X(s−)(ω)

)︁
∆Xh(s)(ω) + R(ω),

where R(ω) is the remainder of the Taylor expansion, i.e., for some θ(ω) ∈ [0, 1] it holds
that

R(ω) = 1
2
∑︂

h,j∈A

fhj

(︃
X(s−)(ω) + θ(ω)pA

(︁
∆X(s)(ω)

)︁)︃
∆Xh(s)(ω)∆Xj(s)(ω).

The term f
(︂
X(s−)(ω) + pA\{i}

(︁
∆X(s)(ω)

)︁)︂
can be treated similarly. Since i ∈ A, it holds

for some C(ω) > 0, which does not depend on s or θ(ω), that

Y A
i (s) ≤ C(ω)

∑︂
h,j∈A

|∆Xh(s)(ω)∆Xj(s)(ω)|.

It follows by Inequality (2.3.5) that∑︂
0<s≤t

|Y A
i (s)(ω)| <∞, ω ∈ Ω \N. (2.3.6)

Since t was arbitrarily chosen, Inequality (2.3.6) implies that u ↦→ SA
i (X)(u)(ω), ω ∈ Ω\N ,

is càdlàg and of finite variation on compacts. Therefore, SA
i (X) is a semimartingale.

Proposition 2.3.3.
Let π ∈ σd and f ∈ C2 and X ∈ X d. For all t ≥ 0 it holds that

f(X(t))− f(X(0)) =
d∑︂

i=1

{︃
Ii(t) + 1

2Iii(t) + 1
2

d∑︂
j=1
i̸=j

Iij(t) + Sπ
i (t)

}︃
,

where Ii and Iij are defined in Eq. (2.3.1) and Sπ
i is defined in Eq. (2.3.4).

15



Chapter 2 Profit and loss decomposition in continuous time and approximations

Proof. Since the series telescopes, we have that

f(X(s))− f(X(s−))

=
d∑︂

i=1
f

(︃
X(s−) + p{j |π(j)≤π(i)}

(︁
∆X(s)

)︁)︃
− f

(︃
X(s−) + p{j |π(j)<π(i)}

(︁
∆X(s)

)︁)︃
.

By Inequality (2.3.6), it holds for any t ≥ 0 that

d∑︂
i=1

Sπ
i (X)(t) =

∑︂
0<s≤t

d∑︂
i=1

Y
{j |π(j)≤π(i)}

i (s) = S(t), (2.3.7)

where S is defined in Eq. (2.3.2). The claim follows then by the classical Itô’s formula.

Proposition 2.3.3 generalizes the classical Itô’s formula, because for any π ∈ σd it holds
that ∑︁d

i=1 Sπ
i (X) = S, see Eq. (2.3.7).

Definition 2.3.4.
Let λij ∈ [0, 1] for i, j = 1, ..., d. Let µπ ∈ [0, 1] for π ∈ σd. The decomposition

δItô :M(C2)×X d → X d, (F, X) ↦→ (δItô
1 (F, X), ..., δItô

d (F, X)),

where

δItô
i (F, X) = Ii + 1

2Iii +
d∑︂

j=1
j ̸=i

λijIij +
∑︂

π∈σd

µπSπ
i (X), i = 1, ..., d,

is called Itô decomposition with parameters (λij)i,j=1,...,d and (µπ)π∈σd
.

The definition of the Itô decomposition is motivated by Proposition 2.3.3 and the normal-
ization axiom: Below Eq. (2.3.3) we already argued that Ii and Iii should be attributed to
Xi in order to satisfy the normalization axiom. If parts of the interaction effect Iij were
assigned to the contribution of Xh for h /∈ {i, j}, the decomposition would no longer be
normalized. Therefore, only the risk factors Xi and Xj are assigned shares λij and λji of
the interaction effect Iij .

Note that Sπ
i (X) contains only jumps in the i-th component. If Sπ

i (X) were assigned to
the contribution of some Xj , j ̸= i, the normalization axiom would be violated if Xj is
constant. Therefore, Sπ

i should be assigned to the contribution of Xi. Since there are d!
different ways to decompose the jumps without violating neither the normalization axiom
nor the exactness axiom, we propose to assign to Xi a weighted average of all Sπ

i (X),
π ∈ σd.
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Remark 2.3.5.
Since each Itô decomposition is linear in the first argument F , a portfolio can be decomposed
by decomposing each individual instrument.

We recall some special members of the family of Itô decompositions, namely the IASU and
the d! different ISU decompositions, which were introduced in Jetses and Christiansen (2022).
All Itô decompositions are normalized. We will prove that the IASU decomposition is the
only Itô decomposition that is exact and symmetric. We will also see that the ISU decom-
position is closely related to the IASU decomposition and that the IASU decomposition is
the limiting case of the well-known ASU decomposition (also known as Shapley value),
which is defined over a discrete time grid in Section 2.4.

Definition 2.3.6.
The IASU (infinitesimal averaged updating) decomposition δIASU :M(C2)×X d → X d is
defined by

δIASU
i (F, X) = Ii + 1

2

d∑︂
j=1

Iij + 1
d!
∑︂

π∈σd

Sπ
i (X), i = 1, ..., d.

Remark 2.3.7.
The Itô decompositions are overparameterised: based on Eq. (2.A.3) in Lemma 2.A.2, we
can represent the IASU decomposition as

δIASU
i (F, X) = Ii + 1

2

d∑︂
j=1

Iij +
∑︂

A⊆{1,...,d}
i∈A

SA
i (X)ξi,A,

where
ξi,A :=

∑︂
π∈σd

{j|π(j)≤π(i)}=A

1
d! = (|A| − 1)!(d− |A|)!

d! . (2.3.8)

Hence, the computational cost to obtain δIASU
i can be reduced from O(d!) to O(2d−1) for

d→∞.

Definition 2.3.8.
Let π ∈ σd. The ISU (infinitesimal updating) decomposition δISU,π :M(C2)× X d → X d

with updating order π is defined by

δISU,π
i (F, X) = Ii + 1

2Iii +
d∑︂

j=1
π(j)<π(i)

Iij + Sπ
i (X), i = 1, ..., d.
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Theorem 2.3.9.
Every Itô decomposition that is symmetric and exact is indistinguishable from the IASU
decomposition. The IASU decomposition is related to the ISU decomposition by

δIASU
i (F, X) = 1

d!
∑︂

π∈σd

δISU,π
i (F, X), i = 1, ..., d, X ∈ X d, F ∈M(C2). (2.3.9)

Proof. The proof of Theorem 2.3.9 can be found in Appendix 2.A.2.

The next theorem shows that the curse of dimensionality of the IASU decomposition can
be broken if there are no simultaneous jumps.

Theorem 2.3.10.
Let X ∈ X d and F ∈M(C2). If ∆Xh∆Xj = 0 for all h, j ∈ {1, . . . , d} with h ̸= j, then

δIASU
i (F, X) =1

2
(︁
δISU,π

i (F, X) + δISU,π′

i (F, X)
)︁
, i = 1, ..., d, (2.3.10)

for any π ∈ σd and π′ = d + 1− π.

Proof. Let 0 < s <∞. In the case of ∆Xi(s) = 0, we have that

f
(︂
X(s−) + p{j |π(j)≤π(i)}

(︁
∆X(s)

)︁)︂
− f

(︂
X(s−) + p{j |π(j)<π(i)}

(︁
∆X(s)

)︁)︂
= f

(︂
X(s−) + p{j |π(j)<π(i)}

(︁
∆X(s)

)︁)︂
− f

(︂
X(s−) + p{j |π(j)<π(i)}

(︁
∆X(s)

)︁)︂
= 0.

In the case of ∆Xi(s) ̸= 0, it holds that Xj(s) = Xj(s−) for all j ̸= i, and hence,

f
(︂
X(s−) + p{j |π(j)≤π(i)}

(︁
∆X(s)

)︁)︂
− f

(︂
X(s−) + p{j |π(j)<π(i)}

(︁
∆X(s)

)︁)︂
= f (X(s))− f (X(s−)) .

Hence, for π ∈ σd and i = 1, ..., d it holds that

δISU,π
i =Ii + 1

2Iii +
d∑︂

j=1
π(j)<π(i)

Iij +
∑︂

0<s≤·
∆Xi(s)̸=0

{︁
f (X(s))− f (X(s−))− fi

(︁
X(s−)

)︁
∆Xi(s)

}︁
.

(2.3.11)

Due to Eqs. (2.3.9, 2.A.10), we have that

δIASU
i (F, X) =Ii + 1

2

d∑︂
j=1

Iij +
∑︂

0<s≤·
∆Xi(s)̸=0

{︁
f (X(s))− f (X(s−))− fi

(︁
X(s−)

)︁
∆Xi(s)

}︁
.

(2.3.12)
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2.3 Family of Itô decompositions

Let δISU,π
i be the ISU decomposition with updating order π ∈ σd and define π′(i) =

d + 1− π(i), i = 1, ..., d. Note that

d∑︂
j=1

π(j)<π(i)

+
d∑︂

j=1
π′(j)<π′(i)

=
d∑︂

j=1
π(j)<π(i)

+
d∑︂

j=1
π(j)>π(i)

=
d∑︂

j=1
i̸=j

. (2.3.13)

Eqs. (2.3.11, 2.3.12, 2.3.13) imply Eq. (2.3.10).

Remark 2.3.11.
Theorem 2.3.10 can be generalized to the case where some but not all risk factors have
simultaneous jumps. For example, suppose d = 3 and ∆X1∆Xj = 0, j ∈ {2, 3} but
possibly ∆X2∆X3 ̸= 0. It is then easy to see that Eq. (2.3.10) still holds. Or, if d = 4 and
∆X1∆Xj = 0, j ∈ {2, 3, 4}, the IASU decomposition can be written as a weighted average
of four ISU decompositions instead of eight ISU decompositions, which would be necessary
if all risk factors had simultaneous jumps.

Corollary 2.3.12.
Let X ∈ X d and F ∈M(C2). If [Xh, Xj ] = 0 for all h, j ∈ {1, . . . , d} with h ̸= j, then

δIASU
i (F, X) =δISU,π

i (F, X), i = 1, ..., d,

where π ∈ σd is arbitrary.

Proof. The assumption [Xi, Xj ] = 0 for i ≠ j implies ∆Xi∆Xj = ∆[Xi, Xj ] = 0. Therefore,
Sπ1

i = Sπ2
i , π1, π2 ∈ σd, see the proof of Theorem 2.3.10. The assertion follows directly

from the Definitions 2.3.6 and 2.3.8.

Example 2.3.13.
How does the IASU decomposition treat simultaneous jumps? Let d = 2 and assume
that X = (X1, X2) is a pure-jump semimartingale of finite variation. Then the IASU
decomposition is given by

δIASU
1 (F, X) = 1

2
∑︂

0<s≤·

{︃{︁
f
(︁
X(s), X2(s−)

)︁
− f

(︁
X(s−)

)︁}︁
+
{︁

f
(︁
X(s)

)︁
− f

(︁
X1(s−), X2(s)

)︁}︁}︃
,

δIASU
2 (F, X) = 1

2
∑︂

0<s≤·

{︃{︁
f
(︁
X(s)

)︁
− f

(︁
X1(s), X2(s−)

)︁}︁
+
{︁

f
(︁
X1(s−), X2(s)

)︁
− f

(︁
X(s−)

)︁}︁}︃
.

The latter formulas are averages of sequential updates from time point s− to time point s.
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Chapter 2 Profit and loss decomposition in continuous time and approximations

Example 2.3.14.
We decompose the P&L of the portfolio P = X1X2 of a foreign stock, where X1 is the
foreign exchange rate and X2 is the stock price in the foreign currency. The instantaneous
P&L of the foreign stock in domestic currency is given by

dP (t) = X1(t−)dX2(t) + X2(t−)dX1(t) + d[X1, X2](t),

i.e., it can be decomposed into the variation of the exchange rate, variation of the stock
price and interaction effects, compare with Mai (2023). The IASU decomposition equally
distributes the interaction effect between δIASU

1 and δIASU
2 . To see this, observe that

δIASU
1 (F, X) =

∫︂ ·

0
X2(s−)dX1(s) + 1

2[X1, X2]c

+ 1
2
∑︂

0<s≤·

{︃{︁
X1(s)X2(s−)−X1(s−)X2(s−)

}︁
+
{︁
X1(s)X2(s)−X1(s−)X2(s)

}︁
− 2X2(s−)

(︁
X1(s)−X1(s−)

)︁}︃
=
∫︂ ·

0
X2(s−)dX1(s) + 1

2[X1, X2],

where F (X) = X1X2. For δIASU
2 the reasoning is similar.

2.4 SU and ASU decompositions and their limits

The time-dynamic SU and ASU decompositions are defined on discrete time grids, see
Jetses and Christiansen (2022) and Christiansen (2022). A light introduction to the SU
decomposition can be found in Candland and Latz (2014). In this section, we recall the
definitions of these decompositions and we provide sufficient conditions such that the SU
and the ASU decompositions converge to the ISU and IASU decompositions, respectively,
as the mesh size of the discrete time grid converges to zero. We recall the following
definition from p. 64 in Protter (2005).

Definition 2.4.1.
An infinite sequence of finite stopping times 0 = s0 < s1 < s2 < ... such that supk sk =∞
a.s. is called an unbounded random partition. A sequence (γn)n∈N of unbounded random
partitions γn = {0 = sn

0 < sn
1 < sn

2 < ...} is said to tend to the identity if supk |sn
k+1−sn

k | → 0
a.s. for n→∞.
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2.4 SU and ASU decompositions and their limits

Definition 2.4.2.
Let γ = {0 = s0 < s1 < . . . } be an unbounded random partition. The SU (sequential
updating) decomposition δSU,π,γ :M×X d → X d with updating order π ∈ σd is defined by

δSU,π,γ
i (F, X) =

∞∑︂
l=0

{︃
F
(︂
Xsl + p{j |π(j)≤π(i)} (Xsl+1 −Xsl)

)︂
− F

(︂
Xsl + p{j |π(j)<π(i)} (Xsl+1 −Xsl)

)︂}︃
. (2.4.1)

In words, divide the time horizon [0, t] into finitely many sub-intervals, and to obtain
the contribution of Xi, fix all risk factors at the beginning sl or the end sl+1 of each
sub-interval (depending on the updating order π) and allow only Xi to vary between sl

and sl+1.

Proposition 2.4.3.
The decomposition δSU,π,γ :M×X d → X d is well defined by Eq. (2.4.1) and exact. The
sum in Eq. (2.4.1) evaluated at t ∈ [0,∞) is a.s. finite.

Proof. Let X ∈ X d, F ∈M, π ∈ σd, n ∈ N, and t ≥ 0. By x ∧ y we denote the minimum
of two real numbers x and y. Using Eq. (2.2.1) twice, we get

δSU,π,γ
i (F, X)(t ∧ sn) =

∞∑︂
l=0

{︃
F
(︂
Xsl∧sn + p{j |π(j)≤π(i)}

(︁
Xsl+1∧sn −Xsl∧sn

)︁)︂
(t)

− F
(︂
Xsl∧sn + p{j |π(j)<π(i)}

(︁
Xsl+1∧sn −Xsl∧sn

)︁)︂
(t)
}︃

(2.4.2)

=
n−1∑︂
l=0

{︃
F
(︂
Xsl + p{j |π(j)≤π(i)} (Xsl+1 −Xsl)

)︂
(t ∧ sn)

− F
(︂
Xsl + p{j |π(j)<π(i)} (Xsl+1 −Xsl)

)︂
(t ∧ sn)

}︃
(2.4.3)

since all addends with l ≥ n on the right hand-side of Eq. (2.4.2) are equal to zero.
By Eq. (2.4.3), for each n, the process δSU,π,γ

i (F, X) stopped at sn is a finite sum of
semimartingales and hence a semimartingale. By Section 2 of Part II in Protter (2005)
and since sn →∞ a.s. for n→∞, the process δSU,π,γ

i (F, X) is a semimartingale and the
decomposition δSU,π,γ is therefore well defined. The fact that sn → ∞ a.s. implies that
the sum in Eq. (2.4.1) evaluated at t is a.s. finite. We show exactness: Let x ∈ Rd. Since

p{j |π(j)≤π(π−1(d))}(x) = x and p{j |π(j)<π(π−1(1))}(x) = 0,
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Chapter 2 Profit and loss decomposition in continuous time and approximations

we have for any t ∈ [0,∞) and n ∈ N by Eq. (2.4.3) that

d∑︂
i=1

δSU,π,γ
i (F, X)(t ∧ sn)

=
d∑︂

i=1
i̸=π−1(d)

n−1∑︂
l=0

F
(︂
Xsl + p{j |π(j)≤π(i)} (Xsl+1 −Xsl)

)︂
(t ∧ sn) +

n−1∑︂
l=0

F (Xsl+1) (t ∧ sn)

−
d∑︂

i=1
i̸=π−1(1)

n−1∑︂
l=0

F
(︂
Xsl + p{j |π(j)<π(i)} (Xsl+1 −Xsl)

)︂
(t ∧ sn)−

n−1∑︂
l=0

F (Xsl) (t ∧ sn).

For each i ∈ {1, ..., d} \ {π−1(d)} there is exactly one k ∈ {1, ..., d} \ {π−1(1)} such that

p{j |π(j)≤π(i)}(x) = p{j |π(j)<π(k)}(x),

since π(k) = π(i) + 1 if and only if k = π−1(︁π(i) + 1
)︁
. Thus, we get

d∑︂
i=1

δSU,π,γ
i (F, X)(t ∧ sn) =

n−1∑︂
l=0

F (Xsl+1) (t ∧ sn)−
n−1∑︂
l=0

F (Xsl) (t ∧ sn)

= F (Xsn) (t ∧ sn)− F (Xs0) (t ∧ sn)

= F (X)(t ∧ sn)− F (X)(0).

Since t and n were arbitrary and sn →∞ a.s., the decomposition δSU,π,γ is exact. To see
the last point, note that two processes with càdlàg paths are indistinguishable if they are
modifications.

Example 2.4.4.
Assume d = 2. The SU decomposition with respect to γ defines d! = 2 decompositions,
namely δSU,id,γ(F, X) and δSU,ϱ,γ(F, X) with ϱ(1) = 2 and ϱ(2) = 1, by

δSU,id,γ
1 (F, X) =

∞∑︂
l=0

{︂
F
(︂
X

sl+1
1 , Xsl

2

)︂
− F (Xsl

1 , Xsl
2 )
}︂

,

δSU,id,γ
2 (F, X) =

∞∑︂
l=0

{︂
F
(︂
X

sl+1
1 , X

sl+1
2

)︂
− F

(︂
X

sl+1
1 , Xsl

2

)︂}︂
and

δSU,ϱ,γ
1 (F, X) =

∞∑︂
l=0

{︂
F
(︂
X

sl+1
1 , X

sl+1
2

)︂
− F

(︂
Xsl

1 , X
sl+1
2

)︂}︂
,

δSU,ϱ,γ
2 (F, X) =

∞∑︂
l=0

{︂
F
(︂
Xsl

1 , X
sl+1
2

)︂
− F (Xsl

1 , Xsl
2 )
}︂

.
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Definition 2.4.5.
Let γ = {0 = s0 < s1 < . . . } be an unbounded random partition. The ASU (averaged
sequential updating) decomposition δASU,γ :M×X d → X d is defined by

δASU,γ
i (F, X) = 1

d!
∑︂

π∈σd

δSU,π,γ
i (F, X), i = 1, ..., d.

Remark 2.4.6.
As in Shorrocks (2013), we observe that

δASU,γ
i (F, X) = 1

d!
∑︂

π∈σd

δSU,π,γ
i (F, X) =

∑︂
A⊆{1,...,d}

i∈A

δSU,A,γ
i (F, X)ξi,A

for ξi,A defined in Eq. (2.3.8) and

δSU,A,γ
i (F, X) :=

∞∑︂
l=0

{︃
F (Xsl + pA (Xsl+1 −Xsl))− F

(︂
Xsl + pA\{i} (Xsl+1 −Xsl)

)︂}︃
.

Thereby, the computational cost to obtain δASU,γ
i can be reduced from O(d!) to O(2d−1).

Theorem 2.4.7.
Let π ∈ σd and (γn)n∈N be a sequence of unbounded random partitions tending to the
identity. Let F ∈M(C2), X ∈ X d, t ≥ 0 and i ∈ {1, ..., d}. Then it holds for n→∞ that

δSU,π,γn
i (F, X)(t) p→ δISU,π

i (F, X)(t),

δASU,γn
i (F, X)(t) p→ δIASU

i (F, X)(t).

Proof. The proof of Theorem 2.4.7 can be found in Appendix 2.A.3.

The next example shows that the assumption F ∈M(C2) in Theorem 2.4.7 is important
to ensure convergence.

Example 2.4.8.
Let Z be a stochastic process with independent increments and Z0 = 0. Jumps of Z shall
only occur at fixed times J = {2− l−1, l ∈ N}, and for each l ∈ N, the process jumps by
±l−1 with equal probability for upward and downward movements. The process Z stays
constant between jumps. Then, Z is a semimartingale, see Černỳ and Ruf (2021). Let

f(x1, x2) = |x1 − x2|,
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Chapter 2 Profit and loss decomposition in continuous time and approximations

so f /∈ C2. Let (γn)n∈N be a deterministic sequence of unbounded partitions γn = {0 =
sn

0 < sn
1 < · · · } tending to the identity such that γn contains the first n smallest elements

of J but the intersection with (2− n−1, 2] is empty. Assume that X = (Z, Z). Then, for
t ≥ 2 it follows that

∞∑︂
l=0

{︃
f
(︁
X

sn
l+1

1 (t), X
sn

l
2 (t)

)︁
− f

(︁
X

sn
l

1 (t), X
sn

l
2 (t)

)︁}︃
=

n∑︂
l=1

l−1,

which is divergent for n → ∞, so the SU decomposition does not converge for the map
F (X)(t) := f(X(t)), t ≥ 0.

How can the IASU decomposition be computed efficiently in practice? If we naively
approximate the integrals in Definition 2.3.6 numerically, then we may lose exactness of
the decomposition, which is undesirable in many applications. Theorem 2.4.7 suggests
using the ASU decomposition as an approximation of the IASU decomposition. However,
this becomes computationally infeasible for moderately large d, since the computational
cost to obtain δASU,γ

i scales like O(2d−1). The next corollary provides an elegant solution
when there are no simultaneous jumps.

Definition 2.4.9.
Let γ = {0 = s0 < s1 < . . . } be an unbounded random partition. The 2SU (average of two
sequential updating) decomposition δ2SU,π,γ :M×X d → X d with updating order π ∈ σd is
defined by

δ2SU,π,γ
i (F, X) = 1

2
(︂
δSU,π,γ

i (F, X) + δSU,π′,γ
i (F, X)

)︂
, i = 1, ..., d,

where π′ = d + 1− π.

Corollary 2.4.10.
Let π ∈ σd and (γn)n∈N be a sequence of unbounded random partitions tending to the
identity. Let F ∈M(C2), X ∈ X d, i ∈ {1, ..., d} and t ≥ 0.

i) If ∆Xh∆Xj = 0 for all h, j ∈ {1, . . . , d} with h ̸= j, then

δ2SU,π,γn
i (F, X)(t) p→ δIASU

i (F, X)(t), n→∞.

ii) If [Xh, Xj ] = 0 for all h, j ∈ {1, . . . , d} with h ̸= j, then

δSU,π,γn
i (F, X)(t) p→ δIASU

i (F, X)(t), n→∞.
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2.4 SU and ASU decompositions and their limits

Proof. If ∆Xh∆Xj = 0, h ̸= j, it holds by Theorem 2.3.10 that δIASU
i (F, X) =

1
2
(︁
δISU,π

i (F, X) + δISU,π′

i (F, X)
)︁
, which is the limit of δ2SU,π,γn

i (F, X) by Theorem 2.4.7. If
[Xh, Xj ] = 0, h ̸= j, apply Corollary 2.3.12 and Theorem 2.4.7.

In particular, the 2SU decomposition with arbitrary updating order π is exact and approx-
imates the IASU decomposition when the risk factors do not have simultaneous jumps.
In this case, the computationally expensive averaging to obtain the ASU decomposi-
tion can be omitted and the computational complexity to approximate δIASU

i decreases
from O(2d−1) to O(1). Theorem 2.4.7 and Corollary 2.4.10 are also illustrated in Figure
2.1.

δASU,γ
i

⏐⏐↓p

δ2SU,π,γ
i

p
−−→ δIASU

i

p
←−− δSU,π,γ

i

if ∆Xh∆Xj = 0, h ̸= j if [Xh, Xj ] = 0, h ̸= j

Figure 2.1: Overview of discrete approximations of the IASU decomposition.

Last, we define the OAT decomposition. To obtain the contribution of Xi, all risk factors
are fixed at the origin and only Xi is allowed to change from the beginning of a sub-interval
to the end of that sub-interval.

Definition 2.4.11.
Let γ = {0 = s0 < s1 < . . . } be an unbounded random partition. The OAT (one-at-a-time)
decomposition δOAT,γ :M×X d → X d is defined by

δOAT,γ
i (F, X) =

∞∑︂
l=0

{︂
F
(︂
Xsl

1 , ..., Xsl
i−1, X

sl+1
i , Xsl

i+1, ..., Xsl
d

)︂
− F (Xsl)

}︂
, i = 1, ..., d.

Remark 2.4.12.
The OAT decomposition is symmetric but in general not exact. Let (γn)n∈N be a sequence
of unbounded random partitions tending to the identity. For each i ∈ {1, ..., d} choose a
permutation πi ∈ σd such that πi(i) = 1. Then δOAT,γn

i is indistinguishable from δSU,πi,γn
i .

If F ∈M(C2) then it holds by Theorem 2.4.7 for t ≥ 0 that

δOAT,γn
i (F, X)(t) p→ δISU,πi

i (F, X)(t), i = 1, ..., d
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Chapter 2 Profit and loss decomposition in continuous time and approximations

for n → ∞. Thus, by Corollary 2.3.12, the three decompositions principles OAT, SU
(with arbitrary order π ∈ σd) and ASU are asymptotically indistinguishable if there are no
interaction effects.

2.5 Applications

Investment portfolios of financial institutions or insurance companies may include instru-
ments such as stocks, plain vanilla or callable bonds, convertible bonds, inflation-linked
bonds, contingent convertible bonds (CoCos), basket options, foreign exchange options and
structured products. These instruments often depend on multiple risk factors such as dif-
ferent foreign exchange rates, interest rates for different maturities, credit spreads, inflation
rate, some trigger activations for CoCos, multiple equities and time decay. Candland and
Latz (2014) also considered defaults and rating changes as risk factors.

In order to obtain a P&L attribution of such instruments, we propose the IASU decom-
position because it is exact, symmetric and normalized, and it takes into account the
whole paths of the risk factors, i.e., uses all available information. The last point also
avoids inconsistencies when reporting a P&L attribution for different time grids, e.g., on
an annual, quarterly, monthly and weekly basis. The IASU decomposition involves a
stochastic integral. To approximate the IASU decomposition, we propose the ASU or 2SU
decomposition with a sufficiently fine time grid, as such an approximation is always an
exact decomposition. The use of the 2SU decomposition is theoretically justified when the
risk factors do not have simultaneous jumps.

In Section 2.5.1, we provide an exemplary decomposition of a plain vanilla call option with
stochastic interest rates on a foreign stock. A change in the P&L of this option can be
explained by movements in the stock, the yield curve, the foreign exchange rate and time
decay. Thus, there are d = 4 risk factors. We analyze the unexplained P&L of the OAT
decomposition, the range of the SU and 2SU decompositions over all possible updating
orders π ∈ σd for different time grids, and the convergence of the ASU decomposition to
the IASU decomposition.

Computing the ASU decomposition to approximate the IASU decomposition becomes
infeasible when the number of risk factors d is moderately large: For example, a plain
vanilla bond paying coupons may depend on d yield curves. A basket option may depend
on d stocks. In practice, d = 30 is a common case for basket options, see Grzelak et
al. (2023). In Section 2.5.2, we decompose a digital cash-or-nothing basket put option.
We illustrate that it is impossible to obtain the ASU decomposition in reasonable time
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when d = 30 and we show how the 2SU decomposition is able to break the curse of
dimensionality.

2.5.1 Decomposing a call option with stochastic interest rates

In this section, we allocate the P&L of the price of a plain vanilla European call option
with strike K and maturity T = 10 with stochastic interest rates and foreign exchange
exposure. The stock price S is given by a Black-Scholes model with constant volatility
σS > 0 and with stochastic interest rates r. The dynamics under the risk neutral measure
are given by

dS(t) = r(t)S(t)dt + σSS(t)dBS(t)

and
dr(t) = κ(η − r(t))dt + σrdBr(t)

with constant volatility σr > 0, long term mean η ∈ R and speed of mean reversion κ > 0.
Under the physical measure, the stock has drift µS ∈ R and the foreign exchange rate
Y is assumed to follow a geometric Brownian motion with drift µY ∈ R and volatility
σY > 0 driven by the Brownian motion BY . The Brownian motions are assumed to have
correlations

dBS(t)dBr(t) = ρSrdt, dBS(t)dBY (t) = ρSY dt, and dBY (t)dBr(t) = ρY rdt.

The time left to maturity is denoted by τ(t) = T − t. The price of the plain vanilla
call option pcall(t) at time t is given by a twice differentiable function f : Rd → R, see
Rabinovitch (1989), i.e.,

pcall(t) = f
(︁
S(t), r(t), Y (t), τ(t)

)︁
=: F (S, r, Y, τ)(t), t ≥ 0,

with
f(s, r, y, τ) = ysΦ

(︁
d+(s, r, τ)

)︁
− yKP (r, τ)Φ

(︁
d−(s, r, τ)

)︁
,

where Φ denotes the distribution function of a standard normal distribution
and

d±(s, r, τ) =
log

(︂
s

KP (r,τ)

)︂
± 1

2v(τ)√︁
v(τ)

,

v(τ) = σ2
Sτ + σ2

r

τ − 2gκ(τ) + g2κ(τ)
κ2 − 2ρSrσSσr

τ − gκ(τ)
κ

,

gκ(τ) = 1− e−κτ

κ
.
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The bond price P (r, τ) is given by

P (r, τ) = A(τ)e−gκ(τ)r,

where
A(τ) = exp

(︃(︃
η + σ2

rλ

κ
− σ2

r

2κ2

)︃
(gκ(τ)− τ)− 1

κ

(︃
σrgκ(τ)

2

)︃2)︃
and λ denotes the market price of risk. For simplicity, we set the market price of risk to zero
and hence assume that the dynamics of r under the physical and the risk neutral measure
are identical. Section 24.2 in Björk (2009) describes how to estimate the parameters for r

from market data. We simulate 1000 paths of the stock, interest rate and foreign exchange
rate under the physical measure over one year. For each path, we decompose the price of
the call option at time t = 1 with respect to the d = 4 risk factors X := (S, r, Y, τ). We
use the following parameters:

K = S(0) = 100, µS = 0.05, σS = 0.4, Y (0) = 1.1, µY = 0, σY = 0.05

and

r(0) = 0.08, κ = 0.1, η = 0.05, σr = 0.01, ρSr = −0.7, ρSY = −0.4, ρY r = 0.7.

By ∆F := F (X)(1)−F (X)(0), we denote the P&L of the option over one year. Figure 2.2
shows the relative unexplained P&L of the OAT decomposition, i.e.,

|∆F −
∑︁d

i=1 δOAT,γ
i (F, X)(1)|
|∆F |

.

We use as time grids γ annual, quarterly, monthly, weekly and daily time steps. As
observed in Flaig and Junike (2024), we also see that the unexplained P&L of the OAT
decomposition is significant for all time grids.

Figure 2.3 shows the relative range of the d! SU decompositions for the risk factor S,
i.e,

max
π∈σd

(︃
δSU,π,γ

1 (F, X)(1)
δIASU

1 (F, X)(1)

)︃
− min

π∈σd

(︃
δSU,π,γ

1 (F, X)(1)
δIASU

1 (F, X)(1)

)︃
and the relative range of the d!

2 2SU decompositions for the risk factor S. The limiting
IASU decomposition is approximated by an ASU decomposition with 10, 000 time steps per
year. We observe that the range is significant for the SU decompositions and insignificant
for the 2SU decompositions.

The speed of convergence of the ASU to the IASU decomposition is illustrated in Figure
2.4 for the risk factor S, i.e., we show the convergence of

δASU,γ
1 (F, X)(1)

δIASU
1 (F, X)(1)
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to one when the partition γ tends to the identity. Figures 2.3 and 2.4 look similar for other
risk factors.

In further numerical experiments, we calculate the relative difference between the ASU
decomposition and the 2SU decompositions⃓⃓⃓⃓

⃓δ
2SU,π,γ
i (F, X)(1)− δASU,γ

i (F, X)(1)
δIASU,γ

i (F, X)(1)

⃓⃓⃓⃓
⃓

over all risk factors i ∈ {1, ..., d}, time grids γ and updating orders π ∈ σd, and observe
values of less than 0.6% in 95% of the simulations. In conclusion, we find that the ASU de-
composition and the 2SU decompositions are strongly dependent on the time grid, but using
monthly or weekly time steps instead of annual time steps significantly reduces the deviation
of the ASU and 2SU decompositions from the IASU decomposition.
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Figure 2.2: Relative unexplained P&L for the OAT decomposition of a plain vanilla call
option in a foreign currency at time t = 1 for different time grids.
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Figure 2.3: Relative range of all SU decompositions and 2SU decompositions for the risk
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Figure 2.4: Convergence of the ASU decomposition to the IASU decomposition for the risk
factor S.
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2.5.2 Decomposing a basket option

In this section, we compare the computational cost of obtaining a one-year P&L attribution
of a basket option using a naive SU decomposition with annual time grid with the
computational cost of obtaining an ASU and a 2SU decomposition based on a monthly time
grid, respectively. We consider d risk factors: time decay and d−1 different stocks. A digital
cash-or-nothing basket put option pays $1 at maturity T if S1(T ) ≤ K, . . . , Sd−1(T ) ≤ K

and zero otherwise. The stock prices are given by a Black-Scholes model. We set the
interest rate r to zero. We set Si(0) = K = 100, i = 1, . . . , d− 1 and T = 2. The price of
the option at time t ∈ [0, T ) is equal to Φ

(︁
log(K), . . . , log(K)

)︁
, where Φ is the distribution

function of a d− 1 dimensional normal distribution with location(︃
log (S1(t))−

(︁
r − 1

2σ2)︁(T − t), . . . , log (Sd−1(t))−
(︁
r − 1

2σ2)︁(T − t)
)︃
∈ Rd−1

and covariance matrix Σ(T − t), where we set σ = 0.2, ρ = 0.5 and

Σij =

⎧⎨⎩σ2, i = j

ρσ2, i ̸= j.

Basket options are often priced using Monte Carlo techniques, see Glasserman (2004).
For moderate dimensions, many basket options can also be priced using faster Fourier
techniques, see Eberlein et al. (2010) and Junike and Stier (2024). We compute Φ
using a simple Monte Carlo simulation implemented in C++ with 100, 000 simulations.
The experiments are performed on a laptop with Intel i7-11850H processor and 32 GB
RAM.

Table 2.1 shows the CPU time needed to obtain Φ for d ∈ {4, 15, 30}. We measure CPU
times by averaging over 100 runs. Since in some cases the arguments of Φ to obtain a SU
decomposition with a certain update order π are the same for different contributions, we
need to evaluate Φ only dL + 1 times, where L is the number of sub-intervals of [0, T ],
to obtain the d individual contributions. For example, the 2SU and ASU decompositions
with a monthly time grid require (12d + 1) · 2 and (12d + 1) · 2d−1 evaluations of Φ,
respectively.

Table 2.1 also shows the CPU time to compute the SU, ASU and 2SU decompositions.
A naive SU decomposition based on an annual time grid is at most 24 times faster than
a 2SU decomposition with a monthly time grid. The computational cost of the 2SU
decomposition for each contribution is dimension independent, except for the longer time
required to evaluate Φ. Compared to the ASU decomposition, the 2SU decomposition is
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Chapter 2 Profit and loss decomposition in continuous time and approximations

2d−2 times faster. The ASU decomposition cannot be computed in reasonable time for
d ≥ 30.

Number of
evaluations of Φ

d = 4 d = 15 d = 30

Evaluation of Φ 1 0.018 sec 0.15 sec 0.54 sec
SU with annual grid d + 1 (0.09 sec) (2.4 sec) (16.7 sec)

2SU with monthly grid (12d + 1) · 2 (1.76 sec) (54.3 sec) (390 sec)
ASU with monthly grid (12d + 1) · 2(d−1) (7.06 sec) (123.6 hours) (3318.7 years)

Table 2.1: CPU time to compute the d contributions of the SU, ASU and 2SU decomposi-
tions of a basket option over one year using different time grids. The CPU time
of Φ is obtained from a Monte Carlo simulation. The CPU times in brackets
are estimated using the CPU time of Φ and the known complexities of the three
decompositions.

Remark 2.5.1.
To reduce the computational time, it is possible to compute the d contributions for the
SU, 2SU and ASU decompositions in parallel, which would reduce the numerical effort by
a factor of d. Furthermore, the sums for the SU, 2SU and ASU decompositions can also
be parallelized. For example, for the 2SU decomposition we need to perform 2(dL + 1)
function evaluations to obtain all d contributions. If a function evaluation takes 0.54 sec in
d = 30 dimensions as in the Table 2.1, the computation time for the 2SU decomposition
with monthly time grid could be reduced from 390 sec to about 0.54 sec using 722 cores
for parallelization.

2.6 Conclusions

We showed that the IASU decomposition is the only (up to indistinguishability) exact and
symmetric decomposition in the family of Itô decompositions, which is a large class of
normalized decompositions based on an extended version of Itô’s formula. This axiomatic
result, together with the fact that the IASU decomposition is grid-independent and
considers the full paths of the risk basis, makes it a decomposition of choice from a
theoretical perspective. In practice, the calculation of the IASU decomposition comes
with two challenges: it involves stochastic integrals that must be approximated, and the
computational effort explodes as the number of risk factors increases.
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2.A Appendix

We have shown that the IASU decomposition can be approximated by the ASU decom-
position (which is always exact and symmetric) if we use a sufficiently fine time grid,
but the ASU decomposition also suffers from the curse of dimensionality as the number
of risk factors increases. For applications where different risk factors may have interac-
tions but almost surely do not have simultaneous jumps, we have shown that the IASU
decomposition is indistinguishable from the average of two ISU decompositions, thus
breaking the curse of dimensionality. Therefore, from a theoretical point of view, the 2SU
decomposition with sufficiently fine time steps is an appropriate approximation of the
IASU decomposition.

Based on our own numerical experiments and the empirical analysis of Flaig and Ju-
nike (2024), we recommend using monthly or even weekly time steps instead of annual
time steps.

The additional computational cost of our two recommendations is moderate, but the theo-
retical properties of the decomposition are dramatically improved.
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2.A Appendix

2.A.1 Auxiliary results

Lemma 2.A.1.
Let i, j ∈ {1, ...., d}. Let π, η ∈ σd and x ∈ Rd. Then it holds that

η−1
(︃

p{j |π(j)≤π(η−1(i))}
(︁
η(x)

)︁)︃
= p{j |π(η−1(j))≤π(η−1(i))}(x). (2.A.1)

Proof. Let k ∈
{︁
j|π(j) ≤ π(η−1(i))

}︁
, which is equivalent to

η(k) ∈
{︁
j|π(η−1(j)) ≤ π(η−1(i))

}︁
.
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Since
(︁
η−1(x)

)︁
η(k) = xk and

(︁
η(x)

)︁
k

= xη(k), we obtain that(︃
η−1(︁p{j |π(j)≤π(η−1(i))}

(︁
η(x)

)︁)︁)︃
η(k)

=
(︃

p{j |π(j)≤π(η−1(i))}
(︁
η(x)

)︁)︃
k

=
(︁
p{j |π(η−1(j))≤π(η−1(i))}(x)

)︁
η(k),

which leads to Eq. (2.A.1).

Lemma 2.A.2.
Let η ∈ σd, i ∈ {1, ..., d}, X ∈ X d, F ∈M(C2) and (µπ)π∈σd

⊂ [0, 1]. If F (η(X)) = F (X),
then it holds that ∑︂

π∈σd

µπSπ
η−1(i)

(︁
η(X)

)︁
=

∑︂
A⊆{1,...,d}

i∈A

SA
i (X)ξi,A,η

with

ξi,A,η :=
∑︂

π∈σd

{j|π(η−1(j))≤π(η−1(i))}=A

µπ. (2.A.2)

In particular, for an Itô decomposition δ with parameters (λij)i,j=1,...,d and (µπ)π∈σd
, we

have that

δi(F, X) = Ii + 1
2Iii +

d∑︂
j=1
j ̸=i

λijIij +
∑︂

A⊆{1,...,d}
i∈A

SA
i (X)ξi,A,id. (2.A.3)

Proof. Let η ∈ σd and F (X)(t) = f(X(t)), t ≥ 0, with F (η(X)) = F (X) for X ∈ X d. Let
i ∈ {1, ..., d}. By Eq. (2.A.1) it holds for s > 0 that

f

(︃
η
(︁
X(s−)

)︁
+ p{j |π(j)≤π(η−1(i))}

(︁
∆η(X)(s)

)︁)︃
= f

(︃
η

[︃
X(s−) + η−1[︁p{j |π(j)≤π(η−1(i))}

(︁
η(∆X(s))

)︁]︁]︃)︃
(2.A.1)= f

(︃
η
[︁
X(s−) + p{j |π(η−1(j))≤π(η−1(i))}(∆X(s))

]︁)︃
= f

(︃
X(s−) + p{j |π(η−1(j))≤π(η−1(i))}

(︁
∆X(s)

)︁)︃
.

The last equality follows from the symmetry of f . Similarly, if we replace “≤” with “<”,
we get that

f

(︃
η
(︁
X(s−)

)︁
+ p{j |π(j)<π(η−1(i))}

(︁
∆η(X)(s)

)︁)︃
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=f

(︃
X(s−) + p{j |π(η−1(j))<π(η−1(i))}

(︁
∆(X)(s)

)︁)︃
.

Let η ∈ σd and f ∈ C2. If f(x) = f(η(x)), x ∈ Rd, it is straightforward to see that for
x ∈ Rd it holds that

fi(x) = fη−1(i)(η(x)), fij(x) = fη−1(i)η−1(j)(η(x)) and (η(x))η−1(i) = xi. (2.A.4)

Therefore it follows that
Sπ

η−1(i)(η(X)) = Sπ◦η−1

i (X). (2.A.5)

Thus, similarly to Shorrocks (2013), for any re-ordering η(X) of the risk basis X we can
conclude that∑︂

π∈σd

µπSπ
η−1(i)

(︁
η(X)

)︁ (2.A.5)=
∑︂

π∈σd

µπSπ◦η−1

i (X)

=
∑︂

A⊆{1,...,d}
i∈A

∑︂
π∈σd

{j|π(η−1(j))≤π(η−1(i))}=A

µπSπ◦η−1

i (X)

=
∑︂

A⊆{1,...,d}
i∈A

SA
i (X)

∑︂
π∈σd

{j|π(η−1(j))≤π(η−1(i))}=A

µπ

=
∑︂

A⊆{1,...,d}
i∈A

SA
i (X)ξi,A,η.

Eq. (2.A.3) follows directly for η = id.

Lemma 2.A.3.
Let δ be an Itô decomposition with parameters (λij)i,j=1,...,d and (µπ)π∈σd

. Let i ∈
{1, . . . , d}. If δ is symmetric and exact, it follows that

ξi,A,id = ξη−1(i),η−1(A),id (2.A.6)

for any η ∈ σd, where ξi,A,id is defined in Eq. (2.A.2) and η(A) := {η(j) : j ∈ A}. Further,
for any a ∈ {1, . . . , d} it holds that

d∑︂
j=1

∑︂
A⊆{1,...,d}
|A|=a, j∈A

ξj,A,id = 1. (2.A.7)

Proof. First we show Eq. (2.A.6). Let A ⊆ {1, . . . , d} with i ∈ A. Let π, η ∈ σd. Because
of

{j|π(η−1(j)) ≤ π(η−1(i))} = A ⇔ {j|π(j) ≤ π(η−1(i))} = η−1(A),
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it holds that

ξi,A,η =
∑︂

π∈σd

{j|π(η−1(j))≤π(η−1(i))}=A

µπ =
∑︂

π∈σd

{j|π(j)≤π(η−1(i))}=η−1(A)

µπ = ξη−1(i),η−1(A),id. (2.A.8)

Now let f(x) = ∏︁d
j=1 x2

j and F (X)(t) = f(X(t)), t ≥ 0, so that F (X) = F (π(X)), π ∈ σd.
For B ⊆ {1, . . . , d} with i ∈ B and t ≥ 0, let

Xj(t) =

⎧⎨⎩1[1,∞)(t), j ∈ B

1[0,1)(t), j /∈ B.

Then it follows that

f

(︃
X(1−) + pA

(︁
∆X(1)

)︁)︃
=

⎧⎨⎩1, A = B

0, A ̸= B

and therefore

SA
i (X)(1) =

⎧⎨⎩1, A = B

0, A ̸= B

for A ⊆ {1, . . . , d} with i ∈ A. For η ∈ σd it follows by Lemma 2.A.2 that

δη−1(i)
(︁
F, η(X)

)︁
(1) =

∑︂
A⊆{1,...,d}

i∈A

SA
i (X)(1)ξi,A,η = ξi,B,η.

Since δ is symmetric, we have that

ξη−1(i),η−1(B),id
(2.A.8)= ξi,B,η = δη−1(i)

(︁
F, η(X)

)︁
(1) = δi(F, X)(1) = ξi,B,id.

Since B was arbitrary, we have just shown Eq. (2.A.6).

Now we iteratively show Eq. (2.A.7). Let Xj(t) = 1[1,∞)(t), t ≥ 0, j = 1, . . . , d and let
fa ∈ C2 such that for a ∈ {1, . . . , d}

fa(x) =

⎧⎨⎩1,
∑︁d

j=1 xj = a

0,
∑︁d

j=1 xj ∈ (−∞, a− 1] ∪ [a + 1,∞)

and fa
i (X) = 0 if ∑︁d

j=1 xj ≤ a− 1, i = 1, . . . , d. Let F a(X)(t) = fa(X(t)), t ≥ 0. If a = d,
then

SA
j (X)(1) =

⎧⎨⎩1, |A| = a

0, otherwise
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for j = 1, . . . , d and A ⊆ {1, . . . , d} with j ∈ A. By exactness and Lemma 2.A.2 it follows
that

1 = F a(X)(1)− F a(X)(0)

=
d∑︂

j=1
δj(F a, X)(1)

=
d∑︂

j=1

∑︂
A⊆{1,...,d}

j∈A

SA
j (X)(1)ξj,A,id

=
d∑︂

j=1

∑︂
A⊆{1,...,d}
|A|=d, j∈A

ξj,A,id. (2.A.9)

Now let a = d− 1, then

SA
j (X)(1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, |A| = a

−1, |A| = a + 1

0, otherwise

for A ⊆ {1, . . . , d} with j ∈ A. Again, by exactness we have that

0 =F a(X)(1)− F a(X)(0)

=
d∑︂

j=1
δj(F a, X)

=
d∑︂

j=1

∑︂
A⊆{1,...,d}

j∈A

SA
j (X)(1)ξj,A,id

=
d∑︂

j=1

∑︂
A⊆{1,...,d}

|A|=d−1, j∈A

ξj,A,id −
d∑︂

j=1

∑︂
A⊆{1,...,d}
|A|=d, j∈A

ξj,A,id.

Using Eq. (2.A.9) we obtain that

d∑︂
j=1

∑︂
A⊆{1,...,d}

|A|=d−1, j∈A

ξj,A,id = 1.

Iteratively for any a ∈ {1, . . . , d} it follows that

d∑︂
j=1

∑︂
A⊆{1,...,d}
|A|=a, j∈A

ξj,A,id = 1.
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2.A.2 Proof of Theorem 2.3.9

Proof. First we show that the IASU decomposition is exact and symmetric and satisfies
Eq. (2.3.9): By Proposition 2.3.3, it follows that δIASU is an exact Itô decomposition. Use
Eq. (2.A.4) to see that the IASU decomposition is symmetric. If d = 1, Eq. (2.3.9) is
trivially true. Assume d ≥ 2. Fix i ∈ {1, ..., d}. Note that

∑︂
π∈σd

1{π(j)<π(i)} =

⎧⎨⎩
d!
2 , j ̸= i

0, j = i.

It follows that

1
d!
∑︂

π∈σd

d∑︂
j=1

π(j)<π(i)

Iij =
d∑︂

j=1

{︃
Iij

1
d!
∑︂

π∈σd

1{π(j)<π(i)}

}︃

= 1
2Ii1 + ... + 1

2Ii(i−1) + 1
2Ii(i+1) + ... + 1

2Iid

= 1
2
∑︂
j ̸=i

Iij . (2.A.10)

Eq. (2.A.10) implies Eq. (2.3.9). Now we show that all exact and symmetric Itô decomposi-
tions are indistinguishable from the IASU decomposition. Let δ be a symmetric and exact
Itô decomposition with parameters (λij)i,j=1,...,d and (µπ)π∈σd

. Since the Itô decomposition
is over-parameterised, we use the alternative parametrization according to Eq. (2.A.3).
To prove that δ is indistinguishable from the IASU decomposition, we show that λij and
ξi,A,id are equal to the coefficients 1

2 and ξi,A as defined in Eq. (2.3.8).

Suppose that λhk ̸= 1
2 . Let X ∈ X d have continuous paths with Xi = 1, i /∈ {h, k},

and [Xh, Xk] ̸= 0. Let F (X) = ∏︁d
i=1 Xi. Then F (X) = F (π(X)) for π ∈ σd. Note that

Ikh = Ihk. As δ is exact, we have
d∑︂

i=1
δi(F, X) = Ih + Ik + λhkIhk + λkhIkh = F (X)− F (X)(0) = Ih + Ik + Ihk,

hence λkh = 1− λhk ̸= λhk. Let π ∈ σd such that π−1(h) = k. Then, it follows that

δπ−1(h)(F, π(X)) = δk(F, π(X)) = Ih + λkhIkh ̸= Ih + λhkIhk = δh(F, X).

That means that δ is not symmetric, which is a contradiction to our assumption. So we
necessarily have that λij = 1

2 , i, j = 1, ..., d.

Now let a ∈ {1, . . . , d}. For i, j ∈ {1, . . . , d}, let A, B ⊆ {1, . . . , d} with |A| = |B| = a and
i ∈ A, j ∈ B. Then there is a permutation η ∈ σd such that η−1(A) = B and j = η−1(i).
By Eq. (2.A.6) it follows that
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ξi,A,id = ξj,B,id. (2.A.11)

Let A1, . . . , Ad ⊆ {1, . . . , d} with j ∈ Aj and |Aj | = a, j = 1, . . . , d. Since

⃓⃓{︁
A ⊆ {1, . . . , d} : j ∈ A, |A| = a

}︁⃓⃓
=
(︄

d− 1
a− 1

)︄
, (2.A.12)

we obtain by Eqs. (2.A.7), (2.A.11) and (2.A.12) that

1 =
d∑︂

j=1

∑︂
A⊆{1,...,d}
|A|=a, j∈A

ξj,A,id =
d∑︂

j=1

(︄
d− 1
a− 1

)︄
ξj,Aj ,id = d

(︄
d− 1
a− 1

)︄
ξi,A,id

for A ⊆ {1, . . . , d} with i ∈ A and |A| = a. Therefore we can conclude that

ξi,A,id = 1
d
(︁ d−1

|A|−1
)︁ = (|A| − 1)!(d− |A|)!

d! .

2.A.3 Proof of Theorem 2.4.7

Proof. Let t > 0. Fix some i ∈ {1, ..., d} and some permutation π. Since F ∈ M(C2), by
definition there is an f ∈ C2 such that F (X)(t) = f(X(t)), t ≥ 0. We first show that
δSU,π,γn(F, X)(t) p→ δISU,π(F, X)(t) for n→∞. Let γn = {0 = sn

0 < sn
1 < ...}, n ∈ N, be a

sequence of unbounded random partitions tending to the identity. Let α > 0 and

Aα :=
{︁
s ∈ (0, t] : max

j=1,...,d
|∆Xj(s)| > α

}︁
.

The set Aα contains all time points in [0, t] where at least one component of a path
u ↦→ X(u) has jumps greater than α. The SU decomposition δSU,π,γn

i with respect to γn

can be written as

δSU,π,γn
i (F, X)(t) =

∑︂
l∈Aα

{︃
f
(︂
Xsn

l (t) + p{j |π(j)≤π(i)}
(︂
Xsn

l+1(t)−Xsn
l (t)

)︂)︂
− f

(︂
Xsn

l (t) + p{j |π(j)<π(i)}
(︂
Xsn

l+1(t)−Xsn
l (t)

)︂)︂}︃
+
∑︂

l∈Ac
α

{︃
f
(︂
Xsn

l (t) + p{j |π(j)≤π(i)}
(︂
Xsn

l+1(t)−Xsn
l (t)

)︂)︂

− f
(︂
Xsn

l (t) + p{j |π(j)<π(i)}
(︂
Xsn

l+1(t)−Xsn
l (t)

)︂)︂}︃
, (2.A.13)
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where Aα = {l ∈ N0 : Aα ∩ (sn
l , sn

l+1] ̸= ∅} and Ac
α = N0 \ Aα. The first sum at the

right-hand side of Eq. (2.A.13) converges a.s. for n→∞ to

∑︂
s∈Aα

{︃
f
(︂
X(s−) + p{j |π(j)≤π(i)}

(︁
∆X(s)

)︁)︂
− f

(︂
X(s−) + p{j |π(j)<π(i)}

(︁
∆X(s)

)︁)︂}︃
.

(2.A.14)
Using a Taylor expansion and the same arguments as in the proof of the classical Itô’s
formula, one can show that the second sum of the right-hand side of Eq. (2.A.13) converges
in probability for n→∞ to

Ii(t) + 1
2Hii(t) +

∑︂
π(j)<π(i)

Hij(t)−
∑︂

s∈Aα

{︃
fi (X(s−)) ∆Xi(s) + 1

2fii (X(s−)) (∆Xi(s))2

+
d∑︂

j=1
π(j)<π(i)

fij (X(s−)) ∆Xi(s)∆Xj(s)
}︃

,

(2.A.15)

where Hij =
∫︁ ·

0 fij(X(s−))d[Xi, Xj ](s). The sum of the Eqs. (2.A.14) and (2.A.15) is

Ii(t) + 1
2Hii(t) +

∑︂
π(j)<π(i)

Hij(t)+ (2.A.16)

∑︂
s∈Aα

{︃
f
(︂
X(s−) + p{j |π(j)≤π(i)}(∆X(s))

)︂
− f

(︂
X(s−) + p{j |π(j)<π(i)}(∆X(s))

)︂
− fi (X(s−)) ∆Xi(s)

}︃
(2.A.17)

−
∑︂

s∈Aα

1
2fii (X(s−)) (∆Xi(s))2 (2.A.18)

−
∑︂

s∈Aα

d∑︂
j=1

π(j)<π(i)

fij (X(s−)) ∆Xi(s)∆Xj(s). (2.A.19)

Since X is a semimartingale, and because of Lemma 2.3.2, we can see that the sums
(2.A.17), (2.A.18) and (2.A.19) are absolutely convergent for α→ 0 so that (2.A.16-2.A.19)
converge for α→ 0 to δISU,π(F, X)(t), using that

Iij = Hij −
∑︂

0≤s≤·
fij (X(s−)) ∆Xi(s)∆Xj(s).

By Theorem 2.3.9 we get δASU,γn(F, X)(t) p→ δIASU,π(F, X)(t) for n→∞.
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2.A.4 Stability

In this section, we use the notation of Christiansen (2022). For i = 1, 2, let τi : [0,∞)→
[0,∞) with τi(t) ≤ t for all t ≥ 0. The function

τ(t) =
(︁
τ1(t), τ2(t)

)︁
is called a delay. A delay is called phased if there is an unbounded partition {0 = s0 <

s1 < ...} of [0,∞) such that on each interval (sl, sl+1], at most one component of τ is
nonconstant. Let (τn)n∈N be a refining sequence of delays that increase to identity (rsdii),
i.e.,

τn
i

(︁
[0, t]

)︁
⊂ τn+1

i

(︁
[0, t]

)︁
, n ∈ N, and

⋃︂
n∈N

τn
i

(︁
[0, t]

)︁
= [0, t], i = 1, 2.

Let T be a set containing at least one phased rsdii. Let X = (X1, X2) be a semimartingale,
and define

X ⋄ τ := (X1 ◦ τ1, X2 ◦ τ2), τ ∈ T .

Let
X = {X ⋄ τ : τ ∈ T } ∪ {X}.

Let D0 be the set of càdlàg processes starting in zero and let ϱ : X → D0. A map-
ping δ : X → D2

0 is called decomposition scheme of ϱ. The mapping δ assigns to
each Y ∈ X a decomposition of ϱ(Y ). The ISU decomposition scheme is abbreviated
δISU .

A decomposition scheme is called stable at X if

δ(X ⋄ τn)(t−) p→ δ(X)(t−), n→∞,

at each t > 0 for all rsdii (τn)n∈N ⊂ T .

Proposition 2.A.4.
Assume that X = (X1, X2) with X1 = X2 = B for a Brownian motion B. Let ϱ(Y ) = Y1Y2

be a simple product. Then, there is a set T of continuous phased rsdii such that the ISU
decomposition δISU of ϱ is not stable at X.

Proof. Suppose that T contains a continuous phased rsdii (τn) = (τn
1 , τn

2 ), n ∈ N, with
τn

1 ≤ τn
2 , n ∈ N. For a partition (an

l,i, bn
l,i], l ∈ N0, i = 1, 2 of [0,∞) such that (τn

j )j ̸=i is
constant on (an

l,i, bn
l,i], let τn

1 (an
l,2) = τn

2 (an
l,2), n ∈ N, l ∈ N0. In addition, let T also contain
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(τ̃n)n∈N = ((τn
2 , τn

1 ))n∈N. Since τn
2 (an

l,1) = τn
2 (bn

l,1) = τn
1 (bn

l,1) and by the multidimensional
Taylor theorem,

δISU
1 (X ⋄ τn)(t) =

∑︂
l

(︃
ϱ
(︁
(X ⋄ τn)bn

l,1∧t)︁− ϱ
(︁
(X ⋄ τn)an

l,1∧t)︁)︃

=
∑︂

l

ϱ1
(︁
(X ⋄ τn)an

l,1∧t)︁(︃X1
(︁
τn

1 (bn
l,1 ∧ t)

)︁
−X1

(︁
τn

1 (an
l,1 ∧ t)

)︁)︃
.

By the definitions of X1, X2 and ρ,

δISU
1 (X ⋄ τn)(t) =

∑︂
l

B
(︁
τn

2 (an
l,1 ∧ t)

)︁(︃
B
(︁
τn

1 (bn
l,1 ∧ t)

)︁
−B

(︁
τn

1 (an
l,1 ∧ t)

)︁)︃

=
∑︂

l

B
(︁
τn

1 (bn
l,1 ∧ t)

)︁(︃
B
(︁
τn

1 (bn
l,1 ∧ t)

)︁
−B

(︁
τn

1 (an
l,1 ∧ t)

)︁)︃
=
∑︂

l

B(tl)
(︁
B(tl ∧ t)−B(tl−1 ∧ t)

)︁
=2
∑︂

l

(︁
B(tl) + B(tl−1)

)︁
2

(︁
B(tl ∧ t)−B(tl−1 ∧ t)

)︁
−
∑︂

l

B(tl−1)
(︁
B(tl ∧ t)−B(tl−1 ∧ t)

)︁
for tn

l := τn
1 (bn

l,1) = τn
1 (an

l+1,1) = τn
2 (bn

l−1,2) = τn
2 (an

l,2). Let
∫︁ t

0 Bs ◦ dBs denote the
Stratonovich integral and

∫︁ t
0 BsdBs the Itô integral. It holds that

δISU
1 (X ⋄ τn)(t) p→ 2

∫︂ t

0
Bs ◦ dBs −

∫︂ t

0
BsdBs = 1

2B2
t + 1

2 t

for n→∞. By the same arguments,

δISU
1 (X ⋄ τ̃n)(t) =

∑︂
l

(︃
ϱ
(︁
(X ⋄ τ̃n)bn

l,2∧t)︁− ϱ
(︁
(X ⋄ τ̃n)an

l,2∧t)︁)︃

=
∑︂

l

ϱ1
(︁
(X ⋄ τ̃n)an

l,2∧t)︁(︃X2
(︁
τn

2 (bn
l,2 ∧ t)

)︁
−X2

(︁
τn

2 (an
l,2 ∧ t)

)︁)︃

=
∑︂

l

B
(︁
τn

1 (an
l,2 ∧ t)

)︁(︃
B
(︁
τn

2 (bn
l,2 ∧ t)

)︁
−B

(︁
τn

2 (an
l,2 ∧ t)

)︁)︃

=
∑︂

l

B
(︁
τn

2 (an
l,2 ∧ t)

)︁(︃
B
(︁
τn

2 (bn
l,2 ∧ t)

)︁
−B

(︁
τn

2 (an
l,2 ∧ t)

)︁)︃
=
∑︂

l

B(tl)
(︁
B(tl+1 ∧ t)−B(tl ∧ t)

)︁
p→
∫︂ t

0
BsdBs = 1

2B2
t −

1
2 t

for n→∞. Therefore,

plimn→∞δISU
i (X ⋄ τn)(t) ̸= plimn→∞δISU

i (X ⋄ τ̃n)(t), i = 1, 2,

for t > 0, and hence, the ISU decomposition of ϱ(X) cannot be stable at X.
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Chapter 3

On the convergence of sequential updating
methods for P&L attribution

3.1 Introduction

This chapter extends Junike et al. (2024), which is given in Chapter 2, who analyze the
case that the P&L can be described by a twice differentiable function and that the risk
factors are described by semimartingales with nontrivial interaction effects. They show
that the SU decomposition converges in probability if the time steps converge to zero.
But in practice, we can only observe one path of the risk factors. Based on path-wise
integration methodology, see Karandikar (1995), we show that it is possible to choose a
path-dependent non-equidistant time grid, such that the SU decomposition converges to
the ISU decomposition almost surely.

Another open question is the order of convergence of the OAT, SU and ASU decom-
positions: How fast does the decomposition converge when the grid size gets smaller?
We analyse the convergence of the decompositions depending on the choice of the path-
dependent partition of the time horizon theoretically and undermine it with numerical
experiments.

Hence we make the following contributions: First, we show that there is a sequence
of path-dependent time grids, such that the SU decomposition converges almost surely.
Additionally, we specify how to choose the time grid, such that the SU decomposition
converges with a desired order of convergence. The results can be extended to the OAT
and ASU decomposition.
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3.2 Notation

We use the same notation and definitions as in Junike et al. (2024) and specify further
relevant definitions: For X ∈ X d and a stopping time s and a vector of stopping times
τ = (τ1, . . . , τd), we define stopped semimartingales:

Xs = (Xs
1 , . . . , Xs

d) and Xτ = (Xτ1
1 , . . . , Xτd

d ).

Let | · | denote the absolute value and ∥ · ∥ the Euclidean norm on Rd. Let the infimum of
the empty set be infinity, i.e. inf{∅} :=∞. For X ∈ X and a sequence of finite stopping
times γ = (sl)l∈N0 with s0 = 0 and sl < sl+1 a.s. for all l ∈ N0, let

Xγ = X(0)1{0} +
∞∑︂

l=0
Xsl1(sl,sl+1]

and

δX l = (Xsl+1 −Xsl). (3.2.1)

3.3 Convergence of the SU decomposition

For twice differentiable functions, Junike et al. (2024) show the existence of the ISU
decomposition as the stochastic limit of SU decompositions. In practice, it is typically only
possible to observe a single path of the risk factors. To ensure that the SU decomposition of
this path converges, we need the following theorem, which shows the convergence of the SU
decomposition in an almost surely sense for general semimartingales.

Theorem 3.3.1.
Let π ∈ σd, F ∈ M(C2) and X ∈ X d. Let t ≥ 0 and i ∈ 1, . . . , d. Then there exists a
sequence (γn)n∈N of unbounded random partitions tending to the identity, such that it
holds for n→∞ that

δSU,π,γn
i (F, X)(t) a.s.→ δISU,π

i (F, X)(t).

Proof. The proof of Theorem 3.3.1 can be found in the appendix.

Since the definitions of the OAT and the ASU decompositions are based on the SU
decomposition, see Definition 4.5 and Remark 4.12 in Junike et al. (2024), we immediately
get the following result.
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Corollary 3.3.2.
Let F ∈ M(C2) and X ∈ X d. Let t ≥ 0 and i ∈ 1, . . . , d. Then there exist sequences
(γn)n∈N,(µn)n∈N of unbounded random partitions tending to the identity, such that it holds
for n→∞ that

δOAT,γn
i (F, X)(t) a.s.→ δIOAT

i (F, X)(t),

δASU,µn
i (F, X)(t) a.s.→ δIASU

i (F, X)(t).

Proof. The corollary is a direct consequence of Theorem 3.3.1.

In practice, the ISU, IOAT and IASU decompositions usually need to be approximated
numerically and the latter theorem motivates the use of the SU, OAT and ASU decompo-
sitions for this purpose. In the next theorem, we show how, in the case of continuous risk
factors, the random partition can be chosen such that the error in terms of E[sup0≤t≤T | · |]
is smaller than or equal to a given error tolerance a > 0. The result can be used for a
sequence of error bounds (an)n∈N to achieve convergence of the SU decomposition with a
certain order, specified by the choice of (an)n∈N. We need the following assumption, cf. p.
112 in Protter (2005).

Assumption 3.3.3.
Let Z ∈ X be a continuous semimartingale and Z = M + A be a decomposition of Z into
a locally square integrable martingale M and a finite variation process A. We assume that
E[Z2(T )] <∞, E[[M, M ](T )] <∞ and that A is of integrable variation, i.e.

E
[︁ ∫︂ T

0
|dA(s)|

]︁
<∞. (3.3.1)

Theorem 3.3.4.
Let X ∈ X d be a d-dimensional continuous semimartingale with Xi, i = 1, . . . , d satisfying
Assumption 3.3.3. Let F ∈M(C2) with F (X)(t) = f(X(t)) for some f ∈ C2 and let f , fi,
fij , i, j = 1, . . . , d be Lipschitz continuous with joint Lipschitz constant L > 0. For any
a > 0 let γ = (sl)l∈N0 be defined by s0 = 0 and

sl+1 = inf
{︁
t ≥ sl : ∥X(t)−Xsl(t)∥ ≥ a or

|fij(X(t))Xj(t)− fij(Xsl(t))Xsl
j (t)| ≥ a, i, j = 1, . . . , d

}︁
(3.3.2)

for l ≥ 0. Then for the SU and ISU decomposition with respect to γ and π ∈ σd, there is a
constant C > 0 such that

E

[︃
sup

0≤t≤T

⃓⃓
δSU,π,γ

i (F, X)(t)− δISU,π
i (F, X)(t)

⃓⃓]︃
≤ Ca.
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Proof. The proof of Theorem 3.3.4 is presented in the appendix.

Corollary 3.3.5.
Under the assumptions of Theorem 3.3.4, there are constants C1, C2 > 0 such that

E

[︃
sup

0≤t≤T

⃓⃓
δOAT,γ

i (F, X)(t)− δIOAT
i (F, X)(t)

⃓⃓]︃
≤ C1a

and
E

[︃
sup

0≤t≤T

⃓⃓
δASU,γ

i (F, X)(t)− δIASU
i (F, X)(t)

⃓⃓]︃
≤ C2a.

Proof. The corollary is a direct consequence of Theorem 3.3.4.

The following example is intended to give an intuition of how the time grid must be selected
depending on different market environments in order to fulfil the error bound in Theorem
3.3.4.

Example 3.3.6.
Let d = 1 and X = σB for a standard Brownian motion B and σ > 0. Let f be the
identity. The random partition defined in Theorem 3.3.4 is equal to

sl+1 = inf
{︁
t ≥ sl : ∥X(t)−Xsl(t)∥ = a

}︁
and by the optional stopping theorem, see Section 12.4 in Grimmett and Stirzaker (2001),
it follows that

E[s1] = a2

σ2 .

That is, the higher the variance, the narrower the random partition of the time grid has to
be chosen.

The following example illustrates the convergence of the SU decomposition. The order of
convergence depends on the error bound according to Theorem 3.3.4.

Example 3.3.7.
Let X1 be a Brownian motion and X2 = ρX1 +

√︁
1− ρ2Z for a Brownian motion Z,

independent of X1. Let X = (X1, X2) and F (X) = X1X2. The partition defined in
Theorem 3.3.4 simplifies to

sl+1 = inf
{︁
t ≥ sl : ∥X(t)−Xsl(t)∥ = a

}︁
,
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since

fij(X) =

⎧⎨⎩1, i ̸= j

0, i = j.

For a sequence (an)n∈N ⊂ R+ let

err(n) := E

[︃
sup

0≤t≤T

⃓⃓
δ

SU,π,γan
1 (F, X)(t)− δISU,π

1 (F, X)(t)
⃓⃓]︃

define the error between the SU and the ISU decomposition of F (X) for some π ∈ σd with
respect to γan , where γan is the random partition defined in Eq. (3.3.2) with respect to an.

We simulate X1 and X2 with step size 1/1000 and approximate the ISU decomposition
with a SU decomposition with 1000 equidistant time steps and time horizon T = 1. In
Figure 3.3.7 we can see a log-log plot of err(n) with respect to an = 1/n2 for n = 10, 20, ...

for ρ = 0 and ρ = 0.9, respectively. Using linear regression we determine the slope of the
two graphs. In both cases it is larger than 3. This underlines the results of Theorem 3.3.4,
which provides a theoretical slope of 2.
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Figure 3.1: Convergence of the SU decomposition with respect to γan of a product of two
Brownian motions with correlation parameter ρ = 0 and ρ = 0.9 with γan as in
Eq. (3.3.2) with an = 1/n2.
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3.4 Conclusion

In this chapter, we analyzed the convergence properties of prevalent sequential updating
decompositions. We extended the work of Junike et al. (2024), who only show the
convergence in probability of the SU decomposition. We prove that by choosing a path-
dependent, non-equidistant time grid, the SU/OAT/ASU decomposition converges almost
surely to the ISU/IOAT/IASU decomposition. This extension addresses the limitations of
the widespread use of equidistant time grids in practice when only a single path of the
risk factors is given. In addition, we provide conditions for bounding the distance between
the SU and the ISU decompositions. We illustrate the speed of convergence of the SU
decomposition depending on the choice of the non-equidistant time grid in a numerical
experiment.

3.A Appendix

Proof of Theorem 5

Proof. Consider two 1-dimensional semimartingales Z, Y ∈ X and define the sequence of
stopping times γn = {0 = sn

0 < sn
1 < ...} by sn

0 = 0 and

sn
l+1 = min

(︃
inf
{︁
t ≥ sn

l : |Z(t)− Zsn
l (t)|+ |(Y Z)(t)− (Y Z)sn

l (t)| ≥ 2−n}︁, sn
l + 1

n

)︃
.

Note that the condition min(·, sn
l + 1

n) is only necessary to make (γn)n∈N0 tend to the
identity, if X is constant on some subinterval. Theorem 2 in Karandikar (1995) shows that

∞∑︂
l=0

Zsn
l (t)

(︁
Y sn

l+1(t)− Y sn
l (t)

)︁ a.s.→
∫︂ t

0
Z(s−)dY (s)

for n→∞ and each t ≥ 0. Similarly, we can conclude that
∞∑︂

l=0
Zsn

l (t)
(︁
Y sn

l+1(t)− Y sn
l (t)

)︁2
=

∞∑︂
l=0

Zsn
l (t)

(︁
(Y sn

l+1)2(t)− (Y sn
l )2(t)

)︁
− 2

∞∑︂
l=0

Zsn
l (t)Y sn

l (t)
(︁
Y sn

l+1(t)− Y sn
l (t)

)︁
converges almost surely to∫︂ t

0
Z(s−)dY 2(s)− 2

∫︂ t

0
Z(s−)Y (s−)dY (s) =

∫︂ t

0
Z(s−)d[Y, Y ](s)

48



3.A Appendix

for n → ∞. Similarly, for two semimartingales Y1, Y2 and a corresponding choice of γn,
one can also show that

∞∑︂
l=0

Zsn
l (t)

(︁
Y

sn
l+1

1 (t)− Y
sn

l
1 (t)

)︁(︁
Y

sn
l+1

2 (t)− Y
sn

l
2 (t)

)︁ a.s.→
∫︂ t

0
Z(s−)d[Y1, Y2](s)

using the polarization identity

[Y1, Y2] = 1
2([Y1 + Y2, Y1 + Y2]− [Y1, Y1]− [Y2, Y2]).

Theorem 4.7 in Junike et al. (2024) shows that the limit of SU decompositions exists
for F ∈ M(C2) and is equal to the ISU decomposition. The proof uses a pathwise
argumentation, except that Eq. (32) in their work only states the convergence in probability
of step functions to Itô integrals. The above almost surely convergence results show that
there is a sequence of unbounded random partitions (γn)n∈N, so that the SU decomposition
with respect to (γn)n∈N converges almost surely to the ISU decomposition.

Proof of Theorem 3.3.4

Proof. We use the same ideas as in the proof of Theorem 2 in Karandikar (1995), but
several new arguments are also needed. In the following we use the notation as in Eq.
(3.2.1) to describe discrete increments. Let γ be defined as in Eq. (3.3.2). By the Taylor
expansion, see Lemma 3.A.4, the SU decomposition with respect to γ is given by

δSU,π,γ
i (F, X) =

∞∑︂
l=0

(︂
fi(Xsl)δX l

i + 1
2fii(Xsl)(δX l

i)2 (3.A.1)

+
d∑︂

j=1
π(j)<π(i)

fij(Xsl)δX l
iδX l

j + R1,i
l −R2,i

l

)︂

with

R1,i
l = 1

2

d∑︂
j=1

π(j)≤π(i)

(︁
fij(ξ1,i

l )− fij(Xsl)
)︁
δX l

iδX l
j ,

R2,i
l = 1

2

d∑︂
j=1

π(j)<π(i)

(︁
fij(ξ2,i

l )− fij(Xsl)
)︁
δX l

iδX l
j ,

and

ξ1,i
l = θ1

l

(︂
Xsl + p{j |π(j)≤π(i)} (Xsl+1 −Xsl)

)︂
+ (1− θ1

l )Xsl , θ1
l ∈ [0, 1],

ξ2,i
l = θ2

l

(︂
Xsl + p{j |π(j)<π(i)} (Xsl+1 −Xsl)

)︂
+ (1− θ2

l )Xsl , θ2
l ∈ [0, 1].
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First, we analyse the remainder. For a single summand of R1,i
l it holds that

|fij(ξ1,i
l (t))− fij(Xsl(t))| ≤ L∥ξ1,i

l (t)−Xsl(t)∥

≤ L∥Xsl(t) + p{j |π(j)≤π(i)} (Xsl+1 −Xsl) (t)−Xsl(t)∥

≤ L∥Xsl+1(t)−Xsl(t)∥

≤ La

and analogously
|fij(ξ2,i

l (t))− fij(Xsl(t))| ≤ La.

Therefore we obtain

E

[︃
sup

0≤t≤T

⃓⃓ ∞∑︂
l=0

R1,i
l (t)−R2,i

l (t)
⃓⃓]︃

≤ E

[︃
sup

0≤t≤T

∞∑︂
l=0

⃓⃓
R1,i

l (t)
⃓⃓
+
⃓⃓
R2,i

l (t)
⃓⃓]︃

≤ La
d∑︂

j=1
π(j)≤π(i)

E

[︃
sup

0≤t≤T

∞∑︂
l=0

⃓⃓
δX l

i(t)δX l
j(t)

⃓⃓]︃
.

For all b, c ∈ R, it holds that 2bc = (b + c)2 − b2 − c2, hence

|bc| ≤ 1
2
(︂
(b + c)2 + b2 + c2

)︂
. (3.A.2)

Using Eq. (3.A.2) and Corollary 3.A.3 we obtain

E

[︃
sup

0≤t≤T

⃓⃓⃓⃓ ∞∑︂
l=0

R1,i
l (t)−R2,i

l (t)
⃓⃓⃓⃓]︃

≤ 1
2La

d∑︂
j=1

π(j)≤π(i)

E

[︃
sup

0≤t≤T

∞∑︂
l=0

(δX l
i(t) + δX l

j(t))2 + (δX l
i(t))2 + (δX l

j(t))2
]︃

≤ 1
2La

d∑︂
j=1

π(j)≤π(i)

Eij

= Ca

with

Eij :=6E

[︃
X2

i (T )
]︃
− 6E

[︃
X2

i (0)
]︃
− 3E

[︃
[Mi, Mi](T )

]︃
+ 6a

(︃√︄
E

[︃
[Mi, Mi](T )

]︃
+ E

[︃ ∫︂ T

0
|dAi|

]︃)︃
+ 6E

[︃
X2

j (T )
]︃
− 6E

[︃
X2

j (0)
]︃
− 3E

[︃
[Mj , Mj ](T )

]︃
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+ 6a

(︃√︄
E

[︃
[Mj , Mj ](T )

]︃
+ E

[︃ ∫︂ T

0
|dAj |

]︃)︃
+ 6a2

and C = 1
2L
∑︁

π(j)≤π(i) Eij > 0.

Now we treat the remaining sums in Eq. (3.A.1). Let

Hi =
∞∑︂

l=0
fi(Xsl)δX l

i and Hij =
∞∑︂

l=0
fij(Xsl)δX l

iδX l
j .

By Lemma 3.A.1 and 3.A.2 it follows that

E

[︃
sup

0≤t≤T

⃓⃓⃓⃓
Hi(t)−

∫︂ t

0
fi(X(s))dXi(s)

⃓⃓⃓⃓]︃
≤ Cia

and
E

[︃
sup

0≤t≤T

⃓⃓⃓⃓
Hij(t)−

∫︂ t

0
fij(X(s))d[Xi, Xj ](s)

⃓⃓⃓⃓]︃
≤ Cija

for some Ci, Cij > 0, i, j = 1, . . . , d. Then, the SU decomposition can be written as

δSU,π,γ
i (F, X) = Hi + 1

2Hii +
d∑︂

j=1
π(j)<π(i)

Hij +
∞∑︂

l=0
(R1,i

l −R2,i
l ).

The ISU decomposition is given by

δISU,π
i (F, X) =

∫︂ t

0
fi(X(s))dXi(s) + 1

2

∫︂ t

0
fii(X(s))d[Xi, Xi](s)

+
d∑︂

j=1
π(j)<π(i)

∫︂ t

0
fij(X(s))d[Xi, Xj ](s),

see Definition 3.8 in Junike et al. (2024). Therefore we obtain

E

[︃
sup

0≤t≤T

⃓⃓⃓⃓
δSU,π,γ

i (F, X)(t)− δISU,π
i (F, X)(t)

⃓⃓⃓⃓]︃
≤ E

[︃
sup

0≤t≤T

⃓⃓⃓⃓
Hi(t)−

∫︂ t

0
fi(X(s))dXi(s)

⃓⃓⃓⃓]︃
+ 1

2E

[︃
sup

0≤t≤T

⃓⃓⃓⃓
Hii(t)−

∫︂ t

0
fii(X(s))d[Xi, Xi](s)

⃓⃓⃓⃓]︃

+
d∑︂

j=1
π(j)<π(i)

E

[︃
sup

0≤t≤T

⃓⃓⃓⃓
Hij(t)−

∫︂ t

0
fij(X(s))d[Xi, Xj ](s)

⃓⃓⃓⃓]︃

+ E

[︃
sup

0≤t≤T

⃓⃓⃓⃓ ∞∑︂
l=0

R1,i
l (t)−R2,i

l (t)
⃓⃓⃓⃓]︃

≤ (Ci + 1
2Cii +

d∑︂
j=1

π(j)<π(i)

Cij + C)a.
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Auxiliary results

Lemma 3.A.1.
Let X ∈ X d be a d-dimensional semimartingale. Let Z ∈ X be a 1-dimensional semimartin-
gale satisfying Assumption 3.3.3. Let f : Rd → R be Lipschitz continuous with constant
L > 0. For a > 0, let γ := (sl)l∈N0 be defined by s0 = 0 and

sl+1 = inf
{︁
t ≥ sl : ∥X(t)−Xsl(t)∥ ≥ a

}︁
for l ≥ 0. Let Y be defined as

Y =
∞∑︂

l=0
f(Xsl)δZ l.

Then there is a constant C > 0, such that

E

[︃
sup

0≤t≤T

⃓⃓⃓⃓
Y (t)−

∫︂ t

0
f(X(s−))dZ(s)

⃓⃓⃓⃓]︃
≤ Ca.

Proof. The proof is based on ideas of Theorem 2 in Karandikar (1995). It holds that

Y (t) =
∫︂ t

0
f(Xγ(s))dZ(s).

By the choice of γ and the Lipschitz continuity of f , we have

sup
0≤t≤T

|f(Xγ(t))− f(X(t−))| ≤ La.

Let Z = M + A be the decomposition of Z into a locally square integrable martingale M

with localizing sequence of stopping times (σn)n∈N and a finite variation process A, see
Theorem 1 of Section III in Protter (2005). We obtain that

E

[︃
sup

0≤t≤T

⃓⃓⃓⃓ ∫︂ t

0
(f(Xγ(s))− f(X(s−))) dZ(s)

⃓⃓⃓⃓]︃
(3.A.3)

≤ E

[︃
sup

0≤t≤T

⃓⃓⃓⃓ ∫︂ t

0
(f(Xγ(s))− f(X(s−))) dM(s)

⃓⃓⃓⃓]︃
+ E

[︃
sup

0≤t≤T

⃓⃓⃓⃓ ∫︂ t

0
(f(Xγ(s))− f(X(s−))) dA(s)

⃓⃓⃓⃓]︃
.

First we treat the martingale part. It follows by Jensen’s inequality, the monotonicity of
x ↦→ x2, x ≥ 0 and by the monotone convergence theorem that(︃

E

[︃
sup

0≤t≤T

⃓⃓⃓⃓ ∫︂ t

0
(f(Xγ(s))− f(X(s−))) dM(s)

⃓⃓⃓⃓]︃)︃2

≤ E

[︃
sup

0≤t≤T

⃓⃓⃓⃓ ∫︂ t

0
(f(Xγ(s))− f(X(s−))) dM(s)

⃓⃓⃓⃓2]︃
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= lim
n→∞

E

[︃
sup

0≤t≤min(σn,T )

⃓⃓⃓⃓ ∫︂ t

0
(f(Xγ(s))− f(X(s−))) dM(s)

⃓⃓⃓⃓2]︃

≤ lim sup
n→∞

E

[︃
sup

0≤t≤min(σn,T )

⃓⃓⃓⃓ ∫︂ t

0
(f(Xγ(s))− f(X(s−))) dM(s)

⃓⃓⃓⃓2]︃
.

Furthermore, similar to Eq. (4) in Karandikar (1995) and by using the Lipschitz continuity,
the latter term is bounded by

4 lim sup
n→∞

E

[︃ ∫︂ min(σn,T )

0
(f(Xγ(s))− f(X(s−)))2 d[M, M ](s)

]︃
≤ 4L2a2 lim sup

n→∞
E
[︁
[M, M ](min(σn, T ))

]︁
= 4L2a2E

[︁
[M, M ](T )

]︁
. (3.A.4)

For the finite variation part, it holds that

E

[︃
sup

0≤t≤T

⃓⃓⃓⃓ ∫︂ t

0
(f(Xγ(s))− f(X(s−))) dA(s)

⃓⃓⃓⃓]︃
≤ E

[︃
sup

0≤t≤T

∫︂ t

0
|f(Xγ(s))− f(X(s−))||dA(s)|

]︃
(3.A.5)

≤ LaE

[︃
sup

0≤t≤T

∫︂ t

0
|dA(s)|

]︃
≤ LaE

[︃ ∫︂ T

0
|dA(s)|

]︃
, (3.A.6)

where E
[︁ ∫︁ T

0 |dA(s)|
]︁

<∞ by Assumption 3.3.3. We obtain the required result from Eqs.
(3.A.4) and (3.A.6) by setting

C = 2L
√︂

E
[︁
[M, M ](T )

]︁
+ LE

[︁ ∫︂ T

0
|dA(s)|

]︁)︁
.

Lemma 3.A.2.
Let Z1, Z2 ∈ X be semimartingales satisfying Assumption 3.3.3 and let X ∈ X d be a
d-dimensional semimartingale. Let f : Rd → R be Lipschitz continuous with constant
L > 0. Let a > 0. Let γ := (sl)l∈N0 be defined by s0 = 0 and

sl+1 = inf
{︁
t ≥ sl : ∥X(t)−Xsl(t)∥ ≥ a or

|f(X(t))Zi(t)− f(Xsl(t))Zsl
i (t)| ≥ a, i = 1, 2

}︁
.

for l ≥ 0. Let Y be defined as

Y =
∞∑︂

l=0
f(Xsl)(Zsl+1

1 − Zsl
1 )(Zsl+1

2 − Zsl
2 ).
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Then there is a constant C > 0 such that

E

[︃
sup

0≤t≤T

⃓⃓⃓⃓
Y (t)−

∫︂ t

0
f(X(s−))d[Z1, Z2](s)

⃓⃓⃓⃓]︃
≤ Ca.

Proof. Since

Y =
∞∑︂

l=0
f(Xsl)(Zsl+1

1 Z
sl+1
2 − Zsl

1 Zsl
2 )

−
∞∑︂

l=0
f(Xsl)Zsl

1 (Zsl+1
2 − Zsl

2 )

−
∞∑︂

l=0
f(Xsl)Zsl

2 (Zsl+1
1 − Zsl

1 ),

it holds that

Y (t) =
∫︂ t

0
f(Xγ(s))d(Z1Z2)(s)−

∫︂ t

0
f(Xγ(s))Zγ

1 (s)dZ2(s) (3.A.7)

−
∫︂ t

0
f(Xγ(s))Zγ

2 (s)dZ1(s).

Since the product of semimartingales is again a semimartingale, we can apply Lemma
3.A.1 and obtain

E

[︃
sup

0≤t≤T

⃓⃓⃓⃓ ∫︂ t

0
(f(Xγ(s))− f(X(s−))) d(Z1Z2)(s)

⃓⃓⃓⃓]︃
≤ C1a

for a C1 > 0. By the choice of γ, it holds that

sup
0≤t≤T

|f(Xγ(t))Zγ
i (t)− f(X(t−))Zi(t−)| ≤ a, i = 1, 2.

Analogously to the proof of Lemma 3.A.1, we obtain

E

[︃
sup

0≤t≤T

⃓⃓⃓⃓ ∫︂ t

0
(f(Xγ(s))Zγ

1 (s)− f(X(s−))Z1(s−)) dZ2(s)
⃓⃓⃓⃓]︃
≤ C2a

and
E

[︃
sup

0≤t≤T

⃓⃓⃓⃓ ∫︂ t

0
(f(Xγ(s))Zγ

2 (s)− f(X(s−))Z2(s−)) dZ1(s)
⃓⃓⃓⃓]︃
≤ C3a

for suitable constants C2, C3 > 0. Altogether, since d[Z1, Z2] = d(Z1Z2)− Z1dZ2 − Z2dZ1,
it follows that

E

[︃
sup

0≤t≤T

⃓⃓⃓⃓
Y (t)−

∫︂ t

0
f(X(s−))d[Z1, Z2](s)

⃓⃓⃓⃓]︃
≤ E

[︃
sup

0≤t≤T

⃓⃓⃓⃓ ∫︂ t

0
(f(Xγ(s))− f(X(s−))) d(Z1Z2)(s)

⃓⃓⃓⃓]︃
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+ E

[︃
sup

0≤t≤T

⃓⃓⃓⃓ ∫︂ t

0
(f(Xγ(s))Zγ

1 (s)− f(X(s−))Z1(s−)) dZ2(s)
⃓⃓⃓⃓]︃

+ E

[︃
sup

0≤t≤T

⃓⃓⃓⃓ ∫︂ t

0
(f(Xγ(s))Zγ

2 (s)− f(X(s−))Z2(s−)) dZ1(s)
⃓⃓⃓⃓]︃

≤ Ca

for C = C1 + C2 + C3.

Corollary 3.A.3.
Let X ∈ X d be a d-dimensional continuous semimartingale with Xi, i = 1, . . . , d satisfying
Assumption 3.3.3. Let γ = (sl)l∈N0 be an unbounded random partition. Then it holds that

E

[︃
sup

0≤t≤T

∞∑︂
l=0

(δX l
i(t) + δX l

j(t))2 + (δX l
i(t))2 + (δX l

j(t))2
]︃

≤ 6E

[︃
X2

i (T )
]︃
− 6E

[︃
X2

i (0)
]︃
− 3E

[︃
[Mi, Mi](T )

]︃
+ 6a

(︃√︄
E

[︃
[Mi, Mi](T )

]︃
+ E

[︃ ∫︂ T

0
|dAi|

]︃)︃
+ 6E

[︃
X2

j (T )
]︃
− 6E

[︃
X2

j (0)
]︃
− 3E

[︃
[Mj , Mj ](T )

]︃

+ 6a

(︃√︄
E

[︃
[Mj , Mj ](T )

]︃
+ E

[︃ ∫︂ T

0
|dAj |

]︃)︃
+ 6a2. (3.A.8)

Proof. For ω ∈ Ω let m(ω) = k, if sk(ω) < t ≤ sk+1(ω). It follows that

E

[︃
sup

0≤t≤T

∞∑︂
l=0

(δX l
i(t) + δX l

j(t))2 + (δX l
i(t))2 + (δX l

j(t))2
]︃

≤ E

[︃
sup

0≤t≤T

m−1∑︂
l=0

(δX l
i(t) + δX l

j(t))2 + (δX l
i(t))2 + (δX l

j(t))2
]︃

+ E

[︃
sup

0≤t≤T
(δXm

i (t) + δXm
j (t))2 + (δXm

i (t))2 + (δXm
j (t))2

]︃

≤ E

[︃
sup

0≤t≤T

∞∑︂
l=0

(δX l
i(T ) + δX l

j(T ))2 + (δX l
i(T ))2 + (δX l

j(T ))2
]︃

+ E

[︃
sup

0≤t≤T
(δXm

i (t) + δXm
j (t))2 + (δXm

i (t))2 + (δXm
j (t))2

]︃
. (3.A.9)

Now we analyse the first term of Eq. (3.A.9). Using (a + b)2 ≤ 2(a2 + b2) for a, b ∈ R, we
obtain

E

[︃
sup

0≤t≤T

∞∑︂
l=0

(δX l
i(T ) + δX l

j(T ))2 + (δX l
i(T ))2 + (δX l

j(T ))2
]︃

≤ 3E

[︃ ∞∑︂
l=0

(δX l
i(T ))2

]︃
+ 3E

[︃ ∞∑︂
l=0

(δX l
j(T ))2

]︃
. (3.A.10)
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For the first part we obtain

E

[︃ ∞∑︂
l=0

(δX l
i(T ))2]

= E

[︃ ∞∑︂
l=0

(Xsl+1
i (T ))2 − (Xsl

i (T ))2 − 2Xsl
i (T )(Xsl+1

i (T )−Xsl
i (T ))

]︃

≤ E

[︃ ∫︂ T

0
1dX2

i

]︃
+ 2E

[︃ ∫︂ T

0
Xγ

i dXi

]︃
≤ E

[︃
X2

i (T )
]︃
− E

[︃
X2

i (0)
]︃

+ 2E

[︃ ∫︂ T

0
(Xγ

i −Xi)dXi

]︃
+ 2E

[︃ ∫︂ T

0
XidXi

]︃
. (3.A.11)

Further, we analyse the third term of Eq. (3.A.11). It holds that

E

[︃ ∫︂ T

0
(Xγ

i −Xi)dXi

]︃
≤ E

[︃ ∫︂ T

0
(Xγ

i −Xi)dMi

]︃
+ E

[︃ ∫︂ T

0
(Xγ

i −Xi)dAi

]︃
,

where it follows for the first part by the Itô isometry that

E

[︃ ∫︂ T

0
(Xγ

i −Xi)dMi

]︃2

≤ E

[︃(︁ ∫︂ T

0
(Xγ

i −Xi)dMi
)︁2]︃

≤ E

[︃ ∫︂ T

0
(Xγ

i −Xi)2d[Mi, Mi]
]︃

≤ a2E

[︃
[Mi, Mi](T )

]︃
and for the second part that

E

[︃ ∫︂ T

0
(Xγ

i −Xi)dAi

]︃
≤ aE

[︃ ∫︂ T

0
|dAi|

]︃
.

For the other terms in Eq. (3.A.11) it holds that

2E

[︃ ∫︂ T

0
XidXi

]︃
+ E

[︃
X2

i (T )
]︃
− E

[︃
X2

i (0)
]︃

= 2E

[︃
X2

i (T )
]︃
− 2E

[︃
X2

i (0)
]︃
− E

[︃
[Xi, Xi](T )

]︃
.

Since Xi has continuous paths, Mi and Ai are also continuous and [Xi, Xi] = [Mi, Mi] a.s.,
see p. 131 in Protter (2005). In total, for the first term of Eq. (3.A.10) it follows that

3E

[︃ ∞∑︂
l=0

(δX l
i(T ))2

]︃
≤6E

[︃
X2

i (T )
]︃
− 6E

[︃
X2

i (0)
]︃
− 3E

[︃
[Mi, Mi](T )

]︃

+ 6a

(︃√︄
E

[︃
[Mi, Mi](T )

]︃
+ E

[︃ ∫︂ T

0
|dAi|

]︃)︃
.
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3.A Appendix

The second part on the right-hand side of Eq. (3.A.10) can be treated equivalently. For
the second part of Eq. (3.A.9) we have that

E

[︃
sup

0≤t≤T
(δXm

i (t) + δXm
j (t))2 + (δXm

i (t))2 + (δXm
j (t))2

]︃
≤ E

[︃
sup

0≤t≤T
4a2 + a2 + a2

]︃
= 6a2,

which leads to Eq. (3.A.8).

Lemma 3.A.4.
(Taylor’s theorem). Let U ⊂ Rd be open. Let x, a ∈ U such that λx + (1− λ)a ∈ U for all
λ ∈ [0, 1]. Let f : U → R be twice continuously differentiable. Then it holds that

f(x) = f(a) +
d∑︂

h=1
fh(a) (xh − ah) + 1

2

d∑︂
h,j=1

fhj(a) (xh − ah) (xj − aj) + R,

where the remainder R can be expressed for some θ ∈ [0, 1] and ξ = θx + (1− θ)a by

R = 1
2

d∑︂
h,j=1

(fhj(ξ)− fhj(a)) (xh − ah) (xj − aj) .

Proof. Theorem 2 of Section 7 in Forster (2017)
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Chapter 4

From characteristic functions to multivariate
distribution functions and European option
prices by the damped COS method

Abstract

We provide a unified framework to obtain numerically certain quantities, such
as the distribution function, absolute moments and prices of financial options,
from the characteristic function of some (unknown) probability density function
using the Fourier-cosine expansion (COS) method. The classical COS method
is numerically very efficient in one-dimension, but it cannot deal very well with
certain integrands in general dimensions. Therefore, we introduce the damped
COS method, which can handle a large class of integrands very efficiently. We
prove the convergence of the (damped) COS method and study its order of
convergence. The method converges exponentially if the characteristic function
decays exponentially. To apply the (damped) COS method, one has to specify
two parameters: a truncation range for the multivariate density and the number
of terms to approximate the truncated density by a cosine series. We provide an
explicit formula for the truncation range and an implicit formula for the number
of terms. Numerical experiments up to five dimensions confirm the theoretical
results.

Keywords: Fourier-transform; numerical integration; inversion theorem; COS method;
CDF; option pricing
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European option prices by the damped COS method

4.1 Introduction

We aim to solve the following integral numerically:∫︂
Rd

w(x)g(x)dx. (4.1.1)

The function g is usually a density and the function w is called function of interest.
Integrals as in (4.1.1) appear in a wide range of applications: The integral is equal to
the cumulative distribution function (CDF) of the density g if w is an indicator function.
CDFs appear in many scientific disciplines.

If w is the absolute value, the integral describes the absolute moment of the density
g, which plays an important role in various disciplines but is not easy to obtain, see
Von Bahr (1965), Brown (1972), Barndorff-Nielsen and Stelzer (2005) and references
therein.

In a financial context, the function w might also describe some financial contract, which
depends on several assets. The function g is then the density of the logarithmic returns of
the assets and the integral describes the price of the contract.

In many cases, the precise structure of g is unknown, but the Fourier transform ˆ︁g is often
given in closed form. For example: while the joint density of the sum of two independent
random variables can only be expressed as a convolution and is usually not given explicitly,
the joint characteristic function is much simpler to obtain (it is just the product of
the marginal characteristic functions). Moreover, the characteristic function of a Lévy
process at a particular time-point is usually given explicitly thanks to the Lévy-Khinchin
formula.

The integral in (4.1.1) can be solved numerically using various techniques, including
(quasi) Monte Carlo simulation, numerical quadrature and Fourier inversion. Special
Fourier-inversion methods exist in the case of a CDF, e.g., the Gil-Pelaez formula, see Gil-
Pelaez (1951) and extensions, e.g., Schorr (1975), Waller et al. (1995), Hughett (1998) in one-
dimension and Shephard (1991a), Shephard (1991b) in d dimensions.

The COS method, see Fang and Oosterlee (2009a) for d = 1 and Ruijter and Ooster-
lee (2012) for d = 2, is a Fourier inversion technique. The COS method has been applied
extensively in computational finance, see Fang and Oosterlee (2009b), Fang and Ooster-
lee (2011), Grzelak and Oosterlee (2011), Zhang and Oosterlee (2013), Leitao et al. (2018),
Liu et al. (2019a), Liu et al. (2019b), Oosterlee and Grzelak (2019) and Bardgett et
al. (2019).
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The COS method has also been applied to solve backward stochastic differential equations,
see Ruijter and Oosterlee (2015) and Andersson et al. (2023).

Other Fourier techniques to solve integrals as in (4.1.1) can be found in Carr and
Madan (1999), Lord et al. (2008), Eberlein et al. (2010), Ortiz-Gracia and Ooster-
lee (2013), Ortiz-Gracia and Oosterlee (2016) and Bayer et al. (2024). The COS
method compares favorably to other Fourier inversion techniques, see Fang and Ooster-
lee (2009a).

The main idea of the COS method is to truncate the integration range in (4.1.1) to some
finite hypercube and to approximate the density g on the finite truncation range by a
classical Fourier-cosine expansion. Formulas for the truncation range and the number
of terms of the Fourier cosine-series are given in Junike and Pankrashkin (2022) and in
Junike (2024) for the one-dimensional case.

There is a clever trick to approximate the cosine coefficients for g in a very fast and robust
way using ˆ︁g. The COS method is particularly fast when the Fourier-cosine coefficients of the
function of interest w are given analytically. For instance, in multivariate dimensions, the
Fourier-cosine coefficients of a CDF can be obtained analytically. However, in many cases,
the Fourier-cosine coefficients are not given in closed form. Ruijter and Oosterlee (2012)
propose in these cases to obtain the Fourier coefficients of the function of interest numerically
by a discrete cosine transform, but this approach slows the COS method significantly. In
this article, we introduce the damped COS method, which is able to avoid the expensive
application of the discrete cosine transform if the Fourier transform of the function of
interest is given in closed form. The Fourier transform ˆ︁w is often known, e.g., if w describes
a CDF, an absolute moment or a financial contract, see Section 4.5. The main idea is
to damp w by multiplying it by an exponential function in order to make the damped
function of interest integrable. The idea of introducing a damping factor dates back at
least to Carr and Madan (1999). In multivariate dimensions, damping is also applied
by Eberlein et al. (2010), where the optimal damping factor is determined by Bayer
et al. (2023).

In moderate dimensions, the COS method is a fast, robust and straightforward-to-implement
alternative to the d-dimensional Gil-Pelaez formula, see Shephard (1991a), Shephard (1991b)
or the multivariate Lewis formula, see Eberlein et al. (2010), in particular if g is smooth
and has semi-heavy tails. A useful feature of the COS method is the fact that in important
cases all parameters necessary to tune the method can be obtained directly given some
error tolerance.
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This article makes the following main contributions: We prove the convergence of the
multidimensional (damped) COS method, we analyze the order of convergence of the
(damped) COS method, and we provide explicit and implicit formulas for the truncation
range and the number of terms, respectively. The new approach to find the number of
terms in d dimensions is completely distinct from the one-dimensional case discussed in
Junike (2024). Unlike Ruijter and Oosterlee (2012), who analyze the classical COS method,
we include in our analysis numerical uncertainty on the characteristic function ˆ︁g and on the
Fourier-cosine coefficients of the function of interest. This makes it possible to understand
how approximations on ˆ︁g and the Fourier-cosine coefficients of the function of interest
affect the total error of the COS method.

This article is structured as follows: In Section 4.2 we fix some notation. In Section 4.3 we
introduce the multidimensional (damped) COS method, prove its convergence, analyze the
order of convergence and provide explicit and implicit formulas for the truncation range
and the number of terms. In Section 4.4 we discuss some examples for g and ˆ︁g. In Section
4.5 we discuss some functions of interest, i.e., examples for w. In Section 4.6 we provide
numerical experiments. Section 4.7 concludes.

4.2 Notation

Let d ∈ N. Let L1 and L2 denote the sets of integrable and square integrable functions
from Rd to R and by ⟨., .⟩ and ∥.∥2 we denote the scalar product and the (semi)norm on
L2, respectively. The supremum norm of a function g : Rd → C is defined by ∥g∥∞ :=
supx∈Rd |g(x)|. By ℜ{z} and ℑ{z} we denote the real and imaginary parts of a complex
number z ∈ C. The complex unit is denoted by i. By Γ, we denote the Gamma function.
The Euclidean norm and the maximum norm on Rd are denoted by |.| and by |.|∞,
respectively. For x, y ∈ Rd we define

x ≥ y :⇔ x1 ≥ y1, ..., xd ≥ yd

and treat “≤”, “<”, “>”, “=” and “ ̸=” similarly. We set Rd
+ := {x ∈ Rd, x > 0}. For a, b ∈

Rd with a ≤ b, two complex vectors z, y ∈ Cd we define z + y := (z1 + y1, ..., zd + yd) ∈ Cd

and treat zy and z
y similarly. For λ ∈ C, we further define

z · y :=z1y1 + ... + zdyd ∈ C,

λz :=(λz1, ..., λzd) ∈ Cd,

[a, b] :=[a1, b1]× ...× [ad, bd] ⊂ Rd,

(−∞, b] :=(−∞, b1]× ...× (−∞, bd] ⊂ Rd,
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4.3 Damped COS method

exp(x) := (exp(x1), ...., exp(xd)) , x ∈ Rd,

log(x) := (log(x1), ...., log(xd)) , x ∈ Rd
+.

For a subset A ⊂ Rd, we define the indicator function 1A(x) by one if x ∈ A and by zero
otherwise. Let N0 = N ∪ {0}. For N = (N1, ..., Nd) ∈ Nd

0 and a sequence (ak)k∈Nd
0
⊂ C,

we define ∑︂′

0≤k≤N

ak :=
∑︂

0≤k≤N

1
2Λ(k) ak,

where Λ(k) is the number of components of the vector k that are equal to zero, i.e.,
Λ(k) := ∑︁d

h=1 1{0}(kh). For an integrable function g : Rd → C we define its Fourier
transform by ˆ︁g(u) :=

∫︂
Rd

g(x)eiu·xdx, u ∈ Rd. (4.2.1)

This definition of the Fourier transform also appears in Definition 22.6 in Bauer (1996)
and in Eberlein et al. (2010). Provided the integral in (4.2.1) exists, the domain of ˆ︁g may
also be extended to parts of the complex plane. If g ≥ 0 and

∫︁
g(x)dx = 1, then g is called

density, ˆ︁g is called the characteristic function and the map y ↦→
∫︁

(−∞,y] g(x)dx is called
the cumulative distribution function (CDF).

4.3 Damped COS method

Typically, the function of interest, w, is only locally integrable, but w /∈ L1. We provide
two examples: The integral in (4.1.1) is equal to the CDF of g evaluated at y ∈ Rd if
w(x) = 1(−∞,y](x) for x ∈ Rd. In a financial context, an arithmetic basket put option
is defined by w(x) = max(K −∑︁d

h=1 exh , 0), x ∈ Rd, where K > 0. To introduce the
damped COS method, we will consider a damped function of interest that is assumed to be
integrable. Note that for many models and function of interests, both ˆ︁g and ˆ︁w are given in
closed form, see e.g., Ruijter and Oosterlee (2012), Eberlein et al. (2010) and references
therein.

For a scaling factor λ > 0, a shift parameter µ ∈ Rd and a damping factor α ∈ Rd, we
define the damped density by

f(x) = λeα·(x+µ)g(x + µ), x ∈ Rd (4.3.1)

and the damped function of interest by

v(x) = 1
λ

e−α·(x+µ)w(x + µ), x ∈ Rd. (4.3.2)
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By definition, it follows that∫︂
Rd

w(x)g(x)dx =
∫︂
Rd

v(x)f(x)dx. (4.3.3)

Thanks to Proposition 4.3.2, f is a density centered at zero if we choose λ and µ carefully
and ˆ︁f is given in closed form if ˆ︁g is given in closed form.

Remark 4.3.1.
In some applications it might be useful to know that f is a density. However, in the proofs,
we use only that f is nonnegative and integrable.

Proposition 4.3.2.
Let g ∈ L1 and α ∈ Rd. Assume that g is a density and that x ↦→ |x|eα·xg(x) is integrable.
Let λ = (ˆ︁g(−iα))−1 then λ ∈ (0,∞). Choose µ ∈ Rd by

µh = −λi
∂

∂uh
ˆ︁g(u− iα)

⃓⃓⃓⃓
u=0

, h = 1, ..., d. (4.3.4)

Define f(x) = λeα·(x+µ)g(x + µ), x ∈ Rd. Then f is a density with characteristic function

ˆ︁f(u) = λe−iu·µˆ︁g(u− iα), u ∈ Rd. (4.3.5)

Further, the moments of f of first order are zero, i.e.,
∫︁
Rd f(x)xhdx = 0, h = 1, ..., d.

Proof. Use
∫︁
|x|eα·xg(x)dx <∞ and split the integration range into Rd\B1 and B1, where

B1 is the unit ball, to see that x ↦→ eα·xg(x) is integrable. Since λ = (
∫︁
Rd eα·xg(x)dx)−1

and g is a density we have λ ∈ (0,∞). By the definition of λ, f is a density. Since f ∈ L1,ˆ︁f exists. A direct analysis shows (4.3.5). By Theorem 25.2 in Bauer (1996), the partial
derivatives in Equation (4.3.4) exist and it holds that µh = λ

∫︁
Rd eα·xg(x)xhdx. Finally,

we have that ∫︂
Rd

f(x)xhdx

=
∫︂
Rd

λeα·(x+µ)g(x + µ)xhdx

=λ

∫︂
Rd

eα·xg(x)xhdx− µhλ

∫︂
Rd

eα·xg(x)dx = 0.

In some cases ˆ︁g needs to be approximated numerically; e.g., in Duffie et al. (2003), ˆ︁g is the
solution to some ordinary differential equation, which itself needs to be solved numerically
before applying the COS method. From now on, we assume that f ∈ L1 and that ˆ︁f is
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given explicitly or can be efficiently approximated numerically by some function ϑ and
that v is (at least) locally integrable. At several places, we assume v ∈ L1, which can
usually be achieved by setting α ≠ 0. We describe the COS method in detail in order
to approximate the right-hand side of Equation (4.3.3). Let M ∈ Rd

+ large enough so
that ∫︂

Rd
v(x)f(x)dx ≈

∫︂
[−M ,M ]

v(x)f(x)dx. (4.3.6)

Let L ≥M . If f is centered at zero, we truncate f on [−L, L] and approximate the trun-
cated damped density using a Fourier-series. We intuitively have that

f ≈ f1[−L,L] ≈
∑︂′

0≤k≤N

akek1[−L,L] ≈
∑︂′

0≤k≤N

ckek1[−L,L] ≈
∑︂′

0≤k≤N

c̃kek1[−L,L], (4.3.7)

where we define the basis functions

ek(x) =
d∏︂

h=1
cos

(︃
khπ

xh + Lh

2Lh

)︃
, x ∈ Rd, k ∈ Nd

0,

and the classical Fourier-cosine coefficients of f1[−L,L] are given for k ∈ Nd
0

by

ak = 1∏︁d
h=1 Lh

∫︂
[−L,L]

f(x)ek(x)dx}

≈ 1∏︁d
h=1 Lh

∫︂
Rd

f(x)ek(x)dx (4.3.8)

= 1
2d−1∏︁d

h=1 Lh

∑︂
s=(1,±1,...,±1)∈Rd

ℜ
{︃ ˆ︁f (︃π

2
sk

L

)︃
exp

(︃
i
π

2 s · k
)︃}︃

=: ck (4.3.9)

≈ 1
2d−1∏︁d

h=1 Lh

∑︂
s=(1,±1,...,±1)∈Rd

ℜ
{︃

ϑ

(︃
π

2
sk

L

)︃
exp

(︃
i
π

2 s · k
)︃}︃

=: c̃k. (4.3.10)

Sometimes it is necessary to choose L > M to ensure that ck is close enough to ak. The
key insight of the COS method is the fact that the integral at the right-hand side of
Equation (4.3.8) can be solved explicitly1. If ˆ︁f needs to be approximated by some function
ϑ, we use c̃k instead of ck.

The idea of the multidimensional COS method is to approximate f as in (4.3.7), and hence
the right-hand side of Equation (4.3.6), by

∫︂
[−M ,M ]

v(x)f(x)dx ≈
∑︂′

0≤k≤N

c̃k

∫︂
[−M ,M ]

v(x)ek(x)dx⏞ ⏟⏟ ⏞
=:vk

(4.3.11)

1We use
∏︁d

h=1 cos θh = 1
2d−1

∑︁
s=(1,±1,...,±1)∈Rd cos (s · θ), θ ∈ Rd, which follows by mathematical induc-

tion, from the fact that the cosine is an even function and from the trigonometric identities stated in
Equations (4.3.17, 4.3.31) in Abramowitz and Stegun (1972).
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≈
∑︂′

0≤k≤N

c̃k

∫︂
Rd

v(x)ek(x)dx⏞ ⏟⏟ ⏞
=:ṽk

. (4.3.12)

Classical COS method: If α = 0, we speak of the classical COS method. In important
cases,the coefficients vk can be obtained explicitly, i.e., the integral at right-hand side of
Equation (4.3.11) can be solved analytically. Examples include, in one-dimension, CDFs,
plain vanilla put and call options and digital options, see Fang and Oosterlee (2009a)
and, in two dimensions, geometric basket options, call-on-maximum options and put-on-
minimum options, see Ruijter and Oosterlee (2012). In general dimensions, the coefficients
vk of a CDF are given in closed form, see Example 4.5.1. In the case that the integral in
Equation (4.3.11) cannot be solved directly (e.g. for arithmetic basket options), Ruijter and
Oosterlee (2012) propose solving the integral in Equation (4.3.11) numerically to obtain
vk, e.g., by the discrete cosine transform or some quadrature rule. However, solving the
integral in (4.3.11) numerically for each k is expensive and slows down the COS method
significantly.

Damped COS method: If α ̸= 0, we speak of the damped COS method. Assume that
v is integrable, which usually can be achieved by setting α ̸= 0. Then we propose to
approximate vk by ṽk. This works if M is large enough. Similar to the solution presented
in Equation (4.3.9), the coefficients ṽk are given analytically:

ṽk = 1
2d−1

∑︂
s=(1,±1,...,±1)∈Rd

ℜ
{︃ˆ︁v (︃π

2
sk

L

)︃
exp

(︃
i
π

2 s · k
)︃}︃

. (4.3.13)

In the remainder of the article, we will prove conditions under which the integral (4.1.1)
can be approximated by the (damped) COS method.

Remark 4.3.3.
In the special case that ˆ︁f only takes real values, the computational cost of the COS method
can be reduced by (about) a factor of one half, since ck = 0 if ∑︁d

h=1 kh is odd.

In order to prove the convergence of the COS method in Theorem 4.3.6 and Corollary
4.3.7, we need the concept of COS-admissibility, which is introduced in Definition 4.3.4
and extends Definition 1 in Junike and Pankrashkin (2022) to the multidimensional
setting.
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Definition 4.3.4.
Let L = (L1, ..., Ld) ∈ Rd

+. A function f ∈ L1 is called COS-admissible if

Bf (L) :=
∑︂′

k∈Nd
0

1∏︁d
h=1 Lh

⃓⃓⃓⃓
⃓
∫︂
Rd\[−L,L]

f(x)ek(x)dx

⃓⃓⃓⃓
⃓
2

→ 0, min
h=1,...,d

Lh →∞.

By Proposition 4.3.5, it follows that bounded densities with existing moments are COS-
admissible, which indicates that the class of d-dimensional, COS-admissible densities is
large.

Proposition 4.3.5.
Assume f ∈ L1 ∩ L2 with ∫︂

Rd
|x|2d |f(x)|2dx <∞. (4.3.14)

Then f is COS-admissible. Let L = (L1, ..., Ld) ∈ Rd
+; then it holds that

Bf (L) ≤ Ξ
∫︂
Rd\[−L,L]

d∏︂
h=1

max
{︂

x2
hL−2

h , 1
}︂
|f(x)|2dx (4.3.15)

≤ Ξ
d min

h=1,...,d
L2d

h

∫︂
Rd\[−L,L]

|x|2d |f(x)|2dx + Ξ
∫︂
Rd\[−L,L]

|f(x)|2dx, (4.3.16)

where Ξ = π2

3
∑︁d

h=1

(︂
π2

3 + 1
)︂h−1

.

Proof. Let L ∈ Rd
+ and j ∈ Zd. It follows by Parseval’s identity∫︂

[2jL−L,2jL+L]
|f(x)|2dx

=
∑︂′

k∈Nd
0

1∏︁d
h=1 Lh

⃓⃓⃓⃓ ∫︂
[2jL−L,2jL+L]

f(x)
d∏︂

h=1
cos

(︃
khπ

xh − (2jhLh − Lh)
2Lh

)︃
⏞ ⏟⏟ ⏞

=(−1)jhkh cos
(︂

khπ
xh+Lh

2Lh

)︂ dx

⃓⃓⃓⃓2

=
∑︂′

k∈Nd
0

1∏︁d
h=1 Lh

⃓⃓⃓⃓ ∫︂
[2jL−L,2jL+L]

f(x)ek(x)dx

⃓⃓⃓⃓2
. (4.3.17)

By the Cauchy-Schwarz inequality, we obtain with g(j) := ∏︁d
h=1 max{|jh|, 1},⃓⃓⃓⃓

⃓
∫︂
Rd\[−L,L]

f(x)ek(x)dx

⃓⃓⃓⃓
⃓
2

=

⃓⃓⃓⃓
⃓⃓ ∑︂
j∈Zd\{0}

g(j)
g(j)

∫︂
[2jL−L,2jL+L]

f(x)ek(x)dx

⃓⃓⃓⃓
⃓⃓
2
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≤
(︃ ∑︂

j∈Zd\{0}

1
(g(j))2⏞ ⏟⏟ ⏞

=Ξ

)︃ ∑︂
j∈Zd\{0}

(g(j))2
⃓⃓⃓⃓
⃓
∫︂

[2jL−L,2jL+L]
f(x)ek(x)dx

⃓⃓⃓⃓
⃓
2

. (4.3.18)

The fact that Ξ = π2

3
∑︁d

h=1

(︂
π2

3 + 1
)︂h−1

can be shown by mathematical induction over d.
Then it follows that

Bf (L)
(4.3.18)
≤ Ξ

∑︂
j∈Zd\{0}

(g(j))2 ∑︂′

k∈Nd
0

1∏︁d
h=1 Lh

⃓⃓⃓⃓
⃓
∫︂

[2jL−L,2jL+L]
f(x)ek(x)dx

⃓⃓⃓⃓
⃓
2

(4.3.17)= Ξ
∑︂

j∈Zd\{0}
(g(j))2

∫︂
[2jL−L,2jL+L]

|f(x)|2dx.

For j ∈ Zd and x ∈ [2jL − L, 2jL + L], one has |jh| ≤ |xh|
Lh

, h = 1, ..., d. It follows that
(g(j))2 ≤

∏︁d
h=1 max

{︂
x2

hL−2
h , 1

}︂
, which implies Inequality (4.3.15). By Young’s inequality,

it holds that
d∏︂

h=1

(︂
max

{︂
x2d

h L−2d
h , 1

}︂)︂ 1
d ≤ 1

d

d∑︂
h=1

max
{︂

x2d
h L−2d

h , 1
}︂
≤ |x|2d

d min
h=1,...,d

L2d
h

+ 1.

In the last inequality, we used max{a, b} ≤ a + b for any a, b ≥ 0 and ∑︁d
h=1 x2d

h ≤ |x|
2d,

which follows from the monotonicity of the p-norm. Hence, Inequality (4.3.16) holds.
Assumption (4.3.14) and f ∈ L2 imply Bf (L)→ 0, minh=1,...,d Lh →∞.

The following theorem shows that multivariate densities can be approximated by a cosine
expansion. The theorem also includes numerical uncertainty on the Fourier transformˆ︁f .

Theorem 4.3.6.
Assume that f ∈ L1 ∩ L2 is COS-admissible. Let ϑ : Rd → C and define c̃k as in Equation
(4.3.10). For any ε > 0 there is a L ∈ Rd

+, a N ∈ Nd and a γ > 0 such that
⃦⃦⃦ ˆ︁f − ϑ

⃦⃦⃦
∞

< γ

implies ⃦⃦⃦⃦
⃦⃦f − ∑︂′

0≤k≤N

c̃kek1[−L,L]

⃦⃦⃦⃦
⃦⃦

2

< ε.

Note that N depends on L and that γ depends on both L and N .

Proof. Define eL
k = ek1[−L,L]. It holds for l, k ∈ Nd

0 that

⟨︂
eL

k , eL
l

⟩︂
=

⎧⎨⎩2Λ(k)∏︁d
h=1 Lh , k = l,

0 , otherwise,
(4.3.19)
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where Λ is defined Section 4.2. For any L ∈ Rd
+ and N ∈ Nd, it holds that⃦⃦⃦⃦

⃦⃦f − ∑︂′

0≤k≤N

c̃keL
k

⃦⃦⃦⃦
⃦⃦

2

≤
⃦⃦⃦
f − f1[−L,L]

⃦⃦⃦
2⏞ ⏟⏟ ⏞

=:A1(L)

+

⃦⃦⃦⃦
⃦⃦f1[−L,L] −

∑︂′

0≤k≤N

akeL
k

⃦⃦⃦⃦
⃦⃦

2⏞ ⏟⏟ ⏞
=:A2(L,N)

+

⃦⃦⃦⃦
⃦⃦ ∑︂′

0≤k≤N

(ak − ck)eL
k

⃦⃦⃦⃦
⃦⃦

2⏞ ⏟⏟ ⏞
=:A3(L,N)

+

⃦⃦⃦⃦
⃦⃦ ∑︂′

0≤k≤N

(ck − c̃k)eL
k

⃦⃦⃦⃦
⃦⃦

2⏞ ⏟⏟ ⏞
=:A4(L,N)

.

Further,

A3(L, N)2 =
∑︂

0≤k≤N

∑︂
0≤l≤N

1
2Λ(k)+Λ(l) (ak − ck)(al − cl)

⟨︂
eL

k , eL
l

⟩︂

≤
∑︂′

k∈Nd
0

d∏︂
h=1
{Lh} |ak − ck|2 = Bf (L),

see Definition 4.3.4. For ε > 0, choose L ∈ Rd
+ such that A1(L) < ε

4 and Bf (L) <
(︁

ε
4
)︁2.

Hence, A3(L, N) < ε
4 . Then choose N ∈ Nd such that A2(L, N) < ε

4 . Such N exists by
classical Fourier analysis. By the definition of ck and c̃k, see Equation (4.3.9), it follows
that

|ck − c̃k| ≤
1

2d−1∏︁d
h=1 Lh

∑︂
s=(1,±1,...,±1)∈Rd

⃓⃓⃓⃓ ˆ︁f (︃π

2
sk

L

)︃
− ϑ

(︃
π

2
sk

L

)︃⃓⃓⃓⃓
≤

⃦⃦⃦ ˆ︁f − ϑ
⃦⃦⃦

∞∏︁d
h=1 Lh

.

Similarly to the analysis of A3, we have

A4(L, N)2 ≤
∑︂

0≤k≤N

d∏︂
h=1
{Lh} |ck − c̃k|2 ≤

⃦⃦⃦ ˆ︁f − ϑ
⃦⃦⃦2

∞∏︁d
h=1 Lh

d∏︂
h=1
{Nh + 1}. (4.3.20)

Choose γ = ε
4

√︂∏︁d
h=1 Lh

(︂∏︁d
h=1{Nh + 1}

)︂− 1
2 . Then

⃦⃦⃦ ˆ︁f − ϑ
⃦⃦⃦

∞
< γ implies A4(L, N) < ε

4 ,
which concludes the proof.

Corollary 4.3.7 provides sufficient conditions to ensure that the COS method approximates
the integral (4.1.1) within a predefined error tolerance ε > 0, including numerical uncertainty
on ˆ︁f and numerical uncertainty on the cosine coefficients of the function of interest v: either
because the vk are approximated by solving the integral in Equation (4.3.11) numerically
or because vk are approximated by ṽk defined in Equation (4.3.12).

Corollary 4.3.7. (Convergence of the COS method)
Let f ∈ L1∩L2 be COS-admissible and v : Rd → R be locally in L2; that is, v1[−M ,M ] ∈ L2
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for any M ∈ Rd
+. Assume vf ∈ L1; then the integral of the product of f and v can be

approximated by a finite sum as follows: Let ε > 0. Let M ∈ Rd
+ and ξ > 0 such that∫︂

Rd\[−M ,M ]
|v(x)f(x)| dx ≤ ε

3 ,
⃦⃦⃦
v1[−M ,M ]

⃦⃦⃦
2
≤ ξ. (4.3.21)

Let L ≥M such that ⃦⃦⃦
f − f1[−L,L]

⃦⃦⃦
2
≤ ε

12ξ
(4.3.22)

and
Bf (L) ≤

(︃
ε

12ξ

)︃2
. (4.3.23)

Choose N ∈ Nd large enough, so that⃦⃦⃦⃦
⃦⃦f1[−L,L] −

∑︂′

0≤k≤N

akek1[−L,L]

⃦⃦⃦⃦
⃦⃦

2

≤ ε

12ξ
. (4.3.24)

For some ϑ : Rd → C assume

⃦⃦⃦ ˆ︁f − ϑ
⃦⃦⃦

∞
≤ ε

12ξ

√︂∏︁d
h=1 Lh√︂∏︁d

h=1{Nh + 1}
. (4.3.25)

Let η > 0 such that
∑︂′

0≤k≤N
|c̃k|2 ≤ η. Let (ṽk)k∈Nd

0
⊂ R such that

∑︂′

0≤k≤N

|ṽk − vk|2 ≤
ε2

9η
. (4.3.26)

Then it follows that ⃓⃓⃓⃓
⃓⃓∫︂

Rd
v(x)f(x)dx−

∑︂′

0≤k≤N

c̃kṽk

⃓⃓⃓⃓
⃓⃓ ≤ ε. (4.3.27)

Proof. Define eL
k = ek1[−L,L]. Let A1(L), A2(L, N) and A4(L, N) be as in the proof of

Theorem 4.3.6. By Inequalities (4.3.20, 4.3.25) it follows that A4(L, N) ≤ ε
12ξ . Due to

vk = ⟨v1[−M ,M ], eL
k ⟩ and applying Theorem 4.3.6 and the Cauchy-Schwarz inequality, we

have that⃓⃓⃓ ∫︂
Rd

v(x)f(x)dx−
∑︂′

0≤k≤N

c̃kṽk

⃓⃓⃓
=
⃓⃓⃓⃓ ∫︂

Rd\[−M ,M ]
v(x)f(x)dx + ⟨v1[−M ,M ], f⟩ −

∑︂′

0≤k≤N

c̃k⟨v1[−M ,M ], eL
k ⟩ −

∑︂′

0≤k≤N

c̃k(ṽk − vk)
⃓⃓⃓⃓

≤
∫︂
Rd\[−M ,M ]

|v(x)f(x)|dx⏞ ⏟⏟ ⏞
=:D1(M)

+
⃓⃓⃓⟨︂

v1[−M ,M ], f −
∑︂′

0≤k≤N

c̃keL
k

⟩︂⃓⃓⃓
+
√︄ ∑︂′

0≤k≤N

|ṽk − vk|2
∑︂′

0≤k≤N

|c̃k|2⏞ ⏟⏟ ⏞
=:D2(N ,L,M)
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<
ε

3 + ∥v1[−M ,M ]∥2

⃦⃦⃦
f −

∑︂′

0≤k≤N

c̃keL
k

⃦⃦⃦
2

+ ε

3

<
ε

3 + ξ

(︃
A1(L) + A2(L, N) +

√︂
Bf (L) + A4(L, N)

)︃
+ ε

3

≤ε

3 + ξ

(︃
ε

12ξ
+ ε

12ξ
+ ε

12ξ
+ ε

12ξ

)︃
+ ε

3 = ε.

Junike and Pankrashkin (2022) and Junike (2024) assume that f has semi-heavy tails,
i.e., f decays exponentially or faster. Here, we make the same assumption in multivariate
dimensions in order to be able to estimate M , L and N .

Definition 4.3.8.
A function f : Rd → R decays exponentially if there are C1, C2, m > 0 such that for |x| > m

it holds that |f(x)| ≤ C1e−C2|x|.

Lemma 4.3.9.
Let f ∈ L1 ∩ L2. Let M , L ∈ Rd

+ with M ≤ L; then it holds that

∥f1[−L,L] −
∑︂′

0≤k≤N

akek1[−L,L]∥22 ≤
∫︂
Rd
|f(x)|2dx−

d∏︂
h=1

Lh

∑︂′

0≤k≤N

|ck|2 + G(L),

where

G(L) := Bf (L) + 2
√︄

Bf (L)
∫︂
Rd
|f(x)|2dx. (4.3.28)

Proof. Let
ϕk := 1∏︁d

h=1 Lh

∫︂
Rd\[−L,L]

f(x)ek(x)dx, k ∈ Nd
0.

It holds that ck = ak + ϕk. It follows by the Cauchy-Schwarz inequality that

d∏︂
h=1

Lh

∑︂′

0≤k≤N

|ck|2 =
d∏︂

h=1
Lh

⎛⎝ ∑︂′

0≤k≤N

|ak|2 +
∑︂′

0≤k≤N

|ϕk|2 + 2
∑︂′

0≤k≤N

|ϕk||ak|

⎞⎠
≤

d∏︂
h=1

Lh

∑︂′

0≤k≤N

|ak|2 + Bf (L) + 2
d∏︂

h=1
Lh

√︄ ∑︂′

0≤k≤N

|ϕk|2
∑︂′

0≤k≤N

|ak|2

(4.3.17)
≤

d∏︂
h=1

Lh

∑︂′

0≤k≤N

|ak|2 + Bf (L) + 2
√︄

Bf (L)
∫︂
Rd
|f(x)|2dx⏞ ⏟⏟ ⏞

=G(L)

(4.3.29)

(4.3.17)
≤

∫︂
Rd
|f(x)|2dx + G(L). (4.3.30)
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Hence,

∥f1[−L,L] −
∑︂′

0≤k≤N

akek1[−L,L]∥22
(4.3.19)
≤

d∏︂
h=1

Lh

∑︂′

k1>N1 or...or kd>Nd

|ak|2

=
d∏︂

h=1
Lh

∑︂′

k∈Nd
0

|ak|2 −
d∏︂

h=1
Lh

∑︂′

0≤k≤N

|ak|2

(4.3.17,4.3.29)
≤

∫︂
Rd
|f(x)|2dx−

d∏︂
h=1

Lh

∑︂′

0≤k≤N

|ck|2 + G(L).

Theorem 4.3.10. (Classical COS method: Find M and L)
Let f ∈ L1∩L2 be a nonnegative function satisfying Inequality (4.3.14). Let v : Rd → R be
bounded with ∥v∥∞ ∈ (0,∞). Let n ≥ 2 be some even number and assume the moments
of f of nth−order exist, i.e.,

mh(n) :=
∫︂
Rd

xn
hf(x)dx = i−n ∂n

∂un
h

ˆ︁f(u)
⃓⃓⃓⃓
⃓
u=0
∈ (0,∞), h = 1, ..., d. (4.3.31)

Assume that f decays exponentially. Let ε > 0 be small enough. Define

Mh :=
(︃3d ∥v∥∞

ε
mh(n)

)︃ 1
n

, h = 1, ..., d, (4.3.32)

and L = M = (M1, ..., Md) ∈ Rd
+. There is a N ∈ Nd

0 such that⃓⃓⃓⃓
⃓⃓∫︂

Rd
v(x)f(x)dx−

∑︂′

0≤k≤N

ckvk

⃓⃓⃓⃓
⃓⃓ ≤ ε. (4.3.33)

Corollary 4.3.11. (Damped COS method: Find M and L)
Assume that all assumptions in Theorem 4.3.10 hold and that v ∈ L1 ∩ L2, v satisfies
Inequality (4.3.14) and v decays exponentially. Define ṽk as in (4.3.12). There is a N ∈ Nd

0
such that ⃓⃓⃓⃓

⃓⃓∫︂
Rd

v(x)f(x)dx−
∑︂′

0≤k≤N

ckṽk

⃓⃓⃓⃓
⃓⃓ ≤ ε. (4.3.34)

Corollary 4.3.12. (Find N)
If the assumptions in Theorem 4.3.10, respectively Corollary 4.3.11, hold and if⃓⃓⃓⃓

⃓⃓(2π)−d
∫︂
Rd
| ˆ︁f(u)|2du−

d∏︂
h=1

Lh

∑︂′

0≤k≤N

|ck|2
⃓⃓⃓⃓
⃓⃓ ≤ ε2

162
⃦⃦⃦
v1[−M ,M ]

⃦⃦⃦2

2

(4.3.35)

for some N ∈ Nd
0, then Inequality (4.3.33), respectively Inequality (4.3.34), is satisfied.
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Proof. We first prove Theorem 4.3.10: Equation (4.3.31) follows by Theorem 25.2 in
Bauer (1996). For h ∈ {1, ..., d} let πh : Rd → R, x ↦→ xh. Let λd be the Lebesgue measure
on Rd and define the finite and positive measure µ := fλd. By Markov’s inequality, it
follows that∫︂

Rd\[−M ,M ]
|v(x)f(x)| dx ≤∥v∥∞

d∑︂
h=1

µ
(︂{︂

x ∈ Rd : |πh(x)| ≥Mh

}︂)︂

≤∥v∥∞
d∑︂

h=1

mh(n)
Mn

h

= ε

3 .

The last equality follows by the definition of M . Define ξ := ∥v∥∞
√︂

2d
∏︁d

h=1 Mh. It holds
that

⃦⃦⃦
v1[−M ,M ]

⃦⃦⃦
2
≤ ξ. Hence, the inequalities in (4.3.21) are satisfied. Next, we use the

following auxiliary result: Let s ≥ 0, a > 0 and n ∈ N0 and d ∈ N. Then it holds by
mathematical induction over n and Theorem 8.11 in Amann and Escher (2009) that∫︂

{x∈Rd:|x|>s}
e−a|x||x|ndx = dπ

d
2

Γ
(︂
1 + d

2

)︂e−as (n + d− 1)!
an+d

n+d−1∑︂
k=0

(as)k

k! . (4.3.36)

For ε small enough, L is large enough. Using that f decays exponentially and applying
Equation (4.3.36), we obtain with ℓ := minh=1,...,d Lh that

⃦⃦⃦
f − f1[−L,L]

⃦⃦⃦
2
≤ C1

√︄∫︂
{x∈Rd:|x|>ℓ}

e−2C2|x|dx ≤ ε

12ξ
. (4.3.37)

The last inequality holds true if ε is small enough because, thanks to Inequality (4.3.36),
the term in the middle of (4.3.37) decreases exponentially in ε, while the term at the
right-hand side of (4.3.37) goes to zero like ε1+ d

2n for ε ↘ 0. Hence, Inequality (4.3.22)
holds. By Inequality (4.3.16) it holds that Bf (L) ≤ ε2(12ξ)−2 if ε is small enough because
Bf (L) decreases exponentially in ε: to see this, use Inequality (4.3.37) and observe that
the term

∫︁
Rd\[−L,L] |x|

2d |f(x)|2dx converges exponentially thanks to Inequality (4.3.36).
Hence, Inequality (4.3.23) holds. By classical Fourier analysis, there is a N ∈ Nd

0 such that
Inequality (4.3.24) is satisfied. By assumption we have ck = c̃k and vk = ṽk. Inequalities
(4.3.25) and (4.3.26) hold trivially. Apply Corollary 4.3.7 to finish the proof of Theorem
4.3.10.

We prove Corollary 4.3.11: We have to show that Inequality (4.3.26) holds to proof
Corollary 4.3.11. Let G(L) be as in Equality (4.3.28). Observe G(L)→ 0, minh Lh →∞
because f is COS-admissible by Proposition 4.3.5. There is P ∈ Rd

+ and a γ > 0 such that
G(L) ≤ γ for all L ≥ P . By Inequality (4.3.30), it follows for all N ∈ Nd and all L ≥ P

that ∑︂′

0≤k≤N

|ck|2 ≤
∫︁
Rd |f(x)|2dx + γ∏︁d

h=1 Ph

=: η <∞. (4.3.38)
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It follows by Proposition 4.3.5 for all N ∈ Nd that

∑︂′

0≤k≤N

|ṽk − vk|2 ≤
∑︂′

k∈Nd
0

⃓⃓⃓⃓
⃓
∫︂
Rd\[−M ,M ]

v(x)ek(x)dx

⃓⃓⃓⃓
⃓
2

≤
d∏︂

h=1
MhBv(M) ≤ ε2

9η
(4.3.39)

the last inequality holds true if ε is small enough because the term MhBv(M) decreases
exponentially in ε since v decays exponentially, while the right-hand side of (4.3.39) goes
to zero like ε2 for ε↘ 0.

We prove Corollary 4.3.12: Let G(L) be defined as in Equation (4.3.28). By Lemma 4.3.9
and the Plancherel theorem, it follows that

∥f1[−L,L] −
∑︂′

0≤k≤N

akek1[−L,L]∥22 ≤

⃓⃓⃓⃓
⃓⃓(2π)−d

∫︂
Rd
| ˆ︁f(u)|2du−

d∏︂
h=1

Lh

∑︂′

0≤k≤N

|ck|2
⃓⃓⃓⃓
⃓⃓+ G(L)

≤ ε2

162
⃦⃦⃦
v1[−M ,M ]

⃦⃦⃦2

2

+ ε2

162
⃦⃦⃦
v1[−M ,M ]

⃦⃦⃦2

2

=

⎛⎝ ε

9
⃦⃦⃦
v1[−M ,M ]

⃦⃦⃦
2

⎞⎠2

. (4.3.40)

The last inequality holds because for ε > 0 small enough, L is large enough so that
G(L) ≤ ε2

162∥v1[−M,M ]∥2
2

since G(L) decreases exponentially. Note that we may replace the

term ε
12ξ in Inequalities (4.3.22, 4.3.23, 4.3.24) in Corollary 4.3.7 by ε

9∥v1[−M,M ]∥2
, since

ck = c̃k. Apply Inequality (4.3.40) to conclude.

Assume the density f in Corollary 4.3.12 is the density of a Lévy process at a particular time
point and ˆ︁f is real. The next Proposition 4.3.13 shows that the term (2π)−d

∫︁
Rd | ˆ︁f(u)|2du

is then given in closed form if f is known. The densities of many Lévy processes are given
explicitly or in terms of specialized functions, e.g., for the tempered Stable process, the
Meixner process, the Normal Inverse Gaussian process, the Variance Gamma process and
the Generalized Hyperbolic process, see Barndorff-Nielsen (1997), Madan et al. (1998),
Schoutens (2003) and references therein. In the case that α ̸= 0, the Fourier transform ˆ︁f
is usually not real. However, in some cases, such as the normal distribution, the integral
(2π)−d

∫︁
Rd | ˆ︁f(u)|2du can still be obtained in closed form.

Proposition 4.3.13.
Let (Xt)t≥0 be a d-dimensional Lévy process. Assume that the characteristic function ˆ︁fXt

of Xt is real for all t > 0 and that Xt has a density, denoted by fXt . Let T > 0. Then

(2π)−d
∫︂
Rd
| ˆ︁fXT

(u)|2du = fX2T
(0).
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Proof. Using that X has independent and stationary increments and that ˆ︁fXT
is real, it

follows that

(2π)−d
∫︂
Rd
| ˆ︁fXT

(u)|2du =(2π)−d
∫︂
Rd

(︁ ˆ︁fXT
(u)

)︁2
du = (2π)−d

∫︂
Rd

ˆ︁fX2T
(u)du = fX2T

(0).

Remark 4.3.14.
Provided the expression (2π)−d

∫︁
Rd | ˆ︁f(u)|2du can be obtained precisely, Inequality (4.3.35)

makes it possible to define a stopping criterion for N . In particular, Inequality (4.3.35)
enables us to determine N while computing the coefficients ck: incrementally increase
N and compute |ck| and |ck|2 simultaneously. Stop when Inequality (4.3.35) is met.
However, since the right-hand side of Equation (4.3.35) converges to zero at least like
O
(︁
ε2)︁, rounding off errors makes it difficult to find N by Inequality (4.3.35) for very

small ε. Using arbitrary-precision arithmetic instead of fixed-precision arithmetic should
overcome this drawback.

The next theorem implies that the COS method converges exponentially if ˆ︁f decays
exponentially, i.e., if Inequality (4.3.41) holds for all p > 0. The cases (i) and (ii) in Theorem
4.3.15 treat the classical and the damped COS method, respectively. The bound for the
order of convergence of the damped COS method is slightly better.

Theorem 4.3.15. (Order of convergence)
Assume f ∈ L1 ∩ L2 satisfies Inequality (4.3.14) and decays exponentially. Assume
v is bounded. Let γ > 0 and β ∈ (0, 1). For n ∈ N, let N = (n, ..., n) ∈ Nd and
M = L = (γnβ, ..., γnβ). Assume for some p > d

2 that

| ˆ︁f(u)| ≤ O
(︁
|u|−p

∞
)︁

, |u|∞ →∞. (4.3.41)

(i) Define vk as in Equation (4.3.11). Then it holds that⃓⃓⃓⃓
⃓⃓∫︂

Rd
v(x)f(x)dx−

∑︂′

0≤k≤N

ckvk

⃓⃓⃓⃓
⃓⃓ ≤ O

(︃
n−(1−β)p+ d

2

)︃
, n→∞.

(ii) Assume that v ∈ L1 ∩ L2, v satisfies Inequality (4.3.14) and v decays exponentially.
Define ṽk as in Equation (4.3.12). Then it holds that⃓⃓⃓⃓

⃓⃓∫︂
Rd

v(x)f(x)dx−
∑︂′

0≤k≤N

ckṽk

⃓⃓⃓⃓
⃓⃓ ≤ O

(︃
n−(1−β)(p− d

2 )
)︃

, n→∞.
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Proof. Let A1(L), A2(L, N), D1(M) and D2(N , L, M) be as in the proof of Corollary
4.3.7. Since vk = ⟨v1[−M ,M ], eL

k ⟩ and similarly to the proof of Corollary 4.3.7 we have that⃓⃓⃓⃓ ∫︂
Rd

v(x)f(x)dx−
∑︂′

0≤k≤N

ckṽk

⃓⃓⃓⃓

≤D1(M) + ∥v1[−M ,M ]∥2
(︃

A1(L) + A2(L, N) +
√︂

Bf (L)
)︃

+ D2(N , L, M). (4.3.42)

We will analyze the order of convergence of each term at the right-hand side of Inequality
(4.3.42): Since v is bounded and f decays exponentially, D1(M), A1(L) and

√︂
Bf (L)

decay exponentially, i.e., can be bounded by O
(︁

exp(−C3nβ)
)︁
, n→∞, for some C3, see

proof of Theorem 4.3.10. By Inequality (4.3.38), the term
∑︂′
|ck|2 is bounded. In case i),

D2(N , L, M) = 0. In case ii), D2(N , L, M) decays exponentially, see proof of Corollary
4.3.11. Last, we treat A2(L, N). Let j ∈ {1, ..., d}. Let n be large enough. Let k ∈ Nd

0
such that kj > n. By Equation (4.3.9) and Inequality (4.3.41), there is a constant a1 > 0
so that

|ck|2
(4.3.9)
≤

(︃ 1
2d−1∏︁d

h=1 Lh

∑︂
s=(1,±1,...,±1)∈Rd

⃓⃓⃓⃓ ˆ︁f (︃π

2
sk

L

)︃ ⃓⃓⃓⃓)︃2 (4.3.41)
≤ a1n2β(p−d)|k|−2p

∞ .

By mathematical induction over d and the applying the integral test of convergence, one
can show that ∑︂

k∈Nd
0,kj>n

|k|−2p
∞ ≤ 2d−1

(2p− d)n2p−d
. (4.3.43)

It follows by Inequality (4.3.43) for some a2 > 0 that

d∏︂
h=1

Lh

∑︂
k∈Nd

0,kj>n

|ck|2 ≤a2n−(1−β)(2p−d). (4.3.44)

Let G(L) be defined as in Equality (4.3.28). By Equality (4.3.19), the Cauchy-Schwarz
(CS) inequality and Inequality (4.3.30), we obtain

A2(L, N)2

(4.3.19)
≤

d∏︂
h=1

Lh

∑︂′

k1>N1 or...or kd>Nd

|ak + ck − ck|2

(CS)
≤

d∏︂
h=1

Lh

∑︂′

k1>N1 or...or kd>Nd

|ck|2 +
d∏︂

h=1
Lh

∑︂′

k∈Nd
0

|ak − ck|2

+ 2

⌜⃓⃓⃓
⎷ d∏︂

h=1
Lh

∑︂′

k∈Nd
0

|ck|2
d∏︂

h=1
Lh

∑︂′

k∈Nd
0

|ak − ck|2
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(4.3.30)
≤

d∑︂
j=1

(︃ d∏︂
h=1

Lh

∑︂
k∈Nd

0,kj>n

|ck|2
)︃

+ Bf (L) + 2
√︄(︃∫︂

Rd
|f(x)|2dx + G(L)

)︃
Bf (L)

(4.3.44)
≤ O

(︂
n−(1−β)(2p−d)

)︂
, n→∞,

since Bf (L) and G(L), converge exponentially to zero. Since v is bounded, we have that
∥v1[−M ,M ]∥2 ≤ O

(︂
n

dβ
2
)︂
, n→∞. Noting that −(1−β)(2p−d)+dβ

2 = −(1− β)p + d
2 , shows (i).

It holds ∥v1[−M ,M ]∥2 ≤ ∥v∥2 if v ∈ L2, which implies (ii).

4.4 Characteristic functions

In this section, in Examples 4.4.1 and 4.4.2, we recall the normal and the Variance Gamma
distributions from the literature. Remark 4.4.3 and Examples 4.4.4 and 4.4.5 provide a
financial context.

Example 4.4.1. (Normal distribution)
Let X be a multivariate normal random variable with location η ∈ Rd and co-
variance matrix Σ ∈ Rd × Rd. The random variable X has characteristic functionˆ︁g(u) = exp

(︂
iη · u− 1

2u · Σu
)︂
, u ∈ Rd, which can be extended to Cd, i.e., ˆ︁g(u − iα)

exists for all α ∈ Rd. By Proposition 4.3.2 we set λ = exp
(︂
−η ·α− 1

2α · Σα
)︂

and
µ = η + Σα. The characteristic function of the damped density f , defined in Equation
(4.3.1), is given by ˆ︁f(u) = exp

(︂
−1

2u · Σu
)︂
. A straightforward computation shows that

(2π)−d
∫︂
Rd
| ˆ︁f(u)|2du = 2−d√︂

πd det(Σ)
.

Example 4.4.2. (Variance Gamma distribution)
Let Z be a d-dimensional, standard normal random variable. Let G be a Gamma distributed
random variable, independent of Z, with shape a > 0 and scale s > 0. Let η, θ ∈ Rd

and σ ∈ Rd
+. Consider X = η + θG +

√
GσZ. The distribution of X is denoted by

VG(a, s, η, θ, σ). Define Σ ∈ Rd × Rd such that Σii = σ2
i and Σij = 0 for i ≠ j. Then X

has the characteristic function

ˆ︁g(u) = exp (iη · u)
(︁
1− isθ · u + 1

2su · Σu
)︁−a

,

see Luciano and Schoutens (2006). The (extended) Fourier transform ˆ︁g(u− iα) exists for
all α ∈ Rd with ζ := 1− sθ ·α− 1

2sα · Σα > 0, see Bayer et al. (2023). By Proposition
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4.3.2 we set λ = exp (−η ·α) ζa and µ = η + asζ−1(θ + Σα). The characteristic function
of the damped density f , defined in Equation (4.3.1), is given by

ˆ︁f(u) = exp
(︃
−i

as

ζ

(︁
θ + Σα

)︁
· u
)︃(︃

1− i
s

ζ

(︁
θ + Σα

)︁
· u + 1

2
s

ζ
u · Σu

)︃−a

.

Apply the Courant–Fischer–Weyl min-max principle2 to see that | ˆ︁f(u)| ≤ O
(︁
|u|−2a

∞
)︁

for
|u|∞ →∞.

Remark 4.4.3.
In a financial context, we model d stock prices over time by a d-dimensional positive
semimartingale (S(t))t≥0 on a filtered probability space (Ω,F , P, (Ft)t≥0). The filtration
(Ft)t≥0 satisfies the usual conditions with F0 = {Ω, ∅}. The logarithmic returns are defined
by X(t) := log(S(t)), t ≥ 0. There is a bank account paying continuous compound interest
r ∈ R. There is a European option w : Rd → R with maturity T > 0 and payoff w

(︁
X(T )

)︁
at time T . We denote by g the (risk-neutral) density of log(S(T )). The time-0 price of the
European option is then given by e−rT

∫︁
R w(x)g(x)dx. This integral can be approximated

by the (damped) COS method.

Example 4.4.4. (BS model)
Let Σ ∈ Rd×Rd be a symmetric positive definite matrix. For the Black-Scholes (BS) model,
the logarithmic returns X(T ) are normally distributed with location η := log(S(0)) + (r−
1
2diag(Σ))T and covariance matrix T Σ, where r = (r, ..., r) ∈ Rd and diag(Σ) ∈ Rd denotes
the diagonal of Σ. We often use the following parameters: K = S(0) = (100, ..., 100),
T = 1, r = 0 and Σii = σ2, Σij = 0, i ̸= j, where σ = 0.2, i.e.,

η := (4.58517, ..., 4.58517), y := log(K) = (4.60517, ..., 4.60517). (4.4.1)

Example 4.4.5. (VG model)
Let ν > 0, σ ∈ Rd

+ and θ ∈ Rd. In the multivariate Variance Gamma (VG) model, see
Luciano and Schoutens (2006), the logarithmic returns X(T ) follow a VG(T

ν , ν, η, θ, σ)
distribution, where

ηh := log(Sh(0)) +
(︁
r + 1

ν
log

(︁
1− 1

2σ2
hν − θhν

)︁)︁
T, h = 1, . . . , d.

2We thank Alexey Chernov for pointing this out to us.
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4.5 Functions of interest

Example 4.5.1. (CDF)
Let w(x) = 1(−∞,y](x), x ∈ Rd for some y ∈ Rd. The integral in (4.1.1) is equal
to the CDF of the density g evaluated at y. The coefficients vk, defined in Equation
(4.3.11), can be obtained in closed form if α = 0. Let M , L ∈ Rd

+ as in Section 4.3. Let
γh := min(yh − µh, Mh), h = 1, .., d. It holds for k ∈ Nd

0 that vk = 0 if γh < −Mh for any
h, and otherwise

vk = λ−1
d∏︂

h=1
kh=0

{γh + Mh}
d∏︂

h=1
kh>0

{︃2Lh

πkh

(︃
sin
(︁
khπ

γh + Lh

2Lh

)︁
− sin

(︁
khπ
−Mh + Lh

2Lh

)︁)︃}︃
.

It holds that ∥v∥∞ ≤ 1 and
⃦⃦⃦
v1[−M ,M ]

⃦⃦⃦2

2
≤ 2d∏︁d

h=1 Mh.

Next, we assume for some α ∈ Rd that the map x ↦→ w(x)e−α·x is integrable. The
Fourier-transform of w then exists at all points u + iα ∈ Cd, u ∈ Rd. Let λ > 0
and µ ∈ Rd. Let v be as in Equation (4.3.2). The Fourier-transform of v is given byˆ︁v(u) = λ−1e−iu·µ ˆ︁w(u + iα). Hence, a closed form expression for ˆ︁w is sufficient to obtain a
closed form expression for ˆ︁v. We can then directly obtain ṽk, defined in Equation (4.3.12)
via Equation (4.3.13). For many functions of interest, ˆ︁w is known in closed form in d

dimensions, as shown in the next examples. We include Example 4.5.2 to test the damped
COS method for α ̸= 0.

Example 4.5.2. (CDF with damping)
Let w as in Example 4.5.1. A simple calculation shows that the Fourier-transform of w exists
for z ∈ Cd such that ℑ{zh} < 0, h = 1, ..., d, and is given by ˆ︁w(z) = ∏︁d

h=1
K

izh
h

izh
. For λ > 0

and µ ∈ Rd, let v be as in Equation (4.3.2). It holds for α < 0 that ∥v∥∞ ≤ λ−1e−α·log(K)

and

∥v∥22 = λ−2
d∏︂

h=1

exp
(︁
−2αh

(︁
log(Kh)

)︁)︁
−2αh

.

Example 4.5.3. (Absolute moment)
Assume for simplicity that d = 1. Let w(x) = |x| = w+(x) + w−(x), where w+(x) =
max(x, 0) and w−(x) = max(−x, 0). The integral in (4.1.1) is equal to the absolute moment
of the density g. The coefficients vk, defined in Equation (4.3.11), can be obtained in closed
form for any α ∈ R by a computer algebra system. One may approximate the positive and
the negative part of w separately by the COS method, using α > 0 for w+ and α < 0 for
w−, to ensure that the damped functions of interest, v±, are bounded, respectively.
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Example 4.5.4. (Arithmetic basket put option)
An arithmetic basket put option is defined by w(x) = max(K −∑︁d

h=1 exh , 0), x ∈ Rd for
some K > 0; compare with Remark 4.4.3. The Fourier-transform of w exists for z ∈ Cd

such that ℑ{zh} < 0, h = 1, ..., d, and is given by

ˆ︁w(z) =
∫︂
Rd

eiz·xw(x)dx = K(1+i
∑︁d

h=1 zh)∏︁d
h=1 Γ(izh)

Γ
(︃

i
∑︁d

h=1 zh + 2
)︃ . (4.5.1)

Equation (4.5.1) follows by an elementary substitution3 from Equation (5.14.1) in Olver
et al. (2010) and is also mentioned in a similar form in Hubalek and Kallsen (2003).
If α < 0, it holds that ∥v∥∞ ≤ λ−1K1−

∑︁d

h=1 αh and, using Equation (5.14.1) in Olver
et al. (2010) once more, it follows that

⃦⃦⃦
v1[−M ,M ]

⃦⃦⃦2

2
≤ ∥v∥22 ≤

K2−2
∑︁d

h=1 αh

λ2

∏︁d
h=1 Γ

(︁
− 2αh

)︁
Γ
(︁
1 +∑︁d

h=1(−2αh)
)︁ .

If d = 1 and α = 0, we have that ∥v∥∞ ≤ K and
⃦⃦⃦
v1[−M,M ]

⃦⃦⃦2

2
≤ 2MK2.

Example 4.5.5. (Various other European options)
A cash-or-nothing put option is defined by w(x) = 1[0,K](ex), x ∈ Rd for some K ∈ Rd

+;
compare with Remark 4.4.3. The option pays 1$ at maturity if S(T ) ≤ K and nothing
otherwise. The integral

∫︁
w(x)g(x)dx is equal to G

(︁
log(K)

)︁
, where G is the CDF of g.

For put and call options on the maximum or minimum of d assets, see Eberlein et al. (2010);
for spread options, see Hurd and Zhou (2010).

4.6 Numerical experiments

We provide several numerical experiments to solve the integral in (4.1.1) using the COS
method. Reference values are obtained by Theorem 3.2 in Eberlein et al. (2010), who
express the integral in (4.1.1) by another integral involving the Fourier-transforms ˆ︁g andˆ︁w. Eberlein et al. (2010) require a damping factor, which we set to R = (−4, . . . ,−4). To
compute the reference values, we use the command cubintegrate with the method cuhre
from the R-package cubature with relative tolerance 10−11. We confirm all reference values
using the COS method with N = (2000, . . . , 2000) and a truncation range obtained from
Equation (4.3.32) with ε = 10−9 using n = 8 moments. For the normal distribution, in the
uncorrelated case, reference values are also given in closed form for a CDF. All experiments

3We thank Friedrich Hubalek from TU Wien for pointing this out to us.
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are performed on a modern laptop with Intel i7-11850H processor and 32 GB RAM. The
COS method and Monte Carlo simulations are implemented in C++ using for-loops without
parallelization. The memory requirements are minimal.

−20 −15 −10 −5 0

α

E
rr

o
r

10
−10

10
−8

10
−6

10
−4

d = 2

d = 3

d = 4

2.0 2.5 3.0 3.5 4.0

−
7

−
6

−
5

−
4

−
3

−
2

Log(n)

L
o

g
(E

rr
o

r)

T = 0.5

T = 0.7

T = 1

theor. 

bound

Figure 4.1: Left: Error of the CDF of the normal distribution for different damping factors
with η and y as in (4.4.1) and Σii = σ2, Σij = 0, i ̸= j, where σ = 0.2.
Further, M = L = (20σ, ..., 20σ) and N = (70, ..., 70). Reference values are
obtained by the closed form solution. Right: Logarithmic error of the price
by the COS method for the VG model over the logarithmic number of terms
for an arithmetic basket put option and d = 2. We choose N = (n, n) and
M = L = (γnβ, γnβ) with γ = β = 1

2 . We set S(0) = (50, 50), K = 100,
σ = (0.2, 0.2), θ = (−0.03,−0.03), ν = 0.1, r = 0 and α = (−4,−4). The
theoretical bound from Theorem 4.3.15, i.e., a line with slope −(1− β)(p− d

2 ),
is shown in gray. For the VG model, we have p = 2T

ν . Reference values are
obtained by Eberlein et al. (2010) and are given by 3.8998, 4.6509 and 5.5951
for T = 0.5, T = 0.7 and T = 1, respectively.

First, we investigate the influence of the damping factor α on the accuracy of the COS
method to obtain the CDF of a normal distribution, where reference values can be obtained
in closed form. According to Example 4.5.5, the CDF can also be interpreted as the price
of a cash-or-nothing put option. Figure 4.1 shows the behavior of the COS method for
different damping factors in dimensions d ∈ {2, 3, 4}. If α is too close to zero, almost
no damping takes place and the difference between vk and ṽk is large, which implies
a relatively high error for the COS method. If |α| is too big, ∥v∥∞ and ∥v∥2 become
very large and the truncation error increases. However, we observe in the example that
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a wide range of damping factors work well in various dimensions. Further, fixing the
number of terms N and the truncation range L, the accuracy of the classical COS method
with α = 0 and the damped COS method with α ̸= 0 is very similar for some damping
factors.

We illustrate the order of convergence of the COS method for an arithmetic basket put
option in the VG model. We compare three different maturities. In Figure 4.1 we can see
that the theoretical bound from Theorem 4.3.15 for the order of convergence is sharp and
close to the empirical order of convergence.

4.6.1 On the choice of N

In this section, we approximate the CDF for the VG distribution and the price of an
arithmetic put option in the BS model (normal distribution). We also discuss (see Table
4.1) arithmetic put options in one-dimension, which are referred to simply as put options.
No damping is necessary to price these options using the COS method, see Fang and
Oosterlee (2009a). The methodology can also be applied to other functions of interest. We
compare different strategies to choose the number of terms N . For d = 1 we also consider
the bound for N from Theorem 3.8 in Junike (2024), which can be obtained as follows: If
the (damped) density f is J + 1 times differentiable with bounded derivatives, the number
of terms can be chosen by

N ≥

⎛⎝2s+ 5
2

⃦⃦⃦
f (s+1)

⃦⃦⃦
∞

Ls+2

sπs+1
12 ∥v∥∞

ε

⎞⎠
1
s

, (4.6.1)

where s ∈ {1, ..., J}. The term
⃦⃦⃦
f (s+1)

⃦⃦⃦
∞

can be bounded by

∥f (s+1)∥∞ ≤
1

2π

∫︂
R
|u|s+1|φ(u)|du. (4.6.2)

For the BS model, the integral in Inequality (4.6.2) can be solved explicitly, and we choose
s = 40. The density of the VG distribution is given in terms of the Bessel function
of the third kind by Equation (23) in Madan et al. (1998). According to Küchler and
Tappe (2008), the density of the VG distribution is J + 1 times continuously differentiable
if J is equal to the largest natural number less than 2T

ν − 2. For the VG distribution, we
use s = J .

In Table 4.1 one can see that Corollary 4.3.12 provides a sharper bound for N than
Junike (2024). This is particularly noticeable for the VG distribution, which is less smooth

82



4.6 Numerical experiments

than the normal distribution. However, the formula in Junike (2024) is numerically
more stable, compare with Remark 4.3.14. The number of terms obtained by Corol-
lary 4.3.12 is roughly twice as large as the minimal number of terms necessary to stay
below the error tolerance. The CPU time to solve the integral appearing in Corollary
4.3.12 is of similar magnitude in one-dimension compared to the CPU time of the COS
method.

Choosing N N CPU time
COS

d ε L Ref.
value

Function of interest/ model
parameters

Minimal N 20 0.009 1 10−4 0.9 0.79193 CDF of VG distribution with
Cor. 4.3.12 46 0.016 ν = 0.19, a = 1

ν , s = ν,

Junike (2024) 107 0.031(0.28) θ = η = 0, σ = 0.13
Minimal N 20 0.013 1 10−3 1.3 2.5978 Put option in VG model

with
Cor. 4.3.12 64 0.030(0.16) σ = 0.1213, θ = −0.1436,
Junike (2024) 152 0.065(0.26) ν = 0.1686
Minimal N 10 0.005 1 10−2 1.2 3.9827 Put option in BS model with
Cor. 4.3.12 16 0.006 Σ = 0.22

Junike (2024) 20 0.007
Minimal N 40 2.32 2 10−2 (3.9, 7.9) 10.5051 Basket put in BS model with
Cor. 4.3.12 72 7.04 Σ11 = 0.22, Σ22 = 0.42,

Σ12 = Σ21 = 1
2
√

Σ11Σ22

Table 4.1: Comparison of different strategies to choose N to obtain the CDF for the
VG(a, s, η, θ, σ) distribution at y = 0.1 without damping and the price of an
arithmetic basket put option in the BS and the VG models. For the (basket) put
option, we set S(0) = (50, ..., 50), K = 50d, T = 1, r = 0 and N = (N, . . . , N).
We obtain the truncation range L = (L, ..., L) from Inequality (4.3.32) using
n = 8 moments. Damping is only necessary for the two-dimensional basket
option, where we set α = (−4,−4). Reference values are obtained by Eberlein
et al. (2010). We average over ten runs to obtain the CPU time, which is
measured in milliseconds. The CPU times to solve the integrals in Inequality
(4.6.2) and Corollary 4.3.12 for the VG model, using R’s integrate function with
default values, are reported in brackets.
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4.6.2 Comparison with Monte Carlo

We compare the COS method with a Monte Carlo (MC) simulation to obtain the CDF of
the normal distribution, where reference values can be obtained in closed form. According
to Example 4.5.5, the CDF can also be interpreted as the price of a cash-or-nothing put
option. The computational complexity of a MC simulation with U ∈ N runs scales like
O(U). We estimate U by the central limit theorem using a statistical error of 0.99. The
COS method consists of d-nested sums. According to Equation (4.3.9), the computational
complexity of the COS method scales like O

(︂∏︁d
h=1{Nh}

)︂
. A MC simulation converges

relatively slowly, but it scarcely depends on the dimension. On the other hand, the
complexity of the COS method grows exponentially in the dimension; however, the COS
method also converges exponentially for the normal distribution. The choice between MC
and the COS method depends both on the dimension and on the error tolerance ε: the
higher d the better MC compares to the COS method, but the smaller ε, the faster the
COS method performs.

d N L U τCOS τMC Reference value

1 30 2.0 16481995016 8.9e-6 5.1e+3 0.539827
2 30 2.4 13700525367 3.7e-4 1.6e+4 0.291414
3 40 3.0 8795611829 4.9e-2 1.2e+4 0.157313
4 50 3.6 5156004587 1.1e+1 8.1e+3 0.084922
5 50 4.2 2902219256 1.4e+3 7.8e+3 0.045843

Table 4.2: CPU time of the COS method (τCOS) and CPU time of a MC simulation (τMC)
to obtain the CDF of a normal distribution. We set ε = 10−5, α = (−7, . . . ,−7),
Σii = σ2, Σij = 0, i ≠ j, where σ = 0.2, T = 1 and let η and y as in (4.4.1). We
set N1 = · · · = Nd = N . We obtain the truncation range L = (L, ..., L) from
Inequality (4.3.32) using n = 8 moments. The reference value can be obtained
in closed form. CPU time is measured in seconds.

In several numerical experiments, we observe that the COS method is faster than MC for
d ≤ 4 and ε ≤ 10−3. For d = 5, the COS method outperforms MC for ε ≤ 10−5; otherwise,
a MC simulation is faster. If ε = 10−9 and d = 4, the COS method needs 220 terms in each
dimension to stay below the error tolerance, and the CPU time is about one hour. We
estimate that a MC simulation would take longer than 20, 000 years. Some experiments
are reported in Table 4.2 and Figure 4.2.
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Figure 4.2: Ratio of the CPU time of the COS method (τCOS) and the CPU time of a MC
simulation (τMC). Parameters are as in Table 4.2.

4.7 Conclusions

In this article we introduced and discussed the damped COS method, which is a numerical
tool to solve certain multidimensional integrals numerically, e.g., to obtain a CDF from
a characteristic function or to price a financial contract. The (damped) COS method
requires several parameters: In particular, one has to specify a truncation range L

for the density f and the number of terms N of cosine functions to approximate the
truncated density. Corollary 4.3.7 provides sufficient conditions on L and N to ensure
the convergence of the COS method within a given error tolerance ε > 0. Theorem 4.3.10
and Corollary 4.3.12 provide formulas for the truncation range L and the number of terms
N , respectively. Theorem 4.3.15 provides an upper bound of the order of convergence of
the COS method. Numerical experiments indicate that the bound is sharp. In particular,
the (damped) COS method converges exponentially if the Fourier transform ˆ︁f decays
exponentially.
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Chapter 5

Enhancing Fourier pricing with machine
learning

Abstract

Fourier pricing methods such as the Carr-Madan formula or the COS method
are classic tools for pricing European options for advanced models such as the
Heston model. These methods require tuning parameters such as a damping
factor, a truncation range, a number of terms, etc. Estimating these tuning
parameters is difficult or computationally expensive. Recently, machine learning
techniques have been proposed for fast pricing: they are able to learn the
functional relationship between the parameters of the Heston model and the
option price. However, machine learning techniques suffer from error control
and require retraining for different error tolerances. In this research, we propose
to learn the tuning parameters of the Fourier methods (instead of the prices)
using machine learning techniques. As a result, we obtain very fast algorithms
with full error control: Our approach works with any error tolerance without
retraining, as demonstrated in numerical experiments using the Heston model.

Keywords: Machine learning; computational finance; option pricing; Fourier pricing;
error control; Heston model

5.1 Introduction

Fourier methods, such as the Carr-Madan formula and the COS method, see Carr and
Madan (1999) and Fang and Oosterlee (2009a), are widely used to price European options.
In order to speed up option pricing, Liu et al. (2019a), Liu et al. (2019b), Yang et al. (2017)
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and Sirignano and Spiliopoulos (2018) propose a prediction of option prices using neural
networks. Ruf and Wang (2020) provide a comprehensive review of neural networks for
option pricing. Liu et al. (2019a) and Liu et al. (2019b) use a parametric approach and
consider an advanced stock price model, such as the Heston model, see Heston (1993).
They use a set of market parameters, including strike price and maturity, as well as model
parameters, to predict the corresponding option prices. De Spiegeleer et al. (2018) use
machine learning techniques based on Gaussian process regression for prediction of option
prices.

While De Spiegeleer et al. (2018), Liu et al. (2019a) and Liu et al. (2019b) were able to
accelerate the existing Fourier methods to some extent, their approaches also exhibited
certain limitations. Liu et al. (2019a) and Liu et al. (2019b) obtain a mean absolute
error (MAE) of about 10−4. De Spiegeleer et al. (2018) also obtain a MAE of about
10−4 and a maximum absolute error of approximately 10−3 on their sample. In De
Spiegeleer et al. (2018), Table 2, the authors compare the numerical effort with the
Carr-Madan formula and obtain an acceleration factor between 10 and 40 for European
options.

However, the approaches described in Liu et al. (2019a), Liu et al. (2019b) and De
Spiegeleer et al. (2018) suffer from a lack of error control: To achieve higher numerical
pricing accuracy, deeper neural networks are necessary and the machine learning methods
need to be retrained with more samples, which is very time-consuming and impractical in
most situations.

In this paper, we propose an indirect use of machine learning methods to improve the
accuracy and efficiency of existing pricing techniques with full error control. We focus
on the COS method, but our approach is also applicable to other methods, i.e., we also
discuss the Carr-Madan formula.

We describe the main idea of the COS method, details can be found, e.g., in Fang and
Oosterlee (2009a), Oosterlee and Grzelak (2019) and Junike and Pankrashkin (2022): Given
only the characteristic function of the log-returns of the underlying, the density of the
log-returns is approximated in two steps: i) truncate the density on a finite interval [a, b]
and ii) approximate the truncated density by a finite Fourier-cosine approximation with
N terms. There is a clever trick to obtain the cosine-coefficients of the truncated density
efficiently from the characteristic function. The CPU time of the COS method depends
linearly on the number of terms N . Note that the choice of the truncation range has a
significant influence on the number of terms required to achieve a certain accuracy. There
are explicit formulas for the truncation range and the number of terms depending on an
error tolerance ε > 0, see Junike and Pankrashkin (2022) and Junike (2024). However, the
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truncation range formula requires evaluating higher-order derivatives of the characteristic
function, which can be very time-consuming, e.g., in the case of the Heston model. The
formula for the number of terms requires integration of the product of the characteristic
function and a polynomial, which is also very time consuming. Fortunately, the time-
consuming part required to obtain [a, b] and N does not depend on the required error
tolerance ε.

In this paper, we use machine learning techniques to learn the n-th derivatives of the
characteristic function evaluated at zero and learn the integral of the characteristic func-
tion times a polynomial, which is independent of the required error tolerance. Then,
we use these predicted values and the error tolerance to obtain the truncation range
and the number of terms. The COS method can then be applied to price European
options.

Different traders may use different error tolerances, but our machine learning techniques do
not require retraining. This error control is an advantage over direct prediction of option
prices by machine learning techniques. The actual calculation of the option price using the
COS method is then very fast.

The paper is structured as follows. Section 5.2 gives an overview of the Heston model, which
will be used in the numerical experiments. In Section 5.3, we introduce the COS method
and the Carr-Madan formula and machine learning techniques. Section 5.4 provides the
numerical experiments to demonstrate the performance of the proposed method. Section
5.5 concludes the paper.

5.2 The Heston model

Consider a financial market with a riskless bank-account and a stock with deterministic
price S0 > 0 today and random price ST at some future date T > 0. In the Heston model
with parameters κ > 0, θ > 0, ξ > 0, ρ ∈ [−1, 1] and v0 > 0, the stock price is described
by the following system of differential equations

dSt

St
= rdt +√vtdWt, S0 ≥ 0 (5.2.1)

dvt = κ(θ − vt)dt + ξ
√

vtdZt. (5.2.2)

W and Z are correlated Brownian motions such that cov [dWtdZt] = ρdt, see Hes-
ton (1993).
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The CIR process, described by Equation (5.2.2), stays positive if 2κθ ≥ ξ2, which is known
as the Feller condition, see Andersen and Piterbarg (2007). The characteristic function of
the log stock price, see Bakshi et al. (1997), is given by

φlog(St)(u) = E [exp(iu log (St)]

= exp (iu (log S0 + rt))

× exp(θκξ−2
(︄

(κ− ρξui− d) t− 2 log
(︄

1− ge−dt

1− g

)︄)︄
)

× exp

⎛⎝v0ξ−2
(κ− ρξiu− d)

(︂
1− e−dt

)︂
1− ge−dt

⎞⎠ ,

where

d =
(︂
(ρξui− κ)2 − ξ2

(︂
−iu− u2

)︂)︂ 1
2 ,

g = κ− ρξui− d

κ− ρξui + d
.

5.3 Algorithms: Numerical tools and machine learning

5.3.1 The Carr-Madan formula

Carr and Madan (1999) showed that the price of a European call option with strike K and
time to maturity T is given by

e−α log(K)e−rT 1
π

∫︂ ∞

0
ℜ
{︄

e−iv log(K) φlog(ST )
(︁
v − i(α + 1)

)︁
α2 + α− v2 + i(2α + 1)v

}︄
dv, (5.3.1)

where α > 0 is a damping factor such that E[S1+α
T ] <∞ and φlog(ST ) is the characteristic

function of log(ST ). ℜ(z) denotes the real part of a complex number z and i =
√
−1 is the

complex unit. The integral in Eq. (5.3.1) can be truncated to (0, M), for some M > 0, and
then be evaluated using, e.g., Simpson’s rule with N grid points.

5.3.2 The COS method

We summarize the COS method. This section is based on Fang and Oosterlee (2009a),
Junike and Pankrashkin (2022) and Junike (2024). Let µ be the expectation of log(ST )
under the risk-neutral measure and assume that the characteristic function φX of the
centralized log-returns X := log(ST ) − µ is given in closed-form. The function φX is
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explicitly given for many models such as the Heston model. The price of a European put
option with maturity T > 0 and strike K > 0 is given by∫︂

R
e−rT max

(︂
K − ex+µ, 0

)︂
f(x)dx, (5.3.2)

where f is the density of X. The price of a call option can be obtained by the put-call-parity.
Very often, f is not explicitly given and the COS method can be used to approximate f

and the price of the option.

For some L > 0, the density f is truncated and the truncated density is approximated by
a cosine series expansion:

f(x) ≈ c0
2 +

N∑︂
k=1

ck cos
(︃

kπ
x + L

2L

)︃
, x ∈ [−L, L], (5.3.3)

where for k = 0, 1, ..., N , the coefficients ck are defined by

ck := 1
L

∫︂
R

f(x) cos
(︁
kπ

x + L

2L

)︁
dx = 1

L
ℜ
{︃

φ

(︃
kπ

2L

)︃
ei kπ

2

}︃
. (5.3.4)

The second Equality in (5.3.4) follows from a simple analysis, see Fang and Oosterlee (2009a).
The price of a European put option can be approximated by replacing f in (5.3.2) with its
approximation (5.3.3), which gives∫︂

R
e−rT max

(︂
K − ex+µ, 0

)︂
f(x)dx ≈ c0v0

2 +
N∑︂

k=1
ckvk,

where

vk :=
∫︂ L

−L
e−rT max

(︂
K − ex+µ, 0

)︂
cos

(︁
kπ

x + L

2L

)︁
dx, k ∈ {0, 1, 2, ...}.

The coefficients ck are given in closed form when φX is given analytically and the coefficients
vk can also be computed explicitly in important cases, e.g., for plain vanilla European put
or call options and digital options, see Fang and Oosterlee (2009a). This makes the COS
method numerically very efficient and robust.

We provide formulas for the coefficients vk for a European put option: Let d :=
min (log (K)− µ, L). For a European put option, it holds that vk = 0 if d ≤ −L and
otherwise

vk = e−rT (KΨ0(k)− eµΨ1(k)) ,

where

Ψ0(k) =

⎧⎪⎨⎪⎩
d + L , k = 0
2L
kπ sin

(︁
kπ

d + L

2L

)︁
, k > 0
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and

Ψ1(k) =
ed
(︂

kπ
2L sin

(︂
kπ d+L

2L

)︂
+ cos

(︂
kπ d+L

2L

)︂)︂
− e−L

1 +
(︂

kπ
2L

)︂2 , k ≥ 0,

see Appendix A in Junike and Pankrashkin (2022). To price a call option it is numerically
more stable to price a put option instead and use the put-call parity, see Fang and
Oosterlee (2009a).

To apply the COS method, one has to specify the truncation range [−L, L] and the number
of terms N . For a given error tolerance ε small enough, both parameters can be chosen as
follows to ensure an approximation error smaller than ε, see Junike and Pankrashkin (2022)
and Junike (2024). If ε is small enough and f has semi-heavy tails, the truncation range
of a put option can be chosen using Markov’s inequality by

L = L(ε, µn) = µn ×
(︄

2Ke−rT

ε

)︄ 1
n

, (5.3.5)

where n ∈ N is even and µn is the n-th root of the n-th moment of X, which can be
obtained using a computer algebra system and the relation

µn = n

√︄
1
in

∂n

∂un
φX(u)

⃓⃓⃓⃓
u=0

. (5.3.6)

Often, n ∈ {4, 6, 8} is a reasonable choice, see Corollary 9 in Junike and Pankrashkin (2022).
If f is also s + 1 ∈ N times differentiable with bounded derivatives, then the number of
terms can be chosen by

N = N(ε, Is) = Is ×
(︄

2s+ 5
2 Ls+2

sπs+1
12Ke−rT

ε

)︄ 1
s

, (5.3.7)

where

Is :=
(︃ 1

2π

∫︂
R
|u|s+1|φX(u)|du

)︃ 1
s

, (5.3.8)

see Equation (3.8) in Junike (2024). The last integral can be solved numerically by standard
techniques and in some cases it is given explicitly. One should choose s such that the
left-hand side of Inequality (5.3.7) is minimized. For the Heston model, s is set to s = 20
in Junike (2024). An implementation of the truncation range, the number of terms and the
COS method for the Heston model can found in Appendix 5.A.3.
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5.3.3 Machine learning techniques

Decision Tree: Decision trees (DT), see Breiman et al. (1984), operate by recursively
partitioning the input data into subsets, thereby forming a tree-like structure, see Table
5.1 and Figure 5.1. At each internal node of the DT, the algorithm selects a feature and a
threshold value to split the data into two subsets.

For example, in the first row of Table 5.1, all input values with maturity T less than or
equal to 0.1019998 are assigned to node 1, all other values are assigned to node 2. The goal
of these splits is to create child nodes with greater homogeneity. The recursive splitting
process continues until a stopping criterion is met, such as a maximum tree depth or a
minimum node size for splitting.

To build a DT for regression, the splitting is based on variance reduction. The algorithm
selects the features and thresholds that most strongly reduce the variance at each node for
splitting.

Given new samples, predictions are made at the leaf nodes, where the model assigns
the average of the data points within the node. This simplicity and transparency
make DT highly effective at handling complex data sets while maintaining interpretabil-
ity.

nodeID leaf
node

variable split
value

left-child
(if variable <

split value)

right-child
(if variable ≥
split value)

prediction

0 No T 0.101999 1 2 NA
1 Yes NA NA NA NA 46.988648
2 No v0 0.838772 3 4 NA
3 Yes NA NA NA NA 14.185356
4 Yes NA NA NA NA 2.344154

Table 5.1: Example of a DT.

Random Forest: Random forests (RF), see Breiman (2001) are an ensemble of DTs to
improve the accuracy and robustness of predictions. Each DT in the RF is trained on a
random subset of the data using bootstrap aggregation. At each node, a random subset of
the features is used for the splitting. In a RF, each DT makes a prediction independently
and the final output is determined by averaging the individual predictions of each single
tree.
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Neural Networks: A neural network (NN) consists of one or more layers, each consisting
of a number of artificial neurons, see Goodfellow et al. (2016). A single neuron transforms
its multidimensional input x ∈ Rn into a one-dimensional output. For some weights
w ∈ Rn+1, the weighted mean of the input is then transformed by an activation function
g : R → R, i.e., the output of a neuron is given by g (∑︁n

i=1 wixi + wn+1) . Examples of
activation functions are the ReLU function g(y) = max(y, 0) or the Sigmoid function
g(y) = 1

1+e−x . In the first layer of the NN, the neurons receive the input data and the
output of each neuron is passed to all neurons in the following layers until the last layer is
reached.

At the start of training, the weights of the NN are randomly initialized. During the training
phase, the weights are chosen in such a way that the functional relationship between input
and output data is mapped as well as possible.

In this work, we test the following regularization techniques that can improve the robustness
of the NN: Dropout means randomly deactivating some neurons. Gaussian noise is a
regularization technique that adds normally distributed numbers with zero mean and small
variance to each weight at each update step. Batch normalization standardizes the inputs
of each layer. These and other regularization techniques are discussed in detail in, for
example, Goodfellow et al. (2016).

T < 0.101999: go left

v0 < 0.838772: go left

46.988648

14.185356 2.344154

Figure 5.1: Example of a DT as in Table 5.1.
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5.4 Numerical experiments

In this section, we use the machine learning techniques DT, NN and RF to predict the
tuning parameters of the Carr-Madan formula and the COS method. For training, we
randomly generate parameters of the Heston model. The ranges of the six parameters
are shown in Table 5.2. The wide ranges of these parameters include parameters that
are typically used for the Heston model, see Andersen (2008), Crisóstomo (2015), Cui
et al. (2017), Engelmann et al. (2021), Fang and Oosterlee (2009a), Forde et al. (2012),
Levendorskĭı (2012) and Schoutens et al. (2003).

Parameter Value range
speed of mean reversion κ [10−3, 10]
level of mean reversion θ [10−3, 2]
volatility of variance ξ [10−2, 5]
correlation coefficient ρ [−0.99, 0.99]

initial variance v0 [10−3, 2]
time to maturity T [250−1, 10]

Table 5.2: Range of parameters of the Heston model, including parameters that are typically
used.

For each sample (consisting of the five parameters for the Heston model and the maturity),
we compute µ4 and µ8 and I20 for the entire data set, using Eqs. (5.3.6, 5.3.8). The
derivatives of φX are calculated using a computer algebra system. As a side note: One
may also approximate the moments as in Choudhury and Lucantoni (1996) to avoid the
computation of the derivatives.

We exclude all the model parameters for which Eq. (5.3.6) gives negative results, assuming
that the moments do not exist in these cases and we remove all parameters for which the
Feller condition 2κη ≥ ξ2 is not satisfied.

In the following numerical experiments, we price a European call option with S0 = 100,
strike K = 100 and interest rate r = 0. We also tested other strikes, i.e., K ∈ {75, 125}
and obtained similar results. For each sample, we calculate a reference price. To obtain the
reference prices we use the COS method with truncation range L(ε, µ8) and number of terms
N(ε, I20), where we set ε = 10−9. To confirm the prices we use the Carr-Madan formula
with truncation range M = 1024, N = 220 and appropriate damping factors. We remove a
few samples where the prices were too unstable and the COS method and the Carr-Madan
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formula give completely different results. For all remaining options, the COS method and
the Carr-Madan formula coincide at least up to seven decimal place.

We receive a cleaned data set of 250, 000 samples. We take 100, 000 samples for training
and validation and use the remaining 50, 000 samples as a test set. All experiments are run
on a laptop with an Intel i7-11850H processor and 32 GB of RAM.

5.4.1 On the tuning parameters of the COS method

To apply the COS method, we use the formulas for the truncation range and the number
of terms in Eq. (5.3.5) and (5.3.7). For the Heston model, it is time-consuming to
compute µ8 in Eq. (5.3.6) and to solve the integral I20 in Eq. (5.3.8). Therefore, we
use the machine learning techniques DT, RF and NN for a fast estimation of µ8 and
I20.

To identify an appropriate architecture for the different machine learning techniques,
we perform a rough hyperparameter optimization. For the DT, we optimize over the
maximum depth and the minimum node size. In addition, the number of DTs in the RF is
optimized, resulting in the hyperparameters shown in Table 5.3. The R package ranger is
used for both DT and RF. We consider a big DT (bDT) of arbitrary depth and a small
DT (sDT) of depth 5. The sDT for µ8 and the sDT for I20 are tabulated in Appendix
5.A.3 and 5.A.3 and could be implemented directly without using additional software
packages.

Parameters bDT
for
I20

bDT for
µ8

RF
for
I20

RF
for µ8

sDT
for
I20

sDT
for µ8

Number of DT 1 1 500 600 1 1
Maximal tree depth 30 unlimited 50 90 5 5

Minimal node size to split at 8 6 1 1 5 5

Table 5.3: Selected hyperparameters of the DT and RF.

The architectural specifications of the NN are described in Table 5.4. The NN is trained with
100 epochs, a validation split of 0.2 and the mean squared error (MSE)

MSE(y, ỹ) = 1
n

n∑︂
i=1

(yi − ỹi)2, y, ỹ ∈ Rd,
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as the loss metric. For the starting values of the weights we use the He initialization,
see He et al. (2015). For the NN, we use tensorflow via the keras package called from
R.

Table 5.5 shows the MSE on the test set for the different machine learning techniques. It
can be observed that for µ8, the NN has a smaller MSE than the RF, while the bDT has a
comparatively large MSE. With regard to I20, the RF has the smallest MSE, while the
MSE of the NN and the bDT are about 40% larger. The sDT has a significantly larger
MSE for both µ8 and I20.

Parameters Optimization range NN for I20 NN for µ8

Hidden layers {1, . . . , 4} 4 3
Neurons {32, 64, 128, ..., 2048} 1024, 256, 256, 32 256, 128, 32

Activation function ReLU, Leaky ReLU,
Sigmoid, ELU, tanh

Sigmoid Sigmoid

Dropout rate {0, 0.1, 0.2, ..., 0.5} 0.2 0
Noise rate {0.01, 0.02, ..., 0.1} 0.07 0.02
Optimizer Adam, SGD, RMSProp Adam Adam

Batch normalization yes, no no no
Batch size {128, 256, 512, 1024} 512 256

Table 5.4: Selected hyperparameters of the NN.

RF NN bDT sDT
µ8 0.0703 0.0058 0.2764 2.2390
I20 33.6615 44.2353 49.0372 61.9859

Table 5.5: MSE of the prediction of µ8 and I20 for different ML techniques on the test set.

Next, we calculate the price of the call option for different model parame-
ters. We use the COS method with L(ε, µ4) or L(ε, µ8) and N(ε, I20), where
ε ∈ {10−1, ..., 10−7}.

The Table 5.6 shows the percentage of samples in the test set for which the required
accuracy is achieved by obtaining µn and Is directly from Eqs. (5.3.6, 5.3.8), which is very
time-consuming, or by estimating µn and Is via DTs, RF or a NN, which is very fast. The
direct way of obtaining µ8 and I20 and the estimation by the RF result in 100% accurate
option prices on the test set for all ε. The NN also achieves a high accuracy of about
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99.98% for all ε. This result could be further improved with a different NN architecture
and additional training. It can be observed that a single bDT is also able to estimate I20

and µ8 with sufficient accuracy to price the call option with different error bounds for at
least 99.96% of the samples. And even a simple technique like the sDT already achieves
an accuracy of at least 98% on the test set.

These very good results are a consequence of the fact that the formulas in Eqs. (5.3.5) and
(5.3.7) are derived using many inequalities, thus overestimating the minimum truncation
range L and the number of terms N needed to accurately price the option. Therefore, a
rough estimate of µ8 and I20 is sufficient for precise option pricing.

ε Ana. calc.
of µ4 and
num. inte-
gration of

I20

Ana. calc.
of µ8 and
num. inte-
gration of

I20

µ8 and I20

via RF
µ8 and I20

via NN
µ8 and I20

via bDT
µ8 and I20

via sDT

10−1 0.999% 100% 100% 100% 100% 99.904%
10−2 0.999% 100% 100% 99.996% 99.998% 99.684%
10−3 100% 100% 100% 99.994% 99.998% 99.320%
10−4 100% 100% 100% 99.988% 99.986% 98.824%
10−5 100% 100% 100% 99.986% 99.976% 98.512%
10−6 100% 100% 100% 99.988% 99.970% 98.288%
10−7 100% 100% 100% 99.990% 99.968% 98.192%

Table 5.6: Accuracy of the COS method for different error tolerances ε on the test set for
a call option with S0 = 100 and K = 100 with µ4, µ8 and I20 calculated directly
and via DTs, RF and a NN.

The Table 5.7 illustrates the CPU time of the COS method, where L and N are obtained
by different error tolerances. The COS method is implemented in C++ using for-loops
without parallelization. It is well known, that L(ε, µ8) is usually closer to the optimal
truncation range than L(ε, µ4), see Junike and Pankrashkin (2022). It is therefore not
surprising that the average CPU time is about 10 times faster using the truncation range
L(ε, µ8) compared to L(ε, µ4), see Table 5.7.
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ε ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5 ε = 10−6 ε = 10−7

L(ε, µ4) 5.89 · 10−5 1.15 · 10−4 2.34 · 10−4 4.86 · 10−4 1.02 · 10−3 2.11 · 10−3

L(ε, µ8) 3.38 · 10−5 4.66 · 10−5 6.67 · 10−5 9.80 · 10−5 1.47 · 10−4 2.20 · 10−4

Table 5.7: Average CPU time (in sec.) on the test set of the COS method with truncation
range L(ε, µ4) or L(ε, µ8) and number of terms N(ε, I20) to price a call option
with S0 = 100 and K = 100. Here, we only take into account the CPU time of
the COS method ignoring the CPU time to estimate L and N .

Ana. calc. of
µ4 and num.

integration of
I20

µ8 and I20 via
RF

µ8 and I20 via
NN

µ8 and I20 via
bDT

µ8 and I20 via
sDT

1.122 · 10−2 6.921 · 10−4 7.056 · 10−5 2.607 · 10−6 2.036 · 10−6

Table 5.8: Average CPU time on the test set in sec. for calculating µn and I20 directly or
using machine learning techniques.

Let us set ε = 10−4 and let us consider two scenarios: i) A trader estimates µ4 and I20

directly. (Estimating µ8 directly is too time consuming for the Heston model). ii) A trader
estimates µ8 and I20 using machine learning techniques. From Table 5.6, we can see that
both approaches will price the options very accurately for different error tolerances and
parameters of the Heston model. What is the impact on the total CPU time? As shown
in Table 5.8, the CPU time to obtain µ4 and I20 directly takes about 0.011sec. (Most of
the time is used to estimate I20, we used R’s function integrate with default values for
numerical integration). The computation of µ4 and I20 dominates the total CPU time,
since the pure application of the COS method takes about 2.34 · 10−4 sec., see Table
5.7. On the other hand, the CPU time to estimate µ8 and I20 using machine learning
techniques is about a factor of 100 to 1, 000 times faster than the direct computation of
µ4 and I20. The total CPU time of the COS method estimating µ8 and I20 via a NN is
about 1.4 · 10−4 sec. In summary, approach ii) is almost 100 times faster than approach
i).

5.4.2 On the tuning parameters of the Carr-Madan formula

In order to apply the Carr-Madan formula, one must specify three parameters, namely
the damping factor α > 0, the truncation range M and the number of grid points N . In
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the following, we use a NN and a RF to estimate these parameters. We set M = 1200
and determine optimal parameters α and N for the entire training set, such that N is
minimal to achieve an error bound of 10−7. We then train a NN and a RF to learn these
optimal parameters. Since the estimate N̂ of the NN and the RF sometimes significantly
underestimates the true N , we double the output of the NN and the RF to improve the
accuracy of the Carr-Madan formula. This step was not necessary for the COS method,
since the theoretical formulas for the truncation range and number of terms are larger than
the minimal truncation range and number of terms.

To measure the accuracy of the Carr-Madan formula, we price a call option with S0 =
K = 100 and r = 0, using the predicted values for α and N of the NN and the RF. We
obtain the required accuracy of ε = 10−7 for 90.55% and 93.49% of the samples in the test
set for the RF and the NN, respectively.

To compare these results, we also use standard parameters of the Carr-Madan formula:
Carr and Madan (1999) suggest the default values M = 1024 and N = 212 as a rule of
thumb. The Carr-Madan formula is very sensitive with respect to the damping factor,
we choose α = 1.95. For these default values, the accuracy of 10−7 is reached in only
18.33% of the samples in the test set (any other fixed α leads to an even lower proportion).
Consequently, RFs and NNs are a useful tool for improving the accuracy of the Carr-Madan
formula, since there is no single damping factor α and number of grid points N for all
cases.

5.5 Conclusion

In this paper, we proposed an indirect use of machine learning to improve the efficiency
and accuracy of the Carr-Madan formula and the COS method for option pricing. Junike
and Pankrashkin (2022) and Junike (2024) provide explicit bounds on the truncation
range and the number of terms to apply the COS method. These bounds ensure that the
COS method prices a European option within a predefined error tolerance. It is generally
time-consuming to obtain these bounds using classical numerical tools. In this paper, we
instead estimate these bounds using machine learning techniques such as RF, DT and NN.
We summarize the advantages:

• Compared to directly estimating the option prices using machine learning techniques
as in Liu et al. (2019a), Liu et al. (2019b) and De Spiegeleer et al. (2018), our
approach allows for full error control.
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• Compared to estimating the bounds using classical numerical methods, our approach
is much faster: about a factor 100.

• Compared to using a fast rule of thumb (as proposed in Fang and Oosterlee (2009a)
and Carr and Madan (1999)) to estimate the tuning parameters of the COS method
or the Carr-Madan formula, our approach is much more reliable. For the COS
method, see Junike and Pankrashkin (2022) for examples where a rule of thumb
based on cumulants leads to serious mispricing. For the Carr-Madan formula, see
Section 5.4.2.

We tested RF, DT and NN to estimate the bounds to obtain the truncation range and the
number of terms to apply the COS method. Among these techniques, the RF works best
(accurate on 100% of the test set). The NN has a similar performance. But even a small
DT gives very satisfactory results (accurate on 98.2% of the test set). Estimation of the
tuning parameters of the Carr-Madan formula by a RF or a NN works in about 90% of all
samples in a test set.

5.A Appendix

5.A.1 Decision tree of depth 5 to predict I20

nodeID leaf
node

variable split
value

left-child
(if variable ≤
split value)

right-child
(if variable >

split value)

prediction

0 No T 0.186064 1 2 NA
1 No v0 0.236779 3 4 NA
2 No T 1.143101 5 6 NA
3 No T 0.062439 7 8 NA
4 No ξ 2.705391 9 10 NA
5 No ξ 2.436885 11 12 NA
6 No T 2.887055 13 14 NA
7 No v0 0.022762 15 16 NA
8 No ρ 0.976444 17 18 NA
9 No T 0.020387 19 20 NA
10 No v0 0.698183 21 22 NA
11 No T 0.420034 23 24 NA
12 No T 0.527950 25 26 NA
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nodeID leaf
node

variable split
value

left-child
(if variable ≤
split value)

right-child
(if variable >

split value)

prediction

13 No θ 0.784247 27 28 NA
14 No θ 0.640466 29 30 NA
15 No ρ -0.468963 31 32 NA
16 No ξ 2.258602 33 34 NA
17 No ξ 2.470854 35 36 NA
18 Yes NA NA NA NA 429.628317
19 No v0 0.587902 37 38 NA
20 No v0 0.694761 39 40 NA
21 No ρ 0.806959 41 42 NA
22 No ρ -0.965657 43 44 NA
23 No ρ 0.960696 45 46 NA
24 No θ 0.719155 47 48 NA
25 No ρ 0.910680 49 50 NA
26 No ρ 0.971400 51 52 NA
27 No ξ 1.991873 53 54 NA
28 No κ 3.484651 55 56 NA
29 No T 5.496469 57 58 NA
30 No T 5.071144 59 60 NA
31 Yes NA NA NA NA 487.342705
32 Yes NA NA NA NA 235.195790
33 Yes NA NA NA NA 102.893171
34 Yes NA NA NA NA 201.553675
35 Yes NA NA NA NA 36.203604
36 Yes NA NA NA NA 88.277112
37 Yes NA NA NA NA 62.208418
38 Yes NA NA NA NA 32.587266
39 Yes NA NA NA NA 25.738887
40 Yes NA NA NA NA 14.188984
41 Yes NA NA NA NA 64.373567
42 Yes NA NA NA NA 145.963858
43 Yes NA NA NA NA 133.842206
44 Yes NA NA NA NA 31.212500
45 Yes NA NA NA NA 9.945991
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nodeID leaf
node

variable split
value

left-child
(if variable ≤
split value)

right-child
(if variable >

split value)

prediction

46 Yes NA NA NA NA 38.703759
47 Yes NA NA NA NA 8.617465
48 Yes NA NA NA NA 4.853007
49 Yes NA NA NA NA 18.833877
50 Yes NA NA NA NA 47.724354
51 Yes NA NA NA NA 10.171048
52 Yes NA NA NA NA 45.038898
53 Yes NA NA NA NA 4.335898
54 Yes NA NA NA NA 7.306731
55 Yes NA NA NA NA 4.961622
56 Yes NA NA NA NA 2.733986
57 Yes NA NA NA NA 3.421163
58 Yes NA NA NA NA 2.172563
59 Yes NA NA NA NA 1.894587
60 Yes NA NA NA NA 1.144569

5.A.2 Decision tree of depth 5 to predict µ8

nodeID leaf
node

variable split
value

left-child
(if variable ≤

splitvalue)

right-child
(if variable >

splitvalue)

prediction

0 No T 3.399204 1 2 NA
1 No T 1.169626 3 4 NA
2 No θ 0.959098 5 6 NA
3 No T 0.428831 7 8 NA
4 No θ 0.900109 9 10 NA
5 No θ 0.498129 11 12 NA
6 No κ 2.697343 13 14 NA
7 No T 0.183570 15 16 NA
8 No ξ 2.347370 17 18 NA
9 No θ 0.417688 19 20 NA
10 No ρ -0.102140 21 22 NA
11 No θ 0.273765 23 24 NA
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nodeID leaf
node

variable split
value

left-child
(if variable ≤

splitvalue)

right-child
(if variable >

splitvalue)

prediction

12 No ρ -0.192910 25 26 NA
13 No ξ 2.690779 27 28 NA
14 No ρ -0.116578 29 30 NA
15 No T 0.074047 31 32 NA
16 No ξ 2.265810 33 34 NA
17 No θ 0.834463 35 36 NA
18 No ρ -0.186050 37 38 NA
19 No θ 0.226219 39 40 NA
20 No ρ -0.354863 41 42 NA
21 No ξ 2.903877 43 44 NA
22 No T 2.237251 45 46 NA
23 No θ 0.177632 47 48 NA
24 No ρ -0.286902 49 50 NA
25 No ξ 2.631217 51 52 NA
26 No T 6.095978 53 54 NA
27 No ρ -0.015948 55 56 NA
28 No ρ -0.210373 57 58 NA
29 No ξ 3.133527 59 60 NA
30 No T 6.186172 61 62 NA
31 Yes NA NA NA NA 0.366800
32 Yes NA NA NA NA 0.754696
33 Yes NA NA NA NA 1.068672
34 Yes NA NA NA NA 1.464186
35 Yes NA NA NA NA 1.367173
36 Yes NA NA NA NA 1.973656
37 Yes NA NA NA NA 3.110276
38 Yes NA NA NA NA 2.107476
39 Yes NA NA NA NA 1.381474
40 Yes NA NA NA NA 2.026955
41 Yes NA NA NA NA 3.456599
42 Yes NA NA NA NA 2.541016
43 Yes NA NA NA NA 3.922665
44 Yes NA NA NA NA 5.965712
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nodeID leaf
node

variable split
value

left-child
(if variable ≤

splitvalue)

right-child
(if variable >

splitvalue)

prediction

45 Yes NA NA NA NA 2.993397
46 Yes NA NA NA NA 3.799591
47 Yes NA NA NA NA 1.785174
48 Yes NA NA NA NA 2.496068
49 Yes NA NA NA NA 3.837462
50 Yes NA NA NA NA 3.023879
51 Yes NA NA NA NA 4.734888
52 Yes NA NA NA NA 6.274068
53 Yes NA NA NA NA 3.484621
54 Yes NA NA NA NA 4.394604
55 Yes NA NA NA NA 8.766430
56 Yes NA NA NA NA 5.524519
57 Yes NA NA NA NA 17.084012
58 Yes NA NA NA NA 10.369077
59 Yes NA NA NA NA 6.240159
60 Yes NA NA NA NA 8.173560
61 Yes NA NA NA NA 4.647802
62 Yes NA NA NA NA 5.944725

5.A.3 Simple implementation

The following algorithm implements the COS method in R for the Heston model to price
European put and call options.

Algorithm 1 Implementation details of the COS method in the Heston model

#Characteristic function of log-returns in the Heston with parameters params.
#The characteristic function is taken from Schoutens et. al (2004).
psiLogST_Heston = function(u, mat, params, S0, r){

kappa = params[1] #speed of mean reversion
theta = params[2] #level of mean reversion
xi = params[3] #vol of vol
rho = params[4] #correlation vol stock
v0 = params[5] #initial vol
d = sqrt((rho * xi * u * 1i - kappa)^2 - xi^2 * (-1i * u - u^2))
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mytmp = kappa - rho * xi * u * 1i
g = (mytmp - d) / (mytmp + d)
expdmat = exp(-d * mat)
tmp0 = 1i * u * (log(S0) + r * mat)
tmp1 = (mytmp - d) * mat - 2 * log((1 - g * expdmat) / (1 - g))
tmp2 = theta * kappa * xi^(-2) * tmp1
tmp3 = v0 * xi^(-2) * (mytmp - d) * (1 - expdmat) / (1 - g * expdmat)
exp(tmp0 + tmp2 + tmp3)

}
library(Deriv) #There are much faster alternatives like SageMath.
psiLogST_Heston1=Deriv(psiLogST_Heston, "u")

#mu is equal to E[log(S_T)]
mu = function(mat, params, S0, r){

Re(-1i * psiLogST_Heston1(0, mat, params, S0, r))
}
#Characteristic function of centralized log-returns in the Heston model.
phi = function(u, mat, params, S0, r){

psiLogST_Heston(u, mat, params, S0, r) * exp(-1i * u * mu(mat, params, S0, r))
}
#cosine coefficients of the density.
ck = function(L, mat, N, params, S0, r){

k = 0:N
return(1 / L * Re(phi(k * pi / (2 * L), mat, params, S0, r) * exp(1i * k * pi/2)))

}
#cosine coefficients of a put option, see Appendix Junike and Pankrashkin (2022).
vk = function(K, L, mat, N, params, S0, r){

mymu = mu(mat, params, S0, r) #mu = E[log(S_T)]
d = min(log(K) - mymu, L)
if(d <= -L)

return(rep(0, N + 1)) #Return zero vector
k = 0:N
psi0 = 2 * L / (k * pi) * (sin(k * pi * (d + L) / (2 * L)))
psi0[1] = d + L
tmp1 = k * pi / (2 * L) * sin( k * pi * (d + L) / (2 * L))
tmp2 = cos(k * pi * (d + L) / (2 * L))
tmp3 = 1 + (k * pi / (2 * L))^2
psi1 = (exp(d) * (tmp1 + tmp2) - exp(-L)) / tmp3
return(exp(-r * mat) * (K * psi0 - exp(mymu) * psi1))

}
#approximation of put option by COS method
put_COS = function(K, L, mat, N, params, S0, r){

tmp = ck(L, mat, N, params, S0, r) * vk(K, L, mat, N, params, S0, r)
tmp[1] = 0.5 * tmp[1] #First term is weighted by 1/2
return(sum(tmp))

}
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#approximation of call option by COS method using put-call parity
call_COS = function(K, L, mat, N, params, S0, r){

return(put_COS(K, L, mat, N, params, S0, r) + S0 - K * exp(-r * mat))
}

#Derivatives of the characteristic function of the centralized log-returns in the Heston model.
phi1 = Deriv(phi, "u")
phi2 = Deriv(phi1, "u")
phi3 = Deriv(phi2, "u") #Takes very long but has to be done only once.
phi4 = Deriv(phi3, "u") #Takes very long but has to be done only once.
save(phi4, file = "phi4.RData") #save for later use. Load with load("phi4.RData").

#Price a put option in the Heston model by the COS method.

eps = 10^-6 #error tolerance

K = 90 #strike

S0 = 100 #current stock price

r = 0.1 #interest rates

params = c(0.6067, 0.0707, 0.2928, -0.7571, 0.0654)

mat = 0.7 #maturity

mu_n = abs(phi4(0, mat, params, S0, r)) #4-th moment of log-returns.

L = (2 * K * exp(-r * mat) * mu_n / eps)^(1 / 4) #Junike (2024, Eq. (3.10)).

s = 20 #number of derivatives to determine the number of terms

integrand = function(u){1 / (2 * pi) * abs(u)^(s + 1) * abs(phi(u, mat, params, S0, r))}

boundDeriv = integrate(integrand, -Inf, Inf)$value

tmp = 2^(s + 5 / 2) * boundDeriv * L^(s + 2) * 12 * K * exp(-r * mat)

N = ceiling((tmp / (s * pi^(s + 1) * eps))^(1 / s)) #Number of terms, Junike (2024, Sec. 6.1)

put_COS(K, L, mat, N, params, S0, r) #The price of put option is 2.773954.
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Chapter 6

Future research

In Chapters 2 and 3, we analyzed a class of decompositions of path-independent instruments
based on Itô’s formula when the P&L can be described by a twice differentiable function.
It would be interesting to analyze decompositions of more general functionals using the
functional Itô formula, see Levental et al. (2013) and Cont and Fournié (2010). This would
enable the decomposition of path-dependent options.
In Theorem 3.3.4 we provided conditions to ensure a certain speed of convergence of
sequential updating decompositions when the risk factors are continuous. This could be
generalized to semimartingales with jumps. The speed of convergence is determined by a
bound on the expected value of the error. An interesting extension would be to derive a
pathwise error bound.

In Chapters 4 and 5, we analyzed the COS method for multidimensional integrals. We
used full grids to discretize the integration domain. It is an open research question to what
extent the numerical effort can be reduced by using sparse grids instead of full grids.
In Chapter 5 we used machine learning techniques to model the formulas for the tuning
parameters of the COS method in the one-dimensional case. It would be interesting to use
the same approach for the formulas in general dimensions.
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